We begin by attempting to give complete rigour and detail to the definitions of orientation and the many connected theorems.

For this section, we will follow [1] and [2]

Definition 1.1 (Local Homology Group). For $h_*(-)$ a homology theory and an n-manifold M, groups of the form $h_k(M, M - \{x\})$ are called local homology groups.

For a chart $\varphi \colon U \to \mathbb{R}^n$ on M centered at x, we get by excision that

$$h_k(M, M - \{x\}) \cong h_k(U, U - \{x\}) \stackrel{\varphi_*}{\to} h_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}).$$

Hence for singular homology, we obtain $H_n(M, M - \{x\}; G) \cong G$.

Definition 1.2 (Local R-orientation). Let R be a commutative ring. A generator of $H_n(M, M - \{x\}; R) \cong R$ is called a local R-orientation of M about x.

Let $K \subset L \subset M$. The homomorphism $r_K^L \colon h_k(M, M-L) \to h_k(M, M-K)$ induced by inclusion is called restriction. We write r_x^L when $K = \{x\}$.

Proposition 1.3. When A is a compact, convex set contained in some chart $\mathbb{R}^n \subset$ M, then r_x^A is an isomorphism for each $x \in A$ and the groups are isomorphic to the coefficient group G.

Proof. A is contained in the interior of some closed n-disk $D \subset \mathbb{R}^n \subset M$. Thus there is a commutative diagram

$$h_n(M, M - A) \longrightarrow h_n(M, M - \{x\})$$

$$\cong \uparrow \qquad \qquad \cong \uparrow$$

$$h_n(\mathbb{R}^n, \mathbb{R}^n - A) \longrightarrow h_n(\mathbb{R}^n, \mathbb{R}^n - \{x\})$$

$$\cong \uparrow \qquad \qquad \cong \uparrow$$

$$h_n(D, \partial D) = \longrightarrow h_n(D, \partial D)$$

Definition 1.4 (Orientation bundle). We construct a covering $\omega: h_k(M, M - \bullet) \to 0$ M. Define

$$h_k(M, M - \bullet) = \bigsqcup_{x \in M} h_k(M, M - \{x\})$$

where $h_k(M, M - \{x\})$ is the fiber over x and is given the discrete topology. Let U be an open neighborhood of x such that r_y^U is an isomorphism for each $y \in U$. Define bundle charts

$$\varphi_{x,U} \colon U \times G \to \omega^{-1}(U), \quad (y,a) \mapsto r_y^U (r_x^U)^{-1}(a).$$

We then give $h_k(M, M - \bullet)$ the topology that makes $\varphi_{x,U}$ in a homeomorphism onto an open subset. In particular, since $h_k(M, M - x)$ is given the discrete topology, this is equivalent to the map $\varphi_{x,U}(-,\alpha)$ being a homeomorphism onto an open subset for each $\alpha \in h_k(M, M-x)$. It then remains to show that the transition maps

$$\varphi_{y,V}^{-1}\varphi_{x,U}\colon (U\cap V)\times h_k(M,M-\{x\})\to (U\cap V)\times h_k(M,M-\{y\})$$

are continuous.

Let $z \in U \cap V$, and choose W such that $z \in W \subset U \cap V$ and r_w^W is an isomorphism for each $w \in W$.

Consider the diagram

$$h_{k}(M, M-x) \xleftarrow{r_{x}^{U}} h_{k}(M, M-U) \xrightarrow{r_{w}^{U}} h_{k}(M, M-w)$$

$$\downarrow^{r_{w}^{U}} r_{w}^{V} \uparrow^{r_{w}^{V}} \uparrow$$

$$h_{k}(M, M-W) \xleftarrow{r_{w}^{V}} h_{k}(M, M-V)$$

$$\downarrow^{r_{y}^{V}} \uparrow^{r_{w}^{V}} \uparrow^{r_{w}^{V}}$$

Let $\varphi_{x,U,p} \colon h_k(M,M-x) \to \omega^{-1}(p)$ be defined by

$$\varphi_{x,U,p}(y) = \varphi_{x,U}(p,y).$$

Then for $w \in U \cap V$, we have

$$\varphi_{x,U,w}^{-1}\varphi_{y,V,w}=r_y^V(r_W^V)^{-1}(r_w^W)^{-1}r_w^Wr_W^U(r_x^U)^{-1}=r_y^V(r_W^V)^{-1}r_W^Ur_x^U$$

