Climate Data Forecasting -

Atmospheric ${\cal C}{\cal O}_2$ Concentration / Temperature / Precipitation

Wolfgang Vollmer

2025-01-03

Contents

1	For	ecastir	ng of England - Temperature Climate Analysis	2	
	1.1	Statio	narity and differencing	2	
		1.1.1	Ljung-Box Test - independence/white noise of the time series	3	
		1.1.2	Unitroot KPSS Test - fix number of seasonal differences/differences required $$	3	
		1.1.3	ACF Plots of Differences	4	
		1.1.4	Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check	5	
2	Exp	onenT	Tial Smoothing (ETS) Forecasting Models	6	
	2.1	ETS I	Models and their componentes	7	
		2.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	8	
		2.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	9	
		2.1.3	${\rm ETS~Models~-~components~of~ETS}(A,N,A),~{\rm ETS}(A,A,A),~{\rm ETS}(A,Ad,A),~{\rm models}~~.$	9	
		2.1.4	Forecast Accuracy with Training/Test Data	9	
2.2 Forecasting with selected ETS model $\langle \text{ETS}(A,A,A) \rangle$		Foreca	asting with selected ETS model $\langle \text{ETS}(A,A,A) \rangle$	10	
		2.2.1	Forecast Plot of selected ETS model	10	
		2.2.2	Residual Stationarity	11	
		2.2.3	Histogram of forecast residuals with overlaid normal curve	12	
3	ARIMA Forecasting Models - AutoRegressive-Integrated Moving Average				
	3.1	Season	nal ARIMA models	13	
		3.1.1	Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE $$	15	
		3.1.2	Ljung-Box Test - independence/white noise of the forecasts residuals	15	
		3.1.3	Forecast Accuracy with Training/Test Data	15	
	3.2	Temp	erature - Forecasting with selected ARIMA model $<$ ARIMA $(0,1,2)(0,1,2)[12]>$	16	
		3.2.1	Forecast Plot of selected ARIMA model	16	
		3.2.2	Residual Stationarity	17	
		3.2.3	Histogram of forecast residuals with overlaid normal curve	18	

4	ARIMA vs ETS			
	4.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	19	
	4.0.2	Forecast Plot of selected ETS and ARIMA model	19	
	4.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	21	
5	Yearly Da	ta Forecasts with ARIMA and ETS	21	
	5.0.1	Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model $$.	22	
	5.0.2	Forecast Plot of selected ETS and ARIMA model	22	
	5.0.3	Ljung-Box Test - independence/white noise of the forecasts residuals	23	
6	Backup		23	

1 Forecasting of England - Temperature Climate Analysis

1.1 Stationarity and differencing

Stationary time series is one whose properties do not depend on the time at which the series is observed. Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will affect the value of the time series at different times. On the other hand, a white noise series is stationary — it does not matter when you observe it, it should look much the same at any point in time.

Stationary time series will have no predictable patterns in the long-term. Time plots will show the series to be roughly horizontal (although some cyclic behaviour is possible), with constant variance.

If Time Series data with seasonality are non-stationary

- => first take a seasonal difference
- if seasonally differenced data appear are still non-stationary
- => take an additional first seasonal difference

The model fit residuals have to be stationary. For good forecasting this has to be verified with residual diagnostics.

Essential:

- Residuals are uncorrelated
- The residuals have zero mean

Useful (but not necessary):

- The residuals have constant variance.
- The residuals are normally distributed.

1.1.1 Ljung-Box Test - independence/white noise of the time series

The Ljung-Box Test becomes important when checking independence/white noise of the forecasts residuals of the fitted ETS rsp. ARIMA models. There we have to check whether the forecast errors are normally distributed with mean zero

Null Hypothesis of independence/white noise in a given time series

- $=> H_0$ to be rejected for $p < \alpha = 0.05$
- => data in the given time series are dependent
- => even differenced data are dependent if $p < \alpha = 0.05$
- => independence/white noise of residuals of fitted models to be verified

```
#> Ljung-Box test with (count), w/o differences
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
#>
                   <dbl>
                              <dbl>
#> 1 Temperature 15173.
#> Ljung-Box test on (difference(count, 12))
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
#>
                              <dbl>
     <fct>
                   <dbl>
                     359.
                                  0
#> 1 Temperature
#> Ljung-Box test on (difference(count, 12) + difference())
#> # A tibble: 1 x 3
#>
     Measure
                 lb_stat lb_pvalue
                              <dbl>
#>
     <fct>
                   <dbl>
#> 1 Temperature
                    775.
```

1.1.2 Unitroot KPSS Test - fix number of seasonal differences/differences required

kpss test of stationary Null Hypothesis of stationary in a given time series => H_0 to be rejected for $p < \alpha = 0.05$ unitroot_nsdiffs/ndiff provides minimum number of seasonal differences/differences required for a stationary series. First fix required seasonal differences and then apply ndiffs to the seasonally differenced data.

