# UNCLASSIFIED

# AD 247 660

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA



UNCLASSIFIED





THERM ADVANCED RESEARCH

THERM

A COMPUTATIONAL PROGRAM AND EXTENDED TABULATION OF LEGENDRE FUNCTIONS OF SECOND KIND AND HALF ORDER

by

Marshall M. Sluyter

TAR-TR 601-

August 1960

Submitted to the Air Branch, Office of Naval Research in Partial Fulfillment of Contract Honr-2859(CO)

double Earl Ordway
Head, Aerophysics Section

Approved:

a Ritter

A. Ritter Director Therm Advanced Research

# **DISCLAIMER NOTICE**

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

#### ACKNOWLEDGMENT

The author wishes to express his appreciation to Mrs. Joan Capps of the Cornell Computing Center for her helpful advice.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

#### ABSTRACT

This report presents a tabulation of Legendre functions of second kind and half integral order,  $Q_{n-\frac{1}{2}}(z)$ , for orders from  $\frac{1}{2}$  through  $10\frac{1}{2}$ , with an accuracy of one unit variation in the fifth digit. The arguments are given by  $z=(1+y^2)$  with  $\Delta y=0.01$  and their range extends from 1.0001 to the terminal argument at which the function is equal to or less than 0.00001. Also included is a tabulation of  $Q_{n-\frac{1}{2}}(z)$  for the same range of order and argument where the argument is given by z=(1+y) with  $\Delta y=0.1$ . A general description of the computational program and program flow charts is included.

# TABLE OF CONTENTS

D

[2]

|          |                                                                           | Page |  |
|----------|---------------------------------------------------------------------------|------|--|
| INTRODUC | CTION                                                                     | 1    |  |
| CHAPTER  | ONE: MATHEMATICAL RELATIONSHIPS                                           | 5    |  |
| 1.1      | General Properties of the<br>Legendre Function                            | 5    |  |
| 1.2      | Series Representation for Large<br>Values of the Argument                 | 7    |  |
| 1.3      | Series Representation for Small Values of the Argument                    | 8    |  |
| 1.4      | Recurrence Formulas                                                       | 9    |  |
| 1.5      | Relationship Between $Q_{n-\frac{1}{2}}^{\prime}(z)$ and Riegels Function | 12   |  |
| CHAPTER  | TWO: COMPUTATIONAL PROCEDURES                                             | 14   |  |
| 2.1      | General Discussion                                                        | 14   |  |
| 5.2      | Computation of Small Arguments, $1.0001 \le z \le 1.09000$                | 14   |  |
| 5.3      | Computation of Moderate Arguments, $1.0900 \le z \le 5.0000$              | 15   |  |
| 2.4      | Computation of Large Arguments, $5.0000 \le z \le \infty$                 | 17   |  |
| 2.5      | Accuracy Checks                                                           | 17   |  |
| 2.6      | Sub-routine Selection in the<br>Master Program                            | 19   |  |
| CHAPTER  | THREE: PLOW CHARTS                                                        | 50   |  |
| CHAPTER  | FOUR: TABULATIONS                                                         | 34   |  |
| REFEREN  | REFERENCES                                                                |      |  |

# SYMBOLS

 $r_{d}$ 

| anp'bnp            | coefficients in the expansion for $\Omega_{n-\frac{1}{2}}$ |
|--------------------|------------------------------------------------------------|
| c                  | complex contour of integration                             |
| $G_n(\kappa^2)$    | Riegels function                                           |
| i                  | (-1) <sup>1/3</sup>                                        |
| n,p                | real integer numbers                                       |
| P <sub>n</sub> (z) | Legendre function of first kind                            |
| Q <sub>n</sub> (z) | Legendre function of second kind                           |
| t                  | dummy variable of integration                              |
| u                  | a solution of the Legendre equation                        |
| z                  | argument of Legendre function                              |
|                    |                                                            |
| <sup>o</sup> n0    | Kronecker delta                                            |
| 7()                | Gamma function                                             |

#### A COMPUTATIONAL PROGRAM AND EXTENDED TABULATION OF LEGENDRE FUNCTIONS OF SECOND KIND AND HALF ORDER

#### INTRODUCTION

The preparation of these exterled tables of the Legendre function of second kind and half order is an outgrowth of our theoretical study of three-dimensional flow through ducted propellers. Its origin is connected with the determination of the velocity field induced by the complete configuration, see Fig. 0.1. In our particular model, radial vortex lines, circular vortex rings and semi-infinite helical vortices replace the propeller blades, the duct and their shed vorticity, respectively. The velocity fields generated by these vortices are found from integrations of the Biot-Savart law.

14

In other related studies similar integrations of the Biot-Savart law have been performed with results expressed in terms of elliptic functions and/or Bessel functions. For example, D. Küchemann and J. Weber<sup>2</sup> have determined the velocity field of a constant-strength circular vortex ring in terms of complete elliptic integrals. T. Moriya<sup>3</sup> has integrated the Biot-Savart law along a helical path, finding the velocity field due to shed vortices from the propeller as integrals of Bessel functions.

In the present study, a great simplification was possible by the Fourier analysis of the velocity fields of both propeller and shroud. This yielded expressions in terms of the



}

GENERAL DUGTED PROPELLER CONFIGURATION 1

Legendre functions of second kind and half integral order. Of foremost importance, however, was the bringing into focus of the pertinent physical properties of these components. The order (n-\frac{1}{2}) of the Legendre function appears as (mN-\frac{1}{2}) where m is the number determining the rank of the term in the Pourier series expansion and N the number of propeller blades. The arguments, in general, become functions of the distances between the field point and the vortex elements and lie in the interval from plus one to positive infinity. For all orders in this range, the functions have a logarithmic singularity at an argument of plus one and decay monotonically to zero at positive infinity. For a given argument, the further monotonic decay with increasing order from minus one half facilitates the study of the higher harmonics of the velocity field.

In order to carry out, on a Burroughs 220 Complex, the calculations required by the analysis, provisions for the computation and storing of the Legendre functions were required. A sub-project was initiated, aimed at establishing a computational routine for the half-integer Legendre functions of the second kind and their subsequent tabulation as part of the overall program. The criteria selected were that a prescribed accuracy of not more than one digit error in the fifth decimal place be maintained throughout the range of calculation and that the sequence of arguments be such that three point interpolation yield the same accuracy. Consistent with

€.

these criteria, values of the Legendre functions less than 0.00001 were not calculated.

A general discussion of the properties and behavior of the Legendre functions is contained in Chapter One. The important features of the computational program and the checking procedure follow in Chapter Two. Finally, the detail computational flow charts and tables are presented in Chapters Three and Four, respectively.

The National Bureau of Standards Tables of Associated Legendre Functions provide values of the Legendre functions of the second kind and half order for arguments from one to ten in increments of 0.1, and for orders from minus one-half to four and one-half. It is believed that the interim tables published herein fill, at present, an important gap in the calculated values of these Legendre functions.

#### CHAPTER ONE

#### MATHEMATICAL RELATIONSHIPS

# 1.1 General Properties of the Legendre Function

It is known that the Legendre equation,

$$(1-z^2) \frac{d^2u}{dz^2} - 2z \frac{du}{dz} + n(n+1)u = 0$$
 (1.1)

is satisfied, in general, by an expression of the type

$$u = \frac{1}{2\pi i} \oint_C \frac{(1-t^2)^n}{2^n(z-t)^{n+1}} dt$$
 (1.2)

provided that the contour of integration taken is such that

$$\frac{(1-t^2)^{n+1}}{(z-t)^{n+2}}$$

returns to its original value after completing the contour<sup>5</sup>. In the form above, Eq. (1.1) is a particular case of the Gegenbauer equation

$$(1-z^2)\frac{d^2u}{dz^2} - 2(1+\beta)z\frac{du}{dz} + n(n+2\beta+1)u = 0$$
 (1.3)

with  $\beta = 0$ .

One form of Eq. (1.2) is the Legendre function of the first kind, usually denoted by  $P_{n}(z)$ , namely

$$P_{n}(z) = \frac{1}{2\pi i \ 2^{n}} \oint_{C} \frac{(1-t^{2})^{n}}{(z-t)^{n+1}} dt \qquad (1.4)$$

where n is the unrestricted order and C is the contour of integration as shown in Ref. 6. For non-integer orders a cut is needed along the negative real axis from -1 to  $-\infty$  in order to make  $P_n(z)$  single valued.

A second form, with which this report is concerned, is the Lagendre function of the second kind valid for half and integer n,

$$Q_n(z) = \frac{1}{2^{n+1}} \int_{-1}^{1} \frac{(1-t^2)^n}{(z-t)^{n+1}} dt$$
 (1.5)

which is obtained from the general solution through a suitable path of integration<sup>6</sup>. If n is any positive integer or zero, Eq. (1.5) can be integrated in closed form, yielding

$$Q_1(z) - \frac{1}{2} z \ln \left( \frac{z+1}{z-1} \right) - 1$$
; etc. (1.6)

In order to express  $Q_n(z)$  in half integer orders, replace n by  $n^{-1}\xi$  in Eq. (1.5), or

 $Q_0(z) = \frac{1}{2} \ln \left( \frac{z+1}{z-1} \right)$ 

$$Q_{n-\frac{1}{2}}(z) = \frac{1}{2^{n+\frac{1}{2}}} \int_{1}^{1} \frac{(1-t^2)^{n-\frac{1}{2}}}{(z-t)^{n+\frac{1}{2}}} dt$$
 (1.7)

The singularity at  $z = \pm 1$  for this form remains the same

as that for Eq. (1.6). An alternate expression for Eq. (1.7) can be written as  $^{7}$ 

$$Q_{n-k_2}(z) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos 2n\tau}{(a^2 + 4 \sin^2\tau)^{k_2}} d\tau$$
 (1.8)

where  $z = 1 + \frac{a^2}{2}$ . It is valid for all real arguments as well as for emplex values of a except along the cut from -21 to  $-i\infty$  in the complex plane<sup>7</sup>. Eqs. (1.7) and (1.8) were found to be suitable for different ranges of the numerical calculations.

### 1.2 Series Representation for Large Values of the Argument

For large values of its argument,  $Q_{n-\frac{1}{2}}(z)$  approache zero asymptotically as z tends to infinity. To obtain an appropriate series the integrand in Eq. (1.5) is expanded in a power series in inverse powers of z which is uniformly convergent with respect to z, and the following hypergeometric series z is obtained.

$$Q_{n}(z) = \frac{(\pi)^{\frac{1}{2}}}{(2z)^{n+1}} \frac{\Gamma(n+1)}{\Gamma(n+3/2)} F(\frac{1}{2} + \frac{n}{2}, 1 + \frac{n}{2}, n + \frac{3}{2}, 1/z^{2})$$
 (1.9)

Replacing the hypergeometric series and setting n equal to  $n\!-\!\frac{1}{2}$ , one obtains:

$$Q_{n-\frac{1}{2}}(z) = 2^{n-\frac{1}{2}} \sum_{p=0}^{\infty} \frac{2^{p} r^{2}(n+p+\frac{1}{2})}{p! (2n+p)!} (z+1)^{-n-p-\frac{1}{2}}$$
(1.10)

The behavior of this function for large argument is governed by the leading term thus, for  $z\to \infty$ 

$$Q_{n, \frac{1}{2}}(z) \sim \frac{\pi}{2^{3n+\frac{1}{2}}} \frac{(2n)!}{(n!)^2} \frac{1}{z^{n+\frac{1}{2}}}$$
 (1.11)

## 1.3 Series Representation for Small Values of the Argument

As noted before the Legendre function of second kind has a logarithmic singularity at  $z=\pm 1$ . In the ducted propeller application we are interested only at the point  $z=\pm 1$ . An appropriate series expression can be obtained by substituting a solution of the form

$$Q_{n-\frac{1}{2}}(z) = \sum_{p=0}^{\infty} a_{np}(z-1)^p + \ln(z-1) \sum_{p=0}^{\infty} b_{np}(z-1)^p$$
 (1.12)

into Eq. (1.1) with n set equal to  $(n-\frac{1}{2})$ . By comparison of the coefficients of powers of (z-1) the following recurrence formulas for the coefficients  $a_{np}$  and  $b_{np}$  are:

$$b_{np+1} = b_{np} \frac{n^2 - k - p(p+1)}{2(p+1)^2}$$
 (1.13)

$$a_{np+1} = a_{np} \frac{n^2 - k - p(p+1)}{2(p+1)^2} - b_{np} \frac{2(n^2 - k) + (p+1)}{2(p+1)^3}$$
 (1.14)

The leading coefficients,  $a_{n0}$  and  $b_{n0}$ , can be determined<sup>7</sup> from the comparison of Eq. (1.12) with the expression for  $Q_{n-k}(z)$  as given by Hobson<sup>8</sup>:

$$a_{n0} = (5/2) \ln 2 - 2[1 + 1/3 + 1/5...1/2n-1] (1 - \delta_{n0})$$

$$b_{n0} = -1/2$$
 (1.15)

The general behavior of these constants is shown on logarithmic scale in Pigs. 1.1 and 1.2. Their values are tabulated in Tables 4.1 and 4.2 for  $1 \le n \le 11$  and  $0 \le p \le 9$ .

#### 1.4 Recurrence Formulas

Recurrence formulas, valid for Legendre functions of both the first and second kind are reproduced below for convenience<sup>5</sup>:

$$Q_{n-k}(z) = \frac{1}{2n} \{ Q'_{n+1/2}(z) - Q'_{n-3/2}(z) \}$$
 (1.16)

$$Q'_{n-\frac{1}{2}}(z) = \frac{n-\frac{1}{2}}{z^2-1} \left[ zQ_{n-1/2}(z) - Q_{n-3/2}(z) \right]$$
 (1.17)

$$Q_{n+\frac{1}{2}}(z) = \frac{2nz}{n+\frac{1}{2}} Q_{n-1/2}(z) - \frac{n-\frac{1}{2}}{n+\frac{1}{2}} Q_{n-3/2}(z)$$
 (1.18)

$$Q'_{n+\frac{1}{2}}(z) = \frac{2nz}{n-\frac{1}{2}} Q'_{n-1/2}(z) - \frac{n+\frac{1}{2}}{n-\frac{1}{2}} Q'_{n-3/2}(z)$$
 (1.19)

$$Q_{n-k_2}(z) = Q_{-n-k_2}(z)$$
 (1.20)

$$Q'_{n-l_2}(z) = Q'_{-n-l_2}(z)$$
 (1.21)



VARIATION OF THE COEFFICIENTS  $a_{\mathbf{n}\mathbf{0}}$  AND  $b_{\mathbf{n}\mathbf{0}}$  WITH ORDER  $\mathbf{n}$ 



VARIATION OF THE COEFFICIENT  $a_{n1}$  AND  $b_{n1}$  WITH ORDER n

# 1.5 Relationship Between $Q_{n-\frac{1}{2}}(z)$ and Riegels Function

The derivative of  $\,Q_{n-1}(z)\,$  is obtained from the differentiation of Eq. (1.8) with respect to the parameter  $a^2$  , thus

$$Q'_{n-\frac{1}{2}}(1+\frac{a^2}{2}) = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos 2n\tau}{(a^2+4\sin^2\tau)^{3/2}} d\tau$$
 (1.22)

where the prime denotes differentiation with respect to the argument. Eq. (1.22) can be related to the function  $\mathbf{G}_{\mathbf{n}}(\mathbf{k}^2)$  defined by F. Riegels<sup>9,10</sup> in his research on the aerodynamics of slender, quasi-axisymmetric bodies. This function is defined by

$$G_n(k^2) = (-1)^n \int_0^{\frac{\pi}{2}} \frac{\cos \xi_n \tau}{(1 - k^2 \sin^2 \tau)^{3/2}} d\tau$$
 (1.23)

and comparison with Eq. (1.22) yields:

$$Q'_{n-\frac{1}{2}}(1+\frac{a^2}{2}) = -\frac{1}{4}\left[\frac{\mu}{a^2+\mu}\right]^{3/2}G_n\left[\frac{\mu}{a^2+\mu}\right]$$
 (1.24)

For small arguments; i.e., in the neighborhood of  $k^2\!=\!1$  , Riegels has expanded  $\,G_n(k^2)\,$  in the form

+ ....

where  $k^{2} = 1-k^{2}$ . Although not given in analytical form, numerical values for the constants  $c_{n_{2}}$  and  $d_{n_{2}}$  were presented. Their analytical representation is possible, though, by series expansion of Eq. (1.24) and term by term comparison. Thus,

$$c_{n_2} = 4 (n^2 - \frac{1}{3})(1 + \frac{1}{3} + \dots + \frac{1}{2n-1}) - (n^2 + \frac{1}{3})$$

$$d_{n_2} = -2 (n^2 - \frac{1}{3}) \qquad (1.26)$$

A comparison of Riegels' coefficients as tabulated in Ref. 9 and as calculated from Eqs. (1.26) is shown in Table 4.3, for  $0 \le n \le 7$ .

#### CHAPTER TWO

#### COMPUTATIONAL PROCEDURES

#### 2.1 General Discussion

For the numerical calculations required in the ducted propeller study a range of both order and argument was anticipated. The formulas presented in the previous chapter can be used to calculate numerically the values of the Legendre function of the second kind and half order over these ranges. In particular, for any order the integral representations are appropriate for moderate values of the argument and the series representations for the extreme values. Recurrence formulas in general were not considered desirable in view of error accumulation.

The argument for the main tabulation was generated by  $z = 1+y^2$  where y varied in increments of 0.01. This provided satisfactory variation for low arguments where the value of the Legendre function is large, and yet converged fast enough toward higher arguments where the function is considerably smaller. In addition, another set of values was calculated by using z = 1+y with y = 0.1. Values for both variations of argument are tabulated in Chapter Four.

# 2.2 Computation of Small Arguments, $1.0001 \le z \le 1.0900$

For small values of the argument, a trial run was made using the specialized expression Eq. (1.12) for  $1.1 \le z \le 1.95$ . The desired accuracy was achieved by adding terms in the series

until the difference between two consecutive values was less than 0.00001. It was noted, though, that beyond a certain point, which varies with order and argument, the magnitude of the Legendre function showed a tendency to increase as the order increased. This erroneous behavior was attributed to error accumulation in the higher coefficients since they are of a recursive nature, see Eqs. (1.13) and (1.14). This clearly indicated that the series was not suitable whenever a large number of terms had to be included. By comparison with other results, an argument of 1.09 was the point chosen to designate the upper limit of applicability for Eq. (1.12).

