Linear Algebra MATH 2318 (Fall 2022)

Deadline: Friday November 11th, 11:59pm.

Policy to turn in assignment:

- Assignment should be submitted via BlackBoard.
- Student needs to turn in their assignment as a single PDF file.
- No email or late submission will be accepted.

1. Let $A = \begin{bmatrix} 1 & 2 & 1 & 3 & 0 \\ 1 & 2 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & -1 \end{bmatrix}$. Find a basis for Null(A) and Col(A). What is rank(A)?

2. Find a basis for $H = \left\{ \begin{bmatrix} 3a+6b-c\\ 6a-2b-2c\\ -9a+5b+3c\\ -3a+b+c \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$. Hint: Write H as a Span.

4 points

3. Show that the set $B = \{2 + 2x + x^2, 2 + 2x + 2x^2, x + 2x^2\}$ is a basis for \mathbb{P}_2 . *Hint*: Recall that $\dim(\mathbb{P}_2) = 3$ and note that B has three vectors.

3 points

- 4. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) The column space of a matrix A is the set of solutions of $A\vec{x} = \vec{b}$.
 - b) If a vector \vec{v} is in Col(A), then $A\vec{x} = \vec{v}$ has a unique solution.
 - c) Let A_1 , A_2 , A_3 , A_4 be 2×2 matrices such that $M_{2\times 2} = \text{Span}\{A_1, A_2, A_3, A_4\}$. The set $\{A_1, A_2, A_3, A_4\}$ is a basis for $M_{2\times 2}$.