

2024 Probabilistic Model Class

Chapter 6. Multi-Objective Optimization

순천향대학교 미래융합기술학과 Senseable Al Lab

석사과정 김병훈

- 1 Introduction
- Weighted-Formula Approach
- 3 Lexicographic Approach
- 4 Pareto Approach

1 Introduction

1. Introduction

Multi-Objective Optimization

- 주어진 목표(목표 함수)가 두 개 이상인 최적화 방법
- Single-Objective Problem은 최적 솔루션이 1개
- Multi-Objective Problem은 여러 개가 있을 수도 있음 (실제 환경은 이와 같이, 자원이 한정된 상황이 많음)

한정된 자원 내에서 두 가지 이상의 목적을 충족하기 위해서 어떻게 최적화 해야할까?

1. Introduction

Multi-Objective Demonstrative Problems

- 본 책에서 3가지의 예시 문제에 대해 설명
 - 1. 이진 다중 목표 목적(이진 값(O,1) 최적화)
 - 2. Bag Price(정수 값 최적화)
 - 3. FES1(실수 값 최적화)

Fig. 6.1 Example of the FES1 f_1 (left) and f_2 (right) task landscapes (D=2)

Define

Weighted-Formula Approach

- 각 목표에 가중치를 할당한 후 종합 목표 함수를 최적화
- 여러 목표들을 하나의 종합 목표 함수 Q로 결합하고, 이를 최적화
- Additive Model, Multiplicative Model 등의 종류가 있음

Implementation

- 대부분 경사 기반 기법과 같은 전통적인 방법이나 유전 알고리즘과 같은 현대적인 접근법을 사용하여 구현

Advantage & Disadvantage

- 장점: 이해하고 구현하기 쉬움
- 단점: 주관적인 가중치 설정, 단일 목표함수를 최적화하는 데 초점

Applicable problems

이진 다중 목표 최적화

- 목표 함수의 특성에 따라, 적절한 가중치를 찾기 어려울 수 있음

Bag Price 최적화(정수)

- 다양한 목표를 선형적으로 조합하기 때문에 적합함

FES1 최적화(실수)

- 가중치 설정의 주관성이 결과에 큰 영향을 미칠 수 있음

Example

스마트폰 가격-배터리 효율 최적화 문제

- 스마트폰을 선택할 때 배터리 수명과 가격이라는 두 가지 목표를 고려
- 일반적으로, 배터리 수명이 긴 스마트폰은 가격이 더 높을 수 있고, 가격이 저렴한 스마트폰은 배터리 수명이 짧을 수 있음

Name	Price	Battery Efficiency
Smartphone 1	550	7.15
Smartphone 2	600	5.45
Smartphone 3	420	6.46
Smartphone 4	437	8.92
Smartphone 5	963	3.83

Learning Process(단일 동작)

1. 가중치 설정

- 각 목표의 중요도에 따라 가중치를 사전에 설정

Name	Price	Battery Efficiency
1	550	7.15
2	600	5.45
3	420	6.46
4	437	8.92
5	963	3.83

가중치 조합	변수 1 가중치	변수 2 가중치
1	0.2	0.8
2	0.5	0.5
3	0.8	0.2

Learning Process(단일 동작)

2. 정규화 및 스케일링

- 정규화 및 스케일링 실시

Name	Price	Battery Efficiency
1	0.239	0.652
2	0.331	0.318
3	0.000	0.517
4	0.031	1.000
5	1.000	0.000

가중치 조합	변수 1 가중치	변수 2 가중치
1	0.2	0.8
2	0.5	0.5
3	0.8	0.2

2

2. Weighted-Formula Approach

Learning Process(단일 동작)

