

# SCHOOL OF ADVANCED SCIENCES DEPARTMENT OF MATHEMATICS

**FALL SEMESTER - 2020~2021** 

# **MAT2001 – Statistics for Engineers**

(Embedded Theory Component)

#### **COURSE MATERIAL**

# Module 4 Probability Distributions

#### **Syllabus:**

Binomial Distribution – Poisson Distribution – Normal Distribution – Gamma Distribution – Exponential Distribution – Weibull Distribution.

Prepared By: Prof. K. Kavitha (In-charge)

Prof. M. Gowsalya

Prof. Rajesh Moharana

The course in-charges thankfully acknowledge the course materials preparation committee in-charge and members for their significant contribution in bringing out of this course material.

Dr. D. Easwaramoorthy

Dr. A. Manimaran

Course In-charges – MAT2001-SE, Fall Semester 2020~2021, Department of Mathematics, SAS, VIT, Vellore.

\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*

# Module 4. Special distribution

| Discrete distributions           | Continuous distributions                                |
|----------------------------------|---------------------------------------------------------|
| 1. Binomial distribution         | 1.Uniform distribution (or)<br>Rectangular distribution |
| 2. Poisson distribution          | 2. Exponential distribution                             |
| 3. Geometric distribution        | 3. Gamma distribution                                   |
| 4.Negative binomial distribution | 4. Weibull distribution                                 |
|                                  | 5. Normal distribution                                  |

## **Properties:**

- 1. There must be a fixed number of trials.
- 2. All trials must have identical probabilities of success (P).
- 3. The trials must be independent of each other.

#### Notations:

n = number of trials

p = probability of success

q = probability of failure

X = A random variable which represents the number of successes.

### Applications:

Sampling process (or) Quality control measures in industries to classify the items as defective or non-defective.

#### **Binomial distribution:**

#### Probability mass function of Binomial distribution:

A discrete random variable X is said to follow binomial distribution if its probability mass function is

$$P(x) = n_{c_x} p^x q^{n-x}, \quad x = 0, 1, 2, \dots, n$$

#### Moment generating function:

The moment generating function of a binomial variate is

$$M_{x}(t) = E[e^{tx}]$$

$$= \sum_{x=0}^{n} e^{tx} p(x)$$

$$= \sum_{x=0}^{n} e^{tx} n_{c_{x}} p^{x} q^{n-x}$$

$$= \sum_{x=0}^{n} n_{c_{x}} (pe^{t})^{x} q^{n-x}$$

$$[(x+a)^{n} = n_{c_{0}} x^{n} + n_{c_{1}} x^{n-1} a + n_{c_{2}} x^{n-2} a^{2} + \dots + n_{c_{n}} a^{n}]$$

$$= (Pe^{t} + q)^{n}$$

#### Mean and Variance of Binomial distribution:

$$\mu_1^1 = \left[\frac{d}{dt} \{M_x(t)\}\right]_{t=0}$$

$$= \left[\frac{d}{dt} \{(pe^t + q)^n\}\right]_{t=0}$$

$$= \left[n(pe^t + q)^{n-1} pe^t\right]_{t=0}$$

$$= n(p+q)^{n-1} p \quad [\because p+q=1]$$

$$= np$$

# Mean of the Binomial distribution is = np

$$\mu_{2}^{1} = \left[\frac{d}{dt^{2}}^{2} \left\{M_{x}(t)\right\}\right]_{t=0}$$

$$= \left[\frac{d}{dt^{2}} \left\{(pe^{t} + q)^{n}\right\}\right]_{t=0}$$

$$= \left[\frac{d}{dt} \left\{n(pe^{t} + q)^{n-1} pe^{t}\right\}\right]_{t=0}$$

$$= np\left[e^{t} (n-1)(pe^{t} + q)^{n-2} pe^{t} + (pe^{t} + q)^{n-1} e^{t}\right]_{t=0}$$

$$= np\left[(n-1)(p+q)^{n-2} p + (p+q)^{n-1}\right] \quad [\because p+q=1]$$

$$= np\left[(n-1)p+1\right]$$

$$\mu_{2}^{1} = n(n-1)p^{2} + np$$

#### Variance of Binomial distribution:

$$\mu_{2} = \mu_{2}^{1} - (\mu_{1}^{1})^{2}$$

$$= n(n-1)p^{2} + np - n^{2}p^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= np(1-p)$$

$$= npq$$

# Variance of Binomial distribution is npq

#### Problems:

 The mean of a binomial distribution is 5 and standard deviation is 2. Determine the distribution.

Given mean = 
$$np = 5$$
  
S.D =  $\sqrt{npq} = 2$   
 $npq = 4$   
 $5q = 4$   
 $q = 4/5$   
 $p = 1-q=1/5$   
We have  $np = 5$   
 $n(1/5) = 5$   
 $n = 25$ 

Hence the Binomial distribution is

$$p(X=x) = n_{C_x} p^x q^{n-x} = 25_{C_x} (\frac{1}{5})^x (\frac{4}{5})^{25-x}, \quad x = 0,1,2,\dots,25.$$

# 2. The mean and variance of a binomial distribution are 4 and 4/3. Find $P(X \ge 1)$

Given mean 
$$np = 4$$

Variance 
$$npq = 4/3$$

$$\frac{npq}{np} = \frac{4/3}{4} = \frac{1}{3}$$

$$q=1/3$$
;  $p=2/3$ 

3. An irregular 6 faced die is such that the probability that it gives 3 even numbers in 5 throws is twice the probability that it gives 2 even numbers in 5 throws. How many sets of exactly 5 trials can be expected to give no even number out of 2500 sets?

