ESALO

Other Machine Learning Models I

João F. Serrajordia R. de Mello

Introduction

João Fernando Fernando Serrajordia Rocha de Mello — (Juka)

Professional journey

Credit modeling in large banks
Telecom
Development of models / Validation of models

Teaching in data science Consultancy in data science Executive *outsourcing*

ACADEMIC

Bachelor's Degree

Master in Statistcs

Preparations

- Open R
- Import libraries
- Electronic sheet
- Something to take your notes

Predictive and classification problems

What is the efficacy of a vaccine?

Will the customer pay the loan?

How much oil is in the well?

Will the customer buy my product?

What is the person doing?

How green is this vehicle?

CRISP-DM

Source: https://www.the-modeling-agency.com/crisp-dm.pdf

How is this?

Cohort

Model Drawing

Algorithms classification

Supervised

- Regression
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Neural Networks
- Decision Trees

Unsupervised

- K-Means
- Hierarchical methods
- Gaussian Mixture
- DBScan
- Mini-Batch-K-Means

We are here!

Algorithms classification

Continuous response

- Regression
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Neural Networks
- Regression Trees

Discrete response

- Logistic Regression
- Classification trees
- Neural Networks
- GLM
- GLMM

We are here!

Algorithms classification

Machine Learning Statistics Methods

- Decision Trees
- Bagging
- Boosting
- K-NN
- Neural Networks
- Support Vector Machines

We are here!

Reflections on the database

Population

- ~ 2,200 people
- ~ 1,300 passengers
- More than 1,500 deaths

Sample

- 891 people
- 549 non-survivors
- 342 survivors

Objectives of algorithm

- To classify the response variable as well as possible
 - ... Through segmentations
 - ... Using explanatory variables
- To obtain insights
 - ... From relations between the response variable and the explanatory variable
 - ... To explore interactions

OMML1_script01-Primeiro_contato_com_arvores.R

Decision tree is:

A sequence of binary segmentations That aims the homogeneity of the response variable

We can segment from the 891:

577 men (65%) of which

109 survived (19%)

468 did not survive

314 women (35%) of which

233 survived (74%)

81 did not survive

We can segment from the 891:

577 men that we segment in:

24 kids (< 6, 5 years) of which

16 survived (67%)

8 did not survive

533 adults (>=6, 5 years) of which

93 survived (17%)

553 did not survive

Definitions of impurity

- Gini
- Shannon Entropy

How does the tree select the best split?
Using a metrics of "impurity"

Gini's index

$$I_g(p) = 1 - \sum_{i=1}^{J} p_i^2$$

- Maximum impurity with uniform distribution
- Minimum impurity in the total concentration

Entropy

$$H = -\sum_{i=1}^{J} p_i \log_2(p_i)$$

Information gain:

$$GI(T,a) = H(T) - H(T|a)$$

- Maximum impurity with uniform distribution
- Minimum impurity in the total concentration

Basic Algorithm

- 1. Seek the best binary rule for each variable.
- 2. Seek to apply the best segmentation among all variables
- 3. Recursively, for each sheet, repeat the steps 1 and 2 until a stopping rule is reached.

Interactive web implementation:

https://rawgit.com/longhowlam/titanicTree/master/tree.html

Hyperparameters

They are parameters that control the algorithm as:

- rantini Rodriguez. Rantini Minimum number of observations per sheet
- 2. Maximum depth
- 3. Cost of complexity

Cost of complexity

Cross validation

The most simple strategy is to split the basis into training and test. We develop the model in the training base, and evaluate the test base.

OMML1 _script02-Algoritmo_avaliacao_overfitting

The tree as a classifier

The tree as a classifier

Probability of the F. event:

$$P(S|F) = \frac{N_f^s}{N_f}$$

P(S|F) - probability of success of the F sheet

 N_f - it is the number of individuals on F sheet N_f^s - it is the number of survivors on F sheet

The tree as a classifier

Classification:

Standard classification:

Survivor: $P(S|F) \ge 50\% \implies C(F) = "Y"$

No survivors: $P(S|F) < 50\% \implies C(F) = "N"$

Predicted	True Value	
value	0	1
0	484	96
1	65	246

Evaluation of the model

• Accuracy:

Hits on attempts

Predicted	True Value	
value	0	1
0	484	96
1	65	246

In this example:

$$\frac{484 + 246}{891} = 82\%$$

Trees as diagnosis

Sensitivity:
$$\frac{TP}{FN+TP} = \frac{246}{246+96} = 72\%$$

Specificity:
$$\frac{TN}{TN+FP} = \frac{484}{484+65} = 72\%$$
Predict value

Predicted	True Value	
value	609	1
0 3	484	96
	65	246

Predicted	True Value	
value	0	1
0	TN	FN
1	FP	TP

Diagnosis and cutoff points

CUT	TP	FP	TN	FN	
0% - 11.1%	34	12	549	0	0
11.1% - 11.5%	33	39	525	24	3
11.5% - 35.8%	28	39	142	407	53
35.8% - 58.9%	24	16	65	484	96
58.9% - 66.7%	17	77	17	532	165
66.7% - 94.7%	16	51	9	540	181
94.7% - 100%		0	0	549	342

Accuracy S	Specificity	1-Specificity	Sensibility
38%	0%	100%	100%
41%	4%	96%	99%
78%	74%	26%	85%
82%	88%	12%	72%
80%	97%	3%	52%
79%	98%	2%	47%
62%	100%	0%	0%

For each cutoff point, we have a confusion matrix.

In this case, we have 8 possible matrices with the trained tree.

ROC Curve

CUT	1-Specificity	Sensibility
0% - 11.1%	100%	100%
11.1% - 11.5%	96%	99%
11.5% - 35.8%	26%	85%
35.8% - 58.9%	12%	72%
58.9% - 66.7%	3%	52%
66.7% - 94.7%	2%	47%
94.7% - 100%	0%	0%

ROC curve is a graphical plot of 1-Specificity on the X-axis by Sensitivity on the Y-axis, obtained for each possible cutoff point of the classifier.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Pruning

Acurácia

Base de treino: 95% Base de validação: 40%

Base de treino: 70% Base de validação: 60% Base de treino: 65% Base de validação: 64%

Amostra de treino

Amostra de validação

Cross validation strategies

Escolher parâmetros do modelo com uma base de validação ainda pode propiciar overfitting.

Há diversas técnicas de validação cruzada para se evitar esse efeito. No momento vou mencionar uma técnica clássica: dividir a base em Treino, Validação e Teste

Amostra de treino

Amostra de validação

Amostra de teste

It removes from the training sample It classifies the removed element initially It develops the model with the others

- We divide the base into sub-samples k
- For each sub-sample:
 - We remove the sub-sample as validation
 - We train the model with the remaining observations
 - We use this model to classify the removed sub-sample
 - We evaluate the metrics of the model's performance
- We calculate the average of the metrics of the model's performance

K-fold

Tipicamente, fazemos o mesmo para variações do modelo para otimizar hiperparâmetros.

Post-pruning with cross validation

size of tree

R performs the pruning of the tree by performing a k-fold to optimize the CP (complexity path), a parameter that summarizes the complexity of the tree. This is made with a k-fold.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Conclusion

- Robust, interpretable, flexible
- Without probabilistic assumptions
- It's necessary *cross-validation*

Quanto mais aprendo, mais tenho certeza de que, o que sei, é apenas uma gota, diante do oceano do que ainda preciso aprender.

Jose Ap Barcelos

Famous Algorithms

- CART
- CHAID
- ID3
- C4.5
- C5.0

Rodriguez Fantini 005.374.619-81 Flow or Interesting stack overflow on this:

https://stackoverflow.com/questions/9979461/different-decision-tree-algorithms-with-comparison-of-complexity-or-performance

