UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

ANÁLISIS NUMÉRICO

ANS115

UNIDAD III INTERPOLACION NUMERICA

UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

ANÁLISIS NUMÉRICO

ANS115

TEMA

- Diferencias Divididas

Agenda

- Diferencias Divididas
 - Descripción del Método
 - Tablas
 - Ejemplos

Objetivos

- Conceptualizar los métodos matemáticos que resuelven ecuaciones polinomiales.
- Comparar los métodos matemáticos de Lagrange y Diferencias divididas en base a los criterios de eficiencia, precisión y tolerancia.
- Analizar una muestra de datos empleando cada uno de los métodos matemáticos de Diferencias divididas.

Suponga que tenemos los siguientes datos tomados durante la observación de un experimento:

i	X _i	f(x _i)		
0	1.0	0.7651977		
1	1.3	0.6200860		
2	1.6	0.4554022		
3	1.9	0.2818186		
4	2.2	0.1103623		

Tabla de Diferencias Divididas

i	Xi	f(x _i)	1ª Dif. Div	2ª Dif. Div	3ª Dif. Div	4ª Dif. Div
0	1.0	0.7651977				
			$\frac{0.620086 - 0.7651977}{1.3 - 1.0}$	/		
1	1.3	0.6200860		$\frac{-}{1.6-1.0}$	/	
1.5			$\frac{0.4554022 - 0.620086}{1.6 - 1.3}$		- 1.9-1.0	
2	1.6	0.4554022		$\frac{-}{1.9-1.3}$		$\frac{-}{2.2-1.0}$
			0.2818186 – 0.4554022 1.9 – 1.6		<u>-</u> 2.2-1.3	
3	1.9	0.2818186		$\frac{-}{2.2-1.6}$	/	
			0.1103623 – 0.2818186 2.2 – 1.9			
4	2.2	0.1103623	<u> </u>			

Supongamos que $P_n(x)$ es el $n-\acute{e}simo$ Polinomio de Lagrange que concuerda con f en los nodos distintos x_0, x_1, \cdots, x_n .

Las Diferencias Divididas de f respecto a x_0, x_1, \dots, x_n se usan para expresar $P_n(x)$ en la forma :

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

para las constantes apropiadas $a_0, a_1, a_2, \dots, a_n$

Para determinar el valor de las constantes comenzamos con a_0 :

Note que al evaluar
$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \cdots + a_n(x - x_0)(x - x_$$

$$P_n(x_0) = a_0$$
 pero a su vez se tiene que $P_n(x_0) = f(x_0)$.

Así que $a_0 = f(x_0)$.

Para encontrar a_1 , siguiendo el mismo proceso:

$$P_n(x_1) = a_0 + a_1(x_1 - x_0) = f(x_0) + a_1(x_1 - x_0) = f(x_1)$$

$$f(x_1) - f(x_0)$$

$$\Rightarrow \left| a_1 = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} \right|$$

Se define la Diferencia Dividida Cero de f respecto a x_i que se denota por $f[x_i]$, simplemente como el valor $f(x_i)$.

La Primera Diferencia Dividida de f respecto a x_i y x_{i+1} se denota por f $[x_i, x_{i+1}]$, y se define por :

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$

La Segunda Diferencia Dividida de f respecto a x_i , x_{i+1} y x_{i+2} se denota por $f[x_i, x_{i+1}, x_{i+2}]$, y se define por :

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

De manera análoga luego de haber definido las primeras k-1Diferencias Divididas

$$f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k-1}]$$
 y $f[x_{i+1}, x_{i+2}, x_{i+3}, \dots, x_{i+k-1}, x_{i+k}]$

la $\underline{k - \acute{e}sima}$ Diferencia Dividida relativa a $x_i, x_{i+1}, \cdots, x_{i+k}$

es:
$$f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}] = f[x_{i+1}, x_{i+2}, x_{i+3}, \dots, x_{i+k-1}, x_{i+k}] - f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k-1}]$$

$$x_{i+k} - x_i$$

Con esta nueva notación, $P_n(x)$ se puede re - escribir como :

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \dots (x - x_{k-1}).$$

En el ejemplo anterior:

i	X _i	f(x _i)	1ª Dif. Div	2ª Dif. Div	3ª Dif. Div	4ª Dif. Div	
0	1.0	0.7651977				٦	
			-0.4837057				
1	1.3	0.6200860		-0.1087339			1
			-0.548946		0.0658784		i
2	1.6	0.4554022		-0.0494433		0.0018251	
			-0.578612		0.0680685		•
3	1.9	0.2818186		0.0118183			
			-0.571521				1
4	2.2	0.1103623				J	

