

Cours d'Algèbre I et II avec Exercices

Dr Imene Medjadj

2018/2019

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF Faculté des Mathématiques et Informatique

Cours d'Algèbre I et II

Avec Exercices Corrigés

Présenté par : Medjadj Imene.

Cours d'Algèbre I et II avec Exercices Corrigés

Imene Medjadj

Table des matières

Chapi	itre 1.	Introduction	5
1. 2. 3.	Métho	Élément de logique et méthodes de raisonnement avec Exercices Corrigés de logique formelle des de raisonnement ces Corrigés	7 7 12 13
Chapi 1. 2. 3. 4.	Notion Applic Relation	Théorie des ensembles avec Exercices Corrigés a d'ensemble et propriétés eations et relations d'équivalences ons Binaires dans un ensemble ces Corrigés	19 19 22 26 28
Chapi 1. 2. 3. 4. 5.	Lois D Group Annea Corps		35 35 36 36 36 37
1. 2. 3. 4. 5. 6.	Espace Somme Somme Famille Notion	Notion de IK — Espaces vectoriels(IK étant un Corps Commutatif) avec Exercices Corrigés e vectoriel et sous espace vectoriel e de deux sous espaces vectoriels e directe de deux sous espaces vectoriels es génératrices, familles libres et bases a d'Application Linéaire ces Corrigés	43 43 45 45 45 48 51
1. 2. 3. 4.	Produi Matric	Notion de Matrice Associée à une Application Linéaire et Calcul Algébrique sur les Matrices avec Exercices Corrigés e vectoriel des matrices it de deux matrices es carrées et carrées et cerminants	57 57 59 60 61
4. 5. 6.	Relatio	ons entre une application linéaire et sa matrice Associée et et Changements de Bases	65 68

TABLE DES MATIÈRES

4

7.	Diagonalisation	70
8.	Systèmes d'équations linéaires	73
9.	Exercices Corrigés	77
Bibli	iographie	83

CHAPITRE 1

Introduction

Ce document cours d'Algèbre I et II avec exercices corrigés recouvre le programme d'Algèbre linéaire de la 1ère année universitaire.

Le lecteur trouvera une partie cours qui a été enseigné et à la fin de chaque chapitre une partie exercices corrigés dont la plupart ont été proposé dans le cadre de travaux dirigés ou ont fait l'objet de contrôle des connaissances.

Il est destiné principalement aux étudiants de la 1ère année L.M.D. ainsi que toute personne ayant besoin d'outils de bases d'Algèbre linéaire.

Nous espérons que ce polycopié réponde aux attentes des étudiants et qu'il les aidera à réussir.

CHAPITRE 2

Élément de logique et méthodes de raisonnement avec Exercices Corrigés

1. Régles de logique formelle

DÉFINITION 1.1. une proposition est une expression mathématique à laquelle on peut attribuer la valeur de vérité vrai ou faux.

EXEMPLE 1.2. (1) \ll Tout nombre premier est pair \gg , cette proposition est fausse.

- (2) $\sqrt{2}$ est un nombre irrationnel, cette proposition est vraie
- (3) 2 est inférieure à 4, cette proposition est vraie

DÉFINITION 1.3. Toute proposition démontrée vraie est appelée théorème (par exemple le théorème de PYTHAGORE, Thalès...)

La négation
$$\ll (nonP) \gg, \ll \overline{P} \gg$$
:

DÉFINITION 1.4. Soit P une proposition, la négation de P est une proposition désignant le contraire qu'on note (nonP), ou bien \overline{P} , on peut aussi trouver la notation P. Voici sa table de vérité.

$$\begin{array}{c|c}
P & \overline{P} \\
\hline
1 & 0 \\
0 & 1
\end{array}$$

EXEMPLE 1.5. (1) Soit $E \neq \emptyset$, $P : (a \in E)$, alors $\overline{P} : (a \notin E)$.

- (2) P: la fonction f est positive, alors P: la fonction f n'est pas positive.
- (3) P: x + 2 = 0, alors $(nonP): x + 2 \neq 0$.
- 1.1. Les connecteurs logiques. Soit P, Q deux propositions
- 1) La conjonction $\ll et \gg, \ll \wedge \gg$

DÉFINITION 1.6. la conjonction est le connecteur logique \ll et \gg , $\ll \land \gg$, la proposition (PetQ) ou $(P \land Q)$ est la conjonction des deux propositions P,Q.

7

- $-(P \wedge Q)$ est vraie si P et Q le sont toutes les deux.
- $-(P \wedge Q)$ est fausse dans les autres cas. On résume tout ça dans la table de vérité suivante.

8. ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

P	Q	$P \wedge Q$
1	1	1
1	0	0
0	1	0
0	0	0

Exemple 1.7. (1) 2 est un nombre pair et 3 est un nombre premier, cette proposition est vraie

- (2) $3 \le 2$ et $4 \ge 2$, cette proposition est fausse.
- 2) La disjonction $\ll ou \gg, \ll \vee \gg$

DÉFINITION 1.8. la disjonction est un connecteur logique \ll ou \gg , \ll \vee \gg , on note la disjonction entre P,Q par $(Pou\,Q),(P\vee Q).$ $P\vee Q$ est fausse si P et Q sont fausses toutes les deux, sinon $(P\vee Q)$ est vraie.

On résume tout ça dans la table de vérité suivante.

P	Q	$P \vee Q$
1	1	1
1	0	1
0	1	1
0	0	0

EXEMPLE 1.9. (1) 2 est un nombre pair ou 3 est un nombre premier. Vraie. (2) $3 \le 2$ ou $2 \ge 4$. Fausse.

3)L'implication

DÉFINITION 1.10. L'implication de deux propositions P, Q est notée : $P \Rightarrow Q$ on dit P implique Q ou bien si P alors Q. $P \Rightarrow Q$ est fausse si P est vraie et Q est fausse, sinon $(P \Rightarrow Q)$ est vraie dans les autres cas.

P	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

EXEMPLE 1.11. (1)
$$0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$$
. Vraie

- (2) Il pleut, alors je prends mon parapluie. Vraie c'est une conséquence.
- (3) Omar a gagné au loto \Rightarrow Omar a joué au loto. Vraie c'est une conséquence.

4)La réciproque de l'implication

9

DÉFINITION 1.12. La réciproque d'une implication $(P \Rightarrow Q)$ est une implication $Q \Rightarrow P$.

- **EXEMPLE 1.13.** (1) La réciproque de : $0 \le x \le 9 \Rightarrow \sqrt{x} \le 3$, est : $\sqrt{x} \le 3 \Rightarrow 0 \le x \le 9$.
- (2) La réciproque de : (Il pleut, alors je prends mon parapluie), **est** : (je prends mon parapluie, alors il pleut).
- (3) La réciproque de : (Omar a gagné au loto ⇒ Omar a joué au loto), est : (Omar a joué au loto ⇒ Omar a gagné au loto).
- 5)La contraposée de l'implication Soit P, Q deux propositions, la contraposée de $(P \Rightarrow Q)$ est $(\overline{Q} \Rightarrow \overline{P})$, on a

$$(P \Rightarrow Q) \Longleftrightarrow (\overline{Q} \Rightarrow \overline{P})$$

Remarque 1.14. $(P\Rightarrow Q)$ et $(\overline{Q}\Rightarrow \overline{P})$ ont la même table de vérité, i.e., la même valeur de vérité.

- **Exemple** 1.15. (1) La contraposée de :(Il pleut, alors je prends mon parapluie), **est** (je ne prends pas mon parapluie, alors il ne pleut pas).
- (2) La contraposée de :(Omar a gagné au loto ⇒ Omar a joué au loto), est : (Omar n'a pas joué au loto ⇒ Omar n'a pas gagné au loto).

6)La négation d'une implication

THÉORÈME 1.16. Soit P, Q deux propositions on a

$$\overline{(P \Rightarrow Q)} \Leftrightarrow (P \wedge \overline{Q}).$$

- Exemple 1.17. (1) La négation de : (il pleut, alors je prends mon parapluie), est : (il pleut et je ne prends pas mon parapluie).
- (2) La négation de : (Omar a gagné au loto ⇒ Omar a joué au loto), est : (Omar a gagné au loto et Omar n'a pas joué au loto).
- (3) $(x \in [0,1] \Rightarrow x \ge 0)$ sa négation : $(x \in [0,1] \land x < 0)$.

Conclusion

- (1) La négation de $(P \Rightarrow Q)$ est $(P \land \overline{Q})$.
- (2) La contraposée de $(P\Rightarrow Q)$ est $(\overline{Q}\Rightarrow \overline{P})$.
- (3) La réciproque de $(P \Rightarrow Q)$ est $(Q \Rightarrow P)$.

Remarque 1.18.
$$(P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q)$$
.

20 ÉLÉMENT DE LOGIQUE ET MÉTHODES DE RAISONNEMENT AVEC EXERCICES CORRIGÉS

PREUVE. Il suffit de montrer que $(P \Rightarrow Q)$ a la même valeur de vérité que $(\overline{P} \lor Q)$, on le voit bien dans la table de vérité suivante :

P	Q	\overline{P}	$P \Rightarrow Q$	$\overline{P} \lor Q$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

7)L'équivalence

DÉFINITION 1.19. l'équivalence de deux propositions P,Q est notée $P \Leftrightarrow Q$, on peut aussi écrire $(P \Rightarrow Q)$ et $(Q \Rightarrow P)$. On dit que $P \Leftrightarrow Q$ si P et Q ont la même valeur de verité, sinon $(P \Leftrightarrow Q)$ est fausse.

P	Q	$P \Leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

Remarque 1.20. (1) $P \Leftrightarrow Q$ c'est à dire P n'est pas équivalente à Q lorsque $P \Rightarrow Q$ ou $Q \Rightarrow P$.

(2) $P \Leftrightarrow Q$ peut être lue P si et seulement si Q.

EXEMPLE 1.21. (1)
$$x + 2 = 0 \Leftrightarrow x = -2$$
.

(2) Omar a gagné au loto # Omar a joué au loto.

Théorème 1.22. Soit P, Q deux propositions on a:

$$(P \Leftrightarrow Q) \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P).$$

PREUVE.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$	$(P \Leftrightarrow Q)$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	1	0	0	0
0	0	1	1	1	1

- 8)Propriétés des connecteurs logiques Quelle que soit la valeur de vérité des propositions P, Q, R les propriétés suivantes sont toujours vraies.
 - (1) $\overline{P} \vee P$.
 - (2) $\overline{\overline{P}} \Leftrightarrow P$.
 - (3) $P \wedge P \Leftrightarrow P$.
 - (4) $P \wedge Q \Leftrightarrow Q \wedge P$. Commutativité de \wedge
 - (5) $P \lor Q \Leftrightarrow Q \lor P$. Commutativité de \lor

- (6) $((P \land Q) \land R) \Leftrightarrow (P \land (Q \land R))$. Associativité de \land
- (7) $((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$. Associativité de \lor
- (8) $P \lor P \Leftrightarrow P$
- (9) $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$).
- (10) $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$.
- (11) $P \wedge (P \vee Q) \Leftrightarrow P$.
- (12) $P \lor (P \land Q) \Leftrightarrow P$.
- (13) $\overline{P \wedge Q} \Leftrightarrow \overline{P} \vee \overline{Q}$ Lois de Morgan
- (14) $\overline{P \vee Q} \Leftrightarrow \overline{P} \wedge \overline{Q}$ Lois de Morgan
- $(15) \ (P \Rightarrow Q) \Leftrightarrow (\overline{P} \lor Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P}).$

PREUVE. (13)

P	Q	\overline{P}	\overline{Q}	$P \wedge Q$	$\overline{P \wedge Q}$	$\overline{P} \vee \overline{Q}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

(14)

P	Q	\overline{P}	\overline{Q}	$\overline{P} \lor Q$	$P \Rightarrow Q$	$\overline{Q} \Rightarrow \overline{P}$
1	1	0	0	1	1	1
1	0	0	1	0	0	0
0	1	1	0	1	1	1
0	0	1	1	1	1	1

1.2. Les quantificateurs.

- (1) Quantificateur universel $\ll \forall \gg$ La relation pour tous x tel que P(x) est notée : $\forall x, P(x)$ se lit quel que soit x, P(x).
- (2) Quatificateur existentiel $\ll \exists \gg$ la relation il existe un x tel que P(x) est notée : $\exists x, P(x)$.

REMARQUE 1.23. Il existe un et un seul élément x de E c'est à dire un unique x, P(x) est notée : $\exists ! x \in E, P(x)$

Exemple 1.24. Ecrire à l'aide des quantificateurs les propositions suivantes :

- (1) P(x): La fonction f est nulle pour tous $x \in \mathbb{R}$ devient $P(x): \forall x \in \mathbb{R}, f(x) = 0.$
- (2) P(x): la fonction f s'annule en x_0 devient P(x): $\exists x_0 \in \mathbb{R}, f(x_0) = 0.$

REMARQUE 1.25. Les relations $\forall x, \exists y, P(x, y)$ et $\exists y, \forall x, P(x, y)$ sont différentes, dans la première y dépend de x tandis que dans la seconde y ne dépend pas de x.

- **Exemple 1.26.** (1) Tous les étudiants de la section 1 ont un groupe sanguin. \forall étudiant \in section 1, \exists un groupe sanguin, étudiant a un groupe sanguin. **Vraie** (cela veut dire que chaque étudiant a un groupe sanguin).
- (2) Il existe un groupe sanguin pour tous les étudiants de la section 1. ∃ un groupe sanguin O⁻, ∀ l'étudiant de section 1, l'étudiant a O⁻. Fausse (cela veut dire que tous les étudiants ont le même groupe sanguin ce qui est peut probable).
- (3) La proposition $(\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y = 0)$ est vraie en effet $\forall x \in \mathbb{R}, \exists y = -x \in \mathbb{R}, x + (-x) = 0.$
- (4) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x^2 \geq y$ c'est vraie $car \exists y = 0, \forall x \in \mathbb{R}, x^2 \geq 0$.

Régles de négations

Soit P(x) une proposition,

- (1) la négation de $\forall x \in E, P(x) \text{ est } : \exists x \in E, \overline{P}(x).$
- (2) la négation de $\exists x \in E, P(x) \text{ est } : \forall x \in E, \overline{P}(x).$
- **REMARQUE** 1.27. (1) $\exists x \in E, \forall y \in E, P(x, y) \text{ veut dire que } x \text{ est constante}$ (fixé), il est indépendant de y qui varie dans E.
- (2) $\forall x \in E, \exists y \in P(x,y)$ veut dire y dépend x, par une certaine relation f telle que y = f(x).
- (3) On peut permuter entre deux quantificateurs de la même nature :

$$\forall x, \forall y, P(x, y) \Leftrightarrow \forall y, \forall x, P(x, y).$$

$$\exists x, \exists y, P(x,y) \Leftrightarrow \exists y, \exists x, P(x,y).$$

EXEMPLE 1.28. (1) la négation de $\forall \epsilon > 0, \exists q \in \mathbf{Q}^+$ tel que : $0 < q < \epsilon$ est : $\exists \epsilon > 0, \forall q \in \mathbf{Q}^+$ tel que : $q \leq 0$ ou $q \geq \epsilon$

2. Méthodes de raisonnement

Pour montrer que $(P\Rightarrow Q)$ est vraie on peut utiliser ce qui suit :

(1) Méthode de raisonnement direct

On suppose que P est vraie et on démontre que Q l'est aussi.

EXEMPLE 2.1. Montrons que pour $n \in \mathbb{N}$ si n est pair $\Rightarrow n^2$ est pair. On suppose que n est pair, i.e., $\exists k \in \mathbb{Z}, n = 2k$ donc

$$n.n = 2(2k^2) \Rightarrow n^2 = 2k'$$

on pose $k' = 2k^2 \in \mathbb{Z}$ ainsi $\exists k' \in \mathbb{Z}, n^2 = 2k', n^2$ est pair, d'où le résultat.

(2) Méthodes du raisonnement par la contraposée

Sachant que $(P \Rightarrow Q) \Leftrightarrow (\overline{Q} \Rightarrow \overline{P})$, pour montrer que $P \Rightarrow Q$ on utilise la contraposée, c'est à dire il suffit de montrer que $\overline{Q} \Rightarrow \overline{P}$ de manière directe, on suppose que \overline{Q} est vraie et on montre que \overline{P} est vraie.

EXEMPLE 2.2. Montrons que n^2 est impair $\Rightarrow n$ est impair. Par contraposée il suffit de montrer que si n est pair $\Rightarrow n^2$ est pair voir l'exemple précédent.

(3) Raisonnement par l'absurde

Pour montrer que R est une proposition vraie on suppose que \overline{R} est vrai et on tombe sur une contradiction (quelque chôse d'absurde), quand $R:P\Rightarrow Q$ est une implication par l'absurde on suppose que $\overline{R}:R\wedge \overline{Q}$ est vraie et on tombe sur une contradicition.

EXEMPLE 2.3. (a) Montrer que $\sqrt{2}$ est un irrationnel.

(b) n est pair $\Rightarrow n^2$ est pair, par l'absurde : on suppose que n est pair et que n^2 est impaire contradiction

(4) Contre exemple

Pour montrer qu'une proposition est fausse il suffit de donner ce qu'on appelle un contre-exemple c'est à dire un cas particulier pour lequel la proposition est fausse.

EXEMPLE 2.4. (n est un nombre pair) \Rightarrow (n²+1 est pair), fausse car pour n = 2, 4+1 = 5 n'est pas pair, c'est un contre-exemple.

(5) Raisonnement par recurrence

Pour montrer que P(n): $\forall n \in \mathbb{N}, n \geq n_0, P_n(x)$ est vraie on suit les étapes suivantes :

- (a) On montre que $P(n_0)$ est vraie, (valeur initiale).
- (b) On suppose que P(n) est vraie à l'ordre n
- (c) On montre que P(n+1) est vraie à l'ordre n+1

Alors P est vrai pour tous $n \ge n_0$.

EXEMPLE 2.5. Montrer $\forall n \in \mathbb{N}^* : 1 + 2 + ... + n = \frac{n(n+1)}{2}$

- (a) Pour n = 1, P(1) est vraie $1 = \frac{1(2)}{2}$.
- (b) On suppose que $1 + 2 + ... + n = \frac{n(n+1)}{2}$ est vraie.
- (c) On montre que $1+2+...+n+1=\frac{(n+1)(n+2)}{2}$ est vraie, $1+2+...+n+1=1+2+...+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$ ainsi P est vraie à l'ordre n+1 alors $\forall n\in\mathbb{N}^*: 1+2+...+n=\frac{n(n+1)}{2}$ est vraie.

3. Exercices Corrigés

Exercice 1. Donner la négation des propositions suivantes :

- (1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ 2x + y > 3.$
- (2) $\forall \epsilon > 0, \exists \alpha > 0, |x| < \alpha \Rightarrow |x^2| < \epsilon.$

- (3) $\forall x \in \mathbb{R}, (x = 0 \lor x \in]2, 4]$).
- (4) Il existe $M \in \mathbb{R}^+$, pour tous $n \in \mathbb{N}$ tel que : $|U_n| \leq M$.

SOLUTION. (1) $P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, 2x + y > 3$ $\Leftrightarrow \overline{P}: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, 2x + y \leq 3.$

- (2) $P: \forall \epsilon > 0, \exists \alpha > 0, |x| < \alpha \Rightarrow |x^2| < \epsilon$ $\Leftrightarrow \overline{P}: \exists \epsilon > 0, \forall \alpha > 0, |x| < \alpha \land |x^2| > \epsilon$
- (3) $P: \forall x \in \mathbb{R}, ((x=0) \lor (x \in]2, 4]))$ $\Leftrightarrow \overline{P}: \exists x \in \mathbb{R}, x \neq 0 \land (x \leq 2 \lor x > 4).$
- (4) $P: il \ existe \ M \in \mathbb{R}^+$, pour tous $n \in \mathbb{N}$ tel que : $|U_n| \leq M$ $\Leftrightarrow \overline{P}: pour \ tous \ M \in \mathbb{R}^+$, il existe $n \in \mathbb{N}$ tel que : $|U_n| > M$.

Remarque 3.1. (1) a < b veut dire $(a < b) \land (a \neq b)$ sa négation est : $(a > b) \lor (a = b)$ c'est à dire $a \ge b$.

(2) a < b < c veut dire $(a < b) \land (b < c)$ sa négation est : $(a \ge b) \lor (b \ge c)$.

Exercice 2. Exprimer les assertions suivantes à l'aide des quantificateurs et répondre aux questions :

- (1) Le produit de deux nombres pairs est-il pair?
- (2) Le produit de deux nombres impairs est-il impair?
- (3) Le produit d'un nombre pair et d'un nombre impair est-il pair ou impair ?
- (4) Un nombre entier est pair si et seulement si son carré est pair ?
- SOLUTION. (1) Le produit de deux nombres pairs est-il pair? Soit $\mathbb{P} = \{2k/k \in \mathbb{Z}\}$ l'ensemble des nombres pairs. $\forall n, m \in \mathbb{P}, n \times m \in \mathbb{P}$? Soient $n, m \in \mathbb{P}$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1, \exists k_2 \in \mathbb{Z}/m = 2k_2$ d'où $n \times m = 2(2k_1k_2) = 2k_3$, ainsi $\exists k_3 = 2k_1k_2 \in \mathbb{Z}/n \times m = 2k_3 \Rightarrow n \times m \in \mathbb{P}$ le produit est pair.
- (2) Le produit de deux nombres impairs est-il impair?

 Soit $I = \{2k + 1/k \in \mathbb{Z}\}$ l'ensemble des nombres impairs. $\forall n, m \in I, n \times m \in I$?

 Soient $n, m \in I$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1 + 1, \exists k_2 \in \mathbb{Z}/m = 2k_2 + 1$ d'où $n \times m = 2(2k_1k_2 + k_1 + k_2) + 1 = 2k_3 + 1$, ainsi $\exists k_3 = 2k_1k_2 + k_1 + k_2 \in \mathbb{Z}/n \times m = 2k_3 + 1 \Rightarrow n \times m \in I$ le produit est impair.
- (3) Le produit d'un nombre pair et d'un nombre impair est-il pair ou impair ? $\forall n \in \mathbb{P}, m \in I, n \times m \in \mathbb{P}$?, $n \times m \in I$? Soient $n \in \mathbb{P}, m \in I$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1, \exists k_2 \in \mathbb{Z}/m = 2k_2 + 1$ d'où $n \times m = 2(2k_1k_2 + k_1) = 2k_3$, ainsi $\exists k_3 = 2k_1k_2 + k_1 \in \mathbb{Z}/n \times m = 2k_3 \Rightarrow n \times m \in I$ le produit est pair.
- (4) Un nombre entier est pair si et seulement si son carré est pair? $\forall n \in \mathbb{Z}, n \text{ pair} \Leftrightarrow n^2 \text{ est pair}.$

Montrons que n pair $\Rightarrow n^2$ est pair.

Soit $n \in \mathbb{P}$, alors $\exists k_1 \in \mathbb{Z}/n = 2k_1$, d'où $n^2 = n.n = 2(2k_1^2)$, ainsi $\exists k_2 = 2k_1^2 \in \mathbb{Z}/n^2 = 2k_2$ il est pair.

Montrons que n^2 pair $\Rightarrow n$ est pair.

Par contraposée, on doit montrer que n est impair $\Rightarrow n^2$ est impair, c'est vrai cas particulier de la question 2), ainsi la proposition n^2 pair \Rightarrow n est pair est vérifiée, de plus n pair \Rightarrow n^2 est pair \Rightarrow $\forall n \in \mathbb{Z}$, n pair \Leftrightarrow n^2 est pair est vraie.

Exercice 3. Indiquer lesquelles des propositions suivantes sont vraies et celles qui sont fausses.

- (1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0.$
- (2) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0.$
- (3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0.$
- $(4) \ \exists x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0.$
- (5) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : y^2 > x$.
- (6) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ ou } 2x + y = 0).$
- (7) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ et } 2x + y = 0).$

SOLUTION. (1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y > 0, \text{ est vraie } car \ \forall x \in \mathbb{R}, \exists y = -2x + 1 \in \mathbb{R} : 2x + y > 0.$

- (2) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0$, est fausse car, sa négation $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y \leq 0$, est vraie $\forall x \in \mathbb{R}, \exists y = -2x \in \mathbb{R}; 2x + y \leq 0$
- (3) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : 2x + y > 0$, est fausse car sa négation $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} : 2x + y \leq 0$ est vraie, en effet $\exists x = 0, \exists y = 0; 0 \leq 0$.
- $(4) \ \exists x \in \mathrm{I\!R}, \exists y \in \mathrm{I\!R}: 2x+y>0, \ \mathit{vraie \ car} \ \exists x=0, \exists y=1; 1>0.$
- (5) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : y^2 > x, \ vraie \ \exists x = -1 \in \mathbb{R}, \forall y \in \mathbb{R} : x^2 > y.$
- (6) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ ou } 2x + y = 0), \text{ Vraie } car \ \forall x \in \mathbb{R}, \exists y = -2x \in \mathbb{R} : 2x 2x = 0 \text{ (même si } 2x + y \not> 0) \text{ ou bien on peut dire que} \ \forall x \in \mathbb{R}, \exists y = -2x + 1 : 2x 2x + 1 = 1 > 0 \text{ (même si } 2x + y \neq 0).$
- (7) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : (2x + y > 0 \text{ et } 2x + y = 0) \text{ est fausse car on ne peut jamais avoir } (2x + y > 0 \text{ et } 2x + y = 0) \text{ en } m \hat{e} m \hat{e} \text{ temps.}$

Exercice 4. Par l'absurde montrer que :

- (1) $\sqrt{2} \notin \mathbf{Q}$.
- (2) $\forall n \in \mathbb{N}, n^2 \ pair \Rightarrow n \ est \ pair.$
- SOLUTION . (1) Par l'absurde on suppose que $\sqrt{2}$ est un rationnel i.e., $\exists a, b \in \mathbb{N}$,

 $a \wedge b = 1, /\sqrt{2} = \frac{a}{b} \Rightarrow \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2$ alors 2 divise a, a est pair $\exists k \in \mathbb{N}/n = 2k$, ainsi

$$2b^2 = 4k^2 \Leftrightarrow b^2 = 2k^2,$$

on déduit que b est pair aussi or a,b sont premier entre eux contradiction, ce que nous avons supposé au départ est faux c'est à dire $\sqrt{2} \notin \mathbf{Q}$.

(2) Soit $n \in \mathbb{N}$ par l'absurde supposons que n^2 est pair et n est impair, alors $\exists k \in \mathbb{N}$ \mathbb{Z} tel que n = 2k+1 d'où $n^2 = 2(2k^2+2k)+1 = 2k'+1, k' = (2k^2+2k) \in \mathbb{Z}, n^2$ est impair contradiction car n² est pair. Ce que nous avons supposé au départ est faux c'est à dire $\forall n \in \mathbb{N}, n^2 \text{ pair} \Rightarrow n \text{ est pair est vraie.}$

Exercice 5. Par contraposée, montrer que

- (1) Si $(n^2 1)$ n'est pas divisible par $8 \Rightarrow n$ est pair.
- (2) $\forall \epsilon > 0, |x| < \epsilon \Rightarrow x = 0.$
- (1) Montrons que sa contraposée : (n est impair \Rightarrow $(n^2 1)$ est SOLUTION. divisible par 8) est vraie.

Soit n impair alors $\exists k \in \mathbb{Z}$ tel que n = 2k + 1 et donc $n^2 = 4k^2 + 4k + 1 \Rightarrow$ $n^2-1=4k^2+4k=4k(k+1)$ il suffit de montrer que k(k+1) est pair.

Montrons que k(k+1) est pair on a deux cas :

 $Si\ k\ est\ pair\ alors\ k+1\ est\ impair\ donc\ le\ produit\ d'un\ nombre\ pair\ et\ d'un$ nombre impair est pair voir exercice 2 question (3).

Si k est impair, alors k+1 est pair donc le produit est pair c'est le même raisonnement, (il faut savoir que le produit de deux nombre consécutifs est toujours pair).

Ainsi k(k+1) est pair $\exists k' \in \mathbb{Z} / k(k+1) = 2k'$, d'où $n^2 - 1 = 4(2k') = 8k' \Rightarrow$ $n^2 - 1$ est divisible par 8.

(2) Montrons que sa contraposée : $(x \neq 0 \Rightarrow (\exists \epsilon > 0, |x| > \epsilon))$ est vraie. Soit $x \neq 0$, il existe $\epsilon = \frac{x}{2} > 0$ tel que $|x| > \frac{x}{2}$ car $x \neq 0$ d'où le résultat.

Exercice 6. Montrer par récurrence que

- $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ $\forall n \in \mathbb{N}^*, 4^n + 6n 1 \text{ est un multiple de 9}.$

- Montrons que $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$. SOLUTION.

- (1) Pour n = 1 on $a : 1^3 = \frac{1^2(2)^2}{4} = 1$, P(1) est vraie.
- (2) On suppose que $:1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$ est vraie.
- (3) On montre que $:1^3 + 2^3 + ... + (n+1)^3 = \frac{(n+1)^2(n+2)^2}{4}$ est vraie. En utilisant p(n) on obtient:

$$1^{3} + 2^{3} + \dots + (n+1)^{3} = 1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$
$$1^{3} + 2^{3} + \dots + (n+1)^{3} = \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4} + (n+1)^{3} = \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$
$$1^{3} + 2^{3} + \dots + (n+1)^{3} = \frac{(n+1)^{2}(n^{2} + 2)^{2}}{4}.$$

Ainsi P(n+1) est vraie, alors $\forall n \in \mathbb{N}^* : 1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

- Montrons que $\forall n \in \mathbb{N}^*, 4^n + 6n - 1$ est un multiple de 9, c'est à dire $\forall n \in$ $\mathbb{N}^*, \exists k \in \mathbb{Z} / 4^n + 6n - 1 = 9k.$

- (1) Pour n = 1 on $a : \exists k = 1 \in \mathbb{Z}, 4 + 6 1 = 9 = 9(1), P(1)$ est vraie.
- (2) On suppose que : $\forall n \in \mathbb{N}^*, \exists k \in \mathbb{Z}/4^n + 6n 1 = 9k$ est vraie.
- (3) On montre que : $\forall n \in \mathbb{N}^*, \exists ?k' \in \mathbb{Z}/4^{n+1} + 6(n+1) 1 = 9k'$. est vraie.

$$4^{n+1} + 6(n+1) - 1 = 4.4^{n} + 6n + 6 - 1$$

$$= (9-5)4^{n} + 6n + 5$$

$$= 9.4^{n} - 5.4^{n} - 5(6n) + 36n + 5$$

$$= -5(4^{n} + 6n - 1) + 9.4^{n} + 36n, en \ utilisant P_{n}$$

$$= -5(9k) + 9.4^{n} + 9.(4n) = 9(-5k + 4^{n} + 4n)$$

$$\Rightarrow \exists k' = -5k + 4^{n} + 4n \in \mathbb{Z} 4^{n+1} + 6(n+1) - 1 = 9k'.$$

CHAPITRE 3

Théorie des ensembles avec Exercices Corrigés

1. Notion d'ensemble et propriétés

1.1. Ensemble.

DÉFINITION 1.1. Un ensemble est une collection d'objets mathématiques (éléments) rassemblés d'après une ou plusieurs propriétés communes. Ces propriétés sont suffisantes pour affirmer qu'un objet appartient ou pas à un ensemble.

Exemple 1.2. (1) E: l'ensemble des étudiants de l'université d'USTO.

- (2) On désigne par \mathbb{N} l'ensemble des entiers naturels $\mathbb{N} = \{0, 1, 2, 3, ...\}$.
- (3) L'ensemble des nombre pairs se note : $P = \{x \in \mathbb{N}/2 \text{ divise } x\}$.
- (4) L'ensemble vide est noté : Ø qui ne contient aucun élément.
- **1.2.** Inclusion. On dit que l'ensemble A est inclus dans un ensemble B lorsque tous les éléments de A appartiennent à B et on note $A \subset B$,

$$A \subset B \Leftrightarrow (\forall x, (x \in A \Rightarrow x \in B)).$$

La négation:

$$A \not\subset B \Leftrightarrow (\exists x, (x \in A \land x \notin B)).$$

EXEMPLE 1.3. (1) On désigne \mathbb{R} l'ensemble des nombre réels on $a : \mathbb{N} \subset \mathbb{R}$.

- (2) On désigne \mathbb{Z} l'ensemble des nombre entiers relatifs, \mathbb{Q} l'ensemble des rationnels on $a: \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- 1.3. Egalité de deux ensembles : Soient A, B deux ensembles sachant A = B, cela veut dire que :

$$A=B\Leftrightarrow ((A\subset B)\mathrm{et}\,(A\subset B)).$$

1.4. Différence de deux ensembles. La différence de deux ensembles A, B est un l'ensemble des élements de A qui ne sont pas dans B, noté A-B.

$$A - B = \{x/x \in A \land x \notin B\}.$$

Si $A \subset B$ alors B-A est aussi appelé le complémentaire de A dans B, il est noté C_B^A, A^c .

$$C_B^A = \{x/x \in B \land x \notin A\}.$$

1.5. Opérations sur les ensembles.

1.5.1. L'union. La réunion ou l'union de deux ensembles A et B est l'ensemble des élements qui appartiennent à A ou B, on écrit $A \cup B$.

$$x \in A \cup B \Leftrightarrow (x \in A \lor x \in B).$$

La négation:

$$x \notin A \cup B \Leftrightarrow (x \notin A \land x \notin B).$$

1.5.2. L'intersection. L'intersection de deux ensembles A, B est l'ensemble des élséments qui appartiennent à A et B on note $A \cap B$.

$$x \in A \cap B \Leftrightarrow (x \in A \land x \in B).$$

La négation:

$$x \notin A \cap B \Leftrightarrow (x \notin A \lor x \notin B).$$

REMARQUE 1.4. (1) Si A, B n'ont pas d'élements en commun, on dit qu'ils sont disjoints, alors $A \cap B = \emptyset$.

- $(2)\ B=C_E^A \Leftrightarrow A\cup B=E\ et\ A\cap B=\emptyset.$
- $(3) A B = A \cap B^c.$
- 1.5.3. La différence symétrique. Soient E un ensemble non vide et $A, B \subset E$, la différence symétrique entre deux ensembles A, B est l'ensemble des éléments qui appartiennent à A B ou B A noté $A \Delta B$.

$$A\Delta B = (A - B) \cup (B - A) = (A \cap C_E^B) \cup (B \cap C_E^A) = (A \cup B) - (A \cap B).$$
$$x \in A\Delta B \Leftrightarrow \{x/x \in (A - B) \lor x \in (B - A)\}.$$

1.6. Propriétés des opérations sur les ensembles.

1.6.1. La commutativitée. Quels que soient A,B deux ensembles :

$$A \cap B = B \cap A,$$

$$A \cup B = B \cup A.$$

1.6.2. L'associativitée. Quels que soient A, B, C deux ensembles :

$$A \cap (B \cap C) = (A \cap B) \cap C,$$

$$A \cup (B \cup C) = (A \cup B) \cup C.$$

1.6.3. la distributivitée. Quels que soient A, B, C deux ensembles :

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

1.6.4. L'idempotence.

$$A \cup A = A, A \cap A = A.$$

1.6.5. Lois de Morgan.

$$a)(A \cup B)^c = A^c \cap B^c.$$

$$b)(A \cap B)^c = A^c \cup B^c.$$

PREUVE. Montrons que $(A \cup B)^c \subset A^c \cap B^c$ et $A^c \cap B^c \subset (A \cup B)^c$,

$$(A \cup B)^c \subset A^c \cap B^c$$
:

Soit $x \in (A \cup B)^c \Rightarrow x \notin (A \cup B) \Rightarrow x \notin A \land x \notin B \Rightarrow x \in A^c \land x \in B^c$ ainsi $x \in (A \cup B)^c \Rightarrow x \in (A^c \cap B^c)$, d'où $(A \cup B)^c \subset (A^c \cap B^c)$.

$$A^c \cap B^c \subset (A \cup B)^c$$
:

Soit $x \in (A^c \cap B^c) \Rightarrow x \in A^c \wedge x \in B^c \Rightarrow x \notin A \wedge x \notin B \Rightarrow x \notin (A \cup B)$, d'où $A^c \cap B^c \subset (A \cup B)^c$, ainsi $(A \cup B)^c = A^c \cap B^c$. On suit le même raisonnement pour la seconde relation.

1.7. Produit Cartesien. Soient A, B deux ensembles , $a \in A, b \in B$ on note $A \times B = \{(a, b), a \in A, b \in B\}$ l'ensemble $A \times B$ est l'ensemble des couples (a, b) pris dans cet ordre il est appelé ensemble produit cartésien des ensemble A et B.

REMARQUE 1.5. Si A et B sont des ensembles finis et si on désigne par :

CardA: le nombre des éléments de A.

CardB: le nombre des éléments de B. on aura :

$$Card(A \times B) = CardA \times CardB.$$

EXEMPLE 1.6. a) Soit
$$E = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6, 8\}$$

(1) $A \subset E, B \subset E$.

A n'est pas inclus dans B car $1 \in A \land 1 \notin B$. B n'est pas inclus dans A car $8 \in B \land 8 \notin A$.

(2)
$$A \cap B = \{2, 4, 6\}, A \cup B = \{1, 2, 3, 4, 5, 6, 8\}.$$

(3)
$$A - B = \{1, 3, 5\}, B - A = \{8\}.$$

(4)
$$A\Delta B = \{1, 3, 5, 8\}.$$

b)
$$A = \{1, 2\}, B = \{1, 2, 3\}$$

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\},\$$

$$B \times A = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\},\$$

$$A \times B \neq B \times A$$
, $car(3,2) \in B \times A$, $et(3,2) \notin A \times B$.

2. Applications et relations d'équivalences

2.1. Application.

DÉFINITION 2.1. On appelle application d'un ensemble E dans un ensemble F une loi de correspondance (ou une relation de correspondance) permettant d'associer à tout $x \in E$ un unique élément $y \in F$ où E est l'ensemble de départ et F est l'ensemble d'arrivé.

L'élément y associé à x est l'image de x par f, on note $x \longmapsto y/y = f(x)$.

Exemple 2.2. Soit l'application suivante :

- (1) $f_1: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto 4n+2.$
- (2) $f_2 : \mathbb{R} \longmapsto \mathbb{R}$ $x \longmapsto 5x + 3$.

2.2. Image directe et image réciproque.

2.2.1. a) L'image directe. Soit $f: E \longmapsto F$ et $A \subset E$, on appelle image de A par f un sous ensemble de F, noté f(A) tel que

$$f(A) = \{ f(x) \in F/x \in A \},\$$

sachant que $f(A) \subset F$, et que A, f(A) sont des ensembles.

2.2.2. b) L'image réciproque. Soit $f: E \mapsto F$ et $B \subset F$, on appelle l'image réciproque de B par f, la partie de E notée $f^{-1}(B)$ telle que

$$f^{-1}(B) = \{ x \in E / f(x) \in B \},\$$

sachant que $f^{-1}(B) \subset E$, et que $B, f^{-1}(B)$ sont des ensembles.

Exemple 2.3. (1) Soit f l'application définie par :

$$f: [0,3] \longmapsto [0,4]$$

 $x \longmapsto f(x) = 2x + 1$

Trouver f([0,1])?

$$f([0,1]) = \{f(x)/x \in [0,1]\} = \{2x + 1/0 \le x \le 1\},$$
 on $a : 0 \le x \le 1 \Rightarrow 0 \le 2x \le 2 \Rightarrow 1 \le 2x + 1 \le 3$, alors $f([0,1]) = [1,3] \subset [0,4]$.

(2) Soit f l'application définie par :

$$g: [0,2] \longmapsto [0,4]$$
$$x \longmapsto f(x) = (2x-1)^2$$

Calculer $f^{-1}(\{0\}), f^{-1}(]0, 1[).$

$$f^{-1}(\{0\}) = \{x \in [0,2]/f(x) \in \{0\}\} = \{x \in [0,2]/f(x) = 0\} = \{x \in [0,2]/(2x-1)^2 = 0\} = \{\frac{1}{2}\}.$$

$$f^{-1}([0,1]) = \{x \in [0,2]/f(x) \in]0,1[\} = \{x \in [0,2]/0 < (2x-1)^2 < 1\},$$

$$On \ a : (2x-1)^2 > 0 \ est \ verifi\'ee \ \forall x \in \mathbb{R} - \{\frac{1}{2}\}, x \in [0,2]. \ D'autre \ part$$

$$(2x-1)^2 < 1 \Rightarrow |2x-1| < 1 \Rightarrow -1 < 2x-1 < 1 \Rightarrow 0 < x < 1,$$

et donc $x \in]0,1[$, en regroupant les deux inégalités, on obtient

$$f^{-1}(]0,1[)=([0,\frac{1}{2}[\cup]\frac{1}{2},2])\cap]0,1[=]0,\frac{1}{2}[\cup]\frac{1}{2},1[.$$

2.2.3. 1) La surjection.

DÉFINITION 2.4. L'image f(E) de E par f est une partie de F. Si tout élément de F est l'image par f d'au moins un élément de E, on dit que f est une application surjective de E dans F on a: f(E) = F.

$$fest \ surjective \Leftrightarrow (\forall y \in F), (\exists x \in E)/f(x) = y.$$

Exemple 2.5. Les applications suivantes sont-elles surjective?

(1) $f_1: \mathbb{N} \longrightarrow \mathbb{N}$ $n \longmapsto 4n+2.$

 f_1 n'est pas surjective, en effet si on suppose qu'elle est surjective c'est à dire $\forall y \in \mathbb{N}, \exists n \in \mathbb{N}/4n + 1 = y \Longrightarrow n = \frac{y-1}{4}, \text{ or } n = \frac{y-1}{4} \notin \mathbb{N} \text{ contradiction } f_1$ n'est pas surjective.

- (2) $f_2: \mathbb{R} \longmapsto \mathbb{R}$ $x \longmapsto 5x + 3.$ $f_2 \text{ est surjective } car: \forall y \in \mathbb{R}, \exists x \in \mathbb{R}/5x + 3 = y \Longrightarrow x = \frac{y-3}{5} \in \mathbb{R}.$
- 2.2.4. 2) *L'injection*.

DÉFINITION 2.6. Quand on a deux éléments dictincts de E correspondent pas f à deux image différentes de F, f est dite application injective, on a alors :

$$(fest\ injective) \Leftrightarrow (\forall x_1, x_2 \in E, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)),$$

ou

$$(fest\ injective) \Leftrightarrow (\forall x_1, x_2 \in E, f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$

Exemple 2.7. Les applications suivantes sont-elles injerctive?

(1)
$$f_1: \mathbb{N} \longmapsto \mathbb{N}$$

 $n \longmapsto 4n+2.$
 $f_1 \text{ est injective car } : \forall n_1, n_2 \in \mathbb{N}, f(x_1) = f(x_2) \Rightarrow 4n_1 + 2 = 4x_2 + 2 \Rightarrow 4n_1 = 4n_2 \Rightarrow n_1 = n_2.$

- (2) $f_2: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 5x + 3.$ $f_2 \text{ est injective car } : \forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \Rightarrow 5x_1 + 3 = 5x_2 + 3 \Rightarrow 5x_1 = 5x_2 \Rightarrow x_1 = x_2.$
- 2.2.5. 3) La bijection. f est une application bijective si elle injective et surjective, c'est à dire tout élément de F est l'image d'un unique élément de E, f est bijective si et seulement si :

$$(\forall y \in F), (\exists! x \in E), (f(x) = y). (\exists! \text{ signifie unique})$$

EXEMPLE 2.8. (1) f_1 n'est pas bijective car elle n'est pas surjective.

(2) f_2 est bijective.

REMARQUE 2.9. Lorsque une application f est bijective cela veut dire que l'application inverse f^{-1} existe. f^{-1} est aussi bijective de F sur E et $(f^{-1})^{-1} = f$.

Exemple 2.10. f_2 est bijective et sa bijection est définie par :

$$f_2^{-1}: \mathbb{R} \longmapsto \mathbb{R}$$
$$y \longmapsto \frac{y-3}{5}.$$

2.2.6. 4) La composition d'application. Soient E, F, G des ensembles et deux applications f, g telles que

$$f: E \longmapsto F, \ g: F \longmapsto G$$

 $x \longmapsto f(x) = y, y \longmapsto g(y) = z$

On définit l'application

$$g \circ f : E \longmapsto G$$

 $x \longmapsto g \circ f(x) = z.$

PROPOSITION 2.11. (1) Si f et g sont injectives $\Rightarrow g \circ f$ est injective.

(2) Si f et g sont surjectives $\Rightarrow g \circ f$ est surjective.

PREUVE. (1) Supposons que f et g sont injectives, montrons que $g \circ f$ est injective :

 $\forall x_1, x_2 \in E, g \circ f(x_1) = g \circ f(x_2)$ puisque g est injective on aura :

$$g(f(x_1)) = g(f(x_2)) \Rightarrow f(x_1) = f(x_2)$$

 $puisque\ f\ est\ injective\ ainsi:$

$$g \circ f(x_1) = g \circ f(x_2) \Rightarrow x_1 = x_2,$$

 $g \circ f$ est injective.

(2) Supposons que f et g sont surjectives c'est à dire f(E) = F, g(F) = G, montrons que $g \circ f$ est surjective :

$$g \circ f(E) = g(f(E)) = g(F) = G$$

d'après la surjectivitée de f, g d'où le résultat.

REMARQUE 2.12. Il s'ensuit que la composée de deux bijection et une bijection. En particulier, la composition de $f: E \longmapsto F$ et sa réciproque $f^{-1}: F \longmapsto E$ est l'application indentitée $Id_E, f^{-1} \circ f = Id_E, f \circ f^{-1}) = Id_F$.

- 2.2.7. c) Propriétés des applications. Soit $f: E \longmapsto F$ on a :
- (1) $A \subset B \Rightarrow f(A) \subset f(B)$.
- $(2) \ f(A \cup B) = f(A) \cup f(B).$
- (3) $f(A \cap B) \subset f(A) \cap f(B)$.

PREUVE. (1) Soit $y \in f(A)$ alors $\exists x \in A/f(x) = y$, or $A \subset B \Rightarrow x \in B$ donc $y = f(x) \in f(B)$ d'où $f(A) \subset f(B)$.

(2) Soit

$$y \in f(A \cup B) \Leftrightarrow \exists x \in A \cup B/f(x) = y$$
$$\Leftrightarrow \exists x \in A/f(x) = y \lor \exists x \in B/f(x) = y$$
$$\Leftrightarrow y \in f(A) \lor y \in f(B)$$
$$\Leftrightarrow y \in f(A) \cup f(B),$$

ainsi $f(A \cup B) = f(A) \cup f(B)$.

Soit

$$y \in f(A \cap B) \Rightarrow \exists x \in A \cap B/f(x) = y$$
$$\Rightarrow \exists x \in A/f(x) = y \land \exists x \in B/f(x) = y$$
$$\Rightarrow y \in f(A) \land y \in f(B)$$
$$\Rightarrow y \in f(A) \cap f(B),$$

ainsi $f(A \cap B) \subset f(A) \cap f(B)$.

EXEMPLE 2.13. $f(x) = x^2, A = [-1, 0], B = [0, 1], A \cap B = \{0\}, f(A) = [0, 1], f(B) = [0, 1],$

$$f(A) \cap f(B) = [0, 1], f(A \cap B) = f(\{0\}) = \{0\} \neq [0, 1] = f(A) \cap f(B).$$

L'égalité : $f(A \cap B) = f(A) \cap f(B)$ est vérifiée lorsque f est injective.

