DETEKSI KEASLIAN RUPIAH PADA UANG KERTAS RUPIAH TAHUN EMISI 2022 MENGGUNAKAN METODE YOU ONLY LOOK ONCE VERSI 8

SKRIPSI

TSABITAH MUFLIHZA 201402070

PROGRAM STUDI S1 TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2024

DETEKSI KEASLIAN RUPIAH PADA UANG KERTAS RUPIAH TAHUN EMISI 2022 MENGGUNAKAN METODE YOU ONLY LOOK ONCE VERSI 8

SKRIPSI

Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh ijazah Sarjana Teknologi Informasi

TSABITAH MUFLIHZA 201402070

PROGRAM STUDI S1 TEKNOLOGI INFORMASI FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN

2024

PERSETUJUAN

Judul

: DETEKSI KEASLIAN RUPIAH PADA UANG KERTAS

RUPIAH TAHUN EMISI 2022 MENGGUNAKAN

METODE YOU ONLY LOOK ONCE VERSI 8

Kategori

: SKRIPSI

Nama

: TSABITAH MUFLIHZA

Nomor Induk Mahasiswa

: 201402070

Program Studi

: SARJANA (S1) TEKNOLOGI INFORMASI

Fakultas

: ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

UNIVERSITAS SUMATERA UTARA

Medan, 16 Oktober 2024

Komisi Pembimbing:

Pembimbing 2

Pembimbing 1

Sarah Purnamawati, S.T., M.Sc.

NIP. 198302262010122003

Rossy Nurhasanah, S.Kom., M.Kom.

NIP. 198707012019032016

Diketahui/disetujui oleh

Program Studi S1 Teknologi Informasi

Ketua.

Old Arisandi, S.T., M.Kom.

NIP. 197908312009121002

PERNYATAAN

DETEKSI KEASLIAN RUPIAH PADA UANG KERTAS RUPIAH TAHUN EMISI 2022 MENGGUNAKAN METODE YOU ONLY LOOK ONCE VERSI 8

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil karya saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing telah disebutkan sumbernya.

Medan, 16 Oktober 2024

Tsabitah Muflihza

201402070

trail

UCAPAN TERIMA KASIH

Puji dan syukur kehadirat Tuhan Yang Maha Esa Allah SWT yang senantiasa memberikan berkah dan rahmat serta karunia-Nya sehingga penulis dapat menyelesaikan skripsi dengan judul "Deteksi Keaslian Rupiah Pada Uang Kertas Rupiah Emisi 2022 Menggunakan Metode You Only Look Once Versi 8" sebagai salah satu syarat untuk lulus pada Program Studi S1 Teknologi Informasi Universitas Sumatera Utara. Penulis telah banyak mendapatkan bimbingan, dukungan, bantuan, dan doa dari banyak selama proses penyelesaian skripsi ini. Oleh karena itu, penulis ingin memberikan ucapan terima kasih yang tulus kepada:

- 1. Diri sendiri yang telah berusaha menyelesaikan skripsi ini dan menjalankan seluruh prosesnya dengan selalu semangat untuk meraih gelar sarjana.
- 2. Orang tua penulis, Mama Silvia Rahmadhani harahap dan Ayah Benny Supeno yang telah mendidik dan membesarkan penulis dengan kasih sayang, memberikan dukungan semangat, material, bantuan yang tak terhingga juga doa yang tulus sehingga penulis dapat menyelesaikan perkuliahan dan penelitian ini.
- 3. Bapak Dedy Arisandi ST., M.Kom. selaku Ketua Program Studi S1 Teknologi Informasi Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara.
- 4. Ibu Rossy Nurhasanah, S.Kom, M.Kom. selaku Dosen Pembimbing 1 dan Ibu Sarah Purnamawati, S.T., M.Sc. selaku Dosen Pembimbing 2 yang sangat banyak membantu penulis dalam membimbing, memberi saran, serta arahan dalam proses pengerjaan skripsi dari awal hingga selesai.
- 5. Seluruh Dosen Program Studi S1 Teknologi Informasi Universitas Sumatera Utara yang telah mengajar dan memberikan ilmu yang berlimpah selama masa perkuliahan penulis.
- 6. Seluruh Staff Fasilkom-TI yang telah membantu seluruh urusan administrasi selama masa perkuliahan.
- 7. Kakak saya Salsabila mufida, adik saya Zahra zahira dan Faizah Haniah yang senantiasa menghibur dan menemani penulis dalam menyelesaikan penelitian ini.

- 8. Teman-teman grup capek pc, Ivan Tandella, Nayla Rahmi Nst, Vanissya Arbashika Putri, Ullayya Zhafirah, Iqbal Manalu, Wahyu Sony Pratama, Hatta Abdillah, juga Ridha Arrahmi dan Fildzah Zata, yang selalu menemani di masa perkuliahan, memberikan dukungan semangat, bantuan, dan juga masukan selama masa pengerjaan skripsi penulis dan senantiasa berjuang bersama dalam mengerjakan tugas masing-masing untuk menyelesaikan perkuliahan ini.
- 9. Teman-teman sekolah penulis, Nathania Anisty, Khairunnisa Mutia Lubis, Nabilla Calulla, Nur Aisyah Amanda, Fisya alifia dan Reza Nugraha yang selalu setia dan mendukung penulis dalam menyelesaikan skripsi ini pada setiap tahapnya.
- 10. Teman-teman grup kom d, Ribengs, Pilja, Ulull, Ipan, Iqbal, Zidan, Masgur, Kiki, Bayu, Una, Wahyu, yang telah bersedia menjadi teman penulis sejak pertama kali masuk kuliah.
- 11. Seluruh angkatan 2020 yang tidak dapat disebutkan satu persatu yang telah meramaikan masa perkuliahan penulis.

Penulis berharap skripsi ini dapat memberikan banyak manfaat bagi semua orang dan menjadi awal yang positif untuk langkah saya kedepannya.

Hormat saya,

Tsabitah Muflihza

ABSTRAK

Rupiah merupakan alat pembayaran yang sah di Indonesia dan merupakan salah satu simbol negara sekaligus menjadi penyatuan bagi seluruh bangsa. Salah satu tantangan yang dihadapi dalam pengelolaan uang Rupiah adalah peredaran Rupiah palsu. Rupiah palsu merupakan mata uang yang dihasilkan tanpa izin hukum dari negara atau pemerintah, dengan maksud meniru mata uang resmi untuk menipu penerima yang dituju. Kebanyakan masyarakat tidak dapat membedakan uang asli dan uang palsu karena Rupiah emisi tahun 2022 memiliki model yang sangat mirip dengan uang palsu. Oleh karena itu, penelitian ini dibuat agar masyarakat dapat lebih mudah mendeteksi uang palsu disekitarnya dengan melakukan pengecekan secara mandiri dari *smartphone* juga mengimplementasikan dan menganalisis kinerja algoritma YOLO versi 8 untuk mendeteksi keaslian Rupiah. Penelitian ini mendeteksi uang Rupiah TE 2022 pecahan 50.000 dan 100.000 pada bagian tinta berubah warna berupa gambar bunga dengan logo Bank Indonesia yang dicetak mengkilap dan akan berubah-ubah warnanya jika dilihat dari sudut pandang yang berbeda. Penelitian ini mengimplementasikan metode You Only Look Once versi 8 dalam membuat sistem deteksi keaslian uang rupiah, YOLOv8 memiliki performa yang sangat baik pada akurasi dan kecepatan deteksi, juga menghasilkan model yang ringan dan *compatible* untuk *mobile app*, model yang telah dibuat kemudian diimplementasikan kedalam aplikasi mobile berbasis Android. Penggunaan metode YOLOv8 untuk mendeteksi uang palsu dan uang asli Rupiah TE 2022 pada penelitian ini mendapatkan nilai precision 97%, recall 97%, f1-score 95%, dan accuracy 97%.

Kata kunci: Rupiah, Rupiah Palsu, Tinta Berubah Warna, YOLOv8

AUTHENTICITY DETECTION OF 2022 EMISSION INDONESIAN RUPIAH BANKNOTES USING YOU ONLY LOOK ONCE VERSION 8 METHOD

ABSTRACT

Rupiah is a legal payment method in Indonesia and serves as a national symbol for the entire nation. One of the challenges faced in managing Rupiah currency is the circulation of counterfeit bills. Counterfeit Rupiah are currencies produced without legal permission from the state or government, with the intent to mimic official currency to deceive intended recipients. Most people cannot distinguish between genuine and counterfeit money because the 2022 emission Rupiah closely resembles fake money. Therefore, this research was conducted to enable the public to more easily detect counterfeit money in their surroundings by performing self-checks through their smartphones also implementing and analyzing the YOLO version 8 performance to detect the authenticity of Rupiah. This research focuses on detecting 2022 emission Rupiah bills, specifically the 50,000 and 100,000 denominations, which have colorchanging ink with flower images and glossy Bank Indonesia logos that alter colors depending on the viewing angle. The study implements the You Only Look Once version 8 method to create a system for detecting the authenticity of Rupiah bills. YOLOv8 demonstrates excellent performance in terms of detection accuracy and speed, while also producing lightweight models that are compatible with mobile applications. The model developed was then integrated into an Android-based mobile application. Using the YOLOv8 method to detect counterfeit and genuine 2022 emission Rupiah bills achieved a precision of 97%, recall of 97%, F1-score of 95%, and accuracy of 97%.

Keywords: Rupiah, Counterfeit Rupiah, Color Shifting Ink, YOLOv8

DAFTAR ISI

PERSETUJUAN	iii
PERNYATAAN	iv
UCAPAN TERIMA KASIH	v
ABSTRAK	vii
ABSTRACT	viii
DAFTAR ISI	ix
DAFTAR TABEL	xii
DAFTAR GAMBAR	xiii
BAB 1 PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	4
1.3. Tujuan Penelitian	5
1.4. Batasan Masalah	5
1.5. Manfaat Penelitian	5
1.6. Metodologi Penelitian	6
1.7. Sistematika Penulisan	7
BAB 2 LANDASAN TEORI	8
2.1 Ciri Keaslian Uang Kertas Rupiah Tahun Emisi 2022	8
2.1.1. Tinta berubah warna (Colour Shifting Ink)	8
2.1.3. Benang Pengaman (safety thread)	9
2.1.4. Cetak Intaglio	9
2.1.5. Tanda air (watermark)	9
2.1.6. Gambar saling isi (rectoverso)	9
2.2. Computer Vision	10

2.3. Object Detection	10
2.4. Deep Learning	10
2.5. Convolutional Neural Network (CNN)	11
2.6. Algoritma You Only Look Once (YOLO)	11
2.7. YOLOv8	16
2.8. Metrik Evaluasi	18
2.8.1. Accuracy	18
2.8.2. Precision	18
2.8.3. Recall	19
2.8.4. F1-Score	19
2.8.5. Mean Average Precision(mAp)	19
2.9. Penelitian Terdahulu	19
2.10. Perbedaan Penelitian	24
BAB 3 ANALISI DAN PERANCANGAN SISTEM	25
3.1 Data Yang Digunakan	25
3.2 Analisis Sistem	26
3.3 Akuisisi Data	27
3.4 Image Pre-Processing	27
3.4.1. Labelling	27
3.4.2. Resize	28
3.4.3. Augmentation	29
3.4.4. Image Classification	31
3.4.5.Install package	31
3.4.6. Konfigurasi data	31
3.4.7. Pelatihan model	32
3.4.8. Backbone	32
3.4.9. Neck	32
3.4.10. Head	33
3.5 Learned Model	33

3.6 Deployment	33
3.7 Output	33
3.8 Perancangan <i>Interface</i>	33
3.8.1. Activity Diagram	33
3.8.2. Halaman Home	34
3.8.3. Halaman Deteksi	35
3.8.4. Halaman Panduan	36
BAB 4 IMPELEMENTASI DAN PENGUJIAN SISTEM	38
4.1 Implementasi Sistem	38
4.1.1. Perangkat Lunak dan Perangkat Keras	38
4.2 Deskripsi Data	39
4.3. Implementasi Model	41
4.3.1. Skenario 1	41
4.3.2. Skenario 2	41
4.4. Implementasi Perancangan Interface	43
4.4.1. Tampilan Halaman Home	43
4.4.2. Tampilan Halaman Deteksi	44
4.4.3. Tampilan Halaman Panduan	45
4.5. Pengujian Sistem	46
BAB 5 KESIMPULAN DAN SARAN	59
5.1 Kesimpulan	59
5.2 Saran	59
DAFTAR PUSTAKA	60
LAMPIRAN	64

DAFTAR TABEL

Tabel 2.1 Perbandingan versi YOLO	12
Tabel 2.2 Penelitian Terdahulu	21
Tabel 3.1 Data Yang Digunakan	25
Tabel 4.1 Detail Pembagian Data	39
Tabel 4.2 Tabel Perbandingan Hasil Percobaan 100 epoch	41
Tabel 4.3 Tabel Perbandingan Training dan Validation	43
Tabel 4.4 Hasil Pengujian Sistem Money Detection	46
Tabel 4.5 Confusion Matrix Money Detection	56
Tabel 4.6 Data TP, FP, FN	56

DAFTAR GAMBAR

Gambar 2.1 Tinta berubah warna Rp50.000 Rupiah TE 2022	9
Gambar 2.2 Benang Pengaman Rp100.000 Rupiah TE 2022	9
Gambar 2.3 Model Deteksi YOLO	11
Gambar 2.4 Arsitektur YOLOv8	17
Gambar 2.5 Perbandingan Algoritma YOLO	18
Gambar 3.1 Arsitektur Umum	26
Gambar 3.2 Pembuatan Bounding Box	28
Gambar 3.3 Pemilihan Class	28
Gambar 3.4 Proses Resize gambar	29
Gambar 3.5 Proses Augmentasi 90° Rotate	30
Gambar 3.6 Proses Augmentasi 15° Rotates	30
Gambar 3.7 Proses Augmentasi Blur	31
Gambar 3.8 Activity Diagram	34
Gambar 3.9 Rancangan Halaman Home	35
Gambar 3.10 Rancangan Halaman Deteksi	36
Gambar 3.11 Rancangan Halaman Panduan	37
Gambar 4.1 Data Rupiah Asli 50K	40
Gambar 4.2 Data Rupiah Palsu 50K	40
Gambar 4.3 Data Rupiah Asli 100K	40
Gambar 4.4 Data Rupiah Palsu 100K	40
Gambar 4.5 Grafik Hasil Batch Size 32	43
Gambar 4.6 Interface Halaman Home	44
Gambar 4.7 Interface Halaman Deteksi	45
Gambar 4.8 Interface Halaman Panduan	46

BAB 1

PENDAHULUAN

1.1. Latar Belakang

Sejak diakui sebagai alat pembayaran yang sah, tindakan pemalsuan uang, terutama uang kertas, telah menjadi fenomena umum yang melibatkan usaha duplikasi yang dilakukan secara ilegal. Uang kertas rupiah diakui sebagai alat pembayaran sah dan akan terus berlaku selama peraturan yang diberlakukan oleh badan pengatur masih berjalan (Saputri *et al.*, 2023). Rupiah merupakan salah satu simbol negara Indonesia, sekaligus menjadi penyatuan bagi seluruh bangsa. Kita memiliki tanggung jawab untuk menjaga keaslian rupiah dari niat buruk pihak-pihak yang dapat merugikan perekonomian Indonesia (Fristia *et al.*, 2023). Bank Indonesia merupakan satu-satunya lembaga yang berwenang untuk menerbitkan dan mengalirkan uang Rupiah di Indonesia. Selain itu, pihak yang melanggar akan dikenai sanksi berdasarkan peraturan hukum yang berlaku secara resmi (Saputri *et al.*, 2023).

Seperti yang tertulis pada UU No.7 tahun 2011 mengenai mata uang, Rupiah palsu merupakan suatu benda yang bahan, ukuran, warna, gambar, dan desainnya menyerupai Rupiah yang dibuat, dibentuk, dicetak, digandakan, diedarkan, atau digunakan sebagai alat pembayaran secara melawan hukum (Ajiani *et al.*, 2023). Uang palsu dapat menyebabkan banyak dampak negatif diantaranya penurunan nilai uang riil, kenaikan harga yang mengakibatkan inflasi karena adanya peningkatan tidak sah dalam peredaran uang di ekonomi, penurunan penerimaan uang kertas, dan kerugian bagi pedagang yang tidak mendapatkan penggantian atas uang palsu yang terdeteksi oleh bank, yang pada akhirnya dapat mempercepat ekspansi ekonomi suatu negara (Chowdhury *et al.*, 2022). mata uang negara itu sendiri. Jika tidak ditanggulangi dengan

cepat dan efektif, hal tersebut berpotensi menyebabkan gangguan pada stabilitas keamanan dalam negeri (Zulkarnaen, 2020).

Keamanan mata uang rupiah terus berkembang seiring berjalannya waktu. Oleh karena itu, Bank Indonesia mengambil langkah pencegahan dengan menambahkan beberapa fitur baru yang mudah diamati dan terlihat dalam posisi tertentu, sehingga dapat meningkatkan tingkat keamanan dari kemungkinan pemalsuan uang (*Hardani et al.*, 2019). Diantaranya penerapan teknologi benang pengaman atau *microlens*, perkuatan teknologi tinta berubah warna (*colour shifting ink*), dan fitur *magnetic ink* dengan efek gerak dinamis pada pecahan besar. Uang kertas edisi terbaru tetap mempertahankan gambar utama pahlawan nasional di bagian depan, dan menambahkan unsur pengaman *ultraviolet* dengan variasi yang beragam. Direktur Eksekutif Departemen Pengelolaan Uang Bank Indonesia, Marlison Hakim, mengungkap bahwa setiap uang memiliki gambar rahasia berupa peta yang terlihat saat disinari ultraviolet. Contohnya, pada uang Rp 50 ribu terdapat gambar Djuanda yang berasal dari Jawa Barat maka pulau Jawa akan bersinar lebih terang dari pulau lainnya (Bestari, 2022).

Kebanyakan masyarakat tidak dapat membedakan uang asli dan uang palsu karena Rupiah TE 2022 memiliki model yang sangat mirip dengan uang palsu. Rupiah emisi 2022 berukuran lebih kecil dari pada Rupiah emisi 2016, Rupiah TE 2022 cenderung berbentuk seperti uang monopoli (Ajiani *et al.*, 2023). Kasus pemalsuan Rupiah emisi 2022 pernah terjadi di daerah Tasikmalaya. Polisi mengamankan 7 pembuat uang palsu yang mengedarkan uang buatannya kepada masyarakat dan anakanak sekolah, mata uang yang diedarkan merupakan mata uang Rupiah baru emisi 2022 sebanyak 3.214 lembar (Arianto, 2023). Selain itu, Kantor Perwakilan Bank Indonesia Tegal mencatat jumlah pemalsuan uang yang terjadi di wilayah jawa tengah sepanjang tahun 2010-2022 mencapai 41.636 lembar (Setiadi & Khairina, 2022).

Untuk mengatasi masalah kompleks pemalsuan uang kertas, diperlukan sistem yang dapat mendeteksi keaslian uang kertas rupiah. Di sisi lain, pendeteksian keaslian uang kertas rupiah saat ini masih sangat bergantung pada penglihatan manusia yang kurang konsisten dan mudah lelah (Ramadhan *et al.*, 2019). Perangkat deteksi keaslian mata uang juga banyak dijual di pasaran, namun tingkat akurasi sangat bergantung pada usia dan frekuensi penggunaan (Hardani *et al.*, 2019). Terdapat berbagai pendekatan yang terbukti sangat efektif dalam mendeteksi uang kertas palsu, diantaranya algoritma *Deep Learning*, *Image Processing*, *Machine Learning*, dan kombinasi dari ketiganya.

Berbagai pendekatan ini menunjukkan adanya usaha berkelanjutan dalam mengembangkan strategi yang efektif untuk mendeteksi uang palsu (Ashna & Momand, 2023).

Penelitian mengenai identifikasi uang palsu menggunakan *machine learning* pernah dilakukan oleh Rahmad *et al.* (2021) melakukan penelitian menggunakan metode KNN dan CNN pada mata uang Rupiah. Penelitian ini dilakukan pada tahun 2021 pada mata uang Rupiah emisi 2016 dan berhasil mendapatkan akurasi 96,67%. Namun ketika menggunakan foto yang tidak di *crop*, akurasi yang didapatkan hanyalah 25%. Model tersebut dapat dikatakan kurang optimal karena kurangnya fleksibilitas dalam mengidentifikasi data. Selain itu penelitian mengenai deteksi uang palsu juga dapat dilakukan dengan menggunakan beberapa metode secara bersamaan, seperti yang dilakukan oleh Suneetha Rani R *et al.* (2022), penelitian ini menggunakan 2 metode yaitu Random Forest dan You Only Look Once, penggunaan kedua metode ini juga cukup baik dengan akurasi sebesar 90%, namun kurang efektif karena penelitian lain yang hanya menggunakan metode YOLOv3 berhasil mendapatkan akurasi lebih tinggi.

Pada tahun 2020, Rilo Pambudi *et al.* melakukan penelitian pada mata uang Rupiah dan mendapatkan akurasi 86,7%, metode yang digunakan adalah Canny Edge Detection dan diteliti berdasarkan *watermark*, adapun penyebab kurangnya akurasi dari penelitian ini karena penempatan *watermark* yang bersilangan dengan tanda tangan dan gambar lainnya, pencahayaan yang berlebihan, serta variasi tekstur yang berbeda antara setiap nilai uang kertas yang diteliti. Sementara dengan metode yang berbeda, (Ratnadewi *et al.*, 2022). Menggunakan beberapa metode secara bersamaan dalam meneliti mata uang Indonesia, metode yang digunakan untuk *feature extraction* adalah Gray Level Co-Occurrence Matrix dan Naive Bayes untuk klasifikasinya. Penelitian ini mendapatkan akurasi sebesar 88% dimana penelitiannya dilakukan menggunakan 2 jenis pencahayaan yaitu lampu biasa dan juga sinar UV dan mendapatkan hasil yang sangat baik dalam pendeteksi nominalnya.

Rangkaian model YOLO (You Only Look Once) sangat terkenal di dunia *computer vision* karena akurasinya yang signifikan dan tetap mempertahankan ukuran model yang kecil. YOLOv8 merupakan model terbaru dari You Only Look Once yang dibuat oleh Ultralytics yang juga pernah menciptakan model YOLOv5. Kelebihan yang dimiliki oleh YOLOv8 sebagai versi yang terbaru pastinya memiliki tingkat akurasi yang lebih tinggi (telah diukur oleh Microsoft COCO dan Roboflow 100), selain itu

versi model versi terbaru ini juga memiliki berbagai fitur yang memberikan kemudahan para *developer* dalam menggunakannya dengan *Command Line Interface* yang sangat sederhana (Jacob Solawetz, 2023).

Berdasarkan latar belakang yang telah dibahas, penulis mengangkat penelitian dengan judul **Deteksi Keaslian Rupiah Pada Uang Kertas Rupiah Tahun Emisi 2022 Menggunakan Metode YOLOv8.** Pecahan yang akan diteliti pada penelitian ini adalah nominal Rp 50.000 dan Rp 100.000, kedua pecahan tersebut adalah yang paling banyak dipalsukan karena paling menguntungkan menurut Kepala Bank Indonesia Wilayah Banten, Imaduddin (Rizkoh, 2022). Yang membedakan penelitian ini dengan penelitian lainnya adalah citra uang yang telah diambil akan diteliti berdasarkan tinta berubah warna (*colour shifting ink*) dengan menggunakan metode YOLOv8, selain itu, mata uang yang diteliti adalah Rupiah terbaru TE 2022 yang dikeluarkan pada tanggal 17 agustus 2022 (Haryono, 2023). Penelitian ini dibuat untuk menghasilkan sistem yang dapat mendeteksi keaslian uang Rupiah emisi terbaru yang saat ini belum banyak diteliti sehingga masyarakat dapat menggunakannya dengan mudah dan lebih waspada terhadap pemalsuan Rupiah.