3. 최적화

- 해당 가중치에 대한 목표 함수 결과 계산(Weighted-Sum 사용)

$$Q = w_1 \times x_1 + w_2 \times x_2$$

Name	조합 1	조합 2	조합 3
1	0.2×0.239+0.8×0.652	0.5×0.239+0.5×0.652	0.8×0.239+0.2×0.652
2	0.2×0.331+0.8×0.318	0.5×0.331+0.5×0.318	0.8×0.331+0.2×0.318
3	0.2×0.000+0.8×0.517	0.5×0.000+0.5×0.517	0.8×0.000+0.2×0.517
4	0.2×0.031+0.8×1.000	0.5×0.031+0.5×1.000	0.8×0.031+0.2×1.000
5	0.2×1.000+0.8×0.000	0.5×1.000+0.5×0.000	0.8×1.000+0.2×0.000

Learning Process

진화 알고리즘 적용

- 가중치는 고정하고, 해당 가중치를 사용하여 최적의 스마트폰을 찾는 방법으로 바뀜
- 1. 초기 인구 생성: 임의의 솔루션으로 시작
- 2. 적합도 평가: 각 솔루션의 적합도를 가중치가 적용된 목표 함수를 사용하여 평가
- 3. Selection, Mutation, Crossover: 적합도에 따라 솔루션을 선택하고, 변이를 통해 새로운 솔루션을 생성
- 4. 새로운 세대: 생성된 새로운 솔루션들로 대체
- 5. 반복: 목표에 도달하거나 종료 조건이 만족될 때까지 이 과정을 반복

Define

Lexicographic Approach

- 각 목표에 우선순위를 할당하고 그 순서대로 목표를 최적화
- 다양한 목표를 개별적으로 처리

Implementation

- 대부분 경사 기반 기법과 같은 전통적인 방법이나 유전 알고리즘과 같은 현대적인 접근법을 사용하여 구현

Advantage & Disadvantage

- 장점: 비교하기 쉬움, 명확함, 각 목적이 독립적일 때 적합(목표 함수 개별 처리)
- 단점: 모든 목표가 동일하게 중요할 때 적용할 수 없음, 우선순위 결정이 주관적, 하나의 솔루션만 찾음

Applicable problems

이진 다중 목표 최적화

- 우선순위 설정이 결과에 큰 영향을 미치기 때문에, 우선순위가 명확히 설정된 경우 효과적

Bag Price 최적화(정수)

- 한 가지 목표에 치우친 결과를 얻을 수 있음

FES1 최적화(실수)

- 미세한 값 차이를 정확하게 반영하기 어려움

Example

스마트폰 가격-배터리 효율 최적화 문제

- 배터리 효율성을 최우선으로 고려하였을 때

Name	Price	Battery Efficiency
Smartphone 1	550	7.15
Smartphone 2	600	5.45
Smartphone 3	420	6.46
Smartphone 4	437	8.92
Smartphone 5	963	3.83
Smartphone 6	791	5.29
Smartphone 7	568	9.26
Smartphone 8	71	0.87
Smartphone 9	20	8.33
Smartphone 10	780	8.70

Learning Process(단일 동작)

Rank 결정

- 배터리 효율성이 가장 높은 우선 순위 결정 -> 만약 우선 순위가 높은 것이 여러 개 나온다면? -> 가격이 가장 낮은 순

Name	Price	Battery Efficiency
Smartphone 1	550	7.15 <mark>(3)</mark>
Smartphone 2	600	5.45 <mark>(7)</mark>
Smartphone 3	420	6.46 <mark>(5)</mark>
Smartphone 4	437	8.92 <mark>(2)</mark>
Smartphone 5	963	3.83(9)
Smartphone 6	791	5.29(8)
Smartphone 7	568	9.26(1)
Smartphone 8	71	0.87(10)
Smartphone 9	20	8.33(4)
Smartphone 10	780	8.70(6)

Learning Process

진화 알고리즘 적용

- 설정된 우선순위에 따라 개체를 평가하고 선택
- 1. 초기 인구 생성: 임의의 솔루션으로 시작
- 2. 적합도 평가: 각 솔루션의 적합도를 우선순위에 따라 평가
- 3. Selection, Mutation, Crossover: 우선 순위에 따라 솔루션을 선택하고, 변이를 통해 새로운 솔루션을 생성
- 4. 새로운 세대: 생성된 새로운 솔루션들로 대체
- 5. 반복: 목표에 도달하거나 하나의 해가 나올 때까지 이 과정을 반복

Define

Pareto Approach란?

