FCC RF Test Report

APPLICANT : Senao Networks, Inc.

EQUIPMENT: Wireless 802.11 ac/a/b/g/n Access Point

BRAND NAME : Senao Networks

MODEL NAME : CAP7252AG

FCC ID : U2M-CAP7252AG

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Jan. 28, 2016 and testing was completed on Feb. 03, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 1 of 58

Report No.: FR5D2212A1

Report Issued Date: Sep. 30, 2016
Report Version: Rev. 02

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMA	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant	5 6 6
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Carrier Frequency and Channel Pre-Scanned RF Power Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example	9 10 11
3	TES	T RESULT	12
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	6dB and 99% Bandwidth Measurement Peak Output Power Measurement Power Spectral Density Measurement Conducted Band Edges and Spurious Emission Measurement Radiated Band Edges and Spurious Emission Measurement AC Conducted Emission Measurement Antenna Requirements	14 15 17 42
4	LIST	OF MEASURING EQUIPMENT	57
ΑP	PENC	ERTAINTY OF EVALUATION	58
		DIX C. RADIATED SPURIOUS EMISSION PLOTS	
AP	PEND	DIX D. SETUP PHOTOGRAPHS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 2 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Report Version : Rev. 02
Report Template No.: BU5-FR15CWL AC MA Version 1.2

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR5D2212A1	Rev. 01	Initial issue of report	Sep. 21, 2016
FR5D2212A1	Rev. 02	Revising FCC KDB Publication No. 558074 D01 DTS Meas. Guidance from v03r04 to v03r05	Sep. 30, 2016

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 3 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
0.4	15.247(d)	Conducted Band Edges	. 00 ID	Pass	-
3.4		Conducted Spurious Emission	- ≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 0.14 dB at 2387.940 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 3.40 dB at 0.382 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 4 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

1 General Description

1.1 Applicant

Senao Networks, Inc.

3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan, R.O.C

1.2 Manufacturer

Senao Networks, Inc.

3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan, R.O.C

1.3 Product Feature of Equipment Under Test

Product Feature					
Equipment	Wireless 802.11 ac/a/b/g/n Access Point				
Brand Name	Senao Networks				
Model Name	CAP7252AG				
FCC ID	U2M-CAP7252AG				
FUT assessed Dadies assultantian	WLAN 11a/b/g/n HT20/HT40				
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80				
EUT Stage	Production Unit				

Report No.: FR5D2212A1

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 58

 TEL: 886-3-327-3456
 Report Issued Date
 : Sep. 30, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

1.4 Product Specification of Equipment Under Test

Standards-re	lated Product Specification				
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz				
Maximum (Peak) Output Power to antenna	MIMO <ant. +="" 1="" 2="" ant.=""> 802.11b : 29.32 dBm (0.8551 W) 802.11g : 29.77 dBm (0.9484 W) 802.11n HT20 : 29.83 dBm (0.9616 W) 802.11n HT40 : 28.80 dBm (0.7586 W)</ant.>				
99% Occupied Bandwidth	802.11b : 12.05MHz 802.11g : 18.80MHz 802.11n HT20 : 19.65MHz 802.11n HT40 : 37.20MHz				
Antenna Type	<ant 1=""></ant> 802.11b/g/n : PIFA Antenna type with gain 3.52 dBi <ant 2=""></ant> 802.11b/g/n : PIFA Antenna type with gain 3.16 dBi				
Type of Modulation	802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)				
Antenna Function for Transmitter	Ant. 1 Ant. 2 802.11 b/g/n V V				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 6 of 58
Report Issued Date : Sep. 30, 2016

Report No.: FR5D2212A1

Report Version : Rev. 02

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FR5D2212A1

: 7 of 58

Test Site	SPORTON INTERNATIONAL INC.	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,						
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiv	van, R.O.C.					
rest Site Location	TEL: +886-3-327-3456						
	FAX: +886-3-328-4978						
Toot Site No	Sporton Site No.						
Test Site No.	TH02-HY	CO05-HY					

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,
Test Site Location	Taoyuan City, Taiwan (R.O.C.)
rest Site Location	TEL: +886-3-327-0868
	FAX: +886-3-327-0855
Took Site No	Sporton Site No.
Test Site No.	03CH12-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Sep. 30, 2016

FAX: 886-3-328-4978 Report Version : Rev. 02 FCC ID: U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

2 **Test Configuration of Equipment Under Test**

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
0400 0400 F MILE	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 Report Issued Date: Sep. 30, 2016 FAX: 886-3-328-4978 Report Version FCC ID: U2M-CAP7252AG

: Rev. 02 Report Template No.: BU5-FR15CWL AC MA Version 1.2

Page Number

: 8 of 58

Report No.: FR5D2212A1

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

Report No.: FR5D2212A1

MIMO <Ant. 1+2>

802.11b							
Data Rate (MHz)	1M bps	2M bps	5.5M bps	11M bps			
Peak Power (dBm)	<mark>29.32</mark>	29.14	28.90	28.98			

802.11g								
Data Rate (MHz)	6M bps	9M bps	12M bps	18M bps	24M bps	36M bps	48M bps	54M bps
Peak Power (dBm)	<mark>29.77</mark>	29.56	29.63	29.59	29.70	29.67	29.50	29.61

2.4GHz 802.11n HT20								
Data Rate (MHz) MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7						MCS7		
Peak Power (dBm)	<mark>29.83</mark>	29.83	29.83	29.83	29.77	29.80	29.78	29.82

2.4GHz 802.11n HT40								
Data Rate (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Peak Power (dBm)	<mark>28.80</mark>	28.63	28.54	28.58	28.44	28.54	28.54	28.62

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

MIMO Antenna

<2.4GHz>

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

Test Cases			
AC Conducted	Mode 1 : 2.4G Tx + RJ-45 Link + Adapter		
Emission	Mode 2 2.4G Tx + RJ-45 Link + POE		
Remark: The worst case of conducted emission is mode 1; only the test data of it was reported.			

SPORTON INTERNATIONAL INC.

Page Number : 9 of 58 TEL: 886-3-327-3456 Report Issued Date: Sep. 30, 2016 FAX: 886-3-328-4978 Report Version : Rev. 02

FCC ID: U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

2.4 Connection Diagram of Test System

<EUT with Adapter Mode>

<EUT with POE Mode>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 10 of 58

Report Issued Date : Sep. 30, 2016

Report No.: FR5D2212A1

Report Version : Rev. 02

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	PoE Adapter	Powertron Electronics Corp	PA1040-480IB080	N/A	N/A	1.5m
2.	PoE	N/A	NPE-5818	N/A	N/A	N/A
3.	Notebook	Lenovo	M490S	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Adapter	Powertron Electronics Corp.	PA1015-2I/PA1015-2I PA1015-2I120125	N/A	N/A	1.2m

Report No.: FR5D2212A1

2.6 EUT Operation Test Setup

For WLAN function, programmed RF utility, "Art2-gui Tool" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 4.2 + 10 = 14.2 (dB)

SPORTON INTERNATIONAL INC.

: 11 of 58 Page Number TEL: 886-3-327-3456 Report Issued Date: Sep. 30, 2016 : Rev. 02 FAX: 886-3-328-4978 Report Version

FCC ID: U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

Test Result 3

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1MHz and set the Video bandwidth (VBW) = 3MHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A of this report.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG

: 12 of 58 Page Number Report Issued Date: Sep. 30, 2016

: Rev. 02

Report No.: FR5D2212A1

Report Version Report Template No.: BU5-FR15CWL AC MA Version 1.2

Report No.: FR5D2212A1

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 13 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

3.2 Peak Output Power Measurement

Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR5D2212A1

: 14 of 58

3.2.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.2.3 **Test Procedures**

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously. 3.
- 4. Measure the conducted output power and record the results in the test report.
- For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this report.

