Лекция №11.

Тема: Многомерные массивы.

Библиотека NumPy. Тип данных ndarray. Объявление и инициализация переменных типа ndarray. Операции над массивами. Стандартные методы по работе с массивами.

Ключевые слова: массив, ось, ранг, размер, индекс, NumPy, ndarray, операции над массивами, методы по работе с массивами.

Keywords: array, axe, rank, shape, index, NumPy, ndarray, ndarray operators, ndarray methods.

1 Библиотека NumPy. Тип данных ndarray

В языке Python для работы с массивами используется специальная библиотека NumPy (Numeric Python). NumPy представляет комплекс модулей, которые обеспяечивают эффективную обработку многомерных массивов, а также содержат функции, которые реализуют алгоритмы генерации случайных чисел, линейной алгебры и преобразование Фурье. NumPy распространяется под BSD-лицензией (см. https://en.wikipedia.org/wiki/BSD_licenses) и доступна на web-ресурсе SourceForge (см. http://sourceforge.net/projects/numpy/files). На официальном сайте NumPy доступна документация высокого качества (см. http://docs.scipy.org/doc/numpy/reference/index.html)

Для работы с NumPy необходимо в программе выполнить подключение библиотеки с помощью оператора import

>>> import numpy

В документации по библиотеке NumPy часто используют вместо полного имени библиотеки numpy псевдоним пр, который задается с помощью оператора as

>>> import numpy as np

Основным типом данных в NumPy является ndarray (N-dimensional array) – N-мерный массив (см. http://docs.scipy.org/doc/numpy/reference/arrays.html). Особенности типа данных ndarray:

- 1. ndarray представляет собой N-мерную последовательность фиксированного числа элементов одного типа данных, в которой для доступа к отдельным элементам используется N целых чисел (индексов).
- 2. Для определения типа элементов ndarray в NumPy содержится большое количество типов данных (см. http://docs.scipy.org/doc/numpy/user/basics.types.html). Основные типы данных представлены в табл. 1.

Таблица 1 – Основные типы данных NumPy

1		
Тип данных	Размер	
Целочисленные типы данных		
bool_	1 байт	
int_	4 байт / 8 байт	
Вещественные типы данных		
float	8 байт	

complex_	16 байт
Строковый тип данных	
str_	

- 3. В памяти объект типа ndarray представляется последовательно.
- 4. Объект типа ndarray может быть создан с помощью функции array

```
array(...)
   array(object, dtype=None, copy=True, order=None,
        subok=False, ndmin=0)
```

Описание параметров функции агтау может быть получено с помощью интерактивной подсказки в IDLE

```
>>> help(numpy.array)
```

Примеры создания N-мерных массивов:

```
>>> # Одномерный массив целых чисел на базе списка.
>>> x = np.array([1, 2, 4, 5])
>>> x
array([1, 2, 4, 5])
>>> type(x)
<class 'numpy.ndarray'>
```

- 5. Объекты типа ndarray описываются следующими свойствами:
- ndarray.ndim ранг массива (количество осей массива или размерность);
- ndarray.shape размер массива (набор целых чисел, описывающий размер массива по каждой оси);
 - ndarray.size количество элементов массива;
 - ndarray.dtype тип данных элементов массива;
 - ndarray.itemsize размер каждого элемента массива в байтах;
 - ndarray.data буфер, содержащий актуальные элементы массива.

2 Объявление и инициализация переменных типа ndarray

Объявление и инициализация переменной типа ndarray может быть выполнена несколькими способами (см. http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#routines-array-creation):

1. Создание массива на базе существующей последовательности, используя функцию array(). Функция array() трансформирует вложенную

```
Донецкий национальный университет МОН Украины, г. Винница Алгоритмизация и основы программирования. Лекции. Материалы лекции подготовили: к.т.н., доц. Петренко Т.Г; к.т.н., доц. Тимчук О.С. Лектор – к.т.н., доцент Тимчук О.С., 2014-2015 уч.год.
```

последовательность в многомерный массив, тип элементов которого зависит от типа элементов исходной последовательности. Пример

2. Создание n-мерного массива заданной формы с помощью функции zeros(). Функция zeros() инициализирует элементы массива нулем заданного типа данных.

```
zeros(...) → ndarray
zeros(shape, dtype= float64, order='C')
```

где shape – размер массива,

dtype – тип данных элементов массива, по умолчанию – numpy.float64, order – способ хранения элементов массива в памяти (построчно – 'C', постолбцово – 'F').

