Algoritmos de Aprendizado

- •Regra de Hebb
- Perceptron
- Delta Rule (Least Mean Square)
- Back Propagation
- Hopfield
- Competitive Learning
- •Radial Basis Function (RBFs)

Radial Basis Functions

- Probabilistic Neural Networks
- RBFs
- Generalized Regression Neural Networks

 As redes RBFs fazem parte, juntamente com as redes PNN, de uma classe de técnicas denominadas Gaussian Potential Functions para Classificação e Aproximação de Funções.

Radial Basis Functions (RBFs)

- Vantagens Adicionais ao BP:
 - Aprendizado rápido
 - Não começa de pesos aleatórios
 - Treinamento Incremental
 - Sem problemas tipo Paralisia da Rede e Mínimo Local

- Desvantagem Básica:
 - Após o treinamento, as redes RBFs são mais lentas para efetuar a recuperação da informação (Recall)

Radial Basis Functions (RBFs)

 As redes RBFs são aproximadores universais, isto é, dado um número suficiente de neurônios na camada escondida, as redes RBFs podem aproximar qualquer função contínua com precisão arbitrária

• Idéia básica:

 Supondo que os vetores de entrada e pesos definam pontos no espaço N-dimensional, o objetivo é ter uma resposta do neurônio que diminua rapidamente conforme esses pontos se distanciem

Radial Basis Functions (RBFs)

• Idéia básica:

 Supondo que os vetores de entrada e pesos definam pontos no espaço N-dimensional, o objetivo é ter uma resposta do neurônio que diminua rapidamente conforme esses pontos se distanciem → funções gaussianas → RBFs

• Idéia básica:

- Supondo que os vetores de entrada e pesos definam pontos no espaço N-dimensional, o objetivo é ter uma resposta do neurônio que diminua rapidamente conforme esses pontos se distanciem → funções gaussianas → RBFs
- O conjunto de neurônios escondidos é projetado de forma que as suas respostas cubram todas as regiões significativas do espaço de vetores de entrada

RBFs

• Elementos Processadores:

- Camada Escondida

- Características Básicas:
 - Regra de Propagação → net_j = S x_i.w_{ij} = X.W_j
 (para vetores normalizados)
 - Função de Ativação → Gaussiana (camada escondida)
 e Linear (camada saída)

$$\begin{array}{l} h_i = exp[(net_i - 1)/\sigma^2] \\ h_i = exp[-D_i^2/2] \ \ onde \ D_i^2 = (x - u)^t \ (x - u) \\ s = net \end{array}$$
 Vetor de treinamento

- Topologia → Duas camada de processadores.
- Algoritmo de Aprendizado → Supervisionado
- Valores de Entrada/Saída → Binários/Contínuos

RBFs

Observações:

- Para as PNNs e GRNNs (a serem vistas), os pesos são fixos.
- Em outros casos, somente os pesos de saída são modificados → treinamento de uma rede de uma camada linear
- Caso geral, todos os pesos são ajustados, além da forma da função gaussiana.

- Operação da Rede:
 - apenas uma entrada x

$h = \exp[(x - u)^2/2\sigma^2]$

u = w = valor de treinamento = média

σ = desvio padrão

Função de Ativação do Neurônio

ICA

RBFs

- **Operação da Rede:** apenas uma entrada x
 - Quando x = u h(x) = 1.0
 Portanto, u determina o valor de x que produz saída máxima. A resposta para outros valores de x cai rapidamente conforme x se afasta de u.
 - A saída do neurônio tem resposta significativa para a entrada x somente sobre uma faixa de x campo receptivo (σ)

RBFs • Operação da Rede: duas entradas $x_1 e x_2$ Função de Ativação do Neurônio Bi-dimensional $x_1 \longrightarrow (h, \sigma) \longrightarrow h(x)$ $y \longrightarrow (x_2) \longrightarrow (x_2)$

- Topologia com múltiplas saídas:
 - Esta é a forma geral que, com valores específicos de pesos, representa a GRNN -Generalized Regression Neural Network

RBFs - Operação da Rede

- Treinamento:
 - os parâmetros ajustáveis da rede (u_i, σ_i e W) são estabelecidos de forma a minimizar o erro médio entre a saída da rede e a saída desejada

RBFs - Operação da Rede

- Treinamento:
 - os parâmetros ajustáveis da rede (u_i, σ_i e W) são estabelecidos de forma a minimizar o erro médio entre a saída da rede e a saída desejada
- Referência (Recall):
 - os valores de entrada são apresentados à rede e os vetores de saída são produzidos.

