This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

10	20	30	40	50	60	70
10	20			CCGACATTGG	000 40 400 4	
80	90	1114011044	1104440100	120	130	140
				GGACGATACC		
150	160	170	180	190	200	210
				GTCAAAGAAG		
220	230	240	250	260	270	280
				AAGGCACGGC		
290	300	310	320	330	340	350
				TCCTGCTCCG		
360	370	380	390	400	410	· 420
				GGTCCCGGCG		
430	440	450	460	470	480	490
				ACAAAACTTT		
500	510	520	530	540	550	560
* * * -				CGTTATCGAC		
570	580	590	600	610	620	630
				ATGCTTCGCG		
· 640	650	660	670	680	690	700
•				GTAAAGTGGA		
710	720	730	740	750	760	770
				CGGCGACGCG		
780	790	800	810	820	830	840
				GCAGCAGGCA		•
850		870	880	890	900	910
				CATTGGCTCT		
920	930	940	950	960	970	980
				TACGGTTTAC		
990	1000	1010	1020	1030	1040	1050
				GACCGCGATT		
1060	1070	1080	1090	1100	1110	1120
				AAACCGTTGC	• • • • •	
1130	1140	1150	1160	1170	1180	1190
				GCCGCAACGC		
1200	1210	1220	1230	1240	1250	1260
				AAAGCAGGCG		
1270	1280	1290	1300	1310	1320	1330
•				ACATCTACGC		
1340	1350	1360	1370	1380	1390	1400
AGCCGATGTT	GGCGCACAAA	GCCGTTCACG	AAGGCCACGT	TGCCGCCGAA	AACTGCGCCG	GCCACAAAGC
1410	1420	1430	1440	1450	1460	1470
CTACTTCGAC	GCACGCGTGA	TTCCGGGCGT	TGCCTACACT	TCCCCGAAG	TGGCGTGGGT	GGGCGAAACC
1480	1490	1500	1510	1520	1530	1540
GAACTGTCCG	CCAAAGCCTC	CGGCCGCAAA	ATCACCAAAG	CCAACTTCCC	GTGGGCGGCT	TCCGGCCGTG
1550	1560	1570	1580	1590	1600	1610
				TTTTGATGCC		
1620	1630	1640	1650	1660	1670	1680
				GAAGTCTGCC		
1690	1700	1710	1720	1730	1740	1750
GACGCGGCAG	ACATCGGCAA	AACCATCCAC	CCGCACCCGA	CCTTGGGCGA	ATCCATCGGT	ATGGCGGCGG
1760	1770	1780	1790	1 <i>7</i> 97		
AAGTGGCATT	GGGTACTTGT	ACCGACCTGC	CTCCGCAAAA	GAAAAAA		

FIG. 2

(T

jul Mj

W W

Uī

FIG. 3

5' <u>TTCC</u>

M V D K R M A L V E L K V P D I G G H

ATG GTA GAT AAA AGA ATG GCT TTA GTT GAA TTG AAA GTG CCC GAC ATT GGC GGA CAC

61 70 79 88 97 106 115

E N V D I I A V E V N V G D T I A V D

GAA AAT GTA GAT ATT ATC GCG GTT GAA GTA AAC GTG GGC GAC ACT ATT GCT GTG GAC

124 133 142

D T L I T L D L E

GAT ACC CTG ATT ACT TTG GAT CTA GAA A 3'

FIG. 4

FIG. 5

		Small	est		
	Poisson			on	
	High Probab		ility		
Sequences producing High-scoring Segment Pairs:	Score	P(N)	N		
KPY1_HUMAN PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1	. 51	0.98	1		
KPY1_RAT PYRUVATE KINAZE, M1 (MUSCLE) ISOZYME (EC 2.7.1	51	0.98	1		
KPY2_HUMAN PYRUVATE KINAZE, M2 ISOZYME (EC 2.7.1.40).	51	0.98	1		
KPY2_RAT PYRUVATE KINAZE, M2 ISOZYME (EC 2.7.1.40).	51	0.98	1		

>KPY1_HUMAN PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1.40) (CYTOSOLIC THYROID HORMONE-BINDING PROTEIN)
Length = 530

Query:

C)

1 1

'n

Uī

12.3

[==

29 VNVGDTIAVDDTLITLDL 46

V+VG I VDD LI+L++

Sbjct:

167 VEVGSKIYVDDGLISLQV 184

>KPY1_RAT PYRUVATE KINASE, M1 (MUSCLE) ISOZYME (EC 2.7.1.40). Length = 530

Query:

29 VNVGDTIAVDDTLITLDL 46

V+VG I VDD LI+L++

Sbjct:

167 VEVGSKIYVDDGLISLQV 184

>KPY2_HUMAN PYRUVATE KINASE, M2 ISOZYME (EC 2.7.1.40). Length = 530

Query:

29 VNVGDTIAVDDTLITLDL 46

V+VG I VDD LI+L++

Sbjct:

167 VEVGSKIYVDDGLISLQV 184

>KPY2_RAT PYRUVATE KINASE, M2 ISOZYME (EC 2.7.1.40). Length = 530

Query:

29 VNVGDTIAVDDTLITLDL 46

V+VG I VDD LI+L++

Sbjct:

167 VEVGSKIYVDDGLISLQV 184

FIG. 6

		Reading	Hioh	Smallest Poisson Probability	
Sequences produ	cing High-scoring Segment Pairs:	Frame	_		N
CFMUCIN	Canis familiaris (clone pCTM-A) mucin c-term	-2	62	0.30	1
HS8671	EST02755 Homo sapiens cDNA clone HFBCA72 sim	-2	61	0.40	1
>CFMUCIN	Canis familiaris (clone pCTM-A) mucin c-terminus RNA, 3' Length = 1733	end.			

Query:

8 LVELKVPDIGGHENVDIIAVEVNVGDTIAVDD 39

L E+ VPD H V+++A E+ +G+++ VDD

Sbjct:

ħj

Ú N

Uī

1015 LREVQVPDRKLHKGVQLLAGELGIGEALQVDD 920

>HS8671 EST02755 Homo sapiens cDNA clone HFBCA72 similar to Mucin CTM-A. Length = 286

Query:

8 LVELKVPDIGGHENVDIIAVEVNVGDTIAVDD 39

L E+ VPD HE V++++ E+ VG VDD

Sbjct:

240 LREVQVPDRKLHEGVQLLSGELGVGKXFQVDD 145

FIG. 8

30 39 21 M V D K R M A L V E L K V P D I G G H ATG GTA GAT AAA AGA ATG GCT TTA GTT GAA TTG AAA GTG CCC GAC ATT GGC GGA CAC 78 87 96 105 E N V D I I A V E V N V G D T I A V D AA AAT GTA GAT ATT ATC GCG GTT GAA GTA AAC GTG GGC GAC ACT ATT GCT GTG GAC D T L I T L D L D S R G I R I G P G GAT ACC CTG ATT ACT TTG GAT CTA GAC TCG AGA GGC ATT CGT ATC GGC CCA GGT CGC 201 210 219 192 A I L A T A G G G A R Q S T P I G L G GCA ATT TTA GCA ACA GCT GGC GGT GGC GCA CGT CAA TCT ACC CCT ATT GGT TTA GGT 240 249 258 267 276 $G \quad A \quad L \quad Y \quad T \quad T \quad A \quad G \quad G \quad G \quad A \quad R \quad K \quad S \quad I \quad T \quad K \quad G \quad P$ CAG GCT CTG TAT ACG ACT GCC GGC GGT GGT GCG CGC AAA AGT ATC ACC AAG GGT CCA G R V I Y A T A G G G A R K R I H I GGC CGC GTC ATT TAC GCC ACC GCG GGC GGC GGT GCC CGT AAG CGT ATC CAC ATT GGC 372 381 363 P G R A F Y T T A G G G A R K R I T M CCA GGC CGT GCA TTC TAT ACT ACA GCA GGT GGT GGC GCA CGT AAA CGC ATC ACT ATG G P G R V Y Y T T A G G G A S I R I GGT CCT GGT CGC GTC TAT TAC ACG ACC GCT GGC GGC GGT GCT AGC ATT CGC ATC CAA 468 477 486 495 G P G R A F V TI CGC GGC CCT GGT CGT GCA TTT GTG ACC ATA TGA

##

7. 1. 1. 1. 1.

The state of

FIG. 9A

FIG. 9B

FIG. 10A

Gene	Stabilizer	Plasmid	Culture medium	% of expression
porA	hIL2-58	pILM-28	M9	32
	P64k-47	pM-82	M 9	34
орс	hIL2-58	pILM-29	M 9	25
	P64k-47	pM-80	M 9	20
TAB	hIL2-22	pTAB4	LB	5
	P64k-47	pTAB4	LB	10

FIG. 10B

FIG. 10C

APPROVED	O.G. FIG.				
BY	CLASS	SUBCLASS			
DHAFTSMAN					

FIG. 11

FIG. 12

	TAB 4				TAB 9			
RABBIT#	12166	5725	5340	2310	1	2	3	10
TAB	20480	10240	10240	81920	20480	20480	51200	51200
]	0	0	0	0	0	0		
LR150	<100	<100	<100	6400	400	<100	800	<100
JYl	200	<100	<100	12800	1600	6400	3200	<100
RF	6400	<100	3200	800	<100	200	3200	800
MN	200	<100	<100	1600	1600	3200	6400	<100
BRVA	<100	6400	400	3200	800	400	6400	1600
IIIB	<100	<100	<100	<100	800	<100	800	<100
GM	1820			1416			•	
R%	45.8%			75%				

The first first trace of the first f