Ferienkurs Lineare Algebra 1

$TUM-WS\ 2012/13$

Übungsblatt 2 – Gruppen, Körper, Vektorräume

Robert Lang (rl@ph.tum.de)

Dienstag, 19. März 2013

Aufgabe 1

Zeige, dass (S_n, \circ) eine Gruppe ist. Welche Ordnung hat S_n ? Für welche $n \in \mathbb{N}$ ist S_n Abelsch? Vergleichen Sie abschließend $|Y^X|$ und $|S_n|$.

Aufgabe 2

Sei (G, \circ) eine Gruppe und $H \subseteq G$. Zeigen Sie:

- (a) Ist H eine Untegruppe von G, so sind ihre neutralen Element identisch.
- (b) H ist Untergruppe $\Leftrightarrow a \circ b^{-1} \in H$ für alle $a, b \in H$. (sog. Zweite Untergruppenkriterium)

Aufgabe 3

Sei $V = \mathbb{R}^3$ ein reeller Vektorraum. $M = \{(2,0,0)^{\mathrm{T}}, (1,1,0)^{\mathrm{T}}\}$. Bestimmen Sie $\langle M \rangle$ und Span M. Beweisen Sie anschließend Satz 2.8.

Aufgabe 4

Beweisen Sie: Sei V ein VR und $A, B \supseteq V$, so gelten:

- (a) $B \subseteq \operatorname{Span} A \Leftrightarrow \operatorname{Span} (A \cup B) = \operatorname{Span} A$
- (b) $\operatorname{Span}(\operatorname{Span} A) = \operatorname{Span} A$
- (c) $A \text{ ist UVR} \Leftrightarrow \operatorname{Span} A = A$.

Aufgabe 5

Zeigen Sie, dass für jede Primzahl p durch $GF_p := (\{1, \ldots, p\}, \oplus, \otimes)$, wobei $a \oplus b := a + b \pmod{p}$ und $a \otimes b := a \cdot b \pmod{p}$ die Addition und Multiplikation modulo p bezeichnen, ein Körper definiert wird. Warum gilt dies nur, wenn p eine Primzahl ist?

Aufgabe 6

Beweisen Sie die Äquivalenz der drei Aussagen aus Lemma 2.12.

Aufgabe 7

Finden Sie ein Beispiel dafür, dass $\{x_1, x_2\}$, $\{x_1, x_3\}$, sowie $\{x_2, x_3\}$ linear unabhängig sind, aber $\{x_1, x_2, x_3\}$ linear abhängig ist.

Aufgabe 8

Betrachten Sie den Vektorraum $V=\mathbb{R}^\mathbb{R}$ sowie die Mengen

$$A = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = f(-x) \ \forall x \in \mathbb{R} \}$$

$$B = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = -f(-x) \ \forall x \in \mathbb{R} \}$$

Sind A, B Untervektorräume von V?

Aufgabe 9

Sei $M\subseteq V$ linear unabhängige Teilmenge eines Vektorraums V. Ferner sei $y\in V$ mit $y\notin M$. Zeigen Sie, dass $M\cup\{y\}$ eine linear unabhängige Menge ist.

Aufgabe 10

Bestimmen Sie die Dimensionen der folgenden Vektorräume:

- (a) \mathbb{R} -VR $V = \mathbb{R}$
- (b) $\mathbb{C}\text{-VR }V=\mathbb{R}$
- (c) \mathbb{R} -VR $V = \mathbb{C}$
- (d) \mathbb{C} -VR $V = \mathbb{C}$

Aufgabe 11

Überzeugen Sie sich, dass $(\mathbb{Z}_2, +, \cdot)$ mit der Additions- und Multiplikationstabelle aus der Vorlesung tatsächlich ein Körper ist. Bestimmen Sie dann die Dimensionen der folgenden Vektorräume und geben Sie deren Basis an:

- (a) \mathbb{Z}_2 -VR $V = \mathbb{Z}_2$
- (b) K-VR $V = \{0\}$