Math 4301 Mathematical Analysis I Lecture 17

Topic: Sequences and series of functions

• Pointwise and Uniform Convergence

Definition Let $A \subseteq \mathbb{R}$, $x_0 \in A$ and $f_n : A \to \mathbb{R}$ be a sequence of functions. We say that the sequence $\{f_n\}$ converges at x_0 to a limit L if

$$\lim_{n\to\infty} f_n(x_0) = L$$
, i.e.

for all $\epsilon > 0$ there is $N \in \mathbb{N}$, such that, for all n > N,

$$|f_n(x_0) - L| < \epsilon.$$

Definition Let $A \subseteq \mathbb{R}$, $f_n : A \to \mathbb{R}$ be a sequence of functions.

We say that $\{f_n\}$ is *pointwise* convergent to a function $f: A \to \mathbb{R}$ if for every $x \in A$,

$$\lim_{n\to\infty} f_n(x) = f(x), \text{ i.e.}$$

for every $x \in A$ and $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all n > N,

$$|f_n(x) - f(x)| < \epsilon.$$

We write $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$ (pointwise).

Example Let $f_n:[0,1]\to\mathbb{R},\,f_n\left(x\right)=x^n$ and $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}.$$

- $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$ (pointwise).
- Indeed, if $x \in (0,1)$, then for $\epsilon > 0$, there is

$$N > \log_x \epsilon, \ n \in \mathbb{N}$$

such that, if n > N, then

$$|f_n(x) - f(x)| = |x^n - 0| = x^n < x^N < x^{\log_x \epsilon} = \epsilon,$$

so $\lim_{n\to\infty} f_n(x) = 0 = f(x)$.

- If x = 0 then $f_n(0) = 0$, for all $n \in N$ and clearly $f_n(0) \to f(0) = 0$ as $n \to \infty$.
- If x = 1 then $f_n(1) = 1$, for all $n \in N$ and clearly $f_n(1) \to f(1) = 1$ as $n \to \infty$.
- It follows that f is a pointwise limit of the sequence $\{f_n\}$.

Definition Let $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$ be a sequence of functions.

We say that the sequence $\{f_n\}$ converges uniformly to a function $f: A \to \mathbb{R}$ if, for every $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all n > N and for all $x \in A$,

$$|f_n(x) - f(x)| < \epsilon.$$

We write $f_n \underset{n \to \infty}{\longrightarrow} f$ (uniformly).

Remark We observe that if $f_n \underset{n \to \infty}{\to} f$ (uniformly),

then $f_n(x) \underset{n \to \infty}{\longrightarrow} f(x)$ (pointwise).

• Indeed, if for $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all n > N and for all $x \in A$,

$$|f_n(x) - f(x)| < \epsilon,$$

• Then, for every $x \in A$, if n > N, then

$$|f_n(x) - f(x)| < \epsilon.$$

- The converse is **not generally true**.
- Therefore, to find the function $f: A \to \mathbb{R}$, such that $f_n \to f$ (uniformly) we may start by computing the pointwise limit since uniform limit and pointwise limit must be the same.

Example As we showed the sequence of functions

$$f_n:[0,1]\to\mathbb{R},\ f_n(x)=x^n$$

converges pointwise to $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} 0 & \text{if} \quad x \neq 1 \\ 1 & \text{if} \quad x = 1 \end{cases}.$$

- However, $\{f_n\}$ is does not coverage uniformly to f (so f_n is not uniformly convergent).
- Indeed, suppose that f is the uniform limit of $\{f_n\}$.
- Let $\epsilon = \frac{1}{4}$, then there is $N \in \mathbb{N}$, such that, for n > N and for all $x \in [0, 1]$,

$$|f_n(x) - f(x)| < \frac{1}{4}.$$

• In particular, if n > N, then

$$\left| f_n \left(1 - \frac{1}{n} \right) - f \left(1 - \frac{1}{n} \right) \right| = \left(1 - \frac{1}{n} \right)^n < \frac{1}{4}.$$

Therefore,

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n \le \frac{1}{4},$$

so $e \geq 4$, a contradiction.

Exercise Show that the sequence of functions $f_n:[0,1]\to\mathbb{R}$,

$$f_n\left(x\right) = \frac{\sin\left(nx\right)}{n}$$

converges uniformly to

$$f: [0,1] \to \mathbb{R}, \ f(x) = 0.$$

Definition Let $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$ be a sequence of functions.

