Less Regret via Online Conditioning

Sampad Kumar Kar

Chennai Mathematical Institute

December 20, 2023

Motivation

- Less Regret via Online Conditioning by Matthew Streeter and H. Brendan McMahan (2010).
- We analyze and evaluate an Online Gradient Descent algorithm with adaptive per coordinate adjustment of learning rates.
- This leads to regret bounds that are stronger than those of standard online gradient descent for general online convex optimization problems. This is also evident empirically.

Formulation

Recall definition of regret in OCO setting:

$$Regret_T = \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x)$$

 Simplest algorithm that applies to the most general setting of OCO is Online Gradient Descent (OGD) algorithm by Zinkevich (2003).

Online Gradient Descent

Online Gradient Descent Algorithm

- Input: Convex Set K, T, $x_1 \in K$, stepsizes $\{\eta_t\}$
- for t = 1 to T do:
 - Play x_t and observe the cost $f_t(x_t)$
 - Update and Project:

$$y_{t+1} = x_t - \eta_t g_t$$

$$x_{t+1} = \Pi_{\mathcal{K}}(y_{t+1})$$

• Here g_t is a subgradient of f_t at x_t .

OGD Regret Bounds

Theorem 1

OGD with stepsize $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all T > 1:

$$\mathsf{Regret}_T = \sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x) \le \frac{3}{2} GD\sqrt{T}$$

OGD Regret Bounds

Theorem 1

OGD with stepsize $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \ge 1$:

$$\mathsf{Regret}_T = \sum_{t=1}^T f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x) \le \frac{3}{2} GD\sqrt{T}$$

Proof:

$$f_t(x_t) - f_t(x^*) \le \nabla^T f_t(x_t)(x_t - x^*);$$
 By Convexity (*) $\|x_{t+1} - x^*\|^2 \le \|y_{t+1} - x^*\|^2;$ By Pythagoras Theorem $\nabla^T f(x_t)(x_t - x^*) \le \frac{\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2}{2\eta_t} + \frac{\eta_t G^2}{2};$ By substituting y_{t+1} from OGD (**)

Proof

$$f_t(x_t) - f_t(x^*) \le \frac{\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2}{2\eta_t} + \frac{\eta_t G^2}{2};$$

using (*) and (**)

$$\mathsf{Regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} \frac{\|x_t - x^*\|^2 - \|x_{t+1} - x^*\|^2}{2\eta_t} + \frac{G^2}{2} \sum_{t=1}^{\mathcal{T}} \eta_t;$$

Summing above from t = 1 to T

$$\mathsf{Regret}_{\mathcal{T}} \leq \frac{D^2}{2\eta_{\mathcal{T}}} + \frac{G^2}{2} \sum_{t=1}^{\mathcal{T}} \eta_t; (\dagger)$$

$$\mathsf{Regret}_{\mathcal{T}} \leq \frac{3}{2} \mathit{GD} \sqrt{\mathit{T}};$$

Assuming *G*- Lipchitz, *D*- Diameter and $\frac{1}{\eta_0}=0$ and $\eta_t=\frac{D}{G\sqrt{t}}$

A Motivating Application

- Problem: Predicting the probability that a user will click on an ad when it is shown alongside search results for a particular query, using a Generalized Linear Model (GLM):
 - On round t, Algorithm predicts $p_t(x_t) = I(x_t.\theta_t)$
 - $x_t, \theta_t \in \mathbb{R}^n$: vector of weights, features, I: link function
 - Ex: $I(\alpha) = \frac{1}{1 + \exp{-\alpha}}$, $I(\alpha) = \alpha$
 - Algorithm incurs loss, which is some convex function of p_t ; Excross entropy loss, sum square loss
 - Played in OGD setting: $x_{t+1} = \Pi_{\mathcal{K}}(x_t \eta_t g_t)$; g_t being a subgradient of f_t at x_t
- Single Ad System, we wish to predict it's click-through rate on different queries.
- On a large search system, a popular query will occur orders of magnitude more often than a rare query:
 - rare queries: need larger learning rates
 - popular queries: smaller learning rates

Tradeoffs in 1-Dimension: Global Learning Rate

- Consider $\mathcal{F} = [0, D]$.
- When η is too large:
 - Let $f_t(x) = G|x \epsilon|$. Then:

$$\nabla f_t(x) = \begin{cases} -G & x \in [0, \epsilon] \\ G & x \in (\epsilon, D] \end{cases}$$

- If $x_1 = 0$, then OGD plays¹ $x_t = 0$ on odd rounds and $x_t = G\eta$ on even rounds. Here, $x^* = \epsilon$.
- This incurs: Regret $_T = \frac{T}{2}G\epsilon + \frac{T}{2}G(G\eta \epsilon) = \frac{T}{2}G^2\eta$.
- Note: The regret is not sublinear.

