An electron is sent from $x \to -\infty$ towards a potential barrier,

$$V(x) = \begin{cases} 0, & x < 0, \\ V_0, & x > 0. \end{cases}$$

The electron's energy is $E > V_0$.

- (a.) (5 points) Solve the time-independent Schrödinger equation for $\psi_{\rm I}(x)$ and $\psi_{\rm II}(x)$, solutions for x < 0 and x > 0 respectively. Like we did n class for finite square-wells, combine the collection of constants, \hbar , m, V_0 , and E, into real quantities $k, \ell \in \mathbb{R}$.
- (b.) (5 points) Apply boundary conditions at x = 0 and solve for the reflection and transmission coefficients R and T. Remember that these coefficients are defined

$$R \equiv \frac{|B|^2}{|A|^2}, \quad T \equiv \frac{|F|^2}{|A|^2},$$

where A is the incident amplitude, B is the reflected amplitude, and F is the transmitted amplitude.

- (c.) (2 points) Using your results from part (b.), calculate R+T. What do you expect R+T should equal? Do you have any ideas for why R+T gives an unexpected answer in this case?
- (d.) (5 points) Calculate a quantity called the probability current,

$$j(x) \equiv \frac{i\hbar}{2m} \left[\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right],$$

on both sides of the barrier. Let $j_{\rm I}(x)$ be the probability current for x < 0 and $j_{\rm II}(x)$ be the probability current for x > 0. Evaluate them at x = 0; that is, $j_{\rm I}(0)$ and $j_{\rm II}(0)$. Don't forget that A, B, and F could be complex.

(e.) (3 points) It must be true that $j_{\rm I}(0) = j_{\rm II}(0)$. Construct an equation using this conservation rule and your answers from part (d.). Divide this equation by $|A|^2$ and rearrange it so that you determine what linear combination of R and T sums to 1.