

Introduction to Internet #1

Introduction to Internet and Web

Table of Contents

- **❖** What is the Internet?
- **❖** Network Structure
- **❖** Internet Structure
- History of the Internet

01. WHAT IS THE INTERNET?

What is the Internet?

- Internet = Inter- + net (work)
 - "network of networks"
- **❖** Various types of networks
 - Internet Service Provider (ISP)

What Compose the Internet?

HW components

- hosts (=end systems)
 - Packets (chunks of data)
- interconnection devices
 - Routers and switches
- links
 - copper, fiber, radio, satellite

SW components

- operating software
- application programs
- protocols

Communication Protocol

Definition

 a defined set of rules and regulations that determine how data is transmitted in telecommunications and computer networking (from Wikipedia)

출처 - http://rtrfm.com.au/story/talk-the-talk-why-its-hard-to-learn-a-language/

Communication Protocol

***** Human protocol vs. Comm. protocol

Communication Protocol

- **❖** All communication activity in Internet governed by protocols
- Protocols define
 - message format
 - order of messages sent and received among network entities
 - actions taken on message transmission, receipt

02. NETWORK STRUCTURE

Network Structure

Network edge

- hosts: clients and servers
- servers often in data center

❖ Network core

Interconnected routers or switches

Network Edge

- Takes an application message
- Breaks it into smaller chunks, known as packets, of length less than MTU
 - Maximum Transmission Unit (MTU)
- **❖** Transmits packet into access network
 - link transmission rate,a.k.a. link capacity or link bandwidth

transmission below the delay time needed to transmit
$$L$$
-bit below the delay packet into link the delay time needed to transmit L -bit below R (bits/sec)

Network Core

Mesh of interconnected routers

***** Function

 packet forwarding from one router (or switch) to the next along the path from source to dest.

Switching Mechanisms

Circuit Switching

- End-end resources reserved for "call" between src. & dest.
- Entire data flew along the path like water

Packet Switching

- Entire data broken into small packets
- Each packet has its destination address
- Each packet handled independently

Circuit Switching: Detail

- Resources dedicated to each call
 - circuit segment idle if not used by the call (no sharing)
- Commonly used in traditional telephone networks
- Channel allocation methods: FDM, TDM

Packet Switching: Detail

- Packet transmitted at full link capacity
- Takes L/R seconds to transmit L-bit packet into link at R bps
- Store-and-forward: entire packet must arrive at router before forwarded to the next
- End-end delay ≈ 2L/R

numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- One-hop transmission delay = 5s
- End-end delay \approx 10s

Switching: Comparison

- Packet switching allows more users to use network!
- Example
 - 1 Mbps link
 - each user:
 - 100 kbps when "active"
 - only 10% of time active
 - circuit switching
 - 10 users
 - packet switching
 - with 35 users, probability of 10 users being active at the same time is about .0004

$$1 - \sum_{k=0}^{10} {35 \choose k} \left(\frac{1}{10}\right)^k \left(\frac{9}{10}\right)^{35-k} = 0.0004243$$

Switching: Comparison

- Circuit switching guarantees the quality of service for each call!
- On the other hand, packet switching may suffer from queuing and loss
 - if arrival rate exceeds transmission rate of link
 - packet queued before being transmitted
 - can be dropped (lost) if memory fills up

03. INTERNET STRUCTURE

Who's in charge of the Internet?

Nobody! Or Everybody!

- Youtube link: https://youtu.be/Dxcc6ycZ73M?t=90
- independently operated networks
- End systems connect to Internet via access ISPs (Internet Service Providers)
 - residential, company, and university ISPs
- Access ISPs in turn must be interconnected
 - so that any two hosts can be communicated
- *Resulting network of networks is very complex
 - evolution driven by economics and national policy

Question: given millions of access ISPs, how to connect them together?

❖ Naïve method: connect each access ISP to every other access ISP

❖ Scalable method: connect each access ISP to one global transit ISP

❖ Competing ISPs appear... which must be interconnected

❖ Regional networks arise to connect access networks to ISPs

Content provider (e.g., Google, Microsoft, Akamai) run their own network to bring services and content close to end users

Seen vertically as:

04. HISTORY OF THE INTERNET

Internet History (1961~1972)

***** Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational
- **1972**
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

THE ARPA NETWORK

Internet History (1972~1980)

Internetworking, new and proprietary nets

- 1974: Cerf and Kahn architecture for interconnecting network
- 1976: Ethernet at Xerox PARC
- 1979: ARPAnet has 200 nodes

출저 - http://www.amongtech.com/unsung-heroes-internet-pioneers-youve-never-heard/

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Internet History (1980~1990)

New protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Internet History (1990~2000)

Commercialization, the Web, new apps

- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- Early 1990's: Web
 - HTML, HTTP: Tim Berners-Lee
 - 1994: Mosaic, later Netscape
 - · Commercialization of the Web
- Late 1990's-2000's
 - more killer apps: instant messaging, P2P file sharing
 - network security to forefront
 - est. 50 million host, 100 million+ users

Internet History (Present)

Present

- 5B devices attached to Internet (2016)
 - smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: ~ one billion users
- Service providers (Google, Microsoft) create their own networks
 - bypass Internet, providing "instantaneous" access to search, video content, email, etc.
- e-commerce, universities, enterprises running their services in "cloud" (e.g., Amazon EC2)

요 약

> Internet

- Network of networks
- Hots, interconnection devices, links

> Network structure

Network edge and network core

> Internet structure

- Several tiers of internet service providers
- > Internet history

