

目录

第二章 <mark>质点运动学</mark>	1
§2.1 质点的运动学方程	1
2.1.1位移和路程相关概念的理解	1
2.1.2已知运动方程求位移和路程	2
§2.2 速度和加速度	2
2.2.1速度相关概念的理解和简单计算	2
2.2.2加速度相关概念的理解	3
2.2.3 已知运动方程求速度	4
§2.3 质点直线运动——从坐标到速度和加速度	4
2.3.1 直角坐标系中的速度和加速度	4
§2.4 质点直线运动——从加速度到速度和坐标	5
2.4.1 已知加速度求速度	5
2.4.2已知加速度求运动方程	5
2.4.3 已知加速度求速度和位置	6
§2.5 平面直角坐标系·抛体运动	8
2.5.1 已知运动方程求速度	8
2.5.2 已知运动方程求加速度	9
§2.6 自然坐标·切向和法向加速度	10
2.6.1 自然坐标中的速度和加速度	10
2.6.2 已知运动方程求加速度	11
2.6.3 已知加速度求速度和位置	12
2.6.4已知运动方程求轨道方程、速度和加速度、曲率半径	13
§2.7 极坐标系·径向速度与横向速度	14
2.7.1极坐标系中的速度和加速度	14
§2.8 伽利略变换	15
2.8.1 相对运动的位置关系	15
2.8.2相对运动的速度关系	15
第三章 动量•牛顿运动定律•动量守恒定律	17
§3.1 牛顿第一定律和惯性参考系	17
3.1.1 惯性的理解	17
§3.3 主动力和被动力	17
3.3.1弹性力	17
3.3.2弹簧的串并联	18
3.3.3摩擦力	19
§3.4 牛顿运动定律的应用	20
3.4.1 牛顿第二定律	20
3.4.2已知运动方程求力	24
3.4.3动力学与运动学的结合	24

§3.6 用冲量表述的动量定理	26
3.6.1 质点的动量定理	26
§3.7 质点系动量定理和质心运动定理	31
3.7.1 质心运动定理	31
3.7.2质点系动量定理	32
§3.8 动量守恒定律	33
第四章 <mark>动能和势能</mark>	36
§4.2 力的元功·用线积分表示功	36
§4.3 质点和质点系动能定理	37
§4.4 保守力与非保守力·势能	38
§4.5 功能原理和机械能守恒定律	39
§4.6 对心碰撞	43
第五章 <mark>角动量</mark>	48
§5.1 质点的角动量定理及角动量守恒定律	48
§5.2 质点系的角动量定理及角动量守恒定律	52
第六章 万有引力定律	54
§6.2 万有引力定律·引力质量与惯性质量	54
第七章 <mark>刚体力学</mark>	
§7.1 刚体运动的描述	56
7.1.1定轴转动的运动学	56
§7.2 刚体的动量和质心运动定理	
7.2.1 刚体的质心	
§7.3 刚体定轴转动的角动量·转动惯量	
7.3.1 <mark>转动惯量</mark>	
7.3.2定轴转动的转动定律	
7.3.3定轴转动的碰撞	
§7.4 刚体定轴转动的动能定理	
7.4.1 定轴转动的动能定理	
7.4.2定轴转动的碰撞	
§7.5 刚体平面运动的动力学	
§7.6 刚体的平衡	
第八章 振动	
§8.2 简谐振动的运动学	
8.2.1 简谐振动的特征量	
8.2.2 简谐振动的表达式	
8.2.3振动曲线	
8.2.4 <u>旋转矢量</u>	
§8.3 简谐振动的能量转化	
§8.4 简谐振动的合成	
8.4.1 同方向同频率简谐振动的合成	81

第九章	过波动和声		 		 	
§ 9.	.2 平面简谐波方程		 		 	
	9.2.1波的特征量	<mark></mark>	 	<mark></mark>	 	
	9.2.2波的表达式		 	, ,	 	
	9.2.3波形图					
§ 9.	.4 平均能流密度		 		 	
§ 9.	.5 波的叠加和干涉	• 驻波	 	<i></i>	 	
	9.5.1波的干涉		 		 	
	9.5.2 驻波		 		 	
89.	.6 多普勒效应		 		 	

《力学》练习题 第二章 质点运动学

第二章 质点运动学

§2.1 质点的运动学方程

2.1.1 位移和路程相关概念的理解

第 001 题 v20230903

质点作圆周运动, 在 t 时刻质点的位置矢量为 \vec{r} , t 至 $t+\Delta t$ 时间内的位移为 $\Delta \vec{r}$, 路程为 Δs , 则

- (A) $|\Delta \vec{r}| = \Delta s = \Delta r$
- (B) $|\Delta \vec{r}| \neq \Delta s \neq \Delta r$, 当 $\Delta t \to 0$ 时,有 $|d\vec{r}| = ds \neq dr$
- (C) $|\Delta \vec{r}| = \Delta s \neq \Delta r$, 当 $\Delta t \to 0$ 时,有 $|d\vec{r}| = ds \neq dr$
- (D) $|\Delta \vec{r}| \neq \Delta s \neq \Delta r$, 当 $\Delta t \to 0$ 时,有 $|d\vec{r}| = ds = dr$

答案

В

解析

 \vec{r} 是 t 时刻质点相对原点的位置矢量,r 是质点与原点之间的距离; \vec{r}' 是 t' 时刻质点相对原点的位置矢量,r' 是质点与原点之间的距离;时间间隔 $\Delta t = t' - t$,这段时间内质点的位移 $\Delta \vec{r} = \vec{r}' - \vec{r}$,位移的大小为 $|\Delta \vec{r}|$ 。而 $\Delta r = r' - r$ 是两个时刻质点到原点之间距离的变化量,一般情况下 $\Delta r \neq |\Delta \vec{r}|$, Δr 可正可负, $|\Delta \vec{r}|$ 不可能为负。当 $\Delta t \to 0$ 时,对于一个元过程,无穷小的变化量 Δ 写成 Δt 可 Δt

$$\vec{r} = x \, \vec{e}_x + y \, \vec{e}_y + z \, \vec{e}_z$$

$$\vec{r}' = x' \, \vec{e}_x + y' \, \vec{e}_y + z' \, \vec{e}_z$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$r' = \sqrt{(x')^2 + (y')^2 + (z')^2}$$

$$\Delta \vec{r} = (x' - x) \, \vec{e}_x + (y' - y) \, \vec{e}_y + (z' - z) \, \vec{e}_z$$

$$|\Delta \vec{r}| = \sqrt{(x' - x)^2 + (y' - y)^2 + (z' - z)^2}$$

$$\Delta r = \sqrt{(x')^2 + (y')^2 + (z')^2} - \sqrt{x^2 + y^2 + z^2}$$

$$d\vec{r} = (dx) \, \vec{e}_x + (dy) \, \vec{e}_y + (dz) \, \vec{e}_z$$

$$|d\vec{r}| = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$$

第二章 质点运动学 《力学》练习题

$$dr = \sqrt{(x+dx)^2 + (y+dy)^2 + (z+dz)^2} - \sqrt{x^2 + y^2 + z^2} = d\sqrt{x^2 + y^2 + z^2} = \frac{x dx + y dy + z dz}{\sqrt{x^2 + y^2 + z^2}}$$

2.1.2 已知运动方程求位移和路程

第 002 题 v20230903

一质点沿 x 轴运动的规律是 $x = t^2 - 4t + 5(SI)$,则前三秒内它的

(A) 位移和路程都是 3 m

(B) 位移和路程都是 -3 m

(C) 位移是 -3 m, 路程是 3 m

(D) 位移是 -3 m, 路程是 5 m

答案

D

解析

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = 2t - 4$$

t=2 s 时, v=0, 质点运动方向发生改变

$$x(0) = 0^2 - 4 \times 0 + 5 = 5$$

$$x(2) = 2^2 - 4 \times 2 + 5 = 1$$

$$x(3) = 3^2 - 4 \times 3 + 5 = 2$$

$$\Delta x = x(3) - x(0) = -3 \text{ m}$$

$$s = [x(0) - x(2)] + [x(3) - x(2)] = 5 \text{ m}$$

§2.2 速度和加速度

2.2.1 速度相关概念的理解和简单计算

第 003 题 v20230903

一质点在平面上作一般曲线运动,其瞬时速度为 \vec{v} ,瞬时速率为 v,某一段时间内的平均速度为 \bar{v} ,平 均速率为 \bar{v} ,则有

- (A) $|\vec{v}| = v$, $|\bar{\vec{v}}| = \bar{v}$ (B) $|\vec{v}| \neq v$, $|\bar{\vec{v}}| = \bar{v}$ (C) $|\vec{v}| \neq v$, $|\bar{\vec{v}}| \neq \bar{v}$ (D) $|\vec{v}| = v$, $|\bar{\vec{v}}| \neq \bar{v}$

《力学》练习题 第二章 质点运动学

答案

D

第 004 题 v20230903

一物体在 1 秒内沿半径 R=1 m 的圆周上从 A 点运动到 B 点,如图所示,则物体的平均速度是

- (A) 大小为 2 m/s, 方向由 A 指向 B
- (B) 大小为 2 m/s,方向由 B 指向 A
- (C) 大小为 3.14 m/s,方向为 A 点切线方向 (D) 大小为 3.14 m/s,方向为 B 点切线方向

答案

Α

第 005 题 v20230903

质点沿半径为 R 的圆周作匀速率运动,每 T 秒转一圈。在 2T 时间间隔中,其平均速度大小与平均速 率大小分别为

- (A) 0, 0

- (B) 0, $\frac{2\pi R}{T}$ (C) $\frac{2\pi R}{T}$, 0 (D) $\frac{2\pi R}{T}$, $\frac{2\pi R}{T}$

答案

В

第 006 题 v20230903

质点沿半径为 R 的圆周作匀速率运动,每 T 秒转一圈。在 2T 时间间隔中,其平均速度大小为

0

2.2.2 加速度相关概念的理解

第 007 题 v20230903

以下运动形式中, ā 保持不变的运动是

- (A) 单摆的运动
- (C) 行星的椭圆轨道运动

- (B) 匀速率圆周运动
- (D) 抛体运动

《力学》练习题 第二章 质点运动学

答案

D

2.2.3 已知运动方程求速度

第 008 题 v20230903

某质点的空间运动方程为 $\vec{r}=A\cos(\omega t)$ $\vec{e}_x+B\sin(\omega t)$ \vec{e}_y+Ct \vec{e}_z ,其中 A、B、C、 ω 均为正常数,t 为时间,则任意 t 时刻质点运动的速度为 $\vec{v}=$ ____。

答案

 $-A\omega\sin(\omega t)\vec{e}_x + B\omega\cos(\omega t)\vec{e}_y + C\vec{e}_z$

解析

$$\vec{r} = A\cos(\omega t) \,\vec{\mathbf{e}}_x + B\sin(\omega t) \,\vec{\mathbf{e}}_y + Ct \,\vec{\mathbf{e}}_z$$

$$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = -A\omega\sin(\omega t) \,\vec{\mathbf{e}}_x + B\omega\cos(\omega t) \,\vec{\mathbf{e}}_y + C \,\vec{\mathbf{e}}_z$$

§2.3 质点直线运动——从坐标到速度和加速度

2.3.1 直角坐标系中的速度和加速度

第 009 题 v20230903

离水面高度为 H 的岸上有人用绳索拉船靠岸,人以恒定速率 v_0 拉绳,求当船离岸的距离为 s 时,船的速率和加速度的大小。

解答

以水面与岸的交点为坐标原点,船所在方向为x轴正方向,设任意t时刻,船的位置为x,此时绳子的长度为L,则有

$$L^2 = H^2 + x^2 \tag{1 \%}$$

所以有

$$2L\frac{\mathrm{d}L}{\mathrm{d}t} = 2x\frac{\mathrm{d}x}{\mathrm{d}t} \tag{2 \%}$$

$$L(-v_0) = xv \tag{2 \%}$$

$$v = -\frac{L}{x}v_0 = -\frac{\sqrt{H^2 + x^2}}{x}v_0 \tag{2 \%}$$

所以当船离岸 s 时,船的速率为 $\frac{\sqrt{H^2+s^2}}{s}v_0$ 。 (1分)

《力学》练习题 第二章 质点运动学

又由 $L(-v_0) = xv$ 可得

$$\frac{\mathrm{d}L}{\mathrm{d}t}(-v_0) = \frac{\mathrm{d}x}{\mathrm{d}t}v + x\frac{\mathrm{d}v}{\mathrm{d}t} \tag{2 \%}$$

$$(-v_0)(-v_0) = v \cdot v + xa \tag{2 }$$

$$a = \frac{v_0^2 - v^2}{x} = \frac{v_0^2}{x} \left(1 - \frac{L^2}{x^2} \right) = -\frac{H^2 v_0^2}{x^3} \tag{2 \(\frac{2}{3}\)}$$

所以当船离岸 s 时,船的加速度的大小为 $\frac{H^2v_0^2}{s^3}$ 。 (1分)

§2.4 质点直线运动——从加速度到速度和坐标

2.4.1 已知加速度求速度

第 010 题 v20230903

一质点沿 x 方向运动,其加速度随时间变化关系为 $a=3+2t(\mathrm{SI})$,如果 t=0 时质点的速度 $v_0=5$ m/s,则当 t=3 s 时,质点的速度 $v=\underline{\qquad}$ m/s。

答案

23

解析

$$a = \frac{dv}{dt} = 3 + 2t$$

$$dv = a dt = (3 + 2t) dt$$

$$\int_{5}^{v} dv = \int_{0}^{3} (3 + 2t) dt$$

$$v - 5 = (3t + t^{2})_{0}^{3} = 18$$

$$v = 23 \text{ m/s}$$

2.4.2 已知加速度求运动方程

第 011 题 v20230903

一质点沿 x 轴运动,其加速度为 a=6t(SI),已知 t=0 时,质点位于 x=10 cm 处,初速度 $v_0=0$,则该质点的运动方程为 (SI)。

《力学》练习题 第二章 质点运动学

答案

 $x = 0.1 + t^3$

解析

$$a = 6t = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$\mathrm{d}v = 6t \,\mathrm{d}t$$

$$\int_0^v \mathrm{d}v = \int_0^t 6t \,\mathrm{d}t$$

$$v = 3t^2 = \frac{\mathrm{d}x}{\mathrm{d}t}$$

$$\mathrm{d}x = 3t^2 \,\mathrm{d}t$$

$$\int_{0.1}^x \mathrm{d}x = \int_0^t 3t^2 \,\mathrm{d}t$$

$$x - 0.1 = t^3$$

$$x = 0.1 + t^3$$

2.4.3 已知加速度求速度和位置

第 012 题 v20230903

在有阻尼的介质中,从静止开始下落的物体,其运动过程中加速度为 a = A + Bv,其中 A > 0、B < 0为常量,v 为速度。求: (1) 下落物体的起始加速度; (2) 下落物体加速度为零时的速度; (3) 下落物体 任意 t 时刻的速度。

解答

(1)

$$a(v=0) = A \tag{3 \%}$$

(2)

$$a = A + Bv = 0$$

$$v = -\frac{A}{B} \tag{3 \%}$$

(3)

$$a = A + Bv = \frac{\mathrm{d}v}{\mathrm{d}t} \tag{3 \%}$$

$$\frac{\mathrm{d}v}{A + Bv} = \mathrm{d}t \tag{3 \%}$$

$$\frac{\mathrm{d}v}{A + Bv} = \mathrm{d}t \tag{3 \%}$$

$$\int_0^v \frac{\mathrm{d}v}{A + Bv} = \int_0^t \mathrm{d}t \tag{2 \%}$$

《力学》练习题 第二章 质点运动学

$$\frac{1}{B} \ln \frac{A + Bv}{A} = t$$

$$\ln \frac{A + Bv}{A} = Bt$$

$$\frac{A + Bv}{A} = e^{Bt} = 1 + \frac{B}{A}v$$

$$\frac{B}{A}v = e^{Bt} - 1$$

$$v = \frac{A}{B}(e^{Bt} - 1)$$
(1 \(\frac{\frac{\frac{\frac{\frac{A}}{B}}}{B}}{D}})

第 013 题 v20230903

一艘正在沿直线以速率 v_0 行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即 $a=-kv^2$,k 为常数。在关闭发动机后,试求: (1) 船在 t 时刻的速率; (2) 在时间 t 内,船行驶的距离; (3) 船在行驶距离 x 时的速率。

解答

(1)

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -kv^2$$
$$-\frac{\mathrm{d}v}{v^2} = k\,\mathrm{d}t \tag{2 \(\frac{1}{2}\)}$$

$$\int_{v_0}^{v} -\frac{\mathrm{d}v}{v^2} = \int_0^t k \, \mathrm{d}t$$

$$\frac{1}{v} - \frac{1}{v_0} = kt$$

$$(2 \%)$$

$$\frac{1}{v} = \frac{1}{v_0} + kt = \frac{1 + kv_0t}{v_0}$$

$$v = \frac{v_0}{1 + kv_0t}$$
(1 分)

(2)

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{v_0}{1 + kv_0 t}$$
$$\mathrm{d}x = \frac{v_0}{1 + kv_0 t} \,\mathrm{d}t \tag{2 \(\frac{\frac{\frac{1}{2}}}{1 + kv_0 t}}\)$$

$$\int_0^x dx = \int_0^t \frac{v_0}{1 + kv_0 t} dt$$
 (2 $\%$)

$$u = 1 + kv_0t$$

$$du = kv_0 dt$$

$$\mathrm{d}t = \frac{1}{kv_0} \, \mathrm{d}u$$

$$x = \int_0^t \frac{v_0}{1 + kv_0 t} dt = \int_1^{1 + kv_0 t} \frac{v_0}{u} \frac{1}{kv_0} du = \frac{1}{k} \ln(1 + kv_0 t)$$
 (1 $\frac{2}{h}$)

《力学》练习题 第二章 质点运动学

(3)

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}x} = -kv^2$$
$$\frac{\mathrm{d}v}{v} = -k \,\mathrm{d}x \tag{2 \(\frac{\phi}{v}\)}$$

$$\frac{\mathrm{d}v}{v} = -k \,\mathrm{d}x \tag{2 } \%$$

$$\int_{v_0}^v \frac{\mathrm{d}v}{v} = \int_0^x -k \,\mathrm{d}x \tag{2 } \%$$

$$\ln \frac{v}{v_0} = -kx$$

$$v = v_0 e^{-kx} \tag{1 \%}$$

或者

$$x = \frac{1}{k}\ln(1 + kv_0 t) \tag{1 \%}$$

$$kx = \ln(1 + kv_0 t) \tag{1 \%}$$

$$e^{kx} = 1 + kv_0t \tag{1 \%}$$

$$v = \frac{v_0}{1 + k v_0 t} = v_0 e^{-kx}$$
 (2 $\%$)

§2.5 平面直角坐标系·抛体运动

2.5.1 已知运动方程求速度

第 014 题 v20230903

一质点在 xy 平面内运动。运动学方程为 $x=6t(\mathrm{SI})$ 和 $y=19-2t^2(\mathrm{SI})$,则质点第 2 秒末的瞬时速度 大小 $v_2=$ _____m/s。

答案

10

$$x = 6t$$

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = 6$$

$$y = 19 - 2t^2$$

$$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = -4t$$

$$\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y = 6 \vec{e}_x - 4t \vec{e}_y$$

$$\vec{v}(t=2) = 6 \vec{e}_x - 8 \vec{e}_y$$

 $v(t=2) = \sqrt{6^2 + (-8)^2} = 10 \text{ m/s}$

2.5.2 已知运动方程求加速度

第 015 题 v20230903

某质点的运动方程为 $x=t+2(\mathrm{SI}),\ y=t^2+2(\mathrm{SI}),\ 则质点的加速度矢量表达式为 <math>\vec{a}=$ _____m/s²。

答案

 $2\vec{e}_y$

解析

$$x = t + 2, v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = 1, a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t} = 0$$
$$y = t^2 + 2, v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = 2t, a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t} = 2$$
$$\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y = 2 \vec{e}_y$$

第 016 题 v20230903

已知一质点的运动学方程 $\vec{r}=4t^2\,\vec{\mathrm{e}}_x+(2t+3)\,\vec{\mathrm{e}}_y(\mathrm{SI})$,则该质点的加速度 $\vec{a}=$ _____m/s²。

答案

 $8\,\vec{\mathrm{e}}_x$

$$\vec{r} = 4t^2 \vec{e}_x + (2t+3) \vec{e}_y$$
$$\vec{v} = \frac{d\vec{r}}{dt} = 8t \vec{e}_x + 2 \vec{e}_y$$
$$\vec{a} = \frac{d\vec{v}}{dt} = 8 \vec{e}_x$$

§2.6 自然坐标·切向和法向加速度

2.6.1 自然坐标中的速度和加速度

第 017 题 v20230903

自然坐标系中,运动质点的速度一定沿 方向。

答案

切向

第 018 题 v20230903

下列说法中,哪一个是正确的?

