Discrete Mathematics for Computer Science

Lecture 5: Set and Function

Dr. Ming Tang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech) Email: tangm3@sustech.edu.cn

This Lecture

Set and Functions: set, set operations, <u>functions</u>, sequences and summation, cardinality of sets

Function

Let A and B be two sets. A function from A to B, denoted by $f : A \rightarrow B$, is an assignment of exactly one element of B to each element of A.

• We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

One-to-One and Onto Functions

One-to-one function

never assign the same value to two different domain elements.

Onto function

 every member of the codomain is the image of some element of the domain.

One-to-one correspondence

One-to-one and onto

One-to-One (Injective) Function

A function f is called one-to-one or injective if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. Also called an injunction.

Alternatively: A function is one-to-one if and only if $x \neq y$ implies $f(x) \neq f(y)$. (contrapositive!)

Not injective

Injective function

Onto (Surjective) Function

A function f is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. Also called a surjection.

Alternatively: A function is onto if and only if all codomain elements are covered, i.e., f(A) = B.

6/58

Onto (Surjective) Function: Example

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

What if the codomain were $\{1, 2, 3, 4\}$? No.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto? No, as there is no integer x with $x^2 = -1$.

One-to-One Correspondence (Bijective Function)

A function f is called one-to-one correspondence or bijective, if and only if it is both one-to-one and onto. Also called bijection.

One-to-One Correspondence: Example

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a one-to-one correspondence? Yes.

Example 2: Consider an identity function on A, i.e., $\iota: A \to A$, where $\iota_A(x) = x$. Is this function a one-to-one correspondence? Yes.

9/58

Are These Functions Injective, Surjective, Bijective?

10/58

Are These Functions Injective, Surjective, Bijective?

Proof for One-to-One and Onto

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that f is not injective	, , ,
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that f is not surjective	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

11/58

Example

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

Proof:

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto function): For every integer $y \in \mathbb{Z}$, these exists an integer $x \in \mathbb{Z}$ such that f(x) = y.
- Bijective (one-to-one correspondence): injective and surjective

Z is integerr not natural number

12 / 58

One-to-One and Onto

Prove that "for a function $f: A \to B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Proof: Since |A| = n, let $\{x_1, x_2, ..., x_n\}$ be elements of A.

- If f is one-to-one, then f is onto (direct proof): Suppose that f is one-to-one. According to the definition of one-to-one function, $f(x_i) \neq f(x_j)$ for any $i \neq j$. Thus, $|f(A)| = |\{f(x_1), ..., f(x_n)\}| = n$. Since |B| = n and $f(A) \subseteq B$, we have f(A) = B.
- If f is onto, then f is one-to-one (contradiction): Suppose that f is onto. Suppose that f is not one-to-one. Thus, $f(x_i) = f(x_j)$ for some $i \neq j$. Then, $|\{f(x_1), ..., f(x_n)\}| \leq n-1$. Note that |f(A)| = |B| = n, which leads to a contradiction.

Use f(A) denote a set

One-to-One and Onto

Consider an infinite set A and a function from A to A. Consider the statement "For any arbitrary $f:A\to A$, f is one-to-one if and only if f is onto". Is this statement true?

Proof (Counterexample): Consider the following $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = 2x. f is one-to-one but not onto:

- f(1) = 2
- f(2) = 4
- f(3) = 6
- ...

We can prove that 3 has no preimage.

Two Functions on Real Numbers

Let f_1 and f_2 be functions from A to R. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to R defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1f_2)(x) = f_1(x)f_2(x)$

Example:

$$f_1 = x - 1$$
 and $f_2 = x^3 + 1$

Then

$$(f_1 + f_2)(x) = x^3 + x$$

 $(f_1 f_2)(x) = x^4 - x^3 + x - 1$

Inverse Functions

Let f be a one-to-one correspondence (bijection) from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b.

The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

A bijection is called invertible.

Inverse Functions

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume f is not one-to-one (injective):

The inverse is not a function: one element of B is mapped to two different elements of A.

