

Simultaneous Elicitation of Scoring Rule and Agent Preferences for Robust Winner Determination

B. Napolitano¹, O. Cailloux¹ and P. Viappiani²

¹ Université Paris-Dauphine, Université PSL, CNRS, LAMSADE ² LIP6, UMR 7606, CNRS and Sorbonne Université

ADT 2021 - 04 November 2021

Agents = $\{ 2, 3, 4 \}$, Alternatives = $\{ 1, 1, 1 \}$, Chair = $\{ 1, 2, 3 \}$ Positional Scoring Rule

 $\mathsf{Agents} = \{ \ \, \stackrel{\frown}{\blacktriangle}, \ \, \stackrel{\frown}{\blacktriangle}, \ \, \mathsf{Alternatives} = \{ \ \, \stackrel{\frown}{\blacksquare}, \ \, \stackrel{\frown}{\blacksquare} \ \, \}, \quad \mathsf{Chair} = \ \, \stackrel{\frown}{\clubsuit} \stackrel{\rightarrow}{\Longrightarrow} \ \, \mathsf{Positional Scoring Rule}$

Agents = $\{ 2, 3, 4, 5, 4 \}$, Alternatives = $\{ 1, 1, 1, 1 \}$, Chair = $\{ 1, 1, 1, 1 \}$ Positional Scoring Rule

$$\mathsf{Agents} = \{ \ \, \stackrel{\blacktriangle}{\blacktriangle}, \ \, \stackrel{\blacktriangle}{\blacktriangle} \ \, \}, \quad \mathsf{Alternatives} = \{ \ \, \stackrel{\blacksquare}{\blacksquare}, \ \, \stackrel{\blacksquare}{\blacksquare} \ \, \}, \quad \mathsf{Chair} = \ \, \stackrel{\clubsuit}{\clubsuit} \Rightarrow \mathsf{Positional Scoring Rule}$$

 $\mathsf{weight}(1^\mathsf{st}) \geq 2 \cdot \mathsf{weight}(2^\mathsf{nd})$

Setting: Incompletely specified preferences and social choice rule

Setting: Incompletely specified preferences and social choice rule

- Agents: difficult or costly to order all alternatives
- Chair: difficult to specify a voting rule precisely

Setting: Incompletely specified preferences and social choice rule

Goal: Reduce uncertainty, inferring (*eliciting*) incrementally and simultaneously the true preferences of agents and chair to quickly converge to an optimal or a near-optimal alternative

Setting: Incompletely specified preferences and social choice rule

Goal: Reduce uncertainty, inferring (*eliciting*) incrementally and simultaneously the true preferences of agents and chair to quickly converge to an optimal or a near-optimal alternative

Approach:

- Develop query strategies that interleave questions to the chair and to the agents
- Use Minimax regret to measure the quality of those strategies

Related Works

Incomplete profile

• and known weights: Minimax regret to produce a robust winner approximation (Lu and Boutilier 2011, [2]; Boutilier et al. 2006, [1])

Uncertain weights

- and complete profile: dominance relations derived to eliminate alternatives always less preferred than others (*Stein et al. 1994*, [3])
- in positional scoring rules (Viappiani 2018, [4])

Assumptions

- ullet We consider *Positional Scoring Rules*, which attach weights to positions according to a scoring vector W
- We assume W to be convex

$$W_r - W_{r+1} \ge W_{r+1} - W_{r+2}$$

for all positions r, and that $W_1=1$ and $W_m=0$

Notation

```
A \ \ \text{alternatives, } |A| = m N \ \ \text{agents (voters)} P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile} W = (W_r, \ 1 \leq r \leq m), \ \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the chair has in mind}
```

Notation

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{agents (voters)}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (W_r, \ 1 \leq r \leq m), \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the chair has in mind}$$

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \forall a \in A$

Notation

$$A \ \ \text{alternatives, } |A| = m$$

$$N \ \ \text{agents (voters)}$$

$$P = (\succ_j, \ j \in N), \ P \in \mathcal{P} \ \ \text{complete preferences profile}$$

$$W = (W_r, \ 1 \leq r \leq m), \ W \in \mathcal{W} \ \ \text{(convex) scoring vector that the chair has in mind}$$

W defines a Positional Scoring Rule $f_W(P) \subseteq A$ using scores $s^{W,P}(a), \forall a \in A$

P and W exist in the minds of agents and chair but unknown to us

Questions

Two types of questions:

Questions

Two types of questions:

Questions to the agents

Comparison queries that ask a particular agent j to compare two alternatives $a,b\in\mathcal{A}$

$$a \succ_j b$$
 ?