• returns 1 = for stationarity one seasonal difference rsp. difference is required

```
#> ndiffs gives the number of differences required rsp.
#> nsdiffs gives the number of seasonal differences required to make
#> a series stationary (test is based on the KPSS test
#> kpss test, nsdiffs & ndiffs on (count), w/o differences
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
                     <dbl>
                                  <dbl>
#>
                                          <int>
                      5.92
                                   0.01
#> 1 Temperature
                                              1
#> kpss test, nsdiffs & ndiffs on (difference(count, 12)
#> # A tibble: 1 x 5
                 kpss_stat kpss_pvalue nsdiffs ndiffs
#>
     Measure
                     <dbl>
                                  <dbl>
                                          <int>
                                                 <int>
#>
     <fct>
#> 1 Temperature
                   0.00441
                                    0.1
                                              0
#> kpss test, nsdiffs & ndiffs on (difference(count, 12) %>% difference(1))
#> # A tibble: 1 x 5
#>
     Measure
                 kpss_stat kpss_pvalue nsdiffs ndiffs
     <fct>
#>
                     <dbl>
                                  <dbl>
                                          <int>
#> 1 Temperature
                   0.00216
                                    0.1
```

1.1.3 ACF Plots of Differences

1.1.4 Time Series, ACF and PACF Plots of Differences - for ARIMA p, q check

#> # A tibble: 1 x 4
#> # Groups: City [1]

#> City Measure Sum Mean
#> <chr> <fct> <dol> <dol> <dol> <dol> </dol>
#> 1 England Temperature 25.4 0.00580

#> # A tibble: 1 x 4

#> # A tibble: 1 x 4
#> # Groups: City [1]
#> City Measure Sum Mean
#> <chr> <fct> <dbl> <dbl>

1 England Temperature

2 ExponenTial Smoothing (ETS) Forecasting Models

2.7 0.000617

Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.

The parameters are estimated by maximising the "likelihood". The likelihood is the probability of the data arising from the specified model. AIC, AICc and BIC can be used here to determine which of the ETS models is most appropriate for a given time series (see output glance(fit_ets)).

The model selection is based on recognising key components of the time series (trend and seasonal) and the way in which these enter the smoothing method (e.g., in an additive, damped or multiplicative manner).

- Mauna Loa CO_2 data best Models: ETS(M,A,A) & ETS(A,A,A)
- Basel Temperature data best Models: ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A).
- Basel Precipitation data best Models: ETS(A,N,A), ETS(A,Ad,A), ETS(A,A,A) (close togehter). Best Forecast accuracy is with ETS(A,A,A), ETS(A,Ad,A), ETS(A,N,A),

Trend term "N" for Basel Temperature/Precipitation correspondends to a "pure" exponential smooothing which results in a slope $\beta = 0$. This results in a forecast predicting a constant level. This does not fit to the result of the STL decomposition. Therefore best model choice is **ETS(A,A,A)**.

Method Selection

Error term: either additive ("A") or multiplicative ("M").

Both methods provide identical point forecasts, but different prediction intervals and different likelihoods. AIC & BIC are able to select between the error types because they are based on likelihood.

Nevertheless, difference is for

- Mauna Loa CO_2 not relevant and AIC/AICc/BIC values are only a little bit smaller for multiplicative errors. The prediction interval plots are fully overlapping.
- Basel Temperature AIC/AICc/BIC of additive error types are much better than the multiplicative
 ones.
- Basel Precipitation AIC/AICc/BIC of additive error types are much better than the multiplicative
 ones.

Note: For Basel Temperature and Precipitation Forecast plots the models ETS_MAdA, ETS_MMA, ETS_MMA are to be taken out since forecasts with multiplicative errors are exploding (forecast > 3 years impossible !!)

Therefore finally Error term = "A" is chosen in general.

Trend term: either none ("N"), additive ("A"), multiplicative ("M") or damped variants ("Ad", "Md").

Note: Mauna Loa CO_2 model ETS(A,Ad,A) fit plot shows to strong damping. For Basel Temperature model ETS(A,N,A) and ETS(A,Ad,A) are providing more or less the same forecast. This means that forecast remains on constant level since Trend "N" means "pure" exponentiall smoothing without trend (see above).

Therefore finally Trend term = "A" is chosen in general.

Seasonal term: either none ("N"), additive ("A") or multiplicative ("M").

For CO2 and Temperature Data we have a clear seasonal pattern and seasonal term adds always a (more or less) fix amount on level and trend component. Therefore "A" additive term is chosen. For Precipitation the seasonal pattern is only slight. Indead, a multiplicative seasonal term results in "exploding" forecasts.

Since monthly data are strongly seasonal $\mathbf{seasonal}$ \mathbf{term} "A" is chosen.

