

# Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

Μιχάλης Ψαράκης

# Δυαδική λογική

- Μεταβλητές (variables) με δύο μόνο τιμές:
  - 0 ή 1
  - ναι (yes) ή όχι (no)
  - αληθές (true) ή ψευδές (false)
  - ανοικτό (open) ή κλειστό (close)
- Σε αυτό το μάθημα θα μελετήσουμε σύντομα τη δυαδική λογική και την άλγεβρα Boole ώστε:
  - να συνδυάσουμε γρήγορα την άλγεβρα των δυαδικών αριθμών με τα ψηφιακά κυκλώματα που την υλοποιούν στο υλικό (hardware): λογικές πύλες

Λογική Σχεδίαση Ψηφιακών Συστημάτων

'Αλγεβοα Boole και Λογικές Πύλες

### Δυαδική λογική (συν.)

- Δυαδικές μεταβλητές
  - x, y, z, w, A, B, C, D, ....
  - 0 ή 1
  - Λογικές πράξεις
    - Λογικό ΚΑΙ (AND) ή σύζευξη:
      - Συμβολίζεται με τελεία · δηλαδή x · y
      - Δίνει αποτέλεσμα 1 μόνο όταν και το x και το y είναι ίσα με 1.
         Διαφορετικά το αποτέλεσμα του λογικού ΚΑΙ είναι ίσο με 0.
    - Λογικό Ή (OR) ή διάζευξη:
      - Συμβολίζεται με + δηλαδή x + y
      - Δίνει αποτέλεσμα 1 όταν τουλάχιστον ένα από τα x,y είναι ίσο με 1.
         Διαφορετικά το αποτέλεσμα του λογικού Ἡ είναι ίσο με 0.
    - Λογικό ΟΧΙ (ΝΟΤ) ή αντιστροφή:
      - Συμβολίζὲται με τόνο (x') ή με πάνω παύλα Χ̄
      - Όταν το x είναι ίσο με 1 τότε το x' είναι ίσο με 0 και αντίστροφα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

'Αλγεβοα Boole και Λογικές Πύλες

### Αριθμητικές και λογικές πράξεις

- 🔳 Προσοχή
  - Αν κάνουμε αριθμητική πρόσθεση,
     τότε η πράξη 1 + 1 δίνει αποτέλεσμα 10<sub>2</sub> δηλαδή 2 στο δυαδικό
  - Αν όμως κάνουμε τη λογική πράξη OR που και πάλι συμβολίζεται με +, τότε η (λογική) πράξη 1 + 1 δίνει αποτέλεσμα 1
  - Συχνά το λογικό AND ονομάζεται «πολλαπλασιασμός» και το λογικό OR ονομάζεται «πρόσθεση»

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες





### Σύμβολα λογικών πυλών

Οι λογικές πύλες που υλοποιούν στο hardware τις τρεις βασικές λογικές πράξεις (AND, OR, NOT) συμβολίζονται με τα ακόλουθα σύμβολα







- (a) Two-input AND gate
- (b) Two-input OR gate
- (c) NOT gate or inverter
- Όταν δεχθούν στις εισόδους ηλεκτρικά σήματα με τάση στα επίπεδα του λογικού 0 και του λογικού 1, δίνουν στην έξοδο την αντίστοιχη λογική τιμή ανάλογα με τη συνάρτηση.
  - Όπως θα δούμε σε επόμενα κεφάλαια
    - Υπάρχουν και άλλοι τύποι λογικών πυλών που υλοποιούν άλλες λογικές συναρτήσεις
    - □ Γενικά οι λογικές πύλες μπορούν να έχουν  $k \ge 2$  εισόδους και συνεπώς να υλοποιούν λογικές συναρτήσεις με  $k \ge 2$  μεταβλητές.

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

### Πύλες πολλαπλών εισόδων

Πύλες AND και OR τριών και τεσσάρων εισόδων (μεταβλητών) αντίστοιχα.



