第14章 STC单片机增强型PWM发生器原理及应用

何宾 2018.03

本章主要内容

- 脉冲宽度调制原理
- 增强型PWM发生器模块
- 生成单路PWM信号
- 生成两路互补PWM信号
- 步进电机的驱动和控制

脉冲宽度调制原理

- 使用数字电路来控制电机的速度,通常使用脉冲宽度调制 (pulse width modulation, PWM)信号波形。
- 在PWM中,脉冲周期是恒定的。
- 在一个脉冲周期内,将高电平的时间称为占空,占空是可变的。

口 占空比表示为:

占空比 =
$$\frac{占空}{脉冲周期} \times 100\%$$

脉冲宽度调制原理

- PWM信号的直流平均值与占空是成比例的。
 - 口 一个占空比为50%的PWM信号,其直流值为PWM信号幅度最大值的 1/2。
- 如果通过电机的电压与PWM成正比,简单的改变脉冲占空比就可以改变电机的速度。

增强型PWM发生器模块 --功能

STC15W4K32S4系列的单片机内部集成了一组(各自独立6路)增强型PWM波形发生器。

- PWM波形发生器内部有一个15位的PWM计数器供6路PWM使用。
- 用户可以设置每路PWM的初始电平。
- 此外,PWM波形发生器为每路PWM又设计了两个用于控制波形 翻转的计数器T1/T2.
 - 口 可以非常灵活的控制每路PWM高低电平的宽度,从而达到对PWM占空比
 - 一级PWM输出延迟进行控制的目的。

增强型PWM发生器模块 --功能

- 每路PWM相对独立,且可以设置每路PWM的初始状态。
 - □ 用户可以将其中的任意两路PWM信号组合在一起使用。因此,可以实现 互补对称输出以及死区控制等特殊的应用。
- 增强型的PWM波形发生器还设计了对外部异常事件,其中包括: 外部端口P2.4的电平异常、比较器比较结果异常,进行监控的功能,可用于紧急关闭PWM输出。
- PWM波形发生器还可以在15位的PWM计数器归零时触发外部事件(比如: ADC转换)。

增强型PWM发生器模块 --功能

STC15W4K32S4系列增强型PWM模块的输出端口可以使用:

- PWM2/P3.7、PWM3/P2.1、PWM4/P2.2、PWM5/P2.3、PWM6/P1.6、PWM7/P1.7
- 可以通过寄存器将PWM输出切换到第2组端口:
 - PWM2_2/P2.7、PWM3_2/P4.5、PWM4_2/P4.4、PWM5_2/P4.2、PWM6_2/P0.7、PWM7_2/P0.6

增强型PWM发生器寄存器组 --端口配置寄存器

端口配置寄存器P_SW2

- 该寄存器位于STC单片机特殊功能寄存器地址为0xBA的位置。
- 当复位后,该寄存器的值为 000x0000B。

端口配置寄存器各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	В0
名字	EAXSFR	0	0	0	_	S4_S	S3_S	S2_S

- EAXSFR为访问扩展SFR使能控制位。
 - 口 当该位为0时,操作对象为扩展RAM (XRAM)。
 - 口 当该位为1时,操作对象为扩展SFR (XSFR)。

增强型PWM发生器寄存器组 --PWM配置寄存器PWMCFG

- 该寄存器位于STC单片机特殊功能寄存器地址为0xF1的位置。
- 当复位后,该寄存器的值为x0000000B。

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字	_	CBTADC	C7INI	C6INI	C5INI	C4INI	C3INI	C2INI

■ CBTADC

- □ PWM计数器归零触发ADC转换控制位。当该位为0时,PWM计数器归零不触发ADC转换;当该位为1时,PWM计数器归零触发ADC转换;
- \blacksquare CxINI (x=2, 3, 4, 5, 6, 7)
 - 口设置PWMx输出端口的初始电平。当该位为0时,PWMx输出端口的初始电平为低电平;当该位为1时,PWMx输出端口的初始电平为高电平。

增强型PWM发生器寄存器组 ---PWM控制寄存器PWMCR

- 该寄存器位于STC单片机特殊功能寄存器地址为0xF5的位置。
- 当复位后,该寄存器的值为0000000B。

比特	B7	В6	В5	B4	В3	B2	B1	ВО
名字	ENPWM	ECBI	ENC70	ENC60	ENC50	ENC40	ENC30	ENC20

ENPWM

口使能增强PWM波形发生器。当该位为0时,关闭PWM波形发生器; 当该位为1时,使能PWM波形发生器,PWM计数器开始计数。

■ ECBI

PWM计数器归零中断使能位。当该位为0时,关闭PWM计数器归零中断(CBIF依然会被硬件置位);当该位为1时,使能PWM计数器归零中断。

增强型PWM发生器寄存器组 --PWM控制寄存器

- ENCxO (x=2, 3, 4, 5, 6, 7)
 - D PWMx输出使能位。当该位为0时,PWM通道x的端口为GPIO;当该位为1时,PWM通道x的端口为PWM输出口,受PWM波形发生器控制。

增强型PWM发生器寄存器组 --PWM中断标志寄存器PWMIF

- 该寄存器位于STC单片机特殊功能寄存器地址为0xF6的位置。
- 当复位后,该寄存器的值为x000000B。

比特	В7	В6	B5	B4	В3	B2	B1	ВО
名字	_	CBIF	C7IF	C6IF	C5IF	C4IF	C3IF	C2IF

CBIF

- D PWM计数器归零中断标志位。当PWM计数器归零时,硬件将此位置为1。当ECBI为1时,程序会跳转到相应的中断入口执行中断服务程序。
- \blacksquare CxIF (x=2, 3, 4, 5, 6, 7)
 - 口第x通道的PWM中断标志位。可设置在翻转点1和翻转点2触发CxIF。 当PWM发生翻转时,硬件自动将该位置1。当EPWMxI位为1时,程序 会跳转到相应中断入口执行中断服务程序。

增强型PWM发生器寄存器组 ---PWM外部异常控制寄存器

PWM外部异常控制寄存器PWMCR

- 该寄存器位于STC单片机特殊功能寄存器地址为0xF7的位置。
- 当复位后,该寄存器的值为xx000000B。

PWM外部异常控制寄存器PWMCR各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字			ENFD	FLTFLIO	EEDI	FDCMP	FDIO	FDIF

ENFD

D PWM外部异常检测功能控制位。当该位为0时,关闭PWM外部异常检测功能;当该位为1时,使能PWM外部异常检测功能。

增强型PWM发生器寄存器组 --PWM外部异常控制寄存器

■ FLTFLIO

口发生PWM外部异常时,对PWM输出口控制位。当该位为0时,发生PWM外部异常时,PWM的输出口不作任何改变;当该位为1时,发生PWM外部异常时,PWM的输出口立即被设置为高阻输入模式。

■ EFDI

口PWM异常检测中断使能位。当该位为0时,关闭PWM异常检测中断 (FDIF仍然会被硬件置位);当该位为1时,使能PWM异常检测中断。

■ FDCMP

口设定PWM异常检测源为比较器的输出。当该位为0时,比较器与PWM无关。当该位为1时,当比较器正极P5.5/CMP+的电平比比较器负极P5.4/CMP-的电平高或者比较器正极P5.5/CMP+的电平比内部参考电压源1.28V高时,触发PWM异常。

增强型PWM发生器寄存器组 --PWM外部异常控制寄存器

■ FDIO

口 设定PWM异常检测源为端口P2.4的状态。当该位为0时,P2.4的状态与PWM无关;当该位为1时,P2.4的电平为高时,触发PWM异常。

■ FDIF

口 PWM异常检测中断标志位。当发生PWM异常,即:比较器正极 P5.5/CMP+的电平比比较器负极P5.4/CMP - 的电平高或者比较器正极P5.5/CMP+的电平比内部参考电压源1.28V高,或者P2.4的电平为 高时,硬件自动将该位置1。当EFDI为1时,程序会跳转到中断入口执行中断服务程序。

