Booze 'R' Us Business Solutions

Data Overview

Data Modeling Objective

Predict future growth/decline in sales for liquor stores in Iowa

Data Source

Data was provided by Iowa Department of Revenue, Alcoholic Beverages subdivision

Variables

• The data tracks the purchasing of Class "E" liquor by individual liquor stores in Iowa

Data Engineering and Modeling

Yearly Arrangement of Data

- Aggregate variables for liquor store for each year
- Use data from previous years to predict the next

Response Variable

 Predict the amount of Alcohol Purchased by a liquor store in dollars for a single year

Modeling Intuition

- The purchasing of more alcohol by a store is likely tied to how much alcohol a store is selling
- Predict a store to purchase 10% more alcohol → project a store to sell 10% more alcohol

Model Fitting, Tuning, and Validation

Definition of "Best" Model

- Model that best predicts next years total Alcohol purchased (\$)
 - Minimizes prediction error (RMSE & MAE)

Model Variable Tuning

- How many previous years of data are needed to best predict response for next year?
 - What variables should be included for each previous year of data?
- What additional characteristics for a store should be considered

Best Model

 Total alcohol purchased for the previous two years was sufficient and optimal to predict total alcohol purchased for the next year

Model Performance on Individual Stores

R² 0.89

- Our model is able to account for 89% of the variation in the amount of alcohol stores purchase over a year
- Standard Deviation for the yearly amount of alcohol purchased by liquor store in Iowa is \$530,000

Model Performance on Individual Stores

RMSE \$168,000

- Measure of prediction error that punishes larger errors more
- Larger errors tend to be associated with stores with major drops in spending
 - \$3,000,000 spent to \$800,000 spent in the span of 1 year
- \$168,000 roughly equates to 0.30 standard deviations from the true value

Model Performance on Individual Stores

MAE \$65,000

- Measure of prediction error that equally weighs all errors
- \$65,000 equates to 0.13 standard deviations away from the true value

Model Performance on Collections of Stores

- Predictions errors for collections of stores both peak and are centered at 0
- Model doesn't tend to either overestimate or underestimate

Conclusions

 Our model is very effective at accounting for a large portion of the variation in alcohol purchased by liquor stores R² 0.89

 Our model is very effective at predicting next years purchase amount for individual stores and collections of stores that are stable

MAE \$65,000

 Our model can quantify the growth/decline in sales by comparing next years projection to previous years numbers

Thank You

