Should There Be Vertical Choice in Health Insurance Markets?

Victoria Marone
Yale and NBER

Adrienne Sabety
Stanford

Vertical choice

= Choice over financially vertically differentiated plans

December). You pay this amount in addition to your premium. Once you have paid the full amount of your

compulsory deductible, we will reimburse any costs subsequently incurred

Vertical choice

= Choice over financially vertically differentiated plans

Voluntary deductible

Besides the €385 compulsory deductible, you can opt to add a voluntary deductible. This could be a good option if you do not need healthcare very often, as you can save on the premium this way. Do bear in mind, however, that when you do require healthcare you will be required to pay more of the costs for this out of your own pocket. If you want to change your voluntary deductible, please let us know on 'Mijn CZ' before 1 January.

How much you can add to your deductible as a voluntary deductible depends on the kind of general insurance policy you have taken out.

- With the 'Zorg-op-maatpolis', 'Zorgkeuzepolis' or 'CZdirectpolis' policies, you can choose a voluntary deductible of €100, €200, €300, €400 or €500.
- If you have the 'Zorgbewustpolis', you can only choose a voluntary deductible of €500.

Vertical choice

= Choice over financially vertically differentiated plans

Discount on your premium

The higher your deductible, the greater your discount.

Amount of deductible	Premium discount per year: CZ	Premium discount per year: CZdirect
€ 385	€0	€0
€ 485	€36	€48
€ 585	€72	€96
€ 685	€108	€144
€ 785	€144	€192
€ 885	€210	€240

How did we get here?

- (1) Health insurance markets are highly regulated the world around
 - ▶ Asymmetric information about healthcare needs
 - Dynamic risk (or if you want, fairness concerns) motivating regulation against price discrimination ("community rating")
 - → Adverse selection
 - → Competition does not deliver socially optimal outcomes (in K-H sense)
 - → In particular, too little insurance transacted (Akerlof 1970; RS 1976; et al)

How did we get here?

- (1) Health insurance markets are highly regulated the world around
 - Asymmetric information about healthcare needs
 - Dynamic risk (or if you want, fairness concerns) motivating regulation against price discrimination ("community rating")
 - → Adverse selection
 - → Competition does not deliver socially optimal outcomes (in K-H sense)
 - $\rightarrow\,$ In particular, too little insurance transacted (Akerlof 1970; RS 1976; et al)
- (2) So we get: Lots of market intervention, most commonly in the form of state-provision of (basic) health insurance
 - ▶ But how exactly to do this??
 - → Lots of variation across countries

How did we get here?

- (1) Health insurance markets are highly regulated the world around
 - Asymmetric information about healthcare needs
 - Dynamic risk (or if you want, fairness concerns) motivating regulation against price discrimination ("community rating")
 - → Adverse selection
 - → Competition does not deliver socially optimal outcomes (in K-H sense)
 - $\rightarrow\,$ In particular, too little insurance transacted (Akerlof 1970; RS 1976; et al)
- (2) So we get: Lots of market intervention, most commonly in the form of state-provision of (basic) health insurance
 - But how exactly to do this??
 - → Lots of variation across countries
- (3) One dimension of this 'design' choice is whether to offer consumers a **choice over coverage levels**
 - → This is a **planning problem** >> planner is a price-setter
 - → Two important differences from a monopolist : (i) social welfare objective, (ii) can garnish your wages!

Should the planner be doing this?... Where we started

Figure 1
Adverse Selection in the Textbook Setting

Source: Einav and Finkelstein 2011, JPE

Market for high-coverage contract, outside option is low-coverage contract

ullet Consider demand (D) and marginal cost (MC) curves for two populations

 $q \equiv$ Pct. of consumers

Market for high-coverage contract, outside option is low-coverage contract

 $q \equiv \text{Pct. of consumers}$

- Consider demand (D) and marginal cost (MC) curves for two populations
 - SS = D MC: Not everyone has same optimal contract

 $SS \equiv Social surplus$

Market for high-coverage contract, outside option is low-coverage contract

- Consider demand (D) and marginal cost (MC) curves for two populations
 - SS = D MC: Not everyone has same optimal contract
 - What is optimal marginal premium p?

