MCTB019-

.I Donadelli

Administrativia

Linguager

Sentenças

Conectivo

Ouantificad

......

-

Argumentos válido

MCTB019-17 Matemática Discreta

Jair Donadelli

CMCC-UFABC
jair.donadelli@ufabc.edu.br

2020-1

Semana 1

Administrativi

Linguager

Sentença

COLLECTIV

Predicados

Metassentenças

Implicação

Implicação

Argumentos válido

1 Administrativia

2 Lógica informal

Sentenças Conectivos Predicados

Quantificadores Metassentença Implicação

Implicação
Equivalência lógio
Argumentos válid

Matemática Discreta

"Estudo de estruturas matemáticas que são discretas (em oposição às que são contínuas como em cálculo). Não há uma descrição precisa do termo.

A pesquisa em matemática discreta aumentou na segunda metade do século XX. Conceitos e notações úteis no estudo e descrição de objetos e problemas da ciência da computação.

Nos currículos universitários, apareceu nos anos 80, inicialmente como um curso de suporte de ciência da computação; hoje em dia faz parte dos cursos de matemática também.

O Prêmio Fulkerson é concedido por trabalhos de destaque em matemática discreta."

[Wikipedia]

Metassentenças

Administrativia

2 Lógica informal

Sentenças Conectivos Predicados

Metassenter

Implicação

Argumentos válido

Administrativia

Página web da disciplina

- Avaliação
- Ementa e Bibliografia
- Programa semanal das aulas (Temas+Refs+Exercs)
- Listas, slides, notas de aula quando houver
- Horário atendimento
- . . .

Sentenças Conectivos Predicados Quantificador Metassentenç

Quantificadores Metassentenças Implicação Equivalência lóg Argumentos váli

Administrativia

Avaliações: P1, P2, SUB, REC

- P1,P2 → Conceito Final (tabela)
- SUB pra quem faltou com justificativa
- REC pra todos com frequência miníma, o resultado fica como conceito final.

Atenção para as datas de eventos na semana de reposição definida pela trollorograd. Horários e salas se mantêm.

Frequência: passo lista.

+info na página web

WC10019-17

J Donadelli

Administrativia

Administrativi

Conectivo

Predicado

Quantificad

Metassenten

Implicação

Equivalência lóg Argumentos váli

Administrativia

Objetivo

Introduzir o aluno às técnicas de demonstração através de conteúdos de Teoria de Conjuntos e Combinatória.

Conteúdo resumido da disciplina

Demonstração. Teoria intuitiva de conjuntos. Relações e Funções. Análise Combinatória. Funções geradoras. Relações recorrência

+info na página web

Referências

- GRIMALDI, Ralph Peter. Discrete and combinatorial mathematics : an applied introduction. Pearson/Addison-Wesley, 5^a Edição, c2004. [510 GRIMdi5]
- ROSEN. Kenneth H. Matemática discreta e suas aplicações. McGraw-Hill, 6ª Edição. c2009. [510 ROSEma6]

+info na página web

NC1B019-1

J Donadelli

Semana 1

Administrativi

Linguagem

Connective

Prodicado

Quantificad

Metassentenças

Implicação

Implicação

Argumentos válid

Administrativia

2 Lógica informal

J Donadelli

Administrativia

Linguagem

Sentença: Conectivo

Predicados

Metassentenç

Implicação

Equivalência lógic Argumentos válido

Informalmente...

... uma **demonstração** é um argumento que convence as outras pessoas de que algo é verdade. Uma demonstração corretamente apresentada não deixa dúvidas quanto a sua validade.

MCTB019-1

.I Donadelli

Administrativia

Linguagem

Conective

Predicados

Quantificadore

Metassentença

Implicação

Equivalência lógic Argumentos válido A linguagem usada nas demostrações é uma linguagem natural mas tem suas especificidades. Existe um certo vocabulário que inclui palavras que têm significados precisos em matemática e que podem diferir do uso diário.

*I*СТВ019-1

J Donadelli

Administrativia

Linguagem

Conectivos Predicados

Metassenter

Equivalência lógic Argumentos válido

Também, existem certas construções, ou princípios de lógica, que usamos para, a partir de sentenças verdadeiras, deduzir novas sentenças verdadeiras.

иСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentença

Conectivo

Predicado

Metassente

Implicação

Equivalência lógic

$$\frac{d}{dx}x^2 =$$

ИСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentença

Conectivo

- redicado

Metassente

Implicação

Equivalência lógica

$$\frac{d}{dx}x^2 = 2x$$

/ICTB019-

J Donadelli

Administrativia

Linguagem

Sentenças

COHECIIV

Quantificac

Motacconto

Implicação

A ------

$$\frac{d}{dx}x^2 = 2x$$

$$\frac{d}{dx}x^{2} = \frac{d}{dx}(x + x + \dots + x) [x \text{ termos}]$$

$$=$$

$$=$$

ИСТВ019-

J Donadelli

Administrativia

Linguagem

Sentença

Conectiv

Predicado

Quantinos

Impliancão

Equivalência

Argumentos válido

$$\frac{\mathrm{d}}{\mathrm{d}x}x^2 = 2x$$

$$\frac{d}{dx}x^{2} = \frac{d}{dx}(x + x + \dots + x) [x \text{ termos}]$$

$$= \frac{d}{dx}x + \frac{d}{dx}x + \dots + \frac{d}{dx}x [x \text{ termos}]$$

$$=$$

$$=$$

J Donadelli

Administrativia

Linguagem

Sentença

Conectiv

Ouantificad

Metassente

Implicação

Argumentos válido

$$\frac{d}{dx}x^2 = 2x$$

$$\frac{d}{dx}x^2 = \frac{d}{dx}(x + x + \dots + x) [x \text{ termos}]$$

$$= \frac{d}{dx}x + \frac{d}{dx}x + \dots + \frac{d}{dx}x [x \text{ termos}]$$

$$= 1 + 1 + \dots + 1 [x \text{ termos}]$$

$$=$$

ИСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentença

COHECIA

Ouantificad

Metassente

Implicação

Argumentos válidos

$$\frac{\mathrm{d}}{\mathrm{d}x}x^2 = 2x$$

$$\frac{d}{dx}x^2 = \frac{d}{dx}(x + x + \dots + x) [x \text{ termos}]$$

$$= \frac{d}{dx}x + \frac{d}{dx}x + \dots + \frac{d}{dx}x [x \text{ termos}]$$

$$= 1 + 1 + \dots + 1 [x \text{ termos}]$$

$$= x$$

/ICТВ019-1

.I Donadelli

Administrativia

Linguagem

oentenç

Conectivo

Quantificador

Metassent

Implicação

Argumentos válidos

Sobre convencimento...

$$\frac{d}{dx}x^2 = 2x$$

$$\frac{d}{dx}x^2 = \frac{d}{dx}(x + x + \dots + x) [x \text{ termos}]$$

$$= \frac{d}{dx}x + \frac{d}{dx}x + \dots + \frac{d}{dx}x [x \text{ termos}]$$

$$= 1 + 1 + \dots + 1 [x \text{ termos}]$$

$$= x$$

De modo que 2x = x, portanto 2 = 1.

J Donadelli

Sobre convencimento...

Administrativi

Linguagem

Conectiv

Predicac

Quantifica

Motacconto

i " "

Implicação

Argumentes válida

$$a = b$$
 [×a]

J Donadelli

Administrativia

Linguagem

Conactiv

COHECUV

Quantific

Motacconto

Equivalência lóo

Argumentos válido

Sobre convencimento...

$$\begin{array}{ll} a=b & [\times a] \\ a^2=ab & [-b^2] \end{array}$$

J Donadelli

Administrativia

Linguagem

Sentenças Conectivos

Prodicad

Quantific

Metassent

Implianção

Equivalência k

Argumentos válido

Sobre convencimento...

$$\begin{array}{ccc} a = b & [\times a] \\ a^2 = ab & [-b^2] \\ a^2 - b^2 = ab - b^2 & [\text{fatora}] \end{array}$$

J Donadelli

Administrativia

Linguagem

Sentenças Conectivos

Predicar

Quantifica

Metassente

Implicação

Equivalencia logic

Sobre convencimento...

$$a = b$$
 [$\times a$]
 $a^2 = ab$ [$-b^2$]
 $a^2 - b^2 = ab - b^2$ [fatora]
 $(a + b)(a - b) = (a - b)b$ [cancela $a - b$]

.I Donadelli

Linguagem

Sobre convencimento...

$$a = b$$

$$a^2 = ab$$

$$a^2 - b^2 = ab - b^2$$

$$(a+b)(a-b) = (a-b)b$$
 [cancela $a-b$]
$$a+b=b$$
[$a=b$]

J Donadelli

Administrativia

Linguagem

Conectiv

Prodicac

Quantific

Metassent

Impliancão

Equivalência lóg

Argumentos válido

Sobre convencimento...

$$a = b$$

$$a^2 = ab$$

$$a^2 - b^2 = ab - b^2$$

$$(a + b)(a - b) = (a - b)b$$
 [cancela $a - b$]
$$a + b = b$$

$$b + b = b$$

J Donadelli

Administrativia

Linguagem

Conectiv

Dradiana

Quantifica

Metassente

Implicação

Argumentos válido

Sobre convencimento...

a e b números naturais.

$$a = b \qquad [\times a]$$

$$a^2 = ab \qquad [-b^2]$$

$$a^2 - b^2 = ab - b^2 \qquad [fatora]$$

$$(a+b)(a-b) = (a-b)b \qquad [cancela \ a-b]$$

$$a+b=b \qquad [a=b]$$

$$b+b=b$$

$$2b=b$$

De modo que 2 = 1.

MCTB019-1

J Donadelli

Administrativia

Linguagem

Sentença

Conectivo

Predicados

Metassente

Implicação

Equivalência lógic

Quem está convencido de que 2=1 levanta a mão.

