Devoir Vacances

Lundi 25/10/2021

Correction 1.

1.
$$D_f = \mathbb{R}^*, f'(x) = (2x+1)e^{-\frac{1}{x}}$$

$$2. \ \sqrt{\frac{n!}{2}} \ (\neq \frac{(\sqrt{n})!}{\sqrt{2}})$$

3.
$$\frac{(n+3)(n+4)}{2} - 1$$

4.
$$u_n = -\frac{1}{2^n} + 2$$

5.
$$S = \{(-2,5)\}$$

Mardi 26/10/2021

Correction 2.

1.
$$D_f = \mathbb{R}, f'(x) = \frac{e^x + 2x}{e^x + x^2}$$

2.
$$\frac{1}{2} \left(\left(\frac{3}{2} \right)^n - 1 - \frac{1}{2^n} \right)$$

3.
$$S = \{(-2,3,2)\}$$

5.
$$u_n = 2^n \cos\left(\frac{n\pi}{3}\right)$$

Mercredi 27/10/2021

Correction 3.

1.
$$D_f = \mathbb{R}, f'(x) = (\cos(x) - x\sin(x))e^{x\cos(x)}$$

2. Soit $S_n = \sum_{i=0}^n (2x)^{2i}$, (Remarque : $(S_n)_{n \in \mathbb{N}}$ est quasiment sous la forme d'une somme d'une suite géométrique. On utilise $a^{nm} = (a^n)^m$)

$$S_n = \sum_{i=0}^n ((2x)^2)^i = \sum_{i=0}^n (4x^2)^i$$

On applique ensuite la formule du cours : Si $x^2 \neq \frac{1}{4}$:

$$S_n = \frac{1 - (4x^2)^{n+1}}{1 - 4x^2}$$

Et donc :
$$S_n = \frac{1-(4x^2)^{n+1}}{1-4x^2} = \frac{1-4^{n+1}x^{2n+2}}{1-4x^2}$$
 si $x^2 \neq \frac{1}{4}$ $S_n = n+1$ si $x^2 = \frac{1}{4}$

3. Soit $v_n = u_n - \ell$ avec $\ell \in \mathbb{R}$. On cherche ℓ afin que $(v_n)_{n \in \mathbb{N}}$ soit géométrique.

$$v_{n+1} = u_{n+1} - \ell$$

$$= 2u_n + 1 - \ell$$

$$= 2(v_n + \ell) + 1 - \ell$$

$$= 2v_n + \ell + 1$$

Ainsi, en prenant $\ell=-1$, on obtient $v_n=u_n+1$ qui est une suite géométrique de raison 2. Donc $v_n=v_02^n$ et $v_0=u_0+1=2$. On obtient donc $v_n=2^{n+1}$. En revenant à u_n cela donne :

$$u_n = v_n - 1 = 2^{n+1} - 1$$

- 4. 0
- 5. $S = \{\sqrt{2}, -\sqrt{2}\}$

Jeudi 28/10/2021

Correction 4.

- 1. $D_f = \mathbb{R}, f'(x) = \frac{6\sin^2(2x)\cos(2x)(2+\cos(5x)-5\sin^3(2x)\sin(5x))}{(2+\cos(5x))^2}$
- 2. On étudie $D(x) = e^x (x+1)$, définie sur \mathbb{R} et $D'(x) = e^x 1$. $D'(x) \ge 0 \iff x \ge 0$. Le minimum de D est obtenu en 0 et vaut $e^0 (0+1) = 0$ donc $D(x) \ge 0$ pour tout $x \in \mathbb{R}$. Donc $e^x \ge x + 1$
- 3. Soit $S_n = \sum_{k=2}^{n} (k^2 + 1)$

$$S_n = \sum_{k=2}^n k^2 + \sum_{k=2}^n 1 \quad \text{lin\'earit\'e}$$

$$= \sum_{k=1}^n k^2 - 1^2 + (n-1) \quad \text{n-1 nombre entre 2 et n}$$

$$= \frac{n(n+1)(2n+1)}{6} - 1 + n - 1 \quad formule ducours$$

$$S_n = \frac{n(n+1)(2n+1)}{6} + n - 2$$

- 4. $S = \{(0,0,1)\}$
- 51 def somme harmonique(n):
- $_{2}$ S=0
- for k in range (1, n+1):
- S=S+1/k
- 5 return(S)

Vendredi 29/10/2021

Correction 5.

