1 Статический расчет и выбор элементов

1.1 Пьезоэлемент

Рассчитаем пьезоэлемент, представленный на рисунке ниже. Частота собственных колебаний $f_0=1$ МГц. Материал ЦТС-19.

Рисунок 1 – Пьезоэлектрик: h - ширина, D - диаметр

Для соблюдения резонансной частоты, необходимо, чтобы ширина пьезоэлемента была равна половине длинны волны. Из этого условия выведена формула для частоты собственных колебаний:

$$f_0 = \frac{c}{2h} \tag{1}$$

где c - скорость звука в материале. По данной формуле можем найти ширину пьезоэлектрика:

$$h = \frac{v_1}{2f_0} = \frac{3 \cdot 10^3}{2 \cdot 10^6} = 0.0015 \text{ M} = 1.5 \text{ MM}$$
 (2)

Теперь можем найти диаметр диска, для упрощения рассчетов, возьмем его на порядок больше толщины:

$$D = 10h = 15 \text{ MM} \tag{3}$$

Сформируем уравнения состяния нашего пьезоэлемента. Поскоьку $D\gg h$ мы можем пренебречь поперечными колебаниями, направленными вдоль x_1 и x_2 и рассматривать одномерную модель пьезоэлемента. В таком случае вся деформация происходит только в направлении оси x_3 , вектор колебательной скорости и вектор напряженности электрического поля тоже направлены вдоль оси x_3 . Учитывая эти обстоятельства запишем

$$\rho \frac{\partial^2 u}{\partial t^2} = \frac{\partial \sigma}{\partial x} \tag{4}$$

$$\sigma = C_{33} \frac{\partial u}{\partial x} - e_{33} E \tag{5}$$

$$D = \varepsilon_{33}E + e_{33}\frac{\partial u}{\partial x} \tag{6}$$

$$\frac{\partial D}{\partial x} = 0 \tag{7}$$

где: ρ - плотность [кг/м]

v - скорость смещения точек среды (колебательная скорость) [м/с]

 σ - механическое напряжение [Па]

 C_{33} - коэффициент упругостьи [Па]

 e_{33} - пьезомодуль [Кл/м 2]

E - напряженность электрического поля [B/м]

D - электрическое смещение [Кл/м 2]

arepsilon - абсолютная диэлектрическая проницаемость $[\Phi/\mathrm{M}]$

Уравнение (25) представляет второй закон Ньютона для сплошной среды. Уравнение (26) дает описание обратного пьезоэффекта, т.е. возникновение механических напряжений и деформаций (колебаний среды) под действием электрического поля. Уравнение (27) формулирует прямой пьезоэффект — возникновение тока смещения и электрического поля в напряженно-деформированном теле. Уравнение (28) - это уравнение электрического баланса - оно указывает, что в материале отсутствуют объемные электрические заряды.

Пьезомодули e_{33} и d_{33} связаны между собой соотношением:

$$e_{33} = C_{33}d_{33} (8)$$

Выразив из уравнения (27) напряженность E, подставим полученное выражение в (27) из корторого получим выражение для механического напряжения σ . Продифференцируем σ по x и подставим в (25), учитывая условие (28). В итоге получим дифференциальное уравнение в частных производных.

$$\rho \frac{\partial^2 u}{\partial t^2} = \left(C_{33} + \frac{e_{33}^2}{\varepsilon_{33}} \right) \frac{\partial^2 u}{\partial x^2} \tag{9}$$

Далее запишем соотношения для напряжения и тока пьезоэлемента. Очевидно, напряжение на контактах пьезопластины $U_{\Pi \ni \Pi}$ можно определить, интегрируя напряженность электрического по толщине пластины:

$$U_{\Pi \ni \Pi} = \int_0^h E dh = E \cdot h \tag{10}$$

Ток, протекающий через пьезоэлемент, равен

$$I_{\Pi \ni \Pi} = S_{\Pi \ni \Pi} \cdot i = \frac{\pi D^2}{4} \cdot i \tag{11}$$

где $S_{\Pi \ni \Pi}$ - площать пластины, м².

Разложим подаваемое напряжение в ряд Фурье и оставим только первую гармонику. Она имеет вид:

$$U_{\Pi \ni \Pi} = U_m \sin(\omega_0 t), \ t \in [0, \tau]$$
(12)

здесь $\omega_0=2\pi f_0$ - круговая частота, $\tau=\frac{1}{2f_0}$ - длительность импульса, U_m - амплитуда напряжения. Тогда можем найти значение частной производной напряженности по времени.

$$\frac{\partial E}{\partial t} = U_m \omega \cos(\omega_0 t) \tag{13}$$