Cluster Analysis - Evaluation

Cluster Validation

Cluster validation

- Quality: "goodness" of clusters
- Assess the quality and reliability of clustering results

Why validation?

- To avoid finding clusters formed by chance
- To compare clustering algorithms
- To choose clustering parameters
 - e.g., the number of clusters

Measures of cluster validity

- Numerical measures used to judge various aspects of cluster validity are classified into the following three types:
 - External index: Measures extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Internal index: Measures the "goodness" of a clustering structure without respect to external information.
 - Correlation
 - Cohesion and Separation
 - Relative index: Compares two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy.

External Index

Comparing to Ground Truth

Notation

- N: number of objects in the data set
- $-P={P_1,...,P_s}$: the set of "ground truth" clusters
- $C=\{C_1,...,C_t\}$: the set of clusters reported by a clustering algorithm

The "incidence matrix"

- $N \times N$ (both rows and columns correspond to objects)
- P_{ij} = 1 if O_i and O_j belong to the same "ground truth" cluster in P; P_{ii} =0 otherwise
- $C_{ij} = 1$ if O_i and O_j belong to the same cluster in C; $C_{ij} = 0$ otherwise

Rand Index and Jaccard Coefficient

• A pair of data object (O_i, O_j) falls into one of the following categories

```
- SS: C_{ij}=1 and P_{ij}=1; (agree)

- DD: C_{ij}=0 and P_{ij}=0; (agree)

- SD: C_{ij}=1 and P_{ij}=0; (disagree)

- DS: C_{ii}=0 and P_{ii}=1; (disagree)
```

• Rand index
$$Rand = \frac{|Agree|}{|Agree| + |Disagree|} = \frac{|SS| + |DD|}{|SS| + |SD| + |DS| + |DD|}$$

- may be dominated by DD
- Jaccard Coefficient $Jaccard\ coefficien\ t = \frac{|SS|}{|SS| + |SD| + |DS|}$

Clustering

	g 1	g 2	g 3	g 4	g 5
g 1	1	1	1	0	0
g 2	1	1	1	0	0
g 3	1	1	1	0	0
g 4	0	0	0	1	1
g 5	0	0	0	1	1

Clustering

Ground truth

Groundtruth

	g 1	g 2	g 3	g 4	g 5
g 1	1	1	0	0	0
g 2	1	1	0	0	0
g 3	0	0	1	1	1
g 4	0	0	1	1	1
g 5	0	0	1	1	1

$$Rand = \frac{|SS| + |DD|}{|SS| + |SD| + |DS| + |DD|} = \frac{17}{25}$$

$$Jaccard = \frac{|SS|}{|SS| + |SD| + |DS|} = \frac{9}{17}$$

Entropy and Purity

Notation

- $|C_k \cap P_j|$ the number of objects in both the k-th cluster of the clustering solution and j-th cluster of the groundtruth
- $-\mid C_k\mid$ the number of objects in the k-th cluster of the clustering solution
- $-\mid P_{j}\mid$ the number of objects in the *j*-th cluster of the groundtruth

• Purity $Purity = \frac{1}{N} \sum_{k} \max_{j} |C_k \cap P_j|$

Normalized Mutual Information

$$NMI = \frac{I(C, P)}{\sqrt{H(C)H(P)}} \qquad I(C, P) = \sum_{k} \sum_{j} \frac{|C_{k} \cap P_{j}|}{N} \log \frac{N \cdot |C_{k} \cap P_{j}|}{|C_{k}||P_{j}|}$$

$$H(C) = \sum_{k} \frac{|C_{k}|}{N} \log \frac{|C_{k}|}{N} \qquad H(P) = \sum_{j} \frac{|P_{j}|}{N} \log \frac{|P_{j}|}{N}$$

Example

	P 1	P 2	Р3	P 4	P5	P6	Total
C1	3	5	40	506	96	27	677
C 2	4	7	280	29	39	2	361
C 3	1	1	1	7	4	671	685
C 4	10	162	3	119	73	2	369
C 5	331	22	5	70	13	23	464
C 6	5	358	12	212	48	13	648
total	354	555	341	943	273	738	3204

$$Purity = \frac{1}{N} \sum_{k} \max_{j} |C_{k} \cap P_{j}|$$

$$Purity = \frac{506 + 280 + 671 + 162 + 331 + 358}{3204}$$

$$= 0.7203$$

$$NMI = \frac{I(C, P)}{\sqrt{H(C)H(P)}} \qquad I(C, P) = \sum_{k} \sum_{j} \frac{|C_k \cap P_j|}{N} \log \frac{N \cdot |C_k \cap P_j|}{|C_k||P_j|}$$

$$H(C) = \sum_{k} \frac{|C_k|}{N} \log \frac{|C_k|}{N} \qquad H(P) = \sum_{j} \frac{|P_j|}{N} \log \frac{|P_j|}{N}$$
48

Internal Index

Internal Index

- "Ground truth" may be unavailable
- Use only the data to measure cluster quality
 - Measure the "cohesion" and "separation" of clusters
 - Calculate the correlation between clustering results and distance matrix

Cohesion and Separation

Cohesion is measured by the within cluster sum of squares

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

where |Ci| is the size of cluster i, m is the centroid of the whole data set

- BSS + WSS = constant
- WSS (Cohesion) measure is called Sum of Squared Error (SSE)—a commonly used measure
- A larger number of clusters tend to result in smaller SSE

Example

WSS=
$$(1-3)^2 + (2-3)^2 + (4-3)^2 + (5-3)^2 = 10$$

BSS= $4 \times (3-3)^2 = 0$
 $Total = 10 + 0 = 10$

WSS=
$$(1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$$

BSS= $2 \times (3-1.5)^2 + 2 \times (4.5-3)^2 = 9$
Total = 1+9=10

K=4:
$$WSS = (1-1)^2 + (2-2)^2 + (4-4)^2 + (5-5)^2 = 0$$

 $BSS = 1 \times (1-3)^2 + 1 \times (2-3)^2 + 1 \times (4-3)^2 + 1 \times (5-3)^2 = 10$
 $Total = 0 + 10 = 10$

Correlation with Distance Matrix

- Distance Matrix
 - D_{ij} is the similarity between object O_i and O_j
- Incidence Matrix
 - C_{ij} =1 if O_i and O_j belong to the same cluster, C_{ij} =0 otherwise
- Compute the correlation between the two matrices
 - Only n(n-1)/2 entries needs to be calculated
- High correlation indicates good clustering

Correlation with Distance Matrix

• Given Distance Matrix D = $\{d_{11}, d_{12}, ..., d_{nn}\}$ and Incidence Matrix $C = \{c_{11}, c_{12}, ..., c_{nn}\}$.

Correlation r between D and C is given by

$$r = \frac{\sum_{i=1,j=1}^{n} (d_{ij} - \bar{d})(c_{ij} - \bar{c})}{\sqrt{\sum_{i=1,j=1}^{n} (d_{ij} - \bar{d})^{2}} \sqrt{\sum_{i=1,j=1}^{n} (c_{ij} - \bar{c})^{2}}}$$

Measuring Cluster Validity Via Correlation

 Correlation of incidence and distance matrices for the Kmeans clusterings of the following two data sets

Determine the Number of Clusters Using SSE

SSE curve

Clustering of Input Data

SSE wrt K