- (A) 一质点在某时刻的瞬时速率是 2 m/s,说明它在此后 1 s 内一定要经过 2 m 的路程
- (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大
- (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零
- (D) 物体加速度越大,则速度越大

答案

 \mathbf{C}

第 019 题 v20230903

一质点做半径为 R 的变速圆周运动,记任意 t 时刻质点的速率为 v,则任意 t 时刻质点的加速度的大 小为

(A) $\frac{v^2}{R}$

(B) $\frac{\mathrm{d}v}{\mathrm{d}t}$

- (C) $\frac{v^2}{R} + \frac{dv}{dt}$ (D) $\sqrt{\left(\frac{v^2}{R}\right)^2 + \left(\frac{dv}{dt}\right)^2}$

答案

D

$$a_t = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$a_n = \frac{v^2}{R}$$

$$a = \sqrt{a_t^2 + a_n^2} = \sqrt{\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^2 + \left(\frac{v^2}{R}\right)^2}$$

《力学》练习题 第二章 质点运动学

2.6.2 已知运动方程求加速度

第 020 题 v20230903

一质点沿半径为 R 的圆周运动,其路程 s 随时间 t 变化的规律为 $s=At-Bt^2$,式中 A、B 为大于零的常量,则 t 时刻质点的切向加速度 $a_t=$ ____。

答案

-2B

解析

$$s = At - Bt^{2}$$

$$v = \frac{ds}{dt} = A - 2Bt$$

$$a_{t} = \frac{dv}{dt} = -2B$$

第 021 题 v20230903

一质点沿半径为 R 的圆周运动,其路程 s 随时间 t 变化的规律为 $s=At+Bt^2$,式中 A、B 为大于零的常量,则 t 时刻质点的加速度大小等于

(A) 2B

(B)
$$\frac{(A+2Bt)^2}{R}$$

(C)
$$\frac{A^2}{R}$$

(D)
$$\sqrt{4B^2 + \frac{(A+2Bt)^4}{R^2}}$$

答案

D

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = A + 2Bt$$

$$a_t = \frac{\mathrm{d}v}{\mathrm{d}t} = 2B$$

$$a_n = \frac{v^2}{R} = \frac{(A + 2Bt)^2}{R}$$

$$a = \sqrt{a_t^2 + a_n^2} = \sqrt{4B^2 + \frac{(A + 2Bt)^4}{R^2}}$$

《力学》练习题 第二章 质点运动学

2.6.3 已知加速度求速度和位置

第 022 题 v20230903

从某高楼天台以水平初速度 v_0 射出一发子弹,取枪口为坐标原点,沿 v_0 方向为 x 轴正方向,竖直向下为 y 轴正方向,并取发射时刻为时间原点,重力加速度大小为 g,求: (1) 子弹在 t 时刻的位置坐标; (2) 子弹的轨道方程; (3) 子弹在 t 时刻的速度、切向加速度和法向加速度。

解答

(1)

$$v_x = v_0, x = v_0 t \tag{2 \%}$$

$$v_y = gt, y = \frac{1}{2}gt^2 \tag{2 \%}$$

(2)

$$t = \frac{x}{v_0}$$

$$y = \frac{1}{2}g \times \frac{x^2}{v_0^2} = \frac{g}{2v_0^2}x^2$$
(3 \(\frac{\frac{\frac{1}}{2}}{2}\)

(3)

$$\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y = v_0 \vec{e}_x + gt \vec{e}_y \tag{2 }$$

$$v = \sqrt{v_0^2 + g^2 t^2} \tag{2 \%}$$

$$a_t = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{g^2 t}{\sqrt{v_0^2 + g^2 t^2}} \tag{2 \(\frac{1}{2}\)}$$

$$a_n = \sqrt{g^2 - a_t^2} = \frac{v_0 g}{\sqrt{v_0^2 + g^2 t^2}} \tag{2 \%}$$

或者

$$\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y = v_0 \vec{e}_x + gt \vec{e}_y$$
(2 $\cancel{\Im}$)

$$v = \sqrt{v_0^2 + g^2 t^2} \tag{2 $\cancel{2}$ }$$

$$\sin\theta = \frac{v_y}{v} = \frac{gt}{\sqrt{v_0^2 + g^2 t^2}} \tag{1 \(\frac{\frac{1}{2}}{2}\)}$$

$$\cos \theta = \frac{v_x}{v} = \frac{v_0}{\sqrt{v_0^2 + g^2 t^2}} \tag{1 \(\frac{\frac{1}{7}}{V}\)}$$

$$a_t = g\sin\theta = \frac{g^2t}{\sqrt{v_0^2 + g^2t^2}}\tag{1 }$$

$$a_n = g\cos\theta = \frac{v_0 g}{\sqrt{v_0^2 + g^2 t^2}}$$
 (1 $\frac{2}{3}$)

《力学》练习题 第二章 质点运动学

已知运动方程求轨道方程、速度和加速度、曲率半径

第 023 题 v20230903

质点作平面曲线运动, 其运动方程为 x = 3t m, $y = 1 - t^2$ m。求: (1) 质点运动的轨道方程; (2)t = 2 s 时质点的速度和加速度; (3)t 时刻, 质点的切向加速度、法向加速度和所在处轨道的曲率半径。

解答

(1)

$$x = 3t, y = 1 - t^{2}$$

$$t = \frac{x}{3}$$

$$y = 1 - t^{2} = 1 - \frac{x^{2}}{9}$$

$$x^{2} + 9y - 9 = 0$$
(3 $\%$)

(2)

$$v_x = \frac{\mathrm{d}x}{\mathrm{d}t} = 3$$

$$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = -2t$$

$$v_y = \frac{\mathrm{d}y}{\mathrm{d}t} = -2t\vec{o}$$

$$v_z = 0 + v_z \vec{o} = 3\vec{o} - 2t\vec{o}$$

$$\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y = 3 \vec{e}_x - 2t \vec{e}_y$$

$$a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t} = 0$$
(2 分)

$$a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t} = -2$$

$$\vec{a} = a_x \, \vec{\mathbf{e}}_x + a_y \, \vec{\mathbf{e}}_y = -2 \, \vec{\mathbf{e}}_y \tag{2 \(\frac{\psi}{\psi}\)}$$

$$\vec{v}(t=2) = 3\vec{e}_x - 4\vec{e}_y \tag{1 \%}$$

$$\vec{a}(t=2) = -2\,\vec{\mathbf{e}}_y \tag{1 $\boldsymbol{\beta}$ }$$

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{9 + 4t^2} \tag{1 \%}$$

$$a = \sqrt{a_x^2 + a_y^2} = 2 {(1 \%)}$$

$$a_t = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{4t}{\sqrt{9+4t^2}} \tag{1 \%}$$

$$a_n = \sqrt{a^2 - a_t^2} = \sqrt{4 - \frac{16t^2}{9 + 4t^2}} = \frac{6}{\sqrt{9 + 4t^2}}$$
 (1 $\frac{2}{3}$)

$$a_n = \frac{v^2}{\rho} \tag{1 \%}$$

$$a_n = \frac{v^2}{\rho}$$

$$\rho = \frac{v^2}{a_n} = \frac{9 + 4t^2}{\frac{6}{\sqrt{9 + 4t^2}}} = \frac{(9 + 4t^2)^{3/2}}{6}$$

$$(1 \%)$$

《力学》练习题 质点运动学

§2.7 极坐标系·径向速度与横向速度

极坐标系中的速度和加速度 2.7.1

第 024 题 v20230903

杆以匀角速 ω_0 绕过其固定端 O 且垂直于杆的轴转动。以 O 为极点,t=0 时刻杆所在方向为极轴,沿 杆转动方向为极角正方向建立极坐标系。在 t=0 时刻,位于 O 的小球从静止开始沿杆做加速度大小 为 a_0 的匀加速运动。试求在上述极坐标系下,(1) 小球在 t 时刻的速度矢量的表达式; (2) 小球在 t 时 刻的加速度矢量的表达式。

解答

平面极坐标系中的速度和加速度分别为

$$v_{\rho} = \frac{\mathrm{d}\rho}{\mathrm{d}t} \tag{2 \%}$$

$$v_{\rho} = \frac{\mathrm{d}\rho}{\mathrm{d}t}$$

$$v_{\theta} = \rho \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$(2 \ \%)$$

$$(2 \ \%)$$

$$a_{\rho} = \frac{\mathrm{d}^2 \rho}{\mathrm{d}t^2} - \rho \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 \tag{2 \%}$$

$$a_{\theta} = 2\frac{\mathrm{d}\rho}{\mathrm{d}t}\frac{\mathrm{d}\theta}{\mathrm{d}t} + \rho\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} \tag{2 \(\frac{\psi}{\psi}\)}$$

依题意,有

$$\rho = \frac{1}{2}a_0t^2$$

$$\frac{d\theta}{dt} = \omega_0 \tag{1 $\%$ }$$

所以

$$v_{\rho} = \frac{\mathrm{d}\rho}{\mathrm{d}t} = a_0 t \tag{1 \(\frac{\psi}{\psi}\)}$$

$$v_{\theta} = \rho \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{2} a_0 \omega_0 t^2 \tag{1 \(\frac{\frac{1}{2}}{2}\)}$$

$$a_{\rho} = \frac{\mathrm{d}^2 \rho}{\mathrm{d}t^2} - \rho \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = a_0 - \frac{1}{2}a_0\omega_0^2 t^2 \tag{1 \%}$$

$$a_{\theta} = 2\frac{\mathrm{d}\rho}{\mathrm{d}t}\frac{\mathrm{d}\theta}{\mathrm{d}t} + \rho\frac{\mathrm{d}^{2}\theta}{\mathrm{d}t^{2}} = 2a_{0}\omega_{0}t \tag{1 \(\frac{\psi}{\psi}\)}$$

小球在 t 时刻的速度为

$$\vec{v} = a_0 t \, \vec{\mathbf{e}}_\rho + \frac{1}{2} a_0 \omega_0 t^2 \, \vec{\mathbf{e}}_\theta$$
 (1 $\frac{2}{3}$)

小球在 t 时刻的加速度为

$$\vec{a} = \left(a_0 - \frac{1}{2}a_0\omega_0^2 t^2\right)\vec{\mathbf{e}}_\rho + 2a_0\omega_0 t\,\vec{\mathbf{e}}_\theta \tag{1 \(\mathcal{T}\)}$$

《力学》练习题 第二章 质点运动学

§2.8 伽利略变换

2.8.1 相对运动的位置关系

第 025 题 v20230903

某个瞬间,在某坐标系中,A 的位置矢量为 $x_1 \vec{e}_x + y_1 \vec{e}_y$,B 的位置矢量为 $x_2 \vec{e}_x + y_2 \vec{e}_y$,则 A 相对于 B 的位置矢量为_____。

答案

$$(x_1 - x_2) \vec{e}_x + (y_1 - y_2) \vec{e}_y$$

解析

以题设坐标系为静止参考系,B 为运动参考系,A 为研究对象,则

$$\vec{r} = x_1 \vec{e}_x + y_1 \vec{e}_y$$

$$\vec{r}_0 = x_2 \vec{e}_x + y_2 \vec{e}_y$$

$$\vec{r}' = \vec{r} - \vec{r}_0 = (x_1 - x_2) \vec{e}_x + (y_1 - y_2) \vec{e}_y$$

2.8.2 相对运动的速度关系

第 026 题 v20230903

小船船头指向东北方向,以速度 \vec{v}_1 行驶,船上乘客测得风从北方以速度 \vec{v}_2 吹来,则风相对于地面的速度 \vec{v} 由以下哪一个矢量合成图确定?

《力学》练习题 第二章 质点运动学

答案

В

解析

以东为x轴正方向,北为y轴正方向。以地为静止参考系,船为运动参考系,风为研究对象,则

$$\vec{v}_0 = \vec{v}_1 = v_1 \left(\frac{1}{\sqrt{2}} \vec{e}_x + \frac{1}{\sqrt{2}} \vec{e}_y \right)$$
$$\vec{v}' = \vec{v}_2 = -v_2 \vec{e}_y$$
$$\vec{v} = \vec{v}_0 + \vec{v}' = \vec{v}_1 + \vec{v}_2$$

第三章 动量 · 牛顿运动定律 · 动量守恒定律

§3.1 牛顿第一定律和惯性参考系

3.1.1 惯性的理解

第 027 题 v20230903

关于惯性有下面四种表述, 正确的是

- (A) 物体静止或作匀速运动时才具有惯性
- (C) 物体受力作变速运动时没有惯性
- (B) 物体在任何情况下均有惯性
 - (D) 物体受力作变速运动才具有惯性

答案

В

§3.3 主动力和被动力

3.3.1 弹性力

第 028 题 v20230903

如图所示,一轻弹簧的两端分别固连着质量均为 m=1 kg 的两个物体 A 和 B,用细线将它们悬挂起来,将细线烧断瞬间,物体 A 的加速度的大小为 $a_A=$ _______m/s²,取重力加速度大小为 g=10 m/s²。

答案

20

解析

静止时,弹簧张力

$$T = m_B g = 10 \text{ N}$$

线烧断瞬间,弹簧形变不变,弹力不变

$$T + m_A g = m_A a_A$$
$$a_A = 20 \text{ m/s}^2$$

第 029 题 v20230903

三个质量相等的小球由两根相同的轻弹簧联结,再用细绳悬于天花板上,处于静止状态。将绳子剪断瞬间,三个小球的加速度分别为

(A)
$$a_1 = a_2 = a_3 = g$$

(C)
$$a_1 = 2g$$
, $a_2 = g$, $a_3 = 0$

(B)
$$a_1 = g$$
, $a_2 = a_3 = 0$

(D)
$$a_1 = 3g$$
, $a_2 = a_3 = 0$

答案

D

3.3.2 弹簧的串并联

第 030 题 v20230903

一根长为 3*L*、劲度系数为 3*k* 的均匀弹簧截成完全相同的三段,并将它们两端分别相连组成并联弹簧组,则弹簧组的等效劲度系数等于

答案

27k

第 031 题 v20230903

一根自由长度为 $10~\mathrm{cm}$ 、劲度系数为k的均匀弹簧,从中截取一段长度 $3~\mathrm{cm}$,则其劲度系数为

(A) k

- (B) $\frac{3}{10}k$
- (C) $\frac{10}{3}k$
- (D) 3k

答案

 \mathbf{C}

3.3.3 摩擦力

第 032 题 v20230903

自行车在无滑动向右行进过程中,两个车轮所受到的摩擦力

- (A) 前轮所受摩擦力向右, 后轮所受摩擦力向右 (B) 前轮所受摩擦力向右, 后轮所受摩擦力向左
- (C) 前轮所受摩擦力向左, 后轮所受摩擦力向右 (D) 前轮所受摩擦力向左, 后轮所受摩擦力向左

答案

 \mathbf{C}

第 033 题 v20230903

沿水平方向的外力 F 将物体 A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为 f_0 ,若外力增至 2F,则此时物体所受<mark>静摩擦力为____。</mark>

答案

 f_0

第 034 题 v20230903

竖立的圆筒形转笼,半径为 R,绕中心轴 OO' 转动,物块 A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为 μ ,要使物块 A 不下落,圆筒转动的角速度 ω 至少应为

(A) $\sqrt{\frac{\mu g}{R}}$

(B) $\sqrt{\mu g}$

(C) $\sqrt{\frac{g}{\mu R}}$

(D) $\sqrt{\frac{g}{R}}$

 \mathbf{C}

§3.4 牛顿运动定律的应用

3.4.1 牛顿第二定律

第 035 题 v20230903

一质量为 m 的石块被大风刮得从崖顶落下,若大风对石块始终作用一稳定水平力 F,则石块下落过程中的加速度大小 $a=_$ 。设重力加速度大小为 g。

答案

$$\sqrt{g^2 + \frac{F^2}{m^2}}$$

第 036 题 v20230903

设空气的阻力不计,空气的浮力不变,一气球的总质量为 M(包括压舱沙袋),以大小为 a 的加速度铅直下降。今欲使它以大小为 a 的加速度铅直上升,则应从气球中抛掉沙袋的质量为____。设重力加速度大小为 g。

答案

 $\frac{2aM}{g+a}$

解析

$$Mg - F = Ma$$

$$F - mg = ma$$

$$F = M(g - a) = m(g + a)$$

$$m = \frac{g - a}{g + a}M$$

$$\Delta m = M - m = \frac{2a}{g+a}M$$

第 037 题 v20230903

如图所示,在倾角为 θ 的固定光滑斜面上,放一质量为 m 的光滑小球,球被竖直的木板挡住,在把竖直木板迅速拿开的这一瞬间,小球获得的加速度为

(A) $g \sin \theta$

(B) $g\cos\theta$

(C) $\frac{g}{\sin \theta}$

(D) $\frac{g}{\cos\theta}$

答案

A

第 038 题 v20230903

电梯内有一个用电线铅直悬挂的灯。已知当电梯以大小为 a 的加速度减速下降时,电线中的张力为 T,那么当电梯以大小为 a 的加速度加速上升时,电线中的张力为_____。设重力加速度大小为 g。

答案

T

第 039 题 v20230903

不计弹簧测力计的质量,测力计下方挂一质量为 1 kg 的重物,测力计上方作用有一大小为 20 N、方向 竖直向上的力,则弹簧测力计的示数为 (取重力加速度大小 $g=10~{\rm m/s^2}$)

(A) 0 N

(B) 10 N

(C) 15 N

(D) 20 N

答案

D

第 040 题 v20230903

如图所示,弹簧秤下挂一轻滑轮,滑轮两边各挂质量为m和2m的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m及2m的运动过程中,弹簧秤的读数为

(A) 3mg

(B) $\frac{8}{3}mg$

(C) 2mg

(D) mg

答案

В

解析

$$(2m)g - T = (2m)a$$

$$T - mg = ma$$

$$2mg - T = 2(T - mg)$$

$$3T = 4mg$$

$$T = \frac{4mg}{3}$$

第 041 题 v20230903

如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为 m_1 和 m_2 的重物,且 $m_1 > m_2$ 。滑轮质量及轴上摩擦均不计,此时重物 m_2 的加速度的大小为 a。今用一竖直向下的恒力 $F = m_1 g$ 代替质量为 m_1 的物体,可得质量为 m_2 的重物的加速度的大小为 a',则

