Analysis 2 - Hausaufgabe 6

Tom Nick 342225 Tom Lehmann 340621 Maximilian Bachl 341455

Aufgabe 1

Es handelt sich hier um die Suche nach Extrema mit Nebenbedinung, weshalb wir zunächst nach Extrema auf dem Rand des Kreises suchen.

Die Nebenbedingung lautet: $g(x, y) = x^2 + y^2 - 1 = 0$.

1. Singulärer Fall:

$$\nabla g(\vec{x}) = \vec{0} = \begin{pmatrix} 2x \\ 2y \end{pmatrix} \Rightarrow (x, y) = (0, 0)$$

Da $g(0,0) = -1 \neq 0$ gibt es hier keinen singulären Fall.

2. $\nabla f(\vec{x}) = \lambda \cdot \nabla g(\vec{x})$

$$\nabla f(\vec{x}) = \begin{pmatrix} 6x - 2y \\ -2x + 2y \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \lambda \cdot \nabla g(\vec{x})$$

Also:

I:
$$6x - 2y = \lambda \cdot 2x \Leftrightarrow 3 - \frac{y}{x} = \lambda \Leftrightarrow -\frac{y}{x} = \lambda - 3$$

II: $-2x + 2y = \lambda \cdot 2y \Leftrightarrow -\frac{x}{y} + 1 = \lambda \Leftrightarrow -\frac{x}{y} = \lambda - 1$
 $\Leftrightarrow \frac{y}{x} = -\frac{1}{\lambda - 1}$
III: $x^2 + y^2 - 1 = 0$

Addiert man nun I und II so erhält man $0=\lambda-3-\frac{1}{\lambda-1}\Leftrightarrow 0=\lambda^2-4\lambda+2\Leftrightarrow \lambda=2\pm\sqrt{2}.$ Somit ist

Wir prüfen zunächst die notwendige Bedingung für kritische Punkte $\nabla f(\vec{x}_k) = 0$:

$$\nabla f(\vec{x}) = \vec{0} = \begin{pmatrix} 2(x-y) + 4x \\ -2(x-y) \end{pmatrix} = \begin{pmatrix} 6x - 2y \\ -2x + 2y \end{pmatrix}$$

Also:

$$0=6x-2y$$
Evtl. Nummerierung hinzufügen $0=-2x+2y$ $\Rightarrow 0=4x \Rightarrow x=0 \Rightarrow y=0$

Wir erhalten deshalb einen kritischen Punkt: $x_{k1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Die Hessematrix ist, da es sich bei f um eine zweimal stetig partiell differenzierbare Funktion handelt, gemäß dem Satz von Schwarz, symmetrisch.

$$f''(\vec{x}) = H_f(\vec{x}) = \begin{pmatrix} 6 & -2 \\ -2 & 2 \end{pmatrix}$$
$$D_1 = \det(6) = 6 > 0$$
$$D_2 = \det\begin{pmatrix} 6 & -2 \\ -2 & 2 \end{pmatrix} = 8 > 0$$

Damit ist $H_f(\vec{x})$ positiv definit, woraus schlusszufolgern ist, dass die Funktion f bei f(0,0)=0 ein lokales Minimum besitzt. Da f(x,y) eine Komposition aus $(x-y)^2>0 \ \forall x,y\in\mathbb{R}$ und $2x^2>0 \ \forall x\in\mathbb{R}$ ist, ist f(0,0)=0 sogar ein globales Minimum.

Aufgabe 2

Um lokale Extrema einer mehrdimensionalen Funktion zu bestimmen, müssen wir 1. die kritischen Punkte finden und 2. diese als Funktionswerte der Hessematrix übergeben.

1. kritische Punkte sind alle Funktionswerte die $\nabla f(x,y,z) = \vec{0}$ erfüllen.

$$\nabla f(x,y,z) = \begin{pmatrix} 4x \\ 4z + 2y \\ 4y + 10z \end{pmatrix} \stackrel{\text{DGL}}{\Rightarrow} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 10 \end{pmatrix} \stackrel{\text{Gauss}}{\Rightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Der Kern der Einheitsmatrix ist der Null-Vektor. Dies ist auch der einzige kritische Punkt demnach.

2. Hesse-Matrix berechnen und kritische Punkte einfügen:

$$H_f(x,y,z) = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 10 \end{pmatrix}$$

TODO: Satz von Schwarz

Da die Hesse Matrix konstant ist, müssen wir den Punkt offensichtlich nicht einsetzen. Mit dem Hurwitzkritirium kann nun überprüft, was der kritische Punkt nun ist.

$$\begin{aligned} \det(4) &= 4 \\ \det\begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} &= 8 \\ \det\begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 10 \end{pmatrix} \xrightarrow{\text{nach Laplace}} 4 \cdot (2 \cdot 10 - 4 \cdot 4) &= 16 \end{aligned}$$

Damit ist $H_f(0,0,0)$ positiv definit. Somit ist ein lokales Minimum bei $\vec{0}$. Ist es auch ein globales Minimum? $2x^2$, y^2 und $5z^2$ werden nie negativ. Also kann nur 4yz negativ werden. Da aber $4yz + y^2 + 5z^2 \ge 0$ für alle $(x,y) \in \mathbb{R}^2$ offensichtlich gilt, kann f keine negativen Funktionswerte haben, und muss somit, da f(0,0,0) = 0, an der Stelle (0,0,0) ein globales Minimum haben.

Aufgabe 3

Wir haben die Nebenbedingung g(a,b)=a+b-10=0. Außerdem haben wir die Funktion f(a,b)=ab. Da der von g gebildete Körper kein Inneres besitzt, kann es in diesem auch keine Extrema geben.

Wir überprüfen, ob ein singulärer Fall vorliegt:

$$\nabla g = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 Da es hierfür keine Lösung gibt, liegt kein singulärer Fall vor.

Als nächstes überprüfen wir auf andere Extrema am Rand.

$$\nabla f(a,b) = \begin{pmatrix} b \\ a \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda \nabla g$$

Es gilt: $a+b-10=0$
Daraus folgt: $a=\lambda$
 $b=\lambda$
 $\lambda=5 \Rightarrow a=5 \land b=5$

Es gibt somit den zu untersuchenden kritischen Punkt $\vec{x}_{k_1} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$