Firstly, this coincides with the operation of an element of the coefficient group G since it is an isomorphism $G \to G$, and secondly, note that this does not depend on w, so the map

$$g_{x,U,y,V} \colon U \cap V \to G$$

defined by $g_{x,U,y,V}(p) = \varphi_{x,U,p}^{-1} \varphi_{y,V,p}$ is constant, hence continuous.

Thus ω is indeed a covering map.

But even moreso, the fibers are groups, so for $A \subset M$, denote by $\Gamma(A)$ the set of continuous sections over A of ω . If s and t are section, we can define (s+t)(a) = s(a) + t(a). Then s+t is again continuous, hence $\Gamma(A)$ is an abelian group. Denote by $\Gamma_c(A) \subset \Gamma(A)$ the subgroup of sections with compact support, i.e., the sections which have values 0 in the fiber away from a compact set.

Proposition 1.5. Let $z \in h_k(M, M - U)$. Then $y \mapsto r_y^U z \in h_k(M, M - y) \subset h_k(M, M - \bullet)$ is a continuous section of ω over U.

Proof. The map $U \to U \times G$ by $y \mapsto (y, r_x^U z)$ is constant in the second coordinate, hence clearly continuous. Now composing with $\varphi_{x,U}$ gives us the section in question.

П

1.1. **Homological Orientation.** If we specify to singular homology with coefficient group R, and again let M be an n-manifold and $A \subset M$, then we can define an orientation along A as follows

Definition 1.6 (*R*-orientation of *M* along *A*). An *R*-orientation of *M* along *A* is a section $s \in \Gamma(A; R)$ of $\omega \colon H_n(M, M - \bullet; R) \to M$ such that $s(a) \in H_n(M, M - a; R) \cong R$ is a generator for each $a \in A$.

Thus s glues together the local orientations in a continuous manner. When A=M, we call s an R-orientation of M.

Definition 1.7 (Orientation covering). Let $Ori(M) \subset H_n(M, M - \bullet; \mathbb{Z})$ be the subset of all generators of all fibers. Then the restriction $Ori(M) \to M$ of ω gives a 2-fold covering of M, called the *orientation covering* of M.

Proposition 1.8. The following are equivalent:

- (1) M is orientable
- (2) M is orientable along compact subsets.
- (3) The orientation covering is a trivial 2-fold covering map.
- (4) The covering $\omega \colon H_n(M, M \bullet; \mathbb{Z}) \to M$ is a trivial covering map.

Proof. $(1) \implies (2)$ is a subcase.

(2) \Longrightarrow (3). The orientation covering is trivial if and only if the covering over each component is trivial, so we may assume that M is connected. Now, if a 2-fold covering $\tilde{M} \to M$ is trivial, then \tilde{M} splits as $M \times \{p,q\}$, and so \tilde{M} cannot be connected. Conversely, if \tilde{M} is not connected, then the covering restricted to each component must be a covering map, so the covering splits as a trivial covering. Suppose then that $\operatorname{Ori}(M) \to M$ is non-trivial. Since $\operatorname{Ori}(M)$ is then connected, we can choose a path γ in $\operatorname{Ori}(M)$ between two points of a given fiber. The image S of such a path is compact and connected, and the covering is non-trivial over S, so by assumption (2), the orientation covering has a section s over S, but then $\gamma(0) = s\left(\omega(\gamma(0))\right) = s\left(\omega(\gamma(1))\right) = \gamma(1)$, which gives a contradiction. (3) \Longrightarrow (4).

Let $s: M \to Ori(M) \cong M \times \{-1, 1\}$ be the section $m \mapsto (m, 1)$.

