Konduktometrie

Praktikum Physikalische Chemie

22.02.2015 Kodolitsch Katharina Katharina.kodolitsch@uni-graz.at

Aufgabenstellung:

- Leitfähigkeitsbestimmung
- Auswertung nach Ostwald
- Auswertung nach Kohlrausch
- Bestimmung ob starker oder schwacher Elektrolyt

Einleitung:

Bestimmung der Leitfähigkeit von Verdünnungsreihen zweier verschiedener Substanzen. Dazu wurden jeweils aus Essigsäure und Natriumchlorid (NaCl) entsprechende Verdünnungen hergestellt und anschließend bei 26 °C mittels Konduktometer untersucht. Aus den gewonnenen Werten konnte danach die Leitfähigkeit bzw. die molare Leitfähigkeit ermittelt werden. Durch graphische Auftragung dieser Werte als Funktionen der Konzentration (nach Ostwald) bzw. der Wurzel der Konzentration (nach Kohlrausch) konnte schließlich überprüft werden ob es sich bei dem entsprechenden Salz um einen schwachen oder starken Elektrolyten handelte. Zusätzlich konnte durch Vergleich mit Literaturwerten die Richtigkeit der Messung überprüft werden.

Durchführung:

Es werden jeweils fünfzehn Lösungen mit unterschiedlicher Konzentration aus Natriumchlorid und Essigsäure hergestellt (Siehe Tabelle). Dazu wurden aus der jeweiligen Stammlösung die entsprechenden Volumina mittels einer Kolbenhubpipette entnommen und in einem 50 ml Becherglas auf einer oberschaligen Waage eingewogen und daraufhin mit der entsprechenden Menge an Wasser verdünnt. Auf diese Weise wurden 30 verschiedene Lösungen erzeugt. Das genaue Vorgehen dabei ist in den unten angeführten Tabellen vermerkt. Nun wurden die Bechergläser mit den einzelnen Verdünnungen von Essigsäure in ein spezielles Gestell eingespannt und anschließend in einem Thermostat auf 26 °C temperiert, da für die Messung eine konstante Temperatur notwendig ist d.h. die Leitfähigkeit ist temperaturabhängig. Nach etwa 15 Minuten hatten die Lösungen die entsprechende Temperatur erreicht, worauf mit der eigentlichen Messung begonnen werden konnte. Hierbei wurde zuerst die Lösung mit der geringsten Konzentration gemessen, worauf die anderen Verdünnungen in aufsteigender Konzentration analysiert wurden. Daraufhin konnte die Messung der Natriumchlorid-Lösungen analog zur vorhergehenden Verdünnungsreihe durchgeführt werden. Anschließend konnten die unter dem Punkt Aufgabe aufgelisteten Parameter und Grafiken ermittelt bzw. erstellt werden.

Tabelle 1: Hergestellte Verdünnungen der Essigsäure

M(C	CH₃COOH) [g/m	ol] 60 ,									
	c [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/ Verdünn ung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λ m [(S*cm ²)/ mol)]	1/Λm [mol)/ (s*cm²)]	√(c) [(mol/kg) ^ (1/2)]	c*∧m
A1	0,065	250,02	249,03	0,97	0,0646	25,4	322	4,98	0,20080	0,254	0,321
A2	0,0325	50,05	25,46	25,04	0,0320	25,5	226	7,0625	0,14159	0,179	0,226
А3	0,0065	50,21	45,29	5,00	0,00643	25,4	101,95	15,85	0,06309	0,801	0,102
A4	0,00325	50,26	47,69	2,57	0,00330	25,4	71	21,51	0,04649	0,057	0,071
A5	0,00065	50,50	50,00	0,50	0,000639	25,3	30,1	47,10	0,02123	0,025	0,030
	molal theor. [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/ Verdünn ung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λm [(S*cm²)/ mol)]	1/\text{\mathcal{m}} [mol)/ (s*cm²)]	√(c) [(mol/kg) ^(1/2)]	c*∧m
B1	0,05	250,39	249,64	0,75	0,0499	25,3 5	300	6,012	0,16633	0,223	0,299
B2	0,025	49,98	24,7	25,28	0,0246	25,4	194,5	7,906	0,12648	0,157	0,194
В3	0,005	50,07	44,97	5,1	0,00503	25,5	115,15	22,89	0,04368	0,071	0,115
B4	0,001	50,58	49,43	1,15	0,00113	25,4 5	43,75	38,71	0,02583	0,034	0,044
B5	0,0005	50,68	50,15	0,53	0,000521	25,2	29,6	56,81	0,01760	0,023	0,030
	molal theor. [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/ Verdünn ung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λm [(S*cm²)/ mol)]	1//\m [mol)/ (s*cm²)]	√(c) [(mol/kg) ^(1/2)]	c*Λm
C1	0,035	250,02	249,49	0,53	0,0353	25,4 5	216,5	6,133	0,16305	0,188	0,216
C2	0,0175	50,44	25,44	25,00	0,0178	25,5	152,35	8,56	0,11682	0,133	0,152
C3	0,0035	50,36	45,34	5,02	0,00351	25,4	71,95	20,50	0,04878	0,059	0,072
C4	0,00175	50,33	47,8	2,53	0,00177	25,2	52,5	29,66	0,03371	0,042	0,052
C5	0,00035	50,22	49,49	0,53	0,000353	24,8	27,2	77,05	0,01297	0,019	0,027

