DSP Exercises

The due date for this homework is Sun 14 Apr 2013 8:00 PM EDT.

Question 1

On a 16-bit computer, where *signed* integers are represented with a single 16-bit word, what is the range of numbers that can be represented?

- $[0,2^{16}-1]$
- $[-2^{16}, 2^{16} 1]$
- $[-2^{15}, 2^{15} 1]$

Question 2

What decimal number does the binary number 101010 equal? Type your answer as an integer without a decimal point.

Question 3

What is the sum of the two binary numbers $101\ \mathrm{and}\ 111\ \mathrm{expressed}$ as a binary number?

- ₀ 1100
- ₀ 100
- ₀ 010

Question 4

Suppose the periodic signal s(t), with its period equalling T, has Fourier series coefficients c_k . What are the Fourier series coefficients of $s(t-\frac{T}{2})$ in terms of c_k ? Use ck to represent c_k . For example, if your answer is $\frac{1}{2}$ c_k , type ck/2.

Г			
l			//

Preview

Question 5

An A/D converter has a curious problem: every other sampling pulse is half its normal amplitude.

Can this signal be used to sample a signal having highest frequency $W=\dfrac{1}{2T}$?

- Sometimes
- No
- Yes

Question 6

A discrete-time sinusoid is given by $\sin 2\pi f_0 n$. What is this signal's period?

- The discrete-time sinusoid is not periodic.
- N when $f_0=rac{1}{N}$.
- \circ $\frac{1}{f_0}$

Question 7

Which of the following expressions correspond to the depicted pulse signal? Check *all* that are correct.

- $= rac{1}{3} \left(\delta(n) + \delta(n-1) + \delta(n-2)
 ight)$
- $\frac{1}{3}\left(\mathrm{u}(n)-\mathrm{u}(n-2)\right)$
- $\boxed{\frac{1}{3}\left(\mathrm{u}(n)-\mathrm{u}(n-3)\right)}$
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers