

a — полное распределение в образце капрона, нагруженном растягивающим напряжением 84 кГ/мм²; δ — распределение связей по локальным напряжениям образца полипропилена в области наибольших перегрузок; δ — плотности распределения связей по γ в полимерных материалах; ϵ — распределение напряжений в волокнах композиционного материала с надрезом.

Распределение количества дефектов по размерам в сварных швах: a — длин трещин; б — непроваров; в — окисных плен в сварных швах; ϵ — технологических дефектов, трансформировавшихся в поверхностные трещины; д — обнаруженных пор; e — подрезов.

Изм.	Лист	№ докум.	Подпись	Дат

Рис. 8.3 Силовые зависимости долговечности алюминия при статическом и циклическом нагружениях:

a — сравнение статической 1и циклической 2долговечности алюминия при комнатной температуре (частота нагружения 24 цикл/с); δ — силовые зависимости долговечности алюминия при разных температурах: 1 — T=250°C; 2 — T=200°C.

Рис. 8.4
Типовой график нагружения при выполнении АЭ-контроля (a) и моделирование прочностной неоднородности материала функцией $\psi(\omega)$ (б)

Рис. 8.5

Микромеханическая модель источника сигнала А ∂ (a) и интерпретация значения акустико-эмиссионного коэффициента (δ - ∂):

 δ — амплитудное распределение параметров сигналов АЭ; ϵ — частотное; ϵ — временное (по длительности Δt); δ — вероятность регистрации сигналов АЭ в заданном амплитудном диапазоне; 1,2,3 — распределения от разрушения структурных элементов граничной зоны адгезионных связей композита или материала сварного шва (I), волокна композита или околошовной зоны, зоны нормализации и основного металла сварного соединения (2), матрицы композита или элементов раз упрочненной зоны сварного соединения (3); P_u , P_U' , P_U'' — вероятности попадания амплитуды сигнала АЭ в регистрируемый амплитудный диапазон [$U^{\rm R}$; $U^{\rm B}$] при равномерном, экспоненциальном (показательном) и с наличием максимума наблюдаемом амплитудном распределении сигналов АЭ соответственно; P_1 , P_2 — вероятности регистрации сигналов в заданном временн м и частотном диапазоне соответственно.

Изм.	Лист	№ докум.	Подпись	Дат

Рис. 8.6
Виды временных зависимостей роста концентрации микротрещин при нагружении:

а — двухпрямоугольное распределение, постоянная нагрузка, ω_0 = 0, ω_1 = 1, ω_2 = 20, 10, 1; δ — двухпрямоугольное распределение, равномерно возрастающая нагрузка, ω_0 = 1, ω_1 = 1, ω_2 = 100, 10, 1.

Рис. 8.7

Результаты моделирования временной зависимости концентрации C(t) микротрещин (1) и регистрации числа N_{Σ} импульсов АЭ (2) равномерно нагружаемых (a) и выдерживаемых под нагрузкой (δ) образцов сварных соединений; s — результаты микроскопических исследований повреждаемости циклически нагружаемых сварных соединений; L_{Σ} — суммарная длина микротрещин:

1 — σ =480 МПа; 2 — σ =680 МПа. Длина сварного шва $L_{\rm III}$ =470 мм (□, ■), $L_{\rm III}$ =630 мм (∇ , ○), $L_{\rm III}$ =820 мм (\triangle , ▲).

Временные зависимости повреждаемости и скорости счета АЭ при термонагружении образцов бороалюминиевого композита:

a — результаты машинного моделирования: μ =1, $\Delta\omega$ =1 (1), 10 (2), 100 (3); δ — зависимость скорости счета сигналов АЭ при нагревании образца.

				_
Изм.	Nucm	№ докум.	Подпись	Дата

Рис. 8.9 Виды образцов (a) и испытательной установки (δ): 1 — образец; 2 — преобразователи А ∂ .

