

Divide and Conquer (2)

Convolution and Fast Fourier Transform (Arlisa Yuliawati)

- Fast Fourier Transform (FFT) is one of many algorithms that implements the Divide and Conquer paradigm.
 - It is commonly used in signal processing, i.e. to <u>convert between</u> <u>time domain and frequency domain</u>.
 - It is also can be viewed as a fast way to <u>multiply and evaluate</u> <u>polynomials</u>.
 - Suppose we have two polynomials of degree n. Addition of these two polynomials takes $\Theta(n)$ but the multiplication of them takes $\Theta(n^2)$
 - Fast Fourier Transform (FFT) can reduce the time to multiply two polynomials to $\Theta(n \lg n)$.

Polynomials

A polynomial in the variable x over an algebraic field F represents a function A(x) as a formal sum:

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$

- a_i is the coefficient with i = 0, 1, ..., n 1
- degree of the polynomial is the <u>largest power of x whose coefficient is not equals to zero</u>.

Any integer strictly greater than the degree of a polynomial is a **degree-bound** of that polynomial. Therefore, the degree of a polynomial of degree-bound n may be any integer between 0 and n-1, inclusive.

Example: $x^3 + 2x^2 - x + 1$

• The degree of this polynomial is 3 and this is a polynomial of degree-bound 4

Polynomials

Suppose we have two polynomials of degree-bound n:

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$
 and $B(x) = \sum_{i=0}^{n-1} b_i x^i$

- The sum of these polynomials is also a polynomial of degree-bound n C(x) such that $C(x) = A(x) + B(x) = \sum_{i=0}^{n-1} c_i x^i$ where $c_i = a_i + b_i$.
- Example: $A(x) = x^2 + 2x 1$ and $B(x) = x^2 x + 1$ are polynomials of degree-bound 3.
 - The sum result: $C(x) = 2x^2 + x$ (a polynomial of degree-bound 3)

Polynomials

- The product of A(x) and B(x) is a polynomial of degree bound 2n-1 D(x) such that D(x) = A(x)B(x).
- Example: $A(x) = x^2 + 2x 1$ and $B(x) = x^2 x + 1$
- The product result: $D(x) = x^4 + x^3 2x^2 + 3x 1$ (a polynomial of degree-bound 5)
 - To obtain D(x), we can use the standard multiplication by multiplying each term in A(x) by each term in B(x) and then combining terms with equal powers.
 - The other way, D(x) can also be expressed as $D(x) = A(x)B(x) = \sum_{i=0}^{2n-2} d_i x^i$ where $d_i = \sum_{k=0}^{i} a_k b_{i-k}$. This formula represents the **convolution** of input vectors a and b, denoted $d = a \otimes b$

Coefficient Representation

• Given a polynomial $A(x) = \sum_{i=0}^{n-1} a_i x^i$. Its **coefficient representation** is a <u>vector of coefficients</u> $a = (a_0, a_1, \dots, a_{n-1})$.

- Example:
 - $A(x) = 6x^3 + 7x^2 10x + 9$ can be represented as a vector a = (9, -10, 7, 6)
 - $B(x) = -2x^3 + 4x 5$ can be represented as a vector b = (5,4,0,-2)

Coefficient Representation (2)

• Evaluating a polynomial $A(x) = \sum_{i=0}^{n-1} a_i x^i$ at a point x_o takes $\Theta(n)$ time using **Horner's Rule**:

$$A(x_0) = a_0 + a_1(x_0)^2 + a_2(x_0)^3 + \dots + a_{n-1}(x_0)^{n-1}$$

= $a_0 + x_0 \left(a_1 + x_0 \left(a_2 + \dots + x_0 \left(a_{n-2} + x_0 (a_{n-1}) \right) \right) \right)$

- Adding two polynomials also takes $\Theta(n)$ time but multiplying them takes $\Theta(n^2)$ time by using standard multiplication or convolution.
 - Since multiplying polynomials and computing convolutions are fundamental computational problems of considerable practical importance, this chapter concentrates on efficient algorithms for them

Coefficient Representation (3)

