Spawner (Jul-Sep Catch) Covariates Analysis

Table 1: Table B1. Model selection tests of GPCP precipitation as an explanatory variable for the catch during spawning months (Jul-Sep) using 1983 to 2015 data. The data range is determined by the years for which SST was available in order to use a consistent dataset across covariate tests. S_t is the catch during Jul-Sep of season t. V_t is the covariate in the current season which spans two calendar years from July to June in the next year. V_{t-1} is the covariate in the prior Jul-Jun season.

Model	Residual df	MASE	Adj. R2	F	p value	AIC
base model (M) 1983-2015 data						
1. $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
$V_t = \text{Jun-Jul Precipitation (S1)}$						
$2. ln(S_t) = M + \beta V_t$	28.6	0.786	19.7	0.25	0.62	115.53
$3. \ln(S_t) = M + s(V_t)$	27	0.781	21.4	1.09	0.339	115.77
4. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	26	0.776	20.5	0.64	0.428	116.94
5. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	24.6	0.767	19.9	0.55	0.535	117.96
$V_t = \text{Apr-May Precipitation (S2)}$						
$2. \ln(S_t) = M + \beta V_t$	28.6	0.772	24.1	1.88	0.183	113.65
$3. \ln(S_t) = M + s(V_t)$	26.6	0.745	22.2	0.32	0.728	115.65
4. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	25.6	0.722	20	0.22	0.633	117.34
5. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	23.8	0.695	20	0.68	0.501	118.27

Table 2: Table B2. Model selection tests of average sea surface temperature off the Kerala coast (up to 160km offshore) in different months off Cochi as the explanatory variable (V_t) for the catch during spawning months (Jul-Sep) using 1983 to 2015 data. The hypothesis tested (Table 1) is noted in parentheses. See TableB1for an explanation of the models.

	Residual		Adj.		p	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	F	value	AIC
$1. \ln(S_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
$V_t = \text{Ave Jun-Sep SST (S1)}$						
$2. ln(S_t) = M + \beta V_t$	28.6	0.756	27.5	3.6	0.07	112.15
$3. ln(S_t) = M + s(V_t)$	26.9	0.707	35.3	2.6	0.103	109.33
4. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	26	0.695	33.8	0.34	0.559	110.87
5. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	24	0.686	31	0.15	0.857	113.32
$V_t = \text{Ave Sep-Oct SST (L1)}$						
$2. ln(S_t) = M + \beta V_{t-1}$	28.6	0.818	19.8	0.27	0.599	115.48
$3. ln(S_t) = M + s(V_{t-1})$	26.4	0.815	19.4	0.65	0.542	116.93
$V_t = \text{Ave Oct-Dec SST (L1)}$						
$2. ln(S_t) = M + \beta V_{t-1}$	28.6	0.801	19.1	0.04	0.843	115.76
$3. \ln(S_t) = M + s(V_{t-1})$	27.1	0.811	19.1	0.65	0.489	116.63

Table 3: Table B3. Model selection tests of upwelling intensity off Cochi as the explanatory variable. See Table B1 for an explanation of the models.

	Residual		Adj.		р	
Model	$\mathrm{d}\mathrm{f}$	MASE	R2	\mathbf{F}	value	AIC
$1. \ln(S_t) = \alpha + s(\ln(N_{t-1})) + \epsilon_t$	29.6	0.798	21.7			113.82
V_t = Average Jun-Sep Upwelling (S4 and L2)						
$2. ln(S_t) = M + \beta V_t$	28.6	0.74	28.6	3.93	0.059	111.65
$3. \ln(S_t) = M + s(V_t)$	26.5	0.712	28.1	0.6	0.568	113.15
4. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	25.5	0.723	26.4	0.37	0.542	114.67
5. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	23.1	0.69	28.8	1.11	0.355	114.86
$V_t = \text{Max Jun-Sep Upwelling (S4 and L2)}$						
$2. ln(S_t) = M + \beta V_t$	28.6	0.734	28	3.38	0.079	111.94
$3. \ln(S_t) = M + s(V_t)$	26.3	0.735	26.2	0.4	0.7	114.15
4. $ln(S_t) = M + s(V_t) + \beta V_{t-1}$	25.4	0.739	23.8	0.03	0.837	115.92
5. $ln(S_t) = M + s(V_t) + s(V_{t-1})$	23.3	0.709	22.5	0.54	0.599	117.57