

Attorney's Docket No. 5470-130DV

8
Dmt
8-7-01
PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re: French et al.

Serial No.: 09/497,822

Filed: February 3, 2000

For: *ANDROGEN RECEPTOR PROTEINS, RECOMBINANT DNA MOLECULES
CODING FOR SUCH, AND USE OF SUCH COMPOSITIONS*

Examiner: M. Pak

Group Art Unit: 1646

Date: July 31, 2001

Commissioner for Patents
Washington, DC 20231

SUBMITTAL OF FORMAL DRAWINGS

Sir:

Enclosed herewith please find one set (23 sheets) of new formal drawings. It is requested that these new drawings be substituted for the originally filed formal drawings.

Respectfully submitted,

Karen A. Magri
Registration No. 41,965

Customer Number:

20792

PATENT TRADEMARK OFFICE

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner For Patents, Washington, DC 20231, on July 31, 2001.

Traci A. Brown

Date of Signature: July 31, 2001

OLIGO A		COMPLEMENT 5'- ACC TGT GAG GGC TGT AAG GTC TTC AAA AG -3' (100%) (SEQ ID NO:1)									
hAR	(X)	ACA	TGT	GGA	AGC	TGC	AAG	GTC	TTC	AAA	AG
hPR	(11)	ACC	TGT	GGG	AGC	TGT	AAG	GTC	TTC	AAA	AG
hMR	(4)	ACC	TGT	GGC	AGC	TGC	AAA	GTT	TTT	AAG	AG
hGR	(5)	ACT	TGT	GGA	AGC	TGT	AAA	GTT	TTT	AAG	AG
hER	(6)	TCC	TGT	GAG	GGC	TGT	AAG	GCC	TTC	AAG	AG
hT3R	(3, 17)	ACG	TGT	GAA	GGC	TGC	AAG	GGT	TTC	TTT	AGA
hRAR	(17)	GCC	TGT	GAG	GGC	TGC	AAG	GGC	TTC	CGC	CG

FIG. 1A

FIG. 1B

DNA-BINDING DOMAIN

FIG. 1C

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

COMPILED CLONE MAP OF THE HUMAN ANDROGEN RECEPTOR

10 30 50
GAGCTCTGGACAAAATTGAGCGCCTATGTGTACATGGCAAGTGTGTTAGTGTGTTG
CTCGAGACCTGTTAACTCGCGATAACATGTACCGTCACAAAAATCACAAACACAC

70 90 110
TTTACCTGCTTGCTGGGTGATTTGCCCTTGAGAGTCTGGATGAGAAATGCATGGTTAA
AAATGGACGAACAGACCCACTAAAACGGAAACTCTCAGACCTACTCTTACGTACCAATT

130 150 170
AGGCAATTCCAGACAGGAAGAAAGGCAGAGAAGAGGGTAGAAATGACCTCTGATTCTGG
TCCGTTAACGGTCTGTCCTCTTCCGTCTTCTCCCCTTACTGGAGACTAAGAAC

190 210 230
GGCTGAGGGTTCCTAGAGCAAATGGCACAATGCCACGAGGCCGATCTATCCCTATGACG
CCGACTCCCAAGGATCTCGTTACCGTGTACGGTGTCCGGCTAGATAGGGATACTGC

250 270 290
GAACCTCTAACGGTTTCAGCATCAGCTATCTGCTGGCTGGTCACTGGCTTGCTCCTCAGT
CTTGAGATTCCAAAGTCGTAGTCGATAGACGACCGAACAGTGACCGAACGGAGGAGTC

310 330 350
TTGTAGGAGACTCTCCACTCTCCATCTGCGCGCTTATCAGTCCTGAAAAGAACCN
AACATCCTCTGAGAGGGTAGACGCGCGAGAATAGTCAGGACTTTCTGGGN

370 390 410
TGGCNAGCCAGGAGCNAGGTATTNTATCGCCTTTNCNTCCCTNGCCTCACCTNGTT
ACCGNTCGGTCTCGNTCCATAAGNATAGCAGGAAAGNAGGAGGANGGAGTGGANCAA

430 450 470
GNTTTTAGATTGGNCTNGNAACCAATTGTATGCTGGCCTCCAGGAAATCTGGAGCC
CNAAAAATCTAACCGNAANCNTGGTTAACATACGACCGGAGGTCTTAGACCTCGG

490 510 530
TGGCGCCTAACCTGGTTAGGAAAGCAGGAGCTATTCAAGGAAGCAGGGCCTCCAGGG
ACCGCGGATTTGGAACCAAATCCTTCGTCTCGATAAGTCCTCGTCCCAGGAGGTCCC

550 570 590
CTAGAGCTAGCCTCTGCCCTGCCACGTGCCAGCACTGTTCTCAAAGCNAC
GATCTCGATCGGAGAGGACGGAGCGGGTGCACGGGTGTAACAAAGAGGTTCGNTG

FIG. 4A

610 630 650
TAGGCAGGCGTTAGCGCGCGGTGAGGGGAGGGGAGAAAAGGAAAGGGGAGGGGAGGGAAA
ATCCGTCCGCAATCGCGGCCACTCCCCTCCCCTTTCCCTCCCCTCCCCTCCCTT

670 690 710
AGGAGGTGGGAAGGCAAGGAGGCCGGCNGGTGGGGCGGGACCCGACTCGCANNAACTG
TCCTCCACCCTTCGTTCCCTCCGGCCGNCCACCCCCGCCCTGGGCTGAGCGTNNTTGAC

730 750 770
TTGCATTGCTCTCCACCTCCCAGCGCCCCCTCCGAGATCCCAGGGAGCCAGCTTGCTGG
AACGTAAACGAGAGGTGGAGGGTCGCGGGGGAGGCTCTAGGGCCCTCGGTGAAACGACC

790 810 830
GAGAGCGGGAACGGTCCGGAGCAAGCCCAGAGGCAGAGGAGGCACAGAGGGAAAAAGGG
CTCTCGCCCTGCCAGGCCTCGTCCGGTCTCCGTCTCCGCTGTCTCCCTTTCCCC

850 870 890
CCCNAGCTAGCCGCTCCAGTGCTGTACAGNAGCGAAGGACGCACCACGCCAGCCCCAGC
GGGNTCGATCGCGAGGTACGACATGTCNTCGGCTTCCTCGTGGTGCCTCGGGTCGGGTG

910 930 950
CCGGCTCCAGCGACAGCNAACGCCTTTGCANGCGTTCGAAGCCGCCGCCCCAGCTGCC
GGCCGAGGTGCTGTCGNTTGCAGAACGTNCGAAGCTTCGGCGGGCTCGACGG

970 990 1010
CTTCCTCTCGGTGAAGTTTTAAAAGCTGCTAAAGACTGGAGGAAGCAAGGAAAGTG
GAAAGGAGAACCCACTCAAAATTTCGACGATTCTGAGCCTCCGTTCTTCAC

1030 1050 1070
CCTGGTAGGACTGACGGCTGCCTTGTCCCTCCTCTCCACCCCGCTCCCCCACCCT
GGACCATCCTGACTGCCGACGGAAACAGGAGGAGGGAGGGTGGGGCGGAGGGGGGTGGGA

