ÁRVORES BINÁRIAS

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

- 1 Introdução
- 2 Implementação de BST
- 3 Travessia de árvores
- 4 Bibliografia

Árvore livre: grafo (V, E), $V \neq \emptyset$, não dirigido, acíclico e conectado

- Motivação: eficiência temporal para inserção e remoção
- Floresta: grafo não dirigido, acíclico, mas não conectado

Propriedade importante: |E| = |V| - 1

- Condição necessária, mas não suficiente
- Se o grafo for não dirigido e conectado, é suficiente

Para cada dois vértices de uma árvore, sempre existe exatamente um caminho simples entre estes vértices.

- Caminho de tamanho $n \in \mathbb{Z}^+$ de u para v: sequência de arestas e_1, \dots, e_n tal que $e_1 = \{x_0, x_1\}, \dots, e_n = \{x_{n-1}, x_n\}, \text{ onde } x_0 = u$ e $x_n = v$.
 - No caso de árvores: sequência de vértices, pois toda árvore é um grafo simples (sem direção, sem arestas paralelas, sem laços)
 - Tamanho de um caminho: quantidade de vértices 1

Árvore enraizada (muitas vezes, somente árvores): raiz está no nível 0

4/35

Aplicações: representar hierarquias, implementar dicionários, análise de falhas, base para técnicas como backtracking e branch-and-bound

Terminologoia

- Ancestrais/Descendentes (próprios)
- Irmãos: vértices com mesmo pai
- Folha: vértice sem filho
- Vértice interno: pelo menos um filho:
- Sub-árvore
- Nível de v: tamanho do caminho simples da raiz para v
- Altura: tamanho do maior caminho simples

Terminologia:

- Uma árvore enraizada é m-ária se todo nó interno não possui mais do que *m* filhos.
 - Árvore m-ária com m=2: árvore binária
- Uma árvore enraizada é m-ária cheia se todo nó interno possui exatamente *m* filhos.
- Uma árvore enraizada é m-ária completa se seus níveis são preenchidos da esquerda para a direita.

31/03/2019

³Fonte: C. Shaffer. Data Structures and Algorithm Analysis. 2013.

Propriedades de uma árvore m-ária cheia:

- n nós, tem i = (n-1)/m nós internos e I = ((m-1)n+1)/m folhas
- i nós internos. tem n = mi + 1 nós e I = (m - 1)i + 1 folhas
- I folhas. tem n = (ml - 1)/(m - 1) nós e i = (l - 1)/(m - 1) nós internos

Propriedade de uma árvore m-ária:

Existem no máximo m^h folhas em uma árvore m-ária de altura h.

Uma árvore enraizada m-ária é ordenada se os filhos de todos os vértices internos estão ordenados.

■ Nas binárias: filho (subárvore) à esquerda e à direita

Exemplo: subárvore à esquerda e à direita de c

⁴ Fonte: K. Rosen. Discrete Mathematics and Its Applications. 2011.

Uma árvore enraizada m-ária de altura h é balanceada se todas as folhas estão no nível h ou h-1.

Propriedades:

- Em uma árvore m-ária, $h \ge \lceil log_m l \rceil$, l = qtd. de folhas
- Em uma árvore m-ária cheia e balanceada, $h = \lceil log_m I \rceil$

⁵Fonte: K. Rosen. Discrete Mathematics and Its Applications. 2011.

Árvore binária de busca

Cada vértice é rotulado por uma chave de forma que esta é maior do que as chaves de todos os nós da subárvore esquerda e menor do que as chaves dos nós da subárvore direita.

Árvore binária de busca (BST – binary search tree)

■ Esquerda: 37, 24, 42, 7, 2, 40, 42, 32, 120

■ Direita: 120, 42, 42, 7, 2, 32, 37, 24, 40

Agenda

- Implementação de BST

Implementação mais comum: baseada em referências (ponteiros)

Estrutura de dados (BSTNode):

```
Key key;
                                                       // chave
  E element;
2
                                                    // elemento
  BSTNode left;
                                           // filho à esquerda
  BSTNode right;
                                            // filho à direita
```

Em geral, não há necessidade dos filhos apontarem para o pai

Decisão importante: definição (não) uniforme de nós internos e folhas⁹

10

Estrutura de dados (BST):

Algoritmo: BST create_bst()

- 1 bst.root ← NULL;
- 2 $bst.nodecount \leftarrow 0$;
- 3 return bst;

Algoritmo: void clear(BST bst)

- 1 bst.root ← NULL;
- 2 $bst.nodecount \leftarrow 0$;

Algoritmo: int size(BST bst)

1 return bst.nodecount;

Algoritmo: E find(BST bst, Key k)

return *findhelp*(*bst.root*, *k*);

31/03/2019

Alaoritmo: E findhelp(BSTNode rt, Key k)

```
if rt = NULL then return NULL;
   if rt.key > k then
2
       return findhelp(rt.left, k);
   else if rt = k then
       return rt.element;
5
   else
       return findhelp(rt.right, k);
```


Algoritmo: void insert(BST bst, Key k, E e)

- 1 $bst.root \leftarrow inserthelp(bst.root, k, e);$
- 2 bst.nodecount++;

Algoritmo: BSTNode inserthelp(BSTNode rt, Key k, E e)

```
1 if rt = NULL then return create\_bstnode(k, e);
```

- 2 if rt.key > k then
- $rt.left \leftarrow inserthelp(rt.left, k, e);$
- 4 else
- $rt.right \leftarrow inserthelp(rt.right, k, e);$
- 6 return rt:

Importante: na presença de chaves repetidas, sub-árvore direita!