Примеры:

```
>>> # Одномерный массив вещественных чисел.
>>> np.zeros(10)
array([ 0., 0., 0., 0., 0., 0., 0., 0.])
```

3. Создание n-мерного массива заданной формы с помощью функции ones(). Функция ones() инициализирует элементы массива единицей заданного типа данных.

```
ones(...) → ndarray
  ones(shape, dtype= float64, order='C')
```

Примеры:

```
>>> # Одномерный массив вещественных чисел.
>>> np.ones(10)
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
```

4. Создание п-мерного массива заданной формы с помощью функции empty(). Функция empty() не инициализирует элементы массива (элементы массива содержат «мусор»).

```
empty(...) → ndarray
empty (shape, dtype= float64, order='C')
```

Примеры:

```
>>> # Одномерный массив вещественных чисел.
>>> np.empty(10)
array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
```

3 Операции над элементами массива и над массивом в целом

Рассмотрим особенности операций над массивами в языке Python (см. http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html) (табл. 2).

Таблица 2 – Операции над массивами

		1 аолица 2 – Операции над массивами
Оператор	Описание	Пример
=	Оператор присваивания.	a = np.zeros((2, 2, 2))
	Результат работы	>>> # Создание копии ссылки.
	оператора – копия ссылки	>>> b = a
	на объект.	>>> # а и в ссылаются на один
		объект.
		>>> id(a) == id(b) True
1	Overeze	>>> # Cymma maccubob.
+	Оператор сложения.	>>> a = np.array([[1, 2], [3,
	Арифметические операции	4]])
	над массивами	>>> b = np.array([[5, 6], [7,
	выполняются поэлементно.	8]])
	Результат арифметических	>>> c = a + b
	операций – новый массив в	>>> c
	памяти.	array([[6, 8],
		[10, 12]])
+=	Составной оператор	>>> a = np.array([[1, 2], [3,
	сложения.	4]])
	сложения.	>>> b = $np.array([[5, 6], [7,])$
		8]])
		>>> a += b
		>>> a
		array([[6, 8],
		[10, 12]])
-	Оператор вычитания.	>>> # Вычитание массивов.
	, , ,	>>> a = np.array([[1, 2], [3,
		4]])
		>>> b = np.array([[5, 6], [7,
		8]])
		>>> c = a - b
		>>> c
		array([[-4, -4], [-4, -4]])
_=	Состорую	
		>>> a = np.array([[1, 2], [3, 4]])
)/	вычитания.	>>> b = np.array([[5, 6], [7,
		8]])
		>>> a -= b
		>>> a
		array([[-4, -4],
		[-4, -4]])
*	Оператор умножения	>>> # Произведение массивов.
		>>> a = np.array([[1, 2], [3,
		4]])
		>>> b = np.array([[5, 6], [7,
		8]])

```
>>> c = a * b
                                       >>> c
                                       array([[ 5, 12],
                                              [21, 32]])
                                       >>> # Произведение массива на
                                       число.
                                       >>> a = np.array([[1, 2], [3,
                                       4]])
                                       >>> c = a * 3
                                       >>> c
                                       array([[ 3, 6],
                                              [ 9, 12]])
*=
                                       \Rightarrow \Rightarrow a = np.array([[1,
               Составной
                              оператор
                                       4]])
               умножения.
                                       >>> b = np.array([[5, 6], [7,
                                       8]])
                                       >>> a *= b
                                       >>> a
                                       array([[ 5, 12],
                                          [21, 32]])
                                       >>> a = np.array([[1, 2], [3,
**
               Оператор
                         возведения
                                       4]])
               степень
                                       >>> c = a ** 3
                                       >>> c
                                       array([[ 1, 8],
                                              [27, 64]], dtype=int32)
**=
                                       >>> a = np.array([[1, 2], [3,
               Составной
                              оператор
                                       4]])
               возведения в степень
                                       >>> a **= 3
                                       >>> a
                                       array([[ 1, 8],
                                           [27, 64]])
                                       >>> a = np.array([
[]
               Оператор
                          доступа
                                            [ 0, 1, 2, 3],
               элементам
                               массива
                                             [10, 11, 12, 13],
               (нумерация
                             элементов
                                             [20, 21, 22, 23],
               массива для каждой оси
                                            [30, 31, 32, 33],
               начинается
                                 нуля;
                                            [40, 41, 42, 43]])
               допускаются
                                       >>> a[3, 2]
               отрицательные индексы).
                                       32
               На каждую ось массива
               приходится один индекс.
               Индексы передаются
               виде последовательности
               чисел,
                           разделенных
               запятыми.
[1, 2, ...]
               Оператор извлечения среза
                                       >>> # Создание
                                                           поверхностной
                                       копии массива.
               (см. примечание 1).
                                       >>> a = np.array([[1,2], [3,4]])
                                       >>> b = a[...]
                                       >>> b
                                       array([[1, 2],
                                         [3, 4]])
```

