

Netzwerke

Kommunikation in Netzen

Dateisysteme im Netz

Arbeitsmodelle im Netz

Dienste im Netz

Dr.-Ing. Arno Bücken

triebssysteme: Netzwer

F-11- 2

Netzwerk-Nutzen

electronic mail

Kommunikation: Terminabsprachen, Projektkoordination, Mitteilungen, ...

file sharing

keine multiplen Kopien: Dateikonsistenz, Speichererparnis

device sharing

bessere Druckerauslastung, lohnende Anschaffung von Spezialhardware (Farblaserdrucker, high-speed-scanner,...)

processor sharing

Zeitersparnis durch bessere Prozessorauslastung bei Lastverteilung und /oder Kostenersparnis durch geringere Investitionen

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwei

Folie 3

Verteilte Betriebssysteme

- Verteiltes System: Aufteilung von Funktionen in einem Rechnernetz, wobei BS auf jedem Rechner ex.
- Verteiltes <u>Betriebs</u>system: Jede BS-Funktion ex. nur <u>einmal</u> im Netz

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzweri

MACH- Betriebssystemkern

Mikrokern

- ♦ Vorteile: minimaler Kern, alle Funktionen modularisiert austauschbar
- ♦ Nachteile: Kommunikationsdauer zwischen Managern

Dr.-Ing. Arno Bücken Notzevvorus dien Betriebssysteme: Netzwerk Folie 5

Verteilte Betriebssysteme

Vorteile

- Flexibilität inkrementelle Erweiterbarkeit um neue Dienste
- Transparenz durch ortsunabhängige Dienste
- Leistungssteigerung bei Lastverteilung
- Fehlertoleranz bei multiplen, gleichen Diensten

Nachteile

- Leistungseinbuße durch Kommunikationsverzögerung
- Keine Fehlertoleranz wenn Funktion nur einmal vorhanden
- Synchronisation nötig bei Aktualisierung verteilter Daten

Fazit

Alle BS sind Mischsysteme aus netzbasierten & lokalen BS-Funktionen; es ex. kein "reines" System

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 6

Netzwerke: Grundbegriffe

Dr.-Ing. Arno Bücken Netzwerkdienste

triebssysteme: Netzwer

Folie 3

Netzwerkschichten OSI-ISO

- Schichten virtueller Maschinen
- End-to-End Verbindung: portable Software

Vorteil Systematische, portable Einteilung
Nachteil zu starr und damit zu langsam
Lösung Zusammenfassung von Schichten

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwer

-1:- 0

Netzwerkschichten: OSI-ISO

- Layer 7 : Anwendungsschicht High-level Programme: FTP, Grafik, electronic mail, ...
- Layer 6 : Präsentationsebene Datenformatierung, Kodierung, Gruppierung (Records, Verschlüsselung,)
- Layer 5 : Sitzungsebene open/close-Semantik: Sender, Empfänger, high-level-Fehlerbehandlung, logon-passwords, Daten/Kontrollunterscheidung,...
- Layer 4: Transportschicht
 Umwandlung in Datenpakete, Reihenfolge der Pakete, usw. Bei TCP (Transmission Control Protocol): Fehlertoleranzgrad TP0-4 festlegen
- Layer 3: Netzwerkschicht Router, Bridges Fragen der Netztopologie: Übertragungsweg, Umleitung (routing), Netzstatus, Grenzen, Auslastung, usw. Typisch: Internet Protocol IP
- Layer 2: Datenverbindung Layer2-Switch Datenpakete → Unterteilung in log. Signalframes, Wiederholung bei NO-ACK. Aber: Frame-Reihenfolge ist unkontrolliert. Z.B.: Ethernet
- Layer 1 : physikalische Signale Bits→Impulse, Freq. z.B.100BaseT
 Repeater, Hub

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Folie 9

Netzwerkschichten: Datenpakete

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwer

Kommunikationsschichten: Unix

- Stream-System für Protokollschichten
- Schicht = Treiber, leicht austauschbar

H AACHEN JNIVERSITY OF APPLIED SCIENCES

7	Anwendun	g
7	Anwendun	٤

6 Präsentation

named pipes, rlogin, ...
XDS

BS-Schnittstelle: sockets
ports, IP Adresse

5 Sitzung

4 Transport

3 Netzwerk

2 Datenverbindung

1 Phys. Verbindung

TCP/IP

Network Access Layer

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Folie 11

Kommunikationsschichten: Windows NT

- Kompatibilität zu bestehenden Protokollen SMB (server message block)
 NetBIOS (network basic input output system)
 - 7 Anwendung
 - 6 Präsentation
 - 5 Sitzung
 - 4 Transport
 - 3 Netzwerk
 - 2 Datenverbindung NDIS Protokoll
 - 1 Phys. Verbindung

files, named pipes, mail slots					
Subsysteme					
Redirector					
NetBIOS		NBT	Windows- Sockets		
Net BEUI	IPX/ SPX	TCP/IP			
NDIS-Treiber					

Network Access Layer

Dr. Ing. Arno Diickon Metawarkdianeta

Betriebssysteme: Netzwerl

F-8- 12

Virtual Private Networks VPN

Probleme

- Geheimhaltung von Daten (Sprache, Dokumente, email)
- Unterschiedl. Grösse der Datenpakete in gekoppelten Netzen
- Unterschiedl. Art von Transportprotokollen

Lösung

Verschlüsselung der Kommunikation der Anwenderebene

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 13

Virtual Private Networks VPN

End-to-End-Protokoll: VPN durch Verschlüsselung

7

Technik VolP, Video

- Anforderung: Viele Sprach/Bildsamples
- Lösung: Neues Paketmanagement im Schichtenmodell

- 6 Präsentation
- 5 Sitzung
- 4 Transport
- 3 Netzwerk
- 2 Datenverbindung
- 1 Phys. Verbindung

Overhead 40Byte/Paket: Header IPv4:20 Byte, UDP:12 Byte, RTP: 8 Byte

Zusammenfassung mehrerer samples zu einem Paket!