 $q \equiv \text{Pct. of consumers}$

 $SS \equiv Social surplus$

Market for high-coverage contract, outside option is low-coverage contract

- Consider demand (D) and marginal cost (MC) curves for two populations
 - SS = D MC: Not everyone has same optimal contract
 - What is optimal marginal premium p?

 $q \equiv \text{Pct. of consumers}$

 $SS \equiv Social surplus$

Market for high-coverage contract, outside option is low-coverage contract

- Consider demand (D) and marginal cost (MC) curves for two populations
 - SS = D MC: Not everyone has same optimal contract
 - What is optimal marginal premium p?

 $q \equiv \text{Pct. of consumers}$

 $SS \equiv Social surplus$

Theoretical setting

- Regulated health insurance market where
 - 1 Plans vertically differentiated by coverage level
 - 2 Regulator knows distribution of consumer types
 - 3 Regulator can set premiums

 - → Competitive private supply + Regulator can tax/subsidize plans
 - 4 Regulator cannot condition premium on consumer type
- Regulator sets premiums to maximize social surplus

Theoretical model

- Set of potential contracts by $X = \{x_0, x_1, ..., x_n\}$
 - ightharpoonup Vertically differentiated (x_0 is null contract)
 - Each with premium p_x
- Population of consumers characterized by type $\theta:\{F,\psi,\omega\}$
 - F = Distribution over potential health states
 - ψ = Risk aversion parameter
 - \bullet ω = Moral hazard parameter
- Consumers face two-stage decision problem:
 - ▶ Stage 1: Given type θ , discrete choice of contract over X
 - → Then health state is realized
 - ▶ Stage 2: Continuous choice of healthcare spending over \mathbb{R}_+

Demand for healthcare and health insurance

Stage 2

- Given contract (x) and realized health state (l)
- Choose healthcare spending (m), trading off
 - Benefit of healthcare spending: $b(m, l, \omega)$
 - Out-of-pocket cost: c(m, x)

$$m^{\textstyle *}(l,x,\omega) = \operatorname{argmax}_m \left[\ b(m,l,\omega) - c(m,x) \ \right]$$

Demand for healthcare and health insurance

Stage 2

- Given contract (x) and realized health state (l)
- Choose healthcare spending (m), trading off
 - Benefit of healthcare spending: $b(m, l, \omega)$
 - Out-of-pocket cost: c(m, x)

$$m^*(\mathit{l}, x, \omega) = \operatorname{argmax}_m \left[\ b(m, \mathit{l}, \omega) - c(m, x) \ \right]$$

Stage 1

• Choose contract to maximize expected utility

$$\begin{split} U(x,p_x,\theta) &= \mathbb{E}\left[\ u_{\psi}(\ -p_x + \ b^*(l,x,\omega) - \ c^*(l,x,\omega)) \ | \ l \sim F \ \right] \\ x^*(\mathbf{p},\theta) &= \operatorname{argmax}_{x \in X} U(x,p_x,\theta) \end{split}$$

Constructing willingness to pay and social surplus

• Can express willingness to pay as:

$$WTP(x,\theta) = \underbrace{\mathbb{E}_{l}[\ c^{*}(l,x_{0},\omega) - c^{*}(l,x,\omega) + b^{*}(l,x,\omega)]}_{Value\ of\ mean\ insured\ spending} + \underbrace{\Psi(x,\theta)}_{Value\ of\ risk\ protection}$$

• And social surplus as:

$$SS(x,\theta) = \underbrace{WTP(x,\theta)}_{Willingness \ to \ pay} - \underbrace{\mathbb{E}_{l}[\ k^{*}(l,x,\omega)\]}_{Mean \ insurer \ cost}$$

