1) Let g: ¢²-> t² be a mixed state of a qubit in the Bloch representation, that is, $e = \frac{1}{2} \left(\underline{T} + \overline{x} \cdot \overline{6} \right)$

where $\bar{x} = (x_1, x_1, x_2) \in \mathbb{R}^3$, $|\bar{x}| \in 1$ and $\bar{G} = (G_1, G_2, G_3)$ are Pouli metrices, $\bar{x} \cdot \bar{G} = x_1 G_1 + x_2 G_2 + x_3 G_3$ Let $D_n(c)=e^{-i\frac{2}{2}n\cdot 6}$ $n \in \mathbb{R}^3$, |n|=1, Show that

> $\left[D_{\bar{n}}(\alpha)\right] g D_{\bar{n}}(\alpha) = \frac{1}{2}(I + \bar{y}\bar{b})$ where $\bar{y} = O_{\bar{n}}(\alpha)\bar{x}$ and On(a) is a votation metrix by engle of along the exis in

- 2) Let 14>= 1/3 (100) + 101> + 110>) be a state of two pubits. (alulete:
 - e) Shmidt normal form of 147
 - b) Reduced states grand ge of 14> c) Entanglement entropy of 14>
- 3) Let $|\gamma^{-}\rangle = \frac{1}{12}(|01\rangle |10\rangle)$ For any $\overline{n_1}, \overline{n_2} \in \mathbb{R}^3$ sit. $|\overline{n_1}| = |\overline{n_2}| = 1$ show that $\langle \overline{n}_1, \overline{6} \otimes \overline{n}_2, \overline{6} \rangle_{|\Psi\rangle} = -\overline{n}_1 \cdot \overline{n}_2$

4) Let $S_{E} = \bar{n}_{K} \cdot \bar{b} : \mathcal{H}_{A} \rightarrow \mathcal{H}_{A}$ ked 1,49 and $S_{J} = \bar{n}_{J} \cdot \bar{b} : \mathcal{H}_{B} \rightarrow \mathcal{H}_{B}$ jed 2,39, where $\mathcal{H}_{A} = \mathcal{C} = \mathcal{H}_{B}$ and \bar{n}_{K} , $\bar{n}_{J} \in \mathbb{R}^{3}$, $|\bar{n}_{K}| = 1 = |\bar{n}_{J}|$ and $\bar{b} = \bar{b}_{1}$, \bar{b}_{2} , \bar{b}_{3} are Pouli metrices.

Let $|\Psi\rangle$ be any separable state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, that 15 $|\Psi\rangle = |\mathcal{H}_{1}\rangle \otimes |\mathcal{H}_{2}\rangle$ where $|\mathcal{H}_{i}\rangle \in \mathcal{C}^{2}$. Show that for any choice of \bar{n}_{K} , \bar{n}_{J} we have

 $|(S_{1}\otimes S_{2})_{|\Psi\rangle} - (S_{1}\otimes S_{2})_{|\Psi\rangle} + (S_{4}\otimes S_{2})_{|\Psi\rangle} + (S_{5}\otimes S_{5})_{|\Psi\rangle}| \leq 2$