Szenzormodalitások

Jegyzet

Tartalomjegyzék

1	Viz	sga ké	rdések	5
	1.1	Szenz	orok	5
		1.1.1	Szenzor definíció	5
		1.1.2	Szenzor kategóriák	5
		1.1.3	Szenzorok használati területei	6
		1.1.4	Szenzor problémák	7
		1.1.5	Aktuátor definíció, példák	7
	1.2		/Tradícionális vezérlés/DCS/SCADA/Monitoring/Vezér-	
		lőrend	dszerek	8
		1.2.1	DIKW piramis	8
		1.2.2	Tradícionális vezérlési rendszerek vs. Elosztott vezér-	
			lési rendszerek (DCS)	8
		1.2.3	DAQ rendszer előnyök/hátrányok, alkalmazási területek	9
		1.2.4	Elosztott vezérlési rendszerek (DCS)	9
		1.2.5	SCADA rendszer	9
	1.3	DAQ		10
		1.3.1	DAQ rendszer komponensei	10
		1.3.2	DAQ alkalmazási területek	10
		1.3.3	Jelkondícionálás	10
		1.3.4	Betegmonitorozó DAQ infrastruktúra	10
		1.3.5	DAQ rendszerek kihívásai	11
	1.4	Eloszt	tott vezérlési rendszerek (DCS)	11
		1.4.1	DCS architektúra	11
		1.4.2	DCS komponensei	11
		1.4.3	DCS előnyök és hátrányok	11
		1.4.4	DCS alkalmazási területek	11
	1.5	Super	visory control and data acquisition - SCADA	12
		1.5.1	SCADA architektúra, komponensei	12
		1.5.2	SCADA előnyök/hátrányok	12
		1.5.3	SCADA alkalmazási területek	12
		1.5.4	SCADA funkciói	13
		1.5.5	Basic SCADA vs. Integrated SCADA vs. Networked	
			SCADA	
	1.6	Biojel	l-gyűjtés (Biosignal acquisition)	
		1.6.1	Szenzoradat kezelési folyamat	
		1.6.2	Mérési hibák (típusok/források)	15

	1.6.3	Egyetlen vs. több szenzoros mérési problémák	16
	1.6.4	Mérnöki kihívások a nagymennyiségű adatgyűjtésnél .	17
1.7	Biojel-	gyűjtés a sportban és az idősgondozásban	18
	1.7.1	Sportmonitoring megoldások (aktivitás/teljesítmény) és	
		problémák	18
	1.7.2	Környezet és lokáció monitoring (lokáció monitoring	
		problémák)	18
	1.7.3	Idősek monitorozása (problémák és megoldások)	18
	1.7.4	Hipertónia/Magas vérnyomás monitoring	19
	1.7.5	Diabétesz/cukorbetegség monitorozása (módszerek, beren	L-
		dezések, CGM, mesterséges hasnyálmiriggyel kapcso-	
		latos kérdések)	20
1.8	I2C és	SPI (rövid hatótávolságú vezetékes kommunikáció)	21
	1.8.1	I2C kommunikáció	21
	1.8.2	I2C előnyök/hátrányok, alkalmazási területek	21
	1.8.3	SPI komponensei	22
	1.8.4	SPI előnyök/hátrányok, alkalmazási területek	22
	1.8.5	I2C vs. SPI	23
1.9	Vezeté	k nélküli kommunikációs technológiák	24
	1.9.1	BAN (Body Area Network) hálózatok	24
	1.9.2	PAN hálózatok	24
	1.9.3	LAN hálózatok	25
	1.9.4	MAN hálózatok	26
	1.9.5	WAN hálózatok	27
1.10	USB		27
	1.10.1	USB architektúra/komponensei, eszköz kategóriák	27
	1.10.2	USB előnyök/hátrányok, alkalmazási területek	28
		USB csatlakozók, OTG (On the Go)	28
	1.10.4	USB Enumeration	28
	1.10.5	USB vs. RS-232 (serial)	29
1.11		N technológiák	30
		LoRa/LoRaWAN kommunikáció: architektúra, építő	
		elemei	30
	1.11.2	LoRa/LoRaWAN kommunikáció: előnyök/hátrányok,	
		alkalmazási területei	30
	1.11.3	SIGFOX kommunikáció: architektúra/építő elemei	31
		SIGFOX kommunikáció: előnyök/hátrányok, alkalmazási	
		területei	31

		Összehasonlítás: LPWAN vs. Narrow Band/cell alapú technológiák (GSM/3G/4G/5G)	32	
2	Fogalmak		33	

1 Vizsga kérdések

1.1 Szenzorok

1.1.1 Szenzor definíció

- A szenzor egy eszköz, ami fizikai ingereket (pl.: hőmérséklet, fény, nyomás) érzékel és ezeket mérhető jelekké alakítja.
- Ezek a jelek lehetővé teszik környezetünk változásainak észlelését és mérését. (pl.: ipar, egészségügy, környezetvédelem)
- Szenzorok lehetnek aktív vagy passzív típusúak, azaz saját energiát használó vagy a környezeti energiát felhasználó eszközök.
- Digitális adatot ad ki magából.
- A digitális adatot tovább adja küldeni vezetékes vagy vezeték nélküli csatornán.

1.1.2 Szenzor kategóriák

- Hőmérséklet-szenzorok
 - Környezet hőmérsékletének mérése, gyakran használják otthoni fűtési rendszerekben, autókban és ipari folyamatokban.
- Gvorsulásmérők
 - Gyorsulás/rezgés mértékét érzékelik, gyakran használják mobiltelefonok képernyő-orientációjának szabályozásához, járművek ütközésérzékelésére, épületek szeizmikus monitorozására.
- Kémiai szenzorok
 - Vegyületek mérése levegőben, vízben vagy egyéb közegben.
 - Környezetszennyezés monitorozása, ipari folyamatok ellenőrzése, egészségügyben.
- Hangfrekvencia-szenzorok
 - Hanghullámokat érzékel, alkalmazhatóak biztonsági rendszerekben, hangfelismerésben és akusztikai elemzésben.

1.1.3 Szenzorok használati területei

A szenzorok javítják életünk minőségét, hatékonyságát és biztonságát.

- Okostelefonok és viselhető eszközök
 - $-\,$ Gyorsulásmérők, giroszkópok, lépésszámlálás, automatikus fényerőszabályozás.
- Otthoni automatizálás és intelligens otthonok
 - Hőmérséklet, fény, mozgás
- Ipari automatizálás
 - Üzemeltetés hatékonyságát növeli.
- Egészségügy és orvostechnika
 - Kémiai szenzorok, biometrikus szenzorok, diagnosztikák/kezelések monitorozása
- Autóipar
 - Ütközésérzékelők, parkolássegítő rendszerek
- Biztonsági rendszerek
 - Mozgásérzékelők, füstérzékelők, kamera szenzorok a veszélyhelyzetek azonosítására.

