Step-1

Consider that **P** is the plane in 3-space with equation x + 2y + z = 6.

The objective is to find the equation of the plane \mathbf{P}_0 through the origin parallel to \mathbf{P} .

Further objective is to verify whether **P** and \mathbf{P}_0 are subspaces of \mathbb{R}^3 .

Step-2

Recall the following;

Let ax + by + cz = d be the plane. Then, the equation of the plane \mathbf{P}_0 through the origin parallel to p is given as follows;

 $\vec{r} \cdot \vec{n} = 0$

Here, \vec{n} is quite normal to the plane **P**.

And $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

Step-3

Here, given plane equation is x + 2y + z = 6.

So, $\vec{n} = \vec{i} + 2\vec{j} + \vec{k}$, and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

Step-4

Now use the result discussed above and write the equation of plane \mathbf{P}_0 through the origin parallel to P as follows;

 $\vec{r} \cdot \vec{n} = 0$ $\Rightarrow x + 2y + z = 0$

Therefore, equation of plane \mathbf{P}_0 through the origin parallel to P is x + 2y + z = 0.

Step-5

Note that, the points $(1,2,1),(2,1,2) \in \mathbf{P}$, as these points satisfy the equation x+2y+z=6

 $(1,2,1)+(2,1,2)=(3,3,3) \notin \mathbf{P}$

Since, (3,3,3) does not satisfy the equation of plane x+2y+z=6.

So, the vector addition is not closed in P.

Therefore, **P** is not a subspace of \mathbb{R}^3 .

Step-6

Note the following;

 $(0,0,0) \in \mathbf{P}_0$ as it satisfies the equation of plane x + 2y + z = 0.

So, P_0 is non-empty and contains the additive identity.

Next, suppose $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbf{P}_0$ and verify the following;

$$\Rightarrow x_1 + 2y_1 + z_1 = 0, \quad x_2 + 2y_2 + z_2 = 0$$

$$\Rightarrow$$
 $(x_1 + x_2) + 2(y_1 + y_2) + (z_1 + z_2) = 0$

$$\Rightarrow (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in \mathbf{P}_0$$

Step-7

Next, verify that, $c(x_1, y_1, z_1) \in \mathbf{P}_0$ for any scaler c as follows;

$$cx_1 + 2cy_1 + cz_1 = 0$$

$$c\left(x_{1}+cy_{1}+z_{1}\right)=0 \qquad \left\{ As,\left(x_{1},y_{1},z_{1}\right)\in P_{0}\right\}$$

This Implies, $(cx_1, cy_1, cz_1) \in \mathbf{P}_0 \Rightarrow c(x_1, y_1, z_1) \in \mathbf{P}_0$.

Therefore \mathbf{P}_0 is a subspace of \mathbb{R}^3 .