2.1 ETS Models and their componentes

```
#> [1] "model(ETS(count)) => provides best automatically chosen model"
#> # A tibble: 1 x 11
#>
     City
             Measure
                                   sigma2 log_lik
                                                     AIC AICc
                                                                  BIC
                                                                        MSE
                                                                             AMSE
                                                                                     MAE
                          .model
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#>
     <chr>
             <fct>
                          <chr>
                                    <dbl>
#> 1 England Temperature ETS(co~
                                     1.71 -2073. 4176. 4177. 4242. 1.67
                                                                            1.69 1.02
#> Series: count
#> Model: ETS(A,N,A)
#>
     Smoothing parameters:
#>
       alpha = 0.04662109
#>
       gamma = 0.0001000009
#>
#>
     Initial states:
                                                 s[-3]
#>
        1[0]
                   s[0]
                                       s[-2]
                                                          s[-4]
                                                                    s[-5]
                            s[-1]
                                                                             s[-6]
    9.663197 -5.084261 -3.005203 0.7503784 4.060564 6.434123 6.597642 4.429962
#>
                                                s[-11]
       s[-7]
                  s[-8]
                            s[-9]
                                      s[-10]
#>
#>
    1.671819 -1.374785 -3.520979 -5.330433 -5.628827
#>
#>
     sigma^2:
               1.7116
#>
                           BIC
#>
        AIC
                AICc
```

```
#> 4176.446 4177.268 4242.400
#> Model Selection by Information Criterion - lowest AIC, AICc, BIC
#> # A tibble: 8 x 11
     City
                         .model
                                 sigma2 log_lik
                                                   AIC AICc
                                                               BIC
                                                                     MSE
                                                                         AMSE
#>
             Measure
#>
     <chr>
             <fct>
                         <chr>
                                   <dbl>
                                           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 England Temperature ETS_ANA 1.71
                                          -2073. 4176. 4177. 4242.
                                                                           1.69 1.02
                                                                    1.67
#> 2 England Temperature ETS AA~ 1.72
                                          -2073. 4182. 4183. 4261.
                                                                    1.67
                                                                          1.70 1.02
#> 3 England Temperature ETS AMA 1.72
                                          -2074. 4183. 4184. 4257.
                                                                    1.68
                                                                           1.71 1.02
#> 4 England Temperature ETS_AAA 1.72
                                          -2075. 4183. 4184. 4258.
                                                                    1.68
                                                                           1.71 1.02
#> 5 England Temperature ETS_MNA 0.0435
                                         -2289. 4608. 4609. 4674.
                                                                    1.88
                                                                          1.88 0.138
#> 6 England Temperature ETS_MA~ 0.0440
                                          -2292. 4620. 4621. 4699.
                                                                    1.81
                                                                           1.83 0.138
#> 7 England Temperature ETS_MAA 0.0444
                                          -2312. 4658. 4659. 4733.
                                                                    1.75
                                                                          1.80 0.136
#> 8 England Temperature ETS_MMA 0.0448
                                          -2312. 4659. 4660. 4733.
                                                                    1.77
                                                                          1.83 0.137
```


2.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 8 x 12
                                         RMSE
                                                 MAE
                                                        MPE
                                                            MAPE MASE RMSSE ACF1
     City Measure .model .type
     <chr> <fct>
                  <chr> <chr>
                                   <dbl> <dbl> <dbl>
                                                      <dbl> <dbl> <dbl> <dbl> <dbl> <
#>
#> 1 Engl~ Temper~ ETS_A~ Trai~
                                 5.28e-2
                                          1.29
                                                1.02
                                                     -6.62
                                                             25.8 0.701 0.701 0.173
#> 2 Engl~ Temper~ ETS_A~ Trai~
                                 4.50e-2
                                          1.29
                                                1.02
                                                      -6.91
                                                             26.3 0.700 0.701 0.181
                                                     -7.08
#> 3 Engl~ Temper~ ETS_A~ Trai~
                                1.18e-2
                                         1.30
                                               1.02
                                                             26.1 0.703 0.703 0.175
                                                     -7.26
                                               1.02
#> 4 Engl~ Temper~ ETS_A~ Trai~ -9.00e-8
                                         1.30
                                                            26.2 0.704 0.703 0.172
#> 5 Engl~ Temper~ ETS_M~ Trai~ -2.23e-1 1.32
                                               1.04 -10.8
                                                             27.9 0.717 0.718 0.148
                                               1.05 - 10.4
#> 6 Engl~ Temper~ ETS_M~ Trai~ -2.01e-1 1.33
                                                             27.9 0.722 0.722 0.154
#> 7 Engl~ Temper~ ETS M~ Trai~ 1.59e-1
                                               1.05 -7.80 28.3 0.726 0.731 0.245
                                         1.35
#> 8 Engl~ Temper~ ETS_M~ Trai~ 2.10e-1 1.37 1.06 -7.75 28.7 0.729 0.743 0.259
```

2.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 8 x 5
#>
     City
             Measure
                          .model
                                   lb_stat
                                               lb_pvalue
             <fct>
                                     <dbl>
                                                   <dbl>
#>
     <chr>>
                         <chr>
#> 1 England Temperature ETS_MAA
                                      59.4 0.00110
#> 2 England Temperature ETS_MMA
                                      61.7 0.000563
#> 3 England Temperature ETS_AAA
                                      62.9 0.000407
#> 4 England Temperature ETS_AMA
                                      63.2 0.000374
#> 5 England Temperature ETS_ANA
                                      63.7 0.000323
#> 6 England Temperature ETS_AAdA
                                      64.9 0.000227
#> 7 England Temperature ETS_MAdA
                                     83.0 0.000000736
#> 8 England Temperature ETS_MNA
                                     101. 0.0000000144
```

