# Example script for SpatialDeltaGLMM for spatio-temporal analysis of catch-rate data

# James Thorson October 10, 2016

# Contents

| 1 | Overview |                                                   |    |  |  |  |
|---|----------|---------------------------------------------------|----|--|--|--|
| 2 | Get      | ting started                                      | 2  |  |  |  |
| 3 | Set      | Settings                                          |    |  |  |  |
|   | 3.1      | Spatial settings                                  | 2  |  |  |  |
|   | 3.2      | Model settings                                    | 2  |  |  |  |
|   | 3.3      | Stratification for results                        | 3  |  |  |  |
|   | 3.4      | Derived objects                                   | 4  |  |  |  |
|   | 3.5      | Save settings                                     | 4  |  |  |  |
| 4 | Pre      | Prepare the data                                  |    |  |  |  |
|   | 4.1      | Data-frame for catch-rate data                    | 4  |  |  |  |
|   | 4.2      | Extrapolation grid                                | 7  |  |  |  |
|   | 4.3      | Derived objects for spatio-temporal estimation    | 7  |  |  |  |
| 5 | Bui      | Build and run model                               |    |  |  |  |
|   | 5.1      | Build model                                       | 8  |  |  |  |
|   | 5.2      | Estimate fixed effects and predict random effects | 8  |  |  |  |
| 6 | Dia      | gnostic plots                                     | 8  |  |  |  |
|   | 6.1      | Plot data                                         | 9  |  |  |  |
|   | 6.2      | Convergence                                       | 11 |  |  |  |
|   | 6.3      | Diagnostics for encounter-probability component   | 13 |  |  |  |
|   | 6.4      | Diagnostics for positive-catch-rate component     | 13 |  |  |  |
| 7 | Mo       | Model output                                      |    |  |  |  |
|   | 7.1      | Direction of "geometric anisotropy"               | 14 |  |  |  |
|   | 7.2      | Density surface for each year                     | 16 |  |  |  |
|   | 7.3      | Index of abundance                                | 16 |  |  |  |
|   | 7.4      | Center of gravity and range expansion/contraction | 17 |  |  |  |
|   | 7.5      | Vessel effects if included                        | 17 |  |  |  |

### 1 Overview

This tutorial will walk through a simple example of how to use SpatialDeltaGLMM for estimating abundance indices, distribution shifts, and range expansion.

# 2 Getting started

First, we install necessary packages. We also have to install TMB as appropriate for the operating system (see directions elsewhere).

```
devtools::install_github("nwfsc-assess/geostatistical_delta-GLMM")
devtools::install_github("james-thorson/utilities")
```

Next load libraries.

```
library(TMB) # Can instead load library(TMBdebug)
library(SpatialDeltaGLMM)
```

# 3 Settings

First chose an example data set for this script, as archived with package

Next use latest version for CPP code

```
Version = "geo_index_v4b"
```

#### 3.1 Spatial settings

The following settings define the spatial resolution for the model, and whether to use a grid or mesh approximation

```
Method = c("Grid", "Mesh")[2]
grid_size_km = 25
n_x = c(100, 250, 500, 1000, 2000)[1] # Number of stations
Kmeans_Config = list( "randomseed"=1, "nstart"=100, "iter.max"=1e3 )
```

#### 3.2 Model settings

The following settings define whether to include spatial and spatio-temporal variation, whether its autocorrelated, and whether there's overdispersion

```
FieldConfig = c(Omega1 = 1, Epsilon1 = 1, Omega2 = 1,
        Epsilon2 = 1)
RhoConfig = c(Beta1 = 0, Beta2 = 0, Epsilon1 = 0, Epsilon2 = 0)
VesselConfig = c(Vessel = 0, VesselYear = 0)
ObsModel = 2
```

#### 3.3 Stratification for results

We also define any potential stratification of results, and settings specific to any case-study data set

```
# Default
if (Data_Set %in% c("GSL_american_plaice", "BC_pacific_cod",
    "EBS_pollock", "SAWC_jacopever", "Chatham_rise_hake",
    "Aleutian islands POP")) {
    strata.limits <- data.frame(STRATA = "All_areas")</pre>
# Specific (useful as examples)
if (Data Set %in% c("WCGBTS canary", "Sim")) {
    # In this case, it will calculate a coastwide
    # index, and also a separate index for each state
    # (although the state lines are approximate)
    strata.limits <- data.frame(STRATA = c("Coastwide",</pre>
        "CA", "OR", "WA"), north_border = c(49, 42,
        46, 49), south_border = c(32, 32, 42, 46),
        shallow_border = c(55, 55, 55, 55), deep_border = c(1280,
            1280, 1280, 1280))
    # Override default settings for vessels
   VesselConfig = c(Vessel = 0, VesselYear = 1)
}
if (Data_Set %in% c("GOA_Pcod", "GOA_pollock")) {
    # In this case, will calculating an unrestricted
    # index and a separate index restricted to west of
    strata.limits <- data.frame(STRATA = c("All_areas",</pre>
        "west of 140W"), west border = c(-Inf, -Inf),
        east border = c(Inf, -140))
if (Data_Set %in% c("GB_spring_haddock", "GB_fall_haddock")) {
    # For NEFSC indices, strata must be specified as a
    # named list of area codes
    strata.limits = list(Georges_Bank = c(1130, 1140,
        1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220,
        1230, 1240, 1250, 1290, 1300))
}
if (Data_Set %in% c("Iceland_cod")) {
    strata.limits = data.frame(STRATA = "All_areas")
    # Turn off all spatial, temporal, and
    # spatio-temporal variation in probability of
    # occurrence, because they occur almost everywhere
   FieldConfig = c(Omega1 = 0, Epsilon1 = 0, Omega2 = 1,
        Epsilon2 = 1)
   RhoConfig = c(Beta1 = 3, Beta2 = 0, Epsilon1 = 0,
```

```
Epsilon2 = 0)
}
```

#### 3.4 Derived objects

Depending on the case study, we define a Region used when extrapolating or plotting density estimates. If its a different data set, it will define Region="Other", and this is a recognized level for all uses of Region (which attempts to define reasonable settings based on the location of sampling). For example Data\_Set="Iceland\_cod" has no associated meta-data for the region, so it uses Region="Other" by default.

#### 3.5 Save settings

We then set the location for saving files.

```
DateFile = paste0(getwd(),'/SpatialDeltaGLMM_output/')
  dir.create(DateFile)
```

I also like to save all settings for later reference, although this is not necessary.

# 4 Prepare the data

#### 4.1 Data-frame for catch-rate data

Depending upon the Data\_Set chosen, we load different data sets for this example. Each results in a data-frame Data\_Geostat with a standardized set of columns. For a new data set, the user is responsible for formatting Data\_Geostat appropriately to match the example format.

```
if (Data_Set == "WCGBTS_canary") {
    data(WCGBTS_Canary_example, package = "SpatialDeltaGLMM")
    Year = as.numeric(sapply(WCGBTS_Canary_example[,
        "PROJECT_CYCLE"], FUN = function(Char) {
        strsplit(as.character(Char), " ")[[1]][2]
   }))
   Data_Geostat = data.frame(Catch_KG = WCGBTS_Canary_example[,
        "HAUL WT KG"], Year = Year, Vessel = WCGBTS Canary example[,
        "VESSEL"], AreaSwept_km2 = WCGBTS_Canary_example[,
        "AREA_SWEPT_HA"]/100, Lat = WCGBTS_Canary_example[,
        "BEST_LAT_DD"], Lon = WCGBTS_Canary_example[,
        "BEST_LON_DD"], Pass = WCGBTS_Canary_example[,
        "PASS"] - 1.5)
if (Data_Set %in% c("BC_pacific_cod")) {
   data(BC_pacific_cod_example, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = BC_pacific_cod_example[,
        "PCOD_WEIGHT"], Year = BC_pacific_cod_example[,
        "Year"], Vessel = "missing", AreaSwept_km2 = BC_pacific_cod_example[,
        "TOW.LENGTH..KM."]/100, Lat = BC_pacific_cod_example[,
        "LAT"], Lon = BC_pacific_cod_example[, "LON"],
        Pass = 0)
}
if (Data_Set %in% c("GSL_american_plaice")) {
    data(GSL american plaice, package = "SpatialDeltaGLMM")
   Print_Message("GSL_american_plaice")
    Data_Geostat = data.frame(Year = GSL_american_plaice[,
        "year"], Lat = GSL_american_plaice[, "latitude"],
        Lon = GSL_american_plaice[, "longitude"], Vessel = "missing",
        AreaSwept_km2 = GSL_american_plaice[, "swept"],
        Catch_KG = GSL_american_plaice[, "biomass"] *
            GSL_american_plaice[, "vstd"])
}
```

## This data set contains data for American plaice in the Gulf of St. Lawrence, as provided by Hugues B
## The data are from the Gulf Region September Bottom-Trawl survey Database, from the Aquatic Resou
##

```
if (Data Set == "GOA pollock") {
    data(GOA_walleye_pollock, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = GOA_walleye_pollock[,
        "catch"], Year = GOA_walleye_pollock[, "year"],
        Vessel = "missing", AreaSwept_km2 = 0.01, Lat = GOA_walleye_pollock[,
            "lat"], Lon = GOA_walleye_pollock[, "lon"],
        Pass = 0)
}
if (Data Set == "Aleutian islands POP") {
   data(AI_pacific_ocean_perch, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = AI_pacific_ocean_perch[,
        "cpue..kg.km.2."], Year = AI_pacific_ocean_perch[,
        "year"], Vessel = "missing", AreaSwept_km2 = 1,
        Lat = AI_pacific_ocean_perch[, "start.latitude"],
        Lon = AI_pacific_ocean_perch[, "start.longitude"],
        Pass = 0)
if (Data_Set == "GB_spring_haddock") {
    data(georges_bank_haddock_spring, package = "SpatialDeltaGLMM")
    Print_Message("GB_haddock")
   Data_Geostat = data.frame(Catch_KG = georges_bank_haddock_spring[,
        "CATCH_WT_CAL"], Year = georges_bank_haddock_spring[,
        "YEAR"], Vessel = "missing", AreaSwept_km2 = 0.0112 *
        1.852<sup>2</sup>, Lat = georges bank haddock spring[,
        "LATITUDE"], Lon = georges bank haddock spring[,
        "LONGITUDE"])
if (Data Set == "GB fall haddock") {
   data(georges_bank_haddock_fall, package = "SpatialDeltaGLMM")
    Print_Message("GB_haddock")
    Data_Geostat = data.frame(Catch_KG = georges_bank_haddock_fall[,
        "CATCH_WT_CAL"], Year = georges_bank_haddock_fall[,
        "YEAR"], Vessel = "missing", AreaSwept_km2 = 0.0112 *
        1.852^2, Lat = georges_bank_haddock_fall[,
        "LATITUDE"], Lon = georges_bank_haddock_fall[,
        "LONGITUDE"])
if (Data_Set == "SAWC_jacopever") {
    data(south_africa_westcoast_jacopever, package = "SpatialDeltaGLMM")
   Data_Geostat = data.frame(Catch_KG = south_africa_westcoast_jacopever[,
        "HELDAC"], Year = south_africa_westcoast_jacopever[,
        "Year"], Vessel = "missing", AreaSwept_km2 = south_africa_westcoast_jacopever[,
        "area_swept_nm2"] * 1.852^2, Lat = south_africa_westcoast_jacopever[,
        "cen_lat"], Lon = south_africa_westcoast_jacopever[,
        "cen_long"])
if (Data_Set %in% c("Iceland_cod")) {
    # WARNING: This data set has not undergone much
    # evaluation for spatio-temporal analysis
    data(iceland_cod, package = "SpatialDeltaGLMM")
   Data_Geostat = data.frame(Catch_KG = iceland_cod[,
        "Catch_b"], Year = iceland_cod[, "year"], Vessel = 1,
```

#### 4.2 Extrapolation grid

We also generate the extrapolation grid appropriate for a given region. For new regions, we use Region="Other".

```
if (Region %in% c("California_current", "Eastern_Bering_Sea",
    "Gulf_of_Alaska", "Aleutian_Islands", "Northwest_Atlantic",
    "Gulf_of_St_Lawrence", "New_Zealand")) {
    Extrapolation_List = Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits)
if (Region == "British_Columbia") {
    Extrapolation_List = Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, strata to use = c("HS",
            "QCS"))
}
if (Region == "South_Africa") {
   Extrapolation_List = Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, region = "west_coast")
if (Region == "Other") {
    Extrapolation_List = Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, observations_LL = Data_Geostat[,
            c("Lat", "Lon")], maximum_distance_from_sample = 15)
}
```

#### 4.3 Derived objects for spatio-temporal estimation

And we finally generate the information used for conducting spatio-temporal parameter estimation, bundled in list Spatial\_List

```
Data_Geostat = cbind(Data_Geostat, Spatial_List$loc_UTM,
    knot_i = Spatial_List$knot_i)
```

# 5 Build and run model

#### 5.1 Build model

To estimate parameters, we first build a list of data-inputs used for parameter estimation. Data\_Fn has some simple checks for buggy inputs, but also please read the help file ?Data\_Fn.

```
TmbData = Data_Fn(Version = Version, FieldConfig = FieldConfig,
   RhoConfig = RhoConfig, ObsModel = ObsModel, b_i = Data_Geostat[,
        "Catch_KG"], a_i = Data_Geostat[, "AreaSwept_km2"],
   v_i = as.numeric(Data_Geostat[, "Vessel"]) - 1,
   s_i = Data_Geostat[, "knot_i"] - 1, t_i = Data_Geostat[,
        "Year"], a_xl = Spatial_List$a_xl, MeshList = Spatial_List$MeshList,
   GridList = Spatial_List$GridList, Method = Spatial_List$Method,
   Options = c(SD_site_density = 0, SD_site_logdensity = 0,
        Calculate_Range = 1, Calculate_evenness = 0,
        Calculate_effective_area = 1))
```

We then build the TMB object.

```
TmbList = Build_TMB_Fn(TmbData = TmbData, RunDir = DateFile,
    Version = Version, RhoConfig = RhoConfig, VesselConfig = VesselConfig,
    loc_x = Spatial_List$loc_x)
Obj = TmbList[["Obj"]]
```

#### 5.2 Estimate fixed effects and predict random effects

Next, we use a gradient-based nonlinear minimizer to identify maximum likelihood estimates for fixed-effects

```
Opt = TMBhelper::Optimize(obj = Obj, lower = TmbList[["Lower"]],
    upper = TmbList[["Upper"]], getsd = TRUE, savedir = DateFile,
    bias.correct = FALSE)
```

Finally, we bundle and save output

```
Report = Obj$report()
Save = list("Opt"=Opt, "Report"=Report, "ParHat"=Obj$env$parList(Opt$par), "TmbData"=TmbData)
save(Save, file=paste0(DateFile, "Save.RData"))
```

# 6 Diagnostic plots

We first apply a set of standard model diagnostics to confirm that the model is reasonable and deserves further attention. If any of these do not look reasonable, the model output should not be interpreted or used.

#### 6.1 Plot data

It is always good practice to conduct exploratory analysis of data. Here, I visualize the spatial distribution of data. Spatio-temporal models involve the assumption that the probability of sampling a given location is statistically independent of the probability distribution for the response at that location. So if sampling "follows" changes in density, then the model is probably not appropriate!

```
## Warning: package 'maps' was built under R version
## 3.2.5
```



Figure 1: Spatial extent and location of knots



Figure 2: Spatial distribution of catch-rate data

# 6.2 Convergence

Here I print the diagnostics generated during parameter estimation, and I confirm that (1) no parameter is hitting an upper or lower bound and (2) the final gradient for each fixed-effect is close to zero.

pander::pandoc.table( Opt\$diagnostics[,c('Param','Lower','MLE','Upper','final\_gradient')] )

| Param      | Lower | MLE     | Upper | final_gradient |
|------------|-------|---------|-------|----------------|
| ln_H_input | -50   | -0.1446 | 50    | 0.0009772      |
| ln_H_input | -50   | -0.1721 | 50    | 0.0004384      |
| beta1 t    | -50   | 2.715   | 50    | 0.0001002      |
| beta1 t    | -50   | 1.624   | 50    | -6.225 e-06    |
| beta1 t    | -50   | 1.956   | 50    | -4.918e-05     |
| beta1 t    | -50   | 3.501   | 50    | -0.0003093     |
| beta1 t    | -50   | 2.901   | 50    | 0.0003157      |
| beta1 t    | -50   | 2.283   | 50    | -5.183e-05     |
| beta1 t    | -50   | 3.217   | 50    | -8.218e-05     |
| beta1_t    | -50   | 2.996   | 50    | 0.0001895      |
| beta1 t    | -50   | 2.904   | 50    | 0.0002612      |
| $beta1\_t$ | -50   | 2.54    | 50    | -0.0001916     |
| $beta1\_t$ | -50   | 3.466   | 50    | 0.00024        |
| $beta1\_t$ | -50   | 2.116   | 50    | -0.0003464     |
| beta1_t    | -50   | 3.081   | 50    | -0.0002581     |
| beta1_t    | -50   | 3.013   | 50    | 0.0003685      |
| beta1_t    | -50   | 3.417   | 50    | 0.0001898      |
| beta1_t    | -50   | 4.295   | 50    | -0.000529      |
| beta1_t    | -50   | 3.316   | 50    | 0.0003739      |
| beta1_t    | -50   | 3.038   | 50    | 8.55e-05       |
| beta1_t    | -50   | 2.689   | 50    | -8.982e-06     |
| beta1_t    | -50   | 2.804   | 50    | 0.0003158      |
| beta1_t    | -50   | 2.789   | 50    | 4.314e-05      |
| $beta1\_t$ | -50   | 2.865   | 50    | 0.0003647      |
| $beta1\_t$ | -50   | 2.506   | 50    | -7.949e-06     |
| $beta1\_t$ | -50   | 3.391   | 50    | -0.0001037     |
| $beta1\_t$ | -50   | 2.899   | 50    | -0.0001663     |
| $beta1\_t$ | -50   | 3.134   | 50    | 2.224e-05      |
| $beta1\_t$ | -50   | 2.423   | 50    | 3.58e-05       |
| $beta1\_t$ | -50   | 2.981   | 50    | 4.848e-05      |
| $beta1\_t$ | -50   | 2.521   | 50    | 4.116e-06      |
| $beta1\_t$ | -50   | 3.168   | 50    | -5.94e-05      |
| $beta1\_t$ | -50   | 2.566   | 50    | -1.57e-05      |
| $beta1\_t$ | -50   | 2.465   | 50    | -6.201e-06     |
| $beta1\_t$ | -50   | 3.812   | 50    | -5.856e-05     |
| $beta1\_t$ | -50   | 2.795   | 50    | 2.369e-05      |
| $beta1\_t$ | -50   | 3.103   | 50    | -0.0001082     |
| $beta1\_t$ | -50   | 3.265   | 50    | 9.264 e - 05   |
| $beta1\_t$ | -50   | 3.438   | 50    | -5.73e-05      |
| $beta1\_t$ | -50   | 3.823   | 50    | 0.0005485      |
| $beta1\_t$ | -50   | 3.053   | 50    | -4.079e-05     |
| $beta1\_t$ | -50   | 3.444   | 50    | -0.0003321     |
| $beta1\_t$ | -50   | 2.753   | 50    | -0.0002024     |
| $beta1\_t$ | -50   | 2.564   | 50    | -0.0001682     |
| $beta1\_t$ | -50   | 3.527   | 50    | -0.000401      |

| Param      | Lower  | MLE     | Upper  | final_gradient |
|------------|--------|---------|--------|----------------|
| beta1_t    | -50    | 3.437   | 50     | -0.0001768     |
| $beta1\_t$ | -50    | 3.246   | 50     | 0.0002275      |
| logetaE1   | -50    | -0.2503 | 3.34   | 0.000124       |
| logetaO1   | -50    | -2.093  | 3.34   | -0.001185      |
| logkappa1  | -5.005 | -3.458  | -1.595 | 0.0005793      |
| $beta2\_t$ | -50    | 5.718   | 50     | -0.0001372     |
| $beta2\_t$ | -50    | 6.045   | 50     | -2.932e-05     |
| $beta2\_t$ | -50    | 6.101   | 50     | -0.0001534     |
| $beta2\_t$ | -50    | 6.103   | 50     | 1.667e-05      |
| $beta2\_t$ | -50    | 6.322   | 50     | 0.000107       |
| $beta2\_t$ | -50    | 6.915   | 50     | -0.0001485     |
| $beta2\_t$ | -50    | 6.773   | 50     | 4.833e-05      |
| $beta2\_t$ | -50    | 6.058   | 50     | -5.005e-05     |
| $beta2\_t$ | -50    | 6.69    | 50     | -5.986e-05     |
| $beta2\_t$ | -50    | 6.386   | 50     | -0.0002296     |
| $beta2\_t$ | -50    | 5.795   | 50     | 6.568 e - 05   |
| $beta2\_t$ | -50    | 6.151   | 50     | -0.0001925     |
| $beta2\_t$ | -50    | 6.014   | 50     | -0.0002269     |
| $beta2\_t$ | -50    | 5.727   | 50     | 9.562 e-05     |
| $beta2\_t$ | -50    | 5.554   | 50     | 0.0001494      |
| $beta2\_t$ | -50    | 5.654   | 50     | 2.622e-05      |
| $beta2\_t$ | -50    | 5.665   | 50     | 1.932e-05      |
| $beta2\_t$ | -50    | 5.826   | 50     | 9.033e-05      |
| $beta2\_t$ | -50    | 5.475   | 50     | -1.334e-05     |
| $beta2\_t$ | -50    | 5.966   | 50     | 7.098e-05      |
| $beta2\_t$ | -50    | 5.578   | 50     | 9.558e-05      |
| $beta2\_t$ | -50    | 5.676   | 50     | 8.522 e-05     |
| $beta2\_t$ | -50    | 5.52    | 50     | 0.0001245      |
| $beta2\_t$ | -50    | 5.571   | 50     | 6.42 e-05      |
| $beta2\_t$ | -50    | 5.25    | 50     | 8.265 e - 05   |
| $beta2\_t$ | -50    | 5.162   | 50     | 0.0001597      |
| $beta2\_t$ | -50    | 4.827   | 50     | -1.203e-05     |
| $beta2\_t$ | -50    | 5.037   | 50     | 7.452e-05      |
| $beta2\_t$ | -50    | 5.065   | 50     | 0.0001027      |
| $beta2\_t$ | -50    | 4.663   | 50     | 0.0001092      |
| $beta2\_t$ | -50    | 4.508   | 50     | 0.0001215      |
| $beta2\_t$ | -50    | 4.774   | 50     | 2.472e-05      |
| $beta2\_t$ | -50    | 5.004   | 50     | -7.344e-05     |
| $beta2\_t$ | -50    | 4.716   | 50     | 6.131e-05      |
| $beta2\_t$ | -50    | 4.564   | 50     | 3.607e-05      |
| $beta2\_t$ | -50    | 4.666   | 50     | 4.55e-05       |
| $beta2\_t$ | -50    | 4.8     | 50     | -4.188e-06     |
| $beta2\_t$ | -50    | 4.761   | 50     | -0.0002444     |
| $beta2\_t$ | -50    | 4.458   | 50     | 8.704 e-06     |
| $beta2\_t$ | -50    | 4.657   | 50     | -0.0001548     |
| $beta2\_t$ | -50    | 4.657   | 50     | -0.0002546     |
| $beta2\_t$ | -50    | 4.45    | 50     | 0.0002824      |
| $beta2\_t$ | -50    | 4.812   | 50     | 9.889 e-05     |
| $beta2\_t$ | -50    | 4.435   | 50     | -7.687e-05     |
| $beta2\_t$ | -50    | 4.56    | 50     | -0.0001241     |
| logetaE2   | -50    | -0.8921 | 3.34   | 0.0006598      |
| logetaO2   | -50    | -1.578  | 3.34   | 0.0004558      |
|            |        |         |        |                |

| Param     | Lower  | MLE      | Upper  | final_gradient |
|-----------|--------|----------|--------|----------------|
| logkappa2 | -5.005 | -3.7     | -1.595 | -0.0001197     |
| logSigmaM | -50    | -0.03413 | 10     | -0.002466      |

# 6.3 Diagnostics for encounter-probability component

Next, we check whether observed encounter frequencies for either low or high probability samples are within the 95% predictive interval for predicted encounter probability



Figure 3: Expectated probability and observed frequency of encounter for "encounter probability" component

#### 6.4 Diagnostics for positive-catch-rate component

We can visualize fit to residuals of catch-rates given encounters using a Q-Q plot. A good Q-Q plot will have residuals along the one-to-one line.

```
Q = QQ_Fn(TmbData = TmbData, Report = Report, FileName_PP = paste0(DateFile,
    "Posterior_Predictive.jpg"), FileName_Phist = paste0(DateFile,
    "Posterior_Predictive-Histogram.jpg"), FileName_QQ = paste0(DateFile,
    "Q-Q_plot.jpg"), FileName_Qhist = paste0(DateFile,
    "Q-Q_hist.jpg"))
```



Figure 4: Quantile-quantile plot indicating residuals for "positive catch rate" component

# 7 Model output

Last but not least, we generate useful plots by first determining which years to plot (Years2Include), and labels for each plotted year (Year\_Set)

```
Year_Set = seq(min(Data_Geostat[,'Year']), max(Data_Geostat[,'Year']))
Years2Include = which( Year_Set %in% sort(unique(Data_Geostat[,'Year'])))
```

We then run a set of pre-defined plots for visualizing results

#### 7.1 Direction of "geometric anisotropy"

We can visualize which direction has faster or slower decorrelation (termed "geometric anisotropy")

```
PlotAniso_Fn(FileName=pasteO(DateFile, "Aniso.png"), Report=Report, TmbData=TmbData)
```

# Distance at 10% correlation Encounter probability Positive catch rates (i) White the control of the correlation of the correl

Figure 5: Decorrelation distance for different directions

#### 7.2 Density surface for each year

We can visualize many types of output from the model. Here I only show predicted density, but other options are obtained via other integers passed to plot\_set as described in ?PlotResultsOnMap\_Fn

#### 7.3 Index of abundance

The index of abundance is generally most useful for stock assessment models.

