Lecture 14- Feb 28,2023

- Monte-Carlo Methods
 - · First- Visit MC
 - · Online MC
- Jemporal Difference Learning
 - 1 (0)
 - · SARSA
 - · Q-Learning
 - · On-Policy Vs. Off-Palicy

HW3 is posted - Due March 17

Project 2 - Due March 5

TA's office hour: Wendsdays, 2.pm=3pm (in-person)
Fridays, 2pm=3pm (virtual)

Monte-Carlo Wethols:

MDP(S,A,X,r)

9	10	11	12
8		14	13
7		16	15
6	5		
4	3	2	1
Wall Bump		Bump	Goal

$$S_{k-1}, a_{k-1}$$
 Simulting $S_{k}, r \Rightarrow P(s'|s, a)$ S_{k} S_{k}

7(s) ~ 9

V(s)= E[R+1+ rR+2+ rR+3+~. 1s=s,7]

The V(s) > V(s) har all R MM

Pellmen Eq V(s)= E[R+11+8(V(S+11)) | SZ=S, T] = EP(STIS, TCSI)[R+VV(ST)]

St= 3

-11,-1,-1- - ,-13,99 Gt

 $V(s) = E[G_t | S_{t} = s, \pi]$ $\sum_{c=1}^{N} G_t^{c}$

episode 1

Randon $A, \mathcal{T}(A) = a^2, A, V = -1$

A, T(A)= a2, B, V=4

B, K(B)=a1, B, r=5 G(B) (A) T(A)=a2, B, r=4

B, T(B)=a', B, r=5

B, T(B)=a', A, r=0

A, T(A)=01, B, V=A)

G(A)= React Renz + 8 Renz +--

=-1+14+ 825+835+80+854= GB)=5+80+834+835---

 $\mathcal{M}(Q^{1}) \leq \begin{cases} 6.9 & \text{o.1} \\ \text{o.1} & \text{o.9} \end{cases}$ $\mathcal{M}(Q^{2}) = \begin{cases} 6.1 & \text{o.9} \\ 0.9 & \text{o.1} \end{cases}$

A 5 B

B, T(R)=a', B, r=B

B. T(B)_a, A, r=0

B. T(B)=a', B, r=B

B. T(B)=a', B, r=5

B. T(B)=a', B, 1=5

B. T(B)=a', B, r=5

G(A)= 4+8 5+825+85+85

G(B)= 5+85+80+134

V (A) = GAI

VT(B) = GR

V(A)= G(A) - G(A)

V(B) = G(B) + G(B)

V(E) = V(E)+ x [G(E) - V(S)]
new &skinete old estinute

 $\mathcal{A}_{\mathbf{F}} \frac{1}{n}$

No appliability

First-Visit Monte Carlo Policy Evaluation

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in S$

Repeat forever:

Generate an episode using π

For each state s appearing in the episode:

 $G \leftarrow \text{return following the first occurrence of } s$ Append G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

$$|A|B \qquad A=\{a',a''\}$$

$$|A|S| \iff Paliaes$$

$$|A''=\{a''\} \qquad \mathcal{T}^2=\{a''\} \qquad \mathcal{T}^3=\{a''\} \qquad \mathcal{T}^4=\{a''\} \qquad \mathcal{T}^4=\{a''\}$$

⇒ our Gal is to estimate Ox (Sa) Using MC

A) B)

$$\mathcal{R} = \begin{bmatrix} a^2 \\ a^1 \end{bmatrix}$$
 $\mathcal{O}_{\mathcal{T}}(A, a^1)$
 $\mathcal{O}_{\mathcal{T}}(B, a^2)$

Stant with all Pairsal S, a

A, a, A, N=0

A, a², B, N=4

B, $\mathcal{T}(B) = a^1, A, N=0$

B, $\mathcal{T}(B) = a^1, A, N=0$

A, $\mathcal{T}(B) = a^1, A, N=0$

B, $\mathcal{T}(B) = a^1, A, N=0$

A, $\mathcal{T}(B) = a^1, A, N=0$

A,

GA, a2 = 4+ 70+ 24 GA1 = 0+8 9+825+--Q(A,a) = GA, a' GA902 = 4+05+8---GA, a? = 4+8---

(A, q2)= GA, Q2+ GA, Q2 + GA, Q2

 $Q^{\pi}(A, a^{1})$ @ (B, a') Q1 (A, 42) On (B, a?) $\mathcal{R} \xrightarrow{\mathcal{R}} (S, \alpha) \xrightarrow{\mathcal{R}} \mathcal{R}$ $\mathcal{R}(S) = \text{argners} \ \mathbb{Q}_{\mathcal{R}}(S, \alpha)$ $\mathcal{R}(A) = \text{argners} \ \mathbb{Q}_{\mathcal{R}}(A, \alpha)$ $\mathbb{Q}_{\mathcal{R}}(A, \alpha)$, $\mathbb{Q}_{\mathcal{R}}(A, \alpha^2)$

Monte Carlo Policy Iteration

Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$:

Fixed point is optimal

 $Q(s, a) \leftarrow \text{arbitrary}$

policy π*

 $\pi(s) \leftarrow \text{arbitrary}$

 $Returns(s, a) \leftarrow \text{empty list}$

Now proven (almost)

Repeat forever:

Choose $S_0 \in \mathcal{S}$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0

Generate an episode starting from S_0, A_0 , following π

For each pair s, a appearing in the episode:

 $G \leftarrow \text{return following the first occurrence of } s, a$

Append G to Returns(s, a)

 $Q(s, a) \leftarrow \text{average}(Returns(s, a))$

For each s in the episode:

 $\pi(s) \leftarrow \operatorname{arg\,max}_a Q(s,a)$

Online Monte Carlo Algorithm

$$\mathcal{T}$$
 $\mathcal{C}(S) = \begin{cases} \text{argmax} \ \mathbb{Q}(S, a) & \text{I-} \mathcal{E} \\ \text{ac} A \end{cases}$

$$\text{Randam}\{a'; a^2, a^2\} \quad \mathcal{E}$$

9	10	11	12		
8		14	13		
7		16	15		
6	5.				
4	3	2	2/12		
Wall Bump Goal					
at = 1 = answer a acres					

$$f(s) = \begin{cases} \alpha^{k} & 1 - \varepsilon + \frac{\varepsilon}{|A|} \\ \alpha \neq \alpha^{k} & \frac{\varepsilon}{|A|} \end{cases}$$

$$E=0.1$$
 $|A|=4$
 $R(s)=\begin{cases} a^{*} & 0.925 \\ a \neq a^{*} & \frac{0.1}{4} = 0.025 \\ a \in A-s & a^{*} \end{cases}$

CA = argmex Q(s,a)

•			
	10	11	12
8		14	13
7		16	15
6	5		
4	3	2	1
Wall		Bump	Goal

((5,a)=0)

Random State

A,
$$\pi(A) = \alpha^2$$
, B, $r = 4 \implies \mathbb{Q}(A_1\alpha^2) = -$

new E-greedy
$$\mathcal{L}(\xi) = \begin{cases}
\alpha + \alpha^{**} \\
\alpha + \alpha^{**}
\end{cases}$$

$$\frac{\mathcal{E}}{|A|}$$

On-Policy Monte Carlo Control

Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each pair s, a appearing in the episode:

 $G \leftarrow$ return following the first occurrence of s, a

Append G to Returns(s, a)

 $Q(s, a) \leftarrow \text{average}(Returns(s, a))$

(c) For each s in the episode:

 $A^* \leftarrow \arg\max_a Q(s, a)$

For all
$$a \in \mathcal{A}(s)$$
:
$$\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$$