1.1.4 Szenzor problémák

- Kalibrációs problémák
 - Következménye a pontatlanság lehet, kell a rendszeres kalibráció a pontos működéshez.
- Környezeti hatások
 - Extrém hőmérsékletek, por és egyéb környezeti tényezők befolyásolhatják a szenzorok teljesítményét.
- Energiafogyasztás
 - Akkumulátorral működő eszközöknél a szenzorok sokat fogyasztanak.
- Inferencia és zaj
 - Zajok torzíthatják a szenzorok által gyűjtött adatokat, ami pontatlansághoz vezet.
- Technológiai korlátok (Például kommunikáció)

1.1.5 Aktuátor definíció, példák

Az aktuátorok olyan eszközök, amik elektromos jelet fizikai műveletekké alakítanak át, az aktuátorok lehetnek mechanikus szerkezetek vagy bonyolultabb rendszerek.

- Elektromos motorok
 - Elektromos energiát mechanikai mozgássá alakítanak át, járművek meghajtását teszik lehetővé például.
- Hidraulikus aktuátorok
 - Folyadék nyomásának növelésével/csökkentésével működnek, erős és precíz mozgatásra képesek, például építőipari gépekben.
- Pneumatikus aktuátorok
 - Sűrített levegőt használnak a mozgás előidézésére, például ahol gyors és ismétlődő mozgásra van szükség.

1.2 DAQ/Tradícionális vezérlés/DCS/SCADA/Monitoring/Vezérlőrendszerek

1.2.1 DIKW piramis

Tudáspiramis, egy modell, bemutatja hogyan alakulnak át az adatok értelmezhető és használható tudássá.

- 1. Adat (Nyers adatok kontextus nélkül (pl.: mérések adatai), kevés hasznos információt tartalmaznak.)
- 2. Információ (Adatok kontextusba helyezése.)
- 3. Tudás (Információkból következtetéseket lehet levonni.)
- 4. Bölcsesség (Tudás alkalmazása, miértje.)

1.2.2 Tradícionális vezérlési rendszerek vs. Elosztott vezérlési rendszerek (DCS)

- Tradícionális vezérlési rendszerek
 - Központosított architektúrára épül, ahol egy vagy több központi vezérlőegység végzi a folyamatok összes vezérlési és felügyeleti feladatát.
 - Egyszerű, alacsony költségek
 - Korlátozott skálázhatóság, a központosított vezérlés miatt nagyobb a rendszer kiesésének kockázata
- Elosztott vezérlési rendszerek (DCS)
 - Vezérlési folyamatokat moduláris egységek között osztja szét, amik kommunikálnak egymással egy közös hálózaton keresztül.
 - Minden egyes szegmens a saját területéért felelős.
 - Magasabb rendelkezésre állás, megbízhatóság, skálázhatóság
 - Költséges, bonyolult

1.2.3 DAQ rendszer előnyök/hátrányok, alkalmazási területek

Adatgyűjtő rendszerek, lehetővé teszik fizikai jelenségek valós idejű monitorozását és analízisét.

Egy tipikus DAQ rendszer szenzorokból áll, adatgyűjtő hardverből és szoftverből áll, amik összegyűjtik és feldolgozzák az adatokat.

- Előnyök (Rugalmas konfiguráció, pontos mérések, valós idejű adatfeldolgozás, automatizálás)
- Hátrányok (Költségek, technikai komplexitás, hardver és szoftverkompatibilitás, Karbantartás, frissítések)
- Alkalmazási területek (Tudományos kutatás, mérnöki tesztelés és fejlesztés, környezeti monitorozás, egészségügy)

1.2.4 Elosztott vezérlési rendszerek (DCS)

- Előnyök (Magasabb rendelkezésre állás, megbízhatóság, skálázhatóság)
- Hátrányok (Költséges, bonyolult)
- Alkalmazási területek (Gyógyszeripar, erőművek, élelmiszeripar)

1.2.5 SCADA rendszer

- Előnyök (Távoli felügyelet, valós idejű adatgyűjtés, megbízhatóság, automatizálás)
- Hátrányok (Komplexitás, költségek, karbantartás)
- Alkalmazási területek (Energiaipar, közlekedés, gyártás és automatizálás)

1.3 DAQ

1.3.1 DAQ rendszer komponensei

- Szenzorok és érzékelők (Fizikai változások elektromos jelekké alakítja át)
- Jelkondicionáló áramkörök (Jeleket átalakítja, hogy azok megfelelőek legyenek)
- Adatgyűjtő eszközök DAQ hardver (Előkészített analóg jeleket digitális formátumba konvertálja)
- Számítógép és interfész (DAQ hardvert számítógéphez kell csatlakoztatni, interfész lehet USB, PCI, PCIe, Ethernet és szoftveren keresztül kezeli az adatokat)
- Szoftver (LabVIEW, MATLAB)

1.3.2 DAQ alkalmazási területek

Tudományos kutatás, mérnöki tesztelés és fejlesztés, környezeti monitorozás, egészségügy

1.3.3 Jelkondícionálás

A jelkondícionálás előkészíti az elektromos jeleket a digitális átalakításra és feldolgozásra, célja, hogy javítsa a jelek minőségét és növelje az adatgyűjtés pontosságát.

 Erősítés, szűrés, hőmérséklet-kompenzáció, lineárizáció, galvanikus leválasztás, jelalakítás

1.3.4 Betegmonitorozó DAQ infrastruktúra

Beteg valós időben történő monitorozása.

 Szenzorok és érzékelők, jelkondícionáló áramkörök, adatgyűjtő eszközök, központi monitorozó állomás és hálózati infrastruktúra, szoftver és analitikai eszközök, adattárolás és archiválás

1.3.5 DAQ rendszerek kihívásai

 Jelzaj és interferencia, nagy adatmennyiség kezelése, szenzor kalibráció és hőmérsékleti hatások, Adatbiztonság és adatvédelem, hardver és szoftverkompatibilitás, skálázhatóság és rugalmasság, Kezelhetőség

1.4 Elosztott vezérlési rendszerek (DCS)

1.4.1 DCS architektúra

- Vezérlési folyamatokat moduláris egységek között osztja szét, amik kommunikálnak egymással egy közös hálózaton keresztül.
- Minden egyes szegmens a saját területéért felelős.
- Moduláris

1.4.2 DCS komponensei

- Folyamatvezérlők
- Operátori állomások (HMI)
- I/O modulok
- Kommunikációs hálózatok
- Mérnöki munkaállomások
- Adatarchiváló és elemző rendszer
- Biztonsági rendszerek

1.4.3 DCS előnyök és hátrányok

- Előnyök (Magasabb rendelkezésre állás, megbízhatóság, skálázhatóság)
- Hátrányok (Költséges, bonyolult)

1.4.4 DCS alkalmazási területek

• Gyógyszeripar, erőművek, élelmiszeripar

1.5 Supervisory control and data acquisition - SCADA

1.5.1 SCADA architektúra, komponensei

Lehetővé teszik a nagy ipari és infrastrukturális folyamatok távoli monitorozását, vezérlését és automatizálását.

