Recitation Material: Linear Algebra

10-606

September 2025

PSD Matrices and Inverses

- 1. Show that if A is invertible, then its eigenvalues are all nonzero. Conversely, if an eigenvalue is zero, why can't A^{-1} exist? **Solution:** If $Av = \lambda v$ and A^{-1} exists, then $v = A^{-1}Av = \lambda A^{-1}v$, so $\lambda \neq 0$. Conversely, if $\lambda = 0$, then Av = 0 for $v \neq 0$. If A^{-1} existed, then $v = A^{-1}Av = A^{-1}0 = 0$, contradicting that v is nonzero.
- 2. If A is invertible, verify that

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u},$$

as long as the denominator is nonzero. **Solution:** Let $s = 1 + v^{\mathsf{T}} A^{-1} u$ be the denominator (which is a scalar!). Consider multiplying the right hand side by $(A + uv^{\mathsf{T}})$ on the right, which gives

$$\begin{split} A^{-1}(A + uv^{\mathsf{T}}) &- \frac{1}{s}(A^{-1}uv^{\mathsf{T}}A^{-1})(A + uv^{\mathsf{T}}) \\ &= A^{-1}A + A^{-1}uv^{\mathsf{T}} - \frac{1}{s}(A^{-1}uv^{\mathsf{T}} + A^{-1}uv^{\mathsf{T}}A^{-1}uv^{\mathsf{T}}) \\ &= I + A^{-1}uv^{\mathsf{T}} - \frac{A^{-1}u}{s}(I + v^{\mathsf{T}}A^{-1}u)v^{\mathsf{T}} \\ &= I + A^{-1}uv^{\mathsf{T}} - \frac{A^{-1}u}{s}sv^{\mathsf{T}} \\ &= I \end{split}$$

Since the left hand side multiplied by $A + uv^{\mathsf{T}}$ is also I, this gives the result.

3. A norm is a function ρ that satisfies (i) $\rho(x) \geq 0$ for all x, (ii) $\rho(x) = 0$ if and only if x = 0, (iii) $\rho(cx) = |c|\rho(x)$ for all x and scalars c, and (iv) $\rho(x+y) \leq \rho(x) + \rho(y)$ for all x,y. If A is a positive-definite matrix A, show that $\rho(x) = ||x||_A$ where $||x||_A \sqrt{x^\intercal A x}$ defines a norm. Recall that A is positive-definite if $x^\intercal A x > 0$ for all nonzero x. Hint: You may use the Cauchy-Schwarz inequality $x^\intercal A y \leq ||x||_A ||y||_A$ without proof. (i) and (ii) are immediately implied by the fact that A is positive definite. For (iii),

compute $||cx||_A = \sqrt{(cx)^\intercal A(cx)} = \sqrt{c^2 x^\intercal A x} = |c| \sqrt{x^\intercal A x} = |c| ||x||_A$ as desired. For (iv), we will show that $||x+y||_A^2 \leq (||x||_A + ||y||_A)^2$. We have

$$\begin{aligned} \|x+y\|_A^2 &= (x+y)^\intercal A (x+y) = x^\intercal A x + 2 x^\intercal A y + y^\intercal A y \\ &= \|x\|_A^2 + 2 x^\intercal A y + \|y\|_A^2. \end{aligned}$$

(Note we've used that $x^{\intercal}Ay = y^{\intercal}Ax$.) Meanwhile,

$$(\|x\|_A + \|y\|_A)^2 = \|x\|_A^2 + \|y\|_A^2 + 2\|x\|_A\|y\|_A.$$

From here the desired inequality follows after applying Cauchy-Schwarz.

SVD and Rank

- 1. What's the singular value decomposition of a matrix A? Solution: For any $A \in \mathbb{R}^{m \times n}$, there exists some $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ diagonal (and nonnegative) such that $A = U\Sigma V^T$.
- 2. Show that if $A = uv^{\top}$ with $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ and $u, v \neq 0$, then $\operatorname{rank}(A) = 1$. Solution. $\operatorname{col}(A) = \operatorname{span}\{u\}$ since each column j equals v_ju . Hence $\operatorname{rank} = 1$.
- 3. What is the relation between singular values of A and eigenvalues of $A^{\top}A$? **Solution.** If $A = U\Sigma V^T$ is the SVD of A, then $A^T = V\Sigma^2 U^T$ is the SVD of A^2 , implying that the eigenvalues of A^T are $\sigma_1^2, \ldots, \sigma_n^2$, the squares of the singular values of A.
- 4. Compute the nonzero singular value of $A = uv^{\top}$. Solution. Use the logic implied by the previous question. We have $A^{\top}A = vu^{\top}uv^{\top} = \|u\|^2 vv^{\top}$. Eigenvalues and eigenvectors of $A^{\top}A$ thus satisfy $\|u\|_2 vv^{\top}x = \lambda x$. Now, since vv^{\top} has rank one, we know that the eigenvector x has to be in the span of v. In fact, we can take x = v to see that the nonzero eigenvalue of $A^{\top}A$ is $\|u\|^2\|v\|^2$. Thus $\sigma_1(A) = \|u\| \|v\|$.
- 5. If $A = U\Sigma V^{\top}$, what is the SVD of A^{\top} ? Solution. $A^{\top} = V\Sigma^{\top}U^{\top}$ with the same nonzero singular values and swapped singular vectors.