

Australia's Earth System Model:

Tilo Ziehn September 2017

OCEANS AND ATMOSPHERE FLAGSHIP

www.csiro.au

ACCESS-ESM1 Components

ACCESS-ESM1 Simulations (CMIP5 type)

1. Concentration driven (prescribed atmospheric CO₂)

- a. Pre-industrial control run: 1000 years with PresLAI, 1000 years with ProgLAI
- b. Historical simulations: start at year 801 for PresLAI and 3 ensemble members for ProgLAI (start at years 801, 811 and 821)
- c. Future Scenarios: RCP2.6, RCP4.5 and RCP8.5 for PresLAI and ProgLAI, 3 ensemble members for ProgLAI
- d. Climate Sensitivity and feedback analysis: 1% increase CO₂ for ProgLAI and 4xCO₂ start from year 801 for ProgLAI
- e. Sensitivity to aerosols: no anthropogenic aerosols (kept at 1850 levels) start from year 801 for ProgLAI run (3 ensemble members)

2. Emission driven (prescribed CO₂ emissions)

- a. Pre-industrial control run: 200 years (start from year 801 from prescribed CO₂ run) for ProgLAI
- b. Historical simulations: start from year 901 for ProgLAI
- c. Future Scenarios: RCP8.5 for ProgLAI

https://accessdev.nci.org.au/trac/wiki/access/ACCESS_ESM1_catalogue

Land carbon uptake - 1850 to 2100

Land carbon uptake 1850-2005 Historical

Ensemble mean: **137 PgC*** (CMIP5 range for NEP: 24-1730 PgC (Shao et al., 2013))

Land carbon uptake 2006-2100 RCP2.6

Ensemble mean: **-39 PgC** (CMIP5: -75–200 PgC, (1 sigma) from AR5)

Land carbon uptake 2006-2100 RCP4.5

Ensemble mean: -12 PgC (CMIP5: 75–400 PgC, (1 sigma) from AR5, all models project increase in land carbon uptake)

Land carbon uptake 2006-2100 RCP8.5

Ensemble mean: **-71 PgC** (CMIP5: -75–450 PgC, (1 sigma) from AR5)

^{*}no land use change included in CABLE (155 PgC land use change emissions according to Houghton (2008))

Allowable emissions

Fossil + land-use = Prescribed atmospheric increase + land uptake + ocean uptake

	IAM	ACCESS
Historical	469 PgC	456 PgC
RCP2.6	381 PgC	202 PgC
RCP4.5	807 PgC	559 PgC
RCP8.5	1971 PgC	1471 PgC

Nutrient limitation in ACCESS-ESM1 results in lower allowable emissions than other models. Greater emission reductions required to stay below 2°C warming.

Summary and conclusions

- ACCESS-ESM1 well tested and documented:
 - Law, R. M., et al.: The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) Part 1: Model description and pre-industrial simulation, Geosci. Model Dev., 10, 2567-2590, https://doi.org/10.5194/gmd-10-2567-2017, 2017.
 - Ziehn,T., et al.: The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) Part 2: Historical simulations, Geosci. Model Dev., 10, 2591-2614, https://doi.org/10.5194/gmd-10-2591-2017, 2017.
- Need to address issues identified during simulations:
 - Carbon conservation
 - Prognositic LAI (evergreen needle leaf, C4 grass)
 - Carbon-climate feedback
- Make more use of existing results:
 - Future carbon uptake and regional impacts
 - Role of anthropogenic aerosols
 - Emission driven runs
- Prepare ACCESS-ESM2 for CMIP6

