

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 March 2003 (27.03.2003)

PCT

(10) International Publication Number
WO 03/025216 A1

(51) International Patent Classification²: C12Q 1/68, 1/46

(74) Agent: F.B. RICE & CO; 139 Rathdowne Street, Carlton South, Victoria 3053 (AU).

(21) International Application Number: PCT/AU02/01281

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

18 September 2002 (18.09.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

PR 7749 19 September 2001 (19.09.2001) AU

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): WESTERN SYDNEY AREA HEALTH SERVICE [AU/AU]; Westmead Hospital, Westmead, New South Wales 2145 (AU).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): FANRONG, Kong [AU/AU]; Villa 23/93 Bridge Road, Westmead, New South Wales 2145 (AU). GILBERT, Gwendolyn [AU/AU]; 27 Kooyong Road, Riverview, New South Wales 2066 (AU).

WO 03/025216 A1

(54) Title: MOLECULAR TYPING OF GROUP B STREPTOCOCCI

(57) Abstract: Molecular methods are provided for typing group B streptococci, as well as polynucleotides useful in such methods.

MOLECULAR TYPING OF GROUP B STREPTOCOCCI

Field of the invention

The present invention relates to molecular methods of typing group B streptococci, as well as polynucleotides useful in such methods.

Background to the invention

Group B streptococcus (GBS) - *Streptococcus agalactiae* - is the commonest cause of neonatal and obstetric sepsis and an increasingly important cause of septicaemia in the elderly and immunocompromised patients. The incidence of neonatal GBS sepsis has been reduced in recent years by the use of intrapartum antibiotic prophylaxis, but there are many problems with this approach. In future, vaccination is likely to be preferred and there has been considerable progress in development of conjugate polysaccharide GBS vaccines.

Before the introduction of conjugate vaccines, extensive epidemiological and other related studies will be required to assess, not only the burden of disease, but also the distribution of GBS types (including capsular polysaccharide gene serotypes, serosubtypes; protein antigen gene subtypes; mobile genetic element subtypes) to determine the optimal formulation of vaccine antigens. Type distribution based on one geographic location or small numbers of patients may not be generally applicable. Continued monitoring will be necessary to assess the suitability of combinations of GBS vaccine antigens for different target populations in different geographic locations.

Nine capsular polysaccharide GBS serotypes have been described (Harrison et al., 1998; Hickman et al., 1999). Various serotyping methods have been used, including immuno-precipitation (Wilkinson and Moody, 1969), enzyme immunoassay (Holm and Hakansson, 1988), coagglutination (Hakansson et al., 1992), counter-immunoelectrophoresis, and capillary precipitation (Triscott and Davies, 1979), latex agglutination (Zuerlein et al., 1991), fluorescence microscopy (Cropp et al., 1974) and inhibition-ELISA (Arakere et al., 1999). These methods are labour-intensive and require high-titered serotype-specific antisera, which are expensive and difficult to make and commercially available for only six serotypes - Ia to V (Arakere et al., 1999). Molecular genotyping methods, such as pulsed-field gel electrophoresis (Rolland et al., 1999), restriction endonuclease analysis (Nagano et al., 1991) are useful for epidemiological studies but do not generally identify serotypes. Consequently, there is a need for a reliable molecular method for GBS serotype identification.

Summary of the invention

We have identified specific regions within the genome of group B streptococci of inter-type sequence heterogeneity that can be used to distinguish
5 different types (including capsular polysaccharide gene serotypes and serosubtypes; protein antigen gene subtypes; and mobile genetic element subtypes). We have shown that molecular methods that detect these sequence heterogeneities can be used to accurately distinguish and type group B streptococci.

Accordingly in a first aspect the present invention provides a method of typing a group B streptococcal bacterium which method comprises analysing the nucleotide sequence of one or more regions within the *cpsD*, *cpsE*, *cpsF*, *cpsG*, *cpsI/M* genes of said bacterium, said region(s) comprising one or more nucleotides whose sequence varies between types.

In particular, the nucleotide sequence may be analysed for one or more positions corresponding to positions 62, 78-86, 138, 139, 144, 198, 204, 211, 281, 240, 249, 300, 321, 419, 429, 437, 457, 466, 486, 602, 606, 627, 636, 645, 803, 971, 1026, 1044, 1173, 1194, 1251, 1278, 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

10 Preferably at least one region is within a sequence delineated by the 3' 136 bases of the *cpsE* gene and the 5' 218 bases of the *cpsG* gene of the *cpsE-cpsF-cpsG* gene cluster of said group B streptococcal bacterium. In particular, the nucleotide sequence may be analysed for one or more positions corresponding to positions 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

In one embodiment, at least one region is within the *cpsI/M* genes of said group B streptococcal bacterium.

We have also shown that a number of surface protein antigen genes, including *rib*, *alp2* or *alp3* genes, and five mobile genetic elements may be used to molecular subtype GBS. Accordingly, the present invention also provides a method of typing a group B streptococcal bacterium which method comprises determining the presence or absence in the genome of said bacterium of one or more surface protein antigen genes selected from a *rib*, *alp2* or *alp3* gene, and/or 25 one or more mobile genetic elements selected from IS861, IS1548, IS1381,

ISSa4 and GBSi1. Preferably, such as method is combined with the above methods of the invention.

The nucleotide sequence analysis step may comprise sequencing said one or more regions. Alternatively, or in addition, the nucleotide sequence analysis step may comprises determining whether a polynucleotide obtained from said bacterium selectively hybridises to a polynucleotide probe comprising one or more of the said regions, preferably to one or more of a plurality of polynucleotide probes corresponding to one or more of the said regions.

In a preferred embodiment, where hybridisation to a plurality of probes is used as a means of analysis, the plurality of polynucleotide probes are present as a microarray.

In another embodiment, the nucleotide sequence analysis step comprises an amplification step using one or more primers, at least one of which hybridise specifically to a sequence which differs between types. Typically, primer pairs are used, at least one of which hybridise specifically to a sequence which differs between types. Preferably, said primers are selected from the primers shown in Table 2 and/or Table 6 and/or Table 10.

In a second aspect, the present invention provides a polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *cpsD-cpsE-cpsF-cpsG* gene of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between GBS types.

Preferably the nucleotides which differ between GBS types correspond to one or more of positions 62, 78-86, 138, 139, 144, 198, 204, 211, 281, 240, 249, 300, 321, 419, 429, 437, 457, 466, 486, 602, 606, 627, 636, 645, 803, 971, 1026, 1044, 1173, 1194, 1251, 1278, 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

The present invention also provides a polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a sequence delineated by the 3' 136 base pairs of *cpsE* and the 5' 218 base pairs of *cpsG* of the *cpsE-cpsF-cpsG* gene cluster of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between GBS types.

Preferably the nucleotides which differ between group B streptococcal types correspond to one or more of positions 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

The present invention also provides a polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *cpsI/M* gene of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between group B streptococcal types.

5 Preferably the polynucleotide is selected from the nucleotide sequences shown in Table 2.

The present invention further provides a polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *rib*, *alp2* or *alp3* gene of a group B streptococcal bacterium, said polynucleotide 10 comprising one or more nucleotides which differ between GBS protein antigen gene subtypes.

Preferably the polynucleotide is selected from the nucleotide sequences shown in Table 6.

The present invention further provides a polynucleotide consisting 15 essentially of at least 10 contiguous nucleotides corresponding to a region within IS861, IS1548, IS1381, ISSa4 and/or GBSi1 of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between GBS mobile genetic element subtypes.

20 Preferably the polynucleotide is selected from the nucleotide sequences shown in Table 10.

The polynucleotides of the invention may be used in a method of typing, such as serotyping and/or subtyping, a group B streptococcal bacterium.

In a third aspect the present invention provides a composition comprising a 25 plurality of polynucleotides of the second aspect of the invention. The composition may be used in a method of typing, such as serotyping and/or subtyping, a group B streptococcal bacterium.

In a fourth aspect the present invention provides a microarray comprising a plurality of polynucleotides according to the second aspect of the invention. The microarray may be used in a method of typing, such as serotyping and/or subtyping, a group B streptococcal bacterium.

Detailed description of the invention

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art (e.g., in cell culture, molecular genetics, nucleic acid chemistry, hybridization techniques and biochemistry). Standard techniques are used for molecular, 35 genetic and biochemical methods (see generally, Sambrook *et al.*, Molecular

Cloning: A Laboratory Manual, 3rd ed. (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Ausubel et al., Short Protocols in Molecular Biology (1999) 4th Ed, John Wiley & Sons, Inc. - and the full version entitled Current Protocols in Molecular Biology, which are incorporated herein by reference) and chemical methods.

The molecular typing methods of the present invention rely on detecting the presence in sample of specific polynucleotide sequences in regions of the genome of group B streptococci (GBS) that we have identified as varying between different types.

More specifically, the specific polynucleotide sequences that are to be detected lie within *cpsD*, *cpsE*, *cpsF*, *cpsG*, *cpsI*, *cpsM*, *rib*, *alp2* and/or *alp3* genes of GBS as well as mobile genetic elements IS861, IS1548 and IS1381, ISSa4 and GBSi1, preferably the *cpsD*, *cpsE*, *cpsF*, *cpsG* and/or *cpsI/M* genes.

Regions of interest within those genes mentioned are regions whose sequence varies between two or more types, i.e. are heterogenous. Heterogeneity may be due to insertions, deletions and/or substitutions between corresponding regions in different types. In the case of *rib*, *alp2* and *alp3*, heterogeneity typically takes the form of the presence or absence of the entire gene. Similarly for elements IS861, IS1548, IS1381, ISSa4 and GBSi1 heterogeneity typically takes the form of the presence or absence of the entire sequence.

Specific regions of heterogeneity include the following positions within *cpsD* gene- 62 and 78-86; *cpsD-cpsE* gene spacer - 138, 139 and 144; *cpsE* gene - 198, 204, 211, 281, 240, 249, 300, 321, 419, 429, 437, 457, 466, 486, 602, 606, 627, 636, 645, 803, 971, 1026, 1044, 1173, 1194, 1251, 1278, 1413, 1495, 1500, 1501, 1512, 1518 and 1527; *cpsF* gene - 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892 and 1971; and *cpsG* gene - 2026, 2088, 2134, 2187 and 2196 (numbering corresponds to numbering shown in Figure 1).

Particularly preferred positions of interest are those that lie within a 790 bp fragment of *cpsE-cpsF-cpsG* (which consists of approximately the 3' 136 bases of *cpsE* to the 5' 218 bases of *cpsG*), namely positions 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

Another region of heterogeneity is position 62 of *cpsD* and a repetitive sequence (TTACGGCGA) found at positions 78 to 86 of *cpsD* in some but not all GBS serotypes.

Specific regions of heterogeneity also include a number of positions within the *cpsI/M* gene as shown in the sequence alignment depicted in Figure 3.

These regions of heterogeneity may be analysed using a variety of means including sequencing, PCR and binding of labelled probes.

- 5 In the case of sequencing to identify serotype, the sequencing primers are selected such that they hybridise specifically to a region within or near to a region within which a region of heterogeneity is present. The primers need not be specific to particular serotypes since the actual sequence information obtained during the sequencing process which is used to assign molecular serotype. Thus
10 the primers may hybridise specifically to all GBS serotypes (at least serotypes Ia to VII), or to specific serotypes.

Preferred primers anneal within 100, 50 or 20 contiguous nucleotides of a heterogeneous position within the 790 bp region of *cpsE-cpsF-cpsG* shown in Figure 1. Examples of suitable sequencing primers are shown in Table 2 (cpsES3, cpsFA, cpsFS, cpsGA and cpsGA1).

- 15 PCR and other specific hybridisation-based serotyping methods will typically involve the use of nucleotide primers/probes which bind specifically to a region of the genome of a GBS serotype which includes a nucleotide which varies between two or more serotypes. Thus the primers/probes may comprise a sequence which is complementary to one of such regions. Where positions of heterogeneity are close together (e.g. positions 198, 204, 211 and 218 of *cpsE*), it may be desirable to use a primer/probe which hybridises specifically to a region of the GBS genome that comprises two or more positions of heterogeneity. Thus for example, a primer/probe may be designed that is complementary to
20 nucleotides 195 to 220 of *cpsE*. Such primers/probes are likely to have improved specificity and reduce the likelihood of false positives.

25 PCR-based methods of detection may rely upon the use of primer pairs, at least one of which binds specifically to a region of interest in one or more, but not all, serotypes. Unless both primers bind, no PCR product will be obtained. Consequently, the presence or absence of a specific PCR product may be used to determine the presence of a sequence indicative of specific GBS serotypes. However, as mentioned, only one primer need correspond to a region of heterogeneity in the genes of interest (such as the *cpsD*, *cpsE*, *cpsF*, *cpsG*, *cpsI* and/or *cpsM* genes). The other primer may bind to a conserved or heterogenous region within said gene or even a region within another part of the GBS genome, such as the *cpsH* gene, whether said region is conserved or heterogeneous between serotypes. Thus, for example, a combination of a primer (*cpsGS*) which binds to a region of the *cpsG* gene including positions 2172 to 2210, and a primer

which binds to a region of *cpsH* gene which is heterogeneous (*IacpsHA1*, *IIICpsHA*), may be used as the basis of distinguishing serotypes (Ia and III).

Further, a primer which binds to a region of *cpsI* which is heterogeneous may be combined with a primer which binds to a region of *cpsG* which is constant. An example of such as primer pair is primer pair *VlcpsIA*, and *cpsGS1*, which give rise to a PCR product of 1517 bp and GBS serotype VI specific.

Alternatively, primers that bind to conserved regions of the GBS genome but which flank a region whose length varies between serotypes may be used. In this case, a PCR product will always be obtained when GBS bacteria are present but the size of the PCR product varies between serotypes.

Furthermore, a combination of specific binding of one or both primers and variations in the length of PCR primer may be used as a means of identifying particular molecular serotypes.

Examples of specific primers/probes which target the *cpsD*, *cpsE*, *cpsF*, *cpsG*, *cpsI* or *cpsM* genes include the following:

cpsDS	GCA AAA GAA CAG ATG GAA CAA AGT GG
cpsES	CTT TTG GAG TCG TGG CTA TCT TG
cpsEA1	GA/T/GA AAA AAG GAA AGT CGT GTC G/ATT G
20 cpsES1	CTT GGA C/TTC CTC TGA AAA GGA TTG
cpsEA2	AAA A/CGC TTG ATC AAC AGT TAA GCA GG
cpsES2	GAT GGT/C GGA CCG GCT ATC TTT TCT C
cpsEA3	CTT AAT TTG TTC TGC ATC TAC TCG C
cpsES3	GTT AGA TGT TCA ATA TAT CAA TGA ATG GTC TAT TTG GTC AG
25 cpsEFA	CCT TTC AAA CCT TAC CTT TAC TTA GC
cpsFS	CAT CTG GTG CCG CTG TAG CAG TAC CAT T
cpsFA	GTC GAA AAC CTC TAT A/GT A AAC/T GGT CTT ACA A/GCC AAA TAA CTT ACC
cpsGA	AAG/C AGT TCA TAT CAT CAT ATG AGA G
30 cpsGA1	CCG CCA/G TGT GTG ATA ACA ATC TCA GCT TC
cpsGS	ATG ATG ATA TGA ACT CTT ACA TGA AAG AAG CTG AGA TTG
cpsGS1	GAA CTC TTA CAT GAA AGA AGC TGA GAT TGT TAT CAC AC
IbcpsIA	CTA TCA ATG AAT GAG TCT GTT GTA GGA CGG ATT GCA CG
IbcpsIS	GAT AAT AGT GGA GAA ATT TGT GAT AAT TTA TCT CAA AAA 35 GAC G
IbcpsIA1	CCT GAT TCA TTG CAG AAG TCT TTA CGA TGC GAT AGG TG
IVcpsMA	GGG TCA ATT GTA TCG TCG CTG TCA ACA AAA CCA ATC AAA TC
VcpsMA	CCC CCC ATA AGT ATA AAT ATC CAA TCT TGC ATA GTC AG

VlcpsIA GAA GCA AAG ATT CTA CAC AGT TCT CAA TCA CTA ACT CCG
 cpsIA GTA TAA CTT CTA TCA ATG GAT GAG TCT GTT GTA GTA CGG

The primer designations correspond to those given in Table 2.

5 In relation to the *alp2*, *alp3* and *rib* surface protein antigen genes, heterogeneity and protein antigen gene subtype is assessed more at the level of whether a group B streptococcal bacterium contains the gene or not. Our results show that the specific combination of surface proteins genes present in a GBS genome is indicative of serotype/serosubtypes (see Table 9). Consequently,
 10 primers/probes suitable for use in the methods of the present invention are those that are specific for the particular genes. Thus probes/primers that are specific for *alp2* or *alp3* or *rib* are preferred. Figure 4 shows an alignment of *alp2* and *alp3* that was used to design primers specific for *alp2* or specific for *alp3*.

Examples of specific primers/probes which target the *alp2*, *alp3* and *rib* genes include the following:

bcaS1 GGT AAT CTT AAT ATT TTT GAA GAG TCA ATA GTT GCT GCA TCT
 AC
 bcaS2 CCAGGGGA GTG CAG CGA CCT TAA ATA CAA GCA TC
 20 balS GAT CCT CAA AAC CTC ATT GTA TTA AAT CCA TCA AGC TAT TC
 balA CCA GTT AAG ACT TCA TCA CGA CTC CCA TCA C
 bal23S1 CAG ACT GTT AAA GTG GAT GAA GAT ATT ACC TTT ACG G
 bal23S2 CTT AAA GCT AAG TAT GAA AAT GAT ATC ATT GGA GCT CGT G
 bal2S CTT CCG CCA GAT AAA ATT AAG
 25 bal2A CTG TTG ACT TAT CTG GAT AGG TC
 bal2A1 CGT GTT GTT CAA CAG TCC TAT GCT TAG CCT CTG GTG
 bal2A2 GGT ATC TGG TTT ATG ACC ATT TTT CCA GTT ATA CG
 bal3S GTT CTT CCG CTT AAG GAT AG
 bal3A GAC CGT TTG GTC CTT ACC TTT TGG TTC GTT GCT ATC C
 30 ribS2 GAAGTAATTCAG GAA GTG CTG TTA CGT TAA ACA CAA ATA TG
 ribA1 GAA GGT TGT GTG AAA TAA TTG CCG CCT TGC CTA ATG
 ribA2 AAT ACT AGC TGC ACC AAC AGT AGT CAA TTC AGA AGG

The primer designations correspond to those given in Table 6.

In relation to the IS861, IS1548, IS1381, ISSa4 and GBSi1, heterogeneity and subtype is assessed more at the level of whether a group B streptococcal bacterium contains the element or not. The number of elements may also be assessed. Our results show that the specific combination of mobile elements present in a GBS genome is indicative of serotype/serosubtype (see Table 12).

Consequently, primers/probes suitable for use in the methods of the present invention are those that are specific for the particular mobile genetic elements. Thus probes/primers that are specific for IS861, IS1548, IS1381, ISSa4 and GBSi1 are preferred.

- 5 Examples of specific primers/probes which target IS861, IS1548, IS1381, ISSa4 and GBSi1 include the following:

IS861S	GAG AAA ACA AGA GGG AGA CCG AGT AAA ATG GGA CG
IS861A1	CAC GAT TTC GCA GTT CTA AAT AAA TCC GAC GAT AGC C
10 IS861A2	CAA ACT CCG TCA CAT CGG TAT AGC ACT TCT CAT AGG
IS1548S	CTA TTG ATG ATT GCG CAG TTG AAT TGG ATA GTC GTC
IS1548S1	GTT TGG GAC AGG TAG CGG TTG AGG AGA AAA GTA ATG
IS1548A1	CAT TAC TTT TCT CCT CAA CCG CTA CCT GTC CCA AAC
IS1548A2	CCC AAT ACC ACG TAA CTT ATG CCA TTT G
15 IS1548A3	CGT GTT ACG AGT CAT CCC AAT ACC ACG TAA CTT ATG CC
IS1381S1	CTT ATG AAC AAA TTG CGG CTG ATT TTG GCA TTC ACG
IS1381S2	GGC TCA GGC GAT TGT CAC AAG CCA AGG GAG
IS1381A	CTA AAA TCC TAG TTC ACG GTT GAT CAT TCC AGC
ISSa4S	CGT ATC TGT CAC TTA TTT CCC TGC GGG TGT CTC C
20 ISSa4A1	GCC GAT GTC ACA ACA TAG TTC AGG ATA TAG CCA G
ISSa4A2	CGT AAA GGA GTC CAA AGA TGA TAG CCT TTT TGA ACC
GBSi1S1	CAT CTC GGA ACA ATA TGC TCG AAG CTT ACA AGC AAG TG
GBSi1S2	GGG GTC ACT ATC GAG CAG ATG GAT GAC TAT CTT CAC
GBSi1A1	AAT GGC TGT TTC GCA GGA GCG ATT GGG TCT GAA CC
25 GBSi1A2	CCA GGG ACA TCA ATC TGT CTT GCG GAA CAG TAT CG

Preferably, the primers/probes comprise at least 10, 15 or 20 nucleotides. Typically, primers/probes consist of fewer than 100, 50 or 30 nucleotides. Primers/probes are generally polynucleotides comprising deoxynucleotides. They may also be polynucleotides which include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the polynucleotides described herein may be modified by any method available in the art. Primers/probes may be labelled with any suitable detectable label such as radioactive atoms, fluorescent molecules or biotin.

In one embodiment, primers/probes have a high melting temperature of >70°C so that they may be used in rapid cycle PCR.

Compositions comprising a plurality of nucleotides that are used to analyse one or more regions within the *cpsD*, *cpsE*, *cpsF*, *cpsG*, or *cpsI/M* genes may 5 also further comprise nucleotides that may be used to analyse one or more regions within the *cpsH* gene. Suitable nucleotides are described in the Examples, although a person skilled in the art could design other suitable sequences based on the sequence alignment shown in Figure 3.

Further, compositions comprising a plurality of nucleotides that are used to 10 analyse one or more regions within *alp2*, *alp3* or *rib* genes may also further comprise nucleotides that may be used to analyse one or more regions within the C alpha (*bca*) and C beta (*bac*) genes (C beta gene also known as *bag*).

A variety of techniques may be used to analyse one or more regions within 15 the genome of a bacterium of interest. Typically, a sample of interest, which is suspected of containing GBS bacteria is treated, using standard techniques to obtain genomic DNA from any microorganisms present in the sample. It may be desirable for a number of subsequent detection steps to use nucleic acid preparation techniques that result in substantial fragmentation of the genomic DNA. The sample may be from a bacterial culture or a clinical sample from a 20 patient, typically a human patient. Clinical samples may be cultured to produce a bacterial culture. However, it is also possible to test clinical samples directly with a culturing step.

The genomic DNA is then subjected to one or more analysis steps which 25 may include sequencing, enzymatic amplification and/or hybridisation. These general techniques of DNA analysis are known in the art and are discussed in detail in, for example, Sambrook et al. 2001 and Ausubel et al. 1999 *supra*.

Serotyping may involve a one or more steps. For example, it may be desirable to carry out an initial step of determining whether there are nucleotide sequences present in the sample which are conserved between GBS serotypes 30 but not found in any other organism. This may be achieved by using PCR primers that detect any (but only) GBS bacteria (e.g. using primer pairs Sag59/Sag190 and/or DSF2/DSR1 - see Tables 2 and 3).

Molecular serotyping for specific GBS serotypes can then be performed by detecting the presence of one or more regions of heterogeneity in the regions of 35 interest using any suitable technique such as sequencing, enzymatic amplification and/or hybridisation based on the probes/primers discussed above.

A particularly preferred detection technique is PCR, such as rapid cycle PCR (Kong et al., 2000).

An example of a multi-step serotyping strategy (algorithm) is shown in Figure 2. However, a variety of other strategies are envisaged and can be designed by the skilled person using the sequence heterogeneity information presented herein. In particular, it is preferred that the serotyping procedure 5 comprise at least one analysis step based on analysing one or regions of the *cpsD*, *cpsE*, *cpsF*, *cpsG* and/or *cpsI/M* genes. This analysis may optionally be combined with an analysis of one or more regions within the *cpsH* gene. Similar techniques may be used to analyse the *cpsH* gene regions and suitable primer sequences and methods are also described in the Examples.

10 Analysis of the presence or absence of the *a/p2*, *a/p3* and/or *rib* genes may optionally be combined with an analysis of the presence or absence of C alpha (*bca* gene), C beta (*bac*) gene sequences as is described in the Examples. Similar techniques may be used to analyse these regions and suitable primer sequences and PCR methods are also described in the Examples.

15 Furthermore, analysis of the presence or absence of the *a/p2*, *a/p3* and/or *rib* genes (and optionally the *bca* and *bac* genes) may be combined with an analysis of the presence or absence of mobile genetic elements.

Thus a typing strategy may involve an analysis of *cps* genes, surface protein genes and/or mobile genetic elements in various combinations to provide 20 more serosubtyping and subtyping information.

Analysis of GBS genomic sequences using the above techniques may take place in solution followed by standard resolution using methods such as gel electrophoresis. However in a preferred aspect of the invention, the primers/probes are immobilised onto a solid substrate to form arrays.

