Chapter 3 Applications of Derivatives

3.8 Newton's Method

Roots of polynomials.

- for quadratic polynomial $f(x) = ax^2 + bx + c$, the roots are given by:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{a}$$

- There are formulas for cubics and quartics (horribly long...).
- For polynomials of degree greater than 4, there is no general formula!

Niels Henrik Abel

- 1802-1829
- Died from Turberculosis

- 1811-1932
- Died in a duel for a mysterious mistress...

The urgent need of Newton's method!

KEY IDEAS:

- The tangent line approximate well the function.
- Replace the fonction with its tangent line.
- Intersect the tangent line with the x-axis.

Data:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Example. Starting with $x_1 = 2$, find the third approximation x_3 to the root of the equation $\frac{x^3}{2} - 3x = 0$.

n		xn
	1	2
	2	2.666666667
	3	2.473429952
	4	2.44983289
	5	2.449489815
	6	2.449489743
	7	2.449489743
	8	2.449489743
	9	2.449489743
	10	2.449489743
	11	2.449489743
	12	2.449489743
	13	2.449489743
	14	2.449489743
	15	2.449489743

Take a look at the formula in Newton's Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Where do you think this formula might fail?

Example. Redo the last example with $x_1 = -1.14$.

Desmos: https://www.desmos.com/calculator/nm3bpdg95t

$MANY^{MANY}APPLICATIONS!!!$

- Finding solutions to general equations such as

$$\cos(x) = x$$

- At the core of many numerical methods in ingeneering.
- Gives rise to wonderful fractal pictures:
 Go watch the 3blue1brown video
 https://www.youtube.com/watch?v=-RdOwhmqP5s