A Study of a Combined Error Detection and Error Correction Scheme

CMPUT 313 - LAB 1

mccarten@ualberta.ca wanxin@ualberta.ca

Overview

- Write a simple simulator to investigate the impact of *error-correction* encoding on the *throughput* of a communication channel.
- Simulate passing bits over an *error-prone* channel.
- Caveats:
 - the actual message bits need NOT be generated;
 - the details of Hamming's Single-Bit Error Correction (HSBC) and error decoding schemes need NOT be implemented.

System

Value of *r*

$$F/K = 1 \rightarrow r = 2$$

F/K	= 2	3	4	\rightarrow	r =	3

$$F/K = 5 \rightarrow r = 4$$

3	2	1
d	С	С
1	2	1

7	6	5	4	3	2	1
d	d	d	c	d	c	С
4	3	2	3	1	2	1

9	8	7	6	5	4	3	2	1
d	C 4	d	d	d	С	d	С	С
5	4	4	3	2	3	1	2	1

Generating Bits in Error

- Independent errors:
 - generate a random number x in (0, 1) for each bit;
 - if $x \le e$, then that bit is in error.

- Burst errors:
 - generate a random number x in (0, 1) for each bit in the *burst* periods;
 - if $x \le e' = e \times \frac{N+B}{B}$, then that bit is in error.

Error Control Time + ACK Time = A (time units \Leftrightarrow bits)

Code Example

```
While (clock < MAX_SIM_TIME) {
    ......
    int frame_ok_count = 0;
    CalcLengthOfBlocks4Tx(); // Transmitter
    for (each block i) GenerateRandomErrors(); // Channel
    for (each block i) // Receiver
        if (NumOfErrors(i) > 1) re_tx = true;
    if (re_tx == false)
        ++frame_ok_count;
    UpdateClock(clock);
    ......
}
```

Key Terms

• The average number of frame transmissions:

the total number of frame transmissions including retransmissions the number of frames correctly received

• Throughput:

F imes the total number of correctly received frames the total time required to correctly receive these frames

Key Terms

• Confidence intervals:

Suppose we have run T trials of simulation, and got T values, $x_1, x_2, x_3, ..., x_T$. Then their mean value is

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_T}{T}$$

But the above \bar{x} may not be the "true" mean, unless we let $T = \infty$!

Confidence Intervals

• Intuition: the "true" mean is probably somewhere near \bar{x} .

- A confidence interval is a range (c_1, c_2) which includes the true mean with a certain probability, say, 95%.
- To calculate (c_1, c_2) , we also need the standard deviation of the T values.

Confidence Intervals

• We can calculate the standard deviation as

$$s = \sqrt{\frac{\sum_{i=1}^{T} (x_i - \bar{x})^2}{T - 1}}$$

• Then for the 95% confidence interval, where $\alpha = 0.95$,

$$c_1 = \bar{x} - t_{\left[1 - \frac{\alpha}{2}; T - 1\right]} \frac{S}{\sqrt{T}}, c_2 = \bar{x} + t_{\left[1 - \frac{\alpha}{2}; T - 1\right]} \frac{S}{\sqrt{T}}$$

Confidence Intervals

• Here $t_{\left[1-\frac{\alpha}{2};T-1\right]}$ is the **t-distribution**, with parameters $1-\frac{\alpha}{2}=0.975$ and T-1=4.

•
$$t_{[0.975;4]} = 2.776$$
.

• Then all we need for the 95% confidence interval is:

$$c_1 = \bar{x} - 2.776 \frac{s}{\sqrt{T}}, c_2 = \bar{x} + 2.776 \frac{s}{\sqrt{T}}$$

Inputs

- Command line arguments:
 - *M* (character): the error model used: "I" for Independent, "B" for Burst.
 - *A* (integer): the feedback time, say, 50 bit time units.
 - K (integer): the number of blocks. Choose K such that F is a multiple of K. K = 0, 1, 2, 10, 40, 100, 400, 1000.
 - **F** (integer): the size of a frame, say, 4000 bits.
 - e (floating): the probability of a bit in error. e = 0.0001, 0.0003, 0.0005, 0.0007, 0.001.
 - **B**, **N** (only for Burst error model): B = 50, 500, and N = 5000, 1000.
 - *R* (integer): the length of the simulation (in bit time units), say, 5,000,000 bit time units. *R* should be long enough for stable results.
 - $T t_1 t_2 t_3 \dots t_T$ (integer): the number of trials (say, 5), followed by seeds for the trials.

Outputs

• An instance of the output is as follows:

Deliverables

- Codes, and a write-up, no more than 6 pages, typically including:
 - graphs that show
 - the throughput versus *K* with different *e* for independent error and
 - the throughput versus K with (N=5000, B=50), (N=1000,B=50), (N=5000, B=500), (N=1000, B=500), (E=500), (E=5
 - tables for corresponding confidence intervals (or drawn on the graphs), AND
 - *in-depth discussion of results* and conclusions.
- Languages: C/C++, Python, Java. (Personally, C/C++ is preferred.)

Tips

- Read specifications very carefully.
- Test your assignments on the lab machines before you submit.
- Remember to average the results over *T* trial runs.
- Make readable codes and write-ups.