```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

data·=·pd.read_csv('/content/drive/MyDrive/AB_NYC_2019.csv')

data

	id	name	host_id	host_name	neighbourhood_group	neighbourhood	latitud
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.6474
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.7536
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.8090
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.6851
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.7985
4889	90 36484665	Charming one bedroom - newly renovated rowhouse	8232441	Sabrina	Brooklyn	Bedford- Stuyvesant	40.6785
4889	36485057	Affordable room in Bushwick/East Williamsburg	6570630	Marisol	Brooklyn	Bushwick	40.7018
4889	36 485431	Sunny Studio at Historical Neighborhood	23492952	llgar & Aysel	Manhattan	Harlem	40.8147
4889	3 36485609	43rd St. Time Square-cozy single bed	30985759	Taz	Manhattan	Hell's Kitchen	40.7575
4889	36487245	Trendy duplex in the very heart of Hell's Kitchen	68119814	Christophe	Manhattan	Hell's Kitchen	40.7640
4000							

48895 rows × 16 columns

#Removing duplicate
data.drop_duplicates(inplace=True)

#·checking·the·number·of·missing·values·in·each·column
print(data.isnull().sum())

id	0
name	16
host_id	0
host_name	21
neighbourhood_group	0
neighbourhood	0
latitude	0
longitude	0

```
0
     room_type
     price
                                            0
     minimum_nights
                                            0
     {\tt number\_of\_reviews}
                                            a
     last_review
                                        10052
     reviews_per_month
                                        10052
     calculated_host_listings_count
                                            0
     availability_365
                                            0
     dtype: int64
# impute missing values in the name and host_name columns
data[['name', 'host_name']] = data[['name', 'host_name']].fillna('Unknown')
print(data.isnull().sum())
     id
                                            0
     name
                                            0
     host_id
                                            0
     host_name
                                            0
     neighbourhood_group
     neighbourhood
                                            0
     latitude
                                            0
     longitude
                                            0
     room_type
                                            0
     price
                                            0
     minimum_nights
                                            0
     number_of_reviews
                                            0
     last review
                                        10052
     reviews_per_month
                                        10052
     calculated_host_listings_count
                                            0
     availability_365
                                            0
     dtype: int64
# impute missing values in the last_review and reviews_per_month columns
data['last_review'] = pd.to_datetime(data['last_review'])
median_last_review = data['last_review'].median()
data['last_review'] = data['last_review'].fillna(median_last_review)
median_reviews_per_month = data['reviews_per_month'].median()
data['reviews_per_month'] = data['reviews_per_month'].fillna(median_reviews_per_month)
print(data.isnull().sum())
     id
                                        0
     name
                                        0
                                        0
     host id
                                        0
     host_name
     neighbourhood_group
     neighbourhood
                                        0
     latitude
                                        0
     longitude
                                        0
                                        0
     room_type
     price
                                       0
     {\tt minimum\_nights}
                                        0
     number_of_reviews
                                        0
     last_review
                                       0
     reviews_per_month
                                        0
     calculated_host_listings_count
                                        0
     availability_365
     dtype: int64
# removing 'id', 'host_id', and 'last_review' unnecessary columns
data.drop(['id', 'host_id', 'last_review'], axis=1, inplace=True)
data.describe()
```

reviews_per_mont	number_of_reviews	minimum_nights	price	longitude	latitude	
48895.00000	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	count
1.23893	23.274466	7.029962	152.720687	-73.952170	40.728949	mean
1.5208€	44.550582	20.510550	240.154170	0.046157	0.054530	std
0.01000	0.000000	1.000000	0.000000	-74.244420	40.499790	min

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import pearsonr
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

#-Correlation-analysis
corr_matrix.=-data.corr(numeric_only=True)
corr_matrix.=-data.corr()
sns.heatmap(corr_matrix,.annot=True)
plt.title("Correlation.Matrix")
plt.show()

<ipython-input-36-5fc9a567e083>:3: FutureWarning: The default value of numeric_only in DataFrame.cc
corr_matrix = data.corr()


```
#.Calculate.Pearson's.correlation.coefficient.and.p-value.between.two.variables
corr_coeff,.p_value.=.pearsonr(data['price'],.data['availability_365'])
print("Pearson's.correlation.coefficient:",.corr_coeff)
print("p-value:",.p_value)
    Pearson's correlation coefficient: 0.08182882742168793
    p-value: 2.056743270408171e-73

corr_coeff, p_value = pearsonr(data['latitude'], data['longitude'])
print("Pearson's correlation coefficient:", corr_coeff)
```

```
print("p-value:", p_value)
```

Pearson's correlation coefficient: 0.08478836838914451 p-value: 1.0614406457426472e-78

