Системы линейных алгебраических уравнений

Прямые методы

Метод вращений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$|A| \neq 0$$

$$a_{11} \neq 0$$

$$c_1 = \frac{a_{11}}{\sqrt{{a_{11}}^2 + {a_{21}}^2}}$$
 и $s_1 = \frac{a_{21}}{\sqrt{{a_{11}}^2 + {a_{21}}^2}}$

$$c_1^2 + s_1^2 = 1$$

$$a_{1j}^{(1)} = c_1 a_{1j} + s_1 a_{2j},$$

$$a_{1j}^{(1)} = c_1 a_{1j} + s_1 a_{2j}, b_1^{(1)} = c_1 b_1 + s_1 b_2, j = 1, 2, \dots, n$$

$$a_{2j}^{(1)} = -s_1 a_{1j} + c_1 a_{2j},$$

$$a_{2j}^{(1)} = -s_1 a_{1j} + c_1 a_{2j}, \qquad b_2^{(1)} = -s_1 b_1 + c_1 b_2, \qquad j = 2, 3, \dots, n$$

Метод вращений: второй шаг

$$\begin{cases} a_{11}{}^{(1)}x_1 + a_{12}{}^{(1)}x_2 + \cdots + a_{1n}{}^{(1)}x_n = b_1{}^{(1)} \\ a_{22}{}^{(1)}x_2 + \cdots + a_{2n}{}^{(1)}x_n = b_2{}^{(1)} \\ a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = b_3 \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \\ c_2 = \frac{a_{11}{}^{(1)}}{\sqrt{(a_{11}{}^{(1)})^2 + a_{31}{}^2}} \quad \text{if } s_2 = \frac{a_{31}}{\sqrt{(a_{11}{}^{(1)})^2 + a_{31}{}^2}} \\ a_{1j}{}^{(2)} = c_2a_{1j}{}^{(1)} + s_2a_{3j}, \qquad b_1{}^{(2)} = c_2b_1{}^{(1)} + s_2b_3, \qquad j = 1, 2, \cdots, n. \end{cases}$$

$$a_{3j}{}^{(2)} = -s_2a_{1j}{}^{(2)} + c_2a_{3j}, \qquad b_3{}^{(2)} = -s_2b_1{}^{(2)} + c_2b_3, \qquad j = 2, 3, \cdots, n.$$

$$\left(a_{11}{}^{(2)}x_1 + a_{12}{}^{(2)}x_2 + \cdots + a_{1n}{}^{(2)}x_n = b_1{}^{(2)}\right)$$

$$\begin{cases} a_{11}{}^{(2)}x_1 + a_{12}{}^{(2)}x_2 + \dots + a_{1n}{}^{(2)}x_n = b_1{}^{(2)} \\ a_{22}{}^{(1)}x_2 + \dots + a_{2n}{}^{(1)}x_n = b_2{}^{(1)} \\ a_{32}{}^{(2)}x_2 + \dots + a_{3n}{}^{(2)}x_n = b_3{}^{(2)} \\ a_{41}x_1 + a_{42}x_2 + \dots + a_{4n}x_n = b_4 \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
 Лекция 1

Метод вращений: обратный ход

$$\begin{cases} a_{11}^{(n-1)}x_1 + a_{12}^{(n-1)}x_2 + \dots + a_{1n}^{(n-1)}x_n = b_1^{(n-1)} \\ a_{22}^{(1)}x_2 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ a_{32}^{(1)}x_2 + \dots + a_{3n}^{(1)}x_n = b_3^{(1)} \\ \dots & \dots & \dots \\ a_{n2}^{(1)}x_2 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)} \\ & \qquad \qquad \left(a_{11}^{(n-1)}x_1 + a_{12}^{(n-1)}x_2 + \dots + a_{1n}^{(n-1)} \right) \end{cases}$$

$$\begin{cases} a_{11}^{(n-1)}x_1 + a_{12}^{(n-1)}x_2 + \dots + a_{1n}^{(n-1)}x_n = b_1^{(n-1)} \\ a_{22}^{(n-1)}x_2 + \dots + a_{2n}^{(n-1)}x_n = b_2^{(n-1)} \\ a_{33}^{(n-1)}x_3 + \dots + a_{3n}^{(n-1)}x_n = b_3^{(n-1)} \\ \dots & \dots & \dots \\ a_{nn}^{(n-1)}x_n = b_n^{(n-1)} \end{cases}$$

$$\begin{cases} x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}} \\ x_{n-1} = \frac{b_{n-1}^{(n-1)} - a_{n-1} n^{(n-1)} x_n}{a_{n-1n-1}^{(n-1)}} \\ x_1 = \frac{b_1^{(n-1)} - a_{1n}^{(n-1)} x_n - \dots - a_{12}^{(n-1)} x_2}{a_{11}^{(n-1)}} \end{cases}$$

