Dokumentierter Unterrichtsbesuch

Übersicht

I alamanaan	Details Derails
Lehrperson:	Patrick Pfändler
Studiengang:	HFP Bauführung
Fach:	Baustoffe
Klasse:	HTf-26
Semester:	1
Anzahl Schüler:	14
Ort:	Bauschule Aarau
Datum:	16.12.2024
Uhrzeit:	08:00 - 10:00
Unterrichtszeit:	2 Stunden
Schulzimmer:	301
Schulzimmerausrüstung:	Beamer (2x), Hellraumprojekterersatz, Flipchart
Persönliche Ausrüstung:	Laptop, Pointer, IPad
Inhalt der Lektion:	Carolabrücke, Korrosionsbeständige Bewehrung, Betoninstandsetzung

CHANGELOG

14.12.2024: Update Dokument mit Updates zur Carolabrücke.

Inhaltsverzeichnis

1	Bed	digungsanalyse	4
	1.1	Zielgruppenanalyse	4
	1.2	Rahmenbedingungen	4
			4
	1.3		5
	1.4		5
			5
		C	5
2	Lek	tionsplanung	6
	2.1	Fachliche Grundlagen	6
	2.2	Lernziele	6
		2.2.1 Fachkompetenzen	6
	2.3	Sozialform	6
	2.4		6
	2.5	Grobplanung der Unterrichtseinheit	6
		2.5.1 Stand von letzter Woche	6
		2.5.2 Inhalte der Lektion	7
		2.5.3 Ziele der Lektion	7
		2.5.4 Mikroebene	7
		2.5.5 Spezielles	7
	2.6	Verlaufsplanung	8
3	Ref	lexion 1	0
	3.1	Selbstreflexion	0
Li	teratı	ur 1	1
Αı	nhan	g 1	2
		bplanung	4
		Folien für die Lektion	6

Abkürzungsverzeichnis

Bsp.	Beispiel
BS	Baustoffe
LP	Lehrperson
SF	Sozialform
FK	Fachkompetenz
OS	Oberflächenschutzsystem
GFK	Glasfaserverstärkter Kunststoff
ASTRA	Bundesamt für Strassen

1 Bedigungsanalyse

1.1 Zielgruppenanalyse

Die Zielgruppen sind angehende Bauführer und Bauführerinnen. Die Studierenden sind zwischen 20 und 30 Jahre alt und haben meistens eine abgeschlossene Berufslehre als Maurer, teilweise eine abgeschlossene Weiterbildung zum Polier oder Vorarbeiter (inkl. Berufsbildnerkurs). Teilweise gibt es ältere Studierende, welche aufgrund eines gesundheitlichen Leidens von der IV an die Bauschule Aarau überwiesen wurden um dort die Ausbildung zum Bauführer zu absolvieren. Aus diesen Gründen kann die Motivation sowohl instrinsisch als auch extrinsisch sein. Sie verfügen über praktische Erfahrung im Baugewerbe und haben bereits erste Erfahrungen in der Bauführung in den Unternehmen gesammelt.

Schlussendlich soll der Unterricht eine Vorbereitung auf die eigenössische Prüfung zum Bauführer sein. Vor der eigenössischen Prüfungen findet nochmals ein Repetitionsblock statt.

Die Vorkenntnisse können aufgrund vorhandener oder nicht vorhandener Weiterbildungen sehr unterschiedlich sein. Ebenfalls besteht eine grosse Heterogenität in den Lernvoraussetzungen, da die Studierenden aus unterschiedlichen Berufsfeldern (Quereinsteiger) kommen können.

Die Arbeit auf Baustellen setzt voraus, dass sich die Studierenden Teamfähigkeiten aneignen und sich in einem Team integrieren können.

Die Studierenden sind sich besonders anfangs nicht mehr gewöhnt den ganzen Tag zu sitzen und im Schulzimmer zu verbringen. Die Kenntnisse in der Anwendung von digitalen, kollaborativen Tools sind unterschiedlich ausgeprägt. Die Selbstorganisation der Studierenden ist unterschiedlich ausgeprägt, je nach Ausbildungsstand. Die Meisten müssen sich in der Selbstorganisation erst wieder zurechtfinden.