1.2. Rumusan Masalah

Meskipun Bank Indonesia telah meningkatkan fitur keamanan rupiah secara berkala, pemalsuan uang tetap menjadi masalah yang sering terjadi di Indonesia. Pada tahun 2023, ditemukan sebanyak 3.214 lembar dari uang palsu emisi terbaru tahun 2022 di jawa barat. Selain itu, Kantor Perwakilan Bank Indonesia Tegal mencatat jumlah pemalsuan uang yang terjadi di wilayah jawa tengah sepanjang tahun 2010-2022 mencapai 41.636 lembar. Maka diperlukan sebuah sistem yang dapat mengidentifikasi keaslian uang kertas Rupiah dengan efektif, terutama pada pecahan Rp 50.000 dan Rp 100.000, dengan menggunakan metode You Only Look Once versi terbaru yaitu YOLOv8. Fokus penelitian ini adalah deteksi fitur keamanan pada uang Rupiah TE 2022, mengatasi permasalahan perangkat deteksi keaslian mata uang yang masih bergantung pada penglihatan manusia yang mudah lelah dan tidak konsisten, serta meningkatkan kesadaran masyarakat terhadap pemalsuan uang disekitarnya dan juga menciptakan sebuah sistem yang dapat mendeteksi uang palsu secara otomatis dan mudah digunakan.

1.3. Tujuan Penelitian

Tujuan penelitian ini dilakukan adalah untuk mengimplementasikan dan menganalisis kinerja algoritma YOLO versi 8 untuk mendeteksi keaslian rupiah melalui citra uang kertas Rupiah emisi 2022.

1.4. Batasan Masalah

Terdapat batasan-batasan yang dibuat oleh peneliti agar penelitian yang dilakukan dapat berjalan sesuai dengan tujuan dan tidak menyimpang, beberapa batasan tersebut adalah sebagai berikut.

- 1) Data yang digunakan pada penelitian ini berupa citra dengan ekstensi file jpg.
- 2) Data yang digunakan merupakan citra uang Rupiah tahun emisi 2022 pecahan 50.000 dan 100.000.
- 3) Parameter yang digunakan untuk melakukan deteksi uang palsu yaitu tinta berubah warna (*colour shifting ink*).
- 4) Pengambilan citra dilakukan di kantor Bank Mandiri jalan Dr. Cipto Medan.

1.5. Manfaat Penelitian

Beberapa manfaat yang akan didapat dari penelitian ini adalah sebagai berikut.

- 1) Mengetahui performa YOLO versi 8 dalam melakukan deteksi keaslian Rupiah tahun emisi 2022.
- Menjadi sumber referensi untuk melakukan pengembangan penelitian selanjutnya terkait sistem deteksi keaslian Rupiah dengan citra digital dan penggunaan YOLO versi 8.
- 3) Hasil dari penelitian diharapkan dapat membantu masyarakat dalam melakukan deteksi keaslian Rupiah dengan mudah menggunakan smartphone agar dapat lebih waspada terhadap pemalsuan uang disekitar.

1.6. Metodologi Penelitian

Adapun tahapan-tahapan penelitian yang akan dilakukan, adalah sebagai berikut.

1. Studi Literatur

Pada tahap ini, penulis melakukan pencarian dan pengumpulan informasi maupun publikasi serta penelitian terdahulu mengenai penggunaan YOLOv8 dan identifikasi uang palsu baik pada mata uang indonesia juga mata uang negara lainnya.

2. Analisis Permasalahan

Informasi yang telah dikumpulkan sebelumnya akan menjadi acuan dalam melakukan analisis yang bertujuan untuk memahami implementasi YOLOv8 untuk identifikasi keaslian mata uang indonesia yaitu Rupiah tahun emisi 2022.

3. Perancangan sistem

Tahap selanjutnya akan dilakukan perancangan sistem mulai dari perancangan arsitektur umum, pengumpulan data, pelatihan model, juga implementasinya ke aplikasi mobile.

4. Implementasi Sistem

Perancangan sistem yang sebelumnya telah dibuat akan diimplementasikan agar tercipta sebuah sistem yang selaras dengan tujuan penelitian.

5. Pengujian Sistem

Pada tahap ini, dilakukan pengujian terhadap sistem yang telah diimplementasikan untuk memastikan bahwa sistem yang dirancang dapat digunakan dengan baik dan tepat untuk mengidentifiasi keaslian uang Rupiah TE 2022.

6. Penyusunan Laporan

Pada tahap ini akan dilakukan penyusunan laporan dan dokumentasi dari proses penelitian sebagai bentuk representasi hasil penelitian yang telah dilakukan.

1.7. Sistematika Penulisan

Terdapat beberapa bagian dalam penulisan skripsi, diantaranya adalah sebagai berikut.

BAB 1: PENDAHULUAN

Pada bab ini dijelaskan mengenai latar belakang penelitian, rumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah, tahapan metodologi penelitian, dan sistematika penulisan.

BAB 2: LANDASAN TEORI

Bagian ini memuat tentang teori-teori yang berkaitan dengan ciri-ciri keaslian rupiah, computer vision, object detection, deep learning, CNN, YOLO, YOLO8, metriks evaluasi, Penelitian terdahulu, dan juga perbedaan penelitian dengan penelitian-penelitian sebelumnya.

BAB 3: ANALISIS DAN PERANCANGAN SISTEM

Bagian ini menjelaskan arsitektur umum dari penelitian yang dilakukan, mulai dari akuisisi data, *split data*, *preprocessing*, proses pelatihan, pengujian, *output*, hingga perancangan *interface*.

BAB 4: IMPLEMENTASI DAN PENGUJIAN

Bagian ini berisi proses implementasi dan pengujian dari perancangan sistem yang telah dijelaskan pada bab sebelumnya untuk menunjukkan apakah hasil pengujian telah mencapai tujuan dari penelitian ini.

BAB 5: KESIMPULAN DAN SARAN

Pada bab ini memuat kesimpulan dari hasil penelitian yang telah dilakukan dan saran untuk pengembangan pada penelitian yang akan dilakukan selanjutnya untuk memperoleh hasil yang lebih sempurna.

BAB 2

LANDASAN TEORI

2.1 Ciri Keaslian Uang Kertas Rupiah Tahun Emisi 2022

Rupiah merupakan alat pembayaran yang sah di Indonesia dan merupakan salah satu simbol negara sekaligus menjadi penyatuan bagi seluruh bangsa. Peredaran Rupiah palsu merupakan salah satu tantangan yang dihadapi Bank Indonesia dalam pelaksanaan kegiatan pengelolaan Rupiah. Uang palsu merupakan mata uang yang dihasilkan tanpa izin hukum dari negara atau pemerintah, dengan maksud meniru mata uang resmi untuk menipu penerima yang dituju. Kebanyakan masyarakat tidak dapat membedakan uang asli dan uang palsu karena Rupiah TE 2022 memiliki model yang sangat mirip dengan uang palsu (Ajiani *et al.*, 2023).

Uang Rupiah mempunyai beberapa tanda tertentu yang secara khusus dibuat untuk mengamankannya dari tindakan pemalsuan. Seperti yang dikutip dari Bank Indonesia, semakin besar nominal uangnya maka semakin banyak unsur pengaman (security features) yang dimiliki, berikut akan dijelaskan beberapa unsur pengaman tersebut.

2.1.1. Tinta berubah warna (colour shifting ink)

Tinta berubah warna pada Rupiah TE 2022 berupa gambar bunga dengan logo Bank Indonesia yang dicetak mengkilap dan akan berubah-ubah warnanya jika dilihat dari sudut pandang yang berbeda. Pada pecahan Rp50.000 akan berwarna hijau jika dilihat dari depan dan berubah menjadi warna biru jika dilihat dari sudut pandang lain.

Gambar 2.1 Tinta berubah warna Rp50.000 Rupiah TE 2022

2.1.3. Benang Pengaman (safety thread)

Selanjutnya adalah benang pengaman. Benang pengaman ditanam pada tengah kertas dan terlihat seperti dianyam membentuk garis lurus vertical dari atas kebawah. Terdapat benang pengaman dengan warna yang serupa dengan masing-masing pecahan namun dengan tekstur dan tampilan lebih mengkilat dimana Rp100.000 berwarna merah dan Rp50.000 berwarna biru.

Gambar 2.2 Benang Pengaman Rp100.000 Rupiah TE 2022

2.1.4. Cetak Intaglio

Uang Rupiah akan terasa kasar jika diraba pada bagian tertentu misal pada gambar burung garuda dan beberapa bagian lainnya, cetakan ini dinamakan cetak *Intaglio*.

2.1.5. Tanda air (watermark)

Tanda air pada uang kertas berupa gambar pahlawan yang dapat terlihat jika diterawang ke arah cahaya dengan menggunakan sinar *ultraviolet*.

2.1.6. Gambar saling isi (rectoverso)

Merupakan pencetakan suatu gambar pada bagian depan dan belakang yang berada tepat dan saling mengisi dan dapat dilihat dengan utuh apabila diterawang ke cahaya.

2.2. Computer Vision

Computer vision merupakan gabungan konsep, teknik, dan ide dari image processing, pengenalan pola, kecerdasan buatan, dan computer graphics sehingga dapat digunakan untuk memprediksi ataupun mendeteksi perilaku dan karakteristik objek termasuk aktivitas manusia dan peristiwa alam. Tujuan utama dari Computer Vision adalah untuk membuat model, mengekstrak data, serta informasi dari gambar. Output dari proses Computer Vision adalah pemahaman gambar yang didapat dengan mengadaptasi kemampuan penglihatan manusia dalam pengambilan informasi (Wiley & Lucas, 2018).

2.3. Object Detection

Object detection merupakan sebuah teknik dari computer vision yang melibatkan proses pengenalan dan lokalisasi objek tertentu dan berfungsi untuk mendeteksi, menentukan posisi, bentuk, ataupun kelas dari objek yang ada dalam sebuah gambar atau video digital. Real-time object detection berarti proses pendeteksian yang dilakukan secara langsung dimana sistem mampu mendeteksi objek secara live. Salah satu keutamaan dalam deteksi objek secara real-time adalah kecepatan, dimana video dapat menangani lebih dari 24 frame per second (FPS). Jika proses pendeteksian objek terlalu lama, maka akan terjadi delay dan menghasilkan kualitas yang buruk pada setiap frame (Ding et al., 2019).

2.4. Deep Learning

Machine learning digunakan untuk mendeteksi objek dalam bentuk gambar, mentranskrip ucapan menjadi teks, memilih hasil pencarian yang relevan, dan sebagainya. Seiring berjalannya waktu, aplikasi-aplikasi ini dikembangkan menggunakan teknik yang disebut deep learning. Deep learning menggunakan representasi multi-layers yang dipelajari dari data menggunakan prosedur pembelajaran umum dan bukan dirancang oleh manusia. Deep learning bekerja sangat baik dalam menemukan pola data berdimensi tinggi seperti gambar, teks dan yang lainnya (Lecun et al., 2015).

2.5. Convolutional Neural Network (CNN)

Convolutional neural network (CNN) adalah jenis *feedforward neural network* yang mampu mengekstraksi fitur dari data dengan struktur konvolusi. CNN mampu memanfaatkan sejumlah besar data untuk mencapai hasil yang menjanjikan, sehingga dapat digunakan tidak hanya dalam pengolahan gambar 2-D tetapi juga dalam skenario 1-D dan multidimensi. CNN memiliki lapisan masukan (*input*), lapisan keluaran (*output*), dan juga beberapa lapisan tersembunyi (*hidden layers*). *Computer vision* berbasis CNN telah mencapai apa yang sebelumnya dianggap tidak mungkin dalam beberapa abad terakhir, seperti pengenalan wajah, *autonomous vehicles* dimana kendaraan mampu beroperasi sendirinya, dan perawatan medis cerdas (Li *et al.*, 2022).

