Introduction Replication and Comparison

# REPLICATION OF "EDUCATIONAL EXPANSION AND ITS HETEROGENEOUS RETURNS FOR WAGE WORKERS" BY MICHAEL GEBEL AND FRIEDHELM PFEIFFER

Luisa Hammer and Marcelo Avila

22 Nov 2018

# Introduction

#### **OUTLINE**

- Theoretical Framework
  - Gebel & Pfeiffer (2010)
  - Returns to education
- Empirical framework
  - Correlated random coefficients model
  - Conditional Mean approach
  - Control funtion approach
- Replication
  - Set-up
  - Code
  - Comparison of results

# THEORETICAL FRAMEWORK

# SUMMARY OF GEBEL AND PFEIFFER (2010)

- Basic idea: examine evolution of returns to education in West German labour market.
- Focus on change in returns to education over time as a consequence to education expansion in Germany.
- methodology:
  - Wooldrigdge's (2004) conditional mean independence
  - Garen's (1984) control function approach, that requires an exclusion restriction
  - as well as OLS regression
- data: SOEP 1984-2006

# BACKGROUND INFORMATION I

#### Increase in educational attainment



FIGURE 1: Source: SOEP 1984-2016, own estimations.

# BACKGROUND INFORMATION II

#### How can educational expansion affect the returns to education?

- Standard theory: an increase of labor supply of high-skilled workers should decrease the returns to education
- High-educated workers with higher unobserved motivation / ability which positively affects wages
- If more less talented are accepted to higher education, this should decrease the average productivity levels of higher educated workers
   -> overall effect not clear

#### Problems in the estimation of returns to education

- unobserved characteristics leading to **selection bias**:
  - higher ability and motivation to stay longer in education.
  - select jobs with higher expected returns.

#### ECONOMETRIC APPROACH

# EMPIRICAL FRAMEWORK (DERIVATION) I

The study is based on the **correlated random coefficient model** (Wooldridge, 2004) specified as:

$$ln Y_i = a_i + b_i S_i$$

with 
$$a_i = a'X_i + \varepsilon_{ai}$$
, and  $b_i = b'X_i + \varepsilon_{bi}$ 

where  $\ln Y_i$ : log of wages and  $S_i$  years of schooling of individual i

- The model has, therefore, an individual-specific intercept  $a_i$  and slope  $b_i$  dependent on observables  $X_i$  and unobservables  $\varepsilon_{ai}$  and  $\varepsilon_{bi}$ .
- Do not assume that  $b_i$  and  $S_i$  are independent -> Individuals with higher expected benefits from education are more likely to remain longer in education ->  $b_i$  may be correlated with  $S_i$  indicating positive self-selection.

# EMPIRICAL FRAMEWORK (DERIVATION) II

 focus: estimate average partial effect (APE), which is the return per additional year of education for a randomly chosen individual (or averaged across the population)

$$E(\partial \ln Y/\partial S) = E(b_i) = \beta$$

In case of homogeneous returns to education the wage equation reduces to:

$$\ln Y_i = a'X_i + \bar{b}S_i + \varepsilon_{ai}$$

- Unobserved heterogeneity may only affect the intercept of the wage equation.
- $\blacksquare$  still potential endogeneity if  $\varepsilon_{ai}$  correlates with  $S_i$

# EMPIRICAL FRAMEWORK (INTUITION) I



FIGURE 2: Simple OLS

# EMPIRICAL FRAMEWORK (INTUITION) II



 $\ensuremath{\mathrm{Figure}}$  3: Multiple OLS with homogeneous return to Educ

# EMPIRICAL FRAMEWORK (INTUITION) III



FIGURE 4: Correlated Random Coefficient Model

#### DISTINCTION TO CONVENTIONAL METHODS

- OLS
  - ability and "background" bias
- IV Methods:
  - suitable if assume homogeneous returns to education.
  - if education is correlated with unobserved individual heterogeneity, IV methods may fail to identity APE.
  - alternative: Local Average Treatment Effect if interested in effect of educational policy reforms.