2.1.3 ETS Models - components of ETS(A,N,A), ETS(A,A,A), ETS(A,Ad,A), models

2.1.4 Forecast Accuracy with Training/Test Data

```
#> # A tibble: 5 x 12
#>
     .model
              City
                      Measure
                               .type
                                          ME RMSE
                                                     MAE
                                                              MPE MAPE MASE RMSSE
#>
     <chr>>
              <chr>
                      <fct>
                                       <dbl> <dbl> <dbl>
                                                            <dbl> <dbl> <dbl> <dbl> <
                               <chr>>
#> 1 ETS_AAA England Tempera~ Test
                                     -0.0237
                                             1.18 0.954
                                                          -1.75
                                                                    11.4 0.665 0.636
#> 2 ETS AAdA England Tempera~ Test
                                      0.107
                                              1.19 0.963
                                                          -0.251
                                                                   11.4 0.671 0.644
#> 3 ETS_ANA England Tempera~ Test
                                      0.130
                                              1.20 0.975 -0.0713 11.6 0.679 0.649
#> 4 ETS_MAA England Tempera~ Test
                                              1.56 1.26 -13.2
                                     -0.980
                                                                    15.8 0.880 0.842
#> 5 ETS_ANN England Tempera~ Test
                                      5.49
                                              7.06 5.68
                                                          40.0
                                                                    45.1 3.96 3.82
#> # i 1 more variable: ACF1 <dbl>
```


2.2 Forecasting with selected ETS model <ETS(A,A,A)>

2.2.1 Forecast Plot of selected ETS model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ETS(A,A,A)
#>
     Smoothing parameters:
#>
       alpha = 0.06243027
       beta = 0.0001000041
#>
#>
       gamma = 0.000100049
#>
     Initial states:
#>
#>
       1[0]
                   b[0]
                                       s[-1]
                                                           s[-3]
                                                                              s[-5]
                              ន[0]
                                                 s[-2]
                                                                    s[-4]
    10.3066 0.001921676 -5.132141 -2.953694 0.8012841 4.066379 6.410029 6.689009
#>
#>
       s[-6]
                s[-7]
                          s[-8]
                                     s[-9]
                                              s[-10]
                                                         s[-11]
#>
    4.524704 1.602477 -1.391448 -3.531742 -5.300676 -5.784182
#>
#>
     sigma^2:
              1.725
#>
#>
        AIC
                AICc
                          BIC
#> 4183.067 4184.119 4257.815
```


2.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

2.2.3 Histogram of forecast residuals with overlaid normal curve

#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 1 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <dbl> <dbl> <dbl>
#> 1 England Temperature ets 68.2 0.0000848

3 ARIMA Forecasting Models - AutoRegressive-Integrated Moving Average

Exponential smoothing and ARIMA (AutoRegressive-Integrated Moving Average)models are the two most widely used approaches to time series forecasting, and provide complementary approaches to the problem.

While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

3.1 Seasonal ARIMA models

Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) where parameters p, d, and q are non-negative integers, * p is the order (number of time lags) of the autoregressive model * d is the degree of differencing (number of times the data have had past values subtracted) * q is the order of the moving-average model of past forecast errors .

The value of d has an effect on the prediction intervals — the higher the value of d, the more rapidly the prediction intervals increase in size. For d=0, the point forecasts are equal to the mean of the data and the long-term forecast standard deviation will go to the standard deviation of the historical data, so the prediction intervals will all be essentially the same.

Seasonal ARIMA models are usually denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and moving average terms for the seasonal part of the ARIMA model.

