### Búsqueda en IA (parte 1)

### Jorge A. Baier

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile



# Búsqueda

- Todo problema en el que es necesario *encontrar* una solución es un problema de búsqueda.
- Un algoritmo se dice de búsqueda se mueve a través de un espacio de búsqueda para encontrar una solución.
- Se usa un algoritmo de búsqueda en problemas en donde no se tiene una solución algorítmica.
- Posibles ejemplos: planificar un viaje, jugar ajedrez, resolver un puzle.



# **Ejemplos**

### Un solo agente:

- Cubo Rubik, Puzle de  $(n^2 1)$ .
- Sudoku, Atomix
- Navegación de Robots, Planificación de Movimientos
- Razonamiento Hipotético
- Verificación de Software

### Múltiples agentes:

- Damas, Ajedrez, Go, ...
- Bridge, Poker, ...
- Backgammon



# Casos de Éxito

■ El espacio de búsqueda del cubo Rubik tiene

$$43,252,003,274,489,856,000 \approx 4 \cdot 10^{19}$$

estados. Sin embargo, un *solver* para este problema "sólo" necesitó explorar  $10^{12}$  estados para encontrar una solución óptima de 18 pasos en 17 días. (El problema más difícil posible tiene 20 movidas)

- El juegos de las damas tiene un espacio de estados de 10<sup>20</sup> y el ajedrez 10<sup>44</sup>. Para ambos juegos, existen programas que buscan mejor que cualquier humano. Las damas, de hecho, está *resuelto*.
- Búsqueda es usado en aplicaciones industriales: planificación de brazos industriales, debugging, diagnóstico de circuitos eléctricos, etc.



# Mundos Determinísticos, con Un Agente

- Un espacio de estados S.
- Un conjunto  $\mathcal{A}$  de operadores. Un operador  $a \in \mathcal{A}$  es una función *parcial*

$$a: \mathcal{S} \mapsto \mathcal{S}$$
.

■ Por cada estado, un conjunto  $A(s) \subseteq A$  de *operadores* aplicables en s. Si  $a \in A(s)$ , entonces a(s) está definida. Definimos

$$Succ(s) = \{a(s) \mid a \in A(s)\}$$

- Una función de costo  $c: A \to \mathbb{R}^+$ .
- Un estado inicial s<sub>init</sub>.
- Un conjunto de estados finales G.



# Solución a un Problema de Búsqueda

■ Una secuencia de operadores  $o_0o_1...o_n$  es aplicable en  $s_0$  ssi  $s_{i+1} = o_i(s_i)$  está definido, para todo  $i \in \{0,...,n\}$ .

■ Una secuencia aplicable de operadores  $o_0o_1...o_n$  es una solución al problema ssi cuando  $s_{i+1} = o_i(s_i)$ , para todo  $i \in \{0, ..., n\}$ ,  $s_{n+1} \in G$ .



# Otro Ejemplo: Misioneros y Caníbales

En este problema hay tres caníbales, tres misioneros, un río y un bote. Los caníbales, los misioneros y el bote se encuentran en una rivera del río. Los seis sujetos deben cruzar el río, pero el bote sólo permite trasladar a dos personas a la vez. Se debe encontrar una secuencia de movimientos de personas en el bote que permita cruzar a los seis individuos de manera segura. No se debe permitir que hayan más caníbales que misioneros en algún lado del río algún momento.

**Ejercicio**: Formalice este problema como un problema de búsqueda.



# Espacio de Búsqueda para Misioneros y Caníbales

Una vista parcial del espacio de búsqueda.





## Búsqueda Genérica

El siguiente es un algoritmo de búsqueda genérico.

**Input:** Un problema de búsqueda  $(S, A, s_{init}, G)$ 

Output: Un nodo objetivo

- Open es un contenedor vacío
- 2 Closed es un conjunto vacío
- Inserta s<sub>init</sub> a Open
- 4 parent( $s_{init}$ ) = null
- **5** while  $Open \neq \emptyset$
- $0 \qquad u \leftarrow \texttt{Extraer}(Open)$
- 7 Inserta *u* en *Closed*
- **8 for each**  $v \in Succ(u) \setminus (Open \cup Closed)$
- parent(v) = u
- if  $v \in G$  return v
- Inserta v a Open



# Ejemplo (Heuristic Search; Edelkamp, Schrödl, 2011)

Consideremos el grafo de la izquierda y el árbol del espacio de búsqueda de la derecha.





# Búsqueda en Profundidad (*Depth-First Search*)

- Usualmente abreviado como DFS.
- Resulta de implementar a *Open* como un stack.
- Siempre se extrae el elemento al tope de Open (línea 6; alg. principal).

Ejemplo: En pizarra.



