Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2TS1577 .A3U5 Cy. 2

U.S. DEPT. OF AGRICULTURE NAT'L AGRIC, LIPRARY

JUN 17 975

PROCESSES LA CLOTION OURRENT SENAL PECORDS

Summary of Cotton Fiber and Processing Test Results

HIII II

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Cotton Division, May 1976

CONTENTS

Introduction	Page 3
III bi buuc bibii.	
Sampling procedures	3
Map: Distribution of production areas	4
Laboratory procedures	5
Test Results Table 1 - Area and U. S. summary Table 2 - State summary Table 3 - Grade and Staple summary. Table 4 - Variety and state summary. Table 5 - Short staple results Table 6 - Medium staple results. Table 7 - Long staple results, American Pima	12 16 20 26 32 60
Simple Correlations	
Table 9 - Results for short staple	70
Multiple Correlations	
Table 12 - Grade, staple, mike, "O" gage, unif short staple Table 13 - Color, nonlint, 2.5% length, mike - short staple Table 14 - 2.5% length, mike, 1/8" gage, unif., elong short staple Table 15 - Grade, staple, mike, "O" gage, unif medium staple Table 16 - Color, nonlint, 2.5% length, mike - medium staple Table 17 - 2.5% length, mike, 1/8" gage, unif., elong medium staple. Table 18 - Grade, staple, mike, "O" gage, unif long staple,	77 79 81 83 85
carded yarns Table 19 - Color, nonlint, 2.5% length, mike, - long staple	87
carded yarns	89
carded yarns	91
combed yarns Table 22 - Color, nonlint, 2.5% length, mike - long staple	93
combed yarns	95
combed yarns	97
Measures used in statistical analysis	99
Basis for interpretation of test results	103
Table 24 - Standard machine settings and specifications for processing specified staple length groupings	121

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP of 1975

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946. 1/
These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1975" and numbered 1 through 12.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data are used to measure the effectiveness of the standards to be sure that they continue to reflect differences in spinning utility. Publication of the bi-weekly reports enables merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1975 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division classing offices. Variety selections were based on the predominant varieties planted in each classing office territory as reported by the Cotton Division in "Cotton Varieties Planted, 1971-1975". A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each classing office territory. Additional areas were selected for those varieties with a production of over 150,000 bales. One additional production area was selected for each 150,000 bales or portion thereof in excess of the first 150,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases, where there was unusual interest in a particular variety and a low percentage was planted in the area, the classing offices selected lots representing 100 percent of the variety. The locations of the 129 production areas selected for the 1975 survey are shown on figure 1.

1/ Copies of past summary reports may be obtained from the Standardization Section, Cotton Division, AMS, USDA, 4841 Summer Avenue, Memphis, Tennessee 38122 until supplies are exhausted.

Location of production areas selected for the 1975 Survey. Figure 1.

Test lots were collected from each production area at intervals of three weeks during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in the tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at Cotton Division fiber and spinning laboratories. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during each three-week period.

LABORATORY PROCEDURES

Fiber, spinning, and chemical finishing tests were performed under standardized procedures at the Cotton Division spinning laboratory at Clemson, South Carolina. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity at a temperature of 70 degrees F. Standard test procedures as outlined by the American Society for Testing and Materials were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner regardless of difference in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were

carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rates of carding and yarn numbers spun from the 1975 crop are as follows:

- Group 1.--Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots. This includes varieties which normally produce staple lengths 31/32 and shorter.
- Group 2.--Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarns with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches in staple length.
- Group 3.--Long staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4.--Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties, which are usually 1-5/16 inches or longer in staple length.

Skeins of yarn from each spinning test lot were bleached and dyed by a technique developed in the Cotton Division laboratories for small scale finishing tests. Color tests were made on gray and chemically finished skeins of yarn as measures of the bleaching and dyeing behavior.

TEST RESULTS

U. S. Average - Upland Cotton

A total of 369 American upland spinning lots was tested from the 1975 crop, which includes short, medium and long staple cottons. This compares with 391 lots tested from the 1974 crop. Average fiber test results show the 1975 cottons to be slightly shorter, more uniform, finer and stronger at zero gage strength tests than in 1974. Shirley Analyzer nonlint content was slightly higher, while picker and card waste was lower in 1975. Yarns spun from these samples showed slightly stronger yarn strength with lower appearance grades and higher yarn imperfections. The average spinning potential yarn number was lower. (Table 1).

Group 1.--Short Staple Cottons

A total of 65 short staple American upland spinning lots was tested from the 1975 crop compared to 57 in 1974. Average fiber property results showed the 1975 cottons to be slightly shorter, more uniform, finer and stronger than the 1974 cottons tested. Both Shirley Analyzer nonlint content and picker and card waste were lower than a year ago. Yarns spun from these samples were stronger with higher appearance grades and fewer imperfections. The average spinning potential yarn number was higher.

Group 2.--Medium Staple Cottons

A total of 263 medium staple American upland spinning lots was tested from the 1975 crop compared to 299 lots from the 1974 crop. Average results showed 1975 cottons tested slightly shorter, more uniform and stronger at zero gage fiber strength than the 1974 cottons. Picker and card waste was lower than a year ago. Yarns spun from these samples were slightly stronger with lower appearance grades than the 1974 crop. Yarn imperfections were higher in the 1975 cottons. Average spinning potential yarn number was lower.

The <u>Southeastern</u> production area includes Virginia, North Carolina, South Carolina, Georgia and Alabama. A total of 44 medium staple spinning lots was tested in 1975 compared to 51 in 1974. Average results in 1975 showed these cottons significantly shorter, slightly less uniform, finer and stronger at zero gage strength than in 1974. Shirley Analyzer nonlint content was higher, while picker and card waste was lower. Yarns spun from these samples were weaker with lower appearance grades than the 1974 crop. Yarn imperfections were higher in the 1975 cottons. Average spinning potential yarn number was lower.

The <u>South Central</u> production area includes the states of Tennessee, Missouri, Mississippi, Arkansas and Louisiana. A total of 114 medium staple lots was tested from this area in 1975 compared to 128 in 1974. Average results in 1975 showed these cottons to be more uniform, coarser and stronger at both zero gage and 1/8" gage strength than in 1974. Picker and card waste was lower. Yarns spun from these samples showed slightly higher yarn imperfections than the previous year. Average spinning potential yarn number was lower.

The <u>Southwestern</u> production area consists of the states of Oklahoma and Texas except far west Texas (served by the El Paso classing office). A total of 36 medium staple American upland spinning lots was tested from the 1975 crop compared to 48 from the 1974 crop. Average results in 1975 showed these cottons to be shorter, less uniform, finer and weaker at both zero gage and 1/8" gage strength than the 1974 crop. Shirley Analyzer nonlint content was higher for the 1975 cottons, while picker and card waste was lower than a year ago. Yarns spun from these samples were slightly stronger, but yarn imperfections were higher than a year ago.

The Western production area consists of California, Arizona, New Mexico and far west Texas. A total of 69 medium staple lots was tested from this area in 1975 compared with 72 lots for the 1974 crop. Average results show 1975 cottons to be longer, less uniform, finer and stronger at both zero gage and 1/8" gage strength than in 1974. Both Shirley Analyzer nonlint content and picker and card waste were lower in the 1975 crop. Yarns spun from these samples were stronger with lower appearance grades than the 1974 crop. Yarn imperfections were greater in 1975. Average spinning potential yarn number was higher.

Group 3.--Long Staple Cottons

A total of 41 long staple American upland spinning lots was tested in 1975 compared to 35 lots in 1974. Average results show 1975 cottons to be shorter, slightly finer and stronger at zero gage strength than in 1974. Picker and card waste was significantly higher in 1975. Yarns spun from these samples show considerably higher yarn imperfections than a year ago. Average spinning potential yarn number was lower.

A total of 18 long staple American upland spinning lots was tested in 1975 from the <u>Southeastern</u> area compared to 15 lots in 1974. Average fiber test results from these long staple samples show 1975 cottons to be significantly shorter, coarser and stronger at zero gage strength. Shirley Analyzer nonlint content was lower, while picker and card waste was considerably higher than in 1974. Yarns spun from these samples were weaker with higher appearance grades. The 1975 cottons showed slightly fewer yarn imperfections than in 1974. Average spinning potential yarn number was much lower.

A total of six long staple American upland spinning lots was tested in 1975 from the South Central area, the same as in 1974. Average fiber test results showed the 1975 cottons to be significantly shorter, less uniform and stronger at zero gage strength than in 1974. Shirley Analyzer nonlint content was lower, while picker and card waste was higher than in 1974. Yarns spun from these samples showed higher appearance grades in 1975. Average spinning potential yarn number was lower in 1975.

A total of 17 long staple American upland spinning lots was tested in 1975 from the <u>Western</u> area compared to 14 lots in 1974. Average results show 1975 cottons to be finer and slightly weaker at 1/8" gage strength than in 1974. Both Shirley Analyzer nonlint content and picker and card waste were higher than in 1974. Yarns spun from these samples were considerably stronger with a lower appearance index. Yarn imperfections were significantly higher.

Group 4.--Extra Long Staple

A total of 15 extra long staple American Pima spinning lots was tested from the <u>Western</u> area compared with 19 lots tested in 1974. Average fiber test results show 1975 extra long staple cottons to be significantly longer, slightly coarser and stronger at both zero and 1/8" gage strength than 1974 cottons. Shirley Analyzer nonlint content and comber waste were higher than in 1974, while picker and card waste was lower. Combed yarns spun

from these samples were stronger with lower appearance grades. Yarn imperfections were slightly higher than in 1974.

Table 1.--Cotton: Average results of classification, fiber and processing tests from selected gin points, crops of 1974 and 1975

	1					-10-			
	Spin.	Potent.	No.	0†	61	63	57 56	69 99	63
results	Yarn	imperf. 22s	No.	27	19 26	18 21	24 32	16	19 23
Processing test results	Appear-	ance 22s	Index	91	103 <i>9</i> 7	102 101	87 88	103 93	100 97
Proces	Skein	strength 22s	Lbs.	88	102 97	105	100	115	106
	Picker	Waste	Pct.	7.3	6.5	5.3	6.65 7.01	5.0	
	Shirley	non- lint	Pct.	4.0	88 4.60	. e. e.	3.3	0, 0, 17.6.	3.1
ts	Strength	1/8" gage		22	22	22	23	25	23 23
t resul	Stre	Zero	Mpsi	833	81 83	83	84 83	91 92	85
Fiber test results		M1 Ke	Rdg	3.3	4.2	4.0	4.0	4.5	4.5
F	raph	50/2,5 unif.	Pet.	44	44	77 72 72	44 43	46 45	177 179
	Fibrograph	2,5% span	In.	8.6.	1.09	1.10	1.07	1.10	1.10
	Staple		Index 32d in	und 30.9 30.8	and 34.5 34.1	35.0 34.8	33.6 33.5	35.1 35.3	34.7 34.6
	Grade		Index	an uple 88 91	an upl 91 90	91 92	91 91	95	98
	Lots		No.	American upland 57 88 3 65 91 3	Americ 51 44	ral 128 114	98 36	72	299 263
	Area and Crop Year			SHORT STAPLE - Southwest 1974	MEDIUM STAPLE - American upland Southeast 1974 51 91 34 1975 44 90 34	South Central 1974 12 1975 11	Southwest 1974 1975	West 1974 1975	Average 197 ⁴ 1975

					F1	Fiber test results	t resul	ıts			Proces	Processing test results	results	
Area and Crop Year	Lots	Grade	Staple	Fibro	graph		Stre	Strength	Shirley	Picker	Skein	Appear-	Yarn	Spin.
				2.5% span	50/2.5 unif.	Mike	Zero	1/8" gage	non- lint	Waste	strength 22s	ance 22s	imperf. 22s	Potent.
	No.	Index 32d in	32d in	ü	Pct.	Rdg.	Mpsi	-	Pct.	Pct.	Lbs.	Index	No.	No.
LONG STAPLE -	- American upland	uplan	þ											
1974	15	90 87	35.1 34.2	1.15	43 43	0 0.	82 85	888	4.0	8.7	104 91	104	21 19	67 54
South Central 1974 1975	ntral 6 6	92 89	35.5	1.15	7† 7†	0.4	88	23.23	4°.0	8 0 8 0	105	102	19	65 62
West 1974 1975	14 17	8 8	36.6 36.5	1.16	455 455	3.7	88	27 26	2.7	7.4 8.7	128 138	98 82	08 36	89 89
Average 1974 1975	35 41	92	35.8 35.4	1.15	†††	ω ω ο⁄ φ	87 89	5. 5. 7. 7. 7.	3.3 17.17	8.2 9.1	114 113	101 99	08 08 08	75
U. S. UPLAND AVG 1974 1975	391 369	92	34.2 34.0	1.08	44 42	4.1	86	88	0.00 0.00	6.6	104	66 86	20 23	60
EXTRA LONG STAPLE - American Pima West 1974 19 4 44.1	<u>APILE</u> – An	nerican 4	Pima 44.1	Array	.a <u>y</u> 32	3.5	100	35	2.0	8.0	50°s	Combed 110	Yarn 2	Comber Waste
1975	15	m	44.3	1.47	35	3.6	104	34	3.2	7.4	<i>L</i> 9	107	т	18.4

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1974 and 1975

Area	and crop year	SOUTHEAST Medium staple:	Alabama 1974 1975	Georgia 1974 1975	North Carolina 1974 1975	South Carolina 1974 1975	Long staple: Alabama 1974 1975	Georgia 1974 1975	North Carolina 1974 1975	South Carolina 1974 1975 SOUTH CENTRAL	Arkansas 1974 1975	Louisiana 1974 1975	Mississippi 1974 1975	<u>Missouri</u> 1974 1975	Tennessee
Spinning	lots tested	No.	26	13	99	910	mω	99	ന ന	mm	33 33	18	51 45	12 12	0,
	Grade	Index	25.62	88	84	88	85 85	91	94 83	55	88	28	84	883	93
Classification	Staple	32d in.	34.4 33.9	34.2	35.3 34.8	35.0 34.6	35.0 33.7	34.7 34.2	35.7 35.0	35.7 35.0	35.1 34.9	34.7 34.9	34.9 34.9	35.1 34.8	35.0
Fiber	2.5% span	ន់	1.09	1.07	1.11	1.12	1.15	1.15	1.15	1.12	1.11	1.10	1.09	1.11	1.10
length	50/2.5 unif.	Pet.	7† 1†	5t 11	1,5 1,6	45 45	143 143	†† 7	†† ††	£44 74	5t tt	7 7	44 45	43 45	7.
Micro-	naire	Rdg.	4.3	カ.カ. カカ	T. 4	4.4	3.0°5	2°4 4°4	8.4 6.4	a.a.	0.4	η·η 1·η	4.1 4.3	3.8	3.9
Fiber s	Zero gage	Mps1	833	79	80 87	8,4	88 448	83 86	82 87	79 83	84 85	88 84	48 86	81 83	. 85
strength	1/8" gage	G/tex	88	2 2	55	21 22	22 22	ឌឌ	ଷ ଷ	55	8 83	8 8	ឌន	22 23	22
Elon-	gation 1/8"	Pet.	9.9	6.5	4.95	6.4 6.1	7.3	6.7	4.9	5.7	6.9	6.9	4.9 4.9	7.2	7.0
Shirley	non- lint	Pet.	8.8 8.9	4.9	†•†	& 0. 8.0	4.8 3.9	4 t	3.8	 	 	8.0 9.0	3. E.	2.5	8.8
Color	Gray- ness	No.	a 60	നന	3 15	લા લ	αm	cu z	cu #	mm	ત્ય ત્ય	mα	a a	ณ ณ	н
of raw	Yellow- ness	No.	mm	m m	пn	mm	mm	m m	ოო	m ط	ოო	ત્ય ત્ય	લ લ	ოო	'n
stock	Com- posite	Index	8	95	33.88	666	93	98	99 88	88	98	. 95	97	868	100
Picker	& card waste	Pct.	5.0	7.1	7.3	4.9	8.9 4.9	9.0	8.3 9.7	88 4.6.	6.3	6.2	6.7	5.58	0-9
Spin	Potential	No.	63 54	52	99	63	98	62 51	65 54	999	1 88	61	63	65	29

E.	n- ite	ex.	m -1	m 0	+ 0	\0 J	+ 0	+~	01.5	10 C	m\2	10 ~	<i>m</i> +		10. 1
dyed yarn	Com- posite	Index	103	103	104	106	104	104	102	106	103	105	103 104	104 107	105
Color 22s d	Blue- ness	위	25.9	25.9	25.9 25.3	26.3	25.9	26.1 25.2	25.8 25.2	26.6	25.9	26.1 25.9	25.9	25.9	25.9
8	Reflect- ance	Rd	27.4 27.6	27.5 27.4	26.7	26.6	26.8 27.2	27.2 28.3	27.7	27.3 28.1	27.1 26.6	26.8	27.3 27.0	27.0	26.4 27.3
ned yarn	Com- posite	Index	103	102 105	103	105 104	100	102 104	101	106	104 105	103 106	103	10 2 106	103
Color 22s bleached yarn	Yellow- ness	위	8 8 8 8	3.5	3.5	3.0	3.7	3.3.	3.1	8.8 9.8	3.2	3.1 3.1	3.1 3.1	ლ ო ლ ო	3.3
Color (Reflect- ance	찚	84.5 85.9	83.8 85.4	84.6	85.1 84.6	83.9 87.4	84.0 85.1	83.3 84.4	85.5 86.0	84.8 85.1	84.3 85.6	84.3 85.3	84.2 85.4	84.9
Yarn imprfctns	Second	No.	13	1½ 20	18	16 16	18 16	16	18	13	14 15	13 17	13	14 15	15
Yarn i	22s or 27 tex	No.	16	18 25	25	8,8	22	22 17	23	13	18	17 22	18 21	18	18
Yarn appearance	Second	Index	82 71	81	83 75	77 70	77	78	73 80	83	77	86 78	81 80	477	79
Yarn ap	22s or 27 tex	Index	704	106	98 10 5	88	<i>97</i> 103	103	107	110	100	111	102	99	103
elongation	Second	Pet.	† c.	4.1	4.7	4.5 3.9	3.5	3.6	4.4	4 K K	4.6	4.2 4.7	4.5	44	8.4
Yarn e	22s or 27 tex	Pct.	6.0	5.5	5.5	5.5	5.2	0.4	6.5	5.0	5.8	6.1 6.4	6.4	5.8	0.9
rength	Second	Lbs.	35	30,90	38	34 32	40 28	33 27	34 30 ·	38	35 34	32 37	35	38	37
Yarn strength	22s or 27 tex	<u>Lbs.</u>	104	3.85	98	103	115	101 86	103 94	98	105	98	106	106	109
Spinning	lots	No	26	13	99	915	ωω	99	mm	mm	33	18	51 445	12 12	9
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1974 1975	Georgia 1974 1975	North Carolina 1974 1975	South Carolina 1974 1975	Long staple: Alabama 1974 1977	Georgia 1974 1975	North Carolina 1974 1975	South Carolina 1974 1975 SOUTH CENTRAL	Arkansas 1974 1975	Louisiana 1974 1975	Mississippi 1974 1975	$\frac{\text{Missouri}}{1974}$ 1975	Tennessee 1974 1975

Table 2. -- Continued

able 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1974 and 1975--Continued

								-14-						
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Spinning Potential	No.	63	67 55	38 146	41 42	94 04	63	26 55	55 54	58 57	72 72	88 89	88
Picker	& card waste	Pet.	0, 80 6, 80	4.8	7.1	7.4	7.2 6.4	5.7	6.7 7.4	4.7	6.2 5.7	5.8	4.7	7.4
stock	Com- posite	Index	8 22	100	89	2 8	8,88	100	901	97	98 103	101	100	98
of raw st	Yellow- ness	No.	m 01	നന	<i>ব</i> ব	크크	44	നന	'nм	നന	a m	നന	ભા ભ	ุณ ณ
Color	Gray- ness	છુ	a a	чε	그	നവ	നവ	ત્ય ત્ય	4 L	ณ ณ	2 -1	чч	NО	ич
Shirley	non- lint	Pet.	τ· τ	3.5	3.0	6.4 6.4	3.8	9 0 9 0	3.5	4.1	0.0 0.4	લું લ લું ભુ	9.0 9.0 9.0 9.0	2.8
Elon-	gation 1/8"	Pet.	6.1 5.6	7.2	5.6	6.5	6.3	g.9	6.3	6.3	6.3	5.6	0.9	5.5
strength	1/8" gage	G/tex	23 24	88	53 5	22	23 23	ଅଧ	22 23	ଷ ଷ	25. 24. 24.	27 27	88	27
Fiber st	Zero gage	Mpsi	87 89	83 86	87 88	81 84	82 83	84 81	85 82	85 86	85 86	8\$	88	\$2
Micro-	naire	Rdg.	4.1	6.4 6.6	2.1 11	33.	4.4	ተ . ተ ተ	4.1	2.5	<u> </u>	4.0	9 m	0.4 0.8
length	50/2.5 unif.	Pet.	## #3	43 43	44 44	††	1 11	4 45 72	7† 14 13	42 41	‡ ‡	9 [†] 1	45 45	44 145
Fiber	2.5% span	崩	1.15	1.14	.95	84	8.8.	1.08	1.05	1.07	1.10	1.11	1.16	1.17
Classification	Staple	32d in.	36.0	35.0 33.7	30.4 32.0	30.9	31.4	33.8 34.2	33.4 33.9	33.3 32.7	35.1 35.1	35.3 35.4	36.7	36.5
Classif	Grade	Index	8 %	76 88	87 95	88 8	88	95	87 95	888	93	96	76 24	48
Spinning	lots tested	No.	നന	mm	15	333	99	21 12	66	18	26 15	43 54	10	4 8
Area	state and crop year	SOUTH CENTRAL (Continued) Long staple:	Mississippi 1974 1975	<u>Tennessee</u> 1974 1975 SOUTHWEST	Snort staple: Central Texas 1974 1975	Northwest Texas 1974 1975	<u>Oklahoma</u> 1 <i>97</i> 4 1 <i>975</i>	Medium staple: South Texas 1974 1975	Central Texas 1974 1975	Northwest Texas 1974 1975	FEST Medium staple: Arizona 1974 1975	California 1974 1975	Long staple: New Mexico 1974 1975	West Texas 1974 1975

dyed yarn	Com- posite	Index	104 102	105 104		99	<i>97</i> 102	100	104	99	88	102	102 102	99	98 104
Color 22s dy	Blue- ness	위	26.0	% .0.9		25.4	24.9 25.4	25.3	26.3	25.4	24.8 24.9	25.8	25.6 25.5	25.1 25.7	25.2
COL	Reflect-	IN IN	26.7	26.4		28.3	28.2 26.9	27.5 25.8	27.3	28.5	28.4 27.7	27.8	27.0	27.9	28.2
ed yarn	Com- posite	Index	103	104		98 107	97	99	100	96	101 102	103 105	102 104	104	102 102
Color 22s bleached yarn	Yellow- ness	위	3.0	3.4		33.5	4.1 3.5	3.6	6. c	3.7	9.8 6.7	3.0	 	3.5	3.1 3.2
Color 2	Reflect- ance	묎	84.3	85.2		82.9 86.4	83.2 83.8	83.5	83.1 86.5	82.3 86.0	84°48	84.2 85.0	84.0 84.7	84.7 85.3	83.8 84.0
Yarn imprfctns	Second	No. 50's	15	14 13	8.8	27	51 41	45 38	20's	20 17	28 37	13	12	16	12 26
Yarn im	22s or 27 tex	No.	18	19		1.8	31 20	28 17	17	50 th	33 45	17	16 23	21	18 31
earance	Second	Index 50's	80 77	28	8.8	121	108	118	50's 80 83	4½ 4½	66 63	83 76	81 73	75	80 . 70
Yarn appearance	22s or 27 tex	Index	103	100		99 711	87 101	91 107	85	82 93	79	107	100	95	100
elongation	Second	Pet. 50's	7. t	4.6	8.8	6.6	4°.2	7.1	4°4	0.4	4.7	ተ . ተ. ተ	4.4 4.7	4.8 5.0	4.7 4.8
Yarn eld	22s o r 27 tex	Pet.	5.5	6.3		5.6	6.3	6.6		4.0.0	6.4	5.9	6.0	0.0	6.0
Yarn strength	Second	Lbs.	33	35	8	282 328	305 301	293 306	50's 37	27 33	34 33	34	9 [†] 1	25	45 52
Yarn st	22s or 27 tex	Lbs.	104	107		86 103	833	88 66	105	86 10 2	102 104	102 107	125	129 138	126
Spinning	lots	1) No.	നന	mm		15	333	00	12	0,0	18 15	26 15	43 54	10	# £
Area	state and crop year	SOUTH CENTRAL (Continued)	1974 1975	<u>Tennessee</u> 1974 1975	SOUTHWEST Short staple:	1974 1975	Northwest Texas 1974 1975	<u>Oklahoma</u> 1974 1975	Medium staple: South Texas 1974	Central Texas 1974 1975	Northwest Texas 1974 1975	WEST Medium staple: Arizona 1974 1975	California 1974 1975	Long staple: New Mexico 1974 1975	West Texas 1974 1975

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1975

Spinning	Poten- tial	No.		75	84	22852		43 55	51 58	54	54 65 65	28 88	50 46 59	25 7 23
Picker	& card waste	Pet.		5.7	5.3	7.000 K		5.6	7.0	7.8	~~~ ~+ a	6.9	6.1 4.4	0.00 0.00 0.00
ock	Com- posite	Index		102	101	87888		88	88	8	99 100 101	91 95	103 101 99	844
Color of raw stock	Yellow- ness	₩.		4	4	ታ ሎታታታ		mm	mm	m	mmm	mm	mmm	<i>ব</i> ব ব
Colo	Gray- ness	No.		٦	1	a a a a a		ત્ય ત્ય	mm	7	7 8 8	mm	448	ผ่พพ
Shirley	Analyzer non- lint	Rt.		8.3	2.9	4444 8.0100.0		3.3	ቱ. ተ ተ ተ	5.2	8 0 8 0 0 0	1°1	4.1 2.4 2.4	4.2 3.8 9.9
Elon-	gation 1/8"	Ret:		5.8	6.2	4.9 6.6 6.7 6.7 6.1		6.9	5.5	6.3	6.7 6.6 7.9	6.5	6.65 6.08	6.5
Fiber strength	1/8" gage	G/tex		52	52	2 2 2 2 2		8 8	22 82	21	ଷଷଶ	8 8	22 823	23 22
Fiber s	Zero gage	Mpsi		8	98	8 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		81 83	81 88	82	88 85 865	85 85	86 85 80 80	\$ 8 \$ 8 \$ 8
Micro	naire	Rdg.		ţ.5	3.9	8 8 8 8 8 4 8 4 9 9 9 9		, 6.4 6.4	ቲ. ተ.	7.2	1.4 1.4 1.4	0.4 6.4	3.1 2.8 4.3	0.04 0.04 0.04
Fiber length	50/2.5 unif.	Pet.		77	54	きをなまた		7† 14	54 47	45	4 4 4 5 2 4 4 5 4 7	54 11	39 45 45	553
Fiber	2.5% span	In.		1.00	1.01	88. 89. 80.1 40.1		1.00	1.09	1.06	1.06	1.06	1.00	1.04
Spinning	lots tested	No.		m	9	00044		4 12	74	4	15 56 5	13	wwn	ಸ ೧೧ ಸ
,	aple	32d in.		32	32	33 33 33 33 33 33		33	34 35	34	34 36 36	34 35	333 35 34	3,33
Staple group,	area, grade and staple	Code	ROUP	31	32	75	GROUP	41	51	52	17 41	51	17	42
Staple	grade	Name	SHORT STAPLE GROUP	Southwest	M Lt Sp	SIM Lt Sp	MEDIUM STAPLE GROUP	Southeast SLM	IM	IM Lt Sp	South Central SIM	IM	Southwest SIM	SIM Lt Sp

ed yarn	Com- posite	Index	108	108	100 99 104 105		101	102	102	104 105 107	101	102 94 107	101
Color 22s dyed yarn	Blue- ness	위	26.8	56.6	25.25.38 25.38 26.38 26.38		25.6	25.5	25.5	26.1 26.2 26.5	25.5	25.45 26.33 86.33	25.3 25.3 26.7
Col	Reflect- ance	묎	26.7	26.5	27.2 26.8 26.8 26.2 26.0		27.6	27.2 28.0	56.9	27.0 26.9 26.4	27.7 26.6	27.8 28.6 26.9	27.2 27.3 27.3
ed yarn	Com- posite	Index	112	104	99 99 103 101		108 10 2	112	201	106 105 110	103	107 103 108	102 104 105
Color 22s bleached yarn	Yellow- ness	위	3.1	3.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		33.5	3.0	3.3	3.50 1.60	3.4	88.8 8.7.8	6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Color 2	Reflect- ance	Rd	88.1	84.9	83.3 84.7 83.4 83.4		86.8 84.2	88.1	86.2	85.8 85.0 86.7	84.6 85.1	86.2 85.1 86.4	84.2 84.8 85.4
Yarn imprfctns	Second	No.	88 23	2 4	42 33 45 29		23 16	98	21	17 15	17	5 12 12	33 18 17
Yarn in	22s on 27 tex	No.	13	12	1,48,14		26 19	34 35	58	21 19	21	30 57 19	41 22 22
Yarn appearance	Second	Index	8s 123	128	122 118 126 122 125		70	67 62	80	77 79 76	85 75	998	65 77 85
Yarn ap	22s or 27 tex	Index	117	118	106 98 110 98 110		92 104	82	102	102 103 106	10 10 10 10	73 63 102	75 97 110
ongation	Second	Pet.	8s 6.7	7.4	7.17.7.98.09		4.1 4.2	8.6.	3.9	444	4.4 6.4	444	4.3 4.7
Yarn el	22s or 27 tex	Pct.	5.9	6.3	6.7 6.7 6.7		5.9	5.4	5.4	6.0	5.9	0.00 v 0.00	5.8
Yarn strength	Second	Lbs.	333 333	312	290 309 311 317 315		26 31	34,	31	31 35 38	33 34	31 34 34	33333
Yarn s	22s or £7 tex	Lbs.	103	66	92 100 102 103		91	94 102	95	101 106 111	103	100 98 103	103 104 99
Spinning	lots	No.	т	9	とりのよよ		η 12	7	4	15 56 5	13	wwn	ታ የነታ
roup,	staple	32d in. GROUP	31 32	32 32	42 29 30 . 31 . 33	GROUP	41 33 34	51 34 35	52 3 ⁴	al 41 34 35 36	51 34 35	41 32 33 34	, 42 32 33 34
Staple group,	area, grade and staple	Name Code 326 SHORT STAPLE GROUP	Southwest	M Lt Sp	SIM Lt Sp 42	MEDIUM STAPLE GROUP	Southeast	ГМ	IM Lt Sp	South Central SLM 41	IIM	Southwest	SLM Lt Sp 42

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1975--(Continued)

tock Picker Spinning & card Poten-Com- waste tial	5.1	104 5.1 62 105 5.2 72 104 6.8 74 103 5.8 76		ייי סיי ייי ייט ממ סיט		1.0.0 0.0.0
Color of raw stock	നന	ଳଳ ପାଷ	mm ៧៧ m ៧	mm ญญ mญ	mm ๗๗ m๗ m	നന വവ നവ ന ന
Gray	0 0					
Elon- Shirley gation Analyzer 1/8" non-						
	25 26	25 26 28 27	52 52 53 54 54 55	255 27 27 27 27	255 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	255 27 27 28 29 29 29
	91	55 85 75 85	£3 &\$ %\$	53 55 85 53	8 \$3 \$5 83 8	3 & \$3 \$5 \$5
Micro- p.5 naire		45 4.3 46 4.1 46 3.9 46 3.9				
2.5% 50/2.5 span unif.		1.10 1.14 1.1.1 1.1.1 1.1.1				
Spinning lots tested		19 11 8				
		30 30 30 30 30 30				
Staple group, area, grade and staple	West Mid 31			West 31 SIM+ 40 SIM 41	APLE GROU	West 31 SIM+ 40 SIM 41 LONG STAPLE GROUP SOUTHEAST SIM It Sp 42 IM 51
Name Code 32d in. No. In. Pct. Rdg. Mpsi G/tex Pct. No. No. Index Pct. No.		40 35 4 1.14 46 3.9 94 28 6.2 2.0 0 2 104 6.8 3.9 3.9 94 27 5.7 2.4 0 2 103 5.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 4 1.14 46 3.9 94 28 6.2 2.0 0 2 104 6.8 36 8 1.14 46 3.9 94 27 5.7 2.4 0 2 103 5.8 1 35 13 1.11 45 4.0 93 27 6.0 2.5 1 3 101 5.6 36 8 1.12 46 4.0 94 27 6.1 2.6 1 2.6 1 5 5.3	35 4 1.14 46 3.9 94 28 6.2 2.0 0 2 104 6.8 1 35 13 1.11 45 4.0 94 27 6.0 2.5 1 2.6 1 5.8 36 8 1.12 46 4.0 94 27 6.0 2.5 1 2.6 1 5.6 2 103 5.8 5.8 5.8 5.8 6.1 2.6 0 2 104 6.8 5.8 6.1 2.6 1 2.6 1 2.6 7 6.1 2.6 1 2.	1 35

	ed yarn	Com- posite	Index		105	101	101		66	104	105 104
	Color 22s dyed yarn	Blue- ness	위		26.1 25.9	25.2	25.5 25.4		25.2	25.9	25.8 26.0
	Col	Reflect- ance	쩶		26.6 26.8	26.8	27.6 27.4		28.1	27.0	26.3 26.3
	ed yern	Com- posite	Index		105	103	103		111	110	104
	Color 22s bleached yarn	Yellow- ness	₽		3.1	3.2	6 6 6 6 7 6		3.3	3.2	a a e e
	Color 2	Reflect- ance	Rd		85.1 85.0	84.2 84.5	84.4 85.0		88.1	87.5	84.8 87.3
	Yarn imprfctns	Second	No.		17 18	15	18 16		17	13	26 18
	Yarn ir	22s on 27 tex	No.		23 82	20	ଷ ଷ		54	16	833
	Yarn appearance	Second	Index		74 72	72 78	73		80	77	67 75
	Yarn api	22s or 27 tex	Index		783	88	\$ 8		108	113	89 95
	ngation	Second	Pct.		†•†	88.	4.8		3.7	3.7	44
	Yarn elongation	22s or 27 tex	Pet.		5.8	6.0	6.1		8.4	5.0	6.0
	Yarn strength	Second	Lbs.		94	84	2 [†] 1		27	27	50
	Yarn st	22s or 27 tex	Lbs.		117 127	129	129 129		ή8	91	136
	Spinning	lots	No.		19	48	13		7	m	L 4
		Ψ	ni in.	tinued,	36	36	36		34	34	36
	group,	a, stapl	Code 32d in.	E (Con	31	04	41	GROUP	5 th d	51	31
	Staple group,	area, grade and staple	Name Cod	MEDIUM STAFLE (Continued)	West	SIM+	SIM	LONG STAPLE GROUP	Southeast SIM Lt Sp 42	IM	West Mid

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1975

Spinning	1. 1	Classification	Fiber length	length	Micro-	Fiber strength	rength	Elon-	Shirley Analyzer	Color	of raw st	stock	Picker	Spinning
	Grade	Staple	2.5% span	50/2.5 unif.	naire	Zero gage	1/8" gage	gation 1/8"	non- lint	Gray- ness	Yellow- ness	Com- posite	& card waste	Potential
	Index	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	No.	No.	Index	Pct.	No.
	93	31.0	.95	74e	4.2	86	22	6.8	3.0	ળ ળ	† †	666	0.9	77 179 179
	1 68	32.7 32.3	1.04	†† 4†	4.7	92 85	2 ⁴	5.7	3.1	તા તા	† †	100	5.5	51
	76	35.5	1.12	45	w 0,	76	27	5.9	2.3	П	m	103	5.3	17
	76	35.3	1.12	94	г·†	83	27	0.9	2.4	П	m	103	5.7	73
	76	35.7	1.13	45	η.1	76	27	5.6	2.4	П	α	103	5.7	75
	93	34.7	1.10	45	4.1	83	21	8.9	د . د.	α	m	8%	5.8	59
	46	35.0	1.12	444	4.5	8	23	5.6	9.0	Т	m	101	6.4	57
	お	34.3	1.05	74	4.5	89	23	0.9	2.7	α	m	%	9.9	50
	88	33.3	1.05	39	2.9	89	82	0.9	5.0	Н	m	102	8.4	47
	88	35.0	1.11	44	3.9	8	ħг	5.8	3.3	m	m	96	5.8	29
	91	33.3	1.02	39	2.7	83	52	9.9	9.4	α	m	101	7.9	45
	34848	34.0 35.0 35.0 35.3	1.06	전 주 주 주 주 주 주 주 주	44444 1.0.0.0.0	88 88 84 44	8 8 8 8 4	7.7 7.3 7.3	% a a a a o r + r +	иинно	๛๛๛๛	99 100 100 104	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% 4 8 6 6 7 4 8 4 4 8 4 4 8 6 6 7 4 8 6 6 7 4 8 6 6 6 7 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

ed yarn	Com- posite	Index	110	107		101	102	101	104	109	100	16	100	76	104
Color 22s dyed yarn	Blue- ness	위	27.1	27.2		25.4	25.6	25.5	26.2	27.0	25.2	24.3	25.5	25.0	86.2
CoJ	Reflect- ance	뭶	26.2 26.2	27.7		27.2	27.4	27.4	27.2	26.7	27.5	. 58.6	27.8	28.3	27.1 26.5 26.3 27.1
ed yarn	Com- posite	Index	110	10 ⁴		106	102	103	101	102	. 101	100	100	103	102 105 108 111
Color 22s bleached	Yellow- ness	위	3.3	3.4.		3.2	3.2	3.1	3.1	3.2	3.6	3.7	3.5	3.4	2010m
Color 2	Reflect- ance	Rd	87.5	85.3 83.0		85.5	84.1	4.48	83.5	83.9	84.2	84.2	83.2	84.9	84.0 85.0 86.1 87.5
Yarn imprfctns	Second	No.	8 <u>8</u> 2 17 49	7T 101		50	15	12	14	15	6	53	53	75	27 17 18
Yarn ir	22s or 27 tex	S	<u>Yarns</u> 9 26	9		56	19	17	19	50	11	63	58	52	24 17 18 26 26
Yarn appearance	Second	Index	Carded 8s 127 120	130		69	75	83	77	63	87	09	29	09	0888 088 080 080 080 080
Yarn ap	22s or 27 tex	Index	120 95	120		88	100	100	103	76	120	63	87	63	105 104 104
Yarn elongation	Second	Pet.	88.2 8.2	7.0		L•4	8.4	7.4	4.5	3.7	3.5	4.2	4.5	4.5	74.0.44
Yarn el	22s or 27 tex	Pct.	6.3	6.0		0.9	6.2	5.7	5.7	5.2	5.3	6.1	6.2	6.2	00000
Yarn strength	Second	Lbs.	8s 328 311	344 317		94	94	84	33	32	58	31	39	30	3688372
Yarn s	22s or £7 tex	Lbs.	88	109		127	128	130	100	101	86	100	113	98	100 111 115 106
Spinning	lots	No.	m a	mv		21	9	m	m	8	87	m	m	8	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Processing group,	variety, and state	SHORT STAPLE	Lankart 611 Central Texas Northwest Texas	Lankart LX-57 Central Texas Northwest Texas	MEDIUM STAPLE	Acala SJ-2 California	Acala SJ-3 California	Acala SJ-4 California	Auburn M Missouri	Brycot #4 Arkansas	Coker 201 North Carolina	Coke <u>r 312</u> Northwest Texas	Coker 417 Alabama	Coker 5110 Northwest Texas	Deltapine 16 Alabama Arkansas Louisiana Mississippi Arizona

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1975-Continued

Processing group,	Spinning lots	1 1	Classification	Fiber	Fiber length	Micro-		strength	Elon-	Shirley Analyzer	Color	of raw	stock	Picker & card	Spinning
tested	g g	Grade	Staple	2.5% span	50/2.5 unif.	патге	Zero gage	1/8" gage	1/8"	non- lint	Gray- ness	Yellow- ness	Com- posite	waste	Potential
N N	.1	Index	32d in.	ll.	Pet.	Rdg.	Mps1	G/tex	Pet.	Pet.	No.	No.	Index	Pct.	No.
3		お	35.0	1.10	45	4.5	98	†Z	6.3	3.6	α	CV	98	4.9	55
3		93	35.3	1.14	44	0.4	, 98	23	4.9	8.	a	α	86	6.5	65
30		100	36.5 34.3	1.12	44 45	4.4 4.5	86 91	24 24	7.1	2.2	00	ma	104 104	4.6	61 53
~		91	34.7	1.07	9†	1,1	83	23	7.1	3.2	α	α	88	5.8	63
mm		80 85	33.7 34.0	1.02	7†2 1†2	# # % d	₹8	23	6.1 5.8	5.4 5.5	r/ w	നന	93.33	7.9	51 65
m		89	32.7	1.02	45	3.8	98	55	6.2	3.7	m	4	76	6.7	53
3		16	32.0	86.	742	2.5	85	55	9.9	3.6	1	. w	103	7.6	53
m		88	35.3	1.11	45	η•η	85	55	5.6	5.2	m	κ	8	9.7	50
3		46	35.3	1.13	94	5.0	ま	23	4.9	3.6	Ø	m	100	5.8	52
15 12 3		88888	34.7 34.8 34.8 34.7	1.10	44 44 45 465 475	4444 6.0.0	84 85 83 87	23 22 23 23 23 23	66.1 66.1 7.64 7.64		аакн	ฅ๚ฅฅฅ	99 98 92 101	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$\$\tau \tau \tau \tau \tau \tau \tau \tau
3		91	34.7	1.11	45	4.7	83	22	5.0	3.0	Ø	α	. 97	6.2	52
(,,	8	92	33.0	1.02	141	3.5	81	23	7.0	4.1	α	m	%	7.4	प्रप
m		8	35.0	1.11	94	8.4	83	23	5.4	3.5	α	Q	88	6.5	53
(,)	m	91	32.3	1.02	75	3.4	87	ଧ	5.4	4.9	ч	ю	102	6.3	84