- Terepi eszközök
- Távközlési rendszerek
- RTU-k
- SCADA szerverek és számítógépek
- HMI
- Adatbázis és archiváló rendszerek
- Biztonsági komponensek
- Alkalmazási és szoftvereszközök

1.5.2 SCADA előnyök/hátrányok

- Előnyök (Távoli felügyelet, valós idejű adatgyűjtés, megbízhatóság, automatizálás)
- Hátrányok (Komplexitás, költségek, karbantartás)

1.5.3 SCADA alkalmazási területek

• Energiaipar, közlekedés, gyártás és automatizálás

1.5.4 SCADA funkciói

- Távmérések, távjelzések fogadása
- Visszajelzés, adat vizualizáció
- Naplózás
- Riasztások (határérték és gradiens figyelés)
- Topológia analízis
- Távparancsadás
- Autentikáció és jogosultságkezelés
- Adattárolás

1.5.5 Basic SCADA vs. Integrated SCADA vs. Networked SCADA

- Basic SCADA
 - Alapvető távoli felügyelet és adatgyűjtés
 - Korlátozott I/O kapacitás, egyszerű HMI és adatgyűjtés
 - Kis teljesítményűek, egyszerű ipari folyamatok
- Integrated SCADA
 - Bonyolultabb, több funkciót integrálnak egyetlen koherens rendszerben.
 - ERP rendszerek, komplex gyártási folyamatok, nagy létesítmények, vállalati szintű

Networked SCADA

- Széleskörű hálózati kapcsolatok, távoli elérés és vezérlés, adatmegosztás a létesítmények között, felhőalapú adattárolás és szolgáltatások
- Távvezetéki rendszerek, vízellátás, energiaelosztás, szétszórt infrastruktúra felügyelet

1.6 Biojel-gyűjtés (Biosignal acquisition)

A bioszignálok az élőlények testéből származó elektromos, mechanikai vagy más fizikai jelek, amik információt hordoznak az adott szervezet vagy szervrendszer állapotáról.

- Elektromos bioszignálok (Ideg és izomsejtek elektromos aktivitásából származnak)
 - **EKG** (Elektrokardiogram), szív elektromos tevékenysége.
 - **EEG** (Elektroenkefalográfia), Agy elektromos aktivitása.
 - EMG (Elektromiográfia), izom elektromos aktivitása.
- Mechanikai bioszignálok (Fizikai mozgások és változások)
 - Pulzushullám-velocitás, az artériás rugalmasság mérésére szolgáló jel.
 - Spirometria, légzés mechanikájának mérése.
- Kémiai és biokémiai bioszignálok (Kémiai összetétel változásai)
 - Glükózszint-mérés, vércukorszint mérés.
 - **pH-mérés**, testfolyadék savasságának mérése.
- Optikai és termikus bioszignálok (Fény és hő alapú jelek)
 - Pulzoximetria, véroxigénszint mérés.
 - Testhőmérséklet-mérés, a test belső hőmérsékletének mérési módjai.
- Környezeti tényezők és egyéb mérések
 - Páratartalom és hőmérséklet
 - Tartás és gyorsulás

1.6.1 Szenzoradat kezelési folyamat

- 1. Data acquisition (DAQ) (egy/több szenzor)
- 2. Adatkezelés (feldolgozás/szűrés)
- 3. Tárolás, keresés
- 4. Vizualizáció
- 5. Megosztás

1.6.2 Mérési hibák (típusok/források)

Minden mérés tartalmaz hibákat!

- Rendszerszerű hibák
 - Kalibrációs hibák (Mérőeszközök nem megfelelő kalibrálása)
 - Elektromos interferencia (Környezeti elektromos berendezések zavarai)
 - Jelátviteli hiba (Hosszú vagy rossz minőségű kábelezés)
- Random hibák
 - Operátori hiba (Emberi tényező, mint pl.: szenzor helytelen elhelyezése)
 - Fiziológiai zaj (A testből származó nem kívánt jelek, pl.: izomzaj)
 - Mintavételi hiba (Nem megfelelő mintavételi frekvencia alkalmazása)

1.6.3 Egyetlen vs. több szenzoros mérési problémák

- Egyetlen szenzoros mérési problémák
 - Korlátozott információszerzés, egyetlen nézőpontból származó adatok korlátozott betekintést nyújtanak.
 - Hibatűrés hiánya, egy szenzor meghibásodásánál nincs redundancia, ami az egész mérési folyamat kieséséhez vezethet.
 - Nagyobb kockázat a pontatlanságokra, az adatok értelmezésekor
- Több szenzoros mérési problémák
 - Adatkezelés és feldolgozás, nagy adatmennyiség kezelése, tárolása, elemzése bonyolult, időigényes
 - Adatfúzió és integráció, a különböző típusú és forrású adatok összeegyeztetése és integrálása technikai kihívást jelenthet.
 - Interferencia és koherencia, a szenzorok közötti interferencia és az adatok koherenciájának hiánya torzíthatja az eredményeket.

1.6.4 Mérnöki kihívások a nagymennyiségű adatgyűjtésnél

- Általános kihívások
 - P1 \rightarrow Sok DAQ csomópont
 - P2 \rightarrow Sok szenzor (különböző típusú)
 - -P3 \rightarrow Nagy adatmennyiség lehetőleg gyorsan átküldve
- Kommunikációs probléma \rightarrow P1 \times P2 \times P3
- Szoftver kihívások
 - Valós idejű DAQ + előfeldolgozás + feldolgozás + megjelenítés (különböző tartományok)
 - Komplex döntési helyzetek
 - Online adatmenedzsment (megosztás +archiválás)
- Hardver korlátok
 - Energia problémák
 - Kommunikációs hatótávolságok, adat multiplexálási problémák/idő, frekvencia
 - Biztonság, megbízhatóság, használhatóság

1.7 Biojel-gyűjtés a sportban és az idősgondozásban

1.7.1 Sportmonitoring megoldások (aktivitás/teljesítmény) és problémák

- Viselhető eszközök (pulzusmérők, lépésszámlálók, GPS órák)
- Erő és mozgásérzékelők (gyorsulásmérők, giroszkópok)
- Problémák
 - Adatpontosság és megbízhatóság (kalibrációs, szenzorhibák)
 - Viselhetőség és kényelem
 - Adatkezelés, adatbiztonság, adatvédelem
 - Integráció más rendszerekkel (kompatibilitási problémák)

1.7.2 Környezet és lokáció monitoring (lokáció monitoring problémák)

- Környezet monitoring (Kamera, Sugárzásmérők, Levegőminőségmérők)
- Lokáció monitoring (GPS, Bluetooth/WiFi alapú rendszerek, GSM/2G/3G/4G/5G, IMU)
- Lokáció monitoring problémák
 - Pontatlanságok (beltérben, beépített városi területeken)
 - Magas energiatakarékosság
 - Integráció és kompatibilitás
 - Jogi és etikai megfontolások

1.7.3 Idősek monitorozása (problémák és megoldások)

Távoli betegmonitorozás (Diabétesz/Gyógyszeres/Hipertónia monitorozás)

- Problémák (Technológiai akadályok, fizikai és kognitív korlátok)
- Megoldások (Egyszerűsített interfészek, személyre szabott beállítások, oktatás/támogatások)

1.7.4 Hipertónia/Magas vérnyomás monitoring

• Módszerek

- Auszkultációs módszer (Manuális vérnyomásmérés, stetoszkóp és egy manuális mandzsettát használnak a Korotkov-hangok hallgatására, ami lehetővé teszi a szisztolés és diasztolés vérnyomás mérését.)
- Oszcillometriás módszer (Automatizált módszer, mandzsetta automatikusan felfújódik, és az oszcillációkat méri, amikor lassan engedi le a levegőt, így meghatározva a vérnyomást.)

