TRIG IDENTITIES

Reciprocal Functions:
$$\csc x = \frac{1}{\sin x}; \sec x = \frac{1}{\cos x}; \cot x = \frac{1}{\tan x}$$

Quotient Identities:
$$\tan x = \frac{\sin x}{\cos x}$$
; $\cot x = \frac{\cos x}{\sin x}$

Even/Odd Functions:
$$\cos(-x) = \cos x$$
; $\sin(-x) = -\sin x$ $\tan(-x) = -\tan x$

Pythagorean Identities:
$$\sin^2 x + \cos^2 x = 1$$
; $\cos^2 x = 1 - \sin^2 x$; $\sin^2 x = 1 - \cos^2 x$

Transformation Identities:
$$\cos\left(x-\frac{\pi}{2}\right)=\sin x$$
; $\sin\left(x+\frac{\pi}{2}\right)=\cos x$

Co-function Identities:
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
; $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

Compound Angle Formulas:

$$\sin(x + y) = \sin x \cos y + \cos x \sin y; \qquad \sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y; \qquad \cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}; \qquad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double Angle Formulas:

$$\sin(2x) = 2\sin x \cos x$$

$$cos(2x) = cos^2 x - sin^2 x$$
; $cos(2x) = 2 cos^2 x - 1$; $cos(2x) = 1 - 2 sin^2 x$

$$\tan(2x) = \frac{2\tan x}{1-\tan^2 x}$$