

Newton Raphson-Method

17

Newton Raphson-Method

Newton-Raphson Method

Let us suppose that x_0 is the initial estimate for the root α of f(x) = 0. Draw a tangent at the point $(x_0, f(x_0))$ of the curve y = f(x),

$$y - f(x_0) = f'(x_0)(x - x_0)$$
 (1)

The point where the tangent (1) cuts the axis (y = 0), say $x = x_1$, is the next estimate of the root i.e.,

$$-f(x_0) = f'(x_0)(x_1 - x_0)$$

$$\implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

This process may be repeated to get the next estimate x_2 using x_1 and so on. Let us suppose that we have computed the n^{th} estimate x_n , the next estimate may be computed from

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, \cdots$$
 (2)

10

Newton-Raphson Method

Let x_0 be an estimate for the root α and h be the error in it such that $x_0 + h = \alpha$. The Taylor's series expansion gives,

$$f(\alpha) = f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \cdots$$
 (3)

Neglecting second and higher powers of h and remembering that $f(\alpha) = 0$, we get approximate value of h, as

$$h \simeq -\frac{f(x_0)}{f'(x_0)},\tag{4}$$

and the next estimate,

$$x_1 = x_0 + h = x_0 - \frac{f(x_0)}{f'(x_0)}.$$
 (5)

In the general may be written as,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, \cdots$$
 (6)

19