NetWire

Technical Analysis Report

ZAYOTEM

ZARARIT YAZILIM ÖNLEME VE TERSÎNE MÛHENDÎSTÎL

Contents

CONTENTS	i
OVERVIEW	
XOX.EXE ANALYSIS	
STATIC ANALYSIS	
DYNAMIC ANALYSIS	
OTHNL.EXE ANALYSIS	
DYNAMIC ANALYSIS	5
KIPIRKIPIR.EXE ANALYSIS	7
STATIC ANALYSIS	7
STATIC ANALYSIS DYNAMİC ANALYSIS	9
YARA RULE	
MITRE ATTACK TABLE	14
SOLUTION PROPOSALS	
PREPARED BY	

Overview

The software, which belongs to the NetWire Family,is a RAT type malware that can track user movements such as secret credentials, keyboard strokes, and execute commands from a remote server. This threat spreads through MS Office Documents, download links in PDF content and compressed files containing payloads.

Some of the information obtained from infected devices include;

- Browser credentials,
- · Keyboard strokes,
- · Registery manipulation,
- Device properties and file information,
- Remote access

xox.exe Analysis

Name	xox.exe
MD5	5c9ad0440fefa31403bd944a1a10a3b8
SHA256	2b1245c4547eee5a4545431f1969ab4dd5ba8ac4d0d2dd758d3c77
	a250e6ddb8
File Type	PE32 / EXE

Static Analysis

The malicious file, creates its malicious activities by using files that come archived with **Microsoft Cabinet File** (MSCF). It performs operations such as permanence and info stealer with the operations it will perform when it is run.

Offset	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F	Ascii
00000000	4D	53	43	46	00	00	00	00	20	3F	12	00	00	00	00	00	MSCF?
00000010	2C	00	00	00	00	00	00	00	03	01	01	00	03	00	00	00	, l .l
00000020	97	0C	00	00	7E	00	00	00	5D	0E	03	15	00	58	0E	00	-□~] f. ^{L⊥} . X f.
00000030	00	00	00	00	00	00	49	49	9A	7A	20	00	6F	74	68	6E	IIšzothn
00000040	6C	2E	65	78	65	00	В8	8E	1B	07	00	58	0E	00	00	00	1.exe., +•.X♬
00000050	FF	54	2B	В3	20	00	7A	77	6B	72	77	61	2E	68	65	70	ÿT+3zwkrwa.hep
00000060	00	00	46	04	00	В8	E6	29	07	00	00	FF	54	2A	ВЗ	20	F」.,æ)•ÿT*³.
00000070	00	6C	79	7A	62	6F	6C	63	74	2E	6F	73	6E	00	ΑE	59	.lyzbolct.osn.@Y
08000000	24	EΒ	A0	4C	00	80	5B	80	80	8D	15	10	60	14	00	00	\$ë I.€[€€ 1 `¶
00000090	22	63	60	24	00	00	5E	00	EΑ	EΑ	6E	В9	E4	5E	20	20	"c`\$^.êên¹ä^
		0.0	4.0	~ ~	0.0		~~	20.00	-00		2.0			77.0		~ ~	11 157 177 5 7

Image 1- MSCF and files to extract

MSCF, files with the ".cab" extension store data for various Windows installations. The applications to be extracted are clearly visible in the ".cab" (MSCF) file When run, it saves files to the targeted directory.

With the "RUNPROGRAM" in its sources, information on how to run the file is reached. When "Othnl.exe" runs by taking the "zwkrwa.hep" file as parameter, malicious activities occur.

Dynamic Analysis

Image 3-Extracted file path

It extracts the files into the "IXP000.TMP" folder created in the "C:\Users\%USERNAME%\AppData\Local\Temp\" directory specified in the memory in Image-3, in order to keep the files temporarily.

Image 4-Extracted files

The **Zwkrwa.hep** file must be given to **othnl.exe** as a parameter, otherwise **othnl.exe** comes as a software which is waiting for a command to execute only **AU3** files. The software with malicious activities is loaded with othnl.exe (Autolt V3, 3, 10, 0) shown in Image-4. Also, **lyzbolct.osn** is an ecrypted file.