#### CONDITIONAL MEAN INDEPENDENCE

According to Wooldridge (2004, pg.7), APE is identified by:

$$E(\ln Y_i \mid a_i, b_i, S_i, X_i,) = E(\ln Y_i \mid a_i, b_i, S_i) = a_i + b_i S_i \qquad (A.1)$$

$$E(S_i \mid a_i, b_i, X_i) = E(S_i \mid X_i) \text{ and } \operatorname{Var}(S_i \mid a_i, b_i, X_i) = \operatorname{Var}(S_i \mid X_i) \tag{A.1}$$

- $X_i$  should be "good predictors"" of treatment  $S_i$  (Wooldridge 2004, pg.7).
- (A.1): Redundancy of  $X_i$  given  $a_i$  and  $b_i$  and  $S_i$ .
- (A.2): In the first two conditional moments of  $S_i$ ,  $a_i$  and  $b_i$  are redundant -> "Staying longer in Education is determined by X covariates".

# Estimator for $\beta$ and GLM

The **APE** can be estimated by:

$$\hat{\beta} = \frac{1}{N} \sum_{i=1}^{N} \left( \left( S_i - \hat{E}(S_i \mid X_i) \ln Y_i \right) \middle/ \hat{Var}(S_i \mid X_i) \right)$$

$$E(S_i \mid X_i) = e^{\gamma X_i} \quad \text{and} \quad Var(S_i \mid X_i) = \sigma^2 e^{\gamma X_i}$$

Where  $\sigma^2$  can be consistently estimated by the mean of squared Pearson residuals and standard errors are bootstrapped.

# CONTROL FUNCTION APPROACH I

- Based on proposition by Garen (1984).
- CF approach can identify APE in heterogeneous returns while standard IV approach may not.
- Similar to Heckman two-step estimator.
- Models schooling choice explicitly in first step

First step: modelling schooling choice

$$S_i = c'X_i + dZ_i + v_i \quad \text{with} \quad E(v_i \mid Z_i, X_i) = 0$$

#### where:

- lacksquare  $X_i$  and  $Z_i$  influence the educational decision.
- $\ \ \, v_i \colon$  Error term incorporating unobserved determinants of education choice.

# CONTROL FUNCTION APPROACH II

- $Z_i$ : Exclusion restriction (instrument).
- $v_i$ ,  $\varepsilon_{ai}$  and  $\varepsilon_{bi}$  are normally distributed with zero means and positive variances, that are possibly correlated
- $lackbox{ }v_i$  is positive if an individual acquires higher education than expected conditional on observed characteristics

Second step: augmented wage equation

$$\ln Y_i = a_i + \beta S_i + \gamma_1 v_i + \gamma_2 V_i S_i + w_i$$

where:

- lacksquare  $\gamma_1$  and  $\gamma_2$  are the control functions
  - $\label{eq:gamma_1} \blacksquare \ \gamma_1 = cov(\varepsilon_{ai}, v_i) / var(v_i)$
  - $\label{eq:gamma_2} \blacksquare \ \gamma_2 = cov(\varepsilon_{bi}, v_i) / var(v_i)$
- $lackbox{\blacksquare} E(w_i \mid X_i, S_i, v_i) = 0$  (as shown in Heckman / Robb, 1985)

# CONTROL FUNCTION APPROACH III

#### Interpretation of the coefficients of the control functions

- - Thus, if  $\gamma_1$  is positive, the unobserved factors affect schooling and wages positively
- $\ \ \, \gamma_2$  describes how this effect changes with increasing levels of education
  - Positive coefficient would indicate that those with unexpected educational "over-achievement" tend to earn higher wages

EPLICATION AND COMPARISON
ESULTS
DINCLUSION
JE END

# REPLICATION AND COMPARISON

INTRODUCTION REPLICATION AND COMPARISON

EPLICATION AND COMPARISON
ESULTS
ONCLUSION

# REPLICATION AND COMPARISON

# Set-up

- We use the same sample: West Germans (not foreign-born or self-employed) between 25 and 60 years who work full-time
- We have less observations than Gebel and Pfeiffer (2010) per survey year after we delete all observations with missing values
- Yet, we extend the observation period until 2016
- Three estimation methods: OLS, CMI CF
- control variables: age and age squared, gender, father's education, mother's education, father's occupation, rural or urban household, number of siblings (as instrument)

# STATA IMPLEMENTATION (CMI)

```
*** GLM regression with Poisson distribution
glm school sex age age_sq rural edu_f occ_f edu_m, family(poisson) link(log)
*** Predict conditional mean and extract pearson residuals
predict condMean, mu
predict res_pears, pearson
*** Calculate residual
gen resid = school - condMean
*** Estimate sigma^2
egen sigma_sq_pears = mean(res_pears^2)
*** generate APE
egen bCMI = mean((resid*lnw)/ (sigma_sq_pears*condMean))
```

# STATA IMPLEMENTATION (BOOTSTRAPPING)

```
program define myCMI, rclass // return scalar as r() macro
  preserve // using preserve/restore due to repeated sampling
    bsample // setup for boostrap sampling
     ***********
     * run estimation as in previous slide *
     *** Return variable of interest
     local bCMT=bCMT
     return scalar bCMI return = `bCMI'
  restore
end
*** Run boostrapping
forv n = 1984/endYear' {
  bootstrap r(bCMI_return), reps(`reps') seed(42): myCMI if syear == `n'
```

# STATA IMPLEMENTATION (CF)

```
* First step: Estimate the reduced form of schooling, i.e. regress
* schooling on all exogeneous variables including the instrument (siblings)
reg school sex age age_sq rural edu_f edu_m occ_f sibl if syear==`n'

* Obtain the residuals
predict v`n', res

* Second step: Estimate the structural equation and include the
* residuals from the reduced form as an additional regressor
reg lnw school sex age age_sq rural edu_f edu_m ///
occ_f v`n' c.v`n'#c.school if syear=='n'
```

REPLICATION AND COMPARIS
RESULTS
CONCLUSION

# RESULTS

# RESULTS COMPARISON I



FIGURE 5: Replication results: Comparison between OLS, CMI and CF

# RESULTS COMPARISON II



FIGURE 6: Original Results (GP 2010, pg.30)

#### ESTIMATED RETURNS ON EDUCATION

- Estimates from OLS and CMI are similar, yet, CMI produces lower estimates which points to a positive self-selection bias
- Generally, CF estimates are much more volatile and less precise

Differences between replicated and original estimations - Our OLS estimates are on average larger than those of Gebel and Pfeiffer (2010) by 0.004 percentage points - Our CMI estimates are on average larger than those of Gebel and Pfeiffer (2010) by 0.002 percentage points (first years lower, than larger) - Our CF estimates are on average significantly larger by 0.032 percentage points, though the divergence gets smaller from 2000 onwards

# CONTROL FUNCTION ESTIMATES I

#### Instrumental variable in first step

- Number of siblings is significant at the 0.1% level for all years
- As expected, the number of siblings has a negative impact on the years of schooling (the estimates range between -0.13 and -0.23)
- We would assume that the instrument does not directly affect the error term in the wage equation

#### Coefficients of the control functions

- $\ \ \, \gamma_1$  is negative for majority of years, yet very small and insignificant in all years
  - Gebel and Pfeiffer (2010) estimate a positive coefficient in the 1980s and 1990s - but also insignificant
- lacksquare  $\gamma_2$  is negative and close to zero for most years
  - Indicates that those with unexpectedly high education have lower returns to education

# CONTROL FUNCTION ESTIMATES II

- Similarly, they are only slightly significant in the 1980s, and stronger significant in the early 2000s
- The estimates are very similar to those of Gebel and Pfeiffer (2010)
- that both coefficients are (mostly) negative hints that educational expansion caused more "less abled" to achieve higher education

### HETEROGENOUS RETURNS TO EDUCATION



 ${\rm FIGURE}\ 7\colon\ \text{Replication results:}\ \textbf{APE}\ \text{by gender (CMI approach)}$ 

### HETEROGENOUS RETURNS TO EDUCATION



FIGURE 8: Original Results (GP 2010, pg.34

# RESULTS: CONTROL FUNCTION (REPLICATION)

TABLE 1: Summary of Control Function estimates (replication)

|      | First               | Stage | Second Stage |       |       |           |       |       |  |
|------|---------------------|-------|--------------|-------|-------|-----------|-------|-------|--|
|      | IV: Nr. of Siblings |       | $v_i$        |       |       | $v_i S_i$ |       |       |  |
| year | coef.               | s.e.  | coef.        | s.e.  | р     | coef.     | s.e.  | р     |  |
| 1984 | -0.163              | 0.035 | -0.019       | 0.036 | 0.601 | -0.003    | 0.001 | 0.027 |  |
| 1985 | -0.191              | 0.036 | 0.005        | 0.030 | 0.864 | -0.003    | 0.001 | 0.024 |  |
| 1986 | -0.129              | 0.034 | -0.039       | 0.041 | 0.344 | -0.001    | 0.001 | 0.681 |  |
| 1987 | -0.133              | 0.033 | -0.064       | 0.039 | 0.105 | -0.002    | 0.001 | 0.141 |  |
| 1988 | -0.150              | 0.034 | -0.031       | 0.034 | 0.365 | -0.003    | 0.001 | 0.038 |  |
| 1989 | -0.153              | 0.033 | 0.018        | 0.033 | 0.590 | -0.002    | 0.001 | 0.056 |  |
| 1990 | -0.164              | 0.032 | -0.027       | 0.032 | 0.404 | -0.001    | 0.001 | 0.341 |  |
| 1991 | -0.167              | 0.033 | 0.014        | 0.034 | 0.685 | -0.002    | 0.001 | 0.152 |  |
| 1992 | -0.178              | 0.032 | -0.007       | 0.030 | 0.808 | -0.001    | 0.001 | 0.298 |  |
| 1993 | -0.162              | 0.033 | -0.033       | 0.033 | 0.311 | -0.001    | 0.001 | 0.264 |  |
| 1994 | -0.176              | 0.034 | -0.035       | 0.029 | 0.233 | -0.001    | 0.001 | 0.225 |  |
| 1995 | -0.172              | 0.036 | -0.026       | 0.032 | 0.422 | -0.002    | 0.001 | 0.077 |  |
| 1996 | -0.195              | 0.037 | -0.015       | 0.031 | 0.624 | -0.003    | 0.001 | 0.058 |  |
| 1997 | -0.214              | 0.038 | -0.030       | 0.027 | 0.268 | -0.002    | 0.001 | 0.225 |  |

# HETEROGENOUS RETURNS TO EDUCATION BY GENDER I



# HETEROGENOUS RETURNS TO EDUCATION BY GENDER II



INTRODUCTION
REPLICATION AND COMPARISON

EPLICATION AND COMPARISO
ESULTS
ONCLUSION
HE END

# CONCLUSION

# CONCLUSION

- CMI
  - no analytical standard errors
- CF
  - requires further distributional assumptions on error terms
  - valid and relevant "instrument"

INTRODUCTION
REPLICATION AND COMPARISON

eplication and Comparison esults onclusion he end

# THE END

# Appendix I

Table 2: Summary original results GB(2010).

| year | OLS   | s.e. (OLS) | CMI   | s.e. (CMI) | CF    | s.e. (CF) | obs   |
|------|-------|------------|-------|------------|-------|-----------|-------|
| 1984 | 0.074 | 0.004      | 0.066 | 0.004      | 0.075 | 0.079     | 1.545 |
| 1985 | 0.065 | 0.004      | 0.059 | 0.004      | 0.032 | 0.131     | 1.600 |
| 1986 | 0.069 | 0.004      | 0.061 | 0.004      | 0.077 | 0.091     | 1.682 |
| 1987 | 0.070 | 0.004      | 0.063 | 0.004      | 0.090 | 0.048     | 1.775 |
| 1988 | 0.069 | 0.004      | 0.065 | 0.004      | 0.081 | 0.041     | 1.798 |
| 1000 | 0.067 | 0.000      | 0.000 | 0.004      | 0.067 | 0.000     | 1 000 |
| 1989 | 0.067 | 0.003      | 0.063 | 0.004      | 0.067 | 0.038     | 1.922 |
| 1990 | 0.063 | 0.003      | 0.059 | 0.004      | 0.048 | 0.031     | 2.007 |
| 1991 | 0.062 | 0.003      | 0.060 | 0.004      | 0.037 | 0.030     | 2.122 |
| 1992 | 0.064 | 0.003      | 0.057 | 0.004      | 0.049 | 0.027     | 2.107 |
| 1993 | 0.060 | 0.003      | 0.057 | 0.004      | 0.062 | 0.026     | 2.124 |
|      |       |            |       |            |       |           |       |
| 1994 | 0.057 | 0.003      | 0.051 | 0.004      | 0.055 | 0.022     | 2.082 |
| 1995 | 0.058 | 0.003      | 0.053 | 0.004      | 0.064 | 0.024     | 2.075 |
| 1996 | 0.055 | 0.003      | 0.049 | 0.004      | 0.054 | 0.025     | 2.057 |
| 1997 | 0.057 | 0.003      | 0.054 | 0.003      | 0.074 | 0.025     | 2.011 |
| 1998 | 0.054 | 0.003      | 0.049 | 0.003      | 0.053 | 0.021     | 2.145 |
|      |       |            |       |            |       |           |       |

# APPENDIX II

| 1999 | 0.058 | 0.003 | 0.054 | 0.003 | 0.072 | 0.023 | 2.163 |
|------|-------|-------|-------|-------|-------|-------|-------|
| 2000 | 0.065 | 0.002 | 0.059 | 0.003 | 0.108 | 0.024 | 3.965 |
| 2001 | 0.065 | 0.002 | 0.062 | 0.003 | 0.097 | 0.022 | 3.961 |
| 2002 | 0.068 | 0.003 | 0.066 | 0.003 | 0.106 | 0.030 | 3.668 |
| 2003 | 0.064 | 0.003 | 0.062 | 0.003 | 0.123 | 0.028 | 3.476 |
| 0004 | 0.004 | 0.000 | 0.000 | 0.000 | 0.445 | 0.000 | 0.000 |
| 2004 | 0.064 | 0.003 | 0.062 | 0.003 | 0.115 | 0.030 | 3.366 |
| 2005 | 0.065 | 0.003 | 0.064 | 0.003 | 0.113 | 0.032 | 3.220 |
| 2006 | 0.064 | 0.003 | 0.063 | 0.003 | 0.133 | 0.033 | 3.477 |

# APPENDIX III

Table 3: Summary replication results.

| year                                 | OLS                                                                                                          | s.e. (OLS)                                                                                                                                                                                       | СМІ                                                                                                                                                                                                                                                                                  | s.e. (CMI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s.e. (CF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1984                                 | 0.060                                                                                                        | 0.004                                                                                                                                                                                            | 0.030                                                                                                                                                                                                                                                                                | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1985                                 | 0.067                                                                                                        | 0.003                                                                                                                                                                                            | 0.024                                                                                                                                                                                                                                                                                | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1986                                 | 0.067                                                                                                        | 0.004                                                                                                                                                                                            | 0.036                                                                                                                                                                                                                                                                                | 0.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1987                                 | 0.069                                                                                                        | 0.004                                                                                                                                                                                            | 0.034                                                                                                                                                                                                                                                                                | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1988                                 | 0.064                                                                                                        | 0.003                                                                                                                                                                                            | 0.029                                                                                                                                                                                                                                                                                | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1989<br>1990<br>1991<br>1992<br>1993 | 0.064<br>0.065<br>0.060<br>0.067<br>0.070                                                                    | 0.003<br>0.003<br>0.004<br>0.003<br>0.004                                                                                                                                                        | 0.028<br>0.026<br>0.028<br>0.024<br>0.027                                                                                                                                                                                                                                            | 0.073<br>0.100<br>0.067<br>0.082<br>0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.056<br>0.057<br>0.053<br>0.057<br>0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005<br>0.005<br>0.005<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.553<br>1.571<br>1.602<br>1.555<br>1.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1994<br>1995<br>1996<br>1997<br>1998 | 0.068<br>0.062<br>0.069<br>0.067<br>0.062                                                                    | 0.003<br>0.003<br>0.003<br>0.003                                                                                                                                                                 | 0.024<br>0.026<br>0.025<br>0.021<br>0.022                                                                                                                                                                                                                                            | 0.117<br>0.113<br>0.112<br>0.112<br>0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.062<br>0.057<br>0.062<br>0.061<br>0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005<br>0.005<br>0.005<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.491<br>1.444<br>1.383<br>1.285<br>1.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      | 1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997 | 1984 0.060<br>1985 0.067<br>1986 0.067<br>1987 0.069<br>1988 0.064<br>1989 0.064<br>1990 0.065<br>1991 0.060<br>1992 0.067<br>1993 0.070<br>1994 0.068<br>1995 0.062<br>1996 0.069<br>1997 0.067 | 1984 0.060 0.004<br>1985 0.067 0.003<br>1986 0.067 0.004<br>1987 0.069 0.004<br>1988 0.064 0.003<br>1989 0.064 0.003<br>1990 0.065 0.003<br>1991 0.060 0.004<br>1992 0.067 0.003<br>1993 0.070 0.004<br>1994 0.068 0.003<br>1995 0.062 0.003<br>1996 0.069 0.003<br>1997 0.067 0.003 | 1984         0.060         0.004         0.030           1985         0.067         0.003         0.024           1986         0.067         0.004         0.034           1987         0.069         0.004         0.034           1988         0.064         0.003         0.029           1989         0.064         0.003         0.028           1990         0.065         0.003         0.026           1991         0.060         0.004         0.028           1992         0.067         0.003         0.024           1993         0.070         0.004         0.027           1994         0.068         0.003         0.024           1995         0.062         0.003         0.026           1996         0.069         0.003         0.025           1997         0.067         0.003         0.021 | 1984         0.060         0.004         0.030         0.118           1985         0.067         0.003         0.024         0.100           1986         0.067         0.004         0.036         0.104           1987         0.069         0.004         0.034         0.154           1988         0.064         0.003         0.029         0.127           1989         0.064         0.003         0.028         0.073           1990         0.065         0.003         0.026         0.100           1991         0.060         0.004         0.028         0.067           1992         0.067         0.003         0.024         0.082           1993         0.070         0.004         0.027         0.115           1994         0.068         0.003         0.024         0.117           1995         0.062         0.003         0.026         0.113           1996         0.069         0.003         0.025         0.112           1997         0.067         0.003         0.021         0.112 | 1984         0.060         0.004         0.030         0.118         0.053           1985         0.067         0.003         0.024         0.100         0.060           1986         0.067         0.004         0.036         0.104         0.059           1987         0.069         0.004         0.034         0.154         0.062           1988         0.064         0.003         0.029         0.127         0.058           1989         0.064         0.003         0.028         0.073         0.056           1990         0.065         0.003         0.026         0.100         0.057           1991         0.060         0.004         0.028         0.067         0.053           1992         0.067         0.003         0.024         0.082         0.057           1993         0.070         0.004         0.027         0.115         0.063           1994         0.068         0.003         0.024         0.117         0.062           1995         0.062         0.003         0.026         0.113         0.057           1996         0.069         0.003         0.025         0.112         0.062 | 1984         0.060         0.004         0.030         0.118         0.053         0.006           1985         0.067         0.003         0.024         0.100         0.060         0.005           1986         0.067         0.004         0.036         0.104         0.059         0.006           1987         0.069         0.004         0.034         0.154         0.062         0.005           1988         0.064         0.003         0.029         0.127         0.058         0.005           1999         0.064         0.003         0.028         0.073         0.056         0.005           1990         0.065         0.003         0.026         0.100         0.057         0.005           1991         0.060         0.004         0.028         0.067         0.053         0.005           1992         0.067         0.003         0.024         0.082         0.057         0.005           1993         0.070         0.004         0.027         0.115         0.063         0.005           1994         0.068         0.003         0.024         0.117         0.062         0.005           1995         0.062         0.003 |

# Appendix IV

| 1999 | 0.065 | 0.003 | 0.021 | 0.098 | 0.061 | 0.005 | 1.452 |
|------|-------|-------|-------|-------|-------|-------|-------|
| 2000 | 0.067 | 0.003 | 0.019 | 0.102 | 0.063 | 0.004 | 2.701 |
| 2001 | 0.069 | 0.003 | 0.019 | 0.106 | 0.066 | 0.004 | 2.659 |
| 2002 | 0.073 | 0.003 | 0.019 | 0.115 | 0.069 | 0.004 | 2.818 |
| 2003 | 0.074 | 0.003 | 0.020 | 0.122 | 0.071 | 0.004 | 2.741 |
| 2004 | 0.069 | 0.003 | 0.018 | 0.133 | 0.065 | 0.004 | 2.558 |
| 2005 | 0.069 | 0.003 | 0.021 | 0.116 | 0.066 | 0.004 | 2.457 |
| 2006 | 0.071 | 0.003 | 0.020 | 0.126 | 0.068 | 0.004 | 2.525 |
| 2007 | 0.072 | 0.003 | 0.020 | 0.132 | 0.071 | 0.004 | 2.462 |
| 2008 | 0.076 | 0.003 | 0.021 | 0.147 | 0.072 | 0.005 | 2.316 |
| 2009 | 0.075 | 0.003 | 0.023 | 0.153 | 0.075 | 0.004 | 2.367 |
|      |       |       |       |       |       |       |       |
| 2010 | 0.077 | 0.003 | 0.023 | 0.139 | 0.074 | 0.005 | 2.183 |
| 2011 | 0.078 | 0.003 | 0.023 | 0.162 | 0.075 | 0.004 | 2.523 |
| 2012 | 0.076 | 0.003 | 0.022 | 0.127 | 0.076 | 0.004 | 2.493 |
| 2013 | 0.072 | 0.003 | 0.022 | 0.117 | 0.071 | 0.004 | 2.477 |
| 0011 | 0.074 | 0.000 | 0.000 | 0.004 | 0.070 |       | 0.050 |
| 2014 | 0.074 | 0.003 | 0.022 | 0.091 | 0.070 | 0.004 | 2.353 |
| 2015 | 0.074 | 0.003 | 0.025 | 0.129 | 0.071 | 0.005 | 2.147 |
| 2016 | 0.076 | 0.003 | 0.028 | 0.085 | 0.071 | 0.005 | 1.971 |
|      |       |       |       |       |       |       |       |