=> s de4216838

L1 1 DE4216838

=> d ab

L1 ANSWER 1 OF 1 WPINDEX COPYRIGHT 2005 THE THOMSON CORP on STN AB DE 4216838AUPAB: 19940209

The brake exerts input power, basically of a mechanical nature, and a mechanical movement on the driven shaft of a gear unit, which is converted into current energy. The gear unit acts as an intensifier of the mechanical movement, so that the speed of the rotor is increased.

The regenerative mechanical braking can be achieved using ohmic braking bridges, or induction braking bridges, or capacitor bridges and other machines or sets. A DC motor rotor (2) is short circuited by means of a bridge (3) and is provided with an associated ferrite magnet (1) and a winding coil (16) for separate excitation.

USE/ADVANTAGE - For automobiles, motor-cycles ABS systems. Mechanical forces are concentrated at driven shaft and all braking operations use inherently generated power as braking power.

1,1c,8/8

2007P274EP

BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift

[®] DE 42 16 838 A 1

(51) Int. Cl.5: H 02 P 3/08

H 02 J 7/00 B 60 T 1/00 // E05B 33/00

DEUTSCHES PATENTAMT Aktenzeichen:

P 42 16 838.4

Anmeldetag: Offenlegungstag:

21. 5.92 16, 12, 93

(71) Anmelder:

Golub, Danijel, 7500 Karlsruhe, DE

(72) Erfinder:

US

gleich Anmelder

(56) Entgegenhaltungen:

US 14 65 584 EP 3 56 775 A2

SCHAUER, Gerd: Nutzbremsung für

Elektrofahrzeuge mit Reihenschlußmaschinen. In:

etz, Bd.112,H.4, 1991, S186-191;

Lastauto omnibus, 9/1989, S.46;

ROHNE, E.: Überlegung zur Ausführung von Dauerbremsen für Nutzfahrzeuge. In: ATZ, 69,1967,5,

S.145-149:

DE-Z: DER ELEKTROMEISTER, H. 19, 1965;

S.1400-1401:

HERMIE, D.H: Neue Schaltungen für Stromrückgewinnung im Gleichstrom-Bahnbetrieb. In: AEG-

MITTEILUNGEN, Juli 1934, H.7, S.214-215; MÜLLER: Elektrische Fahrzeugantriebe, 1960,

S.39-44;

PHILIPPOW: Taschenbuch Elektrotechnik Bd.2 VEB

Verlag Technik Berlin 1970, S.318;

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Abtriebsfreie mechanische Bremse

42 42 617

Abtriebsfreie mechanische Bremse mit (1.) Ohmsche Bremsbrücke (2.) Induktionsbremsbrücke (3.) Kapazitätsbremsbrücke (4.) Elektrolytische Bremsbrücke (5.) Meßbremsbrücke (6.) als Hand-Not-Strom-Aggregat (7.) als Fernübertrager der mechanischen Bewegungen (8.) als abtriebsfreie Kupplung (9.) als abtriebsfreie Getriebe (10.) als Lichtmaschine und Anlasser in einem Gerät (11.) als Tacho mit niedrigen Innenwiderstand und hohe Ausgangsleistung

Bei Eingang der mechanischen Leistung (Bewegung) die über Getriebe erfolgt und sich auf dem Rotor einen Gleichstrommotor als erhöhte Drehung ergibt, Strom erzeugt. Es ist zwar minimal, daß aber ausreichend sich auswirkt und zwar, für fast alle Bremszwecke, da die Bremsleistung von Geschwindigkeit und der eingebrachten mechanischen Kraft abhängig ist.

Kleine eingebrachte mechanische Kraft, bedarf auch eine geringe Bremswirkung. Große eingebrachte mechanische Kraft bringt auch eine große selbsterzeugte Bremskraft.

Anwendungsgebiet ist überall wo Bremskräfte benötigt werden oder zur Stabilisierung verschiedener mechanischer Bewegungen oder wo mechanische Bewegungen überwacht oder gedämpft werden müssen, sowie Fernübertragungen der mechanischen Bewegungen.