Tabelle 2: Hergestellte Verdünnungen NaCl

M(Na	aCI) [g/mol]	58,44									
	c [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/Ver dünnung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λm [(S*cm²)/ mol)]	1/Λm [mol)/ (s*cm²)]	√(c) [(mol/kg)^ (1/2)]	c*∧m
A1	0,13	50,77	50,39	0,38	0,1290	24,9 5	13740	106,51	0,00938	0,359	13,74
A2	0,065	51,09	50,89	0,19	0,06387	25,4	7570	118,5	0,00843	0,253	7,569
А3	0,013	100,87	100,79	0,08	0,01358	25,5	1367	100,66	0,00993	0,117	1,367
A4	0,0013	49,97	44,97	5,00 (aus A3)	0,001359	25,5	150,9	111,04	0,00900	0,037	0,151
A5	0,00013	50,75	50,24	0,51 (aus A3)	0,0001365	25,6	34,85	250,31	0,00399	0,012	0,034
	molal theor. [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/Ver dünnung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λm [(S*cm²)/ mol)]	1/Λm [mol)/ (s*cm²)]	√(c) [(mol/kg)^ (1/2)]	c*∧m
В1	0,1	50,27	49,97	0,29	0,09931	25,6	10815	108,90	0,00918	0,315	10,81
B2	0,05	51,07	50,92	0,15	0,05041	25,6	6480	128,55	0,00777	0,225	6,480
В3	0,01	100,36	100,3	0,06	0,01024	25,5 5	1150,5	112,4	0,00889	0,101	1,151
B4	0,001	50,26	45,26	5,00 (aus B3)	0,001018	25,4 5	127,55	125,3	0,00798	0,032	0,128
B5	0,0001	50,18	45,18	0,50 (aus B3)	0,000102	25,1 5	23,7	232,4	0,00430	0,010	0,024
	molal theor. [mol/kg]	m gesamt [g]	m LM [g]	m Stamm/Ver dünnung [g]	molal real [mol/kg]	T [°C]	Leitfähigk eit [µS/cm]	Λm [(S*cm²)/ mol)]	1/Λm [mol)/ (s*cm²)]	√(c) [(mol/kg)^ (1/2)]	c*∧m
C1	0,07	50,31	50,11	0,20	0,06830	25,6	8040	117,72	0,00849	0,261	8,040
C2	0,035	50,24	50,14	0,10	0,03413	25,6	4290	125,7	0,00796	0,185	4,290
C3	0,007	100,08	100,04	0,04	0,006643	25,5	908	136,7	0,00732	0,082	0,908
C4	0,0007	50,01	55,02	4,99	0,0006628	24,9	103,7	156,5	0,00639	0,026	0,104
C5	0,00007	51,23	50,00	0,53	0,0006873	24,9 5	18,61	270,8	0,00369	0,026	0,186

Berechnungen:

Hier wird als Beispiel die Verdünnung der Essigsäure aufgeführt.

Bei der Herstellung der NaCl Reihe wurden im Gegensatz zur Essigsäure aus der Stammlösung 2 Verdünnungen hergestellt und die 2. diente als Zwischenverdünnung. Aus ihr wurden die Verdünnungen 4&5 hergestellt. Prinzipiell verläuft die Berechnung der Einsatzmengen aber analog. Die Dichte wurde als 1kg/dm³ angenommen.

Herstellung der Stammlösung:

Theoretische Molalität: $0,065 \text{ mol/kg} \quad V(\text{soll}) = 250 \text{ml}$ $\rightarrow 0,01625 \text{ mol/250g}$

$$m = n * M = 0.01625 mol * 60.05 g/mol = 0.976 g CH3COOH$$

Verdünnungen:

1.)

Molalität (theo): 0.0325 mol/kg V(soll) = 50 ml

$$c1 * V1 = c2 * V2$$
 -> $0.065 \frac{mol}{kg} * V1 = 0.0325 \frac{mol}{kg} * 50 ml$

V₁= 25 g (≈25 ml) aus der Stammlösung

2.)