1.

$$f(x) = \left(\frac{\sqrt{x^2 + 3x}}{3^x}\right)^4$$

Rappelons que $3^x = exp(x \ln(3))$ est définie sur \mathbb{R} et strictectement positif.

Donc f est définie pour tout x vérifiant $x^2 + 3x \ge 0$ c'est à dire $x(x+3) \ge 0$ soit $D_f =]-\infty, -3] \cup [0, +\infty[$. Et f est dérivable sur $]-\infty, -3[\cup]0, +\infty[$.

On simplifie f en utilisant la puissance 4 : on a

$$f(x) = \frac{(x^2 + 3x)^2}{3^{4x}}.$$

Maintenant on utilise la formule de la dérivée d'un quotient $f(x) = \frac{u(x)}{v(x)}$ avec $u(x) = (x^2 + 3x)^2$ et $v(x) = 3^{4x} = \exp(4x \ln(3))$.

Calculons les dérivées de ces deux fonctions :

$$u'(x) = 2(2x+3)(x^2+3x)$$

et

$$v'(x) = 4\ln(3)\exp(4x\ln(3)) = 4\ln(3)3^{4x}$$

On obtient alors:

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$
$$= \frac{2(2x+3)(x^2+3x)3^{4x} - (x^2+3x)^2 4\log(3)3^{4x}}{3^{8x}}$$

- 2. 0
- 3. $u_n = 1$
- 4. 0

51 from random import randint

- 2 def lancer_de_de():
- de=randint(1,6)
- 4 return (de)

Samedi 30/10/2021

Correction 6.

- 1. On étudie $D(X) = \ln(1+X) X$ sur \mathbb{R}_+ . $D(X) \leq 0 \iff \ln(1+X) \leq X \iff 1+X \leq e^X$ qui est vrai pour tout $X \in \mathbb{R}$ d'aprés l'ex 4. Donc $\ln(1+X) \leq X$ pour tout $X \geq 0$. Pour tout $x \in \mathbb{R}$, $x^2 \geq 0$ donc $D(x^2) \leq 0$ c'est-à-dire $\ln(1+x^2) \leq x^2$
- 2. $D_f = [1, +\infty[$ et dérivable sur $]1, +\infty[$.

$$f'(x) = \frac{1 + \sqrt{x^2 - 1}}{x^2 - 1 + x\sqrt{x^2 - 1}}$$

- 3. 1
- 4. $S = \{(2-y, y-1) \mid y \in \mathbb{R}\} = \{(x, 2-x, -1) \mid x \in \mathbb{R}\}\$
- 51 from math import *
- $_2$ def solution(x,y,z):
- $_{3}$ L = (pi**2)*x +1.4*y +z
- L $2 = \log(2) * x + 1.7 * y + (2 * * 4) * z$
- if $L_1 == 120$ and $L_2 == 0$:
- 6 return (True)
- 7 else:
- s return (False)

def solutio

Dimanche 31/10/2021

REPOS!

Lundi 01/11/2021

Correction 7.

- 1. $D_f =]1, +\infty[, f'(x) = \frac{1}{x \ln(x)}]$
- 2. $f(x) = x^x = e^{x \ln(x)} D_f =]0, +\infty[f'(x) = (1 + \ln(x))e^x x \ln(x), f'(x) \ge 0 \iff x \in]e^{-1}, +\infty[$

x	0		e^{-1}		$+\infty$
f'(x)		_	0	+	
f(x)	1		$\frac{1}{e^e}$		$+\infty$

- 3. $u_n = \exp(\ln(2)(2^n 1)) = 2^{2^n 1}$
- 4. $S = \{(-1, 1, 0)\}$
- $5. \frac{1}{2}$

Mardi 02/11/2021

Correction 8.

1.
$$D_f =]-2, -\frac{2}{3}[\cup]\frac{2}{3}, +\infty[$$

$$f'(x) = \frac{-4 - 18x}{\sqrt{9x^2 - 4}(x+2)}$$

2.
$$\sum_{k=0}^{n-1} q^k = \frac{1-q^n}{1-q}$$
 pour $q \neq 1$.