(A) a' > a

(B) a' = a

(C) a' < a

(D) 无法确定

答案

A

$$m_1g - T = m_1a$$
 $T - m_2g = m_2a$
 $(m_1 - m_2)g = (m_1 + m_2)a$
 $a = \frac{m_1 - m_2}{m_1 + m_2}g$

$$F - m_2 g = m_2 a'$$

$$a' = \frac{F - m_2 g}{m_2} = \frac{m_1 - m_2}{m_2} g$$

第 042 题 v20230903

如图所示,物体 B 通过轻滑轮与物体 A 相连 (轻绳不可伸长)。若将两者由静止释放后,B 以加速度 a_1 向右运动; 若去掉物体 A,并用与 A 的重力相同的力 F 竖直向下拉动绳子,B 仍向右运动,其加 速度为 a_2 ,则

(A) $a_1 > a_2$ (B) $a_1 = a_2$

(C) $a_1 < a_2$

(D) 无法判断

答案

 \mathbf{C}

解析

$$m_{A}g - T = m_{A}a_{1}$$
 $T - \mu m_{B}g = m_{B}a_{1}$
 $F - \mu m_{B}g = m_{B}a_{2}$
 $(m_{A} - \mu m_{B})g = (m_{A} + m_{B})a_{1}$
 $a_{1} = \frac{m_{A} - \mu m_{B}}{m_{A} + m_{B}}g$
 $a_{2} = \frac{F - \mu m_{B}g}{m_{B}} = \frac{m_{A} - \mu m_{B}}{m_{B}}g$

第 043 题 v20230903

如图,不计两个定滑轮与绳的质量,不计一切摩擦,绳子不可伸长。在水平外力 F 的作用下,绳中的 张力大小 $T = ____$ 。设重力加速度大小为 g。

 $\scriptstyle \frac{m_2(F+m_1g)}{m_1+m_2}$

解析

$$F - T = m_1 a$$
$$T - m_2 g = m_2 a$$

解得

$$a = \frac{F - m_2 g}{m_1 + m_2}$$
$$T = \frac{m_2 (F + m_1 g)}{m_1 + m_2}$$

3.4.2 已知运动方程求力

第 044 题 v20230903

一质量为 m 的质点沿 x 轴正方向运动,假设该质点通过坐标为 x(x>0) 的位置时速度的大小为 kx (k 为正值常量),则此时作用于该质点上的合力 $F=____$ 。

答案

 mk^2x

解析

$$v = kx$$

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = k\frac{\mathrm{d}x}{\mathrm{d}t} = kv = k^2x$$

$$F = ma = mk^2x$$

3.4.3 动力学与运动学的结合

第 045 题 v20230903

如图所示,光滑的水平桌面上放置一半径为 R 的固定圆环,物体紧贴环的内侧作圆周运动,物体与圆环之间的摩擦因数为 μ 。已知 t=0 时物体的速率为 v_0 ,求:(1) 任意 t 时刻物体的速率 v; (2) 当物体速率从 v_0 减少到 $\frac{1}{2}v_0$ 时,物体所经历的时间及经过的路程。

解答

(1) 自然坐标系

$$-\mu m \frac{v^2}{R} = ma_t \tag{2 \%}$$

$$a_t = -\mu \frac{v^2}{R} = \frac{\mathrm{d}v}{\mathrm{d}t} \tag{1 \%}$$

$$-\frac{\mathrm{d}v}{v^2} = \frac{\mu}{R} \,\mathrm{d}t \tag{2 \frac{\frac{h}}{V}}$$

$$\int_{v_0}^{v} -\frac{\mathrm{d}v}{v^2} = \int_0^t \frac{\mu}{R} \, \mathrm{d}t$$

$$\frac{1}{v} - \frac{1}{v_0} = \frac{\mu}{R} t$$

$$(2 \%)$$

$$\frac{1}{v} = \frac{1}{v_0} + \frac{\mu}{R}t = \frac{R + \mu v_0 t}{v_0 R}$$

$$v = \frac{v_0 R}{R + \mu v_0 t}$$
(1 分)

(2)

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{v_0 R}{R + \mu v_0 t} \tag{2 \%}$$

$$ds = \frac{v_0 R}{R + \mu v_0 t} dt \tag{2 \%}$$

$$s = \int_0^t \frac{v_0 R}{R + \mu v_0 t} dt = \frac{R}{\mu} \ln \frac{R + \mu v_0 t}{R}$$

$$v = \frac{v_0 R}{R + \mu v_0 t} = \frac{v_0}{2}$$
(2 \(\frac{\frac{\frac{1}}{2}}{2}\)

$$\mu v_0 t = R$$

$$t = \frac{R}{\mu v_0}$$

$$s = \frac{R}{\mu} \ln \frac{R + \mu v_0 t}{R} = \frac{R}{\mu} \ln 2$$
(1 \(\frac{\frac{\frac{\frac{\frac{1}{2}}}}{R}}{\text{ (1 \(\frac{\frac{\frac{1}{2}}}{R}}\)}\)

第 046 题 v20230903

一质量为 m 的物体以 v_0 的初速度做竖直上抛运动,若受到的阻力 f 与速度平方成正比,即大小可表示为 $f=kv^2$,其中 k 为常数。设重力加速度为 g。试求此物体 (1) 上升的最大高度; (2) 回到上抛点时的速度大小。

解答

以抛出点为坐标原点,竖直向上为 y 轴正方向,抛出时刻为 t=0。 (1 $\frac{1}{2}$) 在物体上升过程中,它共受到两个力的作用:竖直向下的重力 mg,竖直向下的空气阻力 kv^2 ,所以由牛顿第二定律,有

$$F = -mg - kv^2 = ma \tag{2 \%}$$

$$a = -g - \frac{k}{m}v^2 = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}y} \tag{2 \frac{\psi}{n}}$$

$$\frac{v\,\mathrm{d}v}{g + \frac{k}{m}v^2} = -\,\mathrm{d}y$$

$$\int_{v_0}^{0} \frac{v \, \mathrm{d}v}{g + \frac{k}{m} v^2} = \int_{0}^{H} - \, \mathrm{d}y \tag{2 \(\frac{2}{3}\)}$$

$$H = -\int_{v_0}^{0} \frac{v \, dv}{g + \frac{k}{m}v^2} = \int_{0}^{v_0} \frac{v \, dv}{g + \frac{k}{m}v^2} = \frac{m}{2k} \ln \frac{mg + kv_0^2}{mg}$$
 (1 \(\frac{\frac{\frac{h}}{m}}{mg}\)

在物体下降过程中,它共受到两个力的作用:竖直向下的重力 mg,竖直向上的空气阻力 kv^2 ,所以由牛顿第二定律,有

$$F = -mg + kv^2 = ma (2 \ \%)$$

$$a = -g + \frac{k}{m}v^2 = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}y} \tag{2 \%}$$

$$\frac{v\,\mathrm{d}v}{g-\frac{k}{m}v^2} = -\,\mathrm{d}y$$

$$\int_0^v \frac{v \, \mathrm{d}v}{g - \frac{k}{m}v^2} = \int_H^0 - \mathrm{d}y \tag{2 }$$

$$H = \int_0^v \frac{v \, \mathrm{d}v}{g - \frac{k}{m}v^2} = \frac{m}{2k} \ln \frac{mg}{mg - kv^2}$$

$$v = -v_0 \sqrt{\frac{mg}{mg + kv_0^2}} \tag{1 \%}$$

§3.6 用冲量表述的动量定理

3.6.1 质点的动量定理

第 047 题 v20230903

质量为 m 的小球,沿水平方向以速率 v 与固定的竖直墙壁做弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为

(A)
$$mv$$

(B)
$$0$$

(C)
$$2mv$$

(D)
$$-2mv$$

答案

D

第 048 题 v20230903

一质量为 m 的物体,以初速 \vec{v}_0 从地面抛出,抛射角 $\theta=30^\circ$,如忽略空气阻力,则从抛出到刚要接触地面的过程中,物体动量增量的大小为

答案

 mv_0

第 049 题 v20230903

质量分别为 m_A 和 $m_B(m_A > m_B)$ 、速度分别为 \vec{v}_A 和 \vec{v}_B 的两质点 A 和 B,受到相同的冲量作用,则

- (A) A 的动量增量的绝对值比 B 的小
- (B) A 的动量增量的绝对值比 B 的大

(C) A、B 的动量增量相等

(D) A、B 的速度增量相等

答案

 \mathbf{C}

第 050 题 v20230903

一质量为 m 的物体,原来以速率 v 向北运动,它突然受到外力打击,变为向西运动,速率仍为 v,则外力的冲量大小为 。

答案

 $\sqrt{2}mv$

解析

$$\vec{I} = \Delta \vec{p} = (-mv \,\vec{\mathbf{e}}_x) - (mv \,\vec{\mathbf{e}}_y) = -mv (\vec{\mathbf{e}}_x + \vec{\mathbf{e}}_y)$$

第 051 题 v20230903

如图所示,一斜面固定在卡车上,一物块置于该斜面上。在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动。此时斜面上摩擦力对物块的冲量的方向

- (A) 是水平向前的
- (C) 只可能沿斜面向下

- (B) 只可能沿斜面向上
- (D) 沿斜面向上或向下均有可能

答案

D

第 052 题 v20230903

质量为 1 kg 的小球 (可视为质点) 以 25 m/s 的速度垂直落在地板上,又以 15 m/s 的速度垂直弹 回。小球碰撞地板的瞬间不计其重力,球与地板接触的时间为 0.02 s,作用在地板上的平均冲力的大

答案

2000

解析

$$\vec{I} = \Delta \vec{p} = m\Delta \vec{v}$$

$$I = 1 \times [15 - (-25)] = 40$$

$$\bar{F} = \frac{I}{\Delta t} = \frac{40}{0.02} = 2000$$

第 053 题 v20230903

一物体从某一高度以 v_1 的速率水平抛出,已知它落地时的速率为 v_2 ,设重力加速度大小为g,那么它 运动时间是

- (A) $\frac{v_2-v_1}{g}$
- (B) $\frac{v_2 v_1}{2a}$
- (C) $\frac{\sqrt{v_2^2 v_1^2}}{g}$ (D) $\frac{\sqrt{v_2^2 v_1^2}}{2g}$

答案

 \mathbf{C}

第 054 题 v20230903

力 $\vec{F} = 12t\,\vec{e}_x(SI)$ 作用在质量 m=2 kg 的物体上,使物体由原点从静止开始运动,则它在 3 秒末的动 量为

- (A) $-54\vec{e}_x \text{ kg} \cdot \text{m/s}$ (B) $54\vec{e}_x \text{ kg} \cdot \text{m/s}$ (C) $-27\vec{e}_x \text{ kg} \cdot \text{m/s}$ (D) $27\vec{e}_x \text{ kg} \cdot \text{m/s}$

答案

В

解析

$$\Delta \vec{p} = \vec{I} = \int_0^3 \vec{F} \, dt = (6t^2)_0^3 \, \vec{e}_x = 54 \, \vec{e}_x$$

第 055 题 v20230903

一质点在力 F = 5m(5-2t)(SI) 的作用下,t = 0 时从静止开始做直线运动,式中 m 为质点的质量,t为时间,则当 t=5 s 时,质点的速率为_____m/s。

答案

0

解析

$$\Delta p = mv = I = \int_0^5 F \, dt = 5m(5t - t^2)_0^5 = 0$$

第 056 题 v20230903

一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数 $\mu_0 = 0.2$,滑动摩擦系数 $\mu = 0.16$,现对物体施一水平拉力 F = 2t(SI),则 2 秒末物体的速度大小 $v = ____m/s$ 。(取重力加速 度大小为 $g = 10 \text{ m/s}^2$)

答案

1.4

解析

注意,这题中,当拉力小于最大静摩擦力时,物体保持静止,所以物体开始运动的时刻 to 满足

$$F = 2t_0 = \mu_0 mg = 0.2 \times 1 \times 10 = 2$$

 $t_0 = 1 \text{ s}$

在 t_0 时刻后,物体在拉力 F 和滑动摩擦力 $f = \mu mg$ 作用下运动,此二力方向相反,因此合力为 $F - f = 2t - \mu mg$,从 t_0 到第 2 秒末,物体受到的外力的合冲量为

$$I = \int_{t_0}^{t} (F - f) dt = \int_{t_0}^{t} (2t - \mu mg) dt$$
$$= \left[t^2 - \mu mgt \right]_{1}^{2} = (2^2 - 1^2) - \mu mg(2 - 1) = 3 - 1.6 = 1.4 \text{ N} \cdot \text{s}$$

根据动量定理,有

$$I = \Delta p = m\Delta v = m(v - v_0)$$

 $v = v_0 + \frac{I}{m} = 0 + \frac{1.4}{1} = 1.4 \text{ m/s}$

第 057 题 v20230903

一吊车底板上放一质量为 10 kg 的物体,若吊车底板加速上升,加速度大小为 a=3+5t(SI),则 $t=0\to 2 \text{ s}$ 内吊车底板给物体的冲量大小 I= N·s。(取重力加速度大小为 $g=10 \text{ m/s}^2$)

答案

360

$$a = 3 + 5t$$

$$v = v_0 + 3t + \frac{5}{2}t^2$$

$$v_2 - v_0 = 3 \times 2 + \frac{5}{2} \times 2^2 = 16$$

$$\Delta p = m\Delta v = 160 \text{ kg} \cdot \text{m/s}$$

$$\Delta p = I = I_N + I_G$$

$$I_N = \Delta p - I_G = 160 - (-10 \times 10 \times 2) = 360 \text{ N} \cdot \text{s}$$

第 058 题 v20230903

一颗子弹由枪口射出时的速率为 v_0 , 子弹在枪筒内被加速时,它所受到的合力 F=A-Bt,其中 A、 B 为正值常量。假设子弹走到枪口处合力刚好为零, 试求 (1) 子弹在枪筒内的时间; (2) 子弹所受的冲 量; (3) 子弹的质量。

解答

(1)

$$F = A - Bt = 0$$

$$t = \frac{A}{B} \tag{5 \%}$$

(2)

$$I = \int_0^t F \, dt = At - \frac{1}{2}Bt^2 = \frac{A^2}{B} - \frac{1}{2}B \times \frac{A^2}{B^2} = \frac{A^2}{2B}$$
 (5 \(\frac{\frac{1}{2}}{B}\))

(3)

$$I = \Delta p = m\Delta v = mv_0$$

$$m = \frac{I}{v_0} = \frac{A^2}{2Bv_0}$$
(5 \(\frac{\frac{\frac{1}{2}}}{2Bv_0}\)

§3.7 质点系动量定理和质心运动定理

3.7.1 质心运动定理

第 059 题 v20230903

一船浮于静水中,船长为L,质量为2m,一个质量为m的人从船尾走到船头。不计水和空气的阻力, 则在此过程中船将

- (A) 不动
- (B) 后退 L
- (C) 后退 $\frac{1}{2}L$ (D) 后退 $\frac{1}{3}L$

答案

 \mathbf{D}

$$2m \times \frac{L}{2} + m \times 0 = 2m \times x + m \times \left(x + \frac{L}{2}\right)$$
$$L = 2x + x + \frac{L}{2}$$

$$3x = \frac{L}{2}$$

$$x = \frac{L}{6}$$

$$s = \frac{L}{2} - x = \frac{L}{2} - \frac{L}{6} = \frac{L}{3}$$

3.7.2 质点系动量定理

第 060 题 v20230903

一根足够长的柔软均匀且不可伸长的细绳,绳的质量线密度为 λ 。 t=0 时刻,某人用手将其一端以速度 v 从地面竖直匀速拉起。试求任意 t 时刻手对绳子的拉力。

解答

以竖直向上为正方向。 (1分)

t 时刻,主体为已被拉起的绳子,质量为 $M_1 = \lambda l = \lambda vt$,其速度为 $v_1 = v$; (2 分)

在接下来的 $\mathrm{d}t$ 时间内,将有 $M_2 = \lambda \, \mathrm{d}t = \lambda v \, \mathrm{d}t$ 的绳子将被拉起,这段绳子在 t 时刻仍然静止在地面

上,其速度为零
$$v_2 = 0$$
; (2 分)

$$t + dt$$
 时刻, $M_3 = M_1 + M_2 = \lambda v(t + dt)$ 都被拉离地面,速度均为 $v_3 = v$ 。 (2 分)

以
$$t + dt$$
 时刻已被拉离地面的绳子部分为研究对象, $(1 \, f)$

 $t \to t + dt$ 时间内,系统共受到两个力的作用: 竖直向下的重力 M_3g ,竖直向上的手的拉力 T,(3 分) 由动量定理可得

$$(T - M_3 g) dt = M_3 v_3 - (M_1 v_1 + M_2 v_2)$$
(3 $\cancel{\pi}$)

整理得

$$T = \frac{M_2 v}{\mathrm{d}t} + M_3 g = \lambda v^2 + \lambda v g t \tag{1 \%}$$

第 061 题 v20230903

由喷泉中喷出的水柱,把一个质量为 m 垃圾桶倒顶在空中。水以恒定的速率 v_0 从面积为 S 的小孔中喷出,射向空中,在冲击垃圾桶桶底以后,有一半的水吸附在桶底,并顺内壁流下,其速度可忽略,而另一半则以原速竖直溅下。求垃圾桶停留的高度 h。设水的密度为 ρ 。

解答

依题意,在 dt 时间内流出小孔的水的质量

$$dM = \rho \, dV = \rho \times S \times v_0 \, dt \tag{1 \, \text{$\frac{1}{2}$}}$$

如果垃圾桶停留的高度为 h,则水从小孔喷出到冲击桶底的过程中机械能守恒,因此冲击桶底前的速度

v 满足

$$\frac{1}{2}(dM)v_0^2 = \frac{1}{2}(dM)v^2 + (dM)gh$$

$$v = \sqrt{v_0^2 - 2gh}$$
 (2 $\%$)

以垃圾桶和在 dt 时间内冲击到桶底的那部分水 dM 为研究对象, (1 $\frac{1}{2}$)

冲击之前 (t 时刻),桶的速度为零,水的速度为 v(方向向上),

(2 分) 下), (2 分)

冲击之后 (t+dt) 时刻),桶和一半的水的速度为零,另一半的水的速度为v(方向向下),

这个过程中系统所受的外力为桶和水的重力 (方向向下), (2分)

因此由动量定理,有(以向下为正)

(1分)

$$(m + dM)g dt = \frac{1}{2}(dM)v - (dM)(-v) = \frac{3}{2}(dM)v$$

$$mg = \frac{3}{2}\frac{dM}{dt}v = \frac{3}{2}\rho Sv_0\sqrt{v_0^2 - 2gh}$$

$$\sqrt{v_0^2 - 2gh} = \frac{2mg}{3\rho Sv_0}$$

$$v_0^2 - 2gh = \left(\frac{2mg}{3\rho Sv_0}\right)^2$$

$$2gh = v_0^2 - \left(\frac{2mg}{3\rho Sv_0}\right)^2$$

$$h = \frac{v_0^2}{2g} - \frac{2m^2g}{9\rho^2 S^2 v_0^2}$$
(1 $\frac{1}{2}$)

§3.8 动量守恒定律

第 062 题 v20230903

在水平冰面上以一定速度向东行驶的炮车,沿斜向上方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)

- (A) 总动量守恒
- (B) 总动量在任何方向的分量均不守恒
- (C) 总动量在炮身前进的方向上的分量守恒,其它方向不守恒
- (D) 总动量在水平面上任意方向的分量守恒, 竖直方向不守恒

答案

D

第 063 题 v20230903

一辆以速度大小 v_0 向右作匀速直线运动的小车行驶在光滑的水平地面上,向后抛出一质量为 m 的物体,物体相对小车的速度大小为 u,车和人的质量总和为 M,物体抛离小车后小车的速度为 v,以下哪个方程表示的是物体抛离前后系统的动量守恒?

