

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/GB05/000312

International filing date: 28 January 2005 (28.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: GB
Number: 0427444.5
Filing date: 15 December 2004 (15.12.2004)

Date of receipt at the International Bureau: 02 March 2005 (02.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 10 February 2005

Patents Form 1/77

Patent Act 1977
(Rule 16)

15 DEC 2004

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory letter from the Patent Office to help you fill in this form.)

15DEC04 E54 45-1 D2819
P01/7700 0.0-042744.5 ACCOUNT CHAThe Patent Office
Cardiff Road
Newport
South Wales
NP10 8QQ

1. Your reference

HOM/C444.00/1

2. Patent application number

(The Patent Office will fill this part in)

0427444.5

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Insense Limited
Colworth Science Park
Sharnbrook
Bedford MK44 1LQ

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

08385510001

4. Title of the invention

Improvements Relating to Skin Dressings

5. Name of your agent (if you have one)

Keith W Nash & Co

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

90-92 Regent Street
Cambridge CB2 1DP

Patents ADP number (if you know it)

1206001 ✓

6. Priority: Complete this section if you are declaring priority from one or more earlier patent applications, filed in the last 12 months.

Country
EPPriority application number
(if you know it)
04250508.1Date of filing
(day / month / year)
30/01/04

7. Divisionals, etc: Complete this section only if this application is a divisional application or resulted from an entitlement dispute (see note 8)

Number of earlier UK application
(day / month / year)8. Is a Patents Form 7/77 (Statement of inventorship and of right to grant of a patent) required in support of this request?
Answer YES if:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.

Otherwise answer NO (see note 8)

0127288 15-Dec-04 04:53

Patents Form 1/77

9. Accompanying documents: A patent application must include a description of the invention. Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheets of this form

Description	11
Claim(s)	3
Abstract	1
Drawing(s)	-

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for a preliminary examination and search (Patents Form 9/77)

Request for a substantive examination (Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature(s)

Keith W Nash & Co

Date 15/12/04

12. Name, daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

Clare Matthews 01223 355477

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- If you have answered YES in part 8, a Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- Part 7 should only be completed when a divisional application is being made under section 15(4), or when an application is being made under section 8(3), 12(6) or 57(4) following an entitlement dispute. By completing part 7 you are requesting that this application takes the same filing date as an earlier UK application. If you want the new application to have the same priority date(s) as the earlier UK application, you should also complete part 6 with the priority details.

C444.00/I

Title: Improvements relating to skin dressings

Field of the Invention

This invention relates to skin dressings for application to a part of a human or animal body for treatment of skin (for therapeutic or cosmetic purposes), and relates particularly (but not exclusively) to wound dressings for treatment of compromised skin, particularly skin lesions, i.e. any interruption in the surface of the skin, whether caused by injury or disease, including skin ulcers, burns, cuts, punctures, lacerations, blunt traumas, acne lesions, boils etc.

Background to the Invention

Skin and wound dressings are designed to undertake a number of important functions to aid the process of healing. Experts agree on most of the functions that an ideal dressing should provide, and these include:

- Donation of moisture to dry wounds
- Absorption of excess fluid from weeping wounds
- Maintenance of a moist environment around the wound bed
- Binding of water sufficiently well to prevent maceration (water-logging) of the normal tissue
- Aiding debridement (removal of dead tissue and scar material)
- Prevention of infection and provision of a barrier to escaping or invading microbes
- Killing infecting microbes
- Cushioning against further physical trauma
- Maintaining an optimum temperature through thermal insulation

- Allowing ingress of plentiful oxygen
- Soothing painful and inflamed open wound sites
- Flexibly adapting to the shape of the wound site
- Keeping its physical integrity so that fragmented dressing debris is not left in the wound
- Exerting no cytotoxic nor physically damaging effects on the healing cells.

