Approximating Slopes of Tangent Lines Introduction to Limits

January 31, 2017 9:35 - 10:50 AM

Outline

Review of inverse functions and logs

Tangent lines

Average velocity

Instantaneous velocity

Estimating slopes of tangent lines

Limits

Tangent lines

The tangent line to a graph y = f(x) at a point x_0 is the line that barely touches the graph at $(x_0, f(x_0))$.

Average velocity

Given a function f(t) describing the position of an object at time t, its average velocity between times t_0 and t_1 is

$$v_{ave} = rac{f(t_1) - f(t_0)}{t_1 - t_0}$$

Instantaneous velocity

Given a function f(t) describing the position of an object at time t, its instantaneous velocity at time t_0 is the slope of the tangent line at $t = t_0$.

Estimating slopes of tangent lines

Two ways to estimate the slope of the tangent line at $x = x_0$:

Secant lines approaching x_0 from the right

Secant lines approaching x_0 from the left

Estimating slopes

Estimate the slope of the tangent line at t=1 using each of the 4 other data points.

```
t (sec) dist (m)
5 22
2 1
1.1 -1.79
1.01 -1.9799
1 2
```

Estimating slopes

The distance an airplane which is taking off has travelled is given by the formula

$$D(t) = 3t^2 - t + 5$$

Estimate the velocity of the airplane at t=3 by using time intervals starting at t=3 and lasting 1, .5, .1, and .01 seconds.

Estimating slopes

An electron moves along a wire in an AC circuit according to the formula

$$x(t) = 5 \sin\left(\frac{\pi t}{2}\right)$$

Estimate the velocity of the electron when t =by using the time intervals [2,4], [3,4], [3.5,4], [3.9,4], and [3.99,4].

Limits

To take the limit of a function y = f(x) at the point x = a, we look at the y-values as the x-values get closer to a.

Example

Let

$$f(x) = x^2 + 2$$

To calculate the limit at x = 2, we compute the following values:

x	1.9	1.99	1.999	2.001	2.01	2.1
f(x)	4.61	4.9601	4.996001	5.004001	5.0401	5.41

We say the limit as x approaches 2 equals 5, or $\lim_{x\to 2} f(x) = 5$.

Remark

Limits are important when the graph displays unusual behavior around the point in question. On the previous example, we could have just plugged x = 2 into the function.

Removable discontinuity example

Let

$$f(x) = \frac{x^2 - 9}{x - 3}$$

To calculate the limit at x = 3, we compute the following values:

			2.999			
f(x)	5.9	5.99	5.999	6.001	6.01	6.1

So
$$\lim_{x\to 3} f(x) = 6$$
.

Limits of piecewise functions

Let

$$f(x) = \begin{cases} x^2 - 1, & x < 0 \\ 2x + 5, & x \ge 0 \end{cases}$$

Left and right-handed limits

In this case, we write

$$\lim_{x\to 0^-} f(x) =$$

$$\lim_{x\to 0^+} f(x) =$$

The actual (two-sided) limit $\lim_{x\to 0} f(x)$ only exists if the left and right-handed limits are equal. They are not, so the limit DNE (does not exist)

Example

Example

