Report8

Rainzor

1 Question

用 Monte Carlo 方法计算如下定积分,并讨论有效数字位数。

$$I_1 = \int f_1(x) dx = \int_0^5 dx \sqrt{x^2 + 2\sqrt{x}}$$
 $I_2 = \int f_2(x,y,z,u,v) dx dy dz du dv = \int_0^{7/10} dx \int_0^{4/7} dy \int_0^{9/10} dz \int_0^2 du \int_0^{13/11} dv (5 + x^2 - y^2 + 3xy - z^2 + u^3 - v^3)$

2 Algorithm

2.1 积分 I_1 ——重要抽样法

采取 **重要抽样方法**,选择的 $p(x)=(x-2.5)+f_1(2.5)=0.567944+x$ 被积函数 $f_1(x)$ 与p(x) 如下图所示

图1: f(x)与g(x)图像

这样将积分转化为: $\int_0^5 f(x)dx = \int_0^5 rac{f(x)}{g(x)}g(x)dx$

为了方便积分,对g(x)进行归一化处理

$$p(x) = rac{g(x)}{\int_0^5 g(x) dx} = rac{g(x)}{15.3397}$$

那么算法如下:

- 1. 随机生成N个以p(x)分布的采样点(舍选法)
- 2. 计算对应的 $\{y_i\}$, $y_i = f(x_i)/p(x_i)$
- 3. 求得数值积分表达式 $I(N) = rac{\sum y_i}{N} = \langle y
 angle$
- 4. 对 $N \in \{2^k\}_{k=5}^{20}$ 的不同取值,计算积分误差

$$e_k = |I(N_k) - I_2| pprox |I(N_k) - 15.4390107|$$

$$e_k = |I(N_k) - I_1| pprox 5rac{\sqrt{\left\langle y^2
angle - \left\langle y
ight
angle^2}}{\sqrt{N_k}}$$

注: 大数定理适用于N较大情况, 所以对于N较小的情况(N<50)没有考虑

2.2 积分 I_2 ——简单抽样法

采取平均值法积分, 算法如下:

- 1. 分别在 [0,7/10]上的均匀分布的抽样值 $\{x_i\}$, [0,4/7]上均匀分布的抽样值 $\{y_i\}$, [0,9/10]上均匀分布的抽样值 $\{z_i\}$, [0,2]上均匀分布的抽样值 $\{u_i\}$, [0,13/11]上均匀分布的抽样值 $\{v_i\}$ 生成 N个随机值
- 2. 计算 $f_i=5+x^2-y^2+3xy-z^2+u^3-v^3=5+(x+\frac{3}{2}y)^2-\frac{13}{4}y^2-z^2+u^3-v^3$
- 3. 求数值积分 $I(N)=rac{7}{10}*rac{4}{7}*rac{9}{10}*2*rac{13}{11}rac{\sum f_i}{N}=rac{234}{275}\langle f
 angle$
- 4. 对 $N \in \{2^k\}_{k=5}^{20}$ 的不同取值,计算积分误差

$$e_k = |I(N_k) - I_2| \approx |I(N_k) - 5.67712092|$$

$$e_k = |I(N_k) - I_2| pprox rac{234}{275} rac{\sqrt{\left\langle f^2
ight
angle - \left\langle f
ight
angle^2}}{\sqrt{N_k}}$$

3. Experiment

3.1 积分 I_1 结果

对于一维积分,实验中采取了带权抽样方法,使得图像更为平缓

实验结果如下图所示,可以看到在N>5000后,有效位有4位

N Integral Error 0 32 15.273568 0.165442 1 64 15.358333 0.080677 128 15.414951 0.024060 256 15.448563 0.009552 512 15.475459 0.036448 1024 15.465627 0.026616 2048 15.444711 0.005700 7 4096 15.438930 0.000081 8192 15.439199 0.000188 9 16384 15.431946 0.007064 32768 15.433612 0.005399 65536 15.434912 0.004099 11 12 131072 15.438890 0.000121 13 262144 15,435927 0,003084 14 524288 15.437086 0.001925 15 1048576 15.438141 0.000870

图3

The error trend in Monte Carlo Method

图4: Monte Carlo方法的误差趋势

可见确实符合 $O(1/\sqrt{N})$ 的趋势,从另一方面佐证了实验的可靠性。

但同样在实验中会发现,在N较小时,误差会有较大波动性。

图5: 不稳定的结果

可能是由于一开始误差就降到0.05以内,导致后续存在了一些波动。在N足够大(N>10000)时,仍然会趋于稳定。 这也间接的说明了Monte Carlo方法可以用较少的点,就可以快速逼近精确值。

3.2 积分 I_2 结果

实验结果如下,在N>20000后,至少有2位的有效位数

	N	Integral	Error
0	32	6.148894	0.471773
1	64	5.518763	0.158358
2	128	5.906892	0.229771
3	256	5.638065	0.039056
4	512	5.596683	0.080438
5	1024	5.661956	0.015165
6	2048	5.747969	0.070848
7	4096	5.643786	0.033335
8	8192	5.707617	0.030496
9	16384	5.700841	0.023720
10	32768	5.668749	0.008372
11	65536	5.683853	0.006732
12	131072	5.678244	0.001123
13	262144	5.680170	0.003049
14	524288	5.673709	0.003412
15	1048576	5.676346	0.000775

图6

误差变化趋势如下

积分误差符合 $O(1/\sqrt{N})$ 的趋势,在数值N<1000时,会存在一些波动,但当N较大时,仍然会趋于稳定。

4.Summary

本次实验中利用 Monte Carlo 方法获得了两个定积分的近似解,估计了计算结果的有效位数。

最后验证了积分误差和抽样点的个数满足正比于 $1/\sqrt{N}$ 的 关系,并验证了在N较大时,Monte Carlo方法具有精确性、稳定性。