

Республиканская физическая олимпиада 2025 года (3 этап)

Экспериментальный тур

Условия и решения задач 10 класс (для жюри)

Задания экспериментального тура данной олимпиады предоставляют большие участников возможности самостоятельного выбора параметров установок, диапазонов исследования, методов измерений. Иными словами – проявить свои творческие способности. Кроме того, результаты измерений сильно зависят от предоставленного оборудования, которое может различаться в разных областях нашей Республики.

Поэтому, относитесь к приведенным ниже результатам, как к ориентировочным. Желательно (или даже обязательно) провести собственные измерения. Поэтому здесь приводятся только основные теоретические положения и результаты некоторых измерений, полученные авторами данных заданий. Методы обработки результатов измерений являются в большинстве своем, стандартными, поэтому подробно не описываются.

Задание 10-1. Влажный воздух

Оборудование.

Для каждого участника: набор для изучения газовых законов в сборе (комплектация: колба с отводом, пробка резиновая с электронным термометром, Т-образный штуцер с пластиковыми трубками на двух краях, манометр (предел измерения 300мм.рт.ст), шприц пластмассовый (60мл, поршень должен быть установлен на отметку «0»), в колбу перед сборкой установки должно быть налито 2 - 3мл воды комнатной температуры), контейнер пластиковый (1,8л), кружка пластиковая (1,0л), салфетки бумажные для удаления капель воды.

На кабинет: барометр, ведро с горячей водой (2шт, по 10π), чайник электрический (2шт), термометр для определения температуры воды в вёдрах (в вёдрах температура воды должна быть 60 - 65°C), на каждого участника должно быть приготовлено $1,0\pi$ горячей воды.

Внимание: Колба должна находиться или в картонной коробке или в пластиковом контейнере. Ни в коем случае не ставьте колбу просто на стол, она не устойчива, упадёт и разобьётся. Электронный термометр включается и выключается нажатием красной кнопки. При длительной работе термометр может сам выключится. Повторное включение осуществляется нажатием красной кнопки.

Часть 1. Теоретическая

1.1 Пусть в цилиндре закрытом подвижным поршнем находится идеальный газ. В начальный момент давление в цилиндре P, объём газа V. Пусть изотермически объём цилиндра увеличился на малую величину ΔV , а давление изменилось на малую величину ΔP . Получите уравнение зависимости $|\Delta P|(\Delta V)$. **Подсказка:** произведением малых величин можно пренебречь. Какой математический вид имеет эта зависимость?

Если не знаете как получить уравнение не теряйте время, приступайте к выполнению следующих пунктов.

Погрешности в данной задаче вычислять не нужно. Проверьте есть ли в колбе 2-3мл воды. Если нет, обратитесь к организаторам олимпиады, чтобы они добавили воду в колбу.

Объём воздуха в экспериментальной установке при положении поршня шприца на отметке «0» $V_1=710$ см 3 , плотность ртути $\rho=13$,6 $\frac{\Gamma}{CM^3}$, g=9,81 $\frac{M}{C^2}$.

Часть 2. Экспериментальная

2.1 Определите атмосферное давление P_0 , температуру T_0 и относительную влажность φ воздуха в колбе.

Внимание! Сейчас Вам нужно будет провести экспериментальное исследование. Сначала обдумайте, заготовьте таблицу, а потом выполняйте.

