Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

RMS PM/RM Hardware User Manual

Revision 3.0

0A-0001-01

Everything you need to know to install, set up, and calibrate the PM family of AC drives on asynchronous and PM synchronous motors in your Electric or Hybrid vehicle

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

Table of Contents

1.	SAFETY FIRST:				
2.	FUNCTIONAL OVERVIEW:				
3.	INS	STALLING THE PM DRIVE:	5		
3.1	Liqu	uid Cooling Connections:	<u>-</u>		
3.2	PM1	100/PM150 External Signal Connectors:	10		
3	.2.1	J1 – 35p AMPSEAL Plug 776164-1 with crimp contact 770854-1	10		
3	.2.2	J2 – 23p AMPSEAL Plug 770680-1 with crimp contact 770854-1	12		
3.3	PM2	250 External Connections:	1;		
3.4	RM1	100 Signal Connections	10		
3.5	Exte	ernal Power Connections:	19		
3	.5.1	DC+ / DC-:	19		
3	.5.2	Phase A / Phase B / Phase C:	2 ²		
3	.5.3	Pre-Charge Circuit:	2 ²		
3	.5.4	Main Contactor:	22		
3	.5.5	Main Fuse:	23		
3	.5.6	Passive Discharge of the High Voltage DC Bus:	23		
3	.5.7	12V Power:	24		
3	.5.8	Grounding	25		
3.6	Турі	ical Application Wiring Diagram:	20		
3	.6.1	Controller 12V Power Wiring	27		
3	.6.2	Pre-charge Circuit	29		
3	.6.3	Analog/Digital Vehicle Control	30		
3	.6.4	Motor Control (Typical Wiring)	3		
3	.6.5	CAN Interface	32		
3	.6.6	RS-232 Interface	32		
3	.6.7	Encoder Interface (Not included on RM100):	33		
3	.6.8	Resolver Interface:	34		
4.	VEI	HICLE INTERFACE SETUP	35		
4.1	Ana	log Inputs:	35		
4.2	Digi	ital Inputs:	37		
4.3	Digital Outputs40				
RF	VISIO	ON HISTORY	42		

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

1. Safety First:

ATTENTION	When you see this sign, PAY ATTENTION! This indicates that something important is about to be said, that concerns your safety and the proper operation of the equipment.
DANGER	When you see this sign, you are being alerted to an IMMEDIATE DANGER that could cause severe injury or even death. You MUST review these sections carefully an do everything possible to comply with installation and operation requirements, or you risk injury or death to yourself or anyone else who uses the equipment or the vehicle. Failure to comply with safety requirements will void all warranties and could expose you as the installer to liability in the event of an injury. Use the equipment in the manner in which it was intended.
CAUTION	When you see this sign, you are being advised that the issue under discussion has a serious safety or equipment reliability implication. Use caution and be conservative. Use equipment in the manner described in this User's Manual.

Safety is entirely the responsibility of the installer of this equipment. RMS has done everything it can to ensure that the traction controller itself conforms to international standards for safety. This does NOT mean that <u>your</u> installation will be safe, or that it will not interfere with other systems on board <u>your</u> vehicle. It is your responsibility as the installer to review this entire User's Manual, to understand the implications of each and every section, and to know what might be unique about your system application that presents a unique hazard or potential safety issue – and to solve it.

RMS is committed to helping you solve these problems, but cannot take responsibility for the application of this traction controller. We can only promise to meet the specifications for this product and that it meets international safety standards when used in accordance with the instructions in this Manual.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

2. Functional Overview:

The PM controller family is intended as a traction controller for EV and HEV drive systems, and includes both the motor control function and a rudimentary vehicle controller strategy in the same box. The motor control is a torque commanded, vector control technology has been used on AC Induction and PM Synchronous motors in many applications.

The RM100 controller family is intended for the same type of EV/HEV applications however it has a much more limited set of inputs and outputs. The limited set of I/O prevents it from being properly used in the VSM mode where analog and digital inputs are used to control the operation of the inverter. The RM100 controller is intended for applications where CAN communications is used to control the controller.

The motor control subsystem firmware is mated to a vehicle controller firmware implemented in the DSP controller. This vehicle controller subsystem handles the driver interface (accel and decel / brake pedal inputs, Fwd/Rev controls, etc) and the vehicle interface (power sequencing, built in test, fault handling and safety issues). It is essentially a state machine in front of the motor controller firmware with a defined interface between the two software processes.

By default, out of the box the parameters are set up in Torque Control Mode, with default motor parameters loaded. The parameters must be changed to match the load motor and operating characteristics before running for the first time. These parameters personalize the drive to the motor and the vehicle.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3. Installing the PM Drive:

The PM controller has 4 mounting locations, one at each corner. Mounting orientation is not critical. The controller should be mounted in a location that is not exposed to direct spray from water. Each mounting hole is sized to handle up to a M10 socket head cap screw.

See PM250 Datasheet for more information on mounting the PM250.

PM100 Dimensions – top and side views

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

PM150 Dimensions - top and side views

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.1 Liquid Cooling Connections:

The controller must be cooled by passing liquid through it. The controller includes two ports to be used for liquid cooling. The fluid direction for the PM250 inverter is marked into the case of the inverter. The PM100 and PM150 has a more symmetrical design and is less sensitive to fluid direction. However, it is preferred that the rearmost plenum (the ports furthest from the 3 AC output terminals) be the fluid inlet, as this keeps the coolest fluid near the DC Link capacitor assembly. The PM250 has markings on the housing that indicate the required direction of the coolant through the inverter. See table below for coolant specifications:

Coolant Type	50/50 mix ethylene glycol (antifreeze) / water or propylene
Coolant Type	glycol / water; with Aluminum corrosion inhibitor additive
Coolant Tomporatura	-30°C to +80°C full power
Coolant Temperature	Operation -4030; +80 +100°C with de-rated output
Coolant Flow Rate	8 – 12 LPM (2 – 3 GPM), PM100/PM150/RM100
Coolant Flow Rate	20 – 30 LPM (5 – 6 GPM), PM250
	PM100, 0.3 bar (4.4 psi) @ 8 LPM @ 25°C
Drocoura Dron	PM150, 0.4 bar (5.8 psi) @ 8 LPM @ 25°C
Pressure Drop	PM250, 0.9 bar (13 psi) @ 20 LPM @ 25°C
	RM100, 0.06 bar (0.8 psi) @ 8 LPM @ 25°C
	PM100 and PM150, AN-6
	PM250, SAE ORB -10
	RM100, Custom O-ring port, the following options are
	provided to be installed in the unit, each kit includes materials
Port Size	for both ports.
	- ARaymond NT100 / 16mm Straight, RMS p/n G1-0023-01
	- ARaymond NT100 / 16mm 45deg, RMS p/n G1-0024-01
	- ARaymond NT100 / 16mm 90deg, RMS p/n G1-0025-01
	- 16mm / 5/8" Hose Barb, RMS p/n G1-0026-01

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

ARaymond NT100 / J20 Straight, RMS Kit G1-0023-01

ARaymond NT100 / J29 90 degree, RMS kit G1-0025-01

ARaymond NT100 / J30 45 degree, RMS kit G1-0024-01

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

For proper operation of the inverter the coolant must flow at a rate equal to or above the minimum specified flow rate at all times that the motor is enabled. The flow rate should not be reduced when the inverter is "not being run hard". The design of the heat exchanger does not allow for reduced or no coolant flow. It is possible to adjust the fan speed on the coolant radiator as needed depending on the operating conditions of the inverter.

Since the maximum coolant temperature is less than the boiling point of water the cooling system does not need to be operated under pressure. Other devices (e.g. motor, charger, DC/DC converter) that are added in series with the inverter increase the total pressure drop of the system. Even simple fittings and hose length will contribute to the total system pressure drop. The total system pressure may add up to a level that is beyond the capability of the chosen pump. The best practice is to measure the actual coolant flow after the system has been assembled.

Certain pump types are not capable of driving any significant pressure. A pump may have a high flow rate, but it may not be able to drive any substantial pressure. The PM250 unit has an especially high pressure drop. An example pump suitable for the PM250 is the EMP WP 29. Pumps suitable for the PM100/PM150/RM100 are the Bosch 0 392 022 010 and the Pierburg CWA 50.

As noted above proper coolant flow is essential to the operation of the inverter. If the flow rate is not sufficient the power module internal to the inverter can be damaged even though the indicated power module temperatures are below an over-temperature threshold. The

power module temperature sensors are located in such a way that they are much closer to the temperature of the coolant than they are to the temperature of the transistors and diodes used inside the power module.

Loss of coolant for even a few seconds can result in failure of the power module.

RMS recommends that the user install a device to ensure that the coolant pump is operating properly at all times when the inverter is enabled. The inverter should be immediately stopped if the coolant is not flowing.

There are many ways that coolant flow could be measured. A flow sensor could be added to the cooling loop. Often these types of sensors produce a pulse output. To read the pulse output would require the use of a device to interpret this signal (RMS does not supply this).

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

Another option is to monitor the pressure in the cooling system. Typically the inverter would be placed near the end of the cooling loop, just before the radiator. So a typical cooling loop might look like pump outlet, inverter, radiator/reservoir, pump inlet. Typically the reservoir is at ambient error pressure. So the inverter should be at a pressure that is higher than ambient. If a pressure switch is placed at the input coolant port of the inverter it should be able to detect that coolant is flowing.

Various types of coolant pressure switches exist. If a type is used that closes the switch when the pressure is above a certain level is used then this could be inserted in series with the ground connection of the forward/reverse switches (for VSM mode applications) or just connected directly to one of the inputs for monitoring via CAN.

A pressure switch that closes when the pressure is above about 6 psi (~0.4 bar) should be suitable for the PM100 and PM150. For the PM250 the required pressure is higher and should be about 10 psi (~ 0.7 bar).

3.2 PM100/PM150 External Signal Connectors:

Two sealed automotive connectors are provided to connect to the internal I/O resources. J1 and J2 are standard AMPSEAL connectors by AMP/Tyco:

3.2.1 J1 – 35p AMPSEAL Plug 776164-1 with crimp contact 770854-1

GEN2 refers to PM100 Units w/ serial number less than 344

GEN3 refers to PM100 Units w/ serial number of 344 or greater and all PM150 units

Pin#	Pin Name	Description	Notes
1	XDCR_PWR	+5V @ 80mA max	Accel Pedal Power
13	AIN1	Analog Input 1 0-5V _{FS}	Accel Pedal wiper
24	AIN2	Analog Input 2 0-5V _{FS}	Motor Temperature Sensor
2	AGND	Analog Ground	Accel Pedal GND
14	XDCR_PWR	+5V @ 80mA max	Spare 5V transducer power
25	AIN3	Analog Input 3 0-5V _{FS}	Brake Pedal
3	AIN4	Analog Input 4 0-5V _{FS}	
15	AGND	Analog Ground	
26	XDCR_PWR	+5V @ 80mA max	Spare 5V transducer power
4	RTD1	1000 Ohm RTD Input	

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

GEN2			
4 GEN3	AOUT	Analog Output 0 – 5V	
16 GEN2	RTD2	1000 Ohm RTD Input	
16 GEN3	AIN6	Analog Input 6 0-5V _{FS}	Available for user-defined functionality
27 GEN2	RTD3	1000 Ohm RTD Input	
27 GEN3	RLY6	Hi-Side Relay Driver	Available for user-defined functionality, CAN control.
5 GEN2	RTD4	100 Ohm RTD Input	
5 GEN3	RTD1	RTD Input (PT100 or PT1000)	Software selectable input type.
17	AGND	Analog Ground	
28	XDCR_PWR	+5V @ 80mA max	Spare 5V transducer power
6 GEN2	RTD5	100 Ohm RTD Input	
6 GEN3	RTD2	RTD Input (PT100 or PT1000)	Software selectable input type.
18 GEN2	<reserved></reserved>	DO NOT CONNECT	
18 GEN3	AIN5	Analog Input 5 0-5V _{FS}	Available for user-defined functionality
29 GEN2	<reserved></reserved>	DO NOT CONNECT	
29 GEN3	RLY5	Hi-Side Relay Driver	Available for user-defined functionality, CAN control.
7	/PROG_ENA	Serial Boot Loader enable	
19	AGND	Analog Ground	
30	DIN1	Digital Input 1 – STG ⁽¹⁾	Forward Enable Switch
8	DIN2	Digital Input 2 - STG	Reverse Enable Switch