иСТВ019-

J Donadelli

Administrativia

Linguagem

Sentenças

Conactivo

Predicados

Quantino

wetassent

Implicação

Argumentos válidos

$$\cos^2(x) = 1 - \sin^2(x) \qquad [\sqrt{}]$$

MCTB019-

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicados

Quantinica

Wietasserite

Implicação

Argumentos válidos

$$\cos^{2}(x) = 1 - \sin^{2}(x)$$
 [$\sqrt{\ }$] $\cos(x) = \sqrt{1 - \sin^{2}(x)}$ [+1]

J Donadelli

Linguagem

$$\cos^{2}(x) = 1 - \sin^{2}(x) \qquad [\sqrt{\ }]$$

$$\cos(x) = \sqrt{1 - \sin^{2}(x)} \qquad [+1]$$

$$1 + \cos(x) = 1 + \sqrt{1 - \sin^{2}(x)} \qquad [x = \pi]$$

.I Donadelli

Linguagem

$$\cos^{2}(x) = 1 - \sin^{2}(x) \qquad [\sqrt{\ }]$$

$$\cos(x) = \sqrt{1 - \sin^{2}(x)} \qquad [+1]$$

$$1 + \cos(x) = 1 + \sqrt{1 - \sin^{2}(x)} \qquad [x = \pi]$$

$$1 + \cos(\pi) = 1 + \sqrt{1 - \sin^{2}(\pi)}$$

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicados

14-4----

Implicação

Equivalência

Argumentos válido

$$\cos^{2}(x) = 1 - \sin^{2}(x) \qquad [\sqrt{\ }]$$

$$\cos(x) = \sqrt{1 - \sin^{2}(x)} \qquad [+1]$$

$$1 + \cos(x) = 1 + \sqrt{1 - \sin^{2}(x)} \qquad [x = \pi]$$

$$1 + \cos(\pi) = 1 + \sqrt{1 - \sin^{2}(\pi)}$$

$$1 + (-1) = 1 + \sqrt{1 - 0}$$

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicados

Quantificade

Metassente

Implicação

Argumentos válido

$$\cos^{2}(x) = 1 - \sin^{2}(x) \qquad [\sqrt{\ }]$$

$$\cos(x) = \sqrt{1 - \sin^{2}(x)} \qquad [+1]$$

$$1 + \cos(x) = 1 + \sqrt{1 - \sin^{2}(x)} \qquad [x = \pi]$$

$$1 + \cos(\pi) = 1 + \sqrt{1 - \sin^{2}(\pi)}$$

$$1 + (-1) = 1 + \sqrt{1 - 0}$$

$$0 = 2$$

иСТВ019-

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Prodicado

Quantifica

Metassentenças

Implicação

Argumentos válido

$$-1 = -1$$
 $\left[-1 = \frac{-1}{1} = \frac{1}{-1}\right]$

/ICTB019-

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicado

14-1----

Implicação

Equivalência I

Argumentos válido

$$-1 = -1$$
 $[-1 = \frac{-1}{1} = \frac{1}{-1}]$ $[\sqrt{\ }]$

иСТВ019-⁻

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicado

Quantinicac

I II "

Implicação

Argumentos válid

$$\begin{array}{ll} -1 = -1 & [-1 = \frac{-1}{1} = \frac{1}{-1}] \\ \frac{-1}{1} = \frac{1}{-1} & [\sqrt{-1}] \\ \sqrt{\frac{-1}{1}} = \sqrt{\frac{1}{-1}} & [\sqrt{-1} = i] \end{array}$$

ИСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Quantificad

Motocoonto

I---E---E-

Familia 18 a air

Argumentos válid

$$\begin{array}{lll}
-1 &= -1 & [-1 &= \frac{-1}{1} &= \frac{1}{-1}] \\
\frac{-1}{1} &= \frac{1}{-1} & [\sqrt{-1}] \\
\sqrt{\frac{-1}{1}} &= \sqrt{\frac{1}{-1}} & [\sqrt{-1} &= i] \\
\frac{\sqrt{-1}}{\sqrt{1}} &= \frac{\sqrt{1}}{\sqrt{-1}}
\end{array}$$

ИСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Quantificac

Metassente

Implicação

Equivalência lógic

$$\begin{array}{lll}
-1 &= -1 & [-1 &= \frac{-1}{1} &= \frac{1}{-1}] \\
\frac{-1}{1} &= \frac{1}{-1} & [\sqrt{-1}] \\
\sqrt{\frac{-1}{1}} &= \sqrt{\frac{1}{-1}} & [\sqrt{-1} &= i] \\
\frac{\sqrt{-1}}{\sqrt{1}} &= \frac{\sqrt{1}}{\sqrt{-1}} & [\times i]
\end{array}$$

иСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Ougntificad

Motocoonto

I-----------------

Equivalência ló

Argumentos válid

$$\begin{array}{lll}
-1 &= -1 & [-1 &= \frac{-1}{1} &= \frac{1}{-1}] \\
\frac{-1}{1} &= \frac{1}{-1} & [\sqrt{-1}] \\
\sqrt{\frac{-1}{1}} &= \sqrt{\frac{1}{-1}} & [\sqrt{-1} &= i] \\
\frac{\sqrt{-1}}{\sqrt{1}} &= \frac{\sqrt{1}}{\sqrt{-1}} & [\times i] \\
i &= \frac{1}{i} & [i^2 &= -1]
\end{array}$$

иСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Ouantificac

Mataccanta

Implicação

Equivalência lóg

Argumentos válid

$$\begin{array}{lll}
-1 &= -1 & [-1 &= \frac{-1}{1} &= \frac{1}{-1}] \\
\frac{-1}{1} &= \frac{1}{-1} & [\sqrt{-1}] \\
\sqrt{\frac{-1}{1}} &= \sqrt{\frac{1}{-1}} & [\sqrt{-1} &= i] \\
\frac{\sqrt{-1}}{\sqrt{1}} &= \frac{\sqrt{1}}{\sqrt{-1}} & [\times i] \\
i &= i & [i^2 &= -1] \\
-1 &= 1 & [+1]
\end{array}$$

