

R.I.C.E

February 1, 2019

Jacob Fletcher, Emil Mathew, **Matthew Sumpter**

Overview -R.I.C.E(name in development)

- Radio frequency
- Interception
- Classification
- Exploitation

• Small operator carried system, that can work with long term missions and shorter DA operations.

Background – Why?

- Environments where current EW capabilities are limited
 - Dense Urban Environments
 - Subterranean Combat Environments
 - Operations where Near Peer A2/AD capabilities that limit the deployment air/ground assets
- Increasing global usage of IoT and RF main medium of wireless communication
 - 5.4 billion IoT
 - ~5 billion cellphones

Background – Why?

- In dense urban areas, signal traffic is high and difficult to identify
 - RF "Forensics"
 - What signals are present?
 - What signals are important?
 - What signals aren't following the rules?
 - Security concern may be intended to hack or "spoof" devices

Background – Why Machine Learning?

- RF sampling rates can exceed 200 GB/s
- Machine Learning:
 - Eliminates human error
 - Proper signals captured
 - ANd storage of interesting data

Background – Previous Work

- Spectrogram Approach
 - Discards phase info
- Can be ~99% success at signal identification with expensive and heavy equipment
 - Pros:
 - Utilizes well-established tools for ML
 - Effective at signal identification
 - Cons:
 - Extra level of processing required to generate image

Background – In-phase/quadrature (IQ) Domain

- Uses DeepSig generated dataset and Convoluted Neural Network
- Pro: Facilitates real time decisions ~94/87% success (simulated/OTA)

Background – Challenges

- Preprocessing and machine learning on data of this complexity not well explored in non-proprietary sources
- Practical application:
 - Classifying RF in real-time proven successful
 - Can it be made portable?

Tools for Approach – Hardware

- Software-Defined Radio Devices
 - RTL-SDR
 - LimeSDR/Mini
- TX2
 - Portability allows for easy carry by operators
 - Capable of computational demands

Tools For Approach – Software

- GNURadio
- RFTAP
- Wireshark

Current Interception Format

Generating Data – Processing RF signals

- GNU Radio config. provides initial insight
- GNU Radio Modules
 - RFTap
 - Allows wireshark to view RDS packet headers and look for metadata flags
 - Data "grooming"
 - Trim focus to specific bandwidth/frequency/modulation
 - Eliminate noise

Classification - Ensemble Classification

- I/Q currently best standard for real-time analysis
- Stacking
 - Weight predictions from various classifiers
 - Design meta-classifier that determines final classification from all garnered meta data

Future Work – RF Dictionary

- There is still a need for an open, collected dataset
- Incoming signals can be quickly identified and assessed
- New signals can be incorporated
- SQLLite DB with metadata used to build reference library

Future Work

- Build multiple schemas for detection
 - Automate movement between schemas with python
- Explore other classification methods
- Need for transfer learning
 - Training is expensive
 - Classify real-time data, feed back into classifier training model
- Focus on UHF and VHF for interception and recording

Resources

https://www.darpa.mil/news-events/2017-08-11a

https://www.thinkmind.org/download.php?articleid=data_analytics_20

<u>15 8 30 60114</u>

http://on-demand.gputechconf.com/gtc/2018/presentation/s8826-dee

p-learning-applications-for-radio-frequency-rf-data.pdf

https://arxiv.org/pdf/1712.04578.pdf

https://blog.kickview.com/deep-learning-meets-dsp-ofdm-signal-detecti

<u>on/</u>

