MA 503: Homework 1

Dane Johnson

September 11, 2020

Chapter 2: The Real Number System

- C. Completeness Axiom Every nonempty set S of real numbers which has an upper bound has a least upper bound.
- **1. Proposition** Let L and U be nonempty subsets of \mathbb{R} such that $\mathbb{R} = L \cup U$ and such that for each $l \in L$ and for each $u \in U$, l < u. Then either L has a greatest element of U has a least element.

Problem 3

Prove Proposition 1 using Axiom C.

Proof: The statement that either L has a greatest element or U has a least element is equivalent to the statement that if U does not have a least element then L must have a greatest element. Suppose U does not have a least element and let $u \in U$ be arbitrary. Since l < u for all $l \in L$, u is an upper bound of L so L has a least upper bound, which we denote $\sup L$. Since u was arbitrary and $\sup L$ is the least upper bound of L, we have $\sup L \le u$ for all $u \in U$. Therefore, $\sup L \le u$ inf U. Suppose that $\sup L$ is not an element of L. Then since $\mathbb{R} = L \cup U$, it follows that $\sup L$ is an element of U. Since $\lim L \le u$ for every element $u \in U$, this means $\lim L \le u$. Thus $\lim L \le u$ for every element of U, less than or equal to any element of U. That is, $\sup L$ is the least element of U. This contradicts the assumption that U does not have a least element. So it must be the case that $\sup L$ is an element of L. Since $\sup L$ is greater than or equal to any element of L, $\sup L$ is the greatest element of L.