RBFs - Operação da Rede

• Treinamento em dois estágios:

designar valores para o centro u_i (vetor de pesos) e o desvio padrão σ_i para cada neurônio da camada escondida treinar a matriz de pesos dos neurônios da camada de saída método supervisionado

RBFs - Treinamento

Fase I: Localização dos Centros u_i

Questão crítica, com várias alternativas para a sua determinação

método mais simples

um centro para cada vetor de entrada do conjunto de treinamento

como os vetores de treinamento tendem a possuir grupos, esse método resulta em mais processadores que o necessário

método mais complexo

determina-se o centro de cada grupo de vetores, estabelecendo um processador para cada grupo (métodos de clustering)

RBFs - Treinamento

Fase I: Determinação de σ_I

O diâmetro do Campo Receptivo pode ter um grande efeito na precisão do sistema

Heurística: 1 - Para cada processador da camada escondida, determine a distância RMS entre o seu centro u_i e o de seus N vizinhos

2 - Atribua este valor para σ_i

RBFs - Treinamento

• <u>Fase II</u>: <u>Treinamento dos pesos da</u> <u>Camada de Saída - W</u>

Treinamento supervisionado (vetores $x_i \Rightarrow t_i$)

- 1 Aplica-se um vetor de entrada x_i do conjunto de treinamento
- 2 Calcula-se as saídas dos processadores da camada escondida ⇒ vetor h
- 3 Computa-se o vetor de saída y e compara-se com t_i ⇒ ajusta-se W na direção de reduzir a diferença **D**w_{ii} = **h**.h_i.(t_i y_i)
- 4 Repete-se 1 a 3 para cada vetor de treinamento
- 5 Repete-se 1 a 4 até que o erro seja pequeno

RBFs - Treinamento

• <u>Fase II</u>: <u>Treinamento dos pesos da</u> <u>Camada de Saída - W</u>

Observação: Devido ao Campo Receptivo limitado de cada processador da camada escondida, a maioria das saídas será próxima de zero

RBFs - Treinamento

• <u>Fase II</u>: <u>Treinamento dos pesos da</u> <u>Camada de Saída - W</u>

Observação: Devido ao Campo Receptivo limitado de cada processador da camada escondida, a maioria das saídas será próxima de zero \Rightarrow h_i \approx 0 para um certo x \Rightarrow \triangle w_{ij} \approx 0 \Rightarrow pode-se concentrar apenas nos pesos dos PE_i com h_i > 0

Generalized Regression Neural Networks - GRNN

- Características: (Specht 91)
 - Não possui treinamento iterativo;
 - Aproxima qualquer função entre entrada e saída (a partir dos dados de treinamento);
 - Consistente conforme o conjunto de treinamento cresce, o erro se aproxima de zero
 - Método baseado na Teoria de Regressão Não-Linear

• Regressão:

 Por definição, a regressão de uma variável dependente y sobre uma variável independente x estima o valor mais provável de y, dado x e um conjunto de treinamento, que pode conter ruído.

