2018 CGMO #1

Tristan Shin

28 Mar 2019

Let $a \leq 1$ be a real number. Define a sequence of real numbers as $x_0 = 0$ and $x_n = 1 - a \cdot e^{x_{n-1}}$ for all positive integers n, where e is Euler's constant. Prove that $x_n \geq 0$ for all positive integers n.

If $a \le 0$ then $x_n = 1 - a \cdot e^{x_{n-1}} \ge 1$ for $n \ge 1$ so the problem is clearly true. So assume $a \in (0,1]$.

We prove the problem by strong induction on n. If n=0 this is true by definition; if n=1 then $x_1=1-a\cdot e^{x_0}=1-a\geq 0$. Now assume $x_n\geq 0$ for $n=0,1,\ldots,k$ for a positive integer k. Then $x_{k-1}\geq 0$, so

$$x_k = 1 - a \cdot e^{x_{k-1}} \le 1 - a \cdot e^0 = 1 - a,$$

SO

$$x_{k+1} = 1 - a \cdot e^{x_k} \ge 1 - a \cdot e^{1-a} = e^{1-a} \left(e^{a-1} - a \right) \ge 0$$

using the fact that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$. So $x_{k+1} \ge 0$ and thus by strong induction, $x_n \ge 0$ for all nonnegative integers n.