• Eszközök

 Felső karos vérnyomásmérők, csuklós vérnyomásmérők, ujjvérnyomásmérők

1.7.5 Diabétesz/cukorbetegség monitorozása (módszerek, berendezések, CGM, mesterséges hasnyálmiriggyel kapcsolatos kérdések)

Monitorozási módszerek

- Ujjbegy tesztelés, (hagyományos vércukorszint-mérés), kisméretű vércukormérő eszközök, csepp vért igényelnek.
- Szenzorok, (folyamatos glükózmonitorozás CGM), bőr alá helyezett kis szenzorok folyamatosan mérnek.
- Berendezések (Digitális glükózmérők, folyamatos monitorozó eszközök (CGM rendszerek))

• CGM

- Apró glükózérzkleő szenzort helyeznek a bőr alá, általában a hason vagy a felső kar hátsó részén.
- A szenzor méri a szöveti glükózszintet, és az információt továbbküldi egy eszközre.
- A rendszer átlagos vércukorértékeket rögzít 1-5 perces intervallumokban, folyamatos nyomon követés.
- Ujjbegy tesztelés és kalibráció szükséges a pontossághoz.
- A rendszer riasztásokat küld, ha a vércukorszint eléri vagy átlépi a beállított célértékeket.
- Inzulin "pumpával" kombinálva
- Mesterséges hasnyálmirigy, automatikus algoritmusok
- Inzulin, szénhidrát bevitele
- Mesterséges hasnyálmirigy problémák (Rendszer összetettsége, automatizációs problémák)

1.8 I2C és SPI (rövid hatótávolságú vezetékes kommunikáció)

1.8.1 I2C kommunikáció

- Integrált áramkörök összekapcsolására
- Busz alapú
- Kétvezetékes szinkron adatátviteli rendszer
- Két vezeték (SCL órajel; SDA adat)
- Alternatívák (SMBus/PMBus)
- Egy/több master és egy/sok slave
- Master csinál mindent
 - Mindig a Master küldi az órajelet az SCL vonalra.
 - Master kezdeményez adattranszfert
- Slave fogadja az órajelet és válaszol ha kérdezik
- (Start) + cím +, egy bites vezérlő jel mutatja meg, hogy a megjelölt Slave-et a Master írni vagy olvasni kívánja.
- Master és Slave szerep felcserélhető.
- Felhúzó ellenállásokkal szokták kötni, de ez breakout boardoknál már általában be van építve.

1.8.2 I2C előnyök/hátrányok, alkalmazási területek

- Előnyök (Alacsony vezetékszám, több eszköz támogatása, beépített konfliktuskezelés, rugalmas sebesség, egyszerű lementáció)
- Hátrányok (Korlátozott távolság, relatív lassúság, buszkonfliktusok több eszköznél, Master központúság)
- Alkalmazási területek (Beágyazott rendszerek, mobileszközök, elektronika)

1.8.3 SPI komponensei

Serial Peripheral Interface, egy szinkron, soros adatkapcsolati protokoll, amit mikrokontrollerek és perifériás eszközök közötti gyors adatátvitelre használnak.

- MOSI (Master Out Slave In) (A Master eszköz adatkimeneti vonala, amin keresztül adatokat küld a sorrendben lévő eszközöknek.)
- MISO (Master In Slave Out) (A sorrendben lévő eszköz adatkimeneti vonala, amin keresztül adatokat küld vissza a Master eszköznek.)
- SS (Slave Select) (Eszköz aktiválása az adatátvitel idejére)

1.8.4 SPI előnyök/hátrányok, alkalmazási területek

- Előnyök (Magas átviteli sebesség, teljes duplex kommunikáció, nincs címzés, egyszerű kommunikáció)
- Hátrányok (Több vezetékre van szükség, nem támogat busz megosztást, skálázhatóság, hiányzó beépített konfliktuskezelés)
- Alkalmazási területek (Adattároló eszközök, kijelzők, szenzorok, hálózati eszközök, digitális-analóg és analóg-digitális átalakítók)

1.8.5 I2C vs. SPI

Jellemző	I2C	SPI
Sebesség	Lassabb, max 3.4 Mbps	Gyorsabb, több Mbps is lehet
Vezetékek Száma	2 (SDA, SCL)	Legalább 4 (MISO, MOSI, SCK, SS), több SS vezetékkel
Címzés	Beépített címzési rend- szer	Nincs beépített címzés, külön SS vezeték szük- séges
Adatátvitel Módja	Fél-duplex	Teljes duplex
Komplexitás és Hard- verigény	Egyszerűbb, kevesebb vezetékkel	Bonyolultabb, több vezetékkel
Felhasználási Területek	Kisebb sebességű alkalmazások, érzékelők	Adatigényes alkalmazások, nagy sebességű interfészek

1.9 Vezeték nélküli kommunikációs technológiák

1.9.1 BAN (Body Area Network) hálózatok

Jellemző	Információ
Hatótávolság	Néhány méter, a test közvetlen
	közelében
Felhasználható Technológiák	Bluetooth Low Energy (BLE), Zig-
	Bee, NFC, Wi-Fi Direct
Sebesség	ZigBee: alacsony, Wi-Fi Direct:
	magas
Energiafogyasztás	Alacsony, hosszú akkumulátor-
	élettartam előnyös
Felhasználási Területek	Egészségügyi monitorozás, fitness
	követés, okosruházat, személyes biz-
	tonság

1.9.2 PAN hálózatok

Jellemző	Információ
Hatótávolság	10 métertől 100 méterig
Felhasználható Technológiák	Bluetooth, Bluetooth Low Energy
	(BLE), ZigBee, NFC, Wi-Fi Direct
Sebesség	BLE: 1 Mbps, Wi-Fi: 250 Mbps-ig
Energiafogyasztás	Nagyon alacsonytól (BLE) közepe-
	sig (Wi-Fi)
Felhasználási Területek	Okoseszközök kapcsolata, adatátvi-
	tel, média streaming, okosotthon- vezérlés