55

Beschreibung

Die Erfindung betrifft eine abtriebsfreie mechanische Bremse in der die mechanischen Leistungen oder Bewegungen in elektrischen Strom umgewandelt werden, und elektrischer Strom wird an dem Stromwender entweder kurzgeschlossen oder mit so hohen Verbrauchern belastet, daß die erzeugte Leistung in Form von elektrischem Strom im Rotor praktisch in die Knie gezwungen wird. Dadurch erzeugte Magnetfelder möch- 10 möglich: ten Rotor immer in andere Richtung drehen, und diese Gegenkräfte benutzen wir zu Bremszwecken.

Die Erfindung betrifft eine mechanische Bremse, die z. B. aus einem Kleinstelektromotor und einem Stirn-Umdrehungen und Vollastbetrieb mit 15 A und 12 V betrieben werden kann, dann muß im umgekehrten Sinne, das heißt, soviel mechanische Leistung und zwar etwa 170 W abbremsen ohne Schaden anzunehmen. Die leistung) dauer Kurzschluß fest belastet werden kann. Das heißt, kann der Motor der z.B. 170 W Leistung bringt so eingesetzt werden, daß die Leistung mittels Übersetzung multipliziert werden kann und in diesem Falle ein Kleinstgerät einige 100 W Bremsleistung er- 25 bringt.

Es ist betonenswert, daß sich die Erfindung nur auf die Nennleistung des Elektromotors stützt. Es darf weder Geschwindigkeit wie auch Erregerstrom oder Erregermagnetfeld überschritten werden.

Die Erfindung eignet sich allgemein für alle Bremszwecke.

Beispiel 1

Türschließer, Bodenschließer

Beim Türöffnen muß Feder aufgezogen werden, aber keine zusätzliche Bremskraft erscheinen, das wird hiermit erreicht, daß mittels der Freilaufdiode Strom in eine 40 Richtung, daß heißt Tür auf, gesperrt wird, und in die andere Richtung kann Strom durch die Freilaufdiode in eine der genannten Bremsbrücken eingespeist werden. Bei entspannen der Federkraft wird auf die Achse der Abtriebswelle, der getriebemechanischen, Kraft ausge- 45 übt und somit der Bewegung des Rotors des Elektromotors Strom, Spannung induziert (erzeugt) die wiederum vom Verbraucher oder bei einem direkten Kurzschluß mittels inneren Widerstandes als Induktion und Erzeugung der Kraft die immer entgegen wirkt, verbraucht.

Es bietet sich an, bei einer einmaligen Einstellung, im Sommer wie im Winter einen störungsfreien Betrieb zu

Das Problem Hydrauliköl entfällt (umweltschonend).

Beispiel 2

Die Erfindung eignet sich auch zu Bremszwecken in der Papierindustrie. Bei Abrollen des Papiers kann die Spannung des Papiers kontinuierlich eingehalten wer- 60 den.

Bei Ablassen der Lasten z. B. beim Abseilen der Verletzten aus Gebäuden oder im Gebirge, kann an dem Seil Gerät angebracht werden, der auf so und soviel Meter pro Sekunde, fall eingestellt wird.

Das gleiche betrifft Ablassen von Lasten am Last-

Ferner eignet sich die Erfindung als Stoßdämpfer

oder Bewegungsabsicherungen die nur in eine Richtung erfolgen. Das heißt zu Schiebzwecken, weil mittels einer Freilaufdiode nur in eine Richtung das Bremsen und in andere Richtung Freilauf bewährt wird.

Die Erfindung eignet sich auch als Fernübertrager der mechanischen Bewegungen.

Beispiel 1: Wenn als Bremse ein Induktionsverbraucher eingesetzt wird und zwar mit Vorschaltgetriebe als Leistungsausgang dann sind die folgenden Bewegungen

a) Ersatz für Türzylinder

Wenn an der Tür abtriebsfreie mechanische Bremse radgetriebe besteht. Wenn Elektromotoren bei 20 000 15 eingesetzt ist, und am Schloß Induktionsverbraucher dann können mittels zwei Leitungen mechanische Bewegungen in beide Richtungen übertragen werden. Das heißt, wenn man nach rechts dreht, dann wird das Schloß geschlossen, wenn man nach links dreht wird das Experimente haben bewiesen, daß Eigenleistung (Nenn- 20 Schloß aufgeschlossen. Diese beiden Bewegungen lassen sich mit Hilfe der Positionsschalter (Endschalter) begrenzen.