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

20	DIN3	Digital Input 3 - STG	Brake Switch
31	DIN4	Digital Input 4 - STG	REGEN Disable Input (if used)
9	DIN5	Digital Input 5 – STB ⁽²⁾	Ignition Input (if used)
21	DIN6	Digital Input 6 - STB	Start Input (if used)
32	.maaam ta di	DO NOT CONNECT	
GEN2	<reserved></reserved>	DO NOT CONNECT	
32	DINIZ	Digital langet 7 CTD	Available for user-defined
GEN3	DIN7	Digital Input 7 - STB	function.
10	450005100d	DO NOT CONNECT	
GEN2	<reserved></reserved>	DO NOT CONNECT	
10	DIN8	Digital Input 9 CTD	Available for user-defined
GEN3	DINO	Digital Input 8 - STB	function.
22	GND	Ground	
33	CANA_H	CAN Channel A Hi	
11	CANA_L	CAN Channel A Low	
23	CANB_H	CAN Channel B Hi	
34	CANB_L	CAN Channel B Low	
12	TXD	RS-232 Transmit	
35	RXD	RS-232 Receive	

(1)_ Switch to GND; (2) - Switch to Battery

3.2.2 J2 - 23p AMPSEAL Plug 770680-1 with crimp contact 770854-1

Pin#	Pin Name	Description	Notes
1	XDCR_PWR	+5V @ 80mA max	Encoder Power
9	ENCA	Encoder Channel A input	Used with Induction Motors
16	ENCB	Encoder Channel B input	
2	ENCZ	Encoder Channel Z input	
		(Index)	
10	GND	GND	Encoder GND
17	EXC	Resolver excitation output	Used with PM Motors
3	GND	Resolver excitation return	

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

11	SIN	Resolver Sine winding +	
18	/SIN	Resolver Sine winding -	
4	cos	Resolver Cosine winding +	
12	/COS	Resolver Cosine winding -	
19	GND		Resolver Shield GND
5	<reserved></reserved>	DO NOT CONNECT	
13	<reserved></reserved>	DO NOT CONNECT	
20	<reserved></reserved>	DO NOT CONNECT	
6	GND	Main 12V return	Chassis GND
14	GND	Main 12V return	Chassis GND
21	RLY1	Hi-Side Relay Driver	Pre-Charge Contactor Drive
7	RLY2	Hi-Side Relay Driver	Main Relay Drive
15	RLY3	Lo-Side Relay Driver	OK Indicator Drive / 12V Power
			Relay Drive
22	RLY4	Lo-Side Relay Driver	Fault Indicator Drive
8	BATT+	Main 12V power source	12V Ignition Power Input
23	BATT+	Main 12V power source	12V Ignition Power Input

3.3 PM250 External Connections:

The PM250 has two external connectors. J2 is a 41 pin circular connector, J1 is a 26 pin circular connector. J2 contains mostly signals that would go to the vehicle harness. J1 contains mostly signals that would go to the motor. A connector kit that contains both J1 and J2 can be purchased from RMS as G1-0016-01.

J1 Connections

Pin#	Pin Name	Description	Notes
Α	EXC	Resolver excitation output	Used with PM Motors
В	GND	Resolver excitation return	
С	SIN	Resolver Sine winding +	
D	/SIN	Resolver Sine winding -	
Е	cos	Resolver Cosine winding +	
F	/COS	Resolver Cosine winding -	
G	RTD1P	RTD1 Positive	Can be either PT100 or PT1000

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

Н	RTD1N	RTD1 Negative	
J	GND	GND	Encoder GND
K	HALL C	Hall Input C	
L	HALL A	Hall Input A	For use with certain motors that
			support Hall encoders.
М	ENCZ	Encoder Channel Z input	
		(Index)	
N	ENC A	Encoder Channel A input	Quadrature encoder used with
			Induction Motors
Р	XDCR_PWR	+5V @ 80mA max	Encoder Power
R	RTD2P	RTD2 Positive	Can be either PT100 or PT1000
S	RTD2N	RTD2 Negative	
Т	GND		Resolver Shield GND
U	AIN2	Analog Input 2	Used with certain motors for
			temperature sensing.
V	AIN4	Analog Input 4	Used with certain motors for
			temperature sensing.
W	AGND	Analog Ground	Ground reference for use with
			AIN2 and AIN4
Х	XDCR_PWR	+5V @ 80mA max	For use with pull-up resistor.
Υ	HALL B	Hall Input B	
Z	GND		
AA or a	ENCB	Encoder Channel B input	
AB or b	AIN2PU	Pull-up resistor on AIN2	If connected to XDCR_PWR will
			enable a 1K ohm pull-up resistor
			to be connected to AIN2.
AC or c	AIN4PU	Pull-up resistor on AIN4	If connected to XDCR_PWR will
			enable a 1K ohm pull-up resistor
			to be connected to AIN4.

