

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

OFFLINE MODE **SET A**

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022 (EVEN)

Test: CLAT- 1 Date: 07-04-2022
Course Code & Title: 18ECC201J – Analog Electronic Circuits
Vear & Sem: II / IV
Date: 07-04-2022
Duration: 60 minutes
Max. Marks: 25

Course Articulation Matrix:

Cour	Course Aruculation Matrix:															
	18ECC201J - Analog Electronic Circuits	Program Outcomes (POs) Graduate Attributes PSO														
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1 :	Analyze bipolar amplifier circuits and their frequency response.	1	2	3	- 1	-	- 1	- 1	- 1	- 1	1	- 1	1	-	-	-
CO-2 :	Develop MOSFET amplifier circuits and their frequency response.	1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO-3 :	Compile various negative feedback amplifier and oscillator circuits.	1	-	3	-	-	-	-	-	-	1	-	-	-	-	-
CO-4 :	Demonstrate the different classes of power amplifiers according to their performance characteristics.	1	2	3	-	-	-	-	-	-	-	-	-	-	-	-
CO-5	Construct the basic circuit building blocks that are used in the design of IC amplifiers, namely current mirrors and sources.	1	2	3	-	-	- 1	-	-	- 1	-	-	-	-	-	-
CO-6	Organize analog electronic circuits using discrete components to measure various analog circuits' performance.	- 1	-	3	-	-	-	-	-	2	-	-	-	3	1	-

	Part - A (5 x 1 = 5 Marks)					
Instructions: Answer any 5						
Q. No	Question	Marks	BL	CO	PO	PI Code
1	CE amplifier is mostly preferred in amplifier circuits because a. of low output impedance b. of high output impedance c. it provides better voltage and current gain	1	1	1	1	
	d. it has better Q-Point					
2	If the value of α is 0.9, then value of β is a. 9 b. 0.9 c. 900 d. 90	1	2	1	2	
3	What is the current gain for a common-base configuration if, $I_E = 4.2$ mA and $I_C = 4.0$ mA? a. 16.8 b. 1.05 c. 0.2 d. 0.95	1	3	1	2	
4	In a voltage divider bias circuit R1 is 4.7 K Ω , R2 is 1500 Ω , and V _{CC} is +18 V. then the voltage across the base resistance is a. 8.7 V b. 4.35 V c. 2.9 V d. 0.7 V	1	3	1	3	

/ .a.	Determine the small signal current gain of the CB configuration circuit shown in Fig C.	3	2	1	3	
7.a.	Fig. B	5	2	1	3	
	V_{CC} R_1 R_C V_{CC} R_2 R_E					
6.b.	Draw the equivalent circuit of the NPN common emitter circuit with an emitter resistor as shown in Fig. B, and derive the expression for the input resistance (R _{ib}) and state the resistance reflection rule.	5	2	1	2	
	Fig A					
	v_{CC} i_C R_B v_{CE} v_{CE} v_{CE}					
6.a.	Calculate the small signal voltage gain of the bipolar transistor circuit shown in Fig A. Assume the transistor and circuit parameters are ; $\beta=100,V_{CC}=20V,V_{BE}=0.7,R_C=6~K\Omega$, $R_B=50~K\Omega,$ and $V_{BB}=1.2V.$ lcq = 1 mA, and $V_{CEQ}=6V$	5	3	1	3	
	Part – B (2 x 10 = 20 Marks) Instructions: Answer any TWO					
	a) High input resistanceb) Low output impedancec) Unity voltage gaind) It is used as a current buffer					
5	Which of these are incorrect about Darlington amplifier?	1	1	1	1	

7.b.	Fig. C For the common base circuit shown in Fig. B, determine Ic and V_{CB} . Assume the transistor to be of silicon. Given $V_{BE} = 0.7 \text{ V}$. $I_{E} = 1.5 \text{k}\Omega$ $V_{EE} = 1.8 \text{ v}$	5	3	1	3	
8.a.	Draw the frequency response of an amplifier and give the significance of the 3 dB line in bandwidth calculation	4	2	1	2	
8.b.	Explain the impact of bypass capacitor in frequency response of an amplifier with necessary diagram	6	3	1	1	

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions ${\bf CO}$

Evaluation Sheet

Name of the Student: Register No.:

		Part- A	ALL FIVE $(5x 1= 5)$	Marks)
Q. No	CO	Marks Allotted	Marks Obtained	Total
1	1	1		
2	1	1		
3	1	1		
4	1	1		
5	1	1		
		Part- B Any TWO	O (2 x 10= 20 Marks)	
6.a	1	5		
6.a	1	5		
7.a.	1	5		
7.b.	1	5		
8.a	1	10		

Consolidated Marks:

CO	Marks Allotted	Marks Scored
CO1	25	
Total	25	

Approved by the Course Coordinator