Dr.-Ing. Arno Bücken Netzwerkdienste

triebssysteme: Netzwerl

Folie 15

VoIP Probleme

Anpassung der Parameter nötig gegen:

- Echos :Paketwiederholung auf mehreren Pfaden
- Abhacken, Aussetzer der Sprache : verlorene Pakete
- Kompressionsverzerrung : 1-Weg statt 2-Weg
 Kommunikation (Wechselkanal Sprecher-Zuhörer)

UNIVERSITY OF APPLIED SCIENCES

Dr.-Ing. Arno Bücken

triebssysteme: Netzwer

F-E- 16

Netzwerke

Kommunikation in Netzen

Dateisysteme im Netz Arbeitsmodelle im Netz Dienste im Netz

Dr.-Ing. Arno Bücken Betriebssysteme: Netzwerk

IP-Adresse

Namensgebung im Internet

- Eindeutige IP-Adresse: z.B. "141.2.15.25" IPv4: 32 Bits, notiert in 4 Dezimalzahlen je 0..254 (1Byte), zu wenig Adressen (nur 65535) => IPv6: 128Bit
- Name: data.buecken.name server.LocalNet.domain.country Zuordnung IP-Nummer←→Name wird auf speziellen Rechner gehalten (domain name service DNS)

Vergabe und Zuordnung der IP-Adresse durch zentrale Instanzen

Beispiele CIDR = Classless Inter-Domain Routing

127.0.0.0/8 lokaler Computer loopback 10.0.0.0/24 private Netzwerke (RFC 1918)

172.16.0.0/16 - 172.31.0.0/16

192.168.0.0/16

Automat. Konfiguration: Dynamic Host Configuration Protocol DHCP

169.254.0.0/16 privates, link-local Netz (APIPA)

IP-Adresse

Internetnamen: Subnetze

Problem: hoher zentraler Verwaltungsaufwand bei zu vielen Netzen

Lösung: Unterteilung der Rechneradresse in (Subnetz, Rechner),

dezentrale Verwaltung

dynamische Aufteilung durch Bitmaske (Subnetzmaske)

Adressierung (Routingentscheidung) der Subnetze durch die Maske:

? (Adresse **AND** Maske) =? Subnetznummer

JA : Zielrechner ist lokal im SubnetzNEIN : Routing-Rechner ansprechen

Beispiel 129.206.218.160 /24 *CIDR-Notation*

 Rechner 160
 129.206.218.160
 1000.0001.1100.1110.1101.1010.1010.0000

 Maske
 255.255.255.0
 1111.1111.1111.1111.1111.1111.0000.0000

 im Subnetz
 129.206.218.0
 1000.0001.1100.1110.1101.101.00000.0000

Also: Festlegung des Routing durch Angabe (Subnetznummer, Maske)

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwerk

Folie 19

Netznamen

Namen im regionalen Netz wide area network WAN

Problem

Integration von Diensten mehrerer Domänen, konsistente, zeitveränderliche Ressourcentabelle – WIE?

Lösung CCITT X.500 (1988)

DAP Directory Access Protocol Dateizugriff

DSP Directory Service Protocol Server-Server Kommunikation

DISP Directory Information Shadowing Protocol

LDAP Lightweight DAP vereinf. DAP-Version auf TCP/IP

Beispiel Windows NT

ADS Active Directory Service nutzt LDAP

- Ressourcen sind Blätter im Pfadbaum <DomänenId>://<Pfad>
- "Aktive Objekte": Jede Änderung im Verzeichnis wird dem Knoten darüber mitgeteilt (z.B. Druckerstatus)
- Nur die letzte Änderung an einem Objekt bleibt erhalten

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Dateinamen: Windows NT Namensraum

Wiederholung: Symbolic link parsing-Methode
Beispiel Lese Datei A:\Texte\bs_files.doc

Dateimanager Namensraum

Objekt manager: A:\Texte\bs_files.doc → \Device\Floppy0\Texte\bs_files.doc

Datei manager: Lese Texte\bs_files.doc

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Netzkommunikation

Beispiel Windows NT Namensraum im lokalen Netz

Symbolic link

parse-Methode der Treiber (MS Redirector, Novell NetWare File System) führt sum Netzverbindungsaufbau.

Beispiel: Neuer "Laufwerks"buchstabe v: für Netzverbindung + Dateiname führt zu Umleitung "V:\public\text.doc"

Universal Naming Convention UNC

Beispiel \\ textserv\public\text.doc

- → \Device\NetWareFileSystem \textserv\public\text.doc

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwer

Folie 23

Netzkommunikation: Ports

• Konzept Punkt-zu-Punkt Kommunikation ("Kommunikationspunkte")

Beispiel TCP/IP: well known port numbers

Dienst	Portnummer	Protokoll
HTTP	80	TCP
FTP	21	TCP
SMTP	25	TCP
rlogin	513	TCP
rsh	514	TCP
portmap	111	TCP
rwhod	513	UDP
portmap	111	UDP

Unix: /etc/services
Windows NT:

\system32\drivers \etc\services

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

olie 24

Netzkommunikation: Ports

Nachrichtenbasierte Punkt-zu-Punkt Kommunikation

(**Protokoll**, RechnerAdresse von **A**, Prozeßld von **A**, RechnerAdresse von **B**, Prozeßld von **B**)

