

第四讲组合逻辑 Combinational Logic

佟冬 tongdong@pku.edu.cn

微处理器研究开发中心(MPRC) 北京大学计算机学院

数字系统的分析与设计

数字电路的分析与设计

- □电路设计:从一个电路功能的描述到一组开关函数进而到门级、PLD或其它逻辑单元实现的转化过程。
- □电路分析:从一个数字电路的实现出发,得到电路的某种形式的功能描述
 - 开关表达式(Switch expression)
 - 真值表(Truth table)
 - 时序图(Timing diagram)
 - 其它行为描述(behavioral description)
- □设计与分析是相反的过程

数字电路分析的目的

- □确定逻辑电路的行为功能
- □验证电路的行为和规范说明是否一致
- □协助将电路转变为另一种形式
- □减少电路中门的个数
- □采用不同的逻辑单元实现电路
- □获取前人电路设计的知识、方法和经验

复习:组合电路和时序电路

- □组合电路
 - 输出值是输入值的逻辑函数
 - 输入值变化后一段时间后出现新的输出值
 - 电路没有记忆功能
 - 电路中没有循环反馈 (feedback loop)和时钟
- □时序电路
 - 输出值是输入值和电路状态的函数
 - 输入变化后新的输出出现在下一个时钟事件或者其他事件发生
 - 电路有循环反馈,存在存储元件

复习:组合电路和时序电路

□时序电路是组合电路加上反馈电路

组合电路

- □组合电路规范
 - 输入端
 - 输出端
 - 功能规范: 输入到输出逻辑关系(如真值表)
 - 时序规范: 从输入改变到输出相应的延迟(如波形图)

1. 数字电路分析方法

- □代数分析法: 用开关代数来获取指定的功能形式
- □真值表分析法:逐次分析每一个门的真值表,直到输出
- □时序图分析法
 - 时序图(Timing Diagram)是一个开关网络的输入和输出信号关系在时间维度上的图形表示。
 - 时序图可以显示中间信号和传播延迟。
 - 时序图的获得
 - 示波器(oscilloscope)
 - 逻辑分析仪(logic analyzer)
 - 逻辑模拟程序(simulation program, simulator)
 - 许多电路的设计和说明文档中给出的时序图

布尔表达式到电路图的转换

□可以有多种方法将表达式映射成电路

- e.g.,
$$Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$$

$$\frac{T2}{T1}$$

逻辑函数的的波形图表示

- □真值表的另一种表示方法
 - 注意门的传播延迟

什么是好的电路?

- □减少输入的数目
 - 字母: 输入变量
 - 大概估计一个字母2个晶体管
 - 为什么不算非门?
 - 较少的字母意味着较少的晶体管
 - 更小的电路
 - 较少的输入意味着较快的门
 - 门越小越快
 - 扇入fan-ins (门的输入数)由所采用的工艺限制
- □减少门的个数
 - 较少的门数意味着更小的电路
 - 直接影响制造成本

什么是最好的实现?

- □减少门的级数
 - 较少的门级数意味着减少信号传播延迟
 - 最少的延迟一般需要更多的门
- □需要在增加电路延迟和规模之间权衡
 - 自动工具可以产生多种实现
 - 逻辑化简:减少门的个数和复杂度
 - 逻辑优化: 进一步在延迟方面权衡

实现同一函数的不同电路 Z=A'B'C+A'BC+AB'C+ABC'

Α	В	C	ΙΖ
0	0	0	0
0	0	1	1
0	1	0	Ō
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

所有实现的一致性?

