Branch: CSE & IT

Batch:Hinglish

Subject: OPERATING SYSTEMS

Topic : Inverted Paging, Shared pages & Monitors

DPP 01

[MCQ]

- 1. Consider a processor with 128MB of physical memory and 32 bit of virtual address space. If the page size is 8KB, then approximate size of conventional and inverted page table will be?
 - (a) Conventional Page Table Size = 1MB Inverted Page Table Size = 48KB
 - (b) Conventional Page Table Size = 2MB Inverted Page Table Size = 96KB
 - (c) Conventional Page Table Size = 4MB Inverted Page Table Size = 192KB
 - (d) Conventional Page Table Size = 8MB Inverted Page Table Size = 48KB

[MCQ]

- 2. Most virtual memory schemes make use of special high-speed cache for page table entries, usually called
 - (a) Translation lookaside buffer (TLB)
 - (b) Memory Management Unit
 - (c) Page table of segment table
 - (d) Page table

[MCQ]

- **3.** choose the correct statements from the following.
 - S₁: For a given size of TLB, as the memory size of process grows and as locality decreases, the hit ratio on TLB accesses declines.
 - S₂: One way to improve TLB performance is to use a larger TLB with more entries.
 - (a) Only S_1 is true.
 - (b) Only S₂ is true.
 - (c) Both S_1 & S_2 are true.
 - (d) Both $S_1 & S_2$ are false.

[MCQ]

- 4. Choose the correct statements from the following:
 - **S₁:** Monitor is collection of variables, conditional variables and procedures combined together in a special kind of module or package.
 - **S₂:** Monitors have an important property that many processes can be active inside the monitor at any point of time.
 - (a) Only S_1 is true.

- (b) Only S₂ is true.
- (c) Both S_1 and S_2 are true.
- (d) Both S_1 and S_2 are false.

[MCQ]

- 5. A monitor is specified by _____
 - (a) An identifier.
 - (b) Numbers of variables in it.
 - (c) A set of programmers defined.
 - (d) None of the above.

[MSQ]

- **6.** Choose the false statements from the following
 - (a) In segmentation, each segment has a name and segments can be variable size.
 - (b) In paging page are fixed.
 - (c) Segmentation may suffer from external fragmentation.
 - (d) Paging technique suffer from external fragmentation.

[MCQ]

- 7. Select the correct statements from the following:
 - S₁: Shared pages are used to improve the performance of the paging system.
 - **S₂:** To avoid duplication of the same pages in the same memory, it is preferable to share the pages. Shared pages are used to avoid having two copies of a page in memory at once.
 - (a) Only S₁ is true
 - (b) Only S₂ is true
 - (c) Both S_1 and S_2 are true
 - (d) Both S_1 and S_2 are false.

[MCQ]

- **8.** Choose the correct statements from the following about shared pages:
 - S_1 : A shared page is shared memory page that can be used by multiple processes at the same time.
 - S₂: The most advantage of shared pages is that only one copy of a shared file exists in memory, reducing the overhead of pages and allowing most efficient use of RAM.
 - (a) Only S_1 is true.
 - (b) Only S₂ is true.
 - (c) Both S_1 and S_2 are true
 - (d) Both S_1 and S_2 are false.

Answer Key

1. (a)

2. (a) 3. (c)

(a)

5. (c) 6. (d) 7. (c) 8. (c)

Hints & Solutions

1. (a)

For Conventional Page Table,

Number of pages = $\frac{\text{virtual memory size}}{\text{page size}}$

$$= \frac{2^{32} E}{2^{13} E}$$

Page table size = Number of pages * PTE size

= $2^{19}*2B$ [frame number bits = 14 bits ≈ 2 bytes]

= 1ME

For Inverted Page Table,

Number of frames = $\frac{\text{physical memory size}}{\text{page size}}$

$$= \frac{2^{27} B}{2^{13} B}$$

 $= 2^{14}$ frames

Page table size = Number of frames * PTE size

= $2^{14}*3B$ (Page number bits = 19 bits ≈ 3 bytes)

 $= 2^{4} * 2^{10} * 3$ bytes

 $= 16 * 2^{10} * 3$ bytes

 $=48 * 2^{10}$ bytes

=48 KB

2. (a)

Every virtual memory reference can cause two physical memory accesses, one to fetch the appropriate page table entry and one to fetch the desired data. Thus, a straight-forward virtual memory scheme would have the effect of doubling the memory access time to overcome this problem. Most virtual memory schemes make use of a special high-speed cache for page table entries usually called a translation look aside buffer (TLB).

3. (c)

- for a given size of TLB, as the memory size of process grows and as locality decreases, the hit ratio on TLB access declines.
- One way to improve TLB performance is to use a larger TLB with more entries. Hence, both the statements S₁ and S₂ are true.

4. (a)

Monitors have an important property that "only one" process can be active inside the monitor at any point of time.

5. (c)

A monitor is specified by a set of programmers defined operators.

6. (d)

paging technique suffers from internal fragmentation. Maximum internal fragmentation in paging will be p/2 where p is the page size.

7. (c)

- Shared pages are used to improve the performance of the paging system.
- To avoid duplication of the same pages in the same memory, it is preferrable to share the pages. shared pages are used to avoid having two copies of a page in memory at once.

8. (c)

- A shared page is shared memory page that can be used by multiple processes at the same time.
- The most advantage of shared pages are that, only one copy of a shared file exists in memory, reducing the overhead of pages and allowing more efficient use of RAM.

For more questions, kindly visit the library section: Link for app: https://physicswallah.live/tabs/tabs/library-tab For more questions, kindly visit the library section: Link for web: https://links.physicswallah.live/vyJw Any issue with DPP, please report by clicking here- https://forms.gle/t2SzQVvQcs638c4r5

PW Mobile APP: https://play.google.com/store/apps/details?id=xyz.penpencil.physicswala

For PW Website: https://www.physicswallah.live/contact-us