Objetivos de aprendizaje Tema 7

Análisis Matemático I

Javier Gómez López

8 de enero de 2022

1. Conocer y comprender la definición de vector derivada, así como su relación con la diferencial.

Antes, veamos un resultado previo que nos será de utilidad posteriormente:

■ Si Y es un espacio normado, la aplicación $\Phi: L(\mathbb{R},Y) \to Y$ definida por $\Phi(T) = T(1)$ para toda $T \in L(\mathbb{R},Y)$, es una biyección lineal que preserva la norma, luego permite identificar totalmente el espacio normado $L(\mathbb{R},Y)$ con el espacio normado Y.

Por tanto, decimos que f es **derivable** en $a \in \Omega$ cuando la función $t \mapsto \frac{f(t)-f(a)}{t-a}$, de $\Omega \setminus \{a\}$ en Y tiene el límite en el punto a. Dicho límite es entonces el **vector derivada** de f en a, que se denota por f'(a), es decir, $f'(a) = \lim_{t \to a} \frac{f(t)-f(a)}{t-a} \in Y$.

Decimos simplemente que f es **derivable**. cuando es derivable en todo punto de Ω , en cuyo caso podemos considerar la función $f': \Omega \to Y$ que a cada punto $x \in \Omega$ hace corresponder el vector derivada f'(x), y decimos que f' es la **función derivada** de f. De aquí obtenemos el siguiente resultado:

■ Sea Y un espacio normado y Ω un subconjunto abierto de \mathbb{R} . Una función $f:\Omega \to Y$ es diferenciable en un punto $a \in \Omega$ si, y sólo si, f es derivable en a, en cuyo caso, la diferencial y el vector derivada de f en a se determinan mutuamente por:

$$f'(a) = Df(a)(1)$$
 y $Df(a)(t) = tf'(a)$ $\forall t \in \mathbb{R}$

Por tanto f es diferenciable si, y sólo si, es derivable. Por último, $f \in C^1(\Omega, Y)$ si, y sólo si, f es derivable y su función derivada f' es continua.

Para terminar, destacamos dos resultados importantes:

■ Sea Ω un abierto de \mathbb{R} , Y un espacio normado y $f:\Omega \to Y$ una función derivable en un punto $a \in \Omega$. Entonces, para todo $\varepsilon > 0$, existe un $\delta > 0$ verificando:

$$\frac{t_1, t_2 \in \Omega, t_1 \neq t_2}{a - \delta < t_1 \le a \le t_2 < a + \delta} \right\} \Rightarrow \left\| \frac{f(t_2) - f(t_1)}{t_2 - t_1} - f'(a) \right\| \le \varepsilon$$
 (1)

■ Sea Ω un abierto de \mathbb{R} y $f = (f_1, f_2, \dots, f_M) : \Omega \to \mathbb{R}^M$ una función. Entonces f es derivable en un punto $a \in \Omega$ si, y sólo si, f_j es derivable en a para todo $j \in \Delta_M$, en cuyo caso se tiene $f'(a) = (f'_1(a), f'_2(a), \dots, f'_M(a))$ es decir:

$$f'_j(a) = \pi_j(f'(a)) \quad \forall j \in \Delta_M \quad o \text{ bien,} \quad f'(a) = \sum_{j=1}^M f'_j(a)e_j$$
 (2)

2. Conocer y comprender la interpretación geométrica y la interpretación física del vector derivada

a) Interpretación geométrica

Para hacer una interpretación geométrica del vector derivada, fijamos un intervalo abierto no vacío $J \subset \mathbb{R}$ y una función $\gamma: J \to \mathbb{R}^M$, que suponemos continua. La imagen de γ , es decir el conjunto $C = \gamma(J) = \{\gamma(t): t \in J\} \subset \mathbb{R}^M$, es lo que en Geometría se conoce como una curva definida en forma paramétrica, o más brevemente, una curva paramétrica, en \mathbb{R}^M .

Conviene resaltar que γ puede no ser inyectiva, distintos valores del parámetro pueden dar lugar al mismo punto de la curva C.

Pues bien, si γ es derivable en un punto $a \in J$ con $\gamma'(a) \neq 0$, podemos considerar la recta

$$R = \{ \gamma(a) + t\gamma'(a) : t \in \mathbb{R} \}$$

es decir, la única recta en \mathbb{R}^M que pasa por el punto $\gamma(a)$ y tiene como vector de dirección $\gamma'(a)$. Se dice que R es la **recta tangente** a la curva C en el punto $x = \gamma(a)$. Así pues, el vector derivada $\gamma'(a) \neq 0$ es un vector de dirección de la recta tangente a la curva $C = \gamma(J)$ en el punto $x = \gamma(a) \in C$.

La denominación de la recta tangente tiene una clara explicación geométrica, como vamos a ver. Fijada cualquier norma en \mathbb{R}^M , y dado $\varepsilon > 0$ con $\varepsilon < ||\gamma'(a)||$, podemos conseguir $\delta > 0$ con $|a - \delta, a + \delta| \subset J$, de forma que:

$$a - \delta < t_1 \le a \le t_2 < a + \delta, t_1 \ne t_2 \Rightarrow \left| \left| \frac{\gamma(t_2) - \gamma(t_1)}{t_2 - t_1} - \gamma'(a) \right| \right| \le \varepsilon$$

Entonces $\frac{\gamma(t_2)-\gamma(t_1)}{t_2-t_1} \neq 0$ es un vector de dirección de la recta, que pasa por los puntos $\gamma(t_1)$ y $\gamma(t_2)$, que pueden ser ambos distintos de $\gamma(a)$. Pues bien, dicho vector tiende a ser $\gamma'(a)$ cuando ambos valores, t_1, t_2 tienden a coincidir con a.