J2 Connections

Pin#	Pin Name	Description	Notes
Α	CANB_H	CAN Channel B Hi	

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

В	CANB_L	CAN Channel B Low	
С	RLY2	Hi-Side Relay Driver	Main Relay Drive
D	RLY3	Lo-Side Relay Driver	OK Indicator Drive / 12V Power
			Relay Drive
E	RLY5	Hi-Side Relay Driver	Available for user-defined
	KLIS	ni-Side Kelay Dilvei	functionality, CAN control.
F	DIN1	Digital Input 1 – STG ⁽¹⁾	Forward Enable Switch
G	DIN2	Digital Input 2 - STG	Reverse Enable Switch
Н	DIN5	Digital Input 5 – STB ⁽²⁾	Ignition Input (if used)
J	DIN7	Digital Input 7 CTP	Available for user-defined
J	DIN	Digital Input 7 - STB	function.
K	GND	Main 12V return	
L	GND	Main 12V return	
М	BATT+	Main 12V power source	12V Ignition Power Input
N	BATT+	Main 12V power source	12V Ignition Power Input
Р	AIN1	Analog Input 1 0-5V _{FS}	Accel Pedal wiper
R	AGND	Analog Ground	Accel Pedal GND
S	AIN3	Analog Input 3 0-5V _{FS}	Brake Pedal
Т	AIN5	Analog Input 5 0-5V _{FS}	Available for user-defined
l	Allvo	Analog Input 5 0-5 VFS	functionality
U	AIN6	Analog Input 6 0-5V _{FS}	Available for user-defined
	Allvo	Allalog Iliput 0 0-3 VFS	functionality
V	AGND	Analog Ground	
W	CANA_H	CAN Channel A Hi	
Х	GND	Ground	CAN B Shield
Υ	RLY1	Hi-Side Relay Driver	Pre-Charge Contactor Drive
Z	RLY4	Lo-Side Relay Driver	Fault Indicator Drive
AA or a	RLY6	Hi-Side Relay Driver	Available for user-defined
AAOI a	KETO	Til-Side Kelay Dilvei	functionality, CAN control.
AB or b	DIN3	Digital Input 3 - STG	Brake Switch
AC or c	DIN6	Digital Input 6 - STB	Start Input (if used)
AD or d	GND	Main 12V return	
AE or e	BATT+	Main 12V power source	12V Ignition Power Input

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

AF or f	XDCR_PWR	+5V @ 80mA max	Accel Pedal Power
AG or g	AGND	Analog Ground	
AH or h	XDCR_PWR	+5V @ 80mA max	Spare 5V transducer power
Al or i	XDCR_PWR	+5V @ 80mA max	Spare 5V transducer power
AJ or j	CANA_L	CAN Channel A Low	
AK or k	GND	Ground	CAN A Shield
AM or m	RXD	RS-232 Receive	
AN or n	DIN4	Digital Input 4 - STG	REGEN Disable Input (if used)
AD or p DINIO	DIN8	Digital Input 9 CTP	Available for user-defined
AP or p	DINO	Digital Input 8 - STB	function.
AQ or q	/PROG_ENA	Serial Boot Loader enable	
AR or r	TXD	RS-232 Transmit	
AS or s	AOUT	Analog Output 0 – 5V	
AT or t	GND	Ground	Serial I/O GND

3.4 RM100 Signal Connections

The RM100 uses a single 35 pin Ampseal connector for the I/O Signals. Mating connector is Tyco part number 776164-1, mating contact is 770854-3 for 16-20 AWG wire. Must use Tyco crimper 58529-1 (AMP Pro-Crimper II). A kit of the connector and contacts is available from RMS as part number G1-0021-01.

Pin#	Pin Name	Description	Notes
	RLY1 (Pre-	High Side Driver	If pre-charge function is used this
1	charge)		output serves as the pre-charge
			contactor output.
2	AIN1	Analog Input 1 0-5V _{FS}	Accel Pedal wiper
3	AIN2	Analog Input 2 0-5V _{FS}	Motor Temperature Sensor
	/PROG_ENA	Serial Boot Loader enable	This pin is grounded when power
4			is applied to enable
			reprogramming of the firmware.
5	CANA_H	CAN Channel A Hi	CAN Communications channel
6	CANA_L	CAN Channel A Low	

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

7	CANB_H	CAN Channel B Hi	Secondary CAN Communications
7			channel, currently not used.
8	CANB_L	CAN Channel B Low	
9	CAN Shield		Connection of CAN cable shield.
10	TXD	RS-232 Transmit	Used for RMS GUI and C2prog
11	RXD	RS-232 Receive	Used for RMS GUI and C2prog
12	GND	RS-232 Ground	
	RLY2 (Main)	High Side Driver	If the pre-charge function is used
13			this output serves as the main
			contactor output.
14	AIN3	Analog Input 3 0-5V _{FS}	Brake Pedal
15	DIN1	Digital Input 1 – STG	Forward Enable Switch
16	DIN2	Digital Input 2 - STG	Reverse Enable Switch
17	/EXC	Resolver excitation return	
18	cos	Resolver COS winding	
19	SIN	Resolver SIN winding	
20	RTD1-	Return side of RTD1	
	RTD2+	Positive side of RTD2	Temperature Sensor software
21			configurable for PT100 or
			PT1000.
22	RTD2-	Return side of RTD2	
23	XDCR_PWR	+5V @	Transducer power output
	BATT+	12V/24V Input	Input power for inverter. Must
24			be on a switched connection as
24			this input will always draw
			current.
	BATT+	12V/24V Input	Redundant connection can be
25			used if desired of needed for
			additional current capability.
26	BATT_RTN	12/24V Return	Normally tied to vehicle power
20			system chassis.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

		_	
	BATT_RTN	12/24V Return	Redundant connection can be
27			used if desired of needed for
			additional current capability.
28	EXC	Resolver excitation	
	SHIELD	Resolver Cable Shield	Resolver cable shield should
29		connection	connected to this pin. Do not
29			connect the shield to the case of
			the motor.
30	/COS	Resolver COS winding	
30		return	
31	/SIN	Resolver SIN winding return	
	RTD1+	Positive side of RTD1	Temperature Sensor software
32			configurable for PT100 or
			PT1000.
	HVIL IN	High Voltage Interlock Input	HVIL IN to HVIL OOUT is a circuit
33			loop that will read shorted when
			all HV connectors are plugged in.
34	HVIL OUT	High Voltage Interlock	
3 4		Output	
25	AGND	Analog Ground	Ground reference from analog
35			inputs.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.5 External Power Connections:

3.5.1 DC+ / DC-:

DC/Battery power is provided to the controller via two wire ports located at the rear of the

controller (PM100 and PM150 shown). The DC power ports are marked clearly on the front face of the PM250 controller. The DC power must be run through an external pre-charge circuit to safely charge the capacitors inside the controller before the main contactor engages (refer to application schematic). The main contactor provides a safety disconnect of the DC power in case of a fault condition. Make

sure that the wire to the drive is sized properly to handle the current.