		# Daylows PEODORS (FORES
		>>> # Замена второго столбца
		матрицы. >>> a = np.array([[1, 2], [3,
		411)
		>>> a[0:2, 1] = [8, 7]
		>>> a [0.2, 1] [0, 7]
		array([[1, 8],
		[3, 7]])
		>>> # Выборка последней строки
		матрицы.
		>>> a = np.array([[1,2], [3,4]])
		>>> a[a.ndim - 1]
		array([3, 4])
in	Оператор проверки на	>>> a = np.array([[1, 2], [3,
	вхождение – возвращает	4]])
	True, если элемент	>>> 5 in a
	присутствует в списке; в	False
	противном случае	>>> 4 in a
	возвращает False.	True
not in	Оператор проверки на	>>> a = np.array([[1, 2], [3,
110 \$ 111	вхождение – возвращает	4]])
	True, если элемент не	>>> 4 not in a
	присутствует в списке; в	False
	противном случае	>>> 5 not in a
	возвращает False.	True
is		>>> a = np.array([[1, 2], [3,
18		4]])
	возвращает True, если	>>> b = a
	списки хранятся в памяти	>>> b is a
	по одному и тому же	True
	адресу; в противном	
	случае возвращает False.	
is not		>>> a = np.array([[1, 2], [3,
	возвращает True, если	4]])
	списки хранятся в памяти	>>> b = a
	по разным адресам; в	>>> b is not a
	противном случае	False
	возвращает False.	

Примечание 1. Оператор извлечения среза для объектов типа ndarray разрешается применять к каждой оси. Срезы разделяются запятыми, а диапазон осей описывается с помощью «...». Например, задан 5-ти мерный массив x (то есть x имеет 5 осей), тогда:

- x[1, 2, ...] эквивалентно x[1, 2, :, :];
- x[..., 3] эквивалентно x[:, :, :, 3];
- x[4, ..., 5, :] эквивалентно x[4, :, :, 5, :].

Пример выборки элементов двумерного массива, которые стоят на пересечении четных строк и нечетных столбцов

4 Встроенные методы по работе с элементами массива и с массивом в целом

Классификация встроенных методов по работе с массивом:

- методы преобразования массива;
- математические функции;
- методы выборки элементов массива;
- методы манипуляции формой массива;
- специальные методы.

Рассмотрим некоторые методы по работе с массивом (см. http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html) (табл. 3).

Таблица 3 – Встроенные методы типа данных ndarray

3.6	таолица 3 — Встроенные методы типа данных поаггау		
Метод	Описание	Пример	
a.reshape()	Возвращает массив	>>> a = np.array([[0, 1, 2, 3],	
	новой размерности.	[4, 5, 6, 7]])	
		>>> b = a.reshape((2, 2, 2))	
		>>> b	
		array([[[0, 1],	
		[2, 3]],	
		[[4, 5],	
		[6, 7]]])	
a.resize()	Изменяет размерность	>>> a = np.array([[0, 1], [2,	
	и размер массива.	3]])	
	in pushep indeenbu.	>>> a.resize((2, 1))	
		>>> a	
	, /	array([[0],	
		[1]])	
a.fill()	Заполняет элементы	>>> a = np.zeros((3, 3))	
	массива заданным	>>> a.fill(5)	
	значением.	>>> a	
	значением.	array([[5., 5., 5.],	
		[5., 5., 5.],	
		[5., 5., 5.]])	
a.view()	Создает поверхностную	>>> a = np.array([1, 2])	
a.view()	копию массива.	>>> b = a.view()	
	копию массива.	>>> b.fill(1)	
		>>> a	
		array([1, 1])	
a.copy()	Создает глубокую	>>> a =	
	копию массива.	np.array([[1,2,3],[4,5,6]])	
	копино массива.	>>> b = a.copy()	
		>>> b.fill(0)	
		>>> a	
		array([[1, 2, 3],	
		[4, 5, 6]])	
a.min()	Возвращает	>>> a = np.array([[3,2,1],[5,-	
w()	2002panque1	1 2,11, 1, 1, 1, 1,	