Constructing willingness to pay and social surplus

• Can express willingness to pay as:

$$WTP(x,\theta) = \underbrace{\mathbb{E}_{l} \left[\begin{array}{c} \overset{\longleftarrow}{c^{*}(l,x_{0},0)} - c^{*}(l,x,0) \\ \\ Value \ of \ mean \\ insured \ spending \end{array} + \underbrace{\begin{array}{c} \overset{\longleftarrow}{v^{*}(l,x,\omega)} \\ \\ Value \ of \ risk \\ protection \\ \end{array}}_{Value \ of \ risk}$$

• And social surplus as:

$$SS(x,\theta) = \underbrace{WTP(x,\theta)}_{Willingness\ to\ pay} - \underbrace{\mathbb{E}_{l} \left[\stackrel{r}{k^{*}}(l,x,0) + \stackrel{r}{k^{*}}(l,x,\omega) - k^{*}(l,x,0) \right]}_{Mean\ insurer\ cost}$$

 $\mathrm{Sep}\ 2025$

Constructing willingness to pay and social surplus

• Can express willingness to pay as:

$$WTP(x,\theta) = \underbrace{\mathbb{E}_{l}\left[\begin{array}{c} r^{*}(l,x_{0},0) - c^{*}(l,x,0) \\ \text{Value of mean} \\ \text{insured spending} \end{array}}^{\text{Value of MH}} + \underbrace{\Psi(x,\theta)}_{\text{Value of risk}} + \underbrace{\Psi(x,\theta)}_{\text{protection}}$$

• And social surplus as:

$$SS(x,\theta) = \underbrace{\Psi(x,\theta)}_{\begin{subarray}{c} Value\ of\ risk\\ protection\end{subarray}} - \underbrace{\mathbb{E}_{l}[k^{*}(l,x,\omega) - k^{*}(l,x,0) - v^{*}(l,x,\omega)]}_{\begin{subarray}{c} Social\ cost\\ of\ moral\ hazard\end{subarray}}$$

Two-contract example, from fundamentals

Market for high-coverage contract, outside option is low-coverage contract

Two-contract example, from fundamentals

Market for high-coverage contract, outside option is low-coverage contract

Where we're going

- 1 Parameterize theoretical model
- 2 Estimate distribution of $\theta:\{F,\psi,\omega\}$ empirically
- 3 Construct $WTP(x, \theta)$ and $SS(x, \theta)$ for particular set of plans X
- \rightarrow Do consumers with higher WTP have higher efficient coverage level?
- \Rightarrow Is offering choice welfare improving?

Empirical findings, basically

$$D \equiv \text{Willingness to pay}$$

$$q \equiv \text{Pct. of consumers}$$

 $SS \equiv Social surplus$

Main empirical findings

- Substantial heterogeneity in efficient coverage level across households
- But efficient coverage level **not** increasing in willingness to pay

Key Conclusions

- Vertical choice should **not** be offered in this population
- Optimal single coverage level increases welfare by \$330 per household relative to a status quo with vertical choice
 - \blacktriangleright And leads to a more even distribution of health spending E(Out-of-pocket) + Premium

Theoretical Mode

2 Empirical Strategy

Results and Counterfactuals

4 Conclusion

Empirical setting

- Data from the Oregon Educators Benefits Board
 - ▶ All public school employees in Oregon 2008–2013
 - $\sim 45,000$ households ($\sim 115,000$ individuals)
 - ▶ 3 insurers offering 14 plan that vary in financial coverage level
- Individual-level panel dataset
 - Health insurance plan choices and choice set
 - ▶ Demographics: age, gender, risk score, zip code
- Health insurance claims data
- \Rightarrow Key points:
 - ▶ Existence of vertical choice
 - Plausibly exogenous variation in premiums and choice sets

Stage 2

- Given contract (x) and realized health state (l)
- Choose healthcare spending (m), trading off
 - Benefit of healthcare spending: $b(m, l, \omega)$
 - Out-of-pocket cost: c(m, x)

$$m^*(\mathit{l}, x, \omega) = \operatorname{argmax}_m \left[\ b(m, \mathit{l}, \omega) - c(m, x) \ \right]$$