2.6. Algoritma You Only Look Once (YOLO)

You Only Look Once (YOLO) merupakan sebuah pendekatan baru terhadap deteksi objek yang disajikan sebagai masalah regresi daripada klasifikasi dengan memisahkan bounding box dan class probabilities secara spasial. YOLO dengan cepat mendapatkan popularitas karena kecepatan dan akurasinya yang tinggi. Pertama kali diperkenalkan oleh Redmon et al., (2015), YOLO menggunakan jaringan konvolusi tunggal yang secara bersamaan memprediksi beberapa bounding box dan probabilitas kelas untuk setiap box dari satu gambar dalam satu evaluasi sehingga mencapai kecepatan real-time dua kali lipat Mean Average Precision (mAP) dibandingkan dengan sistem real-time lainnya, selain itu YOLO juga mampu memproses gambar dengan sangat cepat pada 45 frame per second (FPS) yang membuatnya menjadi pilihan yang sangat baik untuk pemrosesan real-time (Keita, 2022).

Gambar 2.3 Model Deteksi YOLO (Redmon *et al.*, 2015)

YOLO dibuat oleh beberapa *developer* pada perkembangan setiap versinya, perbedaan yang terdapat pada beberapa versi algoritma YOLO biasanya terdapat pada kecepatan, akurasi, dan juga memori yang dari model yang dihasilkan, penjelasan beberapa versi tersebut dijelaskan oleh (Terven & Esparza, 2023) dan (Alif & Hussain, 2024), penulis membuat perbandingan secara singkat yang dapat dilihat pada Tabel 2.1.

Tabel 2.1 Perbandingan versi YOLO

YOLO Version	Developer	Average Precision (AP)	Limitation	Improvement
YOLOv1	Joseph	63.4% at	Kesalahan	Arsitektur yang
	Redmon	45 FPS	lokalisasi lebih	sederhana juga
		(PASCAL	tinggi daripada	dengan regresi one-
		VOC2007	metode deteksi	shot gambar penuh
		dataset)	objek lainnya	yang inovatif
			seperti Fast R-	membuatnya jauh
			CNN.	lebih cepat
				dibandingkan
				dengan metode
				yang sudah ada.
YOLOv2	Joseph	78.6%	Kesulitan dengan	Mempertahankan
	Redmon, Ali	(PASCAL	objek kecil, gagal	kecepatan yang
	Farhadi	VOC2007	mendeteksi bentuk	sama dan juga lebih
		dataset)	yang aneh, akurasi	kuat dalam
			lebih rendah	mendeteksi 9000
			dibandingk	kategori.
			detektor dua tahap,	
			dan kesulitan dalam	
			mendeteksi objek	
			yang tumpang	
			tindih.	

Tabel 2.2 Perbandingan versi YOLO

YOLO Version	Developer	Average Precision (AP)	Limitation	Improvement
YOLOv3	Joseph	36.2% at	Performa lebih	Kecepatan dan
	Redmon	20 FPS	rendah pada objek	efisiensi tinggi,
		(MS	kecil, class	peningkatan
		COCO	imbalance, dan	akurasi, prediksi
		dataset)	kompleksitas dalam	class yang
			training.	serbaguna.
YOLOv4	Alexey	43.5% at	Arsitektur yang	Kecepatan dan
	Bochkovskiy,	50 FPS	kompleks, potensi	akurasi yang
	Chien-Yao	(MS	overfitting,	optimal, backbone
	Wang, Hong-	COCO	kebutuhan sumber	improvement,
	Yuan Mark	dataset)	daya yang tinggi,	teknik augmentasi
	Liao		sangat bergantung	data yang canggih,
			pada	serta peningkatan
			hyperparameter	deteksi objek kecil.
			tuning.	
YOLOv5	Ultralytics,	50.7% at	Class imbalance,	Kinerja tinggi di
	Glenn Jocher	200 FPS	kebutuhan sumber	berbagai varian,
		(MS	daya untuk model	arsitektur yang
		COCO	lebih besar, fitur	efisien,
		dataset)	canggih yang	peningkatan
			terbatas	deteksi objek kecil,
			dibandingkan	implementasi yang
			dengan model-	ramah pengguna,
			model yang lain.	dukungan
				komunitas yang
				memadai.

Tabel 2.3 Perbandingan versi YOLO

YOLO Version	Developer	Average Precision (AP)	Limitation	Improvement
YOLOv6	Meituan	52.5% at	Keterbaruan relatif,	Kinerja yang
	Technical	50 FPS	kompleksitas dan	superior, arsitektur
	Team	(MS	memori yang lebih	yang efisien,
		COCO	tinggi, varian model	kecepatan inferensi
		dataset)	yang terbatas.	yang cepat,
				pelatihan tanpa
				anchor, serta
				peningkatan
				pelatihan yang
				kuat.
YOLOv7	Joseph	55.9% at	Kompleksitas	Kecepatan dan
	Redmon, Ali	50 FPS	dalam	efisiensi yang luar
	Farhadi,	(MS	implementasi,	biasa, akurasi
	Santosh	COCO	ketergantungan	tinggi, beban
	Divvala	dataset)	pada data	komputasi yang
			berkualitas tinggi,	berkurang, fitur
			potensi overfitting,	inovatif, serta
			kebutuhan sumber	teknik augmentasi
			daya untuk model	data yang kuat.
			yang lebih besar.	

Tabel 2.4 Perbandingan versi YOLO

YOLO Version	Developer	Average Precision (AP)	Limitation	Improvement
YOLOv8	Ultralytics	53.9% at	Kebutuhan sumber	Akurasi
		280 FPS	daya mutakhir,	meningkat,
		(MS	bergantung pada	dioptimalkan untuk
		COCO	kualitas data, serta	kecepatan 45 FPS
		dataset)	potensi overfitting.	pada ukuran input
				standar, prediksi
				multi-scale,
				dilengkapi dengan
				berbagai integrasi
				untuk labelling,
				training, dan
				deploying.
YOLOv9	Chien-Yao	53.1%	Peningkatan	Varian model yang
	Wang, I-Hau	(MS	kompleksitas,	fleksibel,
	Yeh, Hong-	COCO	kebutuhan	kecepatan tinggi,
	Yuan Mark	dataset)	komputasi lebih	serta peningkatan
	Liao		tinggi, training time	deteksi objek kecil.
			yang lebih lama,	
			resiko overfitting.	
YOLOv10	Tsinghua	53.2%	Kebutuhan sumber	Akurasi mutakhir,
	University	(MS	daya yang lebih	pelatihan tanpa
	Team	COCO	tinggi untuk model	NMS, serta varian
		dataset)	yang lebih besar,	model yang
			bergantung pada	fleksibel.
			data berkualitas,	
			potensi overfitting,	

Berdasarkan tabel perbandingan diatas, penulis memilih YOLOv8 karena memiliki akurasi dan improvement yang lebih baik daripada versi yang lain dimana average precision-nya mencapai 53.9% dan kecepatannya mencapai 280 FPS (frame per second)

2.7. YOLOv8

YOLO versi 8 adalah model *deep learning* canggih terbaru dari model YOLO yang dapat digunakan untuk melakukan deteksi objek, klasifikasi gambar, dan segmentasi secara instan. Pertama kali diperkenalkan dan dikembangkan oleh Glenn Jocher dari Ultralytics yang juga pernah meluncurkan YOLOv5. Model ini menggabungkan berbagai struktur jaringan dan memanfaatkan modul C2F untuk meningkatkan YOLO versi 5 dimana modul CSP secara efektif mengurangi parameter dan FLOPs namun tetap mempertahankan akurasinya (Talib *et al.*, 2024). YOLOv8 dapat dijalankan melalui *command line interface* (CLI) dan juga di-*install* sebagai paket PIP.

Dibandingkan dengan seri utama YOLO yang sebelumnya seperti YOLOv5 dan YOLOv7, YOLOv8 menonjol sebagai model yang lebih canggih dengan tingkat akurasi dan kecepatan deteksi yang lebih tinggi. Dengan mengembangkan kemajuan dari beberapa YOLO versi sebelumnya, YOLOv8 memperkenalkan fitur-fitur baru dan optimisasi yang membuatnya menjadi pilihan ideal untuk berbagai tugas deteksi objek dalam berbagai aplikasi. Beberapa Parameter yang memiliki pengaruh penting pada YOLOv8 berupa *epoch*, arsitektur model, dan juga dataset. Jumlah *epoch* sangat mempengaruhi akurasi model dimana performa terbaik akan ditemukan pada jumlah *epoch* tertentu berdasarkan percobaan yang dilakukan, arsitektur model meliputi *backbone, neck*, dan *head* yang akan melakukan proses pelatihan, selanjutnya kualitas dari dataset juga sangat mempengaruhi model yang dihasilkan (Jonathan *et al.*, 2024).

Gambar 2.4 Arsitektur YOLOv8 (Sumber: roboflow.com)

Common Objects in Context (COCO) merupakan standar industri dalam menguji model deteksi objek. COCO memperhatikan nilai mean Average Precision (mAP) dan juga mengukur frame per detik (FPS) dalam membandingkan berbagai model untuk mengukur kecepatan inferensinya. YOLOv8 mendapatkan akurasi yang sangat tinggi berdasarkan pengukuran dari Microsoft COCO dan Roboflow 100 dengan menggunakan 100 sampel dari berbagai dataset yang tersedia di Roboflow Universe dimana YOLOv8 dievaluasi bersamaan dengan YOLOv5 dan YOLOv7 pada benchmark RF100 (Jacob Solawetz, 2023).

Grafik berikut menunjukkan bahwa YOLOv8 memiliki lebih sedikit *outlier* dan mAP yang lebih baik saat diukur terhadap *benchmark* Roboflow 100 juga melebihi performa beberapa model yang sebelumnya.

Gambar 2. 5 Perbandingan Algoritma YOLO (Sumber: roboflow.com)

2.8. Metrik Evaluasi

Metrik merupakan ukuran atau standar yang digunakan untuk mengevaluasi kinerja dan juga akurasi dari model yang telah dibuat. Metrik-metrik ini membantu kita dalam memahami seberapa baik model dapat memprediksi ataupun mengklasifikasikan data yang diberikan. Beberapa Metrik yang umum digunakan antara lain *Accuracy*, *Precision*, *Recall*, *F1-Score*, *dan Mean Average Precision*(*mAp*).

2.8.1. *Accuracy*

Akurasi adalah metrik yang paling mudah dipahami, yaitu mengukur sebaik apa model melakukan prediksi yang benar dari total prediksi, dilakukan dengan membagi jumlah prediksi yang benar dengan total jumlah prediksi. Akurasi menunjukkan seberapa sering suatu model memprediksi kelas yang benar (positif dan negatif) (Evidently, 2024).

$$Accuracy = \frac{\textit{Jumlah prediksi yang benar}}{\textit{Jumlah keseluruhan data}} \times 100\%$$
 (2.1)

2.8.2. Precision

Presisi adalah kemampuan model dalam mengenali objek yang relevan. Presisi mengukur true positive di antara seluruh prediksi positif yang dibuat oleh model (Labelf, 2022).

$$Precision = \frac{TP}{TP + FP} \tag{2.2}$$

2.8.3. Recall

Recall adalah kemampuan model dalam mengidentifikasi seluruh kasus yang berkaitan, atau seluruh *bounding box ground truth. Recall* mengukur presentase prediksi positif benar diantara semua *ground truth* yang ada (Evidently, 2024).

$$Recall = \frac{TP}{TP + FN} \tag{2.3}$$

2.8.4. F1-Score

F1-Score adalah metrik yang menunjukkan keseimbangan antara precision dan recall. F1-Score menggabungkan kemampuan precision dan recall untuk memahami seberapa efektif model dalam melakukan prediksi yang akurat (Shung, 2018).

$$F1-Score = 2 \times \frac{Recall \times Precision}{Recall+Precision}$$
 (2.4)

2.8.5. Mean Average Precision(mAp)

Mean Average Precision (mAP) adalah metrik yang biasanya digunakan untuk mengevaluasi performa model saat melakukan deteksi objek (Redmon et al., 2015). Pada deteksi objek, setiap gambar dapat mengandung objek dari beberapa kelas yang berbeda. Nilai mAP dihitung dengan mengambil nilai rata-rata AP, atau ketepatan rata-rata dari setiap kelas. Nilai mAP berkisar diantara 0 dan 1, dianggap positif benar jika berkisar diatas 0,5. Semakin tinggi nilai mAP maka performa model semakin baik.

