CS111 Homework 3

due Friday, May 7th 11:59 PM

Problem 1.

$$\begin{cases} Q_n = 3Q_{n-1} + 10Q_{n-2} \\ Q_0 = 2 \\ Q_1 = 10 \end{cases}$$

The characteristic equation from the given Q_n is:

$$x^2 = 3x + 10$$

$$x^2 - 3x - 10 = 0$$

$$(x-5)(x+2) = 0$$

Thus, the roots to the characteristic equation are:

$$x = 5$$
 and $x = -2$

From these roots, we know:

$$Q_n = \alpha_1 5^n + \alpha_2 (-2)^n$$

From the given Q_0 and Q_1 values:

$$Q_0 = \alpha_1 5^0 + \alpha_2 (-2)^0 = \alpha_1 + \alpha_2 = 2$$

$$Q_1 = \alpha_1 5^1 + \alpha_2 (-2)^1 = 5\alpha_1 - 2\alpha_2 = 10$$

$$Q_0 = \alpha_1 + \alpha_2 = 2$$

$$Q_1 = 5\alpha_1 - 2\alpha_2 = 10$$

From Q_0 , we know $\alpha_1 = 2 - \alpha_2 \dots (1)$

Plugging (1) into
$$Q_1$$
, we find $5(2 - \alpha_2) - 2\alpha_2 = 10$

$$10 - 5\alpha_2 - 2\alpha_2 = 10$$

$$7\alpha_2 = 0$$

$$\alpha_2 = 0$$

Plugging $\alpha_2 = 0$ into (1), we find $\alpha_1 = 2$.

Plugging α_1 and α_2 into Q_n ...

$$Q_n = 2 * 5^n + 0 * (-2)^n$$

$$Q_n = 2 * 5^n$$

Problem 2.

No two zeroes distance two apart...

In other words, no string of (0 - *number* - 0) can be possible.

Looking at the right-most branch...

When the string ends with 1, and we know that the previous sequence is valid, we get U_{n-1} . This is obvious because there does not exist a zero in this ending string.

If the sequence ends with 0, we have branching options.

We are looking for ending strings that make the previous valid string valid no matter what.

Looking at the left-most branch...

When the sequence ends with 1-0-0, we cannot say U_{n-3} because a valid string before could end with a 0 causing the total string to be invalid.

So we must go down one step to 1-1-0-0, where any valid sequence before that will remain valid when appended, resulting in U_{n-4} .

Using this same logic, looking at the middle branch, we cannot use 1-0 because a valid string beforehand could end with a 0, so we arrive at 1-1-0 being another valid ending to a string that ends with 0, being U_{n-3} .

Adding these three terms together results in U_n .

$$U_n = U_{n-1} + U_{n-3} + U_{n-4}$$

Because the characteristic equation is degree 4, we need 4 initial conditions, and we should start with 0 because that would require the least amount of calculations.

 $U_0 = 1$ because there is one empty string.

 $U_1 = 2$ because for length 1, the string can be "0" or "1".

 $U_2 = 4$ because there are 2^2 possible strings = 4. $U_3 = 6$ because there are 2^3 possible strings, and 2 of them are invalid, 010 and 000. So $2^3 - 2 = 6$

$$\begin{cases} U_n = U_{n-1} + U_{n-3} + U_{n-4} \\ U_0 = 1 \\ U_1 = 2 \\ U_2 = 4 \\ U_3 = 6 \end{cases}$$

Problem 3.

$$\begin{cases} Y_n = 3Y_{n-1} + 9Y_{n-2} + 5Y_{n-3} + 5^n \\ Y_0 = 0 \\ Y_1 = 10 \\ Y_2 = 20 \end{cases}$$

Characteristic equation:

$$x^{3} = 3x^{2} + 9x + 5$$

$$x^{3} - 3x^{2} - 9x - 5 = 0$$

$$(x - 5)(x^{2} + 2x + 1) = 0$$

$$(x - 5)(x + 1)^{2} = 0$$

$$Y'_{n} = \alpha_{1} * 5^{n} + \alpha_{2} * (-1)^{n} + \alpha_{3} * n * (-1)^{n}$$