Generalized Regression Neural Networks - GRNN

 O método de Regressão produz um valor estimado de y que minimiza o Erro Quadrático Médio

$$E[y|x] = \int_{-\infty}^{\infty} y \ f(x,y) \ dy$$

$$\int_{-\infty}^{\infty} f(x,y) \ dy$$
Valor esperado de saída, dado o vetor de entrada x

Função Densidade de Probabilidade de x e y GRNN é um método para se estimar $f(x,y)$ a partir dos dados

 Specht demonstrou que y_i é estimado otimamente da seguinte forma:

<u>ICN</u>

Generalized Regression Neural Networks - GRNN

 Specht demonstrou que y_i é estimado otimamente da seguinte forma:

$$y_{j} = \sum_{i=1}^{n} y_{ij} h_{i}$$

$$\sum_{i=1}^{n} h_{i}$$

$$h_{i} = \exp[-(x-u_{i})^{t}(x-u_{i})/2\sigma^{2}]$$

Saída desejada para o processador j com o vetor de entrada i

Fórmula idêntica à RBF com normalização, onde y_{ij} = w_{ij} Não existe treinamento iterativo

• Exemplo1: x = [1 2 5 3] y = [3 2]

Generalized Regression Neural Networks - GRNN

• Exemplo1: x = [1 2 5 3] y = [3 2]

CA_

• Exemplo1: x = [1 2 5 3] y = [3 2]

ICA_

Generalized Regression Neural Networks - GRNN

• Exemplo1: x = [1 2 5 3] y = [3 2]

CA_

• Exemplo2: OU-EXCLUSIVO

Generalized Regression Neural Networks - GRNN

• Exemplo2: OU-EXCLUSIVO

<u>ICA</u>

Relação entre GRNN e PNN

- Como a GRNN pode aproximar qualquer função, pode também ser uma rede Classificadora
- Versão normalizada da PNN onde cada saída representa a probabilidade de ser aquela classe
- Como o classificador possui vetores de saída binários os pesos da camada de saída terão valores 0 e 1

Relação entre GRNN e PNN

Construção da Rede:

- Cada PE da camada escondida representa um vetor de entrada do conjunto de treinamento
- Atribua o valor 1 ao peso indo para o PE de saída daquela classe
- Atribua o valor 0 a todos os outros pesos

Relação entre GRNN e PNN

Adicionando a camada de decisão da PNN, as redes ficam equivalentes

Relação entre GRNN e PNN

Observação:

- Apesar da PNN derivar dos Classificadores Bayesianos e a GRNN da Teoria de Regressão, demonstra-se que o método de Regressão é uma estimativa ótima no sentido do Erro Médio Quadrático (EMQ)
- Além disso, demonstra-se que qualquer estimador que seja ótimo no sentido do EMQ aproxima-se (com um número suficiente de dados de treinamento) de um Classificador Bayesiano.
- Portanto: GRNN aproxima-se de um Classificador Bayesiano ⇒ PNN

• Conclusões:

- Técnicas *RBFs* são métodos poderosos, com grande aplicabilidade
- Treinamento rápido
 - acelera o desenvolvimento e a avaliação do problema
- Aprendizado Incremental

RBFs

Conclusões:

- Lento no Processo de Recuperação

A informação é localizada, isto é, os pesos são efetivos sobre uma pequena porção do espaço de entrada

O Back Propagation é totalmente distribuído⇒ mais compacto

· Conclusões:

- Lento no Processo de Recuperação

A informação é localizada, isto é, os pesos são efetivos sobre uma pequena porção do espaço de entrada

O Back Propagation é totalmente distribuído ⇒ mais compacto

 Problema na determinação do número de vetores de treinamento e o melhor σ

Deve ser adequado para cobrir o espaço de entrada com densidade suficiente para alcançar a precisão desejada Deve ser grande o suficiente para produzir a generalização adequada

RBFs

• Conclusões:

- Lento no Processo de Recuperação

A informação é localizada, isto é, os pesos são efetivos sobre uma pequena porção do espaço de entrada

O Back Propagation é totalmente distribuído ⇒ mais compacto

 Problema na determinação do número de vetores de treinamento e o melhor σ

Deve ser adequado para cobrir o espaço de entrada com densidade suficiente para alcançar a precisão desejada Deve ser grande o suficiente para produzir a generalização adequada

 \Rightarrow experimentos!

 Em geral, conforme a densidade de padrões de entrada aumenta, um valor menor de σ deve ser usado!

