International Rectifier

IRFL024ZPbF

HEXFET® Power MOSFET

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 150°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design area 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) ⑦	5.1	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ⑦	4.1	Α
I _{DM}	Pulsed Drain Current ①	41	
P _D @T _A = 25°C	Power Dissipation ⑦	2.8	
P _D @T _A = 25°C	Power Dissipation ®	1.0	W
	Linear Derating Factor ②	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	13	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	32	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient (PCB mount, steady state) ♡		45	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount, steady state) ®		120	

International **TOR** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55		_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.053		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		46.2	57.5	mΩ	V _{GS} = 10V, I _D = 3.1A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	6.2			S	$V_{DS} = 25V, I_D = 3.1A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 55V, V_{GS} = 0V$
			_	250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V
Q_g	Total Gate Charge		9.1	14		$I_D = 3.1A$
Q_{gs}	Gate-to-Source Charge		1.9		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.9			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		7.8			V _{DD} = 28V
t _r	Rise Time	_	21		ns	$I_{D} = 3.1A$
t _{d(off)}	Turn-Off Delay Time		30			$R_G = 53 \Omega$
t _f	Fall Time		23			V _{GS} = 10V ③
C _{iss}	Input Capacitance		340			V _{GS} = 0V
C _{oss}	Output Capacitance		68			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		39		pF	f = 1.0MHz
C _{oss}	Output Capacitance		210			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		55			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		93			V _{GS} = 0V, V _{DS} = 0V to 44V ⊕

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			5.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current	_		41		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 3.1A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		15	23	ns	$T_J = 25^{\circ}C$, $I_F = 3.1A$, $V_{DD} = 28V$
Q _{rr}	Reverse Recovery Charge		9.8	15	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsion	turn-or	n time is	negligible	e (turn-on is dominated by LS+LD)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 2.8mH $R_G = 25\Omega$, $I_{AS} = 3.1A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- $\ \ \,$ C $_{OSS}$ eff. is a fixed capacitance that gives the same charging time as C $_{OSS}$ while V $_{DS}$ is rising from 0 to 80% V $_{DSS}$.
- $\$ Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑤ This value determined from sample failure population. 100% tested to this value in production.
- ① When mounted on 1 inch square copper board.
- ® When mounted on FR-4 board using minimum recommended footprint.

International TOR Rectifier

IRFL024ZPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = $t_{av} \cdot f$
 - $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T} / \; \text{Z}_{thJC} \\ \text{I}_{av} &= 2 \triangle \text{T} / \; [1.3 \cdot \text{BV} \cdot \text{Z}_{th}] \\ \text{E}_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

SOT-223 (TO-261AA) Package Outline

Dimensions are shown in milimeters (inches)

SOT-223 (TO-261AA) Part Marking Information

HEXFET PRODUCT MARKING

EXAMPLE: THIS IS AN IRFL014

Notes:

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

SOT-223 (TO-261AA) Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

- OUTLINE COMFORMS TO EIA-418-1.
 CONTROLLING DIMENSION: MILLIMETER...
- DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/2010