近世代数作业5

cycleke

November 23, 2020

Contents

~,-,,-	果后习题 .1 第一题															2	2													
1.1	第一题																												. 2	2
1.2	第二题																												. 2	2
1.3	第三题																												. 2	2
1.4	第四题																												. 2	2
1.5	第五题																													3
1.6	第六题																													3
1.7	第七题																													3
1.8	第八题																													3
1.9	第九题																													3
1.10	第十题			_	_								_			_	_	_						_			_	_		4

1 课后习题

1.1 第一题

证明 设 $U_n = \{x^n = 1 | x \in C\}$ 。

显然 $U_n = \{x_i | 0 \le i < n, i \in N, x_i = e^{\frac{2\pi i}{n}}\}$ 且对于复数的乘法构成群。 $x_1 = e^{\frac{2\pi i}{n}}$,而 $\forall 1 \le i \le n-1, x_i = x_1^i = e^{\frac{2\pi i}{n}} \ne 1$,而 $x_1^n = 1$,所以 $|x_1| = n$, $U_n = (x_1)$,即 U_n 为一个循环群。

1.2 第二题

真子群如下:

- {[0]}
- {[0], [6]}
- {[0], [4], [8]}
- {[0], [3], [6], [9]}
- {[0], [2], [4], [6], [8], [10]}

1.3 第三题

证明 首先 $\forall x \in (a^r), x = (a^r)^k = a^{rk} \in G$,所以 $(a^r) \subseteq G$ 。 又有因为 G = (a),所以 $\forall x \in G, x = a^k, 1 \le k \le n$ 且 $a^n = e$,又因为 (r, n) = 1,所以 $\exists p, q \in Z, pr + qn = 1$

$$x = a^{k}$$

$$= a^{k(pr+qn)}$$

$$= a^{kpr} \circ a^{kqn}$$

$$= (a^{r})^{kp} \circ (a^{n})^{kn}$$

$$= (a^{r})^{kp}$$

所以 $G \subseteq (a^r)$ 。 综上所述, $G = (a^r)$ 。

1.4 第四题

证明 因为 $a^n = e, (r, n) = d$,所以 $(a^r)^{\frac{n}{d}} = (a^n)^{\frac{r}{d}} = e$,所以 $|a^r| \le \frac{n}{d}$ 。 $\forall 1 \le k < \frac{n}{d}$,若 $(a^r)^k = e$,因为 (r, n) = d,所以 $\exists p, q \in Z, pr + qn = d$ 。

$$a^{d} = a^{pr+qn}$$

$$= (a^{r})^{p} \circ (a^{n})^{q}$$

$$= (a^{r})^{p}$$

$$(a^{d})^{k} = ((a^{r})^{k})^{p}$$

$$= e$$

所以 $|a| \le dk < n$,这与 |a| = n 矛盾。所以 $|a^r| \ge \frac{n}{d}$ 。

综上所述, $|a^r| = \frac{n}{d}$ 。

1.5 第五题

证明 设 G 是一个六阶群, 所以 $\forall a \in G, |a| \in \{6, 3, 2, 1\}$ 。

若 $\exists a, |a| = 6$,则 e, a^2, a^4 是一个三阶群。

若 $\exists a, |a| = 3$,则 e, a, a^2 是一个三阶群。

若 $\forall a \in G, |a| \leq 2$,因为有且只有 |e| = 1,则 $\forall a \in G, a^2 = e$ 。由前面的作业有,此时 G 是一个交换群且每个元素的拟元为自身。不妨设 $a,b \in G, |a| = |b| = 2, a \neq b \neq e$,设 $S = \{e,a,b,ab\}$,则 $\forall x,y \in S, xy^{-1} \in S$,所以 S 为 G 的一个四阶子群,产生矛盾。

综上所述, 六阶群里必有一个三阶子群。

1.6 第六题

证明 设 G 是一个 p^m 阶群, $\forall a \in G, |a| = p^k, 0 \le k \le m$ 。

$$\therefore a^{p^k} = e$$
$$(a^{p^{k-1}})^p = e$$
$$\therefore |a^{p^{k-1}}| \le p$$

因为 $p \ge 2$,所以 $\exists b \in G, |b^{p^{k-1}}| = p$,所以存在一个 p 阶子群 $(b^{p^{k-1}})$.

1.7 第七题

$$H = \{(1\ 2\ 3), (2\ 1\ 3)\}\$$
$$(3\ 2\ 1)H = \{(3\ 2\ 1), (3\ 1\ 2)\}\$$
$$H(3\ 2\ 1) = \{(3\ 2\ 1), (2\ 3\ 1)\}\$$

1.8 第八题

不一定。

由于 (321) 在 S_3 中是一个双射, 所以 $(321)S_3 = S_3(321)$ 。但是 (321)(213) = (312), (213)(321) = (231)。

1.9 第九题

证明 设 $\varphi: S_l \to S_r, \forall a \in G, aH \in S_l, \varphi(aH) = Ha^{-1}$ 。 首先证明 φ 是满射:

$$\forall Hb \in S_r, b, b^{-1} \in G$$
$$\exists b^{-1}H \in S_l, \exists l \varphi(b^{-1}H) = Hb$$

再证明 φ 是单射:

$$\forall a_1H, a_2H \in S_l, a_1H \neq a_2H$$

$$\varphi(a_1H) = Ha_1^{-1}$$

$$\varphi(a_2H) = Ha_2^{-1}$$
若 $Ha_1^{-1} = Ha_2^{-1}$ 则 $a_1a_2^{-1} \in H$
则 $a_1H = a_2H$,产生矛盾

所以 φ 是一个单射。 所以 φ 是一个双射, $|S_l| = |S_r|$ 。

1.10 第十题

证明 若 $x \in H, x \circ x \in H, x^2 \in H$ 。

若 $x \notin H, x^{-1} \notin H$,所以 $xH \neq H, x^{-1}H \neq H$ 。因为 [G:H] = 2,所以 $xH = x^{-1}H, x \circ xH = H, x^2 \in H$ 。

举例:

- 有限群: G 为模 n 同余类, H 为偶余数子群
- 无限群: G为(Z,+), H为偶数加群