DANGER: Before changing the wiring make sure that the internal DC bus capacitors are discharged. The voltage should be measured at the terminals before disconnecting. If there is any doubt about the safety wait at least 1 hour after power has been removed before touching the terminals.

ATTENTION

Refer to the PM100 HV Connection Manual for more information on how to install the wires into the inverter.

On the PM250 unit the DC connections are marked "+" for the DC+ and "-" for the DC-.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

The RM100 Unit uses the Amphenol PowerLok™ 300 for the high voltage connections. These connectors utilize the Amphenol RADSOK™ technology. Each connection is a specific color and keying so that the cables cannot be interchanged.

Inverter	PowerLok™	PowerLok™ Key
Connection	Color	
DC+	Red	W
DC-	Black	Υ
Phase U	Green	V
Phase V	Orange	X
Phase W	Yellow	U

The housing of the RM100 is marked with the HV Connection designations. The PM Family of inverters uses the Phase A, B, C designation instead of the RM Family U, V, W. References in documentation to Phase A refer to Phase U, Phase B to Phase V, and Phase C to Phase W.

The PowerLok™ 300 is available for many different sizes of wires. Contact RMS for more information about ordering connectors/cables.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.5.2 Phase A / Phase B / Phase C:

Phase A, Phase B, and Phase C are wired to the motor. It is important the 3 wires be wired to the motor such that they give the proper direction of rotation. The motor wires are the most likely to generate EMI and they also carry a higher average current than the DC power wires. When installed in the vehicle these wires should be kept as short as possible. It is also recommended that shielded wire be

used for the motor wires. This can be done by adding a copper braid over the wires, or using wire that includes a shield. All of the PM100/150/250 family units are shipped with cable glands that are metallic and designed to accommodate shielded wire.

The PM250 AC motor connections are marked on the unit with the letters "A", "B", and "C". On the RM100 the phases are marked with "U", "V", and "W".

3.5.3 Pre-Charge Circuit:

An external pre-charge circuit must be used with the controller. The circuit limits peak inrush current into the controller when the main contactor is engaged. The pre-charge circuit adds a resistor, relay, and fuse in parallel with the main contactor. When the controller is powered on the controller will first engage the pre-charge relay to charge the capacitors internal to the controller. If the capacitors charge properly then the main contactor will engage.

The pre-charge resistor should be sized to rapidly charge the capacitor, but not dissipate too much power in a fault condition. The pre-charge resistor should be sized so that if the controller had a short on its input the pre-charge resistor would not fail. The pre-charge relay will only remain closed for about 3 seconds. The pre-charge sequence must complete before this time or the inverter will declare a fault condition and open the pre-charge relay. The pre-charge circuit should be fused with a small fuse appropriate to the wire used. Since the pre-charge current is generally very low, approximately 0.5 amps in the example below,

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

small wire can be used (recommend 18 AWG). A 5 amp fuse would be appropriate for this wire.

Sizing Example:

A typical application could have a maximum DC bus voltage of 320 volts. If a 600 ohm resistor were chosen this would result in a power dissipation of 171 watts. This is within the short term rating of a 50 watt wire-wound resistor. The internal capacitance of the controller is approximately 500uF. It takes approximately 3 time constants before the controller will close the main contactor, thus in this example it will take 0.9 seconds for the pre-charge to complete.

RMS can provide the following parts if needed. Reference the following:

- Pre-charge Relay (30A, 12V COIL): RMS p/n 77-0026 for DX inverters
- Pre-charge Relay (50A/1000V, 12V COIL): RMS p/n 77-0034 for DZ inverters
- Pre-charge Resistor (600 ohm 50W): RMS p/n 53-0006 for DX inverters
- Pre-charge Resistor (1K ohm 100W): RMS p/n 53-0008 for DZ inverters
- Pre-charge Fuse (5A 500V): RMS p/n G1-0013-01 for DX inverters
- Pre-charge Fuse (5A 1000V): RMS p/n G1-0015-01 for DZ inverters

Model	Internal	Maximum Pre-	RMS
Wiodei	Capacitance	charge Resistor	Part
PM100DX/PM100DXR	440uF	1200 ohms	53-0006
PM100DZ/PM100DZR	280uF	2000 ohms	53-0008
PM150DX/PM150DX	880uF	600 ohms	53-0006
PM150DZ/PM150DZR	560uF	1000 ohms	53-0008
PM250DZ	645uF	1000 ohms	53-0008
PM250DX	1500uF	400 ohms	n/a
RM100DX	570uF	1000 ohms	53-0006
RM100DZ	250uF	2000 ohms	53-0008

3.5.4 Main Contactor:

The main contactor is the switching element between the DC high-voltage power source (typically a battery) and the controller. The main contactor must be sized to handle the operating currents of the controller. In addition the main contactor must be able to open under a fault condition. Generally only one contactor is needed, the application schematic

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

shows the main contactor in series with the positive path from the battery to the controller. RMS has successfully used the following: Tyco/Kilovac p/n EV200AAANA. This contactor is available from RMS, contact us for more information (RMS p/n 77-0025). The contactor must be rated to handle DC voltage, AC only rated contactors and relays must not be used. DC rated contactors are usually polarity sensitive. That is the normal operating current should flow in a particular direction. Refer to the contactor data sheet for more information.