	минимальный элемент	1,6]])
		>>> a.min()
	массива или заданной	-1
	оси.	-1 >>> a.min(axis=0)
		array([3, -1, 1])
		>>> a.min(axis=1)
		array([1, -1])
a.max()	Возвращает	>>> a = np.array([[3,2,1],[5,-
	максимальный элемент	1,6]])
	массива или заданной	>>> a.max()
	оси.	6
	oen.	>>> a.max(axis=0)
		array([5, 2, 6])
		>>> a.max(axis=1)
		array([3, 6])
a.mean()	Возвращает среднее	>>> a = np.array([[3,2,1],[5,-
u.mean()	1 -	1,6]])
	элементов массива или	>>> a.mean()
	заданной оси.	2.66666666666665
		>>> a.mean(axis=0)
		array([4. , 0.5, 3.5])
		>>> a.mean(axis=1)
		array([2. ,
		3.33333333])
a.prod()	Возвращает	>>> a = np.array([[3,2,1],[5,-
	произведение	[1,6]])
	элементов массива или	>>> a.prod()
	заданной оси.	-180
	заданной оси.	>>> a.prod(axis=0)
		array([15, -2, 6])
		>>> a.prod(axis=1)
		array([6, -30])
a.sum()	Возвращает сумму	>>> a = np.array([[3,2,1],[5,-
u.sum()	элементов массива или	1,6]])
		>>> a.sum()
	заданной оси.	16
	.7	>>> a.sum(axis = 0)
		array([8, 1, 7])
		>>> a.sum(axis = 1)
		array([6, 10])
a.sort()	Сортирует элементы	>>> a = np.array([[3,2,1],[5,-
	каждой оси массива.	1,6]])
		>>> a.sort()
M M		>>> a
		array([[1, 2, 3],
		[-1, 5, 6]])

5 Примеры

Рассмотрим простые примеры программ, использующих стандартные операторы и методы по работе с массивами.

Пример №1. Дана целочисленная квадратная матрица размером nxm. Посчитать количество отрицательных элементов матрицы.

```
import numpy as np
     n = int(input('Количество строк = '))
     m = int(input('Количество столбцов = '))
     # Создание двумерного массива размером nxm.
                                                              Элементы
инициализируются нулевым значением.
     a = np.zeros((n, m), dtype=np.int)
     # Пользовательский ввод элементов массива.
     for i in range(n):
         for j in range(m):
             a[i, j] = int(input('A['+str(i)+', '+str(j)+'] = '))
     # Подсчет количества отрицательных элементов.
     count = 0
     for i in range(n):
         for j in range(m):
             if a[i, j] < 0:
                 count += 1
     # Вывод результата вычислений на экран.
     print('количество отрицательных элементов: ', count)
```

Результат работы программы:

```
Количество строк = 3
Количество столбцов = 4
A[0, 0] = -5
A[0, 1] = 0
A[0, 2] = 2
A[0, 3] = 3
A[1, 0] = -9
A[1, 1] = 4
A[1, 2] = 5
A[1, 3] = 6
A[2, 0] = -5
A[2, 1] = 5
A[2, 2] = 4
A[2, 3] = -6
количество отрицательных элементов: 4
```

Пример №2. Дана целочисленная квадратная матрица размером nxm. Выполнить преобразование матрицы по следующему правилу: каждый отрицательный элемент заменить произведением его номера строки и столбца.

```
import numpy as np
import random
n = int(input('Количество строк = '))
m = int(input('Количество столбцов = '))
# Создание двумерного массива размером nxm. Элементы
инициализируются нулевым значением.
a = np.zeros((n, m), dtype=np.int_)
# Заполнение массива случайными целыми числами.
for i in range(n):
    for j in range(m):
        a[i, j] = random.randint(-128, 127)
# Вывод на экран исходного массива.
print(a)
# Подсчет количества отрицательных элементов.
```

```
count = 0
for i in range(n):
    for j in range(m):
        if a[i, j] < 0:
            a[i, j] = i * j
# Вывод результата вычислений на экран.
print('Результирующий массив:\n', a)
```

Результат работы программы:

```
Количество строк = 3
Количество столбцов = 4
[[ 122
        8 70 116]
[ -32
        97 -113
                58]
 [-122 -122 -125 -107]]
Результирующий массив:
 [[122 8 70 116]
 [ 0 97
           2
              58]
   0
       2
           4
               6]]
 [
```