Submitted in part fulfilment for the degree of BEng.

Evolutionary agent-based simulation modelling of human life-history evolution

Caleb J. H. Riley

Version 0.01, 2016-November-15

Supervisor: Daniel W. Franks

Number of words = 2001, as counted by wc -w. This includes the body of the report only.

Abstract

This is an abstract. Should be about 500 words long.

Contents

1	Intro	oduction	9
	1.1	Motivation	9
	1.2	Aims	9
	1.3	Thesis Outline	9
	1.4	Statement of Ethics	9
2	Lite	rature Review	10
	2.1	Menopause	10
		2.1.1 Patriarch hypothesis	10
		2.1.2 Grandmother hypothesis	10
		2.1.3 Reproductive conflict	10
		2.1.4 Other hypotheses	10
	2.2	Evolution	10
		2.2.1 Key concepts/terms	10
		2.2.2 Biological relevance to project	11
		2.2.3 Computational relevance to project	11
	2.3	Modelling in biology	11
		2.3.1 Deterministic modelling	11
		2.3.2 Stochastic modelling	11
	2.4	Conclusions from Literature	11
3	Prob	olem Description	12
4	Desi	ign and Implemenation	13
5	Res	ults and Evaluation	14
6	Con	clusion	15

List of Figures

List of Tables

1 Introduction

1.1 Motivation

Menopause unsolved problem in biology – many different hypotheses Better population models

Replicating model can be used to check results found elsewhere Model can be adapted for use for other hypotheses to do with menopause and/or population modelling.

1.2 Aims

To check validity of existing model by replicating it

To rewrite the model into an object oriented language (python)

Address some of it shortcomings (allowing preference to coevolve)

1.3 Thesis Outline

Chapter Two Literature Review: reviewing past work relevant to the project

Chapter Three Problem Description: looking at what the problem consists of

Chapter Four Design and Implementation: designing a solution to the problem

Chapter Five Results and Evaluation: presenting and analysing the results produced by the solution

Chapter Six Conclusion: making judgement of the solution and the results, suggesting new work.

1.4 Statement of Ethics

Model – no ethical concerns

2 Literature Review

2.1 Menopause

What is menopause. Somatic vs reproductive senescence.

What animals does it occur in. Wild vs captive.

Possible reasons for menopause Patriarch Hypothesis, Grandmother, reproductive conflict

2.1.1 Patriarch hypothesis

Proposed by [1] , Males having preference for younger females caused menopause

Deterministic model done in [2] but this has fixed age of end of reproduction – something not true now.

Stochastic model done in [3] – main focus of report. Fixes many of the flaws of [2] (including removing the fixed age of the end of reproduction) but still has problems.

2.1.2 Grandmother hypothesis

2.1.3 Reproductive conflict

2.1.4 Other hypotheses

Follicular depletion, healthcare/lifespan improvements - not evolutionary but epiphenomenon, Risk from late age reproduction.

2.2 Evolution

Overview [4]

2.2.1 Key concepts/terms

Selection

Description of selection

Mutation

Description of mutation

Crossover

Description of crossover

Coevolution

Description of co-evolution

2.2.2 Biological relevance to project

Project looking at evolution of long post-reproductive lifespans

2.2.3 Computational relevance to project

Genetic algorithms for optimisation

2.3 Modelling in biology

2.3.1 Deterministic modelling

Populations often modelled with exponential growth/differential equations

2.3.2 Stochastic modelling

Multiagent systems, genetic algorithms, neural networks, machine learning to reduce dimensionality,

2.4 Conclusions from Literature

3 Problem Description

This should be about 1500 words long.

4 Design and Implemenation

This should be about 2500 words long.

5 Results and Evaluation

This should be about 2500 words long.

6 Conclusion

This should be about 1000 words long.

Bibliography

- [1] F. Marlowe, "The patriarch hypothesis," *Human Nature*, 2000. [Online]. Available: http://dx.doi.org/10.1007/s12110-000-1001-7
- [2] S. D. Tuljapurkar, C. O. Puleston, and M. D. Gurven, "Why men matter: Mating patterns drive evolution of human lifespan," *PLOS ONE*, 2007. [Online]. Available: http://dx.doi.org/10.1371% 2Fjournal.pone.0000785
- [3] R. A. Morton, J. R. Stone, and R. S. Singh, "Mate choice and the origin of menopause," *PLOS Computational Biology*, 2013. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003092
- [4] C. Darwin, *On the origin of species*. John Murray, 1859.