3.5.5 Main Fuse:

The DC Power input to the controller must be fused. The fuse must be rated for the voltage of the battery as well as rated to open under the short circuit current that the battery can produce. Generally, this fuse (or equivalent fusible link) may be a part of the battery pack, but if the pack protection is not present or adequate, this fuse is required to prevent a potential battery pack fire. The fuse should be rated to handle the maximum DC input current of the controller. A semiconductor type fuse is recommended. Bussmann type FWP-400A is a suitable choice in many applications.

3.5.6 Passive Discharge of the High Voltage DC Bus:

As noted above the inverter contains a large amount of DC bus capacitance. This capacitance will store energy long after the high voltage has been removed from the unit. If other provisions have not been made for discharging these capacitors then the unit wiring should not be touched for at least 5 minutes after the high voltage has been removed from it.

Model	Resistance Value	Capacitance	3 Time Constants
PM100DX/PM100DXR	120K ohms	440uF	158 s
PM100DZ/PM100DZR	120K ohms	280uF	101 s
PM150DX/PM150DX	120K ohms	880uF	317 s
PM150DZ/PM150DZR	120K ohms	560uF	202 s
PM250DZ	188K ohms	645uF	364 s
PM250DX	188K ohms	1500uF	846 s
RM100DX	40K ohms	570uF	68 s

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

RM100DZ	40K ohms	250uF	30 s
---------	----------	-------	------

For reference the value of 3 time constants is shown. This time would dissipate the voltage to less than 5% of the original value. Three time constants would allow the voltage to decay to a value that is normally safe to touch. However, the capacitors will still have some energy stored in them.

The passive resistance value shown in the table in connected to the high voltage DC bus at all times. The inverter will draw a corresponding amount of current from the high voltage at all times. For example if a PM100DX is being used at 320V it would draw 320/120K = 2.7mA even when the inverter is disabled.

If it is desired to have the DC bus voltage discharge faster the user must either provide an external method of discharge or consider the use of the Active Discharge feature of the inverter. Consultant the manual **RMS Inverter Discharge Process**.

3.5.7 12V Power:

The inverter requires a source of 12V power to operate. Normally, this power will be on a switched circuit. The inverter will turn on and communicate without high voltage present. This allows setup of parameters without high voltage.

When the vehicle is turned OFF - the 12V power is removed from the controller by a switch. This switched 12V power is connected to the BATT+ terminals (refer to pin list for pin designation). The ground return for 12V power is connected to the GND terminals (refer to pin list for pin designation). For normal applications only one pin is necessary. If necessary more than one pin can be used for applications that push higher 12V or GND currents through the controller.

Input currents:

12V Operating Power Input Range	Input Current
12V Input Current @ 9V, operating	2.1A_typ PM100
	2.5 A_typ PM150
	2.1 A_typ PM250DZ

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

12V Input Current @ 14V, operating	1.5A_typ PM100
	1.8 A_typ PM150
	1.6 A_typ PM250DZ
12V Input Current @ 14V, non-operating (PWM off)	0.5 A_typ PM100
	0.6 A_typ PM150
	0.8 A_typ PM250DZ

The RM100 allows for operation from both 12V and 24V systems (the PM family does not have this capability). Valid range of operation for the RM100 is 9 to 32V. RM100 typical operating currents are shown below.

RM100DX @ 12V, non-operating	0.9 A
RM100DX @ 12V, operating	1.7A
RM100DX @ 24V, non-operating	0.44A
RM100DX @ 24V, operating	A08.0
RM100DZ @ 12V, non-operating	0.9A
RM100DZ @ 12V, operating	1.3A
RM100DZ @ 24V, non-operating	0.5A
RM100DZ @ 24V, operating	0.6A

These currents do not include any high-side or low-side drivers:

- Any hi-side driver output currents, including the main and pre-charge contactor relay drive currents, will come through the BATT+ pins and will add to the above currents.
- Any low-side driver output currents, including indicator lamp current, will come through the GND pins, and should be considered in sizing this connection.

3.5.8 Grounding

The inverter housing has a location for connecting the case to ground. The inverter housing must be connected to the motor case. It must also be connected to the vehicle chassis and this assumes that the vehicle chassis is at the same potential as the 12V GND. The inverter housing should not be allowed to be more than a few volts above the 12V GND. If the inverter housing was disconnected hazardous voltages could develop on the housing.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6 Typical Application Wiring Diagram:

The wiring diagrams covers following areas:

- Starter & Power Generation
- Precharge Circuit
- Motor & Encoder
- Transmission Control
- RS232 Programming
- CAN Interface
- Motor Temperature Sensor

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.1 Controller 12V Power Wiring

This circuit can be configured in two different ways:

NOTE: RM100 can only use the Simple ON/OFF Configuration.

(a) Simple ON/OFF Configuration

In this configuration an external switch or controller is responsible for control of the 12V power. Thus the inverter will have a less controlled shutdown process as power could be removed while it is actively controlling the motor. When using this configuration set the EEPROM parameter Key_Switch_Mode_EEPROM to 0.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

(b) Typical Ignition Configuration (PM Products Only)

In this configuration an external, user supplied relay, diode, and switch are used to control power. When the Ignition Switch is put into the IGN position power is supplied through the diode. Once the controller completes an initial power up sequence it then turns on the RLY3 output to turn on the external 12V relay. The controller monitors DIN5 to control the relay. When it is detected that Ignition has been removed (via DIN5) an orderly shutdown process is initiated. When the process is completed the RLY3 output is turned off and power is removed from the controller. In this mode the START position of the switch is used to actively turn on PWM to the motor (VSM mode).

The diode should have a current rating of at least 3 amps.