- 2.2 Перед началом эксперимента колба должна находиться в картонной коробке. Наполните контейнер горячей водой (объём воды 0,7 - 0,8л). Поместите колбу в горячую воду, при этом придерживайте колбу, она будет всплывать. Наблюдайте за показаниями манометра и термометра. (Если показания манометра через 5 - 10 с не стали изменяться, значит Ваша установка неисправна. Обратитесь за помощью к организаторам олимпиады.) Прогрейте колбу несколько минут. Дождитесь чтобы показания термометра перестали увеличиваться (показания могут меняться на 0,1°C в большую и меньшую сторону вблизи некоторого значения). Под давлением воздуха поршень шприца может сместиться. Верните поршень на отметку «0» и удерживайте его рукой. Если показания термометра не растут или стали немного уменьшаться, можно приступать к измерениям. Вам необходимо будет получить данные сразу для трёх параметров, то есть исследовать сразу две зависимости. Обозначим: $P_{\scriptscriptstyle M}$ - показания манометра (мм.рт.ст.), ΔV - изменение объёма установки (объём воздуха в шприце (см³), t температура воздуха в колбе (°С). Исследуйте зависимости $P_{M}(\Delta V)$ и $P_{M}(t)$. Для этого последовательно смещайте поршень шприца на несколько делений и записывайте значения параметров. Если поршень шприца не смещается под давлением воздуха, то сдвигайте его самостоятельно. Результаты оформите таблично. Внимание! После окончания эксперимента колбу поставьте в коробку.
- 2.3 Вычислите работу воздуха при расширении.
- **2.4** Определите математический вид зависимости $|\Delta P|(\Delta V)$, где $|\Delta P| = P_{\text{M1}} P_{\text{Mi}}$, P_{M1} показания манометра при наибольшей температуре, P_{Mi} показания манометра при i-том измерении. Запишите уравнение зависимости $|\Delta P|(\Delta V)$ с числовыми коэффициентами. Сравните полученное уравнение с уравнением, полученным в п.1.1. Можно ли считать процесс, исследованный в п.2.2, изотермическим, если пренебречь изменением температуры? Почему?
- **2.5** Постройте график зависимости $\Delta \nu(\Delta V)$, где $\Delta \nu = \nu_1 \nu_i$, ν_1 количество вещества в экспериментальной установке при наибольшей температуре, ν_i количество вещества при i-том измерении. Как изменялось количество вещества газа в экспериментальной установке в ходе эксперимента? В чём физическая причина этого изменения?

Часть 3. Гипотетическая

Предположим, что колба была бы без воды (с воздухом влажности такой как в кабинете).

- **3.1** Какое бы давление P_1' установилось бы в колбе если бы воздух прогрелся до наибольшей температуры в Вашем эксперименте.
- **3.2** Определите математический вид зависимости $|\Delta P'|(\Delta V)$, где $|\Delta P'| = P_1' P_i'$, P_i' давление воздуха при значении температуры и объёма воздуха в колбе для i-того измерения. Запишите уравнение зависимости $|\Delta P'|(\Delta V)$ с числовыми коэффициентами.
- **3.3** Сравните графики построенные в п. 2.4 и п. 3.2. Чем отличаются эти графики и в чём физическая причина этих отличий?

Задание 10-1. Влажный воздух

Решение

Часть1. Теоретическая

1.1 Уравнение изотермического процесса для двух состояний воздуха в колбе:

$$PV = (P - |\Delta P|)(V + \Delta V) \quad (1).$$

Раскроем скобки:

$$PV = PV - |\Delta P|V + P\Delta V - |\Delta P|\Delta V \quad (2).$$

В уравнении (2) пренебрегаем $|\Delta P|\Delta V$ как произведением малых величин, получим:

$$|\Delta P| = \frac{P}{V} \Delta V \quad (3).$$

Часть 2. Экспериментальная

2.1
$$P_0 = (734 \pm 1)$$
 MM. pt. ct., $t_0 = (21.9 \pm 0.1)$ °C, $\varphi = 100\%$.

7	~
L	

Таблица 1.					
	Значения параметров				
№	ΔV , $c M^3$	Рм, мм.рт.ст	t°C		
1	0,0	110	44,1		
2	5,0	102	44,0		
3	10,0	96	44,0		
4	15,0	85	43,9		
5	20,0	77	43,8		
6	25,0	70	43,8		
7	30,0	60	43,7		
8	35,0	50	43,3		
9	40,0	43	43,0		
10	45,0	34	42,7		
11	50,0	24	42,4		
12	55,0	16	42,1		
13	60,0	8	41,8		

2.3

График 1. Зависимость $P_{M}(\Delta V)$ 120 мм.рт.ст. 110 100 90 80 70 60 50 40 30 20 10 ∆V, cm³ 0 0,0 10,0 20,0 30,0 40,0 50,0 60,0

