

Data Visualisation CSE2002

- The most common visual encoding idiom for tree and network data is with nodelink diagrams
- nodes are drawn as point marks
- the links connecting them are drawn as line marks
- This idiom uses connection marks to indicate the relationships between items.

- Applications:
- Tournaments
- Organization Charts
- Genealogy
- Biological Interactions
- Social Networks etc

- Spatial layout:
- A primary concern of tree/graph drawing is the spatial arrangement of nodes and edges.
- Graph Structure:
- Connectivity, path-following
- Topological distance
- Clustering / grouping
- Ordering (e.g., hierarchy level)

- Networks are also very commonly represented as node link diagrams, using connection.
- Nodes that are directly connected by a single link are perceived as having the tightest grouping
- nodes with a long path of multiple hops between them are less closely grouped.
- The number of hops within a path is a network-oriented way to measure distances.
- Node link diagrams are useful to understanding the network topology:
- finding all possible paths from one node to another
- finding the shortest path between two nodes
- finding all the adjacent nodes one hop away from a target node
- finding nodes that act as a bridge between two components of the network that would otherwise be disconnected.

- Tiny tree of 24 nodes with triangular vertical node-link layout
- root at top and leaves at bottom
- it uses vertical spatial position channel to show the depth in the tree
- The horizontal spatial position of a node does not directly encode any attributes.
- the layout algorithm's calculations to ensure maximum possible information density while guaranteeing that there are no edge crossings or node overlaps

- small tree of a few hundred nodes with spline radial layout
- It also uses same algorithm for density without overlap
- The visual encoding is radial rather than rectilinear
- The depth of the tree is encoded as distance away from the center of the circle
- The Links of the graph are drawn as smoothly curving **splines**

- A larger tree of 5161 nodes as a rectangular horizontal node-link diagram
- Root at left and leaves stretching out to right.
- The edges are colored with a purple to orange continuous colormap
- The spatial layout is fundamentally the same as the triangular layout
 - zoomed-out position, the edges within a subtree form a single perceptual block where the spacing in between them cannot be seen.

- BubbleTree is a radial rather than rectilinear approach (same dataset)
- subtrees are laid out in full circles rather than partial circular arcs
- Spatial position does encode information about tree depth
- Relative distances to the center of the parent rather than as absolute distances in screen space

- Different Network layouts in Node-link Diagrams
 - Sugiyama-Tagawa-Toda algorithm
 - Force Direct Layout Algorithm
 - Constraint Based Layout Algorithm

- Force Direct layout
 - most widely used layout in networks
 - many variants are available
 - the network elements are positioned according to a simulation of physical forces where nodes push away from each other
 - The links act like springs that draw Force-directed placement their endpoint nodes closer to each other.
 - Very easy to implement.
 - Many Force-direct placement algorithms starts by placing the nodes randomly
 - Iteratively refine the positions of the nodes by pushing and pulling of simulated forces to gradually improve the layout.
 - It do not directly use spatial position to encode attribute values.
 - Few algorithms are designed to minimize the edge crossings and node overlaps
 - Analyzing the visual encoding created by force-directed

- Force Direct layout
 - Analyzing the visual encoding created by force-directed placement is somewhat subtle.
 - Spatial position does not directly encode any attributes of either nodes or links;
 - Tightly interconnected group of nodes → Interpretation in two ways → proximity is sometimes meaningful but sometimes arbitrary;
 - Weakness: Non-deterministic → The problem with non-deterministic visual encodings is that spatial memory cannot be exploited across different runs of the algorithm.
 - Moreover, the randomness can lead to different proximity relationships each time.
 - Randomness is particularly tricky with dynamic layout.

