Le climat et la répartition des êtres vivants : Les facteurs climatiques

1- Observation de la répartition du cèdre au Maroc :

Le cédraie marocaine s'installe dans les régions de hautes altitudes du rif (Kétama , Chéfchaouen) , du moyen atlas (ifran , timhdit) et du haut atlas oriental (Ain kehla)

a- Problématique :

Pourquoi le cèdre est absent dans les autres régions du Maroc?

b-Hypothèse 1:

Le cèdre s'installerait sur un sol de nature précise

c- Vérification de l'hypothèse 1 :

Observation de la nature du sol dans les différentes cédraies marocaines :

La cédraie	Nature de la roche mère du sol
Kétama	Quartzite et schiste
Chéfchaouen	Calcaire
Atlas moyen oriental	Schiste , marne , grès
Atlas moyen central	Calcaire , dolomite ,

d-Conclusion 1:

Le cèdre s'installe sur différents types de sol, il est indifférent au sol

e- Hypothèse 2:

Le cèdre chercherait des conditions climatiques spéciales .

Le climat est l'ensemble des conditions atmosphériques au-dessus d'un lieu. le climat d'une région est influencé par deux types de facteurs cosmiques due à la rotation de la terre et géographiques due à la position à la surface de la terre . Le climat se définit à partir de l'analyse de certains éléments météorologiques : la température, la pression et les précipitations qui peuvent être mesurés les stations météorologiques par des instruments précis :

Le pluviomètre mesure le volume de pluie reçu par la surface d'un m² Hygromètre mesure le % d'humidité dans l'air

Le baromètre donne la valeur de la pression atmosphérique

La girouette indique le sens du vent

L'anémomètre détermine la vitesse du vent

Le thermomètre à minima et maxima indique la valeur minimale de la température atteinte la nuit , et la valeur maximale de la température atteinte le jour .

f- Etudes des précipitations des zones de cédraies :

Le tableau suivant représente la valeur des précipitations mensuelles de quelques stations nationales :

mois station	1	2	3	4	5	6	7	8	9	10	11	12
Kétama	308	294	237	140	77	27	4	4	28	106	119	259
Azrou	97	99	105	93	59	33	6	8	30	76	111	108
Ifrane	181	141	121	117	74	34	8	11	30	81	133	168
Tanger	117	104	95	56	39	12.	0.5	2.5	16	63	109	133

- 1- Calculer les précipitations annuelles Pa en mm pour chaque station?
- 2- Comparer Pa des stations du cèdre Kétama, Azrou et Ifrane avec Pa de Tanger?
- 3- Déduire la condition climatique de la présence du cèdre ?
- 4- Sachant que Pa Ain Kehla l'une des stations du cèdre du grand Atlas oriental , ne dépasse pas 750 mm , comment expliquer l'absence du cèdre à Tanger ?

Solution :

1- Les précipitations annuelles Pa c'est la somme des précipitations mensuelles :

La station	Kétama	Azrou	Ifrane	Tanger
Pa en mm	1609	829	1055	751

- 2- Dans toutes les stations du cèdre Pa 829 mm , alors qu'à Tanger Pa ne ne dépasse 751 mm
- 3- La présence du cèdre nécessite donc une Pa 829 mm .
- 4- L'absence du cèdre à Tanger est donc due à un autre facteur climatique , qui peut être la température .

g-Etudes de la variation de la température des stations du cèdre :

Pendant 24 heures , la température quotidienne passe une valeur maximale diurne et une valeur minimale nocturne .

On appelle M la moyenne mensuelle des températures maximales quotidiennes en °C , m la moyenne mensuelle des températures minimales quotidiennes en °C , et T la moyenne thermique mensuelle en °C , telle que $T=\frac{(M+m)}{2}$

Le tableau présente la valeur de T de quelques stations du cèdre et de Tanger :

les mois	1	2	3	4	5	6	7	8	9	10	11	12
Kétama	3.2	4	4	6	7.5	13.5	18.5	19.7	1 7	11.2	5.7	3.2
Ifrane	2	3	6	9	11	1 7	21	21	16	12	7	3
Tanger	12.5	12.9	14.3	15.8	17.8	20.5	22.6	23.1	22	19	15.7	13.2

- 1- Comparer T des stations du cèdres avec T de Tanger?
- 2- Déduire la cause de l'absence du cèdre à Tanger?
- Solution:
- 1- Durant toute l'année T des stations du cèdre est inférieur à T de Tanger surtout les mois d'hiver .
- 2- Le cèdre est absent à Tanger à cause de sa moyenne thermique mensuelle assez élevée.

h-Conclusion:

Les précipitations annuelles et les moyennes thermiques sont deux facteurs climatiques déterminant de la répartition du cèdre

Pour mieux comprendre l'intervention de ces deux facteurs , on réalise le diagramme ombro thermique en présentant la variation mensuelle des précipitations et T en fonction des mois , et en utilisant l'échelle des précipitations double l'échelle des T .