Othnl.exe Analysis

Othnl.exe
ad5e6eb33f8b6b48fab6d9ab3e1212c1
dd998d69304649d295691a188f8d0b04b4c2ca5dc7fb03494867bd7
738200daa
PE32 / EXE

Dynamic Analysis

Image 5- CMD command used to persistence

In order to maintain its continuity on the device, it activates **schtask.exe**, which is a task time management application, with command information, and provides persistence by starting malicious execution every 5 minutes. (schtasks /create /sc minute /mo 5 /tn %s)

Image 6- Malicious file folder

Othnl.exe creates the "C:\Users\%USERNAME%\xeezzrd\" directory and saves the malware in this directory. If this directory exists, no harmful activity is observed.

Image 7- Hiding for persistence

Files and folders appear when the "Hide protected operating system files" option of the view properties is turned off. With this method, the attacker aims to make detection difficult by showing his own applications as belonging to the system.

Image 8-Process injection

Process Injection is implemented on legal software "**RegSvcs.exe**". In this way, it aims not to be detected by security applications. It also complicates analysis.

wintoolservice.exe		1.340 K	5.176 K	2552 VMware SVGA Helper Service	VMware, Inc.
vm wintools64.exe	0.21	14.592 K	27.340 K	2560 VMware Tools Core Service	VMware, Inc.
	0.90	61.724 K	87.996 K	2920 x64dbg	
	0.01	3.908 K	11.360 K	3060 Autolt v3 Script	Autolt Team
othnl.exe	Susp	131.144 K	130.904 K	3692 Microsoft .NET Services Inst	Microsoft Corporatio
nida.exe	0.24	272.248 K	256.104 K	348 The Interactive Disassembler	Hex-Rays SA
gozcu64.exe	1.33	21.400 K	39.820 K	160 Sysintemals Process Explorer	Sysintemals - www.
 jusched.exe		2.432 K	8.420 K	2612 Java Update Scheduler	Oracle Corporation
<u>≰</u> jucheck.exe		4.408 K	13.680 K	2380 Java Update Checker	Oracle Corporation

Image 9- Process Hollowing

The process is started as "Suspend" and it is clearly observed from its name and file sizes that it is not "RegSvcs.exe". It presents itself as a legal process with the Process Hollowing technique.

192.168.247.2	192.168.247.128	DNS	103 Standard query response 0x9fd4 A banqueislamik.ddrive.online
192.168.247.128	46.246.12.18	TCP	66 49250 + 3360 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 MS=256 SACK
192.168.247.128	162.243.25.33	TCP	66 49251 + 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_P
192.168.247.128	46.246.12.18	TCP	66 [TCP Retransmission] 49250 + 3360 [SYN] Seq=0 Win=8192 Len=0
192.168.247.128	162.243.25.33	TCP	66 [TCP Retransmission] 49251 + 443 [SYN] Seq=0 Win=8192 Len=0 M
fe80::8d4b:33b7:9a2	ff02::1:2	DHCPv6	157 Solicit XID: 0xfcc0e2 CID: 0001000127d92ada000c29df205a
192.168.247.128	46.246.12.18	TCP	62 [TCP Retransmission] 49250 + 3360 [SYN] Seq=0 Win=8192 Len=0
192.168.247.128	162.243.25.33	TCP	62 [TCP Retransmission] 49251 + 443 [SYN] Seq=0 Win=8192 Len=0 P

Image 10- IP and Domanin of the control server

The malware is **constantly** trying to connect to the command and control server. Because of the connection cannot be obtained here, the process repeats constantly.

```
UDrj\F4YOW6W85\D
Y542d Md5Qs\XR65
CiidS FWlsWRdR56
...NetWire.SOFT
WARE\...crd.exe
/C ping 1.1.1.1
-n 1 -w 3000 > N
ul & Del /f /g "
%s".HostId..SOFT
WARE\NetWire...
Install Date...
```

