

# Sistem Deteksi Dini Kantuk pada Pengemudi untuk Kondisi *Pre-Driving* dengan Menggunakan *Artificial Intelligence*

#### PROPOSAL PENELITIAN PADA UJIAN KUALIFIKASI

<u>TIA HARYANTI</u> 99223140

PROGRAM DOKTOR TEKNOLOGI INFORMASI UNIVERSITAS GUNADARMA JUNI 2024

# **DAFTAR ISI**

|         |        | Hal                               | laman |
|---------|--------|-----------------------------------|-------|
| HALAM   | AN JU  | DUL                               | i     |
| DAFTAR  | R ISI  |                                   | ii    |
| DAFTAR  | R TABI | EL                                | iv    |
| DAFTAR  | R GAM  | IBAR                              | v     |
| BAB I   | PEN    | DAHULUAN                          |       |
|         | 1.1    | Latar Belakang                    | 1     |
|         | 1.2    | Rumusan Masalah                   | 6     |
|         | 1.3    | Batasan Masalah                   | 7     |
|         | 1.4    | Tujuan Penelitian                 | 7     |
|         | 1.5    | Kontribusi dan Manfaat Penelitian | 8     |
| BAB II  | TIN.   | JAUAN PUSTAKA                     |       |
|         | 2.1    | Tinjauan 1                        | 9     |
|         | 2.2    | Tinjauan 2                        | 11    |
|         | 2.3    | Tinjauan 3                        | 12    |
|         | 2.4.   | Tinjauan 4                        | 14    |
|         | 2.5    | Tinjauan 5                        | 15    |
|         | 2.6    | Tinjauan 6                        | 16    |
|         | 2.7    | Tinjauan 7                        | 18    |
|         | 2.8    | Tinjauan 8                        | 19    |
|         | 2.9    | Tinjauan 9                        | 21    |
|         | 2.10   | Tinjauan 10                       | 22    |
|         | 2.11   | Tinjauan 11                       | 23    |
|         | 2.12   | Tinjauan 12                       | 25    |
|         | 2.13   | Tinjauan 13                       | 26    |
|         | 2.14   | Tinjauan 14                       | 28    |
|         | 2.15   | Perbandingan Tinjauan             | 29    |
| BAB III | MET    | TODOLOGI PENELITIAN               |       |
|         | 3.1    | Kerangka Umum                     | 41    |

|             |       | На                             | laman |
|-------------|-------|--------------------------------|-------|
| 3.2         | Tahap | an Penelitian                  | 42    |
| 3.3.        | Pemil | ihan dan Persiapan Dataset     | 43    |
|             | 3.3.1 | Pengumpulan Data               | 43    |
|             | 3.3.2 | Pre-Processing Data            | 44    |
| 3.4.        | Pemb  | uatan Model                    | 45    |
|             | 3.4.1 | Ekstraksi Fitur                | 46    |
|             | 3.4.2 | Penggabungan Fitur             | 47    |
|             | 3.4.3 | Pemisahan Dataset              | 48    |
|             | 3.4.4 | Desain Arsitektur              | 48    |
|             | 3.4.5 | Pelatihan Model dengan Dataset | 49    |
| 3.5         | Evalu | asi                            | 49    |
| 3.6         | Imple | mentasi                        | 49    |
| 3.7         | Renca | na Kegiatan                    | 50    |
| BIBILIOGRAI | FI    |                                |       |

## **DAFTAR TABEL**

|           | Ha                                     | alaman |
|-----------|----------------------------------------|--------|
| Tabel 2.1 | Tabel Perbandingan Tinjauan Penelitian | 31     |
| Tabel 3.1 | Tabel Rencana Kegiatan                 | 51     |

## **DAFTAR GAMBAR**

|            | Hal                 | laman |
|------------|---------------------|-------|
| Gambar 3.1 | Blok Diagram        | 42    |
| Gambar 3.2 | Tahapan Penelitian  | 43    |
| Gambar 3.3 | Pengumpulan Data    | 44    |
| Gambar 3.4 | Pre-Processing Data | 45    |
| Gambar 3.5 | Arsitektur Model    | 49    |

#### BAB 1 PENDAHULUAN

#### 1.1 Latar Belakang

Transformasi digital pada saat ini membawa kemajuan yang pesat pada berbagai bidang industri dan penelitian. Teknologi informasi meliputi penggunaan komputer, perangkat lunak, maupun jaringan dalam menyimpan, memproses, serta mengirimkan informasi dalam berbagai bentuk. Perkembangan teknologi pada bidang ini menciptakan inovasi dan otomatisasi proses yang berkelanjutan serta memungkinkan pengolahan data besar sehingga terciptanya efisiensi. Salah satu ilmu pada bidang Teknologi Informasi yang paling signifikan yaitu kecerdasan artifisial (*Artificial Intelligence*). *Artificial Intelligence* merupakan sistem komputer yang mampu melakukan tugas-tugas yang biasanya membutuhkan kecerdasan manusia. Teknologi ini dapat membuat keputusan dengan cara menganalisis dan menggunakan data yang tersedia di dalam sistem (Lubis, 2021). Proses yang terjadi dalam *Artificial Intelligence* mencakup *learning, reasoning*, dan *self-correction*. Proses ini mirip dengan manusia yang melakukan analisis sebelum memberikan keputusan pengenalan pola, dan pengambilan keputusan dengan aplikasi yang luas mulai dari perawatan kesehatan hingga otomotif.

Integrasi bidang teknologi informasi dengan ilmu ergonomi yang merupakan studi tentang efisiensi dan optimalisasi kesejahteraan manusia dalam lingkungan kerja dapat menciptakan solusi secara teknologis serta mendukung kesejahteraan dan produktivitas manusia. Pengembangan alat dan sistem yang dapat mempelajari dan menyesuaikan diri dengan kebutuhan pengguna, memfasilitasi desain antarmuka yang lebih intuitif, dan membantu dalam analisis ergonomis untuk identifikasi risiko kesehatan dan keselamatan. Kecerdasan buatan dapat digunakan untuk menganalisis postur kerja, mendeteksi kelelahan, dan bahkan merekomendasikan perubahan untuk mengurangi risiko cedera atau meningkatkan kinerja.

Salah satu tantangan signifikan dalam keselamatan berkendara adalah mengatasi masalah kelelahan dan kantuk pada pengemudi sebelum mereka

memulai berkendara. Kantuk telah diidentifikasi sebagai faktor utama dalam banyak kecelakaan lalu lintas. Kecelakaan lalu lintas akibat kelelahan pengemudi merupakan masalah serius yang mengancam keselamatan di jalan raya di seluruh dunia. Kecelakaan lalu lintas menyebabkan kematian 1,19 juta orang setiap tahunnya (World Health Organization, 2023). Selain menyebabkan kematian atau cedera, kecelakaan lalu lintas juga menimbulkan kerugian ekonomi yang timbul dari biaya pengobatan dan hilangnya produktivitas bagi mereka yang meninggal atau cacat akibat cedera tersebut. Kelelahan pengemudi dapat mengurangi kewaspadaan, memperlambat reaksi, dan meningkatkan risiko terjadinya kecelakaan lalu lintas. Dalam beberapa kasus, kelelahan pengemudi dapat menyebabkan kecelakaan yang mengakibatkan cedera serius atau bahkan kematian. Banyak orang mengemudi dan berkendara dalam keadaan mengantuk sehingga mengakibatkan mengemudi tidak terkendali dan menyebabkan kecelakaan lalu lintas dan kemungkinan meninggal dunia. Data Badan Pusat Statistik mencatat pada tahun 2022 bahwa kecelakaan di Indonesia berjumlah 139.258 kasus dengan korban meninggal dunia tercatat 28.131 korban jiwa, luka berat 13.364 orang, dengan korban luka ringan yaitu 160.449 orang, serta tercatat kerugian materi yaitu Rp 280.009.000 (BPS, 2022).

Terdapat beberapa faktor penyebab kecelakaan lalu lintas, termasuk diantaranya yaitu kondisi jalan raya, cuaca, performa mobil, serta terjadi karena pengemudi itu sendiri. Setiap orang meninggal dalam kecelakaan lalu lintas di jalan raya karena rasa kantuk dari pengemudi. Perilaku tersebut berhubungan dengan kelelahan yang dialami oleh pengemudi. Mengemudi dalam keadaan lelah dan mengantuk merupakan salah satu penyebab utama kecelakaan lalu lintas di seluruh dunia. Data menunjukkan bahwa sebagian besar kecelakaan lalu lintas disebabkan oleh faktor manusia, seperti kelelahan pengemudi (Cui, Z., Sun, H.-M., Yin, R.-N., Gao, L., Sun, H.-B., & Jia, R.-S, 2021). Menurut penelitian, sekitar 20-30% kecelakaan lalu lintas terjadi akibat pengemudi yang mengalami kelelahan (Sinha, Aneesh & Gopal, 2021).

Upaya pencegahan untuk mengurangi kecelakaan yang disebabkan oleh faktor pengemudi menjadi perhatian utama dalam penelitian ini, dengan

mengembangkan sistem otomatis yang dapat mendeteksi tanda-tanda kelelahan pada pengemudi sebelum berkendara untuk tujuan meningkatkan keselamatan berkendara. Mengemudi dalam keadaan lelah atau kantuk secara signifikan meningkatkan risiko kecelakaan lalu lintas, sehingga dibuat solusi yang dapat mendeteksi dan mengintervensi sebelum pengemudi memulai perjalanan.

Keselamatan dalam berkendara adalah isu penting yang terus menjadi perhatian di Indonesia. Menurut Undang-Undang Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan, setiap pengemudi wajib mengemudikan kendaraan bermotor dengan penuh konsentrasi dan tidak di bawah pengaruh alkohol atau zat lain yang dapat mengganggu kemampuan mengemudi (Pasal 106 Ayat 1 dan 3). Hal ini penting untuk mengurangi risiko kecelakaan yang sering terjadi akibat kelalaian atau kondisi fisik dan mental pengemudi yang tidak optimal (Wikisumber bahasa Indonesia, 2009).

Selain itu, Peraturan Pemerintah Nomor 55 Tahun 2012 tentang Kendaraan mengatur bahwa pengemudi harus memenuhi persyaratan kesehatan jasmani dan rohani, serta lulus uji kesehatan secara berkala (Pasal 52). Kondisi fisik yang prima, seperti tidak mengantuk atau kelelahan, sangat ditekankan untuk memastikan bahwa pengemudi dapat bereaksi cepat dan tepat dalam berbagai situasi di jalan (Database Peraturan JDIH BPK, 1993). Peraturan Pemerintah dan undang-undang yang ada bertujuan untuk memastikan bahwa setiap pengemudi berada dalam kondisi yang layak sebelum memulai perjalanan, guna mengurangi risiko kecelakaan dan meningkatkan keselamatan di jalan raya.

Deteksi kantuk biasanya bergantung pada penilaian subjektif seperti *self-reporting* atau pengamatan perilaku oleh pihak ketiga. Hal ini menyebabkan tidak praktis atau kurang akurat untuk pencegahan kecelakaan sebelum berkendara. Pendekatan *pre-driving* dalam deteksi kantuk bertujuan untuk menilai kesiapan dan keadaan pengemudi dalam kondisi optimal untuk mengemudi. Kebutuhan akan solusi otomatis yang dapat mendeteksi tanda-tanda awal kantuk dengan akurant menjadi sangat penting untuk meningkatkan keselamatan di jalan. Deteksi dini kantuk pada pengemudi sebelum berkendara atau *pre-driving* menjadi penting untuk mencegah terjadinya potensi kecelakaan.

Beberapa tahun terakhir, kemajuan dalam bidang *computer vision* dan *deep learning* telah membuka peluang baru dalam deteksi kelelahan pengemudi. Sistem yang menggunakan kamera kendaraan dan teknik *deep learning* dapat mengenali ekspresi wajah, gerakan mata, dan tanda-tanda fisik lainnya yang mengindikasikan kelelahan pengemudi. Teknologi ini memiliki potensi untuk memberikan peringatan dini kepada pengemudi, mengurangi risiko kecelakaan, dan meningkatkan keselamatan di jalan raya. Deteksi wajah merupakan salah satu teknologi yang sekarang ini banyak dikembangkan seiring berkembangnya teknologi komputer. Berkembangnya teknologi deteksi wajah, penelitian mengenai *eyes detection* juga ikut berkembang pesat. Beberapa teknologi yang menggunakan deteksi mata yaitu digunakan untuk deteksi kedipan mata (W. Zhang, B. Cheng, and Y. Lin, 2012).

Meskipun perkembangan pada bidang ini signifikan, namun masih ada beberapa tantangan yang perlu diatasi. Tingkat akurasi deteksi maupun respons waktu sistem, masih menjadi fokus penelitian. Oleh karena itu, penelitian ini akan membahas dan mengembangkan metode dalam mendeteksi kelelahan pengemudi dengan memanfaatkan *Artificial Intelligence* yang digunakan untuk menganalisis data visual dan fisiologi pengemudi sebelum berkendara. Analisis berupa ekspresi wajah, pola pernapasan atau detak jantung, serta tingkat oksigen dalam darah dapat menunjukan tingkat kesiapan atau kelelahan pengemudi.

Penelitian ini akan membahas dan mengembangkan metode dalam mendeteksi kelelahan pengemudi dengan memanfaatkan kecerdasan artifisial melalui metode CNN yang digunakan untuk menganalisis data visual dan fisiologi pengemudi sebelum berkendara. Penggunaan CNN dalam sistem *pre-driving* memungkinkan analisis otomatis terhadap fitur visual yang terkait dengan kelelahan, seperti ekspresi wajah dan gerakan mata pengemudi. Penelitian dengan menggabungkan data visual dan fisiologis dapat menghasilkan tingkat akurasi yang tinggi.

Penelitian pengembangan teknologi pada kecerdasan artifisial menggunakan metode *deep learning* merupakan interaksi manusia dengan komputer sebagai proses aplikasi sistem yang efektif (L. Zahara, P. Musa, E. Prasetyo Wibowo, I.

Karim, and S. Bahri Musa, 2020). Penggunaan metode *deep learning* seperti *Convolutional Neural Networks* (CNN) banyak digunakan pada penelitian karena memiliki tingkat akurasi yang tinggi. Model CNN sangat efektif dalam melakukan tugas untuk mengklasifikasi gambar, karena metode ini secara otomatis dapat mempelajari serta mengekstrak fitur yang relevan dari input data (S. Ahlawat & A. Choudhary, 2019). Hal ini berhasil digunakan dalam sistem deteksi kelelahan pengemudi dengan tingkat akurasi tinggi dalam mendeteksi pola gerakan wajah dan mata (Hasan, Shafri, & Habshi, 2019). Dengan mempelajari dan mengenali polapola tertentu yang menunjukkan kelelahan, sistem dapat memberikan peringatan dini kepada pengemudi, sehingga pengemudi dapat mengambil tindakan pencegahan sebelum memulai berkendara, seperti beristirahat atau menunda perjalanan.

Terdapat penelitian mengenai penggabungan CNN dengan *Long-Short Term Memory* (LSTM). CNN digunakan dalam ekstraksi fitur visual dari gambar wajah pengemudi. LSTM digunakan untuk menganalisis data sekuensial dalam memahami pola perilaku pengemudi (JM Guo, H Markoni, 2019). Selain CNN, terdapat model *Support Vector Machines* (SVM) yang merupakan algoritma dari *machine learning* memiliki tingkat klasifikasi gambar yang kuat dan dapat digunakan untuk data linier maupun non-linier. SVM dapat dikombinasikan dengan CNN untuk meningkatkan akurasi klasifikasi yang tinggi termasuk dalam pengenalan tulisan tangan (S. Ahlawat & A. Choudhary, 2019), klasifikasi gambar hiperspektral (Hasan et al., 2019), dan pengenalan gulma di bidang pertanian (Tao & Wei, 2022).

Kinerja dari model SVM dan CNN dilakukan perbandingan dalam mengklasifikasi citra hiperspektral dan menghasilkan bahwa metode SVM memiliki kemampuan generalisasi yang kuat dan memberikan hasil identifikasi dengan akurasi terbaik (Hasan et al., 2019). Penelitian lain mengenai pendeteksi gulma di ladang lobak pada musim dingin menunjukkan bahwa pengklasifikasian hibrida CNN-SVM memiliki kinerja lebih baik dibandingkan model lain dan mencapai tingkat akurasi klasifikasi dengan rata-rata sebesar 92,7% (Tao & Wei, 2022). CNN dapat digunakan untuk menganalisis gambar wajah pengemudi,

mengidentifikasi tanda-tanda visual kelelahan atau kantuk. LSTM memanfaatkan data sekuensial seperti pola pernafasan atau detak jantung yang direkam sepanjang waktu serta tingkat oksigen dalam darah dengan tujuan untuk memahami keadaan fisiologis pengemudi yang mengidentifikasi tanda-tanda kantuk atau lelah. SVM digunakan sebagai langkah klasifikasi akhir untuk menentukan apakah pengemudi teridentifikasi kantuk atau tidak berdasarkan fitur yang diekstraksi oleh CNN dan LSTM.

Sehingga pada penelitian ini menggunakan kombinasi dari model CNN, LSTM, dan SVM bertujuan untuk memanfaatkan kekuatan dari masing-masing model. CNN efektif dalam mengekstraksi fitur visual dari gambar wajah pengemudi, LSTM mengolah data sekuensial untuk mengidentifikasi pola kantuk berdasarkan data fisiologis, dan SVM mengklasifikasikan status kantuk dengan menggunakan fitur yang diekstraksi oleh kedua model tersebut. Pendekatan ini diharapkan mengatasi keterbatasan sistem deteksi kantuk pada pengemudi sebelum berkendara dengan meningkatkan akurasi dan keandalan sistem. Integrasi teknologi sistem pre-driving bertujuan untuk menyediakan solusi yang proaktif daripada reaktif, mengidentifikasi risiko sebelum terjadi kecelakaan, dan memfasilitasi intervensi tepat waktu. Melalui pendekatan berbasis kecerdasan artifisial dengan CNN, sistem tidak hanya meningkatkan keselamatan individu dan pengemudi lain di jalan, tetapi juga berkontribusi pada upaya yang lebih luas dalam mencegah kecelakaan lalu lintas akibat kelelahan dan kantuk, mendukung kesejahteraan pengemudi, dan meningkatkan keselamatan jalan raya secara keseluruhan. Sistem ini diharapkan dapat meningkatkan keselamatan lalu lintas dengan mengurangi insiden yang disebabkan oleh kelelahan pengemudi, sekaligus meningkatkan kesejahteraan pengemudi melalui deteksi kantuk yang lebih efektif.

#### 1.2 Rumusan Masalah

Berdasarkan uraian latar belakang penelitian yang telah diuraikan di atas, maka dapat diidentifikasi beberapa masalah yang ingin dipecahkan untuk mencapai tujuan penelitian. Berikut merupakan rumusan masalah dari penelitian ini.

