Machine Learning 4

Yiping Deng, Shalom-David Anifowoshe

March 14, 2018

1 K-means algorithm

K-means is a iterative algorithm that basically does the following:

- picks k centers(usually done by picking first k data).
- groups the dataset by centers
- recomputes the centers(taking the mean value)
- repeats...

Mathematically speaking, for a given sets of clusters, we have $S = \{S_1, S_2, ... S_k\}$ with its corresponding mean value $\bar{X} = \{\bar{x_1}, \bar{x_2}, ... \bar{x_k}\}$. k-means algorithms aims to

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{v \in S_i} norm(x, \bar{x_i})$$

1.1 k = 1

For k = 1, the algorithm calculates the mean value of the vectors. Here the number of iterations were insignificant because it was only making one cluster. The image below shows the k = 1 case:

With k = 1, we can prove that the only center will just be the mean value of the set.

Proof.

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{v \in S_i} norm(x, \bar{x}_i) = \{\{x_1, x_2, ... x_k\}\}\$$

Thus, we can conclude the center:

$$\bar{x_1} = \frac{1}{n} \sum_{i=1}^n x_i$$

Which is exactly the mean value.

1.2 k = 2

With this case, the algorithm splits the dataset into two clusters and iteratively computes there centers, here the number of iterations makes a difference because after each iteration the algorithm approaches convergence.

1.3 k = 3

Very similar logic from the k=2 case applies here for the ${\rm K}=3$ case, but however 3 clusters are now being used. The number of iterations is positively correlated with the likely hood of convergence.

1.4 k = 200

For the K=200 case, all 200 points from the data set form their own cluster. Here the distance of each point to it's center is 0 as each cluster is unique to each point. Additionally, here the number of iterations do not change the output because the algorithm converges after the first iteration. We will simply include 3 graphs here for presentation.

for k = 200, clearly arg min obtains its minimum 0 at its first iteration.

Proof.

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{v \in S_i} norm(x, \bar{x}_i) = \{\{x_1\}, \{x_2\}, ...\{x_n\}\}\$$

Thus,

$$\bar{x_i} = \frac{1}{1} \sum_{x \in S_i} x = x_i$$

Which is picked at its first place.