Disparities in methylmercury exposure among subpopulations of concern in Madre de Dios, Peru

David J.X. Gonzalez,^{1,2*} Katy Ashe,³ Julio Araujo-Flores,^{2,4} Jesus Oliviero-Verbal,⁵ Karina Caballero-Gallardo,⁵ Christopher B. Field,⁶ and Luis E. Fernandez^{2,4,7}

1. Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA; 2. Center for Amazonian Scientific Innovation, Madre de Dios, Peru; 3. Youth Development Labs, Berkeley, CA, USA; 4. Center for Energy, Environment, and Sustainability, Wake Forest University, Winston-Salem, NC, USA; 5. Environmental Chemistry Group, Universidad de Cartagena, Cartagena, Colombia; 6. Woods Institute for the Environment, Stanford University, Stanford, CA, USA; 7. Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA

* david.gonzalez@stanford.edu, 473 Via Ortega Suite 226, Stanford, CA, USA 94305

Background

- Mercury contamination has been previously found across Madre de Dios, a region in the Peruvian Amazon with a highly active artisanal and small-scale gold mining sector
- Recent studies have found high levels of mercury exposure among residents of Madre de Dios, including women of childbearing age, a subpopulation of concern
- Prior studies have not considered intersectional identities, specifically, individuals belonging to two or more marginalized groups, such as indigenous women working in artisanal gold mining

Objectives

- To quantify methylmercury (MeHg) exposure and assess risk factors among residents of Madre de Dios, including four subpopulations of concern: residents of indigenous communities, workers in mining, females, and children (< 18 years)
- To compare exposure among residents belonging to multiple intersectional groups

Methods

- We conducted a cross-sectional assessment of 1,031 residents of 23 communities throughout Madre de Dios (Fig. 1)
- We collected hair samples from each participant to analyze for hair total mercury (THg) concentration and administered a survey of diet, demographics
- To assess associations between exposure and potential risk factors, we used general linear mixed regression models (GLMM) with a community random effect

Results

- Mean hair THg concentration (± standard deviation) in the study population was 3.0 ± 3.2 μg/g (Table 1)
- 44.6% were above the WHO limit of 2.2 μg/g (Fig. 2)
- Residents of indigenous communities had the highest mean exposure (5.1±3.9 µg/g), 83.2% were above 2.2 µg/g

Table 1.	Characterist	ics of t	he stud	y popu	lation.
----------	--------------	----------	---------	--------	---------

		,			
	a. Indigenous	b. Miners	c. Female	d. Children	All
n	244	234	521	460	1,031
Age (years), mean ± SD	32.9 ± 19.4	29.9 ± 15.8	26.1 ± 16.3	12.2 ± 3.1	26.0 ± 16.9
Indigenous, %	100.0	26.5	25.5	11.3	23.7
Female, %	54.5	34.2	100.0	47.2	50.5
Work in mining, %	25.4	100.0	15.4	14.6	22.7
Weekly fish meals, mean ± SD	3.3 ± 2.2	1.9 ± 1.7	2.0 ± 1.9	1.6 ± 1.8	2.0 ± 1.9
Hair THg conc., mean ± SD	5.1 ± 3.9	3.8 ± 4.1	3.0 ± 3.2	2.1 ± 2.4	3.0 ± 3.2
Hair THg conc. > 2.2 µg/g, %	83.2	56.4	45.7	30.2	44.6

Table 2. Results from the GLMM for each subpopulation (e^{β})

Variable	a. Indigenou	ıs b. Miners	c. Female	d. Children	All
Intercept	1.58	0.90	1.53	1.65°	1.60 °
Age (years)					
0-4	1.00	_	1.00	1.00	1.00
5-9	0.84	1.00	0.80	0.72	0.79
10-14	1.09	1.08	0.71	0.69•	0.73
15-49	1.22	1.54	0.88	0.64*	0.89
50–64	1.22	1.37	1.02		0.95
65+	1.39	1.45	0.84	<u> </u>	0.83
Indigenous status					
Non-indigenous		1.00	1.00	1.00	1.00
Indigenous	<u>—</u>	1.28	1.95***	2.16**	1.75**
Sex					
Female	1.00	1.00		1.00	1.00
Male	0.95	1.10		0.92	0.93
Worked in mining					
No	1.00		1.00	1.00	1.00
Yes	0.81•		1.11	1.36**	1.22**
Fish consumption					
None	1.00	1.00	1.00	1.00	1.00
Low	2.27	1.67 °	1.37 °	1.59***	1.44**
Medium	2.29	2.39**	1.60**	1.69***	1.65***
High	2.46°	2.00*	1.59*	1.65**	1.69***

- Among all study participants, higher exposure was significantly associated with residing in an indigenous community, work in mining, and higher fish consumption (Table 2)
- Participants with intersectional identities, i.e., those belonging to multiple subpopulations, had the highest observed exposure (Fig. 3)

Discussion

- Methylmercury exposure was widespread throughout Madre de Dios, corroborating recent human exposure studies from the region (Fig. 4)
- Individuals belonging to multiple marginalized groups had disproportionately high exposure

Figure 1. Study sites in the Madre de Dios region of Peru. Residents from 23 communities participated in the study, including both indigenous and non-indigenous communities.

Figure 2. The distribution of hair THg concentration for the full study population (all), each of the four subpopulations (a, indigenous; b, miner; c, females; d, children), and participants not belonging to any subpopulation (e). The subpopulations are not mutually exclusive. The dashed line represents the WHO provisional dose of 2.2 μ g/g.

Figure 3. Exposure for the study participants belonging to one or more subpopulations, including participants with up to four intersectional features. Reported as mean hair THg ± standard deviation (n).

Figure 4. Results for hair THg concentrations reported in the current study compared to findings from other recent studies in Madre de Dios, Peru.