107

56.9

27.0

103

3.2

84.5

23

32

73

93

3.6

5.1

32

100

Stoneville 731N Mississippi

Tamcot SP37 Central Texas

103

26.3

27.8

107

3.2

86.1

2

5/7

9

80

3.9

5.5

30

98

ed yarn	Com- posite	Index	102	103	109	104	97	105	66	100	106	106 102 105 106	104	66
Color 22s dyed yarn	Blue- ness	۹]	26.0	25.8	26.7	25.9	24.9 25.8	25.8	24.9	25.5	26.5	88.55.98 86.59.39	26.1	25.2
00]	Reflect- ance	Rd	28.2	27.1	26.0	26.8	28.2	26.3	27.2	28.1	26.9	26.5 27.8 26.7 26.9	27.1	27.8
d yarn	Com- posite	Index	104	104	106	109	105	101	104	101	106	105 104 103 107 101	105	104
22s bleached yarn	Yellow- ness	 	3.1	3.1	0.0	2.9	0 m	3.0	3.6	3.2	3.1	8.8.8.8.8 8.8.8.8.1.	3.2	3.6
Color 2	Reflect- ance	盟	7.48	84.7	85.3	86.5	85.9 84.3	83.3	85.5	83.5	85.5	887.28 83.53 83.68	85.4	85.3
Yarn imprfctns	Second	No.	.50	22	15 16	15	12	19	42	27	15	17 21 17 16 16	10	56
Yarn in	22s or 27 tex	No	56	25	19	21	16 22	23	50	38	19	28 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	11	33
Yarn appearance	Second	Index	77	73	80	83	80	02	. 09	63	70	74 73 77 80	87	63
Yarn ap	22s or 27 tex	Index	103	8	98 103	93	113	93	63	8	100	93	113	83
ongation	Second	Pct.	7.	6.4	4.7	4.9	3.7	4.1	ተ• ተ	3.5	3.5	4444 K	3.6	4.1
Yarn el	22s or 27 tex	Pct	5.9	4.9	6.1	6.7	5.4	5.9	6.2	5.2	4.7	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.2	5.9
Yarn strength	Second	Lbs.	34	71	39	39	39	34	33	59	30	32 33 31 31 31	56	98
Yarn s	22s or £7 tex	Lbs.	106	113	110	211	92 113	105	103	93	86	100 104 102 100 101	66	8
Spinning	lots	No.	m	8	9 6	8	നന	60	m	т	М	15 18 18 18 18	m	8
Processing group,	variety, and state	MEDIUM STAPLE (Continued)	Deltapine 25 Mississippi	Deltapine 55 Mississippi	Deltapine 61 Arizona California	Deltapine 45A Mississippi	Dixie King III Georgia Mississippi	Lockett EXL Northwest Texas	Lockett 4789A Northwest Texas	McNair 612 North Carolina	Stoneville 7A Arkansas	Stoneville 213 Arkansas Louisiana Mississippi Missouri Arizona	Stoneville 256 Mississippi	Stoneville 603 Alabama

Table 4. -- Continued

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1975--Continued

Processing group.	Spinning	Yarn strength	rength	Yarn elongation	ngation	Yarn appearance	earance	Yarn im	Yarn imprfctns	Color 2	Color 22s bleached yarn	d yarn	Col	Color 22s dyed yarn	d yarn	
variety,	lots	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	22s on 27 tex	Second	Reflect- ance	Yellow- ness	Com- posite	Reflect- ance	Blue- ness	Com- posite	
LONG STAPLE	No	Lbs.	Ibs.	Pct.	Pet.	Index	Index	No.	No.	Rd	위	Index	Rd	위	Index	
Acala 1517-V New Mexico	m	141	53	4.9	5.2	1.9	09	29	51	84.2	ლ ლ	102	26.1	25.6	104	
Coker 310 Alabama Georgia South Carolina Mississippi	നയ നന	46 88 4111	29 29 40	~ 	4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	107 115 120 103	83 83 77	22 17 13	15 13 12	87.1 85.4 86.0	www. 4400	110 104 108 108	27.2 28.3 28.1 27.2	25.6 25.2 25.5	102 98 100 102	
EXTRA LONG STAPLE							Combed Yarns	rns								
Pima S-4 Arizona	9	17	37	5.4	9.4	108	113	α	CV	81.6	3.2	%	26.0	56.6	108	

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975

	Composite & Card	-	Index Pct.		99 6°4 98 6°0 101 5°7		103 5.6 102 5.7 102 6.1		99 5.7 100 7.0 97 5.2		100 5.8 101 5.1 98 5.5		102 5°3 102 5°1 103 5°4		99 7.4		99 5.2
Color of raw stock	Yellow-	ness	No.		444		444		ቆ ጠጠ		444		444		44		444
[00]	Gray-	ness	No.		7 7 7				222		222				7 7		222
Shirley Analyzer	Total	waste	Pet.		3.3		3.4		 		4.0 2.6 2.6		2.9		4.3		2.5
Shirley	Visible	waste	Pet.		2.6 2.1 1.7		2.1 1.6 1.3		2.5 2.6 2.8		2.9 1.9 1.9		1.9 2.0 1.7		2.9 2.7		1.6
	Elon- gation	1/8"	Pet.	L Z	6.1 6.6 7.6	₽	4 N N • • • • • N N	L N	6.2 7.7 5.1	TN	50.00 4.00	F 2	N N O	IN	7.6	⊢ ×	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
strength	1/8,,	Gage	G/tex	100 PERCENT	23 22 22	99 PERCENT	24 22 21	95 PERCENT	22 22 22	100 PERCENT	5 5 5 7 7 7	99 PERCENT	22 21 23	100 PERCENT	21	100 PERCENT	23 23
Fiber		Gage	Mps 1		87 88 85		102 91 89		82 81 79		92 89 94		87 88 91		78		87 87 84
		naire	Rdg.		444		4.04		444		4.4		3.7		3.5		60 6
Digital Fibrograph	L.	unif.	Pct.	611	4 4 4 6 6 6	LX571	444	57	44 43 45	LX571	46 47 48	LX571	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	611	44	LX571	444
Digital	2.5% spen		ı. In.	LANKART	0.95 0.95 0.95	LANKART	0.98 1.01 0.98	LANKART	1.06 1.03	LANKART	1.03	LANKART	1.01	LANKART	0.99	LANKART LX571	1.02
n Area,	mpling tion	Staple	32d in.		331		31 32 32		33 33		32 33		32 32 32		32 32		286
State, Production Area,	Chronological sampling and Classification	Grade	Code	ST TEXAS N	T SP 42 T SP 42 31	C. F.	E E E		T SP 42 T SP 42 T SP 42		4 4 4 1 1 1	CHIE	T SP 32 T SP 32 31	NORTHWEST TEXAS ANSON	T SP 52 T SP 42	RNETT	T SP 32 T SP 42 T SP 42
State	Chron		Name	SOUTH WEST CENTRAL TEXAS BRANDON	SLM LT SLM LT	COMMERCE	III	TAYLOR	SLM LT SLM LT SLM LT	WACO	SLM SLM SLM	WAXAHACHIE	EXE	NORTHWE	I LM LT SLM LT	BURKBURNETT	SLALT

 $\frac{1}{2}$ Reduced from 42 because of bark $\frac{2}{2}$ Reduced from 32 because of bark

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975

THE PROMERTIES Not at the comparison of the comp		l yarn	Com- posite	Index	110 109 111		108 109 110		108 106 104		106 104 112		109		103		107 109 105	
Control Cont					9 7 7		357		6.5		6.9		7.2 6.8 6.0		5.50		4 9 9 9	
Consider	- 1	1		R _d	7.1		6.5		408		7:1		7.1		6.6		26.3 25.9 25.8	
Character Production Area Vean strongth Years alongation Vean appearance Vean imprifed Production Area Vean strongth Year of long patch Vean Case	- 1-			ndex	104 104 122		107 108 107		104		103 105 104		107 107 121		101		105 100 96	
TANDER CORPORATION ACRES State Corporation Corporati																	3.0 3.1	
State Production from Pr		Color-22		Rd	5.5						ທີ່ທີ່						85.0 83.1 81.4	
State Part	Ī	yarn		Index	94 94 102		100 98 102		93 98 96		99 98 92		93 94 98		95		84 88 88	
Part		to.		위			222		12.3 12.2 11.5		12.1 11.9 11.6		11.4		22		11.7	
State Production Area Name State Name N			Reflct-	Rd	67.0 67.6 72.4		9.0		986		9.		67.9		67.4		65.0 63.4 65.0	
Start Star		Spin-	ning Poten- tial	No.	4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0		443 38 38		52 51 52		44 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		9 4 6 5 5		51 50 50	
Stable S		fctns.	٠,	No.	111	F 2	12 13 15	F- Z	222	L N	8 0 8	F	13	F.	25	N ₄	111	
Stand Classification					14 20 18		19 22 24		24 28 23		14 16 13		21 16 23	PE	53		23 28 35	
TAYLOR SLM LT SP 42 32 32 32 105 105 5.4 13 ANXAHACHIE M LT SP 32 32 32 31 105 5.6 13 SLM LT SP 42 32 32 31 105 5.6 13 SLM LT SP 42 33 344 105 6.8 5.4 13 SLM LT SP 32 32 32 31 105 6.8 13 SLM LT SP 32 32 32 31 105 6.8 5.4 13 MAXAHACHIE M LT SP 32 32 32 31 107 6.6 5.9 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 32 315 107 6.6 13 M LT SP 32 32 315 107 6.6 13 M LT SP 32 32 315 107 6.6 11 M LT SP 32 32 315 107 6.6 11 M LT SP 32 32 315 107 6.6 11 M LT SP 32 32 315 107 6.6 11 M LT SP 32 32 315 107 6.6 11 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 32 32 315 107 6.6 6.0 13 M LT SP 42 32 32 315 107 6.6 6.0 13 M LT SP 42 32 39 319 107 6.6 6.0 13 M LT SP 42 32 39 319 107 7.2 6.0 13 M LT SP 42 32 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 319 107 7.2 6.0 13 M LT SP 42 33 319 107 7.2 6.0 13 M LT SP 42 33 319 107 7.2 6.0 13 M LT SP 42 33 319 107 7.2 6.0 13 M LT SP 42 33 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 30 319 107 7.2 6.0 13 M LT SP 42 32 319 107 7.2 6.0 13 M LT SP 42 32 319 107 7.2 6.0 13 M LT SP 42 32 319 107 7.2 6.0 13 M LT SP 42 32 315 107 7.2 6.0 13 M LT SP 42 32 315 107 7.2 6.0 13 M LT SP 42 32 315 107 7.2	ł	7	or		120 120 120	66	110 120 110		110 110 110	100	120 120 120		120 120 120	100	100	100	120 110 110	
State, Production Area Tarn strength Tarn elongation Thronological sampling Ss or C2s or Ss or C2s or Crade Staple The text The te			or	%1	130 120 130		120 120 120		130 120 130		130 130 130		130 130 130		120		130 120 130	
Taylor Taylor Taylor Taylor Taylor					6.5 6.1		5.4		6.3		80 40 80 40		6.0		7.1		0000	
tate, Production Area Yarn strength		elonga	or tex	نا	8,78	112	80 m 80		N 1- N	112	1.80	112	209		3	175	25.00	
tate, Production Area Yarn st hronological sampling 8s or Grade Staple 74 tex Grade Staple 74 tex Grade Staple 74 tex Staple 74 te	-		8s 74	•														
tate, Production Area Yarn Aronological sampling Aronological sampling Aronological sampling Aronological sampling Grade Staple Grade Staple Grade Staple Grade Staple Grade Staple Taple Aronological sampling Aronologic		strengt				LANK		LANK		LANK		LANK		LANK		LANK		1
tate, Production Are hronological samplin and Classification Grade Stap Grade Stap Grade Stap Grade Stap Grade Stap COUTH WEST CENTRAL TEXAS BRANDON SLM LT SP 42			8s or 74 te															Doding to the state of the stat
TAYLOR SLM LT SP MACO SLM LT SP MACO SLM LT SP MACO SLM LT SP M LT SP SLM LT SP M LT SP SLM LT SP		Area	ion taple	2d in										51				4
ANSE SEL SEL SEL SEL SEL SEL SEL SEL SEL S		tion	icat.	xAS							444	ш		TEX	SP 5	11:		1
ANSE SEL SEL SEL SEL SEL SEL SEL SEL SEL S		roduc	assif de	EST L TE		RCE		œ				ACHI		EST	11 5	URNE		4
Sta Chr.		te, P	nd Cl	HTH WARA	SLA	OMME	III	AYLO		ACO	SLM	HAXAH		INSON	SLM	SURKE		Podilo
10		Sta	g Cur	SOU		S		ļu.		R		all.		N	নাতা	m		/ [

Reduced from 42 because of bark .educed from 32 because of bark

1/ Reduced fro

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975--Continued

2	ite & Card		Pet.		96 7.6 ½ 98 8.1 ½ 98 8.4 ½		100 7.3 ½/ 99 7.1 ½/ 99 7.6 ½/		103 6.8 102 7.1 98 7.2		100 7.4 99 7.4 100 7.1		96 5.7 ½/ 95 7.0 95 6.9 ½/		103 5.1 103 6.0 102 5.5		102 6.6 98 6.6 96 7.0
stock	- Composite		Index		5 C G		6 6		10		01		Ф Ф		01		10
Color of raw stock	Yellow-		No.		444		444		ጠጠ ଏ		ммм		ମ ଏ ଏ		ጠጠቁ		4 N N
CC	Gray-		No.		m 2 2		222		7 7 7		~~~		m.m.m				3 2 =
Analyzer	Total		Pet.		4 4 4 5 0 0		3.0 4.1 4.1		2.6		3.5		644 8647		3.0		4 N 4 0 0 4
Shirley Analyzer	Visible		Pet.		3.6 3.6		1.5 2.5 3.0		1.6		2.4		2.3		1.8		W W W
	Elon- gation 1/8"	ì	Pct.	F	5.7 6.3 6.1	L 7	6.1 6.0 6.1	L7	5.8 7.2	17	6.2 6.1 6.1	F2	6.9	17	6.8 4.8 5.2	17	7.2
strength	1/8") }	G/tex	95 PERCENT	21	97 PERCENT	19 22 23	83 PERCENT	20 22 22	75 PERCENT	21 20 21	90 PERCENT	23 22 22	75 PERCENT	22 22	75 PERCENT	21 20 20
Fiber	Zero	2	Mps1		88 93 87		87 94 87		86 84 81		90 82 84		87 80 85		83 80 86		76 78 81
	Micro-		Rdg.		8.00 4.00 4.00		3.0 3.0		3.8		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3.0		4 W W		m 0 0 .
Digital Fibrograph	n 50/2.5		Pct.	31	4 4 4 N N 9	32	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	118	444 970 70	31	444	606 2	444	57	444	57	4 4 4 2 9 9 5
Digital	2.5% span		ı. In.	STRIPPER	0000	STRIPPER	0.85	PAYMASTER	0.86	STRIPPER	0.89	PAYMASTER	0.93	LANKART 5	1.00	LANKART 5	0.99 0.98 0.96
n Area,	mpiing tion	Staple	32d 1n.	,	29		28 31 29		29		30		30 31 30		32 31 32		31 31
State, Production Area,	Chronological sampling and Classification	Grade	Name Code	SOUTH WEST NORTHWEST TEXAS HART	SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	KRESS	M LT SP 32 SLM LT SP 42 SLM LT SP 42	L00P	SLM LT SP 32 SLM LT SP 42	LOOP	SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	LORENZO	SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	OLNEY	M LT SP 32 M LT SP 32 M LT SP 32	PADUCAH	SLM LT SP 42 2/ SLM SP 43 2/ SLM SP 43

Cotton stuck to processing rolls Reduced from 33 because of bark

নাথা

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975--Continued

elongation Yarn appeara c	Pct. Index In	7.0 6.4 110 7.0 5.7 120		7.7 6.2 120 7.8 6.3 120		6.5 5.5 130 6.2 5.4 130 7.4 6.4 110		7.8 6.8 120 7.4 6.0 120 6.9 5.5 110	606	7.5 6.3 120 7.6 6.4 130 8.4 7.6 120		7.7 5.9 130 7.9 6.8 120 7.4 6.5 130		8.0 130 6.7 120 6.7 120
ance Yarn imprfctns. Sor 8s or 22s or tex 74 tex 27 tex	Index No. No.	110 49 27 100 42 18 100 38 24	97 PERCENT	90 35 27 100 46 23 100 46 26	83 PERCENT	110 33 12 110 26 15 100 56 28	75 PERCENT	110 42 16 110 51 25 90 47 29	90 PERCENT	100 51 19 120 31 16 90 60 22	75 PERCENT	120 20 14 120 25 11 120 21 9	75 PERCENT	100 37 15 90 69 34 90 64 30
Spin- Color - ning Poten- Reflct- tial ance	No.	33 67.0 35 66.7 36 67.3		29 67.2 46 67.0 37 66.2		33 71.4 26 70.6 37 62.9		51 66.1 42 68.7 37 65.7		49 68.3 48 63.5 48 63.2		48 71.4 51 67.2 46 67.0		49 68.7 50 62.4 45 62.2
22s gray yarn Kellow-Com- ness posite	+b Index	12.0 93 11.7 91 12.3 95		11.5 92 12.1 94 11.8 91		11.0 98 11.5 99 11.4 83		10.9 87 11.8 96 11.7 89		12.2 97 11.3 84 11.4 84		11.0 98 11.0 90 11.8 93		12.0 97 13.0 86 12.8 85
Color-22s bl Reflct-Yellor ance ness	Rd +b	79.8 3.4 83.3 3.8 85.5 3.7		84.4 3.5 86.0 3.9 84.6 3.6		83.8 3.8 85.8 3.7 81.9 4.0		84.1 4.4 86.4 3.9 83.4 3.4		84.5 4.1 83.6 4.0 82.3 3.9		85.1 2.9 84.1 3.1 83.5 2.8		87.2 3.2 85.4 3.2 83.3 3.1
.chd.yarn Color.	Index Rd	91 27.8 98 28.7 104 26.6		102 28.7 104 29.1 102 27.8		99 28.3 104 26.8 94 26.3		97 28.4 105 27.8 100 25.9		100 28.3 98 27.8 95 27.0		106 26.4 103 25.9 102 26.1		110 26.6 105 25.2 101 25.9
Blue- Conness pos	-b Index	25.9 1 25.1 24.4		25.2 24.5 24.7		25.5 99 25.5 102 25.2 102		24.6 96 24.4 96 25.4 104		25.1 23.9 24.1		26.1 1 26.7 1 25.7 1		25.6 103 25.9 107 25.0 102

1/ Reduced from 33 because of bark

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975--Continued

	Picker & Card	waste	Pct.			7.8 1/ 7.6 1/		7.5				6.8 7.9 8.7	
	te t	COTOL	Index			9 6 6		999		101		100 98 95	
of raw stock	1	ness sa	No.	٠		ቁቁm		444		m m 🖈		ጠቁቁ	
Color	Gray-	200	No.			m 0, 0		ุณ๓๓		7 7 7		N N M	
alyzer	Total	D N N	Pct.			7.4		480		9.6 9.4		7.04 7.04	
Shirley Analyzer	Visible	D S S S S	Pct.			2.3		1.8		1.8 3.9 2.0		2.4	
	Elon- gation	0/1	Pet.		la P	0 0 0 4 7 8	11	8 8 9	11	6.2	-	6.2	
strength	1/8"	19 19 19	G/tex		75 PERCENT	20 20 21	100 PERCENT	23 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	75 PERCENT	21 20 21	95 PERCENT	20 21 21	
Fiber	Zero	ව නිසර	Mpsi			8 8 8 4 8 4 8		86 79 85		888		8 8 8 8 7 8	
	Micro-		Rdg.			888 8.0		m O m m m m		3.7		33.6	
rograph	50/2.5	• 1111	Pct.		89	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	571	44 84 84 84	18	744 744	_	444 922	
Digital Fibrograph	2.5% span	Telig cii	In.		PAYMASTER	0.85	LANKART LX571	1.05	PAYMASTER	0.88 0.87 0.91	STRIPPER 31	0000	lls rk rk rk
Area,	on on	Staple	32d in.		e.	28 30	ŭ	32	۵	300	S	28 29 29	processing rolls because of bark because of bark because of bark
State, Production Area,	Chronological sampling and Classification	Grade	Code		T TEXAS	SP 42 SP 42 51		SP 32 SP 52 SP 42	NO	41 41 5P 42		SP 42 SP 42 SP 42	Cotton stuck to processing rolls Reduced from 41 because of bark Reduced from 42 because of bark Reduced from 32 because of bark
State,	Chrono. and (년 -	Name		SOUTH WEST NORTHWEST TEXAS PLAINVIEW	SLH LT SLH LT 2/ LH	RULE	3/ LM LT	SILVERTON	SLR SLM SLM LT	TULIA	SLM LT SEM LT SLM LT	1/ Cotton 2/ Reduced 3/ Reduced

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975--Continued

Yarn appearance Yarn imprfctns.	r 22s or 8s or 22s or 8s or 22s or Poten- Reflet-Yellow- Com- Reflet-Yellow- Com- Reflet-Blue- Com- ex 27 tex 74 tex 27 tex tial ance ness posite ance ness posite ance ness posite	Pct, Index Index No. No. No. Rd +b Index Rd +b Index Rd -b Index	75 PERCENT	1 5.8 120 100 36 15 31 67.2 11.6 92 84.8 4.1 100 29.2 24.6 94 5 6.8 130 120 33 16 36 67.1 11.3 91 84.1 3.5 101 26.9 25.1 101 0 6.2 120 90 50 20 42 66.3 11.3 89 83.4 3.6 99 26.7 24.6 99	71 LOO PERCENT	0 7.0 120 110 44 18 56 63.3 11.5 84 83.5 3.5 100 25.1 27.1 11.2 3 7.4 120 100 55 27 57 62.7 11.7 83 81.9 3.6 96 25.4 25.6 106 0 6.8 120 100 56 24 54 62.9 11.9 84 83.1 3.6 98 25.8 26.2 107	75 PERCENT	0 6.0 120 110 29 12 42 70.1 10.3 94 83.4 4.2 97 27.8 25.4 100 0 5.5 120 110 32 14 36 67.2 11.2 91 81.8 3.2 97 26.2 27.3 111 0 6.5 120 90 65 31 42 64.2 11.6 86 82.2 3.5 97 25.6 25.3 104	95 PERCENT	9 5.5 120 110 20 12 30 70.0 12.0 99 83.6 3.4 100 27.4 25.9 103
appearance	22s or 8s or 27 tex 74 tex	Index	75 PERCEN	100 120 90		110		110 110 90		110
Yarn strength Yarn elongation	8s or 22s or 8s or 22s or 74 tex 27 tex	Lbs. Lbs. Pct. Pct.	PAYMASTER 18	273 81 7.1 5.8 290 92 7.5 6.8 299 96 7.0 6.2	LANKART LX571	314 97 8.0 7.0 332 110 8.3 7.4 326 106 8.0 6.8	PAYMASTER 18	289 95 7.0 6.0 285 89 7.0 5.5 302 97 7.0 6.5	STRIPPER 31	278 81 6.9 5.5
	Chronological sampling and Classification 8s Crade Staple 74	Name Code 32d in. L	SOUTH WEST NORTHWEST TEXAS PLAINVIEW	SLM LT SP 42 28 SLM LT SP 42 29 1/ LM 51 30	RULE	2/ LM LT SP 32 32 3/ SLM LT SP 52 32 3/ SLM LT SP 42 32	SILVERTON	SLM 41 31 SLM 41 30 SLM LT SP 42 30	TULIA	SLM LT SP 42 28

1/ Reduced from 41 because of bark 2/ Reduced from 42 because of bark 3/ Reduced from 32 because of bark

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975 -Contir

			Composite & Gard	_					95 7.0			7 - 2		50.0		9.6 9.1	9.6
		Color of raw stock	1	ness co	No. Index				r 6 (5 97	-	4 101		3 99	
nued		Color	Gray-	ness	No.			m	. C. W		2 6	2 6	-	88		222	ı
and the case of 1975 -Continued		oniriey Analyzer	Total	2	Pet.			4.3	ተ ማ ማ		₩, d	4.6	2.0	2.8		6.1 9.0	
areas, crop o	6		vaste		Pct.			m (2.5		30°1	3.6	1.2	1.4		6 • 1 6 • 1 6 • 1	
	gth	T	1/8" gation Gage 1/8".		G/tex Pct.			CENT 6.6	6.3	PERCENT	7.5		5 6 8 6 8		ENT	6 6 6 1 4 9	
	Fiber strength	2000		1	Mos1		6	95 PERCENT 83 21 83 22		90 PER	82 21 83 21		95 PERCENT 81 21 82 20		80 PERCENT	86 21 85 19 85 21	
		_	naire	Bda				3.8 3.1	e.		33.08		100			2.5	
	Digital Fibrograph	_		Pet.			57	ያ ም የ			444		244			4 4 4 ພ የሪ ծ	
	,	2.5% span	Staple length	32d in. In.			LANKART	0.94	LAN		0.94	LANKART 57	1.01	RILCOT 90	0	00.00	1,100
State, Production Area	Chronological sampling	and classification		Code				42 31 42 32 42 31			42 31 52 31		41 32 41 31 32 31		2 20		2 because of
State, Pr	Chronolog	aria cia	Grade	Thomas and the same		SOUTH WEST OKLAHOMA	CORDELL	SLM LT SP SLM LT SP SLM LT SP	DAVIDSON	SIMIT CO	LT SP	TERRAL	S SLM 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NEW MEXICO PORTALES	SLM LT SP 4	SLM LT SP 42 SLM LT SP 42	1/ Reduced from 42 because of bank

1/ Reduced from 42 because of bark 2/ Reduced from 31 because of bark 3/ Cotton stuck to processing rolls

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1975--Continued

dyed yarn	Com- posite	Index			103 103 103		108 109 109		108 108 104		98 102 104
22s	Blue- ness	٩			25.4 25.4 25.2		26.4 26.6 26.4		26.1 26.6 25.5		24.5 25.3 25.5
Color -	Reflct- ance	Rd			26.3 26.2 25.7		26.0 25.6 25.5		25.1 26.0 25.8		27.2 26.5 26.0
	Com-R	Index			101 98 102		100		98 102 100		101
gray yarn Color-22s blchd.yarn	rellow- (1 q+	 		3.6		3.4		3.30		9.6
	Reflct-Yellow- ance ness	Rd			84.3 83.0 83.4		83.6 83.7 82.7		81.9 83.7 83.5		84.9 84.1 83.9
yarn C	0)	Index			84 84 87		86 86 87		93 91 92		8 6 9 8 6 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9
22s gray	ellow-C	위			11.7		11.7		11.5		11.8
Color - 2	Reflet-Yellow- Com- ance ness posit	Rd			64.9 63.5 64.2		64.3 64.3 63.6		67.8 66.7 66.8		69.6 63.6
	ning Poten- R tial	No.			47 50 52		444		\$ \$ \$ \$		30
-	22s or P	No.		95 PERCENT	14 23 26	90 PERCENT	14 18 24	_	13 11 13	80 PERCENT	51 84 84
nce Yarn imprfctns	or	No.			27 49 42		37 40 50	PERCENT	33		91 162 152
					120 90 110		100	95	110	80	70 60 1
peara		Index									
Yarn appearance	8s or 74 tex	Index			130 120 120		130 120 120		130 120 120		120 90 90
	22s or 27 tex	Pct.			7.2 6.8 6.6		6.5		6.9		5.5
rea Yarn strength Yarn elongation	8s or 74 tex	Pct.		57	7.9 8.1 8.6	57	7.4	57	7.6		7.3
	22s or 8 27 tex 7	Lbs.		LANKART 5	99	LANKART 5	100 98 102	LANKART S	94 99 92	RILCOT 90	96
	L					LAP		Ž	400	RIL	8 6 2
	8s or 74 tex	Lbs.			309 316 309		302 304 311		304		298 289 292
		32d in.			31 32 31		31		32 31 31		29 28 28
ion A	sampl catio	Code 32d		ST A	45 45 45 45		42 42 52		41	1C0 ES	444
ducti	sific				1 SP	NO	1 SP 7 SP 8		LT SP		LT SP LT SP LT SP
Pro	uronological samplinand Classification Grade Stap			UTH WES KLAHOMA CORDELL	SLM LT SLM LT SLM LT	DAVIDSON	SLM LT SLM LT LM LT	TERRAL	SLM SLM M L	EN MEXIC PORTALES	SLM L SLM L SLM L
State, Production Area	Chronological sampling and Classification Grade Staple	Name		SOUTH WEST OKLAHOMA CORDELL	22.22	DAV	S S L	TER	(y)(y)	NEW MEXICO PORTALES	222

 $\frac{1}{2}$ Reduced from 42 because of bark $\frac{2}{2}$ Reduced from 31 because of bark

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975

Picker & Card waste			Pct.		444		5.0		7.5		7.1 5.1 5.8		5.9		6.63		4 7 4 7 4 5
Shirley Analyzer Color of raw stock	Composite		Index		95 97 100		98 98 102		96 96		87 97 98		89 90 86		95 96 96		100 95 98
	Yellow-		No.	,	ተ ጠጠ		m m m		ታ ጠጠ		m N N		๓๓๓	*	4 ጠ ጠ		m m m
	Gray- ness		No.		m N N		1 5 5		668		400		4 11 4		m m N		~ ~ ~
	Total waste		Pct.		2 2 8 2 . 6		2.9		3.8		3.1		4.4 		95° 9°0° 9°0°		22.2
	Visible waste		Pct.		1.9		2.4		2.5		2.5		3.0		2.8 1.9 2.3		1.6
- no [3	Elon- gation 1/8"		Pct.	-	6.6 7.5 7.1	-	7.6	_	7.7 7.7	-	6.4 7.8 7.1	_	N 00 N 0. 00 N	_	N N N 0 N 0	-	0 0 0 0 0 0 0 0 0
strength	1/8" Gage		G/tex	99 PERCENT	21 22 22	100 PERCENT	22 22 22	100 PERCENT	23	82 PERCENT	23	85 PERCENT	23	100 PERCENT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75 PERCENT	222
Fiber	Zero Gage		Mpsi		80 79 82	1	80 80 81	1	83 91 79		82 77 82		86 83 81	7	989		88 8 4 6 6 6
	Micro- naire		Rdg.		9.50		4.2		33.58		4 4 4		97.0		9.00		7.04 0.4
Fibrograph	50/2.5		Pct.	213	2 4 4 2 5 6	16	444	STONEVILLE 603	174	DELTAPINE 16	244		444		2 4 4 2 4 6	DIXIE KING III	244
Digital F	2.5% span length		in.	STONEVILLE	1.04	DELTAPINE	1.08		1.02		1.09	COKER 201	1.10	COKER 417	1.11		1.05
State, Production Area,	Chronological sampling, and Classification Grade Staple	Staple	32d in.	R	# E E	10	444	S		O	344	3	34 4 6	๋	35.55	0	34 4
		rade	Code	IER	222	וופ	777	NVILLE	41 41 SP 42	ERY	41	LLE	212	וופ	12 12	ORO	444
State,		٦	Name	SOUTH EAST ALABANA GREENBRIER	SLA	HUNTSVILLE	SLN	MERIOIANVILLE	SLM SLM SLM LT	MONTGOMERY	SCH	MOUNDVILLE	555	PRATTVILLE	ese.	SCOTTSBORD	SCR

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975

rn	Φ	×I														
dyed yarn	Com- posite	Index		105 106 99		103		101 98 98		100		104 103 98		100		100
22s	Blue- ness	위		26.4 26.1 25.5		25.6 26.5 26.3		25.5 25.1 24.9		25.3 25.7 25.5		25.9 25.6 25.4		25.7 25.7 25.2		25.0 25.8 25.1
Color -	Reflct- ance	R		27.4 26.4 28.7		26.8 27.6 27.7		27.3 28.1 27.9		27.5 28.6 27.0		26.7 26.9 28.6		28.2 27.8 27.5		27.2 27.1 27.5 27.6
blchd. yarn Color	Com- posite	Index		107		99 103 103		104 102 105		120 101 101		118 123 106		96 102 103		103
	Yellow- ness	위		3.4 3.1 3.5		3.2		4.0 3.8 8.8		3.1 3.2 3.1		3.0 3.1 3.3		3.4		3.4
Jolor-2	Reflct- ance	R		86.3 91.7 85.2		83.3 84.2 84.5		86.1 84.3 85.6		91.5 83.6 83.5		90.3 92.9 85.9		81.9 84.1 83.7		84.8 84.0 85.9
gray yarn Color-22s	Com- F	Index		92 91 93		96		9 9 8 8 8		81 89 91		8 8 8 8 8 8 9		80 80 80 44 0, 80		906
22s gra	Yellow- ness I	위		11.5		10.4		11.6		10.6 10.5 10.1		10.9 10.6 10.2		11.11.110.5		10.9
Color -	Reflct-	湿		67.2 69.0 68.2		67.2 69.2 71.3		67.5 70.3 65.6		63.1 67.3 69.1		65.0 62.5 62.5		63.8 67.7 67.0		67.2 67.1 68.3
Spin-	ning Poten- tial	No.		51 49 41		55		41 50		49 53		54 53 45		68 69		59
rfctns.	50s or 12 tex	No	N.	21 25 19	L N	20 118 23	L Z	21 26 32	L N	26 18 13	L N	36 33 22	L	25 24 19	TN	114
Yarn imprfctns.	22s or 27 tex	No.	PERCENT	25 28 21	PERCENT	22 22 28	PERCENT	26 31 41	PERCENT	37 22 16	PERCENT	49 45 27	PERCENT	32 28 24	PERCENT	12 18 19
arance	50s or 12 tex	Index	66	900	100	980	100	909	82	900	80	900	100	00 00 10	75	8 8 0
Yarn appearance	22s or 27	Index		1000		1000		8 4 8		900		90		80 06 06 60 60		110
tion	50s or 2	Pet. 1		4.1 3.8 4.2		6.4		3.9		3.4		3.9		440		
Yarn elonga	or	Pct.	213	6.0	91		603	48.4	91	6.5		4.0.4 0.0.0		6.3	111	486
-			TLLE	666	INE	9 9 9	TILLE	เพ้าเพ้า	INE	เท้าจัง	201		417		KING	
rength	50s or 12 tex	Lbs.	STONEVILLE 213	28 26 27	DELTAPINE 16	34	STONEVILLE 60	26 26 27	DELTAPINE 16	28 31 33	COKER 201	30	COKER	39	DIXIE	333
Yarn strength	22s or 27 tex	Lbs.		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		103 102 95		90 89 91		94 103 103		96		114		110 98 104
		32d In.		33		34		3333		34		34		35 35		4 4 4
tion Ar	sampli catior Sta	1	ø	###	ш	444	ILLE	41 41 SP 42	>	51 41 41	ш	51 51 51	ш	51 41 51	0	444
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH EAST ALABAMA GREENBRIER	SLM	HUNTSVILLE	SLM	MERIDIANVILLE	SLM SLM SLM LT SI	MONTGOMERY	SCE	MOUNDVILLE	555	PRATTVILLE	N. K.	SCOTTSBORD	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

Note 1/8" Gation Visible Total Oray- Total Tot	State, Production Area,	Area,	Digital Fibrograph	brograph		Fiber s	strength	Flone	Shirley Analyzer	Analyzer	Color	of raw	stock	2
Starting	enronological sam and Classificat	ion.	2.5% span		Micro- naire	Zero	1/8"	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	& Card
COMER 201 Total Control Co	Grade	Staple				þ								
N COKER 201 51 34 1.07 445 4.4 81 21 6.7 3.4 4.5 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		32d in.		Pet.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pet.	No.	No	Index	Pct.
34 1.07 45 4.4 4.4 77 22 6.6 3.4 4.5 5.5 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Z		COKER 201					=						
DIXIE KING III		***	1.07	A 4 4 N 4 N	4 7 4	81 82 77	21 22 22	6.9	444	4 10 4	m m N	m m N	93	8.1
34 1.03 46 4.2 86 21 6.8 4.4 5.9 3.3 4.6 8.8 1.03 46 4.4 83 22 5.5 3.3 4.7 5.9 85 1.0 88 1.0 88 1.0 1.0 9 4.4 4.4 83 20 5.9 4.7 5.9 8.1 81 81 81 81 81 81 81 81 81 81 81 81 81	BOSTWICK		DIXIE KING			-		E						
DELTAPINE 16 34 1.09 44 4.3 74 21 7.3 3.9 5.11 2 3 96 34 1.09 44 4.1 79 21 6.7 4.6 5.6 3 96 34 1.09 44 4.1 79 22 6.2 2.0 2.9 3 96 34 1.00 45 4.6 79 22 6.1 2.2 3.6 3.6 3 96 34 1.01 45 4.6 79 22 6.1 2.2 3.6 3.6 3 96 34 1.01 45 4.6 79 22 6.1 2.2 3.6 3.6 3.6 3.6 3.6 3.6 35 1.14 46 4.3 83 22 5.6 3.6 5.1 5.1 3 99 36 1.14 46 4.4 86 22 5.6 3.6 5.6 3.6 5.0 3 99 37 1.06 48 4.6 89 23 5.6 4.1 5.1 3.4 3 99 38 1.00 6666NT 40 4.6 89 23 5.4 2.7 3.4 3.4 3 99 41 1.05 46 3.7 87 22 5.9 1.9 2.6 2.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3	LT SP LT SP LT SP	***	1.03	4 4 4	0 0 0	88 83 82	21 22 20	~ v v ~ v •	4.4	N 4 N 4 W D	4 10 10	ጠቁጠ	87 82 81	
34 1.09 44 4.3 74 21 7.3 3.9 5.1 2 3 96 34 1.10 43 4.2 78 21 6.7 4.6 5.6 5.6 3 9 94 35 1.09 45 4.1 3 74 21 6.7 4.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5	DONALSONVILLE		DELTAPINE	16				=						
COKER 201 34 1.09 45 4.6 79 22 6.2 2.0 2.9 3 95 34 1.07 45 4.6 79 22 6.1 2.2 3.0 3.0 3 95 34 1.07 45 4.5 79 22 6.1 2.2 3.0 3.0 3 95 34 1.10 45 4.5 79 22 6.1 2.2 3.0 3.0 3 3 95 35 1.14 46 4.3 83 22 5.6 3.6 5.0 4 3 95 35 1.14 46 4.4 85 22 5.6 4.1 5.1 3 3 99 36 1.16 48 4.6 89 23 6.4 2.7 3.4 3 99 37 1.05 48 4.6 89 23 6.4 2.7 3.4 3 99 38 1.00 6RCENT 39 1.00 6R CENT 31 1.00 6R CENT 32 3.0 3 3 99 34 1.10 45 4.7 85 23 6.3 1.2 2.0 2 3 99 34 1.10 45 4.6 80 21 6.4 1.6 2.6 2 3 99	LT SP LT SP LT SP	***	1.09	121		74 78 79	21 21 20	7.3 6.7 6.2	W 4 4	5.0 5.0 5.0	N m N	ммм	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7.8
34 1.09 45 4.6 79 22 6.1 2.2 3.0 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	NORMAN PARK		COKER 201					1						
HCNAIR 612 HCNAIR	LT SP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.09	2 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	444	97 97	22 22 22 22 22 22 22 22 22 22 22 22 22	6.2 6.1 6.7	2.0	3.6	m m N	กก N	95	6.1
36 1.14 46 4.3 83 22 5.7 4.6 5.5 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	JORTH CAROLINA LAURINBURG		MCNAIR 612	A 1		1		<u></u>						
COKER 201 35 1.06 48 4.6 89 23 6.4 2.7 3.4 3 4 95 34 1.05 47 5.2 92 23 5.6 1.5 2.2 2 3 98 34 1.05 46 3.7 87 22 5.9 1.9 2.6 2 3 96 MCNAIR 612 34 1.10 45 4.7 85 23 6.3 1.2 2.6 2 3 97 34 1.10 45 4.6 80 21 6.4 1.6 2.6 2 3 97		988	1.14	444	444	80 80 80 80 80 80	22 52 23	5.6	4.6 3.6 4.1	5.0 5.0 1.0	ଲ ଏହ ଜୀ	m m m	988	7.7
35 1.06 48 4.6 89 23 6.4 2.7 3.4 3 4 95 34 1.05 47 5.2 92 23 5.6 1.5 2.2 2 3 98 34 1.05 46 3.7 87 22 5.9 1.9 2.6 2 3 98 MCNAIR 612 34 1.10 45 4.7 85 23 6.3 1.2 2.6 2 3 99 34 1.10 45 4.6 80 21 6.4 1.6 2.6 2 3 99	SHELBY		COKER 201			1		1						
MCNAIR 612 34 1.10 45 4.7 85 23 6.3 1.2 2.0 2 3 99 4 34 1.10 45 4.6 80 21 6.4 1.6 2.6 2 3 97 5		W W W	1.05	44 44 46	3.50	89 92 87	23	5.00 4.00	2.7	3.4	m ~ ~	** #! #!	98 98 96	7.4
31 34 1.10 45 4.7 85 23 6.3 1.2 2.0 2 3 99 4 26 34 1.10 45 4.6 80 21 6.4 1.6 2.6 2 3 97 5	OUTH CAROLINA MANNING		MCNAIR 612	81				E						
	M 31 SM LT GR 26	34	1.10	45	4.6	80	23	6.9	1.2	2.0	77	m m	99	5.7

