

CSE 473/573 L4: FILTERING

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Content

- Filtering
 - Linear filters
 - Correlation and Convolution
 - Equivariance, Invariance
 - Smoothing, Gaussian Filter, Median filter

Recap: Image representation

- A (grayscale) image as a **function**, *f*, from R² to R:
 - f(x, y) gives the **intensity** at position (x, y).
 - A digital image is a discrete (sampled, quantized) version of this function.

Recap: Images as functions

- Take an image as a function, f, from R^2 to R:
 - f(x, y) gives the intensity at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$-f: [a, b] \times [c, d] \rightarrow [0, 255]$$

- -Important: we often convert [0, 255] to **[0,1.0]**.
- A color image is three functions pasted together, a "vector-valued" function $\lceil r(x,y) \rceil$

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Source: S. Seitz

Recap: Digital images

- In computer vision, we operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.

							
62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

2D

Adapted from S. Seitz

Recap: Warping v.s. Filtering

image warping: change domain of image

$$g(x) = f(T(x))$$

g

image filtering: change range of image (Next Week)

$$g(x) = T(f(x))$$

Image filtering

 Image filtering: compute a function of the local neighborhood at each position

- Really important!
 - Enhance images
 - Denoising, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching
 - Deep Convolutional Networks

Image Filtering

Smooth/Sharpen Images...

Find edges...

Find Waldo...

How can we do noise reduction?

- We can measure noise in multiple images of the same static scene.
- How could we reduce the noise, i.e., give an estimate of the true intensities?

Common types of noise

- Impulse noise: random occurrences of white pixels
- Salt and pepper noise: random occurrences of black and white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

10

Additive Noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Fig: M. Hebert

PDF of Gaussian distribution

Probability density function

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

sigma=1

Effect of sigma on Gaussian noise:

Image shows the noise values themselves.

sigma=4

sigma=16

sigma=1

Effect of sigma on Gaussian noise:

This shows the noise values added to the raw intensities of an image.

sigma=16

Pixel neighborhoods are important.

Q: What happens if we reshuffle all pixels?

- A: Its histogram won't change.
 Point-wise processing unaffected.
- Can we use neighborhoods to remove image noise?

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel.
 - Moving average in 1D:

Source: S. Marschner

Weighted Moving Average

- We can add weights to moving average
- Weights [1, 1, 1, 1, 1] / 5

Source: S. Marschner

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Example: Box Filter

	h[• ,•]
1	1	1	1
<u></u>	1	1	1
9	1	1	1

		1	1	1
$h[\cdot ,\cdot]$	100	1	1	1
		1	1	1

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	FDI	1	1	1
	1	1	1	1

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	100	1	1	1
		1	1	1

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	FDI	1	1	1
		1	1	1

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	FDI	1	1	1
	1	1	1	1

			90	90	90	90	90		
			90	90	90	90	90		
			90	90	90	90	90		
			90		90	90	90		
			90	90	90	90	90		
		0							
		90							
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

$$g[m,n] = \sum_{l=1}^{n} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	100	1	1	1
		1	1	1

0	0	0	0	0	0	0	0	0	0
0									
0			90	90	90	90	90	0	
0			90	90	90	90	90	0	
0			90	90	90	90	90	0	
0			90		90	90	90	0	
0			90	90	90	90	90	0	
0			0	0	0	0	0		
0		90							
0		0							

0	10	20	30	30		
			?			

$$g[m,n] = \sum_{l=1}^{n} h[k,l] f[m+k,n+l]$$

		1	1	1
$h[\cdot ,\cdot]$	FDI	1	1	1
		1	1	1

0	0	0	0	0	0	0	0	0	0
0									
0			90	90	90	90	90		
0			90	90	90	90	90		
0			90	90	90	90	90		
0			90	0	90	90	90		
0			90	90	90	90	90		
0									
0		90							
0		0	0			0	0		

0	10	20	30	30			
					?		
			50				

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

$g_{\lfloor \cdot , \cdot \rfloor}$

		1	1	1
$h[\cdot,\cdot]$	FIN	1	1	1
	1	1	1	1

0									
0									
0			90	90	90	90	90		
0			90	90	90	90	90		
0			90	90	90	90	90		
0			90		90	90	90		
0			90	90	90	90	90		
			0	0	0	0	0		
0		90							
0	0	0	0	0	0	0	0	0	0

0						
	40	60	60	60	40	
	60	90	90	90	60	
	50	80	80	90	60	
	50	80	80	90	60	
		50	50	60	40	

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Convolution & Correlation

 Convolution/Correlation is the process of moving a filter mask over an image

 At each point in the image, one computes the sum of products at each location

 Filter is often referred to as the Kernel or Mask.

A function of displacement

Convolution: filter is flipped.

Correlation: filter is not flipped.