Multiplication Example:

$$a = (9, -10, 7, 6)$$

$$b = (-5, 4, 0, -2)$$

$$-2x^{3} + 4x - 5$$

$$-30x^{3} - 35x^{2} + 50x - 45$$

$$24x^{4} + 28x^{3} - 40x^{2} + 36x$$

$$-12x^{6} - 14x^{5} + 20x^{4} - 18x^{3}$$

$$-12x^{6} - 14x^{5} + 44x^{4} - 20x^{3} - 75x^{2} + 86x - 45$$
convolution $a \otimes b = (-45, 86, -75, -20, 44, -14, -12)$

Point-value Representation

• Given a polynomial $A(x) = \sum_{i=0}^{n-1} a_i x^i$. Its **point-value representation** is a set of n point-value pairs $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ such that all the x_k are distinct and $y_k = A(k)$ for $k = 0, 1, \dots, n-1$. It has many point-value representations.

Point-value Representation (2)

- Adding two polynomials takes $\Theta(n)$.
- If C(x) = A(x) + B(x), then $C(x_k) = A(x_k) + B(x_k)$
- Suppose A(x) is represented as $\{(x_0, y_0), (x_1, y_1), ..., (x_{n-1}, y_{n-1})\}$ and for B(x) is $\{(x_0, y_0'), (x_1, y_1'), ..., (x_{n-1}, y_{n-1}')\}$.

The point-value representation for C(x) is $\{(x_0, y_0 + y_0'), (x_1, y_1 + y_1'), ..., (x_{n-1}, y_{n-1} + y_{n-1}')\}$

Point-value Representation (3)

- Multiplying two polynomials also takes $\Theta(n)$.
 - It is much less than the operation in coefficient representation.
- If C(x) = A(x)B(x), then $C(x_k) = A(x_k)B(x_k)$ for any point x_k .
- The multiplication use the **extended point-value representations** consisting of 2n point-value pairs each
 - Suppose A(x) and B(x) are expressed in $\{(x_0, y_0), (x_1, y_1), \dots, (x_{2n-1}, y_{2n-1})\}$ and $\{(x_0, y_0'), (x_1, y_1'), \dots, (x_{2n-1}, y_{2n-1}')\}$ respectively.
 - The point-value representation for C(x) is: $\{(x_0, y_0y_0'), (x_1, y_1y_1'), ..., (x_{2n-1}, y_{2n-1}, y_{2n-1}')\}$

Converting coefficient to point-value representation

• Computing a point-value representation for a polynomial given in coefficient form is in principle straightforward, since all we have to do is select n distinct points $x_0, x_1, \ldots, x_{n-1}$ and then evaluate $A(x_k)$ for $k = 0, 1, \ldots, n-1$. With Horner's method, evaluating a polynomial at n points takes time $\Theta(n^2)$. We shall see later that if we choose the points x_k cleverly, we can accelerate this computation to run in time $\Theta(n \lg n)$.

Converting coefficient to point-value representation (2)

Coefficient \Rightarrow point-value. Given a polynomial $A(x) = a_0 + a_1 x + ... + a_{n-1} x^{n-1}$, evaluate it at n distinct points x_0 , ..., x_{n-1} .

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$

Converting point-value to coefficient representation

- Determining the coefficient-representation of a polynomial from a point-value representation (inverse of evaluation) is called interpolation.
- Uniqueness of an interpolating polynomial theorem:

For any set $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ of n point-value pairs such that all the x_k values are distinct, there is a unique polynomial A(x) of degree-bound n such that $y_k = A(x_k)$ for $k = 0, 1, \dots, n-1$.

• An n-point interpolation based on Lagrange's Formula (takes $\Theta(n^2)$) :

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

Converting point-value to coefficient representation (2)

Point-value \Rightarrow coefficient. Given *n* distinct points x_0, \dots, x_{n-1} and values $y_0, ..., y_{n-1}$, find unique polynomial $A(x) = a_0 + a_1 x + ... + a_{n-1} x^{n-1}$, that has given values at given points.

