ANÁLISE DE AGRUPAMENTOS

Prof. André Backes | @progdescomplicada

- Definição
 - Consistem em encontrar grupos de objetos entre os objetos
 - Categorizá-los ou agrupá-los
 - Tipo de aprendizado n\u00e3o supervisionado
 - Encontrar grupos "naturais" de objetos para um conjunto de dados não rotulados

- Definição
 - Os objetos de um grupo devem ser mais similares (ou relacionados) entre si do que a objetos de outro grupo
 - A similaridade pode ser a distância
 - Distance-based Clustering
 - Minimizar distância intra-cluster
 - Distância entre elementos de um mesmo grupo
 - Maximizar distância inter-cluster
 - Distância entre elementos de grupos distintos

- Aplicações
 - Marketing
 - Grupos de clientes
 - Marketing directionado
 - Biologia/Bioinformática
 - Encontrar grupos de genes com expressões semelhantes
 - Classificar grupos de plantas e animais
 - Mineração de Textos
 - Categorização de documentos
 - Classificação de páginas WWW
 - Etc.

Classificação Vs Agrupamento

- Classificação
 - A partir de exemplos conhecidos (já classificados), aprender um método e usá-lo para predizer as classes de padrões desconhecidos (ou novos)
- Agrupamento (Clustering)
 - Dado um conjunto de dados não classificado, descobrir as classes dos elementos (grupos ou clusters) e possivelmente o número de grupos existente a partir de suas características

O que é um cluster?

- Como organizar os dados observados em estruturas que façam sentido?
 - Afinal, o que é um agrupamento "natural" entre os seguintes objetos?

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus

O que é um cluster?

- Cluster é um conceito muito subjetivo
 - Processo de data-driven: agrupamento dirigido
 - Os dados observados são agrupados segundo características comuns que ocorram neles

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus

O que é um cluster?

- Além disso, a noção de cluster pode ser ambígua
 - Depende do número de clusters (muitas vezes definido pelo usuário)

Definindo um cluster

- Cluster é um conceito muito subjetivo. Podemos defini-lo em termos de
 - Homogeneidade
 - Coesão interna
 - Heterogeneidade
 - Separação entre grupos
 - Necessidade de formalizar matematicamente, e para isso existem diversas medidas
 - Cada uma induz (impõe) uma estrutura aos dados
 - Geralmente baseadas em algum tipo de (dis)similaridade

Como definir o que é similar ou não?

- Similar é diferente de igual!
 - Medida de semelhança

Como definir o que é similar ou não?

- Usar uma medida de similaridade
 - Muitas vezes, esta é uma medida de distância
- Existem diversas possíveis
 - Minkowski
 - Manhatan
 - Euclideana
 - Chebyshev
 - Mahalanobis
 - Cosseno
 - Etc.

Propriedades da medida de similaridade

- As propriedades que definem uma medida de similaridade são 3
 - d(x,y) = d(y,x), simetria
 - $d(x,y) \ge 0$
 - d(x,x) = 0
- Além dessas 3 propriedades, também valem
 - d(x,y) = 0, se e somente se x = y
 - $d(x,y) \le d(x,z) + d(z,y)$, também conhecida como desigualdade do triângulo

Notações básicas

- Matriz de dados
 - Matriz contendo os dados de N objetos, cada qual com p atributos

- Cada objeto dessa matriz é denotado por um vetor x_i
 - $x_i = [x_{i1} \ x_{i2} ... x_{ip}]$

Notações básicas

- Matriz de (dis)similaridade
 - Matriz N x N contendo as distâncias entre os N objetos

- É uma matriz simétrica em relação a sua diagonal principal
- Diagonal principal composta por 0's

Qual abordagem de Clustering usar?