Let X denote the number of even numbers obtained in 5 trias.

## Given P(x=3)=2 \*P(x=2)

$$5_{C_3} p^3 q^2 = 2 * 5_{C_2} p^2 q^3$$
 $p = 2q = 2(1 - p) = 2 - 2p$ 
 $3p = 2$ 
i.e.,  $p = 2/3$ 
 $q = 1/3$ 

Now, P(getting no even number)=P(x=0)

$$5_{C_0} p^0 q^5 = (1/3)^5 = \frac{1}{243}$$

Number of sets having no success (no even number) out of N sets=N \*P(x=0)

Required number of sets=2500\*1/243=10, nearly.

#### Poisson distribution

A discrete random variable X is said to follow Poisson distribution with parameter  $\lambda$  if its probability mass

function is 
$$P(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
,  $x = 0,1,2....\infty$ 

Poisson distribution as limiting form of Binomial distribution under the following conditions

- i) n, the number of trials is indefinitely large, i.e  $n \rightarrow \infty$ .
- ii) p, the constant probability of success in each trial is very small. i.e.,  $p \rightarrow 0$ .
- iii) np (= $\lambda$ ) is finite (or) p= $\lambda$ /n and q=1- $\lambda$ /n, where  $\lambda$  is a positive real number.

The following are some of the examples, which may be analysed using Poisson distribution.

- The number of alpha particles emitted by a radioactive source in a given time interval.
- 2. The number of telephone calls received at a telephone exchange in a given time interval.

- 3. The number of defective articles in a packet of 100.
- The number of printing errors at each page of a book.
- The number of road accidents reported in a city per day.

# **Moment generating function:**

The MGF of the Poisson variate X with parameter  $\lambda$  is given as

$$M_{x}(t) = E[e^{tx}] = \sum_{x=0}^{\infty} e^{tx} p(x)$$

$$= \sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{t})^{x}}{x!}$$

$$= e^{-\lambda} e^{\lambda e^{t}} \qquad \because \sum_{x=0}^{\infty} \frac{a^{x}}{x!} = e^{a}$$

$$= e^{\lambda(e^{t} - 1)}$$

# Mean and variance of Poisson distribution

$$\mu_{1}^{1} = \left[\frac{d}{dt}M_{x}(t)\right]_{t=0}$$

$$= \left[\frac{d}{dt}e^{-\lambda}e^{\lambda e^{t}}\right]_{t=0}$$

$$= \left[e^{-\lambda}e^{\lambda e^{t}}\lambda e^{t}\right]_{t=0}$$

$$= e^{-\lambda}e^{\lambda}\lambda$$

$$= \lambda$$

# Mean of Poisson distribution = $\lambda$

$$\mu_{2}^{1} = \left[\frac{d^{2}}{dt^{2}}M_{x}(t)\right]_{t=0}$$

$$= \left[\frac{d}{dt}\left(\frac{d}{dt}e^{-\lambda}e^{\lambda e^{t}}\right)\right]_{t=0}$$

$$= \left[\frac{d}{dt}\left(e^{-\lambda}e^{\lambda e^{t}}\lambda e^{t}\right)\right]_{t=0}$$

$$= \lambda e^{-\lambda}\left[e^{\lambda e^{t}}.e^{t} + e^{t}e^{\lambda e^{t}}\lambda e^{t}\right]_{t=0}$$

$$= \lambda e^{-\lambda}\left[e^{\lambda} + e^{\lambda}\lambda\right]$$

$$= \lambda e^{-\lambda}\left[e^{\lambda} + \lambda^{2}e^{-\lambda}e^{\lambda}\right]$$

$$\mu_{2}^{1} = \lambda^{2} + \lambda$$

#### Variance of Poisson distribution

$$\mu_2 = \mu_2^1 - (\mu_1^1)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

In Poisson distribution Mean = Variance =  $\lambda$ 

#### Problems:

- 1. The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month.
  - a) Without a breakdown
  - b) With only one breakdown and
  - c) With atleast one breakdown

Let X denotes the number of breakdowns of the computer in a month.

X follows a Poisson distribution with mean  $\lambda = 1.8$ 

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
$$= \frac{e^{-1.8} (1.8)^{x}}{x!}$$

a) 
$$p(x = 0) = e^{-1.8} = 0.1653$$

b) 
$$p(x = 1) = e^{-1.8}(1.8) = 0.2975$$

c) 
$$p(x \ge 1) = 1 - p(x = 0) = 0.8347$$

2. If the probability of a defective fuse from a manufacturing unit is 2%, in a box of 200 fuses, find the probability that a) exactly 4 fuses are defective b) more than 3 fuses are defective.