Stage 1

• Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid l \sim F \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in X} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - Benefit of healthcare spending: $b(m, l, \omega)$
 - Out-of-pocket cost: $c_{it}(m) \to Data$

$$m^*(\mathit{l}, x, \omega) = \operatorname{argmax}_m \left[\ b(m, \mathit{l}, \omega) - c(m, x) \ \right]$$

Stage 1

Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid l \sim F \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in X} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - ▶ Benefit of healthcare spending: $b(m, l, \omega)$
 - Out-of-pocket cost: $c_{it}(m) \to \overline{Data}$

$$m^*(l, x, \omega) = \operatorname{argmax}_m [b(m, l, \omega) - c(m, x)]$$

Stage 1

• Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid l \sim F \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in X} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - ▶ Benefit of healthcare spending: $b(m, l, \omega) = (m l) \frac{1}{2\omega}(m l)^2$
 - ▶ Out-of-pocket *cost*:

$$m_{jt}^*(l,\omega_k) = \omega_k(1 - c_{jt}'(m^*)) + l$$

Stage 1

Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid l \sim F \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in X} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - ▶ Benefit of healthcare spending: $b(m, l, \omega) = (m l) \frac{1}{2\omega}(m l)^2$
 - ▶ Out-of-pocket *cost*:

$$m_{jt}^*(l,\omega_k) = \omega_k(1 - c_{jt}'(m^*)) + l$$

Stage 1

• Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid l \sim F \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in X} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - ▶ Benefit of healthcare spending: $b(m, l, \omega) = (m l) \frac{1}{2\omega}(m l)^2$
 - ▶ Out-of-pocket *cost*:

$$m_{jt}^*(l,\omega_k) = \omega_k(1 - c_{jt}'(m^*)) + l$$

Stage 1

• Choose plan that maximizes expected utility

$$U(x, p_x, \theta) = \mathbb{E}\left[u_{\psi}(-p_x + b^*(l, x, \omega) - c^*(l, x, \omega)) \mid \underbrace{l \sim F_{kt}}_{\log(l + \kappa_{kl}) \sim N(\mu_{kt}, \sigma_{kt}^2)} \right]$$
$$x^*(\mathbf{p}, \theta) = \operatorname{argmax}_{x \in Y} U(x, p_x, \theta)$$

Stage 2

- Given plan (j) and realized health state (l) in time (t)
- Household (k) chooses healthcare spending (m), trading off
 - ▶ Benefit of healthcare spending: $b(m, l, \omega) = (m l) \frac{1}{2\omega} (m l)^2$
 - ▶ Out-of-pocket *cost*:

$$m_{jt}^*(l,\omega_k) = \omega_k(1 - c'_{jt}(m^*)) + l$$

Stage 1

• Choose plan that maximizes expected utility

Parametrizing utility u_{ψ} and payoffs

• Assume CARA preferences:

$$U_{kjt} = \mathbb{E}\left[-\exp\left(-\psi_k x_{kjt}(l)\right) \mid \, l \sim F_{kt} \,\, \right]$$

Household kPlan jYear t

- ψ_k = Risk aversion
- $x_{kjt}(l) =$ Money-metric payoff
- Where:

$$x_{kjt}(l) = -p_{kjt} + \underbrace{b_{jt}^{*}(l,\omega_{k}) - c_{jt}^{*}(l,\omega_{k})}_{Net \ benefit \ of \ utilization} + \underbrace{\delta_{kj}^{f(j)}}_{Region \ FE} + \underbrace{\gamma_{kjt}^{inertia}}_{Inertia} + \underbrace{\sigma_{\epsilon}\epsilon_{kjt}}_{Inertia}$$

where $\epsilon_{kjt} \sim \text{T1EV}$

→ Parameters to estimate

 L Data

Heterogeneity

- Permit observed and unobserved heterogeneity in household types
 - ▶ Health state distribution F_{kt} : { μ_{kt} , κ_{kt} , σ_{kt} }
 - Moral hazard ω_k
 - Risk aversion ψ_k
- Model $\{\mu_{kt}, \, \omega_k, \, \log(\psi_k)\}$ as jointly normal

