NATIONAL INSTITUTE OF TECHNOLOGY CALICUT

I MID SEM EXAM – SEPTEMBER 2014 B.Tech Chemical Engineering VI Semester

CH3003/CHU312 CHEMICAL REACTION ENGINEERING

Time: 1 hour

Maxi. Mark: 20

1. Determine the rate constant and order of the reaction for the following concentration-time

uata.											
Time	0	1	2	4	5	6	8	10	20	40	50
min											
Concentration	1000	568	385	226	185	155	117	92	43	19	14
mol/lit											

2. Identify the variables affecting the rate of reaction.

(2)

3. With neat sketches explain about the ideal reactor types.

(3)

4. The experimental rate of the reaction $H_2 + Br_2 \rightarrow 2HBr$ is determined as

$$r_{\text{HBr}} = \frac{k_1 [\text{H}_2] [\text{Br}_2]^{1/2}}{k_2 \div [\text{HBr}]/[\text{Br}_2]}$$

Identify a reaction mechanism for the above reaction.

(4)

- 5. Aqueous A reacts to form R (A \rightarrow R) and in the first minute in a batch reactor its concentration drops from $C_{A0} = 2.03$ mol/liter to $C_{Af} = 1.97$ mol/liter. Find the rate equation for the reaction if the kinetics is second order with respect to A. (3)
- 6. Find out the activation energy from the below table.

(3)

Speed	150	160	230	295	370
m/hr					
Temperature	13	16	22	24	28
°C					