Chapter 03 Evaluation of Information Retrieval Systems

Evaluation

- Why Evaluate?
- What to Evaluate?
- How to Evaluate?

Why System Evaluation?

- There are many retrieval models/ algorithms/ systems, which one is the best?
- What is the best component for:
 - Ranking function (dot-product, cosine, ...)
 - Term selection (stopword removal, stemming...)
 - Term weighting (TF, TF-IDF,...)

What to Evaluate?

- How much of the information need is satisfied.
- How much was learned about a topic.
- Incidental learning:
 - How much was learned about the collection.
 - How much was learned about other topics.
- How inviting the system is.

Relevance

- In what ways can a document be relevant to a query?
 - Answer precise question precisely.
 - Partially answer question.
 - Suggest a source for more information.
 - Give background information.
 - Remind the user of other knowledge.
 - Others …

Which is the Best Rank Order?

Relevance

- How relevant is the document
 - for this user for this information need.
- Subjective, but
- Measurable to some extent
 - How often do people agree a document is relevant to a query
- How well does it answer the question?
 - Complete answer? Partial?
 - Background Information?
 - Hints for further exploration?

effectiveness

What to Evaluate?

What can be measured that reflects users' ability to use system? (Cleverdon 66)

- Coverage of Information
- Form of Presentation
- Effort required/Ease of Use
- Time and Space Efficiency
- Recall
 - proportion of relevant material actually retrieved
- Precision
 - proportion of retrieved material actually relevant

Relevant vs. Retrieved

Precision vs. Recall

$$Precision = \frac{|RelRetrieved|}{|Retrieved|}$$

$$Recall = \frac{|RelRetrieved|}{|Rel in Collection|}$$

Precision and Recall

elevalit illelevalit	retrieved & irrelevant	Not retrieved & irrelevant
	retrieved & relevant	not retrieved but relevant
_	retrieved	not retrieved

$$recall = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ relevant\ documents}$$

$$precision = \frac{Number\ of\ relevant\ documents\ retrieved}{Total\ number\ of\ documents\ retrieved}$$

Another common representation

	Relevant	Not relevant
Retrieved	Α	В
Not retrieved	С	D

- Relevant = A+C
- Retrieved = A+B
- Collection size = A+B+C+D
- Precision = A ÷ (A+B)
- Recall = A ÷ (A+C)
- Miss = C ÷ (A+C)
- False alarm (fallout) = B ÷ (B+D)

Very high precision, very low recall

Very low precision, very low recall (0 in fact)

High recall, but low precision

High precision, high recall (at last!)

Average Recall/Precision Curve

- Typically average performance over a large set of queries.
- Compute average precision at each standard recall level across all queries.
- Plot average precision/recall curves to evaluate overall system performance on a document/query corpus.

Precision/Recall Curves

- There is a tradeoff between Precision and Recall
- So measure Precision at different levels of Recall
- Note: this is an AVERAGE over MANY queries

Precision/Recall Curves

• Difficult to determine which of these two hypothetical results is better:

5 เอกสาร โตรมประเอ็บ

การจัดลำดับ #*1*

เปรียบเทียบผลลัพธิ์จาก Search Engine A และ B

AVGPrec_A > AVGPrec_B ∴ A ดีกว่า B

21

Precision and Recall example

Computing Recall/Precision Points: An Example

n	doc#	relevant	Latitatal # of relevant door
1	588	X	Let total # of relevant docs = Check each new recall point:
2	589	X	Check each fiew recall point.
3	576		R=1/5=0.2; P=1/1=1
4	590	X	K=1/3=0.2, P=1/1=1
5	986		R=2/5=0.4; P=2/2=1
6	592	X	11-2/0-0.4, 1-2/2-1
7	984		R=3/5=0.6; P=3/4=0.75
8	988		R=4/5=0.8; P=4/6=0.67
9	578		11-4/3-0.0, 1 -4/0-0.07
10	985		
11	103		
12	591		
13	772	X	R=5/5=1.0; p=5/13=0.38
14	990		

Interpolating a Recall/Precision Curve: An Example

Precision versus recall curve

• $R_q = \{d_{3}, d_{5}, d_{9}, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$

Ranking for query q:

1.d ₁₂₃ *	6.d 9*	11.d38	
2.d ₈₄	7.d 511	12.d48	
3.d ₅₆ *	8.d 129	13.d250	
4.d ₆	9.d ₁₈₇	14.d11	
5.d8	10.d ₂₅ *	15.d3*	

- P = 1 at R = 0.1
- P = 0.66 at R = 0.2
- P = 0.5 at R = 0.3
- P = 0.4 at R = 0.4
- P = 0.33 at R = 0.5

Usually based on 11 standard recall levels: 0%, 10%, ..., 100%

Precision versus recall curve

For a single query

Precision and Recall

Precision

 The ability to retrieve top-ranked documents that are mostly relevant.

Recall

 The ability of the search to find all of the relevant items in the corpus.

Determining Recall is Difficult

- Total number of relevant items is sometimes not available:
 - Sample across the database and perform relevance judgment on these items.
 - Apply different retrieval algorithms to the same database for the same query. The aggregate of relevant items is taken as the total relevant set.

Average Precision

- Often want a single-number effectiveness measure
 - E.g., for a machine-learning algorithm to detect improvement
- Average precision is widely used in IR
- Calculate by averaging precision when recall increases

Precision and Recall second example

R- Precision

 Precision at the R-th position in the ranking of results for a query that has R relevant documents.

n	doc#	relevant
1	588	Х
2	589	X
3	576	
4	590	X
5	986	
6	592	Х
7	984	
8	988	
9	578	
10	985	
11	103	
12	591	
13	772	X
14	990	

$$R = \#$$
 of relevant docs = 5

R-Precision =
$$3/5 = 0.60$$

Precision Histograms

 Use R-precision measures to compare the retrieval history of two algorithms through visual inspection

$$RP_{A/B}(i) = RP_A(i) - RP_B(i)$$

F-Measure

- One measure of performance that takes into account both recall and precision.
- Harmonic mean of recall and precision:

$$F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$

 Compared to arithmetic mean, both need to be high for harmonic mean to be high.

E Measure (parameterized F Measure)

 A variant of F measure that allows weighting emphasis on precision over recall:

$$E = \frac{(1+\beta^2)PR}{\beta^2 P + R} = \frac{(1+\beta^2)}{\frac{\beta^2}{R} + \frac{1}{P}}$$

- Value of β controls trade-off:
 - $-\beta$ = 1: Equally weight precision and recall (E=F).
 - $-\beta > 1$: Weight precision more.
 - $-\beta$ < 1: Weight recall more.

User-Oriented Measure

- Coverage=|Rk|/|U|
- Novelty= $|R_u|/(|R_u|+|R_k|)$

Fallout Rate

- Problems with both precision and recall:
 - Number of irrelevant documents in the collection is not taken into account.
 - Recall is undefined when there is no relevant document in the collection.
 - Precision is undefined when no document is retrieved.

$$Fallout = \frac{no.of\ nonrelevant\ items\ retrieved}{total\ no.of\ nonrelevant\ items\ in\ the\ collection}$$