ИСТВ019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Conectivo

Predicados

Quantinicau

i ii ~

IIIIpiicação

Argumentos válid

$$\begin{array}{lll}
-1 &= -1 & [-1 &= \frac{-1}{1} &= \frac{1}{-1}] \\
\frac{-1}{1} &= \frac{1}{-1} & [\sqrt{-1}] \\
\sqrt{\frac{-1}{1}} &= \sqrt{\frac{1}{-1}} & [\sqrt{-1} &= i] \\
\frac{\sqrt{-1}}{\sqrt{1}} &= \frac{\sqrt{1}}{\sqrt{-1}} & [\times i] \\
i^2 &= 1 & [i^2 &= -1] \\
-1 &= 1 & [+1] \\
0 &= 2
\end{array}$$

иство19-

J Donadelli

Sobre linguagem

Administrativia

Linguagem

Connective

Predicad

Quantifica

Metassente

Implicação

Equivalencia lógica

"Essa frase é falsa"

иСТВ019-1

J Donadelli

Administrativia

Linguagem

Conectivo

Predicad

Quantific

Metassen

Implicação

Fauivalênci

Argumentos válid

Sobre linguagem

"Essa frase é falsa"

"O conjunto dos conjuntos que não pertencem a si mesmos, pertence a si mesmo?"

Quantincac

Metassenten

Implicação

Equivalência lóg Argumentos váli

Sobre linguagem

"Essa frase é falsa"

"O conjunto dos conjuntos que não pertencem a si mesmos, pertence a si mesmo?"

"Havia, no vilarejo, um barbeiro que só fazia a barba de todas as pessoas que não faziam a própria barba. Quem faz a barba do barbeiro?"

//CTB019-1

J Donadelli

Administrativi:

Linguagem

Sentenças

Dradioadaa

Quantificador

Metassent

Implicação

Equivalência lógica

Necessidade de entender a linguagem

... pra ler e escrever demonstrações.

MCTB019-1

.I Donadelli

Administrativi

Linguagem

Conectiv

Dradiana

Quantificado

Metassent

Implicação

Equivalência lógica

Necessidade de entender a linguagem

... pra ler e escrever demonstrações.

"Existe alguém no bar, tal que, se ele estiver bebendo, então todos no bar estarão bebendo."

иСТВ019-1

J Donadelli

Administrativi

Linguagem

Conectivo

Predicad

Quantino

Metasseni

Implicação

Equivalência lógic

Necessidade de entender a linguagem

... pra ler e escrever demonstrações.

"Existe alguém no bar, tal que, se ele estiver bebendo, então todos no bar estarão bebendo."

Essa frase sempre é verdadeira.

Raymond Smullyan (1978). What is the Name of this Book? The Riddle of Dracula and Other Logical Puzzles. [S.I.]: Prentice Hall. chapter 14. How to Prove Anything. (topic) 250. The Drinking Principle. pp. 209–211.

J Donadelli

Sentenças

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois valores-lógicos:

MC18019-1

.I Donadelli

Administrativia

Sentenças

Conectivo

Predicado:

Metassent

Implicação

Equivalênci

Equivalência lógic Argumentos válido

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

verdadeira (V) ou falsa (F)

O rio lá fora está cheio

MC1B019-1

.I Donadelli

Administrativia

Administrativie

Sentenças

Conectivo

Predicado

a. .

i i ~

Implicação

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

verdadeira (V) ou falsa (F)

O rio lá fora está cheio

.I Donadelli

Sentencas

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois valores-lógicos:

- O rio lá fora está cheio √
- n é um natural par

.I Donadelli

Sentencas

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois valores-lógicos:

- O rio lá fora está cheio √
- n é um natural par

MC1B019-1

J Donadelli

Administrativia

Linguagem

Sentenças

Dradiondos

Quantinicau

i ii ~

Implicação

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito

MC1B019-1

.I Donadelli

Administrativia

Linguagom

Sentenças

Conectivos

Predicados

Metassenter

Implicação

Equivalência log Argumentos váli

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito

Sentencas

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois valores-lógicos:

- O rio lá fora está cheio √
- π é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único

Administrativia

. .

Sentenças

Prodicados

Predicados

Metassenten

I---E---E-

Implicação

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único

Metassenten

Implicação

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x^2 é positivo.

Sentencas

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois valores-lógicos:

- O rio lá fora está cheio √
- π é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x^2 é positivo.

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1+1=2.

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1 + 1 = 2.

Administrativia

Linguage

Conectivo

Dradioada

Meteoconter

In-tion #

Implicação

Equivalência lógio Argumentos válid

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1 + 1 = 2. \checkmark
- $x^2 + y^2 = z^2$

Administrativia

Linguage Sentencas

Conectivos

Predicado

Metassenten

Implicação

Equivalência lógi Argumentos válio

Sentenças

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1 + 1 = 2. \checkmark
- $x^2 + y^2 = z^2$

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par X
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- x² é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1+1=2. \checkmark
- $x^2 + y^2 = z^2 X$
- Vá estudar Matemática Discreta.

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par Χ
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- χ^2 é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1+1=2. \checkmark
- $x^2 + y^2 = z^2 X$
- Vá estudar Matemática Discreta.