# Búsqueda en Amplitud (*Breadth-First Search*)

- Abreviado como BFS
- Resulta de implementar a *Open* como una cola.
- Siempre se extrae el primer elemento al principio de *Open* (línea 6; alg. principal).

Ejemplo: En pizarra.



## **Propiedades**

#### Teorema

Si el espacio de estados es finito, búsqueda en profundidad con detección de ciclos es completo (es decir, encuentra una solución si ésta existe).



# **Propiedades**

#### Teorema

Si el espacio de estados es finito, búsqueda en profundidad con detección de ciclos es completo (es decir, encuentra una solución si ésta existe).

#### Teorema

Si el espacio de búsqueda es finito, búsqueda en amplitud es completo y óptimo para problemas de búsqueda con costos uniformes.



## Tiempo y Espacio

Para los siguientes resultados, suponemos:

- *b*: factor de ramificación promedio.
- p: profundidad a la que se encuentra la solución.
- m: largo de la rama más larga del árbol de búsqueda.

#### **Teorema**

La memoria usada por DFS es  $\mathcal{O}(bm)$ , mientras que breadth-first necesita memoria de tamaño  $\mathcal{O}(b^p)$ .

### Teorema

DFS requiere tiempo  $\mathcal{O}(b^m)$ , mientras que breadth-first necesita tiempo  $\mathcal{O}(b^p)$ .



# Lo mejor de los dos mundos

#### Profundidad Limitada

Funciona como  ${\tt DFS}$ , pero recibe como parámetro un límite  $\ell$  de profundidad para la búsqueda. Se ejecuta  ${\tt DFS}$  sobre el subárbol de profundidad  $\ell$  del espacio de búsqueda.



# Lo mejor de los dos mundos

#### Profundidad Limitada

Funciona como  ${\tt DFS},$  pero recibe como parámetro un límite  $\ell$  de profundidad para la búsqueda. Se ejecuta  ${\tt DFS}$  sobre el subárbol de profundidad  $\ell$  del espacio de búsqueda.

### Profundización Iterativa (Iterative Deepening DFS)

- **1** *ℓ*=1;
- ${f 2}$  realice búsqueda en profundidad limitada con límite  $\ell.$
- ${f 3}$  si hubo éxito, retorne el estado encontrado; en otro caso incremente  $\ell$  y vuelva al paso anterior.



### Resultados sobre IDDFS

#### Teorema

Profundización Iterativa es completo.

- b: factor de ramificación promedio.
- p: profundidad a la que se encuentra la solución.
- m: largo de la rama más larga del árbol de búsqueda.

#### Teorema

El tiempo requerido por IDDFS es  $\mathcal{O}(b^p)$  y memoria de tamaño  $\mathcal{O}(bp)$ .



# Busqueda Informada

¿Qué podemos hacer para mejorar la búsqueda en estos casos?



| 1 | 2 | 3 |
|---|---|---|
|   | 5 | 4 |
| 6 | 7 | 8 |



Problema: ir de A a B



# Búsqueda el Mejor Primero (Best-First Search)

### El algoritmo el mejor primero, intuitivamente:

- Mantiene una lista de Open y Closed.
- Funciona como DFS, pero:
- Los nodos en *Open* tienen asociados una calidad.
- Siempre extrae de *Open* el nodo de mejor calidad.
- Un estado sucesor es descartado si está en Closed con mejor o igual calidad.



### Función Heurística

 En búsqueda informada, usamos una función de estimación del costo de un nodo del árbol de búsqueda a una solución.
La denotamos como

■ En el problema de navegación, si

$$\Delta x = |x_{obj} - x|, \quad \Delta y = |y_{obj} - y|,$$

donde (x,y) es la posición actual y  $(x_{obj},y_{obj})$  es el objetivo. La siguiente es una posible heurística (también llamada distancia octile)

$$h(x,y) = |\Delta x - \Delta y| + \sqrt{2} \min\{\Delta x, \Delta y\}$$



# Incorporando el Costo

- Como vimos en el ejemplo, usar sólo h conduce a soluciones no óptimas.
- Es posible encontrar soluciones óptimas al incorporar el *costo* incurrido hasta llegar a un nodo *n*.
- Denotamos este costo como g(n).
- Luego, podemos ordenar la frontera de búsqueda por la siguiente función:

$$f(n) = g(n) + h(n)$$



# Algoritmo Principal

### Algoritmo A\*

**Input:** Un problema de búsqueda  $(S, A, s_0, G)$ 

Output: Un nodo objetivo

- **1** for each  $s \in \mathcal{S}$  do  $g(s) \leftarrow \infty$
- **2** *Open*  $\leftarrow$  { $s_0$ }
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- **4** while  $Open \neq \emptyset$
- **Extrae** un *u* desde *Open* con menor valor-*f*
- **if** *u* es objetivo **return** *u*
- for each  $v \in Succ(u)$  do
- 8 Insertar v