For more critical criteria of accuracy this upper limit would be even closer to the singular point. The error accumulation in the coefficients given by Eqs. (1.13) and (1.14) could have been raduced by using a double precision technique, thus increasing the range of application of Eq. (1.12). However, for expediency, an alternate formulation was selected for the next segment of the argument spectrum.

# 2.3 Computation of Moderate Arguments, 1.0900 $\leq z \leq 5.0000$

For this argument range, Eqs. (1.7) and (1.8) were used. The numerical integration process was based on the generalized Simpson rule

$$\int_{A}^{B} f(x)dx = \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 4f_{m-3})$$

$$+2f_{m-2} + 4f_{m-1} + f_m) - \frac{mh^5}{180} f^{1v}(\xi) \qquad (2.1)$$

where m is the number of intervals, h is the uniform increment in the variable of integration, and

$$f_0 = f(A)$$

$$f_k = f(A + kh)$$

$$f_m = f(B)$$

with  $\xi$  being any value of the variable of integration between the limits of integration. If  $f^{iv}$  is continuous throughout the interval of integration (A,B), the error diminishes like  $1/n^4$  as  $n \to \infty$ .

In general, Eq. (1.7) was preferred. However, the fourth derivative of the integrand is singular at  $t=\pm 1$  for  $0 \le n \le 4$ , making this form unacceptable. On the other hand, Eq. (.18) does not have this singular behavior and, since it is acceptable, it was used for this range.

The form of Eq. (1.8) was correlated with the argument  $z = 1+y^2$  by replacing  $\frac{a^2}{2}$  with  $y^2$ . Doing this one has

$$Q_{n-\frac{1}{2}}(1+y^2) = 2\int_0^{\frac{\pi}{2}} \frac{\cos 2n\tau \, d\tau}{(2y^2 + 4 \sin^2 \tau)^{\frac{1}{2}}}$$
 (2.2)

from changing the limits of integration since the expression is an even function of  $\tau$ . In this form, the arguments can be correlated regardless of formula used.

The number of intervals needed to satisfy the prescribed

criterion of accuracy was determined at numerous discrete points covering the entire anticipated range of argument and order. This was accomplished by calculating the maximum value of the fourth derivative within the interval of integration for each of the arguments considered and setting the remainder term equal to 0.00001. To simplify the computing procedure, the argument spectrum was further separated into several sub-ranges, and the maximum number of intervals within each sub-range was used throughout that sub-range as indicated in Fig. 2.1. For convenience, the argument range of Eqs. (1.10) and (1.12) is also shown.

As an example, Eq. (1.8) required 300 intervals for the range  $1.0900 \le z \le 1.2025$  while for the same argument range, Eq. (1.7) required 400 intervals. With either equation, the argument range was split into small overlapping sub-ranges and the number of intervals varied. The values of the function were compared in the overlapped regions in order to check their accuracy.

# 2.4 Computation of Large Arguments, 5.0000 $\leq$ z < $\approx$

The series formula of Eq. (1.10) was used for the calculation of large arguments. The computing range started at z=5.0000 and continued up to that value of z for which  $Q_{n-\frac{1}{2}}(z) \leq 0.00001$ . This terminal argument is a function of order, decreasing very rapidly as the order increases.

#### 2.5 Accuracy Checks

For the integral forms, calculated values corresponding



NUMBER OF INTERVALS h VS ARGUMENT RANGE

to  $1.1 \le z \le 5.0$  in increments of 0.1 for  $0 \le n \le 5$  were compared with the available values from the N.B.S. tables and agreement with each entry to the specified number of digits was found. In addition, three-point interpolation of the values at arguments given by  $z = (1+y^2)$  were compared and checked with these values for  $0 \le n \le 5$ . For certain ranges of n above 5, the computation program was checked by varying the number of intervals. No changes are detected up to the fifth digit.

In the case of the series, terms were added, as previously noted, until two consecutive values of the resulting function did not differ by more than 0.00001.

#### 2.6 Sub-routine Selection in the Master Program

The five sub-routines, corresponding to Eqs. (1.7), (1.8), (1.10), and (1.12) as well as an interpolation program for 1.0900  $\leq z \leq 3.2560$  and  $0 \leq n \leq 4$ , were stored at appropriate locations. In the actual computation, the argument and order were calculated first. Proper branching was then introduced such that the program automatically selected the correct sub-routine.

#### FLOW CHARTS

In this chapter are included the flow charts representing the programming of the four equations used in the computation of the Legendre functions of second kind and half order.

They are:

| Eq. 1.7  | Plow Chart No. 3.1 |  |
|----------|--------------------|--|
| Eq. 1.8  | Flow Chart No. 3.2 |  |
| Eq. 1.10 | Flow Chart No. 3.3 |  |
| Eq. 1.12 | Plow Chart No. 3.4 |  |

Quantities in the Flow Charts marked with an asterisk (\*) are part of subsequent computations for which the Legendre functions are the input data.

## PROGRAM FLOW CHART NO. 3.1

$$Q_{n-\frac{1}{2}}(z) = \frac{1}{2^{n+\frac{1}{2}}} \int_{-1}^{1} \frac{(1-t^2)^{n-\frac{1}{2}}}{(z-t)^{n+\frac{1}{2}}} dt$$





ļ

. .

\* \*\*\*\*\*\*\*\*\*\*

··· · ·

# PROGRAM FLOW CHART NO. 3.2

$$Q_{n-\frac{1}{2}}(1+\frac{a^2}{2}) = 2\int_0^{\frac{\pi}{2}} \frac{\cos 2n\tau}{(a^2+4\sin^2\tau)^{\frac{1}{2}}} d\tau$$





.,...

$$Q_{n-\frac{1}{2}}(z) = 2^{n-\frac{1}{2}} \sum_{p=0}^{\infty} \frac{2^{p} r^{2}(n+p+\frac{1}{2})}{p!(2n+p)!} (z+1)^{-n-p-\frac{1}{2}}$$





of his. algodicate on average

•

,





--

:

#### PROGRAM FLOW CHART 3.4

$$o_{n-\frac{1}{2}}(z) = \sum_{p=0}^{\infty} a_{np}(z-1)^p + \ln(z-1) \sum_{p=0}^{\infty} b_{np}(z-1)^p$$



\_





.



A STATE OF THE STA



equantit es in  $A_{\Gamma}$ ,  $A_{\Gamma}'$ ,  $B_{\Gamma}$  Program, pertinent to the flow field of the ducted propeller.

### CHAPTER FOUR TABULATIONS

This chapter contains tables of the coefficients  $a_{np}$  and  $b_{np}$  for the small argument expression of  $Q_{n-1}(z)$ , see Eq. 1.12; a comparison of Riegels' Coefficients with the present computations, see Eq. 1.25; and finally, the cabulation of  $Q_{n-1}(z)$  for  $1 \le n \le 11$  arranged in increasing order. The accuracy of the tabulated values is  $\pm 0.00001$ . For the lower values of order n, the decay of  $Q_{n-1}(z)$  with increasing argument became less than the criterion of accuracy used. To avoid repeated values of the functions only those arguments for which the functions showed a greater change are printed. Between two successive arguments, the function may be assumed stationary. The starting argument for such a behavior is marked with an asterisk (\*).

COEFFICIENTS and FROM THE SERIES EXPANSION, Eq. (1.12)

 $1 \le n \le 11$  ,  $0 \le p \le 9$ 

|                           | #ļ         | ทุทุกอาจากผล                                                                                                                                                      | н          | 22244671-08                                                                                                                                               |
|---------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 4          | -2. 9774365<br>7. 9923170<br>-4. 9319958<br>1. 5416869<br>1. 0743704<br>3. 2340385<br>3. 9626060<br>-1. 0766607<br>-8. 3490730<br>-3. 1629255<br>-9. 2188160      | <b>%</b>   | 3.0545326<br>-4.475875<br>8.5421695<br>-2.1566015<br>7.4091627<br>-3.6388782<br>2.6388782<br>-4.1685044<br>2.6772062<br>5.1402364                         |
|                           | <b>н</b>   | #N-1000-NN##                                                                                                                                                      | *•         | 2 4 4 4 W W L L W W W                                                                                                                                     |
|                           | <b>A</b> 3 | 9. 5135320<br>-3. 9933828<br>9. 5196744<br>4. 4800694<br>7. 7372610<br>-5. 9520900<br>-8. 2289150<br>-8. 2289150<br>-2. 0735340                                   | 8 <b>V</b> | -7.0846231<br>1.0960892<br>-2.2987587<br>6.6979767<br>-2.8393459<br>1.9158619<br>-2.5302714<br>1.4652644<br>2.4432132<br>1.8700993                        |
| •                         | ы          | 21010110000                                                                                                                                                       | <b>+</b>   | 444444000000                                                                                                                                              |
| a h h A x 10 <sup>r</sup> | <b>\$</b>  | -4.098359 6.3848104 1.6447669 2.8862600 -8.9948860 -3.5074972 -9.0458440 -1.9156243 -5.1750598 -9.9666190                                                         | <b>^</b> 4 | 1. 6836781<br>-2. 7984938<br>6. 6626144<br>-2. 3675008<br>1. 3677993<br>-1. 1551635<br>8. 1115530<br>1. 1502444<br>7. 4959468<br>3. 1221550<br>8. 8178437 |
| ď                         | ы          | 7700777777<br>[]                                                                                                                                                  | ы          | ###N-10-22#A                                                                                                                                              |
|                           | <b>₹</b>   | 5. 2482550<br>3. 7412750<br>-1. 2103689<br>-4. 6286630<br>-1. 0166471<br>-2. 8045012<br>-5. 7420822<br>-7. 6240420<br>-9. 8093670                                 | A<br> <br> | -4. 1387987<br>7. 5940814<br>-2. 1639072<br>1. 0352863<br>-1. 0137735<br>4. 5575435<br>5. 3435553<br>2. 8700001<br>9. 5252590<br>1. 8632715               |
|                           | ы          | 77,00000000                                                                                                                                                       | ы          | 70000-00000                                                                                                                                               |
|                           | <b>V</b>   | -2. 6713200<br>-9. 3379867<br>-1. 3337986<br>-1. 6195128<br>-1. 6195128<br>-2. 0235531<br>-2. 1773992<br>-2. 3107325<br>-2. 4283795<br>-2. 5336426<br>-2. 6288806 | <b>Y</b>   | 1. 0682072 -2. 2670549 8. 5194960 -6. 8324340 2. 6126850 2. 4340249 1. 0243045 2. 4407728 1. 6639420 1. 4850393                                           |
|                           | ¤١         | 1004604901                                                                                                                                                        | aı         | 100480601                                                                                                                                                 |

COEFFICIENTS b<sub>np</sub> FROM THE SERIES EXPANSION, Eq. (1.12)

 $1 \le n \le 11$  ,  $0 \le p \le 9$ 



ade de de la maria de la m La maria de la

.

COMPARISON OF RIEGELS' COEFFICIENTS

WITH THE Eq. (1.26)

 $0 \le n \le 7$ 

|   | c,               | <sup>1</sup> 2 | ď        | n <sub>2</sub> |
|---|------------------|----------------|----------|----------------|
| n | <b>E</b> q. 1.26 | Riegels        | Eq. 1.26 | Riegels        |
| 0 | 0. 500           | 0. 500         | - 0. 250 | - 0. 250       |
| 1 | - 1.500          | - 1.500        | 1. 750   | 1. 750         |
| 2 | - 7. 500         | - 7.500        | 15. 750  | 15. 750        |
| 3 | - 17. 500        | - 17. 500      | 44. 417  | 44. 417        |
| 4 | - 31 500         | - 31. 500      | 89. 350  | 89. 350        |
| 5 | - 49. 500        | - 49. 500      | 151.693  | 151.693        |
| 6 | - 71.500         | - 71. 500      | 232. 334 | 232. 334       |
| 7 | - 97. 500        | - 97. 500      | 332. 002 | 332. 001       |
|   |                  |                |          |                |

0<sup>1\5</sup>(z)

1.0001 ≤ = ≤ 1111.8889

 $z = 1+y^2$   $\Delta y = 0.01$ 

| (x)    | Q <sub>1/2</sub> (=) | (z)    | Q <sub>2/2</sub> (z)                | (x)              | Q <sub>1/2</sub> (=) |
|--------|----------------------|--------|-------------------------------------|------------------|----------------------|
|        |                      |        |                                     |                  |                      |
| 1,0001 | 4.33826              | 1.1681 | 0.76637                             | 1.6561           | 0.31988              |
| 1.0004 | 3.64569              | 1.1764 | 0.74761                             | 1.6724           | 0.31370              |
| 1.0009 | 3.24108              | 1.1849 | 0.77745                             | 1.6889           | 0.30767              |
| 1.0016 | 2.95451              | 1.1936 | 0.71188                             | 1.7056           | 0.30177              |
| 1.0025 | 2.73272              | 1.2025 | 0.69487                             | 1.7225           | 0.29602              |
| 1.0036 | 2.55196<br>2.39958   | 1.2116 | 0.67 <b>84</b> 0<br>0.662 <b>44</b> | 1.7396<br>1.7569 | 0.29040<br>0.28492   |
| 1.0049 | 2.26801              | 1.2304 | 0.64697                             | 1.7744           | 0.23472<br>0.27956   |
| 1.0081 | 2. 15237             | 1.2401 | 0.63196                             | 1.7921           | 0.27432              |
| 1.0100 | 2.04932              | 1.2500 | 0.61741                             | 1.8100           | 0.26921              |
| 1.0.00 | 2002120              | 1      | 2100141                             | 1                | 3,00/01              |
| 1.0121 | 1.95648              | 1.2601 | 0.60330                             | 1.8281           | 0, 26421             |
| 1.0144 | 1.87210              | 1.2704 | 0.58959                             | 1.8464           | 0.25932              |
| 1.0169 | 1.79484              | 1.2809 | 0.57629                             | 1.8649           | 0,25455              |
| 1.0196 | 1.72366              | 1.2916 | 0,56337                             | 1.8836           | 0.24989              |
| 1.0225 | 1.65773              | 1.3025 | 0,55082                             | 1.9025           | 0.24533              |
| 1.0256 | 1.59638              | 1.3136 | 0.53863                             | 1.9216           | 0.24087              |
| 1.0289 | 1.53908              | 1.3249 | 0.52678                             | 1.9409           | 0.23651              |
| 1.0324 | 1.48536              | 1,3364 | 0.51526                             | 1.9604           | 0.23225              |
| 1.0361 | 1.43484              | 1,3481 | 0.50406                             | 1.9801           | 0.22809              |
| 1.0400 | 1.38723              | 1.3600 | 0.49316                             | 2,0000           | 0.22401              |
| 1.0441 | 1.34222              | 1.3721 | 0.48257                             | 2.0201           | 0.22003              |
| 1.0484 | 1.29958              | 1.3844 | 0.47225                             | 2.0404           | 0.21613              |
| 1.0529 | 1.25911              | 1.3969 | 0.46222                             | 2,0609           | 0.21232              |
| 1.0576 | 1,22063              | 1.4096 | 0.45245                             | 2.0816           | 0.20859              |
| 1.0625 | 1.18399              | 1.4225 | 0.44294                             | 2.1025           | 0.20494              |
| 1.0676 | 1.14903              | 1.4356 | 0.43368                             | 2, 1236          | 0.20137              |
| 1.0729 | 1.11564              | 1.4489 | 0.42466                             | 2.1449           | 0.19788              |
| 1.0784 | 1.08371              | 1.4624 | 0.41587                             | 2.1664           | 0.19446              |
| 1.0841 | 1.05313              | 1.4761 | 0.40732                             | 2, 1881          | 0.19111              |
| 1.0900 | 1.02383              | 1.4900 | 0.39898                             | 2.2100           | 0.18784              |
| 1.0961 | 0.99571              | 1.5041 | 0.39085                             | 2,2321           | 0.18463              |
| 1.1024 | 0.96870              | 1.5194 | 0.38292                             | 2.2544           | 0.18150              |
| 1.1089 | 0.94274              | 1.5329 | 0.37520                             | 2.2769           | 0.17842              |
| 1.1156 | 0.91777              | 1.5476 | 0.36767                             | 2.2996           | 0.17542              |
| 1.1225 | 0.89372              | 1.5625 | 0.36032                             | 2.3225           | 0.17247              |
| 1.1296 | 0.87056              | 1.5776 | 0.35316                             | 2,3456           | 0.16959              |
| 1.1369 | 0.84822              | 1.5929 | 0.34617                             | 2.3689           | 0.16676              |
| 1.1444 | 0.82667              | 1.6084 | 0.33936                             | 2.3924           | 0.16399              |
| 1.1521 | 0.80588              | 1.6241 | 0.33271                             | 2.4161           | 0.16129              |
| 1.1600 | 0.78579              | 1.6400 | 0.32621                             | 2.4400           | 0.15863              |
|        |                      | i      |                                     | i                |                      |
|        |                      | [      |                                     | ł                |                      |

