

Classe: 4^{ème} Math (Gr Standard)

Cours physique:

RLC forcées

Prof: Karmous Med

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Equation différentielle en i(t)

$$L \frac{di}{dt} + (R+r) i(t) + \frac{1}{C} \int i \, dt = U_m \sin(w \, t + \varphi_u)$$

Cette équation différentielle admet comme solution $i(t) = I_m \cdot \sin(wt + \varphi_i)$.

* Expression de I_m et du déphasage $\Delta \varphi = \varphi_u - \varphi_i$:

Les vecteurs $\overrightarrow{V_2}$ et $\overrightarrow{V_3}$ sont parallèles et de sens contraire et perpendiculaire à $\overrightarrow{V_1}$ donc la construction de Fresnel est basée sur la comparaison des modules des vecteurs $\overrightarrow{V_2}$ et $\overrightarrow{V_3}$, on distingue alors trois cas :

construction de FRESNEL

1 cas w
$$\prec \omega_0 \cdot -\frac{\pi}{2} \prec \varphi_u - \varphi_i \prec 0$$
 (Rad).

 $\omega^2 \prec \frac{1}{LC} \text{ alors } L\omega \prec \frac{1}{C\omega} \text{ d'où } L\omega \operatorname{I}_{\scriptscriptstyle \mathrm{m}} \prec \frac{\operatorname{I}_{\scriptscriptstyle \mathrm{m}}}{C\omega} \text{ et le circuit est capacitif.}$

Construction de Fresnel dans l'ordre des vecteurs :

Résume de cours

Oscillations électriques forcées en régime sinusoïdal

Proposer

2cas w=w₀ alors LI_m $\omega = \frac{I_m}{C_{0}}$ d'où le circuit est en état de résonance d'intensité (circuit résistif)

- (R+r) $I_m = U_m$ alors $I_m = \frac{U_m}{(R+r)}$

3 cas

 $\omega \succ \omega_{\scriptscriptstyle 0}$, $\omega_{\scriptscriptstyle 0}$ étant la pulsation propre de l'oscillateur (L,C) et ω étant la pulsation du générateur. $\omega^2 > \frac{1}{LC}$ alors $L\omega > \frac{1}{C\omega}$ d'où $L\omega I_m > \frac{I_m}{C\omega}$ et le circuit est inductif.

• Construction de Fresnel dans l'ordre des vecteurs : $0 \prec \varphi_u - \varphi_i \prec \frac{\pi}{2}$ (rad).

En appliquant le théorème de Pythagore :
$$I_m = \frac{U_m}{\sqrt{(R+r)^2 + (Lw - \frac{1}{Cw})^2}}$$
 (1)

Avec $\sqrt{(R+r)^2 + (Lw - \frac{1}{cw})^2} = Z$: Impédance électrique du circuit (RLC).

$$\cos(\varphi_u - \varphi_i) = \frac{(R+r)I_m}{U_m}. \quad (2) \quad \tan(\varphi_u - \varphi_i) = \frac{L\omega - \frac{1}{C\omega}}{R+r}. \quad (3) \quad \sin(\varphi_u - \varphi_i) = \frac{L\omega I_m - \frac{I_m}{C\omega}}{U_m}. \quad (4)$$

Facteur de surtension

- * A la résonance d'intensité, on définie, Q, le coefficient de surtension comme étant le quotient de la tension efficace Uc aux bornes du condensateur par la tension efficace U aux bornes du générateur.
 - Q= $\frac{U_C}{U} = \frac{U_{Cm}}{U}$ (sans unité).

Oscillations électriques forcées en régime sinusoïdal

Proposer

- A la résonance d'intensité et lorsqu'on augmente la résistance totale du circuit $I_{m_{m_0}}$ diminue.
- La résonance d'intensité est dite aigue lorsque la résistance totale du circuit est relativement faible.
- Lorsque la résistance totale du circuit est relativement importante la résonance d'intensité est dite
- A la résonance d'intensité on a : $L\omega_0 = \frac{1}{C\omega}$ alors $Z_L = Z_C$ d'où $U_L = U_C$.

$$Q = \frac{U_L}{U} = \frac{U_{Lm}}{U_m} = \frac{L\omega_0}{R+r} = \frac{1}{C\omega_0(R+r)} = \frac{1}{R+r}\sqrt{\frac{L}{C}} = \frac{Z_L}{Z_{R+r}} = \frac{Z_C}{Z_{R+r}}.$$

- Si Q >1 alors il y a phénomène de surtension.
- Si Q < 1 alors pas de phénomène de surtension.
- * Remarque : *

Si la résistance totale R+r du circuit augmente alors le coefficient de surtension Q diminue.

