Accuracy

Mc

April 2, 2014

Introduction

In plots we recast the results of simulations in terms of accuracy. We compute the accuracy of each method (continous or categorical), for each level of ρ (see below) by computing the the following quantities:

- false positive (FP) runs with with a significant test under a true null hypothesis
- true positive (TP) runs with a significant test under a false null-hypothesis
- true negative (TN) runs with a nonsignificant result under a true null-hypothesis
- false negative (FN) runs with a nonsignificant result under a false null-hypothesis

Plots to be produced:

- Sensitivity for all 4 of the decision possibilities (continuous ignoring categorical, categorical ignoring continuous, both, either), with X axis being rho (Figure 1)
- PPV for the 4 decision possibilities, with X axis being rho (Figure 2)
- Bar chart with the specificity for the 4 decision possibilities
- Bar chart with the NPV (aggregated over rho) for the 4 decision possibilities

Setup

Model

Two continuous latent variables (η and ξ) are created with N cases, sharing a correlation equal to ρ . A measure x of ξ is created with reliability rel, and then is dichotomized accordingly to p 1 – p into c. The correlations $r_p e = r(\eta, x)$ and $r_p b = r(\eta, c)$ are computed, their p-value and significance (at .05) is recorded.

Design

```
\rho = (0, .1, .2, .3, .4, .5, .6, .7) rel = (0.3, 0.4, 0.5, 0.6, 0.7, 0.80.9)
```

Computation of quantities

- Continuous false positive (FP_C) freq of runs with continuous test p.<.05 and ρ =0
- Continuous true positive (TP_C) freq of runs with continuous test p.<.05 and ρ >0
- Continuous true negative (TN_C) freq of runs with continuous test p.>=.05 and ρ =0
- false negative (FN_C) freq of runs with continuous test p.>=.05 and ρ >0

The same quantities are computed for the categorical indicator (*_S).

Accuracy for continuous indicator

```
rho SENS_C SPEC_C
1 0.1 0.1050000 0.9507143
2 0.2 0.2511429 0.9507143
3 0.3 0.4511429 0.9507143
4 0.4 0.6090000 0.9507143
5 0.5 0.7204286 0.9507143
6 0.6 0.7974286 0.9507143
7 0.7 0.8618571 0.9507143
```

Accuracy for categorical indicator

```
rho SENS_S SPEC_S

1 0.1 0.08414286 0.9498571

2 0.2 0.17957143 0.9498571

3 0.3 0.33785714 0.9498571

4 0.4 0.47128571 0.9498571

5 0.5 0.61057143 0.9498571

6 0.6 0.70114286 0.9498571

7 0.7 0.77900000 0.9498571

con.sig cat.sig rho freq

1 0 0 0.0 6438
```

				1
1	0	0	0.0	6438
2	1	0	0.0	211
3	0	1	0.0	217
4	1	1	0.0	134
5	0	0	0.1	6026
6	1	0	0.1	385
7	0	1	0.1	239

8	1	1	0.1	350
9	0	0	0.2	4955
10	1	0	0.2	788
11	0	1	0.2	287
12	1	1	0.2	970
13	0	0	0.3	3590
14	1	0	0.3	1045
15	0	1	0.3	252
16	1	1	0.3	2113
17	0	0	0.4	2570
18	1	0	0.4	1131
19	0	1	0.4	167
20	1	1	0.4	3132
21	0	0	0.5	1795
22	1	0	0.5	931
23	0	1	0.5	162
24	1	1	0.5	4112
25	0	0	0.6	1286
26	1	0	0.6	806
27	0	1	0.6	132
28	1	1	0.6	4776
29	0	0	0.7	863
30	1	0	0.7	684
31	0	1	0.7	104
32	1	1	0.7	5349

Accuracy for BOTH indicators significant

	rho	SENS_B	SPEC_B
1	0.1	0.04761905	0.9808571
2	0.2	0.12170640	0.9808571
3	0.3	0.23186656	0.9808571
4	0.4	0.30911962	0.9808571
5	0.5	0.37005040	0.9808571
6	0.6	0.40557065	0.9808571
7	0.7	0.43315248	0.9808571

Accuracy for EITHER indicators significant

	rho	SENS_E	SPEC_E
1	0.1	0.1391429	0.9197143
2	0.2	0.2921429	0.9197143
3	0.3	0.4871429	0.9197143
4	0.4	0.6328571	0.9197143
5	0.5	0.7435714	0.9197143
6	0.6	0.8162857	0.9197143
7	0.7	0.8767143	0.9197143

Figure 1: Sensitivity of the two methods