1.2 Rahmenbedingungen

1.2.1 Strukturelle Rahmenbedingungen

Das Zeitbudget für die Unterrichtszeit beträgt 2 Stunden. Der Unterricht findet in der Bauschule Aarau statt. Die Schülerzahl beträgt 14 Personen. Der Unterricht beginnt um 08:00 Uhr und endet um 10:00 Uhr. Die Lektion startet überlicherweise im Schulzimmer.

Die Studierenden haben eine fixes Schulzimmer zugeteilt und eine fixe Sitzordnung. Der Lehrerpult befindet sich vorne in der Mitte des Raumes. Der Beamer ist an der Decke montiert und kann über ein Kabel mit dem Laptop verbunden werden. Ein Hellraumprojektor ist ebenfalls vorhanden. Ein Flipchart steht zur Verfügung.

Die Studierenden arbeiten in der Regel mit einem Laptop und einem Tablet. Einzelne Studiererende drucken die Unterlagen aus. Für einige Aufgaben wird ein Taschenrechner vorausgesetzt.

1.3 Jahresplanung

Für das Fach Baustoffe stehen rund 64 h Unterrichtszeit zur Verfügung. Diese Lektion ist die letzte Doppelstunde im Fach Baustoffe. Weitere Lektionen bei dieser Klasse sind erst im Jahr 2025 geplant. Die genannten Lektionen sollen dann spezifisch auf die HFP Prüfung vorbereiten. Aktuell gibt es leider keine Musterprüfungen für die HFP Prüfung. Diese wurden 2024 erwartet, sind aber noch nicht verfügbar.

Die Anzahl der Lektionen hat sich im Verlauf des Semesters auf über 80 h erhöht und die Planung musste angepasst werden.

1.4 Berufspädaogisches Konzept

1.4.1 Kognitive Taxonomiestufen nach Bloom

Tabelle 1.1: Kognitive Taxonomiestufen nach Bloom [1], adaptiert von [2].

Stufen	Begriff	Beschreibung
K1	Wissen	Sie geben gelerntes Wissen wieder und rufen es in gleichartiger Situation ab.
K2	Verstehen	Sie erklären oder beschreiben gelerntes Wissen in eigenen Worten.
K3	Anwenden	Sie wenden gelernte Technologien/Fertigkeiten in unterschiedlichen Situationen
		an.
K4	Analyse	Sie analysieren eine komplexe Situation, d.h. sie gliedern Sachverhalte in Ein-
		zelelemente, decken Beziehungen zwischen Elementen auf und finden Struktur-
		merkmale heraus.
K5	Synthese	Sie kombinieren einzelne Elemente eines Sachverhalts und fügen sie zu einem
		Ganzen zusammen.
K6	Beurteilen	Sie beurteilen einen mehr oder weniger komplexen Sachverhalt aufgrund von
		bestimmten Kriterien.

1.4.2 RITA-Modell

Die Lektion wird nach dem RITA-Modell durchgeführt. Die Studierenden werden mit konkreten Aufgaben aus der Praxis konfrontiert und ihr Vorwissen, Erfahrungen, Haltungen zum Thema oder gar erste Problemlösungen werden aktiviert. Diese Rythmisierte Unterrichtsablauf wird in der Tabelle Abschnitt 1.4.2 dargestellt und ist Teil des berufspädagogischen Konzepts der Bauschule Aarau [2]

Tabelle 1.3: RITA-Modell, adaptiert von [2].

Phase	Beschreibung	Umschreibung
R:	Ressourcen aktivieren	Studierende werden mit konkreten Aufgaben aus der Praxis konfrontiert; Vorwissen, Erfahrungen, Haltungen zum Thema oder gar erste Problemlösungen werden aktiviert.
I:	Informationen verarbeiten	
T:	Transfer anbahnen	
A:	Auswerten	

2 Lektionsplanung

2.1 Fachliche Grundlagen

Die Studierenden hatten über 60 h das Fach Baustoffe. Sämtliche Themen wurden bereits abgehandelt, sowohl formativ als auch summativ geprüft.

Die nächste Prüfung wird den Studierenden jeweils bekannt gegeben. Verschiebung der Prüfungstermine sind nach Rücksprache mit der LP möglich.

2.2 Lernziele

2.2.1 Fachkompetenzen

Die Studierenden repetieren die wichtigsten Themen des Fachs Baustoffe. Die Lernziele **©** für die einzelnen Themen sind den Studierenden bekannt.

2.3 Sozialform

Die Sozialform ist in den meisten Fällen Frontalunterricht. Die Studierenden sitzen im Schulzimmer und hören der Lehrperson zu. Es wird auf eine aktive Beteiligung der Studierenden geachtet und aktive gefördert.

