OBDA: Ontology-Based Data Access

Tadeusz Pankowski

Politechnika Poznańska

Tadeusz.pankowski@put.poznan.pl

Ontology-Based Data Access

System OBDA jest trójwarstwowym systemem informatycznym, w którym

- wyróżniamy następujące warstwy (składowe)
 - ontologia (ontology) (schemat konceptualny, intensjonalna część bazy wiedzy), ściślej a część intensjonalna ontologii (tj. abstrakcyjny opis konceptualizacji dziedziny przedmiotowej),
 - bazy danych (dane źródłowe) (jedna lub wiele) zawierające dane, ściślej część ekstensjonalna ontologii,
 - zbioru mapowań (odwzorowań) (mappings) określających powiązania między ontologią a bazami danych
- → dostęp do danych
 - zapytania formułowane są względem ontologii (schematu konceptualnego),
 - mapowanie jest do przepisywania (rewriting) zapytań (najczęściej do SQL),
 - przepisane zapytanie jest wykonywane w bazie danych (najczęściej relacyjnej)

Architektura systemu OBDA

Ontology-Based Data Access

OBDA może być traktowany jako

- system integracji danych, gdzie
- "schemat globalny" opisuje wiedzę o obiektach dziedziny, o powiązaniach między obiektami i właściwościach tych obiektów
- jest niezależny od źródeł danych.

Opis wykonany jest za pomocą pewnego języka opartego na logice.

Semantyka systemów OBDA

- W przeciwieństwie do (kompletnych) baz danych, specyfikacja systemu OBDA reprezentuje tzw. zbiór możliwych światów ze względu na:
- obecność ontologii, która jest teorią logiczną, która może być spełniona przez wiele modeli,
- obecność mapowań, dla których istnieje wiele spełniających je modeli.

Odpowiadanie na zapytania w systemie OBDA jest logicznym wnioskowaniem w teorii składającej się z ontologii, mapowań i danych.

Równoważnie: odpowiada to wykonywaniu zapytań w systemach z niepełną informacją (incomplete information) [21] (R. Reiter, On closed world databases)

OBDA – architektura

DAFO jako przykład implementacji systemu OBDA

DAFO – Data Access based on Faceted Queries over Ontology

Dostęp do dAnych oparty na zapytaniach Fasetowych względem Ontologii

DAFO – idea systemu

- 1. Punkt wyjścia schemat relacyjnej bazy: tabele + warunki spójności, podejście niesformalizowane, diagram (notacja graficzna).
- 2. Przedstawienie schematu jako formalnie wyspecyfikowanej ontologii. Język logiki pierwszego rzędu (FOL), ograniczony do logiki opisowej (description logic) (DL).
- 3. Problem: Jaki zestaw reguł (aksjomatów) jest potrzebny (i wystarczający) do zdefiniowania schematu relacyjnej bazy danych.
- 4. Język ontologiczny OWL 2 QL

Relacyjna baza danych – schemat bibliograficznej bazy danch BibRel (BIB_DB)

W bazie danych znajdują się informacje o osobach i ich artykułach przedstawionych na konferencjach naukowych. Dane opracowano na podstawie bazy DBLP (https://dblp.uni-trier.de/)

Person – imię i nazwisko, musi być podane i jest jednoznaczne w tabeli.

Affiliation – każda osoba może być afiliowane w wielu instytucjach,

AuthorPaper – związek autorów z napisanymi artykułami

Proceedings – materiały konferencyjne; jedna konferencja może mieć kilka tomów materiałów

Conference – konferencja.

Strzałki oznaczają klucze obce.

Symbol ⊆ oznacza zawieranie się kolumn (*inclusion dependency*) – szczególnym przypadkiem są klucze obce i niektóre ich odwrotności.

Każda tabela ma klucz główny. Jest nim Id lub grupa kolumn: (Authorld, Paperld), (Personld, Affiliation).

Repozytorium BIB_DB:

https://github.com/TPankowski/dafo

Specyfikacja schematu jako ontologii

Tabele relacyjne bazy danych traktowana są jako jedna z możliwych metod implementacji **ontologii**. **Ontologia** – formalna specyfikacja bazy danych.

$$O = (\Sigma, \mathcal{R}, \mathcal{A})$$

 Σ – zbiór symboli występujących w ontologii:

- predykaty unarne (UP): classes (Person, Paper, ...), a wśród nich typy (String, Integer, ...);
- predykaty binarne (BP): **object properties**, powiązania między klasami (authorOf, ofConference, ...), **data properties** (**attributes**), powiązania między klasami i typami (name, title, ...);
- \mathcal{R} zbiór reguł (aksjomatów), TBox. Tworzy część **intensjonalną** ontologii, wiedzę ogólną o świecie (dziedzinie)
- \mathcal{A} zbiór faktów (asercji), ABox, o postaci: C(a), P(a,b). Tworzy część **ekstensjonalną** ontologii, **stan** świata

Ontologia BibOn – predykaty

UP (unary predicates):

Classes:

Person, Paper

Types (type standardowe):

String

BP (binary predicates):

Data properies:

name, affiliation, title

Object properties:

authorOf, writtenBy

Predykaty ekstensjonalne (bazowe):

Ich ekstensje (zbiory wartości) są jawnie pamiętane w bazie danych:

Person, Paper, name, affiliation, title, authorOf

Predykaty intensjonalne (wirtualne):

Ich ekstensje nie są jawnie pamiętane, są wyznaczane na podstawie predykatów ekstensjonalnych, jak **widoki** w bazach danych (istotne dla projektanta, a nie dla użytkownika):

writtenBy

Predykaty standardowe – typy standardowe.

DAFO-Pankowski String

Ontologia BibOn – reguły (aksjomaty). Dziedzina i

przeciwdziedzina

Reguły dotyczące predykatów binarnych: name

Dziedzina (domain).
 Dziedziną name jest Person,

FOL: $\forall x,y (name(x,y) \rightarrow Person(x))$

DL: ∃name ⊑ Person

dom(name) = Person

Przeciwdziedzina, obraz (range).
 Przeciwdziedziną name jest String:

FOL: $\forall x,y (name(x,y) \rightarrow String(y))$

DL: ∃name⁻

String

rng(name) = String

FOL – first order language (język pierwszego rzędu)

DL – description logic (logika opisowa, deskrypcyjna)

Ontologia BibOn – reguły (aksjomaty). Totalność

Reguły dotyczące predykatów binarnych: name

3. Totalność właściwości na dziedzinie. Inaczej: obowiązkowa przynależność elementów dziedziny do powiązania.

Każdy obiekt klasy **Person** musi mieć określone **name**, tzn. **name** jest totalną właściwością na **Person**.

FOL: $\forall x (Person(x) \rightarrow \exists y name(x,y))$

DL: Person □ ∃name

4. Totalność właściwości na przeciwdziedzinie. Inaczej: obowiązkowa przynależność elementów przeciwdziedziny do powiązania.

Nie dotyczy to **name**, bo nie każdy element typu String musi być wartością **name**

Ontologia BibOn – reguły (aksjomaty). Funkcyjność

Reguły dotyczące predykatów binarnych: name

 Funkcyjność na dziedzinie.
 name jest funkcją na Person, tzn. każda osoba ma co najwyżej jedno name.

FOL: $\forall x,y (name(x,y_1) \land name(x,y_2) \rightarrow y_1 = y_2$

DL (**funct** name),

 Funkcyjność na przeciwdziedzinie – cecha klucza.
 Odwrotność name jest funkcją na String. name ma więc właściwość klucza.

FOL: $\forall x,y \text{ (name}(x_1,y) \land \text{name}(x_2,y) \rightarrow x_1 = x_2$

DL (**funct** name⁻),

Ontologia BibOn – reguly dotyczące data properties (atrybutów) (BIB_ONTO)

Reguła:	name	affiliation	title
Domain	Person	Person	Paper
Range	String	String	String
Total on domain	Yes/Person	No	Yes/Paper
Total on range	No	No	No
Function on domain	Yes	No	Yes
Function on range (key)	No	No	Yes
	BP _{AF}	BP _{AW}	BP _{AF}

Ontologia BibOn – reguly (aksjomaty).

Author jest podklasą Person:

Author

□ Person

authorOf nie jest totalne na **Person**, ale jest totalne na podklase **Author** swojej dziedziny **Person**:

FOL: $\forall x \text{ (Author(x))} \rightarrow \exists y \text{ authorOf(x,y))}$

DL: Author ⊑ ∃authorOf

authorOf jest także totalne na Paper:

FOL: $\forall y \ (Paper(y) \rightarrow \exists x \ authorOf(x,y))$

DL: Paper

∃authorOf

Ontologia BibOn – reguly (aksjomaty).

inProc – określa, w jakich materiałach konferencyjnych został opublikowany artykuł konferencyjny. Właściwości:

dom(inProc) = Paper,

rng(inProc) = Proceedings,

inProc jest totalny na Paper – każdy artykuł jest gdzieś opublikowany,

inProc jest totalny na **Proceedings** – każdy tom materiałów konferencyjnych zawiera co najmniej jeden artykuł konferencyjny,

inProc jest funkcją na Paper – artykuł jest co najwyżej w jednych materiałach.

inProc nie jest kluczem, tzn. jego odwrotność nie jest funkcją na **Proceedings**. Jeden tom materiałów zawiera wiele artykułów.

DAFO-Pankowski

Ontologia BibOn – reguly (aksjomaty).

ofConf – określa, jakiej konferencji dotyczyły materiały konferencyjne. Właściwości:

dom(ofConf) = Proceedings,

rng(ofConf) = Conference,

ofConf jest totalny na Proceedings – każdy tom materiałów konferencyjnych dotyczy jakiejś konferencji,

ofConf jest totalny na Conference – każda konferencja publikuje materiały konferencyjne,

ofConf jest funkcją na Proceedings – materiały dotyczą jednej konferencji.

ofConf nie jest kluczem, tzn. jedna konferencja może wydać kilka tomów materiałów.

Ontologia BibOn – reguły dotyczące object properties (związków)

Reguła:	authorOf	writtenBy	inProc	ofConf
Domain	Person	Paper	Paper	Proceedings
Range	Paper	Person	Proceedings	Conference
Total on (sub)domain	Yes/Author	Paper	Paper	Proceedings
Total on (sub)range	Yes/Paper	Author	Proceedings	Conference
Function on domain	No	No	Yes	Yes
Function on range (key)	No	No	No	No
	BP _{ZW}	BP _{ZW}	BP _{ZF}	BP _{ZF}

BP_{ZF} – związki funkcyjna

BP_{zw} – związki wielowartościowe

Ontologia – aksjomaty (reguły)

- 1. Subsumpcja klas i właściwości (subsumption)
 - $C' \sqsubseteq C$, $\forall x (C'(x) \rightarrow C(x))$
 - $P' \sqsubseteq P$, $\forall x,y (P'(x,y) \rightarrow P(x,y))$
- 2. Rozłączność (disjoitness)
 - $C' \sqsubseteq \neg C$ $\forall x (C'(x) \rightarrow \neg C(x)$
 - $P' \sqsubseteq \neg P$ $\forall x,y (P'(x,y) \rightarrow \neg P(x,y)$
- 3. Dziedzina i przeciwdziedzina (domain and range)
 - $\exists P \sqsubseteq C$, $\forall x,y (P(x,y) \rightarrow C(x))$
 - $\exists P^- \sqsubseteq C$, $\forall x,y (P(x,y) \rightarrow C(y))$
- 4. Totalność przynależność obowiązkowa) (mandatory membership, totality on domain)
 - $C \sqsubseteq \exists P$ $\forall x (C(x) \rightarrow \exists y P(x,y))$
 - $C \sqsubseteq \exists P^- \qquad \forall y (C(y) \rightarrow \exists x P(x,y))$
 - $C \sqsubseteq \exists P.C'$ $\forall x (C(x) \rightarrow \exists y P(x,y) \land C'(y))$
 - $C \sqsubseteq \exists P^{-}.C'$ $\forall y (C(y) \rightarrow \exists x P(x,y) \land C'(x))$
- 5. Funkcyjność (functionality)
 - (funct P) $\forall x,y (P(x,y_1) \land name(x,y_2) \rightarrow y_1 = y_2$
 - (funct P⁻) $\forall x,y (P(x_1,y) \land name(x_2,y) \rightarrow x_1 = x_2$

Repozytorium: BIB_ONTO

https://github.com/TPankowski/dafo

Mapowanie ontologii do relacyjnej bazy danych: LAV (Local As View)

Ontologia – relacyjna baza danych. Mapowania LAV, GAV i GLAV

- **1. LAV** Local As View, oznacza mapowanie schematu globalnego (ontologii) na schematy lokalne (relacyjne).
- 2. Schemat lokalny jest wtedy **widokiem** (*view*) nad schematem globalnym.
- **3. GAV** Global As View, oznacza mapowanie schematów lokalnych na schemat globalny.
- 4. Schemat globalny jest wówczas widokiem nad zbiorem schematów lokalnych.
- **5. GLAV** zbiór reguł mapujących, z których jedne są LAV, a inne GAV.

