Prediction of US Patent Approval Time

February 2023

Erik Pak
Data Scientist
Civil engineering (B.S.)

Masoumeh Dehghani Data Scientist Physicist (Ph.D.)

Robert Lewis
Data Scientist
Biomedical Engineering (B.S.)

- Strategic context
- Problem Definition
- Methodology, Analysis & Results
- Recommendations & Next Steps

Project | Strategic Context

What:

Predict the Approval time of patents in the US using a set of demographic variables

Why:

US patent approval remains a somewhat opaque process. If certain variables are determined to decrease approval time, it would be beneficial to inventors.

Project | Problem Definition

Currently there exists a lack of transparency in the patent approval process. However, expedited patent approvals would benefit both the inventor/patent holder and their customers. The need for improved patent approval time permeates every industry and academic research institution. The goal of this project is to try and determine what patent features will most often lead to an expedited patent approval process.

Project | Methodology

Data cleaning

Exploratory Data
Analysis

Project | Data acquisition

Data Source: PatentsView.org https://patentsview.org.

Features: 22 variable

Observation: 13,000 patent, cover year (2010-2022)

RangeIndex: 13000 entries, 0 to 12999 Data columns (total 22 columns): Column Non-Null Count Dtvpe patent id 13000 non-null int64 patent date 13000 non-null datetime64[ns] count gov orgs 13000 non-null int64 patent detail desc length 11979 non-null float64 num figures 13000 non-null int64 attorney count 13000 non-null int64 13000 non-null datetime64[ns] filing date filing_type 13000 non-null object n assignees 12246 non-null object 12170 non-null object assignee isUS assignee_type 12185 non-null object 9010 non-null 11 n applicants object patent num foreign documents cited 13000 non-null int64 13000 non-null int64 13 patent num us patents cited 13000 non-null int64 14 patent year ipcr section 13000 non-null object 16 ipcr_counter 13000 non-null object 17 inventor US 13000 non-null int64 18 inventor NonUS 13000 non-null int64 19 inventor counter 13000 non-null int64 patent_abstract_counter 13000 non-null object 21 patent_processing_days 13000 non-null int64 dtypes: datetime64[ns](2), float64(1), int64(11), object(8) memory usage: 2.2+ MB

Project | Exploratory Data Analysis

Project | Exploratory Data analysis

Project | Data cleaning & Feature engineering

dtypes: int64(11), object(2)

Cleaning Data

Number of patents: 12,439

Number of variable: 13

Scaling numerical features

RangeIndex: 12439 entries. 0 to 12438 Data columns (total 13 columns): Column Non-Null Count Dtype patent processing days 12439 non-null int64 count_gov_orgs 12439 non-null int64 patent_detail_desc_length 12439 non-null int64 12439 non-null num figures int64 attorney count 12439 non-null int64 n applicants 12439 non-null int64 patent_num_foreign_documents_cited 12439 non-null int64 patent_num_us_patents_cited 12439 non-null int64 ipcr counter 12439 non-null int64 int64 inventor counter 12439 non-null ipcr_section 12439 non-null object filing type 12439 non-null int64 12 filing_quarter 12439 non-null object

Encoding categorical features

Project | Math Models

- 1. Linear Regression
- 2. Random Forest
- 3. XGBoost

Project | Model Evaluation

Linear Regression:

LR is a common technique used to predict a continuous target variable by finding a linear relationship between it and the feature set of independent variables

MSE: 204370.87074407292

RMSE: 452.0739660100689

R2: 0.23885213786853787

Project | Model Evaluation

Random Forest:

In Random Forest Regression, features are chosen at random and used to create many decision trees. These 'trees' are then averaged together to create a more accurate prediction.

MSE: 194586.84180557213

RMSE: 441.1199857244876

R2: 0.27529124820974693

Project | Model Evaluation

XGBoost*:

In XGBoost, weights are given to each independent variable and a decision tree is made. The weights of the wrong predictions are increased and fed into a sequential decision tree. The trees are then brought together to create a more accurate prediction.

MSE: 160289.75462993115 RMSE: 400.3620294557554 R2: 0.40302547220180573

Project | Final Model

XGBoost:

It provide the best predictive power

Optimization:

GridSearchCV

MSE: 150348.56689095014 RMSE: 387.74807142131624 R2: 0.4400498963138332

Project | Analysis & Results

Feature importance

Features of highest importance, from the demographics variables we chose were:

- 1. Filing Type
- 2. Number of Applicants

Project | Recommendation

Data & Technical Next steps:

- Test model on more data
- Continuous development of ML model
- Add / Engineer new variables

Business Next Steps:

- Model integration and business requirements
- Deliver AI training and education to users