System Design Design of Data Model

Aphrodice Rwagaju

SAD

Y2 Term 3

Data Modeling

- Goal make sure all data objects required by a database are completely and accurately represented
- Data model design the blueprint for creating a physical implementation of a database

Data Modeling Terms

- Entity a class of real world objects having common attributes (e.g., sites, variables, methods).
- Attribute A characteristic or property of an entity (site name, latitude, longitude)
- Relationship an association between two or more entities
- Cardinality the number of entities on either end of a relationship (one-to-one, one-to-many, many-to-many, etc.)

- Consider:
 - What is the "entity"?
 - What are the "attributes" of the entity?

- What is the entity?
- What are the attributes?

- What is the entity?
- What are the attributes?

What are the relationships?

What are the relationships?

What about the business rules?

Data Model Requirements

- What is the information/data domain that you are modeling?
- What are the queries that you want to do?
- What software do you want (have) to use?
- How do you want to share the data?

Data Model Design

- Our focus relational data model design
- Three stages:
 - Conceptual data model
 - Logical data model
 - Physical data model

Conceptual Data Model (AKA – The Information Model)

- High-level description of the data domain
- Does not constrain how that description is mapped to an actual implementation in software
- There may be many mappings
 - Relational database
 - Object model
 - XML schema, etc.

Apple/Tree/Orchard Conceptual Model

Conceptual Data Model

- Defines scope of the domain
- Defines and organizes data requirements
- Defines entities and relationships among them

13 of 42

Defining Entities and Relationships

Instead of beginning with this:

- Sometimes its easier to write statements:
 - Many AppleTrees are grown in an Orchard.
 - Each AppleTrees contains one or more Apples.
- The nouns become entities and the verbs become relationships.

Logical Data Model

- Technology independent
- Contains more detail than the Conceptual Data Model
- Considered by many to be just an expanded conceptual data model
- Defines
 - Entities AND their attributes
 - Relationships AND cardinality
 - Constraints
- Generally completed as a documented Entity Relationship (ER) Model or diagram

Example: Logical Data Model ER Diagram

Entity Relationship Diagram

- Documentation of the structure of the data
- Used to communicate the design
- Serve as the basis for data model implementation

Entity Relationship Diagram (Relation Database Context)

- Entities effectively become tables
- Attributes describe entities and become fields (columns) in tables
- Relationships link tables on a common attribute or "key" and become formal constraints (part of the business rules)

Entities and Attributes

What are the attributes?

Entity = ApplTree

Attributes Values

Tree Name: AppleTree Code: APP-01

Tree Type: Hybrid

Description: Descriptions to be added here.

Relational Model: All instances of an entity have the same attributes

ER Diagram Entity Notation

ER Diagram Relationship Notation

- Multiple notation systems are used
- Each software program is a little different
- Most common is "Crows Foot"

	Crows Foot	Alternative
from Zero to Many	→ ○<	0*
from One to Many		1*
from One to One i.e., one and only one		11
from Zero to One		01

Relationship Cardinality and Participation

- Cardinality: maximum number of times an instance in one entity can be associated with instances in the related entity
- Participation: minimum number of times an instance in one entity can be associated with instances in the related entity

Cardinality

- Maximum number of times an instance of an entity can be associated with instances of a related entity
- Can ONLY have values of 1 or many
- Located closest to the entity in Crows Foot notation

Participation

- Minimum number of times an instance in one entity can be associated with instances in the related entity
- Indicates whether an instance of an entity MUST participate in the relationship
- Can ONLY have the values of 0 or 1

Mapping Cardinality and Participation

Reading Cardinality and Participation

Relationship Examples

Left to Right: A site has 0 or more time series of data.

Right to Left: A time series is measured at 1 and only 1 site.

Left to Right: A variable has 0 or more time series of data. Right to Left: A time series can have 1 and only 1 variable.

Relationship Examples

Left to Right: A TimeSeries has 1 or more Observations.

Right to Left: An Observation belongs to 1 and only 1

TimeSeries.

Left to Right: An Observation has 0 or more Qualifiers.

Right to Left: A Qualifier describes 0 or more Observations.

Primary and Foreign Keys

- Each row in a table should have an attribute that is a persistent, unique identifier – the "Primary Key"
- Primary key in "parent" table
- Foreign key in "child" table

Primary and Foreign Key Example

	OrchardID	OwnerName	Area_acres
1		Mahoro Peace	120.5
'	2	Mucyo David	20

Orchards

Apple Trees

AppleTreeID	Species	Size	DatePlanted	OrchardID
1	Honeycrisp	5	9/22/2015	1
2	Honeycrisp	6	9/22/2015	1
3	Honeycrisp	3	9/22/2015	1

AppleID	Color	Weight	AppleTreeID
1	Green	200	2
2	Green	180	2
3	Green	195	2

Apples

Primary and Foreign Keys

Usually consist of integer values

MUST be the same data type in parent and

child tables

Creating an ER Diagram Using MySQL Workbench

Summary

- Data model design is a 3 step process conceptual, logical, physical (next time)
- Conceptual and logical data models can be expressed using Entity Relationship (ER) diagrams
- ER diagrams capture the entities, attributes, and relationships to model your information domain
- ER diagrams are a powerful way to document the design of your data model

Steps in Data Model Design

- 1. Identify entities
- 2. Identify relationships among entities
- 3. Determine the cardinality and participation of relationships
- 4. Designate keys / identifiers for entities
- 5. List attributes of entities
- 6. Identify constraints and business rules

Exercise

- Work in groups of 5 students
- Use MySQL Workbench to begin creating an Entity Relationship diagram
 - Identify 5 entities of school management information system
 - Specify attributes
 - Create relationships