Beispiel UNIX Transport Layer Interface TLI X/Open: Extended Transport Interface XTI

Transportendpunkte (Synchron/Asynchron)

Problem: Zwischenschicht transparent, ohne Beeinflussung

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 25

Netzkommunikation: Sockets

 Verbindungsorientierte Punkt-zu-Punkt Kommunikation

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwer

Netzkommunikation: Named Pipes

Globales Konzept: Named pipe ("Netzwerk/Pfadname")

=> LAN-Interprozeß-Kommunikation

Unix

Named pipe = special device ⇒ nur IPC auf selbem Rechner, nicht NFS Named pipe = SystemV: STREAM socket pair() / bind()

Windows NT

CreateNamedPipe() : Objekt im globalen Namensraum, auch NetzPfad IPC = ReadFile() / WriteFile()

UNC-Name = "\\ComputerName\PIPE\PipeName"

Lokale pipe: "\\ .\PIPE\PipeName"

Kommunikation zu Unix möglich, wenn LAN-Manager für Unix LM/U installiert.

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwe

Folie 27

Netzkommunikation: Mailbox

 Konzept: Briefkasten ex. für Sender und Empfänger Multicast & Broadcast möglich

AACHEN AIVERSITY OF APPLI

 Probleme: keine garantierte Reihenfolge, kein garantierter Empfang

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwerk

olie 28

Netzkommunikation: Mailbox

Beispiel Windows NT mail slots

Briefkasten = mail slot, erzeugt mit CreateMailslot (MailBoxName)

Senden: CreateFile (MailSlotName) - WriteFile () - CloseFile () mit MailSlotName = "\\ComputerName\mailslot\MailBoxName" (UNC)

⇒ lokale IPC bei ComputerName= "."

bei ComputerName= ,*" ⇒ Broadcast an alle angeschlossenen Rechner

bei ComputerName= "DomainName" ⇒ Broadcast an alle Rechner der Domäne

Empfänger sind jeweils alle Briefkästen mit dem angegebenen Namen, falls ex.

Einschränkungen:

Nachrichtenlänge bei NetBEUI: 64kB bei Punkt-zu-Punkt, 400Byte bei broadcast Höheres Protokoll erforderlich für Reihenfolge&Empfang etc., da UDP.

Dr.-Ing. Arno Bücken

Netzwerkdienste

Betriebssysteme: Netzwerk

Folie 29

Netzkommunikation: RPC

Konzept: Prozedur-Fernaufruf

RPC Remote Procedure Calls Remote Method Invocation RMI Java! Remote Function Call **RFC**

Form: wie normaler Prozedur/Methodenaufruf, Ausführung durch Netzwerkdienst & Transport bleiben verborgen (Client-Server Standardmechanismus!)

Syntaxformen

Wetter=7

 $ComputeWetter(heute) \rightarrow RPC(7, "heute")$ Stub-Procedure:

StdProc+Arg. RPC(7, "heute")

Dr.-Ing. Arno Bücken Netz

Netzkommunikation: RPC

Dr.-Ing. Arno Bücken Netzwerkdienste

riebssysteme: Netzwe

Folie 31

Netzkommunikation: RPC

Transport der Daten

Problem: Hardwareformat von Zahlen

RPC-Argumente sollten maschinenunabhängig sein!

Big endian
Motorola 680X0, IBM 370

Little endian Intel 80X86, VAX, NS32000

Transport: Umkehrung der Byte-Reihenfolge

Lösung: data marshaling, z.B. mit XML, Java Serialisierung, ... auch für compiler data alignment (Adreßgrenzen bei records, Wortadressierung,...)

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwei

olie 32

Netzkommunikation: RPC

Beispiel Unix

- Spezielle C-Bibliotheken /lib/libc.a; SystemV: /usr/lib/librpc.a
- RPC über NFS
- Schichtenmodell RPC/XDR external data representation

RPClibrary

RPC bei DCE: Compiler für spezielle Interface Definition Language IDL. RPC durch stub-Aufrufe und Laufzeitbibliothek für Transport

Dr.-Ing. Arno Bücken Netzwerkdienste

Folie 33

Netzkommunikation: RPC

Beispiel Windows NT

- Verbindungslose RPC: anonymer Service (asynchron)
- Verbindungsorientierte RPC: bestimmte Prozeduren vom Server (synchis.)
- Network Data Representation (NDR)-Format
- Programmierung durch Microsoft IDL-Compiler MIDL
- Protokoll-Wahl durch Namensnotation: z.B. "ncacn_ip_tcp: MyServer[2004]" = TCP/IP-Protokoll zu MyServer, port 2004

session layer transport layer

network layer

Dr.-Ing. Arno Bücken Netzwerkd

Netzwerke

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Kommunikation in Netzen

Dateisysteme im Netz

Arbeitsmodelle im Netz

Dienste im Netz

Dr.-Ing. Arno Bücken Naturnalistica Betriebssysteme: Netzwerk Folie 35

Synchronisationsstrategien

Situation: Datei in A gegenüber Datei in B

• Weil existiert in A, aber nicht in B existiert in B, aber nicht in

Konfliktfall: Nach letztem Sync

Datei in A geändert und in B

ist neuer in A

A → B kopieren

ist älter in A

B → A kopieren

Dr.-Ing. Arno Bücken Netzwerkdienste

triebssysteme: Netzwer

Folie 37

Synchronisationsstrategien

Situation: Ordner in A gegenüber Ordner in B

- existiert in beiden
 - Dateien darin synchronisieren
- existiert in A, aber nicht in B
 - neuer umbenannt: B → A umbenennen
 - älter umbenannt: A → B umbenennen
 - neu erstellt: A → B kopieren mit Inhalt
 - in B neu gelöscht: auch in A löschen mit Inhalt
- existiert nicht in A, aber in B
 - analog behandeln, s.o.

Problem: Versionsgeschichte (z.B. Löschinformation) ist nicht vorhanden

→ Journaling Filesystem ist nötig!

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

E-11- 20

Zugriffssemantiken

z.B. gemeinsames Erstellen eines Reports

Wer darf wann schreiben?

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Folie 39

Dateisysteme im Netz

Zugriffssemantiken

- Read Only File
 Problemlos, da alle Kopien aktuell sind, unabhängig von der Pufferung
- Operationssemantik race conditions
 Alle Änderungen werden sofort umgesetzt; die zeitlich nächste Operation bemerkt die Folgen der vorigen
- Sitzungssemantik race conditions
 Alle Änderungen werden nur auf einer Kopie ausgeführt.

 Am Ende der Sitzung wird das Original überschrieben.
- Transaktionssemantik
 Atomare Transaktion: Während der Sitzung ist die Datei gesperrt.

Problem: Zugriffssemantik hängt von der *Implementierung* ab (Hardware, Existenz von Puffern, Netzprotokollen, ...)

Beispiel *Operationssemantik*: Reihenfolge der Operationen = Inhalt hängt von der Kommunikationsgeschwindigkeit (Leitungsgeschwindigkeit, Netzstruktur, CPUTakt, BS-Version, Lastverteilung, ...) ab.

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwerk

-1:- 40

Zustandsbehaftete vs. zustandslose Datei-Server

= verbindungsorientierte Kommunikation vs. verbindungslose Kommunikation

Server-Dienst/Verbindung eröffnen

- Datenstrukturen f
 ür Zugriff aufsetzen (Kennungen etc.)
- Zugriffsrechte prüfen
- Puffer einrichten

Server-Dienst/Verbindung nutzen

- Mit Dateikennung lesen/schreiben
- Auftragskopien werden über gleiche Sequenznummern erkannt

Server-Dienst/Verbindung schließen

- Puffer leeren + deallozieren
- Datenstrukturen abbauen

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwer

Folie 41

Dateisysteme im Netz

Zustandsbehaftete vs. zustandslose Server

Vorteile

- Schneller Zugriff: keine Adreßinfo, keine Berechtigungsprüfung
- Effizienter Cache: Strategien möglich (read ahead etc.)
- Vermeiden von Auftragskopien
 Nummerierung der Aufträge
- Dateisperrung möglich (Exklusiver, atomarer Zugriff)
 Datenbanken!

Nachteile

- Client crash: kein Löschen der Strukturen+Puffer
- Server crash: kein Löschen der Strukturen+Puffer, Dateizustand ungewiß
- Begrenzte, gleichzeitig benutzte Dateienzahl: begrenzte Speicherbelegung

Fazit: Server(Verbindung) **mit** Zustand kann Dateien reservieren, Auftragskopien vermeiden.

Server(Verbindung) **ohne** Zustand ist fehlertoleranter, kann mehr Benutzer gleichzeitig verwalten.

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

E-8- 40

Frage: Sind Verklemmungen möglich?

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwe

Folie 43

Dateisysteme im Netz: Cache

Cache und Puffer

Vorteil: Puffer auf Client beschleunigt Lesen/Schreiben

Nachteil: lokaler Puffer führt zu Inkonsistenz bei Zugriffen anderer Rechnier Mögliche Pufferorte:

Benutzerprozeß Heap/Stack
 Transport Client Ausgangspuffer
 Leiter 1GHz auf 3 km=10kBit
 Transport Server Eingangspuffer

Netzdateisystem
 Lokaler Treiber
 Dateipuffer
 Blockpuffer

Plattencontroller Schreib-/Lesepuffer

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwer

-0- 44

Problem: Konsistenz der lokalen Cache A, B lesen A schreibt B schreibt Inkonsistenz

Dateisysteme im Netz: Cache

Cache und Puffer: Konsistenzstrategien für lokalen Cache

- Zentrale Kontrolle
 - Vor dem Lesen Vergleich der Änderungsinfos (VersionsNr, Quersummen) zwischen Client und Server

aber: aufwändig!

Delayed Write

Dr.-Ing. Arno Bücken Netzwerkdienste

Sammeln der Änderungen, dann erst schicken

aber: Zugriffssemantik verändert

Write On Close

Sitzungssemantik: lokale Kopie geht an Server bei close ()

aber: Inkonsistenzen durch Sitzungssemantik

Write Through

Änderungen gehen am Puffer vorbei sofort zum Original

aber: langsam

Fazit: Puffern auf Serverseite ist einfacher - auf Clientseite effizienter, aber komplexer (semant.Protokolle!)

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

T-8- 4C

Dateisysteme im Netz: Cache

Beispiel UNIX NFS-Cachestrategien

Asynchrone RPC durch basic input output biod - Dämonen

Read ahead
 Vorauseilende Anforderung von Benutzerblöcken

Delayed write

Pufferung aller Schreibdaten, flush() alle 3 s (Daten), 30 s (Verzeichnisse), bei sync(), Puffer belegt

 Write through bei exklusiv gesperrten Dateien

Code aus Effizienzgründen im Kernel

Dr.-Ing. Amo Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 47

Dateisysteme im Netz: Dateiserver

Implementierung eines Dateiserver durch Prozesse

Vorteil Nachteil symmetrisches System, jeder kann beides sein Kopieren der Systempuffer kernel space/user space

Jng Argo Bilden Nettwerkdjenste Behinkervetone Nettwerkd

24

Dateisysteme im Netz: Dateiserver

Vorteil Nachteil schnelles System asymmetrische Kerne

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwe

Folie 49

Dateisysteme im Netz

Beispiel Unix

Das NFS-System

- Mount () zum Einhängen eines Server-Dateisystems Prozesskommunikation zum mount-demon
- Nfs_svc() im kernel mode auf dem Server
- Virtual i-nodes für virtuelles Dateisystem

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwer

Beispiel Windows NT

Netzdateisystem

- Verbindungsorientierter Netzaufbau durch Redirector mit Transport Driver Interface TDI über virtual circuits (Kanäle)
- Kein virt. Dateisystem, sondern "Durchsuchen"-Methode für Kanäle
- Kernel Thread pool im Server

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwe

Folie 51

Dateisysteme: Sicherheitsaspekte

Problem

Inkonsistente Netz-Kopplung von Systemen bei unterschiedlichen Sicherheitsmechanismen!

z.B. Authentifizierung bei unterschiedlich langen Namen und Groß/Kleinschreibung Unix/WinNT vs MS-DOS, fehlende ACLs, ...

Beispiel Unix NFS-Sicherheitssystem NIS

Benutzerliste (yellow pages) verwaltet von NIS RPC hat Zugriffsrechte user/group/other SuperUserID=0 auf Client ⇒ UserId=-2 auf Server ("external Super User") konsist. Behandlung von gleichen NutzerIds unterschiedl. Systeme

Beispiel Windows NT

NT 4.0: ACL, Netzbenutzer müssen beim SAM registriert sein mit gleichem Paßwort, sonst Nachfrage bzw. Ablehnung

NT 5.0: Kerberos-System bei netzweiter Zugangskontrolle

Dateisysteme: Virtueller Massenspeicher

Dateisysteme: Speichernetze

Speicherkonfigurationen des Storage Area Network SAN

Figure 1: Metadata Server (Asymmetrical Pooling)

SAN Storage Manager (Symmetrical Pooling)

Dr.-Ing. Arno Bücken Netzwerkdiens

Betriebssysteme: Netzwerl

Dateisysteme: Speichernetze

Info SNIA-Schichtenkonzept

Netzwerke

Kommunikation in Netzen

Dateisysteme im Netz

Arbeitsmodelle im Netz

Dienste im Netz

Dr.-Ing. Arno Bücken

Anforderungen an Load Sharing Facility-Systeme

- Ausgewogene Lastverteilung verschiedener Jobarten&Leistungsklassen
- Zentrale Warteschlangen für Rechenzeit, Speicherbedarf, I/O-Geräte...
- Jobdurchlaufzeiten minimieren
- Transparente Lizenzverwaltung (unabh. von Rechnerld)
- Normaler, interaktiver Betrieb soll möglich sein
- Nutzung der Rechner nachts, im Urlaub, an Wochenenden...
- Übersichtliche Konfiguration, leichte Wartbarkeit

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwe

Folie 57

Arbeitsmodelle im Netz

Probleme bei der Lastverteilung

- Jobübermittlung kostet Zeit (nur größere Arbeitspakete!)
- Datenübermittlung kostet Zeit (nur kommunikationsarmer Code!)
- Inhomogene Rechnerarchitekturen, inkompatibler
 Maschinencode (nur portabler Code!)

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwerk

F-8- F0

Konzept Netzcomputer NC:

HW: CPU, Hauptspeicher, Bildschirm/Tastatur,Netzanschluß **SW**: Nur Mikrokern, *Keine* Peripherie

Vorteile

Billigere Hardware

Aktuelle Daten und Programme

Billigere Wartung

Höhere Datensicherheit

bessere Ressourcennutzung

weniger Energie

(Anschaffung)

(durch zentrale Wartung)

 $(Konfiguration,\,SW\text{-}Pflege,\,HW,..)$

(Ausfall, Datendiebstahl, Viren..)

(Massenspeicher, Peripherie, ...)

"green IT"

Nachteile

Erhöhter Netzaufwand

(HW für Netz und Server)

Erhöhter PufferaufwandBenutzerbevormundung

(RAM für Netz- und Datenpuffer, swap-Disks,...)

(Zentrale entscheidet über Daten+Applikationen)

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwer

Folie 59

Arbeitsmodelle im Netz

Arbeitsverteilung durch JAVA-Applets

- Lastverteilung durch portablen Byte-Code
- Sicherheit durch Java Virtual Machine (byte code interpreter)

NC-Ablaufumgebung ("Betriebssystem") der Applets

- Interpretation des Java Byte Code
- Hauptspeicherverwaltung (garbage collection)
- Isolierung gleichzeitig ablaufender Programme (sand box)
- Standardfunktionen Grafik-Ein/Ausgabe, Audiowiedergabe
- Kein Platten/Peripheriezugriff unsignierter Applets

Browser-Ablaufumgebung

Java Plug-in: applikationsabhängige Funktionserweiterung

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwei

-1:- 00

Mobile Peripherierechner bei unzuverlässigen Verbindungen Probleme

- Roaming
 - **Keine** konstante Arbeitsumgebung für Außendienstmitarbeiter, Telearbeiter, ... bei wechselnden Arbeitsplätzen
- Wartung
 Keine Konfigurationspflege, Programmaktualisierung, Datensicherung, ...

mögliche Lösungen

- Zentrale Aktualisierung
 Pro: konsistente Wartung. Contra: Nicht-einheitliche Systeme verboten
- Dezentrale Aktualisierung Pro: lokal angepasste Nicht-Standardfkt. Contra: arbeitsaufwändig

Kernfunktionen zentral gewartet: Schattenserver!

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwerl

Folie 61

Arbeitsmodelle im Netz

Schattenserver zur Datenhaltung

- Initiale Festlegung gespiegelter Pfadteile
- Arbeit wie ein Netzcomputer (Daten+Programm-Cache)
- Aktualisierung durch Cache-Snooper (Server-Schatten)

Dr.-Ing. Arno Bücken Netzwerkdiens

Betriebssysteme: Netzwer

Schattenserver Vorteile

- Automatische Datei- und Programmaktualisierung ohne Administratoraufwand!
- Atomatische Datensicherung
- Netzunabhängiger stand-alone Betrieb möglich
- Benutzerangepaßte Konfiguration
- Rechnerunabhänge Konfiguration
- Geringere Wartungskosten

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwe

Folie 63

Arbeitsmodelle im Netz

Beispiel Linux

Coda-Dateisystem

Abfangen von Systemaufrufen CreateFile, OpenFile, CloseFile, RenameFile

Dr.-Ing. Arno Bücken Netzwerkdiens

Betriebssysteme: Netzwer

Windows NTSchattenserver

- Deklaration von Netz-bekannten Ordnern ("Freigabe")
- Einrichtung als "Offline-Dateien"
- Resynchronisierung ("Offline-Aktualisierung") bei login/logout.
- Semantik (Überschreiben, Speichern mit neuem Namen, usw.) individuell pro Datei oder einmalig für alle Dateien festgelegt.

Dr.-Ing. Arno Bücken Netzwerkdienste

FRAGE

- Was ist der Unterschied zwischen einem NC-System und einem Schattenserver-System?
- Ein NC hat keine Software, jede Applikation wird immer zentral geladen. Funktioniert nur mit Netz.
- Ein Schattenserver-Client hat alle Applikationen, die benötigt werden. Funktioniert auch ohne Netz.

Dr.-Ing. Arno Bücken

Netzwerke

Kommunikation in Netzen

Dateisysteme im Netz

Arbeitsmodelle im Netz

Dienste im Netz

Dr.-Ing. Amo Bücken Betriebssysteme: Netzwerk Folie 67

Dienste im Netz

• DNS - Domain Name Service: Hierarchie der Domänen

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 68

Dienste im Netz

DNS - Domain Name Service

hierarchisches System: Jeder Domäne ihr DNS (top level .de ca. 8 Stück)

Beispiel Konsoleneingabe an DNS

nslookup siemens.com

Server: styx.rbi.informatik.uni-frankfurt.de

Address: 141.2.15.5

Name: siemens.com

Address: 192.138.228.1

Dienste: **ping** <URL,IP-Adr> Echo eines Rechners **traceroute** (tracert) <URL,IP-Adr> Alle auf der Route

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 69

Dienste im Netz

- FTP File Transfer Protocol verbindungsorientiert
 - Anzeige des Inhaltsverzeichnisses des Ordners im Dateisystem
 - Senden einer Datei
 - Empfangen einer Datei
 - Umbenennen/Löschen von Dateien
- WWW World Wide Web verbindungslos

die "Killerapplikation" fürs Internet, weil

- einheitliche Namen im Netz (URL)
- einfache Navigation
 Hyperlinks: "auf Knopfdruck" zwischen den Seiten
- genormte Seitenbeschreibungssprache HTML Bilder, Audio und Video in einem gemeinsames Dokument
- verbindliches Protokoll (z.B. HyperText Transport Protocol HTTP) zum Transport von Dokumenten zwischen Server und Client

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 70

Dienste im Netz

● EMAIL - Electronic Mail

Typische Merkmale:

- Asynchrones, zeitlich entkoppeltes Senden und Empfangen
 Der Sender kann weiterarbeiten, ohne auf den Erhalt der Nachricht durch den
 Empfänger warten zu müssen.
- Die Nachrichten werden zwischengespeichert Keine direkte Verbindung zwischen Sender und Empfänger muss ex.

SMTP für synchrones Senden (und Empfangen), POP für asynchr. Empfangen, IMAP für Mailbox-Dienst (virt. Ordner)

NEWS - Usenet

- Dezentrale Diskussionsforen
- Name ist hierarchisch organisiert: z.B. comp.lang.c, rec.games.chess
- Top level:

sci science-Wissenschaft soc society-Gesellschaft, Politik rec recreation-Hobbys, Essen Trinken

comp computer

alt alternative-Klatsch, Tratsch, Unkonventionelles

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Folie 71

Middleware

• Problem: heterogenes Chaos aus Produkten und Normen

Netze

IT-Konsolidierung?

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

-6- 70

H AACHEN INIVERSITY OF APPLIED SCIENCES

Middleware

Mögliche Lösung: Monokultur

Probleme: - teuer

- dauert lange, um alles zu implementieren

- Firmenabhängigkeit

Bessere Lösung: VermittlungsSW "Middleware"

Enterprise Application Integration

Dr.-Ing. Arno Bücken Netzwerkdienste

triebssysteme: Netzwei

Folie 73

Middleware Kommunikation

• Middleware setzt direkt auf Transportprotokollen auf: Applikationen werden unabhängig vom Transportprotokoll