Характеристика метода

- Прямой метод. Применяется для решения СЛАУ с плотно заполненных квадратных матриц.
- Преобразует матрицу коэффициентов к верхнему треугольному виду с произвольной диагональю.
- Не требует перестановок строк для выбора главного элемента.
- Метод не допускает роста элементов матрицы.
- Сокращает погрешность вычислений путем нормирования элементов матрицы.
- Процедура позволяет построить обратную матрицу и вычислить определитель матрицы.
- Неактуальна проверка определителя матрицы коэффициентов для определения единственности решения СЛАУ.
- Вычислительные затраты оцениваются как $\frac{4}{3}$ n^3 операций.

Пример

}	$2x_1 - 3x_2 - 4x_3 - x_4 = 15$
	$3x_1 + 2x_2 + x_3 - 5x_4 = -12$
	$-6x_1 + 3x_2 - 5x_3 + 2x_4 = 10$
	$7x_1 + 5x_2 - 4x_3 + 2x_4 = 18$

	X ₁	X ₂	X ₃	X ₄	В	E1	E2	E3	E4	С	S
×	2	-3	-4	-1	15	1	0	0	0	0,5547	0,8321
Прямой	3	2	1	-5	-12	0	1	0	0		,
ход	-6	3	-5	2	10	0	0	1	0		
Шаг 1	7	5	-4	2	18	0	0	0	1		
	3,6056	0,0000	-1,3868	-4,7150	-1,6641	0,5547	0,8321	0	0	0,5151	-0,8571
Шаг 2	0	3,6056	3,8829	-1,9415	-19,1372	-0,8321	0,5547	0	0		
шат 2	-6	3	-5	2	10	0	0	1	0		
	7	5	-4	2	18	0	0	0	1		
	7,0000	-2,5714	3,5714	-4,1429	-9,4286	0,2857	0,4286	-0,8571	0	0,7071	0,7071
Шаг 3	0	3,6056	3,8829	-1,9415	-19,1372	-0,8321	0,5547	0	0		
шагэ	0	1,5452	-3,7640	-3,0112	3,7244	0,4755	0,7132	0,5151	0		
	7	5	-4	2	18	0	0	0	1		
	9,8995	1,7173	-0,3030	-1,5152	6,0609	0,2020	0,3030	-0,6061	0,7071		
Шаг 4	0	3,6056	3,8829	-1,9415	-19,1372	-0,8321	0,5547	0	0	0,9191	0,3939
шаг 4	0	1,5452	-3,7640	-3,0112	3,7244	0,4755	0,7132	0,5151	0		
	0	5,3538	-5,3538	4,3437	19,3949	-0,2020	-0,3030	0,6061	0,7071		
	9,8995	1,7173	-0,3030	-1,5152	6,0609	0,2020	0,3030	-0,6061	0,7071		
Шаг 5	0	3,9227	2,0862	-2,9707	-16,1227	-0,5775	0,7908	0,2029	0	0,5910	0,8066
шагэ	0	0	-4,9892	-2,00298	10,9618	0,7648	0,4370	0,4734	0		
	0	5,3538	-5,3538	4,3437	19,3949	-0,2020	-0,3030	0,6061	0,7071		
	9,8995	1,7173	-0,3030	-1,5152	6,0609	0,2020	0,3030	-0,6061	0,7071		
Шаг б	0	6,6371	-3,0856	1,7481	6,1159	-0,5043	0,2229	0,6088	0,5704		
шаго	0	0	-4,9892	-2,0030	10,9618	0,7648	0,4370	0,4734	0	-0,7172	-0,6968
	0	0	-4,8471	4,9635	24,4684	0,3464	-0,8170	0,1945	0,4179		
	9,8995	1,7173	-0,3030	-1,5152	6,0609	0,2020	0,3030	-0,6061	0,7071		
Шаг 7	0	6,6371	-3,0856	1,7481	6,1159	-0,5043	0,2229	0,6088	0,5704		
шаг/	0	0	6,9561	-2,0220	-24,9123	-0,7899	0,2558	-0,4751	-0,2912		
	0	0	0	-4,9558	-9,9116	0,2844	0,8905	0,1904	-0,2998		
	1					0,0287	-0,0102	-0,0808	0,0698	det	-2265
Обратный		-1				-0,1214	0,0737	0,0649	0,0587		
ход			-3			-0,1302	-0,0155	-0,0795	-0,0243		
				2		-0,0574	-0,1797	-0,0384	0,0605		

