Jakub Gorący IT Grupa 3	Temat: Symulacja nieustalonego transferu ciepła programem do metod elementów skończonych	Data: 15.01.2025 r.
----------------------------	---	------------------------

Wstęp Teoretyczny

Metoda elementów skończonych (MES) to jedna z najważniejszych technik numerycznych wykorzystywanych do rozwiązywania problemów inżynierskich, które wymagają analizy zjawisk fizycznych opisywanych przez równania różniczkowe cząstkowe. MES pozwala na modelowanie skomplikowanych procesów, takich jak przewodzenie ciepła, przepływ płynów, czy analiza naprężeń w materiałach, w przypadku których tradycyjne metody analityczne mogą okazać się niewystarczające. Dzięki tej metodzie możliwe jest przybliżenie rozwiązania na obszarze o złożonej geometrii, uwzględniając przy tym różnorodne warunki brzegowe oraz zmienne obciążenia.

Główna idea MES polega na podziale badanego obszaru na małe, uproszczone elementy, które są łatwiejsze do analizy. Każdy z tych elementów jest opisany przez funkcje kształtu, które umożliwiają przybliżenie rozkładu wielkości fizycznych, takich jak temperatura czy naprężenia, wewnątrz elementu. Na podstawie tych funkcji oblicza się lokalne macierze, takie jak macierz sztywności i macierz pojemności cieplnej, które są kluczowe w dalszym procesie obliczeniowym. Macierz sztywności opisuje zależności związane z reakcjami materiału na obciążenia, natomiast macierz pojemności cieplnej odnosi się do zdolności materiału do magazynowania energii cieplnej.

Lokalne macierze są następnie zestawiane w jeden globalny układ równań, który opisuje zachowanie całego badanego systemu. Takie podejście pozwala na precyzyjne uwzględnienie interakcji między różnymi obszarami oraz punktami w systemie. Układ równań jest rozwiązywany za pomocą zaawansowanych metod numerycznych, takich jak eliminacja Gaussa czy metody iteracyjne, które pozwalają uzyskać dokładne przybliżenie rozwiązań dla całego modelowanego układu.

Model z warunkami brzegowymi

Model w programie opiera się na kilku istotnych elementach, w tym na klasie odpowiedzialnej za obsługę punktów całkowania i wag Gaussa. **Kwadratura Gaussa** to metoda numeryczna, która pozwala na efektywne przybliżanie wartości całek, co jest niezbędne w procesie formułowania i rozwiązywania równań w metodzie elementów skończonych (MES). Dzięki tej technice można dokładnie obliczać całki funkcji kształtu, ich pochodnych, a także wyznaczać macierze sztywności i wektory obciążeń.

Kwadratura Gaussa znajduje również zastosowanie w obliczeniach związanych z macierzami warunków brzegowych oraz wektorami obciążeń brzegowych. Wartości punktów całkowania oraz odpowiadające im wagi są wyznaczane na podstawie wybranego schematu całkowania, zgodnie z tabelą kwadratury **Gaussa-Legendre'a**.

Number of points, n	Points, x_i	Weights, w_i
1	0	2
2	$\pm\sqrt{rac{1}{3}}$	1
	0	89
3	$\pm\sqrt{\frac{3}{5}}$	$\frac{5}{9}$
4	$\pm\sqrt{\tfrac{3}{7}-\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18+\sqrt{30}}{36}$
	$\pm\sqrt{\tfrac{3}{7}+\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18-\sqrt{30}}{36}$
5	0	$\frac{128}{225}$
	$\pm \tfrac{1}{3} \sqrt{5-2\sqrt{\tfrac{10}{7}}}$	$\frac{322+13\sqrt{70}}{900}$
	$\pmrac{1}{3}\sqrt{5+2\sqrt{rac{10}{7}}}$	$\frac{322 - 13\sqrt{70}}{900}$

Klasa reprezentująca **Element Uniwersalny** stanowi podstawowy komponent modelu MES, zawierające definicje funkcji kształtu oraz ich pochodnych. Funkcje kształtu pełnią kluczową rolę w aproksymacji rozwiązania w obrębie elementu, natomiast ich pochodne są wykorzystywane do obliczania macierzy sztywności i pojemności cieplnej.