$$(A) (M+m)v_0 = Mv + mu$$

(B)
$$(M + m)v_0 = Mv - mu$$

(C)
$$(M+m)v_0 = Mv + m(v_0 - u)$$

(D)
$$(M+m)v_0 = Mv + m(v-u)$$

答案

D

第 064 题 v20230903

两物体质量分别是 $m_1 = 50$ kg, $m_2 = 20$ kg,在光滑桌面上运动,速度分别为: $\vec{v}_1 = (3\vec{e}_x + 7\vec{e}_y)$ m/s, $\vec{v}_2 = 10\vec{e}_x$ m/s。碰撞后合为一体,碰后的速度 $\vec{v} = \underline{\qquad}$ m/s。

答案

 $5\vec{e}_x + 5\vec{e}_y$

解析

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}$$

$$\vec{v} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} = \frac{50 \times (3\vec{e}_x + 7\vec{e}_y) + 20 \times (10\vec{e}_x)}{50 + 20} = 5\vec{e}_x + 5\vec{e}_y$$

第 065 题 v20230903

粒子 B 的质量是粒子 A 的质量的 4 倍,开始时粒子 A 的速度 $\vec{v}_{A0}=3\vec{e}_x+4\vec{e}_y$,粒子 B 的速度 $\vec{v}_{B0}=2\vec{e}_x-7\vec{e}_y$;在无外力作用的情况下两者发生碰撞,碰后粒子 A 的速度变为 $\vec{v}_A=7\vec{e}_x-4\vec{e}_y$,则此时粒子 B 的速度 $\vec{v}_B=$ ____。

答案

 $\vec{\mathbf{e}}_x - 5 \, \vec{\mathbf{e}}_y$

解析

$$m_A \vec{v}_{A0} + m_B \vec{v}_{B0} = m_A \vec{v}_A + m_B \vec{v}_B$$

$$\vec{v}_B = \frac{m_A \vec{v}_{A0} + m_B \vec{v}_{B0} - m_A \vec{v}_A}{m_B} = \frac{(3\,\vec{e}_x + 4\,\vec{e}_y) + 4(2\,\vec{e}_x - 7\,\vec{e}_y) - (7\,\vec{e}_x - 4\,\vec{e}_y)}{4} = \frac{4\,\vec{e}_x - 20\,\vec{e}_y}{4} = \vec{e}_x - 5\,\vec{e}_y$$

第 066 题 v20230903

如图所示,质量为 M 的滑块正沿着光滑的水平地面向右滑动,一质量为 m 的小球水平向右飞行,以速度 $\vec{v}_1 = v \, \vec{e}_x$ (相对地面) 与滑块斜面相碰,然后竖直向上弹起,速度为 $\vec{v}_2 = v \, \vec{e}_y$ (相对地面)。若碰撞时间为 Δt ,则 (1) 碰撞过程中滑块对地面的平均作用力;(2) 滑块速度的增量。

解答

(1) 以小球和滑块为研究对象,由竖直方向的动量定理,有

$$(N - Mg - mg)\Delta t = mv \tag{7 \(\frac{\frac{\frac{\frac{7}{\frac{1}{2}}}}{2}}\)$$

$$N = \frac{mv}{\Delta t} + (M+m)g \tag{1 \%}$$

(2) 以小球和滑块为研究对象,水平方向上系统不受外力,所以水平方向系统的动量守恒。设碰前滑块速度为 $\vec{v}_0 = v_0 \vec{e}_x$,碰后速度为 $\vec{v}_3 = v_3 \vec{e}_x$

$$mv + Mv_0 = m \times 0 + Mv_3 \tag{6 \%}$$

$$\Delta v = v_3 - v_0 = \frac{mv}{M} \tag{1 \%}$$

《力学》练习题 第四章 动能和势能

第四章 动能和势能

§4.2 力的元功·用线积分表示功

第 067 题 v20230903

某人拉住在河水中的船,使船相对于岸不动,若以岸为参考系,人对船所做的功____。(填 "> 0","= 0" 或 "< 0")

答案

=0

第 068 题 v20230903

图中,沿着半径为 R 圆周运动的质点,所受的几个力中有一个是恒力 $\vec{F_0}$,方向始终沿 x 轴正向,即 $\vec{F_0} = F_0 \vec{e_x}$ 。当质点从 A 点沿逆时针方向走过 $\frac{3}{4}$ 圆周到达 B 点时,力 $\vec{F_0}$ 所作的功为 $W = _$

答案

 $-F_0R$

第 069 题 v20230903

答案

38

解析

$$W = \int_{2}^{4} (4+5x) \, \mathrm{d}x = \left[4x + \frac{5}{2}x^{2}\right]_{2}^{4} = \left[4 \times 4 + \frac{5}{2} \times 4^{2}\right] - \left[4 \times 2 + \frac{5}{2} \times 2^{2}\right] = 38$$

§4.3 质点和质点系动能定理

第 070 题 v20230903

A、B 两木块质量分别为 m_A 和 m_B ,且 $m_B = 2m_A$,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示。若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比 $E_{kA}: E_{kB} = _____$ 。

 m_A -\\\\\ m_B

答案

2:1

解析

$$m_A v_A + m_B v_B = 0$$

$$v_A = -\frac{m_B}{m_A} v_B = -2v_B$$

$$E_{kA} = \frac{1}{2} m_A v_A^2 = \frac{1}{2} \times \frac{1}{2} m_B \times (2v_B)^2 = 2 \times \frac{1}{2} m_B v_B^2$$

第 071 题 v20230903

将一个物体提高 10 m, 下列哪一种情况下提升力所作的功最小?

- (A) 以 5 m/s 的速度匀速提升
- (B) 以 10 m/s 的速度匀速提升
- (C) 将物体由静止开始匀加速提升 10 m, 速度增加到 5 m/s
- (D) 物体以 10 m/s 的初速度匀减速上升 10 m, 速度减小到 5 m/s

答案

D

《力学》练习题 第四章 动能和势能

第 072 题 v20230903

质量为 m 的质点在外力作用下,其运动方程为: $\vec{r} = A\cos(\omega t)\vec{e}_x + B\sin(\omega t)\vec{e}_y$, 式中 $A \setminus B \setminus \omega$ 都是 正的常量。由此可知外力在 t=0 到 $t=\frac{\pi}{2\omega}$ 这段时间内所作的功为

(A)
$$\frac{1}{2}m\omega^2(A^2 + B^2)$$

(B)
$$m\omega^2(A^2 + B^2)$$

(C)
$$\frac{1}{2}m\omega^2(A^2 - B^2)$$

(A)
$$\frac{1}{2}m\omega^2(A^2 + B^2)$$
 (B) $m\omega^2(A^2 + B^2)$ (C) $\frac{1}{2}m\omega^2(A^2 - B^2)$ (D) $\frac{1}{2}m\omega^2(B^2 - A^2)$

答案

 \mathbf{C}

第 073 题 v20230903

如图所示,一质量为m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑下,到 达最低点 B 时,它对容器的正压力为 N,则质点自 A 滑到 B 的过程中,摩擦力对其作的功为

(A) $\frac{1}{2}R(N-3mg)$ (B) $\frac{1}{2}R(3mg-N)$ (C) $\frac{1}{2}R(N-mg)$ (D) $\frac{1}{2}R(N-2mg)$

答案

Α

第 074 题 v20230903

一质点在二恒力共同作用下,位移为 $\Delta \vec{r} = 3\vec{e}_x + 8\vec{e}_y(SI)$; 在此过程中,动能增量为 24 J,已知其中 一恒力 $\vec{F}_1 = 12 \vec{e}_x - 3 \vec{e}_y(SI)$,则另一恒力所作的功为______J。

答案

12

§4.4 保守力与非保守力・势能

第 075 题 v20230903

对功的概念有以下几种说法: (1) 保守力做正功时,系统内相应的势能增加; (2) 质点运动经一闭合路 径,保守力对质点所做的功为零;(3)作用力和反作用力大小相等、方向相反,所以二者所做功的代数 和必为零。以上三种说法中,正确的有____。

答案

(2)

第 076 题 v20230903

一物体挂在一弹簧下面,平衡位置在 O 点,现用手向下拉物体,第一次把物体由 O 点拉到 M 点,第

二次由 O 点拉到 N 点,再由 N 点送回 M 点。则在这两个过程中

- (A) 弹性力作的功相等, 重力作的功不相等
- (B) 弹性力作的功相等, 重力作的功也相等
- (C) 弹性力作的功不相等,重力作的功相等 (D) 弹性力作的功不相等,重力作的功也不相等

答案

В

第 077 题 v20230903

有一劲度系数为k的轻弹簧,原长为 L_0 ,将它吊在天花板上。当它下端挂一托盘平衡时,其长度变为 L_1 。然后在托盘中放一重物,弹簧长度变为 L_2 ,则由 L_1 伸长至 L_2 的过程中,弹性力所做的功为 $(A) - \int_{L_1}^{L_2} kx \, dx$ $(B) \int_{L_1}^{L_2} kx \, dx$ $(C) - \int_{L_2-L_3}^{L_2-L_3} kx \, dx$ $(D) \int_{L_1-L_3}^{L_2-L_3} kx \, dx$

$$(A) - \int_{L}^{L_2} kx \, \mathrm{d}x$$

(B)
$$\int_{L}^{L_2} kx \, \mathrm{d}x$$

(C)
$$-\int_{L_1-L_0}^{L_2-L_0} kx \, dx$$

$$(D) \int_{L_1 - L_0}^{L_2 - L_0} kx \, \mathrm{d}x$$

答案

 \mathbf{C}

§4.5 功能原理和机械能守恒定律

第 078 题 v20230903

一长为 L,质量为 m 的匀质链条,放在光滑的桌面上,若其长度的 $\frac{1}{5}$ 悬挂于桌边下,将其慢慢拉回桌 面,需做功 $___$ 。重力加速度大小为g。

答案

 $\frac{1}{50}mgL$

解析

$$W = \Delta E = \Delta E_p = \frac{1}{5}mg \times \frac{1}{10}L = \frac{1}{50}mgL$$

第 079 题 v20230903

一水平放置的轻弹簧,劲度系数为 k,其一端固定,另一端系一质量为 m 的滑块 A,A 旁又有一质量相同的滑块 B,如图所示。设两滑块与桌面间无摩擦。若用外力将 A、B 一起推压使弹簧压缩量为 d 而静止,然后撤消外力,则 B 离开时的速度为

答案

 $d\sqrt{\frac{k}{2m}}$

第 080 题 v20230903

质点的质量为 m,置于光滑球面的顶点 A 处 (球面固定不动),如图所示。当它由静止开始下滑到球面上 B 点时,它的加速度的大小为

- (A) $a = 2g(1 \cos \theta)$
- (C) a = g

(D) $a = \sqrt{4q^2(1 - \cos\theta)^2 + q^2\sin^2\theta}$

答案

D

第 081 题 v20230903

质量分别为 m_1 、 m_2 的两个物体用一劲度系数为 k 的轻弹簧相联,放在水平光滑桌面上,如图所示。当 两物体相距 x 时,系统由静止释放。已知弹簧的自然长度为 x_0 ,则当物体相距 x_0 时, m_1 的速度大小为

(A)
$$\sqrt{\frac{k(x-x_0)^2}{m_1}}$$

(B)
$$\sqrt{\frac{k(x-x_0)^2}{m_2}}$$

$$\begin{array}{c|c}
k \\
\hline
m_1 & m_2 \\
\hline
(C) \sqrt{\frac{k(x-x_0)^2}{m_1+m_2}}
\end{array}$$

(C)
$$\sqrt{\frac{k(x-x_0)^2}{m_1+m_2}}$$
 (D) $\sqrt{\frac{km_2(x-x_0)^2}{m_1(m_1+m_2)}}$

答案

D

第 082 题 v20230903

两木块 A、B 的质量分别为 m_1 和 m_2 ,用一个质量不计、劲度系数为 k 的弹簧连接起来。把弹簧压缩 x_0 并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线。判断下列说法哪个正确

- (A) 弹簧由初态恢复为原长的过程中,以 A、B、弹簧为系统,动量守恒
- (B) 在上述过程中,系统机械能守恒
- (C) 当 A 离开墙后,整个系统动量守恒,机械能不守恒
- (D) A 离开墙后,整个系统的总机械能为 $\frac{1}{2}kx_0^2$,总动量为零

答案

В

第 083 题 v20230903

一子弹以水平速度 v_0 射入一静止于光滑水平面上的木块后,随木块一起运动。对于这一过程正确的分析是

- (A) 子弹、木块组成的系统机械能守恒
- (B) 子弹、木块组成的系统水平方向的动量守恒
- (C) 子弹所受的冲量等于木块所受的冲量
- (D) 子弹动能的减少等于木块动能的增加

答案

В

第 084 题 v20230903

子弹射入放在水平光滑地面上静止的木块而不穿出,以地面为参照系,指出下列说法中正确的说法 是

- (A) 子弹的动能转变为木块的动能
- (B) 子弹——木块系统的机械能守恒
- (C) 子弹动能的减少等于子弹克服木块阻力所做的功
- (D) 子弹克服木块阻力所做的功等于这一过程中产生的热

答案

 \mathbf{C}

第 085 题 v20230903

如图所示,长度为 L 的轻绳一端固定,一端系一质量为 m 的小球,绳的悬挂点下方距悬挂点的距离为 d 处有一钉子,小球从水平位置无初速释放。(1) 求绳子碰到钉子后的瞬间小球的速度; (2) 欲使小球在 以钉子为中心的圆周上绕一圈,d 的取值有什么样的要求?

解答

(1) 碰到钉子之前,小球在重力和绳子的拉力作用下绕悬挂点做圆周运动,绳子的拉力一直垂直于小球的运动轨迹,不做功,因此只有重力做功,所以小球的机械能守恒。以小球在最低点处为重力势能的零点,设碰前小球速度的大小为 v_1 ,则有

$$mgL = \frac{1}{2}mv_1^2 \Rightarrow v_1 = \sqrt{2gL} \tag{5 \%}$$

碰到钉子时,绳子的拉力发生变化,但绳子的拉力与重力在此瞬间都与速度方向垂直,因此都没有作功,所以小球的速度并没有发生变化。或者说因为绳子的拉力与重力都通过悬挂点或钉子,所以这两个力对悬挂点或钉子的力矩都为零,因此小球对悬挂点或钉子的角动量矩不变,即速度没有发生变化,所以绳子碰到钉子后的瞬间小球的速度大小 $v_2 = v_1 = \sqrt{2gL}$,方向水平向右。 (3 分)

(2) 碰到钉子前,小球绕悬挂点做半径为 L 的圆周运动,碰到钉子后,小球绕钉子做半径为 L-d 的圆周运动,在运动过程中,机械能守恒,所以小球在以钉子为中心的圆周上的最高点处的速度 v_3 满足

$$mgL = mg[2(L-d)] + \frac{1}{2}mv_3^2$$

$$\frac{mv_3^2}{L-d} = mg + T \geqslant mg$$
(5 \(\frac{\frac{1}{2}}{2}\))

整理得

$$\frac{1}{2}mv_3^2 = mgL - mg[2(L-d)] = mg(2d-L) \geqslant \frac{1}{2}mg(L-d)$$

$$2d - L \geqslant \frac{1}{2}(L-d)$$

$$4d - 2L \geqslant L - d$$

$$5d \geqslant 3L$$

$$d \geqslant 0.6L$$

$$(1 \%)$$

再考虑到 $L \ge d$, 所以有

$$L \geqslant d \geqslant 0.6L \tag{1 \%}$$

第 086 题 v20230903

用细线将一质量为 M、半径为 R 的大圆环悬挂起来,两个质量均为 m、可视为质点的小圆环套在大圆环上,可以无摩擦地滑动。若小圆环沿相反方向从大圆环顶部自静止下滑,求在下滑过程中,大圆环刚能升起时,小圆环所在位置的 θ 与 M、m、R 之间所满足的函数关系。

解答

对大圆环受力分析: 竖直向下的重力 Mg,绳子竖直向上的拉力 T,两边小环对它的压力 N,这个压力的方向一定通过大环圆心,但可能指向圆心,也可能背离圆心,这里假定指向圆心。 (2 Φ)

如果大圆环刚能升起,则
$$T=0$$
,此时 $(1 \frac{1}{2})$

$$Mg + 2N\cos\theta = 0\tag{3 \%}$$

以一个小圆环为研究对象,在运动过程中它受到两个力的作用:竖直向下的重力 mg,大圆环对它的压力 N,方向背离大圆环圆心。 (2 分)

由于无摩擦,所以小圆环下滑过程中机械能守恒,假设在 θ 处速率为 v,以大圆环顶部为重力势能零点,则有

$$0 = \frac{1}{2}mv^2 - mgR(1 - \cos\theta) \tag{3 \(\frac{\frac{\frac{\frac{\frac{\frac{3}{\frac{\frac{\frac{\frac{1}{2}}}}{2}}}}{\frac{1}{2}}} + mgR(1 - \cos\theta)$$

而小圆环做圆周运动的向心力是由重力的分力和 N 的合力提供的,即

$$\frac{mv^2}{R} = mg\cos\theta - N\tag{3 \%}$$

联立以上三式,整理得

$$Mg + 2[mg\cos\theta - 2mg(1-\cos\theta)]\cos\theta = 0$$

$$M + 2m\cos\theta(3\cos\theta - 2) = 0$$
(1 $\%$)

说明,如果以上 N 假设的方向相反,一三两式有个符号差异,但不影响最后的结果;最后的函数形式可能不尽相同,只要是等价的,都算正确。

§4.6 对心碰撞

第 087 题 v20230903

一个打桩机,夯的质量为 m_1 ,桩的质量为 m_2 。假设夯与桩相碰撞时为完全非弹性碰撞且碰撞时间极短,则刚刚碰撞后夯与桩的动能是碰前夯的动能的 倍。

答案

 $\frac{m_1}{m_1+m_2}$

第 088 题 v20230903

一质量为 M 的弹簧振子,水平放置且静止在平衡位置,如图所示。一质量为 m 的子弹以水平速度 \vec{v} 射入振子中,并随之一起运动。如果水平面光滑,此后弹簧的最大势能为

答案

 $\tfrac{m^2v^2}{2(M\!+\!m)}$

第 089 题 v20230903

质量为 m_1 、速度为 v_0 的子弹沿水平方向射进静止的、质量为 m_2 的冲击摆,悬线长 L,悬线的质量可 忽略,木块和子弹可看作质点。求: (1) 子弹射进木块后,木块的速度大小; (2) 木块摆动过程中任意 θ 角处木块的速度大小; (3) 最大摆角 θ_0 。

解答

(1) 以子弹和木块为研究对象,以水平向右为正方向。 (1分) 在子弹射进木块的过程中,系统在水平方向上不受力,系统水平方向上动量守恒

$$m_1 v_0 = (m_1 + m_2) v_1 \tag{3 \%}$$

$$v_1 = \frac{m_1}{m_1 + m_2} v_0 \tag{1 \%}$$

(2) 木块上摆过程中,只有重力做功,系统机械能守恒,以悬挂点为重力势能零点 (1分)

$$\frac{1}{2}(m_1 + m_2)v_1^2 - (m_1 + m_2)gL = \frac{1}{2}(m_1 + m_2)v^2 - (m_1 + m_2)gL\cos\theta$$
 (3 $\frac{1}{2}$)

$$v = \sqrt{\frac{m_1^2}{(m_1 + m_2)^2} v_0^2 - 2gL(1 - \cos\theta)}$$
 (1 $\%$)

(3) 最高处, 速度大小为零 (1分)

$$\sqrt{\frac{m_1^2}{(m_1 + m_2)^2} v_0^2 - 2gL(1 - \cos\theta_0)} = 0$$
 (3 $\frac{2}{3}$)

$$\cos \theta_0 = 1 - \frac{m_1^2 v_0^2}{2(m_1 + m_2)^2 gL} \tag{1 \%}$$

第 090 题 v20230903

如图所示,光滑水平面与半径为 R 的竖直光滑半圆环轨道相连接。滑块 A、B 的质量均为 m,弹簧的 劲度系数为 k,其一端固定,另一端与滑块 A 接触但不相接。滑块 B 静止在半圆环轨道的底端。今用外力缓慢推动 A 将弹簧压缩 x 后再释放。前进中的滑块 A 脱离弹簧后与 B 发生完全弹性碰撞,碰撞后 B 沿轨道上升,当其运动到 C 点时刚好与轨道脱离。OC 与竖直方向成夹角 θ ,重力加速度大小为 g。试求:(1) 滑块 B 运动到 C 点时的速率;(2) 碰撞后滑块 B 获得的上滑初速率;(3) 开始时弹簧被压缩的距离 x。

