Package 'cassowaryr'

September 13, 2024

Title Compute Scagnostics on Pairs of Numeric Variables in a Data Set **Version** 2.0.2

Description Computes a range of scatterplot diagnostics (scagnostics) on pairs of numerical variables in a data set. A range of scagnostics, including graph and association-based scagnostics described by Leland Wilkinson and Graham Wills (2008) <doi:10.1198/106186008X320465> and association-based scagnostics described by Katrin Grimm (2016,ISBN:978-3-8439-3092-5) can be computed. Summary and plotting functions are provided.

```
License GPL-3
Encoding UTF-8
LazyData true
URL https://github.com/numbats/cassowaryr
BugReports https://github.com/numbats/cassowaryr/issues
Depends R (>= 4.0.0)
Imports igraph, alphahull (>= 2.5), splanes, interp (>= 1.1-6),
       energy, dplyr, ggplot2, magrittr, progress, tibble, stats,
       tidyselect
RoxygenNote 7.3.2
Suggests rmarkdown, knitr, mgcv, GGally, tidyr, testthat (>= 3.0.0),
       covr
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Harriet Mason [aut, cre] (<a href="https://orcid.org/0009-0007-4568-8215">https://orcid.org/0009-0007-4568-8215</a>),
       Stuart Lee [aut] (<a href="https://orcid.org/0000-0003-1179-8436">https://orcid.org/0000-0003-1179-8436</a>),
       Ursula Laa [aut] (<a href="https://orcid.org/0000-0002-0249-6439">https://orcid.org/0000-0002-0249-6439</a>),
       Dianne Cook [aut] (<a href="https://orcid.org/0000-0002-3813-7155">https://orcid.org/0000-0002-3813-7155</a>)
Maintainer Harriet Mason <a href="mailto:harriet.m.mason@gmail.com">harriet.m.mason@gmail.com</a>
```

Repository CRAN

Date/Publication 2024-09-13 07:20:02 UTC

2 anscombe_tidy

Contents

calc_scags	3
1	4
latasaurus_dozen	5
lraw_alphahull	6
lraw_convexhull	6
lraw_mst	7
Teatures	8
numbat	8
ok	8
scree	9
sc_clumpy	10
sc_clumpy2	11
sc_clumpy_r	12
sc_convex	13
sc_dcor	14
sc_monotonic	15
sc_outlying	15
sc_skewed	16
sc_skinny	17
sc_sparse	18
sc_sparse2	19
sc_splines	20
sc_striated	21
sc_striated2	22
sc_stringy	23
sc_striped	24
op_pairs	24
op_scags	25
	27
	draw_convexhull draw_mst features numbat pk scree sc_clumpy sc_clumpy sc_clumpy2 sc_clumpy_r sc_convex

Description

All variables and pairs of variables have same summary statistics but are very different data, as can be seen by visualisation.

calc_scags 3

Format

A tibble with 44 observations and 3 variables

set label of the data set, each set has 11 observations

- x variable for horizontal axis
- y variable for vertical axis

calc_scags

Compute selected scagnostics on subsets

Description

Compute selected scagnostics on subsets

Usage

```
calc_scags(
    x,
    y,
    scags = c("outlying", "stringy", "striated", "striated2", "clumpy", "clumpy2",
        "sparse", "skewed", "convex", "skinny", "monotonic", "splines", "dcor"),
    out.rm = TRUE,
    euclid = FALSE
)
```

Arguments

X	numeric vector
У	numeric vector
scags	collection of strings matching names of scagnostics to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor
out.rm	logical indicator to indicate if outliers should be removed before calculating non outlying measures
euclid	logical indicator to use Euclidean distance

Value

A data frame that gives the single plot's scagnostic score.

