EECS 39 I Introduction to Artificial Intelligence

Review for Final Exam

Thu Dec 7, 2017

Final exam time and location

Tue Dec 12 8:00 AM to 11:00 AM White 411

Note: Final is in our original classroom.

Final exam

- closed book no notes, will not need a calculator
- covers all main topics in the course
 - Problem Solving by Search
 - Optimal Game Playing
 - Constraint Satisfaction
 - Probabilistic Reasoning and Bayes' Rule (with discrete and continuous variables)
 - Bayesian Belief Networks
 - Unsupervised Learning and Clustering
 - Neural Networks
 - Probabilistic Reasoning Over Time
- There will more coverage of 2nd half.

L	Date	Topic	Chap	Notes	
0	Tue, Aug 29	Course Overview			
I	Thu, Aug 3 I	Introduction	I		
2	Tue, Sep 5	Intelligent Agents	2	WI out	
3	Thu, Sep 7	Problem Solving by Search	3	PI out	
4	Tue, Sep 12	Uniform Cost Search, Informed Search	3		search
5	Thu, Sep 14	A* Search, Hill Climbing	4		
6	Tue, Sep 19	Optimal Game Play, Minimax, $lpha$ - eta Pruning	5	WI due;W2	game play
7	Thu, Sep 21	Evaluation Functions, Stochastic Games	5		game play
8	Tue, Sep 26	Constraint Satisfaction Problems	6		CCD
9	Thu, Sep 28	Constraint Propagation, Local Search for CSPs	6	PI due	CSPs
10	Tue, Oct 3	Probability and Uncertainty	13	W2 due;W3	out
11	Thu, Oct 5	Probabilistic Reasoning	13		Reasoning
12	Tue, Oct 10	Reasoning with Bayes' Rule	14		
	Thu, Oct 12	Midterm Review		W3 due	
	Tue, Oct 17	Midterm Exam			

L	Date	Topic	Chap	Notes		
13	Thu, Oct 19	Bayesian Belief Networks	14	W4 out		
	Tue, Oct 24	Fall Break - no class		× ·		
14	Thu, Oct 26	Inference in Bayes Nets	14	W4 o	-	vesian belief networks
15	Tue, Oct 31	Inference in Bayes Nets				
16	Thu, Nov 2	Deep Belief Networks	20		_	
17	Tue, Nov 7	Reasoning with Continuous Variables	20	W4 dı	ıe	probability
18	Thu, Nov 9	Learning from Examples	18		_	learning
19	Tue, Nov 14	Unsupervised Learning and Clustering	20			learning
20	Thu, Nov 16	Neural Networks	20	P2 out	t;W5	
	Nov 21,23	(no class - Thanksgiving Holidays)				neural networks
21	Tue, Nov 28	Applications of Neural Networks				TI COVY OT IX
22	Thu, Nov 30	Models for Sequential Data	15		NA	NA - O - L INANA -
23	Tue, Dec 5	Probabilistic Reasoning Over Time	15	W5 dı	ue MMs & HMMs	
	Thu, Dec 7	Final Review		P2 due (Sat Dec 9)		
	Tue, Dec 12	Final Exam 8:00AM - 11:00AM		in White 411		

some selected lecture slides

(not an exhaustive list)

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on bounded subset of $X_{0:t-1}$

First-order Markov process: $P(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = P(\mathbf{X}_t|\mathbf{X}_{t-1})$

Second-order Markov process: $P(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = P(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$

First-order
$$X_{t-2}$$
 X_{t-1} X_{t} X_{t+1} X_{t+2}

Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$

Stationary process: transition model $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t|\mathbf{X}_t)$ fixed for all t

Understand HMMs and how they are defined and applied

The general classification/regression problem

desired output
$$\mathbf{y} = \{y_1, \dots, y_K\}$$

$$egin{pmatrix} \mathsf{model} \ oldsymbol{ heta} = \{ heta_1, \dots, heta_M\} \end{pmatrix}$$