G = A + B + C + D C D

- (a) Three-input AND gate
- (b) Four-input OR gate

. Λογική Σχεδίαση Ψηφιακών Συστημάτων Άλγεβοα Boole και Λογικές Πύλες





### Άλγεβοα Boole

- 🔳 Αλγεβρικό σύστημα δυο τιμών : 0, 1
- Δυαδικοί τελεστές OR "+" και AND "•"
  - Μοναδιαίος τελεστής συμπληρώματος NOT " ' "
- Ορισμός τελεστέων

| ху  | <b>x</b> • <b>y</b> | ху  | <b>x</b> + <b>y</b> | X | x' |
|-----|---------------------|-----|---------------------|---|----|
| 0 0 | 0                   | 0 0 | 0                   | 0 | 1  |
| 0 1 | 0                   | 0 1 | 1                   | 1 | 0  |
| 10  | 0                   | 1 0 | 1                   |   |    |
| 11  | 1                   | 11  | 1                   |   |    |

Λογική Σχεδίαση Ψηφιακών Συστημάτων

λγεβρα Boole και Λογικές Πύλες

# Άλγεβοα Boole: αξιώματα

- Βασίζεται σε έναν αριθμό αξιωμάτων (αξιώματα Huntington):
- Κλειστότητα (closure):
  - Κλειστότητα ως προς τον τελεστή +
    - Κλειστότητα ως προς τον τελεστή •
- Κανόνας ουδέτερου στοιχείου (identity law):
  - Υπάρχει ουδέτερο στοιχείο ως προς τον + που συμβολίζεται με 0: x + 0 = 0 + x = x
  - Υπάρχει ουδέτερο στοιχείο ως προς τον που συμβολίζεται με 1: x 1 = 1 x = x
- Αντιμεταθετικός κανόνας (commutative law):
  - Η πράξη + είναι αντιμεταθετική x + y = y + x
  - H πράξη είναι αντιμεταθετική  $x \cdot y = y \cdot x$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

### Άλγεβοα Boole: αξιώματα (συν.)

- Προσεταιριστικός κανόνας (associative law):
  - H πράξη + είναι προσεταιριστική: (x+y)+z = x+(y+z)
  - Η πράξη είναι προσεταιριστική: (x•y)•z = x•(y•z)
- Επιμεριστικός κανόνας (distributive law):
  - Η πράξη είναι επιμεριστική ως προς την + : x•(y+z) = x•y + x•z
  - H πράξη + είναι επιμεριστική ως προς την : x+(y•z) = (x+y) (x+z)
  - Κανόνας συμπληρώματος (complement law):
    - Για κάθε στοιχείο x, υπάρχει x' που ονομάζεται συμπλήρωμα και ισχύει x + x' = 1 και x x' = 0

Λογική Σχεδίαση Ψηφιακών Συστημάτων

'Αλγεβοα Boole και Λογικές Πύλες

12

# Άλγεβοα Boole: θεωοήματα

- Αρχή του δυϊσμού (duality principle)
  - Αν σε μία αλγεβρική παράσταση της άλγεβρας Boole,
     αλλάξουμε όλα τα 0 με 1 και αντίστροφα
     και όλες τις πράξεις + τις αντικαταστήσουμε με και αντίστροφα,
     τότε λαμβάνουμε μια ισοδύναμη παράσταση.
- 🔳 Θεώρημα 1:

X + X = X KQI  $X \cdot X = X$ 

🔳 Θεώρημα 2 :

x + 1 = 1  $\kappa \alpha i \quad x \cdot 0 = 0$ 

🔳 Θεώρημα 3 :

(x')' = x

🔳 Θεώρημα 4:

 $x + xy = x \kappa \alpha i x(x + y) = x$ 

. Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

### Αποδείξεις θεωρημάτων

$$x + x = (x + x) \cdot 1 = (x + x) \cdot (x + x') = x + (x \cdot x') = x + 0 = x$$

$$x \cdot x = (x \cdot x) + 0 = (x \cdot x) + (x \cdot x') = x \cdot (x + x') = x \cdot 1 = x$$

$$x + 1 = (x + 1) \cdot 1 = (x + 1) \cdot (x + x') = x + (1 \cdot x') = x + x' = 1$$

$$x \cdot 0 = (x \cdot x) + 0 = (x \cdot x) + (x \cdot x') = x \cdot (x + x') = x \cdot 1 = x$$

$$\Theta$$
εώρημα 4: x + xy = x και x(x + y) = x

$$x + x \cdot y = x \cdot 1 + x \cdot y = x \cdot (1 + y) = x \cdot 1 = x$$

$$x \cdot (x + y) = (x + 0) \cdot (x + y) = x + 0 \cdot y = x + 0 = x$$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