We say that series of functions $\sum_{n=1}^{\infty} f_n$ converges pointwise to $f: A \to \mathbb{R}$, if for every $x \in A$,

$$\lim_{n \to \infty} S_n(x) = f(x),$$

where $S_n(x) = \sum_{j=1}^n f_j(x)$ is the sequence of partial sums of $\sum_{n=1}^{\infty} f_n$. If $S_n \underset{n \to \infty}{\to} f$ (uniformly), we say $\sum_{n=1}^{\infty} f_n$ converges uniformly to $f: A \to \mathbb{R}$.

Example We showed that if $f_n(x) = x^n$, $x \in (-1,1)$, then

$$\sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

converges pointwise to

$$f(x) = \frac{1}{1-x}, \ x \in (-1,1).$$

Example Let 0 < a < 1 and $f_n(x) = x^n$, $x \in [-a, a] \subset (-1, 1)$.

We show that $\sum_{n=0}^{\infty} f_n$ converges uniformly to

$$f$$
: $[-a, a] \to \mathbb{R}$,
 $f(x) = \frac{1}{1-x}$

• We need to show that, for $\epsilon > 0$ there is N, such that, if n > N then for all $x \in [-a, a]$,

$$|s_n(x) - f(x)| < \epsilon$$

where

$$s_n(x) = \sum_{k=0}^n f_k(x) = \sum_{k=0}^n x^k = 1 + x + \dots + x^n$$

= $\frac{1 - x^{n+1}}{1 - x}$

is the *n*th partial sum of the series $\sum_{n=0}^{\infty} f_n$.

• We observe that, if $0 \le x < 1$, then

$$|s_n(-x) - f(-x)| = \left| \frac{1 - (-x)^{n+1}}{1 - (-x)} - \frac{1}{1 - (-x)} \right|$$

$$= \frac{\left| -x \right|^{n+1}}{1 + x} = \frac{x^{n+1}}{1 + x} \le x^{n+1}$$

$$\le \frac{x^{n+1}}{1 - x} = |s_n(x) - f(x)|.$$

• We find $\sup \left\{ \frac{x^{n+1}}{1-x} : x \in [0, a] \right\}$ since

$$|s_n(x) - f(x)| \le \sup \left\{ \frac{x^{n+1}}{1-x} : x \in [0, a] \right\}.$$

• Since $x \ge 0$,

$$\frac{d}{dx}\left(\frac{x^{n+1}}{1-x}\right) = \frac{d}{dx}\left(\frac{x^{n+1}}{1-x}\right)$$
$$= \frac{x^n}{(x-1)^2}\left(n\left(1-x\right)+1\right) \ge 0,$$

it follows that

$$\sup \left\{ \frac{x^{n+1}}{1-x} : x \in [0,a] \right\} = \frac{a^{n+1}}{1-a}.$$

• Since, $\frac{a^{n+1}}{1-a} \to 0$ as $n \to \infty$, there is $N \in \mathbb{N}$, such that for n > N,

$$\frac{a^{n+1}}{1-a} < \epsilon.$$

• Let n > N, then for all $x \in [-a, a]$,

$$|s_n(x) - f(x)| \le \sup \left\{ \frac{x^{n+1}}{1-x} : x \in [0, a] \right\} = \frac{a^{n+1}}{1-a} < \epsilon.$$

• It follows that $s_n \to f$ (uniformly),

so
$$\sum_{n=0}^{\infty} f_n$$
 converges uniformly to f on $[-a, a]$.

• We write

$$f = \sum_{n=0}^{\infty} f_n.$$

Example We show that $\sum_{n=0}^{\infty} f_n$, where $f_n(x) = x^n$ does not converge to

$$f\left(x\right) = \frac{1}{1-x}$$

uniformly on (-1,1).

