Digital Signal Processing for Music

Part 25: Waveform Coding

alexander lerch

Georgia Center for Music Tech Technology

waveform coding introduction

■ goal:

• encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?

DPCM & ADPCM

waveform coding introduction

■ goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?

DPCM & ADPCM

waveform coding introduction

■ goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?

DPCM & ADPCM

waveform coding introduction

■ goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
- DPCM & ADPCM

waveform coding introduction

■ goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
- DPCM & ADPCM

Georgia Center for Music

waveform coding **DPCM**

- predictor is updated from reconstructed signal
 - no transmission of predictor coefficients necessary
 - reconstruction error:

$$r(i) = x(i) - y(i)$$

= $x(i) - (\hat{x}(i) + e_{Q}(i))$
= $e_{P}(i) - e_{Q}(i)$
= $q(i)$

⇒ reconstruction error identical to quantization error

3 / 5 Part 25: Waveform Coding

DPCM ADPCM summary

waveform coding

■ ADPCM:

- coefficient adaptation for every block of samples
- quantization step size (scale) adjusts to signal power

forward adaptive implementation

- coefficients are calculated from the input signal and transmitted
- robust against transmission errors
- requires additional side information (coefficients)

backward adaptive implementation

- coefficients are calculated from the reconstructed signal
- no additional side information
- error propagation

waveform coding

ADPCM:

- coefficient adaptation for every block of samples
- quantization step size (scale) adjusts to signal power

■ forward adaptive implementation

- coefficients are calculated from the input signal and transmitted
- robust against transmission errors
- requires additional side information (coefficients)

■ backward adaptive implementation

- coefficients are calculated from the reconstructed signal
- no additional side information
- error propagation

waveform coding

ADPCM:

- coefficient adaptation for every block of samples
- quantization step size (scale) adjusts to signal power

forward adaptive implementation

- coefficients are calculated from the input signal and transmitted
- robust against transmission errors
- requires additional side information (coefficients)

backward adaptive implementation

- coefficients are calculated from the reconstructed signal
- no additional side information
- error propagation

DPCM ADPCM summary

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth

advantages:

- low latency
- low complexity
- high quality at high bitrates

disadvantage:

- quality loss is attempted to minimize waveform similarity
- ⇒ not perceptually meaningful

DPCM ADPCM summary

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth

advantages:

- low latency
- low complexity
- high quality at high bitrates

disadvantage:

- quality loss is attempted to minimize waveform similarity
- ⇒ not perceptually meaningful

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth

advantages:

- low latency
- low complexity
- high quality at high bitrates

disadvantage:

- quality loss is attempted to minimize waveform similarity
- ⇒ not perceptually meaningful