Ekstensjonalna część ontologii (ABox)

• Ontologia – formalna specyfikacja bazy danych.

$$O = (\Sigma, \mathcal{R}, \mathcal{A})$$

- Σ zbiór symboli występujących w ontologii:
 - predykaty unarne (UP): classes (Person, Paper, String, Integer;
 - □ predykaty binarne (BP): **object properties (links)**, powiązania między klasami (authorOf, ofConference, ...), **data properties (attributes**), powiązania między klasami i typami (name, title, ...);
- R zbiór **reguł** (aksjomatów), TBox (część **intensjonalna** ontologii), wiedza ogólna o świecie.
- A zbiór **faktów** (asercji), ABox (część **ekstensjonalną** ontologii), **stan** świata.

```
 \mathcal{A} = \{ \text{C(a), ..., P(a,b),...} \} =   \{ \text{Person(1), Person(2),...,} \\ \text{Paper(101), Paper(102), ...,} \\ \text{name(1, "John Smith"),} \\ \text{name(2,"Eva Lang"), ...,} \\ \text{authorOf(1,101), authorOf(1,102), authorOf(2,101), ...} \} - \text{object properties (związki)}
```

Schemat relacyjny i schemat bazy danych

```
1. Rel = \{R_1, ..., R_n\} – zbiór nazw relacji (tabel),
```

- 2. Att = {Id, A_1 , A_2 , ...} zbiór atrybutów,
- 3. $att(R) \subseteq Att typ (zbiór atrybutów) tabeli R$
- 4. Ograniczenia (warunki spójności), Constr(R):

```
a) klucz główny (na jednej tabeli)
b) NOT NULL (na jednej tabeli)
c) UNIQUE (na jednej tabeli)
d) klucz obcy (na dwóch tabelach)
```

- e) zależność zawierania (<u></u>) (na dwóch tabelach)
- 5. Schemat relacyjny: nazwa + typ + ograniczenia (a c), (R, att(R), Constr(R)).
- **6.** Schemat bazy danych: zbiór schematów relacyjnych + ograniczenia (d e).

Mapowanie predykatów unarnych – klas.

1. Założenie:

- każda klasa C mapowana jest na pewien schemat relacyjny R_c(Id,...), gdzie Id jest kluczem głównym schematu,
- różne klasy mapowane są na różne schematy relacyjne.

Formalnie:

- MapTab(C) = R_C klasa C mapowana jest na schemat relacyjny R_C ,
- Id \in attr(R_c) w zbiorze atrybutów schematu R_c jest klucz główny Id
- jeśli $C \neq C'$, to $R_C \neq R_{C'}$ różnym klasom przypisywane są różne schematy relacyjne
- $R_{c}[Id] \cap R_{c'}[Id] = \emptyset$ wartości kluczy głównych różnych schematów są rozłączne
- 3. Mapowanie instancji klas: lewa strona: FOL, prawa strona RRK (schema mapping):
 - $\forall x C(x) \rightarrow \exists r R_C(r) \land r.Id = x$
- 4. Uwaga: reguły powyższe nazywane są regułami (zależnościami) tgds (tuple generating dependencies). Jeśli nie ma w R_C krotki r, to jest ona generowana i dołączana do R_C. Na początku wszystkie atrybuty r maja wartość NULL.

Mapowanie klas na schematy relacyjne

Ontologia: $\mathcal{A} = \{ \text{Person}(1), \text{Person}(2), \dots, \text{Paper}(101), \text{Paper}(102), \dots \}$

Person	
Id	Name
1	
2	

Paper		
Id	Title	Procld
101		
102		

```
CREATE TABLE Person(
Id int PRIMARY KEY,
...
)
```

```
CREATE TABLE Paper(
Id int PRIMARY KEY,
...
)
```

Mapowanie binarnych predykatów na schematy relacyjne

Funkcja wektorowe 3-elementowa funkcja mapująca:

```
(TabMap, DomMap, RngMap) : BP \rightarrow Rel \times Att \times Att
```

przypisuje każdemu predykatowi binarnemu P ∈ BP trzy elementy schematu:

```
TabMap(P) = R_p – nazwa relacji (tabeli),
```

DomMap(P) = A_p^d – atrybut ze zbioru attr(R_p) zwany atrybutem dziedziny dla P,

RnagMap(P) = A_p^r — atrybut ze zbioru attr(R_p) zwany atrybutem przeciwdziedziny dla P

Sposób zdefiniowana funkcji mapującej zależy od grupy, do której mapowany predykat należy. Predykaty binarne dzielone są na cztery grupy zależnie od ich przeciwdziedziny i funkcyjności:

- 1. BP_{AF} atrybuty funkcyjne (*data properties functional*), np.: name, title
- 2. BP_{AW} atrybuty wielowartościowe (*data properties multivalued*), np.: affiliation
- 3. BP_{ZF} związki funkcyjne (*object properties functional*), np.: inProc, ofConf
- 4. BP_{7W} związki wielowartościowe (*object properties multivalued*), np.: authorOf

Mapowanie atrybutów funkcyjnych (functional data properties)

- 1. $P \in BP_{AF} P$ jest atrybutem funkcyjnym. Określony jest na klasie, a wartości przyjmuje w typie standardowym. Dla każdej wartości ze swojej dziedziny przyjmuje co najwyżej jedną wartość. Na przykład: name, title, ...
- Niech C będzie dziedziną P:

$$dom(P) = C$$

Wówczas:

 $TabMap(P) = R_P = R_C$

atrybut P mapowany jest do tabeli przypisanej jego dziedzinie C,

DomMap(P) = A_p^d = Id

atrybutem dziedzinowym dla P jest klucz główny tabeli R_p

RngMap(P) = A_p^r

 atrybutem przeciwdziedzinowym dla P jest pewien atrybut ze zbioru attr(R_P)

- 3. Mapowanie instancji klas: lewa strona: FOL, prawa strona RRK:
 - $\forall x,y P(x,y) \rightarrow \exists r R_p(r) \land r.Id = x \land r. A_p^r = y$

Przykład (zakładamy jednoznaczność nazw w ontologii):

Mapowanie atrybutów funkcyjnych (functional data properties)

```
Map(Name) = (Person, Id, Name),
Map(Title) = (Paper, Id, Title),
Mapowanie instancji atrybutów funkcyjnych:
```

 $\forall x,y \text{ name}(x,y) \rightarrow \exists r \text{ Person}(r) \land r.\text{Id} = x \land r. \text{ Name} = y$

Ontologia: $\mathcal{A} = \{\text{name}(1,\text{"John Smith"}), \text{name}(2,\text{"Eva Lang"}),...,\text{title}(101,\text{"SQL"}), \text{title}(102,\text{"Al"}), ...\}$