1090 1110 1130
GCCTTCCCCCCTCCCCGTCTCTCTCCCGCAGCTGCCTCAGTCGGCTACTCTCAGCCA
CGGAAGGGGGGAGGGGGCAGAAGAGAGGGCGACGGAGTCAGCCGATGAGAGTCGGT

1150 1170 1190
ACCCCCCTCACCAACCTCTCCCCACCCGCCCGCCCCCGTGGCCAGCGNTGNCA
TGGGGGGAGTGGTGGGAAGAGGGGTGGCGGGGGGGCAGCCGGTGCNACNGT

FIG. 4B

1210 1230 1250
GNCCGAGTTGCAGAGAGGTAACCTCCCTTGGCTGCGAGCAGGCGAGNCTAGCTGCACAT
CNGGCTAAACGTCTCTCCATTGAGGGAAACCGACGCTCGCCGCTCNGATCGACGTGTA

1270 1290 1310
TGCAAAGAAGGCTCTTAGGAGCAGGCGACTGGGGAGCGGCTTCAGCACTGCAGGCCACGAC
ACGTTTCTTCCGAGAATCCTCGTCCGCTGACCCCTCGCCGAAGTCGTGACGTCGGTGCTG

1330 1350 1370
CNGCCTGGTTAGGCTGCACGCGGAGAGAACCCCTCTGTTTCCCCACTCTCTCTCCACCT
GNCGGACCAATCCGACGTGCGCCTCTTGGGAGACAAAAGGGGTGAGAGAGAGGGTGGAA

1390 1410 1430
CCTCCTGCCTCCCCACCCCGAGTGCAGGCCAGAGATCAAAAGATGAAAAGGCAGTCAG
GGAGGACGGAAGGGTGGGCTCACGCCTCGGTCTCTAGTTTCTACTTTCCGTCAGTC

1450 1470 1490
GTCTTCAGTAGCCAAAAACAAAACAAAACAAAAAGCCGAAATAAAAGAAAAAG
CAGAAGTCATCGGTTTTGTTGTTGTTTGTGTTTCGGCTTATTTCCTTTTC

1510 1530 1550
ATAATAACTCAGTTCTTATTGCACCTACTTCAGTGGACACTGAATTGGAAGGTGGAGG
TATTATTGAGTCAAGAATAACGTGGATGAAGTCACCTGTGACTAAACCTCCACCTCC

1570 1590 1610
ATTTGTTTTCTTTAAGATCTGGCATCTTGAATCTACCCTCAAGTATTAAGA
TAAAACAAAAAAAGAAAATTCTAGACCCGTAGAAAACCTAGATGGGAAGTCATAATTCT

1630 1650 1670
GACAGACTGTGAGCCTAGCAGGGCAGATCTGTCCACCGTGTCTCTGCACGAGA
CTGTCTGACACTCGGATCGTCCGTCTAGAACAGGTGGCACACAGAAGAACGTGCTCT

1690 1710 1730
CTTTGAGGCTGTCAGAGCGTTTGCAGGGTGTGCTCCGCAAGTTCTCTGGAGC
GAAACTCCGACAGTCTCGCAAAACGCACCAACGAGGGCGTCAAAGGAAGAGACCTCG

1750 1770 1790
TTCCCGCAGGTGGCAGCTAGCTGCAGCGACTACCGCATCATCACAGCCTGTTGAACCT
AAGGGCGTCCACCGTGCATCGACGTCGCTGATGGCGTAGTAGTGTGCGACAACTTGAGA

FIG. 4C

1810 1830 1850
TCTGAGCAAGAGAAGGGAGGCAGGGTAAGGAAAGTAGGTGGAAGAGATTCAGCCAAGCTCA
AGACTCGTTCTTCCCCTCCGCCCATCCCTCATCCACCTCTAAGTCGGTTCGAGT

1870 1890 1910
AGGATGGAAGTGCAGTTAGGGCTGGGAAGGGTCTACCCTCGGCCCGTCCAAGACCTAC
TCCTACCTTCACGTCAATCCGACCCCTCCAGATGGGAGCCGGCAGGTTCTGGATG

1930 1950 1970
CGAGGAGCTTCCAGAACATCTGTTCCAGAGCGTGCAGAAGTGATCCAGAACCCGGGCCCC
GCTCCTCGAAAGGTCTTAGACAAGGTCTCGCACCGCTTCACTAGGTCTGGGCCCCGGG

1990 2010 2030
AGGCACCCAGAGGCCGCGAGCGCAGCACCTCCGGCGCCAGTTGCTGCTGCTGCAGCAG
TCCGTGGGTCTCCGGCGCTCGCGTGGAGGGCCGCGGTCAAACGACGACGACGTCGTC

2050 2070 2090
CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
GTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTC

2110 2130 2150
CAGCAGCAAGAGACTAGCCCCAGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
GTCGTCGTTCTGATCGGGTCCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTC

2170 2190 2210
CAAGCCCATCGTAGAGGCCACAGGCTACCTGGTCCCTGGATGAGGAACAGCAACCTCA
GTTCGGGTAGCATCTCGGGGTGTCGATGGACCAGGACCTACTCCTGTCGTTGGAAGT

2230 2250 2270
CAGCCGCAGTCGGCCCTGGAGTGCCACCCCGAGAGAGAGGTTGCGTCCCAGAGCCTGGAGCC
GTCGGCGTCAGCCGGACCTCACGGTGGGCTCTCCAACGCAGGGTCTCGGACCTCGG

2290 2310 2330
GCCGTGGCCGCCAGCAAGGGCTGCCAGCAGCTGCCAGCACCTCCGGACGAGGATGAC
CGGCACCGCGGTCGTTCCCGACGGCGTCGTCACGGTGGAGGCCTGCTCCTACTG

2350 2370 2390
TCAGCTGCCCATCCACGTTGTCCTGCTGGCCCCACTTCCCCGGCTTAAGCAGCTGC
AGTCGACGGGGTAGGTGCAACAGGGACGACCCGGGTGAAAGGGCCGAATTGTCGACG

FIG. 4D

2410 2430 2450
TCCGCTGACCTAAAGACATCCTGAGCGAGGCCAGCACCATGCAACTCCTTCAGAACAG
AGGCAGTGGATTCTGTAGGACTCGCTCCGGTGTACGTTGAGGAAGTCGTTGTC

2470 2490 2510
CAGCAGGAAGCAGTATCCGAAGGCAGCAGCAGCGGGAGAGCGAGGGAGGCCTGGGGCT
GTCGTCCTCGTCATAGGCTCCGTCGTCGCCCTCTCGCTCCCTCCGGAGCCCCGA

2530 2550 2570
CCCACTTCCTCCAAGGACAATTACTTAGGGGCACTTCGACCATTCTGACAACGCCAAG
GGGTGAAGGAGGTTCTGTTAATGAATCCCCGTGAAGCTGGTAAAGACTGTTGCGGTTC

2590 2610 2630
GAGTTGTGAAGGCAGTGTGCGGTGTCCATGGCCTGGTGTGGAGGCCTGGAGCATCTG
CTCAACACATTCCGTCACAGCCACAGGTACCCGGACCCACACCTCCGCAACCTCGTAGAC

2650 2670 2690
AGTCCAGGGAACAGCTCGGGGGATTGCATGTACGCCACTTTGGAGTTCCACCC
TCAGGTCCCCTGTCGAAGCCCCCTAACGTACATGCGGGTGAAAACCTCAAGGTGGG

