Hypothesis Tests for Variances and for two means

8.2

Today's topics

Review:

Hypothesis test steps

New:

- Hypothesis test for variances
- Hypothesis test for two means

In all the examples from Tuesday's lecture, we are assuming that these samples are coming from distributions that are **approximately normal** for these methods to work.

(Otherwise, with small sample sizes, the CLT would not hold)

Hypothesis Testing (Steps) uninteresting

Identify a test statistic to use and its distribution under H₀

Evaluate the test statistic

Calculate a p-value, compare to α . OR Identify a rejection region

Make a decision

if $p < \alpha$, reject H_0 . Otherwise, (if $p > \alpha$), do not reject H_0 .

State conclusion in the context of the original question.

"There is/isn't enough evidence to show that..."

$$p = 0.04999 \approx 0.05$$

General Form of CI for mean (review)

Estimate \pm (Critical Value * SE of estimate) e.g. if σ is known:

$$\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

if σ is unknown:

$$\bar{x} \pm t_{n-1,\alpha/2} * \frac{s}{\sqrt{n}}$$

notes
$$\frac{d = 0.05}{d = 0.1}$$

$$H_{\circ}: M = 1000$$

$$H_{\circ}: M \neq 1000$$

$$\frac{d = 0.01}{d = 0.01}$$

$$\frac{d = 0$$

Confidence Interval for σ^2 (review)

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

Hypothesis Tests for Variance (or SDs)

Test statistic:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

Rejection Region:

Left-tailed:

Rejection Region:

Right-tailed:

$$\begin{array}{lll} \mathsf{H}_0: \sigma^2 \leq \sigma_0^2 & \mathsf{vs} & \mathsf{H}_1: \sigma^2 > \sigma_0^2 \\ \mathsf{H}_0: \sigma & \leq \sigma_0 & \mathsf{vs} & \mathsf{H}_1: \sigma & > \sigma_0 \end{array}$$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma \leq \sigma_0$$
 vs

$$H_1: \sigma > \sigma_0$$

Two-tailed:

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs}$$
 $H_1: \sigma^2 \neq \sigma_0^2$
 $H_0: \sigma = \sigma_0 \text{ vs}$ $H_1: \sigma \neq \sigma_0$

$$\mathsf{H_1}:\sigma^2
eq \sigma_0^2$$

$$H_0$$
: $\sigma = \sigma_0$ vs

$$H_1: \sigma \neq \sigma_0$$

Hypothesis Tests for Variance (or SDs)

Left-tailed:

$$H_0: \sigma^2 \ge \sigma_0^2$$
 vs $H_1: \sigma^2 < \sigma_0^2$

$$H_1$$
: $\sigma^2 < \sigma_0^2$

$$H_0: \sigma \geq \sigma_0$$
 vs $H_1: \sigma < \sigma_0$

$$H_1: \sigma < \sigma_0$$

Right-tailed:

$$H_0$$
: $\sigma^2 \le \sigma_0^2$ vs H_1 : $\sigma^2 > \sigma_0^2$

$$H_1: \sigma^2 > \sigma_0^2$$

$$H_0: \sigma \leq \sigma_0$$

$$H_0: \sigma \leq \sigma_0$$
 vs $H_1: \sigma > \sigma_0$

Two-tailed:

$$H_0$$
: $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 \neq \sigma_0^2$

$$H_1$$
: $\sigma^2 \neq \sigma_0^2$

$$H_0$$
: $\sigma = \sigma_0$ vs H_1 : $\sigma \neq \sigma_0$

$$H_1: \sigma \neq \sigma_0$$

Example

rom the final exam was collected: 78,

A sample of 12 random exam scores from the final exam was collected: 78, 81, 82, 77, 86, 79, 84, 87, 86, 91, 88, 88. (s = 4.48). Last year's final had σ = 7. Is there enough evidence to suggest that the population standard deviation for this year is lower than 7? Test at alpha \neq 0.05

$$\frac{11 \cdot 4.48}{11 \cdot 6.24} = \frac{(4.5056 - 2)}{11 \cdot 4.48} = \frac{11 \cdot 4.48}{11 \cdot 4.5056} =$$

There is significant evidence to suggest that the population SD this year is lower than 7 at alpha =0.05.

$\chi^{2}(8)$	0.10 x ² (8)
0.05	0.05
$0 2 4 6 8 10 12 x14 16 18 20$ $P(X \le x) = \int_0^x \frac{1}{\Gamma(x)} (x \le x) dx$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	$P(X \le x)$							
	0.010	0.025	0.050	0.100	0.900	0.950	0,975	0.990
r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6,635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21
11	3.053	3.816	4.575	5.578	17.28	19.68	21.92	24.72
1.0	0.574		5.006	6.004	10.55	21.02		24.22

Say we have two populations: with mean μ_1 , variance σ_1^2 , and mean μ_2 , variance σ_2^2 .