- Existem diversos métodos/algoritmos voltados para diferentes aplicações
 - Dados numéricos e/ou simbólicos
 - Dados relacionais ou não relacionais
 - Para construir partições ou hierarquias de partições
 - Partição: conjunto de clusters que compreendem os dados
 - Partições mutuamente exclusivas ou sobrepostas

Métodos Relacionais e Não Relacionais

- Métodos Não Relacionais
 - Os dados não possuem nenhum tipo de relacionamento entre si
 - Utilizam apenas a matriz de dados X e uma medida de similaridade entre eles
- Métodos Relacionais
 - Se baseiam em uma relação de dependência entre os dados
 - Documentos: relação de ocorrência de palavras
 - Páginas de internet: links entre elas
 - Pode ser uma relação de dependência probabilística

- Se referem principalmente a maneira como os dados são divididos e/ou organizados
 - Métodos Hierárquicos: constroem uma hierarquia de partições
 - Métodos Não-Hierárquicos ou Particionais: constroem uma partição dos dados

Método Hierárquico

Método Não-Hierárquico

- Algoritmos Hierárquicos
 - Criam uma hierarquia de relacionamentos entre os elementos.
 - Uso de uma medida de distância
 - Muito populares na área de bioinformática
 - Bom funcionamento
 - Apesar de não terem nenhuma justificativa teórica baseada em estatística ou teoria da informação, constituindo uma técnica ad-hoc de alta efetividade.

- Algoritmos Hierárquicos
 - Dendrograma é talvez o algoritmo mais comum
 - Semelhante a uma árvore
 - Exemplo: relações evolutivas entre diferentes grupo de organismos biológicos (árvore filogenética)

- Algoritmos Não-Hierárquicos
 - Separam os objetos em grupos baseando-se nas características que estes objetos possuem
 - Uso de uma medida de similaridade
 - Consistem de técnicas de análise de agrupamento ou clustering

- Algoritmos Não-Hierárquicos
 - Normalmente dependem de uma série de fatores que são determinados de forma arbitrária pelo usuário
 - Número de conjuntos
 - Número de seeds de cada conjunto.
 - Esses parâmetros podem causar impacto negativo na qualidade das partições geradas

- Algoritmos Não-Hierárquicos
 - K-means é o algoritmo mais simples e mais comum
 - Busca particionar n observações em k clusters (agrupamentos)
 - Cada observação pertence ao cluster com a média mais próxima

Partições com ou sem sobreposição

Partições sem sobreposição

Partições com ou sem sobreposição

Partições com sobreposição

 Um dos algoritmos mais comuns para construir uma hierarquia de partições a parir das distâncias entre clusters

 A dissimilaridade entre dois clusters (possivelmente singletons, i.e., composto por apenas um elemento) é representada como a altura do nó interno mais baixo compartilhado

- A análise de um dendrograma permite estimar o número mais natural de clusters de um conjunto de daods
 - Sub-árvores bem separadas

- Conjunto de dados: 2 clusters
 - Na prática, as distinções não são tão simples

A análise de um dendrograma também permite detectar outliers

- Abordagem Bottom-Up
 - Abordagem aglomerativa
 - Inicialmente, cada objeto é um cluster
 - Busca o melhor par de clusters para unir
 - Unir o par de clusters escolhido
 - Este processo é repetido até que todos os objetos estejam reunidos em um só cluster

- Abordagem Top-Down
 - Abordagem divisiva
 - Inicialmente todos os objetos estão em um único cluster
 - Sub-dividir o cluster em dois novos clusters
 - Recursivamente aplicar o algoritmo em ambos os clusters, até que cada objeto forme um cluster por si só

- Algoritmos hierárquicos podem operar somente sobre uma matriz de distâncias
 - Eles são (ou podem ser) relacionais

	2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		S. S.
2	0	8	8	7	7
		0	2	4	4
			0	3	3
Y				0	1
					0

Exemplo: abordagem Bottom-Up

Como medir a (dis)similaridade entre clusters?

- Eventualmente, um cluster terá mais de um elemento dentro dele. Neste caso, como medir a distância entre eles?
 - Várias possibilidades
 - Distância mínima
 - Distância máxima
 - Distância média do grupo
 - Distância entre centroides
 - Etc.

- Método Single Linkage
 - Distância mínima ou Vizinho mais Próximo
 - Distância entre 2 clusters é dada pela menor distância entre dois objetos (um de cada cluster)

- Exemplo: Single Linkage + Bottom-Up
 - Consideremos a seguinte matriz de distâncias iniciais (D₁) entre 5 objetos

$$\mathbf{D}_{1} = \begin{bmatrix}
1 & 0 & & & \\
2 & 0 & & & \\
6 & 5 & 0 & & \\
4 & 10 & 9 & 4 & 0 \\
5 & 9 & 8 & 5 & 3 & 0
\end{bmatrix}$$

- A menor distância entre objetos é $d_{12} = d_{21} = 2$
 - Estes dois objetos serão unidos em um cluster

- Exemplo: Single Linkage + Bottom-Up
 - Na sequência, devemos calcular a menor distância entre um objeto e um membro desse cluster

$$d_{(12)3} = \min\{d_{13}, d_{23}\} = d_{23} = 5;$$

$$d_{(12)4} = \min\{d_{14}, d_{24}\} = d_{24} = 9;$$

$$d_{(12)5} = \min\{d_{15}, d_{25}\} = d_{25} = 8;$$

$$12 \begin{bmatrix} 0 \\ 3 \\ 5 \end{bmatrix} 0$$

$$4 \begin{bmatrix} 9 \\ 4 \end{bmatrix} 0$$

$$5 \begin{bmatrix} 8 \\ 5 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

 Isso resulta em uma nova matriz de distâncias (D₂), que será usada na próxima etapa do agrupamento hierárquico

- Método Single Linkage
 - A dissimilaridade entre 2 clusters pode ser computada naturalmente a partir da matriz atualizada na iteração anterior
 - Não há necessidade da matriz original dos dados

- Método Single Linkage
 - Vantagens
 - Consegue manipular clusters que tenham uma forma não elíptica

- Método Single Linkage
 - Desvantagens
 - Muito sensível a ruídos e outliers

- Método Complete Linkage
 - Distância máxima ou Vizinho mais Distante
 - Distância entre 2 clusters é dada pela maior distância entre dois objetos (um de cada cluster)

- Método Complete Linkage
 - D(X,Y): maior distância entre dois objetos de cluster diferentes
 - Unir os dois clusters que possuem o menor valor de D

- Exemplo: Complete Linkage + Bottom-Up
 - A sequência do método é igual ao Single Linkage
 - Calcular a maior distância entre um objeto e um membro desse cluster
 - Obter a nova matriz de distâncias (D₂), que será usada na próxima etapa do agrupamento hierárquico
 - Como no método Single Linkage, a dissimilaridade entre 2 clusters pode ser computada naturalmente a partir da matriz atualizada na iteração anterior
 - Não há necessidade da matriz original dos dados

- Método Complete Linkage
 - Vantagens
 - Menos sensível a ruídos e outliers

- Desvantagens
 - Tende a quebrar clusters muito grandes

- Método Average Linkage
 - Group average ou Distância média
 - Distância entre 2 clusters é dada pela média das distância entre cada dois objetos (um de cada cluster)
 - Média das distância de todos contra todos

•
$$D(C_1, C_2) = \frac{\sum_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)}{N_1 * N_2}$$

- Método Average Linkage
 - Une características dos métodos Single Linkage e Complete Linkage
 - Menos sensível a ruídos e outliers
 - Propenso a clusters globulares
 - Atenção
 - O cálculo da dissimilaridade entre um novo cluster (dado pela união de outros dois) e os demais deve considerar o número de objetos em cada cluster envolvido

- Comparação entre os métodos
 - Single Linkage
 - Detecta clusters convexos
 - Sensível a ruído ou outilers
 - Complete Linkage
 - Menos sensível a ruído ou outilers
 - Favorece clusters globulares
 - Average Linkage
 - Também favorece clusters globulares
 - Mas é muito menos sensível a ruídos e outliers

- Existem ainda outras possibilidades, cada qual com as suas vantagens e desvantagens
 - Método dos Centróides
 - Usa distância entre os centróides (vetores de médias) dos clusters
 - Método dos Centróides Ponderado
 - Método de Ward

Abordagem Top-Down

- São pouco utilizados
 - Em geral se usa a abordagem Bottom-Up
 - É mais fácil unir 2 clusters do que separá-los
 - Existem **2**^{N-1}-**1** possibilidades para se dividir **N** objetos em 2 clusters
 - Para N = 50, temos $5,63x10^{14}$ possibilidades
 - Diante disso, como dividir um cluster?
 - Uma possibilidade é usar a heurística de MacNaughton-Smith et al. (1964)

Abordagem Top-Down

- Abordagem divisiva
 - Inicialmente todos os objetos estão em um único cluster
 - Sub-dividir o cluster em dois novos clusters
 - Recursivamente aplicar o algoritmo em ambos os clusters, até que cada objeto forme um cluster por si só

Métodos Não-Hierárquicos: sem sobreposição

- Definição do problema
 - Particionar o conjunto $X = \{x_1, x_2, ..., x_N\}$ de objetos em uma coleção $C = \{C_1, C_2, ..., C_k\}$ de k sub-conjuntos mutuamente disjuntos tal que
 - $C_1 U C_2 U ... C_k = X$
 - C_i ≠ Ø
 - $C_i \cap C_j = \emptyset$ para $i \neq j$
 - Em outras palavras: particionamento sem sobreposição

Partição sem sobreposição

- Definição do problema
 - Cada objeto pertence a um cluster dentre k clusters possíveis
 - O valor de k é normalmente definido pelo usuário
 - Qualidade da partição
 - Normalmente envolvem a otimização de algum índice
 - Critério numérico
 - Um dos algoritmos mais utilizados é o k-means
 - Também chamado de k-médias

- Funcionamento
 - 1) Escolher aleatoriamente um número k de centroides (centros ou seeds) para iniciar os clusters
 - 2) Cada objeto é atribuído ao cluster cujo centroides é o mais próximo
 - Usar alguma medida de distância (e.g. Euclidiana)
 - 3) Mover cada centroide para a média dos objetos do cluster correspondente

- Funcionamento
 - 4) Repetir os passos 2 e 3 até que algum critério de convergência seja obtido
 - Número máximo de iterações
 - Limiar mínimo de mudanças nos centroides

- Passo 1
 - Escolher k centros iniciais (k = 3)

Slide baseado no curso de Gregory Piatetsky-Shapiro, disponível em http://www.kdnuggets.com

- Passo 2
 - Atribuir cada objeto ao cluster de centro mais próximo

Slide baseado no curso de Gregory Piatetsky-Shapiro, disponível em http://www.kdnuggets.com

- Passo 3
 - Mover cada centro para o vetor médio do cluster (centroide)

 k_1 k_2 k_2 k_3 k_3

Passo 2

 Re-atribuir os objetos aos clusters de centroides mais próximos

Slide baseado no curso de Gregory Piatetsky-Shapiro, disponível em http://www.kdnuggets.com

- Passo 2
 - Re-calcular vetores médios

 Basicamente, o método de k-means busca minimizar a seguinte função objetivo (soma dos erros quadrados)

•
$$J = \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_i, \overline{x_i})^2$$

• onde $\overline{x_i}$ é o centroide do i-ésino cluster

•
$$\bar{x_i} = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Soma dos erros quadrados

Adequado nesses casos

- Separação natural

Não é muito adequado para dados mais dispersos.

Outliers podem afetar bastante os vetores médios

Kmeans: exemplo

 Executar o k-means com k=3 nos dados abaixo a partir dos centros propostos

uauus		
X	y	
1 2 1	2	
2	2	
1	1	
2		
2 8 9 9	2 9	
9	8 9 8	
9	9	
8	8	
1	15	
2	15	
2 1 2	14	
2	14	

anhah

centros		
X	y	
6	6	
4	6	
5	10	

Kmeans: exemplo

Primeira Iteração

dados		
Х	у	С
1	2	2
2	1	2
1	1	2
2	2	2
8	9	3
9	8	1
9	9	3
8	8	1
1	15	3
2	15	3
1	14	3

14

centros		
X	y	
8,5	8	
1,5	1,5	
3,8	12,6	

Kmeans: exemplo

Segunda Iteração

dados		
X	y	C
1	2	C 2
2	1	2
1	1	2
2	2	2
1 2 1 2 8 9	9	1
9	8	1
9 8 1	9	1
8	8	1
1	15	3
	15	3
2 1 2	14	3
2	14	3

centros		
X	y	
8,5	8,5	
1,5	1,5	
1,5	14,5	

- Variação no resultado dependendo da escolha dos centroides (seeds) iniciais
 - Quando se têm noção dos centroides, pode-se melhorar a convergência do algoritmo.
 - Execução do algoritmo várias vezes, permite reduzir impacto da inicialização aleatória

- O método pode "ficar preso" em ótimos locais
 - Os dois centros são equivalentes para o conjunto de objetos

• É bastante susceptível a problemas quando clusters são de diferentes **tamanhos**

• É bastante susceptível a problemas quando clusters são de diferentes **densidades**

• É bastante susceptível a problemas quando clusters são de diferentes formatos (em geral não globulares)

- Dificuldade em definir o valor de k
- Limitado a atributos numéricos
- Cada item deve pertencer a um único cluster
 - Partição rígida (sem sobreposição)

K-means

- Apesar de seus problemas, podemos melhorar seu desempenho de diferentes formas
 - Atualização incremental
 - K-medianas
 - K-medóides
 - K-d tree
 - Etc.

- Atualização incremental dos centroides
 - Cálculo dos novos centroides não demanda recalcular tudo novamente
 - Oportunidade de aumento no desempenho
 - Cálculo do centroide só depende
 - De seu número de objetos
 - Dos novos objetos atribuídos ao cluster
 - Dos objetos que deixaram o cluster
 - Do valor anterior do centroide

- K-medianas: substitui as médias pelas medianas
 - Exemplo
 - Média de 1, 3, 5, 7, 9 é 5
 - Média de 1, 3, 5, 7, 1009 é 205
 - Mediana de 1, 3, 5, 7, 1009 é 5
 - Vantagem: menos sensível a outliers
 - Desvantagem
 - Maior complexidade computacional devido a etapa de ordenação

- K-medóides: substitui cada centroide por um objeto representativo do cluster
 - Medóide
 - Objeto mais próximo (em média) aos demais objetos do cluster
 - Vantagens:
 - É menos sensível a outliers
 - Pode ser aplicado a bases com atributos categóricos (cálculo relacional)
 - Desvantagem
 - Complexidade quadrática

- K-means para Data Streams (fluxo de dados)
 - Utiliza o conceito de vizinhos mais próximos (K-NN)
 - Objetos são dinamicamente incorporados ao cluster mais próximo
 - Atualização do centroide do cluster pode ser incremental
 - Heurísticas podem ser usadas para criação ou remoção de clusters

- Múltiplas Execuções
 - Várias execuções do k-means
 - Uso de diferentes valores de k e de posições iniciais dos centroides
 - Ordenado: uma execução para cada valor de k em [k_{min},k_{max}]
 - Aleatório: para cada execução k é sorteado em [k_{min}, k_{max}]

- Múltiplas Execuções
 - Usa um critério de qualidade (critério de validade de agrupamento
 - Permite escolher a melhor partição
 - Vantagens
 - Permite estimar o melhor valor de k
 - Menos sensível a mínimos locais
 - Desvantagem
 - Pode apresentar um custo computacional elevado

- Como avaliar relativamente a qualidade de diferentes partições
 - Necessidade de um tipo de índice
- Critério Relativo de Validade de Agrupamento
 - Existem dezenas de critérios na literatura
 - Alguns são melhores para algumas classes de problemas
 - Não há garantias de que um certo critério funcione para todos os problemas em geral

