Introducción:

Conceptos Generales

Clase 01

Breve Introducción a Machine Learning

Dr. Ramón CaraballoSECIU Red Académica Uruguaya
UDELAR

Objetivo

Después de esta presentación el asistente podrá definir:

- Conceptos tales como Machine Learning, Deep Learning e Inteligencia
 Artificial y como se distinguen entre estos.
- Distinguir diferentes tipos de Machine Learning
- Tipos de problemas más típicos que se pueden resolver con estas técnicas.
- Potencialidades de las técnicas de ML/DL en la Industria

¿Qué es Machine Learning?...

Machine Learning es el área de la ciencia de computadoras "que habilita a las computadoras aprender sin ser explícitamente programadas..."

Arthur Samuel (1959)

Investigador de IBM pionero de los juegos por computadoras y de la inteligencia artificial.

Arthur Samuel

¿Cómo funciona un algoritmo de ML?

Sup. que necesitamos reconocer animales en un conjunto de imágenes

¿Cómo funciona un algoritmo de ML?

Machine Learning

IA, Machine & Deep Learning

En qué se diferencian?

Inteligencia Artificial (IA)

Desarrolla y estudia métodos y software que permiten a las máquinas percibir su entorno y utilizar el aprendizaje y la inteligencia para realizar acciones que maximicen sus posibilidades de alcanzar los objetivos definidos.

- Visión por computadora
- Sistemas Autónomos
- Procesamiento de Lenguaje Natural
- Creatividad Artificial
- Sumarización

Artificial Intelligence:

Mimicking the intelligence or behavioural pattern of humans or any other living entity.

Machine Learning:

A technique by which a computer can "learn" from data, without using a complex set of different rules. This approach is mainly based on training a model from datasets.

Deep Learning:

A technique to perform machine learning inspired by our brain's own network of neurons.

Machine Learning (ML)

Desarrollo y estudio de algoritmos estadísticos que puedan aprender de los datos y generalizar a datos no vistos, y así realizar tareas sin instrucciones explícitas

- Rama estadística de Al
- Regresión
- Clasificación
- Sistemas de Recomendación

Deep Learning

Subcampo de Machine Learning que se centra en el uso de redes neuronales para realizar tareas como la clasificación, la regresión, aprendizaje y representación. Se inspira en la neurociencias y se centra en apilar neuronas artificiales en capas y "entrenarlas" para procesar datos. El adjetivo "profundo" se refiere al uso de múltiples capas (que van desde tres hasta varios cientos o miles) en la red. Los métodos utilizados pueden ser supervisados, semi-supervisados o no supervisados.

- Revolución en Machine Learning
- Nivel de Automatización más profundo
- Uso de Redes Neuronales para todas las tareas de Machine Learning

Ejemplos de ML

Clasificación de células tumorales

Benign or malignant cell?

Machine learning helps to predict

Class	Mit	NormNucl	BlandChrom	BareNuc	SingEpiSize	MargAdh	UnifShape	UnifSize	Clump	ID
Benign	1	1	3	1	2	1	1	1	5	1002348
Benign	1	2	3	10	2	5	4	4	5	1013267
Malignant	1	1	3	2	7	1	1	10	3	1023484
Benigr	1	7	3	4	3	1	8	2	5	1018098
Benigr	1	1	3	1	2	3	1	1	6	1034349
Malignan	1	1	3	10	2	3	10	4	5	1028561
Benign	5	1	2	10	2	8	1	2	4	1033738
Malignant	1	2	1	1	2	1	1	2	5	1023843

Modeling

ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
1004737	6	1	1	1	7	1	3	1	1	Benign

Machine learning helps to predict

Los algoritmos de ML influencian fuertemente a nuestra sociedad

Algunos Usos de Algoritmos de ML

- Sistemas de Recomendación (Amazon, Netflix, Ebay, Temu, etc.)
- Detección de Fraudes (VISA, Master, etc.)
- Aprobación de créditos y préstamos (Finanzas)
- Operaciones en el mercado Bursátil (Análisis de Riesgo en Inversiones)
- Reconocimiento Biométrico
- Segmentación de Usuarios
- Marketing a medida
- Navegación autónoma
- Etc..