Image 11-CMD Script

With the CMD Script in the image, the network connection is checked and then it deletes itself. In addition, the text "**NetWire SOFTWARE**" and encrypted file directories are clearly observed.

cmd.exe /C ping 1.1.1.1 -n 1 -w 3000 > Nul & Del /f /q "s"

Kıpırkıpır.exe Analysis

Name	kıpırkıpır.exe	
MD5	5b7e592b91d231807c75fd166e51e144	
SHA256	45803a77c6a4211b8d7a342c9d9fc4625e90bbc919 8b8f05718a	95675e0119163
File Type	PE32 / EXE	

Static Analysis

The attacker aim to steal **browser credentials and passwords** from infected devices. There are some targeted browsers in the table below.

Google\Chrome\User Data\Default\LoginDataCopy	Google\Chrome\User Data\Default\Login Data
Google\Chrome\User Data\Local State	Chromium\User Data Default\LoginDataCopy
Chromium\User Data\Default\Login Data	Chromium\User Data\Local State
Comodo\Dragon\User Data\Default\LoginDataCopy	Comodo\Dragon\User Data\Local State
BraveSoftware\Brave-Browser\User	Yandex\YandexBrowser\User
Data\Default\LoginDataCopy	Data\Default\LoginDataCopy
Yandex\YandexBrowser User Data\Default\Login Data	Comodo\Dragon\User Data\Default\Login Data
Yandex\YandexBrowser\User Data\Local State	360Chrome\Chrome\User Data\Local State
BraveSoftware\Brave-Browser\User	Brave Software\Brave-Browser\User Data\Local
Data\Default\Login Data	State
360 Chrome\Chrome\User	Opera Software\Opera Stable\Login Data
Data\Default\LoginDataCopy	Y
Opera Software\Opera Stable\LoginDataCopy	Opera Software\Opera Stable\Local State

Some of the file paths of sensitive data on various targeted browsers are shown in the table.

The texts shown in the tables below are encrypted by the attacker using the substitution method and are decoded at runtime.

9HGGpEd5XR5dOR	9HGGpDQ5ld	9mpcC6do	MjPXqjFpx8	9HGGMarpa	
CIHdZMIW5	R54YC5d	OadywSd	0ddX5d1	dYOZ55	
9HGGp_OddMiw5	LMMPMIQ5S	67145dNp	67i45dNpYi	67i45dNpsOd	
	WER	WsR	W6d	sCodp2h	
67i45dNp65ds	67145dNpYWI	MT_qUDrj\F	PQO0dR5zd	IWkniQd.Sii	
	QIRp5df5	Wk4ii	064WR		
6didY5 * 80WI	XR65Cii	IWKQ5416.	IWk67i45dN	QYO5VC6d.	
IWkpiWn4R6	a40dY5WOZ	Sii	.Sii	Sii	
MT_qUDrj\FWk4iiC\	%6\FWk4iiC_	2YOQR541	162YsGOy.	MT_qUDrj\F	
%6\%6\FC4R	40d8Wf %6	dGOy.Sii	Sii	Wk4iiC\	
%6\FWk4iiC_40d8	%6\qIQRSJO	PQ0OdR5z	R6500.Sii	siYO.Sii	
Wf\sO W84id6.4R4	V40S\%6	d064WR			
%6\qIQRSDOV40S\	XR65Cii	siS60.Sii	162YOGYy.	R66054iN.Sii	
s0W84id6.4R4	a40dY5WOZ		Sii		
MT_qUDrj\FWk4jC\	67145dN.Sii	6W85WwR	162YOGhy.	162YsGhy.Sii	
%6\%6\FC4R		N.Sii	Sii		

