

AD-A196 565

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEDTIC FILE COPY
①

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; distribution is unlimited.			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION Naval Ocean Systems Center	6b. OFFICE SYMBOL (if applicable) NOSC	7a. NAME OF MONITORING ORGANIZATION Naval Ocean Systems Center			
6c. ADDRESS (City, State and ZIP Code) San Diego, California 92152-5000	7b. ADDRESS (City, State and ZIP Code) San Diego, CA 92152-5000	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Director of Naval Laboratories	8b. OFFICE SYMBOL (if applicable) DNL	10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO PROJECT NO. TASK NO. AGENCY ACCESSION NO.			
8c. ADDRESS (City, State and ZIP Code) Space and Naval Warfare Systems Command Washington, DC 20360		Z62766N	ZE2 ^o	RZ66300	DN 305 055
11. TITLE (include Security Classification) PREDICTING MICROBENDING LOSSES IN SINGLE-MODE FIBERS					
12. PERSONAL AUTHOR(S) N. T. Kamikawa					
13a. TYPE OF REPORT professional paper	13b. TIME COVERED FROM Sep 1986 TO Sep 1986	14. DATE OF REPORT (Year, Month, Day) May 1988	15. PAGE COUNT		
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) single-mode fiber optics			
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Conventional techniques for evaluating microbending resistance in single-mode fibers using basketweave (1), pin (2), drum (3), and sandpaper tests depend on excess loss measurements. These tests can evaluate one fiber against another, but the stresses induced in the fiber may not be representative of cable structures or other environments. An alternative evaluation method involves predicting excess losses using a model based on Petermann's microbending theory (4), which depends on mode-field radius, and geometry of the microbends. This method is demonstrated by predicting the excess losses in two preision-wound spools of fiber.					
Presented at the Symposium of Optical Fiber Measurements, 9 September 1986, Boulder, CO.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED			
22a. NAME OF RESPONSIBLE INDIVIDUAL N. T. Kamikawa		22b. TELEPHONE (include Area Code) (808) 257-1165		22c. OFFICE SYMBOL Code 534	

DD FORM 1473, 84 JAN

83 APR EDITION MAY BE USED UNTIL EXHAUSTED
ALL OTHER EDITIONS ARE OBSOLETEUNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

88 7 29 103

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1473, 84 JAN

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Neil Kamikawa

NBS SPECIAL PUBLICATION 720

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Technical Digest Symposium on Optical Fiber Measurements, 1986

Sponsored by the National Bureau of Standards
in cooperation with the IEEE Optical Communications Committee
and the Optical Society of America

Technical Digest—Symposium on Optical Fiber Measurements, 1986

Digest of a Symposium sponsored by the
National Bureau of Standards
in cooperation with the
IEEE Optical Communications Committee
and the Optical Society of America

September 9-10, 1986
National Bureau of Standards
Boulder, Colorado 80303

Edited by
G.W. Day
D.L. Franzen

Electromagnetic Technology Division
Center for Electronics and Electrical Engineering
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1986

PREDICTING MICROBENDING LOSSES IN SINGLE-MODE FIBERS

Neil Kamikawa

Naval Ocean Systems Center, P.O. Box 997, Kailua, HI 96734-0997

Ching-Ten Chang

San Diego State University and Naval Ocean Systems Center,
San Diego, CA

INTRODUCTION. Conventional techniques for evaluating microbending resistance in single-mode fibers using basketweave [1], pin [2], drum [3], and sandpaper tests depend on excess loss measurements. These tests can evaluate one fiber against another, but the stresses induced in the fiber may not be representative of cable structures or other environments. An alternative evaluation method involves predicting excess losses using a model based on Petermann's microbending theory [4], which depends on mode-field radius, and geometry of the microbends. This method is demonstrated by predicting the excess losses in two precision-wound spools of fiber.