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} = \sum_{k=0}^{n-1} \left(e^{\frac{i\pi}{n}} \right)^k$$

$$= \frac{1 - e^{\frac{i\pi}{n}}}{1 - e^{\frac{i\pi}{n}}}$$

$$= \frac{1 - e^{i\pi}}{1 - e^{\frac{i\pi}{n}}}$$

$$= \frac{2}{1 - e^{\frac{i\pi}{n}}}$$

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} = \frac{2}{1 - e^{\frac{i\pi}{n}}}$$

$$\prod_{k=0}^{n} e^{\frac{ik\pi}{n}} = e^{\sum_{k=0}^{n} \frac{ik\pi}{n}}$$
$$= e^{i\pi \frac{n(n+1)}{2n}}$$
$$= e^{i\pi \frac{n+1}{2}}$$

3.
$$\frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + n \right)$$

- 41 from random import randint
- 2 def somme_des_lancers(n):
- S=0
- for i in range(n):
- S=S+randin(1,6)
- 6 return(S)
- 5. Notons (E) l'équation $\sqrt{x+1} \le x$.

L'ensemble de définition de l'équation est $D = [-1, +\infty[$. Afin de mettre au carré on distingue les deux cas :

— Cas $1: x \ge 0$.

Alors $(E) \iff x+1 \le x^2 \iff x^2-x-1 \ge 0$ On factorise x^2-x-1 à l'aide des racines $r_1 = \frac{1-\sqrt{5}}{2}$ et $r_1 = \frac{1+\sqrt{5}}{2}$, on obtient

$$(E) \iff (x - r_1)(x - r_2) \ge 0$$

Donc $x \in]-\infty, r_1] \cup [r_2, +\infty[$, or on est dans le cas $x \geq 0$ on a donc

$$\boxed{\text{cas } 1 \ x \in \left[\frac{1+\sqrt{5}}{2}, +\infty\right[}$$

— Cas 2: x < 0.

Comme pour tout $x \in D$, $\sqrt{x+1} \ge 0$, l'équation (E) n'est jamais vérifiée.

Au final les solutions de (E) sont

$$\mathcal{S} = \left[\frac{1+\sqrt{5}}{2}, +\infty\right[$$

Mercredi 03/11/2021

Correction 9.

1. Soit P(n): " $\prod_{k=1}^{n} k! = \prod_{k=1}^{n} k^{n+1-k}$ "

(Initialisation) P(1): " $\prod_{k=1}^{1} k! = \prod_{k=1}^{1} k^{1+1-k}$ "

$$\prod_{k=1}^{1} k! = 1! = 1$$

 et

$$\prod_{k=1}^{1} k^{1+1-k} = 1^{2-1} = 1$$

P(1) est vraie.

Hérédité.

On suppose qu'il existe n tel que P(n) soit vraie et montrons P(n+1)

$$\prod_{k=1}^{n+1} k! = (n+1)! \prod_{k=1}^{n} k!$$

Par hypothèse de récurrence on a

$$\prod_{k=1}^{n+1} k! = (n+1)! \prod_{k=1}^{n} k^{n+1-k}$$

$$= \prod_{k=1}^{n+1} k \prod_{k=1}^{n} k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k \prod_{k=1}^{n} k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k \times k^{n+1-k}$$

$$= (n+1) \prod_{k=1}^{n} k^{n+2-k}$$

Or $(n+1) = (n+1)^1 = (n+1)^{n+2-(n+1)}$. Donc $(n+1) \prod_{k=1}^n k^{n+2-k} = \prod_{k=1}^{n+1} k^{n+2-k}$ Et finalement

$$\prod_{k=1}^{n+1} k! = \prod_{k=1}^{n+1} k^{n+2-k}$$

ainsi, P(n+1) est vraie.

Conclusion:

Par principe de récurrence P(n) est vraie pour tout $n \ge 0$.

2.
$$D_f = \mathbb{R}^*, f'(x) = \pi (e^{2x} - 1)^{\pi - 1}$$

 $3. \ u_n = 2^n$

4.
$$S = \{(-1, 1, 0)\}$$

 $\begin{array}{lll} 5_1 \ from \ math \ import \ sqrt \\ 2 \ def \ double_somme(n): \\ 3 \ S=0 \\ 4 \ for \ j \ in \ range(1,n+1): \\ 5 \ for \ k \ in \ range(1,n+1): \\ 6 \ S=S+sqrt(j)/k \end{array}$

Jeudi 04/11/2021

Correction 10.

return(S)

1.
$$D_f = \mathbb{R}_+^*$$

$$f'(x) = \left(1 - \frac{1}{x}\right) \exp\left(\frac{1}{x}\right)$$

$$2. D_f = \mathbb{R}^2$$

$$f'(x) = \frac{-e^{\frac{-x^2}{2}}}{\sqrt{e^{\frac{-x^2}{2}+1}}}$$

3. Si
$$\lambda = \frac{1}{2}$$
,

$$S = \emptyset$$
.

Si
$$\lambda \neq \frac{1}{2}$$
,

$$\mathcal{S} = \left\{ \left(\frac{-1}{2\lambda - 1}, \frac{\lambda}{2\lambda - 1} \right) \right\}$$

 $4. +\infty$

51 def minimum(a,b):

- 4 else:
- 5 return (b)

Vendredi 05/11/2021

Correction 11.

- 1. $D_f =]-\infty, 0[f'(x) = \frac{1}{x}$ (ce n'est pas une erreur de signe)
- 2. $D_f = \mathbb{R} \setminus \{-1, 0, 1\}$

$$f'(x) = \frac{2\exp(x)\ln(x^2) - 2\exp(x)\frac{2}{x}}{(\ln(x^2))^2}$$

 $3_1 \text{ def double_somme2(n):}$

$$S=0$$

for i in range
$$(1, n+1)$$
:

for j in range
$$(1, n+1)$$
:

$$i\,f\ i\!<\! j:$$

$$S=S+i$$

$$S=S+j$$
 return S

4.
$$S = \left[\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right] \cup [1, +\infty[$$

5.

$$u_n \le \frac{1}{n!} (n! + \sum_{k=0}^{n-1} k!)$$

$$\forall k \in [1, n-1] \ k! \le (n-1)!$$

$$u_n \le 1 + \frac{1}{n!} (\sum_{k=0}^{n-1} (n-1)!)$$

$$\le 1 + \frac{1}{n!} (n(n-1)!)$$

$$\le 1 + 1$$

$$\le 2$$

Limite de $(u_n)_{n\in\mathbb{N}}$

$$u_n = \frac{1}{n!} \left(n! + (n-1)! + \sum_{k=0}^{n-2} k! \right)$$
$$= 1 + \frac{1}{n} + \frac{1}{n!} \sum_{k=0}^{n-2} k!$$

Or

$$\frac{1}{n!} \sum_{k=0}^{n-2} k! \le \frac{1}{n!} \sum_{k=0}^{n-2} (n-2)! = \frac{1}{n!} (n-1)! \le \frac{1}{n}$$

Donc

$$1 \le u_n \le 1 + \frac{2}{n}$$

Le théorème des gendarmes implique que $(u_n)_{n\in\mathbb{N}}$ converge vers 1.

Samedi 06/11/2021

Correction 12.

1.
$$D_f = \mathbb{R} \setminus \left\{ k\pi, \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

$$f'(x) = \frac{-1 - \tan^2(x)}{\tan^2(x)} = \frac{-1}{\tan^2(x)} - 1 = \frac{-1}{\sin^2(x)}$$

2.
$$D_f = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

$$f'(x) = -\tan(x)$$

3.
$$\frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6} + \left(\frac{n(n+1)}{2}\right)^2$$

4.
$$\frac{1}{4}$$

```
51 def    partie_entiere{x}:
2     if x>0:
3         n=0
4         while n<=x:
5         n=n+1
6         return(n)
7     else:
8         n=0
9         while n>x:
10         n=n-1
11         return(n)
```

Dimanche 07/11/2021

Correction 13.

1.
$$D_f = \mathbb{R} f'(x) = 2x(1 + \exp(x))^3 + 3x^2 \exp(x)(1 + \exp(x))^2$$

2. e

3.
$$u_n = (1+3n)\frac{1}{2^n}$$

4. Si
$$\lambda = 0$$

$$\mathcal{S}=\emptyset$$

Si
$$\lambda \neq 0$$

$$\mathcal{S} = \left\{ \left(\frac{1-\lambda}{\lambda^2}, \frac{-1}{\lambda} \right) \right\}$$

5.
$$S = \left[\frac{\ln(2)}{2}, +\infty\right[$$