2710 2730 2750
GCTGTGCGTCCACTCCTGTGCCCATGGCCGAATGCAAAGGTTCTCTGCTAGACGAC
CGACACGCAGGGTGAGGAACACGGGTAACCGGTTACGTTCCAAGAGACGATCTGCTG

2770 2790 2810
AGCGCAGGCAAGAGCACTGAAGATACTGCTGAGTATTCCCTTCAAGGGAGGTTACACC
TCGCGTCCGTTCTCGTGAATTCTATGACGACTCATAGGGAAAGTCCCTCCAATGTGG

2830 2850 2870
AAAGGGCTAGAAGGCAGAGCCTAGGCTGCTCTGGCAGCGCTGCAGCAGGGAGCTCCGGG
TTCCCGATCTCCGCTCGGATCCGACGAGACCGTCGCGACGTCGTCCTCGAGGCC

2890 2910 2930
ACACTGAACTGCCGTACCCGTCTCTACAAGTCCGGAGCAGTGGACGAGGAGCT
TGTGAACCTGACGGCAGATGGACAGAGAGATGTTCAGGCCTCGTACCTGCTCCGTCGA

2950 2970 2990
GCGTACCAAGAGTCGCGACTACTACAACCTTCCACTGGCTCTGGCCGGACGCCGCCCC
CGCATGGTCTAGCGCTGATGATGTTGAAAGGTGACCGAGACCGGGCTGGCGGGGGGA

FIG. 4E

3010	3030	3050
CCGCCGCCTCCCCATCCCCACGCTCGCATCAAGCTGGAGAACCCGCTGGACTACGGCAGC GGCGCGGAGGGTAGGGGTGCGAGCGTAGTTGACCTTGGCGACCTGATGCCGTCG		
3070	3090	3110
GCCTGGCGGCTCGGGCGCAGTGCCTATGGGACCTGGCGAGCCTGCATGGCGCG CGGACCCGCCGACGCCGCCGTCACGGCGATAACCCTGGACCGCTCGGACGTACCGCGC		
3130	3150	3170
GGTGCAGCGGGACCCGGTTCTGGTCACCCCTCAGCCGCCCTTCATCCTGGCACACT CCACGTCGCCCTGGCCAAGACCCAGTGGAGTCGGCGGAAGGAGTAGGACCGTGTGA		
3190	3210	3230
CTCTCACAGCGAAGAAAGGCCAGTTGTATGGACCGTGTGGTGGTGGTGGGGTGGC GAGAAGTGTGGCTTCTCCGGTCAACATACCTGGCACACCACCACCCCCACCACCG		
3250	3270	3290
GGCGGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGAGGC CGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCCTCCGCCCT		
3310	3330	3350
GCTGTAGCCCCCTACGGCTACACTCGGCCCCCTCAGGGCTGGCGGGCAGGAAAGCGAC CGACATCGGGGGATGCCGATGTGAGCCGGGAGTCCCCGACCGCCCCTTCGCTG		
3370	3390	3410
TTCACCGCACCTGATGTGTGGTACCCCTGGCGGCATGGTGAGCAGAGTGCCTATCCCAGT AAGTGGCGTGGACTACACACCATTGGACCGCCGTACCACTCGTCTACGGGATAGGGTCA		
3430	3450	3470
CCCACTTGTGTCAAAGCGAAATGGGCCCTGGATGGATAGCTACTCCGGACCTTACGGG GGGTGAACACAGTTTCGCTTACCGGGGACCTACCTATCGATGAGGCCTGGAATGCC		
3490	3510	3530
GACATGCGTTGGAGACTGCCAGGGACCATGTTTGCCATTGACTATTACTTTCCACCC CTGTACGCAAACCTCTGACGGTCCCTGGTACAAAACGGTAAGTGATAATGAAAGGTGG		
3550	3570	3590
CAGAAGACCTGCCTGATCTGTGGAGATGAAGCTTCTGGGTGTCACTATGGAGCTCACA GTCTTCTGGACGGACTAGACACCTCTACTCGAAGACCCACAGTGATAACCTCGAGAGTGT		

FIG. 4F

3610 3630 3650
TGTGGAAGCTGCAAGGTCTTCTTCAAAAGAGCCGCTGAAGGGAAACAGAAGTACCTGTGC
ACACCTTCGACGTTCCAGAAGAAGTTCTCGCGACTTCCCTTGTCTTCATGGACACG

3670 3690 3710
GCCAGCAGAAATGATTGCACTATTGATAAATTCCGAAGGAAAAATTGTCCATCTTGTCTG
CGGTCTGTTACTAACGTGATAACTATTAAGGCTTACAGGTAGAACAGCA

3730 3750 3770
CTTCGGAAATGTTATGAAGCAGGGATGACTCTGGGAGCCCGAAGCTGAAGAAAATTGGT
GAAGCCTTACAATACTTCGTCCTACTGAGACCCTCGGGCTTCGACTTCTTGAACCA

3790 3810 3830
AATCTGAAACTACAGGAGGAAGGAGAGGGCTTCCAGCACCAACCAGCCCCACTGAGGAGACA
TTAGACTTTGATGTCCTCCTCTCCGAAGGTCGTGGTGGTGGGTGACTCCTCTGT

3850 3870 3890
ACCCAGAAGCTGACAGTGTACACATTGAAGGCTATGAATGTCAGCCCACATTTCTGAAT
TGGGTCTTCGACTGTACAGTGTAACTTCCGATACTTACAGTCGGTAGAAAGACTTA

3910 3930 3950
GTCCTGGAAGCCATTGAGCCAGGTGTAGTGTGTGGACACGACAACAACCAGCCGAC
CAGGACCTTCGTAACTCGGTCCACATCACACACGACCTGTGCTGTTGGTGGCTG

3970 3990 4010
TCCTTGAGCCTTGCTCTAGCCTCAATGAACTGGGAGAGAGACAGCTTGTACACGTG
AGGAAACGTCGGAACGAGAGATCGGAGTTACTTGACCCCTCTGTGAAACATGTGCAC

4030 4050 4070
GTCAAGTGGGCCAAGGCCTTGCTGGCTTCCGCAACTTACACGTGGACGACCAGATGGCT
CAGTCACCCGGTCCGGAACGGACCGAAGGCGTTGAATGTGACCTGCTGGTCTACCGA

4090 4110 4130
GTCATTCACTCCTGGATGGGGCTCATGGTGTGTTGCCATGGCTGGCGATCCTTCACC
CAGTAAGTCATGAGGACCTACCCCGAGTACCAACAGGTACCCGACCGCTAGGAAGTGG

4150 4170 4190
AATGTCAACTCCAGGATGCTCTACTTCGCCCCCTGATCTGGTTTCAATGAGTACCGCATG
TTACAGTTGAGGTCCTACGAGATGAAGCGGGGACTAGACCAAAAGTTACTCATGGCGTAC

FIG. 4G

4210 4230 4250
CACAAAGTCCCGGATGTACAGCCAGTGTGTCCGAATGAGGCACCTCTCAAGAGTTGGA
GTGTCAGGGCCTACATGTCGGTACACAGGTTACTCCGTGGAGAGAGTTCTCAAACCT

