Outline

Linear Regression: wrapup.

How do I love e?

Balls in Bins.

Birthday. Coupon Collector. Load balancing.

Poisson Distribution: Sum of two Poissons is Poisson.

Estimation Error

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator? Or what is the mean squared estimation error?

We find

$$\begin{split} E[|Y - L[Y|X]|^2] &= E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)} E[(Y - E[Y])(X - E[X])] \\ &+ (\frac{cov(X, Y)}{var(X)})^2 E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y]. The error is var(Y). Observing X reduces the error.

Dividing by var(Y), one gets reduction: $\frac{(cov(X,Y))^2}{var(Y)var(Y)} = (corr(X,Y))^2 = r^2$.

LR: Another Figure

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

Note that

- ▶ the LR line goes through (*E*[*X*], *E*[*Y*])
- ▶ its slope is $\frac{cov(X,Y)}{var(X)}$

Quadratic Regression

Let X, Y be two random variables defined on the same probability space.

Definition: The quadratic regression of *Y* over *X* is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^{2})X^{2}] = E[X^{2}Y] - aE[X^{2}] - bE[X^{3}] - cE[X^{4}]$$

We solve these three equations in the three unknowns (a, b, c).

For linear regression, L[Y|X], approach gives:

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How do I love e?

Let me count the ways.

```
What is e?
```

For a function $f(x) = e^x$, $f'(x) = e^x$.

Another view: $\frac{dy}{dx} = y$.

More money you have the faster you gain money. More rabbits there are, the more rabbits you get.

More people with a disease the faster it grows:

Epidemiologists:reproduction rate, *R*.

Discrete version: $x_{n+1} - x_n = \Delta(x_n) = x_n$.

$$x_n = 2^n$$
, for $x_0 = 1$.

How do I love e?

For a function $f(x) = e^x$, $f'(x) = e^x$.

What is this f'(x)?

Slope of the tangent line.

$$f'(x) \approx \frac{f(x+1/n) - f(x)}{x+1/n - x} = \frac{f(x+1/n) - f(x)}{1/n}$$

for large n

$$f'(x) \approx \frac{f(x)(e^{1/n}-1)}{1/n} e^x \frac{e^{1/n}-1}{1/n} \approx e^x$$

$$\implies e^{1/n} - 1 \approx 1/n \implies e \approx (1 + 1/n)^n.$$

Continuous compounded interest: rate r. break time into intervals of size 1/n. $(1+1/n)^{r/n} \rightarrow ((1+1/n)^{1/n})^r \rightarrow e^r$.

One throws m balls into n > m bins.

One throws m balls into n > m bins.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

In particular, $Pr[\text{no collision}] \approx 1/2 \text{ for } m^2/(2n) \approx \ln(2), \text{ i.e.,}$

$$m \approx \sqrt{2 \ln(2) n} \approx 1.2 \sqrt{n}$$
.

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2 \text{ for } m = \sqrt{n}. \ (e^{-0.5} \approx 0.6.)$

The Calculation.

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{\binom{*}{*}}$$

$$= -\frac{1}{n} \frac{m(m-1)}{2}^{\binom{\dagger}{2}} \approx -\frac{m^2}{2n}$$

- (*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.
- (†) $1+2+\cdots+m-1=(m-1)m/2$.

Approximation

$$\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \dots \approx 1 - x$$
, for $|x| \ll 1$.

Hence, $-x \approx \ln(1-x)$ for $|x| \ll 1$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays? With n = 365, one finds

 $Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

Using linearity of expectation.

Experiment: *m* balls into *n* bins uniformly at random.

Random Variable:

X = Number of collisions between pairs of balls.

or number of pairs i and j where ball i and ball j are in same bin.

$$X_{ij} = 1\{\text{balls } i, j \text{ in same bin}\}$$

$$X = \sum_{ij} X_{ij}$$

$$E[X_{ij}] = Pr[balls i, j in same bin] = \frac{1}{n}.$$

Ball i in some bin, ball j chooses that bin with probability 1/n.

$$E[X] = \frac{m(m-1)}{2n} \approx \frac{m^2}{2n}.$$

For
$$m = \sqrt{n}$$
, $E[X] = 1/2$

Markov:
$$Pr[X \ge c] \le \frac{EX}{c}$$
.

$$Pr[X \ge 1] \le \frac{E[X]}{1} = 1/2.$$

Checksums!