```
#> # A tibble: 1 x 10
     City
             Measure
                       .model sigma2 log_lik
                                                 AIC
                                                       AICc
                                                               BIC ar_roots ma_roots
             <fct>
                       <chr>
                               <dbl>
                                       <dbl>
                                              <dbl>
                                                     <dbl>
                                                            <dbl> <list>
                                                                            t>
#>
     <chr>>
                                2.25 -7994. 15999. 15999. 16031. <cpl>
#> 1 England Temperat~ arima
                                                                            <cpl>
#> Series: count
#> Model: ARIMA(1,0,1)(2,1,0)[12]
```

```
#>
#>
  Coefficients:
#>
             ar1
                               sar1
                                         sar2
#>
         0.4767
                  -0.2408
                            -0.6665
                                      -0.3275
#> s.e.
         0.0531
                   0.0589
                             0.0143
                                       0.0143
#>
#> sigma^2 estimated as 2.252:
                                  log likelihood=-7994.38
#> AIC=15998.76
                   AICc=15998.77
                                    BIC=16030.68
```



```
#> Model Selection by Information Criterion - lowest AIC, AICc, BIC
    choose p, q parameter accordingly - but only for same d, D values
#> # A tibble: 13 x 10
#>
      City
              Measure
                           .model sigma2 log_lik
                                                    AIC AICc
                                                                BIC ar_roots ma_roots
#>
      <chr>
              <fct>
                           <chr>>
                                   <dbl>
                                           <dbl> <dbl> <dbl> <dbl> <br/> <
                                                                              st>
#>
    1 England Temperature ARIMA~
                                    1.65
                                          -1004. 2018. 2018. 2040. <cpl>
                                                                              <cpl>
    2 England Temperature ARIMA~
                                    1.65
                                          -1004. 2018. 2018. 2040. <cpl>
                                                                              <cpl>
#>
    3 England Temperature ARIMA~
                                    1.65
                                          -1005. 2019. 2020. 2041. <cpl>
                                                                              <cpl>
#>
    4 England Temperature ARIMA~
                                    1.65
                                          -1004. 2020. 2020. 2046. <cpl>
                                                                              <cpl>
    5 England Temperature ARIMA~
                                    2.20
                                          -1067. 2142. 2142. 2160. <cpl>
                                                                              <cpl>
    6 England Temperature ARIMA~
                                    2.44
                                          -1096. 2203. 2203. 2225. <cpl>
                                                                              <cpl>
#>
   7 England Temperature ARIMA~
                                    2.44
                                          -1096. 2203. 2203. 2225. <cpl>
                                                                              <cpl>
                                    2.33
                                          -1114. 2244. 2244. 2279. <cpl>
   8 England Temperature ARIMA~
                                                                              <cpl>
   9 England Temperature ARIMA~
                                    3.08
                                          -1163. 2335. 2335. 2352. <cpl>
                                                                              <cpl>
#> 10 England Temperature ARIMA~
                                    3.30
                                          -1186. 2378. 2378. 2391. <cpl>
                                                                              <cpl>
#> 11 England Temperature ARIMA~
                                    3.31
                                          -1186. 2379. 2379. 2392. <cpl>
                                                                              <cpl>
#> 12 England Temperature ARIMA~
                                    3.99
                                          -1240. 2485. 2485. 2493. <cpl>
                                                                              <cpl>
                                          -1279. 2563. 2563. 2571. <cpl>
#> 13 England Temperature ARIMA~
                                    4.58
                                                                              <cpl>
```

Good models are obtained by minimising the AIC, AICc or BIC (see glance (fit_arima) output). The preference is to use the AICc to selec p and q.

These information criteria tend not to be good guides to selecting the appropriate order of differencing (d) of a model, but only for selecting the values of p and q. This is because the differencing changes the data on which the likelihood is computed, making the AIC values between models with different orders of differencing not comparable.

3.1.1 Residual Accuracy with one-step-ahead fitted residuals - check RMSE, MAE

Residual accuracy can be computed directly from models as the one-step-ahead fitted residuals are available. Select forecast models that minimises for lowest

- MAE (Mean absolute error, will lead to forecasts of the median) and
- RMSE (Root mean squared error, lead to forecasts of the mean)