Рис. 8.10 Результаты испытаний при равномерном (a) и ступенчатом (b) нагружении образцов стыковых сварных соединений

Изм.	Лист	№ докум.	Подпись	Дата

 $\begin{tabular}{ll} $Taблицa~8.1$ \\ \begin{tabular}{ll} Hекоторые АЭ-показатели прочностного состояния технических объектов, устойчивые к дестабилизирующим факторам \\ \end{tabular}$

Свойство, АЭ-пока- затель состояния	Микро- АЭ-модель	Наномодель	Особенности оценки, авт. защищенность
Прочность X_{AE}	$d \ln \xi/dt$	$\dot{\sigma}\gamma/(k_{\rm B}T)$	А. С. № 1467458 Реализуется при о≠0
Прочность Y_{AE}	$d \ln \xi/d\sigma$	$\gamma/(k_{\rm B}T)$	Патент № 2270444 Необходима оценка на- пряженного состояния
Долговечность z_{AE}	$\ln \xi - \ln A_0$	$\omega = \gamma \sigma / (k_{\rm B}T)$	Необходима оценка коэффициента A_0
Относительная опасность Δz_{AE}	$\ln \xi 1 - \ln \xi_2$	$\omega_1 = \omega_2$	Необходимы АЭ-испытания этанола
Несущая способность F_{AE}	$\ln \xi 1 / \ln \xi_2$	$-\sigma_1/\sigma_2$	Патент № 2042813 Необходима оценка эта- лонного напряженного состояния
Долговечность $W_{\scriptscriptstyle AE}$	$d \ln \xi/dK$ н*	$\omega = \gamma \sigma/(k_{\rm B}T)$	Необходима оценка диа- гностической нагрузки

^{*} $K_{\text{\tiny H}}$ — коэффициент нагрузки [18].

Рис. 8.11

Результаты моделирования микротрещинообразования и регистрации AЭ образца стыкового сварного соединения с двумя округленными боковыми пропилами на этапе упругого деформирования:

неоднородное разрушение; двухпрямоугольное распределение $\psi(\omega)$; $\omega_2/\omega_1 > 1$; $\omega_2/\omega_0 > 1$; $\omega_1/\omega_0 = 1$; $\psi(\varpi) = \psi(\omega)$.

Рис. 8.12
Результаты моделирования разрушения и регистрации АЭ бездефектного образца стыкового сварного соединения на этапе упругого деформирования:

a — равномерное распределение $\psi(\omega),\,\Delta\omega/\omega_0<1;\,\delta$ — двухпрямоугольное распределение $\psi(\omega),\,\omega_1/\omega_0<1,\,\omega_2/\omega_0<1,\,\omega_2/\omega_1=1,$ разрушение однородное, $\,\psi(\varpi)=\psi(\omega).$

Рис. 8.15 АЭ металлополимерных адгезионных соединений:

но метальнополимерных адгезионных соединении: a — результаты регистрации АЭ: 1 — образцов без наполнителей ($\sigma_5 < \mu$), разрушение однородное; 2 — образцов с крупнодисперсным наполнителем (серый графит, $\sigma_5 > 10\mu$) разрушение высоко-неоднородное; δ — определение параметров модели АЭ наполненного серым графитом композита, $\psi(\varpi) = \psi(\omega)$.

Рис. 8.13 Анализ результатов регистрации АЭ образцов цементного камня с несформировавшейся высоконеоднородной структурой (суточным возрастом):

a — логарифмическинормальное распределение $\psi(\omega)$, σ_s =15, μ =1, σ_s >10 μ ; δ — двухпрямоугольное распределение $\psi(\omega)$, ω_2/ω_1 >10, ω_2/ω_0 >10, ω_1/ω_0 =1, разрушение высоконеоднородное, $\psi(\varpi)=\psi(\omega)$.

Рис. 8.14 Сопоставление результатов регистрации АЭ структурированного образца цементного камня (возраст образца — 132 сут) и моделирования разрушения с использованием логарифмическинормального распределения $\psi(\omega)$, $\sigma_3 < \mu$, разрушение однородное, $\psi(\varpi) = \psi(\omega)$.

Изм.	Лист	№ доким.	Подпись	Дата