Quiz 14 Name: Answer Key

You must show your work to get full credit.

1. Show that the two sets $\{9a - 6b : a, b \in \mathbb{Z}\}$ and $\{3c : c \in \mathbb{Z}\}$ are equal.

Solution. To simplify notation let $A = \{9a - 6b : a, b \in \mathbb{Z}\}$ and $B = \{3c : c \in \mathbb{Z}\}$.

We first show $A \subseteq B$. Let $x \in A$. Then x = 9a - 6b for integers a and b. Then x = 9a - 6b = 3(3a - 2b) = 3c where c = 3a - 2b is an integer. Therefore $x \in B$ showing that $A \subseteq B$.

Now we show $B \subseteq A$. Let $x \in B$. Then x = 3c for some integer c. Then x = 3c = 9c - 6c = 9a - 6b where a and b are the integers a = b = c. Thus $x \in A$. This shows that $B \subseteq A$.

As $A \subseteq B$ and $B \subseteq A$ we conclude that A = B.

2. Prove or give a disproof: every even number is the sum of two odd numbers.

Proof. This is true. To get a feel for what is happening let us look at some examples:

$$2 = 1 + 1$$
, $4 = 3 + 1$, $6 = 5 + 1$, $8 = 7 + 1$, $0 = -1 + 1$, $-2 = -3 + 1$.

So let n be an even integer. Then n = 2k for some integer k and we have

$$n = 2k = (2k - 1) + 1$$

and so n is the sum of the two odd numbers 2k-1 and 1.