RBFN

Dots = samples

Line = Function we try to approximate

RBFN

Radial Basis Function

Base = Gaussian Function:
$$\phi_i(\mathbf{x}, \mathbf{c}^i, \sigma^i) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{c}^i\|^2}{2\sigma^{i^2}}\right)$$

RBFN

• Steps:

- 1. Dispatch centers of RBF cleverly.
- Define influence area of each RBF.
- 3. Apply the RBF on the input.
- 4. Learn weights of each RBF if target is considered as the result of a linear combination of RBFs.

1. Dispatch centers of RBF cleverly.

2. Define influence area of each RBF.

3. Apply the RBFs on the input.

• For every x-coordinate of a purple dot, get the output of each RBF.

• For x=200, which RBF will contibute the most?

$$\phi_i(\mathbf{x}, \mathbf{c}^i, \sigma^i) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{c}^i\|^2}{2\sigma^{i^2}}\right)$$
$$y = \sum_{i=1}^{M} w_i \phi_i(\mathbf{x}) + w_0$$

4. Learn weights of each RBF