Wenn man bei ausgelösten oder geöffneten Schalter weiter dreht, wird das Drehen wesentlich leichter fallen, da die Leitung zum Verbraucher unterbrochen wird. Nur wenn man in die andere Richtung dreht, wird die Leitung mittels der Freilaufdiode, die zu dem Endschalter parallel geschaltet ist, wieder leitend, und so kann man das Schloß in die andere Richtung bis zur Unterbrechung der Schloßpositon zudrehen. Es ergibt sich ein zusätzlicher Effekt der Rückmeldung (mechanische Rückmeldung). Erst dann wenn der Endschalter unterbrochen wird, werden die mechanischen Bewegungen an der Abtriebswelle der mechanischen Bremse wesent-35 lich leichter. Es ist sogar machbar Tür immer schließen zu können und in der Leitung für die Schließung auf kann in Reihe eine elektrisch, mechanische Codierung eingesetzt werden, die erst eine richtige Einstellung bedarf, um die Tür wieder öffnen zu können.

Einsatzgebiet der Schließvorgänge eignet sich besonders für Sicherheitseinrichtungen jeglicher Art.

1. Blockier- oder Freigabemechanismen für die Schließbewegungen am Tresor, in den Sicherheitszonen für Forschung und Technik, in Sperrgebieten, im Bereich der Autoindustrie als zusätzliche Schließmechanismen zum Absperren oder Verriegeln der Tür, an den PKW's, Kombibussen und LKW Bereich, sowie im Bereich der Werttransporte als Diebstahlsicherung und als Alarmauslöser, bei unbefugten Benutzen.

2. Auf dem Komplex Haus- und Industrieabsicherung, zur Erstellung der Induktionbetriebenen Schlösser (Motorschlösser), die ohne Schließzylinder betrieben werden können.

Beispiel: Fensterabsicherung oder ein Zusatzschloß kann in der Entfernung, die von außen nicht zugänglich ist mittels einer abtriebsfreien mechanischen Bremse verbunden mit 2 Leitungen ohne Schlüssel betätigt werden.

Genauso können mittels der Fernübertrager der mechanischen Bewegung an medizinischen (Krankenbetten) liegen und OP-Tischen, energielos (nur Handener-65 gie), Bewegungen ausgeführt werden, die eigentlich bis jetzt so konzipiert sind, das nur mittels der elektrischen Energie möglich ist.

Es ist eine ideelle Lösung diese von mir erfundenen

Systeme in Noteinsatzgebieten zu verwenden da an solchen Orten die Stromversorgung meist nicht vorhanden

Kurz gesagt: In Verbindung mit 2 Elektromotoren und dem dazugehörigen Übersetzungsgetriebe ist eigentlich jede Bewegung von minimalen bis sehr hohen Kräften möglich.

Ferner ist es möglich Fernsteuerbare Greifer zu erstellen, die zu Bergungszwecken bei nicht zugänglichen oder erschwert zugänglichen Orten möglich sind. Die 10 Ferngreifer wären auch hilfreiche Mittel im Weltall da das Gewicht einige 10 g betragen kann.

Weitere Möglichkeiten der Erfindung zum Einsatz zu kommen, sind z. B. Fernlenkungen von Rudern, da die mechanischen Verbindungen entfallen können, das 15 heißt im Boots- und Schiffsbau.