- □在相同的输入激励下,3个不同的实现产生几乎相同的波形
 - 延迟不一样
 - 产生假信号glitches ("毛刺",冒险hazards)
 - 不同的结果因为门的级数和结构不同
- □三种实现在功能上是一致的

组合电路的实现

- □布尔表达式的规范表示
 - 与或式,积之和SOP
 - 或与式,和之积POS
 - 非确定函数
- □两级逻辑电路
 - 易于理解和逻辑实现
 - 与或两级逻辑电路、与非门两级逻辑电路
 - 或与两级逻辑电路、或非门两级逻辑电路

复习:与非门和或非门的应用

- □AND, OR, NOT门可用NAND(或NOR)门构造
- □门级网络可以只用NAND(或NOR)门来实现。

AND gate

NOT gate

F = AB + C的四种不同的两级逻辑电路实现

四种不同实现的波形图

- □波形图基本上是一致的
 - 存在以下冒险hazards(毛刺glitches)
 - 电路延时并不一致

两级组合逻辑电路

□AND-OR和NAND逻辑电路

- 开关表达式采用SOP的形式

其中: $x_1 = p\overline{r}, x_2 = qrs, x_3 = \overline{p}s$

- 例: $f_{\delta}(p,q,r,s) = p\overline{r} + qrs + \overline{p}s$

两级组合逻辑电路

□OR-AND和NOR两级逻辑电路

- 开关表达式采用POS的形式
- 例:

$$f_{\varepsilon}(A,B,C,D) = (\overline{A} + B + C)(B + C + D)(\overline{A} + D)$$

$$f_{\varepsilon}(A,B,C,D) = \overline{(\overline{A}+B+C)(B+C+D)(\overline{A}+D)}$$

$$= \overline{\overline{A}+B+C} + \overline{B+C+D} + \overline{\overline{A}+D}$$

$$= \overline{y_1+y_2+y_3}$$
其中: $y_1 = \overline{A}+B+C$, $y_2 = \overline{B+C+D}$, $y_3 = \overline{A}+D$

多级组合逻辑电路

- □采用多于两级的电路经常是因为扇入(fan-in)的限制。
- □电路速度方面的考虑

组合逻辑电路的综合

□例:用NAND逻辑实现 $f_{\phi}(X,Y,Z) = \sum m(0,3,4,5,7)$

$$1.f_{\phi}(X,Y,Z) = \sum m(0,3,4,5,7)$$

$$2.f_{\phi}(X,Y,Z) = m0 + m3 + m4 + m5 + m7$$

$$= \overline{X}\overline{Y}\overline{Z} + \overline{X}YZ + X\overline{Y}\overline{Z} + X\overline{Y}Z + XYZ$$

$$3.f_{\phi}(X,Y,Z) = \overline{YZ} + YZ + XZ$$

$$4a.f_{\phi}(X,Y,Z) = \overline{\overline{YZ}} + \overline{\overline{YZ}} + \overline{\overline{XZ}}$$

$$= \overline{\overline{YZ}} \cdot \overline{YZ} \cdot \overline{XZ}$$

多级逻辑NAND变换

多级逻辑的NOR变换

多级网络电路变换实例

□例子

加入双圆泡将与门的输出信号取反

插入非门替换多余的圆泡

组合逻辑电路

- □因式分解(factoring)
 - 求高级开关形式的技术
 - 高级形式:
 - 可能需要更少的硬件
 - 可能受扇入的限制
 - 可能为设计带来困难
 - 可能更慢
- $f(A,B,C,D) = A\overline{B} + A\overline{D} + A\overline{C} = A(\overline{B} + \overline{D} + \overline{C}) = A(\overline{BCD})$

组合电路应用实例(1)

- □**例1**: 一个带有4个控制开关的防盗报警系统,每个开关产生逻辑1,当:
 - 开关A: 保密开关关闭
 - 开关B: 保险箱在储藏室的正常位置
 - 开关C: 时钟在10:00和14:00小时之间
 - 开关D: 储藏室门处于关闭状态

命题:根据下列条件写出产生逻辑1的控制逻辑表达式

保险箱被移动并且保密开关关闭或者

在银行下班后储藏室门被打开 或者

控制开关打开并且储藏室门被打开

$$f(A, B, C, D) = A\overline{B} + \overline{C}\overline{D} + \overline{A}\overline{D}$$

应用实例(2)