解答

(1) 滑块 $B \in C$ 点时刚好与轨道脱离,轨道支持力为零,只受重力作用,重力的法向分量提供它做圆周运动的向心力

$$mg\cos\theta = \frac{mv_1^2}{R} \tag{3 \%}$$

$$v_1 = \sqrt{gR\cos\theta} \tag{1 \%}$$

(2) 碰后上滑过程,轨道光滑,只有重力做功,机械能守恒,以轨道底端为重力势能零点

$$\frac{1}{2}mv_2^2 = \frac{1}{2}mv_1^2 + mgR(1 + \cos\theta)$$
 (3 $\frac{1}{2}$)

$$v_2 = \sqrt{gR(2+3\cos\theta)}\tag{1 \%}$$

(3) 质量相同,完全弹性碰撞,速度交换,所以碰前 A 的速率为 v_2 。 (3 \oint) 压缩弹簧再释放 A,只有弹力做功,机械能守恒

$$\frac{1}{2}kx^2 = \frac{1}{2}mv_2^2 (3 \%)$$

$$x = \sqrt{\frac{m}{k}}v_2 = \sqrt{\frac{mgR}{k}(2 + 3\cos\theta)} \tag{1 \%}$$

《力学》练习题 第四章 动能和势能

第 091 题 v20230903

如图,弹丸质量为 m_1 ,摆锤质量为 $m_2 = 3m_1$,摆线长为 L。原先 m_2 静止悬挂, m_1 以水平方向的速度 v_0 与之相碰,假设碰撞瞬间完成,如果碰后摆锤能够在竖直平面内完成一个完整的圆周运动,以下两种情况下,弹丸的速度最小应该多大?(1) 碰撞为完全弹性碰撞;(2) 碰撞为完全非弹性碰撞。

解答

碰后摆锤能够在竖直平面内完成一个完整的圆周运动,要求摆锤在最高点时摆线向下的拉力大于或等于零,因此速度大小 v_3 要满足

$$\frac{mv_3^2}{L} = mg + T \geqslant mg \tag{2 \%}$$

碰后上摆过程中, 只有重力做功, 机械能守恒

$$\frac{1}{2}mv_2^2 = \frac{1}{2}mv_3^2 + mg(2L)$$
 (2 $\cancel{\Rightarrow}$)

如果是完全弹性碰撞,以上 $m=m_2$,如果是完全非弹性碰撞,以上 $m=m_1+m_2$ 。

(1) 如果碰撞是完全弹性碰撞

$$m_1 v_0 = m_1 v_1 + m_2 v_2 \tag{3 \(\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f$$

$$e = \frac{v_2 - v_1}{v_0 - 0} = 1 \tag{3 \%}$$

解得

$$v_0 \geqslant 2\sqrt{5gL} \tag{1 }$$

(2) 如果碰撞是完全非弹性碰撞

$$m_1 v_0 = (m_1 + m_2) v_2 \tag{3 \(\frac{\frac{\frac{\frac{3}{1}}}{\frac{1}{1}}}\)}$$

解得

$$v_0 \geqslant 4\sqrt{5gL}$$
 (1 $\cancel{\Box}$)

第 092 题 v20230903

质量分别为 m_1 和 m_2 的两个物块由一劲度系数为 k 的轻弹簧相连,竖直地放在水平桌面上,如图所示。另有一质量为 m_3 的物体从高出 m_2 为 k 的地方由静止开始自由落下,当与 m_2 发生碰撞后,即与 m_2 黏合在一起向下运动。试问 k 至少应多大,才能使得弹簧反弹起后 m_1 与桌面互相脱离?

解答

 m_3 自由下落,与 m_2 碰撞前的速度设为 v_0 ,以 m_3 为研究对象,由机械能守恒定律可得

$$m_3 g h = \frac{1}{2} m_3 v_0^2, v_0 = \sqrt{2gh}$$
 (3 $\frac{4}{7}$)

 m_3 与 m_2 发生完全非弹性碰撞,碰后二者共同速度设为 v_1 ,由动量守恒定律可得

$$m_3 v_0 = (m_2 + m_3) v_1, v_1 = \frac{m_3 v_0}{m_2 + m_3}$$
(3 $\cancel{\uparrow}$)

碰撞之前, m_2 静止,以 m_2 为研究对象,共受两个力作用而平衡: 竖直向下的重力,竖直向上的弹簧 弹力,设此时弹簧被压缩 L_1 ,则有

$$m_2 g - k L_1 = 0, L_1 = \frac{m_2 g}{k}$$
 (2 $\frac{\text{m}}{\text{m}}$)

 m_1 能脱离桌面,它所受到的弹力必然向上,且大等于其重力,设此时弹簧被拉伸 L_2 ,即有

$$kL_2 \geqslant m_1 g, L_2 \geqslant \frac{m_1 g}{k} \tag{3 \%}$$

从 m_3 和 m_2 发生碰撞到 m_1 脱离桌面,以 m_1 、 m_2 、 m_3 、弹簧和地球为研究系统,只有重力和弹力做功,系统机械能守恒,以弹簧原长处为弹性势能零点和 m_2 、 m_3 的重力势能零点, m_1 的重力势能零点取在桌面上,则有

$$\frac{1}{2}(m_2 + m_3)v_1^2 + \frac{1}{2}kL_1^2 - (m_2 + m_3)gL_1$$

$$= \frac{1}{2}(m_2 + m_3)v_2^2 + \frac{1}{2}kL_2^2 + (m_2 + m_3)gL_2$$
(3 \(\frac{\frac{\frac{\frac{3}{7}}}}{2}\)

联立解得

$$h \geqslant \frac{g}{2km_3^2}(m_1 + m_2)(m_2 + m_3)(m_1 + m_2 + 2m_3) \tag{1 \%}$$

第五章 角动量

§5.1 质点的角动量定理及角动量守恒定律

第 093 题 v20230903

某时刻位于 \vec{r} 的质点的质量为 m, 速度为 \vec{v} , 则对于坐标原点, 质点的角动量 $\vec{L} =$ _____。

答案

 $\vec{r} \times (m\vec{v})$

第 094 题 v20230903

有一质量为 m 的质点在一平面内做曲线运动,在某一直角坐标系下该质点的位置矢量为 $\vec{r}=A\cos(\omega t)\vec{e}_x+B\sin(\omega t)\vec{e}_y$,其中 A、B、 ω 皆为常数,则任意时刻此质点对原点的角动量 $\vec{L}=$ ____。

答案

 $mAB\omega \vec{\mathbf{e}}_z$

解析

$$\vec{r} = A\cos(\omega t)\,\vec{e}_x + B\sin(\omega t)\,\vec{e}_y$$

$$\vec{v} = \frac{d\vec{r}}{dt} = -A\omega \sin(\omega t) \vec{e}_x + B\omega \cos(\omega t) \vec{e}_y$$

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v} = [A\cos(\omega t)\,\vec{\mathbf{e}}_x + B\sin(\omega t)\,\vec{\mathbf{e}}_y] \times m[-A\omega\sin(\omega t)\,\vec{\mathbf{e}}_x + B\omega\cos(\omega t)\,\vec{\mathbf{e}}_y]$$
$$= m[AB\omega\cos^2(\omega t)\,\vec{\mathbf{e}}_z + AB\omega\sin^2(\omega t)\,\vec{\mathbf{e}}_z] = mAB\omega\,\vec{\mathbf{e}}_z$$

第 095 题 v20230903

一质点做匀速率圆周运动时,

《力学》练习题 第五章 角动量

- (A) 它的动量不变,对圆心的角动量也不变
- (B) 它的动量不变,对圆心的角动量不断改变
- (C) 它的动量不断改变,对圆心的角动量不变
- (D) 它的动量不断改变,对圆心的角动量也不断改变

答案

 \mathbf{C}

第 096 题 v20230903

地球的质量为 m, 太阳的质量为 M, 地心与日心的距离为 R, 万有引力常数为 G, 假设地球绕太阳作 圆周运动,则地球对日心的轨道角动量大小为

(A)
$$m\sqrt{GMR}$$

(B)
$$\sqrt{\frac{GMm}{R}}$$

(C)
$$Mm\sqrt{\frac{G}{R}}$$
 (D) $\sqrt{\frac{GMm}{2R}}$

(D)
$$\sqrt{\frac{GMm}{2R}}$$

答案

Α

第 097 题 v20230903

有一质量为 m 的质点在一平面内做曲线运动,在某一直角坐标系下该质点的位置矢量为 \vec{r} = $A\cos(\omega t)\vec{e}_x + B\sin(\omega t)\vec{e}_y$, 其中 $A \times B \times \omega$ 皆为常数,则任意时刻此质点受到的对坐标原点的力矩 $\vec{M} =$.

答案

0

解析

$$\begin{split} \vec{r} &= A\cos(\omega t)\,\vec{\mathbf{e}}_x + B\sin(\omega t)\,\vec{\mathbf{e}}_y \\ \vec{v} &= \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = -A\omega\sin(\omega t)\,\vec{\mathbf{e}}_x + B\omega\cos(\omega t)\,\vec{\mathbf{e}}_y \\ \vec{a} &= \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -A\omega^2\cos(\omega t)\,\vec{\mathbf{e}}_x - B\omega^2\sin(\omega t)\,\vec{\mathbf{e}}_y = -\omega^2\vec{r} \\ \vec{F} &= m\vec{a} = -m\omega^2\vec{r} \\ \vec{M} &= \vec{r} \times \vec{F} = \vec{r} \times (-m\omega^2\vec{r}) = \vec{0} \end{split}$$

《力学》练习题 第五章 角动量

第 098 题 v20230903

对指定参考点的角动量定理的积分形式:

答案

$$\int_{t_1}^{t_2} \vec{M} \, \mathrm{d}t = \Delta \vec{L} = \vec{L}_2 - \vec{L}_1$$

第 099 题 v20230903

以下说法正确的是

- (A) 做匀速直线运动的质点对任意参考点的角动量恒等于零
- (B) 做匀速直线运动的质点对任意参考点的角动量守恒
- (C) 做匀速圆周运动的质点对圆心的角动量恒等于零
- (D) 做匀速圆周运动的质点对任意参考点的角动量守恒

答案

В

第 100 题 v20230903

- 一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔伸到桌下,用手拉住绳子。该物体原来以角速度 ω 在半径为 R 的圆周上绕小孔旋转,今将绳从小孔缓慢往下拉,则物体的
- (A) 动能不变, 动量改变

- (B) 动量不变, 动能改变
- (C) 对小孔的角动量改变,动量不变
- (D) 对小孔的角动量不变,动量改变

答案

D

第 101 题 v20230903

将一质量为m的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住。先使小球以角速度 ω_1 在桌面上做半径为 r_1 的圆周运动,然后缓慢将绳下拉,使半径缩小为 r_2 ,在此过程中小球的动能增量是____。

答案

 $\frac{r_1^2 - r_2^2}{2r_2^2} m \omega_1^2 r_1^2$

《力学》练习题 第五章 角动量

第 102 题 v20230903

人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为 A 和 B,用 L 和 E_k 分别表示卫星对地心的角动量及其动能的瞬时值,则有

(A) $L_A > L_B$, $E_{kA} > E_{kB}$

(B) $L_A = L_B$, $E_{kA} < E_{kB}$

(C) $L_A = L_B$, $E_{kA} > E_{kB}$

(D) $L_A < L_B$, $E_{kA} < E_{kB}$

答案

 \mathbf{C}

第 103 题 v20230903

哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆。它离太阳最近的距离是 r_1 ,此时它的速率是 v_1 。它 离太阳最远时的速率是 v_2 ,这时它离太阳的距离是 r_2 。

答案

 $\frac{v_1}{v_2}r_1$

第 104 题 v20230903

对指定转轴 A 的角动量定理的微分形式:

答案

 $M_A = \frac{\mathrm{d}L_A}{\mathrm{d}t} \ \vec{\boxtimes} \ M_A \, \mathrm{d}t = \mathrm{d}L_A$

第 105 题 v20230903

对指定转轴 A 的角动量定理的积分形式:

答案

$$\int_{t_1}^{t_2} M_A \, \mathrm{d}t = \Delta L_A = L_{A2} - L_{A1}$$

《力学》练习题 第五章 角动量

§5.2 质点系的角动量定理及角动量守恒定律

第 106 题 v20230903

关于质点系,以下说法正确的是

- (A) 质点系的动量就等于其质心的动量
- (B) 质点系对于轴线的角动量就是其质心对于该轴线的角动量
- (C) 质点系的动能就等于其质心的动能
- (D) 质点系动能的增加等于外力对质点系所做功的总和

答案

Α

第 107 题 v20230903

质量分别为 m 和 2m 的两物体 (都可视为质点),用一长为 l 的轻质刚性细杆相连,系统绕通过 O 点 且垂直纸面的固定轴转动,已知 O 轴离质量为 2m 的质点的距离为 $\frac{1}{2}l$,质量为 m 的质点的线速度为 v 且与杆垂直,则该系统对转轴的角动量大小为。

答案

mvl

第 108 题 v20230903

当质点系所受合外力为零时,

- (A) 动量必守恒 (B) 角动量必守恒 (C) 动能必守恒 (D) 机械能必守恒

答案

Α

第 109 题 v20230903

一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人。把人和圆盘取作系统,当此人在盘上 随意走动时, 若忽略轴的摩擦, 此系统

(A) 动量守恒

(B) 机械能守恒

(C) 对转轴的角动量守恒

(D) 动量、机械能和角动量都守恒

《力学》练习题 第五章 角动量

答案

 \mathbf{C}

第 110 题 v20230903

有一半径为 R 的匀质圆形水平转台,可绕通过盘心且垂直于盘面的竖直固定轴转动,转动惯量为 J。台上有一人,质量为 m。当他站在离转轴 r 处时 (r < R),转台和人一起以 ω_1 的角速度转动。若转轴处摩擦可以忽略,当人走到转台边缘时,转台和人一起转动的角速度 ω_2 等于

(A) $\frac{r^2}{R^2}\omega_1$

(B) $\frac{R^2}{r^2}\omega_1$

(C) $\frac{J+mR^2}{J+mr^2}\omega_1$

(D) $\frac{J+mr^2}{J+mR^2}\omega_1$

答案

D

第 111 题 v20230903

花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J_0 ,角速度为 ω_0 。然后她将两臂收回,使转动惯量减少为 $\frac{1}{3}J_0$ 。这时她转动的角速度变为

(A) $\frac{1}{3}\omega_0$

(B) $\frac{1}{\sqrt{3}}\omega_0$

(C) $\sqrt{3}\omega_0$

(D) $3\omega_0$

答案

D

第 112 题 v20230903

一飞轮以角速度 ω_0 绕光滑固定轴旋转,飞轮对轴的转动惯量为 J; 另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍。啮合后整个系统的角速度 $\omega = -\infty$

答案

 $\frac{1}{3}\omega_0$

第六章 万有引力定律

§6.2 万有引力定律・引力质量与惯性质量

第 113 题 v20230903

已知质量为 M、半径为 R 的均匀细圆环与质量为 m、位于通过圆环圆心且垂直于圆环平面的轴线上与圆心之间距离为 a 的质点之间的万有引力的大小为 $F = \frac{GMma}{(R^2+a^2)^{3/2}}$,其中 G 为万有引力常数。则质量为 M、半径为 R 的均匀圆盘与质量为 m、位于通过圆盘圆心且垂直于圆盘平面的轴线上与圆心之间距离为 a 的质点之间的万有引力的大小为____。已知

$$\int \frac{x \, \mathrm{d}x}{(x^2 + a^2)^{3/2}} = -\frac{1}{\sqrt{x^2 + a^2}} + C$$

$$\frac{2GMm}{R^2} \left(1 - \frac{a}{\sqrt{R^2 + a^2}} \right)$$

解析

将圆盘看成很多细圆环, 取 $r \rightarrow r + dr$ 部分为细圆环, 其半径为 r, 质量

$$dM = \frac{M}{\pi R^2} \times 2\pi r \, dr = \frac{2M}{R^2} r \, dr$$

它对m的引力方向由m指向圆盘圆心,大小为

$$dF = \frac{G(dM)ma}{(r^2 + a^2)^{3/2}} = \frac{2GMmar\,dr}{R^2(r^2 + a^2)^{3/2}}$$

所以整个圆盘对 m 的引力方向由 m 指向圆盘圆心,大小为

$$F = \int_0^R \frac{2GMmar\,\mathrm{d}r}{R^2(r^2+a^2)^{3/2}} = \frac{2GMma}{R^2} \int_0^R \frac{r\,\mathrm{d}r}{(r^2+a^2)^{3/2}} = \frac{2GMma}{R^2} \left[-\frac{1}{\sqrt{r^2+a^2}} \right]_0^R$$

$$= \frac{2GMma}{R^2} \left[\frac{1}{a} - \frac{1}{\sqrt{R^2 + a^2}} \right] = \frac{2GMm}{R^2} \left[1 - \frac{a}{\sqrt{R^2 + a^2}} \right]$$

第 114 题 v20230903

质量为 M、半径为 R 的均匀球体,质量为 m 的质点,质点与球体球心之间的距离为 a。当 a>R 时,二者之间万有引力的大小为____。万有引力常数为 G。

答案

 $\tfrac{GMm}{a^2}$

《力学》练习题 第七章 刚体力学

第七章 刚体力学

§7.1 刚体运动的描述

7.1.1 定轴转动的运动学

第 115 题 v20230903

半径为 r=1.5 m 的飞轮,初角速度 $\omega_0=10$ rad/s,角加速度 $\alpha=-5$ rad/s²,则在 $t=0\to 4$ s 时间内的角位移为_____rad。

答案

0

第 116 题 v20230903

半径为 r=1.5 m 的飞轮,初角速度 $\omega_0=10$ rad/s,角加速度 $\alpha=-5$ rad/s²,则在 t=4 s 时边缘上点的线速度大小 $v=___m/s$ 。

答案

15

§7.2 刚体的动量和质心运动定理

7.2.1 刚体的质心

第 117 题 v20230903

如图,设一细杆总长为 L,单位长度的质量 (线密度) 为 $\rho=\rho_0+Ax$, ρ_0 和 A 都是常数,则细杆的质心位置为____。

《力学》练习题 第七章 刚体力学

答案

 $\frac{3\rho_0 + 2AL}{3(2\rho_0 + AL)}L$

解析

$$m_{0} = \int_{0}^{L} \rho \, dx$$

$$= \int_{0}^{L} (\rho_{0} + Ax) \, dx$$

$$= \left(\rho_{0}x + \frac{1}{2}Ax^{2}\right)_{0}^{L}$$

$$= \rho_{0}L + \frac{1}{2}AL^{2}$$

$$x_{0} = \frac{1}{m_{0}} \int_{0}^{L} x\rho \, dx$$

$$= \frac{1}{m_{0}} \int_{0}^{L} x(\rho_{0} + Ax) \, dx$$

$$= \frac{1}{m_{0}} \left(\frac{1}{2}\rho_{0}x^{2} + \frac{1}{3}Ax^{3}\right)_{0}^{L}$$

$$= \frac{1}{\rho_{0}L + \frac{1}{2}AL^{2}} \left(\frac{1}{2}\rho_{0}L^{2} + \frac{1}{3}AL^{3}\right)$$

$$= \frac{3\rho_{0} + 2AL}{3(2\rho_{0} + AL)}L$$

§7.3 刚体定轴转动的角动量·转动惯量

7.3.1 转动惯量

第 118 题 v20230903

有两个半径相同、质量相同的细圆环。1 环的质量分布不均匀,2 环的质量分布均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为 J_1 和 J_2 ,则