Gemäss meinen eigenen Zielen für den Didaktikkurs sollen zusätzliche Medien im Unterricht verwendet werden, als auch Gruppenarbeiten durchgeführt werden.

2.4 Medieneinsatz

Der Beamer wird häufig für die Präsentation der Lerninhalte verwendet. Ein Hellraumprojektor steht als Ersatz zur Verfügung. Ein Flipchart wird für die Visualisierung von Inhalten bei Bedarf verwendet.

2.5 Grobplanung der Unterrichtseinheit

2.5.1 Stand von letzter Woche

In der letzten Woche konnte der Unterricht nicht abgeschlossen werden. Die Studierden hatten sich sehr aktiv beteiligt, Inputs eingebracht und Fragen gestellt. Aus diesen Gründen musste das Video zu korrosionsbeständiger Bewehrung nach rund 15 min auf die nächste Lektion verschoben werden. Eine kurze Sachanalyse wurde durchgeführt und befindet sich im Anhang Abschnitt 2.5.5.

2.5.2 Inhalte der Lektion

- Aktivierung der Studierenden mit Repetitionsfragen und Rechenaufgaben zur letzten Lektion mit Folien (*Ressourcen aktivieren*)
- Weitergehen mit dem Video (Minute 16 bis 48) zu korrosionsbeständiger Bewehrung (*Information verarbeiten*)
- Diskussion über die Vor- und Nachteile von korrosionsbeständiger Bewehrung (*Transfer anbahnen*)
- Praktische Umsetzung des gelernten anhand von Beispielen aus der Praxis als Gruppenarbeit (*Auswerten*)

2.5.3 Ziele der Lektion

Für die Lektion sind folgende Ziele definiert:

- Kenntnisse über die Möglichkeiten korrosionsbeständiger Bewehrungsmaterialien
 - Nicht-rostender Betonstahl
 - Faserbewehrung
 - * Glasfaser-Bewehrung
 - * Carbonfaser-Bewehrung
 - * Basalfaser-Bewehrung

2.5.4 Mikroebene

Diese Lektion ist die letzte Lektion im Fach Baustoffe vor den Weihnachtsferien. Die Studierenden sind üblicherweise nicht mehr so fokussiert und häufig stehen noch Prüfungen in anderen Fächern an.

2.5.5 Spezielles

Ein Studierender kann derzeit nicht physisch am Unterricht teilnehmen und wird daher über Teams zugeschaltet. Die Lehrperson hat die Möglichkeit, den Studierenden über Teams zuzuschalten. Der Unterricht wird aber nicht ausgelegt auf einen Hybridunterricht.

Nachtrag: Carolabrücke Erster Bericht zur Carolabrücke wurde freigegeben. Das Thema des Einsturzes ware vor den Herbstferien ein Thema im Unterricht und soll daher nochmals aufgegriffen werden.

2.6 Verlaufsplanung

Zeit	Aktivität der Lehrperson	Aktivitäten der Studierenden	Medieneinsatz
08:00 - 08:05	Einstieg: Begrüssung der Studierenden und Vorstellung von Natalie Räber; Anschliessend vorstellen des Programms; Abholen, ob Fragen zur Lektionsunterricht bestehen; Webuntis: Erfassen der Absenzen; Skizzieren des Stundenablaufs mit PP	Begrüssung der Lehrperson und vorbereiten der Unterlagen; Hören der LP zu.	Beamer mit PP-Folien und Zuschalten von Alessandro auf Teams
08:05 - 08:15	Aktivierung: Input zur Carolabrücke (Resultate der Analyse)	Aktives Zuhören und Notizen machen (nach Bedarf)	Beamer mit PP-Folien und 2min 30 s Video
08:15 - 08:35	Aktivierung: Repetitionsfragen zur letzten Lektion und Rechenaufgaben zur korrosionsbeständigen Bewehrung; (Details auf den Folien)	Beantworten der Fragen und lösen der Rechenaufgaben	Beamer mit PP-Folien
08:35 - 09:10	Information: Video zu korrosionsbeständiger Bewehrung (Minute 16 bis 48)	Schauen des Videos und Notizen machen	Beamer mit Video
09:10 - 09:20	Pause: evtl. bereits Video unterbrechen		
09:20 - 09:25	Transfer: Diskussion über die Vor- und Nachteile von kor- rosionsbeständiger Bewehrung; Eindrücke zum Video; ggf. Verknüpfung mit bereits durchgeführten Lektionen im Fach BS	Diskussion in der Klasse	
09:25 - 09:30	Transfer: Diskussion über das Lösen von Dauerhaftigkeitigkeitsproblemen in der Praxis; Wie sichert ihr die Dauerhaftigkeit auf der Baustelle. Prüfen, wie in den Gruppen gearbeitet wird.	Diskussion in der Klasse	Nach Bedarf Ipad oder Flipchart oder Folien
		Fortsetzung	auf der nächsten Seite

