Appendix A Redesign Heuristics

As part of the explanation of Heuristic Process Design in Chapter 8, a limited number of heuristics were discussed. In this appendix, the full list of 29 heuristics is presented that is part of this method. To further classify these heuristics, we will use the elements that were discussed to delineate business processes, i.e. customers, business process operation, business process behavior, organization, information, technology, and the external environment (see Section 8.1.2, page 300). Note that it is to some extent arbitrary how the heuristics are categorized, since some of these relate to more than one of these characteristics. At the end of this appendix, a table is shown that for each redesign heuristic indicates which of the performance dimensions of the Devil's Quadrangle it primarily targets.

A.1 Customer Heuristics

The three heuristics in this category focus on improving the interaction with customers:

Control relocation: "Move controls towards the customer". Different checks and reconciliation activities may be moved towards the customer. By moving billing controls towards the customer, for example, we may eliminate the bulk of billing errors and improve client satisfaction as a result.

Contact reduction: "Reduce the number of contacts with customers and third parties". The exchange of information with a customer or third party is always time-consuming, especially when it takes place by regular mail. Also, each contact may introduce errors. Imagine a situation where reconciliations are needed, like in the Ford example in Section 1.3.2 on page 11: Reducing the number of contacts in such a case may decrease cycle time and improve quality. Note that it is not always necessary to skip certain information exchanges, but that it is possible to combine them with limited extra cost.

Integration: "Consider the integration with a business process of the customer or a supplier". This heuristic captures the idea of supply chain integration. The actual application of this heuristic may take on different forms. For example, when two parties jointly produce a product, it may be more efficient to perform several intermediate reviews than performing one large review after both parties have completed their parts. In general, integrated business processes should render a more efficient execution, from both a time and cost perspective.

A.2 Business Process Operation Heuristics

A business process operation view considers the implementation of a business process in terms of its activities. There are five heuristics with this focus:

Case types: "Determine whether activities are related to the same type of case and, if necessary, distinguish new business processes". One should be cautious of parts of business processes that are not specific for the business process they are part of. Ignoring this phenomenon may result in a less effective management of such a sub-process and a lower efficiency. Applying this heuristic may result in faster processing times and less cost.

Activity elimination: "Eliminate unnecessary activities from a business process". An activity is superfluous if it adds no value from a customer's point of view. Typically, control activities in a business process are unnecessary from this perspective; they are incorporated in the model to fix problems created (or not elevated) in earlier steps. The redundancy of an activity can also trigger activity elimination. The aims of this heuristic are to increase the speed of processing and to reduce the cost of handling an order.

Case-based work: "Remove batch-processing and periodic activities". Some examples of disturbances in handling a case are (a) that the case becomes piled up in a batch and (b) that the case is slowed down by periodic activities, e.g. because computer systems are only available at specific times. Getting rid of these constraints may significantly speed up individual cases.

Triage: "Split an activity into alternative versions". This heuristic suggests aligning the characteristics of cases with capabilities of resources to increase quality. An alternative is to subdivide activities into sub-categories. For example, a special cash desk may be set up for customers with an expected low processing time.

Activity composition: "Combine small activities into composite activities". Composing larger activities from smaller ones should result in the reduction of setup times, i.e., the time that is spent by a resource to become familiar with the specifics of a case.

A.3 Business Process Behavior Heuristics

A view on the behavior of a business process is concerned with ordering of activities. There are four heuristics within this category:

Resequencing: "Move activities to their appropriate place". In existing business processes, actual activity orderings often do not reveal the necessary dependencies between activities. Sometimes it is better to postpone an activity if it is not required for its immediate follow-up activities. The benefit would be that perhaps its execution may prove to become superfluous, which saves cost. Also, an activity may be moved into the proximity of a similar activity, in this way diminishing set-up times.

Parallelism: "Put activities in parallel". The effect of placing activities in parallel is that throughput time may be considerably reduced. The applicability of this heuristic in business process redesign is large. In practical settings, activities are often ordered sequentially without the existence of hard logical restrictions prescribing such an order.

Knock-out: "Order knock-outs in an increasing order of effort and in a decreasing order of termination probability". A typical element of a business process is the subsequent checking of various conditions that must be satisfied to deliver a positive end result. Any condition that is not met may lead to a termination of that part of the business process: the *knock-out*. If possible, the condition that has the most favorable ratio of (1) expected knock-out probability versus (2) the expected effort to check the condition should be pursued. Next, the second best condition, and so forth. This way of ordering checks yields on average the least costly business process execution.

Exception: "Design business processes for typical cases and isolate exceptional cases from the normal flow". Exceptions may seriously disturb normal operations. By isolating them, precious time may be saved and flexibility of the overall process is improved.

A.4 Organization Heuristics

The organization view refers to two categories of heuristics. The first set relates to the *structure* of the organization, specifically how resources are allocated. There are seven heuristics in this category:

Case assignment: "Let participants perform as many steps as possible". By using case assignment in the most extreme form, a participant will carry out all activities that belong to a particular case. The advantage of this heuristic is that this person will know the case well and will need less set-up time in carrying out subsequent activities. Also, quality of service may be increased.

- **Flexible assignment:** "Keep generic participants free for as long as possible". Suppose that an activity can be executed by either of two available participants. Then, this heuristic suggests assigning it to the most specialized person. In this way, the likelihood of committing the free, more general participant to another work package is maximal. The advantage is that an organization stays flexible with respect to assigning work and that overall queueing time is reduced. Also, the workers with the highest degree of specialization can be expected to take on most of the work, which may result in a higher quality.
- **Centralization:** "Let geographically dispersed participants act as if they are centralized". This heuristic exploits the benefits of a BPMS (see Chapter 9). After all, when a BPMS assigns work to process participants it becomes less relevant where they are located geographically. The specific advantage of this measure is that resources can be committed more flexibly, which yields a better cycle time.
- **Split responsibilities:** "Avoid shared responsibilities for tasks by people from different functional units". The idea is that shared responsibilities are more likely to be a source of neglect and conflict. Reducing the overlap in responsibilities should lead to a better quality of activity execution. Also, a higher responsiveness to available work may be developed, so that customers are served quicker.
- **Customer teams:** "Consider composing work teams of people from different departments that will take care of the complete handling of specific sorts of cases". The heuristic calls for creating dedicated teams that have the time and the commitment to take on particular work. It provides benefits in terms of time and quality. In addition, working as a team may improve the attractiveness of the work, which is another quality aspect.
- **Numerical involvement:** "Minimize the number of departments, groups and persons involved in a business process". This will lead to less coordination problems, which makes more time available for the processing of cases. Reducing the number of departments may also split responsibilities, which has a positive impact on quality.
- Case manager: "Appoint one person to be responsible for the handling of each type of case". The person, called *case manager*, is responsible for a specific order or customer. The difference with case assignment is that the emphasis is on management of the process—not its execution. The most important aim is to improve upon the external quality. The business process will become more transparent from the viewpoint of a customer: the case manager provides a single point of contact. This, in general, positively influences customer satisfaction. It may also have a positive effect on the internal quality of the business process, as someone is accountable for and committed to correcting mistakes.

The second set relates to the organizational population and the resources being involved in terms of their type and number. This category includes three heuristics:

Extra resources "If capacity is insufficient, increase the available number of resources". This heuristic aims at extending capacity to reduce queue time. It may also help to implement a more flexible assignment policy.

Specialize "Consider deepening the skills of participants". Participants in a process may be turned into specialists. They may work quicker and deliver higher quality than less specialized resources due to their experience.

Empower "Give workers decision-making authority instead of relying on middle management". In traditional business processes, substantial time may be spent on authorizing the outcomes of activities that have been performed by others. If workers are empowered to take decisions autonomously, this may result in smoother operations with lower throughput times. The reduction of middle management from the business process also reduces labor cost.

A.5 Information Heuristics

The information category describes redesign heuristics related to the information that is being processed within the business process. It covers two heuristics:

Control addition: "Check the completeness and correctness of incoming materials and check the output before it is sent to customers". This heuristic promotes the addition of controls to a business process in order to increase quality.

Buffering: "Instead of requesting information from an external source, buffer it and subscribe to updates". Obtaining information from other parties is time-consuming. By having information directly available when required, throughput times may be substantially reduced. This heuristic can be compared to the caching principle that microprocessors apply.

A.6 Technology Heuristics

This category describes redesign heuristics related to the technology the business process utilizes. It includes activity automation and integral technology.

