自用复习

近似点算法学习

李鑫

吉林大学

2021年1月1日

知乎笔记

线性代数基础 对称矩阵

背景 知乎笔记

对称铂阵

定义(对称矩阵)

矩阵 $A \in \mathbb{R}^{n \times n}$ 是对称的: $A^T = A$

两个基本性质

性质(实对称矩阵)

- 1. 实对称矩阵所有特征值为实数
- 2. 不同特征值的特征向量正交

复习下复数的东西

- ▶ 先来看看什么叫做复数矩阵 $A \in \mathbb{C}^{n \times n}$. 对于复数定义为 z = x + vi 其中 $i = \sqrt{-1}$. 那么对 应的 \mathbb{C}^n 就是每一个元素都是复数的向量,而 $\mathbb{C}^{n \times n}$ 就是每一个元素都是复数的矩阵。
- ▶ 我们记复数的共轭是 $z^* = x yi$. 对于复数向量 $u \in \mathbb{C}^n$ 和复数矩阵 $A \in \mathbb{C}^{n \times n}$. 他们的共 轭是他们每个元素的共轭.
- ▶ $u \in \mathbb{C}^n$ 的共轭是 $(u_i)^* = (u^*)_i$.
- ▶ $A \in \mathbb{C}^{n \times n}$ 的共轭是 $(A_{ii})^* = (A^*)_{ii}$.
- 性质
 - \blacksquare $\mu = \nu \Leftrightarrow \mu^* = \nu^*$.
 - \triangleright $A, B \in \mathbb{C}^{n \times n}, A = B \Leftrightarrow A^* = B^*.$
 - $(Au)^* = A^*u^* \text{ an } (A^*)^T = (A^T)^*.$

对称矩阵

实对称矩阵基本性质的证明.

1. 对于特征值 λ 和特征向量 u, 有

$$Au = \lambda u \tag{1}$$

对两边同时取共轭可得到

$$A^*u^* = \lambda^*u^* = Au^* \tag{2}$$

对公式 (1) 两边同时乘以 $(u^*)^T$ 得到

$$\lambda(u^{*})^{T}u = (u^{*})^{T}(Au) = ((u^{*})^{T}A)u$$

$$= (A^{T}u^{*})^{T}u$$

$$= (Au^{*})^{T}u$$

$$= (\lambda^{*}u^{*})^{T}u = \lambda^{*}(u^{*})^{T}u$$
(3)

得到 $(\lambda - \lambda^*)(u^*)^T u = 0$, 证明完毕.

实对称矩阵基本性质的证明.

2 对于不同特征值 $\lambda \neq u$ 对于的特征向量 $x \neq y$, 有

$$< Ax, y > = \lambda < x, y >$$

 $< Ax, y > = < x, Ay > = u < x, y >$
 $(\lambda - u) < x, y > = 0$
(4)

由于 $\lambda \neq u$ 得到 $\langle x, y \rangle = 0$.

集合 C 是闭集,如果它包含边界,即

$$x^k \in \mathcal{C}, x^k \to \bar{x} \quad \Rightarrow \quad \bar{x} \in \mathcal{C}$$

保持闭集的操作

- ▶ 闭集的交集还是闭集.
- ▶ 有限个闭集的并集还是闭集.
- ▶ 如果 C 是闭集,则线性映射的原象也是闭集,也就是 $\{x|Ax \in C\}$ 是闭集合

Thank You