- Application :

A partir des données climatiques suivantes :

	mois station	1	2	3	4	5	6	7	8	9	10	11	12
précipitation	Ifrane	181	141	121	117	74	34	8	11	30	81	133	168
en mm	Tanger	117	104	95	56	39	12.	0.5	2.5	16	63	109	133
T on OC	Ifrane	2	3	6	9	11	17	21	21	16	12	7	3
T en °C	Tanger	12.5	12.9	14.3	15.8	17.8	20.5	22.6	23.1	22	19	15.7	13.2

- 1- Réaliser le diagramme ombro thermique des stations de Tanger et de Ifrane ?
- 2- Diviser le diagramme en période sèche et période humide ?
- 3- Comparer les deux diagrammes?
- 4- Déduire les conditions climatiques de la répartition du cèdre ?
- Solution:
- 1- Réalisation des diagrammes ombro thermiques

- 2- voir le diagramme.
- 3- Les deux digrammes ombro thermiques diffèrent par la durée de leurs périodes de sécheresse et d'humidité :

A Ifrane la période de sécheresse dure 3 mois du début de Juin à la fin de Août , alors qu'à Tanger cette période est plus longue du mi Août à la moitie de Octobre .

- 4- Les conditions climatiques de l'installation du cèdre sont donc :
- Pa 750 mm
- T 9°C pendant la période froide
- Une période de sécheresse qui ne dépasse pas 3 mois .

2- variation des facteurs climatiques à l'échelle national :

Le Maroc est caractérisé par une très grande variété de la valeur des précipitations annuelles allant de 100 mm à plus de 900 mm , et de la valeur des températures moyennes annuelles de 6°C à 26 °C .

Quels sont les facteurs responsables de cette variété ?

2-1- variation des précipitations :

a- Analyse de documents :

Les stations	Tanger	Rabat	Safi	Agadir	Laayoune
Pa(mm)	752	587.5	337	248	69

document 1: Évolution des précipitations annuelles le long de la côte atlantique du nord vers le sud

Les stations	Safi	Youssoufia	Sidi M'barek	Ben Guerir
L'altitude (m)	15	170	320	575
Éloignement de la mer (Km)	1	31	73	113
Pa (mm)	337	305	254	233

document2 : Évolution des précipitations annuelles sur la même latitude

b- Conclusion:

La variation du taux des précipitations dépond de plusieurs facteurs :

- ➤ La latitude : du Sud vers le Nord les précipitations annuelles augmentent
- L'altitude : plus l'altitude augmente plus les précipitations sont moins abondantes
- L'éloignement de la mer ou la continentalité : plus on s'éloigne de la mer plus le taux des précipitations diminue.

Selon le taux des précipitations annuelles Pa, on distingue 3 domaines :

- 700mm Pa < 2000 mm : domaine humide
- 100mm Pa < 700 mm : domaine aride
- Pa < 100mm : domaine saharien

2-2- variation des températures :

A partir des données sur la température mensuelle des stations étudiées précédemment, on peut noter les observations suivantes :

- ➤ Le mois d'Août est le mois le plus chaud de l'année ; M la moyenne des maximas du mois le plus chaud s'approche de 30° dans les zones littorales et de 40° dans les zones continentales .
- Le mois de Janvier est le mois le plus froid de l'année ; m la moyenne des minimas du mois le plus froid s'approche de 7° dans les zones littorales et de 0° dans les zones continentales .

