Ecole Supérieure de la Statistique et de l'Analyse de l'Information de Tunis

1ère année 2h00

Avril 2005

CORRECTION DE L'EXAMEN D'ANALYSE NUMÉRIQUE

Exercice (5pt).

1. Soit f une fonction continue sur un intervalle $[a, b] \subset \mathbf{R}$ avec f(a).f(b) < 0. Nous allons utiliser la sécante passant par les points d'abscisses x_n et x_{n-1} pour en déduire x_{n+1} . L'équation de la sécante s'écrit sous la forme :

$$S(x) = f(x_n) + (x - x_n)\tau_n$$
 avec $\tau_n = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$

On définit x_{n+1} comme étant l'intersection de la sécante S(x) avec l'axe des $x:S(x_{n+1})=0$ et on obtient

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

L'explication géométrique suffit.

2. Théorème du cours : Soit f une fonction de Classe C^2 . Si x^* est une racine simple de f, alors la méthode de Newton est au moins d'ordre 2.

Problème (15pt). Nous considérons l'ensemble des points

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$,
 $f_0 = -4$, $f_1 = -1$, $f_2 = -2$, $f_3 = 5$.

- 1. Afin de déterminer une approximation du nuage de points (x_i, f_i) pour i de 0 à 3, calculer la droite de régression linéaire P_0 par la méthode des moindres carrés discrets. $P_0(x) = 2.6 * t 1.8 = \frac{13}{5}t \frac{9}{5}$.
- 2. Citer deux méthodes permettant de calculer le polynôme de Lagrange : Aitken, Neville, différences divisées, Interpolation de Lagrange.
- 3. Montrer que les polynômes d'interpolation de Lagrange vérifient $L_i(x_i) = 1$ et $L_i(x_j) = 0$ pour tout i et $j \neq i$ de 0 à 3: trivial.
- 4. Calculer le polynôme de Lagrange P sur les points (x_0, f_0) , (x_1, f_1) , (x_2, f_2) et (x_3, f_3) : $P(x) = 2x^3 2x^2 x 1$.

- 5. Quelle est la différence entre P et P_0 : le degré, la nature de la construc-
- 6. Vérifier que $P(x_i) = f_i$ pour i de 0 à 3 et montrer qu'il existe une unique racine de P sur l'intervalle [0,3].
- 7. Donner le théorème de convergence globale de la méthode de Newton pour une fonction de classe C^2 : [Convergence globale de la méthode de Newton] Soit f une fonction de Classe C ² sur [a,b] et $g(x) = x - \frac{f(x)}{f'(x)}$. Si f vérifie :
 - (a) f(a).f(b) < 0
 - (b) $\forall x \in [a, b], f'(x) \neq 0$ (c'est la stricte monotonie),
 - (c) $\forall x \in [a, b], f''(x) \neq 0$ (concavité dans le même sens).

Alors en choisissant $x_0 \in [a, b]$ tel que $f(x_0).f''(x_0) > 0$, la suite (x_n) définie par x_0 et $x_{n+1} = g(x_n)$ converge vers l'unique solution de f(x) =0 dans [a,b].

- 8. Calculer la racine de P(x) = 0 sur l'intervalle [0,3] par la méthode de Newton avec $x_0 = 3$. La précision des calculs est à 10^{-6} près : $x_1 =$ $2.219512195,\,x_2=1.772561952,\,x_3=1.579079696,\,x_4=1.538687685,\,$ $x_5 = 1.536976780 = x_6 = x^*.$
- 9. Ecrire l'algorithme de Newton qui prend en entrée les points x_0 , a < bet une fonction f et rend la racine de f(x) = 0 sur [a, b] ou bien un message d'erreur.

```
1. n := 1;
```

2. Tant que $n \le N$ Faire $c := x_0 - \frac{f(x_0)}{f'(x_0)}$; 3. Si $|c - x_0| \le \epsilon$ Alors c; n := N + 2 Fin Si;

n := n + 1;

 $x_0 := c$;

Fin Tant que:

Si n = N + 2 Alors Imprimer(c) Sinon

Erreur Fin Si;

Fin.