PROPOSITION 2.14. Soit $f: E \longmapsto F$, $g: F \longmapsto G$ on a:

- (1) $g \circ f$ est injective, alors f est injective.
- (2) $g \circ f$ est surjective, alors g est surjective.
- (3) $g \circ f$ est bijective, alors f est injective et g est surjective.
- PREUVE. (1) Soit $x_1, x_2 \in E/f(x_1) = f(x_2)$, alors $g(f(x_1)) = g(f(x_2))$ comme $g \circ f$ est injective ainsi $x_1 = x_2$ d'où f est injective.
- (2) On a $f(E) \subset F \Rightarrow g \circ f(E) \subset g(F) \subset G$, puisque $g \circ f$ est surjective, alors $g \circ f(E) = G$, ainsi $G \subset g(F)$ d'où G = g(F), g est surjective

3. Relations Binaires dans un ensemble

DÉFINITION 3.1. Soient $x \in E, y \in F$ une relation \mathcal{R} entre x et y est une correspondance entre x et y. Le couple (x,y) vérifie la relation \mathcal{R} , on note $x\mathcal{R}y$, si E=F la relation est dite binaire.

EXEMPLE 3.2. (1) $\forall x, y \in \mathbb{N}, x\mathcal{R}y \Leftrightarrow x \text{ dévise } y, \mathcal{R} \text{ est une relation binaire.}$

- (2) $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x > y$.
- (3) $A \subset E, B \subset F, ARB \Leftrightarrow A \subset B$.
- 3.1. Propriétés des relations binaires. Soient \mathcal{R} une relation binaire dans l'ensemble E et $x, y, z \in E$, on dit que \mathcal{R} est une relation
 - (1) Réflexive : $(\forall x \in E)$, $(x\mathcal{R}x)$.
 - (2) Symétrique : $(\forall x \in E), (\forall y \in E), (x\mathcal{R}y \Rightarrow y\mathcal{R}x).$
 - (3) Antisymétrique : $((\forall x \in E), (\forall y \in E), ((x\mathcal{R}y) \land (y\mathcal{R}x)) \Rightarrow (x = y)).$
 - (4) Transitive : $(\forall x, y, z \in E), ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Rightarrow (x\mathcal{R}z).$

Définition 3.3. Une relation est dite relation déquivalence si elle est réflexive, symétrique et transitive.

Définition 3.4. Une relation est dite relation d'ordre si elle est réflexive, antisymétrique et transitive.

EXEMPLE 3.5. (1) $\forall x, y \in \mathbb{N}, x\mathcal{R}y \Leftrightarrow x = y \text{ est une relation d'équivalence.}$

- (2) $A \subset E, B \subset F, ARB \Leftrightarrow A \subset B$ est une relation d'ordre, en effet :
 - (a) $\forall A \subset E, A \subset A \Leftrightarrow \mathcal{R} \text{ est réflexive.}$
 - (b) $\forall A, B \in E, ((A \subset B) \land (B \subset A)) \Rightarrow A = B \Leftrightarrow \mathcal{R} \text{ est antisymétrique.}$
 - (c) $\forall A, B, C \in E, ((A \subset B) \land (B \subset C)) \Rightarrow A \subset C \Leftrightarrow \mathcal{R} \text{ est transitive.}$

(3) $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x \leq y$, est une relation d'ordre.

DÉFINITION 3.6. une relation d'ordre dans un ensemble E est dite d'ordre total si deux éléments quelconques de E sont comparables, $\forall x, y \in E$, on a $x\mathcal{R}y$ ou $y\mathcal{R}x$. Une relation d'ordre est dite d'ordre partiel si elle n'est pas d'ordre total.

EXEMPLE 3.7. $- \forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x < y$, est une relation d'ordre total.

- (1) \mathcal{R} est réflexive : $\forall x \in \mathbb{R}, x \leq x \Leftrightarrow x\mathcal{R}x$.
- (2) \mathcal{R} est antisymétrique : $\forall x, y \in \mathbb{R}, ((x\mathcal{R}y) \land (y\mathcal{R}x)) \Leftrightarrow ((x \leq y) \land (y \leq x)) \Rightarrow x = y.$
- (3) \mathcal{R} est transitive : $\forall x, y, z \in \mathbb{R}, ((x\mathcal{R}y) \land (y\mathcal{R}z)) \Leftrightarrow ((x \leq y) \land (y \leq z)) \Leftrightarrow y \leq z \Rightarrow x \leq z \Leftrightarrow x\mathcal{R}z$.
- (4) \mathcal{R} est une relation d'ordre total car $\forall x, y \in \mathbb{R}, x \leq ou \ y \leq x$.
- Soient $(x,y), (x',y') \in \mathbb{R}^2$; $(x,y)\mathcal{R}(x',y') \Leftrightarrow (x \leq x') \land (y \leq y')$ est une relation d'ordre partiel, en effet : $\exists (1,2), (3,0) \in \mathbb{R}^2$, et (1,2) n'est pas en relation avec (3,0), et (3,0) n'est pas en relation avec (1,2).
- **3.2.** Classe d'équivalence. Soit \mathcal{R} une relation d'équivalence, on appelle classe déquivalence d'un élément $x \in E$ l'ensemble des éléments $y \in E$ qui sont en relation \mathcal{R} avec x on note C_x , où

$$\overline{x} = C_x = \dot{x} = \{ y \in E / x \mathcal{R} y \}$$

DÉFINITION 3.8. L'ensemble des classes d'équivalence d'éléments de E est appelée ensemble quotient de E par \mathcal{R} , il est noté $E_{/\mathcal{R}}$,

$$E_{/\mathcal{R}} = \{\dot{x}/x \in E\}$$

EXEMPLE 3.9. $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x^2 - x = y^2 - y, \mathcal{R}$ est une relation d'équivalence car :

- (1) $\forall x \in \mathbb{R}, x^2 x = x^2 x \Leftrightarrow x \mathcal{R} x \Leftrightarrow \mathcal{R} \text{ est refléxive.}$
- $(2) \ \forall x,y \in {\rm I\!R}, x\mathcal{R}y \Leftrightarrow x^2-x=y^2-y \Leftrightarrow y^2-y=x^2-x \Leftrightarrow y\mathcal{R}x, \mathcal{R} \ est \ sym\'etrique.$
- (3) $\forall x, y, z \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x^2 x = y^2 y \wedge y^2 y = z^2 z \Leftrightarrow x^2 x = z^2 z \Leftrightarrow z\mathcal{R}x, \mathcal{R} \text{ est transitive.}$

Cherchons les classes d'équivalence suivantes : $C_0, \overline{1}, \dot{2}, C_{\frac{1}{2}}$.

- (1) $C_0 = \{ y \in E/0\mathcal{R}y \}, 0\mathcal{R}y \Leftrightarrow y^2 y = 0, \text{ ainsi } C_0 = \{0, 1\}.$
- (2) $\overline{1} = \{ y \in E/1\mathcal{R}y \}, y^2 y = 1 1 = 0, \text{ ainsi } \overline{1} = \{0, 1\}.$
- (3) $\dot{2} = \{ y \in E/2\mathcal{R}y \}, y^2 y = 2, \ ainsi \ \dot{2} = \{-1, 2\}.$
- $(4) \ \ C_{\frac{1}{2}} = \{ y \in E/\tfrac{1}{2} \mathcal{R} y \}, y^2 y = \tfrac{1}{4} \tfrac{1}{2} = -\tfrac{1}{4}, \ ainsi \ C_{\frac{1}{2}} = \{ \tfrac{1}{2} \}.$

4. Exercices Corrigés

Exercice 7. On considère les ensembles suivants :

$$A = \{1, 2, 5\}, B = \{\{1, 2\}, 5\}, C = \{\{1, 2, 5\}\}, D = \{\emptyset, 1, 2, 5\}, E = \{5, 1, 2\}, F = \{\{1, 2\}, \{5\}\}, G = \{\{1, 2\}, \{5\}, 5\}, H = \{5, \{1\}, \{2\}\}.$$

- (1) Quelles sont les relations d'égalité ou d'inclusion qui existent entre ces ensembles?
- (2) Déterminer $A \cap B$, $G \cup H$, E G.
- (3) Quel est le complémentaire de A dans D.

SOLUTION. (1) On remarque $A = E, A \subset D, E \subset D, B \subset G, F \subset G$.

(2)
$$A \cap B = \{5\}, G \cup H = \{5, \{1\}, \{2\}, \{1, 2\}, \{5\}\}, E - G = \{1, 2\}.$$

(3)
$$C_D^A = \{\emptyset\}.$$

EXERCICE 8. Etant donné A, B et C trois parties d'un ensemble E,

- a) Montrer que :
 - (1) $(A \cap B) \cup B^c = A \cup B^c$.
 - (2) $(A B) C = A (B \cup C)$.
 - (3) $A (B \cap C) = (A B) \cup (A C)$.
- b) Simplifier:
 - $(1) \ \overline{(A \cup B)} \cap (C \cup \overline{A}).$
 - (2) $\overline{(A \cap B)} \cup \overline{(C \cap \overline{A})}$.

SOLUTION . a) Montrons que :

 $(1) \ (A\cap B)\cup B^c=A\cup B^c.$

$$Soit \ x \in (A \cap B) \cup B^c \Leftrightarrow x \in (A \cap B) \lor x \in B^c,$$

$$x \in (A \cap B) \cup B^c \Leftrightarrow (x \in A \land x \in B) \lor (x \notin B)$$

$$\Leftrightarrow (x \in A \lor x \notin B) \land (x \in B \lor x \notin B)$$

$$\Leftrightarrow x \in (A \cup B^c) \land x \in (B \cup B^c)$$

$$\Leftrightarrow x \in (A \cup B^c) \cap E$$

$$\Leftrightarrow x \in A \cup B^c.$$

 $Car\ E = B^c \cup B\ et\ A \cup B^c\ est\ un\ sous\ ensemble\ se\ E.$

(2)
$$(A - B) - C = A - (B \cup C)$$
. Soit $x \in (A - B) - C$ on a:
 $x \in (A - B) - C \Leftrightarrow (x \in A \land x \notin B) \land (x \notin C)$
 $\Leftrightarrow x \in A \land (x \notin B \land x \notin C)$
 $\Leftrightarrow x \in A \land (x \in B^c \cap C^c)$
 $\Leftrightarrow x \in A \land x \notin (B \cup C)$ Lois Morgan
 $\Leftrightarrow x \in A - (B \cup C)$.

$$(3) \ A - (B \cap C) = (A - B) \cup (A - C).$$

$$x \in A - (B \cap C) \Leftrightarrow (x \in A \land (x \notin B \land x \notin C))$$

$$\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$

$$\Leftrightarrow x \in (A - B) \land x \in (A - C)$$

$$\Leftrightarrow x \in (A - B) \cap (A - C).$$

- b) Simplifions
 - $(1) \ \overline{(A \cup B)} \cap \overline{(C \cup \overline{A})}.$

$$\overline{(A \cup B)} \cap \overline{(C \cup \overline{A})} = (\overline{A} \cap \overline{B}) \cap (\overline{C} \cap A)$$

$$= (\overline{A} \cap A) \cap (\overline{B} \cap \overline{C})$$

$$= \emptyset \cap (\overline{B} \cap \overline{C})$$

$$= \emptyset.$$

 $(2) \ \overline{(A \cap B)} \cup \overline{(C \cap \overline{A})}.$

$$\overline{(A \cap B)} \cup \overline{(C \cap \overline{A})} = (\overline{A} \cup \overline{B}) \cup (\overline{C} \cup A)
= (\overline{A} \cup A) \cup (\overline{B} \cup \overline{C})
= E \cup (\overline{B} \cup \overline{C})
= E.$$

EXERCICE 9. Soient E = [0, 1], F = [-1, 1], et G = [0, 2] trois intervalles de \mathbb{R} . Considérons l'application f de E dans G définie par :

$$f(x) = 2 - x,$$

et l'application g de F dans G définie par :

$$q(x) = x^2 + 1$$

- (1) Déterminer $f(\{1/2\}), f^{-1}(\{0\}), g([-1,1]), g^{-1}[0,2]).$
- (2) L'application f est-elle bijective? justifier.
- $(3)\ L'application\ g\ est\text{-elle bijective ? justifier}.$

SOLUTION . (1) (a)
$$f(\{1/2\}) = \{f(x) \in [0,2]/x = 1/2\},$$

 $f(1/2) = 3/2 \in [0,2], \ alors:$
 $f(\{1/2\}) = \{3/2\}.$
(b) $f^{-1}(\{0\}) = \{x \in [-1,1]/f(x) = 0\}.$
On $a f(x) = 2 - x = 0 \Rightarrow x = 2 \notin [-1,1], \ alors:$
 $f^{-1}(\{0\}) = \emptyset.$

(c)
$$g([-1,1]) = \{g(x) \in [0,2]/x \in [-1,1]\}, \text{ on } a \ x \in [-1,0] \cup [0,1].$$

$$x \in [-1, 0] \Rightarrow -1 \le x \le 0$$

$$\Rightarrow 0 \le x^2 \le 1$$

$$\Rightarrow 1 \le x^2 + 1 \le 2$$

$$\Rightarrow g(x) \in [1, 2] \subset [0, 2]$$

$$d$$
'où $g([-1,0]) = [1,2]$

$$x \in]0,1] \Rightarrow 0 < x \le 1$$

$$\Rightarrow 0 < x^2 \le 1$$

$$\Rightarrow 1 < x^2 + 1 \le 2$$

$$\Rightarrow g(x) \in]1,2] \subset [0,2]$$

$$d'où g(]0,1]) =]1,2], g([-1,1]) = [1,2].$$

$$(d) g^{-1}([0,2]) = \{x \in [-1,1]/g(x) \in [0,2]\}, on a$$

$$g(x) \in [0,2] \implies 0 \le x^2 + 1 \le 2$$

$$\implies -1 \le x^2 \le 1$$

$$\implies (-1 < x^2 < 0) \lor (0 < x^2 < 1)$$

l'ingalité $(-1 \le x^2 < 0)$ n'a pas de solutions.

$$0 \le x^2 \le 1 \Leftrightarrow 0 \le |x| \le 1 \Leftrightarrow -1 \le x \le 1.$$

Ainsi

$$q^{-1}([0,2]) = \emptyset \cup [-1,1] = [-1,1].$$

- (2) Comme $f^{-1}(\{0\}) = \emptyset$ c'est à dire l'élément $0 \in [0, 2]$ n'admet pas d'antécédent par f dans [-1, 1] donc f n'est pas surjetive et par suite n'est pas bijective.
- (3) L'application g est paire donc g(-1) = g(1) or $-1 \neq 1$ donc g n'est pas injective d'où g ne peut être bijective, aussi on remarque que $g([-1,1]) = [1,2] \neq [0,2]$ donc g n'est pas surjecive, alors n'est pas aussi bijective.

EXERCICE 10. On définit sur \mathbb{R}^2 la relation \mathcal{R} par :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x+y=x'+y'$$

- (1) Montrer que \mathcal{R} une relation d'équivalence.
- (2) Trouver la classe d'équivalence du couple (0,0).

Solution. \mathcal{R} est une classe d'équivalence si et seulement si elle est réfléxive et symétrique et transitive.

(1) a) \mathcal{R} est réfléxive si et seulement si $\forall (x,y) \in \mathbb{R}^2, (x,y)\mathcal{R}(x,y)$

$$(x,y)\mathcal{R}(x,y) \Leftrightarrow x+y=x+y$$
.

D'où \mathcal{R} est réfléxive.

b) R est symétrique si et seulement si

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y)\mathcal{R}(x',y') \Rightarrow (x',y')\mathcal{R}(x,y)$$
$$(x,y)\mathcal{R}(x',y') \Rightarrow x+y=x'+y'$$
$$\Rightarrow x'+y'=x+y$$
$$\Rightarrow (x',y')\mathcal{R}(x,y)$$

D'où \mathcal{R} est symétique.

c) \mathcal{R} est transitive si et seulement si

$$\forall (x, y), (x', y'), (x'', y'') \in \mathbb{R}^2, (x, y)\mathcal{R}(x', y') \land (x', y')\mathcal{R}(x'', y'') \Rightarrow (x, y)\mathcal{R}(x'', y'')$$

$$(x,y)\mathcal{R}(x',y') \wedge (x',y')\mathcal{R}(x'',y'') \Rightarrow \begin{cases} x+y=x'+y' \\ \wedge \\ x'+y'=x''+y'' \end{cases}$$
$$\Rightarrow x+y=x''+y''$$
$$\Rightarrow (x,y)\mathcal{R}(x'',y'')$$

D'où \mathcal{R} est transitive, Ainsi \mathcal{R} est une relation d'équivalence.

(2) Trouvons la classe d'équivalence du couple (0,0).

$$C((0,0)) = \{(x,y) \in \mathbb{R}^2/(x,y)\mathcal{R}(0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2/x + y = 0\}$$

$$= \{(x,y) \in \mathbb{R}^2/y = -x\}$$

$$= \{(x,-x)/x \in \mathbb{R}\}.$$

EXERCICE 11. On définit sur \mathbb{R}^2 la relation T par

$$(x,y)T(x',y') \Leftrightarrow |x-x'| \le y'-y$$

- $(1)\ \textit{V\'erfier que T est une relation d'ordre. Cet ordre est-il total ?}$
- (2) Soit $(a,b) \in \mathbb{R}^2$, représenter l'ensemble $\{x,y\} \in \mathbb{R}^2/(x,y)T(a,b)\}$.

SOLUTION. T est une relation d'ordre si et seulement si elle est réfléxive et antisymétrique et transitive.

(1) a) \mathcal{R} est réfléxive si et seulement si $\forall (x,y) \in \mathbb{R}^2, (x,y)\mathcal{R}(x,y)$

$$(x,y)\mathcal{R}(x,y) \Leftrightarrow |x-x| \le y-y \Rightarrow 0 \le 0$$
.

D'où T est réfléxive.

b) T est anti-symétrique si et seulement si

$$\forall (x,y), (x',y') \in {\rm I\!R}^2, ((x,y)T(x',y')) \land ((x',y')T(x,y)) \Rightarrow (x,y) = (x',y')$$

$$(x,y)T(x',y') \wedge (x',y')T(x,y) \Rightarrow \begin{cases} |x-x'| \leq y'-y \\ et \\ |x'-x| \leq y-y' \end{cases}$$

$$\Rightarrow 2|x-x'| \leq 0$$

$$\Rightarrow |x-x'| = 0$$

$$\Rightarrow x = x'$$

$$\Rightarrow y'-y \geq 0 \wedge y-y' \geq 0$$

$$\Rightarrow y'-y \geq 0 \wedge y'-y \leq 0$$

$$\Rightarrow y'-y = 0 \Rightarrow y = y'.$$

D'où (x,y) = (x',y'), alors T est anti-symétique. c) T est transitive si et seulement si

$$\forall (x,y), (x',y'), (x'',y'') \in \mathbb{R}^2, ((x,y)T(x',y')) \land ((x',y')T(x'',y'')) \Rightarrow (x,y)T(x'',y'')$$

$$(x,y)T(x',y') \wedge (x',y')T(x",y") \Rightarrow \begin{cases} |x-x'| \leq y'-y \\ et \\ |x'-x"| \leq y"-y' \end{cases}$$

$$\Rightarrow \begin{cases} -y'+y \leq x-x' \leq y'-y \\ et \\ -y"+y' \leq x'-x" \leq y"-y' \end{cases}$$

$$\Rightarrow -y"+y \leq x'-x" \leq y"-y'$$

$$\Rightarrow |x-x"| \leq y"-y$$

$$\Rightarrow (x,y)T(x",y")$$

 $\label{eq:condition} \textit{D'où T est transitive, alors $c'est un relation $d'ordre$.}$

L'ordre n'est pas total car $\exists (x,y) = (2,3)$ et (x',y') = (4,3) tels que si on suppose que $(x,y)T(x',y') \Rightarrow |2-4| \leq 0$ ce qui absurde. De plus $(x',y')T(x,y) \Rightarrow |4-2| < 0$ faux.

(2) Soit $(a,b) \in \mathbb{R}^2$, déterminons l'ensemble $\{x,y\} \in \mathbb{R}^2/(x,y)T(a,b)\}$.

$$\begin{split} (x,y)T(a,b) &\iff |x-a| \le b-y \\ &\iff (x-a)^2 - (y-b)^2 \le 0 \\ &\iff [(x-a) + (y-b)][(x-a) - (y-b)] \le 0 \\ &\iff [(x-a+y-b) \ge 0 \land (x-a) - (y-b) < 0] \\ \lor & [(x-a+y-b) < 0 \land (x-a) - (y-b) \ge 0]. \end{split}$$

on pose:

 D_{p_1} : le demi-plan fermé d'équations $(x-y-a+b) \geq 0$. D_{p_2} : le demi-plan ouvert d'équations (x+y-a-b) < 0. D_{p_3} : le demi-plan ouvert d'équations (x-y-a+b) < 0. D_{p_4} : le demi-plan fermé d'équations $(x+y-a-b)\geq 0.$ D'où

$$(a, b) = \{x, y\} \in \mathbb{R}^2/(x, y)T(a, b)\} = (D_{p_1} \cap D_{p_2}) \cup (D_{p_3} \cap D_{p_4})$$

CHAPITRE 4

Structures Algébriques avec Exercices Corrigés

1. Lois De Composition Internes

DÉFINITION 1.1. Soit G un ensemble, on appelle loi interne sur G toute application de $G \times G$ dans G, on note souvent une loi interne par \star ou δ .

EXEMPLE 1.2. (1) L'addition est une loi interne sur \mathbb{R}

$$+: \mathbb{R} \times \mathbb{R} \longmapsto \mathbb{R}$$

$$(a,b) \longmapsto a+b.$$

(2) L'application

$$\star : \mathbb{R} - \{\frac{1}{2}\} \longmapsto \mathbb{R} - \{\frac{1}{2}\}$$
$$(a,b) \longmapsto a + b - 2ab$$

est une loi interne dans $\mathbb{R} - \{\frac{1}{2}\}$, en effet : $\forall a,b \in \mathbb{R} - \{\frac{1}{2}\}$, montrons que $a+b-2ab \in \mathbb{R} - \{\frac{1}{2}\}$ plus précisement il faut prouver que $a+b-2ab \neq \frac{1}{2}$ car il est évident que $a+b-2ab \in R$, on va raisonner par l'absurde on suppose que $a+b-2ab = \frac{1}{2}$, sachant que $a \neq \frac{1}{2}$, et $b \neq \frac{1}{2}$:

 $a + b - 2ab = \frac{1}{2} \Rightarrow a(1 - 2b) + (b - \frac{1}{2}) = 0 \Rightarrow (\frac{1}{2} - b)(2a - 1) = 0 \Rightarrow a = \frac{1}{2} \lor b = \frac{1}{2}$

contradiction, alors ce qu'on a supposé est faux c'est à dire $a+b-2ab \neq \frac{1}{2}$, d'où $a \star b \in \mathbb{R} - \{\frac{1}{2}\}, \star$ est une loi interne.

DÉFINITION 1.3. Soit G un ensemble et \star une loi interne.

(1) \star est dite **commutative** si et seulement si :

$$\forall x,y \in G, x \star y = y \star x.$$

 $(2) \star est \ dite \ associative \ si \ et \ seulement \ si :$

$$\forall x,y,z \in G, x \star (y \star z) = (x \star y) \star z.$$

 $(3) \star admet \ un \ \'element \ neutre \ si \ et \ seulement \ si :$

$$\exists e \in G, \forall x \in G, x \star e = e \star x = x.$$

35

(4) Soit $x \in G$ on dit qu'un élément $x' \in G$ est l'élement symétrique ou inverse de x si et seulement si $x \star x' = x' \star x = e$, où $e \in G$ est l'élément neutre.

2. Groupes

Définition 2.1. On appelle groupe un ensemble G muni d'une loi ou opération ineterne \star telle que :

- (1) * admet un élément neutre.
- (2) Tout élément de G admet un élément symétrique dans G.
- $(3) \star est \ associative.$

Si de plus \star est commutatif, alors (G, \star) est un groupe commutatif ou abélien.

EXEMPLE 2.2. (1) $(\mathbb{Z}, +)$ est un groupe commutatif.

- (2) (IR, ×) n'est pas un groupe car 0 n'admet pas d'élément symétrique.
- (3) $(\mathbb{R}_{+}^{*}, \times)$ est un groupe commutatif.

3. Anneaux

DÉFINITION 3.1. Soit A un ensemble muni de deux lois de composition internes \star, δ , on dit que (A, \star, δ) est un anneau si :

- (1) (A, \star) est un groupe commutatif.
- $(2) \ \forall x, y, z \in A,$

$$x\delta(y \star z) = (x\delta y) \star (x\delta z) \ et(x \star y)\delta z = (x\delta z) \star (y\delta z),$$

distributivité à gauche et à droite.

(3) δ est associative.

Si de plus δ est commutative, on dit que (A, \star, δ) est un anneau commutatif. Si δ admet un élément neutre, on dit que (A, \star, δ) est un anneau unitaire.

EXEMPLE 3.2. $(\mathbb{Z}, +, \cdot)$ est un anneau commutatif et unitaire.

4. Corps

DÉFINITION 4.1. Soit IK un ensemble munie de deux lois de composition internes \star, δ , on dit que (IK, \star, δ) est un corps si:

- (1) (IK, \star , δ) est un anneau unitaire.
- (2) (IK $\{e\}, \delta$) est un groupe, où e est l'élément neutre de \star .

Si de plus δ est commutative, On dit que ($\mathbb{K}, \star, \delta$) est un corps commutatif.

EXEMPLE 4.2. $(\mathbb{R}, +, \cdot)$ est un corps commutatif.

37

5. Exercices Corrigés

Exercice 12. Soit * une loi définie sur IR par :

$$x * y = xy + (x^2 - 1)(y^2 - 1)$$

- (1) Vérifier que * est commutative, non associative et admet un élément neutre.
- (2) Résoudre les équations suivantes : 2 * y = 5, x * x = 1.

SOLUTION . (1) * est commutative si et seulement si : $\forall x, y \in \mathbb{R}/x * y = y * x$.

$$x * y = xy + (x^{2} - 1)(y^{2} - 1) = yx + (y^{2} - 1)(x^{2} - 1) = y * x.$$

Car le produit et la somme sont commutatives.

(2) * est non associative, on suppose que c'est associative c'est à dire :

$$\forall x, y, z \in \mathbb{R}, (x * y) * z = x * (y * z).$$

$$\begin{array}{lll} (x*y)*z & = & [xy+(x^2-1)(y^2-1)]*z\\ & = & (xy+(x^2-1)(y^2-1))z+(z^2-1)([xy+(x^2-1)(y^2-1)]^2-1)\\ & = & xyz+(x^2-1)(y^2-1)z+(z^2-1)x^2y^2+2(z^2-1)(x^2-1)(y^2-1)(xy)\\ & + & (z^2-1)(x^2-1)^2(y^2-1)^2-(z^2-1)...(1) \end{array}$$

$$\begin{array}{lll} x*(y*z) & = & x*[yz+(y^2-1)(z^2-1)]\\ & = & x(yz+(y^2-1)(z^2-1))+(x^2-1)([yz+(y^2-1)(z^2-1)]^2-1)\\ & = & xyz+x(y^2-1)(z^2-1)+(x^2-1)y^2z^2+2(x^2-1)(y^2-1)(z^2-1)(yz)\\ & + & (x^2-1)(y^2-1)^2(z^2-1)^2-(x^2-1)...(2) \end{array}$$

contradiction $(1) \neq (2)$ d'où * n'est pas associative

(3) * admet un élément neutre si et seulement si

$$\exists e \in \mathbb{R}, \forall x \in \mathbb{R}/x * e = e * x = x.$$

On prend juste une seule équation car la loi est commutative.

$$\forall x \in \mathbb{R}, \ x * e = x$$

$$\forall x \in \mathbb{R}, \ xe + (x^2 - 1)(e^2 - 1) = x$$

$$\forall x \in \mathbb{R}, \ (e - 1)(x + (x^2 - 1)(e + 1)) = 0$$

Alors on a

$$\begin{cases} e-1=0 \\ \forall \\ \forall x \in \mathbb{R}, x+(e+1)x^2-(e+1)=0 \end{cases}$$

On sait qu'un polynôme est nul $\forall x$ si tous ses coefficients sont tous nuls, et comme le coefficient de x est $1 \neq 0$ on déduit que le polynôme ne peut s'annuler, d'où e = 1 est vraie. e = 1 est l'élément neutre.

(4)
$$2 * y = 5 \Rightarrow 2y + 3(y^2 - 1) = 5 \Rightarrow y = 4/3 \lor y = -2.$$

(5)
$$x * x = 1 \Rightarrow x^2 + (x^2 - 1)^2 = 0 \Rightarrow x = 0, x = \pm 1.$$

EXERCICE 13. On définit sur $G = \mathbb{R}^* \times \mathbb{R}$ loi interne * comme suit :

$$\forall (x, y), (x', y') \in G, (x, y) * (x', y') = (xx', xy' + y)$$

Montrons que (G,*) est un groupe non commutatif.

SOLUTION. (G,*) est un groupe si et seulement si

 $\left\{ \begin{array}{l} *est \ associative \\ *admet \ un \ \'el\'ement \ neutre \\ Tout \ \'el\'ement \ de E \ admet \ un \ inverse \ dans E \end{array} \right.$

(1) * est associative si et seulement si

$$\forall (x,y), (x',y'), (x",y") \in G, /[(x,y)*(x',y')]*(x",y") = (x,y)*[(x',y')*(x",y")]?$$

$$[(x,y)*(x',y')]*(x",y") = (xx',xy'+y)*(x",y") = (xx'x",xx'y"+xy'+y).....(1),$$

$$(x,y) * [(x',y') * (x",y")] = (x,y) * (x'x",x'y" + y')$$

= $(xx'x",xx'y" + xy' + y).....(2).$

(1) = (2) d'où le résultat.

(2) $(e, e') \in G$ est un élément neutre de G si et seulement si

$$\forall (x,y) \in G, (x,y) * (e,e') = (e,e') * (x,y) = (x,y)$$

$$\begin{cases} (x,y)*(e,e') = (x,y) \\ (e,e')*(x,y) = (x,y) \end{cases} \Rightarrow \begin{cases} (xe,xe'+y) = (x,y) \\ (ex,ey+e') = (x,y) \end{cases}$$

$$\Rightarrow \begin{cases} xe = x \\ xe'+y = y \\ ex = x \\ ey+e' = y \end{cases}$$

$$\Rightarrow \begin{cases} e = 1 \in \mathbb{R}^*, \quad x \neq 0 \\ e' = 0 \in \mathbb{R}, \end{cases}$$

ainsi $(e, e') = (1, 0) \in G$ est l'élément neutre.

$$(3) \ \forall (x,y) \in G, \exists (x',y') \in G/(x,y) * (x',y') = (x',y') * (x,y) = (e,e') = (1,0).$$

$$\begin{cases} (x,y) * (x',y') = (1,0) \\ (x',y') * (x,y) = (1,0) \end{cases} \Rightarrow \begin{cases} (xx',xy'+y) = (1,0) \\ (x'x,x'y+y') = (1,0) \end{cases}$$

$$\Rightarrow \begin{cases} xx' = 1 \\ xy'+y = 0 \\ x'x = 1 \\ x'y+y' = 0 \end{cases}$$

$$x'x = 1$$

$$x'y + y' = 0$$

$$\Rightarrow \begin{cases} x' = 1/x \in \mathbb{R}^*, & x \neq 0 \\ y' = -y/x \in \mathbb{R}, & x \neq 0 \end{cases}$$

ainsi le symétrique de $(x,y) \in G$ est $(x',y') = (1/x,-y/x) \in G$, alors (G,*)est un groupe.

(4) * est non commutatif si et seulement si

$$\exists (x,y) = (2,0) \in G, \exists (x',y') = (1,1) \in G/(x,y) * (x',y') \neq (x',y') * (x,y).$$

$$\begin{cases} (2,0) * (1,1) = (2,2) & \dots(1) \\ (1,1) * (2,0) = (2,1) & \dots(2) \end{cases}$$

on remarque que $(1) \neq (2)$, alors (G, *) est un groupe non commutatif.

EXERCICE 14. On définit sur \mathbb{Z}^2 les deux lois \oplus , \odot comme suit :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y) \oplus (x',y') = (x+x',y+y'),$$

$$\forall (x,y), (x',y') \in \mathbb{R}^2, (x,y) \odot (x',y') = (xx',xy'+yx').$$

Montrer que $(\mathbb{Z}^2, \oplus, \odot)$ est anneau commutatif.

SOLUTION. $(\mathbb{Z}^2, \oplus, \odot)$ est anneau commutatif si et seulement si :

- (\mathbb{Z}^2,\oplus) est un groupe abélien \odot est associative et distributive par rapport à loi \oplus . \odot est une loi commutatif
- - (1) (\mathbb{Z}^2, \oplus) est un groupe abélien :

 $\mathbf{a:} \oplus \mathit{est\ commutative}:$

$$\forall (x,y), (x',y') \in \mathbb{R}^2,$$

$$(x,y) \oplus (x',y') = (x+x',y+y') = (x'+x,y'+y) = (x',y') \oplus (x,y).$$

b: \oplus *est associative :*

$$\forall (x, y), (x', y'), (x", y") \in \mathbb{R}^2$$

$$[(x,y) \oplus (x',y')] \oplus (x",y") = (x+x',y+y') \oplus (x",y") = (x+x'+x",y+y'+y")...(1)$$

$$(x,y) \oplus [(x',y') \oplus (x",y")] = (x,y) \oplus (x'+x",y'+y") = (x+x'+x",y+y'+y")...(2)$$

$$(1) = (2)$$
 d'où le résultat.

c: Il existe
$$e = (e_1, e_2) \in \mathbb{Z}^2$$
 tel que :

$$(e_1, e_2) \oplus (x, y) = (x, y) \oplus (e_1, e_2) = (x, y)$$

 $Puisque \oplus est \ commutative \ on \ traite \ une \ seul \ \'equation :$

$$(x,y) \oplus (e_1,e_2) = (x,y) \Longrightarrow (x+e_1,y+e_2) = (x,y)$$

$$Alors \begin{cases} x+e_1 = x \\ y+e_2 = y \end{cases} \Longrightarrow \begin{cases} e_1 = 0 \\ e_2 = 0 \end{cases} e = (0,0) \in \mathbb{Z}^2 \text{ est l'élément}$$

$$newtre \ de \oplus.$$

d: Chaque élément de \mathbb{Z}^2 possède un élément symétrique dans \mathbb{Z}^2 , $\forall (x,y) \in \mathbb{Z}^2$, $\exists (x',y') \in \mathbb{Z}^2$:

$$(x,y) \oplus (x',y') = (0,0), (x',y') \oplus (x,y) = (0,0),$$

il suffit de prendre x'=-x, y'=-y ainsi $(-x,-y)\in\mathbb{Z}^2$ est l'élément symétrique de $(x,y)\in\mathbb{Z}^2$.

Sachant a,b,c,d (\mathbb{Z}^2,\oplus) est un groupe commutatif.

(2) -
$$\odot$$
 est associative: $\forall (x, y), (x', y'), (x", y") \in \mathbb{R}^2$,

$$\begin{split} [(x,y)\odot(x',y')]\odot(x",y") &= (xx',xy'+yx')\odot(x",y") = (xx'x",xx'y"+xy'x"+yx'x")...(1) \\ (x,y)\odot[(x',y')\odot(x",y")] &= (x,y)\odot(x'x",x'y"+y'x") = (xx'x",xx'y"+xx"y'+yx'x")...(2) \\ (1) &= (2) \ d'où \ le \ r\'esultat. \end{split}$$

 $-\odot$ distributive par rapport $\grave{a}\oplus:\forall(x,y),(x',y'),(x",y")\in{\rm I\!R}^2,$

$$(x,y)\odot[(x',y')\oplus(x",y")] = [(x,y)\odot(x',y')]\oplus[(x,y)\odot(x",y"],$$

 $[(x,y) \oplus (x',y')] \odot (x",y") = [(x,y) \odot (x",y")] \oplus [(x',y') \odot (x",y")].$

Montrons que :

$$(x,y) \odot [(x',y') \oplus (x",y")] = [(x,y) \odot (x',y')] \oplus [(x,y) \odot (x",y"],$$

 $On \ a:$

$$(x,y) \odot [(x',y') \oplus (x",y")] = (x,y) \odot [x'+x",y'+y"]$$

Ainsi

$$(x,y) \odot [(x',y') \oplus (x'',y'')] = (xx' + xx'', xy' + xy'' + yx'' + yx'')...(3)$$

$$[(x,y)\odot(x',y')]\oplus[(x,y)\odot(x'',y'']=(xx',xy'+yx')\oplus(xx'',xy''+yx'').$$

De plus

$$[(x,y)\odot(x',y')]\oplus[(x,y)\odot(x",y"]=(xx'+xx",xy'+yx'+xy"+yx")...(4)$$

$$d'où\ (3)=(4).$$

$$Montrons\ que\ :$$

$$[(x,y) \oplus (x',y')] \odot (x",y") = [(x,y) \odot (x",y")] \oplus [(x',y') \odot (x",y")].$$

 $On \ a :$

$$[(x,y) \oplus (x',y')] \odot (x",y") = (x+x',y+y') \odot (x",y") = (xx"+x'x,xy"+x'y"+yx"+y'x")...(5)$$

$$[(x,y) \odot (x",y")] \oplus [(x',y') \odot (x",y")] = (xx",xy"+yx") \oplus (x'x",x'y"+y'x"),$$

$$[(x,y) \odot (x",y")] \oplus [(x',y') \odot (x",y")] = (xx"+x'x",xy"+yx"+x'y"+y'x")...(6)$$

$$d'où \ (5) = (6).$$

(3)
$$\odot$$
 est commutatif: $\forall (x,y), (x',y') \in \mathbb{R}^2$,

$$(x,y) \odot (x',y') = (xx',xy'+yx')...(7)$$

$$(x', y') \odot (x, y) = (x'x, x'y + y'x) = (xx', xy' + yx')..(8) = (7)$$

d'où le résultat.

CHAPITRE 5

Notion de K– Espaces vectoriels(K étant un Corps Commutatif) avec Exercices Corrigés

1. Espace vectoriel et sous espace vectoriel

Soit IK un corps commutatif (généralement c'est IR ou \mathbb{C}) et soit E un ensemble non vide muni d'une opération interne notée (+):

$$(+): E \times E \to E$$

$$(x,y) \to x + y$$

et d'une opération externe notée (\cdot) :

$$(\cdot): \mathbb{K} \times E \to E$$

$$(\lambda, x) \to \lambda \cdot x$$

Définition 1.1. Un espace vectoriel sur le corps \mathbb{K} ou un $\mathbb{K}-$ espace vectoriel est un triplet $(E, +, \cdot)$ tel que :

- (1) (E, +) est un groupe commutatif.
- (2) $\forall \lambda \in IK, \forall x, y \in E, \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$
- (3) $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E, (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- (4) $\forall \lambda, \mu \in \mathbb{I}K, \forall x \in E, (\lambda \cdot \mu) \cdot x = \lambda(\mu.x)$
- (5) $\forall x \in E, 1_{\mathbb{IK}} \cdot x = x$

Les éléments de l'espace vectoriel sont appelés des vecteurs et ceux de IK des scalaires.

Proposition 1.2. Si E est $\mathbb{K}-$ espace vectoriel, alors on a les propriétés suivantes :

- (1) $\forall x \in E, 0_{\mathbb{I}K} \cdot x = 0_E$
- (2) $\forall x \in E, -1_{\mathbb{K}} \cdot x = -x$
- (3) $\forall \lambda \in \mathbb{I}K, \lambda \cdot 0_E = 0_E$
- (4) $\forall \lambda \in IK, \forall x, y \in E, \lambda \cdot (x y) = \lambda \cdot x \lambda \cdot y$
- (5) $\forall \lambda \in \mathbb{I}K, \forall x \in E, x \cdot \lambda = 0_E \Leftrightarrow x = 0_E \lor \lambda = 0_{\mathbb{I}K}$

EXEMPLE 1.3. (1) $(\mathbb{R}, +, .)$ est un \mathbb{R} - espace vectoriel, $(\mathbb{C}, +, .)$ est un \mathbb{C} -e.v.

(2) Si on considère \mathbb{R}^2 muni des deux opérations suivante

$$(+): \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2, \ (.): \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$

$$((x,y),(x',y')) \to (x+x',y+y'), \ (\lambda,(x,y)) \to (\lambda \cdot x,\lambda \cdot y)$$
 on peut facilement montrer que $(\mathbb{R}^2,+,\cdot)$ est un $\mathbb{R}-e.v.$

DÉFINITION 1.4. Soit $(E, +, \cdot)$ un $\mathbb{K}-$ espace vectoriel et soit F un sous ensemble non vide de E, on dit que F est sous espace vectoriel si $(F, +, \cdot)$ est aussi un $\mathbb{K}-$ espace vectoriel.

REMARQUE 1.5. Lorsque $(F, +, \cdot)$ est IK- sous espace vectoriel de $(E, +, \cdot)$, alors $0_E \in F$.

Si $0_E \notin F$ alors $(F, +, \cdot)$ ne peut pas être un $\mathbb{K}-$ sous espace vectoriel de $(E, +, \cdot)$.

Théorème 1.6. Soit $(E, +, \cdot)$ un $\mathbb{K}-$ espace vectoriel et $F \subset E, F$ non vide on a les équivalences suivantes :

- (1) F est un sous espace vectoriel de E.
- (2) F est stable par l'addition et par la multiplication c'est à dire :

$$\forall x, y \in F, \forall \lambda \in IK, x + y \in F, \lambda.x \in F.$$

(3) $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{K}, \lambda.x + \mu.y \in F, d'où$:

$$F \ est \ s.e.v \Leftrightarrow \left\{ \begin{array}{l} F \neq \emptyset, \\ \forall x, y \in F, \forall \lambda, \mu \in \mathbb{IK}, \quad \lambda.x + \mu.y \in F \end{array} \right.$$

(4) $\forall x, y \in F, \forall \lambda, \mu \in \mathbb{I}K, \lambda.x + \mu.y \in F, d'où$:

$$F \ est \ s.e.v \Leftrightarrow \left\{ \begin{array}{l} 0_E \in F, \\ \forall x, y \in F, \forall \lambda, \mu \in \mathbb{IK}, \quad \lambda.x + \mu.y \in F \end{array} \right.$$

EXEMPLE 1.7. (1) $\{0_E\}$, E sont des sous espace vectoriel de E.

- (2) $F = \{(x, y) \in \mathbb{R}^2 / x + y = 0\}$ est un sous espace vectoriel car; $-0_E = 0_{\mathbb{R}^2} = (0, 0) \in F \Rightarrow F \neq \emptyset.$
 - $-\forall (x,y), (x',y') \in F, \lambda, \mu \in \mathbb{R} \text{ montrons que } \lambda(x,y) + \mu(x',y') \in F; c'est$ $\hat{a} \text{ dire } (\lambda x + \mu x', \lambda y + \mu y') \in F$

$$\lambda x + \mu x' + \lambda y + \mu y' = \lambda(x+y) + \mu(x'+y') = \lambda.0 + \mu.0 = 0,$$

$$car(x,y) \in F \Rightarrow x+y = 0, et(x',y') \in F \Rightarrow x'+y' = 0.$$

$$Ainsi \lambda(x,y) + \mu(x',y') \in F, F \text{ est sous espace vectoriel de } \mathbb{R}^2.$$

- (3) $F = \{(x + y + z, x y, z)/x, y, z \in \mathbb{R}\}\ est\ un\ s.e.v\ de\ \mathbb{R}^3,\ en\ effet, -0^3_{\mathbb{IR}} = (0,0,0) \in F\ car\ (0,0,0) = (0+0+0,0-0,0) \Rightarrow F \neq \emptyset.$
 - $-\forall X, Y \in F, \lambda, \mu \in \mathbb{R} \text{ montrons que } \lambda X + \mu Y \in {}^{?}F; \text{ on } a:$

$$X \in F \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3 / X = (x + y + z, x - y, z),$$

$$Y \in F \Leftrightarrow \exists (x', y', z') \in \mathbb{R}^3 / Y = (x' + y' + z', x' - y', z'),$$

$$\lambda X + \mu Y = (\lambda x + \lambda y + \lambda z, \lambda x - \lambda y, \lambda z) + (\mu x' + \mu y' + \mu z', \mu x' - \mu y', \mu z')$$

 $\lambda X + \mu Y = ((\lambda x + \mu x') + (\lambda y + \mu y') + (\lambda z + \mu z'), (\lambda x + \mu x') - (\lambda y + \mu y'), \lambda z + \mu z)$ $d'où \exists x'' = \lambda x + \mu x' \in \mathbb{R}, \exists y'' = \lambda y + \mu y' \in \mathbb{R}, \exists z'' = \lambda z + \mu z' \in \mathbb{R},$ ainsi

$$\lambda X + \mu Y = (x'' + y'' + z'', x'' - y'', z'') \in F.$$

Théorème 1.8. L'intersection d'une famille non vide de s.e.v est un sous espace vectoriel.

Remarque 1.9. La réunion de deux s.e.v n'est pas forcément un s.e.v.

EXEMPLE 1.10. $E_1 = \{(x,0) \in \mathbb{R}^2\}, E_2 = \{(0,y) \in \mathbb{R}^2\}, E_1 \cup E_2 \text{ n'est un s.e.v car } U_1 = (1,0), U_2 = (0,1) \in E_2 \text{ et } U_1 + U_2 = (1,1) \notin E_1 \cup E_2, \text{ car } (1,1) \notin E_1 \wedge (1,1) \notin E_2.$

2. Somme de deux sous espaces vectoriels

Soit E_1 , E_2 deux sous espaces vectoriels d'un \mathbb{K} -e.v E, on appelle somme de deux espaces vectoriels, E_1 et E_2 et on note $E_1 + E_2$ l'ensemble suivant :

$$E_1 + E_2 = \{ U \in E / \exists U_1 \in E_1, \exists U_2 \in E_2 / U = U_1 + U_2 \}.$$

PROPOSITION 2.1. La somme de deux s.e.v de E_1 et E_2 (d'un même IK-e.v) est un s.e.v de E contenant $E_1 \cup E_2$, i.e., $E_1 \cup E_2 \subset E_1 + E_2$.

3. Somme directe de deux sous espaces vectoriels

On dira que la somme $E_1 + E_2$ est directe si $\forall U = U_1 + U_2$, il existe un unique vecteur $U_1 \in E_1$, un unique vecteur $U_2 \in E_2$, $U = U_1 + U_2$, on note $E_1 \bigoplus E_2$.

THÉORÈME 3.1. Soit E_1 , E_2 deux s.e.v d'un même $\mathbb{IK}-e.v$ E la somme $E_1 + E_2$ est directe si $E_1 \cap E_2 = \{0_E\}$.

3.1. Sous espace supplémentaires. Soient E_1 et E_2 deux s.e.v d'un même IK-e.v E, on dit que E_1 et E_2 sont supplémentaires si $E_1 \bigoplus E_2 = E$

EXEMPLE 3.2. $E_1 = \{(x,0) \in \mathbb{R}^2\}, E_2 = \{(0,y) \in \mathbb{R}^2\}, E_1 \bigoplus E_2 = \mathbb{R}^2, E_1 \text{ et } E_2 \text{ sont supplémentaires.}$

4. Familles génératrices, familles libres et bases

Dans la suite, on désignera l'espace vectoriel $(E, +, \cdot)$ par E.

DÉFINITIONS 4.1. Soit E un e.v et $e_1, e_2..., e_n$ des éléments de E,

(1) On dit que $\{e_1, e_2..., e_n\}$ sont libres ou linéairement independents, si $\forall \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$:

 $\lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n = 0 \Rightarrow \lambda_1 = \lambda_2 = ... = \lambda_n = 0$, solution unique. Dans le cas contraire, on dit qu'ils sont liés.

(2) On dit que $\{e_1, e_2..., e_n\}$ est une famille génératrice de E, ou que E est engendré par $\{e_1, e_2..., e_n\}$ si $\forall x \in E, \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{I}K/$

$$x = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n.$$

(3) Si $\{e_1, e_2..., e_n\}$ est une famille libre et génératrice de E, alors $\{e_1, e_2..., e_n\}$ est appelée une base de E.

Remarque 4.2. Dans un espace vectoriel E, tout vecteur non nul est libre.

THÉORÈME 4.3. Si $\{e_1, e_2..., e_n\}$ et $\{e'_1, e'_2..., e'_m\}$ sont deux bases de l'espace vectoriel E, alors n = m. En d'autre termes, si un espace vectoriel admet une base alors toutes les bases de E ont le même nombre d'éléments (ou même cardinal), ce nombre la ne dépend pas de la base mais il dépend seulement de l'espace E. D'où la définition suivante.

DÉFINITION 4.4. Soit E un $\mathbb{K}-$ espace vectoriel de base $B = \{e_1, e_2..., e_n\}$, alors dim(E) = Card(B).

où dim(E): est la dimension de E et Card(B): est le cardinal de B.

REMARQUE 4.5. donc chercher une base pour un espace vectoriel c'est trouver une famille de vecteurs dans E, qui forment un famille libre et génératrice de E, le nombre d'éléments de cette famille représente dimE.

EXEMPLE 4.6. (1) Cherchons une base de \mathbb{R}^3 , il faut trouver une famille de vecteurs dans \mathbb{R}^3 qui engendre \mathbb{R}^3 et qui soit libre :

 $\forall (x,y,z) \in \mathbb{R}^3, (x,y,z) = (x,0,0) + (0,y,0) + (0,0,z) = x(1,0,0) + y(0,1,0) + z(0,0,1).$ En posant, $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$ on voit bien que $\{e_1,e_2,e_3\}$ est une famille génératrice, et aussi libre en effet; si $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{K}$:

 $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = (0, 0, 0) \Rightarrow \lambda_1 (1, 0, 0) + \lambda_2 (0, 1, 0) + \lambda_3 (0, 0, 1) = (\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0).$ { e_1, e_2, e_3 } est appelée base canonique de \mathbb{R}^3 .

- (2) Montrons que les $f_1 = (1, -1)$, $f_2 = (1, 1)$ il forment une base de \mathbb{R}^2 , montrons que
 - (a) $\{f_1, f_2\}$ est génératrice $\Leftrightarrow \forall (x, y) \in \mathbb{R}^2, \exists \lambda_1, \lambda_2 \in \mathbb{R},$ $(x, y) = \lambda_1 f_1 + \lambda_2 f_2, (x, y) = (\lambda_1 + \lambda_2, \lambda_2 - \lambda_1)$

ainsi

$$\lambda_2 = \frac{x+y}{2}, \lambda_1 = \frac{x-y}{2}.$$

 $donc \{f_1, f_2\}$ est génératrice.

(b) $\{f_1, f_2\}$ est libre $\forall \lambda_1, \lambda_2 \in \mathbb{R}$,

$$\lambda_1 f_1 + \lambda_2 f_2 = 0_{\mathbb{R}^2} \Rightarrow (\lambda_1 + \lambda_2, \lambda_2 - \lambda_1) = (0, 0) \Rightarrow 2\lambda_2 = 0 \Rightarrow \lambda_2 = \lambda_1 = 0.$$

Théorème 4.7. Soit E un espace vectoriel de dimension n:

- (1) Si $\{e_1, e_2..., e_n\}$ est base de $E \Leftrightarrow \{e_1, e_2..., e_n\}$ est génératrice $\Leftrightarrow \{e_1, e_2..., e_n\}$ est libre.
- (2) Si $\{e_1, e_2..., e_p\}$ sont p vecteur dans E, avec p > n, alors $\{e_1, e_2..., e_p\}$ ne peut être libre, de plus si $\{e_1, e_2..., e_p\}$ est génératrice, alors il existe n vecteurs parmis $\{e_1, e_2..., e_p\}$ forment une base E.

- (3) Si $\{e_1, e_2..., e_p\}$ sont p vecteur dans E, avec p < n, alors $\{e_1, e_2..., e_p\}$ ne peut être génératrice de plus si $\{e_1, e_2..., e_p\}$ est libre, alors il existe (n-p) vecteur parmis $\{e_{p+1}, e_{p+2}, ..., e_n\}$ dans E tels que $\{e_1, e_2..., e_p, e_{p+1}, ..., e_n\}$ est une base pour E.
- (4) Si F est un sous espace vectoriel de E alors $dimF \leq n$, et de plus $dimF = n \Leftrightarrow E = F$.
- **EXEMPLE** 4.8. (1) Dans l'exemple précédent $f_1 = (1, -1), f_2 = (2, 1)$ pour montrer que $\{f_1, f_2\}$ forme une base de \mathbb{R}^2 , il suffit de montrer que $\{f_1, f_2\}$ est soit libre ou génératrice. (cette propriété est vraie dans le cas des espaces vectoriels de dimensions finies).
- (2) Pour montrer que $\{(1,1,1),(1,1,0),(0,1,-1)\}$ est une base de \mathbb{R}^3 , il suffit de montrer qu'elle est libre ou génératrice car dim $\mathbb{R}^3 = 3$, $\{f_1, f_2\}$ est libre car : $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, $\lambda_1(1,1,1) + \lambda_2(1,1,0) + \lambda_3(0,1,-1) = (0,0,0)$

$$\Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_1 - \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \text{ (solution unique)} \end{cases}$$

donc $\{(1,1,1),(1,1,0),(0,1,-1)\}$ est une base de \mathbb{R}^3 .

(3) Cherchons une base pour $F = \{(x+y, x-z, -y-z)/x, y, z \in \mathbb{R}\}$, comme $F \subset \mathbb{R}^3$ alors $dim F \leq 3$, donc la base de F ne possède pas plus de trois vecteur.

$$(x+y,x-z,y-z) = x(1,1,0) + y(1,0,-1) + z(0,-1,-1)$$

ainsi $v_1 = (1, 1, 0), v_2 = (1, 0, -1), v_3 = (0, 1, -1)$ forment une famille génératrice pour F, si cette famille est libre, alors elle formera une base pour F. $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$,

$$\lambda_1(1,1,0) + \lambda_2(1,0,-1) + \lambda_3(0,-1,-1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 - \lambda_3 = 0 \\ -\lambda_2 - \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_2 = -\lambda_1 \\ \lambda_3 = \lambda_1 \end{cases}$$

Donc $\{(1,1,0),(1,0,-1),(0,-1,-1)\}$ n'est pas libre, mais d'après le théorème précédent, on peut extraire de cette famille une base de F, pour le faire on doit chercher deux vecteurs de famille qui sont libres, si on les trouve alors il forment une base pour F, si on ne trouve pas on prend un vecteur non nul et ce vecteur sera une base pour F. Prenons par exemple $\{v_1, v_2\}$

$$\lambda_1(1,1,0) + \lambda_2(1,0,-1) = (0,0,0) \Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 = 0 \\ -\lambda_2 = 0 \end{cases} \Rightarrow \lambda_1 = \lambda_2 = 0,$$

ainsi $\{v_1, v_2\}$ est une base pour F et dim F = 2

5. Notion d'Application Linéaire

5.1. Généralités.

DÉFINITION 5.1. (1) Soit $(E, +, \cdot)$ et $(F, +, \cdot)$ deux IK- espaces vectoriels et soit f une application de E dans F, on dit que f est une application linéaire si et seulement si :

$$\forall x, y \in E, \forall \lambda \in \mathbb{K}, f(x+y) = f(x) + f(y)etf(\lambda \cdot x) = \lambda \cdot f(x),$$

où d'une manière équivalente :

$$\forall x, y \in E, \forall \lambda, \mu \in \mathbb{K}, f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

- (2) Si de plus f est bijective, on dit alors que f est un isomorphisme de E dans F.
- (3) Une application linéaire de $(E, +, \cdot)$ dans $(E, +, \cdot)$ est dite un endomorphisme.
- (4) Un isomorphisme de $(E, +, \cdot)$ dans $(E, +, \cdot)$ est aussi appelé un automorphisme de E dans E.

EXEMPLE 5.2. (1) L'application

$$f_1: \mathbb{R}^2 \longmapsto \mathbb{R}$$

 $(x, y) \longmapsto x - y$

est une application linéaire, car : $\forall (x,y), (x',y') \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}$,

$$f_1(\lambda(x,y) + \mu(x',y')) = f_1(\lambda x + \mu x', \lambda y + \mu y') = \lambda x + \mu x' - (\lambda y + \mu y')$$

$$\Rightarrow f_1(\lambda(x,y) + \mu(x',y')) = \lambda(x-y) + \mu(x'-y') = \lambda f_1(x,y) + \mu f_1(x',y').$$

(2) L'application

$$f_2: \mathbb{R}^3 \longmapsto \mathbb{R}^3$$

 $(x, y, z) \longmapsto (-x + y, x - 5z, y)$

est une application linéaire, car : $\forall (x,y,z), (x',y',z') \in {\rm I\!R}^3, \forall \lambda, \mu \in {\rm I\!R},$

$$f_2(\lambda(x,y,z) + \mu(x',y',z')) = f_2(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$

$$\Leftrightarrow f_2(\lambda(x,y,z) + \mu(x',y',z')) = (-\lambda x - \mu x' + \lambda y + \mu y', \mu x' + \mu x' - 5\lambda y - 5\mu y', \lambda y + \mu y')$$

$$\Leftrightarrow f_2(\lambda(x,y,z) + \mu(x',y',z')) = (-\lambda x + \lambda y, \lambda x - 5\lambda z, \lambda y) + (-\mu x' + \mu y', \mu x' - 5\mu z', \lambda y').$$

$$\Leftrightarrow f_2(\lambda(x,y,z) + \mu(x',y',z')) = \lambda(-x+y,x-5z,y) + \mu(-x'+y',x'-5z',y') = \lambda f_2(x,y,z) + \mu f_2(x',y',z').$$

(3) L'application

$$f_3: \mathbb{R} \longmapsto \mathbb{R}$$

 $x \longmapsto -3x$

est isomorphisme, en effet, f_3 est linèaire car :

$$\forall x, y \in \mathbb{R}, \forall \lambda, \mu \in \mathbb{R}, f_3(\lambda x + \mu y) = -3\lambda x - 3\mu y = \lambda f_3(x) + \mu f_3(y),$$

REMARQUE 5.3. On peut montrer facilement la somme de deux applications linéaires est une application linéaire, aussi le produit d'une application linéaire par un scalaire et la composée de deux applications linéaires est une application linéaire. **Proposition** 5.4. Soit f une application linéaire de E dans F.

1.)
$$f(O_E) = O_F$$
, 2.) $\forall x \in E, f(-x) = -f(x)$.

PREUVE. On a,

1.)
$$f(O_E) = f(O_E + O_E) = f(O_E) + f(O_E) \Rightarrow f(O_E) = O_F$$
.

$$2.)f(-x) + f(x) = f(-x + x) = f(O_E) = O_F \Rightarrow f(-x) = -f(x).$$

DÉFINITION 5.5. Soit f une application linéaire de E dans F.

(1) On appelle image de f et on note Imf l'ensemble défini comme suit

$$Im f = \{ y \in F / \exists x \in E : f(x) = y \} = \{ f(x) / x \in E \}.$$

(2) On appelle noyau de f et on note ker f l'ensemble défini comme suit :

$$\ker f = \{ x \in E/f(x) = O_F \},\$$

On note parfois ker f, par $f^{-1}(\{0\})$.

PROPOSITION 5.6. Si f est une application linéaire de E dans F, alors si $dim Im f = n < +\infty$, alors n est appelé rang de f et on note rg(f). Im f et ker f sont des sous espaces vectoriels de E.

EXEMPLE 5.7. (1) Déterminons le noyau de l'application f_1 ,

$$\ker f = \{(x,y) \in \mathbb{R}^2 / f(x,y) = 0\} = \{(x,y) \in \mathbb{R}^2 / x + 2y = 0\} = \{(x,y) \in \mathbb{R}^2 / x = -2y\}$$

$$ainsi$$

$$\ker f = \{(-2y,y)/y \in {\rm I\!R}\} = \{y(-2,1)/y \in {\rm I\!R}\}$$

donc le ker f est un sous espace vectoriel engendré par u=(-2,1) donc il est de dimension 1, et sa base est $\{u\}$.

(2) Cherchons l'image de

$$f_2: \mathbb{R}^3 \longmapsto \mathbb{R}^3$$

$$(x, y, z) \longmapsto (-x + y, x - z, y)$$

$$Im f_2 = \{ f(x, y, z) / (x, y, z) \in \mathbb{R}^3 \} = \{ (-x + y, x - z, y) / (x, y, z) \in \mathbb{R}^3 \}$$

$$Im f_2 = \{x(-1,1,0) + y(1,0,1) + z(0,-1,0)/(x,y,z) \in \mathbb{R}^3\}$$

donc $Im f_2$ est un s.e.v de \mathbb{R}^3 engendré par $\{(-1,1,0),(1,0,1),(0,-1,0)\}$ il est facile de montrer que cette famille est libre et donc il forment une base de \mathbb{R}^3 donc $dim Im f_2 = 3, rg(f_2) = 3, Im f = \mathbb{R}^3$.

PROPOSITION 5.8. Soit f une application linéaire de E dans F on a les équivalences suivantes :

- (1) f est $surjective \Leftrightarrow Imf = F$.
- (2) f est $injective \Leftrightarrow \ker f = \{0_E\}.$

50 NOTION DE K− ESPACES VECTORIELS(K ÉTANT UN CORPS COMMUTATIF) AVEC EXERCICES CORRIGÉS

EXEMPLE 5.9. Dans l'exemple $Im f_2 = \mathbb{R}^3$ donc f_2 est surjective, montrons que f_2 est injective

$$\ker f_2 = \{(x, y, z) \in \mathbb{R}^3 / f_2(x, y, z) = (0, 0, 0)\},\$$

 $\Rightarrow \ker f_2 = \{(x, y, z) \in \mathbb{R}^3 / (-x + y, x - z, y) = (0, 0, 0)\} \Rightarrow x = y = z = 0$ donc $\ker f_2 = \{(0, 0, 0)\}, \text{ ainsi } f_2 \text{ est bijective.}$

5.2. Application Linéaire sur des espace de dimension finies.

PROPOSITION 5.10. Soit E et F deux \mathbb{K} espace vectoriels et f, g deux applications linéaires de E dans F. Si E est de dimension finie n et $\{e_1, e_2, ..., e_n\}$ une base de E, alors $\forall k \in \{1, 2, ..., n\}, f(e_k) = g(e_k) \Leftrightarrow \forall x \in E, f(x) = g(x).$

PREUVE. L'implication (\Leftarrow) est evidente.

Pour (\Rightarrow) on a E est engendré par $\{e_1, e_2, ..., e_n\}$, donc $\forall x \in E, \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{IK}, x = \lambda_1 e_1 + \lambda_2 e_2 + ... + \lambda_n e_n$, comme f et g sont linéaires, alors

$$f(x) = f(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) = \lambda_1 f(e_1) + \lambda_2 f(e_2) + \dots + \lambda_n f(e_n),$$

$$g(x) = g(\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n) = \lambda_1 g(e_1) + \lambda_2 g(e_2) + \dots + \lambda_n g(e_n),$$

donc si on suppose que $\forall k \in \{1, 2, ..., n\}, f(e_k) = g(e_k)$ donc on déduit que $\forall x \in E, f(x) = g(x)$.

Remarque 5.11. Pour que deux applications linéaires f et g de E dans F soient égales il suffit qu'elles coincident sur la base du IK— espace vectoriel E.

EXEMPLE 5.12. Soit g une application de \mathbb{R}^2 dans \mathbb{R}^2 telle que

$$g(1,0) = (2,1), g(0,1) = (-1,-1)$$

alors déterminons la valeur de g en tous points de \mathbb{R}^2 , en effet on a :

$$\forall (x, y) \in \mathbb{R}^2, (x, y) = x(1, 0) + y(0, 1)$$

$$g(x,y) = g(x(1,0) + y(0,1)) = xg(1,0) + yg(0,1) = x(2,1) + y(-1,-1) = (2x - y, x - y)$$

 $ainsi\ g(x,y) = (2x - y, x - y).$

Théorème 5.13. Soit f une application linéaire de E dans F avec dimension de E est finie, on a:

$$dimE = dim \ker f + dimIm(f)$$

EXEMPLE 5.14. On a montré que dim $\ker f_1 = 1$ avec f_1 définie

$$f_1: \mathbb{R}^2 \longmapsto \mathbb{R}$$

$$(x,y) \longmapsto x + 2y$$

 $comme \ dim \mathbb{R}^2 = 2 \Rightarrow dim Im(f) = dim \mathbb{R}^2 - dim \ker f_1 = 2 - 1 = 1.$

PROPOSITION 5.15. Soit f une application linéaire de E dans F avec dimE =dimF = n. On a alors les équivalences suivantes :

f est isomorphisme $\Leftrightarrow f$ est surjective $\Leftrightarrow f$ est injective

$$\Leftrightarrow dim Im(f) = dim F \Leftrightarrow Im f = F \Leftrightarrow dim \ker f = 0 \Leftrightarrow \ker f = \{0_E\},$$

de cette proposition, on déduit que si f est un isomorphisme de E dans F avec dimE finie alors nécessairement dimE = dimF en d'autres termes si dim $E \neq dimF$ alors f ne peut être un isomorphisme.

- (1) L'application f_1 n'est pas un isomorphisme car dim $\mathbb{R}^2 \neq$ **EXEMPLE** 5.16. $dim \mathbb{R}$.
- (2) Soit q(x,y) = (2x y, x y), q définie de \mathbb{R}^2 dans \mathbb{R}^2 on a, $dim \mathbb{R}^2 = dim \mathbb{R}^2$ est un isomorphisme car dim $\ker q = 0$ en effet :

$$\ker g = \{(x,y) \in \mathbb{R}^2 / (2x - y, x - y) = (0,0)\} = \{(0,0)\},\$$

c'est même un automorphisme.

6. Exercices Corrigés

EXERCICE 15. On considère dans \mathbb{R}^3 , le sous ensemble F défini par :

$$F = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}$$

- (1) Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- (2) Donner une base de F, quelle est sa dimension?
- (3) F est-il égale à \mathbb{R}^3 ?

SOLUTION. (1):

$$F \ est \ s.e.v \Leftrightarrow \left\{ \begin{array}{l} F \neq \emptyset, \\ \forall X,Y \in F, \forall \lambda, \mu \in {\rm I\!R}, \quad \lambda.X + \mu.Y \in F \end{array} \right.$$

$$-0_{{\bf I\!R}^3} = (0,0,0) \in F \Rightarrow F \neq \emptyset, \ car \ 2.0 + 0 - 0 = 0.$$

-
$$0_{\mathbb{R}^3} = (0,0,0) \in F \Rightarrow F \neq \emptyset$$
, $car\ 2.0 + 0 - 0 = 0$.
- $\forall X = (x,y,z), Y = (x',y',z') \in F, \lambda, \mu \in \mathbb{R}$ montrons que :

$$\lambda(x, y, z) + \mu(x', y', z') \in {}^{?}F,$$

c'est à dire $(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z') \in {}^{?}F$

$$2(\lambda x + \mu x') + (\lambda y + \mu y') - (\lambda z + \mu z') = \lambda(2x + y - z) + \mu(2x' + y' - z') = \lambda.0 + \mu.0 = 0,$$
 car:

$$(x, y, z) \in F \Rightarrow 2x + y - z = 0,$$

$$et(x',y';z') \in F \Rightarrow 2x' + y' - z' = 0.$$

Ainsi $\lambda(x,y,z) + \mu(x',y',z') \in F$, F est sous espace vectoriel de \mathbb{R}^3 .

(2) Base de
$$F$$
: soit $X \in F \Leftrightarrow 2x + y - z = 0 \Rightarrow z = 2x + y$, $X = (x, y, z) = (x, y, 2x + y) = x(1, 0, 2) + y(0, 1, 1)$, ainsi $F = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z\} = \{x(1, 0, 2) + y(0, 1, 1) / x, y \in \mathbb{R}\}$. D'où F est engendré par $\{v_1 = (1, 0, 2), v_2 = (0, 1, 1)\}$, montrons que cette

D'où F est engendré par $\{v_1 = (1,0,2), v_2 = (0,1,1)\}$, montrons que cette famille est libre si et seulement si

$$\forall \lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 v_1 + \lambda_2 v_2 = (0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = 0.$$

$$\lambda_1(1,0,2) + \lambda_2(0,1,1) = (0,0,0) \Rightarrow (\lambda_1,\lambda_2,2\lambda_1+\lambda_2) = (0,0,0)$$

d'où le résultat. Alors la dimension de F est égale à 2, car $\{v_1, v_2\}$ est une base (libre et génératrice) de \mathbb{R}^3 .

(3) $F \neq \mathbb{R}^3 \ car \dim F = 2 \neq 3 = \dim \mathbb{R}^3$.

EXERCICE 16. On considère dans \mathbb{R}^3 , le sous ensemble F défini par :

$$F = \{(x - y, 2x + y + 4z, 3y + 2z) / x, y, z \in \mathbb{R}\}\$$

- (1) Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- (2) Donner une base de F, quelle est sa dimension?
- (3) F est-il égale à \mathbb{R}^3 ?

Solution. (1)
$$-(0,0,0) \in F \ car \ (0,0,0) = (0-0,2.0+0+4.0,3.0+2.0) \Rightarrow F \neq \emptyset$$
.

 $-\forall X, Y \in F, \lambda, \mu \in \mathbb{R} \text{ montrons que } \lambda X + \mu Y \in {}^{?}F; \text{ on } a:$

$$X \in F \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3 / X = (x - y, 2x + y + 4z, 3y + 2z),$$

$$Y \in F \Leftrightarrow \exists (x', y', z') \in \mathbb{R}^3 / Y = (x' - y', 2x' + y' + 4z', 3y' + 2z'),$$

$$\lambda X + \mu Y = (\lambda x + \lambda y + \lambda z, \lambda x - \lambda y, \lambda z) + (\mu x' + \mu y' + \mu z', \mu x' - \mu y', \mu z')$$

$$\lambda X + \mu Y = ((\lambda x + \mu x') - (\lambda y + \mu y'), 2(\lambda x + \mu x') + (\lambda y + \mu y') + 4(\lambda z + \mu z), 3(\lambda y + \mu y') + 2(\lambda z + \mu z)$$

$$d'où \exists x'' = \lambda x + \mu x', \exists y'' = \lambda y + \mu y', \exists z'' = \lambda z + \mu z', ainsi$$

$$\lambda X + \mu Y = (x'' - y'' + 2x'' + y'' + 4z'', 3y'' + 2z'') \in F.$$

(2) Base de
$$F$$
: soit $X \in F \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3 / X = (x - y, 2x + y + 4z, 3y + 2z),$
 $X = (x - y, 2x + y + 4z, 3y + 2z) = x(1, 2, 0) + y(-1, 1, 3) + y(0, 4, 2), \text{ ainsi}$
 $F = \{x(1, 2, 0) + y(-1, 1, 3) + y(0, 4, 2) / x, y, z \in \mathbb{R}\}.$

D'où F est engendré par $\{v_1=(1,2,0),v_2=(-1,1,3),v_3=(0,4,2)\}$, montrons que cette famille est libre si et seulement si

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = (0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

$$\lambda_1(1,2,0) + \lambda_2(-1,1,3) + \lambda_3(0,4,2) = (0,0,0) \Rightarrow (\lambda_1 - \lambda_2, 2\lambda_1 + \lambda_2 + 4\lambda_3, 3\lambda_2 + 2\lambda_3) = (0,0,0)$$

$$\Rightarrow \begin{cases} \lambda_1 = \lambda_2, \\ 3\lambda_2 + 4\lambda_3 = 0, \\ 3\lambda_2 + 2\lambda_3, \end{cases} \Rightarrow 2\lambda_3 = 0 \Rightarrow \lambda_1 = \lambda_2 = 0.$$

d'où le résultat. Alors la dimension de F est égale à 3, car $\{v_1, v_2, v_3\}$ est une base (libre et génératrice) de \mathbb{R}^3 .

(3) $F = \mathbb{R}^3 \operatorname{car} \operatorname{dim} F = 3 = \operatorname{dim} \mathbb{R}^3$.

EXERCICE 17. On considère dans \mathbb{R}^4 , le sous ensemble F défini par :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / (x + z = 0) \land (y + t = 0)\}$$

- (1) Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- (2) Donner une base de F, déduire sa dimension.

SOLUTION. (1)
$$-(0,0,0,0) \in F \Rightarrow F \neq \emptyset$$
, $car(0+0=0) \land (0+0=0)$. $-\forall X = (x,y,z,t), Y = (x',y',z',t') \in F, \lambda, \mu \in \mathbb{R}$ montrons que:

$$\lambda(x, y, z, t) + \mu(x', y', z', t') \in {}^{?}F,$$

c'est à dire $(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z', \lambda t + \mu t') \in {}^{?}F$

$$\left\{ \begin{array}{l} X \in F \Rightarrow & (x+z=0) \wedge (y+t=0) \\ Y \in F \Rightarrow & (x'+z'=0) \wedge (y'+t'=0) \end{array} \right.$$

$$\Rightarrow \begin{cases} \lambda(x+z) = 0 \wedge \mu(x'+z') = 0 \Rightarrow & \lambda x + \mu x' + \lambda z + \mu z' = 0 \\ \wedge \\ \lambda(y+t) = 0 \wedge \mu(y'+t') = 0 \Rightarrow & \lambda y + \mu y' + \lambda t + \mu t' = 0 \end{cases}$$

$$ainsi \ \lambda x + \mu x' + \lambda z + \mu z' = 0 \wedge \lambda y + \mu y' + \lambda t + \mu t' = 0 \ c'est \ dire$$

$$\lambda(x,y,z,t) + \mu(x',y',z',t') \in F \ d'où \ le \ résultat.$$

(2) Base de
$$F$$
: soit $X \in F \Leftrightarrow x = -z \land y = -t$, $X = (x, y, z, t) = (x, y, -x, -y) = x(1, 0, -1, 0) + y(0, 1, 0, -1)$, ainsi $F = \{x(1, 0, -1, 0) + y(0, 1, 0, -1)/x, y \in \mathbb{R}\}.$

D'où F est engendré par $\{v_1 = (1,0,-1,0), v_2 = (0,1,0,-1)\}$, montrons que cette famille est libre si et seulement si

$$\forall \lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 v_1 + \lambda_2 v_2 = (0, 0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = 0.$$

$$\lambda_1(1,0,-1,0) + \lambda_2(0,1,0,-1) = (0,0,0,0) \Rightarrow (\lambda_1,\lambda_2,-\lambda_1,-\lambda_2) = (0,0,0,0)$$
 d'où le résultat. Alors la dimension de F est égale à 2, car $\{v_1,v_2\}$ est une base (libre et génératrice) de \mathbb{R}^4 .

REMARQUE 6.1. C'est un exemple de l'intersection de deux s.e.v est un s.e.v on pouvait l'écrire sous cette forme $F = F_1 \cap F_2$ où

$$F_1 = \{(x, y, z, t) \in \mathbb{R}^4 / (x + z = 0)\},\$$

$$F_2 = \{(x, y, z, t) \in \mathbb{R}^4 / (y + t = 0)\}.$$

est montrer que F_1, F_2 sont des s.e.v de \mathbb{R}^4 .

- **EXERCICE** 18. (1) Montrer que la famille $\{(1,2), (-1,1)\}$ est génératrice de \mathbb{R}^2 .
- (2) quelle sont les famille libre parmis les familles suivantes : $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\},\ F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}.$
- (3) Montrer que la famille $\{(1,2), (-1,1)\}$ est une base de \mathbb{R}^2 , et que la famille $F_1 = \{(1,1,0), (1,0,0), (0,1,1)\}$ est une base de \mathbb{R}^3 .

SOLUTION. (1) La famille $\{(1,2), (-1,1)\}$ est génératrice de \mathbb{R}^2 si et seulement si

$$\forall X = (x, y) \in \mathbb{R}^2, \exists \lambda, \mu \in \mathbb{R}/X = \lambda(1, 2) + \mu(-1, 1).$$

Soit $(x, y) \in \mathbb{R}^2$, cherchons $\lambda, \mu \in \mathbb{R}$ tel que :

$$(x,y) = \lambda(1,2) + \mu(-1,1) = (\lambda - \mu, 2\lambda + \mu)$$

ainsi

$$\begin{cases} x = \lambda - \mu, & \dots(1) \\ y = 2\lambda + \mu, & \dots(2) \end{cases} (1) + (2) \Rightarrow \lambda = \frac{x+y}{3} et \mu = \frac{-2x+y}{3}$$

d'où cette famille est génératrice.

(2) quelle sont les famille libre parmis les familles suivantes : $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\},\$ $F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}.$ i) $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\}$ est libre si et seulement si

$$\forall \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}, \lambda_{1}(1, 1, 0) + \lambda_{2}(1, 0, 0) + \lambda_{3}(0, 1, 1) = (0, 0, 0) \Rightarrow \lambda_{1} = \lambda_{2} = \lambda_{3} = 0.$$

$$\lambda_{1}(1, 1, 0) + \lambda_{2}(1, 0, 0) + \lambda_{3}(0, 1, 1) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} = 0 \\ \lambda_{1} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{1} = 0 \\ \lambda_{2} = 0 \\ \lambda_{3} = 0 \end{cases}$$

 F_1 est libre.

ii) $F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}$ est n'est pas libre car

$$\exists \lambda_1 = 1, \lambda_2 = -2, \lambda_3 = 1 \in \mathbb{R}, \lambda_1(0, 1, 1, 0) + \lambda_2(1, 1, 1, 0) + \lambda_3(2, 1, 1, 0) = (0, 0, 0, 0).$$

(3) La famille $\{(1,2), (-1,1)\}$ est une base de \mathbb{R}^2 , car quand le nombre de vecteurs=2=dim \mathbb{R}^2 il suffit de montrer qu'elle est soit génératrice ou bien libre pour qu'elle puisse être une base or d'après la question (1) elle est génératrice d'où le résultat. La famille $F_1 = \{(1,1,0), (1,0,0), (0,1,1)\}$ est une base de \mathbb{R}^3 , car le cardinale de F_1 est égale à $3 = \dim \mathbb{R}^3$ est F_1 étant libre, alors c'est une base de \mathbb{R}^3 .

EXERCICE 19. Soit l'application f définie de \mathbb{R}^2 dans \mathbb{R}^2 par :

$$f(x,y) = (x+y, x-y).$$

- (1) Monter que f est linéaire.
- (2) Déterminer ker f, et Imf et donner leurs dimensions, f est-elle bijectives?
- (3) Déterminer $f \circ f$.

Solution (1) f est linéaire si et seulement si

$$\forall \alpha, \beta \in \mathbb{R}, \forall (x, y), (x', y') \in \mathbb{R}^2; f(\alpha(x, y) + \beta(x', y')) = \alpha f(x, y) + \beta f(x', y').$$

$$f(\alpha(x,y) + \beta(x',y')) = f(\alpha x + \beta x', \alpha y + \beta y')$$

$$= (\alpha x + \beta x' + \alpha y + \beta y', \alpha x + \beta x' - \alpha y - \beta y')$$

$$= (\alpha x + \alpha y, \alpha x - \alpha y) + (\beta x' + \beta y', \beta x' - \beta y')$$

$$= \alpha(x + y, x - y) + \beta(x' + y', x' - y')$$

$$= \alpha f(x,y) + \beta f(x',y')$$

d'où f est linéaire.

(2) Déterminons ker f, et Imf et donner leurs dimensions, f est-elle bijectives?

$$\ker f = \{(x,y) \in \mathbb{R}^2 / f(x,y) = (0,0)\}$$
$$= \{(x,y) \in \mathbb{R}^2 / x + y = 0 \land x - y = 0\}$$
$$= \{(0,0)\}$$

 $ainsi \dim \ker f = 0.$

$$Imf = \{(x+y, x-y)/(x, y) \in \mathbb{R}^2\}$$

= \{x(1,1) + y(1,-1)/(x, y) \in \mathbb{R}^2\}.

Ainsi Imf est engendré par deux vecteur qui sont libre, alors $\dim Imf = 2$. Sachant que la dimension de l'ensemble de départ est égale à la dimension de l'ensemble d'arrivée f est bijective si elle est soit injective ou bien surjective or f est injective car $\ker f = \{(0,0)\}$ et aussi surjective car $\dim \mathbb{R}^2 = \dim Imf = 2$ c'est à dire $Imf = \mathbb{R}^2$.

(3) Soit $(x, y) \in \mathbb{R}^2$ on a

$$f \circ f(x,y) = f(f(x,y)) = f(x+y,x-y)$$

$$= ((x+y) + (x-y), (x+y) - (x-y))$$

$$= (2x,2y) = 2(x,y) = 2Id_{\mathbb{R}^2}$$

EXERCICE 20. Soit l'application f définie de \mathbb{R}^2 dans \mathbb{R}^2 par :

$$f(x,y) = (2x - 4y, x - 2y).$$

- (1) Monter que f est linéaire.
- (2) Déterminer ker f, et Imf et donner leurs dimensions, f est-elle bijectives?

Solution. (1) f est linéaire si et seulement si

$$\forall \alpha, \beta \in \mathbb{R}, \forall (x, y), (x', y') \in \mathbb{R}^2; f(\alpha(x, y) + \beta(x', y')) = \alpha f(x, y) + \beta f(x', y').$$

$$f(\alpha(x,y) + \beta(x',y')) = f(\alpha x + \beta x', \alpha y + \beta y')$$

$$= (2\alpha x + 2\beta x' - 4\alpha y - 4\beta y', \alpha x + \beta x' - 2\alpha y - 2\beta y')$$

$$= (2\alpha x - 4\alpha y, \alpha x - 2\alpha y) + (2\beta x' - 4\beta y', \beta x' - 2\beta y')$$

$$= \alpha(2x - 4y, x - 2y) + \beta(2x' - 4y', x' - 2y')$$

$$= \alpha f(x,y) + \beta f(x',y')$$

56 NOTION DE IK− ESPACES VECTORIELS(IK ÉTANT UN CORPS COMMUTATIF) AVEC EXERCICES CORRIGÉS

d'où f est linéaire.

(2) Déterminons ker f, et Imf et donner leurs dimensions, f est-elle bijectives?

$$\ker f = \{(x,y) \in \mathbb{R}^2 / f(x,y) = (0,0)\}$$

$$= \{(x,y) \in \mathbb{R}^2 / 2x - 4y = 0 \land x - 2y = 0\}$$

$$= \{(x,y) \in \mathbb{R}^2 / x = 2y\}$$

$$= \{(2y,y) / y \in \mathbb{R}\}$$

$$= \{y(2,1) / y \in \mathbb{R}\}.$$

ainsi ker f est engendré par le vecteur $(2,1) \neq 0$, ainsi dim ker f=1, f, alors n'est pas injective.

$$Imf = \{(2x - 4y, x - 2y)/(x, y) \in \mathbb{R}^2\}$$
$$= \{x(2, 1) + y(-4, -2)/(x, y) \in \mathbb{R}^2\}.$$

Ainsi Imf est engendré par deux vecteur qui ne sont pas libre car(-4,-2) = -2(2,1) alors $\dim Imf = 1$ on peut aussi utliser le fait que la dimension de l'ensemble de départ est égale à la dimension de l'ensemble d'arrivée f, alors $\dim \ker f + \dim Imf = \dim R^2$, $\Rightarrow \dim Imf = 2 - 1 = 1$.

(3) f n'est pas bijective car il n'est ni injective ni surjective.

CHAPITRE 6

Notion de Matrice Associée à une Application Linéaire et Calcul Algébrique sur les Matrices avec Exercices Corrigés

Soit IK un corps commutatif.

Soit E et F deux IK espaces vectoriels de dimension finies n et m, f une application linéaire de E dans F, soit $B = \{e_1, e_2, ..., e_n\}$ une base de E, $B' = \{e'_1, e'_2, ..., e'_m\}$ une base de F, les vecteurs $f(e_1), f(e_2), ..., f(e_n)$ sont de vecteurs dans F comme $\{e'_1, e'_2, ..., e'_m\}$ est une base de F, alors $f(e_1), f(e_2), ..., f(e_n)$ s'écrivent donc comme combinaisons linéaires des vecteurs de la base $B' = \{e'_1, e'_2, ..., e'_m\}$. On a pour tout j = 1, ..., n.

$$f(e_j) = a_{1j}e'_1 + a_{2j}e'_2 + \dots + a_{mj}e'_m.$$

$$\begin{pmatrix} f(e_1) & f(e_2) & \dots & f(e_n) \\ a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} e'_1 \\ e'_2 \\ \vdots \\ e'_m \end{pmatrix}$$

Le tableau suivant :

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

est appelé matrice associée à f relativement aux bases B et B'. On note la matrice (a_{ij}) où i désigne l'indice de ligne et j l'indice de colone.

On introduit maintenant la notion de matrice et les opérations algèbriques des matrices.

1. Espace vectoriel des matrices

DÉFINITION 1.1. On appelle une matrice dans \mathbb{K} de type (n, p) un tableau rectangulaire A d'éléments de \mathbb{K} ayant n lignes et p colonnes.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$$

On note a_{ij} l'élément qui se trouve à la ligne numéro i et la colonne j et on note la matrice A par $A = (a_{ij})_{1 \le i \le n, 1 \le j \le p}$. L'ensemble des matrices de type (n, p) est noté $\mathcal{M}_{\ell}(n, p)(\mathbb{IK})$.

- (1) Pour n = 1, on dit que A est une matrice ligne, $A = (a_{11}, a_{12}, ..., a_{1p})$.
- (2) Pour p = 1 on dit que A est une matrice ligne, $A = \begin{pmatrix} a_{11} \\ a_{12} \\ ... \\ a_{1p} \end{pmatrix}$.
- (3) Pour n=p, on dit que A est une matrice carrée d'ordre n et on note $A\in\mathcal{M}_n(\mathbbm{K}).$

EXEMPLE 1.2. (1)
$$A_1 = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{pmatrix}$$
, A_1 est une matrice de type $(4,3)$.

- (2) $A_2 = \begin{pmatrix} -1 & 0 & 1 & 7 \\ 5 & 2 & 1 & 0 \end{pmatrix}$, A_2 est une matrice de type (2,4).
- (3) $A_3 = \begin{pmatrix} 1 & 9 \\ -6 & 0 \end{pmatrix}$, A_3 est une matrice carrée d'ordre 2.

DÉFINITION 1.3. Soit $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ et $B = (b_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ deux matrices de types (n, p),

- (1) On dit que A = B si $\forall i = 1, ..., n, \forall j = 1, ..., p; a_{ij} = b_{ij}$.
- (2) La transposée de la matrice A est une matrice notée A^t définie par

$$A^t = (a_{ii})_{1 < j < p, 1 < i < n},$$

autrement dit A^t c'est la matrice de type (p, n) obtenue en remplaçant les lignes par les colonnes et les colonnes par les lignes et on $a: (A^t)^t = A$.

EXEMPLE 1.4. (1)
$$A_1 = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{pmatrix} \Rightarrow A_1^t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

(2)
$$A_2 = \begin{pmatrix} -1 & 0 & 0 & -5 \\ 1 & 2 & 1 & 8 \end{pmatrix} \Rightarrow A_2 = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 0 & 1 \\ -5 & 8 \end{pmatrix}$$

$$(3) \ A_3 = \left(\begin{array}{cc} 1 & 0 \\ 5 & -5 \end{array}\right) \Rightarrow A_3^t = \left(\begin{array}{cc} 1 & 5 \\ 0 & -5 \end{array}\right).$$

Théorème 1.5. En munissant l'ensemble $\mathcal{M}_{(n,p)}(\mathbb{K})$ par les opération suivantes :

$$(+): \mathcal{M}_{(n,p)}(\mathbb{IK}) \times \mathcal{M}_{(n,p)}(\mathbb{IK}) \to \mathcal{M}_{(n,p)}(\mathbb{IK})$$

$$\left(\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}, \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} \right) \to \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1p} + b_{1p} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2p} + b_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{np} + b_{np} \end{pmatrix}.$$

$$\begin{pmatrix}
(\cdot) : \mathbb{I}K \times \mathcal{M}_{(n,p)}(\mathbb{I}K) & \to & \mathcal{M}_{(n,p)}(\mathbb{I}K) \\
\lambda, \begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1p} \\
a_{21} & a_{22} & \dots & a_{2p} \\
\vdots & \vdots & \dots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{np}
\end{pmatrix}, \quad \to \quad \begin{pmatrix}
\lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1p} \\
\lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2p} \\
\vdots & \vdots & \dots & \vdots \\
\lambda a_{n1} & \lambda a_{n2} & \dots & \lambda a_{np}
\end{pmatrix}$$

Alors $(\mathcal{M}_{(n,p)}(\mathbb{K}),+,\cdot)$ est $\mathbb{K}-$ espace vectoriel de dimension $n\times p$, sachant que l'élé-

ment neutre de l'addition est la matrice nulle $\begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

2. Produit de deux matrices

DÉFINITION 2.1. Soit $A \in \mathcal{M}_{(n,p)}(\mathbb{IK})$ et $B \in \mathcal{M}_{(p,m)}(\mathbb{IK})$, on définit le produit de la matrice A par B comme étant une matrice $C = (c_{ij})_{1 \leq i \leq , 1 \leq j \leq m} \in \mathcal{M}_{(n,m)}(\mathbb{IK})$, avec $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{31}b_{3j} + ... + a_{ip}b_{pj}$.

- REMARQUE 2.2. (1) L'élément C_{ij} de la matrice C se calcule en additionnant le produit des éléments de la ligne i de la matrice A par la les éléments de la colonne j de la matrice B.
- (2) Le produit de deux matrice ne peut se faire que si le nombre de colonnes de la matrice A correspond au nombre de lignes dela matrice B.

EXEMPLE 2.3.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix},$$

A est de type (2,3) et B de type (3,4) ainsi C sera de type (2,4).

$$C = A.B = \begin{pmatrix} 1.1 + 1.2 + 0.1 & 1.2 + 1.0 + 0.1 & 1.0 + 1.1 + 0.0 & 1.1 + 1.1 + 0.0 \\ 2.1 + 2.2 + 0.1 & 2.2 + 2.0 + 0.1 & 2.0 + 2.1 + 0.0 & 2.1 + 2.1 + 0.0 \end{pmatrix}$$

$$\Leftrightarrow C = \begin{pmatrix} 3 & 2 & 1 & 2 \\ 6 & 4 & 2 & 4 \end{pmatrix}$$

Remarque 2.4. Le produit deux matrice n'est pas commutatif voiçi un exemple :

$$A.B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -1 & 4 \end{pmatrix} \neq B.A = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$$

3. Matrices carrées

DÉFINITION 3.1. Soit A une matrice carrée d'ordre n, $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$,

- (1) La suite des éléments $\{a_{11}, a_{22}, ..., a_{nn}\}$ est appelée la diagonale principle de A.
- (2) La trace de A est le nombre $Tr(A) = a_{11} + a_{22} + ... + a_{nn}$.
- (3) A est dite matrice diagonale si $a_{ij} = 0, \forall i \neq j$ c'est à dire que les éléments de A sont tous nuls sauf la diagonale principale.
- (4) A est dite matice triangulaire supérieure (resp inférieure) si $a_{ij} = 0, \forall i > j$, (resp i < j), c'est à dire les éléments qui sont au dessous(resp au dessus) de la diagonale sont nuls).
- (5) A st dite symétrique si $A = A^t$.

EXEMPLE 3.2. (1) $A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, A_1 est une matrice diagonale.

- (2) $A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 5 & 4 & 0 \\ 6 & 3 & 9 \end{pmatrix}$, A_2 est une matrice triangulaire inférieure.
- (3) $A_3 = \begin{pmatrix} 7 & 40 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$, A_3 est une matrice triangulaire supérieure.

PROPOSITION 3.3. Le produit des matrices est une opération interne dans $\mathcal{M}_{(n,n)}(\mathbb{IK})$ et il admet un élément neutre la matrice nommée matrice identitée notée I_n définie par :

$$I_n = \begin{pmatrix} 1 & 0 & 0 & 0.. & 0 \\ 0 & 1 & 0 & 0.. & 0 \\ 0 & 0 & 1 & 0.. & 0 \\ 0 & 0 & 0 & 1.. & 0 \\ . & . & . & .. & 0 \\ 0 & 0 & 0 & ..0 & 1 \end{pmatrix}$$

DÉFINITION 3.4. Soit $A \in \mathcal{M}_{(n,n)}(\mathbb{K})$ on dit que A est invesible s'il existe une matrice $B \in \mathcal{M}_{(n,n)}(\mathbb{K})$ telle que $A.B = B.A = I_n$.

Exemple 3.5. Montrons que la matrice $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ est inversible et ceci en cherchant la matice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que

$$A.B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = B.A$$

$$\Leftrightarrow \begin{pmatrix} a+2c & b+2d \\ -c & -d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 2a-b \\ c & 2c-d \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}.$$

4. Les Déterminants

DÉFINITION 4.1. Soit $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ une matrice dans $\mathcal{M}_{(2,2)}(\mathbb{K})$, on appelle déterminant de A le nombre réel donné par : $a_{11}a_{22} - a_{12}a_{21}$. On le note det(A) ou $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$,

EXEMPLE 4.2. Calculons le det(A),

$$|A| = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = 1(-1) - 0.(2) = -1.$$

DÉFINITION 4.3. De même, on définit le déterminant d'une matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{I}K),$$

par

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{\mathbf{1}+\mathbf{1}} a_{\mathbf{1}\mathbf{1}} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{\mathbf{1}+\mathbf{2}} a_{\mathbf{1}\mathbf{2}} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{\mathbf{1}+\mathbf{3}} a_{\mathbf{1}\mathbf{3}} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

EXEMPLE 4.4.

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 12 & -1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{1+1} \cdot 1 \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} + (-1)^{1+2} \cdot 0 \cdot \begin{vmatrix} 12 & 1 \\ 0 & 0 \end{vmatrix} + (-1)^{1+3} \cdot (-1) \begin{vmatrix} 12 & 2 \\ 0 & 1 \end{vmatrix}$$
$$\Leftrightarrow |A| = -1 + 0 - 12 = -13$$

PROPOSITION 4.5. Pour calculer le déterminant d'une matrice A on peut développer A suivant n'importe quelle ligne ou colonne.

Suivant cette proposition il vaut mieux choisir la ligne ou colonne contenant le plus de zéros.

Exemple 4.6. On reprend la même matrice de l'exemple pécédent mais calculer suivant la troisième ligne on aura :

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 12 & -1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{3+1} \cdot 0 \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} + (-1)^{3+2} \cdot 1 \begin{vmatrix} 1 & -1 \\ 12 & 1 \end{vmatrix} + (-1)^{3+3} \cdot 0 \begin{vmatrix} 1 & 0 \\ 12 & -1 \end{vmatrix}$$
$$det(A) = 0 - 13 + 0 = -13$$

on calcule juste un déterminant au lieu de trois.

DÉFINITION 4.7. De même, on définit le déterminant d'une matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \in \mathcal{M}_4(\mathbb{I}K),$$

par

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

$$+(-1)^{\mathbf{1}+\mathbf{3}}a_{\mathbf{13}}\begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + (-1)^{\mathbf{1}+\mathbf{4}}a_{\mathbf{14}}\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}.$$

DÉFINITION 4.8. Soit $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$,

le déterminant suivant la j-ème colone est :

$$det(A) = (-1)^{1+j} a_{1j} D_{1j} + (-1)^{2+j} a_{2j} D_{2j} + \dots + (-1)^{n+j} a_{nj} D_{nj}, j = 1, \dots, n.$$

Le déterminant suivant la i-ème ligne est :

$$det(A) = (-1)^{i+1}a_{i1}D_{i1} + (-1)^{i+2}a_{i2}D_{i2} + \dots + (-1)^{i+n}a_{in}D_{in}, i = 1, \dots, n.$$

Où A_{ij} représent ce que nous appelons le déterminant mineur du terma a_{ij} , le déterminant d'ordre n-1 obtenu de det(A) en supprimant la i-ème ligne et la j-ème colonne.

PROPOSITION 4.9. Soit $A \in \mathcal{M}_n(\mathbb{K})$ on a:

- (1) $det(A) = det(A^t)$.
- (2) det(A) = 0 si deux lignes de A sont égales (ou deux colonnes).
- (3) det(A) = 0 si deux lignes de A sont proportinnelles (ou deux colonnes le sont).
- (4) det(A) = 0 si une ligne est combinaison linéaires de deux autres lignes de A (même chôse pour les colonnes).

