DDoS Research

Yue Duan Illinois Institute of Technology

Inferring Internet Denial-of-Service Activity

David Moore, Geoffrey M. Voelker and Stefan Savage;

University of California, San Diego

Usenix Security 2001

Outline

- Contribution
- Motivation
- Introduction of Denial-of-Service (DoS) Attacks
- Basic Methodology
- Attack Classification
- Results

Contribution

- Presented a novel technique "backscatter analysis" to estimate the worldwide
 DoS activity
- Performed three-week long real experiments and classified the DoS attacks quantitatively

Motivation

- How prevalent are DoS attacks in the Internet today?
 - o How often?
 - What attack protocols used?
 - o Attack rate?
 - Attack duration?
 - Victim names and domains?
 - And more ...

- Consume resources of a host or network
- Logic attacks: software flaws
 - o Ping-of-Death
- Flooding attacks: overwhelm CPU, memory or network resources
 - SYN flood
 - o TCP ACK, NUL, RST and DATA floods
 - ICMP Echo Request floods
 - And so on ...

- Ping-of-Death
 - IP4 ping packets can be as large as 65,535 bytes
 - What if there is a malicious packet exceed the limit?
 - The total size exceeds the size limit and a buffer overflow can occur, causing the target machine to freeze, crash or reboot.

- DoS: Flood attacks
 - Goal: focus on overwhelming resources (CPU, Memory, Network)
 - Sends large number of requests (flood)
 - Hard to defend against
 - All work here refers to flooding attacks

- Distributed denial-of-service attack (DDoS)
 - Control a group of "zombie" hosts to launch assault on specific target(s)
 - A botnet can perform the DDoS attacks

- IP spoofing
 - Attackers forge IP source addresses
 - Simple technique but very difficult to trace-back

- Side effect of a DoS attack with spoofed source address
- Victim sends responses source address
- Responses are sent all over the internet
- This is called backscatter

- Main assumptions:
 - Address uniformity
 - Reliable delivery
 - Backscatter hypothesis
- Secondary assumptions:
 - One response, by victim, for every packet in attack
 - Monitors can capture backscatter

- Backscatter must be captured to detect DoS attack
- Monitors listen for backscatter
- Observe large enough sample for effective detection
- Probability

$$E(x) = \frac{nm}{2^{32}} = \frac{m}{256}$$

n - # distinct IP addresses monitored m - # attacking packets

Metrics

- Victim identity
- Type of attack
- Timestamp
- Average arrival rate

Packet sent	Response from victim				
TCP SYN (to open port)	TCP SYN/ACK				
TCP SYN (to closed port)	TCP RST (ACK)				
TCP ACK	TCP RST (ACK)				
TCP DATA	TCP RST (ACK)				
TCP RST	no response				
TCP NULL	TCP RST (ACK)				
ICMP ECHO Request	ICMP Echo Reply				
ICMP TS Request	ICMP TS Reply				
UDP pkt (to open port)	protocol dependent				
UDP pkt (to closed port)	ICMP Port Unreach				
***	***				

Table 1: A sample of victim responses to typical attacks.

Backscatter Accuracy/Biases

- Ingress filtering
 - Deployed by ISP
 - Filters out spoofed packets
- Effect On Backscatter
 - Packets could be dropped
 - Harder to detect DoS attempt

Backscatter Accuracy/Biases

Reflector Attacks

- Example: Smurf Attack
- Destination and spoofed source address are essential for the attack

Backscatter and Reflector Attacks

- No backscatter generated from reflector attacks
- Monitor must be picked as the innocent third party

Attack Classification

- Flow-based classification
 - A flow is a series of consecutive packets sharing the same target IP address and IP protocol
 - Flow lifetime: fixed five-minute approach
 - Reduce noise and misconfiguration traffic by setting thresholds
 - Extract packet information from flows

Attack Classification

- Event-based classification
 - Flow-based obscures time-domain characteristics
 - Focused entirely on the victim's IP
 - An attack event is defined by a victim emitting at least ten backscatter packets in one minute

 12,805 attacks were observed over a week

Estimated number of attacks per hour as a function of time (UTC)

	Trace-1	Trace-2	Trace-3	
Dates (2001)	Feb 01 - 08	Feb 11 - 18	Feb 18 - 25	
Duration	7.5 days	6.2 days	7.1 days	
Flow-b	ased Attacks:			
Unique victim IPs	1,942	1,821	2,385	
Unique victim DNS domains	750	693	876	
Unique victim DNS TLDs	60	62	71	
Unique victim network prefixes	1,132	1,085	1,281	
Unique victim Autonomous Systems	585	575	677	
Attacks	4,173	3,878	4,754	
Total attack packets	50,827,217	78,234,768	62,233,762	
Event-l	ased Attacks:			
Unique victim IPs	3,147	3,034	3,849	
Unique victim DNS domains	987	925	1,128	
Unique victim DNS TLDs	73	71	81	
Unique victim network prefixes	1,577	1,511	1,744	
Unique victim Autonomous Systems	752	755	874	
Attack Events	112,457	102,204	110,025	
Total attack packets	51,119,549	78,655,631	62,394,290	

- 90% of the attacks use TCP as their protocol of choice
- Other Protocols represent a minor number of both attacks and backscatter

Kind	Trace-1			Trace-2			Trace-3					
	Attacks		Packe	ts (k)	Attacks		Packets (k)		Attacks		Packets (k)	
TCP	3,902	(94)	28,705	(56)	3,472	(90)	53,999	(69)	4,378	(92)	43,555	(70)
UDP	99	(2.4)	66	(0.13)	194	(5.0)	316	(0.40)	131	(2.8)	91	(0.15)
ICMP	88	(2.1)	22,020	(43)	102	(2.6)	23,875	(31)	107	(2.3)	18,487	(30)
Proto 0	65	(1.6)	25	(0.05)	108	(2.8)	43	(0.06)	104	(2.2)	49	(0.08)
Other	19	(0.46)	12	(0.02)	2	(0.05)	1	(0.00)	34	(0.72)	52	(0.08)

- An attack rate of 500 SYN packets per second is enough to overwhelm a server
- Comparing the distributions, the uniform random attacks have a lower rate than the distribution of all attacks.
- A significant factor in the question of threat posed by an attack is the connectivity of the victim

Figure 4: Cumulative distributions of estimated attack rates in packets per second.

 The following Graphs use Flow based classification due to the better characterization of attack durations while being immune to the intensity

Figure 5: Cumulative distribution of attack durations.

Figure 6: Probability density of attack durations.