Zeit	Aktivität der Lehrperson	Aktivitäten der Studierenden	Medieneinsatz
09:30 - 09:45	Transfer: Gruppenarbeit (2-er): Wo könnt ihr in eurem Arbeitsalltag vorstellen eine alternavtive Form der Bewehrung zu verwenden?	Bearbeiten der Aufgaben in Gruppen	Nach Bedarf Ipad oder Flipchart oder Folien
09:45 - 09:50	Transfer: Diskussion der Gruppenarbeiten im Plenum	Aktives zuhören; Vorstellen der eigenen Gruppenarbeit	Nach Bedarf Ipad oder Flipchart oder Folien
09:50 - 09:55	Abschluss: Zusammenfassung der wichtigsten Punkte von heute; Ausblick auf die nächsten Wochen nach den Ferien; evtl. Quiz nach den Ferien zum Thema (als summative Leistungsüberprüfung)	Zuhören	Beamer mit PP resp. PDF mit Semestepro- gramm
09:55 - 10:00	Abschluss: Verabschiedung der Studierenden	Zusammenpacken der Unterlagen im Fach BS und Verabschiedung der LP	Beamer mit PP-Folien
10:00 - 10:15	Backup Material: Weiter mit dem Folien zu den Instandsetzungskonzepten.	nächste Unterrichtsstunde startet	
10:00 - 11:00	Nachbereitung: Feedbackrunde mit Natalie Räber	nächste Unterrichtsstunde startet	
später	Nachbereitung: Optimieren der Lektion	nächste Unterrichtsstunde startet	

3 Reflexion

3.1 Selbstreflexion

Didaktische Entscheidungen reflektieren, Zielerreichung analysieren, Optimierungsbedarf benennen und begründen	
Planung und Durchführung vergleichen und Abweichungen differenziert begründen.	
Eigenes Handeln als Lehrperson im Hinblick auf das Lernen der Schülerinnen und Schüler reflektieren, Handlungsalternativen entwickeln und begründen.	
Entwicklungsziele und nächste Schritte formulieren und begründen.	

Literatur Baustoffe

Literatur

[1] Benjamin S. Bloom u. a. *Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook 1: Cognitive Domain.* New York: Longman, 1956.

[2] Bauschule Aarau. Berufspädagogisches Konzept. Internes Dokument. 2024.

Literatur Baustoffe

Anhang

HTf-26 Baustoffe

Programm Baustoffe

Klasse: HTf-26

Zeit: 08:00 bis 10:00 Uhr (120 Minuten) im Raum 201

Anzahl Schüler: 13

Stand: 15. Dezember 2024

Datum	KW	Inhalt	Bemerkung
22.10.2024	43	Dauerhaftigkeit, Einstieg nach Ferien	
28.10.2024	44	Quiz Metall, Holz- und Holzwerkstoffe	
04.11.2024	45	Holz- und Holzwerkstoffe	
11.11.2024	46	Prüfung: Wärmedämmstoffe und Metalle und Holz- und Holzwerkstoffe	
18.11.2024	47	Nachbesprechung Prüfung; Abschluss Holz- und Holzwerkstoffe; Start Natursteine	
25.11.2024	48	Natursteine und Innovation im Bauwesen	
02.12.2024	49	Innovation im Bauwesen und Nachbesprechung Natursteine	
09.12.2024	50	Betoninstandsetzung	
16.12.2024	51	Korrosionsbeständige Bewehrung; evtl. weiter mit	
		Betoninstandsetzung	
23.12.2024	52	Ferien	
06.01.2025	2	Betoninstandsetzung;	
13.01.2025	3	Prüfung: Holz- und Holzwerkstoffe, Natursteine	
20.01.2025	4	Prüfungsnachbesprechung	
27.01.2025	5	Ferien	
03.02.2025	6	Innovation im Bauwesen	
10.02.2025	7	evtl. Bitumen	
17.02.2025	8	Prüfung: Innovation im Bauwesen und Reserve	
24.02.2025	9	Zusammenfassung und Feedback	letzte Lektion im Fach Baustoffe

Literatur Baustoffe

Sachanalyse

Im folgenden wird die Sachanalyse kurz skiziert.

