PROCESS IMPROVEMENT QUALITY MANAGEMENT_6 08/05/2023

Melinda KÖnyves

DEPARTMENT OF MANAGEMENT AND BUSINESS ECONOMICS
FACULTY OF ECONOMIC AND SOCIAL SCIENCES
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
KONYVES.MELINDA@GTK.BME.HU

Memo – Quality Control

- Mass production
 - Shewhart: 1924 Bell Labs
- Measures conducted during the manufacturing process on an appropriate sample
- Main aim to control and regulate the processes, to prevent defective products

SPC methods to be learned

- Control charts
 - Detecting problems within the process
- Process capability indices
 - The process' ability to meet the customers' requirements

SPC methods

Control charts

- Achieving process stability
- Checking whether the parameters are stable over time
- Detecting deviations in the production process that would lead to nonconforming units
- Process capability analysis
 - Evaluating the process performance
 - Reducing the variability in order to continuously meet customers' requirements
 - Predicting the number of defective items

Common and special causes

- Common causes (in-control process)
 - Cumulative effect of many, small, unavoidable causes
 - Always assumed to be present in the process
 - Humidity, temperature....

Common and special causes

- Special causes (out-of-control process)
 - Occasionally present
 - Result in an unacceptable level of process performance

Defective raw material, improperly adjusted machines, operator errors

Objective of control charts

- Distinguish common and special causes
- Detect the occurrence of special causes
 - Operator action is necessary to eliminate them
- Prevent the production of flawful

product

Mathematical background

- Normal distribution $N \sim (\mu; \sigma)$
 - Central limit theorem
 - Natural tolerance limits at $\mu 3\sigma$; $\mu + 3\sigma$

 μ is the expected value - the center of the distribution

99.7%

Processes in- and out-of control

In-control process Out-of-control process Only **Special causes** shift the common process causes, mean/variability parameters and many are stable nonconforming over time units are produced μ_0 ; σ_0

Control charts

Establishing the control charts

m samples of size n:

$$x_{i,1}, x_{i,2}, \ldots, x_{i,n}$$

- R-chart for monitoring the standard deviation of the process
- \bar{X} -chart to monitor the expected value
- The control limits are dependent on the sampling distribution of the quality characteristics

Performance of control charts

- Due to sampling error
- Type I error, α -risk
 - In-control process is thought to be out-of control (false alarm)
 - Normally distributed process: $\alpha = 0.27\%$
 - Unnecessary process adjustments
- Type II error, β-risk
 - Out-of-control process is thought to be incontrol
 - Not detecting a process shift

Phase I and II application of Control Charts

- Phase I.
 - Retrospective analysis
 - Based on 20-25 samples
 - Trial control limits
 - Bringing the process into the state of statistical control
- Phase II.
 - Monitoring process performance
 - OCAP: Out-of-control Action Plan
 - Actions necessary to eliminate the special causes

Control charts for \overline{X} and R

- m samples of size n: $x_{i,1}, x_{i,2}, \dots, x_{i,n}$
- Range of the sample: $R_i = X_{i,max} X_{i,min}$
- Average range: $\bar{R} = \frac{\sum_{i=1}^{m} R_i}{m} = \frac{R_1 + R_2 + \dots + R_m}{m}$
- Control limits for the R chart

$$-UCL = D_4 \bar{R}$$

$$-$$
 Center line $= \bar{R}$

$$-LCL = D_3 \bar{R}$$

Control charts for X and R

• Average of the *i*-th sample:

$$\bar{X}_i = \frac{\sum_{j=1}^n X_{i,j}}{n} = \frac{X_{i,1} + X_{i,2} + \dots + X_{i,n}}{n}$$

• Grand average (average of the averages): $\bar{X} = \frac{\sum_{i=1}^{m} \bar{X}_i}{\bar{X}_i} = \frac{X_1 + X_2 + \dots + X_m}{\bar{X}_i}$

$$\bar{\bar{X}} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m} = \frac{\bar{X}_1 + \bar{X}_2 + \dots + \bar{X}_m}{m}$$

- Control limits for the \bar{X} chart:
 - Process variability must be in-control (check the R chart!)

$$- UCL = \bar{\bar{X}} + A_2 \bar{R}$$

- Center line: $\bar{\bar{X}}$
- $-LCL = \bar{\bar{X}} A_2 \bar{R}$

Benefits of control chart application

- Improving productivity
- Preventing defects
- Avoiding unnecessary process adjustments
- Providing diagnostic information
- Estimating process capability

Monitoring the process' performance

- m samples of size n
- $R_i = X_{i,max} X_{i,min}$
- $\bullet \quad \overline{X}_i = \frac{\sum_{j=1}^n X_{i,j}}{n}$
- $\bullet \quad \bar{R} = \frac{\sum_{i=1}^{m} R_i}{m}$
- $\bullet \quad \bar{\bar{X}} = \frac{\sum_{i=1}^{m} \bar{X}_i}{m}$

Establishing the control limits

R chart (standard deviation of the process)

$$-UCL_R = D_4 \bar{R}$$

$$-CL_R=\bar{R}$$

$$-LCL_R = D_3\bar{R}$$

• \bar{X} chart (process' mean)

$$-UCL_{\bar{X}} = \bar{\bar{X}} + A_2\bar{R}$$

$$-CL_{\bar{X}}=\bar{\bar{X}}$$

$$-LCL_{\bar{X}} = \bar{\bar{X}} - A_2\bar{R}$$

Estimating the parameters (example)-data sheet

Sample no.		Data on no	Sample	Sample			
	X_1	X ₂	X_3	X_4	X ₅	range	average
1	15,8	16,3	16,2	16,1	16,6	0,8	16,2
2	16,3	15,9	15,9	16,2	16,4	0,5	16,14
3	16,1	16,2	16,5	16,4	16,3	0,4	16,3
4	16,3	16,2	15,9	16,4	16,2	0,5	16,2
5	16,1	16,1	16,4	16,5	16	0,5	16,22
6	16,1	15,8	16,7	16,6	16,4	0,9	16,32
7	16,1	16,3	16,5	16,1	16,5		
8	16,2	16,1	16,2	16,1	16,3	0,2	16,18
9	16,3	16,2	16,4	16,3	16,5	0,3	16,34
10	16,6	16,3	16,4	16,1	16,5	0,5	16,38
11	16,2	16,4	15,9	16,3	16,4	0,5	16,24
12	15,9	16,6	16,7	16,2	16,5	0,8	16,38
13	16,4	16,1	16,6	16,4	16,1	0,5	16,32
14	16,5	16,3	16,2	16,3	16,4	0,3	16,34
15	16,4	16,1	16,3	16,2	16,2	0,3	16,24
16	16	16,2	16,3	16,3	16,2	A Constitution	
17	16,4	16,2	16,4	16,3	16,2	0,2	16,3
18	16	16,2	16,4	16,5	16,1	0,5	16,24
19	16,4	16	16,3	16,4	16,4	0,4	16,3
20	16,4	16,4	16,5	16	15,8	0,7	16,22
Average range					3		
Grand average (average of the subgroups' average)							

$$R_{i} = X_{i,max} - X_{i,min}$$

$$\bar{R} = \frac{\sum_{i=1}^{m} R_{i}}{m}$$

$$\bar{X}_{i} = \frac{\sum_{j=1}^{n} X_{i,j}}{n}$$

$$\bar{\bar{X}} = \frac{\sum_{i=1}^{m} \bar{X}_{i}}{m}$$

Range of the first sample

R-chart

Upper control limit

\overline{X} chart

Process capability analysis

- Only for in-control process
- Analyzing the process' variability relative to product requirements
- Main objectives:
 - Predicting the number of nonconformities
 - Selecting between suppliers
 - Reducing the variability of the process
 - Meeting customers' expectations
 - Decreasing the number of nonconforming products

Capability of our process

Not capable → Dislike →

Histograms

 Visual impression of the process performance

Histograms

- Possible causes of poor process performance
 - Poorly located center (shift in the mean)
 - Excess variability

Process capability ratio

• As σ decreases, the C_P increases

• The higher the value of C_P , the less nonconforming units are produced

Process capability ratio Requirements and process fallout

C_p	Sigma level $(SL = 3C_p)$	ppm (process fallout)	
1,00	±3	2700	
1,33	±4	63,5	Standard minimum value in most industries
1,67	±5	0,57	Parameters related to safety
2,00	±6	0,002	Word-class organizations, SixSigma

Process capability indices

$$C_p = \frac{USL - LSL}{6 \cdot \sigma}$$

The C_p index does not take into account whether the process is centered at the midpoint of the specification interval or not

C_{pk} index – off-center process

$$C_{pk} = min\{C_{pl}, C_{pu}\} = \left\{\frac{\mu - LSL}{3 \cdot \sigma}; \frac{USL - \mu}{3 \cdot \sigma}\right\}_{min}$$

Relationship between C_p and C_{pk}

- C_{pk}: Current capability of the process
- C_p: Potential capability of the process
 - Can be achieved by centering the process

Control vs. specification limits

Control limits

- Determined based on the current variability of the process
- A point outside the control limit indicates that there is a shift in the process mean / standard deviation, that is, the process is NOT stable over time
- In-control process: its parameters are stable over time
- Specification limits
 - Determined externally
 - The 3 sigma deviation of the process is compared to the specification limits
 - The area outside of the specification limits is proportional to the process fallout
 - A capable process: able to meet the customers' requirements

MSA – Measurement System Analysis

 Measurement system: the totality of the measuring devices, environment, measuring persons, measurement method, procedure and measured component.

Features:

- Accuracy: if the mean value of the measured value is the same as the true value of the measured characteristic
- Resolution: the smallest difference that the measurement system can consistently detect
- Display resolution: the smallest difference that the measuring device can display
- Stability: if the measurements are repeated at different intervals, the same result is obtained
- Repeatability: inherent fluctuation in measurement results in the case of a measuring person
- Reproducibility: inherent fluctuation in measurement results in the case of several measuring persons

R&R

R&R%	Evaluation
> 30%	Not acceptable
10% <r&r%<30%< td=""><td>Partly acceptable</td></r&r%<30%<>	Partly acceptable
< 10%	Acceptable

Thank you for your attention.

Melinda Könyves