19/35

Algoritmo: E remove(BST bst, Key k)

```
1 E temp ← findhelp(bst.root, k);
2 if temp ≠ NULL then
3 bst.root ← removehelp(bst.root, k);
4 bst.nodecount--;
5 return temp;
```

Algoritmo: E removeAny(BST bst)

```
if bst.root = NULL then return NULL;
```

- ≥ E temp ← bst.root.element;
- 3 bst.root ← removehelp(bst.root, bst.root.key);
- 4 bst.nodecount--;
- return temp;

Algoritmo: BSTNode removehelp(BSTNode rt, Key k)

```
if rt = NULL then return NULL;
    if rt.key > k then
2
         rt.left \leftarrow removehelp(rt.left, k);
    else if rt.kev < k then
         rt.right \leftarrow removehelp(rt.right, k);
 5
    else
6
         if rt.left = NULL then return rt.right;
         else if rt.right = NULL then return rt.left;
 8
         else
 9
             BSTNode temp \leftarrow getmin(rt.right);
10
             rt.element \leftarrow temp.element;
11
             rt.key \leftarrow temp.key;
12
             rt.right \leftarrow deletemin(rt.right);
13
    return rt:
14
```


Algoritmo: BSTNode getmin(BSTNode rt)

- if rt.left = NULL then return rt;
- 2 return getmin(rt.left);

Algoritmo: BSTNode deletemin(BSTNode rt)

- if rt.left = NULL then return rt.right;
- *rt.left* \leftarrow *deletemin*(*rt.left*);
- з return rt;

Custo computacional

Relembrando (caso médio = considerando BST balanceada):

Data Structure	Time Complexity								Space Complexit
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	O(n)	O(n)	O(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	O(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	O(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	Θ(log(n))	0(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	0(1)	0(1)	0(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	O(log(n))	Θ(log(n))	Θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	Θ(log(n))	0(log(n))	0(log(n))	Θ(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	0(n)
Red-Black Tree	Θ(log(n))	0(log(n))	0(log(n))	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree	N/A	O(log(n))	Θ(log(n))	Θ(log(n))	N/A	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	Θ(log(n))	0(log(n))	Θ(log(n))	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

12

Verificando se é BST

Algoritmo: boolean checkBST(BinNode rt, int low, int high)

Para uma BST inteira bst, chamar inicialmente:

checkBST(bst.root, MIN_INT, MAX_INT).

Agenda

- Travessia de árvores

Seja T uma árvore enraizada e ordenada com raiz r. Se T possui apenas r, então o caminhamento em pré-ordem de T é r. Caso contrário, sejam $T_1, T_2, ..., T_n$ as subárvores de r da esquerda para a direita. O caminhamento em pré-ordem começa visitando r e continua fazendo um caminhamento em pré-ordem em $T_1, T_2, ..., T_n$.

Encontre o caminhamento pré-ordem da árvore abaixo.

Encontre o caminhamento pré-ordem da árvore abaixo.

Resposta: a, b, e, j, k, n, o, p, f, c, d, g, I, m, h, i

Seja T uma árvore enraizada e ordenada com raiz r. Se T possui apenas r, então o caminhamento em ordem de T é r. Caso contrário, sejam $T_1, T_2, ..., T_n$ as subárvores de r da esquerda para a direita. O caminhamento em ordem começa percorrendo em ordem T_1 , em seguida visita r, e continua fazendo um caminhamento em ordem em $T_2, T_3, ..., T_n$

Encontre o caminhamento em ordem da árvore abaixo.

Encontre o caminhamento em ordem da árvore abaixo.

Resposta: *j*, *e*, *n*, *k*, *o*, *p*, *b*, *f*, *a*, *c*, *l*, *g*, *m*, *d*, *h*, *i*

Seja T uma árvore enraizada e ordenada com raiz r. Se T possui apenas r, então o caminhamento em pós-ordem de T é r. Caso contrário, sejam $T_1, T_2, ..., T_n$ as subárvores de r da esquerda para a direita. O caminhamento em pós-ordem começa percorrendo em pós-ordem $T_1, T_2, ..., T_n$, e finaliza visitando r.

Encontre o caminhamento pós-ordem da árvore abaixo.

31/03/2019

Encontre o caminhamento pós-ordem da árvore abaixo.

Resposta: *j*, *n*, *o*, *p*, *k*, *e*, *f*, *b*, *c*, *l*, *m*, *g*, *h*, *i*, *d*, *a*

Agenda

- Bibliografia

Bibliografia + leitura recomendada

Capítulo 1 (pp. 31–35)
Capítulo 4 (pp. 163–164)
Capítulo 5 (pp. 182–185)
Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3a edicão. Pearson. 2011.

Capítulo 5 (pp. 145-170) Clifford Shaffer.

Data Structures and Algorithm Analysis.

Dover, 2013.

ÁRVORES BINÁRIAS

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