Selon la valeur de m la moyenne des minimas du mois le plus froid , on distingue 4 domaines hivernaux :

- Domaine à hiver très froid si m < 0°
- Domaine à hiver froid si 0° m 3°
- Domaine à hiver tempéré si 3° < m 7°
- Domaine à hiver chaud si m > 7°

2-3- travaux de Emberger :

Emberger a étudié le climat du bassin méditerranéen , et a divisé cette région en 5 étages climatique , en se basant sur la valeur de m la moyenne des minimas du mois le plus froid , et sur le Q le quotient pluviothermique :

$$Q = \frac{1000 \text{ Pa}}{(M+m) \text{ (M-m)}}$$

- Q : Quotient pluviométrique
- Pa : la moyenne annuelle des précipitations en mm.
- M : la moyenne des temperatures maximales du mois le plus chaud en°K (°K = °C + 273 °C).
- m : la moyenne des températures minimales du mois le plus froid en °K (°K = °C + 273 °C).

Selon la valeur de m et de Q , on détermine l'étage climatique d'une station en se basant sur le climagramme d'Emberger :

Chaque étage climatique est divisé en domaines selon la valeur de m qui détermine le type d'hiver, on passe de l'étage climatique à hiver très froid jusqu'à l'étage climatique à hiver très chaud.

Dans chaque étage climatique s'installent un assemblage de plantes ayant les mêmes besoins climatiques, cet assemblement de plantes forme un étage végétal caractéristique de l'étage climatique. Emberger a nommé l'ensemble étage climatique + étage végétal correspondant, étage bioclimatique.

- Application:

En se basant sur les données climatiques suivantes , et sur le climagramme d'Emberger , déterminer l'étage bioclimatique de Ifrane et d'Errachidia.

	Pa en mm	M°C	m°C
Ifrane	1055	30.6	0.1
Errachidia	112.5	40.1	2.4

- Solution:

Pour déterminer l'étage bioclimatique de Ifrane et d'Errachidia , on calcule le quotient pluviothermique de chaque ville , et on détermine l'étage bioclimatique de chaque ville sur le climagramme d'Emberger :

- Pour Ifrane :

$$M = 273 + 30.6 = 303.6 \, ^{\circ}K$$

 $M = 273 + 0.1 = 273.1 \, ^{\circ}K$

$$Q = \frac{\text{Pa x } 1000}{\frac{\text{(M + m)}}{2} \text{ (M - m)}} = \frac{1055 \text{ x } 1000}{\frac{(303.6 + 273.1)(303.6 - 273.1)}{2}} = 120$$

Pour Errachidia :

$$M = 273 + 40.1 = 313.1 \text{ °K}$$

$$m = 273 + 2.4 = 275.4 \text{ °K}$$

$$Q = \frac{\text{Pa x } 1000}{\underline{\text{(M + m)}}} \text{ (M - m)} = \frac{112.5 \text{ x } 1000}{\underline{(313.6 + 275.4)(313.6 - 275.4)}} = 10.14$$

Ifrane appartient à l'étage bioclimatique humide à hiver frais Errachidia appartient à l'étage bioclimatique saharien à hiver frais .

3- Répartition des végétaux sur les versants des montagnes :

Le document suivant représente la répartition horizontale des végétaux sur deux versants de deux montagnes avec le même sol :

- 1- Comparer la végétation des deux versants?
- 2- Formuler une hypothèse pour expliquer les différences observées ?
- 3- Sachant que:
- le cèdre occupe l'étage bioclimatique humide froid à très froid
- le chêne vert occupe l'étage bioclimatique subhumide froid
- le genévrier occupe l'étage bioclimatique semi aride froid à très froid
- les pelouses et les plantes en coussinet occupent les étages bioclimatiques hyper froids .

comment expliquer ces différences dans la végétation des versants ?

- solution:

- 1- les espèces qui s'installent sur le versant exposé au nord sont différentes des espèces qui s'installent sur le versant exposé au sud .
- 2- puisque les deux versants ont le même sol , les différences observées seraient dues à des variations climatiques entre les deux versants .

- 3- sur le versant exposé au nord on passe d'un climat froid en avale à un climat hyper froid en amant
 - sur le versant exposé au sud on passe d'un climat froid en avale à un climat trés froid en amant
 - le versant exposé au sud est chaud que le versant exposé au nord ces variations climatiques entre les deux versants sont dues :
- au facteur de la topographie / plus l'altitude augmente plus la température diminue .
- au facteur de l'exposition au soleil : le versant exposé au sud est plus ensoleillé que le versant exposé au nord , donc plus chaud .