1/ Reduced from 41 because of bark

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

State Production Area, State	1 8	0	\ <u>\</u>															
Production Area New York Steels New St		Com- posite	Index		101 98 102		000		103 103 108		99		100		102 101 96		00	
The production kees, Then attenuable to the production keep, Then attenuable to the pr		Blue- ness	위		ທີ່ຕໍາ		5 4 4		6.00		ວິດ		0 10 10		10 10 1		50	
Production Methods Years attenuelly Years Y	1	Reflct- ance	Rd		787		9 80 80		2.9				~ 8 B		9 - 8		8 9	
Particle from Parts State of French State		- 01	Index		-00		116 99 100		108 111 101		100 103 103		99 102 102		000		00	
Particle		ellow-	위				3.2				3.4 3.1 2.8		3.6 3.1					
Particle	Jolor-2	eflct-	찙		8 4 10		9.00		386		m * m		999		P 10 0			
Production Area, Tear strength Tear stre	yarn	Com-	Index		89 87 93		85 79 77		89 89 90		80 80 80 N 80 80		80 81 83		88 90 91		89	
Production Area, Tarm strength Tarm elongation Tarm appearance Tarm impractions Significations		ellow- ness			000		.00				000		9.0		1:0		00	
Factor F		eflct- ance	Rd	•													9 %	
Factor F	Smi n-	ning Poten- tial	No.		44 51 50		53		50 57 57		50 52 56		57 47 47				58	
Production Area, Yarn strength Yarn elongation Yarn appearance Yarn Code Staple Staple Strength Yarn elongation Yarn appearance Yarn Code Staple Staple Strength Yarn elongation Yarn appearance Yarn Code Staple Stap	rfctns.	50s or 12 tex	No.	+	26 24 20	T.	13	L N	25 25 36	N T		L N	20 28 32	L N	111	F	19	
Code Staple Code	arn imp	2s or 27 tex	No.		31 30 29		18 16 15		27 33 46	PE	20 21 19		30		111		21 28	
Production Area, Yarn strength Yarn elongation Yarn bological sampling, 22s or 50s or 22s or 22	1 .		ndex	86	60 70	100	90		70 70 60		900	0	70 60 60	100	9 8 9		09	
Production Area, Yarn strength Yarn elongation Ological sampling, 22s or 50s or 22s or 50s or 12 tex 27 tex 12			1		900		120 110 110		9 6 6		1000		100 90 80		120 120 120		90	
Code Staple Code Staple Stapl			1		3.8		3.6		3.8 6.2 6.1		004		3.2		4.0.0		3.8	
Code 32d In Lbs.	longa		A.										•					
Code 32d In Ibs 12 to Classification 27 tex 12 to Code 32d In Ibs 12 to RGIA 134 94 28 LM	Varn	22s or 27 tex	Pet.	10.	5.6 5.7	ING II	5.3	NE 16	N N N A B N	101	4.00	612	5.5 7.4 5.3	101	5.4	612	5.6	
Code Staple Crassification Crass	honor	50s or 12 tex	Lbs.	OKER 2	28 28 31		30 28 27	DELTAPI	33		29 29 35	HCNAIR	32 27 28		28 29 29	MCNAIR	33	bark
	Vown	: 6 6	Lbs.	Ū	994	_	94 90 92		98		90 94 100		100 86 93		99		103	anse of
	9		Ė		34		9 9 4 6 9 9 4 6		4 4 6 4 4 6		34		36 35		35		34	l beca
	o i	sampli cation			51 51 51			311		×		INA	41 51 51		111	INA	31 26	rom 4
	4000	lcal ssifi	Code	ST		CK		SONVI		PAF		VBUR		>		CAROI	11 61	ced f
· 유 년 · 1 회 22 · - 네	40 40	Chronologi and Clas	Name	SOUTH EAGEORGIA	LE LE	BOSTWI		DONALS		NORMAN	SLM I	NORTH C	SLH	SHELB	SLM	SOUTH	N N	1/ Redu

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

D: 0)000	ricker & Card waste		Pct.		5.10		4 W W 0 W Q		5.0 5.0 5.3		4		448 848		4 4 6 8 8 0		4.6 5.1
ck	Composite	10100	Index		100		101 101 99		101 100 96		100 100 97		101		101		1000
of raw stock	Yellow-	2	No.		m m N		m ~ ~		m m m		m m m		m m N		m m m		m m m
Color	Gray-		No.		711		7 7 7		7 7 7		221		211				222
nalyzer	Total	2	Pct.		2.2 1.8 1.5		3.1 3.0 2.6		3.1 3.5 2.8		2.5		2.3		3.65		1.9 2.6 2.9
Shirley Analyzer	Visible		Pct.		1.1		2.2 2.0 1.8		2.5 2.8 1.8		1.6 1.8 2.1		1.9		1.7		1.3
Flon	gation 1/8".		Pct.	ļu.	€.00 €.00 €.00	-	7.5	-	6 • 3 6 • 8 6 • 1	-	56.53	_	7.2	_	0 50 50 0 50 50		6.4
strength	1/8" Gage	0	G/tex	90 PERCENT	22 22	100 PERCENT	24 24 24	100 PERCENT	22 23 22	100 PERCENT	22 23 23	100 PERCENT	23	100 PERCENT	22 22	100 PERCENT	23
Fiber	Zero		Mpsi	ŭ	8 86 7	ã	882	mi	83	1	040	7	8 8 8 8 5 4	1	91 93 86	1	82 84 82
	Micro- naire		Rdg.		444		4.4		0.44		8.8.5		4.5		4 4 4 6 9 1 ° 6 9		444
ibrograph	50/2.5 unif.		Pct.		44 44 45	16	994	213	7 4 4 7 6 7	213	4 4 4 6 6 7	16	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 6 4 6	213	4 4 4 6 4 4
Digital Fibrograp	2.5% span length		In.	COKER 201	1.10	DEL TAP INE	1.15	STONEVILLE	1.12	STONEVILLE	1.11	DELTAPINE	1.13	BRYCOT #4	1.11	STONEVILLE	1.08
Area,	ion	Staple	32d in.	5	8 8 8 8 8	ā	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	in	8 8 8 8 8 4	S	8 8 8 8 8 8	ō	8 8 8 8 8 8	ē	8 8 8 8 8 8	Vi	888
State, Production Area, Chronological sampling.	and Classification	Grade	Code	COLINA	41 31	IRAL IR	444		444		111		***	LE	777	.re	444
State,	and	9	Name	SOUTH EAST SOUTH CAROLINA MAYESVILLE	SLM	SOUTH CENTRAL ARKANSAS ALTHEIMER	SLM	DUMAS	SLM	HUGHES	SLM SLM SLM	KEISER	SLM SLM SLM	LEACHVILLE	SLM SLM SLM	LEACHVILLE	SLM SLM SLM

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975-Continued

yarn		ข	×I														
dyed ya		posite	Index		98 101 101		109 112 102		105 105 108		104 106 105		102 109 105		110 110 106		113 107 106
- 22s d	Blue-	ness	위		25.2 25.5 25.8		26.4 27.3 25.9		26.0 25.7 26.9		26.0 26.1 26.4		25.5 26.4 26.3		27.6 27.0 26.4		28.2 26.5 25.8
Color	Reflet	ance	Rd		28.4 27.6 28.1		25.2 25.5 27.6		26.7 26.0 26.8		26.9 26.1 27.4		27.0 25.3 27.0		27.2 26.0 26.9		27.0 26.7 25.7
d. yarn	Com-	DOST SOC	Index		105 112 100		104		104 120 103		109 103 95		105 1114 97		105 104 97		103 100 108
2s blchd	1 7	ness	위		3.1 2.7 2.9		2.6		3.3		3.1 3.4 3.3		3.2		3.2		3.0
Color-22s	Reflet-	arice	湿		85.2 87.3 82.8		83.6 86.3 86.8		85.2 91.4 84.4		86.9 84.7 81.2		85.1 88.5 82.1		84.7 84.8 82.2		84.1 82.6 86.7
y yarn	Com-	27 500	Index		93		93 94 91		966		93 91 90		92		93		93
22s gray	Yellow-	n n	위		11.0		10.3		11.0		10.3 11.2 10.7		10.6 10.7 10.5		10.4		10.6 10.6 10.7
Color -	Reflet-	anic c	湿		67.1 70.0 70.2		69.8 70.5 69.1		68.9 72.1 68.6		69.8 67.3 67.8		68.8 69.8 69.3		69.4 69.1 68.3		69.2 69.1 68.9
Spin-	ning Poten-	tial	No.		61 53 50		67		56.3		52 60 54		69		59		50
imprfctns.	50s or	דע הבע	No.	-	113	-	16 13 15	_	11112	-	16 18 18	-	13 16 9	_	41 14 18	-	18 15 12
Yarn imp	22s or	Y D	No.	PERCENT	21 17 14	PERCENT	816	PERCENT	16 25 20	PERCENT	22 20 23	PERCENT	17	PERCENT	18 20 21	PERCENT	24 16 21
	i o	Y D	Index	06	000	100	980	100	0000	1001	000	100	000	1001	000	1001	920
appearance	or 50s																
Yarn	22s	2	Index		100 100 120		100		100 110 120		100		110 100 120		100		110 90 100
ngation	50s or	דב הבצ	Pct.		4 E E		4 N N 6 W N		3.8		3.5		444		3.4		6 4 4 8 6 6
Yarn elongation	22s or	כו הבע	Pct.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	16	6.0 6.6 7.7	E 213	8	LE 213	5.0	E 16	6.9		4.00	LE 213	5.3
ength	50s or	15 cea	Lbs.	COKER 201	37 29 29	DELTAPINE 16	38 41 41	STONEVILLE 213	31 35 32	STONEVILLE	30 34 32	DELTAPINE 16	39 37 35	BRYCOT #4	30 34 31	STONEVILLE 21	30 34 32
Yarn strength	22s or	200	I.bs.	00	104	90	111 120 121	ST	95 103 106	ST	103 101 99	90	11111110	80	96 103 104	ST	96 99 99
rea,		Staple	32d In.		3.6		36 36 35		35		35		36 35		35		35 35
tion A	. sampl	St	ľ	INA	41 31 31	7	444		1111		444		444	ш	111	ш	444
Produc	ronological samplinand Classification	Grade	Code	UTH EAST OUTH CAROL MAYESVILLE		UTH CENTRA RKANSAS ALTHEIMER		5		S		R		EACHVILLE		LEACHVILLE	
State, Production Area,	Chronological sampling, and Classification	Z	Name	SOUTH EAST SOUTH CAROLINA MAYESVILLE	SEN	SOUTH CENTRAL ARKANSAS ALTHEIMER	SLM	DUMAS	SLM	HUGHES	SLM	KEISER	SLM	LEAC	SLM	LEAC	SLH

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

,	ig a				A. A.=		,										
100			Pet.		5.9		5.5		7.8		5.7 5.7 6.1		5.1		5.00		5.2
stock	Composite		Index		102		97 101 100		96 99 100		100 98 101		100 100 91		101 99 100		100
of raw	Yellow-		No.		222		m m m		ммм		ммм		ммм		~~~		600
Color	Gray-		No.				115		E 21		~~~		226		121		222
Analyzer	Total		Pct.		2.3		3.3		5.0 5.1 3.2		976		2.9		2.2		3.3
Shirley A	Visible		Pet.		1.2		3.1		4.3 3.9 2.1		22.5		2.1		1.5		2.5
Elon-	gation 1/8"		Pct.		7.2		5.9		6.2		7.45 5.00		7.6		6.9 7.5		5.6 6.6 6.1
strength	1/8" Gage	0	G/tex	100 PERCENT	23 24	O PERCENT	22 22	100 PERCENT	. 23	100 PERCENT	23	O PERCENT	22	100 PERCENT	23	100 PERCENT	22
Fiber	Zero	b	Mpsi	01	88 88 4 48	100	8 8 8 4 6 4	21	8 8 8 4 2 3	10	94 93	100	81 86 82	30	84 80 81	10	8 8 8 2 8
	Micro- naire		Rdg.		44.0		7 4 4 7 8 4 7		4.6		5.0		05.7		3.9		4 4 4 8 2 0
ibrograph	50/2.5		Pct.	91	444	213	4 4 4 2 2 2	213	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7A	4 4 4 8 3 N	16	444	16	244	213	4 4 4 N N W
Digital Fibrograph	2.5% span		ij	DELTAPINE 16	1.13	STONEVILLE	1.08	STONEVILLE	1.12	STONEVILLE	1.15	DELTAPINE	1.13	DELTAPINE	1.10	STONEVILLE	1.10
Area,	ion	Staple	32d in.	0	35 35 35	S	4 4 4 4 4 4	S	35	SI	36 35 35	90	35	30	35 35 35	S	35
State, Production Area,	and Classification	Grade	Code	RAL	411		50 41 41		51		444		41 41 SP 42	VIDENCE	444	PROV IDENCE	444
State,	and (E.S.	Name	SOUTH CENTRAL ARKANSAS MARION	SLM	OSCEOLA	SLM	TURRELL	SLA	VICTORIA	SLM	HANNE	SLM SLM SLM LT	LOUISIANA LAKE PROVIDENCE	SLM SLM SLM	LAKE PRO	SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

dyed yarn	Com- posite		Index		101		105 106 106		108 111 101		109 104 106		107 108 105		106 102 101		106 100 100
- 22s d	Blue-		위		25.7 26.0 25.5		26.2 26.1 26.1		26.2 27.2 25.5		27.5 26.1 26.0		26.0 26.8 26.1		26.3 25.9 25.7		26.4 25.6 25.6
Color	Reflet-		묎		27.8 26.6 28.2		27.0		25.5 25.7 27.6		27.4 27.1 26.2		25.5 26.6 26.6		26.7 27.8 27.8		26.9 28.3 28.1
d. yarn	Com- posite		Index		108		104		100		100		112 103 100		104 105 105		105 104 102
2s blchd	Yellow-		위		3.3		3.0 3.0 9.0		3.3		3.1 3.3 2.9		0000		3.0 3.0 3.1		3.1
Color-22s	Reflct- ance		B		86.0 83.5 83.6		84.8 88.0 87.6		83.2 83.8 83.7		85.7 83.6 87.1		88.1 84.2 82.7		84.7 85.0 84.9		85.2 85.0 83.8
ay yarn	Com-		Index		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95 92 93		91 95		93 92 92		993		8 8 8 9 9 9		93 94 90
22s gr	Yellow-		위		9.8		10.9 10.1 10.5		10.8 11.1 10.9		10.3		10.7 111.1 10.9		9.4		10.8
Color -	Reflct-		Rd		70.8		69.5 69.5 69.2		67.8 69.2 70.1		69.8 69.1 69.2		69.1 68.5 64.7		69.4 68.6 68.1		69.0
	ning Poten-	CIGI	No.		64 1 61 59		50 6		57 6		54 6		67 57 63		67 67 6		55 56 1 52
imprfctns.	50s or		No.		0000	_	16 14 15		25 22 22		15		19 19 13		12 15 18		26 18 19
Yarn imp	22s or 27		No.	PERCENT	ni a ni	PERCENT	∞ ∞ ►	PERCENT	35	PERCENT	17	PERCENT	25 24 17	PERCENT	287	PERCENT	27 24
	50s or 2%	_	Index	100 P	70 1 80 90 1	100	70 1 70 1 90 1	100	60 50 50	100	70 60 80	100	900	100	80 1 90 1 80 2	100	70 20 20 20 20 20 20 20 20 20 20 20 20 20
appearance	or	5													000		
n Yarn	r 22s	ī	Index		90 100 110		90 100 100		80 100 90		110 100 90		100 120 100		011		90 100 100
Yarn elongation	50s or		Pct.		440		3.8 3.9		444		8 8 8 8 8 8		444		447		3.8
Yarn e	22s or		Pct.	e 16	2.9	LE 213	6.4.3	LE 213	6.00	LE 7A	6.4.3	E 16	6.6	E 16	7.4	LE 213	5.4
ength	50s or	77	Lbs.	DELTAPINE 16	37 35 36	STONEVILLE	33 31 30	STONEVILLE 213	34 35 31	STONEVILLE 7A	31 29 31	DELTAPINE 16	38	DELTAPINE 16	940	STONEVILLE	32 34 34
Yarn strength	22s or	5	Ibs.	DE	106 109 112	ST	97 96 103	ST	101	ST	99	DE	1114	DE	112 117 126	ST	101 103 107
-		Staple	32d In.		35 35		444		35		36 35		35		35		35
ion Az	sampli	Ste	Ì		444		50		51		222		45	ENCE	777	ENCE	777
oduct	ical ssific	e	Code	NTRAL		_		. 4		4 I			T SP	ROVID		PROV IDENCE	
State, Production Area,	Chronological sampling, and Classification	Grade	Name	SOUTH CENTRAL ARKANSAS MARION	SLA	OSCEOLA	SCH	TURRELL	See	VICTORIA	222	MANNE	SLM SLM SLM LT	LOUISIANA LAKE PROVIDENCE	818 818 818	LAKE P	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

Dicker	& Card		Pct.		4 72 4 5 8 6 6 8 6		4.0 3.5		80 4 70 40 00		N 0 4		6.1 6.5 7.5		5.9 6.9 1/ 6.1		5.9 6.9 1√ 8.3
stock	Composite		Index		104 98 103		103 103 96		103 102 85		100 96 98		96 94 93		101 100 92		97 92 91
of raw	Yellow- ness		No.		๓๓๓		222		~ ~ ~		m m N		m m m				МММ
COTOR	Gray- ness		No.		1 5 1		7 - 7		m = 4		~~~		๓๓๓				พ๓๓
nalyzer	Total		Pct.		3.0		1.9		4.8		3.0 3.0		6 6 8 8 6 8		3.40		50 00 00 00 00 00 00 00 00 00 00 00 00 0
Shirley Analyzer	Visible waste		Pct.		1.0		1 • 3 1 • 0 1 • 9		3.83		242		2.7		3.3 2.5 2.1		0 m m
Elon-	gation 1/8"		Pct.		7.6		7.6		6.0		6.6	_	6.3	_	N N N 	_	5.5
sırengın	1/8" Gage	,	G/tex	100 PERCENT	22 52 23	00 PERCENT	24	90 PERCENT	23 22 21	00 PERCENT	22 23 21	100 PERCENT	223	00 PERCENT	24 23 23	00 PERCENT	23
Fiber	Zero		Mpsi	10	88 SS S	10	883	6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	8 8 3 4 8 1	10	86 82 83	10	94 93 91	10	94 94 81
_	Micro- naire		Rdg.		7 7 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 .		244		4 4 W		4 4 W 0 W Q		4.4. 0.4.0. 0.4.0.0		5.1 4.7		4 4 W
r tot ogt æpti	n 50/2.5		Pct.	16	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16	A 4 4 N 0 E	213	4 4 4 N N W	213	44	213	4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4	131N	4 4 4	111	44 46 45 45
Digital fibrograph	2.5% span	,	In.	DELTAPINE	1.14	DELTAPINE	1.14	STONEVILLE	1.05	STONEVILLE	1.10	STONEVILLE	1.12	STONEVILLE	1.13	DIXIE KING	1.09
n Area,	tion	Staple	32d in.	0	W W W W W	٥	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	S	# # # # # #	S	12 12 4 12 13 4	5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	S	35 35 35	0	444
State, Production Area,	ronological sampling and Classification	Grade	Code	TRAL A JR T	31 41	Idd	331		41		511	8	22.22	30	. 50 . 41 . 51	LA	5112
State,	and	5	Name	SOUTH CENTRAL LOUISIANA SHREVEPORT	SLM	MISSISSIPPI ARCOLA	SER	СОМО	SLM	EDWARDS	SLA	GLENDORA	555	GREENWOOD	SCH LH	INDIANGLA	555

Table 6a. -- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

1 ~ 1	1	1														
dyed yarn	Com- posite	Index		109 106 101		109		109 108 98		107 106 98		112 101 103		112 110 100		108 98 100
22s	Blue- ness	위		26.5 26.3 25.0		26.4 27.1 25.0		27.3 26.5 24.9		26.6 26.2 25.2		27.3 25.8 25.6		27.8 27.2 25.7		26.9 25.5 25.0
yarn Color -	Reflct- ance	Pal		25.5 26.5 26.7		25.5 27.0 27.0		26.9 25.9 27.9		26.6 26.5 28.5		25.6 27.9 26.7		26.4 26.4 28.3		26.8 28.9 27.0
	Com-	Index		119 105 107		124 105 102		108 1112 102		101 102 107		103 102 100		105 101 103		104
s blchd.	Yellow-	\$		2.9 3.1 3.3		2.8		3.1 2.9 3.4		3.1		3.2 3.3 3.1		3.0 3.1 3.6		3.2
Color-22s	Reflct-Y	뀙		90.9 84.9 86.1		92.5 84.5 83.7		86.4 87.7 84.2		83.2 84.0 86.5		84.3 84.0 82.9		85.0 83.4 85.2		85.3 83.5 84.1
yarn	Com- Posite	Index		100 89 96		98 96 92		97 98 79		92 90 89		8 8 8 0 0		9 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		94 86 91
22s gray	ellow- ness	무I		10.7 10.4 11.2		10.1 9.9 9.8		10.8 11.1 10.3		10.8 11.1 10.1		10.8 10.5 10.2		10.5 9.7 10.1		11.1
Color -	Reflct-Y	湿		73.2 67.8 69.4		72.5		70.6 70.9 62.3		68.5 67.1 68.1		67.2 65.9 62.9		70.0		68.6 66.1 65.9
	ning Poten- tial	No.		67 62 67		67 68 68		52 60 52		55 60 59		65		54 51 53		6.3
fetns.	50s or 12 tex	No.	E	9 20 17	-	01 8 8	=	16 18 20	E	111 119 115	E	20 25 24	-	20 19 31	<u>=</u>	15 15 23
Yarn imprfctns.	s or tex	No.	PERCENT	14 27 22	PERCENT	10 8	PERCENT	20 119 23	PERCENT	19 24 20	PERCENT	26 33 36	PERCENT	28 25 42	PERCENT	16 26 25
	s or 22	Index	100	90 07	100	000	06	06 06	100	70 880 90	100	80 70 60	100	70 80 70	100	90 70 80
n appearance	or 50	-		000		110 1		100		110		000		90 110 80		110 100 90
n Yarn	22s 27	Index		1								1				
ongatic	50s or 12 tex	Pet.		5.0		N N N		W 4 4		9.9	_	***	Z	3.7 8.8 7.8	_	444
Yarn elongation	22s or 27 tex	Pct.	Æ 16	0.0	VE 16	7.4	LE 213	N 0 0 0 4 4	STONEVILLE 213	N 4 4	STONEVILLE 213	4.0.0	STONEVILLE 731N	9.40	KING 111	0 N N
ength	50s or 12 tex	Lbs.	DELTAPINE 16	4 M W 8	DELTAPINE 16	40 41 37	STONEVILLE 21	35	FONEVI	31 37 33	TONEVI	36 35	TONE VI	32 34 31	DIXIE	40
Yarn strength	22s or 27 tex	Lbs.	5	118 106 113	ō	114	S	1000	S	95 105 103	in	103 106 99	is	100 105 95	0	118 113 107
\square		32d In.		35 35		36 36 35		4 4 4 4 4 4		35		35		35		34
on Ar	ation	32d In	_	414		31		41 41 51		41 51 41		51 51 51		50 41 51		51 51 51
State, Production Area,	Chronological sampling, and Classification	Code	SOUTH CENTRAL LOUISIANA SHREVEPORT		MISSISSIPPI ARCOLA	***	D	***	EDWARDS	III	GLENDORA	***	GREENWOOD	دود	INDIANOLA	***
State,	Chrono and	Name	SOUTH LOUI: SHRI	SLH	MISS	SLN	COMO	SLM	EDM	SLM	GLE	555	GRE	N. I.	IND	EĘĒ

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

1	srd srd	2	اندا		4104		F-9 m		क ध्रेक		744		6 = =		95.		365
2	& Card		Pet		\$ \$ \$		w 4 0		200		5.4		5.3 5.1 7.1		4104		400
cock	Composite	10100	Index		100		99		101		101		101 102 92		103 101 97		100 97 97
r of raw stock	Yellow-		No.		m m N		222		282		000		600		000		888
Color	Gray-		No.		204		222		122						1 2		1 2 2
Analyzer	Total		Pct.		3.7		2.7		9.5 9.5 9.5		3.4		3.9		2.1 2.6 2.2		2.8
Shirley Analyzer	Visible	2	Pct.		3.5		1.8 2.0 1.8		2.6		2.6 2.1 1.5		2.2		1.5		2.1 2.0 1.8
[2	gation 1/8"	,	Pct.	F	5.8	F	7.2	_	0.99	-	7.5	-	7.2	_	6.7 7.2 7.1	-	6.6.3
strength	1/8"	9	G/tex	100 PERCENT	23 20	85 PERCENT	23 22 22	100 PERCENT	24 24 24	100 PERCENT	23	100 PERCENT	24	100 PERCENT	24 24 24	100 PERCENT	22 24 24
Fiber	Zero	2900	Mpsi	1	88 87 81		822	Ĩ	888	ī	8 8 3 2	Ä	4 4 1 1	1	883	Ä	80 80 80 40 80 80
	Micro- naire		Rdg.		3.6		444 N44		444 044		446		440		444		4.0 4.1
brograph	50/2.5		Pet.	213	4 4 4 5 2 5	16	444	25	444	16	45 44 43	45A	8 4 4 8 4 8 8 9 8	16	644 686	55	244
Digital Fibrograp	2.5% span	Total out	.ul	STONEVILLE 21	1.12 1.11 1.09	DELTAPINE 1	1.12 1.07 1.06	DELTAPINE 2	1.10	DELTAPINE 1	1.12	DELTAPINE 4	1.12 1.07 1.03	DELTAPINE 1	1.12 1.14 1.13	DELTAPINE S	1.15 1.14 1.12
Area,	ling, on	Staple	32d in.	v	992	0	35 35 35	٥	35 35	Q	38 36 35	Q	35 34	۵	35 35 35	۵	36 35
State, Production Area,	Chronological sampiing, and Classification	Grade	Code	RAL	51 51		411	YUMA	444	BURN	41 41 51	NILLE	41 51		444		50 41 41
State,	Chronol and C	Gr	Name	SOUTH CENTRAL MISSISSIPPI LYON	EEE	MACON	SLM SLM SLM	NITTA YU	SLM SLM SLM	PANTHER BURN	SLM SLM LM	ROBINSONVILLE	SLM SLM	SCOTT	SLM SLM SLM	SCOTT	SLM SLM SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

State, Production Area,	tion A	rea,	Yarn st	Yarn strength	Yarn ele	Yarn elongation	Yarn ap	Yarn appearance		Yarn imprfctns.		Color -	22s	gray yarn	Color-22s blchd.	2s blch	d. yarn	Color -	22s	dyed yarn
Chronological sampling, and Classification	samp icatic		22s or	50s or	22s or	50s or	22s or	50s or	22s or	50s or	ning Poten-	Reflet-	Yellow-	Com-	Reflct-	Yellow-	Com-	Reflet-	Blue-	Com- posite
Grade	St	Staple	יבי	דב הבצ	בו הבע	75 75		700 31	400		1817									
Name Code		32d In.	Ibs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.	No.	Rd	위	Index	뀖	위	Index	웹	위	Index
SDUTH CENTRAL MISSISSIPPI LYDN	I		Ų,	STONEVILLE	LLE 213			100	0 PERCENT	×										
555	51	33.5	107 101 103	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.9	4.4	100	80 80 70	24 30 26	16 20 20	57 55 56	69.9 70.6 66.2	10.8 10.5 10.1	96	81.6 81.6 85.7	3.3	112 97 106	25.4 26.4 27.7	26.4 27.0 25.0	109 109 99
MACDN			_	DELTAPINE	NE 16			80	85 PERCENT	IN										
SLM	777	35	104	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.00	4.4	110 120 120	06	111	9 8 15	59 60 58	70.1 70.3 72.0	10.0	93	87.7 84.8 83.9	2.9	112 106 103	27.0 27.7 28.0	25.8 26.2 26.0	103 103 102
NITTA YUMA	¥!			DELTAPINE	NE 25			10	00 PERCENT	TNS										
SLM	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	104 102 112	35	6 55 5 5 6 9 9 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100	80 80 70	23 25 30	17 18 26	7 7 7 7 7 4 4 8 8	69.8 69.4 67.6	10.7 10.2 9.6	95 92 87	86.2 83.9 84.1	3.1 2.9 3.3	108 103 102	27.2 27.9 29.4	27.2 25.7 25.1	108 101 96
PANTHER B	BURN			DELTAPINE	NE 16			100	O PERCENT	TN										
SLM	41 41 51	35 36 35	108 116 109	339	6.8	4°0 8°0 4°0	100	80 80 70	24	17 17 19	65 67 68	70.8 66.9 67.4	9.8 10.9 9.8	94 89 87	87.1 93.0 84.9	2.9	111 124 105	25.8 26.9 27.0	26.0 25.6 26.3	106 103 105
ROB INSONVILLE	TILLE		_	DELTAPINE 45A	NE 45A			10	00 PERCENT	TN										
SLM	41 41 51	35	119	45 40 34	6.9	5.1	90 100 90	90	21 17 25	13 14 18	70 62 57	70.5	10.7	96 94 83	88.2 84.3 87.0	2.8 3.0	114	25.7 27.1 27.6	26.7 26.4 24.7	109 105 98
SCDIT				DELTAPINE	NE 16			10	00 PERCENT	INI										
SLM	777	35	11111116	39	4.9 7.0 6.5	7°4 8°9	110 90 100	70 70 70	17 21 19	14 17 16	499	71.3 71.6 69.2	9.7	96 97 97	88.3 88.5 85.0	2.8 2.7 4.1	1114	26.1 26.3 28.9	25.9 25.6 24.8	105 104 95
SCOTT			_	DELTAPINE	NE 55			100	O PERCENT	INI										
SLM SLM SLM	50 41 41	35	120 108 112	57 39 37	6.8	5.4	900	80 70 70	27 30 19	21 26 18	63 63	71.4	9.6	95 90 87	85.0	3.2 3.1 3.0	104	26.6 27.7 26.9	26.7 25.8 25.0	108 102 100

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

ness ness color
Pet.
Pct.
1/8" Pct.
ge Gage
Rdg. Mpsi
unif.
length In.
Grade Staple

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

1	,	ı														
dyed yarn	Com- posite	Index		109 105 98		110 108 95		107 108 104		115 108 103		106 109 109		107 104 102		108 100 102
228	Blue- ness	위		27.0 25.8 24.7		27.1 26.8 24.5		26.9 26.4 26.0		28.3 26.6 26.1		26.6 26.4 26.9		26.7 26.0 25.9		26.9 25.6 25.9
yarn Color -	Reflet- ance	Rd		26.7 26.2 27.5		26.0 26.8 28.4		27.3 25.6 27.2		26.2 26.1 27.5		27.1 25.3 26.2		27.1 27.0 27.6		26.7 28.4 28.0
l. yarn	Com- posite	Index		97 108 101		105 100 110		107 112 101		108 107 102		99 124 102		103 96 105		109
2s blchd.	rellow-	위		3.3 3.1		3.2		3.3		3.0		3.2 3.1		3.3		3.2 3.2 3.1
Color-22s	Reflct- ance	뀖		82.0 86.4 83.6		85.1 83.1 87.9		86.1 87.2 84.0		86.4 85.5 84.4		82.8 93.2 84.7		83.6 81.6 85.4		85.7 84.6 83.5
yarn	Com- posite	Index		93		95 98 81		96 96 91		95 97 85		9.4 9.6 8.5		93 87 89		9 9 5 5 5 5 5
22s gray	Yellow-	위		10.9		10.3 10.7 9.7		11.0		10.5 10.2 10.6		11.3		10.7		10.8
Color -	Reflct- ance	찚		68.5 69.7 63.4		70.771.5		69.8 70.8 68.1		70.3 72.2 65.1		68.4 69.7 63.9		69.0		69.7 70.3 66.1
	ning Poten- tial	No.		48 52 52		53 52 51		57 53 57		63 50		52 53 59		55 56 66		53.36
imprfctns.	50s or 12 tex	No.	-	10 12 14	-	9 9 12	-	20 11 16	_	17 11 18	-	100	-	15	-	7 8 11
Yarn imp	22s or 27 tex	No.	PERCENT	12 15 22	PERCENT	10 11 12	PERCENT	22 15 16	PERCENT	17 15 20	PERCENT	18 17 23	PERCENT	21 16 19	PERCENT	11114
appearance Y	re c	Index	100	90	100	900	100	70 80 80	75	0 6 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66	70 80 80	100	80 80	95	90
п арреа	or 50s	Index In		000		110 120 110		000		110		000		000		1000
lon Yarn	or 22s							9 9 1				3 8 1 1 1 1 1		0 1 1		
Yarn elongation	50s or 12 tex	Pct.	en	3.7	9	3.4	6	4.64		4.7 4.1	3	W W 4		4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		444
Yarn e	22s or 27 tex	Pct.	ווב 12	5.4 6.1 5.4	LLE 25	4 10 10	ווב 21	\$ N N	NE 16	6.3 5.0 8.8	LLE 21	5.00		5.9	NE 16	8 N N
rength	50s or 12 tex	Lbs.	STONEVILLE 213	33	STONEVILLE 256	30	STONEVILLE 21	32 31 32	DELTAPINE 16	36	STONEVILLE 213	28 29 34	AUBURN	30	DELTAPINE 16	33
Yarn strength	22s or 27 tex	Lbs.	S	98 106 92	S	95 103 99	S	98 97 104	Q	105 106 96	S	92 94 102	•	91 98 111	0	105
		32d In.		35		35		34 35		35		35		35		35
1on A	sampl cation		٠.	41 41 51		41 41 51		31 31 41		41 41 51		41 51 52		141		41
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL MISSISSIPPI TRIBBETT	SCH	TRIBBETT	SLA	MISSOURI BELL CITY	SLAR	COOTER	SLA	ESSEX	SLM LM LT SP	SENATH	SCH	TENNESSEE 8RADEN	SCA

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

		1															
Picker			Pet.		5.2		5.6 5.0 6.1		5.8 5.1 6.7		6.3		4.0		5.7 4.8 6.1		7.4.0
stock	Composite color		Index		96		98 97 97		96 96 93		9 6 8 8 7 8 8		101 104 94		. 666		94
of raw	Yellow- ness		No.		mm		ศ ศ พ		m m m		m m N N		ттт		m m N		444
Color	Gray- ness		No.		N 4		~~~		21 21 20		NN44		=0 m		4 N W		m m 👍
alyzer	Total waste		Pet.		1.9		3.4 3.4		80.6 80.6		4 N 4 4 N N O D		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2.8		3.4
Shirley Analyzer	Visible waste		Pet.		1.2		2.6		1.9 2.5		3.6		2.6		1.8 1.7 3.9		1.4 1.6 2.3
Elon-	gation 1/8"		Pct.		5.5		7.5		6.4		0 0 N 0 N 4 0 0		7.5		6 N N 0		7.5 6.3 6.3
strength	1/8" Gage		G/tex	80 PERCENT	21	5 PERCENT	22 21 23	75 PERCENT	22 22	5 PERCENT	25 25 25 25 25 25 25 25 25 25 25 25 25 2	75 PERCENT	24 23 21	99 PERCENT	23 23	98 PERCENT	2222
Fiber :	Zero		Mpsi	60	85	7	83	7	8184	6	8 8 8 8 8 4 4 8 0	1	822	6	77 91 82		34 78 79 79
	Micro- naire		Rdg.		4.3		0-0-0 0-0-0 0-0-0		4.0 3.9		4 4 M 4 0 0 0 0		404		44 W W W S		9.4
ibrograph	50/2.5 unif.		Pct.	111	4 4 5 5	603	244		4 4 4 5 5 5 6	EAF	4 4 4 4 W W 4 W	91	4 4 4 6 7 7	7.A	944	213	44 47 45
Digital Fibrograph	2.5% span length)	崩	DIXIE KING III	1.02	STONEVILLE	1.03	HANCOCK	1.04	REX SMOOTHLEAF	1.12 1.06 1.07 1.06	DEL TAP INE	1.13	STONEVILLE	1.07	STONEVILLE	1.08
Area,	pring, ion	Staple	32d in.	10	35	S	# # # # # #	H/	444	RE	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	30	355	S	8 4 8 8 4 8	S	4 4 E
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	TRAL E ROVE	51		441	11 6	1441	ION	5211	Z A S	41 31 SP 42	SONS	SP 42 41 51	NA.	SP 42 SP 42
State,	chrond		Name	SOUTH CENTRAL TENNESSEE CEDAR GROVE	SLM	ELORA	SLM	FLINTVILLE	SLM	MILLINGTON	5555	SOUTH WEST SOUTH TEXAS DANEVANG	SLM LT SP	LOS FRESNOS	SLM LT SLM LM	SEBASTIAN	SLM LT SLM LT SLM LT

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

yarn		ש ב			2 7		E * 1		vo m .+		> 10.00		~ 0 m ∞		= .0 F		
dyed y	Com-	POR SOUT	Index		107		103		106		107 105 100 100		106 108 103		111 106 98		107 109 97
22s	Blue-	ness	위		26.6		25.4 25.8 25.7		26.7 25.7 26.2		26.0 26.4 25.6 25.2		26.3 26.9 26.1		27.2 26.6 25.0		26.6 27.1 25.3
Color -	Reflet-	ance	됩		26.9		26.2 26.7 28.1		27.3		25.7 27.3 28.1 27.4		26.5 27.0 27.6		26.0 27.0 27.8		26.7 26.9 28.9
hd. yarn	- Com-	3	Index		99		105 115 102		105 113 102		113 90 101 107		1111 107 105		110		108 107 109
2s blchd	Yellow	2011	위		3.4		3.3		3.5 3.5		00000		3.0		3.1 3.0 3.5		3.3
Color-22s	Reflet-		뀖		83.5		8 8 8 8 4 4 4 8 4 4 4 8 4 4 4 8 4		88.3		88.3 79.6 84.9 86.4		87.3 85.9 85.5		87.5 87.5		86.7
y yarn	Com-	2	Index		86 81		93		83 90		92 92 81 83		9 6 8 4 8 4		9 9 8		89 89 78
22s gray	Yellow-		위		10.5		10.7		11.0		10.6 10.6 10.1		11.5 10.9 10.8		10.7		11.0
Color -	Reflet-		낊		65.6		68.8 70.5 69.0		65.6 67.3 66.5		68.6 69.5 64.3		68.3 71.3 64.4		67.6 68.9 65.7		67.0 66.2 65.2
Spin-	ning Poten-	tlal	No.		19		59 54 51		58 53		55 60 59 57		68 66 61		56 56 56		57 51 51
imprfctns.	50s or	4	No.	ENT	12 14	ENT	17 20 17	ENT	25 17 18	ENT	119 119 171	ENT	22 19 21	CENT	17 16 22	ENT	1111
Yarn	22s or	423	일	80 PERCENT	13	'S PERCENT	23 23	'S PERCENT	31 20 22	5 PERCENT	28 26 20 21	'S PERCENT	27 28 28	9 PER	22 18 28	8 PERCENT	19 21 21
appearance	50s or	•	Index		90	7	980	7	980	6	0 0 0 0	-	98 0	6	0 0 0	6	900
Yarn app	22s or	5	Index		110		110		90 110 100		100 110 110		90 100 110		1100		110
ion	50s or	1	Pet.		3.9		440		4 4 4 0 0 0		1.4.4.		004		404		4.6 4.3 4.1
Yarn elongat	22s or		Pct.	111 9N	5.4	LE 603	6.1 6.3 6.1		6.4	THLEAF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 16	6.3	LE 7A	5.58 5.58	LE 213	5.7
strength	50s or	_	Lbs.	DIXIE KING III	33	STONEVILLE	33 30	HANCOCK	32 30 27	REX SMOOTHLEAF	334	DELTAPINE	39 32	STONEVILLE 7A	33 36 37	STONEVILLE	34
Yarn str	22s or 27 tex	_	Lbs.	0	99	is	101 104 95	I	104	æ	103 101 103 97	٥	110	S	96 105 103	S	103 100 98
		Staple	32d In.		35		34		34		34		35		35		34
ion Ar	cation	Sts		IL /E	41		111	D1	41 41 51	-	51 51 51 51	8	41 31 9 42	20	P 42 41 51		P 42
roduct	ssifi	je.	Code	SEE GROV				VILLE		NGTON		TEXA:	LT SP	RESN	LT SP	TIAN	LT SP LT SP
State, Production Area,	and Classification	Grade	Name	SOUTH CENTRAL TENNESSEE CEDAR GROVE	SLM	ELORA	SLM	FLINTVILLE	SER	MILLINGTON	5555	SOUTH WEST SOUTH TEXAS DANEVANG	SLM	LOS FRESNOS	SLM	SEBASTIAN	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975-Continued

	State, Production Area, Chronological sampling.	Area,	Digital Fi	Fibrograph		Fiber s	strength	El On-	Shirley Analyzer	Analyzer	Color	r of raw stock	oc k	
Straple Stra	and Classificat	ion	2.5% span length	_	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible	Total	Gray-		Composite	& Card
Solid Soli	Grade	Staple				9								
FEAS TANCOT SP37		32d in.		Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
1 34 1.03 4.6 4.1 7.8 2.1 7.2 1.5 2.4 2.6 2 3 103 4.0 1 34 1.03 4.6 4.3 7.8 2.1 7.2	. <										1		1	
1 34 1.03 45 45 45 45 45 45 45 4	-	,-	TAMCOT SP37			o,		b						
TAMCOT SP37 1 32	SLM 41 SLM 41	446	1.03	4 4 4 2 6 2	3.9 4.3	77 78 78	21 21 20	7.2 6.8 7.0	1.5	2.1 2.4 2.6	-22	๓๓๓	103 98 100	9.8
1-01 42 3.4 68 23 5.4 3.5 4.4 1 1 1 1 1 1 1 1 1	CENTRAL TEXAS AQUILLA	_	TAMCOT SP37			10	O PERCENT	-						
STONEVILLE 213 STONEVILLE 213	SLM 41 SLM 41 LM 51	32	1.01	222	 	80 80 80 80 70 80	23	5.4		440	0 1 2	๓๓๓	104	r 6 4
1.00	BATESVILLE			213		σ,		-						
DELTAPINE 16 DELTAPINE 16 TO PERCENT 34 1.10		3 S S S S S S S S S S S S S S S S S S S	1.09	47 45 45	4 4 4 6 0 4	76 82 73	222	6.9 7.7	1.1	11.6 1.6	≓00	m m N	104 105 106	89 89 89 80 80 80
34 1.07 46 4.7 78 22 7.2 1.1 2.0 1 3 3 3 4 5 5.2 4.2 3 4 4.2 3 4 4.2 4.2 5.3 3 4 4.2 3 4.2 4.2 5.3 3 4 4.2 4.2 5.3 3 4 4.2 4.2 5.3 3 4 4.2 4.2 4.2 5.3 3 4 4.2 5.3 4.2 5.3 3 4 4.2 5.3 4.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	DAMON	_		9		-		_						
COKER 312 34 1.07 41 3.0 84 22 6.4 4.6 6.2 1 3 102 9.0 33 1.05 38 2.9 90 22 6.1 2.9 4.5 1 3 102 7.8 33 1.06 38 2.8 92 23 6.1 2.9 4.3 1 3 102 7.8 34 1.07 41 3.0 84 22 6.1 2.9 4.5 1 3 102 7.8 COKER 5110 34 1.03 39 2.8 83 22 6.4 4.4 5.9 2 3 101 7.9 35 1.03 39 2.7 81 22 6.4 4.4 5.9 2 3 100 7.9 36 1.02 43 2.9 83 23 6.5 3.8 5.8 5.8 3 3 97 9.0 37 1.03 41 2.5 88 25 6.0 4.1 6.2 3 3 97 11.0	LT SP LT SP LT SP	***	1.09	4 4 4 50 6 70 6	7.4	78 79 89	22 20 20	7.2	1.12.2	2.9	 M €	m m 👍	102 95 92	844 0.50
51 34 1.07 41 3.0 64 22 6.1 2.9 4.5 1 3 102 7.8 51 33 1.05 38 2.9 90 22 6.1 2.9 4.5 1 1 3 102 7.8 51 33 1.06 38 2.9 90 22 6.1 2.9 4.5 1 1 3 102 7.8 51 34 1.03 39 2.8 63 22 6.4 4.4 5.9 2 3 101 7.9 51 34 1.003 39 2.7 81 22 6.4 4.4 5.9 7 2.3 4.1 1 3 100 8.4 51 33 1.001 39 2.7 85 22 6.5 2.0 3.7 2 3 100 8.4 52 32 1.002 43 2.9 83 23 6.5 5.6 5.6 5.9 2 3 997 9.0 52 32 1.002 43 2.9 88 25 6.0 4.1 6.2 3 3 3 997 11.0	NORTHWEST TEXAS	J	COKER 312			10	O PERCENT	*_						
SI 34 1.03 39 2.8 63 22 6.4 4.4 5.9 2 3 101 7.9 41 33 1.03 39 2.7 61 22 6.7 2.3 4.1 1 3 102 7.5 41 33 1.00 39 2.7 61 22 6.7 2.3 4.1 1 3 102 7.5 41 33 1.00 39 2.7 65 22 6.6 2.0 3.7 2 3 100 8.4 DUNN 118 SP 42 32 1.02 43 2.9 83 23 6.5 3.8 5.8 2 3 97 9.0 SP 52 32 1.03 41 2.5 86 25 6.0 4.1 6.2 3 3 95 11.1 SP 52 33 1.06 42 2.7 86 25 6.6 5.5 7.4 2 3 3 97 11.0	LM 51 LM 41	* 6 6 6	1.07	38	3.0 2.9 2.8	90	22 52 53	6.4 6.1 5.6	4.6 2.9 2.1	344 5.00		กฅฅ	102 102 102	0.80.10
51 34 1.03 39 2.8 63 22 6.4 4.4 5.9 2 3 101 7.9 41 33 10.2 7.5 41 1 33 10.2 7.5 41 1 33 10.2 7.5 41 1 33 10.2 7.5 41 1 33 10.2 7.5 41 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LUBBOCK		COKER 5110			10	10 PERCENT	*1						
SP 42 32 43 2.9 83 23 6.5 3.8 5.8 2 3 97 9.0 SP 52 32 41 2.5 88 25 6.0 4.1 6.2 3 3 95 11:1 SP 52 33 1.06 42 2.7 86 25 6.6 5.5 7.4 2 3 97 11:0	LM 51 SLM 41 SLM 41	466	1.03 1.03 1.01			83 85	222	6.4	4.4 2.3 2.0	5.9	2 2	m m m	101 102 100	
LT SP 42 32 1.02 43 2.9 83 23 6.5 3.8 5.8 2 3 97 9.0 LT SP 52 32 1.03 41 2.5 68 25 6.0 4.1 6.2 3 3 97 11.1 LT SP 52 33 1.06 42 2.7 86 25 6.6 5.5 7.4 2 3 97 11.0	LUBBOCK		DUNN 118			1								
	LT SP LT SP LT SP	32 33 33 33 33 33 33 33 33 33 33 33 33 3	1.02	43 42	2.5	8 8 8 8 8 9	223	6.65	60 4 70 60 11 70	5.2	N m N	๓๓๓	97 95 97	