2.9. Penelitian Terdahulu

Penelitian mengenai deteksi uang palsu menggunakan machine learning pernah dilakukan oleh Rahmad *et al.* (2021) melakukan penelitian menggunakan metode KNN K-Nearest Neighbor) dan CNN (Convolutional Neural Network). Dilakukan pada mata uang Rupiah emisi 2016 dan mendapat akurasi 96,67%. Namun ketika menggunakan

foto yang tidak di *crop*, akurasi yang didapatkan hanyalah 25%. Model ini dapat dikatakan kurang optimal karena kurangnya fleksibilitas dalam mengidentifikasi data.

Selain itu penelitian mengenai deteksi uang palsu juga dapat dilakukan dengan beberapa metode secara bersamaan, seperti yang dilakukan oleh Rani *et al.* (2022), penelitian ini menggunakan 2 metode yaitu Random Forest dan You Only Look Once, penggunaan kedua metode ini juga cukup baik dengan akurasi sebesar 90%, namun kurang efektif karena penelitian lain yang hanya menggunakan metode YOLOv3 berhasil mendapatkan akurasi lebih tinggi.

Pada tahun 2020, Rilo Pambudi *et al.* melakukan penelitian pada mata uang Rupiah dan mendapatkan akurasi 86,7%, metode yang digunakan pada penelitian ini adalah *canny edge detection* dan diteliti berdasarkan *watermark*, adapun penyebab kurangnya akurasi dari penelitian ini karena penempatan *watermark* yang bersilangan dengan tanda tangan dan gambar lainnya, pencahayaan yang berlebihan, serta variasi tekstur yang berbeda antara setiap nilai uang kertas yang diteliti.

Sementara dengan metode yang berbeda, (Ratnadewi *et al.*, 2022). Menggunakan beberapa metode secara bersamaan yaitu *feature extraction* menggunakan Gray Level Co-Occurrence Matrix dan Naive Bayes untuk klasifikasinya. Penelitian ini mendapatkan akurasi sebesar 88% dimana penelitiannya dilakukan menggunakan 2 jenis pencahayaan yaitu lampu biasa dan juga sinar UV dan mendapatkan hasil yang sangat baik dalam pendeteksi nominalnya.

Dengan menggabungkan metode Local Binary Pattern dalam melakukan ekstraksi fitur dan juga menggunakan metode K-Means Clustering dalam pengklasifikasiannya. Prakassiwa *et al.* (2022) mendapatkan akurasi tertinggi sebesar 96,67 % pada penelitiannya. Penelitian ini dilakukan pada 2 pecahan tertinggi Rupiah emisi 2016. Proses *cropping* dan *resize* memiliki pengaruh yang besar pada akurasi. Semakin besar ukuran *pixel* gambar maka akurasi yang didapat akan semakin tinggi.

Penelitian lain juga dilakukan pada mata uang rupiah Tahun Emisi 2016 oleh (Tamara *et al.*, 2022) dengan menggunakan metode Gray Level Co-Occurrence Matrix (GLCM) dan k-Nearest Neighbor yang mendapatkan akurasi sebesar 88% dikarenakan adanya kesalahan klasifikasi karena data training kurang bervariasi dan hasil ekstraksi fitur memiliki kemiripan nilai pada tiap kelas sehingga dibutuhkan penambahan data training yang variatif juga perbaikan fitur agar pengindentifikasian uang kertas menjadi lebih tepat.

Tabel 2.5 Penelitian Terdahulu

No.	Penulis	Judul	Tahun	Keterangan
1.	Rahmad	Authenticity of money	2021	Penelitian ini menggunakan
	et al.	using the method		metode KNN dan CNN pada
		KNN (K-Nearest		mata uang Rupiah emisi 2016
		Neighbor) and CNN		dan mendapatkan akurasi 96%.
		(Convolutional		Namun ketika menggunakan
		Neural Network)		foto yang tidak di crop, akurasi
				yang didapatkan hanyalah 25%.
				Model tersebut kurang optimal
				karena kurangnya fleksibilitas
				dalam identifikasi jenis data dan
				waktu yang dibutuhkan juga
				cukup lama bergantung pada
				jumlah data.
2.	Rani et	Detecting Counterfeit	2022	Dengan menggunakan beberapa
	al.	Banknotes With		metode secara bersamaan yaitu
		Machine Learning		Random Forest dan You Only
		(YOLOv3)		Look Once versi 3, penelitian ini
				dilakukan pada mata uang India
				yaitu Rupee dan mendapatkan
				akurasi sebesar 90%, akurasi
				yang didapat ini masih kurang
				efektif karena lebih rendah
				daripada penelitian lain yang
				hanya menggunakan satu
				metode saja.

Tabel 2.2 Penelitian Terdahulu

No.	Penulis	Judul	Tahun	Keterangan
3.	Pambudi	Deteksi Keaslian	2020	Penelitian pada mata uang
	et al.	Uang Kertas		Rupiah ini mendapatkan akurasi
		Berdasarkan		86,7%, metode yang digunakan
		Watermark Dengan		adalah Canny Edge Detection
		Pengolahan Citra		dan diteliti berdasarkan
		Digital		watermark, adapun penyebab
				kurangnya akurasi dari
				penelitian ini karena
				penempatan watermark yang
				bersilangan dengan tanda tangan
				dan beberapa gambar lainnya,
				pencahayaan yang berlebihan,
				serta variasi tekstur yang
				berbeda antara setiap nilai uang
				kertas yang diteliti.
4.	Ratnade	Exploration of an	2021	Penelitian ini dilakukan pada
	wi et al.	Indonesian Currency		mata uang Indonesia emisi
		Legality Detection		2016, metode yang digunakan
		System by Utilizing		untuk feature extraction adalah
		Image Intensity of		Gray Level Co-Occurrence
		RGB Mean Values		Matrix dan Naive Bayes untuk
				klasifikasinya. Penelitian ini
				mendapatkan akurasi sebesar
				88% dimana penelitiannya
				dilakukan menggunakan 2 jenis
				pencahayaan yaitu lampu biasa
				dan juga sinar UV dan
				mendapatkan hasil yang baik
				dalam pendeteksi nominalnya.

Tabel 2.2 Penelitian Terdahulu

No.	Penulis	Judul	Tahun	Keterangan
5.	Prakassi	Identifikasi Keaslian	2022	Penelitian ini menggabungkan
	wa et al.	Uang Kertas Rupiah		metode Local Binary Pattern
		Menggunakan		dalam melakukan ekstraksi fitur
		Metode K-Means		dan diklasifikasikan dengan
		Clustering		metode K-Means Clustering.
				Penelitian dilakukan pada 2
				pecahan tertinggi Rupiah emisi
				2016 dengan jumlah data yang
				terbatas. Akurasi tertinggi yang
				didapatkan adalah 96 %. Proses
				cropping dan resize
				mempengaruhi tingkat akurasi
				yang dihasilkan.
6.	Tamara	Deteksi Keaslian	2023	Dilakukan pada mata uang
	et al.	Uang Kertas		rupiah TE 2016 menggunakan
		Berdasarkan Fitur		Gray Level Co-Occurrence
		Gray Level Co		Matrix (GLCM) dan k-Nearest
		Occurrence Matrix		Neighbor dan mendapatkan
		(GLCM)		akurasi sebesar 88%, kurangnya
		Menggunakan k-		akurasi dikarenakan data
		Nearest Neighbor		training kurang bervariasi dan
				hasil ekstraksi fitur memiliki
				kemiripan nilai pada tiap kelas.

2.10. Perbedaan Penelitian

Penelitian ini memiliki beberapa perbedaan dengan penelitian yang telah dilakukan sebelumnya. Penelitian oleh Pambudi *et al.* (2020) dilakukan dengan menggunakan metode Canny Edge Detection, selain itu Rahmad *et al.* (2021) menggunakan metode KNN dan CNN untuk mendeteksi uang palsu. Sedangkan penelitian ini akan menggunakan YOLO versi 8 yang akan secara *real-time* melakukan deteksi Rupiah palsu.

Perbedaan juga terdapat pada jenis uang yang di deteksi, dimana pada penelitian yang dilakukan oleh Prakassiwa *et al.* (2022) menggunakan Rupiah keluaran tahun 2016 sebagai objek dari penelitiannya. Sedangkan pada penelitian ini, uang yang akan dideteksi merupakan Rupiah emisi terbaru yaitu tahun keluaran 2022.

Perbedaan selanjutnya adalah Ratnadewi *et al.* (2022) menggunakan Gray Level Co-Occurrence Matrix dalam melakukan ekstraksi fitur (*feature extraction*), sedangkan penelitian ini akan menggunakan jaringan *backbone* bawaan dari YOLO untuk melakukan ekstraksi fiturnya.

BAB 3

ANALISIS DAN PERANCANGAN SISTEM

Bab ini akan memberikan penjelasan tentang analisis dan perancangan sistem untuk melakukan deteksi uang palsu Rupiah tahun emisi 2022. Pada bab ini akan dijelaskan sumber data yang digunakan, proses *input*, pra-pemrosesan data, pelatihan dan pengujian, serta *output* yang didapat.

3.1 Data Yang Digunakan

Data pada penelitian ini diambil melalui pengumpulan yang dilakukan secara manual baik untuk uang palsu maupun uang asli, uang palsu diambil di Bank dengan izin dan pengawasan dari pegawai yang berwenang.

Tabel 3.1 Data Yang Digunakan

No Gambar Jenis Uang 1. Asli 50.000 2. Palsu 50.000

 No
 Gambar
 Jenis Uang

 3.
 Asli 100.000

 4.
 Palsu 100.000

Tabel 3.1 Data yang Digunakan

3.2 Analisis Sistem

Beberapa tahapan yang dilakukan pada penelitian ini dapat dilihat pada gambar 3. dimana data uang yang diambil akan dikumpul dalam bentuk gambar dengan format jpg.

Gambar 3.1 Arsitektur Umum

Gambar yang telah dikumpulkan akan melalui pra-proses seperti melakukan pelabelan data agar citra mudah dikenali. Selanjutnya proses *resizing* untuk mengubah ukuran citra agar sesuai dengan kebutuhan. Tahap akhir dari pra-proses adalah melakukan augmentasi untuk memperbanyak jumlah data agar seimbang pada setiap *class*. Selanjutnya merupakan tahap membangun dan melatih arsitektur model menggunakan YOLO versi 8. Arsitektur YOLOv8 terdiri dari *backbone*, *neck*, *dan head*. Model dan aplikasi yang telah dibuat akan dievaluasi menggunakan data test. Hasil akhir dari seluruh proses ini adalah Deteksi uang palsu dan uang asli nominal 50.000 dan 100.000 terutama pada bagian tinta berubah warna (*colour shifting ink*).

3.3 Akuisisi Data

Tahap awal yang dilakukan adalah mengumpulkan data yang akan digunakan berupa citra uang asli dan uang palsu Rupiah emisi terbaru yaitu 2022, nominal yang akan diteliti pada penelitian ini adalah pecahan 50.000 dan 100.000. Data diambil dari Bank Mandiri Medan. Data yang telah dikumpulkan akan dibagi menjadi tiga yaitu *data training*, *data validation*, dan *data testing*

3.4 Image Pre-Processing

Pada tahap ini, data gambar uang yang tadi telah di split akan diproses dengan melakukan *data labelling, resizing* dan juga *data augmentation* untuk mendapatkan kualitas citra uang yang terbaik.

3.4.1. Labelling

Pelabelan data merupakan tahap di mana data mentah diidentifikasi dan diberi satu atau lebih label untuk membedakan jenis dari masing-masing citra agar model *machine learning* dapat mempelajari data tersebut. Pelabelan data nantinya akan divalidasi oleh pegawai ditempat pengambilan data dilakukan yaitu Bank Mandiri. Data uang yang ada diberi *bounding box* menggunakan *tools* Roboflow sesuai dengan *class*nya.