```
#> # A tibble: 14 x 12
#>
      City
              Measure
                          .model .type
                                              ME
                                                   RMSE
                                                             MAE
                                                                    MPE MAPE
                                                                                 MASE
      <chr>
              <fct>
                          <chr> <chr>
                                           <dbl>
                                                   <dbl>
                                                           <dbl>
                                                                  <dbl> <dbl>
                                                                                 <dbl>
#>
   1 England Temperatu~ ARIMA~ Trai~
                                         0.0762
                                                    1.27
                                                           0.991
                                                                  -5.66
                                                                         24.9
                                                                                 0.683
   2 England Temperatu~ ARIMA~ Trai~
                                         0.0752
                                                    1.27
                                                           0.992
                                                                 -5.63
                                                                         24.9
                                                                                 0.683
   3 England Temperatu~ ARIMA~ Trai~
                                         0.0747
                                                    1.27
                                                           0.994
                                                                  -5.72
                                                                         24.8
                                                                                 0.684
   4 England Temperatu~ ARIMA~ Trai~
                                         0.0750
                                                    1.27
                                                           0.992
                                                                 -5.85
                                                                         25.0
                                                                                 0.683
#>
   5 England Temperatu~ ARIMA~ Trai~
                                         0.0349
                                                    1.46
                                                           1.16
                                                                  -8.81
                                                                         28.9
                                                                                 0.800
                                                                                 0.828
   6 England Temperatu~ ARIMA~ Trai~
                                                                 -12.5
#>
                                         0.0112
                                                    1.52
                                                           1.20
                                                                         31.6
                                                                 -10.7
   7 England Temperatu~ ARIMA~ Trai~
                                         0.00125
                                                    1.54
                                                                         30.7
                                                                                 0.840
                                                           1.22
                                         0.00125
                                                                 -10.7
   8 England Temperatu~ ARIMA~ Trai~
                                                    1.54
                                                           1.22
                                                                         30.7
                                                                                 0.840
                                                                 -10.5
                                         0.00468
   9 England Temperatu~ ARIMA~ Trai~
                                                    1.73
                                                           1.36
                                                                         32.6
                                                                                 0.940
#> 10 England Temperatu~ ARIMA~ Trai~
                                         0.0342
                                                    1.80
                                                           1.42
                                                                -10.2
                                                                         32.8
                                                                                 0.975
#> 11 England Temperatu~ ARIMA~ Trai~
                                         0.0352
                                                    1.80
                                                                 -10.2
                                                                         32.7
                                                                                 0.975
                                                           1.42
#> 12 England Temperatu~ ARIMA~ Trai~
                                         0.00554
                                                    1.97
                                                           1.56
                                                                 -11.4
                                                                         36.1
                                                                                 1.07
#> 13 England Temperatu~ ARIMA~ Trai~
                                         0.00132
                                                    2.12
                                                           1.68
                                                                 -11.1
                                                                         37.3
                                                                                 1.16
#> 14 England Temperatu~ ARIMA~ Trai~ NaN
                                                 NaN
                                                         NaN
                                                                 NaN
                                                                        NaN
                                                                              NaN
#> # i 2 more variables: RMSSE <dbl>, ACF1 <dbl>
```

3.1.2 Ljung-Box Test - independence/white noise of the forecasts residuals

```
\#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0 \#> # A tibble: 14 x 5
```

```
#>
      City
              Measure
                          .model
                                         lb_stat lb_pvalue
#>
      <chr>>
              <fct>
                                           <dbl>
                          <chr>
                                                     <dbl>
#>
   1 England Temperature ARIMA_111_012
                                            34.2
                                                  2.72e- 1
   2 England Temperature ARIMA_211_011
                                            35.3
                                                  2.34e- 1
   3 England Temperature ARIMA_012_012
                                            35.5 2.23e- 1
#> 4 England Temperature ARIMA_111_112
                                            35.8 2.16e- 1
   5 England Temperature ARIMA 100 210
#>
                                            77.2 4.98e- 6
   6 England Temperature ARIMA 301 200
                                            96.5
                                                  6.61e- 9
#>
   7 England Temperature ARIMA_100_110
                                           107.
                                                  1.35e-10
#>
  8 England Temperature ARIMA_200_110
                                                  1.35e-10
                                           107.
#> 9 England Temperature ARIMA_010_110
                                           231.
                                                  0
#> 10 England Temperature ARIMA_012_010
                                           225.
                                                  0
#> 11 England Temperature ARIMA_110_010
                                                  0
                                           337.
#> 12 England Temperature ARIMA_111_010
                                           223.
                                                  0
#> 13 England Temperature ARIMA_210_110
                                           173.
                                                  0
#> 14 England Temperature ARIMA_002_200
                                                 ΝA
```

3.1.3 Forecast Accuracy with Training/Test Data

```
#> # A tibble: 4 x 12
                                      ME RMSE
                                                 MAE
                                                        MPE MAPE MASE RMSSE ACF1
     .model
               City Measure .type
     <chr>
                <chr> <fct>
                             <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
#> 1 ARIMA_012~ Engl~ Temper~ Test 0.249 1.21 0.972 1.31 11.4 0.677 0.652 0.167
#> 2 ARIMA_211~ Engl~ Temper~ Test 0.276 1.21 0.975
                                                      1.61 11.4 0.680 0.655 0.166
#> 3 ARIMA_111~ Engl~ Temper~ Test 0.279
                                          1.21 0.975 1.65 11.4 0.680 0.655 0.166
#> 4 ARIMA_100~ Engl~ Temper~ Test 0.338 1.29 1.04
                                                       1.85 11.9 0.728 0.698 0.110
```


$3.2 \quad \text{Temperature - Forecasting with selected ARIMA model} < \text{ARIMA}(0,1,2)(0,1,2)[12] > \\$

3.2.1 Forecast Plot of selected ARIMA model