1.9.3 LAN hálózatok

Jellemző	Információ
Hatótávolság	Általában 100 métertől több kilo- méterig, bővíthető repeater-ekkel és bridge-ekkel
Felhasználható Technológiák	Ethernet (vezetékes), Wi-Fi (vezeték nélküli), PowerLine
Sebesség	Ethernet: akár 10/100/1000 Mbps (Gigabit), Wi-Fi: akár 600 Mbpsig, attól függően, hogy melyik Wi-Fi szabványt használják
Energiafogyasztás	Vezetékes LAN esetében alacsony, Wi-Fi esetében változó, függ a használati módoktól és a hálózati forgalomtól
Felhasználási Területek	Irodai hálózatok, oktatási in- tézmények, otthoni hálózatok, internet-hozzáférés megosztása, fájlmegosztás, multimédia stream- ing

1.9.4 MAN hálózatok

Jellemző	Információ
Hatótávolság	Általában 5 km-től 50 km-ig, városi
	vagy nagyvárosi területeken
Felhasználható Technológiák	Ethernet, ATM, Frame Relay,
	MPLS, WiMAX, LTE
Sebesség	Több Mbps-től Gbps-ig terjedő
	sebességek, a technológiától függően
Energiafogyasztás	Függ a használt infrastruktúrától
	és technológiától, jellemzően maga-
	sabb, mint a LAN-oknál
Felhasználási Területek	Városi hálózatok összekötése,
	internet-szolgáltatók, nagyvárosi
	területi hálózatok, egyetemi kam-
	puszok

1.9.5 WAN hálózatok

Jellemző	Információ
Hatótávolság	Több száz vagy ezer kilométer,
	nemzetközi és kontinentális távolsá-
	gok
Felhasználható Technológiák	MPLS, Frame Relay, ATM, Ether-
	net WAN, VPN, Satellite, LTE/5G
Sebesség	Különböző, Mbps-tól Gbps-ig, a
	használt technológiától és infras-
	truktúrától függően
Energiafogyasztás	Jellemzően magas, különösen a
	hosszú távú infrastruktúrák és nagy
	teljesítményű eszközök miatt
Felhasználási Területek	Nemzetközi vállalati hálózatok,
	távoli adatközpontok összekapc-
	solása, internet-hozzáférés, távoli
	munka

1.10 USB

1.10.1 USB architektúra/komponensei, eszköz kategóriák

• Architektúra építőelemei

 Host Controller, USB portok, USB eszközök, USB hubok, adatátviteli protokollok

• Eszköz kategóriák

Tároló eszközök, beviteli eszközök, kommunikációs eszközök, audio és videó eszközök, nyomtatók és szkennerek, okos készülékek

1.10.2 USB előnyök/hátrányok, alkalmazási területek

- Előnyök, univerzalitás, energiaellátás, adatátvitel, portabilitás
- Hátrányok, biztonsági kockázatok, port korlátozottság, kompatibilitási problémák
- Alkalmazási területek, multimédia, hálózati alkalmazások, tárolóeszközök, perifériák, mobileszközök

1.10.3 USB csatlakozók, OTG (On the Go)

- USB csatlakozók
 - USB-A, USB-B, Mini-USB, Micro-USB, USB-C
- USB On the Go (OTG)
 - Kiegészítő szabvány, kétirányú kommunikáció, hordozhatóság, komptakt csatlakozó

1.10.4 USB Enumeration

Kommunikáció a perifériával, feltérképezi, hogy milyen eszköz, driver betöltés, azonosító ID hozzárendelés, az áramfelvétel szabályozása.

1.10.5 USB vs. RS-232 (serial)

Jellemző	USB vs. RS-232
Sebesség	USB: Akár 10 Gbps (USB 3.1) vs. RS-232: Maximum 115,200 bps
Csatlakozók	USB: Több típus, beleértve A, B, Mini, Micro, C vs. RS-232: Ál- talában D-sub 9 vagy 25 pines csat- lakozó
Kábelezés	USB: Maximum 5 méter vs. RS- 232: Akár 15 méter vagy több, jellemzően kisebb adatsebesség mel- lett
Energiaellátás	USB: Eszközök tápellátása lehet- séges a buszon keresztül vs. RS-232: Nem biztosít tápellátást
Alkalmazási terület	USB: Széles körű, beleértve számítástechnikát, mobil es- zközöket, tárolót vs. RS-232: Ipari vezérlés, régebbi eszközök kommu- nikációja

1.11 LPWAN technológiák

1.11.1 LoRa/LoRaWAN kommunikáció: architektúra, építő elemei

- LoRa: A fizikai réteg, amely lehetővé teszi az alacsony energiafogyasztású, hosszú távolságú kommunikációt.
- LoRaWAN: A hálózati protokoll, amely szabályozza az eszközök kommunikációját a hálózaton belül. Az architektúra többféle üzemeltetési módot támogat, és biztosítja az eszközök hálózatba való integrálását és menedzsmentjét.

1.11.2 LoRa/LoRaWAN kommunikáció: előnyök/hátrányok, alkalmazási területei

• Előnyök:

- Hosszú távolságú kommunikáció
- Alacsony energiafogyasztás
- Jó áthatolási képesség épületeken belül

• Hátrányok:

- Korlátozott adatátviteli sebesség
- Közepes késleltetés
- Interferencia-érzékenység

• Alkalmazási területek:

- Okos városok
- Mezőgazdasági monitoring
- Energia menedzsment
- Egészségügyi monitorozás

1.11.3 SIGFOX kommunikáció: architektúra/építő elemei

• Architektúra:

- Alacsony energiafogyasztású, alacsony sávszélességű adatátviteli technológia.
- Hálózati topológia, amely az eszközöket közvetlenül a globális SIGFOX hálózathoz kapcsolja, gateway-ek és routerek nélkül.

• Építőelemek:

- Eszközök: Alacsony energiafogyasztású eszközök, amelyek képesek az adatok egyszerű és sporadikus továbbítására.
- Hálózat: Szerteágazó bázisállomások, amelyek fogadják és továbbítják az eszközökről érkező jeleket.
- Cloud platform: A fogadott adatokat feldolgozó és tároló szerverinfrastruktúra.

1.11.4 SIGFOX kommunikáció: előnyök/hátrányok, alkalmazási területei

• Előnyök:

- Nagyon alacsony energiafogyasztás, ami hosszú élettartamot biztosít az elemeknek.
- Költséghatékony megoldás sok eszköz globális összekapcsolására.
- Egyszerű hálózati architektúra, nincs szükség bonyolult beállításokra.

· Hátrányok:

- Korlátozott adatátviteli sebesség, csak kis adatmennyiségek továbbítására alkalmas.
- Nincs lehetőség az adatátvitel valós idejű követésére, nagyobb késleltetések előfordulhatnak.
- Korlátozott kommunikációs funkciók, például csak egyirányú adatátvitel lehetséges bizonyos konfigurációkban.

• Alkalmazási területek:

- Okos mérőeszközök, például víz-, gáz- és elektromos mérők.
- Telemetria, azaz távoli mérőeszközök adatainak továbbítása.
- Asset tracking, vagyis nyomkövetés, ahol az eszközök helyzetét nyomon kell követni.