- 모든 목표를 동시에 고려하며, 서로 충돌하는 목표 사이의 최적의 타협점을 찾아내는 방법
- 이를 위해 "Dominated / Non-Dominated" 관계를 정의
- Non-Dominated 해(Pareto front)들을 찾아 다양한 최적의 해를 제공

Implement

Pareto Approach의 구현 방법

- 주로 다목적 진화 알고리즘인 MOEA를 통해 이루어짐
- MOEA는 진화 알고리즘의 한 형태로, 개체군(population)의 진화를 통해 파레토 최적 해를 발견하는 알고리즘
- 이 과정에서 NSGA-II, SPEA-2, SMS-EMOA, NSGA-III 과 같은 알고리즘이 적용됨

NSGA-II 구동 과정 예시

SPEA-2 구동 과정 예시

Algorithms 특징 및 장점

NSGA-II(Non-dominated Sorting Genetic Algorithm II)

- 특징: 비지배 정렬과 군집 거리 계산을 통해 랭킹을 매겨 다목적 최적화를 수행
- 장점: 계산적으로 효율적 / 가장 널리 쓰임

SPEA-2(Strength Pareto Evolutionary Algorithm 2)

- 특징: 개체의 강도 개념을 도입하여, 각 해가 다른 해들을 얼마나 지배하는지를 평가
- 장점: 복잡한 파레토 프론트를 처리할 때 유리

Algorithms 특징 및 장점

SMS-EMOA(S Metric Selection Evolutionary Multi-Objective Algorithm)

- 특징: 하이퍼볼륨 지표를 기반으로 선택적 압력*을 가하며, 해의 다양성을 유지
- 장점: 직관적인 성능 평가, 솔루션의 다양성 고려

NSGA-III(Non-dominated Sorting Genetic Algorithm III)

- 특징: 참조점 개념을 사용하여 다양성을 보장
- 장점: 많은 목표를 가진 최적화 문제에 적합

※ 하이퍼볼륨 지표: 솔루션 집합이 결정하는 공간의 '부피' 또는 '크기'를 측정

※ 선택적 압력: 해(solution)가 다음 세대로 전달될 확률을 결정하는 메커니즘

Example

스마트폰 가격-배터리 효율 최적화 문제

- 스마트폰을 선택할 때 배터리 수명과 가격이라는 두 가지 목표를 고려
- 일반적으로, 배터리 수명이 긴 스마트폰은 가격이 더 높을 수 있고, 가격이 저렴한 스마트폰은 배터리 수명이 짧을 수 있음

Name	Price	Battery Efficiency
Smartphone 1	550	7.15
Smartphone 2	600	5.45
Smartphone 3	420	6.46
Smartphone 4	437	8.92
Smartphone 5	963	3.83
Smartphone 6	791	5.29
Smartphone 7	568	9.26
Smartphone 8	71	0.87
Smartphone 9	20	8.33
Smartphone 10	780	8.70

Learning Process(NSGA-II)

1. Initialization

- 임의의 초기 Population 생성

Name	Price	Battery Efficiency
Smartphone 1	550	7.15
Smartphone 2	600	5.45
Smartphone 3	420	6.46
Smartphone 4	437	8.92
Smartphone 5	963	3.83
Smartphone 6	791	5.29
Smartphone 7	568	9.26
Smartphone 8	71	0.87
Smartphone 9	20	8.33
Smartphone 10	780	8.70

Learning Process(NSGA-II)

2. Pareto Front 생성

- 두 개의 목표에 대해 모든 측면에서 우수하거나 동일한 성능을 보이는 해를 찾음
- 예시) 스마트폰 4가 1보다 배터리 수명이 길고 가격도 더 저렴하다면, 4는 1을 지배

Name	Price	Battery Efficiency
1	550	7.15
2	600	5.45
3	420	6.46
4	437	8.92
5	963	3.83
6	791	5.29
7	568	9.26
8	71	0.87
9	20	8.33
10	780	8.70