Activity automation: "Consider automating activities". Automation improves processing time and provides more predictable results at lower cost. Instead of fully automating an activity, it may also be considered to provide automated support to process participants.

Integral technology: "Elevate physical constraints in a business process by applying new technology". In general, new technology can offer all kinds of positive effects across an entire business process. For example, a BPMS may support the coordination of all its activities; a Document Management System, in its turn, will open up to all participants the same information available on cases. The major effect would be a better quality of service.

A.7 External Environment Heuristics

The external environment category contains heuristics that try to improve upon the collaboration and communication with third parties. There are three heuristics in this category:

Trusted party: "Use the insights of a trusted party". Some decisions are generic and standardized to the extent that other parties will get the same result for the same input data. An example is the creditworthiness of a customer that bank A wants to establish. If a customer can present a recent creditworthiness certificate of bank B, then bank A may be likely to accept it. Relying on a trusted party reduces cost and may cut processing time.

Outsourcing: "Consider outsourcing a business process completely or parts of it". Another party may be more efficient in performing the same work, so it might as well perform it for the business process that is up for redesign. The obvious aim of outsourcing work is that it will generate less cost.

Interfacing: "Consider a standardized interface with customers and partners". A standardized interface diminishes the occurrence of mistakes, incomplete applications, or unintelligible information exchanges. This may yield better quality due to less errors and faster processing time.

The various heuristics are listed in Table A.1, which shows the main performance dimensions of the Devil's Quadrangle that are explicitly being targeted by each (+).

Table A.1 Performance dimensions for the redesign heuristics

	Time	Cost	Quality	Flexibility
Activity automation	+	+	+	
Activity composition	+			
Activity elimination	+	+		
Buffering	+			
Case assignment	+		+	
Case manager			+	
Case types	+	+		
Case-based work	+			
Centralization	+			+
Control addition			+	
Control relocation			+	
Contact reduction	+		+	
Customer teams	+		+	
Empower	+	+		+
Exception	+			+
Extra resources	+			+
Flexible assignment	+		+	+
Integral technology			+	
Integration	+	+		
Interfacing	+		+	
Knock-out		+		
Numerical involvement	+		+	
Outsourcing		+		
Parallelism	+			
Resequencing	+	+		
Specialize	+		+	
Split responsibilities	+		+	
Triage			+	
Trusted party	+	+		

- 1. W.M.P. van der Aalst, *Process Mining: Data Science in Action*, 2nd edn. (Springer, Berlin, 2016)
- W.M.P. van der Aalst, Verification of Workflow Nets, in *Application and Theory of Petri Nets* 1997, ed. by P. Azéma, G. Balbo. Lecture Notes in Computer Science, vol. 1248 (Springer, Berlin, 1997), pp. 407–426
- 3. I. Adan, J. Resing, Queueing Theory (Eindhoven University of Technology, Eindhoven, 2002)
- 4. A. Adriansyah, Aligning observed and modeled behavior. PhD thesis, Eindhoven University of Technology (2014)
- S. Aguirre, C. Parra, M. Sepúlveda, Methodological proposal for process mining projects. Int. J. Bus. Process Integr. Manag. 8(2), 102–113 (2017)
- D.M. Ahern, J. Armstrong, A. Clouse, J.R. Ferguson, W. Hayes, K.E. Nidiffer, CMMI SCAMPI Distilled: Appraisals for Process Improvement (Addison-Wesley, Reading, 2005)
- 7. T. Allweyer, BPMN 2.0: Introduction to the Standard for Business Process Modeling, 2nd edn. Books on Demands (2016)
- 8. A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha, C.K. Liu, R. Khalaf, D. Koenig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu, Web services business process execution language version 2.0. Committee specification 31 january 2007, OASIS, 2007
- 9. R. Anupindi, S. Chopra, S.D. Deshmukh, J.A. van Mieghem, E. Zemel, *Managing Business Process Flows* (Prentice Hall, New York, 1999)
- A. Augusto, R. Conforti, M. Dumas, M. La Rosa, Split miner: Discovering accurate and simple business process models from event logs, in *Proceedings of the IEEE International* Conference on Data Mining (ICDM) (IEEE Computer Society, 2017)
- A. Augusto, R. Conforti, M. Dumas, M. La Rosa, G. Bruno, Automated discovery of structured process models: Discover structured vs. discover and structure, in *Proc. of the 35th International Conference on Conceptual Modeling (ER)*, Cham, Switzerland, 2016 (Springer, Berlin, 2016)
- A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F.M. Maggi, A. Marrella, M. Mecella, A. Soo, Automated discovery of process models from event logs: Review and benchmark. CoRR, abs/1705.02288 (2017)
- 13. W. Bandara, S. Bailey, P. Mathiesen, J. McCarthy, C. Jones, Enterprise business process management in the public sector: The case of the Department of Human Services (DHS) Australia. J. Inf. Technol. Teaching Cases (2017)
- 14. W. Bandara, H. Opsahl, Developing organization-wide BPM capabilities in an SME: the approaches used, challenges and outcomes. J. Inf. Technol. Teaching Cases (2017)

 G. Barnett, Robotic process automation: Adding to the process transformation toolkit. White paper IT0022-0005, Ovum Consulting, 2015

- 16. A.M. Bassam Alkharashi, L. Jesus, R. Tregear, Establishing the Office of Business Process Management (Leonardo Consulting, Brisbane, 2010)
- 17. J. Becker, M. Kugeler, M. Rosemann, *Process Management: A Guide for the Design of Business Processes* (Springer, Berlin, 2011)
- 18. J. Becker, M. Rosemann, C. von Uthmann, Guidelines of Business Process Modeling, in *Business Process Management. Models, Techniques, and Empirical Studies*, ed. by W.M.P. van der Aalst, J. Desel, A. Oberweis (Springer, Berlin, 2000), pp. 30–49
- 19. M. Beer, R.A. Eisenstat, B. Spector, Why change programs don't produce change. Harv. Bus. Rev. (November-December 1990)
- B.L. Berg, H. Lune, Qualitative Research Methods for the Social Sciences (Pearson, Boston, 2004)
- 21. J.D. Blackburn, Time-based competition: White-collar activities. Bus. Horiz. **35**(4), 96–101 (1992)
- N. Brand, H. van der Kolk, Workflow Analysis and Design (In Dutch) (Kluwer Bedrijfswetenschappen, Deventer, 1995)
- 23. R.T. Burlton, Delivery business strategy through process management, in *Handbook on Business Process Management 2*, 2nd edn., ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015)
- 24. T. Chamorro-Premuzic, Why group brainstorming is a waste of time. Harv. Bus. Rev. (2015)
- 25. M.B. Chrissis, M. Konrad, S. Shrum, *CMMI for Development: Guidelines for Process Integration and Product Improvement*, 3rd edn. (Addison-Wesley, Reading, 2011)
- J.G. Clark, D.B. Walz, J.L. Wynekoop, Identifying exceptional application software developers: A comparison of students and professionals. Commun. Assoc. Inf. Syst. 11(1), 8 (2003)
- 27. D. Cohn, R. Hull, Business artifacts: A data-centric approach to modeling business operations and processes. IEEE Data Eng. Bull. **32**(3), 3–9 (2009)
- S. Conger, Six sigma and business process management, in *Handbook of Business Process Management 1*, ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015), pp. 127–146
- 29. T. Curran, G. Keller, SAP R/3 Business Blueprint: Understanding the Business Process Reference Model (Prentice Hall, Upper Saddle River, 1997)
- 30. T.H. Davenport, *Process Innovation: Reengineering Work Through Information Technology* (Harvard Business School Press, Boston, 1993)
- 31. T.H. Davenport, J.E. Short, The new industrial engineering: information technology and business process redesign. Sloan Manag. Rev. **31**(4), 11–27 (1990)
- 32. R.B. Davis, E. Brabander, ARIS Design Platform: Getting Started with BPM (Springer, Berlin, 2007)
- 33. T. de Bruin, Business process management: theory on progression and maturity. PhD thesis, Queensland University of Technology, Brisbane, Australia (2009)
- 34. T. de Bruin, G. Doebeli, An organizational approach to bpm: The experience of an australian transport provider, in *Handbook on Business Process Management 2*, 2nd edn., ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015)
- 35. T. de Bruin, M. Rosemann, Using the delphi technique to identify bpm capability areas, in Proceedings of the 18th Australasian Conference on Information Systems (Association for Information Systems, 2007)
- 36. J. Dick, E. Hull, K. Jackson, *Requirements Engineering*, 4th edn. (Springer, Berlin, 2017)
- J.M. Digman, Personality structure: Emergence of the five-factor model. Annu. Rev. Psychol. 41(1), 417–440 (1990)
- 38. R. Dijkman, I. Vanderfeesten, H.A. Reijers, Business process architectures: overview, comparison and framework. Enterp. Inf. Syst. 10(2), 129–158 (2016)
- 39. M. Dumas, L. Garcia-Banuelos, M. La Rosa, R. Uba, Fast detection of exact clones in business process model repositories. Inf. Syst. **38**(4), 619–633 (2013)

40. M. Dumas, M. La Rosa, J. Mendling, R. Mäesalu, H.A. Reijers, N. Semenenko, Understanding business process models: the costs and benefits of structuredness, in *International Conference on Advanced Information Systems Engineering* (Springer, Berlin, 2012), pp. 31–46

- 41. W. Eckerson, *Performance Dashboards: Measuring, Monitoring, and Managing Your Business*, 2nd edn. (Wiley, New York, 2010)
- C.C. Ekanayake, M. La Rosa, A.H.M. ter Hofstede, M.C. Fauvet, Fragment-based version management for repositories of business process models, in *Proceedings of the International Conference on Cooperative Information Systems (CoopIS)*. Lecture Notes in Computer Science, vol. 7044 (Springer, Berlin, 2011), pp. 20–37
- 43. D.J. Elzinga, T. Horak, C.Y. Lee, C. Bruner, Business process management: survey and methodology. IEEE Trans. Eng. Manag. 42(2), 119–128 (1995)
- 44. G. Engels, A. Forster, E. Heckel, S. Thone, Process Modeling Using UML, in *Process-Aware Information Systems*, chapter 5, ed. by M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede (Wiley, New York, 2005)
- 45. T. Erl, A. Karmarkar, P. Walmsley, H. Haas, Web Service Contract Design and Versioning for SOA (Prentice Hall, New York, 2008)
- E. Forrester, B. Buteau, S. Shrum (Author), CMMI for Services: Guidelines for Superior Service, 2nd edn. (Addison-Wesley, Reading, 2011)
- P. Franz, M. Kirchmer, Value-Driven Business Process Management (McGraw-Hill, New York, 2012)
- 48. P.J.M. Frederiks, T.P. van der Weide, Information modeling: The process and the required competencies of its participants. Data Knowl. Eng. **58**(1), 4–20 (2006)
- 49. J. Freund, B. Rücker, *Real-Life BPMN: With introductions to CMMN and DMN*, 3rd edn. (CreateSpace Independent Publishing Platform, 2016)
- 50. V. Frolov, D. Megel, W. Bandara, Y. Sun, L. Ma, Building an ontology and process architecture for engineering asset management, in *Proceedings of the 4th World Congress on Engineering Asset Management (WCEAM)*, Athens, Greece, September 2009 (Springer, Berlin, 2009)
- 51. D. Fürstenau, Process Performance Measurement (GRIN, Santa Cruz, 2008)
- B. Gallagher, M. Phillips, K. Richter, S. Shrum, CMMI for Acquisition: Guidelines for Improving the Acquisition of Products and Services, 2nd edn. (Addison-Wesley, Reading, 2011)
- 53. L. García-Bañuelos, A. Ponomarev, M. Dumas, I. Weber, Optimized execution of business processes on blockchain, in *Proceedings of the 15th International Conference on Business Process Management (BPM)*. Lecture Notes in Computer Science, vol. 10445 (2017), pp. 130–146
- L. García-Bañuelos, N.R.T.P. van Beest, M. Dumas, M. La Rosa, Complete and interpretable conformance checking of business processes. IEEE Trans. Softw. Eng. (2017). https://doiorg.vu-nl.idm.oclc.org/10.1109/TSE.2017.2668418
- 55. R. Gill, Change management-or change leadership? J. Change Manag. 3(4), 307-318 (2002)
- 56. E.M. Goldratt, *The Goal: A Process of Ongoing Improvement* (North River Press, Great Barrington, 1992)
- B. Grabot, A. Mayère, I. Bazet, ERP Systems and Organisational Change: A Socio-Technical Insight (Springer, Berlin, 2008)
- 58. A. Greasley, A redesign of a road traffic accident reporting system using business process simulation. Bus. Process Manag. J. 10(6), 635–644 (2004)
- M. Hammer, Reengineering work: Don't automate, obliterate. Harv. Bus. Rev. 68(4), 104– 112 (1990)
- 60. M. Hammer, Beyond Reengineering: How the Process-Centered Organization Is Changing Our Work and Our Lives (HarperBusiness, New York, 1997)
- 61. M. Hammer, What is business process management, in *Handbook of Business Process Management 1*, ed. by M. Rosemann, J. vom Brocke (Springer, Berlin, 2015), pp. 3–16

62. M. Hammer, J. Champy, Reengineering the Corporation: A Manifesto for Business Revolution (Harpercollins, New York, 1993)

- 63. P. Hanafizadeh, M. Moosakhani, J. Bakhshi, Selecting the best strategic practices for business process redesign. Bus. Process Manag. J. **15**(4), 609–627 (2009)
- 64. P. Harmon, Analyzing activities. BPTrends Newsl. 1(4) (2003). http://www.bptrends.com
- 65. P. Harmon, Business Process Change: A Guide for Business Managers and BPM and Six Sigma Professionals, 2nd edn. (Morgan Kaufmann, San Mateo, 2007)
- 66. P. Harmon, R. Tregear, *Questioning BPM?* (Meghan-Kiffer Press, Tampa, 2016)
- 67. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, N. Russell, (eds.), *Modern Business Process Automation: YAWL and Its Support Environment* (Springer, Berlin, 2010)
- D. Hollingsworth, The Workflow Reference Model. TC00-1003 Issue 1.1, Workflow Management Coalition, 24 November 1994
- 69. D. Hollingsworth, The Workflow Reference Model: 10 Years On, in *The Workflow Handbook* 2014, ed. by L. Fischer (Workflow Management Coalition, Cohasset, 2004), pp. 295–312
- 70. IEEE TaskForce on Process Mining, Process Mining Manifesto. http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto. Accessed October 2017, 2011
- 71. J. Jeston, J. Nelis, Business Process Management: Practical Guidelines to Successful Implementations, 3rd edn. (Routledge, New York, 2014)
- 72. F. Johannsen, S. Leist, G. Zellner, Implementing six sigma for improving business processes at an automotive bank, in *Handbook of Business Process Management 1*, ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015), pp. 393–416
- 73. R.S. Kaplan, D.P. Norton, The balanced scorecard measures that drive performance. Harv. Bus. Rev. **70**(1), 71–79 (1992)
- 74. R. Kegan, L.L. Lahey, The real reason people won't change. *HBR's 10 Must Reads on Change*, pp. 77 (2001)
- W.D. Kelton, R.P. Sadowski, N.B. Swets, Simulation with Arena, 5th edn. (McGraw-Hill, New York, 2009)
- G. Kerpedzhiev, U. König, M. Röglinger, M. Rosemann, Business process management in the digital age. BPTrends (July 2017)
- 77. W.J. Kettinger, J.T.C. Teng, S. Guha, Business process change: a study of methodologies, techniques, and tools. MIS Q., 55–80 (1997)
- M. Kirchmer, P. Franz, The chief process officer: A role to drive value. White paper, Accenture, 2012
- 79. M. Kloppenburg, J. Kettenbohrer, D. Beimborn, M. Bögle, Leading 20,000+ employees with a process-oriented management system: Insights into process management at lufthansa technik group, in *Business Process Management Cases*, ed. by J. vom Brocke, J. Mendling (Springer, Berlin, 2018), pp. 505–520
- 80. C.N. Knaflic, Storytelling with Data: A Data Visualization Guide for Business Professionals (Wiley, New York, 2015)
- 81. J.P. Kofter, Leading change: why transformation efforts fail. Harv. Bus. Rev. 92, 107 (2007)
- 82. A. Kovačič, G. Hauc, B. Buh, M.I. Štemberger, Bpm adoption and business transformation at snaga, a public company: Critical success factors for five stages of bpm, in *Business Process Management Cases*, ed. by J. vom Brocke, J. Mendling (Springer, Berlin, 2018), pp. 77–89
- 83. J. Krogstie, Quality in Business Process Modeling (Springer, Berlin, 2016)
- M. La Rosa, M. Dumas, C.C. Ekanayake, L. Garcia-Banuelos, J. Recker, Detecting approximate clones in business process model repositories. Inf. Syst. 49, 102–125 (2015)
- 85. M. Laguna, J. Marklund, *Business Process Modeling, Simulation and Design* (Prentice Hall, New York, 2004)
- S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour (Springer, Cham, 2014), pp. 66–78
- H. Leopold, R.-H. Eid-Sabbagh, J. Mendling, L.G. Azevedo, F.A. Baião, Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)

