

Competitive Programming From Problem 2 Solution in O(1)

Combinatorial Game Theory

Game of Nim

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

- K piles (nim heaps), each has some stones
 - Let pile sizes: n1, n2, ...nk
 - Player selects 1 pile and take 1 or more items from it
 - Winner = takes last stone
 - E.g. for piles (3, 4, 5)

Src: http://www.geeksforgeeks.org/combinatorial-game-theory-set-2-game-nim

- It is pretty hard to write efficient recursive solution to this problem!
- Can we have a simple strategy to determine a solution? Yes
 - Compute xor for piles: n1 xor n2 xor nk (*Nim-sum*)
 - If result = $0 \Rightarrow$ First player lose, otherwise win

A	B	XOR
0	0	0
0	1	1
1	0	1
1	1	0

- For pile sizes: 6, 9, 3
 - \bullet 6 = 0 1 1 0
 - 9 = 1001
 - $= 3 = 0 \ 0 \ 1 \ 1$
 - $^{\circ}$ $^{\circ}$ = 1 1 0 0 => column = 1 IFF # of 1s is odd
 - Result != 0 => First player wins
- Piles $(1, 2, 3) \Rightarrow xor = 0 \Rightarrow losing position$
- Piles $(1, 4, 7) \Rightarrow$ xor $!= 0 \Rightarrow$ wining position
- Nim sum = Nim addition = a ^ b

Nim Game Tree

- \blacksquare Assume we have input piles (1, 3, 4)
 - To compute answer, draw tree of all possible choices
 - If node sum is N (e.g. 8), we have N children for this node
 - Compute Win/lose positions. Losing Base Case (0, 0, 0)

Nim Xor Computations

- To prove correctness, our search results must match xor results (sum = $0 \Rightarrow lose$)
 - We need to prove following 3 properties:
 - Same base case result: Trivially correct, as xor (0, 0, 0) = 0 = 0 losing state in both ways
 - If we are in a **losing position**, then **all** child positions are winning positions (in other words, there is **no child** position with xor = 0)
 - If we are in **winning position**, there is **at least** a child position with losing state

Losing position verification

- Assume given x = y > 0, then $x^y = 0$
 - Assume we allow only decreasing x
 - Can you find any $(x-v)^y = 0$? Never.
 - Any change in x, changes the overall bits.
 - Then, some columns will have xor != 0
 - Then all children positions have $xor > 0 \Rightarrow win positions$
 - Let x = 4, y = 4
 - $100 ^ 100 = 0$ \Rightarrow let's try all x children
 - 011 ^ 100 != 0
 - 010 ^ 100 != 0
 - **001** ^ 100 != 0
 - 000 ^ 100 != 0

Winning position verification

- Assume given x > y > 0 with $x^y != 0$
 - Assume we allow only decreasing x
 - Can you find **any** $(x-v)^y = 0$? **YES**.
 - As x > y, left most bit in x comes \leq one in y
 - One can alter any bit in x starting from most left one
 - So find all columns with xor = 1 and flip bit in X
 - In other words, set x = y
 - Then one of children positions have xor is losing positions
 - 10110010 ^ 01000001 = 11110011
 - Alter 10110010 to 01000001
 - \bullet 01000001 $^{\wedge}$ 01000001 = 0

Position verification

- What if we have array A of numbers?
 - Find a number in A >the xor of remaining (always exist)
 - Let $X = A[i] > xorsum^A[i]$
 - Notice: $a \wedge (a \wedge b \wedge c \wedge d) = b \wedge c \wedge d$
 - Let Y = xor of remaining numbers = xorsum^A[i]
 - Actually, this also help us simulate the game!
 - For other ways for the proof: <u>Link 1</u>, <u>Link 2</u>, <u>Link 3</u>
- Overall: xor tree matches recursive tree
 - Same base case computation
 - xor rule for losing position has always all children win
 - xor rule for win position have always 1+ lose child
 - Two equivalent trees

Nim Winning Strategy

- If current xor !=0 => I can win
- So if you are in a game state, make the move that makes the next state XOR = 0
- Hence user in losing state
- Whatever he did, he will return me to xor != 0
- Again and again till all piles = 0

Solving Nim and Finding a move

```
void solve nim(vector<int> heap) {
  int xorsum = \theta;
  for (int i = \theta; i < (int)heap.size(); ++i)
    xorsum ^= heap[i];
  if (xorsum != 0) {
    cout << "First win: ";
    for (int i = 0; i < (int)heap.size(); ++i) {</pre>
      if (heap[i] > (heap[i] ^ xorsum)) {
        cout<< "First Move " << (heap[i] - (heap[i] ^ xorsum))</pre>
            << " stones from " << i << " heap\n";
        break;
    cout << "Second win\n";
```

Misère Nim

- Same game as Nim, but the last one to make move loses (e.g. base case reversed)
 - Generally misère rule is more difficult to analyze
 - Even sometimes, you can't find a strategy
- Same rule too, with special case handling if all sizes are 1s or 0s
 - First player win if # of 1s is even (their xor = 0)
 - Otherwise, we use the **normal nim rule** (xor $!= 0 \Rightarrow win$)

Misère Nim

```
bool misereNim(vector<int> &piles) {
  int isSpecial = 1, xorVal = 0;

  for(int i = 0; i < piles.size(); ++i) {
     xorVal ^= piles[i];
     isSpecial &= (piles[i] <= 1);
  }
  if (isSpecial)
    return xorVal == 0;
  return xorVal != 0; // normal nim handling
}</pre>
```

Misère Winning Strategy

- So we are almost Nim strategy!
 - Keep pushing the other player for piles xor = 0
 - Exception: Never create a state of even non-empty piles of size = 1
- Normal nim strategy is same everywhere, so nothing special about the game tree leaf nodes.
- However, Misère is dependent on the leaves
- We call normal nim 'normal', as it is logical who can't move is loser

Misère: Little analysis

- So wired that Nim is almost as Misère Nim!
- Let S1 be starting state (with some piles > 1)
- Let S3 be state that has odd piles of size 1
- Let S2 be state directly before S3 (e.g. 1 pile only of size > 1 and others = 1)
- So according to Misère
 - If S1 xor != 0, you will win: then
 - Move S1 through normal nim steps to S2
 - Hanle S2 carefully to move to S3
 - The question: Does S2 always all that handling?

Misère: Little analysis

- Let S1 be some initial state
- \blacksquare S3 = 1 1 1 [odd ones = 1st lose base case]
- What might be possible previous state S2?
- $S2 = [5 \ 1 \ 1]: Take 4 from 5 [1 \ 1 \ 1]: I win$
- $S2 = [5 \ 1 \ 1 \ 1]$: Take 5 from 5 [1 \ 1 \ 1]: I win
- S2 can force winning whatever its content
- Note also, xor S2 always != 0
- Hence, if xor S1 != 0, move from S1 to S2 using normal nim, and then force winning

Moore's nim-k

- Generalization of nim, given N piles and K
 - Remove stones from any k piles
 - Expand every pile size in base 2
 - For every column, check if 1s sum divisible by k+1
 - If this is true for all => first player LOSEs
 - Example: piles (1, 2, 3, 3), k = 2
 - **0**1
 - **1**0
 - **1**1
 - 11 [please prove see links above]
 - Column 1 sum 3%3 = 0, Column 2 sum 3%3 = 0
 - All divible by k+1 (3) \Rightarrow First player loses

Northcott game

- Find win strategy. Play it <u>here</u>.
 - Board with red and blue opponents
 - Each column has 1 red and 1 blue ball
 - For a column, move only your colortoward the other color (any # of steps)
 - BUT can't jump over opponent
 - Winner = Last to move his color

Northcott game

- Thinking
 - **Observation**: Satisfies impartial game conditions
 - **Observation**: Every column is independent from others
 - Intuition: Each column is a nim pile
 - Intuition: If distance between opponents decrease, nim decrease in same amount
 - **Solution**: Convert each column to a pile size (# of cells between 2 colors). Then do xor for the pile sizes!
- What if moving can be backward too?
 - Same solution
 - Use move cancellation strategy (Bogus/Poker Nim)

Nimble game

- Play <u>here</u> (and many other games)
- Solve at <u>judge</u>
 - Array of N cells, that has coins
 - Move: Pick a coin and move to any left square, even if it has 1 or more coin
 - End condition: All coins in first cell in array
 - Loser: Can't do a move
 - Sol: every coin is **independent** than others (e.g. a pile)
 - Xor values arr[i]-1

Your turn: 21 game

- 21 game
 - 2 players, first one says 1
 - Next player can say previous number + (1 or 2 or 3)
 - The first to exceed 20 lose
 - E.g. 1, 4, 6, 8, 11, 12, 13, 16, 19, 20, 21 (increasing game)
 - Question: is this normal play or **misère**?
 - Loser is **last one** to do action = This is **misère**
 - Find a simple <u>winning</u> strategy for it / variants <u>game</u>
 - See <u>also</u>
 - Solve also the <u>100 game</u>

Your turn: Nim with skip move

- Given the original nim game with extra rule
 - Skip turn: A player is allowed to say I will skip turn
 - Player 1 is allowed up to A skippings
 - Player 2 is allowed up to B skippings
 - Given the N piles, A, B who is the winner?
 - Hints:
 - What if A = B? Think in **Move Cancellation Strategy**
 - What if A > B and in normal N piles you lose?

Your turn: Dividing a number

- Given an integer N
 - Move: divide N by a prime power > 1
 - e.g. 3, 3², 3³...
 - primes: 2, 3, 5, 7, 11....
 - Loser: N = 1
 - Next time the solution

Your turn: Staircase Nim

Staircase Nim

- Staircase with n steps, each step has some coins
- Move: move some coins to the left step (except first step)
- Loser: Can't make a move (e.g. all coins at arr[0])
- **Intuition**: Every step is a pile?
- Issue: Notice Dependency between steps
- **Hint**: Analyze positions: 0, 1, 2, 3, ... etc
- Next time the solution

Src: http://codeforces.com/blog/entry/4465

Summary

Nim

- N piles, remove from 1 pile, winner = last move
- Just Xor them $=> xor == 0 \Rightarrow Lose$
- For every column, check if 1s sum divisible by 2
 - If so, lose

Misère Nim

- N piles, remove from 1 pile, loser = last move
- Same general solution of nim, except if all piles <= 1</p>

Moore's nim-k

- Remove stones from any k piles
- For every column, check if 1s sum divisible by k+1

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