Qualquer frase declarativa para a qual podemos atribuir um, e só um, dentre dois **valores-lógicos**:

- O rio lá fora está cheio √
- n é um natural par Χ
- 27 é um quadrado perfeito √
- O conjunto vazio é único √
- χ^2 é positivo. X
- Toda sequência limitada de números reais é convergente √
- 1+1=2. \checkmark
- $x^2 + y^2 = z^2 X$
- Vá estudar Matemática Discreta.X

.I Donadelli

Sentencas

Dois princípios

Não-contradição: uma proposição verdadeira não pode ser falsa e uma proposição falsa não pode ser verdadeira.

Terceiro Excluído: qualquer proposição, ou é verdadeira, ou é falsa.

Os conectivos

"não", "e", "ou", "se,então", "se, e só se,"

são para formar sentenças compostas.

Correspondem, respectivamente, aos operadores lógicos

$$\neg \ (\text{negação}) \ , \land \ (\text{conjunção}), \lor \ (\text{disjunção}), \to \\ (\text{condicional}), \leftrightarrow (\text{bicondicional})$$

A e B representam sentenças

ИСТВ019-1

J Donadelli

Se, então

Administrativi

Linguager

Conectivos

Conectivo

Ouantificado

Metassent

Implicação

Argumentos válid

"Se não comer tudo, então não ganha sobremesa"

J Donadelli

Sentencas Conectivos

V ou **F**?

se $\sqrt{2} \in \mathbb{Q}$, então 2 é par. se $\sqrt{2} \in \mathbb{Q}$, então 2 é ímpar. se $\sqrt{2} \notin \mathbb{Q}$, então 2 é par. se $\sqrt{2} \notin \mathbb{Q}$, então 2 é ímpar.

.I Donadelli

Conectivos

V ou F?

- (V) se $\sqrt{2} \in \mathbb{Q}$, então 2 é par.
- (V) se $\sqrt{2} \in \mathbb{Q}$, então 2 é ímpar.
- (\mathbf{V}) se $\sqrt{2} \notin \mathbb{Q}$, então 2 é par.
- (F) se $\sqrt{2} \notin \mathbb{Q}$, então 2 é ímpar.

MC1B019-1

J Donadelli

Administrativi

Linguager

Conectivos

Conectivos

Predicados

Metassente

Implicação

Equivalência lógica Argumentos válidos $\mbox{Em $A \to B$ chamamos A de $\it antecedente$ e B de $\it consequente$ da condicional.}$

MCTB019-17

.I Donadelli

Administrativia

Linguage

Sentença

Conectivos

Predicado

Quantifica

Metassentenç

Implicação

Implicação Equivalência I

Equivalência lógi Argumentos válid

formas "implícitas" do Se, então

"se A então B"

"se A, B"

"A é suficiente para B"

"B é necessário para A"

"B sempre que A"

veja + na pág. 6 do Rosen.

Predicados

Uma sentença aberta é uma sentença que depende de uma ou mais variáveis, por exemplo

- "x + 1 é maior que x"
- "n é um número primo"
- "x + y = 2x + z"

Administrativia

Linguage

Sentenças

Predicados

Motoconton

Impliancão

Equivalência lóg

O valor-lógico depende dos valores das variáveis

"x é maior que y"

Verdadeiro no caso x = 1 e y = 0

Falso no caso x = 0 e y = 1.

MC1B019-1

J Donadelli

Administrativia

Conectiv

Predicados

Metassenten

Metassentenç Implicação

Implicação Equivalência lógio Argumentos válid

Predicados

As vezes, por conveniência, usamos letras minúsculas x,y,z para denotar variáveis e letras maiúsculas P,Q,R (os predicados) seguidas por uma lista de variáveis distintas entre parênteses, para denotar sentenças abertas que dependem dessas variáveis.

Predicados

Administrativi

inguagem

Predicados

Quantificado Metassenten

Implicação

Equivalência Argumentos Por exemplo,

S(x) representa "x + 1 é maior que x"

P(n) representa "n é um número primo"

E(x, y, z) representa "x + y = 2x + z"

E(1, 1, 0) é **V**

P(4) é **F**

S(2 + 5i)?

MC1B019-

J Donadelli

Administrativia

Linguage

Sentencas

Predicados

Overstiffered

Metassent

Implicação

Argumentos válido

Predicados

As variáveis devem estar associadas à domínios não vazios.

Administrativia

Linguager

Sentenças Conectivos Predicados

Quantificadores

Metassentença

Implicação

Equivalência lógio Argumentos válid "Para todo \underline{x} real, x + 1 é maior que x"

é uma sentença (fechada) **V**erdadeira.

Em símbolos

$$\forall x \in \mathbb{R}, x+1 > x$$

Quantificadores

"Para algum n natural, n é primo"

é uma sentença (fechada) Verdadeira.

Em símbolos

 $\exists n \in \mathbb{N}, n \text{ \'e primo}$

Obs " $\forall n \in \mathbb{N}, n \text{ é primo" é Falsa}$

Quantificadores

E(x, y, z) representa "x + y = 2x + z"

 $\forall x \in \mathbb{R}, E(x, y, z)$ aberta ou fechada?

É V ou F?