$$N_1 = 0.25(1 - \xi)(1 - \eta)$$

 $N_2 = 0.25(1+\xi)(1-\eta)$

Formuły dla funkcji kształtu, uporządkowane według kolejności od dolnej krawędzi elementu:

$$N_3 = 0.25(1+\xi)(1+\eta)$$

$$N_4 = 0.25(1 - \xi)(1 + \eta)$$

Pochodne funkcji kształtu względem współrzędnej ξ\xi (poziomej) są wyznaczane według wzoru:

$$\frac{\partial N_1}{\partial \xi} = -\frac{1}{4}(1-\eta) \qquad \frac{\partial N_2}{\partial \xi} = \frac{1}{4}(1-\eta) \qquad \frac{\partial N_3}{\partial \xi} = \frac{1}{4}(1+\eta) \qquad \frac{\partial N_4}{\partial \xi} = -\frac{1}{4}(1+\eta)_4$$

Pochodne funkcji kształtu względem η\etaη (pionowej współrzędnej) są określane za pomocą wzoru:

$$\frac{\partial N_1}{\partial \eta} = -\frac{1}{4}(1-\xi) \qquad \frac{\partial N_2}{\partial \eta} = -\frac{1}{4}(1+\xi) \qquad \frac{\partial N_3}{\partial \eta} = \frac{1}{4}(1+\xi) \qquad \frac{\partial N_4}{\partial \eta} = \frac{1}{4}(1-\xi)_4$$

Klasa służąca do obliczania macierzy **H** i **C** dla każdego elementu siatki pełni kluczową funkcję w analizach MES. Macierz sztywności (**H**) odpowiada za współczynniki związane z nieznanymi temperaturami, natomiast macierz pojemności cieplnej (**C**) obejmuje współczynniki dla temperatur znanych. Oba te elementy są niezbędne do formułowania równań MES, które pozwalają na określenie rozkładu temperatur w analizowanym obszarze.

Macierz **H** jest macierzą sztywności elementu, zawierającą współczynniki przypisane nieznanym wartościom temperatury. Jej obliczenia opierają się na pochodnych funkcji kształtu oraz współczynniku przewodności cieplnej materiału.

Macierz **C** stanowi macierz pojemności cieplnej elementu i zawiera współczynniki związane z wartościami znanych temperatur. Jej wyznaczanie opiera się na funkcjach kształtu oraz właściwościach materiałowych, takich jak gęstość i pojemność cieplna.

$$[C] = \int \rho c_p(\{N\}\{N\}^T) dV$$

ρ to gęstość materiału,

cp to pojemność cieplna materiału,

N to funkcje kształtu.

Klasa odpowiedzialna za obliczanie macierzy **HBc** oraz wektora **P** umożliwia uwzględnienie wpływu warunków brzegowych w symulacjach wymiany ciepła.

W przypadku elementów, na których obu węzłach krawędzi występują warunki brzegowe, macierze **HBc** i wektory **P** są obliczane w celu analizy wpływu konwekcji oraz temperatury otoczenia.

 Macierz HBc to zmodyfikowana wersja macierzy H, uwzględniająca warunki brzegowe. Odzwierciedla transport ciepła przez powierzchnie objęte warunkami konwekcji.

Wektory **P** oraz macierze **HBc** wspólnie uwzględniają wymianę ciepła wynikającą z warunków na krawędziach elementów.

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} \right) dV$$
$$+ \int_{S} \alpha \{N\} \{N\}^{T} dS$$

$$[H_{BC}] = \int_{S} \alpha(\{N\}\{N\}^{T}) dS$$

- Wektor P reprezentuje globalne obciążenia, takie jak zewnętrzne strumienie ciepła.

$$[P] = \int_{S} \alpha \{N\} t_{ot} dS = \sum_{i=1}^{n_{pc}} f(pc_i) w_i \det[J]$$

Finalne rozwiązanie na podstawie temperatury początkowej:

$$\left(\left[H \right] + \frac{\left[C \right]}{\Delta \tau} \right) \left\{ t_1 \right\} - \left(\frac{\left[C \right]}{\Delta \tau} \right) \left\{ t_0 \right\} + \left\{ P \right\} = 0$$

- **H** macierz sztywności, odpowiadająca za przewodzenie ciepła,
- **C** / **Δτ** macierz pojemności cieplnej, uwzględniająca zmiany temperatury w czasie (podzielona przez krok czasowy Δτ),
- {t₁} wektor temperatury w przyszłym czasie,
- {t₀} wektor temperatury w bieżącym czasie,
- {P} wektor obciążeń.

Warunki brzegowe stanowią kluczowy element modelu MES, określając sposób zachowania się systemu na krawędziach analizowanego obszaru. W przypadku symulacji przepływu ciepła, mogą one zdefiniować stałą temperaturę na granicach lub opisują przepływ strumieni ciepła przez te krawędzie.

Program

Podzieliłem program na kilka folderów, zawierających klasy odpowiedzialne za obsługę punktów opisanych wyżej

Folder classes

Plik Element.py

- Klasa Element: Reprezentuje element w metodzie elementów skończonych (MES).
 - Atrybuty:
 - id: Unikalny identyfikator elementu.
 - connected_nodes: Lista węzłów połączonych z elementem.

