NOI2025 广东省队集训 Day1

GDOI

时间: 2025 年 4 月 20 日

题目名称	最小生成树	操作	排列
题目类型	传统题	传统题	传统题
目录	mst	operation	permutation
可执行文件名	mst	operation	permutation
输入文件名	mst.in	operation.in	permutation.in
输出文件名	mst.out	operation.out	permutation.out
每个测试点时限	2 秒	1.5 秒	1秒
内存限制	1024 MB	1024 MB	1024 MB
子任务数目	25	20	10
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	mst.cpp	operation.cpp	permutation.cpp
-----------	---------	---------------	-----------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项 (请仔细阅读)

- 1. 测试机器: CPU(AMD Ryzen 7 5700G 3.80 GHz), RAM 32G。
- 2. 测试环境: Windows 10, g++ 13.2.0, Lemonlime 0.3.4。
- 3. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 4. C/C++ 中函数 main() 返回类型必须是 int,程序正常结束返回值必须是 0。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。

最小生成树 (mst)

【题目描述】

给定一张 n 个点 m 条边的 无向连通图,图中的第 i 条边有 a_i, b_i 两个权重。对于图中的每条边,你可以选择 a_i, b_i 其中之一作为该条边的边权。

对于所有满足 $0 \le k \le m$ 的整数 k,你需要求出,若选择**恰好** $k \uparrow a_i$ 作为对应边的 边权,**恰好** $m-k \uparrow b_i$ 作为对应边的边权,该图的最小生成树的边权和最大是多少。

【输入格式】

从文件 mst.in 中读入数据。

第一行包含两个整数 n, m。

接下来 m 行,每行包含四个整数 x_i, y_i, a_i, b_i ,表示图中的第 i 条边,其连接 x_i, y_i 两点,权重为 a_i, b_i 。

【输出格式】

输出到文件 mst.out 中。

输出 m+1 行共 m+1 个整数, 第 i 个数表示 k=i-1 时的答案。

【样例 1 输入】

```
1 3 3
2 1 2 5 4
3 2 3 2 9
4 1 3 3 6
```

【样例 1 输出】

```
1 10
2 11
3 8
4 5
```

【样例1解释】

k=0: 选择 b_1,b_2,b_3 , 最小生成树边权和为 $b_1+b_3=10$ 。

k=1: 选择 a_1,b_2,b_3 , 最小生成树边权和为 $a_1+b_3=11$ 。

k=2: 选择 a_1,b_2,a_3 , 最小生成树边权和为 $a_1+a_3=8$ 。

k=3: 选择 a_1, a_2, a_3 ,最小生成树边权和为 $a_2+a_3=5$ 。

【样例 2】

见选手目录下的 mst/mst2.in 与 mst/mst2.ans。

【样例 3】

见选手目录下的 mst/mst3.in 与 mst/mst3.ans。

【样例 4】

见选手目录下的 *mst/mst4.in* 与 *mst/mst4.ans*。

【数据范围】

对于所有数据,保证 $2 \le n \le 9$, $n-1 \le m \le 100$, $1 \le x_i, y_i \le n$, $1 \le a_i, b_i \le 10^8$ 。 保证图连通且无自环。

测试点编号	$n \leq$	$m \leq$
$1 \sim 4$		18
$5\sim 6$	6	30
$7 \sim 8$		100
$9 \sim 10$	7	30
$11 \sim 12$		100
$13 \sim 14$	8	30
$15 \sim 16$		100
$17 \sim 18$		30
$19 \sim 20$	9	60
$21 \sim 25$		100

操作 (operation)

【题目描述】

给定一个**质数** p 和 n 个操作,操作有如下两种:

- 1. 给定 x, 将 w 修改为 x。
- 2. 给定 x, 将 w 修改为 $(w \times x) \mod p$ 。

其中 w 是一个初始为 1 的变量。

你可以以任意顺序执行上面的 n 个操作,得到最终的 w。你需要求出在 $0 \sim p-1$ 中,有多少个数是**无论以什么顺序执行操作**都无法得到的。

【输入格式】

从文件 operation.in 中读入数据。

本题为多组数据,输入数据第一行包含一个整数 T,表示数据组数。

对于每组数据:

第一行包含两个整数 p, n。

接下来 n 行,每行包含两个整数 op_i, x_i 。其中 $op_i = 0$ 表示第一种操作, $op_i = 1$ 表示第二种操作, x_i 表示操作中给定的数。

【输出格式】

输出到文件 operation.out 中。

对于每组数据,输出一行一个整数表示答案。

【样例 1 输入】

```
      1
      1

      2
      7
      3

      3
      1
      2

      4
      0
      6

      5
      1
      3
```

【样例 1 输出】

1 3

【样例 1 解释】

0,2,3 无法被生成。

【样例 2】

见选手目录下的 operation/operation2.in 与 operation/operation2.ans。

【样例 3】

见选手目录下的 operation/operation3.in 与 operation/operation3.ans。

【数据范围】

对于所有数据,保证 $1 \le T \le 2$, $1 \le n \le 10^6$, $2 \le p \le 10^6$, $op_i \in \{0,1\}$, $0 \le x_i < p$ 。 保证 p 为质数。

测试点编号	$n \leq$	$p \leq$	特殊性质
$1 \sim 2$	10	10^{6}	无
$3 \sim 4$	10^{4}	10°	A
$5 \sim 6$	10^{3}	10^{4}	
$7 \sim 10$	10^{5}	10^{5}	无
$11 \sim 20$	10^{6}	10^{6}	

特殊性质 A: 保证最多存在 12 个第二种操作。

排列 (permutation)

【题目描述】

给定一个 $1 \subseteq n$ 的排列 p。

由排列 p 生成一张包含 n 个点的**边权均为** 1 **的无向图** G,其中 i,j 两点间有边当且 仅当 i < j 且 $p_i > p_j$ 。记 dis(x,y) 表示 G 中 x,y 两点间最短路径的长度,特别地,若 x,y 不连通,dis(x,y) = 0。

你需要对于图中的每个点 x, 求出 $\sum_{i=1}^{n} dis(x,i)$ 。

【输入格式】

从文件 permutation.in 中读入数据。

第一行包含一个整数 n。

第二行包含 n 个整数 p_1, p_2, \dots, p_n ,表示排列 p。

【输出格式】

输出到文件 permutation.out 中。

输出一行 n 个整数, 第 i 个数表示 x = i 时的答案。

【样例 1 输入】

1 6 2 3 1 4 2 6 5

【样例 1 输出】

466411

【样例 1 解释】

x = 1 时答案为 0 + 1 + 2 + 1 + 0 + 0 = 4。

x = 2 时答案为 1 + 0 + 3 + 2 + 0 + 0 = 6。

x = 3 时答案为 2 + 3 + 0 + 1 + 0 + 0 = 6.

x = 4 时答案为 1 + 2 + 1 + 0 + 0 + 0 = 4。

x = 5 时答案为 0 + 0 + 0 + 0 + 0 + 1 = 1。

x = 6 时答案为 0 + 0 + 0 + 0 + 1 + 0 = 1.

【样例 2】

见选手目录下的 permutation/permutation2.in 与 permutation/permutation2.ans。

【样例 3】

见选手目录下的 *permutation/permutation3.in* 与 *permutation/permutation3.ans*。

【数据范围】

对于所有数据,保证 $1 \le n \le 2 \times 10^5$, $1 \le p_i \le n$ 。保证 p 为一个 $1 \le n$ 的排列。

测试点编号	$n \leq$	特殊性质
1	5×10^2	
2	2×10^3	
$3 \sim 4$	10^{4}	无
5	1.2×10^{5}	
$6 \sim 7$	1.6×10^{5}	
8	2×10^{5}	A
$9 \sim 10$	2 × 10°	无