25 The polynucleotide probes are typically immobilised onto or in discrete regions of a solid substrate. The substrate may be porous to allow immobilisation within the substrate or substantially non-porous, in which case the probes are typically immobilised on the surface of the substrate. Examples of suitable solid substrates include flat glass (such as borosilicate glass), silicon wafers, mica, 30 ceramics and organic polymers such as plastics, including polystyrene and polymethacrylate. It may also be possible to use semi-permeable membranes such as nitrocellulose or nylon membranes, which are widely available. The semi-permeable membranes may be mounted on a more robust solid surface such as glass. The surfaces may optionally be coated with a layer of metal, such as gold, 35 platinum or other transition metal.

Preferably, the solid substrate is generally a material having a rigid or semi-rigid surface. In preferred embodiments, at least one surface of the substrate will be substantially flat, although in some embodiments it may be

desirable to physically separate synthesis regions for different polymers with, for example, raised regions or etched trenches. It is also preferred that the solid substrate is suitable for the high density application of DNA sequences in discrete areas of typically from 50 to 100 µm, giving a density of 10000 to 40000 cm⁻².

5 The solid substrate is conveniently divided up into sections. This may be achieved by techniques such as photoetching, or by the application of hydrophobic inks, for example teflon-based inks (Cel-line, USA). Discrete positions, in which each different probes are located may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc.

10 Attachment of the library sequences to the substrate may be by covalent or non-covalent means. The library sequences may be attached to the substrate via a layer of molecules to which the library sequences bind. For example, the probes may be labelled with biotin and the substrate coated with avidin and/or streptavidin. A convenient feature of using biotinylated probes is that the 15 efficiency of coupling to the solid substrate can be determined easily. Since the polynucleotide probes may bind only poorly to some solid substrates, it is often necessary to provide a chemical interface between the solid substrate (such as in the case of glass) and the probes. Thus, the surface of the substrate may be prepared by, for example, coating with a chemical that increases or decreases 20 the hydrophobicity or coating with a chemical that allows covalent linkage of the polynucleotide probes. Some chemical coatings may both alter the hydrophobicity and allow covalent linkage. Hydrophobicity on a solid substrate may readily be increased by silane treatment or other treatments known in the art. Examples of suitable chemical coatings include polylysine and poly(ethyleneimine). Further 25 details of methods for the attachment of are provided in US Patent No. 6,248,521. Methods for immobilizing nucleic acids by introduction of various functional groups to the molecules are also described in Bischoff *et al.*, 1987 (Anal. Biochem., 164:336-3440 and Kremsky *et al.*, 1987 (Nucl. Acids Res. 15:2891-2910).

30 Techniques for producing immobilised arrays of nucleic acid molecules have been described in the art. A useful review is provided in Schena *et al.*, 1998, TibTech 16: 301-306, which also gives references for the techniques described therein.

35 Microarray-manufacturing technologies fall into two main categories—synthesis and delivery. In the synthesis approaches, microarrays are prepared in a stepwise fashion by the *in situ* synthesis of nucleic acids from biochemical building blocks. With each round of synthesis, nucleotides are added to growing chains until the desired length is achieved. A number of prior art methods describe

how to synthesise single-stranded nucleic acid molecule libraries *in situ*, using for example masking techniques (photolithography) to build up various permutations of sequences at the various discrete positions on the solid substrate. U.S. Patent No. 5,837,832 describes an improved method for producing DNA arrays immobilised to 5 silicon substrates based on very large scale integration technology. In particular, U.S. Patent No. 5,837,832 describes a strategy called "tiling" to synthesize specific sets of probes at spatially-defined locations on a substrate which may be used to produced the immobilised DNA libraries of the present invention. U.S. Patent No. 5,837,832 also provides references for earlier techniques that may also be used.

10 The delivery technologies, by contrast, use the exogenous deposition of preprepared biochemical substances for chip fabrication. For example, DNA may also be printed directly onto the substrate using for example robotic devices equipped with either pins (mechanical microspotting) or piezo electric devices (ink jetting). In mechanical microspotting, a biochemical sample is loaded into a spotting pin by capillary action, and a small volume is transferred to a solid 15 surface by physical contact between the pin and the solid substrate. After the first spotting cycle, the pin is washed and a second sample is loaded and deposited to an adjacent address. Robotic control systems and multiplexed printheads allow automated microarray fabrication. Ink jetting involves loading a biochemical 20 sample, such as a polynucleotide into a miniature nozzle equipped with a piezoelectric fitting and an electrical current is used to expel a precise amount of liquid from the jet onto the substrate. After the first jetting step, the jet is washed and a second sample is loaded and deposited to an adjacent address. A repeated series of cycles with multiple jets enables rapid microarray production.

25 In one embodiment, the microarray is a high density array, comprising greater than about 50, preferably greater than about 100 or 200 different nucleic acid probes. Such high density probes comprise a probe density of greater than about 50, preferably greater than about 500, more preferably greater than about 1,000, most preferably greater than about 2,000 different nucleic acid probes per 30 cm². The array may further comprise mismatch control probes and/or reference probes (such as positive controls).

Microarrays of the invention will typically comprise a plurality of primers/probes as described above. The primers/probes may be grouped on the array in any order. However, it may be desirable to group primers/probes 35 according to types (capsular polysaccharide gene serotypes, serosubtypes; protein antigen gene subtypes; mobile genelic elements subtypes), or groups of types (capsular polysaccharide gene serotypes, serosubtypes; protein antigen gene subtypes; mobile genelic elements subtypes) for which they are specific.

Such grouping may be arranged such that the resulting patterns are easily susceptible to pattern recognition by computer software.

Elements in an array may contain only one type of probe/primer or a number of different probes/primers.

- 5 Detection of binding of GBS genomic DNA to immobilised probes/primers may be performed using a number of techniques. For example, the immobilised probes which are specific to a number of types (capsular polysaccharide gene serotypes, serosubtypes; protein antigen gene subtypes; mobile genetic elements subtypes), may function as capture probes. Following binding of the genomic
- 10 DNA to the array, the array is washed and incubated with one or more labelled detection probes which hybridise specifically to regions of the GBS genome which are conserved. The binding of these detection probes may then be determined by detecting the presence of the label. For example, the label may be a fluorescent label and the array may be placed in an X-Y reader under a
- 15 charge-coupled device (CCD) camera.

Other techniques include labelling the genomic DNA prior to contact with the array (using nick-translation and labelled dNTPs for example). Binding of the genomic DNA can then be detected directly.

- 20 It is also possible to employ a single PCR amplification step using labelled dNTPs. In this embodiment, the genomic DNA fragment binds to a first primer present in the array. The addition of polymerase, dNTPs, including some labelled dNTPs and a second primer results in synthesis of a PCR product incorporating labelled nucleotides. The labelled PCR fragment captured on the plate may then be detected.

- 25 A number of available detection techniques do not require labels but instead rely on changes in mass upon ligand binding (e.g. surface plasmon resonance- SPR). The principles of SPR and the types of solid substrates required for use in SPR (e.g. BIACore chips) are described in Ausubel *et al.*, 1999, *supra*.

30

C. Uses

- 35 As discussed above, group B streptococcus (GBS) - *Streptococcus agalactiae* - is the commonest cause of neonatal and obstetric sepsis and an increasingly important cause of septicaemia in the elderly and immunocompromised patients. Thus, the detection methods, probes/primer and microarrays of the invention may be used in the diagnosis of GBS infections in pregnant women, elderly and/or immunocompromised patients. The PCR and

microarray techniques described herein may be of particular use in routine antenatal screening of pregnant women as well as in diagnosing infections in pregnant women given the increased accuracy and sensitivity compared to conventional identification and serotyping. These methods are also likely to give
5 faster results since it will not generally be necessary to culture clinical samples to obtain enough material. Further, the molecular techniques can be used in most laboratories without the need for specialist expertise or reagents.

The molecular typing methods of the invention may also assist in comprehensive strain identification that will be useful for epidemiological and
10 other related studies that will be needed to monitor GBS isolates before and after introduction of GBS conjugate vaccines.

The present invention will now be described in more detail with reference to the following examples, which are illustrative only and non-limiting. The
15 examples refer to Figures:

Detailed description of the Figures.

Figure 1. Molecular serotype identification based on the sequence heterogeneity
20 of the 3'-end of *cpsD-cpsE-cpsF*-and the 5'-end of *cpsG* (relevant primers are shown).

Figure 2. Algorithm for GBS molecular serotype (MS) identification by PCR and
sequencing.
25

Figure 3. Multiple sequence alignments of the gene sequences of *cpsG-cpsH-cpsI/M* for serotypes Ia, Ib, II, III, IV, V and VI (start and stop codons are highlighted in bold).

Figure 4. Two sites (*) of sequence heterogeneity between *alp2* (AF208158,
30 upper lines) and *alp3* (AF291065, lower lines) used to distinguish them (relevant primers are shown).

Figure 5. Genetic relationship of 194 invasive Australasia GBS strains (or 56
35 genotypes).

Notes for column headed "Genetic Markers of GBS genotypes":

Protein antigen gene profile codes are:

- "A": 5'end of *bca* positive;
"a" or "as": *bca* repetitive unit or *bca* repetitive unit-like region positive, with multiple or single band amplicons, respectively;
"B": *bac* positive;
5 "R": *rib* positive;
"alp2": *a/p2* positive;
"alp3": *a/p3* positive;
"None": isolate contains none of the above protein genes.

The molecular markers in bold type show the common features in each cluster.

10

Notes for column headed "No. of strains":

After "+" are the numbers of CSF isolates, the others are blood isolates.

Notes for column headed "Genotypes":

- 15 Each genotype was characterized by a distinct combination of the *cps* genes, protein gene profiles and mobile genetic elements. The predominant genotype in each serotype were named as the number "1" genotype of that serotype.

Notes for the dendrogram:

- 20 At about distance 16, the 56 genotypes could be separated into 8 clusters (1-8); at about distance 22.5 the 56 genotypes could be separated into 3 cluster groups (A, B, C).

EXAMPLES

25 MATERIALS AND METHODS

GBS reference strains and clinical isolates.

A panel of nine GBS serotypes (Ia to VIII) was kindly provided by Dr Lawrence Paoletti, Channing Laboratory, Boston USA (reference panel 1). Dr Diana Martin, Streptococcus Reference Laboratory, at ESR, Wellington, New Zealand, provided another panel of nine international reference GBS type-strains including serotypes Ia to VI (reference panel 2) (Table 1). In addition, we tested isolates from 205 clinical cases including 146 which had been referred from various laboratories in New Zealand for serotyping and 59 isolated from normally sterile sites over a period of 10 years in one diagnostic laboratory in Sydney. One culture was subsequently shown to be mixed, so 206 different isolates were examined. Conventional serotyping (CS) was performed at the Streptococcus

Reference Laboratory, at ESR, Wellington, New Zealand, and MS at the Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Sydney, Australia.

5 The two panels of GBS reference strains and 63 selected clinical isolates were studied in more detail, by sequencing >2200 base pairs (bp) of each to identify appropriate sequences for use in MS. These and the remaining clinical isolates were then used to evaluate the MS method and compare results with those of CS. Typing by both methods was done initially without knowledge of results of the other.

10 Bacterial isolates were retrieved from storage by subculture on blood agar plates (Columbia II agar base supplemented with 5% horse blood) and incubated overnight at 37°C.

Invasive GBS clinical isolates

15 All 194 isolates used in the study of mobile genetic elements were recovered from the blood (177) or CSF (17) of 191 patients (107 female, 80 male, four sex unrecorded; three cultures each contained mixed growth of two GBS serotypes). 108 isolates were from specimens submitted for culture to the Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Sydney, 20 Australia during 1996-2001 and 83 were referred to Institute of Environmental Science and Research (ESR), Porirua, Wellington, New Zealand for serotyping, from various diagnostic laboratories in New Zealand, during 1994-2000.

25 Patients were classified into age-groups for analysis of genotype distribution as follows: neonatal, early onset (0-6 days); neonatal, late onset (7 days to 3 months); infant and child (4 months-14 years); young adult (15-45 years); middle-aged (46-60 years); elderly (>60 years).

These isolates are mainly a subset of the isolates described above but with reference strains and non-invasive isolates excluded.

30 Conventional serotyping (CS).

CS was performed using standard methodology (Wilkinson and Moody, 1969). Briefly, an acid-heated (56°C) extract was prepared for each isolate and the serotype determined by immuno-precipitation of type-specific antiserum in agarose. An isolate was considered positive for a particular serotype when the precipitation occurring formed a line of identity with that of the control strain. 35 Antisera used were prepared at ESR in rabbits against serotypes Ia, Ib, Ic, II, III, IV, V and the R protein antigen. Fourteen selected isolates, including six that

were nontypable using antisera against serotypes I-V, six that initially gave discrepant results between CS and MS and two separate isolates from a mixed culture, were kindly tested using antisera against all serotypes by Abbie Weisner and Dr. Androulla Efstratiou at Central Public Health Laboratory, Colindale, 5 London, UK.

Molecular serotype identification (MS); development of method.

Oligonucleotide primers.

The oligonucleotide primers used in this study, their target sites and melting temperatures are shown in Tables 2, 6 and 10. Their specificities and expected lengths of amplicons are shown in Tables 3, 7 and 11. The primers were synthesised according to our specifications by Sigma-Aldrich (Castle Hill NSW, Australia). Four previously published oligonucleotide primers, and a series of new primers designed by us were used to sequence the genes of interest, 10 namely 16S/23S rRNA intergenic spacer region and partial cps gene cluster, or to amplify unique sequences of individual GBS serotypes. Six previously published oligonucleotide primers and a series of new primers designed by us were used to sequence parts of and/or to specifically amplify genes encoding GBS surface 15 proteins. We also designed a series of primers to sequence parts of and/or to specifically amplify five known GBS mobile genetic elements. Some were 20 designed with high melting temperatures (>70 °C) to be used in rapid cycle PCR.

DNA preparation and polymerase chain reaction (PCR).

Five individual GBS colonies or a sweep of culture were sampled using a 25 disposable loop and resuspended in 1 ml of digestion buffer (10mM Tris-HCl, pH 8.0, 0.45% Triton X-100 and 0.45% Tween 20) in 2 ml Eppendorf tubes. The tubes containing GBS suspension were heated at 100°C (dry block heater or water bath) for 10 minutes then quenched on ice and centrifuged for 2 minutes at 14,000 rpm to pellet the cell debris. 5 µL of each supernatant containing 30 extracted DNA was used as template for PCR (Mawn et al., 1993).

PCR systems (25µL for detection only, 50 µL for detection and sequencing) were used as previously described (Kong et al., 1999). The denaturation, annealing and elongation temperatures and times used were 96°C for 1 second, 55-72°C (according to the primer Tm values or as previously 35 described) for 1 second and 74°C for 1 to 30 seconds (according to the length of amplicons), respectively, for 35 cycles.

10 µL of PCR products were analysed by electrophoresis on 1.5 % agarose gels, which were stained with 0.5 µg ethidium bromide mL⁻¹. For detection and/or serotype identification, the presence of PCR amplicons of expected length, shown by ultraviolet transillumination, were accepted as positive. For sequencing, 40 µL volumes of PCR products were further purified by polyethylene glycol precipitation method (Ahmet et al., 1999).

Sequencing.

The PCR products were sequenced using Applied Biosystems (ABI) *Taq DyeDeoxy* terminator cycle-sequencing kits according to standard protocols. The corresponding amplification primers or inner primers were used as the sequencing primers.

Multiple sequence alignments and sequence comparison.

Multiple sequence alignments were performed with Pileup and Pretty programs in Multiple Sequence Analysis program group. Sequences were compared using Bestfit program in Comparison program group. All programs are provided in WebANGIS, ANGIS (Australian National Genomic Information Service), 3rd version.

20

Surface protein gene profile codes

Each isolate was given a protein gene profile code according to positive PCR results using various primer pairs, as shown in Table 7.

25 *Nucleotide sequence accession numbers.*

The new sequence data described have been submitted to the GenBank Nucleotide Sequence Databases and allocated the following accession numbers: AF291411-AF291419 (16S/23S rRNA intergenic spacer regions for serotypes Ia to VIII reference strains from reference panel 1); AF332893-AF332917, AF363032-AF363060, AF367973, AF381030 and AF381031 (partial *cps* gene clusters for two panels of reference strains (Table) and selected representative clinical isolates); AF367974 (partial *bac* gene sequence, with an insertion IS1381 from one isolate), AF362685-AF362704 (partial *bac* gene sequences for all *bac*-positive isolates) and AF373214 (partial *rib*-like gene for reference strain Prague 25/60, an R protein standard strain).

Previously reported sequence data referred to herein have appeared in the GenBank Nucleotide Sequence Databases with the following accession numbers: AB023574 (16S rRNA gene); U39765, L31412 (16S/23S rRNA intergenic spacer

regions); X68427 (*S. oralis* 23S rRNA gene); X72754 (*cfb* gene); AB028896 (*cps* gene cluster for serotype Ia); AB050723 (partial *cps* gene cluster for serotype Ib); AF163833 (*cps* gene cluster for serotype III); AF355776 (*cps* gene cluster for serotype IV); AF349539 (*cps* gene cluster for serotype V); AF337958 (*cps* gene

- 5 cluster for serotype VI); M97256 (*bca* gene); X58470, X59771 (*bac* gene); U58333 (*rib* gene); AF208158 (*alp2* gene), AF291065-AF291072 (*alp3* gene); AF064785 (IS1381); M22449 (IS861); Y14270 (IS1548); AF064785 (IS1381); AF165983 (ISSa4); and AJ292930 (GBSi1).

10 **Statistical analysis and dendrogram.**

SSPS version 11 software was used for statistic analysis. A dendrogram was formed using Average Linkage (between groups) and Hierarchical Cluster Analysis in SSPS version 11 software. The presence or absence of each marker - MS Ia, Ib, II, IV-VI , sst III-1-4; ppg "A", "R", "a", "as", "alp2", alp3"; bac subgroups 15 1, 1a, 2, 3, 3a, 3b, 3c, 4, 4b, 5a, 7, 7a, 8, 9, 9a, 10, n1, n2; and mge IS1381, IS861, IS1548, ISSa4, GBSi1 - were included in the analysis. The genotypes were each characterized by a distinct combination of the molecular serotyping (MS) or sst, ppg and mge.

20 **Example 1 - Study of inter- and intra-serotype/serosubtype sequence heterogeneity in specific regions of the GBS genome and assessment of suitability for molecular serotyping/serosubtyping.**

Polymerase chain reaction.

- 25 With two exceptions, all GBS-specific primer pairs produced amplicons of the expected size from all reference strains and clinical isolates tested (Table 3). The exceptions were Sag59/Sag190 and CFBS/CFBA. Both target the *cfb* gene, but failed to produce amplicons from one clinical isolate, despite repeated attempts. We assumed that this isolate either lacked the *cfb* gene or that the 30 gene was present in a mutant form. It has been suggested previously that PCR targeting the *cfb* gene will not identify all GBS isolates (Hassan et al., 2000) and that another primer pair based on 16S rRNA gene, DSF2/DSR1 (Ahmet et al., 1999) was not entirely specific. Therefore, in this study, we used both primer pairs (DSF2/DSR1 and Sag59/Sag190) to confirm all the isolates were GBS.

35

Sequence heterogeneity of 16S/23S rRNA intergenic spacer regions.

The 16S/23S rRNA intergenic spacer regions were sequenced for the serotypes Ia to VIII from reference panel 1. Multiple sequence alignment showed

differences between serotypes at only two positions: 207 (serotype V is T or C [T/C], serotypes VII and VIII are C, others are T) and 272 (serotype III is T, others G). These regions are therefore unsuitable for MS.

5 **Sequence heterogeneity at the 3'-end of *cpsD-cpsE-cpsF*-and the 5'-end of *cpsG*.**

Using a series of primers targeting the 3'-end of *cpsD-cpsE-cpsF*-and the 5'-end of *cpsG*, we amplified and sequenced 2226 or 2217 bp - depending on the presence or absence of a nine-base repetitive sequence - from both panels of 10 reference strains (serotypes Ia to VII) and 63 selected clinical isolates. Representative sequences were deposited into GenBank. See Table 1 for GenBank accession numbers of reference panel strains.

Repetitive sequence.

15 At the 3'-end region of *cpsD*, we found a nine-base repetitive sequence (TTA CGG CGA) in most isolates of MS Ia and II, some of MS III, all of MS IV, V, and VII, but none of the isolates of MS Ib or VI examined. (Table 4). The presence or absence of this repetitive sequence can be used to further subtype MS Ia, II and III (see below).

20 *Intra-serotype heterogeneity.*

In general, intra-serotype heterogeneity was low - there were minor random variations in a few isolates of all serotypes except MS III, in which the intra-serotype heterogeneity was more complex. MS III could be divided into four 25 sequence subtypes on the basis of heterogeneity at 22 positions - 62, 139, 144, 1512, 1518, 1527, 1629, and 2134 - and the presence or absence of the repetitive sequence (at 78-86) (Table 4).

Among 60 MS III isolates (58 clinical isolates and two reference strains), 30 serosubtypes III-1 (30 isolates) and III-2 (22 isolates) were predominant. The repetitive sequence was present in serosubtype III-1 but not III-2; there were differences at seven other sites (139, 144, 204, 300, 321, 636, and 1629).

There were five isolates belonging to serosubtype III-3, which contained 35 the repetitive sequence and were identical with serosubtype III-1 at three variable sites (139, 144, and 300) and with serosubtype III-2 at four (204, 321, 626 and 1629). Serotype III-3 differed from both serosubtypes III-1 and III-2 at seven sites (486, 1026, 1413, 1512, 1518, 1527, and 2134). These seven sites in serosubtype III-3 were identical with the corresponding sites of MS Ia.

There were three serosubtype III-4 isolates, whose sequences were nearly identical with the corresponding sequence of MS II. The only exception was at position 437, where the nucleotide was T in serosubtype III-4 (as in MS VII), and C in MS II. This difference can be used (in addition to PCR, see below) to 5 differentiate serosubtype III-4 from MS II. Two serosubtype III-4 isolates contained the repetitive sequence, and the other did not. Because of the small number of serosubtype III-4 isolates, we did not use the repetitive sequence to subtype them further.

10 *Inter-serotype heterogeneity.*

There were 56 sites of heterogeneity between the eight MS (Table 4). The most suitable sites, for use in PCR/sequencing for MS, were a group of 23 sites nearest to the 3'-end of the region (Table 4, Figure 1). Firstly, they were consistent across two panels of reference strains and most clinical isolates (the 15 only exceptions were the small number of serosubtypes III-3 and III-4 isolates, see below). Secondly, they were relatively concentrated within a 790 bp region, which is a convenient length for sequencing in a single reaction. Thirdly, they contained enough heterogeneity sites to allow differentiation, with few exceptions, of MS Ia-VII. Based only on this 790 bp region, serosubtype III-3 cannot be 20 distinguished from MS Ia, nor serosubtype III-4 from MS II. However, they can be identified by MS III-specific PCR (see below).

Serotype VIII does not form amplicons with primer pairs targeting the 790 bp region, but can be identified by exclusion after PCR identification of GBS. In this study, one MS VIII isolate was identified, for which none of the primer pairs 25 that amplify the 2226 bp region (in addition to those that amplify the 790 bp region) produced amplicons. This result was confirmed by the use of serotype VIII-specific antiserum.

Mixed serotype-specificities in single isolates.

30 Eleven isolates were identified as one MS on the basis of the MS-specific PCR and overall sequence (within the 2226/2217 bp segment) but their sequences differed at some sites from isolates of the same MS and shared site-specific characteristics of another. They included five serosubtype III-3 isolates and three serosubtype III-4 (see above). One non-serotypable reference strain 35 (Prague 25/60), which was identified as MS II, differed from other MS II isolates at five sites at the 5'-end of the region, and was identical with MS III at three of these sites. Prague 25/60 MS III-specific PCR was negative. One clinical isolate identified as CS II, and MS II on the basis of its overall sequence, had bases at

nine sites at the 5'-end of the region, that were characteristic of serotype Ib; MS Ib-specific PCR was negative. Finally, one CS V reference strain (Prague 10/84) had the same sequencing result as the corresponding sequence in GenBank (AF349539), but both were different, at three sites at the 5'-end of the region, 5 from sequences of the other MS V strains that we studied.

All of these mixed-serotype specificities, except for those associated with serosubtypes III-3 and III-4, occurred at the 5'-end region of the 2226/2217 fragment. This supported our selection of the 790 bp 3'-end as the sequencing target for MS. Using this target, all MS were correctly identified except for MS III-10 belonging to serosubtypes III-3 and III-4, which can be identified by MS III-specific PCR (see Example 2).

Example 2 - Molecular serotype identification (MS) based on MS-specific PCR targeting the 3'-end of *cpsG-cpsH-cps I/cpsM*.

Our sequence alignment results showed that there was significant 15 sequence heterogeneity in the 3'-end of *cpsG-cpsH-cps I/cpsM* (Figure 3), which makes it appropriate for use in the design of specific primer pairs for differentiation of serotypes Ia, Ib, III, IV, V, and VI directly by PCR. To fulfil possible additional future requirements - for example, development of multiplex 20 PCR and/or to allow further evaluation of the sequence typing method, we designed several primer pairs for each serotype (Tables 2 & 3). Using two panels of reference strains and the specified conditions, all primer pairs amplified DNA only from the corresponding serotypes. When clinical isolates were tested, similar 25 results were obtained with two sets of MS-specific primer pairs. In general, more stringent conditions (lower primer concentration, higher annealing temperatures) could be used with primers generating smaller amplicons. Those selected for MS are shown in Table 3 and Figure 2.

A MS was assigned, by PCR, to 179 of 206 (86.9%) clinical isolates as follows: MS Ia 40; MS Ib 35; MS III 58 (including those previously identified as 30 serosubtypes III-3 and III-4); MS IV 7; MS V 36; MS VI 3.

Example 3 - Comparison of serotype identification results between MS and CS.

After CS and MS had been completed, the results were compared. Initial results were discrepant for 15 isolates, all but five of which (see below) were 5 resolved by retesting and/or correction of clerical errors.

The CS and MS/sequence subtyping results are shown in Table 5. A MS was assigned to all isolates by PCR and/or sequencing, compared with 188 of 206 (91.3%) by CS. Specific PCR has not yet been developed for MS II and VIII, so all MS II isolates were determined by sequencing only and one presumptive 10 MS VIII isolate was decided by exclusion (see Example 1). For all other isolates, the results of PCR and sequencing were consistent, except for serosubtypes III-3 and III-4 and other minor sequence differences described above (Example 1). CS results correlated well with PCR results.

Final CS and MS results were the same for all 188 isolates (100%) for 15 which results for both methods were available. Eighteen clinical isolates that were non-serotypable by CS, were assigned MS as follows: Ia, two; Ib, five; II, one; serosubtype III-1, three; serosubtype III-2, one; V, five; and VI, one.

Sequences (2217 bp) of three clinical isolates that we identified as MS VI, 20 were identical with those for serotype VI reference strains and the corresponding sequence in GenBank (AF337958).

Mixed culture.

Four clinical isolates gave positive results with MS III-specific PCR, but were provisionally identified as MS II by sequencing. Three were CS III and one 25 CS II, with a weak cross-reaction with serotype III antiserum. These isolates were studied further by subculturing 12 individual colonies of each. All subcultures were tested by MS III-specific PCR. All 12 colony subcultures of the three CS III isolates were positive by MS III-specific PCR and the isolates were therefore classified as serosubtype III-4 (see above). However, 11 of 12 colony subcultures 30 of the fourth isolate were negative by MS III-specific PCR; and one was positive by MS III-specific PCR. It was therefore assumed that this was a mixed culture, predominantly of MS/CS II. The one MS III-specific PCR positive colony was subsequently identified as serosubtype III-2 and included as an additional clinical isolate (total 206 in all).

Example 4 - Algorithm for serotype assignment of GBS by PCR and sequencing

As an example of how the PCR and sequencing methods described above may be used clinically to perform GBS serotype identification, we designed an 5 algorithm for clinical use. All the primers (except the inner sequencing primers) used were given high melting temperature (>70 °C), so rapid cycle PCR could be used (Figure 2) (see Table 2 for primer sequences).

Example 5 - Identification of regions in the *alp2*, *alp3* and *rib* genes suitable 10 for protein antigen gene specific subtyping

Polymerase chain reactions.

With few exceptions, all primer pairs produced amplicons of predicted length from isolates giving positive results (Table 7). The exceptions included one isolate that was positive by PCR using primer pairs GBS1360S/GBS1937A and 15 GBS1717S/GBS1937A (which both target *bac* gene) but produced amplicons significantly longer than those of other *bac* gene-positive isolates. Sequencing showed that the amplicon contained the insertion sequence IS1381 with minor variations compared with the published sequences (Tamura et al., 2000). The amplicons produced using primers IgAagGBS/RIgAagGBS and IgAS1/IgAA1 20 (also targeting *bac* gene) varied in length (Berner et al., 1999) and were sequenced for further subtyping (see below and Table 8).

Amplicon sequencing results.

To confirm the specificity of selected primer pairs that we had designed or 25 modified, we sequenced 10 of 23 amplicons produced by bcaS1/bcaA (targeting the 5'-end of *bca* gene) and all of those produced by ribS1/ribA3 (targeting *rib* gene) and GBS1360S/GBS1937A (targeting *bac* gene), from the two panels of reference strains and 31 randomly selected clinical isolates..

All 10 amplicons of primers bcaS1/bcaA and 12 of 13 of primers 30 ribS1/ribA3 were identical with the corresponding gene sequences in GenBank (M97256, *bca* gene and U58333, *rib* gene, respectively). One additional isolate, namely Prague 25/60 in reference panel 2 (which is used to raise R antiserum), produced an amplicon with primer pair ribS1/ribA3 only at a lower annealing temperature (55 °C) but not with ribS2/ribA1 and ribS2/ribA2. It was therefore 35 assumed not to contain *rib* gene, although the amplicon sequence showed considerable homology with *rib* gene (71.4% or 66.6% according to whether or not the primer sequences were included) (Figure 3). This isolate was the only

one, of 224 tested, for which PCRs were negative using ribS2/ribA1 and ribS2/ribA2 but positive using ribS1/ribA3. The latter primer pair is assumed to be not entirely specific for *rib* gene and was therefore used only for sequencing.

Four of 10 amplicons of primer pair GBS1360S/GBS1937A (targeting *bac* gene) were identical with the corresponding sequence in GenBank (X58470, X59771). A single point mutation (A to G, 1441 of X59771) was found in the remaining six *bac* gene amplicons, including the one which contained the insertion sequence IS1381 (see above and AF367974).

Amplicons from all of the 224 isolates that gave positive PCR results using primer pairs bcaS1/balA (targeting *a/p2/a/p3* genes), bal23S1/bal2A2 (targeting *a/p2* gene) and IgAagGBS/RlgAagGBS (targeting *bac* gene) were sequenced.

Fifty isolates produced amplicons using primer pair bcaS1/balA. The sequences of nine were identical with the corresponding portions of the published sequence of *a/p2* gene (AF208158) and 41 with that of *a/p3* gene (AF291065). There are two consistent heterogeneity sites between *a/p2* and *a/p3* genes in the sequences of bcaS1/balA amplicons (Figure 4), which can be used to distinguish them, in addition to *a/p2* and *a/p3* gene -specific PCR. All nine amplicons of primer pair bal23S1/bal2A2 were identical with the corresponding portion of the *a/p2* gene sequence in GenBank (AF208158).

The primer pair IgAagGBS/RlgAagGBS identified *bac* gene in 52 isolates. There was considerable sequence variation, which allowed separation of *bac* gene -positive isolates into 11 groups and 20 subgroups based on amplicon length and sequence heterogeneity, respectively (Table 8). The groups contained small numbers (one to five) of isolates except for B1 (20 isolates, 2 subgroups) and B4 (11 isolates, 3 subgroups). The differences in amplicon length was generally caused by the presence or absence of short repetitive sequences.

Further confirmation of specificity of surface protein gene-specific primer pairs.

To confirm primer specificity, we compared the results of PCR using the primer sequences we had designed or modified for *bac* gene PCR, with those of PCR using previously published primers and found 100% correlation.

The previously reported non-specificity of the published primer pair bcaRUS/bcaRUA (targeting the *bca* gene repetitive unit) was confirmed. Using these primers, all nine *a/p2* gene positive (bcaS1/bcaA negative) isolates and 53 which were PCR negative using the primers bcaS1/bcaA, bcaS2/bcaA (targeting the 5'-end of *bca* gene), bal23S1/bal2A2 and bal23S2/bal2A1 (targeting the 5'-end of *a/p2* gene) produced amplicons. Our sequencing showed that *bca* gene

and *a/p2* gene have significant homology in the regions targeted by bcaRUS/bcaRUA allowing amplicon formation from *a/p2* gene -positive strains. These false positive results could be due to the presence of other C alpha-like proteins, containing regions homologous with the *bca* gene repetitive unit (*bca* gene repetitive unit-like sequence).

We also showed that the results of PCR using two or more primer pairs that we had designed for individual genes (*rib*, *a/p2*, and *a/p3* genes) correlated well, supporting the specificity of each set. The only exception, as mentioned above, was *ribS1/ribA3*, which produced a non-specific amplicon from one of 224 isolates tested.

Example 6 - The relationship between surface protein antigen gene profiles and cps serotypes/serosubtypes.

Surface protein gene profiles.

For each gene (except *bca* gene repetitive unit or *bca* gene repetitive unit-like region), we selected two primer pairs to identify and characterise GBS surface protein by PCR. Each isolate was given a protein gene profile code according to PCR results as follows:

"A": 5'end of *bca* gene amplified by bcaS1/bcaA and bcaS2/bcaA;

"a" or "as": *bca* gene repetitive unit or *bca* gene repetitive unit-like region amplified by bcaRUS/bcaRUA, with multiple or single band amplicons, respectively;

"B": *bac* gene amplified by GBS1360S/GBS1937A and IgAagGBS/RlgAagGBS (>20 subgroups based on sequence heterogeneity).

"R": *rib* gene amplified by ribS2/ribA1 and ribS2/ribA2;

"alp2": *a/p2* gene amplified by bal23S1/bal2A2 and bal23S2/bal2A1 and

"alp3": *a/p3* gene amplified by bal23S1/bal3A and bal23S2/bal3A (Table 7).

Four common profiles accounted for 203 of 224 (90.6%) isolates: "R" (62 isolates), "AaB" (51 isolates), "a" (49 isolates) and "alp3" (41 isolates) (see Table 4). Only two isolates contained no surface protein gene markers. All but one isolate with the *bac* gene ("B") also had *bca* gene, with its repetitive unit ("Aa"); one had *rib* gene. All "alp2" isolates contained single *bca* repetitive unit-like sequences ("as"). "A", "R", "alp2" and "alp3" were all mutually exclusive. 62 of 63 isolates with *rib* gene ("R") and 41 of 41 isolates with *a/p3* gene had no other protein antigen markers.

The relationship between surface protein antigen gene profiles and cps serotypes/serosubtypes.

5 A *cps* molecular serotype (MS) was assigned to all isolates in accordance with the methods described in Examples 1 to 4 and the results correlated with conventional serotyping (CS) results except for 19 of 224 isolates that were nontypable using antisera. The relationship between surface protein gene profiles and *cps* MS are summarised in Table 9.

10 The following strong associations were confirmed or demonstrated between: MS Ia and *bca* gene repetitive unit or *bca* gene repetitive unit-like sequence (most with profile "a"); MS serosubtypes III-1 and III-2 and *rib* gene; MS serosubtype III-3 and *alp2* gene; MS Ib and *bca/bac* genes and MS V and *alp3* gene. MS II showed the most varied surface protein gene profiles. However, the relationships were not absolute and different combinations of *cps* serotypes and 15 protein gene profiles produced 31 different serovariants or 51 when *bac* gene ("B") subgroups were considered.

Example 7 - The relationship between surface protein antigens and protein gene profiles.

20 Based on conventional serotyping, 33 isolates (belonging to CS Ia/c, Ib/c, IIc, IIb, IIIc or IIIb) reacted with the C antiserum. The surface protein gene profiles of all these isolates contained *bca* gene ("A") or *bca* gene repetitive unit-related markers ("a" or "as"): Aa, 3; AaB, 18; a, 11; alp2as,1. Twenty nine isolates reacted with the R antiserum and, of these, 22 contained *rib* gene and six, *alp3* gene. The strain used to raise the R protein antiserum (Prague 25/60) contained 25 a presumed *rib*-like gene (see above and Figure 3).

Example 8 - Identification of mobile genetic elements suitable for molecular subtyping

30 We developed a series of PCR primers to screen for the presence of five mobile elements in GBS serotypes.

Specificity of primers pairs.

35 All the primer pairs produced amplicons of the expected lengths (Table 11) from some reference and/or some clinical isolates (Table 12). To evaluate the specificity of our primer pairs, we sequenced all amplicons produced by primers IS1548S/IS1548A3 and ISSa4S/ISSa4A2, and amplicons, selected from both

reference and clinical isolates, produced by IS861S/IS861A2 (12 isolates), IS1381S1/IS1381A (24 isolates) and GBSi1S1/GBSi1A2 (11 isolates).

All 41 IS1548 and 15 ISSa4 amplicon sequences were identical with the corresponding sequences in GenBank (Y14270 and AF165983, respectively).

5 Five of 12 IS861 amplicon sequences were identical with the corresponding IS861 sequence in GenBank (M22449). The other seven differed, at position 732, from the published sequence (G to A) and the reference strain Prague 25/60 had two additional differences - G to A and T to A - at positions 576 and 830 of M22449, respectively.

10 Previously, we found a full-length insertion sequence IS1381 (AF367974) within C beta antigen gene of a clinical isolate, with several differences compared with the original published sequence (AF064785): the terminal inverted repeats contained 15, rather than 20 base pairs (bp); there was a three bp deletion and four individual bp differences in the putative transposase pseudogene between 15 positions 419 to 429 (of the original GenBank sequence) - GGG ATC CGA TT (AF064785) vs CAG A-- -GG TA (AF367974; our sequence). All amplicons of primer pair IS1381S1/IS1381A from 12 reference and 12 selected clinical isolates were identical with each other and with that of our IS1381 sequence in GenBank (AF367974) but different, as above, from the original reported IS1381 sequence (AF064785).

20 The amplicons of primer pair GBSi1S1/GBSi1A2 from all four GBSi1-positive reference strains and seven selected clinical isolates were sequenced. Six (including those of three reference strains) were identical with the corresponding GBSi1 sequence in GenBank (AJ292930). Amplicons from four 25 clinical isolates showed three site-variations (C to T at position 767, A to C at position 846 and T to C at position 923 of AJ292930 sequence). The reference strain Prague 25/60 showed only the first two of these site-variations.

In addition to sequencing, we evaluated the specificity of our primer pairs by comparing PCR results for two or more primer pairs for each target (Table 11). 30 In all cases, the same sets of isolates gave positive results when tested with PCR targeting the same mobile genetic elements, thus confirming the specificity of the primer pairs.

PCR results using specific primer pairs for all five mobile genetic elements.

35 IS861, IS1548, IS1381, ISSa4 and GBSi1 were identified in 55%, 18%, 85%, 7% and 19% of isolates, respectively. None of the mobile elements was detected in 10 (4%) isolates. The distributions of the five mobile elements identified by PCR in the 224 GBS isolates tested in the previous examples are shown in Table 12. IS1381

was detected alone in 79 isolates and GBSi1 alone in one. Forty-six isolates contained two different insertion sequences (IS861 and IS1381, 42 isolates ; IS1548 and IS1381, three isolates; ISSa4 and IS1381, one isolate). Forty-four isolates contained three (IS861, IS1548 and IS1381 34; IS861, ISSa4 and IS1381, 10) and 5 one contained all four insertion sequences. Forty-one isolates contained GBSi1 in combination with one (IS861, 22; IS1381, one isolate) two (IS861 and IS1381, 11; ISSa4 and IS1381, three isolates) or three (IS861, IS1548 and IS1381, four isolates) insertion sequences.

10 **PCR results for the 194 invasive isolates using specific primer pairs for all five mobile genetic elements - .**

The numbers of isolates containing different mobile genetic elements (mge) combinations (from none to four per isolate) are shown in Table 13. IS1381, IS861, IS1548, ISSa4 and GBSi1 were identified in 87%, 52%, 17%, 6% and 18% of 15 isolates, respectively. Six (3%) isolates contained no mge.

Example 9 - The relationships between cps serotypes, serosubtypes, surface protein gene profiles and mobile genetic elements.

The distribution of each of the five mobile genetic elements in different cps 20 serotypes, serotype III subtypes and surface protein gene profiles are shown in Tables 12 and 13. The most consistent findings for each sero/serosubtype were:

- 1) Serotype Ia - most (>80%) expressed proteins that closely related with C alpha protein and contained IS1381
- 2) Serotype Ib - most (>90%) expressed C alpha and C beta proteins and 25 contained IS861 and IS1381
- 3) Serotype II - exhibited two common patterns:
 - a) >50% expressed C alpha protein (and often C beta) and contained IS861, IS1381 and sometimes other mobile elements, especially ISSa4 or
 - b) >25% expressed Rib protein and contained IS861, IS1381 and GBSi1
- 30 4) Serosubtype III-1 - all expressed Rib protein and contained IS861, IS1548 and IS1381 but not GBSi1.
- 5) Serosubtype III-2 - all expressed Rib protein and contained IS861 and GBSi1 but neither IS1548 nor IS1381.
- 35 6) Serosubtype III-3 - all expressed C alpha-like protein 2 and contained no mobile genetic elements.
- 7) Serosubtype III-4 - expressed various proteins; all contained GBSi1.

- 8) Serotype IV - most expressed proteins that closely related with C alpha protein and contained IS1381
- 9) Serotype V - most expressed C alpha-like protein 3 contained IS1381
- 10) GBSi1 and IS1548 were mutually exclusive in serotype III (III-1, III-2 and III-4)
- 5 but not in serotype II.
- 11) All isolates that expressed C alpha-like protein 2 contained no insertion sequences.

Predominant relationships between MS/sst, pgp and mge.

10 Figure 5 shows the relationships between the various genetic markers. IS1381 was present in nearly all isolates of MS Ia, Ib, IV, V and VI, but in none of sst III-2 or III-3. IS1548 was found exclusively, and GBSi1 most commonly, in serotypes II or III; three isolates (all MS II) contained both GBSi1 and IS1548. IS861 was found in all sst III-1 and III-2 and most MS II and Ib isolates but only in 14% of other MS isolates.
15 ISSa4 was present in only 6% of isolates, more than half of which were MS II; it was present in one invasive isolate obtained before 1996 (1994). IS1381 was found in most isolates except those in cluster 8, pgp "alp2", which had no insertion sequences. IS861 was found in most genotypes with pgp "AaB" (clusters 3 and 4) and all genotypes with pgp "R" (clusters 6 and 7).

20 Genotypes based on MS/sst, pgp, bac subtypes and mge.

MS/sst, pgp, bac subtype (for isolates with pgp "B") and the presence of various combinations of mge provide a PCR/sequencing-based genotyping system. The 194 invasive isolates in this study represented seven serotypes, ten MS/sst, 41 subtypes based on the distributions of pgp and mge or 56 genotypes when bac subtypes (mainly in MS Ib) were included (Figure 5).

Theoretical GBS clonal population structure.

Theoretically there are 13 possible GBS MS/sst (eight MS - Ia, Ib, II, IV-VIII, 30 four sst III 1-4 and cps gene cluster absent) and at least 10 pgp (none, "Aa", "AaB", "a", "as", "R", "RB", "alp2as", "alp3" or "alp4a"). If the 22 bac subgroups identified so far are included, there are up to 31 pgp. If the five mge were independently, randomly distributed and present or absent, there would be $13 \times 31 \times 2^5 = 12,896$ different possible combinations of molecular markers. The fact that only 56 different combinations were found (Figure 5), demonstrates that markers are not randomly distributed or, in other words, these invasive Australasian GBS isolates have a clonal population structure. It

is possible, but unlikely, that these isolates represent a very limited number of GBS genotypes.

The phylogenetic relationship of Australasian invasive GBS.

- 5 The 56 genotypes formed eight clusters, separated at a genetic distance of about ~16 (or three cluster groups separated at a distance of ~22.5). The pgp was the main determinant of cluster separation (Figure 5). 94% of isolates belonged to five MS (Ia, Ib, II, III and V), 62% belonged to five (9%) genotypes (Ia-1, Ib-1, III-1, III-2, V-1) and 92% belonged to the five largest clusters (1, 2, 4, 6
10 and 7). Cluster group A, the largest, contained 139 (72%) isolates and 48 (86%) genotypes, 45 of which contained fewer than five isolates, whereas cluster group B contained 49 (25%) isolates and five (9%) genotypes.

The main characteristics of each cluster were as follows:

- Cluster 1. "alp3", IS1381 (39 isolates, four MS, 11 genotypes; predominant genotype V-1).
- 15 Cluster 2: "a" or "as", IS1381 (55 isolates, four MS, 12 genotypes, predominant genotype Ia-1).
- Cluster 3: "Aa" or "AaB", MS II, IS1381, IS 861 (10 isolates, six genotypes).
- Cluster 4: "AaB", IS1381, IS861 (35 isolates, two MS: VI or Ib; 18 genotypes;
20 predominant genotype Ib-1).
- Cluster 5: "AaB", IS861, GBSi1, genotype III-4-1 (one isolate).
- Cluster 6: "R", IS861 and GBSi1 (22 isolates, three MS/genotypes; predominant genotype III-2).
- Cluster 7: "R", IS1381 and IS861 (27 isolates; two MS/genotypes; predominant genotype III-1).
- 25 Cluster 8: "alp2as", no IS (six isolates; three MS/genotypes; one contained GBSi1).

The phylogenetic study showed that the dendrogram inferred by SSPS was very robust.

30

The relationship between genotypes and GBS disease patterns.

- The distribution of MS and genotypes in different age groups of patients with invasive GBS disease is shown in Table 14. All common MS were represented in more than one patient group. However, there were highly significant associations (when compared with all other age-groups) between sst III-2 and late onset neonatal infection ($p=0.0005$) and MS V and infection in the elderly ($p=0.001$).

There were 17 isolates from cerebrospinal fluid specimens, nine (53%) of which were MS III (from three different sst/genotypes, each in a different cluster). The other eight isolates were distributed among five MS, seven genotypes and four clusters. Meningitis occurred in all age-groups but comprised 23% of cases in the late onset neonatal group compared with 5% in all other groups.

DISCUSSION

Capsule production in GBS is controlled by capsular polysaccharide synthesis (*cps*) gene cluster, which had been sequenced for serotype Ia and serotype III before we began our study. Corresponding sequences for serotype Ib (Miyake *et al.*, 2001 submitted into GenBank, GenBank accession number: AB050723), and for serotypes IV, V, and VI (McKinnon *et al.*, 2001 submitted into GenBank, GenBank accession numbers: AF355776, AF349539, AF337958, respectively) were released recently when the project was nearly finished but those for the other three serotypes (II, VII and VIII), the sequences of *cps* gene clusters, have not been published previously.

The sequences of *cps* gene clusters for serotypes Ia, and III showed considerable homology at the 3'-end of *cpsD-cpsE-cpsF*-and the 5'-end of *cpsG*. We designed a series of primers to amplify a 2226/2217 bp segment in this region and found that amplicons were obtained from all serotypes except VIII. This confirmed a previous suggestion that serotype VIII is significantly different from other serotypes in this region.

Using eight serotype (Ia to VII) reference strains, we showed more than 50 heterogeneity points between serotypes (Figure 1, Table 4). Using 63 selected clinical isolates that had been serotyped by conventional methods, we found that these inter-serotype differences were generally consistent and specific, especially the 23 sites clustered at the 3'-end of the regions. We used these differences to assign serotypes to the remaining clinical isolates collected in this study, without knowledge of the serotype obtained by conventional methods.

Sequence analysis of the 3'-end of *cpsG-cpsH-cpsI/cpsM* for serotypes Ia, III, Ib, IV, V and VI showed that this region is highly variable (Figure 3), making this region a suitable target for direct serotype identification by PCR. We designed several pairs of MS-specific primers for MS Ia, Ib, III, IV, V and VI and used them to test two CS reference panels. Selected primer pairs were used for MS, by PCR alone, of 86.9% of our 206 clinical isolates. Using rapid-cycle MS-specific PCR, results are available within one working day. In future, it will be possible to extend this method to all MS, when *cps* gene cluster sequences in

this region are available for serotypes II, VII and VIII. Meanwhile, MS II and VII can be identified by sequencing the 790 bp PCR amplicons of the 3'-end of *cpsE*-*cpsF*-the 5'-end of *cpsG* (Figure 1, Table 4). A positive GBS-specific PCR and negative PCR results with all the primers that amplify the 790 bp, identified MS 5 VIII, by exclusion.

In future, and in some laboratories currently, sequencing of the 790 bp PCR amplicons of the 3'-end of *cpsE*-*cpsF*-the 5'-end of *cpsG* for all isolates may be more convenient, as only one method and fewer primers are needed. However, if sequencing is not available in-house, the turn-around time is longer 10 and a small proportion of serotypes would be wrongly assigned (serosubtypes III-3 and III-4 as MS Ia and II, respectively). This could be avoided by screening with MS III-specific PCR first. Sequencing the 790 bp PCR amplicon, allows MS III to be subtyped on the basis of the sequence heterogeneity.

Previous studies have shown that serotypes Ia, Ib, II, III, and V are those 15 most frequently isolated from normally sterile sites, in the United States and several countries. Serotypes VI and VIII are the predominant serotypes isolated from patients in Japan, but are uncommon elsewhere. Although our isolates were selected, they were probably representative of those causing disease in Australasia; Ia, Ib, II, III, and V were the most common serotypes identified, 20 although there were small numbers of serotypes IV, VI and, VIII.

Up to 13 % of GBS isolates are non-serotypable and in our study the proportion was 8.7% (18/206) using the antisera available. This may be due to decreased type-specific-antigen synthesis; non-encapsulated phase variation; or insertion or mutation in genes of *cps* gene clusters. One non-serotypable strain 25 GBS in our study had a T base deletion in *cpsG* gene, which caused a change in the *cpsG* gene reading frame.

We have also developed PCR-based methods to identify GBS surface protein genes and further characterise these isolates. Using the published *bac* 30 gene sequence, we modified *bac* gene-specific primers and designed new primers, with high melting temperatures (>70 °C) suitable for rapid cycle PCR targeting all major surface protein genes.

As previously reported, a published PCR primer pair targeting the *bca* gene repetitive unit (at the 3'-end of *bca* gene), was not entirely specific for *bca* 35 gene. We designed two new primer pairs targeting the 5'-end of *bca* gene, to improve the specificity. However, very few serotype Ia strains gave positive results using these primers whereas all were PCR positive using primers targeting the *bca* gene repetitive unit. These results were consistent with a previous report, that a probe targeting the 5'-end of *bca* gene hybridized with only

one of nine serotype Ia strains, but a large *bca* gene probe, including the tandem repeat region, hybridized with all nine strains.

PCR specific for *rib*, *a/p2* and *a/p3* genes has not been described previously. The primer pairs we designed mainly targeted the 5'-ends of the gene and were chosen after comparing the gene heterogeneity with related gene sequences. We designed two or more primer pairs for each gene to check primer specificity by comparison of results of different PCR targeting the same genes. Protein gene profiles "a/p2" and "a/p3" were distinguished on the basis of the *a/p2* and *a/p3* gene -specific PCR and/or two sequence heterogeneity sites in the amplicons of *bcaS1/balA*, or *bcaS2/balA*.

To confirm the specificity of our primers, we used them to examine two reference panels and selected GBS isolates. The longest amplicons produced by PCR for each gene were sequenced, to provide maximal sequence information and ensure that the inner primers were not located at strain heterogeneity sites. Our sequencing results confirmed the specificity of the primers. Two pairs of primers for each gene were compared, with similar results. Finally, six gene/region specific primer pairs (including the one targeting the *bca* gene repetitive unit) were used to define protein antigen gene profiles for all 224 isolates.

The study showed that only one member of the surface protein gene family containing repetitive sequences - *rib*, *bca*, *a/p2*, and *a/p3* genes - could be present in any single isolate. However, all isolates containing *bac* gene, which is not a member of the surface protein gene family containing repetitive sequences, also contained either *bca* gene (51/52) or *rib* gene (1/52).

Bac gene was present in 23% of isolates, a similar proportion to that (19-22%) previously reported. In common with others, we found variations in the *bac* gene due to variable small internal repetitive sequences. These *bac* gene repetitive sequences were irregular (unlike those of the *bca-rib* gene family). Their role is not clear, but they are potentially useful molecular markers for epidemiological studies.

Our data show that some serotype III isolates (our MS serosubtypes III-1 and III-2) were closely associated with *rib* gene, and others (our MS serosubtype III-3) with *a/p2* gene. Serotype Ib was associated with *bca* and *bac* genes and serotype V with *a/p3* gene. However, as the relationship was not absolute, different combinations of *cps* serotypes-serosubtypes/protein gene profiles identified many serovariants, which will be useful in epidemiological studies and in formulation of conjugate vaccines. Based on PCR only, we were able to divide

our 224 isolates into 31 serovariants based on *bac* gene (B) groups or 51, based on subgroups. Theoretically, there are likely to be additional serovariants.

We found that the antisera to "c" and "R" protein antigens were not entirely specific for any particular protein genes. However, reaction with "c" antiserum mostly reflected the presence of genes encoding C alpha (*bca* gene) and related protein antigens (at least including *a/p2* gene) and the antiserum to "R" with those encoding Rib (*rib* gene) and related proteins (at least including *a/p3* gene, and the rare presumed *rib*-like gene).

We have also investigated the presence of a number of mobile element in different serotypes of GBS. Four different insertion sequences have been identified previously in GBS. Multiple copies of IS861 in some serotype III isolates were associated with increased capsule gene expression. We found IS861 in all serosubtypes III-1 and III-2 and most serotype II and Ib isolates but few others. All IS861-containing isolates contained at least one additional mobile element.

Multiple copies of IS1381 have been found in a high proportion GBS and other *Streptococcus* species, including *S. pneumoniae* and used as probes for restriction fragment length polymorphism (RFLP) analysis of GBS for epidemiological studies (Tamura et al., 2000). We found IS1381 in 85% of isolates overall. They were present in all isolates of serosubtype III-1 but none of serosubtypes III-2 or III-3. Our IS1381 sequences, from 24 isolates, were identical with each other, but differed at several sites, from that previously described (AF064785). The significance of these differences is unknown, but it emphasizes the importance of confirming sequences from as many different strains as possible.

ISSa4 was first identified in a nonhemolytic GBS isolate, in which it caused insertional inactivation of the gene *cylB*, which is part of an ABC transporter involved in production of hemolysin. Only a small proportion of (mainly hemolytic) GBS isolates (4%) contained ISSa4, all of which had been isolated since 1996 and it was postulated that ISSa4 had been newly acquired by GBS. We also found ISSa4 in only a small proportion of isolates (7%) but it was present in similar proportions of clinical isolates obtained before (4 of 44) and during or after (11 of 162) 1996.

IS1548 was first discovered in some hyaluronidase-negative GBS serotype III isolates, in which it caused insertional inactivation of the gene *hyB* (one of a cluster responsible for production of hyaluronidase, an important GBS virulence factor) (Granlund et al., 1998). A copy of IS1548 is also found downstream of the C5a peptidase gene (also associated with virulence), in

isolates that contain it. Most IS1548-containing isolates were from patients with endocarditis and it was postulated that inactivation of hyaluronidase production and/or some effect on C5a peptidase may allow GBS isolates to adhere to and survive on heart valves.

5 We found IS1548 in all serosubtype III-1 isolates, which represented 52% of 58 serotype III isolates in our collection, from superficial (eight of 12) and normally sterile (22 of 46) specimens. The latter were from neonates (seven of 20), adults (three of six) and subjects of unspecified age (12 of 20) (data not shown). Although specific clinical data were unavailable, GBS endocarditis is 10 uncommon and likely to have been present in few, if any, of these subjects. Further study is required to elucidate the association with this insertion sequence with specific virulence factors and clinical syndromes.

15 We found GBSi1, a group II intron, in 19% of our 224 isolates overall; it was commonly associated with IS861, and the distribution varied with serotype/serosubtype. It was rarely found in serotypes other than II and III. It was present in more than 50% of serotype II isolates, including four, which also contained IS1548. It was found in all serosubtypes III-2 and III-4 isolates, in which IS1548 was not found, but in no serosubtype III-1 isolates which did contain IS1548 or serosubtype III-3 isolates which did not.

20 Our subdivision of GBS serotype III into four serosubtypes, based on differences within the *cps* gene cluster was supported by corresponding differences in surface protein gene profiles and distribution of the five mobile elements described in this study. Although we did not test our isolates for 25 hyaluronidase activity, it is likely that our serosubtype III-1, which expresses Rib protein and contains IS1548, IS861 and IS1381, corresponds with the hyaluronidase negative subtype III-2, described by Bohnsack et al., 2001. Our serosubtype III-2 also expresses Rib protein and contains IS861 and GBSi1 and probably corresponds with subtype III-3 of Bohnsack et al., 2001. Serosubtypes III-3 and III-4 were represented by relatively few isolates. The former (in common 30 with some serotype Ia isolates) expressed the C alpha-like protein 2 and contained no mobile elements (an otherwise uncommon finding). The latter is closely related to serotype II, with which it shares sequence homology in a section of the *cps* gene cluster and various surface protein profiles and mobile elements.

Summary

Our aim has been to develop a comprehensive genotyping system for group B streptococcus (GBS). Such a system should ideally be reproducible, objective and transportable between laboratories, comparable with and complementary to other 5 typing methods and able to incorporate known virulence markers. Based on these criteria, we first developed a molecular serotyping (MS) method based on the *cps* gene cluster. It compared favourably with, but was more sensitive than, conventional serotyping (CS) and allowed us to identify several subtypes of serotype (sst) III, as described by others. We have also developed a second molecular subtyping method 10 based on the family of genes encoding variable surface protein antigens (*bca/rib/alp2/alp3/alp4*) and the IgA binding protein C beta (*bac*), is more sensitive and objective than conventional protein serotyping, which cannot type all isolates and is sometimes misleading. Our methods also can identify more members of the family 15 of variable antigen genes and distinguish numerous *bac* subgroups. A third subtyping method uses five mobile genetic elements (mge) including four different insertion sequences (IS) and a type II intron, which have been identified in GBS. The use of this third method further enhances the discriminatory ability of our genotyping system.

We then used our typing system to examine the population genetic structure 20 and age-related disease distribution of genotypes among 194 invasive GBS isolates.

We used mainly invasive GBS isolates to demonstrate the practical value of our genotyping system, confirm their clonal population structure and determine the distribution of genotypes in different patient groups. The isolates originated from patients of all ages with GBS sepsis. About half were consecutive GBS isolates from 25 blood or CSF, at a large diagnostic laboratory in a general adult hospital, with an obstetric unit (i.e there were no isolates from children other than neonates). The rest were consecutive isolates referred for serotyping from all over New Zealand. Thus the overall age distribution is representative of that in the population affected by GBS disease, except that children beyond the early neonatal period are probably under-represented. However, the distribution of genotypes within each age-group should be 30 representative.

Among our 194 Australasian invasive GBS isolates we identified 56 genotypes, of which five (Ia-1, Ib-1, III-1, III-2 and V-1) accounted for 62% of isolates.

The phylogenetic tree derived from our results showed relationships between 35 *cps* serotype and protein gene profiles (pgp). Our results also show that certain known virulence markers – C beta, C alpha variants and hyaluronidase production (indirectly) - were associated with distinct clonal lineages.

Our genotyping system, based on three sets of genetic markers, is highly discriminatory. Because it provides useful phenotypic data, including antigenic composition, it will be useful for epidemiological surveillance of GBS, especially in relation to potential GBS vaccine use. Study of the relationships between 5 putative high-virulence genotypes and patient characteristics (age and/or underlying risk factors), and whether there are significant differences between CSF isolates (or genotypes) and other invasive or colonising strains, will be facilitated by our genotyping system. Using this system, we have demonstrated a clonal population structure among invasive Australasian GBS isolates. This 10 system will be applied to colonising GBS isolates, to identify markers of virulence.

Thus, we have developed an alternative to conventional serotyping for GBS, which is accurate and reproducible, can be performed by any laboratory with access to PCR/sequencing and, importantly, does not require panels of serotype-specific antisera that are increasingly difficult to maintain. All isolates 15 are serotypable and sequencing of a relatively limited 790 bp region can provide additional serosubtyping information for MS III. The molecular methods we have described for serotype identification, together with the protein profiling (or protein antigen subtyping) and identification of mobile genetic elements (or mobile genetic elements subtyping) provide potentially useful markers for further 20 phylogenetic and epidemiological studies of GBS as well as comprehensive strain identification that will be useful for epidemiological and other related studies that will be needed to monitor GBS isolates before and after introduction of GBS conjugate vaccines.

The various features and embodiments of the present, referred to in 25 individual sections above apply, as appropriate, to other sections, mutatis mutandis. Consequently features specified in one section may be combined with features specified in other sections, as appropriate.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described 30 methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described 35 modes for carrying out the invention which are readily apparent to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

REFERENCES

- 5 **Ahmet, Z., P. Stanier, D. Harvey, and D. Holt.** 1999. New PCR primers for the sensitive detection and specific identification of group B beta-hemolytic streptococci in cerebrospinal fluid. *Mol. Cell. Probes.* **13**:349-357.
- 10 **Arakere, G., A.E. Flores, P. Ferrieri, and C.E. Frasch.** 1999. Inhibition enzyme-linked immunosorbent assay for serotyping of group B streptococcal isolates. *J. Clin. Microbiol.* **37**:2564-2567.
- 15 **Bohnsack, J. F., S. Takahashi, S. R. Detrick, L. R. Pelinka, L. L. Hammitt, A. Aly, A. A. Whiting, and E. E. Adderson.** 2001. Phylogenetic Classification of Serotype III Group B Streptococci on the Basis of *hyb* Gene Analysis and DNA Sequences Specific to Restriction Digest Pattern Type III-3. *J. Infect. Dis.* **183**:1694-1697.
- 20 **Cropp, C.B., R.A. Zimmerman, J. Jelinkova, A.H. Auernheimer, R.A. Bolin, and B.C. Wyrick.** 1974. Serotyping of group B streptococci by slide agglutination fluorescence microscopy, and microimmunodiffusion. *J. Lab. Clin. Med.* **84**:594-603.
- 25 **Granlund, M., L. Oberg, M. Sellin, and M. Norgren.** 1998. Identification of a novel insertion element, IS1548, in group B streptococci, predominantly in strains causing endocarditis. *J. Infect. Dis.* **177**:967-976
- 30 **Hakansson, S., L.G. Burman, J. Henrichsen, and S.E. Holm.** 1992. Novel coagglutination method for serotyping group B streptococci. *J. Clin. Microbiol.* **30**:3268-3269.
- 35 **Harrison, L.H., J.A. Elliott, D.M. Dwyer, J.P. Libonati, P. Ferrieri, L. Billmann, and A. Schuchat.** 1998. Serotype distribution of invasive group B streptococcal isolates in Maryland: implications for vaccine formulation. Maryland Emerging Infections Program. *J. Infect. Dis.* **177**:998-1002.
- 40 **Hassan, A.A., A. Abdulmawjood, A.O. Yildirim, K. Fink, C. Lammler, and R. Schlenstedt.** 2000. Identification of streptococci isolated from various sources by determination of *cfb* gene and other CAMP-factor genes. *Can. J. Microbiol.* **46**:946-951.
- 45 **Hickman, M.E., M.A. Rench, P. Ferrieri, and C.J. Baker.** 1999. Changing epidemiology of group B streptococcal colonization. *Pediatrics.* **104**:203-209.

- Holm, S.E., and S. Hakansson. 1988. A simple and sensitive enzyme immunoassay for determination of soluble type-specific polysaccharide from group B streptococci. *J. Immunol. Methods.* **106**:89-94.
- Ke, D., C. Menard, F.J. Picard, M. Boissinot, M. Ouellette, P.H. Roy, and M.G. Bergeron. 2000. Development of conventional and real-time PCR assays for the rapid detection of group B streptococci. *Clin. Chem.* **46**:324-331.
- Kong, F., X. Zhu, W. Wang, X. Zhou, S. Gordon, and G.L. Gilbert. 1999. Comparative analysis and serovar-specific identification of the multiple banded antigen genes of *Ureaplasma urealyticum* biovar one. *J. Clin. Microbiol.* **37**: 538-10 543.
- Kong, F., S. Gordon, and G.L. Gilbert. 2000. Rapid-Cycle PCR for Detection and Typing of *Mycoplasma pneumoniae* in Clinical Specimens. *J. Clin. Microbiol.* **38**:4256-4259.
- Maeland, J. A., O. G. Brakstad, L. Bevanger, and A. I. Kvam. 1997. 15 *Streptococcus agalactiae* beta gene and gene product variations. *J. Med. Microbiol.* **46**:999-1005.
- Maeland, J. A., O. G. Brakstad, L. Bevanger, and S. Krokstad. 2000. Distribution and expression of bca, the gene encoding the c alpha protein, by *Streptococcus agalactiae*. *J. Med. Microbiol.* **49**:193-198.
- Mawn, J.A., A.J. Simpson, and S.R. Heard. 1993. Detection of the C protein gene among group B streptococci using PCR. *J. Clin. Pathol.* **46**:633-636.
- Nagano, Y., N. Nagano, S. Takahashi, K. Murono, K. Fujita, F. Taguchi, and Y. Okuwaki. 1991. Restriction endonuclease digest patterns of chromosomal DNA from group B beta-haemolytic streptococci. *J. Med. Microbiol.* **35**:297-303.
- Rolland, K., C. Marois, V. Siquier, B. Cattier, and R. Quentin. 1999. Genetic features of *Streptococcus agalactiae* strains causing severe neonatal infections, as revealed by pulsed-field gel electrophoresis and hylB gene analysis. *J. Clin. Microbiol.* **37**:1892-1898.
- Tamura, G. S., M. Herndon, J. Przekwas, C. E. Rubens, P. Ferrieri, and S. L. Hillier. 2000. Analysis of restriction fragment length polymorphisms of the insertion sequence IS1381 in group B Streptococci. *J. Infect. Dis.* **181**:364-368.
- Triscott, M.X., and G.H. Davis. 1979. A comparison of four methods for the serotyping of group B streptococci. *Aust. J. Exp. Biol. Med. Sci.* **57**:521-527.

- Wilkinson, H.W., and M.D. Moody.** 1969. Serological relationships of type I antigens of group B streptococci. *J. Bacteriol.* **97**:629-34.
- Zuerlein, T.J., B. Christensen, and R.T. Hall.** 1991. Latex agglutination detection of group-B streptococcal inoculum in urine. *Diagn. Microbiol. Infect. Dis.* **14**:191-194.

Table 1. GBS reference panels used in this study.

Lab strain number	Source	Serotype	MS/ serosubtype	GenBank accession numbers
Reference panel 1¹				
090	Channing	Ia	Ia	AF332893
H36B	Channing	Ib	Ib	AF332903
18RS21	Channing	II	II	AF332905
M781	Channing	III	III-2 ³	AF332896
3139	Channing	IV	IV	AF332908
CJB 111	Channing	V	V	AF332910
SS1214	Channing	VI	VI	AF332901
7271	Channing	VII	VII	AF332913
JM9 130013	Channing	VIII	VIII	
Reference panel 2²				
NZRM 908 (NCDC SS615)	ESR	Ia	Ia	AF332894
NZRM 909 (NCDC SS618)	ESR	Ib	Ib	AF332904
NZRM 910 (NCDC SS700)	ESR	Ic	Ia	AF332914
NZRM 911 (NCDC SS619)	ESR	II	II	AF332906
NZRM 912 (NCDC SS620)	ESR	III	III-3 ³	AF332897
NZRM 2217 (Prague 25/60)	ESR	Non-typable (R)	II	AF332907
NZRM 2832 (Prague 1/82)	ESR	IV	IV	AF332909
NZRM 2833 (Prague 10/84)	ESR	V	V	AF332911
NZRM 2834 (Prague 118754)	ESR	VI	VI	AF332902

Notes.

1. Reference panel 1: supplied by Dr Lawrence Paoletti, Channing Laboratory, Boston, USA.
2. Reference panel 2: New Zealand Reference Medical Culture Collection strains supplied by Dr Diana Martin, ESR, Porirua, Wellington, New Zealand.
3. MS III serosubtypes based on sequence heterogeneity; see text for more detail

Table 2. Oligonucleotide primers used in this study.

Primer	Target gene	Tm °C ¹	GenBank accession numbers	Sequence ²⁻⁴
CFBS	<i>cfb</i>	56.7	X72754	328GAT GTA TCT ATC TGG AAC TCT AGT G352
Sag59 ⁵	<i>cfb</i>	77.4	X72754	350GTGGCTGGTCATTGTTAT TTT CAC CAG CTG TAT
Sag190 ⁵	<i>cfb</i>	76.8	X72754	TAG AAG TA391
				545CATTAACCGGGTTTICATAATCT GTT CCC TGA ACA
				TTA TCT TTG AT500
CFBA	<i>cfb</i>	63.2	X72754	568TTT TTC CAC GCT AGT AAT AGC CTC545
16SS	16S rRNA	69.3	AB023574	1441GCC GCC TAA GGT GGG ATA GAT G1462
23SA	23S rRNA	65.7	X68427	70CGT CGT TTG TCA CGT CCT TC51
DSF2 ⁶	16S rRNA	75.9	AB023574	975CATCCTTCTGACC GGC CTA GAG ATA GGC TTT
				CT1007
DSR1 ⁶	16S rRNA	81.5	AB023574	1250CGTCACCGG CTT GCG ACT CGT TGT ACC
				AA1222
cpsDS	<i>cpsD</i>	69.1	AB028896 (Ia), AF163833 (III)	4892/4593GCA AAA GAA CAG ATG GAA CAA AGT
cpsES	<i>cpsE</i>	65.7	AB028896 (Ia), AF163833 (III)	GG5007/4618
cpsEA1	<i>cpsE</i>	65.4	AB028896 (Ia), AF163833 (III)	5300/4910CTT TTG GAG TCG TGG CTA TCT
				TG5322/4932
				5431/5041GAT/GA AAA AAG GAA AGT CGT GTC G/ATT
				G5612/5017

cpsES1	<i>cpsE</i>	65.9	AB028896 (Ia), AF163833 (III)	5612/5222CTT GGA C/TTG CTC TCA AAA GGA TTG5635/5245
cpsEA2	<i>cpsE</i>	66.8	AB028896 (Ia), AF163833 (III)	5723/5333AAA A/CGC TTG ATC AAC AGT TAA GCA GG5698/5308
cpsES2	<i>cpsE</i>	70.2	AB028896 (Ia), AF163833 (III)	6012/5622GAT GGT/C GGA CCG GCT ATC TTT TCT C6036/5646
cpsEA3	<i>cpsE</i>	63.7	AB028896 (Ia), AF163833 (III)	6116/5726CTT AAT TTG TTC TGC ATC TAC TCG C6092/5702
cpsES3	<i>cpsE</i>	71.5	AB028896 (Ia), AF163833 (III)	6410/6020GTT AGA TGT TCA ATA TAT CAA TGA ATG GTC TAT TTG GTC AG6450/6060
cpsEFA	<i>cpsE/F</i> spacer	62.1	AB028896 (Ia), AF163833 (III)	6526/6136CCT TTC AAA CCT TAC CTT TAC TTA GC6501/6111
cpsFS	<i>cpsF</i>	75.0	AB028896 (Ia), AF163833 (III)	6777/6387CAT CTG GTG CCG CTG TAG CAG TAC CAT T6804/6414
cpsFA	<i>cpsF</i>	73.2	AB028896 (Ia), AF163833 (III)	6859/6469GTC GAA AAC CTC TAT A/GT A AAC/T GGT CTT ACA A/GCC AAA TAA CTT ACC6819/6425
cpsGA	<i>cpsG</i>	54.7	AB028896 (Ia), AF163833 (III)	7162/6772AAG/C AGT TCA TAT CAT ATG AGA G 7138/6748
cpsGA1	<i>cpsG</i>	74.5	AB028896 (Ia), AF163833 (III)	7199/6809CCG CCA/G TGT GTG ATA ACA ATC TCA GCT TC7171/6781
cpsGS	<i>cpsG</i>	72.24	AB028896 (Ia), AF163833 (III)	7145/6755ATG ATG ATA TGA ACT CTT ACA TGA AAG AAG CTG AGA TTG 7183/6793
cpsGS1	<i>cpsG</i>	71.62	AB028896 (Ia), AF163833 (III)	7155/6765GAA CTC TTA CAT GAA AGA AGC TGA GAT TGT TAT CAC AC 7192/6802

laccpsHS	<i>cpsH</i>	73.6	AB028896 (Ia)	7698CAT TCT TTG TTT AAA AA/CT CCT GAT TTT GAT AGA ATT TTA GCA GC 7741
laccpsHA	<i>cpsH</i>	75.2	AB028896 (Ia)	7993GAA TAT TCA AAA AAT CCC ATT GCT CTT TGA GTA TGC ATA CC 7953
laccpsHA1	<i>cpsH</i>	66.4	AB028896 (Ia)	8271GTA AGT TAT CAA AAT ATA ACA TCA TTA CTA TTA CTA GTA GAA ACG G 8226
laccpsHS1	<i>cpsH</i>	77.9	AB028896 (Ia)	8463GGC CTG CTG GGA TTA ATG AAT ATA GTT CCA GGT TTG C 8499
laccpsHA2	<i>cpsH</i>	58.5	AB028896 (Ia)	8499GCA AAC CTG GAA CTA TAT TCA T 8478
lbccpsHS0	<i>cpsH</i>	58.6	AB050723 (Ib)	3013ATT GCT GCA TTC AAT TCA C 3031
lbccpsHS	<i>cpsH</i>	81.9	AB050723 (Ib)	3016GCT GCA TTC AAT TCA CTG GCA GTA GGG GTT GTG TCC 3051
lbccpsHA	<i>cpsH</i>	67.7	AB050723 (Ib)	3297GAT AGT TAA GGG TAT TAT AAG ATT TGA ATA TTT AAA GAA AGC 3256
lbccpsHS1	<i>cnsH</i>	74.1	AB050723 (Ib)	3546TTT GGT GAG CAT ATA TAA TAG AAT AAT CAA TTT GCG GTC G 3585
lbccpsHS2	<i>cpsH</i>	73.7	AB050723 (Ib)	3740CTG GCC TAT TTG GAC TAA ATG TGA TTT TAG GTT TGT TTC 3781
lbcpsHHA01	<i>cpsH</i>	57.7	AB050723 (Ib)	3781GAA ACA AAC CTA AAA TCA CAT TTA 3758

