CSE 31 Computer Organization

Lecture 11 – Integer Representation (cont.)

Announcements

- Labs
 - Lab 4 grace period ends this week
 - Lab 5 out this week
 - » Due at 11:59pm on the same day of your next lab (with 7 days grace period after due date)
 - » You must demo your submission to your TA within 14 days from posting of lab
 - » Demo is REQUIRED to receive full credit
 - » No penalty for submission after due date but before end of grace period.
- Reading assignments
 - − Reading 03 (zyBooks 3.1 − 3.7, 3.9) due 06-MAR
 - » Complete Participation Activities in each section to receive grade
 - » IMPORTANT: Make sure to submit score to CatCourses by using the link provided on CatCourses
- Homework assignment
 - Homework 02 (zyBooks 2.1 2.9) due tonight, 27-FEB and Homework 03 (zyBooks 3.1 3.7, 3.9) due 13-MAR
 - » Complete Challenge Activities in each section to receive grade
 - » IMPORTANT: Make sure to submit score to CatCourses by using the link provided on CatCourses

Announcements

- Project 01
 - Due 17-MAR
 - Can work in teams of 2 students
 - » Each team member must identify teammate in "Comments..." text-box at the submission page
 - » If working in teams, each student must submit code (can be the same as teammate) and demo individually
 - » Grade can vary among teammates depending on demo
 - Demo required for project grade
 - » No partial credit for submission without demo
 - No grace period
 - » Must complete submission and demo by due date.

How Many Bits for Representation (review)

- Characters?
 - -26 letters \rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation→ 7 bits (in 8 bits) ("ASCII")

- standard code to cover all the world's languages → 8-, 16-, 32bits ("Unicode") www.unicode.com
- Logical values?
 - $-0 \rightarrow$ False, $1 \rightarrow$ True
- Color?

Ex: *Red (00)*

Green (01)

Blue (11)

• Remember: N bits \rightarrow at most 2^N things

What if too big?

- Binary bit patterns are simply representatives of numbers. Strictly speaking they are called "numerals"
- Numbers really have an ∞ number of digits
 - with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
 - Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, *overflow* is said to have occurred.

Negative Numbers

So far, unsigned numbers

- Obvious solution: define leftmost bit to be sign!
 - $-0 \rightarrow +$, $1 \rightarrow -$
 - Rest of bits can be numerical value of number
- Representation called sign and magnitude

Shortcomings of Sign Magnitude?

- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not

- Also, two zeros
 - $-0x00000000 = +0_{ten}$
 - $-0x80000000 = -0_{ten}$
 - What would two 0s mean for programming?

 Also, incrementing "binary odometer", sometimes increases values, and sometimes decreases!

• Therefore, sign and magnitude abandoned

Another try

- Complement the bits
 - Example: $7_{10} = 00111_2 7_{10} = 11000_2$
 - Called One's Complement
 - Note: positive numbers have leading 0s, negative numbers have leadings 1s.
 - What is -00000?

» Answer: 11111

- How many positive (including +0) numbers in N bits? 2^{N-1}
- How many negative (including -0) numbers? 2^{N-1}