

UNIVERSITA DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea in Fisica

Tesi di Laurea

La formazione delle caustiche nella struttura su grande scala dell'Universo

Relatore: Sabino Matarrese Laureando: Ales-

sandro Bianchetti

Anno Accademico 2019/2020

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Indice

1	Il problema di ricostruzione
	1.1 Parte prima
	1.2 Parte seconda
2	Tipi di singolarità nella trattazione Lagrangiana
	2.1 Parte prima
	2.2 Parte seconda

Introduzione

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Capitolo 1

Il problema di ricostruzione

1.1 Parte prima

Partiamo dall'ipotesi di universo primordiale omogeneo, come ci suggerisce lo spettro di CMB (FIGURA?). Ci muoviamo innanzitutto dal modello cosmologico Einstein-De Sitter, che pone la curvatura dell'universo e la costante cosmologica Λ pari a 0 e prevede uno spazio composto sostanzialmente di materia oscura fredda (CDM). In tale cornice definiamo una mappa Lagrangiana $\mathbf{q} \mapsto \mathbf{x}(\mathbf{q}, \tau)$ che connette la posizione iniziale alla posizione corrente \mathbf{x} al tempo di scala $\tau \propto t^{\frac{2}{3}}$. Inoltre le coordinate \mathbf{x} sono coordinate comoventi legate alle coordinate fisiche \mathbf{r} dalla relazione $\mathbf{x} = \mathbf{r}/a$, dove a rappresenta il fattore cosmico di scala, che corrisponde a τ in un universo EdS. Definiamo infine le velocità $\mathbf{v} = a\dot{\mathbf{x}}$ e $\mathbf{w} = \dot{\mathbf{r}} = H\mathbf{r} + v$

Per approcciare la dinamica di particelle non collidenti ("polvere"), definiamo una funzione $f(\boldsymbol{x}, \boldsymbol{p}, t)$ che corrisponde alla densità degli stati nello spazio delle fasi. E' possibile quindi utilizzare il Teorema di Liouville, che afferma che la densità sopra citata si conserva nell'evoluzione di un sistema conservativo: in effetti l'ipotesi di assenza di collisioni ci permette di soddisfare ai requisiti del teorema, e quindi possiamo porre a zero la derivata totale della funzione densità, ricavando l'equazione di Vlasov.

$$\frac{\partial f}{\partial t} + \dot{\boldsymbol{x}} \nabla_{\boldsymbol{x}} f + \dot{\boldsymbol{p}} \nabla_{\boldsymbol{p}} f = 0 \tag{1.1}$$

L'equazione di Vlasov è molto difficile da risolvere analiticamente: adottiamo quindi un approccio teorico semplificato, cioè la descizione Newtoniana di fluido: in particolare sposiamo l'ipotesi di entropia costante e di assenza di termini di pressione dal momento che trattiamo la CDM come una polvere autogravitante e non collidente.

Il set di equazioni adatto all'approccio fluidodinamico è dato da

$$\left. \frac{\partial \rho}{\partial t} \right|_{r} + \nabla_{r}(\rho \boldsymbol{w}) = 0 \tag{1.2}$$

$$\left. \frac{\partial \boldsymbol{w}}{\partial t} \right|_{\boldsymbol{r}} + (\boldsymbol{w} \cdot \nabla_{\boldsymbol{r}}) \boldsymbol{w} = -\nabla_{\boldsymbol{r}} \Phi$$
(1.3)

$$\nabla_{\mathbf{r}}^2 \Phi = 4\pi G \rho \tag{1.4}$$

dove la 1.2 è l'equazione di continuità che costituisce la conservazione della massa, la 1.3 è l'equazione di Eulero e viene dalla conservazione del momento, mentre la 1.4 rappresenta l'equazione di Poisson relativa al potenziale gravitazionale Φ .

Poniamo inoltre $\rho = \rho_b + \delta \rho$, dove ρ_b è la densità media di background e $\delta \rho$ costituisce una deviazione da tale valore medio. $\Phi = \Phi_b + \phi$ invece è la somma di un potenziale di background e un potenziale peculiare ϕ . Grazie a queste due apposizioni possiamo separare l'equazione di Poisson, ottenendo un equazione nella sola coordinata comovente x. Possiamo riscrivere anche 1.3 e 1.4 nelle coordinate x, usando la relazione

$$\frac{\partial}{\partial t}\bigg|_{x} = \frac{\partial}{\partial t}\bigg|_{r} + H(r \cdot \nabla_{r}) \tag{1.5}$$