4- le climat et la répartition des animaux :

4-1- action de la température :

L'étude de l'abondance d'une espèce de fourmis en fonction de la température du milieu a donnée les résultats suivants :

Température en °C	10	12	17	22	27	32	37	42	47
Nombre de fourmis	0	1	11	45	159	32	18	4	0

- 1- représenter la courbe de variation du nombre de fourmis en fonction de la température ?
- 2- interpréter le graphe obtenu ?
- 3- que peut-on conclure ?

- solution:

1- réalisation du graphe :

- 2- les fourmis survivent dans une température de 10°C à 42°C, cet intervalle de température de survie est appelé domaine de tolérance les fourmis ne peuvent survivre à 10 °C et à 47°C, ces deux valeurs sont appelées successivement température létale minimale et température létale maximale.
 - à 27°C le nombre de fourmis est maximal , on qualifie 27°C de température optimale .
- 3- la température est un facteur écologique climatique qui détermine la répartition des animaux .

4-2- action de la température et de l'humidité :

Les documents suivants représentent les variations mensuelles de la moyenne thermique T et de l'humidité H à Tanger et à Midelt , et les conditions climatiques de survie de la coccinelle :

	Les mois	J	F	М	Α	Μ	J	<u>ا</u>	Α	S	0	Ν	D
Tanger	Humidité en %	71	70	72	67	66	67	68	70	71	73	73	75
	T en °C	12	12	14	15	17	21	22	23	21	20	16	13
Midelt	Humidité en %	55	46	45	44	44	40	28	27	38	44	53	55
	T en °C	5	6	10	12	16	20	25	24	18	14	10	6.5

Document 1

docume	nt 2	Domaine de tolérance	Domaine optimal de survie
Humidité	Minimum	40	60
en %	Maximum	100	85
Température	Minimum	12.5	16
en °C	maximum	24	20

- 1- à partir du document 1, réaliser le climato gramme de Tanger et de Midelt en traçant la courbe de variation de la température et de l'humidité en fonction des mois ?
- 2- limiter sur le climato gramme réalisé le domaine de tolérance et le domaine optimal de la survie des coccinelles ?
- 3- est ce que les coccinelles peuvent survivre et se multiplier à Midelt ? justifier ?

solution:

1- réalisation du climato gramme :

3- Les coccinelle ne peuvent survivre et se multiplier à Midelt parce que la plus grande parti du climato gramme de Midelt est à l'extérieur du domaine de tolérance et de survie optimale des coccinelles .

5- réactions des êtres vivants aux changements des conditions climatiques :

Grace à leur déplacement les animaux cherchent les conditions climatiques optimales ou tolérables pour s'installer dans un milieu , quand ces conditions deviennent intolérables pendant certaines périodes de l'année , les animaux présentent des comportements divers :

- Certains entrent en migration collective à la recherche de conditions climatiques favorables , comme les oiseaux migrateurs qui quittent l'Europe pour s'installer pendant la période hivernale en Afrique .

 D'autres hibernent sur place , et s'endorment en menant une vie ralentie , comme les ours et petits rongeurs des zones froides .

Pour les végétaux fixés à leurs milieux , ils passent la mauvaise saison sous forme :

- De graines contenant un embryon qui mène une vie ralentie dans l'attente de l'amélioration des conditions climatiques, une fois favorable, les graines germent et donnent de nouvelles plantes.
- De tubercules qui restent dans le sol , et germent quand les conditions climatique redeviennent favorables .

6- le contrôle des facteurs climatiques pour l'amélioration du rendement des produits agricoles : (sous forme d'exposé)

La connaissance des conditions climatiques optimales pour le développement des plantes cultivées et des animaux ,a permis un grand développement du secteur agricole avec des rendements très importants .

La culture sous serre permet de contrôler la température et la teneur de l'air en ${\rm CO_2}$, d'où un très grand rendement et possibilité de culture de plante estivales en hiver et de plantes tropicales en régions méditerranéennes .

		Rendement en t/ha	
	En plein champ	Sous serre	Sous serre contrôlée
Concombre	30,6	99,5	204,8
Tomate	35,5	92,6	117,7
Aubergine	20.2	37,9	106,4
Poivron	19,7	40,2	55,6
Courgette	19,8	54,0	46,9
Laitue	22,7	33,2	36,4
Melon	12,8	26,2	34,2
Fraise	12,5	17,5	24,8
Radis	13,5	18,6	17,4