• **Grundlagen:** Korrosionsbeständige Bewehrung ist eine Bewehrung aus Stahl oder anderen Materialien, die so beschaffen ist, dass sie besonders widerstandsfähig gegen Korrosion (Rostbildung) ist. Diese Art von Bewehrung wird insbesondere in Bereichen eingesetzt, in denen aggressive Umwelteinflüsse wie Chloride (z. B. Streusalz) oder Kohlendioxid das Risiko für Korrosion erhöhen.

• Hintergrund: In Stahlbetonbauwerken dient Beton als alkalisches Schutzmedium für den Stahl. Der hohe pH-Wert im Beton sorgt dafür, dass der Stahl durch eine natürliche Passivschicht geschützt bleibt. Sobald der pH-Wert aufgrund von Karbonatisierung oder durch das Eindringen von Chloriden sinkt, wird die Passivschicht zerstört und Korrosion kann einsetzen. Dies führt zu einer Reduzierung der Tragfähigkeit und erhöhten Instandhaltungskosten.

• Materialien:

- Niederig oder hochlegierter Stahl (nichtrostender Stahl): Enthält höhere Anteile an Chrom, Nickel und oft Molybdän. Diese Legierungskomponenten bilden eine stabile Passivschicht auf der Oberfläche, die den Stahl vor Korrosion schützt. Diese Bewehrung wird oft in Brücken oder maritimen Bauwerken eingesetzt.
- Verzinkter Stahl: Der Stahl wird mit einer Zinkschicht versehen, die als Opferanode dient. Die Zinkschicht korrodiert zuerst und schützt so den darunterliegenden Stahl. Diese Methode ist kostengünstiger als nichtrostender Stahl, hat jedoch eine begrenzte Lebensdauer.
- Epoxidharz-beschichteter Stahl (Epoxy Coated Rebars): Der Stahl wird mit einer Epoxidschicht überzogen, die das Eindringen von Wasser und Chloriden verhindert. Diese Methode ist besonders geeignet für Bereiche mit hoher Chloridbelastung, z. B. Parkhäuser oder Strassenbauwerke.
- Faserverbundwerkstoffe (z. B. GFK-Bewehrungen): Diese bestehen aus Glas- oder Carbonfasern, die in einer Harzmatrix eingebettet sind. Sie sind vollständig korrosionsfrei und deutlich leichter als Stahl (begzogen auf ein konstantes Materialvolumen). GFK-Bewehrungen werden in speziellen Anwendungen wie Offshore-Bauwerken oder wasserführenden Konstruktionen verwendet.
- Basaltfasern und andere innovative Materialien: Basaltfasern zeichnen sich durch hohe chemische Beständigkeit und Zugfestigkeit aus. Diese Materialien bieten eine umweltfreundlichere Alternative, da sie aus natürlichen Rohstoffen hergestellt werden.
- Kombinierte Systeme: In einigen Fällen werden mehrere Schutzmassnahmen kombiniert, z. B. epoxidbeschichteter Stahl und ein Oberflächenschutzsystem (OS), um die Vorteile verschiedener Ansätze zu vereinen.
- Vorteile: Die Verwendung von korrosionsbeständiger Bewehrung führt zu einer erheblich verlängerten Lebensdauer von Bauwerken, reduziert langfristige Wartungs- und Instandsetzungskosten und trägt zu einer besseren Nachhaltigkeit bei. Insbesondere bei Infrastrukturbauten, die hohen Belastungen durch Umwelt- oder Nutzungsbedingungen ausgesetzt sind, wird die Dauerhaftigkeit entscheidend verbessert.
- Nachteile: Höhere Anschaffungskosten können zunächst abschreckend wirken. Zusätzlich sind einige Materialien, wie Glasfaserverstärkte Kunststoffe, schwieriger zu verarbeiten und erfordern spezielle Kenntnisse. In bestimmten Fällen, z. B. bei nichtmetallischen Bewehrungen, muss auch das Trag- und Verbundverhalten neu bewertet werden. (*Hinweis:* zu Ingenieurlastig vermeiden)

• **Praxisbeispiele:** Einsatz in aggressiven Umweltbedingungen wie Brücken in Küstenregionen oder Tunnelbauwerke mit hoher Chloridbelastung. Auch bei wasserführenden Konstruktionen wie Klärbecken findet korrosionsbeständige Bewehrung Anwendung. Für besonders langlebige Bauwerke wird sie ebenfalls zunehmend verwendet.