Questions

Two types of questions:

Questions to the agents

Comparison queries that ask a particular agent j to compare two alternatives $a,b\in\mathcal{A}$

$$a \succ_j b$$
 ?

Questions to the chair

Queries relating the difference between the importance of consecutive ranks from r to r+2

$$W_r - W_{r+1} \ge \lambda (W_{r+1} - W_{r+2})$$
 ?

The answers to these questions define C_P and C_W that is our knowledge about P and W

• $C_P \subseteq \mathcal{P}$ constraints on the profile given by the agents

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the agents
- ullet $C_W\subseteq \mathcal{W}$ constraints on the voting rule given by the chair

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the agents
- $C_W \subseteq \mathcal{W}$ constraints on the voting rule given by the chair

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the agents
- ullet $C_W\subseteq \mathcal{W}$ constraints on the voting rule given by the chair

- $C_P \subseteq \mathcal{P}$ constraints on the profile given by the agents
- ullet $C_W\subseteq \mathcal{W}$ constraints on the voting rule given by the chair

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P,W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P,W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: $maximal\ regret$ between a chosen alternative a and best real alternative b

$$\mathsf{MR}^{C_P,C_W}(a) = \max_{b \in \mathcal{A}} \mathsf{PMR}^{C_P,C_W}(a,b)$$

Minimax Regret

Given $C_P \subseteq \mathcal{P}$ and $C_W \subseteq \mathcal{W}$:

$$\mathsf{PMR}^{C_P,C_W}(a,b) = \max_{P \in C_P,W \in C_W} s^{P,W}(b) - s^{P,W}(a)$$

is the maximum difference of score between a and b under all possible realizations of the full profile and weights

We care about the worst case loss: $maximal\ regret$ between a chosen alternative a and best real alternative b

$$\mathsf{MR}^{C_P,C_W}(a) = \max_{b \in \mathcal{A}} \mathsf{PMR}^{C_P,C_W}(a,b)$$

We select the alternative which *minimizes* the maximal regret

$$\mathsf{MMR}^{C_P,C_W} = \min_{a \in \mathcal{A}} \mathsf{MR}^{C_P,C_W}(a)$$

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}([], [])$ can be seen as a game in which an adversary both:

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}([\ \],\ \])$ can be seen as a game in which an adversary both:

ullet chooses a complete profile $\mathbf{P} \in \mathcal{P}$

Pairwise Max Regret Computation

The computation of $PMR^{C_P,C_W}([], [])$ can be seen as a game in which an adversary both:

 \bullet chooses a complete profile $\textbf{P} \in \mathcal{P}$

 \bullet chooses a feasible weight vector $\textbf{W} \in \mathcal{W}$

in order to maximize the difference of scores

At each step, the strategy selects a question to ask either to one of the agents about her preferences or to the chair about the voting rule

At each step, the strategy selects a question to ask either to one of the agents about her preferences or to the chair about the voting rule

The termination condition could be:

At each step, the strategy selects a question to ask either to one of the agents about her preferences or to the chair about the voting rule

The termination condition could be:

• when the minimax regret is lower than a threshold

At each step, the strategy selects a question to ask either to one of the agents about her preferences or to the chair about the voting rule

The termination condition could be:

- when the minimax regret is lower than a threshold
- when the minimax regret is zero

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2}\mathsf{MMR}(\mathit{C}_{P}^{i},\mathit{C}_{W}^{i})$$

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2} \mathsf{MMR}(C_P^i, C_W^i)$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case from a set of n+1 candidate questions

