

Prediciendo precios mediante regresión lineal

Moisés Martínez

About me

PhD in Computer Science and Al

Big Data & Al Architect

Researcher on different universities

T3chFest and GDG Cloud Madrid Organizer

GDE in Machine Learning

Moisés Martínez

Herramientas

Despliegue

Desarrollo

Tecnologías ML

Definición de Aprendizaje RAE

Adquirir el conocimiento de algo por medio del estudio o de la experiencia.

Definición de Aprendizaje RAE

Adquirir el conocimiento de algo por medio del estudio o de la experiencia.

Definición de Aprendizaje Automático

Proceso de adquisición de conocimiento de manera automática mediante la utilización de ejemplos (experiencia) de entrenamiento

Por Refuerzo

Respuestas^{Refuerzo} + Datos Acciones^{Refuerzo} + Estados

Definir políticas

Identificar Patrones

Por Refuerzo

Respuestas^{Refuerzo} + Datos Acciones^{Refuerzo} + Estados

Definir políticas

Por Refuerzo

Respuestas^{Refuerzo} + Datos Acciones^{Refuerzo} + Estados

Identificar Patrones

Definir políticas

Ejemplos de aprendizaje etiquetados previamente (Conocemos la clases)

Entrenamiento

Instancia: Estructura básica para representar la información. Está compuesta por una secuencia de **atributos** que describen cada uno de los ejemplos.

Entrenamiento

Atributo: Unidad básica para almacenar y describir la información. Suele almacenarse de dos formas:

Continuo: Son valores numéricos de tipo continuo

Entrenamiento

Atributo: Unidad básica para almacenar y describir la información. Suele almacenarse de dos formas:

- Continuo: Son valores numéricos de tipo continuo
- Discreto: Son valores de cualquier estructura (Cadenas de caracteres, números, etc)

Entrenamiento

Objetivo: Es el valor esperado para cada una de la instancias. Tiene múltiples denominaciones:

- Clase
- Etiqueta
- Valor a predecir (Numérico)

Conjunto de entrenamiento: Es un conjunto de instancias que son utilizadas para el proceso de entrenamiento con el objetivo de construir un modelo.

Conjunto de validación: Es un conjunto de instancias que son utilizadas para comprobar la calidad del modelo construido durante el proceso de entrenamiento

Conjunto de test: Es un conjunto de instancias que son utilizadas para comprobar la calidad del modelo final que ha sido generado.

Algoritmo: Es el método de aprendizaje que se utilizar para construir el modelo de razonamiento.

Función de error (loss): Es la función que permite definir el error del modelo durante el proceso de entrenamiento.

Algoritmo de optimización (optimizador): Es el algoritmo que permiten modificar las reglas del modelo con el objetivo de minimizar el error obtenido mediante la función de error (loss).

Hiperparámetros: Son un conjunto de parámetros referentes al algoritmo que permiten modificar el proceso de aprendizaje.

Iteraciones (epochs): Son el conjunto de iteraciones durante las que se ejecuta el proceso de entrenamiento con el objetivo de construir el modelo.

Modelo: Conjunto de reglas o patrones inferidos a partir del conjunto de entrenamiento con el objetivo de predecir, inferir o definir la agrupación de una instancia.

Calcular el **precio** de una vivienda

¿Calcular el precio de una vivienda?

Regresión Lineal

Redes de Neuronas

4. Regresión lineal

4. Regresión lineal

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre variable dependientes (respuesta) y un conjunto de variables de independientes (explicativas).

4. Regresión lineal

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

$$Y = \alpha x + \beta + \varepsilon$$

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

$$Y = \alpha x + \beta + \varepsilon$$
Error
Intercepto del eje Y
coeficiente angular (pendiente)

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

X → variable independiente

Y → variable dependiente

$$Y = \alpha x + \beta + \varepsilon$$
Error
Intercepto del eje Y
coeficiente angular (pendiente)

Regresión lineal simple

La Regresión Lineal es un tipo de modelo matemático que explica la relación entre una variable dependiente (respuesta) y un conjunto de variables de independientes (explicativas).

Problema: Existen **infinitas rectas** por lo que hay seleccionar la que minimice la distancia entre el valor real y el valor predecido por la recta.

Error cuadrático medio

$$c = Media((y'-y)^2)$$

Problema: Existen **infinitas rectas** por lo que hay seleccionar la que minimice la distancia entre el valor real y el valor predecido por la recta.

Error cuadrático medio (MSE)

$$c = Media((y'-y)^2)$$

Algoritmo de optimización del Descenso del gradiente

Problema: Existen **infinitas rectas** por lo que hay seleccionar la que minimice la distancia entre el valor real y el valor predecido por la recta.

Error cuadrático medio (MSE)

$$c = Media((y'-y)^2)$$

Shallow Neural Network Deep Neural Network

Las **diferencia** que existe entre una red "shallow" y una red "profunda" es el número de capas ocultas (amarillo). Es decir, una red de neuronas profundas es aquellas que tiene múltiples capas ocultas

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Radial Basis Function

$$\phi(z,c) = e^{-(\epsilon ||z-c||)^2}$$

La función de activación se encarga de generar una salida a partir de un valor de entrada, normalmente el conjunto de valores de salida está determinado mediante un rango como (0,1) o (-1,1).

Función ReLU

La función ReLU (Rectified Linear Unit) transforma los valores de entrada anulando los valores negativos y manteniendo los positivos tal y como entran.

- Función de tipo Sparse, es decir sólo se activan los positivos.
- No está acotada.
- Buen comportamiento con valores positivos (imágenes).
- Mal comportamiento con valores negativos (muerte de neuronas).

Pesos

	0.01	0.02	0.03	0.04
ihWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
Weights[][]	0.17	0.18
	0.19	0.20

hoW

Pesos

	0.01	0.02	0.03	0.04
ihWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
hoWeights[][]	0.17	0.18
	0.19	0.20

Bias: Parámetro adicional utilizado en las redes de neuronas para ajustar el bias (Ayuda al entrenamiento)

Pesos

Y	0.01	0.02	0.03	0.04
hWeights[][]	0.05	0.06	0.07	0.08
	0.09	0.10	0.11	0.12

	0.13	0.14
	0.15	0.16
hoWeights[][]	0.17	0.18
	0.19	0.20

6. TensorFlow

6. Redes de neuronas - TensorFlow

Tensor 3D cubo **OD 1D** scalar matriz vector **N-dimensional array**

Flow

Conjunto de operaciones

6. Redes de neuronas - TensorFlow

La información se representa mediante tres tipos de **contenedores de información**, que deben ser definidos a priori, con el objetivo de que sean incluidos en el grafo de operaciones.

Tipo	Formato	Función	Ejemplo
Constante	Constante	tf.constant	tf.constant([None, 800, 460, 4])
Variable	Variable	tf.variable	tf.Variable(tf.random_normal(
PlaceHolder	Variable (in/out)	tf.placeholder	tf.placeholder('float32', input, name='train_X')

6. Redes de neuronas - Red convolucional

7. Itinerarios del taller

7. Itinerarios del taller

El taller tiene un conjunto de 4 ejercicios que puede realizar en diferente orden a elección por el asistente. En este taller se realizarán los ejercicio 2 y 4 pero el resto de ejercicios estarán disponibles para su realización.

¡Muchas Gracias!

¿Preguntas?

@moisipm