* 100 percent selected for tests, less than 100 percent in the area 1/ Reduced from 41 because of bark 2/ Cotton stuck to processing rolls 3/ Reduced from 42 because of bark

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

34 100 CKER 5110 STONEYILLE 213 STONEYILLE 2
110 37 6.3 4.6 100 90 12 10 64 68.5 11.3 94 85.7 3.1 106 25.5 26.8 11 106 33 6.0 4.4 110 90 14 11 61 65.6 11.3 88 85.1 3.1 106 25.5 26.9 10 89 28 6.0 4.7 3.3 100 PERCENT* COKER 312 COKER 312 COKER 5110 28 6.4 5 6.8 6 60 60 82 71 43 71.1 11.8 101 82.9 3.5 98 28.5 25.4 9 9 9 9 29 6.8 4.0 6.0 60 89 54 47 69.6 11.2 96 84.6 3.7 101 28.6 23.8 9 9 109 29 6.8 4.0 60 60 89 54 47 69.6 11.5 98 85.1 4.0 101 28.6 23.8 9 9 10
COKER 5110 100 28 6.4 3.9 60 60 54 42 45 68.1 9.5 87 84.1 3.0 103 27.5 26.0 1 97 31 5.9 4.7 60 60 59 50 45 69.6 11.1 96 86.4 3.6 106 28.6 23.9 97 32 6.2 4.8 70 60 43 35 46 68.6 11.3 94 84.3 3.7 101 28.7 25.1 DUNN 118

100 percent selected for tests, less than 100 percent in the area Reduced from 41 because of bark Reduced from 42 because of bark * नेल

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

1	Composite & Card	COTOL	Index Pct.		103 6.6 103 8.6 102 7.5		95 6.9 96 6.7 99 6.6		104 4.4 105 4.6 104 6.5		104 5.8 104 5.0 104 6.3		102 6.1 103 5.1 101 5.8		103 6.1 103 6.1 102 6.4 1		104 5.7 104 6.0 104 6.3	
of raw stock	Yellow- Comp		No.		m m 4		444		mm 04		~~~		w w 4		4 m m		m m m	
Color	Gray-	200	No.				m m N		000		=0 0				-		001	
Shirley Analyzer	Total	D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pet.		33 33 52 3 8 8 8 8		4 4 E		1.6 2.4 1.9		2.6		2.2		1.9		2.2	
Shirley	Visible	D 20 20 20 20 20 20 20 20 20 20 20 20 20	Pct.		2.1 2.0 2.2		2.5		1.2		1.3 1.3 1.6		1.6 1.6 1.4		1.11.22.5		1.4	
- H	gation 1/8"		Pct.	1	0 0 0 N 4 0	-	6.0	-	4.9 6.8	17	4.4.8	11	6 55 6 5 5 5 7	-	N N 9	1.7	7.4	
strength	1/8"	9	G/tex	100 PERCENT	22	100 PERCENT	23 23 21	100 PERCENT	25 25 24	100 PERCENT	24 23 23	91 PERCENT	24 23 23	100 PERCENT	23	100 PERCENT	24	
Fiber	Zero	9	Mpsi		80 80 80 10 44 70		90 87 887	_	92 87 90		84 81 81		92 90 84		9 8 8	•	@ @ @ 4 4 &	
L.,	Micro- naire		Rdg		2.5		3.6		35.2		446		# 60 m		5.2		4.4. 3.5.0	
'ibrograph	50/2.5		Pct.	89A	45 41 42	_	2 4 4 2 4 8	61	444 846	61	944	99	44 40 11	213	4 4 4 7 4 W	16	244	
Digital Fibrogra	2.5% span	p	In.	LOCKETT 4789A	0.97 86.0 0.99	LOCKETT BXL	1.04	DEL TAP INE	1.11	DELTAPINE	1016	DELTAPINE	1.07	STONEVILLE	1.09	DELT AP INE	1.14 .	والو
Area,	lon	Staple	32d in.	9	32 32	10	8 8 8 8 8 8 8 8	90	322	90	386	90	8 8 8 4 4 5 5 5	SI	35 34 34	90	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20000
State, Production Area,	and Classification	Grade	Code	TEXAS.E	5P 42 SP 42		SP 42 SP 42 SP 42		31 31 31	VOE	31 31 59 32		31 31 5P 32	0	4133		311	office series
State,	and C	r.D	Name	SOUTH WEST NORTHWEST TEXAS ROPESVILLE	SLM LT S	VERNON	SLM LT S SLM LT S SLM LT S	WEST ARIZONA BUCKEYE	EZZ	CASA GRANDE	EEE L	ELOY	1	GILA BEND	SLA	MARICOPA	EEE) / Co++0p

1/ Cotton stuck to processing rolls

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

yarn	t e	×		8 - °		0 10 0		m &: ==				.0.0					
dyed y	Com- posite	Index		98 101 99		200		108 112 103		109		106 110 107		108 101 104		108	
- 22s c	Blue- ness	위		24.9 25.0 24.8		24.9 25.8 26.7		26.4 27.6 25.6		26.8 27.0 26.9		26.3 26.6 26.0		26.8 25.9 25.4		26.8 25.2 26.3	
Color	Reflct- ance	〗		27.9 26.7 26.9		26.6 26.3 26.1		26.0 26.1 26.1		25.9 26.5 24.9		26.4 25.3 25.5		26.4 28.4 25.8		26.7 28.0 26.5	
nd. yarn	Com- posite	Index		108 107 98		104		109 105 106		105 105 107		104		101		104	
2s blchd	Yellow	위		3.6 3.1 4.0		3.1		2.8 2.8 3.1		2.9 3.3 2.9		3.1 3.1 3.1		3.1		3.2	
Color-22s	Reflct- ance	묎		87.0 85.9 83.7		84.5 82.7 82.8		86.1 84.4 85.6		84.6 85.6 85.6		84.5 84.0 87.0		83.2 83.6 84.1		85.5 86.1 85.2	
ay yarn	Com- posite	Index		98		81 88		100		99 101 92		96 96 96		99		98 87 93	
22s gray	Yellow- ness	위		12.0		11.2 12.0 11.4		10.4		10.7		10.8 10.9 11.7		11.2 10.8 11.1		10.7	
Color -	Reflct- ance	Rd		69.3 72.5 63.6		65.4		73.3 73.1 72.1		72.5		70.2 70.1 68.6		71.6 72.4 70.5		71.9 65.6 69.3	
Spin-	ning Poten- tial	No.		४ नोनो		50		500		67 72 68		52 57 57		4 4 6 5 2 2		57 56 61	
imprfctns.	50s or 12 tex	No.	TN	35 49 41	TN	17 21 19	TN	12 11 13	ENT	13 20 19	ENT	16 14 16	CENT	119	ENT	21 16 27	
Yarn im	22s or 27 tex	No.) PERCENT	40 60 51	D PERCENT	20 27 23) PERCENT	14 15 18	PERC	19 23 25	PERC	15 15 18	PER	20 21 16	PERC	25 17 37	
appearance	50s or 12 tex	Index	100	0 0 0 9	100	022	100	0 0 0	100	80 70 70	16	70 07	100	8 8 8	100	80 70 60	
Yarn app	22s or 27 tex	Index		70 60 60		90 100 90		90 120 100		100 90 90		90 90 100		100 90 90		100	
ngation	50s or 12 tex	Pct.		444		4.0 4.1 4.2		W 4 4		5.2		6.0 5.1 4.8		3.7		444	tests
Yarn elongation	22s or 27 tex	Pct.	4789A	4.9	BXL	5.4	19	5.4	E 61	6.5	e 66	6.5	LE 213	\$ 5.0 \$ 0.0	E 16	5.7 5.8 6.1	otential
ength	50s or 12 tex	Lbs.	LOCKETT 4789A	33	LOCKETT	34 31	DEL TAP INE	34	DELTAPINE	45 41 41	DELTAPINE	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	STONEVILLE	33	DELTAPINE 16	37 36 36	inning po
Yarn strength	22s or 27 tex	Lbs.	2	106 101 103	2	108 106 102	g	103	0	117	ō	106 116 104	S	98 100 104	0	107 106 104	run sp
-		32d In.		32 32		33		35 35		36 36 36		34		35		36 35	ton to
ion A	sampi cation St		EXAS	411		452		31	E .	31		31 31 32		31 41		31 31 31	nt cot
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH WEST NORTHWEST TEXAS ROPESVILLE	SLM LT SP SLM LT SP	VERNON	SLM LT SP SLM LT SP SLM LT SP	WEST ARIZONA BUCKEYE	EEE	CASA GRAND	M LT SP	ELOY	M LT SP	GILA BEND	SLA	MARICOPA	EEE	1/ Insufficient cotton to run spinning potential tests

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975 --Continued

	State, Production Area, Thronological sampling.	Area,	Digital Fibrograph	brograph		Fiber s	strength	Elon-	Shirley Analyzer	Analyzer	Color	r of raw stock	oc k	Picker
## Situation Fig. F	d Classificat	ion.	2.5% span length	50/2.5 unif.	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible waste	Total	Gray- ness	Yellow- ness	Composite	& Card
Mark Size Mark	Grade	Staple												
ACALA SJ-2 ACALA	Code	32d in.	In.	Pet.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pet.
1 15	DRNIA		ACALA SJ-2			á	DO PERCEN	-						
ACALA S.J-2 1 35 1.10			1.15		444	0 0 0 N 4 N	27 28 28	N 0 N 0 0 0	1.8	2.5	0 1 1	6 6 6	105 103 102	0 0 0
35 1-10 47 4-3 92 27 5-8 1-2 1-9 0 3 105 4-6 1-1 35 1-11 4-6 4-1 92 26 6-6 1-8 2-8 1-1 2 96 4-6 1-9 1-1 35 1-12 4-5 3-9 94 2-7 2-6 2-9 1-1 35 1-12 4-9 3-8 94 2-7 2-7 1-1 1-9 0 3 103 4-9 1-9 1-1 3-9 3-8 94 2-7 2-7 1-6 2-9 2-9 2-9 3-9	RSFIELD		ACALA SJ-2			1								
10	и 31 SLM 41 SLM 41		1.10	444	* * * * * * * * * * * * * * * * * * *	922	27 26 26	2.00 0.00	1.2	2.6	120	m m N	105 96 100	2.0
1 35 1-12 45 3-9 94 28 5-7 1-1 1-9 0 3 105 4-9 35 1-10 44 3-8 94 27 5-7 1-6 2-7 1 1 36 1-12 44 3-5 92 27 5-9 1-2 2-0 0 3 105 5-8 36 1-13 45 3-5 92 27 5-9 1-2 2-0 0 2 105 5-8 36 1-13 44 3-7 96 29 6-5 2-1 3-2 1 1 36 1-15 44 3-7 96 29 25 6-0 1-8 2-7 1 36 1-15 46 4-5 89 25 6-0 1-8 2-7 1 36 1-15 46 4-3 95 28 5-6 1-9 2-1 1 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 2 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 36 1-15 46 4-3 95 27 5-4 1-3 2-4 0 36 1-15 4-4 4-5 95 27 27 2-7 1 36 1-15 4-4 4-5 4-5 4-5 4-5 4-5 4-5 36 1-15 4-5 4-5 4-5 4-5 4-5 4-5 37 1-15 4-5 4-5 4-5 4-5 4-5 38 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 39 1-15 4-5 4-5 4-5 4-5 30 4-5 4-5 4-5 4-5 4-5 30 4-5 4-5 4-5 4-5 4-5 30 4-5 4-5 4-5 4-5 30 4-5 4-5 4-5 4-5 30 4-5 4-5 4-5 30 4-5 4-5 4-5 30 4-5 4-5 4-5 30 4-5 4-5 4-5 30 4-5 4-5	ONNILLOW		ACALA SJ-2			1	OO PERCEN	-						
ACALA SJ-2 1 36 1.12		W W W	1.12	244		446	28 27 25	1.00 1.00	100	2.7	012	m m N	103	200
31 36 1-12 44 3.5 92 27 5.9 1.2 2.0 0 3 106 5 9 9	UA CREEK		ACALA SJ-2			à	DO PERCEN	1						
41 36 1.07 44 3.7 96 29 6.5 2.1 3.2 1 3 102 4.4 4.0 89 25 6.0 1.8 2.4 0 2 104 5.4 4.0 4.5 89 25 6.0 1.8 2.7 1 3 103 6.5 5.1 4.4 4.5 6.0 89 2.5 6.0 1.8 2.7 1 3 103 6.5 6.0 1.8 2.7 1 3 103 6.5 6.0 1.8 2.7 1 2 3 103 6.5 6.0 1.8 2.7 1 2 3 103 6.5 6.0 1.8 2.7 1 2 3 103 6.5 6.0 1.8 2.7 1 2 2.1 104 5.2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 2 1.0 1 3.5 1.0 1 3.5 1.0 1 3.5 1.0 1 3	N 31 SLM+ 40 SLM+ 40	998	1.12	450		93	27 26 26	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	M M M M M M M M M M M M M M M M M M M	2.0	000	m N N	106	\$ \$ B
41 36 1.07 44 3.7 96 29 6.5 2.1 3.2 1 3.2 1 102 4.4 41 36 1.011 44 4.0 89 25 6.0 1.5 2.4 0 2.4 104 5.4 41 36 1.012 46 4.5 89 25 6.0 1.8 2.7 1 1 3 103 6.4 ACALA SJ-2 ACALA S	ORAN		ACALA SJ-2				0	1						
31 36 1.05 46 4.3 95 28 5.6 1.3 2.4 0 2 106 5.4 1.0 5.2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 0 2 1.0 6 5.4 1.5 2.2 1.0 6 5.4 1.5 2.2 1.0 6 5.4 1.5 2.8 1.0 1 2 1.0 1 6.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		8 8 8 8 8 8	1.07	444	6.4 5.0 7.0	9 6 6	25 26 26	\$ 9 9 \$ 0 0	2 · 1 · 5 · 1 · 5 · 1	2.52	-0-	m N m	102 104 103	
31 36 1-15 46 4-3 95 28 5-6 1-3 2-4 0 2 106 5-6 40 36 1-16 46 3-8 95 27 5-4 1-5 2-2 0 2 104 5-6 41 36 1-16 46 3-8 95 27 5-4 1-5 2-2 0 2 104 5-6 41 35 1-13 45 4-4 95 27 5-5 1-2 1-9 2-1 1-9 2 3 99 5-6 41 35 1-13 45 4-4 95 26 5-6 1-2 1-9 2 3 3 99 5-6	DOS PALOS		ACALA SJ-2				-	T						
ACALA SJ-2 31 35 10.13 45 40.0 97 27 50.2 10.2 20.1 1 2 102 30.0 10.1 1 3 103 40.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1		366	1.15	999		2 Q Q 2 Z Z Z	28 27 28	N N N 4 0		2.2	00=			
31 35 1.13 45 4.0 97 27 5.2 1.2 2.1 1 2 102 3. 31 35 1.12 46 4.2 99 27 5.7 0.9 1.7 1 3 103 4. 41 35 1.13 45 4.4 95 26 5.6 1.2 1.9 2 3 99 5.	ORO	,	5.7-				10	1						
		3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.13	444	0 7 4	99	27 27 26	5.2	1.2	2.1	==2	พคค	102	

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

1 -		1															
ed yarn	Com- posite		Index		107		108		104 102 96		98		104 102 107		107 99 97		101 102 99
22s dyed	Blue-		위		26.2 25.6 25.3		26.2 25.4 25.6		25.8 25.7 24.7		25.1 25.0 25.2		26.0 25.7 26.6		26.4 25.4 24.3		25.1 25.5 25.6
Color - 2	Reflct-B	-	湿		25.7 26.4 29.0		25.5 27.9 28.0		26.4 27.3 28.2		28.1 28.7 26.8		27.0 27.5 26.8		26.5 28.2 27.2		26.6 27.1 28.5
		_									28.5		N 60 10		M O #		
blchd. yarn	Com- posite		Index		1114		1100		108		000		660		000		112 102 102
	Yellow		위		3.2		2.8		3.1 3.0 3.7		3.5		3.4		3.2		3.0
Color-22s	Reflct-		뀖		91.1		88.2 83.0 83.4		86.4 83.9		84.7 84.6 83.2		80.1 82.5 85.2		83.8 83.2 84.8		87.9 83.5 84.3
yarn C	Com- Re		Index		102 99 98		96		666		100 98 99		98		96		9 6 6
gray		_			9.00		10.7		11.3		11.1		11.1		10.6		111.0
- 22s	Yellow ness	_	위														
Color	Reflct- ance		湿		72.1 72.5 71.5		70.3 69.4 71.3		71.3		72.3 71.17		70.6		71.6 71.6 68.5		69.4 71.2 70.0
Spin-	ning Poten- tial		No.		75 74 69		71 65 68		6 68 5 8 80		71 78 72		67 66 66		80 79 82		73
imprfctns.	50s or 12 tex		No.	ENT	14 13 15	ENT	18 16 18	ENT	20 18 33	ENT	23	ENT	16 12 10	ENT	9 2 4	ENT	26
Yarn	22s or 27 tex		No.	100 PERCENT	19 21 21	100 PERCENT	22 23 23	100 PERCENT	30 27 40	00 PERCENT	30 23	90 PERCENT	23	97 PERCENT	18 15 20	95 PERCENT	30 22
arance	50s or 12 tex		Index	-	90 10 80	-	222	-	70 60 60 60	, al	70 70 80		70 70 90		70 90 80		60 70 70
Yarn appearance	22s or 5		Index		1000		900		900		900		90 90 110		100		70 90 100
gation	50s or 12 tex		Pct.				7 4 4 7 9 8		444		5.9 4.7		444 81-6		5.1		440
Yarn elongation	22s or 27 tex		Pct.	2-5	5.8	J-2	5.0	5.1-2	4 N N	57-5	0.9 0.4 0.4	J-2	6.40	2-15	0.00	2-15	4.8.0
rength	50s or 12 tex		Lbs.	ACALA SJ-2	7.4.	ACALA SJ-2	9 # #	ACALA S	446	ACALA S	4470	ACALA SJ-2	44 45 45 45	ACALA S	531	ACALA S	47
Yarn strength	22s or 27 tex		Lbs.		127 127 123		132 130 119		127 124 109		128 129 125		129 123 125		136 138 140		123 131 126
-			32d In.		36 36		35		35		36 35		36 36 35		36 36		35
lon Are	sampli	Staple			011	20	31	LOW	31	EEK	31 40 40		111		31 40 41		31
State, Production Area,	Chronological sampling, and Classification	Grade	Name Code	WEST CAL IFORNIA ARV IN	SL#	BAKERSFIELD	SLM	BUTTONNILLON	SCHE	CANTUA CREEK	SL#+	CORCORAN	SLM	DOS PALOS	SLM+ SLM+	HANFORD	SLN

Table 6 .-- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

10.70	Ficker & Card Waste		Pet.		5.6		5.8 5.1 6.1		4 N 0		5.3		5.2		4 5 5 5 5 6 5 5 5 6 5 5		4 m m n e o
stock	Composite		Index		102		101 102 105		104 99 103		105		103		102 103 100		103 102 101
of raw	Yellow-		No.		м м м		328		2002		m m N		m m m		m m m		222
Color	Gray-		No.		011		~~0		0 5 1		000				2		e e e
nalyzer	Total Waste		Pct.		2.2		2.8 2.5 1.8		2.5 2.5 2.3		1.9 2.0 2.6		2.4		1.5		22.5
Shirley Analyzer	Visible		Pct.		1.5		1.3 1.8 1.1		1.5		0.9		4.11.6		1.9		1.5
- uc [±	gation 1/8"		Pct.	-	N N N • • • • • • • • •	*	5.5 6.1	_	66.00 50.00 50.00	_	6.00	_	8.60 1.00 1.00	_	6.0		5.8 5.6
strength	1/8" Gage	0	G/tex	100 PERCENT	27 28 28	100 PERCENT	27 26 28	100 PERCENT	27	100 PERCENT	27 26 26	100 PERCENT	29 27 26	96 PERCENT	27 27 26	85 PERCENT	27 28 28
Fiber	Zero	9	Mpsi	Ā	90 8	1	98	1	9 9 9 9 9 9 9 9	1	94	1	101 94 92		93		97 95 102
	Micro- naire		Rdg.		4.2 4.3 4.1		6.4		4 0 0 0 0 0 0		3.7		4.1 4.1 4.1		446 ••• •••		3.7 9.9
Fibrograph	50/2.5		Pct.		244		244		4 4 4 5 8 7		44 46 45		844 444		44		444 648
Digital Fi	2.5% span	p	희	ACALA SJ-3	1014	ACALA SJ-4	1.12	ACALA SJ-3	1.06	ACALA SJ-2	1.14	ACALA SJ-2	1.13	ACALA SJ-2	1.13	ACALA SJ-4	SLM 41 35 1-13 46 SLM 41 36 1-11 46 SLM 41 35 1-10 45
Area,	ion	Staple	32d in.	4	386	Ā	36 35	4	88 88 80 88 88	ď	36 36 36	A	36 36 36	4	80 80 80 80 80 80	4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
State, Production Area,	and Classification	Grade	Code	V	31 40 40		000	.1.5	4 4 11	DVE	31 40		31	Q	4 4 1	IRE	777
State,	and C	Gr	Name	MEST CALIFORNIA HURON	SLM+	LEMDORE	SEN+ SLN+	LOST HILL	SCH	DRANGE COVE	SLN+	SHAFTER	SLM	STRATFORD	SLA	STRATHMORE	SCH

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

50 or 125 or 125 or 27 tex 12	, g		Ϋ́a	rn st	Yarn strength	Yarn el	Yarn elongation			Yarn	prfctns.	Spin- ning		22s	rn	Color-22s blchd	2s blch	d. yarn		22s	dyed yarn
100 PERCENT 10.0 PERCENT 10.1 10.0 10	and Classification 22s or 50s or 22s or 22s or 27 tex 12 tex 27 tex	22s or 50s or 27 tex 12 tex	50s or 12 tex		22s 27	or	50s or 12 tex		50s or 12 tex	22s or 27 tex	50s or 12 tex	Poten- tial	<u>.</u>	Yellow-		T L	Yellow- ness		13	Blu	Com- posite
100 PERCENT 100 P	32d In. Lbs. Lbs. Pct.	. <u>Lbs.</u> <u>Lbs.</u>	Lbs.	\dashv	Pet		Pet.	Index	Index	No.	No.	No.	Rd	7	Index	Rd	위	Index	Rd	ا-٩	Index
100 70 21 17 72 71.4 10.9 98 84.2 3.0 103 26.7 25.9 1 100 PERCENT * 100 PERCENT	ACALA SJ-3	ACALA SJ-3	ACALA SJ-3	CALA SJ-3	1-3				10		L.										
100 PERCENT * 100 PE	31 36 128 45 6.4 40 36 122 44 6.0 40 35 128 46 5.8	128 45 122 44 128 46	244		4.0		444 @ 77 @	100 90 110	70 70 80	21 18 18	17	72 69 70	71.4 70.0 71.6	10.9	98 97 100	84.2 84.0 85.5	3.0 3.3	103 102 106	26.7 28.1 26.7		100
100 80 16 13 70 71.7 10.7 98 83.5 3.1 101 27.0 26.2 1 100 PERCENT 100	ACALA SJ-4	ACALA SJ-4	ACALA SJ-4	CALA SJ-4	4-5				10		* 11										
100 PERCENT 100 PERCENT 100 PERCENT 100 80 17 18 14 70 71.9 10.9 99 82.1 3.3 97 26.8 26.1 100 80 23 15 75 71.7 10.4 97 84.5 3.5 102 27.2 25.5 100 80 23 15 75 71.7 10.4 97 84.5 3.5 102 27.2 25.5 100 PERCENT 100 99 83.2 3.0 101 27.0 25.1 25.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	40 36 123 47 5.5 40 36 136 49 5.9 40 35 132 49 5.6	123 47 136 49 132 49	44 44 449		80 80 80 80 80 80		4.4.0 6.0	100	900	114	13 12 10	70 76 78	71.7 70.8 73.1	10.7 10.8 10.7	98 97 100	83.5 85.1 84.6	3.1 3.0	104	6.		100
100 70 18 14 70 71.9 10.9 99 82.1 3.3 97 26.8 26.1 100 80 17 15 82 68.3 10.6 91 84.1 3.3 102 27.2 25.5 100 80 17 15 75 71.7 10.4 97 84.5 3.5 102 27.2 25.5 100 PERCENT 100 PERCENT 100 PERCENT 100 PERCENT 100 PERCENT 100 PERCENT 100 May 11.0 99 83.2 3.0 101 27.0 25.9 90 80.2 3.0 101 27.0 25.9 90 80.2 3.0 101 27.0 25.9 90 80 80 80 80 80 80 80 80 80 80 80 80 80	LOST HILLS ACALA SJ-3	ACALA SJ-3	ACALA SJ-3	ICALA SJ-3	J-3				10		TNE										
100 PERCENT 90 70 24 17 74 71.9 11.0 99 83.2 3.0 101 27.0 25.9 1 90 80 16 15 73 73.2 10.6 100 84.0 3.3 102 26.7 25.1 1 100 PERCENT 100 PERCENT 90 60 29 20 76 69.9 11.6 98 84.8 3.4 103 26.8 25.1 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 90 PERCENT 110 90 14 11 79 70.3 11.3 98 87.0 3.1 110 24.5 26.7 25.9 1 100 80 25 26 75 69.9 10.8 95 83.5 3.5 100 26.1 25.9 1 90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.4 93 85.1 3.5 103 28.6 24.8 1 90 70 34 23 75 70.5 10.4 93 85.1 3.5 103 28.6 24.8 1 90 70 34 23 75 70.5 10.4 93 85.1 3.5 103 28.6 24.8 1	31 35 124 46 6.1 41 35 136 50 6.4 41 35 130 46 6.3	124 46 136 50 130 46	4 % 4 6 0 4		6.4		4.0.4	1000	70 80 80	18 17 23	15 15	70 82 75		000	99 91 97	82.1 84.1 84.5		97 102 102	26.8 27.2 28.6		105 102 98
90 70 24 17 74 71.9 11.0 99 83.2 3.0 101 27.0 25.9 1 90 80 16 15 73 73.2 10.6 100 84.0 3.3 102 26.7 25.1 1 100 PERCENT 90 60 29 20 76 69.9 11.6 98 84.8 3.4 103 26.8 25.1 1 90 60 29 20 76 69.9 11.6 98 84.8 3.4 103 26.8 25.5 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 10 90 14 11 79 70.3 11.3 98 87.0 3.1 103 24.5 26.7 1 10 90 16 16 10 89 70.7 11.3 98 84.1 3.1 103 24.5 26.7 1 10 90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.3 95 85.1 3.5 103 28.6 24.8 99 77.4 25.6 1	ORANGE COVE ACALA SJ-2	ACALA SJ-2	ACALA SJ-2	ICALA SJ-2	J-2				10		INT										
100 PERCENT 90 60 29 20 76 69.9 11.6 98 84.8 3.4 103 26.8 25.1 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 110 90 14 11 79 70.3 11.3 98 87.0 3.1 110 24.5 26.7 1 100 80 16 10 89 70.7 11.3 98 84.1 3.1 103 26.1 25.4 1 85 PERCENT 85 PERCENT 90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.4 93 85.1 3.5 103 28.6 24.8 99 97.4 25.6 1 90 70 34 25 72 70.5 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 34 25 72 70.5 10.6 95 87.2 3.0 110 27.2 25.0 1	31 36 136 49 6.5 31 36 133 47 6.1 40 36 129 49 6.0	136 49 133 47 129 49	644		6.5		444	900	70 80 60	24 16 27	117 15 20	74 73 76	71.9	11.0	99 100 100	644	3.3	101 102 102	27.0 26.7 27.1	25.9 25.1 25.0	104 101 100
90 60 29 20 76 69.9 11.6 98 84.8 3.4 103 26.8 25.1 1 90 80 21 16 78 70.3 11.2 97 87.5 2.9 111 26.6 25.5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ACALA SJ-2				J-2				10		INT										
96 PERCENT 110 90 14 11 79 70.3 11.3 98 87.0 3.1 110 24.5 26.7 1 80 70 29 26 75 69.9 10.8 95 83.5 3.5 100 26.7 25.9 1 100 80 16 10 89 70.7 11.3 98 84.1 3.1 103 26.1 25.4 1 85 PERCENT 90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 35 26 74 69.7 10.4 93 85.1 3.5 103 28.6 24.8 90 70 34 23 75 70.5 10.3 95 82.6 3.1 99 27.4 25.6 1	31 36 132 49 5.3 41 36 124 49 5.8 41 36 129 47 6.6	132 49 124 49 129 47	4 4 9 7 4 9		8. 9. 8. 9.		4 0 0	0666	80 70	29 21 24	20 16 19	76	90.	11.6 11.2 10.8	98 97 95		3.4	103 111 103	9.00	25.1 25.5 26.0	101 103 104
110 90 14 11 79 70.3 11.3 98 87.0 3.1 110 24.5 26.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACALA SJ-2				J-2				6	9	INS										
90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 35 26 74 69.7 10.4 93 85.1 3.5 103 28.6 24.8 90 70 34 23 75 70.5 10.3 95 82.6 3.1 99 27.4 25.6 1	31 35 137 50 6.1 41 35 131 49 6.2 41 35 136 51 6.3	137 50 131 49 136 51	50 449 51		6.1		448	110 80 100	90 400	14 29 16	111 26 10	79 75 89	70.3 69.9 70.7	101	98		3.1 3.5	1100103	400		112 104 103
90 70 34 25 72 70.2 10.6 95 87.2 3.0 110 27.2 25.0 1 90 70 35 26 74 69.7 10.4 93 85.1 3.5 103 28.6 24.8 90 70 34 23 75 70.5 10.3 95 82.6 3.1 99 27.4 25.6 1	STRATHMORE ACALA SJ-4	ACALA SJ-4	ACALA SJ-4	ICALA SJ-4	4-0				80		INT										
	41 35 135 50 5.4 41 36 138 50 5.8 41 35 132 50 6.1	135 50 138 50 132 50	2000		5.4 5.8 6.1		444	0 0 6	07 07 07	9 8 8 4 8 4	25 26 23	72 74 75		10.6	999	87.2 85.1 82.6		110 103 99	27.2 28.6 27.4		100 96 102

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

rodu	ctior 1 sam	State, Production Area, Chronological sampling,	Digital Fibrograph	ibrograph	Micro-	Fibers	Fiber strength	Elon-	Shirley Analyzer	Analyzer	Colo	Color of raw stock	ock	Picker
ass1	and Classification	100	2.5% span 50/2.5 length unif.	50/2.5 unif.	naire	Cage	1/0 Gage	1/8"	visible	waste	Gray- ness	ness	color	waste
Grade		Staple												
ပါ	Code	32d in.	il.	Pet.	Rdg.	Mpsi	G/tex	Pet.	Pct.	Pet.	N	N	Index	Pct.
T														
TRANQUILITY			ACALA SJ-2			J.	99 PERCENT	-						
	31 40	36 35 35	1.08	4 4 4 9 4 8	₩	96 91 95	26 27 25	N N N O O O	O # 80	1.8 2.0 1.7	000	m (v m	107	5.3 6.3 7.1
		4	ACALA SJ-2			•	85 PERCENT	-						
	31 41 60	35 35 35 35	1.13	444	4 4 E	92 93 92	27 28 28	N N N 400	1.0	1.21.0	0 = =	m N N	106 101 103	5.7
		4	ACALA SJ-2			1	100 PERCENT	-						
	31 31 41	35 35	1.11	144	3.9 4.1	93	27 27 26	5.6	10.4	1.9	0 7 8	mmN	104	4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
WESTHORLAND	_	J	DELTAPINE 61	19		1(100 PERCENT	-						
	31	35	1.06	4 4 4 70 70 4	€ 4 € 8	94	24 25	5.0	1.2	2.1	=00	~~~	103	6 ° 4 4
))))				,			,	,	,		

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1975--Continued

22s dyed yarn	Blue- Com-		-b Index		25.8 103 26.0 103 25.1 101		25.7 100 25.7 100 25.6 103		25.5 104 25.0 101 24.7 95		25.9 104
Color -	Reflct- ance		Rd		27.1 27.5 26.7		28.5 28.3 26.9		26.1 26.7 28.9		26.8
gray yarn Color-22s blchd, yarn	Com-		Index		100		107 103 102		104		106
22s blo	Reflct-Yellow-Com- ance ness posit		위		3.2 3.1 3.2		3.2 3.3 3.1		3.0		2.9
Color-		-	湿		83.9 83.1 84.6		86.1 84.4 83.6		84.5 91.2 85.7		85.1
ay yarn	Com-	4	Index		102 99 95		94 98 95		96		47
22s	Reflet-Yellow-		위		10.9 10.5 10.8		10.5		10.9 11.1 10.3		10.3
Color -			Rd		73.5		70.0		70.8		71.4
Spin-	ning Poten-	1. dr. 1.	No.		80 81 75		68 71 76		75 71 70		64
Yarn imprfctns.	50s or 12 tex		No.	F.	118	LN T	17 16 15	L	30 13 24	L N	25
Yarn im	22s or		No.	PERCENT	22 15 22	PERCENT	25 22 21	PERCENT	34 21 28	PERCENT	OI (F
earance	50s or	700	Index	66	70 80 70	85	020	100	09	100	Ca
Yarn appearance	22s or		Index		100 110 80		90 100 80		900		100
uo	50s or		Pct.		5.0		5.0		444 61/4		7.7
Yarn elongati	22s or	V20 17	Pct.	-5	5.9	-2	6.0	-2	6.80.9	19 3	5,1
	50s or	דכ הבע	Lbs.	ACALA SJ-2	51 44	ACALA SJ-2	4 4 4 N 4 80	ACALA SJ-2	43	DELTAPINE 61	3.3
Yarn strength	22s or	400	Lbs.	AC	135 133 128	AC	122 126 132	AC	132 128 125	O	104
		Staple	32d In.		36 35		335		35 35		36
tion Ar	l sampl: fication	Ste		Τ	31 40 41		31 41 40		31 31 41	ON	3.1
State, Production Area,	Chronological sampling, and Classification	Grade	Name Code	WEST CALIFORNIA TRANQUILITY	SLM+ SLM+	VISALIA	SLA	WASCO	SLA	WESTMORLAND	*

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1975

	Ficker & Card waste		Pct.		9.0		10.4		10.6 9.2 8.9		10.2 10.7 10.6		80°9		7.7 10.5 8.5		8 & 8 0 & 8
sock	Composite		Index		95		92 94 89		906		446		88 89 98 98		96 95 96		100 100 96
r of raw stock	Yellow-		No.		4° M M		m m m	,	****		m m m		m m m				000
Color	Gray-		No.		m 24 m		m m 👍		444		m m 🖝		N 4 M		m m N		2=2
Shirley Analyzer	Total		Pct.		8 8 8 8 8 8 8		8 4 E		3.6		44.0		3.60		2.5		30.4
Shirley	Visible		Pct.		2.0		2.5		2.8		4 2 3 8 6 9 9		3.0 2.4		1.8		3.0
-	ELon- gation	> /-	Pct.	E	7.2 7.1 6.4	E	666	E	6.0.0 80.00 10.00	<u></u>	6.1 6.2	· E	5.5	=	N 0 N	<u>-</u>	N N N N O N
strength	1/8"	200	G/tex	100 PERCENT	23 21 21	98 PERCENT	23 24 24	100 PERCENT	23	100 PERCENT	22 23	95 PERCENT	22 52 52	100 PERCENT	24 21 22	100 PERCENT	25 24 23
Fiber	Zero	9	Mpsi	-	882		80 80 80 4 77 60	pel .	800		88 88 55 57		998	-	00 00 02 53 03 03	-	90
	Micro- naire		Rdg.		3.7		4.1		244		444 744		444		444		4 ° 1 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 ° 4 °
brograph	50/2.5	11110	Pet.		444		411		444 844		44 43 43 43		44 68 69		4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		43 43 43
Digital Fibrograph	2.5% span	110 8011	li.	COKER 310	1.10 1.03 1.09	COKER 310	1.09	COKER 310	1.06	COKER 310	1.08	COKER 310	1.10	COKER 310	1001	COKER 310	1.15
Area,	pling ion	Staple	32d in.	J	4 M M M M M	S	* * * * * *	J	9 8 8 9 8 8	S	***	J	322	b	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	J	38 37 36
State, Production Area,	Chronological sampling and Classification	Grade	Code	NE,	SP 42 51 51	ш	51 51 SP 52		SP 42 51 SP 52		SP 42 SP 42 SP 42	BOL INA D NECK	SP 52 51 51	ROL INA	444	UTH CENTRAL ISSISSIPPI LAKE CORMORANT	41 50 51
State,	Chronc	8	Name	SOUTH EAST ALABAMA GERALDINÈ	SLM LT LM LM	ORRVILLE	רב	GEORGIA COMER	SLM LT	MADISON	SLM LT SLM LT SLM LT	NORTH CABOLINA SCOTLAND NECK	555	SOUTH CAROLINA HARTSVILLE	SLM	SOUTH CENTRAL MISSISSIPPI LAKE CORMOR	SLN SLN

Table 7a. -- Cotton, American upland long staple: Quality characteristics by production areas, crop of 1975

u)															
dyed yarn	Com-	o tend	Index		102 101 103		102 102 100		94 107 95		103 96 95		9 9 8 9 8		1000		106 103 98
å	Blue-		위		25.4 25.6 25.8		25.7 25.6 25.1		24.8 26.4 24.4		25.4 25.3 24.7		25.1 25.4 25.1		25.5 25.3 25.7		26.5 25.4 25.3
Color -	Reflet		껡		27.0 27.5 27.0		27.5 27.0 27.3		29.6 26.5 28.5		26.5 29.7 29.1		29.9 28.8 28.1		28.1 27.6 28.6		26.9 26.1 28.6
d. yarn	Com-	2	Index		122 108 100		109 118 106		99 104 101		119		103 102 105		105	,	109 114 101
2s blchd	rellow-	222	위		3.2 3.1 2.9		3.5		4.1 3.0				3.2		3.3		3.0 2.8 3.2
Color-22s	Reflet-Yellow	2018	쬐		92.5 86.2 82.6		86.5 91.4 85.5		84.4 84.7 83.3		91.4 84.5 84.0		84.3 83.6 85.4		885°3 84°5 84°3		86.8 88.2 83.6
ay yarn	Com-	234800	Index		87 93 86		88 92 87		85 86		86 89 85		80 81 84		98 91 87		90 89
22s gra			위		111.3 10.8 10.7		10.6		10.8		11.4		9.9 9.8 10.2		11.0		10.2
Color -	Reflet-Y	2000	Rd		65.1 68.9 65.5		67.0 68.7 65.8		64.9 73.1 65.1		64.5		63.3 63.9 65.1		66.3 69.1 67.1		68.3 70.8 68.5
Spin-		tial	No.		56 55		50 53		51 53 55		51 48 50		54 54 59		71 56 54		74 69 63
imprfctns.	50s or	Te nex	No.	F.	24 10 10	LN T	11 20 22	N	41 6 6	NT	16	T N	25 16 14	TN	13 13 10	F	10 20 22
Yarn imp	22s or	X and	No.	100 PERCENT	40 112 114	PERCENT	12 24 33	PERCENT	111	PERCENT	21 17 18	PERCENT	31 24 20	PERCENT	111	PERCENT	12 23 30
appearance		× ×	Index	100	268	98	5 6 %	100	900	100	000	95	900	100	000	100	90 02 07
Yarn appe	22s or	X Sec	Index		1100		110 100 90		130		110		100 110 100		120 120 120		120 90 100
-	50s or		Pct.		3.8		8 . 6 4 . 0		3.4		33.8		3.6		4 W W 0 • 0 0 • 8		4.6
Yarn elongation	22s or	_	Pct.	310	5.5.3	310	5.1	310	5.1	310	7.44	310	44.0 9.0	310	₩ • ₩	310	5.8
strength	50s or	12 tex	Lbs.	COKER 3	30 28 28	COKER 3	27 28 29	COKER 3	25 27 30	COKER 3	29 25 25	COKER 3	27 29 34	COKER 3	31 29 28	COKER 3	43 41 36
Yarn str	-		Lbs.	3	91 97 94	ö	94	5	85 91 93	Ü	85 79 83	ö	92	ت	106 95 93	J	119 119 105
-	<u></u>	_	티		33.4		34		34		34		335		36		38
ion Ar	sampli	Staple	32d		51 51		51 51 52		51 52 52		452	LINA	P 52 51 51	LINA	444	AL I DRANT	41 50 51
State, Production Area,	Chronological sampling and Classification	Grade	Name Code	SOUTH EAST ALABAMA GERALDINE	SLM LT SP LM LM	ORRVILLE	LH LT SP	GEORGIA	SLM LT SP LM LT SP	MADISON	SLM LT SP SLM LT SP SLM LT SP	NORTH CAROLINA SCOTLAND NECK	LH LT SI	SOUTH CAROLINA HARTSVILLE	SLA	SOUTH CENTRAL MISSISSIPPI LAKE CORKORANT	Z.
Sta	Ch °		日割	SOA				9				~		7,		S	