Molalität (theo): 0,0065 mol/kg

kg
$$V(\text{soll}) = 50\text{ml}$$

 $c1 * V1 = c2 * V2$
 $0.065 \frac{mol}{kg} * V1 = 0.0065 \frac{mol}{kg} * 50 \text{ ml}$

V₁= 5 g (5ml) aus der Stammlösung

Die anderen Verdünnungen sind analog hergestellt.

Die realen Konzentrationen wurden mit folgender Formel berechnet:

$$c = \frac{m_{Salzl\"{o}ung}}{m_{Salzl\"{o}sung}*m_{Wasser}}*c_{Salzl\"{o}sung}$$

Verwendete Formeln:

molare spezifische Leitfähigkeit Λm:

Die molare Leitfähigkeit wurde mittels der gemessenen spezifischen Leitfähigkeit und der tatsächlichen Konzentration nach folgender Formel berechnet:

$$\Lambda m = \frac{\kappa}{c}$$

 Λm molare Leitfähigkeit [μ S * cm2 * mol-1] κspezifische Leitfähigkeit [μ S * cm-1] cmolare Konzentration des Elektrolyten [mol/1]

Kehrwert der molaren Leitfähigkeit 1/Am

Äquivalenzfähigkeit: Da die verwendeten Ionen einwertig geladen waren, entsprach die Äquivalenzleitfähigkeit genau der molaren Leitfähigkeit, da z = 1.

Kohlrausch'es Quadratwurzelgesetz:

Mittels des Kohlrausch'en Quadratwurzelgesetz konnte ermittelt werden, ob es sich bei den verwendeten Lösungen um einen starken Elektrolyten handelte. Es entspricht folgender Formel:

$$\Lambda e = \Lambda \infty - K * \sqrt{c}$$

 Λe Äquivalentleitfähigkeit [μ S * cm2 * mol-1] $\Lambda \infty$ Grenzleitfähigkeit [μ S * cm2 * mol-1] K......spezifische Stoffkonstante cmolare Konzentration des Elektrolyten [mol/1] Trägt man also die Äquivalentleitfähigkeit gegen die Wurzel der Konzentration auf, entspricht die Grenzleitfähigkeit gleich dem Ordinatenabschnitt.

Ostwald'sches Verdünnungsgesetz:

Mittels des Ostwald'schen Verdünnungsgesetz konnte ermittelt werden, ob es sich bei den verwendeten Lösungen nun um einen schwachen Elektrolyten handelte. Es entspricht folgender Formel:

$$\frac{1}{\Lambda e} = \frac{1}{\Lambda \infty} + \frac{\Lambda e * c}{K \Lambda \infty^2}$$

Die Grenzleitfähigkeit eines Elektrolyten wurde ermittelt, indem 1 Λ e gegen Λ e * c aufgetragen wurde. Die Grenzleitfähigkeit ergibt sich dann aus dem Kehrwert des Ordinatenabschnittes.

Dissoziationsgrad α und pKS – Wert:

Der Dissoziationsgrad α wurde für Essigsäure entsprechend folgender Formel berechnet:

$$\alpha = \frac{\Lambda e}{\Lambda \infty}$$

Daraus konnte die Säurekonstante KS nach folgender Formel berechnet werden:

$$KS = \frac{\alpha^2 * c}{1 - \alpha}$$

Die negative Logarithmierung der Säurekonstante ergab anschließend den pKS – Wert:

$$pKs = -log(KS)$$

Kohlrausch und Oswald: Graphische Auswertung:

wie oben erklärt auftragen:

Abbildung 1:Auftragung Essigsäure nach Ostwald

Abbildung 2: Auftragung Essigsäure nach Kohlrausch

Wie man sieht, handelt es sich nur bei der Auftragung nach Ostwald um eine Gerade. Daraus können wir schließen, dass es sich um einen schwachen Elektrolyten handelt.

Grenzleitfähigkeit: $\frac{1}{0,0327}$ = 30,58 [S*cm²/mol]

Abbildung 3: Auftragung NaCl nach Ostwald

Abbildung 4: Auftragung NaCl nach Kohlrausch

Gerade kann eher bei Kohlrausch angenommen werden.

