Exercise 12.1

- 1. Find the values of these expressions.
- a) $1 \cdot \overline{0}$
- **= 1 · 1**
- = 1
- b) $1 + \bar{1}$
- = 1 + 0
- = 1
- c) $\overline{0} \cdot 0$
- = 1 · 0
- = 0
- d) $\overline{(1+0)}$
- = 1
- = 0
- 5. Use a table to express the values of each of these Boolean functions.
- a) $F(x, y, z) = \bar{x}y$

X	У	Z	\bar{x}	\bar{x} y
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	0
0	0	0	1	0

Exercise 12.2

- 1. Find a Boolean product of the Boolean variables x, y, and z, or their complements, that has the value 1 if and only if
- a) x = y = 0, z = 1.

3. Find the sum-of-products expansions of these Boolean functions.

a)
$$F(x, y, z) = x + y + z$$

X	у	Z	x + y + z
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

$$xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}z$$

5. Find the sum-of-products expansion of the Boolean function F(w, x, y, z) that has the value 1 if and only if an odd number of w, x, y, z and z have the value 1.

W	X	У	Z	Odd number of value 1
1	1	1	1	0
1	1	1	0	1
1	1	0	1	1
1	1	0	0	0
1	0	1	1	1
1	0	1	0	0
1	0	0	1	0
1	0	0	0	1
0	1	1	1	1
0	1	1	0	0
0	1	0	1	0
0	1	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	0	1	1
0	0	0	0	0

 $\mathsf{wx}\mathsf{y}\bar{z} + \mathsf{wx}\bar{y}\mathsf{z} + \mathsf{w}\bar{x}\mathsf{y}\mathsf{z} + \mathsf{w}\bar{x}\bar{y}\bar{z} + \bar{w}\mathsf{x}\mathsf{y}\mathsf{z} + \bar{w}\mathsf{x}\bar{y}\bar{z} + \bar{w}\bar{x}\mathsf{y}\bar{z} + \bar{w}\bar{x}\bar{y}\mathsf{z}$

Exercise 12.3

For 1 and 5, find the output of the given circuit.

1.

 $(x + y) \cdot \overline{y}$

3.

$$\overline{(xy)} + (\bar{z} + x)$$