Outils mathématiques pour l'ingénieur

Chapitre 2 : Trigonométrie et Nombres Complexes

Position d'un point → **vecteur**

Vitesse → vecteur

Accélération → vecteur

Forces → vecteurs

Electromagnétisme > vecteurs

I-Définitions

A tout couple de points distincts (A, B) de l'espace, on definit le vecteur \overrightarrow{AB} par :

- sa direction, celle de la droite (AB);
- son sens, celui de A vers B;
- sa norme, égale à la distance AB.

La norme d'un vecteur \mathbf{v} s'écrit $||\mathbf{v}||$ ou plus simplement v lorsqu'aucune confusion n'est possible.

- Si les deux points sont égaux, on parle de vecteur nul $\overrightarrow{0}$, qui a seulement une norme nulle;
- Deux vecteurs égaux ont le même sens, la même direction et la même norme et réciproquement.

La norme d'un vecteur v s'écrit ||v|| ou plus simplement v lorsqu'aucune confusion n'est possible

II-Coordonnées

$$v=(x,y)$$
 ou $v=\begin{pmatrix} x \\ y \end{pmatrix}$ en 2D

$$y = (x,y,z)$$
 ou $v \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ en 3[

III-Opérations sur les vecteurs

- Multiplier un vecteur par un nombre : $\lambda \mathbf{v} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$
- Addition de deux vecteurs : $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x+x' \\ y+y' \end{pmatrix}$

IV-Bases orthonormales

V-Coordonnées et normes

Si
$$\overrightarrow{u}$$
 et \overrightarrow{v} ont pour coordonnées respectives $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x+x' \\ y+y' \\ z+z' \end{pmatrix}$ $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2 + z^2}$

Si A et B ont pour coordonnées respectives $(x_A;y_A;z_A)$ et $(x_B;y_B;z_B)$ alors les coordonnées du vecteur \overrightarrow{AB}

sont
$$\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

Avec
$$AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

VI-Colinéarité

Soient les vecteurs \overrightarrow{u} et \overrightarrow{v} .

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si il existe un réel k tel que : $\overrightarrow{u} = k\overrightarrow{v}$.

Ou

Soient les vecteurs $\overrightarrow{u}(x; y)$ et $\overrightarrow{v}(x'; y')$.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaire si et seulement si : xy' - yx' = 0

VII-Coplanarité

Trois vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires si et seulement si il on peut exprimer l'un vecteur comme une combinaison des autre, c'est à dire s'il existe deux réels "a" et "b" tels :

$$\vec{w} = \mathbf{a} \cdot \vec{u} + \mathbf{b} \cdot \vec{v}$$

Les vecteurs $\overrightarrow{AB}, \overrightarrow{BF}$ et \overrightarrow{HC} sont coplanaires. En revanche les vecteurs $\overrightarrow{AB}, \overrightarrow{BF}$ et \overrightarrow{FG} ne le sont pas.

VIII-Projection orthogonale

Projection de A sur B

Projection d'un vecteur orthogonale d'un vecteur v sur une base

$$x = \mathbf{v} \cdot \mathbf{e_x} = ||\mathbf{v}|| \cos(\theta), \quad y = \mathbf{v} \cdot \mathbf{e_y} = ||\mathbf{v}|| \sin(\theta),$$