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_{n-1} \end{bmatrix}$$
 where V is the Vandermonde matrix

The vector a can be obtained from:

$$a = V(x_0, x_1, \dots, x_{n-1})^{-1}y$$

Vandermonde matrix is invertible iff x_i distinct

Converting point-value to coefficient representation (3)

• Example: For a polynomial of degree-bound 3, we have:

$$A(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

• Suppose A(x) is represented as $\{(0,1), (1,4), (2,9)\}$, we could identify the corresponding polynomial by using Lagrange's Formula:

$$A(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)} + 4\frac{(x-0)(x-2)}{(1-0)(1-2)} + 9\frac{(x-0)(x-1)}{(2-0)(2-1)}$$

$$= \frac{(x-1)(x-2)}{2} - 4x(x-2) + \frac{9}{2}x(x-1)$$

$$= \frac{(x^2-3x+2)}{2} - (4x^2 - 8x) + \frac{9}{2}x^2 - \frac{9}{2}x$$

$$= x^2 + 2x + 1$$

Coefficient vs point-value representation:

representation	multiply	evaluate
coefficient	$O(n^2)$	O(n)
point-value	O(n)	$O(n^2)$

- Can we use the linear time multiplication for polynomials in pointvalue form to accelerate polynomial multiplication in coefficient form?
 - It depends on whether we can convert a polynomial **quickly** from coefficient form to point-value form (evaluate) and vice versa (interpolate)

- By choosing complex roots of unity as the evaluation points, we can produce a point-value representation by taking the Discrete Fourier Transform (DFT) of a coefficient vector.
 - Converting between representations takes $\Theta(n \lg n)$ by using DFT (evaluation) and inverse DFT (interpolation).
- The product of two polynomials of degree-bound n is a polynomial of degree-bound 2n.
 - Before evaluating the input polynomial A(x) and B(x), the degree-bound is doubled to 2n by adding n high order coefficient of 0.
 - Thus, we use the **complex 2nth roots of unity**, denoted by ω_{2n} terms.

- Given the FFT, the following is $\Theta(n \lg n)$ time procedure for multiplying two polynomials A(x) and B(x) of degree-bound n. It is assumed that n is power of 2.
 - **Double degree-bound**: create the coefficient representation of A(x) and B(x) as degree-bound 2n polynomials. $(\Theta(n))$
 - Evaluate: Compute point-value representations for A(x) and B(x) by applying the FFT of order 2n on each polynomial. ($\Theta(n \lg n)$)
 - Contain of the value of both polynomials at the $2n^{th}$ roots of unity.
 - **Pointwise multiply**: Compute point-value representation for C(x) = A(x)B(x) by multiplying these value <u>pointwise</u>. $(\Theta(n))$
 - Contain of the value of C(x) at the $2n^{th}$ roots of unity.
 - Interpolate: Create the coefficient representation of the polynomial C(x) by applying the FFT on 2n point-value pairs to compute the inverse DFT. $(\Theta(n \lg n))$

Based on the use of FFT, we have the following theorem:

Theorem 30.2

We can multiply two polynomials of degree-bound n in time $\Theta(n \lg n)$, with both the input and output representations in coefficient form.

• Proof: from the steps described in previous slides, the total time needed is $\Theta(n \lg n)$.

Complex Roots of Unity

A *complex nth root of unity* is a complex number ω such that

$$\omega^n=1$$
 . (So, it is any complex number, when it multiplied by itself some number of times, yields 1)

There are exactly n complex nth roots of unity: $e^{2\pi i k/n}$ for $k=0,1,\ldots,n-1$. To interpret this formula, we use the definition of the exponential of a complex number:

$$e^{iu} = \cos(u) + i \sin(u)$$
. Euler's Formula

 \emph{e} denotes the euler's number and \emph{i} denotes the imaginary number,

while
$$u=0,\frac{1}{n}\tau,\frac{2}{n}\tau,\dots,\frac{n-1}{n}\tau$$
 where $\tau=2\pi$

Complex Roots of Unity

- ω_n is the **principal** n^{th} root of unity, defined as $\omega_n = e^{\frac{2\pi i}{n}}$
- All other complex n^{th} roots of unity are powers of ω_n : $\omega_n^0, \omega_n^1, \omega_n^2, \dots, \omega_n^{n-1}$
- Proof for n complex n^{th} roots of unity:

$$\left(\omega_n^k\right)^n = \left(e^{\frac{2\pi ik}{n}}\right)^n = \left(e^{\pi i}\right)^{2k} = (-1)^{2k} = 1$$