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1975 --Continued

	Ficker & Card waste		Pct.		9.6		7.6		6.9 7.1 8.0		8.3 7.5 8.9		7.3 8.6 9.9		10.4		6.5 7.3 10.7
stock	Composite		Index		94 100 93		104		104 105 106		103 104 105		104		101		102
of raw	Yellow- ness		No.		๓๓๓		mm		2 8 2		m m N		~~~		~ ~ ~		m n n
Color	Gray- ness		No.		m N M		10		000		-00		000				-0-
Analyzer	Total		Pet.		3.2		3.7		220		1.9 2.6 2.8		1.8		6.40		3.6
Shirley	Visible		Pct.		22.3		1.7		10.4		1.1		1.2		4.04		0.9 1.7 2.9
	Elon- gation 1/8"	,	Pct.	þes	6.2 7.8 6.1	þ.	N. 00. 00. 00. 00. 00. 00. 00. 00. 00. 0	_	4 N O		5.9	fee	6.3		6.3 6.5	_	5.3 6.1 5.7
strength	1/8"	000	G/tex	90 PERCENT	22 21 23	95 PERCENT	28	97 PERCENT	28 30 27	80 PERCENT	28 28 28	85 PERCENT	27 26 26	100 PERCENT	26 26 26	99 PERCENT	25 25 24
Fiber	Zero	þ	Mpsi	·	888		93	•	96 97 93		100 94 92		93	7	93		96 93 92
	Micro- naire		Rdg.		444		3.7		3.00		4 W V		2.98		**************************************		3.8 3.1
Fibrograph	50/2.5		Pet.		4 4 9 3	0.	84	>	444	02	4 4 4 8 8 8	02	844	>	4 4 4 N 0 0	٠	947
Digital Fil	2.5% span	Teligon	In.	COKER 310	1.05	ACALA 1517-70	1.16	ACALA 1517-V	1.20	ACALA 1517-70	1.15	ACALA 1517-70	1.15	ACALA 1517-V	1.18	ACALA 1517-C	1.19
Area,	ling	Staple	32d in.	03	* * # # # #	AC	37	AC	36	AC	9 9 9 9 9 9 9	AC	3 9 9 9	AC	78 78 76	AC	37 TE
oduction	ronological samplir and Classification	a	Code	ب	511		31		31 31		166		311		50 50		31
State, Production Area,	Chronological sampling and Classification	Grade	Name	SOUTH CENTRAL TENNESSEE TRENTON	S E E	WESTERN ARIZONA DUNCAN	SLM+	NEW MEXICO ARTESIA	EEE	ARTESIA	EEE	BERINO	SLAM	TULAROSA	Sin t	WEST TEXAS TORNILLO	SERR

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1975--Continued

State, Production Area,	Unronological sampling, and Classification	Grade	Name Code	SOUTH CENTRAL TENNESSEE TRENTON	N. W. W.	WEST AR IZONA DUNCAN	SLM+	NEW MEXICO ARTESIA	xxx	ARTESIA	EEX	BER IND	SEMM	TULAROSA	SLM SLM	WEST TEXAS TORNILLO	SLMM
ion Are	sampii	Staple	32d	At.	51 41 51		31		31		31		31		50 41 50		31 41
		_	티		344		37		37 36 36		36 36		36 36 36		37		37 37
Yarn strength	22s or 27 tex		Lbs.	J	103 88 88		136		143 138 136	•	134 140 131		140 136 129		139 141 143		147 139 138
rength	50s or		Ibs.	COKER 310	30 26 27	ICALA 1	51	ACALA 1517-V	54 53 51	ACALA	49 51 49	ACALA	50 50 48	ACALA 1517-V	52 52 55	ACALA 1517-C	54 52 50
Yarn elongation	22s or 27 tex	_	Pct.	910	5.9 5.0 5.0	ACALA 1517-70	6.0	V-7151	6.0 6.1 5.9	ACALA 1517-70	5.7	ACALA 1517-70	6.00 7.00 7.00	V-7151	6.3	1517-C	5.0
ngation	50s or		Pct.		3.6		5.4 4.8		4.7 5.0 5.1		444		5.0 6.8		5.0		4°57
Yarn app	22s or 27 tex		Index		110 120 120		100		90 80 70		120 100 80		100 70 60		70 70 60		100
appearance Yarn imprfctns	50s or 12 tex		Index	Ū.	90 100 80	ŷ.	909	5	70 6 0 6 0	~	90 70 60	~	70 60 60	11	09	Ů.	80 70 60
Yarn im	22s or 27 tex		영	90 PERCENT	24 111 15	95 PERCENT	18	97 PERCENT	43	80 PERCENT	17 27 26	85 PERCENT	35	100 PERCENT	52 66 83	99 PERCENT	23 20 49
prfctns.	50s or 12 tex		No.	ENT	18 9 12	ENT	19	ENT	19 42 26	ENT	12 22 24	ENT	27 27 49	ENT	44 43 65	ENT	117
Spin-	ning Poten-		No.		60 51 53		81 93		906		77 86 90		80 90 90		91 92 94		92 89 91
Color -	Reflct-		묎		68.4 70.6 64.9		70.4		72.8 72.9 69.9		70.1 71.2 71.5		69.9 74.0 70.7		70.1 65.8 68.2		69.1 72.4 68.3
22s gray	rellow-		위		10.8 10.4 10.4		11.7		11.1 10.8 10.7		11.5		10.7		10.9 11.1 10.8		10.8 10.4 10.1
yarn	Com- R		Index		92 95 84		99		101 100 95		98 98 97		95 100 95		96 87 92		9.00 9.00 9.00 9.00
Color-22s blchd.	Reflct-Y		쬐		88.2 87.9 85.0		85.4		93.3 84.7 85.0		87.0 83.4 83.2		84.0 86.3 84.4		85.0 84.5 83.2		83.6 86.8 81.7
s blchd	-Yellow-		위		3.0		3.4		3.1 3.2 3.0		2.9		3.0		3.2		3.2 3.2 3.1
yarn	Com- F		Index		113 113 104		105		124 104 105		110 100 101		103 105 103		104		101 109 97
Color -	Reflet		껡		26.3 26.8 27.9		27.9		25.5 26.7 26.5		25.4 25.7 25.8		25.9 27.9 26.2		26.3 25.8 26.3		26.3 27.4 26.1
22s dye	Blue-		위		26.0 26.2 25.8		25.9		25.6 25.8 24.7		26.2 26.3 25.4		26.6 25.5 25.6		25.8 26.1 25.0		26.6 25.8 24.7
dyed yarn	Com- posite		Index		105 105 101		102		105 104 100		108 108 104		100		105 107 101		108 102 101
1	ı		ı														

-64-

50s or 12 tex Yarn imperfections è 4 2 5 969 9 50 9 14 m - 0 110 22s or 27 tex 24 9 9 0 0 1 S S 00 00 00 00 00 00 Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1975 11 6 Average Index 90 06 105 115 120 110 105 110 100 100 120 105 95 Yarn appearance 50s or 12 tex 80 80 900 Index 0000 000 000 900 130 120 120 130 130 120 120 120 110 110 120 22s or 27 tex 120 130 Index 4.3 4.3 4.6 4.3 4 4 4 50s or 12 tex 4.9 Pct. Yarn elongation 100 PERCENT 100 PERCENT 98 PERCENT 100 PERCENT 100 PERCENT 95 PERCENT 22s or 27 tex 100 PERCEN Pct. 6.2 5.5 5.6 5.5 ر د ه د د ه د 6.2 5.3 Average Break Factor 2276 2298 2290 2218 2337 2260 2232 2055 2174 2450 2395 2232 2688 2851 2605 9 Yarn skein strength 50s or 12 tex 404 36 40 4 52 40 # # O 404 42 Lbs. 22s or 27 tex 118 115 113 117 110 112 105 109 112 116 125 125 120 112 133 141 130 Lbs. COKER 310 18.8 20.2 21.0 20.9 18.4 18.6 18.7 19.6 18.4 18.8 16.6 15.5 18.7 18.5 Comber waste Pct. 32d in. Staple 333 34 34 32 34 323 32 38 State, Production Area, Chronological Sampling and Classification Code SOUTH CENTRAL MISSISSIPPI LAKE CORMORAN 51 50 NORTH CAROLINA SCOTLAND NECK 42 51 51 51 52 45 424 SOUTH CAROLINA HARTSVILLE 414 52 51 51 SLM LT SP SLM LT SP SLM LT SP SLM LT SP LM SP Sp SP SP GERALDINE ORRVILLE SOUTH EAST SLM LT LM 5 555 LHLT Grade LH LT MADISON GEORGIA AL A BAMA SLM LM+ SLM SLM SLM

Insufficient cotton to run comber tests

7

Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1975 Table 7b. -- Cotton:

State, Product	lon Ar	600		II To T	יי פייבייו פייביים יי	18 011				Idin appearance		111707	THE PARTY OF THE
Chronological Sampling and Classification	Sampli	ng	Comber	22s or	50s or	Average Break	22s or	50s or	22s or	50s or	Average	22s or	50s or
Grade		Staple		27 te x	12 tex	Factor	27 tex	12 tex	27 tex	12 tex		27 tex	12 tex
Name	Code	32d in.	Pct.	Lbs.	Lbs.	No.	Pct.	Pct.	Index	Index	Index	No.	No.
SOUTH CENTRAL TENNESSEE													
TRENTON		ວ	COKER 310				90 PERCENT						
N. W.	51 41 51	3.4.4	19.2 16.8 19.0	122 110 116	44 37 41	2442 2135 2301	N N N N N B	5.44	130 130 130	100 110 90	115 120 110	10 5	ФМФ
WEST ARIZONA DUNCAN		¥	ACALA 1517-70	-70			95 PERCENT						
SLM+	31	37	14.6	155	59	3180	6.1	5°3	110	100	105	10	œ
NEW MEXICO ARTESIA		Þ	ACALA 1517-V	>			97 PERCENT						
EEE	31	37 36 36	15.3 16.3 17.1	162 160 157	62 63 61	3332 3335 3252	6.4	0.0 0.0 4.0	100 100 80	07 07 07	85 75 75	16 26 24	10 18 20
ARTESIA		¥	ACALA 1517-70	-70			80 PERCENT						
***	31 31	3 9 9	15.9 16.4 18.6	156 159 155	9 9 9	3216 3249 3205	6.4	4 N N 0	130 100 90	100 90 70	115 95 80	6 11 20	3 10 15
BERINO		¥	ACALA 1517-70	-70			85 PERCENT						
SERRE	31 31 41	36 36	15.3 16.8 19.8	158 156 147	61 75 57	3263 3591 3042	7.0	50.00 50.00 50.00	100	90 70 60	985	17 18 63	113
TULAROSA		A	ACALA 1517-V	>		1	100 PERCENT						
SLM SLM LM+	50	37 37	16.1 16.0 15.0	157 160 164	61 64	3252 3285 3404	6.5	N N N N N N N N N N N N N N N N N N N	0666	07 07 07	80 80 00 80	27 31 32	21 28 25
WEST TEXAS TORNILLO		A	ACALA 1517-C	ပု			99 PERCENT						
SLM	31 31 41	37	14.1	166 156 156	609	3401 3216 3216	6 6 6	0 0 0	120	100 70 60	110 85 70	113	10 23

Table 8,--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1975

1			l							-66-			
	Comber		Pct.		18.0 18.1 17.4		16.9 19.4 17.5		18.0 18.9 16.5		17.1 21.5 20.9		17.9 18.7 19.6
	Picker & card	waste	Pct.		4.5		6.8		0.7.9		7.5		8.1 4.5 8.8
stock	Com-	posite	Index		92 89 89		588		888		91 87		8,80,33
of raw	Yellow-	ness	No.		500		ららな		ろらな		ろろろ		500
Color	Gray-	ness	No.		444		mmm		t to		なのな		೯೩೩
Analyzer	Total	n Sign	Pet.		1.9 4.1		3.5.2		3.7 3.2 3.2		2.1 3.1		0.0°0 0.0°0
Shirley Analyzer	Visible	a de se	Pct.	cent	1.1 6.1	ent	1.6 1.6 2.7	cent	2.1 1.8 1.8	sent	1.9	Sent	2.1 4.1 4.0
	Elon- gation	1/0	Pet.	93 Percent	8.0	100 Percent	6.9	100 Percent	7.7 7.4	100 Percent	7.7	99 Percent	7.3
Fiber strength	1/8"	a Ba	G/tex		33 34 34		34 36 32		35 31 35		32 32 35		33 35
Fiber s	Zero	Rage	Mpsi		103 105 103		111 104 107		104 103 105		101 106 104		102 104 98
	Micro- naire		Rdg.	1 -8	4.1 3.6 3.5	1-8	3.5	7-8	3.7	1 −S	3.4.8	1 7−8	8 8 8 6 8 8 6
ength	Coeff.	01 Val. II	Pet.	Pima S-4	32 33 33	Pima S-4	30 35 35	Pima S-4	32 32 34	Pima S-4	30 31 31	Pima S-4	31 32 34
Array length	Upper	אמת. רדדם	In.		1.50		1.50		1.49		1.47 1.48 1.47		1.45
8		Staple	32d in.		444		###		128		###		‡ ‡‡
State, Production Area,	Chronological Sampling and Classification	Grade		WEST ARIZONA <u>Bowie</u>	നനന	Peoria	€ € € ±	Stanfield	<i>ਜ</i> ਧਾ	NEW MEXICO Las Cruses	മസ	WEST TEXAS El Paso	നന≄

Table 8.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1975--(Continued)

1										-1	67-			
	Color - 50s dyed yarn	Com- posite	Index			10 2 106 109		111 103 107		110 109 110		105 108 101		104 107 102
	lor - 50s	Blue- ness	위			26.1 25.9 26.2		27.5 25.9 26.3		26.7 26.2 27.2		26.4 26.4 25.1		26.2 26.2 25.0
	ည	Reflect. ance	뗾			28.1 26.0 24.9		26.5 27.1 26.1		25.2 25.0 26.2		27.5 26.0 26.6		27.6 26.1 26.0
	ed yarn	Com- posite	Index			97 102 99		10 2 91 93		882		992		95 101 97
	Color-50s bleached yarn	Yellow- ness	위			33.6		9.00		933.6		33.45		33.4
	Color-50	Reflect- ance	뛢			83.2 84.6 82.9		83.5 79.0 80.3		82.6 81.6 82.9		83.8 83.3 82.1		83.2 84.0 82.4
	yarn	Com- Posite	Index			8,30		0 8 8 8 8		85 87 87		98 93 83		87 91 82
	50s gray yarn	Yellow- ness	₽	4		13.0 12.8 12.8	ent	12.3 12.4 12.9	ent	12.6 13.2 12.4	ent	12.4 13.1 12.9	ent	12.5 13.6 13.0
	Color -	Reflect- ance	찖	d Co	22 1010	64.1 62.4 62.2	100 Percent	65.1 64.6 63.4	100 Percent	62.2 62.5 63.6	81 Percent	62.2 64.1 61.0	99 Percent	63.6 63.5 60.5
	rfctns	80s or 7.4 tex	No.			ପପପ		7 7 8		чее		119		ผพง
	Yarn imprfctns	50s or 12 tex	No.			п п в		чик		m'∓ a		202		01 01 V
	earance	80s or 7.4 tex	Index			120 120 110		120 110 120		120 100 110		120 120 90		120 110
	farn app	50s or 12 tex	Index			120 110		110		110		011 98		110
	Yarn elongation Yarn appearance	80s or 7.4 tex	Pct.	D, mo	t o	0.44 0.84 7.5	Pima S-4	444 6.50	Pima S-4	4.5 4.4	Pima S-4	84.4	Pima S-4	4 0 4 4 4 4
	Yarn elo	50s or 12 tex	Pct.		•	5.5		5.5 5.5		5.65		5.7.		5.3.2
	rength	80s or 7.4 tex	Lbs.			35 35 37		36 37 38		38 38 37		36 35 31		34 33 35
	Yarn strength	50s or 12 tex	Lbs.			749 99 99		74 71 70		71 70 70		954		64 67 65
	Area,	o o	32d in.			444		+ +++		224		## ##		###
	State, Production Area,	Chronological Sampling and Classification Grade Stapl		WEST ARIZONA Profice	DOM TO	mmm	Peoria	೯೯4	Stanfield	<i>ਬ ਬ ਬ</i>	NEW MEXICO Las Cruces	സസ	WEST TEXAS El Paso	നന.4

Results of simple correlation analyses for the fiber and processing tests performed on 65 short staple samples collected at triweekly intervals from selected gin points, crop of 1975 Table 9. -- Cotton:

	Spinning Potential	No.	43.2 7.5	+.82	+ .86 + .27	13 +.61 +.15	14 26	+ + 13 + 13 - 14	- 56		62°+	+.62	+.29	48 31	+.02	+.02 +.08	+ + 1
	Picker 8 & card Pc waste	Pct.	6.6	73	69	10 44 +.10	4.7.+	. + + 36		56	50	+.08 +.04	50	+.64	+ - 18 + .08 16	20 +.47 32	+.24
	Com- 8	Index	28.9	+,13	+.08 +.22 +.4.7	+.28 09 34	39	91	36	14	+.10 04	36	+.12 +.28	31	+.67 18 +.61	+.48	+ + +
Color of raw stock	Yellow- ness	No.	8. 8. 1.	+.15	+.21 13 06	+.02	+.1 ⁴ 12	+.34	+.02	+.13	÷.+.	+.31	03	+,13	+.56	+.02 28 +.10	+ + . 10 + . 10 1. 18
Colo	Gray- ness	No.	1.9	18	08 28 49	+ + .22	+.36	+.34 91	+.36	+.13	10 +.02	+.34	15	+.29	1.52	45 +.32 51	+.08
alyzer	Total	Pet.	3.92	49	47 11 68	+ 25	8.+	+.35	+.74	8	26 13	+.15	57	+.77 +.76	41 +.11 38	27 +.24 31	02 38 27
Shirley Analyzer	Visible waste	Pct.	2.60	58	33	20 16 +.19	96.+	+.36 +.14 39	+.70	14	13 01	+.19	59	+.77	41 +.23 36	24 +.15 25	07
	Elon- gation 1/8"	Pct.	4.9	04	03 19 44	68	+.19	+ + 22 + + 20 - 34	+,10	+.15	+.03	+.5 ⁴ +.57	11	+.29	90	44 10.1	42 23 .00
rength	1/8" gage	G/tex	21.5	4.60	+.67 +.05 +.34	+.39	16	90.++.0	ηη· -	+.61	+.71	+.14 +.11	+.27	32	02 +.17 +.04	+.16 16 +.19	+.38
Fiber strength	Zero	Mpsi	85.0 4.5	02 +.46	02 +.20 +.31	+ 39	20	. + + . 202	10	13	+ 10 10	52	02	21 16	+.32 +.04 +.33	+.27 +.13 +.20	+.44 +.23 01
	Micro- naire	Rdg.	3.6	+.57	++++	+•31 ••44	57	64 90 74.+	65	+.20	+.38	27	+.50	69	+.52	# * • • • • • • • • • • • • • • • • • • •	07 +.73 +.59
ength	50/2.5 unif.	Pct.	44.8 1.3	1.22	18	+.20 +.05	09	28 13 +.22	70	27	07 17	35	+.09	22 14	+.32	+.02	+.16
Fiber length	2.5% span	힒	.07	+.93	18	02 +.67 03	33	08 +.21 +.08	69	+.86	+.74	+.42+.35	+.39	43 44	09 +.19 03	+.16 46 +.27	37 +.51 +.56
	Staple	32d in.	30.8	+.17	+.11	+.46 +.07 39	58	68	52	10	+.15	74	+.25 +.44.	42 37	+.55	+.46	+.04+.42+.30
-	Grade	Index	91.0	+.17	+.93 10 +.57		35	18 +.15 +.13	73	+.82	+.71	+.35	+,43	24°-	02 +.11 +.02	+.14 47 +.27	+ + .55
	Item	Somme Distribution.	Mean Standard deviation (±) Correlation Coef. for:	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Mccronairereading Fiber etranerth.	Zero gageghpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Crayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (7t tex)pounds 22s (27 tex)pounds	Sk (74 tex)pct	Sa (74 tex)index	Sa (74 tex)No.	Compositeth	Color-ZES bleached yarn: ReflectanceRd Yellownessbb	Color - Zes ayea yarn: ReflectanceRd Bluenessb Compositeindex

	Ų	×I	8 8	.30	+.27	+.35	17	35 +.18 +.25	53	+.36	+.44	+ .11 +.05	+.14	2%	01 +.15 +.02	+.10 72 +.30	+.91
22s dyed yarn	Com- posite	Index	103.8 4.8									+ +		ii			i ÷
	Blue- ness	위	25.8	+.55	+.51 +.43 +.73	1 + +	27	41 +.10 +.36	56	+.28	+.42	07	+.20	40	+.19 +.10 +.21	+ 19	+.91
Color -	Reflect- ance	Rd	26.7	+.04	37 +.16 07	†††.+ - 10 - 175	07	+.08 24 +.06	+.24	33	25	37	4.06	12	+.36	+.09	31
ed yarn	Com- posite	Index	101.9	+.27	+.27 +.05 +.44	+.20 +.19 11	31	51 +.10 +.53	32	+.08	+.49	11	+.24 +.31	24	+.50 +.24 +.55	+.95	+.33
s bleach	Yellow- ness	위	3.4	47	46 01 46	+.13 16 01	+.15 +.24	+.32	4.47	21	26	16	24	+.22	04	-,12	+.64
Color-22s bleached yarn	Reflect- ance	Rd	84.3	+.14	+.16 +.02 +.34	+.27 +.16 14	24	45 +.02 +.48	20	+.02	+.45	17	+.21	26	+.53 +.17 +.57	12	+.19 +.10
yarn	Com- posite	Index	91.8	+.02	+ . 25	+.33	.36	52	16	27	+.07	94	+.36	44	+.95	+.57 12 +.55	+.32
22s gray yarn	Yellow- ness	위	11.8	+.11	+.19	+.04	+.23	+ + 26	+.08	+.02	+.21	+.13 +.04	13	+.16 +.21	15	+.17 34 +.24	18 +.10 +.15
Color -	Reflect- ance	Rd.	66.8	+.55	+.32	+.32	41	60	-,18	30	.00	64	+.38 +.41	48	15 +.95	+.53 04 +.50	+.36 +.19 01
rfctns	Fine 22s	No.	19.8	47	4t 14 63	16	+.77	+.25 +.12 26	+.65	31	24	+ +	79	4.97	41 +.21 36	21 +.17 24	10 35 24
Yarn imprfctns	Coarse 8s	No.	40.1	24	43	21 32 +.29	+.77	+.29 +.13 31	+.64	26	25	+.10	79	+.97	48 +.16 44	+.22 +.22 29	12
arance	Fine 22s	Index	105.7	44.+ 74.+	+ + + + + + + + + + + + + + + + + + + +	+.20 +.35 30	68	2.58	61	+.30	+.30	08	t12°+	89	+.41	+.27 24 +.31	+.07
Yarn appearance	Coarse 8s	Index	122.5	+.43	+ + + + .39	02 +.27 11	59	15	50	+.29	+.19 +.07	02	+274	er er	+.38 11 +.36	+.2. 12 +.24	+.06 +.20 +.14
ngation	Fine 22s	Pct.	6.3	+.26 47	+.35	47 +.11 +.57	+ + 52	+.31 +.30 36	†0°+	+.56	+.27	†8°+		+.17	94°-+	14 +.01 13	11
Yarn elongation	Coarse 8s	Pct.	7.4	+.35	+.42	+.14+.52	+.19	+.3 ⁴ +.31 36	08	+.62	+.27	+.84	02	+.10	49 +.13 46	17	37
	Fine 22s	Lbs.	97.7	+.70	+.73 17 +.24	+.10	01	+ .02	37	62.+	+,85	+.42	+.07	11	23 +.15 17	+.17	+.33
Yarn strength	Coarse	Lbs.	307.7	+.71	+.7 ⁴ 07 +.38	+.19 +.71 04	13	10 +.23 +.10	50	4.70	+.85	+.27	+.19	25	.00.	+ .45	24.+
	Item	Samm a Distribution.	(±)	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronalirereading	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8 (74 tex)pounds 22s (27 tex)pounds Yarn elonastion:	8s (74 tex)pct	Yarn appearance: 8s (74 tex)index 22s (27 tex)index Yarn imperfections:	88 (74 tex)	ReflectanceRd Yellowness+b Compositeindex	ReflectanceRd Yellowness	ReflectanceRd Bluenessb Compositeindex

Results of simple correlation analyses for the fiber and processing tests performed on 263 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1975 Table 10. -- Cotton:

									-7	0-								
	Spinning Potential	No.		9.5	+ +.32	+ + -34.	71. 14 10.	41	41 33 +.39	30		+ + 90 16.+	+,43	20°+ +,0°+	19	+.35 .00 +.33	03	15 06 +.02
	Picker & card	Pot.		5.80	60	33	04 17 12	+.64	+.37 +.07 40		30	24 23	14 22	28	+.50	35 +.04 33	18 +.37 25	+ 44
7004	Com-	Index		98.4	+.76	+.34	+++	58	94 18	04	+.39	+.53	+.21	17	90	+.85 +.14 +.85	02	27 +.21 +.27
المرامي بيويد عرامي	Yellow-	No.		ળ જ જ	13	+.01	41 42 46	+.17	+.27	4.07	33	30	27	11.	+.12	32 +.56 13	+.01 +.18 03	15 +.11 +.14
20.00	Gray-	8		1.7	75 40	36		+.56	+.27 +9	+.37	41	55	21	+.16 +.13	70°+	82 09	+.03	+.24 17 23
" and Tare	Total	Pet.		3.08	79 46	₹°		+.97	+.55 +.17 56	+.72	41	43	17	27	74.+ 74.+		02 +.29 08	+.15 23 24
Chirlen Angluran	Visible	Pet.		2.16	80 41	30	2	76.+	+.56 +.17 58	†9°+	41	- 45	20	19	+.39	52 +.10 47	+.01 +.22 04	+.11 16 17
	Elon- gation	7/C		6.41	+.02	07	29	04	00.+	12	+.01	+.13	+.57	+.12 +.20	06	01	+.02 13 +.23	16 +.11 +.15
renoth	1/8"	G/tex		23.4	+,42	+.49	+.75	40	53 24 +.52	17	02.+	+.85	+.12	16	.03	+.51 11.+ 12.+	90	01 15 10
Wiber strength	Zero	Mpsi		86.1 5.6	+.29 +.37	+ + 5	+.75	28	39 -:14 +.38	†0°-	ት ተ-ተ	+.63	23	12 14	02	+.37	20 +.02 18	+.03
	Micro- naîre	Rdg.		4.5.	+.16 +.34	+.35		15	+.04	44	13	19	34	+.55	48	+.04	+.08 38 +.15	. + + 52.53
north	50/2.5 unif.	Pet.		հե.7 1.7	+.21 +.49	24.+ +	+.21 +.27 +	23	07 +.01 +.07	45	+.34	+.27	18	+.49	48	+.12 07 +.09	+ 03	98. 84. 84. 84.
Fiber length	2.5%	i i	İ	1.09	+.32	+ + 54. 35.	++32 ++9	30	36 33 +.34	33	+.62	+ 53	+.13	+.14 +.09	25	+.36 17 +.27	10	27 +.21 +.27
	Staple	32d in.		3 ⁴ .6	+,41	+ + + 64°+ 46°	+.37	- th-	40	-,41	09*+	+.54	+.11 +.31	+.23	31	+ .39	01	- + + +
	Grade	Index		92.9	.41	+.32	62.++	80	75	09	+.32	+,43 +,39	+.15	+.08	31	+.67	.00 28 +.07	+.19 +.21
	Item		Sample Distribution:	Mean Standard deviation (#) Correlation Coef. for Classification:	Gradelndex Staple32d inches Fiber length:	2.5% spaninches 50/2.5pct Mirronaire	Fiber strength: Zero gagegrams/tex Elongation (1/8")pct	Shirley Analyzer: Visible Wastepct Total Wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elonation:	22s (27 tex)pct 50s (12 tex)pct Varn Amearance	22s (27 tex)index 50s (12 tex)index Yarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 22s grav varn:	ReflectanceRd Yellownesstb Compositeth	Reflectance Reflectance February Reflectance Reflectan	ReflectanceRd Bluenessb Compositeindex

								-7	71-								
yarn	Com- posite	Index	103.3	+.21	+.27 +.42 +.52	11	17 24	23 +.14 +.27	-, l ₄ ,	+.02	90:	+.05	+.30	31	+.25	+.11	+.93
22s dyed yarn	Blue- ness	위	25.9	+.19 +.24	+.21 +.42 +.56	12 15 +.11	16	17 +.11 +.21	44	90	13	07	+.35	31	+.24 .00 +.21	+.05	49
Color -	Reflect- ance	묎	27.1	17 24	27	+.03 01 16	+.11	+.24	+.28	15	09	02	11	+.22	21	24 +.54 36	94
ed yarn	Com- posite	Index	104.9	+.07	+.15	18 04 +.23	ψο 80	+ 1.03	25	+.01	03	+.09	+ + .03	02	4 10.+ 11.+	+.96	36 +.10 +.22
Color-22s bleached yarn	Yellow-	위	6. 9. 6.	28	37	+.02 08 13	÷. ÷.	++.30	+.37	16	12	04	19	+.25	33 +.26 23	26	+.54
Color-22	Reflect- ance	服	85.2	.00	+.10	20	+.01	+.03 +.01	18	03	90	60°+	02 +.04	+.03	90.+	38.	24 +.05 +.11
yarn	Com- Posite	Index	92.6	+.65	+.27	+.39	74	81 13 +.85	33	+.33	+++	+.14 +.34	12	10	+.93	+.06 23 +.11	25 +.21 +.25
22s gray yarn	Yellow- ness	₽	10.7	+.03	07	+.08 +.11 07	+.10	09 +.56 +.14	†0°+	00.	4.06 4.07	08	25	+.16	+.01	+.07 +.26 +.01	12
Color -	Reflect- ance	Rd.	68.9	+.67	+ + + .36	+.37	52	82	35	+.35	64.++	+.18	05	16	+.01	+.06	21 +.24 +.25
rfctns	Fine F	No.	18.3	.38	31 54 53	0.05	+.38	+.07 +.15 06	+.51	23	17	0 ⁴	73	*	16 +.19 09	+.01	+.22
Yarn imprfctns	Coarse 22s	No.	23.5	31	25 48 48	03	+.39	+.08 +.12 07	+.50	19	08	20	72	%.+	1.16	+.03	+.20 31
arance	Fine 50s	Index	75.5	+.03	+ + + 09	14	15	+.13 11 16	28	†0°+	00.	+.17	+.71	62	01 21 07	+.04	14 +.25 +.24
Yarn appearance	Coarse 22s	Index	96.6 12.4	+.08	+.14 +.49 +.55	12	19	+.16 11 17	35	+.02	07	01	+.71	72	05	02 +.03	+.35
ngation	Fine 50s	Pet.	4.4	+.28	+.31	+.39	37	39	22	+.68	+ + .63	19.+	+.09	70	+.37 01 +.34		10
Yarn elongation	Coarse 22s	Pet.	6.5	+.15	+.13	23 +.12 +.57	20	27	14	+.43	+.40	£9°+	01	90	+.18 08 +.14	÷ · · +	02
	Fine 50s	Ibs.	36.1	+.39	+.58 +.29 17	+.59	43	54 31 +.52	23	+.91	+.95	+.36	10	08	+.48 +.07 +.48	07 14 04	41 60 00.
Yarn strength	Coarse 22s	Lbs.	108.1	+.43	+.53	+.63 +.85 +.13	45	55	2h	6.+	+.95	+.40	70°-	13	64.++	06	
	Item	Sample Distribution:	(±)	Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5pct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Varn elongstion.	22s (27 tex)pct	22s (27 tex)index 50s (12 tex)index yarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 29s gray varn:	owr osi	ReflectanceRd Yellownesstb Compositeindex	Reflectance

Table 11.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 41 long staple samples, collected at triweekly intervals rom selected gin points, crop of 1975

	Spinning	Potential	No.	69.5	+.76 +.83	+ + .85	+.77 +.81 31	25	89 45 +.87	34		86.+	+.91	73	+.61	+.62 +.17 +.66	21 +.01 22	63 +.24 +.52
	Picker	& card waste	Pct.	9.1	54	36 36 +.15	-,44 -,46 +,22	+.73	+.41 +.15 43		34	39	33	14	+.25		 413	+.24 43 38
100	COCK	Com- posite	Index	97.5	+ + 69	+.66 +.42 75	+.71	40	97	43	+.87	+.87	+.84 +.87	56 47	+.37	+.77 +.20 +.80	+.01 10 +.02	67 +.37 +.61
4	COLOR OI raw Stock	Yellow- ness	No.	2.7	2η·	42 07 +.43	+ 28 + 29	+.10	+.54	+.15	45	45 45	48 45	+.33	13	51 +.46 38	+.07	+.27 05 19
200	COTOL	Gray- ness	No.	2.0	8 ⁴	71 42 +.78	72	+.37	+.5 ⁴	+.41	89	89	87	+.62	43	75 14 78	+.05 +.10 +.04	+.67
2011	la_yzer	Total waste	Pct.	3.49	60	18 29 +.07	44 34 +.23	66.+	+.35 15 39	+.77	22	28	18	21	38	42 07 42	11 +.15 14	+.13
מייין ביין	SULFIES A	Visible waste	Pet.	2.57	60 14	18 28 +.12	46	66*+	+.37 +.10 40	+.73	25	28	20	1 ⁴	+.30	41 09 42	10 12 12	+.15
	Elon-	gation 1/8"	Pct.	6.08	21 49	- 45 +	40 34	+.20	+.10 +.24 08	+.22	31	32	15	+.11	03	.00 +.24 +.04	64°+ 64°+	16 04 11
4	rengun	1/8" gage	G/tex	24.1 2.2	99*+	+.77	+.76 3 ^t	35	72	94	+.81	+.81 +.84	+.77	58	+.52	+.55	+.07 +.19 11	44 +.19 +.38
Fibor otvonet	r.TDGI S	Zero gage	Mpsi	88.7 4.8	+.71 +.70	+.71 +.55 53	94°+	94	72 28 +.71	1,1,1	+.77	+.82 +.84	+.68 +.70	դդ․- Հղ․-	+.31	+.53 +.25 +.59	01 +.15 04	46 +.19 +.39
	Micro-	naire	Rdg.	3.8	57	56	+ 56	+.12	+.78	+.15	81	75	78	+.83	65	56 54	+.21	+.49
north	211g v11	50/2.5 unif.	Pet.	43.5 1.5	+.52 +.54	+.63	+ + . 56	28	42	36	+.55	+.60	+ + 50	11 04	+.21	+.27 +.37 +.37	1.08	+ .35
Fibor length	LIDEL	2.5% span	In.	1.12	+ + 88	+.63	+.71 +.77 42	18	71 42 +.66	36	+.85	+ +	4.79 +.78	59	+.54	+ + 16	888	+ .52
		Staple	32d in.	35.4	+*65	+.88 +.54 57	+.70 +.70 +.19	14	68 47 45	•.26	+.83	+.85	+.73	57	+.46	+.47	13 .00 14	42 +.21 +.38
	,	Grade	Index	91.6	+*65	+.63 +.52 57	+.71 +.66 21	09	4.8°+	54	+.76	4.77 +.77 +.76	+.70 +.70	35	+.17	+.67 +.21 +.71	+.01	+ + .39
		Ltem	Sample Distribution:	Mean. Standard deviation (±). Correlation Coef. for:	Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5pct Micronairereading Fiber ethenship	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct Shirley Analyzer:	Visible wastepct Fotal wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct Yarn Appearance:		22s (27 tex)		ReflectanceRd Yellowness+b Compositeindex Color - 22s dyed varn:	ReflectanceRd Bluenessb Compositeindex

								_	73-								
and and	Com- posite	Index	102.0	+ + 38	+.46	+.38	26	60	38	+.52	+.58	+.60	13	+.16	+.56 +.30 +.63	+.14 36 +.20	- + + + + + + + + + + + + + + + + + + +
mear bearb see	Blue-	취	25.6	+.39	+.24 +.26 03	+.19	30	35	43	+,24	+ +	+.36 +.24	+.19	14 13	+,43	+.09	4.84+
- Loloy	Reflect-	몙	27.2	50	52	46 44 16	+.15	+.67	+.24	63	99	67	+.38	37	56	19 +.36 24	88
ed varn	_	Index	106.2	+.01	06 10 +.22	04 11 +.49	12 14	+.04 +.01 +.02	 14	22	17	13	+ + 50	23	+.12 +.23 +.16	+.98	+.13 +.20
Color-22s bleached varn	Yellow- ness	₽	8. 8.	-03	+ .03	++15	+.12	+.10	+.13	+.01	03	02 +.01	20	+.14	15 +.22 11	04	+.36 36
Color-2	Reflect-	묎	85.7	+.01	06 08 +.21	01 +.07 +.49	10	+.05 +.07 +.01	11	21	17	12	+.18	20 24	+.10 +.27 +.15	40.+	1 + +
r varn	Com- posite	Index	91.5	+.71	+.50	+.59 +.61 +.04	-,42	1.78	44	99°+	4.69	+.67	31	+.13	+.96	+.15	+ .463
22s gray varn	Yellowness	-위	10.7	+.21 +.03	+.16 +.37 .00	+.25 +.30 +.24	09	14 +.16 +.20	20	+.17	+.20	+.15	+00.	+.06	+.02	+.27 +.22 +.23	+ + 17
Color -	Reflect-	Rd.	2.8	74.+	+.46	+.53	41 42	75	047	+.62	+.64	+.65	32	+.12	+.02+.96	+.10	+ + + 56
rfctns	+	No.	21.5	+.22++.51	+.55	+ + 36	+.30	48 20 +. 43	+.27	99.+	+ +	+.64	87	+.97	+.20 +.02 +.21	24 +.16 27	37
Yarn imprfctus	Coarse 22s	No.	27.5	+.17	+.54	+.31	+.30	43 13 +.37	+.25	+.61	+ + .58	+.60	85	+.97	+.12+.06	20 +.14 23	37
arance	_	Index	75.1	32	55 04 +.75	44 57 +.22	02	+.54	20	63	57	55	+ 88	7 ⁴	27	+.15 27 +.20	+.27
Yarn appearance	Coarse 22s	Index	98.5	35	+.83	47	14 21	++.62	14	73	99	66	+,86	85	32 +.01 31	+ 18	+ + 38
ngation	Fine 50s	Pet.	4.3	92.+	+.78 +.50 78	+.70 +.81 17	18	89 45 + . 87	33	+.92	+.92	+.93	71	+.57	+.64	13 +.01 13	62 +.24 +.51
Yarn elongation	Coarse 22s	Pet.	20.	+.70	+.79	+.68	20	87 48 +.84	33	+.91	+ +	+.93	66	†9°+	+.65	12	+.36
ength		Ibs.	38.7 11.4	+.76	+.88	+.8. +.8. +.8. 31	. 25	1.45	37	+*98	66.+	+.91	69:-	+.58	+.62	16	+.28
Yarn strength	Coarse 22s	Lbs.	112.6	+.77++.85	+.88 +.6075	+ + 82 + .32	30	89	39	+.98	+.99	+.93	66	+.55	+. 20 +. +. 69 +. 69	17	+.32
	Item	Sample Dietribution.	Mean. Standard deviation(±). Correlation Coef. for.	Gradeindex Staple32d inches	2.5% spaninches 50/2.5 pct Micronaire reading Fiber etracets.	Zero gageMpsi 1/8" gagegrams/tex Elongation [1,8")pct	Visible Wastepct Total Wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Varn imperfections.	22s (27 tex)	ow C	Vellowness	ReflectanceRd Bluenessbd Compositeindex

Table 11a--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on combed yarns from 41 long staple samples from selected gin points, crop of 1975

	Yarn imperfections	50s	No.	11.3		+.18 +.37	+.43	69	+.20 +.46 +.01	+.23 +.31	44 27 +.37	+.21	11	+++	+.39	86	+ 86
	Yarn impe	22s	No.	14.9		+.18 +.35	το°+ 2η°+	69	+ .22 + .47 + .02	+.18 +.25	444 28 +.37	+,15	60	94°++	+.35	86	86.+
	rance	508	Index	88.5		3 ⁴ 4	47	+.78	40	00.	+ + 34 	TO	+.22	58	 61	+ 88	77
Combed Yarn Values	Yarn appearance	22s	Index	109.3		32 146	.53	+.80	33 53 +.09		+.55 +.41 48	03	4.19	59	53	+.88	 98.
Combed Ya	gation	508	Pct.	4. 6.4		ή9°+	+•68 +•42	80	+.64 +.73 14	19	+ + 83	32	65	+ + 88 88	62.+	59	+°47 +°50
	Yarn elongation	22s	Pct.	6.1		+ <u>,</u> 41 +•47	+.57 +.23	68	+.45	- 14 - 11	62 27 +.55	29	84	+•68 +•64	6L°+	53 51	+.35
	ength	50s	Lbs.	49.9 10.5		+.75 +.78	+.82 +.56	77	+ + .85	30000	87 47 +.84	35	71	±•97	+.6 ¹ +.88	58	94°+
	Yarn strength	22s	<u>Lbs.</u>	134.6 20.9		+.76	+.87 +.57	92	+ + + · 3333333333333333333333333333333	.33	- 1 + 1 + 2 + 2 + 3 + 5 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	37	92	16.+	+.68	58	94.+
	Comber		Pet.	17.60		1 2	μζ 77	+.35	65	24°+ 04°+	+.61 +.20 63	8 [↑] • +		76 71	48 65	+.19 +.22	09
Picker	& Card	waste	Pct.	9.15		54	36	+,14	44 44 4 4 4 5.0	+.73	+.41 +.15 43		+• 48	37	29	03	+.15 +.21
	Statistical Items		Sample Distribution:	MeanStandard deviation (\pm)	Correlation Coeff. for	Classification: Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5 unifpct	Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct Color of raw stock:	Grayness	Picker & card wastepct	Comber wastepct	22s (27 tex)pounds 50s (12 tex)pounds	Combod yain clougation. 22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Combad warm immerfections.	50s (12 tex)No.

