MOSFETS LOGIC GATES

Muhammad Adeel

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

CMOS (Complementary MOS)

CMOS combines n-channel and p- channel E-MOSFETs in a series arrangement The input voltage at the gates is either 0 V or V_{DD} . Notice that V_{DD} and ground are both connected to source terminals of the transistors.

The term V_{DD} is used for the positive voltage, which is on the p-channel device's source terminal.

When $V_{in} = 0$ V, Q1 is on and Q_2 is off.

Because Q_1 is acting as a closed switch, the output is approximately V_{DD} .

When $V_{in} = V_{DD}$, Q_2 is on and Q_1 is off,

Because Q_2 is acting as a closed switch, the output is essentially connected to ground (0 V).

Inverter

V _{IN}	V _{out}
High	Low
Low	High

Truth Table

Α	В
0	1
1	0

NOT

Α	В
0	1
1	0

Muhammad Adeel

NAND

V_{A}	$V_{\rm B}$	Q_1	Q_2	Q_3	Q_4	V _{out}
0	0	on	off	off	on	$V_{ m DD}$
0	$V_{\rm DD}$	off	off	on	on	$V_{ m DD}$
$V_{ m DD}$	0	on	on	off	off	V_{DD}
$V_{ m DD}$	$V_{\rm DD}$	off	on	on	off	0

When V_A and V_B are high, the output is low; otherwise, the output is high.

5

NAND

NAND

АВ	С
0 0	1
0 1	1
10	1
11	0

NOR

V_{A}	$V_{\rm B}$	Q_1	Q_2	Q_3	Q_4	V _{out}
0	0	on	off	on	off	$V_{ m DD}$
0	$V_{ m DD}$	off	on	on	off	0
$V_{ m DD}$	0	on	off	on	off	0
$V_{ m DD}$	$V_{\rm DD}$	off	on	off	on	0

NOR

NOR

АВ	С
00	1
01	0
10	0
11	0

Muhammad Adeel

AND

AND			
АВ	С		
00	0		
01	0		
10	0		
11	1		

May you draw the circuit now....?

AND

OR

АВ	С
0 0	0
01	1
10	1
11	1

May you draw the circuit now....?

OR

