ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Complex Variables and Integral Transforms

17th May 2013, 14:00 - 15:30

Answer $\underline{\mathbf{ALL}}$ parts of question 1 and $\underline{\mathbf{TWO}}$ other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

1 of 4 P.T.O

- 1. (a) For a function f(z) = u(x, y) + iv(x, y) (where z = x + iy), state the Cauchy-Riemann equations. Show that they are satisfied for f(z) = 1/z (for $z \neq 0$). [7 marks]
- (b) Evaluate $\int_C |z|^2 dz$, where the end-points are a=0 and b=1+i, and C is the path consisting of two straight-line segments parallel to the axes passing through the point c=1. Should you expect the same answer for a parabolic path between the same end-points?

[7 marks]

(c) For the function $f(z) = \frac{1}{z(z-2)}$, find the Laurent series about the point z=0 which is valid for 0 < |z| < 2.

[6 marks]

(d) The following table gives the value of the function $f(z) = z^7 + 5z^2 + 2$ at the points $z = e^{2n\pi i/8}$. How many roots has f(z) within the unit circle?

[5 marks]

n	0	1	2	3
f(z)	8.00	2.71 + 4.29i	-3.00 - 1.00i	1.29 - 5.71i
\overline{n}	4	5	6	7
f(z)	6.00	1.29 + 5.71i	-3.00 + 1.00i	2.71 - 4.29i

2. A function w(z) has real part $u(x, y) = \sin x \cosh y$. Verify that this is a harmonic function. Given that w(z) is analytic and vanishes at z = 0, find the corresponding imaginary part and show that $w = \sin z$.

[9 marks]

Now consider the mapping $w(z) = \arcsin z$. Show that under the inverse mapping, lines of constant u = a, for $-\pi/2 < a < \pi/2$, map to the curves

$$\frac{x^2}{\sin^2 a} - \frac{y^2}{\cos^2 a} = 1.$$

Show also that the lines $u = \pi/2$ and $u = -\pi/2$ map to the segments of the x axis $1 \le x < \infty$ and $-1 \ge x > -\infty$ respectively.

Find the curves to which lines of constant v = b map (for any b), and sketch both sets of curves in the xy-plane. (Hint: it may help to show first that all the constant-u curves cross the x axis at $|x| \le 1$, while all the constant-v curves cross at $|x| \ge 1$.)

[10 marks]

Consider a pair of semi-infinite metal sheets placed as shown in the diagram below, the left-hand one being held at $-100\,\mathrm{V}$ and the right-hand one at $100\,\mathrm{V}$. Use the mapping above to argue that the electrostatic potential in the surrounding space is

$$\phi(x,y) = \frac{200 \text{ V}}{\pi} \text{Re}[\arcsin(x+iy)],$$

and relate it to your sketch.

[6 marks]

3 of 4 P.T.O

3. Use Cauchy's residue theorem and a suitable choice of contour to calculate $\underline{\mathbf{TWO}}$ of the following integrals. If Jordan's lemma is used, ensure that all the conditions for its validity are satisfied.

(a)
$$\int_0^{2\pi} \frac{1}{5 + 4\cos 2\theta} \, \mathrm{d}\theta$$

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 4} \, \mathrm{d}x$$

(c)
$$\int_{-\infty}^{\infty} \frac{\cos(kx)}{2+x} dx \quad \text{for } k > 0$$
 [25 marks]

4. (a) Find the residues at the poles of the following functions:

i)
$$z^{-5} \sin^2 z$$
, ii) $z^3 e^{1/z}$, iii) $\frac{1}{\sin z}$. [10 marks]

(b) Prove the following Laplace transforms (a may be taken as real).

$$i)$$
 L.T. $[e^{\alpha t}] = \frac{1}{s - \alpha}$ for $s > \text{Re}[\alpha]$, $ii)$ L.T. $[\sin at] = \frac{a}{s^2 + a^2}$ for $s > 0$. [4 marks]

State the convolution theorem for inverse Laplace transforms. Using the fact that L.T. $[\theta(t-t_0)] = e^{-st_0}/s$, where $\theta(t-t_0)$ is the Heaviside step function, find the inverse Laplace transform of

$$\frac{e^{-3s}}{s(s^2+4)}.$$
 [6 marks]

Hence find the solution to the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4y = \theta(t-3),$$

subject to the initial conditions y(0) = 0 and y'(0) = 2.

[5 marks]