P=0.02, n=200  
Mean = 
$$\lambda$$
 =np=200\*0.02=4

a) 
$$P(X = 4) = \frac{e^{-\lambda} \lambda^{X}}{x!}$$
  
=  $\frac{e^{-4} (4)^{4}}{4!} = 0.1952$ 

b) 
$$P(x>3) = 1 - P(x \le 3)$$
  
=  $1 - [p(x=3) + p(x=2) + p(x=1) + p(x=0)]$   
=  $1 - e^{-4} \left[ \frac{4^3}{3!} + \frac{4^2}{2!} + \frac{4^1}{1!} + \frac{4^0}{0!} \right] = 0.5669$ 

## Fitting of Binomial Distribution

Fitting a binomial distribution means assuming that the given distribution is approximately binomial and hence finding the probability mass function and then finding the theoretical frequencies.

#### Problem:

### Fit a binomial distribution for the following data:

| X | 0 | 1  | 2  | 3  | 4 | 5 | 6 | Total |
|---|---|----|----|----|---|---|---|-------|
| f | 5 | 18 | 28 | 12 | 7 | 6 | 4 | 80    |

| X | f                 | fx              | Theoretical frequency |
|---|-------------------|-----------------|-----------------------|
| 0 | 5                 | 0               | 4                     |
| 1 | 18                | 18              | 15                    |
| 2 | 28                | 56              | 25                    |
| 3 | 12                | 36              | 22                    |
| 4 | 7                 | 28              | 11                    |
| 5 | 6                 | 30              | 3                     |
| 6 | 4                 | 24              | 0                     |
|   | $\sum f = N = 80$ | $\sum fx = 192$ |                       |

$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{192}{80} = 2.4$$

$$np = 2.4(or)6p = 2.4$$

$$p = 0.4, \quad q = 0.6$$

## Theoretical distribution is given by

$$= N \times P(X = x)$$

$$= 80 \times \sum_{x=0}^{6} 6_{c_{x}} p^{x} q^{n-x}$$

$$= 80 \times q^{6} + 6_{c_{1}} q^{6-1} p + 6_{c_{2}} q^{6-2} p^{2} + \dots$$

$$= 80 \times [(0.6)^{6} + 6_{c_{1}} (0.6)^{6-1} (0.4) + 6_{c_{2}} (0.6)^{6-2} (0.4)^{2} + 6_{c_{3}} (0.6)^{6-3} (0.4)^{3} + 6_{c_{4}} (0.6)^{6-4} (0.4)^{4} + 6_{c_{5}} (0.6)^{6-5} (0.4)^{5} + 6_{c_{6}} (0.4)^{6}]$$

$$x: 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

$$f: 3.73 \qquad 14.93 \quad 24.88 \quad 22.12 \quad 11.06 \quad 2.95 \qquad 0.33$$

## Fitting of Poisson Distribution

 Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

| Deaths    | 0   | 1  | 2  | 3 | 4 |
|-----------|-----|----|----|---|---|
| Frequency | 122 | 60 | 15 | 2 | 1 |

| X | f       | fx              | Theoretical frequency |
|---|---------|-----------------|-----------------------|
| 0 | 122     | 0               | 121                   |
| 1 | 60      | 60              | 61                    |
| 2 | 15      | 30              | 15                    |
| 3 | 2       | 6               | 3                     |
| 4 | 1       | 4               | 0                     |
|   | N = 200 | $\sum fx = 100$ |                       |

$$\overline{x} = \frac{\sum fx}{\sum f} = \frac{100}{200} = 0.5$$

### Theoretical distribution is given by

$$= N \times P(X = x)$$

$$= 200 \times \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= 200 \times \frac{e^{-0.5} (0.5)^{x}}{x!} \quad putting \quad x = 0, 1, 2, 3, 4$$

$$x: \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$f: \quad 121 \quad 61 \quad 15 \quad 3 \quad 0$$

# **Exponential Distribution:**

**Definition:** A continuous random variable X is said to follow an exponential distribution with parameter  $\lambda > 0$ , if its probability density function is given by

$$f(x|\lambda) = \lambda e^{-\lambda x}, \ x > 0, \lambda > 0.$$

It is also known as negative exponential distribution.

- Mean of the exponential distribution is  $\frac{1}{\lambda}$ .
- Variance of the exponential distribution is  $\frac{1}{\lambda^2}$ .

- The moment generating function of the exponential distribution is  $^{\lambda}/_{\lambda}-t$  ,  $_{\lambda}>t.$
- The  $r^{\text{th}}$  moment about the origin is  $r!/_{\lambda}r$  ,  $r=1,2,3,\ldots$

## **Examples related to exponential distribution:**

## Example:

The mileage which car owners get with a certain kind of radial tire is a RV having an exponential distribution with mean 40,000 km. Find the probabilities that one of these tires will last (i) at least 20,000 km and (ii) at most 30,000 km.

#### Solution:

Let X denote the mileage obtained with the tire

$$f(x) = \frac{1}{40,000} e^{-x/40,000} x > 0$$

(i) 
$$P(X \ge 20,000) = \int_{20,000}^{\infty} \frac{1}{40,000} e^{-x/40,000} dx$$
  

$$= \left[ -e^{-x/40,000} \right]_{20,000}^{\infty}$$

$$= e^{-0.5} = 0.6065$$
(ii)  $P(X \le 30,000) = \int_{0}^{30,000} \frac{1}{40,000} e^{-x/40,000} dx$   

$$= \left[ -e^{-x/40,000} \right]_{0}^{30,000}$$

$$= 1 - e^{-0.75} = 0.5270$$

#### Exercise:

The time (in hours) required to repair a machine is exponentially distributed with parameter  $\lambda = 1/2$ .

- (a) What is the probability that the repair time exceeds 2 h?
- (b) What is the conditional probability that a repair takes at least 10 h given that its duration exceeds 9h?

HINT:  

$$X \sim ED(X)$$
, with  $\lambda = \frac{1}{2}$   
(a)  $P(x>2)$   
(b)  $P(x>2)$   
 $P(x>9) = P(x>9)$ 

## **Normal Distribution:**

**Definition:** A continuous random variable X is said to have a normal distribution if its probability function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty, \quad -\infty < \mu < \infty, \quad \sigma > 0,$$

where  $\mu$  and  $\sigma$  are the mean and standard deviation of the normal random variable X, respectively.

If X follows normal distribution, then it is denoted by  $X \sim N(\mu, \sigma)$ . It is also called as the Gaussian distribution.

### **Standard Normal Distribution:**

**Definition:** The standard normal random variable  $Z = \frac{X - \mu}{\sigma}$  is said to have a standard normal distribution if its probability function is defined by

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, -\infty < z < \infty.$$

A standard normal variate is denoted by N(0,1). The standard normal distribution is also known as a Z-distribution or a unit normal distribution. Standardization of a normal distribution helps us to make use of the tables of the area of the standard curve.

#### Distribution function of a standard normal variable:

The distribution function  $\phi(z)$  of a standard normal variate, Z is defined by

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} f(t)dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}t^{2}} dt.$$

Properties of  $\phi(z)$ :

- $\phi(-z) = 1 \phi(z)$
- $P(a \le X \le b) = \phi(\frac{b-\mu}{\sigma}) \phi(\frac{a-\mu}{\sigma})$
- $P(Z \le a) = P(Z \ge -a)$

## **Graph of normal distribution:**



## **Area under normal curve:**

The curve of a normal distribution is bell shaped, with the highest point over the mean  $\mu$ . It is symmetrical about a vertical line through  $\mu$ . The normal curve has the following features.

- The curve is symmetrical about the coordinate at its mean which locates the peak of the bell.
- The values of mean, median and mode are equal.
- **③** The curve extends from  $-\infty$  to  $\infty$ .
- The area covered between  $\mu \sigma$  and  $\mu + \sigma$  is 0.6826 (i.e. 68.26 % of area).
- **5** The area covered between  $\mu 2\sigma$  and  $\mu + 2\sigma$  is 0.9544 (i.e. 95.44 % of area).
- The area covered between  $\mu 3\sigma$  and  $\mu + 3\sigma$  is 0.9974 (i.e. 99.74 % of area).

## AREAS UNDER NORMAL CURVE



The following table gives the shaded area in the diagram viz. P(0 < Z < z)for different values of z.

| TABLE OF AREAS |                |       |              |              |        |             |       |       |       |      |
|----------------|----------------|-------|--------------|--------------|--------|-------------|-------|-------|-------|------|
| ₹Z→            | 0              | :1    | 2            | 3            | 4      | 3           | 4     | 7     |       |      |
| 4              | -0000          | 4040  | 4040         | 0130         | -0160  | 4199        | 4239- | 40279 | -0319 | 4035 |
| 4              | -0398          | -0438 | 0178         | -0517        | 0557   | 4596        | 6636  | 4675  | 9714  | 015  |
| -2             | -0793          | -0632 | 4971         | -0910        | 4948   | <b>0987</b> | 1036  | 1064  | -1108 | -114 |
| -3             | 11779          | -1217 | 1255         | -1295        | 1301   | -1368       | 1406  | -0443 | +1480 | -151 |
|                | 1554           | 1599  | 1638         | 1664         | 1700   | 1736        | 1772  | -1101 | 1844  | 187  |
| -3             | 1965           | 2930  | 1985         | -3019        | 9854   | 2008        | 3133  | 2157  | 21/90 | 222  |
| - 6            | 2357           | -3291 | 2334         | 12357        | -2349  | -2422       | 2454  | -3486 | 2517  | 254  |
| 7              | 2580           | 3611  | 2642         | 3673         | 4703   | 2734        | 2764  | 2794  | 2825  | 385  |
|                | 2881           | 3910  | 2939         | 3967         | 4995   | -3023       | 3054  | *3079 | 3106  | 411  |
|                | -0139          | -0146 | 3313         | 9238         | 1064   | 3389        | 4815  | 3340  | 3365  | -034 |
| 1.0            | 0413           | 3438  | 3465         | -3435        | -3500  | 4531        | 9554  | 3577  | 3599  | 960  |
| 14             | -3643          | 3615  | 3686         | 3708         | 3729   | 3309        | 3770  | 3790  | 4930  | 383  |
| 1/2            | 3849           | 3869  | 3888         | 3907         | -3925  | 3844        | 3962  | 3980  | 3997  | 401  |
| 13             | 4032           | 4049  | 4066         | 4992         | -4099  | 4115        | 4131  | 4147  | 4162  | 417  |
| 14             | 4155           | 4207  | 4222         | 4256         | 4250   | 4365        | 4279  | 4292  | 4306  | 431  |
| 1.5            | 4332           | 4345  | 4357         | 4370         | 4382 * | 7477        | 4406  | 4416  | 4429  | 444  |
| 1-6            | 4452           | 4463  | 4474         | 4484         | -4495  | 4505        | 4513  | 4525  | 4535  | 454  |
| 1.7            | 4554           | 4564  | 4573         | 4582         | 4991   | 4599        | 4606  | 4616  | 4525  | 465  |
| 14             | -4640          | 4649  | 4656         | 4664         | 4671   | 4678        | 4686  | 4693  | 4609  | 479  |
| 1.9            | 4713           | 4719  | 4736         | 4732         | 4738   | 4744        | 4750  | 4756  | 4781  | 476  |
| 2.4            | 4772           | 4778  | 4783         | 4788         | 4793   | 4778        | 4803  | 4806  | 4812  | 481  |
| 21             | 4825           | 4826  | 4830         | 4534         | 4838   | 4842        | 4546  | 4850  | 4834  | 483  |
| 23             | 4865           | 4854  | 4568         | 4871         | 4875   | 4678        | 4881  | 4884  | 4857  | 489  |
| 2.3            | -4899          | 4156  | -4896        | -4904        | 4904   | 4906        | -6909 | 4911  | 4913  | 491  |
| 24             | -818           | 4920  | 4922         | 4935         | 4927   | -1929       | 4936  | 4932  | 4934  | 493  |
| 25             | -4936          | 4946  | 4941         | 4943         | 4945   | 4946        | 4946  | 4958  | 4951  | 495  |
| 24             | -4953<br>-4965 | 4968  | 4956<br>4967 | 4957<br>4968 | 4859   | 4970        | 4971  | 4962  | 4963  | 496  |
| 28             | 4974           | 4975  | 4976         | 4977         | 4977   | 4978        | 4979  | 4979  | 4990  | 498  |
| 24             | 4981           | 4982  | 4983         | 4993         | 4564   | 4994        | 4985  | 4965  | 4986  | 491  |
| 3.0            | 4947           | 4987  | 4997         | 4915         | 4966   | -019        | 4559  | 49.99 | 4900  | 491  |
| 31             | -4940          | 4991  | 4991         | -4991        | -692   | 4992        | 4997  | 4993  | 4993  | 490  |
| 3-2            | -4993          | 4993  | 4994         | 4994         | 4994   | 4994        | 4994  | 4995  | 4995  | 455  |
| 33             | 4995           | 4995  | 4995         | 4996         | -4996  | 4996        | 4996  | 4996  | -0996 | 499  |
| 34             | -6997          | 4997  | -4997        | 4997         | 4997   | 4997        | 4997  | 4997  | 4997  | 499  |
| 3.5            | 4994           | 4998  | 4994         | -4994.       | -6998  | 4998        | 4994  | 4998  | 4951  | 491  |
| 36             | -4994          | 4998  | 4999         | 4999         | -4999  | 4999        | 4999  | 4999  | 4999  | 489  |
| 3.7            | 4999           | 4999  | 4999         | 4999         | 4999   | 4999        | 4999  | 4999  | -4999 | 494  |
| 34             | -5000          | -5000 | -5000        | -3000        | -5000  | 5000        | 5000  | 5000  | 5000  | -500 |

### Area under standard normal curve:

The standard normal random variable Z and the normal random variable X have identical curves.

- ① The standard normal curve covers 68.26 % area between z=-1 and z=1. Therefore,  $P(-1 \le Z \le 1) = 0.6826$ .
- ② The standard normal curve covers 95.44 % area between z=-2 and z=2. Therefore,  $P(-2 \le Z \le 2) = 0.9544$ .
- **3** The standard normal curve covers 99.74 % area between z = -3 and z = 3. Therefore,  $P(-3 \le Z \le 3) = 0.9974$ .

## Properties of a normal curve:

- In a normal distribution, mean deviation about mean is approximately equal to  $\frac{4}{5}$  times its standard deviation.
- In a normal distribution, the quartiles  $Q_1$  and  $Q_3$  are equidistant from the median.
- The normal curve is bell shaped and is symmetrical about  $X = \mu$ .
- The area bound by the normal curve and the x-axis equal to 1.
- The tails of the curve of a normal distribution extend identically in both sides of  $x = \mu$  and never touch the x-axis.
- The moment generating function of a normal distribution with respect to origin is  $e^{\mu t + \frac{1}{2}t^2\sigma^2}$ .

## **Examples related to normal distribution:**

#### **Example:**

The marks obtained by a number of students in a certain subject are approximately normally distributed with mean 65 and standard deviation 5. If 3 students are selected at random from this group, what is the probability that at least 1 of them would have scored above 75?

#### Solution:

If X represents the marks obtained by the students, X follows the distribution N(65, 5).

P(a student scores above 75)

= 
$$P(X > 75)$$
 =  $P\left(\frac{75 - 65}{5} < \frac{X - 65}{5} < \infty\right)$   
=  $P(2 < Z < \infty)$ , (where Z is the standard normal variate)  
=  $0.5 - P(0 < Z < 2)$   
=  $0.5 - 0.4772$ , (from the table of areas)  
=  $0.0228$ 

Let p = P(a student scores above 75) = 0.0228 then q = 0.9772 and n = 3.Since p is the same for all the students, the number Y, of (successes) students scoring above 75, follows a binomial distribution.