Ferner im Sport und Freizeitbereich:

Es entsteht vielleicht das erste Trittboot mit Propeller, das in beide Richtungen bewegt werden könnte. Genauso Trimmfahrräder die mit einer Kapazitätsbremse ausgestattet sind und während des Fahrens z. B. Radiohören ermöglichen, oder Kapazitätsbremse am Fahrrad allgemein, bedeutet, daß während des Fahrens Beleuchtung brennt und zusätzlich ein Kleinakku aufge-

Das hätte zur Folge, daß an der Kreuzung bei Stillstand des Fahrrades Beleuchtung weiter in Betrieb bliebe, ohne Einsatz der Elektronik. Und eine weitere Möglichkeit, Akku aufladbar, auch wenn er ganz leer ist.

bremse für Fahrräder, Motorräder, Autos. Da die Beschaffenheit einfach und preiswert ist. Ein möglicher Einsatz als Lichtmaschine und Anlasser in einem Auto wäre auch möglich.

oder mit hoher Wicklungszahl gefertigt werden, wobei der Rotor des Motors mindestens 200 mm Durchmesser hat, ergibt sich sogar die Möglichkeit als Einsatz für sehr hohe Zahl der Antriebsquellen und zwar als Funktion einer kontaktlosen Kupplung und stufenlos einsteilbaren Getriebes. Das würde bedeuten, daß einige 1000 Tonnen von dem bisher abgegebenen Verschleißstaubteilen an die Umwelt nicht mehr vorkommen.

Es ist bekannt die Funktionen eines Elektromotors und auch die Funktionen eines Stromgenerators 45 lung (16) Magneterreger (1). (Stromerzeuger).

Es wird aber nicht praktiziert die gleichen Maschinen in Kurzschlußbetrieb zu betreiben. In beiden Fällen bedeutete ein Kurzschluß auch ein Ende des Betriebes.

Meine Erfindung stützt sich ausdrücklich am Betrei- 50 ben eines Elektromotors mit vorgesetztem Getriebe im Kurzschlußbetrieb oder einer hohen Leistungsabgabe, da in beiden Fällen die Spannung sinkt und soweit reduziert werden kann, daß der Motor anhand der niedrigen inneren Widerstände vielleicht nur noch 0,5-20 V be- 55 trägt, aber ein sehr hohen Strom aufweist.

Und das bedeutet, daß die Leistung stark gemindert wird. Deswegen verwende ich als Verstärkung der Leistung, bei normalen Bauformen ein Vorschaltgetriebe.

Um in unserem Falle Spannung zu erzeugen, können 60 Motoren eingesetzt werden, die nur zwei Hauptpole haben, die in Stator angebracht sind und einem hochpoligem Stromwender der an einem Rotor angebracht ist, der Rotor kann ab 4 Polen bis 128 Polen haben.

Es ist Aufgabe der Erfindung mechanische Kräfte gebündelt an der Abtriebswelle eingehen zu lassen und somit alle Bremsvorgänge mittels eigenserzeugter Energie als Bremswirkung zu nutzen.

Es hat sich als vorteilhaft erwiesen, daß die Getriebe die Reduzierung 10:1 bis maximal 100:1 ausgelegt werden. Es ist immer abhängig was für Arbeiten beziehungsweise Kräfte gebremst, gedämpft oder fernge-5 steuert werden.

Die Erfindung wird nachstehend an einigen Ausführungsbeispielen unter Bezugnahme auf beigefügten Zeichenblättern erläutert.

Dabei zeigen:

Fig. 1 Gleichstrommotor Rotor (2) kurzgeschlossen mittels einer Brücke (3) mit dazugehörigen Ferritmagnet (1) und Wicklungsspule (16) als Fremderreger,

Fig. 1a Anker (2) Fremderreger (1) und ein einstellbarer Leistungswiderstand (4),

Fig. 1b gemäß Fig. 1a jedoch zusätzlich 2 Freilaufdioden (5), die die Bremsrichtung bestimmen,

Fig. 1c Rotor (2) Fremderreger (1) Leistungswiderstand (32) und elektronischer Leistungsregler (31).

Fig. 2 dargestellte Bremse mit Induktionsbrücke, 2 Rotoren (2) dazugehörige Erregerfelder (1), 2 Endschalter (6) (Öffner) 1 Schalter (10) (Schließer) und 3 Freilaufdioden (5).

Fig. 3 dargestellte Bremse mit Kapazitätsbrücke (Groß) (15) Kapazitätsbrücke (klein) (12) Kondensator 25 (11) Batterie (Akkumulator) (14) Impulsgeber (13) Schließer (10) Gleichrichter (9) Rotor (2) Erregermagnet (1) Erregerspule (16).