Now define a map $\varphi \colon M \times \mathbb{Z} \to H_n(M, M - \bullet; \mathbb{Z})$ by $\varphi(m, k) = ks(m)$. This is a bijective map by assumption on s being a section. It is furthermore continuous since s is continuous and since fiber-wise operations in $H_n(M, M - \bullet; \mathbb{Z})$ is continuous. Furthermore, it is also a morphism between coverings since it commutes with the projections: $\pi_M = \omega \circ \varphi$.

Lastly, one must show that it also has a continuous inverse. For this, we may take an open basis set in $M \times \mathbb{Z}$ - say $U \times \{k\}$, where \bar{U} is a convex subset of $\mathbb{R}^n \subset M$. Since φ is bijective, we obtain that $\varphi(U \times \{k\}) = ks(U) = U_\alpha$ if we choose α to be the element in $H_n(M, M - U) \cong \mathbb{Z}$ which maps to k under $r_{x,U}$ for $x \in U$. And by assumption, U_α is a basis open set for the topology on $H_n(M, M - \bullet; \mathbb{Z})$.

Hence φ is a homeomorphism, and even an isomorphism of covering spaces in the sense that $\pi_M = \omega \circ \varphi$.

Note. We could also say that it is trivial since every point is in the image of some section.

- (4) \Longrightarrow (1) : If ω is trivial, then it has a section with constant value in the set of generators.
- 1.2. Homology in the Dimension of the Manifold. Let M be an n-manifold and $A \subset M$ a closed subset. We will in this section use singular homology with coefficients in an abelian group G.

Proposition 1.9. For each $\alpha \in H_n(M, M-A; G)$, the section

$$J^A(\alpha) \colon A \to H_n(M, M - \bullet; G), \quad x \mapsto r_x^A(\alpha)$$

of ω over A is continuous and has compact support.

Proof. Choose a representative $c \in \Delta_n(M;G)$ representing α . There exists a compact set K such that c is contained in K. Suppose A-K is nonempty, and let $x \in A - K$. Then the image of c under

$$\Delta_n(K;G) \to \Delta_n(M;G) \to \Delta_n(M,K;G) \to \Delta_n(M,M-x;G)$$

is zero since $K \subset M - x$. Since this image represents r_x^A , the support of $J^A(\alpha)$ is contained in $A \cap K$ which is compact.

If A-K is empty, K contains A, and then the support of $J^A(\alpha)$ is a closed subset of a compact space, hence compact.

The continuity follows from the more general case of Proposition 1.5.

Thus we obtain a homomorphism

$$J^A: H_n(M, M-A; G) \to \Gamma_c(A; G), \quad \alpha \mapsto (x \mapsto r_x^A(\alpha)).$$

1.2.1. Direct Limits.

Definition 1.10. Let D be a directed set and G_{α} an abelian group defined for each $\alpha \in D$. Suppose we are given homomorphisms $f_{\beta,\alpha} : G_{\alpha} \to G_{\beta}$ for each $\beta > \alpha$ in D. Assume that for all $\gamma > \beta > \alpha$ in D, we have $f_{\gamma,\beta}f_{\beta,\alpha} = f_{\gamma,\alpha}$. Such a system is called a *direct system* of abelian groups. Then $G = \lim_{\to} G_{\alpha}$ is defined to be the quotient group of the direct sum $G = \bigoplus G_{\alpha}$ modulo the relations $f_{\beta,\alpha}(g) \sim g$ for all $g \in G_{\alpha}$ and all $\beta > \alpha$.

Note. Hence the direct limit is just the colimit of the direct system.

