

Group: DSAA 5024 2024 FALL

Valid until 9/30 and will update upon joining group

Data Exploration & Visualization

Module 2 Data Transformation & Mapping

Dr. ZENG Wei

DSAA 5024

The Hong Kong University of Science and Technology (Guangzhou)

Data Exploration & Visualization

Module 2: Data Transformation & Mapping

- Data transformation
 - Aggregation, sampling, discretization, attribute transformation, arrangement, selection, feature creation
- Mapping data to visuals
 - Numbers to positions

Visualization process

- Information visualization reference model
 - Data transformations
 - Visual mappings
 - View transformations

Human Interaction

Raw Data: idiosyncratic formats

Data Tables: relations (cases by variables) + meta-data

Visual Structures: spatial substrates + marks + graphical properties

Views: graphical parameters (position, scaling, clipping, ...)

Data processing

- The process of processing raw data to facilitate subsequent analysis
 - Data cleaning
 - Noise, missing or corrupted values

Big Data Borat

Following

@BigDataBorat

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

Data cleaning

- Data quality problems
 - Noise: modification of original values
 - Outliers: data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Missing values: iinformation is not collected or Attributes may not be applicable to all cases
 - Dsuplicate values: data objects that are duplicates, or almost duplicates of one another
- What can we do about these problems?

Data transformation

- Why data transformation?
 - Raw data are too big and complex.
 - Too heavy for computation or storage
 - Data cube
 - Algorithm/model does not work for the raw format / works better for the format.
 - Graph vs. matrix representation
 - A visualization perspective: the display space is limited.
 - Displaying all the data will cause cluttering
 - Paper reading: A taxonomy of clutter reduction for information visualization

Data transformation

Common methods

- Aggregation
- Sampling
- Discretization
- Attribute transformation
- Arrangement
- Selection
- Feature creation

Aggregation

- Aggregation combines two or more attributes (or records) to a single attribute (or record)
 - Data reduction
 - Reduce the number of attributes or records
 - Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - More 'stable' data
 - Aggregated data tend to have less variability

Aggregation

Aggregating user clicks into the number of clicks.

How much of a turning point in the war on terror will Bin Laden's death represent?

'The Death of a Terrorist: A Turning Point?' - NYTimes, 2011

 The same basic data yield different results when aggregated in different ways.

- Affects many types of analysis including correlation, regression, and prediction.
- ST-ResNet [Zhang et al., 2017]
 - 1. partition an underlying territory into grids
 - 2. aggregate in- and out-flows in each grid
 - 3. model as a sequence of raster images
 - 4. apply convolution-based residual neural network

- Adversarial perturbation problem of DNNs.
 - The input difference may be marginal, but it may cause significant effects on the outputs.

- Data and data transformation
 - Taxi transaction records in Shenzhen from 01 Jan. 2019 to 28 Feb. 2019 (59 days)
 - Traffic analysis zones (TAZs): 1066
 - Shapes: by grids vs. by TAZs followed by rasterization
 - Scales: 50x25, 100x50, 200x100

- RMSEs are similar for grid and TAZ partitions at scale 100x50.
- Scale-independent metrics show TAZ partition achieves better performance.
 - especially for the airport region

- Lessons learnt: Spatial nonstationarity affects prediction accuracy.
- Solution: Modeling spatial nonstationarity via deformable convolutions.
- Deformable convolutions + Rol partition helps.

Sampling

- Sampling is the main technique employed for data selection.
 - Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
 - Sampling is used in **data mining** because **processing** the entire set of data of interest is too expensive or time consuming.

