PROPIEDADES DE LA MEDIDA EXTERIOR (II)

JUAN FERRERA

Recordad que el diámetro de un conjunto es el supremo de las distancias entre puntos del conjunto

$$diam(A) = \sup\{||x - y|| : x, y \in A\}.$$

Dado un número positivo δ , siempre es posible partir un rectángulo arbitrario Q en una unión de rectángulos de diámetro menor que δ de tal forma que el v(Q) sea la suma de los volumenes de los nuevos rectángulos. En efecto, solo hace falta dividir los intervalos que definen Q en intervalos suficientemente pequeños.

Observación:

Dado $\delta > 0$, la definición de medida exterior no varía si imponemos la condición de que los recubrimientos estén formados por rectángulos de diámetro menor que δ .

Esto es consecuencia de que dado un rectángulo en un recubrimiento arbitrario, siempre puede sustituirse por un número finito de rectángulos de diámetro menor que δ sin alterar el volumen que aportan.

Esta observación nos permite probar el siguiente resultado, para el que recordamos que la distancia entre dos conjuntos A y B, d(A; B), se define como

$$d(A, B) = \inf\{||a - b|| : a \in A \ y \ b \in B\}$$

Es inmediato que si $A \cap B \neq \emptyset$, entonces d(A, B) = 0. Sin embargo el recíproco es falso, ya que por ejemplo el semiplano abierto x > 0 en \mathbb{R}^2 y el origen tienen intersección vacía, pero la distancia entre ellos es 0.

Proposición:

Si dos conjuntos A y B cumplen que d(A; B) > 0 entonces

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

Date: January 19, 2022 (945).

Demostración: Tomamos $\delta > 0$ tal que $\delta < d(A; B)$. Fijamos $\varepsilon > 0$ arbitrario (luego lo haremos tender a 0). Para ese ε existe un recubrimiento de $A \cup B$, $\{Q_k\}$, por rectángulos que podemos tomar de diámetro menor que δ , tal que

$$\sum_{k=1}^{\infty} v(Q_k) < \mu^*(A \cup B) + \varepsilon$$

Este recubrimiento existe por la definición de $\mu^*(A \cup B)$ como un ínfimo, y por la observación que hemos hecho antes.

Ningún rectángulo Q_k puede cortar a la vez a A y a B, porque si así fuese habría puntos $a, b \in Q_k$ tal que $a \in A$ y $b \in B$, con lo cual

$$\delta < d(A; B) \le ||a - b|| < \delta$$

lo que es absurdo.

Por tanto podemos clasificar los rectángulos Q_k en dos familias disjuntas: los que cortan a A y los que cortan a B (aquellos que no corten a A ni B los puedo tirar, ya que no son necesarios para el recubrimiento y en todo caso disminuyen el valor del sumatorio). Por tanto tengo

$$\mu^*(A \cup B) + \varepsilon > \sum_{k=1}^{\infty} v(Q_k) \ge \sum_{Q_k \cap A \ne \emptyset} v(Q_k) + \sum_{Q_k \cap B \ne \emptyset} v(Q_k) \ge \mu^*(A) + \mu^*(B)$$

donde he sumado por un lado el volumen de los rectángulos que cortan a A, que por tanto recubren a A y por otro los que cortan a B, que todos juntos lo recubren.

Para terminar hago tender ε a 0, y obtengo

$$\mu^*(A \cup B) \ge \mu^*(A) + \mu^*(B).$$

Como la otra desigualdad se cumple siempre, obtengo la igualdad buscada. \clubsuit

Para terminar vemos un teorema que recopila las propiedades esenciales de la medida exterior, en el sentido de que casi todos los resultados y definiciones que vamos a introducir se pueden deducir de estas propiedades. Esto permitiría deducir una teoría de la medida y una integración en espacios distintos de los \mathbb{R}^n . En todo caso este planteamiento desborda este curso y lo podreis ver en un curso de Teoría de la Medida. A veces nos referiremos a la medida exterior que hemos definido como **Medida Exterior de Lebesgue**

Teorema:

La medida exterior de Lebesgue verifica las siguientes propiedades:

- (1) $\mu^*(\emptyset) = 0$,
- (2) Si $A \subset B$ entonces $\mu^*(A) \leq \mu^*(B)$

$$\mu^* \bigg(\bigcup_{j=1}^{\infty} A_j \bigg) \le \sum_{j=1}^{\infty} \mu^* (A_j)$$

Demostración: (1) es inmediato y se deja como ejercicio. (2) ya está visto. Veamos (3).

Puedo suponer que $\mu^*(A_j) < +\infty$ para todo j, porque si no la desigualdad es trivial (el sumando de la derecha sería infinito). Fijo $\varepsilon > 0$ que luego haré tender a 0.

Para cada j existe un recubrimiento $\{Q_k^j\}_k$ de A_j tal que

$$\sum_{k=1}^{\infty} v(Q_k^j) < \mu^*(A_j) + \frac{\varepsilon}{2^j}$$

(de nuevo por la definición de medida exterior como ínfimo).

La familia de rectángulos $\{Q_k^j\}_{k,j}$ recubre a la unión de los A_j , es decir

$$\bigcup_{j=1}^{\infty} A_j \subset \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} Q_k^j,$$

es numerable (es decir se puede escribir como una sucesión) y verifica que la suma de sus volúmenes es

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} v(Q_k^j) < \sum_{j=1}^{\infty} \left(\mu^*(A_j) + \frac{\varepsilon}{2^j} \right) = \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon$$

luego

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} v(Q_k^j) < \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon.$$

Haciendo tender ε a 0 obtenemos el resultado. \spadesuit