Теплопроводность, детерминированное горение

Этап №2

Замбалова Д.В.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчики

- Замбалова Дина Владимировна
- Кузнецова София Вадимовна
- Поляков Глеб Сергеевич
- Скандарова Полина Юрьевна
- Цвелёв Сергей Андреевич
- Шулуужук Айраана Вячеславовна

Цель работы

Проанализировать и сравнить численные алгоритмы, применяемые для моделирования теплопроводности при детерминированном горении, с целью оценки их эффективности, устойчивости и точности при решении задач с высокой нелинейностью и резкими градиентами температуры.

Задание

- 1. Кратко описать математическую модель теплопроводности с источником тепла.
- 2. Выделить основные сложности моделирования: нелинейность, температурная зависимость, фронт горения.
- 3. Рассмотреть три численных алгоритма: МКР, МКЭ и метод подвижных сеток.
- 4. Проанализировать особенности реализации каждого метода.
- 5. Сравнить алгоритмы по точности, эффективности и применимости.
- 6. Дать рекомендации по выбору алгоритма для различных задач.

Уравнение теплопроводности с источником тепла:

$$\rho(T) c(T) \frac{\partial T}{\partial t} = \nabla \cdot (k(T) \nabla T) + Q(T, C)$$

- ho(T) плотность материала, зависящая от температуры
- c(T) удельная теплоемкость, зависящая от температуры
- \bullet T температура
- t время
- k(T) коэффициент теплопроводности, зависящий от температуры
- Q(T,C) источник тепла, моделирующий процесс горения, зависящий от температуры и концентрации реагентов (C).

5/18

Часто представляется в виде аррениусовской зависимости:

$$Q(T,C) = A \cdot C \cdot \exp\left(-\frac{E_a}{RT}\right)$$

где A - предэкспоненциальный фактор, Ea - энергия активации, R - универсальная газовая постоянная.

Наиболее распространенные типы граничных условий:

Дирихле (1-го рода): заданная температура на границе: $T=T_{\rm границы}$. Пример: поддержание постоянной температуры на поверхности.

$$-k(T)\frac{\partial T}{\partial n} = q,$$

Неймана (2-го рода): заданный тепловой поток на границе: где n - нормаль к поверхности, q - плотность теплового потока. Пример: теплоизолированная граница (q=0).

7/18

Робена (3-го рода): смешанное условие, связывающее температуру и тепловой поток:

$$ho(T)\,c(T)rac{\partial T}{\partial t} =
abla\cdot(k(T)
abla T) + A\cdot C\cdot \exp\left(-rac{E_a}{RT}
ight),$$

где h - коэффициент теплоотдачи. Пример: конвективный теплообмен с окружающей средой.

Метод конечных разностей (МКР)

Явная схема. Значение температуры в узле i на новом временном слое n+1 вычисляется непосредственно на основе значений температуры в соседних узлах на предыдущем временном слое n. Для одномерного уравнения теплопроводности можно использовать следующую аппроксимацию:

$$T_i^{n+1} = T_i^n + rac{k\Delta t}{
ho c\Delta x^2} \left(T_{i-1}^n - 2T_i^n + T_{i+1}^n
ight)$$

Критерий КФЛ для явной схемы:

$$\Delta t \leq rac{
ho c \Delta x^2}{2k}$$

Метод конечных разностей (МКР)

Неявная схема. Значение температуры на новом временном слое вычисляется путем решения системы линейных алгебраических уравнений. Например, для одномерного уравнения:

$$-sT_{i-1}^{n+1}+(1+2s)T_i^{n+1}-sT_{i+1}^{n+1}=T_i^n,$$
 где $s=rac{k\Delta t}{
ho c\Delta x^2}$

Метод конечных элементов (МКЭ)

- МКЭ универсальный метод для численного решения уравнений, особенно в сложных геометриях.
- Область разбивается на конечные элементы (треугольники, тетраэдры и др.).
- Внутри каждого элемента температура аппроксимируется базисными функциями.
- Используется вариационная формулировка: вместо прямого решения уравнения минимизируется функционал.
- Результат система линейных уравнений: KU=F, где K- матрица жесткости, U- вектор температур, F- вектор нагрузки.

11/18

Метод конечных элементов (МКЭ)

- Матрица K формируется поэлементно процесс ресурсоемкий.
- Возможна аппроксимация разного порядка: линейная, квадратичная, кубическая.
- Более высокий порядок → выше точность, но и выше вычислительные затраты.
- При моделировании горения важно учитывать температурную зависимость параметров.
- Требуются итерационные методы (например, метод Ньютона-Рафсона) для решения нелинейных систем.

Метод подвижных сеток (МПС)

Ключевым элементом МПС является уравнение для скорости узлов сетки. Существует множество подходов к определению этого уравнения. Вот несколько примеров:

На основе градиента температуры:

$$v_i = -\lambda \left(\frac{\partial T}{\partial x} \right)_i$$

где i - скорость i-го узла сетки, λ - коэффициент адаптации, определяющий интенсивность перемещения сетки, $(\partial T/\partial x)_i$ - градиент температуры в i-м узле сетки.

Метод подвижных сеток (МПС)

На основе кривизны:

$$v_i = -\lambda \kappa_i$$

где κ_i - кривизна изолинии температуры в i-м узле сетки. Этот подход позволяет сгущать узлы вблизи фронта горения, даже если градиент температуры относительно невелик.

На основе ошибки решения: Скорость узлов определяется таким образом, чтобы минимизировать оценку ошибки численного решения.

Метод подвижных сеток (МПС)

Алгоритм перемещения сетки обычно включает несколько этапов:

- Вычисление скорости узлов сетки на основе выбранного критерия.
- Перемещение узлов сетки на небольшое расстояние в соответствии с вычисленной скоростью.
- Проверка качества сетки (например, минимальный угол элемента). Если качество сетки ухудшилось (например, элементы стали слишком вытянутыми), выполняется процедура решеинга перестроения сетки.

Выводы

В заключение, мы рассмотрели три основных алгоритма численного решения задачи теплопроводности при детерминированном горении: метод конечных разностей, метод конечных элементов и метод подвижных сеток.

Выводы

Критерий	MKP	МКЭ	МПС
Простота	Высокая	Средняя	Низкая
реализации			
Точность	Средняя	Высокая	Очень высокая
Вычислительные	Низкие	Средние	Высокие
затраты			
Сложная геометрия	Ограничена	Подходит	Подходит
Адаптация к фронту	Нет	Нет	Да
Устойчивость	Зависит от	Обычно	Требует
	схемы	высокая	особого
			внимания

Источники

Медведев Д. А., Куперштох А. Л., Прууэл Э. Р., Сатонкина Н. П., Карпов Д. И. Моделирование физических процессов и явлений на ПК: Учеб. пособие / Новосибирск: Новосиб. гос. ун-т., 2010. — 101 с.

Спасибо за внимание!