• Bedeutung für den Unterricht: Das Thema vermittelt den Studierenden ein Verständnis für moderne, und dauerhafte Bauweisen. Es regt dazu an, technologische Lösungen im Kontext realer Herausforderungen zu bewerten. Dies mit einem Fokus, dass die Übertragbarkeit auf die Alltagsituationen der Studierenden gegeben ist.

Für die Lektion fand sich ein passenedes Video auf Youtube, welches die wichtigsten Teile von korrosionsbeständigen Bewehrungsmaterialien erklärt. Die Sprache ist auf Deutsch und herausgegeben von Bundesamt für Strassen (ASTRA).

3.1 Folien für die Lektion

bau_schule

Lektionsprogramm HTf-26

Patrick Pfändler

16. Dezember 2024

Inhalt der Lektion

bau_schule

- Carolabrücke
- Betoninstandsetzung
 - Repetition
 - Beispiele aus eurer Praxis?
 - Korrosionsbeständige Bewehrung
- Organisatorisches
 - Uploads auf Teams
 - Nächste Prüfung
 - Fragen zur letzten Lektion

Zwischenergebnisse

Die vorliegenden Zwischenergebnisse deuten darauf hin, dass wasserstoffinduzierte Spannungsrisskorrosion die Hauptursache für das Versagen ist. ^a

^awww.dresden.de

Wasserstoffinduzierte Spannungsrisskorrosion (SCC) bau_schule

Spannungsrisskorrosion

Wasserstoffinduzierte Spannungsrisskorrosion (SCC) ist ein Schadensmechanismus, der unter spezifischen Voraussetzungen in hochbelasteten Metallen, wie vergütetem Spannstahl (u. a. auch Hennigsdorfer Spannstahl), auftreten kann. Dabei diffundiert Wasserstoff in die innere Gefügestruktur und führt dort unter anhaltender mechanischer Spannung zu Mikrorissen, die sich fortschreitend ausbreiten und schlieddlich zum spröden Versagen des Stahls führen können. Mangelnder Schutz vor Feuchtigkeit, korrosive Umgebung oder Verarbeitungsfehler begünstigen diesen Prozess. ^a

^awww.dresden.de

Video zur Carolabrücke

bau_schule

• Link zum Video

Wichtigste Konsequenzen

bau_schule

- Die **gesamte** Brücke wird für den Verkehr gesperrt und muss abgerissen werden.
- Wasserstrasse darf nur nach der Installation eines Schallemissionssystems wieder freigegeben werden.

Wichtigste Konsequenzen

bau_schule

- Die **gesamte** Brücke wird für den Verkehr gesperrt und muss abgerissen werden.
- Wasserstrasse darf nur nach der Installation eines Schallemissionssystems wieder freigegeben werden.

Verschulden

Eine umfassende Aktenlage belegt, dass das Bauwerk innerhalb der geltenden Regelwerke bewertet und betrieben wurde.

Wichtigste Erkenntnisse

bau_schule

- → **Haupteinsturzursache:** Wasserstoffinduzierte Spannungsrisskorrosion
- → **Konsequenz:** Einsturz nicht vorhersagbar, da keine ausgeprägte Rissbildung.
- → **Schuldfrage:** Gesetzliche Vorgaben eingehalten, keine Versäumnisse.
- → **Spannstahldefekte:** Über 68 Prozent der Spannglieder in der Fahrbahnplatte von Zug C waren an der Bruchstelle stark geschädigt.
- → **Massnahmen:** Abriss der **gesamten** Brücke, temporäre Installation eines Schallemissionssystems. Bau einer neuen Brücke.
- → Tausalze: Sogenannte chloridinduzierte Korrosion hat an Brückenzug C stattgefunden, war jedoch nicht ursächlich für den Einsturz.

