Université Toulouse III Paul Sabatier Cours M2 ISTR / RODECO - Commande linéaire avancée - Commande Robuste

Examen du 15 Octobre 2021

À toutes fins utiles, voir le recto de cette feuille. Les exercices sont indépendants.

Théorème

S'il existe $P=P^T\succ 0$ solution simultanément des \bar{v} LMI

$$\forall v = 1 \dots \bar{v} \quad \begin{bmatrix} A^{[v]T}P + PA^{[v]} & PB_w^{[v]} & C_z^{[v]T} \\ B_w^{[v]T}P & -\mu^2 I & D_{zw}^{[v]T} \\ C_z^{[v]} & D_{zw}^{[v]} & -I \end{bmatrix} \prec 0$$

alors la norme L_2 induite du système

$$\dot{x} = A(\Delta)x + B_w(\Delta)w$$
 , $z = C_z(\Delta)x + D_{zw}(\Delta)w$

vérifie sup $\frac{\|z\|^2}{\|w\|^2} < \mu^2$ pour toute réalisation du système polytopique

$$\forall \zeta_v \ge 0 \quad , \quad \sum_{v=1}^{\bar{v}} \zeta_v = 1 \quad , \quad \left[\begin{array}{cc} A(\Delta) & B_w(\Delta) \\ C_z(\Delta) & D_{zw}(\Delta) \end{array} \right] = \sum_{v=1} \zeta_v \left[\begin{array}{cc} A^{[v]} & B_w^{[v]} \\ C_z^{[v]} & D_{zw}^{[v]} \end{array} \right].$$

Q1. Prouver le théorème. On suggère pour faire cette preuve de considérer la fonction $V(x) = x^T P x$ et le vecteur

$$\eta = \left(\begin{array}{c} x \\ w \\ z \end{array}\right).$$

Q2. Soit le système incertain suivant où $|\delta| < 0.5$

$$\dot{x} = \left[\begin{array}{cc} \delta - 1 & 0 \\ \frac{\delta}{1 + \delta} & -1 \end{array} \right] x + \left[\begin{array}{c} 0 \\ 1 \end{array} \right] w \quad , \quad z = \left[\begin{array}{cc} 1 & 0 \end{array} \right] x$$

Q2.1 Proposer un modèle polytopique pour ce système.

Q2.2 Le système est-il robustement stable pour toute incertitude paramétrique (constante)? Le système est-il robustement stable pour toute incertitude variant dans le temps?

Q3. Soit le système incertain suivant où $|\delta| \leq 0.5$

$$\dot{x} = \left[\begin{array}{cc} \delta - 1 & 0 \\ \frac{\delta}{1 + \delta} & -1 \end{array} \right] x + \left[\begin{array}{c} 0 \\ 1 \end{array} \right] w \quad , \quad z = \left[\begin{array}{cc} 1 & 0 \end{array} \right] x$$

Q3.1 Proposer un modèle LFT pour ce système.

Q3.2 Proposer une méthode reposant sur le théorème du petit gain permettant de garantir que la norme H_{∞} du transfert de w vers z est inférieure à 2 quelque soit la valeur de $|\delta| \leq \gamma < 0.5$.

Q3.3 Calculer la matrice de transfert correspondant au problème énoncé en Q3.2. Peut-on conclure positivement?

A toutes fins utiles on donne les éléments suivants :

La fonction $f(\delta) = \frac{\delta}{1+\delta}$ est monotone croissante.

La fonction $V(x) = x^T P x$ avec P = I est définie positive.

Les valeurs propres de $A \in \mathbb{R}^{2 \times 2}$ sont toutes a partie réelle négative si et seulement si sa trace est négative tr(A) < 0 et son déterminant est positif det(A) > 0.

Les valeurs singulières de la matrice $H(j\omega)$ avec $H(s)=\begin{bmatrix} \frac{1}{s+1} & 0 & 0\\ \frac{1}{s+1} & -1 & 0\\ \frac{1}{s+1} & 0 & 0 \end{bmatrix}$ sont tracées sur la figure suivante

 $20\log_{10}(2) = 6.02.$