See Also

```
calc_scags_wide
```

4 calc_scags_wide

Examples

```
# Calculate selected scagnostics on a single pair
calc_scags(anscombe$x1, anscombe$y1, scags=c("monotonic", "outlying"))
# Compute on long form data, or subsets
# defined by a categorical variable
require(dplyr)
datasaurus_dozen %>%
  group_by(dataset) %>%
  summarise(calc_scags(x,y, scags=c("monotonic", "outlying", "convex")))
```

calc_scags_wide

Compute scagnostics on all possible scatter plots for the given data

Description

Compute scagnostics on all possible scatter plots for the given data

Usage

Arguments

all_data	tibble of multivariate data on which to compute scagnostics
scags	collection of strings matching names of scagnostics to calculate: outlying, stringy, striated, striated2, striped, clumpy, clumpy2, sparse, skewed, convex, skinny, monotonic, splines, dcor
out.rm	logical indicator to indicate if outliers should be removed before calculating non outlying measures
euclid	logical indicator to use Euclidean distance

Value

A data frame that gives the data's scagnostic scores for each possible variable combination.

See Also

```
calc_scags
```

datasaurus_dozen 5

Examples

```
# Calculate selected scagnostics
data(pk)
calc_scags_wide(pk[,2:5], scags=c("outlying","monotonic"))
```

datasaurus_dozen

datasaurus dozen data

Description

From the datasauRus package. A modern update of Anscombe. All plots have same x and y mean, variance and correlation, but look different visually.

All variables and pairs of variables have same summary statistics but are very different data, as can be seen by visualisation.

Format

A tibble with 1,846 observations and 3 variables

dataset label of data set

x variable for horizontal axis

y variable for vertical axis

A tibble with 142 observations and 26 variables

away_x, away_y x and y variables for away data

bullseye_x, bullseye_y x and y variables for bullseye data

circle_x, circle_y x and y variables for circle data

dino_x, dino_y x and y variables for dino data

dots_x, dots_y x and y variables for dots data

h_lines_x, h_lines_y x and y variables for h_lines data

high_lines_x, high_lines_y x and y variables for high_lines data

slant_down_x, slant_down_y x and y variables for slant_down data

slant_up_x, slant_up_y x and y variables for slant_up data

star_x, star_y x and y variables for star data

v_lines_x, v_lines_y x and y variables for v_lines data

wide_lines_x, wide_lines_y x and y variables for wide_lines data

star_x, star_y x and y variables for star data

x_shape_x, x_shape_y x and y variables for x_shape data

6 draw_convexhull

	_			_	_
draw	а	Inha	ıhu	ш	1

Drawing the alphahull

Description

This function will draw the alphabull for a scatterplot.

Usage

```
draw_alphahull(x, y, alpha = 0.5, clr = "black", fill = FALSE, out.rm = TRUE)
```

Arguments

x	numeric vector
У	numeric vector
alpha	transparency value of points
clr	optional colour of points and lines, default black
fill	Fill the polygon
out.rm	option to return the outlier removed alphahull

Value

A alphahull::ahull(del, alpha = alpha) "gg" object that draws the plot's alpha hull.

Examples

```
require(dplyr)
require(ggplot2)
require(alphahull)
data("features")
nl <- features %>% filter(feature == "clusters")
draw_alphahull(nl$x, nl$y)
```

draw_convexhull

Drawing the Convex Hull

Description

This function will draw the Convex Hull for a scatterplot.

Usage

```
draw_convexhull(x, y, alpha = 0.5, clr = "black", fill = FALSE, out.rm = TRUE)
```

draw_mst 7

Arguments

х	numeric vector
у	numeric vector
alpha	transparency value of points
clr	optional colour of points and lines, default black
fill	Fill the polygon
out.rm	option to return the outlier removed convex hull

Value

A "gg" object that draws the plot's convex hull.

Examples

```
require(dplyr)
require(ggplot2)
data("features")
nl <- features %>% filter(feature == "clusters")
draw_convexhull(nl$x, nl$y, fill=TRUE, out.rm=FALSE)
```

draw_mst

Drawing the MST

Description

This function will draw the MST for a scatterplot.

Usage

```
draw_mst(x, y, alpha = 0.5, out.rm = TRUE)
```

Arguments

X	numeric vector
у	numeric vector
alpha	The alpha value used to build the graph object. Larger values allow points further apart to be connected.
out.rm	option to return the outlier removed MST

Value

A "gg" object that draws the plot's MST.