1.11.5~Összehasonlítás: LPWAN vs. Narrow Band/cell alapú technológiák (GSM/3G/4G/5G)

Jellemző	LPWAN vs. $GSM/3G/4G/5G$
Sebesség	LPWAN: Általában alacsony (kb. 0,3-50 kbps) vs. GSM/3G/4G/5G: Magas (kb. 2 Mbps - 1 Gbps)
Lefedettség	LPWAN: Nagyon nagy lefedettség, akár több kilométer vs. GSM/3G/4G/5G: Kisebb terület, városi közegben fókuszál
Energiafogyasztás	LPWAN: Nagyon alacsony, optimalizált eszközök hosszú élettartamra vs. GSM/3G/4G/5G: Magasabb, gyakori töltés szükséges
Alkalmazási terület	LPWAN: IoT eszközök, szen- zorok, alacsony adatigény vs. GSM/3G/4G/5G: Magas adatigény, multimédia, gyors internet

2 Fogalmak

- Szenzor (sensor): A szenzor egy eszköz, ami fizikai ingereket (hőmérséklet, fény, nyomás) érzékel és mérhető jelekké alakítja.
- Modalitás (modality): Érzékelés módja (látás, tapintás, hallás)
- Okos város (smart city): Olyan város, ami az infokommunikációs technológiák segítségével hatékonyabban és fenntarthatóbban üzemelteti a szolgáltatásait. (közlekedés, energiaellátás)
- Okos mezőgazdaság (smart agriculture): Az infokommunikációs technológiákat használó mezőgazdaság, ami a termelést optimalizálja és a hatékonyságot növeli.
- IoT: Olyan eszközök hálózata, amik az interneten keresztül kommunikálnak egymással és adatokat gyűjtenek.
- **Távgyógyászat (telemedicine)**: Távoli gyógyítás, ahol az orvos és a beteg nem ugyanazon a helyen tartózkodik.
- ICT: Információs és kommunikációs technológiák gyűjtőneve, internet, mobiltelefon, számítógép.
- Precíziós mezőgazdaság (precision farming): GPS és szenzorok használatával optimalizálja a mezőgazdasági termelést.
- Viselhető elektronikai eszközök (wearable devices): Viselhető elektronikai eszközök, okosórák, fitneszórák
- Összekapcsolt eszközök (connected devices): Interneten vagy belső hálózaton összekapcsolt eszközök, amik adatot cserélnek.
- Átalakító (transducer): Fizikai jelet elektromos jellé alakít.
- A/D konverter (A/D converter): Analóg jelet digitális jellé alakít.
- Zavaró jel (signal noise): A hasznos jelhez nem kapcsolódó zavaró jel.

- Bináris kód (binary code): 0 és 1-es számjegyekkel ábrázolt információ.
- Aktuátor (actuator): Elektromos jelet mechanikai mozgássá alakít.
- Jel kondícionálás (signal conditioning): A jel erősségének, zajszintjének és formátumának az érzékelőhöz vagy továbbításához való igazítása.
- Jel skálázása (signal scaling): A jel erősségének arányos módosítása egy kívánt tartományba.
- Amplifikáció/erősítés (amplification): A jel erősségének növelése.
- Linearizáció (linearization): A nemlineáris jel lineáris közelítésbe történő alakítása.
- Kompenzáció (compensation): A mérésihibák kiegyenlítése.
- Szűrés (filtering): A nem kívánt jelek eltávolítása a jelből.
- Csökkentés (attenuation): A jel erősségének csökkentése.
- Gerjesztés (excitation): Egy rendszer bemenő jellel való ellátása.
- Elosztott diagnosztika (distributed diagnostic): A rendszer különböző pontjain történő hibafeltárás.
- Elosztott hozzáférés (distributed access): Több eszköz egy kommunikációs csatornát használ közösen.
- Fieldbus: Digitális kommunikációs hálózat terepi eszközök és vezérlők között.
- Telemetria (telemetry): Távoli adatgyűjtés és átvitel, szenzor adatainak továbbítása.
- Elosztott vezérlő rendszer (Distributed Control System DCS): Vezérlési folyamatokat moduláris egységek között osztja szét, amik kommunikálnak egymással egy közös hálózaton keresztül.
- Supervisory control and data acquisition (SCADA): Lehetővé teszik a nagy ipari és infrastrukturális folyamatok távoli monitorozását, vezérlését és automatizálását.

- DAQ: Adatgyűjtő rendszerek, lehetővé teszik fizikai jelenségek valós idejű monitorozását és analízisét.
- MTU Master Terminal Unit: Fő terminálegység, távvezérlő rendszerekben a kommunikációt irányítja.
- Front End processor: Előfeldolgozó egység, adatgyűjtő és előkészítő modul.
- Biztonsági szerver (safety server): Ipari rendszerek védelmét biztosítja.
- HMI Human Machine Interface: Felhasználói felület, ami összekapcsolja az embert egy géppel, rendszerrel, eszközzel.
- MMI Machine Machine Interface: Információ csere, RFID, Bluetooth, telemetria
- RTU Remote Terminal Unit: Távoli terminál egység, ami adatokat gyűjt és továbbít egy vezérlőrendszerhez.
- PLC Programmable Logic Controller: Programozható logikai vezérlő, ami automatizálja az ipari folyamatokat.
- IED Intelligent Electronic Device: Intelligens elektronikus eszköz, ami méri és elemzi a villamosenergia-hálózat adatait.
- Trending: Adatok időbeli változásának nyomon követése és elemzése.
- API: Alkalmazásprogramozási felület, ami lehetővé teszi a szoftverek közötti kommunikációt.
- Biosignal: Elektromos jel, amit a szervezet élő szövetei bocsátanak ki.
- Élő organizmus (living organism): Biológiai organizmus, ami képes önállóan fenntartani a homeosztázist, szaporodni és fejlődni.
- Anyagcsere (metabolism): Energia előállítása és a szervezet működéséhez szükséges anyagok létrehozása, lebontása és átalakítása.
- Homeosztázis (homeostasis): Állandó belső környezet fenntartása a szervezetben.

- Ingerek (stimuli): Ingerek, amik a szervezetet reakcióra késztetik.
- Invazív mérés (invasive measurement): Testbe kell hatolni (vérvétel).
- Nem-invazív mérés (non-invasive measurement): Nem igényel testbe való behatolást (röntgen).
- Nyquist-Shannon mintavételi tétel (Nyquist-Shannon sampling theorem): Meghatározza a maximális jelhűséget adott mintavételi frekvenciánál.
- AAMI: Amerikai Orvosi Műszerezés Fejlesztési Társaság, egészségügyi technológia fejlesztésével foglalkoznak
- BHS: Brit Hipertónia Társaság, magas vérnyomás megelőzést, diagnosztizálást segítik elő.
- Távoli monitorozás (remote monitoring): Távműködésű megfigyelés, ahol az adatokat távolról gyűjtik.
- Változékonyság (variability): Ingadozás
- Fehér köpeny szindróma (white coat syndrome): Emelkedett pulzus és/vagy vérnomyás orvosi vizsgálatkor
- Korotkov hangok: A vérnyomásméréskor hallható hangok, amik alapján állapítják meg a vérnyomás értékét.
- Gyógyszeres monitoring (medication monitoring): A gyógyszerek hatásának és mellékhatásának monitorozása.
- Magas vérnyomás (hypertension): Hipertónia, magasabb az artériák falára gyakorolt nyomás az átlagosnál.
- Szisztolés nyomás-erő (systolic pressure-force): A szisztoléban a szívizom összehúzódik és vért pumpál a keringésbe.
- Diasztolés nyomás-erő (diastolic pressure-force): A diasztolé alatt a szív ellazul és újratöltődik vérrel.
- Auszkultációs módszer (auscultation method): Manuális vérnyomásmérés, stetoszkóp és egy manuális mandzsettát használnak a Korotkov-hangok hallgatására, ami lehetővé teszi a szisztolés és diasztolés vérnyomás mérését.