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwerl

-0-74

• 3-Schichten-System (SAP/R3) Präsentation Präsentation Applikation

Datenbank

mittlere Schicht = Middleware

Middleware-Arten

Dr.-Ing. Arno Bücken Netzwerkdienste

Spezielle Anwendungen

Dateitransfer
 Fernzugriff auf gemeinsame Dateien

Datenbankzugriff
 Datenzugriff auf entfernte DB

Transaktionsverarbeitung Koordination verteilter Transaktionen

Groupware
 Zusammenarbeit in Gruppen

Workflow Organisation arbeitsteiliger Prozesse

Allgemeine Dienste

Virtual Shared Memory: Zugriff auf virtuell gemeinsamen Speicher

Remote Procedure Call (RPC) Aufruf einer entfernten Prozedur

Message Passing
 Send/Receive—Kommunikation

Object Request Broker Dienstvermittlung im Netz

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 76

Dienstvermittlung im Netz

• CORBA = Common Object Request Broker Architecture Dienstvermittler

Aufgaben

- Initiale Registrierung aller Dienste im Netz
- Registrierung einer Anfrage
- Ermitteln des passenden Servers
- Übermitteln des Auftrags + Parameter
- Übermitteln des Ergebnisses
- Auftragsabschluß

Referenzimplementierung durch Object Management Group OMG 1989

Problem: langsam!

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwe

Folie 77

Dienstvermittlung im Netz

- **Die sieben Trugschlüsse verteilter Anwendungen**
 - Das Netzwerk ist immer verfügbar
 - Die Wartezeit (engl. latency) ist Null
 - Die Übertragungsrate (Bandbreite) ist unendlich groß
 - Das Netzwerk ist sicher
 - Der Aufbau des Netzwerks ändert sich nicht
 - Es gibt nur einen Administrator
 - Es fallen keine Transportkosten an

Gegenkonzept: Jini Java Intelligent Network Infrastructure

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwerl

-8- 70

Dienstvermittlung im Netz

- Java-Technologie
- Jini

- Code-Mobilität
- Protokoll-unabh. Programme
- Flexibilität & Integration der Netzknoten mit RMI
- Leasing: Automat. Rekonfiguration des Netzwerks

Jini

Anwendung: Thin client/Thick Server

Dr.-Ing. Arno Bücken Netzwerkdienste

etriebssysteme: Netzwer

Folie 79

Dienstvermittlung im Netz

Microsoft Middleware

COM binäre Schnittstellendef. für IPC auf selbem Rechner **DCOM** verteiltes COM im Netz (RPC und MS-IDL)

COM+ DB-Anwendung mit Transaction Server MTS

incl. Lastverteilung, DB-Cache, async. Aufrufe

.NET Programmier- + Laufzeitumgebung für ORB & uPnP

Dr.-Ing. Arno Bücken Netzwerkdienst

Betriebssysteme: Netzwerk

-1:- 00

Service-Orientierte Architektur SOA

- Problem: Viele alte, teuer zu wartende Dienste
- Lösung:

bestimmte Leistungen, ohne dabei anzugeben, auf welche Art dies geschieht.

- Gemeinsames Kommunikationsprotokoll Ihr Aufruf wird durch einen für alle Module einheitlichen, losen (d.h. nachrichtenbasierten) Kommunikationsmechanismus (SOA-Protokoll SOAP) sichergestellt.
- Voraussetzung: Modellierung der Geschäftsprozesse (OASIS 06)
 - Grafik, Regeln ("Business Process Management" BPM)
 - Spezifikationen ("Business Process Execution Language" BPEL)

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 81

Software-Busstruktur der SOA

 Beispiel: Handelsprozess durch Enterprise Service Bus (IBM)

Asynchrone Abwicklung einer Bestellung

http- Nachrichten (request/reply)

Dr.-Ing. Arno Bücken Netzwerkdienste

Betriebssysteme: Netzwer

Beispiel: Web Services WOA

SOA charakt. Anforderungen

- robuste, skalierbare Datenübertragung
- Kapselung der Services: Keine inkompatiblen Protokolle, Datenformate, Interaktionsmuster der Legacy-, Java-, .NET-Applikationen
- Serviceorchestrierung: Modellierung der Geschäftsprozesse und Abbildung auf services
- Verteilte Services: unabhängige Installation, Skalierung, Konfigurierung
- Zentrale Installation, Administration, Überwachung, Wartung der Services
- Gemeinsame Datenformate (XML): einheitliche Weiterverarbeitung, Dokumentation, Auditing möglich

Dr.-Ing. Arno Bücken Netzwerkdienste Betriebssysteme: Netzwerk Folie 84

Vorteile SOA

- Neue oder geänderte Geschäftsprozesse können schneller und damit preisgünstiger durch Kombination bestehender Dienste realisiert werden.
- Bewährte, ältere Systeme können weiter genutzt werden, ohne Neuentwicklungen zu blockieren oder sie mit Kompatibilitätsforderungen zu belasten (Investitionsschutz).
- Die älteren Einzeldienste können dann Stück für Stück durch moderne Versionen (z.B. Hardware-Software-Kombinationen) ersetzt werden.
- Durch die Modularisierung, klare Aufgabentrennung und Funktionskapselung werden die Systeme beherrschbarer und leichter wartbar.
- Damit ist auch eine Auslagerung unwirtschaftlicher Teile an Fremdanbieter (outsourcing) wird durch die Modularisierung leichter möglich.

Dr.-Ing. Arno Bücken Netzwerkdienste

Folie 85

ROBOTER-BETRIEBSSYSTEME

Dr.-Ing. Arno Bücken

Roboter-Betriebssysteme

Dr.-Ing. Arno Bücken Betriebssysteme: Netzwerk

Idee

Roboter programmieren ist mühsam – warum nicht bewährte Module anderer Gruppen wiederverwenden?