4

Построим график зависимости $P_{\rm M}(\Delta V)$. Видим что зависимость линейная. Используя простую графическую обработку (ПГО) определяем: $P_{\rm Mmax}=111$ мм. рт. ст., $P_{\rm Mmin}=8$ мм. рт. ст., $\Delta V_{max}=60,0$ см³. Работу воздуха при расширении определим как:

$$A = \frac{P_{\text{M}max} + P_{\text{M}min}}{2} \Delta V_{max} + P_0 \Delta V_{max} = \left(\frac{P_{\text{M}max} + P_{\text{M}min}}{2} + P_0\right) \Delta V_{max} \quad (4).$$

Давление переводим в паскали, объём в метры кубические, получим:

$$A = 13.6 \cdot 10^3 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3} \cdot 9.81 \frac{\mathrm{M}}{\mathrm{c}^2} \left(\frac{0.111\mathrm{M} + 0.008\mathrm{M}}{2} + 0.734\mathrm{M} \right) \cdot 60.0 \cdot 10^{-6} \mathrm{M}^3 = \mathbf{6.4} \mathrm{Дж}.$$

2.4 Определим значения $|\Delta P|$ и построим график зависимости $|\Delta P|(\Delta V)$.

Таблица 2.

Зависимость $ \Delta P (\Delta V)$		
	$ \Delta P $,	
ΔV , $c M^3$	мм.рт.ст.	
0,0	0	
5,0	8	
10,0	14	
15,0	25	
20,0	33	
25,0	40	
30,0	50	
35,0	60	
40,0	67	
45,0	76	
50,0	86	
55,0	94	
60,0	102	

График 2. Зависимость $|\Delta P|(\Delta V)$

Из графика видим, что зависимость $|\Delta P|(\Delta V)$, прямо пропорциональная. Используя ПГО, определим угловой коэффициент наклона усредняющей прямой:

Третий этап республиканской олимпиады по учебному предмету «Физика» 2024/2025 учебный год

$$k = 1.7 \frac{\text{MM. pt. ct.}}{\text{cm}^3}$$
.

Уравнение зависимости $|\Delta P|(\Delta V)$ с числовыми коэффициентами запишется:

$$|\Delta P| = 1.7\Delta V$$
 (мм. рт. ст.) (5).

Уравнения (3) и (5) выражают прямо пропорциональную зависимость $|\Delta P|(\Delta V)$, однако, процесс исследованный в п.2.2 изотермическим считать нельзя, так как в ходе процесса изменяется количество вещества, а это как увидим в дальнейшем существенно влияет на значение углового коэффициента усредняющей прямой.

2.5 v_i определим, используя уравнение Клапейрона-Менделеева:

$$v_i = \frac{P_i V_i}{RT_i} = \frac{(P_0 + P_{\text{M}i})(V_1 + \Delta V_i)}{R(273 + t_i)}$$
 (6).

Результаты вычислений представлены в таблице 3 **Таблица 3.**

Зависимость $\Delta \nu (\Delta V)$

График 3. Зависимость $\Delta \nu (\Delta V)$

Из таблицы и графика видим, что количество вещества газа в ходе эксперимента линейно убывало с увеличением объёма установки. Физическая причина этого в том, что с увеличением объёма установки уменьшалась и температура воздуха в

колбе, что приводило к конденсации водяного пара и уменьшению количества вещества данной компоненты.

Часть 3. Гипотетическая

3.1 С воздухом происходил бы изохорный процесс, поэтому давление P_1' вычислим используя уравнение изохорного процесса:

$$P_1' = P_0 \frac{T_1}{T_0} = 734 \text{MM. pt. ct.} \cdot \frac{(273 + 44,1) \text{K}}{(273 + 21,9) \text{K}} = 789 \text{MM. pt. ct.}$$
 (7).

3.2 Значения P_i' определим используя уравнение Клапейрона:

$$P_i' = \frac{P_1'V_1(273 + t_i)}{(273 + t_1)(V_1 + \Delta V_i)}$$
 (8).

