Lois de probabilités

Synthèse

Quelques lois de probabilité discrètes:

Lois	Notation	Définition	Espérance	Variance
Uniforme		$\forall i, \text{si } 1 \le i \le n$ $P(X = x_i) = \frac{1}{n}$	si $x_i = i$, $E(X) = \frac{n+1}{2}$	$si x_i = i,$ $V(X) = \frac{n^2 - 1}{12}$
Bernoulli	$\mathcal{B}(1,p)$	si succès $X = 1$ éche c $X = 0$ P(X = 0) = q P(X = 1) = p avec $p+q = 1$	E(X) = p	V(X) = pq
Binomiale	$\mathcal{B}(n,p)$	$S_n = \sum_{i=1}^n X_i$ avec X variable Bernoulli $P(S_n = k) = C_n^k p^k q^{n-k}$	$E(S_n) = np$	$V(S_n) = npq$
Poisson	P (λ)	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ avec $\lambda > 0$	$E(X) = \lambda$	$V(X) = \lambda$
Binomiale négative	<i>BN</i> (<i>n</i> , <i>p</i>)	avec k : nbre d'épreuves et n : nbre de succès, $k \ge n$ $P(X = k) = C_{k-1}^{n-1} p^n q^{k-n}$	$E(X) = \frac{n}{p}$	$V(X) = n \frac{q}{p^2}$
Géométrique	<i>BN</i> (1,p)	avec $n = 1$ $P(X = k) = pq^{k-1}$	$E(X) = \frac{1}{p}$	$V(X) = \frac{q}{p^2}$

Quelques lois de probabilité continues :

Lois	Notation	Définition	Espérance	Variance
Uniforme		$f(x) = \frac{1}{b-a} \text{si } x \in [a,b)$ $f(x) = 0 \text{si } x \notin [a,b)$	$E(X) = \frac{b+a}{2}$	$V(X) = \frac{\left(b - a\right)^2}{12}$
Normale	N (μ,σ)	$x \mapsto f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$	$E(X) = \mu$	$V(X) = \sigma^2$
Normale réduite	N(0,1)	$z \mapsto f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \text{ avec}$ $Z = \frac{X - \mu}{\sigma} \text{ et } X \to \mathcal{N}(\mu, \sigma)$	E(Z)=0	V(Z) = 1
Khi deux	$\chi^2(n)$	$\chi^{2} = \sum_{i=1}^{n} X_{i}^{2} \text{ avec } X_{i} \to \mathcal{N}((0,1))$ $x \mapsto f(x) = C(n)x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}$ avec n degrés de liberté	$E(\chi^2) = n$	$V(\chi^2) = 2 n$
Student	T(n)	$T_n = \frac{U}{\sqrt{\frac{V}{n}}} \text{ avec } U \to \mathcal{N}((0,1) \text{ et}$ $V \to \chi^2(n)$	$E(T) = 0$ $\sin n > 1$	$V(T) = \frac{n}{n-2}$ $\sin n > 2$

Théorème central limite

Si $S_n = X_1 + X_2 + ... + X_i + ... + X_n$ est la somme de *n* variables aléatoires indépendantes et de même loi alors la variable aléatoire $Z_n = \frac{S_n - n\mu}{\left(\sigma\sqrt{n}\right)}$ suit une loi normale réduite $\mathcal{N}(\mathbf{0},\mathbf{1})$ et ceci quelque soit la loi de probabilité suivie par les variables aléatoires.