Proposition 1.11. Suppose we are given an abelian group A with homomorphisms $h_{\alpha} \colon G_{\alpha} \to A \text{ such that the cocone commutes. Since } \lim_{\alpha \to \infty} G_{\alpha} \text{ is the colimit, we have}$ a unique induced homomorphism $h: \lim_{\to} G_{\alpha} \to A$. Then

- (1) im $h = \{a \in A \mid a = h_{\alpha}(g) \text{ for some } g \text{ and } \alpha\} = \bigcup \operatorname{im} h_{\alpha}.$ (2) ker $h = \{g \in \lim_{\longrightarrow} G_{\alpha} \mid \exists \alpha \text{ and } g_{\alpha} \in G_{\alpha} : g = i_{\alpha}(g_{\alpha}) \text{ and } h_{\alpha}(g_{\alpha}) = 0\} = \bigcup i_{\alpha}(\ker h_{\alpha}).$

Proof. Define $h(g_{\alpha}) = h_{\alpha}(g_{\alpha})$. Then if $f_{\beta,\alpha}(g_{\alpha}) \sim g_{\alpha}$, we have $h(g_{\alpha}) = h_{\alpha}(g_{\alpha}) = h_{\alpha}(g_{\alpha})$ $h_{\beta} \circ f_{\beta,\alpha}(g_{\alpha}) = h(f_{\beta,\alpha}(g_{\alpha})),$ so h respects the equivalence relations, thus it is welldefined.

Now property (1) is clear by the way we defined h.

As for (2), note that if g represents the equivalence class of g_{α} and h(g) = 0, then $h_{\alpha}(g_{\alpha}) = 0$ which is what (2) is saying.

Corollary 1.12. In the situation of Proposition 1.11, h: $\lim_{\to} G_{\alpha} \to A$ is an isomorphism if and only if the following two statements hold true:

- (1) $\forall a \in A, \exists \alpha \in D \text{ and } g_{\alpha} \in G_{\alpha} \colon h_{\alpha}(g_{\alpha}) = a, \text{ and }$
- (2) if $h_{\alpha}(g_{\alpha}) = 0$ then $\exists \beta > \alpha : f_{\beta,\alpha}(g_{\alpha}) = 0$.

Theorem 1.13. The direct limit is an exact functor. So if we have direct systems $\{A'_{\alpha}\},\{A_{\alpha}\}\$ and $\{A''_{\alpha}\}\$ based on the same directed set, and if we have an exact sequence $A'_{\alpha} \to A_{\alpha} \to A''_{\alpha}$ for each α , where the maps commute with the ones defining the direct systems, then the induced sequence

$$\lim_{\to} A'_{\alpha} \to \lim_{\to} A_{\alpha} \to \lim_{\to} A''_{\alpha}$$

is exact.

Proof. We have the following diagram, where all maps commute.

$$A'_{\beta} \xrightarrow{} A_{\beta} \xrightarrow{} A''_{\beta}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\lim_{\rightarrow} A'_{\alpha} \xrightarrow{} \lim_{\rightarrow} A_{\alpha} \xrightarrow{} \lim_{\rightarrow} A''_{\alpha}$$

Suppose $a \in \lim_{\to} A_*$ is mapped to zero in $\lim_{\to} A_*''$. Then there exists $g \in \lim_{\to} A_{\alpha}$ such that there exists β and $g_{\beta} \in A_{\beta}$ such that $g = i_{\beta}(g_{\beta})$ and $h_{\beta}(g_{\beta}) = 0$.

Recall here that h_{β} is a homomorphism $A_{\beta} \to \lim_{\to} A_{*}^{"}$ and i_{β} is the inclusion $G_{\beta} \to \lim_{\to} G_{\alpha}$.

By commutativity of the diagram, there then exists $k_{\beta} \in A'_{\beta}$ such that $i_{\beta}(d_{\beta}(k_{\beta})) = d_{\lim_{\to}} i'_{\beta}(k_{\beta})$. Hence the kernel is contained in the image.

Now suppose let $\tilde{k} = d_{\lim_{\to}}(k) \in \lim_{\to} A_*$.

Then $\tilde{k} = i_{\beta} \left(d(\overline{k}) \right) = d_{\lim_{\to}} i'_{\beta} \left(\overline{k} \right)$ for some $\overline{k} \in A'_{\beta}$.

