

Big Data: basisprincipes

Lesmateriaal Big Data

- Theorie basisprincipes Big Data en NoSQL
 - ➤ Cursus op BB
 - ➤ Video's op PluralSight (enkel de opnames waarnaar wordt verwezen vanuit de cursus)
- Praktijk MongoDB
 - ➤ Installatiehandleiding en startbestanden op BB
 - ➤ Powerpoint op BB
 - ➤ Opdrachten op BB

Inleiding

Relationele databanken: Gegevens opslaan door bedrijven

Massa andere gegevens niet opgeslagen in relationele databank:

tweets, facebook, weblogs, feeds, RFID-scans, sensordata, clickstreamdata,...

Nood aan: - infrastructuur

- nieuwe programmeeromgeving
- nieuwe dataomgeving

Terminologie

- Database: archief voor dataopslag
 - Opgeslagen gegevens als zodanig
 - Wijze waarop gegevens zijn opgeslagen
 - Software waarmee databases worden aangemaakt en benaderd

- Datawarehouse
 - Gegevensverzameling voor snelle ad-hoc vragen zonder belasting bron
 - Nooit rechtstreeks gegevens toegevoegd/gewijzigd/verwijderd
 - Gegevens worden gebruikt voor BI-doeleinden
 - Voorbeeld controle CV-ketels

Terminologie

- Datamining
 - Gericht zoeken naar (statistische) verbanden tussen gegevensverzamelingen
 → patronen (Business Intelligence BI)
 - Betekenis en inhoud (context) informatie cruciaal
 - Snelheid waarmee bruikbare resultaten worden bekomen is in realtimetoepassingen zeer belangrijk bv. monitoren en bijsturen van bedrijfsprocessen
 - Doel? Wetenschappelijk, journalistiek, commercieel gebruik
 - Vb verband tussen leeftijd klant en type shampoo

Big Data - vroeger

'Big Data': al in de jaren '50

- Aanvang: Analyses via wiskunde en/of statistiek(manueel)
- Later: gebruik van applicaties o.a. spreadsheets en databasetoepassingen(o.a.Access)
- **Doel:** beslissingen nemen voor de toekomst =>BI (Business Intelligence)

Big Data – nu hype

Voedingsbodem:

- Hardware mogelijkheden, server

- Goedkopere en ruimere opslag

- Mogelijkheden van opensource software

- Beschikbaarheid massa's gegeven

Toepassingen:

- marketing

- politieonderzoek –en opsporing (fraude, cybercrime)

- analyses datalekken (bv WikiLeaks, Luxleaks, Panama Papers)

- onderzoek gezondheidssector (ziektes, erfelijkheid)

- industrie (by technologie veiligheid auto's)

Term Big Data

- Honderden terabytes
- 'Klassieke' databank kan gegevens niet aan, alternatief nodig voor niet-relationele gegevens
- 3 V's: Volume: niet te verwerken op tradionele manier
 - Velocity: hoge snelheid van toevoer
 - Variety
- 4 V's, of 5: Veracity: betrouwbaarheid
 - Value

Hoe werkt Big Data?

- Architectuur
- Distributed System met nodes
- CAP-theorema

Architectuur

• Architectuur: https://app.pluralsight.com/player?author=ben-sullins&name=data-analytics-hands-on-m9&mode=live&clip=3&course=data-analytics-hands-on

Distributed system

- Big data → grote hoeveelheden
 - → geen structuur

Gevolg: verwerkingstijd schaalt met hvh informatie

- Hoe verwerking versnellen?
 - → snellere server
 - → meer servers
 - → optimalisering programma's
- Distributed system

mainframes, workstations, PC's communiceren via netwerk

https://app.pluralsight.com/player?author=ben-sullins&name=data-analytics-hands-on-m9&mode=live&clip=4&course=data-analytics-hands-on

Distributed datastores

Datastores in een gedistribueerd systeem

RDBMS komen hiervoor niet in aanmerking, dus NoSQL

Voordelen dergelijk systeem:

- Reliability
- Scalability
- Sharing resources
- Flexibility
- Speed
- Open system
- Performance

CAP-theorema

Belang van CAP-stelling: <a href="https://app.pluralsight.com/player?author=ben-sullins&name=data-analytics-hands-on-m9&mode=live&clip=5&course=data-analytics-

- Consistency
- Availability
- Partition tolerance

CAP-stelling – soorten DB

CA: consistentie en beschikbaar

CP: consistentie, alle data niet

direct bereikbaar

AP: beschikbaar, niet altijd volledig

Database principes

- ACID
- BASE

Database principe - ACID

- Atomic:
 - Elke transactie slaagt volledig, inclusief deelacties, of niet
- Consistent:
 - Gegevens mogen niet tegenstrijdig worden. Referentiële integriteit.
- Isolated:
- Elke transactie wordt los van andere transactie uitgevoerd.
- Durable: Transactie is permanent/onomkeerbaar.

Database principe - BASE

- Basic Availability
 Beschikbaarheid van data, zelfs met tijdelijke fouten (spreiding gegevens over meerdere opslagsystemen)
- Soft State
 Consistent zijn ligt bij ontwikkelaar, niet bij databank.
- Eventual Consistency
 Uiteindelijk komen tot consistentie, niet meteen staat haaks op ACID.

NoSQL DBMS

- niet-relationeel databasemanagement systeem
- distributed data stores met big data
- geen vaste structuren
- vermijdt join-operaties

RDBMS ⇔ NoSQL

RDBMS	NoSQL
Gestructureerde data	Not Only SQL – ook
	ongestructureerde data
SQL – structured query language	Geen standard query language
Data en relaties worden in aparte	Geen vooraf gedefinieerde structuur
tabellen opgeslagen	
DML – data manipulation language	Soms onvoorspelbare data
DDL – data definition language	
Altijd consistent	Eventual consistentie maar wel hoge
	performantie
ACID-transacties	BASE-transacties

Voordelen/Nadelen NoSQL

Voordelen NoSQL	Nadelen NoSQL
Hoge scalability	Geen standaard
Distributed computing	Beperkte query mogelijkheden
Lagere kost	Eventual consistency is moeilijk
	programmeerbaar
Flexibiliteit in structuur van data	
Geen gecompliceerde relaties/joins	

NoSQL database types

Database type: Key-value stores

- Meest gebruikte datatype
- Kan vele TB aan gegevens aan
- Laten ongestructueerde gegevens toe
- Makkelijk uitbreidbaar
- Gegevens opgeslagen als hashtable elke key uniek, value kan string, JSON-object, BLOB-object,.. zijn
- Key-value pair kan bestaan uit naam gecombineerd met waarde
- Beperking: je kan enkel zoeken via key!

Key-Value Stores

Zie Pluralsight: https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-

breakdown&clip=0&mode=live&start=313.083998¬eid=b4515986-a34e-4593-a9e1-ce2874bf44b9

Vergelijking RDBMS - column-oriented store

RDBMS → tabel met rijen en kolommen

Opslag geserialiseerd op rij:

```
001:10, Smith, Joe, 40000;
002:12, Jones, Mary, 50000;
003:11, Johnson, Cathy, 44000;
004:22, Jones, Bob, 55000;
```

Rowld	Empld	Lastname	Firstname	Salary
001	10	Smith	Joe	40000
002	12	Jones	Mary	50000
003	11	Johnson	Cathy	44000
004	22	Jones	Bob	55000

Vergelijking RDBMS - column-oriented store

Column-oriented geserialiseerd op kolomwaarden:

```
10:001,12:002,11:003,22:004;
Smith:001,Jones:002,Johnson:003,Jones:004;
Joe:001,Mary:002,Cathy:003,Bob:004;
40000:001,50000:002,44000:003,55000:004;
```

...;Smith:001;**Jones:002,004**;Johnson:003;...

