Sensitivity conjecture

 \ldots or a 1-page proof of an \approx 30 y.o. problem

Svyatoslav Gryaznov

PDMI RAS

December 22, 2020

Sensitivity

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function.

Is it "hard" to flip its value?

- For a fixed input: Can we change it by flipping only one bit?
- ▶ In the worst case?

Sensitivity

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function. For $x \in Q$ let x^J be a vector with all x_j flipped.

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

For a fixed input $x \in Q^n$:

$$\mathsf{s}(f,x) = \mathsf{max}\left\{|J| \mid J \subseteq [n] : \forall i \in J. \ f(x) \neq f(x^{\{i\}})\right\}$$

▶ In the worst case: $s(f) = \max_{x \in Q^n} s(f, x)$

What if we can flip not only one bit, but a block of bits?

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function. For $x \in Q$ let x^J be a vector with all x_j flipped.

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

$$X = (X_1, X_1, X_5, X_7, X_5, X_6, X_7, X_8)$$

For a fixed input $x \in Q^n$:

$$\mathsf{bs}(f,x) = \mathsf{max}\left\{k \;\middle|\; B_1 \sqcup B_2 \sqcup \ldots \sqcup B_k \subseteq [n] : \forall i \in [k]. \; f(x) \neq f(x^{B_k})\right\}$$

► In the worst case: $bs(f) = \max_{x \in Q^n} bs(f, x)$

$$X = \left(\begin{array}{c} X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8} \\ B_{1} \\ B_{2} \\ B_{3} \\ B_{4} \\ B_{5} \\$$

How are they related?

How are they related?

Obviously, $s(f) \leq bs(f)$.

$$J=\{i_1,..,i_K\}$$
 is optimal for $s(f,x)$
Consider $B_i=\{i_j\}=>bs(f,x)>K$

How are they related?

Obviously, $s(f) \leq bs(f)$.

Sensitivity Conjecture [Nisan, Szegedy] (now Theorem [Huang])

bs
$$(f) \le s(f)^C$$
, for a fixed constant $C \ge 1$
(It holds for $C = 4$)

Low-sensitivity (or "smooth") functions:

► (Computational) are easy to compute even in the simplest models (like decision trees).

Low-sensitivity (or "smooth") functions:

- ► (Computational) are easy to compute even in the simplest models (like decision trees).
- (Algebraical) have low degree as real polynomials.

Low-sensitivity (or "smooth") functions:

- ► (Computational) are easy to compute even in the simplest models (like decision trees).
- (Algebraical) have low degree as real polynomials.
- Combinatorial applications.
- Randomized and quantum query complexity.
- Certificate complexity.
- **.**..

Computational application: Decision trees

Relation with decision trees $bs(f) \leq D(f) \leq bs(f)^3$

Algebraic application

Polynomial $p: \mathbb{R}^n \to \mathbb{R}$ represents f if

For all
$$x \in \{0, 1\}^n$$
. $p(x) = f(x)$.

The degree deg(f) of f is the degree of a unique multilinear p that represents f.

Relation with deg f

$$\sqrt{\mathsf{bs}(f)} \le \mathsf{deg}(f) \le \mathsf{bs}(f)^3$$

Supplementary Theorem

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function.

Theorem: vertex with large degree

Any set *H* of $2^{n-1} + 1$ vertices of $\{0, 1\}^n$ contains a vertex with degree $\geq \sqrt{n}$.

What we need

The linear system of m equations and m + 1 variables has a non-trivial solution.

Proof (a simplification by Fedya Petrov)

Exists by the theorem above.

Proof: Weight function

For $x = (x_1, \dots, x_k)$ define

$$W_i(x) = (-1)^{x_1 + \dots + x_{i-1}}.$$

Clearly:

$$w_i(x) = w_i(x^i).$$

Also:

$$w_i(x)w_j(x)w_i(x^j)w_j(x^i) = -1$$
 for $i \neq j$.

Proof: Relations

$$\sqrt{n} \cdot f(y) = \sum_{i=1}^n w_i(y) f(y^i), \text{ for all } y \in \{0,1\}^n.$$

They're linearly dependent:

For $y = (x_1, \dots, x_{n-1}, 0) = x0$:

$$\sqrt{n} \cdot f(x0) = f(x1) + \sum_{i=1}^{n-1} w_i(x) f(x^i 0), \text{ for all } y \in \{0, 1\}^n,$$

$$\sqrt{n} \cdot f(x1) = f(x0) - \sum_{i=1}^{n-1} w_i(x) f(x^i 1), \text{ for all } y \in \{0, 1\}^n.$$

Now substitute the former into the latter.

Proof: QED

Choose $y \in \{0, 1\}^n$ s.t. |f(y)| is maximal. From

$$\sqrt{n} \cdot f(y) = \sum_{i=1}^{n} w_i(y) f(y^i), \text{ for all } y \in \{0,1\}^n.$$

it follows that for at least \sqrt{n} elements $f(y^i) \neq 0$, hence they are in H.

Proof: Motivation

There is only 2^{n-1} linearly independent equations since the operator

$$f(y) \mapsto \sum_{i=1}^n w_i(y) \cdot f(y^i)$$

has an eigensubspace of dimension 2^{n-1} for the eigenvalue \sqrt{n} .

Possibly Part 2

▶ Why we defined such an operator?

Possibly Part 2

- ▶ Why we defined such an operator?
- It can be explained using expander graphs.