|                  |                      | <del></del>      |                      |                  | <del></del>          |
|------------------|----------------------|------------------|----------------------|------------------|----------------------|
| z                | Q <sub>1/2</sub> (2) | z                | Q <sub>1/2</sub> (z) | z                | Q <sub>1/2</sub> (z) |
|                  |                      |                  |                      |                  |                      |
| 2.4641           | о. 15Б03             | 3.5921           | 0.08470              | 5.0401           | 0.05001              |
| 2,4884           | 0.15348              | 3,6244           | 0.08351              | 5,0804           | 0.04940              |
| 2.5129           | 0.15099              | 3.6569           | 0.08234              | 5.1209           | 0.04880              |
| 2.5376           | 0.14854              | 3.6896           | 0.08120              | 5. 1616          | 0.04821              |
| 2.5625           | 0.14614              | 3.7225           | C.08007              | 5.2025<br>5.2436 | 0.04763              |
| 2.5876           | 0.14379              | 3,7556           | 0.07897              | 5.2849           | 0.04706<br>0.04650   |
| 2.6129           | 0.14149              | 3.788)           | 0.07788<br>0.07681   | 5.3264           | 0.04594              |
| 2.6384           | 0.13924<br>0.13703   | 3.8224<br>3.8561 | 0.07576              | 5.3681           | 0.04539              |
| 2.6641<br>2.6900 | 0.13703              | 3.8900           | 0.07473              | 5.4100           | 0.04485              |
| 2.0900           | 0, 13400             | 3.8700           | 0.01413              | 3.4100           | 0.04403              |
| 2,7161           | 0.13273              | 3.9241           | 0.07372              | 5.4521           | 0.04432              |
| 2,7424           | 0.13065              | 3.9584           | 0.07272              | 5.4944           | 0.04380              |
| 2.7689           | 0.12860              | 3.9929           | 0.07174              | 5.5369           | 0.04329              |
| 2.7956           | 0.12660              | 4.0276           | 0.07078              | 5.5796           | 0.04278              |
| 2.8225           | 0.12464              | 4.0625           | 0.06983              | 5.6225           | 0.04228              |
| 2.8496           | 0.12271              | 4.0976           | 0.06890              | 5.6656           | 0.04179              |
| 2.8769           | 0.12082              | 4, 1329          | 0.06799              | 5.7089           | 0.04131              |
| 2.9044           | 0.11897              | 4.1684           | 0.06709              | 5.7524           | 0.04083              |
| 2.9321           | 0.11715              | 4.2041           | 0.06620              | 5.7961           | 0.04636              |
| 2.9600           | 0.11537              | 4.2400           | 0.06533              | 5,8400           | 0.03990              |
| 2.9881           | 0.11362              | 4, 2761          | 0.06448              | 5.8841           | 0.03944              |
| 3.0164           | 0.11190              | 4.3124           | 0.06364              | 5.9284           | 0.03900              |
| 3.0449           | 0.11022              | 4,3489           | 0.06281              | 5.9729           | 0.03855              |
| 3.0736           | 0.10856              | 4.3856           | 0.06200              | 6.0176           | 0.03812              |
| 3.1025           | 0.10694              | 4.4225           | 0.06120              | 6.0625           | 0.03769              |
| 3.1316           | 0.10535              | 4.4596           | 0.06041              | 6.1076           | 0.03726              |
| 3.1609           | 0.10379              | 4.4969           | 0.05963              | 6.1529           | 0.03684              |
| 3,1904           | 0.10226              | 4.5344           | 0.05887              | 6.1984           | 0.03643              |
| 3.2201           | 0.10075              | 4.5721           | 0.05812              | 6.2441           | 0.03603              |
| 3.2500           | 0.09928              | 4.6100           | 0.05739              | 6.2900           | 0.03563              |
| 3.2801           | 0.09783              | 4.6481           | 0,05666              | 6.3361           | 0.03523              |
| 3.3104           | 0.09640              | 4.6864           | 0.05595              | 6.3824           | 0.03484              |
| 3.3409           | 0.09501              | 4.7249           | 0.05524              | 6.4289           | 0.03446              |
| 3.2716           | 0.09363              | 4.7636           | 0.05455              | 6.4756           | 0.03468              |
| 3,4025           | 0.09229              | 4.8025           | 0.05387              | 6.5225           | 0.03371              |
| 3,4336           | 0.09096              | 4.8416           | 0.05320              | 6.5696           | 0.03334              |
| 3.4649           | 0.08967              | 4.8809           | 0.05254              | 6.6169           | 0.03298              |
| 3.4964           | 0.08839              | 4.9204           | 0.05190              | 6.6644           | 0.03263              |
| 3.5281           | 0.08714              | 4.9601           | 0.05126              | 6.7121           | 0.03227              |
| 3.5600           | 0.08591              | 5.0000           | 0.05063              | 6.7600           | 0.03193              |
|                  |                      |                  |                      | <b>!</b>         |                      |
|                  |                      | 1                |                      | l                |                      |
|                  |                      |                  |                      |                  |                      |

| Z                         | Q <sub>1/2</sub> (z) | z        | Q <sub>1/2</sub> (z) | z       | Q <sub>1/2</sub> (z) |
|---------------------------|----------------------|----------|----------------------|---------|----------------------|
|                           |                      |          |                      |         |                      |
| 6.8081                    | 0.03158              | 8.8961   | 0.02105              | 11,3041 | 0.01467              |
| 6.8564                    | 0.03124              | 8,9524   | 0.02085              | 11.3684 | 0.01454              |
| 6.9049                    | 0.03091              | 9.0089   | 0.02066              | 11.4329 | 0.01442              |
| 6.9536                    | 0.03058              | 9.0656   | 0. u2046             | 11.4976 | 0.01430              |
| 7.0025                    | 0.03026              | 9, 1225  | 0.02027              | 11.5625 | 0.01417              |
| 7.0516                    | 0.02994              | 9.1790   | 0.02008              | 11.6276 | 0.01406              |
| 7.1009                    | 0.02962              | 9, 2369  | 0.01989              | 11,6929 | 0.01394              |
| 7.1504                    | 0.02931              | 9.2944   | 0.01970              | 11.7584 | 0.01382              |
| 7.2001                    | 0.02901              | 9.3521   | 0.01952              | 11.8241 | 0.01370              |
| 7.2500                    | 0.02870              | 9.4100   | 0.01934              | 11.8900 | 0.01359              |
| 7.3001                    | 0.02841              | 9.4681   | 0.01916              | 11.9561 | 0.01348              |
| 7.3504                    | 0.02811              | 9.5264   | 0.01898              | 12.0224 | 0.01337              |
| 7.4009                    | 0.02782              | 9.5849   | 0.01881              | 12.0889 | 0.0131               |
| 7.4516                    | 0.02753              | 9.6436   | 0.01864              | 12.2225 | 0.01304              |
| 7.5025                    | 0.02725              | 9,7025   | 0.01847<br>0.01830   | 12.2896 | 0.01293              |
| 7.5536<br>7.60 <b>4</b> 9 | 0.02697<br>0.02670   | 9.8209   | 0.01813              | 12.3569 | 0.01282              |
| 7.6564                    | 0.02642              | 9.8804   | 0.01797              | 12.4244 | 0.01272              |
| 7.7081                    | 0.02616              | 9.9401   | 0.01780              | 12.4921 | 0.01262              |
| 7.7600                    | 0.02589              | 10.0000  | 0.01764              | 12,5600 | 0.0125               |
| 7.8121                    | 0.02563              | 10.0601  | 0.01748              | 12.6281 | 0.0124               |
| 7.8644                    | 0.02537              | 10.1204  | 0.01733              | 12.6964 | 0.0123               |
| 7,9169                    | 0.02512              | 10, 1809 | 0.01717              | 12.7649 | 0,0122               |
| 7.9696                    | 0.02487              | 10, 2416 | 0.01702              | 12.8336 | 0.0121               |
| 8.0225                    | 0.02462              | 10, 3025 | 0.01687              | 12.9025 | 0.0120               |
| 8.0756                    | 0.02437              | 10.3636  | 0.01672              | 12.9716 | 0.0119               |
| 8.1289                    | 0.02413              | 10.4249  | 0.01657              | 13.0409 | 0.0118               |
| 8.1824                    | 0.02389              | 10.4864  | 0.01642              | 13.1104 | 0.0117               |
| 8,2361                    | 0.02366              | 10.5481  | 0.01628              | 13.1801 | 0.0116               |
| 8.2900                    | 0.02343              | 10.6100  | 0.01614              | 13.2500 | 0.0115               |
| 8,3441                    | 0.02320              | 10.6721  | 0.01599              | 13.3201 | 0.0114               |
| 8,3984                    | 0.02297              | 10,7344  | 0.01585              | 13.3904 | 0,01130              |
| 8.4527                    | 0.02275              | 10.7969  | 0.01574              | 13.4609 | 0.0112               |
| 8 5076                    | 0.02253              | 10.8596  | 0.01558              | 13.5316 | 0.0111               |
| 8.5625                    | 0.02231              | 10.9225  | 0.01544              | 13.6025 | 0.0111               |
| 8.6176                    | 0.02209              | 10.9856  | 0.01531              | 13.6736 | 0.0110               |
| 8.6729                    | 0.02188              | 11.0489  | 0.01518              | 13.7449 | 0,0109               |
| 8,7284                    | 0.02167              | 11.1124  | 0.01505              | 13.8164 | 0.0108               |
| 8.7841                    | 0.02146              | 11.1761  | 0.01492              | 13.8881 | 0.0107               |
| 8.8400                    | 0.02126              | 11.2400  | 0.01479              | 13.9600 | 0.0106               |
|                           |                      | i        |                      | }       |                      |

| <b>z</b>           | Q <sub>1/2</sub> (z) | Z                  | Q <sub>1/2</sub> (z) | z                    | $Q_{1/2}(x)$       |
|--------------------|----------------------|--------------------|----------------------|----------------------|--------------------|
|                    |                      |                    |                      |                      |                    |
| 14.0321            | 0.01059              | 17.0801            | 0.00788              | 20.4481              | 0.00601            |
| 14.1044            | 0.01051              | 17.1604            | 0.00782              | 20.5364              | C. 00597           |
| 14.1769            | 0.01043              | 17.2409            | 0.00777              | 20.6249              | 0.00594            |
| 14.2496            | 0.01035              | 17.3216            | 0.00772              | 20.7136              | 0.00590            |
| 14.3225            | 0.01027              | 17.4025            | 0.00766              | 20.8025              | 0. Cu586           |
| 14.3956            | 0.01019<br>0.01011   | 17.4836<br>17.5649 | 0.00761<br>0.00756   | 20.8916<br>20.9809   | 0.00582            |
| 14.5424            | 0.01011              | 17.6464            | 0.00750              | 21.0704              | 0.06578<br>0.00575 |
| 14.6161            | 0.00996              | 17.7281            | 0.00745              | 21.1601              | 0.00571            |
| 14.6900            | 0.00988              | 17.8100            | 0.00740              | 21.2500              | 0.00568            |
| 14.7641            | 0.00981              | 17.8921            | 0.00735              | 21.3401              | 0.00564            |
| 14.8384            | 0.00974              | 17.9744            | 0.00730              | 21.4304              | 0.00560            |
| 14.9129            | 0.00966              | 18.0569            | 0.00725              | 21.5209              | 0.00557            |
| 14.9876            | 0.00959              | 18.1396            | 0.00720              | 21.6116              | 0.00553            |
| 15.0625            | 0.00952              | 18.2225            | 0.00715              | 21.7025              | 0.00550            |
| 15.1376<br>15.2129 | 0.00945<br>0.00938   | 18.3056<br>18.3889 | 0.00710              | 21.7936              | 0.00546            |
| 15.2884            | 0.00938              | 18.4724            | 0.00705<br>0.00700   | 21.8849<br>21.9764   | 0.00543            |
| 15.3641            | 0.00924              | 18.5561            | 0.00696              | 22.0681              | 0.00540<br>0.00536 |
| 15.4400            | 0.00917              | 18.6400            | 0.00691              | 22.1600              | 0.00533            |
| 15.5161            | 0.00010              | ,, -,,,            | 0 00/0/              |                      |                    |
| 15.5924            | 0.00910<br>0.00904   | 19.7241<br>18.8084 | 0.00686<br>0.00682   | 22. 2521<br>22. 3444 | 0.00530            |
| 15.6689            | 0.00897              | 18.8929            | 0.00677              | 22.4369              | 0.00526<br>0.00523 |
| 15.7456            | 0.00890              | 18.9776            | 0.00673              | 22.5296              | 0.00520            |
| 15.8225            | 0.00884              | 19.0625            | 0.00668              | 23.6225              | 0.00517            |
| 15.8996            | 0.00878              | 19.1476            | 0.00664              | 22.7156              | 0.00513            |
| 15.9769            | 0.00871              | 19.2329            | 0.00659              | 22.8089              | 0.00510            |
| 16.0544            | 0.00865              | 19.3184            | 0.00655              | 22.9024              | 0.00507            |
| 16.1321            | 0.00859              | 19.4041            | 0.00651              | 22.9961              | 0.00504            |
| 16.2100            | 0.00852              | 19.4900            | 0.00646              | 23.0900              | 0.00501            |
| 16.2881            | 0.00346              | 19.5761            | 0.00642              | 23.1841              | 0.00498            |
| 16.3664            | 0.00840              | 19.6624            | 0.00638              | 23.2784              | 0.00495            |
| 16.4449            | 0.00834              | 19.7489            | 0.00634              | 23.3729              | 0.00492            |
| 16.5236            | 0.00828              | 19.8356            | 0.00629              | 23.4676              | 0.00489            |
| 16.6025            | 0.00822              | 19.9225            | 0.00625              | 23.5625              | 0.00486            |
| 16.6816            | 0.00816              | 20.0096            | 0.00621              | 23.6576              | 0.00483            |
| 16.7609<br>16.8404 | 0.00811              | 20.0969            | 0.00617              | 23.7529              | 0.00480            |
| 16.9201            | 0.00805<br>0.00799   | 20.1844<br>20.2721 | 0.00613<br>0.00609   | 23.8484<br>23.9441   | 0.00477            |
| 17.0000            | 0.00794              | 20.3600            | 0.00605              | 24.0400              | 0.00474<br>0.00472 |
| 11.0000            | 0.00174              | 20.5000            | 0.0000               | 27.0400              | 7.00476            |
| l                  |                      |                    |                      | l                    |                    |

|          |                      |          |                      | <del></del>          |                      |
|----------|----------------------|----------|----------------------|----------------------|----------------------|
| ž        | Q <sub>1/2</sub> (z) | Z        | Q <sub>1/2</sub> (z) | z                    | Q <sub>1/2</sub> (z) |
|          |                      |          |                      |                      |                      |
| 24, 1361 | 0.00469              | 28.1441  | 0.00372              | 32,4721              | 0.00300              |
| 24, 2324 | 0.00466              | 28.2484  | 0.00370              | 32.5844              | 0.00299              |
| 24,3289  | 0.00463              | 28, 3529 | 0.00368              | 32.6969              | 0.00297              |
| 24.4256  | 0,00460              | 28.4576  | 0.00566              | 32.8096              | 0.00296              |
| 24, 5225 | 0.00458              | 28.5625  | 0 50364              | 32.9225              | 0.00294              |
| 24,6196  | 0.00455              | 28.6676  | 0.00362              | 33.0356              | 0.00293              |
| 24.7169  | 0.00452              | 28.772%  | 0.00360              | 33.1489              | 0.00291              |
| 24.8144  | 0.00450              | 28.8784  | 0.00358              | 33, 2624<br>33, 3761 | 0.00290              |
| 24.9121  | 0.00447              | 28.9841  | 0.00356              | 33.4900              | 0.00288<br>0.00287   |
| 25.0100  | 0.00444              | 29.0900  | 0.00354              | 33.4900              | 0.00287              |
| 25, 1081 | 0.00442              | 29.1961  | 0.00352              | 33,6041              | 0.00285              |
| 25, 2064 | 0.00439              | 29.3024  | 0.00350              | 33.7184              | 0.00284              |
| 25.3049  | 0.00437              | 29.4089  | 0.00348              | 33.8329              | 0.00282              |
| 25.4036  | 0.00434              | 29.5156  | 0.00346              | 33.9476              | 0.00281              |
| 25.5025  | 0.00432              | 29.6225  | 0.00345              | 34.0625              | 0.00279              |
| 25.6016  | 0.00429              | 29.7296  | 0.00343              | 34.1776              | 0.00278              |
| 25.7009  | 0.00427              | 29.8369  | 0.00341              | 34.2929              | 0.00277              |
| 25.8004  | 0.00424              | 29.9444  | 0.00339              | 34.4084              | 0.00275              |
| 25.9001  | 0.00422              | 30.0521  | 0.00337              | 34.5241              | 0.00274              |
| 26,0000  | 0.00419              | 30, 1600 | 0.00335              | 34.6400              | 0.00272              |
| 26.1001  | 0.00417              | 30.2681  | 0.00334              | 34.7561              | 0.00271              |
| 26,2004  | 0.00414              | 30, 3764 | 0.00332              | 34.8724              | 0.00270              |
| 26,3009  | 0.00412              | 30.4849  | 0.00330              | 34.9889              | 0.00268              |
| 26.4016  | 0.00410              | 30.5936  | 0.00328              | 35.1056              | 0.00267              |
| 26.5025  | 0.00407              | 30.7025  | 0.00327              | 35,2225              | 0.00266              |
| 26.6036  | 0.00405              | 30.8116  | 0.00325              | 35.3396              | 0.00264              |
| 26.7049  | 0.00403              | 30.9209  | 0.00323              | 35.4569              | 0.00263              |
| 26.8046  | 0.00400              | 31.0304  | 0.00321              | 35,5744              | v. 00262             |
| 26.9081  | 0.00398              | 31,1401  | 0.00320              | 35.6921              | 0.00261              |
| 27.0100  | 0.00396              | 31.2500  | 0.00318              | 35,8100              | 0.00259              |
| 27,1121  | 0.00394              | 31.3601  | 0.00316              | 35.9281              | 0.00258              |
| 27.2144  | 0.00391              | 31.4704  | 0.00315              | 36.0464              | 0.00257              |
| 27.3169  | 0.00389              | 31.5809  | 0.00313              | 36.1649              | 0.00255              |
| 27.4196  | 0.00387              | 31.6916  | 0.00311              | 36, 2836             | 0.002:4              |
| 27.5225  | 0.00385              | 31.8025  | 0.00310              | 36. 4025             | 0.00253              |
| 27,6256  | 0.00383              | 31.9136  | 0.00308              | 36.5216              | 0.00252              |
| 27.7289  | 0.00381              | 32.0249  | 0.00307              | 36.6409              | 0.00250              |
| 27,8324  | 0.00378              | 32.1364  | 0.00305              | 36.7604              | 0.00249              |
| 27.9361  | 0.00376              | 32, 2481 | 0.00303              | 36.8801              | 0.00248              |
| 28.0400  | 0.00374              | 32.3600  | 0.00302              | 37.0000              | 0.00247              |
|          |                      |          |                      | 1                    |                      |