Fig. 4 dargestellte Bremse mit Elektrolytischer Brükke (20) Gleichrichter (9) Gehäuse (17) Elektrolyd (18) Ferner eignet sich die Erfindung als Antiblockier- 30 Elektroden (19) Rotor (2) Erregermagnet (1) Erreger-

spule (16).

Fig. 5 dargestellte Bremse mit Meßbrücke (23) Meßinstrument mit Schund (22) Rotor (2) Erregermagnet (1).

Fig. 6 dargestellte Bremse mit hochpoligem Strom-Wenn für die Bremsen benötigter Motor hochpolig 35 wender (25) Rotor (2) 2 Erregermagnete (1) Achse (24) und dargestellte Kraftlinien Hebelarm strecken (L1 +

Fig. 7 dargestellte Bremse mit Statorgehäuse (27) ausgebildet aus Keilriemenscheibe (28) 2 Lager (26) Achse (24) Rotor (2) und 2 Fremderreger (1-16).

Fig. 8 dargestellte Bremse mit Eigenstromversorgung (4) Erregerspule (16) und zusätzlich Erregermagneten (1) Anschlußmöglichkeiten je nach Drehrichtung (a oder b) Rotor (2) Hauptpol (30) Metallträger (29) für Wick-

Zusammenstellung der verwendeten Bezugsziffern

- 1 Ferritmagnet (Erregermagnet)
- 2 Rotor
- 3 Brücke
- 4 Einsteilbarer Leistungswiderstand
- 5 Freilaufdiode
- 6 Endschalter (Öffner)
- 8 Induktionsbrücke
 - 9 Gleichrichter
- 10 Schließer
- 11 Kondensator
- 12 Kleine Kapazitätsbrücke
- 13 Impulsgeber
 - 14 Batterie-Akkumulator
 - 15 Große Kapazitätsbrücke
 - 16 Fremderregerspule
 - 17 Gehäuse
- 65 18 Elektrolyt
 - 19 Elektroden
 - 20 Elektrolytische Brücke
 - 22 Meßinstrument mit Schund

5

10

40

5

23 Meßbrücke

25 Stromwender

26 Lager

27 Stator

28 Keilriemenscheibe

29 Metallträger für Wicklung (16)

30 Hauptpol mit Wicklung (16) und Erregermagnet (1)

L1 Hebelarm Strecke kleiner Drehmoment

L2 Hebelarm Strecke 2 großer Drehmoment

(L1) kleiner Bremseffekt

(L2) großer Bremseffekt

Mit meiner Erfindung ist es möglich, verschiedene Brems- und Kupplungssysteme zu ersetzen und somit störungsfreien Lauf der Aggregate zu garantieren und 15 eine hohe Umweltschonung zu leisten.

Mit diesem Patent entsteht wahrscheinlich die erste Möglichkeit eine Arbeit mittels eigenerzeugter Energie zu verrichten.

Es ist von der Bauweise her sehr einfach aufgebaut 20 und bringt eine enorme Leistung. Es ist einsetzbar im Bereich von Spielzeug, Modellbau, Hobby und Sport und fast allen Industriezweigen. Es bietet sich an als Überwachungssystem, als Tacho einzusetzen und mit der Ausgangsleistung sofort irgendwelche Schaltvorgänge (Einzug eines Relais) zu tätigen.

Beispiel 1: Überwachung der Keilriemen

Beispiel 2: Überwachung der lufttechnischen Einrichtungen.

Mit Einsatz der abtriebsfreien mechanischen Bremse, 30 in Verbindung mit der Meßbrücke sind praktisch alle Bewegungen in beiden Richtungen sichtbar zu machen und sogar die Geschwindigkeit zu kontrollieren. Es können als Meßbrücken auch Schreiber eingesetzt werden, da der Schreibermotor mit der Bremsspannung betrie35 ben werden kann

Und somit gibt es wahrscheinlich sehr wenige Gebiete, wo dieses Patent nicht eingesetzt werden kann.