4270 4290 4310
TGGCTCCAAATCACCCCCCAGGAATTCTGTGCATGAAAGCACTGCTACTCTCAGCATT
ACCGAGGTTAGTGGGGGTCCTTAAGGACACGTACTTCGTGACGATGAGAAGTCGTAA

4330 4350 4370
ATTCCAGTGGATGGGCTGAAAAATCAAAAATTCTTGATGAACTTCGAATGAACATACATC
TAAGGTACCTACCCGACTTTAGTTAACGAAACTACTTGAAGCTTACTTGATGTAG

4390 4410 4430
AAGGAACTCGATCGTATCGCATGCAAAAGAAAAATCCCACATCCTGCTCAAGACGC
TTCCTTGAGCTAGCATAGTAACGTACGTTCTTTAGGGTAGGACGAGTTCTGCG

4450 4470 4490
TTCTACCAGCTCACCAAGCTCCTGGACTCCGTGCAGCCTATTGCGAGAGAGCTGCATCAG
AAGATGGTCGAGTGGTCGAGGACCTGAGGCACGTCGGATAACGCTCTCGACGTAGTC

4510 4530 4550
TTCACTTTGACCTGCTAATCAAGTCACACATGGTGAGCGTGGACTTCCGAAATGATG
AAAGTAAAAACTGGACGATTAGTCAGTGTACACTCGCACCTGAAAGGCCTTACTAC

4570 4590 4610
GCAGAGATCATCTCTGTGCAAGTGCCAAGATCCTTCTGGAAAGTCAAGCCCACATCTAT
CGTCTCTAGTAGAGACACGTTACGGGTTCTAGGAAAGACCCTTCAGTCGGTAGATA

4630 4650 4670
TTCCACACCCAGTGAAGCATTGGAAACCCATTTCACCCAGCTCATGCCCTTTC
AAGGTGTGGGTCACTCGTAACCTTGGATAAAGGGTGGGTGAGTACGGGGAAAG

4690 4710 4730
AGATGTCTTCTGCCTGTTATAACTCTGCACTACTCCTCTGCAGTGCCTGGGAATTCC
TCTACAGAACGAGACAATATTGAGACGTGATGAGGAGACGTACGGAACCCCTAAAGG

4750 4770 4790
TCTATTGATGTACAGTCTGTCACTGAAACATGTTCTGAATTCTATTGCTGGGCTTTTT
AGATAACTACATGTCAGACAGTACTTGTACAAGGACTTAAGATAAACGACCCGAAAAAA

FIG. 4H

4810 4830 4850
TTCTCTTCTCTCCTTCTTCTTCTCCCTCCATCTAACCTCCATGGCACCTT
AAGAGAAAGAGAGGAAAGAAAAAGAAGAAGGGAGGGATAGATTGGGAGGGTACCGTGGAA

4870 4890 4910
CAGACTTGCTTCCCATTGTGGCTCCTATCTGTGTTGAATGGTGTGTATGCCTTAA
GTCTGAAACGAAGGGTAACACCGAGGATAGACACAAAACCTTACCAACACATACGGAAATT

4930 4950 4970
ATCTGTGATGATCCTCATATGCCAGTGTCAAGTTGTGCTGTTACAGCACTACTCTG
TAGACACTACTAGGAGTATAACGGGTACAGTTAACACGAACAAATGTCGTGATGAGAC

4990 5010 5030
TGCCAGCCACACAAACGTTACTTATGCCACGGGAAGTTAGAGAGCTAACAGATTA
ACGGTCGGTGTGTTGCAAATGAATAGAACACGGTGCCCTCAAATCTCTCGATTCTAAT

5050 5070
TCTGGGAAATCAAAACAAAAACAAGCAAACAAAAAA
AGACCCCTTAGTTGTTGTTGTTGTTTTTTTTTTTTTTTT

1 GAGCTCTGGACAAAATTGAGCGCCTATGTGTACATGGCAAGTGTGTTAGTGTTGTGTG
61 TTTACCTGCTTGTCTGGGTGATTTGCCTTGAGAGTCTGGATGAGAAATGCATGGTTAA
121 AGGCAATTCCAGACAGGAAGAAAGGCAGAGAAGAGGGTAGAAATGACCTCTGATTCTTGG
181 GGCTGAGGGTTCCCTAGAGCAAATGGCACAAATGCCACGAGGCCGATCTATCCCTATGACG
241 GAACTCTAAGGTTTCAGCATCAGCTATCTGCTGGCTGGTCACTGGCTGCCTCCTCAGT
301 TTGTAGGAGACTCTCCCCTCTCCATCTGCGCGCTCTTATCAGTCCTGAAAAGAACCN
361 TGGCNAGCCAGGAGCNAGGTATTNTATCGTCCTTTCNTCCCTNGCCTCACCTNGTT
421 GNTTTTAGATTGGNCTTNGNAACCAAATTGTATGCTGGCCTCCAGGAAATCTGGAGCC
481 TGGCGCCTAACCTTGTTAGGAAAGCAGGAGCTATTCAAGGAAGCAGGGTCCTCCAGGG
541 CTAGAGCTAGCCTCTCCTGCCCTGCCACGTGCGCCAGCACCTGTTCTCAAAGCNAC
601 TAGGCAGCGTTAGCGCGCGGTGAGGGGAGGGGAGAAAAGGAAAGGGAGGGAGGGAAA
661 AGGAGGTGGGAAGGCAAGGAGGCCGGCNGGTGGGGCGGGACCCGACTCGCANNAACTG
721 TTGCATTGCTCTCCACCTCCCAGCGCCCCCTCCGAGATCCGGGGAGCCAGCTGCTGG
781 GAGAGCGGGAACGGTCCGGAGCAAGCCCAGAGGCAGAGGAGGGCGACAGAGGAAAAAGGG
841 CCCNAGCTAGCCGCTCCAGTGCTGTACAGNAGCGAAGGACGCACCACGCCAGCCCCAGC
901 CCGGCTCCAGCGACAGCNAACGCCCTTGCANGCGTTGAAGCCGCCGGAGCTGCC
961 CTTTCCTCTCGGTGAAGTTTAAAAGCTGCTAAAGACTCGGAGGAAGCAAGGAAAGTG
1021 CCTGGTAGGACTGACGGCTGCCTTGTCTCCTCCTCTCCACCCGCCCTCCCCCACCCT
1081 GCCTTCCCCCCTCCCCGTCTCTCCCGCAGCTGCCTCAGTCGGCTACTCTCAGCCA
1141 ACCCCCCCTCACCAACCTTCTCCCCACCCGCCCGGCCCGTCGGCCAGCGNTGNCA
1201 GNCCGAGTTGCAGAGAGGTAACCCCTTGCGAGCAGNCTAGCTGCACAT
1261 TGCAAAGAAGGCTCTTAGGAGCAGGCGACTGGGAGCGGGCTTCAGCACTGCAGCCACGAC
1321 CNGCCTGGTTAGGCTGCACGCGGAGAGAACCCCTCTGTTTCCCCACTCTCTCCACCT
1381 CCTCCTGCCTCCCCACCCGAGTGCAGGAGCCAGAGATCAAAAGATGAAAAGGCAGTCAG
1441 GTCTTCAGTAGCCAAAAACAAAACAAAACAAAAAGCCGAAATAAAAGAAAAAG

