Assignment -1

Python Programming

Assignment Date	•	15 October 2022
Student Name	•	Shabari Prasannaa D
Student Roll Number	•	73771914172
Maximum Marks	•	2 Marks

Basic Python

Question-1:

```
Split this string
s = "Hi there Sam!"
x = s.split()
print(x)
```

Solution:

```
['Hi', 'there', 'Sam!']
```

Output:

Question-2:

```
Use .format() to print the following string.
Output should be: The diameter of Earth is 12742 kilometers.
   planet = "Earth"
   diameter = 12742
```

```
string = "The diameter of {} is {}
          kilometers.".format(planet, diameter)
print(string)
```

The diameter of Earth is 12742 kilometers.

Output:

Question-3:

In this nest dictionary grab the word "hello"

```
d={'k1':[1,2,3, {'tricky':['oh','man','inception', {'target':[1,2,
3'hello']}]}}
x = d['k1'][3]['tricky'][3]['target'][3]
print(x)
```

Solution:

Hello

Output:

Numpy

Question-4:

import numpy as np

4.1 Create an array of 10 zeros?

```
import numpy as np
array=np.zeros(10)
print("An array of 10 zeros")
print(array)
```

Solution:

```
An array of 10 zeros
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

Output:

4.2 Create an array of 10 fives?

```
import numpy as np
Array=np.ones(10)*5
print("An array of 10 fives")
print(array)
```

Solution:

```
An array of 10 fives
[5. 5. 5. 5. 5. 5. 5. 5. 5. 5.]
```

Output:

Question-5:

Create an array of all the even integers from 20 to 35

```
import numpy as np array=np. arange (20, 35, 2) print ("An array of all the even integers from 20 to 35") print (array) \setminus
```

Solution:

An array of all the even integers from 20 to 35 [20 22 24 26 28 30 32 34]

Output:

Question-6:

Create a 3x3 matrix with values ranging from 0 to 8

```
import numpy as np
matrix = np.arange(0, 9).reshape(3,3)
print("A 3X3 matrix with values ranging from 0 to 8\n")
print(matrix)
```

Solution:

```
A 3X3 matrix with values ranging from 0 to 8 [[0 1 2] [3 4 5] [6 7 8]]
```

Output:

Question-7:

Concatenate a and b

```
a = np. array([1, 2, 3]),
b = np. array([4, 5, 6])
```

```
import numpy as np
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
cab=np.concatenate((a,b), axis=None)
print("Concatenation of a and b")
print(cab)
```

Concatenation of a and b [1 2 3 4 5 6]

Output:

Pandas

Question-8:

import pandas as pd

Create a dataframe with 3 rows and 2 columns

```
A dataframe with 3 rows and 2 columns student_name cgpa_marks muthamizhan 9.4 karthik 8.9 Ravi 8.7
```

Output:

Question-9

Generate the series of dates from 1st Jan, 2023 to 10th Feb, 2023

```
import pandas as pd
import datetime
start = datetime.datetime.strptime("01-01-2023","%d-%m-
%Y")
date_generated = pd.date_range(start, periods=41)
print(date_generated.strftime("%d-%m-%Y")
```

Solution:

```
'17-01-2023', '18-01-2023', '19-01-2023', '20-01-2023', '21-01-2023', '22-01-2023', '23-01-2023', '24-01-2023', '25-01-2023', '26-01-2023', '27-01-2023', '28-01-2023', '29-01-2023', '30-01-2023', '31-01-2023', '01-02-2023', '02-02-2023', '03-02-2023', '04-02-2023', '05-02-2023', '06-02-2023', '07-02-2023', '08-02-2023', '09-02-2023', '10-02-2023'], dtype='object')
```

Output:

Question-10:

Create 2D list to DataFrame

```
import pandas as pd
lists = [[1, 'aaa', 22], [2, 'bbb', 25], [3, 'ccc', 24]]
lists = [[1, 'aaa', 22], [2, 'bbb', 25], [3, 'ccc', 24]]
df = pd.DataFrame(lists, columns =['no', 'name', 'd_no'])
df=df.to_string(index=False)
print("Given 2D list")
print(lists)
print("\n2D list to dataframe")
print(df)
```

```
Given 2D list
[[1, 'aaa', 22], [2, 'bbb', 25], [3, 'ccc', 24]]
2D list to dataframe
no name d_no
1 aaa 22
2 bbb 25
3 ccc 24
```

Output: