Leandro Vendramin

Non-commutative algebra

Notes

Saturday 26th March, 2022

Preface

The notes correspond to the master course *Non-commutative Algebra* of the Vrije Universiteit Brussel, Faculty of Sciences, Department of Mathematics and Data Sciences. The course is divided into thirteen two-hours lectures.

Most of the material is based on standard results on group algebras covered in the VUB course *Associative Algebras*. Lecture notes for this course are freely available at https://github.com/vendramin/associative. Basic texts on group algebras are Lam's book [11] and Passman's book [12].

This version was compiled on Saturday 26th March, 2022 at 16:03.

Leandro Vendramin Brussels, Belgium

Contents

1																														
2																														
3																														
4																														
5																														
6						 						 						•												37
Ref	ere	en	10	e	S	 		•	 			 																		43
Ind	ex																													45

List of topics

81	Group rings	1
§ 2	Kapanskly's problems	2
§3	The transfer map	8
§ 4	Passman's theorem	13
§5	More applications of the transfer	17
§6	Bi-ordered groups	21
§7	Left-ordered groups	24
§8	The braid group	27
§9	Locally indicable groups	28
§10	Unique product groups	30
§11	Connel's theorem	33
§12	The Yang-Baxter equation	37

§1. Group rings

Let K be a field and G be a group (written multiplicatively). Let K[G] be the vector space with basis $\{g:g\in G\}$. Then $\dim K[G]<\infty$ if and only if G is finite. The vector space K[G] is an algebra with multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\left(\sum_{h\in G}\mu_h h\right) = \sum_{g,h\in G}\lambda_g \mu_h(gh).$$

Exercise 1.1. Prove that $\mathbb{C}[\mathbb{Z}] \simeq \mathbb{C}[X, X^{-1}]$.

For $n \in \mathbb{Z}_{>1}$ let C_n be the cyclic group of order n.

Exercise 1.2. Let $n \in \mathbb{Z}_{>1}$. Prove that $\mathbb{C}[C_n] \simeq \mathbb{C}[X]/(X^n-1)$.

Exercise 1.3. Prove that if G and H are isomorphic groups, then $K[G] \simeq K[H]$.

In a similar way, if R is a commutative ring (with 1) and G is a group, then one defines the group ring R[G]. More precisely, R[G] is the set of finite linear combinations

$$\sum_{g \in G} \lambda_g g$$

where $\lambda_g \in R$ and $\lambda_g = 0$ for all but finitely many $g \in G$. One easily proves that R[G] is a ring with addition

$$\left(\sum_{g \in G} \lambda_g g\right) + \left(\sum_{g \in G} \mu_g g\right) = \sum_{g \in G} (\lambda_g + \mu_g)(g)$$

and multiplication

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh).$$

Moreover, R[G] is a left R-module with $\lambda(\sum_{g \in G} \lambda_g g) = \sum_{g \in G} (\lambda \lambda_g) g$.

Exercise 1.4. Let G be a group. Prove that if $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$, then $R[G] \simeq R[H]$ for any commutative ring R.

question:IP

Question 1.1 (Isomorphism problem). Let G and H be groups. Does $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$ imply $G \simeq H$?

Despite the fact that there are several cases were the isomorphism problem has an affirmative answer (e.g. abelian groups, metabelian groups, nilpotent groups, nilpotent-by-abelian groups, simple groups, abelian-by-nilpotent groups), it is false in general. In 2001 Hertweck found a counterexample of order 2²¹97²⁸, see [7].

question:MIP

Question 1.2 (Modular isomorphism problem). Let p be a prime number. Let G and H be finite p-groups and let K be a field of characteristic p. Does $K[G] \simeq K[H]$ imply $G \simeq H$?

Question 1.2 has an affirmative answer in several cases. However, it is not true in general. This question recently answered by García, Margolis and del Río [4]. They found two non-isomorphic groups G and H both of order 512 such that $K[G] \simeq K[H]$ for all field K of characteristic two.

§2. Kapanskly's problems

Let G be a group and K be a field. If $x \in G \setminus \{1\}$ is such that $x^n = 1$, then, since

$$(1-x)(1+x+x^2+\cdots+x^{n-1})=0,$$

it follows that K[G] has non-trivial zero divisors. What happens in the case where G is torsion-free?

example:k[Z]

Example 2.1. Let $G = \langle x \rangle \simeq \mathbb{Z}$. Then K[G] has no zero divisors. Let $\alpha, \beta \in K[G]$ be non-zero elements and write $\alpha = \sum_{i \le n} a_i x^i$ with $a_n \ne 0$ and $\beta = \sum_{j \le m} b_j x^j$ with $b_m \ne 0$. Since the coefficient of x^{n+m} of $\alpha\beta$ is non-zero, it follows that $\alpha\beta \ne 0$.

A similar problem concerns units of group algebras. A unit $u \in K[G]$ is said to be **trivial** if $u = \lambda g$ for some $\lambda \in K \setminus \{0\}$ and $g \in G$.

Exercise 2.2. Prove that units of $\mathbb{C}[C_2]$ are trivial.

Exercise 2.3. Prove that $\mathbb{C}[C_5]$ has non-trivial units.

prob:dominio

Open problem 2.1 (Zero divisors). Let G be a torsion-free group. Is it true that K[G] is a domain?

We mention some intriguing problems, generally known as Kaplansky's problems.

prob:units

Open problem 2.2 (Units). Let G be a torsion-free group. Is it true that all units of K[G] are trivial?

The unit problem is still open for fields of characteristic zero. However, it was recently solved by Gardam [5] in the case of K the field of two elements. We will present Gardam's theorem as a computer calculation. We will use GAP [3].

Lemma 2.4. The group $G = \langle a, b : a^{-1}b^2a = b^{-2}, b^{-1}a^2b = a^{-2} \rangle$ is torsion-free. Moreover, the subgroup $N = \langle a^2, b^2, (ab)^2 \rangle$ is normal in G, free-abelian of rank three and $G/N \simeq C_2 \times C_2$.

Proof. We first construct the group.

```
gap> F := FreeGroup(2);;
gap> A := F.1;;
gap> B := F.2;;
gap> rels := [(B^2)^A*B^2, (A^2)^B*A^2];;
gap> G := F/rels;;
gap> a := G.1;;
gap> b := G.2;;
```

Now we construct the subgroup N generated by a^2 , b^2 and $(ab)^2$. It is easy to check that N is normal in G and that $G/N \simeq C_2 \times C_2$. It is even easier to do this with the computer.

```
gap> N := Subgroup(G, [a^2,b^2,(a*b)^2]);;
gap> IsNormal(G,N);
true
gap> StructureDescription(G/N);
```

It is easy to check by hand that N is abelian, and not so easy to do it with the computer. For example,

$$b^{-2}a^2b^{-2} = b^{-1}a^{-2}b = (b^{-1}a^2b)^{-1} = (a^{-2})^{-1} = a^2$$
.

We use the computer to show that *N* is free abelian of rank three.

```
gap> AbelianInvariants(N);
[ 0, 0, 0 ]
```

Let us prove that G is torsion-free. Let $x = a^2$, $y = b^2$ and $z = (ab)^2$. Since (G : N) = 4, the group G decomposes as a disjoint union $G = N \cup aN \cup bN \cup (ab)N$. Let $g \in G$ be a non-trivial element of finite order. Since N is torsion-free, $g \in aN \cup bN \cup (ab)N$. Without loss of generality we may assume that $g \in aN$, so g = an for some $n \in N$. Let $\pi: G \to G/N$ be the canonical map. Since $g \notin N$ and $\pi(g) \in G/N \simeq C_2 \times C_2$,

$$\pi(g^2) = \pi(g)^2 = 1$$

so $g^2 \in N$ and hence $g^2 = 1$, as N is torsion-free. Thus

$$1 = g^2 = (an)^2 = (an)(an) = a^2(a^{-1}na)n = x(a^{-1}na)n.$$

Write $n = x^i y^j z^k$ for some $i, j, k \in \mathbb{Z}$. Then

$$a^{-1}na = (a^{-1}x^{i}a)(a^{-1}y^{j}a)(a^{-1}z^{k}a) = x^{i}t^{-j}z^{-k}$$

and hence $(a^{-1}na)n = x^{2i}$. Then it follows that $1 = g^2 = x(a^{-1}na)n = x^{2i+1}$, a contradiction.

Let *P* be the group generated by

$$a = \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The group P appears in the literature with various names. For us P will be the Promislow group. It is easy to check that there exists a surjective group homomorphism $G \to P$. Prove that $G \simeq P$.

thm:Gardam

Theorem 2.5 (Gardam). Let \mathbb{F}_2 be the field of two elements. Consider the elements $x = a^2$, $y = b^2$ and $z = (ab)^2$ of P and let

$$p = (1+x)(1+y)(1+z^{-1}), q = x^{-1}y^{-1} + x + y^{-1}z + z,$$

$$r = 1+x+y^{-1}z + xyz, s = 1 + (x+x^{-1}+y+y^{-1})z^{-1}.$$

Then u = p + qa + rb + sab is a non-trivial unit in $\mathbb{F}_2[P]$.

Proof. We claim that the inverse of u is the element $v = p_1 + q_1a + r_1b + s_1ab$, where

$$p_1 = x^{-1}(a^{-1}pa),$$
 $q_1 = -x^{-1}q,$ $r_1 = -y^{-1}r,$ $s_1 = z^{-1}(a^{-1}sa).$

We only need to show that uv = vu = 1. We will perform this calculation with GAP. We first need to create the group $P = \langle a, b \rangle$.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];;
gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
gap> P := Group([a,b]);
```

Now we create the group algebra F[P] and the embedding $P \hookrightarrow F[P]$. The field \mathbb{F}_2 will be GF (2) and the embedding will be denoted by f.

```
gap> R := GroupRing(GF(2),P);;
gap> f := Embedding(P, R);;
```

We first need the elements x, y and z that were defined in the statement.

```
gap> x := Image(f, a^2);;
```

§2 Kapanskly's problems

```
gap> y := Image(f, b^2);;
gap> z := Image(f, (a*b)^2);;
```

Now we define the elements p, q, r and s. Note that the identity of the group algebra R is One(R).

```
gap> p := (One(R)+x)*(One(R)+y)*(One(R)+Inverse(z));;
gap> r := One(R)+x+Inverse(y)*z+x*y*z;;
gap> q := Inverse(x)*Inverse(y)+x+Inverse(y)*z+z;;
gap> s := One(R)+(x+Inverse(x)+y+Inverse(y))*Inverse(z);
```

Rather than trying to compute the inverse of u we will show that uv = vu = 1. For that purpose we need to define p_1 , q_1 , r_1 and s_1 .

```
gap> p1 := Inverse(x)*p^Image(f, a);;
gap> q1 := -Inverse(x)*q;;
gap> r1 := -Inverse(y)*r;;
gap> s1 := Inverse(z)*s^Image(f, a);;
```

Now it is time to prove the theorem.

```
gap> u := p+q*a+r*b+s*a*b;;
gap> v := p1+q1*a+r1*b+s1*a*b;;
gap> IsOne(u*v);
true
gap> IsOne(v*u);
true
```

This completes the proof of the theorem.

Our proof of Theorem 2.5 is exactly as that of [5].

Exercise 2.6. Let p be a prime number and \mathbb{F}_p be the field of size p. Use the technique for proving Gardam's theorem to prove Murray's theorem on the existence on non-trivial units in $\mathbb{F}_p[P]$. Reference: arXiv:2106.02147.

We now describe some very-well known open problems in the theory of group rings and the connection between them.

Definition 2.7. A ring R is **reduced** if for all $r \in R$ such that $r^2 = 0$ one has r = 0.

Integral domains and boolean rings are reduced. $\mathbb{Z}/8$ and $M_2(\mathbb{R})$ are not reduced.

Example 2.8. \mathbb{Z}^n with $(a_1, ..., a_n)(b_1, ..., b_n) = (a_1b_1, ..., a_nb_n)$ is reduced.

The structure of reduced rings is described by Andrunakevic–Rjabuhin's theorem. It states that a ring is reduced if and only if it is a subdirect products of domains. See [6, 3.20.5] for a proof.

prob:reducido

Open problem 2.3. Let G be a torsion-free group. Is it true that K[G] is reduced?

Recall that if R is a unitary ring, one proves that the Jacobson radical J(R) is the set of elements x such that $1 + \sum_{i=1}^{n} r_i x s_i$ is invertible for all n and all $r_i, s_i \in R$.

prob:J

Open problem 2.4 (Semisimplicity). Let G be a torsion-free group. It is true that $J(K[G]) = \{0\}$ if G is non-trivial?

Recall that an element e of a ring is said to be *idempotent* if $e^2 = e$. Examples of idempotents are 0 and 1 and these are known as the trivial idempotents.

pro:idempotente

Open problem 2.5 (Idempotents). Let G be a torsion-free group and $\alpha \in K[G]$ be an idempotent. Is it true that $\alpha \in \{0,1\}$?

Exercise 2.9. Prove that if K[G] has no zero-divisors and $\alpha \in K[G]$ is an idempotent, then $\alpha \in \{0,1\}$.

Exercise 2.10. Prove that $K[C_4]$ contains non-trivial zero divisors and every idempotent of $K[C_4]$ is trivial.

The problems mentioned are all related. Our goal is the prove the following implications:

$$2.4 \rightleftharpoons 2.2 \Longrightarrow 2.3 \Longleftrightarrow 2.1$$

We first prove that an affirmative solution to the Units Problem 2.2 yields a solution to Problem 2.3 about the reducibility of group algebras.

Theorem 2.11. Let K be a field of characteristic $\neq 2$ and G be a non-trivial group. Assume that K[G] has only trivial units. Then K[G] is reduced.

Proof. Let $\alpha \in K[G]$ be such that $\alpha^2 = 0$. We claim that $\alpha = 0$. Since $\alpha^2 = 0$,

$$(1-\alpha)(1+\alpha) = 1-\alpha^2 = 1$$
,

it follows that $1 - \alpha$ is a unit of K[G]. Since units of K[G] are trivial, there exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1 - \alpha = \lambda g$. We claim that g = 1. If not,

$$0 = \alpha^2 = (1 - \lambda g)^2 = 1 - 2\lambda g + \lambda^2 g^2$$

a contradiction. Therefore g = 1 and hence $\alpha = 1 - \lambda \in K$. Since K is a field, one concludes that $\alpha = 0$.

Exercise 2.12. What happens if *K* is a field of characteristic two?

We now prove that an affirmative solution to the Units Problem 2.2 also yields a solution to the Jacobson Semisimplicity Problem 2.4.

Theorem 2.13. Let G be a non-trivial group. Assume that K[G] has only trivial units. If |K| > 2 or |G| > 2, then $J(K[G]) = \{0\}$.

Proof. Let $\alpha \in J(K[G])$. There exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1 - \alpha = \lambda g$. We claim that g = 1. Assume $g \neq 1$. If $|K| \geq 3$, then there exist $\mu \in K \setminus \{0,1\}$ such that

$$1 - \alpha \mu = 1 - \mu + \lambda \mu g$$

is a non-trivial unit, a contradiction. If $|G| \ge 3$, there exists $h \in G \setminus \{1, g^{-1}\}$ such that $1 - \alpha h = 1 - h + \lambda g h$ is a non-trivial unit, a contradiction. Thus g = 1 and hence $\alpha = 1 - \lambda \in K$. Therefore $1 + \alpha h$ is a trivial unit for all $h \ne 1$ and hence $\alpha = 0$.

Exercise 2.14. Prove that if $G = \langle g \rangle \simeq \mathbb{Z}/2$, then $J(\mathbb{F}_2[G]) = \{0, g-1\} \neq \{0\}$.

§3. The transfer map

Now we prove that an affirmative solution to the Units Problem (Open Problem 2.2) yields a solution to Open Problem 2.1 about zero divisors in group algebras. The proof is hard and requires some preliminaries. We first need to discuss a group theoretical tool known as the *transfer map*.

If H is a subgroup of G, a **transversal** of H in G is a complete set of coset representatives of G/H.

lem:d

Lemma 3.1. Let G be a group and H be a subgroup of G of finite index. Let R and S be transversals of H in G and let $\alpha: H \to H/[H, H]$ be the canonical map. Then

$$d(R,S) = \prod \alpha(rs^{-1}),$$

where the product is taken over all pairs $(r,s) \in R \times S$ such that Hr = Hs, is well-defined and satisfies the following properties:

- 1) $d(R,S)^{-1} = d(S,R)$.
- 2) d(R,S)d(S,T) = d(R,T) for all transversal T of H in G.
- 3) d(Rg, Sg) = d(R, S) for all $g \in G$.
- 4) d(Rg,R) = d(Sg,S) for all $g \in G$.

Proof. The product that defines d(R,S) is well-defined since H/[H,H] is an abelian group. The first three claim are trivial. Let us prove 4). By 2),

$$d(Rg,Sg)d(Sg,S)d(S,R) = d(Rg,S)d(S,R) = d(Rg,R).$$

Since H/[H,H] is abelian, 1) and 3) imply that

$$d(Rg,Sg)d(Sg,S)d(S,R) = d(R,S)d(S,R)d(Sg,S) = d(Sg,S).$$

We are know ready to state and prove the theorem:

thm:transfer

Theorem 3.2. Let G be a group and H be a finite-index subgroup of G. The map

$$v: G \to H/[H,H], g \mapsto d(Rg,R),$$

does not depend on the transversal R of H in G and it is a group homomorphism.

Proof. The lemma implies that the map does not depend on the transversal used. Moreover, ν is a group homomorphism, as

$$v(gh) = d(R(gh), R) = d(R(gh), Rh)d(Rh, R) = d(Rg, R)d(Rh, R) = v(g)v(h)$$
. \square

The theorem justifies the following definition:

Definition 3.3. Let G be a group and H be a finite-index subgroup of G. The **transfer map** of G in H is the group homomorphism

$$v: G \to H/[H,H], \quad g \mapsto d(Rg,R),$$

of Theorem 3.2, where R is some transversal of H in G.

We need methods for computing the transfer map. If H is a subgroup of G and (G:H)=n, let $T=\{x_1,\ldots,x_n\}$ be a transversal of H. For $g\in G$ let

$$\nu(g) = \prod \alpha(xy^{-1}),$$

where the product is taken over all pairs $(x, y) \in (Tg) \times T$ such that Hx = Hy and $\alpha: H \to H/[H, H]$ is the canonical map. If we write $x = x_i g$ for some $i \in \{1, ..., n\}$, then $Hx_ig = Hx_{\sigma(i)}$ for some permutation $\sigma \in \mathbb{S}_n$. Thus

$$\nu(g) = \prod_{i=1}^{n} \alpha(x_i g x_{\sigma(i)}^{-1}).$$

The cycle structure of σ turns out to be important. For example, if $\sigma = (12)(345)$ and n = 5, then a direct calculation shows that

$$\prod_{i=1}^{5} \alpha \left(x_i g x_{\sigma(i)}^{-1} \right) = \alpha (x_1 g^2 x_1^{-1}) \alpha (x_3 g^3 x_3^{-1}).$$

This is precisely the content of the following lemma.

lem:transfer

Lemma 3.4. Let G be a group and H be a subgroup of index n. Let $T = \{t_1, \ldots, t_n\}$ be a transversal of H in G. For each $g \in G$ there exist $m \in \mathbb{Z}_{>0}$ and elements $s_1, \ldots, s_m \in T$ and positive integers n_1, \ldots, n_m such that $s_i^{-1} g^{n_i} s_i \in H$, $n_1 + \cdots + n_m = n$ and

$$\nu(g) = \prod_{i=1}^{m} \alpha(s_i^{-1} g^{n_i} s_i).$$

Proof. For each i there exist $h_1, \ldots, h_n \in H$ and $\sigma \in \mathbb{S}_n$ such that $gt_i = t_{\sigma(i)}h_i$. Write σ as a product of disjoint cycles, say

$$\sigma = \alpha_1 \cdots \alpha_m$$
.

Let $i \in \{1, ..., n\}$ and write $\alpha_i = (j_1 \cdots j_{n_i})$. Since

$$gt_{j_k} = t_{\sigma(j_k)}h_{j_k} = \begin{cases} t_{j_1}h_{j_k} & \text{si } k = n_i, \\ t_{j_{k+1}}h_{j_k} & \text{otherwise,} \end{cases}$$

then

$$\begin{split} t_{j_1}^{-1} g^{n_i} t_{j_1} &= t_{j_1}^{-1} g^{n_i-1} g t_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-1} t_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-2} g t_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-2} t_{j_3} h_{j_2} h_{j_1} \\ &\vdots \\ &= t_{j_1}^{-1} g t_{j_{n_i}} h_{n_{i-1}} \cdots h_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} t_{j_1} h_{j_{n_i}} \cdots h_{j_2} h_{j_1} \in H. \end{split}$$

Thus $s_i = t_{j_1} \in T$. It only remains to note that $\nu(g) = h_1 \cdots h_n$.

§3 The transfer map

An application:

pro:center

Proposition 3.5. If G is a group such that Z(G) has finite index n, then $(gh)^n = g^n h^n$ for all $g, h \in G$.

Proof. Note that we may assume that $\alpha = \mathrm{id}$, as Z(G) is abelian. Let $g \in G$. By Lemma 3.4 there are positive integers n_1, \ldots, n_k such that $n_1 + \cdots + n_k = n$ and elements t_1, \ldots, t_k of a transversal of Z(G) in G such that

$$v(g) = \prod_{i=1}^{k} t_i g^{n_1} t_i^{-1}.$$

Since $g^{n_i} \in Z(G)$ for all $i \in \{1, ..., k\}$ (as $t_i g^{n_i} t_i^{-1} \in Z(G)$), it follows that

$$\nu(g) = g^{n_1 + \dots + n_k} = g^n.$$

Now Theorem 3.2 implies the claim.

The same idea implies the following property:

xca:K_central

Exercise 3.6. If *G* is a group and *K* is a central subgroup of finite index *n*, then $(gh)^n = g^n h^n$ for all $g, h \in G$.

For a group G we consider

$$\Delta(G) = \{ g \in G : (G : C_G(g)) < \infty \}.$$

Exercise 3.7. Prove that $\Delta(\Delta(G)) = \Delta(G)$.

A subgroup H of G is a **characteristic** subgroup of G if $f(H) \subseteq H$ for all $f \in \operatorname{Aut}(G)$. The center and the commutator subgroup of a group are characteristic subgroups. Every characteristic subgroup is a normal subgroup.

Exercise 3.8. Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proposition 3.9. If G is a group, then $\Delta(G)$ is a characteristic subgroup of G.

Proof. We first prove that $\Delta(G)$ is a subgroup of G. If $x, y \in \Delta(G)$ and $g \in G$, then $g(xy^{-1})g^{-1} = (gxg^{-1})(gyg^{-1})^{-1}$. Moreover, $1 \in \Delta(G)$. Let us show now that $\Delta(G)$ is characteristic in G. If $f \in \operatorname{Aut}(G)$ and $x \in G$, then, since

$$f(gxg^{-1}) = f(g)f(x)f(g)^{-1},$$

it follows that $f(x) \in \Delta(G)$.

Exercise 3.10. Prove that if $G = \langle r, s : s^2 = 1, srs = r^{-1} \rangle$ is the infinite dihedral group, then $\Delta(G) = \langle r \rangle$.

Exercise 3.11. Let *H* and *K* be finite-index subgroups of *G*. Prove that

$$(G: H \cap K) \le (G: H)(G: K).$$

§4. Passman's theorem

pro:FCabeliano

Proposition 4.1. *If* G *is a torsion-free group such that* $\Delta(G) = G$ *, then* G *is abelian.*

Proof. Let $x, y \in G = \Delta(G)$ and $S = \langle x, y \rangle$. The group $Z(S) = C_S(x) \cap C_S(y)$ has finite index, say n, in S. By Proposition 3.5, the map $S \to Z(S)$, $s \mapsto s^n$, is a group homomorphism. Thus

$$[x, y]^n = (xyx^{-1}y^{-1})^n = x^ny^nx^{-n}y^{-n} = 1$$

as $x^n \in Z(S)$. Since G is torsion-free, [x, y] = 1.

lem:Neumann

Lemma 4.2 (Neumann). Let $H_1, ..., H_m$ be subgroups of G. Assume there are finitely many elements $a_{ij} \in G$, $1 \le i \le m$, $1 \le j \le n$, such that

$$G = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} H_i a_{ij}.$$

Then some H_i has finite index in G.

Proof. We proceed by induction on m. The case m = 1 is trivial. Let us assume that $m \ge 2$. If $(G: H_1) = \infty$, there exists $b \in G$ such that

$$H_1b \cap \left(\bigcup_{j=1}^n H_1a_{1j}\right) = \emptyset.$$

Since $H_1b \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n H_i a_{ij}$, it follows that

$$H_1a_{1k} \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n H_1a_{ij}b^{-1}a_{1k}.$$

Hence G can be covered by finitely many cosets of H_2, \ldots, H_m . By the inductive hypothesis, some of these H_i has finite index in G.

We now consider a projection operator of group algebras. If G is a group and H is a subgroup of G, let

$$\pi_H : K[G] \to K[H], \quad \pi_H \left(\sum_{g \in G} \lambda_g g \right) = \sum_{g \in H} \lambda_g g.$$

If R and S are rings, a (R,S)-bimodule is an abelian group M that is both a left R-module and a right S-module and the compatibility condition

$$(rm)s = r(ms)$$

holds for all $r \in R$, $s \in S$ and $m \in M$.

Exercise 4.3. Let G be a group and H be a subgroup of G. Prove that if $\alpha \in K[G]$, then π_H is a (K[H], K[H])-bimodule homomorphism with usual left and right multiplications,

$$\pi_H(\beta\alpha\gamma) = \beta\pi_H(\alpha)\gamma$$

for all $\beta, \gamma \in K[H]$.

lem:escritura

Lemma 4.4. Let X be a left transversal of H in G. Every $\alpha \in K[G]$ can be written uniquely as

$$\alpha = \sum_{x \in X} x \alpha_x,$$

where $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$.

Proof. Let $\alpha \in K[G]$. Since $\sup \alpha$ is finite, $\sup \alpha$ is contained in finitely many cosets of H, say x_1H, \ldots, x_nH , where each x_j belongs to X. Write $\alpha = \alpha_1 + \cdots + \alpha_n$, where $\alpha_i = \sum_{g \in x_i H} \lambda_g g$. If $g \in x_i H$, then $x_i^{-1}g \in H$ and hence

$$\alpha = \sum_{i=1}^{n} x_i (x_i^{-1} \alpha_i) = \sum_{x \in X} x \alpha_x$$

with $\alpha_x \in K[H]$ for all $x \in X$. For the uniqueness, note that for each $x \in X$ the previous exercise implies that

$$\pi_H(x^{-1}\alpha) = \pi_H\left(\sum_{y \in X} x^{-1}y\alpha_y\right) = \sum_{y \in X} \pi_H(x^{-1}y)\alpha_y = \alpha_x,$$

as

$$\pi_H(x^{-1}y) = \begin{cases} 1 & \text{si } x = y, \\ 0 & \text{si } x \neq y. \end{cases}$$

lem:ideal_pi

Lemma 4.5. Let G be a group and H be a subgroup of G. If I is a non-zero left ideal of K[G], then $\pi_H(I) \neq \{0\}$.

Proof. Let X be a left transversal of H in G and $\alpha \in I \setminus \{0\}$. By Lemma 4.4 we can write $\alpha = \sum_{x \in X} x \alpha_x$ with $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$ for all $x \in X$. Since $\alpha \neq 0$, there exists $y \in X$ such that $0 \neq \alpha_y = \pi_H(y^{-1}\alpha) \in \pi_H(I)$ ($y^{-1}\alpha \in I$ since I is a left ideal).

Another application:

Proposition 4.6. Let G be a group, H be a subgroup of G and $\alpha \in K[H]$. The following statements hold:

- 1) α is invertible in K[H] if and only if α is invertible in K[G].
- 2) α is a zero divisor of K[H] if and only if α is a zero divisor of K[G].

Proof. If α is invertible in K[G], there exists $\beta \in K[G]$ such that $\alpha\beta = \beta\alpha = 1$. Apply π_H and use that π_H is a (K[H], K[H])-bimodule homomorphism to obtain

$$\alpha \pi_H(\beta) = \pi_H(\alpha \beta) = \pi_H(1) = 1 = \pi_H(1) = \pi_H(\beta \alpha) = \pi_H(\beta) \alpha.$$

Assume now that $\alpha\beta = 0$ for some $\beta \in K[G] \setminus \{0\}$. Let $g \in G$ be such that $1 \in \text{supp}(\beta g)$. Since $\alpha(\beta g) = 0$,

$$0 = \pi_H(0) = \pi_H(\alpha(\beta g)) = \alpha \pi_H(\beta g),$$

where $\pi_H(\beta g) \in K[H] \setminus \{0\}$, as $1 \in \text{supp}(\beta g)$.

lem:Passman

Lemma 4.7 (Passman). Let G be a group and $\gamma_1, \gamma_2 \in K[G]$ be such that $\gamma_1 K[G] \gamma_2 = \{0\}$. Then $\pi_{\Delta(G)}(\gamma_1) \pi_{\Delta(G)}(\gamma_2) = \{0\}$.

Proof. It is enough to show that $\pi_{\Lambda(G)}(\gamma_1)\gamma_2 = \{0\}$, as in this case

$$\{0\} = \pi_{\Delta(G)}(\pi_{\Delta(G)}(\gamma_1)\gamma_2) = \pi_{\Delta}(\gamma_1)\pi_{\Delta(G)}(\gamma_2).$$

Write $\gamma_1 = \alpha_1 + \beta_1$, where

$$\alpha_1 = a_1 u_1 + \dots + a_r u_r, \qquad u_1, \dots, u_r \in \Delta(G),$$

$$\beta_1 = b_1 v_1 + \dots + b_s v_s, \qquad v_1, \dots, v_s \notin \Delta(G),$$

$$\gamma_2 = c_1 w_1 + \dots + c_t w_t, \qquad w_1, \dots, w_t \in G.$$

The subgroup $C = \bigcap_{i=1}^{r} C_G(u_i)$ has finite index in G. Assume that

$$0 \neq \pi_{\Delta}(\gamma_1)\gamma_2 = \alpha_1\gamma_2$$
.

Let $g \in \text{supp}(\alpha_1 \gamma_2)$. If v_i is a conjugate in G of some gw_j^{-1} , let $g_{ij} \in G$ be such that $g_{ij}^{-1}v_ig_{ij} = gw_j^{-1}$. If v_i and gw_j^{-1} are not conjugate, we take $g_{ij} = 1$.

For every $x \in C$ it follows that $\alpha_1 \gamma_2 = (x^{-1} \alpha_1 x) \gamma_2$. Since

$$x^{-1}\gamma_1 x \gamma_2 \in x^{-1}\gamma_1 K[G]\gamma_2 = 0,$$

it follows that

$$(a_1u_1 + \dots + a_ru_r)\gamma_2 = \alpha_1\gamma_2 = x^{-1}\alpha_1x\gamma_2 = -x^{-1}\beta_1x\gamma_2$$

= $-x^{-1}(b_1v_1 + \dots + b_sv_r)x(c_1w_1 + \dots + c_tw_t).$

Now $g \in \text{supp}(\alpha_1 \gamma_2)$ implies that there exist i, j such that $g = x^{-1} v_i x w_j$. Thus v_i and $g w_j^{-1}$ are conjugate and hence $x^{-1} v_i x = g w_j^{-1} = g_{ij}^{-1} v_i g_{ij}$, that is $x \in C_G(v_i) g_{ij}$. This proves that

 $C \subseteq \bigcup_{i,j} C_G(v_i)g_{ij}.$

Since C has finite index in G, it follows that G can be covered by finitely many cosets of the $C_G(v_i)$. Every $v_i \notin \Delta(G)$, so each $C_G(v_i)$ has infinite index in G, a contradiction to Neumann's lemma.

Before proving Passman's theorem, we need to mention that if G is a torsion-free abelian group, then K[G] has no non-zero divisors. We will prove this fact later, as an application of the theory of bi-ordered groups (see Corollary 6.15).

thm:Passman

Theorem 4.8 (Passman). Let G be a torsion-free group. If K[G] is reduced, then K[G] is a domain.

Proof. Assume that K[G] is not a domain. Let $\gamma_1, \gamma_2 \in K[G] \setminus \{0\}$ be such that $\gamma_2 \gamma_1 = 0$. If $\alpha \in K[G]$, then

$$(\gamma_1 \alpha \gamma_2)^2 = \gamma_1 \alpha \gamma_2 \gamma_1 \alpha \gamma_2 = 0$$

and thus $\gamma_1 \alpha \gamma_2 = 0$, as K[G] is reduced. In particular, $\gamma_1 K[G] \gamma_2 = \{0\}$. Let I be the left ideal of K[G] generated by γ_2 . Since $I \neq \{0\}$, it follows from Lemma 4.5 that $\pi_{\Delta(G)}(I) \neq \{0\}$. Hence $\pi_{\Delta(G)}(\beta \gamma_2) \neq \{0\}$ for some $\beta \in K[G]$. Similarly, $\pi_{\Delta(G)}(\gamma_1 \alpha) \neq \{0\}$ for some $\alpha \in K[G]$. Since

$$\gamma_1 \alpha K[G] \beta \gamma_2 \subseteq \gamma_1 K[G] \gamma_2 = \{0\},$$

it follows that $\pi_{\Delta(G)}(\gamma_1 \alpha) \pi_{\Delta(G)}(\beta \gamma_2) = \{0\}$ by Passman's lemma. Hence $K[\Delta(G)]$ has zero divisors, a contradictions since $\Delta(G)$ is an abelian group.

§5. More applications of the transfer

Let us start with a group-theoretic application of the transfer map. We start with some applications to the theory of finite groups.

prop:semidirecto

Proposition 5.1. Let G be a finite group and H a central subgroup of index n, where n is coprime with |H|. Then $G \simeq N \rtimes H$.

Proof. Since *H* is abelian, H = H/[H, H]. Let $v: G \to H$ be the transfer map and $h \in H$. By Lemma 3.4,

$$\nu(h) = \prod_{i=1}^{m} s_i^{-1} h^{n_i} s_i,$$

where each $s_i^{-1}h^{n_i}s_i \in H$. Since $h^{n_i} \in H \subseteq Z(G)$ for all i, it follows that $s_i^{-1}h^{n_i}s_i = h^{n_i}$ for all i. Thus

$$\nu(h) = \prod_{i=1}^{m} s_i^{-1} h^{n_i} s_i = \prod_{i=1}^{m} h^{n_i} = h^{\sum_{i=1}^{m} n_i} = h^n.$$

The composition $f: H \hookrightarrow G \xrightarrow{\nu} H$ is a group homomorphism. We claim that it is an isomorphism. It is injective: If $h^n = 1$, then |h| divides both |H| and n. Since n and |H| are coprime, h = 1. It is surjectice: Since n and |H| are coprime, there exists $m \in \mathbb{Z}$ such that $nm \equiv 1 \mod |H|$. If $h \in H$, then $h^m \in H$ and $\nu(h^m) = h^{nm} = h$.

Let $N = \ker f$. We claim that $G = N \rtimes H$. By definition, N is normal in G and $N \cap H = \{1\}$. To show that G = NH note that |NH| = |N||H| and $G/N \simeq H$.

Exercise 5.2. Let H be a central subgroup of a finite group G. If |H| and |G/H| are coprime, then $G \simeq H \times G/H$.

An application to infinite groups taken from Serre's book [13, 7.12].

Theorem 5.3. Let G be a torsion-free group that contains a finite-index subgroup isomorphic to \mathbb{Z} . Then $G \simeq \mathbb{Z}$.

Proof. We may assume that G contains a finite-index normal subgroup isomorphic to \mathbb{Z} . Indeed, if H is a finite-index subgroup of G such that $H \simeq \mathbb{Z}$, then $K = \cap_{x \in G} x H x^{-1}$ is a non-trivial normal subgroup of G (because $K = \operatorname{Core}_G(H)$ and G has no torsion) and hence $K \simeq \mathbb{Z}$ (because $K \subseteq H$) and (G : K) = (G : H)(H : K) is finite. The action of G on K by conjugation induces a group homomorphism $\epsilon \colon G \to \operatorname{Aut}(K)$. Since $\operatorname{Aut}(K) \simeq \operatorname{Aut}(\mathbb{Z}) = \{-1, 1\}$, there are two cases to consider.

Assume first that $\epsilon = \text{id}$. Since $K \subseteq Z(G)$, let $\nu : G \to K$ be the transfer homomorphism. By Proposition 3.5 (more precisely, by Exercise 3.6), $\nu(g) = g^n$, where n = (G : K). Since G has no torsion, ν is injective. Thus $G \simeq \mathbb{Z}$ because it is isomorphic to a subgroup of K.

Assume now that $\epsilon \neq \text{id}$. Let $N = \ker \epsilon \neq G$. Since $K \simeq \mathbb{Z}$ is abelian, $K \subseteq N$. The result proved in the previous paragraph applied to $\epsilon|_N = 1$ implies that $N \simeq \mathbb{Z}$, as N contains a finite-index subgroup isomorphic to \mathbb{Z} . Let $g \in G \setminus N$. Since N is normal in G, G acts by conjugation on N and hence there exists a group homomorphism $c_g \in \operatorname{Aut}(N) \simeq \{-1,1\}$. Since $K \subseteq N$ g acts non-trivially on K,

$$c_g(n) = gng^{-1} = n^{-1}$$

for all $n \in N$. Since $g^2 \in N$,

$$g^2 = gg^2g^{-1} = g^{-2}$$
.

Therefore $g^4 = 1$, a contradiction since $g \ne 1$ and G has no torsion.

Before giving another application of the transfer map, we prove Dietzman's theorem:

theorem:Dietzmann

Theorem 5.4 (Dietzmann). Let G be a group and $X \subseteq G$ be a finite subset of G closed by conjugation. If there exists n such that $x^n = 1$ for all $x \in X$, then $\langle X \rangle$ is a finite subgroup of G.

Proof. Let $S = \langle X \rangle$. Since $x^{-1} = x^{n-1}$, every element of S can be written as a finite product of elements of X. Fix $x \in X$. We claim that if $x \in X$ appears $k \ge 1$ times in the word s, then we can write s as a product of m elements of X, where the first k elements are equal to x. Suppose that

$$s = x_1 x_2 \cdots x_{t-1} x x_{t+1} \cdots x_m,$$

where $x_i \neq x$ for all $j \in \{1, ..., t-1\}$. Then

$$s = x(x^{-1}x_1x)(x^{-1}x_2x)\cdots(x^{-1}x_{t-1}x)x_{t+1}\cdots x_m$$

is a product of m elements of X since X is closed under conjugation and the first element is x. The same argument implies that s can be written as

$$s = x^k y_{k+1} \cdots y_m,$$

where each y_j belongs to $X \setminus \{x\}$.

Let $s \in S$ and write s as a product of m elements of X, where m is minimal. We need to show that $m \le (n-1)|X|$. If m > (n-1)|X|, then at least one $x \in X$ appears exactly n times in the representation of s. Without loss of generality, we write

$$s = x^n x_{n+1} \cdots x_m = x_{n+1} \cdots x_m,$$

a contradiction to the minimality of m.

The second result goes back to Schur:

thm:Schur

Theorem 5.5 (Schur). Let G be a group. If Z(G) has finite index in G, then [G,G] is finite.

Proof. Let n = (G : Z(G)) and X be the set of commutators of G. We claim that X is finite, in fact $|X| \le n^2$. A routine calculation shows that the map

$$\varphi: X \to G/Z(G) \times G/Z(G), \quad [x,y] \mapsto (xZ(G), yZ(G)),$$

is well-defined. It is, moreover, injective: if (xZ(G), yZ(G)) = (uZ(G), vZ(G)), then $u^{-1}x \in Z(G), v^{-1}y \in Z(G)$. Thus

$$[u, v] = uvu^{-1}v^{-1} = uv(u^{-1}x)x^{-1}v^{-1} = xvx^{-1}(v^{-1}y)y^{-1} = xyx^{-1}y^{-1} = [x, y].$$

Moreover, X is closed under conjugation, as

$$g[x,y]g^{-1} = [gxg^{-1}, gyg^{-1}]$$

for all $g, x, y \in G$. Since $G \to Z(G)$, $g \mapsto g^n$ is a group homomorphism, Proposition 3.5 implies that $[x, y]^n = [x^n, y^n] = 1$ for all $[x, y] \in X$. The theorem follows from applying Dietzmann's theorem.

Exercise 5.6. Let G be the group with generators a, b, c and relations ab = ca, ac = ba and bc = ab. Prove the following statements:

- 1) G is infinite and non-abelian.
- 2) Z(G) has finite index in G and every conjugacy class of G is finite.
- 3) [G,G] is finite.
- **4)** The subgroup $N = \langle a^3 \rangle$ of G generated by a^3 is central and G/N is finite.

We conclude the section with some results similar to that of Schur.

thm:Niroomand

Theorem 5.7 (Niroomand). *If the set of commutators of a group G is finite, then* [G,G] *is finite.*

Proof. Let $C = \{[x_1, y_1], \dots, [x_k, y_k]\}$ be the (finite) set of commutators of G and $H = \langle x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_k \rangle$. Since C is a set of commutators of H, it follows that $[G, G] = \langle C \rangle \subseteq [H, H]$. To simplify the notation we write $H = \langle h_1, \dots, h_{2k} \rangle$. Since $h \in Z(H)$ if and only if $h \in C_H(h_i)$ for all $i \in \{1, \dots, 2k\}$, we conclude that $Z(H) = C_H(h_1) \cap \dots \cap C_H(h_{2k})$. Moreover, if $h \in H$, then $hh_ih^{-1} = ch_i$ for some

 $c \in C$. Thus the conjugacy class of each h_i contains at most as many elements as C. This implies that

$$|H/Z(H)| = |H/\cap_{i=1}^{2k} C_H(h_i)| \le \prod_{i=1}^{2k} (H:C_H(h_i)) \le |C|^{2k}.$$

Since H/Z(H) is finite, [H,H] is finite. Hence $[G,G] = \langle C \rangle \subseteq [H,H]$ is a finite group. \Box

thm:HiltonNiroomand

Theorem 5.8 (Hilton–Niroomand). Let G be a finitely generated group. If [G,G] is finite and G/Z(G) is generated by n elements, then

$$|G/Z(G)| \le |[G,G]|^n.$$

Proof. Assume that $G/Z(G) = \langle x_1 Z(G), \dots, x_n Z(G) \rangle$. Let

$$f: G/Z(G) \to [G,G] \times \cdots \times [G,G], \quad y \mapsto ([x_1,y],\dots,[x_n,y]).$$

Note that f is well-defined: If $y \in G$ y $z \in Z(G)$, then $[x_i, y] = [x_i, y_z]$ for all i. Then f(yz) = f(y).

The map f is injective. Assume that f(xZ(G)) = f(yZ(G)). Then $[x_i, x] = [x_i, y]$ for all $i \in \{1, ..., n\}$. For each i we compute

$$[x^{-1}y,x_i] = x^{-1}[y,x_i]x[x^{-1},x_i]$$

= $x^{-1}[y,x_i][x_i,x]x = x^{-1}[x_i,y]^{-1}[x_i,x]x = x^{-1}[x_i,y]^{-1}[x_i,y]x = 1.$

This implies that $x^{-1}y \in Z(G)$. Indeed, since every $g \in G$ can be written as $g = x_k z$ for some $k \in \{1, ..., n\}$ and some $z \in Z(G)$, it follows that

$$[x^{-1}y,g] = [x^{-1}y,x_kz] = [x^{-1}y,x_k] = 1.$$

Since f is injective, $|G/Z(G)| \le |[G,G]|^n$.

Exercise 5.9. Prove Theorem 5.8 from Theorem 5.7.

§6. Bi-ordered groups

Based on Example 2.1 we will study some properties of groups.

Recall that a **total order** is a partial order in which any two elements are comparable. This means that a total order is a binary relation \leq on some set X such that for all $x, y, z \in X$ one has

- 1) $x \le x$.
- 2) $x \le y$ and $y \le z$ imply $x \le z$.
- 3) $x \le y$ and $y \le x$ imply x = y.
- 4) $x \le y$ or $y \le x$.

A set equipped with a total order is a totally ordered set.

Definition 6.1. A group *G* is **bi-ordered** if there exists a total order < in *G* such that x < y implies that xz < yz and zx < zy for all $x, y, z \in G$.

Example 6.2. The group $\mathbb{R}_{>0}$ of positive real numbers is bi-ordered.

The multiplicative group $\mathbb{R} \setminus \{0\}$ is not bi-ordered. Why?

Exercise 6.3. Let *G* be a bi-ordered group and $x, x_1, y, y_1 \in G$. Prove that x < y and $x_1 < y_1$ imply $xx_1 < yy_1$.

Clearly, bi-orderability is preserved under taking subgroups.

Exercise 6.4. Let *G* be a bi-ordered group and $g, h \in G$. Prove that $g^n = h^n$ for some n > 0 implies g = h.

The following result goes back to Neumann.

Exercise 6.5. Let G be a bi-ordered group and $g,h \in G$. Prove that $g^n \in C_G(h)$ if and only if $g \in C_G(h)$.

Bi-ordered groups do not behave nicely under extensions:

xca:BO_sequence

Exercise 6.6. Let $1 \to K \to G \to Q \to 1$ be an exact sequence of groups. Assume that K and Q are bi-ordered. Prove that G is bi-ordered if and only if x < y implies $gxg^{-1} < gyg^{-1}$ for all $x, y \in K$ and $g \in G$.

Definition 6.7. Let G be a bi-ordered group. The **positive cone** of G is the set $P(G) = \{x \in G : 1 < x\}$.

Let us state some properties of positive cones.

pro:biordenableP1

Proposition 6.8. *Let G be a bi-ordered group and let P be its positive cone.*

- 1) P is closed under multiplication, i.e. $PP \subseteq P$.
- **2)** $G = P \cup P^{-1} \cup \{1\}$ (disjoint union).
- 3) $xPx^{-1} = P$ for all $x \in G$.

Proof. If $x, y \in P$ and $z \in G$, then, since 1 < x and 1 < y, it follows that 1 < xy. Thus $1 = z1z^{-1} < zxz^{-1}$. It remains to prove the second claim. If $g \in G$, then g = 1 or g > 1 or g < 1. Note that g < 1 if and only if $1 < g^{-1}$, so the claim follows.

The previous proposition admits a converse statement.

pro:biordenableP2

Proposition 6.9. Let G be a group and P be a subset of G such that P is closed under multiplication, $G = P \cup P^{-1} \cup \{1\}$ (disjoint union) and $xPx^{-1} = P$ for all $x \in G$. Let x < y whenever $yx^{-1} \in P$. Then G is bi-ordered with positive cone is P.

Proof. Let $x, y \in G$. Since $yx^{-1} \in G$ and $G = P \cup P^{-1} \cup \{1\}$ (disjoint union), either $yx^{-1} \in P$ or $xy^{-1} = (yx^{-1})^{-1} \in P$ or $yx^{-1} = 1$. Thus either x < y or y < x or x = y. If x < y and $z \in G$, then zx < zy, as $(zy)(zx)^{-1} = z(yx^{-1})z^{-1} \in P$ and $zPz^{-1} = P$. Moreover, xz < yz since $(yz)(xz)^{-1} = yx^{-1} \in P$. To prove that P is the positive cone of G note that $x1^{-1} = x \in P$ if and only if 1 < x. □

An important property:

pro:BOsintorsion

Proposition 6.10. Bi-ordered groups are torsion-free.

Proof. Let *G* be a bi-ordered group and $g \in G \setminus \{1\}$. If g > 1, then $1 < g < g^2 < \cdots$. If g < 1, then $1 > g > g^2 > \cdots$. Hence $g^n \ne 1$ for all $n \ne 0$.

The converse of the previous proposition does not hold.

Exercise 6.11. Let $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$.

- 1) Prove that x and y are torsion-free.
- **2**) Prove that *G* is torsion-free.
- **3)** Prove that $G \simeq \langle a, b : a^2 = b^2 \rangle$.

Example 6.12. The torsion-free group $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$ is not bi-ordered. If not, let P be the positive cone. If $x \in P$, then $yxy^{-1} = x^{-1} \in P$, a contradiction. Hence $x^{-1} \in P$ and $x = y^{-1}x^{-1}y \in P$, a contradiction.

§6 Bi-ordered groups

thm:BO

Theorem 6.13. Let G be a bi-ordered group. Then K[G] is a domain such that only has trivial units. Moreover, if G is non-trivial, then $J(K[G]) = \{0\}$.

Proof. Let $\alpha, \beta \in K[G]$ be such that

$$\alpha = \sum_{i=1}^{m} a_i g_i, \qquad g_1 < g_2 < \dots < g_m, \qquad a_i \neq 0 \qquad \forall i \in \{1, \dots, m\},$$

$$\beta = \sum_{j=1}^{n} b_j h_j, \qquad h_1 < h_2 < \dots < h_n, \qquad b_j \neq 0 \qquad \forall j \in \{1, \dots, n\}.$$

Then

$$g_1 h_1 \le g_i h_i \le g_m h_n$$

for all i, j. Moreover, $g_1h_1 = g_ih_j$ if and only if i = j = 1. The coefficient of g_1h_1 in $\alpha\beta$ is $a_1b_1 \neq 0$. In particular, $\alpha\beta \neq 0$. If $\alpha\beta = \beta\alpha = 1$, then the coefficient of g_mh_n in $\alpha\beta$ is a_mb_n . Hence m = n = 1 and therefore $\alpha = a_1g_1$ and $\beta = b_1h_1$ with $a_1b_1 = b_1a_1 = 1$ in K and $g_1h_1 = 1$ in G.

thm:Levi

Theorem 6.14 (Levi). Let A be an abelian group. Then A is bi-ordered if and only if A is torsion-free.

Proof. If *A* is bi-ordered, then *A* is torsion-free. Let us prove the non-trivial implication, so assume that *A* is torsion-free abelian. Let *S* be the class of subsets *P* of *A* such that $0 \in P$, are closed under the addition of *A* and satisfy the following property: if $x \in P$ and $-x \in P$, then x = 0. Clearly, $S \neq \emptyset$, as $\{0\} \in S$. The inclusion turns *S* into a partially ordered set and $\bigcup_{i \in I} P_i$ is an upper bound for the chain $\{P_i : i \in I\}$. By Zorn's lemma, *S* admits a maximal element $P \in S$.

Claim. If $x \in A$ is such that $kx \in P$ for some k > 0, then $x \in P$.

Let $Q = \{x \in A : kx \in P \text{ for some } k > 0\}$. We will show that $Q \in S$. Clearly, $0 \in Q$. Moreover, Q is closed under addition, as $k_1x_1 \in P$ and $k_2x_2 \in P$ imply $k_1k_2(x_1+x_2) \in P$. Let $x \in A$ be such that $x \in Q$ and $-x \in Q$. Thus $kx \in P$ and $l(-x) \in P$ for some l > 0. Since $klx \in P$ and $kl(-x) \in P$, it follows that klx = 0, a contradiction since A is torsion-free. Hence $x \in Q \subseteq P$.

Claim. If $x \in A$ is such that $x \notin P$, then $-x \in P$.

Assume that $-x \notin P$ and let $P_1 = \{y + nx : y \in P, n \ge 0\}$. We will show that $P_1 \in S$. Clearly, $0 \in P_1$ and P_1 is closed under addition. If $P_1 \notin S$, there exists

$$0 \neq y_1 + n_1 x = -(y_2 + n_2 x),$$

where $y_1, y_2 \in P$ and $n_1, n_2 \ge 0$. Thus $y_1 + y_2 = -(n_1 + n_2)x$. If $n_1 = n_2 = 0$, then $y_1 = -y_2 \in P$ and $y_1 = y_2 = 0$, so it follows that $y_1 + n_1x = 0$, a contradiction. If $n_1 + n_2 > 0$, then, since

$$(n_1+n_2)(-x) = y_1+y_2 \in P$$
,

it follows from the first claim that $-x \in P$, a contradiction. Let us show that $P_1 \in S$. Since $P \subseteq P_1$, the maximality of P implies that $x \in P = P_1$.

By Proposition 6.9, $P^* = P \setminus \{0\}$ is the positive cone of a bi-order in A. In fact, P^* is closed under addition, as $x, y \in P^*$ implies that $x + y \in P$ and x + y = 0 implies x = y = 0, as $x = -y \in P$. Moreover, $G = P^* \cup -P^* \cup \{0\}$ (disjoint union), as the second claim states that $x \notin P^*$ implies $-x \in P$.

Our proof of Passman's theorem (Theorem 4.8) used the fact that the group algebra K[G] of a torsion-free abelian group G has no non-zero divisors. We now present a proof of this fact.

cor:domain_G_abelian

Corollary 6.15. Let A be a non-trivial torsion-free abelian group. Then K[A] is a domain that only admits trivial units and $J(K[A]) = \{0\}$.

Proof. Apply Levi's theorem and Theorem 6.13.

Some exercises. The first one is a variation on Exercise 6.6.

Exercise 6.16. Let N be a central subgroup of G. If N and G/N are bi-ordered, then G is bi-ordered. Prove with an example that N needs to be central, normal is not enough.

Exercise 6.17. Let G be a group that admits a sequence

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

such that each G_k is normal in G_{k+1} and each quotient G_{k+1}/G_k is torsion-free abelian. Prove that G is bi-ordered.

Exercise 6.18. Prove that torsion-free nilpotent groups are bi-ordered.

§7. Left-ordered groups

Definition 7.1. A group *G* is **left-ordered** if there is a total order < in *G* such that x < y implies xz < yz for all $x, y, z \in G$.

If *G* is left-ordered, the positive cone of *G* is defined as $P(G) = \{x \in G : 1 < x\}$.

Exercise 7.2. Let G be left-ordered with positive cone P. Prove that P is closed under multiplication and that $G = P \cup P^{-1} \cup \{1\}$ (disjoint union).

xca:LO_cone

Exercise 7.3. Let G be a group and P be a subset closed under multiplication. Assume that $G = P \cup P^{-1} \cup \{1\}$ (disjoint union). Prove that x < y if and only if $x^{-1}y \in P$ turns G into a left-ordered group with positive cone P.

Left-ordered groups behave nicely with respect to extensions. Let G be a group and N be a left-ordered normal subgroup of G. If $\pi: G \to G/N$ is the canonical map and G/N is left-ordered, then G is left-ordered with x < y if and only if either $\pi(x) < \pi(y)$ or $\pi(x) = \pi(y)$ and $1 < x^{-1}y$.

Proposition 7.4. Let G be a group and N be a normal subgroup of G. If N and G/N are left-ordered, then so is G.

Proof. Since *N* and G/N are both left-ordered, there exist positive cones P(N) and P(G/N). Let $\pi: G \to G/N$ be the canonical map and

$$P(G) = \{x \in G : \pi(x) \in P(G/N) \text{ or } x \in N\}.$$

A routine calculation shows that P(G) is closed under multiplication and that G decomposes as $G = P(G) \cup P(G)^{-1} \cup \{1\}$ (disjoint union). It follows from Exercise 7.3 that G is left-ordered.

We now present a criterion for detecting left-ordered groups. We shall need a lemma.

lem:fg

Lemma 7.5. Let G be a finitely generated group. If H is a finite-index subgroup, then H is finitely generated.

Proof. Assume that G is generated by $\{g_1, \ldots, g_m\}$. Assume that for each i there exists k such that $g_i^{-1} = g_k$. Let $\{t_1, \ldots, t_n\}$ be a transversal of H in G. For $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$ write

$$t_i g_j = h(i, j) t_{k(i, j)}.$$

We claim that *H* is generated by the h(i, j). For $x \in H$, write

$$x = g_{i_1} \cdots g_{i_s}$$

$$= (t_1 g_{i_1}) g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) t_{k_1} g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) t_{k_2} g_{i_3} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) \cdots h(k_{s-1}, g_{i_s}) t_{k_s},$$

where $k_1, ..., k_{s-1} \in \{1, ..., n\}$. Since $t_{k_s} \in H$, it follows that $t_{k_s} = t_1 \in H$ and therefore $x \in H$.

Now the theorem.

Theorem 7.6. Let G be a finitely generated torsion-free group. If A is an abelian normal subgroup such that G/A is finite and cyclic, then G is left-ordered.

Proof. Note that if A is trivial, then so is G. Let us assume that $A \neq \{1\}$. Since (G : A) is finite, A is finitely generated by the previous lemma. We proceed by induction on the number of generators of A. Since G/A is cyclic, there exists $x \in G$ such that $G = \langle A, x \rangle$. Then $[x, A] = \langle [x, a] : a \in A \rangle$ is a normal subgroup of G

such that $A/C_A(x) \simeq [x,A]$ (because $a \mapsto [x,a]$ is a group homomorphism $A \to A$ with image [x,A] and kernel $C_A(x)$). If $\pi \colon G \to G/[x,A]$ is the canonical map, then $G/[x,A] = \langle \pi(A), \pi(x) \rangle$ and thus G/[x,A] is abelian, as $[\pi(x), \pi(A)] = \pi[x,A] = 1$. Moreover, G/[x,A] is finitely generated, as G is finitely generated. Since $(G \colon A) = n$ and G is torsion-free, it follows that $1 \neq x^n \in A$. Hence $x^n \in C_A(x)$ and therefore $1 \leq \operatorname{rank} C_A(x) < \operatorname{rank} A$ (if $\operatorname{rank} C_A(x) = \operatorname{rank} A$, then [x,A] would be a torsion subgroup of A, a contradiction since $x \notin A$). So

$$\operatorname{rank}[x, A] = \operatorname{rank}(A/C_A(x)) \le \operatorname{rank} A - 1$$

and hence $\operatorname{rank}(A/[x,A]) \ge 1$. We proved that A/[x,A] is infinite and hence G/[x,A] is infinite.

Since G/[x,A] is infinite, abelian and finitely generated, there exists a normal subgroup H of G such that $[x,A] \subseteq H$ and $G/H \simeq \mathbb{Z}$. The subgroup $B = A \cap H$ is abelian, normal in H and such that H/B is cyclic (because it is isomorphic to a subgroup of G/A). Since rank $B < \operatorname{rank} A$, the inductive hypothesis implies that H is left-ordered. Hence G is left-ordered.

Lagrange and Rhemtulla proved that the integral isomorphism problem has an affirmative solution for left-ordered groups. More precisely, if G is left-ordered and H is a group such that $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$, then $G \simeq H$, see [10].

Theorem 7.7 (Malcev–Neumann). Let G be left-ordered group. Then K[G] has no zero divisors and no non-trivial units.

Proof. If $\alpha = \sum_{i=1}^{n} a_i g_i \in K[G]$ and $\beta = \sum_{j=1}^{m} b_j h_j \in K[G]$, then

$$\alpha\beta = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j(g_i h_j). \tag{5.1}$$

Without loss of generality we may assume that $a_i \neq 0$ for all i and $b_j \neq 0$ for all j. Moreover, we may assume that $g_1 < g_2 < \cdots < g_n$. Let i, j be such that

$$g_i h_j = \min\{g_i h_j : 1 \le i \le n, 1 \le j \le m\}.$$

Then i=1, as i>1 implies $g_1h_j < g_ih_j$, a contradiction. Since $g_1h_j \neq g_1h_k$ whenever $k \neq j$, there exists a unique minimal element in the left hand side of Equality (5.1). The same argument shows that there is a unique maximal element in (5.1). Thus $\alpha\beta \neq 0$, as $a_1b_j \neq 0$, and therefore K[G] has no zero divisors. If, moreover, n>1 or m>1, then (5.1) contains at least two terms than cancel out and thus $\alpha\beta \neq 1$. It follows that units of K[G] are trivial.

Formanek proved that the zero divisors conjecture is true in the case of torsion-free super solvable. Brown and, independently, Farkas and Snider proved that the conjecture is true in the case of groups algebras (over fields of characteristic zero) of polycyclic-by-finite torsion-free groups. These results can be found in Chapter 13 of Passman's book [12].

§8. The braid group

Definition 8.1. Let $n \ge 1$. The **braid group** \mathbb{B}_n is the group with generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \qquad \text{if } 1 \le i \le n-2,$$

$$\sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \qquad \text{if } |i-j| > 1.$$

Note that $\mathbb{B}_1 = \{1\}$ and $\mathbb{B}_2 \simeq \mathbb{Z}$. The braid group \mathbb{B}_3 is generated by σ_1 and σ_2 with relations $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$.

Exercise 8.2. Prove that there exists a group homomorphism $\mathbb{B}_n \to \mathbb{S}_n$ given by $\sigma_i \mapsto (ii+1)$ for all $i \in \{1, ..., n-1\}$.

Note that if $n \ge 3$, then \mathbb{B}_n is a non-abelian group, as there exists a surjective group homomorphism $\mathbb{B}_n \to \mathbb{S}_n$.

Exercise 8.3. Let $n \ge 2$. Prove that the map deg: $\mathbb{B}_n \to \mathbb{Z}$, $\sigma_i \mapsto 1$, is a group homomorphism. Moreover, $\ker \deg = [\mathbb{B}_n, \mathbb{B}_n]$.

The previous result implies, in particular, that \mathbb{B}_n is an infinite group for all $n \geq 2$. Moreover, $\sigma_i^m \neq 1$ for all $m \in \mathbb{Z} \setminus \{0\}$ and all i.

Exercise 8.4. Prove that $\mathbb{B}_3 \simeq \langle x, y : x^2 = y^3 \rangle$ and that $\mathbb{B}_3 / Z(\mathbb{B}_3) \simeq \mathbf{PSL}_2(\mathbb{Z})$.

Exercise 8.5. Prove that the center $Z(\mathbb{B}_3)$ of \mathbb{B}_3 is the cyclic group generated by $(\sigma_1\sigma_2\sigma_1)^2$.

More generally, one can prove that the center of \mathbb{B}_n is generated by Δ_n^2 , where

$$\Delta_n = (\sigma_1 \cdots \sigma_{n-1})(\sigma_1 \cdots \sigma_{n-2}) \cdots (\sigma_1 \sigma_2) \sigma_1,$$

see for example [8, Theorem 1.24]. As a corollary, $\mathbb{B}_n \simeq \mathbb{B}_m$ if and only if n = m.

Exercise 8.6. Let $n \ge 3$. Prove that \mathbb{B}_n is not bi-ordered.

One can prove that the natural map $\mathbb{B}_n \to \mathbb{B}_{n+1}$ is an injective group homomorphism, this is not an easy proof (see [8, Corollary 1.14]). Moreover, the diagram

$$\mathbb{B}_n \longrightarrow \mathbb{S}_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{B}_{n+1} \longrightarrow \mathbb{S}_{n+1}$$

commutes.

xca:derivedB3

Exercise 8.7. Use the Reidemeister–Schreier's method to prove that $[\mathbb{B}_3, \mathbb{B}_3]$ is isomorphic to the free group in two letters.

A celebrated theorem of Dehornoy states that the braid group \mathbb{B}_n is left-ordered (see for example [8, Theorem 7.15]). The proof of this fact is quite hard. However, there is a nice short proof of the fact that \mathbb{B}_3 is left-ordered, see [2, §7.2].

Open problem 8.1 (Burau's representation). Let $\mathbb{B}_4 \to GL_4(\mathbb{Z}[t,t^{-1}])$ be the group homomorphism given by

$$\sigma_1 \mapsto \begin{pmatrix} 1 - t & t & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \sigma_2 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 - t & t & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 1 \end{pmatrix}, \quad \sigma_3 \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 - t & t \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Is this homomorphism injective?

In general, the Burau's representation $\mathbb{B}_n \to \mathbf{GL}_n(\mathbb{Z}[t,t^{-1}])$ is defined by

$$\sigma_j \mapsto I_{j-1} \oplus \begin{pmatrix} 1-t & t \\ 1 & 0 \end{pmatrix} \oplus I_{n-j-1},$$

where I_k denotes the $k \times k$ identity matrix.

It is known that the Burau's representation of \mathbb{B}_n is faithful for $n \le 3$ and not faithful for $n \ge 5$. Only the case n = 4 remains open.

Krammer [9] and Bigelow [1] independently proved that braid groups are linear.

§9. Locally indicable groups

Definition 9.1. A group G is **indicable** if there exists a non-trivial group homomorphism $G \to \mathbb{Z}$.

We know that braid groups are indicable. The free group F_n in n letters is indicable.

Definition 9.2. A group G is **locally indicable** if every non-trivial finitely generated subgroup is indicable.

Burns–Hale's theorem (see [2, Theorem 1.50]) states that a group G is left-ordered if and only if for every non-trivial finitely generated subgroup H of G there exists a left-ordered group L and a non-trivial group homomorphism $H \to L$. As a consequence, locally indicable groups are left-ordered.

Example 9.3. Since subgroups of free groups are free, it follows that F_n is locally indicable.

pro:LI_exact

Proposition 9.4. Let $1 \to K \to G \to Q \to 1$ be an exact sequence of groups. If K and Q are locally indicable, then G is locally indicable.

Proof. Let $g_1, \ldots, g_n \in G$ and $L = \langle g_1, \ldots, g_n \rangle$. Assume that $\beta(L) \neq \{1\}$. Since Q is locally indicable, there exists a non-trivial group homomorphism $\beta(L) \to \mathbb{Z}$. Then the composition $L \to Q \to \mathbb{Z}$ is then a non-trivial group homomorphism. Assume now that $\beta(L) = \{1\}$. Then there exist $k_1, \ldots, k_n \in K$ such that $\alpha(k_i) = g_i$ for all $i \in \{1, \ldots, n\}$. Note that $\alpha: \langle k_1, \ldots, k_n \rangle \to L$ is a group isomorphism. Since K is locally indicable, there exits a non-trivial group homomorphism $\langle k_1, \ldots, k_n \rangle \to \mathbb{Z}$. Thus the composition $L \to \langle k_1, \ldots, k_n \rangle \to \mathbb{Z}$ is a non-trivial group homomorphism and hence G is locally indicable.

As a consequence of the previous proposition, if G and H are locally indicable groups and $\sigma \colon G \to \operatorname{Aut}(H)$ is a group homomorphism, then $G \rtimes_{\sigma} H$ is locally indicable. In particular, the direct product of locally indicable groups is locally indicable.

Example 9.5. The group $G = \langle x, y : x^{-1}yx = y^{-1} \rangle$ is locally indicable. We know that G is torsion-free. Let $K = \langle y \rangle \simeq \mathbb{Z}$. Then $G/K \simeq \mathbb{Z}$ and then, since there is an exact sequence $1 \to \mathbb{Z} \to G \to \mathbb{Z} \to 1$ it follows from Proposition 9.4 that G is locally indicable.

xca:B3_LI

Exercise 9.6. Prove that \mathbb{B}_3 is locally indicable.

The previous exercise uses the fact that $[\mathbb{B}_3, \mathbb{B}_3]$ is isomorphic to the free group in two letters, see Exercise 8.7. An alternative solution to the previous fact goes as follows: \mathbb{B}_3 is the fundamental group of the trefoil knot and fundamental groups of knots are locally indicable.

Exercise 9.7. Prove that \mathbb{B}_4 is locally indicable.

The previous exercise might be harder than Exercise 9.6. One possible solution is based on using the Reidemeister–Schreier method to prove that $[\mathbb{B}_4,\mathbb{B}_4]$ is a certain semidirect product between free groups in two generators. Another solution: Let $f: \mathbb{B}_4 \to \mathbb{B}_3$ be the group homomorphism given by $f(\sigma_1) = f(\sigma_3) = \sigma_1$ and $f(\sigma_2) = \sigma_2$. Then $\ker f = \langle \sigma_1 \sigma_3^{-1}, \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_2^{-1} \rangle$ is isomorphic to the free group in two letters. Now use the exact sequence $1 \to \ker f \to \mathbb{B}_4 \to \mathbb{B}_3 \to 1$.

xca:relations

Exercise 9.8. Let $n \ge 5$. Consider the elements of \mathbb{B}_n given by

$$\beta_1 = \sigma_1^{-1} \sigma_2$$
, $\beta_2 = \sigma_2 \sigma_1^{-1}$, $\beta_3 = \sigma_1 \sigma_2 \sigma_1^{-2}$, $\beta_4 = \sigma_3 \sigma_1^{-1}$, $\beta_5 = \sigma_4 \sigma_1^{-1}$.

Prove the following relations:

- **1**) $\beta_1 \beta_5 = \beta_5 \beta_2$.
- **2)** $\beta_2\beta_5 = \beta_5\beta_3$.
- **3**) $\beta_1\beta_3 = \beta_2$.
- **4**) $\beta_1 \beta_4 \beta_3 = \beta_4 \beta_2 \beta_4$.
- **5**) $\beta_4 \beta_5 \beta_4 = \beta_5 \beta_4 \beta_5$.

Exercise 9.9. Let $n \ge 5$. Prove that \mathbb{B}_n is not locally indicable.

For the previous exercise one needs to show that every group homomorphism $f: \langle \beta_1, \dots, \beta_5 \rangle \to \mathbb{Z}$ is trivial. Hint: consider the abelianization of $\langle \beta_1, \dots, \beta_5 \rangle$.

§10. Unique product groups

Let *G* be a group and $A, B \subseteq G$ be non-empty subsets. An element $g \in G$ is a **unique product** in AB if $g = ab = a_1b_1$ for some $a, a_1 \in A$ and $b, b_1 \in B$ implies that $a = a_1$ and $b = b_1$.

Definition 10.1. A group G has the **unique product property** if for every finite non-empty subsets $A, B \subseteq G$ there exists at least one unique product in AB.

Proposition 10.2. *Left-ordered groups have the unique product property.*

Proof. Let G be a left-ordered group. Let $A = \{a_1, \ldots, a_n\} \subseteq G$ and $B \subseteq G$ nonempty and finite. Assume that $a_1 < a_2 < \cdots < a_n$. Let $c \in B$ be such that a_1c is the minimum of $a_1B = \{a_1b : b \in B\}$. We claim that a_1c admits a unique representation of the form $\alpha\beta$ with $\alpha \in A$ and $\beta \in B$. If $a_1c = ab$, then, since $ab = a_1c \le a_1b$, it follows that $a \le a_1$. Hence $a = a_1$ and b = c.

Exercise 10.3. Prove that groups with the unique product property are torsion-free.

The converse does not hold. Promislow's group is a celebrated counterexample.

Theorem 10.4 (Promislow). The group $G = \langle a, b : a^{-1}b^2a = b^{-2}, b^{-1}a^2b = a^{-2} \rangle$ does not have the unique product property.

Proof. Let

$$S = \{a^2b, b^2a, aba^{-1}, (b^2a)^{-1}, (ab)^{-2}, b, (ab)^2x, (ab)^2, (aba)^{-1}, \\ bab, b^{-1}, a, aba, a^{-1}\}. \quad (5.2) \quad \boxed{\text{eq:Promislow}}$$

We use GAP and the representation $G \to GL(4, \mathbb{Q})$ given by

$$a \mapsto \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

to check that G does not have unique product property, as each

$$s \in S^2 = \{s_1 s_2 : s_1, s_2 \in S\}$$

admits at least two different decompositions of the form s = xy = uv for $x, y, u, v \in S$. We first create the matrix representations of a and b.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];; gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
```

Now we create a function that produces the set *S*.

```
gap> Promislow := function(x, y)
> return Set([
> x^2 * y
> y^2 * x
> x*y*Inverse(x),
> (y^2*x)^(-1),
> (x*y)^{(-2)},
> y,
> (x*y)^2*x
> (x*y)^2,
> (x*y*x)^{(-1)}
> y*x*y,
> y^{(-1)},
> x,
> x*y*x,
> x^{(-1)}
]);
end;;
```

So the set S of (5.2) will be Promislow (a,b). We now create a function that checks whether every element of a Promislow subset admits more than one representation.

```
gap> is_UPP := function(S)
> local 1,x,y;
> l := [];
> for x in S do
> for y in S do
> Add(l,x*y);
> od;
> od;
> if ForAll(Collected(l), x->x[2] <> 1) then
> return false;
> else
> return fail;
> fi;
> end;;
```

Finally, we check whether every element of S admits more than one representation.

```
gap> S := Promislow(a,b);;
gap> is_UPP(S);
false
```

This completes the proof.

There are other examples.

Definition 10.5. A group G has the **double property of unique products** if for every finite non-empty subsets $A, B \subseteq G$ such that |A| + |B| > 2 there are at least two unique products in AB.

theorem:Strojnowski

Theorem 10.6 (Strojnowski). Let G be a group. The following statements are equivalent:

- 1) G has the double property of unique products.
- 2) For every non-empty finite subset $A \subseteq G$ contains at least one unique product in $AA = \{a_1 a_2 : a_1, a_2 \in A\}$.
- *3) G* has the unique product property.

Proof. It is trivial that $1) \Longrightarrow 2$) es trivial. Let us prove that $2) \Longrightarrow 3$). If G does not have the unique product property, there exist finite non-empty subsets $A, B \subseteq G$ such that every element of AB admists at least two representations. Let C = AB. Every element $c \in C$ is of the form $c = (a_1b_1)(a_2b_2)$ for some $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Since $a_2^{-1}b_1^{-1} \in AB$, there exist $a_3 \in A \setminus \{a_2\}$ and $b_3 \in B \setminus \{b_1\}$ such that $a_2^{-1}b_1^{-1} = a_3^{-1}b_3^{-1}$. Thus $b_1a_2 = b_3a_3$ and hence

$$c = (a_1b_1)(a_2b_2) = (a_1b_3)(a_3b_2)$$

has two different representations in AB, as $a_2 \neq a_3$ and $b_1 \neq b_3$.

We now prove that $3) \Longrightarrow 1$). Let us assume that G has the unique product property but it is not a group with double unique products. Then there exist finite non-empty subsets $A,B\subseteq G$ with |A|+|B|>2 such that in AB there exists a unique element ab with a unique representation in AB. Let $C=a^{-1}A$ and $D=Bb^{-1}$. Then $1\in C\cap D$ and the identity 1 admits a unique representation in CD (because 1=cd with $c=a^{-1}a_1\neq 1$ and $d=b_1b^{-1}\neq 1$ imply that $ab=a_1b_1$ with $a\neq a_1$ and $b\neq b_1$). Let $E=D^{-1}C$ and $F=DC^{-1}$. Every element of the set EF can be written as $(d_1^{-1}c_1)(d_2c_2^{-1})$. If either $c_1\neq 1$ or $d_2\neq 1$, then $c_1d_2=c_3d_3$ for some elements $c_3\in C\setminus\{c_1\}$ and $d_3\in D\setminus\{d_2\}$. Thus $(d_1^{-1}c_1)(d_2c_2^{-1})=(d_1^{-1}c_3)(d_3c_2^{-1})$ are two different representations for $(d_1^{-1}c_1)(d_2c_2^{-1})$. If either $c_2\neq 1$ or $d_1\neq 1$, then $c_2d_1=c_4d_4$ for some $d_4\in D\setminus\{d_1\}$ and some $c_4\in C\setminus\{c_2\}$. Since $d_1^{-1}c_2^{-1}=d_4^{-1}c_4^{-1}$, it follows that

$$(d_1^{-1}1)(1c_2^{-1}) = (d_4^{-1}1)(1c_4^{-1}).$$

Since |C| + |D| > 2, either C or D contains $c \ne 1$. Thus $(1 \cdot 1)(1 \cdot 1) = (1 \cdot c)(1 \cdot c^{-1})$. Therefore every element of EF admits at least two representations.

Exercise 10.7. Prove that if a group G satisfies the unique product property, then K[G] contains only trivial units.

In general it is extremely hard to check whether a given group has the unique product property. As a geometrical way to attack this problem, Bowditch introduced *diffuse groups*. If G is a torsion-free group and $A \subseteq G$ is a subset, we say that A is antisymmetric if $A \cap A^{-1} \subseteq \{1\}$, where $A^{-1} = \{a^{-1} : a \in A\}$. The set of **extremal elements** of A is defined as $\Delta(A) = \{a \in A : Aa^{-1} \text{ is antisymmetric}\}$. Thus

 $a \in A \setminus \Delta(A) \iff$ there exists $g \in G \setminus \{1\}$ such that $ga \in A$ and $g^{-1}a \in A$.

Definition 10.8. A group *G* is **diffuse** if for every subset $A \subseteq G$ such that $2 \le |A| < \infty$ one has $|\Delta(A)| \ge 2$.

Proposition 10.9. *Left-ordered groups are diffuse.*

Proof. Let G be a left-ordered group and $A = \{a_1, \dots, a_n\}$ be such that

$$a_1 < a_2 < \cdots < a_n$$
.

We claim that $\{a_1, a_n\} \subseteq \Delta(A)$. If $a_1 \in A \setminus \Delta(A)$, there exists $g \in G \setminus \{1\}$ such that $ga_1 \in A$ and $g^{-1}a_1 \in A$. Thus $a_1 \leq ga_1$ and $a_1 \leq g^{-1}a_1$. It follows that $1 \leq a^{-1}ga_1$ and $1 \leq a_1^{-1}g^{-1}a_1 = (a_1^{-1}ga_1)^{-1}$, a contradiction. Similarly, $a_n \in \Delta(A)$.

pro:difuso=>2up

Proposition 10.10. Diffuse groups have the double unique products.

Proof. Let G be a diffuse group that does not have double unique products. There exist non-empty subsets $A, B \subseteq G$ with |A| + |B| > 2 such that C = AB admits at most one unique product. Then $|C| \ge 2$. Since G is diffse, $|\Delta(C)| \ge 2$. If $c \in \Delta(C)$, then c admits a unique expression of the form c = ab with $a \in A$ and $b \in B$ (otherwise, if $c = a_0b_0 = a_1b_1$ with $a_0 \ne a_1$ and $b_0 \ne b_1$). If $g = a_0a_1^{-1}$, then $g \ne 1$,

$$gc = a_0a_1^{-1}a_1b_1 = a_0b_1 \in C.$$

Moreover, $g^{-1}c = a_1a_0^{-1}a_0b_0 = a_1b_0 \in C$. Hence $c \notin \Delta(c)$, a contradiction.

Open problem 10.1. Find a non-diffuse group with the unique product property.

§11. Connel's theorem

When K[G] is prime? Connel's theorem gives a full answer to this natural question in the case where K is of characteristic zero.

If S is a finite subset of a group G, then we define $\widehat{S} = \sum_{x \in S} x$.

lemma:sumN

Lemma 11.1. Let N be a finite normal subgroup of G. Then $\widehat{N} = \sum_{x \in N} x$ is central in K[G] and $\widehat{N}(\widehat{N} - |N|1) = 0$.

Proof. Assume that $N = \{n_1, ..., n_k\}$. Let $g \in G$. Since $N \to N$, $n \mapsto gng^{-1}$, is bijective,

$$g\widehat{N}g^{-1} = g(n_1 + \dots + n_k)g^{-1} = gn_1g^{-1} + \dots + gn_kg^{-1} = \widehat{N}.$$

Since nN = N if $n \in N$, it follows that $n\widehat{N} = \widehat{N}$. Thus $\widehat{N}\widehat{N} = \sum_{i=1}^k n_i \widehat{N} = |N|\widehat{N}$.

Si G es un grupo, consideramos el subconjunto

$$\Delta^+(G) = \{x \in \Delta(G) : x \text{ tiene orden finito}\}.$$

lem:DcharG

Lemma 11.2. Si G es un grupo, entonces $\Delta^+(G)$ es un subgrupo característico de G.

Proof. Claramente $1 \in \Delta^+(G)$. Sean $x, y \in \Delta^+(G)$ y sea H el subgrupo de G generado por el conjunto C formado por los finitos conjugados de x e y. Si |x| = n y |y| = m, entonces $c^{nm} = 1$ para todo $c \in C$. Como C es finito y cerrado por conjugación, el teorema de Dietzmann implica que H es finito. Luego $H \subseteq \Delta^+(G)$ y en particular $xy^{-1} \in \Delta^+(G)$. Es evidente que $\Delta^+(G)$ es un subgrupo característico pues para todo $f \in \operatorname{Aut}(G)$ se tiene que $f(x) \in \Delta^+(G)$ si $x \in \Delta^+(G)$.

La segunda aplicación del teorema de Dietzmann es el siguiente resultado:

lem:Connel

Lemma 11.3. Sea G un grupo y sea $x \in \Delta^+(G)$. Existe entonces un subgrupo finito H normal en G tal que $x \in H$.

Dejamos la demostración como ejercicio ya que el muy similar a lo que hicimos en la demostración del lema 11.2.

thm:Connel

Theorem 11.4 (Connell). Supongamos que el cuerpo K es de característica cero. Sea G un grupo. Las siguientes afirmaciones son equivalentes:

- 1) K[G] es primo.
- 2) Z(K[G]) es primo.
- 3) G no tiene subgrupos finitos normales no triviales.
- **4**) $\Delta^{+}(G) = 1$.

Proof. Demostremos que $(1) \Longrightarrow (2)$. Como Z(K[G]) es un anillo conmutativo, probar que es primo es equivalente a probar que no existen divisores de cero no triviales. Sean $\alpha, \beta \in Z(K[G])$ tales que $\alpha\beta = 0$. Sean $A = \alpha K[G]$ y $B = \beta K[G]$. Como α y β son centrales, A y B son ideales de K[G]. Como AB = 0, entonces $A = \{0\}$ o $B = \{0\}$ pues K[G] es primo. Luego $\alpha = 0$ o $\beta = 0$.

Demostremos ahora que $(2) \Longrightarrow (3)$. Sea N un subgrupo normal finito. Por el lema 11.1, $\widehat{N} = \sum_{x \in N} x$ es central en K[G] y $\widehat{N}(\widehat{N} - |N|1) = 0$. Como $\widehat{N} \neq 0$ (pues K tiene característica cero) y Z(K[G]) es un dominio, $\widehat{N} = |N|1$, es decir: $N = \{1\}$.

Demostremos que (3) \Longrightarrow (4). Sea $x \in \Delta^+(G)$. Por el lema 11.3 sabemos que existe un subgrupo finito H normal en G que contiene a x. Como por hipótesis H es trivial, se concluye que x = 1.

Finalmente demostramos que $(4) \Longrightarrow (1)$. Sean A y B ideales de K[G] tales que AB = 0. Supongamos que $B \neq 0$ y sea $\beta \in B \setminus \{0\}$. Si $\alpha \in A$, entonces, como $\alpha K[G]\beta \subseteq \alpha B \subseteq AB = 0$, el lema 4.7 de Passman implica que $\pi_{\Delta(G)}(\alpha)\pi_{\Delta(G)}(\beta) = 0$. Como por hipótesis $\Delta^+(G)$ es trivial, sabemos que $\Delta(G)$ es libre de torsión y luego $\Delta(G)$ es abeliano por el lema ??. Esto nos dice que $K[\Delta(G)]$ no tiene divisores de cero y luego $\alpha = 0$. Demostramos entonces que $B \neq 0$ implica que A = 0.

Theorem 11.5 (Connel). Sea K un cuerpo de característica cero y sea G un grupo. Entonces K[G] es artiniano a izquierda si y sólo si G es finito.

Proof. Si G es finito, K[G] es un álgebra de dimensión finita y luego es artiniano a izquierda. Supongamos entonces que K[G] es artiniano a izquierda.

Primero observemos que si K[G] es un álgebra prima, entonces por el teorema de Wedderburn K[G] es simple y luego G es el grupo trivial (pues si G no es trivial, K[G] no es simple ya que el ideal de aumentación es un ideal no nulo de K[G]).

§11 Connel's theorem

Como K[G] es artiniano a izquierda, es noetheriano a izquierda por Hopkins–Levitzky y entonces, K[G] admite una serie de composición por el teorema $\ref{Composition}$. Para demostrar el teorema procederemos por inducción en la longitud de la serie de composición de K[G]. Si la longitud es uno, $\{0\}$ es el único ideal de K[G] y luego K[G] es prima y el resultado está demostrado. Si suponemos que el resultado vale para longitud n y además K[G] no es prima, entonces, por el teorema de Connel, G posee un subgrupo normal G finito y no trivial. Al considerar el morfismo canónico G posee un subgrupo normal G finito y no trivial. Al considerar el morfismo canónico G posee un subgrupo normal G finito y no trivial. Al considerar el morfismo canónico G es finito.

Lecture 6

§12. The Yang–Baxter equation

We now briefly discuss set-theoretic solutions to the Yang-Baxter equation.

Definition 12.1. A *set-theoretic solution* to the Yang–Baxter equation (YBE) is a pair (X,r), where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map that satisfies

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r),$$

where, if $r(x, y) = (\sigma_x(y), \tau_y(x))$, then

fig:braid

$$r \times id: X \times X \times X \to X \times X \times X,$$
 $(r \times id)(x, y, z) = (\sigma_x(y), \tau_y(x), z),$ $id \times r: X \times X \times X \to X \times X \times X,$ $(id \times r)(x, y, z) = (x, \sigma_y(z), \tau_z(y)).$

The solution (X, r) is said to be *finite* if X is a finite set.

Figure 6.1: The Yang–Baxter equation.

Example 12.2. Let X be a non-empty set. Then (X, id) is a set-theoretic solution to the YBE.

Example 12.3. Let X be a non-empty set. Then (X,r), where r(x,y) = (y,x), is a set-theoretic solution to the YBE. This solution is known as the *trivial solution* over the set X.

By convention, we write

$$r(x, y) = (\sigma_x(y), \tau_y(x)).$$

lem:YB

Lemma 12.4. Let X be a non-empty set and $r: X \times X \to X \times X$ be a bijective map. Then (X,r) is a set-theoretic solution to the YBE if and only if

$$\sigma_{x}\sigma_{y} = \sigma_{\sigma_{x}(y)}\sigma_{\tau_{y}(x)}, \quad \sigma_{\tau_{\sigma_{y}(z)}(x)}\tau_{z}(y) = \tau_{\sigma_{\tau_{y}(x)}(z)}\sigma_{x}(y), \quad \tau_{z}\tau_{y} = \tau_{\tau_{z}(y)}\tau_{\sigma_{y}(z)}$$

$$for \ all \ x, y, z \in X.$$

Proof. We write $r_1 = r \times id$ and $r_2 = id \times r$. We first compute

$$\begin{split} r_1 r_2 r_1(x,y,z) &= r_1 r_2(\sigma_x(y),\tau_y(x),z) = r_1(\sigma_x(y),\sigma_{\tau_y(x)}(z),\tau_z\tau_y(x)) \\ &= \left(\sigma_{\sigma_x(y)}\sigma_{\tau_y(x)}(z),\tau_{\sigma_{\tau_y(x)}(z)}\sigma_x(y),\tau_z\tau_y(x)\right). \end{split}$$

Then we compute

$$\begin{split} r_2 r_1 r_2(x,y,z) &= r_2 r_1(x,\sigma_y(z),\tau_z(y)) = r_2(\sigma_x \sigma_y(z),\tau_{\sigma_y(z)}(x),\tau_z(y)) \\ &= \left(\sigma_x \sigma_y(z),\sigma_{\tau_{\sigma_y(z)}(x)}\tau_z(y),\tau_{\tau_z(y)}\tau_{\sigma_y(z)}(x)\right) \end{split}$$

and the claim follows.

If (X,r) is a set-theoretic solution, by definition the map $r: X \times X \to X \times X$ is invertible. By convention, we write

$$r^{-1}(x,y)=(\widehat{\sigma}_x(y),\widehat{\tau}_y(x)).$$

Note that this implies that

$$x = \widehat{\sigma}_{\sigma_x(y)} \tau_y(x), \quad y = \widehat{\tau}_{\tau_y(x)} \sigma_x(y).$$

It is easy to check that (X, r^{-1}) is a set-theoretic solution to the YBE. Thus Lemma 12.4 implies that the following formulas hold:

$$\widehat{\tau}_{y}\widehat{\tau}_{x} = \widehat{\tau}_{\tau_{y}(x)}\widehat{\tau}_{\sigma_{x}(y)}, \quad \widehat{\sigma}_{x}\widehat{\sigma_{y}} = \widehat{\sigma}_{\sigma_{x}(y)}\widehat{\sigma}_{\tau_{y}(x)}.$$

Example 12.5. Let $X = \{1, 2, 3, 4\}$ and $r(x, y) = (\sigma_x(y), \tau_y(x))$, where

$$\sigma_1 = (132),$$
 $\sigma_2 = (124),$ $\sigma_3 = (143),$ $\sigma_4 = (234),$ $\tau_1 = (12)(34),$ $\tau_2 = (12)(34),$ $\tau_3 = (12)(34),$ $\tau_4 = (12)(34).$

Then r is invertible with $r^{-1}(x, y) = (\widehat{\sigma}_x(y), \widehat{\tau}_y(x))$ given by

$$\widehat{\sigma}_1 = (12)(34),$$
 $\widehat{\sigma}_2 = (12)(34),$ $\widehat{\sigma}_3 = (12)(34),$ $\widehat{\sigma}_4 = (12)(34),$ $\widehat{\tau}_1 = (142),$ $\widehat{\tau}_2 = (123),$ $\widehat{\tau}_3 = (243),$ $\widehat{\tau}_4 = (134).$

Definition 12.6. A *homomorphism* between the set-theoretic solutions (X,r) and (Y,s) is a map $f: X \to Y$ such that the diagram

$$\begin{array}{ccc} X \times X & \stackrel{r}{\longrightarrow} X \times X \\ f \times f \downarrow & & \downarrow f \times f \\ Y \times Y & \stackrel{s}{\longrightarrow} Y \times Y \end{array}$$

is commutative, that is $s(f \times f) = (f \times f)r$. An *isomorphism* of solutions is a bijective homomorphism of solutions.

Since we are interested in studying the combinatorics behind set-theoretic solutions to the YBE, it makes sense to study the following family of solutions.

Definition 12.7. We say that a set-theoretic solution (X,r) to the YBE is *non-degenerate* if the maps σ_x and τ_x are permutations of X.

By convention, a *solution* we will mean a non-degenerate **set-theoretic** solution to the YBE.

lem:LYZ

Lemma 12.8. Let (X,r) be a solution.

- 1) Given $x, u \in X$, there exist unique $y, v \in X$ such that r(x, y) = (u, v).
- 2) Given $y, v \in X$, there exist unique $x, u \in X$ such that r(x, y) = (u, v).

Proof. For the first claim take $y = \sigma_x^{-1}(u)$ and $v = \tau_y(x)$. For the second, $x = \tau_y^{-1}(v)$ and $u = \sigma_x(y)$.

The bijectivity of r means that any row determines the whole square. Lemma 12.8 means that any column also determines the whole square, see Figure 6.2.

fig:braid

Figure 6.2: Any row or column determines the whole square.

Example 12.9. If the map $(x, y) \mapsto (\sigma_x(y), \tau_y(x))$ satisfies the Yang–Baxter equation, then so does $(x, y) \mapsto (\tau_x(y), \sigma_y(x))$.

exa:Lyubashenko

Example 12.10. Let X be a non-empty set and σ and τ be bijections on X such that $\sigma \circ \tau = \tau \circ \sigma$. Then (X,r), where $r(x,y) = (\sigma(y),\tau(x))$, is a non-degenerate solution. This is known as the *permutation solution* associated with permutations σ and τ .

exa:Venkov

Example 12.11. Let G be a group. Then (G,r), where $r(x,y) = (xyx^{-1},x)$, is a solution.

Example 12.12. Let $n \ge 2$ and $X = \mathbb{Z}/(n)$ be the ring of integers modulo n. Prove that the map r(x, y) = (2x - y, x) satisfies the the set-theoretic YBE.

The following result was proved by Lu, Yan and Zhu.

thm:LYZ

Theorem 12.13 (Lu–Yan–Zhu). *Let* G *be a group,* $\xi: G \times G \to G$, $\xi(x,y) = x \triangleright y$, *be a left action of the group* G *on itself as a set and* $\eta: G \times G \to G$, $\eta(x,y) = x \triangleleft y$, *be a right action of the group* G *on itself as a set. If the compatibility condition*

$$uv = (u \triangleright v)(u \triangleleft v)$$

holds for all $u, v \in G$, then the pair (G, r), where

$$r: G \times G \to G \times G$$
, $r(u,v) = (u \triangleright v, u \triangleleft v)$

is a solution. Moreover, if r(x, y) = (u, v), then

$$r(x^{-1}, y^{-1}) = (u^{-1}, v^{-1}), \quad r(x^{-1}, u) = (y, v^{-1}), \quad r(v, y^{-1}) = (u^{-1}, x).$$

Proof. We write $r_1 = r \times id$ and $r_2 = id \times r$. Let

$$r_1r_2r_1(u, v, w) = (u_1, v_1, w_1), \quad r_2r_1r_2(u, v, w) = (u_2, v_2, w_2).$$

The compatibility condition implies that $u_1v_1w_1 = u_2v_2w_2$. So we need to prove that $u_1 = u_2$ and $w_1 = w_2$. We note that

$$u_1 = (u \triangleright v) \triangleright ((u \triangleleft v) \triangleright w), \qquad w_1 = (u \triangleleft v) \triangleleft w,$$

$$u_2 = u \triangleright (v \triangleright w), \qquad w_2 = (u \triangleleft (v \triangleright w)) \triangleleft (v \triangleleft w).$$

Using the compatibility condition and the fact that ξ is a left action,

$$u_1 = ((u \triangleright v)(u \triangleleft v)) \triangleright w = (uv) \triangleright w = u \triangleright (v \triangleright w) = u_2.$$

Similarly, since η is a right action,

$$w_2 = u \triangleleft ((v \triangleright w)(v \triangleleft w)) = u \triangleleft (vw) = (u \triangleleft v) \triangleleft w = w_1.$$

To prove that r is invertible we proceed as follows. Write r(u, v) = (x, y), thus $u \triangleright v = x$, $u \triangleleft v = y$ and uv = xy. Since

$$(y \triangleright v^{-1})u = (y \triangleright v^{-1})(y \triangleleft v^{-1}) = yv^{-1} = x^{-1}u,$$

it follows that $y \triangleright v^{-1} = x^{-1}$, i.e. $v^{-1} = y^{-1} \triangleright x^{-1}$. Similarly,

$$v(u^{-1} \triangleleft x) = (u^{-1} \triangleright x)(u^{-1} \triangleleft x) = u^{-1}x = vv^{-1}$$

implies that $u^{-1} = y^{-1} \triangleleft x^{-1}$. Clearly $r^{-1} = \zeta(i \times i) r(i \times i) \zeta$, is the inverse of r, where $\zeta(x,y) = (y,x)$ and $i(x) = x^{-1}$.

§12 The Yang-Baxter equation

Proposition 12.14. *Under the assumptions of Theorem 12.13, if* r(x, y) = (u, v)*, then*

$$r(v^{-1}, u^{-1}) = (y^{-1}, x^{-1}), \quad r(x^{-1}, u) = (y, v^{-1}), \quad r(v, y^{-1}) = (u^{-1}, x).$$

Proof. In the proof of Theorem 12.13 we found that the inverse of the map r is given by $r^{-1} = \zeta(i \times i)r(i \times i)\zeta$, where $\zeta(x, y) = (y, x)$ and $i(x) = x^{-1}$. Hence

$$r^{-1}(y^{-1}, x^{-1}) = \zeta(i \times i)r(i \times i)\zeta(y^{-1}, x^{-1}) = \zeta(i \times i)r(x, y) = (v^{-1}, u^{-1}).$$

It follows that $r(v^{-1}, u^{-1}) = (y^{-1}, x^{-1})$. To prove the equality $r(x^{-1}, u) = (y, v^{-1})$ we proceed as follows. Since r(x, y) = (u, v), it follows that $x \triangleright y = u$. Then $x^{-1} \triangleright u = y$ and hence $r(x^{-1}, u) = (y, z)$ for some $z \in G$. Since xy = uv and $x^{-1}u = yz$, it immediately follows that $yt = yv^{-1}$. Then $z = v^{-1}$. Similarly one proves $r(v, y^{-1}) = (u^{-1}, x)$. \square

References

- 1. S. J. Bigelow. Braid groups are linear. J. Amer. Math. Soc., 14(2):471-486, 2001.
- A. Clay and D. Rolfsen. Ordered groups and topology, volume 176 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2016.
- 3. The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.11.1, 2021.
- 4. D. García-Lucas, L. Margolis, and A. del Río. Non-isomorphic 2-groups with isomorphic modular group algebras. *J. Reine Angew. Math.*, 783:269–274, 2022.
- G. Gardam. A counterexample to the unit conjecture for group rings. Ann. of Math. (2), 194(3):967–979, 2021.
- B. J. Gardner and R. Wiegandt. Radical theory of rings, volume 261 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 2004.
- 7. M. Hertweck. A counterexample to the isomorphism problem for integral group rings. *Ann. of Math.* (2), 154(1):115–138, 2001.
- 8. C. Kassel and V. Turaev. *Braid groups*, volume 247 of *Graduate Texts in Mathematics*. Springer, New York, 2008. With the graphical assistance of Olivier Dodane.
- 9. D. Krammer. Braid groups are linear. Ann. of Math. (2), 155(1):131–156, 2002.
- R. H. Lagrange and A. H. Rhemtulla. A remark on the group rings of order preserving permutation groups. *Canad. Math. Bull.*, 11:679–680, 1968.
- 11. T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.
- D. S. Passman. *The algebraic structure of group rings*. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original.
- 13. J.-P. Serre. *Finite groups: an introduction*, volume 10 of *Surveys of Modern Mathematics*. International Press, Somerville, MA; Higher Education Press, Beijing, 2016. With assistance in translation provided by Garving K. Luli and Pin Yu.

Index

Braid group, 27	de Neumann, 13
Brown's theorem, 26	Levi's theorem, 23
Burau's representation, 28	
Burns-Hale's theorem, 28	Malcev-Neumann's theorem, 26
Dehornoy's theorem, 28	Niroomand's theorem, 19
Dietzmann's theorem, 18	
	Passman's lemma, 15
Farkas–Snider's theorem, 26	Passman's theorem, 16
Formanek's theorem, 26	Promislow's group, 3
	Promislow's theorem, 30
Gardam's theorem, 4	
Group	Reidemeister-Schreier's method, 27
bi-ordered, 21	Ring
diffuse, 32	reduced, 7
double unique product, 31	
indicable, 28	Schur's theorem, 19
left-ordered, 24	Solution, 37
locally indicable, 28	finite, 37
unique product, 30	non-degenerate, 39
	trivial, 37
Hilton-Niroomand's theorem, 20	Strojonowski's theorem, 31
	Subgroup
Idempotent, 7	characteristic, 11
Lagrange–Rhemtulla's theorem, 26	Teorema
Lema	de Connel, 34