Project 10

Cerebri

Gaël Letarte St-Pierre Hongshi Li Tianyi Zhang Yuelan Qin Xing Hu

Introduction

Challenges:

No perfect information

Infer rules/rewarding patterns from static data

Limited available data

Introduction

- Naïve Bayes
- Reinforcement learning

Next Event Reinforcement Learning Prediction Maze Problem Supervised Learning **Neural Network**

Dota 2

Introduction – Dota 2

Data available

50,000 matches

Item purchasing records of both combating teams

Final results (winning/losing)

Task

Find relationship

Item purchasing ←→ Outcome

Find optimal purchasing strategies

```
{"0": {"a": [[239, 46], [248, -46], [249, -46], [250, -38], [254,
[286, 41], [298, -36], [326, 29], [335, 42], [335, 42], [337, 9
$-46], [399, 25], [408, 36], [408, 34], [408, 20], [408, 46], [4
[412, -20], [417, -16], [417, -38], [418, -39], [420, -17], [42
$-46], [460, -46], [462, 34], [463, 46], [464, -46], [465, 86],
[478, 36], [495, 63], [495, 17], [497, 34], [501, -2], [501, -2
§-25], [540, -65], [541, -46], [543, -29], [551, -46], [555, -46
$-46], [637, -42], [637, -42], [641, 46], [643, 46], [643, -14],
N-88], [644, -12], [651, -16], [651, -20], [658, -8], [661, -16]
[699, 16], [706, -25], [706, -17], [714, 79], [724, -63], [732,
[772, 42], [777, 40], [781, 46], [783, 42], [784, -13], [787, -
 \46], [822, 17], [822, 25], [831, -20], [832, 102], [833, -38],
[864, -168], [927, 46], [939, 6], [944, 26], [944, 164], [951,
[980, -69], [990, -46], [1008, 54], [1022, -46], [1026, -46], [
 23], [1058, 46], [1062, 46], [1068, -46], [1070, -27], [1070, -
\[1103, -46], [1123, -19], [1129, -86], [1129, -4], [1135, 46],
\37], [1147, -36], [1151, -46], [1152, -38], [1159, -5], [1173,
[1219, 60], [1222, -46], [1233, 42], [1233, 42], [1243, 46], [1
 \46], [1258, 43], [1258, 218], [1285, -18], [1314, -170], [1315,
 、[1339, 162], [1345, -46], [1346, -46], [1380, -46], [1381, 170]
\60], [1397, -79], [1399, -46], [1401, -42], [1401, -43], [1401,
[1433, 46], [1447, 22], [1455, -145], [1456, -46], [1463, 154],
$-218], [1495, -43], [1496, -218], [1496, -42], [1498, 46], [150
[1599, -42], [1599, -42], [1605, -9], [1613, -21], [1621, 46],
`24], [1668, -46], [1671, -46], [1671, 60], [1675, 21], [1675, 1
```

Recurrent Neural Networks

Long Short-Term Memory

Winner Prediction

Winner Prediction Results

Winning Advantage

Models

Winning Advantage (WA)

- Time Padded Architecture (WA_time)
- Fuzzy Sequences Architecture (WA_fuzzy)

Vendor Value (VV)

VV vs WA, match 11157, outcome: 0

Results

Rank	VV (%)	WA_fuzzy (%)	WA_time (%)
Best	46	26	28
Middle	32	13	55
Worse	22	61	17

Reinforcement Learning Simple Q-learning

Q-learning is a model-free reinforcement learning technique. It can be used to find an optimal action policy for any given (finite) Markov decision process (MDP).

Two Models

Environment

Dictionary Model

Use a dictionary to store states, actions and corresponding q values, always pick the action with the highest q value.

For each state, we only allow actions that are in the game log. We can never beat the best game log.

Result of Dictionary Model

As we expected, our model converged to actual results.

The winning probability is slightly above 50% after we train the model for 50000 games.

Tree Model

- The tree is made up of nodes.
- A node is used to capture all the features of a unique state.
- In the tree model, we have similar nodes.
- We allow jumping among similar nodes.

Result of Tree Model

The winning probability is about 60% after

50000 games.

Outperform the dictionary model.

Alpha Go Approach

Step

 Supervised Learning Policy Network

2. Reinforcement Learning Policy Network

3. Value Network

Aim

Directly learn from human experts

Calculate Action Probability

Estimate State Situation

From Alpha Go to Dota2

1. Supervised Learning Model

The final accuracy of the supervised learning model reaches 30%

improvements in playing strength (Fig. 2a); larger networks achieve better accuracy but are slower to evaluate during search. We also trained a faster but less accurate rollout policy $p_{\pi}(a|s)$, using a linear softmax of small pattern features (see Extended Data Table 4) with weights π ; this achieved an accuracy of 24.2%, using just 2μ s to select an action, rather than 3 ms for the policy network.

Accuracy of Supervised Learning Model

2. Interactive Environment

2. Interactive Environment

3. Reinforcement Learning

Choose action from Q Perform action Measure reward Update Q

Simple Q-Learning

3. Reinforcement Learning

3. Reinforcement Learning

4. Summary

Next Event Reinforcement Learning Prediction Maze Problem Supervised Learning **Neural Network**