

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Rahmad Mahendra

Pokok Bahasan

- Logika
- Himpunan
- Relasi
- Fungsi
- Metode Pembuktian

- **Logika proposisi** adalah pernyataan yang memiliki nilai kebenaran *TRUE* atau *FALSE*
 - Contoh:
 - Saya tinggal di Bekasi.
 - Matematika Diskrit adalah mata kuliah yang sulit.
- Dua proposisi atau lebih dapat dikombinasikan dengan menggunakan operator penghubung (*connective*)

- Logical connectives
 - ∘ ¬ negasi NOT
 - ^ konjungsi AND
 - ∘ ∨ disjungsi *OR*
 - $\circ \Rightarrow conditional$ jika ..., maka ...
 - ∘⇔ ekuivalensi ... jika dan hanya jika ...
- Tabel kebenaran

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Ekuivalensi	$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
Implikasi	$p \Rightarrow q \equiv \neg p \lor q$
Negasi Ganda	$\neg(\neg p) \equiv p$
Idempotensi	$p \wedge p \equiv p$ $p \vee p \equiv p$
Komutatif	$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$
Asosiatif	
Distributif	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
DeMorgan	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$
Identitas	$p \wedge T \equiv p$ $p \vee F \equiv p$
Anhiliasi	$p \wedge F \equiv F$ $p \vee T \equiv T$
Absorpsi	$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$

- Logika predikat adalah pernyataan logika yang mengandung satu variabel atau lebih.
 - Contoh:
 - Ada bilangan genap yang habis dibagi 3.
 - Source code dalam <u>setiap</u> bahasa pemrograman harus di-compile sebelum di-run.
- Variabel "ada / beberapa" dinyatakan sebagai ekspresi ∃ dan "semua / setiap / seluruh" dinyatakan sebagai ∀. Ekspresi tersebut disebut *quantifier*.

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$

$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

Himpunan

- **Himpunan** (*set*) adalah koleksi yang beranggotakan elemen / objek yang unik.
- Himpunan dapat dinyatakan dengan cara:
 - Mendefinisikan karakteristik himpunan Contoh: $S = \{x \mid 0 < x < 5, x \text{ adalah bilangan bulat}\}$
 - Enumerasi anggota himpunan Contoh: $S = \{1, 2, 3, 4\}$
- Kardinalitas adalah jumlah anggota himpunan. Contoh: S = 4
- x merupakan anggota himpunan S, ditulis $x \in S$ sedangkan y bukan anggota himpunan S, ditulis $y \notin S$

Himpunan

Operasi dan Properti pada Himpunan				
Gabungan (union)	$A \cup B = \{x \mid x \in A \lor x \in B\}$			
Irisan (intersection)	$A \cap B = \{x \mid x \in A \land x \in B\}$			
Produk Kartesis	$A \times B = \{(x, y) \mid x \in A \land y \in B\}$			
Selisih (difference)	$A - B = \{x \mid x \in A \land x \notin B\}$			
Komplemen	Diketahui S merupakan <i>univers<u>al</u></i> set. Komplemen A (ditulis sebagai \overline{A} atau A ') didefinisikan se <u>bagai</u> berikut $\overline{A} = S - A$			
Subset	$A \subseteq B \equiv \forall x. (x \in A \Longrightarrow x \in B)$			
Proper subset	$A \subset B \equiv A \subseteq B \land A \neq B$			
Kesamaan (equality)	$A = B \equiv (A \subseteq B) \land (B \subseteq A)$			

Himpunan

Contoh Himpunan			
Himpunan kosong (empty set)	Himpunan yang tidak memiliki anggota, dengan kata lain kardinalitasnya = 0. Ditulis sebagai $\{\}$ atau ϕ Untuk setiap himpunan S , berlaku $\phi \subseteq S$		
Singleton set	Himpunan yang memiliki tepat satu anggota. Contoh: $\{2\}$, $\{x \mid x \mod 5 = 2, \ 1 < x < 4\}$		
Finite set	Himpunan yang memiliki berhingga jumlah anggota. Contoh: $\{\}$, $\{1,2,3,,1000\}$		
Power sets	Himpunan yang mengandung seluruh subset dari sebuah himpunan. $ \wp ow(S) = \big\{A \mid A \subseteq S\big\} $ Jika $ S = n$, maka $ \wp ow(S) = 2^n$		

Relasi

- **Relasi biner** R antara himpunan A dan B adalah *subset* dari produk Kartesis. $R \subseteq A \times B$
- Notasi relasi $(a,b) \in R$ aRb R(a,b)
- Relasi R pada himpunan S didefinisikan sebagai $R \subseteq S \times S$
 - Refleksif $\forall x \in S.(xRx)$
 - Simetri $\forall x, y \in S.(xRy \Rightarrow yRx)$
 - Antisimetri $\forall x, y \in S.((xRy \land yRx) \Rightarrow (x = y))$
 - Transitif $\forall x, y, z \in S.((xRy \land yRz) \Rightarrow xRz)$

Relasi

- **Relasi ekuivalen** pada *S* adalah relasi yang memenuhi sifat refleksif, simetri, dan transitif pada *S*.
- **Relasi terurut parsial** (*partial order*) pada *S* adalah relasi memenuhi sifat refleksif, antisimetri, dan transitif pada *S*.
- Relasi terurut total (total order) pada S memenuhi
 - R adalah partial order pada S, dan
 - $\circ \forall x, y \in S.(xRy \lor yRx)$

Fungsi

- Fungsi f dari himpunan A ke B adalah relasi $f \subseteq A \times B$ sedemikian hingga
 - $\lor \forall x \exists y . (x, y) \in f$
 - $\lor \forall x, y, z. ((x, y) \in f \land (x, z) \in f) \Longrightarrow (y = z)$

ditulis $f: A \rightarrow B$

 $(x, y) \in f$ dapat ditulis dalam notasi f(x) = y

• Himpunan A disebut domain dan B disebut codomain. Himpunan $\{y \in B \mid \exists x \in A, f(x) = y\}$ disebut range.

Fungsi

• Fungsi surjektif (*onto*) didefinisikan sebagai. $\forall y \in B, \exists x \in A.(f(x) = y)$

- Fungsi injektif (*one-to-one*) didefinisikan sebagai. $\forall x, y. (f(x) = f(y)) \Rightarrow (x = y)$
- Fungsi bijektif memenuhi sifat surjektif dan injektif

Metode Pembuktian

- Deductive proof
 - Pembuktian langsung (direct proof)
 - Pembuktian dengan kontraposisi
 - Pembuktian dengan counter example
- Inductive proof
 - Pembuktian dengan induksi matematika
 - Mutual induction