Pessimistic Strategy

Assume that a question leads to the possible new knowledge states (C_P^1, C_W^1) and (C_P^2, C_W^2) depending on the answer, then the badness of the question in the worst case is:

$$\max_{i=1,2} \mathsf{MMR}(C_P^i, C_W^i)$$

The pessimistic strategy selects the question that leads to minimal regret in the worst case from a set of n+1 candidate questions

Note:

if the maximal MMR of two questions are equal, then prefers the one with the lowest MMR values associated to the opposite answer

Pessimistic Strategy: Candidate questions

Let $(a^*, \bar{b}, \bar{P}, \bar{W})$ be the current solution of the minimax regret

We select n + 1 candidate questions:

- One question per agent: For each agent *i*, either:
 - $a^* \succ_{\bar{j}}^{\bar{p}} \bar{b}$: we ask about an incomparable alternative that can be placed above a^* by the adversary to increase PMR(a^*, \bar{b})
 - $\bar{b} \succ_{\bar{j}}^{\bar{P}} a^*$: we ask about an incomparable alternative that can be placed between a^* and \bar{b} by the adversary to increase PMR (a^*,\bar{b})
 - ullet a* and $ar{b}$ are incomparable: we ask to compare them
- One question to the chair: Consider W_{τ} the weight vector that minimize the PMR in the worst case.

We ask about the position
$$r = \argmax_{i = \llbracket 1, m-1 \rrbracket} |\bar{W}(i) - W_{\tau}(i)|$$

Empirical Evaluation

Pessimistic for different datasets

Figure: Average MMR (normalized by n) after k questions with Pessimistic strategy for different datasets.

Empirical Evaluation

Pessimistic reaching "low enough" regret

Table: Questions asked by Pessimistic strategy on several datasets to reach $\frac{n}{10}$ regret, columns 4 and 5, and zero regret, last two columns.

dataset	m	n	$q_c^{MMR \leq n/10}$	$q_a^{MMR \leq n/10}$	$q_c^{MMR=0}$	$q_a^{ extit{MMR}=0}$
m5n20	5	20	0.0	[4.3 5.0 5.8	5.3	[5.4 6.2 7.2]
m10n20	10	20	0.0	[13.9 16.1 18.4	32.0	[19.7 21.8 24.7]
m11n30	11	30	0.0	[16.6 19.0 22.3	45.2	[23.1 25.7 28.9]
tshirts	11	30	0.0	[13.1 16.6 19.6	43.2	[28.2 32.0 35.6]
courses	9	146	0.0	[6.0 7.0 7.0	0.0	[6.8 7.0 7.0]
m14n9	14	9	5.4	[30.3 33.5 36.7	64.1	[37.6 40.5 44.3]
skate	14	9	0.0	[11.4 11.6 12.3	0.0	[11.5 11.8 12.8]
m15n30	15	30	0.0	[25.0 29.5 33.7]	

Empirical Evaluation

Pessimistic chair first and then agents (and vice-versa)

Table: Average MMR in problems of size (10,20) after 500 questions, among which q_c to the chair.

	•	$2 \text{ ph. ac} \pm \text{sd}$
0	0.6 ± 0.5	0.6 ± 0.5
15	0.5 ± 0.5	0.5 ± 0.5
30	0.3 ± 0.5	0.3 ± 0.4
50	0.0 ± 0.1	0.0 ± 0.1
100	0.1 ± 0.2	0.1 ± 0.1
200	2.3 ± 1.4	2.1 ± 1.8
300	5.2 ± 2.4	6.8 ± 0.6
400	10.9 ± 0.9	12.2 ± 1.0
500	20.0 ± 0.0	20.0 ± 0.0

Thank You!

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans.

Constraint-based optimization and utility elicitation using the minimax decision criterion.

Artificial Intelligence, 2006.

Tyler Lu and Craig Boutilier.

Robust approximation and incremental elicitation in voting protocols. In *Proc. of IJCAI'11*. 2011.

William E. Stein, Philip J. Mizzi, and Roger C. Pfaffenberger.

A stochastic dominance analysis of ranked voting systems with scoring. *EJOR*, 1994.

Paolo Viappiani.

Positional scoring rules with uncertain weights.

In Scalable Uncertainty Management, 2018.