Influence de la fréquence N sur I_{max}

Résonance d'intensité aigue Résonance d'intensité floue $R_2 > R_1$ N(Hz) $N = N_0$

Influence de la fréquence N

SUT $\Delta \varphi = \varphi_u - \varphi_i$:

Il s'agit d'un phénomène de résonance d'intensité lorsque I_m atteint une valeur maximale.

La résonance d'intensité est obtenue lorsque $N=N_{\rm 0}=\frac{1}{2\pi\sqrt{LC}}$ indépendante de la résistance

On note: $-\frac{\pi}{2} \prec \Delta \varphi = \varphi_u - \varphi_i \prec \frac{\pi}{2}$

A la résonance d'intensité et lorsqu'on augmente la résistance totale du circuit $I_{m_{max}}$ diminue.

La résonance d'intensité est dite aigue lorsque la résistance totale du circuit est relativement faible. Lorsque la résistance totale du circuit est relativement importante la résonance d'intensité est dite

propriétés d'un circuit RLC série en résonance d'intensité

- I_m, I, U_{Rm} et U_R sont maximales.
- $\omega = \omega_0$ alors $N = N_0$.
- $L\omega_0 = \frac{1}{C\omega_0}$ alors $Z_L = Z_C$ d'où $U_L = U_C$. $u_L(t) = -u_C(t)$, car $U_{Lm} = U_{Cm}$ et $\varphi_{u_L} = \varphi_C + \pi$
- U_m = (R+r) I_m alors U = (R+r) I.
- $\bullet \ \Delta \varphi = \varphi_{ii} \varphi_{i} = 0.$

• Z= Z_{min} = Z_{R+r} = R+r.

alors $u_L(t) + u_C(t) = 0$ d'où le circuit RLC se comporte comme un dipôle LC.

Résume de cours

Oscillations électriques forcées en régime sinusoïdal

Proposer

• L'énergie électromagnétique emmagasinée dans le circuit est constante puisque $E_T = \frac{1}{2} C u_C^2 + \frac{1}{2} L i^2$ alors $\frac{dE_T}{dt} = C$. $u_C \cdot \frac{du_C}{dt} + L$. i. $\frac{di}{dt} = u_C \cdot i + L$. i. $\frac{di}{dt} = i \cdot (u_C + L \cdot \frac{di}{dt})$ or $u_C + L$. $\frac{di}{dt} = -(R+r) \cdot i + u(t) = 0$ d'où $\frac{dE}{dt} = 0$ alors l'énergie totale E_T est constante au cours du temps.

Identification des courbes

$$U_{\rm Rm} = Z_{\rm R} \, I_{\rm m} = R \, I_{\rm m} \, {\rm et} \, U_{\rm m} = Z \, I_{\rm m} = \sqrt{(R+r)^2 + (L\omega - \frac{1}{C\omega})^2} \, I_{\rm m} \, {\rm or} \, Z > Z_{\rm R} \, {\rm donc} \, U_{\rm m} > U_{\rm Rm} \, {\rm lorsque} \, r \neq 0$$

d'où la courbe ayant l'amplitude la plus grande représente u(t).

N.B: A la résonance d'intensité et lorsque r=0 (bobine purement inductive), on obtient $U_m = U_{Rm}$

• u_D(t) et u(t), avec D est un dipôle formé par une bobine (L,r) et un condensateur

$$U_{\rm Dm} = Z_{\rm D} \, I_{\rm m} = \sqrt{r^2 + (L\omega - \frac{1}{C\omega})^2} \, I_{\rm m} \, {\rm et} \, U_{\rm m} = Z \, I_{\rm m} = \sqrt{(R+r)^2 + (L\omega - \frac{1}{C\omega})^2} \, I_{\rm m} \, {\rm or} \, Z > Z_{\rm D} \, {\rm alors}$$

 $U_m > U_{Dm}$ d'où la courbe ayant l'amplitude la plus grande représente u(t).

