Set Notations Modulo n

• For $n \in Z^*$:

- $Z_n = \{0,1, ..., n-1\}$
 - Set of residues
- $Z_n^* = \{ a \in Z_n \mid gcd(a,n) = 1 \}$
 - Set of integers co-prime with n
 - E.g., n = 15
 - \bullet Z_n = {0,1, 2, ...,14}
 - $\bullet Z_n^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Groups

 Groups denoted by |G, · | are non-empty sets with a binary operation denoted by · defined over G such that for every a,b ∈ G, a · b ∈ G

 Group Properties: Every group, G has to have the following properties:

Groups

- 1. Closure: For all $a,b \in G$, $a \cdot b \in G$
- 2. Associative: For all a,b,c ∈ G, a · (b · c) = (a · b) · c
- 3. Identity element: There exists an $e \in G$ such that $a \cdot e = e \cdot a = a$ for all $a \in G$
- 4. Inverse element: For all $a \in G$, there exists an $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$

Groups Example

- Identity element:
 - $Z_N = (\{0, 1, 2, 3, 4, 5, 6, 7, 8\}, +)$
 - Identity element $e \in Z_N$ such that a+e = e+a = a is 0

- Inverse element:
 - For each $a \in Z_N$ there should be an a^{-1} , such that $(a + a^{-1}) \mod N = (a^{-1} + a) \mod N = 0 \mod N$
 - Take a=5. We need an a⁻¹ such that 5+a⁻¹ = 0 mod 9⁻¹
 - So, $a^{-1} = 4$

Abelian Groups

- 1. Closure: For all $a,b \in G$, $a \cdot b \in G$
- 2. Associative: For all $a,b,c \in G$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Identity element: There exists an $e \in G$ such that $a \cdot e = e \cdot a = a$ for all $a \in G$
- 4. Inverse element: For all $a \in G$, there exists an $a' \in G$ such that $a \cdot a' = a' \cdot a = e$
- 5. Commutative: For all $a,b \in G$, $a \cdot b = b \cdot a$

Group Order

- Infinite group: Unlimited number of elements, e.g.,
 Z, Z₊, N
- Finite group: Limited set of elements, e.g., Z_n , Z_n^* , where $n \in Z$ or Z_1 or N. The number of elements = order of group. Denoted by $|Z_n|$, $|Z_n^*|$, etc.
- Let n = 9, so $Z_n^* = \{1, 2, 4, 5, 7, 8\}$
- What is | Z_n^* |?
 - 6 length of Z_n^*

Group Properties and Tricks

- If G is a group of order x and $a \in G$, then $a^y \mod n = a^{y \mod n}$ x mod n
- E.g., $n \in Z_+$, let n=9, so $Z_9^* = \{1, 2, 4, 5, 7, 8\}$
- Find 4⁵⁰ mod 9
- Here $G = Z_9^* = \{1, 2, 4, 5, 7, 8\}$, and $x = |Z_n^*| = 6$, y = 50
- $4^{50} \mod 9 = 4^{50 \mod 6} \mod 9$
 - $= 4^2 \mod 9$
 - $= 16 \mod 9$
 - = 7

Cyclic Group

- A group G is cyclic if every element of G is a power a^k , $k \in Z^+$, of a fixed element $a \in G$
- Element a is the generator of G
- G is cyclic group
- k ≥ 1, every element of G is a^k, e.g., G = {2, 4, 8, 16, 32, 64, 128,...} generator, a = 2
- If n is prime, Z_n^* is cyclic
- We'll revisit this in more detail in Number Theory IV slides