(A) $J_1 > J_2$

(B) $J_1 < J_2$

(C) $J_1 = J_2$

(D) 不能确定 J_1 和 J_2 的大小关系

答案

С

《力学》练习题 第七章 刚体力学

第 119 题 v20230903

已知某质量为 M,半径为 R 的不均匀球体,其质心在球内,但偏离球心 d 远,假定对于通过球心且垂直于质心与球心连线的转轴,回转半径为 k,则对于通过质心且垂直于质心与球心连线的转轴的转动惯量为____。

答案

 $M(k^2 - d^2)$

第 120 题 v20230903

质量为M,半径为R的匀质圆环,其绕直径的转动惯量为

(A) $2MR^2$

(B) MR^2

(C) $\frac{1}{2}MR^2$

(D) $\frac{1}{12}MR^2$

答案

С

第 121 题 v20230903

已知质量为m、半径为R的均匀圆盘对其任意一条直径的转动惯量为J,则对于通过圆盘边缘且与盘面垂直的转轴,圆盘的转动惯量为。

答案

 $2J + mR^2$

第 122 题 v20230903

两根质量同为m、长度同为L 的匀质细杆,对称地联结成丁字尺,如图所示。试求该丁字尺对通过(x,y) 点且垂直于纸面的转轴的转动惯量J(x,y)。

《力学》练习题 第七章 刚体力学

解答

均匀细杆对通过质心垂直细杆的转轴的转动惯量

$$J_0 = \frac{1}{12}mL^2 \tag{3 \frac{4}{12}}$$

平行轴定理

$$J = J_C + md^2 (3 \%)$$

两段细杆对通过 (x,y) 点且垂直于纸面的转轴的转动惯量

$$J_1(x,y) = J_0 + m \left[\left(x - \frac{L}{2} \right)^2 + (y - L)^2 \right]$$
 (3 \(\frac{\frac{1}{2}}{2}\))

$$J_2(x,y) = J_0 + m \left[\left(x - \frac{L}{2} \right)^2 + \left(y - \frac{L}{2} \right)^2 \right]$$
 (3 $\frac{2}{3}$)

整根丁字尺对通过 (x,y) 点且垂直于纸面的转轴的转动惯量

$$J(x,y) = J_1(x,y) + J_2(x,y)$$

$$= 2J_0 + m \left[\left(x - \frac{L}{2} \right)^2 + (y - L)^2 + \left(x - \frac{L}{2} \right)^2 + \left(y - \frac{L}{2} \right)^2 \right]$$

$$= \frac{1}{6} m L^2 + m \left[2 \left(x - \frac{L}{2} \right)^2 + (y - L)^2 + \left(y - \frac{L}{2} \right)^2 \right]$$
(3 \(\frac{\frac{1}{2}}{2}\))

7.3.2 定轴转动的转动定律

第 123 题 v20230903

几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体

(A) 必然不会转动

(B) 转速必然不变

(C) 转速必然改变

(D) 转速可能不变,也可能改变

答案

D

第 124 题 v20230903

圆盘绕 O 轴转动,如图所示。若同时射来两颗质量相同,速度大小相同、方向相反并在一直线上运动的子弹。子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度 ω 将

(A) 增大

(B) 不变

(C) 减小

(D) 无法判断

答案

 \mathbf{C}

第 125 题 v20230903

一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度 ω 按图示方向转动。若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力 F 沿盘面同时作用到圆盘上,则圆盘的角速度 ω

(A) 必然增大

(C) 不会改变

(B) 必然减少

(D) 如何变化,不能确定

答案

Α

第 126 题 v20230903

一长为 L,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为 m 的小球。现将杆由水平位置无初转速地释放,则当杆与水平方向夹角为 45° 时杆的角加速度 $\alpha=___$ 。

答案

 $\frac{\sqrt{2}g}{2L}$

解析

$$J = mL^{2}$$

$$M = mgL\cos 45^{\circ} = J\alpha$$

$$\alpha = \frac{mgL \times \frac{\sqrt{2}}{2}}{mL^{2}} = \frac{\sqrt{2}g}{2L}$$

《力学》练习题 第七章 刚体力学

第 127 题 v20230903

一长为 l,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为 m 的小球。现将杆由水平位置无初转速地释放,则杆与水平方向夹角为 θ 时,杆的角加速度 $\alpha = _____$ 。

答案

 $\frac{g}{I}\cos\theta$

第 128 题 v20230903

如图所示,一根质量为 m、长为 L 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。现将其另一端抬起,使棒向上与水平成 θ 角,然后无初转速地将棒释放。已知棒对轴的转动惯量为 $\frac{1}{3}mL^2$,则放手时棒的角加速度大小为

答案

 $\frac{3g}{2L}\cos\theta$

第 129 题 v20230903

一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为 J,绳下端挂一物体,物体所受重力为 P,滑轮的角加速度为 α 。若将物体去掉而以与 P 相等的力直接向下拉绳子,则滑轮的角加速度 α 将

- (A) 不变
- (B) 变小
- (C) 变大
- (D) 如何变化无法判断

答案

 \mathbf{C}

第 130 题 v20230903

在粗糙的水平面上,一半径为 R、质量为 m 的均质圆盘绕过其中心且与盘面垂直的竖直轴转动,转动 惯量为 J。已知圆盘的初始角速度为 ω_0 ,圆盘与水平面间的摩擦因数为 μ ,忽略圆盘轴承处的摩擦,试 求: (1) 摩擦力对转轴的力矩; (2) 圆盘的角加速度; (3) 经过多长时间圆盘将静止?

《力学》练习题 第七章 刚体力学

解答

以初始角速度的方向为正。

(1)

$$df = \mu dN = \mu(dm)g = \mu g \frac{m}{\pi R^2} \times 2\pi r dr = \frac{2\mu mg}{R^2} r dr$$

$$(4 \%)$$

$$dM = -r df = -\frac{2\mu mg}{R^2} r^2 dr \tag{1 \%}$$

$$M = -\frac{2\mu mg}{R^2} \int_0^R r^2 dr = -\frac{2\mu mg}{R^2} \times \frac{1}{3} R^3 = -\frac{2}{3} \mu mgR$$
 (2 \(\frac{\frac{1}{2}}{R}\))

(2)

$$M = J\alpha \tag{3 \%}$$

$$\alpha = \frac{M}{I} = -\frac{2}{3I}\mu mgR \tag{1 \%}$$

(3)

$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} \tag{1 \%}$$

$$d\omega = \alpha \, dt \tag{1 \%}$$

$$\Delta\omega = \alpha\Delta t \tag{1 \%}$$

$$\Delta t = \frac{\Delta \omega}{\alpha} = \frac{0 - \omega_0}{-\frac{2}{3I}\mu mgR} = \frac{3I\omega_0}{2\mu mgR} \tag{1 \%}$$

第 131 题 v20230903

质量为 m、竖直边长 a、水平边长 b 的匀质矩形薄板绕其竖直边转动,初始角速度为 ω_0 。转动时受到空气的阻力,阻力垂直于板面,每一小面积所受阻力的大小正比于该块面积及其速度平方的乘积,比例常量为 k。求: (1) 薄板绕竖直边转动的转动惯量; (2) 当薄板转动的角速度为 ω 时薄板所受到的空气阻力对转轴的力矩; (3) 经过多少时间,薄板转动的角速度减为初始角速度的一半?

解答

(1) 以竖直边为 y 轴,水平边为 x 轴,转动惯量

$$dJ = (dm)r^2 = x^2 \times \frac{m}{ab} \times a \, dx = \frac{m}{b}x^2 \, dx$$

$$J = \int_0^b \frac{m}{b}x^2 \, dx = \frac{1}{3}mb^2$$
(4 $\frac{\mathcal{H}}{\mathcal{H}}$)

(2) 以角速度方向为正,空气阻力对转轴的力矩

$$dM = -r df = -x \cdot k(\omega x)^2 (a dx) = -ka\omega^2 x^3 dx$$

$$M = \int_0^b -ka\omega^2 x^3 dx = -\frac{1}{4}kab^4 \omega^2$$
(4 \(\frac{\frac{\frac{\frac{1}{2}}}}{3}\)

《力学》练习题 第七章 刚体力学

(3) 定轴转动的转动定律

$$M = J\alpha$$

$$\alpha = \frac{M}{J} = -\frac{\frac{1}{4}kab^4\omega^2}{\frac{1}{3}mb^2} = -\frac{3kab^2}{4m}\omega^2 = \frac{d\omega}{dt}$$

$$-\frac{d\omega}{\omega^2} = \frac{3kab^2}{4m}dt$$

$$\int_{\omega_0}^{\frac{\omega_0}{2}} -\frac{d\omega}{\omega^2} = \int_0^t \frac{3kab^2}{4m}dt$$
(3 \$\frac{\psi}{2}\$)

$$\int_{\omega_0}^2 -\frac{d\omega}{\omega^2} = \int_0^3 \frac{3kab^2}{4m} dt$$

$$\frac{1}{\frac{\omega_0}{2}} - \frac{1}{\omega_0} = \frac{3kab^2}{4m} t$$
(3 $\frac{1}{2}$)

$$t = \frac{1}{\omega_0} \times \frac{4m}{3kab^2} = \frac{4m}{3kab^2\omega_0} \tag{1 \%}$$

7.3.3 定轴转动的碰撞

第 132 题 v20230903

如图所示,一静止的均匀细棒,长为 L、质量为 M,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 $\frac{1}{3}ML^2$ 。一质量为 m、速率为 v 的子弹在水平面内沿与棒垂直的方向射向并穿出棒的自由端,设穿过棒后子弹的速率为 $\frac{1}{2}v$,则此时棒的角速度应为

(A) $\frac{mv}{ML}$

(B) $\frac{3mv}{2ML}$

(C) $\frac{5mv}{3ML}$

(D) $\frac{7mv}{4ML}$

答案

В

第 133 题 v20230903

长为 L、质量为 m 的匀质细杆可绕通过杆一端 O 的水平光滑固定轴转动,转动惯量为 $\frac{1}{3}mL^2$,开始时杆铅直下垂,如图所示。有一质量也为 m 的子弹以水平速度 v_0 射穿杆上 A 点,出来时速度为 $\frac{1}{2}v_0$,已知 $OA=\frac{2}{3}L$,则子弹射穿的瞬间,杆的角速度大小 $\omega=$ ____。

第七章 刚体力学 《力学》练习题

答案

 $\frac{v_0}{L}$

第 134 题 v20230903

一长为 L、质量为 m 的均匀细杆可绕其一端在竖直面内无摩擦地转动。现有一质量为 m 的质点以水 平速度 v_0 与竖直悬挂的细杆发生完全弹性碰撞。已知碰撞过程中,转轴对细杆的作用力沿水平方向的 分量为零,求: (1) 碰撞位置到转轴之间的距离 d; (2) 碰后细杆转动的角速度 ω 。

解答

以杆和质点为研究对象,以 v_0 方向为正方向。

(1分)

假定碰撞之后,质点的速度为 v_1 ,细杆质心的速度为 v_2 ,细杆转动的角速度为 ω 。 (1分) 碰撞过程中, 水平方向系统不受外力, 动量守恒

$$mv_0 = mv_1 + mv_2 \tag{3 \(\frac{1}{2}\)}$$

$$v_2 = \omega \frac{L}{2} \tag{1 \%}$$

整个系统受到对转轴的力矩为零,所以系统对转轴的角动量守恒

$$mv_0d = mv_1d + J\omega \tag{3 \%}$$

$$J = \frac{1}{3}mL^2 \tag{1 \%}$$

完全弹性碰撞,系统机械能没有损耗

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}J\omega^2 \tag{3 \%}$$

联立解得

$$d = \frac{2}{3}L\tag{1 \%}$$

$$d = \frac{2}{3}L \tag{1 \%}$$

$$\omega = \frac{12v_0}{7L} \tag{1 \%}$$

《力学》练习题 第七章 刚体力学

§7.4 刚体定轴转动的动能定理

7.4.1 定轴转动的动能定理

第 135 题 v20230903

均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?

- (A) 角速度从小到大, 角加速度从大到小
- (B) 角速度从小到大, 角加速度从小到大
- (C) 角速度从大到小, 角加速度从大到小
- (D) 角速度从大到小, 角加速度从小到大

答案

Α

第 136 题 v20230903

一根长为 L、质量为 M 的均匀细棒,其一端与光滑的水平轴相连,可在竖直平面内转动,另一端固定一质量为 m 的小球,小球可视为质点。设棒由水平静止释放,求细棒摆下 θ 角度时,(1) 棒的角加速度;(2) 棒的角速度。

解答

(1) 定轴转动的转动定律

$$Mg\frac{L}{2}\cos\theta + mgL\cos\theta = J\alpha \tag{5 \%}$$

$$J = \frac{1}{3}ML^2 + mL^2 \tag{3 \(\frac{1}{2}\)}$$

解得

$$\alpha = \frac{3(M+2m)g\cos\theta}{2(M+3m)L} \tag{1 \%}$$

(2) 转动过程只有重力做功,机械能守恒,以水平位置为重力势能零点

$$0 = \frac{1}{2}J\omega^2 - Mg\frac{L}{2}\sin\theta - mgL\sin\theta \tag{5 \%}$$

解得

$$\omega = \sqrt{\frac{3(M+2m)g\sin\theta}{(M+3m)L}} \tag{1 \%}$$

《力学》练习题 第七章 刚体力学

第 137 题 v20230903

一轴承光滑的定滑轮,质量为 M,半径为 R,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m 的物体,如图所示。已知定滑轮的转动惯量为 $J=\frac{1}{2}MR^2$,其初角速度大小为 ω_0 ,方向垂直纸面向里。求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到 $\omega=0$ 时,物体上升的高度;(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向。

解答

(1) 对物体受力分析,竖直向下的重力 mg,竖直向上的绳子拉力 T,假设加速度向下,大小为 a,则由牛顿第二定律,有

$$mg - F = ma \tag{2 \%}$$

对滑轮受力分析,竖直向下的重力 Mg(重心在转轴上),竖直向下的拉力 F,转轴的作用力 (大小方向均未知,但通过转轴),假定滑轮角加速度大小为 β ,方向垂直纸面向外,则由定轴转动的转动定律

$$FR = J\beta \tag{2 \%}$$

绳子不可伸长,一端固定在定滑轮上,另一端系在物体上

$$a = \beta R \tag{2 \%}$$

联立解得

$$\beta = \frac{2mg}{(2m+M)R} \tag{1 \(\frac{\frac{1}{2}}{N}\)}$$

$$a = \frac{2mg}{2m + M} \tag{1 \%}$$

(2) 物体初速度大小 $v_0 = \omega_0 R$, 方向向上, 加速度大小为 a, 方向向下, 所以它做匀变速直线运动

$$h = \frac{v_0^2}{2a} = \frac{(2m+M)(\omega_0 R)^2}{4mq} \tag{4 \%}$$

(3) 整个过程只有物体的重力做功,由物体和滑轮组成的系统机械能守恒,当物体回到原来位置时,物体的速度与初速度等值反向,滑轮的角速度也与初角速度等值反向,所以大小为 ω_0 ,方向垂直纸面向外。 (3 ϕ)

7.4.2 定轴转动的碰撞

第 138 题 v20230903

如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴旋转,初始状态为静止悬挂。现有一小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中细杆与小球这一系统

- (A) 与地球组成的系统机械能守恒
- (B) 只有动量守恒
- (C) 只有对转轴 O 的角动量守恒
- (D) 动量和角动量均守恒,这一系统与地球组成的系统的机械能守恒

答案

С

第 139 题 v20230903

匀质细杆 AB 长 L,质量为 M,可绕 A 端的水平轴自由转动 (设转动惯量为 J)。在杆自由下垂时,质量为 m 的子弹沿水平方向射进杆的 C 点,并使杆摆动。杆摆动的最大偏角为 θ ,AC 相距 l。试求子弹射入前的速度。

解答

以子弹和细杆为研究对象,整个过程分成两个阶段:子弹射入杆内,系统绕轴转动。

子弹射入杆,系统受到重力和轴的作用力,这两个力均通过轴,所以对轴的力矩为零,因此系统角动量守恒。假定射入前子弹的速度为v,射入后细杆的角速度为 ω ,以垂直纸面向外为角动量的正方向,则有

$$mvl = (J + ml^2)\omega \tag{7 \(\frac{\frac{\frac{\frac{\frac{7}{3}}}}{\frac{1}{3}}}\)$$

系统绕轴转动,只有重力做功,系统机械能守恒,以初始状态的重力势能为势能零点,则有

$$\frac{1}{2}(J+ml^2)\omega^2 = Mg\frac{L}{2}(1-\cos\theta) + mgl(1-\cos\theta)$$
 (7 $\!\!\!\!/$)

《力学》练习题 第七章 刚体力学

联立以上二式,整理得

$$\omega = \sqrt{\frac{MgL + 2mgl}{J + ml^2} (1 - \cos \theta)}$$

$$v = \frac{(J + ml^2)\omega}{ml} = \frac{1}{ml} \sqrt{(MgL + 2mgl)(J + ml^2)(1 - \cos \theta)}$$
(1 \(\frac{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{1}}{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{1}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{1}}{\fracc}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\

第 140 题 v20230903

在一根长为 3L 的轻杆上打一个小孔,小孔离一端的距离为 L,再在杆的两端以及距杆另一端 L 处各 系一质量为 m_1 的小球,然后通过此孔将杆悬挂于一光滑的水平细轴上。开始时杆静止,一质量为 m的小铅粒以 v_0 的水平速度射入中间小球,并留在里面。设小铅粒相对小球静止时杆的角位移可以忽略, 小球、小铅粒均视为质点,试求:(1)铅粒射入小球后,铅粒、所有小球及轻杆组成的系统对转轴的转 动惯量; (2) 铅粒射入小球瞬间, 轻杆的角速度大小; (3) 杆的最大摆角。

解答

(1)

$$J = m_1 L^2 + m_1 (2L)^2 + m_1 L^2 + mL^2 = (6m_1 + m)L^2$$
(4 $\frac{1}{2}$)

(2) 铅粒射入小球,系统角动量守恒

$$mv_0 L = J\omega \tag{4 \%}$$

$$\omega = \frac{mv_0L}{J} = \frac{mv_0L}{(6m_1 + m)L^2} = \frac{mv_0}{(6m_1 + m)L}$$
 (1 $\frac{\text{$\%$}}{\text{$\%$}}$)

(3) 上摆过程, 机械能守恒

$$\frac{1}{2}J\omega^2 = (3m_1 + m)gr_0(1 - \cos\theta) \tag{4 \%}$$

$$r_0 = \frac{m_1(2L) + (m_1 + m)L + m_1(-L)}{3m_1 + m} = \frac{2m_1 + m}{3m_1 + m}L \tag{1 \%}$$

$$r_0 = \frac{m_1(2L) + (m_1 + m)L + m_1(-L)}{3m_1 + m} = \frac{2m_1 + m}{3m_1 + m}L$$

$$\cos \theta = 1 - \frac{\frac{1}{2}J\omega^2}{(3m_1 + m)gr_0} = 1 - \frac{(6m_1 + m)L^2 \times \frac{m^2v_0^2}{(6m_1 + m)^2L^2}}{2(3m_1 + m)g \times \frac{2m_1 + m}{3m_1 + m}L} = 1 - \frac{m^2v_0^2}{2(2m_1 + m)(6m_1 + m)gL}$$
(1 $\frac{2\pi}{3m_1 + m}$)

