

WHAT IS CLAIMED IS:

- 1 1. A method of allocating a plurality of data frames amongst a plurality of basestations,
2 said plurality of data frames spanning an interval of time, said method comprising:
 - 3 for each of said plurality of basestations allocating a sub-set of said plurality of data
4 frames, said sub-set being contiguous in time within said interval of time.
 - 1 2. The method of claim 1 wherein each of said plurality of basestations operates using the
2 same carrier frequency.
 - 1 3. The method of claim 2 wherein said data frames are timeslots in a Time Division
2 Multiple Access (TDMA) wireless network.
1 4. The method of claim 1 wherein said plurality of basestations form part of a TDMA
2 wireless network employing at least one of the Enhanced Data rates for Global
3 Evolution (EDGE) and EDGE Compact standards.
 - 1 5. The method of claim 1 further comprising:
 - 2 wherein said each of said plurality of basestations operates using a plurality of
3 frequencies, allocating to each of said plurality of basestations a sub-set of said
4 plurality of data frames for each of said plurality of frequencies used by a
5 basestation, said sub-set of said plurality of data frames being contiguous in time
6 within said interval of time.
 - 1 6. A method of allocating a bitmap of resources in a wireless network amongst a plurality
2 of co-channel basestations, said bitmap formed by a group of data frames, said method
3 comprising:

4 dividing said bitmap of resources into sub-bitmaps, each of said sub-bitmaps formed
5 by a contiguous portion of said group of data frames, each of said sub-bitmaps not
6 overlapping in time with any other of said sub-bitmaps; and

7 allocating at least one of said sub-bitmaps to each of said plurality of co-channel
8 basestations.

1 7. The method of claim 6 further comprising:

2 prior to said dividing, forming the size of each of said sub-bitmaps responsive to at
3 least one of: service loads for each of said plurality of co-channel basestations
4 during at least one previously allocated bitmap; and service demands for each of
5 said plurality of co-channel basestations during at least one previously allocated
6 bitmap.

1 8. A basestation in a wireless cell, said basestation comprising:

2 a processing circuit in communication with memory storing computer readable
3 instructions, said computer readable instructions adapting said processing circuit
4 to:

5 receive instructions indicating a time period during which said basestation
6 may communicate with mobilestations to be serviced by said basestation,
7 said time period defined by a contiguous set of data frames; and

8 transmit to each of said mobilestations to be serviced by said basestation
9 data identifying a portion of time during which a mobilestation may
10 communicate with said basestation; and

11 communicate with said mobilestations during said time period.

1 9. The basestation of claim 8 wherein said instructions indicating a time period during
2 which said basestation may communicate are defined by a group of timeslots, said
3 group of timeslots defining a sub-bitmap.

1 10. The basestation of claim 9 wherein said processing circuit is further adapted to:

2 receive instructions defining a plurality of sub-bitmaps; and

3 allocate each of said plurality of sub-bitmaps to a sector serviced by said
4 basestation.

1 11. A method of allocating wireless network resources amongst a plurality of basestations,
2 said wireless network resources comprising a group of data frames, said method
3 comprising:

4 receiving requests for wireless network resources from said plurality of basestations;

5 responsive to said requests, assigning to each of said plurality of basestations a
6 portion of said wireless resources, said portion comprising a group of said data
7 frames, said group of said frames being contiguous in time.

1 12. A method for coordinating operation of a plurality of basestations, each of said
2 basestations operating with the same carrier frequency, said method comprising:

3 for a given time period, allocating a contiguous portion of said given time period to
4 each of said plurality of basestations; and

5 transmitting to each of said plurality basestations data identifying said contiguous
6 portion of said given time period allocated to a basestation.

1 13. The method of claim 12 further comprising:

2 prior to said allocating, determining the service load for at least some of said
3 plurality of basestations; and

4 wherein the size of said contiguous portions assigned to said each of said plurality
5 of basestations is proportional to said service loads determined.

1 14. A computer readable medium operable to provide instructions for directing a processor
2 circuit to allocate a bitmap of resources in a wireless network amongst a plurality of co-
3 channel basestations, said bitmap formed by a group of data frames, said instructions
4 directing said processing circuit to:

5 divide said bitmap of resources into sub-bitmaps, each of said sub-bitmaps formed
6 by a contiguous portion of said group of data frames, each of said sub-bitmaps not
7 overlapping in time with any other of said sub-bitmaps; and

8 allocating at least one of said sub-bitmaps to each of said plurality of co-channel
9 basestations.

1 15. The computer readable medium of claim 14 further adapting said processing circuit to:

2 form the size of each of said sub-bitmaps responsive to at least one of: service loads
3 for each of said plurality of co-channel basestations during at least one previously
4 allocated bitmap; and service demands for each of said plurality of co-channel
5 basestations during at least one previously allocated bitmap.