By Euler's Formula, $e^{\pi i} = \cos \pi + i \sin \pi = -1$

FAKULTAS ILMU UNIVERSITAS INDONESIA Veritas, Probitas, Purbitia

Complex Roots of Unity

In this example, the values of 8 complex
$$8^{th}$$
 roots of unity are:
$$\omega_8^0 = e^{\frac{2\pi i 0}{8}} = \mathbf{1},$$

$$\omega_8^1 = e^{\frac{2\pi i}{8}} = e^{\frac{\pi}{4}i} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2} + \left(\frac{1}{2}\sqrt{2}\right)i,$$

$$\omega_8^2 = e^{\frac{4\pi i}{8}} = e^{\frac{\pi}{2}i} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = i,$$

$$\omega_8^3 = e^{\frac{6\pi i}{8}} = e^{\frac{3\pi}{4}i} = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right) = -\frac{1}{2}\sqrt{2} + \left(\frac{1}{2}\sqrt{2}\right)i,$$

$$\omega_8^4 = -\mathbf{1},$$

$$\omega_8^5 = -\frac{1}{2}\sqrt{2} - \left(\frac{1}{2}\sqrt{2}\right)i,$$

$$\omega_8^6 = \cdots$$
, and
$$\omega_8^7 = \cdots$$
.

Other references may mention $\omega_8^1, ..., \omega_8^8$ as the 8 complex 8th roots of unity. It is the same since $\omega_8^0 = \omega_8^8$

Figure 30.2 The values of $\omega_8^0, \omega_8^1, \dots, \omega_8^7$ in the complex plane, where $\omega_8 = e^{2\pi i/8}$ is the principal 8th root of unity.

Cancellation Lemma

For any integers $n \ge 0, k \ge 0, d > 0, \omega_{dn}^{dk} = \omega_n^k$

Proof:
$$\omega_{dn}^{dk} = \left(e^{\frac{2\pi i dk}{dn}}\right) = \left(e^{2\pi \frac{i}{n}}\right)^k$$

Example: $\omega_8^2 = \omega_4^1$

A Corollary

For any even integer n>0, $\omega_n^{\frac{n}{2}}=\omega_2=-1$

Proof:
$$\omega_n^{\frac{n}{2}} = \left(e^{\frac{2\pi i}{n}}\right)^{\frac{n}{2}} = \left(e^{2\pi i/2}\right) = \omega_2 = -1$$

Complex Roots of Unity

Halving Lemma

If n > 0 is even, the squares of the n complex n^{th} roots of unity are the $\frac{n}{2}$ complex $\left(\frac{n}{2}\right)^{th}$ roots of unity.

Proof By the cancellation lemma, we have $(\omega_n^k)^2 = \omega_{n/2}^k$, for any nonnegative integer k. Note that if we square all of the complex nth roots of unity, then we obtain each (n/2)th root of unity exactly twice, since

$$(\omega_n^{k+n/2})^2 = \omega_n^{2k+n}$$

$$= \omega_n^{2k} \omega_n^n$$

$$= \omega_n^{2k}$$

$$= (\omega_n^k)^2.$$

Example:
$$(\omega_8^2)^2 = \omega_4^2 = e^{\pi i} = -1$$

Complex Roots of Unity

Summation Lemma

For any even integer $n \geq 1$ and nonzero integer k not divisible by n,

$$\sum_{i=0}^{n-1} \left(\omega_n^k \right)^i = 0$$

Proof:

$$\sum_{j=0}^{n-1} (\omega_n^k)^j = \frac{(\omega_n^k)^n - 1}{\omega_n^k - 1}$$

$$= \frac{(\omega_n^n)^k - 1}{\omega_n^k - 1}$$

$$= \frac{(1)^k - 1}{\omega_n^k - 1}$$

Because we require that k is not divisible by n, and because $\omega_n^k = 1$ only when k is divisible by n, we ensure that the denominator is not 0.

