

Capstone Presentation- 10 Apr 2021 By S Buvana

TABLE OF CONTENTS

O1 Problem Definition

Scope, Business Vs Data Questions

02

EDA

Data Wrangling and Visualisations

03

Feature Selection

(A)Forward Feature Selection & (B) PCA

04

Modelling & Performance

Machine and Deep Learning Algorithm

05

Summary

Robustness of ML and DL models

Problem Statement

To predict Stroke occurrences

Scope

To build <u>Machine and Deep Learning</u> models on identified features. Use of Accuracy performance metrics on datasets to evaluate robustness of models.

Data Process

Background

- Very much of a concern in Singapore
- Mortality rates from Stroke -9%to 6.3% from 2011 to 2017.
- Fourth leading cause of death in Singapore
- Need for improvements
- Deploying prediction models to study the trends will help in early detection of Stroke

Source: Annals Academy of Medicine, Singapore

Outcomes

Desirable Business Outcome

To detect Stroke accurately and quickly which brings about cost savings.

Desirable Data Outcome

The model to be deployed to detect Stroke with speed and accuracy.

Data

- Kaggle dataset- Stroke prediction
- 5110 Rows & 12 Columns- Target variable is **Stroke**
- 5 Categorical variables (Dummy Encoding)
- Normalisation of dataset

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
8	27419	Female	59.0	0	0	Yes	Private	Rural	76.15	NaN	Unknown	1
9	60491	Female	78.0	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1

EDA

- Unbalanced dataset with only 4.9% of data points are Stroke patients
- Resampling method to artificially inflate the minority class (with Stroke)
- From 4.9% to around 17.4% Model analysis were run on resampled dataset

Feature Selection

Forward Feature Selection(FFS)

```
Predictor Columns: 'age', 'work_type_4', 'avg_glucose_level', 'ever_married_0', 'heart_disease', 'hypertension', 'bmi', 'work_type_2', 'smoking_status_2', 'gender_1'
```

PCA

15 PCA components

Machine Learning

- Machine learning algorithm run on both datasets with variables identified by feature selection methods.
- Train/Test split of 80%/20%
- Cross validation
- Hyper parameter tuning by GridSearch CV

Logistic Regression KNN Classification

Support Vector

Random Forest

Ada Boosting

Deep Learning

- Deep learning algorithm run on both datasets with variables identified by feature selection methods.
- Train/Test split of 80%/20%
- Cross validation
- Build Artificial Neural Network

Figure 1 — Representation of a neural network

Machine Learning

On predictors from Forward Feature Selection


```
*****
```

* Logistic *

Accuracy: 0.8348 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0
Precision: 0.5667 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0
Recall: 0.2666 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0
Best: 1, Worst: 0
Best: 1, Worst: 0

Logistic Regression-FFS

```
Accuracy: 0.8369 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.5000 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Recall: 0.2917 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0 B
```

TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives, N: Number of samples

Best: 1. Worst: 0

KNN-FFS

* KNN Classifier * **********

Accuracy: 0.9247 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.7286 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0

Recall : 0.9131 [TP / (TP + FN)] Find all the positive samples.

ROC AUC : 0.9202 Best: 1, Worst: < 0.5

Test Set

```
Accuracy: 0.8564 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.5431 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Recall: 0.7552 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0 B
```

TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives, N: Number of samples


```
******

* SVM *

*****
```

Accuracy: 0.8238 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.0000 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Rocall: 0.0000 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0 B


```
Accuracy: 0.8369 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.0000 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Recall: 0.0000 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0 Best: 1, Worst: 0 Best: 1, Worst: 0
```

TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives, N: Number of samples

Random Forest-FFS

```
******
* Random Forest *
******
```

Accuracy: 0.9991 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Best: 1. Worst: 0

Precision: 1.0000 [TP / (TP + FP)] Not to label a negative sample as positive.

Recall : 0.9952 [TP / (TP + FN)] Find all the positive samples.

ROC AUC : 0.9976

Best: 1, Worst: < 0.5

Best: 1, Worst: 0

Boosting-FFS

```
*********

* Boosting *
```

Accuracy: 0.8410 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.5751 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Recall: 0.3739 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0

ROC AUC : 0.6574 Best: 1, Worst: < 0.5


```
Accuracy: 0.8377 [TP / N] Proportion of predicted labels that match the true labels. Best: 1, Worst: 0 Precision: 0.5035 [TP / (TP + FP)] Not to label a negative sample as positive. Best: 1, Worst: 0 Recall: 0.3698 [TP / (TP + FN)] Find all the positive samples. Best: 1, Worst: 0 B
```

TP: True Positives, FP: False Positives, TN: True Negatives, FN: False Negatives, N: Number of samples

Performance Metrics-FFS dataset

Train Dataset	Logistic Regression	KNN	SVM	Random Forest	Ada Boost
Forward Feature Selection -10 X columns	0.834	0.924	0.823	0.999	0.841
Forward Feature Selection -10 X columns with GridSearch CV	0.835	1.0	0.824	0.999	0.856