增强型PWM发生器寄存器组 --PWM计数器

PWM计数器包含PWM计数器高字节寄存器PWMCH和PWM计数器低字节寄存器PWMCL

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	ВЗ	B2	B1	ВО
PWMCH	0xFFF0	x0000000			PWMCH[14:8]					
PWMCL	0xFFF1	00000000		PWMCL[7:0]						

增强型PWM发生器寄存器组 --PWM计数器

PWM计数器是一个15位的寄存器,计数范围为1~32768 之间的任意值都可以作为PWM的周期。

- PWM波形发生器内部的计数器从0开始计数,每个PWM时钟 周期递增1。
- 当内部计数器的计数值达到[PWMCH, PWMCL]设置的PWM周期时, PWM波形发生器内部的计数器将从0开始重新计数。
- 硬件会自动将PWM归零中断标志位CBIF置为1,如果ECBI为1,则程序将跳转到相应中断入口执行中断服务程序。

增强型PWM发生器寄存器组 --PWM时钟选择寄存器

PWM时钟选择寄存器PWMCKS

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFFF2的位置。
- 当复位后,该寄存器的值为XXX00000B。

PWM时钟选择寄存器PWMCKS各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字			_	SELT2		PS[3	: 0]	

增强型PWM发生器寄存器组 --PWM时钟选择寄存器

■ SELT2

PWM时钟源选择。当该位为0时,PWM时钟源为系统时钟经过分频器 之后的时钟;当该位为1时,PWM时钟源为定时器2的溢出脉冲。

■ PS[3: 0]

口 系统时钟分频参数。当SELT2位为0时,PWM时钟频率=系统时钟频率/ (PS[3: 0]+1)

增强型PWM发生器寄存器组 --PWM2翻转计数器

PWM2第一次翻转高字节寄存器PWM2T1H和第一次翻转高字节寄存器PWM2T1L

寄存器	地址 (XSFR)	复位值	В7	В6	B5	B4	ВЗ	B2	B1	ВО
PWM2T1H	0xFF00	x0000000		PWM2T1H[14:8]						
PWM2T1L	0xFF01	00000000		PWM2T1L [7:0]						

增强型PWM发生器寄存器组 --PWM2翻转计数器

PWM2第二次翻转高字节寄存器PWM2T2H和第二次 翻转高字节寄存器PWM2T2L

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	ВЗ	B2	B1	ВО
PWM2T2H	0xFF02	x0000000		PWM2T2H[14:8]						
PWM2T2L	0xFF03	00000000		PWM2T2L [7:0]						

增强型PWM发生器寄存器组 --PWM2控制寄存器

PWM2控制寄存器PWM2CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF04的位置。
- 当复位后,该寄存器的值为xxxx0000B。

PWM2控制寄存器PWM2CR各位的含义

比特	В7	В6	B5	B4	В3	B2	B1	ВО
名字					PWM2_PS	EPWM2I	EC2T2SI	EC2T1SI

PWM2_PS

口 PWM2输出引脚选择位。当该位为0时,PWM2的输出引脚为PWM2/P3.7。当该位为1时,PWM2的输出引脚为PWM2_2/P2.7。

增强型PWM发生器寄存器组 --PWM2控制寄存器

■ EPWM2I

口 PWM2中断使能控制位。当该位为0时,关闭PWM2中断。当该位为1时,使能PWM2中断。当C2IF被硬件设置为1时,程序将跳转到相应中断服务程序入口执行中断服务程序。

■ EC2T2SI

PWM2的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T2翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM2波 形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C2IF置1。

增强型PWM发生器寄存器组 --PWM2控制寄存器

■ EC2T1SI

□ PWM2的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T1翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM2 波形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波 形发生翻转,同时硬件将C2IF置1。

