TRIGONOMETRY Chapter 6

Razones trigonométricas de los ángulos 37° y 53°

EL TRIÁNGULO EGIPCIO SAGRADO

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS NOTABLES DE 37° Y 53°

Para el cálculo de sus R.T recordaremos el L de 37° y 53°

Además:

HELICO | THEORY

$$sen37^{\circ} = \frac{CO}{H} = \frac{3k}{5k}$$

$$sen37^{\circ} = \frac{3}{5}$$

$$\cos 37^{\circ} = \frac{CA}{H} = \frac{4k}{5k}$$

$$\cos 37^{\circ} = \frac{4}{5}$$

$$\tan 37^{\circ} = \frac{\text{CO}}{\text{CA}} = \frac{3\cancel{k}}{4\cancel{k}}$$

$$tan37^{\circ} = \frac{3}{4}$$

Resumiendo:

R.T	37°	53°
sen	3 5	4 5
cos	4 5	3 5
tan	3 4	4 3 3
cot	4 3	3 4
sec	5 4 5	5 3
CSC	5 3	<u>5</u> 4

1

Dadas las columnas:

I.
$$\cos^2 53^\circ$$

II.
$$\frac{\csc 37^{\circ}}{\tan 53^{\circ}}$$
 b. $\frac{9}{25}$

III.
$$\sqrt{\cot 53^{\circ}} \longrightarrow c$$
. $\frac{\sqrt{3}}{2}$

I.
$$\cos^2 \frac{N}{53}^\circ = \left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

II.
$$\frac{\csc 37^{\circ}}{\tan 53^{\circ}} = \frac{\frac{3}{3}}{\frac{4}{3}} = \frac{5 \times \cancel{3}}{\cancel{3} \times 4} = \frac{5}{4}$$

III.
$$\sqrt{\cot 53^{\circ}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$$

∴ Ib; IIa; IIIc

Calcule

$$M = \frac{tan 53^{\circ} + tan 37^{\circ}}{csc 53^{\circ}}$$

$$M = \frac{12in 53^{\circ} + tan 37^{\circ}}{csc 53^{\circ}}$$

$$M = \frac{\frac{4}{3} + \frac{3}{4}}{\frac{5}{4}} = \frac{\frac{16 + 9}{12}}{\frac{5}{4}}$$

$$M = \frac{\frac{25}{12}}{\frac{5}{4}} = \frac{\frac{5}{25} \times 1}{\frac{12}{12} \times 5}$$

Calcule x si:

$$x \cdot \sec 37^{\circ} + \cot 53^{\circ} = \csc 53^{\circ}$$

Recordar:

N:

$$x \sec 37^{\circ} + \cot 53^{\circ} = \csc 53^{\circ}$$

$$x \cdot \left(\frac{5}{4}\right) + \frac{3}{4} = \frac{5}{4}$$

$$\frac{5x+3}{4}=\frac{5}{4}$$

$$5x + 3 = 5$$

$$5x = 2$$

$$\therefore x = \frac{2}{5}$$

4

Calcule x si:

$$16^{\tan 37^{\circ}} = 4^{x}$$

Recordar:

$$16^{\tan 37^{\circ}}=4^{x}$$

$$\left(4^{2}\right)^{\frac{3}{4}}=4^{x}$$

$$4^{\binom{\frac{1}{2}(3)}{4}} = 4^{x}$$

$$4^{\left(\frac{3}{2}\right)} = 4^x$$

$$\therefore x = \frac{3}{2}$$

Calcule x si:

$$\frac{sen 37^{\circ}}{tan 37^{\circ}} = \frac{x+2}{x}$$

Recordar:

$$\frac{3\times4}{5\times3}=\frac{x+2}{x}$$

$$\frac{4}{5} = \frac{x+2}{x}$$

$$4x = 5x + 10$$

$$-10 = x$$

$$\therefore x = -10$$

Calcule x si:

 $5x sen 37^{\circ} + 10 sen 53^{\circ} = 14 cos 53^{\circ} csc 37^{\circ}$

<u>N</u>:

Recordar:

 $5x.sen 37^{\circ} + 10.sen 53^{\circ} = 14.cos 53^{\circ}.csc 37^{\circ}$

$$3x \cdot \left(\frac{3}{5}\right) + 10 \cdot \left(\frac{4}{5}\right) = 14 \cdot \left(\frac{3}{5}\right) \cdot \left(\frac{5}{5}\right)$$

$$3x + 8 = 14$$

$$3x = 6$$

$$\therefore x = 2$$

Dorian heredó un terreno en forma rectangular (como muestra la figura). Calcule el área de dicho terreno.

RESOLUCIÓN

•

$$A_{\blacksquare} = (BASE) \times (ALTURA)$$

$$\mathbf{A}_{\blacksquare} = (40 \, sen \, 53^{\circ}) \times (3 \, csc \, 37^{\circ})$$

$$A_{\blacksquare} = \left[\frac{3}{40} \cdot \left(\frac{4}{5} \right) \right] \times \left[\frac{3}{5} \cdot \left(\frac{5}{5} \right) \right]$$

$$A_{\blacksquare} = 32 \times 5$$

$$\therefore A_{\blacksquare} = 160m^2$$

8

De la figura, efectúe:

$$P = \cos^2 \beta$$

Recordar:

$$\sqrt{5}\sqrt{sen \, 53^{\circ}} = \sqrt{5} \times \left(\sqrt{\frac{4}{5}}\right) = \sqrt{5} \times \left(\frac{2}{\sqrt{5}}\right) = 2$$

Por el Teorema de Pitágoras:

$$(H)^2 = (\sqrt{3})^2 + (2)^2$$

$$(H)^2 = 3 + 4$$

$$\rightarrow$$
 $H = \sqrt{7}$

2

Piden:

$$P = \cos^2 \beta$$

$$P = \left(\frac{2}{\sqrt{7}}\right)^2$$

$$\therefore P = \frac{4}{7}$$