宇宙開発研究同好会活動記録

2019/12/02 実験責任者:髙橋俊暉 作業者:菅原徳人 記録係:森一茶

本実験では標準ダイポールのフィーダを変更して利得を記録しました。 実験のために用意したものは以下の通りです。

- SSG
- \bullet RTL SDR(1)
- nanoVNA
- 標準ダイポール 2 本
- 300Ωフィーダ

標準ダイポールのフィーダを変更した時の利得測定は以下の手順で行いました。

- 1. nanoVNAで同軸ケーブルに直接エレメントを接続したダイポール(以降、同軸ダイポールと呼ぶ)の調整をしました。
- 2. SSG の周波数を 437.000MHz に設定し、RTL-SDR の Tuner Gain を 0 dB に設定しました。
- 3. SSG と同軸ダイポールを接続しました。RTL-SDR と標準ダイポール②を接続しました。
- 4. 同軸ダイポールと標準ダイポール②の間隔を $50 \, \mathrm{cm}$ で設置し、SSG の値を $-50 \, \mathrm{dbm}$ から $0 \, \mathrm{dbm}$ まで $10 \, \mathrm{dbm}$ ずつ変化させて利得を記録しました。
- 5. 同軸ダイポールを同軸ケーブル・ 300Ω フィーダにエレメントを接続したダイポール(以降、 300Ω ダイポールと呼ぶ)に取替え 1, 4 の手順で調整・利得測定を行いました。

図1に実験環境の様子を示します。

図 1 実験環境

図2に本実験で使用したダイポールを示します。

図 2 本実験で使用したダイポール

表1にフィーダを変更したダイポールの利得を示します。

表 1 各種ダイポールの利得

アンテナの種類	SSG[dBm]					
	0	-10	-20	-30	-40	-50
標準ダイポール	-52.8	-63.1	-72.8	-82.6	-92.9	-100.6
同軸ダイポール	-51.6	-61.7	-71.6	-81.7	-91.7	-100.0
300Ωダイポール	-47.6	-57.6	-67.2	-77.0	-87.2	-96.0

図3に表2より、SSGで送信強度を変更した時の各種ダイポールの利得を示します。

図 3 各種ダイポールの利得

図 3 より私たちが作成した標準ダイポールはフィーダに VVF ケーブルと同軸ケーブルを使用していますが、VVF ケーブルを取り除いた場合は 1dB ほど利得が上がりました。また、VVF ケーブルの代わりに 300Ω フィーダを用いた場合には 5.5dB ほど利得が上がりました。