Si se pidiera por ejemplo interpolar en $\underline{x} = 1.5$, entonces se tendrá en :

$$P_{4}(x) = 0.7651977 - 0.4837057(x-1.0)$$

$$-0.1087339(x-1.0)(x-1.3)$$

$$+0.0658784(x-1.0)(x-1.3)(x-1.6)$$

$$+0.0018251(x-1.0)(x-1.3)(x-1.6)(x-1.9)$$

Al sustituir se tiene que:

$$P_4(x) = 0.51182$$

Algoritmo:

Entrada: los nodos $x_0, x_1, ..., x_n$; los valores $f(x_0), f(x_1), ..., f(x_n)$ como $F_{0,0}, F_{1,0}, ..., F_{n,0}$.

Salida: Los números $F_{0,0}$, $F_{1,1}$,..., $F_{n,n}$. Donde

$$P(x) = \sum_{i=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x - x_{j})$$
Paso 1: Para $i = 1, 2, \dots, n$

$$Para \quad j = 1, 2, \dots, i$$

$$Hacer \quad F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{x_{i} - x_{i-j}}$$
Paso 2: SALIDA $(F_{0,0}, F_{1,1}, \dots, F_{n,n})$; PARAR. $(Aqui \quad F_{i,i} \text{ es } f[x_{0}, x_{1}, \dots, x_{i}])$

Ejemplo: Use un programa para construir polinomios interpolantes de grados **1**, **2** y **3** para x = 8.4 con los siguientes datos:

$$f(8.1) = 16.9441$$
 $f(8.3) = 17.56492$
 $f(8.6) = 18.50515$
 $f(8.7) = 18.82091$

Note que para este ejemplo los nodos <u>NO SON</u> <u>igualmente espaciados</u>, a continuación la ejecución el programa.

```
>> ALG032
Newtons form of the interpolation polynomial
Choice of input method:
1. Input entry by entry from keyboard
2. Input data from a text file
3. Generate data using a function F
Choose 1, 2, or 3 please
Input n
3
Input X(0) and F(X(0)) on separate lines
8.1
 16.9441
Input X(1) and F(X(1)) on separate lines
8.3
 17.56492
```

Input X(2) and F(X(2)) on separate lines 8.6 18.50515 Input X(3) and F(X(3)) on separate lines 8.7 18.82091

NEWTONS INTERPOLATION POLYNOMIAL

Input data follows:

```
X(0) = 8.10000000 F(X(0)) = 16.94410000

X(1) = 8.300000000 F(X(1)) = 17.56492000

X(2) = 8.600000000 F(X(2)) = 18.50515000

X(3) = 8.700000000 F(X(3)) = 18.82091000
```

The coefficients Q(0,0), ..., Q(N,N) are:

16.94410000

3.10410000

0.06000000

-0.00208333

Ya que se pide interpolar en x = 8.4, entonces se tendrá en:

$$P_3(x) = 16.9441 + 3.1041(x - 8.1) + 0.0600(x - 8.1)(x - 8.3) - 0.00208333(x - 8.1)(x - 8.3)(x - 8.6)$$

Al sustituir se tiene que:

$$P_3(8.4) = 17.87714249998000$$

```
>> ALG032_DIF_DIV
Forma del polinomio de interpolación de NEWTON
Elija el método de entrada:
1. Ingresar entrada por medio del teclado
2. Ingresar datos desde un archivo de texto
3. Generar datos unsando una función F
Escoja 1, 2, o 3 por favor
Ingrese n
3
Ingrese X(0) y F(X(0)) en líneas separadas
8.1
16.9441
Ingrese X(1) y F(X(1)) en líneas separadas
8.3
17.56492
```

```
Ingrese X(2) y F(X(2)) en líneas separadas
8.6
18.50515
Ingrese X(3) y F(X(3)) en líneas separadas
8.7
18.82091
Seleccione el tipo de salida
1. Pantalla
2. Archivo de texto
Ingrese 1 o 2
```

INTERPOLACION POLINOMIAL DE NEWTON

Los datos de entrada son:

```
X(0) = 8.10000000 F(X(0)) = 16.94410000

X(1) = 8.300000000 F(X(1)) = 17.56492000

X(2) = 8.600000000 F(X(2)) = 18.50515000

X(3) = 8.700000000 F(X(3)) = 18.82091000
```

****** MATRIZ ******

```
16.94410000
17.56492000 3.10410000
18.50515000 3.13410000 0.06000000
18.82091000 3.15760000 0.05875000 -0.00208333
```

Gracias por su atención!!