Лекция 1 6

LU-разложение

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \qquad |A| \neq 0$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{12} & 1 & 0 & \cdots & 0 \\ l_{13} & l_{32} & 1 & \cdots & 0 \\ l_{1n} & l_{n2} & l_{n2} & \cdots & 1 \end{bmatrix} \quad U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

$$Ax = b$$
 $LUx = b$ $Ly = b$ $Ux = y$

LU-разложение

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{12} & 1 & 0 & \cdots & 0 \\ l_{13} & l_{32} & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ l_{1n} & l_{n2} & l_{n2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2n} \\ 0 & 0 & u_{33} & \cdots & u_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & u_{nn} \end{pmatrix}$$

$$a_{11} = u_{11}$$
 $a_{12} = u_{12}$... $a_{1n} = u_{1n}$
 $a_{21} = l_{21}u_{11}$ $a_{22} = l_{21}u_{12} + u_{22}$... $a_{2n} = l_{21}u_{1n} + u_{2n}$
 $a_{31} = l_{31}u_{11}$ $a_{32} = l_{31}u_{12} + l_{32}u_{22}$... $a_{3n} = l_{31}u_{1n} + l_{32}u_{2n} + u_{3n}$
... $a_{n1} = l_{n1}u_{11}$ $a_{n2} = l_{n1}u_{12} + l_{n2}u_{22}$... $a_{nn} = l_{n1}u_{1n} + l_{n2}u_{2n} + \cdots + u_{nn}$

Характеристики метода

- Применяется для решения СЛАУ, вычисления обратной матрицы и определителя.
- Прямой метод. Применяется для плотно заполненных квадратных матриц.
- Представляет матрицу коэффициентов в виде двух треугольных матриц.
- Метод работает в пределах одной матрицы, моделируя раздельную обработку данных для каждой треугольной матрицы.
- Вычислительные затраты оцениваются как ${
 m n}^3$ операций.
- Метод позволяет построить несложный алгоритм вычислений.
- Неактуальна проверка определителя матрицы коэффициентов для определения единственности решения СЛАУ.

Пример

$2x_1 - 3x_2 - 4x_3 - x_4 = 15$
1 2 3 1
$3x_1 + 2x_2 + x_3 - 5x_4 = -12$
$-6x_1 + 3x_2 - 5x_3 + 2x_4 = 10$
$7x_1 + 5x_2 - 4x_3 + 2x_4 = 18$

X ₁	X ₂	X ₃	X ₄	В	E1	E2	E3	E4	det
2	-3	-4	-1	15	1	0	0	0	
3	2	1	-5	-12	0	1	0	0	
-6	3	-5	2	10	0	0	1	0	
7	5	-4	2	18	0	0	0	1	
Шаг 1									
2	-3	-4	-1	15	1	0	0	0	
1,5	6,5	7	-3,5	-34,5	-1,5	1	0	0	
-3	-6	-17	-1	55	3	0	1	0	
3,5	15,5	10	5,5	-34,5	-3,5	0	0	1	
Шаг 2									
2	-3	-4	-1	15	1	0	0	0	
1,5	6,5	7	-3,5	-34,5	-1,5	1	0	0	
-3	-0,92308	-10,5385	-4,23077	23,15385	1,615385	0,923077	1	0	
3,5	2,384615	-6,69231	13,84615	47,76923	0,076923	-2,38462	0	1	
Шаг 3				Y					
2	-3	-4	-1	15	1	0	0	0	
1,5	6,5	7	-3,5	-34,5	-1,5	1	0	0	
-3	-0,92308	-10,5385	-4,23077	23,15385	1,615385	0,923077	1	0	
3,5	2,384615	0,635036	16,53285	33,06569	-0,94891	-2,9708	-0,63504	1	-2265
Решение					Обратная матрица				
1					0,028698	-0,01015	-0,08079	0,069757	
	-1				-0,12141	0,073731	0,064901	0,05872	
		-3			-0,13024	-0,01545	-0,07947	-0,02428	
			2		-0,0574	-0,17969	-0,03841	0,060486	

Лекция 1 10