ЛАБОРАТОРНАЯ РАБОТА 45

ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКА С ПОМОЩЬЮ ЭФФЕКТА ХОЛЛА

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	

<u>Цель работы</u>: измерить холловскую разность потенциалов и вычислить постоянную Холла, концентрацию носителей заряда и их подвижность в исследуемом полупроводнике.

Описание установки

Полупроводниковый образец П расположен между полюсами электромагнита ЭМ. Ток электромагнита $I_{\text{магн}}$, регулируемый потенциометром R_2 , создаёт поперечное магнитное поле с индукцией В, которую можно определить по градуировочному графику на лабораторной установке. При про-

пускании по образцу тока j, регулируемого потенциометром R_1 , в образце возникает поперечная холловская разность потенциалов U_x (поле с напряженностью E_x). Чтобы избежать неточности измерения U_x , вызванного смещением контактов измерителя на расстояние Δl , измерения производят при разных направлениях магнитного поля, которое меняют тумблером S_1 . Результат измерения U_x виден в окошке на панели установки **при нажатой кнопке К**.

Порядок выполнения работы

- 1. Ознакомьтесь с установкой для исследования полупроводника. Электромагнит перед размещением образца проградуирован для определенного межполюсного зазора, поэтому категорически запрещается крутить винты крепления полюсных наконечников электромагнита.
- 2. Поставьте на пульте управления тумблер направления поля S_1 в положение «+» , а ручки «Ток образца» и «Ток электромагнита» в крайнее положение против часовой стрелки.
- 3. Вставьте шнур питания в розетку «220 В» и тумблером «Сеть» включите источник питания. При этом на пульте должна загореться сигнальная лампа.
- 4. Ручкой «Ток образца» настроить ток $I_{\text{обр}} = 40\,$ мА, а ручкой «Ток электромагнита» $I_{\text{магн}} = 50\,$ мА.
- 5. Записать значение поперечного напряжения U_1 на контактах образца, появляющееся в окошке измерителя в таблицу (все значения U_1 соответствуют знаку «+» переключателя S_1).
- 6. Изменить направление магнитного поля в зазоре электромагнита, поставив тумблер S_1 в положение «–». Записать измеренное U_2 в таблицу (все значения U_2 соответствуют знаку «-» переключателя S_1).
- 7. Аналогичные измерения выполнить при токах электромагнита $I_{\rm магн}=100,\ 150,\ 200$ и 250 мА. При этом потенциометром R_1 всё время поддерживать величину тока в образце $I_{\rm обр}=40\,$ мА (использовать рекомендуемые значения $I_{\rm обр}$ и $I_{\rm магн}$, приведенные на установке).
- 8. Для всех значений тока $I_{\text{магн}}$ по градуировочному графику на лабораторной установке найти значения магнитной индукции B в зазоре электромагнита, а по формуле $U_{\text{x}} = \frac{U_1 U_2}{2}$ вычислить напряжение Холла U_{x} . Значения U_{x} и B занести в таблицу. Построить график зависимости $U_{\text{x}} = f\left(B\right)$.

9. По формуле
$$R_{\rm x} = \frac{U_{\rm x} a}{I_{\rm ofn} B}$$
 вычислить постоянную

Холла для различных значений B и найти ее среднее значение $\langle R_{\rm x} \rangle$ (размер a образца указан на градуировочном графике).

10. По формуле
$$n = \frac{3\pi}{8e\langle R_{\rm x} \rangle}$$
, где $e = 1, 6 \cdot 10^{-19}$ Кл,

вычислить концентрацию носителей заряда в полупроводниковом образце.

11. По формуле
$$\mu = \frac{3\pi}{8}\sigma\langle R_{\rm x}\rangle$$
 вычислить подвиж-

сти о указано на градуировочном графике). Все результаты вычислений занести в таблицу.

Контрольные вопросы к лабораторной работе № 45

- 1. В чем заключается эффект Холла?
- 2. Объясните механизм возникновения разности потенциалов Холла.
- 3. Сделайте и объясните вывод формулы $U_{\rm x} = R_{\rm x} \frac{IB}{a}$ для холловской разности потенциалов, где I ток, текущий по образцу..
- 4. Возникнет ли эффект Холла в собственном полупроводнике, в котором концентрации электронов и дырок, а также их дрейфовые скорости одинаковы? Почему в работе исследуется примесный полупроводник?
- 5. Каким образом с помощью эффекта Холла можно определить тип примесного полупроводника?
- 6. Что называется подвижностью свободных носителей заряда?
- 7. В какой среде подвижность электронов больше в металле или в полупроводнике n-типа и почему?
- 8. Приведите формулы для вычисления постоянной Холла в металле и в полупроводнике. Почему эти формулы различны? В какой среде постоянная Холла больше?
- 9. Проделайте и объясните вывод формулы $\mu = \frac{3\pi}{8} \sigma \langle R_{\rm x} \rangle$ для подвижности носителей заряда.
- 10. Изменится ли подвижность носителей заряда в исследуемом полупроводнике, если увеличить напряженность стороннего магнитного поля?
- 11. Почему для того, чтобы измерить холловскую разность потенциалов приходится делать два измерения с разным направлением магнитного поля?
- 12. Почему в работе холловская разность потенциалов вычисляется по формуле $U_{\rm x} = \frac{U_1 U_2}{2}$?

Теоретические сведения к данной работе можно найти в учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт. СПб., М., Краснодар: Лань, 2008. : Т. 2 §45; Т. 3 §43.
- 2. Колмаков Ю. Н., Левин Д.М., Семин В.А. Основы физики конденсированных сред и физики микромира: Ч.1, изд. ТулГУ. 2014, гл.5 §5.2.