Gambar 3.2 Pembuatan Bounding Box

Gambar 3.3 Pemilihan Class

3.4.2. Resize

Resizing merupakan proses untuk mengubah ukuran citra agar seluruh citra memiliki ukuran yang sama sesuai kebutuhan penelitian. Semakin banyak jumlah *pixel* yang ada maka akan semakin lama pemrosesan sistemnya. Tujuan dilakukan *resizing* adalah untuk mempersingkat pemrosesan sistem dan mendapatkkan ukuran pixel yang lebih sedikit dan juga ukuran *pixel* yang sama pada setiap gambarnya. Pada data ini citra diubah menjadi 640x640 *pixel*.

INPUT image \(\text{i}\), original_width \(\dot{o}\), original_height \(\text{H}\)

DEFINE target_width \(\walpha\), target_height \(\text{h}\)

SET Scale WHERE

\(x_\text{scale} = \walpha/\dot{o}\)

\(y_\text{scale} = \text{h}/\text{H}\)

SET new_size WHERE

\(new_\text{width} = \dot{o} \times x_\text{scale}\)

\(new_\text{height} = \text{H} \times y_\text{scale}\)

OUTPUT \(\text{l} = \text{new_width} \times \text{new_height}\)

Gambar 3.4 Proses Resize gambar

3.4.3. Augmentation

Pada tahap ini data yang telah melewati tahap *preprocessing* akan diperbanyak sehingga *dataset* akan menjadi lebih beragam dan lebih banyak sehingga model dapat mempelajari data yang lebih variatif. Beberapa proses augmentasi gambar yang dilakukan pada penelitian ini antara lain *rotate* dan *blur*. Adapun alasan mengapa hanya 2 augmentasi diatas dilakukan adalah karena jika ditambahkan augmentasi lain seperti *color enhancement* dan *saturation* akan merubah ciri asli dari data yang dipakai.

Gambar 3.5 Proses Augmentasi 90° Rotate

Gambar 3.6 Proses Augmentasi 15° Rotates

Gambar 3.7 Proses Augmentasi Blur

3.4.4. Image Classification

Pada tahap ini akan dijelaskan tahap pembelajaran model agar dapat mengenali uang palsu dan uang asli Rupiah TE 2022. Penelitian ini menggunakan algoritma YOLO versi 8 dalam mendeteksi uang palsu.

3.4.5.Install package

Package YOLO versi 8 dapat di-*install* dengan dua cara, yaitu melalui sumber repositori git ultralytics ataupun menggunakan pip sesuai rekomendasi dari ultralytics (Jacob Solawetz, 2023). Pada proses ini akan menginstall seluruh *requirement* yang diperlukan untuk pelatihan menggunakan YOLOv8.

3.4.6. Konfigurasi data

Dataset yang telah melalui tahap preprocessing akan di import menggunakan API Roboflow. Folder datasets berisi data citra untuk training, validasi, dan testing beserta labelnya, selain itu juga terdapat file data.yaml yang merupakan hasil dari konfigurasi dataset.

Selanjutnya, konfigurasi data pada *file* data.yaml. train, val, dan test menunjukkan *path* dari data *image*, nc menunjukkan jumlah *class*, dan *names* adalah nama *class* yang digunakan.

```
train: ../train/images
val: ../valid/images
test: ../test/images
nc: 4
names: ['Tinta-Asli-100k', 'Tinta-Asli-50k', 'Tinta-Palsu-100k', 'Tinta-Palsu-50k']
```

3.4.7. Pelatihan model

Pada tahap ini dilakukan pembelajaran model agar mendeteksi jenis uang palsu ataupun asli. *Data training* akan dilatih menggunakan arsitektur model yang dibangun dengan YOLOv8, dimana arsitekturnya terdiri atas *Backbone*, *Neck*, *dan Head*.

Proses pelatihan menggunakan model pretrained yolov8-nano yang merupakan model dengan weight berukuran kecil sehingga lebih *compatible* dengan perangkat *mobile*. Data yang digunakan berupa gambar uang yang telah melewati tahap *pre-processing*, selain itu ukuran input citra yang diterima adalah 640×640 pixel.

3.4.8. Backbone

Backbone network utama dari YOLOv8 adalah modul C2f yang terinspirasi dari modul Efficient Layer Aggregation Network (ELAN). Jaringan ini nantinya akan melakukan feature extraction pada data yang digunakan. Arsitektur modul C2f menggabungkan fitur-fitur tingkat tinggi dengan contextual information untuk meningkatkan akurasi dalam mendeteksi objek (Bai et al., 2023).

3.4.9. Neck

Neck memiliki pengaruh besar pada kemampuan model saat mengekstrak dan menggabungkan informasi fitur dari backbone network dan persiapan sebelum diproses ke head. Bagian neck dari YOLOv8 dirancang dengan menggunakan struktur PAN-FPN (Path Aggregation Network with Feature Pyramid Network) yang merupakan modifikasi dari neck versi sebelumnya yaitu PANet (Path Aggregation Network) yang ditambahkan kedalam FPN untuk mendapatkan akurasi yang lebih baik. YOLOv8 menghapus operasi konvolusi setelah pengambilan sampel di struktur PAN, dengan tetap mempertahankan performa aslinya sekaligus mencapai model yang ringan (Wang et al., 2023).

3.4.10. Head

Pada tahap ini, kotak deteksi dibentuk untuk mengambil koordinat atau bagian dari bounding box objek dan menentukan confidence score pada suatu kelas. Head pada YOLOv8 mengimplementasikan fungsi IOU (Intersection Over Union) dan non max suppression untuk menghindari hasil deteksi yang tumpang tindih dan hanya mempertimbangkan nilai confident tertinggi.

3.5 Learned Model

Learned model merupakan data hasil dari proses pelatihan yang telah dilakukan. Model ini yang nantinya akan digunakan untuk mendeteksi uang palsu ataupun asli berdasarkan tinta berubah warna (colour shifting ink).

3.6 Deployment

Hasil dari model yang telah dilatih dan disimpan selanjutnya akan dikonversi menjadi TensorFlow Lite dan akan menghasilkan file dengan ekstensi tflite sehingga dapat diimplementasikan ke aplikasi *mobile*.

3.7 Output

Tahap akhir dari seluruh proses diatas akan menghasilkan keluaran berupa deteksi uang asli 50.000 atau palsu 50.000 dan asli 100.000 atau palsu 100.000.

3.8 Perancangan Interface

Pada tahap ini dijelaskan mengenai pernagkaian antarmuka aplikasi untuk memperlihatkan dan menjelaskan ilustrasi dari sistem yang dibuat. Halaman-halaman yang dirancang anatara lain halaman *home*, halaman deteksi, dan juga halaman panduan.

3.8.1. Activity Diagram

Activity diagram dapat mensimulasikan proses yang terjadi dalam sistem untuk menjelaskan urutan aktivitas yang terlibat pada suatu proses sehingga pengguna dapat lebih mudah memahami aplikasi secara keseluruhan.

Gambar 3.8 Activity Diagram

3.8.2. Halaman Home

Halaman *home* adalah halaman yang akan tampil pertama kali pada saat aplikasi dibuka. Pada halaman *home* terdapat logo aplikasi dan juga dua tombol menu yang akan mengarahkan pengguna ke halaman yang nantinya dipilih. Rancangan halaman *home* dapat dilihat pada Gambar 3.9.

Gambar 3.9 Rancangan Halaman Home

3.8.3. Halaman Deteksi

Halaman deteksi merupakan fitur utama dari aplikasi ini, halaman ini digunakan untuk mendeteksi Rupiah palsu maupun Rupiah asli. Aplikasi nantinya akan membuka kamera *handphone* dan mulai mendeteksi. Rancangan halaman deteksi dapat dilihat pada Gambar 3.10.

Gambar 3.10 Rancangan Halaman Deteksi

3.8.4. Halaman Panduan

Halaman panduan merupakan fitur tambahan yang berisi informasi mengenai cara penggunaan aplikasi dengan benar, selain itu terdapat informasi tambahan mengenai Rupiah. Rancangan halaman panduan dapat dilihat pada Gambar 3.11.

Gambar 3.11 Rancangan Halaman Panduan

BAB 4

IMPLEMENTASI DAN PENGUJIAN SISTEM

Pada bab ini akan diberikan penjelasan mengenai proses penerapan dan hasil uji coba algoritma YOLOv8 dalam mendeteksi uang palsu Rupiah keluaran terbaru Tahun Emisi 2022 melalui citra uang sesuai rancangan sistem yang terdapat pada Bab 3.

4.1 Implementasi Sistem

Implementasi algoritma You Only Look Once versi 8 akan dilakukan pada tahap ini untuk deteksi rupiah palsu melalui citra uang.

4.1.1. Perangkat Lunak dan Perangkat Keras

Perangkat keras yang digunakan oleh penulis dalam merancang model pendeteksi uang palsu Rupiah TE 2022 adalah Laptop Lenovo Ideapad 3 Slim 3 dengan spesifikasi:

1) Processor: Intel Core i7-1165G7

2) RAM: 8 GB

3) Storage: 128 MB

4) GPU: Nvidia GeForce MX450

5) OS: Windows 11 Home Single Language 64-bit

Perangkat lunak dan *library* yang digunakan untuk membangun model dan sistem pendeteksi uang palsu Rupiah TE 2022 yaitu sebagai berikut:

1) Google Colab Pro

2) Python 3 Google Compute Engine backend (GPU)

3) Ultralytics 8.0.196

4) Bahasa pemrograman Python 3.11.7

5) PyTorch 2.3.0

6) TensorFlow Lite

7) Android Studio Koala 2024.1.1

Spesifikasi perangkat *mobile* yang digunakan untuk menguji aplikasi secara *real-time* yaitu sebagai berikut:

1) OS: Android 14 Upside-down Cake

2) CPU: MediaTek3) Storage: 128 GB

4) RAM: 8 GB

5) Kamera belakang: 50 MP

4.2 Deskripsi Data

Data yang digunakan pada penelitian ini adalah citra uang Rupiah emisi terbaru tahun 2022 pecahan 50.000 dan 100.000 yang terdiri dari 4 jenis, yaitu 50.000 asli, 50.000 palsu, 100.000 asli, dan 100.000 palsu. Data yang digunakan dikumpulkan secara mandiri dengan beberapa variasi menggunakan kamera *smartphone*. Detail dari pembagian data yang digunakan dalam penelitian ini dapat dilihat pada Tabel 4.1.

Tabel 4.1 Detail Pembagian Data

	Sebelum Augmentasi		Setelah Augmentasi			
	Train	Valid	Test	Train	Valid	Test
Asli 50.000	100	15	10	300	15	10
Asli 100.000	105	18	10	300	18	10
Palsu 50.000	95	12	10	299	12	10
Palsu 100.000	100	13	10	299	13	10
Total	400	58	40	1198	58	40
Grand Total		498			1296	

Beberapa contoh data dari setiap jenisnya dapat dilihat pada Gambar 4.1, Gambar 4.2, Gambar 4.3, dan Gambar 4.4.

Gambar 4.1 Data Rupiah Asli 50K

Gambar 4.2 Data Rupiah Palsu 50K

Gambar 4.3 Data Rupiah Asli 100K

Gambar 4.4 Data Rupiah Palsu 100K

4.3. Implementasi Model

Implementasi model dilakukan dengan menggunakan *software* Google Colab sebagai *tools* untuk menjalankan file notebook, penulis menggunakan Google Colab Pro dalam melakukan *training* maupun *testing* data agar mendapat akses yang lebih banyak dan lebih cepat, selain itu data yang dibutuhkan dapat langsung diambil dan disimpan kembali ke Google Drive.

4.3.1. Skenario 1

Model melakukan pelatihan dengan menggunakan 800 uang dengan kondisi yang masih baru, selain itu latar dan posisi yang digunakan pada saat pengambilan data juga sama pada seluruh uang, namun karena terlalu banyak data yang mirip dan kurang bervariasi terjadi *overfitting* dan menghasilkan model yang buruk dan tidak akurat dimana ketika mendeteksi uang asli, uang yang di *scan* akan terdeteksi sebagai uang palsu. Oleh karena itu, dilakukan pengambilan data ulang yang lebih beragam dengan augmentasi yang berbeda juga, maka dilakukan skenario selanjutnya.

