

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Graduação em Engenharia de Sistemas Otimização Não Linear - Trabalho Computacional 1 2017-02 Prof. Felipe Campelo Matheus Silva Araujo - 2013066265

1 Introdução

Métodos de direção de busca para otimização irrestrita partem da ideia básica de, a partir de um ponto, encontrar um novo ponto na direção de decrescimento da função. E a partir desse novo ponto, repetir o processo até que um ponto que atenda os critérios desejados seja encontrado.

A primeira implementação dessa ideia é o *Método do Gradiente*, que encontra o novo ponto na reta definida pelo ponto corrente e o gradiente da função objetivo.

Melhorias nessa implementação são feitas nos $M\'{e}todos~Quase-Newton$, que também consideram a curvatura da função.

Quatro desses métodos serão avaliados nesse Trabalho Computacional.

2 Métodos analisados

Nesse Trabalho Computacional foram implementados quatro métodos usando Matlab. Os quatro métodos foram avaliados usando duas funções objetivos.

A seguir são apresentados os métodos e, posteriormente, os resultados obtidos.

2.1 Método do Gradiente

O Método do Gradiente leva em consideração a avaliação do gradiente da função no ponto corrente.

A ideia básica do método é encontrar o gradiente da função. Definida essa direção, um ponto de mínimo nessa direção é encontrado, esse ponto passa a ser o novo ponto corrente e o método é repeito até que os critérios de parada sejam satisfeitos.

Para utilizar esse método é necessário que a função objetivo seja diferenciável.

Para o algoritmo implementado, o critério de parada utilizado foram as condições necessárias de primeira ordem, i.e., a norma do vetor gradiente deve se aproximar de 0.

2.2 Método de Newton Modificado

O *Método de Newton* inclui na definição do novo ponto o cálculo da *Hessiana* da função. Para funções quadráticas, a convergência acontecerá em apenas uma iteração. No entanto, para funções de maior ordem, o método usando puramente a *Hessiana* pode não convergir.

Para solucionar isso, é incluída uma pequena modificação no método, a minimização unidimensional em cada direção.

Nesse método, é necessário que a função objetivo seja duas vezes diferenciável.

O critério de parada utilizado na implementação do algoritmo foi o mesmo do método anterior.

2.3 Método da Família de Broyden

Os *Métodos da Família de Broyden* incluem dois métodos: o *Método BFP* e o *Método BFGS*, nomeados em homenagem a seus autores.

Esses métodos constroem de forma iterativa uma matriz \widetilde{H}_k , equivalente à inversa da Hessiana da função. A matriz \widetilde{H}_k é então utilizada para definir o novo ponto.

Os dois métodos se diferenciam apenas na fórmula usada para definir a matriz \widetilde{H}_k .

Novamente, foi utilizada a redução da norma do gradiente como critério de parada na implementação do algoritmo.

2.4 Método do Gradiente Conjugado

O Método do Gradiente Conjugado parte do sistema de equações lineares da forma:

$$Ax = b$$

Define a minimalização da função:

$$f(x) = \frac{1}{2}x'Ax - bx + c$$

E a partir dessa minimalização define β_k que é utilizado na iteração.

3 Resultados

Para avaliar os algoritmos implementados foram utilizadas as duas funções f_1 e f_2 , definidas a seguir:

$$f_1(x) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2$$

$$f_2(x) = \sum_{i=1}^n \sum_{j=1}^i (x_j - j)^2$$

Para f_1 , $x_0 = [-1.2; 1.0]$ e f_2 , $x_0 = [5.0; 5.0; ...; 5.0]$.

3.1 Função f_1

Para a função f_1 , o único código implementado que convergiu para um ponto de mínimo foi o $M\acute{e}todo\ de$ $Newton\ Modificado$. É possível que haja alguma falha na implementação dos algoritmos ou da própria função que não foi corrigida até o momento do envio do Trabalho.

O Método de Newton convergiu para o ponto x = [0.838655; 0.707494], onde $f_1(x) = 0.0277572$, com 73 iterações e NCF¹=2012.

O gráfico com as curvas da nível da função e os pontos da iteração é apresentado na Figura 1.

 $^{^{1}}$ Número de chamadas de funções, quantidade de vezes em que a função objetivo foi avalida

Figura 1: f_1 - $M\'{e}todo$ de Newton Modificado

3.2 Função f_2

Já para a função f_2 , os quatro métodos encontraram um ponto de mínimo. Os quatro métodos encontraram o mínimo próximo ao ponto [1;2;3;4;5;6;7;8;9]. De fato, $f_2=0$ nesse ponto.

O método que convergiu mais rápido foi o *Método de Newton*, com 12 iterações. No entanto, o que fez menor número de avaliações da função foi o *Método do Gradiente Conjugado*, 821.

Os resultados dos métodos são apresentados na Tabela 1. Um gráfico do valor de $f_2(x)$ em função de NCF é apresentado na Figura 2.

Figura 2: $f_2(x)$ em função de NCF

Tabela 1: Resultados das avaliações para f_2

Método	Resultados da Iterações	NCF	Ponto	Valor
				no ponto
Gradiente	31	1011	1.000066 2.000016 3.000000 4.000000 5.000000 6.000000	1.69374e-05
			7.000000 8.000000 9.000000 9.995890 0.999951	
Newton Modificado	12	2065	1.999838 2.999725 3.999613 4.999500 5.999387 6.999275 7.999162 8.999049 9.998937	1.24386e-05
Família Broyden	25	882	0.999825 1.999741 2.999561 3.999712 4.999518 5.999359 6.999384 7.999140 8.999323 9.999056	1.20232e-05
Gradiente Conjugado	25	821	0.999402 1.999500 2.999500 3.999500 4.999500 5.999499 6.999500 7.999500 8.999500 9.995931	3.11331e-05

4 Conclusão

Os quatro métodos foram implementados e apesar do insucesso na avaliação de f_1 , em f_2 os quatro métodos encontraram o mínimo próximo ao mesmo ponto.

Para f_2 , os quatro métodos encontraram suficientemente próximos do ponto de mínimo.

O *Método de Newton Modificado* precisou de um número menor de iterações, no entanto, fez o maior número de avaliações da função, para calcular a Hessiana.

Já os métodos do $Gradiente\ Conjugado$ e da $Família\ Broyden$ fizeram um número pouco menor de iterações do que o $M\acute{e}todo\ do\ Gradiente$ e precisam de menos avalidações da função.