# Spin decoherence in a Frozen Spin lattice, its suppression and effect on the Frequency Domain EDM statistic

Alexander Aksentev

January 11, 2019

# Spin precession essentials

- ► T-BMT equation
- spin tune and precession axis

## Spin tune decoherence

- spin tune expression  $\nu_s = \gamma G$
- Phase stability principle
- orbit lengthening
- equilibrium-level momentum shift
- lacktriangle effective gamma  $\gamma_{\it eff}$

## Sextupole decoherence suppression theory

- orbit length effect
- compaction factor effect

## Simulation setup

- beam
- lattice
- tracking parameters
- written data

## Spin precession axis effect



Figure 1: SPA component  $\bar{n}_y$  as a function of the vertical beam offset, sextupole gradient value.

#### SPA: zoom



Figure 2: Zoom of Figure 1. SPA component  $\bar{n}_y$  (as well as  $\bar{n}_x$ ) is a parabola in the neighborhood of the reference orbit at the optimal GSY value, unlike  $nu_s$ , which is **linear**.

## Spin tune effect



Figure 3: Spin tune  $\nu_s$ .

### Frequency estimate effect



Figure 4: Frequency estimate for the optimal sextupole gradient (orange) and the values at the ends of the searched range.

### Frequency estimate: zoom



Figure 5: Zoom of Figure 4. Frequency estimate depends on the offset value linearly, like  $\nu_s$ , and unlike  $\bar{n}_v$ .

#### ST+SPA structure



Figure 6: SPA component  $\bar{n}_y$  for **particles** with offsets: [1.02749, 1.02937, 1.02840] mm. We observe small rapid oscillations about an average level. This average level changes parabolically with the vertical offset (Figure 8 below). The rapid oscillations are due to betatron motion (Figures 10, and 12).



Figure 7: Mean level of spin tune as a function of beam offset



Figure 8: Mean SPA and ST levels versus each other. Observe strong correlation.

### Vertical betatron motion dependence



a: SPA component  $\bar{n}_y$  as a function of the vertical particle position.

b: Spin tune  $\nu_s$  as a function of the vertical particle position.

Figure 10: Particle spin precession frequency depending on its vertical position. The observed non-functionality of the parameters on the *y*-position os due to the dependence on the *x*-position as well, which also oscillates at a small amplitude (Figure 12).

### Horizontal betatron motion dependence



a: SPA component  $\bar{n}_y$  as a function of the horizontal particle position.

b: Spin tune  $\nu_s$  as a function of the horizontal particle position.

Figure 12: Particle spin precession frequency as a function of itsd radial position.