1 Théorie des ensembles

Exercice 1 Soient A, B, C trois sous-ensembles de l'ensemble X. Montrer que :

- 1. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- 2. $(X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B)$.
- 3. Si $A \subset B$ alors $A \cap (X \setminus B) = \emptyset$.

ENS Lyon

Topologie

- 4. Si $A \cap B = A \cap C$ et $A \cup B = A \cup C$ alors B = C.
- 5. Soient $(E_i)_{i\in I}$ et $(F_j)_{j\in J}$ deux familles d'ensembles. Montrer la formule de distributivité suivante : $(\cup_{i\in I} E_i) \cap (\cup_{j\in J} F_j) = \cup_{(i,j)\in I\times J} (E_i \cap F_j).$

Exercice 2 Les applications suivantes sont-elles injectives, surjectives, bijectives?

$$f: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{N} \\ n \mapsto n+1 \end{array} \right., g: \left\{ \begin{array}{l} \mathbb{Z} \to \mathbb{Z} \\ n \mapsto n+1 \end{array} \right., h: \left\{ \begin{array}{l} \mathbb{R}^2 \to \mathbb{R}^2 \\ (x,y) \mapsto (x+y,x-y) \end{array} \right., k: \left\{ \begin{array}{l} \mathbb{R} \setminus \{1\} \to \mathbb{R} \\ x \mapsto \frac{x+1}{x-1} \end{array} \right..$$

Exercice 3 Soient $f: X \to Y, g: Y \to Z$ deux applications. Montrer que

- 1. pour chaque sous-ensemble $C \subset Z$ on a : $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.
- 2. pour toute famille de sous-ensembles $\{C\}_{i\in I}$ de Y on a

$$f^{-1}(\bigcap_{i \in I} C_i) = \bigcap_{i \in I} f^{-1}(C_i), \quad f^{-1}(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} f^{-1}(C_i) \quad \text{et} \quad g(\bigcup_{i \in I} C_i) = \bigcup_{i \in I} g(C_i)$$

- 3. Soit $A \subset X$ et $B \subset Y$. Montrer que $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$. A-t-on $f(X \setminus A) = Y \setminus f(A)$?
- 4. f est injective \Leftrightarrow pour toute partie A de X, $f^{-1}(f(A)) = A$.
- 5. f est surjective \Leftrightarrow pour toute partie B de Y, $f(f^{-1}(B)) = B$.

Exercice 4 Soit f une application d'un ensemble E dans lui-même. On désigne par S la famille des parties S de E qui vérifient $f^{-1}(f(S)) = S$.

- 1. A étant une partie de E, démontrer que $f^{-1}(f(A))$ est un élément de S.
- 2. Démontrer que toute réunion d'éléments de \mathcal{S} est encore un élément de \mathcal{S} .
- 3. Si S est un élément de S et A une partie de E disjointe de S, montrer que S et $f^{-1}(f(A))$ sont disjointes.
- 4. Si $S \subset T$ sont deux éléments de S, montrer que $T \setminus S$ est dans S.

Exercice 5 A, B deux ensembles non vides. Montrer $\exists f: A \to B$ injective $\Leftrightarrow \exists g: B \to A$ surjective.

Exercice 6 On considère quatre ensembles A,B,C et D et les applications $f:A\to B,\ g:B\to C,\ h:C\to D.$ Montrer que :

- a) $(g \circ f \text{ injective}) \Rightarrow (f \text{ injective})$
- b) $(g \circ f \text{ surjective}) \Rightarrow (g \text{ surjective})$
- c) $(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \Rightarrow (f, g \text{ et } h \text{ sont bijectives})$

Exercice 7 Prouver qu'il n'existe pas de rationnel dont le carré est 12.

2 Fonctions réelles à variable réelle

Exercice 8 1. Rappeler le théorème de Rolle. Comment le prouve-t-on?

- 2. Énoncer et démontrer le théorème des accroissements finis (pour des applications de \mathbb{R} dans \mathbb{R}).
- 3. Soit P un polynôme à coefficients réels ayant n racines réelles. Montrer que P' a au moins n-1 racines réelles.

Exercice 9 Soit $f:[0,1] \to \mathbb{R}$, continue. On suppose que f(0) = f(1). Soit n un entier supérieur ou égal à 1. Montrer qu'il existe x dans [0,1] tel que $f(x+\frac{1}{n})=f(x)$.