In addition, the handling and physical design characteristics should make the dressing easy to use and comfortable to wear. For storage and distribution purposes, the dressing should be stable at ambient temperatures, and robust. Ideally it should be simple to manufacture, in order to allow its production and sale at a price that is affordable for widespread use.

These and other demands make the design of an ideal wound dressing almost impossible. To date, all wound dressings are a compromise, such that none offers all of the much desired characteristics in one product. For this reason, there are numerous different wound dressings on the market, and the typical nurse caring for patients with wounds needing professional care will select different dressings for different wounds and for wounds at different phases of the wound healing process. Manufacturers are constantly seeking new ways to make more effective wound dressings, which means that they are trying to make dressings that incorporate more of the characteristics and functions listed above. With the achievement of each new benefit, the cause of improved patient welfare is advanced, as the result of faster healing, reduction of pain and improvement in the quality of life. Medical care in general can benefit from such progress. Although these advanced, "active" dressings usually cost more, they can reduce the overall time during which a wound needs attention and reduce the amount of nursing time devoted to frequent changes of dressing. This drives down the huge cost borne by modern society in caring for wounds.

Our European patent application no. 0313217.2 filed on 9th June 2003 and International Application No. PCT/GB2004/002374 filed 4th June 2004 disclose a skin dressing comprising a first dressing component carrying oxidoreductase enzyme in dried condition;

and a second dressing component carrying a source of water, such that when the first and second dressing components are placed in fluid communication with each other, water migrates from the second component towards the first component and acts to hydrate enzyme carried by the first component, at least at the surface of the first component.

In one embodiment, the second dressing component comprises a hydrogel formulated to include the following reagents by weight:

20% sodium AMPS (2-acrylamido-2-methylpropanesulfonic acid, sodium salt (Lubrizol, code 2405))

0.2% poly ethylene glycol 400 diacrylate (UCB Chemicals)

0.01% photoinitiator (1-hydroxycyclohexyl phenyl ketone (Aldrich))

20% glucose (Fisher)

0.1% zinc lactate (Sigma)

0.05% potassium iodide (Fisher)

To 100% with DI-water.

It has now surprisingly been appreciated that such a hydrogel may to advantage be used on its own for skin treatment, not necessarily in combination with a first dressing component as disclosed in our earlier applications.

Summary of the Invention

In one aspect the present invention provides a skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose.

In a further aspect, the invention provides a skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose, excluding a hydrated hydrogel comprising the following reagents by weight: 20% sodium AMPS (2-acrylamido-2-methylpropanesulfonic acid, sodium salt (Lubrizol, code 2405)), 0.2% poly ethylene glycol 400 diacrylate (UCB Chemicals), 0.01% photoinitiator (1-hydroxycyclohexyl

phenyl ketone (Aldrich)), 20% glucose (Fisher), 0.1% zinc lactate (Sigma), 0.05% potassium iodide (Fisher) and to 100% with DI-water.

In another aspect, the invention provides a skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose, wherein the glucose is present in an amount of less than 20% by weight of the weight of the hydrated hydrogel material.

The hydrated hydrogel material is typically in the form of a layer, sheet or film of material. The size and shape of the layer, sheet or film can be selected to suit the intended use of the dressing. Thicknesses in the range 0.01 to 1.0 mm, preferably 0.05 to 0.5 mm are particularly suitable. Alternatively, the hydrated hydrogel may be in an amorphous form. In this case the gel is conveniently contained in a syringe-like dispenser, from which it can be expressed onto skin or into a wound cavity as a fully conformable gel that fills the available space and contacts the wound surface.

A hydrated hydrogel means one or more water-based or aqueous gels, in hydrated form.

A hydrated hydrogel can act to absorb water and other materials exuded from a wound site, enabling the dressing to perform a valuable and useful function by removing such materials from a wound site. The hydrated hydrogel also provides a source of moisture, that can act in use to maintain a wound site moist, aiding healing.