FIG. 5A

1501 ATAATAACTCAGTTCTTATTGCACCTACTTCAGTGGACACTGAATTGGAAGGTGGAGG
1561 ATTTTGTCCCCCTTTAAGATCTGGCATCTTTGAATCTACCCTCAAGTATTAAGA
1621 GACAGACTGTGAGCCTAGCAGGGCAGATCTGTCCACCGTGTCTCTGCACGAGA
1681 CTTTGAGGCTGTCAGAGCGCTTTGCGTGGTGCTCCGCAAGTTCCCTCTGGAGC
1741 TTCCCGCAGGTGGGCAGCTAGCTGCAGCGACTACCGCATCATCACAGCCTGTTGAACCTCT
1801 TCTGAGCAAGAGAAAGGGGAGGCCGGTAAGGAAAGTAGGTGGAAGATTCAGCCAAGCTCA
1861 AGGATGGAAGTGCAGTTAGGGCTGGGAAGGGTCTACCCCTGGCCGCCGCTCCAAGAACCTAC
MetGluValGlnLeuGlyLeuGlyArgValTyrProArgProSerLysThrTyr
1921 CGAGGAGCTTCCAGAACATCTGTTCCAGAGCGTGCAGCAAATGATCCAGAACCCGGGCC
ArgGlyAlaPheGlnAsnLeuPheGlnSerValArgGluValIleGlnAsnProGlyPro
1981 AGGCACCCAGAGGCCGCGAGCGCAGCACCTCCGGGCCAGTTGCTGCTGCAGCAG
ArgHisProGluAlaAlaSerAlaAlaProProGlyAlaSerLeuLeuLeuGlnGln
2041 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
GlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGln
2101 CAGCAGCAAGAGACTAGCCCCAGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
GlnGlnGlnGluThrSerProArgGlnGlnGlnGlnGlnGlyGluAspGlySerPro
2161 CAAGCCCACCGTAGAGGCCAACAGGCTACCTGGTCTGGATGAGGAACAGAACCTTCA
GlnAlaHisArgArgGlyProThrGlyTyrLeuValLeuAspGluGluGlnGlnProSer
2221 CAGCCGCAGTCGGCCCTGGAGTGCCACCCGAGAGAGGTTGCGTCCCAGAGCCTGGAGCC
GlnProGlnSerAlaLeuGluCysHisProGluArgGlyCysValProGluProGlyAla
2281 GCCGTGGCCGCCAGCAAGGGCTGCCAGCAGCTGCCAGCACCTCCGGACGAGGATGAC
AlaValAlaAlaSerLysGlyLeuProGlnGlnLeuProAlaProProAspGluAspAsp
2341 TCAGCTGCCCATCCACGTTGCTGGCCCCACTTCCCGGCTTAAGCAGCTGC
SerAlaAlaProSerThrLeuSerLeuGlyProThrPheProGlyLeuSerSerCys
2401 TCCGCTGACCTTAAAGACATCCTGAGCGAGGCCAGCACATGCAACTCCTTCAGCAACAG
SerAlaAspLeuLysAspIleLeuSerGluAlaSerThrMetGlnLeuLeuGlnGln
2461 CAGCAGGAAGCAGTATCCGAAGGCAGCAGCAGCAGCAGCAGCAGCAGCAG
GlnGlnGluAlaValSerGluGlySerSerGlyArgAlaArgGluAlaSerGlyAla
2521 CCCACTCCTCCAAGGACAATTACTTAGGGGGCACTTCGACCATTCTGACAACGCCAAG
ProThrSerSerLysAspAsnTyrLeuGlyGlyThrSerThrIleSerAspAsnAlaLys

FIG. 5B

2581 GAGTTGTGTAAGGCAGTGTGGTGTCCATGGGCCTGGGTGGAGGCCTGGAGCATCTG
GluLeuCysLysAlaValSerValSerMetGlyLeuGlyValGluAlaLeuGluHisLeu
2641 AGTCCAGGGGAACAGCTTCGGGGGATTGCATGTACGCCACTTTGGGAGTCCACCC
SerProGlyGluGlnLeuArgGlyAspCysMetTyrAlaProLeuLeuGlyValProPro
2701 GCTGTGCGTCCCACTCCTGTGCCATTGGCGAACATGCAAAGGTTCTGCTAGACGAC
AlaValArgProThrProCysAlaProLeuAlaGluCysLysGlySerLeuLeuAspAsp
2761 AGCGCAGGCAAGAGCACTGAAGATACTGCTGAGTATTCCCCTTCAAGGGAGGTTACACC
SerAlaGlyLysSerThrGluAspThrAlaGluTyrSerProPheLysGlyGlyTyrThr
2821 AAAGGGCTAGAAGGCGAGAGCCTAGGCTGCTCTGGCAGCGCTGCAGCAGGGAGGCTCCGGG
LysGlyLeuGluGlyGluSerLeuGlyCysSerGlySerAlaAlaAlaGlySerSerGly
2881 ACACTTGAAC TGCCGTCTACCCTGTCTCTACAAGTCCGGAGCACTGGACGAGGCAGCT
ThrLeuGluLeuProSerThrLeuSerLeuTyrLysserGlyAlaLeuAspGluAlaAla
2941 GCGTACCA CAGAGTCGCGACTACTACAAC TTTCCACTGGCTCTGGCCGGACCGCCGCCCT
AlaTyrGlnSerArgAspTyrTyrAsnPheProLeuAlaLeuAlaGlyProProProPro
3001 CCGCCGCCTCCCCATCCCCACGCTCGCATCAAGCTGGAGAACCGCTGGACTACGGCAGC
ProProProProHisProHisAlaArgIleLysLeuGluAsnProLeuAspTyrGlySer
3061 GCCTGGCGGCTCGGGCGCAGTGCCCTATGGGACCTGGCGAGCCTGCATGGCGCG
AlaTrpAlaAlaAlaAlaGlnCysArgTyrGlyAspLeuAlaSerLeuHisGlyAla
3121 GGTGCAGCGGGACCCGGTTCTGGGTCA CCCTCAGCCGCCGCTCCTCATCCTGGCACACT
GlyAlaAlaGlyProGlySerGlySerProSerAlaAlaAlaSerSerTrpHisThr
3181 CTCTTCACAGCCGAAGAAGGCCAGTTGTATGGACCGTGTGGTGGTGGTGGGGGTGGTGGC
LeuPheThrAlaGluGluGlyGlnLeuTyrGlyProCysGlyGlyGlyGlyGlyGly
3241 GGCGGCGGC GGCGGCGGCGGGCGGGCGGGCGGGCGGGCGGGCGGGCGAGGGCGGG
GlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGluAlaGly
3301 GCTGTAGCCCCCTACGGCTACACTCGGCCCTCAGGGCTGGCGGGCAGGAAAGCGAC
AlaValAlaProTyrGlyTyrThrArgProProGlnGlyLeuAlaGlyGlnGluSerAsp
3361 TTCACCGCACCTGATGTGGTACCCCTGGCGGCATGGTGAGCAGAGTGCCTATCCCAGT
PheThrAlaProAspValTrpTyrProGlyGlyMetValSerArgValProTyrProSer
3421 CCCACTTGTGTAAAAGCGAAATGGGCCCTGGATGGATAGCTACTCCGGACCTACGGG
ProThrCysValLysSerGluMetGlyProTrpMetAspSerTyrSerGlyProTyrGly
3481 GACATGCGTTGGAGACTGCCAGGGACCATGTTGCCATTGACTATTACTTTCCACCC
AspMetArgLeuGluThrAlaArgAspHisValLeuProIleAspTyrTyrPheProPro

