第一章 函数与极限习题解答与提示

习题 1.1

1. $A \cup B = (-\infty, 4) \cup (4, +\infty)$, $A \cap B = [-9, -6)$, $A \setminus B = (-\infty, -9) \cup (4, +\infty)$, $A \setminus (A \setminus B) = [-9, -6)$;

2. (略);

3. (1)
$$\left[-\frac{8}{5}, +\infty\right)$$
, (2) $\left(-\infty, -2\right) \cup \left(-2, 2\right) \cup \left(2, +\infty\right)$, (3) $\left[0, +\infty\right)$,

(4)
$$R \setminus \{x = k\pi + \frac{\pi}{2} - 1 \mid k \in Z\}$$
, (5) [1,3], (6) $(-\infty,0) \cup (0,5]$;

4. (略);

5.
$$\varphi(\frac{\pi}{6}) = \frac{1}{2}$$
, $\varphi(\frac{\pi}{4}) = \varphi(-\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$, $\varphi(-2) = 0$;

6. (1) 单调增加, (2) 单调增加;

7-8 题(略);

9. (1) 偶函数, (2) 既非偶函数又非奇函数, (3) 奇函数;

10. (1) 是周期函数,周期
$$l = 2\pi$$
,(2) 是周期函数,周期 $l = \frac{\pi}{4}$,(3) 是周期函数,周期 $l = \frac{\pi}{2}$;

11. (1)
$$y = x^3 - 5$$
, (2) $y = \frac{2(1-x)}{1+x}$, (3) $y = e^{x-1} - 3$;

12.(略);

13. (1)
$$y = \sin^2 x, \frac{1}{4}, \frac{3}{4},$$
 (2) $y = \sqrt{1 + x^2}, \sqrt{2}, \sqrt{5},$ (3) $y = e^{2x}, u = e^x, e^2, e^{-2};$

14. (1) [-1,1], (2) [1,e];

15.
$$f[g(x)] = \begin{cases} 1, & x < 0 \\ 0, & x = 0, \\ -1, & x > 0 \end{cases}$$
 $g[f(x)] = \begin{cases} e, |x| < 1 \\ 1, |x| = 1; \\ e^{-1}, |x| > 1 \end{cases}$

16.
$$p = \begin{cases} 90, & 0 \le x \le 100 \\ 190 - x, & 101 \le x \le 115, \end{cases}$$
 $P = \begin{cases} 30x, & 0 \le x \le 100 \\ 130x - x^2, & 101 \le x \le 115, \\ 15x, & x > 115 \end{cases}$

P(1000) = 15000 (元);

习题 1.2

1. (1) 收敛, 极限为 1; (2) 收敛, 极限为 3; (3) 发散;

2.
$$\lim_{n \to \infty} x_n = 0$$
, $N = \left[\frac{1}{\varepsilon}\right] + 1$, $N = 1000$

3-5 题(略);

习题 1.3

- 1. (略);
- 2. 当 $x \to 2$ 时,不妨设|x-2| < 1,则|y-4| < 5|x-2| < 0.001,故取 $\delta = 0.0002$;
- 3. $\lim_{x\to 0} f(x) = 1$, $\lim_{x\to 0^+} g(x) = 1$, $\lim_{x\to 0^-} g(x) = -1$, 故极限 $\lim_{x\to 0} g(x)$ 不存在;
- 3. $\lim_{n \to \infty} x_n = 0$, $N = \left[\frac{1}{\varepsilon}\right] + 1$, N = 1000;
- 4. (略);

习题 1.4

- 1. 两个无穷小的商不一定是无穷小, $\lim_{x\to 0} x = 0$, $\lim_{x\to 0} |x| = 0$, 但 $\lim_{x\to 0} \frac{|x|}{x}$ 不存在;
- 2. (略);
- 3. $0 < |x| < \frac{1}{10^4 + 3}$;
- 4. 根据定理 1, 极限为 3;
- 5. 函数 $y = x \cos x$ 在 $(-\infty, +\infty)$ 内无界,当 $x \to +\infty$ 时,该函数不是无穷大,

对任意正数
$$M$$
 ,存在 $x^* = 2[M]\pi + \frac{\pi}{2} \in (0,+\infty)$, $f(x^*) = 0 < M$.

习题 1.5

- 1. (1) -6, (2) 0, (3) 2x, (4) 3, (5) $\frac{2}{3}$, (6) 6, (7) 2, (8) -1;
- 2. (1) ∞ , (2) $\frac{1}{2}$;
- 3. (1) 0, (2) 0;
- 4. $\alpha = -2$, $\beta = 0$;

习题 1.6

- 1. (1) 2w, (2) $\frac{3}{7}$, (3) 2, (4) x;
- 2. (1) e^{-2} , (2) e^{3} , (3) e^{3} , (4) e;
- 3.(略);

4. (1) 提示:
$$1 \le \sqrt{1 + \frac{1}{n}} \le 1 + \frac{1}{n}$$
,

(2) 提示:
$$\frac{n^2}{n^2 + n\pi} < n(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi}) < \frac{n^2}{n^2 + \pi}$$
,

- (3) 提示: $x_{n+1} = \sqrt{x_n + 3}$, 利用单调有界准则;
- (4) 提示:当x > 0时, $1 x \le x \left[\frac{1}{r}\right] \le 1$;

(5) 提示:
$$1 \le \sqrt[n]{n} = (\sqrt{n} \cdot \sqrt{n} \cdot \overbrace{1 \cdot \dots \cdot 1}^{(n-2) \uparrow})^{\frac{1}{n}} \le \frac{\sqrt{n} + \sqrt{n} + \overbrace{1 + \dots + 1}^{(n-2) \uparrow}}{n};$$

习题 1.7

- 1. 当 $x \rightarrow 0$ 时, $x^2 x^3$ 是比 $2x x^2$ 高阶的无穷小;
- 2. 当 $x \rightarrow 1$ 时,无穷小x-1与 x^3-1 是同阶无穷小,

无穷小
$$x-1$$
与 $\frac{1}{2}(x^4-1)$ 是同阶无穷小;

3.(略);

4. (1)
$$\frac{2}{3}$$
, (2) -3 ;