第 141 题 v20230903

如图所示,单摆和细杆的长度均为 L,质量均为 m,绕相同点可在竖直平面内摆动。开始单摆拉开一 定角度,细杆处于竖直位置,单摆小球距杆下端为h。释放单摆与杆发生弹性碰撞。求:(1)碰撞后杆 的角速度大小; (2) 细杆下端所能达到的高度。

解答

(1) 碰撞前,摆球只受到重力做功,绳子拉力不做功,机械能守恒

$$mgh = \frac{1}{2}mv_0^2 \tag{3 \%}$$

碰撞过程,摆球和细杆组成的系统,受到的对转轴的力矩为零,因此对转轴的角动量守恒

$$mv_0L = mv_1L + J\omega \tag{3 $\frac{1}{2}$}$$

$$J = \frac{1}{3}mL^2 \tag{1 \%}$$

完全弹性碰撞 (以下二式是等价的,只需一式)

$$e = \frac{\omega L - v_1}{v_0 - 0} = 1$$

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}J\omega^2$$
(3 \(\frac{\frac{\frac{1}}{2}}{2}\)

联立解得

$$\omega = \frac{3v_0}{2L} = \frac{3\sqrt{2gh}}{2L} \tag{1 \%}$$

(2) 碰后细杆上摆过程,只有重力做功,机械能守恒(或动能定理)

$$\frac{1}{2}J\omega^2 = mg\frac{L}{2}(1-\cos\theta) = \frac{1}{2}mgH \tag{3 \%}$$

$$H = \frac{\frac{1}{3}mL^2 \times \omega^2}{mq} = \frac{L^2}{3q} \times \frac{18gh}{4L^2} = \frac{3h}{2}$$
 (1 \(\frac{\frac{1}{2}}{2}\))

§7.5 刚体平面运动的动力学

第 142 题 v20230903

刚体角动量守恒的充分且必要的条件是

- (A) 刚体不受外力矩的作用
- (C) 刚体所受的合外力和合外力矩均为零
- (B) 刚体所受合外力矩为零
- (D) 刚体的转动惯量和角速度均保持不变

答案

В

第 143 题 v20230903

质量为 m 的子弹,以速度 v_0 射入置于光滑水平桌面上的、质量为 m_0 、半径为 R 的静止圆盘的边缘,并留在该处, v_0 的方向与入射处的半径垂直。若圆盘是自由的,求子弹射入后系统质心的速度和系统转动的角速度。已知质量为 m、半径为 R 的均匀圆盘对通过盘心且垂直于盘面的转轴的转动惯量为 $J=\frac{1}{2}mR^2$ 。

解答

以子弹和圆盘为研究对象,子弹射入圆盘的过程中,系统水平方向不受力,竖直方向受到重力和桌面的 支持力,所以系统水平方向的动量守恒,系统对任意垂直桌面的转轴的角动量守恒。 动量守恒

$$p_1 + p_2 = p_3 \tag{1 \(\frac{\frac{\frac{\frac{1}{2}}}}{2}\)}$$

$$p_1 = 0 \tag{1 $\cancel{\uparrow}$ }$$

$$p_2 = mv_0 \tag{1 \%}$$

$$p_3 = (m + m_0)v_1 \tag{1 \%}$$

$$mv_0 = (m + m_0)v_1$$

$$v_1 = \frac{mv_0}{m + m_0} \tag{1 \%}$$

子弹射入圆盘前,圆盘静止,圆盘的动量 $p_1 = 0$,子弹的动量 $p_2 = mv_0$;子弹射入圆盘后,整个系统 质心的速度设为 v_1 ,整个系统的动量就等于系统质心的动量 $p_3 = (m + m_0)v_1$ 。

角动量守恒, 取通过盘心且垂直于盘面的转轴

$$L_1 + L_2 = L_3 + L_4 \tag{1 \%}$$

$$L_1 = 0 \tag{1 \%}$$

$$L_2 = mv_0 R \tag{1 \%}$$

$$L_3 = (m + m_0)v_1d (1 \ \%)$$

$$L_4 = J\omega \tag{1 $\cancel{\uparrow}$ }$$

$$d = \frac{mR}{m + m_0} \tag{1 \(\frac{\frac{\frac{\frac{1}{2}}}{m}}{m + m_0}\)}$$

$$J = J_1 + J_2$$

$$J_1 = m(R - d)^2 \tag{1 \%}$$

$$J_2 = \frac{1}{2}m_0R^2 + m_0d^2 \tag{1 \%}$$

$$mv_0R = (m+m_0)v_1d + \left[m(R-d)^2 + \frac{1}{2}m_0R^2 + m_0d^2\right]\omega$$

(1 分)

$$\omega = \frac{2mv_0}{(3m + m_0)R} \tag{1 \%}$$

子弹射入圆盘前,圆盘静止,圆盘对转轴的角动量 $L_1=0$,子弹对转轴的角动量 $L_2=mv_0R$;子弹射入圆盘后,整个系统质心的速度设为 v_1 ,角速度设为 ω ,d 为系统质心到圆盘中心的距离,质心对转轴的角动量 $L_3=(m+m_0)v_1d$,系统对通过质心垂直盘面转轴的角动量 $L_4=J\omega$,其中 $J=J_1+J_2$ 是整个系统对通过质心垂直盘面转轴的转动惯量, $J_1=m(R-d)^2$ 是子弹对通过质心垂直盘面转轴的转动惯量, $J_2=\frac{1}{2}m_0R^2+m_0d^2$ 是圆盘对通过质心垂直盘面转轴的转动惯量。

§7.6 刚体的平衡

第 144 题 v20230903

如图所示,一质量为 m 的匀质细杆 AB, A 端靠在光滑的竖直墙壁上, B 端置于粗糙水平地面上而静止,杆身与竖直方向成 θ 角,则地面与杆之间摩擦力的大小 f=_____。重力加速度大小为 g。

答案

 $\frac{1}{2}mg\tan\theta$

解析

$$N_1 - f = 0$$

$$N_2 - mg = 0$$

$$mg\frac{L}{2}\sin\theta - N_1L\cos\theta = 0$$

解得

$$N = f = \frac{1}{2}mg\tan\theta$$

 $N_2 = mg$

《力学》练习题 第八章 振动

第八章 振动

§8.2 简谐振动的运动学

8.2.1 简谐振动的特征量

第 145 题 v20230903

一质量为m的质点挂在一弹簧测力计上,开始时静止在弹簧自然伸长处,之后放手,则弹簧测力计的最大读数为____。(重力加速度大小为g)

答案

2mg

第 146 题 v20230903

将质量为 0.2 kg 的物体,系于劲度系数 k=20 N/m 的竖直悬挂的弹簧的下端。假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为_____Hz。(重力加速度取 $g=10 \text{ m/s}^2$)

答案

 $\frac{5}{\pi}$

解析

$$\omega = \sqrt{\frac{k}{m}} = 2\pi f$$

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{5}{\pi}$$

第 147 题 v20230903

将质量为 0.2 kg 的物体,系于劲度系数 k=20 N/m 的竖直悬挂的弹簧的下端。假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振幅为_____m。(重力加速度取 $g=10 \text{ m/s}^2$)

答案

0.1

解析

$$A = \frac{mg}{k} = 0.1$$

第 148 题 v20230903

把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振 动,从放手时开始计时,并用余弦函数表示其运动方程,则该单摆振动的初相为

(A) π

(B) $\frac{1}{2}\pi$

(C) θ

(D) 0

答案

D

简谐振动的表达式 8.2.2

第 149 题 v20230903

一物体作简谐振动,振动方程为 $x=A\cos\left(\omega t+\frac{1}{4}\pi\right)$ 。在 $t=\frac{1}{4}T(T)$ 为周期) 时刻,物体的加速度 为

(A) $-\frac{\sqrt{2}}{2}A\omega^2$ (B) $\frac{\sqrt{2}}{2}A\omega^2$ (C) $-\frac{\sqrt{3}}{2}A\omega^2$ (D) $\frac{\sqrt{3}}{2}A\omega^2$

答案

В

第 150 题 v20230903

一质点作简谐振动,其振动方程为 $x=A\cos\left(\omega t+\frac{1}{4}\pi\right)$ 。当物体经过位置 $x=\frac{1}{2}A$ 处,其速度为_

答案

 $\pm \frac{\sqrt{3}}{2} A \omega$

第 151 题 v20230903

一质点作简谐振动,其振动方程为 $x=A\cos\left(\omega t+\frac{1}{4}\pi\right)$ 。当物体经过位置 $x=\frac{1}{2}A$ 处,其加速度为____。

《力学》练习题 第八章 振动

答案

 $-\frac{1}{2}A\omega^2$

第 152 题 v20230903

一个质量为 m 的质点作谐振动,其运动方程为 $x = A\cos\left(\omega t - \frac{1}{2}\pi\right)$,则质点的初速度为____。

答案

 $A\omega$

第 153 题 v20230903

竖直悬挂的弹簧振子处于静止状态,现用力将振子向下拉 $0.02~\mathrm{m}$ 后由静止释放,使之做简谐振动,并测得振动周期为 $0.2~\mathrm{s}$ 。设竖直向下为 x 轴正方向,释放时为计时零点,则其振动表达式为

(A)
$$x = 0.02\cos(10\pi t + \pi)(SI)$$

(B)
$$x = 0.02\cos(10\pi t)$$
(SI)

(C)
$$x = 0.02\cos(0.4\pi t)$$
(SI)

(D)
$$x = 0.02\cos(0.4\pi t + \pi)(SI)$$

答案

В

第 154 题 v20230903

一质点沿 x 轴做简谐振动, 其振动表达式为

$$x = 0.4\cos\left[3\pi\left(t + \frac{1}{6}\right)\right] (SI)$$

试求: (1) 振幅、圆频率和周期; (2) 初相位、初位置和初速度; (3)t = 1.5 s 时的位置、速度和加速度。

解答

(1)

$$A = 0.4 \text{ m} \tag{1 \%}$$

$$\omega = 3\pi = \frac{2\pi}{T} \text{ rad/s} \tag{1 \%}$$

$$T = \frac{2\pi}{\omega} = \frac{2}{3} \text{ s} \tag{1 \%}$$

(2)

$$\varphi_0 = 3\pi \times \frac{1}{6} = \frac{1}{2}\pi \text{ rad} \tag{1 \%}$$

$$x_0 = 0.4 \cos \left[3\pi \left(0 + \frac{1}{6} \right) \right] = 0 \text{ m}$$
 (2 $\frac{2}{7}$)

《力学》练习题 第八章 振动

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -1.2\pi \sin\left[3\pi\left(t + \frac{1}{6}\right)\right] \tag{3 \(\frac{\psi}{0}\)}$$

$$v_0 = -1.2\pi \sin \left[3\pi \left(0 + \frac{1}{6} \right) \right] = -1.2\pi \text{ m/s}$$
 (2 \(\frac{\frac{1}{2}}{2}\))

(3)

$$x(1.5) = 0.4\cos\left[3\pi\left(1.5 + \frac{1}{6}\right)\right] = -0.4 \text{ m}$$
 (2 $\frac{2}{2}$)

$$v(1.5) = -1.2\pi \sin\left[3\pi\left(1.5 + \frac{1}{6}\right)\right] = 0 \text{ m/s}$$
 (2 $\frac{2}{2}$)

第 155 题 v20230903

一简谐振动的表达式为 $x=A\cos(8t+\varphi_0)(\mathrm{SI})$ 。已知初始位移为 0.04 m,初始速度为 -0.24 m/s。试确定振幅 A 和初位相 φ_0 。

解答

$$x_0 = A\cos\varphi_0 = 0.04\tag{2 \%}$$

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -8A\sin(8t + \varphi_0) \tag{3 \%}$$

$$v_0 = -8A\sin\varphi_0 = -0.24\tag{2 \%}$$

解得

$$A\cos\varphi_0 = 0.04$$

$$A = \sqrt{(0.04)^2 + (0.03)^2} = 0.05$$
 (2 $\%$)

$$\cos \varphi_0 = 0.8 \tag{1 \%}$$

$$\sin \varphi_0 = 0.6 \tag{1 \(\frac{\frac{\frac{\frac{1}{1}}}{\frac{1}{1}}}\)$$

$$\varphi_0 = 37^\circ = \frac{37}{180}\pi \text{ rad} \tag{3 \(\frac{\frac{\frac{1}{3}}{180}}{\frac{1}{3}}\)$$

第 156 题 v20230903

如图所示,由劲度系数为 k 的轻弹簧和质量为 M 的振子组成的水平简谐振动系统,其振幅为 A。一块质量为 m 的黏土从静止状态粘到振子上,试问在以下两种情形下,振动周期和振幅: (1) 当振子通过平衡位置时与黏土相粘; (2) 当振子到达最大位移处时与黏土相粘。

解答

$$\frac{1}{2}Mv_m^2 = \frac{1}{2}kA^2$$

黏土粘到振子上 (不管是哪种情况),振子质量变为 m + M,因此系统固有圆频率和周期变成

$$\omega_1 = \omega_2 = \omega' = \sqrt{\frac{k}{m+M}}$$

$$T_1 = T_2 = T' = \frac{2\pi}{\omega'} = 2\pi\sqrt{\frac{m+M}{k}}$$
(4 \(\frac{\frac{\frac{1}}{2}}{2}\))

黏土粘到振子上时,二者发生完全非弹性碰撞,在水平方向动量守恒。 (1分)

(1) 当振子通过平衡位置时与黏土相粘,之后二者具有相同的速度,大小为 v_{1m} ,振幅为 A_1 ,则有

$$Mv_m = (m+M)v_{1m} \tag{2 }$$

$$\frac{1}{2}(m+M)v_{1m}^2 = \frac{1}{2}kA_1^2 \tag{2 \(\frac{1}{2}\)}$$

解得

$$A_1 = \sqrt{\frac{m+M}{k}} v_{1m} = \sqrt{\frac{m+M}{k}} \frac{M}{m+M} A \sqrt{\frac{k}{M}} = \sqrt{\frac{M}{m+M}} A$$
 (1 $\frac{\raiseta}{\raiseta}$)

(2) 当振子到达最大位移处时与黏土相粘,相粘前,振子速度为零,粘后速度仍然为零,所以振幅不变, $A_2 = A_o \tag{2 分}$

8.2.3 振动曲线

第 157 题 v20230903

已知一质点沿y轴作简谐振动,其振动方程为 $y = A\cos\left(\omega t + \frac{3}{4}\pi\right)$,与其对应的振动曲线是

第八章 振动 《力学》练习题

答案

 \mathbf{C}

第 158 题 v20230903

用余弦函数描述一个质点做简谐振动,其振动曲线如图所示,则由图可确定在 t=2 s 时刻,此质点的 速度的大小为_____m/s。

答案

 0.02π

第 159 题 v20230903

两个同周期简谐振动曲线如图所示。 x_1 的相位比 x_2 的相位

(A) 落后 $\frac{1}{2}\pi$ (B) 超前 $\frac{1}{2}\pi$

(C) 落后 π

(D) 超前 π

答案

В

8.2.4 旋转矢量

第 160 题 v20230903

一质点作简谐振动,其速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,则其初位相为

《力学》练习题 第八章 振动

答案

 \mathbf{D}

§8.3 简谐振动的能量转化

第 161 题 v20230903

一质点作简谐振动,其振动方程为 $x = A\cos(\omega t + \varphi_0)$ 。在求质点的振动动能时,得出下面 5 个表达式: $(1)\frac{1}{2}m\omega^2A^2\sin^2(\omega t + \varphi_0)$; $(2)\frac{1}{2}m\omega^2A^2\cos^2(\omega t + \varphi_0)$; $(3)\frac{1}{2}kA^2\sin(\omega t + \varphi_0)$; $(4)\frac{1}{2}kA^2\cos^2(\omega t + \varphi_0)$; $(5)\frac{2\pi^2mA^2}{T^2}\sin^2(\omega t + \varphi_0)$; 其中 m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期。这些表达式中正确的有

- (A) (1)(3)
- (B) (1)(5)
- (C) (3)(5)
- (D) (1)(3)(5)

答案

В

解析

$$x = A\cos(\omega t + \varphi_0)$$

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = -A\omega\sin(\omega t + \varphi_0)$$

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega^2\sin^2(\omega t + \varphi_0)$$

$$\omega^2 = \frac{k}{m}$$

$$\frac{1}{2}mA^2\omega^2 = \frac{1}{2}kA^2$$

$$\omega = \frac{2\pi}{T}$$

$$\frac{1}{2}mA^2\omega^2 = \frac{2\pi^2}{T^2}mA^2$$

第 162 题 v20230903

一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的

(A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) $\frac{1}{8}$

(D) $\frac{3}{4}$

答案

 \mathbf{D}

第 163 题 v20230903

当质点以频率 f 作简谐振动时,它的动能的变化频率为____。

答案

2f

第 164 题 v20230903

一物体作简谐振动,振动方程为 $x=A\cos\left(\omega t+\frac{1}{2}\pi\right)$ 。则该物体在 t=0 时刻的动能与 $t=\frac{1}{8}T(T)$ 为振 动周期) 时刻的动能之比为

(A) 1:4

- (B) 1:2
- (C) 1:1 (D) 2:1

答案

D

第 165 题 v20230903

一系统作简谐振动,周期为 T,以余弦函数表达振动时,初相为零。在 $0 \le t \le \frac{1}{2}T$ 范围内,系统在 t = 时刻动能和势能相等。

答案

 $\frac{1}{8}T$ 和 $\frac{3}{8}T$

第八章 振动

§8.4 简谐振动的合成

8.4.1 同方向同频率简谐振动的合成

第 166 题 v20230903

如果一个质点同时参与振动方向相同的两个同振幅 A、同圆频率 ω 且初相位相同的简谐振动,其运动仍是简谐振动,那么它的振幅为____。

答案

2A

第 167 题 v20230903

图中所画的是两个简谐振动的振动曲线。若这两个简谐振动可叠加,则合成的余弦振动的初相为

(A) $\frac{3}{2}\pi$

(B) π

(C) $\frac{1}{2}\pi$

(D) 0

答案

D

《力学》练习题 第九章 波动和声

第九章 波动和声

§9.2 平面简谐波方程

9.2.1 波的特征量

第 168 题 v20230903

频率为 500 Hz 的波在某介质中的波速为 350 m/s, 在波的传播方向上, 间距小于波长、相位差为 $\frac{2}{3}\pi$ 的两点之间的距离为 m。

答案

 $\frac{7}{30}$

9.2.2 波的表达式

第 169 题 v20230903

下列表达式中表示沿x 轴负向传播的平面简谐波的是(式中A、B 和C 是正的常量)

- (A) $y(x,t) = A\cos(Bx + Ct)$
- (B) $y(x,t) = A\cos(Bx Ct)$
- (C) $y(x,t) = A\cos(Bx)\cos(Ct)$

(D) $y(x,t) = A\sin(Bx)\sin(Ct)$

答案

Α

第 170 题 v20230903

已知一平面简谐波的表达式为 $y = A\cos(Bt + Cx)(A \setminus B \setminus C)$ 为正值常量),则

- (A) 波的频率为 B (B) 波的传播速度为 $\frac{C}{B}$ (C) 波长为 $\frac{\pi}{C}$ (D) 波的周期为 $\frac{2\pi}{B}$

答案

D

《力学》练习题 第九章 波动和声

第 171 题 v20230903

一简谐波沿 x 轴正方向传播。 x_1 和 x_2 两点处的振动曲线分别如图 (a) 和 (b) 所示。已知 $x_2>x_1$ 且 $x_2-x_1<\lambda(\lambda$ 为波长),则 x_2 点的相位比 x_1 点的相位滞后____。

答案

 $\frac{3}{2}\pi$

第 172 题 v20230903

在简谐波的传播过程中,沿传播方向相距半个波长的两个质点的振动速度

(A) 大小相同,方向相反

(B) 大小不同,方向相同

(C) 大小相同,方向相同

(D) 大小不同,方向相反

答案

A

第 173 题 v20230903

一平面简谐波的表达式为 $x = 0.1\cos\left(8t + 2y + \frac{1}{4}\pi\right)$ (SI)。问: (1) 波沿什么方向传播? (2) 它的频率、波长、波速各是多少?