8 pk

Examples

```
require(dplyr)
require(ggplot2)
data("features")
nl <- features %>% filter(feature == "nonlinear2")
draw_mst(nl$x, nl$y)
```

features

Simulated data with special features

Description

Simulated data with common features that might be seen in 2D data. Variable are feature, x, y.

Format

A tibble with 1,013 observations and 3 variables, and 15 different patterns

feature label of data set

- x variable for horizontal axis
- y variable for vertical axis

numbat

A toy data set with a numbat shape hidden among noise variables

Description

There are 7 variables (x1-x7) and 2,100 observations. Variables 4 and 7 have the numbat. The rest are noise. Group A has the numbat, and group B is all noise.

pk

Parkinsons data from UCI machine learning archive

Description

Biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD.

scree 9

Format

A tibble with 1,013 observations and 3 variables

name ASCII subject name and recording number

MDVP: Fo(Hz) Average vocal fundamental frequency

MDVP: Fhi (Hz) Maximum vocal fundamental frequency

MDVP:Flo(Hz) Minimum vocal fundamental frequency

MDVP: Jitter, MDVP: Jitter(Abs), MDVP: RAP, MDVP: PPQ, Jitter: DDP Several measures of variation in fundamental frequency

MDVP: Shimmer, MDVP: Shimmer(dB), Shimmer: APQ3, Shimmer: APQ5, MDVP: APQ, Shimmer: DDA Several measures of variation in amplitude

NHR, HNR Two measures of ratio of noise to tonal components in the voice

status Health status of the subject (one) - Parkinson's, (zero) - healthy

RPDE,D2 Two nonlinear dynamical complexity measures

DFA Signal fractal scaling exponent

spread1, spread2, PPE Three nonlinear measures of fundamental frequency variation

Details

The data is available at The UCI Machine Learning Repository in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column.

The data are originally analysed in: Max A. Little, Patrick E. McSharry, Eric J. Hunter, Lorraine O. Ramig (2008), 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease', IEEE Transactions on Biomedical Engineering.

scree

Pre-processing to generate scagnostic measures

Description

Pre-processing to generate scagnostic measures

Usage

```
scree(x, y, binner = NULL, ...)
```

Arguments

x, y numeric vectors

binner an optional function that bins the x and y vectors prior to triangulation

... other args

10 sc_clumpy

Value

An object of class "scree" that consists of three elements:

- del: the Delauney-Voronoi tesselation from alphahull::delvor()
- weights: the lengths of each edge in the Delauney triangulation
- alpha: the radius or alpha value that will be used to generate the alphahull

Examples

```
x <- runif(100)
y <- runif(100)
scree(x,y)</pre>
```

sc_clumpy

Compute clumpy scagnostic measure using MST

Description

Compute clumpy scagnostic measure using MST

Usage

```
sc_clumpy(x, y)
## Default S3 method:
sc_clumpy(x, y)
## S3 method for class 'scree'
sc_clumpy(x, y = NULL)
## S3 method for class 'igraph'
sc_clumpy(x, y)
```

Arguments

```
x numeric vector of x valuesy numeric vector of y values
```

Value

A "numeric" object that gives the plot's clumpy score.

sc_clumpy2

Examples

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy(x,y))
sc_clumpy(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_clumpy2

Compute adjusted clumpy measure using MST

Description

Compute adjusted clumpy measure using MST

Usage

```
sc_clumpy2(x, y)
## Default S3 method:
sc_clumpy2(x, y)
## S3 method for class 'scree'
sc_clumpy2(x, y = NULL)
## S3 method for class 'igraph'
sc_clumpy2(x, y)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's clumpy2 score.

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
   geom_point() +
   facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy2(x,y))
sc_clumpy2(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

12 sc_clumpy_r

sc_clumpy_r

Compute robust clumpy scagnostic measure using MST

Description

Compute robust clumpy scagnostic measure using MST

Usage

```
sc_clumpy_r(x, y)
## Default S3 method:
sc_clumpy_r(x, y)
## S3 method for class 'scree'
sc_clumpy_r(x, y = NULL)
## S3 method for class 'igraph'
sc_clumpy_r(x, y)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's robust clumpy score.