SUSTech Southern University of Science and

Ming Tang @ SUSTech CS201 Spring 2022 17 / 58

Inverse Functions

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume f is not onto (surjective):

The inverse is not a function: one element of B is not assigned an element of A.

SUSTech Southern University of Science and

Ming Tang @ SUSTech CS201 Spring 2022 18 / 58

Proof for Inverse Function

1 Prove function f is a bijection: injective, surjective

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that f is not injective	Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that <i>f</i> is not <i>surjective</i>	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

- 2 If f is a bijection, then it is invertible
- 3 Determine the inverse function

19 / 58

Inverse Functions: Example 1

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

Proof: f is invertible, as it is a bijection (one-to-one correspondence):

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto): For every integer $y \in \mathbb{Z}$, these exists an integer x = y 1 such that f(x) = y.

To reverse the function, suppose that y is the image of x, so that y=x+1. Then, x=y-1. This means that y-1 is the unique element of Z that is sent to y by f. Consequently, $f^{-1}(y)=y-1$.

Ming Tang @ SUSTech CS201 Spring 2022 20 / 58

Inverse Functions: Example 2

Let f be the function from \mathbf{R} to \mathbf{R} with $f(x) = x^2$. Is f invertible?

Proof: No, f is not invertible. This is because f is not injective, as f(-2) = f(2).

What if we restrict function $f(x) = x^2$ to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers?

Proof: It is invertible, as it is a bijection:

- Injective: Consider x and x'. If f(x) = f(x') (i.e., $x^2 = (x')^2$), then we have $x^2 (x')^2 = (x + x')(x x') = 0$. Since we consider the set of all nonnegative real numbers, we must have x = x'.
- Surjective: Consider an arbitrary nonnegative real number y. There exists a nonnegative real number $x = \sqrt{y}$ such that f(x) = y.

To reverse the function, suppose that y is the image of x, so that $y=x^2$. Then, $x=\sqrt{y}$. Consequently, $f^{-1}(y)=\sqrt{y}$.

Summary of Function

- Function $f: A \rightarrow B$: an assignment of exactly one element of B to each element of A
- Domain, codedomain, image, preimage, range
- One-to-one function
 - also called an injunction or injective function
- Onto function
 - also called a surjection or surjective function
- One-to-one correspondence
 - one-to-one and onto
 - also called a bijection or bijective function
- Inverse function
 - One-to-one correspondence

Let f be a function from B to C and let g be a function from A to B. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(x) = f(g(x))$.

23 / 58

CS201 Spring 2022

■ Example 1:

Let
$$A=\{1,2,3\}$$
 and $B=\{a,b,c,d\}$. $g:A\to A$ $f:A\to B$ $1\mapsto 3$ $1\mapsto b$ $2\mapsto 1$ $2\mapsto a$ $3\mapsto 2$ $3\mapsto d$ What is $f\circ g$?

$$f \circ g : A \to B$$

$$1 \mapsto d$$

$$2 \mapsto b$$

$$3 \mapsto a$$

4014814714717

■ Example 2:

Let
$$f: \mathbf{Z} \to \mathbf{Z}$$
 and $g: \mathbf{Z} \to \mathbf{Z}$, where $f(x) = 2x$ and $g(x) = x^2$.

What are $g \circ f$ and $f \circ g$?

$$g \circ f : \mathbf{Z} \to \mathbf{Z}$$
 $g \circ f = 4x^2$

$$f \circ g : \mathbf{Z} \to \mathbf{Z}$$
 $f \circ g = 2x^2$

Note: In general, the order of composition matters.

■ Suppose that f is a bijection from A to B. Then $f \circ f^{-1} = I_B$ and $f^{-1} \circ f = I_A$, Since

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$$

 $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b,$

where I_A , I_B denote the *identity functions* on the sets A and B, respectively.

Note: Identity function is sometimes denoted by $\iota_A(\cdot)$:

$$\iota_A(x)=x$$

Floor and Ceiling Functions

- The floor function assigns a real number x the largest integer that is $\leq x$, denoted by $\lfloor x \rfloor$. E.g., $\lfloor 3.5 \rfloor = 3$.
- The ceiling function assigns a real number x the smallest integer that is $\geq x$, denoted by $\lceil x \rceil$. E.g., $\lceil 3.5 \rceil = 4$.