Вычислим значения $|\Delta P'|$. Результаты представлены в таблице 4. Построим график зависимости $|\Delta P'|$ (ΔV)

Таблица 4. Зависимость

$ \Delta P' (\Delta V)$				
No				
	ΔV,	$ \Delta P^{'} $		
	см ³	мм.рт.ст.		
1	0,0	0,0		
2	5,0	0,4		
3	10,0	0,8		
4	15,0	1,2		
5	20,0	1,6		
6	25,0	1,9		
7	30,0	2,3		
8	35,0	2,7		
9	40,0	3,1		
10	45,0	3,5		
11	50,0	3,9		
12	55,0	4,3		
13	60,0	4,7		

График 4. Зависимость $|\Delta P'|(\Delta V)$

Третий этап республиканской олимпиады по учебному предмету «Физика» 2024/2025 учебный год

Из графика видим, что зависимость $|\Delta P'|(\Delta V)$, прямо пропорциональная. Используя ПГО, определим угловой коэффициент наклона усредняющей прямой:

$$k = 0.078 \frac{\text{MM. pt. ct.}}{\text{cm}^3}$$
.

Уравнение зависимости $|\Delta P'|(\Delta V)$ с числовыми коэффициентами запишется:

$$|\Delta P'| = 0.078\Delta V$$
 (мм. рт. ст.) (9).

3.3 Графики построенные в п. 2.4 и п. 3.2. отличаются значением угловых коэффициентов усредняющих прямых. Причина данного отличия в том, что в эксперименте п.2.2 в газовой смеси, содержащейся в колбе, одной из компонент является насыщенный водяной пар, что приводит к большему значению давления в колбе и к большему изменению давления в результате конденсации пара.

Задание 10-2. Трение и вращение

Оборудование: Динамометры (2,5H, 5,0H, 10,0H), дощечка (размеры 10х45см), грузы (10шт. по 100г. без крючков), линейка деревянная (40см), кнопка канцелярская (1шт), четыре кусочка пластилина (для крепления дощечки к столешнице), петелька из нити (для зацепа линейки динамометром), скотч тонкий, ножницы.

Часть 1

Закрепите дощечку на столешнице с помощью кусочков пластилина. Положите на дощечку линейку, как показано на рисунке 1. В дощечке закрепите кнопку. О неё должен опираться один край линейки. На линейку поместите грузы в столбик (10шт), если столбик не устойчив, скрепите его скотчем. В данной части задачи Вам предстоит исследовать зависимость силы F, прилагаемой к одному из краёв линейки с помощью динамометра, необходимой для сдвига линейки, от расстояния x между грузами на линейке и точкой опоры (рис.1).

- 1.1. Получите зависимость F(x) теоретически.
- 1.2. Проверьте полученную Вами зависимость экспериментально. Результаты оформите в виде таблицы и графически.
- 1.3. Используя результаты эксперимента, вычислите коэффициент трения μ_1

Рисунок 1.

линейки о доску. Рассчитайте погрешности. $g = (9.81 \pm 0.01) \frac{M}{c^2}$

Часть 2

В данной части задачи Вам предстоит исследовать зависимость силы F, необходимой для сдвига линейки, прилагаемой к одному из её краёв, от массы грузов m. Грузы размещайте от точки опоры на расстоянии $l_1=0.8l$ (рис. 2).

- 2.1. Получите зависимость F(m) теоретически.
- 2.2. Проверьте полученную Вами зависимость экспериментально. Результаты оформите в виде таблицы и графически. В целях экономии времени в таблицу сразу записывайте среднее значение силы.

Рисунок 2.

2.3 Используя результаты эксперимента, вычислите коэффициент трения μ_2 линейки о доску. Рассчитайте погрешности.

Часть 3

В данной части задачи Вам предстоит исследовать зависимость силы F, необходимой для сдвига линейки, прилагаемой к одному из её краёв, от расстояния x между точкой опоры и линией действия силы (рис.3). На линейку поместите грузы в столбик (10шт), если столбик не устойчив, скрепите его скотчем.