IbcpSHA1	<i>cpsH</i>	78.5	AB050723 (Ib)	3894GGC GCC ATC AAT ATC TTC AAG TGC AAA AAA TGA AAA TAG G 3855
IbcpSIA	<i>cpsI</i>	78.2	AB050723 (Ib)	4086CTA TCA ATG AAT GAG TCT GTT GGA CGG ATT GCA CG 4049
IbcpSIS	<i>cpsI</i>	71.1	AB050723 (Ib)	4116GAT AAT AGT GGA GAA ATT TGT GAT AAT TTA TCT CAA AAA GAC G 4158
IbcpSIA1	<i>cpsI</i>	78.6	AB050723 (Ib)	4638CCT GAT TCA TTG CAG AAG TCT TTA CGA TGC GAT AGG TG 4601
IIIVcpSHS	<i>cpsH</i>	75.3	AF163833 (III), AF337958 (VI)	7275/7120CAA GAG GAT ATA ACG TTT CAG CGA TTT ATT GCT GAG C 7311/7156
IIICpSHS	<i>cpsH</i>	72.1	AF163833 (III)	7672GAA TAC TAT TGG TCT GTA TGT TGG TTT TAT TAG CAT CGC 7710
IIICpSHA	<i>cpsH</i>	71.0	AF163833 (III)	7817GTT ATA AGA AAA ACA AGCGGT GAT AAA TAA GAA AGT CAT ACC 7776
IVcpHS	<i>cpsH</i>	74.1	AF355776 (IV)	7552CCG TAC ATA CAA CTG TTC TTG TTA GCA TTT ACT TTT CTT TGC 7593
IVcpSHS1	<i>cpsH</i>	71.2	AF355776 (IV)	7887CCC AAG TAT AGT TAT GAA TAT TAG TTG GAT GGT TTT TGG 7925
IVcnsHA	<i>cpsH</i>	77.3	AF355776 (IV)	7951CAT CTA CAC CCC CAC AAA ATA TTT TCC CAA AAA CCA TC 7914
IVcnsHA1	<i>cpsH</i>	58.7	AF355776 (IV)	7958TGT AAA TCA TCT ACA CCC CC 7939

IVcpsMA	<i>cnsM</i>	80.7	AF355776 (IV)	8265GGG TCA ATT GTA TCG TCG CTG TCA ACA AAA CCA ATC AAA TC 8225
VcpsHS	<i>cpsH</i>	76.3	AF349539 (V)	6943GGG TTT AGG CGA GGG AAA CTC AGC TTA CAA AAT AGT G6979
VcpsHS1	<i>cpsH</i>	72.2	AF349539 (V)	7258CAA TTT TTA TAG GGA TGG ACA ATT TAT TCT GAG AAG TGA C7297
VcpsHA	<i>cnsH</i>	71.1	AF349539 (V)	7291TCT CAG AAT AAA TTG TCC ATC CCT ATA AAA ATT GAC ATA C7252
VcpsHS02	<i>cpsH</i>	59.0	AF349539 (V)	7616GAT GTT CTT TTA ACA GGT AGA TTA CAC 7642
VcpsHA1	<i>cpsH</i>	66.8	AF349539 (V)	7658GTT GTA AAT GAG CAT AGT GTA ATC TAC CTG TTA AAA GAA C7619
VcpsHS2	<i>cpsH</i>	74.0	AF349539 (V)	7871CCC AGT GTG GTA ATG AAT ATT AGT TGG CTA GTT TTT GG 7908
VcpsHA2	<i>cnsH</i>	58.6	AF349539 (V)	7945CTT TTT TAT AGG TTC GAT ACC ATC 7922
VcpsMA	<i>cnsM</i>	73.1	AF349539 (V)	8244CCC CCC ATA AGT ATA AAT AAT ATC CAA TCT TGC ATA GTC AG8204
VIcpsHS	<i>cpsH</i>	76.7	AF337958 (VI)	7478CAC TAT TCC TAG TTT GTG CAT ATT TGA CAG GGG CAA G7517
VIcpsHA	<i>cpsH</i>	76.7	AF337958 (VI)	7517CTT GCC CCT GTC AAA TAT GCA CAA AAA ACT AGG AAT AGT G7478

V/cpsHS1	<i>cpsH</i>	77.2	AF337958 (VI)	<u>7767CCT TAT TGG GCA AGG TAT AAG AGT TCC CTC</u> CAG TGT G7803
V/cpsHA1	<i>cpsH</i>	77.2	AF337958 (VI)	<u>7804CCA CAC TGG AGG GAA CTC TTA TAC CTT GCC</u> CAA TAA G7768
V/cpsIA	<i>cpsI</i>	74.5	AF337958 (VI)	<u>8126GAA GCA AAG ATT CTA CAC AGT TCT CAA TCA</u> CTA ACT CCG8088
cpsIA	<i>cpsI</i>	70.3	AB028896 (Ia), AF163833 (III)	<u>8816/8312GTA TAA CTT CTA TCA ATG GAT GAG TCT</u> GTT GTA GTA CGG8778/8274

Notes.

1. The primer Tm values are provided by the primer synthesiser (Sigma-Aldrich).
2. Numbers represent the numbered base positions at which primer sequences start and finish (numbering start point "1" refer to the start points "1" of correspondent gene GenBank accession numbers).
3. Underlined sequences show bases added to modify previously published primers.
4. Letters behind "/" indicate alternative nucleotides in different serotypes.
5. Ke *et al.*, 2000.
6. Ahmet *et al.*, 1999

THIS PAGE BLANK (USPTO)

Table 3. Specificity and expected lengths of amplicons of using different oligonucleotide primer pairs.

Primer pairs*	Specificity	Length of amplicons (base pairs)
Sag59/Sag190 ^a	GBS (<i>S. agalactiae</i>)	196
CFBS/CFBA	GBS (<i>S. agalactiae</i>)	241
16SS/23SA	GBS (<i>S. agalactiae</i>)	433
DSF2/DSR1 ^a	GBS (<i>S. agalactiae</i>)	276
cpsDS/cpsEA1	serotypes Ia to VII	449/458
cpsES/cpsEA2	serotypes Ia to VII	424
cpsES1/cpsEA3	serotypes Ia to VII	505
cpsES2/cpsEFA	serotypes Ia to VII	515
cpsES3/cpsFA ^b	serotypes Ia to VII	450
cpsFS/cpsGA1 ^b	serotypes Ia to VII	423
cpsES3/cpsGA1 ^b	serotypes Ia to VII	790
cpsGS/cpsIA	serotypes Ia and III	1672/1558
cpsGS1/cpsIA	serotypes Ia and III	1662/1548
cpsGS/IacpsHA1	serotype Ia	1127
cpsGS1/IacpsHA1	serotype Ia	1117
IacpsHS/IacpsHA	serotype Ia	296
IacpsHS/IacpsHA1	serotype Ia	574
IacpsHS1/cpsIA ^c	serotype Ia	354
cpsGS/IbcpsHA1	serotype Ib	1468
cpsGS1/IbcpsHA1	serotype Ib	1458
cpsGS/IbcpsIA	serotype Ib	1660
cpsGS1/IbcpsIA	serotype Ib	1650
IbcpsHS/IbcpsHA	serotype Ib	282
IbcpsHS1/IbcpsHA1	serotype Ib	349
IbcpsHS2/IbcpsIA	serotype Ib	347
IbcpsIS/IbcpsIA1 ^c	serotype Ib	523
cpsGS/IIlcpsHA	serotype III	1063
cpsGS1/IIlcpsHA	serotype III	1053
IIIVlcpsHS/IIlcpsHA	serotype III	543
IIlcpsHS/cpsIA ^c	serotype III	641
cpsGS/IVcpsHA	serotype IV	1372
cpsGS1/IVcpsHA	serotype IV	1362
cpsGS/IVcpsMA	serotype IV	1686

<u>cpsGS1/IVcpsMA</u>	serotype IV	1676
<u>IVcpsHS/IVcpsHA</u>	serotype IV	400
<u>IVcpsHS1/IVcpsMA^c</u>	serotype IV	379
<u>cpsGS/VcpsHA1</u>	serotype V	1096
<u>cpsGS1/VcpsHA1</u>	serotype V	1086
<u>cpsGS/VcpsMA</u>	serotype V	1682
<u>CpsGS1/VcpsMA</u>	serotype V	1672
<u>VcpsHS/VcpsHA</u>	serotype V	349
<u>VcpsHS1/VcpsHA1</u>	serotype V	401
<u>VcpsHS2/VcpsMA^c</u>	serotype V	374
<u>IIIVcpsHS1/IVcpsHA</u>	serotype VI	398
<u>cpsGS/VlcpsHA1</u>	serotype VI	1205
<u>cpsGS1/VlcpsHA1</u>	serotype VI	1195
<u>cpsGS/VlcpsIA</u>	serotype VI	1527
<u>cpsGS1/VlcpsIA</u>	serotype VI	1517
<u>VlcpsHS/VlcpsHA1^c</u>	serotype VI	327
<u>VlcpsHS1/VlcpsIA</u>	serotype VI	360

Notes.

*See Table 2 for primer sequences and Figure 1 for some primer sites.

Primers used in Algorithm for molecular serotype identification-Figure 2

a. to identify GBS, b. for sequencing, c. for MS-specific PCR

Table 4. The heterogeneity of 8 GBS serotypes in the regions of the 3'-end of *cpsD-cpsE-cpsF* and the 5'-end of *cpsG*.

249	C	T	T	T	T	Ib, IV, V
300	C	C	T III-2; C III-1, III-3	C	C	III-2
321	C	C	T III-1; C III-2, III-3	C	C	III-1
419	C	C	T	T	T	Ib
429	C	C	T	T	A	Ia, II, VII
437	C	C	C	C	T	VII, III-4
457	T	A	A	A	C	Ia, II, VII
466	G	G	G	G	A	IV
486	G	G	G	G	A	Ia, III-3
502	T	T	T	T	G	II, VII
606	T	T	C	C	C	VI
627	T	T	T	T	C	Ia
636	C	C	C III-1; T III-2, III-3	T	T	III-1
645	C	T	T	T	C	C
803	A	A	A	A	A	VI
971	C	A	T	C	T	Ia, III, IV, V
1026	A	G	G	C	T	Ia, III-3, IV, V
1044	T	T	T	T	C	VI

Notes:

- Repetitive sequence: serosubtype Ia-1 present (+); serosubtype Ia-2 absent (-) (see text).
 1. Repetitive sequence: serosubtype II-1 present (+); serosubtype II-2 absent (-) (see text).
 2. Repetitive sequence: serosubtype III-1 present (+); serosubtype III-2 absent (-); serosubtype III-4 variable (see text).
 3. Repetitive sequence: serosubtypes III-1 and III-3 present (+); serosubtype III-2 absent (-); serosubtype III-4 variable (see text).
 4. One CS II strain has mutations at the 9 sites (see text).
 5. At positions 138, 198, and 249, one CS V reference strain (Prague 10/84) is identical with corresponding sequence in GenBank (GenBank accession number AF349539), the sequences are G, A and T, respectively; another CS V reference strain (CJB 111) and all the other sequenced CS V strains are identical, the sequences are A, C and C, respectively.

Table 5. Comparison of the results of conventional serotyping (CS) and molecular serotype identification (MS)/subtyping of 206 clinical GBS isolates.

CS	MS/serosubtype										
	Ia	Ib	II	III-1 ¹	III-2 ¹	III-3 ¹	III-4 ¹	IV	V	VI	VIII
Ia	38										
Ib		30									
II			25								
III				27	20	4	3				
IV								7			
V									31		
VI										2	
VIII											1
NT ¹	2	5	1	3	1				5	1	
Total (206) ²	40	35	26 ²	30	21 ²	4	3	7	36	3	1

Notes.

1. For details of MS III serosubtypes see text.
2. One mixed culture was included as two separate isolates (one serotype II, one subtype III-2).

Table 6. Oligonucleotide primers used in this study.

Primer	Target gene	Tm °C ¹	GenBank Accession numbers	Sequence ^{2,3}
IgAgGBS ⁵	bac	73.8	X59771	<u>2663GC</u> GATTAA <u>ACAA</u> CAA ACT ATT TTT GAT A TTG ACA ATG CAA 2702
IgAS1 ⁴	bac	72.8	X59771	<u>2765GCT</u> AAA TTT CAA AAA GGT CTA GAG ACA AAT ACG CCA G 2801
IgAA1 ⁴	bac	78.9	X59771	<u>3157CCC</u> ATC TGG TAA CTT CGG TGC ATC TGG AAG C3127
RigAagGBS ⁵	bac	76.3	X59771	<u>3284CAGCCAA</u> CTCTTC GTC GTT ACT TCC TTG AGA TGT AAC 3247
GBS1360S ⁶	bac	72.3	X59771	<u>1325GTGAAATTGTAT</u> AAG GCT ATG AGT GAG AGC TTG GAG 1360
GBS1717S ⁴	bac	75.0	X59771	<u>1685ACA</u> GTC ACA GCT AAA AGT GAT TCG AAG ACG ACG1717
GBS1937A ⁶	bac	75.9	X59771	<u>1976CCGTTTTAGAATCTT</u> CTG CTC TGG TGT TTT AGG AAC TTG 1937
BcaRUS ⁷	bca repetitive unit	73.5	M97256	<u>769GATAAA</u> ATATGATCCAA CAG GAG GGG AAA CAA CAG TAC805
BcaRUA ⁷	bca repetitive unit	77.2	M97256	<u>1003CTGGTTTGGTGT</u> CACAT GAA CCG TTA CTT CTA CTG TAT CC 963

bcaS1 ⁴	bca/αp2/α/p3	71.7	M97256 and AF291065	208/533GGT AAT CTT AAT ATT TTT GAA GAG TCA ATA GTT GCT GCA TCT AC251/576
bcaS2 ⁴	bca/α/p2/α/p3	78.0	M97256 and AF291065	256/581CCAGGGAGTG CAG CGA CCT TAA ATA CAA GCA TC288/613
bcaS4	bca	58.9	M97256	370GTT TTA GAA CAA GGT TTT ACA GC392
balS4	α/p2/α/p3	73.8	AF291065	677GAT CCT CAA AAC CTC ATT GTA TTA AAT CCA TCA AGC TAT TC717
bcaA ⁴	bca	74.2	M97256	597CGTTCTAACCTT CTT CAA TCT TAT CCC TCA AGG TTG TTG560
balA ⁴	α/p2/α/p3	73.6	AF291065	978CCA GTT AAG ACT TCA CGA CTC CCA TCA C948
bal23S1 ⁴	α/p2/α/p3	70.9	AF208158 and AF291065	1093/1373CAG ACT GTT AAA GTG GAT GAA GAT ATT ACC TTT ACG G1129/1409
bal23S2 ⁴	α/p2/α/p3	72.9	AF208158 and AF291065	1174/1454CTT AAA GCT AAG TAT GAA AAT GAT ATC ATT GGA GCT CGT G1213/1493
bal2S ⁴	α/p2	59.2	AF208158	1363GTT CTT CCG CCA GAT AAA ATT AAG1386
bal2A ⁴	α/p2	58.3	AF208158	1576CTG TTG ACT TAT CTG GAT AGG TC1554
bal2A1 ⁴	α/p2	78.3	AF208158	1426CGT GTT CAA CAG TCC TAT GCT TAG CCT CTG GTG1391
bal2A2 ⁴	α/p2	70.8	AF208158	1518GGT ATC TGG TTT ATG ACC ATT TTT CCA GTT ATA CG1484

<u>bal3S⁴</u>	<u>a/p3</u>	57.1	<u>AF291065</u>	<u>1643GTT CTT CCG CTT AAG GAT AGC A1664</u>
<u>bal3A⁴</u>	<u>a/p3</u>	79.2	<u>AF291065</u>	<u>1693GAC CGT TTG GTC CTT ACC TTT TGG TTC GTT</u> <u>GCT ATC C1657</u>
<u>#ribS1⁴</u>	<u>rib</u>	65.2	<u>U583333</u>	<u>216TAC AGA TAC TGT GTT TGC AGC TGA AG241</u>
<u>ribS2⁴</u>	<u>rib</u>	73.0	<u>U583333</u>	<u>238GAAGTAATTTCAG GAA GTG CTG TTA CGT TAA ACA</u> <u>CAA ATA TG279</u>
<u>ribA1⁴</u>	<u>rib</u>	78.8	<u>U583333</u>	<u>431GAA GGT TGT GTG AAA TAA TTG CCG CCT TGC</u> <u>CTA ATG396</u>
<u>ribA2⁴</u>	<u>rib</u>	72.6	<u>U583333</u>	<u>462AAT ACT AGC TGC ACC AAC AGT AGT CAA TTC AGA</u> <u>AGG427</u>
<u>#ribA3⁴</u>	<u>rib</u>	61.3	<u>U583333</u>	<u>570CAT CTA TTT TAT CTC TCA AAG CTG AAG554</u>

Notes.

#For sequencing use only, not entirely specific for rib gene.

1. The primer Tm values are provided by the primer synthesiser (Sigma-Aldrich).
2. Numbers represent the numbered base positions at which primer sequences start and finish (numbering start point "1" refer to the start point "1" of corresponding GenBank accession number, of which there are two for some sequences).
3. Underlined sequences show bases added to modify previously published primers.
4. Primers designed by us for this study.
5. Mawn et al., 1993.
6. Maeland et al., 1997.
7. Maeland et al., 2000.

Table 7. Specificity and expected lengths of amplicons of using different primer pairs.

Primer pairs*	Specificity	Length of amplicons (base pairs)	Protein profile code
IgAagGBS/	<i>bac</i>	532-838	B
RlgAagGBS			
IgAS1/IgAA1	<i>bac</i>	303-591	B
GBS1360S/	<i>bac</i>	652	B
GBS1937A			
GBS1717S/	<i>bac</i>	292	B
GBS1937A			
bcaS1/bcaA	5'-end of <i>bca</i>	390	A
bcaS2/bcaA	5'-end of <i>bca</i>	342	A
BcaRUS/bcaRUA	<i>bca</i> repetitive unit/ <i>bca</i> repetitive unit-like region	235	a/as
bcaS1/balA	<i>alp2/alp3</i>	446	alp2 or alp3
bcaS2/balA	<i>alp2/alp3</i>	398	alp2 or alp3
balS/balA	<i>alp2/alp3</i>	302	alp2 or alp3
bal23S1/bal2A1	<i>alp2</i>	334	alp2
bal23S2/bal2A1	<i>alp2</i>	253	alp2
bal23S1/bal2A2	<i>alp2</i>	426	alp2
bal23S2/bal2A2	<i>alp2</i>	345	alp2
bal23S1/bal3A	<i>alp3</i>	321	alp3
bal23S2/bal3A	<i>alp3</i>	240	alp3
#ribS1/ribA3	<i>rib/rib-like</i>	355	R/r
ribS2/ribA1	<i>rib</i>	194	R
ribS2/ribA2	<i>rib</i>	225	R
ribS2/ribA3	<i>rib</i>	333	R

Notes.

*See Table 6 for primer sequences.

#For sequencing use only, not entirely specific for rib gene (see text for more detail).

Table 8. Genetic groups and subgroups of *bac* gene (C beta protein gene) based on amplicon length (using primers IgAagGBS/RlgAagGBS) and sequence heterogeneity.

Group or Subgroup	N=	Amplicon length	GenBank accession numbers	No. of different sites compared with (c.f.) main group	Molecular serotype/serosubtypes
B1	19	532	X58470		17 = Ib; 2 = II
B1a	1	532	AF362686	1 (c.f. B1)	Ib
B2	3	550	AF362687		Ib, II, III-4
B3	2	586	AF362688		2=lb
B3a	1	586	AF362689	4 (c.f. B3)	V
B3b	1	586	AF362690	21 (c.f. B3)	VI
B3c	1	586	AF362691	24 (c.f. B3)	Ib
B4	8	604	AF362692		4 = Ib; 4 = II
B4a	1	604	AF362693	1 (c.f. B4)	II
B4b	2	604	AF362694	2 (c.f. B4)	2 = Ib
B5	2	622	AF362695		Ia, VI
B5a	1	622	AF362696	2 (c.f. B5)	Ia
B6	1	640	AF362697		Ib
B7	1	658	AF362698		Ib
B7a	1	658	AF362699	34 (c.f. B7)	VI
B8	1	712	AF362700		Ib
B9	2	748	AF362701		2 = II
B9a	1	748	AF362702	13 (c.f. B9)	Ib
B10	2	820	AF362703		2 = Ib
B11	1	838	AF362704		Ib

Note.

*See Table 9 for further details of serotype/serosubtype relationships with protein antigens.

Table 9. The relationship between GBS protein gene profiles and capsular polysaccharide (cps) molecular serotypes/serosubtypes.

Serotype/ serosubtype	N=	None	Aa	AaB	R	alp	a	as	alp2as	RB	R	a
Ia	43	-	-	2	-	-	35	3	3	-	-	-
Ib	37	-	1	35	-	1	-	-	-	-	-	-
II	29	-	3	10	8	2	5	-	-	-	-	1
III-1	30	-	-	-	30	-	-	-	-	-	-	-
III-2	22	-	-	-	22	-	-	-	-	-	-	-
III-3	5	-	-	-	-	-	-	-	5	-	-	-
III-4	3	-	-	1	-	1	-	-	1	-	-	-
IV	9	-	-	-	1	-	8	-	-	-	-	-
V	38	1	-	-	1	35	-	-	-	1	-	-
VI	5	-	1	3	-	-	1	-	-	-	-	-
VII	1	-	-	-	-	1	-	-	-	-	-	-
VIII	2	1	-	-	-	1	-	-	-	-	-	-
Total	224	2	5	51	62	41	49	3	9	1	1	

Note.

*See text for explanation of cps serosubtypes and Table 7 for explanation of protein antigen gene profile codes.

Table 10. Oligonucleotide primers used in this study.

Primer	Target	Tm °C ¹	GenBank accession numbers	Sequence ²
IS861S	IS861	77.4	M22449	445GAG AAA ACA AGA GGG AGA CCG AGT AAA ATG GGA CG479
IS861A1	IS861	77.3	M22449	831CAC GAT TTC GCA GTT CTA AAT AAA TCC GAC GAT AGC C795
IS861A2	IS861	76.1	M22449	1020CAA ACT CCG TCA CAT CGG TAT AGC ACT TCT CAT AGG985
IS1548S	IS1548	76.5	Y14270	143CTA TTG ATG ATT GCG CAG TTG AAT TGG ATA GTC GTC178
IS1548S1	IS1548	77.0	Y14270	539GTT TGG GAC AGG TAG CGG TTG AGG AGA AAA GTA ATG574
IS1548A1	IS1548	77.0	Y14270	574CAT TAC TTT TCT CCT CAA CCG CTA CCT GTC CCA AAC539
IS1548A2	IS1548	70.3	Y14270	915CCC AAT ACC ACG TAA CTT ATG CCA TTT G888
IS1548A3	IS1548	78.0	Y14270	930CGT GTT ACG AGT CAT CCC AAT ACC ACG TAA CTT ATG CC893
IS1381S1	IS1381	80.1	AF064785/ AF367974	272/818CTT ATG AAC AAA TTG CGG CTG ATT TTG GCA TTC ACG307/853
IS1381S2	IS1381	81.7	AF064785/ AF367974	497/1040GGC TCA GGC GAT TGT CAC AAG CCA AGG GAG526/1069

IS1381A	IS1381	73.1	AF064785/ AF367974	881/1424CTA AAA TCC TAG TTC ACG GTT GAT CAT TCC AGC849/1392
ISSa4S	ISSa4	78.5	AF165983	326CGT ATC TGT CAC TTA TTT CCC TGC GGG TGT CTC C359
ISSa4A1	ISSa4	75.2	AF165983	639GCC GAT GTC ACA ACA TAG TTC AGG ATA TAG CCA G606
ISSa4A2	ISSa4	74.5	AF165983	780CGT AAA GGA GTC CAA AGA TGA TAG CCT TTT TGA ACC745
GBSi1S1	GBSi1	78.6	AJ292930	721CAT CTC GGA ACA ATA TGC TCG AAG CTT ACA AGC AAG TG758
GBSi1S2	GBSi1	77.3	AJ292930	789GGG GTC ACT ATC GAG CAG ATG GAT GAC TAT CTT CAC824
GBSi1A1	GBSi1	83.9	AJ292930	1058AAT GGC TGT TTC GCA GGA GCG ATT GGG TCT GAA CC1024
GBSi1A2	GBSi1	80.5	AJ292930	1161CCA GGG ACA TCA ATC TGT CTT GCG GAA CAG TAT CG1127

Notes.

1. The primer Tm values were provided by the primer synthesiser (Sigma-Aldrich).
2. Numbers represent the numbered base positions at which primer sequences start and finish (numbering start point "1" refers to the start point "1" of corresponding gene GenBank accession number).

Table 11. Specificity and expected lengths of amplicons of using different oligonucleotide primer pairs.

Primer pairs*	Specificity	Length of amplicons (base pairs)
IS861S/IS861A1	IS861	387
IS861S/IS861A2	IS861	576
IS1548S/IS1548A1	IS1548	432
IS1548S/IS1548A2	IS1548	773
IS1548S/IS1548A3	IS1548	788
IS1548S1/IS1548A2	IS1548	377
IS1548S1/IS1548A3	IS1548	392
IS1381S1/IS1381A	IS1381	610/607#
IS1381S2/IS1381A	IS1381	385
ISSa4S/ISSa4A1	ISSa4	314
ISSa4S/ISSa4A2	ISSa4	455
GBSi1S1/GBSi1A1	GBSi1	338
GBSi1S1/GBSi1A2	GBSi1	441
GBSi1S2/GBSi1A1	GBSi1	270
GBSi1S2/GBSi1A2	GBSi1	373

Notes.

*See table 10 for primer sequences.

Our sequencing result (GenBank accession number: AF367974) was 3 bp shorter than that previously described by Tamura et al., 2000 (GenBank accession number: AF064785).

Table 12. Relationship between mobile genetic elements and capsular polysaccharide serotypes, serotype III subtypes and surface protein gene profiles.

Serotype/ serosubtype	Protein gene profile	N=	IS861	IS1548	IS1381	ISSa 4	GBSi1	No mobile element
Ia	AaB	2	2	-	2	-	-	-
Ia	alp2as	3	-	-	-	-	-	3
Ia	a	35	3	1	35	1	-	-
Ia	as	3	-	-	3	-	-	-
<i>subtotal</i>		43	5	1	40	1	-	3
Ib	Aa	1	-	-	-	-	-	1
Ib	AaB	35	30	-	35	1	-	-
Ib	alp3	1	-	-	1	-	-	-
<i>subtotal</i>		37	30	-	36	1	-	1
II	Aa	3	3	1	3	2	1	-
II	AaB	10	10	5	10	5	1	-
II	alp3	2	1	1	2	-	-	-
II	R	8	8	-	8	-	8	-
II	Ra	1	1	-	-	-	1	-
II	a	5	2	2	5	3	5	-
<i>subtotal</i>		29	25	9	28	10	16	-
III-1	R	30	30	30	30	1	-	-
III-2	R	22	22	-	-	-	22	-
III-3	alp2as	5	-	-	-	-	-	5
III-4	AaB	1	1	-	1	-	1	-
III-4	alp2as	1	-	-	-	-	1	-
III-4	alp3	1	-	-	1	-	1	-
<i>subtotal</i>		60	53	30	32	1	25	5
IV	R	1	1	-	1	-	1	-
IV	a	8	2	-	8	-	-	-
<i>subtotal</i>		9	3	-	9	-	1	-
V	alp3	35	3	1	35	1	1	-
V	R	1	1	-	1	1	-	-
V	RB	1	1	-	1	-	-	-
V	none	1	-	-	-	-	-	1
<i>subtotal</i>		38	5	1	37	1	1	2

VI	Aa	1	-	-	1	-	-	-
	AaB	3	3	-	3	-	-	-
	a	1	-	-	1	-	-	-
subtotal		5	3	-	5	-	-	-
VII	alp3	1	-	-	1	-	-	-
VIII	alp3	1	-	-	1	-	-	-
	none	1	-	-	1	-	-	-
subtotal		2	-	-	2	-	-	-
Total		224	124	41 (18)	190	15 (7)	43 (19)	10 (4)
				(55)	(85)			

Note.A: 5'-end of *bca* gene (C alpha protein);a: *bca* gene repetitive unit or *bca* gene repetitive unit-like sequence (multiple band amplicon);as: *bca* gene repetitive unit or *bca* gene repetitive unit-like sequence (single band amplicon);B: C beta/IgA binding protein (*bac*) gene.R: Rib protein (*rib*) gene;alp2: C alpha-like protein 2 (*alp2*) gene;alp3: C alpha-like protein 3 (*alp3*) gene;

r: assumed Rib-like protein gene.

Table 13. Distribution of mobile genetic elements among 194 invasive GBS isolates.

Total N =	Mobile genetic elements present					
	IS1381	IS861	IS1548	ISS α 4	GBS1	None
6	—	—	—	—	—	6
78	78	—	—	—	—	—
2	—	—	—	—	2	—
37	37	37	—	—	—	—
1	1	—	1	—	—	—
3	3	—	—	3	—	—
29	29	29	29	—	—	—
6	6	6	—	6	—	—
8	8	8	—	—	8	—
18	—	18	—	—	18	—
1	1	—	—	—	1	—
1	1	—	1	—	1	—
2	2	2	2	—	2	—
2	2	—	—	2	2	—
Total (n=194)	168 (87%)	100 (52%)	33 (17%)	11 (6%)	34 (18%)	6 (3%)

Note.

Data are numbers of isolates containing various combinations of mge

Table 14 Relationship between GBS genotypes and invasive disease age.

Serotype	Age-group/disease ¹						Total
	0-6d	7-3m	4m-14yr	15-45 yr	46-60 yr	>60 yr	
Ia-1	14	4+1	1	7	3	6	35+1 (19%)
Ia-(2-8)	4	2	-	1	-	3	10
Ia total	18 (34%)	6+1 (21%)	1 (10%)	8 (28%)	3 (18%)	9 (17%)	45+1 (24%)
Ib-1	2	1+1	-	3	2	5+1	13+2
Ib-(2-16)	3	4+2	-	3	1	5	16+2
Ib total	5 (9.4%)	5+3 (24%)	-	6 (21%)	3	10+1	29+4 (17%)
II	8 (15%)	1 (3%)	-	4+1 (17%)	1	4 (7%)	18+1 (10%)
III-1	6+1 (13%)	4 (12%)	1+1 (20%)	1+1 (7%)	6+1 (41%)	4	22+4 (13%)
III-2	5 (9%)	5+4 (39%) ³	1 (10%)	2	-	-	13+4 (9%)
III-(3-4)	1+1	1	-	1	1	1	5+1
III total	12+2 (26%)	10+4 (41%)	2+1 (30%)	4+1 (17%)	7+1 (44%)	5 (9%)	40+9 (25%)
IV total	3	-	-	-	-	4	7 (4%)
V-1	3	3	2	4	2	13+1	27+1 (14%)
V-(2-7)	1	1	-	1	-	4	7
V total	4 (8%)	4 (12%)	2 (20%)	5 (17%)	2 (11%)	17+1 (33%) ⁴	34+1 (18%)
VI total	1	-	-	-	+1	3	4+1 (3%)
TOTAL	51+2=53	26+8=34	5+2=7	27+1=29	16+2=18	52+2=54	177+17=194

Notes:

1. Numbers after "+" refer to CSF isolates; all others are from blood.
2. Five aged 4m-1yr and one case was aged 3 yr.
3. Sst III-2 in late onset infection compared with all other groups: $p=0.0005$, odds ratio (OR) 6.8; 95% confidence interval (CI) 2.4-19.4.
4. MS-V in elderly compared with all other age-groups: $p=0.001$, OR 0.28; 95% CI 0.13-0.59.

CLAIMS

1. A method of typing a group B streptococcal bacterium which method comprises analysing the nucleotide sequence of one or more regions within the *cpsD*, *cpsE*, *cpsF*, *cpsG* and/or *cpsI/M* genes of said bacterium, said region(s) comprising one or more nucleotides whose sequence varies between types.
2. A method according to claim 1 wherein the nucleotide sequence is analysed for one or more positions corresponding to positions 62, 78-86, 138, 139, 144, 198, 204, 211, 281, 240, 249, 300, 321, 419, 429, 437, 457, 466, 486, 602, 606, 627, 636, 645, 803, 971, 1026, 1044, 1173, 1194, 1251, 1278, 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.
3. A method according to claim 1 wherein at least one region is within a sequence delineated by the 3' 136 bases of the *cpsE* gene and the 5' 218 bases of the *cpsG* gene of the *cpsE-cpsF-cspG* gene cluster of said streptococcal bacterium.
4. A method according to claim 3 wherein the nucleotide sequence is analysed for one or more positions corresponding to positions 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.
5. A method according to any one of claims 1 to 4 wherein at least one region is within the *cpsI/M* genes of said bacterium.
6. A method according to any one of claims 1 to 5 wherein the nucleotide sequence analysis step comprises sequencing said one or more regions.
7. A method according to any one of claims 1 to 5 wherein the nucleotide sequence analysis step comprises determining whether a polynucleotide obtained from said bacterium selectively hybridises to a polynucleotide probe comprising one or more of the said regions.
8. A method according to claim 7 which comprises determining whether the polynucleotide obtained from said bacterium hybridises to one or more of a plurality of polynucleotide probes corresponding to one or more of the said regions.

9. A method according to claim 9 wherein the plurality of polynucleotide probes are present as a microarray.
10. A method according to any one of claims 1 to 5 wherein the nucleotide sequence analysis step comprises an amplification step using one or more primers, at least one of which hybridises specifically to a sequence which differs between types.
11. A method according to any one of claims 1 to 6 wherein the nucleotide sequence analysis step comprises an amplification step using primer pairs, at least one of which hybridise specifically to a sequence which differs between types.
12. A method according to claim 10 or claim 11 wherein said primers are selected from the primers shown in Table 2.
13. A method of typing a group B streptococcal bacterium which method comprises determining the presence or absence in the genome of said bacterium of one or more surface protein genes selected from *rib*, *alp2* or *alp3* genes.
14. A method according to claim 13 wherein determining the presence or absence of said surface protein genes comprises determining whether a polynucleotide obtained from said bacterium selectively hybridises to a polynucleotide probe corresponding to a region of said surface protein genes.
15. A method according to any one of claim 13 wherein determining the presence or absence of said surface protein genes comprises an amplification step using one or more primers which amplify specifically a region of said surface protein genes.
16. A method according to claim 15 wherein said primers are selected from the primers shown in Table 6.
17. A method according to any one of claims 1 to 12 which further comprises determining the presence or absence of in the genome of said bacterium of one or more surface protein genes selected from *rib*, *alp2* or *alp3* genes.

18. A method of typing a group B streptococcal bacterium which method comprises determining the presence or absence in the genome of said bacterium of one or more mobile genetic elements selected from IS861, IS1548, IS1381, ISSa4 and GBSi1.
19. A method according to claim 18 wherein determining the presence or absence of said mobile genetic elements comprises determining whether a polynucleotide obtained from said bacterium selectively hybridises to a polynucleotide probe corresponding to a region of said mobile genetic elements.
20. A method according to any one of claim 18 wherein determining the presence or absence of said mobile genetic elements comprises an amplification step using one or more primers which amplify specifically a region of said mobile genetic elements.
21. A method according to claim 20 wherein said primers are selected from the primers shown in Table 10.
22. A method according to any one of claims 13 to 17 which further comprises determining the presence or absence in the genome of said bacterium of one or more mobile genetic elements selected from IS861, IS1548, , IS1381, ISSa4 and GBSi1.
23. A polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *cpsD-cpsE-cpsF-cpsG* gene of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between group B streptococcal serotypes.
24. A polynucleotide according to claim 23 wherein said nucleotides which differ between group B streptococcal serotypes correspond to one or more of positions 62, 78-86, 138, 139, 144, 198, 204, 211, 281, 240, 249, 300, 321, 419, 429, 437, 457, 466, 486, 602, 606, 627, 636, 645, 803, 971, 1026, 1044, 1173, 1194, 1251, 1278, 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.
25. A polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a sequence delineated by the 3' 136 base pairs of

cpsE and the 5' 218 base pairs of *cpsG* of the *cpsE-cpsF-cspG* gene cluster of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between group B streptococcal types.

26. A polynucleotide according to claim 25 wherein said nucleotides which differ between group B streptococcal types correspond to one or more of positions 1413, 1495, 1500, 1501, 1512, 1518, 1527, 1595, 1611, 1620, 1627, 1629, 1655, 1832, 1856, 1866, 1871, 1892, 1971, 2026, 2088, 2134, 2187 and 2196 as shown in Figure 1.

27. A polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *cpsI/M* gene of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between streptococcal serotypes.

28. A polynucleotide according to claim 27 wherein the polynucleotide is selected from the nucleotide sequences shown in Table 2.

29. A polynucleotide consisting essentially of at least 10 contiguous nucleotides corresponding to a region within a *rib*, *a/p2* or *a/p3* gene of a group B streptococcal bacterium, said polynucleotide comprising one or more nucleotides which differ between group B streptococcal subtypes.

30. A polynucleotide according to claim 29 wherein the polynucleotide is selected from the nucleotide sequences shown in Table 6.

31. Use of a polynucleotide according to any one of claims 23 to 30 in a method of serotyping and/or subtyping a group B streptococcal bacterium.

32. A composition comprising a plurality of polynucleotides according to any one of claims 23 to 30.

33. Use of a composition according to claim 32 in a method of serotyping and/or subtyping a group B streptococcal bacterium.

34. A microarray comprising a plurality of polynucleotides according to any one of claims 23 to 30.

35. Use of a microarray according to claim 34 in a method of serotyping and/or
subtyping a group B streptococcal bacterium.

1/25

Figure 1. Multiple sequence alignments of the regions of the 3' end of cpsD-cpsE-cpsF-and the 5' end of cpsG for reference strains of serotypes Ia to VII.

2/25

Serotype V	-----	-----	-----	M-----
Serosubtype Ia-2	-----	-----	-----	
Consensus	AAAGAAAAAG	AAAATATACA	AAAGATTATT	ATAGCGATGA
				TTCAAACAGT
				cpsE
	201			250
Serosubtype III-2	-----	-----	-----	
Serotype VI	-----	-----	g-----t-----	c-----
Serotype Ib	-----	-----		c-----
Serotype II/III-4	-----	-----	-----	
Serotype VII	-----	-----	-----	
Serosubtype III-3	-----	-----	-----	
Serosubtype Ia-1	-----	-----	-----	
Serosubtype III-1	-----	-----	-----	
Serotype IV	-----	-----	-----	c-----
Serotype V	-----	-----	-----	y-----
Serosubtype Ia-2	-----	-----	-----	
Consensus	TGTGGTTAT	TTTCTGCAA	GTTTGACATT	AACATTAATT
				ACTCCAAATT
	251			300
Serosubtype III-2	-----	-----	-----	t-----
Serotype VI	-----	-----	-----	
Serotype Ib	-----	-----	-----	
Serotype II/III-4	-----	-----	-----	
Serotype VII	-----	-----	-----	
Serosubtype III-3	-----	-----	-----	
Serosubtype Ia-1	-----	-----	-----	
Serosubtype III-1	-----	-----	-----	
Serotype IV	-----	-----	-----	
Serotype V	-----	-----	-----	
Serosubtype Ia-2	-----	-----	-----	
Consensus	TTAAAAGCAA	TAAAGATTAA	TTGTTGTTCA	TATTGATACA
				TTATATTGTC
	301			350
Serosubtype III-2	-----	-----	-----	
Serotype VI	-----	-----	-----	
Serotype Ib	-----	-----	-----	
Serotype II/III-4	-----	-----	-----	
Serotype VII	-----	-----	-----	
Serosubtype III-3	-----	-----	-----	
Serosubtype Ia-1	-----	-----	-----	
Serosubtype III-1	-----	-----	t-----	
Serotype IV	-----	-----	-----	
Serotype V	-----	-----	-----	
Serosubtype Ia-2	-----	-----	-----	
Consensus	TTTATCTTT	CTGATTTTA	CAGAGACTTT	TGGAGTCGTG
				GCTATCTTGA
				cpsES
	351			400
Serosubtype III-2	-----	-----	-----	
Serotype VI	-----	-----	-----	
Serotype Ib	-----	-----	-----	
Serotype II/III-4	-----	-----	-----	
Serotype VII	-----	-----	-----	
Serosubtype III-3	-----	-----	-----	
Serosubtype Ia-1	-----	-----	-----	
Serosubtype III-1	-----	-----	-----	

3/25

Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	AGAGTTTAAA	ATGGTATTGA	AATACAGCTT	TTACTATATT
				TTCATATCAA
	401			450
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	c	-----	-----
Serotype II/III-4	-----	-----	a	-----
Serotype VII	-----	-----	a	t
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	a	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	a	-----
Consensus	GTTCATTATT	TTTTATTTTT	AAAAACTCTT	TTACAACGAC
				ACGACTTTCC
				cpsEA1
	451			500
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	c	-----	-----
Serotype VII	-----	c	-----	-----
Serosubtype III-3	-----	-----	-----	g
Serosubtype Ia-1	-----	t	-----	g
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	a	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	t	-----	g
Consensus	TTTTTTACTT	TTATTGCTAT	GAATTGATT	TTATTATATC
				TATTGAATTC
	501			550
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	ATTTTTAAAA	TATTATCGAA	AATATTCTTA	CGCTAAGTTT
				TCACGAGATA
	551			600
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----

4/25

Serotype V				
Serosubtype Ia-2				
Consensus	CCAAAGTTGT	TTTGATAACG	AATAAGGATT	CTTTATCAAA
	601			650
Serosubtype III-2				
Serotype VI	-c-			
Serotype Ib				t
Serotype II/III-4	-a-			
Serotype VII	-a-			
Serosubtype III-3				
Serosubtype Ia-1		t	c	
Serosubtype III-1			c	
Serotype IV				t
Serotype V				t
Serosubtype Ia-2		t	c	
Consensus	AGGAATAAAAT	ACGACCATAA	TTATATCGCT	GTCTGTATCT
			TGGACTCCTC	
	651			700
Serosubtype III-2				
Serotype VI				
Serotype Ib				
Serotype II/III-4				
Serotype VII				
Serosubtype III-3				
Serosubtype Ia-1				
Serosubtype III-1				
Serotype IV				
Serotype V				
Serosubtype Ia-2				
Consensus	TGAAAAGGAT	TGTTATGATT	TGAAACATAA	CTCGTTAAGG
	cpsES1		ATAATAAAC	
	701			750
Serosubtype III-2				
Serotype VI				
Serotype Ib				
Serotype II/III-4				
Serotype VII				
Serosubtype III-3				
Serosubtype Ia-1				
Serosubtype III-1				
Serotype IV				
Serotype V				
Serosubtype Ia-2				K
Consensus	AAGATGCTCT	TACTTCAGAG	TTAACCTGCT	TAACGTGTTGA
			TCAGCTTTT	
	cpsEA2			
	751			800
Serosubtype III-2				
Serotype VI				
Serotype Ib				
Serotype II/III-4				
Serotype VII				
Serosubtype III-3				
Serosubtype Ia-1				
Serosubtype III-1				
Serotype IV				
Serotype V				

5/25

Serosubtype Ia-2	-----	-----	-----	-----
Consensus	ATTAACATAC	CCATTGAATT	ATTTGGTAAA	TACCAAATAC
			AAGATATTAT	
	801			850
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	t-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	TAATGACATT	GAAGCAATGG	GAGTGATTGT	CAATGTTAAT
				GTAGAGGCAC
	851			900
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	TTAGCTTGA	TAATATAGGA	GAAAGCGAA	TCCAAACTTT
				TGAAGGATAT
	901			950
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	AGTGTATTAA	CATATTCTAT	GAAATTCTAT	AAATATAGTC
				ACCTTATAGC
	951			1000
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	t-----	-----
Serotype Ib	-----	-----	t-----	-----
Serotype II/III-4	-----	-----	t-----	-----
Serotype VII	-----	-----	t-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----

6/25

Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	AAAACGATTT	TTGGATATCA	CGGGTGCTAT	TATAGGTTG CTCATATGTG
	1001			1050
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	C-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	a-----	-----
Serosubtype Ia-1	-----	-----	a-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	a-----	-----
Serotype V	-----	-----	a-----	-----
Serosubtype Ia-2	-----	-----	a-----	-----
Consensus	GCATTGTGGC	AATTTTCTA	GTTCCGAAA	TCAGAAAAGA TGGTGGACCG
	1051			1100
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	GCTATCTTTT	CTCAAAATAG	AGTAGGTCGT	AATGGTAGGA TTTTTAGATT
cpsES2				
	1101			1150
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	CTATAAATTC	AGATCAATGC	GAGTAGATGC	AGAACAAATT AAGAAAGATT
cpsEA3				
	1151			1200
Serosubtype III-2	-----	-----	-----	a-----
Serotype VI	-----	-----	-----	a-----
Serotype Ib	-----	-----	g-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	a-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	a-----
Serotype IV	-----	-----	-----	a-----

7/25

Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	TATTAGTTCA	CAATCAAATG	ACAGGGCTAA	TGTTTAAGTT	AGACGATGAT
	1201				1250
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	CCTAGAATT	CTAAAATAGG	AAAATTATT	CGAAAAACAA	GCATAGATGA
	1251				1300
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	a-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----	-----
Serotype V	-----	-----	g-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	GTTGCCTCAA	TTCTATAATG	TTTTAAAAGG	TGATATGAGT	TTAGTAGGAA
	1301				1350
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	CACGCCCTCC	CACAGTTGAT	GAATATGAAA	AGTATAATT	AACGCAGAAG
	1351				1400
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----

8/25

Serotype IV	-----		
Serotype V	-----		
Serosubtype Ia-2	-----		
Consensus	CGACGCCCTTA GTTTAAGCC AGGAATCACT GGTTTGTGGC AAATATCTGG		
	1401		1450
Serosubtype III-2	-----		
Serotype VI	-----		
Serotype Ib	-----		
Serotype II/III-4	-----		
Serotype VII	-----		
Serosubtype III-3	-----	c	
Serosubtype Ia-1	-----	c	
Serosubtype III-1	-----		
Serotype IV	-----		
Serotype V	-----		
Serosubtype Ia-2	-----	c	
Consensus	TAGAAATAAT ATTACTGATT TTGATGAAAT CGTAAAGTTA GATGTTCAAT		
	1451		1500
Serosubtype III-2	-----		
Serotype VI	-----		a
Serotype Ib	-----		g
Serotype II/III-4	-----		
Serotype VII	-----		
Serosubtype III-3	-----		
Serosubtype Ia-1	-----		
Serosubtype III-1	-----		
Serotype IV	-----		
Serotype V	-----		
Serosubtype Ia-2	-----		
Consensus	ATATCAATGA ATGGTCTATT TGGTCAAGATA TTAAGATTAT TCTCCTAAC		
	1501		1550
Serosubtype III-2	-----	t	
Serotype VI	-----	t	
Serotype Ib	-----	t	
Serotype II/III-4	t		
Serotype VII	t		
Serosubtype III-3	-----	t	
Serosubtype Ia-1	-----	t	
Serosubtype III-1	-----	t	
Serotype IV	-----	t	
Serotype V	-----	t	
Serosubtype Ia-2	-----	t	
Consensus	CTAAAGGTAG TCTTACTTG GACAGGAGCT AAGTAAAGGT AAGGTTTGAA	cpsE cpsEFA	
	1551		1600
Serosubtype III-2	-----		
Serotype VI	-----		c
Serotype Ib	-----		c
Serotype II/III-4	-----		
Serotype VII	-----		
Serosubtype III-3	-----		
Serosubtype Ia-1	-----		
Serosubtype III-1	-----		
Serotype IV	-----		

9/25 .

Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	<u>AGGAATATAA</u>	TGAAAATTG	TCTGGTTGGT	TCAAGTGGTG	GTCATCTAGC
		cpsF			
	1601				1650
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	t	t	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	t	-----	-----
Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	ACACTTGAAC	CTTTGAAAC	CCATTGGGA	AAAAGAAGAT	AGGTTTGGG
	1651				1700
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	t	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	TAACCTTGAT	TAAAGAAGAT	GCTAGGAGTA	TTCTAACAGAGA	AGAGATTGTA
	1701				1750
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----	-----
Consensus	TATCATTGCT	TCTTTCCAAC	AAACCGTAAT	GTCAAAAAC	TGGAAAAAA
	1751				1800
Serosubtype III-2	-----	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----	-----

10/25

Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	TACTATTCTA	GCTTTTAAGG	TCCTTAGAAA	AGAAAGACCA
				GATGTTATCA
	1801			1850
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-t-	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	TATCATCTGG	TGCCGCTGTA	GCAGTACCAT	TCTTTTATAT
				TGGTAAGTTA
	cpsFS			
	1851			1900
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	c-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	a-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	c-----	-----	g-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	TTGGTTGTA	AGACCGTTA	TATAGAGGTT	TTCGACAGGA
				TAGATAAACCC
	cpsFA			
	1901			1950
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	AACTTGACA	GGAAAATTAG	TGTATCCTGT	AACAGATAAA
				TTTATTGTTCC
	1951			2000
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	a-----	-----
Serotype Ib	-----	-----	-----	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----

11/25

Serotype IV	-----	-----	-----
Serotype V	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----
Consensus	AGTGGGAAGA AATGAAAAAA GTTTATCCTA AGGCAATTAA TTTAGGAGGA		
	2001		2050
Serosubtype III-2	-----	-----	-----
Serotype VI	-----	-----	-----
Serotype Ib	-----	a-----	-----
Serotype II/III-4	-----	-----	-----
Serotype VII	-----	-----	-----
Serosubtype III-3	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----
Serosubtype III-1	-----	-----	-----
Serotype IV	-----	-----	-----
Serotype V	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----
Consensus	ATTTTTAAT GATTTTGTC ACAGTGGGA CACATGAACA GCAGTTAAC cpsF cpsG		
	2051		2100
Serosubtype III-2	-----	-----	-----
Serotype VI	-----	-----	-----
Serotype Ib	-----	-----	-----
Serotype II/III-4	-----	-----	-----
Serotype VII	-----	-----	-----
Serosubtype III-3	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----
Serosubtype III-1	-----	-----	-----
Serotype IV	-----	a-----	-----
Serotype V	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----
Consensus	CGTCTTATTA AAGAAGTTGA TAGATTAAGA GGGACAGGTG CTATTGATCA		
	2101		2150
Serosubtype III-2	-----	c-----	-----
Serotype VI	-----	-----	-----
Serotype Ib	-----	-----	-----
Serotype II/III-4	-----	-----	-----
Serotype VII	-----	-----	-----
Serosubtype III-3	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----
Serosubtype III-1	-----	c-----	-----
Serotype IV	-----	-----	-----
Serotype V	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----
Consensus	AGAAGTGTTC ATTCAAACGG GTTACTCAGA CTTTGAACCT CAGAATTGTC cpsGS		
	2151		2200
Serosubtype III-2	-----	-----	-----
Serotype VI	-----	-----	-----
Serotype Ib	-----	-----	-----
Serotype II/III-4	-----	-----	-----
Serotype VII	-----	g-----	-----
Serosubtype III-3	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----
Serosubtype III-1	-----	-----	-----

12/25

Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	<u>AGTGGTCAAA ATTTCTCTCA TATGATGATA TGAACCTTTA CATGAAAGAA</u>	<u>cpsGA1</u>	<u>cpsGA2</u>	
	2201	2226		
Serosubtype III-2	-----	-----	-----	-----
Serotype VI	-----	-----	-----	-----
Serotype Ib	-----	-----	c	-----
Serotype II/III-4	-----	-----	-----	-----
Serotype VII	-----	-----	-----	-----
Serosubtype III-3	-----	-----	-----	-----
Serosubtype Ia-1	-----	-----	-----	-----
Serosubtype III-1	-----	-----	-----	-----
Serotype IV	-----	-----	-----	-----
Serotype V	-----	-----	-----	-----
Serosubtype Ia-2	-----	-----	-----	-----
Consensus	<u>GCTGAGATTG TTATCACACA TGGCGG</u>	<u>cpsGA3</u>		

Notes.

Numbering start point "1" refers to the start point "1" of GenBank accession number AF332908 (for serotype IV reference strain 3139).

Serosubtype Ia-1: strain 090, GenBank accession number AF332893;

Serosubtype Ia-2: strain NZRM 908(NCDC SS615), GenBank accession number AF332894;

Serotype Ib: strain H36B, GenBank accession number AF332903;

Serotype II/III-4: strain 18RS21, GenBank accession number AF332905;

Serosubtype III-1: strain SG99/056, GenBank accession number AF332899;

Serosubtype III-2: strain M781, GenBank accession number AF332896;

Serosubtype III-3: strain NZRM 912 (NCDC SS620), GenBank accession number AF332897;

III-4 (Subtype III-4): strain SG96/220, GenBank accession number AF363036;

Serotype IV: strain 3139, GenBank accession number AF332908;

Serotype V: strain CJB 111, GenBank accession number AF332910;

Serotype VI: strain SS1214, GenBank accession number AF332901;

Serotype VII: strain 7271, GenBank accession number AF332913.

Figure 2. Algorithm for GBS molecular serotype (MS) identification by PCR and sequencing.

14/25

Figure 3. Multiple sequence alignments of the gene sequences of the cpsG-cpsH-cpsI/M for serotypes Ia, Ib, II, III, IV, V and VI (start and stop codons were highlighted).

Serotype IV	1	50
Serotype V	ATGATTTTG TCACAGTGG GACACATGAA CAGCAGTTCA ACCGTCTTAT	
Serotype Ia	ATGATTTTG TCACAGTGG GACACATGAA CAGCAGTTCA ACCGTCTTAT	
Serotype Ib	ATGATTTTG TCACAGTAGG GACACATGAA CAGCAGTTCA ACCGTCTTAT	
Serotype III	ATGATTTTG TCACAGTGG GACACATGAA CAGCAGTTCA ACCGTCTTAT	
Serotype VI	ATGATTTTG TCACAGTGG GACACATGAA CAGCAGTTCA ACCGTCTTAT	
Consensus	*****	
cpsG		
Serotype IV	51	100
Serotype V	TAAAGAAGTT GATAGATTAA AAGGGACAGA TGCTATTGAT CAAGAACGTG	
Serotype Ia	TAAAGAAGTT GATAGATTAA AAGGGACAGG TGCTATTGAT CAAGAACGTG	
Serotype Ib	TAAAGAAGTT GATAGATTAA AAGGGACAGG TGCTATTGAT CAAGAACGTG	
Serotype III	TAAAGAAGTT GATAGATTAA AAGGGACAGG TGCTATTGAT CAAGAACGTG	
Serotype VI	TAAAGAAGTT GATAGATTAA AAGGGACAGG TGCTATTGAT CAAGAACGTG	
Consensus	*****	
Serotype IV	101	150
Serotype V	TCATTCAAC GGGTTACTCA GACTTGAAC CTCAGAATTG TCAGTGGTCA	
Serotype Ia	TCATTCAAC GGGTTACTCA GACTTGAAC CTCAGAATTG TCAGTGGTCA	
Serotype Ib	TCATTCAAC GGGTTACTCA GACTTGAAC CTCAGAATTG TCAGTGGTCA	
Serotype III	TCATTCAAC GGGTTACTCA GACTTGAAC CTCAGAATTG TCAGTGGTCA	
Serotype VI	TCATTCAAC GGGTTACTCA GACTTGAAC CTCAGAATTG TCAGTGGTCA	
Consensus	*****	
Serotype IV	151	200
Serotype V	AAATTCTCT CATATGATGA TATGAACCTCT TACATGAAAG AAGCTGAGAT	
Serotype Ia	AAATTCTCT CATATGATGA TATGAACCTCT TACATGAAAG AAGCTGAGAT	
Serotype Ib	AAATTCTCT CATATGATGA TATGAACCTCT TACATGAAAG AAGCTGAGAT	
Serotype III	AAATTCTCT CATATGATGA TATGAACCTCT TACATGAAAG AAGCTGAGAT	
Serotype VI	AAATTCTCT CATATGATGA TATGAACCTCT TACATGAAAG AAGCTGAGAT	
Consensus	*****	
Serotype IV	201	250
Serotype V	TGTTATCACA CATGGCGGTG CAGCGACGTT TATGAATGCA GTTTCTAAAG	
Serotype Ia	TGTTATCACA CATGGCGGCC CAGCGACGTT TATGAATGCA GTTTCTAAAG	
Serotype Ib	TGTTATCACA CATGGCGGTG CAGCGACGTT TATGAATGCA GTTTCTAAAG	
Serotype III	TGTTATCACA CATGGCGGTG CAGCGACGTT TATGAATGCA GTTTCTAAAG	
Serotype VI	TGTTATCACA CATGGCGGCC CAGCGACGTT TATGTCAAGTT ATTTCTTTAG	
Consensus	*****	

15/25

251	300
Serotype IV	GGAAAAAAAC TATTGTGGTT CCTAGACAAG AACAGTTGG AGAGCATGTG
Serotype V	GAAAAAAAAC TATTGTGGTT CCTAGACAAG AACAGTTGG AGAGCATGTG
Serotype Ia	GGAAAAAAAC TATTGTGGTT CCTAGACAAG AACAGTTGG AGAGCATGTG
Serotype Ib	GGAAAAAAAC TATTGTGGTT CCTAGACAAG AACAGTTGG AGAGCATGTG
Serotype III	GGAAATTACC AGTTGTGGTT CCTAGGAGAA AGCAGTTGG TGAACATATC
Serotype VI	GGAAATTACC AGTTGTGGTT CCCAGGAGAA AGCAGTTGG TGAACATATC
Consensus	*-----* -----* -----* -----* -----* -----*
301	350
Serotype IV	AATAATCATC AGGTGGATT TGTTAATAAG GTAAAAACAA TGTATAATT
Serotype V	AATAATCATC AGGTGGACTT TGTTAATAAG GTAAAAACAA TGTATAATT
Serotype Ia	AATAATCATC AGGTGGATT TTGAAAGAG TTATTCTTGA AAATTGAATT
Serotype Ib	AATAATCATC AGGTGGATT TTGAAAGAG TTATTCTTGA AAATGAGTT
Serotype III	AATGATCATC AAATACAATT TTAAAAAAA ATTGCCACC TGTATCCCTT
Serotype VI	AATGATCATC AAATACAATT TTAAATTG ATTGCCACC TGTATCCCTT
Consensus	*-----* -----* -----* -----* -----*
351	400
Serotype IV	TGATATCGTT GTAGATATTG AAAGTTACA AAATGTAGTC TATGAGGGGA
Serotype V	TGATATCGTT GTAGATATTG AAAGTTACA AAATGTAGTC TATGAGGGAA
Serotype Ia	AGATTATATT TTGAATATCA GTGAATTAGA GAATATTATT AAGGAAAAAA
Serotype Ib	AGATTATATT TTGAATATCA GTGAATTAGA GAATATTATT AAGGAAAAAA
Serotype III	GGCTGGATT GAAGATGTAG ATGGACTTGC GGAAGCGTT. .GAAAGGA
Serotype VI	GGCTGGATT GAAGATGTAG ATGGACTTGC GGAAGCGTT. .GAAAGGA
Consensus	*-----* -----* -----* -----* -----*
401	450
Serotype IV	CGATGAATCG TCCGTTTTTA GAAACTAACAA GAAGTAATT TATT.....
Serotype V	TGATGAATCG TCCGTTTTTA GAAACTAATA GTAGTAATT TATT.....
Serotype Ia	ATATATCTAC TACTAAAGTA ATATCACAAA ACAATGATTT TTGTTCTCT
Serotype Ib	ATATATCTAC TACTAAAGTA ATATCACAAA ACAATGATTT TTGTTCTCT
Serotype III	ATATAGCTAC AGAAAAATAT CAGGAAATA ATGATATGTT TTGT.....
Serotype VI	ATATAGCTAC AGAAAAATAT CAGGAAATA ATGATATGTT TTGT.....
Consensus	*-----* -----* -----* -----* -----*
451	500
Serotype IV GAAGAA TTAAAGGTAA TATTAAGGA
Serotype V GAAGAA TTAAAGGTAA TATTAAGGA
Serotype Ia	TTCAAAATG AACATTTCAT AACTATTG AATAAATATA TTTTGTGGA
Serotype Ib	TTCAAAATG AAC..TTCT AACTATTG AATAAATATA TTTTGTGGA
Serotype III CATA ATTAGAAAA AATTATAGGT
Serotype VI CATA ATTAGAAAA AATTATAGGT
Consensus	*-----* -----* -----* -----*
501	550
Serotype IV	GTTGTGTGAT GAAA..... ATCAATAAA AACTCTTTAT TTATATTGC
Serotype V	GTTGTGCGAT GAAA..... ATCAATAAA AACTCTTTAT TTATATTGC
Serotype Ia	GAAAAAAATT GAAATTAAACA TATCAATCCA AAGTATTG TAATAGGAGG
Serotype Ib	GAAAAAAATT GAAATTAAAC. TATCAATCCA AAGTATTG TAATAGGAGG
Serotype III	GAAATATGAG GAAAT....A TCTAGATTAA GATTATTCTT TATTTATGC
Serotype VI	GAAATATGAG GAAAT....A TCTAGATTAA GATTATTCTT TATTTATGC
Consensus	*-----* -----* -----* -----* -----*

16/25

551	
Serotype IV	AATATTTTA GTTAATTTT TAAATCACT AGGTTTAGGA GAGGGAACT
Serotype V	AATATTTTA GTTAATTTT TAAATCACT GGGTTAGGC GAGGGAAACT
Serotype Ia	AATTTCGCT TAAACCTAT TTTCAAAGCC AATGCAACTT TTGTTACTTT
Serotype Ib	AATTTCGCT TAAACCTAT TTTCAAAGCC AATGCAACTT TTGTTACTTT
Serotype III	TCTTGGGTA CTTATTTAG TACCAAACCA ATGGTATCAG TTTTTAATTA
Serotype VI	TCTTGGGTA CTTATTTAG TACCAAACCA ATGGTATCAG TTTTTAATTA
Consensus	-----*----- *-----*----- *-----*
<i>cpsH</i>	
601	
Serotype IV	CAACTTACAA AATAGTGATG TTTGTTGAA TCTTCTTGTG TGGAATAAAA
Serotype V	CAGCTTACAA AATAGTGATG TTGTTGAA TTTTACTGTG TGGAATAAAA
Serotype Ia	TAGCATTAAT AGTTTACTT ATTTGAGTA GTTATAAGAA AAAAATGAAA
Serotype Ib	TAGCATTAAT AGTTTACTT ATTTGAGTA GTTATAATGA AAAAATGAAA
Serotype III	TTACCATTAT AGTTCTATTA TTACTTTGGA AGAGTGAGTT TAGAAT...A
Serotype VI	TTACCATTAT AGTTCTATTA TTACTTTGGA AGAGTGAGTT TAGAAT...A
Consensus	-----*----- *-----*----- *-----*-----*-----*-----*
651	
Serotype IV	TTTTA.... .TTAGATAG CCTTTATTT GAAAGAAGAA AACTCGTTAT
Serotype V	TTTTA.... .TTAGATAG CCTTTATTT GAAAGAAGAA AACTCGTGT
Serotype Ia	TTTTTATATA TGGCTGAAAT TTTTTTCATT GTATTTTATA TCATTTATTT
Serotype Ib	TTTTTAAATA TGGCTGAAAT TTTTTTCATT GTATTTTATA TGGTTTATTT
Serotype III	TCTATAAGCA ATTCTCAAT ACTATTCTG CTTGGTTAT TTATTATTT
Serotype VI	TCTATAAGCA ATTCTCAAT ACTATTCTG CTTGGTTAT TTATTATTT
Consensus	*-----*-----*-----*-----*-----*-----*-----*
701	
Serotype IV	CATCTTTTA TTATTTATTG CGACCATTTC GAATTTATTG TTTGTTCATA
Serotype V	CATCTTTTA TTATTTATCG CGACCATTTC GAATTTATTG TTTGTTCATA
Serotype Ia	AACTCAATA TTGCTACATT CTTGTTAA AACTCCTGAT TTTGATAGAA
Serotype Ib	AGTATCAATA GTATTAATT CGTTATTTAG AAGTCCAGAA TTTCATAGAG
Serotype III	ATTGCAATA CTCATTAGAG GTACTCAAGA GGATATAACG TTTCAGCGAT
Serotype VI	ATTGCAATA CTCATTAGAG GTACTCAAGA GGATATAACG TTTCAGCGAT
Consensus	-----*-----*-----*-----*-----*-----*-----*-----*
751	
Serotype IV	AGGTTACTTT TATATTA..... C TTTAATTTTT
Serotype V	AGGTTACTTT TATATTA..... C TTTAATTTTT
Serotype Ia	TTTTAGCAGC TTTTAACTCG TTGATTATCG GTATAGTATC AGTGGTTTG
Serotype Ib	TCATTGCTGC ATTCAATTCA CTGGCACTAG GGGTTGTGTC CTTATTATTT
Serotype III	TTATTGCTGA GCTATTAAGA CTAATTAGTA CAGGATATGC TTATTATTT
Serotype VI	TTATTGCTGA GCTATTAAGA CTAATTAGTA CAGGATATGC TTATTATTT
Consensus	-----*-----*-----*-----*-----*-----*-----*-----*
801	
Serotype IV	TTCTAGCAT TAAAGGATAT CTCTCTAAA AAAGCTTTCT CTATAATAAT
Serotype V	TTCTAGCAT TAAAGGACAT CTCTCTAAA AAAGCTTTCT CTATAATAAT
Serotype Ia	AAACGGTGGT ATAAGAATAC AACTTGGAG TTGATATAAA TATTAAGAGC
Serotype Ib	TACCAATTACT ATAAGAATAC TAATATTGAA TTAACAAAAT TGCTAAAATC
Serotype III	TATAATTATT ATAGAAAAGC TGATTTAAT AGTCAGTTG TAAGGAATGT
Serotype VI	TATAATTATT ATAGAAAAGC TGATTTAAT AGTCAGTTG TAAGGAATGT
Consensus	-----*-----*-----*-----*-----*-----*-----*

17/25.

		900
	851	
Serotype IV	AGGATCGCGT ATTTTGGGAG TTCTATTAAA TCAAATTTT GTGAAATTAG	
Serotype V	AGGATCGCGT ATTTTGGGAG TTCTATTAAA TCAAATTTT GTGAAATTAG	
Serotype Ia	ATTTTATTT AATGGGTTAA TCCTATTTT TTAGGGGGA ACATATTATT	
Serotype Ib	ATTTTGTAA AATGCAATTAA TTTTGTTTG TTAGGAGTT CTATATTATT	
Serotype III	GGTAAAGGTT AACTATTTG TGTTGTTCT TATAACAGTT TTATATT...	
Serotype VI	GGTAAAGGTT AACTATTTG TGTTGTTCT TATAACAGTT TTATATT...	
Consensus	-----* -----* -----* -----* -----*	
		950
	901	
Serotype IV	ATTTAATAGA AATTAATAT ATCAATTTC ATAGGGATGG ACAATTTATT	
Serotype V	ATTTAATAGA AATTAAGTAT GTCAATTTC ATAGGGATGG ACAATTTATT	
Serotype Ia	ATTGTTGCA TAATAATATT CAAAATATCA GTATTTTGG TAGAGATTG	
Serotype Ib	ATGCCATATA TTTGATGTA GAGAATGTA GTCTTTTGG AAGAAATTAA	
Serotype IIITATT TTTCCATAG CTGAAGCCAA CTTTATTTGG AAGAGAATTG	
Serotype VITATT TTTCCAAT GAATTACTA CATCCTAGG AAGAGATTAA	
Consensus	-----* -----* -----* -----* -----*	
		1000
	951	
Serotype IV	CTGAGAACGTG ACT.....	TAGG
Serotype V	CTGAGAACGTG ACT.....	TAGG
Serotype Ia	ATTGGTCAG ACTGGATTAA TGTTATGCAT ACTCAAAGAG CAATGGGATT	
Serotype Ib	ATTGGATCAT ATTGGATAAA TGGGATGCAT ACCGAGAGAG CAATGGCTTT	
Serotype III	TTTCAATAG AGTGGTTCC ACATATG... AGAATAAGAC TTGCGGCATA	
Serotype VI	TTTCAATTG AATGGATTCC TTCTATG... AAAGTTAGAC TTACTGCATA	
Consensus	-----* -----* -----* -----*	
		1050
	1001	
Serotype IV	TTTGGTCAT CCTAACCTTA TTCATAATT TTTGCAGTA ACTGTTTTT	
Serotype V	TTTGGTCAT CCTAACCTTA TTCATAATT TTTGCTCTA ACTATTTCT	
Serotype Ia	TTTGAATAT TCAAACCTTA TAATCCTAT GACAGTGGTA ACTAACTATA	
Serotype Ib	TTTGAATAT TCAAATCTA TAATACCCTT AACTATCATA ACTAA. TATA	
Serotype III	TTTGAATAT GCTACACTAA TTGGTCAGTT TATTTTATT TCTTATCCCCA	
Serotype VI	TTTGAGTAT GCAACACTAT TAGGTTCAGTT TATTTTATTAC ACTTATCCGA	
Consensus	-----* -----* -----* -----* -----*	
		1100
	1051	
Serotype IV	TATATGTAAC ACTTTTTTAT AGAAAACCAA GAT. TAATAA CTATTGCTTT	
Serotype V	TGTATATTGT ACTCAATTAT AAACGACTAA AGC. CTGTTG TGATGGTTT	
Serotype Ia	TATATATATA T. TATATGAA GTTAAGAAC TATTCAATTA TGACCATAGG	
Serotype Ib	TATATATATA TATATATTAA GCAAAGATAT AGCTCAGGGA TGATGATACT	
Serotype III	TAC..... TTTTTTGAA ACCCCAAAAA CATATGGAAA ATATTTAAT	
Serotype VI	TAT..... TATTTTAAAC ACAGCAGAGG TATGGAGAAA ATATTTTAT	
Consensus	-----* -----* -----*	
		1150
	1101	
Serotype IV	TATTTTAACCT TAAATTACT TCTTGTATCA GTATACTTAT TCAAGAACTG	
Serotype V	ATTTTTAACCA TTAAATTATT TATTGTACCA ATATACTTT TCAAGGACAG	
Serotype Ia	TGTTGTATTA TTATTTACCT TTATTTTACCA TATTGGATCG GGCTCCAGGG	
Serotype Ib	CGGTGCTCTT CTCTCCACTA TTATACTACC CATCGGGTCT GGATCTAGAG	
Serotype III	ATCCTTACTG TTGACTATAT GTTCATACTT TTCTGGCGCT AGAATACTAT	
Serotype VI	CACACTATTG CTAGTTTTT GTGCATATT GACAGGGGCA AGAATTTCC	
Consensus	-----* -----*	

18/25

	1151	
Serotype IV	GATATTATAT AGTACTCTTA TTTATACTTA TTATATATGT TACAAAGAAT	1200
Serotype V	GGTATTATAT CGTAATTCTA TTTATTGTAC TCATTTATGT GACAAAGAAT	
Serotype Ia	CTGGAATAGT AGCTATATTG GCGCAGATGT TTATTCTTCT TCTAAATACA	
Serotype Ib	CTGGTATTAT AGTTGTGCTA CTACAGGTTA TAATTTTATT GTTGAATACA	
Serotype III	TGGTCTGTAT GTTGGTTTA TTAGCATCGC TTCTTTAGA TTATATCCTT	
Serotype VI	TAATTTGTAT GATAATTCTA TTAGGTTATT TACTCTTAGA AATAATCATT	
Consensus	-----* -----*-----*-----*	
	1201	1250
Serotype IV	AACCTGATAA GGAAAATTAA TATGATAGTT GCTCCGTACA TACAACGTGTT	
Serotype V	AGCTTAATAA AAAGAGTATT TATGAAATT GCACCCATAG TACAATTTC	
Serotype Ia	GTTGTCGTAAGAAGAAAAC TATAAAATT TTATTGTACA TACTTCGTT	
Serotype Ib	ATTGTAATAA AAAGACAAAC GATAAGATT TTCTCTGTATT TAGTTCCGAT	
Serotype III	TTTAAAACCA ATTGAAATT GACCAAGAAA AACACTTTA TACTTGGTAT	
Serotype VI	AATAAATTAA ACCTAAAAAT TACTAAAAAA GCTGTCTTT TGATAATTAT	
Consensus	-----* -----*-----*-----*	
	1251	1300
Serotype IV	CTTGTTAGCA TTTACTTTTC TTTGCTCTAC TATTTTTTC AACTCAAATT	
Serotype V	TTTATTAGTA TTTACCTTT TGAGTCTAC AATTTTTTT AATTCAAATT	
Serotype Ia	TCTACTAGTA ATAGTAATGA TGTTATATT TGATAACTTA CTATCTATAT	
Serotype Ib	ACTAATATTAA CTATTAGTGA TATTACGTT TGATAATTG GTGAGGCATAT	
Serotype III	GACTTCTTA TTTATCACCG CTTGTTTTTC TTATAACATA TGGTCAATAA	
Serotype VI	AGGGATAATA TTATTATTGG TATGTTTTTC TTACAAAGTG GAGTCTATTA	
Consensus	-----*-----*-----*-----*	
	1301	1350
Serotype IV	TTGTCAAAAA ATTAGATAGC CTTTGACAG GTAG.....	
Serotype V	TTGTCAAAAA ATTAGATGTT CTTTAAACAG GTAG.....	
Serotype Ia	ATTATCGTAT AATTAATTG CGATCCGGGA GTAGTGAATC CAGATTTC	
Serotype Ib	ATAATAGAAT AATCAATTG CGGTCCGGAA GTAGTGAATC TAGATTTC	
Serotype III	TTGAAAAAAAT ATTATGTAC AGAACACAAA GTACTATCAC TAGGATGATA	
Serotype VI	TCAATTATAT ATTACACTAT AGATTCAAA GTAGTAGTAC AAGATTGACA	
Consensus	-----*-----*-----*-----*	
	1351	1400
Serotype IV	..GTAAACT ATGCTCATT ACAGCTTGTAA GACGGCTTAA CTCTTTTGG	
Serotype V	..ATTACACT ATGCTCATT ACAACTTGTAA GATGGTTAA CTCTTTTGG	
Serotype Ia	GTATATAAAAG ATACAGTAA CATCGTTATA AAAAATTCTT TATTATTGG	
Serotype Ib	TTGTACAAGG ATACCGTACA CTCAGTAATT ACTGACTCAC TATTTCTGGG	
Serotype III	GTTTATCAAG AAAGTATTAT TGAAGTCTA AAAGGAAATA TTTTATTGG	
Serotype VI	GTCTATTACG AAAGTATAAG AGCGATTAA GATGGGAATT TCCTTATTGG	
Consensus	-----*-----*-----*-----*	
	1401	1450
Serotype IV	AAATAGTTT AAGGAG.....	
Serotype V	AAATAGTTT AAGGAA.....	
Serotype Ia	AGAAGGAGTT AAAGAGTTAT GGTTAAATAG TGATCTACCT TTGGGGTCGC	
Serotype Ib	AAAAGGTGTA AAAGAATTGT GGTTAAATAG TGATTTACCA CTAGGATCGC	
Serotype III	ACAGGGTATA AGGA...TTC CATCAAGTGA AGGAATATTG CTAGGATCGC	
Serotype VI	GCAAGGTATA AGAG...TTC CCTCCAGTGT GGGAAATATTG TTAGGTCAC	
Consensus	-----*-----*-----*	