$$\begin{bmatrix} \mu_{kt} \\ \omega_k \\ \log(\psi_k) \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \bar{\mu}_{kt} \\ \boldsymbol{\beta}^{\omega} \mathbf{X}_k^{\omega} \\ \boldsymbol{\beta}^{\psi} \mathbf{X}_k^{\psi} \end{bmatrix}, \begin{bmatrix} \sigma_{\mu}^2 \\ \sigma_{\omega,\mu}^2 & \sigma_{\omega}^2 \\ \sigma_{\psi,\mu}^2 & \sigma_{\omega,\psi}^2 & \sigma_{\psi}^2 \end{bmatrix} \end{pmatrix}$$

Estimation

- Household (N = 44,562), plan (N = 14), year (N = 5) panel
- Estimate parameters by maximizing likelihood that
 - ▶ Households spend observed spending, given chosen plan
 - ▶ Households choose observed plan
- → Numerically integrate over
 - ▶ Distribution of unobserved heterogeneity $(\psi_k, \omega_k, \mu_{kt})$
 - ▶ Household health state distributions (F_{kt})
- \rightarrow Analytically integrate over household preference shock (ϵ_{kjt})

- 1. Why do households in more generous plans have higher spending if they are observationally equivalent?
 - Moral hazard (ω)
 - Adverse Selection (on unobservables) (σ_{μ})

- 1. Why do households in more generous plans have higher spending if they are observationally equivalent?
 - Moral hazard (ω)
 - ▶ Similar households facing different menus for exogenous reason
 - If assignment to higher coverage \Rightarrow higher spending: Higher estimated ω
 - Adverse Selection (on unobservables) (σ_{μ})
 - ► Similar households facing similar menus
 - Why make different choices?
 - Private health information \rightarrow if high spending choose high coverage
 - Idiosyncratic shock $\sigma_{\epsilon} \longrightarrow \text{if not}$

- 1. Why do households in more generous plans have higher spending if they are observationally equivalent?
 - Moral hazard (ω)
 - → Similar households facing different menus
 - Adverse Selection (on unobservables) (σ_{μ})
 - → Similar households facing similar menus
- 2. Why do households choose higher coverage if $\mathbb{E}(p + OOP)$ is fixed?
 - Risk aversion (ψ) : Taste for higher coverage increasing in OOP variance
 - → Different households facing similar menus

- 1. Why do households in more generous plans have higher spending if they are observationally equivalent?
 - Moral hazard (ω)
 - → Similar households facing different menus
 - Adverse Selection (on unobservables) (σ_{μ})
 - → Similar households facing similar menus
- 2. Why do households choose higher coverage if $\mathbb{E}(p + OOP)$ is fixed?
 - Risk aversion (ψ) : Taste for higher coverage increasing in OOP variance
 - → Different households facing similar menus
- 3. Is there additional heterogeneity in preferences $(\sigma_{\omega} \text{ and } \sigma_{\psi})$?
 - Households make repeated choices over time
 - → Same household with different covariates facing different menus

Theoretical Mode

2 Empirical Strategy

Results and Counterfactuals

4 Conclusion

Distribution of household types

	Mean	SD
κ_k	0.72	0.46
σ_k	1.09	0.17
μ_k	1.30	1.04
ω_k	1.42	0.32
ψ_k	1.12	0.64
	μ_k ω_k	$\kappa_k = 0.72$ $\sigma_k = 1.09$ $\mu_k = 1.30$ $\omega_k = 1.42$

Relative to \$000s

- No insurance to full insurance increases spending by \$1,420
 - \geq 25% of median total healthcare spending
- To avoid a normally distributed gamble with mean \$0 and SD \$900
 - ▶ Mean household is willing to pay \$454

