ENRICHED ∞ -OPERADS AS MARKED ALGEBRAS

MARKUS ZETTO

Abstract. We prove that an enriched ∞ -operad is completely determined by its category of right modules together with a 'marking' by the representable modules. This description allows for a very explicit comparison of (colored) S-enriched ∞ -operads, defined as algebras in symmetric sequences, and Lurie's model of ∞ -operads. Additionally, we show that the categories of algebras and right modules defined in both models agree.

We develop the theory of enriched ∞ -operads by defining a Boardman-Vogt product, operadic weighted colimits, and consider the question how much about a \mathcal{V} -enriched ∞ -operad \mathcal{O} can be recovered from $\mathrm{Alg}_{\mathcal{O}}(\mathcal{V})$ or from its category of right modules, leading to an operatic version of Cauchy-completion.

Contents

1.	Introduction	i
2.	Enriched Operads	1
3.	⊗-atomic objects	4
4.	Marked algebras	7
5.	Comparison and Univalence	9
6.	Applications	11
7.	Cauchy-complete operads	13
Ap	pendix A. The 2-category of presentably symmetric monoidal module categories	17
Ref	ferences	21

1. Introduction

history

1.1. Marked algebras. explain the comparison functors

Proposition 1.1. A presentably symmetric monoidal \mathcal{V} -module category $\mathcal{M} \in \mathrm{CAlg}(\mathrm{Pr}_{\mathcal{V}})$ is equivalent to the operadic presheaf category $\mathcal{P}^{\otimes}_{\mathcal{V}}(\mathcal{O})$ of some \mathcal{V} -operad \mathcal{O} iff it is generated under colimits, monoidal structure and \mathcal{V} -tensoring by its \otimes -atomic objects.

- 1.2. **Applications.** We use the marked-module picture to develop the higher algebra of enriched ∞ -operads, for instance we introduce:
 - An envelope functor $\operatorname{Env}_{\mathcal{V}}: v\mathcal{O}_p(\mathcal{V}) \to \operatorname{CAlg}(v\mathcal{C}at(\mathcal{V})),$
 - A Boardman-Vogt product ⊗_{BV} on V-operads that is adjoint to taking V-categories of algebras,
 - Operadic weighted colimits (for instance, factorization homology),
 - Free algebras,

Date: August 26, 2025, Hamburg.

i

generalizing the respective constructions in [Lur17].

1.3. Recovering on operad from its algebras. We will study the question how much information about an operad \mathcal{O} can be recovered from its category of algebras $\mathrm{Alg}_{\mathcal{O}}(\mathcal{V})$. The following is more or less immediate from the above marked algebra description:

Proposition (??). Let $f: \mathcal{O} \to \mathcal{P}$ be a map of valent \mathcal{V} -enriched operads whose underlying map on spaces of colors $col\mathcal{O} \to col\mathcal{P}$ is an equivalence. If the induced precomposition map $f^*: \mathrm{Alg}_{\mathcal{P}}(\mathcal{V}) \to \mathrm{Alg}_{\mathcal{O}}(\mathcal{V})$ is an equivalence, then f is already an equivalence.

However, we might now always be given a comparison map f, but only the category $Alg_{\mathcal{O}}(\mathcal{V})$ itself. Certainly, we can not fully recover \mathcal{O} in this case:

• Let C be a category and \widehat{C}^{ic} its idempotent completion. Then

$$\mathrm{Alg}_{\mathrm{Triv}_{\mathcal{V}}(C)}(\mathcal{V}) \simeq \mathrm{Fun}(C,\mathcal{V}) \simeq \mathrm{Fun}(\hat{C}^{\mathrm{ic}},\mathcal{V}) \simeq \mathrm{Alg}_{\mathrm{Triv}_{\mathcal{V}}(\hat{C}^{\mathrm{ic}})}(\mathcal{V}) \; .$$

• Given a spectral operad \mathcal{O} , we can define its r-fold shift $\mathcal{O}[r]$ whose multimorphism objects are given by

$$\operatorname{Mul}_{\mathcal{O}[r]}(o_1,\ldots,o_n;o) \simeq \operatorname{Mul}_{\mathcal{O}}(o_1,\ldots,o_n;o)[r\cdot(1-n)],$$

consider [?, Constr. 2.34] for a single-colored version of this construction. The auto-equivalence $[-r]: \mathcal{V} \stackrel{\simeq}{\to} \mathcal{V}$ induces, for any $\mathcal{V} \in \mathrm{CAlg}(\mathrm{Pr}_{\mathrm{st}})$, an equivalence $\mathrm{Alg}_{\mathcal{O}}(\mathcal{V}) \simeq \mathrm{Alg}_{\mathcal{O}[r]}(\mathcal{V})$.