FIG. 5C

3541 CAGAAGACCTGCCTGATCTGTGGAGATGAAGCTTCTGGGTGTCACTATGGAGCTCACA
GlnLysThrCysLeuIleCysGlyAspGluAlaSerGlyCysHisTyrGlyAlaLeuThr
3601 TGTGGAAGCTGCAAGGTCTTCTCAAAAGAGCCGCTGAAGGGAAACAGAAGTACCTGTGC
CysGlySerCysLysValPhePheLysArgAlaAlaGluGlyLysGlnLysTyrLeuCys
3661 GCCAGCAGAAATGATTGCACTATTGATAAATTCCGAAGGAAAAATTGTCATCTTGTCGT
AlaSerArgAsnAspCysThrIleAspLysPheArgArgLysAsnCysProSerCysArg
3721 CTTCGGAAATGTTATGAAGCAGGGATGACTCTGGAGCCCGGAAGCTGAAGAAACTTGGT
LeuArgLysCysTyrGluAlaGlyMetThrLeuGlyAlaArgLysLeuLysLysLeuGly
3781 AATCTGAAACTACAGGAGGAAGGAGAGGCTCCAGCACCAACCAGCCCCACTGAGGAGACA
AsnLeuLysLeuGlnGluGluGlyGluAlaSerSerThrThrSerProThrGluGluThr
3841 ACCCAGAACGCTGACAGTGTACACATTGAAGGCTATGAATGTCAGCCCACATTTCTGAAT
ThrGlnLysLeuThrValSerHisIleGluGlyTyrGluCysGlnProIlePheLeuAsn
3901 GTCCTGGAAGCCATTGAGCCAGGTGTAGTGTGTGCTGGACACGACAACAACCAGCCCCGAC
ValLeuGluAlaIleGluProGlyValValCysAlaGlyHisAspAsnAsnGlnProAsp
3961 TCCTTGAGCCTTGCTCTAGCCTCAATGAACACTGGAGAGAGACAGCTTGTACACGTG
SerPheAlaAlaLeuLeuSerSerLeuAsnGluLeuGlyGluArgGlnLeuValHisVal
4021 GTCAAGTGGCCAAGGCCTGCCTGGCTTCCGCAACTACACGTGGACGACCAGATGGCT
ValLysTrpAlaLysAlaLeuProGlyPheArgAsnLeuHisValAspAspGlnMetAla
4081 GTCATTCACTCCTGGATGGGCTCATGGTGTGCTGGACATGGCTGGCGATCCTTCACC
ValIleGlnTyrSerTrpMetGlyLeuMetValPheAlaMetGlyTrpArgSerPheThr
4141 AATGTCAAATCCAGGATGCTCTACTTCGCCCTGATCTGGTTTCAATGAGTACCGCATG
AsnValAsnSerArgMetLeuTyrPheAlaProAspLeuValPheAsnGluTyrArgMet
4201 CACAAGTCCGGATGTACAGCCAGTGTGTCGAATGAGGCACCTCTCAAGAGTTGGA
HisLysSerArgMetTyrSerGlnCysValArgMetArgHisLeuSerGlnGluPheGly
4261 TGGCTCAAATCCCCCAGGAATTCTGTGCATGAAAGCACTGCTACTCTCAGCATT
TrpLeuGlnIleThrProGlnGluPheLeuCysMetLysAlaLeuLeuLeuPheSerIle
4321 ATTCCAGTGGATGGCTGAAAATCAAAATTCTTGATGAACTTCGAATGAACATACATC
IleProValAspGlyLeuLysAsnGlnLysPhePheAspGluLeuArgMetAsnTyrIle
4381 AAGGAACTCGATCGTATCATTGCATGCAAAAGAAAAATCCCACATCCTGCTCAAGACGC
LysGluLeuAspArgIleIleAlaCysLysArgLysAsnProThrSerCysSerArgArg
4441 TTCTACCAGCTCACCAAGCTCCTGGACTCCGTGCAGCCTATTGCGAGAGAGCTGCATCAG
PheTyrGlnLeuThrLysLeuLeuAspSerValGlnProIleAlaArgGluLeuHisGln

FIG. 5D

4501 TTCACCTTGACCTGCTAATCAAGTCACACATGGT GAGCGTGGACTTCCGGAAATGATG
Phe Thr Phe Asp Leu Leu Ile Lys Ser His Met Val Ser Val Asp Phe Pro Glu Met Met
4561 GCAGAGATCATCTCTGTGCAAGTGCCAAGATCCTTCTGGGAAAGTCAAGCCCATCTAT
Ala Glu Ile Ile Ser Val Gln Val Pro Lys Ile Leu Ser Gly Lys Val Lys Pro Ile Tyr
4621 TTCCACACCCAGTGAAGCATTGGAAACCCTATTCCTTCCCCAGCTCATGCCCTTTC
Phe His Thr Gln End
4681 AGATGTCTTCTGCCTGTTATAACTCTGCACTACTCCTCTGCAGTGCCTGGGAATTCC
4741 TCTATTGATGTACAGTCTGTCATGAACATGTTCTGAATTCTATTGCTGGCTTTTT
4801 TTCTCTTCTCCTTCTTTCTTCTCCCTCCATCTAACCTCCATGGCACCTT
4861 CAGACTTGCTTCCCATTGTGGCTCCTATCTGTGTTGAATGGTGTATGCCTTAA
4921 ATCTGTGATGATCCTCATATGCCAGTGTCAAGTTGCTTACAGCACTACTCTG
4981 TGCCAGCCACACAAACGTTACTTATGCCACGGGAAGTTAGAGAGCTAAGATTA
5041 TCTGGGAAATCAAAACAAAAACAAGCAAACAAAAAAAAA 5082

