Aplikace spektrální metody

Dominika Hájková, Matyáš Fuksa, Ondřej Kureš

Stormtrooperz

2021

Popis spektrální metody byl převzat z práce Polynomial approximation and spectral methods (autoři: Vít Průša a Karel Tůma). Zde je popis stručně převyprávěn.

Popis spektrální metody byl převzat z práce Polynomial approximation and spectral methods (autoři: Vít Průša a Karel Tůma). Zde je popis stručně převyprávěn.
Byla nám dána obyčejná diferenciální rovnice

Popis spektrální metody byl převzat z práce Polynomial approximation and spectral methods (autoři: Vít Průša a Karel Tůma). Zde je popis stručně převyprávěn.

Byla nám dána obyčejná diferenciální rovnice

$$\frac{1}{5}\frac{d^2u}{dx^2}+\frac{du}{dx}+u=f(x),$$

Popis spektrální metody byl převzat z práce Polynomial approximation and spectral methods (autoři: Vít Průša a Karel Tůma). Zde je popis stručně převyprávěn.
Byla nám dána obyčejná diferenciální rovnice

$$\frac{1}{5}\frac{d^2u}{dx^2} + \frac{du}{dx} + u = f(x),$$

a musíme najít řešení u(x) na intervalu $\left(-1,1\right)$ s okrajovými podmínkami

$$u|_{x=-1} = \alpha,$$

$$u'|_{x=1} = \beta.$$

Popis spektrální metody byl převzat z práce Polynomial approximation and spectral methods (autoři: Vít Průša a Karel Tůma). Zde je popis stručně převyprávěn.
Byla nám dána obyčejná diferenciální rovnice

$$\frac{1}{5}\frac{d^2u}{dx^2} + \frac{du}{dx} + u = f(x),$$

a musíme najít řešení $\mathbf{u}(\mathbf{x})$ na intervalu (-1,1) s okrajovými podmínkami

$$u|_{x=-1} = \alpha,$$

$$u'|_{x=1} = \beta.$$

Spektrální metodu použijeme takto: Místo, abychom řešili rovnici pro všechna $x \in (-1,1)$, budeme ji jen řešit pro určité interpolační body $\{x_j\}_{j=1}^{N+2}$. Tyto interpolační body budou Čebyševovy body.

Diferenciální rovnici z minulé strany pak přepíšeme na diskrétní verzi

$$\left(\frac{1}{5}\mathbb{D}^2_{(N+2)\times(N+2)} + \mathbb{D}_{(N+2)\times(N+2)} + \mathbb{I}_{(N+2)\times(N+2)}\right)\vec{u}_{N+2} = \vec{f}_{N+2},$$

Diferenciální rovnici z minulé strany pak přepíšeme na diskrétní verzi

$$\left(\frac{1}{5}\mathbb{D}^2_{(N+2)\times(N+2)} + \mathbb{D}_{(N+2)\times(N+2)} + \mathbb{I}_{(N+2)\times(N+2)}\right)\vec{u}_{N+2} = \vec{f}_{N+2},$$

kde

$$\vec{u}_{N+2} =_{def} \begin{bmatrix} u(x_1) \\ u(x_2) \\ u(x_3) \\ \vdots \\ u(x_{N+1}) \\ u(x_{N+2}) \end{bmatrix}, \qquad \vec{f}_{N+2} =_{def} \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ \vdots \\ f(x_{N+1}) \\ f(x_{N+2}) \end{bmatrix}.$$

 $\mathbb{I}_{(N+2)\times(N+2)}$ je jednotková matice a $\mathbb{D}_{(N+2)\times(N+2)}$ je spektrální diferenční matice.

Nově vzniklou diskrétní rovnici upravíme pomocí matice $\mathbb{P}_{N\times(N+2)}^{N+2,-2}$. Tím naši rovnici převzorkujeme na N Čebyševových interpolačních bodů.

Nově vzniklou diskrétní rovnici upravíme pomocí matice $\mathbb{P}_{N\times(N+2)}^{N+2,-2}$. Tím naši rovnici převzorkujeme na N Čebyševových interpolačních bodů. Pak přidáme dvě rovnice, které odpovídají okrajovým podmínkám: $u(x_N) = \alpha$ a $u(x_1) = \beta$.