Mapping from theoretical model

$$WTP(x,\theta) = \underbrace{\mathbb{E}_{l}[c^{*}(l,x_{0},0) - c^{*}(l,x,0) + v^{*}(l,x,\omega)]}_{Value\ of\ mean\ insured\ spending} + \underbrace{\Psi(x,\theta)}_{Value\ of\ risk\ protection}$$

$$SS(x,\theta) = \underbrace{\Psi(x,\theta)}_{Value\ of\ risk\ protection} - \underbrace{\mathbb{E}_{l}[k^{*}(l,x,\omega) - k^{*}(l,x,0) - v^{*}(l,x,\omega)]}_{Social\ cost\ of\ moral\ hazard}$$

$$\rightarrow \theta_k = \{F_k, \psi_k, \omega_k\}$$

• Have parameterizations of consumer utility $\rightarrow \{b, u\}$

$$\rightarrow$$
 Need some plans (X)

$$\rightarrow x: \{c, k\}$$

▶ Plan $x \equiv \{\text{deductible, coinsurance rate, out-of-pocket maximum}\}$

Sep 2025

Plans to consider

Out-of-pocket cost functions

Willingness to pay

Relative to Catastrophic

Breakdown of willingness to pay For Gold plan

Breakdown of willingness to pay $_{\mbox{\scriptsize For Gold plan}}$

Social surplus from incremental insurance

Heterogeneity in efficient level of insurance

Welfare under alternative policies

	Surplus		%	Enrollm	ent	
Policy	per HH^{\dagger}	Full	Gold	Silver	Bronze	Ctstr.
(1) Regulated pricing with community r	\$1,739	-	1.00	_	-	_

 $^{^{\}dagger} \mathrm{Relative}$ to allocating everyone in Catastrophic

Welfare under alternative policies

		Surplus	% Enrollment				
	Policy	per HH [†]	Full	Gold	Silver	Bronze	Ctstr.
(1)	Regulated pricing with community rating	\$1,739	-	1.00	-	-	-
(2)	Competitive pricing with community rating	\$0	_	_	_	_	1.00
(3)	Subsidies to support vertical choice	\$1,409	0.01	0.07	0.63	0.28	0.01

[†]Relative to allocating everyone in Catastrophic

⇒ Putting everyone in Gold (1) generates additional \$330 in welfare per household relative to status quo vertical choice (3)

Distribution of marginal consumer surplus

 $\label{eq:marginal wtp} \mbox{Marginal consumer surplus} = \mbox{marginal WTP - marginal premium}$

Concluding thoughts

- Efficiency of vertical choice is theoretically ambiguous
 - Consumer heterogeneity is not a sufficient condition
 - \blacktriangleright Depends whether high-WTP consumers should have higher coverage
- To implement pooling, only need to enforce a minimum coverage level
 - ▶ If some should get more coverage, competitive market could supply it
- Private and social incentives may not align
 - ▶ Not clear helping consumers privately optimize increases welfare

Household summary statistics

	Median	Mean	Std. Dev.				
Employee premium (\$)	0	880	1,869				
Insurer premium (\$)	11,801	11,500	3,547				
Total spending (\$)	4,620	10,754	19,749				
Out-of-pocket spending (\$)	1,093	1,694	1,822				
Employee age	49	47	10				
Household mean age	38	40	14				
Household size	2.0	2.6	1.4				
Percent of household-years Made unforced insurer switch 0.03 Individual 0.28							
Made unforced plan switch	0.17	Family	0.72				
Number of individuals	115,354						
Number of households	$44,\!562$						
Number of household-years	142,071						

Variation in plan menu generosity 2009

Households with higher coverage spend more, even conditional on risk score

2009, Moda plans only

Key identifying variation: Plan menus

- Plan choice set and employee premiums vary by
 - School district (n = 187)
 - Employee type (n = 18)
 - Family structure (n=4)
- Determined by administrative committees in each school district
 - ▶ Cap of 4 plans (2008–2011)
 - ▶ Part of negotiations with local teachers union

Key identifying assumption:

⇒ Variation in plan menu generosity not correlated with household health, conditional on household observables

Key support:

⇒ Plan menu generosity not correlated with observable health (risk score)

Key identifying assumption

⇒ Variation in plan menu generosity not correlated with household health conditional on household observables

