1.2 PROPERTIES OF POLYNOMIAL FUNCTIONS (Part 2)

ABSOLUTE (GLOBAL) MAXIMUM AND MINIMUM VALUES:

An **absolute maximum** is **the highest y-value** on the graph. An **absolute minimum** is **the lowest y-value** on the graph.

RELATIVE (LOCAL) MAXIMUM AND MINIMUM VALUES:

A **relative maximum** is the greatest value of a *function in its neighborhood*. A **relative minimum** is the least value of a *function in its neighborhood*.

Ex1. Graph of function f(x) is given .Identify global and local max/min values.

Local max:______
Local min:_____
Absolute max: _____
Absolute min:

INTERVALS OF INCREASE/DECREASE

Suppose S is an interval in the domain of f(x), so f(x) is defined for all x in S.

f(x) is **increasing** on S, $\Leftrightarrow f(a) < f(b)$ for all $a, b \in S$ such that a < b

f(x) is **decreasing** on $S \Leftrightarrow f(a) > f(b)$ for all $a, b \in S$ such that a < b

FUNCTION GRAPH	INTERVALS OF INCREASE/DECREASE	TYPE OF MAX OR MIN
10 8 6 4 2 2 -5 -4 -3 -2 -1 2 3 4 5		
20 16 12 8 8 -5 -4 -8 -2 -1 1 2 3 4 5		
Conclusion:		

ZEROS OF A FUNCTION:

The **zeros** of a function are known by two other names: *x***-intercepts** and **roots**. A zero/x-intercept/root of a function is the value of the x-coordinate where the function cuts or

just touches the x-axis. The x-intercept is the **value** of the x-coordinate from the point (x, 0). The Y-INTERCEPT is the value of the y-coordinate of the point where the graph crosses the y axis. It is the value of y coordinate of the point (0, y).

x-intercepts:______y-intercept:______

<u>Investigation of the Properties of Polynomial Functions:</u>

Using a graphing calculator or <u>Desmos</u>¹, fill-in the following charts and draw appropriate conclusions:

a) Quadratic Functions:

Function	Degree	Number of zeroes/ x-intercepts/ roots	Number of Turning Points (MAX or Min)
$y = x^2$			
$y = x^2 + 1$			
$y = 3x^2 - 4x - 1$			

Conclusions:

- Quadratic functions have a degree of _____.
- The maximum number of roots that a quadratic function can have is _____
- The least number of roots that a quadratic function can have is
- The maximum number of turning points (max.min) a quadratic function can have is _____

b) Cubic Functions:

Function	Degree	Number of zeroes/ x-intercepts/ roots	Number of Turning Points (MAX or Min)
$y = x^3$			
$y = x^3 + 2x^2 - x - 2$			
$y = -4x^3 + 16x^2 - 13x + 3$			

Conclusions:

- Cubic functions have a degree of _____.
- The maximum number of roots that a cubic function can have is _____
- The least number of roots that a cubic function can have is _____
- The maximum number of turning points (max/min) a cubic function can have is _____

(1) https://www.desmos.com/calculator/kxbhcq6bix

c) Quartic Functions:

Function	Degree	Number of zeroes/ x-intercepts/ roots	Number of Turning Points (MAX or Min)
$y = x^4$			
$y = -x^4 - 5$			
$y = x^4 + 3x^3 + x^2 - 3x - 2$			
$y = -x^4 + 5x^2 - 4$			

Conclusions:

- Quartic functions have a degree of _____.
- The maximum number of roots that a quartic function can have is _____
- The least number of roots that a quartic function can have is _____
- The maximum number of turning points a quartic function can have is ______

d) Quintic Functions:

Function	Degree	Number of zeroes/ x-intercepts/ roots	Number of Turning Points (MAX or Min)
$y = x^5 + 7$			
$y = 2x^5 + 7x^4 - 3x^3 - 18x^2 + 5$			
$y = 5x^5 + 5x^4 - 2x^3 + 4x^2 - 3x$			

Conclusions:

- Quintic functions have a degree of ______.
- The maximum number of roots/x-intercepts that a quintic function can have is _____
- The least number of roots/x-intercepts that a quintic function can have is _____
- The maximum number of turning points a quintic function can have is _____

e) 6th Degree Functions:

Function	Degree	Number of zeroes/ x-intercepts/ roots	Number of Turning Points (MAX or Min)
$y = x^6$			
$y = 2x^6 - 12x^4 + 18x^2 + x - 5$			
$y = -x^6 - 3$			

Conclusions:

- The maximum number of roots/x-intercepts that a 6th degree function can have is _____
- The least number of roots/x-intercepts that a 6th degree function can have is _____
- The maximum number of turning points a 6th degree function can have is _____

Overall Conclusions

Number of Zeros:	
The maximum number of zeros/x-intercepts that a polynomial function can have is the	as its
·	
The minimum number of zeros/x-intercepts that an <u>odd degree</u> polynomial can have is	·
However, an <i>even degree</i> polynomial function can have zeros/x-ints at all.	
Turning Points:	
The maximum number of turning points that a polynomial function can have is	
An <u>even degree</u> function must have at least turning point.	
An <u>odd degree</u> function could have turning points at all.	
Complete the chart:	

Type of Polynomial	Degree	Maximum Number of zeros / x-intercepts / roots	Minimum Number of Zeros/ x-intercepts/roots	Maximum Number of Turning Points
Linear				
Quadratic				
Cubic				
Quartic				
Quintic				
	6			
	7			
	n		If n is even: If n is odd:	

Exit Card!

Identify number of zeros/x-intercepts/roots, the sign of the leading coefficient and describe the end behaviour. Using this information, decide if each function is cubic or quartic.

Practice:

Take a look at the following graphs and answer the questions.

b)

Domain:

Range:

Number of roots:

Roots:

End Behaviour:

Degree:

Intervals of positive:

Intervals of negative:

Intervals of increasing:

Intervals of decreasing:

Domain:

Range:

Number of roots:

Roots:

End Behaviour:

Degree:

Intervals of positive:

Intervals of negative:

Intervals of increasing:

Intervals of decreasing

Warm up

Part I. Multiple Choice

1. The least possible degree of the polynomial function represented by the graph shown is

- 2. The least possible degree of the polynomial function represented by the graph shown is
 - a) 3

c) 5

b) 4

d) 7

- 3. If y = f(x) is a quartic function with a constant difference of -48, then the following statement is **false**:
 - a) the function starts in Q3 and ends in Q4
 - b) the sign of the leading coefficient is negative
 - c) the function might not have any roots
 - d) the sign of the leading coefficient is positive

Part II. True/False

- a) The function $y = -3x^4 + 1$ extends from quadrant 3 to quadrant 4.
- b) Odd-degree polynomials have at least one *x*-intercept.
- c) Even-degree polynomial functions always begin and end on the same side of the *x*-axis. _____
- d) The graph of a quartic function cannot have exactly three *x*-intercepts.
- e) The function $y = x^4 + 2x^2 + 1$ never crosses the x-axis.
- f) All quartic polynomial equations have at least one real solution.

Part III. Short Answers

The following is the graph of y = f(x). Answer the following questions.

- a) absolute max:_____
- b) absolute min:
- c) local max:
- d) local min.:
- e) interval(s) of increasing:
- f) interval(s) of decreasing:

