The set of monomials with three variables of degree d is $\binom{2+d}{2}$. In general, it requires $\binom{2+d}{2}-1$ general points to uniquely determine a curve of degree d.

Denote these points $P_{\ell} = (a_{\ell}, b_{\ell}, c_{\ell})$ for $2 \leq \ell \leq \binom{2+d}{2}$. We can find the equation of this curve using a $\binom{2+d}{2} \times \binom{2+d}{2}$ matrix. The top row consists of all the monomials of the form $x^{i}y^{j}z^{k}$ where $0 \leq i, j, k \leq d$, and i+j+k=d. The ℓ^{th} row will consist of monomials of the form $a_{\ell}^{i}b_{\ell}^{j}c_{\ell}^{k}$ where i, j, and k are equal to the exponents of the x, y, and z in the corresponding column.

Call this set of points $P = \left\{ P_{\ell} : 2 \leq \ell \leq \binom{2+d}{2} \right\}$. Then denote the aforementioned matrix M_{P} . Then $\det(M_{P})$ is a homogeneous polynomial of degree d. We claim that $\det(M_{P})(P_{\ell}) = 0$ for all $P_{\ell} \in P$.

Note that $\det(M_{\mathsf{P}})(P_{\ell})$ is equal to the determinant of the matrix M_P with $x = a_{\ell}$, $y = b_{\ell}$, and $z = c_{\ell}$. Since this row repeats later on in the matrix in row ℓ , the determinant must be 0. Thus $\det(M_{\mathsf{P}})(P_{\ell}) = 0$ for all $P_{\ell} \in \mathsf{P}$.

We can also do this if one of the points is infinitely near one of the P_{ℓ} 's. Let

$$x(b_{\ell}v - c_{\ell}u) + y(c_{\ell}t - a_{\ell}v) + z(a_{\ell}u - b_{\ell}t)$$

be the line connecting P_{ℓ} with the point (t, u, v). Then by defining $a_{\ell,\varepsilon} = a_{\ell} + \varepsilon(b_{\ell}v - c_{\ell}u)$, $b_{\ell,\varepsilon} = b_{\ell} + \varepsilon(c_{\ell}t - a_{\ell}v)$ and $c_{\ell,\varepsilon} = c_{\ell} + \varepsilon(a_{\ell}u - b_{\ell}t)$ we can make the final row of the matrix consist of $a_{\ell,\varepsilon}^{i}b_{\ell,\varepsilon}^{j}c_{\ell,\varepsilon}^{k}$ where i+j+k=d. By computing the determinant of this matrix, we can factor out as many ε 's as possible and set any remaining ε 's equal to 0. This will give us an equation for a curve C that passes through each of the points in P and whose tangent line at P, $T_{P}(C)$ contains the point (t, u, v).

To see this, let $P_{\ell} = (0,0,1)$, then ux - ty is the line connecting P_{ℓ} with (t,u,0). Then $P_{\ell,\varepsilon} = (t\varepsilon, u\varepsilon, 1)$. The bottom row of M_{P} consists of $(t\varepsilon)^i(u\varepsilon)^j(1)^k$. We want to show that $(\det(M_{\mathsf{P}})_x(0,0,1), \det(M_{\mathsf{P}})_y(0,0,1)) = (u,-t)$. We know that $\det(M_{\mathsf{P}})_z(0,0,1) = 0$ because any line that contains (0,0,1) has a z-component of 0.

If we take the partial derivative with respect to x of the top row of M_P , we get monomials of the form $ix^{i-1}y^jz^k$. With respect to y, we get $jx^iy^{j-1}z^k$. At $P_\ell = (0,0,1)$, these are only nonzero when for xz^{d-1} and yz^{d-1} , respectively.

We can replace all the monomials $(t\varepsilon)^i(u\varepsilon)^j(1)^k$ with 0 except those that are 1 or 0 in the degree of ε . That is, $t\varepsilon$, $u\varepsilon$, and 1. We can do this because we are factoring out the higher degree terms in ε eventually anyway. Thus on the top row of $M_{\mathsf{P}\,x}$ has a z^{d-1} in the (1,0,d-1) column its bottom row has a $t\varepsilon$ in the (1,0,d-1) column, a $u\varepsilon$ in the (0,1,d-1) column and a 1 in the (0,0,d) column... Idk

The $\det(M_P)_x(0,0,1)$ will have a common factor of u then in all but one term?

The more analytic way of viewing this by realizing $\det(M_{\mathsf{P}})$ vanishes at $(a_{\ell}, b_{\ell}, c_{\ell})$ and $(a_{\ell,\varepsilon}, b_{\ell,\varepsilon}, c_{\ell,\varepsilon})$, where $(a_{\ell,\varepsilon}, b_{\ell,\varepsilon}, c_{\ell,\varepsilon})$ is in the direction of (t, u, v) from the perspective of $(a_{\ell}, b_{\ell}, c_{\ell})$. As ε approaches 0, this point $P_{\ell,\varepsilon}$ approaches P_{ℓ} from the direction of (t, u, v). Thus $\det(M_{\mathsf{P}})$ has vanishes at P_{ℓ} and the tangent line at P_{ℓ} contains the point (t, u, v).