CORRECTION SÉANCE 5 (23 FÉVRIER)

† Dualité et dimension

Exercice 9.

1. On montre que la famille des e^i est libre et génératrice pour l'espace F. D'abord, soit une combinaison linéaire

$$\sum_{i=0}^{\infty} \lambda_i e^i = 0$$

(attention, pour que ceci ait du sens, il faut que les λ_i soient tous nuls à part un nombre fini). Si cette suite est nulle, alors tous ses termes le sont. Or le k-ème terme de cette suite est donné par $\sum_{i=0}^{\infty} \lambda_i \delta_{i,k} = \lambda_k$. On obtient donc que λ_k est nul. La famille $(e^i)_{i \in \mathbb{N}}$ est donc libre.

On montre ensuite que $(e^i)_{i\in\mathbb{N}}$ est génératrice. Soit $u=(u_n)_{n\in\mathbb{N}}\in F$ une suite nulle à partir d'un certain rang (notons N ce rang), on a

$$u = \sum_{i=0}^{N} u_i e^i$$

En effet cette dernière suite a pour j-ème valeur $\sum_{i=0}^{N} u_i \delta_{i,j} = u_j$ pour $j \leq N$ et 0 sinon, tout comme u. La famille (e^i) est donc génératrice dans F, et elle est clairement libre : c'est une base de F.

Ce n'est pas une base de E, car on aurait besoin de "combinaisons linéaires infinies" pour atteindre tous les éléments de E à partir de (e^i) . Autrement, comme les e^i appartiennent tous à F, le sous-espace qu'ils engendrent est inclus dans F et ne peut être égal à E.

2. On considère l'application $\Psi: F^* \to E$, qui envoie φ sur la suite $(\varphi(e^i))_{i \in \mathbb{N}}$. Comme $(e^i)_{i \in \mathbb{N}}$ est une base de F, une forme linéaire est entièrement déterminée par ses valeurs sur les e^i , et toutes les suites de valeurs sont possibles. Autrement dit, l'application Ψ est une bijection. Il reste à montrer que c'est une application linéaire. Soient $\varphi_1, \varphi_2 \in F^*$ et $\lambda, \mu \in k$. On a

$$\begin{split} \Psi(\lambda\varphi_1 + \mu\varphi_2) &= ((\lambda\varphi_1 + \mu\varphi_2)(e^i))_{i \in \mathbb{N}} \\ &= (\lambda\varphi_1(e^i) + \mu\varphi_2(e^i))_{i \in \mathbb{N}} \\ &= \lambda(\varphi_1(e^i))_{i \in \mathbb{N}} + \mu(\varphi_2(e^i))_{i \in \mathbb{N}} \\ &= \lambda\Psi(\varphi_1) + \mu\Psi(\varphi_2). \end{split}$$

Donc Ψ est bien linéaire et un isomorphisme.

3. On a une bijection entre une base de F et une base de k[X], envoyant tout simplement e^i sur X^i .

Exercice 11.

1. Soit $x \in E$, $\varphi, \psi \in E^*$ et $\lambda, \mu \in k$. On a

$$\operatorname{ev}_x(\lambda\varphi + \mu\psi) = (\lambda\varphi + \mu\psi)(x) = \lambda\varphi(x) + \mu\psi(x) = \lambda\operatorname{ev}_x(\varphi) + \mu\operatorname{ev}_x(\psi)$$

par définition de l'addition (et de la multiplication scalaire) sur les formes linéaires, donc ev_x est linéaire, il s'agit d'un élément de E^{**} .

2. Soient cette fois $x, y \in E$, $\lambda, \mu \in k$. Pour tout $\varphi \in E^*$, on a

$$\operatorname{ev}_{\lambda x + \mu y}(\varphi) = \varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y) = (\lambda \operatorname{ev}_x + \mu \operatorname{ev}_y)(\varphi)$$

car φ est linéaire. Donc $\operatorname{ev}_{\lambda x + \mu y} = \lambda \operatorname{ev}_x + \mu \operatorname{ev}_y$ car ces deux applications ont la même valeur en toute fonction φ .

3. Soit $x \in E$, on a

$$\operatorname{ev}_x = 0 \Leftrightarrow \forall \varphi \in E^*, \varphi(x) = 0 \Leftrightarrow x \in {}^{o}(E^*) = \{0\}$$

donc ev est injective.

- 4. Si E est de dimension finie, on a dim $E = \dim E^* = \dim E^{**}$, donc ev est un isomorphisme.
- 5. Si E est de dimension infinie, on a dim $E^{**} > \dim E^* > \dim E$, donc E et E^{**} ne peuvent pas être isomorphes.
- † À la rescousse de l'analyse numérique!

Exercice 12.

- 1. E_n est de dimension n+1, une base est donnée par $1, X, \ldots, X^n$.
- 2. On fixe $x \in k$. Soient $P, Q \in k[X]$ et $\lambda, \mu \in k$, on a

$$\varphi_x(\lambda P + \mu Q) = (\lambda P + \mu Q)(x)$$
$$= \lambda P(x) + \mu Q(x)$$
$$= \lambda \varphi_x(P) + \mu \varphi_x(Q).$$

L'application φ_x est donc linéaire.

3. On considère une combinaison linéaire nulle

$$\sum_{i=1}^{m} \lambda_i \varphi_{x_i} = 0$$

Pour $k \in [1, m]$, on pose

$$P_k = \prod_{\substack{i=1\\i\neq k}}^m (X - x_i)$$

Par construction, on a $P_k(x_i) = 0$ pour $i \neq k$, et, comme les x_i sont tous distincts, $P_k(x_k) \neq 0$. On a alors

$$0 = \sum_{i=1}^{m} \lambda_i \varphi_{x_i}(P_k) = \sum_{i=1}^{m} \lambda_i P_k(x_i) = \lambda_k P_k(x_k)$$

et $\lambda_k = 0$ car $P_k(x_k) \neq 0$ par construction. On obtient ainsi que tous les λ_i sont nuls et la famille $(\varphi_{x_1}, \dots, \varphi_{x_m})$ est libre.

- 4. Si k a au moins n+1 éléments distincts x_1, \ldots, x_{n+1} , la famille $(\varphi_{x_1}, \ldots, \varphi_{x_{n+1}})$ est libre par la question précédente. Comme E_n^* est de dimension n+1, cette famille libre est une base. Comme la famille $\{\varphi_x \mid x \in k\}$ contient φ_{x_i} pour $i \in [1, n+1]$, on obtient bien que la famille $\{\varphi_x \mid x \in k\}$ engendre E_n^* . Réciproquement, si |k| < n+1, alors la famille $\{\varphi_x \mid x \in k\}$ contient au plus n éléments, et ne peut engendrer l'espace E_n^* qui est de dimension n+1.
- 5. Sous l'hypothèse précédente, la famille $(\varphi_{x_1}, \ldots, \varphi_{x_m})$ est une base de l'espace E_{m-1}^* . La base antéduale de cette base est par définition une famille de polynômes P_1, \ldots, P_m , de degrés au plus m-1, et tels que $P_i(x_j) = \delta_{i,j}$ pour $i, j \in [1, m]$. Cette famille de polynômes sont des polynômes élémentaires de Lagrange.