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(clumpy = sc_clumpy_r(x,y))
sc_clumpy_r(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_convex 13

sc_convex

Compute convex scagnostic measure

Description

Compute convex scagnostic measure

Usage

```
sc_convex(x, y)
## Default S3 method:
sc_convex(x, y)
## S3 method for class 'scree'
sc_convex(x, y = NULL)
## S3 method for class 'list'
sc_convex(x, y)
```

Arguments

```
x numeric vector of x values
```

y numeric vector of y values

Value

A "numeric" object that gives the plot's convex score.

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(convex = sc_convex(x,y))
sc_convex(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_dcor

sc_dcor

Distance correlation index.

Description

(Taken from tourr package) Computes the distance correlation based index on 2D projections of the data.

Usage

```
sc_dcor(x, y)
```

Arguments

x numeric vector

y numeric vector

Value

A "numeric" object that gives the plot's dcor score.

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
pivot_longer(cols = everything(),
    names_to = c(".value", "set"),
    names_pattern = "(.)(.)")
ggplot(anscombe_tidy, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~set, ncol=2, scales = "free")
sc_dcor(anscombe$x1, anscombe$y1)
sc_dcor(anscombe$x2, anscombe$y2)
sc_dcor(anscombe$x3, anscombe$y3)
sc_dcor(anscombe$x4, anscombe$y4)
```

sc_monotonic 15

sc_monotonic

Measure of Spearman Correlation

Description

Measure of Spearman Correlation

Usage

```
sc_monotonic(x, y)
```

Arguments

```
x numeric vector
y numeric vector
```

Value

A "numeric" object that gives the plot's monotonic score.

Examples

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
pivot_longer(cols = everything(),
    names_to = c(".value", "set"),
    names_pattern = "(.)(.)")
ggplot(anscombe_tidy, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~set, ncol=2, scales = "free")
sc_monotonic(anscombe$x1, anscombe$y1)
sc_monotonic(anscombe$x2, anscombe$y2)
sc_monotonic(anscombe$x3, anscombe$y3)
sc_monotonic(anscombe$x4, anscombe$y4)
```

sc_outlying

Compute outlying scagnostic measure using MST

Description

Compute outlying scagnostic measure using MST

sc_skewed

Usage

```
sc_outlying(x, y)
## Default S3 method:
sc_outlying(x, y)
## S3 method for class 'scree'
sc_outlying(x, y = NULL)
## S3 method for class 'igraph'
sc_outlying(x, y)
```

Arguments

x numeric vector of x values y numeric vector of y values

Value

A "numeric" object that gives the plot's outlying score.

Examples

```
require(ggplot2)
require(tidyr)
require(dplyr)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
   geom_point() +
   facet_wrap(~dataset, ncol=3, scales = "free")
sc_outlying(datasaurus_dozen_wide$dino_x, datasaurus_dozen_wide$dino_y)
sc_outlying(datasaurus_dozen_wide$dots_x, datasaurus_dozen_wide$dots_y)
sc_outlying(datasaurus_dozen_wide$h_lines_x, datasaurus_dozen_wide$h_lines_y)
```

sc_skewed

Compute skewed scagnostic measure using MST

Description

Compute skewed scagnostic measure using MST

Usage

```
sc_skewed(x, y)
## Default S3 method:
sc_skewed(x, y)
```

sc_skinny 17

```
## S3 method for class 'scree'
sc_skewed(x, y = NULL)
## S3 method for class 'igraph'
sc_skewed(x, y)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's skewed score.

Examples

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe_tidy)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
   geom_point() +
   facet_wrap(~dataset, ncol=3, scales = "free")
sc_skewed(datasaurus_dozen_wide$dots_x, datasaurus_dozen_wide$dots_y)
sc_skewed(datasaurus_dozen_wide$h_lines_x, datasaurus_dozen_wide$h_lines_y)
sc_skewed(datasaurus_dozen_wide$x_shape_x, datasaurus_dozen_wide$x_shape_y)
```

sc_skinny

Compute skinny scagnostic measure

Description

Compute skinny scagnostic measure

Usage

```
sc_skinny(x, y)
## Default S3 method:
sc_skinny(x, y)
## S3 method for class 'scree'
sc_skinny(x, y = NULL)
## S3 method for class 'list'
sc_skinny(x, y = NULL)
```

sc_sparse

Arguments

x numeric vector of x values y numeric vector of y values

Value

A "numeric" object that gives the plot's skinny score.