88. M. Leyer, D. Heckl, J. Moormann, Process performance measurement. *Handbook on Business Process Management, Volume 2* (2015), pp. 227–241

- 89. F. Leymann, D. Roller, *Production Workflow Concepts and Techniques* (Prentice Hall, New York, 2000)
- 90. S. Limam Mansar, H.A. Reijers, F. Ounnar, Development of a decision-making strategy to improve the efficiency of bpr. Expert Syst. Appl. **36**(2), 3248–3262 (2009)
- 91. O.I. Lindland, G. Sindre, A. Sølvberg, Understanding quality in conceptual modeling. IEEE Softw. 11(2), 42–49 (1994)
- 92. N. Lohmann, Correcting deadlocking service choreographies using a simulation-based graph edit distance, in *International Conference on Business Process Management*, vol. 8 (Springer, Berlin, 2008), pp. 132–147
- 93. P. Lohmann, M. zur Muehlen, Business process management skills and roles: An investigation of the demand and supply side of BPM professionals, in *Proceedings of the 13th International Conference on Business Process Management (BPM)*. Lecture Notes in Computer Science, vol. 9253 (Springer, Berlin, 2015), pp. 317–332
- 94. A.V. Looy, Business Process Maturity. A Comparative Study on a Sample of Business Process Maturity Models (Springer, Berlin, 2014)
- 95. O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, Caterpillar: A blockchain-based business process management system, in *Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM 2017), Barcelona, Spain, September 13, 2017*, ed. by R. Clarisó, H. Leopold, J. Mendling, W.M.P. van der Aalst, A. Kumar, Br.T. Pentland, M. Weske. CEUR Workshop Proceedings, vol. 1920 (2017). CEUR-WS.org
- 96. J. Luftman, Strategic alignment maturity, in *Handbook on Business Process Management* 2, 2nd edn., ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015)
- M. Malinova, A language for designing process maps. PhD thesis, WU Vienna University of Economics and Business (2016)
- 98. M. Malinova, B. Hribar, J. Mendling, A framework for assessing bpm success, in *Proceedings* of the 22nd European Conference on Information Systems (Association for Information Systems, 2014)
- M. Malinova, H. Leopold, J. Mendling, An explorative study for process map design, in Information Systems Engineering in Complex Environments - CAiSE Forum 2014, Thessaloniki, Greece, June 16–20, 2014, Selected Extended Papers, ed. by S. Nurcan, E. Pimenidis. Lecture Notes in Business Information Processing, vol. 204 (Springer, Berlin, 2015), pp. 36–51
- 100. M. Malinova, J. Mendling, The effect of process map design quality on process management success, in 21st European Conference on Information Systems, ECIS 2013, Utrecht, The Netherlands, June 5–8, 2013 (2013), p. 160
- 101. R.L. Manganelli, M.M. Klein, American Management Association, *The Reengineering Handbook: A Step-by-Step Guide to Business Transformation* (Amacom, New York, 1994)
- 102. S.L. Mansar, H.A. Reijers, Best practices in business process redesign: validation of a redesign framework. Comput. Ind. 56(5), 457–471 (2005)
- S.L. Mansar, H.A. Reijers, Best practices in business process redesign: use and impact. Bus. Process Manag. J. 13(2), 193–213 (2007)
- 104. N. Martin, B. Depaire, A. Caris, The use of process mining in business process simulation model construction - structuring the field. Bus. Inf. Syst. Eng. 58(1), 73–87 (2016)
- 105. N. Martin, M. Swennen, B. Depaire, M. Jans, A. Caris, K. Vanhoof, Retrieving batch organisation of work insights from event logs. Decis. Support Syst. 100, 119–128 (2017)
- 106. A. McAfee, Pharmacy service improvement at cvs (a). Harv. Bus. Rev. Case Stud. (2005)
- 107. K. McCormack, The development of a measure of business process orientation and its relationship to organizational performance, April 1999. Online tutorial available at http://www.prosci.com/mccormack.htm

108. J. Mendling, Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Lecture Notes in Business Information Processing, vol. 6 (Springer, Berlin, 2008)

- 109. J. Mendling, Empirical studies in process model verification, in Transactions on Petri Nets and Other Models of Concurrency II, Special Issue on Concurrency in Process-Aware Information Systems, vol. 5460 (2009), 208–224
- 110. J. Mendling, H.A. Reijers, W.M.P. van der Aalst, Seven process modeling guidelines (7pmg). Inf. Softw. Technol. **52**(2), 127–136 (2010)
- 111. J. Mendling, L. Sánchez-González, F. García, M. La Rosa, Thresholds for error probability measures of business process models. J. Syst. Softw. 85(5), 1188–1197 (2012)
- 112. J. Mendling, M. Strembeck, J. Recker, Factors of process model comprehension findings from a series of experiments. Decis. Support Syst. **53**(1), 195–206 (2012)
- 113. J. Mendling, I. Weber, W.M.P. van der Aalst, J. vom Brocke, C. Cabanillas, F. Daniel, S. Debois, C. Di Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-Bañuelos, G. Governatori, R. Hull, M. La Rosa, H. Leopold, F. Leymann, J. Recker, M. Reichert, H.A. Reijers, S. Rinderle-Ma, A. Rogge-Solti, M. Rosemann, S. Schulte, M.P. Singh, T. Slaats, M. Staples, B. Weber, M. Weidlich, M. Weske, X. Xu, L. Zhu, Blockchains for business process management challenges and opportunities. CoRR, abs/1704.03610 (2017)
- 114. W. Mertens, J. Recker, T.-F. Kummer, T. Kohlborn, S. Viaene, Constructive deviance as a driver for performance in retail. J. Retail. Consum. Serv. 30, 193–203 (2016)
- 115. N. Modig, P. Ahlström, *This Is Lean: Resolving the Efficiency Paradox* (Rheologica, Stockholm, 2012)
- A. Møller, M.I. Schwartzbach, An Introduction to XML and Web Technologies (Addison-Wesley, Reading, 2006)
- 117. D. Müller, M. Reichert, J. Herbst, A new paradigm for the enactment and dynamic adaptation of data-driven process structures, in *Advanced Information Systems Engineering* (Springer, Berlin, 2008), pp. 48–63
- 118. J. Munoz-Gama, Conformance Checking and Diagnosis in Process Mining: Comparing Observed and Modeled Processes (Springer, Berlin, 2016)
- 119. M. Netjes, R.S. Mans, H.A. Reijers, W.M.P. van der Aalst, R.J.B. Vanwersch, Bpr best practices for the healthcare domain, in *Business Process Management Workshops* (Springer, Berlin, 2010), pp. 605–616
- 120. Object Management Group, Unified Modeling Language (UML) Version 2.5, 2015
- 121. P. O'Neill, A.S. Sohal, Business process reengineering a review of recent literature. Technovation 19(9), 571–581 (1999)
- 122. A. Osterwalder, Y. Pigneur, Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers (Wiley, New York, 2010)
- 123. A. Ottensooser, A. Fekete, H.A. Reijers, J. Mendling, C. Menictas, Making sense of business process descriptions: An experimental comparison of graphical and textual notations. J. Syst. Softw. 85(3), 596–606 (2012)
- 124. M.A. Ould, *Business Process Management: A Rigorous Approach* (British Informatics Society Ltd., Swindon, 2005)
- 125. M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, *The Capability Maturity Model: Guidelines for Improving the Software Process* (Addison-Wesley, Reading, 1994)
- 126. M. Petre, Why looking isn't always seeing: Readership skills and graphical programming. Commun. ACM **38**(6), 33–44 (1995)
- 127. K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques (Springer, Berlin, 2010)
- 128. M.E. Porter, Competitive Advantage: Creating and Sustaining Superior Performance (The Free Press, New York, 1985)
- 129. G. Redding, M. Dumas, A.H.M. ter Hofstede, A. Iordachescu, A flexible, object-centric approach for business process modelling. SOCA 4(3), 191–201 (2010)
- 130. M. Reichert, B. Weber, *Enabling Flexibility in Process-Aware Information Systems* (Springer, Berlin, 2012)