FIG. 5E

AATTCGGGAAGGATCGAGCAAACCAGGAAAGTAAGGATGGAGATCCTAGGAGAGTGTCCA 60
TGCCTCGAAAGGAGCCCACCAAGATGAACTGTTGCATTGCTTCCACCTCCCAGCGCC 120
CCCTCGGAGATCCCTAGGAGCCAGCCTGCTGGGAGAACAGAGGGTCCGGAGCAAACCTG 180
GAGGCTGAGAGGGCATCAGAGGGAAAAGACTGAGTTAGCCACTCCAGTGCCATACAGAA 240
GCTTAAGGGACATACCACGCCAGCCCCAGCCAGCGACAGCCAACGCCCTGTTGCAGAGCG 300
GCGGCTTCGAAGCCGCCAGAAGCTGCCCTTCCTCTCGGTGAAGTTCTAAAAGC 360
TGCGGGAGACTCGGAGGAAGCGAAGAAAGTGTCCGGTAGGACTACGACTGCCTTGCCT 420
CCTCCCTCCTACCCCTACCCCTCCTGGTCCCCTCCCTGAGCGGACTAGGCAGGCTTC 480
CTGGCCAGCCCTCTCCCTACACCACAGCTGCCAGCCAGTTGCACAGAGGTAACTC 540
CCTTGGCTGAAAGCAGACGAGCTTGTGCCATTGGAAGGGAGGCTTGGAGCCCAG 600
AGACTGAGGAGCAACAGCACGCTGGAGAGTCCCTGATTCCAGGTTCTCCCCCTGCACCT 660
CCTACTGCCGCCCTCACCTGTGTGCAGCTAGAATTGAAAAGATGAAAAGACAGTT 720
GGGGCTTCAGTAGTCGAAAGCAAAACAAAAGCAAAAGAAAACAAAAGAAAATAGCCA 780
GTTCTTATTGCACCTGCTTCAGTGGACATTGACTTGGAGGCAGAGAATTTCCTTCC 840
CCCCAGTCAAGCTTGAGCATTTAATCTGTTCAAGTATTAGGGACAAACTGTG 900
AAACTAGCAGGGCAGATCCTGTCTAGCGCGTGCCTCCTTACAGGAGACTTGAGGCTA 960
TCTGGCGCTCCCCCCTCCCTGCAAGTTCTCCCTGGAGCTCCCGCAGGTGGCA 1020
GCTAGCTGCAGATACTACATCATCAGTCAGTAGAACTCTTCAGAGCAAGAGACGAGGAGG 1080
CAGGATAAGGGATTGGAGCTAGAGACAAGCTAAGGATGGAGGTGCAGTTAGGG 1140
MetGluValGlnLeuGly
CTGGGAAGGGTCTACCCACGGCCCCGTCCAAGACCTATCGAGGAGCGTTCCAGAATCTG 1200
LeuGlyArgValTyrProArgProProSerlysThrTyrArgGlyAlaPheGlnAsnLeu
TTCCAGAGCGTGCAGCGAAGCGATCCAGAACCCGGGCCCCAGGCACCCCTGAGGCCGCTAGC 1260
PheGlnSerValArgGluAlaIleGlnAsnProGlyProArgHisProGluAlaAlaSer
ATAGCACCTCCGGTGCCTGTTACAGCAGCGGAGGAGACTAGCCCCGGCGGCCGG 1320
IleAlaProProGlyAlaCysLeuGlnGlnArgGlnGluThrSerProArgArgArg
CGGCAGCAGCACCCCTGAGGATGGCTCTCCTCAAGCCCACATCAGAGGCACCACAGGCTAC 1380
ArgGlnGlnHisProGluAspGlySerProGlnAlaHisIleArgGlyThrThrGlyTyr

FIG. 6A

CTGGCCCTGGAGGAGGAACAGCAGCCTCACAGCAGCAGTCAGCCTCCGAGGGGCCACCCT 1440
LeuAlaLeuGluGluGluGlnGlnProSerGlnGlnGlnSerAlaSerGluGlyHisPro

GAGAGCGGCTGCCTCCGGAGCCTGGAGCTGCCACGGCTCTGGCAAGGGCTGCCGCAG 1500
GluSerGlyCysLeuProGluProGlyAlaAlaThrAlaProGlyLysGlyLeuProGln

CAGCCACCAGCTCCTCCAGATCAGGATGACTCAGCTGCCCATCCACGTTGTCCCTACTG 1560
GlnProProAlaProProAspAspSerAlaAlaProSerThrLeuSerLeuLeu

GGCCCCACTTCCCAGGCTTAAGCAGCTGCTCCGCAGACATTAAAGACATCCTGAGCGAG 1620
GlyProThrPheProGlyLeuSerSerCysSerAlaAspIleLysAspIleLeuSerGlu

GCCGGCACCATGCAACTTCTTCAGCAGCAGCAACAGCAACAGCACAGCAGCAGCAGCAG 1680
AlaGlyThrMetGlnLeuLeuGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGlnGln

CAGCAGCAGCAGCACAGCAGCAGGAGGTAATATCCGAAGGCAGCAGCAGCGTGAGA 1740
GlnGlnGlnGlnGlnGlnGlnGlnGluValIleSerGluGlySerSerSerValArg

GCAAGGGAGGCCACTGGGCTCCCTCTCCTCCAAGGATAGTTACCTAGGGGCAATTG 1800
AlaArgGluAlaThrGlyAlaProSerSerLysAspSerTyrLeuGlyGlyAsnSer

ACCATATCTGACAGTGCCAAAGGAGTTGTGAAAGCAGTGTCTGTCCATGGGTTGGGT 1860
ThrIleSerAspSerAlaLysGluLeuCysLysAlaValSerValSerMetGlyLeuGly

GTGGAAGCACTGGAACATCTGAGTCCAGGGGAGCAGCTCGGGCGACTGCATGTACGCG 1920
ValGluAlaLeuGluHisLeuSerProGlyGluGlnLeuArgGlyAspCysMetTyrAla

TCGCTCTGGAGGTCCACCGCCGTGCGTCCCACTCCTGTGCGCCTCTGGCCGAATGC 1980
SerLeuLeuGlyGlyProProAlaValArgProThrProCysAlaProLeuAlaGluCys

AAAGGTCTTCCCTGGACGAAGGCCCGGGCAAAGGCAGTGAAAGAGACTGCTGAGTATTCC 2040
LysGlyLeuSerLeuAspGluGlyProGlyLysGlyThrGluGluThrAlaGluTyrSer

TCTTTCAAGGGAGGTTACGCCAAAGGGTTGGAAGGTGAGAGTCTGGGCTGCTCTGGCAGC 2100
SerPheLysGlyGlyTyrAlaLysGlyLeuGluGlyGluSerLeuGlyCysSerGlySer

AGTGAAGCAGGTAGCTCTGGACACTTGAGATCCCGCCTCACTGTCTCTGTATAAGTCT 2160
SerGluAlaGlySerSerGlyThrLeuGluIleProSerSerLeuSerLeuTyrLyssSer

GGAGCAGTAGACGAGGCAGCAGCATACCAGAACATCGCGACTACTACAACCTTCCGCTCGCT 2220
GlyAlaValAspGluAlaAlaAlaTyrGlnAsnArgAspTyrTyrAsnPheProLeuAla

CTGTCCGGGCCGCCACCCCCCGCCCCCTACCCATCCACACGCCGCATCAAGCTGGAG 2280
LeuSerGlyProProHisProProProThrHisProHisAlaArgIleLysLeuGlu

AACCCGTCGGACTACGGCAGCGCCTGGGCTGCGCGGGCAGCGCAATGCCGCTATGGGAC 2340
AsnProSerAspTyrGlySerAlaTrpAlaAlaAlaGlnCysArgTyrGlyAsp

TTGGCTAGCCTACATGGAGGGAGTGTAGCCGGACCCAGCAGTGGATGCCCTCAGGCCACC 2400
LeuAlaSerLeuHisGlyGlySerValAlaGlyProSerThrGlySerProProAlaThr

FIG. 6B

GCCTCTTCTTCTGGCATACTCTTCACAGCTGAAGAAGGCCAATTATATGGGCCAGGA 2460
 AlaSerSerSerTrpHisThrLeuPheThrAlaGluGluGlyGlnLeuTyrGlyProGly

 GGCGGGGCGGCAGCAGTAGCCCAAGCGATGCTGGGCCTGTAGCCCCCTATGGCTACACT 2520
 GlyGlyGlyGlySerSerProSerAspAlaGlyProValAlaProTyrGlyTyrThr