SPORTON INTERNATIONAL INC.

Page Number TEL: 886-3-327-3456 Report Issued Date: Sep. 30, 2016 FAX: 886-3-328-4978 Report Version : Rev. 02

FCC ID: U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR5D2212A1

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

If measurements performed using method (2) plus 10 log (N) exceeds the emission limit, the test should choose method (1) before declaring that the device fails the emission limit.

Method (1): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

Method (2): Measure and add 10 log (N) dB, where N is the number of outputs. (N=2)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Report Issued Date : Sep. 30, 2016
Report Version : Rev. 02

Page Number

Report Template No.: BU5-FR15CWL AC MA Version 1.2

: 15 of 58

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 16 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 17 of 58

Report Issued Date : Sep. 30, 2016

Report No.: FR5D2212A1

Report Version : Rev. 02

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Number of TX = 2, Ant. 1 (Measured)

Number of TX	2	Ant.:	1
Test Mode :	802.11b	Temperature :	21~25 ℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 18 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant.:	1
Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 19 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel :	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 20 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

Page Number : 21 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 22 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel :	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 23 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

Page Number : 24 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 25 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel:	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 26 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

 Number of TX :
 2
 Ant. :
 1

 Test Mode :
 802.11n HT40
 Temperature :
 21~25°C

 Test Band :
 2.4GHz Low
 Relative Humidity :
 58~61%

 Test Channel :
 03
 Test Engineer :
 osolemio Chang and Luffy

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 27 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant.:	1
Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 28 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	1
Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel :	09	Test Engineer :	osolemio Chang and Luffy

Page Number : 29 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX = 2, Ant. 2 (Measured)

Number of TX :	2	Ant. :	2
Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 30 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 31 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11b	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel :	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 32 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

Page Number : 33 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 34 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11g	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel:	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 35 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	01	Test Engineer :	osolemio Chang and Luffy

Page Number : 36 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 37 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. : 2	
Test Mode :	802.11n HT20	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel:	11	Test Engineer :	osolemio Chang and Luffy

Page Number : 38 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz Low	Relative Humidity :	58~61%
Test Channel :	03	Test Engineer :	osolemio Chang and Luffy

Page Number : 39 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz Mid	Relative Humidity :	58~61%
Test Channel :	06	Test Engineer :	osolemio Chang and Luffy

Page Number : 40 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Number of TX :	2	Ant. :	2
Test Mode :	802.11n HT40	Temperature :	21~25℃
Test Band :	2.4GHz High	Relative Humidity :	58~61%
Test Channel :	09	Test Engineer :	osolemio Chang and Luffy

Page Number : 41 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 42 of 58
Report Issued Date : Sep. 30, 2016

Report No.: FR5D2212A1

Report Version : Rev. 02
Report Template No.: BU5-FR15CWL AC MA Version 1.2

3.5.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR5D2212A1

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
0+1	2.4GHz 802.11b for Ant 1	100	-	-	10Hz
0+1	2.4GHz 802.11b for Ant 2	100	-	-	10Hz
0+1	2.4GHz 802.11g for Ant 1	96.92	2016	0.50	1kHz
0+1	2.4GHz 802.11g for Ant 2	96.94	2026	0.49	1kHz
0+1	2.4GHz 802.11n HT20 for Ant 1	96.72	1888	0.53	1kHz
0+1	2.4GHz 802.11n HT20 for Ant 2	96.69	1872	0.53	1kHz
0+1	2.4GHz 802.11n HT40 for Ant 1	95.88	930	1.08	3kHz
0+1	2.4GHz 802.11n HT40 for Ant 2	94.9	930	1.08	3kHz

 SPORTON INTERNATIONAL INC.
 Page Number
 : 43 of 58

 TEL: 886-3-327-3456
 Report Issued Date
 : Sep. 30, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

Report No.: FR5D2212A1

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 44 of 58

Report Issued Date : Sep. 30, 2016

: Rev. 02

Report Template No.: BU5-FR15CWL AC MA Version 1.2

Report Version

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C of this report.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C of this report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 45 of 58
Report Issued Date : Sep. 30, 2016
Report Version : Rev. 02

Report No.: FR5D2212A1

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 46 of 58

Report Issued Date : Sep. 30, 2016

Report No.: FR5D2212A1

Report Version : Rev. 02

Report No.: FR5D2212A1

3.6.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 47 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	24~25℃
Test Engineer :	Kai-Chun Chu	Relative Humidity :	53~54%
Test Voltage :	120Vac / 60Hz	Phase :	Line

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.310000	44.8	Off	L1	19.6	15.2	60.0
0.374000	47.2	Off	L1	19.6	11.2	58.4
0.438000	41.0	Off	L1	19.6	16.1	57.1
0.518000	38.1	Off	L1	19.6	17.9	56.0
0.566000	40.3	Off	L1	19.6	15.7	56.0
0.606000	40.8	Off	L1	19.6	15.2	56.0
0.654000	38.1	Off	L1	19.6	17.9	56.0
0.782000	37.9	Off	L1	19.6	18.1	56.0
0.838000	40.0	Off	L1	19.6	16.0	56.0
1.046000	39.8	Off	L1	19.6	16.2	56.0
1.278000	38.9	Off	L1	19.6	17.1	56.0
1.350000	39.0	Off	L1	19.6	17.0	56.0
1.590000	39.1	Off	L1	19.6	16.9	56.0
1.854000	38.1	Off	L1	19.6	17.9	56.0
2.022000	38.6	Off	L1	19.6	17.4	56.0
2.310000	38.6	Off	L1	18.9	17.4	56.0
2.510000	38.1	Off	L1	19.3	17.9	56.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 48 of 58
Report Issued Date : Sep. 30, 2016
Report Version : Rev. 02

Report No.: FR5D2212A1

Test Mode :Mode 1Temperature :24~25°CTest Engineer :Kai-Chun ChuRelative Humidity :53~54%Test Voltage :120Vac / 60HzPhase :Line

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result: QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
2.766000	38.6	Off	L1	19.5	17.4	56.0
3.046000	39.3	Off	L1	19.6	16.7	56.0
3.238000	38.9	Off	L1	19.6	17.1	56.0
3.654000	38.5	Off	L1	19.7	17.5	56.0
4.014000	39.1	Off	L1	19.7	16.9	56.0
4.270000	39.7	Off	L1	19.7	16.3	56.0
4.582000	39.2	Off	L1	19.7	16.8	56.0
4.934000	38.8	Off	L1	19.7	17.2	56.0
8.910000	41.4	Off	L1	19.7	18.6	60.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 49 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

 Test Mode :
 Mode 1
 Temperature :
 24~25°C

 Test Engineer :
 Kai-Chun Chu
 Relative Humidity :
 53~54%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Line

