BASIC ELECTRONICS/ ELECTRONICS

PREAMBLE

The syllabus is intended to equip candidates with broad understanding of the technology of manufacturing, maintenance and repair of domestic and industrial equipment. It will also offer candidates sufficient knowledge and skills to form valuable foundation for electronic-related vocation or pursue further educational qualifications.

Candidates will be expected to cover all the topics.

OBJECTIVES

The objective of the syllabus is to test candidates'

- (1) knowledge and understanding of the basic concepts and principles of electronics;
- (2) ability to use simple electronic devices to build and test simple electronic systems;
- (3) problem-solving skills through the use of the design process;
- (4) preparedness for further work in electronics;
- (5) knowledge in entrepreneurial skills and work ethics.

SCHEME OF EXAMINATION

There will be three papers, Papers 1, 2 and 3, all of which must be taken. Papers 1 and 2 shall be composite paper to be taken at one sitting.

- **PAPER 1:** will consist of fifty multiple-choice objective questions all of which are to be answered in 1 hour for 50 marks.
- **PAPER 2**: will consist of seven short-structured questions. Candidates will be required to answer any five in 1 hour for 50 marks.
- **PAPER 3**: will be a practical paper of two experiments both of which are to be carried out by candidates in 3 hours for 100 marks.

Alternative to Practical Test

Alternatively, in the event that materials for the actual practical test cannot be acquired, the Council may consider testing theoretically, candidates' level of

acquisition of the practical skills prescribed in the syllabus. For this alternative test, there will be two compulsory questions to be answered within 2 hours for 100 marks.

DETAILED SYLLABUS

	CONTENTS	NOTES
1.	ELECTRON EMISSION	
	Types of electron emission	Qualitative treatment should include :
	Application of electron emission	Thermionic emission; photoemission; secondary emission and field emission.
		Relate it to diode, triode, tetrode, pentode, and cathode ray tube.
2.	MEASURING INSTRUMENTS	Qualitative treatment only which should include:
	Concepts of measuring instrument	Classification – analogue and digital
	Principles of operation and protection of measuring instruments	Types and uses of multimeter, voltmeter, ammeter, ohmmeter, oscilloscope etc.
		Qualitative treatment only.
3.	SEMICONDUCTOR	
	Concepts of semiconductor	
	Semiconductor materials (silicon, germanium etc.)	

Courtesy: WAEC

Courtesy: WAEC	Uploaded by: <u>www.myschoolgist.com</u>
Doping	
Formation of p-type and n-type semiconductors.	Treatment should include operational principles of diodes
SEMICONDUCTOR DIODES	
Concept of diodes	Type of diodes
	Diode ratings – voltage, current and power
	Application of diodes
Biasing of diodes	Construction of a simple circuit using a
	P-N junction diode
	Practical demonstration of I-V characteristics of P-N junction diode in the forward and reverse bias modes.
	Meaning of transistor, biasing of transistor, Uses and advantages.
TRANSISTORS	BJT characteristics
Concepts of transistor	Advantages of transistor over valves
	Advantages of MOSFET over BJT
	Formation, function and principles of
	Operation.
	Transistor as a switch, inverter, an amplifier
	Verification of BJT characteristics.
	Input, output and transfer characteristics

	Transfer configuration
	Qualitative treatment only
	 formation, functions and principles of operation
	Advantages over discrete components
OTHER SEMICONDUCTOR DEVICES	
Thermistor, diac, triac and thyristor, etc	
	Circuit symbols
	Principles of operation
	Applications.
	Application of integrated circuits
INTEGRATED CIRCUITS	Explanation of RAM, ROM and EPROM
4. CIRCUIT ANALYSIS	
ELECTRIC CURRENT	Qualitative treatment only
Structure of atom	Uses of conductors and insulators
Conductors and insulators	Differences between direct and alternating current
Direct and alternating current	
Sources of direct current	
Sources of alternating current	

RELATIONSHIP BETWEEN VOLTAGE, CURRENT AND RESISTANCE

Construction of simple circuit to demonstrate Ohm's law

Current, voltage and resistance.

Ohm's law

Qualitative and quantitative treatments

Simple calculation of current, voltage and resistance.

ELECTRIC POWER

Concept of electric power

Relationship between power, current and voltage.

Other formulae for finding electrical power

Calculation of electric power in a given circuit

Practical determination of the value of a fixed colour code resistor

CIRCUIT COMPONENTS

Types of resistors, capacitors and inductors

Symbols, signs and unit of measurement

Colour coding and rating of resistors and capacitors

Carry out practical wiring of different circuit arrangement

ELECTRIC CIRCUIT

Electric circuit

Circuit boards

Circuit arrangement: series, parallel, series-parallel

Calculation on circuit arrangement

ALTERNATING CURRENT CIRCUITS

R-L-C circuits

Generator principles

POWER IN A.C. CIRCUITS

Qualitative and quantitative treatments should include

- Concepts of capacitive reactance,
 inductive reactance and impedance
- RL and RC circuits
- Calculations of capacitive reactance (X_C) and inductive reactance (X_L)
- Resonance frequency

Principles of operation of an a.c. generator

Qualitative and quantitative treatments of

- Power and power triangle
- Power factor and its correction
- Advantages and disadvantages of power factor correction
- Calculation of power factor
- Q-factor and bandwidth

Biasing methods. Treatment of the transistor as single stage.

Common-emitter amplifier.

Frequency response of an amplifier

Advantages and disadvantages of negative feedback

5	A 1	MPL	IF	FR	C
J.	AI	VIT I.	/II'		L)

VOLTAGE AMPLIFIERS

Classification: Class A, Class B, Class AB,

Class C, application, power gain, methods of

biasing and efficiency.

Classification of power gain.

Qualitative treatment including matched and

complementary pairs.

Properties of an ideal operational amplifier

Inverting and non-inverting operational amplifiers(op-amps)

Types of operational amplifiers

Applications of op-amps

Simple calculations involving inverting, noninverting, summing amplifiers and voltage

follower

Dry cells, solar cells, cadium cells, accumulators

Batteries: Rechargeable and non-rechargeable

Qualitative treatment should include:

POWER AMPLIFIERS

PUSH-PULL AMPLIFIERS

OPERATIONAL AMPLIFIERS	- Rectification, regulation
	- Types of voltage regulator e.g. diac, triac, thyristor, series voltage regulator, transistorized electronic voltage regulator
	Functions of each block
6. POWER SUPPLY	Difference between positive feedback(oscillator) and negative feedback (amplifier)
	Principles of an oscillator
D.C. POWER SUPPLY UNIT	Types of oscillators: Hartley, Colpitts, phase shift, tuned (load and crystal) oscillators
	Advantages of negative feedback
	Calculations involving negative feedbacks
	Block diagram of an oscillator
RECTIFICATION	Application of oscillator
	Types of multivibrators (monostable, bistable and astable)
	Different number system e.g. binary, octal and hexadecimal
7. OSCILLATORS, MULTIVIBRATORS	

Courtesy: V	VAEC
-------------	------

AND DIGITAL BASICS	Simple calculation in binary number
OCCULATIONS	Conversion from one base to another and viceversa
OSCILLATORS	Addition and subtraction of binary numbers
	Qualitative treatments of AND, OR, NOT, NOR and NAND
	Logic gates using switching arrangements, truth table and Boolean expression
	Relationship between velocity frequency and wave length
	Meaning of radio communication
	Modulation and demodulation
MULTIVIDDATODS	Advantages of F.M. over A.M.
MULTIVIBRATORS	Phase modulation (mention only)
	Types of radio receivers
	Advantages of superheterodyne over direct input receiver
DIGITAL BASICS	Use faulty radio and detect and repair fault
Number system	Project work on construction and designing of a simple radio receiver
	Block diagrams of A.M. and F.M. transmitters
	Block diagrams of A.M. and F.M.

Courtesy: V	VAEC
-------------	------

	superheterodyne radio receivers
	Block diagrams of mono and colour T.V.chrome receivers
Logic gates(Combinational)	Functions of each block and direction of signal flow
	Qualitative treatment of T.V. standard (NTSC,PAL,SECAM,BIG)
8. COMMUNICATION SYSTEMS, TRANSDUCERS AND SENSORS	Fibre optics, microwave, satellite, cellular phone, digital communication network, etc.
Electromagnetic waves.	Meaning of transducers and sensors
characteristics of radio waves	Principles of operation
Principles of radio waves	Types and uses to include: Acoustic, dynamic electrostatic, electromagnetic, capacitive, pressure sensor, photoelectric, proximity sensor etc.
	Thermistor as a temperature sensing device
	Qualitative treatments only
Stages of radio receiver	Types of acoustic transducers e.g. loudspeaker, microphone, earphone
	Principles of operation and function
Fault detection in radio receiver	Application of acoustic transducers
	Qualitative treatment only
	- Types of control circuits(open and close loop)
Transmitters and receivers	- Principle of operation of open loop and close loop

	 Qualitative treatment only Meaning Principle of operation, types, uses and application e.g. in car, doors, booths etc.
Methods of Communication	Trace magnetic lines of force current-carrying conductor Lenz's and Faraday's laws.
Transducers and Sensors	Definitions only Calculations involving energy stored in a coil Applications of electromagnetism Electric bell, solenoid, loudspeaker, buzzer, moving-coil instrument, moving-iron instrument, earphone and microphone
Acoustic transducer	

9. CONTROL SYSTEM	
SERVO MECHANISM	
10. MAGNETIC AND ELECTRIC FIELDS, ELECTROMAGNETIC INDUCTION/TRANSFORMERS	
Electromagnetic field	
Electromagnetic induction	
Self and mutual induction	

Courtesy: WAEC Uploaded by: <u>www.myschoolg</u>	<u>ist.com</u>