131. H.A. Reijers, Product-based design of business processes applied within the financial services. J. Res. Pract. Inf. Technol. **34**(2), 110–122 (2002)

- 132. H.A. Reijers, Design and Control of Workflow Processes: Business Process Management for the Service Industry (Springer, Berlin, 2003)
- 133. H.A. Reijers, T. Freytag, J. Mendling, A. Eckleder, Syntax highlighting in business process models. Decis. Support Syst. **51**(3), 339–349 (2011)
- 134. H.A Reijers, S. Limam, W.M.P. van der Aalst, Product-based workflow design. J. Manag. Inf. Syst. 20(1), 229–262 (2003)
- 135. H.A. Reijers, S.L. Mansar, Best practices in business process redesign: an overview and qualitative evaluation of successful redesign heuristics. Omega 33(4), 283–306 (2005)
- 136. H.A. Reijers, J. Mendling, A study into the factors that influence the understandability of business process models. IEEE Trans. Syst. Man Cybern. A **41**(3), 449–462 (2011)
- 137. H.A. Reijers, J. Mendling, R.M. Dijkman, Human and automatic modularizations of process models to enhance their comprehension. Inf. Syst. **36**(5), 881–897 (2011)
- 138. H.A. Reijers, I.T.P. Vanderfeesten, W.M.P. van der Aalst, The effectiveness of workflow management systems: A longitudinal study. Int. J. Inf. Manag. 36(1), 126–141 (2016)
- 139. C. Reisert, S. Zelt, J. Wacker, How to move from paper to impact in business process management: The journey of sap, in *Business Process Management Cases*, ed. by J. vom Brocke, J. Mendling (Springer, Berlin, 2018)
- 140. S.-H. Rhee, N.W. Cho, H. Bae, Increasing the efficiency of business processes using a theory of constraints. Inf. Syst. Front. **12**(4), 443–455 (2010)
- 141. L. Richardson, S. Ruby, RESTful Web Services (O'Reilly Media, Inc., Sebastopol, 2008)
- 142. J.J. Rooney, L.N. Vanden Heuvel, Root cause analysis for beginners. Qual. Prog., 45–53 (2004)
- 143. M. La Rosa, A.H.M. ter Hofstede, P. Wohed, H.A. Reijers, J. Mendling, W.M.P. van der Aalst, Managing process model complexity via concrete syntax modifications. IEEE Trans. Ind. Inf. 7(2), 255–265 (2011)
- 144. M. La Rosa, P. Wohed, J. Mendling, A.H.M. ter Hofstede, H.A. Reijers, W.M.P. van der Aalst, Managing process model complexity via abstract syntax modifications. IEEE Trans. Ind. Inf. 7(4), 614–629 (2011)
- 145. M. Rosemann, Potential pitfalls of process modeling: part a. Bus. Process Manag. J. 12(2), 249–254 (2006)
- 146. M. Rosemann, Potential pitfalls of process modeling: part b. Bus. Process Manag. J. 12(3), 377–384 (2006)
- 147. M. Rosemann, A. Hjalmarsson, M. Lind, J. Recker, Four facets of a process modeling facilitator, in *Proceedings of the 32nd International Conference on Information Systems* (Association for Information Systems, 2011)
- 148. M. Rosemann, The nestt: Rapid process redesign at queensland university of technology, in *Business Process Management Cases* (Springer, Berlin, 2018), pp. 169–185
- 149. M. Rosemann, T. de Bruin, Application of a holistic model for determining bpm maturity, in *Proceedings of the AIM Pre-ICIS Workshop on Process Management and Information Systems* (Actes du 3e colloque Pre-ICIS de l'AIM, 2004)
- 150. M. Rosemann, T. de Bruin, Towards a business process management maturity model, in *Proceedings of the 13th European Conference on Information Systems* (Association for Information Systems, 2005)
- 151. M. Rosemann, T. de Bruin, Towards understanding strategic alignment of business process management, in *Proceedings of the 17th Australasian Conference on Information Systems* (Association for Information Systems, 2006)
- 152. A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes based on monitoring real behavior. Inf. Syst. **33**(1), 64–95 (2008)
- 153. G.A. Rummler, A.P. Brache, *Improving Performance: Managing the White Space on the Organizational Chart* (Jossey-Bass, San Francisco, 1990)

154. G.A. Rummler, A.J. Ramias, A framework for defining and designing the structure of work, in *Handbook of Business Process Management 1*, ed. by M. Rosemann, J. vom Brocke (Springer, Berlin, 2015), pp. 81–104

- 155. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, Workflow Patterns: The Definitive Guide (MIT Press, Cambridge, 2016)
- 156. A.-W. Scheer, ARIS Business Process Modelling (Springer, New York, 2000)
- 157. K.D. Schenk, N.P. Vitalari, K.S. Davis, Differences between novice and expert systems analysts: What do we know and what do we do? J. Manag. Inf. Syst. 15(1), 9–50 (1998)
- 158. T. Schmiedel, J. vom Brocke, J. Recker, Culture in business process management: How cultural values determine bpm success, in *Handbook on Business Process Management* 2, 2nd edn., ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015)
- 159. A. Schwegmann, M. Laske, As-is modeling and process analysis, in *Process Management:* A Guide for the Design of Business Processes, ed. by J. Becker, M. Kugeler, M. Rosemann (Springer, Berlin, 2011), pp. 133–156
- 160. I. Seidman, Interviewing as Qualitative Research: A Guide for Researchers in Education and the Social Sciences (Teachers College Press, New York, 2006)
- 161. A. Sharp, P. McDermott, Workflow Modeling: Tools for Process Improvement and Applications Development, 2nd edn. (Artech House, Norwood, 2008)
- 162. A. Shtub, R. Karni, ERP: The Dynamics of Supply Chain and Process Management (Springer, Berlin, 2010)
- 163. B. Silver, BPMN Method and Style, 2nd edn. (Cody-Cassidy Press, Aptos, 2011)
- 164. B. Silver, A. Sayles, *DMN Method and Style: The Practitioner's Guide to Decision Modeling with Business Rules* (Cody-Cassidy Press, Aptos, 2016)
- 165. H.L. Sirkin, P. Keenan, A. Jackson, The hard side of change management. Harv. Bus. Rev. 83(10), 108 (2005)
- 166. Software AG, Transparent Processes Lead to Improved Customer Service and Regulatory Compliance. Reference Story (Software AG, 2016). https://tinyurl.com/y8j6lgwh
- 167. A. Spanyi, The governance of business process management, in *Handbook on Business Process Management 2*, 2nd edn., ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015)
- 168. G. Steinbauer, M. Ossberger, D. Dorazin, Wiener linien: Infrastruktur für den öffentlichen verkehr bereitstellen: Prozessmanagement mit hoher komplexität, in *Prozessmanagement individuell umgesetzt*, ed. by E.-M. Kern (Springer, Berlin, 2012), pp. 221–236
- 169. J. Stirna, A. Persson, K. Sandkuhl, Participative Enterprise Modeling: Experiences and Recommendations, in *Proceedings of the 19th Conference on Advanced Information Systems Engineering (CAiSE 2007)*, ed. by J. Krogstie, A.L. Opdahl, G. Sindre. Lecture Notes in Computer Science, vol. 4495, Trondheim, Norway, 2007 (Springer, Berlin, 2007), pp. 546–560
- 170. D. Straker, A Toolbook for Quality Improvement and Problem Solving (Prentice Hall, New York, 1995)
- 171. S. Suriadi, M.T. Wynn, C. Ouyang, A.H.M. ter Hofstede, N.J. van Dijk, Understanding process behaviours in a large insurance company in australia: A case study, in *Proceedings of the 25th International Conference on Advanced Information Systems Engineering (CAiSE)*. Lecture Notes in Computer Science, vol. 7908 (Springer, Berlin, 2013), pp. 449–464
- 172. K.D. Swenson, Mastering the Unpredictable: How Adaptive Case Management Will Revolutionize the Way That Knowledge Workers Get Things Done (Meghan-Kiffer Press, Tampa, 2010)
- 173. R. Tregear, Reimagining Management (Blurb, San Francisco, 2017)
- 174. J.M. Utterback, W.J. Abernathy, A dynamic model of process and product innovation. Omega 3(6), 639–656 (1975)
- 175. N.R.T.P. van Beest, M. Dumas, L. García-Bañuelos, M. La Rosa, Log delta analysis: Interpretable differencing of business process event logs, in *Proceedings of the 13th International Conference on Business Process Management (BPM)* (Springer, Berlin, 2015), pp. 386–405