4.3.2. Skenario 2

Model melakukan pelatihan dengan menggunakan 1198 data yang lebih variatif dalam berbagai aspek seperti uang dengan beberapa kondisi dari yang baru hingga lecek ataupun robek, juga latar dan posisi yang berbeda-beda. Dilakukan dengan menggunakan algoritma YOLO versi 8. Model dilatih sebanyak 100 *epoch* dengan beberapa jumlah *batch size*. Jumlah *batch size* akan menentukan jumlah sampel data yang diproses pada satu waktu. Hasil percobaan dari beberapa *batch size* tersebut dapat dilihat pada tabel dibawah.

Tabel 4.2 Tabel Perbandingan Hasil Percobaan 100 *epoch*

Batch size	box_loss	cls_loss	dfl_loss	mAP
8	0.50908	0.22071	0.86279	0.995
16	0.51734	0.23348	0.86151	0.995
32	0.50848	0.22224	0.86364	0.995
64	0.50448	0.22511	0.85764	0.995

Seperti yang dapat dilihat pada tabel diatas, hasil terbaik diperoleh pada *batch size* 32 dengan nilai *box_loss* 0.50848, *cls_loss* 0.22224, *dfl_loss* 0.86364 dan mAP 0,995 dan waktu *training* total selama 0,302 jam atau setara dengan 18,12 menit.

Pengaturan pada *hyperparameter* memiliki pengaruh besar dalam menemukan model yang terbaik, percobaan dilakukan pada beberapa *epoch* dimana hasil yang terbaik diperoleh pada *epoch* 100, jika dilakukan terlalu banyak iterasi maka model akan mengalami *overfitting*, namun jika iterasi yang dilakukan terlalu sedikit, model juga dapat mengalami *underfitting* (Jonathan *et al.*, 2024). Selanjutnya pengaturan *batch size* juga berpengaruh pada lama waktu pelatihan model dan juga akurasi model (Zakaria *et al.*, 2024), seperti yang terlihat pada Tabel 4.2, hasil terbaik diperoleh pada *batch size* 32, *optimizer* yang digunakan pada pelatihan adalah Adam yang merupakan *optimizer default* dan terbukti memberikan hasil yang terbaik dalam beberapa penelitian (Ariansyah, 2024), *learning rate* yang terlalu tinggi dapat menyebabkan model melewati nilai optimal, namun jika terlalu rendah juga dapat memperlambat proses (Zakaria *et al.*, 2024), adapun nilai *learning rate* yang digunakan pada penelitian ini sebesar 0,01.

Box loss berfungsi untuk mengukur akurasi model dalam memprediksi lokasi bounding box pada objek dan menghitung perbedaan koordinat bounding box prediksi dengan aktual. Semakin kecil box loss maka model akan semakin akurat dalam memprediksi lokasi bounding box.

Cls loss atau classification loss berfungsi untuk mengukur seberapa baik model memprediksi class, maka semakin kecil cls loss menunjukkan semakin akurat model dalam mengenali class untuk setiap objek yang dideteksi. Classification loss menghitung perbedaan antara kemungkinan class yang diprediksi dengan class yang sebenarnya.

Dfl loss atau distribution focal loss berperan dalam memperbaiki prediksi bounding box, semakin kecil nilai dfl loss maka akan semakin baik juga model untuk mendeteksi objek yang relevan, maka dari itu Dfl loss berfokus pada objek yang serupa ataupun yang sulit dibedakan. Grafik hasil percobaan 100 epoch pada batch size 32 dapat dilihat lebih jelas pada gambar dibawah.

Gambar 4.5 Grafik Hasil Batch Size 32

Berdasarkan Gambar 4.5 dapat dilihat bahwa grafik menurun secara konsisten dari awal hingga *epoch* ke 100 sehingga dapat disimpulkan bahwa model telah belajar dengan baik. Selanjutnya untuk melihat apakah model yang digunakan sudah bagus dan tidak terjadi *overfitting* maka dapat dilakukan dengan membandingkan hasil terbaik dari *train* dan *validation*.

Tabel 4.3 Tabel Perbandingan Training dan Validation

Validation

Training			Validation		
box_loss	cls_loss	dfl_loss	box_loss	cls_loss	dfl_loss
0.44842	0.2437	0.86205	0.50567	0.22404	0.86095
0.44618	0.23725	0.85783	0.51039	0.22447	0.86552
0.43522	0.23298	0.84781	0.50848	0.22224	0.86364

4.4. Implementasi Perancangan Interface

Perancangan *interface* yang telah dibuat kemudian diimplementasikan kedalam bentuk aplikasi *mobile* dengan menggunakan Android Studio.

4.4.1. Tampilan Halaman Home

Halaman *home* merupakan halaman awal yang akan muncul saat aplikasi pertama kali dibuka. Halaman ini berisi logo dari aplikasi 'Moneycheck', selain itu juga terdapat dua tombol yang akan mengarahkan pengguna ke halaman yang dipilih. Tombol *scan* akan mengarahkan pengguna ke halaman deteksi untuk melakukan deteksi uang, sedangkan tombol panduan akan mengarahkan pengguna ke halaman panduan untuk melihat cara penggunaan aplikasi. Tampilan halaman *home* dapat dilihat pada dibawah.

Gambar 4.6 Interface Halaman Home

4.4.2. Tampilan Halaman Deteksi

Halaman deteksi merupakan fitur utama dari aplikasi ini dan akan terbuka jika pengguna menekan tombol deteksi, halaman ini digunakan untuk mendeteksi Rupiah palsu maupun Rupiah asli. Aplikasi nantinya akan membuka kamera *handphone* dan mulai mendeteksi. Tampilan halaman deteksi dapat dilihat pada Gambar 4.7.

Gambar 4.7 Interface Halaman Deteksi

4.4.3. Tampilan Halaman Panduan

Halaman panduan merupakan fitur tambahan ataupun halaman pelengkap pada aplikasi, halaman ini berisi informasi mengenai cara penggunaan aplikasi dengan benar dan juga informasi tambahan mengenai Rupiah. Tampilan halaman panduan dapat dilihat pada Gambar 4.8.

Gambar 4.8 Interface Halaman Panduan

4.5. Pengujian Sistem

Pengujian sistem dilakukan pada model hasil dari pelatihan sebelumnya untuk mengetahui kemampuan model dalam mendeteksi Rupiah palsu dan Rupiah asli berdasarkan tinta berubah warna yang terdapat di bagian depan uang kertas. Pengujian dilakukan dengan jumlah 40 data uji dan menggunakan *smartphone* Android.

Tabel 4.4 Hasil Pengujian Sistem *Money Detection*

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
2.	100000 P	Asli 100k	Asli 100k	Benar
3.	50000 Tinta-Aali-SV C III	Asli 50k	Asli 50k	Benar
4.	100000	Asli 100k	Asli 100k	Benar
5.	50000 Finds Ast - 10 0	Asli 50k	Asli 50k	Benar
6.	50000 (Tinty-Ast-50k 0.5)	Asli 50k	Asli 50k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
7.	50000 j	Palsu 50k	Palsu 50k	Benar
8.	SUCCOO Trate-Palau-Jos D 2011	Palsu 50k	Palsu 50k	Benar
9.	Tinta-Polsu-100k 0.82	Palsu 100k	Palsu 100k	Benar
10.	50000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Palsu 50k	Palsu 50k	Benar
11.	Tinte-Poiso-Tock 0.80	Palsu 100k	Palsu 100k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
12.	SOOOD & SOOOD	Palsu 50k	Palsu 50k	Benar
13.	fiale-fram-Dist and	Palsu 100k	Palsu 100k	Benar
14.	1000000 FDU - Anie 1000 0 55 P	Palsu 100k	Asli 100k	Salah
15.	50000	Asli 50k	Asli 50k	Benar
16.	SOOO A SOL COLO	Asli 50k	Asli 50k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
17.	50000 INCHES INC	Palsu 50k	Palsu 50k	Benar
18.	50000 a Tipota market a 18	Palsu 50k	Palsu 50k	Benar
19.	Tinto Parsu - Idok o no	Palsu 100k	Palsu 100k	Benar
20.	100000 1000000 10000000000000000000000	Asli 100k	Asli 100k	Benar

Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
21.	SOOO I	Asli 50k	Asli 50k	Benar
22.	Tinta-Palsu-1001-00	Palsu 100k	Palsu 100k	Benar
23.	10000000000000000000000000000000000000	Asli 100k	Asli 100k	Benar
24.	50000 Tang-Pung-fox 0.83	Palsu 50k	Palsu 50k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
25.	100000 1000000 100000 100000 100000 100000 100000 100000 10000	Asli 100k	Asli 100k	Benar
26.	50000 No. of the last of the l	Asli 50k	Asli 50k	Benar
27.	Tinto-Polsu-Tobic 0.897	Palsu 100k	Palsu 100k	Benar
28.	100000 to all	Palsu 100k	Palsu 100k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
29.	100000	Asli 100k	Asli 100k	Benar
30.	50000 Turn-Ast-50k 000	Asli 50k	Asli 50k	Benar
31.	100000 India Ania 10/8 0.89 Parisi	Asli 100k	Asli 100k	Benar
32.	50000	Palsu 50k	Palsu 50k	Benar

 Tabel 4.3 Hasil Pengujian Sistem Money Detection

No	Citra	Aktual	Prediksi	Keterangan
33.	SOOOO I STATE OF THE STATE OF T	Palsu 50k	Palsu 50k	Benar
34.	100000 L	Asli 100k	Asli 100k	Benar
35.	50000 pourous de la company de	Asli 50k	Asli 50k	Benar
36.	100000 materials and the second secon	Palsu 100k	Palsu 100k	Benar

Tabel 4.3 Hasil Pengujian Sistem *Money Detection*

No	Citra	Aktual	Prediksi	Keterangan
37.	500001 THYO - ARIT - 5 OK 20 04	Asli 50k	Asli 50k	Benar
38.	100000 Incline P15 NA 9 19	Asli 100k	Asli 100k	Benar
39.	Tota-Paru- Bornasi	Palsu 100k	Palsu 100k	Benar
40.	50000 Financial Control of the Contr	Palsu 50k	Palsu 50k	Benar

Berdasarkan hasil pengujian dengan menggunakan 40 data *testing*, ditemukan beberapa kesalahan pada deteksi seperti pada Tabel 4.3 nomor 14 dimana data aktual adalah Palsu 100.000 namun prediksi menunjukkan sebagai Asli 100.000, adapun yang menyebabkan terjadinya kesalahan deteksi adalah pengaruh cahaya yang terlalu terang sehingga ciri asli dari data dan parameter yang digunakan berupa tinta berubah warna berubah, hasil pengujian diatas selanjutnya akan dimasukkan kedalam perhitungan *confusion matrix* yang dapat dilihat pada Tabel 4.4.

Aktual	Asli 50k	Asli 100k	Palsu 50k	Palsu 100k	Total
Prediksi					
Asli 50k	10	0	0	0	10
Asli 100k	0	10	0	1	11
Palsu 50k	0	0	10	0	10
Palsu 100k	0	0	0	9	9
Total	10	10	10	10	40

Tabel 4.5 Confusion Matrix Money Detection

Untuk mempermudah proses perhitungan, maka dibuat sebuah tabel untuk mendata TP (*True Positive*), FP (*False Positive*), dan FN (*False Negative*) dari setiap jenis data.

