electrical connection pads disposed on said chip;

at least one first insulating layer disposed on said chip such that said electrical connection pads are free of said first insulating layer on at least one surface;

interconnects running on said first insulating layer and in each case lead from said electrical connection pads to base regions;

a second insulating layer disposed on said interconnects and on said first insulating layer, said second insulating layer having a thickness, said second insulating layer having openings formed therein leading to said base regions;

a conductive material with an elasticity, introduced into each of said openings;

small balls having a metallic coating on an outside and an elasticity disposed on said conductive material in a region of a free end of each of said openings; and

said thickness of said second insulating layer, said elasticity of said conductive material, and said elasticity of said small balls resulting in a desired comparatively good mechanical decoupling from a printed circuit board upon the semiconductor component being soldered onto the printed circuit board.

claim 3 (amended). A method for producing semiconductor devices in a chip format, which comprises:

providing chips;

plading electrical connection pads on the chips;

applying at least one first insulating layer to at least one surface of the chips such that the electrical connection pads are left at least partially uncovered by the first insulating layer;

producing interconnects on the at least one first insulating layer, the interconnects leading to base regions of external connection elements;

applying a second insulating layer on the interconnects and on the at least one first insulating layer, the second insulating layer having a thickness;

forming openings in the second insulating layer above the base regions and leading to the base regions;

introducing a conductive material with an elasticity into the openings;

placing small balls having a metallic coating on the outside and an elasticity onto the conductive material in a region of a free end of each of the openings; and

the thickness of said second insulating layer, the elasticity of the conductive material, and the elasticity of the small balls resulting in a desired comparatively good mechanical decoupling from a printed circuit board upon the semiconductor component being soldered onto the printed circuit board.

Q₃

Claim 4 (amended). The method according to claim 3, which comprises using a doctor blade for introducing the conductive material into the openings.

Claim 5 (amended). The method according to claim 19, which comprises

forming the chips on a wafer; and

after the curing of the conductive adhesive, dividing the wafer to obtain the semiconductor devices.

Claim 11 (amended). The method according to claim 18, which comprises:

forming the chips on a wafer; and

after the remelting of the solder paste, dividing the wafer to obtain the semiconductor devices.

at

-- 12. The semiconductor device according to claim 1, wherein said conductive material is a solder paste which has been remelted after introduction into said opening.

513

- 13. The semiconductor device according to claim 1, wherein said conductive material is a conductive adhesive which has been cured after introduction into said opening.
- 14. The semiconductor device according to claim 13, wherein said small balls are composed completely of metal.
- 15. The semiconductor device according to claim 1, wherein said small balls are metallized plastic balls.
- 16. The semiconductor device according to claim 1, wherein said conductive material has a cylinder shape in said openings.
- 17. The semiconductor device according to claim 1, wherein said second insulating layer is thicker than said first insulating layer.
- 18. The method according to claim 3, wherein the conductive material introduced into the opening is a solder paste which has been remelted after introduction into said opening.

SNA

9. The method according to claim 3, wherein the conductive material introduced into the opening is a conductive adhesive which has been cured after introduction into the opening.

04

- 20. The method according to claim 19, wherein the small balls disposed on the conductive adhesive are composed completely of metal.
- 21. The method according to claim 3, wherein the small balls disposed on the conductive material are metallized plastic balls.
- 22. The method according to claim 3, wherein the conductive material introduced into the opening has a cylinder shape in the openings.
- 23. The method according to claim 3, wherein the applied second insulating layer is thicker than the applied first insulating layer.
- 24. The method according to claim 3, wherein the applied second insulating layer is at least four times thicker than the applied first insulating layer. --