□例2: 写出计算两个2-bit二进制数(A₁A₀)₂和(B₁B₀)₂的和,产生结果(S₁S₀)₂和进为C₁

$$\begin{array}{c}
 A_{1}A_{0} \\
 + B_{1}B_{0} \\
 \hline
 C_{1}S_{1}S_{0}
\end{array}$$

应用实例(2)

□ 真值表

<u>A1</u>	A0	В1	В0	C1	S1	<u> </u>
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	0	0

逻辑表达式

$$S_0 = \overline{A}_1 \overline{A}_0 \overline{B}_1 B_0 + \overline{A}_1 \overline{A}_0 B_1 B_0 + \overline{A}_1 A_0 \overline{B}_1 \overline{B}_0$$
$$+ \overline{A}_1 A_0 B_1 \overline{B}_0 + A_1 \overline{A}_0 \overline{B}_1 B_0 + A_1 \overline{A}_0 B_1 B_0$$
$$+ A_1 A_0 \overline{B}_1 \overline{B}_0 + A_1 A_0 B_1 \overline{B}_0$$

$$S_{I} = \overline{A}_{1}\overline{A}_{0}B_{1}\overline{B}_{0} + \overline{A}_{1}\overline{A}_{0}B_{1}B_{0} + \overline{A}_{1}A_{0}\overline{B}_{1}B_{0}$$
$$+ \overline{A}_{1}A_{0}B_{1}\overline{B}_{0} + A_{1}\overline{A}_{0}\overline{B}_{1}\overline{B}_{0} + A_{1}\overline{A}_{0}\overline{B}_{1}B_{0}$$
$$+ A_{1}A_{0}\overline{B}_{1}\overline{B}_{0} + A_{1}A_{0}B_{1}B_{0}$$

$$C_{I} = \overline{A}_{1}A_{0}B_{1}B_{0} + A_{1}\overline{A}_{0}B_{1}\overline{B}_{0} + A_{1}\overline{A}_{0}B_{1}B_{0}$$
$$+ A_{1}A_{0}\overline{B}_{1}B_{0} + A_{1}A_{0}B_{1}\overline{B}_{0} + A_{1}A_{0}B_{1}B_{0}$$

应用实例(2)

□化简后的表达式

$$S_{0} = A_{0}\overline{B}_{0} + \overline{A}_{0}B_{0} = A_{0} \oplus B_{0}$$

$$S_{1} = \overline{A}_{1}\overline{A}_{0}B_{1} + \overline{A}_{1}B_{1}\overline{B}_{0} + \overline{A}_{1}A_{0}\overline{B}_{1}B_{0} + A_{1}A_{0}B_{1}B_{0} + A_{1}\overline{A}_{0}B_{1}B_{0} + A_{1}\overline{A}_{0}B_{1}$$

$$C_{1} = A_{0}B_{1}B_{0} + A_{1}A_{0}B_{0} + A_{1}B_{1}$$

计算方法描述 (输入、输出、行为)

数据编码

真值表

布尔函数

积之和SOP

和之积POS

逻辑门电路

AND-OR(NAND)

OR-AND(NOR)

开关电路 逻辑门的实现 优化的组合电路

价廉物美的计算设备

3.2 组合电路实现技术

- □标准逻辑门Standard gates
 - 逻辑门封装芯片
 - 标准单元库
- □规整逻辑Regular logic
 - 多选器multiplexers
 - 译码器decoders
- □两级可编程逻辑Two-level programmable logic
 - PALs
 - PLAs
 - ROMs

随机逻辑(Random logic)

- □采用分立元器件
 - 一个封装内包含多个逻辑门单元
 - 14管脚 IC: 6个非门, 4个与非门, 4个异或门
- □很难确定要采用的逻辑门类型
 - 从逻辑映射到与非门/或非门电路
 - 确定需使用的最少封装数目
 - 逻辑函数微小的改变可能会降低成本
- □很难修改已有电路实现
 - 需要重新布线
 - 可能需要新的部件
 - 设计可能剩下多余的逻辑门

规整逻辑(Regular logic)