Consider a set of *m* files.

Each file has a checksum of b bits.

How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{split} &\textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow \textit{m}^2/(2\textit{n}) \approx 10^{-3} \\ &\Leftrightarrow 2\textit{n} \approx \textit{m}^2 10^3 \Leftrightarrow 2^{b+1} \approx \textit{m}^2 2^{10} \\ &\Leftrightarrow b+1 \approx 10 + 2\log_2(\textit{m}) \approx 10 + 2.9\ln(\textit{m}). \end{split}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in m cereal boxes'

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$In(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Events: E_k = 'fail to get player k', for k = 1, ..., n

Probability of failing to get at least one of these *n* players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? Union Bound:

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \dots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Collect all cards?

Thus,

 $Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$

Hence,

 $Pr[\text{missing at least one card}] \le p \text{ when } m \ge n \ln(\frac{n}{p}).$

To get
$$p = 1/2$$
, set $m = n \ln{(2n)}$.
 $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln{(n/p)}} \le n(\frac{p}{n}) \le p$.)
E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Time to collect coupons

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Simplest...

Load balance: *m* balls in *n* bins.

For simplicity: n balls in n bins.

Round robin: load 1!

Centralized! Not so good.

Uniformly at random? Average load 1.

Max load?

n. Uh Oh!

Max load with probability $\geq 1 - \delta$?

 $\delta = \frac{1}{n^c}$ for today. c is 1 or 2.

For each of n balls, choose random bin: X_i balls in bin i.

$$Pr[X_i \ge k] \le \sum_{S \subseteq [n], |S| = k} Pr[\text{balls in } S \text{ chooses bin } i]$$

From Union Bound: $Pr[\cup_i A_i] \leq \sum_i Pr[A_i]$

 $Pr[\text{balls in } S \text{ chooses bin } i] = \left(\frac{1}{n}\right)^k \quad \text{and} \quad \binom{n}{k} \text{ subsets } S.$

$$\Pr[X_i \ge k] \le \binom{n}{k} \left(\frac{1}{n}\right)^k$$
$$\le \frac{n^k}{k!} \left(\frac{1}{n}\right)^k = \frac{1}{k!}$$

Choose k, so that $Pr[X_i \ge k] \le \frac{1}{n^2}$.

$$Pr[\text{any } X_i \ge k] \le n \times \frac{1}{n^2} = \frac{1}{n} \to \text{max load} \le k \text{ w.p.} \ge 1 - \frac{1}{n}$$

Solving for *k*

$$Pr[X_i \ge k] \le \frac{1}{k!} \le 1/n^2$$
?

What is upper bound on max-load *k*?

Lemma: Max load is $\Theta(\log n)$ with probability $\geq 1 - \frac{1}{n}$.

$$k! \ge n^2 \text{ for } k = 2e \log n$$

 $(\text{Recall } k! \ge (\frac{k}{e})^k.)$

$$\implies \frac{1}{k!} \le \left(\frac{e}{k}\right)^k \le \left(\frac{1}{2\log n}\right)^k$$

If $\log n \ge 1$, then $k = 2e \log n$ suffices.

Also: $k = \Theta(\log n / \log \log n)$ suffices as well.

$$k^k \rightarrow n^c$$
.

Actually Max load is $\Theta(\log n / \log \log n)$ w.h.p.

(W.h.p. - means with probability at least $1 - O(1/n^c)$ for today.)

Better than variance based methods...

Sum of Poisson Random Variables. For $X = P(\lambda)$, $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i\pi}$

For $X = P(\lambda)$,

For $X = P(\lambda)$ and $Y = P(\mu)$, what is distribution X + Y?

$$Pr[X+Y=k] = e^{-\lambda} \cdot e^{-\lambda-\mu} \sum_{i+j=k} \frac{\lambda^i \mu^j}{i!j!}.$$

Poission? Yes. What parameter? $\lambda + \mu$.

Why? $P(\lambda)$ is limit $n \to \infty$ of $B(n, \lambda/n)$.

Recall Derivation: break interval into n intervals and each has arrival with probability λ/n .

Now:

arrival for X happens with probability λ/n arrival for Y happens with probability μ/n

So, we get limit $n \to \infty$ is $B(n, (\lambda + \mu)/n)$.

