빅데이터 R분석 김경민

●해결문제

□ 고속도로 역주행 교통사고 와 일반 교통사고 분석

- https://www.news1.kr/articles/?4695261
- 최근 3년간 역주행 교통사고의 치명률이 10.2%로 일반 교통사고(4.7%) 보다 2.3배 높은 것으로 나타났다고 한다. 다음 주어진 데이터를 활용하여 이를 분석해 본다.
 - ◦년도별 치명률 구하기
 - ∘ 3년 평균 사고건수, 사망자수, 치명률(사망자수/사고건수) 구하기

구분	2019년사고	2019년사망	2020년사고	2020년사망	2021년사고	2021년사망
전체	4223	206	4039	223	4883	191
역주행	28	5	33	3	27	2

• 해결문제

*	년도 🕆	구분 🙏	사고 🕆	사망
1	2019	전체	4223	206
2	2019	역주함		
3	2020	전체	1.44	
4	2020	역주행		2/2/2/25
5	2021	전체	4883	191
6	2021	역주행	27	2

4. 체맹을 덩균 7계산

▶ 기본 그래프

□plot(벡터): 가장 기본적인 함수

- main : 그래프 제목
- xlab, ylab: x, y축제목
- xlim, ylim: c(a, b) x, y축 범위
- pch : 마커종류
- col:색상 (1~8)
- black, red, green, blue, cyan, magenta, yellow, gray
- type:연결(p, l, b, c, o, h, s, S, n)
- lty: 선종류 (0~6)
- blank, soild, dashed, dotted, dotdash, longdash, twodash

■barplot(벡터): 막대 그래프

● 시각화 그래프

□ ggplot2 패키지

- 축그림
 - ∘ ggplot(데이터명,aes(x=변수1,y=변수2))
- 그래프 그림
 - geom_bar(): 막대도표
 - geom_histogram(): 히스토그램
 - geom_boxplot(): 박스플롯
 - geom_line():선 그래프
- 범례, 제목, 글씨 등 기타 옵션을 수정
 - labs(): 범례 제목 수정
 - xlabs(), ylabs(): x축 y축 이름 수정

```
ggplot(mapping =aes(x=년도, y=사고, fill=구분), data=dfxl) +
geom_bar(stat="identity", position=position_dodge()) +
ggtitle('년도별 사고건수')+
theme(plot.title = element_text(hjust = 0.5,size=20,face='bold'))
```

ggplot(data=df, aes(x=시군명, y=내국인, fill=시군명)) + geom_col()

ggplot(data=df, aes(x=시군명, y=내국인, fill=년도)) + geom_bar(stat = "identity", position='dodge')

ggplot(data=df, aes(x=시군명, y=내국인, fill=년도)) + geom_bar(stat = "identity", position='dodge')

ggplot(data=df, aes(x=시군명, y=내국인, fill=년도)) + geom_bar(stat = "identity", position='dodge')

ggplot(data=df, aes(x=시군명, y=내국인, fill=년도)) + geom_bar(stat = "identity", position='dodge')

ggplot(data=df, aes(x=reorder(시군명, -내국인), y=내국인, fill=년도)) + geom_bar(stat = "identity") + labs(x = "시군명")


```
ggplot(data=df, aes(x=reorder(시군명, -내국인), y=내국인, fill=년도)) + geom_bar(stat = "identity") + labs(x = "시군명")
```



```
ggplot(data=df, aes(x=reorder(시군명, 내국인), y=내국인, fill=년도)) + geom_bar(stat = "identity") + labs(x = "시군명") + coord_flip()
```


해결문제

□부산시 체납현황 분석

- https://www.data.go.kr/data/15079162/fileData.do#tab-layer-file
- 3년간 세목별을 키로 누적 체납건수와 누적 체납금액

• 해결문제

□기상개황 자료를 분석하여 월별 불쾌지수와 단계

- https://kosis.kr/statHtml/statHtml.do?orgId=735&tblId=DT_A1040&vw_cd=MT_ZTITLE&list_id=215_215A_735_73503_A&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE
- 불쾌지수 공식
 - \circ DI = 0.81 * Ta + 0.01 * RH(0.99 * Ta 14.3) + 46.3
 - □ DI: 불쾌지수
 - □ Ta: 건구온도(평균기온)
 - □ RH: 상대습도(평균상대습도)
- 불쾌지수 단계
 - 매우높음: 80이상
 - 높음: 75이상 80미만
 - 보통: 68이상 75미만
 - 낮음: 68미만