- □需要设计过程更快
- □需要工程师更容易更改设计
- □使设计人员理解和映射到功能更容易
 - 很难根据逻辑门思考
 - 很容易根据大规模多功能模块来思考

2多路选择器

- □门之间直接的点对点连接
- □多个输入连接到一个单一输出
 - 多路选择器 multiplexer
- □一个输入连接到多个输出
 - 多路分配器 demultiplexer

多路选择器和多路分配器

□在多点互连中使用多路选择器和多路分配器

特殊的CMOS门: 2选1 Mux

□用传输门实现的2选1逻辑

-S=0:Z=X

-S=1:Z=Y

 $-Z = \overline{S}X + SY$

多路选择器

□一般概念

- 2ⁿ 数据输入, n控制信号/选择信号, 1输出
- 用在降2n点连接到1个点
- 控制信号是连接到输出的输入信号的二进制编码

$$\mathsf{Z} = \mathsf{A'} \; \mathsf{I_0} \; + \mathsf{A} \; \mathsf{I_1}$$

2选1的两种真值表形式

I_1	I_0	Α	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

多路选择器

- \square 2:1 mux: $Z = A'I_0 + AI_1$
- \Box 4:1 mux: $Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3$
- ■8:1 mux: $Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 +$ $A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$

多选器的门级实现

□2:1 mux

□4:1 mux

多选择的级联

□大的多选器由多个小多选器级联形成

作为通用逻辑的多选器

- □一个2ⁿ:1的多选器可以实现任意n输入变量的函数
 - 变量作为控制输入
 - 数据输入固定连接0或1
 - 本质上是一个查找表 (真值表)
- □例子:
 - F(A,B,C) = m0 + m2 + m6 + m7 = A'B'C' + A'BC' + ABC' + ABC' = A'B'C'(1) + A'B'C(0) + A'BC'(1) + A'BC(0) + AB'C'(0) + AB'C(0)

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 +$$

 $AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$

+ ABC'(1) + ABC(1)

作为通用逻辑的多选器

- □一个2ⁿ⁻¹:1多选器可以实现任意n变量的函数
 - n-1个变量作为控制信号
 - 数据输入连接最后的变量或者它的反

■ Example:

- F(A,B,C) = A'B'C' + A'BC' + ABC' + ABC = A'B'(C') + A'B(C') + AB'(0) + AB(1)

Α	В	С	F
0	0	0	1 C'
0	0	1	0
0	1	0	1 C'
0	1	1	0
1	0	0	0 0
1	0	1	0
1	1	0	1 1
1	1	1	1 '

多选器实现逻辑电路

练习

□ 实现 F = B'CD' + ABC' 采用4:1多选器和最少的门

3 多路分配器/译码器

- □译码器/多路分配器:一般概念
 - 一个数据输入,n个控制输入,2ⁿ个输出
 - 控制输入(称为选择 (S, "selects")) 代表输入需连接输出 的二进制索引码
 - 数据输入一般称为使能端(G, "enable")

1:2 Decoder:					
00 = G •	S'				
01 = G •	S				

2:4 Decoder:						
00 = G •	S1′ •	S0'				
01 = G •	S1′ •	S0				
O2 = G •	S1 •	S0'				
03 = G •	S1 •	S0				

3:8 Decoder:								
00	=	G	•	S2'	•	S1'	•	S0'
01	=	G	•	S2'	•	S1'	•	S0
02	=	G	•	S2'	•	S1	•	S0'
03	=	G	•	S2'	•	S1	•	S0
04	=	G	•	S2	•	S1'	•	S0'
05	=	G	•	S2	•	S1'	•	S0
06	=	G	•	S2	•	S1	•	S0'
07	=	G	•	S2	•	S1	•	S0

多路分配器的门级实现

□1:2 译码器 高有效使能

低有效使能

作为通用逻辑的多路分配器

- □一个n:2n 译码器可以实现任意n个变量的函数
 - 变量作为控制信号
 - 使能信号固定连接1
 - 相应的最小项的和形成函数实现
 - 相当于,最小项的生成器

