SEGMENTATION FOR DIFFRACTION CONTRAST TOMOGRAPHY

SEMINAR @ CENTRE DE MORPHOLOGIE MATHÉMATIQUE MINES PARISTECH

João P C Bertoldo

Materials Center @ MINES Paristech - PSL University ID11 @ The European Synchrotron Radiation Facility (ESRF)

31 May 2021

DIFFRACTION CONTRAST TOMOGRAPHY (DCT)

RECALL: "USUAL" TOMOGRAPHY

Figure 1: XCT recall

DIFFRACTION CONTRAST TOMOGRAPHY (DCT)

A SHORT INTRODUCTION

- Multiple 2D images acquired from different angles
- Acquire transmitted and diffracted beam (notice: the acquisition area is larger than the beam)
- Reconstruct each grain individually from the diffraction spots

 \leftarrow click

Figure 2: DCT setup (simulation). Credits: Wolfgang Ludwig.

DIFFRACTION CONTRAST TOMOGRAPHY (DCT)

What is it useful for?

Figure 3: Reconstructed volume with individual grains segmented (different colors). Credits: Wolfgang Ludwig.

- Individual grains naturally segmented
- Grain's plane direction
- Slip bands visualization (?)

Pipeline: from experiment to 3D digital twin

assemble

DCT reconstruction pipeline acauire preprocess segment Collection of blobs Stack of 2D images Physical setup - match blob pairs Friedel pairs

Figure 4: main steps in DCT's reconstruction pipeline

Blob-sets (per grain)

reconstruct

3D grains ensembled

Pipeline: from experiment to 3D digital twin

DCT reconstruction pipeline acauire preprocess segment Collection of blobs Physical setup Stack of 2D images - match blob pairs Friedel pairs geometric/cristalography constraints deterministic conditions assemble reconstruct based on shape/intensity 3D grains ensembled Blob-sets (per grain)

Figure 4: main steps in DCT's reconstruction pipeline

PIPELINE: FROM EXPERIMENT TO 3D DIGITAL TWIN

Figure 4: main steps in DCT's reconstruction pipeline

PIPELINE: FROM EXPERIMENT TO 3D DIGITAL TWIN

Figure 4: main steps in DCT's reconstruction pipeline

Figure 5: raw acquisition (increased contrast)

Image characteristics

- (sometimes) 1 image = 4-image grid
- source intensity oscillates
 i.e. background variation (over ψ)

- subtract offset ("dark image")
- (manually) select direct beam and margin
- normalize by the margin's average

Figure 5: raw acquisition (increased contrast)

Image characteristics

- (sometimes) 1 image = 4-image grid
- source intensity oscillates i.e. background variation (over ψ)
- beam/blob brightness 2 scales apart

- subtract offset ("dark image")
- (manually) select direct beam and margin
- normalize by the margin's average

Figure 5: raw acquisition (increased contrast)

Image characteristics

- (sometimes) 1 image = 4-image grid
- source intensity oscillates i.e. background variation (over ψ)
- beam/blob brightness 2 scales apart
- "radial" blur superposed on blobs

- subtract offset ("dark image")
- (manually) select direct beam and margin
- normalize by the margin's average
- ullet subtract a per-pixel ψ -wise moving median

Figure 5: raw acquisition (increased contrast)

Image characteristics

- (sometimes) 1 image = 4-image grid
- source intensity oscillates i.e. background variation (over ψ)
- beam/blob brightness 2 scales apart
- "radial" blur superposed on blobs
- hotspots all over
- ullet blobs closer to r are ψ -longer

- subtract offset ("dark image")
- (manually) select direct beam and margin
- normalize by the margin's average
- ullet subtract a per-pixel ψ -wise moving median
- 2D median filter (per frame)

Figure 6: stack of 2D images $typo: \psi$, not z

3D IMAGE

- W: width, along x, indexed by $i \in \{1 \dots W\} = I$
- $\bullet \ \ H \text{: height, along } y \text{, indexed by } j \in \{1 \dots H\} = J$
- lacksquare D: depth^a, along ψ , indexed by $k \in \{1 \dots D\} = K$
- \mathcal{I} : image, a 3D grid $\in [0, V]^{(W,H,D)}$, where V is a constant

^ai.e. nb. of 2D frames, i.e. nb of rotation

Figure 6: stack of 2D images $typo: \psi$, not z

Figure 7: pixel-wise moving median

3D IMAGE

- W: width, along x, indexed by $i \in \{1 \dots W\} = I$
- ullet H: height, along y, indexed by $j \in \{1 \dots H\} = J$
- $\bullet \ \ D \colon \operatorname{depth}^{\textit{a}} \text{, along } \psi \text{, indexed by } k \in \{1 \dots D\} = K$
- ullet \mathcal{I} : image, a 3D grid $\in [0,V]^{(W,H,D)}$, where V is a constant

ai.e. nb. of 2D frames, i.e. nb of rotation

BACKGROUND

$$\mathcal{B}_{i,j,\overline{k}} = \underset{k' \in \mathit{range}(\overline{k},w)}{\operatorname{median}} \mathcal{I}_{i,j,k'}$$

where w is a parameter (typically 500) and $range(\overline{k}, w) = \{k' \in \mathbb{Z} \mid max(0, \overline{k} - w) \leq k' \leq min(D, \overline{k} + w)\}$