Tradeoffs in 1-Dimension: Global Learning Rate

- Consider $\mathcal{F} = [0, D]$.
- When η is too **small**:
 - Let $f_t(x) = -Gx$. Then $\nabla f_t(x) = -G$
 - If $x_1 = 0$, then OGD plays $x_t = \min\{D, (t-1)G\eta\}$. Here, $x^* = D$.
 - Since we are assuming η to be small²:
 - For first $\frac{D}{2G\eta}$ rounds, per round regret is atleast $\frac{GD}{2}$.
 - Also³, Regret_T $\geq \frac{GD}{2} \times \frac{D}{2G\eta} = \frac{D^2}{4\eta}$

сMi

²For $t < \frac{D}{2Gn}$, we have $x_t \leq \frac{D}{2}$

³Assuming $\frac{D}{2Gn} < T$

Tradeoffs in 1-Dimension: Global Learning Rate

- Consider $\mathcal{F} = [0, D]$.
- Based on the above examples, thus for any choice of η , there exists a problem where (‡):

$$\max\{\frac{\textit{D}^2}{4\eta}, \frac{\textit{T}}{2}\textit{G}^2\eta\} \leq \mathsf{Regret}_{\textit{T}} \leq \frac{\textit{D}^2}{2\eta} + \frac{\textit{T}}{2}\textit{G}^2\eta$$

- Upper Bound is adopted from †4. By setting $\eta = \frac{D}{G\sqrt{T}}$ (which minimizes the upper bound), we can minimize the worst case regret upto a constant factor⁵:
 - Optimal choice of η is proportional to $\frac{D}{G}$
 - Feasible set is large and gradients are small: large learning rates
 - Feasible set is small and gradients are large: small learning rates

⁴Substitute a global $\eta_t = \eta$

⁵This leads to a regret bound of $DG\sqrt{T}$

A Toy Example against Global Learning Rates

Theorem 2

There exists a family of online convex optimization problems, parameterized by T, where gradient descent with a non-increasing **global learning rate** incurs regret atleast $\Omega(T^{\frac{2}{3}})$, whereas gradient descent with an appropriate **per-coordinate learning rate** has a regret bound of $\mathcal{O}(\sqrt{T})$

A Toy Example against Global Learning Rates

Theorem 2

There exists a family of online convex optimization problems, parameterized by T, where gradient descent with a *non-increasing* **global learning rate** incurs regret atleast $\Omega(T^{\frac{2}{3}})$, whereas gradient descent with an appropriate **per-coordinate learning rate** has a regret bound of $\mathcal{O}(\sqrt{T})$. a

Proof: We interleave the instances of the two classes of 1-dimensional subproblems discussed previously, by setting G = 1 on the feasible set [0, 1]. Here $\mathcal{F} = [0, 1]^n$, n is the dimension.

- We have the first subproblem of first type lasting for T_0 rounds.
- Then we have C subproblems of second type, each lasting for T_1 rounds.

^aThis does not contradict the previously stated bound of $\mathcal{O}(GD\sqrt{T})$, as in this family of problems $D=T^{\frac{1}{6}}$ and G=1.