But now

$$d_{\lim_{\to}}(\tilde{k}) = d_{\lim_{\to}} i_{\beta} \left(d\left(\overline{k}\right) \right) = i_{\beta}'' d\left(d\left(\overline{k}\right) \right) = i_{\beta}''(0) = 0.$$

Theorem 1.14. Suppose we are given two directed sets D and E. Define an order on $D \times E$ by $(\alpha, \beta) \geq (\alpha', \beta')$ if and only if $\alpha \geq \alpha'$ and $\beta \geq \beta'$. Suppose $G_{\alpha,\beta}$ is a direct system based on $D \times E$. Then the maps $G_{\alpha,\beta} \to \lim_{\to,\beta} G_{\alpha,\beta} \to \lim_{\to,\beta} G_{\alpha,\beta}$ induce an isomorphism

$$\lim_{\to,\alpha,\beta} G_{\alpha,\beta} \stackrel{\cong}{\to} \lim_{\to,\alpha} \left(\lim_{\to,\beta} G_{\alpha,\beta} \right).$$

Proof. Todo

Proposition 1.15. (1) For $A \supset B$ both closed, the following diagram commutes:

$$H_n(M, M-A; G) \longrightarrow H_n(M, M-B; G)$$

$$\downarrow_{J^A} \qquad \qquad \downarrow_{J^B}$$

$$\Gamma_c(A, H_n(M, M-\bullet; G)) \longrightarrow \Gamma_c(B, H_n(M, M-\bullet; G))$$

(2) For $A, B \subset M$ both closed, the sequence

$$0 \to \Gamma_c(A \cup B, H_n(M, M - \bullet; G)) \xrightarrow{h} \Gamma_c(A, H_n(M, M - \bullet; G)) \oplus \Gamma_c(B, H_n(M, M - \bullet; G))$$
$$\xrightarrow{k} \Gamma_c(A \cap B, H_n(M, M - \bullet; G))$$

is exact, where h is the sum of restrictions and k is the difference of restrictions.

(3) If $A_1 \supset A_2 \supset A_3 \supset \dots$ are all compact and $A \cap A_i$, then the restriction homomorphisms $\Gamma(A_i, H_n(M, M - \bullet; G)) \to \Gamma(A, H_n(M, M - \bullet; G))$ induce an isomorphism

$$\lim_{\stackrel{\longrightarrow}{\longrightarrow}} \Gamma\left(A_i, H_n\left(M, M - \bullet; G\right)\right) \stackrel{\cong}{\longrightarrow} \Gamma\left(A, H_n(M, M - \bullet; G)\right)$$

Proof. (1) Let $\alpha \in H_n(M, M-A; G)$, and denote by ι the inclusion $(M, M-A) \hookrightarrow (M, M-B)$. Then $\iota_* = r_B^A$, so $J^B\left(r_B^A(\alpha)\right)(x) = r_x^B\left(r_B^A(\alpha)\right)$. On the other hand, $J^A(\alpha)|_B(x) = J^A(\alpha)(x) = r_x^A(\alpha)$. Now, from the composition

$$(M, M - A) \hookrightarrow (M, M - B) \hookrightarrow (M, M - x)$$

we obtain by taking homology, that $r_x^A = r_x^B r_B^A$, which gives the result.

(2) Firstly, a section that is zero on both A and B is then also zero on $A \cup B$, which gives the injective part of h. Now, suppose s-t is the zero section over $A \cap B$ for s a section over A and t a section over B. Then s and t agree on $A \cap B$, meaning that $s \cup t$ is well-defined and continuous, where $s \cup t$ is s on A and t on B, and $h(s \cup t) = (s,t)$. Likewise, if g is a section over $A \cup B$, then $k \circ h(g) = (g|_A)|_{A \cap B} - (g|_B)|_{A \cap B} = g|_{A \cap B} - g|_{A \cap B}$ is the zero section.

 \square

Theorem 1.16. Let $A \subset M$ be closed. Then

(1) $H_i(M, M - A; G) = 0$ for i > n.

(2) $J^A: H_n(M, M-A, G) \to \Gamma_c(A, H_n(M, M-\bullet; G))$ is an isomorphism.

Lemma 1.17 (The Bootstrap Lemma). Let $P_M(A)$ be a statement about compact sets A in a given n-manifold M^n . If (i), (ii), (iii) hold, then $P_M(A)$ is true for all compact A in M^n .