Nově vzniklou diskrétní rovnici upravíme pomocí matice $\mathbb{P}_{N\times(N+2)}^{N+2,-2}$. Tím naši rovnici převzorkujeme na N Čebyševových interpolačních bodů. Pak přidáme dvě rovnice, které odpovídají okrajovým podmínkám: $u(x_N) = \alpha$ a $u(x_1) = \beta$. Takto jsme získali soustavu N+2 rovnic s N+2 neznámými, což je pro nás "snadno" řešitelný problém.

Hej, to je - struktura spektrální diferenční matice

Trám na jiný způsob - Obrázky

Máme rovnici $\Delta u = -\lambda u$. Jelikož pracujeme na oblasti obdelníka, můžeme u(x,y) přepsat do nového tvaru: u(x,y) = X(x)Y(y).

Máme rovnici $\Delta u = -\lambda u$. Jelikož pracujeme na oblasti obdelníka, můžeme u(x,y) přepsat do nového tvaru: u(x,y) = X(x)Y(y). Dostáváme novou rovnici:

$$\frac{\partial^2 X}{\partial x^2} Y + X \frac{\partial^2 Y}{\partial y^2} = -\lambda XY \tag{1}$$

Máme rovnici $\Delta u = -\lambda u$. Jelikož pracujeme na oblasti obdelníka, můžeme u(x,y) přepsat do nového tvaru: u(x,y) = X(x)Y(y). Dostáváme novou rovnici:

$$\frac{\partial^2 X}{\partial x^2} Y + X \frac{\partial^2 Y}{\partial y^2} = -\lambda XY \tag{1}$$

Provedeme sérii úprav, které nás dovedou na systém dvou rovnic. Vyřešením soustavy dostaneme obecné řešení pro X(x) a Y(y).

Máme rovnici $\Delta u = -\lambda u$. Jelikož pracujeme na oblasti obdelníka, můžeme u(x,y) přepsat do nového tvaru: u(x,y) = X(x)Y(y). Dostáváme novou rovnici:

$$\frac{\partial^2 X}{\partial x^2} Y + X \frac{\partial^2 Y}{\partial y^2} = -\lambda XY \tag{1}$$

Provedeme sérii úprav, které nás dovedou na systém dvou rovnic. Vyřešením soustavy dostaneme obecné řešení pro X(x) a Y(y).

$$X(x) = A_1 \sin(\sqrt{\lambda - \alpha}x) + B_1 \cos(\sqrt{\lambda - \alpha}x)$$
 (2a)

$$Y(y) = A_2 \sin(\sqrt{\alpha}y) + B_2 \cos(\sqrt{\alpha}y)$$
 (2b)

Kmitání desky - Analytický rozbor - pokračování

Použitím Dirichletových okrajových podmínek (X(0) = X(a) = 0 a Y(0) = Y(b) = 0, kde a je šířka a b je výška obdélníku), získáme vlastní číslo

$$\lambda_{m,n} = \frac{m^2 \pi^2}{a^2} + \frac{n^2 \pi^2}{b^2} \tag{3}$$

Kmitání desky - Analytický rozbor - pokračování

Použitím Dirichletových okrajových podmínek (X(0) = X(a) = 0 a Y(0) = Y(b) = 0, kde a je šířka a b je výška obdélníku), získáme vlastní číslo

$$\lambda_{m,n} = \frac{m^2 \pi^2}{a^2} + \frac{n^2 \pi^2}{b^2} \tag{3}$$

a vlastní vektor

$$u(x,y)_{m,n} = A\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right),\tag{4}$$

kde m,n jsou přirozená čísla.

Kmitání desky - Porovnání

Všechny výsledky jsou pro obdelník s šířkou a=4 a výškou b=2

Vlastní čísla	λ_1	λ_2	λ_3	λ_4	λ_5
Analyticky	3.08425	4.9348	8.01905	10.4865	12.337
Matlab	3.08425	4.9348	8.01905	10.4865	12.337
Mathematica	3.08426	4.93482	8.01915	10.4869	12.3374

Kmitání desky - Výsledky 1. část

Nalevo - Matlab; Napravo - Mathematica

Kmitání desky - Výsledky 2. část

Nalevo - Matlab; Napravo - Mathematica

Kmitání desky - Výsledky 3. část

Získáno v Matlabu

Kmitání desky - Výsledky 4. část

Získáno v Matlabu

Kmitání desky - Výsledky 5. část

Získáno v Matlabu

Děkujeme za pozornost