- (5) det(A) ne change pas si on ajoute à une ligne une combinaison linéaires d'autres lignes (même chôse pour les colonnes).
- (6) $Si B \in \mathcal{M}_n(\mathbb{K}), \ alors \ det(A.B) = det(A).det(B).$

EXEMPLE 4.10. (1)
$$|A| = \begin{vmatrix} 3 & 0 & -5 \\ 2 & 2 & 1 \\ 3 & 0 & -5 \end{vmatrix} = 0$$
, car la ligne 1 est égale à la ligne

$$3, L_1 = L_3.$$

(2)
$$|B| = \begin{vmatrix} 9 & 0 & -15 & 3 \\ 2 & 2 & 1 & 1 \\ 1 & 0 & -1 & 4 \\ 3 & 0 & -5 & 1 \end{vmatrix} = 0, car L_1 = 3 * L_4.$$

(3)
$$|C| = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 1 & 1 & 2 & 20 \\ 0 & 0 & -1 & 4 \\ 1 & 1 & -10 & 2 \end{vmatrix} = 0, \ car \ C_1 = C_2.$$

DÉFINITION 4.11. Soit $V_1, V_2, ..., V_n$, n vecteurs de \mathbb{R}^n on appelle déterminant des vecteurs $(V_1, V_2, ..., V_n)$ et on le note $det(V_1, V_2, ..., V_n)$ le déterminant dont les colonnes sont les vecteurs $V_1, V_2, ..., V_n$.

EXEMPLE 4.12. Soit $V_1 = (1, 1, 0), V_2 = (0, -1, 1), V_3 = (0, 0, 1), alors$

$$det(V_1, V_2, V_3) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = +1 \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} = -1$$

PROPOSITION 4.13. Soit $V_1, V_2, ..., V_n$, n vecteurs de \mathbb{R}^n on $(V_1, V_2, ..., V_n)$ est une base de $\mathbb{R}^n \Leftrightarrow det(V_1, V_2, ..., V_n) \neq 0$

EXEMPLE 4.14. Soit $V_1 = (1, 2, 0), V_2 = (0, -1, 1), V_3 = (0, 0, 1),$ forment une base de \mathbb{R}^3 , car $det(V_1, V_2, V_3) = -1 \neq 0$.

4.1. Le rang d'un matrice.

DÉFINITION 4.15. Soit $A \in M_{(n,p)}(\mathbb{IK})$, on appelle rang de A et on note rgA l'ordre de la plus grande matrice carrée B prise (extraite) dans A telle que det $B \neq 0$.

Exemple 4.16.
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, det A = 2 \neq 0, rgA = 2.$$

$$B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, det A = 0 \neq 0, rgA = 1.$$

$$C = \begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 1 & -1 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix}, rgA < 4(rgA \leq 3) \ la \ plus \ grande \ matrice \ carr\'ee \ contenue$$

64 NOTION DE MATRICE ASSOCIÉE À UNE APPLICATION LINÉAIRE ET CALCUL ALGÉBRIQUE SUR LES MATRIC

dans A est d'ordre 3, dans cet exmple on a : 4 possibilité :

$$C_{1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}, C_{2} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$$

$$C_3 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}, C_4 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $detC_1 = detC_2 = 0$ et $detC_3 = detC_4 = 0$ donc le rgA < 3 et on a :

$$\begin{vmatrix} -1 & 0 \\ -1 & 1 \end{vmatrix} = -1 \neq 0 \Rightarrow rgA = 2.$$

Théorème 4.17. le rang d'une matrice est égale au nombre maximale de vecteurs lignes (ou colonnes) linéairement indépendants.

DÉFINITION 4.18. Soit $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq n} \in \mathcal{M}_n(\mathbb{IK})$, on appelle cofacteur d'indice i et j de A le scalaire

$$c_{ij} = (-1)^{i+j} det A_{ij}.$$

Avec A_{ij} est la matrice déduite de A par suppression de la ligne i t la colonne j. La matrice $C = (c_{ij})_{1 \leq i \leq n, 1 \leq j \leq n}$ est appelée la matrice des cofacteurs et la matrice C^t est appellée la comatrice de A.

EXEMPLE 4.19. Soit la matrice
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}, \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$
. Calculons

les coffacteurs de A

$$c_{11} = (-1)^{1+1} det(A_{11}) = (-1)^{2} \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} = -4.$$

$$c_{11} = (-1)^{1+2} det(A_{12}) = (-1)^{3} \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = -2.$$

$$c_{11} = (-1)^{1+3} det(A_{13}) = (-1)^{4} \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2.$$

$$c_{21} = (-1)^{2+1} det(A_{21}) = (-1)^{3} \begin{vmatrix} 0 & 3 \\ 2 & 2 \end{vmatrix} = 6.$$

$$c_{22} = (-1)^{2+2} det(A_{22}) = (-1)^{4} \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} = 2.$$

$$c_{23} = (-1)^{2+3} det(A_{23}) = (-1)^{5} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = -2.$$

$$c_{31} = (-1)^{3+1} det(A_{31}) = (-1)^{4} \begin{vmatrix} 0 & 3 \\ -1 & 1 \end{vmatrix} = 3.$$

$$c_{32} = (-1)^{3+2} det(A_{32}) = (-1)^5 \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = 2.$$

$$c_{33} = (-1)^{3+3} det(A_{33}) = (-1)^6 \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} = -1.$$

donc la matrice des cofacteurs est donnée par :

$$\left(\begin{array}{ccc}
-4 & -2 & 2 \\
6 & 2 & -2 \\
3 & 2 & -1
\end{array}\right)$$

et la comatrice et

$$C^t = \begin{pmatrix} -4 & 6 & 3 \\ -2 & 2 & 2 \\ 2 & -2 & -1 \end{pmatrix}$$

THÉORÈME 4.20. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on a:

Aest inversible $\Leftrightarrow det(A) \neq 0$,

et dans ce cas la matrice inverse de A est donnée par :

$$A^{-1} = \frac{1}{\det(A)}C^t.$$

 $Où C^t$ est la comatrice de A.

EXEMPLE 4.21. La matrice $A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}, det(A) = 2 \neq 0 \ donc \ elle \ est$

inversible, de plus

$$A^{-1} = \frac{1}{2}C^{t} = \frac{1}{2} \begin{pmatrix} -4 & 6 & 3\\ -2 & 2 & 2\\ 2 & -2 & -1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -2 & 3 & \frac{3}{2} \\ -1 & 1 & 1 \\ 1 & -1 & -\frac{1}{2} \end{pmatrix}.$$

On peut vérifier que $A^{-1}A = I_3 = AA^{-1}$.

5. Relations entre une application linéaire et sa matrice Associée

DÉFINITION 5.1. La matrice $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ est appelée la matrice de f suivant les bases B et B' et elle est parfois notée $\mathcal{M}_{(B,B')}(f).Si$ E = F et B = B', on dit que A est la matrice de f suivant la base B et on la note $\mathcal{M}_{(B)}(f)$.

EXEMPLE
$$5.2.$$
 (1)

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \to (x + y + z, x - y)$$

 \mathbb{R}^3 sa base canonique $B = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ et \mathbb{R}^2 sa base canonique $B' = \{v_1 = (1,0), v_2 = (0,1)\},$

$$f(e_1) = f(1,0,0) = (1,1) = v_1 + v_2$$

$$f(e_2) = f(0,1,0) = (1,-1) = v_1 - v_2.$$

$$f(e_3) = f(0,0,1) = (1,0) = v_1$$

$$\begin{pmatrix} f(e_1) & f(e_2) & f(e_3) \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} v_1$$

(2)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \to (x+y, x-y)$$

 $B = \{e_1 = (1,2), e_2 = (-1,1)\}\ et\ B' = \{v_1 = (0,2), v_2 = (-2,1)\},\ On\ doit\ chercher\ les\ \lambda_1, \lambda_2, \lambda_3, \lambda_4?$

$$f(e_1) = f(1,2) = (3,-1) = \lambda_1 v_1 + \lambda_2 v_2,$$

$$f(e_2) = f(-1,1) = (0,-2) = \lambda_3 v_1 + \lambda_4 v_2,$$

$$(3,-1) = \lambda_1 (0,2) + \lambda_2 (-2,1) \Leftrightarrow \begin{cases} \lambda_1 = \frac{1}{4} \\ \lambda_2 = -\frac{3}{2} \end{cases}$$

$$(0,-2) = \lambda_3 (0,2) + \lambda_4 (-2,1) \Leftrightarrow \begin{cases} \lambda_3 = -1 \\ \lambda_4 = 0 \end{cases}$$

$$M_{(B,B')}(f) = \begin{pmatrix} \lambda_1 & \lambda_3 \\ \lambda_2 & \lambda_4 \end{pmatrix} = \begin{pmatrix} f(e_1) & f(e_2) \\ \frac{1}{4} & -1 \\ -\frac{3}{2} & 0 \end{pmatrix} \begin{array}{c} v_1 \\ v_2 \end{array}$$

PROPOSITION 5.3. Soient E et F deux $\mathbb{K}-$ espace vectoriels de dimensions finies n et m, $B = (e_1, e_2, ..., e_n)$ une base de E et $B' = (v_1, v_2, ..., v_m)$ une base de F, alors la donnée d'une matrice $A \in \mathcal{M}_{(n,m)}(\mathbb{K})$ donne une unique application linéaire f de E dans F la matrice suivant les bases, B et B' est A

EXEMPLE 5.4. $A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$, $f : \mathbb{R}^2 \to \mathbb{R}^2$, A est la matrice de f suivant la base canonique de \mathbb{R}^2 , (e_1, e_2) ,

$$f(e_1) = e_1 + 2e_2 \Rightarrow f(1,0) = (1,0) + 2(0,1) = (1,2),$$

$$f(e_2) = -e_1 \Rightarrow f(0,1) = -(1,0) = (-1,0),$$

$$f(x,y) = f(x(1,0) + y(0,1)) = xf(1,0) + yf(0,1)$$

$$\Leftrightarrow f(x,y) = x(1,2) + y(-1,0) = (x-y,2x).$$

REMARQUE 5.5. Si \mathbb{R}^m et \mathbb{R}^n sont munis de leurs bases canoniques alors l'application linéaire f de \mathbb{R}^n dans \mathbb{R}^m associée à une matrice $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ est donnée par

$$\forall (x_1, x_2, ..., x_n) \in \mathbb{R}^n, f(x_1, x_2, ..., x_n) = A. \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}$$

EXEMPLE 5.6.
$$f: \mathbb{R}^2 \to \mathbb{R}^2, A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$$
,

$$f(x,y) = A. \begin{pmatrix} x \\ y \end{pmatrix} = (x-y,2x).$$

THÉORÈME 5.7. Soit E, F et G des $\mathbb{K}-$ espaces vectoriels munis respectivement par les par bases $B, B', B'', f: E \to F, g: F \to G$, deux applications linéaires, alors

$$M_{(B,B'')}(g \circ f) = M_{(B',B'')}(g)M_{(B,B')}(f)$$

REMARQUE 5.8.

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \ g: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y, z) \to (x + y + 2z, x - y), (x, y) \to (x - y, 2x + y)$$

où $\mathbb{R}^2, \mathbb{R}^3$ sont munis de leurs bases canoniques alors

$$g \circ f : \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x,y,z) \to g \circ f(x,y,z)$$

avec $M(g \circ f) = M(g)M(f)$,

$$M(g) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}, M(f) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$

$$M(g \circ f) = M(g)M(f) = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 3 & 1 & 4 \end{pmatrix}$$

Ainsi

$$g \circ f(x, y, z) = M(g \circ f) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = (2y + 2z, 3x + y + 4z).$$

Théorème 5.9. Soit $f; E \to F, B$ est une base de E et B' est une base de F, on a alors :

$$f$$
 bijective $\Leftrightarrow det M_{(B,B')}(f) \neq 0$

et on a dans ce cas $M_{(B,B')}(f^{-1}) = (M_{(B,B')}(f))^{-1}$.

68 NOTION DE MATRICE ASSOCIÉE À UNE APPLICATION LINÉAIRE ET CALCUL ALGÉBRIQUE SUR LES MATRIC

EXEMPLE 5.10.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \to (x - y, x + y)$

Montrons que f est bijective et calculer son inverse $M_b(f) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = A, det(A) = 2 \neq 0 \Leftrightarrow f$ est bijective.

$$(M_B(f))^{-1} = \frac{1}{\det(A)} C_A^t$$

$$C_A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, C_A^t = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$(M_{(B,B')}(f))^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = M_B(f^{-1}),$$

$$f^{-1}(x,y) = M_{(f^{-1})} \begin{pmatrix} x \\ y \end{pmatrix} = (\frac{x}{2} + \frac{y}{2}, -\frac{x}{5} + \frac{y}{2}).$$

PROPOSITION 5.11. Si $A \in \mathcal{M}_{(n,m)}(\mathbb{K})$ associée à une application linéaire f de E dans F la matrice suivant les bases, B de E et B' de F, alors

$$rg(A) = rg(f), rg(A) = rg(A^t).$$

6. Matrices et Changements de Bases

DÉFINITION 6.1. Soit E un e.v et soit $B = (e_1, e_2, ..., e_n)$ et $B' = (e'_1, e'_2, ..., e'_n)$ deux bases pour E, la matrice de passage de la base B' à la base B est par définition la matrice $M_{(B,B')}(Id_E)$ où Id_E est l'application identité

$$Id_E: E \to E$$

$$x \to x.$$

Les vecteurs de base de B peuvent s'exprimer dans B' selon les relations

$$(S): \begin{cases} e_1 = a_{11}e'_1 + a_{12}e'_2 + \dots + a_{1n}e'_n \\ e_2 = a_{21}e'_1 + a_{22}e'_2 + \dots + a_{2n}e'_n \\ e_3 = a_{31}e'_1 + a_{32}e'_2 + \dots + a_{3n}e'_n \\ \vdots \\ e_n = a_{n1}e'_1 + a_{n2}e'_2 + \dots + a_{nn}e'_n \end{cases}$$

On appelle matrice de passage de B' à B la matrice carrée P définie par

$$P = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

EXEMPLE 6.2. $B' = \{e'_1, e'_2, e'_3\}, e'_1 = (1, 1, 1), e'_2 = (1, 1, 0), e'_3 = (1, 0, 0)$ et $B = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 ,

$$Id_{\mathbb{R}^{3}} : \mathbb{R}^{3}_{B} \to \mathbb{R}^{3}_{B'}$$

$$(x, y, z) \to (x, y, z), M_{(B,B')}(Id_{\mathbb{R}^{3}})$$

$$Id(e_{1}) = (1, 0, 0) = \lambda_{1}e'_{1} + \lambda_{2}e'_{2} + \lambda_{3}e'_{3} = (\lambda_{1} + \lambda_{2} + \lambda_{3}, \lambda_{1} + \lambda_{2}, \lambda_{1})$$

$$\Rightarrow \lambda_{1} = 0.5, \lambda_{2} = -0.5, \lambda_{3} = 0.5$$

$$Id(e_2) = (0, 1, 0) = \lambda_1 e'_1 + \lambda_2 e'_2 + \lambda_3 e'_3 \Rightarrow \lambda_1 = 0.5, \lambda_2 = 0.5, \lambda_3 = -0.5,$$

$$Id(e_3) = (0, 0, 1) = \lambda_1 e'_1 + \lambda_2 e'_2 + \lambda_3 e'_3 \Rightarrow \lambda_1 = -0.5, \lambda_2 = 0.5, \lambda_3 = 0.5,$$

$$donc\ M_{(B,B')}(Id_{\mathbb{R}^3}) = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

PROPOSITION 6.3. La matrice de passage d'une base B à une base B' est la matrice inverse de la matrice de passage de B' vers B:

$$M_{(B',B)}(Id_{\mathbb{R}^3}) = (M_{(B,B')}(Id_{\mathbb{R}^3}))^{-1}$$

REMARQUE 6.4. Soit E un e.v et soit $B = (e_1, e_2, ..., e_n)$ et $B' = (e'_1, e'_2, ..., e'_n)$ deux bases pour E. Les vecteurs de base de B' peuvent s'exprimer dans B selon les relations

$$(S): \begin{cases} e'_1 = b_{11}e_1 + b_{12}e_2 + \dots + b_{1n}e_n \\ e'_2 = b_{21}e_1 + b_{22}e_2 + \dots + b_{2n}e_n \\ e'_3 = b_{31}e_1 + b_{32}e_2 + \dots + b_{3n}e_n \\ \vdots \\ e'_n = b_{n1}e_1 + b_{n2}e_2 + \dots + b_{nn}e_n \end{cases}$$

On appelle matrice de passage de B à B' la matrice carrée P^{-1} définie par

$$P^{-1} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

EXEMPLE 6.5.

$$M_{(B,B')}(Id_{{\rm I\!R}^3}) = \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array}\right), M_{(B',B)}(Id_{{\rm I\!R}^3}) = \left(\begin{array}{ccc} 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right)$$

matrice de passage de la base B à la base B'.

THÉORÈME 6.6. Soit $f: E \to F, B_1, B'_1$ deux bases pour E, B_2, B'_2 bases de F. Si P désigne la matrice de passage de B_1 à B'_1 , et Q désigne la matrice de passage de B_2 à B'_2 , alors

$$M_{(B'_1,B'_2)}(f) = Q^{-1}M_{(B_1,B_2)}(f)P.$$

60 NOTION DE MATRICE ASSOCIÉE À UNE APPLICATION LINÉAIRE ET CALCUL ALGÉBRIQUE SUR LES MATRIC

EXEMPLE 6.7.

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \to (x + y + z, x - y)$$

On munit \mathbb{R}^3 de la base canonique $B_3 = (e_1, e_2, e_3)$ On munit \mathbb{R}^2 de la base canonique $B_2 = (v_1, v_2)$,

$$M_{(B_3,B_2)}(f) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

On munit \mathbb{R}^3 de la base canonique $B'_3 = (e'_1, e'_2, e'_3)$, avec $e'_1 = (1, 0, 1), e'_2 = (1, 1, 0), e'_3 = (0, 1, 1)$

On munit \mathbb{R}^2 de la base canonique $B'_2 = (v'_1, v'_2)$, avec $v'_1 = (-1, 1), v'_2 = (1, 1)$,

$$\mathbb{R}^3_{B_3} \to^P \mathbb{R}^3_{B'_3}, f: \mathbb{R}^3 \to \mathbb{R}^2_{B_2} \to^{Q^{-1}} \mathbb{R}^2_{B'_2}$$

 $P = M_{(B'_3, B_3)}(Id_{\mathbb{I}\mathbf{R}^3}),$

$$P = (M_{(B_3, B'_3)}(Id_{\mathbb{R}^3}))^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$Q = M_{(B'_{2},B_{2})}(Id_{\mathbb{R}^{2}}) = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, Q^{-1} = M_{(B_{2},B'_{2})}(Id_{\mathbb{R}^{2}}) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

ainsi:

$$M_{(B'_{2},B'_{3})}(f) = Q^{-1}M_{(B_{1},B_{2})}P$$

$$\Leftrightarrow M_{(B'_{2},B'_{3})}(f) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow M_{(B'_{2},B'_{3})}(f) = \begin{pmatrix} 0 & -1 & -0.5 \\ 1 & 0 & 0.5 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\Leftrightarrow M_{(B'_{2},B'_{3})}(f) = \begin{pmatrix} -0.5 & -1 & -1.5 \\ 1.5 & 1 & 0.5 \end{pmatrix}.$$

7. Diagonalisation

DÉFINITION 7.1. Soit $A \in M_{(n,n)}(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$, on dit que λ est une valeur propre de A s'il existe un vecteur colonne $v \neq 0$ tel que $Av = \lambda v$. Le vecteur v est appelé vecteur propre associé à la valeur λ .

EXEMPLE 7.2.

$$A = \left(\begin{array}{cc} 2 & 2 \\ 0 & 1 \end{array}\right).$$

on $a: \lambda_1 = 1$ et $\lambda_2 = 2$ sont des valeurs propres de A, en effet :

$$Av_{1} = \lambda_{1}v_{1} \iff \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 2x + 2y \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow x = -2y \text{ alors}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2y \\ y \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$Av_{2} = \lambda_{2}v_{2} \iff \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 2x + 2y \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

$$\Leftrightarrow y = 0, x \in \mathbb{R} \text{ alors}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

d'où $v_1=\begin{pmatrix} -2\\1\\ \end{pmatrix}$ vecteur propre associé à $\lambda_1=1$ et $v_2=\begin{pmatrix} 1\\0\\ \end{pmatrix}$ vecteur propre associé à $\lambda_2=2$.

PROPOSITION 7.3. Soit $A \in M_{(n,n)}(\mathbb{K}), \lambda \in \mathbb{K}$ est une valeur propre de A si et seulement si $P_A(\lambda) = \det(A - \lambda Id_n) = 0$.

 $P_A(\lambda)$ est appelé le polynôme caractéristique de A.

EXEMPLE 7.4. (1)
$$A = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$$
.

$$P_{A}(\lambda) = \det(A - \lambda I d_{2}) = \begin{vmatrix} 2 - \lambda & 2 \\ 0 & 1 - \lambda \end{vmatrix}$$

$$= (2 - \lambda)(1 - \lambda) \Rightarrow \lambda_{1} = 1, \lambda_{2} = 2.$$
(2) $B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

$$P_{B}(\lambda) = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ -1 & 2 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

$$= -(2 - \lambda)^{2}(1 - \lambda) \Rightarrow \lambda_{1} = 2, \lambda_{2} = 1.$$

DÉFINITION 7.5. Soit $A \in M_{(n,n)}(\mathbb{K})$ et soit $\lambda \in \mathbb{K}$ une valeur propre de A, l'ensemble E_{λ} défini par :

$$E_{\lambda} = \{ v \in \mathbb{R}^n ou \, \mathbb{C}^n / Av = \lambda v \}$$

62 NOTION DE MATRICE ASSOCIÉE À UNE APPLICATION LINÉAIRE ET CALCUL ALGÉBRIQUE SUR LES MATRICE est appelé l'espace propre associé à la valeur propre alors E_{λ} est un sous espace vectoriel de E.

Exemple 7.6. $B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Les valeurs propres sont 2 une solution double et 1 simple.

(1) Pour $\lambda = 2$, on a

$$E_2 = \{v \in \mathbb{R}^3 / Bv = 2v\} = \{(x, y, z) \in \mathbb{R}^3 / B \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}\}$$

$$\begin{cases} x+z=2x \\ -x+2y+z=2y \\ 2z=2z \end{cases} \Rightarrow \begin{cases} z-x=0 \\ -x+z=0 \\ z=z \end{cases} \Rightarrow \begin{cases} z=x \\ z=z \end{cases}$$

donc $E_2 = \{(x, y, x)/x, y \in \mathbb{R}\} = \{x(1, 0, 1) + y(0, 1, 0)/x, y \in \mathbb{R}\}$ s.e.v de $\mathbb{R}^3, \{(1, 0, 1), (0, 1, 0)\}$ est une base de E_2 , car les vecteurs sont libres.

(2) Pour $\lambda = 4$, on a

$$E_1 = \{v \in \mathbb{R}^3 / Bv = v\} = \{(x, y, z) \in \mathbb{R}^3 / B \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\}$$

$$\begin{cases} x+z=x\\ -x+2y+z=y\\ 2z=z \end{cases} \Rightarrow \begin{cases} z=0\\ -x+y=0\\ z=0 \end{cases} \Rightarrow \begin{cases} y=x\\ z=0 \end{cases}$$

donc $E_2 = \{(x, x, 0)/x \in \mathbb{R}\} = \{x(1, 1, 0)/y \in \mathbb{R}\}$ s.e.v de \mathbb{R}^3 , (1, 1, 0) est une base de E_1 .

DÉFINITION 7.7. On dit qu'une matrice $A \in M_n(\mathbb{K})$ est diagonalisable s'il existe une matrice inversible P est une matrice diagonale D telle que; $A = PDP^{-1}$. (où P est la matrice de passage.)