- Back to the problem of evaluating polynomial $A(x) = \sum_{i=0}^{n-1} a_i x^i$ of degree-bound n at $\omega_n^0, \omega_n^1, \omega_n^2, \dots, \omega_n^{n-1}$.
 - The coefficient representation for A is $(a_0, a_1, \dots, a_{n-1})$
 - The degree-bound n refers to 2n since we perform double degree-bound
- Let $y_k=A(x_k)=A\left(\omega_n^k\right)$ for $k=0,1,2,\ldots,n-1$, then we have $A(x_k)=\Sigma_{i=0}^{n-1}a_i\left(\omega_n^k\right)^i$
- The vector $y = (y_0, y_1, ..., y_{n-1})$ is the **Discrete Fourier Transform** (**DFT**) of the coefficient vector $(a_0, a_1, ..., a_{n-1})$.
 - It is also written as $y = DFT_n(a)$.

The DFT

• Example: Compute DFT for p = (0,1,2,3).

- By using a method known as the **Fast Fourier Transform (FFT)**, the computation of $y = DFT_n(a)$ takes $\Theta(n \lg n)$.
 - FFT takes the advantages of the special properties of complex roots of unity
 - We assume that n is an exact power of 2
- The divide and conquer strategy for FFT:
 - Two new polynomials degree-bound $\frac{n}{2}$ are generated: the even-indexed coefficient $(A^{[0]}(x))$ and odd-indexed coefficient $(A^{[1]}(x))$.
 - $A^{[0]}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{\frac{n}{2}-1}$
 - $A^{[1]}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{\frac{n}{2}-1}$
 - Then it follows that $A(x) = A^{[0]}(x^2) + xA^{[1]}(x^2)$

- By using FFT, the problem of evaluating A at ω_n^0 , ω_n^1 , ω_n^2 , ..., ω_n^{n-1} reduces to:
 - Evaluating the degree-bound $\frac{n}{2}$ polynomials $A^{[0]}(x)$ and $A^{[1]}(x)$ at the points $(\omega_n^0)^2$, $(\omega_n^1)^2$, $(\omega_n^2)^2$, ..., $(\omega_n^{n-1})^2$.
 - It recursively evaluate the polynomials $A^{[0]}$ and $A^{[1]}$ of degree-bound $\frac{n}{2}$ at the $\frac{n}{2}$ complex $\left(\frac{n}{2}\right)^{th}$ roots of unity
 - Following the halving lemma, the n element DFT_n computation is divided into two $\frac{n}{2}$ element $DFT_{n/2}$ computation.
 - Combining the result into $A(x) = A^{[0]}(x^2) + xA^{[1]}(x^2)$

RECURSIVE-FFT(a)

```
1 \quad n = a.length
                              // n is a power of 2
 2 if n == 1
                             → Represents the basis of the recursion
        return a
 4 \omega_n = e^{2\pi i/n}
                               Make sure that \omega is updated properly, together with line 13.
8 y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]}) 
9 y^{[1]} = \text{RECURSIVE-FFT}(a^{[1]}) Recursive DFT_{\frac{n}{2}} computations
   for k = 0 to n/2 - 1
      y_k = y_k^{[0]} + \omega y_k^{[1]}
11

ightharpoonup Combine the result of the recursive DFT_{n/2} calculations
      y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}
     \omega = \omega \omega_n
                               // y is assumed to be a column vector
    return y
```


Lines 11–12 combine the results of the recursive DFT_{n/2} calculations. For $y_0, y_1, \dots, y_{n/2-1}$, line 11 yields

$$y_k = y_k^{[0]} + \omega_n^k y_k^{[1]}$$

$$= A^{[0]}(\omega_n^{2k}) + \omega_n^k A^{[1]}(\omega_n^{2k})$$

$$= A(\omega_n^k)$$
(by equation (30.9)).

