

#### Learning Time-Series Shapelets

Josif Grabocka, Nicolas Schilling, Martin Wistuba and Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany

SIGKDD 2014, 26/08/2014





## What are Time-Series Shapelets? (I)

- ► Definition:
  - ► Patterns whose minimum distances to time-series yield discriminative predictors [Ye and Keogh(2009), Lines et al.(2012)Lines, Davis, Hills, and Bagnall]
- ► Problem:
  - 1. **Learn** K discriminative shapelets of length L (denoted as  $S \in \mathbb{R}^{K \times L}$ ).
  - 2. From a dataset that has I time-series instances of length M (denoted as  $T \in \mathbb{R}^{I \times M}$ ), where each series is divided into J = M L sliding window segments.





### What are Time-Series Shapelets? (II)

The minimum distances  $M \in \mathbb{R}^{I \times K}$  between shapelets and time-series:

$$M_{i,k} = \min_{j=1,...,J} \frac{1}{L} \sum_{l=1}^{L} (T_{i,j+l-1} - S_{k,l})^2$$
 (1)

... yield discriminative predictors:



Figure 1: Left: Two shapelets, Middle: Closest Segments, Right:

'Shapelet-Transform'ed data





#### Related Shapelets Work

**All** the possible segments (**exhaustively**) of all time-series candidates are potential shapelet candidates:

- ► Compute the prediction accuracy of minimum distances of each candidate and then **rank** the top-K by prediction accuracy (feature ranking)
- ► Build a decision tree from the top-K features [Ye and Keogh(2009), Lines et al.(2012)Lines, Davis, Hills, and Bagnall]
- Alternatively, use the new K-dimensional feature representation and use standard classifiers
   [Hills et al.(2013)Hills, Lines, Baranauskas, Mapp, and Bagnall].

**Exhaustive** search is **expensive**, speed-ups were proposed [Mueen et al.(2011)Mueen, Keogh, and Young, Rakthanmanon and Keogh(2013)].





## Proposed Method (I)

A linear model of predictors  $M \in \mathbb{R}^{I \times K}$  and weights  $W \in \mathbb{R}^K$ ,  $W_0 \in \mathbb{R}$ : can be used to estimate the target  $\hat{Y} \in \mathbb{R}^I$ :

$$\hat{Y}_i = W_0 + \sum_{k=1}^K M_{i,k} W_k \quad \forall i \in \{1, \dots, I\}$$
 (2)

The risk of estimating the true target  $Y \in \{-1, +1\}^I$  from approximated target  $\hat{Y} \in \mathbb{R}^I$  is the logistic loss  $\mathcal{L}(Y, \hat{Y}) \in \mathbb{R}^I$ :

$$\mathcal{L}(Y_i, \hat{Y}_i) = -Y_i \ln \sigma(\hat{Y}_i) - (1 - Y_i) \ln \left(1 - \sigma(\hat{Y}_i)\right), \quad \forall i \in \{1, \dots, I\} \quad (3)$$





### Proposed Method (II)

The objective function  $\mathcal{F} \in \mathbb{R}$  is a regularized loss function:

$$\underset{S,W}{\operatorname{argmin}} \ \mathcal{F}(S,W) = \underset{S,W}{\operatorname{argmin}} \sum_{i=1}^{I} \mathcal{L}(Y_i, \hat{Y}_i) + \lambda_W ||W||^2$$
 (4)

The objective function  $\mathcal{F}$  can be decomposed into per-instance objectives  $\mathcal{F}_i$ :

$$\mathcal{F}_{i} = \mathcal{L}(Y_{i}, \hat{Y}_{i}) + \frac{\lambda_{W}}{I} \sum_{l=1}^{K} W_{k}^{2}, \quad \forall i \in \{1, \dots, I\}$$
 (5)

Mission of This Paper: Learn S, W that minimize  $\mathcal{F}$ .