• Suppose that, there is $N \in \mathbb{N}$, such that, for n > N and all $x \in (-1, 1)$,

$$\left| s_n\left(x \right) - f\left(x \right) \right| < 1.$$

• Thus, in particular, for n > N,

$$\left| s_n \left(1 - \frac{1}{n} \right) - f \left(1 - \frac{1}{n} \right) \right| = \left| \frac{1 - \left(1 - \frac{1}{n} \right)^{n+1}}{1 - \left(1 - \frac{1}{n} \right)} - \frac{1}{1 - \left(1 - \frac{1}{n} \right)} \right|$$

$$= \left| \frac{1 - \left(1 - \frac{1}{n} \right)^{n+1}}{\frac{1}{n}} - \frac{1}{\frac{1}{n}} \right|$$

$$= n \left(1 - \frac{1}{n} \right)^{n+1} < 1.$$

• It follows that

$$\lim_{n \to \infty} n \left(1 - \frac{1}{n} \right)^{n+1} \le 1.$$

• However,

$$\lim_{n\to\infty} n\left(1-\frac{1}{n}\right)^{n+1} = \infty$$

since

$$\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^{n+1}=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n=\frac{1}{e}.$$

• Thus $\infty \le 1$, a contradiction.

Example Consider series $\sum_{n=0}^{\infty} xe^{-nx}$, $x \in [0,1]$.

What is the pointwise limit for this series.

• We see that

$$s_n(x) = \sum_{k=0}^n x e^{-kx} = x \sum_{k=0}^n e^{-kx} = x \sum_{k=0}^n \left(\frac{1}{e^x}\right)^k$$
$$= x \frac{1 - \left(\frac{1}{e^x}\right)^{n+1}}{1 - \frac{1}{e^x}} = x e^x \left(\frac{1 - e^{-(n+1)x}}{e^x - 1}\right)$$

• We see that, for $x \in [0, 1], x \neq 0$,

$$\lim_{n \to \infty} e^{-(n+1)x} = \lim_{n \to \infty} \frac{1}{e^{(n+1)x}} = 0$$

then

$$\lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} x e^x \frac{1 - e^{-(n+1)x}}{e^x - 1} = \frac{x e^x}{e^x - 1}.$$

 \bullet So we showed that

$$\lim_{n \to \infty} s_n(x) = \frac{xe^x}{e^x - 1}, \ x \in (0, 1]$$

and for x = 0,

$$\sum_{n=0}^{\infty} 0 \cdot e^{-n \cdot 0} = 0.$$

• Therefore,

$$\sum_{n=0}^{\infty} x e^{-nx} = \left\{ \begin{array}{ccc} \frac{x e^x}{e^x - 1} & if & x \in (0, 1] \\ 0 & if & x = 0 \end{array} \right.$$

• Let $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{xe^x}{e^x - 1} & if \quad x \in (0, 1] \\ 0 & if \quad x = 0 \end{cases}.$$

• We showed that

$$f(x) = \sum_{n=0}^{\infty} xe^{-nx},$$

i.e. the series converges pointwise to f.

Theorem Let $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions and assume that $\{f_n\}$ converges uniformly to $f: A \to \mathbb{R}$.

Then f is continuous on A.

Proof. Let $x_0 \in A$ and $\epsilon > 0$ be given.

• We need to find $\delta > 0$, such that, for all $x \in A$, if $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| < \epsilon.$$

• Since $f_n \to f$ uniformly, there is $N \in \mathbb{N}$, such that, for all $n \geq N$, and for all $x \in A$,

$$|f_n(x) - f(x)| < \epsilon/3.$$

• In particular, for all $x \in A$,

$$|f_N(x) - f(x)| < \epsilon/3.$$

• Since f_N is continuous at x_0 , there is $\delta > 0$, such that, for all $x \in A$, if $|x - x_0| < \delta$, then

$$|f_N(x) - f_N(x_0)| < \epsilon/3.$$

• Finally, since for all $x \in A$,

$$|f_N(x) - f(x)| < \epsilon/3,$$

it follows that in particular, for $x_0 \in A$,

$$|f_N(x_0) - f(x_0)| < \epsilon/3.$$

• Consequently, for all $x \in A$, if $|x - x_0| < \delta$,

$$|f(x) - f(x_0)| = |(f(x) - f_N(x)) + (f_N(x) - f_N(x_0)) + (f_N(x_0) - f(x_0))|$$

$$\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

- Therefore f is continuous at $x_0 \in A$.
- Since $x_0 \in A$ is arbitrary, f is continuous on A.

This finishes our proof. ■

• Exercise Check if $\sum_{n=0}^{\infty} xe^{-nx}$ converges to f uniformly.

Exercise Let
$$f_n:[0,2]\to\mathbb{R}, f_n(x)=\frac{x^n}{1+x^n}$$
.

Show that $\{f_n\}$ converges pointwise on [0,2] but it does not converge uniformly on [0,2].