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 65 short staple samples, collected at triweekly intervals from selected gin points, crop of 1975 Table 12. -- Cotton:

		Yarn skein strenoth	strenoth	Varn el	Varn elongation	Varn annearance	Dependent Variables	yern fmp	Varn (mnorfortions				
H 92 3	Picker & card	Coarse	Fine	Coarse	Fine	Coarse	Fine 22s	Coarse	Fine 22s	Spinning Potential		8 8	Dyed
	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	No.	Index	Index	yarn
	9.9	308	86	7.4	6.3	122	106	04	₀₂	143	92	102	104
	91 30.8 3.6 45	30.8 3.6 45	91 30.8 3.6 45	30.8 30.8 45	91 30.8 3.6 45	91 30.8 3.6 45	30.8 3.6 45	30.8 30.8 45	30.8 3.6 45	91 30.8 3.6 45	91 30.8 85.6 45	30.8 3.6 45	91. 30.8 85.6 45
	1.15	19.2	7.3	.61	4.9	4. 4.	13.7	26.1	14.0	7.5	6.4 6.0	0.05	8 6
	1.47	1.59 4.5	1.45	1.45	4.59	1.45	1.45	1.45	1.45	1.45	1. 4.5 4.5 7.9	1.45	1.45
	v. 1	۲۰۱۲ -	T. 00	π. I	£. 1	χ ·	L.3	L•3	L.1	F•1	m. I	m. I	1.3
	73	+.71 +.38	+ - 70 + 24 + 24	+.35	+.26	+ + + 5.45°	+ + +	34.69.	- 47	- TO - + + - 82 - 20	+.47	+ + + + + + + + + + + + + + + + + + +	0.00 + + +
	07	+.19	+.10	52	47	-•05 +•09	+.25	22	-16	13	+.33	+.20 +.04	+.27
	₩.	.71	.73	99•	• 58	94.	09.	.58	.55	.85	74.	.53	•63
	59	+.0 ⁺ +.7.1	29 +.73	+.50	+.39	+ + + 50	+,42	39	45	+.85	ζή°+	+°48 +.22	+.26
	41	+.03*	21* +.73	44.+	+.35	+.18*	+.37 +.41	35	30	+.24	+ † † † † † † † † † † † † † † † † † † †	+,47	+.21*
т	+31.72	+7.98	+12.04	+8.19	-7.65	+56.60	-109.54	+434.55	+222.54	92.09-	+50.57	+37.40	+27.43
	10 53 .64	+.12 +9.40 13.41	+3.71	07 +.19 46	06 +.13 46	+.31 +2.21 7.19	+1.05 +3.90 10.96	-1.87 -7.29 21.33	85 -4.06 11.63	37 +4.48 3.93	+.52 21 4.67	+.49 +.46 4.25	+.21 +1.87 3.74
	₹8*	.72	.73	.72	99.	• 53	69.	02.	49.	88	.63	.54	19.
	74	+ 08	17	37	-30	00.	+.12	90	05	-,13	+.18	+.35	+.03
	68	07	+.68	+.60 38	+ .52	+ +	+°17 +°14 +°14	13	-19	+.87	+.47	11.	+.30
	62	+.07*	15* +.79 12*	+.65 43	30* +.57 46	+.21* +.38*	+.11* +.16* +.53	05*	05*	08* +1,02 33	+.17*	+,40*	+.03*
,	+30.35	-11.97	05	+4.62	+4.17	+67.82	-11.95	+224.25	+129.59	44.46-	69.46+	40.74+	+50.39
	50	+.27 +9.90 -2.52 13.37	+4.01 -1.53 -1.96	+ . 27 45 45	+-22	+1.19	+.31 +1.47 +12.35 9.85	28 -2.04 -26.61 18.62	15 -1.74 -11.76 10.69	+5.32 -4.26 3.56	+ 1.19 + 15.58 + 1.12	+,42	+.03 +1.30 +2.91 3.57

	arn	Dyed yarn	Index	69.	+ + + 13	+.14* +.36* +.39	44.82+	+ 1, 14 +1, 19 +3, 19 -1, 18 -1, 18	.71	1.4.4.1.26 1.20	+.18* +.19 +.18* +.21*	+5.64	+ i i i i i i i i i i i i i i i i i i i
	Color of 22s yarn	Bleached	Index	th5.	+ + + + 1.13 - 1.12 - 03	++++++++++++++++++++++++++++++++++++++	+48.88	+ + + + + + + + + + + + + + + + + + +	.56	+ + + + 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	+89.05	+ + + + + + + + + + + + + + + + + + +
	[O]	Gray	Index	.63	+ · + + + + + + + + + + + + + + + + + +	+.1\\\\35\\\+.60\\\+.07\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+89.88	+ + 1 + + + 5 + 4 + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	.65		+,11* +,44. +,07* -,17*	+131.66	+.12 -1.62 -6.82 +.08 72
		Spinning Potential	No.	888	-11t +.86 -43 +.07	09* +1.03 +.01+	-97.50	+ + 5 • 15 + + 36 + • 06 3 • 56	. 88	1.14 1.835 1.007	+1.03 +1.03 +.04* +.00*	-96.77	+ .06 + .06 + .06 3.56
	Yarn imperfections	Fine 22s	일	t ₁ 9.	18	18* 18* 50 50	+126.51	18 -1.71 -11.86 +.06	.65	10 10 10 10 10 11 11		+49.37	1 1
les	Yarn impe	Coarse 8s	영	.70	+ .05 12 48	05*	+223.40	28 -2.03 -26.63 +.02 18.62	.70	40	**90°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	+118.31	-19 -1.13 -30.09 +0.02 +1.82 18.53
Dependent Variables	Yarn appearance	Fine 22s	Index	.70		+++. 1.15* 53	-9.19	+ .33 + .12.43 + .05.49 9.84	02.	+ + + + + + + + + + + + + + + + + + +	+ + + + + + . 12 * + . 53 * + . 02 * + . 01 * . 02 *	-15.51	+ .34 +1.49 +12.22 05 +.11 9.84
Depend	Yarn ap	Coarse 8s	Index	.55	+ + . 09 16 18	+ + 113 + 138 + 142 - 18*	+82.32	+ + 18 + 5.73 - 3.22 6.78	.55	+ + + 107	**************************************	+117.45	4 + + + + + + + + + + + + + + + + + + +
	elongation	Fine 22s	Pct.	69.	- 20 - 4.49 - 35	41* 41*	+6.01	. +	69.	18 +.47 32 27 +.07	19* +.56 47 +.07*	+4.26	+ 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
	Yarn e	Coarse 8s	Pet.	92.	+ 1 . 58	*45.59 +.59 37	+7.14	1 + 1 - 4	92.	+ .52 + .52 27 35	* 588 * br>588 * 588 * 588 * 588 * 588 * 588 * 588 * 588 * 588 * 588 * 588	+7.85	
	strength	Fine 22s	Lbs.	.78	3th +.73 19	+ 85 + 18*	-21.50	4. + + + + + + + + + + + + + + + + + + +	.78	+.68 +.15 +.37	*:33* *:17* *:29	-22,12	49 +4.31 -2.31 +.47 +.01 4.61
	Yarn skein strengt	Coarse 8s	Lbs.	.75	09 13 32	*	-63.65	36 -10.59 -4.32 -11.11	.75			-105.98	103244, 3. 48 +10.95 +44,3. 20 -5.72 -2.33 +1.11 +.44, 4.03 +1.11 +.44, 4.03 +1.01 +.73 +.03
		& card waste	Pet.	48.	49 66 14 +.17		+28.98	 	ή8.	49 61 10 +.17	43 61 10* 01*	+29.65	10 48 20 +.03 01 .62 *Statisti
	Statistical Items		DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIEER STRENGTH	(O GAGE) Multiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. () gage).	Grade index. Staple length. Micronaire.	negression Equation: Constant (a) Regression Coef. for:	Crade index Staple length Micronaire Fiber str. (0 gage). Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE IENGTH, MICROMAIRE, FIBER STERROGTH,	Multiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. (O gage). Uniformity ratio.	Grade index. Staple length Micronaire. Fiber str. (O gage) Uniformity ratio. Regression Foustion:	Constant (a)	Grade index Staple length Micronaire Fiber str. (0 gage) Uniformity ratio Standard Error (±)

Table 13.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 65 short staple samples, collected at triweekly intervals from selected gin points, crop of 1975

						Depend	Dependent Variables	es					
Statistical Items	Pirker	Yarn skein strength	strength	Yarn el	elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections		Colc	Color of 22s ye	yarn
	& card	Coarse	Fine 22s	Coarse	Fine 22s	Coarse	Fine 22.s	Coarse	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	N	.의	No.	Index	Index	Index
Dependent variable	9.9	308	86 0	7.4	6.3	122	106	04	50	43	92	102	104
Yellowness) 	V - 7	V zt	V III	V =	νψ	レュ	t- V.	t N	tr v	CL LS	たり	CL A
Nonlint content (S.A.) 2.5% span length	3.9 .95	3.9 95	3.9	3.9	3.9 .95	3.9	3.9	3.9	ب و في	3.9	3.9	3.9	3.9
Micronaire	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
Dependent variable.	1.15	19.2	7.3	.61	•56	8.1	13.7	26.1	14.0	7.5	5.3	5.0	4.8
Yellowness	- 5	- 5.	- 5.	٠٠.	- 5.		÷ 12.	- 5	- 5	.· ·	2.5.	ç. s.	r. c.
Nonlint content (S.A.)	1.4	4.1	1.4	1.4 .07	4.1	1.1	4.1	1.4	1.4	1.1	1.4	1.4	1.1
MicronaireSimple Correlation Coef. for:	.59	.59	.59	•59	.59	•59	.59	.59	.59	.59	.59	.59	.59
Grayness	+ + 36	10	+.02	+.34	+.31	15		+.29	+.25	+.13	52	51	35
Nonlint content (S.A.)	+.74 	287	 	+.15	+ +	- 59	89.	+.77 +.77	92. + +	- +	 88.	+.10 31	+.18
Z-5% span length	65	+.38	+.73 +.24	+.42	+.35	+ +	+ + +	43	±4 63	+ +.20	03 +.52	+ + 57	+ + 56
Multiple Cor. Data for: DEPENDENT VARIABLE with GRAYNESS VELLOMMESS													
Multiple Cor. Coef	.37	.29	.27	04.	.37	.15	.26	.30	.25	.16	.55	-59	-77 -
Grayness. Yellowness.	+.37	19 +.28	+.27	+.26	+ +	15	25	+.27	+ + 04	60.++	- 45	58	- 45
Beta Coefficients for:												•	•
Grayness	+.40	19* +.29*	+.28	+.27*	+.23*	15* +.02*	27* +.03*	+.29*	+.24*	+.10*	45	62 +.31*	47
Kegression Equation: Constant (a)	+6.27	+276.37	+83.93	+5.94	+4.95	+124.82	+113.20	+12.49	+5.74	+35.57	+106.88	+99.31	+98.23
Grayness	69"+	-5.67	- 88	+.25	06	8	7	ר+ 30	+ 0	£ .	09 6	1, 73	c
Yellowness Standard Error (±) DEFENDENT VARIABLE with GRATNESS, YELLOWNESS, NOWLINT (S.A.)	1.07	+11.13 18.34	40.7	182	+	8.02	13.23	41.49 24.91	13.51	7.45	-5.02 -2.13 4.42	13.08 4.07	13.20 43.20 42.4
Multiple Cor. Coef	-75	.38	.30	04.	.39	-59	.68	-77	.76	.37	.59	09.	.50
Grayness	+.20	10	02	+.24 +.22	+.18	+.07	+0.4	+.02 +.04	+ - 05	+.21	.38	+.53	+.39
Nonlint (S.A.)Beta Coefficients for:	+.70	25	15	†0°+	+.12	58	65	+.75	ħ ¿∙ +	33	26	17	18
Grayness Yellowness Nonlint (S.A.) Repression Fountion	+.15* 11* +.70	*.29*	03* +.28* 15*	+.22*	+.19* +.22* +.12*	+.00* +.02* 61	03* +.03* 67	+.01*	03* +.04* +.77	+.22*	37	56 +.31* 15*	41 +.34* 17*
Constant (a)Regression Coef. for:	62.4+	+285.47	+85.99	+5.90	+4.82	+133.99	+130.28	-24.35	40.41-	+40.51	+109.13	+100.66	+99.72
Grayness Yellowness Nonlint (S.A.) Standard Error (±)	+.26 +.59 76	+.26 -3.0226 +11.12 +4.04.05 -3.63363363363364.04.0536	+4.08 82 82 96	+.24 +.26 +.02 56	+ + .25	+.77 +.34 -3.65 6.54	55 +.82 -6.80 10.03	+.57 +1.53 +14.67 16.55	71 +1.16 +7.88 9.09	+2.57 +1.42 -1.97 7.02	-2.97 -2.13 90	-4.31 +3.08 54 4.01	-2.99 +3.20 4.18
	1ST1B1C.	really insign	nilicant										

		Dyed	Index	29*	32 +.23 +.10 +.51	+ + 29* + 10* + 53	+62.73	-78- -78- 98.14 3.59 3.59 3.59	-75	+	-106* -174* -174* -100 -100 -100 -100 -100 -100 -100 -10	51.43	1.14 1.20 1.29.71 4.86 3.21
	of 22s yarn	leached	Index	.61	+ · · 51 + · · 09 + · · 13	- 54 - 28* - 08* + 12*	+91.55 +6	-4.10 - 4.31 + 49.50 + 3.98	.62		49 +.27* 01* +.09* +.16*	+87.96 +5	-3.78 -2.67 -1.03 -1.35
·	Color	Gray	Index	.61	41 18 31	41 16* 32* 17*	+122.51 +	1.65 1.23 1.23 1.20 1.20	.68	8000 1111+	29* 18* 28* 4.47	+111.27 +	-2.31 -1.90 -22.76 -22.76 3.87
		Spinning Potential	No.	06.	+ + + + + + + + + + + + + + + + + + + +	+ .17* + .14* + .98	-66.35	+4.38 -2.48 +.76 +12.76 3.21	.91	+.55 33 +.07 +.90 31	+.32 16* +.04* +1.03	-59.28	43.72 -2.32 +1.22 +118.27 -2.64 3.05
	imperfections	Fine 22s	일	.77	07 +.11 +.67 17	+.08* +.70 13*	+12.69	-1.03 +2.14 +7.19 -28.47 8.95	.78	+		+27.53	-2.16 +2.47 +6.07 -16.98 -5.51 8.70
المار	Yarn	Coarse 8s	No.	.78	+++01	.00* +.06* +.71 11*	+16.34	+15 +3.04 +13.62 -43.50 16.38	.81	4		+58.35	-3.93 +3.96 +10.47 -11.07 -15.54 15.28
Denendent Variables	appearance	Fine 22s	Index	69•	01 01 56 +.17	01* 01* 60 +.15*	+100.69	14 -6.04 +31.41 9.88	-75	+ + 1 + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+72.87	42.50 10.34 10.34
Denend	Yarn app	Coarse 8s	Index	09.	+.10 02 +.15	+,00*	+117.06	+1.15 -3.22 +17.67 6.47	.62	+.15 03 37 +.10 +.17	+ 1.15* + 1.03* + 1.09* + 22*	+109,43	+1.83 -2.64 +11.67 +2.87 -6.38
	elongation	Fine 22s	Pct.	.59	+ + + + 000,000,000,000,000,000,000,000,000,00	**************************************	+,42	+ + + + + + + + + + + + + + + + + + +	.67	+ .27 + .13 + .14 + .57 39		+1.65	+ + + + 5 20 21 21 21 21 21 21 21 21 21 21 21 21 21
	Yarn el	Coarse 8s	Pet.	.63	+.44	+ + + + + + + + + + + + + + + + + + +	+.55	+ + + 08 + - 15 + 17 + 17 + 17	.71	. + + + + 1 10 10 10 10 10 10 10 10 10 10 10 10 10	+.35 +.09* +.10* 49	+1.86	+ + + + + + + + + + + + + + + + + + +
	strength	Fine 22s	Ibs.	.77	+ + + + + 7.4	* * * * * * + * + * * * * * * * * * * *	-4.67	2.23 + 1.484 1.44.14 1.65 1.65	.77	+ 25 + 29 + 29 + 73 + 01	**************************************	-5.11	-2.27 +.83 +1.48 +93.26 +.16 4.65
	Yarn skein strength	Coarse 8s	Ibs.	-75	+.07 +.12 +.16 +.70	+.05* +.09* +.13*	+70.19	11.48 13.32 11.82 12.534 12.63	92.	. + + + + + + + + + 12	**************************************	+59.71	+.23 +2.43 -2.27 +.03 +3.09 +.83 +.36 +2.62 +1.48 -7.89 +217.13 +93.26 15 +3.93 +1.65 .60 12.54 4.65 *Statistically insignificant
		Picker & card waste	Pet.	.85	+++	+.15* +.01* +.46 47	+12.28	+ + 02 + + 39 - 8 20 - 61	.85	+.20 +.02 +.50 57		+12.69	+.23 +.03 +.36 -7.89 15 .60 *Statisti
	C+o+i+i+i C+omo	סממרדמנים דכמום	DEFENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN IENGTH	Multiple Cor. Coef	Grayness Yellowness Nonlint (S.A.) 2.5% span length Beta Coefff ients for:	Grayness Yellowness Yonlint (S.A.). 2.5% span length Regression Fonstion	or:	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN LENGTH, MICROWALRE	Multiple Cor. Coef	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length Micronaire. Beta Coefficients for:	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire.	Constant (a)Regression Coef. for:	Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Standard Error (±).

Table 14.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 65 short staple samples, collected at triweekly intervals from selected gin points, crop of 1975

						Depend	Dependent Variables	es					
Statistical Items	1	Yarn skein strength	strength	Yarn el	Yarn elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections		Col	Color of 22s y	yarn
	Picker & card waste	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	શ	No.	No.	Index	Index	Index
Dependent variable	6.6	308	98	7.4	6.3	122	106	1,0	8	43	92	102	104
Micronaire	3.6	3.6	3.6	3.6	3.6	3.6	3.67	, w 2,0	3.6	. s.	3.6	 20.0	3.6
Uniformity ratio	452	45	45	4,52	45, 57,	, 45, 75,	, 45, 75,	, 45 75	42 45	, 45 45	, 45,	22 45	22 45
Standard Deviation (±) for:	†• o	o.	p.0	4.0	†. 0	4.0	4.9	4.0	4.9	† • 9	ħ.0	ħ . 9	ħ.9
Dependent variable	1.15	19.2	7.3	.61	.56	8.1	13.7	26.1	14.0	7.5	5.3	5.0	4.8
MicronaireFiber str. (1/8" gage)	.59	.59	.59	.59	95.	65.	5.59	59	59	50	5.0	55.	.59
Uniformity ratio Elongation (1/8" gage)	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
2.5% span length	- 69	471	+ 73	+ ho	+	06 +	+ J.2	CI	E.	78 +	5	1	7 4
MicronaireFiber str. (1/8" gage)		+ 38	+ +	27 41.+	+	+ +	. + + - + +	69.	. 63	88.5	. + +	77.+++	+ + + 0000
Uniformity ratio	70	- 07	- 17	+ - 35	5	60.+	+ + 5) i +	72.+	+ · · · · · · · · · · · · · · · · · · ·	40.+	+.27
Multiple Cor. Data for: DEPENDENT VARIABLE with	9	•	•		•	•	•	67.	- -	(T*:	•	TT.	-
2.7% SFAN LENGTH, MICKONAIKE Multiple Cor. Coef	.78	₹2.	η ζ. •	69*	.65	.52	69.	.70	.65	8.	.61	44.	·79-
2.5% span length	57	+.68	+.72	99.	+ 60	+ 19	+,15	-114	20	96.1	+.61	+.07	+ + + 138
Beta Coefficients for:	- ho	+ 70	+	+ 73	, 4	*	+	, i) (d	7		, , , , , , , , , , , , , , , , , , ,	\ L
Micronaire	41	**03*	-15*	62	. 63	04.+	+.62	49	54	29	+.70	+.0/*	+ + + 52
Constant (a)	+17.79	+102.59	+19.19	+3.30	+3.12	+80.08	+28.13	+186.96	+102.13	-53.57	+97.36	+84.32	466.78
2.5% span length	-8.67	+211.03	+89.37 -1.84	46.77	+5.57	+23.36	+26.79	-47.13 -28.20	-37.55	+115.42	-29.61	+5.26	+25.50 +3.48
Standard Error (±) DEPENDENT VARIABLE with 2.5% SPAN TENCTH.MICRONATRE	.72	12.92	06°±	† ₁ †	.43	6.91	6.6	18.58	10.66	3.29	4.21	4.51	3.59
FIBER STR. (1/8" CAGE)	α ι	02	Ľ.	6	93	C	0	Ċ	,	8	(Í	ţ
Partial Cor. Coef. for:	- [<u> </u>	•	-	9	36.	, vo.	2	60.	3. :	10.	† †	10.
7.5% span length	+		+		+.59	+ + 38	9001.	60	16 53	+ - + 50	+.61	+.05	+.34 +.45 05
Seta Coefficients for: 2.5% span length	45	74°+	+.63	+89	+.78	+*18*	*90*+	*10*	*18*	**	43*	*90°+	*38*
Fiber Str. (1/8" gage) Regression Equation:	*90*+	+.39	* 50.+	2h*	*502	+.01*	*0T*+	03*	*00.	*20.+	*60.+	+.01* +.01*	+.43
Constant (a)	+17.19	+41.53	+3.33	+4.52	+4.03	+79.30	+16.65	+194.43	+101.61	-57.84	+93.36	+83.70	+68.88
2.5% span length	-9.40	+136.56	+70.02	+8.26	46.68	+22.40	+12.79	-38.01	-38.19	+110.21	-34.49	4.51	+28.17
Fiber str. (1/8" gage)	+.06	46.19 11.68	11.61	- 12	000	. + .	+1,16	76	10.65	+. +. 7.07	+ 41	4.06	3.50
	*Statis	*Statistically insignificant	gnificant	C+ •	1	17.0	7.07	1 C • O =	500	17.0	1	1.	77.0

90644870 146 +.61 +.41 +.21 141 +.07 +.01 151 +.07 +.14 1522502* +.47 153 +.58 +.58 +.23*
.65 .90 12 +.82 4946 03 +.08 +.12 +.08 14* +.99 6333
+ .51 03 + .10 03 + .10 + .05* 06* 06*
+.83 +.15* +.05 81 +.48* +.64
200
+.39 +.26*
K + 3450 +
Fiber str. (1/8" gage)

81

Table 15.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 263 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1975

												_+		-1 ^	0 01	، نے		81-	0	_1.0	1	*. ~	puls.	_	0.10		_	01.		* *				
	yarn	Dyed	Index		103	45.75 45.75 45.05	4.1	98 4	r	4° C	160	ת ייי	1.7	+.21	, + + +	1	+		.30	+.11		+.12*	+55.94	+.10	+1.10 14.16		45.	+.12) † · +	+.11,	+ 148	+66.92	+ -	+ 6. 8. 8.
	Color of 22s y	Bleached	Index		105	45. 45. 6	4.1	86 14	}	r, r	16.	, r	1.7	+.07	+.15	-18	90°+		• 08	+.05	0	**0°+ +*00°+	+92.95	90.+	+.18 5.48		.16	+.05	+.14	*90.+	+.15*	+97.24	90.+	+1.52
	Colc	Gray	Index		8,8	34.6	7.4.5	86 5	F	r, r ω σ	<u>'</u>	ı, r	1.7	+.65	0.00	+*39	60.+		-65	+.61		+.63	+23.82	†9°+	+.27 4.01		19.	+.62	20	†9°+	16	+19.40	19.+	-1.57
		Spinning Potential	No.		9 8	34.6	4.1	% 7 7 7		9 10	16.	, r	1.7	+.32	-13	111°+	#£°+		.61	1.1		*60.++	-151.37	+.16	7.33		.70	+.13	44	+,10*	-38	-169.54	+.18	24.0- 74.0-
	imperfections	Fine 50s	N	•	8 5	34.6	7.7	8 5		7. 7. 8. 0.	, g,	5.54	1.7	-30		90.	<u>*</u>		. μ ₁	17	200	17*	+134.55	26	-2.67 7.15		.59	18	94	17*	-,45	+116.20	24	6.51
les	Yarn imp	Coarse 22s	શ		g 8	34.6	1.4.	86 45	`	ص بر ص در	16.		1.7	31	57 48	02	- 40		.37	21	77.	22	+142.63	04	-2.36 9.10		+6.	- 225	43	21	-,42	+120.88	-39	7.72
Dependent Variables	earance	Fine 50s	Index	,	% S	34.6	4.1	00 14-5	,	10.1	.6.	5.5	1.7	+.03	19.	1 ⁴	+.39		.15	40°-	1	04* +.17*	+18.89	08	+1.85		. th.	05	. 4	+05*	4.	+40.16	-10	47.55
Depend	Yarn appearance	Coarse 22s	Index		24	34.6	4.1	55 5		12.4	.9.	.5.6	1.7	+ + 08		- 12	+		£2.	- 05	1	+.24 +.24	-11.11	05	+3.23 12.10		.55	03	+.51	**03*	+.53	+23.59	70	+12.31
	elongation	Fine 50s	Pet.		†. 7. C	34.6 34.6	4,1	86 45		. v.	6.		1.7	+ 58	-31	8.8	TO*-		.35	+.18		+.18*	-1.67	+,02	+.13		.57	+.21	74	+.19	74	-2.89	+ 02	
	Yarn el	Coarse 22s	Pct.		6.5	34.6	4.1	00		. v.	6.		1.7	+.15	34	٠. در	οΤ .		.16	+.11		*.12* +.06*	+3.60	+.01	+.03		.43	+.13	04	+.13*	- 42	+2.41	+.01	24
	strength	Fine 50s	Lbs.	,	38	34.6	4.1	00 42	, ,	5.0	.91	, , , ,	1.7	+.39	17	+.59	÷		.61	8.4	1	+.18	-113.46	+.23	+3.70		.73	+ - 25	51	+.19	- 43	-128.22	+.24	-5.24
	Yarn skein	Coarse 22s	Lbs.	•	108	34.6	4.1	00 45		5.2	16.	, v.	1.7	+ +	- 19	+•63	/>-+		.58	+.27		+.43	-157.03	09"+	10.30		.71	+ .32	64:	+ 26	- 43	-185.29	+.63	-10.03
	Picker	& card waste	Pct.		ر 8. د	34.6	4.1	4.5 5.00	,	1.27	ر. ون	5.6	1.7	60	† †	40°-	C+		.63	52		52	+27.22	13	. 88		.70	55	39	51	-35	+25.07	12	76
	Statistical Items			Mean Values for:	Dependent variable	Staple length	Micronaire	Inder strength (V gage)	Standard Deviations (±) for:	Dependent variable	Staple length	Micronaire Fiber strength (O gage)	Uniformity ratio	Grade index.	Micronaire	Fiber strength (O gage)	Multiple Cor. Data for:	GRADE INDEX, STAPLE LENGTH	Multiple Cor. Coef	Grade index	Beta Coefficients for:	Staple length	Constant (a)	Grade index	Staple length Standard Error (±) DEPENDENT VARIABLE with	GRADE INDEX, STAPLE LENGIH, MICRONAIRE	Multiple Cor. Coef	Grade index	Micronaire Beta Coefficients for:	Grade indexStaple length	Micronaire	Constant (a) Regression Coef. for:	Grade indexStaple length	Micronaire

						Depen	Dependent Variables	les						
Statistical Items	Dioker	Yarn skein strength	strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		ည	Color of 22s yarn	yarn	
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed yarn	
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIRER STRENGTH	Pct.	Lbs.	Ibs.	Pet.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index	
(U white) Multiple Cor. Coef Partial Cor. Coef. for:	.72	.79	62.	.58	.61	.57	64.	.55	•59	.72	69.	.26	.57	
Grade index Staple length Micronaire Fiber str. (0 gage) Reta Coefficients for	57	++-++	+ + + + + + + + + + + + + + + + + + + +	+ + - 50	+ + + 1 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ + + 1111	1 + + 1	23 11 +.08	18 18 45 +.05	+ + + + + + + + 25	+.61 +.03 +.16 +.24	+ + + + 210	+ + + + + + + + 5	
Grade Index. Staple length. Micronaire. Fiber str. (0 gage).	55 16* +.17	++-18	+.13* +.53 37 +.34	+ + - 19	+ + + 1 1 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+.12*	+ + - 03* - + + - 109*	+ 1 1 + + + + + + + + + + + + + + + + +	-17* -14* -14* -14*	++.07*	+.61 +.03* 12*	+ + 09* + 106* - 23	+ + + * - 14* - 45	
Constant (a)	+25.24	-182.04	-127.32	+2.61	-2.73	+23.67	+40.31	+121.19	+116.33	-169.73	+18,60	+97.27	-66.80	
Grade index. Staple length. Micromaire. Fiber str. (0 gage) Standard Error (±). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STRENGTH, (0 GAGE) INTROMMTV PARTO		4.7.4 -8.38 7.71 7.71	, thy + 100 100 100 100 100 100 100 100 100 1	+ + +	39 4 + + 39 39 50 50 50 50 50 50 50 50 50 50 50 50 50	01 +1.57 +11.71 34 10.24	05 +.03 +7.02 29 9.14	14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-1.55 -6.40 6.40 6.34	4.5.98 6.+69 6.+69	+ + 62 -1.23 -1.23 -1.93 3.81	+.10 +1.11 23 5.30	4 + + + 5 + + + 5 + 5 + 5 + 5 + 5 + 5 +	
Multiple Cor. Coef	•73	.83	-82	. 58	.63	09*	84.	.58	.62	.77	69.	.26	.58	
Grade index. Staple length. Micronaire. Fiber str. (0 gage) Uniformity ratio. Beta Coefficients for	1 + 1 1 59	++1++	+ + + + + + + + + + + + + + + + + + +	20. 14.32 14.33 14.34 14	+++++++++++++++++++++++++++++++++++++++	. + + . +	+ .02 + .17 + .20 + .23	25 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1.5.5	+ + + .61 + .04 + .24 03	+ + + + + + + + 09	+ + 10 + + 32 + 122 + 13	
Grade index. Staple length. Micronaire. Fiber str. (O gage) Uniformity ratio. Rerression Fountaion		++ ++ +	+ + + + + + + + + + + + + + + + + + +	+ + 1 1 + + + 1 1 + + + 1 1 + + + 1 1 + + + 1 1 + + + 1 1 + + + 1 1 + + 1 1 + + 1	**************************************	**4.00* **4.00* **190* **190* **190*	+ + - 005* + - 20 * + - 30	**************************************	-18 -10* +-27 -308*	+ + + + + + + + + + + + + + + + + + +	*61**61**	* * * * * * * * * * * * * * * * * * *	+ 14* + 10* + 36 - 21 + 15*	
Constant (a)	+28.14	-226.95	-150.83	+5°76	-3.68	-15.00	16.7+	94.641+	+141.58	-209.61	450.49	+95.91	99*65+	
Grade index. Staple length. Micromaire. Fiber str. (0 gage). Uniformity ratio. Standard Error (±).	13 14 42 +.04 16 16	13 +.45 +.1 14 +1.77 +3.2 42 -12.65 +6.7 +.04 +.81 +1.3 16 +2.47 +1.3 16 +2.47 +1.3 16 7.15 3.7	+.17 +3.20 -6.75 +.35 +1.30 3.75 snificant		+ + + 1.02 42.17 7.03 4.05		+ - 04 + 17 + 1392 + 136 + 173 8 89	- + 1.20 - 1.56 - 1.56		+ + + + + + + + + + + + + + + + + + +	+.62 -1.04 +.19 -1.11	5 + + + + + + + + + + + + + + + + + + +	+ + + 5 1.25 1.16 3.56 3.56	

-83-

Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests on 263 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1975 Table 16. -- Cotton:

																	-	·83 -																	
	yarn	Dyed	Index	103	01 0	3.1	1.09	4.1	7.7	1.1	1.1	.04 45.	033	+.14	+.27	+.52		.31	28	+.22	+ .22	Ī	+100.54	-1.15	+1.72 4.15		.34	17	15	*10*	17*	+101.98	78	oL-1/0	4.10
	Color of 22s y	Bleached	Index	105	01 0	n 6	1.09	4.1	5.5	1.1	1.1	\$ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	03		+ 15	+.15		.03	02	02	***************************************		+105.68	11	5.49		80.	+.02	80	+*03*	*60.	+106.64	+.14	74	5.47
	Colc	Gray	Index	92	01 0	3.1	1.09	4.1	5.3	1.1	1.1	40.	[8]	-113	+.27	03		.81	81	+.14	*60°+		+97.21	90.4-	3.07		.81	76	8	83	*********	+97.22	-4.06		3.07
		Spinning Potential	No.	09	01 0	n n	1.09	4.1	9.5	1.1	1,1	÷.	[4] =	- 33	+.62	13		74.	35	25	35		+75.69	-2.9 ^t	-3.90 8.15		.51	19	25	21		+80.34	-1.74	-3.78	7.90
	fections	Fine 50s	임	18	01 0		1.09	4.1	7.8	1.1	1.1	. 45.	+.07	+.15	+.47	53		.15	+.03	+.13	*†0°+ +°17*		+12.52	+.25	+1.95 7.75		.53	27 +.14	+.51	29	+.12*	+3.30	-2.11	+1•.71 +4•51	6.65
Se	Yarn imperfections	Coarse 22s	왕	23	CU (n	 L.	1.09	4°T	8.6	1.1	1.1	. 54 . 54	+.08	+,12	+.47	- 48		.13	+.05	+.10	+.05*		+17.65	+.47	+1.82 9.70		.52	25	+.51	27	6.09.	46.26	-2.45	+1.53	8.36
Dependent Variables	arance	Fine 50s	Index	92	0 0	3°1	1.09	T•+	10.1	1.1	1.1	75.	+.13	11	00°+	04.+		.20	+.17	15	+.18*		+80.71	+1.65	9.95		•38	+.32	- 33	+.39	15* 39	+88.37	+3.61	-2.70	9.36
Depende	Yarn appearance	Coarse 22s	Index	76	01 6	n n	1.09	4•1	12.4	1.1	1.1	÷0.	+.16	11	+ 17	+.55		. 22	+.19	16	+.20		+103.09	+2.30	-3.77		84.	+.40	43	74°+	15* 50	+115.16	+5.40	-5.8	10.94
	elongation	Fine 50s	Pet.	4.4	0.0	ر د.	1.09	4.1	.50	1.1	1.1	.0. 42.	- 30	27	+ 32	-31		.43	35	19	35		+5.08	16	16 45		.45	24	-:14	27	15*	+5.23	12	16	44.
	Yarn el	Coarse 22s	Pet.	5.9	01 0		1.09	4.1	.54	1.1	1,1	후호	[מ	27	+.13	34		•30	15	23	14*		£.68	70	.51		.31	60:-	90:	11*	07*	92.9+	05	75. 70.	.51
	strength	Fine 50s	Lbs.	36	01 0	0 K	1.09	4.1	9.9	1.1	. i.	후호	ης	31	+.58	17		.56	50	20	49		+46.97	-2.99	-2.11 5.45		.58	38	16	04	16*	40.64+	-2.46	-2.06	5.38 ficant
	Yarn skein strength	Coarse 22s	Lbs.	108	CU 0	n r	1.09	4.1	12.7	1.1	1.1	÷.	. 55		+.53	19		.57	51	19	50		+128.67	-5.88	10.39		.59	38	19	04	16	+133.24	-4.71	-3.75	.87 10.21 5.38 *Statistically insignificant
	Diokor	& card	Pct.	5.8	01 0	3,1	1.09	T• †7	1.27	1.1	1,1	.04	+ 37	+.07	+.72	4		.37	+,36	03	+.37) [+5.25	†+	1.18		.73	03	+.67	03*	+.75	+3.41	03	- + 	.87 *Statistic
	Statistical Items		M 277 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Dependent variable	Grayness	Nonlint content (S.A.)	2.5% span length	Micronalre	Dependent variable	Grayness	Nonlint content (S.A.)	2.5% span length	Grayness.	Yellowness	Nonlint content (S.A.) 2.5% span length	Micronaire	DEPENDENT VARIABLE with GRAYNESS YELLOWNESS	Multiple Cor. Coef	Grayness	YellownessBeta Coefficients for:	Grayness	Regression Equation:	Constant (a) Regression Coef. for	Grayness	Standard Error (±) DEPENDENT VARIABLE with	GRAYNESS, YELLOWNESS, NONLINT (S.A.)	Multiple Cor. Coef	Grayness	Nonlint (S.A.)	Grayness	Nonlint (S.A.)	Constant (a)	Grayness	Nonlint (S.A.)	

