

The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2022-2023-1

The Introduction to Artificial Intelligence

- Part I Brief Introduction to AI & Different AI tribes
- Part II Knowledge Representation & Reasoning
- Part III AI GAMES and Searching
- Part IV Model Evaluation and Selection
- Part V Machine Learning

Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

Introduction to Reinforcement learning

- Reinforcement learning
- Q-Learning

- Reinforcement Learning
 - "AI=RL" by David Silver
 - Agent-oriented learning—learning by interacting with an environment to achieve a goal
 - Learning by trial and error, with only delayed evaluative feedback (reward)

■ Reinforcement Learning -- example

■ Reinforcement Learning -- example

■ Reinforcement Learning -- example

■ Reinforcement Learning

■ Reinforcement Learning

- Rules are unknown
- Learn directly from the interaction

At each time step t:

- (1) Agent receives state s(t)
- ② Agent executes an action a(t) by his action policy $\pi(s(t))$
- 3 Environment emits a immediate reward r(t + 1) to agent
- 4 Environment changes its state to s(t+1)
- (5) Agent improves his policy $\pi(s)$ according to the reward.

$$\begin{cases} < s, a, r, s' > \\ s \leftarrow s' \end{cases}$$

- RL problem can be described as a Markov decision process
 - The future is independent of the past given the present
- One episode of this process forms a finite sequence :

$$s(0), a(0), r(1), s(1), a(1), r(2), \dots, s(n-1),$$

 $a(n-1), r(n), s(n)$

$$\begin{cases}
< s, a, r, s' > \\
s \leftarrow s'
\end{cases}$$

The agent are always trying to get the maximum rewards through policy $\pi(s)$

Question: How to define the maximum reward?

One episode of this process forms a finite sequence of states, actions, and rewards:

$$s(0), a(0), r(1), s(1), a(1), r(2), \dots, s(n-1), a(n-1), r(n), s(n)$$

■ Total reward of one episode:

$$R = r(1) + r(2) + r(3) + \dots + r(n-1) + r(n)$$

 \blacksquare Total future reward from time step t:

$$R(t) = r(t) + r(t+1) + r(t+2) + \dots + r(n-1) + r(n)$$

 \blacksquare Discounted future reward reward from time step t:

$$R(t) = r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \dots + \gamma^{n-t} r_n$$

Question: How can agent get the maximum reward?

Question: How can agent get the maximum reward?

$$R = r(1) + r(2) + r(3) + \cdots + r(n-1) + r(n)$$

= $r(1) + r(2) + r(3) + \cdots + r(t-1) + R(t)$
past reward future reward

At each time step, a good strategy for an agent would be to always choose an action that maximizes the (discounted) future reward.

$$R(t) = r(t) + \gamma r(t+1) + \gamma^2 r(t+2) + \dots + \gamma^{n-t} r_n(t)$$

= $r(t) + \gamma R(t+1)$

Introduction to Reinforcement learning

- Reinforcement learning
- Q-Learning

- ■Q function represents the "quality" of a certain action in a given state.
- ■It is a table of states and actions.

$$Q(s(t), a(t)) = maxR(t+1)$$

 $\pi(s(t)) = \max_{a} Q(s(t), a)$

Q-table

Q[s,a]	a_1	a_2	•••	a_m
s ₁				
s_2				
s_3				
÷				
s_n				

choose an action that maximizes the future reward.

■ Bellman equation:

$$< s(t), a(t), r(t+1), s(t+1) >$$

$$Q(s(t), a(t)) = \max R(t+1)$$

$$Q(s(t), a(t)) = r(t+1) + \gamma \max R(t+2)$$

$$R(t+1) = r(t+1) + \gamma R(t+2)$$

 $Q(s(t), a(t)) = r(t+1) + \gamma \max_{a(t+1)} Q(s(t+1), a(t+1))$

current reward

maximum future reward from next state

$$\begin{cases} < s, a, r, s' > \\ s \leftarrow s' \end{cases}$$

Q-table

Q[s,a]	a_1	a_2	•••	a_m
s_1				
s_2				
s_3				
:				
s_n				

1. Algorithm Q-Learning

2. Input:

- 1. S is a set of states
- 2. A is a set of actions
- 3. γ is the discount
- 3. initialize Q[S, A] arbitrarily
- 4. observe initial state s

5. Repeat:

- 1. select and carry out an action a, randomly
- 2. receive reward r
- 3. observe new state s'
- 4. If s' is terminal state:

1.
$$Q[s,a] = r$$

5. Else:

1.
$$Q[s,a] = r + \gamma \max_{a'} Q[s',a']$$

6.
$$s \leftarrow s'$$

6. Until terminated

A tiny example:

Game description

States:

 s_1, s_2, s_3 , where s_3 is terminal state **Actions**:

 a_1 denotes up. The agent goes up and moves to terminal state.

 a_2 denotes *left*. The agent moves to left in state s_2 with a reward -0.2, while stay still in state s_1 with a reward -0.1.

 a_3 denotes *right*. The agent moves to right in state s_1 with a reward 0.2, while stay still in state s_2 with a reward -0.1.

Algorithm Q-Learning

Input:

S is a set of states A is a set of actions γ is the discount initialize Q[S,A] arbitrarily observe initial state S

Repeat:

select and carry out an action a, randomly receive reward r observe new state s' If s' is terminal state:

$$Q[s,a] = r$$

Else:

$$Q[s, a] = r + \gamma \max_{a'} Q[s', a']$$

$$s \leftarrow s'$$

Until terminated

Step 1: initialize Q[S, A]

$$\gamma = 0.8$$

Step 2:training loop 1st episode:

Q[s,a]	a_1 up	a_2 left	$oldsymbol{a}_3$ right
<i>s</i> ₁	0.60	0.74	0.94
s_2	0.36	0.32	0.78
s_3	-	-	-

	S_3	3	
	-0.2 +0	0.1	$\overline{}$
-0.1	(s_1)	(s_2)	-0.1
	-(0.2	

$s(0) = s_1, a(0) = a_3, r(1) = 0.2, s(1) =$	s_2 , $a(1) = a_3$, $r(2) = -0.1$, $s(2) = s_2$	$a(2) = a_1, r(3) = 0.1, s(3) = s_3$
--	---	--------------------------------------

$$Q[s_1, a_3] = 0.2 + 0.8 * \max_{a_i} (Q[s_2, a_i])$$

$$= 0.2 + 0.8 * 0.78$$

$$= 0.82$$

$$Q[s,a]$$
 a_1 a_2 a_3 right s_1 0.60 0.74 0.82 s_2 0.36 0.32 0.78 s_3 - - -

$$Q[s_2, a_3] = -0.1 + 0.8 * \max_{a_i} (Q[s_2, a_i])$$

= -0.1 + 0.8 * 0.78
= 0.52

Q[s,a]	a_1 up	a_2 left	$oldsymbol{a}_3$ right
s_1	0.60	0.74	0.82
s_2	0.36	0.32	0.52
s_3	-	\searrow	-

$$Q[s_2,a_1]=0.1$$

Q[s,a]	a_1	a_2	\boldsymbol{a}_3
	up	left	right
s_1	0.60	0.74	0.82
s_2	0.1	0.32	0.52
Sz	-	-	-

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

After 15th episode

Q[s, a]	a_1 up	a_2 left	$oldsymbol{a}_3$ right
s_1	-0.20	0.18	0.30
s_2	0.10	0.08	-0.00
s_3	-	-	-

After 100th episode

Q[s,a]	a ₁ up	a_2 left	$m{a}_3$ right
<i>s</i> ₁	-0.20	0.12	0.28
s_2	0.10	0.02	-0.02
s_3	-	-	-

After 50th episode

Q[s,a]	a_1 up	a_2 left	$oldsymbol{a}_3$ right
<i>s</i> ₁	-0.20	0.12	0.28
s ₂	0.10	0.02	-0.02
s_3	-	-	-

After 1000th episode

Q[s,a]	a ₁ up	a_2 left	$oldsymbol{a}_3$ right
s_1	-0.20	0.12	0.28
s_2	0.10	0.02	-0.02
s_3	-	-	-

Q-table

Q[s,a]	a_1	a_2	 a_m
<i>s</i> ₁			
s_2			
s_3			
÷			
s_n			

$$\begin{cases} < s, a, r, s' > \\ s \leftarrow s' \end{cases}$$

 $<(3*256)^{w_x*h_y}< number\ of\ states$

Too huge states space to approximate Q-function iteratively by Q-table!!!

Conclusion – Machine Learning

1. Supervised Learning

- Linear Regression
- Logistic Regression
- Classification
 - Distance-based algorithms
 - Linear classifiers
 - Other classifiers

2. Unsupervised Learning

- Clustering
 - K-means method
 - Spectral clustering
- Representation learning

3. Reinforcement Learning

- Q-Learning, Q-table
- Exploration & Exploitation