Example Let

$$f_n(x) = xe^{-nx^2}, \ x \in [0,1].$$

Show that $\{f_n\}$ converges uniformly on [0,1].

Example Show that $f:[0,1] \to \mathbb{R}$,

$$f(x) = \sum_{n=1}^{\infty} \frac{x^{n/2}}{n(n!)^2}$$

is continuous.

Tests for Convergence

Proposition (Cauchy Criterion) Let $A \subseteq \mathbb{R}$ and $f_n : A \to \mathbb{R}$ be a sequence of functions.

Then $\{f_n\}$ converges uniformly on A iff

for every $\epsilon > 0$, there is $N \in \mathbb{N}$, such that,

for all m, n > N, and for every $x \in A$,

$$|f_m(x) - f_n(x)| < \epsilon.$$

Proof. Assume that $f_n \to f$ (uniformly) and let $\epsilon > 0$ be given.

• Thus, there is $N \in \mathbb{N}$, such that, for m > N, and for all $x \in A$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}.$$

• Therefore, if m, n > N, and $x \in A$,

$$|f_m(x) - f_n(x)| = |f_m(x) - f(x) + f(x) - f_n(x)|$$

 $\leq |f_m(x) - f(x)| + |f(x) - f_n(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

• Conversely, assume that for $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all m, n > N and for all $x \in A$,

$$\left|f_m\left(x\right) - f_n\left(x\right)\right| < \epsilon.$$

• It follows that, for all $x \in A$, if m, n > N, then

$$|f_m(x) - f_n(x)| < \epsilon.$$

- Therefore, $\{f_n(x)\}$ is a Cauchy sequence, for each $x \in A$.
- Since Cauchy sequence converge in \mathbb{R} , define $f: A \to \mathbb{R}$ by

$$f\left(x\right) = \lim_{n \to \infty} f_n\left(x\right).$$

• Since the uniform Cauchy condition holds, for $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for m, n > N, and for all $x \in A$,

$$|f_m(x) - f_n(x)| < \frac{\epsilon}{2}.$$

• Since $f_n(x) \to f(x)$ (pointwise), for all $x \in A$

$$|f_m(x) - f(x)| = \left| f_m(x) - \lim_{n \to \infty} f_n(x) \right| = \lim_{n \to \infty} |f_m(x) - f_n(x)| \le \frac{\epsilon}{2}$$

• Thus, for m > N, and for all $x \in A$,

$$|f_m(x) - f(x)| \le \frac{\epsilon}{2} < \epsilon,$$

• i.e. $f_m \to f$ (uniformly).

This finishes our proof. \blacksquare

• Theorem (Weierstrass M-test) Let $A \subseteq \mathbb{R}$ and suppose that

$$f_n:A\to\mathbb{R}$$

satisfies the following conditions:

a. For every $n \in \mathbb{N}$, there is $M_n \geq 0$, such that, for all $x \in A$,

$$|f_n(x)| \leq M_n;$$

b. The series $\sum_{n=1}^{\infty} M_n$ converges. Then $\sum_{n=1}^{\infty} f_n$ is uniformly and absolute convergent on A.

Proof. Since $\sum_{n=1}^{\infty} M_n$ converges,

- sequence of its partial sums $\{s_n\}$ is Cauchy.
- Thus, for $\epsilon > 0$ there is $N \in \mathbb{N}$, such that, for all m > N, and $k \in \mathbb{N}$,

$$|s_m - s_{m+k}| = |M_{m+1} + M_{m+2} + \dots + M_{m+k}| < \epsilon.$$

• Let

$$S_n(x) = \sum_{j=1}^{\infty} f_j(x), \ x \in A,$$

and assume that m > N.

• Then, for all $k \in \mathbb{N}$ and $x \in A$,

$$\begin{split} |S_{m+k}\left(x\right) - S_{m}\left(x\right)| &= |f_{m+1}\left(x\right) + f_{m+2}\left(x\right) + \ldots + f_{m+k}\left(x\right)| \\ &\leq |f_{m+1}\left(x\right)| + |f_{m+2}\left(x\right)| + \ldots + |f_{m+k}\left(x\right)| \\ &\leq M_{m+1} + M_{m+2} + \ldots + M_{m+k} \\ &= |M_{m+1} + M_{m+2} + \ldots + M_{m+k}| < \epsilon. \end{split}$$

- It follows that $\{S_n\}$ satisfies the uniform Cauchy condition.
- Thus $\{S_n\}$ converges uniformly on A.