Examples

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(skinny = sc_skinny(x,y))
sc_skinny(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_sparse

Compute sparse scagnostic measure using MST

Description

Compute sparse scagnostic measure using MST

Usage

```
sc_sparse(x, y)
## Default S3 method:
sc_sparse(x, y)
## S3 method for class 'scree'
sc_sparse(x, y = NULL)
## S3 method for class 'igraph'
sc_sparse(x, y)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's sparse score.

sc_sparse2

Examples

```
require(ggplot2)
require(tidyr)
require(dplyr)
ggplot(datasaurus_dozen, aes(x=x, y=y)) +
   geom_point() +
   facet_wrap(~dataset, ncol=3, scales = "free")
sc_sparse(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
sc_sparse(datasaurus_dozen_wide$circle_x, datasaurus_dozen_wide$circle_y)
sc_sparse(datasaurus_dozen_wide$dino_x, datasaurus_dozen_wide$dino_y)
```

sc_sparse2

Compute adjusted sparse measure using the alpha hull

Description

Compute adjusted sparse measure using the alpha hull

Usage

```
sc_sparse2(x, y)
## Default S3 method:
sc_sparse2(x, y)
## S3 method for class 'scree'
sc_sparse2(x, y = NULL)
## S3 method for class 'list'
sc_sparse2(x, y = NULL)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's sparse2 score.

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
```

20 sc_splines

```
geom_point() +
facet_wrap(~set, ncol=2, scales = "free")
sc_sparse2(anscombe$x1, anscombe$y1)
```

sc_splines

Spline based index.

Description

(Taken from tourr git repo) Compares the variance in residuals of a fitted spline model to the overall variance to find functional dependence in 2D projections of the data.

Usage

```
sc_splines(x, y)
```

Arguments

x numeric vector
y numeric vector

Value

A "numeric" object that gives the plot's spines score.

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe)
anscombe_tidy <- anscombe %>%
pivot_longer(cols = everything(),
    names_to = c(".value", "set"),
    names_pattern = "(.)(.)")
ggplot(anscombe_tidy, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~set, ncol=2, scales = "free")
sc_splines(anscombe$x1, anscombe$y1)
sc_splines(anscombe$x2, anscombe$y2)
sc_splines(anscombe$x3, anscombe$y3)
```

sc_striated 21

sc_striated

Compute striated scagnostic measure using MST

Description

Compute striated scagnostic measure using MST

Usage

```
sc_striated(x, y)
## Default S3 method:
sc_striated(x, y)
## S3 method for class 'scree'
sc_striated(x, y = NULL)
## S3 method for class 'igraph'
sc_striated(x, y)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's striated score.

```
require(ggplot2)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
  geom_point() +
  facet_wrap(~set, ncol=2, scales = "free")
sc_striated(anscombe$x1, anscombe$y1)
sc_striated(anscombe$x2, anscombe$y2)
```

sc_striated2

sc_striated2

Compute angle adjusted striated measure using MST

Description

Compute angle adjusted striated measure using MST

Usage

```
sc_striated2(x, y)
## Default S3 method:
sc_striated2(x, y)
## S3 method for class 'scree'
sc_striated2(x, y = NULL)
## S3 method for class 'igraph'
sc_striated2(x, y)
```

Arguments

```
x numeric vector of x values, or an MST object
y numeric vector of y values, or a scree object
```

Value

A "numeric" object that gives the plot's striated2 score.