For $y_{n/2}, y_{n/2+1}, \dots, y_{n-1}$, letting $k = 0, 1, \dots, n/2 - 1$, line 12 yields

$$y_{k+(n/2)} = y_k^{[0]} - \omega_n^k y_k^{[1]}$$

$$= y_k^{[0]} + \omega_n^{k+(n/2)} y_k^{[1]} \qquad \text{(since } \omega_n^{k+(n/2)} = -\omega_n^k)$$

$$= A^{[0]}(\omega_n^{2k}) + \omega_n^{k+(n/2)} A^{[1]}(\omega_n^{2k})$$

$$= A^{[0]}(\omega_n^{2k+n}) + \omega_n^{k+(n/2)} A^{[1]}(\omega_n^{2k+n}) \qquad \text{(since } \omega_n^{2k+n} = \omega_n^{2k})$$

$$= A(\omega_n^{k+(n/2)}) \qquad \text{(by equation (30.9))}$$

To determine the running time of procedure RECURSIVE-FFT, we note that exclusive of the recursive calls, each invocation takes time $\Theta(n)$, where n is the length of the input vector. The recurrence for the running time is therefore

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$.

Thus, we can evaluate a polynomial of degree-bound n at the complex nth roots of unity in time $\Theta(n \lg n)$ using the fast Fourier transform.

Figure 30.4 The tree of input vectors to the recursive calls of the RECURSIVE-FFT procedure. The initial invocation is for n = 8.

Interpolation at The Complex Roots of Unity

• Interpolate by writing DFT as a matrix equation $y = V_n a$ as follows and then looking at the form of the **matrix inverse**.

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix}.$$

The (k, j) entry of V_n is ω_n^{kj} , for $j, k = 0, 1, \dots, n-1$. The exponents of the entries of V_n form a multiplication table.

For the inverse operation, which we write as $a = DFT_n^{-1}(y)$, we proceed by multiplying y by the matrix V_n^{-1} , the inverse of V_n .

Interpolation at The Complex Roots of Unity

Given the inverse matrix V_n^{-1} , we have that DFT_n⁻¹(y) is given by

$$a_j = \frac{1}{n} \sum_{k=0}^{n-1} y_k \omega_n^{-kj}$$

- Recall how to evaluate a polynomial: $y_k = A(x_k) = \sum_{i=0}^{n-1} a_i (\omega_n^k)^i$. Both equations have similar form:
 - The role of a and y are switched
 - ω_n is replaced with ω_n^{-1}
 - Each element of the result is divided by n
- Thus, we can compute DFT_n^{-1} in $\Theta(n \lg n)$ as well.

The Convolution Theorem

• By using FFT and inverse FFT, transformation from coefficient representation to point-value representation (and the other direction) take $\Theta(n \lg n)$. In the context of polynomial multiplication, we have the following **Convolution Theorem**.

For any two vectors a and b of length n, where n is a power of 2,

$$a \otimes b = \mathrm{DFT}_{2n}^{-1}(\mathrm{DFT}_{2n}(a) \cdot \mathrm{DFT}_{2n}(b))$$
,

where the vectors a and b are padded with 0s to length 2n and \cdot denotes the componentwise product of two 2n-element vectors.

The Convolution Theorem

• Example: Find $(1 + x)(1 + x + x^2)$ using DFT

Applications

 In signal processing: to convert from time domain to frequency domain.

More on <u>Fast Fourier Transform (FFT)</u> - <u>MATLAB & Simulink (mathworks.com)</u>

Applications

• In image processing: to convert from an image to frequency distribution map.

• More on Image Processing with Python — Application of Fourier Transformation | by Tonichi Edeza | Towards Data Science

Summary

- FFT speed up the standard polynomial multiplication from $\Theta(n^2)$ to $\Theta(n \lg n)$.
 - The point-wise multiplication contribute the most to linear time multiplication, but converting from point-wise to coefficient representation is not as simple as the other way around (Lagrange formula needs $\Theta(n^2)$)
 - By using DFT, the transformation from coefficient to point-wise representation (and vice versa) takes only $\Theta(n \lg n)$
- The convolution for polynomial multiplication also can be modified such that it takes $\Theta(n \lg n)$.
- FFT is useful for many applications, especially for ...

- Lecturer Slides by Bapak L. Yohanes Stefanus
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.
- Jon Kleinberg and Eva Tardos. 2013. Algorithm Design. Pearson Education
- https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015/resources/mit6_046js15_lec03/