Note: Only PM100/PM150 Connections shown, refer to PM250 connector for equivalent pins.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.2 Pre-charge Circuit

Note: Only PM100/PM150 Connections shown, refer to PM250/RM100 connector for equivalent pins.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.3 **Analog/Digital Vehicle Control**

If using VSM Mode then analog / digital signals can be used to control the operation of the inverter. The limited I/O of the RM100 prevents this functionality.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.4 Motor Control (Typical Wiring)

Only PM100/PM150 Pins are shown. Refer to motor specific manuals for details.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.5 CAN Interface

The PM controller has one active CAN interface CAN A. The controller contains hardware to support a second CAN interface (CAN B), but currently only CAN A is active. CAN B is reserved for future use. Refer to the RMS CAN Protocol document for the various ways that the CAN bus can be configured.

The CAN interface has multiple purposes:

- Provides direct control of the motor
- Provides diagnostic and monitoring capabilities
- Provides user-adjustable configuration

The user can change the following hardware related configuration parameters:

- Inverter Command Mode: Setting this parameter to 1 allows the CAN mode to become active.
- CAN Bus Speed: Allowed speeds are 125 Kbps, 250 Kbps, 500 Kbps, or 1 Mbps.
 Enter 125, 250, 500, or 1000 to program the configuration parameter.
- CAN Terminator Resistor: The resistor can be applied or opened (PM Family only).

For more information on CAN interface and messages, please refer to the "RMS CAN Protocol" document.

3.6.6 RS-232 Interface

There is one RS-232 serial interface. This port can be used to set up and tune the controller, and to download controller software updates from a PC. RMS provides a simple Windows PC based software package for monitoring and changing parameters (RMS GUI).

The drive can also be placed in a data-logging mode, and used with a PC or other serial device the unit broadcasts datasets at 3Hz of a number of parameters that allow performance and energy consumption data to be gathered in real time.

For more information on RS232 data logging refer to the "RMS SCI Data Acquisition" document.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

Note: Only PM100/PM150 Connections shown, refer to PM250/RM100 connector for equivalent pins.

3.6.7 Encoder Interface (Not included on RM100):

The induction motor control software currently mandates the use of a position encoder on the motor. The encoder provides information about motor speed that is used by the induction motor control software. The controller provides a 5V interface to power the external encoder and to receive, level translate, and filter the signals from A, B and INDEX channels. For induction motor applications the INDEX channel is not used, but it may be wired. The encoder is connected internally to the TI DSP QEP Module (Quadrature Encoder Peripheral), which has special hardware for wide dynamic range speed and angle calculation from the encoder data. The drive has internal pull-up resistors on these inputs, and works with encoders that have either bi-polar or open-collector outputs.

Schematic of Encoder Inputs

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

3.6.8 Resolver Interface:

A resolver is a position sensor that is often used with Permanent Magnet type motors. There are various types of resolvers. The resolver requires an excitation voltage and provides a SIN and COS feedback. Currently all PM type motors used with the RMS controller require a resolver for position feedback.

The PM Controllers have a resolver excitation frequency that matches the PWM frequency (12kHz). The excitation voltage from the PM controller can be adjusted as needed.

The RM Controllers have an excitation frequency of 10kHz that is not synchronized with the PWM frequency. The RM controllers use a dedicated Resolver to Digital Converter.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

4. Vehicle Interface Setup

4.1 Analog Inputs:

There are 4 analog inputs on GEN 2 units (AIN1-4), 6 analog inputs on GEN 3 units (PM100/PM150/PM250) as AIN1-6, and 3 analog inputs on the RM100 (AIN1-3). The inputs are intended for general analog signal sensing (0 - 5V). There are 5 dedicated RTD sensor inputs (three 1,000 Ohm and two 100 Ohm calibrated RTD channels) on GEN 2 units. There are 2 RTD inputs on GEN 3 units and RM100, selectable as PT 100 or PT1000 by software.

Schematic of Analog Inputs

The vehicle control system assigns the analog inputs as follows:

Input Name	Function
	ACCEL
AIN1	The input should be tied to the vehicle accelerator. The input can be
	used with either a 0-5V signal or a potentiometer.
	Motor thermistor
AIN2	The motor thermistor can be connected between this input and
	analog ground. An external pull-up resistor will be required.
	BRAKE
AIN3	The input should be tied to the brake pedal.
	The input can be used with either a 0-5V signal or a potentiometer.
AIN4	Not assigned. For some motor types may be assigned to a
AIN4	secondary motor temperature.

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

AIN5	Not assigned.
AIN6	Not assigned.

A 5V power supply (XDCR_PWR) is provided for powering sensors or potentiometers. This supply is available on several pins of J1 and J2 to ease connection. However, the total supply current available from this supply is limited to 80mA.

The analog signals should be referenced to one of the analog ground (AGND) pins available on J1. This will reduce noise. Analog ground should NOT be connected to GND or the vehicle chassis.

Description	Parameter	Value
Analog Inputs		
Input Range	V _{range}	0 - 5.00V
Offset Voltage	V _{ofs}	+50mV
Gain Accuracy	G	+5%
ADC Resolution		12b
Pull-up Resistance	R _{pu}	300 k Ω
RTD Inputs – PT 1000 type		1000 Ω / 0°C
Offset – 25°C ambient		±3°C
Temperature error – additional error over temperature		±3°C
RTD Inputs – PT 100 type		100 Ω / 0°C
Offset – 25°C ambient		±3°C
Temperature error – additional error over temperature		±3°C

The controller uses two-wire type RTDs. One side of the RTD should be connected to the RTD input. The other side should be connected to Analog Ground or the dedicated RTD ground pin (RTDxN).

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

4.2 Digital Inputs:

There are up to 8 digital inputs for general interface to the vehicle and for feedback from external contactors and switchgear as required in the application. Some inputs are "Switch To Battery" (STB) inputs. These inputs are designed to be used in an application that switches the input to a positive battery potential. Some of the inputs are "Switch To Ground" (STG) inputs. These STG inputs are designed to be used in an application that switches the input to ground.