Let $X_1, X_2, ..., X_{n_1}$ and $Y_1, Y_2, ..., Y_{n_2}$ be two independent samples from each of these populations.

If n_1 and n_2 are large, or these populations are both approximately normal then a confidence interval for μ_1 - μ_2 is:

$$\rightarrow$$

$$(\overline{X} - \overline{Y}) \pm z\alpha/2\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Var [x-y] = Ver [x] + Vor [y]

Review – Functions of Normal Distributions

Assuming i.i.d:

If each $X_i \sim N(\mu, \sigma^2)$, what is the distribution of \overline{X} ?

$$(X \sim N(\mu, \pi))$$

If each X_i has mean μ_1 , and variance σ_1^2 , $\overline{X} \sim ? \overline{X} \sim N$

 N_2 If each Y_i has mean μ_2 , and variance σ_2^2 , $\bar{Y} \sim ?$

$$\overline{X} - \overline{Y} \sim ? \qquad \mathcal{N} \left(M_1 - M_2 \right) \frac{\overline{\sigma_1}^2}{n_1} + \frac{\overline{\sigma_2}}{n_2}$$

General form of CI for mean

Estimate
$$\pm$$
 Critical Value * SE(estimate)
$$(\bar{X} - \bar{Y}) + 7\alpha \sqrt{\frac{\sigma_1^2 + \frac{\sigma_2^2}{2}}{2}}$$

2-sample confidence interval

$$(\bar{X} - \bar{Y}) \pm t\alpha/2$$
 $n_1 + n_2$

Two approaches for df:

1. Conservative —

$$df = min(n_1, n_2) - 1$$

$$df = \frac{\left(\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}\right)}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$$

If we can assume that population 1 and population 2 standard deviations are equal, we can use s_{pooled} as an estimator for both.

$$(\overline{X} - \overline{Y}) \pm t_{\alpha/2} \cdot s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where

$$S_{\text{pooled}}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

and df =
$$n_1 + n_2 - 2$$

Two sample means – Matched pairs

Assume that the differences $D_i = X_i - Y_i$ are a random sample from normal distribution with mean δ_D and standard deviation $\sigma_{D.}$

A confidence interval for δ_{D} is

$$\overline{D} \pm t_{\alpha/2} \frac{s_D}{\sqrt{n}}$$
. df = n-1

The test statistic for testing H_0 : $\delta = \delta_0$ is

$$T = \frac{\overline{D} - \delta_0}{s_D / \sqrt{n}}$$

Pair			Difference
1	\mathbf{x}_1	Y ₁	$D_1 = X_1 - Y_1$
2	\mathbf{X}_{2}	Y_2	$D_2 = X_2 - Y_2$
	•	•	
	•	•	•
	•	•	•
n	X_n	\mathbf{Y}_{n}	$D_n = X_n - Y_n$

Example

=16

Among the data collected for the World Health Organization air quality monitoring project is a measure of suspended particles, in $\mu g/m^3$. Let X and Y equal the concentration of suspended particles in $\mu g/m^3$ in the city centers of Melbourne and Houston, respectively. Using n=13 observations of X and m=16 observations of Y, we obtain $\bar{x}=72.9$, $s_x=25.6$, $\bar{y}=81.7$, $s_Y=28.3$. Perform a test to see if Houston has worse air quality at 0.05 \sim significance and state the result.

$$H_0: \mu_X = \mu_Y$$
 $M_1: \mu_X < \mu_Y$

$$(\overline{X} - \overline{Y}) \pm t_{\alpha/2} \cdot s_{\text{pooled}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

$$s_{\text{pooled}}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}$$

What if we want to pool the variance?

 \bar{x} =72.9 s_x = 25.6, \bar{y} =81.7 s_y = 28.3. Perform a test to see if Houston has worse air quality at 0.05 significance and state the result.

$$H_0$$
: $\mu_X = \mu_Y$

$$H_1$$
: $\mu_X < \mu_Y$.

$$S_{p}^{2} = \frac{(13-1)25.6 + (16-1)28.3}{13+16-2}$$

$$\frac{x-y-0}{\sqrt{\frac{5^2}{13}+\frac{5^2}{16}}} \sim \pm \frac{n_1+n_2-2}{16}$$

Degrees of freedom: 2 sample If pairing: \rightarrow n-1 If not paring: If pooling: \rightarrow n1 + n2 – 2 If not pooling: Conversative: min(n1,n2) - 1Or Welch's ← default