Exercice 10 Soit $f : \mathbb{R} \to \mathbb{R}$ une application continue telle que f(x+y) = f(x) + f(y). Montrer que f est de la forme $f(x) = \lambda x$ pour un réel λ .

Exercice 11 Soit $f: \mathbb{R}^N \to \mathbb{R}^N$ continue. On suppose que la suite récurrente $u_{n+1} = f(u_n)$ n'a qu'une seule valeur d'adhérence. Montrer qu'elle converge.

Exercice 12 1. Qu'est-ce qu'une application continue $f: \mathbb{Q} \to \mathbb{Q}$?

2. Les fonctions continues de $\mathbb Q$ dans $\mathbb Q$ vérifient-elles le théorème des valeurs intermédiaires?

Exercice 13 Soit $f : \mathbb{R} \to \mathbb{R}$ continue. Si f est injective sur \mathbb{Q} , est-elle nécessairement injective sur \mathbb{R} ? Et si elle est injective sur $\mathbb{R} \setminus \mathbb{Q}$?

3 Continuité des applications linéaires

Exercice 14 Dans toute la suite, E et F sont deux espaces vectoriels normés.

- 1. Rappeler à quelle condition une application de E dans F est continue (en un point, partout).
- 2. Donner des conditions équivalentes à la continuité d'une application linéaire de E dans F.

3. Comment voire qu'une application bilinéaire $B: E \times E \to F$ est continue $(E \times E \text{ est muni de la norme } \|(x,y)\| = \max(\|x\|,\|y\|))$? Comment définir la norme de B?

Exercice 15 1. Soit A une partie d'un evn. Rappeler ce qu'est \bar{A} .

2. Montrer que dans un evn l'adhérence d'une boule ouverte est la boule fermée de même rayon.

Exercice 16 On munit \mathbb{R}^n de la norme sup. Montrer qu'une application linéaire de \mathbb{R}^n dans un evn est toujours continue.

4 Rappels sur \mathbb{R} et les evn

Exercice 17 1. Soit u_n une suite de nombres réels. Rappeler la définition de « u_n tend vers l quand n tend vers l'infini ».

2. Montrer que toute suite croissante majorée de nombres réels converge.

Exercice 18 (Cantor, 1874) Montrer que les trois propriétés suivantes sont équivalentes :

- 1. il existe une bijection de I sur une partie de \mathbb{N} ;
- 2. il existe une bijection de I sur $\{0, \ldots, n-1\}$ ou sur \mathbb{N} ;
- 3. il existe une suite croissante de parties finies $J_k \subset I$ telle que $I = \bigcup_{k \in \mathbb{N}} J_k$.

On dit alors que I est $d\acute{e}nombrable$.

On veut montrer que l'ensemble des nombres réels $\mathbb R$ n'est pas dénombrable. On suppose par l'absurde que $\mathbb R$ est dénombrable. On peut alors numéroter les réels :

$$\mathbb{R} = \{t_i\}_{i \in \mathbb{N}}.$$

Pour chaque entier i, choisir un entier a_i dans $\{0, \dots, 9\}$ qui soit différent de la i-ème décimale du réel t_i . Conclure.

Exercice 19 Topologie de \mathbb{R} et ordre

- 1. Rappeler la définition de limite à gauche et à droite en un point pour une fonction de \mathbb{R} dans \mathbb{R} .
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante.
 - (a) Montrer que f a une limite à droite $f^+(x)$ et une limite à gauche $f^-(x)$ en tout point x. Montrer que $f^-(x) \le f^+(x)$.
 - (b) À quelle condition f est-elle continue en x?
 - (c) Montrer que f a au plus un ensemble dénombrable de discontinuités.
- 3. Que dire si f est décroissante?
- 4. (a) Rappeler la définition d'une partie dense de \mathbb{R} .
 - (b) Soit $f: \mathbb{R} \to \mathbb{R}$ monotone. On suppose $f(\mathbb{R})$ dense dans \mathbb{R} . Montrer que f est continue.
- 5. Soient A et B deux parties dénombrables denses dans \mathbb{R} .
 - (a) Construire (correctement) par récurrence une bijection (strictement) croissante φ de A dans B.
 - (b) En utilisant l'ordre, montrer que φ se prolonge en une application $\bar{\varphi}$ strictement croissante de \mathbb{R} dans \mathbb{R} .
 - (c) Montrer que $\bar{\varphi}$ est continue, bijective et que son application réciproque est continue.