Proxemics Recognition

Yi Yang¹, Simon Baker, Anitha Kannan, Deva Ramanan¹

¹Department of Computer Science, UC Irvine

Proxemics

Proxemics: the study of spatial arrangement of people as they interact

- anthropologist **Edward T. Hall** in 1963

PUBLIC SPACE

SOCIAL SPACE

PERSONAL SPACE

INTIMATE

SPACE

1.5 ft (0.45 m)

4 ft (1.2 m)

12 ft (3.6 m)

25 ft (7.6 m)

PUBLIC SPACE

SOCIAL SPACE

PERSONAL SPACE

INTIMATE

SPACE

1.5 ft (0.45 m)

> 4 ft (1.2 m)

12 ft (3.6 m)

25 ft (7.6 m)

Brother and Sister Holding Hands

Mom Holding Baby

Friends Walking Side by Side

Husband Hugging and Holding Wife's Hand

Touch Code

- Hand Touch Hand
- Hand Touch Shoulder
 Arm Touch Torso
- Shoulder Touch Shoulder

Applications

- Personal Photo Search:
 - Find a specific interesting photo
- Analysis of TV shows and movies
- Kinect
- Web Search
- Auto-Movie/Auto-Slideshow
- Locate interesting scenes

Proxemics DataSet

- 200 training images
- 150 testing images
- Collected From
 - Simon, Bing, Google, Gettyimage, Flickr
- No video data
- No Kinect 3d depth data

Proxemics DataSet

Input Image

Input Image

Image Feature

Input Image

Image Feature

Pose Estimation i.e. Find skeletons

Input Image

Image Feature

Hand touch Hand

Interaction Recognition

Pose Estimation i.e. Find skeletons

Naïve Approach Results

From pose estimation

Random guess

Hand touch Hand

Hand touch Shoulder

Human Pose Estimation

Not bad when no real interaction between people

Interactions Hurt Pose Estimation

Occlusion + Ambiguous Parts

Our Approach Direct Proxemics Recognition

Input Image

Image Feature

Our Approach Direct Proxemics Recognition

Input Image

Image Feature

Interaction Recognition

Pictorial Structure Model

S(I,L)

- *I*: Image
- l_i : Location of part i

Pictorial Structure Model

$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I, l_i)$$

- α_i : Unary template for part i
- $\phi(l, l_i)$: Local image features at location l_i

Pictorial Structure Model

$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij} \cdot \psi(l_i,l_j)$$

- $\psi(l_i, l_j)$: Spatial features between l_i and l_j
- β_{ij} : Pairwise springs between part i and part j

"Two Head Monster" Model

i.e. "Hand-Touching-Hand"

$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij} \cdot \psi(l_i,l_j)$$

"Two Head Monster" Model

i.e. "Hand-Touching-Hand"

$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij} \cdot \psi(l_i,l_j)$$

The models

Hand touch Hand

Shoulder touch Shoulder

Hand touch Shoulder

Arm touch Torso

Match Model to Image

Inference:

$$\max_{L} S(I, L)$$

- Efficient algorithm:
- Dynamic programming
- Learning:
 - Structural SVM Solver

Refinements + Extensions

Sub-categories

Because of symmetry, 4 models for hand-hand etc

Refinements + Extensions

Sub-categories

Because of symmetry, 4 models for hand-hand etc

Co-occurrence of proxemics:

Reduce redundancy, map Multi-Label -> Multi-Class

Naïve Approach Results

From pose estimation

Random guess

Hand touch Hand

Hand touch Shoulder

Direct Approach Results

Quantitative Results

Proxemic Recognition Average Precision

Proxemics	Hand Hand	Hand Shoulder	Shoulder Shoulder	Hand Torso	Average
Random guess	14.0	12.6	24.6	9.9	15.3
From pose estimation [1]	26.5	25.6	71.7	18.7	35.6
Our direct model	46.9	-55.2	72.0	87.3	65.4

Improves Pose Estimation

Y & D CVPR 2011

Our Model

Improves Pose Estimation

Y & D CVPR 2011

Our Model

Improves Pose Estimation

Y & D CVPR 2011

Our Model

Conclusion

 Proxemics and touch codes for human interaction

Conclusion

 Proxemics and touch codes for human interaction

 Directly recognizing proxemics significantly outperforms

Conclusion

 Proxemics and touch codes for human interaction FUBLIC SPACE

SOCIAL SPACE

SO

 Directly recognizing proxemics significantly outperforms

 Recognizing proxemics helps pose estimation

Thank Simon and MSR for internship

Thank Anitha for a lot of suggestions

Thank Anarb for gettyimages

Thank Eletee for her beautiful smiling

Thank everybody for not falling asleep

Thank you

Articulated Pose Estimation

Percentage of Correctly Localized Parts on Proxemic Dataset

DataSet	Shoulders	Elbows	Wrists	Hands	
Single Person	93.0	61.7	38.7	34.6	
Interacting People	86.6	46.2	22.0	17.4	
Difference	6.4	15.5	16.7	17.2	

Inference & Learning

Inference

 $\max_{L,M} S(I,L,M)$

For a tree graph (V,E): dynamic programming

Learning

$$\min_{w} \frac{1}{2} \|w\|$$
s. t. $\forall n \in \text{pos } w \cdot \phi(I_n, z_n) \ge 1$
 $\forall n \in \text{neg, } \forall z \ w \cdot \phi(I_n, z) \le -1$

Given labeled positive $\{I_n, L_n, M_n\}$ and negative $\{I_n\}$, write $z_n = (L_n, M_n)$, and $S(I, z) = w \cdot \phi(I, z)$