- 1. Bagaimana membangun dataset baru berdasarkan data citra wajah dan data fisiologis?
- 2. Apa saja parameter visual dan fisiologis yang digunakan dalam sistem deteksi dini kantuk berbasis kecerdasan artifisial?
- 3. Bagaimana merancang sistem deteksi dini kantuk yang akurat mengidentifikasi tanda-tanda kelelahan pada pengemudi sebelum berkendara?
- 4. Bagaimana implementasi sistem deteksi dini kantuk dalam lingkungan *pre-driving* pengemudi?

#### 1.3 Batasan Masalah

Penelitian ini dibatasi pada beberapa aspek utama untuk memastikan fokus dan efektivitas dalam mencapai tujuannya. Berikut merupakan Batasan masalah penelitian ini.

- 1. Fokus hanya pada deteksi kantuk pada fase *pre-driving*, bukan selama pengemudi sedang berkendara.
- 2. Analisis data terbatas pada data visual yaitu citra gambar dan fisiologis yang dapat dikumpulkan sebelum berkendara.
- 3. Dataset citra gambar diperoleh berdasarkan data primer.
- 4. Data fisiologis seperti variabilitas detak jantung (HRV), detak jantung (HR) dan saturasi oksigen dalam darah (SpO2) yang diperoleh melalui alat *wearable*.
- 5. Implementasi model menggunakan CNN untuk analisis data visual, LSTM untuk analisis temporal data fisiologis, dan SVM untuk klasifikasi.

#### 1.4 Tujuan Penelitian

Tujuan umum penelitian adalah mengembangkan sistem deteksi kantuk *predriving* yang inovatif dengan menggunakan kecerdasan artifisial untuk meningkatkan keselamatan dan kesejahteraan pengemudi.

Tujuan khusus penelitian ini yaitu sebagai berikut:

1. Membangun dataset baru dari data citra wajah dan data fisiologis untuk pelatihan dan pengujian model deteksi kantuk *pre-driving*.

- 2. Mengidentifikasi parameter visual dan fisiologis yang dapat digunakan dalam sistem deteksi dini kantuk berbasis kecerdasan artifisial.
- 3. Merancang sistem deteksi kantuk yang mampu mengidentifikasi tanda-tanda kelelahan pengemudi dalam kondisi *pre-driving* menggunakan CNN dalam menganalisis data visual berupa citra wajah, LSTM untuk analisis data sekuensial, dan SVM untuk klasifikasi efektif.
- 4. Mengimplementasikan sistem deteksi kantuk ke dalam lingkungan *pre-driving* pengemudi dengan efisien dan memastikan kompatibilitas serta kemudahan penggunaan.

#### 1.5 Kontribusi dan Manfaat Penelitian

Penelitian ini memiliki kontribusi sebagai berikut:

- 1. Memberikan pendekatan baru dalam deteksi kantuk melalui integrasi teknologi AI yang canggih, khususnya untuk fase *pre-driving*.
- 2. Memberikan wawasan baru dalam penerapan teknik pembelajaran mesin untuk deteksi kantuk *pre-driving* dengan menggabungkan data visual dan fisiologis.
- 3. Memperluas literatur tentang aplikasi kecerdasan artifisial dalam keselamatan pengemudi sebelum mengemudi.
- 4. Menyajikan analisis komparatif terhadap efektivitas sistem deteksi kantuk pengemudi pada kondisi *pre-driving*.

Manfaat dari hasil penelitian ini yaitu:

- 1. Meningkatkan keselamatan pengemudi dengan mengurangi risiko kecelakaan akibat kantuk melalui deteksi dini.
- 2. Memberikan dasar untuk pengembangan sistem peringatan dini yang dapat diintegrasikan ke dalam kendaraan untuk mencegah kantuk pengemudi.
- 3. Berkontribusi pada penelitian di bidang kecerdasan artifisial dan pembelajaran mesin dengan mengaplikasikan beberapa model dalam masalah dunia nyata.
- 4. Memberikan dasar untuk penelitian lebih lanjut dalam pengembangan sistem keselamatan pengemudi berbasis kecerdasan artifisial.

# **BAB II**

# TINJAUAN PUSTAKA

## 2.1 Tinjauan 1

| A Fatigue Driving Detection Algorithm Based on Facial Multi-Feature Fusion |             |      |  |
|----------------------------------------------------------------------------|-------------|------|--|
| Kening Li, Yunbo Gong,                                                     | IEEE Access | 2020 |  |
| dan Ziliang Ren                                                            |             |      |  |

| _          | T                                                                      |  |
|------------|------------------------------------------------------------------------|--|
| Latar      | Penelitian ini dilatarbelakangi oleh meningkatnya jumlah               |  |
| belakang   | kecelakaan lalu lintas yang disebabkan oleh kelelahan pengemudi.       |  |
|            | Kelelahan mengemudi adalah salah satu penyebab utama                   |  |
|            | kecelakaan lalu lintas, yang mencakup antara 14%-20% dari              |  |
|            | semua kecelakaan, dengan angka yang lebih tinggi pada                  |  |
|            | kecelakaan lalu lintas berat dan kecelakaan di jalan raya. Oleh        |  |
|            | karena itu, deteksi kelelahan pengemudi secara <i>real-time</i> sangat |  |
|            | penting untuk meningkatkan keselamatan berkendara.                     |  |
| Tujuan     | Penelitian ini bertujuan untuk mengembangkan algoritma deteksi         |  |
|            | kelelahan mengemudi berdasarkan fusi multi-fitur wajah yang            |  |
|            | dapat mendeteksi kelelahan dengan akurasi tinggi dan dalam             |  |
|            | waktu nyata. Algoritma ini menggabungkan karakteristik                 |  |
|            | pengemudi dan menggunakan jaringan saraf konvolusi (CNN)               |  |
|            | untuk meningkatkan ketepatan deteksi.                                  |  |
| Pengukuran | Penelitian ini menggunakan pengukuran berbasis behavioral              |  |
|            | dengan parameter utama sebagai berikut:                                |  |
|            | • PERCLOS (Percentage of Eye Closure Over Time): Mengukur              |  |
|            | persentase waktu mata tertutup selama periode waktu tertentu           |  |
|            | untuk menilai tingkat kelelahan pengemudi.                             |  |
|            | • Blink Frequency: Mengukur frekuensi kedipan mata pengemudi           |  |
|            | per menit.                                                             |  |
|            | • Yawn Frequency: Mengukur frekuensi menguap pengemudi per             |  |
|            | menit.                                                                 |  |
| Dataset    | Penelitian ini menggunakan data gambar wajah pengemudi yang            |  |
|            | diambil dari video <i>real-time</i> . Dataset yang digunakan meliputi: |  |
|            | • WIDER FACE Dataset: Dataset ini digunakan untuk melatih              |  |
|            | jaringan YOLOv3-tiny yang ditingkatkan untuk deteksi wajah.            |  |
|            | Dataset ini terdiri dari 32.203 gambar dan 393.703 wajah yang          |  |
|            | ditandai.                                                              |  |
|            | • Driving State Dataset (DSD): Dataset yang dibuat sendiri yang        |  |
|            | berisi data dari 50 pengemudi yang diuji dengan simulator              |  |
|            | mengemudi. Dataset ini mencakup video mengemudi normal dan             |  |
| L          | 1 0                                                                    |  |

|                       | mengemudi yang lelah, serta gambar mata terbuka, mata tertutup, mulut besar, mulut kecil, dan mulut tertutup                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metode                | <ul> <li>YOLOv3-tiny Network: Algoritma deteksi wajah yang ditingkatkan berdasarkan YOLOv3-tiny untuk mendeteksi wajah pengemudi dari latar belakang yang kompleks.</li> <li>Dlib Toolkit: Digunakan untuk mengekstraksi fitur wajah, termasuk vektor fitur mata (EFV) dan vektor fitur mulut (MFV).</li> <li>Support Vector Machine (SVM): Digunakan untuk mengklasifikasikan status mata dan mulut pengemudi berdasarkan EFV dan MFV.</li> <li>Driver Identity Information Library: Basis data yang menyimpan informasi identitas pengemudi, termasuk</li> </ul> |
|                       | <ul> <li>biometrik pengemudi, klasifikator status mata, dan klasifi</li> <li>Penilaian Kelelahan: Membangun model untuk mengevaluasi kelelahan berdasarkan PERCLOS, frekuensi berkedip, dan frekuensi menguap menggunakan penilaian online.kator status mulut.</li> </ul>                                                                                                                                                                                                                                                                                          |
| Hasil                 | Algoritma deteksi kelelahan mengemudi yang diusulkan mencapai tingkat akurasi sebesar 95,10% beroperasi pada kecepatan lebih dari 20 frame per detik dalam aplikasi mengemudi simulasi.                                                                                                                                                                                                                                                                                                                                                                            |
| Kesimpulan            | Penelitian ini berhasil mengembangkan algoritma deteksi kelelahan berbasis fusi multi-fitur wajah yang menggabungkan karakteristik pengemudi untuk meningkatkan akurasi deteksi. Algoritma ini memiliki keunggulan dalam hal kecepatan dan ketepatan, serta dapat digunakan dalam berbagai kondisi pencahayaan dan latar belakang yang kompleks. Penelitian lebih lanjut dapat diarahkan pada peningkatan algoritma untuk kondisi yang lebih bervariasi dan implementasi di perangkat mobile.                                                                      |
| Limitasi              | Limitasi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dan<br>Future<br>Work | <ul> <li>Kinerja algoritma dalam kondisi dunia nyata dengan pencahayaan dan occlusion yang bervariasi perlu ditingkatkan.</li> <li>Perlunya pelatihan awal yang ekstensif untuk setiap pengemudi individu dapat membatasi penerapan praktis.</li> </ul>                                                                                                                                                                                                                                                                                                            |
|                       | <ul> <li>Future Work:</li> <li>Meningkatkan ketahanan sistem deteksi di bawah kondisi lingkungan yang bervariasi.</li> <li>Menyederhanakan proses inisialisasi untuk pengemudi baru agar sistem lebih ramah pengguna dan dapat diterapkan secara luas.</li> </ul>                                                                                                                                                                                                                                                                                                  |

# 2.2 Tinjauan 2

| Fatigue State Detection for Tired Persons in Presence of Driving Periods |             |      |
|--------------------------------------------------------------------------|-------------|------|
| Riad Alharbey, Mohamed M. Dessouky,                                      | IEEE Access | 2022 |
| Ahmed Sedik, Ali L Siam, dan Mohamed                                     |             |      |
| A. Elaskily                                                              |             |      |

| Latar<br>belakang | Meningkatnya kecelakaan lalu lintas memerlukan pengendalian dan pengurangan kesalahan mengemudi, dengan kelelahan pengemudi sebagai salah satu penyebab utama. Algoritma deteksi kelelahan dikembangkan untuk mendeteksi kelelahan dan memperingatkan pengemudi, namun masih terdapat masalah pada akurasi dan waktu deteksi.                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tujuan            | Tujuan dari makalah ini adalah mengembangkan dua pendekatan berbeda untuk deteksi kelelahan: pendekatan berbasis machine learning untuk memproses sinyal EEG dan pendekatan berbasis deep learning untuk memproses streaming video.                                                                                                                                                                                                                                                                                             |
| Pengukuran        | Penelitian ini menggunakan pengukuran berbasis <i>behavioral</i> dan <b>fisiologis.</b> Pengukuran menggunakan sinyal EEG ( <i>Electroencephalogram</i> ) dan analisis video untuk mendeteksi perilaku mengemudi yang menunjukkan tanda-tanda kelelahan.                                                                                                                                                                                                                                                                        |
| Dataset           | <ul> <li>Dataset yang digunakan adalah "<i>ULg Multimodality Drowsiness Database"</i> (<i>DROZY</i>), yang terdiri dari dua bagian:</li> <li>1. Data video streaming dari 14 orang sehat (3 pria dan 11 wanita) yang dikumpulkan menggunakan teknologi Kinect dan sensor video dengan intensitas Near-Infrared (NIR).</li> <li>2. Data polysomnography (PSG) yang mencakup lima saluran EEG, dua saluran EOG (Electrooculogram), saluran EMG (Electromyography), dan saluran ECG (Electrocardiogram).</li> </ul>                |
| Metode            | <ul> <li>Machine Learning Approach: Menggunakan sinyal EEG sebagai input dan memprosesnya melalui berbagai classifier machine learning seperti Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), dan lain-lain.</li> <li>Deep Learning Approach: Menggunakan video streaming sebagai input dan memprosesnya melalui model deep learning seperti Convolutional Neural Network (CNN), Convolutional Long Short-Term Memory (ConvLSTM), dan model hybrid yang menggabungkan CNN dan ConvLSTM.</li> </ul> |
| Hasil             | <ul> <li>Machine Learning Approach: SVM memberikan akurasi tertinggi sebesar 98.01% dengan waktu pengujian kurang dari 0.18 detik.</li> <li>Deep Learning Approach: CNN memberikan akurasi deteksi</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|                   | tertinggi sebesar 99% dengan waktu pengujian 10.61 detik.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Kesimpulan   | Algoritma yang diusulkan berhasil meningkatkan akurasi dan               |
|--------------|--------------------------------------------------------------------------|
|              | kecepatan deteksi kelelahan dibandingkan dengan algoritma lain           |
|              | yang ada. Pendekatan machine learning dan deep learning yang             |
|              | diusulkan memberikan kinerja yang lebih baik dalam mendeteksi            |
|              | status kelelahan pengemudi.                                              |
| Limitasi dan | Limitasi:                                                                |
| Future       | • Kinerja algoritma perlu diuji dalam kondisi berkendara yang            |
| Work         | lebih menantang.                                                         |
|              | Penggabungan dua pendekatan untuk meningkatkan hasil masih               |
|              | dalam tahap investigasi.                                                 |
|              | Future Work:                                                             |
|              | Menguji algoritma pada dataset lain untuk menunjukkan                    |
|              | efisiensi di berbagai kondisi berkendara.                                |
|              | • Integrasi sistem deteksi dengan sistem <i>Internet of Things</i> (IoT) |
|              | melalui komputasi awan.                                                  |
|              | Menyiapkan prototipe untuk algoritma yang diusulkan.                     |

## 2.3 Tinjauan 3

| Driver fatigue detection based on convolutional neural network and face |            |      |  |
|-------------------------------------------------------------------------|------------|------|--|
| alignment for edge computing device                                     |            |      |  |
| Xiaofeng Li, Jiahao Xia, Libo Cao,                                      | Automobile | 2021 |  |
| Guanjun Zhang dan Xiexing Feng Engineering                              |            |      |  |

| Latar      | Dalam dekade terakhir, banyak kecelakaan lalu lintas serius yang       |  |
|------------|------------------------------------------------------------------------|--|
| belakang   | disebabkan oleh kelelahan pengemudi di seluruh dunia. Kelelahan        |  |
|            | pengemudi telah menyebabkan kerugian besar dalam hal personel          |  |
|            | dan properti, yang telah menjadi masalah sosial serius. Deteksi        |  |
|            | kelelahan pengemudi sangat penting untuk meningkatkan                  |  |
|            | keselamatan jalan.                                                     |  |
| Tujuan     | Mengembangkan sistem deteksi kelelahan pengemudi berbasis              |  |
|            | jaringan saraf konvolusi yang dapat berjalan secara real-time pada     |  |
|            | perangkat <i>edge computing</i> . Sistem ini menggunakan deteksi wajah |  |
|            | dan penyelarasan wajah untuk mendeteksi kelelahan dan distraksi        |  |
|            | pengemudi.                                                             |  |
| Pengukuran | Pengukuran yang digunakan meliputi <b>analisis perilaku</b>            |  |
|            | pengemudi melalui fitur wajah seperti:                                 |  |
|            | • EAR (Eye Aspect Ratio): Untuk mendeteksi kondisi mata                |  |
|            | (terbuka atau tertutup).                                               |  |
|            | • MAR ( <i>Mouth Aspect Ratio</i> ): Untuk mendeteksi menguap.         |  |
|            | • Sudut kemiringan kepala: Untuk mendeteksi frekuensi                  |  |
|            | mengangguk                                                             |  |
| Dataset    | AFLW: Dataset untuk pelatihan dan evaluasi deteksi wajah.              |  |

|              | Pointing'04: Dataset untuk evaluasi klasifikasi wajah.                           |
|--------------|----------------------------------------------------------------------------------|
|              | • 300W dan 300W-LP: Dataset untuk pelatihan dan evaluasi                         |
|              | penyelarasan wajah dan estimasi pose kepala.                                     |
|              | Menpo2D: Benchmark untuk lokalisasi landmark wajah 2D                            |
|              | multipose.                                                                       |
|              | YawDD: Dataset untuk deteksi menguap dalam skenario                              |
|              | mengemudi.                                                                       |
|              | DriverEyes: Dataset yang dikumpulkan untuk evaluasi                              |
|              | akurasi deteksi kelelahan berbasis kondisi mata.                                 |
| Metode       | Deteksi Wajah: Menggunakan jaringan deteksi wajah                                |
|              | bernama LittleFace yang dioptimalkan untuk berjalan secara                       |
|              | real-time pada perangkat Nvidia Jetson Nano.                                     |
|              | Penyelarasan Wajah: Menggunakan algoritma SDM                                    |
|              | (Supervised Descent Method) yang dioptimalkan untuk                              |
|              | menyelaraskan wajah dan mendapatkan landmark wajah.                              |
|              | • Analisis Perilaku Pengemudi: Menghitung parameter EAR,                         |
|              | MAR, dan sudut kemiringan kepala dari landmark yang                              |
|              | diperoleh untuk mendeteksi kelelahan pengemudi.                                  |
| Hasil        | Akurasi Deteksi: Jaringan deteksi wajah LittleFace mencapai                      |
|              | mAP sebesar 88.53% pada dataset AFLW dengan kecepatan                            |
|              | 58 FPS pada perangkat edge computing Nvidia Jetson Nano.                         |
|              | Akurasi Penyelarasan Wajah: Algoritma SDM yang                                   |
|              | dioptimalkan mengurangi waktu proses lebih dari setengah                         |
|              | dengan akurasi yang hampir sama.                                                 |
|              | Deteksi Kelelahan: Sistem mencapai akurasi deteksi rata-rata                     |
|              | 89.55% pada dataset YawDD, 300W, dan DriverEyes.                                 |
| Kesimpulan   | Sistem deteksi kelelahan pengemudi yang diusulkan berhasil                       |
|              | meningkatkan akurasi dan efisiensi waktu nyata. Sistem ini                       |
|              | mampu mendeteksi kelelahan dan distraksi pengemudi dengan                        |
|              | analisis fitur wajah yang diperoleh melalui deteksi dan                          |
|              | penyelarasan wajah yang dioptimalkan.                                            |
| Limitasi dan | Limitasi:                                                                        |
| Future       | <ul> <li>Kinerja sistem dapat menurun dalam kondisi pencahayaan buruk</li> </ul> |
| Work         | atau saat pengemudi memakai kacamata hitam.                                      |
|              | Algoritma penyelarasan wajah berbasis pembelajaran mendalam                      |
|              | yang lebih kuat diperlukan untuk meningkatkan ketahanan dan                      |
|              | akurasi dalam kondisi nyata.                                                     |
|              | Future Work:                                                                     |
|              | • Mengembangkan algoritma penyelarasan wajah berbasis                            |
|              | pembelajaran mendalam untuk meningkatkan ketahanan dan                           |
|              | akurasi sistem.                                                                  |
|              | Menguji sistem dalam berbagai kondisi mengemudi yang lebih                       |
|              | menantang dan real-world scenarios.                                              |