- $\mathbf{1}$ $\forall x \in \mathbb{R}, E(x, x, x)$
- 2 $\forall y \in \mathbb{R}, \forall z \in \mathbb{R}, \exists x \in \mathbb{R}, E(x, y, z)$
- 3 $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \forall z \in \mathbb{R}, E(x, y, z)$

.I Donadelli

Quantificadores

Exercícios para fixação

Seção 1.1 do Rosen: 9,13,19,31,42,43,45,49

Seção 1.3 do Rosen: 7,15,17,21,25,39,52,53

Seção 1.4 do Rosen: 3,1,13,25,30,31,39,47

Predicados

Metassentenças

wetassentença

Implicação
Equivalência lógic
Argumentos válid

Metassentenças

"Se a sentença 'Joaquim é alto e Manoel é baixo' é verdadeira, então a sentença 'Joaquim é alto' é verdadeira".

"A sentença 'A é um conjunto finito ou f é uma função contínua' sendo verdadeira é equivalente à sentença 'f é uma função contínua ou A é um conjunto finito' ser verdadeira."

.I Donadelli

Metassentenças

Metassentenças

Intuitivamente, as duas sentenças parecem corretas.

Formalmente são *metassentenças*, sentenças que diz algo a respeito de sentencas.

Na prática, do ponto de vista informal que adotamos, a distinção entre sentenças e metassentenças é simples.

J Donadelli

Sentencas

Metassentenças

Metassentenças

Stewart, Cálculo, vol. 1, pg. 144:

TEOREMA Se f for diferenciável em a, então f é contínua em a.

MC1B019-1

J Donadelli

Administrativi

Linguage

Conectivos

Predicados

Meteoconton

Metassentenças

Implicação

Equivalência lógic Argumentos válido

Metassentenças

Stewart, Cálculo, vol. 1, pg. 144:

TEOREMA Se f for diferenciável em a, então f é contínua em a.

Leia-se: A sentença "Se f for diferenciável em α , então f é contínua em α " é verdadeira.

Metassentenças

Metassentenças

Stewart, Cálculo, vol. 1, pg. 144:

TEOREMA Se f for diferenciável em a, então f é contínua em a.

Leia-se: A sentença "Se f for diferenciável em α, então f é contínua em a" é verdadeira.

e para verificar basta que

Se a sentença "f é diferenciável em a" é verdadeira, então a sentenca "f é contínua em a" é verdadeira.

WC1B019-17

J Donadelli

Administrativia

Linguager

Conectivos

Predicados

Quantificado

Metassentenças

Implicação

Equivalência lógica Argumentos válidos DEMONSTRAÇÃO Para demonstrar que f é contínua em a, temos de mostrar que $\lim_{x\to a} f(x) = f(a)$. Fazemos isso mostrando que a diferença f(x) - f(a) tende a 0 quando x tende a a.

A informação dada é que f é diferenciável em a, isto é,

j e diferenciaver em a, isto e.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existe (veja a Equação 2.7.5). Para conectar o dado com o desconhecido, dividimos e multiplicamos f(x) - f(a) por x - a (o que pode ser feito quando $x \neq a$):

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} (x - a)$$

Assim, usando a Propriedade do Produto e a Equação 2.7.5, podemos escrever

MC1B019-1

J Donadelli

Administrativia

Linguagor

Conectiv

Predicac

Ougntific

Metasse

Implicação

Equivalência lógic Argumentos válido

Sobre os princípios lógicos

P implica logicamente Q

Notação: $P \Rightarrow Q$

se Q é *obrigatoriamente* verdadeiro sempre que P é verdadeiro.

Atenção: potencial para confusão entre \rightarrow e \Rightarrow

MC1B019-

J Donadelli

Administrativia

Linguage

Sentenças

Conectivo

Predicados

Metassente

Implicação

Argumentos válidos

Exemplos

é uma sentença da forma

$$\mathsf{P} \to \mathsf{Q}$$

Administrativis

Linguage

Conective

Prodicad

Predicados

Motaccont

Implicação

Equivalência lógica Argumentos válido "Se o céu está azul então a grama está verde"

é uma sentença da forma

$$P \to Q$$

porém não vale que

$$\mathsf{P} \Rightarrow \mathsf{Q}$$

"Se 'não é o caso que, se Bart acha Lisa fofa, então ele gosta da Lisa', então 'Bart acha Lisa fofa ou ele gosta de Lisa

$$\text{n\~{a}o}(P \to Q) \to (P \text{ ou } Q).$$

Cada sentença simbólica acima é verdadeira ou falsa dependendo de saber se ou não, "Bart acha Lisa fofa" (P) e se "Bart gosta de Lisa" (Q).

Exemplos

Administrativia

Sentenças Conectivos Predicados

Metassentenç

Equivalência lós Argumentos vál "Se 'não é o caso que, se <u>Bart acha Lisa fofa</u>, então ele gosta da Lisa', então 'Bart acha Lisa fofa ou ele gosta de Lisa''

$$\text{n\~{a}o}(P \to Q) \to (P \text{ ou } Q).$$

Cada sentença simbólica acima é verdadeira ou falsa dependendo de saber se ou não, "Bart acha Lisa fofa" (P) e se "Bart gosta de Lisa" (Q).