Tabel 4.6 Data TP, FP, FN

Jenis Data	TP	FP	FN
Asli 50k	10	0	0
Asli 100k	10	0	1
Palsu 50k	10	0	0
Palsu 100k	9	1	0

Selanjutnya dari kedua tabel diatas kita dapat melakukan perhitungan nilai precision, recall, f1-score, dan accuracy:

a.
$$Precision = \frac{TP}{TP+FP}$$

Asli $50k = \frac{10}{10+0} = 1,0$
Asli $100k = \frac{10}{10+0} = 1,0$
Palsu $50k = \frac{10}{10+0} = 1,0$
Palsu $100k = \frac{9}{9+1} = 0,9$

b.
$$Recall = \frac{TP}{TP + FN}$$

Asli 50k
$$=\frac{10}{10+0}=1.0$$

Asli 100k =
$$\frac{10}{10+1}$$
 = 0,9

Palsu 50k =
$$\frac{10}{10+0}$$
 = 1,0

Palsu
$$100k = \frac{9}{9+0} = 1.0$$

c.
$$F1$$
-Score = $2 \times \frac{Recall \times Precision}{Recall + Precision}$

Asli 50k =
$$2 \times \frac{1,0 \times 1,0}{1,0+1,0} = 1,0$$

Asli 100k =
$$2 \times \frac{0.9 \times 1.0}{0.9 + 1.0} = 0.9$$

Palsu 50k =
$$2 \times \frac{1,0 \times 1,0}{1,0+1,0} = 1,0$$

Palsu
$$100k = 2 \times \frac{1,0 \times 0,9}{1,0+0.9} = 0,9$$

d. Accuracy

Asli 50k
$$=\frac{10}{10}=1.0$$

Asli 100k =
$$\frac{10}{10}$$
 = 1,0

Palsu 50k =
$$\frac{10}{10}$$
 = 1,0

Palsu
$$100k = \frac{9}{10} = 0.9$$

Dengan melihat hasil perhitungan diatas, dilakukan perhitungan nilai rata - rata dari *precision*, *recall*, *f1-score*, dan *accuracy* agar didapatkan nilai secara menyeluruh. Adapun perhitungan yang dilakukan adalah sebagai berikut.

a. Rata rata
$$precision = \frac{1,0+1,0+1,0+0,9}{4} \times 100\% = 97\%$$

b. Rata rata
$$recall = \frac{1,0+0,9+1,0+1,0}{4} \times 100\% = 97\%$$

c. Rata rata *f1-score* =
$$\frac{1,0+0,9+1,0+0,9}{4}$$
 x 100% = 95%

d. Rata rata
$$accuracy = \frac{1,0+1,0+1,0+0,9}{4} \times 100\% = 97\%$$

Berdasarkan perhitungan diatas, nilai evaluasi metrik yang dihasilkan oleh sistem tersebut, yaitu *precision* 97%, *recall* 97%, *f1-score* 95%, dan *accuracy* 97%. Dengan nilai metrik yang dihasilkan, dapat disimpulkan bahwa model memiliki kinerja yang baik dalam mendeteksi Rupiah palsu dan Rupiah asli.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Setelah melewati beberapa pengujian deteksi uang Rupiah palsu dan Rupiah asli emisi terbaru TE 2022, adapun kesimpulan yang diperoleh adalah sebagai berikut:

- Algoritma YOLOv8 dapat bekerja dengan baik dalam melakukan deteksi keaslian Rupiah TE 2022 dengan hasil precision 97%, recall 97%, f1-score 95%, dan accuracy 97%.
- 2) Pengaturan pada jumlah epoch dan *batch size* berpengaruh dalam menghasilkan model dengan hasil yang terbaik.
- 3) Performa terbaik diperoleh pada 100 epoch dengan batch size 32.
- 4) Sistem dapat melakukan deteksi secara *real-time* menggunakan kamera perangkat *mobile* berbasis Android.

5.2 Saran

Berikut merupakan beberapa saran yang dapat diberikan untuk pengembangan pada penelitian selanjutnya:

- 1) Penelitian selanjutnya diharapkan dapat menggunakan data Rupiah yang lebih lengkap untuk semua pecahan maupun tahun emisi.
- 2) Penelitian selanjutnya dapat menggunakan data yang lebih beragam dan banyak, juga memperhatikan kuantitas cahaya pada data agar performa model meningkat dan hasil menjadi lebih akurat.
- 3) Penelitian selanjutnya dapat menambahkan fitur lainnya seperti sensor dan suara untuk membantu tunanetra.
- 4) Penelitian selanjutnya dapat menggunakan metode yang berbeda agar bisa dibandingkan dengan metode YOLOv8.

DAFTAR PUSTAKA

- Ajiani, I. P. F., Ayu, B. D. P., Rahmatyar, A., Isasih, W. D., & Inayati, R. (2023). *Edukasi Mata Uang Baru Emisi 2022 dan Menghindari Mata Uang Palsu. 1*(4), 865–874. https://journal.insankreasimedia.ac.id/index.php/JILPI
- Alif, M. A. R., & Hussain, M. (2024). YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain.
- Ariansyah, D. S. (2024). PENDETEKSI KATA DALAM BAHASA ISYARAT MENGGUNAKAN ALGORITMA YOLO VERSI 8. *Jurnal Informatika Dan Teknik Elektro Terapan*, 12(3). https://doi.org/10.23960/jitet.v12i3.4904
- Arianto, D. (2023). *Uang Palsu yang Meniru Emisi Baru Rupiah Beredar di Tasikmalaya*, *Polisi Tangkap 7 Pelaku*. https://jabar.tribunnews.com/2023/05/24/uang-palsu-yang-meniru-emisi-baru-rupiah-beredar-di-tasikmalaya-polisi-tangkap-7-pelaku
- Ashna, H., & Momand, Z. (2023). Applications of Machine Learning in Detecting Afghan Fake Banknotes.
- Bestari, N. P. (2022). *Boleh Dicek, Ada Teknologi Canggih di Balik Uang Baru 2022*. https://www.cnbcindonesia.com/tech/20220819081105-37-364926/boleh-dicek-ada-teknologi-canggih-di-balik-uang-baru-2022
- Chowdhury, A. A., Das, A., & Karmaker, D. (2022). Evaluation of Deep Learning models on UV ink: a Fake Money detection scheme with RPN. 67–74. https://github.com/anzir29/
- Ding, C., Wang, S., Liu, N., Xu, K., Wang, Y., & Liang, Y. (2019). REQ-YOLO: A resource-aware, efficient quantization framework for object detection on FPGAS.
 FPGA 2019 Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
 Gate
 Arrays,
 33–42.
 https://doi.org/10.1145/3289602.3293904
- Evidently. (2024). Accuracy vs. precision vs. recall in machine learning: what's the difference? https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall

- Fristia, A. M., Wijaya, P. A., Samudra, D., & Novel, M. (2023). Love, proud, understanding rupiah in the perspective of pancasila and law number 7 of 2011 concerning currency. *IJOBSOR*, *11*(2), 288–297. www.ijobsor.pelnus.ac.id
- Hardani, D. N. K., Luthfianto, T., & Tamam, M. T. (2019). Identify The Authenticity of Rupiah Currency Using K Nearest Neighbor (K-NN) Algorithm. *Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika*, 5(1). https://doi.org/10.26555/jiteki.v5i1.13324
- Haryono, E. (2023). *Uang Rupiah Te 2022 Raih Penghargaan Internasional Sebagai Best New Banknote Series*. https://www.bi.go.id/id/publikasi/ruang-media/news-release/Pages/sp_2513323.aspx
- Jacob Solawetz, F. (2023, January 11). What is YOLOv8? The Ultimate Guide.. Roboflow. https://blog.roboflow.com/whats-new-in-yolov8/
- Jonathan, J., Hermanto, D., & Artikel, H. (2024). *Penentuan Epochs Hasil Model Terbaik: Studi Kasus Algoritma YOLOv8*. 4(2). https://doi.org/10.47709/digitech.v4i2.4640
- Keita, Z. (2022, September). *YOLO Object Detection Explained*. https://www.datacamp.com/blog/yolo-object-detection-explained
- Labelf. (2022). What is Accuracy, Precision, Recall and F1 Score? https://sv.labelf.ai/blog/what-is-accuracy-precision-recall-and-f1-score
- Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. In *Nature* (Vol. 521, Issue 7553, pp. 436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539
- Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. *IEEE Transactions on Neural Networks and Learning Systems*, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827
- Pambudi, A. R., Garno, & Purwantoro. (2020). *DETEKSI KEASLIAN UANG KERTAS BERDASARKAN WATERMARK DENGAN PENGOLAHAN CITRA DIGITAL*. 69–74.
- Prakassiwa, G., Prasetya, N. R., Ananto, I. W., & Afwan, A. (2022). *IDENTIFIKASI KEASLIAN UANG KERTAS RUPIAH MENGGUNAKAN METODE K-MEANS CLUSTERING*. https://www.researchgate.net/publication/358138811

- Rahmad, C., Rohadi, E., & Lusiana, R. A. (2021). Authenticity of money using the method KNN (K-Nearest Neighbor) and CNN (Convolutional Neural Network). *IOP Conference Series: Materials Science and Engineering*, 1073(1), 012029. https://doi.org/10.1088/1757-899x/1073/1/012029
- Ramadhan, R., Sari, J. Y., & Ningrum, I. P. (2019). *Identification of Authenticity and Nominal Value of Indonesia Banknotes Using Fuzzy K-Nearest Neighbor Method.* VI(1), 32.
- Rani, R. S., Gayathri, B., Surya, M. V., Kiran, P. J. A., & Krishna, R. S. (2022). Detecting counterfeit banknotes with machine learning. *South Asian Journal of Engineering and Technology*, 12(3), 146–151. https://doi.org/10.26524/sajet.2022.12.40
- Ratnadewi, R., Hangkawidjaja, A., Prijono, A., Wawolumaja, R., Suhada, K., Sutandi, M., Lehman, A., Sarvia, E., & Lusiano, K. (2022). *Exploration of an Indonesian Currency Legality Detection System by Utilizing Image Intensity of RGB Mean Values*. 9–17. https://doi.org/10.5220/0010743700003113
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection.
- Rizkoh, F. (2022). *Waspada Uang Palsu! Terbanyak Pecahan Rp 50 Ribu & Rp 100 Ribu*. https://finance.detik.com/moneter/d-5998806/waspada-uang-palsuterbanyak-pecahan-rp-50-ribu-rp-100-ribu
- Saputri, R. H., Haq, I., & Wahidin. (2023). *Pertanggungjawaban Hukum terhadap Tindak Pidana Pengedaran Uang Palsu dalam Perspektif Fiqhi Jinayah*. https://ejurnal.iainpare.ac.id/index.php/delictum/index
- Setiadi, T., & Khairina. (2022). *BI Tegal Temukan 41.636 Lembar Uang Palsu, Uang Baru Emisi 2022 Diklaim Sulit Dipalsukan*. https://regional.kompas.com/read/2022/08/22/154940478/bi-tegal-temukan-41636-lembar-uang-palsu-uang-baru-emisi-2022-diklaim-sulit
- Shung, K. P. (2018). *Accuracy, Precision, Recall or F1?* https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
- Talib, M., Al-Noori, A. H. Y., & Suad, J. (2024). YOLOv8-CAB: Improved YOLOv8 for Real-time object detection. *Karbala International Journal of Modern Science*, 10(1). https://doi.org/10.33640/2405-609X.3339

- Tamara, D., Haerul Anam, M., Sri Widari, W., Venora Falahudin, A., Yuristika Oktavia, W., Emka Fitri, Z., & Seto Arifianto, A. (2022). *Deteksi Keaslian Uang Kertas Berdasarkan Fitur Gray Level Co-Occurrence Matrix (GLCM) Menggunakan k-Nearest Neighbor*.
- Terven, J. R., & Esparza, D. M. C. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. https://doi.org/10.3390/make5040083
- Wiley, V., & Lucas, T. (2018). Computer Vision and Image Processing: A Paper Review. *International Journal of Artificial Intelligence Research*, 2(1), 22. https://doi.org/10.29099/ijair.v2i1.42
- Zakaria, R. N., Wulanningrum, R., & Setiawan, A. B. (2024). Penerapan Segmentasi Wajah Menggunakan YOLOv8 Untuk Presensi Mata Kuliah. In *Agustus* (Vol. 8). Online.
- Zulkarnaen. (2020). Pemalsuan Uang dan Stabilitas Kamdagri. Ilmu Kepolisian, 14(3).

LAMPIRAN

Tahap pengujian program dengan menggunakan uang palsu dan uang asli Rupiah TE 2022 pecahan 50000 dan 100000 di Bank Mandiri Jl. DR. Cipto Medan bersama pegawai yang berwenang.