Probleme

- Sehr viele Module müssen Daten austauschen
- Sie sind sehr unterschiedlich (LaserScanner, Ultraschall-Sensor, Kameras…)
- Unterschiedliche Entwicklungsgruppen haben unterschiedliche Schwerpunkte
- Software wird zeitlich getrennt und an unterschiedlichen Orten für unterschiedliche Roboter entwickelt.
- Ansatz: Bibliotheksmodule, z.B. Yet Another Robot Platform YARP

Roboterbetriebssystem ROS Konzept Middleware für Roboter-Module ROS.org Pfad-Bildverar Kontext-Positionslogik -beitung finder bestimmung **Robot Operating System ROS** Kommunikation (Message-passing-system) für Koordinatenumrechnung, ... Ultraschallsensoren Motorik Kamera Entfernungsmesser

ROS-Kommunikation

- Message passing
 - Schnittstellendefinition der Knoten (message IDL)
 - Anonymes, asynchrones Publish/subscribe-System

- Umleiten, Abspeichern und Einspielen von Sensordaten und Motorsteuerungsbefehlen für Testzwecke
- Remote Procedure Calls RPC
 - Bereitstellung von services f
 ür synchrone Kommunikation mittels messages
- Verteiltes Parametersystem
 - Globale Datenbasis für die Konfiguration (start-up Zeit, ...)

Dr.-Ing. Arno Bücken

Höhere Konzepte

- Koordinatentransformationen
 Zeitliche Beschreibung von mehreren Koordinatenrahmen
- Robotermodelle XML-Formulierung
- Aufgaben Interface für zeitbegrenzte Bündelung von Kommunikationskanälen gleichen Nachrichtentyps.
- Nachrichten-Ontologie Nachrichtenarten für verschiedene Zwecke
- Datenfilter
 C++ Bibliothek für Filtersequenzen
- Dynamische Erweiterungen Plugins für C++

Dr.-Ing. Arno Bücken Netzwerk Betriebssysteme: Netzwerk Folie 91

Koordinaten-Transformationen Transformations-Bibliothek tf Errechnen einer Position relativ zu den Weltkoordinaten oder ₹ zu anderen Positionen broadcast broadcast /world Knoten 1 subscribe subscribe /Gelenk_R /Gelenk L **Knoten 2 Knoten 3**

Publizieren der 3D-Pose

Aufgaben

Dr.-Ing. Arno Bücken

actionlib

Ausführen von user-Befehlen, die vom user während der Ausführung beeinflusst oder abgebrochen werden können. Nutzung eines speziellen ROS-Action-Protokolls, das auf dem msg-passing-Protokoll aufsetzt mit goal, feedback und result.

Nachrichten .msg

Verwendung

Kommunikation zwischen Knoten mittels TCP/IP und UDP (TCPROS, UDPROS)

Felder: uint32 seq # header, z.B. Sequenznummer

time stamp # und Zeit int32 x # Datenfelder bool b=true # Konstanten

Einsatz

Kompilierung zur verwendeten Modulsprache C++, Python, ... mittels client library (z.B. roscpp, rospy, roslisp...)

Dr.-Ing. Arno Bücken

Notarranda Betriebssysteme: Netzwerk

Folie 95

Nachrichten-Ontologie

- diagnostic_msgs: DiagnosticArray, DiagnosticStatus, KeyValue,...

This message is used to send diagnostic information about the state of the robo

Header header #for timestamp

DiagnosticStatus[] status # an array of components being reported on

- geometry_msgs: Polygon, Point, Pose, Transform, Vector3,
 #A specification of a polygon where the first and last points are assumed to be connected Point32[] points
- nav_msgs: Path, GridCells, MapMetaData, OccupancyGrid, ... #An array of poses that represents a Path for a robot to follow Header header geometry_msgs/PoseStamped[] poses
- sensor_msgs Joy, CameraInfo, FluidPressure, LaserScan, ...

Reports the state of a joysticks axes and buttons.

Header header # timestamp in the header: time the data is received from the joystick

float32[] axes # the axes measurements from a joystick int32[] buttons # the buttons measurements from a joystick

Dr.-Ing. Arno Bücken

Notarrous Indian

Betriebssysteme: Netzwerk

Folie 96

- Filteroperationen, basierend auf C++ templates FilterBase
- Konfigurierbar über den Parameter Server
- Leichtes Einrichten einer Filterkette (FilterChain).

Plugins für C++

pluginlib

Dynamisches Laden und Entladen von selbst geschriebenen plugin-Bibliotheken bei Bedarf durch vorherige Deklaration in package.xml

Beispiel Rechteck und Dreieck deklarieren und abfragen

49

Folie 97

ROS Module

Definition des Nachrichtenformats common_msg

Abbrechbare RPC's (Aufgaben) actionlib

Roboter Beschreibungssprache urdf, sdf, kdl

Roboter Geometrie-Bibliothek
tf

Haltungsschätzung (pose estimation) robot_pose-ekf

Lokalisierung 2D amcl

Mapping: laserbasiertes SLAM gmapping

Navigation, auch mobil navigation

Diagnosemodule diagnostics

• + weitere >2000 Bibliotheken

Dr.-Ing. Arno Bücken

Notavyouls 1: on Betriebssysteme: Netzwerk Folie 99

ROS Werkzeuge

• rqt Entwicklungswerkzeug für graf. Roboter-Bedienungsoberfläche: Zusammenfassung unterschiedlicher Fenster und GUI unter einer Oberfläche.

Dr.-Ing. Arno Bücken

Notarroad diese

Betriebssysteme: Netzwerk

Folie 100

50

ROS Werkzeuge • rviz 3D Visualisieru

• rviz 3D Visualisierung der Roboter und ihrer Umgebung

Dr.-Ing. Arno Bücken

Notzerroule diese

Betriebssysteme: Netzwerk

Folie 101