

May 2008

CNY171M, CNY172M, CNY173M, CNY174M, CNY17F1M, CNY17F2M, CNY17F3M, CNY17F4M, MOC8106M, MOC8107M Phototransistor Optocouplers

Features

- UL recognized (File # E90700, Vol. 2)
- VDE recognized
- Add option V (e.g., CNY17F2VM)
 - File #102497
- Current transfer ratio in select groups
- High BV_{CEO}: 70V minimum (CNY17XM, CNY17FXM, MOC810XM)
- Closely matched current transfer ratio (CTR) minimizes unit-to-unit variation.
- Very low coupled capacitance along with no chip to pin 6 base connection for minimum noise susceptability (CNY17FXM, MOC810XM)

Applications

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance sensor systems
- Industrial controls

Description

The CNY17XM, CNY17FXM and MOC810XM devices consist of a Gallium Arsenide IRED coupled with an NPN phototransistor in a dual in-line package.

Package Outlines

Schematics

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Units
TOTAL DE	VICE		ı
T _{STG}	Storage Temperature	-40 to +150	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec	°C
P _D	Total Device Power Dissipation @ 25°C (LED plus detector)	250	mW
	Derate Linearly From 25°C	2.94	mW/°C
EMITTER			
I _F	Continuous Forward Current	60	mA
V _R	Reverse Voltage	6	V
I _F (pk)	Forward Current – Peak (1µs pulse, 300pps)	1.5	Α
P _D	LED Power Dissipation 25°C Ambient	120	mW
	Derate Linearly From 25°C	1.41	mW/°C
DETECTO	R		
I _C	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	70	V
V _{ECO}	Emitter Collector Voltage	7	V
P _D	Detector Power Dissipation @ 25°C	150	mW
	Derate Linearly from 25°C	1.76	mW/°C

Electrical Characteristics (T_A = 25°C Unless otherwise specified.)⁽¹⁾

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Тур.	Max.	Units
EMITTER							
V _F	Input Forward Voltage	I _F = 60mA	CNY17XM, CNY17FXM	1.0	1.35	1.65	V
		I _F = 10mA	MOC810XM	1.0	1.15	1.50	
CJ	Capacitance	$V_F = 0 V, f = 1.0MHz$	All		18		pF
I _R	Reverse Leakage Current	V _R = 6V	All		0.001	10	μA
DETECTO	OR .			•			
BV _{CEO}	Breakdown Voltage Collector to Emitter	I _C = 1.0mA, I _F = 0	All	70	100		V
BV _{CBO}	Collector to Base	$I_C = 10\mu A, I_F = 0$	CNY171M/2M/3M/4M	70	120		
BV _{ECO}	Emitter to Collector	$I_E = 100 \mu A, I_F = 0$	All	7	10		
I _{CEO}	Leakage Current Collector to Emitter	V _{CE} = 10 V, I _F = 0	All		1	50	nA
I _{CBO}	Collector to Base	V _{CB} = 10 V, I _F = 0	CNY171M/2M/3M/4M			20	nA
C _{CE}	Capacitance Collector to Emitter	V _{CE} = 0, f = 1MHz	All		8		pF
C _{CB}	Collector to Base	$V_{CB} = 0$, $f = 1MHz$	CNY171M/2M/3M/4M		20		pF
C _{EB}	Emitter to Base	V _{EB} = 0, f = 1MHz	CNY171M/2M/3M/4M		10		pF

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	f = 60 Hz, t = 1 sec., $I_{I-O} \le 2\mu A^{(4)}$	7500			Vac(pk)
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 VDC^{(4)}$	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = \emptyset$, f = 1MHz ⁽⁴⁾		0.2		pF

Transfer Characteristics ($T_A = 25^{\circ}C$ Unless otherwise specified.)⁽³⁾

Symbol	DC Characteristics		Test Conditions	Min.	Тур.*	Max.	Units
COUPLE	D			•			
(CTR) ⁽²⁾	Output Collector	MOC8106M	I _F = 10mA, V _{CE} = 10V	50		150	%
	Current	MOC8107M		100		300	
		CNY17F1M	I _F = 10mA, V _{CE} = 5V	40		80	
		CNY17F2M		63		125	3)
		CNY17F3M		100		200	
		CNY17F4M		160		320	
		CNY171M		40		80	
		CNY172M		63		125	
		CNY173M		100		200	
		CNY174M		160		320	
V _{CE(sat)}	Collector-Emitter	CNY17XM/FXM	I _C = 2.5mA, I _F = 10mA			0.4	V
	Saturation Voltage	MOC8106M/7M	$I_C = 500\mu A, I_F = 5.0mA$				

^{*}All typicals at $T_A = 25$ °C

Electrical Characteristics (Continued) (T_A = 25°C Unless otherwise specified.)⁽¹⁾

Transfer Characteristics (Continued)(3)