| 5 |                 |                      |          |                      |          |                      |
|---|-----------------|----------------------|----------|----------------------|----------|----------------------|
|   | z               | Q <sub>1/2</sub> (2) | z        | Q <sub>1/2</sub> (2) | Z        | Q <sub>1/2</sub> (z) |
|   |                 |                      |          |                      |          |                      |
| 1 | 37,1201         | 0.00246              | 42.0881  | 0.00203              | 47.3761  | 0.00170              |
| 1 | 37.2404         | 0.00244              | 42, 2164 | 0.00203              | 47.5124  | 0.00170              |
| 1 | 37.3609         | 0.00243              | 42.3449  | 0.00202              | 47.6489  | 0.00169              |
| 1 | 37.4816         | 0.00242              | 42, 4736 | 0.00201              | 47.7856  | 0.00168              |
| ı | 37.6025         | 0.00241              | 42.6025  | 0.00200              | 47.9225  | 0.00167              |
| ١ | 37.7236         | 0.00210              | 42,7316  | 0.00199              | 48.7596  | 0.00167              |
| 1 | 37.8449         | 0.00239              | 42.8609  | 0.00198              | 48.1769  | 0.00166              |
| ı | 37.9664         | 0.00237              | 42.9904  | 0.00197              | 48.3344  | 0.00165              |
| ı | 38.0881         | 0.00236              | 43, 1201 | C. 00196             | 48,4721  | 0.00165              |
|   | 38.2100         | 0.00235              | 43,2500  | 0.00195              | 48.6100  | 0.00164              |
|   | 38.3321         | 0.00234              | 43.3801  | 0.00194              | 48.7481  | 0.00163              |
| 1 | 38.4544         | 0.00233              | 43.5104  | 0.00194              | 48.8864  | 0.00162              |
| i | 38.5769         | 0.00232              | 43.6409  | 0.00193              | 49.0249  | 0.00162              |
| ı | 38.6996         | 0.00231              | 43.7716  | 0.00192              | 49, 1636 | 0.00161              |
| I | 38.8225         | 0.00230              | 43,9025  | 0.00191              | 49,3025  | 0.00160              |
| ١ | 38.9456         | 0.00229              | 44.0336  | 0.00190              | 49.4416  | 0.00160              |
| 1 | 39.0689         | 0.00227              | 44.1649  | 0.00189              | 49.5809  | 0.00159              |
| ١ | 39. 1924        | 0.00226              | 44.2964  | 0.00188              | 49.7204  | 0.00158              |
| 1 | 39.3161         | 0.00225              | 44.4281  | 0.00188              | 49.8601  | 0.00158              |
| 1 | 39.4400         | 0.00224              | 44.5600  | 0.00187              | 50.0000  | 0.00157              |
| ١ | 39.5641         | 0.00223              | 44.6921  | 0.00186              | 50.1401  | 0.00156              |
| J | 39.688 <b>4</b> | 0.00222              | 44.8244  | 0.00185              | 50,2804  | 0.00156              |
| 1 | 39.8129         | 0.00221              | 44.9569  | 0.00184              | 50.4209  | 0.00155              |
| 1 | 39.9376         | 0.00220              | 45.0896  | C.00183              | 50.5616  | 0.00154              |
| İ | 40.0625         | 0.00219              | 45.2225  | 0.00183              | 50.7025  | 0.00154              |
| ł | 40.1876         | 0.00218              | 45.3556  | 0.00182              | 50.8436  | 0.00153              |
| 1 | 40.3129         | 0.00217              | 45.4889  | 0.00181              | 50.9849  | 0.00153              |
| ١ | 40.4384         | 0.00216              | 45.6224  | 0.00180              | 51,1264  | 0.00152              |
| Ţ | 40.5641         | 0.00215              | 45.7561  | 0.00179              | 51.2681  | 0.00151              |
| 1 | 40.6900         | 0.00214              | 45.8900  | 0.00179              | 51.4100  | 0.00151              |
| 1 | 40.8161         | 0.00213              | 46.0241  | 0.00178              | 51.5521  | 0.00150              |
|   | 40.9424         | 0.00212              | 46.1584  | 0.00177              | 51.6944  | 0.00149              |
|   | 41.0689         | 0.00211              | 46.2929  | 0.00176              | 51.8369  | 0.00149              |
| Į | 41.1956         | 0.00210              | 46,4276  | 0.00176              | 51.9796  | 0.00148              |
| 1 | 41.3225         | 0.00209              | 46.5625  | 0.00175              | 52.1225  | 0.00148              |
| ! | 41.4496         | 0.00208              | 46.6976  | 0.00174              | 52.2656  | 0.00147              |
| 1 | 41.5769         | 0.00207              | 46.8329  | 0.00173              | 52.4089  | 0.00146              |
| 1 | 41.7044         | 0.00206              | 46.9684  | 0.00173              | 52.5524  | 0.00146              |
| Ì | 41.8321         | 0.00205              | 47.1041  | 0.00172              | 52.6961  | 0.00145              |
| ! | 41.9600         | 0.00204              | 47.2400  | 0.00171              | 52.8400  | 0.00145              |
|   |                 |                      |          |                      |          |                      |

| z                  | Q <sub>1/2</sub> (z) | z                  | Q <sub>1/2</sub> (z) | z                  | Q <sub>1/2</sub> (z) |
|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|
|                    |                      |                    |                      |                    | <del></del>          |
| 52,9841            | 0.00144              | 58.9121            | 0.00123              | 65.1601            | 0.00106              |
| 53.1284            | 0.00143              | 59.064 <b>4</b>    | 0.00122              | 65.3204            | 0.00105              |
| 53.2729            | 0.00143              | 59.2169            | 0.00122              | 65.4809            | 0.00105              |
| 53.4176            | 0.00142              | 59.3696            | 0.00121              | 65.6416            | 0.00104              |
| 53.5625            | 0.00142              | 59.5225            | 0 00121              | 65.8025            | 0.00104              |
| 53.7076            | 0.00141              | 59.6756            | 0.00120              | 65.9636            | 0.00104              |
| 53.8529            | 0.00141              | 59.8285            | 0.00120              | 66.1249            | 0.00103              |
| 53.9984            | 0.00140              | 59.9824<br>60.1361 | 0.00120<br>0.00119   | 66.2864            | 0.00103              |
| 54.1441            | 0.00139              | 60.2900            | 0.00119              | 66.4481            | 0.00103              |
| 54.2900            | 0.00139              | 00.2700            | 0.00119              | 66.6100            | 0.00102              |
| 54,4361            | 0.00138              | 60.4441            | 0.00118              | 66.7721            | 0.00102              |
| 54.5824            | 0.00138              | 60.5984            | 0.00118              | 66.9344            | 0.00101              |
| 54.7289            | 0.00137              | 60.7529            | 0.00117              | 67.0969            | 0.00101              |
| 54.8756            | 0.00137              | 60.9076            | 0.00117              | 67.2596            | 0.00101              |
| 55.0225            | 0.00136              | 61.0625            | 0.00116              | 67.4225            | 0.00100              |
| 55.1696            | 0.00136              | 61.2176            | 0.00116              | 67.5856            | 0.00100              |
| 55.3169            | 0.00135              | 61.3729            | 0.00116              | 67.7489            | 0.00100              |
| 55.4644            | 0.00134              | 61.5284            | 0.00115              | 67.9124            | 0.00039              |
| 55.6121            | 0.00134              | 61.6841            | 0.00115              | 68.0761            | 0.00099              |
| 55.7600            | 0.00133              | 61.8400            | 0.00114              | 68.2400            | 0.00099              |
| 55.9081            | 0.00133              | 61.9961            | 0.00114              | 68.4041            | 0.00098              |
| 56.0564            | 0.00132              | 62, 1524           | 0.00113              | 68.5684            | 0.00098              |
| 56.2049            | 0.00132              | 62.3089            | 0.00113              | 68.7329            | 0.00097              |
| 56.3536            | 0.00131              | 62.4656            | 0.00113              | 68.8976            | 0.00097              |
| 56.5025            | 0.00131              | 62.6225            | 0.00112              | 69.0625            | 0.00097              |
| 56.6516            | 0.00130              | 62.7796            | 0.00112              | 69.2276            | 0.00096              |
| 56.8009            | 0.00130              | 62.9369            | 0.00111              | 69.3929            | 0.00096              |
| 56.9504            | 0.00129              | 63.0944<br>63.2521 | 0.00111              | 69.5584            | 0.00096              |
| 57.1001<br>57.2500 | 0.00129<br>0.00128   | 63.4100            | 0.00110<br>0.00110   | 69.7241<br>69.8900 | 0.00095              |
| 57.2500            | 0.00128              | 03.4100            | 0.00110              | 09.8900            | 0.00095              |
| 57.4001            | 0.00128              | 63.5681            | 0.00110              | 70.0561            | 0.00095              |
| 57.5504            | 0.00127              | 63.7264            | 0.00109              | 70.2224            | 0.00094              |
| 57.7009            | 0.00127              | 63.8849            | 0.00109              | 70.3889            | 0.00094              |
| 57.9716            | 0.00126              | 64 0436            | 0.00108              | 70.5556            | 0.00054              |
| 58.0025            | 0.00126              | 64.2025            | 0.00108              | 70.7225            | 0.00093              |
| 58.1536            | 0.00125              | 64.3616            | 0.00108              | 70.8896            | 0.00093              |
| 58.3049            | 0.00125              | 64.5209            | 0.00107              | 71.0569            | 0.00093              |
| 58.4564            | 0.00124              | 64.6804            | 0.00107              | 71.2244            | 0.00092              |
| 58.6081            | 0.00124              | 64.8401            | 0.00106              | 71.3921            | 0.00092              |
| 58.7600            | 0.00123              | 65.0000            | 0.00106              | 71.5600            | 0.00092              |
|                    |                      |                    |                      | l                  |                      |
|                    |                      |                    |                      | i                  |                      |

| z       | Q <sub>1/2</sub> (z) | z                  | Q <sub>1/2</sub> (z) | z                  | Q <sub>1/2</sub> (z) |
|---------|----------------------|--------------------|----------------------|--------------------|----------------------|
|         |                      |                    |                      |                    |                      |
| 71.7281 | 0.00091              | 78.6161            | 0.00080              | 90.6809            | 0.00064              |
| 71.8964 | 0.00091              | 78.7924            | 0.00079              | 91.6304            | 0.00063              |
| 72.0649 | 0.00091              | 78.9689            | 0.00079              | 92.5849            | 0.00062              |
| 72.2336 | 0.00090              | 79.1456            | 0.00077              | 92 5444            | 0.00061              |
| 72.4025 | 0.00090<br>0.00090   | 79.3225<br>79.4996 | 0.00079<br>0.00078   | 94.5089<br>95.6729 | 0.00060              |
| 72.7409 | 0.00090              | 79.6769            | 0.00078              | 96.6484            | 0.00059<br>0.00058   |
| 72.9104 | 0.00089              | 79.8544            | 0.00078              | 97.8256            | 0.00057              |
| 73.0801 | 0.00089              | 80.0321            | 0.00078              | 99.0100            | 0.00056              |
| 73.2500 | 0.00089              | 80.2100            | 0.00077              | 100.2016           | 0.00055              |
|         | 3.00007              | 1                  | 5,00011              | 1                  | 0.00055              |
| 73,4201 | 0.00088              | 80.3881            | 0.00077              | 101.4004           | 0.00054              |
| 73.5904 | 0.00088              | 80.5664            | 0.00077              | 102.6064           | 0.00053              |
| 73.7609 | 0.00088              | 80.7449            | 0.00077              | 103.8196           | 0.00052              |
| 73.9316 | 0.00087              | 80.9236            | 0.00076              | 105.2441           | 0.00051              |
| 74.1025 | 0.00087              | 81.1025            | 0.00076              | 106.6784           | 0.00050              |
| 74.2736 | 0.00087              | 81.2816            | 0.00076              | 108,1225           | 0.00049              |
| 74.4449 | 0.00086              | 81.4609            | 0.00076              | 109.5764           | 0.00048              |
| 74,6164 | 0.00086              | 81.6404            | 0.00075              | 111.0401           | 0.00047              |
| 74.7881 | 0.0086               | 81.8201            | 0.00075              | 112.7249           | 0.00046              |
| 74.9600 | 0.00086              | 82.0000            | 0.00075              | 114.2096           | 0.00045              |
| 75.1321 | 0.00085              | 82.1801            | 0.00075              | 115.9184           | 0.0044               |
| 75.3044 | 0.00085              | 82.3604            | 0.00074              | 117.8561           | 0.00043              |
| 75.4769 | 0.00085              | 82.5409            | 0.00074              | 119.5921           | C. 00042             |
| 75.6496 | 0.00084              | 82.7216            | 0.00074              | 121,5604           | 0.00041              |
| 75.8225 | 0.00084              | 82.9025            | 0.00074              | 123,5449           | 0.00040              |
| 75.9956 | 0.00084              | 83.0836            | 0.00073              | 125.5456           | 0.00039              |
| 76.1689 | 0.00084              | 83.2649            | 0.00073              | 127.7876           | 0.00038              |
| 76.3424 | 0.00083              | 83.4464            | 0.00073              | 130.0496           | 0.00037              |
| 76.5161 | 0.00083              | 83.6281            | 0.00073              | 132.3316           | 0.00036              |
| 76.6900 | 0.00083              | 83.8100            | 0.00072              | 134.8649           | 0.00035              |
| 76.8641 | 0.00082              | 83.9921            | 0.00072              | 137.1889           | 0.00034              |
| 77.0384 | 0.00082              | 84.1744            | 0.00072              | 140.2400           | 0.00033              |
| 77.2129 | 0.00082              | 84.3569            | 0.00072              | 143.0864           | 0.00032              |
| 77.3876 | 0.00082              | 84.5396*           | 0.00071              | 145.9616           | 0.00031              |
| 77.5625 | 0.00081              | 85.4561            | 0.00070              | 149, 1089          | 0.00030              |
| 77.7376 | 0.00081              | 86.1929            | 0.00069              | 152,5361           | 0.00029              |
| 77.9129 | 0.00081              | 87.1184            | 0.00068              | 156.0025           | 0.00028              |
| 78.0884 | 0.00080              | 87.8624            | 0.00067              | 160.0121           | 0.00027              |
| 78.2641 | 0.00080              | 88.7969            | 0.00066              | 163.8176           | 0.00026              |
| 78.4400 | 0.00080              | 89.7364            | 0.00065              | 168.1849           | 0.00025              |
|         |                      |                    |                      |                    |                      |
| <u></u> |                      | <u> </u>           |                      | <u> </u>           |                      |

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

| 172.6100 |
|----------|
|          |

Q<sub>3/2</sub>(z)

1.0001 ≤ ± ≤ 45.8890

 $z = 1+y^2$   $\Delta y = 0.01$ 

| z                | Ω <sub>3/2</sub> (z) | z      | Q <sub>3/2</sub> (z)        | z                | Q <sub>3/2</sub> (z) |
|------------------|----------------------|--------|-----------------------------|------------------|----------------------|
|                  |                      |        |                             |                  |                      |
| 1.0001           | 3.67227              | 1.1681 | 0.32969                     | 1.6561           | 0.08101              |
| 1.0004           | 2.98131              | 1.1764 | 0.31711                     | 1.6724           | 0.07847              |
| 1.0009           | 2.57901              | 1,1849 | 0.30509                     | 1.6889           | 0.07601              |
| 1.0016           | 2.29534              | 1.1936 | 0.29360                     | 1.7056           | 0.07365              |
| 1.0025           | 2.07692              | 1,2025 | 0.28262                     | 1.7225           | 0.07136              |
| 1.0036           | 1.87997              | 1.2116 | 0.27211                     | 1.7396           | 0.06916              |
| 1.0049           | 1.75177              | 1.2209 | 0.26204<br>0.25241          | 1.7569<br>1.7744 | 0.06703<br>0.06498   |
| 1.0064           | 1.62470              | 1.2401 | 0.23241                     | 1.7921           | 0.06299              |
| 1.0081<br>1.0100 | 1.51385<br>1.41586   | 1.2500 | 0.23435                     | 1.8100           | 0.06108              |
| 1.0100           | 1,41500              | 1.2500 | 0,23433                     | 1,0.00           | 0.00.00              |
| 1.0121           | 1.32831              | 1.2601 | 0.22587                     | 1.8281           | 0.05923              |
| 1.0144           | 1.24941              | 1.2704 | 0,21775                     | 1.8464           | 0.05744              |
| 1.0169           | 1.17782              | 1.2809 | 0.20996                     | 1.8649           | 0.05572              |
| 1.0196           | 1.11246              | 1.2916 | 0.20249                     | 1.8836           | 0.05405              |
| 1.0225           | 1.05249              | 1.3025 | 0.19532                     | 1.9025           | 0.05244              |
| 1.0256           | 0.99723              | 1.3136 | 0.18844                     | 1.9216           | 0.05088              |
| 1.0289           | 0.94613              | 1.3249 | 0.18184                     | 1.9409           | 0.04938<br>0.04792   |
| 1.0324           | 0.89870<br>0.85456   | 1.3364 | 0.17550<br>0.16941          | 1.9801           | 0.04652              |
| 1.0361<br>1.0400 | 0.81338              | 1.3600 | 0.16356                     | 2,0000           | 0.04516              |
| 1.0400           | 0.01370              | 1.3000 | 0.10550                     | 2.000            | 0.01010              |
| 1.0441           | 0.77487              | 1.3721 | 0.15793                     | 2.0201           | 0.04384              |
| 1.0484           | 0.73878              | 1.3844 | 0.15253                     | 2.0404           | 0.04257              |
| 1.0529           | 0.70490              | 1.3969 | 0.14733                     | 2.0609           | 0.04134              |
| 1.0576           | 0.67304              | 1.4096 | 0.14234                     | 2.0816           | 0.04015              |
| 1.0625           | 0.64302              | 1.4225 | 0.13753                     | 2.1025           | 0.03900              |
| 1.0676           | 0.61472              | 1.4356 | 0.13291<br>0.128 <b>4</b> 7 | 2.1236           | 0.03789<br>0.03681   |
| 1.0729<br>1.0784 | 0.58798<br>0.56271   | 1.4624 | 0.12419                     | 2.1664           | 0.03577              |
| 1.0841           | 0.53878              | 1.4761 | 0.12007                     | 2. 1881          | 0.03476              |
| 1.0900           | 0.51612              | 1.4900 | 0, 11611                    | 2.2100           | 0.03378              |
|                  |                      |        |                             |                  |                      |
| 1.7961           | 0.49461              | 1.5041 | 0.11229                     | 2.2321           | 0.03283              |
| 1.1024           | 0.4742ù              | 1.5184 | 0.10861                     | 2.2544           | 0.03192              |
| 1.1089           | 0.45482              | 1.5329 | 0.10507                     | 2.2769           | 0.03163              |
| 1 115/<br>1,1225 | J. 43639<br>0. 41885 | 1,5476 | 0.10166<br>0.09838          | 2.3225           | 0.03017              |
| 1.1225           | 0.41885              | 1.5776 | 0.09521                     | 2.3456           | 0.02931              |
| 1.1296           | 0.38626              | 1.5929 | 0.09216                     | 2.3689           | 0.02775              |
| 1.1309           | 0.37110              | 1.6084 | 0.08922                     | 2.3924           | 0.02699              |
| 1.1521           | 0.35665              | 1.6241 | 0.08638                     | 2.4161           | 0.02626              |
| 1,1600           | 0.34286              | 1.6400 | 0.08365                     | 2.4400           | 0.02555              |
| -                |                      | 1      |                             | 1                |                      |

