

P-ţa Victoriei nr. 2 RO 300006 · Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 2-ALGEBRA BOOLEANĂ ȘI LOGICA DIGITALĂ -2021-

Aplicație: Să se realizeze descrierea prin tabel de adevăr și apoi să se găsească forma echivalentă mai simplă pentru funcțiile logice care calculează suma, respectiv transportul (carry) pentru un rang arbitrar din cadrul adunării a două șiruri binare.

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns
Inverter	x	F = x'	2	1
Driver	x	F = x	4	2
AND	х- у-	F = xy	6	2.4
OR	x—————————————————————————————————————	F = x + y	6	2.4
NAND	x- y- 	F = (xy)'	4	1.4
NOR	x y y	F = (x + y)'	4	1.4
XOR		$F = x \oplus y$	14	4.2
XNOR			12	3.2

Aplicație: Să se realizeze descrierea prin tabel de adevăr și apoi să se găsească o formă echivalentă mai simplă pentru funcțiile logice care calculează suma, respectiv transportul (carry) pentru un rang arbitrar din cadrul adunării a două șiruri binare.

$$x_{n-1}...x_{i}$$
 $x_{i-1}...x_{0}+(c_{0}=0)$
 $y_{n-1}...y_{i}$ $y_{i-1}...y_{0}$
 $x_{n-1}...x_{n}$ $x_{i-1}...x_{n}$

Realizarea tabelului de adevăr: s_i, c_i

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	хi	yi	ci	si	C _{i+1}
	0	0	0	0	0
	0	0	1	1	-0
_	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

$$\begin{array}{ll}
s_{i} = (x_{i}'y_{i}'c) + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i} \\
= (x_{i}'y_{i} + x_{i}y_{i}')c_{i}' + (x_{i}'y_{i}' + x_{i}y_{i})c_{i} \\
= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \odot y_{i})c_{i} \\
= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \oplus y_{i})'c_{i} \\
= (x_{i} \oplus y_{i}) \oplus c_{i}
\end{array}$$

хi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i}$$

$$= (x_{i}'y_{i} + x_{i}y_{i}')c_{i}' + (x_{i}'y_{i}' + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \odot y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \oplus y_{i})'c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i}' + x_{i}y_{i}c_{i}$$

$$= (x_{i}'y_{i} + x_{i}y_{i}')c_{i}' + (x_{i}'y_{i}' + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \odot y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \oplus y_{i})'c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s_{i} = x_{i}'y_{i}'c_{i} + x_{i}'y_{i}c_{i}' + x_{i}y_{i}'c_{i} + x_{i}y_{i}c_{i}$$

$$= (x_{i}'y_{i} + x_{i}y_{i}')c_{i}' + (x_{i}'y_{i}' + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \odot y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})c_{i}' + (x_{i} \oplus y_{i})'c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$c_{i+1} = x_{i}y_{i}c_{i}' + x_{i}y_{i}c_{i} + x_{i}'y_{i}c_{i} + x_{i}y_{i}'c_{i}$$

$$= x_{i}y_{i}(c_{i}' + c_{i}) + c_{i}(x_{i}'y_{i} + x_{i}y_{i}')$$

$$= x_{i}y_{i} + c_{i}(x_{i} \oplus y_{i})$$

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$c_{i+1} = x_{i}y_{i}c_{i}' + x_{i}y_{i}c_{i} + x_{i}'y_{i}c_{i} + x_{i}y_{i}'c_{i}$$

$$= x_{i}y_{i}(c_{i}' + c_{i}) + c_{i}(x_{i}'y_{i} + x_{i}y_{i}')$$

$$= x_{i}y_{i} + e_{i}(x_{i} \oplus y_{i})$$

Echivalența expresiilor

хi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1 /
1	1	0	0	1
1	1	1	1	1

$$c_{i+1} = (x_{i}y_{i}c_{i}' + x_{i}y_{i}c_{i} + x_{i}'y_{i}c_{i} + x_{i}y_{i}'c_{i}$$

$$= (x_{i}y_{i}(c_{i}' + c_{i}) + c_{i}(x_{i}'y_{i} + x_{i}y_{i}')$$

$$= (x_{i}y_{i}(c_{i}' + c_{i}) + c_{i}(x_{i}'y_{i} + x_{i}y_{i}')$$

$$= (x_{i}y_{i} + c_{i}(x_{i} \oplus y_{i})$$

Echivalența expresiilor

xi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$c_{i+1} = x_{i}y_{i}c_{i}' + x_{i}y_{i}c_{i} + x_{i}y_{i}c_{i} + x_{i}y_{i}'c_{i}$$

$$= x_{i}y_{i}(c_{i}' + c_{i}) + c_{i}(x_{i}'y_{i} + x_{i}y_{i}')$$

$$= x_{i}y_{i} + c_{i}(x_{i} \oplus y_{i})$$

Schema bloc și ecuațiile logice echivalente:

хi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

