AI25BTECH11003 - Bhavesh Gaikwad

Question: Distance of the point (α, β, γ) from y-axis is

a)
$$\beta$$

c)
$$|\beta + \gamma|$$

d) $\sqrt{\alpha^2 + \gamma^2}$

Solution:

Let
$$\mathbf{A} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

Let **B** be an arbitrary point on the y-axis.

Equation of y-axis:
$$\mathbf{r} = t\mathbf{e_2} \ OR \ \mathbf{r} = t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 (0.1)

$$\therefore \mathbf{B} = \begin{pmatrix} 0 \\ t \\ 0 \end{pmatrix} \tag{0.2}$$

For minimum distance from y-axis: $(\mathbf{A} - \mathbf{B})$ should be perpendicular to $\mathbf{e_2}$ (0.3) OR

$$(\mathbf{A} - \mathbf{B})^T \mathbf{e_2} = 0 \implies \begin{pmatrix} \alpha & \beta - t & \gamma \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 \tag{0.4}$$

Therefore, from Equation 0.4,

$$t = \beta \tag{0.5}$$

Therefore the distance between y-axis and A is:

$$\|\mathbf{B} - \mathbf{A}\| = \begin{pmatrix} \alpha \\ 0 \\ \gamma \end{pmatrix} = \sqrt{\alpha^2 + \gamma^2}$$
 (0.6)

1

Fig. 0.1: Plane