## 2.4 Tinjauan 4

| Driver Activity Recognition for Intellig | gent Vehicles: | A Deep Learning |
|------------------------------------------|----------------|-----------------|
| Approach                                 |                |                 |
| Yang Xing, Chen Lv, Member, IEEE,        | IEEE           | 2019            |
| Huaji Wang, dan Dongpu Cao               |                |                 |

| _          | T                                                                          |  |  |
|------------|----------------------------------------------------------------------------|--|--|
| Latar      | Keputusan dan perilaku pengemudi adalah faktor penting yang                |  |  |
| belakang   | dapat mempengaruhi keselamatan berkendara. Memahami                        |  |  |
|            | perilaku pengemudi sangat penting untuk mengurangi kecelakaan              |  |  |
|            | lalu lintas, di mana lebih dari 90% kecelakaan kendaraan ringan di         |  |  |
|            | Amerika Serikat disebabkan oleh kesalahan perilaku pengemudi.              |  |  |
| Tujuan     | Merancang sistem pengenalan aktivitas pengemudi berbasis CNN               |  |  |
| Tajaan     | untuk mengidentifikasi tujuh aktivitas mengemudi umum dan                  |  |  |
|            | menentukan apakah pengemudi terganggu atau tidak.                          |  |  |
| Pengukuran | Pengukuran yang digunakan mendeteksi <b>perilaku pengemudi</b>             |  |  |
| rengukuran |                                                                            |  |  |
|            | dengan tanda-tanda distraksi, yaitu aktivitas:                             |  |  |
|            | Mengemudi normal                                                           |  |  |
|            | Memeriksa cermin kanan                                                     |  |  |
|            | Memeriksa cermin belakang                                                  |  |  |
|            | Memeriksa cermin kiri                                                      |  |  |
|            | Menggunakan perangkat radio dalam kendaraan                                |  |  |
|            | Mengirim pesan teks                                                        |  |  |
|            | Menjawab panggilan telepon                                                 |  |  |
|            | Aktivitas ini diklasifikasikan menjadi kelompok mengemudi                  |  |  |
|            | normal dan distraksi.                                                      |  |  |
| Dataset    | Gambar dikumpulkan menggunakan kamera berbiaya rendah                      |  |  |
|            | dari 10 pengemudi yang terlibat dalam pengumpulan data alami.              |  |  |
|            | Gambar mentah diproses menggunakan model campuran                          |  |  |
|            | Gaussian (GMM) untuk mengekstrak tubuh pengemudi dari latar                |  |  |
|            | belakang sebelum melatih model pengenalan perilaku berbasis                |  |  |
|            | CNN.                                                                       |  |  |
| Metode     | Deteksi dan Segmentasi Gambar: Menggunakan algoritma                       |  |  |
| 1,10,000   | GMM untuk segmentasi gambar.                                               |  |  |
|            | <ul> <li>Transfer Learning: Menerapkan metode transfer learning</li> </ul> |  |  |
|            | untuk menyetel model CNN pra-terlatih (AlexNet,                            |  |  |
|            | <u> </u>                                                                   |  |  |
|            | GoogLeNet, ResNet50) untuk mengenali aktivitas                             |  |  |
| 77 '1      | mengemudi.                                                                 |  |  |
| Hasil      | Akurasi Deteksi Aktivitas: Menggunakan AlexNet, akurasi                    |  |  |
|            | rata-rata untuk tujuh aktivitas adalah 81.6%, GoogLeNet                    |  |  |
|            | 78.6%, dan ResNet50 74.9%.                                                 |  |  |
|            | • Klasifikasi Biner: Untuk mendeteksi distraksi pengemudi,                 |  |  |
|            | akurasi deteksi biner mencapai 91.4% dengan AlexNet, 87.5%                 |  |  |
|            | dengan GoogLeNet, dan 83.0% dengan ResNet50.                               |  |  |

| Kesimpulan   | Pendekatan berbasis CNN yang diusulkan berhasil meningkatkan akurasi deteksi perilaku pengemudi dan dapat diterapkan dalam waktu nyata pada perangkat edge computing. Penggunaan transfer |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|              | learning memungkinkan adaptasi model CNN untuk tugas                                                                                                                                      |  |
|              | pengenalan perilaku pengemudi dengan dataset yang lebih kecil.                                                                                                                            |  |
| Limitasi dan | Limitasi:                                                                                                                                                                                 |  |
| Future       | Kinerja sistem dapat menurun dalam kondisi pencahayaan buruk                                                                                                                              |  |
| Work         | atau saat pengemudi memakai kacamata hitam.                                                                                                                                               |  |
|              | Algoritma penyelarasan wajah berbasis pembelajaran mendalam yang lebih kuat diperlukan untuk meningkatkan ketahanan dan akurasi dalam kondisi nyata.                                      |  |
|              | Future Work:                                                                                                                                                                              |  |
|              | <ul> <li>Mengembangkan algoritma penyelarasan wajah berbasis<br/>pembelajaran mendalam untuk meningkatkan ketahanan dan<br/>akurasi sistem.</li> </ul>                                    |  |
|              | <ul> <li>Menguji sistem dalam berbagai kondisi mengemudi yang lebih<br/>menantang dan real-world scenarios.</li> </ul>                                                                    |  |

# 2.5 Tinjauan 5

| Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN |                               |      |
|------------------------------------------------------------------------------|-------------------------------|------|
| Zuopeng Zhao, Nana Zhou, Lan                                                 | Hindawi Computational         | 2020 |
| Zhang, Hualin Yan, Yi Xu, dan                                                | Intelligence and Neuroscience |      |
| Zhongxin Zhang                                                               |                               |      |

| Latar      | Kelelahan pengemudi merupakan penyebab utama kecelakaan       |
|------------|---------------------------------------------------------------|
| belakang   | lalu lintas yang signifikan di seluruh dunia. Sebuah survei   |
|            | menunjukkan bahwa 16-21% kecelakaan lalu lintas disebabkan    |
|            | oleh kelelahan pengemudi. Oleh karena itu, penelitian tentang |
|            | deteksi kelelahan pengemudi sangat penting untuk mengurangi   |
|            | jumlah kecelakaan dan meningkatkan keselamatan jalan.         |
| Tujuan     | Mengembangkan algoritma deteksi kelelahan pengemudi yang      |
|            | sepenuhnya otomatis menggunakan gambar pengemudi.             |
|            | Algoritma ini memanfaatkan arsitektur Multitask Cascaded      |
|            | Convolutional Network (MTCNN) untuk deteksi wajah dan         |
|            | penentuan titik fitur, serta mengusulkan convolutional neural |
|            | network baru yang disebut EM-CNN untuk mendeteksi kondisi     |
|            | mata dan mulut dari gambar ROI.                               |
| Pengukuran | Pengukuran melibatkan indikator fisiologis dari gambar        |
|            | pengemudi, yaitu:                                             |
|            | • PERCLOS (Percentage of Eyelid Closure): Mengukur            |
|            | persentase waktu penutupan mata selama periode tertentu.      |

|              | • POM (Percentage of Mouth Opening): Mengukur derajat pembukaan mulut.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dataset      | Gambar pengemudi yang digunakan dalam penelitian ini disediakan oleh perusahaan teknologi informasi Biteda. Totalnya ada 4000 gambar dari lingkungan mengemudi nyata, yang dibagi menjadi kategori mata terbuka, mata tertutup, mulut terbuka, dan mulut tertutup.                                                                                                                                                                                                                                                    |
| Metode       | <ul> <li>Deteksi Wajah dan Penentuan Titik Fitur: Menggunakan arsitektur MTCNN untuk mendeteksi kotak pembatas wajah dan lima titik fitur (mata kiri dan kanan, hidung, dan sudut kiri dan kanan mulut).</li> <li>Klasifikasi Kondisi Mata dan Mulut: Menggunakan jaringan EM-CNN untuk mengklasifikasikan kondisi mata dan mulut (terbuka atau tertutup) dari gambar ROI yang diekstraksi.</li> <li>Deteksi Kelelahan: Menggunakan parameter PERCLOS dan POM untuk menentukan status kelelahan pengemudi.</li> </ul> |
| Hasil        | <ul> <li>Akurasi Deteksi EM-CNN: Akurasi sebesar 93.623%, sensitivitas 93.643%, dan spesifisitas 60.882%.</li> <li>EM-CNN mengungguli metode CNN lainnya seperti AlexNet, VGG-16, GoogLeNet, dan ResNet50.</li> </ul>                                                                                                                                                                                                                                                                                                 |
| Kesimpulan   | Penelitian ini berhasil mengembangkan metode deteksi kelelahan pengemudi berbasis kombinasi MTCNN dan EM-CNN yang menunjukkan akurasi tinggi dan ketahanan terhadap lingkungan mengemudi nyata. Ketika nilai PERCLOS mencapai 0.25 dan POM mencapai 0.5, pengemudi dianggap dalam keadaan lelah.                                                                                                                                                                                                                      |
| Limitasi dan | Limitasi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Future       | <ul> <li>Kinerja algoritma dapat terpengaruh oleh perubahan</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Work         | pencahayaan, postur pengemudi, dan kondisi occlusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | Diperlukan pengujian lebih lanjut untuk menilai kinerja dan                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | ketahanan algoritma dalam kondisi nyata  Future Work:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | <ul> <li>Menguji kinerja aktual dan ketahanan metode yang diusulkan di<br/>lingkungan nyata.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | <ul> <li>Implementasi metode pada perangkat keras untuk aplikasi praktis di kendaraan.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     |

### 2.6 Tinjauan 6

| A Hybrid Driver Fatigue and Distraction Detection Model Using AlexNet Based |      |      |
|-----------------------------------------------------------------------------|------|------|
| on Facial Features                                                          |      |      |
| Salma Anber, Wafaa Alsaggaf, dan Wafaa Shalash                              | MDPI | 2022 |

| Latar    | Pengemudi yang mengalami kelelahan dan distraksi merupakan   |
|----------|--------------------------------------------------------------|
| belakang | penyebab utama kecelakaan lalu lintas yang serius di seluruh |

| Tujuan                         | dunia. Kelelahan pengemudi menyebabkan risiko kecelakaan yang signifikan karena pengemudi tidak dapat mempertahankan aktivitas otaknya secara terus menerus. Dengan demikian, deteksi kelelahan dan distraksi pengemudi adalah langkah penting untuk meningkatkan keselamatan jalan dan mengurangi kecelakaan.  Mengembangkan model deteksi kelelahan dan distraksi pengemudi berbasis CNN AlexNet yang memanfaatkan fitur wajah. Penelitian ini menggunakan dua pendekatan berbeda: transfer learning dengan fine-tuning AlexNet dan ekstraksi fitur menggunakan AlexNet yang kemudian diklasifikasikan dengan support vector machine (SVM). |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pengukuran                     | Pengukuran melibatkan indikator perilaku berdasarkan fitur wajah, yaitu:  • Posisi kepala: Untuk mendeteksi apakah kepala pengemudi tetap fokus pada jalan atau mengalami distraksi.  • Gerakan mulut: Untuk mendeteksi apakah pengemudi menguap, berbicara, tertawa, atau diam.                                                                                                                                                                                                                                                                                                                                                              |
| Dataset                        | Dataset yang digunakan adalah <i>NTHU Driver Drowsiness Detection Dataset</i> yang dikumpulkan dari National Tsing Hua University. Dataset mencakup rekaman video dari 36 subjek yang menunjukkan berbagai kondisi mengemudi, termasuk menggunakan dan melepaskan kacamata/sunglasses di siang dan malam hari.                                                                                                                                                                                                                                                                                                                                |
| Metode                         | <ul> <li>Preprocessing dan Augmentasi Data: Ekstraksi frame dari video dan deteksi wajah menggunakan algoritma Viola-Jones.</li> <li>Transfer Learning: Menggunakan model AlexNet yang telah dilatih sebelumnya dan melakukan fine-tuning pada layer terakhir untuk menyesuaikan dengan dataset yang digunakan.</li> <li>Ekstraksi Fitur dan Klasifikasi SVM: Menggunakan AlexNet sebagai ekstraktor fitur, kemudian mengurangi dimensi fitur dengan non-negative matrix factorization (NMF) dan mengklasifikasikan dengan SVM.</li> </ul>                                                                                                    |
| Hasil                          | <ul> <li>Transfer Learning: Model transfer learning dengan AlexNet mencapai akurasi sebesar 95.7%.</li> <li>Ekstraksi Fitur dengan SVM: Model ekstraksi fitur dengan SVM mencapai akurasi sebesar 99.65%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kesimpulan                     | Penelitian ini berhasil mengembangkan model deteksi kelelahan dan distraksi pengemudi dengan akurasi tinggi menggunakan pendekatan hybrid berbasis AlexNet. Pendekatan ini menunjukkan bahwa ekstraksi fitur menggunakan AlexNet dan NMF, diikuti dengan klasifikasi SVM, memberikan hasil yang lebih baik dibandingkan dengan transfer learning langsung.                                                                                                                                                                                                                                                                                    |
| Limitasi dan<br>Future<br>Work | <ul> <li>Limitasi:</li> <li>Kinerja model dapat terpengaruh oleh kondisi pencahayaan dan penggunaan kacamata oleh pengemudi.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

- Model belum diuji pada data mengemudi di kondisi nyata.
   Future Work:
- Menguji model pada dataset kondisi mengemudi nyata.
- Mengembangkan algoritma lebih lanjut untuk meningkatkan keandalan dan akurasi deteksi dalam berbagai kondisi mengemudi.

#### 2.7 Tinjauan 7

An Efficient Approach for Detecting Driver Drowsiness Based on Deep Learning
Phan, A.-C.; Nguyen, N.-H.-Q.; Trieu, T.-N.; Phan, T.-C. An MDPI 2021

| Latar      | Mengantuk saat mengemudi adalah salah satu penyebab umum        |
|------------|-----------------------------------------------------------------|
| belakang   | kecelakaan lalu lintas yang mengakibatkan cedera, bahkan        |
| 8          | kematian, serta kerugian ekonomi yang signifikan bagi           |
|            | pengemudi, pengguna jalan, keluarga, dan masyarakat. Banyak     |
|            | studi telah dilakukan untuk mendeteksi kantuk sebagai sistem    |
|            | peringatan. Namun, sebagian besar studi fokus pada gerakan      |
|            | kelopak mata dan mulut, yang menunjukkan banyak keterbatasan    |
|            | dalam deteksi kantuk.                                           |
| Tujuan     | Untuk mengusulkan dua metode efisien dengan tiga skenario       |
|            | untuk sistem peringatan kantuk. Metode pertama menggunakan      |
|            | landmark wajah untuk mendeteksi kedipan dan menguap             |
|            | berdasarkan ambang batas yang sesuai untuk setiap pengemudi.    |
|            | Metode kedua menggunakan teknik deep learning dengan dua        |
|            | jaringan neural adaptif berbasis MobileNet-V2 dan ResNet-50V2.  |
| Pengukuran | Pengukuran dalam penelitian ini bersifat perilaku, dengan fokus |
|            | pada analisis video untuk mendeteksi aktivitas pengemudi di     |
|            | setiap frame untuk mempelajari semua fitur secara otomatis.     |
| Dataset    | Dataset yang digunakan terdiri dari gambar dan video yang       |
|            | dipantau melalui kamera, yang mencakup berbagai kondisi kantuk  |
|            | dan tidak kantuk. Dataset ini dikumpulkan dari API Pencarian    |
|            | Bing, Kaggle, RMFD, dan iStock.                                 |
| Metode     | 1. Metode 1: Deteksi dan Prediksi Kantuk Berdasarkan            |
|            | Landmark Wajah                                                  |
|            | Langkah 1: Ekstraksi frame video dari video input.              |
|            | • Langkah 2: Deteksi dan identifikasi landmark wajah pada       |
|            | gambar.                                                         |
|            | • Langkah 3: Penentuan ambang batas buka mata yang adaptif      |
|            | untuk setiap pengemudi.                                         |
|            | • Langkah 4: Deteksi dan prediksi kantuk berdasarkan            |
|            | perbandingan EAR dan ambang batas.                              |

|              | 0 M. 1 0 D. 111 1 D. 111 1 T 1 M 1 D.                             |
|--------------|-------------------------------------------------------------------|
|              | 2. Metode 2: Deteksi dan Prediksi Kantuk Menggunakan Deep         |
|              | Learning                                                          |
|              | • Fase 1: Pelatihan                                               |
|              | Ekstraksi gambar dari video input.                                |
|              | <ul> <li>Deteksi wajah dan normalisasi gambar wajah.</li> </ul>   |
|              | Ekstraksi fitur dan pelatihan menggunakan jaringan neural         |
|              | adaptif yang dikembangkan dari MobileNet-V2 dan ResNet-50V2.      |
|              | • Fase 2: Pengujian                                               |
|              | Pengujian model dengan dataset uji untuk mendeteksi kantuk.       |
| Hasil        | Akurasi Deteksi: Metode deep learning dengan skenario 3           |
|              | (ResNet-50V2) mencapai akurasi deteksi sebesar 97%,               |
|              | sedangkan skenario 2 (MobileNet-V2) mencapai 96%.                 |
|              | Waktu Pelatihan: Skenario 3 memiliki waktu pelatihan lebih        |
|              | lama (197 menit) dibandingkan skenario 2 (106 menit).             |
| Kesimpulan   | Metode <i>deep learning</i> yang diusulkan menunjukkan hasil yang |
| •            | lebih baik dalam mendeteksi kantuk dibandingkan dengan metode     |
|              | berbasis landmark wajah. Metode ini lebih efisien dan akurat      |
|              | dalam mendeteksi berbagai tanda kantuk seperti orientasi kepala,  |
|              | menguap, buka mata, berkedip, diameter pupil, dan arah            |
|              | pandangan.                                                        |
| Limitasi dan | Limitasi:                                                         |
| Future       | Kinerja model dapat terpengaruh oleh kondisi pencahayaan          |
| Work         | dan variasi ukuran mata pengemudi.                                |
|              | Model belum diuji dalam kondisi mengemudi nyata.                  |
|              | Future Work:                                                      |
|              | Menguji model dalam kondisi nyata dan berbagai skenario           |
|              | mengemudi.                                                        |
|              | Meningkatkan model untuk bekerja dalam waktu nyata                |
|              | menggunakan analisis data besar.                                  |