This finishes our proof. \blacksquare

• Example Let $\{a_i\}$ be a bounded sequence of real numbers. Use the Weierstrass M-test to show that the series $\sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$ converges to a continuous function on all of \mathbb{R} . In other words, if $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$$

then we show that f is continuous on \mathbb{R} .

- Let $x_0 \in \mathbb{R}$, and define $a = |x_0| + 1$, then $x_0 \in [-a, a]$.
- Let $f_n : \mathbb{R} \to \mathbb{R}$, defined by

$$f_n\left(x\right) = \frac{a_n}{n!} x^n$$

• We show that

$$f = \sum_{n=0}^{\infty} f_n$$

i.e. the series is uniformly convergent to f on [-a, a].

• Since $\{a_n\}$ is bounded, there is $M \geq 0$, such that, for all $n \in \mathbb{N}$,

$$|a_n| < M$$
.

• Now, notice that, for all $x \in [-a, a]$:

$$|f_k(x)| = \left| \frac{a_k}{k!} x^k \right| = \frac{|a_k|}{k!} |x|^k \le M \frac{a^k}{k!} = M_k$$

and

$$\sum_{k=0}^{\infty}M_k=\sum_{k=0}^{\infty}M\frac{a^k}{k!}=M\sum_{k=0}^{\infty}\frac{a^k}{k!}=Me^a<\infty$$

- so the series $\sum_{n=0}^{\infty} f_n$ is convergent uniformly on [-a, a].
- Therefore, by the Weierstrass M-test, it follows that $\sum_{k=0}^{\infty} \frac{a_k}{k!} x^k$ is uniformly convergent on [-a, a].
- Let

$$f(x) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k, \ x \in [-a, a].$$

• Since each function

$$f_k$$
: $[-a, a] \to \mathbb{R}$,
 $f_k(x) = \frac{a_k}{k!} x^k$

is continuous, each function

$$s_n$$
: $[-a, a] \to \mathbb{R}$,
 $s_n(x) = \sum_{k=0}^n f_k(x) = \sum_{k=0}^n \frac{a_k}{k!} x^k$

is continuous, where $n \in \mathbb{N}$.

- Since the series $\sum_{k=0}^{\infty} f_k$ converges uniformly to f, the sequence (s_n) of its partial sums converges to f.
- Since the uniform limit of any sequence of continuous functions is continuous, it follows that

$$f\left(x\right) = \sum_{k=0}^{\infty} \frac{a_k}{k!} x^k = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{a_k}{k!} x^k = \lim_{n \to \infty} s_n\left(x\right)$$

is f is continuous on [-a, a].

- In particular, f is continuous at x_0 .
- Since $x_0 \in \mathbb{R}$ is an arbitrary point, $\sum_{k=0}^{\infty} \frac{a_k}{k!} x^k \text{ converges to a continuous function on } \mathbb{R}.$ **Example** We show that the series

$$\sum_{n=0}^{\infty} \frac{x}{(n+x^2)^2}, \ x \in \mathbb{R}$$

converges uniformly on \mathbb{R} .

• Let us consider function $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \frac{x}{(n+x^2)^2}.$$

• Since

$$f'_n(x) = \frac{d}{dx} \left(\frac{x}{(n+x^2)^2} \right) = \frac{n-3x^2}{(x^2+n)^3} = 0 \text{ iff}$$

$$x_n = \pm \sqrt{\frac{n}{3}}.$$

• Since $f'_n(x) > 0$ iff $x \in \left(-\sqrt{\frac{n}{3}}, \sqrt{\frac{n}{3}}\right)$ and

• $f'_n(x) < 0$ iff $x \in \left(-\infty, -\sqrt{\frac{n}{3}}\right) \cup \left(\sqrt{\frac{n}{3}}, \infty\right)$, so f_n has a **local minimum** at

$$x_n = -\sqrt{\frac{n}{3}}$$

and local maximum at

$$x_n = \sqrt{\frac{n}{3}}.$$

• Since

$$\lim_{x \to \pm \infty} f_n(x) = \lim_{x \to \pm \infty} \frac{x}{(n+x^2)^2} = \lim_{x \to \pm \infty} \frac{x}{\left(x^2 \left(\frac{n}{x^2} + 1\right)\right)^2}$$
$$= \lim_{x \to \pm \infty} \frac{x}{x^4 \left(\frac{n}{x^2} + 1\right)^2} = \lim_{x \to \pm \infty} \frac{1}{x^3 \left(\frac{n}{x^2} + 1\right)^2} = 0$$

