

# **CONTRÔLE PÉRIODIQUE 1** E2024

**SOLUTIONNAIRE** 

## Exercice 1 (3 points)

Considérez les propositions suivantes concernant un serveur donné.

P: Le serveur est fonctionnel.

Q: Le serveur est joignable par le réseau.

R: Le serveur est dans un état récupérable.

Traduisez les déclarations ci-dessous en logique propositionnelle.

a. (1.5 point) Le serveur n'est plus fonctionnel dès qu'il n'est plus joignable par le réseau.

Réponse :  $\neg Q \rightarrow \neg P$ 

b. (1.5 point) Le serveur est dans un état récupérable si et seulement s'il est encore joignable par le réseau, mais qu'il est dans un état non fonctionnel.

**Réponse**:  $R \leftrightarrow (Q \land \neg P)$ 

# Exercice 2 (4 points)

Soit les définitions suivantes :

- **U** : univers du discours, celui des études à Polytechnique Montréal.
- Aime(x, y) : x aime y
- Suivi(x, y) : x à suivi le cours y
- E(x): x est une personne étudiante
- C(x): x est un cours offert par Polytechnique Montréal
- m : Mathématiques

Exprimez les négations des propositions suivantes en utilisant des quantificateurs et les définitions ci-dessus.

a. (1.75 point) Toutes les personnes étudiantes aiment les mathématiques.

#### **Réponse:**

L'énoncé se traduit comme suit :

•  $\forall x \in U$ ,  $E(x) \rightarrow Aime(x, m)$ 

Sa négation est donc :

•  $\exists x \in U, E(x) \land \neg Aime(x, m)$ 

#### Note

La traduction de l'énoncé se traduit comme suit n'est pas admise :

•  $\forall x \in U$ ,  $E(x) \land Aime(x, m)$ 

Car sa négation ci-dessous ne traduit pas la négation de l'énoncé. :

•  $\exists x \in U, \neg E(x) \lor \neg Aime(x, m)$ 

c. (2.25 points) Il y a une personne étudiante qui a suivi tous les cours de mathématiques offerts par Polytechnique Montréal.

### Réponse:

L'énoncé se traduit comme sous l'une des formes suivantes :

•  $\exists x \in U, E(x) \rightarrow [C(m) \land Suivi(x, m)]$ 

Sa négation est donc :

•  $\forall x \in U$ ,  $E(x) \land [\neg C(y) \lor \neg Suivi(x, m)]$ 

# **Note**

Les traductions suivantes sont tolérées.

- $\exists x \in U$ ,  $E(x) \land C(m) \land Suivi(x, m)$ ]
- $\exists x \in U, E(x) \rightarrow [C(m) \rightarrow Suivi(x, m)]$

Ainsi les négations respectives sont admises mais avec une partie de la note pour la première.

- $\forall x \in U$ ,  $[\neg E(x) \lor \neg C(m) \lor \neg Suivi(x, m)]$
- $\forall x \in U$ ,  $[(E(x) \land C(m)) \rightarrow \neg Suivi(x, m)]$
- $\forall x \in U$ ,  $[E(x) \land C(m) \land \neg Suivi(x, m)]$

## Exercice 3 (6 points)

Une personne étudiante fait la déclaration suivante.

<< Fumer est nocif pour la santé. Boire sans modération aussi, d'ailleurs. Quand je ne fume pas, je bois sans modération. Ces habitudes mettent donc ma santé en danger.>>

En vous basant sur les définitions, les traductions ci-dessous, vos connaissances en logique ainsi que les règles d'inférence vu en cours, que dites-vous du raisonnement de cette personne ? Vous devez numéroter et justifier convenablement les étapes de votre raisonnement.

#### **Définitions**

F: Fumer

B: Boire sans modération

R : Existence d'un risque pour la santé

#### **Traductions**

| Énoncé                                         | Expression logique    |
|------------------------------------------------|-----------------------|
| Fumer est nocif pour la santé.                 | $H1:F\rightarrow R$   |
| Boire sans modération est nocif pour la santé. | $H2: B \rightarrow R$ |
| Quand je ne fume pas, je bois sans modération. | H3 : ¬F → B           |
| Ma santé en danger.                            | C:R                   |

# **<u>Réponse</u>**: Plusieurs solutions sont possibles.

# **Solution 1**

| 1. $\neg F \rightarrow B$              | H3                                                                   |
|----------------------------------------|----------------------------------------------------------------------|
| $2.  \neg B \rightarrow \neg (\neg F)$ | Ligne 1 et équivalence par contraposition                            |
| 3. $\neg B \rightarrow F$              | Ligne 2 et application de la loi de double négation                  |
| 4. $F \rightarrow R$                   | H1                                                                   |
| 5. $\neg B \rightarrow R$              | Lignes 3 et 4 et application de la règle du syllogisme par hypothèse |
| 6. $\neg R \rightarrow \neg (\neg B)$  | Ligne 5 et équivalence par contraposition                            |
| 7. $\neg R \rightarrow B$              | Ligne 6 et application de la loi de double négation                  |
| 8. $B \rightarrow R$                   | H2                                                                   |
| 9. $\neg R \rightarrow R$              | Lignes 7 et 8 et application de la règle du syllogisme par hypothèse |
| 10. ¬(¬R) ∨ R                          | Ligne 9 et traduction de l'implication en disjonction                |
| 11. R V R                              | Ligne 10 et application de la loi de double négation                 |
| 12. R                                  | Ligne 11 et application de la loi d'idempotence                      |
| 13. C                                  | Ligne 12 et définition                                               |

## **Conclusion**

Le raisonnement de la personne étudiante est bien valide.

# **Solution 2**

| 1. $\neg F \rightarrow B$             | H3                                                                   |
|---------------------------------------|----------------------------------------------------------------------|
| 2. $\neg B \rightarrow \neg (\neg F)$ | Ligne 1 et équivalence par contraposition                            |
| 3. $\neg B \rightarrow F$             | Ligne 2 et application de la loi de double négation                  |
| 4. $F \rightarrow R$                  | H1                                                                   |
| 5. $\neg B \rightarrow R$             | Lignes 3 et 4 et application de la règle du syllogisme par hypothèse |
| 6. ¬(¬B) ∨ R                          | Ligne 5 et traduction de l'implication en disjonction                |
| 7. B V R                              | Ligne 6 et application de la loi de double négation                  |
| 8. $B \rightarrow R$                  | H2                                                                   |
| 9. ¬B∨R                               | Ligne 8 et traduction de l'implication en disjonction                |
| 10. (R V R)                           | Lignes 7 et 9 et application de la loi de la résolution              |
| 11. R                                 | Ligne 10 et application de la loi d'idempotence                      |
| 12. C                                 | Ligne 11 et définition                                               |
|                                       |                                                                      |

# **Conclusion**

Le raisonnement de la personne étudiante est bien valide.

## Exercice 4 (4.5 points)

Soit *g* la fonction qui donne le reste de la division entière par 10.

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

a. (1.5 point) Si g est définie de  $\mathbb N$  vers S, est-elle injective ? Justifiez votre réponse.

## Réponse:

On peut montrer que g n'est pas injective en utilisant un contre-exemple. En effet, g(0) = 0 et g(10) = 0. 0 et 10 ont la même image qui est 0. D'où g n'est pas injective.

b. (1.5 point) Si g est définie de  $\mathbb N$  vers S, est-elle surjective ? Justifiez votre réponse.

## Réponse:

On note que  $\forall x \in \mathbb{N}$ ,  $g(x) \in S$ . En effet, tout reste de la division entière par 10 est inférieur à 10, donc compris entre 0 et 9. Tout reste de la division entière par 10 appartient donc à S.

Ainsi,  $\forall y \in S$ ,  $\exists x \in \mathbb{N}$ , g(x) = yD'où g est surjective.

c. (1.5 point) Si g est définie de S vers S, est-elle injective ? Justifiez votre réponse.

#### Réponse :

```
On note que \forall x \in S, g(x) = x.
Ainsi, \forall x \in S, [g(x) = g(y)] \rightarrow (x = y)
D'où g est injective sur S.
```

# Exercice 5 (2.5 points)

Soit A, B et C trois ensembles. On a :

- $A = \{ x \in \mathbb{R} \mid |x 3| < 2 \}$
- $B = \{ x \in \mathbb{R} \mid x < 2 \}.$

Déterminez  $C = A \cap B$ 

#### Réponse :

```
On a : A = ] 1, 5 [ et B = ] -\infty, 2[ Ainsi C=]1,2[
```