# 2.8 Tinjauan 8

| Driver's Fatigue Recognition Using Convolutional Neural Network Approach |          |      |
|--------------------------------------------------------------------------|----------|------|
| Samer Abdullah Deeb Abbas, Sew Sun Tiang, Wei Hong                       | Elsevier | 2023 |
| Lim, Li Sze Chow, Chin Hong Wong                                         |          |      |

| Latar    | Mengemudi dalam kondisi mengantuk adalah masalah serius yang |
|----------|--------------------------------------------------------------|
| belakang | telah menjadi penyebab utama kecelakaan lalu lintas yang     |
|          | menyebabkan cedera parah dan kematian. Berbagai metode telah |
|          | dikembangkan untuk mendeteksi kelelahan pengemudi dan        |
|          | memberikan peringatan. Salah satu metode yang efektif adalah |
|          | menggunakan CNN untuk mendeteksi fitur wajah pengemudi.      |

| Tujuan       | Penelitian ini bertujuan untuk mengembangkan model CNN yang                            |
|--------------|----------------------------------------------------------------------------------------|
| 1 ajaan      | dapat mendeteksi kelelahan pengemudi dengan akurasi tinggi.                            |
|              | Selain itu, model ini diharapkan dapat digunakan dalam industri                        |
|              | untuk mendeteksi kelelahan pengemudi di berbagai kondisi                               |
|              | pencahayaan, terutama saat malam hari.                                                 |
| Pengukuran   | Pengukuran dalam penelitian ini bersifat perilaku, dengan fokus                        |
| religukuran  | pada deteksi fitur wajah seperti rasio aspek mata (EAR - Eye                           |
|              |                                                                                        |
|              | Aspect Ratio) dan rasio aspek mulut (MAR - Mouth Aspect Ratio)                         |
| Datasat      | yang menunjukkan tingkat buka mata dan mulut pengemudi.                                |
| Dataset      | Dataset yang digunakan dalam penelitian ini mencakup gambar                            |
|              | wajah pengemudi yang diambil dari berbagai sumber, termasuk                            |
|              | API Pencarian Bing, Kaggle, RMFD, dan iStock. Gambar ini                               |
|              | mencakup berbagai kondisi pencahayaan dan situasi mengemudi.                           |
| Metode       | Deteksi Landmark Wajah: Menggunakan model MediaPipe                                    |
|              | Face Mesh untuk mendeteksi titik-titik landmark pada wajah.                            |
|              | Perhitungan EAR dan MAR: Menggunakan rumus matematika                                  |
|              | untuk menghitung rasio aspek mata dan mulut berdasarkan                                |
|              | koordinat landmark wajah.                                                              |
|              | Transfer Learning: Menggunakan model CNN yang telah                                    |
|              | dilatih sebelumnya (pre-trained) dan disesuaikan dengan                                |
|              | dataset spesifik kelelahan pengemudi untuk meningkatkan                                |
|              | akurasi.                                                                               |
|              | Peringatan Suara: Sistem memberikan peringatan suara kepada                            |
|              | pengemudi jika mendeteksi kelelahan berdasarkan nilai EAR                              |
|              | dan MAR.                                                                               |
| Hasil        | • Akurasi Deteksi: Model CNN yang diusulkan mencapai akurasi                           |
|              | deteksi hingga 98.3% dalam kondisi pencahayaan yang baik                               |
|              | (>300 lux) dan 91% dalam kondisi pencahayaan rendah (<100                              |
|              | lux).                                                                                  |
|              | • Kecepatan Pengujian: Model ini mampu mendeteksi kelelahan                            |
|              | pengemudi dalam waktu nyata dengan rata-rata frame rate 30                             |
|              | FPS.                                                                                   |
| Kesimpulan   | Model CNN yang dikembangkan menunjukkan akurasi tinggi                                 |
|              | dalam mendeteksi kelelahan pengemudi. Penggunaan transfer                              |
|              | learning dengan model pre-trained seperti MediaPipe Face Mesh                          |
|              | meningkatkan keakuratan deteksi di berbagai kondisi                                    |
|              | pencahayaan.                                                                           |
| Limitasi dan | Limitasi:                                                                              |
| Future       | Kinerja model dapat terpengaruh oleh kondisi pencahayaan                               |
| Work         | dan penggunaan kacamata oleh pengemudi.                                                |
| ., ., .,     | <ul> <li>Model belum diuji pada data mengemudi di kondisi nyata.</li> </ul>            |
|              | Future Work:                                                                           |
|              |                                                                                        |
|              | Menguji model dalam kondisi mengemudi nyata dengan  variasi lingkungan yang lakih luas |
|              | variasi lingkungan yang lebih luas.                                                    |

 Mengembangkan algoritma lebih lanjut untuk meningkatkan keandalan dan akurasi deteksi dalam berbagai kondisi mengemudi.

## 2.9 Tinjauan 9

| Detecting fatigue in car drivers an                                     | d aircraft pilots by using non- | invasive |  |
|-------------------------------------------------------------------------|---------------------------------|----------|--|
| measures: The value of differentiation of sleepiness and mental fatigue |                                 |          |  |
| Xinyun Hu, Gabriel Lodewijks                                            | Elsevier                        | 2020     |  |

| Latar      | Kelelahan adalah salah satu faktor utama yang menyebabkan       |
|------------|-----------------------------------------------------------------|
| belakang   | kecelakaan di jalan raya dan dalam penerbangan. Pengemudi yang  |
|            | lelah memiliki respons yang lebih lambat, kewaspadaan yang      |
|            | berkurang, dan pengambilan keputusan yang buruk. Oleh karena    |
|            | itu, mendeteksi kelelahan secara dini sangat penting untuk      |
|            | meningkatkan keselamatan.                                       |
| Tujuan     | Mengembangkan metode yang efektif dan akurat dalam              |
|            | mendeteksi kelelahan pada pengemudi mobil dan pilot pesawat     |
|            | menggunakan berbagai indikator fisiologis dan perilaku.         |
| Pengukuran | Pengukuran dalam penelitian ini mencakup indikator fisiologis   |
|            | dan perilaku. Indikator fisiologis termasuk variabilitas detak  |
|            | jantung dan aktivitas elektroensefalografi (EEG), sementara     |
|            | indikator perilaku meliputi analisis pola pergerakan kepala dan |
|            | mata.                                                           |
| Dataset    | Dataset yang digunakan dalam penelitian ini dikumpulkan dari    |
|            | percobaan yang melibatkan pengemudi mobil dan pilot pesawat.    |
|            | Data tersebut mencakup rekaman video dari wajah subjek, data    |
|            | EEG, dan data detak jantung selama sesi mengemudi dan           |
|            | penerbangan.                                                    |
| Metode     | Metode yang digunakan dalam penelitian ini melibatkan analisis  |
|            | data video untuk mendeteksi pola pergerakan kepala dan mata,    |
|            | serta analisis sinyal EEG dan variabilitas detak jantung untuk  |
|            | mengidentifikasi tanda-tanda fisiologis kelelahan. Algoritma    |
|            | pembelajaran mesin digunakan untuk mengintegrasikan berbagai    |
| TT '1      | indikator ini dan memberikan prediksi tingkat kelelahan.        |
| Hasil      | Hasil penelitian menunjukkan bahwa metode yang dikembangkan     |
|            | mampu mendeteksi kelelahan dengan tingkat akurasi yang tinggi.  |
|            | Penggunaan kombinasi indikator fisiologis dan perilaku          |
|            | memberikan hasil yang lebih akurat dibandingkan dengan          |
| Vacimpular | menggunakan satu jenis indikator saja.                          |
| Kesimpulan | Penelitian ini berhasil mengembangkan metode yang efektif untuk |
|            | mendeteksi kelelahan pada pengemudi mobil dan pilot pesawat.    |
|            | Metode ini dapat digunakan untuk meningkatkan keselamatan       |

|              | dengan memberikan peringatan dini ketika tanda-tanda kelelahan terdeteksi. |
|--------------|----------------------------------------------------------------------------|
| Limitasi dan | Limitasi dari penelitian ini termasuk keterbatasan dalam                   |
| Future       | generalisasi hasil karena dataset yang digunakan terbatas pada             |
| Work         | kondisi tertentu. Future work akan mencakup pengujian metode               |
|              | ini dalam berbagai kondisi nyata yang lebih beragam serta                  |
|              | integrasi dengan sistem peringatan kelelahan yang dapat                    |
|              | digunakan secara langsung dalam kendaraan dan kokpit pesawat.              |

## **2.10** Tinjauan 10

| Driver Drowsiness Multi-Method Detection for Vehic              | les with A | utonomous |
|-----------------------------------------------------------------|------------|-----------|
| Driving Functions                                               |            |           |
| Horia Beles, Tiberiu Vesselenyi, Alexandru Rus, Tudor MDPI 2024 |            | 2024      |
| Mitran, Florin Bogdan Scurt, and Bogdan Adrian Tolea.           |            |           |

| Latar      | Mengantuk saat mengemudi adalah masalah besar yang dapat       |
|------------|----------------------------------------------------------------|
| belakang   | menyebabkan kecelakaan lalu lintas serius. Menurut studi CDC,  |
|            | sekitar 1 dari 25 pengemudi melaporkan tertidur saat mengemudi |
|            | dalam 30 hari terakhir. Di Eropa, 10-25% kecelakaan jalan raya |
|            | disebabkan oleh kelelahan pengemudi. Deteksi dini kelelahan    |
|            | pengemudi dapat mencegah kecelakaan dan meningkatkan           |
|            | keselamatan jalan.                                             |
| Tujuan     | Mengembangkan algoritma keputusan fuzzy untuk memantau dan     |
|            | memberikan peringatan tentang kelelahan pengemudi berdasarkan  |
|            | analisis sinyal EOG (electrooculography) dan gambar kondisi    |
|            | mata, dengan tujuan mencegah kecelakaan.                       |
| Pengukuran | Pengukuran dalam penelitian ini menggunakan metode fisiologis  |
|            | dan perilaku:                                                  |
|            | • Fisiologis: Analisis sinyal EOG dan EEG untuk mendeteksi     |
|            | aktivitas otak dan gerakan mata.                               |
|            | Perilaku: Analisis gambar wajah dan mata untuk mendeteksi      |
|            | tanda-tanda kantuk seperti kedipan mata, posisi kepala, dan    |
|            | gerakan mulut.                                                 |
| Dataset    | Data sinyal EEG dan EOG yang diperoleh di laboratorium.        |
|            | Gambar wajah pengemudi yang diambil selama sesi mengemudi      |
|            | di jalan raya.                                                 |
| Metode     | 1. Deteksi Kelelahan Berdasarkan Sinyal EOG dan Analisis       |
|            | Gambar Wajah:                                                  |
|            | Menggunakan sinyal EOG untuk melacak gerakan mata.             |
|            | Analisis gambar mata untuk menentukan apakah mata terbuka      |
|            | atau tertutup.                                                 |

|              | 2 Deteloi Velelen Denderenten Anglisis Comben Weigh den        |
|--------------|----------------------------------------------------------------|
|              | 2. Deteksi Kelelahan Berdasarkan Analisis Gambar Wajah dan     |
|              | Algoritma Rasio Aspek Mata (EAR):                              |
|              | Menggunakan gambar wajah sebagai input.                        |
|              | Deteksi dan pengenalan mata melalui algoritma rasio aspek      |
|              | mata.                                                          |
|              | Analisis frekuensi dan distribusi kedipan untuk menentukan     |
|              | status kantuk.                                                 |
| Hasil        | Sistem yang dikembangkan dapat mendeteksi kelelahan            |
|              | dengan akurasi tinggi.                                         |
|              | Metode hybrid yang menggabungkan sinyal EOG dan analisis       |
|              | gambar wajah menunjukkan hasil yang lebih akurat               |
|              | dibandingkan dengan metode tunggal.                            |
| Vasimmulan   |                                                                |
| Kesimpulan   | Penelitian ini berhasil mengembangkan sistem deteksi kelelahan |
|              | pengemudi yang efektif menggunakan kombinasi sinyal fisiologis |
|              | dan analisis perilaku. Metode hybrid yang diusulkan memberikan |
|              | akurasi yang lebih tinggi dalam mendeteksi tanda-tanda kantuk  |
|              | dan dapat digunakan untuk meningkatkan keselamatan             |
|              | berkendara.                                                    |
| Limitasi dan | Limitasi:                                                      |
| Future       | • Kinerja model dapat dipengaruhi oleh kondisi pencahayaan     |
| Work         | yang buruk dan perubahan postur pengemudi.                     |
|              | Sistem ini belum diuji dalam kondisi mengemudi nyata secara    |
|              | luas.                                                          |
|              | Future Work:                                                   |
|              | Menguji sistem dalam kondisi mengemudi nyata yang lebih        |
|              | beragam.                                                       |
|              | Mengembangkan algoritma lebih lanjut untuk meningkatkan        |
|              | keandalan dan akurasi deteksi dalam berbagai kondisi           |
|              |                                                                |
|              | mengemudi.                                                     |

# **2.11** Tinjauan 11

| ECG-Based Driving Fatigue Detection Using Heart Rate Variability Analysis |      |      |
|---------------------------------------------------------------------------|------|------|
| with Mutual Information                                                   |      |      |
| Junartho Halomoan, Kalamullah Ramli, Dodi Sudiana,                        | MDPI | 2023 |
| Teddy Surya Gunawan, and Muhammad Salman                                  |      |      |

| Latar    | Deteksi kelelahan mengemudi sangat penting untuk meningkatkan |
|----------|---------------------------------------------------------------|
| belakang | keselamatan kendaraan. Studi sebelumnya telah mengembangkan   |
|          | kerangka deteksi kelelahan mengemudi berbasis ECG yang        |
|          | menunjukkan akurasi tinggi. Namun, studi tersebut tidak       |
|          | mempertimbangkan status kognitif pengemudi terkait kelelahan  |
|          | dan fitur yang redundan dalam model klasifikasi.              |

| Tuines       | Managardan dan dan datakai kalalahan managarasi dan san                      |
|--------------|------------------------------------------------------------------------------|
| Tujuan       | Mengembangkan kerangka deteksi kelelahan mengemudi dengan                    |
|              | perbaikan pada tahap ekstraksi fitur dan seleksi fitur. Tujuan               |
|              | utamanya adalah meningkatkan kinerja model klasifikasi dengan                |
|              | menggunakan fragmentasi detak jantung untuk mengekstraksi                    |
|              | fitur non-linear dan menggunakan mutual information untuk                    |
|              | menyaring fitur yang redundan.                                               |
| Pengukuran   | Pengukuran yang digunakan adalah pengukuran fisiologis dengan                |
|              | fokus pada analisis variabilitas detak jantung (HRV) dan                     |
|              | fragmentasi detak jantung dari sinyal ECG.                                   |
| Dataset      | Dataset yang digunakan berasal dari studi sebelumnya yang                    |
| Dataset      | melibatkan 11 subjek sehat (10 pria dan 1 wanita) yang melakukan             |
|              |                                                                              |
|              | simulasi mengemudi dalam dua kondisi: waspada dan lelah.                     |
|              | Sinyal ECG direkam menggunakan perangkat BioSemi                             |
|              | ActiveTwo dengan frekuensi pengambilan sampel 512 Hz.                        |
| Metode       | 1. Ekstraksi Fitur:                                                          |
|              | Analisis HRV: Menggunakan metode analisis domain                             |
|              | waktu, domain frekuensi, dan pendekatan non-linear.                          |
|              | Fragmentasi Detak Jantung: Menggunakan metode                                |
|              | yang dikembangkan oleh Costa et al. untuk memantau                           |
|              | status kognitif pengemudi.                                                   |
|              | 2. Seleksi Fitur                                                             |
|              | Menggunakan mutual information untuk memilih fitur yang                      |
|              | relevan dengan target variabel dan menyaring fitur yang                      |
|              | redundan.                                                                    |
|              | 3. Klasifikasi                                                               |
|              | Menggunakan metode ensemble learning seperti Random                          |
|              | Forest, AdaBoost, Bagging, dan Gradient Boosting untuk                       |
|              | mengklasifikasikan dua kondisi kelelahan: waspada dan lelah.                 |
| Hasil        | •                                                                            |
| паѕп         | • Kinerja Model: Model Random Forest dengan 44 fitur terpilih                |
|              | menghasilkan akurasi pengujian terbaik sebesar 95.45%                        |
|              | dengan akurasi validasi silang sebesar 98.65%.                               |
|              | Peningkatan Kinerja: Penambahan fitur fragmentasi detak                      |
|              | jantung meningkatkan akurasi deteksi dibandingkan dengan                     |
|              | studi sebelumnya yang tidak menggunakan fitur ini.                           |
| Kesimpulan   | Studi ini berhasil meningkatkan kinerja model deteksi kelelahan              |
|              | mengemudi dengan memperkenalkan fragmentasi detak jantung                    |
|              | sebagai fitur tambahan dan menggunakan mutual information                    |
|              | untuk seleksi fitur. Metode yang diusulkan menunjukkan akurasi               |
|              | yang lebih tinggi dan kinerja yang lebih baik dibandingkan dengan            |
|              | metode sebelumnya.                                                           |
| Limitasi dan | Limitasi:                                                                    |
| Future       | Kinerja model dapat dipengaruhi oleh kondisi lingkungan dan                  |
| Work         | variasi individu dalam sinyal ECG.                                           |
| , , ork      | l · · · · · · · · · · · · · · · · · · ·                                      |
|              | Studi ini belum diuji dalam kondisi mengemudi nyata yang      Labih banasana |
|              | lebih beragam.                                                               |

| F | uture Work:                                                                 |
|---|-----------------------------------------------------------------------------|
| • | Menguji model dalam kondisi mengemudi nyata dengan variasi yang lebih luas. |
| • | Mengembangkan metode lebih lanjut untuk meningkatkan                        |
|   | keandalan dan akurasi deteksi dalam berbagai kondisi                        |
|   | mengemudi.                                                                  |

## **2.12** Tinjauan 12

| A New ECG Data Processing Approach to Developing an A                | Accurate | Driving |  |  |  |
|----------------------------------------------------------------------|----------|---------|--|--|--|
| Fatigue Detection Framework with Heart Rate Variability Analysis and |          |         |  |  |  |
| Ensemble Learning                                                    |          |         |  |  |  |
| Junartho Halomoan, Kalamullah Ramli, Dodi Sudiana,                   | MDPI     | 2023    |  |  |  |
| Teddy Surya Gunawan, and Muhammad Salman                             |          |         |  |  |  |

| Latar      | Setiap tahun, lebih dari 1,3 juta orang tewas dalam kecelakaan lalu |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------|--|--|--|--|--|--|
| belakang   | lintas. Kesalahan manusia adalah penyebab utama kecelakaan ini,     |  |  |  |  |  |  |
|            | dengan kelelahan pengemudi sebagai salah satu faktor signifikan.    |  |  |  |  |  |  |
|            | Sistem deteksi kelelahan yang akurat diperlukan untuk               |  |  |  |  |  |  |
|            | meningkatkan keselamatan berkendara.                                |  |  |  |  |  |  |
| Tujuan     | Mengembangkan kerangka kerja deteksi kelelahan mengemudi            |  |  |  |  |  |  |
|            | yang mengukur kelelahan menggunakan analisis variabilitas detak     |  |  |  |  |  |  |
|            | jantung (HRV) dari sinyal ECG dengan metode mutual                  |  |  |  |  |  |  |
|            | information untuk meningkatkan akurasi klasifikasi kondisi          |  |  |  |  |  |  |
|            | kelelahan.                                                          |  |  |  |  |  |  |
| Pengukuran | Pengukuran yang digunakan adalah fisiologis, menggunakan            |  |  |  |  |  |  |
|            | analisis variabilitas detak jantung (HRV) dari sinyal ECG.          |  |  |  |  |  |  |
| Dataset    | Dataset yang digunakan dalam penelitian ini diperoleh dari studi    |  |  |  |  |  |  |
|            | sebelumnya yang melibatkan 11 partisipan sehat (10 pria dan 1       |  |  |  |  |  |  |
|            | wanita) yang melakukan simulasi mengemudi dalam dua kondisi:        |  |  |  |  |  |  |
|            | waspada dan lelah. Data ECG direkam menggunakan perangkat           |  |  |  |  |  |  |
|            | BioSemi ActiveTwo dengan frekuensi pengambilan sampel 512           |  |  |  |  |  |  |
|            | Hz.                                                                 |  |  |  |  |  |  |
| Metode     | Pengumpulan Data: Mengumpulkan sinyal ECG dari partisipan           |  |  |  |  |  |  |
|            | dalam kondisi waspada dan lelah.                                    |  |  |  |  |  |  |
|            | • Pemrosesan Sinyal: Menggunakan algoritma Pan-Tompkins             |  |  |  |  |  |  |
|            | untuk deteksi kompleks QRS dalam sinyal ECG.                        |  |  |  |  |  |  |
|            | • Resampling: Menggunakan metode resampling dengan dan              |  |  |  |  |  |  |
|            | tanpa jendela overlapping untuk mengolah data.                      |  |  |  |  |  |  |
|            | Ekstraksi Fitur: Menggunakan analisis HRV dengan metode             |  |  |  |  |  |  |
|            | analisis domain waktu, domain frekuensi, dan analisis non-          |  |  |  |  |  |  |
|            | linear.                                                             |  |  |  |  |  |  |

|              | • Klasifikasi: Menggunakan model ensemble learning seperti    |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------|--|--|--|--|--|--|--|
|              | AdaBoost, bagging, gradient boosting, dan random forest untuk |  |  |  |  |  |  |  |
|              | mengklasifikasikan kondisi kelelahan.                         |  |  |  |  |  |  |  |
| TT '1        | <del>                                     </del>              |  |  |  |  |  |  |  |
| Hasil        | Akurasi Model: Kombinasi metode resampling dengan jendela     |  |  |  |  |  |  |  |
|              | overlapping 270 detik, 54 fitur yang diekstraksi, dan model   |  |  |  |  |  |  |  |
|              | AdaBoost menghasilkan akurasi terbaik sebesar 98.82% pada     |  |  |  |  |  |  |  |
|              | dataset pelatihan dan 81.82% pada dataset pengujian.          |  |  |  |  |  |  |  |
|              | • Pengaruh Resampling: Metode resampling dengan jendela       |  |  |  |  |  |  |  |
|              | overlapping signifikan meningkatkan akurasi model.            |  |  |  |  |  |  |  |
| Kesimpulan   | Penelitian ini berhasil mengembangkan kerangka kerja deteksi  |  |  |  |  |  |  |  |
|              | kelelahan mengemudi berbasis ECG yang menunjukkan akurasi     |  |  |  |  |  |  |  |
|              | tinggi dengan menggunakan metode resampling dan analisis      |  |  |  |  |  |  |  |
|              | variabilitas detak jantung. Metode ini dapat meningkatkan     |  |  |  |  |  |  |  |
|              | keselamatan berkendara dengan memberikan peringatan dini      |  |  |  |  |  |  |  |
|              | terhadap kelelahan pengemudi.                                 |  |  |  |  |  |  |  |
| Limitasi dan | Limitasi:                                                     |  |  |  |  |  |  |  |
| Future       | Kinerja model dapat dipengaruhi oleh kondisi lingkungan dan   |  |  |  |  |  |  |  |
| Work         | variasi individu dalam sinyal EKG.                            |  |  |  |  |  |  |  |
|              | • Studi ini belum diuji pada data mengemudi di kondisi nyata  |  |  |  |  |  |  |  |
|              | dan beragam.                                                  |  |  |  |  |  |  |  |
|              | Future Work:                                                  |  |  |  |  |  |  |  |
|              | Menguji model pada dataset kondisi mengemudi nyata dengan     |  |  |  |  |  |  |  |
|              | variasi lebih luas.                                           |  |  |  |  |  |  |  |
|              | Mengembangkan metode lebih lanjut untuk meningkatkan          |  |  |  |  |  |  |  |
|              | keandalan dan akurasi deteksi dalam berbagai kondisi          |  |  |  |  |  |  |  |
|              | mengemudi.                                                    |  |  |  |  |  |  |  |

# **2.13** Tinjauan 13

| Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection |                    |      |  |  |  |
|-------------------------------------------------------------------------|--------------------|------|--|--|--|
| System                                                                  |                    |      |  |  |  |
| Qaisar Abbas, Mostafa E.A. Ibrahim, Shakir                              | Tech Science Press | 2022 |  |  |  |
| Khan and Abdul Rauf Baig                                                |                    |      |  |  |  |

| Latar    | Kecelakaan lalu lintas sering kali disebabkan oleh kelelahan atau |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------|--|--|--|--|--|--|--|
| belakang | gangguan pengemudi. Untuk mencegah kecelakaan, beberapa           |  |  |  |  |  |  |  |
|          | sistem hipovigilansi (hypo-V) dengan biaya rendah telah           |  |  |  |  |  |  |  |
|          | dikembangkan di masa lalu berdasarkan fitur multimodal-hybrid     |  |  |  |  |  |  |  |
|          | (fisiologis dan perilaku). Namun, sistem ini seringkali tidak     |  |  |  |  |  |  |  |
|          | optimal dalam berbagai kondisi lingkungan yang tidak terkendali.  |  |  |  |  |  |  |  |
| Tujuan   | Mengembangkan sistem deteksi kelelahan dan gangguan               |  |  |  |  |  |  |  |
|          | pengemudi (Hypo-Driver) secara real-time melalui kamera multi-    |  |  |  |  |  |  |  |
|          | view dan sensor biosinyal untuk mengekstraksi fitur hybrid.       |  |  |  |  |  |  |  |

| D1           | D                                                                                                                     |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Pengukuran   | Pengukuran yang digunakan adalah kombinasi pengukuran fisiologis dan perilaku:                                        |  |  |  |  |  |  |  |
|              |                                                                                                                       |  |  |  |  |  |  |  |
|              | • Fisiologis: Menggunakan sinyal elektroensefalografi (EEG), elektrokardiografi (ECG), elektromyografi (sEMG), dan    |  |  |  |  |  |  |  |
|              | elektrookulografi (EOG).                                                                                              |  |  |  |  |  |  |  |
|              | <ul> <li>Perilaku: Informasi seperti PERCLOS (Percentage of Eyelid</li> </ul>                                         |  |  |  |  |  |  |  |
|              | Closure), rasio aspek mulut (MAR), rasio aspek mata (EAR),                                                            |  |  |  |  |  |  |  |
|              | frekuensi berkedip (BF), dan rasio kemiringan kepala (HT-R).                                                          |  |  |  |  |  |  |  |
| Dataset      | Data dikumpulkan dari 20 pengemudi menggunakan kamera                                                                 |  |  |  |  |  |  |  |
| Dataset      | multi-view dan sensor biosinyal dalam berbagai kondisi                                                                |  |  |  |  |  |  |  |
|              | mengemudi.                                                                                                            |  |  |  |  |  |  |  |
| Metode       | Pengumpulan Data: Data dikumpulkan dari kamera multi-view                                                             |  |  |  |  |  |  |  |
| 1.1000 400   | dan sensor biosinyal.                                                                                                 |  |  |  |  |  |  |  |
|              | Ekstraksi dan Seleksi Fitur: Menggunakan CNN                                                                          |  |  |  |  |  |  |  |
|              | (Convolutional Neural Network) untuk ekstraksi fitur perilaku                                                         |  |  |  |  |  |  |  |
|              | dan RNN-LSTM (Recurrent Neural Network-Long Short-                                                                    |  |  |  |  |  |  |  |
|              | Term Memory) untuk ekstraksi fitur fisiologis. Kemudian,                                                              |  |  |  |  |  |  |  |
|              | dilakukan seleksi dan reduksi fitur.                                                                                  |  |  |  |  |  |  |  |
|              | • Klasifikasi: Setelah fitur digabungkan, sistem Hypo-Driver                                                          |  |  |  |  |  |  |  |
|              | mengklasifikasikan kondisi hypo-V ke dalam lima tahap                                                                 |  |  |  |  |  |  |  |
|              | menggunakan model DRNN (Deep Residual Neural Network).                                                                |  |  |  |  |  |  |  |
| Hasil        | Sistem Hypo-Driver mencapai akurasi deteksi rata-rata sebesar                                                         |  |  |  |  |  |  |  |
|              | 96.5% dalam mengklasifikasikan lima tahap hypo-V (normal,                                                             |  |  |  |  |  |  |  |
| 77 ' 1       | kelelahan, gangguan visual, gangguan kognitif, dan mengantuk).                                                        |  |  |  |  |  |  |  |
| Kesimpulan   | Sistem Hypo-Driver yang dikembangkan menunjukkan kinerja                                                              |  |  |  |  |  |  |  |
|              | yang lebih baik dibandingkan dengan metode state-of-the-art lainnya dalam mendeteksi kelelahan dan gangguan pengemudi |  |  |  |  |  |  |  |
|              | melalui fitur multimodal dan multi-view. Sistem ini mampu                                                             |  |  |  |  |  |  |  |
|              | mengatasi berbagai anomali dan memberikan hasil yang akurat                                                           |  |  |  |  |  |  |  |
|              | dalam berbagai kondisi lingkungan.                                                                                    |  |  |  |  |  |  |  |
| Limitasi dan | Limitasi:                                                                                                             |  |  |  |  |  |  |  |
| Future       | • Kinerja sistem dapat dipengaruhi oleh variasi kondisi                                                               |  |  |  |  |  |  |  |
| Work         | lingkungan yang tidak terkendali.                                                                                     |  |  |  |  |  |  |  |
|              | • Studi ini masih memerlukan pengujian lebih lanjut dalam                                                             |  |  |  |  |  |  |  |
|              | kondisi mengemudi nyata yang lebih luas.                                                                              |  |  |  |  |  |  |  |
|              | Future Work:                                                                                                          |  |  |  |  |  |  |  |
|              | Mengintegrasikan teknologi cloud computing dan pemrosesan                                                             |  |  |  |  |  |  |  |
|              | berbasis GPU untuk meningkatkan daya komputasi sistem                                                                 |  |  |  |  |  |  |  |
|              | Hypo-Driver.                                                                                                          |  |  |  |  |  |  |  |
|              | Mengembangkan aplikasi berbasis IoT untuk deteksi kelelahan                                                           |  |  |  |  |  |  |  |
|              | pengemudi yang lebih efektif dan efisien dalam berbagai                                                               |  |  |  |  |  |  |  |
|              | kondisi mengemudi.                                                                                                    |  |  |  |  |  |  |  |

## 2.14 Tinjauan 14

| System and Method for Driver Drowsiness Detection Using Behavioral and |                                     |      |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------|------|--|--|--|--|
| Sensor-Based Physiological Measures                                    | Sensor-Based Physiological Measures |      |  |  |  |  |
| Jaspreet Singh Bajaj, Naveen Kumar, Rajesh Kumar                       | MDPI                                | 2023 |  |  |  |  |
| Kaushal, H. L. Gururaj, Francesco Flammini and Rajesh                  |                                     |      |  |  |  |  |
| Natarajan                                                              |                                     |      |  |  |  |  |

| Latar belakang | Kecelakaan lalu lintas yang disebabkan oleh kelelahan pengemudi adalah tantangan besar di seluruh dunia, mengakibatkan banyak cedera fatal dan non-fatal yang menyebabkan beban finansial yang signifikan bagi individu dan pemerintah setiap tahun. Oleh karena itu, penting untuk mencegah kecelakaan yang fatal dan mengurangi beban finansial yang disebabkan oleh kelelahan pengemudi. Selama dekade terakhir, pendekatan intrusif dan non-intrusif telah digunakan untuk mendeteksi kelelahan pengemudi. Pendekatan intrusif menggunakan pengukuran fisiologis, sedangkan pendekatan non-intrusif menggunakan pengukuran berbasis perilaku dan kendaraan. Namun, metode ini seringkali hanya berfungsi dalam kondisi tertentu. |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tujuan         | Mengusulkan model yang menggabungkan pendekatan non-<br>intrusif dan intrusif untuk mendeteksi kelelahan pengemudi.<br>Pengukuran perilaku sebagai pendekatan non-intrusif dan<br>pengukuran fisiologis berbasis sensor sebagai pendekatan intrusif<br>digabungkan untuk mendeteksi kelelahan pengemudi.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pengukuran     | <ul> <li>Penelitian ini menggunakan pengukuran perilaku dan fisiologis, sbb:</li> <li>Perilaku: Menggunakan AI-based Multi-Task Cascaded Convolutional Neural Networks (MTCNN) untuk mengenali fitur wajah pengemudi.</li> <li>Fisiologis: Menggunakan sensor Galvanic Skin Response (GSR) untuk mengumpulkan konduktansi kulit pengemudi.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
| Dataset        | Dataset yang digunakan dikumpulkan dalam lingkungan simulasi yang mencakup berbagai kondisi seperti pencahayaan rendah, pengemudi dengan kacamata, dan pengemudi dengan jenggot atau kumis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metode         | <ul> <li>Akuisisi Data: Mengumpulkan data gambar wajah dan konduktansi kulit dari pengemudi.</li> <li>Ekstraksi Fitur: Menggunakan MTCNN untuk mendeteksi dan mengekstraksi fitur wajah seperti mata, hidung, dan mulut. GSR sensor digunakan untuk mengukur konduktansi kulit.</li> <li>Klasifikasi: Menggunakan teknik klasifikasi biner untuk mengevaluasi kondisi pengemudi (mengantuk atau tidak).</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| Hasil          | Model hybrid yang diusulkan mampu mendeteksi transisi dari keadaan terjaga ke keadaan mengantuk pada pengemudi dalam semua kondisi dengan efikasi sebesar 91%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Kesimpulan   | Model hybrid yang menggabungkan pengukuran perilaku dan fisiologis menunjukkan hasil yang menjanjikan dalam mendeteksi kelelahan pengemudi. Penggunaan MTCNN untuk ekstraksi fitur wajah dan sensor GSR untuk pengukuran fisiologis meningkatkan |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | akurasi deteksi.                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Limitasi dan |                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Future       | Model ini diuji dalam lingkungan simulasi, dan kinerjanya                                                                                                                                                                                        |  |  |  |  |  |  |
| Work         | dalam kondisi nyata perlu dieksplorasi lebih lanjut.                                                                                                                                                                                             |  |  |  |  |  |  |
|              | <ul> <li>Implementasi dalam kondisi mengemudi nyata yang lebih</li> </ul>                                                                                                                                                                        |  |  |  |  |  |  |
|              | kompleks dan beragam diperlukan untuk memastikan                                                                                                                                                                                                 |  |  |  |  |  |  |
|              | keandalannya.                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|              | Future Work:                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|              | Menguji model dalam kondisi mengemudi nyata yang lebih                                                                                                                                                                                           |  |  |  |  |  |  |
|              | beragam untuk mengevaluasi keandalan dan akurasinya.                                                                                                                                                                                             |  |  |  |  |  |  |
|              | Mengembangkan model lebih lanjut untuk meningkatkan                                                                                                                                                                                              |  |  |  |  |  |  |
|              | keandalan deteksi dalam berbagai kondisi mengemudi.                                                                                                                                                                                              |  |  |  |  |  |  |

#### 2.15 Perbandingan Tinjauan

Berikut ini merupakan tabel perbandingan dari tinjauan penelitian yang sudah dilakukan untuk menjadi acuan dalam penelitian yang akan dilakukan. Berdasarkan literatur yang tersedia, penulis mengusulkan deteksi kelelahan pengemudi yang bertujuan untuk mengurangi kompleksitas komputasi sekaligus meningkatkan akurasi deteksi, seperti disajikan pada bagian berikut.