Proof (Global Learning Rate)

Here is the loss function⁶:

$$f_t(x_t) = \begin{cases} |x_{t,1} - \epsilon| & t \le T_0 \\ -x_{t,j} & t > T_0, \text{ where } j = 1 + \lceil \frac{t - T_0}{T_1} \rceil \end{cases}$$

- Each round depends on exactly 1 coordinate⁷.
- As observed from the 1-dimensional examples, we can easily show that $x^* = (\epsilon, 1, ..., 1, *, ..., *)^8$. Using this and the bounds obtained from \ddagger 9:
 - $\mathsf{Regret}_{T} \geq \frac{T_0}{2} \eta + C \min\{\frac{1}{4\eta}, \frac{T_1}{2}\}$
 - Set $C=T_1=T_0^{\frac{2}{3}}$ and assume $T_1\leq \frac{1}{2\eta}$
 - Simple minimization over η shows that the sum is $\Omega(T_0^{\frac{2}{3}})$, which is also $\Omega(T^{\frac{2}{3}})$ as $T=T_0+T_0^{\frac{2}{3}}\leq 2T_0$

⁹For the 1-D subproblems: $\max\{\frac{D^2}{4\eta}, \frac{T}{2}G^2\eta\} \leq \text{Regret}_T \leq \frac{D^2}{2\eta} + \frac{T}{2}G^2\eta$

⁶There was a slight typo here in the original paper

⁷So, exactly 1 component of gradient is non-zero every round

 $^{^8}$ This is ϵ followed by \emph{C} 1's, with the remaining elements being irrelevant

Proof (Per-Coordinate Learning Rate)

So, for gradient descent with **global learning rate**, we obtain a regret lowerbound of $\Omega(T^{\frac{2}{3}})$.

- We minimize the regret upper bounds on a per-coordinate basis. We set the learning rates¹⁰ in the following manner:
 - $\eta_t = \sqrt{\frac{1}{T_0}}$ for first T_0 rounds and $\eta_t = \sqrt{\frac{1}{T_1}}$ for the remaining $CT_1 + k$ rounds¹¹.
 - At this learning rate, we accumulate regret upper bounded by \sqrt{T} for each subproblem of T rounds¹².
 - Using the Regret_T $\leq \sqrt{T_0} + C\sqrt{T_1} = 2\sqrt{T_0}$, which means Regret_T $\in \mathcal{O}(\sqrt{T_0})$ or $\mathcal{O}(\sqrt{T})$.

So, for gradient descent with **per-coordinate learning rate**, we obtain a regret upperbound of $\mathcal{O}(\sqrt{T})$.

¹⁰This is what makes this example a per-coordinate learning rate example, because at every iteration exactly one coordinate is meaningfully affected ¹¹This is justified by the fact that we are minimizing the upper bound of

 $rac{D^2}{2\eta}+rac{T}{2}G^2\eta$ on a per coordinate basis, which gives $\eta^*=\sqrt{rac{1}{T}}$ for T rounds

стi

¹²Assuming D, G = 1 and $C = T_1 = T_0^{\frac{2}{3}}$

Improved Global Learning Rate

As shown during the proof of **Theorem 1**, by Zinkevich (2003) showing the regret upper bound of *OGD* at general OCO setting, we have the following:

$$\mathsf{Regret}_{T} \leq \mathcal{B}(\eta_{1}, \eta_{2}, \dots, \eta_{T}) := \frac{D^{2}}{2\eta_{T}} + \frac{1}{2} \sum_{t=1}^{I} \|g_{t}\|^{2} \eta_{t}$$

Although the gradients $g_1, g_2 \dots, g_T$ are not known in advance, we can come within a factor of $\sqrt{2}$ on the optimal bound, i.e. R_{\min} .¹³

Theorem 3

Setting $\eta_t = \frac{D}{\sqrt{2\sum_{i=1}^t \|g_i\|^2}}$ yields regret upper bound of

$$D\sqrt{2\sum_{t=1}^{T}\|g_t\|^2}=\sqrt{2}R_{\min}.$$

 $^{13}R_{\min} := \min_{\eta_1 \leq \eta_2 \leq \cdots \leq \eta_T} \mathcal{B}(\eta_1, \eta_2, \ldots, \eta_T) = D\sqrt{\sum_{t=1}^T \|g_t\|^2}$

 cm_i

16/28

Proof

Theorem 3

Setting $\eta_t = \frac{D}{\sqrt{2\sum_{i=1}^{l} \|g_i\|^2}}$ yields regret upper bound of

$$D\sqrt{2\sum_{t=1}^{T}\|g_{t}\|^{2}}=\sqrt{2}R_{\min}.$$

Proof: We first compute the value of R_{\min} . As constrained by the proof of **Theorem 1**, we only consider non-increasing sequences of $\{\eta_t\}^{14}$.