Tipos de Machine Learning

Aprendizaje Supervisado

- **Regresión:** Predicción de valores continuos.
- Clasificación: Predicción de la categoría de una observación

Aprendizaje No Supervisado

- **Clustering:** Análisis y Búsqueda de estructuras en los datos.
- Reducción Dimensional: PCA
- Estimación de Densidad: DBScan

Otras Ramas de ML

- Aprendizaje Semi-Supervisado
- Reinforcement Learning
- Procesamiento de Lenguaje Natural (NLP)
- Visión por Computadora

Lenguajes de programación

Python

Easy to read syntax

<u>R</u>

Mainly used for statistical analysis

Other languages

- Julia
- Scala
- Java
- JavaScript

Procesamiento y análisis de datos

Data processing framework

Apache Hadoop

Software framework

MySQL

Relational database management system

Visualización de Datos

NumPy (Arrays & Matrices)

Pandas (Data Manipulation & Analysis)

SciPy (Linear Algebra, Optimization, ...)

Scikit-Learn (Regression, Classification, ...)

Herramientas de Deep Learning

Caffe

@AppFirmsReview

CPUs vs GPUs vs TPUs vs NPUs

CPU (Central Processing Unit)

La CPU es la unidad central de procesamiento responsable de ejecutar instrucciones y administrar las operaciones generales de un sistema. Sobresale en el manejo de tareas diversas y secuenciales y es la columna vertebral de la informática de propósito general.

CPUs vs GPUs vs TPUs vs NPUs

GPU (Graphics Processing Unit)

La GPU está especializada en el procesamiento paralelo, por lo que es ideal para manejar tareas que involucran cálculos a gran escala. Originalmente diseñadas para renderizar gráficos, las GPU ahora se usan ampliamente en campos como los juegos, la edición de video y el entrenamiento de modelos de IA.

CPUs vs GPUs vs TPUs vs NPUs

TPU (Tensor Processing Unit)

Desarrolladas por Google, las TPU están diseñadas específicamente para acelerar las cargas de trabajo de aprendizaje automático. Están optimizados para cálculos basados en tensores, que son parte integral de los algoritmos de aprendizaje profundo (Deep Learning).

CPUs vs GPUs vs TPUs vs NPUs

NPU (Neural Processing Unit)

La NPU es un procesador diseñado para tareas de IA en el dispositivo, que se encuentra comúnmente en teléfonos inteligentes y dispositivos IoT. Acelera los cálculos de IA en tiempo real, como el reconocimiento de imágenes y el procesamiento del lenguaje natural.

Comparaciones

CPUs vs GPUs vs TPUs vs NPUs

Key Differences - CPU vs GPU vs TPU vs NPU

Feature	СРИ	GPU	TPU	NPU
Primary Role	General computing	Graphics and parallel tasks	Machine learning tasks	On-device Al inference
Processing Type	Sequential	Parallel	Tensor-based parallelism	Parallel
Energy Efficiency	Moderate	High power consumption	Energy-efficient for Al	Extremely efficient
Best Use Cases	Office work, system ops	Gaming, Al training	Training large Al models	Mobile Al applications

Sumario

- Machine learning es la rama estadística de la Inteligencia Artificial
- Los algoritmos de Machine Learning pretenden "enseñar" a las computadoras a realizar diversas tareas
- ML es usado en la Industria y la Academia para crear modelos de reconocimiento de patrones, sistemas de recomendación, clasificación, regresión, etc.
- Existen dos grandes categorías de algoritmos de ML
 - Aprendizaje supervisado (Supervised Learning)
 - Aprendizaje no Supervisado (Non-Supervised Learning)
- Deep Learning es una subcategoría de ML que hace uso de redes neuronales para abordar problemas de Machine Learning
- Machine Learning tiene diversas subcategorías adicionales e infinidad de herramientas