Continuous Random Variables

C) Exponential Random Variable [Ross S5.5]

A random variable X with pdf

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{else} \end{cases}$$

is called **exponential** with **rate parameter** $\lambda > 0$ and denoted $X \sim \mathsf{Exp}(\lambda)$.

Note: If X has units of min then λ has units min⁻¹.

$$F_X(a) = \int_{-\infty}^a f_X(u) du$$
$$= \begin{cases} 1 - e^{-\lambda a} & a \ge 0\\ 0 & a < 0 \end{cases}$$

Example 19.1: For $X \sim \mathsf{Exp}(\lambda)$, what are E[X] and Var[X]?

Solution:

 χ

Example 19.2: The time someone uses an ATM machine is an exponential random variable with $\lambda=1/3~{\rm min^{-1}}$. Someone arrives at the ATM just before you. What is the probability that you wait
a) more than 3 min,
b) between 3 and 6 min?
Solution:

Definition 19.1: A non-negative random variable X is called **memoryless** if for all s>0 and all t>0

$$P[X > s+t \mid X > t] = P[X > s]$$

In words: The probability of waiting s seconds more given you have already waited t seconds is the same as waiting s seconds from the start. In other words, no matter how long you have waited, time to wait still has the same distribution.

Example 19.3: Does $Exp(\lambda)$ have the memoryless property?

Solution: Let $X \sim \mathsf{Exp}(\lambda)$. Then

$$\begin{split} P[X>s+t\mid X>t] &= \frac{P[X>s+t, X>t]}{P[X>t]} \\ &= \frac{P[X>s+t]}{P[X>t]} \\ &= \frac{e^{-\lambda(s+t)}}{e^{-\lambda t}} \\ &= e^{-\lambda s} \\ &= P[X>s] \end{split}$$

Yes, $\mathsf{Exp}(\lambda)$ has the memoryless property.

Example 19.4: Persons A and B are each being served by a teller. Person C arrives, and waits for one of the two tellers. All service times are exponential with the same parameter λ . What is the probability that C is the last to leave? *Solution:*

Example 19.5: A car battery has a lifetime that is exponentially distributed with mean 10,000 km.

- a) What is the probability of completing a $5000~\mathrm{km}$ trip without replacing the battery?
- b) What can we say if lifetime is not exponential?

Solution:

The exponential distribution can be used:

- to model service times in queuing systems
- time between radioactive decays
- credit risk modeling in finance
- is maximum entropy distribution on $[0, \infty]$ subject to a specified mean.