176. W.M.P. van der Aalst K. Van Hee, Workflow Management: Models, Methods, and Systems (MIT Press, Cambridge, 2004)

- 177. W.M.P. van der Aalst, Business process simulation survival guide, in *Handbook of Business Process Management 1*, ed. by J. vom Brocke, M. Rosemann (Springer, Berlin, 2015), pp. 337–370
- 178. W.M.P. van der Aalst, M. Rosemann, M. Dumas, Deadline-based escalation in process-aware information systems. Decis. Support Syst. **43**(2), 492–511 (2007)
- 179. W.M.P. van der Aalst, M. Weske, D. Grünbauer, Case handling: a new paradigm for business process support. Data Knowl. Eng. **53**(2), 129–162 (2005)
- 180. M.L. van Eck, X. Lu, S.J.J. Leemans, W.M.P. van der Aalst, PM ^2 : A process mining project methodology, in *Proceedings of the International Conference on Advanced Information Systems Engineering (CAiSE)* (Springer, Berlin, 2015), pp. 297–313
- 181. A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software Specifications (Wiley, New York, 2009)
- 182. I. Vanderfeesten, H.A. Reijers, W.M.P. van der Aalst, Product-based workflow support. Inf. Syst. 36(2), 517–535 (2011)
- 183. R.J.B. Vanwersch, I. Vanderfeesten, E. Rietzschel, H.A. Reijers, Improving business processes: does anybody have an idea? in *International Conference on Business Process Management* (Springer, Berlin, 2015), pp. 3–18
- 184. R. Verganti, Design-Driven Innovation (Harvard Business School Press, Boston, 2009)
- 185. L. Verner, The challenge of process discovery. BPTrends (May 2004)
- 186. J. vom Brocke, M. Rosemann, *Handbook on Business Process Management 1: Introduction, Methods, and Information Systems*, 2nd edn., vol. 1 (Springer, Berlin, 2015)
- 187. J. vom Brocke, M. Rosemann, Handbook on Business Process Management 2: Strategic Alignment, Governance, People and Culture, 2nd edn., vol. 2 (Springer, Berlin, 2015)
- 188. J. vom Brocke, J. Mendling, Business Process Management Cases: Digital Innovation and Business Transformation in Practice (Springer, Berlin, 2018)
- 189. J. Vom Brocke, T. Schmiedel, J. Recker, P. Trkman, W. Mertens, S. Viaene, Ten principles of good business process management. Bus. Process Manag. J. 20(4), 530–548 (2014)
- 190. K.W. Wagner, G. Patzak, Performance Excellence-Der Praxisleitfaden zum effektiven Prozessmanagement (Carl Hanser Verlag GmbH Co KG, KolbergerstraSSe 5, 2015)
- 191. I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, J. Mendling, Untrusted business process monitoring and execution using blockchain, in *Proceedings of the 14th International Conference on Business Process Management (BPM)*. Lecture Notes in Computer Science, vol. 9850 (Springer, Berlin, 2016), pp. 329–347
- 192. A. Weijters, J. Ribeiro, Flexible Heuristics Miner (FHM), in *Proceedings of the International Conference on Computational Intelligence and Data Mining (CIDM)* (IEEE Computer Society, 2011)
- 193. M. Weske, *Business Process Management: Concepts, Languages, Architectures*, 2nd edn. (Springer, Berlin, 2012)
- 194. B. Woliński, S. Bala, Comprehensive business process management at siemens: Implementing business process excellence, in *Business Process Management Cases*, ed. by J. vom Brocke, J. Mendling (Springer, Berlin, 2018), pp. 111–124
- 195. Workflow Patterns Initiative, Workflow Patterns Home Page, 2001. http://www.workflowpatterns.com
- 196. Y. Yang, M. Dumas, L. García-Bañuelos, A. Polyvyanyy, L. Zhang, Generalized aggregate quality of service computation for composite services. J. Syst. Softw. 85(8), 1818–1830 (2012)
- 197. J.M. Zaha, A.P. Barros, M. Dumas, A.H.M. ter Hofstede, Let's Dance: A language for service behavior modeling, in *Proceedings of the OTM Conferences (1)*. Lecture Notes in Computer Science, vol. 4275 (Springer, Berlin, 2006), pp. 145–162
- 198. M. zur Muehlen, D.E. Wisnosky, J. Kindrick, Primitives: design guidelines and architecture for BPMN models, in *Proceedings of the Australasian Conference on Information Systems* (ACIS), 2010

Symbols α-algorithm 432, 436, 437, 451, 467, 471 7FE 306, 307, 311–315 7PMG see Seven Process Modeling Guidelines	escalation 393 history-based 393 organizational 393 random 393 retain familiar 393
Garacinies	role-based 393
	round-robin 393
A	separation of duties 359, 381, 393, 457
ABC see activity-based costing	allocation by offer see allocation
accountability 54, 478	American Productivity and Quality Center
ACM see adaptive case management system	46, 52, 53, 67
active branch 88	AND gateway see gateway
activity 3, 76, 487	application model 37
call 106	application system design 79
compensation 137	application-to-approval 2, 429 appraisal 494
	T
dead 185, 186 decision 80, 86, 91, 97, 126, 138	approval 188
label 77	APQC see American Productivity and Quality Center
multi-instance 119	Apromore 86, 194, 456, 459
mutually exclusive 79	ArchiMate 72
activity-based costing 305, 447	ARIS 37, 85, 115, 194
activity-based modeling 211	arrival rate 266, 270, 274, 276, 282, 286,
actor see process actor	289, 290
ad hoc see sub-process	artifact 93, 211, 325
ad hoc workflow system 345, 382	artifact-centric modeling 211, 339
adaptive case management system 345, 347	as-is 17, 19, 22, 23, 159, 167, 172, 173, 205,
allocation	206, 208, 253, 287, 292, 305, 322,
authorization 393	477
by offer 393	association 96
capability-based 393	compensation 137
case handling 393	association rule 459
deferred 393	ATAMO procedure 305
delegation 393	authorization see allocation
direct 392	

automated process discovery 166, 175, 420, 427, 438, 450	Business Process Model and Notation 18, 45, 75, 115, 117, 381, 382, 411, 479
automated task see task	components 92
	tool 85
n	Business Process Reengineering 319, 323
B	business strategy 35
backoffice 59	Business Value Adding 214–218, 244, 249
balanced scorecard 36, 63, 418, 481, 483	BVA see Business Value Adding
BAM see Business Activity Monitoring	B 171 See Business varue rading
batch 261	
behavioral completeness 432	C
behavioral correctness 187	call center 59
Benchmarking 309	capability area 479
bill-of-material 326	Capability Maturity Model 500
black box see pool	Capability Maturity Model Integration 490,
block structure 187, 189, 272	500
blockchain 368	capability-based allocation see allocation
bottleneck 270, 444	case 162, 166, 222, 262, 273, 286, 317, 329,
BPM Advisory Board 485	346–348, 350, 358, 359, 382, 384,
BPM Center of Excellence 26, 485, 489,	414, 415, 421, 422, 487, 502
491,500	identifier 422, 424, 425, 444, 462, 466
BPM Group see BPM Center of Excellence	case handling see allocation
BPM lifecycle 1, 6, 8, 16, 22–25, 27, 32, 75,	Case Management Model and Notation 371
79, 345, 413, 475–481, 484, 485,	381, 382, 411
491	case management system 345, 347, 382
BPM maturity 475, 477, 479, 490, 491, 498,	case manager 504
500	causal factor 236
assessment 493	chart 253
BPM Maturity Model 478, 479, 492, 499	cause-and-effect diagram 236
BPM program 232, 312, 475–478, 480, 482,	CEO see Chief Executive Officer
483, 487, 489–492, 494, 495, 497	CEP see Complex Event Processing
BPM Program Manager 485	certification 189
BPM Steering Committee 485	CFO see Chief Financial Officer
BPMN see Business Process Model and	
	change management 363 check-in <i>see</i> work item
Notation	
BPMS see Business Process Management	check-out see work item
System	Chief Executive Officer 24, 483, 492
BPTrends 33, 311	Chief Financial Officer 25, 492
branching probability 257, 282	Chief Information Officer 25, 493
Business Activity Monitoring 414	Chief Operations Officer 24, 71, 255, 486
business fault 129	Chief Process and Innovation Officer 25,
business impact 51	485, 492
business model 36	Chief Process Officer 25, 485, 492
Business Model Canvas 320	churn rate 61
business object 4, 50, 93	CIO see Chief Information Officer
business party 4, 97	CMM see Capability Maturity Model
Business Process Management System 15,	CMMI see Capability Maturity Model
263, 341, 343, 344, 371, 476	Integration
architecture 347	CMMN see Case Management Model and
engine 348, 349, 375, 379, 385, 386,	Notation
390, 394, 398, 402	collaboration see diagram
orchestration 347	Colored Petri Nets 296
worklist handler 349, 372, 374, 375, 402,	compensation 136
404	handler 137