MODEL. The model shown below for periodic, Gaussian-shaped microbends that are separated by a distance L was derived from Petermann's theory. It relates excess loss in dB/km to fiber specifications and microbend geometry. y_0 is the maximum amplitude and A is average half-width at the 1/e amplitude, as shown in Figure 1. Variations in the half-width values can be described by a standard deviation, σ . The electric field distribution of the fundamental mode is also approximated by a Gaussian function with a radius W, which is defined at the 1/e value.

$$\alpha = \frac{13.644 y_0^2}{LW^2} \left[\frac{A^2 B^3}{(B^2 + \sigma^2)^{5/2}} + \frac{\sigma^2 B}{2(B^2 + \sigma^2)^{3/2}} \right] \exp \left[\frac{-A^2}{(B^2 + \sigma^2)} \right]$$

$$\text{where } B = knW^2/\sqrt{2}$$

$$k = 2\pi/\lambda$$

n = refractive index of the core

RESULTS. To demonstrate the model excess losses were calculated and measured in two precision-wound spools of fiber described in Table 1. Precision winding of fibers produces crossovers that can be approximated by the Gaussian-shaped microbends. Each layer of the precision-wound spool forms a helix with a lay angle nearly 90 degrees with respect to the axis of the mandrel. The next layer forms a helix in the opposite direction. As a result the fiber crosses over a fiber beneath it twice per turn so that the period of the microbends are equal to half the circumference of the mandrel ($L = \pi \times 5.72 \text{ cm}$). The crossovers cause perturbations on the fiber axis and coupling of the fundamental mode to the lossy higher-order mode. This is assumed to be the primary physical mechanism for the microbending loss.

Table 1. Fiber and winding specifications

	Fiber 1	Fiber 2
LP _c , cutoff λ (μm)	1.135	1.209
Mode-field radius (μm)		
@ $\lambda = 1.3 \mu\text{m}$	4.87	4.73
@ $\lambda = 1.5 \mu\text{m}$	5.65	5.32
@ $\lambda = 1.55 \mu\text{m}$	5.96	5.55
Delta (%)	0.27	0.30
Fiber OD (μm)	125	127
Coating OD (μm)	243	241
Length (km)	2.2	2.0
Mandrel diameter (cm)	11.43	11.43
Crossover amplitude (μm)	35	35
Winding tension (grams)	200	200
Average crossover half-width, A (mm)	1.05	1.05
Standard deviation σ (mm)	0.201	0.210

The fibers were wound onto 11.43-cm-OD mandrels in 17 layers under 200 grams of tension. Figures 2 and 3 illustrate the measured losses in the fibers before and after winding. Fiber 2

<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
a/		
ty Codes and/or		
list	Special	
A-1		

exhibits better microbending resistance at long wavelengths due to tighter mode confinement.

Y_0 was calculated to be 35 μm based on the fiber OD, and A was estimated to be 1.05 mm for both fiber spools by visual observation. The standard deviation values, σ , are 201 μm and 210 μm for fibers 1 and 2, respectively. These values were chosen for the best match between calculated and measured excess losses at 1.3, 1.5 and 1.55 μm . Table 2 compares the excess losses calculated using the model and measured excess losses at the three wavelengths. Errors in the calculated values are tentatively attributed to measurement errors in the mode-field radius, and visual observation of A. Winding imperfections also contributed to measurement and prediction errors.

Table 2. Calculated and measured excess losses in dB/km
(Measurement errors are in parentheses.)

	1.3 μm	1.5 μm	1.55 μm
Fiber	calc/measured	calc/measured	calc/measured
1	.017/.001 ($\pm .013$)	.090/.086 ($\pm .015$)	.220/.202 ($\pm .023$)
2	.031/.008 ($\pm .015$)	.067/.044 ($\pm .022$)	.110/.110 ($\pm .031$)

CONCLUSION. Prediction of excess losses as a method to evaluate microbending resistance of single-mode fibers is a viable alternative to the other testing methods. Efforts are underway to improve the predictive capabilities of the model by including mechanical bending properties of the fiber.

REFERENCES.

1. A. Tomita, P.F. Glodis, D. Kalish, P. Kaiser, Technical Digest - Symposium on Optical Fiber Measurements, Boulder, CO, p 89-92, 1982.
2. V.A. Bhagavatula, IOOC '81, paper TUK5, San Francisco, CA, 27-29 April 1981.
3. D. Gloge, Bell System Technical Journal, p 245-262, Feb, 1975.
4. K. Petermann, Opt. and Quant. Elect., p 167-175, Sept, 1977.

Figure 1. Gaussian-shaped microbends

Figure 2. Spectral attenuation for fiber 1

Figure 3. Spectral attenuation for fiber 2