Présentation du projet Airwatcher

Contexte du projet

→ Objectif : permettre au gouvernement de surveiller la qualité de l'air

- → **Spécification** et **conception** du projet
- → Développement d'une partie de l'application :
 - → en respectant un cahier des charges
 - → en utilisant un dataset existant

Use case

Des exigences fonctionnelles...

Visualiser la moyenne de qualité de l'air dans une zone donnée durant une période donnée → Inputs : latitude, longitude, rayon, date de début et de fin

→ Source : base de données des capteurs et mesures

→ Output : indice de qualité de l'air

→ Inputs : l'ID du capteur, date de début et de fin

→ Source : base de données des mesures

→ Output : classement des capteurs par ordre de similarité

Classer les capteurs par ordre de similarité durant une période donnée

Des exigences fonctionnelles...

Indice ATMO ^{25, 23}	O ₃	SO ₂	NO ₂ -	PM ₁₀	Niveau
1	0 à 29	0 à 39	0 à 29	0 à 6	Très bon
2	30 à 54	40 à 79	30 à 54	7 à 13	Très bon
3	55 à 79	80 à 119	55 à 84	14 à 20	Bon
4	80 à 104	120 à 159	85 à 109	21 à 27	Bon
5	105 à 129	160 à 199	110 à 134	28 à 34	Moyen
6	130 à 149	200 à 249	135 à 164	35 à 41	Médiocre
7	150 à 179	250 à 299	165 à 199	42 à 49	Médiocre
8	180 à 209	300 à 399	200 à 274	50 à 64	Mauvais
9	210 à 239	400 à 499	275 à 399	65 à 79	Mauvais
10	≥ 240	≥ 500	≥ 400	≥ 80	Très mauvais

→ Source : Wikipedia

... et non-fonctionnelles

Fiabilité et sécurité des données

Algorithmes efficaces et rapides (quelques ms)

Interface intuitive et compréhensible

Efficacité dans le stockage et l'accès aux données

Risques de sécurité

Atout	Vulnérabilité	Attaque	Risque	Impact	Contre-mesure
Stockage des données (mesures des capteurs, données utilisateur,)	> Stockage sans chiffrement	> Déchiffrement et obtention des données stockées	> Accès aux mesures de qualité de l'air > Corruption des données (insertion de fausses données,) > Accès aux données des utilisateurs > Corruption des points obtenus par l'utilisateur > Accès à la localisation des capteurs, privés ou publics	> Elevé > Elevé > Elevé > Moyen > Elevé	> Chiffrement du stockage
Transmission des données (mesures des capteurs, données utilisateur)	> Transmission sans chiffrement	> Interception de la communication	 Accès aux mesures de qualité de l'air Accès aux données des utilisateurs Accès à la localisation des capteurs, privés ou publics 	> Elevé > Elevé > Elevé	> Chiffrement de la tranmission
Consultation des données sur l'application <i>AirWatcher</i>	> Authentification faible (nom d'utilisateur, mot de passe,)	> Authentification devinée par l'attaquant	> Accès aux mesures de qualité de l'air > Corruption des données (insertion de fausses données,) > Accès aux données des utilisateurs > Corruption des points obtenus par l'utilisateur > Accès à la localisation des capteurs, privés ou publics	> Elevé > Elevé > Elevé > Moyen > Elevé	> Vérifications de la robustesse de l'authentification (mot de passe)

Conception: architecture

→ La couche d'interface utilisateur qui devra afficher les résultats à la console et gérer les entrées

→ La couche d'authentification qui décidera quelles fonctionnalités montrer à l'utilisateur courant

- → La couche de traitement de données qui sera chargé de faire les calculs demandés
- → La couche de données qui permettra de stocker efficacement les données

Conception: architecture

Avantages	 → Modularité: Chaque couche peut-être isolée et testée indépendamment. → Abstraction: Interface simplifiée et cohérente pour les couches supérieures.
Inconvénients	 → Maintenance: Les couches rendent une application plus difficile à maintenir. Chaque changement nécessite une analyse. → Performance: Surcharge liée à la communication entre couches supérieures et inférieures.

- © CalculQualiteAirZone(double latitude, double longitude, double radius, time_t start, time_t end): int
- CalculSimilarite(string SensorID, time_t start, time_t end): vector<Sensor*>
- CalculimpactNettoyeur(string CleanerID): double
- CalculFiabilite(string SensorID, double rayon): multimap<double, Value*>
 CalculFiabiliteCapteur(string SensorID, double rayon): double
- CalculDistance(double latitude1, double latitude2, double longitude1, double longitude2): double

Conception : scénarios principaux

- → 3 scénarios principaux
 - → Calcul de la qualité de l'air dans une zone
 - → Récupération des capteurs similaires
 - → Vérification de l'impact des nettoyeurs (non développé)

Scénario 1 : calcul de qualité de l'air dans une zone

→ Input:

Zone circulaire (centre + rayon), période de temps (dates de début et de fin)

→ Output:

Indice ATMO correspondant (Entier)

- → Calcul:
- 1) Moyenne des mesures de tous les capteurs de la zone
 - 2) Tableau des indices ATMO

Scénario 1 : calcul de qualité de l'air dans une zone

Scénario 1 : calcul de qualité de l'air dans une zone

Scénario 2 : classement des capteurs similaires

→ Input:

Capteur (SensorID), période de temps (dates de début et de fin)

→ Output:

Classement des capteurs similaires (Multimap <double, Sensor*>)

- → Calcul:
- 1) Pour le capteur de référence : moyenne des mesures
 - 2) Pour chaque capteur : moyenne des mesures
 - 3) Remplissage Multimap avec calcul de norme

Scénario 2 : classement des capteurs similaires

Scénario 2 : classement des capteurs similaires

Scénario 3 : quantification impact nettoyeur

→ Input:

Nettoyeur (CleanerID)

→ Output:

Quantification impact nettoyeur (100m, 500m, 1km, 5km, 10km)

→ vector <MeasurementsValue*>

- → Calcul:
 - 1) Sur la période de 2j avant l'installation : moyenne des mesures
 - 2) Sur la période de 2j avant désinstallation : moyenne des mesures
 - 3) Différence des mesures, pour les différents rayons considérés

Scénario 3 : quantification impact nettoyeur

Scénario 3 : quantification impact nettoyeur

Live demo!

