802.11 User Fingerprinting Jeffrey Pang¹ Ben Greenstein² Ramakrishna Gummadi³ Srinivasan Seshan¹ David Wetherall².⁴ ¹CMU ²Intel Research Seattle ³USC,MIT ⁴University of Washington

Contributions

- Four Novel 802.11 Implicit Identifiers
- Automated Identification Procedure
- · Evaluating Implicit Identifier Accuracy

7

Contributions

- Four Novel 802.11 Implicit Identifiers
- · Automated Identification Procedure
- Evaluating Implicit Identifier Accuracy

8

Implicit Identifiers by Example

- Consider one user at SIGCOMM 2004
 - Transferred 512MB via BitTorrent
 - Poor network etiquette?
 - Seen in a "anonymized" wireless trace
 - MAC addresses hashed, effectively a pseudonym
- Can we identify the culprit using implicit identifiers?

9

Implicit Identifiers by Example

- Implicit identifier: SSIDs in probes
 - Set of SSIDs in 802.11 probe requests
 - Many 802.11 drivers search for preferred networks
 - Usually networks you have associated with before

10

Implicit Identifiers by Example

- Implicit identifier: SSIDs in probes
 - Set of SSIDs in 802.11 probe requests
 - Many 802.11 drivers search for preferred networks
 - Usually networks you have associated with before

time 11

Implicit Identifiers by Example

- Implicit identifier: network destinations
 - IP <address, port> pairs in network traffic
 - At SIGCOMM, each visited by 1.15 users on average
 - Some nearly-unique destinations repeatedly visited (e.g., email server)

Implicit Identifier Summary Network destinations SSIDs in probes Broadcast pkt sizes MAC protocol fields • More implicit identifiers exist Results we present establish a lower bound

Fixing Implicit Identifiers is not Simple

- · Encryption does not prevent traffic analysis
 - Cover traffic?
 - Challenge: Shared medium ⇒ large performance hit
- · Service discovery is done in the clear
 - Don't probe?
 - Challenge: Beaconing is often undesirable also
- Implementation and configuration variation
 - Standardize?
 - Challenge: Ambiguity of specifications

16

Contributions

- Four Novel 802.11 Implicit Identifiers
- Automated Identification Procedure
- Evaluating Implicit Identifier Accuracy

Tracking 802.11 Users

- Many potential tracking applications:
 - Was user X here today?
 - Where was user X today?
 - What traffic is from user X?
 - When was user X here?
 - -Etc.

Tracking 802.11 Users

- · Tracking scenario:
 - Every users changes pseudonyms every hour
 - Adversary monitors some locations
 - →One hourly traffic sample from each user in each location

Build a profile from training samples:
First collect some traffic know traffic at 2-3PM Traffic at 2-3PM Traffic at 2-3PM Traffic at 3-4PM Traffic at 3-4PM Traffic at 4-5PM Tra

19

Sample Classification Algorithm

- · Core question:
 - Did traffic sample s come from user X?
- · A simple approach: naïve Bayes classifier
- Derive probabilistic model from training samples
 - Given s with features F, answer "yes" if:
 Pr[s from user X | s has features F] > T
 for a selected threshold T.
 - F = feature set derived from implicit identifiers

20

Sample Classification Algorithm

• Deriving features F from implicit identifiers

Set similarity (Jaccard Index), weighted by frequency:

$$feature_{\square}(s) = \frac{\sum_{e \in Profile_{\square} \cap Set_s} w(e)}{\sum_{e \in Profile_{\square} \cup Set_e} w(e)}$$

21

Contributions

- Four Novel 802.11 Implicit Identifiers
- · Automated Identification Procedure
- · Evaluating Implicit Identifier Accuracy

22

Evaluating Classification Effectiveness

• Simulate tracking scenario with wireless traces:

	Duration	Profiled Users	Total Users
SIGCOMM conf. (2004)	4 days	377	465
UCSD office building (2006)	1 day	153	615
Apartment building (2006)	14 days	39	196

- Split each trace into training and observation phases
- Simulate pseudonym changes for each user X

23

Evaluating Classification Effectiveness

- Question: Is observation sample s from user X?
- · Evaluation metrics:
 - True positive rate (TPR) = ???
 Fraction of user X's samples classified correctly
 False positive rate (FPR) = 0.01
 Fraction of other samples classified incorrectly

 $\downarrow \quad (000 par)$

Pr[s from user X | s has features F] > T

One Application

- Question: Was user X here today?
- More difficult to answer:
 - Suppose N users present each hour
 - Over an 8 hour day, 8N opportunities to misclassify
 - → Decide user X is here only if *multiple* samples are classified as his
- Revised: Was user X here today for a few hours?

28

Conclusions

- Implicit identifiers can accurately identify users
 - Individual implicit identifiers give evidence of identity
 - We can identify many users in all environments
 - Some users much more distinguishable than others
- · Understanding implicit identifiers is important
 - Pseudonyms are not enough
 - We establish a *lower bound* on their accuracy
- Eliminating them poses research challenges
 - Current work: Confidential service discovery
 - Current work: Traffic analysis resistant MAC

Extra Slides

Related Work

- Other Implicit Identifiers
 - Device driver fingerprints [Franklin '06]
 - Clock-skew fingerprints [Kohno '05]
 - Click-prints [Padmanabhan '06]
 - RF antenna fingerprints [Hall '04]
- Our work:
 - 802.11 fingerprints for individual users
 - Tracking with only commodity hardware/software
 - Better coverage than some previous work
 - Procedure to combine implicit identifiers

Answers to Common Questions

Outline

- Problem
 - People are worried about tracking, 802.11 is especially worrisome Pseudonyms proposed, not enough Bittorrent Example
- - Use to explain each identifier
 Summarize implicit identifiers
- How to train as an example

 Points to bring up and jx:

 - 1 hour sample size
 How to select the classifier threshold
 How adversary could obtain training samples
 Learning process
- Q1 results
- Q2 results
 - An attacker can use multiple features and multiple samples, so ask question...

Implicit Identifiers by Example

- Implicit identifier: network destinations
 - IP <address, port> pairs in network traffic
 - At SIGCOMM, each visited by 1.15 users on average
 - Some nearly-unique destinations repeatedly visited (e.g., email server)