Data

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$$

$$\mathbf{x}_i = \{x_1, \dots, x_N\}_i$$

for classification:

$$y_i = \begin{cases} 1 & \text{if } \mathbf{x}_i \in C_i \equiv \text{class } i, \\ 0 & \text{otherwise} \end{cases}$$

regression for arbitrary y.

model (e.g. a decision tree) is defined by M parameters, e.g. a multi-layer neural network.

input is a set of T observations, each an N-dimensional vector (binary, discrete, or continuous)

Given data, we want to learn a model that can correctly classify novel observations or map the inputs to the outputs

Computing the gradient ("learning rule") for a neural network

- Idea: minimize error by gradient descent
- Take the derivative of the objective function wrt the weights:

$$E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - c_{n})^{2}$$

$$\frac{\partial E}{w_{i}} = \frac{2}{2} \sum_{n=1}^{N} (w_{0} x_{0,n} + \dots + w_{i} x_{i,n} + \dots + w_{M} x_{M,n} - c_{n}) x_{i,n}$$

$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - c_{n}) x_{i,n}$$

And in vector form:

$$\frac{\partial E}{\mathbf{w}} = \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - c_n) \mathbf{x}_n$$

How do we choose k?

- Increasing k, will always decrease our distortion. This will overfit the data.
 - How can we avoid this?
 - Or how do we choose the best k?
- One way: cross validation
- Use our distortion metric:

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \parallel \mathbf{x}_n - \boldsymbol{\mu}_k \parallel^2$$

 Then just measure the distortion on a test data set, and stop when we reach a minimum.

A general multi-layer neural network

 Error function is defined as before, where we use the target vector t_n to define the desired output for network output y_n.

$$E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{y}_n(\mathbf{x}_n, \mathbf{W}_{1:L}) - \mathbf{t}_n)^2$$

• The "forward pass" computes the outputs at each layer:

$$y_j^l = f(\sum_i w_{i,j}^l y_j^{l-1})$$

$$l = \{1, \dots, L\}$$

$$\mathbf{x} \equiv \mathbf{y}^0$$
output = \mathbf{y}^L

Deriving a learning rule for k-means clustering

Our objective function is:

$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| \mathbf{x}_n - \boldsymbol{\mu}_k \|^2$$

• Differentiate w.r.t. to the mean (the parameter we want to estimate):

$$\frac{\partial D}{\partial \boldsymbol{\mu}_k} = 2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k)$$

We know the optimum is when

$$\frac{\partial D}{\partial \boldsymbol{\mu}_k} = 2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$

Here, we can solve for the mean:

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

- This is simply a weighted mean for each cluster.
- Thus we have a simple estimation algorithm (k-means clustering)
 - I. select k points at random
 - 2. estimate (update) means
 - 3. repeat until converged
- convergence (to a local minimum) is guaranteed

What classifier would give "optimal" performance?

- Consider the iris data.
- How would we minimize the number of future mis-classifications?
- We would need to know the true distribution of the classes.
- Assume they follow a Gaussian distribution.
- The number of samples in each class is the same (50), so (assume) $p(C_k)$ is equal for all classes.
- Because $p(\mathbf{x})$ is the same for all classes we have:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

$$\propto p(\mathbf{x}|C_k)p(C_k)$$

Where do we put the boundary?

The misclassification error is defined by

$$p(\text{error}) = \int_{R_{32}} p(\mathbf{x}|C_3)P(C_3)d\mathbf{x} + \int_{R_{23}} p(\mathbf{x}|C_2)P(C_2)d\mathbf{x}$$
 corrected

which in our case is proportional to the data likelihood

The optimal decision boundary

The minimal misclassification error at the point where

Bayesian inference with continuous variables

The expected value estimate

The expected value of a pdf is:

$$E(\theta|y,n) = \int_0^1 \theta p(\theta|y,n) d\theta$$
 "regularization"
$$E(\theta|y=0,n=1) = \frac{1}{3}$$
 What happens for zero trials?