多路分配器基于输入信号 生成相应的最小项 (对控制信号译码)

作为通用逻辑的多路分配器

 \Box F1 = A'BC'D + A'B'CD + ABCD

 \Box F2 = ABC'D' + ABC

译码器级联

例: 实现 $f(Q,X,P) = \sum m(0,1,4,6,7) = \prod M(2,3,5)$

□输出低电平有效译码器: 最大项生成器

(a)
$$f(Q, X, P) = m_0 + m_1 + m_4 + m_6 + m_7$$

(b)
$$f(Q,X,P) = m_0 \cdot m_1 \cdot m_4 \cdot m_6 \cdot m_7$$

例 (续)

□输出低电平有效译码器:最大项生成器

(c)
$$f(Q, X, P) = m_2 + m_3 + m_5$$

(d)
$$f(Q, X, P) = m_2 \cdot m_3 \cdot m_5 = M_2 \cdot M_3 \cdot M_5$$

BCD到十进制译码器

7段显示译码器

- □理解问题
 - 输入是4位十六进制数字 (A, B, C, D)
 - 输出是7段显示的控制信号 (7个输出 C0 - C6)
- □结构图

问题形式化描述

- □卡诺图
 - 无关项
- □选择实现目标
- □进行实现流程
 - 化简卡诺图
- □ 直接Verilog描述真值表

Α	В	С	D	CO	C1	C2	C3	C4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

存储地址译码器

- □处理器的指令译码器
- □存储器地址译码——用于控制总线的共享输出

指令译码器: RISC-V 指令编码

Func			OP1		OP	
imm[11:	0]	rs1	000	rd	0010011	ADDI
imm[11:0	0]	rs1	010	$_{ m rd}$	0010011	SLTI
imm[11:	0]	rs1	011	$_{ m rd}$	0010011	SLTIU
imm[11:	0]	rs1	100	$_{ m rd}$	0010011	XORI
imm[11:	0]	rs1	110	rd	0010011	ORI
imm[11:	0]	rs1	111	$_{ m rd}$	0010011	ANDI
0000000	shamt	rs1	001	rd	0010011	SLLI
0000000	shamt	rs1	101	$_{ m rd}$	0010011	SRLI
0100000	shamt	rs1	101	$_{ m rd}$	0010011	SRAI
0000000	rs2	rs1	000	$_{ m rd}$	0110011	ADD
0100000	rs2	rs1	000	$_{\mathrm{rd}}$	0110011	SUB
0000000	rs2	rs1	001	$_{ m rd}$	0110011	SLL
0000000	rs2	rs1	010	$_{ m rd}$	0110011	SLT
0000000	rs2	rs1	011	$_{ m rd}$	0110011	SLTU
0000000	rs2	rs1	100	$_{ m rd}$	0110011	XOR
0000000	rs2	rs1	101	$_{ m rd}$	0110011	SRL
0100000	rs2	rs1	101	$_{ m rd}$	0110011	SRA
0000000	rs2	rs1	110	$_{ m rd}$	0110011	OR
0000000	rs2	rs1	111	$_{ m rd}$	0110011	AND

RISC-V 指令编码(续)

	imm[31:12]			rd	0110111	LUI
	imm[31:12]			rd	0010111	AUIPC
imi	m[20 10:1 11 19	9:12]		rd	1101111	JAL
imm[11:	0]	rs1	000	rd	1100111	JALR
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:	0]	rs1	000	rd	0000011	LB
imm[11:	0]	rs1	001	rd	0000011	LH
imm[11:	0]	rs1	010	rd	0000011	LW
imm[11:	0]	rs1	100	rd	0000011	LBU
imm[11:	0]	rs1	101	rd	0000011	LHU
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW

存储器直接实现真值表

- □存储器:两维的0,1整列
 - 每行一个字(word)
 - 行大小 = 字长(word-size)
 - 地址(address)索引
 - 地址(address) 是输入
 - 所选的字是输出
- □ROM只读存储器
- □RAM随机访问存储器

