Exercise 1 "One-liners" 1P each = 8	зP								
Give a short (one line) answer/explanation using the results from the lecture and the exercises.									
(a) Our notions of CPA and CCA security are based on the idea of indistinguishable encryptions. State the name of anoth notion of security used for ES.	ier								
(b) What is a safe prime?									
(c) Name a polynomial-time algorithm for testing primality.									
(d) Why is the RSA-problem not a OWF over \(\mathbb{Z}_p^{\ldot}, \cdot, 1\)\) with p prime?	-								
(e) How many generators does ⟨Z [*] ₁₁₃ , ·, 1⟩ possess? Remark: 113 is prime.	-								
(0) **	-								

(1)	low many primes are asymptotically in the interval [0, 2"]?	
(g)	live an example of a family of groups w.r.t. which the DDH is conjectured to be hard	1.

(h) What is OAEP used for? Schantic Scanity is sage iff p=2q+1 with 9,9 prime Miller - Rabin Leov (or AKS) Compulation of $\lambda(p)=p-1$ is trivial. (i) (Z/1310) =(Z/1121+) -> (112)= ((16.7) 8.6=48 Quadratic residues modulo a safe pome (h) Probabilistic padding scheme

Exercise 2 2P+2P+1P=5P

(a) State which of the following cryptographic primitives resp. schemes are known to exist (as discussed in the lecture) under the assumption that CPA-secure PKES exist:

PRG, CCA-secure PKES, secure MAC, perfectly secret ES, CRHF, secure DSS, UOWHF

- (b) For which of the above primitives resp. schemes is their existence known to be equivalent to the existence of OWF?
- (c) State a conjecture which is known to suffice for CCA-secure PKES to exist.

Exercise 3

3P+2P+1P+1P=7P

Let F be a PRF of key length n and block length l(n).

- (a) Define Gen, and Enc for F-rCTR (randomized counter mode) ES.
- (b) Show that F-rCTR ES is not CCA-secure.
- (c) What is a possible advantage of F-rCTR when compared to F-rCBC (randomized cipher block chaining)?
- (d) The CPA-security bound derived for F-rCTR in the lecture depends not only on the probability that an adversary can distinguish F from a RO but also on the block length of F. Why?

(a)	Gen:	on iv	rput -	1 ⁿ (sutput	R &	26,13	1
	Evc:	Given	m	€70,	13*			
		pad					s Ha	
		Į mį	id a	Coninio	nal) mu	stiple	of li	Su)
	2)	Split in:	in blod	es of le	uzka l	(n)·		
					(
		choose						20.1
	4) (ompute	i c	ci) =	W (!)	FR (LSti	mod 2 (4) 7)
	<i>5</i>) o	atput:	¢ :	= [5] c	=n) - · · ·	(CS))
	LShare	- 1-7	: 30/	۱, , ۵	2 -13 -	> {	20,17	
	18	Dome cr	codi. LS+.	17			5+27	
	——————————————————————————————————————	co) mc.	1) 	-7 7	\times	[- (s)	He John (3)	

Exercise 4

3P 3P 3P

Let $(h_n)_{n\in\mathbb{N}}$ be a collection of compression functions with $h_n: \{0,1\}^{2n} \to \{0,1\}^n$ for $n \in \mathbb{N}$.

(a) Describe how the Merkle-Damgård construction is used to construct from h_n a collection of hash functions $H_{n,IV}$.

What is the domain of $H_{n,IV}$?

Name one cryptographic property that $H_{n,IV}$ inherits from h_n .

Let F be a PRF of key and block length n. We can extend the domain of F by applying the Merkle-Damgård construction to $h_n(x||y) := F_x(y)$ (for $x, y \in \{0, 1\}^n$). Denote by $\overline{F}_{IV} := H_{n,IV}$ the resulting function for $IV \in \{0, 1\}^n$.

- (b) Show that F̄_{IV} is not a PRF for IV ∈ {0, 1}ⁿ the secret key.
- (c) Define (Gen, Mac, Vrf) for F-NMAC. Feel free to use F.

Exercise 5

3P+1P+P+P+2P=9P

The multiplicative group modulo N is denoted by $\mathbb{Z}_{N}^{\bullet} = (\mathbb{Z}_{N}^{\bullet}, \cdot, 1)$. Let

$$f_{(N,e)}: \mathbb{Z}_N^{\bullet} \to \mathbb{Z}_N^{\bullet}: x \mapsto x^e \mod N$$

be the map defined by taking $x \in \mathbb{Z}_N^*$ to its e-th power modulo N.

 $Hint: 385 = 5 \cdot 7 \cdot 11.$

- (a) What is the order and the exponent of the group (Z₃₈₅, ·, 1)? Is this group cyclic?
- (b) State the precise characterization of those ε ∈ Z for which f_(N,ε) is a permutation on Z_N^{*}.
- (c) How many distinct permutations of this form f_(N,e) are there? Prove your answer.
- (d) Compute a d ∈ N such that f_(385,d) is the inverse permutation of f_(385,7).
- (e) Assume you are given public and private RSA-TDP parameters (N, ε) and (N, d), respectively. Further, let h: {0, 1}* → {0, 1}¹60 be a concrete hash function, e.g. RIPEMD-160.

Describe how to sign a message, and how to verify a message-signature pair using the RSA-TDP and h based on the full-domain-hash heuristic. Assume that $N \in [2^{1023}, 2^{1024}]$.

(4)
$$1 = \gcd(7, 60)$$
 $60 = 8.7 + 4 \rightarrow 4 = 60 - 8.7$
 $= \gcd(4,7)$
 $= 2.4 - 1.7$
 $= 2.60 - 17.7$
 $= 0 = -17 = 43(60)$

(c) Let $K(m)$ be the first $1023(1024)$ bits of $1023(1024)$ bits $1023(1024)$ b

Let F be a PRF of key and block length n, and $[]: \{1, 2, ..., 2^n\} \rightarrow \{0, 1\}^n$ some encoding function.

Assume we derive from a truly random secret key $k \in \{0,1\}^n$, a sequence of pseudorandom keys $k_1, \ldots, k_{r(n)}$ with $k_i := F_k(\lfloor i \rfloor)$ and r(n) some fixed polynomial.

Prove that every PPT-algorithm \mathcal{P} which on input $k_1, \ldots, k_{r(n)-1}$ tries to compute $k_{r(n)}$ can only succeed with negligible probability. To this end, define a distinguisher \mathcal{D} for F which uses \mathcal{P} as subprocedure.

