Machine Listening for Music and Sound Analysis

Lecture 1 – Audio Representations

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

Learning Objectives

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

Sound Categories Environmental Sounds

- Sound sources
 - Animals, climate, humans, machines
- Sound characteristics
 - Structured or unstructured, stationary or non-stationary, repetitive or without any predictable nature
- Sound duration
 - From very short (gun shot, door knock, shouts) to very long and almost stationary (running machines, wind, rain)

AUD-1

Fig. 3

Sound Categories Music Signals

- Sound sources
 - Music instruments
 - Sound production mechanisms (brass, wind, string, percussive)
 - Singing Voice
- Sound characteristics
 - Mostly well structured along
 - Frequency (pitch, overtone relationships, harmony)
 - Time (onset, rhythm, structure)

AUD-2

Fig. 4

Fig. 5

Fig. 6

Music Representations Recording & Notation

Music recording (waveform)

Music notation (score)

Music Representations MIDI

Sequence of note events (MIDI)

Time	Message	Channel	Note	Velocity	71/B4			
(Ticks)			Number]			
60	NOTE ON	1	67	100				
0	NOTE ON	1	55	100	67/G4			
0	NOTE ON	2	43	100				
55	NOTE OFF	1	67	0]			
0	NOTE OFF	1	55	0	1			
0	NOTE OFF	2	43	0	1			
5	NOTE ON	1	67	100	60/C4			
0	NOTE ON	1	55	100	1			18° 2 2 2 2 2 2 2
0	NOTE ON	2	43	100	1			Meinad Müller
55	NOTE OFF	1	67	0				Fundamentals of Music Processing
0	NOTE OFF	1	55	0	55/ G 3			Bising Python and Jupiter Bararbooks Secured Edition
0	NOTE OFF	2	43	0	1			Section Expresses
5	NOTE ON	1	67	100	1			€ Springer
0	NOTE ON	1	55	100	1			
0	NOTE ON	2	43	100				FMP Notebook
55	NOTE OFF	1	67	0	48/C3			
0	NOTE OFF	1	55	0	1			
0	NOTE OFF	2	43	0	1			
5	NOTE ON	1	63	100	43/G2			
0	NOTE ON	2	51	100	1			
0	NOTE ON	2	39	100	1			
240	NOTE OFF	1	63	0	1			
0	NOTE OFF	2	51	0	1			
0	NOTE OFF	2	39	0	36/C2			
	•				•	0 240	480	
	Time (ticks)							F: ~ 0
						(,	Fig. 8

Music Representations MusicXML

Textual description of note events (MusicXML)

Fig. 9

- Discrete Short-Term Fourier Transform (STFT)
 - Windowed analysis of audio signals

Fig. 9.5

Discrete Short-Term Fourier Transform (STFT)

$$X(m,k) = \sum_{n=0}^{N-1} x(n+mH)w(n)e^{-2\pi i k n/N}$$

Instead of full signal, short (overlapping) windowed segments are used

Discrete Short-Term Fourier Transform (STFT)

$$X(m,k) = \sum_{n=0}^{N-1} x(n+mH)w(n)e^{-2\pi i k n/N}$$

- Instead of full signal, short (overlapping) windowed segments are used
- Linearly-spaced frequency axis
- Trade-off between
 - Frequency resolution
 - Time resolution

Example: Sinusoid signal, two frequencies

Fig. 10

Example: C major scale, fundamental frequencies (f0) & overtones

Bank of filters with geometrically spaced center frequencies

$$f_k = f_0 \cdot 2^{k/b}$$

k - Filter index

b - Number of filters per octave

Bank of filters with geometrically spaced center frequencies

$$f_k = f_0 \cdot 2^{k/b}$$

k - Filter index

b - Number of filters per octave

Filter bandwidth (for adjacent filters)

$$\Delta_k = f_{k+1} - f_k = f_k \left(2^{\frac{1}{b}} - 1 \right)$$

- Increasing time resolution towards higher frequencies
- Resembles human auditory perception

Constant frequency-to-resolution ratio

$$Q = \frac{f_k}{\Delta_k} = \frac{1}{2^{\frac{1}{b}-1}}$$

Constant frequency-to-resolution ratio

$$Q = \frac{f_k}{\Delta_k} = \frac{1}{2^{\frac{1}{b} - 1}}$$

Correspondence to musical note frequencies

$$f_m[\text{Hz}] = 440 \cdot 2^{\frac{m-69}{12}}$$

m: MIDI pitch

A4 (440 Hz): reference pitch

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- Suitable for music transcription
- Partials have a constant frequency pattern
 - Vertically shifted
 - Pitch-independent

- Logarithmic frequency mapping (human pitch perception)
 - $f[mel] = 2595 \cdot \log_{10} \left(1 + \frac{f[Hz]}{700} \right)$