```
#> Provide model coefficients by report(fit_model)
#> Series: count
#> Model: ARIMA(0,1,2)(0,1,2)[12]
#>
#> Coefficients:
#>
             ma1
                      ma2
                              sma1
                                       sma2
         -0.7803
#>
                  -0.1849
                           -1.0270
                                    0.0271
#> s.e.
          0.0402
                   0.0410
                            0.0517
                                    0.0437
#>
                                log likelihood=-1004.71
#> sigma^2 estimated as 1.653:
               AICc=2019.52
                                BIC=2041.3
#> AIC=2019.42
```


3.2.2 Residual Stationarity

Required checks to be ready for forecasting:

- ACF Forecast Residual: all spikes are within the significance limits, so the residuals appear to be white noise
- The Ljung-Box test also shows that the residuals have no remaining autocorrelations
- Forecast Residuals are more or less normally distributed with roughly centred on zero

3.2.3 Histogram of forecast residuals with overlaid normal curve

#> 1 England Temperature arima

#> Null Hypothesis of independence/white noise for residuals - for p < 0.05: reject H_0
#> # A tibble: 1 x 5
#> City Measure .model lb_stat lb_pvalue
#> <chr> <fct> <chr> <dbl> <dbl>

0.105

40.0

Histogram of Forecast Residuals – England Temperature

ARIMA(0,1,2)(0,1,2)[12]>

0.3
0.1
0.0
Forecast Residuals

4 ARIMA vs ETS

In particular, all ETS models are non-stationary, while some ARIMA models are stationary.

The ETS models with seasonality or non-damped trend or both have two unit roots (i.e., they need two levels of differencing to make them stationary). All other ETS models have one unit root (they need one level of differencing to make them stationary).

We compare for the chosen ETS rsp. ARIMA model the RMSE / MAE values. Lower values indicate a more accurate model based on the test set RMSE, ..., MASE.

- Residual Accuracy with one-step-ahead fitted residuals
- Forecast Accuracy with Training/Test Data

Note: a good fit to training data is never an indication that the model will forecast well. Therefore the values of the Forecast Accuracy are the more relevant one.

4.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

```
#> # A tibble: 4 x 12
#>
     City
                                                               MPE
                                                                   MAPE MASE RMSSE
             Measure
                         .model
                                             ME
                                                RMSE
                                                         MAE
                                 .type
#>
     <chr>
             <fct>
                         <chr>>
                                 <chr>
                                           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
#> 1 England Temperature ets
                                 Trai~ -9.00e-8
                                                 1.30 1.02
                                                            -7.26
                                                                   26.2 0.704 0.703
#> 2 England Temperature arima
                                 Trai~ 7.50e-2 1.27 0.992 -5.85
                                                                    25.0 0.683 0.688
#> 3 England Temperature ETS_AAA Test -2.37e-2 1.18 0.954 -1.75 11.4 0.665 0.636
#> 4 England Temperature ARIMA_~ Test
                                                 1.21 0.972 1.31 11.4 0.677 0.652
                                        2.49e-1
#> # i 1 more variable: ACF1 <dbl>
```

4.0.2 Forecast Plot of selected ETS and ARIMA model


```
#> # A tsibble: 6 x 8 [1M]
```

#> # Key: City, Measure, .model [2]

```
#> # Groups: City, Measure, .model [2]
     City
             Measure .model Year_Month
#>
     <chr>>
             <fct>
                         <chr>
                                     <mth>
#> 1 England Temperature arima
                                  2025 Jan
#> 2 England Temperature arima
                                  2025 Feb
#> 3 England Temperature arima
                                  2025 Mrz
#> 4 England Temperature ets
                                  2025 Jan
#> 5 England Temperature ets
                                  2025 Feb
#> 6 England Temperature ets
                                  2025 Mrz
#> # i 4 more variables: count <dist>, .mean <dbl>, '80%' <hilo>, '95%' <hilo>
#> # A tsibble: 6 x 8 [1M]
#> # Key:
                City, Measure, .model [2]
#> # Groups:
                City, Measure, .model [2]
#>
     City
                         .model Year_Month
             Measure
#>
     <chr>>
             <fct>
                         <chr>
                                  <mth>
#> 1 England Temperature arima
                                  2054 Okt
#> 2 England Temperature arima
                                  2054 Nov
                                  2054 Dez
#> 3 England Temperature arima
#> 4 England Temperature ets
                                  2054 Okt
#> 5 England Temperature ets
                                  2054 Nov
#> 6 England Temperature ets
                                  2054 Dez
#> # i 4 more variables: count <dist>, .mean <dbl>, '80%' <hilo>, '95%' <hilo>
```

Forecasts by ETS <ETS(A,A,A)>_and ARIMA model <ARIMA(0,1,2)(0,1,2)[12]>

#> # A tibble: 180 x 5 #> # Groups: City, Measure, .model, Year [60] #> City Measure .model Year Year_avg #> <chr> <fct> <chr> <dbl> <dbl> #> 1 England Temperature arima 2025 5.55 #> 2 England Temperature arima 2025 5.54 #> 3 England Temperature arima 2025 7.41 #> 4 England Temperature arima 2026 5.34 5.63 #> 5 England Temperature arima 2026 #> 6 England Temperature arima 7.45 2026