ROM内部组织

存储器和组合逻辑

□用存储器实现组合逻辑

Α	В	C	F0	F1	F2	F3
0	0	0	0	0	1	0
0	0	1	1	1	1	0
0	1	0	0	1	0	0
Ŏ	1	1	0	0	0	1
1	0	0	1	0	1	1
1	0	1	1	0	0	0
1	1	0	0	0	0	1
1	1	1	0	1	0	0
真值表						

3.3 卡诺图化简

- □布尔表达式的化简:组合最小项(最大项)
- □卡诺图以图形的方式进行布尔表达式化简
- □合并定理

$$-PA+PA'=P$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB						
C	00	01	11	10		
0	1	0	0	0		
1	1	0	0	0		

Y C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

合并定理

- □化简的关键工具: A (B'+B) = A
- □两级逻辑化简的基础

$$F = A'B' + AB' = (A' + A)B' = B'$$

2变量的卡诺图

2变量卡诺图

Y	B 00	01	11	10
0	ABC	ABC	ABC	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

3变量卡诺图化简

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + B\overline{C}$$

卡诺图化简规则:最小项化简,NAND电路

- □每个'1'至少被圈在一个方形组中
- □每个方形组在每个维度必须是2幂 (如 1, 2, 4,...)
- □每个方形组必须尽可能的大
- □方形组可以在边界循环
- □ "无关项(X)" 只有在有利于化简的情况下才能被 圈在方形组中。

4变量卡诺图化简

A	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	0 0 1 1 1 0 0	0	1 0 1 0 1 0 1 0 1 0 1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1 1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	1	0 0 1 0 0 1 1 0 0 1 1 0 0 1 1	0	1 0 1 0 1 1 1 1 0 0 0
1	1	1	1	0

4变量卡诺图化简

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	0 1 1 1 1 0	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0 0 0 1 1	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	0 0 1 0 0 1 0 0 1 1 0 0 1 1	1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 0 0 0
1	1	1	1	0

Υ				
CD A	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

卡诺图化简指导原则

- □*n*变量卡诺图中的每个单元都有*n*个逻辑相邻的单元。
- □单元可以被合并为大小为 2,4,8,...,2^k的方形组。
- □每个被合并组中包含的所有单元都对一些变量有 相同的值。
- □合并尽可能多的单元,这将导致组所对应的项内 字母的个数最少(扇入)。
- □尽可能用最少的组覆盖所有的最小项,这将导致 结果中包含最少的积项(门数和最后一级或门的扇入)。
- □应该从最"孤立"单元开始。

卡诺图化简: 算法1

- □1. 计算每个最小项的相邻度
- □2. 选择未被覆盖的相邻度最小的最小项,如果有 多个相同的选项,任选一个。
- □3. 生成包含该最小项的尽可能大的方形组,如果 存在多个相同规模的组,任选一个。
- □4. 重复步骤2和步骤3, 直到所有的最小项都被覆盖。

4变量卡诺图化简

Α	В	С	D	Y
0	0	0	0	1
0	0 0 1 1 1 0 0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1	1 1 1	0 0 1 0 0 1 1 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0	
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

相邻度相同的函数例子

$$f(A,B,C,D) = \sum m(0,4,5,7,8,10,14,15)$$

典型的例子

图中蓝色的组不在最后的覆盖中

最大项卡诺图化简: NOR电路

回忆: 非确定函数

- □开关函数非完全确定的原因
 - 一些确定的输入组合不会产生
 - 一些输出为0或1只对特定的输入组合成立
- □无关(don't care)最小项:忽略一些最小项
- □无关最大项:忽略一些最大项
- □表示
 - 无关最小项: d_i
 - 无关最大项: D_i
- □例子:
 - 无关最小项: $f(A,B,C) = \sum m(0,3,7) + d(4,5)$
 - 无关最大项: $f(A,B,C) = \Pi M(1,2,6) \cdot D(4,5)$