Lernziele: Einsturz der Carolabrücke

bau_schule

Lernziele

- Kenntnisse über die Ursache des Teileinsturzes der Carolabrücke
- Verständnis für die Konsequenzen des Einsturzes
- Wissen über die wichtigsten Erkenntnisse aus dem Zwischenbericht

Repetition: Von letzter Woche

bau_schule

Mögliche Schäden an Betonbauwerken: Beton

- Mechanisch
- Chemisch
- Physikalisch

Repetition: Von letzter Woche

bau_schule

Mögliche Schäden an Betonbauwerken: Bewehrung

- Karbonatisierung
- Korrosionsfördernde Verunreinigungen
- Streuströme

Beispiele von eurer Arbeit?

bau_schule

- Welche Schäden an Betonbauwerken habt ihr schon gesehen?
- Wie wurden diese behoben?
- Wie könnt ihr es in der Zukunft vermeiden resp. verbessern?

Definition Begriff: Korrosion

bau_schule

Korrosion

Korrosion ist aus technischer Sicht die Reaktion eines Werkstoffs mit seiner Umgebung, die eine messbare Veränderung des Werkstoffs bewirkt. Korrosion kann zu einer Beeinträchtigung der Funktion eines Bauteils oder Systems führen. Eine durch Lebewesen verursachte Korrosion wird als Biokorrosion bezeichnet. ^a

^aQuelle: Wikipedia

Lernziele: Korrosionsbeständige Bewehrung

bau_schule

Lernziele

• Kenntnisse über die Möglichkeiten korrosionsbeständiger Bewehrungsmaterialien

Nicht-rostender Betonstahl

Faserbewehrung

Glasfaser-Bewehrung

Carbonfaser-Bewehrung

Basalfaser-Bewehrung

Hauptursache für Schädigung

bau_schule

Frage

Was ist die Hauptursache für die Schädigung von Betonbauwerken?

- Chloride
- Karbonatisierung
- Frost-Tausalz
- Kombination aus anderen Schädigungsmechanismen

Hauptursache für Schädigung

bau_schule

Frage

Was ist die Hauptursache für die Schädigung von Betonbauwerken?

- Chloride
- Karbonatisierung
- Frost-Tausalz
- Kombination aus anderen Schädigungsmechanismen

Lebensdauermodell

bau_schule

Frage

Welcher Stahl hatte im gezeigten Schema die längere Lebensdauer (rote Linie)?

- Unlegierter Betonstahl
- Nichtrostender Betonstahl

Lebensdauermodell

bau_schule

Frage

Welcher Stahl hatte im gezeigten Schema die längere Lebensdauer (rote Linie)?

- Unlegierter Betonstahl
- ✓ Nichtrostender Betonstahl

SIA Merkblatt 2029

bau_schule

Nichtrostender Betonstahl

Die Gruppe der nichtrostenden Betonstähle umfasst Stahlsorten mit einem Chromgehalt von mindestens 10.5 Massen-Prozent.

Klassifizierung Korrosionswiderstand

bau_schule

Wirksumme (PREN)

Die Wirksumme (PREN) ist ein Näherungsmaß für den Widerstand gegen Lochkorrosion. Sie wird nach folgender Formel berechnet:

$$\mathsf{PREN} = \mathsf{Cr} + 3.3 \cdot \mathsf{Mo} + 16 \cdot \mathsf{N}$$

Klassifizierung der Stahlsorten:

• Ferritische Stahlsorten: n = 0

• Duplex-Stahlsorten: n = 16

• Austenitische Stahlsorten: n = 30

Beispiel für die Berechnung von PREN

bau_schule

Gegeben ist ein Stahl mit:

Chrom (Cr): 18%

Molybdän (Mo): 2%Stickstoff (N): 0.15%

Frage

Berechnen Sie den PREN-Wert für diesen Stahl.

Lösung

bau_schule

Lösung

Berechnung:

$$\begin{aligned} \mathsf{PREN} &= \mathsf{Cr} + 3.3 \cdot \mathsf{Mo} + 16 \cdot \mathsf{N} \\ &= 18 + 3.3 \cdot 2 + 16 \cdot 0.15 \\ &= 18 + 6.6 + 2.4 \\ &= 27 \end{aligned}$$

Lösung

bau_schule

Lösung

Berechnung:

$$\begin{aligned} \mathsf{PREN} &= \mathsf{Cr} + 3.3 \cdot \mathsf{Mo} + 16 \cdot \mathsf{N} \\ &= 18 + 3.3 \cdot 2 + 16 \cdot 0.15 \\ &= 18 + 6.6 + 2.4 \\ &= 27 \end{aligned}$$

Interpretation: Mit einem PREN-Wert von 27 zeigt diese Stahlsorte einen moderaten Widerstand gegen Lochkorrosion und fällt in die Kategorie **Duplex-Stahlsorten**.

