Множественная проверка гипотез и критерии случайности.

- **1** Доказать, что нисходящая процедура Холма с $\alpha_i = \alpha/(m-i+1)$ обеспечивает контроль над FWER на уровне α .
- ${f 2}$ Доказать, что статистика критерия инверсий I обладает следующими свойствами:

$$\mathsf{E}I = \frac{n(n-1)}{4}, \quad \mathsf{D}I = \frac{2n^3 + 3n^2 - 5n}{72}.$$

- **3** Доказать, что восходящая процедура Бенджамини-Иекутиели обеспечивает контроль над FDR на уровне $\alpha m_0/m$, где m_0 количество верных гипотез, m общее количество гипотез.
- 4 Выданы наблюдения X_1, \ldots, X_n . Проверить гипотезу о случайности и о нормальности распределения наблюдений с помощью статистической процедуры, контролирующей FWER на уровне α . Объяснить использование именно этой процедуры. Использовать хотя бы 5 критериев проверки нормальности.
- **5** Выдано п выборок $\{X_i^{(1)}\}_{i=1}^{k_1},\ldots,\{X_i^{(n)}\}_{i=1}^{k_n}$. Проверить гипотезу о нормальности выданных выборок с помощью статистической процедуры, контролирующей FDR на уровне α . Использовать хотя бы 3 критерия проверки нормальности для каждой из выборок. Можно ли в данном случае пользоваться нисходящей процедурой Бенджамини-Хохберга?
- 6 Выданы наблюдения X_1, \ldots, X_n . С помощью моделирования получить критические значения для критериев инверсий и Вальда-Волфовитца для n наблюдений на уровне значимости $\alpha = 0.05$. Воспользоваться полученными значениями для проверки гипотезы случайности выданных данных X_1, \ldots, X_n .