- 3.1 Получите зависимость F(x) теоретически.
- 3.2 Проверьте полученную Вами зависимость экспериментально. Результаты оформите в виде таблицы и графически. В таблицу сразу записывайте среднее значение силы.

- 3.3 Используя результаты эксперимента, вычислите коэффициент трения μ_3 линейки о доску. Рассчитайте погрешности.
- 3.4 Сравните значения μ_I , μ_2 и μ_3 полученные в п.1.3, п.2.3 и п.3.3. Можно ли их считать одинаковыми, почему? Укажите возможную причину отличий их средних значений.

Задание 10-2. Трение и вращение

Решение

Часть 1

1.1 При сдвиге линейки на неё действуют момент силы Fl, прилагаемой со стороны динамометра и моменты сил трения. Правило моментов запишется следующим образом:

$$Fl = \mu mgx + M \qquad (1),$$

где μmgx - момент силы трения обусловленной весом грузов (считаем, что плечо данной силы равно x), M - суммарный момент сил трения некоторым образом распределённых по поверхности линейки, обусловленных в том числе и весом линейки.

Из (1) получим:

$$F = \frac{\mu mg}{I}x + \frac{M}{I} \qquad (2).$$

1.2
$$l = (40.2 \pm 0.1)$$
cm, $m = (1.00 \pm 0.01)$ кг.

Таблица 1. Экспериментальные

данные зависимости F(x).

График 1. Зависимость F(x) 2,50

Построив график зависимости F(x) видим, что данная зависимость близка к прямо пропорциональной. Используя МНК определим угловой коэффициент

наклона усредняющей прямой и свободное слагаемое данной зависимости, вычислим абсолютные погрешности данных величин (табл. 1).

Угловой коэффициент наклона усредняющей прямой

$$a_1 = (6.9 \pm 0.5) \frac{H}{M}$$

Свободное слагаемое

$$b_1 = (-0.05 \pm 0.08)$$
H.

1.3

Угловой коэффициент наклона усредняющей прямой

$$\frac{\mu_1 mg}{l} = a_1 \quad (3).$$

Из (3) получим:

$$\langle \mu_1 \rangle = \frac{\langle a_1 \rangle \langle l \rangle}{\langle m \rangle \langle g \rangle} = \frac{6.9 \frac{\text{H}}{\text{M}} \cdot 0.402 \text{M}}{1.00 \text{K} \cdot 9.81 \frac{\text{M}}{\text{C}^2}} = 0.28 \quad (4).$$

Относительная погрешность μ_1

$$\varepsilon_{\mu_1} = \sqrt{\left(\frac{\Delta a_1}{\langle a_1 \rangle}\right)^2 + \left(\frac{\Delta l}{\langle l \rangle}\right)^2 + \left(\frac{\Delta m}{\langle m \rangle}\right)^2 + \left(\frac{\Delta g}{\langle g \rangle}\right)^2}$$
 (5).

Погрешностью величин l и g можем пренебречь, получим:

$$\varepsilon_{\mu_{1}} = \sqrt{\left(\frac{\Delta a_{1}}{\langle a_{1}\rangle}\right)^{2} + \left(\frac{\Delta m}{\langle m\rangle}\right)^{2}} = \sqrt{\left(\frac{0.5 \frac{H}{M}}{6.9 \frac{H}{M}}\right)^{2} + \left(\frac{0.01 \text{kg}}{1.00 \text{kg}}\right)^{2}} = 0.073 = 7.3\% \quad (6),$$

$$\Delta \mu_{1} = \langle \mu_{1}\rangle \cdot \varepsilon_{\mu_{1}} = 0.28 \cdot 0.073 = 0.02 \quad (7),$$

$$\mu_{1} = \mathbf{0}, \mathbf{28} \pm \mathbf{0}, \mathbf{02}.$$

Отметим, что абсолютная погрешность свободного слагаемого превышает его среднее значение. Это значит, что начало координат по вертикальной оси попадает в интервал абсолютной погрешности свободного слагаемого. Это подтверждает прямо пропорциональную зависимость F(x). Следовательно, вторым слагаемым в уравнении (2) можно пренебречь и записать его в виде:

$$F = \frac{\mu mg}{l}x \qquad (8)$$

Это значит можно полагать, что сила трения, действующая на линейку приложена под грузами.