Paper		
Id	Title	Procld
101	SQL	
102	ΑI	

```
CREATE TABLE Person(
Id int PRIMARY KEY,
Name varchar(40),
...

DAFO-Pankowski
```

```
CREATE TABLE Paper(
Id int PRIMARY KEY,
Title varchar(80),
...
)
```

Mapowanie atrybutów wielowartościowych (multivalued data properties)

- P ∈ BP_{AW} − P jest atrybutem wielowartościowym. Określony jest na klasie, a wartości przyjmuje w typie standardowym. Dla każdej wartości ze swojej dziedziny może mieć więcej niż jedną wartość. Na przykład: affiliation, ...
- Niech dom(P) = C. Wówczas:

TabMap(P) = R_P – atrybut P mapowany jest do 2-kolumnowej tabeli,

DomMap(P) = A_p^d — atrybutem dziedzinowym należy do attr(R_p) i jest kluczem obcym odwołującym się do klucza głównego tabel R_c

RngMap(P) = A_p^r — atrybutem przeciwdziedzinowym należy do attr(R_p), para (A_p^d , A_p^r) tworzy **klucz główny** tabeli R_p .

- 3. Mapowanie instancji klas: lewa strona: FOL, prawa strona RRK:
 - $\forall x,y P(x,y) \rightarrow \exists r R_p(r) \land r. A_p^d = x \land r. A_p^r = y$

Przykład (zakładamy jednoznaczność nazw w ontologii):

Map(affiliation) = (Affiliation PersonId, Affiliation),

Mapowanie atrybutów wielowartościowych (multivalued data properties)

Map(affiliation) = (Affiliation PersonId, Affiliation),

Mapowanie instancji atrybutów funkcyjnych:

```
\forall x,y \text{ (affiliation } (x,y) \rightarrow \exists r \text{ Affiliation } (r) \land r.\text{PersonId} = x \land r. \text{ Affiliation} = y)
```

Ontologia: $\mathcal{A} = \{affiliation(1, "Google"), affiliation(1, "MIT"), affiliation(2, "MS"), ...\}$


```
CREATE TABLE Affiliation(
PersonId int references Person(Id),
Affiliation varchar(40),
PRIMARY KEY (PersonId, Affiliation)
)
```

Mapowanie związków funkcyjnych (functional object properties)

- 1. P ∈ BP_{ZF} − P jest związkiem funkcyjnym. Jego dziedziną i przeciwdziedziną są klasy. Dla każdego obiektu ze swojej dziedziny przyjmuje co najwyżej jedną wartość − obiekt z przeciwdziedziny. Na przykład: inProc, ofConf, ...
- 2. Niech C będzie dziedziną, a D przeciwdziedziną P:

$$dom(P) = C, rng(P) = D$$

Wówczas:

TabMap(P) = $R_P = R_C$

atrybut P mapowany jest do tabeli przypisanej jego dziedzinie C,

 $DomMap(P) = A_p^d = Id$

– atrybutem dziedzinowym jest klucz główny tabeli R_p,

RngMap(P) = A_p^r

 atrybut przeciwdziedzinowy należy do attr(R_P) i jest kluczem obcym odwołującym się do klucza głównego tabeli R_D.

- 3. Mapowanie instancji klas: lewa strona: FOL, prawa strona RRK:
 - $\forall x,y P(x,y) \rightarrow \exists r R_p(r) \land r.Id = x \land r. A_p^r = y$

Przykład:

Map(inProc) = (Paper, Id, ProcId)
Map(ofConf) = (Proceeding, Id, ConfId)

Mapowanie atrybutów funkcyjnych (functional data properties)

```
Map(inProc) = (Paper, Id, ProcId)
```

Map(ofConf) = (Proceeding, Id, ConfId)

Mapowanie instancji atrybutów funkcyjnych:

$$\forall x,y \text{ inProc}(x,y) \rightarrow \exists r \text{ Paper}(r) \land r.\text{Id} = x \land r. \text{ ProcId} = y$$

Ontologia: $\mathcal{A} = \{\text{inProc}(101,1001), \text{inProc}(102,1001), \text{inProc}(103,1002)..., \text{ofConf}(1001,2001), \text{ofConf}(1002,2002), ...\}$

Paper		
Id	Title	Procld
101	SQL	1001
102	Al	1001
103	XML	1002

```
CREATE TABLE Paper(
Id int PRIMARY KEY,
Title varchar(80),
ProcId int references Proceedings(Id),
...)
```

```
Proceedings

| Id | BookTitle | Confld |
| 1001 | 2001 |
| 1002 | 2002
```

```
CREATE TABLE Proceedings(
Id int PRIMARY KEY,
ConfId int references Conference(Id),
...)
```

Mapowanie związków wielowartościowych (multivalued object properties)

- P ∈ BP_{ZW} − P jest związkiem wielowartościowym. Jego dziedziną i przeciwdziedziną są klasy. Każdy obiekt z dziedziny może wiązać z wieloma obiektami przeciwdziedziny. Na przykład: authorOf, ...
- 2. Niech dom(P) = C, rng(P) = D. Wówczas:

 $TabMap(P) = R_p$

atrybut P mapowany jest do 2-kolumnowej tabeli,

 $DomMap(P) = A_p^d$

 atrybut dziedzinowy należy do attr(R_P) i jest kluczem obcym odwołującym się do klucza głównego tabel R_C

RngMap(P) = A_p^r

– atrybut przeciwdziedzinowy należy do attr (R_p) i jest kluczem obcym odwołującym się do klucza głównego tabel R_D Para (A_p^d, A_p^r) tworzy **klucz główny** tabeli R_p .

