Cuiz 1

Last name

First + middle name(s)

PID

Instructions:

- Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit
- (1) Find the equivalent resistance R_{eq} such that for the same V_S the current i is the same in both circuits. (2 points)

- (2) In the problem below, the voltmeter is ideal.
 - (a) What is the reading X of the voltmeter? (2 points)
 - (b) What is the value of the voltage \emph{v}_a ? (2 points)

		B		
		V-meter		1
black	3 A		- ΛΛΛ	red
+		+ v _a	•—	_
		- -		

X	
v_a	

	hat is the power P_1 received by the independent voltage source? point)	P_1	
	hat is the power P_2 <u>received</u> by the <u>dependent voltage source</u> ? points)	P_2	
(c) Wł	hat is the value of the current X? (2 points)	X	

(d) Redraw the circuit and include an (ideal) ammeter that allows you to measure the current X. Make sure you indicate where the red and black terminals are. (2 points)

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{l}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

$$sin(\pi - \alpha) = sin(\alpha)$$
 $cos(\pi - \alpha) = -cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): \quad 0 \quad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3} \qquad \infty$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$