

A fuel cell is an electrochemical device that converts the chemical energy of a fuel into electricity without involving a combustion cycle.

Fuel Cells

An electrochemical device

Chemical energy

Electricity

Fuel Cells

- A fuel cell consists of two electrodes, namely an anode and a cathode.
- Anode is positively charged and cathode is negatively charged in an electrolytic cell.
- The reactions that produce electricity take place at the electrodes.
- Every fuel has an electrolyte, which carries electrically charged particles from one electrode to the other, and a catalyst, which speeds the reactions at the electrodes.
- In fuel cells, hydrogen is used as the most common fuel, but hydrocarbons, such as natural gas and alcohols like methanol, are sometimes used.

Fuel Cells Versus Traditional Electricity Generation

✓ <u>Fuel cells</u> work on the principle of direct energy conversion in single stage to obtain electrical energy from chemical energy as follows:

Chemical energy → Electrical energy

- It does not involve the burning of fuel, but electrical energy is directly obtained from chemical energy by electrochemical process.
- ✓ <u>Traditional or conventional method</u> of electrical energy conversion is an indirect method of energy conversion and involves intermediary conversion to energy forms and finally to electrical energy as follows:

Chemical energy \rightarrow Heat \rightarrow Mechanical energy \rightarrow Electrical energy

Fuel Cells Versus Traditional Electricity Generation

Traditional or conventional method of electrical energy conversion is an indirect method of energy conversion and involves intermediary conversion to energy forms and finally to electrical energy as follows:

Chemical energy → Heat → Mechanical energy → Electrical energy

Fossil fuels and nuclear fuels are burnt to produce heat and high-pressure steam. The high pressure steam expands in a turbine which starts rotating and ultimately drives the coupled electrical generator to convert mechanical energy into electrical energy.

Schematic of fuel cell

The schematic diagram of fuel cell is given in Figure. It consists of the following parts:

- 1. Anode: It is a positive electrode and facilitates electrochemical oxidation of fuel.
- 2. Cathode: It is a negative electrode and promotes electrochemical reduction of oxidant.
- 3. Electrolyte: It is a solution of liquid, gases with salts and carries electrically charged particles between them.

Performances of Fuel Cells Versus others

- The single-stage direct energy conversion of chemical energy to electrical energy in fuel cell is a highly efficient process than three-stage conversion of chemical energy into electrical energy in traditional methods that involve combustion or burnings.
- The energy release by chemical reaction in fuel cell is a function of change in Gibbs free energy.
- The Carnot law and efficiency of heat engine is not applicable to fuel cell.
- The maximum theoretical efficiency of fuel cells is much higher than conventional indirect methods of conversion.
- Fuel cells have less environmental damage than conventional methods of electrical generation.