PLANIRANJE PROJEKTA

Poglavlje 23

Predmet: Razvoj softvera 2

Student: Uroš Jovanović 1047/2103

Profesor: Vladimir Filipović

Celine:

- Planiranje projekta
- Cena softvera
- Razvoj vođen planiranjem
- Raspored projekta
- Agilno planiranje
- Tehnike procene

Planiranje projekta

- Najvažniji posao menadžera projekta
- Plan projekta usmerava razvoj i pomaže u proceni napretka projekta
- Odvija se tokom 3 faze životnog ciklusa projekta:
 - U fazi ponude (spekulativno)
 - U inicijalnoj fazi razvoja (detaljnije)
 - Periodično tokom razvoja (reagovanje na promene, profinjenje plana)

Cena softvera

- Troškovi razvoja softvera se uglavnom sastoje iz 3 celine:
 - Radni trošak (plate za programere, inžinjere, menadžere...)
 - Troškovi hardvera i softvera (uklj. održavanje)
 - Troškovi putovanja i obuke
- Cena razvijenog softvera = troškovi + profit (teorija)
 - U praksi ovo nije čest slučaj

Cena softvera

- U praksi prilikom formiranja cene treba uzeti više stvari u obzir
 - Organizacioni, ekonomski, politički, poslovni aspekti...
- Formiranje cene treba da bude grupna odluka
- Cenom do pobede (engl. "Price to win")
 - Predlog cene na osnovu očekivanja klijenta
- U mnogim projektima cena je fiksiran faktor a zahtevi se menjaju shodno ceni

Cena softvera

Neki od faktora koji utiču na formiranje cene:

Faktor	Opis
Probijanje na tržište	Prihvatanje niže cene zarad isticanja na tržištu
Nesigurna procena troškova	Povećanje cene usled nemogućnosti korektne procene troškova razvoja
Ugovorne obaveze	Korekcija cene na osnovu stavki ugovora (npr. isporuka izvornog koda uz softver)
Promenljivost zahteva	Niža početna cena koja se menja na više sa promenom zahteva klijenta
Finansijsko stanje	Nepovoljno finansijsko stanje razvijaoca obično rezultuje smanjenjem cena u cilju održavanja protoka novca

- Razvojni proces se detaljno planira
 - Raspodela posla, učesnici, rokovi, očekivani rezultati...
- Uglavnom se koristi za velike projekte, dok se za manje i srednje projekte više koristi agilno planiranje
- Prednosti:
 - Potencijalni problemi se otkrivaju pre samog početka razvoja
- Mane:
 - Pojedine odluke donešene za vreme ranog planiranja često moraju da se menjaju kako projekat odmiče

- Plan se obično sastoji iz sledećih delova :
 - Uvod (ciljevi, ograničenja)
 - Organizacija (učesnici, uloge)
 - Procena rizika (verovatnoća rizika, strategije)
 - Hardverski i softverski zahtevi (potrebni za razvoj)
 - Deljenje posla (deljenje na aktivnosti, ključne tačke)
 - Raspored projekta(aktivnosti, potrebno vreme, učesnici)
 - Mehanizmi za nadgledanje i izveštaj (koji mehanizmi, kakve izveštaje praviti i kada?)

Dodatni aspekti planiranja:

Plan	Opis
Plan kvaliteta	Opisuje kvalitet procedura i standarda u razvoju
Plan validacije	Opisuje način validacije sistema (korektnost, ispravnost)
Plan menadžmenta konfiguracije	Opisuje strukture i procedure za menadžment konfiguracije
Plan održavanja	Predviđa zahteve i troškove održavanja
Plan razvoja osoblja	Opisuje kako će se veština i iskustvo zaposlenih razvijati

Proces planiranja

- Proces odlučivanja kako će projekat biti podeljen na manje zadatke i kada će se oni izvršavati
- Inicijalni raspored se obavlja na samom početku projekta
- Detaljnost rasporeda zavisi od načina planiranja
- Tehnički napredni projekti zahtevaju kontinualno osvežavanje rasporeda novim informacijama
- Dobar savet je napraviti optimističan raspored i na njega dodati vreme potrebno za saniranje eventualnih problema (dobro proceniti moguće probleme)

 Primer procesa raspoređivanja u razvoju vođenim planiranjem:

- Predstavljanje rasporeda:
 - Grafikon (vezan za kalendar, odgovornosti učesnika, proteklo vreme, početak i kraj aktivnosti, osmislio ga Henry Gantt Gantt-ov dijagram)
 - Mreža aktivnosti (dijagram mreža, pokazuje zavisnosti između različitih aktivnosti)
- Raspored se obično generiše posebnim alatima
- Aktivnost je osnovni element planiranja, sadrži:
 - Vreme trajanja (u mesecima ili danima)
 - Procena rada (u jedinicama osoba-dan/osoba-mesec)
 - Krajnji rok
 - Definisana ciljna tačka (opipljiv rezultat)

- Tokom planiranja potrebno je definisati i ključne tačke (engl. "Milestones")
- Ključne tačke predstavljaju pregled i procenu odrađenog posla, obično dokumentovano u nekom obliku
- Mogu biti vezane za jednu ili više (grupu) aktivnosti
- Specijalan tip ključne tačke je isporučiv materijal koji se šalje klijentu na procenu, obično kao rezultat neke veće celine ili bitne faze projekta

Raspored zaposlenih

Agilno planiranje

- Agilna metodologija predstavlja inkrementalni pristup razvoju softvera
- Softver se razvija i dostavlja klijentu u manjim celinama
- Funkcionalnost tih celina nije unapred isplanirana
- Najpoznatiji agilni pristupi su "Scrum" i ekstremno programiranje ("XP") gde se planiranje vrši u 2 koraka:
 - Planiranje puštanja u rad (gleda unapred nekoliko meseci, određuje potrebne funkcionalnosti sistema pri puštanju u rad)
 - Planiranje iteracije (planira se naredna celina/inkrement koja obično traje 2-4 nedelje)

Agilno planiranje

• Proces planiranja u XP pristupu:

Agilno planiranje

- Prednosti:
 - Ceo tim ima pregled trenutnih zadataka u iteraciji i ko je zadužen za njih
 - Svaki član tima bira sebi zadatak dodatna motivacija
- Mane:
 - Često aktivno učešće klijenta u razvoju nije moguće
 - Nije pogodno za velike timove gde se članovi često menjaju
- Agilno planiranje najbolje funkcioniše u malim, stabilnim timovima

- Često je teško napraviti procene u razvoju (troškovi, vreme, resursi...)
- U pojedinim slučajevima inicijalna procena X može biti promašena od o.25X pa sve do 4X
- Generalno, postoje 2 tehnike procena:
 - Procena bazirana na iskustvu
 - Oslanja se na prethodno iskustvo menadžera
 - Teško održiva usled brzog napretka tehnika razvoja softvera
 - Novi projekti često nisu slični prethodnim
 - Algoritamsko modelovanje

- Algoritamsko modelovanje koristi matematičke formule za procenu
- Formule zavise od veličine projekta, tipa softvera koji se razvija i ostalih timskih, procesnih i proizvodnih faktora
- Opšta formula ima oblik: $Trud = A * Veličina^B * M$
 - A konstantan faktor, zavisi od tipa softvera koji se razvija i uobičajene lokalne organizacione prakse
 - **Veličina** izražava veličinu softvera koji se razvija(broj linija koda ili neka druga mera veličine)
 - B obično broj izmedju 1 i 1.5
 - M multiplikator koji predstavlja atribute procesa, proizvoda i razvoja poput iskustva razvojnog tima