Часть 2

2.1

В данном случае правило моментов сил запишется следующим образом:

$$Fl = \mu mgl_1 + M \qquad (9),$$

откуда

$$F = \frac{\mu g l_1}{l} m + \frac{M}{l} \qquad (10).$$

2.2
$$l = (40.2 \pm 0.1)$$
cm, $l_1 = (32.0 \pm 0.1)$ cm.

Таблица 2.

Экспериментальные данные

зависимости F(m).

График 2. Зависимость F(m)

Juditon.	WIOCINI I	(111).
	Масса грузов <i>m</i> , кг	⟨ <i>F</i> ⟩,H
		\1' /,11
	0,100	0,10
	0,200	0,20
	0,300	0,40
	0,400	0,55
	0,500	0,75
	0,600	0,90
	0,700	0,95
	0,800	1,15
	0,900	1,20
	1,000	1,30
сред	0,550	0,75
дисп	0,083	0,162
ковар		0,115
N	a_2	b_2
10	1,39	-0,01
	Δa_2	Δb_2
	0,13	0,08

Построив график зависимости F(m) видим, что данная зависимость так же близка к прямо пропорциональной. Используя МНК определим угловой коэффициент наклона усредняющей прямой и свободное слагаемое данной зависимости, вычислим абсолютные погрешности данных величин (табл. 2).

Угловой коэффициент наклона усредняющей прямой

$$a_2 = (1.39 \pm 0.13) \frac{H}{\kappa r}$$

Свободное слагаемое

$$b_2 = (-0.01 \pm 0.08)$$
H.

2.3

Угловой коэффициент наклона усредняющей прямой

$$\frac{\mu_2 g l_1}{l} = a_2 \quad (11).$$

Из (11) получим:

$$\langle \mu_2 \rangle = \frac{\langle a_2 \rangle \langle l \rangle}{\langle l_1 \rangle \langle g \rangle} = \frac{1,39 \frac{\mathrm{H}}{\mathrm{K}\Gamma} \cdot 0,402 \mathrm{M}}{0,320 \mathrm{M} \cdot 9,81 \frac{\mathrm{M}}{\mathrm{C}^2}} = 0,18 \quad (12).$$

Относительная погрешность μ_2

$$\varepsilon_{\mu_2} = \sqrt{\left(\frac{\Delta a_2}{\langle a_2 \rangle}\right)^2 + \left(\frac{\Delta l}{\langle l \rangle}\right)^2 + \left(\frac{\Delta l_1}{\langle l_1 \rangle}\right)^2 + \left(\frac{\Delta g}{\langle g \rangle}\right)^2} \tag{13}$$

Погрешностью величин l, l_1 и g можем пренебречь, получим:

$$\varepsilon_{\mu_2} = \sqrt{\left(\frac{\Delta a_2}{\langle a_2 \rangle}\right)^2} = \frac{\Delta a_2}{\langle a_2 \rangle} = \frac{0.13 \frac{H}{K\Gamma}}{1.39 \frac{H}{K\Gamma}} = 0.094 = 9.4\% \quad (14),$$

$$\Delta\mu_2 = \langle \mu_2 \rangle \cdot \varepsilon_{\mu_2} = 0.18 \cdot 0.094 = 0.02$$
 (15),

$$\mu_2 = 0$$
, 18 ± 0 , 02 .

Также отметим, что абсолютная погрешность свободного слагаемого превышает его среднее значение. Это значит, что начало координат по вертикальной оси попадает в интервал абсолютной погрешности свободного слагаемого. Это подтверждает прямо пропорциональную зависимость F(m). Следовательно, вторым слагаемым в уравнении (2) можно пренебречь и записать его в виде:

$$F = \frac{\mu g l_1}{l} m \quad (16).$$

Это значит, что в данном случае тоже можно считать, что сила трения, действующая на линейку приложена под грузами.