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.310000	37.2	Off	L1	19.6	12.8	50.0
0.374000	37.0	Off	L1	19.6	11.4	48.4
0.438000	32.6	Off	L1	19.6	14.5	47.1
0.518000	28.4	Off	L1	19.6	17.6	46.0
0.566000	30.9	Off	L1	19.6	15.1	46.0
0.606000	31.9	Off	L1	19.6	14.1	46.0
0.654000	29.2	Off	L1	19.6	16.8	46.0
0.782000	30.0	Off	L1	19.6	16.0	46.0
0.838000	32.0	Off	L1	19.6	14.0	46.0
1.046000	31.6	Off	L1	19.6	14.4	46.0
1.278000	31.7	Off	L1	19.6	14.3	46.0
1.350000	30.3	Off	L1	19.6	15.7	46.0
1.590000	30.0	Off	L1	19.6	16.0	46.0
1.854000	29.0	Off	L1	19.6	17.0	46.0
2.022000	30.0	Off	L1	19.6	16.0	46.0
2.310000	29.7	Off	L1	18.9	16.3	46.0
2.510000	30.3	Off	L1	19.3	15.7	46.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 50 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Test Mode :	Mode 1	Temperature :	24~25℃		
Test Engineer :	Kai-Chun Chu	Relative Humidity :	53~54%		
Test Voltage :	120Vac / 60Hz	Phase :	Line		
F T	O AO T D LASTELL A Market				

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
2.766000	30.3	Off	L1	19.5	15.7	46.0
3.046000	30.6	Off	L1	19.6	15.4	46.0
3.238000	31.2	Off	L1	19.6	14.8	46.0
3.654000	29.6	Off	L1	19.7	16.4	46.0
4.014000	29.7	Off	L1	19.7	16.3	46.0
4.270000	31.6	Off	L1	19.7	14.4	46.0
4.582000	31.9	Off	L1	19.7	14.1	46.0
4.934000	30.6	Off	L1	19.7	15.4	46.0
8.910000	34.7	Off	L1	19.7	15.3	50.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 51 of 58
Report Issued Date : Sep. 30, 2016
Report Version : Rev. 02

Report No.: FR5D2212A1

 Test Mode :
 Mode 1
 Temperature :
 24~25°C

 Test Engineer :
 Kai-Chun Chu
 Relative Humidity :
 53~54%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Neutral

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.286000	40.4	Off	N	19.6	20.2	60.6
0.318000	49.7	Off	N	19.6	10.1	59.8
0.382000	53.0	Off	N	19.6	5.2	58.2
0.430000	45.6	Off	N	19.6	11.7	57.3
0.510000	43.0	Off	N	19.6	13.0	56.0
0.574000	46.1	Off	N	19.6	9.9	56.0
0.614000	45.8	Off	N	19.6	10.2	56.0
0.670000	42.4	Off	N	19.6	13.6	56.0
0.750000	41.6	Off	N	19.6	14.4	56.0
0.806000	45.3	Off	N	19.6	10.7	56.0
0.854000	44.6	Off	N	19.6	11.4	56.0
0.910000	42.4	Off	N	19.6	13.6	56.0
0.974000	41.4	Off	N	19.6	14.6	56.0
1.070000	44.9	Off	N	19.6	11.1	56.0
1.142000	43.6	Off	N	19.6	12.4	56.0
1.238000	43.4	Off	N	19.6	12.6	56.0
1.294000	45.0	Off	N	19.6	11.0	56.0
1.342000	44.6	Off	N	19.6	11.4	56.0
1.518000	44.6	Off	N	19.6	11.4	56.0
1.662000	42.2	Off	N	19.6	13.8	56.0
1.726000	44.6	Off	N	19.6	11.4	56.0
1.790000	44.3	Off	N	19.6	11.7	56.0
2.006000	43.8	Off	N	19.6	12.2	56.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 52 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Test Engineer: Kai-Chun Chu Relative Humidity: 53~54%	
Test Voltage: 120Vac / 60Hz Phase: Neutral	

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : QuasiPeak

Frequency (MHz)	QuasiPeak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
2.182000	41.7	Off	N	18.6	14.3	56.0
2.302000	42.7	Off	N	18.9	13.3	56.0
2.462000	43.1	Off	N	19.2	12.9	56.0
2.574000	43.1	Off	N	19.3	12.9	56.0
2.742000	43.5	Off	N	19.5	12.5	56.0
2.878000	43.0	Off	N	19.5	13.0	56.0
3.046000	43.3	Off	N	19.6	12.7	56.0
3.190000	43.2	Off	N	19.6	12.8	56.0
3.326000	43.1	Off	N	19.6	12.9	56.0
3.526000	43.1	Off	N	19.6	12.9	56.0
3.742000	43.0	Off	N	19.6	13.0	56.0
3.918000	42.5	Off	N	19.6	13.5	56.0
4.078000	42.8	Off	N	19.6	13.2	56.0
4.334000	43.5	Off	N	19.6	12.5	56.0
4.606000	43.5	Off	N	19.7	12.5	56.0
4.926000	43.2	Off	N	19.7	12.8	56.0
5.782000	42.8	Off	N	19.7	17.2	60.0
6.198000	43.2	Off	N	19.7	16.8	60.0
6.862000	42.2	Off	N	19.7	17.8	60.0
7.822000	43.1	Off	N	19.7	16.9	60.0
8.070000	42.8	Off	N	19.7	17.2	60.0
8.486000	41.9	Off	N	19.7	18.1	60.0
9.126000	42.5	Off	N	19.8	17.5	60.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 53 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Test Mode :	Mode 1	Temperature :	24~25 ℃
Test Engineer :	Kai-Chun Chu	Relative Humidity :	53~54%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : Average

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)
0.286000	31.0	Off	N	19.6	19.6	50.6
0.318000	43.0	Off	N	19.6	6.8	49.8
0.382000	44.8	Off	N	19.6	3.4	48.2
0.430000	38.8	Off	N	19.6	8.5	47.3
0.510000	36.5	Off	N	19.6	9.5	46.0
0.574000	38.9	Off	N	19.6	7.1	46.0
0.614000	40.2	Off	N	19.6	5.8	46.0
0.670000	36.5	Off	N	19.6	9.5	46.0
0.750000	34.6	Off	N	19.6	11.4	46.0
0.806000	38.9	Off	N	19.6	7.1	46.0
0.854000	39.9	Off	N	19.6	6.1	46.0
0.910000	37.3	Off	N	19.6	8.7	46.0
0.974000	34.1	Off	N	19.6	11.9	46.0
1.070000	39.9	Off	N	19.6	6.1	46.0
1.142000	37.2	Off	N	19.6	8.8	46.0
1.238000	36.3	Off	N	19.6	9.7	46.0
1.294000	39.6	Off	N	19.6	6.4	46.0
1.342000	39.1	Off	N	19.6	6.9	46.0
1.518000	39.2	Off	N	19.6	6.8	46.0
1.662000	35.9	Off	N	19.6	10.1	46.0
1.726000	36.3	Off	N	19.6	9.7	46.0
1.790000	38.6	Off	N	19.6	7.4	46.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG

: 54 of 58 Page Number Report Issued Date : Sep. 30, 2016 Report Version : Rev. 02

Report No.: FR5D2212A1

Test Mode :Mode 1Temperature :24~25°CTest Engineer :Kai-Chun ChuRelative Humidity :53~54%Test Voltage :120Vac / 60HzPhase :Neutral