Symbol	AC Characteristics ⁽⁴⁾		Test Conditions	Min.	Тур.*	Max.	Units	
NON-SATURATED SWITCHING TIME								
t _{on}	Turn-On Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		2	10	μs	
t _{off}	Turn-Off Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		3	10	μs	
t _d	Delay Time	CNY17XM/XFM	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 75\Omega$			5.6	μs	
t _r	Rise Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		1		μs	
		CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			4.0		
t _s	Storage Time	CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			4.1	μs	
t _f	Fall Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		2		μs	
		CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			3.5		
SATURA	TED SWITCHING	TIMES						
t _{on}	Turn-on Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			5.5	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			8.0		
t _r	Rise Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			4.0	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω	V.		6.0		
t _d	Delay Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			5.5	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			8.0		
t _{off}	Turn-off Time	CNY171M/F1M	I _F = 20mA, V _{CE} = 0.4V			34	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	I _F = 10mA, V _{CE} = 0.4V			39		
t _f	Fall Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			20.0	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			24.0		
t _s	Storage Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			34.0	μs	
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			39.0		

^{*}All typicals at T_A = 25°C

Notes:

- 1. Always design to the specified minimum/maximum electrical limits (where applicable).
- 2. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.
- 3. For test circuit setup and waveforms, refer to Figures 10 and 11.
- 4. For this test, Pins 1 and 2 are common, and Pins 4 are 5 are common.

Typical Performance Characteristics Fig. 2 Normalized CTR vs. Ambient Temperature Fig. 1 Normalized CTR vs. Forward Current 1.2 1.4 I= = 5mA 1.2 I_F = 10mA 1.0 NORMALIZED CTR NORMALIZED CTR 0.8 0.8 0.6 $I_F = 20mA$ 0.6 0.4 0.2 Normalized to: $I_F = 10mA$ $T_A = 25$ °C 0.2 -60 0.0 0 10 12 18 20 IF - FORWARD CURRENT (mA) T_A – AMBIENT TEMPERATURE (°C) Fig. 3 CTR vs. RBE (Unsaturated) Fig. 4 CTR vs. RBE (Saturated) 1.0 NORMALIZED CTR (CTRRBE / CTRRBE(OPEN)) 1.0 NORMALIZED CTR (CTR_{RBE} / CTR_{RBE}(OPEN)) 0.9 0.9 I_F = 20mA 0.8 0.8 I_F = 10m/ $V_{CE} = 0.3V$ 0.7 0.7 0.6 0.6 0.5 0.5 I= = 10mA 0.4 0.4 0.3 0.3 0.2 0.2 $V_{CE} = 5.0V$ 0.1 0.1 0.0 10 100 1000 10 100 1000 R_{BE} – BASE RESISTANCE ($k\Omega$) R_{BE} – BASE RESISTANCE ($k\Omega$) Fig. 5 Switching Speed vs. Load Resistor 1000 Fig. 6 Normalized ton vs. R_{BE} I_F = 10mA V_{CC} = 10V T_A = 25°C 5.0 V_{CC} = 10V I_C = 2mA $\mathsf{NORMALIZED}\ t_{\mathsf{on}} - \left(t_{\mathsf{On}(\mathsf{RBE})}\ /\ t_{\mathsf{on}(\mathsf{open})}\right)$ $I_C = 2mA$ $R_L = 100\Omega$ 100 SWITCHING SPEED (µs) 3.5 3.0 10 2.5 2.0 1.5 1.0 0.5 L 10 1000 10000 100000 0.1 R_{BE} – BASE RESISTANCE ($k\Omega$) 0.1 R – LOAD RESISTOR ($k\Omega$)

Typical Performance Characteristics (Continued)

Fig. 9 Collector-Emitter Saturation Voltage vs Collector Current 10 0.1 = 20mA

Figure 10. Switching Time Test Circuit

Figure 11. Switching Time Waveforms

Package Dimensions

Through Hole

Surface Mount

0.4" Lead Spacing

Recommended Pad Layout for Surface Mount Leadform

Note:

All dimensions are in inches (millimeters)

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	CYN171M	Standard Through Hole Device
S	CYN171SM	Surface Mount Lead Bend
SR2	CYN171SR2M	Surface Mount; Tape and Reel
Т	CYN171TM	0.4" Lead Spacing
V	CYN171VM	VDE 0884
TV	CYN171TVM	VDE 0884, 0.4" Lead Spacing
SV	CYN171SVM	VDE 0884, Surface Mount
SR2V CYN171SR2V		VDE 0884, Surface Mount, Tape and Reel

Marking Information

Definiti	Definitions					
1	-airchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	One digit year code, e.g., '7'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					

Carrier Tape Specification

User Direction of Feed _____

Reflow Profile

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ EcoSPARK[®] EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™ **FACT**

 $\mathsf{FAST}^{\scriptscriptstyle{\circledR}}$ FastvCore™ FlashWriter® FPS™ F-PFS™ FRFET®

Global Power ResourceSM

Green FPS™

Green FPS™ e-Series™

GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ MotionMax™ $Motion\text{-}\mathsf{SPM}^{\mathsf{TM}}$ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET[®] QS™ Quiet Series™

RapidConfigure™

Saving our world, 1mW at a time™

SmartMax™ SMART START™

SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™

SyncFET™ SYSTEM ® GENERAL The Power Franchise®

) wer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™

UHC Ultra FRFET™ UniFET™ **VCX**TM VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 134