- Oszcillometriás módszer (oscillometry method): Automatizált módszer, mandzsetta automatikusan felfújódik, és az oszcillációkat méri, amikor lassan engedi le a levegőt, így meghatározva a vérnyomást.
- PPG-alapú mérés (PPG-based measurement): A hajszálerek térfogat változását regisztrálja.
- Tonometria módszer (tonometry method): Mechanikai tapintófejjel rögzítésre kerül a csuklóartéria pulzálása.
- **BPM**: Pulzus, szaporaság, az 1 perc alatt mért lüktetések száma.
- LDL: Low density lipoprotein, rossz koleszterin, ami az érfalban lerakódva érelmeszesedést okozhat.
- HDL: High density lipoprotein, jó koleszterin, ami eltávolítja a koleszterint az érfalról.
- Laktát monitoring (lactat monitoring): A vér tejsavszintjének mérése.
- Koleszterinszint (cholesterol level): A koleszterin egy zsírszerű anyag, ami a szervezetünkben létfontosságú szerepet tölt be.
- Trygliceridek szintje (Tryglicerides level): Az ember testzsír fő összetevői.
- Glükóz (glucode): Egyszerű szénhidrát, szölőcukor
- Inzulin receptor: A sejtmembránon található kapcsoló, amihez az inzulin kötődik, hogy a glükóz bejusson a sejtbe.
- Inzulin rezisztancia (inzulin resistance): A sejtek nem reagálnak megfelelően az inzulinra, emiatt a glükóz nem jut be a sejtekbe és a vércukorszint emelkedik.
- Cukorbetegség (diabetes mellitus): A vércukorszint kóros emelkedése, ami inzulinhiány vagy inzulinrezisztancia következménye.
- 2-es típusú cukorbetegség: Kevésbé súlyos mint az 1-es típusú, életmódváltoztatással és súlycsökkentéssel kezelhető. A szervezet nem hasznosítja hatékonyan az inzulint.

- 1-es típusú cukorbetegség: Rendszeres inzulin adagolás szükséges mert a szervezet nem képes elegendő inzulint termelni!
- Gestitational diabetes: Terhességi cukorbetegség
- HbA1c: Glikált hemoglobin, akkor alakul ki, amikor a hemoglobin a vérben lévő glükózhoz kapcsolódik és glikálódik.
- Lándzsás eszközök (lancets): Ujjbegybe szúrt vérvevők
- Tesztcsík (test stripe): Színelváltozással leolvasható róla a glükózszint.
- Fotometrikus módszer (photometric method): Színösszehasonlítással olvassuk le a glükózszintet.
- Amperometrikus módszer (amperometric method): Elektromos áramot vezetnek át a vett mintán és az áramerősségnek a segítségével mérik meg a glükóz mennyiséget.
- CGM: Apró glükózérzékelő szenzort helyeznek a bőr alá, általában a hason vagy a felső kar hátsó részén.
- Mesterséges hasnyálmirigy (artificial pancreas): Automatikusan szabályozza a vércukorszintet inzulin beadásával és a glükagon kiválasztásával.
- Inzulin bevitel (insulin intake): A vércukorszint szabályozására szolgáló hormon bevitele, injekció, inzulinpumpa vagy inhalátor segítségével.
- Pirulaadagoló (pill dispenser): Tabletták, kapszulák automatizált adagolása beállított időpontokban.
- Szívinfarktus (heart infarct): A szívizom vérellátását biztosító koszorúerek elzáródása, ami szívizom károsodáshoz vezet.
- Sztrók (stroke): Az agy vérellátását biztosító erek elzáródása vagy megrepedése ami agyi károsodáshoz vezet.
- AAL Ambient Assisted Living: Intelligens technológiák használata az idősek és betegek otthoni gondozására.
- Digitális sztetoszkóp (digital stethoscope): Elektronikus eszköz a szív hangjainak hallgatására és rögzítésére.

- ECG: A szív elektromos aktivitásának grafikus ábrázolása.
- MET Calorie/Metabolic equivalent: Ez egy olyan egység, amely az adott tevékenység intenzitását fejezi ki a pihenési anyagcsere által felhasznált energia mennyiségével összehasonlítva.
- S-T emelkedés (S-T elevation): Az EKG-n az S-T hullám emelkedése.
- EEG: Az agy elektromos aktivitásának mérése.
- EMG: Az izmok elektromos aktivitásának mérése.
- Apnoe: Az apnoé során a légzés szünetel vagy jelentősen lelassul egy bizonyos időszakban. Típusai például: alvási apnoé vagy újszülött apnoé.
- IMU: Inerciális mérési egység, ami a mozgás mérésére szolgál.
- Peak flow meter: Csúcsáramlásmérő.
- Spirometer: Tüdőkapacitás és légzési funkciók mérésére szolgál.
- Testösszetétel-mérők (Body Composition Monitors): A test zsír-, izom-, és víztartalmának mérésére szolgál.
- RS-232: Serial kommunkációs protokoll, régi eszközök használják.
- **SPI**: Soros perifériás interfész, adatátvitelre használják mikrovezérlők és perifériák között.
- I2C: Két eszköz kommunikációjára szolgál.
- UART: Univerzális aszinkron vevő-adó, soros adatátvitelre használják.
- USART: Univerzális szinkron/aszinkron vevő-adó, az UART továbbfejlesztett változata.
- CAN: Controller Area Network, ipari automatizálásban és járművekben használt kommunkációs protokoll.
- 1wire: Egyszerű, egyvezetékes kommunikációs protokoll.
- USB: Universal Serial Bus egyszabványos csatlakozó, amivel perifériákat és tartozékokat csatlakoztathatunk számítógépekhez és más eszközökhöz.