 This means the bound can be minimized by a constant learning rate η^* . Simple gradient minimization shows

$$\eta^* = \frac{D}{\sqrt{2\sum_{i=1}^{T}\|g_i\|^2}}$$
, which gives $R_{\min} = D\sqrt{\sum_{t=1}^{T}\|g_t\|^2}$.

Plugging this choice of η_t yields regret upper bound of

$$\frac{1}{2}D\left(\sqrt{2\sum_{t=1}^{T}\|g_t\|^2}+\sum_{t=1}^{T}\frac{\|g_t\|^2}{\sqrt{2\sum_{i=1}^{t}\|g_i\|^2}}\right).$$

 14 lf $\eta_t>\eta_{t+1}$ for some t, then we can further reduce ${\cal B}$ by making η_t smaller

cmi

Proof

We will show that this is upper bounded by $\sqrt{2}R_{\min}$. For this, we use **Lemma 1**:

Lemma 1

For $x_1, x_2, \dots x_n \in \mathbb{R}_{\geq 0}$:

$$\sum_{i=1}^n \frac{x_i}{\sqrt{\sum_{j=1}^i x_j}} \le 2\sqrt{\sum_{i=1}^n x_i}$$

Using **Lemma 1**, we bound the second term:

$$\sum_{t=1}^{T} \frac{\|g_t\|^2}{\sqrt{2\sum_{i=1}^{t} \|g_i\|^2}} \leq \sqrt{2\sum_{t=1}^{T} \|g_t\|^2}$$

This gives an improved regret bound of $\sqrt{2}R_{\min}$.

OGD with per-coordinate learning rate

OGD with per-coordinate learning rate Algorithm

- Input: Feasible Set \mathcal{F} , T
- Initialize: $x_1 = 0$, $D_i = b_i a_i$
- for t = 1 to T do:
 - Play x_t and observe the cost $f_t(x_t)$
 - Update and Project:

$$y_{t+1,i} = x_{t,i} - \eta_{t,i} g_{t,i}$$

 $x_{t+1} = \Pi_{\mathcal{K}}(y_{t+1})$

• Here x_t is a vector whose i^{th} component is $x_{t,i}$ and g_t is a subgradient of f_t at x_t .

OGD Regret Bounds with per-coordinate LRs

Theorem 4

Let $\mathcal{F} = \times_{i=1}^n$. Then this Algorithm has regret bounded by $\sum_{i=1}^n \mathcal{B}_i \left(\{ \eta_{t,i} \} \right)$, where

$$\mathcal{B}_{i}\left(\{\eta_{t,i}\}
ight) := D_{i}^{2} rac{1}{2\eta_{\mathcal{T},i}} + rac{1}{2} \sum_{t=1}^{T} g_{t,i}^{2} \eta_{t,i} = \sqrt{2} R_{\min,i}$$

Proof

Theorem 4

Let $\mathcal{F} = \times_{i=1}^n$. Then this Algorithm has regret bounded by $\mathcal{B}(\{\eta_t\}) := \sum_{i=1}^n \mathcal{B}_i(\{\eta_{t,i}\}), \text{ where }$

$$\mathcal{B}_{i}\left(\{\eta_{t,i}\}\right) := D_{i}^{2} \frac{1}{2\eta_{T,i}} + \frac{1}{2} \sum_{t=1}^{I} g_{t,i}^{2} \eta_{t,i} = \sqrt{2} R_{\min,i}$$

Proof: Since this algorithm only uses subgradient g_t every iteration, we can assume WLOG that f_t is linear and instead use $f_t^L(x) = g_t x$, to find a regret upper bound¹⁵.

- Since \mathcal{F} is a hypercube, the projector operator independently projects onto $D_i = [a_i, b_i]$.
- This special case is same as solving a separate OCO problem per coordinate *i*, where at t^{th} iteration, the loss function is f_t^L .

¹⁵This is because Regret $_{\tau} \leq \text{Regret}_{\tau}^{L}$, by convexity

Proof (cont.)

