Affine Algebraic Varieties

Directed Reading Program Spring 2024

Estella Xu

May 2, 2024

Northwestern University Dept. of Mathematics

Motivation

Equivalences between geometry and algebra:

Geometry	Algebra
Varieties	Radical Ideals \leftrightarrow Reduced \mathbb{C} -Algebras
Irreducible Varieties	Prime Ideals ↔ Integral Domains
Points	Maximal Ideals ↔ Fields

Introduction to Affine Algebraic Varieties

Definition.

An affine algebraic variety is the common zero set of a collection $\{F_i\}_{i\in I}$ of complex polynomials on \mathbb{C}^n . We write

$$V = \mathbb{V}(\{F_i\}_{i \in I}) \subset \mathbb{C}^n$$

for this set of common zeros.

We can also look at the varieties of ideals¹ $I \subset \mathbb{C}[x_1,...,x_n]$ (denoted $\mathbb{V}(I)$).

 $^{^{1}}$ An ideal I of a ring R is an additive subgroup of R such that for every $r \in R$ and every $x \in I$, we

Introduction to Affine Algebraic Varieties

Examples.

1.
$$\mathbb{V}(0) = \mathbb{C}^n$$

2.
$$\mathbb{V}(1) = \emptyset / \mathbb{V}(x) \cup \mathbb{V}(y)$$

3.
$$\mathbb{V}(xy) = \{x \text{- and } y \text{-axis}\}$$

4.
$$\mathbb{V}(x^2 + y^2 - z^2)$$

5.
$$\mathbb{V}(y^2 - x^3)$$

For ideals I and J, we have $\mathbb{V}(IJ) = \mathbb{V}(I) \cup \mathbb{V}(J)$.

Radical Ideals

Definition.

Let R be a ring. An ideal $I \subset R$ is called **radical** if it is equal to its radical \sqrt{I} , where

$$\sqrt{I} \coloneqq \{f \in R : f^n \in I \text{ for some } n\}.$$

Example. Consider the ideal $I=(x^2)\subset \mathbb{C}[x]$. We have $\sqrt{I}=(x)$.

Note that $I \subseteq \sqrt{I}$.

Ideals

Some facts:

- An ideal $I \subset R$ is radical if and only if R/I is reduced (i.e., given $x \in R/I$, if there exists n such that $x^n = 0$, we must have x = 0).
- · All maximal ideals² are prime.
- All prime ideals³ are radical.

²An ideal $I \subset R$ is maximal if there does not exist a proper ideal J such that $I \subseteq J$.

³An ideal $I \subset R$ is prime if the following holds: if $ab \in I$, then either $a \in I$ or $b \in I$.

$\mathbb{I}(V)$

Definition.

Let V be an affine algebraic variety in \mathbb{C}^n . The set

$$\mathbb{I}(V) = \{ f \in \mathbb{C}[x_1, ..., x_n] : f(x) = 0 \ \forall x \in V \}$$

is an ideal of V.

We call $\mathbb{I}(V)$ the ideal of all polynomial functions vanishing on V.

Note. If $V \subseteq W$, then $\mathbb{I}(V) \supseteq \mathbb{I}(W)$.

$\mathbb{I}(V)$ cont.

Fact.

$$\mathbb{V}(\mathbb{I}(V)) = V$$

This tells us that V is right invertible. Is it left invertible?

Not quite...

Hilbert's Nullstellensatz

 \mathbb{V} is only left invertible for radical ideals.

Theorem (Hilbert's Nullstellensatz).

For any ideal $I \subset \mathbb{C}[x_1, ..., x_n]$,

$$\mathbb{I}(\mathbb{V}(I)) = \sqrt{I}.$$

This implies a one-to-one correspondence:

{affine algebraic varieties in
$$\mathbb{C}^n$$
} \leftrightarrow {radical ideals in $\mathbb{C}[x_1,...,x_n]$ }
$$V\mapsto \mathbb{I}(V)$$

$$\mathbb{V}(I) \leftrightarrow I$$

Application of Nullstellensatz

· Let
$$I = (x^2) \subset \mathbb{C}[x]$$
. Find \sqrt{I} .

$$\sqrt{I} = \mathbb{I}(\mathbb{V}(\mathbf{x}^2)) = \mathbb{I}(\S \circ \S) = (\mathbf{x})$$
· Show $(y^2 - x^3) \subseteq (x - \pi^2, y - \pi^3)$.

$$\S(\pi^2, \pi^3) \S \subseteq \mathbb{V}(y^2 - \mathbf{x}^3)$$

$$\mathbb{I} \S(\pi^2, \pi^3) \S \supseteq \mathbb{I}(\mathbb{V}(\mathbb{V}))$$

$$\mathbb{I} \mathbb{V}(y^2 - \mathbf{x}^3)$$

$$\mathbb{I} \mathbb{V}(y^2 - \mathbf{x}^3)$$

$$\mathbb{I} \mathbb{V}(y^2 - \mathbf{x}^3)$$

$$\mathbb{I} \mathbb{V}(y^2 - \mathbf{x}^3)$$

Irreducible Varieties and Prime Ideals

 $\{\text{irreducible varieties}\} \leftrightarrow \{\text{prime ideals}\}.$

Theorem.