Function Type: 2.4G Tx + RJ-45 Link + Adapter

Final Result : Average

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	1 11101	Line	(dB)	(dB)	(dBµV)
2.006000	38.1	Off	N	19.6	7.9	46.0
2.182000	35.8	Off	N	18.6	10.2	46.0
2.302000	37.3	Off	N	18.9	8.7	46.0
2.462000	36.1	Off	N	19.2	9.9	46.0
2.574000	37.4	Off	N	19.3	8.6	46.0
2.742000	37.2	Off	N	19.5	8.8	46.0
2.878000	37.4	Off	N	19.5	8.6	46.0
3.046000	37.7	Off	N	19.6	8.3	46.0
3.190000	36.8	Off	N	19.6	9.2	46.0
3.326000	37.4	Off	N	19.6	8.6	46.0
3.526000	37.1	Off	N	19.6	8.9	46.0
3.742000	36.8	Off	N	19.6	9.2	46.0
3.918000	35.7	Off	N	19.6	10.3	46.0
4.078000	36.8	Off	N	19.6	9.2	46.0
4.334000	36.7	Off	N	19.6	9.3	46.0
4.606000	36.3	Off	N	19.7	9.7	46.0
4.926000	36.7	Off	N	19.7	9.3	46.0
5.782000	36.2	Off	N	19.7	13.8	50.0
6.198000	36.9	Off	N	19.7	13.1	50.0
6.862000	36.5	Off	N	19.7	13.5	50.0
7.822000	37.2	Off	N	19.7	12.8	50.0
8.070000	37.0	Off	N	19.7	13.0	50.0
8.486000	35.9	Off	N	19.7	14.1	50.0
9.126000	37.0	Off	N	19.8	13.0	50.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 55 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the Antenna exceeds 6 dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

Report No.: FR5D2212A1

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4 GHz	3.52	3.16	3.52	6.35	0.00	0.35

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

 $PSD\ Limit\ Reduction = DG(PSD) - 6dBi,\ (min = 0)$

 SPORTON INTERNATIONAL INC.
 Page Number
 : 56 of 58

 TEL: 886-3-327-3456
 Report Issued Date
 : Sep. 30, 2016

 FAX: 886-3-328-4978
 Report Version
 : Rev. 02

FCC ID : U2M-CAP7252AG Report Template No.: BU5-FR15CWL AC MA Version 1.2

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1036004	300MHz~40GHz	Jul. 29, 2015	Jan. 23, 2016 ~ Feb. 03, 2016	Jul. 28, 2016	Conducted (TH02-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 29, 2015	Jan. 23, 2016 ~ Feb. 03, 2016	Jul. 28, 2016	Conducted (TH02-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 18, 2015	Jan. 23, 2016 ~ Feb. 03, 2016	Jun. 17, 2016	Conducted (TH02-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Sep. 01, 2016	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D	37059	30MHz~1GHz	Dec. 29, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Dec. 28, 2016	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 21, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Dec. 20, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Nov. 02, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 02, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Nov. 01, 2016	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103A	161075	10MHz~1GHz	Apr. 09, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Apr. 08, 2016	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1815698	1GHz~18GHz	Dec. 14, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Dec. 13, 2016	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A023 75	1GHz~26.5GHz	Jan. 05, 2016	Jan. 29, 2016 ~ Jan. 31, 2016	Jan. 04, 2017	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Jan. 29, 2016 ~ Jan. 31, 2016	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0-360 degre	N/A	Jan. 29, 2016 ~ Jan. 31, 2016	N/A	Radiation (03CH12-HY)
Preamplifier	MITEQ	JS44-180040 00-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Jan. 29, 2016 ~ Jan. 31, 2016	Jun. 01, 2016	Radiation (03CH12-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Feb. 03, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 26, 2015	Feb. 03, 2016	Aug. 25, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Feb. 03, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 08, 2016	Feb. 03, 2016	Jan. 07, 2017	Conduction (CO05-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 57 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5.10
Confidence of 95% (U = 2Uc(y))	5.10

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : 58 of 58

Report Issued Date : Sep. 30, 2016

Report Version : Rev. 02

Report No.: FR5D2212A1

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: U2M-CAP7252AG Page Number : A1 of A1
Report Issued Date : Sep. 30, 2016
Report Version : Rev. 02

Report No.: FR5D2212A1

Test Engineer:	Osolemio Chang and Luffy Lin	Temperature:	21~25	ç
Test Date:	2016/01/23 ~ 2016/02/03	Relative Humidity:	58~61	%

TEST RESULTS DATA Peak Output Power

							2	2.4GHz	Band							
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	С	Peak onducte Power (dBm)	ed	Po Lir	lucted wer mit Bm)	D (dl	_	EII Pov (dE	wer	EIRP Power Limit (dBm)		Pass /Fail
					Ant 1	Ant 2	SUM			Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11b	1Mbps	2	1	2412	26.67	25.92	29.32	32 30.00		3.52		32.84		36.00		Pass
11b	1Mbps	2	6	2437	26.21	25.78	29.01	30.00		3.52		32.53		36.00		Pass
11b	1Mbps	2	11	2462	26.07	25.82	28.96	30	30.00		52	32.	48	36	.00	Pass
11g	6Mbps	2	1	2412	26.79	26.72	29.77	30	.00	3.5	52	33.	.29	36	.00	Pass
11g	6Mbps	2	6	2437	26.62	26.43	29.54	30	.00	3.52		33.	.06	36	.00	Pass
11g	6Mbps	2	11	2462	26.39	26.47	29.44	30	.00	3.5	52	32.96		36	.00	Pass
HT20	MCS0	2	1	2412	25.83	25.57	28.71	30	.00	3.5	52	32.	.23	36	.00	Pass
HT20	MCS0	2	6	2437	26.90	26.74	29.83	30	.00	3.5	52	33.	.35	36	.00	Pass
HT20	MCS0	2	11	2462	26.38	26.26	29.33	30	.00	3.5	52	32.	.85	36	.00	Pass
HT40	MCS0	2	3	2422	23.46	24.22	26.87	30	.00	3.5	52	30.	.39	36	.00	Pass
HT40	MCS0	2	6	2437	25.85	25.72	28.80	30	.00	3.5	52	32.	.32	36	.00	Pass
HT40	MCS0	2	9	2452	24.81	25.33	28.09			3.52				36	.00	Pass

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

					2	2.4GHz Ban	d			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		upied BW Hz)	6dB (MI	BW Hz)	6dB BW Limit (MHz)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2		
11b	1Mbps	2	1	2412	12.00	12.05	7.08	7.08	0.50	Pass
11b	1Mbps	2	6	2437	11.95	11.90	7.08	7.08	0.50	Pass
11b	1Mbps	2	11	2462	11.80	11.80	7.08	7.08	0.50	Pass
11g	6Mbps	2	1	2412	18.20	18.80	16.44	16.36	0.50	Pass
11g	6Mbps	2	6	2437	18.25	18.50	16.40	16.36	0.50	Pass
11g	6Mbps	2	11	2462	18.00	18.45	16.34	16.32	0.50	Pass
HT20	MCS0	2	1	2412	19.05	19.25	17.56	17.56	0.50	Pass
HT20	MCS0	2	6	2437	19.55	19.65	17.64	17.64	0.50	Pass
HT20	MCS0	2	11	2462	19.15	19.35	17.56	17.58	0.50	Pass
HT40	MCS0	2	3	2422	37.00	37.00	36.28	36.32	0.50	Pass
HT40	MCS0	2	6	2437	37.20	37.20	36.32	36.32	0.50	Pass
HT40	MCS0	2	9	2452	37.20	37.10	36.32	36.16	0.50	Pass