增强型PWM发生器寄存器组 --PWM3翻转计数器

PWM3第一次翻转高字节寄存器PWM3T1H和第一次翻 转低字节寄存器PWM3T1L

寄存器	地址 (XSFR)	复位值	В7	В6	B5	B4	ВЗ	B2	B1	ВО
PWM3T1H	0xFF10	x0000000		PWM3T1H[14:8]						
PWM3T1L	0xFF11	00000000		PWM3T1L [7:0]						

增强型PWM发生器寄存器组 --PWM3翻转计数器

PWM3第二次翻转高字节寄存器PWM3T2H和第二次翻转低字节寄存器PWM3T2L

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	В3	B2	B1	ВО
PWM3T2H	0xFF12	x0000000		PWM3T2H[14:8]						
PWM3T2L	0xFF13	00000000		PWM3T2L [7:0]						

增强型PWM发生器寄存器组 --PWM3控制寄存器

PWM3控制寄存器PWM3CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF14的位置。
- 当复位后,该寄存器的值为 "xxxx0000"。

PWM3控制寄存器PWM3CR各位的含义

比特	B7	В6	B5	B4	В3	B2	B1	В0
名字					PWM3_PS	EPWM3I	EC3T2SI	EC3T1SI

■ PWM3_PS

DPWM3输出引脚选择位。当该位为0时,PWM3的输出引脚为PWM3/P2.1。当该位为1时,PWM3的输出引脚为PWM3_2/P4.5。

增强型PWM发生器寄存器组 --PWM3控制寄存器

■ EPWM3I

口 PWM3中断使能控制位。当该位为0时,关闭PWM3中断。当该位为1时,使能PWM3中断。当C3IF被硬件设置为1时,程序将跳转到相应中断服务程序入口执行中断服务程序。

■ EC3T2SI

□ PWM3的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭T2 翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM3波形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发生翻转,同时硬件将C3IF置1。

增强型PWM发生器寄存器组 --PWM3控制寄存器

■ EC3T1SI

□ PWM3的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T1翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM3波 形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波形 发生翻转,同时硬件将C3IF置1。

增强型PWM发生器寄存器组---PWM4翻转计数器

PWM4第一次翻转高字节寄存器PWM4T1H和第一次翻转低字节寄存器PWM4T1L

寄存器	地址 (XSFR)	复位值	В7	В6	B5	B4	ВЗ	B2	B1	ВО
PWM4T1H	0xFF20	x0000000		PWM4T1H[14:8]						
PWM4T1L	0xFF21	00000000	PWM4T1L [7:0]							

增强型PWM发生器寄存器组 --PWM4翻转计数器

PWM4第二次翻转高字节寄存器PWM4T2H和第二次翻 转低字节寄存器PWM4T2L

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	В3	B2	B1	ВО
PWM4T2H	0xFF22	x0000000		PWM4T2H[14:8]						
PWM4T2L	0xFF23	00000000	PWM4T2L [7:0]							

增强型PWM发生器寄存器组 --PWM4控制寄存器

PWM4控制寄存器PWM4CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF24的位置。
- 当复位后,该寄存器的值为 "xxxx0000"。

PWM4控制寄存器PWM4CR各位的含义

比特	В7	В6	B5	B4	В3	B2	B1	ВО
名字					PWM4_PS	EPWM4I	EC4T2SI	EC4T1SI

■ PWM4_PS

□PWM4输出引脚选择位。当该位为0时,PWM4的输出引脚为PWM4/P2.2。当该位为1时,PWM4的输出引脚为PWM4_2/P4.4。

增强型PWM发生器寄存器组 --PWM4控制寄存器

■ EPWM4I

口 PWM4中断使能控制位。当该位为0时,关闭PWM4中断。当该位为1时,使能PWM4中断。当C4IF被硬件设置为1时,程序将跳转到相应中断服务程序入口执行中断服务程序。

■ EC4T2SI

□ PWM4的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T2翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM4波 形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C4IF置1。

增强型PWM发生器寄存器组 --PWM4控制寄存器

■ EC4T1SI

□ PWM4的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T1翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM4波 形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C4IF置1。

增强型PWM发生器寄存器组 --PWM5翻转计数器

PWM5第一次翻转高字节寄存器PWM5T1H和第一次翻 转低字节寄存器PWM5T1L

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	В3	B2	B1	ВО
PWM5T1H	0xFF30	x0000000		PWM5T1H[14:8]						
PWM5T1L	0xFF31	00000000	PWM5T1L [7:0]							

增强型PWM发生器寄存器组 --PWM5翻转计数器

PWM5第二次翻转高字节寄存器PWM5T2H和第二次翻 转低字节寄存器PWM5T2L

寄存器	地址 (XSFR)	复位值	В7	В6	В5	B4	В3	B2	B1	ВО
PWM5T2H	0xFF32	x0000000		PWM5T2H[14:8]						
PWM5T2L	0xFF33	00000000	PWM5T2L [7:0]							

增强型PWM发生器寄存器组 --PWM5控制寄存器

PWM5控制寄存器PWM5CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF34的位置。
- 当复位后,该寄存器的值为 "xxxx0000"。

PWM5控制寄存器PWM5CR各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	ВО
名字					PWM5_PS	EPWM5I	EC5T2SI	EC5T1SI

■ PWM5_PS

口PWM5输出引脚选择位。当该位为0时,PWM5的输出引脚为PWM5/P2.3。当该位为1时,PWM5的输出引脚为PWM5 2/P4.2。

增强型PWM发生器寄存器组 --PWM5控制寄存器

■ EPWM5I

口 PWM5中断使能控制位。当该位为0时,关闭PWM5中断。当该位为1时,使能PWM5中断。当C5IF被硬件设置为1时,程序将跳转到相应中断服务程序入口执行中断服务程序。

■ EC5T2SI

□ PWM5的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T2翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM5波 形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C5IF置1。

增强型PWM发生器寄存器组 --PWM5控制寄存器

■ EC5T1SI

□ PWM5的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T1翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM5波 形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C5IF置1。

增强型PWM发生器寄存器组 --PWM6翻转计数器

PWM6第一次翻转高字节寄存器PWM6T1H和第一次翻转低字节寄存器PWM6T1L

寄存器	地址 (XSFR)	复位值	В7	B6 B5		B4	ВЗ	B2	B1	ВО
PWM6T1H	0xFF40	x0000000		PWM6T1H[14:8]						
PWM6T1L	0xFF41	00000000	PWM6T1L [7:0]							

增强型PWM发生器寄存器组 --PWM6翻转计数器

PWM6第二次翻转高字节寄存器PWM6T2H和第二次翻转低字节寄存器PWM6T2L

寄存器	地址 (XSFR)	复位值	B7 B6		B5	B4	В3	B2	B1	ВО
PWM6T2H	0xFF42	x0000000		PWM6T2H[14:8]						
PWM6T2L	0xFF43	00000000	PWM6T2L [7:0]							

增强型PWM发生器寄存器组 --PWM6控制寄存器

PWM6控制寄存器PWM6CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF44的位置。
- 当复位后,该寄存器的值为 "xxxx0000"。

PWM6控制寄存器PWM6CR各位的含义

比特	В7	В6	B5	B4	В3	B2	B1	ВО
名字					PWM6_PS	EPWM6I	EC6T2SI	EC6T1SI

PWM6_PS

口PWM6输出引脚选择位。当该位为0时,PWM6的输出引脚为PWM6/P1.6。当该位为1时,PWM6的输出引脚为PWM6 2/P0.7。

增强型PWM发生器寄存器组 --PWM6控制寄存器

■ EPWM6I

口 PWM6中断使能控制位。当该位为0时,关闭PWM6中断。当该位为1时, 使能PWM6中断。当C6IF被硬件设置为1时,程序将跳转到相应中断服务 程序入口执行中断服务程序。