Si ricava dunque

$$\frac{\partial \rho}{\partial t} + 3H\rho + \frac{1}{2}\nabla_{\boldsymbol{x}}(\rho \boldsymbol{v}) = 0 \tag{1.6}$$

$$\frac{\partial \mathbf{v}}{\partial t} + H\mathbf{v} + \frac{1}{a}(\mathbf{v} \cdot \nabla_{\mathbf{x}})\mathbf{v} = -\frac{1}{a}\nabla_{\mathbf{x}}\phi = 0$$
 (1.7)

$$\nabla_{\mathbf{r}}^2 \phi = 4\pi G \delta \rho \tag{1.8}$$

Le equazioni della fluidodinamica rappresentano in effetti uno sviluppo dell'equazione di Vlasov fino al primo ordine. Per spiegare questo passaggio, osserviamo che la densità di massa e la velocità sono associate rispettivamente al momento di aspettazione di ordine zero e di primo ordine della densità nello spazio delle fasi f(x, p, t).

$$\rho(\boldsymbol{x},t) = \frac{m}{a^3} \int d^3p f(\boldsymbol{x},\boldsymbol{p},t)$$
 (1.9)

$$\mathbf{v}(\mathbf{x},t) = \frac{m}{a^3} \frac{\int d^3 p \mathbf{p} f(\mathbf{x}, \mathbf{p}, t)}{\int d^3 p f(\mathbf{x}, \mathbf{p}, t)}$$
(1.10)

Integrando ora l'equazione di Vlasov sul dominio del momento p, si trova che l'ultimo termine dell'integrando rappresenta un'integrale di volume della forza $\partial f/\partial p$, che tramite il Teorema di Gauss si può riscrivere come un integrale su una superficie all'infinito, dove la forza si annulla. Utilizzando poi le definizioni 1.9 e 1.10 si ricava

$$\frac{\partial}{\partial t}(a^3\rho) + \frac{1}{a^2}\nabla_x \int d^3p \boldsymbol{p} f = 0 \tag{1.11}$$

maneggiando opportunamente quest'ultima e utilizzando le definzioni fornite in 1.9 e 1.10 si arriva esattamente all'equazione di continuità 1.2.

Se invece si moltiplica l'equazione di Vlasov per p per poi integrare di nuovo su tale variabile, conviene lavorare sul termine i-esimo e operare un'integrazione per parti sempre sull'ultimo addendo dell' integrando.

$$\frac{\partial}{\partial t} \int d^3p p^i f + \frac{1}{ma^2} \partial^i \int d^3p p_j p_j f + a^3 \rho \partial^i \phi = 0$$
 (1.12)

Manipolando questa espressione e utilizzando l'equazione di continuità, si arriva proprio all'equazione di Eulero 1.3.

L'approccio fluido sembra dunque adatto a una trattazione semplificata che fornisca soluzioni analitiche, come alternativa alla risoluzione dell'equazione di Vlasov, proibitiva analiticamente, possibile con tecniche numeriche. A questo punto tuttavia conviene operare un ulteriore cambio di variabili sul set di equazioni ottenute (eta, delta ecc)

1.2 Parte seconda

Nella presente trattazione si fa uso di coordinate Lagrangiane per impostare la descrizione di dell'instabilità gravitazionale: in tale cornice l'approssimazione di Zel'dovich rappresenta lo sviluppo all'ordine zero delle equazioni della fluidodinamica in regime di single-stream. Tuttavia gli effetti gravitazionali che emergono con il multistreaming non sono descrivibili nemmeno utilizzando ordini superiori della teoria perturbativa lagrangiana, dal momento che le equazioni del fluido cessano di essere valide al primo shell-crossing. Pertanto la dinamica della CMD è basata unicamente sull'equazione di Vlasov, che sappiamo corretta ma di difficile risoluzione. Occorre quindi una teoria che risolva tale equazione, identificandone in particolare le singolarità matematiche. Per la risoluzione assumiamo un universo unidimensionale: questa assunzione si può giustificare sulla base del fatto che in effetti anche in tre dimensioni i fenomeni di shell-crossing hanno origine unidimensionale con la formazione dei pancakes (cosa sono, come si legano alle caustiche?...)

Tuttavia l'analisi offerta sarà facilmente estendibile a più dimensioni.

Capitolo 2

Tipi di singolarità nella trattazione Lagrangiana

2.1 Parte prima

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

2.2 Parte seconda

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Conclusioni

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.