Emerging Gauge Symmetries and Quantum Operations

I.M. Burbano¹*

Joint work with: A.P. Balachandran² A.F. Reyes-Lega¹ S. Tabban¹

 1 Departamento de Física, Universidad de los Andes, A.A. 4976-12340, Bogotá, Colombia

²Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

February 15, 2019

^{*}Contact: ivanmbur@gmail.com

Motivation

• The original motivation was to study entanglement entropy in systems which are not a tensor product of its subsystems.

Preliminary work: Balachandran, et al. 2013

Motivation

- The original motivation was to study entanglement entropy in systems which are not a tensor product of its subsystems.
- The algebraic approach leads to a satisfactory notion of restriction of states to such subsystems. However, how do we define the entropy of algebraic states?

Preliminary work: Balachandran, et al. 2013

Building Blocks

Physical systems are described by:

- observables a,
- $oldsymbol{2}$ states ω , and
- **3** a pairing $\omega(a)$ which describes the expectation value of a in the state ω .

Building Blocks

Physical systems are described by:

- observables a,
- $oldsymbol{0}$ states ω , and
- **3** a pairing $\omega(a)$ which describes the expectation value of a in the state ω .

In the algebraic formulation (see Strocchi 2008):

- observables are the selfadjoint elements of a von Neumann algebra \mathcal{A} (we will consider $n \times n$ complex matrices),
- ② states are the positive normalized linear functionals $\omega:\mathcal{A}\to\mathbb{C}$ (we will consider faithful states), and
- **3** the expectation value of an observable $a=a^\dagger\in\mathcal{A}$ in the state ω is given by $\omega(a)$

1 Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b\rangle = \omega(a^{\dagger}b)$.

- Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b \rangle = \omega(a^{\dagger}b)$.
- 2 Algebra $\mathcal{F} = \mathfrak{B}(\mathcal{H})$.

- **1** Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b \rangle = \omega(a^{\dagger}b)$.
- 2 Algebra $\mathcal{F} = \mathfrak{B}(\mathcal{H})$.
- **3** Representation $\pi(a)|b\rangle = |ab\rangle$.

- Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b\rangle = \omega(a^{\dagger}b)$.
- ② Algebra $\mathcal{F} = \mathfrak{B}(\mathcal{H})$.
- **3** Representation $\pi(a)|b\rangle = |ab\rangle$.
- lacktriangle Notice that if $|\Omega
 angle=|\mathbb{1}_{\mathcal{A}}
 angle$ then

$$\langle \Omega | \pi(a) | \Omega \rangle = \langle \mathbb{1}_{\mathcal{A}} | \pi(a) | \mathbb{1}_{\mathcal{A}} \rangle = \langle \mathbb{1}_{\mathcal{A}} | a \rangle = \omega(a). \tag{1}$$

- **1** Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b \rangle = \omega(a^{\dagger}b)$.
- 2 Algebra $\mathcal{F} = \mathfrak{B}(\mathcal{H})$.
- **3** Representation $\pi(a)|b\rangle = |ab\rangle$.
- $\textbf{ 0} \ \, \mathsf{Notice that if} \, \, |\Omega\rangle = |\mathbb{1}_{\mathcal{A}}\rangle \, \, \mathsf{then} \, \,$

$$\langle \Omega | \pi(\mathbf{a}) | \Omega \rangle = \langle \mathbb{1}_{\mathcal{A}} | \pi(\mathbf{a}) | \mathbb{1}_{\mathcal{A}} \rangle = \langle \mathbb{1}_{\mathcal{A}} | \mathbf{a} \rangle = \omega(\mathbf{a}). \tag{1}$$

5 A new system **B** emerges whose observable algebra is $\pi(A)'$ the set of all operators in \mathcal{F} which commute with $\pi(A)$.