|     | z                | Q <sub>3/2</sub> (2) | z                | $\Omega_{3/2}(z)$  | z                | $Q_{3/2}(z)$       |
|-----|------------------|----------------------|------------------|--------------------|------------------|--------------------|
|     |                  |                      |                  |                    |                  |                    |
|     | 2.4641           | 0.02486              | 3.5921           | 0.00903            | 5.0401           | 0.00376            |
| - 1 | 2.4884           | 0.02419              | 3.6244           | 0.00882            | 5.0804           | 0.00368            |
|     | 2.5129           | 0.02354              | 3.6569           | 0.00861            | 5.1209           | 0.00361            |
| -   | 2.5376           | 0.02292              | 3.6896           | J. 00842           | 5.1616           | 0.00353            |
| 1   | 2.5625           | 0.02231              | 3.7225           | 0.00822            | 5.2025           | 0.00346            |
| 1   | 2.5876           | 0.02172              | 3.7556           | 0.00803            | 5.2436           | 0.00339            |
|     | 2.6129           | 0.02114              | 3.7889           | 0.00785            | 5.2849           | 0.00333            |
|     | 2.6384           | 0.02059              | 3.8224           | 0.00767            | 5.3264           | 0.00326            |
|     | 2.6641           | 0.02005              | 3.8561           | 0.30750            | 5.3681           | 0.00320            |
|     | 2.6900           | 0.01953              | 3.8900           | 0.00733            | 5.4100           | 0.00313            |
|     | 2.7161           | 0.01902              | 3.9241           | 0.00717            | 5.4521           | 0.00307            |
|     | 2.7424           | 0.01853              | 3.9584           | 0.00701            | 5.4944           | 0.00301            |
|     | 2.7689           | 0.01805              | 3.9929           | 0.00685            | 5.5369           | 0.00296            |
|     | 2.7956           | 9.01759              | 4.0276           | 0.00670            | 5.5796           | 0.00290            |
|     | 2.8225           | 0.01714              | 4.0625           | 0.00655            | 5.6225           | 0.00284            |
|     | 2.8496           | 0.01670              | 4.0976           | 0.00641            | 5.6656           | 0.00279            |
|     | 2.8769           | 0.01628              | 4. 1329          | 0.00626            | 5.7089           | 0.00273            |
|     | 2.9044           | 0.01586              | 4.1684           | 0.00613            | 5.7524           | 0.00268            |
|     | 2.9321           | 0.01546              | 4.2041           | 0.00599            | 5.7961           | 0.00263            |
|     | 2.9600           | 0.01508              | 4.2400           | 0.00586            | 5.8400           | 0.00258            |
|     | 2.9881           | 0.01470              | 4. 2761          | 0.00574            | 5.8841           | 0.00253            |
| 1   | 3.0164           | 0.01433              | 4.3124           | 0.00561            | 5.9284           | 0.00248            |
|     | 3.0449           | 0.01398              | 4.3489           | 0.00549            | 5.9729           | 0.00244            |
|     | 3.0736           | 0.01363              | 4.3856           | 0.00537            | 6.0176           | ა. 00239           |
|     | 3.1025           | 0.01329              | 4.4225           | 0.00526            | 6.0625           | 0.00235            |
|     | 3.1316<br>3.1609 | 0.01297              | 4.4596           | 0.00515            | 6.1076           | 0.00230            |
|     | 3.1904           | 0.01265<br>0.01234   | 4.4969<br>4.5344 | 0.00504            | 6. 1529          | 0.00226            |
|     | 3.1904           | 0.01204              | 4.5721           | 0.00493<br>0.00483 | 6.1984<br>6.2441 | 0.00222<br>0.00217 |
|     | 3.2500           | 0.01175              | 4.6100           | 0.00473            | 6.2900           | 0.00217            |
|     |                  |                      |                  |                    |                  |                    |
| ı   | 3.2801           | 0.01147              | 4.6481           | 0.00463            | 6.3361           | 0.00210            |
| į   | 3.3104           | 0.01119              | 4.6864           | 0.00453            | 6.3824           | 0.00206            |
|     | 3.3409           | 0.01092              | 1.7249           | 0.00444            | 6.4289           | C. " 202           |
| - 1 | 3.3716           | 0.01066              | 4.7636           | 0.00434            | 6.4756           | 0.00198            |
| - 1 | 3.4025           | 0.01041              | 4.8025           | 0.00425            | 6.5225           | 0.00195            |
| ١   | 3.4336           | 0.01016              | 4.8416           | 0.00417            | 6.5696           | 0.00191            |
| ١   | 3.4649           | 0.00992              | 4.8809           | 0.00408            | 6.6169           | 0.00188            |
| 1   | 3.4964           | 0.00969              | 4.9204<br>4.9601 | 0.00400            | 6.6644           | 0.00184            |
| ١   | 3.5281           | 0.00946              | 5.0000           | 0.00372            | 6.7121           | 0.00181            |
|     | 3.5600           | 0.00924              | 5,0000           | 0.00384            | 6.7600           | 0.00178            |
|     |                  |                      |                  |                    |                  |                    |
| ٠   |                  |                      |                  |                    |                  |                    |
|     |                  |                      |                  |                    |                  |                    |
|     |                  |                      |                  |                    |                  |                    |

| <b>z</b>         | $Q_{3/2}(z)$ | 2       | Q <sub>3/2</sub> (z) | z                  | Q <sub>3/2</sub> (z) |
|------------------|--------------|---------|----------------------|--------------------|----------------------|
|                  |              |         |                      |                    |                      |
| 6.8081           | 0.00175      | 8.8961  | 0.00089              | 11.3041            | 0.00049              |
| 6.8564           | 0.00172      | 8.9524  | 0.00087              | 11.3684            | 0.00048              |
| 6.9049           | 0.00169      | 9.0089  | 0.00086              | 11.4329            | 0.00047              |
| 6.9536           | 0.00166      | 9.0656  | 0.00085              | 11.4976            | 0.00047              |
| 7.0025           | 0.00163      | 9.1225  | 0.00083              | 11.5625            | 0.00046              |
| 7.0516           | 0.00160      | 9.1796  | v. 00082             | 11.6276            | 0.00045              |
| 7.1009           | 0.00157      | 9. 2369 | 0.00081              | 11.6929            | 0.00045              |
| 7.1504           | 0.00154      | 9.2944  | 0.00080              | 11.7584            | 0.00044              |
| 7.2001           | 0.00152      | 9.3521  | 0.00078              | 11.8241            | 0.00043              |
| 7.2500           | 0.00149      | 9.4100  | 0.00077              | 11.8900            | 0.00043              |
| 7.3001           | 0.00147      | 9.4681  | 0.00076              | 11.9561            | 0.00042              |
| 7.3504           | 0.00144      | 9.5264  | 0.00075              | 12,0224            | 0.00042              |
| 7.4009           | 0.00142      | 9.5849  | 0.00074              | 12.0889            | 0.00041              |
| 7.4516           | 0.00139      | 9.6436  | 0.00073              | 12.1556            | 0.00040              |
| 7.5025           | 0.00137      | 9.7025  | 0.00071              | 12, 2225           | 0.00040              |
| 7.5536           | 0.00134      | 9.7616  | 0.00070              | 12.2896            | 0.00039              |
| 7.6049           | 0.00132      | 9 8209  | 0.00069              | 12.3569            | 0.00039              |
| 7.6564<br>7.7081 | 0.00130      | 9.8804  | 0.00068              | 12,4244<br>12,4921 | 0.00038              |
| 7.7600           | 0.00128      | 9.9401  | 0.00067              | 12.4921            | 0.00038              |
| 1.1000           | 0.00126      | 10.0000 | 0.00066              | 12.5000            | 0.00037              |
| 7.8121           | 0.00123      | 10.0601 | 0.00065              | 12.6281            | 0.00037              |
| 7.8644           | 0.00121      | 10.1204 | 0.00064              | 12,6964            | 0.00036              |
| 7.9169           | 0.00119      | 10.1809 | 0.00063              | 12.7649            | 0.00036              |
| 7.9696           | 0.00117      | 10.2416 | 0.00062              | 12.8336            | 0.00035              |
| 8.0225           | 0.00115      | 10.3025 | 0.00061              | 12,9025            | 0.00035              |
| 8.0756           | 0.00114      | 10.3636 | 0.00061              | 12,9716            | 0.00034              |
| 8.1289           | 0.00112      | 10.4249 | 0.00060              | 13.0409            | 0.00034              |
| 8.1824           | 0.00110      | 10.4864 | 0.00059              | 13,1104            | 0.00033              |
| 8.2361           | 0.00108      | 10.5481 | 0.00058              | 13.1801            | 0.00033              |
| 8.2900           | 0.00106      | 10.6100 | 0.00057              | 13,2500            | 0.00033              |
| 8.3441           | 0.00104      | 10.6721 | 0.00056              | 13.3201            | 0.00032              |
| 8.3984           | 0.00103      | 10.7344 | 0.00055              | 13.3904            | 0.00032              |
| 8.4529           | 0.00101      | 10.7969 | 0.00055              | 13.4609            | 0.00031              |
| 8.5076           | 0.00099      | 10.8596 | 0.00054              | 13.5316            | 0.00031              |
| 8 5625           | 0.00098      | 10.9275 | 0.00053              | 13.6025            | 0.00031              |
| 8.6176           | 0.00096      | 10.9856 | 0.00052              | 13.6736            | 0.00030              |
| 8.6729           | 0.00095      | 10.0489 | 0.00052              | 13.7449            | 0.00030              |
| 8.7284           | 0.00093      | 11.1124 | 0.00051              | 13.8164            | 0.00029              |
| 8.7841           | 0.00091      | 11.1761 | 0.00050              | 13.8881            | 0.00029              |
| 8.8400           | 0.00090      | 11.2400 | 0.00049              | 13.9600            | 0.00029              |
|                  |              | i       |                      | 1                  |                      |

| z                  | Q <sub>3/2</sub> (z) | z                  | Q <sub>3/2</sub> (z) |          |
|--------------------|----------------------|--------------------|----------------------|----------|
|                    |                      |                    |                      |          |
|                    |                      |                    |                      |          |
| 14.0321            | 0.00028              | 21.7025<br>22.6225 | 0.00009<br>ი.ს0008   |          |
| 14.1044            | 0.00028<br>0.00028   | 23.8484            | 0.00007              |          |
| 14.2496            | 0.00023              | 25,2054            | 0.00006              | 1        |
| 14.3225            | 0.00027              | 27.0100            | 0.00005              |          |
| 14.3956            | 0.00027              | 29.3024            | 0.00004              |          |
| 14.4689            | 0.00026              | 32.3600            | 0.00003              | <b>k</b> |
| 14.5424            | 0.00026              | 37.0000<br>45.4889 | 0.00002<br>0.00001   |          |
| 14.6161            | 0.00026<br>0.00025   | 1 43.4009          | 0.00001              |          |
| 14.0900            | 0.00025              | }                  |                      |          |
| 14.7641            | 0.00025              | 1                  |                      |          |
| 14.8384            | 0.00025              | 1                  |                      | 1        |
| 14.9129            | 0.00024              | Į                  |                      |          |
| 14.9876            | 0.00024              |                    |                      |          |
| 15.0625            | 0.00024<br>0.00023   | į                  |                      |          |
| 15.1376            | 0.00023              | <u> </u>           |                      |          |
| 15.2884            | 0.00023              |                    |                      |          |
| 15.3641            | 0.00023              |                    |                      |          |
| 15.4400            | 0.00022              |                    |                      |          |
|                    |                      | ļ                  |                      |          |
| 15.5161            | 0.00022              | i                  |                      |          |
| 15.5924<br>15.6689 | 0.00022<br>0.00021   | 1                  |                      | 1        |
| 15.7456            | 0.00021              | 1                  |                      |          |
| 15.6225            | 0.00021              | }                  |                      | 1        |
| 15.8996            | 0.00021              | Į                  |                      |          |
| 15.9769            | 0.00020              | ł                  |                      |          |
| 16.0544            | 0.00020              |                    |                      |          |
| 16.1321            | 0.00020<br>0.00020   | ĺ                  |                      | 1        |
| 10.2100            | 0.00020              | 1                  |                      |          |
| 14 2881#           | 0.00019              | 1                  |                      |          |
| 16.6816            | 0.00018              | İ                  |                      | 1        |
| 17.0000            | 0.00017              | i                  |                      |          |
| 17.4925            | 0.00016              | ļ                  |                      | 1        |
| 17.8921            | 0.00015              | 1                  |                      | 1        |
| 18.3889            | 0.00014<br>0.00013   | 1                  |                      | <b>\</b> |
| 19.4900            | 0.00013              |                    |                      |          |
| 20.1844            | 0.00012              | 1                  |                      |          |
| 20.8916            | 0.00010              | l                  |                      | 1        |
|                    |                      |                    |                      |          |
|                    |                      |                    |                      |          |
|                    |                      |                    |                      |          |

 $Q_{5/2}(z)$ 1.0001  $\leq z \leq 11.7584$ 

 $z = 1+y^2 \Delta y = 0.01$ 

| 1.0001<br>1.0004<br>1.0009<br>1.0016<br>1.0025<br>1.0036<br>1.0049<br>1.0064<br>1.0081 | 3.27327<br>2.58459<br>2.18549<br>1.90571<br>1.69175<br>1.51972<br>1.37681<br>1.25535 | 1.1681<br>1.1764<br>1.1849<br>1.1936<br>1.2025<br>1.2116 | 0.1563 <sup>2</sup> 0.14834 0.14076 0.13361 0.12686 | 1.6561<br>1.6724<br>1.6889<br>1.7056 | 0.02275<br>0.02176<br>0.02083 |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------|
| 1.0004<br>1.0009<br>1.0016<br>1.0025<br>1.0036<br>1.0049<br>1.0064<br>1.0081           | 2.58459<br>2.18549<br>1.90571<br>1.69175<br>1.51972<br>1.37681<br>1.25535            | 1.1764<br>1.1849<br>1.1936<br>1.2025<br>1.2116           | 0.14834<br>0.14076<br>0.13361                       | 1.6724<br>1.6889                     | 0.02176                       |
| 1.0009<br>1.0016<br>1.0025<br>1.0036<br>1.0049<br>1.0064<br>1.0081                     | 2.18549<br>1.90571<br>1.69175<br>1.51972<br>1.37681<br>1.25535                       | 1.1849<br>1.1936<br>1.2025<br>1.2116                     | 0.14076<br>0.13361                                  | 1.6889                               |                               |
| 1.0016<br>1.0025<br>1.0036<br>1.0049<br>1.0064<br>1.0081                               | 1.90571<br>1.69175<br>1.51972<br>1.37681<br>1.25535                                  | 1.1936<br>1.2025<br>1.2116                               | 0.13361                                             |                                      | 0.02083                       |
| 1.0025<br>1.0036<br>1.0049<br>1.0064<br>1.0081                                         | 1.69175<br>1.51972<br>1.37681<br>1.25535                                             | 1.2025<br>1.2116                                         |                                                     | 1.7056                               |                               |
| 1.0036<br>1.0049<br>1.0064<br>1.0081<br>1.0100                                         | 1.51972<br>1.37681<br>1.25535                                                        | 1.2116                                                   | 0.12686                                             |                                      | 0.0199                        |
| 1.0049<br>1.0064<br>1.0081<br>1.0100                                                   | 1.37681<br>1.25535                                                                   |                                                          |                                                     | 1.7225                               | 0.0190                        |
| 1.0064<br>1.0081<br>1.0100                                                             | 1.25535                                                                              | 1 1 22/4                                                 | C. 12047                                            | 1.7396                               | 0.0182                        |
| 1.0081                                                                                 |                                                                                      | 1.2209                                                   | 0.11444                                             | 1.7569                               | 0.0174                        |
| 1.0100                                                                                 |                                                                                      | 1.2304                                                   | 0.10874                                             | 1.7744                               | 0.0167                        |
|                                                                                        | 1.15037                                                                              | 1.2401                                                   | 0.10335                                             | 1.7921                               | 0.0160                        |
|                                                                                        | 1.05844                                                                              | 1.2500                                                   | 0.09826                                             | 1.8100                               | 0.0153                        |
| 1.0121                                                                                 | 0.97712                                                                              | 1.2601                                                   | 0.09344                                             | 1.8281                               | 6.0147                        |
| 1.0144                                                                                 | 0.90458                                                                              | 1.2704                                                   | 0.08887                                             | 1.8464                               | 0.0141                        |
| 1.0169                                                                                 | 0.83945                                                                              | 1.2809                                                   | 0.08455                                             | 1.8649                               | 0.0135                        |
| 1.0196                                                                                 | 0.78062                                                                              | 1.2916                                                   | 0.08046                                             | 1.8836                               | 0.0129                        |
| 1.0225                                                                                 | 0.72724                                                                              | 1.3025                                                   | 0.07658                                             | 1.9025                               | 0.0124                        |
| 1.0256                                                                                 | 0.67859                                                                              | 1.3136                                                   | 0.07290                                             | 1.9216                               | 0.0119                        |
| 1.0289                                                                                 | 0.63410                                                                              | 1.3249                                                   | 0.06942                                             | 1.9409                               | 0.0114                        |
| 1.0324<br>1.0361                                                                       | 0.59329                                                                              | 1.3481                                                   | 0.06612<br>0.06299                                  | 1.9801                               | 0.0109<br>0.0105              |
| 1.0400                                                                                 | 0.55575<br>0.52113                                                                   | 1.3600                                                   | 0.06299                                             | 2.0000                               | 0.0103                        |
| 1.0400                                                                                 | 0.52115                                                                              | 1.3000                                                   | 0.00001                                             | 2.0000                               | 0.0101                        |
| 1.0441                                                                                 | 0.48914                                                                              | 1.3721                                                   | 0.05719                                             | 2.0201                               | 0.0097                        |
| 1.0484                                                                                 | 0.45951                                                                              | 1.3844                                                   | 0.05452                                             | .0404                                | 0.0093                        |
| 1.0529                                                                                 | 0.43203                                                                              | 1.3969                                                   | 0.05198                                             | 2.0609                               | 0.0089                        |
| 1.0576<br>1.0625                                                                       | 0.40650<br>0.38275                                                                   | 1.4096                                                   | 0.04957<br>0.04728                                  | 2.0816<br>2.1025                     | 0.0085<br>0.0082              |
| 1.0676                                                                                 | 0.36275                                                                              | 1.4356                                                   | 0.04510                                             | 2.1025                               | 0.0079                        |
| 1.0729                                                                                 | 0.33997                                                                              | 1.4489                                                   | 0.04303                                             | 2.1449                               | 0.0075                        |
| 1.0784                                                                                 | 0.32069                                                                              | 1.4624                                                   | 0.04107                                             | 2.1664                               | 0.0073                        |
| 1.0841                                                                                 | 0.30267                                                                              | 1,4761                                                   | 0.03920                                             | 2 1881                               | 0.0070                        |
| 1.0900                                                                                 | 0.28581                                                                              | 1.4900                                                   | 0.03743                                             | 100                                  | 0.0067                        |
| 1.0961                                                                                 | 0.27003                                                                              | 1.5041                                                   | 0.03574                                             | i321                                 | 0.0064                        |
| 1.1024                                                                                 | 0.25522                                                                              | 1.5184                                                   | 0.03413                                             | 2, 2544                              | 0.0062                        |
| 1.1089                                                                                 | 0.24134                                                                              | 1.5329                                                   | 0.03260                                             | 2.2769                               | 0.0059                        |
| 1.1156                                                                                 | 0.22830                                                                              | 1.5476                                                   | 0.03115                                             | 2, 2996                              | 0.0057                        |
| 1,1003                                                                                 | 0.21605                                                                              | 1,5625                                                   | 0.02977                                             | 2, 3225                              | 0.0000                        |
| 1.1296                                                                                 | 0.20454                                                                              | 1.5776                                                   | C. 02845                                            | 2.3456                               | 0.0053                        |
| 1,1369                                                                                 | 0.19372                                                                              | 1 2929                                                   | 0.02719                                             | 2.3689                               | 0.0051                        |
| 1.1444                                                                                 | 0.18353                                                                              | 1. 84                                                    | 0.02600                                             | 2,3924                               | 0.0049                        |
| 1.1521                                                                                 | 0.17393                                                                              | 1.6241                                                   | 0.02486                                             | 2.4161                               | 0.0047                        |
| 1.1600                                                                                 | 0.16489                                                                              | 1.6400                                                   | 0.02378                                             | 2.4400                               | 0.0045                        |