Let $I \subset \mathbb{C}[x_1,...,x_n]$ be an ideal. $\mathbb{V}(I)$ is irreducible⁴ if and only if \sqrt{I} is prime.

Proof. (k=) Sps
$$\Pi$$
 is prime.

$$V(T) = V(T) \cup V(K) = V(TK)$$

$$I(V(T)) = I(V(TK))$$

$$V(T) = V(T)$$

⁴An irreducible variety is one that cannot be written as the union of two proper subvarieties, i.e., if $\mathbb{V}(I) = \mathbb{V}(J) \cup \mathbb{V}(K)$, then either $\mathbb{V}(I) \subset \mathbb{V}(J)$ or $\mathbb{V}(I) \subset \mathbb{V}(K)$.

Irreducible Varieties and Prime Ideals

Examples.

- 1. $\mathbb{V}(xy)$: (xy) is not prime; $xy \in (xy)$, but $x \notin (xy)$ and $y \notin (xy)$.
- 2. $\mathbb{V}(y^2 x^2(x+1))$: $(y^2 x^2(x+1))$ is prime and thus the variety is irreducible.

Nullstellensatz Cont.

Corollary.

The maximal ideals of $\mathbb{C}[x_1,...,x_n]$ are exactly of the form $(x_1-a_1,...,x_n-a_n)$ for $a_i \in \mathbb{C}$.

Proof Idea. If $m \subset \mathbb{C}[x_1,...,x_n]$ is a maximal ideal, then $\mathbb{V}(m) = \{(a_1,...,a_n)\}$ for some point $(a_1,...,a_n) \in \mathbb{C}^n$.

This implies a one-to-one correspondence:

{points in
$$\mathbb{C}^n$$
} \leftrightarrow {maximal ideals of $\mathbb{C}[x_1,...,x_n]$ }
 $(a_1,...,a_n) \leftrightarrow (x_1-a_1,...,x_n-a_n)$

Coordinate Rings

Definition.

Let $V \subset \mathbb{C}^n$ be an affine algebraic variety. Given a complex polynomial of n variables, the restriction to V gives a map $V \to \mathbb{C}$. This forms a \mathbb{C} -algebra

$$\mathbb{C}[x_1,...,x_n]\Big|_V$$

This is the **coordinate ring of** V and is denoted $\mathbb{C}[V]$.

The Coordinate Ring as a Quotient

Consider the surjective ring homomorphism given by restriction:

$$\mathbb{C}[x_1, ..., x_n] \to \mathbb{C}[x_1, ..., x_n] \bigg|_{V}.$$

The kernel is $\mathbb{I}(V)$. By the isomorphism theorem,

$$\mathbb{C}[x_1,...,x_n]\Big|_{V} \cong \frac{\mathbb{C}[x_1,...,x_n]}{\mathbb{I}(V)}.$$

Coordinate Ring Example

Example. Let $V = \mathbb{V}(x^2 + y^2 - 1)$. Then,

$$\mathbb{C}[x_1, ..., x_n] \bigg|_V \cong \frac{\mathbb{C}[x_1, ..., x_n]}{\mathbb{I}(x^2 + y^2 - 1)}.$$

Consider the polynomial $2x^3 + 3x^2 + 2xy^2 - 2$. We have

$$\Rightarrow 2x^3 + 3x^2 + 2xy^2 - 2 = 2x(x^2 + y^2 - 1) + 3x^2 - 2$$

$$\equiv 3x^2 - 2.$$

C-Algebras and Coordinate Rings

 $\{\text{coordinate rings}\} \leftrightarrow \{\text{finitely generated, reduced } \mathbb{C}\text{-algebras}\}$.

Theorem.

Every finitely generated reduced \mathbb{C} -algebra is isomorphic to the coordinate ring of some affine algebraic variety.

Proof. Let S be fig red C-alg. Let
$$s_1, ..., s_n$$
 be gen.

$$C[x_1, ..., x_n] \rightarrow S$$

$$x_i \mapsto s_i$$

$$X_i \mapsto$$

Conclusion

- 1. There is a one-to-one correspondence between **varieties** and **radical ideals** (Hilbert's Nullstellensatz).
- 2. $\mathbb{V}(I)$ is **irreducible** if and only if \sqrt{I} is **prime**.
- 3. There is a one-to-one correspondence between maximal ideals of $\mathbb{C}[x_1,...,x_n]$ and points in \mathbb{C}^n (Corollary of Hilbert's Nullstellensatz).
- 4. Every **finitely generated reduced** C-algebra is isomorphic to the **coordinate ring** of some affine algebraic variety.

References

Smith, Karen, et al. An Invitation to Algebraic Geometry. Springer-Verlag, 2000.