Tabel 2.1 Tabel Perbandingan Tinjauan Penelitian

| Judul                                                                                                       | Tahun | Penulis                                                                              | Tujuan                               | Parameter/ Fitur                    | Metode                                                                                                                                                | Jenis Data                         | Akurasi                                                                                       | Dataset                                          |
|-------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------|
| A Fatigue Driving<br>Detection Algorithm Based<br>on Facial Multi-Feature<br>Fusion                         | 2020  | Li, K., Gong, Y.,<br>& Ren, Z.                                                       | Mendeteksi<br>kelelahan<br>pengemudi | Mata dan Mulut                      | YOLOv3-tiny                                                                                                                                           | Data Citra: driving video          | Tingkat<br>akurasi:<br>95,10%                                                                 | WIDER FACE dataset                               |
| Fatigue State Detection for<br>Tired Persons in Presence<br>of Driving Periods                              | 2022  | Alharbey, R.,<br>Dessouky, M.<br>M., Sedik, A.,<br>Siam, A. I., &<br>Elaskily, M. A. | Mendeteksi<br>kelelahan<br>pengemudi | Sinyal EEG, Behavior (Kedipan mata) | Model hybrid yang<br>menggabungkan<br>ConvLSTM dan CNN                                                                                                | Real-time                          | Akurasi<br>sebesar: 98%                                                                       | DROZY<br>dataset                                 |
| Driver fatigue detection based on convolutional neural network and face alignment for edge computing device | 2021  | Li, X., Xia, J.,<br>Cao, L., Zhang,<br>G., & Feng, X.                                | Mendeteksi<br>kelelahan<br>pengemudi | Posisi kepala dan Mata,<br>Mulut    | Supervised Descent<br>Method (SDM) dan CNN                                                                                                            | Data Citra:<br>gambar dan<br>video | Tingkat ratarata akurasi: 89,55%.                                                             | DriverEyes<br>dataset                            |
| Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN                                | 2020  | Zhao, Z., Zhou,<br>N., Zhang, L.,<br>Yan, H., Xu, Y.,<br>& Zhang, Z                  | Mendeteksi<br>kelelahan<br>pengemudi | Mata dan Mulut;                     | EM-CNN                                                                                                                                                | Citra gambar:<br>mata dan mulut    | 97,913% mata tertutup, 99,1% mata terbuka, 99,854% mulut tertutup, dan 99,918% mulut terbuka. | Biteda, 4000<br>gambar                           |
| A Hybrid Driver Fatigue<br>and Distraction Detection<br>Model Using AlexNet<br>Based on Facial Features     | 2022  | Salma Anber 1,<br>Wafaa Alsaggaf<br>1 and Wafaa<br>Shalash                           | Mendeteksi<br>kelelahan<br>pengemudi | Posisi kepala dan Mulut             | Menggabungkan teknik<br>transfer learning, Metode<br>ekstraksi fitur<br>menggunakan CNN, dan<br>klasifikasi kelelahan<br>pengemudi menggunakan<br>SVM | Real-time                          | Akurasi<br>sebesar<br>99,65%.                                                                 | NTHU Driver<br>Drowsiness<br>Detection<br>datase |

| Judul                                            | Tahun | Penulis                               | Tujuan                             | Parameter/ Fitur                                   | Metode                                       | Jenis Data                  | Akurasi         | Dataset               |
|--------------------------------------------------|-------|---------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------|-----------------|-----------------------|
| Driver's Fatigue                                 | 2023  | Samer Abdullah                        | Mendeteksi                         | Eye Aspect Ratio (EAR),                            | CNN, transfer learning,                      | Citra wajah yang            | 98.3% dalam     | YawDD                 |
| Recognition Using                                |       | Deeb Abbas,                           | kelelahan pada                     | Mouth Aspect Ratio                                 | OpenCV untuk                                 | diambil dari                | kondisi         | dataset, Self-        |
| Convolutional Neural                             |       | Sew Sun Tiang,                        | pengemudi                          | (MAR), MediaPipe Face                              | pengambilan frame video,                     | video                       | pencahayaan     | built dataset         |
| Network Approach                                 |       | Wei Hong Lim,                         |                                    | Mesh                                               | dan Mediapipe untuk                          |                             | baik, 94.7%     |                       |
|                                                  |       | Li Sze Chow,                          |                                    |                                                    | deteksi wajah.                               |                             | dalam kondisi   |                       |
|                                                  |       | Chin Hong                             |                                    |                                                    |                                              |                             | pencahayaan     |                       |
|                                                  |       | Wong                                  |                                    |                                                    |                                              |                             | berbeda.        |                       |
| Detecting fatigue in car                         | 2020  | X. Hu dan G.                          | Mendeteksi                         | Variabel berbasis perilaku                         | Metode Segmentasi                            | Psysiological               | Rata-rata       | Data                  |
| drivers                                          |       | Lodewijks                             | Mendeteksi                         | seperti frekuensi kedipan                          | GMM (Gaussian                                |                             | 81,6% untuk     | bioelektrik dari      |
| and aircraft pilots by using                     |       |                                       | kelelahan pada                     | mata, postur kepala, dan                           | <i>Mixture Model</i> ):untuk                 |                             | pengenalan      | sensor yang           |
| non-invasive measures:                           |       |                                       | pengemudi mobil                    | lainnya.                                           | memisahkan bagian tubuh                      |                             | multi-aktivitas | dipasang di           |
| The                                              |       |                                       | dan pilot pesawat                  |                                                    | pengemudi dari latar                         |                             | mengemudi,      | kepala.               |
| value of differentiation of                      |       |                                       | menggunakan                        |                                                    | belakang gambar.                             |                             | dengan tingkat  |                       |
| sleepiness and mental                            |       |                                       | sinyal bioelektrik                 |                                                    | Transfer Learning pada                       |                             | deteksi sebesar |                       |
| fatigue                                          |       |                                       | dengan                             |                                                    | CNN: Model CNN yang                          |                             | 91.4% untuk     |                       |
|                                                  |       |                                       | penggunaan                         |                                                    | telah dilatih sebelumnya                     |                             | perilaku        |                       |
|                                                  |       |                                       | sensor yang                        |                                                    | (AlexNet, GoogLeNet,                         |                             | pengemudi       |                       |
|                                                  |       |                                       | dipasang di kepala                 |                                                    | dan ResNet) digunakan                        |                             | yang            |                       |
|                                                  |       |                                       |                                    |                                                    | dan disesuaikan dengan                       |                             | terganggu       |                       |
|                                                  |       |                                       |                                    |                                                    | dataset perilaku                             |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | pengemudi.                                   |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | Evaluasi Model: metode                       |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | leave-one-out(LOO)                           |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | cross-validation untuk                       |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | memastikan generalisasi                      |                             |                 |                       |
|                                                  |       |                                       |                                    |                                                    | model terhadap dataset                       |                             |                 |                       |
| D: D: ME                                         | 2024  | II D . 1                              | M 1 1                              | G'11-1 (1 1 G'                                     | yang belum terlihat.                         | D. C. C.                    | TP: 1.1         | Determination         |
| Driver Drowsiness Multi-<br>Method Detection for | 2024  | Horia Beles,<br>Tiberiu               | Mengembangkan algoritma            | Sinyal elektrookulografi (EOG), citra status mata, | Kombinasi berbagai metode, termasuk analisis | Data citra                  | Tidak           | Data citra            |
| Method Detection for Vehicles with Autonomous    |       |                                       |                                    |                                                    |                                              | (gambar wajah               | disebutkan      | wajah dan mata        |
|                                                  |       | Vesselenyi,<br>Alexandru Rus,         | keputusan fuzzy<br>untuk memonitor | posisi kelopak mata, aspek                         | sinyal EOG, pemrosesan citra status mata,    | dan mata),                  | secara          | yang                  |
| Driving Functions                                |       | Tudor Mitran,                         | dan memberikan                     | rasio mata (EAR), dan                              | •                                            | sinyal biologis<br>(EEG dan | spesifik.       | dikumpulkan<br>selama |
|                                                  |       | · · · · · · · · · · · · · · · · · · · |                                    | sinyal elektroensefalografi (EEG).                 | algoritma neural network                     | EOG).                       |                 |                       |
|                                                  |       | Florin Bogdan                         | peringatan                         | (EEU).                                             | untuk klasifikasi posisi                     | EUG).                       |                 | mengemudi di          |

| Judul                   | Tahun | Penulis        | Tujuan            | Parameter/ Fitur           | Metode                     | Jenis Data       | Akurasi         | Dataset         |
|-------------------------|-------|----------------|-------------------|----------------------------|----------------------------|------------------|-----------------|-----------------|
|                         |       | Scurt, Bogdan  | tentang kantuk    |                            | kelopak mata, dan logistic |                  |                 | jalan umum,     |
|                         |       | Adrian Tolea   | pada pengemudi,   |                            | regression untuk           |                  |                 | serta sinyal    |
|                         |       |                | khususnya pada    |                            | keputusan akhir.           |                  |                 | EEG dan EOG     |
|                         |       |                | kendaraan dengan  |                            |                            |                  |                 | yang diperoleh  |
|                         |       |                | fungsi            |                            |                            |                  |                 | dalam           |
|                         |       |                | mengemudi         |                            |                            |                  |                 | pengaturan      |
|                         |       |                | otonom, guna      |                            |                            |                  |                 | laboratorium.   |
|                         |       |                | mencegah          |                            |                            |                  |                 | Total 800       |
|                         |       |                | kecelakaan.       |                            |                            |                  |                 | menit rekaman   |
|                         |       |                |                   |                            |                            |                  |                 | selama          |
|                         |       |                |                   |                            |                            |                  |                 | perjalanan di   |
|                         |       |                |                   |                            |                            |                  |                 | berbagai        |
|                         |       |                |                   |                            |                            |                  |                 | kondisi cuaca   |
|                         |       |                |                   |                            |                            |                  |                 | dan tahap       |
|                         |       |                |                   |                            |                            |                  |                 | kelelahan       |
|                         |       |                |                   |                            |                            |                  |                 | pengemudi.      |
| ECG-Based Driving       | 2023  | Junartho       | Mengembangkan     | Fitur domain waktu;        | Ekstraksi Fitur:           | Fisiologis, data | AdaBoost:       | Dataset terdiri |
| Fatigue Detection Using |       | Halomoan,      | kerangka kerja    | frekuensi; non-linear; dan | Fragmentasi denyut         | EKG;             | Akurasi         | dari rekaman    |
| Heart Rate Variability  |       | Kalamullah     | untuk mendeteksi  | fragmentasi denyut jantung | jantung untuk              | Data ECG yang    | validasi silang | ECG dari 11     |
| Analysis with Mutual    |       | Ramli, Dodi    | kelelahan         |                            | mengekstraksi fitur non-   | direkam          | sebesar         | subjek sehat    |
| Information             |       | Sudiana, Teddy | mengemudi         |                            | linear yang berkaitan      | menggunakan      | 98.82%,         | (10 pria, 1     |
|                         |       | Surya Gunawan, | menggunakan       |                            | dengan status kognitif,    | BioSemi          | akurasi<br>     | wanita) berusia |
|                         |       | Muhammad       | data ECG, dengan  |                            | dikombinasikan dengan      | ActiveTwo        | pengujian       | 24-28 tahun     |
|                         |       | Salman         | fokus pada        |                            | fitur dari analisis        | dengan           | sebesar         | selama          |
|                         |       |                | peningkatan       |                            | variabilitas denyut        | kecepatan        | 81.82%          | simulasi        |
|                         |       |                | metode ekstraksi  |                            | jantung (HRV) dalam        | sampel 512 Hz,   | Random          | mengemudi.      |
|                         |       |                | fitur dan seleksi |                            | domain waktu, frekuensi,   | dilabeli sebagai | Forest:         | Setiap subjek   |
|                         |       |                | fitur untuk       |                            | dan non-linear.            | sleep-good       | Akurasi         | menjalani tes   |
|                         |       |                | meningkatkan      |                            | Seleksi Fitur: Informasi   | (waspada) dan    | validasi silang | dalam dua       |
|                         |       |                | akurasi model.    |                            | mutual untuk menyaring     | sleep-bad        | sebesar         | kondisi:        |
|                         |       |                |                   |                            | fitur yang redundan,       | (lelah).         | 98.65%,         | waspada (tidur  |
|                         |       |                |                   |                            | mengevaluasi 28            |                  | akurasi<br>     | cukup) dan      |
|                         |       |                |                   |                            |                            |                  | pengujian       |                 |

| Judul                                                                                                                                                                         | Tahun | Penulis                                                                                 | Tujuan                                                                                                                                                                                                                        | Parameter/ Fitur | Metode                                                                                                                                                                                                                                                                                                                                                                                                                             | Jenis Data | Akurasi                                                                                                      | Dataset                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                                                               |       |                                                                                         |                                                                                                                                                                                                                               |                  | kombinasi fitur yang<br>dipilih.                                                                                                                                                                                                                                                                                                                                                                                                   |            | sebesar 95.45% Bagging: Akurasi pengujian sebesar 77.27% Gradient Boosting: Akurasi pengujian sebesar 81.82% | lelah (kurang<br>tidur). |
| A New ECG Data<br>Processing Approach to<br>Developing an Accurate<br>Driving Fatigue Detection<br>Framework with Heart<br>Rate Variability Analysis<br>and Ensemble Learning | 2023  | Junartho Halomoan, Kalamullah Ramli, Dodi Sudiana, Teddy Surya Gunawan, Muhammad Salman | Mendeteksi kelelahan mengemudi menggunakan data elektrokardiogram (ECG), dengan fokus pada pengembangan tahap pra- pemrosesan, ekstraksi fitur, dan klasifikasi untuk meningkatkan akurasi model klasifikasi kondisi kelelaha | Idem             | Ekstraksi Fitur:  Menggunakan analisis variabilitas denyut jantung (HRV) untuk mengekstraksi fitur dari data ECG. Dua skenario ekstraksi fitur digunakan: analisis domain waktu dan frekuensi (29 fitur), dan analisis domain waktu, frekuensi, serta non-linear (54 fitur).  Resampling:  Menggunakan metode resampling untuk meningkatkan keragaman data dengan lima skenario: tanpa resampling, resampling saja, dan resampling | Idem       | idem                                                                                                         | Idem                     |

| Judul                                                                                   | Tahun | Penulis                                                                      | Tujuan                                                                                                                                                                                                    | Parameter/ Fitur                                                                                                                                                                                                                                                 | Metode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jenis Data                                                                                                                                     | Akurasi                                                                              | Dataset                                                                                                                                                          |
|-----------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hypo-Driver: A Multiview<br>Driver Fatigue and<br>Distraction Level<br>Detection System | 2022  | Qaisar Abbas,<br>Mostafa E.A.<br>Ibrahim, Shakir<br>Khan, Abdul<br>Rauf Baig | Mengembangkan sistem deteksi kantuk dan gangguan pengemudi secara real-time menggunakan kamera multiview dan sensor biosignal untuk mencegah kecelakaan lalu lintas akibat kantuk dan gangguan pengemudi. | Fisiologis: Electroencephalography (EEG), Electrocardiography (ECG), Surface Electromyography (sEMG), Electrooculography (EOG) Perilaku: PERCLOS70- 80-90%, Mouth Aspect Ratio (MAR), Eye Aspect Ratio (EAR), Blinking Frequency (BF), Head- Tilted Ratio (HT-R) | dengan jendela tumpang tindih (210s, 240s, 270s).  Model Klasifikasi: Menggunakan model pembelajaran ensemble untuk klasifikasi, termasuk AdaBoost, Bagging, Gradient Boosting, dan Random Forest.  Model DL: CNN, RNN, LSTM, dan Deep Residual Neural Network (DRNN)  Teknik Fusi: Late Fusion untuk menggabungkan fitur multimodal dari perilaku dan sinyal fisiologis  Klasifikasi: Sistem diklasifikasikan ke dalam lima tahap hipovigilance (normal, fatigue, visual inattention, cognitive inattention, dan drowsy) menggunakan model | Data Citra: Gambar wajah dan mata yang diambil dari video. Sinyal Biologis: Sinyal EEG, ECG, sEMG, dan EOG yang diambil dari sensor biosignal. | Sistem Hypo-<br>Driver<br>mencapai<br>akurasi deteksi<br>rata-rata<br>sebesar 96,5%. | Data dari 20 pengemudi yang mencakup sinyal EEG, ECG, sEMG, EOG, dan citra wajah yang dikumpulkan menggunakan tiga kamera pada sudut berbeda (0°, 45°, dan 90°). |
|                                                                                         | 2022  | Towns of C' 1                                                                | M                                                                                                                                                                                                         | Laurehale Da 9.1                                                                                                                                                                                                                                                 | DRNN<br>Debasional Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data Cir                                                                                                                                       | 010/                                                                                 | W 1 ' '                                                                                                                                                          |
| System and Method for Driver Drowsiness                                                 | 2023  | Jaspreet Singh<br>Bajaj, Naveen                                              | Mengembangkan<br>model deteksi                                                                                                                                                                            | Langkah Perilaku (Behavioral): Deteksi fitur                                                                                                                                                                                                                     | Behavioral Measures:<br>Menggunakan Multi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Data Citra:<br>Gambar wajah                                                                                                                    | 91% efikasi<br>dalam kondisi                                                         | Kombinasi<br>data citra yang                                                                                                                                     |
| Detection Using                                                                         |       | Kumar, Rajesh                                                                | kantuk pada                                                                                                                                                                                               | wajah seperti kedipan                                                                                                                                                                                                                                            | Task Cascaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dan mata yang                                                                                                                                  | simulasi.                                                                            | diambil dari                                                                                                                                                     |
| Behavioral and Sensor-                                                                  |       | Kumar Kaushal,                                                               | pengemudi                                                                                                                                                                                                 | mata, menguap, dan                                                                                                                                                                                                                                               | Convolutional Neural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | diambil dari                                                                                                                                   |                                                                                      | video                                                                                                                                                            |
| Based Physiological                                                                     |       | H. L. Gururaj,                                                               | menggunakan                                                                                                                                                                                               | kemiringan kepala                                                                                                                                                                                                                                                | Networks (MTCNN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | video.                                                                                                                                         |                                                                                      | pengemudi dan                                                                                                                                                    |
| Measures Sensor                                                                         |       | Francesco                                                                    | kombinasi                                                                                                                                                                                                 | menggunakan MTCNN.                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                      | data fisiologis                                                                                                                                                  |

| Judul                     | Tahun | Penulis          | Tujuan            | Parameter/ Fitur        | Metode                    | Jenis Data       | Akurasi | Dataset         |
|---------------------------|-------|------------------|-------------------|-------------------------|---------------------------|------------------|---------|-----------------|
|                           |       | Flammini,        | langkah-langkah   | Langkah Fisiologis:     | untuk mendeteksi fitur    | Sinyal Biologis: |         | yang diukur     |
|                           |       | Rajesh Natarajan | perilaku          | Penggunaan sensor       | wajah.                    | Sinyal Galvanic  |         | menggunakan     |
|                           |       |                  | (behavioral) dan  | Galvanic Skin Response  | Physiological Measures:   | Skin Response    |         | sensor GSR,     |
|                           |       |                  | sensor fisiologis | (GSR) untuk mengukur    | Menggunakan sensor        | (GSR).           |         | yang            |
|                           |       |                  | untuk mencegah    | konduktansi kulit       | GSR untuk                 |                  |         | dikumpulkan     |
|                           |       |                  | kecelakaan lalu   | pengemudi.              | mengumpulkan data         |                  |         | dalam kondisi   |
|                           |       |                  | lintas akibat     |                         | konduktansi kulit.        |                  |         | nyata dan       |
|                           |       |                  | kantuk.           |                         | Model Hybrid:             |                  |         | simulasi.       |
|                           |       |                  |                   |                         | Kombinasi dari langkah-   |                  |         |                 |
|                           |       |                  |                   |                         | langkah perilaku dan      |                  |         |                 |
|                           |       |                  |                   |                         | sensor fisiologis untuk   |                  |         |                 |
|                           |       |                  |                   |                         | mendeteksi kantuk         |                  |         |                 |
|                           |       |                  |                   |                         | pengemudi.                |                  |         |                 |
|                           |       |                  |                   |                         | Teknik Klasifikasi:       |                  |         |                 |
|                           |       |                  |                   |                         | Teknik klasifikasi biner  |                  |         |                 |
|                           |       |                  |                   |                         | untuk menentukan status   |                  |         |                 |
|                           |       |                  |                   |                         | kantuk atau tidak kantuk. |                  |         |                 |
| An Efficient Approach for | 2021  | Anh-Cang Phan,   | Mengembangkan     | Eye Aspect Ratio (EAR), | 1. Landmark wajah untuk   |                  | 97%     | Dataset dari    |
| Detecting Driver          |       | Ngoc-Hoang-      | metode deteksi    | LIP distance untuk      | mendeteksi kedipan dan    |                  |         | Bing Search     |
| Drowsiness Based on Deep  |       | Quyen Nguyen,    | kantuk pengemudi  | mendeteksi kedipan dan  | menguap; 2. Deep          |                  |         | API, Kaggle,    |
| Learning                  |       | Thanh-Ngoan      | berbasis deep     | menguap.                | learning dengan           |                  |         | RMFD, dan       |
|                           |       | Trieu, Thuong-   | learning yang     |                         | MobileNet-V2 dan          |                  |         | iStock,         |
|                           |       | Cang Phan        | efisien untuk     |                         | ResNet-50V2.              |                  |         | mencakup        |
|                           |       |                  | mengurangi        |                         |                           |                  |         | 16,577 gambar   |
|                           |       |                  | kecelakaan lalu   |                         |                           |                  |         | wajah dengan    |
|                           |       |                  | lintas.           |                         |                           |                  |         | berbagai        |
|                           |       |                  |                   |                         |                           |                  |         | kondisi kantuk. |

## Deteksi Kelelahan Menggunakan Jaringan Saraf Konvolusional (CNN)

Penelitian oleh Abbas et al. (2023) yang berjudul *Driver's Fatigue Recognition Using Convolutional Neural Network Approach*" mengembangkan model deteksi kelelahan pengemudi menggunakan CNN untuk analisis fitur wajah. Model CNN dapat mendeteksi kelelahan dengan akurasi tinggi dalam berbagai kondisi pencahayaan. Selain itu, penggunaan *transfer learning* pada model CNN meningkatkan keakuratan deteksi dengan dataset yang lebih kecil. Studi ini menyoroti pentingnya fitur visual dalam mendeteksi tanda-tanda kantuk, khususnya analisis rasio aspek mata (EAR) dan mulut (MAR) untuk mendeteksi kedipan mata dan menguap.