Deep Learning On predictors from Forward Feature Selection

Neural Network- FFS

- Keras sequential model
- ANN model with 15 Neurons in L1 and 1 hidden layer
- Drop out rate :0.2
- Optimizer: Adam
- Loss: Binary cross entropy
- Metrics: Accuracy
- 100 epoch runs

Model Results

-Accuracy score of prediction model 84.8%-Good classifier

Machine Learning On predictors from PCA

Performance Metrics-PCA dataset

Train Dataset	Logistic Regression	KNN	SVM	Random Forest	Ada Boost
PCA-15 PCA components	0.835	0.924	0.824	0.999	0.862
PCA-15 PCA components with GridSearch CV	0.835	0.835	0.824	1.00	0.936

Deep Learning On predictors from PCA

Neural Network- PCA

- Keras sequential model
- ANN model with 15 Neurons in L1 and 1 hidden layer
- Drop out rate :0.2
- Optimizer: Adam
- Loss: Binary cross entropy
- Metrics: Accuracy
- 100 epoch runs

Model Results

-Accuracy score of prediction model 85.6%-Good classifier

Neural Network- PCA

Parameter tuning-Change batch size to 10

Model Results

-Accuracy score of prediction model 87.9%-Slight improvement

Parameter tuning-Change epoch size to 150

Model Results

-Accuracy score of prediction model 93.9%-Slight improvement

Parameter tuning-Change dropout rate to 0.1

Model Results

-Accuracy score of prediction model 86%-Slight improvement

Conclusions

Based on the data collected, we can use Machine Learning model — Random Forest to help with the prediction of Stroke occurrences. It provided the best accuracy at the rate of **99.9%** across both datasets.

AUC Score of **1.00** for rain and **0.97** for test indicates a good classifier and overfitting is unlikely. The recall and precision are high above 90% indicating the exactness and proper classification of data points, which is crucial in detecting diseases.

Medical institutes can detect Stroke in **accurate and timely manner** to reduce mortality rates further.

RESOURCE LINKS

- https://www.annals.edu.sg/pdf/48VolNo10Oct2019/V48N10p310.pdf
- https://www.kaggle.com/kanishkkavdia/stroke-prediction-using-ann-deep-learning-model

CREDITS

This is where you give credit to the ones who are part of this project. Did you like the resources on this template? Get them for free at our other websites.

- Presentation template by Slidesgo
- ◆ Icons by Flaticon
- ◀ Infographics by Freepik
- ◀ Images created by Freepik
- ◆ Text & Image slide photo created by Freepik.com

Encoding and Correlation

		age	hypertension	heart_disease	avg_glucose_level	bmi	stroke
-	0	67	0	1	228.69	36.600000	1
	1	61	0	0	202.21	28.893237	1
	2	80	0	1	105.92	32.500000	1
;	3	49	0	0	171.23	34.400000	1
	4	79	1	0	174.12	24.000000	1

5 rows × 21 columns

corr_matrix = Stroke_df1.corr()
print(corr_matrix["stroke"].sort_values(ascending=False))

```
stroke
                     1.000000
                     0.245109
age
heart disease
                     0.134905
avg glucose level
                     0.131991
hypertension
                     0.127891
ever married 1
                     0.108299
smoking_status_1
                     0.064683
work_type_3
                     0.062150
bmi
                     0.038912
Residence_type_1
                     0.015415
work_type_2
                     0.011927
gender 1
                     0.009081
smoking status 3
                     0.008920
work type 0
                     0.002660
smoking status 2
                    -0.004163
gender 0
                    -0.009081
work type 1
                    -0.014885
Residence_type_0
                    -0.015415
smoking status 0
                    -0.055924
work_type_4
                    -0.083888
ever married 0
                    -0.108299
Name: stroke, dtype: float64
```

ANN

```
ann_model=keras.Sequential([
    keras.layers.Dense(15,input_shape=[10], activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(20, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(1,activation="sigmoid")
])

print(ann_model.summary())
ann_model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
ann_model.summary()
fitted_model =ann_model.fit(X_train, y_train, batch_size = 4, nb_epoch = 100)
```

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 15)	165
dropout (Dropout)	(None, 15)	0
dense_1 (Dense)	(None, 20)	320
dropout_1 (Dropout)	(None, 20)	0
dense_2 (Dense)	(None, 1)	21

Total params: 506
Trainable params: 506
Non-trainable params: 0

Performance Metrics

If resampling is tuned to reflect 50%-50% of target variable

Performance Metrics-PCA dataset

Generally Models didn't perform as well in comparison

Train Dataset	Logistic Regression	KNN	SVM	Random Forest	Ada Boost
PCA-15 PCA components	0.776	0.934	0.778	0.999	0.811
PCA-15 PCA components with GridSearch CV	0.776	0.835	0.824	0.999	0.936