Nonlinear Optimization

Derek Li

Contents

1	Rev	v iew		
	1.1	One-Variable Calculus		
		1.1.1	Mean Value Theorem	
		1.1.2	First Order Taylor Approximation	
		1.1.3	Second Order MVT	
		1.1.4	Second Order Taylor Approximation	

1 Review

1.1 One-Variable Calculus

1.1.1 Mean Value Theorem

Let $g \in C^1$ on \mathbb{R} . We have

$$\frac{g(x+h) - g(x)}{h} = g'(x+\theta h),$$

where $\theta \in (0,1)$ and $\frac{g(x+h)-g(x)}{h}$ is the slope of secant line between (x,g(x)) and (x+h,g(x+h)). Or we can write $g(x+h)=g(x)+hg'(x+\theta h)$.

1.1.2 First Order Taylor Approximation

Let $g \in C^1$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + o(h),$$

where o(h) is the error and we say a function f(h) = o(h) to mean

$$\lim_{h \to 0} \frac{f(h)}{h} = 0.$$

Proof. Want to show g(x+h) - g(x) - hg'(x) = o(h).

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x)}{h} = \lim_{h \to 0} \frac{hg'(x+\theta h) - hg'(x)}{h}$$
$$= \lim_{h \to 0} g'(x+\theta h) - g'(x) = 0.$$

1.1.3 Second Order MVT

Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x+\theta h),$$

where $\theta \in (0, 1)$.

1.1.4 Second Order Taylor Approximation

Let $g \in C^2$ on \mathbb{R} . We have

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g''(x) + o(h^2).$$

Proof. W.T.S.
$$g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$$
.

We have

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\frac{h^2}{2}g''(x+\theta h) - \frac{h^2}{2}g''(x)}{h^2}$$
$$= \lim_{h \to 0} \frac{1}{2} [g''(x+\theta h) - g''(x)] = 0.$$