- Support: Districts independently choose plans and contributions
 - ▶ Cap of 4 plans contributes some noise
 - ▶ Influenced by negotiation with local teacher's union
 - Plan menu generosity correlated with certain union affiliations
 - ... lower for part-time and non-licensed employees
 - ... negatively correlated with house price index
 - ... negatively correlated with percent Republicans
 - → But **not** correlated with observable health (risk score)

Variation in plan menus not driven by observable health 2009

Parameter estimates

	(1)		(2)		(3)	
Variable	Parameter	Std. Err.	Parameter	Std. Err.	Parameter	Std. Err.
Employee Premium (\$000s)	-1.000^{\dagger}		-1.000^{\dagger}		-1.000^{\dagger}	
Out-of-pocket spending, $-\alpha^{OOP}$	-1.628	0.023	-1.661	0.024	-1.469	0.019
HRA/HSA contributions, α^{HA}	0.255	0.021	0.259	0.020	0.259	0.020
Vision/dental contributions, α^{VD}	1.341	0.024	1.302	0.022	1.209	0.021
Plan inertia intercept, γ^{plan}	4.763	0.060	4.431	0.056	4.630	0.063
Plan inertia * 1[Children], γ^{plan}	-0.129	0.039	-0.102	0.037	-0.138	0.038
Insurer inertia intercept, γ^{ins}	2.605	0.107	2.509	0.102	2.413	0.097
Insurer inertia * Risk score, γ^{ins}	-0.074	0.083	-0.120	0.078	-0.037	0.080
Narrow net. plan, $\nu^{NarrowNet}$	-2.440	0.155	-2.286	0.145	-2.334	0.151
Providence utiliz. multiplier, ϕ_P	1.022	0.018	1.072	0.017	1.063	0.002
Risk aversion intercept, β^{ψ}	-0.706	0.046	-1.018	0.059	-0.251	0.052
Risk aversion * 1[Children], β^{ψ}	0.005	0.031	-0.367	0.083	-0.361	0.050
Moral hazard intercept, β^{ω}					1.028	0.038
Moral hazard * 1[Children], β^{ω}					0.671	0.008
Std. dev. of private health info., σ_{μ}	0.683	0.002	0.331	0.064	0.225	0.005
Std. dev. of log risk aversion, σ_{ψ}	0.701	0.062	1.140	0.012	0.833	0.021
Std. dev. of moral hazard, σ_{ω}					0.281	0.013
$Corr(\mu, \psi), \rho_{\mu,\psi}$	0.130	0.018	-0.365	0.049	0.227	0.005
$Corr(\psi, \omega), \rho_{\psi,\omega}$					-0.137	0.042
$Corr(\mu, \omega), \rho_{\mu,\omega}$					0.062	0.017
Scale of idiosyncratic shock, σ_{ϵ}	2.313	0.025	2.160	0.023	2.116	0.024
Insurer * {Region, Age, 1[Child.]}	Ye	·s	Yes		Yes	
Observable heterogeneity in health			Yes		Yes	
Number of observations	451,268		451,268		451,268	

[†]Coefficient on employee premium normalized to -1.

Model fit: Plan choices

Model fit: Plan choices among switchers

Among 36 percent of household-years not enrolled in same plan as last year

Model fit: Spending distributions

Model fit: Spending distributions

By number of household members:

By insurer By household risk

Model fit: Spending distributions, by household risk

Model fit: By insurer

Example Moda plans

Family households, 2009

Construction of WTP plots

Health state distributions by willingness to pay

Joint distribution of household types

Risk aversion and moral hazard type by WTP

(a) Risk Aversion Parameter (ψ)

(b) Moral Hazard Parameter (ω)

Distribution of expected healthcare spending by WTP if everyone in ${f Catastrophic}$

Distribution of expected healthcare spending by WTP if everyone in ${\bf Gold}$

Distribution of expected healthcare spending by WTP if **Vertical Choice**

Age by willingness to pay

Risk protection and social cost of moral hazard