带无关项的卡诺图

Α	В	С	D	Y
	0		0	1
0	0	0 0 1 1 0	1	0
0	0	1	1	1
0	0	1		1
0	1	0	1 0	0
0	1	0	1	X
0	1	1	0 1 0	1
0	1 0	1 1 0 0	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0 0	1 1 0	1	X
1	1	0	0	X
1	1 1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	1 0 1 0 1	1 0 1 1 0 X 1 1 1 X X X X X X X
1	1	1	1	X

带无关项的卡诺图

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1		1
0	1	0	1 0	0
0	1	0 0 1 1 0		Χ
0			1 0 1 0	1
0	1	1	1	1
1	1 1 0	1 0 0 1 1	0	1
1	0	0	1	1
1	0	1	1 0 1 0	Χ
1	0 0	1	1	Χ
1	1	0	0	Χ
1	1	0	1	Χ
0 0 0 0 0 0 0 1 1 1 1 1	1	1	1	1 0 1 0 X 1 1 1 X X X X
1	1	1	1	X

Y					
CDA	B 00	01	11	10	
00	1	0	X	1	
01	0	X	X	1	
11	1	1	X	X	
10	1	1	X	Х	

带无关项的卡诺图

Α	В	C	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	1	1
0	0	0 0 1 1 0	1	1
0	1	0	1	0
0		0 1		X
0	1	1	0	1
0	1	1	1	1
1	1 1 0 0 0	1 0 0 1 1 0	1 0 1 0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1 0 1 0 1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	1 0 1 1 0 X 1 1 1 X X X X X X X
1	1	1	1	X

$$Y = A + \overline{BD} + C$$

非确定函数的化简

- □ 在化简非确定函数时,可以选择无关项为1或者0的确定值。
- □ 原则是使卡诺图中划分的方形组大于不包括无关项的卡诺 图的方形组。
- □ 在选择最小覆盖时,忽略那些没有被选择为确定值的非确定项。
- □ 可以根据无关项是否对函数的化简有帮助来决定无关项的确定值。
- □ 包含无关项的函数的SOP化简函数和POS化简函数并不一 定在形式上互补。
- □产生非确定结果的输入组合,在真实的电路中有确定的结果。
- □ 非确定性函数卡诺图化简中,最终覆盖中的每个组应该至 少包含一个确定性最小项(最大项)。

回忆: 传播延迟

- □两种典型的传播延迟参数
 - t_{PLH} = 低电平到高电平输出的传输延迟。
 - t_{PHI} = 高电平到低电平输出的传输延迟。
- □近似传播延迟

$$t_{PD} = \frac{t_{PLH} + t_{PHL}}{2}$$

□逻辑门的传播延迟

(a) Two-input AND gate

(b) Ideal (zero) delay

组合电路中的时序冒险

- □冒险(*Hazards*) 是由于组合电路中不相同的传输 延时导致的不正确的输出。
- □静态冒险 *Static hazard* (glitch) 输出相对正确值的瞬间变化。
 - 静态1冒险 输出从1变为0又变回到1
 - 静态0冒险 输出从0变为1又变回到0
- □动态冒险 *Dynamic hazard* (bounce) 输出在状态变化时变化多次。
 - 动态0到1冒险 输出从0到1到0到1的变化
 - 动态1到0冒险 输出从1到0到1到0的变化

静态1冒险实例

静态1冒险的实例(续)

静态1冒险的实例(续)

$$Dt_1 > Dt_2 > Dt_3; Dt_1 = 2Dt_2; Dt_2 = 2Dt_3$$

卡诺图中的冒险

无冒险电路

静态0冒险的例子

静态0冒险的例子(续).

静态冒险的解决

- □与或电路(SOP的实现)产生静态1冒险
- □或与电路(POS的实现)产生静态0冒险
- □一般的,可以通过添加相邻最小项(最大项)的 公共积项(和项)的方法消除静态冒险。

函数最小化和电路化简

□组合电路的分析与综合

