Lecture 6 – Representation & Description (表示与描述)

This lecture will cover:

- Representation (表示)
 - Chain codes (链码)
 - Polygons (多边形)
 - Signatures (标记图)
 - Boundary segments (边界线段)
 - Skeletons (骨架)

- Boundary Descriptors(边界描绘子)
 - Simple Descriptors(简单描绘子)
 - Shape Numbers (形状数)
 - Fourier Descriptors (傅里叶描绘子)
 - Statistical Moments(统计矩)
- Regional Descriptors(区域描绘子)
 - Simple Descriptors(简单描绘子)
 - Topological Descriptors(拓扑描绘子)
 - Moment Invariants (不变矩)

Chain codes (链码)

> Freeman Chain code

Polygons (多边形)

➤ Minimum-perimeter polygon (MPP,最小周长多边形)

Other Polygonal Approximation

- Merging Techniques (聚合技术)
- Splitting Techniques (分裂技术)

Signatures (标记图)

Boundary segments(边界线段)

Skeletons (骨架)

Simple Boundary Descriptors (简单边界描绘子)

- Length (长度)
- Diameter (直径): $Diam(B) = \max_{i,j} [D(p_i, p_j)]$
- Major Axis (长轴)
- Minor Axis (短轴)
- Basic rectangle (基本矩形)
- Eccentricity (偏心率)
- Curvature (曲率)

Shape Numbers (形状数)

Chain code: 0 3 2 1

Difference: 3 3 3 3

Shape no.: 3 3 3 3

0 0 3 2 2 1

3 0 3 3 0 3

0 3 3 0 3 3

Chain code: 0 0 3 3 2 2 1 1

Difference: 3 0 3 0 3 0 3 0

3 3 1 3 3 0 3 0

3 0 0 3 3 0 0 3

Shape no.: 0 3 0 3 0 3 0 3 0 3 0 3 1 3 3 0 0 3 3 0 0 3 3

Fourier Descriptors (傅里叶描绘子)

The sequence of coordinates

$$s(k) = x(k) + jy(k)$$

The Fourier Descriptor

$$a(u) = \sum_{k=0}^{K-1} s(k)e^{-j2\pi uk/K}$$

The IDFT

$$s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u)e^{j2\pi uk/K}$$

Fourier Descriptors (傅里叶描绘子)

Some Basic Properties

Transformation	Boundary	Fourier Descriptor	
Identity	s(k)	a(u)	
Rotation	$s_r(k) = s(k)e^{j\theta}$	$a_r(u) = a(u)e^{j\theta}$	
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$	
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$	
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$	

Statistical Moments (统计矩)

- Mean: $m = \sum_{i=0}^{K-1} r_i g(r_i)$
- The nth moment of r about its mean: $\mu_n(r) = \sum_{i=0}^{K-1} (r_i m)^n g(r_i)$

Simple Regional Descriptors (简单区域描绘子)

- Area (面积)
- Perimeter (周长)
- Compactness (致密性): P²/A
- Circularity ratio(圆度率): $R_c = 4\pi A/P^2$
- Intensity related descriptors:
 - ✓ Mean and Median
 - ✓ Minimum and Maximum
 - ✓ The number of pixels with values above and below the mean

Topological Descriptors (拓扑描绘子)

- Euler Number (欧拉数): E = C H
- Euler Formula (欧拉公式): E = C H = V Q + F

• Central moment of order (p+q):

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

The normalized central moment :

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}}$$

where
$$\gamma = \frac{p+q}{2} + 1$$

$$\Phi_{1} = \eta_{02} + \eta_{20}$$

$$\Phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$\Phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$\Phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$\Phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$\Phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$\Phi_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (3\eta_{12} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

Moment Invariant	Original Image	Translated	Half Size	Mirrored	Rotated 45°	Rotated 90°
ϕ_1	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
ϕ_7	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809