| z                | Q <sub>5/2</sub> (z) | z                | Q <sub>5/2</sub> (z) | z                | Q <sub>5/2</sub> (z) |
|------------------|----------------------|------------------|----------------------|------------------|----------------------|
|                  |                      |                  |                      |                  |                      |
| 2.4641           | 0.00440              | 3.5921           | 0.00107              | 5.0401           | 0.00031              |
| 2.4884           | 0.00424              | 3.5244           | G. 00104             | 5.0804           | 0.00030              |
| 2.5129           | 0.00408              | 3.6569           | 0.00100              | 5.1209           | 0.00029              |
| 2.5376           | 0.00393              | 3.6996           | 0.00097              | 5.1616           | 0.00029              |
| 2.5625           | 0.00378*             | 3.7225           | 0.00094              | 5.2025           | 0.00028              |
| 2.5876           | 0.00365              | 3.7556           | 0.00091              | 5.2436           | 0.00027              |
| 2.6129           | 0.00351              | 3.7889           | 0.00088              | 5.2849<br>5.3264 | 0.00026              |
| 2.6384<br>2.6641 | 0.00338<br>0.00326   | 3.8224<br>3.8561 | 0.00085<br>0.00083   | 5.3681           | 0.00026<br>0.00025   |
| 2.6900           | 0.00326              | 3.8900           | 0.00080              | 5.4100           | 0.00025              |
| 2.0700           | 0.00314              | 3.0700           | 0.0000               | 3.4100           | 0.00024              |
| 2.7161           | 0.00303              | 3.9241           | 0.00078              | 5.4521           | 0.00023              |
| 2.7424           | 0.00292              | 3.9584           | 0.00075              | 5.4944           | 0.00023              |
| 2.7689           | 0.00282              | 3.9929           | 0.00073              | 5.5369           | 0.00022              |
| 2.7956           | 0.00272              | 4.0276           | 0.00071              | 5.5796           | 0.00021              |
| 2.8225           | 0.00262              | 4.0625           | 0.00069              | 5,6225           | 0.00021              |
| 2.8496           | 0.00253              | 4.0976           | 0.00066              | 5.6656           | 0.00020              |
| 2.8769           | 0.00244              | 4.1329           | 0.00064              | 5.7089           | 0.00020              |
| 2.9044           | 0.00235              | 4.1684           | 0.00062              | 5.7524<br>5.7961 | 0.00019              |
| 2.9321<br>2.9600 | 0.00227<br>0.00219   | 4.2041<br>4.2400 | 0.00061<br>0.00059   | 5.8400           | 0.00019<br>0.00018   |
| 2. 7000          | 0.00219              | 4.2400           | 0.00059              | 5.0400           | 0.00018              |
| 2.9881           | 0.00212              | 4, 2761          | 0.00057              | 5.8841           | 0.00018              |
| 3.0164           | 0.00204              | 4.3124           | 0.00055              | 5, 9284          | 0.00017              |
| 3.0449           | 0.00197              | 4.3489           | 0.00054              | 5.9729           | 0.00017              |
| 3.0736           | 0.00190              | 4.3856           | 0.00052              | 6.0176           | 0.00016              |
| 3.1025           | 0.00184              | 4.4225           | 0.00051              | 6.0625           | 0.00016              |
| 3.1316           | 0.00178              | 4.4596           | 0.00049              | 6.1076           | 0.00016              |
| 3.1609           | 0.00172              | 4.4969           | 0.00048              | 6.1529           | 0.00015              |
| 3.1904           | 0.00166              | 4.5344           | 0.00046              | 6.1984           | 0.00015              |
| 3.2201<br>3.2500 | 0.00160<br>0.00155   | 4.5721<br>4.6100 | 0.00045<br>0.00044   | 6.2441<br>6.2900 | 0.000}4<br>0.00014   |
| 3.2500           | 0.00155              | 4.0100           | V. 00044             | 0.2700           | 0.00014              |
| 3.2801           | 0.00150              | 4.6481           | 0.00042              | 6.3361           | 0.00014              |
| 3.3104           | 0.00145              | 4.6864           | 0.00041              | 6.3824           | 0.00013              |
| 3.3409           | 0.00140              | 4.7249           | 0.00040              | 6.4289           | 0.00013              |
| 3.3716           | 0.00135              | 4.7636           | 0.00039              | 6.4756           | 0.00013              |
| 3.4025           | 0.00131              | 4.8025           | 0.00038              | 6.5225           | 0.00012              |
| 3.4336           | 0.00126              | 4.8416           | 0.00037              | 6.5696           | 0.00012              |
| 3.4649           | 0.00122              | 4.8809           | 0.00036              | 6.6169           | 0.00012              |
| 3.4964           | 0.00118              | 4.9204           | 0.00035              | 5.6644           | 0.00011              |
| 3.5281           | 0.00114              | 4.9601           | 0.00034              | 6.7121           | 0.00011              |
| 3.5600           | 0.00111              | 5.0000           | 0.00033              | 6.7600           | 0.00011              |
| 1                |                      |                  |                      | 1                |                      |
| ĺ                |                      | 1                |                      | I                |                      |

|                                                                                   |                                                                                                               | <br> |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| z                                                                                 | Q <sub>5/2</sub> (z)                                                                                          |      |
| 2 6.3081 6.8564 6.9049* 7.2500 7.5025 7.8121 8.1824 8.6729 9.1796 10.1204 11.7584 | Q <sub>5/2</sub> (z)  0.00010 0.00010 0.00010 0.00008 0.00007 0.00006 6.00005 0.00004 0.00003 0.00002 0.00001 |      |
|                                                                                   |                                                                                                               |      |
|                                                                                   |                                                                                                               |      |
|                                                                                   |                                                                                                               |      |

 $Q_{7/2}(z)$ 1.0001  $\leq z \leq 5.421$ 

 $z = 1+y^2 \Delta y + 0.01$ 

| z                | Q <sub>7/2</sub> (z) | Z      | $Q_{7/2}(z)$ | z       | $Q_{7/2}(z)$ |
|------------------|----------------------|--------|--------------|---------|--------------|
|                  |                      |        |              |         |              |
| 1.0001           | 2.98882              | 1.1681 | 0.07760      | 1.6561  | 0.00669      |
| 1.0004           | 2.30299              | 1.1764 | 0.07261      | 1.6724  | 0.00632      |
| 1.0009           | 1.90777              | 1.1849 | 0 06796      | 1.6889  | 0.00598      |
| 1.0016           | 1.63263              | 1.1936 | 0.06363      | 1.7056  | 0.00565      |
| 1.0025           | 1.42388              | 1.2075 | 0.05959      | 1.7225  | 0.00534      |
| 1.0036           | 1.25749              | 1.2116 | 0.05584      | 1.7396  | 0.00505      |
| 1.0049           | 1.12055              | 1.2209 | 0.05233      | 1.7569  | 0.00478      |
| 1.0064           | 1.00531              | 1.2304 | 0.04905      | 1.7744  | 0.00452      |
| 1.0081           | 0.90671              | 1.2401 | 0.04599      | 1.7921  | 0.00428      |
| 1.0100           | 0.82128              | 1.2500 | 0.04314      | 1.8100  | 0.00405      |
| 1.0121           | 0.74653              | 1.2601 | 0.04048      | 1.8281  | 0.00383      |
| 1.0144           | 0.68061              | 1.2704 | 0.03798      | 1.8464  | 0.00363      |
| 1.0169           | 0.62207              | 1.2809 | 0.03566      | 1.8649  | 0.00344      |
| 1.0196           | 0.56982              | 1.2916 | 0.03348      | 1.8836  | 0.00326      |
| 1.0225           | 0.52296              | 1.3025 | 0,03145      | 1.9025  | 0.00309      |
| 1.0256           | 0.48077              | 1.3136 | 0.02954      | 1.9216  | 0.00293      |
| 1.0289           | 0.44265              | 1.3249 | 0.02776      | 1.9409  | 0.00277      |
| 1.0324           | 0.40810              | 1.3364 | 0.02609      | 1.9604  | 0.00263      |
| 1.0361           | 0.37671              | 1.3481 | 0.02453      | 1.9801  | 0.00249      |
| 1.0400           | 0.34812              | 1.3600 | 0.02307      | 2.0000  | 0.00237      |
| 1.0441           | 0.32202              | 1,3721 | 0.02170      | 2.0201  | 0.00224      |
| 1.0484           | 0.29816              | 1.3844 | 0.02041      | 2.0404  | 0.00213      |
| 1.0529           | 0.27631              | 1.3969 | 0.01921      | 2.0609  | 0.00202      |
| 1.0576           | 0.25626              | 1.4096 | 0.01808      | 2.0816  | 0.00192      |
| 1.0625           | 0.23785              | 1.4225 | 0.01703      | 2.1025  | 0.00182      |
| 1.0676           | 0.22091              | 1.4356 | 0.01603      | 2. 1236 | 0.00173      |
| 1.0729           | 0.20531              | 1.4489 | 0.01510      | 2, 1449 | 0.00164      |
| 1.0784<br>1.0841 | 0.19093              | 1.4624 | 0.01423      | 2.1664  | 0.00156      |
| 1.0941           | 0.17766              | 1.4761 | 0.01341      | 2.1881  | 0.00148      |
| 1.0900           | 0.16540              | 1.4900 | 0.01264      | 2.2100  | 0.00141      |
| 1.0961           | 0.15406              | 1.5041 | 0.01192      | 2.2321  | 9.00134      |
| 1.1024           | 0.14357              | 1.5184 | 0.01124      | 2, 2544 | 0,00134      |
| 1.1089           | 0.13386              | 1.5329 | 0.01060      | 2.2769  | 0.00121      |
| 1.1156           | 0. 12487             | 1.5476 | 0.01000      | 2,2996  | 0.00115      |
| 1.1225           | 0.11653              | 1.5625 | 0.00943      | 2,3225  | 0.00109      |
| 1.1296           | 0.10879              | 1.5776 | 0.00890      | 2.3456  | 0.00104      |
| 1.1369           | 0.10161              | 1.5929 | 0.00841      | 2.3689  | 0.00099      |
| 1.1444           | 0,09493              | 1.6084 | 0.00794      | 2.3924  | 0.00094      |
| 1.1521           | 0.08873              | 1.6241 | 0.00750      | 2.4161  | 0.00090      |
| 1.1600           | 0.08297              | 1.6400 | 0.00708      | 2.4400  | 0.00085      |
|                  | i                    |        |              | 1       | -, ,         |

| z       | Q <sub>7/2</sub> (z) | z                | Q <sub>7/2</sub> (z) | z       | Ω <sub>7/2</sub> (z) |
|---------|----------------------|------------------|----------------------|---------|----------------------|
|         |                      |                  |                      |         |                      |
| 2, 4641 | 0.00081              | 3.5921           | 0.00013              | 5.0401* | 0.00002              |
| 2.4884  | 0.00077              | 3.6244           | 0.00012              | 5.4521  | 0.00001              |
| 2,5129  | 0.00074              | 3.6569           | 0.00012              |         |                      |
| 2,5376  | 0.00070              | 3.6896           | 0.00011              |         |                      |
| 2.5625  | 0.00067              | 3.7225           | 0.00011              |         |                      |
| 2.5876  | 0.00064              | 3.7556           | 0.00010<br>0.00100   | }       |                      |
| 2.6129  | 0.00061              | 3.7889<br>3.8224 | 0.00100              |         |                      |
| 2.6384  | 0.00058              | 3.8561           | 0.00009              | }       |                      |
| 2.6641  | 0.00055<br>0.00053   | 3.8900           | 0.00009              | 1       |                      |
| 2.6900  | 0.00055              | 3.0700           | 0.00007              | 1       |                      |
| 2.7161  | 0.00050              | 3.9241           | 0.00008              | į       |                      |
| 2.7424  | 0.00048              | 3.9584           | 0.00008              |         |                      |
| 2.7689  | 0.00046              | 3.9929           | 0.00008              | į.      |                      |
| 2.7956  | 0.00044              | 4.0276           | 0.00007              |         |                      |
| 2.8225  | 0.00042              | 4.0625           | 0.00007              | 1       |                      |
| 2.8496  | 0.00040              | 4.0976           | 0.00007              |         |                      |
| 2.8769  | 0.00038              | 4.1329           | 0.00007              | ţ       |                      |
| 2.9044  | 0.00036              | 4.1684           | 0.00006              | ļ       |                      |
| 2.9321  | 0.00034              | 4.2041           | 0.00006              |         |                      |
| 2.9600  | 0.00033              | 4. 2400          | 0.60006              |         |                      |
| 2.9881  | 0.00031              | 4.2761           | 0.00006              |         |                      |
| 3.0164  | 0.00030              | 4.3124           | 0.00005              | 1       |                      |
| 3.0449  | 0.00029              | 4, 3489          | 0.00005              |         |                      |
| 3.0736  | 0.90027              | 4.3856           | 0.00005              |         |                      |
| 3.1025  | 0.00026              | 4.4225           | 0.00005              | Į.      |                      |
| 3.1316  | 0.00025              | 4.4596           | 0.00005              |         |                      |
| 3.1609  | 0,00024              | 4.4969           | C.00004              | 1       |                      |
| 3.1904  | 0.00023              | 4,5344           | 0.00004              |         |                      |
| 3.2201  | 0.00022              | 4,5721           | 0.00004              | 1       |                      |
| 3.2500  | 0.00021              | 4.6100           | 0.00004              |         |                      |
| 3.2801  | 0.00020              | 4.6481           | 0.05004              | 1       |                      |
| 3.3104  | 0.00019              | 4.6864           | 0.03004              | J       |                      |
| 3.3409  | 0.00018              | 4.7249           | 0.00003              | Ì       |                      |
| 3.3716  | 0.00018              | 4.7636           | 0.00003              | 1       |                      |
| 3.4025  | 0.00917              | 4.8025           | 0.00003              | 1       |                      |
| 3.4336  | 0.00016              | 4.8416           | 0.00003              | 1       |                      |
| 3.4649  | 0.00015              | 4.8809           | 0.00003              | 1       |                      |
| 3.4964  | 0.00015              | 4.9204           | 0.00003              |         |                      |
| 3.5281  | 0.00014              | 4.9601           | 6.00003              | 1       |                      |
| 3.5600  | 0.00013              | 5.0000           | 0.00003              | l       |                      |
| I       |                      | ì                |                      | I       |                      |