completeness 51, 188	Database Management System 345
Complex Event Processing 345	DBMS see Database Management System
compliance 54	dead activity see activity
conceptual see process	deadlock 89, 91, 127–129, 185, 186, 203,
conformance checking 420	371, 441
consistency 51	decision making process 478
contributing factor 236	Decision Model and Notation 139, 371, 394,
control step 216	411
conversation see diagram	table 395
COO see Chief Operations Officer	decision point 4
coordination 356	decomposition 43
core process 41	default flow see flow
cost 17, 29, 36, 59, 60, 255, 271, 303, 308,	deferred allocation see allocation
417, 422, 447	deferred choice see split, XOR, event-based
incidental 60	delegation see allocation
labor 60	Delphi 305
leadeship 481	dependency graph 427, 428
operational 60, 481	Design-led Innovation 320
production 59	deviance mining 458
CPIO see Chief Process and Innovation Officer	Devil's Quadrangle 303, 304, 315–317, 319, 442, 464, 501
CPN Tools 296	diagram
CPO see Chief Process Officer	choreography 157
Critical Path Method 263	collaboration 101
culture 26, 27, 478, 488	conversation 157
customer intimacy 481	DICE 363
customer journey 61	direct allocation see allocation
customer relationship 50	division of labor 9, 10, 268
Customer Relationship Management system	DMN see Decision Model and Notation
342, 396	DMN table see Decision Model and
customer satisfaction 60, 308	Notation
customer value proposition 36	DMS see Document Management System
cycle time 59, 255, 308, 316, 442	document analysis 165
cycle time efficiency 262	Document Management System 343, 347
	domain expert 160
D	
data	\mathbf{E}
association 93, 388	ECM system <i>see</i> Enterprise Content
collection 120	Management system
input 388	EDI see Electronic Data Interchange
object 18, 93–95, 97, 101, 102, 115, 120,	Electronic Data Interchange 219
146, 182, 184, 187, 286, 377–379,	end-to-end process 49
385–388, 403, 404, 407, 409	enhanced process model 421
state 94	Enterprise Application Integration 361
output 388	enterprise architecture 37
store 94, 95, 182, 377	Enterprise Content Management system 344
type 386	Enterprise Resource Planning system 14,
complex 386	342, 372
simple 386	EPCs see Event-driven Process Chains
data mapping 388	equipment 96
data model 37	ERP system see Enterprise Resource
data-flow diagram 18	Planning system error code 388
database 12, 341	error code 388

error rate 255	default 81
escalation see allocation	exception 130
event 3, 76, 388, 394	message 99, 101, 102, 107, 121, 129,
boundary 130	180, 184
catching 124	sequence 19, 76, 80, 92–94, 99, 101,
compensate 137	122, 123, 126, 131, 136, 179, 180,
conditional 138	183–186, 219, 385, 394, 399, 407
end 76, 129	flowchart 18, 305
error 130, 387	flower pattern 442
intermediate 123	footprint matrix 434
interrupting 130	Fordism 368
label 77	functional organization 11
message 102, 123, 390	fuzzy miner 429
non-interrupting 133	•
signal 134, 387, 390	
terminate 129	G
throwing 124	gateway 79, 184
timer 124	AND 82, 86, 164, 174, 180, 193, 272,
event class 422	440
event filter 431	decision 255, 257, 263, 282
event log 166, 414, 415, 422, 463	exclusive 80
filtering 429	inclusive 87
event pair filter 431	OR 87, 88, 184, 190, 193, 259
event-based gateway see split	parallel 82, 257
Event-driven Process Chains 18, 114, 115	XOR 80, 81, 86, 92, 164, 184, 190, 193,
evidence-based discovery 175	272
exception 129, 140, 166, 170, 358, 362, 368,	governance 27, 475, 478, 479, 484
378, 413, 421, 503	group dynamics 307
complex 134	groupware system 345
external 132	
handler 182, 378	**
internal 130	H
unsolicited 132	handoff 29, 50, 177, 179, 180, 195, 214–
exception flow see flow	216, 218–220, 226, 245, 246, 261,
executable <i>see</i> process execution engine <i>see</i> Business Process	293, 334, 355, 356, 381, 420, 444, 446
Management System execution log 273, 282, 351, 358, 365, 448	internal 180
execution rog 275, 282, 551, 558, 505, 448 execution property 385	handoff point see handoff health 56
BPMS-specific 396	Heuristic Process Redesign 307, 315
exponential distribution 274	heuristics miner 438–440
eXtensible Event Stream 422	historic information see information
external service see service	history-based allocation see allocation
external service see service	HR director 25
	HTTP 390
F	human capital 36
facilitator 172–174, 211, 311, 312	
factor 236, 237	
fallacy of programmatic change 364	I
feasibility 57	IDEF3 <i>see</i> Integrated DEFinition for Process
Fishbone diagram 240	Description Capture Method
Five Factor Model 163	idleness 222
flexibility 17, 59, 61, 303, 356	IEEE Task Force on Process Mining 422
flow	implicit termination 84

inductive miner 438, 439, 441, 442, 468 information historic 358 operational 358 Information Technology Infrastructure Library 45, 114 infrastructure model 37 innovation 36 instantiation explicit 377 implicit 377 Integrated DEFinition for Process Description Capture Method 18, 305 inter-arrival time 274, 286 interview-based discovery 168, 170, 175 Ishikawa diagram 240 island automation 357 Issue Tracking system 232, 343 issue-to-resolution 2, 343 IT 479 IT Service Management 343 IT-oriented see process ITIL see Information Technology Infrastructure Library	M/M/c queue 275, 276 maintainability 189 manageability 51 management process 41 Management Team 24 Mannesmann 38 manual task see task master vendor list 31 merging see token message 387 message flow see flow methods 479 middleware 361 model abstraction 78, 104, 174, 426 fully-executable 385 mapping 78, 160, 426 purpose 19, 75, 78, 182, 189, 310, 378, 379 target audience 78 modeling convention 183, 192 naming 77, 189 guideline 183, 192 language 92 theory 78
JavaScript Object Notation 390 join 80, 184, 185	tools 85 monitoring 351
AND 82, 83, 87–89, 91, 126, 129, 269 OR 88, 89, 91, 114 XOR 80, 81, 84, 87–89, 91, 117, 143,	N
259 event-based 127	negative effect 236 NESTT 306, 321, 338 net promoter score 61
JSON see JavaScript Object Notation	Non-Value Adding 214, 215, 217, 218, 223, 244, 249
K Key Performance Indicator 59, 478, 483, 499 KPI see Key Performance Indicator	normal distribution 282 normative process model <i>see</i> process model notation 92 NVA <i>see</i> Non-Value Adding
L lack of synchronization 89, 185, 203 lane 97 Lean 7, 310 Lean Six Sigma 8, 311 learning 189 livelock 185, 186, 203 log delta analysis 459 loop count 394	object <i>see</i> business object observation 166 occupation rate 267 Operating System 356 operational information <i>see</i> information operational manager 161 OR gateway <i>see</i> gateway order-to-cash 1, 5, 25, 266, 341, 415 organization chart 37 organizational allocation <i>see</i> allocation
M/M/1 queue 275, 276	organizational change management 21