Klassifizierung Korrosionswiderstand

bau_schule

Korrosionswiderstandsklassen (KWK)

Die Einteilung eines (nichtrostenden) Betonstahls in die KorrosionswiderstandSklassen KWK (0 - 4) wird aufgrund seiner Wirksumme vorgenommen.

Korrosionswiderstandsklassen (KWK)

bau_schule

KWK	Wirksumme	Bemerkungen / typische Vertreter			
0	0–9	Unlegierter oder niedrig legierter Betonstahl			
1	10–16	Chromstähle			
2	17–22	Chromnickelstähle			
3	23–30	Chromnickelstähle mit Molybdän			
4	≥ 31	Stahlstorten mit erhöhtem Gehalt an Chrom und/oder Molybdän			

Tabelle: Quelle: SIA Merkblatt 2029, Tabelle 1

Korrosionswiderstandsklassen (KWK) - Werkstoffe

bau_schule

KWK	Werkstoff-Nr.	Kurzbeschreibung	Mo, M%	N, M%	WS	
1	1.4003	X2CrNi 12 / X2Cr 11	10.5	-	-	11
1	Top 12 (1.4003)	X2CrNi 12 / X2Cr 11	12.1	0.5	-	13
2	1.4301	X5CrNi 18-10	17	-	-	17
3	1.4401	X5CrNiMo 17-12-2	16.5	2	-	23
3	1.4429	X2CrNiMoN 17-13-3	16.5	2.5	0.12	27
4	1.4462	X2CrNiMoN 22-5-3	21	2.5	0.10	31
4	1.4529	X1NiCrMoCuN 25-20-7	19	6	0.15	41

Tabelle: Quelle: SIA Merkblatt 2029, Tabelle 2; Steeltec-group, Top 12 Technical Datasheet

Beispiel zur Einteilung in die KWK

bau_schule

Frage

Welche Korrosionswiderstandsklasse (KWK) hat die Legierung von vorher? (Wirksumme = 27)

Beispiel zur Einteilung in die KWK

bau_schule

Frage

Welche Korrosionswiderstandsklasse (KWK) hat die Legierung von vorher? (Wirksumme = 27)

Lösung

Lösung:

KWK 3

Vorteile von nichtrostendem Betonstahl

bau_schule

Frage

Welches sind Vorteile von nichtrostendem Betonstahl bei Betonbauwerken? (Hinweis: Denke an die Exposition)

Vorteile von nichtrostendem Betonstahl

bau_schule

Frage

Welches sind Vorteile von nichtrostendem Betonstahl bei Betonbauwerken? (Hinweis: Denke an die Exposition)

Lösung

Vorteile:

☑ Geringere Überdeckung bei gleicher Lebensdauer möglich. ⇒ schlankere Bauteile, weniger Betonverbrauch möglich

bau_schule

Wahl der Korrosionswiderstandsklasse

	Beton-	Expositions -klasse	c _{nom} (mm)	Empfohlene Korrosionswiderstandsklasse KWK			
	sorte			für c _{nom}		für c _{red} < c _{nom}	
				keine Karbonatisierung	Karbonatisierung	≥ 20 mm	≥ 30 mm
Hochbauten	Α	XC2(CH)	35	0	0	1	
	В	XC3(CH)	35	0	0	1	
	С	XC4(CH) XF1(CH)	40	0	1	1	
Tiefbauten	D+E	XC4(CH) XD1(CH) XF2/4(CH)	40	0	1	2	1
	F+G	XC4(CH) XD3(CH) XF2/4(CH)	55	0	2	4	3

Abbildung: Quelle: SIA Merkblatt 2029, Tabelle 3

Korrosionsbeständige Bewehrung

bau_schule

Video

• Weiter ab 15 min

Uploads auf Teams

bau_schule

• Terminprogramm für nach den Weihnachtsferien

Nächste Prüfung

bau_schule

• 13.01.2024 : Prüfung: Holz-und Holzwerkstoffe, Natursteine

Fragen zur letzten Lektion

bau_schule

Haben Sie Fragen zur letzten Lektion?