

Figure 1.1: Three Coplanar Vectors

1.1 (a) When three vectors are coplanar as shown in Figure 1.1, the dot product is

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$
$$A(B+C)\cos\theta = AB\cos\theta_B + AC\cos\theta_C$$

Since $B\cos\theta_B + B\cos\theta_C = (B+C)\cos\theta$ from Figure 1.1, the distributive property holds true. The cross product also holds true since $B\sin\theta_B + B\sin\theta_C = (B+C)\sin\theta$, and multiplying by A on both sides gives the same result as the distributive property:

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$
$$A(B+C)\sin\theta = AB\sin\theta_B + AC\sin\theta_C$$

(b) In the general case in three-dimensional space, each vector has three components: $\mathbf{A} = (A_x, A_y, A_z)$. Therefore,

$$\begin{split} \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) &= \mathbf{A} \cdot (B_x + C_x, B_y + C_y, B_z + C_z) \\ &= A_x (B_x + C_x) + A_y (B_y + C_y) + A_z (B_z + C_z) \\ &= A_x B_x + A_y B_y + A_z B_z + A_x C_x + A_y C_y + A_z C_z \\ &= \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} \end{split}$$

1.2 Setting $\mathbf{A} = \mathbf{B} = (1, 1, 1)$ and $\mathbf{C} = (1, 1, -1)$:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \stackrel{?}{=} \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$$

 $0 \stackrel{?}{=} (1, 1, 1) \times [(1, 1, 1) \times (1, 1, -1)]$
 $0 \stackrel{?}{=} (1, 1, 1) \times (-2, 2, 0)$
 $0 \neq (-2, -2, 4)$

where the cross product of parallel vectors $\mathbf{A} \times \mathbf{B} = 0$. Therefore, the cross product is not associative.

1.3 Taking the dot product of a unit cube's body diagonals $\mathbf{A} = (1, 1, 1)$, $\mathbf{B} = (1, 1, -1)$:

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$
$$1 = 3 \cos \theta$$
$$\theta = \arccos 1/3 \approx 70.53^{\circ}$$

1.4 The cross product of two vectors coplanar to the shaded plane— $\mathbf{A} = (-1, 2, 0)$, $\mathbf{B} = (-1, 0, 3)$ —is parallel to the normal unit vector $\hat{\mathbf{n}}$ of the plane:

$$\mathbf{A} \times \mathbf{B} = \mathbf{C}$$

$$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ -1 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = (6, 3, 2)$$

where $\hat{\bf n} = {\bf C}/C$, and $C = \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = 7$. Therefore,

$$\hat{\mathbf{n}} = \frac{1}{7}(6, 3, 2)$$

1.5 Proving the "BAC-CAB" rule for three-dimensional vectors:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \times \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_y C_z - B_z C_y & B_z C_x - B_x C_z & B_x C_y - B_y C_x \end{vmatrix}$$

where the x component is $A_y(B_xC_y - B_yC_x) - A_z(B_zC_x - B_xC_z)$. Similarly,

$$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B}(A_x C_x + A_y C_y + A_z C_z) - \mathbf{C}(A_x B_x + A_y B_y + A_z B_z)$$

where x component simplifies to

$$B_x(A_x C_x + A_y C_y + A_z C_z) - C_x(A_x B_x + A_y B_y + A_z B_z) = A_y(B_x C_y - B_y C_x) - A_z(B_z C_x - B_x C_z)$$

the same is done for the y and z components. Therefore, the "BAC-CAB" rule holds true.

1.6

$$[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})] + [\mathbf{B} \times (\mathbf{C} \times \mathbf{A})] + [\mathbf{C} \times (\mathbf{A} \times \mathbf{B})] = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) + \mathbf{C}(\mathbf{B} \cdot \mathbf{A}) = 0$$
$$- \mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{A}(\mathbf{C} \cdot \mathbf{B}) - \mathbf{B}(\mathbf{C} \cdot \mathbf{A})$$

since dot product is associative, the first and last terms cancel out, and the middle terms also cancel out with each other.

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
$$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$$
$$0 = -\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) + \mathbf{A}(\mathbf{B} \cdot \mathbf{C})$$
$$0 = -\mathbf{B}(\mathbf{C} \times \mathbf{A}) = (\mathbf{C} \times \mathbf{A}) \times \mathbf{B}$$

For the relation to hold true, either the vectors **A** and **C** are parallel $(\mathbf{A} \times \mathbf{A} = 0)$ or **B** is perpendicular to both **A** and **C** $(\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{C} = 0)$.

1.7 Finding the separation vector **2**:

$$\mathbf{\hat{z}} = \mathbf{r} - \mathbf{r}' = (4, 6, 8) - (2, 8, 7) = (2, -2, 1)
\mathbf{\hat{z}} = \sqrt{2^2 + (-2)^2 + 1^2} = 3
\mathbf{\hat{z}} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$

1.8 (a)

$$\bar{A}_y \bar{B}_y + \bar{A}_z \bar{B}_z = (A_y \cos \phi + A_z \sin \phi)(B_y \cos \phi + B_z \sin \phi)$$

$$+ (-A_y \sin \phi + A_z \cos \phi)(-B_y \sin \phi + B_z \cos \phi)$$

$$= A_y B_y \cos^2 \phi + A_z B_z \sin^2 \phi + \underline{A_y B_z \sin \phi \cos \phi} + \overline{A_z B_y \sin \phi \cos \phi} + A_z B_z \cos^2 \phi$$

$$+ A_y B_y \sin^2 \phi - \underline{A_y B_z \sin \phi \cos \phi} - \overline{A_z B_y \sin \phi \cos \phi} + A_z B_z \cos^2 \phi$$

$$= A_y B_y (\sin^2 \phi + \cos^2 \phi) + \overline{A_z B_z (\sin^2 \phi + \cos^2 \phi)}$$

$$\bar{A}_y \bar{B}_y + \bar{A}_z \bar{B}_z = A_y B_y + A_z B_z$$

(b) To preserve length $|\bar{A}| = |A|$. Squaring both sides and expanding gives

$$\bar{A}_x^2 + \bar{A}_y^2 + \bar{A}_z^2 = A_x^2 + A_y^2 + A_z^2$$

in summation form,

$$\sum_{i=1}^{3} \bar{A}_i \bar{A}_i = \sum_{i=1}^{3} \left(\sum_{j=1}^{3} R_{ij} A_j \right) \left(\sum_{k=1}^{3} R_{ik} A_k \right) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} R_{ij} R_{ik} A_j A_k$$

For the length to be preserved, the indices j and k must be equal. Therefore,

$$R_{ij}R_{ik} = \delta_{jk}$$

where δ_{ij} is the Kronecker delta. Thus the length is preserved if the rotation matrix is orthogonal, i.e.

$$R_{ij}R_{ik} = (R^T)_{ji}R_{ik} = \delta_{jk}$$
 or $R^TR = I$

1.9 A clockwise rotation of 120° about an axis through the origin and point (1,1,1) is equivalent to changing the position of the basis vectors $\hat{\mathbf{x}} \to \hat{\mathbf{z}}$, $\hat{\mathbf{y}} \to \hat{\mathbf{x}}$, and $\hat{\mathbf{z}} \to \hat{\mathbf{y}}$. Therefore, the rotation matrix is a permutation matrix:

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

1.10