- Testkommunikáció (body communication): A test kommunikációja a testen viselt eszközökön keresztül történik, melyek érzékelik a testmozgást, a fiziológiai paramétereket és a környezeti feltételeket.
- Textilhuzalok/vezető fonalak (Textile wires/conductive yarns): A textiliparban használt vezető szálak elektromos jelek továbbítására alkalmasak, és integrálhatók ruházatba és kiegészítőkbe.
- 8N1N: Soros kommunikáció során alkalmazott karakterek formátumát írja le: 8 bit adat, Nincs paritás bit, 1 állapot bit, Nincs flow control
- DTE: Data Terminal Equipment (DTE) egy olyan végberendezés, amely a felhasználói információkat jelekké alakítja át, vagy a fogadott jeleket visszaalakítja felhasználható információvá.
- DCE: Data Communications Equipment (DCE) olyan számítógépes hardvereszközökre utal, amelyeket adatforrás és a célállomás közötti kommunikációs hálózati kapcsolatok létrehozására, fenntartására és lezárására használnak.
- baud: Szimbólumsebesség mértékegysége. A szimbólumsebesség azt adja meg, hogy másodpercenként hány jelváltozás történik az adatátviteli csatornán.
- JTAG: Joint Test Action Group egy szabványos soros interfész, amelyet általában a digitális eszközök fejlesztésében, tesztelésében és karbantartásában használnak.
- MOSI: Master Output, Slave Input: SPI kommunikációs protokoll esetében a Master küldi az adatokat, és a Slave fogadja őket ezen a vonalon keresztül.
- MISO: Master Input, Slave Output: SPI kommunikációs protokoll esetében a Slave küldi az adatokat, és a Master fogadja őket ezen a vonalon keresztül.
- SS: Slave Select: Az SS (Slave Select) jel az SPI kommunikációban azonosítja és aktiválja az adott szolga eszközt, lehetővé téve a mester számára, hogy vele kommunikáljon.

- SDA (serial data): I2C kommunikációs protokoll esetében "Serial Data Line" rövidítése. Ez a vonal a tényleges adatok átvitelére szolgál.
- SCL (serial clock): I2C kommunikációs protokoll esetében a "Serial Clock Line" rövidítése. Ez a vonal szabályozza az adatok cseréjének időzítését az "SDA" vonalon keresztül, segítve a kommunikáló eszközöknek szinkronizálni az adatok küldését és fogadását.
- FIFO: First-In, First-Out adatstruktúra, melyben az elsőként beérkező elemeket tárolja el, és azokat az elsőként veszi ki a struktúrából. Pl: stack
- SCSI: A "Small Computer System Interface" egy olyan interfész szabvány, amely lehetővé teszi a számítógépek és perifériák közötti adatátvitelt.
- NRZI: "Non-Return-to-Zero Inverted" egy digitális jelkódolási technika, azaz egy bit értékét az áramkör az adatjelben hozott változás határozza meg.
- ACK: "Acknowledgment" egy jelzés vagy válasz, amelyet egy fogadó eszköz küld egy küldő eszköznek, hogy megerősítse vagy visszaigazolja, hogy sikeresen fogadta és megértette az átvitt adatokat vagy üzenetet. Használat például: például az Ethernet, a TCP/IP, az USB, vagy a soros kommunikáció során.
- OTG: On the go, Kiegészítő szabvány, kétirányú kommunikáció, hordozhatóság, komptakt csatlakozó.
- BAN: Body Area Network, a testen viselt vezeték nélküli szenzorok hálózata.
- UWB: Alacsony energiafelhasználású, nagy sávszélességű rádiótechnológia, ami pontos helymeghatározást és biztonságos adatátvitelt tesz lehetővé.
- Impulzus-rádió (Impulse Radio): Rövid, nagy sávszélességű jeleket használ adatátvitelre, ideális rövid távú kommunikációhoz.
- Emberi test kommunikáci (Human Body Communication (HBC)): Egy technológia, ami az emberi testet

- használja adatátviteli csatornaként, lehetővé téve az eszközök közötti kommunikációt a test felületén keresztül.
- Intra-testi kommunikáció (Intra-body (In-body) communication) Egy technológia, ami az emberi test belsejében lévő jelátvitelt használja eszközök közötti kommunikációra.
- Rádiófrekvencia (RF): Elektromágneses hullámokat jelöl, amik vezeték nélküli kommunikációra szolgálnak.
- Implantátum-felszín kommunikáció (Implant-to-surface communication): Olyan technológia, ami az emberi testbe ültetett eszközök és a testen kívüli vevők közötti adatátvitelt teszi lehetővé.
- Felszín-felszín kommunikáció (Surface-to-surface communication): Olyan technológia, ami két külső felület közötti adatátvitelt teszi lehetővé.
- Implantátum-implantátum kommunikáció (Implantto-implant communication): Olyan technológia, ami emberi testbe ültetett eszközök közötti adatátvitelt teszi lehetővé.
- Elektrosztatikus csatolás (Electrostatic coupling): Olyan jelenség, ahol elektromos töltések kölcsönhatásba lépnek egymással anélkül, hogy közvetlen érintkezésbe kerülnének.
- Galvanikus csatolás (Galvanic coupling/Waveguide):
 Olyan technika, ahol az elektromos áram közvetlenül két
 pont között áramlik át a testen keresztül. A hullámvezető
 pedig egy szerkezet, ami elektromágneses hullámok irányított továbbítására szolgál.
- PAN: Személyes hálózat, kis hatótávolságú, egyéni eszközök közötti kommunikációira.
- HAN: Háztartási hálózat, otthoni eszközök, például számítógépek, okosotthon-technológiák összekötésére.
- LAN: Helyi hálózat, egy épületen vagy kis területen belüli eszközök közötti hálózat.
- NAN: Városi hálózat, kisebb területű, például egy városrész vagy negyed eszközeinek összekapcsolására.

- MAN: Nagyvárosi hálózat, nagyobb városi vagy több várost összekötő hálózat.
- WAN: Világhálózat, nagy földrajzi területeken, akár globálisan összekapcsolja az eszközöket.
- RAN: Rádióhálózat, rádiófrekvenciákon működő kommunikációs hálózat, mobilhálózatokra is vonatkozhat.
- Chirp impulzus (Chirp pulse): Olyan jel, aminek frekvenciája az idő múlásával folyamatosan változik.
- LTE: Mobiltelefon-hálózati technológia, gyors adatátvitel
- **5G**: Ötödik generációs mobilhálózati technológia, ami nagy sebességű adatátvitelt és alacsony késleltetést biztosít.
- WBAN: Testközeli vezeték nélküli hálózat, eszközök hálózata egyén testén, egészségügyi monitorozásra.
- WSN: Vezeték nélküli érzékelőhálózat, érzékelők és vezérlők hálózata adatgyűjtésre.
- WPAN: Vezeték nélküli személyes hálózat, kis hatótávolságú eszközök közötti hálózat.
- NB: Szűk sávú kommunikáció, energiatakarékos, korlátozott sávszélességű
- UWB: Ultra széles sávú kommunikáció, nagy sávszélességű, gyors adatátvitel és pontos helymeghatározás.
- Nem vezető szál (Non-conductive fiber): Elektromosságot nem vezető anyagból készült szálak.
- Filamentszál (Filament): Folyamatos, hosszú szintetikus vagy természetes anyagból készült szál.
- Fonál (Yarn): Több rövidebb szál összefonásával vagy sodrásával készült hosszabb szál.
- Textilszál (Textile fiber): Textilgyártásban használt alapanyag, lehet természetes vagy mesterséges.