The hydrated hydrogel conveniently comprises hydrophilic polymer material. Suitable hydrophilic polymer materials include polyacrylates and methacrylates, e.g. as supplied by First Water Ltd in the form of proprietary hydrogels, including poly 2-acrylamido-2-methylpropane sulphonic acid (polyAMPS) or salts thereof (e.g. as described in WO 01/96422), polysaccharides e.g. polysaccharide gums particularly xanthan gum (e.g. available under the Trade Mark Keltrol), various sugars, polycarboxylic acids (e.g. available under the Trade Mark Gantrez AN-169 BF from ISP Europe), poly(methyl vinyl ether co-maleic anhydride) (e.g. available under the Trade Mark Gantrez AN 139, having

a molecular weight in the range 20,000 to 40,000), polyvinyl pyrrolidone (e.g. in the form of commercially available grades known as PVP K-30 and PVP K-90), polyethylene oxide (e.g. available under the Trade Mark Polyox WSR-301), polyvinyl alcohol (e.g. available under the Trade Mark Elvanol), cross-linked polyacrylic polymer (e.g. available under the Trade Mark Carbopol EZ-1), celluloses and modified celluloses including hydroxypropyl cellulose (e.g. available under the Trade Mark Klucel EEF), sodium carboxymethyl cellulose (e.g. available under the Trade Mark Cellulose Gum 7LF) and hydroxyethyl cellulose (e.g. available under the Trade Mark Natrosol 250 LR).

Mixtures of hydrophilic polymer materials may be used in a gel.

In a hydrated hydrogel of hydrophilic polymer material, the hydrophilic polymer material is desirably present at a concentration of at least 1%, preferably at least 2%, more preferably at least 5%, yet more preferably at least 10%, or at least 20%, desirably at least 25% and even more desirably at least 30% by weight based on the total weight of the gel. Even higher amounts, up to about 40% by weight based on the total weight of the gel, may be used.

Good results have been obtained with use of a hydrated hydrogel of poly AMPS or salts thereof in an amount of about 30% by weight of the total weight of the gel.

By using a gel comprising a relatively high concentration (at least 2% by weight) of hydrophilic polymer material, the gel can function particularly effectively to take up water in use of the dressing, e.g. from serum exudates while in contact with a wound. Because the gel is an aqueous system, use of the dressing does not have the effect of inducing an overall dryness of the wound which would be undesirable. This is because water vapour pressure is maintained in the enclosed environment surrounding the skin in use of the dressing. The gel thus functions as an absorbent entity for the removal of moisture, e.g. wound exudate, that also provides a helpful background level of excess moisture.

The water-uptake capacity of a hydrated hydrogel, including a high concentration gel, enables the dressing to aid wound healing by removing substantial amounts of exudates, swelling-up as it does so. By using a carefully formulated, ready-hydrated gel, the wound is prevented from reaching a state of unhelpful dryness. Ready hydration also ensures the quick formation of an aqueous liquid interface between the dressing and the wound, thus preventing adhesion, which otherwise would interfere with easy lifting of the dressing when it has to be replaced. A good aqueous liquid interface between the wound and the dressing is also important in allowing any beneficial products carried in the gel to enter the wound through all of the available surface.

The source of lactate ions may be any compound capable of releasing lactate ions or lactate-containing ions in water. The lactate ion (derived from lactic acid) is optically active and so may exist in two enantiomeric forms, L- and D-, and as a mixture of both enantiomers, known as a racemate. Any enantiomeric form, or any mixture of enantiomeric forms, is suitable for use herein. Convenient sources of lactate ions include sodium L-lactate, sodium D-lactate, sodium D, L-lactate and zinc L-lactate, although it is believed that any soluble lactate can be used as a source of lactate ions.

The lactate ions functions as a pH buffering substance and as an anti-oxidant. There may also be other beneficial effects of lactate in the wound environment, but these are not yet fully understood.

The lactate ions are suitably present in an amount of about 0.1% w/v.