```
# Regression analysis
X = data['latitude'].values.reshape(-1, 1)
y = data['price'].values.reshape(-1, 1)
regressor = LinearRegression()
regressor.fit(X, y)
y_pred = regressor.predict(X)
plt.scatter(X, y)
plt.plot(X, y_pred, color='red')
plt.xlabel('latitude')
plt.ylabel('price')
plt.title('Regression Analysis')
plt.show()
```


print("Intercept:", regressor.intercept_)
print("Slope:", regressor.coef_)

Intercept: [-5934.96204863]
Slope: [[149.46820144]]

Inferential analysis
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
print(model.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time:		OLS Least Squares Thu, 04 May 202 13:50:27	Adj. F-sta Prob	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood:		0.001 0.001 56.38 : 6.07e-14 -3.3736e+05	
No. Observations:		4889	AIC:			6.747e+05	
Df Resid	uals:	48893	BIC:			6.747e+05	
Df Model	:	:	L				
Covarian	ce Type:	nonrobust	-				
=======		==========					
	coe	f std err	t	P> t	[0.025	0.975]	
const	-5934.962	0 810.744	-7.320	0.000	-7524.031	-4345.893	
x1	149.468	2 19.906	7.509	0.000	110.453	188.484	
Omnibus:		105137.688		======= in-Watson:	=======	1.836	
Prob(Omnibus):		0.000		ue-Bera (JB):	: 76	4029629.724	
Skew:		19.142		(JB):		0.00	
Kurtosis:		589.60	5 Cond	. No.		3.04e+04	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.04e+04. This might indicate that there are strong multicollinearity or other numerical problems.

import matplotlib.pyplot as plt
import seaborn as sns

histogram of price
sns.histplot(data['price'], kde=False)
plt.show()

scatterplot of latitude vs. longitude
sns.scatterplot(x='longitude', y='latitude', data=data)
plt.show()

boxplot of price vs. neighbourhood_group
sns.boxplot(x='neighbourhood_group', y='price', data=data)
plt.show()

import.seaborn.as.sns
import.matplotlib.pyplot.as.plt

sns.scatterplot(x='minimum_nights', ·y='price', ·data=data)
plt.show()

 $\label{local_scale} $$sns.countplot(x='neighbourhood_group',\cdot data=data)$ plt.show()$

sns.heatmap(data.corr(), annot=True)
plt.show()

<ipython-input-25-9fa67090a602>:1: FutureWarning: The default value of numeric_only in DataFrame.cc sns.heatmap(data.corr(), annot=True)


```
avg_price = data.groupby('neighbourhood_group')['price'].mean().reset_index()
```

```
import·seaborn·as·sns
import·matplotlib.pyplot·as·plt

#.Create·bar·plot·of·average·price·by·neighbourhood·group
sns.barplot(data=avg_price, ·x='neighbourhood_group', ·y='price')
plt.title('Average·Price·by·Neighbourhood·Group')
plt.show()
```

```
import matplotlib.pyplot as plt

plt.hist(data['price'], bins=50)
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.title('Distribution of Airbnb Prices in NYC')
plt.show()
```


import matplotlib.pyplot as plt

```
plt.hist(data['availability_365'], bins=50)
plt.xlabel('Availability (in days)')
plt.ylabel('Frequency')
plt.title('Distribution of Availability')
plt.show()
```


#·Create·box·plots·for·each·feature
data.plot(kind='box', ·subplots=True, ·layout=(3,3), ·figsize=(15,10))
plt.show()


```
# Count the number of listings by neighbourhood group
counts = data['neighbourhood_group'].value_counts()

# Create a pie chart
plt.figure(figsize=(6,4))
plt.pie(counts.values, labels=counts.index, autopct='%1.1f%%')
plt.title('Airbnb Listings by Neighbourhood Group')
plt.show()
```

Airbnb Listings by Neighbourhood Group


```
#Analyze the most popular types of listings and the neighborhoods they are located in
grouped_data = data.groupby(['neighbourhood_group', 'room_type']).size().reset_index(name='count')
# Plot the data
sns.catplot(x='neighbourhood_group', y='count', hue='room_type', data=grouped_data, kind='bar')
```

<seaborn.axisgrid.FacetGrid at 0x7f096406eda0>

#Identify the most important amenities that guests are looking for in an Airbnb listing in New York City

```
# Select relevant columns
selected_cols = ['price', 'latitude', 'longitude', 'minimum_nights', 'number_of_reviews', 'reviews_per_month', 'calculated_host_listings_coundata = data[selected_cols]

# Calculate correlations between variables and price
corr_matrix = data.corr()
corr_with_price = corr_matrix['price'].sort_values(ascending=False)

# Plot the correlations
plt.figure(figsize=(10,8))
sns.barplot(x=corr_with_price.values, y=corr_with_price.index, orient='h')
plt.title('Correlation between variables and price')
plt.xlabel('Correlation')
plt.ylabel('Variable')
plt.show()
```


✓ 0s completed at 9:03 PM