Note: n is an integer, x is a real number.

Floor and Ceiling Functions: Example 1

Only the ADDITION of integer can be

move out

Prove that if x is a real number, then $[2x] = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Proof: Let $x = n + \epsilon$, where n is an integer and $0 \le \epsilon < 1$.

- $0 \le \epsilon < \frac{1}{2}$: In this case, $2x = 2n + 2\epsilon$. Since $0 \le 2\epsilon < 1$, we have $\lfloor 2x \rfloor = 2n$. Similarly, $x + \frac{1}{2} = n + \frac{1}{2} + \epsilon$. Since $0 \le \frac{1}{2} + \epsilon < 1$, we have $\lfloor x + \frac{1}{2} \rfloor = n$. Thus, $\lfloor 2x \rfloor = 2n$, and $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = 2n$.
- $\frac{1}{2} \le \epsilon < 1$: In this case, $2x = 2n + 2\epsilon = (2n + 1) + (2\epsilon 1)$. Since $0 \le 2\epsilon 1 < 1$, we have $\lfloor 2x \rfloor = 2n + 1$

domain

divide into 2 cases.

Floor and Ceiling Functions: Example 2

Prove or disprove that $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$ for all real numbers x and y.

Proof: This statement is false. Consider a counterexample $x=\frac{1}{2}$ and $\frac{1}{2}$. We can find that $\lceil x+y \rceil = 1$, but $\lceil x \rceil + \lceil y \rceil = 2$.

29 / 58

Spring 2022

Factorial Function

The factorial function $f: \mathbb{N} \to \mathbb{Z}^+$ is the product of the first n positive integers when n is a nonnegative integer, denoted by f(n) = n!.

30 / 58

Summary of Function

- Function f: A → B: an assignment of exactly one element of B to each element of A
- One-to-one function
- Onto function
- One-to-one correspondence: one-to-one function and onto
- Inverse function
- Floor function, ceiling function, factorial function

This Lecture

Set and Functions: set, set operations, <u>functions</u>, <u>sequences and summation</u>, cardinality of sets

Sequences

A sequence is a function from a subset of the set of integers (typically the set $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$) to a set S.

We use the notation a_n to denote the image of the integer n. $\{a_n\}$ represents the ordered list $\{a_1, a_2, a_3, ...\}$

4 D > 4 AB > 4 B > 4 B >

Sequences

Examples:

- $a_n = n^2$, where n = 1, 2, 3, ...
- $a_n = (-1)^n$, where n = 1, 2, 3, ...
- $a_n = 2^n$, where n = 1, 2, 3, ...

Geometric Progression

A geometric progression is a sequence of the form

$$a, ar, ar^2, ..., ar^n, ...$$

where the initial term a and the common ratio r are real numbers.

Example:
$$a_n = 3 \times (\frac{1}{2})^n$$
, where $n = 0, 1, 2, 3, ...$

35 / 58

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, a + 3d, ..., a + nd, ...$$

where the initial term a and common difference d are real numbers.

Example:
$$a_n = -1 + 4n$$
, where $n = 0, 1, 2, 3, ...$

Recursively Defined Sequences

1 Providing explicit formulas, e.g., $a_n = -1 + 4n$, where n = 0, 1, 2, 3, ...

2 Recursively Defined Sequences: provide

- one or more initial terms
- a rule for determining subsequent terms from those that precede them.

The *n*-th element of the sequence $\{a_n\}$ is defined recursively in terms of the previous elements of the sequence and the initial elements of the sequence.