P(at least 1 student scores above 75)

= 
$$P(\text{at least 1 success})$$
  
=  $P(Y \ge 1) = 1 - P(Y = 0)$   
=  $1 - nC_0 \times P^0 q^n$   
=  $1 - 3C_0 (0.9772)^3$   
=  $1 - 0.9333$   
=  $0.0667$ 

#### **Example:**

In an engineering examination, a student is considered to have failed, secured second class, first class and distinction, according as he scores less than 45%, between 45% and 60%, between 60% and 75% and above 75% respectively. In a particular year 10% of the students failed in the examination and 5% of the students got distinction. Find the percentages of students who have got first class and second class. (Assume normal distribution of marks).

#### Solution:

i.e.,

and

Let X represent the percentage of marks scored by the students in the examination.

Let X follow the distribution  $N(\mu, \sigma)$ .

Given: P(X < 45) = 0.10 and P(X > 75) = 0.05

i.e., 
$$P\left(-\infty < \frac{X-u}{\sigma} < \frac{45-\mu}{\sigma}\right) = 0.10 \text{ and}$$

$$P\left(\frac{75-\mu}{\sigma} < \frac{X-\mu}{\sigma} < \infty\right) = 0.05$$

i.e., 
$$P\left(-\infty < Z < \frac{45 - \mu}{\sigma}\right) = 0.10 \text{ and}$$
  
 $P\left(\frac{75 - \mu}{\sigma} < Z < \infty\right) = 0.05$ 

$$P\left(0 < Z < \frac{\mu - 45}{\sigma}\right) = 0.40 \text{ and}$$
  
 $P\left(0 < Z < \frac{75 - \mu}{\sigma}\right) = 0.45$ 

From the table of areas, we get

$$\frac{\mu - 45}{\sigma} = 1.28$$
 and  $\frac{75 - \mu}{\sigma} = 1.64$   
 $\mu - 1.28 \ \sigma = 45$  (1)  
 $\mu + 1.64 \ \sigma = 75$  (2)

Solving equations (1) and (2), we get

$$\mu = 58.15$$
 and  $\sigma = 10.28$ 

Now P (a student gets first class)

$$= P(60 < X < 75)$$

$$= P\left\{ \frac{60 - 58.15}{10.28} < Z < \frac{75 - 58.15}{10.28} \right\}$$

$$= P\{0.18 < Z < 1.64\}$$

$$= P\{0 < Z < 1.64\} - P\{0 < Z < 0.18\}$$

$$= 0.4495 - 0.0714 = 0.3781$$

∴ Percentage of students getting first class = 38 (approximately) Now percentage of students getting second class

- = 100 (sum of the percentages of students who have failed, got first class and got distinction)
- = 100 (10 + 38 + 5), approximately.
- = 47 (approximately)

#### WEIBULL DISTRIBUTION

**Definition:** A continuous RV X is said to follow a Weibull distribution with parameters  $\alpha$ ,  $\beta > 0$ , if the RV  $Y = \alpha X^{\beta}$  follows the exponential distribution with density function  $f_Y(y) = e^{-y}$ , y > 0.

#### Density Function of the Weibull Distribution

Since  $Y = \alpha \cdot X^{\beta}$ , we have  $y = \alpha \cdot x^{\beta}$ .

By the transformation rule, derived in chapter 3, we have  $f_X(x) = f_Y(y) \left| \frac{dy}{dx} \right|$ ,

where  $f_X(x)$  and  $f_Y(y)$  are the density functions of X and Y respectively.

$$f_X(x) = e^{-y} \alpha \beta x^{\beta - 1}$$
  
=  $\alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}; x > 0 \quad [\because y > 0]$ 

#### Mean and Variance of Weibull Distribution

The raw moments  $\mu_r$  about the origin of the Weibull distribution are given by

$$\mu_{r}' = E(X'')$$

$$= \alpha \beta \int_{0}^{\infty} x^{r+\beta-1} e^{-\alpha x^{\beta}} dx$$

$$= \int_{0}^{\infty} \left(\frac{y}{\alpha}\right)^{\frac{r}{\beta}+1-\frac{1}{\beta}} e^{-y} \left(\frac{y}{\alpha}\right)^{\frac{1}{\beta}-1} dy,$$

on putting 
$$y = \alpha x^{\beta}$$
 or  $x = \left(\frac{y}{\alpha}\right)^{\frac{1}{\beta}}$   

$$= \alpha^{-r/\beta} \int_{0}^{\infty} y^{r/\beta} e^{-y} dy$$

$$= \alpha^{-r/\beta} \left[ \left(\frac{r}{\beta} + 1\right) \right]$$

$$\therefore \quad \text{Mean} = E(X) = \mu_{1}' = \alpha^{-\frac{1}{\beta}} \left[ \left(\frac{1}{\beta} + 1\right) \right]$$

$$\text{Var}(X) = E(X^{2}) - \{E(X)\}^{2}$$

$$= \alpha^{-2l\beta} \left[ \left[ \left(\frac{2}{\beta} + 1\right) - \left\{ \left[\left(\frac{1}{\beta} + 1\right)\right]^{2} \right] \right]$$

PROBLEM 1

In a certain city, the daily consumption of electric power in millions of kilowatthours can be treated as a RV having an Erlang distribution with parameters

 $\lambda = \frac{1}{2}$  and k = 3. If the power plant of this city has a daily capacity of 12 millions

kilowatt-hours, what is the probability that this power supply will be inadequate on any given day.