Patentansprüche

1. Abtriebsfreie mechanische Bremse besteht aus einem Gleichstrommotor mit vorgeschaltetem Planet- oder Stirnradgetriebe und wird dadurch gekennzeichnet, daß die Eingangsleistung immer an der Abtriebswelle der Getriebe eingeht. Die Ausgangsleistung (elektrische Energie) wird zu Bremszwecken ausgenutzt.

2. Die Eingangsleistung ist grundsätzlich mechanischer Natur, das heißt, es kann eine mechanische Bewegung auf die Abtriebswelle der Getriebe ausgeübt werden, die am Elektromotor in eine Stromenergie umgewandelt wird. Schon kleinste Bewegungen an der Abtriebsweile der Getriebe nach Anspruch 1, dadurch gekennzeichnet, daß die Getriebe als Verstärker der mechanischen Bewegung dienen, und somit die Drehzahl des Rotors erhöht wird.

3. Abtriebsfreie mechanische Bremse, nach Anspruch 1 + 2, wird bewirkt mit einer Kurzschluß- 60 brücke (3) oder als Verbraucher der elektrischen Energie (4), (32), (15), (20), (23), (8).

4. Abtriebsfreie mechanische Bremse nach Anspruch 1-3, dadurch gekennzeichnet, daß Bremsmoment und Bremswirkung von der Übersetzung 65 der Abtriebswelle zu dem Rotorritzel stark abhängt.

5. Abtriebsfreie mechanische Bremse nach An-

spruch 1—4, dadurch gekennzeichnet, daß bei einer hohen Drehzahl als Eingangsleistung eine kleine Übersetzung und eine niedrige Drehzahl, als Eingangsleistung eine hohe Übersetzung bezugnehmend auf das Verhältnis im Getriebe benötigt wird.
6. Abtriebsfreie mechanische Bremse nach Anspruch 1—5, dadurch gekennzeichnet, daß sich das Übersetzungsverhältnis wesentlich verändern muß oder daß die Getriebe ganz entfällt, wenn der Motor mit einem flachen Rotor ausgestattet ist, der eine hohe Zahl von Wicklungen enthält und Durchmesser des Rotors erheblich größer ist.

7. Abtriebsfreie mechanische Bremse nach Anspruch 1-6, dadurch gekennzeichnet, daß die als Stromerzeuger verwendet werden kann und auch die vorsatzgetriebe entfallen können, wenn die ganze Bremse extrem hochpoligem Stromwender (25) und damit eine Vielzahl von Wicklungen zwei Paar Fremderreger (1), (30) und zwei Paar, das heißt vier Kohlenbürsten, die um 90 Grad versetzt sind hat

Zwei Kohlenbürsten für Selbsterregung für Hauptpole (30) mit integriertem Magnetstab (1) für Anlaufinduktion.

8. Abtriebsfreie mechanische Bremse nach Anspruch 1-7, dadurch gekennzeichnet, daß ein extrem hohes Magnetfeld der Fremderreger aufgebaut werden kann, wenn der Restmagnetismus mittels eines Magnetstabs (1) verstärkt werden kann, um ausreichende Erregung des Magnetfeldes zu verursachen um bei Drehung des Rotors erzeugter Strom nur in die Erregerspule (16) zu liefern.

9. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1-8 dadurch gekennzeichnet, daß die Elektromotoren für sehr niedrige Spannungen und einem sehr hohen Strom ausgelegt sind.

Spannungen: 2-240 V

Strom: 0,2-2000 A.

10. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß Elektromotoren keine Stromwender hat und die Rotorwicklung an Stelle des Anschlusses am Stromwender gleich im Rotor als Kurzschlußwicklung mit niedrigem innerem Widerstand ausgebildet wird. In diesem Falle kann die abtriebsfreie mechanische Bremse als Induktionskupplung oder als Anitblockierbremse eingesetzt werden, in Verbindung von Erregerspule (16).

11. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1 – 10, dadurch gekennzeichnet, daß immer ein geschlossener Kreis an dem Stromwender angelegt werden muß, und zwar in Form einer Kurzschlußbrücke (3), oder wertverendbare Brükke (4), (32) und (31) oder mittels einer Freilaufdiode (5).

12. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1—11, ausgenommen Ansprüch 10, dadurch gekennzeichnet, daß wenn als Bremse ein Kapazitätsverbraucher steht, das heißt, eine Batterie, Akkumulator oder ein Kondensator, wird der beste Effekt mit einem Impulsgeber (13) mittels eines Schließers (10) erzielt. Das heißt, die Stromimpulse sind hoch und somit wird hohe Kapazität in kürzester Zeit erreicht, wobei man die gespeicherte Energie für anderweitige Zwecke verwenden kann. 13. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1—12, dadurch gekennzeichnet, daß stufenlose Regelung vollzogen werden kann, und

zwar einmal mittels Verschiebung der Fremderregermagneten entlang des Rotors, parallel zu der Rotorachse. Das heißt, daß im Statorgehäuse mittels Anbringen von Führungsschienen und spezielle Fremderregermagnethalterung eine Verschiebung 5 des Fremderregermagnetes ermöglicht wird. Und einmal mittels Verschiebung des Rotors. Die Verschiebung des Rotors wird dadurch ermöglicht, daß der ganze Motor (Stator) länger ausgebildet ist. Mittels Nutenfräsungen in der Rotorachse 10 und Anbringen des Nutenscheibenlagers wird die Führung, um die Verschiebung zu vollziehen, dargestellt. Hiermit wird erreicht, daß der Rotor oder die Fremderregermagneten aus dem Mittelpunkt des Magnetismus herausgezogen oder herausge- 15 schoben werden, und somit wird magnetisches Feld geschwächt, was zur Folge hätte, bei einer kurzgeschlossenen Wicklung, ohne den Stromwender zu benutzen und trotzdem die Maschine regelbar zu machen.

Bremskraft kann somit von 0-100% geregelt werden. Was sehr wichtig ist beim Anlassen einer Maschine in Funktion einer Kupplung, oder bei stufenloser Einstellung eines abtriebsfreien elektromagnetischen Getriebes ohne Zuführung der Fremd- 25 energie.

14. Abtriebsfreie mechanische Bremse nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß Anlaßbremse oder Kupplung, wie auch stufenloses Getriebe, größere Dimensionen bedürfen und es 30 bietet sich an, den Stator so auszubilden, daß mehrere Paare von Hauptfeldern angebracht werden. Es ist sogar ein Magnetenkranz zu empfehlen, da sich die Verschiebung besser realisieren läßt.

15. Abtriebsfreie mechanische Bremse nach einem 35 der Ansprüche 1 – 14, dadurch gekennzeichnet, daß sie aus zwei Teilen bestehen kann, die Bauform ähnelt einer Glocke. Das bedeutet, das Rotor so ausgebildet ist, daß die Achse mit einer Bohrung versehen ist und somit an eine Achse eines Ventila- 40 tors angebracht werden kann. Der Rotor selbst ist nur mit Wicklungen versehen, die in sich kurzgeschlossen sind, dadurch besitzt das Rotor auch keinen Stromwender.

Die Ausbildung des Stators ist glockenförmig und 45 hat abgesetzt Vollmetallgehäuse so ausgebildet, daß an einer Achse des Antriebsmotors des Ventilatorantriebes, angebracht werden kann. Und somit entsteht eine kontaktlose Kupplung und ein indirektes Antreiben der Aggregaten.

Hierzu 8 Seite(n) Zeichnungen

55

50

60

- Leerseite -

BNSDOCID: <DE_____4216838A1_I_

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/06

16. Dezember 1993

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993 Fig. 3 308 050/12

Nummer: Int. Cl.5:

DE 42 16 B38 A1 H 02 P 3/08 Offenlegungstag: 16. Dezember 1993

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993

308 050/12

Nummer: Int. Cl.5:

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993

Fig. 6

ZEICHNUNGEN SEITE 7.

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993

ب از ا وياري Fig.7

308 050/12

Offenlegungstag:

DE 42 16 838 A1 H 02 P 3/08

16. Dezember 1993

170. of

308 050/12