| Year | Fleet        | $Estimate\_metric\_tons$ | $SD_{\log}$ | $SD_mt$ |
|------|--------------|--------------------------|-------------|---------|
| 1971 | All_areas    | 47684                    | 0.1871      | 8922    |
| 1972 | All_areas    | 70144                    | 0.1995      | 13993   |
| 1973 | All_areas    | 70018                    | 0.1913      | 13396   |
| 1974 | All_areas    | 88608                    | 0.1852      | 16409   |
| 1975 | All_areas    | 112463                   | 0.1916      | 21548   |
| 1976 | All_areas    | 180953                   | 0.1775      | 32122   |
| 1977 | All_areas    | 163790                   | 0.1799      | 29458   |
| 1978 | All_areas    | 75803                    | 0.1843      | 13973   |
| 1979 | All_areas    | 145901                   | 0.1762      | 25713   |
| 1980 | All_areas    | 116146                   | 0.1803      | 20943   |
| 1981 | All_areas    | 80664                    | 0.182       | 14678   |
| 1982 | All_areas    | 80053                    | 0.193       | 15452   |
| 1983 | All_areas    | 65769                    | 0.1672      | 10997   |
| 1984 | All_areas    | 48757                    | 0.1382      | 6738    |
| 1985 | All_areas    | 51918                    | 0.1003      | 5207    |
| 1986 | $All\_areas$ | 60117                    | 0.1099      | 6609    |
| 1987 | All_areas    | 52884                    | 0.1077      | 5694    |
| 1988 | All_areas    | 58157                    | 0.1306      | 7595    |
| 1989 | All_areas    | 51245                    | 0.1173      | 6011    |
| 1990 | All_areas    | 74321                    | 0.1124      | 8351    |
| 1991 | All_areas    | 70618                    | 0.09892     | 6985    |
| 1992 | All_areas    | 51355                    | 0.09628     | 4945    |

| Year | Fleet     | Estimate_metric_tons | SD_log  | SD_mt |
|------|-----------|----------------------|---------|-------|
| 1993 | All_areas | 43180                | 0.1007  | 4346  |
| 1994 | All_areas | 40792                | 0.09314 | 3799  |
| 1995 | All_areas | 34726                | 0.09441 | 3279  |
| 1996 | All_areas | 34678                | 0.09126 | 3165  |
| 1997 | All_areas | 23678                | 0.08731 | 2067  |
| 1998 | All_areas | 26879                | 0.0891  | 2395  |
| 1999 | All_areas | 24455                | 0.09172 | 2243  |
| 2000 | All_areas | 22089                | 0.09605 | 2122  |
| 2001 | All_areas | 20399                | 0.1107  | 2259  |
| 2002 | All_areas | 18367                | 0.09544 | 1753  |
| 2003 | All_areas | 28638                | 0.1356  | 3882  |
| 2004 | All_areas | 19135                | 0.09377 | 1794  |
| 2005 | All_areas | 21246                | 0.08883 | 1887  |
| 2006 | All_areas | 21739                | 0.09886 | 2149  |
| 2007 | All_areas | 22179                | 0.09481 | 2103  |
| 2008 | All_areas | 25721                | 0.09409 | 2420  |
| 2009 | All_areas | 15483                | 0.1011  | 1566  |
| 2010 | All_areas | 21244                | 0.1065  | 2263  |
| 2011 | All_areas | 20422                | 0.1137  | 2321  |
| 2012 | All_areas | 16126                | 0.1081  | 1743  |
| 2013 | All_areas | 21813                | 0.1133  | 2472  |
| 2014 | All_areas | 21919                | 0.1035  | 2269  |
| 2015 | All_areas | 24343                | 0.1035  | 2520  |

# 7.4 Center of gravity and range expansion/contraction

We can detect shifts in distribution or range expansion/contraction.

#### 7.5 Vessel effects if included

Most example data-sets don't have vessel effects, so this plot is generally skipped

```
Return = Vessel_Fn(TmbData = TmbData, Sdreport = Opt[["SD"]],
    FileName_VYplot = pasteO(DateFile, "VY-effect.jpg"))
```

## Not plotting vessel effects because none are present



Figure 6: Density maps for each year



Figure 7: Index of abundance plus/minus 1 standard error



Figure 8: Center of gravity (COG) indicating shifts in distribution plus/minus 1 standard error



 $Figure \ 9: \ Effective \ area \ occupied \ indicating \ range \ expansion/contraction \ plus/minus \ 1 \ standard \ error$