Tarification Optimale

ECN 6013, automne 2019

William McCausland

2019-11-23

Tarification optimale - producteur

- Il y a un producteur monopoliste d'électricité.
- ▶ Coût linéaire : le coût de produire x unités est de cx, où c > 0.
- La revente est impossible et le producteur peut imposer une tarification T(x): un consommateur paie T(x) pour x unités d'électricité.
- ▶ Soit M(x) = T(x) cx la majoration (ou le profit).
- Le producteur choisit T(x) pour maximiser son profit.

Modèle de base avec un seul type de consommateur

- ▶ Le consommateur a l'utilité métrique monétaire *U*(*x*) comme function de sa consommation de l'électricité.
- ightharpoonup U(x) est crossante, concave, différentiable.
- Normalisation : U(0) = 0.
- ▶ Alors V(x) = U(x) cx est le surplus total.
- ▶ Le consommateur choisit x pour maximiser U(x) T(x).

Équilibre avec un seul type de consommateur

- ▶ Un équilibre est une tarification T(x) et une consommation \bar{x} telles que
 - T(x) maximise la majoration, sachant que le consommateur optimise.
 - $ightharpoonup \bar{x}$ maximise U(x) T(x).
- ▶ Le monopole peut faire une offre à prendre ou à laisser alors peut extraire tous le surplus.
- Alors le monopole maximise le surplus total et choisit T(x) pour en extraire tous.
- Le surplus est maximal pour \bar{x} qui vérifie la CPO $U'(\bar{x}) = c$.
- ▶ T(x) tel que $T(x) \ge U(x)$, avec égalité pour \bar{x} seulement, est optimal pour le producteur.
- ▶ Le profit est $\bar{M} \equiv M(\bar{x}) = V(\bar{x})$.

Illustration, équilibre avec un type de consommateur

Modèle avec deux types de consommateur, types observés

- ▶ Deux types : H (haute demande) et B (basse demande) en proportions π et (1π) .
- Les utilités sont $U_H(x)$ et $U_B(x)$ avec les mêmes propriétés que U(x) plus $U'_H(x) > U'_B(x)$ pour tous $x \ge 0$.
- Le surplus par consommateur de type t est de $V_t(x) \equiv U_t(x) cx$.
- ▶ Un équilibre est une $T_H(x)$, une $T_B(x)$, x_B^* et x_H^* telles que
 - ▶ $T_t(x)$ maximise la majoration pour les consommateurs de type t, t = B, H.
 - $ightharpoonup \bar{x}_t$ maximise $U_t(x) T_t(x)$, t = B, H.
- En équilibre,
 - \bar{x}_t vérifie $U'_t(\bar{x}_t) = c$, t = B, H. (CPO pour max de surplus)
 - ▶ $T_t(x) \ge U_t(x)$, avec égalité pour \bar{x}_t seulement, t = B, H.
 - le profit par consommateur est $\pi \bar{M}_B + (1 \pi)\bar{M}_H$, où $\bar{M}_t \equiv M(\bar{x}_t) = V_t(\bar{x}_t), \ t = B, H.$
- L'équilibre est efficace : les bénéfices marginales égale le coûts marginal c.

Modèle avec deux types de consommateur, types non-observés

- Qu'est-ce qui se passe avec un seul T(x) qui vérifie $T(\bar{x}_t) = U(\bar{x}_t), \ t = B, H$?
- Le producteur peut réduire la majoration au point \bar{x}_H jusqu'à M_H^0 qui vérifie

$$V_H(\bar{x}_H) - M_H^0 = V_H(\bar{x}_L) - \bar{M}_L.$$

est