MACHINE LEARNING

LAB10 SVM

贾艳红 Jana

Email:jiayh@mail.sustech.edu.cn

➤ Intro. to Linear separability

> Intro. to Support Vector Machine (svm) classifier

Binary Classification

Given training data (\mathbf{x}_i, y_i) for i = 1...N, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear separability

linearly separable

not linearly separable

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- in 2D the discriminant is a line
- W is the normal to the line, and b the bias
- W is known as the weight vector

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- in 3D the discriminant is a plane, and in nD it is a hyperplane
- For a linear classifier, the training data is used to learn w and then discarded
- Only w is needed for classifying new data

What is the best w?

Linear classifier

svm

SVM – sketch derivation

- Since $\mathbf{w}^{\top}\mathbf{x} + b = 0$ and $c(\mathbf{w}^{\top}\mathbf{x} + b) = 0$ define the same plane, we have the freedom to choose the normalization of \mathbf{w}
- Choose normalization such that $\mathbf{w}^{\top}\mathbf{x}_{+}+b=+1$ and $\mathbf{w}^{\top}\mathbf{x}_{-}+b=-1$ for the positive and negative support vectors respectively

SVM – sketch derivation

SVM are also called max-Margin Classifer

$$w^{T}x_{1} + b = 1$$

$$w^{T}x_{2} + b = -1$$

$$(w^{T}x_{1} + b) - (w^{T}x_{2} + b) = 2$$

$$w^{T}(x_{1} - x_{2}) = 2$$

$$w^{T}(x_{1} - x_{2}) = ||w||_{2}||x_{1} - x_{2}||_{2}cos\theta = 2$$

$$||x_{1} - x_{2}||_{2}cos\theta = \frac{2}{||w||_{2}}$$

$$d_{1} = d_{2} = \frac{||x_{1} - x_{2}||_{2}cos\theta}{2} = \frac{\frac{2}{||w||_{2}}}{2} = \frac{1}{||w||_{2}}$$

$$d_{1} + d_{2} = \frac{2}{||w||_{2}}$$

SVM – Optimization

Learning the SVM can be formulated as an optimization:

$$\max_{w,b} \frac{2}{\|w\|_{2}}$$

$$s.t. y^{(i)} (w^{T} * x^{(i)} + b) \ge 1, i = 1, 2, ..., n$$

Or equivalently

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x^{(i)}_{,} + b) \ge 1, i = 1, \dots, n$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

The Optimization Problem Solution

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x_{\star}^{(i)} + b) \ge 1, \quad i = 1, \dots, n$

> The solution involves constructing a *dual problem* where a *Lagrange multiplier* α_i is associated with every constraint in the primary problem:

Find $\alpha_1...\alpha_N$ such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x_i}^T \mathbf{x_i}$$
 is maximized and

(1)
$$\sum \alpha_i y_i = 0$$

(2)
$$\alpha_i \ge 0$$
 for all α_i

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w}^T \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

- \triangleright Each non-zero α_i indicates that corresponding $\mathbf{x_i}$ is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^\mathsf{T} \mathbf{x} + b$$

Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_i between all pairs of training points.

Linear separability again: What is the best w?

•the points can be linearly separated but there is a very narrow margin

•but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Introduce "slack" variables

"Soft" margin solution

The optimization problem becomes

$$\min_{\mathbf{w},b,\xi \geq 0} \ \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i} \xi_{i}$$
s.t. $y_{i}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \quad i = 1, \dots, n$

$$\xi_{i} \geq 0$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin
- This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

"Soft" margin solution

The optimization problem becomes

$$\min_{\mathbf{w},b,\xi \geq 0} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i} \xi_{i}$$
s.t. $y_{i}(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \quad i = 1, ..., n$

$$\xi_{i} \geq 0$$

The dual problem for soft margin classification:

Find $\alpha_1 ... \alpha_N$ such that

$$\mathbf{Q}(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j$$
 is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i

"Soft" margin solution

Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \xi_k) - \mathbf{w^T} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_{k'}$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

What Functions are Kernels?

• For some functions $K(x_i,x_j)$ checking that

$$K(x_i,x_j) = \varphi(x_i)^T \varphi(x_j)$$
 can be cumbersome.

Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

Examples of Kernel Functions

- Linear: $K(\mathbf{x_i}, \mathbf{x_i}) = \mathbf{x_i}^T \mathbf{x_i}$
- Polynomial of power $p: K(\mathbf{x_i}, \mathbf{x_i}) = (1 + \mathbf{x_i}^\mathsf{T} \mathbf{x_i})^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

Sigmoid: $K(\mathbf{x_i}, \mathbf{x_i}) = \tanh(\beta_0 \mathbf{x_i}^\mathsf{T} \mathbf{x_i} + \beta_1)$

Non-linear SVMs Mathematically

Dual problem formulation:

Find $\alpha_1...\alpha_N$ such that

 $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i K(x_i, x_i)$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b$$

Optimization techniques for finding α_i 's remain the same!

Thanks

贾艳红 Jana Fmail:jiayh@mail.sust

Email:jiayh@mail.sustech.edu.cn