The dressing desirably also includes a source of zinc ions. The source of zinc ions may be any compound capable of releasing zinc ions or zinc-containing ions in water. Suitable sources of zinc ions include, for example, zinc lactate, zinc chloride, zinc fluoride, and zinc sulphate.

The function of the zinc ions is as an anti-oxidant and as a general healing and skin benefit agent, with well-known soothing and anti-inflammatory effects.

The zinc ions are suitably present in an amount of about 0.1% w/v.

A currently preferred source of zinc ions and lactate ions is zinc lactate, particularly zinc L-lactate.

The glucose functions to support the biosynthesis of glucose-containing tissue matrix polymers, such as hyaluronic acid, and as an energy source for metabolically active cells, with beneficial effects on wound healing.

The glucose is suitably present in an amount of at least 2.5%, preferably at least 5% by weight of the weight of the hydrated hydrogel material, with higher amounts also being possible. Good results have been obtained with a dressing including 5% by weight of glucose.

The dressing optionally includes a source of iodide ions, e.g. potassium iodide or sodium iodide. Iodide ions can be oxidised to elemental iodine in the presence of a suitable oxidising agent. Iodine is a known powerful antimicrobial agent with beneficial effects on skin, e.g. as disclosed in WO 01/28600 and WO 03/090800.

The iodide ions are suitably present in an amount in the range 0.05% and 0.2% w/v.

The skin dressing of the invention may be used on its own, being located on the skin of a human or animal, e.g. over a wound or on a region of skin to be treated for cosmetic or therapeutic purposes, e.g. for treatment of acne or other skin conditions. The lactate ions, glucose and optional zinc ions are observed to have beneficial effects on skin and wound healing.

Alternatively, the skin dressing or the invention may be used in combination with a source of oxygen or an oxidising agent, such as hydrogen peroxide. For example, the dressing may be used in combination with superposed material that generates hydrogen peroxide,

such as layer comprising oxidoreductase enzyme. The oxidoreductase enzyme may be in dry condition, e.g. as disclosed in PCT/GB2004/002374, but is preferably in hydrated condition, e.g. as disclosed in WO 03/090800 and European Patent Application No. 04250508.1 filed 30th January 2004, preferably being included in a hydrated hydrogel, e.g. of materials as discussed above. The oxidoreductase enzyme catalyses reaction of an appropriate substrate with oxygen to produce hydrogen peroxide. Suitable oxidoreductase enzymes are listed in WO 03/090800. The currently preferred oxidoreductase enzyme is glucose oxidase, with the corresponding substrate being glucose. Thus, the glucose in the dressing of the invention acts as a substrate in this case for generation of hydrogen peroxide.

In another embodiment, the superposed layer may contain a supply of pre-formed hydrogen peroxide, or a hydrogen peroxide precursor substance.

Hydrogen peroxide is a known antimicrobial substance, with many beneficial properties. Where the dressing of the invention includes iodide ions, hydrogen peroxide reacts with iodide ions to generate molecular iodine, which also has beneficial effects on skin. In addition, the rapid decomposition of hydrogen peroxide in contact with tissues and tissue-fluids results in the release of oxygen which is available to help in the healing process and acts against anaerobic bacteria that may be present.

In a preferred aspect, the invention thus provides a skin dressing comprising a first hydrated hydrogel material including a source of lactate ions and a supply of glucose with optional sources of zinc ions and iodide ions; as discussed above, and a second hydrated hydrogel material comprising an oxidoreductase enzyme. The two hydrated hydrogel materials are preferably in the form of layers, sheets or films. The two hydrated hydrogels preferably comprise poly AMPS or salts thereof, desirably in an amount of about 30% by weight of the total weight of the hydrated hydrogels.

In this case the skin dressing is used by being located on the skin of a human or animal, as discussed above, with a superimposed hydrated hydrogel material comprising an

oxidoreductase enzyme being located thereon. As well as the beneficial skin effects arising from the lower skin-contacting layer, beneficial effects also arise from generation of hydrogen peroxide and possibly also iodine.