## Differentiable Minimum Function (I)

Approximate the true minimum M with the soft-minimum version  $\hat{M}$ :

$$M_{i,k} \approx \hat{M}_{i,k} = \frac{\sum_{j=1}^{J} D_{i,k,j} e^{\alpha D_{i,k,j}}}{\sum_{j'=1}^{J} e^{\alpha D_{i,k,j'}}},$$

$$\alpha \in (-\infty, 0] \quad \forall i \in \{1, \dots, I\}, \forall k \in \{1, \dots, K\}$$
(6)

$$D_{i,k,j} := \frac{1}{L} \sum_{l=1}^{L} (T_{i,j+l-1} - S_{k,l})^{2},$$

$$\forall i \in \{1, \dots, I\}, \forall k \in \{1, \dots, K\}, \forall j \in \{1, \dots, J\}$$
 (7)





### Differentiable Minimum Function (II)

The smooth approximation of the minimum function, allows only the minimum segment to contribute for  $\alpha \to -\infty$ .



Figure 2: Illustration of the soft minimum between a shapelet (green) and all the segments of a series (black) from the FaceFour dataset

# Jrivers/to

# Learning Algorithm (I)

The partial derivative of the per-instance objective function  $\mathcal{F}_i$  with respect to the *I*-th point of the *k*-th shapelet  $S_{k,I}$  is computed using the chain rule of derivation:

$$\frac{\partial \mathcal{F}_{i}}{\partial S_{k,l}} = \frac{\partial \mathcal{L}(Y_{i}, \hat{Y}_{i})}{\partial \hat{Y}_{i}} \frac{\partial \hat{Y}_{i}}{\partial \hat{M}_{i,k}} \sum_{i=1}^{J} \frac{\partial \hat{M}_{i,k}}{\partial D_{i,k,j}} \frac{\partial D_{i,k,j}}{\partial S_{k,l}}$$
(8)

$$\frac{\partial \mathcal{F}_i}{\partial W_k} = \frac{\partial \mathcal{L}(Y_i, \hat{Y}_i)}{\partial \hat{Y}_i} \frac{\partial \hat{Y}_i}{\partial \hat{W}_k} + \frac{\partial \text{Reg}(W)}{\partial W_k}, \quad \frac{\partial \mathcal{F}_i}{\partial W_0} = \frac{\partial \mathcal{L}(Y_i, \hat{Y}_i)}{\partial \hat{Y}_i} \quad (9)$$

All the components of the partial derivative are computable as follows:

$$\frac{\partial \mathcal{L}(Y_i, \hat{Y}_i)}{\partial \hat{Y}_i} = -\left(Y_i - \sigma\left(\hat{Y}_i\right)\right), \quad \frac{\partial \hat{Y}_i}{\partial \hat{M}_{i,k}} = W_k, \quad \frac{\partial \hat{Y}_i}{\partial \hat{W}_k} = M_{i,k}, \quad \frac{\partial \text{Reg}(W)}{\partial W_k} = \frac{2\lambda_W}{I}W_k \quad (10)$$

$$\frac{\partial \hat{M}_{i,k}}{\partial D_{i,k,j}} = \frac{e^{\alpha D_{i,k,j}} \left(1 + \alpha \left(D_{i,k,j} - \hat{M}_{i,k}\right)\right)}{\sum_{j'=1}^{J} e^{\alpha D_{i,k,j'}}}, \frac{\partial D_{i,k,j}}{\partial S_{k,l}} = \frac{2}{L} \left(S_{k,l} - T_{i,j+l-1}\right) \tag{11}$$

Grabocka et al., ISMLL, University of Hildesheim, Germany SIGKDD 2014, 26/08/2014



### Learning Algorithm (II)

**Require:**  $T \in \mathbb{R}^{I \times Q}$ , Number of Shapelets K, Length of a shapelet L, Regularization  $\lambda_W$ , Learning Rate  $\eta$ , Number of iterations: maxIter

**Ensure:** Shapelets  $S \in \mathbb{R}^{K \times L}$ , Classification weights  $W \in \mathbb{R}^K$ , Bias  $W_0 \in \mathbb{R}$ 

```
1: for iteration=1,..., maxIter do

2: for i=1,...,I do

3: W_0 \leftarrow W_0 - \eta \frac{\partial \mathcal{F}_i}{\partial W_0}

4: for k=1,...,K do

5: W_k \leftarrow W_k - \eta \frac{\partial \mathcal{F}_i}{\partial W_k}

6: for L=1,...,L do

7: S_{k,l} \leftarrow S_{k,l} - \eta \frac{\partial \mathcal{F}_i}{\partial S_{k,l}}

8: return S,W,W_0
```