### El Procedimiento *Insertar*

### Insertar v en Open

- 1  $cost_v = g(u) + c(u, v)$  // el costo de llegar a v por u
- 2 if  $cost_v \ge g(v)$  return // seguimos solo si  $cost_v < g(v)$
- $\square$  parent $(v) \leftarrow u$
- $f(v) \leftarrow g(v) + h(v)$
- **6** if  $v \in Open$  then Reordenar Open // depende de la impl.
- 7 else Insertar v en Open



# Un ejemplo



Entre paréntesis, h(n).



## A\* y Greedy

- Si usamos f(n) = h(n) en A\*, entonces el algoritmo resultante es *greedy best-first search* (ambicioso).
- Los algoritmos ambiciosos encuentran soluciones más rápidamente, sacrificando la calidad de la solución.





Ruta obtenida por los algoritmos A\* y BFS

# Optimalidad de A\*

Partiremos con algunas definiciones

### Definición

Para un estado s, denotamos por  $h^*(s)$  al costo de un camino óptimo desde s a un estado objetivo.

### Definición (Admisibilidad)

Una función heurística h se dice admisible, si para todo s:

$$h(s) \leq h^*(s)$$

## Teorema (Optimalidad de A\*)

Si h es admisible, entonces  $A^*$ , usado con h, encuentra una solución óptima si esta existe.

Demostración: Pizarra.

### Heurísticas Consistentes

## Definición (Heurísticas Consistentes)

Una heurística se dice consistente ssi

- h(s) = 0, para todo  $s \in G$ .
- $h(s) \le c(s, s') + h(s')$ , para todo vecino s' de s.

#### Teorema

Si h es consistente, entonces h es admisible.

### Teorema

Cuando A\* es usado con una heurística admisible, cuando A\* expande un nodo v, g(v) contiene el costo del camino óptimo desde  $s_0$  a v.

El anterior teorema tiene un potencial impacto en la forma de polementar A\*.

# La mayor es la mejor

#### Teorema

Si  $h_1$  y  $h_2$  son consistentes y  $h_1 \ge h_2$ , entonces A\*, usado con  $h_2$ , expande todos los nodos que A\* expande cuando es usado con  $h_1$ .

Como conclusión tenemos que  $h_1$  es "mejor" que  $h_2$  en la práctica.



### Encontrando Heurísticas Admisibles

- Una estrategia simple: *relajar* el problema.
- La heurística es el costo de resolver el problema relajado.
- Ejemplo:



Estado Inicial



Objetivo

- Los operadores respetan las siguientes restricciones:
  - 1 Un azulejo sólo se puede mover a un cuadrado vecino.
  - 2 Un azulejo sólo se puede mover a un cuadrado desocupado.



## Heurísticas en Nuestro Ejemplo

Si relajamos ambas restricciones:

 $h_1$  = "número de azulejos en la posición incorrecta"

Si relajamos la restricción 2:

 $h_2 =$  "suma de la distancia manhattan de cada azulejo" ¿cuál es mejor?



## Heurísticas en Nuestro Ejemplo

Si relajamos ambas restricciones:

 $h_1$  = "número de azulejos en la posición incorrecta"

Si relajamos la restricción 2:

 $h_2$  = "suma de la distancia *manhattan* de cada azulejo"

¿cuál es mejor?

|    | Search Cost |            |            |
|----|-------------|------------|------------|
| d  | IDS         | $A^*(h_1)$ | $A^*(h_2)$ |
| 2  | 10          | 6          | 6          |
| 4  | 112         | 13         | 12         |
| 6  | 680         | 20         | 18         |
| 8  | 6384        | 39         | 25         |
| 10 | 47127       | 93         | 39         |
| 12 | 364404      | 227        | 73         |
| 14 | 3473941     | 539        | 113        |
| 16 | _           | 1301       | 211        |
| 18 | _           | 3056       | 363        |
| 20 | _           | 7276       | 676        |
| 22 | _           | 18094      | 1219       |
| 24 | _           | 39135      | 1641       |
|    |             |            |            |



# Sacrificando Optimalidad Gradualmente

- A\* con pesos (weighted A\*) es una buena opción cuando se está dispuesto a sacrificar optimalidad para obtener un mejor rendimiento.
- Consiste en usar A\* con la siguiente función de evaluación

$$f(n) = g(n) + w \cdot h(n),$$

con w > 1.

#### Teorema

Si h es admisible, weighted A\* encuentra una solución cuyo costo es a lo más w veces el óptimo.

En la práctica encuentra soluciones mejores.