The skin dressing of the invention may also be formulated or constructed in such a way as to control or regulate the rate of diffusion (and hence the effective dose) of hydrogen peroxide, eg by means of limited available water, by an abundance of hydrogen bonding groups in the gel structure, or by limiting the cross-sectional area of the wound-facing surface of the gel by the incorporation of a scrim that acts as a partial barrier.

The dressing conveniently includes, or is used with, a covering or outer layer for adhering the dressing to the skin of a human or animal subject in known manner.

The skin dressing (or components thereof) is desirably supplied in sterile, sealed, water-impermeable packages, e.g. laminated aluminium foil packages.

Example 1

The following composition is a skin treatment product of the form shown in Figure 6 of WO 03/090800, which comprises a glucose-containing hydrogel slab in accordance with the invention as a lower layer of the product, and an optional additional upper layer comprising a poly-AMPS hydrogel that incorporates glucose oxidase.

The hydrogel lower layer in accordance with the invention was formulated to include the following ingredients by weight:

Water (ex Fisher, distilled, de-ionised, analytical grade)	64.7 %
Sodium AMPS (ex Lubrizol AMPS 2405 Monomer)	30.0 %
Polyethylene glycol diacrylate (PEG400 diacrylate, ex UCB Chemicals available as Ebecryl 11)	0.19 %
1-hydroxycyclohexyl phenyl ketone (a photoinitiator, ex Aldrich)	0.01 %

Anhydrous glucose (enzyme substrate, ex Fisher)	5.00 %
Potassium iodide (ex Fisher)	0.05 %
Zinc L-lactate hydrate (ex Aldrich)	0.10 %

The mixture was dispensed into casting trays containing either polyester scrim (polyester non-woven, open mesh support, available from HDK Industries Inc, Product Code 5722) or polyethylene net support, of dimensions 100mm x 100mm, to a depth of about 1.5mm. The polyethylene net support was fabricated from polyester staple fibres thermally bonded by a polyester resin - Product code 5722, from Castle Industries, Greenville, SC 9609, USA. The hydrogel was then set, by irradiation under a UV lamp, for up to 60 seconds and a power rating of approximately 100mW/cm². The hydrogel was then allowed to cool to 30°C or below.

The enzyme-containing hydrogel was formulated to include the following ingredients by weight:

Water (ex Fisher, distilled, de-ionised, analytical grade)	68.6 %
Sodium AMPS (ex Lubrizol AMPS 2405 Monomer)	15.0 %
Ammonium AMPS (ex Lubrizol AMPS 2411 Monomer)	15.0 %
Polyethylene glycol diacrylate (PEG400 diacrylate, ex UCB Chemicals available as Ebecryl 11)	0.19 %
1-hydroxycyclohexyl phenyl ketone (a photoinitiator, ex Aldrich)	0.01 %
Glucose oxidase (GOX, Biocatalysts, Pontypridd, Code G575P)	0.035 %
Zinc L-lactate hydrate (ex Aldrich)	1.0 %
Pluronic P65 (block co-polymer of ethylene oxide and propylene oxide, HO-[CH ₂ CH ₂ O] _x -[CH ₂ CHCH ₃ O] _y -[CH ₂ CH ₂ O] _y -H, average MW 3400 (BASF))	0.15 %

The mixture was dispensed into casting trays containing polyester scrim (polyester non-woven, open mesh support, available from HDK Industries Inc, Product Code 5722) of dimensions 100mm x 100mm, to a depth of about 1.0mm. The hydrogel was then set, by irradiation under a UV lamp, for up to 30 seconds (typically 25 seconds), and a power

rating of approximately 100mW/cm². The hydrogel was then allowed to cool to 30°C or below.

The resulting gel layers were packaged separately in pouches or enclosures impermeable to water or water-vapour, e.g. made of laminated aluminium foil pouches as supplied by Sigma (code Z183407).