<ロト </p>



#### Illustration of Learning



Figure 3: Learning Two Shapelets on the Gun-Point Dataset, ( $L=40, \eta=0.01, \lambda_W=0.01, \alpha=-100$ )





### Advantage over Feature Ranking

- 1. Discover hidden/latent shapelets
- 2. Interactions of Variables



Figure 4: Interactions among Shapelets Enable Individually Unsuccessful Shapelets (left plots) to Excel in Cooperation (right plot)





#### **Experimental Setup**

Our method, denoted LS, is compared against 13 baselines using 28 time-series dataset:

- ▶ Baselines: Quality Criteria: Information gain (IG), Kruskall-Wallis (KW), F-Stats (FT), Mood's Median Criterion (MM); Using shapelet-transformed data: Nearest Neighbors (1NN), Naive Bayes (NB), C4.5 tree (C4), Bayesian Networks (BN), Random Forest (RA), Rotation Forest (RO), Support Vector Machines (SV); Other Related: Fast Shapelets (FS), Dynamic Time Warping (DT).
- ► Datasets: 28 time-series datasets from the UCR and UEA collections from diverse domains; Provided train/test splits
- ► Hyper-parameters: are found using grid-search, by testing over a validation split from the training data



# Silversia.

#### Results

|             | IG  | KW  | FT  | ММ  | DT  | C4   | NN  | NB  | BN  | RF  | RO  | SV  | FS  | LS   |
|-------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|
| Total Wins  | 0.0 | 0.0 | 1.2 | 0.3 | 0.0 | 0.0  | 1.5 | 0.0 | 1.6 | 0.2 | 0.0 | 4.7 | 1.3 | 17.3 |
| LS Wins     | 28  | 27  | 26  | 26  | 28  | 28   | 23  | 27  | 23  | 26  | 24  | 20  | 26  | -    |
| LS Draws    | 0   | 0   | 1   | 1   | 0   | 0    | 2   | 0   | 2   | 1   | 1   | 2   | 1   | -    |
| LS Losses   | 0   | 1   | 1   | 1   | 0   | 0    | 3   | 1   | 3   | 1   | 3   | 6   | 1   | -    |
| Rank Mean   | 9.8 | 9.9 | 9.1 | 9.5 | 9.8 | 10.0 | 6.2 | 7.7 | 5.5 | 6.3 | 5.4 | 4.6 | 9.2 | 1.9  |
| Rank C.I.   | 1.0 | 1.3 | 1.3 | 1.3 | 1.9 | 0.8  | 1.2 | 1.1 | 1.2 | 0.7 | 0.9 | 1.2 | 1.5 | 0.5  |
| Rank S.D.   | 2.7 | 3.4 | 3.6 | 3.4 | 5.0 | 2.1  | 3.2 | 2.9 | 3.1 | 2.0 | 2.4 | 3.2 | 4.1 | 1.4  |
| W.t. p-val. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -    |

Table 1: Comparative Figures of Classification Accuracies over 28 Time-series Datasets



# Jnivers/to

#### Conclusions

- 1. Learning shapelets to directly optimize the classification objective improves classification accuracy
- 2. Supervised Shapelet Learning more accurate than Exhaustive Shapelet Discovery
  - Shapelets are not restricted to series segments
  - ► Considers interactions among minimum distances features
- 3. Results against 13 baselines using 28 datasets validate the claim



References

# Jriversiter.



J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of time series by shapelet transformation.

Data Mining and Knowledge Discovery, 2013.



J. Lines, L. Davis, J. Hills, and A. Bagnall.

A shapelet transform for time series classification.

In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012.



A. Mueen, E. Keogh, and N. Young.

Logical-shapelets: an expressive primitive for time series classification.

In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011.



T. Rakthanmanon and E. Keogh.

Fast shapelets: A scalable algorithm for discovering time series shapelets.

 $Proceedings\ of\ the\ 13 th\ SIAM\ International\ Conference\ on\ Data\ Mining,\ 2013.$ 



L. Ye and E. Keogh.

Time series shapelets: a new primitive for data mining.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.





#### Back-up Slide: Dependence on Initialization



Figure 5: Sensitivity of Shapelet Initialization, Gun-Point dataset, Parameters:  $L=30,~\eta=0.01,~\lambda_W=0.01,$  Iterations= 3000,  $\alpha=-100$ 

► We used K-Means centroids as initial shapelets.

