

AIM:

To develop a system that monitors environmental conditions and air quality in real-time for better health and safety.

It measures key parameters like temperature, humidity, gases, and particulate matter.

The system provides instant data to create awareness and support timely actions.

COMPONENTS REQUIRED:

- Raspberry Pi Pico W(Microcontroller)
- DHT11 sensor
- MQ-135 Gas sensor
- Dust Sensor (SDS011)
- OLED display
- Buzzer
- LED

RASPBERRY PI PICO W:

- A low-cost microcontroller board with built-in Wi-Fi (2.4 GHz, IEEE 802.11n).
- Operates at 133 MHz dual-core ARM Cortex-M0+ processor with 264 KB RAM.
- Wi-Fi range is typically up to 30–50 meters indoors and up to 100 meters outdoors.

DHT11 SENSOR:

- Measures temperature (0°C to 50°C for DHT11).
- Measures humidity (20% to 90% for DHT11).
- Provides calibrated digital output via a single data pin.

MQ-135 GAS SENSOR:

- Detects gases like CO₂, NH₃, NOx, benzene, and alcohol.
- Operating range: 10 ppm to 1000 ppm depending on gas type.
- Analog output changes with gas concentration, can be read via Raspberry Pi ADC.

DUST SENSOR(SDS011):

- Measures PM2.5 and PM10 particles in the air.
- Detection range: 0.3 to 10 microns particle size.
- Provides digital UART output for accurate real-time monitoring.

OLED DISPLAY:

- Displays sensor readings in real-time.
- Low power consumption with 128x64 pixel resolution.
- Works on 3.3V–5V and communicates via I2C pins.

BUZZER:

- Provides audio alert when air quality crosses safe limit.
- Works in 3.3V–5V range, can be controlled via GPIO.
- Produces sound frequency typically between 2 kHz 4 kHz.

LED:

- Visual indicator for air quality status (Green = Good, Red = Bad).
- Forward voltage: ~2V (red), ~3V (green/blue).
- Current rating: 10–20 mA.

AVAILABLE COMPONENTS:

- Raspberry Pi Pico W
- Gas sensor
- OLED display
- Buzzer

PIN CONFIGURATION:

COMPONENTS	RASPBERRY PI PICO W
GAS SENSOR(MQ-135):	
VCC	3.3V
GND	GND
AO	GP26(ADC0)
OLED DISPLAY	
VCC	3.3V
GND	GND

SDA	GP0
SCL	GP1
BUZZER:	
VCC	GP15
GND	GND

FLOWCHART:

PROCEDURE:

- Setup Components → Connect Raspberry Pi Pico W with Gas Sensor (ADC pin), OLED Display (I2C pins), and Buzzer (GPIO).
- Initialize System → Load MicroPython firmware on Pico W and set up OLED, sensor, and buzzer in the code.
- **Read Sensor Data** → Continuously read air quality values from the gas sensor (ADC readings).

- **Display & Check Threshold** → Show real-time values on OLED and compare with a preset threshold.
- Trigger Alarm → If value exceeds threshold, activate buzzer and display "Poor Air Quality" warning on OLED.

PROGRAM:

```
from machine import Pin, ADC, I2C
import ssd1306
import time
# MQ-135 Sensor setup (Analog input on GP26/ADC0)
gas sensor = ADC(Pin(26))
# I2C setup for OLED (try I2C0 with SDA=GP0, SCL=GP1)
i2c = I2C(0, scl=Pin(1), sda=Pin(0), freq=400000)
# Scan I2C devices
devices = i2c.scan()
if not devices:
  print(" X No I2C device found. Check wiring (SDA/SCL).")
  while True:
    time.sleep(1)
print(" ✓ I2C devices found:", [hex(d) for d in devices])
# Use first detected device as OLED
oled addr = devices[0]
oled = ssd1306.SSD1306 I2C(128, 64, i2c, addr=oled addr)
# Buzzer setup (GP15)
buzzer = Pin(15, Pin.OUT)
# Threshold for gas detection (adjust as per calibration)
GAS THRESHOLD = 28000
while True:
```

```
# Read gas sensor value (0 - 65535 in 16-bit scale)
gas_value = gas_sensor.read_u16()
# Clear display
oled.fill(0)
oled.text("Gas Detector", 0, 0)
oled.text("Value: {}".format(gas value), 0, 20)
# Check gas level
if gas_value > GAS_THRESHOLD:
  oled.text("ALERT!", 0, 40)
  buzzer.value(1) # Turn buzzer ON
else:
  oled.text("Safe", 0, 40)
  buzzer.value(0) # Turn buzzer OFF
# Show on OLED
oled.show()
# Small delay
time.sleep(0.5)
```

EXECUTION:

RESULT:		
The system successfully monitored air quality in real time using a gas sensor with Raspberry Pi Pico W. Live readings were displayed on the OLED screen for user awareness. When pollutant levels crossed the safe threshold, the buzzer alerted with a warning.		