<u>Recall</u>	given paths β , γ s.t. $\beta(1) = \gamma(0)$,			Q	supp do w
β * γ is a new path $(\beta$ * $\gamma)(s) = \beta(2s)$ $s \le 1/2$ $(\beta$ * $\gamma)(s) = \gamma(2s - 1)$ $s \ge 1/2$			[draw]		
[draw]				<u>Thm</u>	if β(1
given paths y	, γ' s.t.	y(0) = y'(0) $y(1) = y'(1)$			then
		7(-) 7(-)		<u>Pf</u>	pick

 $\gamma \sim_p \gamma'$ means there's a path homotopy from γ to γ' [draw] $Q \qquad \text{suppose } \beta(1) = \gamma(0) = \gamma'(0) \text{ and } \gamma \sim_p \gamma'$ do we have $\beta * \gamma \sim_p \beta * \gamma'$?

Q suppose
$$\beta(1) = \beta'(1) = \gamma(0)$$
 do we have $\beta * \gamma \sim_p \beta' * \gamma$? [draw]

if β(1) = β'(1) = β(0) = β'(0) and β \sim_p β' and γ \sim_p γ' then β * γ \sim_p β' * γ'

Pf pick a path homotopy h from β to β' pick a path homotopy j from γ to γ'

then
$$h(1, t) = \beta(1) = \beta'(1) = \beta(0) = \beta'(0) = j(0, t)$$

set k(s, t) = h(2s, t) $s \le 1/2$ k(s, t) = j(2s - 1, t) $s \ge 1/2$

for the \sim_p equiv class of γ
for the \sim_p equiv class of γ

Thm 1 if α, β, γ are paths s.t. $\alpha(1) = \beta(0)$ $\beta(1) = \gamma(0)$

for any paths β , γ s.t. $\beta(1) = \gamma(0)$, take $\lceil \beta \rceil * \lceil \gamma \rceil$ to be the equiv class $\lceil \beta * \gamma \rceil$

[draw]

by thm, * is a well-def operation on equiv classes

then $(\alpha * \beta) * \gamma \sim_p \alpha * (\beta * \gamma)$ so $([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$

(Munkres §52) now focus on loops:

Thm 2 write $e_x : [0, 1]$ to X for the <u>constant</u> path $e_x(s) = x$

if β , γ are loops in X at the same <u>basepoint</u> x then β * γ is also a loop at x

then $e_x * y \sim_p y$ for all paths y starting at x $\beta \sim_p \beta * e_x$ for all paths β ending at x

get a binary operation on equiv classes of loops:

so $[e_x] * [y] = [y]$ $[\beta] * [e_x] = [\beta]$

 $[\beta] * [\gamma] = [\beta * \gamma]$

Thm 3 write y(s) = y(1 - s) for the <u>reverse</u> path

then $\gamma * \gamma^- \sim_p e_x$ for γ starting at x $\gamma^- * \gamma \sim_p e_y$ for γ ending at γ

so $[y] * [y] = [e_x]$ $[y] * [y] = [e_y]$

[proofs of Thms 1–2 are long and tedious]

[to show that $[y] * [y] = [e_x]$ for y starting at x: need path homotopy h : $[0, 1] \times [0, 1]$ to X

s.t. for all s in [0, 1], $h(s, 0) = e_x(s) = x$ $h(s, 1) = (y * y^-)(s)$ for fixed t, the path h(s, t) should "freeze" when it hits $\gamma(t)$, then go back

$$\begin{array}{ccc} h(s,\,t)\colon & x \text{ to } \gamma(t) & s \text{ in } [0,\,t/2] \\ & \text{stay at } \gamma(t) & s \text{ in } [t/2,\,1-t/2] \\ & \gamma(t) \text{ back to } x & s \text{ in } [1-t/2,\,1] \end{array}$$

h(s, t) =
$$\gamma(2s)$$
 s in [0, t/2]
= $\gamma(t)$ s in [t/2, 1 - t/2]
= $\gamma(2-2s) = \gamma(2s)$ s in [1 - t/2, 1]

<u>Cor</u> for loops in X based at a point x:

- 1) $([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$
- 2) $[y] * [e_x] = [y] = [e_x] * [y]$
- 3) $[y] * [y] = [e_x] = [y] * [y]]$

$$\underline{Df}$$
 the fundamental group of X based at x is

 π 1(X, x) = {[y] | loops y in X based at x}

suppose f: X to Y is cts and f(x) = y

under the operation * on \sim_{D} equiv classes

L) well-def map $f_* : \pi_1(X, x)$ to $\pi_1(Y, y)$ s.t.

ροιαιοπ οπ ροφαίν οιασσσσ

 $f^*([y]) = [f \circ y]$

Cor

Q how much does $\pi_1(X, x)$ depend on X and x?

2) f_* is a group homomorphism:

Thm suppose f : X to Y is cts

 $f_*([\beta] * [\gamma]) = f_*([\beta]) * f_*([\gamma])$

- 1) if γ , γ' are paths in X s.t. $\gamma \sim_p \gamma'$ then $f \circ \gamma$, $f \circ \gamma'$ are paths in Y s.t. $f \circ \gamma \sim_p f \circ \gamma'$
- 2) if β , γ are paths in X s.t. $\beta(1) = \gamma(0)$, then $f \circ (\beta * \gamma) = (f \circ \beta) * (f \circ \gamma)$