THÉORÈME 7.8. Soit $A \in M_n(\mathbb{K}), \lambda_1, ..., \lambda_n \in \mathbb{K}$ les valeurs propres de A d'ordre de multiplicités respectives $m_1, ..., m_p$, alors si

- (1) $dim E_{\lambda_i} = m_i, i = 1, 2, ..., p.$
- (2) $dim E_{\lambda_1} + dim E_{\lambda_2} + \dots + dim E_{\lambda_p} = n$

Alors la matrice A est diagonalisable et la matrice diagonale D associée à A est donnée par:

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0.. & 0 \\ 0 & \lambda_1 & 0 & 0.. & 0 \\ 0 & 0 & \lambda_2 & 0.. & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \lambda_p.. & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & ..0 & \lambda_p \end{pmatrix}$$

chaque λ_i se répete m_i fois, la matrice P est formé des vecteurs propres.

Remarque 7.9. Si la matrice $A \in M_n(\mathbb{K})$ admet n valeurs propres distincts alors A est diagonalisable et la matrice diagonale D associée à A est :

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \dots & 0 \\ 0 & \lambda_2 & 0 & 0 \dots & 0 \\ 0 & 0 & \lambda_3 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

Exemple 7.10. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ admet les valeur propres $\lambda_1 = 2$ double et $\lambda_2 = 1$ simple la matrice diagonale D est donnée par ; $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et la matrice de passage est donnée par : $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

8. Systèmes d'équations linéaires

Soit $\mathbb{I}K = \mathbb{I}R$ ou \mathbb{C} .

On appelle système de n équations linéaires à p inconnus à coefficients dans \mathbb{K} , tout système de la forme :

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p &= b_2 \\ \vdots &\vdots &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p &= b_n \end{cases}$$

où les $(x_j)_{j=1,..,p}$ sont les inconnues, les $(a_{ij}), b_j \in \mathbb{K}$.

1)Forme matricielle du système :

Posons
$$A = (a_{ij})_{1 \le i \le n, 1 \le j \le p}, B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 Le système (S) devient;

$$AX = B$$
.

Si f est une application linéaire de \mathbb{K}^p dans \mathbb{K}^n telle que que A soit la matrice associée à f suivant les bases canoniques et si on note par $X = (x_1, ..., x_p)$ et $b = (b_1, ..., b_n)$, le système (S) devient f(X) = B.

2) Solution du système :

DÉFINITION 8.1. On appelle solution du système (S) tout élément $X = (x_1, ..., x_p)$ vérifiant les n équations de (S) ceci revient à trouver un vecteur X tel que AX = B ou encore un élément $X \in \mathbb{K}^p$ tel que f(X) = B.

EXEMPLE 8.2.

$$\begin{cases} x + 2y = 1 \\ 3x - y = 4 \\ x - y = -2 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 4 & -2 \end{pmatrix}$$

3)Rang d'un système linéaire :

Le rang d'un système linéaire est le rang de la matrice $(a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$. Si r est le rang du système linéaire (S), alors $r \leq n$ et $r \leq p$.

8.1. Système de Cramer.

DÉFINITION 8.3. Le système (S) est dit de Cramer si n = p = r c'est à dire, (S) est un système de n équations à n inconnus et telle que

$$det A \neq 0$$
.

Théorème 8.4. Tout Le système de Cramer admet une solution donnée par : $X = A^{-1}B$.

EXEMPLE 8.5.

$$\left\{ \begin{array}{l} x - y = 0 \\ x + y = 1 \end{array} \right. \Leftrightarrow AX = \left(\begin{array}{c} 1/2 & 1/2 \\ -1/2 & 1/2 \end{array} \right) \times X = \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = B$$

 $det A = 1 \neq 0, rqA = 2,$

$$\left(\begin{array}{c} x \\ y \end{array}\right) = A^{-1} \left(\begin{array}{c} 0 \\ 1 \end{array}\right), A^{-1} = \left(\begin{array}{cc} 1/2 & 1/2 \\ -1/2 & 1/2 \end{array}\right),$$

ainsi

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

Théorème 8.6. Dans un système de Cramer, la solution est donnée par les formules :

$$x_i = \frac{\det A_i}{\det A}, i = 1, ..., n.$$

Où les A_i est la matrice réduite de A, en remplaçant la colonne i par le vecteur B.

EXEMPLE 8.7.

$$(S): \begin{cases} 2x + 2y + z = 1 \\ 2x + y - z = 2 \\ 3x + y + z = 3 \end{cases} \Leftrightarrow \begin{pmatrix} 2 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

 $det A = 4 \neq 0, rgA = n = p = 3$ ((S) est un système de cramer).

$$x = \frac{\det A_1}{\det A} = \frac{\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{vmatrix}}{-7} = 9/7.$$

$$y = \frac{\det A_2}{\det A} = \frac{\begin{vmatrix} 2 & 1 & 1 \\ 2 & 2 & -1 \\ 3 & 3 & 1 \end{vmatrix}}{-7} = -5/7.$$

$$z = \frac{\det A_3}{\det A} = \frac{\begin{vmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 3 \end{vmatrix}}{-7} = -1/7.$$

3)Cas où n = p et r < n :

Si on considère maintenant un système de n équations à n inconus, mais rgA < n c'est à dire

$$det A = 0$$
,

dans ce cas on extrait une matrice M de A sachant que c'est la plus grande matrice carrée inversible c'est à dire $det M \neq 0$ contenue dans A et d'ordre r c'est ce qu'on appelle une sous-matrice, les inconnus associés à M deviennent des inconnus principales et les (n-r) autres inconnus deviennent des paramètres où bien ce qu'on appelle valeurs arbitraires et on considère le système suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r &= b_1 - (a_{1r+1}x_{r+1} + \dots + a_{1n}x_n) = b'_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r &= b_2(a_{2r+1}x_{r+1} + \dots + a_{2n}x_n) = b'_2 \\ \vdots &\vdots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r &= b_n(a_{rr+1}x_{r+1} + \dots + a_{rn}x_n) = b'_r \end{cases}$$

ce dernier est un système de cramer, donc il admet une seule solution $(x_1, ..., x_r)$ qui dépend de $(x_{r+1}, ..., x_n)$. Si cette solution vérifie les (n-r) équations restantes, alors le système globale admet une infinité de solutions. Si par contre $(x_1, ..., x_r)$ ne vérifie pas une seule équation parmis les (n-r) équations restantes alors le système globale n'admet de solution.

EXEMPLE 8.8.

$$(S): \begin{cases} 3x - y + 2z = 3 \\ 2x + 2y + z = 2 \\ x - 3y + z = 1 \end{cases} \Leftrightarrow \begin{pmatrix} 3 & -1 & 2 \\ 2 & 2 & 1 \\ 1 & -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

det A = 0 (S) n'est pas un système de Cramer comme $|A'| = \begin{vmatrix} 3 & -1 \\ 2 & 2 \end{vmatrix} = 8 \neq 0$. Alors rgA = 2 et on considère x, y les inconnus et z paramètre, alors on obtient le système :

$$\begin{cases} 3x - y = 3 - 2z \\ 2x + 2y = 2 - z \end{cases}$$

qui est un système de Cramer et admet une unique solution (x, y) dépendante de z.

$$x = 1/8 \begin{vmatrix} 3 - 2z & -1 \\ 2 - z & 2 \end{vmatrix} = 1 - (5/8)z$$
$$y = 1/8 \begin{vmatrix} 3 & 3 - 2z \\ 2 & 2 - z \end{vmatrix} = 1/8z$$

Reste à voir si (x,y) vérifie x-3y+z=1 (équation réstante) on $a:1-5/8z-3/8z+z=1 \Rightarrow 1=1$ (vraie $\forall t \in \mathbb{R}$) donc le système admet une infinité de solutions données par :

$$(1 - 5/8z, 1/8z, z)/z \in IR.$$

3) Cas où $n \neq p$:

Si le nombre d'équations n'est pas égale au nombre d'inconnus, alors on cherche d'abord le rang de A et on procède comme précédement. Si M est une matrice contenue dans A et d'ordre r et $det M \neq 0$ alors on considère le système de r équations à r inconnus correspondant à M qui est un système de Cramer.

Si la solution vérifie les équation restantes alors le système globale admet une infinité de solutions sinon il n'admet aucune solution.

EXEMPLE 8.9.

$$(S): \begin{cases} 3x - y = 4 \\ 2x + 2y = 3 \\ x - 5y = -5 \end{cases} \Leftrightarrow A = \begin{pmatrix} 3 & -1 \\ 2 & 2 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ -5 \end{pmatrix}$$

le rang de $A \leq 2$ choisissons

$$M = \begin{pmatrix} 2 & 3 \\ 3 & -1 \end{pmatrix} \Rightarrow det M = 8 \neq 0 \Rightarrow rgM = 2.$$

on prend le système :

$$\begin{cases} 3x - y = 4 \\ 2x + 2y = 3 \end{cases} \Leftrightarrow \begin{cases} x = 11/8 \\ y = 1/8 \end{cases}$$

on a l'équation réstante :

$$x - 5y = -5 \Rightarrow 11/8 - 5/8 = 6/8 = 3/2 \neq -5$$

alors le système n'admet pas de solutions.

9. Exercices Corrigés

Exercice 21. Soit la matrice A définie par :

$$\left(\begin{array}{cccc}
5 & 6 & -3 \\
-18 & -19 & 9 \\
-30 & -30 & 14
\end{array}\right)$$

- (1) A est-elle inversible? si oui déterminer son inverse A^{-1} .
- (2) Calculer $A^2 A 2I_3 = 0$, avec I_3 est la matrice identitée.

SOLUTION. Soit la matrice A définie par :

$$\left(\begin{array}{cccc}
5 & 6 & -3 \\
-18 & -19 & 9 \\
-30 & -30 & 14
\end{array}\right)$$

(1) A est inversible si et seulement si $det A \neq 0$.

$$|A| = \begin{vmatrix} 5 & 6 & -3 \\ -18 & -19 & 9 \\ -30 & -30 & 14 \end{vmatrix} = C_2 = -C_1 + C_2 = \begin{pmatrix} 5 & 1 & -3 \\ -18 & -1 & 9 \\ -30 & 0 & 14 \end{pmatrix}$$

calculons suivant la colonne 2.

$$det A = (-1)^{1+2}(1) \begin{vmatrix} -18 & 9 \\ -30 & 14 \end{vmatrix} + (-1)^{2+2}(-1) \begin{vmatrix} 5 & -3 \\ -30 & 14 \end{vmatrix} = 2 \neq 0,$$

d'où le résultat.

 A^{-1} est donnée par : $A^{-1} = \frac{1}{\det A}C^t$ où C^t est la comatrice de A.

$$c_{11} = \begin{vmatrix} -19 & 9 \\ -30 & 14 \end{vmatrix} = 4, c_{21} = -\begin{vmatrix} -6 & -3 \\ -30 & 14 \end{vmatrix} = 6, c_{31} = \begin{vmatrix} 6 & -3 \\ -19 & 9 \end{vmatrix} = -3,$$

$$c_{12} = - \begin{vmatrix} -18 & 9 \\ -30 & 14 \end{vmatrix} = -18, c_{22} = \begin{vmatrix} 5 & -3 \\ -30 & 14 \end{vmatrix} = -20, c_{32} = - \begin{vmatrix} 5 & -3 \\ -18 & 9 \end{vmatrix} = 9,$$

$$c_{13} = \begin{vmatrix} -18 & -19 \\ -30 & -30 \end{vmatrix} = -30, c_{23} = -\begin{vmatrix} 5 & 6 \\ -30 & -30 \end{vmatrix} = -30, c_{33} = \begin{vmatrix} 5 & 6 \\ -18 & -19 \end{vmatrix} = 13,$$

ainsi

$$C = \begin{pmatrix} 4 & -18 & -30 \\ 6 & -20 & -30 \\ -3 & 9 & 13 \end{pmatrix} \Rightarrow C^t = \begin{pmatrix} 4 & 6 & -3 \\ -18 & -20 & 9 \\ -30 & -30 & 13 \end{pmatrix}$$

$$A^{-1} = 1/2 \begin{pmatrix} 4 & 6 & -3 \\ -18 & -20 & 9 \\ -30 & -30 & 13 \end{pmatrix} = \begin{pmatrix} 2 & 3 & -3/2 \\ -9 & -10 & 9/2 \\ -15 & -15 & 13/2 \end{pmatrix}.$$

(2) Calculons $A^2 - A - 2I_3 = 0$,

$$A^{2} = A.A = \begin{pmatrix} 7 & 6 & -3 \\ -18 & -17 & 9 \\ -30 & -30 & 16 \end{pmatrix}, A^{2} - A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_{2}.$$

D'où le résultat, on peut remarque que $A(A-I_2)=2I_2\Rightarrow AB=I_2,avec$ $B=1/2(A-I_2)=A^{-1}.$

Exercice 22. Soit A une matrice définie par :

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

- (1) Trouver $a, b \in \mathbb{R}$ tels que $A^2 = a.I_n + b.A$.
- (2) En déduire que A est inverible et donner son inverse.

SOLUTION .

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

Trouvons $a, b \in \mathbb{R}$ tels que $A^2 = a.I_n + b.A$

$$A^{2} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

ainsi a = 2, b = 1.

(2)

$$det A = - \left| \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right| + \left| \begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right| = 2 \neq 0$$

d'où A est inversible.

$$A^2 - A = 2I_3 \Rightarrow A(A - I_3) = 2I_3 \Rightarrow A(1/2(A - I_3)) = I_3$$

ainsi $A^{-1} = 1/2(A - I_3)$

$$A^{-1} = 1/2 \left(\begin{array}{ccc} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right).$$

EXERCICE 23. Soit la matrice associée à l'application f définie sur \mathbb{R}^3 suivant la base canonique \mathbb{R}^3 .

$$A = \left(\begin{array}{ccc} 1 & -1 & 5 \\ 3 & 0 & 2 \\ 1 & 1 & 4 \end{array}\right)$$

(1) Déterminer l'application f.

79

- (2) Déterminer ker f et Imf et leur dimension, f est-elle bijective?
- (3) Soit $S = \{v_1 = (1, 1, 1), v_2 = (1, 0, 1), v_3 = (2, -1, 0)\}$
 - a) Monter que S est une base de \mathbb{R}^3 .
 - b) Donner la matrice associée à f suivante la base S.

SOLUTION. (1) Determinons l'application f.

$$f(x,y,z) = \begin{pmatrix} 1 & -1 & 5 \\ 3 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + 5z, & 3x + 2z, & x + y + 4z \end{pmatrix}.$$

(2) $\ker f = \{(x, y, z) \in \mathbb{R}^3 / f(x, y, z) = (0, 0, 0)\}$

$$\ker f = \{(0,0,0)\}.$$

alors dim ker f = 0, (f est injective).

 $Im f = \{ f(x, y, z) / (x, y, z) \in \mathbb{R}^3 \}$

$$Im f = \{x(1,3,1) + y(-1,0,1) + z(5,2,4)/x, y, z \in \mathbb{R}\}\$$

la famille $\{(1,3,1), (-1,0,1), (5,2,4)\}$ est libre car $det((1,3,1), (-1,0,1), (5,2,4)) = 23 \neq 0$, alors dim Imf = 3, $(f \ est \ surjective)$, d'où $f \ est \ bijective$.

(3) Soit $S = \{v_1 = (1, 1, 1), v_2 = (1, 0, 1), v_3 = (2, -1, 0)\}$ a) S est une base de $\mathbb{R}^3 \Leftrightarrow det(v_1, v_2, v_3) \neq 0$,

$$det(v_1, v_2, v_3) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{vmatrix} =_{C_3 = C_1 + C_3} = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$

b) On note A' la matrice associée à f suivante la base S. $A' = P^{-1}AP$, avec

$$P = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} et faisons un changement de base $P^{-1} = \begin{pmatrix} 1/2 & 1 & -1/2 \\ -1/2 & -1 & 3/2 \\ 1/2 & 0 & -1/2 \end{pmatrix}$$$

$$A' = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 5 \\ 3 & 0 & 2 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1/2 & 1 & -1/2 \\ -1/2 & -1 & 3/2 \\ 1/2 & 0 & -1/2 \end{pmatrix} = \begin{pmatrix} 12 & 5 & -10 \\ 7/2 & 2 & -9/2 \\ 8 & 5 & -8 \end{pmatrix}$$

Exercice 24. Soit la matrice A définie par :

$$A = \left(\begin{array}{ccc} 0 & 2 & -1\\ 3 & -2 & 0\\ -2 & 2 & 1 \end{array}\right)$$

- (1) Déterminer les valeurs propres de A.
- (2) Montrer que A est diagonalisable.
- (3) Déterminer P, calculer A^k .

SOLUTION.

$$A = \left(\begin{array}{ccc} 0 & 2 & -1\\ 3 & -2 & 0\\ -2 & 2 & 1 \end{array}\right)$$

déterminons les valeurs propres de A, soit $\lambda \in \mathbb{R}$,

$$P_A(\lambda) = |A - \lambda I_3| = \begin{pmatrix} -\lambda & 2 & -1 \\ 3 - \lambda & -2 & 0 \\ -2 - \lambda & 2 & 1 \end{pmatrix} = (1 - \lambda)(\lambda + 4)(\lambda - 2)$$

les valeurs propres sont 1, 2 et -4.

- (2) A est diagonalisable car elle admet trois valeurs propres dictinctes.
- (3) Cherchons les vecteurs propres.

Pour $\lambda = 1$:

$$E_{1} = \{v = (x, y, z) \in R^{3} / Av = v\} \Rightarrow \begin{cases} 2y - z = x \\ 3x - 2y = y \\ -2x + 2y + z = z \end{cases} \Rightarrow \begin{cases} -x + 2y - z = 0 \\ 3x - 3y = 0 \\ -2x + 2y = 0 \end{cases} \Rightarrow \begin{cases} x = y \\ x = z \end{cases}$$

 $E_1 = \{x(1,1,1)/x \in \mathbb{R}, v_1 = (1,1,1) \text{ est vecteur propre associé à 1.}$ Pour $\lambda = 2$:

$$E_{2} = \{v = (x, y, z) \in \mathbb{R}^{3} / Av = 2v\} \Rightarrow \begin{cases} 2y - z = 2x \\ 3x - 2y = 2y \\ -2x + 2y + z = 2z \end{cases} \Rightarrow \begin{cases} -2x + 2y - z = 0 \\ 3x - 4y = 0 \\ -2x + 2y - z = 0 \end{cases}$$
$$\Rightarrow \begin{cases} x = 4/3y \\ z = (-2/3)y \end{cases}$$

 $E_2 = \{y(4/3, 1, -2/3)/x \in \mathbb{R}, v_2 = (4, 3, -2) \text{ est vecteur propre associ\'e \'a } 2.$

Pour $\lambda = 1$:

$$E_{-4} = \{v = (x, y, z) \in \mathbb{R}^3 / Av = -4v\} \Rightarrow \begin{cases} 2y - z = -4x \\ 3x - 2y + z = -4y \\ -2x + 2y + z = -4z \end{cases} \Rightarrow \begin{cases} x = -(2/3)y \\ x = z \end{cases}$$

 $E_{-4} = \{x(1, -2/3, 1)/x \in \mathbb{R}, v_1 = (2, -3, 2) \text{ est vecteur propre associ\'e \`a } -4.$ Ainsi

$$P = \left(\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array}\right).$$

$$A = PDP^{-1}$$
, avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$, alors

$$A^{k} = PD^{k}P^{-1} = \frac{-1}{30} \cdot \begin{pmatrix} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{pmatrix} \begin{pmatrix} 1^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & (-4)^{k} \end{pmatrix} \begin{pmatrix} 0 & -12 & -18 \\ -5 & 0 & 5 \\ -5 & 6 & -1 \end{pmatrix}$$

οù

$$P^{-1} = \frac{-1}{30} \begin{pmatrix} 0 & -12 & -18 \\ -5 & 0 & 5 \\ -5 & 6 & -1 \end{pmatrix}, det(P) = -30, C_p^t = \begin{pmatrix} 0 & -5 & -5 \\ -12 & 0 & 6 \\ -18 & 5 & -1 \end{pmatrix}$$

vous pouver calculer P^{-1} en utilisant le changement de base.

$$A^{k} = \frac{-1}{30} \begin{pmatrix} -5.2^{k+2} - 10(-4)^{k} & -12 + 12(-4)^{k} & -18 + 5.2^{k+2} - 2(-4)^{k} \\ -15.2^{k} - 15(-4)^{k} & -12 + 15(-4)^{k} & -18 + 5.2^{k+1} + 3(-4)^{k} \\ 5.2^{k+1} - 10(-4)^{k} & -12 + 15(-4)^{k} & -18 + 5.2^{k+1} - 2(-4)^{k} \end{pmatrix}$$

Exercice 25. Résoudre le système suivant :

(S):
$$\begin{cases} x + y + z = 3 \\ 2x + y + z = 2 \\ x + 2y + z = 1 \end{cases}$$

SOLUTION .

$$(S): \left\{ \begin{array}{l} x+y+z=3\\ 2x+y+z=2\\ x+2y+z=1 \end{array} \right. \Leftrightarrow \left(\begin{array}{ccc} 1 & 1 & 1\\ 2 & 1 & 1\\ 1 & 2 & 1 \end{array} \right) = \left(\begin{array}{c} 3\\ 2\\ 1 \end{array} \right)$$

 $det A = 1 \neq 0, rgA = n = p = 3$ ((S) est un système de cramer).

$$x = \frac{\det A_1}{\det A} = \frac{\begin{vmatrix} 3 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix}}{1} = -1.$$

$$y = \frac{\det A_2}{\det A} = \frac{\begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}}{1} = -2.$$

$$z = \frac{\det A_3}{\det A} = \frac{\begin{vmatrix} 1 & 1 & 3 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix}}{1} = 6.$$

 $z = \frac{1}{\det A} = \frac{1}{1}$

Exercice 26. Résoudre le système suivant :

(S):
$$\begin{cases} 3x + y - 2z + 3t = 0 \\ -x + 2y - 4z + 6t = 2 \\ 2x - y + 2z - 3t = 0 \end{cases}$$

SOLUTION.

$$(S): \left\{ \begin{array}{l} 3x + y - 2z + 3t = 0 \\ -x + 2y - 4z + 6t = 2 \\ 2x - y + 2z - 3t = 0 \end{array} \right. \Leftrightarrow \left(\begin{array}{ll} 3 & 1 & -2 & 3 \\ -1 & 2 & -4 & 6 \\ 2 & -1 & 2 & -3 \end{array} \right) \left(\begin{array}{l} x \\ y \\ z \\ t \end{array} \right) = \left(\begin{array}{l} 0 \\ 2 \\ 0 \end{array} \right)$$

le $rgA \leq 3$. On prend $M=\begin{pmatrix}3&1\\-1&2\end{pmatrix}$, $det M=7\neq 0$. On considère le système suivant :

$$\begin{cases} 3x + y = 2z - 3t \\ -x + 2y = 2 + 4z - 6t \end{cases} \Rightarrow \begin{cases} x = -2/7 \\ y = 2z - 3t + 6/7 \end{cases}$$

si on remplaçe dans la troisième équation on aura :

$$2x - y + 2z - 3t = -4/7 - 2z + 3t - 6/7 + 2z - 3t = -10/7 \neq 0$$

donc le système n'admet aucune solution.

Bibliographie

- [1] E. Azouly, J. Avignant, G. Auliac, <u>Problèmes Corrigés de mathématiques</u>, DEUG MIAS/SM, Ediscience(Dunod pour la nouvelle édition) Paris 2002.
- [2] E. Azouly, J. Avignant, G. Auliac, <u>les mathématiques en Licence</u>, 1^{ère}. Tome 1 : Cours+ exos, MIAS.MASS.SM, Ediscience(Dunod pour la nouvelle édition) Paris 2003.
- [3] E. Azouly, J. Avignant, G. Auliac, <u>les mathématiques en Licence</u>, 1^{ère}. Tome 2 : Cours+ exos, MIAS.MASS.SM, Ediscience(Dunod pour la nouvelle édition) Paris 2003.
- [4] R. Godement Cours d'algèbre. Hermann, 1966.
- [5] M. H. Mortad, Exercices Corrigés d'Algèbre, Première Année L.M.D., Edition "Dar el Bassair" (Alger-Algérie), 2012
- $[6]\,$ M. Queysanne, <u>Algèbre</u>, collection U, Armand Colin, 1971.