Examples:

- $a_0 = 1$, $a_n = a_{n-1} + 2$ for n = 1, 2, 3, ...
- $f_0 = 0$, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for n = 2, 3, 4, ... (Fibonacci sequence)

Summations

The summation of the terms of a sequence is

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

- j: the index of summation; the choice of the letter is arbitrary
- m: the lower limit of the summation
- n: the upper limit of the summation

$$\sum_{j=1}^{n} (ax_{j} + by_{j}) = a \sum_{j=1}^{n} x_{j} + b \sum_{j=1}^{n} y_{j}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} = \sum_{i=1}^{m} a_{i} \sum_{j=1}^{n} b_{j}$$
*SUSTech**

Spring 2022

Summations

The sum of the first n terms of the arithmetic progression:

$$S_n = \sum_{j=0}^n (a+jd) = (n+1)a + d\sum_{j=0}^n j = (n+1)a + d\frac{n(n+1)}{2}$$

The sum of the first n terms of the geometric progression:

• $r \neq 1$

$$S_n = \sum_{j=0}^n (ar^j) = a \sum_{j=0}^n r^j = \frac{ar^{n+1} - a}{r-1}$$

• r = 1

$$S_n = \sum_{j=0}^n (ar^j) = (n+1)a$$

Summations: Example

Examples:

$$\diamond S = \sum_{i=1}^{5} (2+3i)$$
 55

$$\diamond S = \sum_{i=3}^{5} (2+3i)$$
 42

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j)$$
 28

$$\Leftrightarrow S = \sum_{i=0}^{3} 2(5)^{i}$$
 312

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{3} ij$$
 60

Infinite Series

Infinite geometric series can be computed in the closed form for |x| < 1.

$$\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \sum_{k=0}^n x^k = \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1} = \frac{1}{1 - x}$$
$$\sum_{k=0}^{\infty} k x^{k-1} = \frac{1}{(1 - x)^2}$$

41 / 58

_

Ming Tang @ SUSTech CS201 Spring 2022

Some Useful Summation Formulas

$$\sum_{k=0}^{n} ar^{k} (r \neq 0) \qquad \frac{ar^{n+1} - a}{r - 1}, r \neq 1$$

$$\sum_{k=1}^{n} k \qquad \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} \qquad \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} \qquad \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{k=0}^{\infty} x^{k}, |x| < 1 \qquad \frac{1}{1 - x}$$

$$\sum_{k=1}^{\infty} kx^{k-1}, |x| < 1 \qquad \frac{1}{(1 - x)^{2}}$$

This Lecture

Set and Functions: set, set operations, <u>functions</u>, sequences and summation, <u>cardinality</u> of sets

Ming Tang @ SUSTech CS201 Spring 2022 43 / 58

Cardinality of Sets

Recall: the cardinality of a finite set is defined by the number of the elements in the set.

The sets A and B have the same cardinality if there is a one-to-one correspondence between elements in A and B.

If there is a one-to-one function from A to B, the cardinality of A is less than or equal to the cardinality of B, denoted by $|A| \leq |B|$.

Moreover, when $|A| \leq |B|$ and A and B have different cardinalities, we say that the cardinality of A is less than the cardinality of B, denoted by |A| < |B|.

Countable Sets

A set that is either finite or has the same cardinality as the set of positive integers \mathbf{Z}^+ is called countable. A set that is not countable is called uncountable.

Why are these called countable?

The elements of the set can be enumerated and listed.

45 / 58

Ming Tang @ SUSTech CS201 Spring 2022

Hilbert's Paradox: Grand Hotel

The Grand Hotel has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel.

FIGURE 2 A New Guest Arrives at Hilbert's Grand Hotel.

Finitely many room: "All rooms are occupied" is equivalent to "no new guests can be accommodated".

Infinitely many room: This equivalence no longer holds.

The set of odd positive integers: $A = \{1, 3, 5, 7, ...\}$. Is it countable?

Proof: Using the definition: If there is a one-to-one correspondence from the set of positive integers \mathbf{Z}^+ to this set A?

Consider the function

$$f(n)=2n-1$$

- One-to-one: Suppose f(n) = f(m). Then, 2n 1 = 2m 1, which leads to n = m.
- Onto: For any arbitrary element in $t \in A$, we have an $n = (t+1)/2 \in \mathbf{Z}^+$ such that f(n) = t.

Ming Tang @ SUSTech CS201 Spring 2022 47 / 58

Theorem: The set of integers **Z** is countable.

Proof: We can list the set of integers into a sequence:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

Thus, it is countable.