TEST RESULTS DATA Average Output Power

				2.4G	Hz Ban	d			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		uty ctor B)		Average conducte Power (dBm)	
					Ant 1	Ant 2	Ant 1	Ant 2	SUM
11b	1Mbps	2	1	2412	0.00	0.00	23.37	23.08	26.24
11b	1Mbps	2	6	2437	0.00	0.00	23.15	22.83	26.00
11b	1Mbps	2	11	2462	0.00	0.00	23.08	22.81	25.96
11g	6Mbps	2	1	2412	0.14	0.14	17.40	17.21	20.31
11g	6Mbps	2	6	2437	0.14	0.14	17.33	16.83	20.09
11g	6Mbps	2	11	2462	0.14	0.14	16.52	16.47	19.50
HT20	MCS0	2	1	2412	0.14	0.15	15.66	15.60	18.64
HT20	MCS0	2	6	2437	0.14	0.15	17.68	17.38	20.54
HT20	MCS0	2	11	2462	0.14	0.15	16.37	16.04	19.22
HT40	MCS0	2	3	2422	0.18	0.23	12.69	13.45	16.10
HT40	MCS0	2	6	2437	0.18	0.23	16.13	15.94	19.05
HT40	MCS0	2	9	2452	0.18	0.23	14.54	15.15	17.87

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Peak Power Spectral Density

						2	2.4GHz Band	d				
Mod.	Data Rate	N⊤x	CH.	Freq.		Peak PSD (dBm/3kHz)			G Bi)	Lir	PSD nit (3kHz)	Pass/Fail
	Nate			(1011 12)	Ant 1	Ant 2	Worse + 3.01	Ant 1	Ant 2	Ant 1	Ant 2	
11b	1Mbps	2	1	2412	1.29	1.32	4.33	6.3	35	7.0	35	Pass
11b	1Mbps	2	6	2437	1.13 1.48		4.49	6.3	35	7.0	65	Pass
11b	1Mbps	2	11	2462	0.69	1.44	4.45	6.3	35	7.0	65	Pass
11g	6Mbps	2	1	2412	-8.70	-7.41	-4.40	6.3	35	7.0	65	Pass
11g	6Mbps	2	6	2437	-8.16	-8.06	-5.05	6.35		7.0	65	Pass
11g	6Mbps	2	11	2462	-7.95	-8.06	-4.94	6.3	35	7.0	65	Pass
HT20	MCS0	2	1	2412	-9.52	-9.92	-6.51	6.3	35	7.0	65	Pass
HT20	MCS0	2	6	2437	-8.56	-9.31	-5.55	6.3	35	7.0	65	Pass
HT20	MCS0	2	11	2462	-9.09	-9.22	-6.08	6.3	35	7.0	65	Pass
HT40	MCS0	2	3	2422	-16.09	-14.53	-11.52	6.3	35	7.0	65	Pass
HT40	MCS0	2	6	2437	-9.30	-12.72	-6.29	6.3	35	7.0	65 	Pass
HT40	MCS0	2	9	2452	-13.77	-12.37	-9.36	6.3	35	7.0	65	Pass

Measured power density (dBm) has offset with cable loss.

Appendix B. Radiated Spurious Emission

Test Engineer :	J.C. Liang, Ricky Su, and Nick Yu	Temperature :	23~25°C
		Relative Humidity :	55~60%

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2332.05	64.15	-9.85	74	63.89	26.89	7.3	33.93	157	134	Р	Н
		2388.21	52.52	-1.48	54	52.02	27.05	7.45	34	157	134	Α	Н
	*	2412	121.36	-	-	120.83	27.09	7.45	34.01	157	134	Р	Н
	*	2412	116.41	-	-	115.88	27.09	7.45	34.01	157	134	Α	Н
802.11b													Н
CH 01													Н
2412MHz		2331.69	61.91	-12.09	74	61.65	26.89	7.3	33.93	127	225	Р	V
		2388.12	50.39	-3.61	54	49.89	27.05	7.45	34	127	225	Α	V
	*	2412	117.25	-	-	116.72	27.09	7.45	34.01	127	225	Р	V
	*	2412	112.97	-	-	112.44	27.09	7.45	34.01	127	225	Α	V
													V
													V
		2356.62	61.02	-12.98	74	60.64	26.97	7.37	33.96	315	150	Р	Н
		2317.83	46.41	-7.59	54	46.15	26.89	7.3	33.93	315	150	Α	Н
	*	2437	119.31	-	-	118.69	27.18	7.49	34.05	315	150	Р	Н
	*	2437	114.61	-	-	113.99	27.18	7.49	34.05	315	150	Α	Н
000 441		2492.36	56.6	-17.4	74	55.87	27.3	7.53	34.1	315	150	Р	Н
802.11b CH 06		2483.56	44.83	-9.17	54	44.12	27.26	7.53	34.08	315	150	Α	Н
		2357.34	61.37	-12.63	74	60.99	26.97	7.37	33.96	103	205	Р	V
2437MHz		2359.95	45.97	-8.03	54	45.59	26.97	7.37	33.96	103	205	Α	٧
	*	2437	116.69	-	-	116.07	27.18	7.49	34.05	103	205	Р	V
	*	2437	112.54	-	-	111.92	27.18	7.49	34.05	103	205	Α	V
		2493.4	57.43	-16.57	74	56.7	27.3	7.53	34.1	103	205	Р	V
		2499.96	45.18	-8.82	54	44.45	27.3	7.53	34.1	103	205	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

	*	2462	118.43	-	-	117.75	27.22	7.53	34.07	273	153	Р	Н
	*	2462	114.18	-	-	113.5	27.22	7.53	34.07	273	153	Α	Н
		2483.68	60.83	-13.17	74	60.12	27.26	7.53	34.08	273	153	Р	Н
		2483.52	52	-2	54	51.29	27.26	7.53	34.08	273	153	Α	Н
													Н
802.11b													Н
CH 11 2462MHz	*	2462	116.6	-	-	115.92	27.22	7.53	34.07	100	193	Р	٧
2402141112	*	2462	112.56	-	-	111.88	27.22	7.53	34.07	100	193	Α	٧
		2483.6	59.98	-14.02	74	59.27	27.26	7.53	34.08	100	193	Р	٧
		2483.52	51.56	-2.44	54	50.85	27.26	7.53	34.08	100	193	Α	V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. Al	l results are PA	SS against	Peak and	Average lim	nit line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
-		4824	46.44	-27.56	74	62.58	31.26	10.74	58.14	100	0	Р	Н
-		12060	55.4	-18.6	74	55.29	38.92	19.02	57.83	100	217	Р	Н
802.11b		12060	45.96	-8.04	54	45.85	38.92	19.02	57.83	100	217	Α	Н
CH 01													Н
2412MHz		4824	47.25	-26.75	74	63.39	31.26	10.74	58.14	100	0	Р	V
24 1 Z IVII 1Z		12060	58.44	-15.56	74	58.33	38.92	19.02	57.83	100	158	Р	V
		12060	51.02	-2.98	54	50.91	38.92	19.02	57.83	100	158	Α	V
													V
		4874	46.15	-27.85	74	62.03	31.33	10.89	58.1	100	0	Р	Н
		7311	51.92	-22.08	74	60.76	36.07	14.18	59.09	311	238	Р	Н
802.11b		7311	45.32	-8.68	54	54.16	36.07	14.18	59.09	311	238	Α	Н
		12186	53.55	-20.45	74	53.52	38.77	19.14	57.88	167	250	Р	Н
CH 06		4874	47.89	-26.11	74	63.77	31.33	10.89	58.1	100	0	Р	V
2437MHz		7311	48.13	-25.87	74	56.97	36.07	14.18	59.09	100	0	Р	V
		12186	55.53	-18.47	74	55.5	38.77	19.14	57.88	184	163	Р	V
		12186	46.46	-7.54	54	46.43	38.77	19.14	57.88	184	163	Α	V
		4926	50.45	-23.55	74	66.07	31.4	11.04	58.06	100	0	Р	Н
		7386	52.28	-21.72	74	60.84	36.31	14.27	59.14	292	238	Р	Н
-		7386	43.93	-10.07	54	52.49	36.31	14.27	59.14	292	238	Α	Н
802.11b		12312	50.55	-23.45	74	50.61	38.63	19.23	57.92	100	0	Р	Н
CH 11		4926	50.29	-23.71	74	65.91	31.4	11.04	58.06	100	0	Р	V
2462MHz		7386	48.13	-25.87	74	56.69	36.31	14.27	59.14	100	0	Р	V
		12312	55.43	-18.57	74	55.49	38.63	19.23	57.92	237	183	Р	V
		12312	46.83	-7.17	54	46.89	38.63	19.23	57.92	237	183	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4150
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	, ,
		2387.49	70.96	-3.04	74	70.46	27.05	7.45	34	158	136	Р	Н
		2387.94	53.86	-0.14	54	53.36	27.05	7.45	34	158	136	Α	Н
	*	2412	114.68	-	-	114.15	27.09	7.45	34.01	158	136	Р	Н
	*	2412	104.33	-	-	103.8	27.09	7.45	34.01	158	136	Α	Н
802.11g													Н
CH 01													Н
2412MHz		2388.48	71.12	-2.88	74	70.62	27.05	7.45	34	100	205	Р	V
		2388.21	53.62	-0.38	54	53.12	27.05	7.45	34	100	205	Α	V
	*	2412	112	ı	-	111.47	27.09	7.45	34.01	100	205	Р	V
	*	2412	102.3	-	-	101.77	27.09	7.45	34.01	100	205	Α	V
													V
													V
		2362.02	61.71	-12.29	74	61.33	26.97	7.37	33.96	174	137	Р	Н
		2363.19	46.87	-7.13	54	46.49	26.97	7.37	33.96	174	137	Α	Н
	*	2437	113.9	1	-	113.28	27.18	7.49	34.05	174	137	Р	Η
	*	2437	103.92	-	-	103.3	27.18	7.49	34.05	174	137	Α	Н
000 44		2484.88	58.19	-15.81	74	57.48	27.26	7.53	34.08	174	137	Р	Н
802.11g CH 06		2483.52	46.93	-7.07	54	46.22	27.26	7.53	34.08	174	137	Α	Н
2437MHz		2361.03	60.11	-13.89	74	59.73	26.97	7.37	33.96	105	209	Р	V
2437111112		2390	46.34	-7.66	54	45.84	27.05	7.45	34	105	209	Α	V
	*	2437	112.44	ı	-	111.82	27.18	7.49	34.05	105	209	Р	V
	*	2437	102.6	ı	-	101.98	27.18	7.49	34.05	105	209	Α	V
		2487.4	56.99	-17.01	74	56.28	27.26	7.53	34.08	105	209	Р	V
		2484.28	45.35	-8.65	54	44.64	27.26	7.53	34.08	105	209	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