			:			Depen	Dependent Variables					q	
Statistical Items	Picker & card	Coarse	Coarse Fine	g o	Fine	coarse	rarn appearance	Coarse	Coarse Fine	Spinning		Bleached Bleached	
	waste	22s	50s	22s	50s	22s	50s	22s	50\$		yarn	yarn	yarn
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN	Pet.	Ibs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	+17.	99°	.68	.31	94.	64.	.39	• 53	• 56	.67	.81	.16	.42
Grayness Yellowness Nonlint (S.A.).	07 12 +.66 18	31 10 13 +.37	5.00 60.00 60.00 60.00 7.1.4	09 07	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ - + + + + + + + + + + + + + + + + + +	+ 1 1 +	. + +	. + + . 203 24.9 24.9	09 13 +.50	47 41.+ 00.	+.07	
Deta Coeintents for: Grayness. Yellowness. Nonlint (S.A.).	1.06* 1.09* 1.72		28 07* 08* +.41	11* 23* 08*	- 22 - 14* - 13* + 13*	+.51 13* 48 +.11*	+.41 13* 38 +.07*	31 +.05* +.57 15*	34 +.07* +.56	09* 11* 17* +.48	***************************************	*60°+ *00°+ *10°+	10* +.29 12* +.27
Regression Equation: Constant (a)	+8.54	+8.87	-29.50	46.92	+3.33	+74.62	468.67	+48.00	+53.29	-49.91	+97.37	+81.40	+66.82
Crayness. Yellowness. Yellowness. Yellowness. S.5% span length. Standard Error (‡) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN INCOMITED		-3.56 -1.85 -1.46 +105.16 9.49	-1.73 87 52 +66.40 4.83		1.10 1.10 1.60 1.44	+5.85 -2.85 -5.65 +34.17 10.87	43.85 -2.40 -3.62 -9.34 9.34	-2.8 + 5.30 -35.33 8.27	-2.49 -4.4.20 -4.4.20 -4.839 -6.48	74 -1.79 -1.47 +110.43 6.84	-4.06 +.82 .00 3.07	+,4,4, +,20 +,20 +21,24 5,42	. 41 . 42.29 . 49.65 3.96
Multiple Cor. Coef	.77	92.	.78	.50	.63	ħ9°	64.	.62	.65	-77	.81	.18	.62
Grayness. Yellowness. Yollowness. Nonlint (S.A.). 2.5% span length Micronaire. Beta Coefficients for:		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.03	+ .07 18 21 16		+ 1 1 1 +	+	-17 -111 -114 -36	+ + 1.14 + 1.14 - 07	+ + + + + + + + + + + + + + + + + + + +	72 +.13 .00 01 +.01	+,03 +,01 +,02 +,10 +,09	. + + + + 507
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length Micronaires	+.03* +.64 04* 25	14* 03* 27 51 44	* * * * * * * * * * * * * * * * * * *	+.09* 17* +.17* 46		+	+	+ +	21 +.11* +.43 07*	+.05* 05* 45	**************************************	+.0t* 02* +.11* 10*	+ + + + + + + + + + + + + + + + + + +
Constant (a)Regression Coef. for:	+7.53	-9.07	-38.85	+6.10	+2.51	+94.32	+80.51	+36.78	+43.75	-63.28	+97.50	+83.26	+74.33
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Standard Error (±).	+.03 13 +.76 -1.25 58 58	+.03 -1.6171 136624 76 -3.28 -1.47 -1.25 +1.59.80 +94.90 58 -10.27 -5.36 81 8.20 +1.14 *Statistically insignificant	71 24 -1.47 +94.90 -5.36 4.14 gnificant	+ 4	- 01 - 07 - 14 - 14 - 146 - 38	43.59 -4.14 -3.67 -25.16 -11.15 9.56	42.46 -3.17 -18.85 46.65 8.81	-1.62 +1.64 +1.17 -1.12 -6.42	-1.55 -1.59 -13.03 -5.72 -5.72	+.65 89 -2.84 +151.56 -7.73 5.82	-4.08 + .81 + .01 3.07	+.22 +.08 +.15.65 +1.05 5.40	1.28 4.27 4.28 3.43 3.43

Table 17.--Cotton: Regults of multiple correlation analyses for the relationship of selected fiber test measurement with processing tests performed on 263 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1975

				1 1		Depend	Dependent Variables						
Statistical Items	Picker	Yarn skein streng	strength	- 1	elongation	Yarn appearance	earance	Yarn imperfections	rfections		Color	or of 22s y	arn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for.	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index)	임	No.	Index	Index	Index
Dependent variable	5.8	108	36	5.9	7.4	76	92	23	18	09	95	105	103
2.5% span length	1.09	1.09	1.09	1.09	1.09	1.09	1.09 4.1	1.09	1.09	1.09	1.09	1.09	1.09
Fiber str. (1/8" gage)	23	23	23	23	23	23	23	23 ت	23	23	23	23	87
Elongation (1/8" gage)	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	7.9	4.9	4.9	4.9
Dependent variable	.27	12.7	9.9	.54·	.50	12.4	10.1	9.8	7.8	9.5	5.3	5.5	7. 4
2.5% span length	40.	₹ - -	†. €	7.0	₹.	70.	†o.	4.0	70.	†o.	70.	すっ	70.
Fiber str. (1/8" gage)	.0.	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
2.5% span length	33	+.53	+.58	+,13	+,31	+.14	60° +	25	31	+.62	+.27	+.15	+.27
MicronaireRiber etr (1/8" gage)	44°-	+ 35 45	17	34	31	+.55	04°+	8 [†] -	. 53	13	03	+15	+.52
Uniformity ratio	74-1	+.27	62.	1.18	+ - :	64.	; + +		; ; ;	7.7.	. + ·	+ +	- + . - + . - + .
Multiple Cor. Data for: DEPENDENT VARIABLE with	•	7	•		î.	•		•		3	† •	67:-	CT
2.5% SPAN LENGTH, MICRONAIRE	0.1		C	9	t	i i	-	-	7	1		6	
Partial Cor. Coef. for:	• 40	00.	0).	٠4٠	٠24	<i>ح</i> رد.	T † •	64.	•54	.72	•30	.18	•53
2.5% span length	21	+.64 47	69°+	+ 28	74°+	07 +.5+	90	60	16	+.71	+.30	+.10	+.11
Beta Coefficients for:	5	87 +	+	9	. t	k O	*>0		7			, ,	- (
Micronaire	36	- 43	43	7.	24	+.57	+.42	45	- Tr	39	+.32	*****	*0T.+
Constant (a)	+16.43	-82.05	-72.09	+3.62	17	+63.67	+50.14	+80.84	+77.36	-100.37	+52.21	+83.86	+75.40
Regression Coei. ior: 2.5% span length	24.9-	+212,52	+119.24	+3.79	+5.83	-20.21	-14.57	-21.15	-27.55	+177.52	+42.23	+14.91	+10.52
Micronaire	1.11	-10.08 9.51	-5.29 4.70	‡.• 5†.	†† 2†.	+13.21	48.00 9.25	-8.24 8.52	6.58	-6.7 ⁴ 6.4 ₁	-1.37	+1.15 5.40	+3.95
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIRED STD (1/8" CACE)													
Multiple Cor. Coef	64.	.88	. 88	.43	• 56	.56	54.	64.	.55	.81	.51	.21	.55
2.5% span length	11	+.39	+.50	+.27	+.33	+,01	4.02	90°-	09	+.54	+ 02	+.14	+.18
Fiber str. (1/8" gage) Beta Coefficients for:	13	+-77	+.75	07	+.17	12	-12	03	20	+.52	†††*+	-10	-16
2.5% span length	12*	+.26	+.35	+.33	+.37	+*01*	+.02*	*20	10*	+.50	+.03*	+*18*	+•19*
Fiber str. (1/8" gage)	140	+.70	+.64	*80	43 +.17*	+.54	+.39	46	50	27 +.44+	*00.+	+.08*	+•44
Constant (a)	+16.05	-62.95	-62.93	+3.53	+.02	₩°09+	+55.26	+80.24	+76.25	-91.67	+57.93	+82.42	+73.87
2.5% span length	-3.90	+82.34	+56.78	+4.41	+4.55	+1.84	+5.01	-17.08	-19.97	+113.17	+3.29	454.69	+20.96
Fiber str. (1/8" gage).		7. 2. 2. 2. 2. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	-3.05 -21.54 -21.54	0 C C C C C C C C C C C C C C C C C C C	6. + 40. +	+12.42	66	-8.38 41.9	-7.23	-4.61 +2.02	+ 03	+ - E	4
	*Statisti	*Statistically insignificant).ificant		₹4.	10.69	9.19	20.0	16.0	2.40	4.24	2.51	3.02

	arn	Dyed	Index	.57	+.09 +.25 21 +.17	+ + 10* + .31 + .22 + .20*	60.89+	+11,33 +2,52 -,48 +,53 3,60	.59	+ + . 28 14 + . 17 + . 20	+.07* +.34 15* +.20* +.17	02.09+	7.94 34 34 1.03
	of 22s y	Bleached	Index	.21	+ 1.1 ⁴ + 06 - 09 - 01	**************************************	+83.28	+25.85 +.93 32 07 5.37	.31	+ + + 10 10 10 10 10 10 10 10 10 10 10 10 10 1	+.15* +.02* +.24	+70.36	119.92 1.38 1.06 1.07 11.81
	Color	Gray	Index	.52	+.06 +.07 +.44 10	+.07* +.08* +.54	+63.51	49.39 4.1.42 4.52 4.52	•53	+ + + . 04 + . 16 + . 10 + . 13	**************************************	+57.44	•
		Spinning Potential	NO.	48.	77 77 77 77 77 77 77 77	+.47	-146.80	+107.17 -8.61 +1.53 +2.01 4.93	.86	55.53	+ + + + + + + + + + + + + + + + + + +	-161.57	+100.34 -8.10 +1.82 +2.01 +2.07
	rfections	Fine 50s	No.	•59	+ - +	+.02* 28 03*	+97.52	4. ‡. † 6.31 6.31	.61	+ + 0.4 - 0.2 - 0.2 - 1.5	+.05* 31 33 13*	-107.75	49.18 44.47 08 -1.56 -1.43
es	Yarn imperfections	Coarse 22s	No.	.53	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	+.05* +.06* 30	+102.59	+11.10 -4.93 +.28 -1.73 8.27	.55	+	+.07* +.01* 30	Т.	
Dependent Variables	earance	Fine 50s	Index	64.	10 +.13 20 +.27	+ + 1.15 + 1.16 + 35	+31.42	32.56 43.08 -1.18 42.11 8.85	.53	14 13 +.28 +.24	* * *	+ 22.8+	42.95 43.87 43.17 8.58
Depend	Yarn appearance	Coarse 22s	Index	.62	+ - 13 + 286 + 30	+ 1.15* + 3.23 + 3.6	+30.56	-16.27 +7.07 -1.40 -2.69 9.80	.63		18* 17* 17* 15*	+12.07	-54.75 -7.71 -1.03 -1.03 -2.59 -2.59
	Yarn elongation	Fine 50s	Pet.	.57	+.28 +.13 +.10	+.33 +.1½ +.12*	54	40.44 40.44 40.44 111	.76	+ + + + . 13 + . 13 + . 61	+ .23 + .41 + .35 + .12* + .54	-3.16	42.84 40.4 40.4 32.32
	Yarn el	Coarse 22s	Pet.	.43	+.26 33 06	+.34 45 07*	+3.58	84, 45 00.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	.71	+.22 31 +.17 +.63		+.38	+ - + 3.01 + 0.04 5.45 38
	strength	Fine 50s	Lbs.	8.	+ .72	+ .33 + .41 + .57	-91.09	+5½.21 -5.06 +1.88 +1.01 2.87	.91	+ + + + + + + + + + + + + + + + + + +	+ + + 53 + + 56 + 10	47.79-	+51.14 -4.83 +2.01 +1.01 +.93 2.80
	Yarn skein strength	Coarse 22s	Lbs.	.89	+,40	+ + - 38	-113.66	+78.39 -8.97 +3.98 +1.79 -5.67	06.	+ + + + + + + + 185	+ + + + + + + + + + + + + + + + + + +	-124.20	-22 +73.51 +51.14 -74 -8.60 -4.83 -11 +4.20 +2.01 -15 +1.79 +1.01 -4.1 +1.48 +.93 1.05 5.58 2.80
	1	ricker & card waste	Pet.	.51	04 21 07 16	05* 05* 08*	+18.25	1.55 1.64 1.05 1.09	.56	01 25 15 17	01* 32 17* 20*	+21.15	22 74 11 15 41
	Statistical Items		DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), INTRORMITY RAPIO.	Multiple Cor. Coef	2.5% span length. Micronaire Fiber str. (1/8" gage). Uniformity ratio. Beta Coefficient for	2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Percentive Fensive Fensive		2.5% span length Micronaire. Fiber str. (1/8" gage). Uniformity ratio Standard Error (±) DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFRMITY RATIO, ELONGATION	(1/o GAGE) Multiple Cor. Coef	2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Beta Coefficients for:	2.5% span length. Micronaire. Fiber Str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage). Regression Equation:	Constant (a)Regression Coef. for:	2.5% span length. Micronaire. Fiber str. [1/8" gage). Uniformity ratio. Elongation (1/8" gage). Standard Error (±).

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 41 long staple samples, carded yarns, collected at triweekly intervals from selected gin points, crop of 1975 Table 18. -- Cotton:

						Depen	Dependent Variables	les					1	
Statistical Items	20,00	Yarn skein strength	1 strength	Yarn el	Yarn elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		Cole	Color of 22s yarn	u	
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed	
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	.cn	Index	Index	Index	
Dependent variable. Crade index. Staple length. Micronaire. Fiber strength (0 gage). Uniformity ratio. Standard Deriation (+) for	92.1 35.4 35.4 89 44	113 92 35.4 3.8 89 44	39 92 35.4 89 89 44	5.1 35.4 35.4 44	4.3 35.4 35.4 89.8 89.4 44	99 92 35.4 3.6 89 89 44	35. 35. 35. 89. 89.	28 35.4 35.4 44	21 92 35.4 35.4 89 89 44	893.44.	91 92 35.4 3.8 89 44	106 92 35.4 35.4 89 89	102 92 35.4 35.4 89 89	
Crade index. Staple length Micronaire Fiber strength (0 gage). Uniformity ratio.	1.33 1.33 1.53 1.5	23.2 6.6 1.39 1.53	11.4 6.6 1.39 1.53	6.6 1.39 1.53	6.66 1.39 4.83 1.53	19.6 6.6 1.39 4.53	11.9 6.6 1.39 1.39	16.8 6.6 1.39 1.53	12.7 6.36 1.39 4.8 1.5	17.6 6.6 1.39 4.8 1.5	1.39 1.39 1.39 1.39	6.4 1.39 1.39 1.53	1.139	
Grade index Staple length Micronaire Fiber strength (O gage). Uniformity ratio. Multiple Cor. Data for: DEPRIDBUT VARIABLE with	38.1.5	+ + + + + + + + + 82	+ +	+ . 7. 73 	+ + · · · + · · · · · · · · · · · · · ·	35 57 47 11		+ + 17	+ + + + + + + + + + + + + + + + + + +	+ + - + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+	+ + 1 + + 3 % % % % % % % % % % % % % % % % % % %	
GRADE INEA, STATES LENGTH Multiple Cor. Coef	.56	.89	06.	62.	.81	.57	.51	64.	.53	.88	.71	.19	-87- £2:	97
Grade index	51 +.14	+.54	+.53	+.43	+,42	+.02	+.02 42	18 +.46	16	+.53	+.60	+.14 19	+.40	
Grade index	+.15*	+.38	+.36	+.39*	+.36*	+.03*	+.02*	21* +.60	18* +.63	+.38	+.70	+.18*	*67*+	
Constant (a) Regression Coef. for:	+15.90	-363.85	-198.51	-5.09	-7.79	+381.67	+229.29	-177.10	-149.47	-286.08	+33.08	+131.59	+69.33	
Grade index. Staple length Standard Error (‡). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH '	13 +.15 1.11	+1.33 +10.02 10.47	+.63 +5.08 5.07	+.04 +.21 .37	+.04 +.25 .39	+.08 -8.21 16.11	+.03 -4.45 10.20	55 +7.21 14.71	36 +5.75 10.83	+1,02 +7,42 8,22	+.60 +.10 3.97	+.17 -1.16 6.32	+.29 +.17 3.35	
Multiple Cor. Coef	. 58	.93	.93	.87	.88	.87	.79	+1L.	77.	-95	.73	.29	.53	
Grade index. Staple length Micronaire. Beta Coefficients for:	54 +.07 21	++.45	+,44	+.31 +.42 59	+.29 +.49 59	+,43	+.32	45 +.35 64	4.4.00	+.45	+.55	+.20	+ + 002	
Grade index. Staple length Micronaire. Regression Fourtion:	72 +.08* 22*	+.27	+ .51	+.22*	+.20*	+ -33*	+.29* 26* +.77	47 +.35* 72	44* +.39* 71	+ . 23 + . 14 143	+.62 05* 21*	+.28* 15* +.29*	*64.+	
Constant (a)	+22.00	-211.81	-121.39	+.72	-1.67	+38.43	+41.50	+73.05	+38.28	-128.42	+57.76	+93.35	+69.02	
Grade index Staple length. Micronaire. Standard Error (±).	15 +.07 55 1.09 *Statisti	15 +.94 +.4; +.07 +8.23 +4,1; 55 -13.79 -7.00 1.09 8.77 4,1; *Statistically insignificant	+.43 +4.17 -7.00 4.15	+.02 +.14 53	++.02 18 55	+.97 -4.16 +31.14 9.60	+.52 -2.23 +17.04 7.34	-1.20 +4.26 -22.69 11.30	84 +3.54 -17.02 8.19	+.61 +5.56 -14.30 5.68	-2.24 3.85	+.27 71 +3.47 6.16	+.29 +.17 +.03	

		F 7	l			* * * *		-88-			ate ate 1		
	yern	Dyed	Index	.53	+.34	+ + + + + + + + + + + + + + + + + + +	+69.12	. 1. 29 + . 1. 29 01 3.35	.53	+.31 +.01 04 03 +.10	**************************************	+66.42	3.33 3.33 3.33 3.33
	Color of 22s yern	Bleached	Index	.30	+.16 12 +.23 +.03	+.25* +.29* +.05*	+95.64	+.25 +.351 +.07 6.15	.35	+ · + · · · · · · · · · · · · · · · · ·	+ .34*	+102.14	+.33 +5.01 +.17 +.12 6.03
	ű	Gray yarn	Index	.7 ⁴ 4	+.46 12 23 +.17	+.18*	96.45+	+ + + + + + + + + + + + + + + + + + +	.7 ¹ 4	+.43 13 +.15 +.06	+,52*	+53.11	. + 58 - 2 . 43 3 . 80 3 . 80
		Spinning Potential	NO.	.95	+.28 +.62 +.74 +.35	+.14* +.37 42 +.18*	-135.23	+.38 \$\frac{1}{4},65 -13.95 +.67 5.32	.97	+ + + + + + + + + + + + + + + + + + +	+.05* +.26 55 +.11* +.27	-161.73	+ £ £ .3.3 1.6.1.4 1.3.1.6 1.09
	Yarn imperfections	Fine 50s	N .	77.	+ + + + + + + + + + + + + + + + + + + +	-,46* +,36* -,71 +,06*	+36.24		.80		* * * * * * * * * * * * * * * * * * *	+15.48	-1.09 +2.24 -20.31 06 +2.50 7.71
oles	Yarn imp	Coarse 22s	N N	+ ₁ L.	43 64 05	49* +.33* 72 +.05*	470.74	-1.26 +4.00 -22.59 +1.19 11.28	62.	53 71 05 +.41	. + · · · + · · · · · · · · · · · · · ·	+35.54	-28.26 -28.26 -28.26 -1.18 -10.30
Dependent Variables	Yarn appearance	Fine 50s	Index	62.	+.35 21 +.69 15	+.35* 20* +.76 15*	+47.65	+.63 -1.72 +16.84 37 7.26	62.	+,32 -,222 +,64 +,04 +,08	+ + + + + + + + + + + + + + + + + + +	+43.60	+.58 -1.94 +16.16 -1.42 +.51 7.24
Depen	Yarn ap	Coarse 22s	Index	.87	+.46 31 +.80 16	+.37 24* +.84 13*	+48.66	+1.10 -3.44 +30.86 52 9.47	. 88	+ . 4 27 14 09	+.39 +.87 111*	+54.82	+ 1.16 +3.09 +31.94 45 45 9.43
	elongation	Fine 50s	Pct.	-89	+.18 +.40 +.21	+.13* +.31* 44 +.16*	-1.98	+.01 +.15 +.02 +.02	.91	+ + + + + + + + + + + + + + + + + + + +	+.05* +.21* +.56 +.20* +.27*	-2.91	
	Yarn e	Coarse 22s	Pct.	.87	+.22 +.35 +.59 +.14	+.17* +.28* 46 +.11*	+.52	+ .02 + .12 + .01 -30	8.	000000000000000000000000000000000000000	* * 90 * * +	94	+ + 01
	n strength	Fine 50s	Lbs.	.95	+ + + + + + + + + + + + + + + + + + + +	+.10* +.37 31 +.34	-131.99	+ 1.17 + 3.07 -6.57 - 6.57 - 4.80 3.38	76.		+ + + + + + + 5 5 5 5 5 5 5 5 5 5 5 5 5	-146.83	+.03 +2.30 -8.99 +.64 +1.80 2.75 nificant
	Yarn skein	Coarse 22s	<u>Ibs</u> .	₹.	+ + + + + + + + + + + + + + + + + + + +	+.14* +.38 30 +.30	-231.03	+,49 +6.27 -13.04 +1.43 7.65	%	++++++53	+.05* +.27 42 +.22 +.22	-264.21	12 +.18 +.0 +.19 +4.54 +2.3 54 -18.47 -8.9 07 +1.07 +.6 04 +4.04 +1.8 1.06 6.24 2.7 *Statistically insignificant
	Di okos	& card waste	Pct.	09.		59* 18* 24*	+22.55	+.17 +.17 59 1.06	.60	113	* * * * * * * * * * * * * * * * * * *	+22.90	12 +.19 54 07 04 1.06 *Statistic
	Statistical Items		DEFENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAIRE, FIBER STRENGTH	Multiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. (0 gage)	Grade index. Staple length Micromaire. Fiber str. (O gage)	Constant (a)	Grade index Staple length Micronaire Fiber str. (Ogage) Standard Error (±) DEFENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAIRE, FIBER STRENGTH,	(O GAGE), UNIFORMITI FATTO Multiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. (O gage). Uniformity ratio. Beta Coefficients for:	Grade index. Staple length. Micropaire. Fiber str. (O gage). Uniformity ratio. Regression Fountion:	Constant (a)Regression Coef. for:	Grade index Staple length. Micronaire. Fiber str. (0 gage). Uniformity ratio. Standard Error (±).

-89-

2 3.5 1.12 3.8 *4.10.--.59 -.19 +.45 9.+ Dyed .53 -.70 -1.81 +1.37 3.11 +.20 -1.78 +1.35 -.13 3.11 Index 6.50 -101.89 102.31 102 Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 41 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1975 Color of 22s yarn Bleached 3.5 1.1 -.02 +.05 +.12* -.03* +109.76 +.21 -.17 †°°+ 10.4 †°°+ +106.38 yarn Index 90 91 3 3.5 1.12 3.8 +.05* Index 1.5 +.05* -3.01 +.55 3.57 -.73 -.80 95.83 98.75 -2.76 3.45 824.4 -.17 yarn +.06 -.25 Gray Spinning Potential +.05* 825.4.9 ÷.8% +.09 85.86 ₽0. -10.60 +1.58 8.08 +.21 +.21 80.51 11.05 17.6 Yarn imperfections +.08* +.12* +.61 1.57 +.08 4.42 11.86 8.5.5.9 +.17 +.14 +.65 -6.38 +2.63 +7.24 8.43 125.07 Fine -.51* +.15* +.18* +.61 Coarse -5.71 +4.51 15.02 -8.29 +5.52 +9.54 11.55 44.924 26.4 Dependent Variables +4.40 -.76 -.76 -.89.61 +.69 Yarn appearance 3.5 ÷.54 Index 1.5 +.54 +.27 -.10 -.55 +0°-9.95 +.57 +80.32 +5.37 -1.15 -3.61 9.27 Fine 50s +.63 99 23.5 3.5 3.5 3.8 +.62 +8.14 -.60 15.33 +.82 -.0⁴ +10.52 -1.53 -8.82 12.49 Coarse Index +.56 184.27 112.91 ₽0. 19.6 22s Yarn elongation +.05* +.05* -.86 +.08 +.05 +.17* r4.57 +.06 3.5 4.91 5.5. - 4.26 •.88 +.11 +.35 Fine 50s Pet Coarse 22s .92 -.87 48.00.+ 98 68 6.20 -.01 +.14 15.8 -.83 8.7.4.4.2.6. Pct. Yarn skein strength +.05 +.06* 4.11.5 -.86 +.10 +49.23 +.14 -46,88 Fine 50s S Coarse 22s 113 2 3 3.5 1.12 3.8 -.92 *40.+ +.05 -14.20 +1.88 +.77 10.57 -13.99 +1.79 10.60 23.2 -.86 +.08 +132,49 +135.00 + ... Picker & card waste +.46* +.19* 9.1 3.5 1.12 3.8 +.17 -.14 +.88 -.82 +.39 48.99 +.24 6.13 1.33 +.41 +.15 +.77 -.36 +.41 Pct. Dependent variable..... Yellowness.... Nonlint content (S.A.).... Yellowness.... Standard Error (±).... Grayness 2.5% span length..... Grayness.... Yellowness..... 2.5% span length..... Micronaire.... mple Correlation Coef. for: Grayness.... Yellowness.... Nonlint content (S.A.).... 2.5% span length..... Micronaire.... Grayness.... Yellowness.... Grayness Yellowness.... Constant (a)....Regression Coef. for: Grayness.... Yellowness.... Standard Error (±)..... Yellowness.... Grayness Yellowness... Nonlint (S.A.).... Constant (a)..... Dependent variable.... Crayness Grayness GRAYNESS, YELLOWNESS Multiple Cor. Coef..... Partial Cor. Coef. for: Regression Coef. for: Beta Coefficients for: Beta Coefficients for: Multiple Cor. Data for: DEPENDENT VARIABLE with Regression Equation: GRAYNESS, YELLOWNESS, Regression Equation: Statistical Items Nonlint (S.A.) Table 19. -- Cotton: Nonlint (S.A.) NONLINT (S.A.) Mean Values for:

						Deper	Dependent Variables	bles					
Statistical Items	Diokor	Yarn skei	Yarn skein strength	Yarn e	elongation	Yarn a	Yarn appearance	Yarn im	Yarn imperfections		.02	Color of 22s yarn	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed yarn
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN TENENTH	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef Partial Cor. Coef. for:	.81	96•	96•	.91	.93	.78	99*	.78	62.	-95	62.	.17	.62
Grayness Yellowness Nonlint (S.A.) 2.5% span length Beta Coefficients for:	+.02 10 +.75	79 +.20 +.78		70 +.04 +.24 +.51	75 +.15 +.47	+.50	+	+++	34 4 66 38	75 +.20 +.19 +.71	1 + 1 - 06	+.05 03 16	+ . + . + . 05 + . 08
Grayness Yellowness Nonlint (S.A.). 2.5% span length	+.02* 07* +.73 25*	+ .07 + .00* + .50	***************************************	66 +.02* +.11* +.35	7 ⁴ +.07* +.15* +.29	**0°- *0°- *1'- *1'2	+,48* 31* 29*	* * * * * * * * * * * * * * * * * * * *	41* 13* 58 36*	61 +.08* +.07* +.15	79 +.04* 17* 08*	+.08* 03* 17*	
Constant (a)Regression Coef. for:	+14.91	-173.60	-102.88	64.+	39	+238.09	+171.63	-183.25	-119.02	-127.94	+110.47	+118.43	+92.65
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOULINT (S.A.), 2.5% SPAN TENGTH. MICROMATER	+ .02 + .90 - 7.55 79	-9.00 -2.94 -2.94 -3.04 -6.61	-4.43 +1.69 +1.89 +128.42 3.15	. + + ±	. + + + 4 .09 .23 .23	7.95 -1.96 -8.49 -106.82 12.03	43.74 -1.46 -3.37 -78.32 8.93	-3.97 +6.13 +9.07 +151.38 10.53	-3.48 -3.04 -5.92 -1.02.16 7.79	-7.05 +2.48 +1.09 +178.36 5.59	-2.97 +1.42 +1.42 -10.06 3.44	+.35 -1.02 -7.46 6.35	1.62 1.39 1.15 1.15 3.10
Multiple Cor. Coef	.81	96•	96•	26.	.93	8.	.80	.85	.85	%	.89	.31	.67
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Beta Ocefficients for:	+ 107			. t. 77 + 0.04 + 1.13 + 1.53	59 +15 27	+ 1 1 1 1 4	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. 12 	+ + + +		+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronalication	+.09* 07* 07* 08*	-, 46 +, 007* -, 04* +, 51 -, 15*	4.1. 4.00* 4.00*	+.02* +.06* +.35 21*	62 +.07* +.12* 14*	**************************************	**************************************	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	31	**************************************	***************************************	+ .00. + .06. + .06. + .08. + .04.
Constant (a) Regression Coef. for:	+15.56	-152.41	-92.68	+1.28	+.19	+148,40	+114.25	-123.41	-75.28	-94.27	+106.94	4100.40	+81.91
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Standard Error (±).	+.08 17 +.88 -7.50 20 .79 *Statistic	+.08 -7.02 -3.4 17 +2.91 +1.6 +.88780 -7.50 +264.65 +129.1 20 -6.36 -3.0 .79 6.31 3.0	-3.47 +1.68 03 +129.19 -3.06 3.00 ificant	1.19 1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	. 27 + 08 + 07 + 07 1. 17 24	11.46 11.3.59 126.93 8.69	-1.63 -1.40 -1.35 -82.65 +17.22 7.18	1.66 46.07 45.98 -17.98 8.94	+.64 +2.99 +5.38 +105.47 -13.14 6.65	-3.90 +2.44 +180.90 -10.11 +.64	- + - 10. +	1 1 8 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-2.62 -1.40 -2.52 -2.50 -2.50 -2.50 -3.22 -3.32

Table 20. -- Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 41 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1975

														-91-	•														
	yarn	Dyed yarn	Index	102	8.542	44 6.1	3.9	.53	1.54	+,45	+.38 +.38	+.35		94.	+.36	L0	+,41*	+63.44) 1	+36.33 59 3.50		94.	+.26	+ 03	+.38*	k + 10 • +	+64.18	+33.79	+.08 3.50
	Color of 22s	Bleached	Index	106	3.8	44 6.1	4.9	.53	1.54	90:-	+.22 11	10 +.49		.23	4.07	+.22	+.08*	+80.58		+12.02 +3.17 6.27		.23	+ +	ħ0	* * * * *	× 00° -	+78.85	+18.00	6.27
	CO	Gray	Index	91	3.8	44 6.1	5.7	.53	1.54	+ 20	+.61	+.37 +.04 +.04		.59	+.28	37	+.28*	06.99+	. !	+35.59 -4.07 4.58		. 65	02	+ 35	*30**	, 04°+	+78.14	-3.13	+1.20 4.29
		Spinning Potential	No.	69	3.8	44	17.6	.53	1.54	+.85	+.81	+.55		-95	+.83	78	+ - 58	-126.46		+228.74 -16.13 5.68		%	+.67	†† † †	+ + + + + + + + + + + + + + + + + + + +	, C3.	-109.06	+168.81 -14.73	+1.85
	Yarn imperfections	Fine 50s	No.	21	3.8	44 6.1	12.7	.53	1.54 .51	+	+ - 55	60		.71	+ 58	54	+.25*	-8.97		+71.06 -13.00 8.93		.72	+.14	+.12	+,16*	, CT.	-1.80	+46.34	+.76 8.87
les	Yarn imp	Coarse 22s	임.	28	3.8	44 6.1	16.8	.53	1.54	+.54	+ + 52	+ ST + 03		.68	+ 28	50	+.25*	-18.65	1	+95.41 -16.07 12.27		69.	+.16	60.+	*61.+	, T	-11.32	+70.16 -15.49	+.78 12.23
Dependent Variables	appearance	Fine 50s	Index	75	3.8	44 6.1	11.9	.53	1.54	55	56	+ 225		.77	±2	1 9°+	19* +.64	+76.88	(-50.00 +14.32 7.62		.77	. 08 - 19	15	*08*	OT.	+68,81	-22.20 +13.67	7.53
Depen	Yarn ap	Coarse 22s	Index	99	3.8 24	44 6.1	19.6	.53	1.54	1.4	. 583	+.11		.84	27	<i>4.</i> (<i>)</i>	18* +.73	+86.71	C C	-79.88 +26.72 10.47		.85	+.73	-10	+.71	•	+79.34	-54.49 +26.13	10.42
	elongation	Fine 50s	Pct.	4.3	3.8 24	44 6.1	99.	.53	1.54	+.78	. + . .81	17		. 88	99.+	99:-	. 50	-1.71	t -	+7.39		.91	+.36	64.+	+ .25*	20.	65	+3.75	+.11
	Yarn e	Coarse 22s	Pet.	5.5	3.8 24	44 6.1	9.00	.53 2.17	1.54	4.79	77	15		-89	69.+	99.	+.52	36		+'(-0') 55 28		96.	+ .45	+.36	+ - +		+•33	64	+.07 26
	n strength	Fine 50s	Lbs.	39	3.8	44 6.1	17. ⁴	.53 2.17	1.54	+.88	48.	31		·8.	+.84).o	+ .66 38	-121.61	0	+1./0.30 -8.23 4.05		.95	69.+	+.52	+ 1 + 47	•	-106.80	+119.30	+1.58 3.45 nificant
	Yarn skein	Coarse 22s	Lbs.	113	3.8	44 6.1	23.2 .04	2.17	1.54	+, 88	. + -	32		.93	†8°+	62	+.67	-217.15	0,10	+346.29 -16.31 8.45		46.	69*+	04.+	+.51		-193.81	+267.89	31 +2.49 +1.5 1.17 7.76 3.4 *Statistically insignificant
	Dioker	& card waste	Pct.	9.1	3.8	44 6.1	7	.53 2.17	1.54	+ 36	137	+.22		.37	34	70	41	+23.76	0	-12.29 21 1.24		84.	05	34	1.18*	•	+20.85	-2.29	31 1.17 *Statisti
	Statistical Items		Mean Values for:	Dependent variable	Micronaire	Uniformity ratio Elongation $(1/8" \text{ gage})$ Standard Deviation (\pm) for:	Dependent variable	Micronaire. Fiber str. (1/8" gage)	Uniformity ratio Elongation (1/8" gage) Simple Correlation Coef. for:	2.5% span length	Fiber str. (1/8" gage)	Elongation (1/8" gage)	MULTIPLE COY. DATA IOF: DEPENDENT VARIABLE with 2.5% SPAN LENCTH, MICRONAIRE	Multiple Cor. Coef	2.5% span length	Micronaire Beta Coefficients for:	2.5% span lengthMicronaire	Regression Equation: Constant (a)	Regression Coef. for:	A:7% Span Lengun. Micronaire. Standard Error (±). DEPENDENT VARRABIE with	2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE)	Multiple Cor. Coef	2.5% span length	Fiber str. (1/8" gage)	2.5% span length Micronaire Fiber str (1/8" gage)	Regression Equation:	Constant (a)	2.5% span length	Fiber str. (1/8" gage) Standard Error (±)

						Dener	Denendent Veriables	مواد					
i		Yarn skei	Yarn skein strength	Yarn e	elongation	Varn at	Varn annearance		Varn imperfections		5	200 JO 2010	
Statistical Items	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIER STR. (1/8" GAGE),	Pet.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	64.	%	%	.91	.92	.85	.80	69.	.72	.97	19.	. 29	2tq.
2.5% span length	+.02 10 31	+ + + + + + + + + + + + + + + + + + +	+.55 +.4.7 +.48	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ 25 + 16 + 22	31 +.49 25 +.35	+ - + 12 - + 13 - 01	+ 1 + 13 + 1 + 12 - 03	+ - + - + + + + + + 52 + + + + + + 57	1 ⁴ 35 +.30 +.20	+.18 +.26 +.01 18	+.11 12 +.12
2.5% span length	+.03* 13* 47* 11*	+ + + + + + + + + + + + + + + + + + + +	+ .33 + .2 + .23	+.19* +.52 +.20* +.20*	+.11* +.51 +.31* +.20*	31* +.64 14* +.17*	* + + + + + + + + + + + + + + + + + + +	+ - + 20* - 10* - 01*	+.20* 51 +.14* 03*	+.27 55 +.15* +.24	**************************************	+ + 39* + 36* - 25*	+.21* 14* +.16* +.16*
Constant (a)	+20.52	-221.147	-120.46	60.+	-1.13	+96.21	+92.71	-12.23	-3.71	-132.97	+79.45	+71.74	46.94
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio. Standard Error (±). DEFRUDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION	+	+180.87 -19.16 +1.69 +3.74 6.71	83.92 -9.65 -9.65 3.02 3.02	24. + +	6.69 6.63 6.63 6.64 6.64	-134.23 +23.40 -1.25 +2.17 10.17	-119.64 +10.45 -1.41 +2.55 7.05	+75.01 -15.31 +.81 14 12.23	+56.59 -12.06 +.83 29 8.86	+106.50 -18.27 +1.26 +2.80 +1.18	-28.43 -4.19 +1.03 +.81 4.20	+55.84 +4.37 +.04 -1.06 6.17	+18.96 -1.06 01 +.11 3.47
(1/0 cade) Multiple Cor. Coef.	64.	96.	%	.92	.93	98.	.81	.70	.72	76.	.71	99.	.57
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio Elongation (1/8" gage) Beta Coefficients for:	£ 600000 + 1 1 1 +	+ + + + 51 + 550 + 04	.53 .74 .47: .47: .48	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + 30	28 +.64 +.17 +.23		+ - + - + - + - 23 + - 20 + 20	+ + + + + + + + + + + + + + + + + + +	+ + .586	+ + + + .30 30 30 30 30 30 30	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio Elongation (1/8" gage)	**************************************	+.34 44 +.16* +.25	+ .42 + .23 + .23 + .23 + .23	+ + - 27* + - 23* + - 17* + 11*	+ + + + + + + + + + + + + + + + + + +	+ + - 1.052* + 1.153* - 074*	+ + + - + + + + + + + + + + + + + + + +	+.31* 13* 04* 17*	* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	+.82* +.57 +.13* +.67	******* + 1.03 * * + + 1.10 * + + 1.10 * + + 1.10 * + 1.1
Constant (a)Regression Coef. for:	+18.58	-214.59	-120.61	-2.08	-3.12	+133.44	00°7L+	-88.62	-35.55	-116.38	+41.51	-45.90	+28.73
2.5% span length Mcronaire Fiber str. (1/8" gage). Uniformity ratio Elongation (1/8" gage). Standard Error (±).	+1.93 28 11 +.14 +.14 *Statistice	+1.93 +177.41 +83. 28 -19.31 -9.67 11 +3.76 +1.57 +.14 -5.75 1.16 6.71 3.48 *Statistically insignificant	+83.99 -9.04 +1.24 +1.59 +.01 3.02 ficant	5	+ + + + + + + + + + + + + + + + + + +	-153.88 +22.61 -1.36 +2.32 -2.66 10.10	-109.72 +10.84 -1.35 +2.48 +1.33	+115.21 -13.70 +1.04 45 +5.49 11.97	+73.35 -11.39 +.92 42 +2.29 8.80	+98.18 -18.64 -1.20 -1.20 -1.27 -1.27 -1.14	-8.77 -3.37 +1.14 +2.65 +2.79 +2.01	+117.75 +6.85 +39 -1.54 +8.45 4.84	+39.07 25 +.10 +.26 +2.75 3.24

Table 21.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 41 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1975

			Depe	Dependent Variables					
0+0+1 (00+0+0)		Yarn skein strength	strength	Yarn eld	Yarn elongation	Yarn appearance	arance	Yarn imperfections	rfections
מימיוצידנמד דיפווצ	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for: Dependent variable Grade index Staple length Micronaire	Pet. 17.6 92.4 33.4	135 135 35.4 35.4	1bs.	Pet. 6.1 35.4 33.8	Pet. 9 35.4 35.4 33.8	Index 109 92 35.4	Index 89 92 35.4	No. 14.9 35.4 33.8	No. 11.3 92. 35.4
Fiber strength (U gage). Uniformity ratio. Standard Deviation (±) for:	; = 126	664 74 0	564 ;	66 11	14 14 1	00 th 100 th	64 7	68 44 74	65 1
Dependent variable Grade index Staple length	1.39 1.39	9.03 9.1 9.39	6.6 9.39	ر. وقرا وقرا	7.9 6.6 8.1	16.6 6.6 1.39	14.6 6.6 1.39	10.9 6.6 1.39	8.8 6.6 9.39
Micronaire Fiber strength (O gage) Uniformity ratio	4.8 1.5	1.5	1.5	4.8 1.5	4.8 1.5	1.5	1.5	4.8 1.5	4.8 4.8 1.5
Grade index	99	+.76	+.75	+.41	†9 . +	32	34	+.18	+.18
Micronaire Fiber strength (O gage).	+.35	++.83	++.85	+ + + + + + + + + + + + + + + + + + + +	79°++		1 + 1 - 1	000 t	5000
Multiple Cor. Data for: DEPENDENT VARIABLE with GRADE INDEX, STAFIE LENGTH									
Multiple Cor. Coef	-77	. 88	₹8.	64.	.70	94.	.41	.35	•38
Grade index	34	+,52+	+.51	+.15	+ + 38	35	12 24	06	09 +.34
Grade index	31* 5 ⁴	+.38 +.59	+.42	+.17* +.36*	+.39*	*††1	14*	*04"+	11* +.44*
Constant (a) Regression Coef. for:	+50.42	-285.64	-145.70	+.05	-2.83	+303.36	+228.14	-83.54	-74.31
Grade index. Staple length. Standard Error (±) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH,	08 71 1.16	+1.20 +8.76 10.04	+.67 5.67 5.65	+.01 +.13 .46	+.03 +.14 36	09 -5.26 14.75	-32 -3.12 13.33	12 +3.10 10.15	
Multiple Cor. Coef	62.	.92	8.	69.	₩.	.83	62.	+√7.	.75
Grade index Staple length Micronaire Beta Coefficient e four	41 58 26	+ + + .65	+.4 ₁ +.52 57	+05	+ + 554	+.33	+	36 +.12 69	40 +.17 70
Grade index. Staple length. Micronaire. Regression Emustion.	38*	+.26*	+.28*	+.15*	+.18*	+.28* +.88	*91.+	37* +.12* 83	+10*
Constant (a) Regression Coef. for:	+58.34	-135.73	-60.07	+6.81	+3.39	+1.18	-33.46	+102.85	+76.53
Grade index. Staple length. Micronaire.	11	+.82	+4.44 +2.79 -7.77-	. +	+.01	+.70 -1.70 +27.41	+.36 03 +23.73	61 +.90 -16.91	54 +1.03 -13.68
Standard Error (±)	1.12 8 *Statistically insignates	8.30 ally insignificar		.38	.27	9.37	8.97	7.33	5.86

			Depe	Dependent Variables						
C+o+ic+ical Thems		Yarn skein strength	strength	Yarn el	Yarn elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections	
Coactront today	Comber	22s or 27 te x	50s o r 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Pct.	<u>Ibs.</u>	<u>libs.</u>	Pet.	Pct.	Index	Index	No.	No.	1
(U GAGE) Multiple Cor. Coef	.80	46.	46.	69.	.85	.83	.79	₹2.	•75	
Grade index Staple length. Micronaire. Fiber Str. (0 gage).	30 51 16	. + +	+ + + + + + + + + + + + + + + + + + +		+.13 +.14 +.65 +.21	+.23 21 +.78 +.11	+.23 +.74 15		1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Grade index. Staple length. Micronaire. Fiber str. (0 gage).	30* 55 22* 15*	* 3333 * * * * * * * * * * * * * * * *	+.08* +.19* 37 46	10* +.10* 62 +.13*	+.11* +.11* +.18*	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	32* 15* 184	31* +.22* 84	
Constant (a)	+58.81	-157.06	-73.99	+6.61	+3.12	86	-26.39	+104.36	99°22+	
Grade index. Staple length Micronaire. Fiber str. (0 gage) Standard Error (1). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMATHE, FIBER STRENGTH,		+.34 +.87 -12.79 +1.54 6.88	+.13 +1.42 -7.24 +1.00 3.51		+ + .01 + .04 + .05 55 27	+.56 -2.18 +27.60 +.35 9.31	+, 48 +, 57 +23, 50 -, 44 8,87	52 +1.21 -17.03 22 7.30	- 142 - 13.83 - 13.83 - 28 - 5.80	
(v dags), uniformill mallo Multiple Cor. Coef	.87	%	96.	.71	.88	.83	62.	.75	.77	
Grade index Staple length Micronaire Fiber str. (O gage) Uniformity ratio Beta Coefficients for:	18 41 +.01 02			1.15 +.02 +.57 +.07 +.19	+.12 +.12 +.41		+.23 +.07 +.71 13	32 +.07 70 14 +.21		
Grade index Staple length. Micronaire. Fiber str (0 gage). Uniformity ratio. Regression Fonation:	. 1. 1. 3.6 *	* 63. * + • • • • • • • • • • • • • • • • • •	***************************************	17. 1.71 1.02* 1.08*	+.01* 01* +.10* +.30*	+ .222 + .108 + .108 + .100	+ .23* + .07* + .88 14*	. 1.5* + 208* - 1.5* + 20*		
Constant (a)Regression Coef. for:	+63.87	-182.62	-87.60	46.07	+2.31	86	-23.83	+92.18	+65.36	
Grade index. Staple length Micronaire. Fiber str. (0 gage) Uniformity ratio. Standard Error (1).	04 47 +.03 +.03 01 58 58	04 +.09 47 +3.53 +.03 -16.98 01 +1.27 58 +3.12 .9 5.98 *Statistically insignificant	+ + - 6- 4- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	01 70 07 07 07		+.56 -2.18 +27.60 +.35 .00	+ + .51 + 23.93 + .11 41 32 8.87	62 +.62 -18.88 35 +1.38 7.14	51 565 -15.65 40 40 5.61	
	300000000000000000000000000000000000000	THE TRUE TOWN								

Table 22. --Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 41 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1975