Plik Node.py

- Klasa Node: Reprezentuje węzeł w siatce MES.
 - Atrybuty:
 - node_id: Unikalny identyfikator węzła.
 - x, y: Współrzędne węzła.
 - BC: Warunek brzegowy (domyślnie 0).

Plik Grid.py

- Klasa Grid: Reprezentuje siatkę elementów skończonych.
- Atrybuty:
 - nNodes: Maksymalna liczba węzłów.
 - nElements: Maksymalna liczba elementów.
 - nodes: Lista węzłów w siatce.
 - elements: Lista elementów w siatce.

Plik Global.py

- Klasa Global: Przechowuje globalne parametry symulacji MES.
- Atrybuty:
 - simTime, simStepTime: Czas trwania symulacji i krok czasowy.
 - conductivity, alfa: Współczynniki przewodzenia ciepła.
 - tot, initialTemp: Temperatura otoczenia i początkowa.
 - density, specificHeat: Gęstość i ciepło właściwe materiału.
 - nodesNo, elementsNo: Liczba węzłów i elementów w siatce.

Folder gauss

Plik GaussianIntegral3Nodes.py

- Klasa GaussianIntegral3Nodes: Implementuje trzypunktową kwadraturę Gaussa, używaną do całkowania jedno- i dwuwymiarowego.

Plik GaussianIntegral2Nodes.py

- Klasa GaussianIntegral2Nodes: Implementuje dwupunktową kwadraturę Gaussa, używaną do całkowania jedno- i dwuwymiarowego.

Plik GaussianIntegral.py

- Klasa GaussianIntegral: Implementuje całkowanie numeryczne metodą Gaussa dla różnej liczby węzłów (1-5).

Plik GaussFunction.py

- Funkcja functionX(x): Jednowymiarowa funkcja używana w obliczeniach całkowania metodą Gaussa, reprezentująca wielomian drugiego stopnia.
- Funkcja functionXY(x, y): Dwuwymiarowa funkcja używana w obliczeniach całkowania metodą Gaussa, reprezentująca wielomian drugiego stopnia względem obu zmiennych.

Plik Eliminacja.py

- Funkcja gaussian_elimination(matrix_c_h_summed, vectors_summed): Implementacja metody eliminacji Gaussa do rozwiązywania układu równań liniowych, używana do obliczenia rozkładu temperatur w węzłach siatki MES.

Folder macierz

Plik MacierzC.py

- Klasa MacierzC: Implementuje macierz pojemności cieplnej [C] dla metody elementów skończonych (MES).

Plik MacierzH.py

- Klasa JacobianMatrix: Implementuje macierz Jacobiego dla transformacji współrzędnych.
- Klasa dNi_dX i dNi_dY: Obliczają pochodne funkcji kształtu względem x i y.
- Klasa TransposedMatrix: Implementuje macierz transponowaną i operacje na niej.
- Klasa MatrixH: Implementuje macierz H (przewodzenia ciepła).

Plik MacierzOperacje.py

- Funkcja sum_matrices: Sumuje globalne macierze C i H do postaci [C]/dτ + [H].
- Funkcja sum vectors: Sumuje wektor {[C]/dt}-{T0} z wektorem {P}.

Plik MacierzCGlobalna.py

- Klasa MacierzCGlobalna: Implementuje globalną macierz pojemności cieplnej dla całej siatki MES.

Plik MacierzHGlobalna.py

- Klasa MacierzHGlobalna: Implementuje globalną macierz przewodzenia ciepła [H] dla całej siatki MES.

Plik WektorP.py

- Klasa MacierzHBC: Implementuje macierz warunków brzegowych konwekcji dla elementu skończonego.
- Klasa WektorP: Implementuje wektor obciążeń cieplnych dla elementu skończonego.

Plik UniversalElement.py

- Klasa UniversalElement: Implementuje element uniwersalny dla metody elementów skończonych (MES).