■ EC6T2SI

□ PWM6的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭T2 翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM6波形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发生翻转,同时硬件将C6IF置1。

增强型PWM发生器寄存器组 --PWM6控制寄存器

■ EC6T1SI

□ PWM6的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭 T1翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM6波 形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波形发 生翻转,同时硬件将C6IF置1。

增强型PWM发生器寄存器组 --PWM7翻转计数器

PWM7第一次翻转高字节寄存器PWM7T1H和第一次翻转低字节寄存器PWM7T1L

寄存器	地址 (XSFR)	复位值	В7	В6	B5	B4	В3	B2	B1	ВО
PWM7T1H	0xFF50	x0000000		PWM7T1H[14:8]						
PWM7T1L	0xFF51	00000000	PWM7T1L [7:0]							

增强型PWM发生器寄存器组 --PWM7翻转计数器

PWM7第二次翻转高字节寄存器PWM7T2H和第二次翻 转低字节寄存器PWM7T2L

寄存器	地址 (XSFR)	b址(XSFR) 复位值 B7 B		В6	B5	B4	ВЗ	B2	B1	ВО
PWM7T2H	0xFF52	x0000000		PWM7T2H[14:8]						
PWM7T2L	0xFF53	00000000	PWM7T2L [7:0]							

增强型PWM发生器寄存器组 --PWM7控制寄存器

PWM7控制寄存器PWM7CR

- 该寄存器位于STC单片机扩展特殊功能寄存器XSFR地址为 0xFF54的位置。
- 当复位后,该寄存器的值为xxxx0000B。

PWM7控制寄存器PWM7CR各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	В0
名字					PWM7_PS	EPWM7I	EC7T2SI	EC7T1SI

PWM7 PS

口 PWM7输出引脚选择位。当该位为0时, PWM7的输出引脚为 PWM7/P1.7。当该位为1时, PWM7的输出引脚为PWM7 2/P0.6。

增强型PWM发生器寄存器组 --PWM7控制寄存器

■ EPWM7I

口 PWM7中断使能控制位。当该位为0时,关闭PWM7中断。当该位为1时, 使能PWM7中断。当C2IF被硬件设置为1时,程序将跳转到相应中断服务 程序入口执行中断服务程序。

■ EC7T2SI

□ PWM7的T2匹配发生波形翻转时的中断控制位。当该位为0时,关闭T2 翻转时的中断;当该位为1时,使能T2翻转时的中断。当PWM7波形发生器内部计数值与T2计数器所设置的值相匹配时,PWM的波形发生翻转,同时硬件将C7IF置1。

增强型PWM发生器寄存器组 --PWM7控制寄存器

■ EC7T1SI

□ PWM7的T1匹配发生波形翻转时的中断控制位。当该位为0时,关闭T1 翻转时的中断;当该位为1时,使能T1翻转时的中断。当PWM7波形发生器内部计数值与T1计数器所设置的值相匹配时,PWM的波形发生翻转,同时硬件将C7IF置1。

增强型PWM发生器寄存器组 --PWM中断优先级控制寄存器2

PWM中断优先级控制寄存器IP2

- 该寄存器位于STC单片机特殊功能寄存器地址为0xB5的位置。
- 当复位后,该寄存器的值为xxx00000B。

PWM中断优先级控制寄存器IP2各位的含义

比特	В7	В6	В5	B4	В3	B2	B1	В0
名字	_			PX4	PPWMFD	PPWM	PSPI	PS2

增强型PWM发生器寄存器组 --PWM中断优先级控制寄存器2

PPWMFD

□ PWM异常检测中断优先级控制位。当该位为0时,PWM异常检测中断为最低优先级(优先级0);当该位为1时,PWM异常检测中断为最高优先级(优先级1)。

■ PPWM

口 PWM中断优先级控制位。当该位为0时, PWM中断为最低优先级(优先级0); 当该位为1时, PWM中断为最高优先级(优先级1)。