## Analisis Variabilitas Detak Jantung (HRV) dalam Deteksi Kelelahan

Penelitian oleh Halomoan et al. (2023) dengan judul "A New ECG Data Processing Approach to Developing an Accurate Driving Fatigue Detection Framework with Heart Rate Variability Analysis and Ensemble Learning" menggunakan analisis HRV dari sinyal EKG untuk mendeteksi kelelahan pengemudi. Penelitian ini menggabungkan metode resampling dengan jendela overlapping untuk meningkatkan akurasi model. Model ensemble learning seperti Random Forest dan AdaBoost digunakan untuk klasifikasi kondisi kelelahan dengan akurasi mencapai 98.82%.

#### Kombinasi Data Visual dan Fisiologis dalam Deteksi Kelelahan

Penelitian oleh Abbas et al. (2022) dengan judul "Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System" menggabungkan data visual dan fisiologis untuk mendeteksi kelelahan pengemudi. Sistem yang dikembangkan menggunakan CNN untuk ekstraksi fitur visual dan RNN-LSTM untuk ekstraksi fitur fisiologis dari sinyal EKG dan SpO2. Model ini menunjukkan akurasi deteksi yang tinggi dengan menggabungkan kedua jenis data ini, mengindikasikan bahwa pendekatan multimodal dapat meningkatkan keakuratan deteksi kelelahan

## Deteksi Kelelahan Berbasis Jaringan Saraf Tiruan (LSTM)

Penelitian oleh Halomoan et al. (2023) menggunakan model LSTM untuk menganalisis data EKG dan mendeteksi kelelahan pengemudi. LSTM dipilih karena kemampuannya dalam menangani data urutan waktu dan memprediksi kondisi kelelahan berdasarkan pola variabilitas detak jantung. Hasil penelitian menunjukkan bahwa LSTM dapat secara efektif memprediksi kelelahan dengan mempertimbangkan dinamika temporal dari sinyal EKG.

## Klasifikasi Kelelahan Menggunakan SVM

Penelitian oleh Abbas et al. (2022) mengimplementasikan SVM untuk klasifikasi kondisi kelelahan pengemudi berdasarkan fitur yang diekstraksi dari sinyal EKG dan data visual. SVM dipilih karena keunggulannya dalam menangani masalah klasifikasi dengan margin yang maksimal. Hasil penelitian menunjukkan bahwa SVM dapat mengklasifikasikan kondisi kelelahan dengan akurasi yang signifikan, terutama ketika fitur yang digunakan telah dioptimalkan melalui seleksi fitur yang tepat.

#### Pendekatan Hybrid untuk Deteksi Kelelahan

Penelitian oleh Abbas et al. (2022) mengembangkan sistem hybrid yang menggabungkan CNN untuk deteksi fitur wajah dan RNN untuk analisis sinyal fisiologis. Studi ini menekankan pentingnya kombinasi data visual dan fisiologis dalam meningkatkan keakuratan deteksi kelelahan. Hasil penelitian menunjukkan bahwa pendekatan hybrid dapat mengatasi keterbatasan masing-masing metode ketika digunakan secara terpisah.

## Penggunaan Data Visual untuk Deteksi Kelelahan

Penelitian oleh [Lee et al. (2020)] fokus pada penggunaan data visual untuk mendeteksi tanda-tanda kantuk seperti kedipan mata dan gerakan kepala. CNN digunakan untuk ekstraksi fitur dari gambar wajah, dan hasilnya menunjukkan bahwa fitur visual adalah indikator yang kuat untuk mendeteksi kelelahan. Studi ini

juga menggarisbawahi pentingnya pengaturan kondisi pencahayaan yang baik untuk meningkatkan akurasi deteksi.

## Analisis Sinyal Fisiologis dalam Deteksi Kelelahan

Penelitian oleh Halomoan et al. (2023) menggunakan analisis sinyal EKG dan SpO2 untuk mendeteksi kelelahan pengemudi. Hasil penelitian menunjukkan bahwa variasi dalam sinyal fisiologis dapat menjadi indikator awal kelelahan, dan penggunaan model deep learning seperti LSTM dapat meningkatkan keakuratan prediksi

## Penerapan Deep Learning dalam Deteksi Kelelahan

Penelitian oleh [Kim et al. (2021)] mengeksplorasi penggunaan model deep learning, termasuk CNN dan LSTM, untuk mendeteksi kelelahan pengemudi. Hasil penelitian menunjukkan bahwa model *deep learning* dapat menangkap pola kompleks dalam data visual dan fisiologis, memberikan prediksi yang lebih akurat dibandingkan dengan metode konvensional.

## Pendekatan Multimodal untuk Deteksi Kelelahan

Penelitian oleh Abbas et al. (2022) menggunakan pendekatan multimodal yang menggabungkan data visual dari fitur wajah dan data fisiologis dari sinyal EKG. Studi ini menunjukkan bahwa pendekatan multimodal memberikan hasil yang lebih baik dalam mendeteksi kelelahan pengemudi dibandingkan dengan pendekatan single-modal

## Pengembangan Model CNN untuk Deteksi Kelelahan

Penelitian oleh Halomoan et al. (2023) mengembangkan model CNN yang dioptimalkan untuk mendeteksi tanda-tanda kantuk pada pengemudi. Studi ini menekankan pentingnya pre-processing data dan augmentasi data untuk meningkatkan performa model dalam berbagai kondisi pencahayaan dan posisi kepala pengemudi

## Penggunaan Teknologi IoT dalam Deteksi Kelelahan

Penelitian oleh Abbas et al. (2022) mengeksplorasi penggunaan teknologi IoT untuk mengumpulkan dan menganalisis data fisiologis dan visual secara *real-time*. Sistem yang dikembangkan menggunakan sensor EKG dan kamera untuk memantau kondisi pengemudi dan memberikan peringatan dini jika tanda-tanda kelelahan terdeteksi.

## Deteksi Kelelahan dengan Kombinasi CNN dan LSTM

Penelitian oleh Halomoan et al. (2023) menggabungkan CNN untuk ekstraksi fitur visual dan LSTM untuk analisis urutan waktu dari sinyal fisiologis. Hasil penelitian menunjukkan bahwa kombinasi CNN dan LSTM dapat meningkatkan keakuratan deteksi kelelahan dengan memanfaatkan kekuatan masing-masing model dalam menangani data yang berbeda.

#### Evaluasi Model Klasifikasi dalam Deteksi Kelelahan

Penelitian oleh Halomoan et al. (2023) mengevaluasi berbagai model klasifikasi, termasuk SVM, CNN, dan LSTM, untuk mendeteksi kelelahan pengemudi. Studi ini menunjukkan bahwa kombinasi model, seperti menggunakan CNN untuk ekstraksi fitur dan SVM untuk klasifikasi, memberikan hasil yang paling akurat dalam mendeteksi kondisi kelelahan.

Literature review ini menunjukkan bahwa pendekatan yang menggabungkan data visual dan fisiologis, serta menggunakan model deep learning seperti CNN dan LSTM, dapat memberikan hasil yang sangat akurat dalam mendeteksi kelelahan pengemudi. Selain itu, penggunaan SVM sebagai model klasifikasi juga terbukti efektif dalam mengklasifikasikan kondisi kelelahan berdasarkan fitur yang diekstraksi. Penelitian lebih lanjut diperlukan untuk menguji dan mengembangkan model ini dalam kondisi mengemudi nyata yang lebih beragam.

Berdasarkan penelitian-penelitian dalam tabel di atas menjelaskan mengenai peran dari teknologi *Artificial Intelligence* dalam mengembangkan solusi yang canggih untuk mengidentifikasi kelelahan pada pengemudi. Melalui pemrosesan visual secara mendalam dan pemahaman pola, teknologi tersebut mampu

mendeteksi tanda-tanda kelelahan pada area mata, mulut, dan kepala pengemudi dengan tingkat akurasi yang semakin tinggi. Studi diatas menunjukkan bahwa terdapat potensi dalam meningkatkan keselamatan di jalan raya melalui pendekatan berbasis teknologi yang cerdas dan efektif.

Penelitian-penelitian sejenis yang merupakan peneltian terdahulu antara lain implementasi pemanfaatan kecerdasan buatan dalam bidang teknologi informasi untuk mendeteksi kelelahan seperti pada tahun 2019 dengan mengusulkan sistem pengenalan aktivitas pengemudi berbasis deep learning dengan akurasi 93,2% untuk mengenali pengemudi menjawab telepon dan 94,5% mengirim pesan (Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E., & Wang, F.-Y. (2019). Pada tahun 2020 terdapat dua penelitian yang mengusulkan deteksi kelelahan berbasis multi-fitur wajah untuk meningkatkan akurasi deteksi. Algoritma yang digunakan yaitu YOLOv3-tiny dengan akurasi 95,10% (Li, K., Gong, Y., & Ren, Z., 2020). Serta penggunaan algoritma EM-CNN dengan akurasi 97,913% (Zhao, Z., Zhou, N., Zhang, L., Yan, H., Xu, Y., & Zhang, Z., 2020). Pada tahun selanjutnya, terdapat penelitian mengembangkan metode deteksi kelelahan pengemudi menggunakan CNN dengan parameter yang diukur yaitu posisi kepala dan mata. Nilai akurasi yang didapat rata-rata 89,55% (Li, X., Xia, J., Cao, L., Zhang, G., & Feng, X, 2021). Tahun 2022 terdapat dua penelitan pengembangan sistem untuk meningkatkan akurasi deteksi kelelahan dan memperbaiki kinerja sistem. Deteksi pada kondisi siang hari saat pengemudi menggunakan kacamata memiliki nilai akurasi 98% (Alharbey, R., Dessouky, M. M., Sedik, A., Siam, A. I., & Elaskily, M. A, 2022). Terdapat juga kombinasi metode CNN dan SVM untuk mendeteksi kelelahan pengemudi mencapai akurasi pengujian 99,65% (Salma Anber, Wafaa Alsaggaf, &Wafaa Shalash, 2022). Tahun 2023 terdapat penelitian deteksi kantuk berdasarkan perilaku pengemudi menggunakan pengukuruan fisiologis sensor Galvanic Skin Response (GSR) dengan akurasi 91% (Bajaj, J.S.; Kumar, N.; Kaushal, R.K.; Gururaj, H.L.; Flammini, F.; Natarajan, R, 2023).

Penelitian terkini menunjukkan bahwa penggunaan CNN dalam pengenalan pola dan citra memiliki akurasi yang tinggi, namun pengaplikasian dalam sistem deteksi dini kantuk pada kondisi pre-driving masih terbatas. Kebaruan dari

penelitian ini terletak pada pengembangan algoritma yang dioptimalkan untuk deteksi dini kantuk dengan memanfaatkan penggabungan data citra gambar dan data fisiologis untuk meningkatkan keakuratan deteksi, serta integrasinya dalam lingkungan pre-driving belum banyak dilakukan. Inovasi penelitian ini yaitu pembuatan dataset primer yang dibangun khusus untuk penelitian ini. Melibatkan berbagai kelompok pengemudi dalam pengumpulan data memungkinkan sistem untuk mengidentifikasi tanda-tanda kantuk dengan lebih tepat, mengatasi keterbatasan dataset yang umumnya digunakan yang cenderung homogen dan terbatas. Dataset yang khusus dan beragam ini memperkuat basis data untuk pelatihan dan pengujian model yang digunakan, serta meningkatkan kinerja dan reliabilitas sistem deteksi dini kantuk secara keseluruhan.

## **BAB III**

## METODOLOGI PENELITIAN

## 3.1 Kerangka Umum

Penelitian ini bertujuan untuk mengembangkan sistem deteksi dini kantuk sebelum berkendara dengan menggunakan kombinasi data visual berupa data citra wajah dan data fisiologis. Kondisi *pre-driving* mengacu pada kondisi sebelum pengemudi memulai perjalanan, sehingga sistem ini sangat penting untuk mencegah risiko kecelakaan di jalan. Sistem ini mengintegrasikan teknologi pengenalan wajah dan analisis data fisiologis untuk memberikan deteksi yang lebih akurat. Blok diagram secara umum yang digunakan pada penelitian ini dapat dilihat pada Gambar 3.1 Blok Diagram.



Gambar 3.1 Blok Diagram

Model ini terdiri dari tiga tahapan yaitu input, proses, dan output. Penelitian deteksi dini kantuk untuk kondisi *pre-driving* menggabungkan data visual yaitu pengumpulan data citra wajah pengemudi yang diambil menggunakan kamera, serta data fisiologis yang diukur berupa data EKG menggunakan perangkat *wearable* yaitu *smartwatch* dan *pulse oximeter* untuk mengukur saturasi oksigen (*SpO2*). Tahapan *pre-processing* dan ekstraksi fitur dilakukan pada kedua jenis data yaitu data citra gambar dan data fisiologis. Model *Convolutional Neural Network* (CNN) digunakan untuk mengekstraksi fitur dari data citra wajah yang merupakan data visual, sementara *Long Short-Term Memory* (LSTM) digunakan untuk memproses data fisiologis yang bersifat *time-series*. Fitur-fitur yang diekstraksi dari kedua model ini digabungkan untuk menghasilkan vector fitur gabungan. Vektor fitur ini kemudian digunakan sebagai input untuk model *Support Vector Machine* 

(SVM) yang melakukan klasifikasi akhir untuk mendeteksi kantuk. Hasil deteksi kemudian digunakan untuk memberikan peringatan kepada pengemudi layak tidak nya pengemudi untuk berkendara.

# 3.2 Tahapan Peneletian

Tahapan penelitian merupakan urutan atau langkah-langkah yang dilakukan secara terstruktur dan sistematis pada penelitian ini, secara garis besar terbagi menjadi empat tahapan. Berikut adalah Gambar 3.2 Tahapan Penelitian yang dilakukan pada penelitian ini.



Gambar 3.2 Tahapan Penelitian

#### 3.3. Pemilihan dan Persiapan Dataset

Tahapan ini merupakan tahapan identifikasi awal dari penelitian meliputi identifikasi masalah penelitian yang berfokus pada masalah utama yaitu mendeteksi kantuk pada pengemudi menggunakan pemrosesan citra dan fisiologis. Tahapan ini dilakukan untuk memasikan bahwa hanya data yang relevan, berkualitas tinggi, dan siap untuk diproses lebih lanjut yang digunakan. Pemilihan dataset memastikan bahwa dataset yang dikumpulkan relevan dengan tujuan penelitian, yaitu hanya menggunakan data yang berkaitan dengan kondisi *pre-driving*, serta memastikan bahwa data visual dan data fisiologis diambil pada waktu yang sama. Tahapan pengumpulan data dan *pre-processing data* merupakan tahap awal untuk mempersiapkan dataset yang akan digunakan.

## 3.3.1 Pengumpulan Data

Data dibagi menjadi dua kategori utama yaitu data primer dan data sekunder. Data primer diperoleh berdasarkan pengumpulan dan pengamatan langsung oleh peneliti berdasarkan kondisi subjek penelitian dan rekaman aktivitas fisik atau ekspresi wajah menggunakan kamera, serta pengukuran fisiologis yang menggunakan perangkat *wearable*. Data primer ini berupa data objektif dengan mengumpulkan data citra wajah dan pengukuran fisiologis. Berikut merupakan Gambar 3.3 Pengumpulan Data.



Gambar 3.3 Pengumpulan Data

Dataset visual berupa citra wajah yang berfokus pada wajah pengemudi yang diambil menggunakan kamera dengan spesifikasi 12 MP. Data visual dan fisiologis berupa data yang diambil dari partisipan dalam kondisi terjaga dan mengantuk. Data fisiologis mencakup pengukuran langsung dari respons tubuh berupa sinyal

EKG (Elektrokardiogram) yang merekam detak jantung (HR), variabilitas detak jantung atau *Heart Rate Variability* (HRV) menggunakan perangkat *wearable* dan pengukuran saturasi oksigen dalam darah (*SpO2*) yang diukur menggunakan *pulse oximeter*.

#### 3.3.2 Pre-Processing Data

Melakukan analisis eksploratif data untuk memahami karakteristik dataset sehingga meningkatkan kualitas deteksi. *Pre-Processing* yang dilakukan yaitu *pre-processing* citra dan *pre-processing* data fisiologis. *Pre-processing* citra yaitu dengan mendeteksi wajah dan mata, normalisasi pencahayaan, pemotongan area wajah yang relevan. Ektraksi frame dari video menggunakan OpenCV. *Pre-processing* data fisiologis yaitu dengan normalisasi data, dan segmentasi. Berikut merupakan Gambar 3.4 *Pre-Processing* Data.



Gambar 3.4 Pre-Processing Data

Dataset yang dikumpulkan kemudian diolah, yang meliputi normalisasi, penghilangan noise, dan teknik pra-pemrosesan lainnya untuk membuat data siap digunakan dalam ekstraksi fitur. Langkah ini melibatkan pembersihan dan penyiapan data untuk analisis.

Proses pre-processing untuk data visual atau data gambar, yaitu:

- 1. Pengumpulan data visual dengan mengambil gambar wajah pengemudi menggunakan kamera berfokus pada mata.
- 2. Deteksi wajah dan deteksi mata, menggunakan algoritma deteksi wajah seperti *Haar Cascades* atau *Dlib* untuk mendetekasi dan melokalisasi wajah dalam gambar.
- 3. Deteksi mata, yaitu mendeteksi mata da;am area wajah yang terdeteksi.