- **1** Hilbert space $\mathcal{H} = \mathcal{A}$ with $\langle a|b \rangle = \omega(a^{\dagger}b)$.
- ② Algebra $\mathcal{F} = \mathfrak{B}(\mathcal{H})$.
- **3** Representation $\pi(a)|b\rangle = |ab\rangle$.
- $\textbf{ 0} \ \, \mathsf{Notice that if} \, \, |\Omega\rangle = |\mathbb{1}_{\mathcal{A}}\rangle \, \, \mathsf{then} \, \,$

$$\langle \Omega | \pi(\mathbf{a}) | \Omega \rangle = \langle \mathbb{1}_{\mathcal{A}} | \pi(\mathbf{a}) | \mathbb{1}_{\mathcal{A}} \rangle = \langle \mathbb{1}_{\mathcal{A}} | \mathbf{a} \rangle = \omega(\mathbf{a}). \tag{1}$$

- **3** A new system **B** emerges whose observable algebra is $\pi(A)'$ the set of all operators in \mathcal{F} which commute with $\pi(A)$.
- " $\mathbf{A} + \mathbf{B} = \mathbf{C}$ " in the sense that the smallest algebra containing both $\pi(\mathcal{A})$ and $\pi(\mathcal{A})'$ is \mathcal{F} .

Tomita-Takesaki and Gauge Group

Tomita-Takesaki Theory allows us to construct an antiunitary operator J on $\mathcal H$ such that $J\pi(a)J\in\pi(\mathcal A)'$ for all $a\in\mathcal A$. Consider the group $G=U(\mathcal A)$ of unitary elements in $\mathcal A$. We then have an action of G on $\mathcal H$ via $U(g)=J\pi(g)J\in\pi(\mathcal A)'$. G can be interpreted as a gauge group in the sense of (see Doplicher, Haag, and Roberts 1969)

Representation Theory

Consider an orthogonal complete set of projections $P^{(\alpha)} \in \pi(\mathcal{A})'$. Via

$$P_g^{(\alpha)} := U(g)P^{(\alpha)}U(g^{\dagger}) \tag{2}$$

we get a *G*-dependent family of such projections.

Obtaining such sets is equivalent to decomposing the GNS representation into subrepresentations

$$\mathcal{H} = \bigoplus_{\alpha} P_g^{(\alpha)} \mathcal{H}. \tag{3}$$

Quantum Operation

This induces a quantum operation

$$\mathcal{E}_{g}(\rho) = \sum_{\alpha} P_{g}^{(\alpha)} \rho P_{g}^{(\alpha)}, \tag{4}$$

s.t.

$$tr(\rho\pi(a)) = tr(\mathcal{E}_g(\rho)\pi(a))$$
 (5)

for all observables $a \in \mathcal{A}$ in **A**.

- ② If ρ describes ω (i.e. $\rho = |\Omega\rangle\langle\Omega|$) so does $\mathcal{E}_g(\rho)$.

References I

Aiyalam Parameswaran Balachandran, Amilcar Rabelo de Queiroz, and Sachindeo Vaidya. "Entropy of quantum states: Ambiguities". In: European Physical Journal Plus 128.10 (2013). ISSN: 21905444. DOI: 10.1140/epjp/i2013-13112-3.

Aiyalam Parameswaran Balachandran, Thupil R. Govindarajan, et al. "Algebraic Approach to Entanglement and Entropy". In: *Physical Review A* 88.2 (2013), p. 022301. ISSN: 1050-2947. URL: http: //link.aps.org/doi/10.1103/PhysRevA.88.022301.

Aiyalam Parameswaran Balachandran, Thupil R. Govindarajan, et al. "Entanglement and particle identity: A unifying approach". In: *Physical Review Letters* 110.8 (2013). ISSN: 00319007. DOI: 10.1103/PhysRevLett.110.080503.

References II

Aiyalam Parameswaran Balachandran, Amilcar Rabelo de Queiroz, and Sachindeo Vaidya. "Quantum entropic ambiguities: Ethylene". In: *Physical Review D -Particles, Fields, Gravitation and Cosmology* 88.2 (2013). ISSN: 15507998. DOI: 10.1103/PhysRevD.88.025001.

Franco Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: A Short Course for Mathematicians. 2nd Editio. Singapore: World Scientific, 2008. ISBN: 981-283-522-9.

Sergio Doplicher, Rudolf Haag, and John E. Roberts. "Fields, Observables and Gauge Transformations I". In: Communications in Mathematical Physics 15.3 (1969), pp. 173–200. ISSN: 00103616. DOI: 10.1007/BF01645267.

References III

Thanks!