This is called

"smoothing" or

Simplifying with "Naïve" Bayes

• What if we assume the features are independent?

$$p(\mathbf{x}|C_k) = p(x_1, \dots, x_N|C_k)$$
$$= \prod_{n=1}^N p(x_n|C_k)$$

- We know that's not precisely true, but it might make a good approximation.
- Now we only need to specify N different likelihoods:

$$p(x_i = v_i | C_k = k) = \frac{\mathsf{Count}(x_i = v_i \land C_k = k)}{\mathsf{Count}(C_k = k)}$$

Huge savings in number of of parameters

Text classification with the bag of words model

- Each row is a document represented as a bag-of-words vector.
- The different classes are different newsgroups.
- The differences in word frequencies are readily apparent.
- We can use mixture models and naïve Bayes to classify the documents

$$p(C_k|\mathbf{x}) = \frac{p(C_k) \prod_n p(x_n|C_k)}{\sum_k p(C_k) \prod_n p(x_n|C_k)}$$

- We only replace the data likelihood with our bag-of-words model.
- This is a common way to build a spam filter or classify web pages.

Advanced topic: Bayesian belief networks

 A common way to represent probabilistic relationships is with Bayesian belief networks

The joint probability of the network is specified in terms of the conditional probabilities

Recap (cont'd)

The structure of this model allows a simple expression for the joint probability

$$P(x_1, ..., x_n) \equiv P(X_1 = x_1 \land ... \land X_n = x_n)$$

$$= \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

$$\Rightarrow P(o, c, d, w, b) = P(c|w)P(o|w, b)P(d|b)P(w)P(b)$$

Summary of inference with the joint probability distribution

• The complete (probabilistic) relationship between variables is specified by the joint probability:

$$P(X_1, X_2, \dots, X_n)$$

= $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$

 All conditional and marginal distributions can be derived from this using the basic rules of probability, the sum rule and the product rule

$$P(X) = \sum_{Y} P(X, Y)$$
 sum rule, "marginalization"

$$P(X,Y) = P(Y|X)P(X) = P(X|Y)P(Y) \qquad \qquad \text{product rule}$$

$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$
 corollary, conditional probability

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 corollary, Bayes rule

Inference in Bayesian networks

- For queries in Bayesian networks, we divide variables into three classes:
 - evidence variables: $e = \{e_1, ..., e_m\}$ what you know
 - query variables: $x = \{x_1, ..., x_n\}$ what you want to know
 - non-evidence variables: $y = \{y_1, ..., y_l\}$ what you don't care about
- The complete set of variables in the network is $\{e \cup x \cup y\}$.
- Inferences in Bayesian networks consist of computing p(x|e), the posterior probability of the query given the evidence:

$$p(x|e) = \frac{p(x,e)}{p(e)} = \alpha p(x,e) = \alpha \sum_{y} p(x,e,y)$$

- This computes the marginal distribution p(x,e) by summing the joint over all values of y.
- Recall that the joint distribution is defined by the product of the conditional pdfs:

$$p(z) = \prod_{i=1} P(z_i | \text{parents}(z_i))$$

where the product is taken over all variables in the network.

Variable elimination on the burglary network

As we mentioned in the last lecture, we could do straight summation:

$$p(b|o) = \alpha p(o, w, b, c, d)$$

$$= \alpha \sum_{w,c,d} p(o|w, b) p(c|w) p(d|b) p(w) p(b)$$

- But: the number of terms in the sum is exponential in the non-evidence variables.
- This is bad, and we can do much better.
- We start by observing that we can pull out many terms from the summation.

Variable elimination

When we've pulled out all the redundant terms we get:

$$p(b|o) = \alpha p(b) \sum_{d} p(d|b) \sum_{w} p(w) p(o|w, b) \sum_{c} p(c|w)$$

• We can also note the last term sums to one. In fact, every variable that is not an ancestor of a query variable or evidence variable is *irrelevant* to the query, so we get

$$p(b|o) = \alpha p(b) \sum p(d|b) \sum p(w)p(o|w,b)$$

which contains far fewer terms: \ln^w general, complexity is **linear** in the # of CPT entries.

