13. Rule Based Classification

20170718 박지혜 어서와~ 머신러닝은 처음이지?

^	701		~17	A	YES
6	국어	주말	점심	В	NO
7	과학	평일	저녁	C	NO
8	국어	주말	점심	A	YES
9	국어	주말	저녁	В	YES
10	수학	평일	저녁	В	NO
11	과학	주말	점심	C	NO
12	국어	주말	아침	A	YES
13	수학	주말	낮	С	NO
14	과학	평일	저녁	В	YES
15	수학	주말	낮	A	NO
16	수학	주말	아침	Α	YES
17	영어	주말	아침	Α	YES
18	수학	주말	저녁	Α	YES
19	영어	주말	낮	С	NO
20	영어	평일	저녁	Α	YES
21	영어	평일	저녁	С	NO

>	test <	- read	.csv("rule.cs	V",	heade	er = T)
>	test						
	과목	수업일	수업시간대 clas	ss 효	과		
1	수학	평일	저녁	C	NO		
2	과학	주말	아침	Α	YES		
3		평일	저녁	Α	YES		
4	수학	평일	저녁	Α	YES		
5	국어	주말	점심	В	NO		
6	과학	평일	저녁	C	NO		
7	국어.	주말	점심	Α	YES		
8	국어		저녁	В	YES		
9	수학	평일	저녁	В	NO		
1	과학	주말	점심	C	NO		
10	파막	十三			VEC		

Rule Based Classification

- 규칙기반분류
- 어떤 규칙이 가장 효율적인지
- 수치로 나타낼 필요가 있다!!

분류규칙 표시

R: (condition) → (result)
 or
 C → R

```
1. RULE1: (과목=수학) ^ (날짜=주말) → 효과없음(NO)
2. RULE2: (과목=과학) → 효과없음(NO)
3. RULE3: (과목=과학 or 수학) ^ (시간=저녁) ^ (class=A or B) → 효과없음(NO)
4. RULE4: (과목=영어 or 국어) ^ (class=A or B) →효과있음(YES)
```

적용도 (coverage)

C → R 이라는 분류규칙이 있다면 전체데이터에서 C에 만족하는 데이터의 비율

적용도(coverage) =
$$\frac{|C'|}{n}$$

정확도(accuracy)

적용도를 만족하는 집합 중에서
 R에 해당하는 집합

정화도(accuracy) =
$$\frac{\bigcap (C, R)}{|C|}$$

가능도 비율(likelihood ratio)

- 규칙의 좋고 나쁨을 비교할 수 있는 지수
- 기대도수와 관찰도수의 비를 이용??

• 관찰도수(observed frequency) : 조건 C를 만족하는 실제 각 집단(R_i)을 만족하는 데이터 개수