```
require(ggplot2)
require(dplyr)
ggplot(features, aes(x=x, y=y)) +
    geom_point() +
    facet_wrap(~feature, ncol = 5, scales = "free")
features %>% group_by(feature) %>% summarise(striated = sc_striated2(x,y))
sc_striated2(datasaurus_dozen_wide$away_x, datasaurus_dozen_wide$away_y)
```

sc_stringy 23

sc_stringy

Compute stringy scagnostic measure using MST

Description

Compute stringy scagnostic measure using MST

Usage

```
sc_stringy(x, y)
## Default S3 method:
sc_stringy(x, y)
## S3 method for class 'scree'
sc_stringy(x, y = NULL)
## S3 method for class 'igraph'
sc_stringy(x, y = NULL)
```

Arguments

```
x numeric vector of x values
y numeric vector of y values
```

Value

A "numeric" object that gives the plot's stringy score.

```
require(ggplot2)
require(tidyr)
require(dplyr)
data(anscombe_tidy)
ggplot(anscombe_tidy, aes(x=x, y=y)) +
   geom_point() +
   facet_wrap(~set, ncol=2, scales = "free")
sc_stringy(anscombe$x1, anscombe$y1)
sc_stringy(anscombe$x2, anscombe$y2)
sc_stringy(anscombe$x3, anscombe$y3)
sc_stringy(anscombe$x4, anscombe$y4)
```

24 top_pairs

sc_striped

Measure of Discreteness

Description

This metric computes the 1-(ratio between the number of unique values to total data values) on number of rotations of the data, and returns the smallest value. If this value is large it means that there are only a few unique data values, and hence the distribution is discrete

Usage

```
sc_striped(x, y)
```

Arguments

x numeric vector y numeric vector

Value

double

Examples

top_pairs

Calculate the top scagnostic for each pair of variables

Description

Calculate the top scagnostic for each pair of variables

Usage

```
top_pairs(scags_data)
```

Arguments

scags_data

A dataset of scagnostic values that was returned by calc_scags or calc_scags_wide

top_scags 25

Value

A data frame where each row is a each scatter plot, its highest valued scagnostic, and its respective value

See Also

```
calc_scags_wide top_scags
```

Examples

```
#an example using calc_scags
require(dplyr)
datasaurus_dozen %>%
    group_by(dataset) %>%
    summarise(calc_scags(x,y, scags=c("monotonic", "outlying", "convex"))) %>%
    top_pairs()
#an example using calc_scags_wide
data(pk)
scags_data <- calc_scags_wide(pk[,2:5], scags=c("outlying","clumpy","monotonic"))
top_pairs(scags_data)</pre>
```

top_scags

Calculate the top pair of variables or group for each scagnostic

Description

Calculate the top pair of variables or group for each scagnostic

Usage

```
top_scags(scags_data)
```

Arguments

scags_data

A dataset of scagnostic values that was returned by calc_scags or calc_scags_wide

Value

A data frame where each row is a scagnostic with its highest pair and the associated value

See Also

```
calc_scags calc_scags_wide top_pairs
```

26 top_scags

```
#an example using calc_scags
require(dplyr)
datasaurus_dozen %>%
  group_by(dataset) %>%
  summarise(calc_scags(x,y, scags=c("monotonic", "outlying", "convex"))) %>%
  top_scags()
  #an example using calc_scags_wide
  data(pk)
  scags_data <- calc_scags_wide(pk[,2:5], scags=c("outlying","clumpy","monotonic"))
  top_scags(scags_data)</pre>
```

Index

```
alphahull::delvor(), 10
anscombe_tidy, 2
calc_scags, 3
calc_scags_wide, 4
{\tt datasaurus\_dozen, 5}
datasaurus_dozen_wide
        (datasaurus_dozen), 5
draw_alphahull, 6
draw_convexhull, 6
draw_mst, 7
features, 8
numbat, 8
pk, 8
sc_clumpy, 10
sc_clumpy2, 11
sc_clumpy_r, 12
sc_convex, 13
sc_dcor, 14
sc_monotonic, 15
sc_outlying, 15
sc_skewed, 16
sc_skinny, 17
sc_sparse, 18
sc_sparse2, 19
sc\_splines, 20
sc_striated, 21
sc_striated2, 22
sc\_stringy, 23
sc_striped, 24
scree, 9
top_pairs, 24
top_scags, 25
```