• It follows that

$$f_n\left(-\sqrt{\frac{n}{3}}\right) = \frac{-\sqrt{\frac{n}{3}}}{\left(n + \left(-\sqrt{\frac{n}{3}}\right)^2\right)^2} = -\frac{3}{16}\frac{\sqrt{3}}{n^{\frac{3}{2}}}$$

is the **absolute minimum** of f_n and

$$f_n\left(\sqrt{\frac{n}{3}}\right) = \frac{\sqrt{\frac{n}{3}}}{\left(n + \left(\sqrt{\frac{n}{3}}\right)^2\right)^2} = \frac{3}{16}\frac{\sqrt{3}}{n^{\frac{3}{2}}}$$

is the absolute maximum.

• Therefore, for all $x \in \mathbb{R}$:

$$|f_n(x)| \le \frac{3}{16} \frac{\sqrt{3}}{n^{\frac{3}{2}}}.$$

- Let $M_n = \frac{3}{16} \frac{\sqrt{3}}{n^{\frac{3}{2}}}, n \in \mathbb{N}$
- Since, using p-test,

$$\sum_{n=0}^{\infty} M_n = \frac{3\sqrt{3}}{16} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} < \infty$$

 \bullet by the Weierstrass M-test, the series

$$\sum_{n=0}^{\infty} \frac{x}{\left(n+x^2\right)^2}$$

converges uniformly on \mathbb{R} .

Remark: We can define $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \sum_{n=0}^{\infty} \frac{x}{(n+x^2)^2}$$

since $f_n : \mathbb{R} \to \mathbb{R}$ are continuous and the series $\sum_{n=0}^{\infty} f_n$ converges uniformly on \mathbb{R} , it follows that f is continuous. • Is the function f defined above integrable, differentiable, etc?

Example We show that the series

$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}, \ x \in \mathbb{R}$$

converges uniformly on \mathbb{R} .

• Let us consider function $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \frac{x}{n(1+nx^2)}.$$

 \bullet Since

$$f'_n(x) = \frac{d}{dx} \left(\frac{x}{n(1+nx^2)} \right) = -\frac{1}{n} \frac{nx^2 - 1}{(nx^2 + 1)^2} = 0 \text{ iff}$$

$$x_n = \pm \frac{1}{\sqrt{n}}.$$

- Since $f_n'(x) > 0$ iff $x \in \left(-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)$ and
- $f'_n(x) < 0$ iff $x \in \left(-\infty, -\frac{1}{\sqrt{n}}\right) \cup \left(\frac{1}{\sqrt{n}}, \infty\right)$,
- so f_n has a **local minimum** at

$$x_n = -\frac{1}{\sqrt{n}}$$

and a **local maximum** at $x_n = \frac{1}{\sqrt{n}}$.

• Since

$$\lim_{x \to \pm \infty} f_n(x) = \lim_{x \to \pm \infty} \frac{x}{n(1 + nx^2)} = \lim_{x \to \pm \infty} \frac{1}{nx\left(\frac{1}{x^2} + n\right)} = 0,$$

it follows that

$$f_n\left(-\frac{1}{\sqrt{n}}\right) = \frac{-\frac{1}{\sqrt{n}}}{n\left(1 + n\left(-\frac{1}{\sqrt{n}}\right)^2\right)} = -\frac{1}{2n^{\frac{3}{2}}}$$

• is the absolute minimum of f_n and

$$f_n\left(\frac{1}{\sqrt{n}}\right) = \frac{\frac{1}{\sqrt{n}}}{n\left(1 + n\left(\frac{1}{\sqrt{n}}\right)^2\right)} = \frac{1}{2n^{\frac{3}{2}}}$$

- is the absolute maximum.
- Therefore, for all $x \in \mathbb{R}$:

$$|f_n(x)| \le \frac{1}{2n^{\frac{3}{2}}}.$$

• Let $M_n = \frac{1}{2n^{\frac{3}{2}}}, n \in \mathbb{N}$

• Since, using p-test,

$$\sum_{n=0}^{\infty} M_n = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} < \infty$$

 \bullet by the **Weierstrass** M**-test**, the series

$$\sum_{n=1}^{\infty} \frac{x}{n\left(1 + nx^2\right)}$$

converges uniformly on \mathbb{R} .