Displaying and Describing Categorical Data

John Karuitha

4/22/2021

Introduction

- We have already defined categorical data.
- Categorical data falls into two categories: ordinal vs nominal.
- ▶ Again, we have seen that to summarise categorical data, we use frequency tables or contigency tables.
- ▶ We beriefly review frequency tables.

- ► A frequency table records the counts for each of the categories of the variable.
- ► These are the pure frequency tables
- Some tables report percentages. These are RELATIVE frequency tables.
- Many tables also report both counts and percentages.

- Example:
- We asked 40 people whether they watch soap operas on TV because they are interested in the program itself or due to peer pressure.
- ► There are four answers: I like the programs, I watch die to peer pressure, I do not watch, I don't know.;
- ▶ The results of the poll are as follows; See the data in the file

III.			
l like the programs, ¶	I·do·not·watch,·¶	I·watch·due·to·peer·pressure,·¶	I·don't·know¶
·watch·due·to·peer·pressure,·¶	I·do·not·watch,·¶	I-like-the-programs, ¶	I·don't·know¶
·do·not·watch,·¶	I·don't·know¶	I ·watch · due · to · peer · pressure, · ¶	I-like the programs, ¶
·don't·know¶	I·watch·due·to·peer·pressure,·¶	I·watch·due·to·peer·pressure,·¶	I·do·not·watch,·¶
·like·the·programs,·¶	I like the programs, ¶	I·don't·know¶	I like the programs, ¶
·like·the·programs,·¶	I·watch·due·to·peer·pressure,·¶	I·like·the·programs,·¶	I·do·not·watch,·¶
·like·the·programs,·¶	I·like·the·programs,·¶	I·watch·due·to·peer·pressure,·¶	I like the programs, ¶
·watch·due·to·peer·pressure,·¶	I·watch·due·to·peer·pressure,·¶	I·do·not·watch,·¶	I·don't·know¶
·like·the·programs, ¶	I·like the programs, ¶	I·like·the·programs,·¶	I·watch·due·to·peer·pressure,
·like·the·programs, ¶	I-watch-due-to-peer-pressure,-¶	I-do-not-watch,·¶	I-watch-due-to-peer-pressure,

Figure 1: data for frequency tables

ļ II		
Response¶	Frequency¶	
I·like·the·programs,·¶		15
I·watch·due·to·peer·pressure,·¶		12
I·don't·know¶		6
I·do·not·watch,·¶		7

Figure 2: freuency table itself

Frequency Tables: Relative frequency tables

We convert the counts to percentages to get relative frequency tables

II	
Response¶	Relative Frequency (%)¶
I·like·the·programs,·¶	37.5
I·watch·due·to·peer·pressure,·¶	30
I·don't·know¶	15
I·do·not·watch,·¶	17.5

Figure 3: Relative frequency tables

Visualizing categorical data

- Two commonly used visualization tools for categorical data are
 - Pie Charts.
 - Bar graphs
- ▶ Pie charts are less favored given that they use area to represent data.
- ▶ The human mind finds it hard to interpret areas (angles).
- ► The bar chart is easier for the human mind because its a matter of comparing heights. It is linear.

Visualizing categorical data: The area principle

- ► The best data displays observe a fundamental principle of graphing data called the area principle.
- ► The area principle states that the area occupied by a part of the graph should correspond to the magnitude of the value it represents.
- ► That is why, in doing a bar graph, make sure the bars have the same widths. The comparison should only be on height.

Visualizing categorical data: The Pie Chart

Response	Frequency	Relative_frequency
I like the programs	15	37.5
I watch due to peer pressure	12	30.0
I don't know	6	15.0
I do not watch	7	17.5

Visualizing categorical data: The Pie Chart

Visualizing categorical data: The bar graph

- ► The x axis has the categories while the y-axis has the values.
- As noted, due to the area principle, let the width of the bars be the same so people can compare the heights only.
- ▶ Note that it is easier to interpret the bar chart as compared to the pie chart.
- ▶ When you have many categories, interpreting the pie chart gets even harder.
- For bar charts its better to arrange the bars in asceding or descending order of height. See examples.

Visualizing categorical data: The bar graph

Visualizing categorical data: The bar graph (Looks better with order)

Visualizing categorical data: The bar graph

- Visualizing and summarising data is perhaps one of the most important but under-estimated skill in statistics and data analysis.
- Before subjecting a dataset to a battery of statistical tests, do the following.
 - Draw a chart.
 - Draw a chart.
 - Draw a chart.
 - Summarise the data mean, median, mode, SD, Variance, Quartiles, Extreme values, IQR.

Visualizing categorical data: Exercise

- ► The following dataset shows the responses of individuals in Kenya regarding whether they are generally happy or not.
- Draw a relative frequency table.
- Draw a pie chart from the relative frequncy table.
- ▶ Draw a bar chart with % on y -axix and responses on the x-axis, arranging the reponses in ascending order of relative frequency (%)

Visualizing categorical data: Exercise

Response	Frequency
Very Happy	200
Mostly Happy	700
Neutral	1000
Mostly Unhappy	500
Unhappy	2000

Visualizing categorical data: Exercise solutions- relative frequency table

Response	Frequency	relative_freq
Very Happy	200	4.545454
Mostly Happy	700	15.909091
Neutral	1000	22.727273
Mostly Unhappy	500	11.363636
Unhappy	2000	45.454546

Visualizing categorical data: Exercise solutions- pie chart Happiness in Kenya

Visualizing categorical data: Exercise solutions- pie chart

- Sometimes you have two categorical data that you want to summarise together.
- ► In this case you may use a special type of frequency table called the contigency table.
- ▶ The contigency table may present counts or proportions.
- ► The one with proportions is a relative contigency table.

- ► In the previous example, we add a variable for the sex of the respondents, Female or Male.
- See the data in excel.

▶ Here are the first 10 rows of the dataset.

Comment	Sex
I like the programs,	Male
I watch due to peer pressure,	Male
I do not watch,	Male
I don't know	Male
I like the programs,	Male
I like the programs,	Male
I like the programs,	Male
I watch due to peer pressure,	Male
I like the programs,	Male
I like the programs,	Male

- ► A contigency table will break down the data by both variables, comment and sex.
- For instance, how many men said they do not watch the programs.
- ► How many women watch the programs out of peer pressure. and so on.
- Again, the summaries can be in the form of counts or percentages.

Here we go

	Male	Female	TOTAL
I like the programs,	6	9	15
I watch due to peer pressure,	4	8	12
I don't know	1	5	6
I do not watch,	3	4	7
TOTAL	14	26	40

Figure 4: my contigency table

The percentages can either be horizontal, by response or vertical, by sex.

Table 5: Responses

	Female	Male
I do not watch,	0.5714286	0.4285714
I don't know	0.8333333	0.1666667
I like the programs,	0.6000000	0.4000000
I watch due to peer pressure,	0.6666667	0.3333333

Table 6: Responses

	Female	Male
I do not watch,	0.1538462	0.2142857
I don't know	0.1923077	0.0714286
I like the programs,	0.3461538	0.4285714
I watch due to peer pressure,	0.3076923	0.2857143