Switch to Battery (STB) Input Schematic

Switch To Ground (STG) Input Schematic

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

The vehicle control system software currently assigns these inputs as follows:

Input	Туре	Signal Name	Function
			This input should be connected to a switch
DIN1	STG	FWD_ENA	that grounds this input when the user is
			commanding forward direction.
		REV_ENA	This input should be connected to a switch
DIN2	STG	KEV_ENA	that grounds this input when the user is
			commanding reverse direction.
			This input should be connected to a switch
DIN3	STG	BRAKE	that grounds the input when the brake is
			pressed.
			This input should be connected to a switch
DIN4	STG	REGEN Disable	that grounds the input to enable this feature
			(that is, disable REGEN).
DIN5	STB	IGNITION	If used, this input is assigned to the IGNITION
פאווט	SID	IGNITION	feature.
DIN6	STB	START	If used, this input is assigned to the START
סאווט	SID	SIAKI	feature.
DIN7	STB	Not assigned	Input available for user.
DIN8	STB	Not assigned	Input available for user.

Not all inputs are available on each unit. Below is a table showing which inputs are available (n/a indicates not available).

Input	Туре	PM100 (Gen2)	PM100 (Gen3) PM150 PM250	RM100
DIN1	STG	Yes	Yes	Yes
DIN2	STG	Yes	Yes	Yes
DIN3	STG	Yes	Yes	n/a
DIN4	STG	Yes	Yes	n/a
DIN5	STB	Yes	Yes	n/a
DIN6	STB	Yes	Yes	n/a

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

DIN7	STB	n/a	Yes	n/a
DIN8	STB	n/a	Yes	n/a

The electrical parameters of the digital inputs are shown in the table below.

Description	Parameter	Value
Switch to Ground Inputs (DIN1-4)		
Voltage level for "ON"	V _{STG-ON}	<0.9 V
Voltage level for "OFF"	V _{STG-OFF}	>4.2 V
Pull-up resistor to 5V	V _{STG-PU}	2.4 kΩ
Maximum Voltage on Input	V _{STG-MAX}	18 V
Switch to Battery Inputs (DIN5-8)		
Voltage level for "ON"	V _{STB-ON}	>2.5 V
Voltage level for "OFF"	V _{STB-OFF}	<1.3 V
Pull-down resistor	R _{STB-PD}	10 kΩ
Maximum Voltage on Input	V _{STB-MAX}	18 V

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

4.3 Digital Outputs

There are up to 6 digital outputs available. See the table below for more specifics on availability across each model. There are two types of outputs available depending on the particular model.

Schematic of High-Side Driver

Schematic of Low-Side Driver

The vehicle control system assigns the outputs as follows:

Output Name	Туре	Function Name	Function	
RLY1	HSD	PRECHARGE DRIVE	This output provides power to the pre-charge relay.	
RLY2	HSD	MAIN DRIVE	This output provides power to the main contactor.	
RLY3	LSD	OK INDICATOR	This output provides a grounded signal to the OK indicator. The indicator turns on when power is applied to the drive and the drive has completed the pre-charge sequence. If used, this output is also used to power the external 12V power relay.	
RLY4	LSD	FAULT INDICATOR	This output provides a grounded signal to a fault indicator. The indicator will blink a fault code if the drive has detected a fault.	
RLY5	HSD	n/a	Not assigned. Available for use through CAN.	
RLY6	HSD	n/a	Not assigned. Available for use through CAN.	

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

The table below documents the availability of each output type across the different inverter models.

Input	Туре	PM100 (Gen2)	PM100 (Gen3) PM150 PM250	RM100
RLY1	HSD	Yes	Yes	Yes
RLY2	HSD	Yes	Yes	Yes
RLY3	LSD	Yes	Yes	n/a
RLY4	LSD	Yes	Yes	n/a
RLY5	HSD	n/a	Yes	n/a
RLY6	HSD	n/a	Yes	n/a

Description	Parameter	Value
Hi-Side Drivers (RLY1-2 and RLY 5-6)		
Output Current - Continuous	lo_cont	1.5A
Output Current – Surge	lo_pk	7A
Low-Side Drivers (RLY3-4)		
Output Current - Continuous	lo_cont	1.5A
Output Current - Surge	lo_pk	3A

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

Revision History

Version	Description of Versions/ Changes	Updated by	Date
1.8	Added that RTDs should be connected to analog ground.	Azam Khan	9/18/12
1.9	 Updated diagrams that show the dimensions of PM100 and PM150 drives. Rearranged subsections in section 3.4, PM Motor Controller 	Azam Khan	1/15/14
2.0	Distinguished Gen2 connections on J1 – 35p AmpSeal connector from that of Gen 3.	Chris Brune	2/20/14
2.1	Added connector information for the PM250. Updated signal information to reflect the Gen 3 control board used in the PM100, PM150, and PM250.	Chris Brune	3/24/15
2.2	Added additional comments about the cooling system and pressure switches. Added notes about the passive resistor on the DC bus.	Chris Brune	5/11/16
2.3	Added lower case pin designations to the PM250 connectors. Clarified the schematic images only show the PM100/150 pinouts.	Chris Brune	11/29/2016
2.4	Added note about housing grounding. Removed references that are PM100 specific. Improved clarity across different PM Family members.	Chris Brune	12/6/2016
2.5	Corrected wording about pressure switch.	Chris Brune	12/19/2016
2.6	Removed reference to 3/8" NPT. Clarified information about cooling.	Chris Brune	4/5/2017
2.7	Added information about RM100	Chris Brune	6/8/2017
2.8	Corrected the color/key information about the RM100.	Chris Brune	8/29/2017
2.9	Added information about RM100 cooling. Clarified that VSM mode is not available for RM100. Additional clarifications of I/O capability of RM100.	Chris Brune	9/13/2017

Phone: 503 344-5085 Fax: 503 855-4540 sales@rinehartmotion.com

	Formatting on RM100 coolant ports. Added RM100		
	input current info. Updated the Digital Input section		
3.0	to clearly show which inputs are available. Updated	Chris Brune	1/17/2018
	Digital outputs section to show which are available.		
	Clarified analog inputs availability.		