			Dереп	Dependent Variables					
Statistical Items		Yarn skein strength	strength	Yarn elongation	ngation	Yarn appearance	arance	Yarn imperfections	rfections
	Comberwaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Moon Wolling for.	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.
Dependent variable	17.6	135	50	6.1	6.4	601	89	14.9	11.3
Grayness	N M	CU 67	01 67	CV M	01 11	a m	CU M	O1 m	O1 60
Nonlint content (S.A.)	3.5	3.5	3.5	3.5 9.5	3.5		 	رن. در:	رن. رن.
Micromaire	3.8	8.00	3.8	. m	3.8	3.8	3.8	3.8	3.8
Dependent variable	1.83	20.9	10.5	₹.	5.	16.6	14.6	10.9	8
Grayness	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Nonlint content (S.A.)	 1.1	1.1	1.1	1,1	1.1	1°1	1.1	1.1	٠,١
2.5% span length	ə. Œ	‡0°	ð.	40.	₹.	₽0.	ήo.	も.	70.
Simple Correlation Coef. for:	•23	•23	•23	•53	• 53	• 53	•53	•53	.53
Grayness	+.61	88	87	62	-833	+.55	+.52	₹.	17.
Nonlint (S.A.)	4.42	288	4(2/	1.16	+•41 -•15	+ 1 80°-1	25°+	27
2.5% span length	47	+.87	+.82	+.57	+ 68	1	24	+,42	+ 4.43
Multiple Cor. Data for:	+.35	9)).)	29	08	08°+	+.78	69*-	69
DEFENDENT VARIABLE with CRAYNESS YELLOWNESS									
Multiple Cor. Coef	.63	.88	.87	.62	48.	.57	.52	44.	44.
Grayness	+.61	86	833	+ .58	78	+ + + + + + + + + + + + + + + + + + +	4++	-35	-36
Beta Coefficients for:	(T • -	0		01.	•	۲۰۰	÷	00:-	†O
Grayness	+.71 18*	93 +.09*	*00.	67 +.10*	*90*	+• 47* +• 15*	*/4.+	41*	-,41 -,04*
Regression Equation:	+17 57	75 05 (+	75 124	8	C 4	70 24	10 000	0	60 61
Regression Coef. for:	16.71	200.00	06.101	62.01	20.64	90.104	+(3.34	723.40	+17.93
Grayness Yellowness Standard Error (†) DEPENDEWY VARIABLE With	+.85 60 1.42	-12.79 +3.31 9.87	-5.99 +.01 5.20	+.09 +.1	27	+5.18 +4.47 13.70	+4.50 +2.37 12.44	-2.90 -1.07 9.76	-2.41 71 7.93
GRAYNESS, YELLOWNESS NONLINT (S.A.)									
Multiple Cor. Coef. for:	99.	88.	.87	.63	.85	19.	•59	.61	99.
Grayness Yellowness Nonlint (S.A.) Beta Cneffficients for	+.55	85 +.16 +.07	81 .00 +.02	59 +.11 +.15	79 08 +.24	+.55 +.14 +.14	+.49 +.08 32	+ 50	54 02 +.55
Graphess	+.62	₩.	87	72	86	+.62	+.58	58	61
Nonlint (S.A.)	+.23*	*40.+	**00.+	+.13*	+.14*	+.13*	+.07* 29*	+.46	+.52
Constant (a) Regression Coef. for:	+16.32	+148.21	+61.25	46.08	+5.30	+106.53	+86.18	+8.33	+3.98
Grayness	+.75	-12.99	-6.01	25	29	99.99	+5.57	-4-15	-3.57
Wonlint (S.A.)	0.4.5	+.38 +.72 +.72	+ + h	90.+	+ 0.1 - 0.4 - 0.7	+3-83 -6-00	-3.95	2.5.4.0	44.30
***************************************	*Statistica	9.07	V-⊥y	T+.	12.	15.30	6). TT	0.57	5.04

			Дере	Dependent Variables					
Statistical Ttems		Yarn skein	strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn impe	Yarn imperfections
91000	Comber waste	22s or 27 t ex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINY (S.A.), 2.5% SPAN	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	NO.	No.
LENGTH Multiple Cor. Coef	.82	.95	.92	99°	.85	69•	09.	.62	19.
Grayness	+.20	78	69	-,42	68	+.37	+.35	36	38
Yellowness Nonlint (S.A.) 2.5% span length Beta Coefficients for:	+ - 50 14.+ 1 1.04.+	+.30 .00 +.76	+ · · + .05	1.13 1.23	- + + - 23 - + +	. 1 . 1 . 1 . 1 . 1 . 1	+.07 31 14	- 0.02 + - 4.7 + 1.14	01 +.54 +.16
Grayness	+ 18*	09.1	9	*55*	75	*94*+	*05°+	*44*-	*64.
Nonlint (S.A.). 2.5% span length. Regression Equation:	* * 89 • + •		**************************************	+.11.* +.26*	+.13* +.16*	**************************************	28* 16*	+	01* +.51 +.16*
Constant (a)Regression Coef. for:	448.84	-129.04	-53.78	+2.56	+3.18	+201.94	+148.50	-35.41	-35.18
Grayness Yellowness	+ - + - 68	-8.28 +4.35	-4-12 +-42	. + + 11. 10.	+ 	+5.10 +3.50	+4.52 +1.74	-3.40	-2.87 12
2.5% span length. Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN	-27.99 1.05	+238.28 6.42 6.42	+98.96 4.17		+1.83 -26	-81.85 12.03	-53.59 -53.59 11.66	8.49 8.49	43.45. 43.59 6.56
IENGTH, MICRONAIRE Multiple Cor. Coef	.83	%	.93	.72	888	.85	.81	92.	62.
Grayness	+ 28	+.56	41 +.05	06 +.14	38	25	27	+.13	+,10
Nonlint (S.A.). 2.5% span length	- 65	+.78		. + 1 00. 04. 04.	- 60°+++		+	+ + • 55.44 1.04	. + + . 25.
Beta Coefficients for: Grayness	+*36*	-,42	*98*	*60:-	*††1	*06.	*98	+10*	+717*
Yellowness Nonlint (S.A.)	21* +.23*	+.12*	**00.+	+.12*	**00+	+.12*	*40.+	**05*+	+.01*
2.5% span length	68	+.51	+.43 27*	+.27*	+.17*	**************************************	18* +.93	· +.17* 75	+.18*
negression Equation: Constant (a) Regression Coef. for:	+51.15	-103.18	-36.43	+4.27	+4.31	+112.24	+63.42	+15.53	+4.13
Grayness	††. * + *	-5.87	-2.50	+.11	15	-3.29	-3.43	+1.36	+.81
Nonlint (S.A.)2.5% span length	+.39	92 +240.23	82 +100.27	01	+.02	-2.59 -88.62	80	+2.74 +41.42	+2.81 +36.56
Micronaire	69 1.03 *Statisticall	69 -7.76 1.03 5.95 ***********************************	-5.21 3.84	51 .36	34 42.	+26.92 8.68	+25.53 8.59	-15.29 7.05	-11.79 5.45
	CTTBOTO GTOBOO:	Time tenta teaning							

Table 23.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 41 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1975

			Дере	Dependent Variables						
Statistical Items	,	Yarn skein strength	strength	Yarn eld	Yarn elongation	Yarn appe	appearance	Yarn imperfections	rfections	1 1
	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	
Mean Values for.	Pct.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	1
Dependent variable	17.6	135	50 .	6.1	6.4	901	89	14.9	11.3	
Micronaire (1/8" gage).	3.8	3.8	3.8	3.8	3.8 8.45	3.8	3.8	3.8	3.8	
Uniformity ratio	17. 14.	44 6.1	7th	44 6.1	44 6.1	44.	6.1 6.1	44	17	
Standard Deviation (±) for: Dependent variable	1.83	20.9	10.5	5.	ř.	16.6	14.6	10.9	8 8	
2.5% span length	4 E	40.	.⊈ ₹.	4 E	40.	40.	. 04 53	40.	4.6.	
Fiber str. (1/8" gage)	2.5	20.5	25.5	2.5	20.0	. a c . c	ู่ เกรา	20.5	9 L	
Elongation (1/8" gage)	.51	.51	.51	.51	.51	.51	.51	.51	.51	
2.5 span length	+77-	+.87	+.82	+.57	+.68	53	£4	+,42	+-43	
Fiber str. (1/8" gage)	- +35	+.83	+.82	+.53	+.73	+.80	53	1.4°+	69.+ 94.+	
Uniformity ratio	+.29	+.57	.30 .30	+.23	4.42 - 1 ⁴	00°+		+.02	+.05 +.01	
Multiple Cor. Data for: DEPENDENT VARIABLE with										
Multiple Cor. Coef	.75	.93	8.	.72	.85	.81	.78	69.	69.	
rartial cor. coer. for: 2.5% span length	71	+.83	+°-74	+,31	24.+	16	90	+.05	+.07	
Micronaire Beta Coefficients for:	11	99	65	53	02	+.72	+.70	09	60	
2.5% span length	*60:-	+.65	+.57	+.27*	+.34	12* +.74	+.75	*†0°+	+.06*	
Regression Equation:	+55.46	-149.66	-67.33	05-14+	40,79	47.17+	+08.33	+53 51	+38 33	
Regression Coef. for:	Ot .	000	66.10		61.3	11.	50.33	70.00	CC • CC -	
2.5% span length	-32.60 31 1.21	+304.95 -15.46 7.71	+133.92 -8.78 4.51	+3.17	+3.81 58 .27	-4-26 -4-22-9-9-80	-15.85 +20.51 9.15	+11.11 -13.44 7.88	+12.54 -10.81 6.38	
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" CAGE)										
Multiple Cor. Coef.	92.	-95	• 93	.72	.87	.81	62.	.70	.70	
2.5% span length	52	+ .65	64°+	4.8	+.15	70	+ +	- 05	- 02	
Fiber str. (1/8" gage)	23	4.48	+.50	+.05	+.38	08	20	+.14	٠,٠	
2.5% span length.	63	9h°+	+.34	+ .23*	+.12*	***************************************	*60*+	*90	**00-	
Fiber str. (1/8" gage)	- 24*	+.28	+ 35	*90.+	+.33*	*80.	*55.	*50.+	+.13*	
Constant (a)Regression Coef. for:	+53.53	-123.85	-51.64	+4.63	+3.50	+66.17	+15.66	+61.24	+43.21	
Alcronaire	-25.97 47	+216.03 -13.38 +2.75	+79.90	+2.71	+1.36	-24.96 +22.49	+27.83	-15.54 -12.82 +.82	-4.27 -10.41 +.52	
otandard Error (E)	1.10 *Statistical	1.10 *Statistically insignificant		.30	ζ?•	11.6	16.0	00.	0.34	

			Jene	Denendent Variables					
Statistical Items	Comber	Yarn ske	Yarn skein strength	Yarn el	Yarn elongation	Yarn appearance	sarance .	Yarn impe	Yarn imperfections
	waste	27 tex	12 tex	27 tex	l2 tex	27 tex	12 tex	27 tex	12 tex
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" (BAGE), INTERDATION DATE	Pet.	<u>Ibs.</u>	Lbs.	Pet.	Pct.	Index	Index	No.	No.
Multiple Cor. Coef.	48.	%	⁴ 6.	.72	68.	*8 ⁺	.80	02.	.70
2.5% span length Micronaire Fiber str. (1/8" gage).	+ 1.19	+.51 72 +.42 +.40	+ · · · + · · · · · · · · · · · · · · ·	+ + 15		. +	1.10 1.4.10 1.4.10	+ . 07 49 18 15	+.07 50 14
2.5% span length. Micronaire. Fiber str. (1/8" gage).		+.33 +.23* +.19*	+ 18* - 49 - 27* + 27*	*52. +	* 0.07 * 66 + 255 + 22+	#5# 1.18* 1.18*	14* +.63 26* +.20*		+.11*
Kegression Equation: Constant (a)	+55.05	-144.26	-64.88	+4.62	+3.30	+96.03	+33.47	+52,16	+37.65
Andrews of the standard Error (1)8" gage) Standard Error (1) Standard Error (1)	-8.40 +.33 07 63	+156.25 -16.68 +2.19 +2.61 6.19	+42.26 -9.61 +1.32 +1.65 3.51	+2.75 - 51. - 51. + 01. 36.		-155.90 +18.08 -1.35 +3.50 9.06	-44.92 +17.08 -1.76 +1.91 8.75	+25.87 -11.41 +1.06 -1.12	+22.32 -9.50 +.68 73 6.30
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RAIION, ELONGATION (1/8" GAGE)									
Altiple Cor. Coef	[†] 8.	%.	46.	.72	68.	ħ8°	.80	.72	.72
2.5% span length	18 09 56	+, 48 -, 71 +, 41 +, 41 -, 07	+ + + + + + + + + + + + + + + + + + +	+	+ + + 1. 138 115	. + . + . . 20 12	. 12 + .57 + .26 + .23	+.12 +.20 17	+ . + . +
Heta Coefficients for: 2.5% span length. Micronaire Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage).	21* +.10* 08* 53	28***3 - + + - + - + - + - + - + + +	+.16* 50 +.27* 03*	+.28* 50* +.07* +.07*	**************************************	**************************************	1.18* 1.21* 1.27* 1.21*	+.20* 52 18* +.15*	+.20* +.19* 15*
Regression Equation: Constant (a)	+55.21	-131.75	-57.50	+3.69	+2.29	+130.92	+59.68	+7.84	+3.32
Acgression Coer. 107. 2.5% span length. Micronaire. Fiber str. (1/8" gage) Uniformity ratio Fibración (1/8" gage)	-8.48 + .33 07	+149.96 -16.96 +2.15 +2.67	+38.55 -9.78 +1.29 +1.69	+3.25 -1.49 +1.02 +1.01		-174.36 +17.34 -11.45 +3.64	-58.81 +16.53 -1.84 -1.84	+49.29 -10.48 +1.19 -1.39	44.044 4.08- 87.8- 7.8- 7.9- 74.044
Standard Error (±)	*Statistica	*Statistically insignificant		36	ર જ	8 66 8	8.71	7.58	6.20

MEASURES USED IN STATISTICAL ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple and multiple correlation coefficients, beta values, partial correlation coefficients and regression equations for each cotton quality measurement. Formulas of each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts the following common language explanation is given for each item as it is used in this report:

- (1) Mean Value is the simple arithmetical average of each measured property for the spinning lots included in the study.
- (2) Standard deviation is a measure of dispersion around the mean value, expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean, 95 percent within plus or minus two standard deviations, and nearly all values will be within plus or minus three standard deviations.

Example: (from Table 15, column 1, page 81) The mean or average value for picker and card waste, the dependent variable is 5.8 percent and the standard deviation is 1.27 percent. This indicates that 68 percent of the lots tested in the medium staple group should contain between 4.5 and 7.1 percent waste (5.8 ± 1.27). Ninety five percent of the lots tested would have from 3.3 to 8.3 percent waste (5.8 ± 2.54) and nearly all of the test lots would show values between 2.0 and 9.6 percent (5.8 ± 3.81).

(3) Simple correlation coefficient (r) is a measure of the linear relationship between two variables, ie. how one variable is associated with the other. A correlation coefficient of O indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the values for both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (from Table 15, column 1, page 81)
The simple correlation coefficient (r) of grade index with picker and card waste is -.60. This indicates that grade index and picker and card waste are related. It further indicates by the - sign that as one goes up or down the other goes in the opposite direction.

(4) Multiple correlation coefficient (R) is a measure of the linear relationship between one dependent variable and two or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

Example: (from Table 15, column 1, page 81)
The multiple R for the dependent variable of picker and card waste with independent variables of grade index, staple length and micronaire is .70. This indicates that the combination of grade index, staple length and micronaire shows a definite relationship to picker and card waste. It does not explain, however, whether grade index, staple length and micronaire contribute postively or negatively to picker and card waste or which of the three is most important.

(5) Although the coefficient of determination $(R^2, or r^2)$ is not given, it may be easily obtained by squaring the simple r's or multiple R's and multiplying by 100. This gives the percentage of variation explained, a measure of the amount of variation in the dependent variable which is explained by variation in the independent variables.

Example: The multiple R in the example above is .70. When squared and multiplied by 100 the result is 49.0. This means that 49.0 percent of the variation in picker and card waste is explained by grade index, staple length and

in picker and card waste is explained by grade index, staple length and micronaire. The remaining 51.0 percent of the variation is unexplained.

(6) Partial correlation coefficient (r) in a multiple analysis is similar to a simple correlation coefficient. The simple r indicates the statistical relationship between two variables without any control of other variables. In a multiple analysis, the partial correlation coefficient is one measure of the net relationship between one independent variable and the dependent variable while the influence of the other independent variables are statistically removed.

Example: (from Table 15, column 1, page 81)
The partial correlation coefficients (r) for picker and card waste with grade index, staple length and micronaire are: -.55 for grade index, -.11 for staple length and -.39 for micronaire. This shows that picker and card waste is related to grade index and that when one goes up or down the other goes in the opposite direction. It further shows that staple length and micronaire have less affect on picker and card waste than grade index since the values for these two variables are much smaller.

(7) Beta coefficients (B) in a multiple correlation are sometimes preferred over use of partial r's. A Beta coefficient is another measure of the relative importance of a variable in a multiple correlation, with the influence of the other variables removed. Quite often, only one of these measures (Beta or partial r) is used for interpretation; both are included in this report. An asterisk beside the Beta value indicates that the result is statistically insignificant (less than three times its standard error). Example:

The Beta (B) coefficients in the above example are -.51 for grade index, -.10* for staple length and -.32 for micronaire. This shows the same relative results as the partial correlation coefficients (r) and the * further indicates that the -.10 Beta value for staple length is statistically insignificant.

(8) <u>Regression equation</u> or estimating equation is used to predict changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y = a + b_1 X_1 + b_2 X_2 + ... b_N X_N$$

where Y is the dependent variable and the X's are independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or to be used in calculating changes in the dependent variable. The regression coefficient "b" indicates the change in the dependent variable that is associated with each unit change in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value. (see paragraph (2) above)

Example: (from Table 15, column 1, page 81)

Regression equation for picker and card waste:

Constant (a)	+25.07
Regression coefficients (b)	
Grade index	12
Staple length	13
Micronaire	76
Standard error	±.91

With regression coefficients (b) of -.12 for grade index, -.13 for staple length and -.76 for micronaire reading the following average conditions should exist:

- 1. With any unit change in grade index, picker and card waste percentage should change .12 in the opposite direction.
- 2. With any unit change (32nd) in staple length, picker and card waste percentage should change .13 in the opposite direction.
- 3. With any unit change (1.0) in micronaire reading, picker and card waste percentage should change .76 in the opposite direction.

Expressing this equation algebraically we have:

Estimated picker and card waste (percent) = 25.07 - .12 (grade index) - .13 (staple length) - .76 (micronaire)

Thus if we wished to predict the amount of picker and card waste from a bale of cotton of Strict Low Middling (94 index), a staple length of 1-3/32 inches (35 32ds) and a micronaire of 4.4, the equation would be:

Estimated picker and card waste = 25.09 - .12(94) - .13(35) - .75(4.4)

Estimated picker and card waste = 5.92%

The standard error of the equation of ±.91 indicates that actual picker and card waste obtained from this kind of cotton would be within plus or minus .91 percent (between 5.01 and 6.83) 68 times in 100.

A check on the accuracy of this figure can be made from the average results for SIM grade, 1-3/32 inch staple, in Table 3 for the different Areas.

Regression equations are given in the tables for multiple relationships only. Equations for simple relationships may be calculated by using the formula:

$$Y = a + bX$$
where $a = Mean Y - b(Mean X)$

$$b = r \frac{Std. Dev. Y}{Std. Dev. X}$$

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Correlation values are significantly influenced by the specific variables included, and by their number. This is due to the interrelationships of fiber properties. As interrelated properties are added to a correlation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But, as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply, even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet, when fiber strength is not included in the correlation, some of the effects of strength are evidenced through the interrelation of strength and staple length.

Perhaps the most important fact to be kept in mind is that the use of only one statistic, such as a multiple R, a partial r, or a Beta value, can lead to erroneous conclusions. In order to determine the importance of any variable, all of the statistical items for each study should be considered.

BASIS FOR INTERPRETATION OF TEST RESULTS

The following explanation of the data published in Tables 1 through 8 of this report may be helpful in the interpretation of test results:

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for the various grades of upland cotton are shown below:

	:			Gi	rade Ind	.ex		
Grade	:	Plus		: Light	1:Spotte			: Gray
Name	Code:	(0)	: (1)	: (2)	: (3)	: (4)	: (5)	: (6)
Good Middling	(1):		105	103	101		99	93
Strict Middling	(2):		104	102	99	91	98	91
Middling	(3):	102	100	97	93	82	92	84
Strict Low Middling	(4):	97	94	89	83	75	85	75
Low Middling	(5):	90	85	80	75	68		
Strict Good Ordinary	(6):	81	76					
Good Ordinary	(7):	73	70					
Below Grade	(8):		60					

The grade of cotton is obtained by evaluating color, leaf and preparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the

subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low because of poor color.

Staple length is the length of a typical portion of the fibers in the samples as determined by the classer in comparison with official standards. Uniformity of fiber length, as well as other fiber properties, influence to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurements of which will be discussed in the paragraphs which follow.

Fiber Tests

Fiber length data were obtained by the Digital Fibrograph method for the short, medium and long staple American upland samples and by the array method for the extra long American Pima and upland samples. Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton weighing approximately 30 centigrams at random on a pair of combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at 3 length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe. The 2.5 percent span length and the 50/2.5 uniformity ratio values reported for each lot are based on five specimens tested by each of two technicians.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch. The Digital Fibrograph 2.5 percent span length values are closely related to staple length designations.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and the 2.5 percent span length, expressed as percentages. Larger values indicate more uniform fiber length distribution. Unusually low fiber length uniformity tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. The following adjective descriptions will serve to classify cottons from the standpoint of 2.5 percent span length and fiber length uniformity:

2.5 percent span length 50/2.5 uniformity ratio Below 1.00 Short Below 42 Very low 1.00 - 1.14 Medium 42 - 43 Low 1.15 - 1.29 Long 44 - 45 Average Above 1.29 Extra-long 46 - 47 High Above 47 Very high

Data source - 1575 American upland lots tested from the crops of 1966-68.

Array tests for the extra long staple American Pima and upland samples were performed on the Suter-Webb fiber sorter. Briefly, this method consists of parallelizing the fibers in a representative 75-milligram specimen of cotton through a series of combs, separating the fibers into length groups at 1/8-inch intervals, and weighing the fibers in each length group. The upper quartile length and coefficient of variation values reported are based on one specimen tested by each of two technicians.

The array upper quartile length values reported indicate the length which is exceeded by 25 percent of the weight of the fibers in the samples. They are closely related to and longer than both the Fibrograph and the classer's staple designations. This relationship may vary, however, because the methods measure different fiber length characteristics.

The array coefficient of length variation values reported indicate the relative variability of fiber length in the samples. They represent the standard deviation of the weight-length frequencies expressed as a percentage of the mean length. Smaller values indicate more uniform fiber length distributions. Excessive fiber length variation tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. It is, therefore, considered desirable for a cotton to have a low coefficient of variation. The following adjective descriptions will serve to classify cottons from the standpoint of upper quartile length and fiber length variation:

	iation
Below 1.10 Short Below 26 Very low variation 1.10 - 1.24 Medium 26 - 29 Low variation 1.25 - 1.39 Long 30 - 33 Average variation Above 1.39 Extra Long 34 - 37 High variation Very high variation	ion

Data source - 830 American upland lots tested from the crops of 1958-60 (more recent data not available).

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. A representative standard weight of cotton fibers is placed in the instrument specimen holder and compressed to a fixed

volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length, or the cross sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings are taken from the curvilinear scale adopted in 1950, and now in international use. Fiber fineness contributes to yarn strength, particularly when fine numbers are spun, but it also tends to increase neppiness and to require a reduced rate of processing.

Fiber maturity, also an important factor affecting the appearance of yarns and fabrics, is a desirable characteristic from the standpoint of low picker and card waste. Immature fibers are susceptible to the formation of neps, and contribute to lower yarn appearance grades. The desirability of micronaire reading, therefore, depends on the specific end product or use of the cotton.

Several instruments, including the Micronaire, Fibronaire, and Port-Ar, may be used for these tests. All instruments now use the same scale and report results in the same terms, i.e. "micronaire reading". The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

Fiber strength is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing processes than the weak fibered cottons. Tests for fiber strength were made without a space between the clamp jaws (0 gage) using the Pressley flat bundle tester, and with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer. Strength results from both the Pressley and the Stelometer were controlled at the same level by use of standard calibration cottons. Use of the Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than the results of the zero gage tests. Results for both methods are reported, however, because the zero gage tests are widely used by the cotton industry.

The results for the Pressley zero gage test are reported in terms of thousand pounds per square inch, as calculated by the use of Formula 1. These results may be converted to other methods of expressing fiber strength by use of Formulas 2, 3, and 4:

(1) Thousand pounds per square inch (Mpsi) =

breaking load in 1b x 10.81 bundle weight in mg

(2) Grams per tex (gm/tex) = Mpsi x 0.496

- (3) Strength-weight ratio = Mpsi : 10.81
- (4) Strength-weight ratio = gm/tex 5.36

The results of the 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM), and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and fiber length. Cottons with short lengths tend to have lower average strength values than long staple cottons. Results for 1/8-inch gage tests are calculated by use of Formula 5. Stelometer results are adjusted to Pressley level by use of calibration cottons.

(5) Grams per tex = $\frac{\text{breaking load (kg) x 15}}{\text{bundle weight in mg}}$

The following descriptive terms may be applied to the data shown in this report:

Staple length group and descriptive designation	Zero gage strength (thousand psi)	1/8-inch gage strength (grams per tex)
Short staple: Low Average High	70 - 75 76 - 81 82 - 87	18 - 19 20 - 21 22 - 23
Medium staple: Low Average High	74 - 80 81 - 87 88 - 94	20 - 21 22 - 23 24 - 25
Long staple: Low Average High	85 - 88 89 - 92 93 - %	23 - 24 25 - 26 27 - 28
Extra-long staple: Low Average High	93 - 96 97 - 100 101 - 104	31 - 32 33 - 34 35 - 36

Data source - 291 short staple, 1206 medium staple, 78 long staple, and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Fiber elongation results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive designation	Fiber elongation (percent)
Very low Low Average High Very high	5.3 and below 5.4 - 6.2 6.3 - 7.1 7.2 - 8.0 8.1 and above

Data source - 1575 American upland lots tested from the crops of 1966 - 68.

Color measurements were made on samples of raw stock from each lot by using the Nickerson-Hunter Colorimeter. The basic color values reported are in terms of grayness and yellowness scales designed especially for cotton. The grayness scale ranges from 0 for the brightest samples (no gray) through 9 for the darkest color. The yellowness scale ranges from 0 for the lightest color (no yellow) to 9 for the yellowest color. In other words, the larger the number reported the darker or yellower the cotton becomes. The relationship of these new cotton color scales to Rd and +b values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2 and for American Pima cotton in Figure 3.

The color of raw cotton is also reported as a single index number. The relationship of the index number to Rd and +b and the color of the Universal Grade Standards for upland cotton is shown in Figure 4.

Fig. 2--Colorimeter diagram for upland cotton

Figure 3.--Colorimeter diagram for American Pima cotton.

Fig. 4--Conversion diagram for converting raw cotton color to color index

Nonlint content for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total nonlint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer nonlint to grade:

American upland grade	Code	Average nonlint content (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	1.7 2.2 2.9 3.9 5.3 6.9

Data source - 5725 American Upland Color and Trash Survey samples tested from crops of 1968-72.

The following scale has been developed to represent the average nonlint content for grades of American Pima cotton:

American Pima grade	Average nonlint content (percent)
1	2.0
2	2.3
3	2.6
14	3.3
5	4.1
6	5.3
7	7.0
8	8.5
9	9.9

Data source - 935 American Pima Color and Trash Survey samples tested from the crops of 1968-72.

Differences between results obtained for individual lots and the average percentages shown for the grades may be caused by: (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor, (2) there is a range of trash allowable within each specific grade and (3) these data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

Yarn Processing Tests

The results of yarn processing tests reported in this summary were obtained by procedures adopted in 1962 which include heavier weights for laps, slivers and rovings than those used in previous years. These procedures also include spinning from single roving instead of double roving for the two standard yarn numbers and the spinning of a third yarn number on all the samples to provide a small-scale measure of spinning end-breakage or spinning performance. In 1965, metallic card clothing was installed on the carding machines to replace the conventional fillet clothing used previously, and in 1966, crusher rolls were installed on the card machines. These changes reflect similar changes that have taken place in the cotton textile industry including increased emphasis on running quality since the Mid-1940's when long-draft systems were adopted for both the roving and spinning processes in the routine laboratory spinning test procedures. These changes were designed to bring the laboratory processing procedures more in line with current textile mill practices and thus make the processing evaluations more applicable to present day mill operations.

The card production rate employed and the yarn numbers spun for each cotton were selected on the basis of the staple length expected in the specified area of growth as described in the earlier section on test procedures. Four different length groupings were used to cover the range of cottons grown in this country and to approach commercial practices in processing these cottons. The spinning twist multipliers were selected to provide maximum yarn strength on the basis of staple length. Details of the spinning test procedures are shown at the end of this section of the report (Table 24). Results of previous tests show that decreasing the card production rate results in fewer neps, improved yarn appearance grades, and removal of more waste at the card. Results of tests on the various lots should therefore be compared directly for only those lots in the same length group which were processed in a comparable manner.

Manufacturing waste reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American upland grade	Code	Average picker and card waste (percent)	American Pima	Average picker and card waste (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	4.7 5.1 5.7 6.7 7.8 8.9	1 2 3 4 5 6 7 8 9	7.5 7.9 8.4 9.5 10.8 11.7 13.7 15.2

Data source - 5561 samples of American upland cotton and 431 samples of American Pima cotton tested for Shirley Analyzer nonlint content from the crops of 1966-68 and picker and card waste calculated from its relationship to Shirley Analyzer nonlint content.

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

Yarn strength is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of the usefulness of a given cotton, but is also an indication of spinning and weaving performance. The yarn strength test is performed on 120 yard skeins (80 turns on a 1.5 yard reel). Results reported are based on the average of 25 skeins for each yarn number. Yarn strength is reported in terms of skein strength since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. Length, strength and fineness influence yarn strength more than other fiber properties.

The following descriptive terms may be of help in determining the relative level of yarn strength in their report:

Kind of yarn, staple length group and description	trength or the n numbers		
Carded yarns: Short staple group: Low Average High	8s 265 - 290 291 - 316 317 - 342	22s 78 - 86 87 - 95 96 - 104	
Medium staple group: Low Average High	22s 95 - 104 105 - 114 115 - 125	50s 30 - 35 36 - 41 42 - 47	
Long staple group: Low Average High	22s 125 - 131 132 - 138 139 - 145	50s 45 - 48 49 - 52 53 - 56	
Combed yarns: Long staple group: Low Average High	22s 142 - 149 150 - 157 158 - 165	<u>50s</u> 5 2 - 55 56 - 59 60 - 63	
Extra-long staple group: Low Average High	50s 66 - 68 69 - 71 72 - 74	80s 36 - 37 38 - 39 40 - 41	

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn elongation results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of yarn, staple length group, and description	Yarn elongation in percent for the specified yarn numbers		
Carded yarns: Short staple group: Low Average High	$ \begin{array}{r} 8s \\ 6.5 - 7.3 \\ 7.4 - 8.1 \\ 8.2 - 9.0 \end{array} $	22s 5.5 - 6.2 6.3 - 7.0 7.1 - 7.8	
Medium staple group: Low Average High	22s 5.4 - 5.9 6.0 - 6.5 6.6 - 7.1	50s 4.0 - 4.5 4.6 - 5.1 5.2 - 5.7	
Long staple group: Low Average High	22s 6.2 - 6.5 6.6 - 6.9 7.0 - 7.3	50s 5.2 - 5.4 5.5 - 5.7 5.8 - 6.0	
Combed yarns: Long staple group: Low Average High	22s 6.6 - 6.9 7.0 - 7.3 7.4 - 7.7	50s 5.5 - 5.7 5.8 - 6.0 6.1 - 6.3	
Extra-long staple group: Low Average High	50s 5.6 - 5.8 5.9 - 6.1 6.2 - 6.4	80s 4.6 - 4.8 4.9 - 5.1 5.2 - 5.4	

Data source - 291 short staple, 1206 medium staple and 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials. Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of yarn, staple length group, and description	Yarn appearance index for the specified yarn numbers		
Carded yarns: Short staple group: Low Average High	8s 105 - 113 114 - 122 123 - 130	<u>22s</u> 92 - 104 105 - 117 118 - 130	
Medium staple group: Low Average High	<u>22s</u> 93 - 105 106 - 118 119 - 130	50s 77 - 87 88 - 98 99 - 109	
Long staple group: Low Average High	22s 71 - 86 87 - 102 103 - 118	50s 65 - 78 79 - 92 93 - 106	
Combed yarns: Long staple group: Low Average High	<u>22s</u> 81 - 97 98 - 114 115 - 130	50s 70 - 85 86 - 101 102 - 117	
Extra-long staple group: Low Average High	50s 102 - 111 112 - 121 122 - 130	80s 98 - 106 107 - 115 116 - 124	

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance Grades

Grade	Index
А	130
B+	120
В	110
C+	100
C	90
D+	80
D	70
Below D	60

Yarn imperfections are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on "Neptel" instruments which electronically count the abrupt changes in the silhouette of the yarn while passing it through a beam of light. They are expressed as the number of imperfections per 50 yards of yarn and are based on the average of 10 determinations. This value is an instrument measure of product quality which is associated with the characteristics of the cotton. It is more highly correlated with fiber properties than either neps in card web or yarn appearance grade. The following descriptive terms may be of help in determining the relative level of yarn imperfections in this report:

Kind of yarn, staple length group,	Yarn imperfections for the		
and description	specified yarr	numbers	
Carded yarns: Short staple group: Low Average High	8s 6 - 31 32 - 57 58 - 83	22s 6 - 21 22 - 37 38 - 53	
Medium staple group: Low Average High	22s 3 - 15 16 - 28 29 - 41	50s 2 - 11 12 - 21 22 - 31	
Long staple group: Low Average High	22s 7 - 22 23 - 38 39 - 54	50s 6 - 17 18 - 29 30 - 41	
Combed yarns: Long staple group: Low Average High	22s 0 - 8 9 - 20 21 - 32	50s 0 - 6 7 - 16 17 - 26	
Extra-long staple group: Low Average High	50s 0 - 1 2 - 3 4 - 5	80s 0 - 1 2 - 3 4 - 5	

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Spinning potential yarn number indicates the finest yarn number that can be spun from a cotton sample without any end-breakage when using specific processing procedures. In performing these tests, new travelers, draft gears, and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end-breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end-breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end-breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a l-hour test period. The spinning potential yarn number is calculated from the deviation of the actual varn number spun from the desired yarn number and the number of spindles with endbreakages during the 1-hour test run. The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential (SPY No.)

	Short staple group	Medium staple group	Long staple group
Low	31 - 39	55 - 63	77 - 83
Average	40 - 48	64 - 72	84 - 90
High	49 - 57	73 - 81	91 - 97

Data source - 123 short staple, 688 medium staple and 48 long staple lots of cotton tested from the crops of 1967-68.

Chemical Finishing Tests

Information with respect to the bleaching and dyeing properties of different varieties and growths of cotton is of particular significance to textile manufacturers from the standpoint of providing a basis for avoiding problems that may result from blending different varieties and growths having different dyeing properties. Data with respect to the chemical finishing properties of the principal varieties and growths of cotton as herein reported may thus be used as a basis for selecting cottons of similar finishing properties. Details of the chemical finishing tests are described in Agricultural Information Bulletin No. 167 - "Bleaching, Dyeing, and Mercerizing Test Results on Some Varieties of Cotton Grown by Selected Cotton Improvement Groups, Crop of 1955".

Color measurements of cotton yarn samples were made on a Gardner Automatic Color Difference Meter. These values are reported in terms of Rd and b, two of the three scales on the instrument. The $R_{\rm d}$ scale measures percentages of diffuse reflectance from O to lOO. The b scale provides a measure of yellowness in the direction of +b and of blueness in the direction of -b. The degree of either yellowness or blueness increases as the scale numbers increase. These data when plotted with $R_{\rm d}$ on the vertical ordinate and with

b on the horizontal ordinate are similar to the color values for raw cotton when plotted in relation to the official grade standards as described in the earlier section on color of raw stock.

While the color factors R_d and b are not independent of each other and should be considered together in any overall interpretation, for many purposes it would be convenient in evaluating results to have them in terms of a single number. For raw cotton the grade index provides one way to do this in a straightforward manner. A similar method has been followed in developing conversion formulae and diagrams for each form of cotton measured for color as a part of the chemical finishing studies of the Cotton Division. In each, the index for Middling is held at 100 and that for Good Ordinary is held close to 70. By use of such indices the color measurements of raw stock, gray yarns, bleached yarns, and bleached and dyed yarns may be converted to a single number specification. For details see "Grade and Color Indexes Developed for Evaluating Results of USDA Cotton Finishing Tests", (AMS-245, June 1958).

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings

	Process	Staple length groups			
		Short	Medium	Long	Extra lor
	PICKER				
•	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Each test lot is processed through a finisher type	00,	00	60	00
	picker twice to produce the specified weight of				
	lapounces per yard	14	14	21.	2.2
	Type of beater	Kirschner		14 Kirschner	ll Kirschne
	Beater speedr.p.m.		Kirschner	1,000	
	Settings:	1,000	1,000	1,000	1,000
		2/26	2/26	2/2/	- 10
	Feed roll to beaterinches	3/16	3/16	3/16	3/8
	Grids to beater, topinches	5/16	5/16	5/16	9/16
	Grids to beater, bottominches	11/16	11/16	11/16	11/16
	CARD				
	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Picker lap fedounces per yard	14	14	14	11
	Sliver deliveredgrains per yard	50	50	50	40
	Production ratepounds per hour	12-1/2	9-1/2	6-1/2	4-1/
	Doffer speedr.p.m.	11	8	6	4
	Cylinder speedr.p.m.	165	165	165	165
	Flat speedinches per minute	2-7/8	2-7/8	2-7/8	2-7/
	Licker-in speedr.p.m.	435	435	435	435
	Clothing:		0,		
	Cylinder, Hollingsworth metallicnumber	35	35	25	25
	Doffer, Hollingsworth metallicnumber	29	29	29	29
	Flats, Filletnumber	110	110	130	130
	Settings:			-3*	130
	Feed plate to licker-ininches	0.010	0.010	0.010	0.01
	Mote knife to licker-in, topinches	.012	.012	.012	.01
	Mote knife to licker-in, bottominches	.010	.010	.010	.01
	Licker-in screen, frontinches	.029	.029	.029	.02
	Licker-in screen, backinches	.017	.017	.017	.01
	Licker-in to cylinderinches	.007	.007	.007	.00
	Flats to cylinder, back, center, and frontinches	.009	.009	.009	.00
	Back plate to cylinder, topinches	.029	.029	.029	.02
	Back plate to cylinder, bottominches	.034	.034	.034	.03
	Front plate to cylinder, topinches	.029	.029	.029	.02
	Front plate to cylinder, bottominches	.034	.034	.034	.03
	Doffer to cylinderinches	.007	.007	.007	.00
	Cylinder screen, backinches	.029	.029	.029	.02
	Cylinder screen, centerinches	.034	.034	.034	.03
	Cylinder screen, frontinches	3/16	3/16	3/16	3/16
	Doffer comb to dofferinches	.022	.022	.022	.02
	Crusher rolls pressurepounds	281	281	281	281
	SLIVER LAPPER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Sliver fed, 20 eachgrains per yard			50	40
	Lap deliveredgrains per yard			595	525
	Speedyards per minute			46	46
	Roll settings (center to center):			.0	,,
	First to secondinches plus fiber length 1/			5/16	5/16
				9/16	9/16

^{1/} Allowances listed are in addition to fiber lengths in terms of "pulls" made on card sliver. These pulls are estimated from Fibrograph length tests except for extra long staple cottons.

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings--Continued

	Process	Staple length groups			
	1100688	Short	Medium	Long	Extra long
4.	RIBBON LAPPER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60 .	60
	Laps fed, 4grains per yard Laps deliveredgrains per yard			595	525
	Speedyards per minute			610 47	610 47
	Roll settings (center to center):			41	47
	First to secondinches plus fiber length 1/	·		4/16	4/16
	Second to thirdinches plus fiber length 1/			7/16	7/16
	Third to fourthinches plus fiber length 1/			10/16	10/16
5.	COMBER (Model D-4)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Laps fed, 8 eachgrains per yard			610	610
	Sliver deliveredgrains per yard Production per hourpounds			50 16	40
	Setting of cushion plate to detaching rollinches			.48	13 •54
	Nominal wastepercent			16 to 17	16 to 17
_					
6.	DRAWING FRAME (synthetic top rolls)				
	Standard atmospheric conditions:	75	75	75	75
	Temperaturedegrees F. Relative humiditypercent	75 60	75 60	75 60	75 60
	First process:	00	00	00	00
	Sliver fed, 6 eachgrains per yard	50	50	50	40
	Sliver deliveredgrains per yard	60	53	53	42
	Second process:	-	4		
	Sliver fed, 6 eachgrains per yard	60	53	53	42
	Sliver deliveredgrains per yard Speedyards per minute	70 36	55 36	55 36	144 36
	Roll settings (center to center):	20	30	30	20
	First to secondinches plus fiber length 1/	4/16	4/16	4/16	4/16
	Second to thirdinches plus fiber length $\frac{1}{2}$	7/16	7/16	7/16	7/16
	Third to fourthinches plus fiber length $\overline{1}$	10/16	10/16	10/16	10/16
7	LONG DDATE POTENCE TO). O comes toms				
7.	LONG DRAFT ROVING (8 x 4, 2 apron type) Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Sliver fedgrains per yard	70	55	55	44
	Roving deliveredhank	1.10	1.80	1.80	4.25
	Spindle speedr.p.m.	1235	1235	1235	1235
	Roll settings (center to center): First to second, standardinches	2-1/4	2-1/4	2-1/4	2-1/4
	Third to fourthinches plus fiber length 1/	1/4	1/4	1/4	1/4
_		·	·	ŕ	
8.	LONG DRAFT SPINNING (2 apron type)				
	Standard atmospheric conditions:	75	75	75	75
	Temperaturedegrees F. Relative humiditypercent	75 65	75 65	75 65	75 65
	Roving fed singlehank	1.10	1.80	1.80	4.25
	Twist multipliernumber	4.4	4.0	3.8	3.6
	Carded yarnsnumber 2/	8s & 22s	22s & 5 0s	22s & 50s	
	Combed yarnsnumber			22s & 50s	50s & 80s
	Spindle speedr.p.m. 3/	9000	9000	9000	9000
	Roll settings (center to center):	2-1/16	2 -1 /16	2-1/16	2-1/16
	First to second, standardinches Second to third, standardinches	1-3/4	1-3/4	1-3/4	1-3/4
	Decome to there, boarded the second to the s	3/	- 3/	- 3/	- 3/ '

^{2/} Additional yarn is spun on a 96 spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end-breakage.

^{3/} All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for ∂s , which are spun on a wide gage frame with spindle speed of 5,500 r.p.m.