Rowld	Empld	Lastname	Firstname	Salary
001	10	Smith	Joe	40000
002	12	Jones	Mary	50000
003	11	Johnson	Cathy	44000
004	22	Jones	Bob	55000

LOGICAL TABLE STRUCTURE

MATERIAL	CATEGORY	REVENUE (EUR)
GLOVE	SPORT	500
CAP	SPORT	200
CHAIR	HOUSING	450
TABLE	HOUSING	100
PROTEIN	SPORT	600

ROW STORAGE

GLOVE
SPORT
500
CAP
SPORT
200
CHAIR
HOUSING
450
TABLE
HOUSING
100
PROTEIN
SPORT
600

Column-oriented store

- Werken met kolommen
- Slaan values kolom aaneengesloten op
- Kolomgegevens in specifieke files
- Keys verwijzen naar verschillende kolommen
- Queries mogelijk
- Data in kolomfile → zelfde type → gemakkelijke compressie
- Hoge performantie bij gewone queries en groepsqueries → zeer geschikt voor BI en CRM
- Vb: Hbase Cassandra, SimpleDB, SAP HANA

Wide Column Stores

Table: Customers Row ID: 101 Super Column: Name Column: First Name: Andrew Column: Last Name: Brust Super Column: Address Column: Number: 123 Column: Street: Main Street Super Column: Orders Column: Last_Order: 1501 Row ID: 202 Super Column: Name Column: First Name: Jane Column: Last Name: Doe Super Column: Address Column: Number: 321 Column: Street: Elm Street Super Column: Orders Column: Last Order: 1502

Table: Orders Row ID: 1501 Super Column: Pricing Column: Price: 300 USD Super Column: Items Column: Item 1: 52134 Column: Item 2: 24457 Row ID: 1502 Super Column: Pricing Column: Price: 2500 GBP Super Column: Items Column: Item 1: 98456 Column: Item 2: 59428

Zie Pluralsight: https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-breakdown&clip=3&mode=live&start=191.175816¬eid=5757f4b9-450a-470e-87d2-8a6960d41904

Documented-oriented store

- Verzameling van documenten
- Data in documenten, key geeft toegang
- Niet noodzakelijk vaste structuur
- Documents \rightarrow collections: groepering data
 - → verschillende key-value pairs
 - → geneste documenten
- JSON objecten
- Vanuit applicaties verwijzing via URI's
- Queries mogelijk

Document Stores

Zie Pluralsight: <a href="https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=live&start=168.972099¬eid=f255f879-b8c9-brust&name=understanding-nosql-m1-tech-breakdown&clip=1&mode=f255f879-b8c9-brust&name=understanding-nosql-w1-tech-breakdown&clip=1&mode=f255f879-b8c9-brust&name=understanding-nosql-w1-tech-breakdown&clip=1&mode=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-b8c9-brust&name=f255f879-brust

Graph store

- Slaan data op in grafiek
- Presentatie zeer toegankelijk
- Verzameling nodes en edges
- Indexen voor opzoeking
- Vb: OrientDB, Neo4J, Apache Giraph

Graph Databases

Zie Pluralsight: https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m1-tech-

 $\underline{breakdown\&clip=4\&mode=live\&start=77.868176\¬eid=fb45d5c9-4e66-4d99-8b73-352b6c0de7e6}$

NoSQL, relational, or both?

Figure 13.3. Example implementation of polyglot persistence

Zie Pluralsight: https://app.pluralsight.com/player?course=understanding-nosql&author=andrew-brust&name=understanding-nosql-m5-both&clip=3&mode=live&start=1.257044¬eid=35a1c93e-d59d-4be8-b130-a9928583f170

Recommendations

- Large, public, content-centric properties: NoSQL
- Internal, LOB supporting business operations: relational
- Investment in RDBMS licenses, infrastructure, skills:
 - ¬ Relational
 - Use both (application-dependent)
 - Use hybrid approaches
- Productivity
 - Do cost-benefit analysis
 - How much extra dev time/\$\$?
 - What is cost of less scalable system?
- It will be tempting to use one for the other
 - And it very well may work, but that doesn't make it right

