Proyecto Final

Jorge Armando Guzmán Flores A01208480 Carlos Cueto Zumaya A01209474 Diego Alfredo Ballesteros Bautista A01271588

Análisis del Problema

- Largas filas
- Mucho tiempo de espera
- Falta de mejoras en el sistema
- Pagar membresias para tener privilegios

Situación del banco

- Un banco atiende de 9 a 16 hrs en jornadas de 6 horas
- Atiende aproximadamente 400 personas al día
- Cada cajero se tarda en promedio 5 minutos por cliente

¿Cuanto tendría que esperar un cliente para ser atendido? ¿Qué tan larga esta la fila?

Solución

Simulación de clientes asistiendo al establecimiento con los cuales calculemos tiempos de llegada, espera, inicio de servicio, finalización de servicio y salida

- CIW
- matplot
- PrettyTable

Pruebas

Si el banco actualmente tiene 3 cajas, los resultados son los siguientes:

 λ =400 personas / 6 horas 66.6666 66 clientes / hora μ = 1 persona / 5 minutos = 60 / 5 =12 clientes / hora s= 3 servidores

$$p = \lambda / \mu * s = 66 / 12 * 3 = 1.851852$$

Observamos P>1 por lo que la tasa de crecimiento de las filas tiende al infinito y el sistema no tiene la capacidad de atender a los clientes volviéndose un sistema inestable

S=3

S = 5

Corrección

Observamos que para mejorar el servicio, era necesario contratar el doble de cajeros por lo tanto:

 λ =66.000000 μ =12.000000 s=6

p=0.916667

Ahora observamos que p < 1 por lo que el sistema efectivamente se volvió estable y tiene la capacidad suficiente para procesar todos los clientes que arriban al sistema

Corrección

Conclusiones y Preguntas