Часть 3

3.1 Правило моментов сил запишется следующим образом:

$$Fx = \mu mg(l - x) + M \qquad (17).$$

После преобразований получим:

$$F = (\mu mgl + M)\frac{1}{x} - \mu mg \qquad (18).$$

3.2
$$l = (39 \pm 1)$$
cm, $m = (1,00 \pm 0,01)$ кг.

Таблица 3.

Зависимость F(x)

1/x, 1/M $\langle F \rangle$, H х, м 0,35 0,35 2,9 0,32 3,1 0,60 0,29 3,4 0,85 0,26 3,8 1,20 1,70 0,23 4,3 0,20 5,0 2,30 0,17 3,70 5,9 0,14 4,80 7,1 0,11 6,30 9,1 0.08 13 9,20 5,72 3,10 сред 8,54 7,58 дисп ковар 8,02

 a_3

0,94

 Δa_3

0,05

10

График 3. Зависимость $F\left(\frac{1}{x}\right)$

Построив график зависимости F(x) видим, что данная зависимость линейная. Используя МНК определим угловой коэффициент наклона усредняющей прямой и свободное слагаемое данной зависимости, вычислим абсолютные погрешности данных величин (табл. 2).

Угловой коэффициент наклона усредняющей прямой

 b_3

-2,3

 Δb_3

0,4

$$a_3 = (0.94 \pm 0.05) \text{H} \cdot \text{M}.$$

Свободное слагаемое

$$b_3 = (-2.3 \pm 0.4)$$
H.

3.3 В данном случае коэффициент трения находим через свободное слагаемое b_3 .

$$\mu_3 mg = |b_3|$$
 (19),

откуда

$$\langle \mu_3 \rangle = \frac{|\langle b_3 \rangle|}{\langle m \rangle \langle g \rangle} = \frac{2.3 \text{H}}{1.00 \text{kg} \cdot 9.81 \frac{\text{M}}{c^2}} = 0.23 \quad (20).$$

Относительная погрешность μ_3

$$\varepsilon_{\mu_3} = \sqrt{\left(\frac{\Delta b_3}{\langle b_3 \rangle}\right)^2 + \left(\frac{\Delta m}{\langle m \rangle}\right)^2 + \left(\frac{\Delta g}{\langle g \rangle}\right)^2}$$
 (21)

Погрешностью величины g можем пренебречь, получим:

$$\varepsilon_{\mu_{3}} = \sqrt{\left(\frac{\Delta b_{3}}{\langle b_{3}\rangle}\right)^{2} + \left(\frac{\Delta m}{\langle m\rangle}\right)^{2}} = \sqrt{\left(\frac{0.4\text{H}}{2.3\text{H}}\right)^{2} + \left(\frac{0.01\text{kg}}{1.00\text{kg}}\right)^{2}} = 0.17 = 17\% \quad (22),$$

$$\Delta\mu_{3} = \langle \mu_{3}\rangle \cdot \varepsilon_{\mu_{3}} = 0.23 \cdot 0.17 = 0.04 \quad (23),$$

$$\mu_{3} = \mathbf{0}, \mathbf{23} \pm \mathbf{0}, \mathbf{04}.$$

Отметим, что абсолютная погрешность свободного слагаемого не превышает его среднее значение. Это значит, что начало координат по вертикальной оси не попадает в интервал абсолютной погрешности свободного слагаемого. Это подтверждает линейную зависимость $F\left(\frac{1}{x}\right)$, а следовательно и справедливость уравнения (18). В данном случае эксперимент подтверждает теоретическую модель.

3.4

$$\mu_1 = 0.28 \pm 0.02$$
 $\mu_2 = 0.18 \pm 0.02$
 $\mu_3 = 0.23 \pm 0.04$

Анализируя результаты видим, что средние значения μ_1 , μ_2 и μ_3 не попадают в области перекрытия интервалов их абсолютных погрешностей, значит эти величины различны. Отличие в значениях μ_1 , μ_2 и μ_3 погрешностью измерений объяснить нельзя. Одной из причин может быть то, что в разных областях поверхности линейки коэффициент трения имеет разные значения.