In use, eg on a wound, the wound contact layer can be used on its own to provide beneficial effects on a wound environment. Alternatively, the enzyme-containing hydrogel and the glucose-containing hydrogel can be brought together on a wound surface, one overlying the other.

An oxygen-permeable and moisture-permeable covering or overlay such as of polyurethane may be located over the enzyme-containing hydrogel and may be adhered to the skin by means of e.g. acrylic adhesive provided on the lower face of the overlay.

C444.00/I

CLAIMS

1. A skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose.
2. A skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose, excluding a hydrated hydrogel comprising the following reagents by weight: 20% sodium AMPS (2-acrylamido-2-methylpropanesulfonic acid, sodium salt (Lubrizol, code 2405), 0.2% poly ethylene glycol 400 diacrylate (UCB Chemicals), 0.01% photoinitiator (1-hydroxycyclohexyl phenyl ketone (Aldrich)), 20% glucose (Fisher), 0.1% zinc lactate (Sigma), 0.05% potassium iodide (Fisher) and to 100% with DI-water.
3. A skin dressing comprising a hydrated hydrogel material comprising a source of lactate ions and a supply of glucose, wherein the glucose is present in an amount of less than 20% by weight of the weight of the hydrated hydrogel material.
4. A skin dressing according to claim 1, 2 or 3, wherein the hydrated hydrogel material is in the form of a layer, sheet or film of material.
5. A skin dressing according to claim 1, 2 or 3, wherein the hydrated hydrogel material is in amorphous form.
6. A skin dressing according to any one of the preceding claims, wherein the hydrated hydrogel comprises hydrophilic polymer material.
7. A skin dressing according to claim 6, wherein the hydrophilic polymer material is selected from polyacrylates and methacrylates.

8. A skin dressing according to claim 7, wherein the hydrophilic polymer material comprises poly 2-acrylamido-2-methylpropane sulphonic acid (poly AMPS) or salts thereof.
9. A skin dressing according to claim 6, 7 or 8, wherein the hydrophilic polymer material is present at a concentration of at least 1%, preferably at least 2%, more preferably at least 5%, yet more preferably at least 10%, or at least 20%, desirably at least 25% and even more desirably at least 30% by weight based on the total weight of the gel.
10. A skin dressing according to any one of the preceding claims, wherein the source of lactate ions is selected from sodium L-lactate, sodium D-lactate, sodium D, L-lactate and zinc L-lactate.
11. A skin dressing according to any one of the preceding claims, further comprising a source of zinc ions.
12. A skin dressing according to claim 11, wherein the source of zinc ions is selected from zinc chloride, zinc fluoride, zinc sulphate and zinc lactate, particularly zinc L-lactate.
13. A skin dressing according to any one of the preceding claims, wherein the glucose is present in an amount of at least 2.5%, preferably at least 5%, by weight of the weight of the hydrated hydrogel material.
14. A skin dressing according to any one of the preceding claims, further comprising a source of iodide ions, e.g. potassium iodide or sodium iodide.
15. A skin dressing according to any one of the preceding claims, in combination with a source of oxygen or an oxidising agent.
16. A skin dressing according to claim 15, in combination with material comprising oxidoreductase enzyme, preferably glucose oxidase.

17. A skin dressing according to claim 16, wherein the layer of material comprising oxidoreductase enzyme comprises a hydrated hydrogel.
18. A skin dressing comprising a first hydrated hydrogel material comprising a source of lactate ions and a supply of glucose with optional sources of zinc ions and iodide ions; and a second hydrated hydrogel material comprising an oxidoreductase enzyme.

C444.00/I

ABSTRACT

Title: Improvements relating to skin dressings

A skin dressing comprises a hydrated hydrogel material including a source of lactate ions and a supply of glucose, optionally also including a source of zinc ions and a source of iodide ions. The dressing has beneficial effects on skin.