```
7 England Temperature arima
                                    2027
                                             5.37
                                    2027
    8 England Temperature arima
                                             5.66
    9 England Temperature arima
                                    2027
                                             7.48
#> 10 England Temperature arima
                                    2028
                                             5.40
#> # i 170 more rows
#> # A tibble: 180 x 5
#> # Groups:
               City, Measure, .model, Year [60]
#>
      City
              Measure
                           .model
                                   Year Year avg
#>
      <chr>
              <fct>
                           <chr>
                                   <dbl>
                                            <dbl>
#>
    1 England Temperature arima
                                    2025
                                            11.7
#>
    2 England Temperature arima
                                    2025
                                             8.01
    3 England Temperature arima
                                    2025
                                             5.82
#>
   4 England Temperature arima
                                    2026
                                            11.8
#>
   5 England Temperature arima
                                             8.02
                                    2026
    6 England Temperature arima
#>
                                    2026
                                             5.88
   7 England Temperature arima
                                    2027
                                            11.8
   8 England Temperature arima
                                    2027
                                             8.05
   9 England Temperature arima
                                    2027
                                             5.91
#> 10 England Temperature arima
                                    2028
                                            11.8
#> # i 170 more rows
```

4.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

```
#> # A tibble: 2 x 5
#>
     City
             Measure
                           .model lb_stat lb_pvalue
#>
     <chr>
             <fct>
                          <chr>
                                    <dbl>
                                               <dbl>
#> 1 England Temperature arima
                                     35.5
                                           0.223
#> 2 England Temperature ets
                                          0.000407
                                     62.9
```

5 Yearly Data Forecasts with ARIMA and ETS

For yearly data the seasonal monthly data are replaced by the yearly average data. Therefore the seasonal component of the ETS and ARIMA model are to be taken out.

The ETS model < ETS(A,A,N) > with seasonal term change "A" -> "N" is chosen. For ARIMA models the seasonal term (P,D,Q)m has to be taken out and an optimal ARIMA(p,1,q) with one differencing (d=1) is selected. However, for Mauna Loa two times differencing had to be selected $CO_2 < ARIMA(0,2,1) \text{ w/ poly}$. For Temperature and Precipitation the same model as for monthly data can be taken by leaving out the seasonal term < ARIMA(0,1,2)w/drift >.

5.0.1 Comparing Residual and Forecast Accuracy of selected ETS and ARIMA model

5.0.2 Forecast Plot of selected ETS and ARIMA model

arly Data Forecasts by ETS <ETS(A,A,N)> and ARIMA model <ARIMA(0,1,2) w/ drift> w/ Prediction Interval


```
#> # A tsibble: 6 x 8 [1Y]
#> # Key:
                City, Measure, .model [2]
#> # Groups:
                City, Measure, .model [2]
                          .model Year
#>
     City
             Measure
#>
     <chr>
             <fct>
                          <chr>
                                 <dbl>
#> 1 England Temperature arima
#> 2 England Temperature arima
                                  2026
#> 3 England Temperature arima
                                  2027
#> 4 England Temperature ets
                                  2025
#> 5 England Temperature ets
                                  2026
#> 6 England Temperature ets
                                  2027
#> # i 4 more variables: Year_avg <dist>, .mean <dbl>, '80%' <hilo>, '95%' <hilo>
#> # A tsibble: 6 x 8 [1Y]
                City, Measure, .model [2]
#> # Kev:
#> # Groups:
                City, Measure, .model [2]
#>
     City
             Measure
                          .model Year
#>
     <chr>>
             <fct>
                          <chr>
                                 <dbl>
#> 1 England Temperature arima
                                  2052
#> 2 England Temperature arima
                                  2053
#> 3 England Temperature arima
                                  2054
#> 4 England Temperature ets
                                  2052
#> 5 England Temperature ets
                                  2053
#> 6 England Temperature ets
                                  2054
#> # i 4 more variables: Year_avg <dist>, .mean <dbl>, '80%' <hilo>, '95%' <hilo>
```


5.0.3 Ljung-Box Test - independence/white noise of the forecasts residuals

#> # A tibble: 2 x 5 City Measure .model lb_stat lb_pvalue <chr> <fct> <chr>> <dbl> <dbl> #> 1 England Temperature arima 30.5 0.440 0.307 #> 2 England Temperature ets 33.4

Backup 6