- 3. Mapowanie instancji klas: lewa strona: FOL, prawa strona RRK:
 - ► $\forall x,y P(x,y) \rightarrow \exists r R_p(r) \land r. A_p^d = x \land r. A_p^r = y$

Przykład:

Map(authorOf) = (AuthorPaper, PersonId, PaperId),

Mapowanie atrybutów wielowartościowych (multivalued data properties)

Map(authorOf) = (AuthorPaper, PersonId, PaperId),

Mapowanie instancji atrybutów funkcyjnych:

```
\forall x,y \text{ (authorOf } (x,y) \rightarrow \exists r \text{ AuthorPaper } (r) \land r.\text{PersonId} = x \land r. \text{ PaperId} = y)
```

Ontologia: A = {authorOf(1, 101), authorOf(1, 102), authorOf(2, 102), ...}

PersonId	PaperId
1	101
1	102
2	102

```
CREATE TABLE AuthorPaper(
PersonId int references Person(Id),
PaperId int references Person(Id),
PRIMARY KEY (PersonId, PaperId)
)

DAFO-Pankowski
```

Mapowanie. Podsumowanie (1)

Person

<u>Id</u>	Name
1	John Smith
2	Eva Lang

Paper

Procld
1001
1001
1002

Proceedings

<u>Id</u>	BookTitle	Confld
1001	ACM Proc	2001
1002	DEXA Proc	2002

Affiliation

<u>PersonId</u>	<u>Affiliation</u>
1	Google
1	MIT
2	MS

AuthorPaper

PersonId	<u>PaperId</u>
1	101
1	102
2	102

Confernce

<u>Id</u>	Acronym	Country
2001	ACM	USA
2002	DEXA	France

Nazwa predykatu	Rodzaj	ТаbМар	DomMap	RngMap	Warunki spójności
Person	UP	Person			Pkey: Id
name	BP_{AF}	Person	Id	Name	
affiliation	BP _{AW}	Affiliation	PersonId	Affiliation	Pkey: (PersonId,Affiliation) Fkey: PersonId → Person.Id
inProc	BP _{ZF}	Paper	Id	ProcId	Fkey: ProcId \rightarrow Proceedings.Id
authorOf	BP _{ZW}	AuthorPaper	PersonId	PaperId	Pkey: (PersonId, PaperId) Fkey: PersonId → Person.Id

Mapowanie. Podsumowanie (2)

Omawiana część mapowania uwzględnia:

- 1. Sygnaturę wyliczającą predykaty z podziałem na unarne i binarne oraz na ekstensjonalne i intensjonalne.
- 2. Reguły definiujące dziedziny i przeciwdziedziny predykatów binarnych.
- 3. Reguły określające funkcyjność predykatów binarnych na ich dziedzinach.
- 4. Z powyższych reguł wynika mapowanie predykatów na schematy relacyjne z uwzględnieniem kluczy głównych i kluczy obcych

Nazwa predykatu	Rodzaj	ТаbМар	DomMap	RngMap	Warunki spójności
Person	UP	Person			Pkey: Id
name	BP _{AF}	Person	Id	Name	
affiliation	BP _{AW}	Affiliation	PersonId	Affiliation	Pkey: (PersonId, Affiliation) Fkey: PersonId → Person.Id
inProc	BP _{ZF}	Paper	Id	Procld	Fkey: Procld \rightarrow Proceedings.Id
authorOf	BP _{ZW}	AuthorPaper	PersonId	PaperId	Pkey: (PersonId, PaperId) Fkey: PersonId → Person.Id

Ontologia – aksjomaty (reguły)

- 1. Subsumpcja klas i właściwości (subsumption)
 - $C' \sqsubseteq C$, $\forall x (C'(x) \rightarrow C(x))$
 - $P' \sqsubseteq P$, $\forall x,y (P'(x,y) \rightarrow P(x,y))$
- 2. Rozłączność (disjoitness)
 - $C' \sqsubseteq \neg C$ $\forall x (C'(x) \rightarrow \neg C(x)$
 - $P' \sqsubseteq \neg P$ $\forall x,y (P'(x,y) \rightarrow \neg P(x,y)$
- 3. Dziedzina i przeciwdziedzina (domain and range)
 - $\exists P \sqsubseteq C$, $\forall x,y (P(x,y) \rightarrow C(x))$
 - $\exists P^- \sqsubseteq C$, $\forall x,y (P(x,y) \rightarrow C(y))$
- 4. Totalność przynależność obowiązkowa) (mandatory membership)
 - $C \sqsubseteq \exists P$ $\forall x (C(x) \rightarrow \exists y P(x,y))$
 - $C \sqsubseteq \exists P^- \qquad \forall y (C(y) \rightarrow \exists x P(x,y))$
 - $C \sqsubseteq \exists P.C'$ $\forall x (C(x) \rightarrow \exists y P(x,y) \land C'(y))$
 - $C \sqsubseteq \exists P^{-}.C'$ $\forall y (C(y) \rightarrow \exists x P(x,y) \land C'(x))$
- 5. Funkcyjność (functionality)
 - (funct P) $\forall x,y (P(x,y_1) \land P(x,y_2) \rightarrow y_1 = y_2$
 - (funct P⁻) $\forall x,y (P(x_1,y) \land P(x_2,y) \rightarrow x_1 = x_2$

Mapowanie reguł: totalność predykatu na klasie dziedzinowe (na domenie)

Totalność – przynależność obowiązkowa) (mandatory membership).

P ma określoną wartość na każdym obiekcie swojej dziedzinowej klasy.

$$\rho = C \sqsubseteq \exists P$$
, lub: $\rho = \forall x (C(x) \rightarrow \exists y P(x,y))$

Kolumna atrybutu przeciwdziedziny nie może być NULL:

Przykłady dla predykatów funkcyjnych:

- 1. $\forall x (Person(x) \rightarrow \exists y name(x,y)) każda osoba ma jakieś nazwisko: Person: Name varchar(40) NOT NULL$
- 2. $\forall x \text{ (Paper(x)} \rightarrow \exists y \text{ inProc(x,y))} \text{każdy artykuł występuje w jakichś materiałach konferencyjnych:}$

Paper: ProcId int references Proceedings(Id) NOT NULL

Mapowanie reguł: totalność predykatu na klasie dziedzinowe (na domenie)

Totalność – przynależność obowiązkowa) (mandatory membership).

P ma określoną wartość na każdym obiekcie swojej dziedzinowej klasy.

$$\rho = C \sqsubseteq \exists P$$
,

$$\rho = C \sqsubseteq \exists P$$
, lub: $\rho = \forall x (C(x) \rightarrow \exists y P(x,y))$

Kolumna atrybutu przeciwdziedziny nie może być NULL:

$$Map(\rho) = \{A_p^r \text{ NOT NULL }\}$$

– dla predykatów funkcyjnych,

$$\mathsf{Map}(\rho) = \{\mathsf{A}_\mathsf{p}^\mathsf{r} \;\; \mathsf{NOT} \;\; \mathsf{NULL}, \; \mathsf{R}_\mathsf{C}[\mathsf{Id}] \subseteq \mathsf{R}_\mathsf{p}[\mathsf{A}_\mathsf{p}^\mathsf{d}]\} \qquad \quad - \; \mathsf{dla} \;\; \mathsf{predykat\acute{o}w} \;\; \mathsf{wielowarto\acute{s}ciowych}.$$

Przykłady dla predykatów wielowartościowych:

 $\forall x \text{ (Person(x)} \rightarrow \exists y \text{ affiliation(x,y))} - \text{każda osoba ma jedną lub więcej affiliacji:}$

Person.Id

Affiliation.PersonId – implementowane za pomocą trigera.

Person		
Id	Name	
1	John Smith	
2	Form Lawre	

Aiiiiatioii				
PersonId	Affiliation			
1	Google			
1	MIT			
2	MS			

Mapowanie reguł: totalność predykatu na klasie przeciwdziedzinowe (na range)

Totalność – przynależność obowiązkowa) (mandatory membership).

P ma jako wartość przyjmuje każdy obiekt swojej klasy przeciwdziedzinowej.

$$\rho = C \sqsubseteq \exists P^-, \qquad \text{lub:} \qquad \rho = \forall y \ (C(y) \to \exists x \ P(x,y))$$

$$\mathsf{Map}(\rho) = \{ \mathsf{R}_{\mathsf{C}}[\mathsf{Id}] \subseteq \mathsf{R}_{\mathsf{P}}[\mathsf{A}_{\mathsf{p}}^{\mathsf{r}}] \} \qquad - \, \mathsf{dla} \ \mathsf{predykatów} \ (\mathsf{funkcyjnych} \ \mathsf{i} \ \mathsf{wielowartościowych}).$$

$$\mathsf{Przykłady:}$$

- 1. \forall y (Paper(y) $\rightarrow \exists$ x authorOf(x,y)) każda publikcja ma co najmniej jednego autora: Paper.Id \subseteq AuthorPaper.PaperId implementowane za pomocą trigera.
- 2. \forall y (Conference(y) $\rightarrow \exists$ x ofConf(x,y)) każda konferencja ma co najmniej jeden tom materiałów: Conference.Id \subseteq Proceedings.ConfId implementowane za pomocą trigera.

Paper

Id	Title	Procld
101	SQL	1001
102	ΑI	1001
103	XML	1002

AuthorPaper

PersonId	PaperId
1	101
1	102
2	102

Proceedings

Id	BookTitle	Confld
1001	ACM Proc	2001
1002	DEXA Proc	2002

Conference

Id	Acronym	Country
2001	ACM	USA
2002	DEXA	France

Mapowanie reguł: funkcyjność na przeciwdziedzinie

Odwrotność P jest funkcją:

$$\rho = (\text{funct P}^-)$$
 inaczej $\rho = \forall x,y (P(x_1,y) \land \text{name}(x_2,y) \rightarrow x_1 = x_2$

 $Map(\rho) = A_p^r UNIQUE- jednoznaczna wartość w kolumnie.$

Przykłady:

1. $\forall x,y \text{ (name}(x_1,y) \land \text{name}(x_2,y) \rightarrow x_1 = x_2 - \text{nazwisko jednoznacznie identyfikuje osobę}$

Person: Name varchar(40) NOT NULL UNIQUE

Definiowanie predykatów intensjonalnych (pochodnych)

Reguly przepisywania (rewritting rules)

- 1. Inwersja (inversion)
- 2. Kompozycja (chain)
- Specjalizacja sterowana wartością (value-driven specialization):
 - $\exists P.\{a\} \equiv C, \quad \forall x \exists y (P(x,y) \land y = a \Leftrightarrow C(x))$
- 4. Specjalizacja sterowana klasą (class-driven specialization):
 - $\exists P.C' \equiv C, \quad \forall x \exists y (P(x,y) \land C'(y) \Leftrightarrow C(x))$

Predykat występujący po prawej stronie reguły jest predykatem intensjonalnym.

Podczas translacji zapytania predykaty intencjonalne są rekursywnie zastępowane ich definicjami (lewe strony reguł), po odpowiedniej **unifikacji zmiennych**.

Jest to proces przepisywania zapytania – query rewriting.

W efekcie, zapytanie składa się tylko z predykatów **ekstensjonalnych**.

Reguły przepisywania (rewritting rules) – Przykłady

- 1. Inwersja (inversion)
- 2. Złożenie (chain)
 - □ $P_1 \bullet P_2 \equiv P$, $\forall x,y \exists z \ (P_1(x,z) \land P_2(z,y) \Leftrightarrow P(x,y))$ inProc \bullet ofConf \equiv presentedAt,
- Specjalizacja sterowana wartością (value-driven specialization):
 - $\exists P.\{a\} \equiv C,$ $\forall x \exists y (P(x,y) \land y = a \Leftrightarrow C(x))$
 - \exists acronym.{'ACM'} \equiv ACMConf
 - \exists country.{'USA'} \equiv USAConf
- Specjalizacja sterowana klasą (class-driven specialization):
 - $\exists P.C' \equiv C, \quad \forall x \exists y (P(x,y) \land C'(y) \Leftrightarrow C(x))$
 - \exists presentedAt.ACMConf \equiv ACMPaper
 - \exists authorOf.ACMPaper \equiv ACMAuthor

BibOn – Ontologia

Query formulation

All objects of a given class

Answers

- 1. Serge Abiteboul; INRIA, France
- 2. Foto N. Afrati; Universtity of Athens, Greece
- 3. Marcelo Arenas; Pontificia Universidad Catolica de Chile, Chile
- 4. Magdalena Balazinska; University of Washington, Seattle, Washington, USA
- 5. Pablo Barceló; University of Chile, Chile
- 6. Michael Benedikt; University of Oxford, UK
- 7. lovka Boneva; University of Lille, France

Queries in FOL and SQL

T. Pankowski, DAFO

Remove unchecked SIBLINGS

Remove ALL unchecked

Focus On

Explore

Clone subtree

Persons with given affiliations

DAFO - creating and executing faceted queries Query template (preselection of elements) Faceted interface:

Query template (preselection of elements)

Sub)trees constituting the query:

Roots of subtrees: Person

Edges of (sub)trees:

Edge1: ----
ACCEPT

Answers

- 1. Ireneusz Czarnowski; Gdynia Maritime University, Poland
- 2. Czeslaw Jedrzejek; PUT, Poland
- 3. Piotr Jedrzejowicz; Gdynia Maritime University, Poland
- 4. Tadeusz Morzy; PUT, Poland
- 5. Tadeusz Pankowski; PUT, Poland
- 6. Andrzej Szwabe; PUT, Poland
- 7. Robert Wrembel; PUT, Poland

Persons with given affiliations

DAFO - creating and executing faceted queries

SQL:

SELECT DISTINCT x.PersonId AS Id FROM Affiliation AS x WHERE (x.Affiliation = 'Gdynia Maritime University, Poland' OR x.Affiliation = 'PUT, Poland')

T. Pankowski, DAFO

Persons with a given affiliation

Persons with a given affiliation

ACM or/and DEXA conferences

ACM or DEXA conferences

ACM or DEXA conferences

ACM or DEXA conferences

SQL:

```
SELECT DISTINCT x.PersonId AS Id FROM AuthorPaper AS x

JOIN(SELECT DISTINCT x2.Id AS Id FROM Paper AS x2

JOIN(SELECT DISTINCT x3.Id AS Id FROM Proceedings AS x3

JOIN(SELECT DISTINCT x1.Id AS Id FROM Conference AS x1 WHERE (x1.Acronym LIKE '%ACM%')

UNION

(SELECT DISTINCT x1.Id AS Id FROM Conference AS x1 WHERE (x1.Acronym LIKE '%DEXA%'))

)AS x1 ON x1.Id = x3.Confid
)AS x3 ON x3.Id = x2.ProcId
)AS x2 ON x2.Id = x.PaperId

DAFO-Pankowski
```

ACM and DEXA conferences

ACM and DEXA conferences

Person(x) authorConf(x,x1) AND ACMConf(x1) DEXAConf(x1)

SQL:

SELECT DISTINCT x. Personid AS Id FROM AuthorPaper AS x
IOIN(SELECT DISTINCT x2.Id AS Id FROM Paper AS x2
IOIN(SELECT DISTINCT x3.Id AS Id FROM Proceedings AS x3
IOIN(SELECT DISTINCT x1_L.Id AS Id FROM(SELECT DISTINCT x1.Id AS Id FROM Conference AS x1 WHERE (x1.Acronym LIKE '%ACM%')) AS x1_L
IOIN(SELECT DISTINCT x1.Id AS Id FROM Conference AS x1 WHERE (x1.Acronym LIKE '%DEXA%')
AS x1 ON x1.Id = x1_L.Id
AS x1 ON x1.Id = x3.Confld
AS x3 ON x3.Id = x2.ProcId
AS x2 ON x2.Id = x.PaperId

ACM and DEXA: poprawnie. Konieczne klonowanie

Answers

- 1. Serge Abiteboul; INRIA, France
- 2. Foto N. Afrati; Universtity of Athens, Greece
- 3. Marcelo Arenas; Pontificia Universidad Catolica de Chile, Chile
- 4. Angela Bonifati; University of Lyon, France
- 5. Jan Chomicki; University at Buffalo, USA
- 6. Alin Deutsch; University of California, San Diego, USA
- 7. Georg Gottlob; University of Oxford, UK; TU Vienna, Austria
- 8. Maurizio Lenzerini; Sapienza University of Rome, Italy
- 9. Leonid Libkin; University of Edinburgh, UK
- 10. Tova Milo; Tel Aviv University, Israel
- 11. Martin Theobald; University of Ulm, Germany; University of Luxembourg

ACM and DEXA: poprawnie. Konieczne klonowanie

ACM and DEXA: poprawnie. Konieczne klonowanie

SQL:

```
SELECT DISTINCT x_L.Id AS Id FROM(SELECT DISTINCT x.PersonId AS Id FROM AuthorPaper AS x JOIN(SELECT DISTINCT x3.Id AS Id FROM Paper AS x3 JOIN(SELECT DISTINCT x4.Id AS Id FROM Proceedings AS x4 JOIN(SELECT DISTINCT x1.Id AS Id FROM Conference AS x1 WHERE (x1.Acronym LIKE '%ACM%') AS x1 ON x1.Id = x4.Confld (x1.Id = x4.Confld x3.ProcId x4.Id = x3.ProcId (x3.Id = x.PaperId) AS x_L JOIN(SELECT DISTINCT x.PersonId AS Id FROM AuthorPaper AS x JOIN(SELECT DISTINCT x6.Id AS Id FROM Paper AS x6 JOIN(SELECT DISTINCT x7.Id AS Id FROM Proceedings AS x7 JOIN(SELECT DISTINCT x2.Id AS Id FROM Conference AS x2 WHERE (x2.Acronym LIKE '%DEXA%') AS x2 ON x2.Id = x7.Confld (x3.Id = x6.ProcId x4.Id = x6.Pr
```

T. Pankowski, DAFO

Telewizory (395 modeli)

Zapytania fasetowe: faceted search, faceted queries

https://www.komputronik.pl/category/5431/telewizory.html

Fasetowy widok ontologii (nad ontologią)

- Faseta to para predykat-wartość
- Fasetowy widok zbiór hierarchicznie zorganizowanych faset.
- Interfejs fasetowy drzewo skierowane stanowiące hierarchiczne rozpięcie fragmentu ontologii wraz z zestawem operacji wykonywanych na tym drzewie.
- Wierzchołki interfejsu fasetowego reprezentują predykaty (unarne lub binarne) lub wartości.
- Zapytanie fasetowe fragment interfejsu fasetowego zdefiniowany przez użytkownika w wyniku wykonywania operacji na tym interfejsie.

Definiowanie hierarchicznego widoku

Użytkownik określa szkielet planowanego zapytania podając drzewo (lub las drzew):

- korzeń drzewa określa typ odpowiedzi, a
- pozostałe klasy (hierarchicznie uporządkowane) będą wykorzystywane zdefiniowania do ograniczeń. Przykład:

Pytanie będzie dotyczyło autorów z PUT, wybranych ze względu na konferencje i napisane artykuły. Wskazane drzewo stanowi punkt wyjścia do wygenerowania interfejsu fasetowego.

Interfejs fasetowy

Wygenerowany interfejs fasetowy zawiera:

- wszystkie wskazane klasy z uwzględnieniem ich hierarchicznego uporządkowania,
- wszystkie predykaty binarne łączące te klasy (mogą to być złożenia lub odwrotności predykatów ekstensjonalnych),
- wszystkie atrybuty (data properties) wskazanych klas.

Operacje na interfejsie fasetowym

Meny kontekstowe (prawy przycisk myszy) zawiera wykaz operacji, które można wykonywać na interfejsie.

Answers

- 1. Czeslaw Jedrzejek; PUT, Poland
- 2. Tadeusz Morzy; PUT, Poland
- 3. Tadeusz Pankowski; PUT, Poland
- 4. Robert Wrembel; PUT, Poland

Semantyka zapytania:

PUTAuthor, który:

- 1. miał jakiś artykuł na jakiejś konferencji w roku 2015 lub 2016, i
- 2. jest autorem jakiegoś artykułu z baz danych

NIE

Chcemy, aby był to artykuł z baz danych na którejś z tych konferencji!!

Zapytanie fasetowe: postać FOL i SQL

```
FO after rewriting:
     Person(x)
                                              SELECT DISTINCT x L.Id AS Id FROM(SELECT DISTINCT x.PersonId AS Id
                                              FROM Affiliation AS x WHERE (x.Affiliation = 'PUT, Poland'))AS x L
        AND
                                              JOIN(SELECT DISTINCT x.PersonId AS Id FROM AuthorPaper AS x
          affiliation(x,x4)
                                              JOIN(SELECT DISTINCT x1 L.Id AS Id FROM(SELECT DISTINCT x1.Id AS Id
             x4 = PUT, Poland
                                              FROM Paper AS x1 WHERE (x1.Title LIKE '%database%' ))AS x1 L
          authorOf(x,x1)
                                              JOIN(SELECT DISTINCT x1.Id AS Id FROM Paper AS x1
             Paper(x1)
                                              JOIN(SELECT DISTINCT x6.Id AS Id FROM Proceedings AS x6
               AND
                                              JOIN(SELECT DISTINCT x2.Id AS Id FROM Conference AS x2 WHERE (x2.Year = '2015'
                  paperTitle(x1,x5)
                                              OR x2.Year = '2016')
                     x5 = %database%
                                              )AS x2 ON x2.Id = x6.ConfId
                  inProceedings(x1,x6)
                                              )AS x6 ON x6.Id = x1.ProcId
                     Proceedings(x6)
                                              )AS x1 ON x1.Id = x1 L.Id
                       ofConf(x6,x2)
                                              )AS x1 ON x1.Id = x.PaperId
                          Conference(x2)
                                              )AS x 	ext{ ON } x.Id = x 	ext{ L.Id}
                            confYear(x2,x3)
```

x3 = ANY (2015,2016)

Zapytania zagnieżdżone

Nested answers (expand/collapse items): 1. Tadeusz Morzy; PUT, Poland

- 1. DEXA, 2015, 26. DEXA 2015: Valencia, Spain, Database and Expert Systems Applications (DEXA), 26, Spain, Valencia
- 2. DEXA Workshop, 2001, 12. DEXA Workshop 2001: Munich, Germany, DEXA Workshops, 12, Germany, Munich
- 3. DEXA Workshop, 1999, 10. DEXA Workshop 1999: Florence, Italy, DEXA Workshops, 10, Italy, Florence
- 4. DEXA, 1991, 2. DEXA 1991: Berlin, Germany, Database and Expert Systems Applications (DEXA), 2, Germany, Berlin
- 5. DEXA, 1990, 1. DEXA 1990: Vienna, Austria, Database and Expert Systems Applications (DEXA), 1, Austria, Vienna
- 2. Tadeusz Pankowski; PUT, Poland
- 3. Robert Wrembel; PUT, Poland

Implementacja

Ontologia

presentedAt

writtenBy

authorConf

confAuthor

Przeciwdziedzina (Rng)

ld

2

BName1

inProceedings

in Proceedings

presentedPaper

authorOf

BName	UName	DbConstr
_ld_Person	Integer	T
affiliation	String	N
authorConf	Conference	N
authorOf	Paper	N
name	String	N
pcMemberOf	Conference	T
personKey	String	N

Specjalizacja sterowana klasą (Spec2)

ld	BName	UName1	UName2
1	authorOf	Paper	Author
2	presented At	ACMConf	ACMPaper
3	presented At	DEXAConf	DEXAPaper
4	authorOf	ACMPaper	ACMAuthor

Specjalizacja sterowana wartością (Spec1)

ld	BName	Const	UName
1	acronym	%ACM%	ACMConf
2	acronym	%DEXA%	DEXAConf
3	publisher	%Springer%	SpringerProceedings
4	acronym	%KES%	KESConf
5	acronym	%TPDL%	TPDLConf
6	country	USA	USAConf
7	affiliation	PUT, Poland	PUTAuthor
9	paperTitle	%database%	DBPaper
10	paperTitle	%ontolog%	ONTOPaper
11	paperTitle	%query%	QUERYPaper

Inwersja (Inv)

ld	BName1	BName2
1	authorOf	writtenBy
2	inProceedings	includesPaper
3	ofConf	confProceedings
4	presentedAt	presentedPaper
7	confAuthor	authorConf
11	pcMemberOf	confPCMember

Dziedzina (Dom)

BName	UName	DbConstr	
_ld_Person	Person	Т	
affiliation	Person	N	
authorConf	Person	N	
authorOf	Person	N	
name	Person	N	
pcMemberOf	Person	Т	-
person Key	Person	N	

Database in SQL Server

Baza danych: DAFO_DBLP

DAFO-Pankowski

79

Diagram bazy danych (w VS 2017)

Name	Type	Kind	TabMap	DomMap	RngMap	FuncType
_ld_Conference	В	E	Conference	ld	ld	DF
_ld_Paper	В	E	Paper	ld	ld	DF
_ld_Person	В	E	Person	ld	ld	DF
_ld_Proceedings	В	E	Proceedings	ld	ld	DF
acronym	В	E	Conference	ld	Acronym	DF
affiliation	В	E	Affiliation	PersonId	Affiliation	DM
authorOf	В	E	AuthorPaper	PersonId	Paperld	OM
city	В	E	Conference	ld	City	DF
Conference	U	E	Conference	ld	NULL	NULL
confKey	В	E	Conference	ld	Dblp Key	DF
confName	В	E	Conference	ld	ShortName	DF
confYear	В	Е	Conference	ld	Year	DF
country	В	E	Conference	ld	Country	DF
editionNo	В	E	Conference	ld	Edition No	DF
editor	В	E	Proceedings	ld	Editor	DF
inProceedings	В	E	Paper	ld	Procld	OF
name	В	E	Person	ld	Name	DF
ofConf	В	E	Proceedings	ld	Confld	OF
pages	В	E	Paper	ld	Pages	DF
Paper	U	E	Paper	ld	NULL	NULL
paperKey	В	E	Paper	ld	Dblp Key	DF
paperTitle	В	E	Paper	ld	Title	DF
pcMemberOf	В	E	PCMember	PersonId	Confld	OM
Person	U	E	Person	ld	NULL	NULL
personKey	В	E	Person	ld	Dblp Key	DF
Proceedings	U	E	Proceedings	ld	NULL	NULL
proceedingsKey	В	E	Proceedings	ld	Dblp Key	DF
proceedings Title	В	Е	Proceedings	ld	Book Title	DF
proceedingsYear	В	E	Proceedings	ld	Year	DF
publisher	В	E	Proceedings	ld	Publisher	DF
series	В	E	Proceedings	ld	Series	DF
volume	В	Е	Proceedings	ld	Volume	DF

Mapowanie Table Sigma in BIB_ONTO