organizational design 79	instance 76
organizational perspective 96	attribute 394
	state 76
	inter-organizational 368
P	intra-organizational 368
PAIS see Process-Aware Information System	model
Pareto	business-oriented 371
analysis 232, 233, 235, 252, 253, 305	conceptual 79, 371
chart 233, 235	connectivity 115
passthrough 81	correctness 184, 187
patterns	deployment 348
creation 392	diameter 115
push 393	executable 79, 371
PCF see Process Classification Framework	IT-oriented 79, 371
people 27, 480, 486	
performance	size 115
dashboard 414, 415	structuredness 115, 187
objective 62, 225, 326, 362, 414, 473,	unstructured 272
476, 482	validation 170
target 62	outcome 4, 6, 13, 17, 31
Performance Framework 46	negative 4, 17, 20
performance measure see process	positive 4
performance measure	private 101
performance mining 420, 421	public 101
perspective	scope 132
control-flow 93	value 6, 13, 30
data 93	variable 386
functional 93	process analysis 20, 213, 255
object 93	process analyst 25, 160, 163
resource 96	process architecture 17, 22, 35, 37, 43
Petri nets 305	process automation 21
PICK chart 235	process category 41
PLM system see Product Lifecycle	process checklist 39
Management system	Process Classification Framework 46, 67
PMBOX see Process Management Body of	process discovery 17, 159–163, 175, 177,
Knowledge	254, 273
pool 97	process group 48
black box 101	process identification 17, 35
collapsed 101	process implementation 21
white box 101	process landscape model 42, 43, 48
Positive Deviance 309	Process Management Body of Knowledge
potential owner 392	478
PPM see process performance measurement	process maturity 490
pragmatic quality 189	process methodologist 26
premature victory celebration 364	process mining 415
primary factor 239	process model repository 348
PRINCE2 see Projects in Controlled	process modeler 172
Environments	process modeling tool 348
private process see process	process monitoring 22, 413
Process	process owner 15, 25, 161
maturity 490	process participant 4, 25, 96, 392
process	process performance dimension 59
actor 4, 6, 13, 15, 28, 30	process performance measure 17, 20, 22, 25
customer 6, 13, 30	56, 59, 478, 482

process performance measurement 414	revolutionary 307
process performance metric see process	transactional 306
performance measure	transaformational 306
process portfolio 64	Redesign Orbit 306
process profile 51	reference model 49
process redesign phase 21	repetition block 91
process simulation 279	Representational State Transfer 390
input analysis 282	resistance 364
Process-Aware Information System 15, 19,	resource 96, 98, 99, 102
22, 219, 263, 318, 342, 343	active 96
domain-agnostic 342	class 96, 392
domain-specific 342	classification 354
processing time 60, 226, 261, 262, 264, 266,	consumption 308
268, 269, 271, 275, 276, 280	contention 273
procure-to-pay 2, 249, 342, 431	parameter 392
product 325	passive 96
product and service catalog 37	pool 268, 281
product data model 326, 327	utilization 267, 270, 276, 280
product lifecycle 50, 56, 67, 343	REST see Representational State Transfer
Product Lifecycle Management system 343	RESTful see service
Product-Based Design 325	retain familiar see allocation
production rule 328	rework 222
production workflow system 345, 346	rework probability 260
profitability 54	Robotic Process Automation 221, 360, 361
project management 225	role 457
Projects in Controlled Environments 478	role-based allocation see allocation
public process see process	role-playing 305
pyramid 44	root cause 241
	round-robin allocation see allocation
	RPA see Robotic Process Automation
Q	rule enforcement 359
quality 17, 59, 60, 303	rule task see task
external 60, 481	
internal 61,504	
quality control mechanism 478	S
queue 274	Sarbanes-Oxley Act 359
queueing system 274	SCAMPER 305
queueing theory 273	SCAMPI see Standard CMMI Appraisal
queueing time 60	Method for Process Improvement
quote-to-order 2	scientific management 10
	SCM system see Supply Chain Management
~	system
R	SCOR see Supply Chain Operations
random allocation see allocation	Reference Model
redesign heuristics 316	screen scraping 360
redesign method 297	scribe 172
ambition 306	script task see task
analytical 307 creative 307	secondary factor 239 selection criteria 56
evolutionary 307	semantical correctness 187
inward-looking 307 nature 307	semantics 92 separation of duties <i>see</i> allocation
	1
outward-looking 307 perspective 307	sequence 42, 76 sequence flow <i>see</i> flow
perspective 507	sequence now see now

service 350	structural correctness 184
adapter 396	structured heuristics miner 438, 439, 442,
connector 396	469
external 350	sub-process 102
in-only 389	ad hoc 122, 382
in-out 389	•
	collapsed 104
interface 389	event 135
operation 389	expanded 104
asynchronous 389	global 106
synchronous 389	success factor 478
RESTful 390	supply chain 50
service level agreement 60	Supply Chain Management system
service task see task	343
service time <i>see</i> processing time	Supply Chain Operations Reference Model
Service-Oriented Architecture 345, 362	46, 114
Seven Process Modeling Guidelines 192,	support process 41
193, 210	synchronization 83. see token
shortest queue 393	synchronizing merge 88
Signavio 86, 194, 286, 456, 479	syntactic quality 183
simulation <i>see</i> process simulation, 305	syntactical correctness 187
simulation log 279	syntax 92
Six Sigma 7, 60, 308	system binding 396
Six Thinking Hats 305	system engineer 26
SLA see service level agreement	
smart contract 369	
social network 167, 345, 488, 498	
software development 343	T
software system 96	task 4, 102, 388, 394
soundness 186, 187, 371	automated 372
specialization 43	manual 372
speech act modeling 305	receive 374, 390, 391
split 80, 180, 184	rule 374
AND 82–84, 87, 89, 97, 119	script 374, 391
data-based 126	send 374, 390, 391
event-based 180	service 374, 389
OR 87, 89, 255	user 372, 391
XOR 80, 81, 83, 86–89, 91, 117, 126,	task allocation strategy 392
255, 259, 394	technology fault 129
data-based 379	terminology 49
event-based 126, 127, 140	text annotation 96
split miner 438, 439, 442, 464, 468, 469	The Open Group Architecture Framework
stakeholder 24	37, 72
	theoretical capacity 267
stakeholder analysis 225	Theory of Constraints 308
Standard CMMI Appraisal Method for Process	throughput time see cycle time
Improvement 500	ticketing system 449
standardization 450	time 17, 59, 175
state see process instance	timeline chart 443
step 213	timeout 133
STP see Straight-Through-Processing	timestamp 422
Straight-Through-Processing 356	to-be 21–23, 287, 305, 322, 334, 335, 338,
strategic alignment 26, 27, 475, 477–480	477
strategic goal 37	to-be-executed 384
strategic importance 41, 56	TOC see Theory of Constraints
strategy map 36	100 see Theory of Constraints

TOGAF see The Open Group Architecture Framework token 76 merging 83 Total Quality Management 7 touchpoint 483 Toyota Production System 7, 218 TPS see Toyota Production System trace 426 trace filter 431 transaction processing 347 transactional method see redesign method transformational method see redesign method Transparency 358 tree diagram 241 TRIZ 308 trust 368 U UIMS see User Interface Management System UML Activity Diagrams 18 understandability 189 unit capacity 269 unit load 268 unrealized value 221 User Interface Management System 357 user task see task V VA see Value Adding validation 187	defects 219 inventory 219, 221, 227, 228, 245 motion 219, 220 overprocessing 219, 222, 223, 226, 245 overproduction 219, 223, 226, 245 transportation 219, 220 waiting 219, 221, 227, 245 Web service 15, 114, 341, 352, 361, 372, 385, 390, 391, 398 Web Services Description Language 390 Web technology 385 WfMC see Workflow Management Coalition WfMC reference model see Workflow Management Coalition WfMS see Workflow Management System white box see pool why-why diagram 236 WIP see Work-In-Process work item 279, 348, 421 check-in 349 check-out 349 Work-In-Process 221, 266, 276 Work-in-Process 266 workflow 342 workflow Management Coalition 352 reference model 352 Workflow Management Coalition 352 reference model 352 Workflow Management System 14, 345 worklist 421 workload reduction 355 workshop-based discovery 172, 174–177 WSDL see Web Services Description Language
validity 188 Value Adding 214, 216, 217, 220, 244, 249 value chain 44 value-chain modeling 42 variants analysis 420, 421, 458 verification 187 violation 451 vocabulary 92	X XES see eXtensible Event Stream XML 385, 390 XML Schema 385, 386, 390 XOR gateway see gateway XSD see XML Schema
W waiting time 60, 261, 262, 442	Z Zachman Framework 37,72