(Like λ^2/n^2 in previous derivation)

Details: both could arrive with probability $\lambda \mu/n^2$. But this goes to zero as $n \to \infty$.

Discrete Probability.

Probability Space: Ω , $Pr: \Omega \to [0,1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.

Events: $A \subset \Omega$, $Pr[A] = \sum_{\omega \in A} Pr[\omega]$.

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Simple Total Probability: $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$.

Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

Simple Product Rule: $Pr[A \cap B] = Pr[A|B]Pr[B]$.

Bayes Rule: $Pr[A|B] = \frac{Pr[B|A]Pr[B]}{Pr[B]}$

Inference:

Have one of two coins. Flip coin, which coin do you have? Got positive test result. What is probability you have disease?

Random Variables

Random Variables: $X: \Omega \to R$.

Distribution: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

X and Y independent \iff all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} X(\omega)Pr(\omega)$. Linearity: E[X + Y] = E[X] + E[Y].

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$ For independent X, Y, Var(X + Y) = Var(X) + Var(Y).

Also: $Var(cX) = c^2 Var(X)$ and Var(X + b) = Var(X).

Poisson:
$$X \sim P(\lambda)$$
 $Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$.
 $E(X) = \lambda$, $Var(X) = \lambda$.

Binomial:
$$X \sim B(n, p)$$
 $Pr[X = i] = \binom{n}{i} p^{i} (1 - p)^{n-i}$
 $E(X) = np, \ Var(X) = np(1 - p)$

Uniform:
$$X \sim U\{1,...,n\}$$
 $\forall i \in [1,n], Pr[X=i] = \frac{1}{n}$.

$$E[X] = \frac{n+1}{2}, \ Var(X) = \frac{n^2-1}{12}.$$

Geometric: $X \sim G(p)$ $Pr[X = i] = (1-p)^{i-1}p$
 $E(X) = \frac{1}{n}, \ Var(X) = \frac{1-p}{n^2}$

Note: Probability Mass Function \equiv Distribution.

Concentration: Law Of Large Numbers.

Markov: For a non-negative r.v. X, $Pr[X \ge c] \le \frac{E[X]}{c}$.

Chebyshev: For a random variable X: $Pr[|X - E(X)| > \varepsilon] \le \frac{Var(X)}{epsilon^2}$

For
$$X = \frac{X_1 + \dots + X_n}{n}$$
, where X_i are indentical and independent. $Var(X) = \frac{var(X_i)}{n}$.

Law of Large Numbers: $A_n = \frac{X_1 + \dots + X_n}{n}$.

$$\lim_{n\to}A_n=E[X_1].$$

Cuz:

$$Pr[|A_n - E[A_n]| \ge \varepsilon] \le \frac{varA_n}{\varepsilon^2} = \frac{var(X_1)}{n\varepsilon^2}.$$

For X_i with $Var(X_i) = \sigma^2$.

What is the confidence interval for A_n for confidence .95?

For what ε is $Pr[|A_n - E[A_n]| \ge \varepsilon] \le .05 = \delta$?

$$\varepsilon = \frac{\sigma}{\sqrt{n}\delta}$$
 using Chebyshev.

$$\varepsilon pprox rac{\sigma}{\sqrt{n}} \log rac{1}{\delta}$$
 using "Chernoff."

"z-score" from AP statistics.

FYI: Chebyshev uses $E[X^2]$, Chernoff uses $E[e^X]$. Both use Markov.

Joint Distributions and Estimation.

Distribution for
$$X, Y$$
: $Pr[X = a, Y = b]$.
Marginals: $Pr[X = a] = \sum_b Pr[X = a, Y = b]$.

Conditioning:

$$Pr[X = a|Y = b] = \frac{Pr[X = a, Y = b]}{Pr[Y = b]}$$

$$E[Y|X] = \sum_{b} b \times Pr[Y = b|X].$$

Estimation minimizing Mean Squared Error:

E[X] for X. Error is var(X).

E[Y|X] for Y if you know X.

Best linear function.

$$L[Y|X] = E[Y] + corr(X, Y) \sqrt{var(Y)} \frac{X - E(X)}{\sqrt{var(X)}}.$$

Reduces mean squared error Y by $(corr(X, Y))^2$ by var(Y).

Warning: assume knowing joint distribution.

Statistics: sampling....Law of Large Numbers.

Computer Science: large data, other functions "Deep Networks."