

2000

The Synthesis of Hybrid Materials by the Blending of Polyhedral Oligosilsesquioxanes into Organic Polymers

Rusty L. Blanski¹, Shawn H. Phillips¹, Kevin Chaffee¹, Joseph
Lichtenhan², Andre Lee³, and Hei Ping Geng³.

¹AFRL/PRSM, Air Force Research Laboratory, 10 E. Saturn Blvd,
Bldg. 8451, Edwards AFB, CA 93524,

²Hybrid Plastics, 18237 Mt. Baldy Circle, Fountain Valley, CA
92708

³Department of Materials Science and Mechanics, Michigan State
University, East Lansing, MI 48824

20000830 082

Edwards AFRL

0 100mi
100km

Hawthorne

San Jose

Salinas

Fresno

Bakersfield

Los Angeles

Orange

Oceanside

Phoenix

San Diego

Hybrid Organic/Inorganic Blends

- GOAL: To study the interaction and solubility of Polyhedral Oligosilsesquioxane (POSS) molecules containing various organic side groups with the polymer matrix
- Polystyrene was chosen since it is readily available and can easily be solvent cast with the POSS molecules for TEM studies

Why Use Blendables?

- Easier to tailor the organic side groups of the POSS molecule to give a polymer-soluble species
- Simple blending techniques can be used instead of copolymerization with reactive POSS monomers
- Potential Drop-in molecular modifier without requiring expensive replacement of processing equipment

POSS = Polyhedral Oligomeric Silsesquioxane General Synthesis

POSS = Polyhedral Oligomeric Silsesquioxane General Synthesis

Preparation of Styrene-POSS Blends

- TEM Method
- Dissolve the Styrene and POSS in THF
- Cast very thin film by slow solvent evaporation
- Traditional Processing
- Place Polystyrene in Extruder
- Add POSS
- Blend 2-5 Minutes

POSS Blends - Crystal Formation

50 wt % Cp_8T_8 in 2 million mol. wt. Polystyrene

R = cyclopentyl

Cp_8T_8

**TEM image clearly shows formation of immiscible POSS
crystallites (20-50k molecules)**

POSS Blends - Crystal Formation

50 wt % $\text{V}_{\text{i}}\text{Ti}_8$ in 2 million mol. wt. Polystyrene

TEM image clearly shows immiscibility in polymer system

POSS Blends - Increased Solubility

50 wt % Cp₇T₈Styryl in 2 million mol. wt. Polystyrene

TEM image shows significant decrease in size of crystallites

POSS Blends - Miscibility

50 wt % Styrenyl₈T₈ in 2 million mol. wt. Polystyrene

- White domains represent pure polystyrene (process issue)
- Grey domains represent miscible POSS/polystyrene
- Black dots are POSS crystallites (<100 POSS molecules)
- 30% increase in surface hardness of the material

POSS Blends - Miscibility

50 wt % Phenethyl₈T₈ in 2 million mol. wt. Polystyrene

- Demonstrated Complete Miscibility!!
- Grey domains represent miscible POSS/polystyrene
- Black dots are POSS crystallites (<100 POSS molecules)

Conclusions

- The organic side groups on the POSS molecule are extremely important in determining the solubility of the POSS in polystyrene
- The addition of the more soluble styrenyl POSS into styrene leads to an increase in surface hardness without adversely affecting polymer properties
- POSS can be thought of as functionalized silicas with the side groups acting as solubility enhancers

Acknowledgements

- AFRL Propulsion Directorate
- Mr. Paul Jones (Analytical)
- Dr. Charles Lee, AFOSR (Funding)