Theorem: An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers):

- Each element appears once:
- All elements are listed

Why?

A sequence is a function from a subset of the set of integers to \underline{a} set \underline{S} .

Theorem: The set of integers **Z** is countable.

Proof: We can list the set of integers into a sequence:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

Thus, it is countable.

Alternatively, show there is a one-to-one correspondence from \mathbf{Z}^+ to \mathbf{Z} :

- when *n* is even: f(n) = n/2
- when *n* is odd: f(n) = -(n-1)/2

Thus, it is countable.

Do \mathbf{Z}^+ and \mathbf{Z} have the same cardinality? Yes, because there is a one-to-one correspondence between \mathbf{Z}^+ and \mathbf{Z} .

Hilbert's Paradox: Grand Hotel

Theorem: The set of positive rational numbers is countable.

Hint: prove by showing that the set of positive rational numbers can be listed in a sequence: specifying the initial term and rule

Solution:

Constructing the list: first list p/q with p+q=2, next list p/q with p+q=3, and so on.

$$1, 1/2, 2, 3, 1/3, 1/4, 2/3, \dots$$

Spring 2022

Theorem: The set of finite strings S over a finite alphabet A is countably infinite. (Assume an alphabetical ordering of symbols in A)

```
For example, let A = \{\text{`a', `b', `c'}\}. Then, set S = \{\text{`', `a', `b', `c', `ab' }..., `aaaaa', ...}
```

Solution:

We show that the strings can be listed in a sequence. First list

- (i) all the strings of length 0 in alphabetical order.
- (ii) then all the strings of length 1 in lexicographic order.
- (iii) and so on.

This implies a bijection from \mathbf{Z}^+ to S.

The set of all Java programs is countable.

Solution:

Let S be the set of strings constructed from the characters which may appear in a Java program. Use the ordering from the previous example. Take each string in turn

- feed the string into a Java compiler
- if the complier says YES, this is a syntactically correct Java program, we add this program to the list
 - we move on to the next string

In this way, we construct a bijection from \mathbf{Z}^+ to the set of Java programs.

Theorem: Any subset of a countable set is countable.

Proof: Consider a countable set A and its subset $B \subseteq A$.

- A is a finite set: $|B| \le |A| < \infty$. Thus, |B| is a finite set and hence countable.
- A is not a finite set: Since A is countable, the elements of A can be listed in a sequence. By removing the elements in the list that are not in B, we can obtain a list for B. Thus, B is countable

Theorem: If A and B are countable sets, then $A \cup B$ is also countable.

A set that is not countable is called uncountable.

Theorem: The set of real numbers \mathbf{R} is uncountable.

Proof by Contradiction: Suppose \mathbf{R} is countable. Then, the interval from 0 to 1 is countable. This implies that the elements of this set can be listed as $r_1, r_2, r_3, ...$, where

- $r_1 = 0.d_{11}d_{12}d_{13}d_{14}$
- $r_2 = 0.d_{21}d_{22}d_{23}d_{24}$
- $r_3 = 0.d_{31}d_{32}d_{33}d_{34}$

where all $d_{ij} \in \{0, 1, 2, ..., 9\}$.

54 / 58

Ming Tang @ SUSTech CS201 Spring 2022

A set that is not countable is called uncountable.

Theorem: The set of real numbers \mathbf{R} is uncountable.

Proof by Contradiction:

We want to show that not all real numbers in the interval between 0 and 1 are in this list. Form a new number called $r = 0.d_1d_2d_3d_4$, where $d_i = 2$ if $d_{ii} \neq 2$, and $d_i = 3$ if $d_{ii} = 2$.

```
Example: suppose r1 = 0.75243... d1 = 2 r2 = 0.524310... d2 = 3 r3 = 0.131257... d3 = 2 r4 = 0.9363633... d4 = 2 ... rt = 0.23222222... dt = 3
```

r and r_i differ in the i-th decimal place for all i. This leads to a contradiction.

Theorem: The set $\mathcal{P}(\mathbf{N})$ is uncountable.