- Force Direct layout
 - A major weakness of force-directed placement is scalability, both in terms of the visual complexity of the layout and the time required to compute it.
 - hairball problem → of visual clutter with even hundred of nodes → task of path following or understanding overall structural relationships become very difficult → impossible with thousand of nodes
 - The nodes never settle down to a final location in simplest force-direct algorithm → they continue to bounce around if the user does not explicitly intervene to halt the layout process
 - More sophisticated algorithms automatically stop by determining that the layout has reached a good balance between the forces.
 - Computation is struck in local minima
 - occlusion

• Force - Direct layout

ldiom	Force-Directed Placement
What: Data	Network.
How: Encode	Point marks for nodes, connection marks for links.
Why: Tasks	Explore topology, locate paths.
Scale	Nodes: dozens/hundreds. Links: hundreds. Node/link density: L < 4N

- Force Direct layout
 - Multilevel network Layout
 - ullet Recent approaches to scalable network o multilevel network
 - The original network is augmented with a derived cluster hierarchy to form a compound network
 - The cluster hierarchy is computed by coarsening the original network into successively simpler networks
 - These approaches are better at avoiding the local minimum problem

ldiom	Multilevel Force-Directed Placement (sfdp)
What: Data	Network.
What: Derived	Cluster hierarchy atop original network.
What: Encode	Point marks for nodes, connection marks for links.
Why: Tasks	Explore topology, locate paths and clusters.
Scale	Nodes: 1000–10,000. Links: 1000–10,000. Node/link density: L < 4N.

- Force Direct layout
 - Multilevel network Layout
 - The figure in the next slide shows a network of 7220 and 13,800 edges
 - It used the multilevel scalable force-directed placement (sfdp) algorithm
 - In this the edges are colored by length
 - Significant cluster structure is indeed visible in the layout
 - the dense clusters with short orange and yellow edges can be distinguished from the long blue and green edges between them.
 - Another network of 26028 nodes and 100290 edges with sfdp algorithm \rightarrow hairball problem

Multilevel network Layout

- Matrix Views → Adjacency Matrix Views
 - Network data can also be encoded with a matrix view by deriving a table from the original network data.
 - where all of the nodes in the network are laid out along the vertical and horizontal edges of a square region and links between two nodes are indicated by coloring an area mark in the cell in the matrix that is the intersection between their row and column
 - That is, the network is transformed into the derived dataset of a table with two key attributes that are separate full lists of every node in the network, and one value attribute for each cell records whether a link exists between the nodes that index the cell.

Adjacency Matrix Views

- Matrix Views → Adjacency Matrix Views
 - size coding matrix cells is limited by the number of available pixels per cell → only a few levels would be distinguishable between the largest and the smallest cell size
 - Network matrix views can also show weighted networks → each link has an associated quantitative value attribute, by encoding with an ordered channel such as luminance or size.
 - Only half of the matrix is enough for symmetric undirected networks
 - Full Matrix view is required for directed networks

Idiom	Adjacency Matrix View
What: Data	Network.
What: Derived	Table: network nodes as keys, link status between two nodes as values.
How: Encode	Area marks in 2D matrix alignment.
Scale	Nodes: 1000. Links: one million.

- Connection Vs Matrix
 - supporting many of the abstract tasks that pertain to small network data.
 - It gives the solutions for many tasks which are rely on topological structure of the network
 - It also identifies the solutions to the tasks like general overview or finding similar substructures.
 - Limitation: network size and link density, occlusion
 - The link density of a network is the number of links compared with the number of nodes.
 - The upper limit for nodelink diagram effectiveness is a link density of around three or four.
 - Even for the networks with link density below four, it can have unreadable hairball due to increase in network size.
 - ullet Filtering, aggregation, and navigation are design choices that can ameliorate the clutter problem ullet but they do impose

Connection Vs Matrix

- A major strength of matrix views is perceptual scalability for both large and dense networks.
- Matrix views completely eliminate the occlusion of node-link views
- a single-level matrix view can handle up to one million edges and an aggregated multilevel matrix view might handle up to ten billion edges.
- Another strength of matrix views is their predictability, stability and support for reordering.
- Matrix views use less screen space where as node-link views takes more screen space based on dataset characteristics.
- matrix views are stable; adding a new item will only cause a small visual change.
- it supports the tasks related to estimating the number of nodes in a graph, fast searching through fast node lookup, finding an item label in ordered list, etc.

- Connection Vs Matrix
 - major weakness of matrix views is unfamiliarity → training is needed to interpret matrix views.
 - crucial weakness of matrix views is their lack of support for investigating topological structure
 - nodelink views are best for small networks
 - matrix views are best for large networks