- This method is called variable elimination.
 - if # of parents is bounded, also linear in the number of nodes.
 - the expressions are evaluated in right-to-left order (bottom-up in the network)
 - intermediate results are stored
 - sums over each are done only for those expressions that depend on the variable
- Note: for multiply connected networks, variable elimination can have exponential complexity in the worst case.

Beyond tables: modeling causal relationships using Noisy-OR

- We assume each cause C_j can produce effect E_i with probability f_{ij} .
- The noisy-OR model assumes the parent causes of effect E_i contribute independently.
- The probability that none of them caused effect E_i is simply the product of the probabilities that each one *did not* cause E_i .
- The probability that any of them caused E_i is just one minus the above, i.e.

$$P(E_i|par(E_i)) = P(E_i|C_1,...,C_n)$$

$$= 1 - \prod_i (1 - P(E_i|C_j))$$

$$= 1 - \prod_i (1 - f_{ij})$$

$$P(C|D, O, F) = 1 - (1 - f_{CD})(1 - f_{CO})(1 - f_{CF})$$

Hierarchical Statistical Models

A Bayesian belief network:

The joint probability of binary states is

$$P(\mathbf{S}|\mathbf{W}) = \prod_{i} P(S_i|\mathrm{pa}(S_i), \mathbf{W})$$

The probability S_i depends only on its parents:

$$P(S_i|\text{pa}(S_i), \mathbf{W}) =$$

$$\begin{cases} h(\sum_j S_j w_{ji}) & \text{if } S_i = 1\\ 1 - h(\sum_j S_j w_{ji}) & \text{if } S_i = 0 \end{cases}$$

The function h specifies how causes are combined, $h(u) = 1 - \exp(-u)$, u > 0.

Main points:

- hierarchical structure allows model to form high order representations
- upper states are priors for lower states
- weights encode higher order features

Gibbs sampling: feedback disambiguates lower-level states

One the structure learned, the Gibbs updating convergences in two sweeps.

Demo: deep-belief network model (Hinton)

Constraint Satisfaction

- general definition, types of constraints, constraint graph and hyper graph
- constraint propagation, node consistency, forward checking, arc-consistency
- backtracking search
- heuristics: minimum remaining values, degree, least-constraining value
- local search for CSPs
- the exam will NOT cover:
 - continuous CSPs or constraint optimization problems
 - path consistency or k-consistency
 - material in section 6.3.3 or section 6.5
- Types of problems:
 - set up a problem as a CSP
 - solve a simple CSP problem using specific techniques

Optimal Game Play

- optimal game play, game trees, zero-sum games, utility function
- general concepts of deterministic vs stochastic, perfect vs imperfect information
- pruning, minimax, alpha-beta pruning
- stochastic games, imperfect information
- evaluation functions, weighted linear functions of game features
- the exam will NOT cover
 - topics in sections 5.4.2 to 5.4.4 and 5.6 to 5.8.
- Types of problems:
 - general concept questions
 - draw a game tree
 - work out the minimax value of each node
 - work out which branches are pruned using alpha-beta pruning

General concepts in search

- types of search problems, state space, actions, path cost, transition model
- problem solving performance:
 - completeness, optimality, time and space complexity
- uniformed vs informed search strategies
- tree search vs graph search, how to handle repeated states (loops)
- BFS, DFS, UCS, DLS, ID-DFS, Bidirectional search
- greedy best-first, A*, memory bounded approaches
- heuristic function, conditions for optimality, admissibility, completeness
- local search algorithms, optimization problems, hill-climbing, greedy local search, simulated annealing, local beam search, local minima and maxima
- the exam will NOT cover:
 - genetic algorithms, search in continuous spaces, or topics in sections 4.2 to 4.5

Search: examples of types of problems

- questions pertaining to the general concepts
- work out the steps of a specific search algorithm on a problem
- calculate the number of nodes expanded by different search algorithms
- determine if a heuristic is admissible