N.B : A la résonance d'intensité, on obtient u(t) = (R+r) i(t) et $u_D(t) = r i(t)$ car $L\omega - \frac{1}{C\omega} = 0$ donc

 $u_D(t)$ et u(t) sont en phase ($\varphi_D = \varphi_u$) puisque u(t) et $u_D(t)$ sont en phase avec i(t).

u_c(t) et u(t)

On a :
$$-\frac{\pi}{2} < \varphi_u - \varphi_i < \frac{\pi}{2}$$
 puisque cos $(\varphi_u - \varphi_i) = \frac{R+r}{Z} > 0$ or i(t) $= \frac{dq}{dt} = C\frac{du_c}{dt}$ puisque q= C u_C et C > 0 d'où $\varphi_i = \varphi_{u_C} + \frac{\pi}{2}$ alors $-\frac{\pi}{2} < \varphi_u - \varphi_{u_C} - \frac{\pi}{2} < \frac{\pi}{2}$ alors $0 < \varphi_u - \varphi_{u_C} < \pi$ d'où u(t) est

toujours en avance de phase par rapport à $u_{\mathbb{C}}(t)$.

N.B: A la résonance d'intensité on a $\varphi_u - \varphi_i = 0$ alors $\varphi_u - \varphi_{u_c} = \frac{\pi}{2}$ d'où u(t) est en quadrature avance de phase par rapport à $\mathbf{u_C}(\mathbf{t})$.

$$*u(t)$$
 et $u_L(t)$

u_i(t) et u(t) :

On a :
$$-\frac{\pi}{2} < \varphi_u - \varphi_i < \frac{\pi}{2}$$
 puisque cos $(\varphi_u - \varphi_i) = \frac{R+r}{Z} > 0$ or $\mathbf{u_L(t)} = \mathbf{L}\frac{di}{dt}$ puisque $\mathbf{L} > 0$ d'où $\varphi_i = \varphi_{u_L} - \frac{\pi}{2}$ alors $-\frac{\pi}{2} < \varphi_u - \varphi_{u_L} + \frac{\pi}{2} < \frac{\pi}{2}$ alors $-\pi < \varphi_u - \varphi_{u_L} < 0$ d'où $\mathbf{u(t)}$ est toujours en retard de phase par rapport à $\mathbf{u_L(t)}$.

N.B: A la résonance d'intensité on a $\varphi_u - \varphi_i = 0$ alors $\varphi_u - \varphi_{u_L} = -\frac{\pi}{2}$ d'où u(t) est en quadrature retard de phase par rapport à $u_L(t)$.

Résume de cours

Oscillations électriques forcées en régime sinusoïdal

Proposer

*u(t) et uBobine(t)

$$\mathsf{U}_{\mathsf{Bobine}}(\mathsf{t}) = \mathsf{L}\frac{di}{dt} + \mathsf{ri} \; \mathsf{alors} \; \vec{V} \; (\; \mathsf{U}_{\mathsf{Bobine} \; \mathsf{max}} \; ; \; \varphi_{\mathsf{Bobine}}) = \; \vec{V}_{1} \; (\; \mathsf{U}_{\mathsf{r} \; \mathsf{max}} = \mathsf{r} \; \mathsf{I}_{\mathsf{m}} \; ; \; \varphi_{i}) + \; \vec{V}_{2} \; (\; \mathsf{U}_{\mathsf{L} \; \mathsf{max}} = \; \mathsf{L} \; \mathsf{I}_{\mathsf{m}} \; \varnothing \; \; ; \; \varphi_{i} + \frac{\pi}{2})$$

D'après la construction de Fresnel on a :

$$\cos{(\phi_{u_{Bobine}} - \phi_{i})}$$
 > 0 et sin $(\phi_{u_{Bobine}} - \phi_{i})$ > 0

alors 0<
$$\phi_{u_{Bobine}} - \varphi_i < \frac{\pi}{2}$$
 et puisque

$$tg(\varphi_{uBobine} - \varphi_i) = \frac{L\omega}{r} et tg(\varphi_u - \varphi_i) = \frac{L\omega - \frac{1}{C\omega}}{R + r}$$

On a :
$$\frac{L\omega}{r} > \frac{L\omega - \frac{1}{C\omega}}{R+r}$$
 d'où $\operatorname{tg}(\varphi_{uBobine} - \varphi_i) > \operatorname{tg}(\varphi_u - \varphi_i)$ puisque pour tout angle $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

tg α augmente lorsque α augmente. $\varphi_{uBobine} - \varphi_i > \varphi_u - \varphi_i$ d'où $\varphi_{Bobine} - \varphi_u > 0$ alors $u_{Bobine}(t)$ est toujours en avance de phase par rapport u(t).

* Remarque : $Z \neq Z_L + Z_C + Z_R + Z_r$ mais à la résonance d'intensité $Z = Z_R + Z_r$.

