Bi-dimensional

EchoNet-Dynamic Dataset

Introduction

The dataset contains 10,030 apical-4-chamber echocardiography videos.

Each video was cropped and masked to remove text and information outside of the scanning sector. The resulting images were then downsampled by cubic interpolation into standardized **112x112** pixel videos.

Each study is linked to clinical measurements and calculations obtained by a registered sonographer and verified by a level 3 echocardiographer in the standard clinical workflow.

The **left ventricle** is traced at the endocardial border at two separate time points representing end-systole and end-diastole.

We chose to extract the annotated frames and perform image segmentation.

Dataset Videos Example

Tracing the Endocardial Border

Preprocessing: Raw Data Example

Preprocessing: Enhancing Frame

Denoising

- used 5 frames around the masked frame
- cv.fastNlMeansDenoisingMulti(): works with image sequence captured in short period of time (grayscale images).
- window search=35, template size=7, h=4

Histogram Equalization

We went from images whose pixel values are confined to low values, to images with a more balanced distribution. The final result is an image with higher contrast.

• clip limit=2, default tile size=8

Preprocessing: Binary Mask

Preprocessing: Steps

Model: U-Net

Architecture

Configuration

• Loss BCE with Logits Loss

• Optimizer Adam

• LR 1e-4

• LR Scheduler Step 10, Gamma 0.1

• Batch Size 32

• Epochs 50

• Early Stopping Patience 3 on Val Loss

Metrics

- Intersection over Union (IoU)
- Dice score

Model: Using all Data

We used the same configuration as before, changing only the convolutional blocks features.

Model	Features	Num Parameters	Epochs	Dice Score (Train - Val)	loU Score (Train - Val)
base	64 - 128 - 256 - 512	31,036,481	28	0.9257 0.92 11	0.8617 0.85 38
exp1	32 - 64 - 128 - 256	7,762,465	34	0.9245 0.92 07	0.8597 0.85 32
exp2	16 - 32 - 64 - 128	1,942,289	37	0.9201 0.91 78	0.8522 0.84 82
exp3	8 - 16 - 32 - 64	486,409	33	0.9125 0.91 07	0.8392 0.83 61
exp4	4 - 8 - 16 - 32	122,021	41	0.8965 0.89 67	0.8127 0.81 30
exp5	2 - 4 - 8 - 16	30,715	33	0.8833 0.88 60	0.7912 0.79 56

Model: Using 50 Samples

We used the same configuration, changing only batch size and the convolutional blocks features.

Model	Features	Num Parameters	Epochs	Dice Score (Train - Val)	loU Score (Train - Val)
dbase	64 - 128 - 256 - 512	31,036,481	22	0.8636 0.82 95	0.7613 0.71 05
dexp1	32 - 64 - 128 - 256	7,762,465	26	0.8765 0.75 82	0.7808 0.61 09
dexp2	16 - 32 - 64 - 128	1,942,289	22	0.8245 0.73 00	0.7031 0.57 57
dexp3	8 - 16 - 32 - 64	486,409	24	0.7823 0.74 91	0.6440 0.59 93
dexp4	4 - 8 - 16 - 32	122,021	23	0.0964 0.1514	0.0508 0.0819
dexp5	2 - 4 - 8 - 16	30,715	23	0 0	0 0

Results: Predictions Comparison