- Mapping from STFT magnitude spectrogram to Mel spectrogram
 - Triangular filterbank + Matrix multiplication

- Mapping from STFT magnitude spectrogram to Mel spectrogram
 - Triangular filterbank + Matrix multiplication
- Example: 16 mel bands, $f_s = 22.05 \text{ kHz}$

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

Audio Signal Decomposition Periodic Signals

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0
 - Harmonics f_k (approx. integer multiples of f_0):

$$\blacksquare f_k \approx (k+1) \cdot f_0$$

Audio Signal Decomposition Periodic Signals

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0
 - **Harmonics** f_k (approx. integer multiples of f_0):
 - $\blacksquare f_k \approx (k+1) \cdot f_0$

Audio Signal Decomposition Pitch

- Perceptual property (sort sounds from low to high pitch)
- Closely related to frequency

Audio Signal Decomposition Frequency Modulation

- Techniques
 - Glissando continuous transition between note pitches
 - Vibrato periodic frequency modulation

Spectrogram example (frequency x time)

Fig. 2.6

Audio Signal Decomposition Transients

- Sound characteristics
 - High amplitude
 - Short duration
 - Wide-band signal
 - Energy distributed over large frequency range (not just a few frequencies)

Audio Signal Decomposition

3

3

Audio Signal Decomposition

Transients (Examples) 10000 Frequency (Hz) 7500 String 0.0 -5000 instruments **(**(₁) 2500 Audio 1 -0.53 3 10000 0.5 Frequency (Hz) Bat 7500 vocalizations 5000 (ı,þ) Audio 2 2500 -0.5 0 + 2 2 3

Audio Signal Decomposition

Audio Signal Decomposition Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure

Audio Signal Decomposition Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure
- Examples
 - Consonants (speech)
 - Wind (random aerodynamic turbulences)
 - Waves (ocean) 🖒) Audio 4

Audio Features Motivation

- Compact representation of audio signal for machine learning applications
- Capture different properties at different semantic levels
 - Timbre perceived sound, instrumentation
 - Rhythm tempo, meter
 - Melody/Tonality pitches, harmonies
 - Structure repetitions, novelty, homogeneous segments

- Timbre
 - Timbre distinguishes musical sounds that have the same pitch (fundamental frequency) and loudness

- Timbre
 - Timbre distinguishes musical sounds that have the same pitch (fundamental frequency) and loudness
 - Affected by different acoustic phenomena such as
 - Spectral structure / envelope of overtones
 - Noise-like components

- Timbre
 - Timbre distinguishes musical sounds that have the same pitch (fundamental frequency) and loudness
 - Affected by different acoustic phenomena such as
 - Spectral structure / envelope of overtones
 - Noise-like components
 - Formants (speech)
 - Inharmonicity (non-integer relationship between partials)
 - Variations over time: frequency (vibrato) or loudness (tremolo)

FMP Notebooks

- Timbre
 - When looking at musical instruments, we need to consider
 - Instrument's construction

- Timbre
 - When looking at musical instruments, we need to consider
 - Instrument's construction
 - Sound production principles
 - Membranophones, chordophones, aerophones, electrophones

- Timbre
 - When looking at musical instruments, we need to consider
 - Instrument's construction
 - Sound production principles
 - Membranophones, chordophones, aerophones, electrophones
 - Human performance
 - Playing techniques, expressivity, dynamics, style

Audio Features Temporal Envelope

- Smooth curve outlining the signal extreme points
- ADSR envelope model (also used for audio synthesis)
 - Attack, Decay, Sustain, Release

Fig. 2.7

Audio Features Temporal Envelope

- Tremolo
 - Periodic amplitude modulation
 - Often coincides with frequency modulation (vibrato)
 - Examples: instrument sounds

FMP Notebooks

Fig. 2.7

Audio Features

Categorization

	Timbre	Rhythm	Tonality
Low-Level (Q~10 ms)	 Zero Crossing Rate (ZCR) Linear Predictive Coding (LPC) Spectral Centroid / Spectral Flatness 		
Mid-Level (Q ~ 2.5s)	 Mel-Frequency Cepstral Coefficients (MFCC) Octave-Based Spectral Contrast (OSC) Loudness 	TempogramLog-LagAutocorrelation(ACF)	ChromagramEnhancedPitch ClassProfiles (EPCP)
High-Level	- Instrumentation	TempoTime SignatureRhythmPatterns	KeyScalesChords