15

# Θεώρημα DeMorgan

#### Θεώρημα DeMorgan 2 μεταβλητών

$$(x+y)' = x'y'$$

$$(xy)' = x' + y'$$

#### Γενικευμένο θεώρημα DeMorgan

$$(x_1 + x_2 + ... + x_n)' = x_1' x_2' ... x_n'$$

$$(x_1 x_2...x_n)' = x_1' + x_2' + ... x_n'$$

Έχει πολλή σημαντική εφαρμογή στη βελτιστοποίηση των λογικών συναρτήσεων

. Λογική Σχεδίαση Ψηφιακών Συστημάτων Άλγεβοα Boole και Λογικές Πύλες







- Ο πίνακας αληθείας μπορεί να εξαχθεί από την αλγεβρική έκφραση μιας συνάρτησης
  - Και αντίστροφα, από τον πίνακα αληθείας μπορεί να εξαχθεί η αλγεβρική παράσταση

Πίνακες αληθείας για τις συναρτήσεις F1 και F2

| Х | у | Z | F <sub>1</sub> | $F_2$ |
|---|---|---|----------------|-------|
| 0 | 0 | 0 | 0              | 0     |
| 0 | 0 | 1 | 1              | 1     |
| 0 | 1 | 0 | 0              | 0     |
| 0 | 1 | 1 | 0              | 1     |
| 1 | 0 | 0 | 1              | 1     |
| 1 | 0 | 1 | 1              | 1     |
| 1 | 1 | 0 | 1              | 0     |
| 1 | 1 | 1 | 1              | 0     |

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

Η συνάρτηση  $F_2$ Από τον πίνακα αληθείας της  $F_2$  παράγεται η αλγεβρική έκφραση:  $F_2 = x' y' z + x' y z + x y'$ Η υλοποίησή της με λογικές πύλες είναι η ακόλουθη:  $F_2 = x' y' z + x' y z + x y'$ Αργική Σχεδίαση Ψηφιακών Συστημάτων Άλγεβρα Boole και Λογικές Πύλες 20

### Αλγεβοική απλοποίηση της $F_2$

#### Η F<sub>2</sub> μπορεί να απλοποιηθεί

- $F_2 = x' y' z + x' y z + x y' = x' z (y' + y) + x y' = x' z + x y'$
- Και η νέα υλοποίηση με λογικές πύλες είναι η ακόλουθη:



- Η απλοποιημένη αλγεβρική έκφραση οδήγησε σε υλοποίηση με λιγότερες και απλούστερες πύλες (λιγότερων εισόδων)
  - Από 4 πύλες και 2 αντιστροφείς πήγαμε στις 3 πύλες και 2 αντιστροφείς
  - Από 13 εισόδους πυλών πήγαμε στις 8 εισόδους πυλών
- Η απλοποίηση λογικών κυκλωμάτων οδηγεί σε κυκλώματα:
  - Μικρότερα, ταχύτερα, φθηνότερα και με χαμηλότερη κατανάλωση ενέργειας

Λογική Σγεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

21

### Αλγεβοικοί μετασχηματισμοί

Με αλγεβρικούς μετασχηματισμούς μπορούμε να απλοποιήσουμε μια συνάρτηση

- Αλλά όταν οι συναρτήσεις έχουν πολλές μεταβλητές μπορεί να οδηγηθούμε σε λάθη
- Πρέπει να χρησιμοποιήσουμε συστηματικούς τρόπους ελαχιστοποίησης λογικών συναρτήσεων
  - Που να μπορούν να προγραμματιστούν σε εργαλεία λογισμικού που να τις εκτελούν αυτόματα
- Ένας συστηματικός τρόπος είναι η μέθοδος Χάρτη Karnaugh
  - Θα τη μελετήσουμε αργότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

'Αλγεβοα Boole και Λογικές Πύλες

### Συμπλήρωμα συνάρτησης

- Μια λογική συνάρτηση F έχει μια συμπληρωματική συνάρτηση F' ή συμπλήρωμα της F η οποία δίνει τιμή 0 εκεί που η F δίνει 1 και αντίστροφα
- Αλγεβρικά το συμπλήρωμα παράγεται από την F με χρήση του θεωρήματος του DeMorgan
- Γενίκευση θεωρήματος DeMorgan
  - (A + B + C + D + ... + F)' = A' B' C' D' ... F'
  - (A B C D ... F)' = A' + B' + C' + D' + ... + F'
  - Παράδειγμα: Βρείτε το συμπλήρωμα της F<sub>1</sub> = x'yz'+x'y'z
    - $F_1' = (x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z')$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

