9. Para investigar a influência da opção profissional sobre o salário inicial de recém-formados, investigaram-se dois grupos de profissionais: um de liberais em geral e outro de formados em Administração de Empresas. Com os resultados abaixo, expressos em salários mínimos, quais seriam suas conclusões?

Liberais	6,6	10,3	10,8	12,9	9,2	12,3	7,0	
Administradores	8,1	9,8	8,7	10,0	10,2	8,2	8,7	10,1

Solução: Sejam X o salário inicial, expresso em salários mínimos, do grupo de liberais.

$$X \sim N(\mu_1, \sigma_1^2)$$

e

Y o salário inicial, expresso em salários mínimos, do grupo de administradores de empresas:

$$Y \sim N(\mu_2, \sigma_2^2)$$

Vamos testar inicialmente se as variâncias são iguais:

$$H_0: \sigma_1^2 = \sigma_2^2$$

versus

$$H_0: \sigma_1^2 \neq \sigma_2^2$$

Vamos utilizar um nível de significância de 5%.

Vamos utilizar

$$F = \frac{\frac{S2X}{\sigma_1^2}}{\frac{S2Y}{\sigma_2^2}} \sim F(n-1, m-1).$$

Se H_0 é verdade temos:

$$F = \frac{S_1^2}{S_2^2} \sim F(6,7).$$

```
> X=c(6.6,10.3,10.8,12.9,9.2,12.3,7);X
[1] 6.6 10.3 10.8 12.9 9.2 12.3 7.0
> sort(X)
[1] 6.6 7.0 9.2 10.3 10.8 12.3 12.9
> n=length(X);n
[1] 7
>
> SX=sum(X);SX2=sum(X^2);SX;SX2
[1] 69.1
[1] 717.63
```

```
> Xb=mean(X);Xb
[1] 9.871429
> S2X=var(X);S2X
[1] 5.919048
> Y=c(8.1,9.8,8.7,10,10.2,8.2,8.7,10.1)
> sort(Y)
[1] 8.1 8.2 8.7 8.7 9.8 10.0 10.1 10.2
> m=length(Y);m
[1] 8
>
> SY=sum(Y); SY2=sum(Y^2); SY; SY2
[1] 73.8
[1] 686.32
> Yb=mean(Y);Yb
[1] 9.225
> S2Y=var(Y);S2Y
[1] 0.7878571
> var.test(X,Y)
F test to compare two variances
data: X and Y
F = 7.5128, num df = 6, denom df = 7, p-value = 0.01768
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.467755 42.789180
sample estimates:
ratio of variances
7.512844
> t.test(X,Y)
Welch Two Sample t-test
data: X and Y
t = 0.6653, df = 7.393, p-value = 0.5261
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.626575 2.919433
sample estimates:
mean of x mean of y
9.871429 9.225000
```

```
>
> A=S2X/n; B=S2Y/m; A; B
[1] 0.8455782
[1] 0.09848214
> num=(A+B)^2;num
[1] 0.89125
> den=A^2/(n-1)+B^2/(m-1);den
[1] 0.1205526
> r=num/den;r;round(r,3)
[1] 7.393037
[1] 7.393
> t_cal=(Xb-Yb)/sqrt(A+B);t_cal;round(t_cal,4)
[1] 0.6653048
[1] 0.6653
> p_1=pt(t_cal,r);p_1
[1] 0.7369695
> nd=2*min(p_1,1-p_1);nd
[1] 0.526061
>
> #####O R usa os graus de liberdade quebrados !!!!!!!
>
> #####Usando r=7
> floor(r)
[1] 7
> p_2=pt(t_cal,floor(r));p_2
[1] 0.7364196
> nd=2*min(p_2,1-p_2);nd
[1] 0.5271608
>
> #####Usando r=8
> ceiling(r)
[1] 8
> p_3=pt(t_cal,ceiling(r));p_3
[1] 0.7377157
> nd=2*min(p_3,1-p_3);nd
[1] 0.5245686
>
```

Queremos testar:

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2.$

Se H_0 é verdade

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S2_X/n + S2Y/m}} \sim t(r)$$