DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446 & IS C446)

LECTURE 33 – DAS, NAS, SAN, FIBRE CHANNEL

Small History of NAS and SAN

- In 1979, Shugart Associates defined a way to have shared disk devices. Named it as SASI
 - Shugart Associates System Interface
- Leads to SCSI (in 1982 by ANSI task group X3T9.3)
 - Small Computer System Interface
- In 1980, Sun Microsystems developed NFS
- 1984, Syntec developed NetBIOS for IBM
 - □ NetBIOS → SMB → CIFS
- CIFS is the predominant method of sharing files in Windows environment
- SAN is next evolution of SCSI
- NAS is next evolution of NFS and CIFS

Storage on the Network - Pragmatics

- Primary goal sharing of data / storage
 - NAS sharing at filesystem level
 - SAN sharing at disk(s) level

NAS Systems

- File System Characteristics
 - Networked File systems (NFS)
 - Support for caching, retransmitted requests etc.
 - NFS, DAFS(Direct Access FS tailored to the use of RDMA), Shared Disk FS (Example: General Parallel FS)
 - Generic vs. System-specific Interface
 - Generic vs. System-specific Implementation
 - Replication Requirements
 - Snapshots
 - Mirroring
 - Backup operations
 - Consistency Issues

Network Attached Storage

- Storage units are on the network
 - Network is the same as the compute network (LAN)
 - Data is accessed as files from file systems
 - File Systems are supported by file servers (NAS servers)
 - Novell's file servers were one of the earliest networked file servers.
 - NAS enables clients to share files quickly and directly with minimum storage management overhead
 - NAS uses network & file sharing protocols (TCP/IP for data transfer, CIFS, NFS for remote file service)
 - NAS enables windows and Linux users to share the same data seamlessly.
 - NAS uses Real-time OS optimized for file I/O, integrated hardware and software

Benefits

- Supports comprehensive access to information
 - Supports many to one & one to many configurations
- Improved efficiency
 - Specialized OS for file server operations
- Improved flexibility compatible for UNIX & Windows
- Centralized storage minimizes data duplication
- Simplified management centralized console
- Scalability
- High availability
 - Offers efficient replication and recovery options. High data availability [uses cluster for failover]
- Security

- NAS uses file level access for all of its I/O operations [does not specify its logical block address]
- NAS OS issues a block I/O request to fulfill the file read and write request that it receives
 - The retrieved data is again converted to file level
 I/O for applications and clients
 - NAS systems come in different configurations:
 - Preconfigured file servers [consisting of 1 or more internal servers, preconfigured disk capacity & special OS]
 - Server including FM and FS and direct attached storage
 - NAS head (only the FM) separate from the FS.

Components of NAS

- NAS head (CPU and Memory)
- One or more Network Interface Card (NIC)
- Optimized OS for managing NAS functionality
- NFS and CIFS protocols for file sharing
- Storage protocols to connect and manage physical disk resources (ATA, SCSI, FC)

NAS I/O Operations

Process of NAS I/O

- Requester packages an I/O request into TCP/IP and forwards through the network stack
- NAS device receives the request
- NAS device converts the I/O request into an appropriate physical storage request [block level I/O] and performs the operation with physical storage
- NAS device processes and repackages the data [received from physical storage] into an appropriate file protocol response.
 - NAS device packages this response into TCP/IP again and forwards it into the client

Hosting and Accessing Files on NAS

- Create storage array volumes
 - Create volumes on storage array & assign LUN to the volumes.
 Present newly created volumes to NAS device
- Create NAS volumes
 - Perform a discovery operation on the NAS device to recognize the new array volumes and create NAS volumes
- Create NAS file systems on the NAS volumes
- Mount the created NAS file systems on NAS device
- Access the file systems
 - Publish the mounted file system on the network using NFS and CIFS for client access

Factors affecting NAS performance and availability

- Number of hops
- Authentication with a directory service such as LDAP, Active directory or NIS
- Retransmission
- Over utilized routers and switches
- File / directory lookup and metadata requests
- Over utilized NAS devices
- Over utilized clients

Storage on the Network - Pragmatics

- NAS Advantages
 - Logical File sharing and File system organization (replication/back-up, snapshots etc.)
 - Plug-n-play file systems
 - Low instillation and maintenance cost
 - High scalability
 - Optimized file system operations

NAS Systems

- File Servers
 - Networked Filesystems
 - E.g. NFS on Unix, CIFS on Windows
 - Provide a rich file system interface for remote files
 - Custom Operating systems
 - Performance tuned for specific tasks (i.e. cooked I/O) in Unix
 - May include custom hardware
 - High Performance Bus, RDMA and caching

Raw I/O - record level access – typically required for database transactions

Cooked I/O – access via files – typically sequential

NAS Systems

File Servers

- Operating System Implementation
 - Customized Operating Systems
 - Typically thinned versions of Linux or Windows
 - Most tasks are I/O bound (particularly file I/O)
 - Simpler scheduling and task management
 - No user management or user interaction required
 - Restricted Memory allocation model (Mostly for buffering)
 - No heap needed
 - □ Limited stack size
 - Tasks are (soft) real-time
 - At the server level, I/O requests must have timebounds to provide performance guarantees