Name	Price	Battery Efficiency	Dominated 여부 (Pareto Front)
1	550	7.15	True(4)
2	600	5.45	True(4)
З	420	6.46	True(4)
4	437	8.92	False
5	963	3.83	True(1,3,4)
6	791	5.29	True(1,3,4)
7	568	9.26	False
8	71	0.87	True(전체)
9	20	8.33	False
10	780	8.70	True(4)

Learning Process(NSGA-II)

3. Pareto Front의 Ranking 산출

- 각 솔루션의 랭크를 결정

Name	Price	Battery Efficiency	Pareto Front Rank
4	437.59	8.92	1
7	568.04	9.26	1
9	20.22	8.33	1
1	548.81	7.15	2
3	423.65	6.46	2
10	778.16	8.7	2
2	602.76	5.45	3
6	791.73	5.29	3
5	963.66	3.83	4
8	71.04	0.87	5

Learning Process(NSGA-II)

4. 군집 거리(Crowding Distance) 계산

- Front Rank이 가장 낮은 샘플들을 추출하면 됨 -> 하지만 Rank 1인 개체가 너무 많은 경우 샘플링 기준을 정해야 함
- 정렬된 값에서 인접한 개체 사이의 차이를 계산 -> 최적화의 다양성을 보존 / 군집 거리가 높은 것들을 우선 추출

Name	Price	Battery Efficiency	Pareto Front Rank	군집 거리
4	437.59	8.92	1	0.75
7	568.04	9.26	1	1.32 -> +무한대
9	20.22	8.33	1	0.68
1	548.81	7.15	2	1.02
3	423.65	6.46	2	0.96
10	778.16	8.7	2	0.82
2	602.76	5.45	3	0.59
6	791.73	5.29	3	0.61
5	963.66	3.83	4	0.34
8	71.04	0.87	5	0.12 -> -무한대

Learning Process(NSGA-II)

5. Crossover & Mutation

- 군집 거리에 기반한 선택
- 각 정보를 교환하여 새로운 자손을 생성
- 선택된 부모들의 유전자를 조합하거나 변형하여 다양성을 유지하면서도 새로운 해를 탐색

Name	Price	Battery Efficiency	Parents
11	510.2	8	4, 9
12	440.82	9.1	7, 9
13	500	7.8	4,1
14	600.15	8.65	10, 7
15	30	8.5	9, 4

Learning Process(NSGA-II)

6. 통합 및 잘라내기

Name	Price	Battery Efficiency
4	437.59	8.92
7	568.04	9.26
9	20.22	8.33
12	440.82	9.1
15	30	8.5
11	510.2	8
13	500	7.8
14	600.15	8.65
1	548.81	7.15
3	423.65	6.46

Learning Process(SPEA-2)

1. Strength Assignment

- Pareto Front 생성까지는 이전 알고리즘과 동일
- Strength 개념 도입: 각 개체가 지배하는 다른 개체의 수를 바탕으로 Strength를 할당

Name	지배하는 개체 수	Strength
4	3	3
7	2	2
0	1	1
1	0	0
3	0	0
10	0	0
2	0	0
6	0	0
5	0	0
8	0	0

Learning Process(SPEA-2)

2. Fitness Assignment

- 각 개체의 Fitness는 그 개체가 지배당하는 Strength의 합에 반비례

Name	Strength	Fitness
4	3	0.33
7	2	0.5
9	1	1
1	0	2
3	0	2
10	0	2
2	0	2
6	0	2
5	0	2
8	0	2

Learning Process(SPEA-2)

3. Environmental Selection / Crossover and Mutation

- Fitness를 기반으로 우수한 개체를 선정하여 다음 세대의 인구 형성

Name	Strength	Fitness
4	3	0.33
7	2	0.5
9	1	1
1	0	2
3	0	2
10	0	2
2	0	2
6	0	2
5	0	2
8	0	2

Name	Price	Battery Efficiency	Parents
11	500.1	8.6	4, 7
12	450.3	9.05	7, 9
13	480.45	8.8	4, 9

Thanks