19/25

	1451		1500
Serotype IV	ATTTGATAAT AGCTACTCTA TGTTATTGAG TATGTATGGT GTAGTACTTA		
Serotype V	ATTTGATAAT AGCTACTCTA TGTTATTGAG TATGTATGGT GTAGTACTTA		
Serotype Ia	ATTCAACGTA TATAGGCTAT TTCTACAAAAA GTGGCCTGCT GGGATTAATG		
Serotype Ib	ATTCGACCTA CATAGGTTAT TTCTATTTAA CTGGCCTATT TGGACTAATA		
Serotype III	ATTCTACTTA TATTAGTGEC TTTTACAGGA CTTCTTTATT AGGAATTGTT		
Serotype VI	ATTCACTATA CATTAGTATA TTTTATAGAA CTTCTTTAC GGGGCTGTTT		
Consensus	***----- *-----*-----*-----*		
	1501		1550
Serotype IV	CCATGTTTTG TATGATAATC TATTATATCT ATAGTAAAAAA AGTCATGTA		
Serotype V	CCATGTTTTG TATGATAATC TATTATATCT ATAGTAAAAAA GATAATCATA		
Serotype Ia	AATATAGTTTC CAGGTTTGCT TTTAAT.TTT TACTAATATT GGTAGGAAAG		
Serotype Ib	AATGTGATT TAGGTTGTT TCTAAT.TCT TATTAGCATT ATCAAGGAAG		
Serotype III	CTTTATTTTT CTGCCTTAT ACTTTTATAT AAAGAACGGA TTTCAAAAAAA		
Serotype VI	CTTTTCTTTT CAATATTACT TTTTCTATAT AGAGAACGTA TCAAACAAAAA		
Consensus	-----*-----*-----*-----*		
	1551		1600
Serotype IV	GTTGAGCTCC AGATACTTTT GTTTA.....		TA
Serotype V	ATTGAACCTTC AACTACTCCT ATTAA.....		TA
Serotype Ia	CTAAACAATC AGCTTTTAT TATGAGATAG TAGGAACACT TATAACTTTA		
Serotype Ib	CTAAAAAGTC AGATTTCTAT TATGAGATAG TAGGGTCTGT CATACTCCTA		
Serotype III	TTATAAAATC TACAGATTAT TTT.....T TTATAACGTTA		
Serotype VI	CAGGATAATC TACAAGCTT TTT.....T TGGATTGTTA		**
Consensus	-----*-----*-----*-----*		
	1601		1650
Serotype IV	ATGTCTATAG TATTATTTAC AGAGAGTTTT TACCCAAAGTA TAGTATGAA		
Serotype V	ATGTCTATAA TATTATTTAC TGAAAGTTTT TATCCCAGTG TGGTAATGAA		
Serotype Ia	TTCTCATTTT TTGCACTTGA AGATCTTGAC GGAGCTAATT GGCTTATTGT		
Serotype Ib	TTTCATTTT TTGCACTTGA AGATATTGAT GGCGCCAATT GGCTCATTAT		
Serotype III	TTATGTTACA CGCTCTTGA GGAAATAGAT CCTAACATT GGAGTATTGT		
Serotype VI	TTATTGTATA TGGTATTGAG AGAATTGAT CCTAACATT GGAGTGTGTT		
Consensus	-----*-----*-----*-----*		
	1651		1700
Serotype IV	TATTAGTTGG ATGGTTTTTG GGAAAATATT TTGTGGGGGT GTAGATGATT		
Serotype V	TATTAGTTGG CTAGTTTTTG GTAAAATATT TTGTGATGGT ATCGAACCTA		
Serotype Ia	TTTATTTTT ACAGTGTAG GAATTTTAGA AAATAAGGAT TTTTATAGTC		
Serotype Ib	TTTGTCTTT ACAGTGTGAG GAATTTTAGA AAATAAGGAT TTCTATAGTC		
Serotype III	ATTATTATTC TCAACTTTTG GTATAGTGGG AAGGGCTAA.		
Serotype VI	ATTGTTATT ACTACATTAG GTATAGTAGG GAGAG.GGA.		
Consensus	-----*-----*-----*-----*		
	1701		1750
Serotype IV	TACAAC.....GAGAGTT CACTTGGACG GCAAATAAAAA ATTAGTGTAA		
Serotype V	TAAAAA.....AGGAATT TACT...ATT GTGAATAATA TATGACATAT		
Serotype Ia	AACTAAAG GTGGAAAAGT TAATGGAAAA ACGAATACCT GTTCTATCA		
Serotype Ib	AACTAAAG GTGGAAAAGT TAATGGAAAA ACAAAATACCT GTTCTATCG		
Serotype IIIAAAAT GAAAGAAAAA GTAACAGTCA		
Serotype VIATGAT AAAAAAAACTA GTTAGTGTCA		
Consensus	-----*-----*-----*		

20/25

	1751		1800
Serotype IV	TTGTACCACT	ATATAATTG AAACAATATT TAATAGCTTG CGTTGATTCA	
Serotype V	TTGCCTCTGAT	ATGGCAGGAG GTAAGGAAGG AAAATGATAC CTAAAGTTAT	
Serotype Ia	TTATACCTAT	ATACAACTCA GAAGCATACC TTAAAGAATG TGTGCAATCC	
Serotype Ib	TTATACCTAT	ATACAACTCG GAAGCATATC TTAAAGAATG CGTGCAATCC	
Serotype III	TTATACCTAT	ATACAACTCA GAAGCATACC TTAAAGAATG TGTGCAATCC	
Serotype VI	TTGTTCCAGT	TTATAATTG GAGTAGTGA TTGAGAACTG TGTAGAAATCT	
Consensus	*****	*****	*****
		<i>cpsI/M</i>	
	1801		1850
Serotype IV	ATTAGAAAAC	AAACATATAA GAATTGGAA ATTATTCTTG TTAATGATGG	
Serotype V	ACATTATTGT	TGGTTGGAG GAAATCCCTT ACCAGATAAT TTAAAGAAAT	
Serotype Ia	GTACTACAAC	AGACTCATCC ATTGATAGAA GTTATACTAA TTGATGATGG	
Serotype Ib	GTCCTACAAC	AGACTCATTC ATTGATAGAA GTTATACTGA TTAATGATGG	
Serotype III	GTACTACAAC	AGACTCATCC ATTGATAGAA GTTATACTAA TTGATGATGG	
Serotype VI	TTGCTTCAAC	AAACATACCC AGAAATAGAA ATTTTATTAA TAGATGATGG	
Consensus	*****	*****	*****
	1851		1900
Serotype IV	ATCAACAGAT	GGTAGTAAAG AGTTATGTGA GGAGATAAGA AAATCAGATG	
Serotype V	ATATAAAA.	... CTTGGAG AGAACATGT CCGGATTATG AAATTATTGA	
Serotype Ia	ATCCACTGAT	AATAGTGGAG AAATTGTGA TAATTATCT CAAGAAGATA	
Serotype Ib	ATCCACTGAT	AATAGTGGAG AAATTGTGA TAATTATCT CAAAAAGACG	
Serotype III	ATCCACTGAT	AATAGTGGAG AAATTGTGA TAATTATCT CAGGAAGATA	
Serotype VI	ATCTACAGAT	AAAAGTAGTAA ATATTGTAA TAATTTTTA AAAAGGGATA	
Consensus	*****	*****	*****
	1901		1950
Serotype IV	AAAGAATTAA	GACATTTCAC AAAACAAATG GAGGACAATC AAGCGCAAGG	
Serotype V	ATGGAATGAG	CATAATTATG ATGTTAGTAA AAATGTTTT ATGAGAGAAG	
Serotype Ia	ATCGCATACT	TGTATTTCAT AAAAAAATG GAGGGGTCTC TTCGGCAAGG	
Serotype Ib	ATCGCATACT	TGTATTTCAT AAAAAAATG GAGGGGTATC TTCGGCAAGG	
Serotype III	ATCGCATACT	TGTATTTCAT AAAAAAATG GAGGGGTCTC TTCGGCAAGG	
Serotype VI	GTCGCGTAA	AGTCTATCAT AAATACAATG GAGGTGCATC ATCAGCAAGA	
Consensus	*****	*****	*****
	1951		2000
Serotype IV	AATTAGGTA	TTTTATACTC TACAGGAGAT TTGATTGGTT TTGTTGACAG	
Serotype V	CATATACTAA	GAAGAATTTC TGCT TATGTTCTG ACTATGCAAG	
Serotype Ia	AACCTAGGTC	TGATGATTTCAAT CACAGGAGAA TTCATAACAT TTGTGGATAG	
Serotype Ib	AACCTAGGTC	TTGATGATTTCAAT CACAGGCGAA TTCATAACGT TTGTAGATAG	
Serotype III	AACCTAGGTC	TGATGATTTCAAT CACAGGAGAA TTCATAACAT TTGTGGATAG	
Serotype VI	AATGTGGAC	TTGAGATGGC AGAAGGTGAA TTGATGACTT TTGTAGATAG	
Consensus	*****	*****	*****
	2001		2050
Serotype IV	CGACGATACA	ATTGACCCCTA AAATGTATGA AACGTTACTA AATATATATG	
Serotype V	ATTGGATATT	ATTTATACTT ATGGGGGGTT CTATCTAGAT ACTGATGTGG	
Serotype Ia	TGATGATTTT	GTAGCACCAGA ATATGATTGA AATAATGTTA AAAAATTAA	
Serotype Ib	TGATGATTTT	GTAGCACCAGA ATATAATTGA AATAATGTTA AAAAATTAA	
Serotype III	TGATGATTTT	GTAGCACCAGA ATATGATTGA AATAATGTTA AAAAATTAA	
Serotype VI	CGATGATGTT	GTGCACTAA ATATGATTGA AATTATGCTG AATAATTGT	
Consensus	*****	*****	*****

21/25

	2051	2100
Serotype IV	AAGATGAACA AGTAGACTGG GTGCAATGTA ATCACAAAAA AATTTACTCT	
Serotype V	AGCTTTAAA AAGTTTAGAT CCTTTGAGGA TTCACTGAGTG TTTTCTAGCA	
Serotype Ia	TCACTGAGAA TGCTGATATA GCAGAAAGTAG ATTGAA... TATTTCGAAT	
Serotype Ib	TCACTGAGGA TGCTGATATA GCAGAAAGTAG ATTGAA... TATTTCGAAT	
Serotype III	TCACTGAGAA TGCTGATATA GCAGAAAGTAG ATTGAA... TATTTCGAAT	
Serotype VI	TAACGGAGAA CGCAGATATA TCAGAAATTG ATTTCGA... AGTTTCAGAT	
Consensus	-----* ----- *-----*-----*-----*	
	2101	2150
Serotype IV	AACGGTGTAA CTTTATATTA TAATGGACCT GAATACTATA ATGTGCTTAA	
Serotype V	AGGGAGATTA GTTGTGATGT GAATACAGGA TTAATAATTG GCGCTGTTAA	
Serotype Ia	GAGAGAGATT ATAGAAAGAA GAAAAGACGA AACTTTTATA AAGTCTTAA	
Serotype Ib	GAGAGAGATT ATAGAAAGAA GAAAAGACGA AACTTTTATA AAGTCTTAA	
Serotype III	GAGAGAGATT ATAGAAAGAA GAAAAGACGA AACTTTTATA AAGTTTTAA	
Serotype VI	GA...TTTT ATAAAAGAAA AAAAGAAAA GGTTACTATA GAGTTTTCA	
Consensus	-----* ----- *-----*-----*-----*-----*	
	2151	2200
Serotype IV	TAAACAAGAT TTCCTATAACG AATTTCTGAG TACAAATAAG ATTTTTAGTT	
Serotype V	AGGACATCAC TTTTTAAAAT CAAATATGTC TATATATGAC AAAAGTGATT	
Serotype Ia	AAACAATAAC TCTTTAAAAG AATTTTTATC AGGCAATAGA GTGGAAAATA	
Serotype Ib	AAACAATAAT TCTTTAAAAG AATTTTTATC AGGTAATAGA GTGGAAAATA	
Serotype III	GAATAATAAC TCTTTGAAAG AATTTTTATC AGGTAATAGA GTGGAAAATA	
Serotype VI	AAACAATAAG TCTCTCAAAG AATTTTTTC AGGAAATAAAA GTAGAAAATG	
Consensus	-----*-----*-----*-----*-----*-----*	
	2201	2250
Serotype IV	CAGTCTGCGA GGGGTTGTAA TCTAGAGATT TAGCTTTAAA AATAAAATTC	
Serotype V	TAACTTCTCT TAATAAGACA TGTGTAGAGG TTACAACTAA TTTATTGATA	
Serotype Ia	TTGTTTGTAC AAAATTATAT AAAAAAGTA TAATTGGCAA CTTGAGGTTT	
Serotype Ib	TTGTTTGTAC AAAATTATAT AAAAAAGTA TAATTGGTAA CTTGAGGTTT	
Serotype III	TTGTTTGTAC AAAATTATAT AAAAAAGTA TAATTGGTAA CTTGAGGTTT	
Serotype VI	TTGTTTGGGG GAAATTATAT AAAAAAGCA TTATTGGGAA TTTACGATT	
Consensus	-----*-----*-----*-----*-----*-----*	
	2251	2300
Serotype IV	CGTGAAGAAA AAAAAT...A TGAAGATACA CAGTTTTATT TTGATCTCAT	
Serotype V	AACAGAGGGC TTAAGA...A TAAGATATT ATTCAAAAGA TTGA..TGAT	
Serotype Ia	GATGAGAACT TAAAAATTGG TGAGGATTAA CTTTTTAATT GTAAACTCTT	
Serotype Ib	GATGAGAACT TAAAAATTGG TGAGGATTAA CTTTTTAATT GTAAACTCTT	
Serotype III	GATGAGAACT TAAAAATTGG TGAGGATTAA CTTTTTAATT GCAAACCTTT	
Serotype VI	AATGAAAAAT ACAAAATTGG TGAAGACTTG CTATTTAATT TTTCAGATT	
Consensus	-----*-----*-----*-----*-----*	
	2301	2350
Serotype IV	AAAAAAATGCT AATAAGTTTG TTATTATAAG CCAACCTTT TATAATTACT	
Serotype V	ATAACAAATAT ATCCGAGAAA TTATTTTAAT CCAAAGAATT TATTAACA..	
Serotype Ia	ATGTCAAGAG CACCGTATAG TCGTAGATAC GACTTCTTC TTATATACTT	
Serotype Ib	ATGTCAAGAG CACCGTATAG TCGTAGATAC GACTTCTTC TTGTACACCT	
Serotype III	ATGTCAAGAG CACCGTATAG TCGTAGATAC GACTTCTTC TTATATACTT	
Serotype VI	AAATAAGAA CATCGTATAG TTGTAGATAC TAGAAGATCA CTCTATACTT	
Consensus	-----*-----*-----*-----*-----*	

22/25

	2351	2400
Serotype IV	ACTACAGAAA AAATAGTACA ACAACTTCCT CATATAGTAG CTATCAATGG	
Serotype V	..GTTAAGGT TGATTGTCTG ACTAGTGTAA CCTATTCTAT ACATCATTAC	
Serotype Ia	ATCGAATTGT AAAAACCTCC GCAA.TGAAT CAGAAATTCA ACGAAAACTC	
Serotype Ib	ATCGCATCGT AAAGACTTCT GCAA.TGAAT CAGGAGTTCA ACGAAAATTC	
Serotype III	ATCGAATTGT AAAAACCTCT GTAA.TGAAT CAGAAATTCA ACGAAAACTC	
Serotype VI	ATCGTATTGA AGAAAAATCT ATAA.TGAAT CAACAATTAA ATAAAATAC	
Consensus	-----*-----*-----*-----*-----*	
	2401	2450
Serotype IV	GACATAATCG ATATCTGTAC TGAGTGTAT TATTATGCAA AGGATTAA	
Serotype V	GAAGGAAGTT GGAAAAGTTC TTCAATTATT TCAGATTCTC TAAAGATTAG	
Serotype Ia	ATTAGATTTT ATAACAATT TTAATGAAGT AAGTAGTTG GTTCCTGCCA	
Serotype Ib	ATTAGATTTT ATAACAATT TTAATGAAT AAGCAGTATT GTTCCTGCCA	
Serotype III	ATTAGATTTT ATAACAATT TTAATGAAT AAGTAGTTG GTTCCTGCCA	
Serotype VI	ATTAGACTTC ATTGATATT TTAATGAGAT TCATCAGGAT AGTCCGACAG	
Consensus	-----*-----*-----*-----*	
	2451	2500
Serotype IV	TGGATTTGAA GAAGTTGCCTT TTTCAAGATT ATTTGGTGCAT TATTGTTAG	
Serotype V	AGTAAGGCTC ATAATTGATT TTTTATTGG ATATGGTACT TATAGAATGC	
Serotype Ia	AATTGGCTAA TTATGTTGAA GCGAAATTAA TAAGAGAAAA GATAAAGTGT	
Serotype Ib	AATTAGCTAA TTATGTTGAA GCGAAATTAA TAAGAGAAAA GGTAAGTGT	
Serotype III	GATTAGCTAA TTATGTTGAA GCGAAATTAA TAAGAGAAAA GATAAAGTGT	
Serotype VI	AATTGTTAA TTATGTTGAA GCGAAATTG TACGAGAAAA AATCAAGTGT	
Consensus	-----*-----*-----*-----*	
	2501	2550
Serotype IV	TAGCTAATAA AATTGTATAT AATAAAGATT ATAGAAAAAC CGAAGAATTA	
Serotype V	TTCTAAGGTT TCTAAAGTTA AAGAAATAG	
Serotype Ia	CTCCGAAAAA TGTTTGAAATT AGGTAGTAAT ATTGACAATA AAATCAAAGT	
Serotype Ib	CTCCGAAAAA TGTTTGAAATT AGGTAGTAAT ATTGACAGTA AAATCAAATT	
Serotype III	CTCCGAAAAA TGTTTGAAATT AGGTAGTAAT ATTGACAATA AAATCAAAGT	
Serotype VI	TTAAGGAAAA TGTTTGAAATT AGGAGAAATA GCTGATGAAA ATTACGTTT	
Consensus	-----*-----*-----*	
	2551	2600
Serotype IV	AGATAA.....	
Serotype V	
Serotype Ia	ACAACGAGAG ATTTTTTCA AAGACATTAA ATCATAACCG TTCTATAAAAG	
Serotype Ib	ACAACGAGAG ATTTTTTCA AAGATGTTAA ATTATACCC TTCTATAAAAG	
Serotype III	ACAACGAGAG ATTTTTTCA AAGACATTAA ATCATAACCG TTCTATAAAAG	
Serotype VI	ACAGAGATAT AAATTTGGC AAGATATTAA ATCATATTCA ATATGCAAAG	
Consensus	-----	
	2601	2650
Serotype IV	
Serotype V	
Serotype Ia	CGGTAAAATA CTTATCATTA AAGGGATTAT TAAGCTTTA TTTAATGAAA	
Serotype Ib	CGGTAAAGTA CTTATCATTA AAGGGATTAT TGAGTATTAA CTTAATGAAA	
Serotype III	CGGTCAAATA CTTATCATTA AAGGGATTAT TAAGCTTTA TTTAATGAAA	
Serotype VI	CAATAAGGTT CTTATCTAAA AAACATATCT GTACGTTATA TTTGATGAAA	
Consensus	-----	

23/25

	2651	2700
Serotype IV
Serotype V
Serotype Ia	TGTTCACCTA AACTATATGT TATGGCATAT AGAAGATTCA AAACAGTAGC	
Serotype Ib	TGTTCACCCA TCTTGTATAT AAAATTATAT GACAGGTTTC AAAAACAGTA	
Serotype III	TGTTCACCTA AACTATATGT TATGGCATAT AGAAGATTTC AAAAACAGTA	
Serotype VI	TATTTCCGT ACGTATATAT AAAGATGTAT AATAAATTTC AAAAGCAATA	
Consensus	-----	-----
	2701	2728
Serotype IV
Serotype V
Serotype Ia	TGGAGAAATT GGGAAAGAGA ATTTATAA	
Serotype Ib	A.....
Serotype III	G.....
Serotype VI	A.....
Consensus	-----	-----

Notes.

Serotype Ia: GenBank accession number AB028896;

Serotype Ib: GenBank accession number AB050723;

Serotype III: GenBank accession number AF163833;

Serotype IV: GenBank accession number AF355776;

Serotype V: GenBank accession number AF349539;

Serotype VI: GenBank accession number AF337958.

24/25

Figure 4. Two sites (*) of sequence heterogeneity between *alp2* (AF208158, upper lines) and *alp3* (AF291065, lower lines) used to distinguish them (relevant primers are shown).

251	AAGGTAAATCTTAATTTTGAAGAGTCATAAGTTGCTGCATCTACAATT	300
531	AAGGTAAATCTTAATTTTGAAGAGTCATAAGTTGCTGCATCTACAATT	580
	bcaS1	
301	CCAGGGAGTGCAGCGACCTTAAATACAAGCATCACTAAAAATATACAAAA	350
581	<u>CCAGGGAGTGCAGCGACCTTAAATACAAGCATCACTAAAAATATACAAAA</u>	630
	bcaS2	
351	CGGAAACGCTTACATAGATTATATGATGTAAGAATGGATTGATTGATC	400
	*	
631	CGGAAATGCTTACATAGATTATATGATGTAAGAATGGATTGAT <u>CGATC</u>	680
401	CTCAAAACCTCATTGTATTAAATCCATCAAGCTATTCAAGCAAATTATTAT	450
681	<u>CTCAAAACCTCATTGTATTAAATCCATCAAGCTATTCAAGCAAATTATTAT</u>	730
	balS	
451	ATCAAACAAGGTGCTAAATATTATAGTAATCCGAGTGAAATTACAACAAC	500
731	ATCAAACAAGGTGCTAAATATTATAGTAATCCGAGTGAAATTACAACAAC	780
501	TGGTCAGCAACTATTACTTTAATATACTTGATGAAACTGGAAATCCAC	550
781	TGGTCAGCAACTATTACTTTAATATACTTGATGAAACTGGAAATCCAC	830
551	ATAAAAAAAGCTGATGGACAAATTGATATAGTTAGTAGTGTGAATTAACTATA	600
831	ATAAAAAAAGCTGATGGACAAATTGATATAGTTAGTAGTGTGAATTAACTATA	880
601	TATGATTCTACAGCTTAAGAAATAGGATAGATGAAGTAATAATAATGC	650
881	TATGATTCTACAGCTTAAGAAATAGGATAGATGAAGTAATAATAATGC	930
651	AAATGATCCTAACGTGGAGTGTGGAGTCGTGATGAAGTCTTA ACTGGAT	700
931	AAATGATCCTAACGTGGAGTGTGGAGTCGTGATGAAGTCTTA ACTGGAT	980
	balA	

Figure 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/01281

A. CLASSIFICATION OF SUBJECT MATTERInt. Cl. ⁷: C12Q 1/68, 1:46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
SEE ELECTRONIC DATABASEDocumentation searched other than minimum documentation to the extent that such documents are included in the fields searched
SEE ELECTRONIC DATABASEElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPIDS: CA; MEDLINE. KEYWORDS: Streptococcus, Streptococcus agalactiae, cps, capsular polysaccharide, capsular antigen, sero?, rib, alp2, alp3, surface antigen, surface protein, mobile genetic element, transposon.**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	Kong et al. "Serotype Identification of Group B Streptococci by PCR and Sequencing" Journal of Clinical Microbiology (2002) Vol 40 (1): pages 216-226 (see the whole document)	1-12, 23-28 31-35
P, X	Kong et al. "Molecular Profiles of Group B Streptococcal Surface protein Antigen Genes: Relationship to Molecular Serotypes" Journal of Clinical Microbiology (2002) Vol 40 (2): pages 620-626 (see the whole document)	13-17, 29-35
X	Lachauer et al. "Mosaicism in the Alpha-Like Protein Genes of Group B Streptococci" Proc Natl Acad Sci USA. (2000) Vol 97 (17): pages 9630-9635 (see the whole document) EMBL DATABASE AF208158, ACCESSION NUMBER AF208158 23 August 2000	13-16, 29

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:		
"A" document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
28 November 2002

Date of mailing of the international search report

09 DEC 2002

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaaustralia.gov.au
Facsimile No. (02) 6283 3929

Authorized officer

TERRY MOORE
Telephone No : (02) 6283 2632

INTERNATIONAL SEARCH REPORT

International application No. PCT/AU02/01281

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Tamura et al. "Analysis of Restriction Fragment Length Polymorphisms of the Insertion Sequence IS1381 in Group B Streptococci" The Journal of Infectious Diseases (2000) Vol 181: pages 364-368 (see the whole document)	18-20
X	Yamamoto S et al. "Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia Journal of Bacteriology (1999) Vol 181: pages: 5176-5184 EMBL DATABASE ENTRY AB028896.2, ACCESSION NUMBER AB028896 16 July 1999	23
X	Miyake K. et al. "CpsJ of Streptococcus agalactiae type Ib shows beta-1,3-galactosyltransferase activity" Unpublished. EMBL DATABASE ENTRY AB050723.1, ACCESSION NUMBER AB050723 5 February 2001	27

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/AU02/01281**Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos :
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos :
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos :
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Invention I: Claims 1 to 12, 23 to 28 completely and claims 17, 22, and 31 to 35 partially.

Invention II: Claims 13 to 16, 29 and 30 completely and claims 17, 22, and 31 to 35 partially.

Invention III: Claims 18 to 21 completely and claim 22 partially. (see supplemental sheet)

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU02/01281

Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: II

The international application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept. In coming to this conclusion the International Searching Authority has found that there are different inventions as follows:

Invention I relates to primers, compositions and methods for typing group B streptococcus based on sequence analysis of capsular proteins *cpsD*, *cpsE*, *cpsF*, *cpsG* and/or *cpsI/M*.

Invention II relates to primers, compositions and methods for typing group B streptococcus based on determining the presence or absence of one or more of the surface protein genes, *rib*, *alp2* and *alp3*.

Invention III relates to primers and methods for typing group B streptococcus based on determining the presence or absence of one or more mobile genetic elements selected from IS861, IS1548, IS1381, ISSa4 and GBSi1.

The technical feature common to all three inventions is considered to be methods of typing group B streptococcus using nucleic acid primers. However this feature is obvious in view of the disclosure of Lachnauer et al. which prefigures methods of typing based on mosaicism in the *alp2* and *alp3* genes in GBS strains V and VIII. Therefore methods of typing group B streptococcus can not be regarded as a unifying technical feature.