Porém

$$\tilde{\mathsf{nao}}(\mathsf{P} \to \mathsf{Q}) \Rightarrow (\mathsf{P} \; \mathsf{ou} \; \mathsf{Q})$$

MCTB019-1

J Donadelli

Administrativia

Sentenças Conectivos Predicados

Quantificad

Metassenter

Implicação Equivalência

Equivalência lógic Argumentos válid

Implicação lógica — definição

P **implica** Q se a sentença $P \to Q$ é verdadeira, independentemente do valor lógico de P e de Q, ou seja, a interdependência das sentenças exclui a possibilidade de P verdadeira e Q falsa.

- $P \rightarrow Q$ é uma sentença (**V** ou **F**) composta, construída a partir de P e Q.
- $P\Rightarrow Q$ é uma metassentença que é uma abreviação da expressão em português "P implica Q" e significa que $P\to Q$ é uma verdade.

Administrativia

Linguagen

Conectivos

Predicado

Quantinead

Metassente

Implicação

Equivalência lógic Argumentos válido

Implicações lógicas notáveis

Sejam P, Q, R e S sentenças. Alguns princípios lógicos importantes são

- 2 (P ou Q) e não-P \Rightarrow Q (Modus Tollendo Ponens)
- $\textbf{ ((P e n\~{a}o-Q) \rightarrow F)} \Rightarrow \big(P \rightarrow Q\big) \ \ \textbf{(Redu\~{a}o ao absurdo)}$

veja + na pág. 66 do Rosen (regras de inferência).

Administrativia

Sentenças Conectivos Predicados Quantificadore

Equivalência lógica Argumentos válidos

Equivalência lógica

Dizemos que P e Q são **logicamente equivalentes** se a sentença $P \leftrightarrow Q$ e verdadeira para todo valoração lógica de P e Q.

Abreviamos "P e Q são equivalente" e usamos a a notação $P \Leftrightarrow Q$.

É importante notar a diferença entre as notações "P \Leftrightarrow Q" e "P \leftrightarrow Q".

MCTB019-1

J Donadelli

Administrativia

Sentenças Conectivos

Quantificadore

Metassentenças Implicação Equivalência lógica

Argumentos válid

Algumas equivalências lógicas notáveis

1 não-(não-P) ⇔ P

(Negação Dupla)

? P \rightarrow Q \Leftrightarrow n\(\tilde{a}o-P ou Q

(Condicional) (Contra positivo).

(Lei de De Morgan).

4 não- $(P e Q) \Leftrightarrow não-P ou não-Q$

(Lei de De Morgan).

5 não-(P ou Q) ⇔ não-P e não-Q

, ,

6 não- $(\forall x \in D, P(x)) \Leftrightarrow \exists x \in D, não-P(x)$

(Negação de Quantificador)

7 não- $(\exists x \in D, P(x)) \Leftrightarrow \forall x \in D, não-P(x)$

(Negação de Quantificador)

ЛСТВ019-1

J Donadelli

Administrativi

Linguage

Sentença

Conectiv

Predicad

Quantifica

Metassentenç

Implicação

Equivalência lógica Argumentos válidos

Argumentos válidos

Em lógica um argumento é uma sequência P_1, P_2, \ldots, P_n, Q de sentenças das quais a última é a **conclusão**, as outras são as **premissas**.

P

 P_2

÷

 $\frac{P_n}{\cdot \Omega}$

MCTB019-1

J Donadelli

Administrativia

Linguager

Sentenças

Conectivo

Prodicade

Quantific

Metassente

Implicação

Argumentos válidos

Argumentos válidos

O argumento é válido se, e só se,

$$(P_1 \mathrel{\text{\rm e}} P_2 \mathrel{\text{\rm e}} \cdots \mathrel{\text{\rm e}} P_n) \Rightarrow Q$$

Administrativia

Linguage

Conectivo

Conectivo

Quantifica

Metassente

Implicação

Eguivalência

Argumentos válidos

O argumento é válido se, e só se,

$$(P_1 e P_2 e \cdots e P_n) \Rightarrow Q$$

ou seja, é verdadeira a sentença

Se
$$(P_1 e P_2 e \cdots e P_n)$$
 então Q

Argumentos válidos

O argumento é válido se, e só se,

$$(P_1 e P_2 e \cdots e P_n) \Rightarrow Q$$

ou seja, é verdadeira a sentença

Se
$$(P_1 e P_2 e \cdots e P_n)$$
 então Q

ou seja, Q é verdadeiro sempre que $(P_1 e P_2 e \cdots e P_n)$ é verdadeiro.

MC1B019-1

.I Donadelli

Administrativia

Linguagon

Conectivo

Predicado

Quantificac

Metassenten

Implicação

Equivalência lógica Argumentos válidos

Argumentos válidos

As **regras de inferência** são esquemas de argumentos válidos simples que usamos para para construir argumentos válidos mais complexos. Por exemplo,

$$\begin{array}{c} P \to Q \\ \hline P \\ \hline \therefore Q \end{array}$$

chamada Modus Ponens.

.I Donadelli

Argumentos válidos

Argumentos válidos

Exemplo: o seguinte argumento é válido porque se encaixa nessa regra de inferência

Se você tem a senha, então pode fazer login no facebook. Você tem a senha.

Portanto, você pode fazer login no facebook.