Wyniki 4x4

110,0379766	365,8154706
168,8370172	502,5917121
242,8008552	587,3726667
318,6145938	649,3874835
391,2557917	700,0684204
459,0369033	744,0633443
521,5862742	783,3828497
579,034445	818,9921877
631,6892369	851,4310426
679,9075932	881,0576349

Time	Min	Max
Time 50	Min: 110.037972356	Max: 365.815472625
Time 100	Min: 168.837009766	Max: 502.591714279
Time 150	Min: 242.800846272	Max: 587.372666710
Time 200	Min: 318.614588705	Max: 649.387482181
Time 250	Min: 391.255791789	Max: 700.068418294
Time 300	Min: 459.036908919	Max: 744.063341474
Time 350	Min: 521.586285396	Max: 783.382846218
Time 400	Min: 579.034461392	Max: 818.992183572
Time 450	Min: 631.689258233	Max: 851.431037796
Time 500	Min: 679.907619130	Max: 881.057629389

Wyniki 4x4 mix

95,15184673	374,6863325
147,6444167	505,9681108
220,164455	586,9978504
296,7364399	647,2855839
370,9682758	697,3339863
440,560144	741,2191122
504,8911997	781,2095697
564,0015112	817,3915065
618,1738556	850,2373195
667,765547	880,1676054

Wyniki 31x31

00.00000140	440 5500070
99,99969813	149,5566276
100,0005347	177,4448265
100,0008473	197,2672292
100,0011671	213,1534826
100,0015021	226,6837399
100,0018527	238,6086988
100,0022241	249,3488099
100,0026305	259,1676798
100,0031022	268,2437655
100,0036956	276,7046395
100,0045056	284,6452766
100,0056793	292,1386492
100,0074299	299,2422609
100,0100489	306,0023768
100,0139159	312,4568735
100,0195048	318,6372213
100,0273853	324,5699028
100,0382208	330,2774513
100,0527628	335,7792275
100,0718416	341,0920093

Time	Min	Max
Time 1	Min: 100.000000000	Max: 149.556951808
Time 2	Min: 100.000000005	Max: 177.444927950
Time 3	Min: 100.000000051	Max: 197.266962922
Time 4	Min: 100.000000334	Max: 213.152787292
Time 5	Min: 100.000001638	Max: 226.682583419
Time 6	Min: 100.000006471	Max: 238.607064806
Time 7	Min: 100.000021529	Max: 249.346691942
Time 8	Min: 100.000062213	Max: 259.165079155
Time 9	Min: 100.000159783	Max: 268.240689005
Time 10	Min: 100.000371345	Max: 276.701097863
Time 11	Min: 100.000792236	Max: 284.641283189
Time 12	Min: 100.001569846	Max: 292.134219051
Time 13	Min: 100.002917484	Max: 299.237409945
Time 14	Min: 100.005126798	Max: 305.997121528
Time 15	Min: 100.008577464	Max: 312.451230214
Time 16	Min: 100.013743214	Max: 318.631206136
Time 17	Min: 100.021193760	Max: 324.563531490
Time 18	Min: 100.031592614	Max: 330.270739173
Time 19	Min: 100.045691201	Max: 335.772189048
Time 20	Min: 100.064319870	Max: 341.084658534

Wnioski

Zastosowanie MES: Metoda elementów skończonych umożliwia skuteczną analizę skomplikowanych systemów, gdzie geometria, warunki brzegowe i inne parametry są trudne do opisania analitycznie. W analizie transferu ciepła MES pozwala na precyzyjne określenie rozkładu temperatury w danym obszarze w czasie.

Wykorzystanie macierzy H i C:

- Macierz H (sztywności) odpowiada za modelowanie przewodzenia ciepła i uwzględnia pochodne funkcji kształtu oraz właściwości materiału.
- Macierz C (pojemności cieplnej) uwzględnia zmiany temperatury w czasie oraz zależy od gęstości i pojemności cieplnej materiału.
- **Kwadratura Gaussa**: Implementacja kwadratury Gaussa pozwala na dokładne obliczenia całek w procesach formułowania macierzy, co zwiększa dokładność symulacji.
- **Zastosowanie warunków brzegowych**: Wprowadzenie warunków brzegowych, takich jak konwekcja czy wymiana ciepła z otoczeniem, umożliwia bardziej realistyczne odwzorowanie rzeczywistych procesów fizycznych. Warunki te są modelowane poprzez macierz HBc oraz wektor P.
- **Struktura programu**: Program jest modularny, co pozwala na łatwą rozbudowę i modyfikację. Podział na klasy i foldery (np. obsługujące funkcje kształtu, macierze, czy integrację numeryczną) świadczy o dobrze zaprojektowanej architekturze kodu.
- **Wyniki symulacji**: Wyniki dla siatek o różnej rozdzielczości (np. 4x4, 31x31) wskazują na stabilność i precyzję modelu. Zauważalne różnice w wynikach dla siatek o różnej gęstości świadczą o znaczeniu rozdzielczości siatki dla dokładności obliczeń.
- **Praktyczne zastosowanie**: MES sprawdza się w analizach dynamicznych i statycznych oraz pozwala na symulację procesów złożonych, takich jak przewodzenie ciepła w nieregularnych geometriach czy zmienne w czasie warunki brzegowe.