A Python script was created using a dictionary fort he solution of strings.

```
QY05VC6d.Sii = ucrtbase.dll
2Y0QR54ldG0y.Sii = wscpl40.dll
162Y5G0y.Sii = msvcpl40.dll
1McQ54i6.Sii = mozzqlue.dll
1McQ54i6.Sii = mozzqlue.dll
1McQ54i6.Sii = mozzqlite3.dll
1McRiQ4.Sii = signons.sqlite
1Mn486.e6McRi = logins.json
Q0sid/CYYNQR56.fli = purple/accounts.xml
q1QR5d0V40S\50W84id6.484 = Thunderbird\profiles.ini
67i45dMpYiMGd = sqlite3.close
67i45dMpWiMGd = sqlite3.close
67i45dMpWiMGd = sqlite3.step
67i45dMpYMQ1Rp5df5 = sqlite3.prepare.v2
67i45dMpYMQ1Rp5df5 = sqlite3.step
67i45dMpYMQ1Rp5df5 = sqlite3.step
67i45dMpYMQ1Rp5df5 = sqlite3.column.text
6didv5 * 80Wl lMcpiMm4R6 = select * from moz.logins
1McSnCld = hostname
MFa9 9C66gW05 = SMTp password
jDM u6d0 = EAS User
jDM M02G6gW05 = SMTp password
y0z5sNl.Sii = crypt32.dll
p0x25sURS0MS4V5xC5 = CryptUnprotectData
4RSdf.SC5 = index.dat
V2Cj5FyQld5cV3xGl6 = CryptUnprotectData
4RSdf.SC5 = index.dat
V2Cj5FyQld6C5dXSdl6 = VaultCloseVault
2CQi5FyQld6C5dXSdl6 = VaultCloseVault
2CQi5FyQldC5dXSdl6 = VaultCloseVault
2CQi5FyQldC5dXSdl6 = VaultCloseVault
2CQi5FyQldC5dXSdl6 = VaultCloseVault
1McG6dIN.Sii = kernel32.dll
1McG6dC5dXSdl6 = VaultCloseVault
1McG7dIN.S.df = system32\cmd.exe
EdSlC542dMy265dIXR8 = GetNativeSysteminf
Md8ddiN.Sii = kernel32.dll
1McG7dFACFACTARDARE ESCRipTiON\System\Centralprocessor\0
DriMYC5GRSKR364Ci4MaWS = AllocateAndinitializeSid
PIdYwqbwdRfdIVd0614s = CheckTokenMembership
jMPrX9qXTL = ESCRipTiON
```

Image 12-Deciphered texts

It seems that there are many operations related to SQL query, browser information, passwords among the texts.

Dynamic Analysis

Image 13-Log Filei (DD:MM:YYYY)

To save the log file, the state of the information obtained before encrypted is observed.

```
push FDE9
 call ebp
 lea eax, dword ptr ss: [esp+160]
push eax
push kipirkipir.13E6C40
                                                                         eax:L"F8"
                                                                         13E6C40:"[%s]"
lea eax, dword ptr ss:[esp+28]
push 100
push eax
call kipirkipir.13C26D0
                                                                         eax:L"F8"
mov esi,eax
add esp,10
                                                                         eax:L"F8"
add esp,10
test esi,esi
jle kipirkipir.13BA350
call dword ptr ds:[<&GetForegroundWindov
cmp dword ptr ds:[13F7728],eax
je kipirkipir.13BA32A
mov dword ptr ds:[13F7728],eax
lea eax,dword ptr ss:[esp+10]
                                                                         eax:L"F8"
                                                                         eax:L"F8"
push eax
                                                                         eax:L"F8"
call dword ptr ds:[<&GetLocalTime>]
push 100
local call dword ptr collace 444
```

Image 14- Current process API and keystroke on it

It detects the instant application with the API used, then records the keystrokes made within the application and collects log data in this way.