Resaltamos la siguiente notación: Si γ es derivable en a con $\gamma'(a) \neq 0$ se dice que $x = \gamma(a)$ es un punto regular de la curva $C = \gamma(J)$ y, si esto ocurre para todo $a \in J$ decimos que C es una curva regular. Si, por el contrario, γ no es derivable en un punto $a \in J$, o biene es derivable en a pero $\gamma'(a) = 0$, el punto $x = \gamma(a)$ es un punto singular de la curva C.

Pensemos finalmente en las componentes de γ . Para cada $j \in \Delta_M$, la función $\pi_j \circ \gamma : J \to \mathbb{R}$, suele denotarse por x_j , en vez de γ_j . Se dice entonces que las M igualdades

$$x_j = x_j(t)$$
 $(t \in J)$ $con j \in \Delta_M$

son las ecuaciones paramétricas de la curva C.

Sabemos que γ es derivable en punto $a \in J$ si, y sólo si, lo es x_j para todo $j \in \Delta_M$, en cuyo caso tenemos que

$$x'_j(a) = \pi_j(\gamma'(a)) \quad \forall j \in \Delta_M, \quad \text{o bien}, \quad \gamma'(a) = \sum_{j=1}^M x'_j(a)e_j$$

Pues bien, cuando γ es derivable en el punto a con $\gamma'(a) \neq 0$, la recta tangente R, como curva paramétrica que también es, tiene sus ecuaciones paramétricas dadas por:

$$x_j = x_j(a) + tx'_j(a)$$
 $(t \in \mathbb{R})$ con $j \in \Delta_M$

Ahora podemos destacar dos casos particulares de especial interes:

El primero son las **curvsa planas**. Este es el caso de \mathbb{R}^2 . Es la imagen $C = \gamma(J)$ de una función continua $\gamma: J \to \mathbb{R}^2$ definida en un intervalo abierto $J \subset \mathbb{R}$. Para denotar sus componentes, evitamos los subíndices, escribiendo $x = \pi_1 \circ \gamma$ e $y = \pi_2 \circ \gamma$, con lo que las ecuaciones paramétricas de $C = \gamma(J)$ son

$$x = x(t)$$
 e $y = y(t)$ $(t \in J)$

Sabemos que γ es derivable en un punto $a \in J$ si, y sólo si, lo son las funciones x e y, en cuyo caso tenemos $\gamma'(a) = (x'(a), y'(a))$. Cuando $\gamma'(a) \neq 0$, la recta tangente a la curvya C en el punto $\gamma(a)$ tiene ecuaciones paramétricas

$$x = x(a) + tx'(a)$$
 e $y = y(a) + ty'(a)$ $(t \in \mathbb{R})$

Conviene ahora aclarar la relación con el tipo de curva que mejor conocemos: la gráfica de una función continua $\varphi: J \to \mathbb{R}$. Se dice que el conjunto:

$$Gr\varphi = \{(x, \varphi(x)) : x \in J\} \subset \mathbb{R}^2$$

es una curva explícita. Se deduce que la igualdad

$$y = \varphi(x) \qquad (x \in J)$$

es la ecuación explícita de la curva $Gr\varphi$.

Por tanto, las ecuaciones paramétricas de la curva explícita $Gr\varphi$, pueden ser

$$x = t$$
 e $y = \varphi(t)$ $(t \in J)$

Para terminar, mencionemos rápidamente el concepto sobre curvas paramétricas en \mathbb{R}^3 o curvas alabeadas. Ahora tenemos $C = \gamma(J) \subset \mathbb{R}^3$ donde J es un intervalo aiberto y $\gamma: J \to \mathbb{R}^3$ es continua. Sus componentes son $x = \pi_1 \circ \gamma$, $y = \pi_2 \circ \gamma$ y $z = \pi_3 \circ \gamma$, con lo que tenemos tres ecuaciones paramétricas

$$x = x(t),$$
 $y = y(t)$ y $z = z(t)$ $(t \in J)$

b) Interpretación física

Para hacer una interpretación física del vector derivada, podemos pensar que una función continua $\gamma: J \to \mathbb{R}^M$ describe un movimiento en el espacio M-dimensional, de forma que J es un intervalo de tiempo y, en cada instante $t \in J$, el móvil ocupa la posición $\gamma(t)$, por lo que se dice que $\gamma(t)$ es el vector de posición del móvil en el instante t. La curva paramétrica $C = \gamma(J)$ es la trayectoria del movimiento y sus ecuaciones paramétricas son las ecuaciones del movimiento.

En este planteamiento físico, es natrual suponer que γ es derivable en todo punto de J. Fijados $t_1, t_2, t \in J$ con $t_1 \leq t \leq t_2$ y $t_1 \neq t_2$, el vector $\gamma(t_2) - \gamma(t_1)$ indica el desplazamiento del móvil durante el intervalo de tiempo $[t_1, t_2]$, luego el vector $\frac{\gamma(t_2) - \gamma(t_1)}{t_2 - t_1}$ nos da la velocidad media del móvil en dicho intervalo.

Por ello, para todo $t \in J$, se dice que $\gamma'(t)$ es el **vector velocidad** del móvil en el instante t y su valor nos da la *velocidad instantánea*. La norma euclídea $||\gamma'(t)||$ del vector velocidad se conoce como *celeridad* del móvil en el instante t y nos informa de la rapidez con la que el móvil se está desplazando.