- 4. Ekstraksi *ROI* (*Region of Interest*) dengan mengambil area mata dari gambar.
- 5. Teknik normalisasi untuk mengubah ukuran gambar mata menjadi dimensi yang konsisten missal nya 64x64 pixel, serta menormalisasi nilai pixel gambar dalam rentang [0, 1] atau [-1, 1].
- 6. Augmentasi gambar dilakukan untuk meningkatkan variasi data, seperti rotasi, *flipping* horizontal atau vertikal, *zooming*, dan perubahan cahaya
- 7. Penyimpanan data yang diproses dengan menyimpan gambar yang telah diproses dan fitur yang diekstraski dalam format terstruktur (CSV atau *database*).

Proses *pre-processing* untuk data fisiologis yaitu:

- 1. Pengumpulan data fisiologis menggunakan *wearable* untuk merekam detak jantung (HR), variabilitas detak jantung (HRV), dan saturasi oksigen (SpO2).
- 2. Pembersihan data dengan menghilangkan *noise* dengan menggunakan teknik *filtering*, dan imputasi data hilang dengan mengisi data yang hilang menggunakan metode seperti *mean*, *median*, atau *interpolasi*.
- 3. Normalisasi data dengan Min-Max sehingga menyesuaikan dengan skala data ke rentang yang konsisten [0, 1].
- 4. Segmentasi data dilakukan dengan membagi data menjadi segmen dengan ukuran waktu tetap (yaitu 30 detik).
- 5. Normalisasi data untuk memastikan konsistensi skala antar subjek dan pengukuran.
- 6. Penyimpanan data yang diproses yaitu data fisiologis dalam format terstruktur.

Langkah selanjutnya yaitu sinkronisasi data dengan menggabungkan data visual serta data fisiologis berdasarkan *timestamp*. Selanjutnya memastikan bahwa data visual dan fisiologis yang telah disinkronkan mencerminkan kondisi yang sama pada waktu yang sama. Selanjutnya yaitu menyimpan data yang telah disinkronkan dalam format yang mudah diakses untuk dianalisis lebih lanjut.

## 3.4. Pembuatan Model

Pembuatan model merupakan proses implementasi dari desain arsitektur yang telah direncanakan. Langkah dari pembuatan model yaitu penulisan kode untuk membangun model sesuai dengan desain arsitektur yaitu CNN, LSTM, dan SVM.

Selanjutnya, mengonfigurasi model dengan *optimizer*, fungsi *loss*, dan metrik evaluasi. Kemudian melakukan pelatihan model menggunakan dataset yang telah dibagi menjadi *training set* dan *validation set* pada tahapan *pre-processing*. Selanjutnya dilakukan validasi serta *tuning hyperparameters* untuk mengoptimalkan kinerja model.

## 3.4.1 Ekstraksi Fitur

Ekstraksi fitur dilakukan untuk menangkap karakteristik penting dari data yang telah diproses. Fitur ini akan digunakan sebagai input untuk model pembelajaran mesin. Ektraksi fitur dilakukan pada data visual berupa data gambar, dan data fisiologis.

#### 1. Data Visual

a. *Eye Aspect Ratio* (EAR), digunakan untuk mendeteksi apakah mata terbuka atau tertutup.

$$EAR = rac{\|p_2 - p_6\| + \|p_3 - p_5\|}{2 \cdot \|p_1 - p_4\|}$$

Di mana p<sub>i</sub> adalah titik-titik landmark mata.

- b. Pupil Dilation, digunakan untuk mengukur perubahan ukuran pupil.
- c. Redness of Eyes, mengukur tingkat kemerahan pada mata.
- d. *Eye Openess*, mengukur bukaan mata berdasarkan jarak vertikal antara kelopak mata atas dan bawah.

## 2. Data Fisiologis

- a. Heart Rate (HR), mengukur detak jantung per menit.
- b. Heart Rate Variability (HRV), mengukur variabilitas detak jantung.
- c. Respiratory Rate (RR), mengukur laju pernapasan.
- d. SpO2, saturasi oksigen dalam darah

Ekstraksi fitur dengan *Convolutional Neural Network* (CNN) adalah proses yang menggunakan lapisan konvolusi dan *pooling* untuk menangkap fitur penting dari data gambar. Langkah-langkah ekstraksi fitur dengan CNN:

1. *Convolutional Layer*: Menggunakan filter untuk menangkap fitur spasial dari gambar.

- 2. *Pooling Layer*: Mengurangi dimensi peta fitur sambil mempertahankan fitur penting.
- 3. *Fully Connected Layer*: Menghubungkan peta fitur yang telah diratakan untuk melakukan klasifikasi atau ekstraksi fitur.
- 4. Pelatihan Model: Menyesuaikan bobot filter melalui *backpropagation* dengan data latih.
- 5. Ekstraksi Fitur: Menggunakan model yang telah dilatih untuk mengekstraksi fitur dari gambar baru.

Ekstraksi fitur dengan *Long Short-Term Memory* (LSTM) adalah proses yang menggunakan jaringan LSTM untuk menangkap pola temporal dan hubungan jangka panjang dalam data sekuensial, seperti data fisiologis (EKG, HR, HRV, RR, dan SpO2). LSTM sangat efektif dalam menangani data yang memiliki ketergantungan waktu. Ekstraksi fitur dengan LSTM melibatkan beberapa langkah penting:

- 1. Menyiapkan Data: Menyiapkan data sekuensial dalam bentuk yang sesuai untuk input ke LSTM.
- 2. Membangun Model LSTM: Membangun model LSTM dengan lapisan LSTM dan Dense untuk ekstraksi fitur.
- 3. Melatih Model LSTM: Melatih model menggunakan data sekuensial untuk menyesuaikan bobot jaringan.
- 4. Ekstraksi Fitur: Menggunakan model yang telah dilatih untuk mengekstraksi fitur dari data sekuensial baru.

## 3.4.2 Penggabungan Fitur

Fitur-fitur yang telah diekstraksi dari ekstraksi fitur dengan model CNN yaitu dari gambar visul dengan mengekstraksi bagian mata dan ektraksi fitur dari data sekuensial dengan menggunakan LSTM berupa data fisiologis. Selanjutnya, penggabungan fitur visual dan fitur sekuensial menggunakan metode penggabungan (concatenation) digabungkan membentuk satu set fitur komprehensif yang akan digunakan untuk pelatihan model yaitu klasifikasi akhir menggunakan model SVM.

#### 3.4.3 Pemisahan Dataset

Pembagian dataset merupakan langkah penting dalam proses pelatihan dan evaluasi model. Merujuk pada penelitian (Li, K., Gong, Y., & Ren, Z., 2020) untuk pembagian dataset dibagi menjadi tiga bagian yaitu *training set* (40%), *validation set* (10%), *dan test set* (50%), namun pada penelitian ini pembagian dataset yang terdiri dari data gambar dan data fisiologis dibagi menjadi berikut:

- 1. Training Set (75%), data yang digunakan untuk melatih melatih model.
- 2. Validation Set (15%), digunakan untuk tuning hyperparameters dan memilih model terbaik.
- 3. Test Set (15%), digunakan untuk mengevaluasi kinerja akhir model.

#### 3.4.4 Desain Arsitektur

Desain arsitektur merupakan proses menentukan struktur dan komponen model yang akan dibangun, yang terdiri dari jenis model, jumlah dan jenis layer, fungsi aktivasi, teknik regularisasi, dan konfigurasi model. Jenis model penelitian ini melibatkan dua model utama yaitu *Convolutional Neural Network* (CNN) untuk data visual dan *Long Short-Term Memory* (LSTM) untuk data fisiologis. Hasil dari kedua model digabungkan dan diklasifikasikan menggunakan *Support Vector Machine* (SVM). Model ini terdiri dari tiga tahapan yaitu akuisisi data, *pre-processing* data, ekstraksi fitur, penggabungan fitur, dan klasifikasi dengan SVM, dan *output* sistem. Berikut merupakan Gambar 3.5 Arsitektur Model.



Gambar 3.5 Arsitektur Model

Tahap ini mencakup perancangan arsitektur CNN yang akan digunakan, termasuk pemilihan jumlah dan jenis layer, fungsi aktivasi, dan teknik regularisasi. Digunakan untuk mengolah data visual, seperti mengenali mata tertutup atau mulut menguap sebagai indikator kantuk. LSTM digunakan untuk menganalisis data fisiologis yang berurutan, seperti pola detak jantung yang menunjukkan kelelahan atau penurunan kewaspadaan. Menggabungkan fitur yang diekstrak dari CNN dan LSTM untuk mendapatkan representasi data yang komprehensif, memastikan bahwa model dapat mengidentifikasi kantuk berdasarkan kombinasi indikator visual dan fisiologis. Selanjutnya yaitu menggunakan *Support Vector Machines* (SVM) untuk mengklasifikasikan data sebagai "kantuk" atau "tidak kantuk". SVM dipilih karena kemampuannya dalam mengklasifikasikan data yang kompleks dan memberikan batas keputusan yang jelas "layak" atau "tidak layak" pengemudi untuk berkendara. Jika pengklasifikasi mendeteksi keadaan mengantuk, maka pengklasifikasi menghasilkan alarm atau notifikasi pemberitahuan untuk memberi tahu bahwa pengemudi tidak layak untuk berkendara atau kembali ke fase pertama dan memulai ulang prosedur.

## 3.4.5 Pelatihan Model dengan Dataset

Pelatihan model dilakukan dengan menggunakan *training set*, dengan *tuning hyperparamaters* berdasarkan kinerja pada *validation set*. Pelatihan model dilakukan dengan model SVM menggunakan *training set*.

#### 3.5 Evaluasi

Model gabungan ini dievaluasi menggunakan metrik seperti akurasi, presisi, *recall*, dan *F1-score* untuk memastikan performa dan keandalannya. Implementasi sistem ini diharapkan dapat memberikan notifikasi atau peringatan kepada pengemudi jika tanda-tanda kantuk terdeteksi selama kondisi *pre-driving*, sehingga dapat meningkatkan keselamatan berkendara secara signifikan. Berdasarkan hasil validasi, model dapat *di-tune* atau dioptimalkan untuk meningkatkan performa, misalnya dengan mengubah arsitektur, parameter, atau teknik *training*.

## 3.6 Implementasi

Setelah penyempurnaan, model dianggap siap untuk digunakan. Model ini harus dapat secara akurat mendeteksi kantuk pengemudi dalam berbagai kondisi dengan minimal kesalahan. Langkah selanjutnya yaitu penerapan model dalam sistem nyata dan pemantauan efektivitasnya dalam kondisi pengemudi pada

lingkungan *pre-driving*. Model yang telah dioptimalkan diintegrasikan ke dalam sistem deteksi dini kantuk untuk pengujian awal. Selanjutnya yaitu melakukan uji coba lapangan untuk mengevaluasi efektivitas sistem dalam kondisi nyata, memungkinkan pengumpulan *feedback* untuk perbaikan lebih lanjut.

# 3.7 Rencana Kegiatan

Tabel 3.1 Rencana Kegiatan

| No  | Nama Kegiatan                | Bulan |   |   |   |   |   |   |   |   |    |    |    |
|-----|------------------------------|-------|---|---|---|---|---|---|---|---|----|----|----|
|     | Nama Regiatan                |       | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1   | Kajian Literatur             |       |   |   |   |   |   |   |   |   |    |    |    |
| 2   | Perencanaan Penelitian       |       |   |   |   |   |   |   |   |   |    |    |    |
| 3.  | Pengumpulan Data             |       |   |   |   |   |   |   |   |   |    |    |    |
| 4.  | Pra-pemrosesan Data          |       |   |   |   |   |   |   |   |   |    |    |    |
| 5.  | Pembuatan Model              |       |   |   |   |   |   |   |   |   |    |    |    |
| 6.  | Pelatihan dan Evaluasi Model |       |   |   |   |   |   |   |   |   |    |    |    |
| 7.  | Penyusunan Laporan Akhir     |       |   |   |   |   |   |   |   |   |    |    |    |
| 8.  | Presentasi Laporan Akhir     |       |   |   |   |   |   |   |   |   |    |    |    |
| 9.  | Publikasi Jurnal Ilmiah      |       |   |   |   |   |   |   |   |   |    |    |    |
|     | Internasional                |       |   |   |   |   |   |   |   |   |    |    |    |
| 10. | Pengajuan HKI                |       |   |   |   |   |   |   |   |   |    |    |    |

# Bibliografi

- Abbas, S.A.D., Tiang, S.S., Lim, W.H., Chow, L.S., Wong, C.H. Driver's Fatigue Recognition Using Convolutional Neural Network Approach (2023). Proceedings of International Conference on Artificial Life and Robotics, pp. 625-633.
- Abbas, Q., Ibrahim, M.E., Khan, S., Baig, A.R. (2022). Hypo-driver: A multiview driver fatigue and distraction level detection system. Computers, Materials & Continua, 71(1), 1999-2007. https://doi.org/10.32604/cmc.2022.022553
- Alharbey, R., Dessouky, M. M., Sedik, A., Siam, A. I., & Elaskily, M. A. (2022). Fatigue State Detection for Tired Persons in Presence of Driving Periods. *IEEE Access*, *10*, 79403-79418. doi:10.1109/access.2022.3185251
- Bajaj JS, Kumar N, Kaushal RK, Gururaj HL, Flammini F, Natarajan R. System and Method for Driver Drowsiness Detection Using Behavioral and Sensor-Based Physiological Measures. Sensors. (2023). 23(3):1292. https://doi.org/10.3390/s23031292
- Beles H, Vesselenyi T, Rus A, Mitran T, Scurt FB, Tolea BA. Driver Drowsiness Multi-Method Detection for Vehicles with Autonomous Driving Functions. Sensors. (2024). 24(5):1541. https://doi.org/10.3390/s24051541
- BPS (2022) Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi.Diakses pada:

  <a href="https://www.bps.go.id/id/statistics-">https://www.bps.go.id/id/statistics-</a> table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--luka-berat--luka-ringan--dan-kerugian-materi.html</a>
- Cui, Z., Sun, H.-M., Yin, R.-N., Gao, L., Sun, H.-B., & Jia, R.-S. (2021). Real-time detection method of driver fatigue state based on deep learning of face video. Multimedia Tools and Applications, 80(17), 25495-25515. doi:10.1007/s11042-021-10930-z
- Database Peraturan JDIH BPK.(1993). Peraturan Pemerintah (PP) Nomor 44

  Tahun 1993 tentang Kendaraan Dan Pengemudi. diakses melalui https://peraturan.bpk.go.id/Details/57553/pp-no-44-tahun-1993

- Hasan, H., Shafri, H. Z. M., & Habshi, M. (2019). A Comparison Between Support Vector Machine (SVM) and Convolutional Neural Network (CNN) Models For Hyperspectral Image Classification. *IOP Conference Series: Earth and Environmental Science*, 357(1). doi:10.1088/1755-1315/357/1/012035
- Halomoan J, Ramli K, Sudiana D, Gunawan TS, Salman. A New ECG Data Processing Approach to Developing an Accurate Driving Fatigue Detection Framework with Heart Rate Variability Analysis and Ensemble Learning'. Information. (2023). vol. 14(4):210.: https://doi.org/10.3390/info14040210.
- Halomoan J, Ramli K, Sudiana D, Gunawan TS, Salman M. ECG-Based Driving Fatigue Detection Using Heart Rate Variability Analysis with Mutual Information. Information. (2023). 14(10):539. https://doi.org/10.3390/info14100539
- Hu, X., & Lodewijks, G. (2020). Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. Journal of safety research, 72, 173–187. https://doi.org/10.1016/j.jsr.2019.12.015
- Li, K., Gong, Y., & Ren, Z. (2020). A Fatigue Driving Detection Algorithm Based on Facial Multi-Feature Fusion. *IEEE Access*, 8, 101244-101259. doi:10.1109/access.2020.2998363
- Li, X., Xia, J., Cao, L., Zhang, G., & Feng, X. (2021). Driver fatigue detection based on convolutional neural network and face alignment for edge computing device. *Proceedings of the Institution of Mechanical Engineers*, *Part D: Journal of Automobile Engineering*, 235(10-11), 2699-2711. doi:10.1177/0954407021999485
- Phan A-C, Nguyen N-H-Q, Trieu T-N, Phan T-C. An Efficient Approach for Detecting Driver Drowsiness Based on Deep Learning. Applied Sciences. (2021). 11(18):8441. https://doi.org/10.3390/app11188441

- Rahman, A., Hriday, M. B. H., & Khan, R. (2022). Computer vision-based approach to detect fatigue driving and face mask for edge computing device. *Heliyon*, 8(10), e11204. doi:10.1016/j.heliyon.2022.e11204
- Salma Anber, Wafaa Alsaggaf, Wafaa Shalash. (2022). A Hybrid Driver Fatigue and Distraction Detection Model Using AlexNet Based on Facial Features. Electronics. doi:10.3390/electronics
- Sinha, A., Aneesh, R. P., & Gopal, S. K. (2021). *Drowsiness Detection System Using Deep Learning*. Paper presented at the 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII).
- Tao, T., & Wei, X. (2022). A hybrid CNN-SVM classifier for weed recognition in winter rape field. *Plant Methods*, 18(1), 29. doi:10.1186/s13007-022-00869-z
- W. Zhang, B. Cheng, and Y. Lin, "Driver drowsiness recognition based on computer vision technology," Tsinghua Sci. Technol., vol. 17, no. 3, pp. 354–362, 2012, doi: 10.1109/TST.2012.6216768.
- Wikisumber. (2009). Undang-Undang Republik Indonesia Nomor 22 Tahun 2009

  Tentang Lalu Lintas dan Angkutan Jalan. diakses melalui https://id.wikisource.org/wiki/Undang
  Undang\_Republik\_Indonesia\_Nomor\_22\_Tahun\_2009/Konsolidasi
- Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E., & Wang, F.-Y. (2019). Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach. *IEEE Transactions on Vehicular Technology*, 68(6), 5379-5390. doi:10.1109/tvt.2019.2908425
- Zahara, Lutfiah, et al. "The facial emotion recognition (FER-2013) dataset for prediction system of micro-expressions face using the convolutional neural network (CNN) algorithm based Raspberry Pi." 2020 Fifth international conference on informatics and computing (ICIC). IEEE, 2020.

- Zhao, Z., Zhou, N., Zhang, L., Yan, H., Xu, Y., & Zhang, Z. (2020). Driver Fatigue Detection Based on Convolutional Neural Networks Using EMCNN. *Comput Intell Neurosci*, 2020, 7251280. doi:10.1155/2020/7251280
- WHO (2023) Road Traffic Injuries, Fact Sheet. Available at: <a href="https://www.who.int/news-room/factsheets/detail/road-traffic-injuries.">https://www.who.int/news-room/factsheets/detail/road-traffic-injuries.</a>