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

h[· ,·]

1	1	1	1
$\frac{1}{1}$	1	1	1
9	1	1	1

Smoothing with box filter

Predict the filtered outputs

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

\sim	•	•	1
()	r19	211	nal
		>	

0	0	0		
1	0	0		
0	0	0		

Origina	1

0	0	0
1	0	0
0	0	0

Shifted left By 1 pixel

Assume using convolution (filter flipped)

Original

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter
Accentuates
differences with local
average

Sharpening

before

after

Correlation (another name for filtering)

$$H=Filter$$
 F=Signal or Image
$$G[m,n] = \sum_{k,l} H[k,l] \ F[m+k,n+l]$$

2D Convolution

- PyTorch implements correlation as convolution
- import torch.nn.functional as F

$$\bullet G = F.conv2d(I, f)$$

$$G[m,n] = \sum_{k,l} H[k,l] F[m-k,n-l]$$

Correlation vs. Convolution

2D Correlation

$$h[m,n] = \sum_{k,l} f[k,l] \ I[m+k,n+l]$$

2D Convolution

$$h[m,n] = \sum_{k,l} f[k,l] \ I[m-k,n-l]$$

1D Case

Effect on the filter

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$
When k = I = -1 \rightarrow (m-1, n-1)

1 2 3
4 5 6
7 8 9

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$
When k = I = -1 \rightarrow (m+1, n+1)

1 2 3
4 5 6
7 8 9

Convolution Filters are rotated by 180 degrees

What Properties do they have?

- Both extract information from the image
- Both are shift or translation Invariant
- Both are linear (a linear combination of neighbors)
- Only the Convolution is Associative

When to use which?

- Correlation
 - Applying a template or filter to an image
 - Measuring Similarity
 - When we don't care of it is associative

- Convolution
 - Applying an operation to an image (filtering)
 - When we want association

What to keep in mind

- If we say we are applying a **correlation** and we provide a filter, assume it is a correlation filter.
- If we say we are applying a **convolution** and we provide a filter, assume it is a convolution filter.

You can get the same point, with either approach

Correlation filtering

Say the averaging window size is (2k+1) x (2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform weight to each pixel

Loop over all pixels in neighborhood around image pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{\kappa} \sum_{v=-k}^{\kappa} H[u,v]F[i+u,j+v]$$

Non-uniform weights

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

More formally, it is called cross-correlation, i.e.,

$$G = H \otimes F$$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter is also called "kernel", "mask", or a "window".

More Formal/Strict Terminology

- Cross-correlation:
 - Often referred as correlation in computer vision.

$$G[m,n] = \sum_{k,l} H[k,l] F[m+k,n+l]$$

Correlation (in statistics):

$$\operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$

- Reading more:
 - Chen Wang, et al. "Kernel Cross-correlator." In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
 - Convolution vs Cross-correlation
 - Section 2.2 in "Chen Wang, Kernel learning for visual SAI Reperception". PhD thesis.

Properties

Commutative:

$$x \otimes y = y \otimes x$$

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality
- Associative:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$

- Often apply several filters one after another: $x \otimes y_1 \otimes y_2 \otimes y_3$
- This is equivalent to applying one filter: $x \otimes (y_1 \otimes y_2 \otimes y_3)$
- Distributes over addition:

$$x \otimes (y + z) = (x \otimes y) + (x \otimes z)$$

Scalars factor out:

$$ax \otimes y = x \otimes ay = a(x \otimes y)$$

• Identity (unit impulse), e.g., e = [0, 0, 1, 0, 0],

$$x \otimes e = x$$

Key properties of Linear Filters

- Assume f(x) is image filtering: $f(x) = x \otimes w$.
- Linearity (superposition property):

$$f(a \cdot \mathbf{x} + b \cdot \mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$$

- Linear filter is equivariant (not invariant) to translation.
- Assume T(x) is image shift (translation):
 - Equivariance:

$$f(T(X)) = T(f(x))$$

Invariance:

$$f(T(X)) = f(x)$$

Multi-channel correlation/convolution

Examples:

- >>> # With square kernels and equal stride
- >>> filters = torch.randn(8, 4, 3, 3)
- >>> inputs = torch.randn(1, 4, 5, 5)
- >>> F.conv2d(inputs, filters, padding=1)

What is shape of the output in the left example?

(1, 8, 5, 5)

Gaussian filter

 What if we want nearest neighboring pixels to have the most influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

Smoothing with a Gaussian

 Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.

10

20

Gaussian filters

- What parameters matter here?
- Size of kernel / mask
 - Gaussian function has infinite support, but discrete filters use finite kernels

 σ = 5 with 10 x 10 kernel σ = 5 with 30 x 30 kernel

Gaussian filters

Variance: determines extent of smoothing

 σ = 2 with 30 x 30 kernel

 σ = 5 with 30 x 30 kernel

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian filter:
 - set filter half-width to about 3σ

Gaussian filters

- Remove "high-frequency" components from image
 - Low-pass filter: Images become smoother.
- Recap of frequency in a signal (image)
 - High-frequency components
 - Fine details and edges
 - Low-frequency components
 - Large-scale structures and smooth regions

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- Separable kernel
 - -Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability

• In some cases, filter is separable, (factor into two steps):

$$f \otimes (g \otimes h) = (f \otimes g) \otimes h$$

Separability

- Advantage: much reduced computational cost.
- Disadvantage: requires an extra ram memory to store the intermediate image, problematic in certain applications.

Median filter

Salt and pepper noise

Median

filtered

Median filter

- Median filter is edge preserving
- It doesn't introduce new intensities, which is often expected.

Content

- Filtering
 - Linear filters
 - Correlation and Convolution
 - Equivariance, Invariance
 - Smoothing, Gaussian Filter, Median filter