 CGGCCCTCAGGGCTGGCAAGCCAGGAGGGTGAATTCTCTGCCTCTGAAGTGTGGTAT 2580
 ArgProProGlnGlyLeuAlaSerGlnGluGlyAspPheSerAlaSerGluValTrpTyr

 CCTGGTGGAGTTGTGAACAGAGTCCCCTATCCAGTCCCAGTTGTGTTAAAGTGAAATG 2640
 ProGlyGlyValValAsnArgValProTyrProSerProSerCysValLysSerGluMet

 GGACCTGGATGGAGAACTACTCCGGACCTTATGGGGACATGCCTTGGACAGTACCAGG 2700
 GlyProTrpMetGluAsnTyrSerGlyProTyrGlyAspMetArgLeuAspSerThrArg

 GACCACGTTTACCATCGACTATTACTTCCCACCCAGAACAGACCTGCCTGATCTGTGGA 2760
 AspHisValLeuProIleAspTyrTyrPheProProGlnLysThrCysLeuIleCysGly

 GATGAAGCTCTGGTTGTCACTACGGAGCTCTCACCTGTGGCAGCTGCAAGGTCTTCTTC 2820
 AspGluAlaSerGlyCysHisTyrGlyAlaLeuThrCysGlySerCysLysValPhePhe

 AAAAGAGCTGCCAACGGAAACAGAAGTATCTATGTGCCAGCAGAAATGATTGCACCATT 2880
 LysArgAlaAlaGluGlyLysGlnLysTyrLeuCysAlaSerArgAsnAspCysThrIle

 GATAAATTCGGAGGAAAATTGTCCATCGTGTCTCCGAAATGTTATGAAGCAGGG 2940
 AspLysPheArgArgLysAsnCysProSerCysArgLeuArgLysCysTyrGluAlaGly

 ATGACTCTGGAGCTCGTAAGCTGAAGAAACTGGAAATCTCAAACACAGGAAGAAGGA 3000
 MetThrLeuGlyAlaArgLysLeuLysLysLeuGlyAsnLeuLysLeuGlnGluGly

 GAAAACCTCCAGTGTGGTAGCCCCACTGAGGACCCATCCCAGAACAGATGACTGTACAC 3060
 GluAsnSerSerAlaGlySerProThrGluAspProSerGlnLysMetThrValSerHis

 ATTGAAGGCTATGAATGTCAACCTATCTTCTTAATGTCTGGAAAGCCATTGAGCCAGGA 3120
 IleGluGlyTyrGluCysGlnProIlePheLeuAsnValLeuGluAlaIleGluProGly

 GTGGTGTGTGCCGGACATGACAACCAACCAGCCTGATTCTTGCTGCCTGTTATCTAGT 3180
 ValValCysAlaGlyHisAspAsnAsnGlnProAspSerPheAlaAlaLeuLeuSerSer

 CTCAACGAGCTTGGCGAGAGACAGCTTGTACATGTGGTCAAGTGGCCAAGGCCTGCCT 3240
 LeuAsnGluLeuGlyGluArgGlnLeuValHisValValLysTrpAlaLysAlaLeuPro

 GGCTTCCGCAACTGCATGTGGATGACCAGATGGCAGTCATTCACTATTGCTGGATGGGA 3300
 GlyPheArgAsnLeuHisValAspAspGlnMetAlaValIleGlnTyrSerTrpMetGly

 CTGATGGTATTGCCATGGTTGGCGGTCTTCAACTAAATGTCAACTCTAGGATGCTCTAC 3360
 LeuMetValPheAlaMetGlyTrpArgSerPheThrAsnValAsnSerArgMetLeuTyr

 TTTGCACCTGACCTGGTTCAATGAGTATCGCATGCACAGTCTGAATGTACAGCCAG 3420
 PheAlaProAspLeuValPheAsnGluTyrArgMetHisLysSerArgMetTyrSerGln

FIG. 6C

TGC GTGAGGATGAGGCACCTTCTCAAGAGTTGGATGGCTCCAGATAACCCCCCAGGAA 3480
 CysValArgMetArgHisLeuSerGlnGluPheGlyTrpLeuGlnIleThrProGlnGlu

 TTCCTGTGCATGAAAGCACTGCTACTCTTCAGCATTATTCCAGTGGATGGCTGAAAAAT 3540
 PheLeuCysMetLysAlaLeuLeuLeuPheSerIleIleProValAspGlyLeuLysAsn

 CAAAAAATTCTTGATGAACCTCGAACATGAACATCACAGGAACCTGATCGCATCATTGCA 3600
 GlnLysPhePheAspGluLeuArgMetAsnTyrIleLysGluLeuAspArgIleIleAla

 TGCAAAAGAAAAAATCCCACATCCTGCTCAAGGCGCTTCTACCAGCTCACCAAGCTCCTG 3660
 CysLysArgLysAsnProThrSerCysSerArgArgPheTyrGlnLeuThrLysLeuLeu

 GATTCTGTGCAGCCTATTGCAAGAGAGCTGCATCAATTCACTTTGACCTGCTAATCAAG 3720
 AspSerValGlnProIleAlaArgGluLeuHisGlnPheThrPheAspLeuLeuIleLys

 TCCCATATGGTGAGCGTGGACTTCCTGAAATGATGGCAGAGATCATCTGTGCAAGTG 3780
 SerHisMetValSerValAspPheProGluMetMetAlaGluIleIleSerValGlnVal

 CCCAAGATCCTTCTGGAAAGTCAGCCCAGTATTCCACACACAGTGAAGATTGGAA 3840
 ProLysIleLeuSerGlyLysValSerProCysIleSerThrHisSerGluAspLeuGlu

 CCTAATACCAAACCCACCTGTTCCCTTCAGATGTCTGCCTGTTATATAACTCTG 3900
 ProAsnThrGlnThrHisLeuPheProPheGlnMetSerSerAlaCysTyrIleThrLeu

 CACTACTCTCTGGCATGGCCTGGGGAAATTCCCTACTGATGTACAGTCTGTGATG 3960
 HisTyrPheSerGlyMetGlyLeuGlyGlyAsnSerSerThrAspValGlnSerValMet

 AACATGTTCCCCAAGTTCTATTCTGGCTTTCCCTTCTTCTTCTTCTCTGC 4020
 AsnMetPheProLysPheTyrPheLeuGlyPheSerPhePheLeuPheLeuLeuCys

 CTCTTTACCCCTCCATGGCACATTGAAATCCGCTGCGTGTGTTGGCTCCTGCCTGTGT 4080
 LeuPheTyrProProMetAlaHisPheGluSerAlaAlaCysCysGlySerCysLeuCys

 TTTGAGTTTGTGTTCAAGTCTGTGATGATCTTCTGTGGCCAGTGTCAACT 4140
 PheGluPheCysCysIleSerSerLeuEnd

 GTGCTTGTATAGCACTGTGCTGTGCAACCAAGCAAATGTTACTCACCTATGCC 4200

 ATGGCAAGTTAGAGAGCTATAAGTATCTGGGAAGAAACAAACAGAGAGAGTAAAAAAA 4260

 CCAAAAAAAAAAAAAACCGAATTTC 4288

FIG. 8

FIG. 7