Sampling

- Good sampling selects representative samples
 - Has approximately the same property (of interest) as the original set of data

Sampling

- Sampling for multi-class scatterplot
 - faithfully presenting relative data
 - faithfully presenting class densities
 - Preserving major outliers

- Discretization divides the range of continuous variables into a finite set of intervals.
 - Usually a first step for numerical evaluation and implementation on digital computers.
- Histogram is a common technique for discretization.
 - Divide the values into *bins* and show a bar plot of the number of objects in each bin
 - The height of each bar indicates the number of objects

Shape of histogram depends on the number of bins

- Choose proper number of bins, not just for histogram?
 - Unsupervised: equal width, equal frequency
 - Supervised: entropy-based, binning

Unsupervised approaches

- An important step for determining enumeration units in choropleth map.
 - Why Covid-19 cases (right) are dividided into [1, 9], [1-99], [100, 999]...

COVID-19 cases in mainland China by provinces as of 7 March 2020

Why 102, not 100?

Kernel density estimation

 Kernel density estimation (KDE) estimates the probability density function of a random variable.

$$kde(x) = \frac{1}{mb} \sum_{i=1}^{m} K(\frac{x_i - x}{b})$$

where K is the chosen kernel (weight function), b is the bandwidth

https://github.com/mwaskom/seaborn/blob/master/seaborn/distributions.py

Attribute transformation

 A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values

-	Division by sum	$y_i / \sum_i y_i$
-	Log	$\log y$
-	Power	$y^{1/k}$
-	Min-max	$\frac{(y_i - y_{min})}{(y_{max} - y_{min})}$
_	z-score	$(y_i - \mu)/\sigma$

 In practice, the analyst does not know a priori which normalization function is best suited for a given dataset and he may test some preferred ones.

Attribute transformation

 Normalization changes the values of numeric columns in the dataset to a common scale, such that the visualization can better reveal patterns.

 $f: y \to c$

colormap Logarithmic colormap

 $f: y' \to c$, where $y' = \log(y)$

Arrangement

- Arrangement is the placing of visual elements with a display
 - Arrangement can make a large difference in how easy it is to understand data
 - Grouping and sorting are common methods for data arrangement.

	1	2	3	4	5	6	•		6	1	3	2	5	4
1	0	1	0	1	1	0	•	4	1	1	1	0	0	0
2	1	0	1	0	0	1		2	1	1	1	0	0	0
3	0	1	0	1	1	0		6	1	1	1	0	0	0
4	1	0	1	0	0	1		8	1	1	1	0	0	0
5	0	1	0	1	1	0		5	0	0	0	1	1	1
6	1	0	1	0	0	1		3	0	0	0	1	1	1
7	0	1	0	1	1	0		9	0	0	0	1	1	1
8	1	0	1	0	0	1		1	0	0	0	1	1	1
9	0	1	0	1	1	0		7	0	0	0	1	1	1

Selection

- Selection is the elimination or the de-emphasis of certain objects / attributes
 - Choosing of a subset of attributes, aka feature selection
 - Feature selection is to remove redundant or irrelevant features
 - Dimensionality reduction is often used to reduce the number of dimensions to two or three
 - Choosing a subset of objects
 - You can only show so many points on the screen
 - Sampling how to preserve points in sparse areas?

Feature creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature Extraction
 - domain-specific
 - Mapping Data to New Space
 - Embeddings
 - Feature Construction
 - combining features

Data Exploration & Visualization

Module 2: Data Transformation & Mapping

- Data transformation
 - Aggregation, sampling, discretization, attribute transformation, arrangement, selection, feature creation
- Mapping data to visuals
 - Numbers to positions

Reference model

- Information visualization reference model
 - Data transformations
 - Visual mappings: mapping the 'features' of a data set to the 'features' of visual perception.

Raw Data: idiosyncratic formats

Data Tables: relations (cases by variables) + meta-data

Visual Structures: spatial substrates + marks + graphical properties

Views: graphical parameters (position, scaling, clipping, ...)

Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman, eds. Readings in information visualization: using vision to think. Morgan Kaufmann, 1999.