 $Q_{9/2}(z)$ 1.0001  $\le z \le 3.2500$  $z = 1+y^2$   $\Delta y = 0.01$ 

| z                | Q <sub>9/2</sub> (z) | z                | Q <sub>9/2</sub> (z) | <u>z</u>         | Q <sub>9/2</sub> (z) |
|------------------|----------------------|------------------|----------------------|------------------|----------------------|
| 1.0001           | 2.76812              | 1.1681           | 0.03956              | 1.6561           | 0.00203              |
| 1.0004           | 2.08561              | 1.1764           | 0.03651              | 1.6724           | 0.00189              |
| 1.0009           | 1.69482              | 1.1849           | 0.03371              | 1.6889           | 0.00177              |
| 1.0016           | 1.42488              | 1.1936           | 0.03114              | 1.7056           | 0.00165              |
| 1.0025           | 1.22187              | 1.2025           | 0.02877              | 1.7225           | 0.00154              |
| 1.0036           | 1.06159              | 1.2116           | 0.02659              | 1.7396           | 0.00144              |
| 1.0049           | 0.93100              | 1.2209           | 0.02458              | 1.7569           | 0.00135              |
| 1.0064           | ¢.82226              | 1.2304           | 0.02274              | 1.7744           | 0.00126              |
| 1.0100           | 0.73025<br>0.65143   | 1.2401           | 0.02103              | 1.7921           | 0.06118              |
| *******          | 0.05145              | 1.2500           | 0.01947              | 1.8100           | 0.00110              |
| 1.0121           | 0.58325              | 1.2601           | 0.01802              | 1.8281           | 0.00103              |
| 1.0144           | 0.52383              | 1.2704           | 0.01669              | 1.8464           | 0.00096              |
| 1.0169           | 0.47170              | 1.2809           | 0.01546              | 1.8649           | 0.00090              |
| 1.0196           | 0.42573              | 1.2916           | 0.01432              | 1.8836           | 0.00084              |
| 1.0225<br>1.0256 | 0.38500              | 1.3025           | 0,01327              | 1.9025           | 0.00079              |
| 1.0289           | 0.34879              | 1.3136           | 0.01231              | 1.9216           | 0.00074              |
| 1.0324           | 0.31648<br>0.28757   | 1.3249           | 0.01141              | 1.9409           | 0.00069              |
| 1.0361           | 0.26163              | 1.3364<br>1.3481 | 0.01059              | 1.9604           | 0.00065              |
| 1.0400           | 0.23830              | 1.3600           | 0.00982<br>0.00912   | 1.9801           | 0.00961<br>0.00057   |
|                  |                      | 11000            | 0,00,12              | 2.0000           | 0.00057              |
| 1.0441           | 0.21729              | 1.3728           | 0.00847              | 2.0201           | 0.00054              |
| 1.0484           | 0.19832              | 1.3844           | 0.00786              | 2.0404           | 0.00050              |
| 1.0529<br>1.0576 | 0.18118              | 1.3969           | 0.00730              | 2.0609           | 0.00047              |
| 1.0625           | 0.16565<br>0.15157   | 1.4096           | 0.00679              | 2.0816           | 0.00044              |
| 1.0676           | 0.13879              | 1.4225<br>1.4356 | 0.00631              | 2.1025           | 0.00042              |
| 1.0729           | 0.12718              | 1.4489           | 0.00586<br>0.00545   | 2.1236           | 0.00039              |
| 1.0784           | 0.11661              | 1.4624           | 0.00507              | 2.1449<br>2.1664 | 0.00037              |
| 1.0841           | 0.10699              | 1.4761           | 0.00472              | 2.1881           | 0.00034              |
| 1.0900           | 0.09821              | 1.4900           | 0.00439              | 2.2100           | 0.00032<br>0.00030   |
| 1.0961           | 0.09021              | 1 5041           | 0.00455              |                  |                      |
| 1.1024           | 0.08290              | 1.5041<br>1.5184 | 0.00409              | 2, 2321          | 0.00029              |
| 1.1089           | 0.07622              | 1.5329           | 0.00381              | 2.2544           | 0.00027              |
| 1.1156           | 0.07012              | 1.5476           | 0.00355              | 2.2769           | 0.00025              |
| . 1225           | 0.06453              | 1.5625           | 0.00330<br>0.00308   | 2.2996           | 0.00024              |
| 1.1296           | 0.05942              | 1.5776           | 0.00308              | 2.3225<br>2.3456 | 0.00022              |
| . 1369           | U. 05473             | 1.5929           | 0.00268              | 2.3456           | 0.00021              |
| . 1444           | 0.05044              | 1.6084           | 0.00250              | 2.3924           | 0.00020<br>0.00019   |
| . 1521           | 0.04650              | 1.6241           | 0.00233              | 2.4161           | 0.00019              |
| .1600            | 0.04288              | 1.6400           | 0.00218              | 2.4400           | 0.00018              |
|                  | i                    |                  |                      |                  |                      |

| z                | Q <sub>9/2</sub> (z) |  |
|------------------|----------------------|--|
|                  |                      |  |
| 2.4641<br>2.4884 | 0.00016<br>0.00015   |  |
| 2.5129<br>2.5376 | 0.00014<br>0.00013   |  |
| 2.5625           | 0.00012              |  |
| 2.5876           | 0.00012<br>0.00011   |  |
| 2.6384<br>2.6641 | 0.00010<br>0.00010   |  |
| 2.6900           | 0.00009              |  |
| 2.7161           | 0.00009              |  |
| 2.7424           | 0.00008<br>0.00008   |  |
| 2.7956           | 0.00007              |  |
| 2.8225<br>2.8496 | 0.00007<br>0.00007   |  |
| 2.8769<br>2.9044 | 0.00006<br>0.00006   |  |
| 2.9321           | 0.00006              |  |
| 2.9600           | 0.00005              |  |
| 2.9881<br>3.0164 | 0.00005<br>0.00005   |  |
| 3.0449           | 0.00004              |  |
| 3.0736<br>3.1025 | 0.00004<br>0.00004   |  |
| 3.1316<br>3.1609 | 0.00004<br>0.00004   |  |
| 3.1904           | 0.00003              |  |
| 3.2201<br>3.2500 | 0.00003<br>0.00003   |  |
|                  |                      |  |
|                  |                      |  |
|                  |                      |  |
|                  |                      |  |
|                  |                      |  |
| į                |                      |  |
| 1                |                      |  |
|                  |                      |  |

 $q_{11/2}(z)$ 1.0001  $\leq z \leq 2.724$ 

 $z = 1 + y^2$   $\Delta y = 0.01$ 

| z       | Q <sub>11/2</sub> (z) | z       | Q <sub>11/2</sub> (2) | z                  | Q <sub>11/2</sub> (z) |
|---------|-----------------------|---------|-----------------------|--------------------|-----------------------|
|         |                       |         |                       |                    |                       |
| 1.0001  | 2. 58805              | 1. 1681 | 0.02052               | 1.6561             | 0.00062               |
| 1.0004  | 1.90926               | 1. 1764 | 0.01868               | 1.6724             | 0. 00058              |
| 1.0009  | 1. 52336              | 1. 1849 | 0 61701               | 1.6889             | 0.00053               |
| 1.0016  | 1.25904               | 1. 1936 | 0.01550               | 1.7056             | 0.00049               |
| 1.0025  | 1.06213               | 1. 202¢ | 0.01413               | 1. 7225            | 0.00045               |
| 1.0036  | 0. 90825              | 1.2116  | 0.01288               | 1.7396             | 0.00042               |
| 1.0049  | 0. 78421              | 1. 2209 | 0.01175               | 1.7569             | 0.00039               |
| 1.0064  | 0.68207               | 1. 2304 | 0.01072               | 1.7744             | 0.00036               |
| 1.0081  | 0. 59663              | 1. 1240 | 0.00979               | 1 7921<br>1.8100   | 0. 00033<br>0. 00030  |
| 1.0100  | 0. 52430              | 1. 2500 | 0.00894               | 1.8100             | 0. 00030              |
| 1.0121  | 0.46249               | 1. 2601 | 0.00816               | 1.8281             | 0.00028               |
| 1.0144  | 0.40927               | 1. 2704 | 0.00746               | 1.8464             | 0.00026               |
| 1.0169  | 0.36316               | 1. 2809 | 0.00682               | 1.8649             | 0. 30024              |
| 1.0196  | 0.32300               | 1. 2916 | 0.00624               | 1.8836             | 0.00022               |
| 1.0225  | 0. 28788              | 1.3025  | 0.00570               | 1. 9025            | 0.00021               |
| 1.0256  | 0.25704               | 1.3136  | 0.00522               | 1. 9216            | 0.00019               |
| 1 0289  | 0. 22988              | 1.3249  | 0.00478               | 1.9409             | 0.00018               |
| 1.0324  | 0. 20589              | 1. 3364 | 0.00437               | 1.9604             | 0.00016               |
| 1.0361  | 0. 18464              | 1.3481  | 0.00400               | 1.9801             | 0.00015               |
| 1.0400  | 0. 16579              | 1.3600  | 0. 00367              | 2. 0000            | 0.00014               |
| 1.0441  | 0.14902               | 1.3721  | 0.00336               | 2. 0201            | 0.00013               |
| 1.0484  | 0.13409               | 1. 3844 | 0.00308               | 2.0404             | 0.00012               |
| 1.0529  | 0. 12077              | 1. 3969 | 0. 00283              | 2. 0609            | 0.00011               |
| 1. 0576 | 0. 10886              | 1.4096  | 0.00259               | 2.0816             | 0.00010               |
| 1.0625  | 0.09821               | 1. 4225 | 0.00238               | 2. 1025            | 0.00010               |
| 1.0676  | 0.08867               | 1. 4356 | 0.00218               | 2. 1236            | 0.00009               |
| 1.0729  | 0.08011               | 1.4489  | 0.00200               | 2. 1449            | 0. 00008              |
| 1.0784  | 0.07243               | 1.4624  | 0.00184               | 2. 1664            | 0.00008               |
| 1.0841  | 0.06552               | 1.4761  | 0.00169               | 2. 1881<br>2. 2100 | 0. 00007<br>0. 00007  |
| 1.0900  | 0.05931               | 1.4900  | 0.00155               | 2. 2100            | 0.00007               |
| 1.0961  | 0.05372               | 1.5041  | 0.00143               | 2. 2321            | 0.00006               |
| 1. 1024 | 0.04869               | 1.5184  | 0.00131               | 2. 2544            | 0. 000₽5              |
| 1.1089  | 0.04415               | 1.5329  | 0.00121               | 2. 2769            | 0.00005               |
| 1.1156  | 0.04005               | 1.5476  | 0.00111               | 2. 2996            | 0.00005               |
| 1. 1225 | 0. 03635              | 1.5625  | 0.00102               | 2. 3225            | 0.00005               |
| 1. 1296 | 0.03301               | 1.5776  | 0.00094               | 2. 3456            | 0.00004               |
| 1. 1369 | 0.02999               | 1.5929  | 0.00087               | 2. 3689            | 0.00004               |
| 1. 1444 | 0. 02726              | 1.6084  | 0.00080               | 2. 3924            | 0.00004               |
| 1. 1521 | 0. 02479              | 1.6241  | 0.00074               | 2.4161             | 0. 00003<br>0. 00003  |
| 1. 1600 | 0. 02255              | 1.6400  | 0. 00068              | 2. 4400            | 0. 00003              |
| ì       |                       | 1       |                       | 1                  |                       |
|         |                       | l       |                       | <u> </u>           |                       |

| z                                                   | Q <sub>11/2</sub> (z)                                    |  |
|-----------------------------------------------------|----------------------------------------------------------|--|
| 2. 4641<br>2. 4884<br>2. 5129<br>2. 5376<br>2. 7424 | 0. 00003<br>0. 00003<br>0. 00002<br>0. 00002<br>0. 00001 |  |
|                                                     |                                                          |  |
|                                                     |                                                          |  |
|                                                     |                                                          |  |
|                                                     |                                                          |  |
| ţ                                                   |                                                          |  |

Q<sub>13/2</sub>(z)

1.0001 \( \mathbf{z} \leq 2.2100

 $z = 1 + y^2 \quad \Delta y = 0.01$ 

|                  | ···                   |                    |                       |                  |                       |
|------------------|-----------------------|--------------------|-----------------------|------------------|-----------------------|
| 2                | Q <sub>13/2</sub> (z) | 2.                 | Q <sub>13/2</sub> (z) | z                | Q <sub>13/2</sub> (z) |
|                  |                       |                    |                       |                  |                       |
| 1.0001           | 2. 43616              | 1. 1681            | 0.01077               | 1.6561           | 0.00020               |
| 1.0004           | 1.76146               | 1. 1764            | 0.00968               | 1.6724           | 0.00018               |
| 1.0009           | 1.38081               | 1, 1849            | 0.00870               | 1.6889           | 0.00016               |
| 1.0016           | 1.12244               | 1. 1936            | 0. 0078!              | 1. 7056          | 0.00015               |
| 1.0025           | 0. 93188              | 1. 2025            | 0. 00703              | 1. 7225          | 0.00213               |
| 1.0036           | 0. 78453              | 1. 2116            | J. 00632              | 1.7396           | 0.00012               |
| 1.0049           | 0.66710               | 1. 2209            | 0. 00569              | 1.7569           | 0.00011               |
| 1.0064           | 0.57150               | 1. 2304<br>1. 2401 | 0.00512               | 1.7744           | 0.00010               |
| 1.0081<br>1.0100 | 0. 49249<br>0. 42641  | 1. 2500            | 0.00461<br>0.00416    | 1.7921<br>1.8100 | 0.00009               |
| 1.0100           | 0.42041               | 1. 2300            | 0.00416               | 1.8100           | 0. 00009              |
| 1.0121           | 0. 37063              | 1. 2601            | 0. 00375              | 1.8281           | 0. 00008              |
| 1.0144           | 0.32321               | 1.2704             | 0.00338               | 1.8464           | 0.00007               |
| 1.0169           | 0. 28264              | 1. 2809            | 0.00305               | 1.8649           | 0.00007               |
| 1.0196           | 0 24777               | 1. 2916            | 0. 00275              | 1.8836           | 0.00006               |
| 1 0225           | 0. 21765              | 1.3025             | 0.00248               | 1. 9025          | 0.00005               |
| 1.0256           | 0 19155               | 1.3136             | 0.00224               | 1. 9216          | 0.00005               |
| 1.0289           | 0. 16887              | 1. 3249            | 0.05202               | 1. 9409          | 0.00005               |
| 1.0324           | 0. 14909              | 1.3364             | 0.00183               | 1. 9604          | 0.00004               |
| 1.0361           | 0. 13181              | 1.3481             | 0.00165               | 1. 9801          | 0.00004               |
| 1.0400           | 0.11667               | 1.3600             | 0.00149               | 2. 0000          | 0.00003               |
| 1.0441           | 0. 10339              | 1 3721             | 0.00135               | 2. 0201          | 0.00003               |
| 1 0484           | 0.09172               | 1.3844             | 0.00122               | 2.0404           | 0.00003               |
| 1.0529           | 0.08144               | 1.3969             | 0.00111               | 2.0609           | 0.00003               |
| 1.0576           | 0. 07238              | 1.4096             | 0.00100               | 2.0816*          | 0. 00002              |
| 1 0625           | 0.06439               | 1.4225             | 0.00091               | 2 2100           | 0.00001               |
| 1.0676           | 0.05732               | 1. 4356            | 0.00082               |                  |                       |
| 1.0729           | 0.05106               | 1 4489             | 0.00075               |                  |                       |
| 1.0784           | 0.04552               | 1. 4624            | 0.00068               |                  |                       |
| 1.0841           | 0.04061               | 1.4761             | 0.00061               |                  |                       |
| 1. 0900          | 0. 03625              | 1.4900             | 0. 00056              |                  |                       |
| 1.0961           | 0.03238               | 1.5041             | 0. 00050              |                  |                       |
| 1. 1024          | 0. 02894              | 1.5184             | 0.00046               |                  |                       |
| 1.1089           | 0. 02588              | 1.5329             | 0.00042               |                  |                       |
| 1. 1156          | 0.02315               | 1.5476             | 0.00038               |                  |                       |
| . 1225           | 0.02073               | 1.5625             | 3. 00034              |                  |                       |
| 1. 1296          | 0.01856               | 1. 3776            | 0.00031               |                  |                       |
| 1. 1369          | 0.01663               | 1.5929             | 0.00028               |                  |                       |
| 1. 1444          | 0.01491               | 1.6084             | ს. 00026              |                  |                       |
| 1. 1521          | 0.01338               | 1.6241             | 0.00024               |                  |                       |
| 1. 1600          | 0.01200               | 1.6400             | 0.00021               |                  |                       |
| '<br>            |                       |                    |                       |                  |                       |
|                  |                       |                    |                       |                  |                       |

Q<sub>15/2</sub>(z)

1.0001 ≤ z ≤ 1.8100

 $z = 1+y^2 \Delta y = 0.01$ 

| Z                         | Q <sub>15/2</sub> (z) | z       | Q <sub>15/2</sub> (z) | 2      | Q <sub>15/2</sub> (z) |
|---------------------------|-----------------------|---------|-----------------------|--------|-----------------------|
|                           |                       |         |                       |        |                       |
| 1 0001                    | 2 30497               | 1. 1681 | 0.00571               | 1.6561 | 0. 00006              |
| 1 0004                    | 1.63468               | 1. 1764 | 0.00506               | 1.6724 | 0. 00006              |
| 1.0009                    | 1. 25959              | 3. 1849 | 0.00448               | 1.6889 | 0. 00005              |
| 1 0016                    | 1.00740               | 1. 1936 | 0. 00398              | 1.7056 | 0.00004               |
| 1.0025                    | 0.82334               | 1. 2025 | 0 00353               | 1.7225 | 0.00004               |
| 1.0036                    | 0.68259               | 1. 2116 | 0.00313               | 1.7396 | 0.00004               |
| 1.0049                    | 0. 57170              | 1. 2200 | 0. 00278              | 1.7569 | ი. სიიივ              |
| 1.0064<br>1.0081          | 0. 48251              | 1. 2304 | 0. 00247              | 1.7744 | 0. 00003              |
| 1.0100                    | 0. 40968              | 1. 2401 | 0.00219               | 3 7921 | 0. 00003              |
| 1.0100                    | 0. 34953              | 1. 2500 | 0. 00195              | 1.8100 | 0. 00002              |
| 1.0121                    | 0. 29940              | 1. 2601 | 0.00173               |        |                       |
| 1.0144                    | 0. 25732              | 1. 2704 | 0.00154               |        |                       |
| 1.0169                    | 0. 22178              | 1. 2809 | 0.00137               |        |                       |
| 1.0156                    | 0. 19163              | 1. 2916 | 0.00122               |        |                       |
| 1.0225                    | 0. 16593              | 1. 3025 | 0.00109               |        |                       |
| 1.0256                    | 0. 14395              | 1.3136  | 0.00097               |        |                       |
| 1. 0289                   | 0. 12510              | 1. 3249 | 0.00087               |        |                       |
| 1.0324<br>1 0361          | 0. 10888              | 1.3364  | 0 00077               |        |                       |
| 1.0400                    | 0. 09490<br>0. 08282  | 1.3481  | 0.00069               |        |                       |
| 1. 0400                   | 0.00202               | 1. 3600 | 0.00061               |        |                       |
| 1.0441                    | 0. 07236              | 1.3721  | 0. 06055              |        |                       |
| 1.0484                    | 0.06329               | 1. 3844 | G. 00049              |        |                       |
| 1. 0529                   | 0.05541               | 1. 3969 | 0.00044               |        |                       |
| 1.0576                    | 0.04856               | 1.4096  | 0.00039               |        |                       |
| 1.0625                    | 0.04259               | 1. 4225 | 0.00035               |        |                       |
| 1.0676                    | 0. 03738              | 1. 4356 | 0.00031               |        |                       |
| 1.0729                    | 0. 03284              | i. 4489 | 0. 00028              |        |                       |
| 1.0784                    | 0. 02887              | 1.4624  | 0.00025               |        |                       |
| 1.08 <b>4</b> 1<br>1.0900 | 0. 02540              | 1. 4761 | 0. 00022              |        |                       |
| 1. 0900                   | 0. 02236              | 1. 4900 | 0. 00020              |        |                       |
| 1.0961                    | 0. 01969              | 1.5041  | 0. 00018              |        |                       |
| 1. 1024                   | 0.01736               | 1.5184  | 0.00016               |        |                       |
| 1. 1089                   | 0.01531               | 1.5329  | 0.00014               |        |                       |
| 1. 1156                   | 0.01351               | 1.5476  | 0.00013               |        |                       |
| 1. 1225                   | 0.01193               | 1.5625  | 0.00012               |        |                       |
| 1. 1296                   | 0.01054               | 1. 5776 | 0.00010               |        | J                     |
| 1 1369                    | 0.00931               | 1. 5929 | ´. 00009              |        |                       |
| 1. 1444                   | 0.00823               | 1.6084  | า. 00008              |        |                       |
| 1. 1521                   | 0.00728               | 1.6241  | 0. 00008              |        |                       |
| 1. 1600                   | 0.00645               | 1.6400  | 0. 00007              |        | 1                     |
|                           | ļ                     |         | 1                     |        |                       |
|                           | <u> </u>              |         |                       |        |                       |