Audio Features

Categorization

	Timbre	Rhythm	Tonality
Low-Level (Q~10 ms)	 Zero Crossing Rate (ZCR) Linear Predictive Coding (LPC) Spectral Centroid / Spectral Flatness 		
Mid-Level (Q ~ 2.5s)	 Mel-Frequency Cepstral Coefficients (MFCC) Octave-Based Spectral Contrast (OSC) Loudness 	TempogramLog-LagAutocorrelation(ACF)	ChromagramEnhancedPitch ClassProfiles (EPCP)
High-Level	- Instrumentation	TempoTime SignatureRhythmPatterns	KeyScalesChords

Audio Features Timbre Low-level Audio Features

- Spectral Centroid (SC):
 - Center of mass in the magnitude spectrogram
 - Low-pitched vs. highpitched sounds

Audio FeaturesTimbre Low-level Audio Features

- Spectral Centroid (SC):
 - Center of mass in the magnitude spectrogram
 - Low-pitched vs. highpitched sounds
- Spectral Flatness Measure (SFM)
 - Harmonic sounds (sparse energy distribution)
 - Percussive sounds (wideband energy distribution)

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract

Audio signal

Own

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract
- FFT magnitude spectrum
 - Multiplicative excitation · filter model

Own

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract
- FFT magnitude spectrum
 - Multiplicative excitation · filter model
- Logarithm of magnitude spectrum
 - Additive excitation + filter model

Own

- Convolutive excitation * filter model
 - Excitation: vibration of vocal folds
 - Filter: resonance of the vocal tract
- FFT magnitude spectrum
 - Multiplicative excitation · filter model
- Logarithm of magnitude spectrum
 - Additive excitation + filter model
- Discrete Cosine Transform (DCT)
 - First coefficients allow for a compact description of the spectral envelope shape

Compact representation of spectral envelope

Audio Processing Chroma Features

- Human pitch perception is periodic
- 2 pitches one octave apart are perceived as similar

Audio Processing Chroma Features

- Human pitch perception is periodic
- 2 pitches one octave apart are perceived as similar
- Pitch = chroma + tone height
 - Chroma: C, C#, D, D#, ..., B (12)
 - Tone height: Octave number

Figure 3.3a from [Müller, FMP, Springer 2015]

Audio Processing Chroma Features

■ Example (1) Audio 1

Summary

- Sound categories
- Music representations
- Audio representations
- Audio signal decomposition
- Audio features

References

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Shi, Z., Lin, H., Liu, L., Liu, R., & Han, J. (2019). Is CQT More Suitable for Monaural Speech Separation than STFT? An Empirical Study. *ArXiv Preprint ArXiv:1902.00631*.

Images

Fig. 1: https://ccsearch-dev.creativecommons.org/photos/39451123-ee45-4ec3-ad8d-b42d856bca06 Fig. 2: https://ccsearch-dev.creativecommons.org/photos/c69d3b07-76bd-43e2-a44e-8742edc8447a Fig. 2.8: [Müller, 2015]: Fundamentals of Music Processing (FMP), Springer, 2015, Fig. 3.3a Fig. 3: https://ccsearch-dev.creativecommons.org/photos/ab3062ab-fe0f-420d-b93d-7451db166b4e Fig. 4: https://ccsearch-dev.creativecommons.org/photos/a27a7541-45f5-4176-91a4-e2cb70eea266 Fig. 5: https://ccsearch-dev.creativecommons.org/photos/79d466c1-cfa6-417e-9832-34438678bf5d Fig. 6: https://ccsearch-dev.creativecommons.org/photos/269394a4-5803-47fd-abaa-57ef92735e24 Fig. 7: [Müller, 2021], p. 2, Fig. 1.1 Fig. 8: [Müller, 2021], p. 14, Fig. 1.13 Fig. 9: [Müller, 2021], p. 17, Fig. 1.15 Fig. 9.5: https://www.mathworks.com/help/dsp/ref/stft_output.png Fig. 10: [Müller, 2021], p. 56, Fig. 2.9 Fig. 11: [Müller, 2021], p. 57, Fig. 2.10

Fig. 13: https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF

Sounds

```
AUD-1: Medley: https://freesound.org/people/InspectorJ/sounds/416529, https://freesound.org/people/prometheus888/sounds/458461, https://freesound.org/people/MrAuralization/sounds/317361
```

AUD-2: Medley: https://freesound.org/people/whatsanickname4u/sounds/127337, https://freesound.org/people/jcveliz/sounds/92002, https://freesound.org/people/klankbeeld/sounds/192691

[Audio 1] https://freesound.org/people/xserra/sounds/196765/

[Audio 2] https://freesound.org/people/IliasFlou/sounds/498058/ (~0:00 – 0:05)

[Audio 3] https://freesound.org/people/danlucaz/sounds/517860/ (~0:00 – 0:05)

[Audio 4] https://freesound.org/people/IENBA/sounds/489398/ (~0:00 – 0:07)

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