Mapping data to position

x	10.0	8.0	13.0	9.0	11.0
у	8.04	6.95	7.58	8.81	8.33
14.0	6.0	4.0	12.0	7.0	5.0
9.96	7.24	4.26	10.84	4.82	5.68

Coordinate systems

- Data coordinates: native coordinates of the data space
 - min, max, and average values of a given dataset
 - x: [4.0, 14.0], y: [4.26, 10.84]
- View volume coordinates: the volume of the data space the user wants to view
 - can be defined by min & max, or a subset of the data, or origin & an extent
 - x: [2, 20], y: [2, 14]

Mapping data to position

x	10.0	8.0	13.0	9.0	11.0
у	8.04	6.95	7.58	8.81	8.33
14.0	6.0	4.0	12.0	7.0	5.0
9.96	7.24	4.26	10.84	4.82	5.68

Coordinate systems

- Normalized view coordinates
 - A scaling of the data so that the data points within the view volume fit within the range [0, 1].
 - Linear scale: $f(x) = \frac{(x vol_{\min} x)}{(vol_{\max} x vol_{\min} x)}$, or Log scale
- Screen coordinates
 - A scaling, possibly a translation, and a projection to convert the normalized view coordinates to viewport
 - 1080p: 1920x1080, 720p: 1280x720

Mapping data to position

- How to convert to screen coordinates? How can we arrange four plots as above?
 - Geometric transformation: a set of tools that aid in manipulating graphical objects and their coordinate systems

Affine transformation

• $P(P_x, P_y)$ is transformed into $Q(Q_x, Q_y)$ as follows:

$$Q_{x} = a P_{x} + c P_{y} + T_{x}$$

$$Q_{y} = b P_{x} + d P_{y} + T_{y}$$

$$\begin{bmatrix} Q_{x} \\ Q_{y} \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} P_{x} \\ P_{y} \end{bmatrix} + \begin{bmatrix} T_{x} \\ T_{y} \end{bmatrix}$$

$$\vec{Q} = \vec{M} \vec{P} + \vec{T}$$

2D primitive affine transformation

$$\vec{Q} = \vec{M} \vec{P} + \vec{T}$$

Translation

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \text{ (Identity)}$$

$$T = \begin{bmatrix} T_x \\ T_y \end{bmatrix}$$

$$\begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \begin{bmatrix} P_x + T_x \\ P_y + T_y \end{bmatrix}$$

2D primitive affine transformation

$$\vec{Q} = \vec{M} \vec{P} + \vec{T}$$

Scale

$$M = \begin{bmatrix} S_{\chi} & 0 \\ 0 & S_{\gamma} \end{bmatrix}, T = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \begin{bmatrix} P_x S_x \\ P_y S_y \end{bmatrix}$$

$$S_x = S_y$$
 (uniform scaling)
 $S_x \neq S_y$ (differential scaling)

Affine transformation

- View volume coordinates to screen coordinates
 - *Translate* a corner of view volume coordinates to the origin
 - Scale view volume coordinates to unit size
 - Scale normalized view coordinates to viewpoint size
 - *Translate* to viewpoint origin

Affine transformation

- Translate a corner of view volume coordinates to the origin: $T(-d_{x \min}, -d_{y \min})$
- Scale view volume coordinates to unit size: $S(S_{dx}, S_{dy})$
- Scale normalized view coordinates to viewpoint size: $S(S_{vx}, S_{vy})$
- Translate to viewpoint origin: $T(v_{x_min}, v_{y_min})$

$$Q = T(v_{x_min}, v_{y_min}) + S(S_{vx}, S_{vy}) \{ S(S_{dx}, S_{dy}) [P + T(-d_{x_min}, -d_{y_min})] \}$$

Homogeneous Coordinate

Motivation

- Translate:
$$\vec{Q} = \vec{P} + \vec{T}(T_x, T_y)$$

- Scale:
$$\vec{Q} = S(S_x, S_y) * \vec{P}$$

- Translation involves a vector addition instead of a vectormatrix multiplication.
- Better if all transforms are accomplished using a vectormatrix multiply.

Homogeneous Coordinate

 A two-dimensional point can be represented by one of the points along the ray in 3D space

$$P_{2d} = (x, y), \qquad P_H = (x, y, z)$$

• To convert from P_H to P_{2d} , divide each coordinate by the Z coordinate and discard the 3rd coordinate.

Homogeneous Matrices

Translation

$$T_H(T_x, T_y) = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} Q_{x} \\ Q_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} P_{x} + T_{x} \\ P_{y} + T_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_{x} \\ 0 & 1 & T_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_{x} \\ P_{y} \\ 1 \end{bmatrix}$$

Scale

$$S_H(S_x, S_y) = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix} = \begin{bmatrix} P_x S_x \\ P_y S_y \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix}$$

Affine transformation

IU

In-class exercise

x	10.0	8.0	13.0	9.0	11.0
у	8.04	6.95	7.58	8.81	8.33
14.0	6.0	4.0	12.0	7.0	5.0
9.96	7.24	4.26	10.84	4.82	5.68

$$Q = T(v_{x_min}, v_{y_min}) + S(S_{vx}, S_{vy}) \{ S(S_{dx}, S_{dy}) [P + T(-d_{x_min}, -d_{y_min})] \}$$

$$\begin{bmatrix} Q_{\mathcal{X}} \\ Q_{\mathcal{Y}} \\ 1 \end{bmatrix} =$$

$$\begin{bmatrix} P_{\mathcal{X}} \\ P_{\mathcal{Y}} \\ 1 \end{bmatrix} =$$

Why it matters

Fully automatically in ggplot

```
1 (ggplot(mtcars,
2 aes('wt', 'mpg',
3 color='factor(gear)'))
4 + geom_point()
5 + facet_wrap('~cyl')
6 + theme_bw())
```


	name	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Homet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

Why it matters

Need to specify in d3.js

```
// Add X axis
var x = d3.scaleLinear().domain([0, 1]).range([0, vp.width]);

// Add Y axis
var y = d3.scaleLinear().domain([0, 1]).range([vp.height, 0]);
```

- How about visualizations on other displays like mobile phone?
 - Responsive data visualization
 - Demo: http://nrabinowitz.github.io/rdv/

In-class exercise

- All data above are quantitative attributes.
- How can we map data of categorical/ordered attributes to positions?

Apple Orange	12 8	15
	8	15
Watermelon	5	
Banana	10	5
Kiwi	20	ople mos glor are kini
		Apple Oarde Maternelon Banana Kimi

Questions

- How to set the maximum value?
 - Why choose 25?
 - What if we have another item costs 300?

Data Exploration & Visualization

Module 2: Data Transformation & Mapping

- Data transformation
 - Aggregation, sampling, discretization, attribute transformation, arrangement, selection, feature creation
- Mapping data to visuals
 - Numbers to positions
- D3 implementation

Grammar and languages

- "Grammar of Graphics," Wilkinson, 1999
 - First proposed a grammar for constructing layered visualizations
 - Concepts include:
 - Data, Scale, Geometry, Coordinates, Facets, and Aesthetics, etc.
- "ggplot2," Wickham, 2005
 - A visualization library in R
 - Implemented the *Grammar of Graphics*
 - Made modifications to focus more on the layers
 - "A Layered Grammar of Graphics," Wickham, 2010

ggplot2

```
1 (ggplot(mtcars,
2 aes('wt', 'mpg',
3 color='factor(gear)'))
4 + geom_point()
5 + facet_wrap('~cyl')
6 + theme_bw())
```


fac	tor(gea
•	3
•	4
•	5

	name	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Homet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

D3, Vega, Vega-lite

- Outside of the R, Jeff Heer (Univ. of Washington) has been working on a similar effort but for web-based development
 - Flare (2005), Heer. (Note: Written in Java)
 - Protovis (2009), Bostock and Heer

- D3.js (2011), Bostock and Heer
 - Key feature: maps data to SVG elements
- Vega (2015), Satyanarayan et al.
 - Key feature: a specification based language
- Vega-Lite (2016), Satyanarayan et al.
 - Key feature: makes interactivity a firstclass citizen

Example Vega-lite language and visualization