Question 1

$$A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$$

Characteristic polynomial of $A = |A - \lambda I| = \begin{vmatrix} 1 - \lambda & 4 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3$

The roots of the characteristic polynomial are $\{-1,3\}$ (clearly)

The eigenvalues of A are the roots of its characteristic polynomial and hence $\{-1,3\}$

We solve for eigenvectors $x^{(i)}$ as $Ax^{(i)} = \lambda_i x^{(i)}$.

For $\lambda_i = -1$:

$$2x_1 + 4x_2 = 0 \Rightarrow x = \begin{bmatrix} -2 & 1 \end{bmatrix}^T \Rightarrow \begin{bmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^T$$

For $\lambda_i = 3$

$$-2x_1 + 4x_2 = 0 \Rightarrow x = \begin{bmatrix} \mathbf{2} & \mathbf{1} \end{bmatrix}^T \Rightarrow \begin{bmatrix} \frac{\mathbf{2}}{\sqrt{5}} & \frac{\mathbf{1}}{\sqrt{5}} \end{bmatrix}^T$$

Power iteration is straightforward. $x_1 = Ax_0 = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$. After normalization, $x_1 = \begin{bmatrix} \frac{5}{\sqrt{29}} \\ \frac{2}{\sqrt{29}} \end{bmatrix}$

Power iteration will eventually converge to the eigenvector with largest absolute value. In this case, eigenvalue=3. Hence **power iteration will converge to** $\left[\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right]^T$

Rayleigh quotient is $\frac{x^TAx}{x^Tx}$. For $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we have $x^Tx = 2$ and $x^TAx = 7$. Hence the Rayleigh quotient is **3.5**

Inverse iteration would converge to the eigenvector with smallest absolute value of eigenvalue. In this case, eigenvalue=-1, and eigenvector is $\left[-\frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}}\right]^T$

Upon using inverse iteration with shift=2, the algorithm would converge to the eigenvector whose eigenvalue is closest to 2. In this case, eigenvalue=3, hence the eigenvector is $\begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^T$

Since A is not symmetric, QR iteration would converge to a triangular/block triangular matrix.