- Alguns critérios existentes na literatura
 - Largura de Silhueta
 - Variance Ratio Criterion (VRC)
 - Também denominado Calinski-Harabaz
 - Davies-Bouldin
 - Índice de Dunn
 - E variantes

- Largura de Silhueta
 - Cada cluster é representado por uma silhueta
 - Isso nos mostra que objetos se posicionam bem dentro do cluster e quais meramente ficam em uma posição intermediária

- Largura de Silhueta
 - Para cada objeto i obtêm-se o valor s(i)

•
$$s(i) = \frac{b_i - a_i}{\max(a_i, b_i)}$$

- Onde
 - a_i é a dissimilaridade média do objeto i em relação a todos os outros objetos do seu cluster
 - b_i é a dissimilaridade média do objeto i em relação a todos os outros objetos do cluster vizinho mais próximo

- Largura Média de Silhueta (SWC)
 - É a média de s(i) para todos os objetos i nos dados
 - $SWC = \frac{1}{N} \sum_{i=1}^{N} s(i)$
 - Coeficiente de Silhueta varia de -1 a 1
 - Valores negativos não são desejáveis
 - Significa que a distância média dos objetos para seu cluster é maior que distância média para outros clusters

- Largura Média de Silhueta (SWC)
 - Valores Ideais
 - valores positivos
 - a_i bem próximo de zero
 - Coeficiente de silhueta bem próximo de 1
 - Pode ser utilizado para selecionar o "melhor" número de clusters
 - Selecionar o valor de k dando a maior média de s(i)

- Método k-means
 - Partição sem sobreposição dos dados
 - Também conhecido como partição rígida
- Muitos problemas envolvem grupos mal delineados
 - Não podem ser separados adequadamente dessa maneira
 - Os dados podem compreender categorias que se sobrepõem umas às outras em diferentes níveis

- Exemplo
 - A estrutura da população de 85 raças de cães

- Métodos de agrupamento com sobreposição são concebidos para lidar essas situações
 - Em inglês, overlapping clustering algorithms
- Ao todo, 3 tipos de partições são possíveis
 - Soft
 - Objetos podem pertencer de forma integral a mais de um grupo
 - Fuzzy
 - Objetos pertencem a todos os grupos com diferentes graus de pertinência
 - Probabilísticas
 - Objetos possuem probabilidades de pertinência associadas a cada cluster

- Agrupamento Fuzzy: Fuzzy c-Means (FCM)
 - Trata-se de uma extensão de k-means para o domínio fuzzy
 - Garantia de convergência apenas para soluções locais
 - Também é susceptível a mínimos locais da função objetivo J
 - Depende da inicialização dos protótipos
 - Pode-se utilizar o esquema de múltiplas execuções
 - Existem dezenas de variantes

Agrupamento Fuzzy: Fuzzy c-Means (FCM)

$$\bullet \min_{f_{ij}} J = \sum_{i=1}^{k} \sum_{j=1}^{N} f_{ij}^{m} d(x_j, \overline{x_i})^2$$

- $0 \le f_{ij} \le 1$
- $\sum_{i=1}^{k} f_{ij} = 1, \forall j \in \{1, 2, ..., N\}$
- $0 < \sum_{j=1}^{N} f_{ij} < N, \forall \in = \{1, 2, ..., k\}$
- Onde
 - f_{ij}: Pertinência do objeto j ao grupo i
 - m > 1 (usualmente m = 2)

- Agrupamento Fuzzy: Fuzzy c-Means (FCM)
 - Existem versões fuzzy para os critérios de validade de agrupamento discutidos anteriormente
 - Silhueta Fuzzy
 - Jaccard Fuzzy
 - Etc.

Agradecimentos

- Agradeço ao professor
 - Prof. Ricardo J. G. B. Campello ICMC/USP
- pelo material disponibilizado