

CD4007UBMS

November 1994

CMOS Dual Complementary Pair Plus Inverter

Features

- High-Voltage Type (20V Rating)
- Standardized Symmetrical Output Characteristics
- Medium Speed Operation
 - tPHL, tPLH = 30 ns (typ) at 10V
- 100% Tested for Maximum Quiescent Current at 20V
- Meets All Requirements of JEDEC Tentative Standards No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"
- Maximum Input Current of 1μA at 18V Over Full Package-Temperature Range; 100nA at 18V and +25°C

Applications

- · Extremely High-Input Impedance Amplifiers
- Shapers
- Inverters
- Threshold Detector
- Linear Amplifiers
- Crystal Oscillators

Description

CD4007BMS types are comprised of three n-channel and three p-channel enhancement-type MOS transistors. The transistor elements are accessible through the package terminals to provide a convenient means for constructing the various typical circuits as shown in Figure 2.

More complex functions are possible using multiple packages. Numbers shown in parentheses indicate terminals that are connected together to form the various configurations listed.

The CD4007BMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4Q
Frit Seal DIP H1B
Ceramic Flatpack H3W

Pinout CD4007UBMS TOP VIEW 14 VDD, Q1, Q2, Q3 (P) Q2 (P) DRAIN 1 SUBSTRATES, Q1(P) DRAIN Q2 (P) SOURCE 2 Q1 (P) SOURCE Q2 GATES 3 12 Q3 (N) DRAIN, Q3 (P) SOURCE Q2 (N) SOURCE 4 11 Q3 (P) DRAIN Q2 (N) DRAIN 5 10 Q3 GATES Q1 GATES 6 9 Q3 (N) SOURCE

8 Q1 (N) DRAIN

Functional Diagram

VSS, Q1, Q2, Q3 (N)

SUBSTRATES Q1 (N) SOURCE

TERMINAL NO. 14 - VDD TERMINAL NO. 7 - VSS

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Flatpack Package 70°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V 20°C/W Maximum Package Power Dissipation (PD) at +125°C DC Input Current, Any One Input±10mA For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) 500mW Operating Temperature Range.....-55°C to +125°C For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K)..... Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For T_A = Full Package Temperature Range (All Package Types) 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

		CONDITIONS (NOTE 1)		GROUP A		LIMITS		
PARAMETER	SYMBOL			SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND		1	+25°C	-	0.5	μΑ
				2	+125°C	-	50	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	0.5	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	VDD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V		1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	٧
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2 VDD/2		
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.0	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	4.0	-	٧
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V, VOL < 1.5V		+25°C, +125°C, -55°C	-	2.5	٧
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	12.5	-	٧

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	,	9	+25°C	-	110	ns
TPLH			10, 11	+125°C, -55°C	-	149	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
TTLH			10, 11	+125°C, -55°C	i	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. 55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.25	μА	
				+125°C	-	7.5	μА	
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μА	
				+125°C	-	15	μА	
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	0.5	μА	
				+125°C	-	30	μА	
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	٧	
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA	
				-55°C	0.64	-	mA	
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA	
				-55°C	1.6	-	mA	
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA	
				-55°C	4.2	-	mA	
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA	
				-55°C	-	-0.64	mA	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA	
				-55°C	-	-2.0	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA	
				-55°C	-	-1.6	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA	
				-55°C	-	-4.2	mA	
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	2	V	
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	8	-	V	
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	60	ns	
	TPLH	VDD = 15V	1, 2, 3	+25°C	-	50	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	15.0	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

				LIM			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	2.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - SSI	IDD	±0.1μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Group D	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1, 5, 8, 12, 13	3, 4, 6, 7, 9, 10	2, 11, 14			
Static Burn-In 2 Note 1	1, 5, 8, 12, 13	4, 7, 9	2, 3, 6, 10, 11, 14			
Dynamic Burn- In Note 1	-	4, 7, 9	2, 11, 14	1, 5, 8, 12, 13	3, 6, 10	-
Irradiation Note 2	1, 5, 8, 12, 13	4, 7, 9	2, 3, 6, 10, 11, 14			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Schematic Diagram

FIGURE 1. DETAILED SCHEMATIC DIAGRAM OF CD4007UBMS SHOWING INPUT, OUTPUT, AND PARASITIC DIODES

Logic Circuits

d) TREE (RELAY) LOGIC

g) HIGH SINK - AND SOURCE-CURRENT DRIVER

h) DUAL BI-DIRECTIONAL TRANSMISSION GATING

FIGURE 2. SAMPLE CMOS LOGIC CIRCUIT ARRANGEMENTS USING TYPE CD4007UBMS

Typical Performance Characteristics

FIGURE 3. TYPICAL VOLTAGE-TRANSFER CHARACTERIS-TICS FOR NAND GATE

FIGURE 4. TYPICAL VOLTAGE-TRANSFER CHARACTERIS-TICS FOR NOR GATE

FIGURE 5. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM AND MAXIMUM VOLTAGE-TRANSFER CHARACTERISTICS FOR INVERTER

FIGURE 7. TYPICAL CURRENT AND VOLTAGE-TRANSFER CHARACTERISTICS FOR INVERTER

FIGURE 8. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 9. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 11. TYPICAL VOLTAGE-TRANSFER CHARACTERISTICS AS A FUNCTION OF TEMPERATURE

FIGURE 13. TYPICAL TRANSISTION TIME vs LOAD CAPACITANCE

FIGURE 10. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 12. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE

FIGURE 14. TYPICAL DISSIPATION vs FREQUENCY CHARACTERISTICS

Chip Dimension and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000

FAX: (321) 724-7000

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2716 9310 FAX: (886) 2 2715 3029