Computer Architecture (3-1-1)

Evaluation:

	Theory	Practical	Total
Sessional	30	20	50
Final	50	-	50
Total	80	20	100

Course Objectives:

- To acquaint the students with the fundamentals of computer systems.
- To apprise the students with the architectural and associated components of computer systems.
- To aware the students about the architecture of the computer systems available in the market.

Cou

urs	se Cor	ntents:	
1.		Introduction	4 hrs
	1.1.	Computer Organization and Computer Architecture	
		Review of Evolution of Computer System	
		Basic Structure of Computer System	
		Examples of Computer Families	
		Future Trends in Computer	
	1.6.	Review of Instruction Sets, Addressing Modes and Instruction Formats	
2.		Register Transfer and Micro Operations	2 hrs
	2 1	Register Transfer and RTL	
		Micro operations	
		Data Transfer Micro operations	
		Arithmetic and Logical Micro operations	
		Shift Micro operations	
	2.6.	Introduction to HDL and VHDL	
3.		Central Processing Unit	3 hrs
	3.1.	CPU Organization/Structure	
		Register Organization and Data Paths	
		Instruction Cycle	
		Arithmetic and Logical Unit	
	3.5.	Design Principles for Modern Systems	
4.		Computer Arithmetic	6 hrs
	4.1.	Integer Representation	
	4.2.	Integer Arithmetic	

4.3. Unsigned Binary Addition and Subtraction 4.4. Unsigned Binary Multiplication Algorithm

		Booth's Algorithm Unsigned Binary Division Algorithm Floating Point Representation BCD Arithmetic Unit	
	4.9.	BCD Adder Arithmetic Pipelining	
5.		Control Unit	6 hrs
		Control of the Processor Hardwired Control Unit • Control Unit Inputs	
	5.3.	Control Unit Logic	
		Architecture of Micro programmed Control Unit	
		Micro Instruction Sequencing	
		Micro Instruction Execution Applications of Hardwired and Micro programmed Control Units	
	5.6.	Applications of Hardwired and Micro programmed Control Units	
6.		Memory Organization	6 hrs
	6.1.	Memory Hierarchy	
	6.2.	Main Memory	
	- 0	RAM and ROM	
	6.3.	3 3	
		Magnetic Disks and Tapes	
		Optical Disks Float Drives	
		Flash DrivesReview of RAID	
	6.4	Associative Memory	
	0.4.	Hardware Organization	
		Address Matching Logic	
		• Read/Write Operations	
	6.5.	-	
		• Cache Initialization	
		Mapping Cache Memory o Direct, Associative and Set Associative Memory	
		Mapping	
		Write PolicyReplacement Algorithms	
•		Input Output Organization External Devices I/O Module Structure	4 hrs
		Review of Programmed I/O and Interrupt Driven I/O	
	7.4.	Review of DMA, 1/O-Channels and I/O Processors	

7.

7.5. External Interfaces

8. Reduced Instruction Set Computers

5 hrs

- 8.1. RISC VS. CISC
- 8.2. RISC Pipelining
- 8.3. Instruction Pipelining
- 8.4. Conflicts in Instruction Pipelining and their Solutions
- 8.5. Introduction to Register Windows and Register Renaming

9. Introduction to Parallel Processing

6 hrs

- 9.1. Parallelism in Uniprocessor System
- 9.2. Multiprocessor Systems and their Characteristics
- 9.3. Flynn's Classification
- 9.4. Interconnection Structures in Multiprocessors
- 9.5. Cache Coherence
- 9.6. Introduction to Vector Processing and Array Processors
- 9.7. Introduction to Multithreaded Architecture

10. Multicore Computers

3 hrs

- 10.1. Hardware Performance Issues
 - Increase in Parallelism
 - Alternative Chip Organizations
 - Power Consumption
- 10.2. Software Performance Issues
 - Software on Multicore
- 10.3. Multicore Organization
- 10.4. Dual Core and Quad Core Processors
- 10.5 Power efficient Processors

Laboratory

The individual student should develop a project or perform a case study on Computer Architecture. The topic could be either initiated by the student or selected from a list provided by the instructor. An oral presentation with a demonstration in case of project should be part of the laboratory. Reports must be prepared.

Text Books:

- 1. Stallings, W., "Computer Organization and Architecture", Eighth Edition, 2011, Pearson.
- 2. Mano, M. M., "Computer Systems Architecture", Third Edition, 2011, Pearson.

References:

- 1. Tanenbaum, A.S., "Structured Computer Organization", Fourth Edition, 2003, Pearson Education.
- 2. Carpinelli, J.D., "Computer Systems Organization and Architecture", 2012, Pearson.
- 3. Rajaraman, V. et all, "Computer Organization and Architecture", 2011, PHI.
- 4. Sima, D. et all, "Advanced Computer Architecture", 2000, Addison Wesley.