

OPEN QUANTUM SYSTEMS AND QUANTUM THERMODYNAMICS

M20Temp16 Monsoon 2020

Instructor: Samyadeb Bhattacharya (*Phone:* 4066531000, *E-mail:* samyadeb.b@iiit.ac.in)
TA: Utkarsh Azad (*Phone:* 9491750674, *E-mail:* utkarsh.azad@research.iiit.ac.in)

Date: SEPTEMBER 17, 2020

Problem Set - II

Date of Submission: September 23, 2020 23:55 HRS

- Q1. A spin 1/2 system is known to be in an eigenstate of $\vec{s} \cdot \hat{n}$ with eigenvalue $\hbar/2$, where \hat{n} is a unit vector lying in the xz plane that makes an angle γ with the positive z axis.
 - (i) Suppose \hat{S}_x is measured. What is the probability of getting $+\hbar/2$?
 - (ii) Evaluate the dispersion in \hat{S}_x , that is $\langle (\hat{S}_x \langle \hat{S}_x \rangle)^2 \rangle$.
- Q2. Consider the spin-precession problem with Hamiltonian

$$H = -\left(\frac{eB}{mc}\right)S_z = \omega S_z$$

- (i) Write down the Heisenberg equation of motion for S_x, S_y, S_z .
- (ii) Solve those equations to find the $S_x(t), S_y(t), S_z(t)$ as a function of time.
- Q3. Consider a particle in three dimensions whose Hamiltonian is given by:

$$H = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

By calculating $[\vec{x} \cdot \vec{p}, H]$, obtain

$$\frac{d}{dt}\langle \vec{x} \cdot \vec{p} \rangle = \left\langle \frac{\vec{p}^2}{2m} \right\rangle - \langle \vec{x} \cdot \vec{\nabla V} \rangle$$

- Q4. Consider an one dimensional Harmonic oscillator. Then consider a normalized state $|\alpha\rangle = c_0 |0\rangle + c_1 |1\rangle$, where $|n\rangle$ is a number state.
 - (i) Show the expectation value $\langle x \rangle_{\alpha}$ to be:

$$\langle x \rangle_{\alpha} = 2\sqrt{\frac{\hbar}{2m\omega}}\cos{(\delta_1 - \delta_0)|c_0|}\sqrt{1 - |c_0|^2}$$

where $c_n = |c_n|e^{i\delta_n}$.

- (ii) Now find the dispersion $\langle \Delta x^2 \rangle$.
- Q5. Let x(t) be the coordinate operator for a free particle with Hamiltonian $H = p^2/2m$. Then find the commutator [x(t), x(0)].
- Q6. Consider an one-dimensional simple Harmonic oscillator. Then consider a coherent state $|\lambda\rangle$, which is an eigenstate of the annihilation operator a, i.e. $a|\lambda\rangle = \lambda |\lambda\rangle$.
 - (i) Prove $|\lambda\rangle = e^{-|\lambda|^2/2}e^{\lambda a^{\dagger}}|0\rangle$ is a normalized coherent state.
 - (ii) Prove that $|\lambda\rangle$ can be written as $|\lambda\rangle = \sum_{n=0}^{\infty} f(n) |n\rangle$. What kind of distribution does $|f(n)|^2$ follows with respect to n? Using this find the most probable value of E.