Image 15-File path &File & Encrypted logs

Keystrokes and window information created in the "AppData\Roaming\Logs" directory (using the date as a file name) and saved in encrypted form are kept as in the image to be sent to the command and control server.

```
mov al,byte ptr ds:[ecx+esi]
xor al,9D
add al,24
mov byte ptr ds:[ecx+esi],al
```

Image 16-Encryption

The recorded data is encrypted by applying the process in the image. By applying the reverse of this process, the raw form of the data is obtained.

```
[Log Started] - [25/10/2022 02:30:13]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:30:13]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:30:13]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:30:13]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 78 - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 02:34:24]

[kprkpr.exe - PID: 73C - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 03:05:55]

[kprkpr.exe - PID: 73C - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 03:05:55]

[kprkpr.exe - PID: 73C - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 03:05:55]

[kprkpr.exe - PID: 73C - Mod1: kprkpr.exe - Thread: Ana lem 8A8 - x32dbg] - [25/10/2022 03:05:16]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:05:16]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:05:16]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:05:16]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:10:44]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:10:44]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:10:44]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe - Thread: Ana lem 6A8 - x32dbg] - [25/10/2022 03:10:44]

[kprkpr.exe - PID: 50 - Mod1: kprkpr.exe -
```

Image 17-Solved Logs

All keyboard and application activities are encrypted. Its resolved state is shown in image-17. With this method, the attacker can capture sensitive data such as **credit card, bank, account information** of the user.

Image 18-Registry activity

By creating a new record, the **Hostid** value and the **Install Date** are added to the registry under the "**NetWire**" directory.

Image 19- TCP connection

It tries to connect to the socket, but receives the **RST packet** because the server is currently down. (banqueislamik[.]ddrive[.]online:3360)

YARA Rule

```
import "hash"
rule xox
  meta:
    author = "enessakircolak"
    date = "28.10.2022"
  strings:
    $a = "zwkrwa.hep"
    $b = "othnl.exe"
    $c = "lyzbolct.osn"
    $d = "ISOBURN.EXE.MUI"
    $e = "POSTRUNPROGRAM"
    $f = "IXP000.TMP"
  condition:
hash.m5(0,filesize) == "5c9ad0440fefa31403bd944a1a10a3b8" or all of
them
```

```
import "hash"
rule kprkpr
meta:
     author = "enessakircolak"
     date = "28.10.2022"
strings:
     $a = "SOFTWARE\NetWire"
     $b = "Cs43l63g4R3YW0d34R5d0iWYwdS3iG3G3y.Sii"
      $c = "%%.2d/%.2d/%d %.2%.4d-%.2d-%.2d %GRN9sY1n3Ppc7g-
ClJWhj0m5o2ErLt6vQASx4VuXdZibUley_BqwHaF8TkKDMfOz%s"
     d = \text{"http://} \%s\% \%s\%.2d-\%.2d-\%.4d"
     e = MT_qUDrj\F4Y0W6W85\U4RSWg6\PQ00dR5zd064WR\rQR\
      $f="Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook\9375CF
F0413111d3B88A00104B2A6676"
     $g = "banqueislamik.ddrive.online:3360"
condition:
     hash.md5(0,filesize) == "5b7e592b91d231807c75fd166e51e144" or
any of ($g, $a, $e) or all of ($b, $c, $d, $f)
```

MITRE ATTACK TABLE

Reconnaissance	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	C&C	Exfliration
Gather Victim Host Information (T1592)	Windows Command Shell (T1059)	Scheduled Tasks/Job (T1053.005)	Manipulate System Process (T1053)	Hidden Files and Directories (T1564.001)	OS Credential Dumping (T1003)	Remote Access Software (T1219)	Exfliration Over C2 Channel (T1041)
Hardware (T1592)	Scheduled Task (T1053)	Startup Folder (T1547.001)	Process Injection (T1055)	File / String Obfuscation (T1027)	Credentials From Web Browsers (T1606)	Application Layer Protocol (T1071)	
	Startup Folder (T1547.001)	Modify System Process (T1543)	Registery Run Keys (T1547)	Anti- Debugger (T1622)	Keylogging (T1056)	Encrypted Channel (T1573)	
				Software Packing (T1027)			

Solution Proposals

- 1. The system should be kept up to date.
- 2. The links in the PDF should not be clicked without looking at the target address.
- 3. E-mail documents, whether commercial, individual or community, should be inspected.
- 4. Every process must be inspected at runtime.
- 5. A reliable anti-virus software should be used.