Let X represent the daily consumption of electric power (in millions of kilowatt-hours). Then the density function of X is given as

$$f(x) = \frac{\left(\frac{1}{2}\right)^3}{\sqrt{(3)}} x^2 e^{-x/2}, x > 0$$

P{the power supply is inadequate)

$$= P(X > 12) = \int_{12}^{\infty} f(x) dx \quad [\because \text{ The daily capacity is only } 12]$$

$$= \int_{12}^{\infty} \frac{1}{|(3)|} \cdot \frac{1}{2^3} x^2 e^{-x/2} dx$$

$$= \frac{1}{16} \left[ x^2 \left( \frac{e^{-x/2}}{-\frac{1}{2}} \right) - 2x \left( \frac{e^{-x/2}}{\frac{1}{4}} \right) + 2 \left( \frac{e^{-x/2}}{-\frac{1}{8}} \right) \right]_{12}^{\infty}$$

$$= \frac{1}{16} e^{-6} (288 + 96 + 16)$$

$$= 25 e^{-6} = 0.0625$$

If a company employes n sales persons, its gross sales in thousands of rupees may be regarded as a RV having an Erlang distribution with  $\lambda = \frac{1}{2}$  and  $k = 80 \sqrt{n}$ . If the sales cost is Rs. 8000 per salesperson, how many salespersons should the company employ to maximise the expected profit?

Let X represent the gross sales (in Rupees) by n salespersons.

X follows the Erlang distribution with parameters  $\lambda = \frac{1}{2}$  and  $k = 80,000 \sqrt{n}$ .

$$E(X) = \frac{k}{\lambda} = 1,60,000 \sqrt{n}$$

If y denotes the total expected profit of the company, then

y = total expected sales - total sales cost

$$= 1,60,000 \sqrt{n} - 8000 n$$

$$\frac{dy}{dn} = \frac{80,000}{\sqrt{n}} - 8000$$

$$= 0, \text{ when } \sqrt{n} = 10 \text{ or } n = 100$$

$$\frac{d^2 y}{dn^2} = -\frac{40,000}{n^{3/2}} < 0, \text{ when } n = 100.$$

Therefore, y is maximum, when n = 100.

That is the company should employ 100 salespersons in order to maximise the total expected profit.

Consumer demand for milk in a certain locality, per month, is known to be a general Gamma (Erlang) RV. If the average demand is a litres and the most likely demand is b litres (b < a), what is the variance of the demand?

Let X represent the monthly consumer demand of milk.

Average demand is the value of E(X).

Most likely demand is the value of the mode of X or the value of X for which its density function is maximum.

If f(x) is the density function of X, then

$$f(x) = \frac{\lambda^{k}}{|(k)|} x^{k-1} e^{-\lambda x} \quad x > 0$$

$$f'(x) = \frac{\lambda^{k}}{|(k)|} [(k-1) x^{k-2} e^{-\lambda x} - \lambda x^{k-1} e^{-\lambda x}]$$

$$= \frac{\lambda^{k}}{|(k)|} x^{k-2} e^{-\lambda x} \{(k-1) - \lambda x\}$$

$$= 0, \text{ when } x = 0, x = \frac{k-1}{\lambda}$$

$$f'''(x) = \frac{\lambda^{k}}{|(k)|} [-\lambda x^{k-2} e^{-\lambda x} + \{(k-1) - \lambda x\} \frac{d}{dx} \{x^{k-2} e^{-\lambda x}\}]$$

$$< 0, \text{ when } x = \frac{k-1}{\lambda}$$

Therefore f(x) is maximum, when  $x = \frac{k-1}{\lambda}$ .

i.e., Most likely demand = 
$$\frac{k-1}{\lambda} = b$$
 (1)

and 
$$E(X) = \frac{k}{\lambda} = a$$
 (2)

Now 
$$\operatorname{Var}(X) = \frac{k}{\lambda^2} = \frac{k}{\lambda} \cdot \frac{1}{\lambda}$$
  
=  $a(a-b)$ , [from (1) and (2)]

Each of the 6 tubes of a radio set has a life length (in years) which may be considered as a RV that follows a Weibull distribution with parameters  $\alpha = 25$ and  $\beta = 2$ . If these tubes function independently of one another, what is the probability that no tube will have to be replaced during the first 2 months of service?

If X represents the life length of each tube, then its density function f(x) is given by

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}} \quad x > 0$$

i.e., 
$$f(x) = 50x e^{-25x} x > 0$$

Now P (a tube is not to be replaced during the first 2 months)

$$=P\left(X>\frac{1}{6}\right)$$

$$= P\left(X > \frac{1}{6}\right)$$

$$= \int_{\frac{1}{6}}^{\infty} 50x \ e^{-25x^2} \ dx$$

$$= \left(-e^{-25x^2}\right)_{\frac{1}{6}}^{\infty} = e^{-25/36}$$
these are not to be replaced during the first 2 months)

$$= \left(-e^{-25x^2}\right)_{\frac{1}{6}}^{\infty} = e^{-25/36}$$

. P(all the 6 tubes are not to be replaced during the first 2 months)

= 
$$(e^{-25/36})^6$$
 (by independence)  
=  $e^{-25/6}$   
= 0.0155

$$= 0.0155$$

If the time T to failure of a component follows a Weibull distribution with parameters  $\alpha$  and  $\beta$ , find the hazard rate or conditional failure rate at time t of the component.

Refer to Example (19) in Worked Example 2(A).

If f(t) is the density function of T and h(t) is the hazard rate at time t, then

$$h(t) = \frac{f(t)}{1 - F(t)}$$

where 
$$F(t)$$
 is the distribution function of  $T$ .  
Now  $f(t) = \alpha \beta \times t^{\beta - 1} e^{-\alpha t^{\beta}} \quad t > 0$ 

$$F(t) = P(T \le t)$$

$$=\int_{0}^{t}\alpha\beta t^{\beta-1},\,e^{-\alpha t^{\beta}}\,\mathrm{d}t$$

$$= \left[ -e^{-\alpha t^{\beta}} \right]_0^t$$
$$= 1 - e^{-\alpha t^{\beta}}$$

$$= \left[ -e^{-\alpha t^{\beta}} \right]_{0}$$

$$= 1 - e^{-\alpha t^{\beta}}$$

$$\therefore h(t) = \frac{\alpha \beta t^{\beta - 1} e^{-\alpha t^{\beta}}}{e^{-\alpha t^{\beta}}}$$

If the life X (in years) of a certain type of car has a Weibull distribution with the parameter  $\beta = 2$ , find the value of the parameter  $\alpha$ , given that probability that the life of the car exceeds 5 years is  $e^{-0.25}$ . For these values of  $\alpha$  and  $\beta$ , find the mean and variance of X.

The density function of X is given by

$$f(x) = 2\alpha x e^{-\alpha x^2}, x > 0 \quad [\because \beta = 2]$$

Now 
$$P(X > 5) = \int_{5}^{\infty} 2\alpha x e^{-\alpha x^{2}} dx$$
  
$$= \left(-e^{-\alpha x^{2}}\right)_{5}^{\infty}$$
$$= e^{-25\alpha}$$

Given that 
$$P(X > 5) = e^{-0.25}$$
  
 $\therefore e^{-25\alpha} = e^{-0.25}$ 

$$\alpha = \frac{1}{100}$$

For the Weibull distribution with parameters  $\alpha$  and  $\beta$ ,  $E(X) = \alpha^{-1/\beta} \left( \frac{1}{\beta} + 1 \right)$ 

$$\therefore \text{ Required mean} = \left(\frac{1}{100}\right)^{-\frac{1}{2}} \cdot \left[\left(\frac{3}{2}\right)\right]$$
$$= 10 \times \frac{1}{2} \cdot \left[\left(\frac{1}{2}\right)\right]$$
$$= 5 \sqrt{\pi}.$$

$$Var(X) = \alpha^{-\frac{2}{\beta}} \left[ \left[ \left( \frac{2}{\beta} + 1 \right) - \left\{ \left[ \frac{1}{\beta} + 1 \right]^{2} \right] \right]$$

$$= \left(\frac{1}{100}\right)^{-1} \left[ \overline{(2)} - \left\{ \overline{\left(\frac{3}{2}\right)} \right\}^2 \right]$$

$$= 100 \left[ 1 - \left(\frac{1}{2}\sqrt{\pi}\right)^2 \right]$$

$$= 100 \left(1 - \frac{\pi}{4}\right)$$

#### Gamma and Weibull Distribution

#### GAMMA DISTRIBUTION:

**Definition:** A continuous RV X is said to follow an *Erlang distribution* or General Gamma distribution with parameters  $\lambda > 0$  and k > 0, if its probability density function is given by

$$f(x) = \begin{cases} \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\lceil (k) \rceil}, & \text{for } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$
We note that 
$$\int_0^\infty f(x) \, dx = \frac{\lambda^k}{\lceil (k) \rceil} \int_0^\infty x^{k-1} e^{-\lambda x} \, dx$$

$$= \frac{1}{\lceil (k) \rceil} \int_0^\infty t^{k-1} e^{-t} \, dt, \text{ [on putting } \lambda x = t]$$

$$= 1$$

Hence f(x) is a legitimate density function.

#### Mean and Variance of Erlang Distribution

The raw moments  $\mu$ , about the origin of the Erlang distribution are given by

$$\mu_{r}' = E(X')$$

$$= \int_{0}^{\infty} \frac{\lambda^{k}}{\lceil (k) \rceil} x^{k+r-1} e^{-\lambda x} dx$$

$$= \frac{\lambda^{k}}{\lceil (k) \rceil} \cdot \frac{1}{\lambda^{k+r}} \int_{0}^{\infty} t^{k+r-1} e^{-t} dt, \text{ (on putting } \lambda x = t)$$

$$= \frac{1}{\lambda^{r}} \frac{\lceil (k+r) \rceil}{\lceil (k) \rceil}$$

Mean = 
$$E(X) = \frac{1}{\lambda} \cdot \frac{\lceil (k+1) \rceil}{\lceil (k) \rceil} = \frac{k}{\lambda}$$
  
Var(X) =  $E(X^2) - [E(X)]^2$   
=  $\frac{1}{\lambda^2} \cdot \frac{\lceil (k+2) \rceil}{\lceil (k) \rceil} - \left(\frac{k}{\lambda}\right)^2$   
=  $\frac{1}{\lambda^2} \left\{ k(k+1) - k^2 \right\} = \frac{k}{\lambda^2}$