55 / 58

Ming Tang @ SUSTech CS201 Spring 2022

Theorem: The set $\mathcal{P}(\mathbf{N})$ is uncountable.

Proof by contradiction:

```
Assume that \mathcal{P}(\mathbb{N}) is countable. This implies that the elements of this set can be listed as S_0, S_1, S_2, \ldots, where S_i \subseteq \mathbb{N}, and each S_i can be represented uniquely by the bit string b_{i0}b_{i1}b_{i2}\ldots, where b_{ij}=1 if j\in S_i and b_{ij}=0 if j\not\in S_i -S_0=b_{00}b_{01}b_{02}b_{03}\cdots\\ -S_1=b_{10}b_{11}b_{12}b_{13}\cdots\\ -S_2=b_{20}b_{21}b_{22}b_{23}\cdots \vdots all b_{ij}\in\{0,1\}.
```


Theorem: The set $\mathcal{P}(\mathbf{N})$ is uncountable.

Proof by contradiction:

```
Assume that \mathcal{P}(\mathbb{N}) is countable. This implies that the elements of this set can be listed as S_0, S_1, S_2, \ldots, where S_i \subseteq \mathbb{N}, and each S_i can be represented uniquely by the bit string b_{i0}b_{i1}b_{i2}\ldots, where b_{ij}=1 if j\in S_i and b_{ij}=0 if j\not\in S_i -S_0=b_{00}b_{01}b_{02}b_{03}\cdots\\-S_1=b_{10}b_{11}b_{12}b_{13}\cdots\\-S_2=b_{20}b_{21}b_{22}b_{23}\cdots \vdots all b_{ij}\in\{0,1\}.
```

Form a new set called $R = b_0 b_1 b_2 b_3...$, where $b_i = 0$ if $b_{ii} = 1$, and $b_i = 1$ if $b_{ii} = 0$.

Theorem: The set $\mathcal{P}(\mathbf{N})$ is uncountable.

Proof by contradiction:

```
Assume that \mathcal{P}(\mathbb{N}) is countable. This implies that the elements of this set can be listed as S_0, S_1, S_2, \ldots, where S_i \subseteq \mathbb{N}, and each S_i can be represented uniquely by the bit string b_{i0}b_{i1}b_{i2}\ldots, where b_{ij}=1 if j\in S_i and b_{ij}=0 if j\not\in S_i -S_0=b_{00}b_{01}b_{02}b_{03}\cdots\\ -S_1=b_{10}b_{11}b_{12}b_{13}\cdots\\ -S_2=b_{20}b_{21}b_{22}b_{23}\cdots \vdots all b_{ii}\in\{0,1\}.
```

Form a new set called $R = b_0 b_1 b_2 b_3...$, where $b_i = 0$ if $b_{ii} = 1$, and $b_i = 1$ if $b_{ii} = 0$. R is different from each set in the list. Each bit string is unique, and R and S_i differ in the i-th bit for all i.

Schroder-Bernstein Theorem

Theorem: If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B, and hence |A| = |B|.

4 N D D A A B D A B D B B

Schroder-Bernstein Theorem

Theorem: If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B, and hence |A| = |B|.

Example: Show that |(0,1)| = |(0,1]|

Schroder-Bernstein Theorem

Theorem: If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B, and hence |A| = |B|.

Example: Show that |(0,1)| = |(0,1]|

$$f(x) = x, g(x) = x/2$$

Computable vs Uncomputable

Definition: We say that a function is computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is uncomputable.

Computable vs Uncomputable

Definition: We say that a function is computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is uncomputable.

Theorem: There are functions that are not computable.

- The set of all programs is countable.
- There are uncountably many different functions from a particular countably infinite set to itself (Exercise 38).

Computable vs Uncomputable

Definition: We say that a function is computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is uncomputable.

Theorem: There are functions that are not computable.

- The set of all programs is countable.
- There are uncountably many different functions from a particular countably infinite set to itself (Exercise 38).

Cantor's theorem: If S is a set, then |S| < |P(S)|.

This Lecture

58 / 58

Ming Tang @ SUSTech CS201 Spring 2022