Séries numériques (3)

Séries numériques (3)

J. Ribault

21 octobre 2016

Soit $\sum u_n$ une série numérique.

Si $u_n \xrightarrow[n \to +\infty]{} 0$ alors $\sum u_n$ est convergente.

- VRAI
- FAUX

Soit $\sum u_n$ une série numérique.

Si $\sum u_n$ est convergente alors $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

- VRAI
- FAUX

Séries numériques (3)

OCM

QCM

Soit $\sum u_n$ une série numérique, on note (S_n) la suite des sommes partielles associée.

 $\sum u_n$ est convergente **si et seulement si** (S_n) est majorée.

- VRAI
- FAUX

Séries numériques (3)

QCM

QCM

On considère la série $\sum (-1)^n$ et on note (S_n) la suite des sommes partielles associée.

 (S_n) est majorée .

- VRAI
- FAUX

Séries numériques (3)

QCM

QCM

Soit $\sum u_n$ une série numérique, on note (S_n) la suite des sommes partielles associée.

Si $\sum u_n$ est convergente alors (S_n) est majorée.

- VRAI
- FAUX

Séries numériques (3)

OCM

QCM

Soit $\sum u_n$ une série numérique, on note (S_n) la suite des sommes partielles associée.

 $\operatorname{Si}\left(S_{n}\right)$ est majorée alors $\sum u_{n}$ est convergente .

- VRAI
- FAUX

Preuve de la proposition 14 (règle de Cauchy) :

Hypothèses

- $\sum u_n$ une série à termes strictement positifs
- $\bullet \sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$
- $\ell < 1$

$$0 \qquad \ell \qquad A \qquad 1$$

Il existe un entier n_0 et un réel A (avec $\ell < A < 1$) tel que :

$$\forall n \geqslant n_0, \quad 0 \leqslant \sqrt[n]{u_n} \leqslant A,$$

donc:
$$\forall n \geqslant n_0, \quad 0 \leqslant u_n \leqslant A^n$$
.

Or la série $\sum v_n$ est une série géométrique de raison A avec |A| < 1,

elle est donc convergente.

On déduit du critère « $0 \le u_n \le v_n$ » que $\sum u_n$ est convergente.

Preuve de la proposition 14 (suite) :

Hypothèses

- $\sum u_n$ une série à termes strictement positifs
- $\bullet \ \sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$
- \bullet $\ell > 1$

$$0 \qquad 1 \qquad A \qquad \ell$$

Il existe un entier n_0 et un réel A (avec $1 \leqslant A < \ell$) tel que :

$$\forall n \geqslant n_0, \quad 0 \leqslant A \leqslant \sqrt[n]{u_n},$$

 $\mathsf{donc}: \forall n \geqslant n_0, \quad 0 \leqslant A^n \leqslant u_n.$

Or la série $\sum v_n$ est une série géométrique de raison A avec $|A|\geqslant 1$,

elle est donc divergente.

On déduit du critère « $0 \le u_n \le v_n$ » que $\sum u_n$ est divergente.

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^2(n+\sqrt{n})}.$$
 La série $\sum_{n \geq 1} u_n$ est

La série
$$\sum_{n=1}^{\infty} u_n$$
 est

- convergente
- divergente

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^2(n+\sqrt{n})}.$$

La série $\sum_{n\geq 1} u_n$ est à termes positifs.

De plus $u_n \underset{+\infty}{\sim} \frac{1}{n^3}$,

en appliquant le critère $\$ « $u_n \sim v_n$ » on en déduit que les séries

$$\sum_{n\geqslant 1} u_n \text{ et } \sum_{n\geqslant 1} \frac{1}{n^3} \text{ sont de même nature.}$$

Or $\sum_{n\geqslant 1}\frac{1}{n^3}$ est une série de Riemann avec $\alpha=3>1$, elle est donc

convergente.

Finalement $\sum_{n>1} u_n$ est convergente.

$$\forall n \in \mathbb{N}, \quad u_n = \frac{n^3}{2^n}.$$
 La série $\sum_{n=1}^\infty u_n$ est

 $n \ge 1$

- convergente
- divergente

$$\forall n \in \mathbb{N}, \quad u_n = \frac{n^3}{2^n}.$$

 $\sum u_n$ est une série à termes strictement positifs.

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^3}{2n^3} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2} < 1$$

En appliquant la règle de d'Alembert, on en déduit que la série $\sum\,u_n$ est convergente.

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^2(2+\sin n)}.$$
 La série $\sum_{n \ge 1} u_n$ est

La série
$$\sum_{n\geq 1} u_n$$
 est

- convergente
- divergente

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n^2(2 + \sin n)}.$$

$$\forall n \in \mathbb{N}^*, \ 0 \leqslant u_n \leqslant \frac{1}{n^2}$$

La série $\sum \frac{1}{n^2}$ est une série de Riemann avec $\alpha=2>1.$

Elle est donc convergente.

on en déduit que $\sum_{n\geq 1} u_n$ est convergente.

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{\ln n}{n(3 + \sin n)}.$$
 La série $\sum_{n \ge 1} u_n$ est

La série
$$\sum_{n\geqslant 1} u_n$$
 est

- convergente
- divergente

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{\ln n}{n(3 + \sin n)}.$$

$$\forall n \geqslant 2, \ u_n \geqslant \frac{\ln n}{4n} \geqslant 0$$

La série $\sum \frac{\ln n}{n}$ est une série de Bertrand avec $\alpha=1$ et $\beta=-1\leqslant 1.$

Elle est donc divergente.

Donc $\sum \frac{\ln n}{4n}$ est divergente (car $\frac{1}{4} \neq 0$).

En appliquant le critère « $0 \le u_n \le v_n$ » , on en déduit que $\sum u_n$ est divergente.

 $n\geqslant$