This means for each i:

• Set η_t such that $\eta_{t,i} = \frac{D_i}{\sqrt{2\sum_{s=1}^t g_{s,i}^2}}$ and by using **Theorem 3**, we have the following bound ¹⁶:

$$\begin{split} & \mathsf{Regret}_{T,i}^{L} := \sum_{t=1}^{T} g_{t,i} x_{t,i} - \min_{y \in D_i} \{ \sum_{t=1}^{T} g_{t,i} y_i \} \\ & \mathsf{Regret}_{T,i}^{L} \leq \mathcal{B}_i \left(\{ \eta_{t,i} \} \right) = D_i^2 \frac{1}{2 \eta_{T,i}} + \frac{1}{2} \sum_{t=1}^{T} g_{t,i}^2 \eta_{t,i} \\ & \mathcal{B}_i \left(\{ \eta_{t,i} \} \right) \leq D_i \sqrt{2 \sum_{t=1}^{T} g_{t,i}^2} = \sqrt{2} R_{\min,i} \end{split}$$

Proof (cont.)

• Since \mathcal{F} is a hypercube, this means we collect the combined regret as:

$$\mathsf{Regret}_{T} \leq \mathsf{Regret}_{T}^{L} = \sum_{i=1}^{n} \mathsf{Regret}_{T,i}^{L}$$

$$\mathsf{Regret}_{T} \leq \sum_{i=1}^{n} \mathcal{B}_{i} \left(\{ \eta_{t,i} \} \right) = \sqrt{2} \sum_{i=1}^{n} R_{\mathsf{min},i}$$

A tighter Regret Bound

Theorem 5

The bounds obtained in **Theorem 4** is a tighter bound than that obtained in **Theorem 3**, i.e. we show that a

$$\sum_{i=1}^{n} D_{i} \sqrt{2 \sum_{t=1}^{T} g_{t,i}^{2}} \leq D \sqrt{2 \sum_{t=1}^{T} \|g_{t}\|^{2}}$$

where $D = \sqrt{\sum_{i=1}^{n} D_i^2}$ is the diameter of \mathcal{F} .

 $^a_{.}$ LHS is the bound obtained by using per-coordinate LR

^bRHS is the improved bound obtained using global LR

Proof

Theorem 5

$$\sum_{i=1}^{n} D_{i} \sqrt{2 \sum_{t=1}^{T} g_{t,i}^{2}} \leq D \sqrt{2 \sum_{t=1}^{T} \|g_{t}\|^{2}}$$

Proof: Consider vectors $\vec{D} := \{D_i\}_{i=1}^n$ and $\vec{G} := \{\sqrt{2\sum_{t=1}^T g_{t,i}^2}\}_{i=1}^n$.

- LHS simplifies to $\vec{D}.\vec{G}$
- RHS simplifies to $\|\vec{D}\| \|\vec{G}\|$
- By Cauchy-Schwarz Inequality $\vec{D}.\vec{G} \leq \|\vec{D}\|\|\vec{G}\|$

Experimental Evalutation

Online Binary Classification using 2 recent algorithms for text classification: **Passive Aggressive** algorithm (PA) and **Confidence Weighted** algorithm (CW). Here are the results:

DATA	GLOBAL	Per-Coord	CW	PA
Hinge loss				
BOOKS	0.606	0.545	0.871	0.672
DVD	0.576	0.529	0.851	0.637
ELECTRONICS	0.509	$\boldsymbol{0.452}$	0.802	0.555
KITCHEN	0.470	0.419	0.787	0.520
NEWS	0.171	0.140	0.512	0.245
RCV1	0.076	0.070	0.542	0.094
Fraction of mistakes				
BOOKS	0.259	0.211	0.215	0.254
DVD	0.238	0.208	0.203	0.240
ELECTRONICS	0.209	0.175	0.177	0.194
KITCHEN	0.180	0.151	0.153	0.175
NEWS	0.064	0.050	0.054	0.060
RCV1	0.027	0.025	0.039	0.034

Further Exploration

- For α -strongly convex functions we have a regret bound of $\frac{G}{2\alpha}(1 + \log T)$.
- Improved global regret bounds on α -strongly convex functions.
- Improved per-coordinate regret bounds on α -strongly convex functions.

Thank You