解答

(1)y 轴负方向

(3分)

(2)

$$\omega = 8 = 2\pi f$$

《力学》练习题 第九章 波动和声

$$f = \frac{4}{\pi} \text{ Hz}$$
 (4 分)
 $k = 2 = \frac{2\pi}{\lambda}$

$$\lambda = \pi \text{ m} \tag{4 \%}$$

$$u = \lambda f = 4 \text{ m/s} \tag{4 \(\frac{1}{2}\)}$$

第 174 题 v20230903

设有一平面简谐波,其表达式为 $y=5\cos\left[2\pi\left(20t-\frac{x}{10}\right)\right]$,其中 x、y 的单位为 cm,t 的单位为 s。试 求:(1) 振幅 A、频率 f、波长 λ 以及波速 u; (2) 若某处振动的初相位为 $\frac{3}{5}\pi$,求该处的位置 x。

解答

(1)

$$A = 5 \text{ cm} \tag{1 \%}$$

$$\omega = \frac{2\pi}{0.05} = 2\pi f$$

$$f = \frac{1}{0.05} = 20 \text{ Hz}$$
 (3 \Re)

$$k = \frac{2\pi}{10} = \frac{2\pi}{\lambda}$$

$$\lambda = 10 \text{ cm}$$
 (3 β)

$$u = \lambda f = 200 \text{ cm/s} = 2 \text{ m/s} \tag{3 \%}$$

(2)

$$\varphi(x,t) = 2\pi \left(\frac{t}{0.05} - \frac{x}{10} \right) \tag{2 \%}$$

$$\varphi(x,0) = 2\pi \left(-\frac{x}{10}\right) = -\frac{\pi x}{5} = \frac{3\pi}{5} + 2n\pi$$
 (2 $\frac{2\pi}{5}$)

$$x = (10n - 3) \text{ cm}, n = 0, \pm 1, \pm 2, \cdots$$
 (1 $\frac{1}{2}$)

第 175 题 v20230903

一平面简谐波沿 x 轴正向传播,波的振幅 $A=10~{\rm cm}$,波的圆频率 $\omega=7\pi~{\rm rad/s}$ 。当 $t=1~{\rm s}$ 时, $x=10~{\rm cm}$ 处的 a 质点正通过其平衡位置向 y 轴负方向运动,而 $x=20~{\rm cm}$ 处的 b 质点正通过 $y=5~{\rm cm}$ 点向 y 轴正方向运动。设该波波长 $\lambda>10~{\rm cm}$,求该平面波的表达式 (用余弦函数表示)。

《力学》练习题 第九章 波动和声

解答

$$y = A\cos(\omega t - kx + \varphi_0) \tag{1 \(\frac{\frac{\frac{\frac{1}{\frac{\frac{\frac{1}{\frac{\frac{1}{\fint}}}}}}}}}}}}}}}}}}}}}}}}}}$$

$$A = 10 \text{ cm} = 0.1 \text{ m}$$
 (1 $\frac{1}{2}$)

$$\omega = 7\pi \text{ rad/s} \tag{1 $\text{$\beta$}}$$$

$$\varphi(x,t) = \omega t - kx + \varphi_0$$

$$\varphi(0.1,1) = \omega - 0.1k + \varphi_0 = \varphi_a = \frac{1}{2}\pi + 2n_1\pi, n_1 = 0, \pm 1, \pm 2, \cdots$$

$$\varphi(0.2,1) = \omega - 0.2k + \varphi_0 = \varphi_b = -\frac{1}{3}\pi + 2n_2\pi, n_2 = 0, \pm 1, \pm 2, \cdots$$

$$\varphi_a - \varphi_b = 0.1k = \frac{1}{2}\pi + \frac{1}{3}\pi + 2n\pi = \frac{5}{6}\pi + 2n\pi, n = 0, 1, 2, \dots$$

$$\lambda > 10 \text{ cm}, k = \frac{2\pi}{\lambda} < 20\pi \text{ rad/m}, 0.1k < 2\pi, n = 0$$

$$k = \frac{50}{6}\pi = \frac{25}{3}\pi \text{ rad/m}$$
 (4 $\frac{\text{$\%$}}{\text{$\%$}}$)

$$\varphi_0 = \frac{1}{2}\pi + 2n_1\pi - \omega + 0.1k = -7\pi + \frac{4}{3}\pi + 2n_1\pi, n_1 = 0, \pm 1, \pm 2, \cdots$$

$$n_1 = 3, \varphi_0 = \frac{1}{3}\pi \tag{3 \(\frac{\frac{\frac{3}{\frac{\frac{1}{3}}}}{3}}\)$$

$$y = 0.1\cos\left(7\pi t - \frac{25}{3}\pi x + \frac{1}{3}\pi\right)$$
(SI) (1 $\frac{25}{3}$)

(4分)

9.2.3 波形图

第 176 题 v20230903

一横波沿 x 轴负方向传播,若 t 时刻波形曲线如图所示,则在 $t+\frac{1}{4}T(T$ 为周期) 时刻 x 轴上的 B 点的振动位移是____。

《力学》练习题 第九章 波动和声

答案

0

第 177 题 v20230903

某横波以波速 u 沿 x 轴负方向传播, t 时刻波形曲线如图所示,则该时刻

- (A) A 点振动速度大于零
- (C) C 点向下运动

- (B) B 点静止不动
- (D) D 点振动速度小于零

答案

D

第 178 题 v20230903

图为沿x 轴负方向传播的平面简谐波在t=0 时刻的波形。若波的表达式以余弦函数表示,则O 点处质点振动的初相为_____(取 $-\pi$ 到 π 之间的值)。

答案

 $-\frac{1}{2}\pi$

《力学》练习题 第九章 波动和声

第 179 题 v20230903

图为 $t = \frac{1}{4}T$ 时一平面简谐波的波形曲线,则该波用余弦函数表示时的表达式为_____(SI)。

答案

 $y = 0.1\cos(10\pi t - \pi x)$

第 180 题 v20230903

图示为一简谐波在 t=0 时刻的波形图,波速 $u=200~\mathrm{m/s}$,则图中坐标原点的振动加速度的表达式为

(A) $a = 0.4\pi^2 \cos(\pi t - \frac{1}{2}\pi)$ (SI)

(B) $a = 0.4\pi^2 \cos(\pi t - \frac{3}{2}\pi)$ (SI)

(C) $a = -0.4\pi^2 \cos(2\pi t - \pi)$ (SI)

(D) $a = -0.4\pi^2 \cos \left(2\pi t + \frac{1}{2}\pi\right)$ (SI)

答案

D

第 181 题 v20230903

如图所示为一平面简谐波在 t=0 时刻的波形图,求: (1) 该波的表达式 (用余弦函数表示); (2)t=2.5 s 时刻 x=0.2 m 处质点的速度。

《力学》练习题 第九章 波动和声

解答

(1) 设波的表达式为 $y = A\cos(\omega t - kx + \varphi_0)$, 依题意,

$$A = 4 \text{ cm} = 0.04 \text{ m}$$
 (1 $\frac{\text{m}}{\text{m}}$)

(1分)

$$\frac{\lambda}{2} = 0.2 \text{ m}, \lambda = 0.4 \text{ m} \tag{2 \%}$$

$$u = 8 \text{ cm/s} = 0.08 \text{ m/s}$$
 (1 $\frac{\text{cm}}{\text{cm}}$)

$$k = \frac{2\pi}{\lambda} = 5\pi \text{ rad/m} \tag{2 \frac{\frac{\frac{1}{2}}}{2}}$$

$$T = \frac{\lambda}{u} = 5 \text{ s}, \omega = \frac{2\pi}{T} = 0.4\pi \text{ rad/s}$$
 (2 \(\frac{\frac{\frac{\frac{\frac{1}}{T}}}{T}}{T}\)

$$y = 0.04\cos(0.4\pi t - 5\pi x + \varphi_0)$$

由题意及题图可知,t=0 时,原点 O 处的位移为 0,速度 v<0,所以由旋转矢量图

可知,此时其相位为

$$\varphi = 0.4\pi \times 0 - 5\pi \times 0 + \varphi_0 = \frac{\pi}{2}$$

$$\varphi_0 = \frac{\pi}{2}$$
(3 \(\frac{\frac{\frac{\pi}}{2}}{\pi}\))

所以波的表达式为

$$y = 0.04\cos\left(0.4\pi t - 5\pi x + \frac{\pi}{2}\right) (SI) \tag{1 \(\frac{\frac{\frac{\pi}}{2}}{2}}\)$$

(2) 任意 x 处质点 t 时刻的速度

$$v(x,t) = \frac{\partial y(x,t)}{\partial t} = -0.016\pi \sin\left(0.4\pi t - 5\pi x + \frac{\pi}{2}\right) (SI) \tag{1 \frac{\frac{1}{2}}{2}})$$

$$v(0.2, 2.5) = -0.016\pi \sin\left(0.4\pi \times 2.5 - 5\pi \times 0.2 + \frac{\pi}{2}\right) = -0.016\pi \sin\left(\frac{\pi}{2}\right) = -0.016\pi \text{ m/s} \quad (1 \text{ } \frac{\cancel{\upshape 3}}{\cancel{\upshape 3}})$$

第 182 题 v20230903

一用余弦函数表示的平面简谐波沿 x 轴正方向传播,已知 $t=\frac{1}{3}$ s 时的波形图如图所示,其频率为 0.5 Hz。求: (1) 原点 O 处的质点的初相; (2) 该波的表达式; (3) A 点离原点 O 的距离。

《力学》练习题 第九章 波动和声

解答

设波的表达式为 $y = A\cos(\omega t - kx + \varphi_0)$, 依题意,

$$A = 10 \text{ cm} = 0.1 \text{ m}$$
 (1 $\frac{\text{m}}{\text{m}}$)

$$f = 0.5 \text{ Hz} \tag{1 \%}$$

(1 分)

$$\omega = 2\pi f = \pi \text{ rad/s} \tag{1 \%}$$

$$\frac{\lambda}{2} = 20 \text{ cm} = 0.2 \text{ m}, \lambda = 0.4 \text{ m}$$
 (2 $\frac{1}{2}$)

$$k = \frac{2\pi}{\lambda} = 5\pi \text{ rad/m} \tag{1 \%}$$

$$u = \lambda f = 0.2 \text{ m/s} \tag{1 \%}$$

$$y = 0.1\cos(\pi t - 5\pi x + \varphi_0)$$

由题意及题图可知, $t=\frac{1}{3}$ s 时,原点 O 处的位移为 $-\frac{A}{2}$,速度 v<0,所以由旋转矢量图

可知,此时其相位为

$$\varphi = \pi \times \frac{1}{3} - 5\pi \times 0 + \varphi_0 = \frac{2\pi}{3}$$

$$\varphi_0 = \frac{\pi}{3} \tag{3 \(\frac{\psi}{2}\)}$$

所以波的表达式为

$$y = 0.1\cos\left(\pi t - 5\pi x + \frac{\pi}{3}\right) \tag{1 \%}$$

由题意、题图及旋转矢量图

可知,

$$\varphi_O - \varphi_A = kx_A = \frac{7}{6}\pi$$

$$x_A = \frac{\frac{7}{6}\pi}{k} = \frac{\frac{7}{6}\pi}{5\pi} = \frac{7}{30} \text{ m}$$
(3 分)

《力学》练习题 第九章 波动和声

第 183 题 v20230903

图示一平面简谐波在 t=0 时刻的波形图,请用余弦函数表示: (1) 该波的表达式; (2)P 处质点的振动表达式。

解答

(1)

$$y(x,t) = A\cos(\omega t - kx + \varphi_0) \tag{1 \(\frac{\frac{\frac{\frac{1}{\frac{\frac{1}{\fint}}}}}}}}}}}}}}}}}}}}}}}}$$

$$A = 4 \text{ cm} = 0.04 \text{ m}$$
 (1 $\%$)

$$u = 8 \text{ cm/s} = 0.08 \text{ m/s}$$
 (1 $\%$)

$$\frac{\lambda}{2} = 0.2 \text{ m}, \lambda = 0.4 \text{ m}$$
 (2 $\frac{\text{c}}{\text{c}}$)

$$k = \frac{2\pi}{\lambda} = 5\pi \text{ rad/m} \tag{2 \%}$$

$$T = \frac{\lambda}{u} = 5 \text{ s}, \omega = \frac{2\pi}{T} = 0.4\pi \text{ rad/s}$$
 (2 $\frac{\text{c}}{\text{c}}$)

$$y(0,0) = 0, v(0,0) > 0, \varphi_0 = -\frac{\pi}{2}$$
 (3 $\%$)

$$y(x,t) = 0.04\cos(0.4\pi t - 5\pi x - 0.5\pi)(SI) \tag{1 \%}$$

(2) P 处 x = 0.2 m

$$y(0.2,t) = 0.04\cos(0.4\pi t - 5\pi \times 0.2 - 0.5\pi) = 0.04\cos(0.4\pi t - 1.5\pi)(SI)$$
 (2 $\frac{1}{2}$)

第 184 题 v20230903

一平面简谐波沿 x 轴正向传播,其振幅为 A,频率为 f,波速为 u。设 $t=t_1$ 时刻的波形图如图所示。请用余弦函数表示: (1)x=0 处质点振动表达式; (2) 该波的表达式。

《力学》练习题 第九章 波动和声

解答

(1)

$$y(x,t) = A\cos(\omega t - kx + \varphi_0) \tag{2 \(\frac{\psi}{\psi}\)}$$

$$\omega = 2\pi f \tag{2 \%}$$

$$y(0,t_1) = 0, v(0,t_1) < 0, \varphi(0,t_1) = \omega t_1 - k \times 0 + \varphi_0 = \omega t_1 + \varphi_0 = \frac{\pi}{2}$$

$$\varphi_0 = \frac{\pi}{2} - 2\pi f t_1 \tag{5 \(\frac{\psi}{2}\)}$$

$$y(0,t) = A\cos\left(2\pi f t - k \times 0 + \frac{\pi}{2} - 2\pi f t_1\right) = A\cos\left(2\pi f t + \frac{\pi}{2} - 2\pi f t_1\right) \tag{1 \frac{\frac{1}{2}}{2}}$$

(2)

$$\lambda = uT = \frac{u}{f} \tag{2 }$$

$$k = \frac{2\pi}{\lambda} = \frac{2\pi f}{u} \tag{2 \%}$$

$$y(x,t) = A\cos\left(2\pi ft - \frac{2\pi f}{u}x + \frac{\pi}{2} - 2\pi ft_1\right) \tag{1 \%}$$

§9.4 平均能流密度

第 185 题 v20230903

当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?

- (A) 媒质质元的振动动能增大时, 其弹性势能减小, 总机械能守恒
- (B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同
- (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等
- (D) 媒质质元在其平衡位置处弹性势能最大

《力学》练习题 第九章 波动和声

答案

D

§9.5 波的叠加和干涉·驻波

9.5.1 波的干涉

第 186 题 v20230903

两列波在一根很长的弦线上传播,波的表达式分别为: $y_1 = 0.1\cos[\pi(x-10t)](SI)$, $y_2 = 0.1\cos[\pi(x+10t)](SI)$, 则它们相遇并叠加后,波的表达式为_____(SI)。

答案

 $y = 0.2\cos(\pi x)\cos(10\pi t)$

第 187 题 v20230903

如图所示, S_1 和 S_2 为两相干波源,它们的振动方向均垂直于图面,发出波长为 λ 的简谐波,P 点是两列波相遇区域中的一点,已知 $\overline{S_1P}=2\lambda$, $\overline{S_2P}=2.2\lambda$,两列波在 P 点发生相消干涉。若 S_1 的振动表达式为 S_2 的振动表达式为

(A) $y_2 = A \cos \left(2\pi t - \frac{1}{2}\pi\right)$

(B) $y_2 = A\cos(2\pi t + \pi)$

(C) $y_2 = A\cos\left(2\pi t + \frac{1}{2}\pi\right)$

(D) $y_2 = 2A\cos(2\pi t - 0.1\pi)$

答案

D

第 188 题 v20230903

如图所示,两列波长为 λ 的相干波在 P 点相遇。波在 S_1 点振动的初相是 φ_{10} , S_1 到 P 点的距离是 r_1 ;波在 S_2 点的初相是 φ_{20} , S_2 到 P 点的距离是 r_2 ,以 n 代表零或正、负整数,则 P 点是干涉极大的条件为

 $(A) r_2 - r_1 = n\lambda$

- $(B) \varphi_{20} \varphi_{10} = 2n\pi$
- (C) $\varphi_{20} \varphi_{10} + \frac{2\pi}{\lambda}(r_2 r_1) = 2n\pi$
- (D) $\varphi_{20} \varphi_{10} + \frac{2\pi}{\lambda}(r_1 r_2) = 2n\pi$

《力学》练习题 第九章 波动和声

答案

D

第 189 题 v20230903

如图所示, S_1 和 S_2 为同相位的两相干波源,相距为 L,P 点距 S_1 为 r;波源 S_1 在 P 点引起的振动 振幅为 A_1 ,波源 S_2 在 P 点引起的振动振幅为 A_2 ,两波波长都是 λ ,则 P 点的振幅 A =_____。

答案

 $\sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\left[\frac{2\pi}{\lambda}(L - 2r)\right]}$

9.5.2 驻波

第 190 题 v20230903

某一弦线上有两列平面简谐波,其波函数分别为 $y_1 = 0.1\cos(2t - 4x)$ (SI) 和 $y_2 = 0.1\cos(2t + 4x)$ (SI)。 若这两列波相遇,则形成的驻波的表达式为 (SI)。

答案

 $y = 0.2\cos(4x)\cos(2t)$

第 191 题 v20230903

沿着相反方向传播的两列相干波,其表达式为 $y_1 = A\cos\left[2\pi\left(ft - \frac{x}{\lambda}\right)\right]$ 和 $y_2 = A\cos\left[2\pi\left(ft + \frac{x}{\lambda}\right)\right]$ 。在 叠加后形成的驻波中, 各处简谐振动的振幅是

(A) A

(B) 2A

- (C) $2A\cos\left(2\pi\frac{x}{\lambda}\right)$ (D) $\left|2A\cos\left(2\pi\frac{x}{\lambda}\right)\right|$

答案

D

第 192 题 v20230903

沿着相反方向传播的两列相干波,其表达式为 $y_1 = A\cos\left[2\pi\left(ft - \frac{x}{\lambda}\right)\right]$ 和 $y_2 = A\cos\left[2\pi\left(ft + \frac{x}{\lambda}\right)\right]$ 。叠 加后形成的驻波中,波节的位置坐标为 (其中的 n=0, 1, 2, 3, …)

- (A) $x = \pm n\lambda$

- (B) $x = \pm n\frac{\lambda}{2}$ (C) $x = \pm (2n+1)\frac{\lambda}{2}$ (D) $x = \pm (2n+1)\frac{\lambda}{4}$

《力学》练习题 第九章 波动和声

答案

D

第 193 题 v20230903

某时刻驻波波形曲线如图所示,则 P_1 、 P_2 两点振动的相位差为____。

答案

 π

§9.6 多普勒效应

第 194 题 v20230903

一列火车以 40~m/s 的速度行驶,若机车汽笛的频率为 600~Hz,一辆汽车在紧邻火车轨道的公路上以 10~m/s 的速度与火车同向行驶,则汽车驾驶者在火车到来之前听到的声音频率为_____Hz。(设空气中声速为 340~m/s)

答案

660