Lecture 10: Classic Games

Lecture 10: Classic Games

David Silver

Outline

- 1 State of the Art
- 2 Game Theory
- 3 Minimax Search
- 4 Self-Play Reinforcement Learning
- 5 Combining Reinforcement Learning and Minimax Search
- 6 Reinforcement Learning in Imperfect-Information Games
- 7 Conclusions

Why Study Classic Games?

- Simple rules, deep concepts
- Studied for hundreds or thousands of years
- Meaningful IQ test
- Drosophila of artificial intelligence
- Microcosms encapsulating real world issues
- Games are fun!

Al in Games: State of the Art

Program	Level of Play	Program to Achieve Level		
Checkers	Perfect	Chinook		
Chess	Superhuman	Deep Blue		
Othello	Superhuman	Logistello		
Backgammon	Superhuman	TD-Gammon		
Scrabble	Superhuman	Maven		
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³		
Poker ⁴	Superhuman	Polaris		

 $^{^{1}9 \}times 9$

 $^{^29\}times 9$ and 19×19

 $^{^319 \}times 19$

⁴Heads-up Limit Texas Hold'em

RL in Games: State of the Art

Program	Level of Play	RL Program to Achieve Level		
Checkers	Perfect	Chinook		
Chess	International Master	KnightCap / Meep		
Othello	Superhuman	Logistello		
Backgammon	Superhuman	TD-Gammon		
Scrabble	Superhuman	Maven		
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³		
Poker ⁴	Superhuman	SmooCT		

 $^{^{1}9 \}times 9$

 $^{^29\}times 9$ and 19×19

 $^{^319 \}times 19$

⁴Heads-up Limit Texas Hold'em

Optimality in Games

- What is the optimal policy π^i for *i*th player?
- If all other players fix their policies π^{-i}
- Best response $\pi^i_*(\pi^{-i})$ is optimal policy against those policies
- Nash equilibrium is a joint policy for all players

$$\pi^i = \pi^i_*(\pi^{-i})$$

- such that every player's policy is a best response
- i.e. no player would choose to deviate from Nash

Single-Agent and Self-Play Reinforcement Learning

- Best response is solution to single-agent RL problem
 - Other players become part of the environment
 - Game is reduced to an MDP
 - Best response is optimal policy for this MDP
- Nash equilibrium is fixed-point of self-play RL
 - Experience is generated by playing games between agents

$$a_1 \sim \pi^1, a_2 \sim \pi^2, ...$$

- Each agent learns best response to other players
- One player's policy determines another player's environment
- All players are adapting to each other

Two-Player Zero-Sum Games

We will focus on a special class of games:

- A two-player game has two (alternating) players
 - We will name player 1 white and player 2 black
- A zero sum game has equal and opposite rewards for black and white

$$R^1 + R^2 = 0$$

We consider methods for finding Nash equilibria in these games

- Game tree search (i.e. planning)
- Self-play reinforcement learning

Perfect and Imperfect Information Games

- A perfect information or Markov game is fully observed
 - Chess
 - Checkers
 - Othello
 - Backgammon
 - Go
- An imperfect information game is partially observed
 - Scrabble
 - Poker
- We focus first on perfect information games

Minimax¹

■ A value function defines the expected total reward given joint policies $\pi = \langle \pi^1, \pi^2 \rangle$

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 A minimax value function maximizes white's expected return while minimizing black's expected return

$$v_*(s) = \max_{\pi^1} \min_{\pi^2} v_\pi(s)$$

- A minimax policy is a joint policy $\pi = \langle \pi^1, \pi^2 \rangle$ that achieves the minimax values
- There is a unique minimax value function
- A minimax policy is a Nash equilibrium

Minimax Search

- Minimax values can be found by depth-first game-tree search
- Introduced by Claude
 Shannon: Programming a
 Computer for Playing Chess
- Ran on paper!

Value Function in Minimax Search

- Search tree grows exponentially
- Impractical to search to the end of the game
- Instead use value function approximator $v(s, \mathbf{w}) \approx v_*(s)$
 - aka evaluation function, heuristic function
- Use value function to estimate minimax value at leaf nodes
- Minimax search run to fixed depth with respect to leaf values

Binary-Linear Value Function

- Binary feature vector $\mathbf{x}(\mathbf{s})$: e.g. one feature per piece
- Weight vector w: e.g. value of each piece
- Position is evaluated by summing weights of active features

$$v(s, \mathbf{w}) = \mathbf{x}(s) \cdot \mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} +5 \\ +3 \\ +1 \\ -5 \\ -3 \\ -1 \\ \vdots \end{bmatrix}$$

$$v(s, \mathbf{w}) = 5 + 3 - 5 = 3$$

Deep Blue

Knowledge

- 8000 handcrafted chess features
- Binary-linear value function
- Weights largely hand-tuned by human experts

Search

- High performance parallel alpha-beta search
- 480 special-purpose VLSI chess processors
- Searched 200 million positions/second
- Looked ahead 16-40 ply

Results

- Defeated human champion Garry Kasparov 4-2 (1997)
- Most watched event in internet history

Chinook

- Knowledge
 - Binary-linear value function
 - 21 knowledge-based features (position, mobility, ...)
 - x4 phases of the game
- Search
 - High performance alpha-beta search
 - Retrograde analysis
 - Search backward from won positions
 - Store all winning positions in lookup tables
 - Plays perfectly from last n checkers
- Results
 - Defeated Marion Tinsley in world championship 1994
 - won 2 games but Tinsley withdrew for health reasons
 - Chinook solved Checkers in 2007
 - perfect play against God

Self-Play Temporal-Difference Learning

- Apply value-based RL algorithms to games of self-play
- **MC**: update value function towards the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - v(S_t, \mathbf{w})) \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$$

■ TD(0): update value function towards successor value $v(S_{t+1})$

$$\Delta \mathbf{w} = \alpha(\mathbf{v}(S_{t+1}, \mathbf{w}) - \mathbf{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \mathbf{v}(S_t, \mathbf{w})$$

■ TD(λ): update value function towards the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - v(S_t, \mathbf{w})) \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$$

Policy Improvement with Afterstates

- For deterministic games it is sufficient to estimate $v_*(s)$
- This is because we can efficiently evaluate the afterstate

$$q_*(s, a) = v_*(succ(s, a))$$
 step forward

- Rules of the game define the successor state succ(s, a)
- Actions are selected e.g. by min/maximising afterstate value

$$A_t = \operatorname*{argmax}_a v_*(succ(S_t, a))$$
 for white $A_t = \operatorname*{argmin}_a v_*(succ(S_t, a))$ for black

■ This improves joint policy for both players

Self-Play TD in Othello: Logistello

- Logistello created its own features
- Start with raw input features, e.g. "black stone at C1?"
- Construct new features by conjunction/disjunction
- Created 1.5 million features in different configurations
- Binary-linear value function using these features

Reinforcement Learning in Logistello

Logistello used generalised policy iteration

- Generate batch of self-play games from current policy
- Evaluate policies using Monte-Carlo (regress to outcomes)
- Greedy policy improvement to generate new players

Results

Defeated World Champion Takeshi Murukami 6-0

Self-Play Reinforcement Learning

LTD-Gammon

TD Gammon: Non-Linear Value Function Approximation

LTD-Gammon

Self-Play TD in Backgammon: TD-Gammon

- Initialised with random weights
- Trained by games of self-play
- Using non-linear temporal-difference learning

$$\delta_t = v(S_{t+1}, \mathbf{w}) - v(S_t, \mathbf{w})$$

 $\Delta \mathbf{w} = \alpha \delta_t \nabla_{\mathbf{w}} v(S_t, \mathbf{w})$

- Greedy policy improvement (no exploration)
- Algorithm always converged in practice
- Not true for other games

why? because there is enough stochasticity in the environment in the dice rolls.

TD Gammon: Results

- Zero expert knowledge ⇒ strong intermediate play
- \blacksquare Hand-crafted features \implies advanced level of play (1991)
- 2-ply search \implies strong master play (1993)
- 3-ply search \implies superhuman play (1998)
- Defeated world champion Luigi Villa 7-1 (1992)

New TD-Gammon Results

Simple TD

■ TD: update value towards successor value

- Value function approximator $v(s, \mathbf{w})$ with parameters \mathbf{w}
- Value function backed up from raw value at next state

$$v(S_t, \mathbf{w}) \leftarrow v(S_{t+1}, \mathbf{w})$$

- First learn value function by TD learning
- Then use value function in minimax search (no learning)

$$v_{+}(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w})$$

Simple TD: Results

- Othello: superhuman performance in *Logistello*
- Backgammon: superhuman performance in *TD-Gammon*
- Chess: poor performance
- Checkers: poor performance
- In chess tactics seem necessary to find signal in position
- e.g. hard to find checkmates without search
- Can we learn directly from minimax search values?

TD Root

■ TD root: update value towards successor search value

• Search value is computed at root position S_t

$$v_+(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w})$$

■ Value function backed up from search value at next state

$$v(S_t, \mathbf{w}) \leftarrow v_+(S_{t+1}, \mathbf{w}) = v(I_+(S_{t+1}), \mathbf{w})$$

• Where $I_+(s)$ is the leaf node achieving minimax value from s

TD Root in Checkers: Samuel's Player

- First ever TD learning algorithm (Samuel 1959)
- Applied to a Checkers program that learned by self-play
- Defeated an amateur human player
- Also used other ideas we might now consider strange

TD Leaf

■ TD leaf: update search value towards successor search value

Search value computed at current and next step

$$v_{+}(S_t, \mathbf{w}) = \min_{s \in leaves(S_t)} v(s, \mathbf{w}), \quad v_{+}(S_{t+1}, \mathbf{w}) = \min_{s \in leaves(S_{t+1})} v(s, \mathbf{w})$$

• Search value at step t backed up from search value at t+1

$$v_{+}(S_{t}, \mathbf{w}) \leftarrow v_{+}(S_{t+1}, \mathbf{w})$$

$$\implies v(I_{+}(S_{t}), \mathbf{w}) \leftarrow v(I_{+}(S_{t+1}), \mathbf{w})$$

TD leaf in Chess: Knightcap

- Learning
 - Knightcap trained against expert opponent
 - Starting from standard piece values only
 - Learnt weights using TD leaf
- Search
 - Alpha-beta search with standard enhancements
- Results
 - Achieved master level play after a small number of games
 - Was not effective in self-play
 - Was not effective without starting from good weights

TD leaf in Checkers: Chinook

- Original Chinook used hand-tuned weights
- Later version was trained by self-play
- Using TD leaf to adjust weights
 - Except material weights which were kept fixed
- Self-play weights performed ≥ hand-tuned weights
- i.e. learning to play at superhuman level

TreeStrap

■ TreeStrap: update search values towards deeper search values

- Minimax search value computed at all nodes $s \in nodes(S_t)$
- Value backed up from search value, at same step, for all nodes

$$u(s, \mathbf{w}) \leftarrow v_{+}(s, \mathbf{w})$$

$$\implies v(s, \mathbf{w}) \leftarrow v(l_{+}(s), \mathbf{w})$$

Treestrap in Chess: Meep

- Binary linear value function with 2000 features
- Starting from random initial weights (no prior knowledge)
- Weights adjusted by TreeStrap
- Won 13/15 vs. international masters
- Effective in self-play
- Effective from random initial weights

Simulation-Based Search

- Self-play reinforcement learning can replace search
- Simulate games of self-play from root state S_t
- Apply RL to simulated experience
 - Monte-Carlo Control ⇒ Monte-Carlo Tree Search
 - Most effective variant is UCT algorithm
 - Balance exploration/exploitation in each node using UCB
 - Self-play UCT converges on minimax values
 - Perfect information, zero-sum, 2-player games
 - Imperfect information: see next section

Performance of MCTS in Games

- MCTS is best performing method in many challenging games
 - Go (last lecture)
 - Hex
 - Lines of Action
 - Amazons
- In many games simple Monte-Carlo search is enough
 - Scrabble
 - Backgammon

Simple Monte-Carlo Search in Maven

Learning

- Maven evaluates moves by score + v(rack)
- Binary-linear value function of rack
- Using one, two and three letter features
- Q??????, QU?????, III????
- Learnt by Monte-Carlo policy iteration (cf. Logistello)

Search

- Roll-out moves by imagining n steps of self-play
- Evaluate resulting position by score + v(rack)
- Score move by average evaluation in rollouts
- Select and play highest scoring move
- Specialised endgame search using B*

Maven: Results

- Maven beat world champion Adam Logan 9-5
- Here Maven predicted endgame to finish with MOUTHPART
- Analysis showed Maven had error rate of 3 points per game

Game-Tree Search in Imperfect Information Games

 Players have different information states and therefore separate search trees

- There is one node for each information state
 - summarising what a player knows
 - e.g. the cards they have seen
- Many real states may share the same information state
- May also aggregate states e.g. with similar value

Solution Methods for Imperfect Information Games

Information-state game tree may be solved by:

- Iterative forward-search methods
 - e.g. Counterfactual regret minimization
 - "Perfect" play in Poker (heads-up limit Hold'em)
- Self-play reinforcement learning
- e.g. Smooth UCT
 - 3 silver medals in two- and three-player Poker (limit Hold'em)
 - Outperformed massive-scale forward-search agents

Smooth UCT Search

- Apply MCTS to information-state game tree
- Variant of UCT, inspired by game-theoretic Fictitious Play
 - Agents learn against and respond to opponents' average behaviour
- Extract average strategy from nodes' action counts, $\pi_{avg}(a|s) = \frac{N(s,a)}{N(s)}$.
- At each node, pick actions according to

$$A \sim egin{cases} \mathsf{UCT}(S), & \mathsf{with probability} \ \eta \ \pi_{\mathsf{avg}}(\cdot|S), & \mathsf{with probability} \ 1-\eta \end{cases}$$

- Empirically, in variants of Poker:
 - Naive MCTS diverged
 - Smooth UCT converged to Nash equilibrium

RL in Games: A Successful Recipe

Program	Input features	Value Fn	RL	Training	Search
Chess	Binary	Linear	TreeStrap	Self-Play	$\alpha\beta$
Меер	Pieces, pawns,			/ Expert	
Checkers	Binary	Linear	TD leaf	Self-Play	$\alpha\beta$
Chinook	Pieces,				
Othello	Binary	Linear	MC	Self-Play	$\alpha\beta$
Logistello	Disc configs				
Backgammon	Binary	Neural	$TD(\lambda)$	Self-Play	$\alpha\beta$ /
TD Gammon	Num checkers	network			MC
Go	Binary	Linear	TD	Self-Play	MCTS
MoGo	Stone patterns				
Scrabble	Binary	Linear	MC	Self-Play	MC
Maven	Letters on rack				search
Limit Hold'em	Binary	Linear	MCTS	Self-Play	-
SmooCT	Card abstraction				