3 Suites arithmétiques

Définition 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **arithmétique** si et seulement il existe $r\in\mathbb{R}$ tel que

$$u_{n+1} = u_n + r$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de **premier terme** u_0 et de **raison** r.

Remarque. Le calcul des termes d'une suite arithmétique de raison $r \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison 1 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison 2 :
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 10 et de raison $-\frac{1}{2}$:

Proposition 2 (Variation d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $r\geq 0$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si $r\leq 0$.

Remarque. Dans le cas particulier où r = 0, on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est constante.

Proposition 3 (Formule explicite d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 + n \times r$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 6 et de raison 5 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison -2:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison $\frac{1}{5}$:

Proposition 4. Si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique, alors les points de sa représentation graphique sont alignés sur la droite d'équation $y=rx+u_0$:

On dit que les suites arithmétiques permettent de modéliser des évolutions linéaires.

4 Suites géométriques

Définition 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **géométrique** si et seulement il existe $q\in\mathbb{R}$ tel que

$$u_{n+1} = u_n \times q$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de **premier terme** u_0 et de **raison** q.

Remarque. Le calcul des termes d'une suite géométrique de raison $q \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison 2 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 64 et de raison $\frac{1}{2}$:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1000 et de raison -0,1:

Proposition 5 (Variation d'une suite géométrique). Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}$. On suppose que son premier terme u_0 est non nul.

- Si q > 1:
 - $Si \ u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
- $Si \ 0 < q < 1$:
 - Si $u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si q = 0 ou q = 1, alors $(u_n)_{n \in \mathbb{N}}$ est constante à partir du terme u_1 .
- $Si \ q < 0$, alors la suite n'est pas **monotone** (elle n'est ni croissante, ni décroissante).

Proposition 6 (Formule explicite d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite géométrique de raison* $q\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 \times q^n$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison -2:
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme $5^{10}=9\,765\,625$ et de raison $\frac{1}{5}$:

Définition 7. Les suites géométriques permettent de modéliser des évolutions dites **exponentielles**.