

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA

ES879 – SISTEMAS DE AQUISIÇÃO DE DADOS

AULA 19 – Exercício Guiado MATLAB

Prof. Tiago Henrique Machado

tiagomh@fem.unicamp.br

Bloco FE2 – Laboratório de Máquinas Rotativas (LAMAR)

Campinas, 2º semestre de 2019

Conteúdo da Aula Anterior

Transformada Z

- \checkmark A inversa da Transformada Z;
- ✓ A Transformada Z unilateral;
- ✓ Solução de equação a diferenças usando a Transformada Z;
- ✓ Principais Propriedades da Transformada Z unilateral.

Este laboratório tem como objetivo mostrar como podemos utilizar as propriedades da Transformada de Fourier para alteração/correção de sinais de modo digital. Vocês receberam um arquivo com um sinal sonoro que reproduz um solo de violão. No entanto, o violonista cometeu um erro e uma de suas notas ficou fora de escala. Sua tarefa então é identificar esta nota e corrigi-la.

Para isso utilizaremos uma propriedade chamada *Similaridade* que garante que dado um sinal contínuo x(t), e qualquer $\alpha > 0$, satisfaz a seguinte equação da transformada de Fourier:

$$\mathcal{F}\{x(\alpha t)\} = \frac{1}{\alpha}X(\omega/\alpha)$$

Com essa propriedade podemos encontrar um fator de escala α e aplicá-lo no eixo de frequências do espectro do sinal.

Como o sinal do solo do violão já foi discretizado e não queremos reconstruir o sinal contínuo devido ao grande esforço computacional, podemos aplicar este fator de escala re-amostrando o sinal com uma outra frequência f_s/α e reproduzindo-o na frequência original f_s .

Vamos seguir o seguinte procedimento:

1. Importe o sinal, identifique a nota incorreta dividindo o sinal em 3 vetores: um com as amostras do sinal até a nota incorreta $(x_0[n])$, um somente com a nota incorreta (x[n]) e outro com o restante das amostras $(x_1[n])$.

Dica: A escala na qual o solo foi executado contém as seguintes notas:

Nota	Dó (C3)	Ré (D3)	Mi (E3)	Fá (F3)	Sol (G3)	Lá (A3)	Si (B3)	Dó (C4)
Freq. [Hz]	130.5	147	165	173	194	219	247	263

- 2. Encontre o fator de escala α que deve ser aplicado ao sinal para que a frequência da nota seja corrigida para aquela imediatamente maior a da tabela anterior.
- 3. Utilize o procedimento de re-amostragem de sinais esquematizado na figura abaixo para corrigir a nota incorreta. (Use L=232)

Onde $\alpha = M/L$ com M e L inteiros. Neste caso, o sinal a ser re-amostrado x[n] deve passar por um interpolador $\uparrow L$. Logo após, aplica-se um filtro anti-aliasing e finalmente um decimador $\downarrow M$ obtendo-se o sinal corrigido $x_d[n]$. Mais especificamente, estes blocos são implementados da seguinte maneira:

Interpolador: A partir do sinal x[n], constrói-se o sinal auxiliar expandido:

$$\bar{x}_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$$

e em seguida obtemos $x_e[n]$ aplicando a $\bar{x}_e[n]$ o filtro FIR interpolador linear.

$$h[n] = \begin{cases} 1 - |n|/L, & |n| \le L \\ 0. & \end{cases}$$

Filtro PB: Filtro FIR passa-baixa de fase linear com ganho em baixas frequências L, frequência de corte normalizada $\omega_c = \min(\pi/L; \pi/M)$ e ordem suficientemente grande para suprimir o aliasing da interpolação ou decimação. Utilize o comando **fir1** (leia documentação) para o projeto deste filtro e apresente sua resposta em frequência.

Decimador: Decima-se o sinal de entrada definindo o sinal decimado como:

$$x_d[n] = x_i[nM]$$

4. Reconstrua o sinal original substituindo a nota incorreta x[n] por $x_d[n]$, calcule o espectro do sinal reconstruído e escute-o para verificar a eficiência do método.

Encerramento

Final da aula 19.

Próxima aula:

Função de Transferência Discreta.

31/10/2019