Regras de inferência

As principais regras de inferência são as dadas pelas implicações notáveis. Por exemplo,

Modus Tollens:	silogismo hipotético:
$P \to Q$	$P \to Q$
$\neg Q$	$Q \to R$
P	$\therefore P \to R$

Regra da Simplificação:

$$\frac{\mathsf{P} \wedge \mathsf{Q}}{\therefore \mathsf{P}}$$

MCTB019-1

J Donadelli

Aummstrativ

Linguagam

Connetiv

Desdised

Predicado

Metassente

Implicação

Implicação

Argumentos válidos

Regras de inferência para quantificadores

E, também as regras para quantificadores. Existem quatro regras desse tipo e seu uso requer um pouco mais de cuidado; elas são usadas para o mesmo propósito, que é mostrar a validade de argumentos lógicos.

.I Donadelli

Argumentos válidos

Regras de instanciação

Instanciação universal: se $\forall x \in D, P(x) \in V$ então $P(c) \in V$ V qualquer que seia $c \in D$

$$\forall x \in D, P(x)$$

∴ $P(c)$ qualquer que seja $c \in D$

Instanciação existencial: se $\exists x \in D, P(x) \notin V$ então P(c) $\dot{\mathbf{v}}$ para algum elemento $c \in D$

$$\exists x \in D, P(x)$$
$$\therefore P(c) \text{ algum } c \in D$$

(desde que o símbolo c não tenha qualquer outro significado no argumento dado)

Regras de generalização

Generalização universal: se P(c) é V para um elemento $c \in D$ arbitrário do domínio D então $\forall x \in D$, $P(x) \notin V$

$$\frac{P(c) \text{ para } c \in D \text{ arbitrário}}{\therefore \forall x \in D, P(x)}$$

Generalização existencial: se P(c) é V para algum cparticular de D, então $\exists x \in D, P(x)$

$$\frac{P(c) \text{ para algum } c \in D \text{ particular}}{\therefore \exists x \in D, P(x)}$$

MC1B019-

J Donadelli

Administrativi

Linguagor

Sontonese

Conectivos

Metassente

Implicação

Equivalência

Argumentos válidos

Exemplo – argumentos válidos

$$\forall x (P(x) \to Q(x))$$

Por exemplo, argumento é válido: $\forall x(Q(x) \rightarrow R(x))$ $\therefore \forall x(P(x) \rightarrow R(x))$

Vejamos

Exemplo – argumentos válidos

Argumentos válidos

 $\forall x (P(x) \rightarrow Q(x))$ Por exemplo, argumento é válido: $\forall x(Q(x) \rightarrow R(x))$ $\therefore \forall x (P(x) \rightarrow R(x))$

Vejamos

passo	sentença	justificativa
1.	$\forall x (P(x) \to Q(x))$	premissa
2.	$P(c) \to Q(c)$	instanciação universal de 1
3.	$\forall x (Q(x) \to R(x))$	premissa
4.	$Q(c) \to R(c)$	instanciação universal de 3
5.	$P(c) \to R(c)$	Silogismo hipotético com 3 e 4
6.	$\forall x (P(x) \to R(x))$	generalização universal.

Exemplo – argumentos válidos

Cada gato que é legal e inteligente gosta de fígado picado. Todo gato siamês é legal. Há um gato siamês que não gosta de fígado picado. Portanto, há um gato estúpido.

agui, "estúpido" é a negação de "inteligente".

D é a coleção de todos os gatos,

- L(x) é "gato x é legal".
- I(x) é "gato x é inteligente",
- F(x) é "gato x gosta de fígado picado",
- S(x) é "gato x é siamês".

Administrativi

Linguager

Connective

Conectivo

Ouantific

Motocoon

Interdopolitic

Implicação

Equivalênci

Argumentos válidos

Em símbolos

$$\forall x \in D, (L(x) \land I(x)) \rightarrow F(x)$$

$$\forall x \in D, S(x) \rightarrow L(x)$$

$$\forall x \in D, S(x) \land \neg F(x)$$

$$\forall x \in D, \neg I(x)$$

Exercício: É argumento válido?

J Donadelli

Argumentos válidos

Exemplo – argumentos válidos

1.	$\forall x \in D, (L(x) \land I(x)) \rightarrow F(x)$	premissa
2.	$\forall x \in D, S(x) \to S(x)$	premissa
3.	$\forall x \in D, S(x) \land \neg F(x)$	premissa
4.	$S(a) \land \neg F(a)$	instanc. universal de 3
5.	$\neg F(a)$	simplificação de 4
6.	S(a)	simplificação de 4
7.	$S(a) \to L(a)$	instanc. universal de 2
8.	L(a)	modus ponens com 7 e 6
9.	$\neg \neg L(a)$	dupla negação de 8
10.	$(L(a) \wedge I(a)) \rightarrow F(a)$	instanc. universal de 1
11.	$\neg(L(a) \land I(a))$	modus tollens com 10 e 5
12.	$\neg L(a) \lor \neg I(a)$	De Morgan em 11
13.	$\neg I(a)$	modus tollendo ponens com 12 e 9
14.	$\exists x \in D, \neg I(x)$	generalização universal

//CTB019-1

J Donadelli

Administrativis

Linguage

Sentenças

Conectiv

Predicados

Metassente

Implicação

Implicação Foutvalência

Argumentos válidos

Exercícios

Seção 1.2 do Rosen: 7,9,18,28,41,57

Seção 1.5 do Rosen: 11,13,15,17,19,23,25,34,35