SPORTON LAB. FCC RF Test Report

	*	2462	113.25	-	-	112.57	27.22	7.53	34.07	167	136	Р	
	*	2462	103.23	-	-	102.55	27.22	7.53	34.07	167	136	Α	
		2483.6	70.66	-3.34	74	69.95	27.26	7.53	34.08	167	136	Р	
		2484	52.72	-1.28	54	52.01	27.26	7.53	34.08	167	136	Α	
- 44													
2.11g													
CH 11 - 62MHz -	*	2462	111.08	-	-	110.4	27.22	7.53	34.07	383	212	Р	
	*	2462	101.29	-	-	100.61	27.22	7.53	34.07	383	212	Α	
		2486.04	67.53	-6.47	74	66.82	27.26	7.53	34.08	383	212	Р	
		2485.12	49.93	-4.07	54	49.22	27.26	7.53	34.08	383	212	Α	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		4824	39.51	-34.49	74	55.65	31.26	10.74	58.14	100	0	Р	Н
													Н
													Н
802.11g													Н
CH 01		4824	39.17	-34.83	74	55.31	31.26	10.74	58.14	100	0	Р	V
2412MHz													V
													V
													V
		4872	39.96	-34.04	74	55.84	31.33	10.89	58.1	100	0	Р	Н
		7308	45.49	-28.51	74	54.33	36.07	14.18	59.09	100	0	Р	Н
													Н
802.11g													Н
CH 06		4872	39.83	-34.17	74	55.71	31.33	10.89	58.1	100	0	Р	V
2437MHz		7308	43.48	-30.52	74	52.32	36.07	14.18	59.09	100	0	Р	V
													V
													V
		4926	40.13	-33.87	74	55.75	31.4	11.04	58.06	100	0	Р	Н
		7386	44	-30	74	52.56	36.31	14.27	59.14	100	0	Р	Н
													Н
802.11g													Н
CH 11		4926	40.54	-33.46	74	56.16	31.4	11.04	58.06	100	0	Р	V
2462MHz		7386	43.96	-30.04	74	52.52	36.31	14.27	59.14	100	0	Р	V
													V
													V
Remark		other spurious		eak and	l Average lim	it line.				1	1		<u>.1</u>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4100
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	, ,
		2389.38	67.07	-6.93	74	66.57	27.05	7.45	34	357	157	Р	Н
		2390	53.32	-0.68	54	52.82	27.05	7.45	34	357	157	Α	Н
	*	2412	112.47	-	-	111.94	27.09	7.45	34.01	357	157	Р	Н
	*	2412	102.35	-	-	101.82	27.09	7.45	34.01	357	157	Α	Н
802.11n													Н
HT20													Н
CH 01		2389.65	65.43	-8.57	74	64.93	27.05	7.45	34	100	210	Р	V
2412MHz		2389.92	51.72	-2.28	54	51.22	27.05	7.45	34	100	210	Α	V
	*	2412	110.92	-	-	110.39	27.09	7.45	34.01	100	210	Р	V
	*	2412	100.84	-	-	100.31	27.09	7.45	34.01	100	210	Α	V
													V
													٧
		2349.69	59.14	-14.86	74	58.78	26.93	7.37	33.94	312	136	Р	Н
		2359.95	46.79	-7.21	54	46.41	26.97	7.37	33.96	312	136	Α	Н
	*	2437	113.87	-	-	113.25	27.18	7.49	34.05	312	136	Р	Н
	*	2437	104.01	-	-	103.39	27.18	7.49	34.05	312	136	Α	Н
802.11n		2485.36	58.38	-15.62	74	57.67	27.26	7.53	34.08	312	136	Р	Н
HT20		2484.28	47.02	-6.98	54	46.31	27.26	7.53	34.08	312	136	Α	Н
CH 06		2353.47	58.62	-15.38	74	58.24	26.97	7.37	33.96	108	209	Р	V
2437MHz		2389.47	47.42	-6.58	54	46.92	27.05	7.45	34	108	209	Α	V
	*	2437	113.52	-	-	112.9	27.18	7.49	34.05	108	209	Р	V
	*	2437	102.78	-	-	102.16	27.18	7.49	34.05	108	209	Α	V
		2488.44	57.64	-16.36	74	56.91	27.3	7.53	34.1	108	209	Р	V
		2499.84	46.01	-7.99	54	45.28	27.3	7.53	34.1	108	209	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