If M^n is separable metric, and $P_M(A)$ is defined for all closed sets A, and if (i), (ii), (iv) hold, then $P_M(A)$ is true for all closed sets A in M.

For general M^n , if $P_M(A)$ is defined for all closed sets A in M, for all M^n , and if all five statement (i) - (v) hold for all M^n , then $P_M(A)$ is true for all closed $A \subset M$ and all M^n .

2. Intersection Theory

Definition 2.1 (k-disk bundle). A k-disk bundle is a vector bundle whose coordinate transformations are contained in $O(k) \subset \operatorname{GL}(\mathbb{R}^k)$ and such that the local trivializations have the form $\pi^{-1}(U) \cong U \times D^k$.

Let N^n be a connected, oriented, closed n-manifold, and W^{k+n} an (n+k)-manifold with boundary ∂W a (k-1)-sphere bundle over N^n , and let $\pi \colon W^{n+k} \to N^n$ be a k-disk bundle over N.

Let us assume also that W is also oriented.

Definition 2.2. In the above situation, the *Thom class* of the disk bundle π is the class $\tau \in H^k(W, \partial W)$ given by

$$\tau = D_W \left(i_* \left[N \right] \right)$$

where $D_W: H_{n-k}(W) \to H^k(W, \partial W)$ is the inverse of the Poincaré duality isomorphism. That is,

$$D(a) \cap [M] = a.$$

Thus

$$\tau \cap [W] = i_* [N]$$
.

We can deformation retract the punctured disk to its boundary, giving $H^k(W, W N) \cong H^k(W, \partial W)$, so we will sometimes regard τ as being in $H^k(W, W - N)$.

Lemma 2.3. In the above setup, suppose $A \subset N$ is closed. Let $\tilde{A} = \pi^{-1}(A) \subset W$ and $\partial \tilde{A} = \tilde{A} \cap \partial W$. Then $\check{H}^i \left(\tilde{A}, \partial \tilde{A} \right) = 0$ for 0 < i < k.

Proof. Suppose first that A is compact convex subset of a Euclidean neighborhood in N. It also suffices consider the case where A is connected, so $A \cong D^n$. Consider the pullback bundle of A:

$$i^*(A) \longrightarrow W \qquad \downarrow^{\pi} \\ A \stackrel{i}{\longleftarrow} N$$

Then $i^*(A) = A \times_N W \cong \pi^{-1}(A)$, so since any vector bundle over a contractible paracompact base space is trivial, we conclude that the bundle $\tilde{A} \to A$ is trivializable as $\tilde{A} \cong A \times D^k$ and $\partial \tilde{A} \cong A \times S^{k-1}$. Now the steps are as follows: calculate the homology of $A \times D^k$ and $A \times S^{k-1}$, then use UCT to obtain the cohomology, and then use the LES to find the cohomology of $(A \times D^k, A \times S^{k-1})$. Now... But by the Künneth theorem,

$$H_m(A \times D^k) \cong H_m(A)$$

and

$$H_m(A \times S^{k-1}) \cong H_m(A) \oplus H_{m-k+1}(A).$$

Lemma 2.4. The restriction $\tau_x \in \check{H}^k(\tilde{A}, \partial \tilde{A})$ of τ , when $A = \{x\}$, is a generator.

Proof. Note that $\left(\tilde{A},\partial\tilde{A}\right)\cong\left(D^{k},S^{k-1}\right)$. Suppose first that $\tau_{x}=0$ for some x.

Now, recall that

$$\tau_A = D_W \left(i_* \left[A \right] \right).$$

Then $\tau_x = 0$ if and only if $i_*[x] = 0$.

References

- [1] Glen E. Bredon. *Topology and geometry*. **volume** 139. Graduate Texts in Mathematics. Corrected third printing of the 1993 original. Springer-Verlag, New York, 1997.
- [2] Tammo tom Dieck. *Algebraic topology*. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008, **pages** xii+567. ISBN: 978-3-03719-048-7.