• Let \mathcal{V} be semiadditive. Then to any single-colored \mathcal{V} -operad \mathcal{O} , we can associate its r-matrix operad $\mathrm{Mat}_r(\mathcal{O})$, whose multimorphisms are given by

$$\operatorname{Mat}_r(\mathfrak{O})(n) = \mathfrak{O}(n)^{\oplus r^{n+1}}$$

regarded as matrices with n ingoing and one outgoing indices, and composition given by matrix products and composition in \mathcal{O} . It turns out that $\mathrm{Alg}_{\mathcal{O}}(\mathcal{V}) \simeq \mathrm{Alg}_{\mathrm{Mat}_r(\mathcal{O})}(\mathcal{V})$.

These examples indicate that the answer to this question is highly dependent on \mathcal{V} , and more specifically absolute weighted colimits in \mathcal{V} -enriched category theory. A weight $W \in \mathcal{P}_{\mathcal{V}}(\mathcal{C})$ on some \mathcal{V} -category \mathcal{C} is called absolute if W-weighted colimits are preserved by any \mathcal{V} -enriched functor, and \mathcal{C} is called Cauchy-complete if any absolute weight on it (which are precisely the atomic objects in the enriched presheaf category $\mathcal{P}_{\mathcal{V}}\mathcal{C}$) is representable, c.f. [?]. For instance, idempotent splittings are absolute colimits over \mathcal{S} , shifts are over $\mathcal{S}_{\mathcal{P}}$, and direct sums are over $\mathcal{S}_{\mathcal{P}}^{cn}$, which is closely related to the above constructions.

Analogously, we call an enriched operad Cauchy-complete if every \otimes -atomic object in $\mathcal{P}_{\mathcal{V}}^{\otimes}(\mathcal{O})$ is representable. These form a full subcategory $\mathcal{O}p_{+}(\mathcal{V}) \subseteq v\mathcal{O}p(\mathcal{V})$ whose inclusion admits a left adjoint $\widehat{(-)}^{\mathcal{V}}$. We prove the following characterization:

Proposition 1.2. Given \mathcal{V} -operads $\mathcal{O}, \mathcal{P} \in v\mathcal{O}p(\mathcal{V})$, the following are equivalent:

- (1) The categories of algebras $Alg_{\mathcal{O}}(\mathcal{V}) \simeq Alg_{\mathcal{P}}(\mathcal{V})$ are equivalent,
- (2) The categories of algebras $\operatorname{Alg}_{\mathcal{O}}(\operatorname{Fun}(\bigsqcup_{k\geq 0}B\Sigma_k,\mathcal{V})) \simeq \operatorname{Alg}_{\mathcal{P}}(\operatorname{Fun}(\bigsqcup_{k\geq 0}B\Sigma_k,\mathcal{V}))$ are equivalent,
- (3) The categories of operadic presheaves $\mathcal{P}_{\mathcal{V}}^{\otimes}(0) \simeq \mathcal{P}_{\mathcal{V}}^{\otimes}(\mathcal{P})$ are equivalent,
- (4) The Cauchy-completions $\widehat{\mathfrak{O}}^{\mathcal{V}} \simeq \widehat{\mathcal{P}}^{\mathcal{V}}$ are equivalent.

In this case, we call \mathcal{O} and \mathcal{P} Morita-equivalent.

Further, we prove in ?? that a \mathcal{V} -operad \mathcal{O} is Cauchy-complete iff its underlying \mathcal{V} -category $\operatorname{Col}_{\mathcal{V}}(\mathcal{O})$ is . This shows, for instance:

ii

introduce notation?

just like for rings

introduce?

¹We give an alternative proof ?? for non-unital operads, which is significantly easier.

- Given two ∞ -operads \mathcal{O}, \mathcal{P} whose underlying ∞ -categories are idempotent complete, then $\mathcal{O} \simeq \mathcal{P}$ iff $\mathrm{Alg}_{\mathcal{O}}(\mathcal{S}) \simeq \mathrm{Alg}_{\mathcal{P}}(\mathcal{S})$. For instance, this is true for the \mathbb{E}_k -operad and its variants with tangential structures, and for the \mathbb{E}_X -operad classifying constructible factorization algebras on a stratified manifold X (since exit-path categories are always idempotent complete).
- Given spectral ∞ -operads \mathcal{O}, \mathcal{P} whose underlying ∞ -categories are stable and idempotent complete, then $\mathcal{O} \simeq \mathcal{P}$ iff $\mathrm{Alg}_{\mathcal{O}}(\mathcal{S}p) \simeq \mathrm{Alg}_{\mathcal{P}}(\mathcal{S}p)$. Similarly for operads enriched over the derived category of a ring (e.g. dg-operads).

In fact, studying the idempotent completion lets us classify all single-colored operads Morita-equivalent to a given single-colored $\mathcal{O} \in v\mathcal{O}p(\mathcal{V})$. Namely, they are completely specified by an algebra $\mathcal{P}(1) \in \text{Alg}(\mathcal{V})$ that is Morita-equivalent to the algebra $\mathcal{O}(1)$ of 1-ary operations in \mathcal{O} ; or equivalently a dualizable generator in $\text{Mod}_{\mathcal{O}(1)}(\mathcal{V})$. For instance:

- If $\mathcal{V} = \operatorname{Vec}_k$ over a field k and given a single-colored Vec_k -enriched operad $\mathcal{O} \in v\mathcal{O}p(\operatorname{Vec}_k)$ such that $\mathcal{O}(1) \simeq k$, then any single-colored operad $\mathcal{P} \in v\mathcal{O}p(\operatorname{Vec}_k)$ such that $\operatorname{Alg}_{\mathcal{O}}(\operatorname{Vec}_k) \simeq \operatorname{Alg}_{\mathcal{P}}(\operatorname{Vec}_k)$ is equivalent to $\operatorname{Mat}_r(\mathcal{O})$ for some $r \geq 0$.
- If $\mathcal{V} = D(k)$ and $\mathcal{O} \in v\mathcal{O}p(D(k))$ a single-colored dg operad with $\mathcal{O}(1) \simeq k[0]$, then operads \mathcal{P} with $\mathrm{Alg}_{\mathcal{O}}(D(k)) \simeq \mathrm{Alg}_{\mathcal{P}}(D(k))$ are classified by functions $f: \mathbb{Z} \to \mathbb{N}$ that are zero almost everywhere but not everywhere. For instance the shifts $\mathcal{O}[r]$ correspond to the functions δ_r that are 1 at r and zero everywhere else, while $\mathrm{Mat}_r(\mathcal{O})$ corresponds to $r \cdot \delta_0$.

If we further equip the operadic presheaf category with information about which presheaves are generated by representables under the symmetric monoidal structure, we can recover a lot more: Introducing a notion of \otimes -disjunctive enriched functors between symmetric monoidal \mathcal{V} -categories we prove an enriched version of [?]:

Theorem 1.3. Let $\operatorname{CAlg}(v\mathcal{C}at(\mathcal{V}))^{\otimes \operatorname{-disj}}$ be the wide subcategory of $\operatorname{CAlg}(v\mathcal{C}at(\mathcal{V}))$ on \otimes -disjunctive enriched functors, and similarly $\operatorname{CAlg}(\mathcal{C}at(\mathcal{V}))^{\otimes \operatorname{-disj}}$. Then, the envelope functors

$$\operatorname{Env}_{\mathcal{V}}: v \mathcal{O}p(\mathcal{V}) \to \operatorname{CAlg}(v \mathcal{C}at(\mathcal{V}))^{\otimes \operatorname{-disj}}$$

 $u \circ \operatorname{Env}_{\mathcal{V}}: \mathcal{O}p(\mathcal{V}) \to \operatorname{CAlg}(\mathcal{C}at(\mathcal{V}))^{\otimes \operatorname{-disj}}$

are both fully faithful.

The first statement is relatively easy, since using the flagging we can reduce to recovering a space X from SymX; however the second uses some of the Cauchy-completion machinery we develop.

1.4. Acknowledgements.

2. Enriched Operads

For $\mathcal{V} \in \mathrm{CAlg}(\mathrm{Pr})$ a presentably symmetric monoidal category, in order to define \mathcal{V} -enriched operads we make use of the 2-category $\mathrm{CAlg}(\mathbb{Pr}_{\mathcal{V}})$ whose

- underlying 1-category is the category $\operatorname{CAlg}(\operatorname{Pr}_{\mathcal{V}}) := \operatorname{CAlg}(\operatorname{RMod}_{\mathcal{V}}(\operatorname{Pr}))$ of presentably symmetric monoidal \mathcal{V} -module categories,
- morphism categories $\operatorname{Fun}_{\mathcal{V}}^{L,\otimes}(\mathcal{M},\mathcal{N})$ consist of symmetric monoidal \mathcal{V} -linear colimit-preserving functors.

Constructing this 2-category together with a symmetric monoidal structure \otimes on it and verifying its relevant properties is slightly technical, so we list a few of them here referring to Appendix A for details:

call this reduced

say what I mean by that, some of these might accidentally be the same

the latter is not proven yet, not sure if it is actually true for any V.