Name That Genre

Spotify Genre Classification Using Machine Learning

Ciesla, Hörschinger, Oberascher

Define question and goal

- Predict Genre of Songs
- Evaluate Performances of different ML models

Record Data - Overview

- \$ pip install spotipy
- create spotify developer account
- playlist_items(playlist_id) -> get all track IDs from playlist
- audio_features([track_ids]) -> get list of audio features
 from list of track IDs
- save features to .json file

Record Data - Labeling

edm

Techno Bunker

rock

jazz

Hip Hop Anthems:

Def Jam

hiphop

Answer question/application

Record Data - Audio Features

```
{ 📃
   "danceability":0.194.
   "energy": 0.0324,
   "key":5,
   "loudness": -28.215,
   "mode":1,
   "speechiness":0.0382,
   "acousticness": 0.982,
  "instrumentalness": 0.961,
  "liveness":0.0916,
  "valence": 0.0596,
  "tempo":144.13,
  "type": "audio_features",
  "id": "2YarjDYjBJuH63dUIh90Wv",
  "uri": "spotify:track:2YarjDYjBJuH63dUIh90Wv",
  "track_href": "https://api.spotify.com/v1/tracks/2YarjDYjBJuH63dUIh90Wv",
   "analysis_url": "https://api.spotify.com/v1/audio-analysis/2YarjDYjBJuH63dUIh90Wv",
   "duration_ms":433800.
   "time_signature":4,
   "genre": "classic",
   "playlist_id": "37i9dQZF1DXaHEllsiT8lf"
```


Understand Data

<class 'pandas.core.frame.dataframe'=""></class>						
Rang	RangeIndex: 2580 entries, 0 to 2579					
Data	ata columns (total 15 columns):					
#	Column	Non-Null Count	Dtype			
0	danceability	2580 non-null	float64			
1	energy	2580 non-null	float64			
2	key	2580 non-null	int64			
3	loudness	2580 non-null	float64			
4	mode	2580 non-null	int64			
5	speechiness	2580 non-null	float64			
6	acousticness	2580 non-null	float64			
7	instrumentalness	2580 non-null	float64			
8	liveness	2580 non-null	float64			
9	valence	2580 non-null	float64			
10	tempo	2580 non-null	float64			
11	duration_ms	2580 non-null	int64			
12	time_signature	2580 non-null	int64			
13	genre	2580 non-null	object			
14	playlist_id	2580 non-null	object			
dtyp	es: float64(9), in	t64(4), object(2)			
memo	ry usage: 302.5+ K	В				

Understand Data

Understand Data - Correlation

Data and Feature Preprocessing

- Remove invalid samples
 - some samples with wrong key and wrong time signature
 - key == -1 or time_signature not in [3,7]
- Reduce highly correlated features
 - energy & loudness
- Scale numerical features to mean = 0 & standard deviation = 1

Data and Feature Preprocessing

- Restrict outliers
 - upper whisker \rightarrow Q3 + 1.5*IQR
 - lower whisker \rightarrow Q1 1.5*IQR

Data and Feature Preprocessing

- One-hot-encoding for categorical features
- Final features
 - numerical → danceability, speechiness, acousticness, instrumentalness, liveness, valence, tempo, duration_ms
 - categorical → mode (binary), time_signature_0 time-signature_5, key_0 - key_11
- Perform preprocessing steps on training set
- Perform same preprocessing steps on test set

Data and Feature Preprocessing - PCA

Model tuning

- Nested Cross Validation
 - different data for hyperparameter tuning and model performance evaluation
 - for every estimator (KNN, SVC & Random Forest)
 - inner loop
 - 5-fold CV
 - grid search for hyperparameter tuning
 - outer loop → model performance evaluation
 - 5-fold CV