Figure 6: stack of 2D images $\it typo: \psi, not z$

Figure 7: pixel-wise moving median

3D IMAGE

- W: width, along x, indexed by $i \in \{1 \dots W\} = I$
- H: height, along y, indexed by $j \in \{1 \dots H\} = J$
- lacksquare D: depth^a, along ψ , indexed by $k \in \{1 \dots D\} = K$
- \mathcal{I} : image, a 3D grid $\in [0, V]^{(W,H,D)}$, where V is a constant

ai.e. nb. of 2D frames, i.e. nb of rotation

BACKGROUND

$$\mathcal{B}_{i,j,\overline{k}} = \underset{k' \in \mathit{range}(\overline{k},w)}{\operatorname{median}} \mathcal{I}_{i,j,k'}$$

where w is a parameter (typically 500) and $range(\overline{k},w) = \{k' \in \mathbb{Z} \mid max(0,\overline{k}-w) \leq k' \leq min(D,\overline{k}+w)\}$

IMAGE - BACKGROUND

For all $(i,j) \in I \times J$ and $\overline{k} \in \{0,\ldots,\lceil \frac{K}{2s+1} \rceil\}$:

$$\mathcal{I}_{i,j,k\prime}^* = \mathcal{I}_{i,j,k\prime} - \mathcal{B}_{i,j,\overline{k}}^h$$
 for all $k\prime \in range(\overline{k},s)$

where s is a parameter (typically 50).

REMARKS

- Notice: the method is adapted to the radial gradient because the medians are pixel-wise; xy-operations/filtering could be worse because of the overlapped glow.
- Parameters: h = 250 and s = 25
- $W = H \approx 2.000 \rightarrow 4.000.000$ pixels/background
- $D \approx 10.000 \rightarrow 10.000/2s = 10.000/50 = 200$ backgrounds
- $4.000.000 \times 200 \approx 10^9$ medians of 500 values each...

SOLUTIONS ATTEMPTED IN PYTHON (ON CPU)

- Ref: (mono-core) numpy.median vectorized on XY
- ullet Ref + numba on 16 cores: speedup factor pprox 10
- ullet Ref + multiprocessing on 16 cores : speedup factor pprox 40
- other ad-hoc ideas much slower (complexity + python execution)

Preprocessed image

Figure 8: preprocessed DCT image

PROCESSING TIME

Ex.: 7200-frame image:

- Previous (MATLAB)
 - 8 machines
 - \approx 30 minutes
- Now (Python):
 - ▶ 1 machine (16 cores)
 - ho pprox 15 minutes
 - 1/3: shared-memory allocation + data copy
 - ▶ 1/3: computations
 - ▶ 1/3: load/save data

Double threshold in 1D

Figure 9: double thsrehold illustration

Double threshold in 3D

- pick a seed (minimum) threshold
- find all connected regions (blobs)
- for each blob:

Figure 10: Double threshold interface

Double threshold in 3D

Figure 10: Double threshold interface

- pick a seed (minimum) threshold
- find all connected regions (blobs)
- for each blob:
- pick a tolerance $\tau \in [0,1]$ and clipping limits c_{min} and c_{max}
- for each blob:
 - ▶ find local maximum M
 - define a range $R = [max(c_{min}, \tau M), min(c_{max}, M)]$
 - iteratively grow the region with neighbor voxels ∈ R

Double threshold in 3D

Figure 10: Double threshold interface

- pick a seed (minimum) threshold
- find all connected regions (blobs)
- for each blob:
- pick a tolerance $\tau \in [0,1]$ and clipping limits c_{min} and c_{max}
- for each blob:
 - ▶ find local maximum M
 - ▶ define a range $R = [max(c_{min}, \tau M), min(c_{max}, M)]$
 - iteratively grow the region with neighbor voxels ∈ R
- pick clipping bounding box sizes $bb_{min}, bb_{max} \in \mathbb{R}^3$
- discard blobs too big or too small

Double threshold in 3D

Figure 10: Double threshold interface

pros

- ψ-length discards alongated diffractions close to the rotation axis
- x and y-length clean noisy blobs
- relatively simple

Double threshold in 3D

Figure 10: Double threshold interface

pros

- $ightharpoonup \psi$ -length discards alongated diffractions close to the rotation axis
- x and y-length clean noisy blobs
- relatively simple

cons

- slow
 - ★ iterative region growing
 - $\star~\approx 10^4~\text{blobs}$
 - \star a few hours on pprox 10 jobs
- lots of (manual) parameters
- which are picked based on a sub-volume

Double threshold in 3D

Figure 10: Double threshold interface

pros

- ψ-length discards alongated diffractions close to the rotation axis
- x and y-length clean noisy blobs
- relatively simple

cons

- slow
 - ★ iterative region growing
 - $\star~\approx 10^4$ blobs
 - \star a few hours on pprox 10 jobs
- lots of (manual) parameters
- which are picked based on a sub-volume

next

- ► re-implement in Python
- ▶ let's see what a U-net can do

THANK YOU!

Joao P C Bertoldo

Materials Center @ MINES Paristech - PSL University ID11 @ The European Synchrotron Radiation Facility (ESRF)

31 May 2021