	Bayesian Network.
Dep	finition:
	(D) A Directed Applic Gotaph (DAG).
	2) Nodes: set of random variable
	3) Directed Link (Edge).
-	x has direct influence over y
	4) Conditional Probability Table
	(CPD); each rode has it
	Example:
	Burglar Alarm at Home Problem
	The Froblem

Conditional Probability. * Bayes Rule. $P(A \cap B) = P(A/B) \cdot P(B)$ $P(A \cap B) = P(B/A) \cdot P(A)$ $P(B/A) = \frac{P(A/B) \cdot P(B)}{P(A)}$ * Toins Probability Distribution $P(x_1, x_2, \dots x_n) = \frac{h}{1} P(x_2/perent(x_2))$

for example:

P(ANJAM) = P(A) * P(J/A) * P(M/A).

Marginal Probability $P(A) = \sum_{i} P(A/B_{i}) \cdot P(B_{i})$

Q/ P(JAMAAABANE) $= P(\overline{U/A}) * P(M/A) * P(A/nB, nE)$ * P(nB) * P(nE)0.9 × 0.7 × 0.001 × (1-0.001) × (1-0.002) = 0.00624 $Q_2: P(J) = ?$ Introduce I's all predecessor $P(J) = P(J) \cdot (P(A) + P(nA))$ = P(J/A).P(A) + P(J/nA).P(nA) = 0.9. (P(A)) + 0.05 × (P(LA)) $P(A) = P(A/B,E) \cdot P(BNE) +$ P(A/B,E).P(NBE)+ P (A/B, NE) · P(BNE) + P (A/BE). P(BE)

Q3. what 's the Probability Distribution of Burglary given John & Mary call. (B|J,M) = P(B,J,M) P(JM) $= \alpha.P(B,J,M)$ EX. ZEEAP(B, E,A, J,M) X. ZEZ, P(B).P(E).P(A/BE).P(J/A).P(M/A) FF P(B).P(T=4) P(A=4) P(B).P(ELf). F T P(B). P(E): P(A/BE). P(J/A). P(M/A) T F P(B). P(E). P(A/BE). P(J/A). P(M/A) T T P(B). P(E). P(A/BE). P(J/A). P(M/A) = W. P(B). ZEP(E). ZP(A/BE). P(J/A). P(M/A)

Q4. Consider the Query P (John Cello/Burglery = TRUE) $P(J/B) = \frac{P(JB)}{P(B)}$ = Q. P(B) \(\subseteq p(E) \cdot \subseteq P(A/B, E) \cdot P(J/A) · EP(M/A).

Variable Elimination. P(R/S)X ZZP(R).P(O) P(W/CR).P(S/W) $(et:fc(w) = \sum_{c} P(c).P(w/cR)$ X \(\sigma\) P(S/w). \(\frac{\gamma}{c}(w)\). $(W) \times (X) \times (Z)$ Another Excuply $P(W, X, Y, z) = P(W) \cdot P(x/w) \cdot P(Y/x)$ P(z/Y) $P(Y) = \sum_{w} \sum_{x} \sum_{z} P(w) P(x/w) \cdot P(Y/x)$

Naive Bayes

$$P(x, y, y, \dots y_n) = P(x) \cdot \overrightarrow{H}(P(y_i/x))$$

Logratic Regression

$$P(x_1, x_2, \cdots x_n, y) = \frac{h}{11} P(x_i) \cdot P(y/x_i)$$