Percolación de nodos en redes cuadradas 2d

A. Rabinovich

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

(Dated: April 11, 2017)

A partir de estudios computacionales hemos determinado el comportamiento crítico de una red de nodos bi-dimensional. Esta red percola siguiendo una transición de fase de 2° orden

PACS numbers: 45.70.Vn, 89.65.Lm

I. INTRODUCCIÓN

Los primeros estudios en percolación se realizaron....

II. EL MODELO

A. Transición de fase

Cuando de varía la probabilidad de ocupación de los nodos de la red, se observa que ...

B. Leyes de potencia y exponentes críticos

La Tabla I resume las principales leyes de potencia obtenidas en la literatura para redes percolantes...

TABLE I: Valores teóricos hallados en la literatura.

Símbolo	Ley	Valor
\overline{d}	_	d=2
D	$M \sim L^D$	D = 91/48
ν	$\xi \sim p - p_c ^{- u}$	$\nu = 4/3$
au	$n(p_c) \sim s^{-\tau}$	$\tau = 1 + d/D$
σ	$z = s^{\sigma}(p - p_c)$	$\sigma = (\nu D)^{-1}$
α	$m_0(p) \sim p - p_c ^{2-\alpha}$	$\alpha = 2 - (\tau - 1)/\sigma$
β	$m_1(p) \sim (p-p_c)^{eta}$	$\beta = \nu(d - D)$
γ	$m_2(p) \sim p - p_c ^{-\gamma}$	$\gamma = (3 - \tau)/\sigma$

Observamos que los valores obtenidos en la Ref. [1] presentan...

C. Efectos de red finita

El comportamiento de las redes de tamaño finito (redes cuadradas de lado L) se aparta de aquel esperado para sistemas infinitos. Esto se debe a que...

$$n_s(p) = q_0 s^{-\tau} f(z)$$
 , $z = s^{\sigma} (p - p_c)$ (1)

En la Ec. (1)

D. Renormalización

Es posible explotar aún más el hecho de que cerca de la transición de fase el sistema se muestra libre de escalas. Si se re-escala el sistema, deben seguir siendo válidas las leyes de potencia anteriores. Entonces, mediante un proceso de renormalización observaremos que...

III. SIMULACIONES NUMÉRICAS

Se estudiaron redes cuadradas de tamaño L=4,16,32,64,128 por medio del algoritmo de Hoshen-Kopelman [2].

$$M(L) = L^{D} m\left(\frac{L}{\xi}\right) \sim \begin{cases} L^{D} & \text{si } L < \xi \\ L^{d} & \text{si } L \gg \xi \end{cases}$$
 (2)

IV. RESULTADOS

A. Determinación de p_c por diferentes métodos

Se usaron distintos métodos para la determinación numérica del punto crítico...(*i.e.* búsqueda de p_{median} , búsqueda de p_{mediana} , sintonizado de $n_s(p_c)$).

a) b)

B. Determinación de la dimensión fractal D

Según la Ec. 2 es posible hallar D en el caso en que

C. Obtención de β a partir de la intensidad P_{∞}

A partir de la información en el gráfico de $P_{\infty}(p)$ podemos hallar β ...

D. Espectro de fragmentos y verficación de la hipótesis de scaling

La hipótesis de scaling se presenta en la Ec. 1 en donde se observa que para distintos valores de s y $p - p_c$, el

(a) Red cuadrada de 4x4: $\mu = 0.5669 \ \sigma = 0.1554$

(c) Red cuadrada de 16x16: $\mu = 0.5876 \ \sigma = 0.0620$

(d) Red cuadrada de 32x32:
$$\mu = 0.5932 \ \sigma = 0.0390$$

(e) Red cuadrada de 64x64: $\mu = 0.5940 \ \sigma = 0.0239$

(f) Red cuadrada de 128x128: $\mu = 0.5924 \ \sigma = 0.0137$

FIG. 1: Histogramas de probabilidades críticas en función del tamaño de la red cuadrada para 1000 realizaciones de la red.

espectro de fragmentos debe colapsar en una única curva $f(z) = n_s(p)/n_s(p_c)$, donde $z = s^{\sigma}(p - p_c)$ En la Fig. 3 se observa que ...

En consecuencia, verificamos la hipótesis de scaling graficando f(z) y determinando el punto $f_{\rm max}=f(z_{\rm max})$. Este valor se corresponde con una probabilidad $p_{\rm max}$ para un cada tamaño s fijo. La ley de potencia con exponente σ será entonces

$$\ln(p_{\text{max}} - p_c) = -\sigma \ln(s) + \ln(z_{\text{max}}) + C \tag{3}$$

V. VERIFICACIÓN DE RESULTADOS POR RENORMALIZACIÓN

Podemos verificar, al menos de manera aproximada, los resulados del las secciones realizando un proceso de renor-

malzación de celda pequeña. Consideramos un porción de red de lado b=2 y la llamamos un super-nodo...

VI. CONCLUSIONES

La Tabla.... resume los resulatados obtenidos. El sis-

(a) Red cuadrada de 4x4: $P_c = 0.569 \pm 0.006$

(b) Red cuadrada de 8x8:
$$P_c = 0.584 \pm 0.002$$

(c) Red cuadrada de 16x16: $P_c = 0.589 \pm 0.003$

(d) Red cuadrada de 32x32: $P_c = 0.593 \pm 0.001$

(e) Red cuadrada de 64x64: $P_c = 0.5927 \pm 0.0006$

(f) Red cuadrada de 128x128: $P_c = 0.5931 \pm 0.0005$

FIG. 2: Histogramas de probabilidades críticas en función del tamaño de la red cuadrada para 1000 realizaciones de la red.

ACKNOWLEDGMENTS

A. Rabinovich es becario doctoral del CONICET.

FIG. 3: Distribución de fragmentos....

^[1] D. Stauffer and A. Aharony, *Introduction to percolation theory* (Taylor & Francis Inc, 2003) pp. 57–87.

^[2] J. Hoshen and R. Kopelman, Physical Review B 14, 3438 (1976).