- Nedostaci modela zasnovanih na algoritmima:
 - Teško je proceniti **Veličinu** u ranim fazama razvoja
 - Procena faktora B i M često je subjektivna
- Modelovanje algoritmima je često kompleksno i teško za upotrebu, uzak opseg upotrebe
- Poželjno je razviti opseg procena (najgora, očekivana, najbolja) i primeniti formulu na svaku pojedinačno
- Poznavanje tipa softvera koji se razvija kao i predefinisan programski jezik i hardver povoljno utiču na procenu

- COCOMO II model
 - Spada u algoritamske modele
 - Empirijski model
 - Rezultat sakupljanja podataka velikog broja softverskih projekata
 - Dobro dokumentovan i slobodan za javnu upotrebu
 - Podržava moderne pristupe razvoja softvera
 - Sastoji se iz 4 celine (podmodela)

Delovi COCOCMO II modela (podmodeli)

- Delovi COCOMO II modela (podmodeli):
 - Kompozicija aplikacija
 - Koristi se za nove projekte koji koriste postojeće komponente
 - Procena se bazira na tzv. "aplikacionim tačkama"
 - Formula: $PM = (NAP \times (1 \%reuse/100))/PROD$
 - Ne uzima u obzir dodatni trud za ponovno iskorišćenje komponenata

Developer's experience and capability	Very low	Low	Nominal	High	Very high
ICASE maturity and capability	Very low	Low	Nominal	High	Very high
PROD (NAP/month)	4	7	13	25	50

Rani dizajn

- Koristi se za brze inicijalne procene pre detaljnog projektnog plana (podrazumeva se da je dogovor sa klijentom napravljen)
- Korisno za pregled dostupnih opcija implementacije
- Formula: Effort = A × Size^B × M

Ponovna upotrebljivost

- Dve vrste ponovno upotrebljivog koda
 - Black Box upotrebljivost bez izmena i razumevanja koda
 - White Box potrebne dodatne izmene i adaptacija
- Mnogi sistemi koriste automatski generisan kod (često iz modela predstavljenih UML-om)
- Formula: $PM_{Auto} = (ASLOC \times AT/100) / ATPROD // Estimate for generated code$
- Procena potrebnog truda za implementaciju ponovno upotrebljenog koda se izražava preko broja linija ekvivalentnog novog koda
- Formula: $ESLOC = ASLOC \times (1 AT/100) \times AAM$

Post-projektni model

- Koristi se nakon što projektanti naprave strukturni dizajn
- Početna formula: PM = A × Size^B × M
- Veličina se obično izražava u linijama koda (KSLOC)
- U obzir veličine se uzima
 - Broj linija novog koda
 - Cena ponovnog upotrebljavanja koda
 - Broj linija koda čija je adaptacija potrebna za implementaciju
- Eksponent se računa na osnovu 5 faktora skaliranja
- **B** = suma faktora/100 + 1.01

• Faktori skaliranja

Faktor skaliranja	Objašnjenje
Prethodno iskustvo	Izražava upoznatost organizacije sa konkretnim tipom projekta
Fleksibilnost razvoja	Fleksibilnost razvojnog procesa. Uticaj klijenta na razvoj.
Procena rizika	Količina sprovedene analize rizika
Kohezija tima	Koliko dobro se članovi tima uklapaju u radu
Zrelost procesa	Odražava koliko je razvojni proces sazreo. Zreli procesi su korisni, automatizovani, pouzdani i konstantno se nadogradjuju

- Trajanje projekta i organizacija zaposlenih
 - Pored procena troškova i truda, menadžeri moraju da procene i trajanje razvoja i br. potrebnih zaposlenih
 - COCOMO formula: TDEV = $3 \times (PM)$ (0.33 + 0.2*(B 1.01)
 - Često je procenjeno vreme veće od zahtevanog dolazi do kompresije rasporeda
 - Kompresija rasporeda eksponencijalno utiče na rast potrebnog rada
 - Dodavanje zaposlenih radi ubrzanja razvoja uglavnom negativno utiče na produktivnost postojećeg tima

Putnamov model procene

KRAJ