'Αλγεβοα Boole και Λογικές Πύλες

22

# Ελαχιστόροι

- Για μία συνάρτηση με *n* μεταβλητές κάθε γινόμενο (πράξη AND) που περιέχει όλες τις *n* μεταβλητές είτε στην κανονική είτε στην συμπληρωμένη μορφή τους, ονομάζεται πρότυπο γινόμενο ή ελαχιστόρος (minterm)
  - Συνολικά υπάρχουν 2<sup>n</sup> ελαχιστόροι
- Παραδείγματα:
  - Για n=2 μεταβλητές x και y, οι ελαχιστόροι είναι x'y', x'y, xy' και xy
  - Για n=3 μεταβλητές x, y και z, οι ελαχιστόροι είναι x'y'z', x'y'z, x'yz', x'yz, xy'z', xy'z, xyz', και xyz
  - Οι ελαχιστόροι συμβολίζονται με m, όπου το j προκύπτει από τις μεταβλητές βάζοντας 0 όταν έχει τόνο η μεταβλητή και 1 όταν δεν έχει

. Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

| T 1                 | •        | 2             |       | 01  |      |
|---------------------|----------|---------------|-------|-----|------|
| L $\lambda \alpha'$ | χιστόροι | $l \supset 1$ | uetai | ろんか | των  |
|                     |          | . –           |       |     | 1000 |

|   |   |   | Ελα    | χιστόροι |
|---|---|---|--------|----------|
| X | у | Z | Όρος   | Ονομασία |
| 0 | 0 | 0 | x'y'z' | $m_0$    |
| 0 | 0 | 1 | x'y'z  | $m_1$    |
| 0 | 1 | 0 | x'yz'  | $m_2$    |
| 0 | 1 | 1 | x'yz   | $m_3$    |
| 1 | 0 | 0 | xy'z'  | $m_4$    |
| 1 | 0 | 1 | xy'z   | $m_5$    |
| 1 | 1 | 0 | xyz'   | $m_6$    |
| 1 | 1 | 1 | xyz    | $m_7$    |
|   |   |   | •      |          |

Λογική Σχεδίαση Ψηφιακών Συστημάτων

λγεβοα Boole και Λογικές Πύλες

# Κανονικές μορφές

- Δίνονται οι συναρτήσεις f<sub>1</sub> και f<sub>2</sub>
  - Κάθε συνάρτηση εκφράζεται σαν άθροισμα ελαχιστόρων

| U | U | U | U | U |
|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |
|   |   |   |   |   |

- Κανονικές Μορφές (Canonical Forms)
  - $f_1 = x'y'z+xy'z'+xyz = m_1+m_4+m_7$
  - $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

### Άθροισμα ελαχιστόρων

Να εκφραστεί η συνάρτηση F = A + B'C σαν άθροισμα ελαχιστόρων

```
A + B'C = AB + AB' + B'C
= ABC' + ABC + AB'C' + AB'C + B'C
= ABC' + ABC + AB'C' + AB'C + A'B'C + AB'C =
= m_6 + m_7 + m_4 + m_5 + m_1
= m_1 + m_4 + m_5 + m_6 + m_7
```

Συχνά (για συντομία), εκφράζουμε μια συνάρτηση σαν άθροισμα ελαχιστόρων ως:

$$F(A,B,C) = \Sigma(1,4,5,6,7)$$

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Άλγεβοα Boole και Λογικές Πύλες

27

# Πρότυπες μορφές (standard forms)

Άθροισμα γινομένων – sum of products
 (όχι κατ' ανάγκη ελαχιστόρων) ή



Ονομάζονται και διεπίπεδες υλοποιήσεις (two-level implementations)

. Λογική Σχεδίαση Ψηφιακών Συστημάτων Άλγεβοα Boole και Λογικές Πύλες





| Name     | Graphic<br>symbol | Algebraic function    | Truth table                                                                                                 |
|----------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|
| AND      | <i>x</i>          | $-F \qquad F = xy$    | $\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$ |
| OR       | <i>x</i>          | $-F \qquad F = x + y$ | $\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$ |
| Inverter | <i>x</i>          | $-F \qquad F = x'$    | $\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$                                             |
| Buffer   | <i>x</i> ———      | $-F \qquad F = x$     | $\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$                                            |