		T.	1		1	ı						
*	2462	112.4	-	-	111.72	27.22	7.53	34.07	270	124	Р	Н
*	2462	102.45		-	101.77	27.22	7.53	34.07	270	124	Α	Н
	2485.4	69.7	-4.3	74	68.99	27.26	7.53	34.08	270	124	Р	Н
	2483.52	53.07	-0.93	54	52.36	27.26	7.53	34.08	270	124	Α	Н
												Н
												Н
*	2462	110.63	-	-	109.95	27.22	7.53	34.07	100	206	Р	V
*	2462	100.71	-	-	100.03	27.22	7.53	34.07	100	206	Α	V
	2483.84	63.34	-10.66	74	62.63	27.26	7.53	34.08	100	206	Р	V
	2483.56	49.49	-4.51	54	48.78	27.26	7.53	34.08	100	206	Α	V
												V
												V
	*	* 2462 2485.4 2483.52 * 2462 * 2462 2483.84	* 2462 102.45 2485.4 69.7 2483.52 53.07 * 2462 110.63 * 2462 100.71 2483.84 63.34	* 2462 102.45 - 2485.4 69.7 -4.3 2483.52 53.07 -0.93 * 2462 110.63 - * 2462 100.71 - 2483.84 63.34 -10.66	* 2462 102.45 2485.4 69.7 -4.3 74 2483.52 53.07 -0.93 54 * 2462 110.63 * 2462 100.71 2483.84 63.34 -10.66 74	* 2462 112.4 - - 111.72 * 2462 102.45 - - 101.77 2485.4 69.7 -4.3 74 68.99 2483.52 53.07 -0.93 54 52.36 * 2462 110.63 - - 109.95 * 2462 100.71 - - 100.03 2483.84 63.34 -10.66 74 62.63	* 2462 112.4 - - 111.72 27.22 * 2462 102.45 - - 101.77 27.22 2485.4 69.7 -4.3 74 68.99 27.26 2483.52 53.07 -0.93 54 52.36 27.26 * 2462 110.63 - - 109.95 27.22 * 2462 100.71 - - 100.03 27.22 2483.84 63.34 -10.66 74 62.63 27.26	* 2462 112.4 - - 111.72 27.22 7.53 * 2462 102.45 - - 101.77 27.22 7.53 2485.4 69.7 -4.3 74 68.99 27.26 7.53 2483.52 53.07 -0.93 54 52.36 27.26 7.53 * 2462 110.63 - - 109.95 27.22 7.53 * 2462 100.71 - - 100.03 27.22 7.53 2483.84 63.34 -10.66 74 62.63 27.26 7.53	* 2462 112.4 - - 111.72 27.22 7.53 34.07 * 2485.4 69.7 -4.3 74 68.99 27.26 7.53 34.08 2483.52 53.07 -0.93 54 52.36 27.26 7.53 34.08 * 2462 110.63 - - 109.95 27.22 7.53 34.07 * 2462 100.71 - - 100.03 27.22 7.53 34.07 2483.84 63.34 -10.66 74 62.63 27.26 7.53 34.08	* 2462 112.4 - - 111.72 27.22 7.53 34.07 270 * 2482 102.45 - - 101.77 27.22 7.53 34.07 270 2485.4 69.7 -4.3 74 68.99 27.26 7.53 34.08 270 2483.52 53.07 -0.93 54 52.36 27.26 7.53 34.08 270 * 2462 110.63 - - 109.95 27.22 7.53 34.07 100 * 2462 100.71 - - 100.03 27.22 7.53 34.07 100 2483.84 63.34 -10.66 74 62.63 27.26 7.53 34.08 100	* 2462 112.4 - - 111.72 27.22 7.53 34.07 270 124 * 2482 102.45 - - 101.77 27.22 7.53 34.07 270 124 2485.4 69.7 -4.3 74 68.99 27.26 7.53 34.08 270 124 2483.52 53.07 -0.93 54 52.36 27.26 7.53 34.08 270 124 * 2462 110.63 - - 109.95 27.22 7.53 34.07 100 206 * 2462 100.71 - - 100.03 27.22 7.53 34.07 100 206 2483.84 63.34 -10.66 74 62.63 27.26 7.53 34.08 100 206	* 2462 112.4 - - 111.72 27.22 7.53 34.07 270 124 P * 2485.4 69.7 -4.3 74 68.99 27.26 7.53 34.08 270 124 P 2483.52 53.07 -0.93 54 52.36 27.26 7.53 34.08 270 124 A * 2462 110.63 - - 109.95 27.22 7.53 34.07 100 206 P * 2462 100.71 - - 100.03 27.22 7.53 34.07 100 206 A 2483.84 63.34 -10.66 74 62.63 27.26 7.53 34.08 100 206 P

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		4824	38.06	-35.94	74	54.2	31.26	10.74	58.14	100	0	Р	Н
													Н
802.11n													Н
HT20													Н
CH 01		4824	37.89	-36.11	74	54.03	31.26	10.74	58.14	100	0	Р	V
2412MHz													V
													V
													V
		4872	39.62	-34.38	74	55.5	31.33	10.89	58.1	100	0	Р	Н
		7308	44.49	-29.51	74	53.33	36.07	14.18	59.09	100	0	Р	Н
802.11n													Н
HT20													Н
CH 06		4872	38.68	-35.32	74	54.56	31.33	10.89	58.1	100	0	Р	V
2437MHz		7308	43.1	-30.9	74	51.94	36.07	14.18	59.09	100	0	Р	V
													V
													V
		4926	39.1	-34.9	74	54.72	31.4	11.04	58.06	100	0	Р	Н
		7386	43.93	-30.07	74	52.49	36.31	14.27	59.14	100	0	Р	Н
802.11n													Н
HT20													Н
CH 11		4926	39.46	-34.54	74	55.08	31.4	11.04	58.06	100	0	Р	V
2462MHz		7386	43.51	-30.49	74	52.07	36.31	14.27	59.14	100	0	Р	V
													V
													V
	1. No	other spurious	s found.	1			<u> </u>		1	1	1	1	<u></u>
Remark		results are PA		Peak and	l Average lim	it line.							

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		/ 		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2383.08	66.61	-7.39	74	66.13	27.01	7.45	33.98	181	137	Р	Н
		2388.3	52.58	-1.42	54	52.08	27.05	7.45	34	181	137	Α	Н
	*	2422	105.9	-	-	105.31	27.13	7.49	34.03	181	137	Р	Н
	*	2422	96.66	-	-	96.07	27.13	7.49	34.03	181	137	Α	Н
802.11n		2485.36	58.51	-15.49	74	57.8	27.26	7.53	34.08	181	137	Р	Н
HT40		2492.96	46.37	-7.63	54	45.64	27.3	7.53	34.1	181	137	Α	Н
CH 03		2389.65	69.1	-4.9	74	68.6	27.05	7.45	34	100	211	Р	V
2422MHz		2389.47	52.88	-1.12	54	52.38	27.05	7.45	34	100	211	Α	V
	*	2422	104.63	-	-	104.04	27.13	7.49	34.03	100	211	Р	V
	*	2422	95.34	-	-	94.75	27.13	7.49	34.03	100	211	Α	٧
		2486.28	56.8	-17.2	74	56.09	27.26	7.53	34.08	100	211	Р	V
		2486.84	45.96	-8.04	54	45.25	27.26	7.53	34.08	100	211	Α	V
		2389.92	65.75	-8.25	74	65.25	27.05	7.45	34	319	154	Р	Н
		2389.65	53.16	-0.84	54	52.66	27.05	7.45	34	319	154	Α	Н
	*	2437	109.83	-	-	109.21	27.18	7.49	34.05	319	154	Р	Н
	*	2437	100.23	-	-	99.61	27.18	7.49	34.05	319	154	Α	Н
802.11n		2486.8	63.22	-10.78	74	62.51	27.26	7.53	34.08	319	154	Р	Н
HT40		2486.08	49	-5	54	48.29	27.26	7.53	34.08	319	154	Α	Н
CH 06		2389.56	64.92	-9.08	74	64.42	27.05	7.45	34	103	206	Р	V
2437MHz		2389.92	52.7	-1.3	54	52.2	27.05	7.45	34	103	206	Α	V
	*	2437	107.9	-	-	107.28	27.18	7.49	34.05	103	206	Р	V
	*	2437	98.29	-	-	97.67	27.18	7.49	34.05	103	206	Α	V
		2486.44	61.93	-12.07	74	61.22	27.26	7.53	34.08	103	206	Р	V
		2490.16	47.95	-6.05	54	47.22	27.3	7.53	34.1	103	206	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