Model selection

	model	params	nested_cv_training_acc	cv_training_acc	test_acc	test_roc_auc
0	knn {"metric": "manhattan", "n_neighbors": 23, "we		0.878553	0.857364	0.852713	0.980116
1	knn	{"metric": "euclidean", "n_neighbors": 26, "we	0.842377	0.852196	0.855814	0.979187
2	knn	{"metric": "manhattan", "n_neighbors": 33, "we	0.860465	0.859432	0.855814	0.981063
3	knn {"metric": "manhattan", "n_neighbors": 16, "we		0.832041	0.862016	0.854264	0.979672
4	knn	{"metric": "manhattan", "n_neighbors": 16, "we	0.873385	0.862016	0.854264	0.979672
5	random Forest	{"max_depth": 40, "max_features": 5, "min_samp	0.891473	0.893023	0.888372	0.987955
6	random Forest	{"max_depth": 30, "max_features": 5, "min_samp	0.870801	0.896124	0.889922	0.988184
7	random Forest	{"max_depth": 30, "max_features": 5, "min_samp	0.909561	0.888889	0.883721	0.987549
8	random Forest	$ \{ "max_depth" : 60, "max_features" : 5, "min_samp \\$	0.883721	0.895090	0.880620	0.987339
9	random Forest	{"max_depth": 30, "max_features": 10, "min_sam	0.912145	0.893540	0.882171	0.987563
10	SVC	{"C": 3.0, "gamma": 0.1, "kernel": "rbf"}	0.873385	0.869767	0.891473	0.983729
11	SVC	{"C": 1.0, "gamma": 0.1, "kernel": "rbf"}	0.844961	0.864083	0.886822	0.982449
12	SVC	{"C": 3.0, "gamma": 0.1, "kernel": "rbf"}	0.886305	0.869767	0.891473	0.983664
13	SVC	{"C": 3.0, "gamma": 0.1, "kernel": "rbf"}	0.847545	0.869767	0.891473	0.983746
14	SVC	{"C": 9.0, "gamma": 0.1, "kernel": "rbf"}	0.894057	0.870801	0.896124	0.984762

Model selection - SVC

```
10: {"C": 3.0, "gamma": 0.1, "kernel": "rbf"}
11: {"C": 1.0, "gamma": 0.1, "kernel": "rbf"}
14: {"C": 9.0, "gamma": 0.1, "kernel": "rbf"}
```


Model selection - RF

```
5: {"max_depth": 40, "max_features": 5, "min_samples_leaf": 1, "min_samples_split": 5, "n_estimators": 2000}
6: {"max_depth": 30, "max_features": 5, "min_samples_leaf": 1, "min_samples_split": 3, "n_estimators": 4000}
7: {"max_depth": 30, "max_features": 5, "min_samples_leaf": 2, "min_samples_split": 3, "n_estimators": 4000}
8: {"max_depth": 60, "max_features": 5, "min_samples_leaf": 2, "min_samples_split": 3, "n_estimators": 1000}
9: {"max_depth": 30, "max_features": 10, "min_samples_leaf": 1, "min_samples_split": 3, "n_estimators": 4000}
```


Feature selection - Forward Selection

CV Accuracy	Nr.	Feature Names
0.504	1	acousticness
0.675	2	acousticness, danceability
0.742	3	acousticness, danceability, tempo
0.804	4	acousticness, danceability, tempo, valence
0.833	5	acousticness, danceability, tempo, valence, instrumentalness
0.848	6	acousticness, danceability, tempo, valence, instrumentalness, speechiness
0.869	7	acousticness, danceability, tempo, valence, instrumentalness, speechiness, duration_ms
0.871	8	acousticness, danceability, tempo, valence, instrumentalness, speechiness, duration_ms, key_4
0.875	9	acousticness, danceability, tempo, valence, instrumentalness, speechiness, duration_ms, key_4, key_11

Feature selection - Forward Selection

max = 0.883 (with 20 features)

with 9 features

Model selection → SVM

Final model - answer the question

Thank you for your attention!