Grenzleitfähigkeit: 184 [S*cm²/mol]

Ergebnisse:

Die Anwendung dieser Formeln wird nun bei der Berechnung aller Parameter für die NaCl-Lösung der Konzentration c = 0,1 mol/kg verdeutlicht.

molare spezifische Leitfähigkeit Λm:

Durch den Einheitenwechsel auf (S*cm²)/mol muss durch den Faktor 1000 dividiert werden

$$\Delta m = \frac{(k/c)}{1000} = \frac{10820/0,09931}{1000} = 108,95 \left(s * \frac{cm^2}{mol}\right)$$

Kehrwert der molaren Leitfähigkeit 1/Am:

$$\frac{1}{\Lambda m} = \frac{1}{108,95} = 0,0092$$

√c= Wurzel aus berechneter realen Molalität

c*∧**m**= Produkt aus der berechneten realen Molalität und der molaren Leitfähigkeit.

Dissoziationsgrad

Essigsäure:

$$\alpha = \Lambda_m / \Lambda_0$$

$$\Lambda_{0 \text{ Essigsäure}}$$
= 30,58

Tabelle 3: Dissoziationsgrad der Essigsäure

Molal real [mol/kg]	Λm [(S*cm²)/mol]		Dissoziationsgrad	
0,0646		4,98		0,163
0,0320		7,0625		0,231
0,00643		15,85		0,518
0,00330		21,51		0,703
0,0000639		47,10		1,54
Molal real [mol/kg]	Λm [(S*cm²)/mol]	[Dissoziationsgrad	
0,0499		6,012		0,196
0,0246		7,906		0,259
0,00503		22,89		0,749
0,00113		38,71		1,266
0,000521		56,81		1,858
Molal real [mol/kg]	Λm [(S*cm²)/mol]	[Dissoziationsgrad	
0,0353		6,133		0,201
0,0178		8,58		0,281
0,00351		20,50		0,670
0,00177		29,66		0,970
0,000353		77,05		2,520

Abbildung 5: Dissoziationsgrad der Essigsäure:

Berechnung des pKs:

Wie oben beschrieben. Aus den einzelnen pKs-Werten wird der Mittelwert berechnet.

Tabelle 4: Berechnung des pKa

molal real [mol/kg]	Dissoziationsgrad	K	рКа	
0,0646	0,163	0,00205061	2,6881177	
0,032	0,231	0,00222048	2,6535524	
0,00643	0,518	0,00357951	2,4461765	
0,0033	0,703	0,00549121	2,2603319	
0,0000639	1,54	-0,00028064		
molal real [mol/kg]	Dissoziationsgrad	K	рКа	
0,0499	0,196		•	
<u> </u>	<u> </u>	0,00238428	2,62264336	
0,0246	0,259	0,00222698	2,65228357	
0,00503	0,749	0,01124237	1,9491421	
0,00113	1,266	-0,0068087		
0,000521	1,858	-0,00209624		
molal real [mol/kg]	Dissoziationsgrad	K	рКа	
0,0353	0,201	0,00178493	2,74837996	
0,0178	0,281	0,00195481	2,70889625	
0,00351	0,67	0,00477466	2,32105722	
0,00177	0,97	0,0555131		
0,000353	2,52	-0,0014748		
		Mittelwert	2,51	

Diskussion:

Bei der Essigsäure kann bei der Auftragung nach Ostwald eine Gerade erkannt werden. Daher wissen wird, dass es sich bei der Essigsäure um einen schwachen Elektrolyten handeln muss. Bei den Natriumchlorid Lösungen kann nicht deutlich eine Gerade festgestellt werden, aber eine Literatursuche ergab es handelt sich um einen starken Elektrolyten. Das heißt, dass die NaCl Moleküle in Lösung dissoziiert vorliegen.

Der Literaturwert für die Grenzleitfähigkeit von Essigsäure liegt bei 360 s*cm²/mol. Wir haben sie mit 30,58 s*cm²/mol ermittelt. Das sind große Abweichungen. Zu beachten ist, dass auch Verdünnungen gemessen wurden, deren Konzentration für Ostwald relativ hoch sind. Möglicherweise hätten bei einer größeren Verdünnung bessere Ergebnisse erzielt werden können. Die Grenzleitfähigkeit von NaCl wurde mit 183 S*cm²/mol berechnet. Dieser Wert weicht ebenfalls von der Literaturangabe von 126 S*cm²/mol ab.

Die Abweichungen der Ergebnisse sind vor allem aus zwei Dinge zurückzuführen, die vor allem bei hohen Konzentrationen schwerwiegend sind. Bei Verdünnungsreihen Fehler beim Einwiegen auftreten – Wassertropen auf der Waage, etc.. Außerdem ist die Messelektrode nicht selektiv, es werden also sämtliche Elektrolyte gemessen, auch Verunreinigungen.

Der Dissoziationsgrad ist umgekehrt proportional zur Konzentration - mit steigender Konzentration sinkt der Dissoziationsgrad. Dies ist in Abbildung 5 gut ersichtlich.