FCC RF Test Report

		2359.77	57.52	-16.48	74	57.14	26.97	7.37	33.96	385	129	Р	Н
		2359.77	47.7	-6.3	54	47.32	26.97	7.37	33.96	385	129	Α	Н
	*	2452	108.19	-	-	107.57	27.18	7.49	34.05	385	129	Р	Н
	*	2452	98.56	-	-	97.94	27.18	7.49	34.05	385	129	Α	Н
802.11n		2483.52	65.69	-8.31	74	64.98	27.26	7.53	34.08	385	129	Р	Н
HT40		2483.6	53.52	-0.48	54	52.81	27.26	7.53	34.08	385	129	Α	Н
CH 09		2367.42	58.93	-15.07	74	58.55	26.97	7.37	33.96	117	203	Р	V
2452MHz		2360.04	47.88	-6.12	54	47.5	26.97	7.37	33.96	117	203	Α	V
	*	2452	106.2	-	-	105.58	27.18	7.49	34.05	117	203	Р	V
	*	2452	96.72	-	-	96.1	27.18	7.49	34.05	117	203	Α	V
		2483.88	64.94	-9.06	74	64.23	27.26	7.53	34.08	117	203	Р	V
		2483.52	53.1	-0.9	54	52.39	27.26	7.53	34.08	117	203	Α	V

TEL: 886-3-327-3456 FAX: 886-3-328-4978

All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		4842	37.45	-36.55	74	53.55	31.28	10.74	58.12	100	0	Р	Н
		7266	43.08	-30.92	74	52.04	35.97	14.14	59.07	100	0	Р	Н
802.11n													Н
HT40													Н
CH 03		4842	37.49	-36.51	74	53.59	31.28	10.74	58.12	100	0	Р	V
2422MHz		7266	43.52	-30.48	74	52.48	35.97	14.14	59.07	100	0	Р	V
													V
													V
		4872	37.96	-36.04	74	53.84	31.33	10.89	58.1	100	0	Р	Н
		7308	43.51	-30.49	74	52.35	36.07	14.18	59.09	100	0	Р	Н
802.11n													Н
HT40													Н
CH 06		4872	38.02	-35.98	74	53.9	31.33	10.89	58.1	100	0	Р	V
2437MHz		7308	43.17	-30.83	74	52.01	36.07	14.18	59.09	100	0	Р	V
													V
													V
		4902	38.18	-35.82	74	53.83	31.38	11.04	58.07	100	0	Р	Н
		7356	43.83	-30.17	74	52.52	36.21	14.22	59.12	100	0	Р	Н
802.11n													Н
HT40													Н
CH 09		4902	37.97	-36.03	74	53.62	31.38	11.04	58.07	100	0	Р	V
2452MHz		7356	43.48	-30.52	74	52.17	36.21	14.22	59.12	100	0	Р	V
													V
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz WIFI 802.11b Adapter mode (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		95.61	38.12	-5.38	43.5	51.96	15.52	1.06	30.42			Р	Н
		122.88	36.84	-6.66	43.5	48.07	17.72	1.43	30.38			Р	Н
		179.85	39.59	-3.91	43.5	52.81	15.35	1.75	30.32	123	253	Р	Н
		374.9	29.16	-16.84	46	35.17	21.61	2.44	30.06			Р	Н
		489.7	33.59	-12.41	46	36.53	23.81	3.08	29.83			Р	Н
		624.8	34.53	-11.47	46	34.85	25.69	3.61	29.62			Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
802.11b		42.68	36.16	-3.84	40	47.13	18.62	0.78	30.37	100	72	QP	V
LF		58.35	29.41	-10.59	40	46.67	12.42	0.78	30.46	100	255	QP	V
		151.23	39.05	-4.45	43.5	50.2	17.45	1.75	30.35			Р	V
		314	36.45	-9.55	46	44.31	19.93	2.34	30.13			Р	V
		442.8	39.45	-6.55	46	43.52	22.98	2.89	29.94			Р	V
		624.8	34.12	-11.88	46	34.44	25.69	3.61	29.62			Р	V
													V
													V
													V
													V
													V
													V
Remark		other spurious		mit line.	1	ı	1		ı	1	ı	1	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B13 of B16

Emission below 1GHz

2.4GHz WIFI 802.11b POE mode (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		63.21	33.32	-6.68	40	50.76	11.95	1.06	30.45	124	241	Р	Н
		93.72	35.14	-8.36	43.5	49.22	15.28	1.06	30.42			Р	Н
		197.13	30.79	-12.71	43.5	43.74	15.65	1.7	30.3			Р	Н
		328.7	28.73	-17.27	46	36.14	20.37	2.34	30.12			Р	Н
		504.4	32.84	-13.16	46	35.41	24.04	3.19	29.8			Р	Н
		624.8	37.27	-8.73	46	37.59	25.69	3.61	29.62			Р	Н
													Н
													Н
													Н
													Н
0.4011													Н
2.4GHz 802.11b													Н
802.11b LF		38.32	35.44	-4.56	40	44.11	20.86	0.78	30.31	100	152	QP	V
LF		62.49	29.91	-10.09	40	47.4	11.9	1.06	30.45	100	28	QP	V
		194.7	38.05	-5.45	43.5	51.11	15.55	1.7	30.31			Р	V
		447	29.5	-16.5	46	33.49	23.05	2.89	29.93			Р	V
		624.8	33.61	-12.39	46	33.93	25.69	3.61	29.62			Р	V
		855.1	30.55	-15.45	46	26.97	28.63	4.28	29.33			Р	V
													V
													V
													٧
													V
													V
													V

2. All results are PASS against limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B14 of B16

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Page Number : B15 of B16

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $=43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix C. Radiated Spurious Emission Plots

Test Engineer :	J.C. Liang, Ricky Su, and Nick Yu	Temperature :	23~25°C
		Relative Humidity :	55~60%

Note symbol

-	L	Low channel location
-1	R	High channel location

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No.: FR5D2212A1

TEL: 886-3-327-3456 FAX: 886-3-328-4978

: C14 of C28

2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz WIFI 802.11g (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

C RF Test Report No.: FR5D2212A1

Report No. : FR5D2212A1

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	2.4GHz 2400~2483.5	MHz Harmonic @ 3m
ANT	802.11n HT20	CH01 2412MHz
1+2	Horizontal	Vertical
Peak Avg.	117 Level (dBuVins) Date: 2016-01-31 110 90 FCC CLASS B FCC CLASS	117 Level (dBuVim) 118 119 110 110 110 110 110 110

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT40 (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz WIFI 802.11b Adapter mode (LF)

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz WIFI 802.11b POE mode (LF)

WIFI	2.4GHz 2400~2483.5MHz									
ANT	802.1	1b LF								
1+2	Horizontal	Vertical								
QP / Peak	Date: 2016.01.31 Control of the c	Date: 2016-61-31 TO FCC CLASS-B 10 10 10 10 10 10 10 10 10 1								

TEL: 886-3-327-3456 FAX: 886-3-328-4978