Q<sub>17/2</sub>(z)

 $1.0001 \le z \le 1.7396$ 

 $z = 1+y^2$   $\Delta y = 0.01$ 

|                                                |                      | z        | Q <sub>17/2</sub> (z) |
|------------------------------------------------|----------------------|----------|-----------------------|
|                                                |                      |          |                       |
| 1.0001 2.18966 1.1681                          | 0. 00305             | 1.6561   | 0.00002               |
| 1. 0004 1. 52405 1. 1764                       | 0. 00266             | 1.6724   | 0.00002               |
| 1. 0009 1. 15476 1. 1849                       | 0.00233              | 1.6889   | 0.00002               |
| 1.0016 0.90894 1.1936                          | 0.00204              | 1.7056   | 0.00001               |
| 1.0025 0.73144 1.2025                          | 0.00178              | 1.7225   | 0.00001               |
| 1.0036 0.59726 1.2116                          | 0. 00156<br>0. 20137 | 1.7396   | 0.00001               |
| 1.0049 0.49279 1.2209<br>1.0064 0.40979 1.2304 | 0.00120              |          |                       |
| 1.0064 0.40979 1.2304<br>1.0081 0.34286 1.2401 | 0.00120              |          |                       |
| 1.0100 0.28828 1.2500                          | 0.00092              |          |                       |
| 1.0100 0.20020 1.2500                          | 0.00075              |          |                       |
| 1. 0121 0. 24336 1. 2601                       | 0.00081              |          |                       |
| 1. 0144 0. 20615 1. 2704                       | 0.00071              |          |                       |
| 1. 0169 0. 17514 1. 2809                       | 0.00062              |          |                       |
| 1. 0196 0. 14916 1. 2916                       | 0. 00055             |          |                       |
| 1. 0225 0. 12732 1. 3025                       | 0. 00048             |          |                       |
| 1. 0256 0. 10889 1. 3136                       | 0.00042              |          |                       |
| 1.0289 0.09329 1.3249                          | 0.00037              |          |                       |
| 1. 0324 0. 08005 1. 3364                       | 0.00033              |          |                       |
| 1. 0361 0. 06378 1. 3481                       | 0. 00029             |          |                       |
| 1.0400 0.05918 1.3600                          | 0. 00025             |          |                       |
| 1.0441 0.05098 1.3721                          | 0. 00022             | <u> </u> |                       |
| 1. 0484 0. 04396 1. 3844                       | 0.00020              |          |                       |
| 1. 0529 0. 03795 1. 3969                       | 0.00017              |          |                       |
| 1. 0576 0. 03279 1. 4096                       | 0.00015              | •        |                       |
| 1. 0625 0. 02836 1. 4225                       | 0.00014              |          |                       |
| 1. 0676 0. 02455 1. 4356                       | 0.00012              | i        |                       |
| 1. 0729 0. 02127 1. 4489                       | 0.00011              | İ        |                       |
| 1. 0784 0. 01844 1. 4624                       | o. 00009             |          |                       |
| 1. 0841 0. 01600 1. 4761                       | 0. 00008             | Į        |                       |
| 1.0900 0.01389 1.4900                          | 0. 00007             | 1        |                       |
| 1.0961 0.01206 1.5041                          | 0. 00006             |          |                       |
| 1. 1024 0. 01048 1. 5184                       | 0. 00006             |          |                       |
| 1. 1089 0. 00912 1. 5329                       | 0. 00005             |          |                       |
| 1. 1156 0. 00794 1. 5476                       | 0 00004              |          |                       |
| 1. 1225 0. 00691 1. 5625                       | 0.00004              | I        |                       |
| 1.1296 0.00602 1.5776                          | 0.00004              |          |                       |
| 1.1369 0.00525 1.5929                          | 0.00003              | Į.       |                       |
| 1. 1444 0. 90458 1. 6084                       | 0.00003              |          |                       |
| 1. 1521 0. 00400 1. 6241                       | 0. 00002             |          |                       |
| 1 1600 0. 00349 1. 6400                        | 0. 00002             |          |                       |
|                                                |                      | 1        |                       |
| <u> </u>                                       |                      | <u> </u> |                       |

 $Q_{19/2}(z)$ 1.coo1  $\leq z \leq$  1.5929

 $z = 1+y^2 \Delta y = 0.01$ 

~ . -

| z                  | Q <sub>19/2</sub> (z)        | Z                  | Q <sub>19/2</sub> (z) |                                                |
|--------------------|------------------------------|--------------------|-----------------------|------------------------------------------------|
|                    |                              |                    |                       |                                                |
| 1.0001<br>1.0004   | 2. 08689<br>1. <b>4</b> 2621 | 1. 1681<br>1. 1764 | 0. 00164<br>0. 00141  |                                                |
| 1.0009             | 1.06294                      | 1. 1849            | 0.00122               |                                                |
| 1: 0016            | 0.82359                      | 1. 1936            | 0. 00105              |                                                |
| 1.0025             | 0.65269                      | 1. 2025            | 0. 00341              | Į.                                             |
| 1.0036             | 0.52499                      | 1. 2116            | n. 00078              |                                                |
| 1.0049             | 0. 42677<br>0. 34970         | 1. 2209<br>1. 2304 | 0. 00068<br>0. 00059  | }                                              |
| 1.0081             | 0. 28834                     | 1. 2401            | 0.00051               |                                                |
| 1.0100             | 0. 23893                     | 1. 2500            | 0.00044               | 1                                              |
| }                  |                              |                    |                       |                                                |
| 1.0121             | 0. 19881                     | 1. 2601            | 0. 00038              | I                                              |
| 1.0144             | 0. 16600                     | 1. 2704<br>1. 2809 | 0.00033               |                                                |
| 1.0169<br>1.0196   | 0. 13901<br>0. 11671         | 1. 2916            | 0. 00028<br>0. 00025  | 1                                              |
| 1. 0225            | 0. 09820                     | 1.3025             | 0. 00023              |                                                |
| 1. 0256            | 0. 08280                     | 1.3136             | 0. 00019              |                                                |
| 1. 0289            | 0.06993                      | 1.3249             | 0.00016               | 1                                              |
| 1.0324             | 0. 05916                     | 1. 3364            | 0.00014               | 1                                              |
| 1.0361             | 0.05012                      | 1. 3481            | 0.00012               |                                                |
| 1.0400             | 0. 04252                     | 1. 3600            | 0. 00011              | İ                                              |
| 1.0441             | 0. 03611                     | 1.3721             | 0. 00009              | i                                              |
| 1.0484             | 0. 03071                     | 1. 3844            | 0. 00008              | [                                              |
| 1.0529             | 0.02614                      | 1. 3969            | 0. 00007              |                                                |
| 1.0576             | 0. 02227                     | 1.4096             | 0. 00006              |                                                |
| 1.0625             | 0.01899                      | 1. 4225            | 0. 00005              | <b>\$</b>                                      |
| 1.0676             | 0. 01621<br>0. 01385         | 1. 4356            | 0. 00005              | l                                              |
| 1.0729             | 0.01385                      | 1. 4489<br>1. 4624 | 0. 00004<br>0. 00004  |                                                |
| 1.0841             | 0. 01013                     | 1. 4761            | 0. 00003              |                                                |
| 1.0900             | 0.08674                      | 1.4900             | 0. 00003              | j                                              |
| 1                  |                              |                    |                       | 1                                              |
| 1.0961             | 0.00743                      | 1.5041             | 0. 00003              | <u>,                                      </u> |
| 1. 1024<br>1. 1089 | 0.00637                      | 1.5184             | 0. 00002              | 1                                              |
| 1. 1156            | 0.00546<br>0.00469           | 1. 5329<br>1. 5476 | 0. 00002<br>0. 00002  | 1                                              |
| 1.1225             | 0.00403                      | 1. 2625            | 0.00002               | 1                                              |
| 1. 1296            | 0.00346                      | 1.5776             | 0.00001               | 1                                              |
| 1. 1367            | 0. 00298                     | 1. 5929            | 0.00001               |                                                |
| 1.1444             | 0. 00256                     | }                  |                       |                                                |
| 1. 1521            | 0. 00220                     | l                  |                       |                                                |
| 1. 1600            | 0.00190                      |                    |                       | 1                                              |
|                    |                              | 1                  |                       | 1                                              |
| 1                  |                              | l                  |                       | i                                              |

 $Q_{21/2}(z)$ 1.0001  $\leq z \leq 1.5041$ 

 $z = 1+y^2 \Delta y = 0.01$ 

|                    |                      |                    |                      | T        |
|--------------------|----------------------|--------------------|----------------------|----------|
| Z                  | $Q_{21/2}(z)$        | Z                  | $Q_{21/2}(z)$        |          |
|                    |                      |                    |                      |          |
|                    |                      |                    |                      |          |
| 1.0001             | 1.99432              | 1. 1681<br>1. 1764 | 0. 00088<br>0. 00075 |          |
| 1.0004             | 1. 33878             | 1. 1849            | 0.00015              |          |
| 1.0009<br>1.0016   | 0. 98168<br>0. 74888 | 1. 1936            | C. 00054             |          |
| 1.0016             | 0. 74000             | 1. 2025            | 0.00046              |          |
| 1. 0036            | 0. 46320             | 1. 2116            | 0.00039              |          |
| 1.0049             | 0.37102              | 1. 2209            | 0.00034              |          |
| 1.0064             | 0. 29960             | 1. 2304            | 0.00029              |          |
| 1.0081             | 0. 24345             | 1. 2401            | 0.00024              | Į.       |
| 1.0100             | 0.19884              | 1. 2500            | 0.00021              |          |
| 1.0121             | 0. 16308             | 1. 2601            | 0.00018              |          |
| 1.0144             | 0. 13422             | 1. 2704            | 0.00015              | i        |
| 1.0169             | 0.11080              | 1. 2809            | 0.00013              |          |
| 1.0196             | 0.09170              | 1. 2916            | 0.00011              |          |
| 1. 0225            | 0.07607              | 1.3025<br>1.3136   | 0. 00009<br>0. 00008 | 1        |
| 1. 0256<br>1. 0289 | 0. 06323<br>0. 05265 | 1. 3249            | 0. 00007             |          |
| 1.0289             | 0.04391              | 1. 3364            | 0.00006              |          |
| 1.0361             | 0. 03668             | 1.3481             | 0. 00005             | 1        |
| 1.0400             | 0. 03068             | 1.3600             | 0.00004              |          |
| 1.0441             | 0. 02569             | 1. 3721            | 0.00004              |          |
| 1.0484             | 0.02154              | 1. 3844            | 0.00003              |          |
| 1.0529             | 0.01808              | 1.3969             | 0.00003              | 1        |
| 1.0574             | 0.01519              | 1.4096             | 0.00002              |          |
| 1.0625             | 0.01278              | 1. 4225            | 0.00002              | 1        |
| 1.0676             | 0.01076              | 1.4356             | 0.00002              | 1        |
| 1. 0729            | 0.00906              | 1.4489             | 0. 00002             | Į.       |
| 1.0784             | 0.00764              | 1.4624             | 0.00001              |          |
| 1.0841             | 0. 00645             | 1. 4761            | 0.00001<br>0.00001   | <b>\</b> |
| 1. 0900            | 0.00545              | 1.4900             | 0.00001              | 1        |
| 1.0961             | 0.00459              | 1.5641             | 0.00001              | Į.       |
| 1. 1024            | 0.00388              | 1                  |                      |          |
| 1 1089             | 0.00329              | I                  |                      |          |
| 1. 1156            | 0.00278              | İ                  |                      |          |
| 1. 1225            | 0.00236              |                    |                      |          |
| 1. 1296            | 0. 00200             | <u> </u>           |                      |          |
| 1 1369             | 0.00169              |                    |                      |          |
| 1 1444             | 0. 00144<br>0. 00122 | 1                  |                      |          |
| 1 1521             | 0.00122              |                    |                      |          |
| 1. 1600            | 0. 00104             | }                  |                      |          |
| ]                  |                      |                    |                      |          |
|                    |                      | L                  |                      | _L       |

$$Q_{n-l_2}(z)$$

$$z = 1+y \qquad \Delta y = 0.1$$

$$1 \le n \le 11$$

$$1.1 \le z \le 5.00$$

<sup>\*</sup>The upper limit of the tabulated arguments is governed by the condition  $Q_{n-\frac{1}{2}}(z) \ge 0.00001$ .

| 5            | n = 1                | n = 2              | n = 3              | n = 4              |
|--------------|----------------------|--------------------|--------------------|--------------------|
| 1. 1         | 0.97877              | 0. <8178           | 0. 26070           | 0. 14743           |
| i. ż         | 0. 69956             | 0. 28563           | 0. 12870           | 0.06069            |
| 1.3          | 0. 55365             | 0. 19693           | 0.07745            | 0. 03189           |
| 1.4          | 0.45980              | 0.14608            | 0.05138            | 0.01892            |
| 1.5          | 0. 39318             | 0.11338            | 0. 03622           | 0.01212            |
| 1.6          | 0. 34302             | 0.09079            | 0.02664            | 0.00819            |
| 1.7          | 0. 30573             | 0.07443            | 0. 02023           | 0. 00576           |
| 1.8          | 0. 27204             | 0.06214            | 0.01575            | 0.00418            |
| 1.9          | 0. 24592             | 0. 05265           | 0.01251            | 0.00311            |
| 2. 0         | 0. 22401             | 0. 04516           | 0. 01010           | 0. 00237           |
| 2. 1         | 0. 20537             | 0. 03914           | 0.00828            | 0.00183            |
| 2. 2         | 0. 18932             | 0. 03422           | 0.006#7            | 0.00144            |
| 2. 3         | 0. 17536             | 0.03015            | 0.00576            | 0.00115            |
| 2.4          | 0. 16312             | 0. 02675           | 0.00488            | 0.00093            |
| 2. 5         | 0. 15229             | 0. 02388           | 0.00416            | 0. 00076           |
| 2.6          | 0. 14266             | 0.02143            | 0.00358            | 0.00062            |
| 2. 7         | 0. 13404             | 0.01933            | 0.00310            | 0.00052            |
| 2.8          | 0. 12628             | 0.01751            | 0.00270            | 0.00043<br>0.00036 |
| 2. 9<br>3. 0 | 0. 11926<br>0. 11289 | 0.01593<br>0.01454 | 0.00237<br>6.00208 | 0.00036            |
| 3. U         | 0.11289              | 0.01454            | 0.00208            | 0.00031            |
| 3. 1         | 0. 10708             | 0. 01332           | 0.00184            | 0. 00026           |
| 3. 2         | 0. 10177             | 0.01224            | 0.00164            | 0. <b>0</b> 0023   |
| 3. 3         | 0. 09689             | 0.01129            | 0.00146            | 0.00019            |
| 3. 🗲         | 0.09239              | 0.01043            | 0.00131            | 0.00017            |
| 3. 5         | C. 08825             | 0.00966 .          | 0.00118            | 0.00015            |
| 3.6          | 0.08441              | 0.,00897           | 0.00106            | 0.00013            |
| 3. 7         | 0.08084              | 0.00835            | 0.00096            | 0.00011            |
| 3.8          | 0.07752              | 0. 00779           | 0.00087            | 0.00010            |
| 3. 9<br>4. 0 | 0.07443<br>0.07154   | 0.00728            | 0.00079            | 0.00009            |
| <b>9.</b> U  | 0.07154              | 0.00072            | 0.00073            | 0.00008            |
| 4. 1         | 0.06884              | 0.00640            | 0.00066            | 0. 00007           |
| 4. 2         | 0.06630              | 0.00501            | 0.00061            | C. 00006           |
| 4. 3         | 0.06392              | 0.00565            | 0.00056            | 0.00005            |
| 4.4          | 0.05168              | 0.00533            | 0.00051            | 0.00005            |
| 4. 5         | 0.05957              | 0.00503            | 0.00047            | 9.00004            |
| 4.6          | 0.05758              | 0. 00475           | 0.60044            | 0.00004            |
| 4. 7         | 0.05570              | 0.00450            | 0.00041            | 0.00003            |
| 4.8          | 0.05392              | 0.00426            | 0.00038            | 0.00003            |
| 4. 9         | 0. 05223             | 0.00404            | 0.00035            | 0.00003            |
| 5. 0         | 0. 05063             | 6.00384            | 0.00032            | 0. 00002           |
|              |                      |                    | 1                  |                    |

#### REFERENCES

- Ordway, D. E., Sluyter, M. M., Sonnerup, B. O. U., <u>Thres-Dimensional Theory of Dicted Propellers</u>, Therm Advanced Research Division, THERM, Incorporated, TAR-TR 602, August 1960.
- Rüchemann, D. and Weber, J., <u>Aerodynamics of Propulsion</u>, New York: McGraw-Hill Book Company, Inc., 1953.
- 3. Noriya, T., On the Integration of Biot-Savart's Law in Propelly Theory, Journal of the Society for Aeronautical Science, Japan, Vol. 9, No. 89, September 1942, pp. 1015-1020.
- National Bureau of Standards, <u>Tables of Associated Legendre</u> <u>Functions</u>, New York: Columbia University Press, 1945.
- Whittaker, E. T. and Watson, G. N., <u>A Course of Modern Analysis</u>, Cambridge University Press, 1947.
- Morse, P. M. and Feshbach, H., <u>Mathods of Theoretical Physics</u>, New York: McGraw-Hill, 1953, pp. 593-600.
- 7. Sonnerup, B. O. U., Expression as a Legendry Function of an Elliptic Integral Occurring in Wine Theory, Therm Advanced Research Division, THERM, Incorporated, Report No. TAR-TM 59-1, Movember 1959.
- Hobson, E. V., <u>Spherical and Ellipsoidal Earmonics</u>, <u>Cambridge University Press</u>, 1951, p. 206.
- Riegels, F., <u>Die Strömung um schlanke, fast drehevenstrische Korper</u>, Mitteilungen des Max-Planck-Instituts für Strömungs-forschung, Mr5, 1952.
- 10. Riegels, F., Formeln und Tabellen für ein in der räumlichen Potentialtheoxie auftretendes elliptisches Integral, Archiv der Mathematik 2, 1949-50, p. 117.