## 1 General Topology

**Definition 1.1** (Topology). A topological space is a set X with a collection of subsets  $\mathcal{U}$ , called open sets, such that

- 1.  $\emptyset, X \in \mathcal{U}$ .
- 2. The arbitrary union of open sets is open.
- 3. The finite union of open sets is open.

The complement X - U of an open set U is called closed.

**Definition 1.2.** Let  $(X,\mathcal{U})$ ,  $(X,\mathcal{V})$  be topologies.  $\mathcal{U}$  is called stronger(finer) than  $\mathcal{V}$  if  $\mathcal{V} \in \mathcal{U}$ , and weaker(coarser) if  $\mathcal{V} \in \mathcal{U}$ .

**Definition 1.3.** A basis  $\mathcal{B}$  of a topology for X is a collection of subsets of X such that

- 1. For each  $x \in X$  there is at least one  $B \in \mathcal{B}$  with  $x \in B$ .
- 2. If  $x \in B_1 \cap B_2$  then there exists a  $B_3 \subset B_1 \cap B_2$  with  $x \in B$

We say that  $\mathcal{B}$  generates the topology  $\mathcal{U}$  if U is open iff for every  $x \in U$  there exits  $B \in \mathcal{B}$  with  $x \in B \subset U$ .

Lemma 1.4. bla