Because 5 is a root of the characteristic equation, Y_n " is of the form...

$$Y_n'' = c * n * 5^n$$

Plugging into Y_n ...

$$c*n*5^n = 3*c*(n-1)*5^{n-1} + 9*c*(n-2)*5^{n-2} + 5*c*(n-3)*5^{n-3} + 5^n$$
 Plugging $n = 3...$
$$c*3*125 = 3*c*2*25 + 9*c*1*5 + 0 + 125$$

$$C*3*120 = 3*C*2*20 + 9*C*1*0 + 0+12$$

$$375 * c = 150 * c + 45 * c + 125$$

$$180*c=125$$

$$c = \frac{25}{36}$$

$$c = \frac{25}{36}$$

$$Y''_n = \frac{25}{36} * n * 5^n$$

Combining
$$Y'_n$$
 and Y''_n ...
 $Y_n = \alpha_1 * 5^n + \alpha_2 * (-1)^n + \alpha_3 * n * (-1)^n + \frac{25}{36} * n * 5^n$

Plugging in the initial conditions into Y_n ...

Trugging in the initial conditions into
$$T_n$$
...
$$Y_0 = \alpha_1 * 5^0 + \alpha_2 * (-1)^0 + \alpha_3 * 0 * (-1)^0 + \frac{25}{36} * 0 * 5^0 = 0$$

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 = -\alpha_2$$

$$\alpha_{1} = -\alpha_{2}$$

$$Y_{1} = \alpha_{1} * 5^{1} + \alpha_{2} * (-1)^{1} + \alpha_{3} * 1 * (-1)^{1} + \frac{25}{36} * 1 * 5^{1} = 10$$

$$5\alpha_{1} - \alpha_{2} - \alpha_{3} = 10 - \frac{125}{36}$$

$$5\alpha_{1} + \alpha_{1} - \alpha_{3} = 10 - \frac{125}{36}$$

$$6\alpha_{1} - \alpha_{3} = 10 - \frac{125}{36} \dots (1)$$

$$Y_{2} = \alpha_{1} * 5^{2} + \alpha_{2} * (-1)^{2} + \alpha_{3} * 2 * (-1)^{2} + \frac{25}{36} * 2 * 5^{2} = 20$$

$$Y_2 = \alpha_1 * 5^2 + \alpha_2 * (-1)^2 + \alpha_3 * 2 * (-1)^2 + \frac{25}{26} * 2 * 5^2 = 20$$

$$25\alpha_{1} + \alpha_{2} + 2\alpha_{3} = 20 - \frac{1250}{36}$$

$$25\alpha_{1} - \alpha_{1} + 2\alpha_{3} = 20 - \frac{1250}{36}$$

$$24\alpha_{1} + 2\alpha_{3} = 20 - \frac{1250}{36} \dots (2)$$
Multiplying (1) by 2 on both sides...
$$12\alpha_{1} - 2\alpha_{3} = 20 - \frac{250}{36} \dots (3)$$
Adding (3) to (2) results with:
$$36\alpha_{1} = 40 - \frac{1500}{36}$$

$$36\alpha_{1} = -\frac{5}{3}$$

$$\alpha_{1} = -\frac{5}{108}$$
From $\alpha_{1} = -\alpha_{2}\dots$

$$\alpha_{2} = \frac{5}{108}$$
Plugging in α_{1} into (1):
$$6 * (-\frac{5}{108}) - \alpha_{3} = 10 - \frac{125}{36}$$

$$\alpha_{3} = -(10 - \frac{125}{36} + \frac{10}{36})$$

$$\alpha_{3} = -(\frac{360 - 115}{36})$$

$$\alpha_{3} = -\frac{245}{36}$$
Plugging in α_{1} , α_{2} , and α_{3} into $Y_{n}\dots$

$$Y_n = -\frac{5}{108} * 5^n + \frac{5}{108} * (-1)^n - \frac{245}{36} * n * (-1)^n + \frac{25}{36} * n * 5^n$$

Academic integrity declaration.

Anand Mahadevan and Husam Chekfa completed this assignment together, and did not use external websites.