Class 12: Review

Schedule

Problem Set 5 is due Friday at 6:29pm.

See Class 11 Notes for information and preparation advice for Exam 1, which will be in class next Thursday, 5 October.

Strong Induction Principle

Let P be a predicated on \mathbb{N} . If

- -P(0) is true, and
- $-(\forall m \in \mathbb{N}, m \le n.P(n)) \implies P(n+1) \text{ for all } n \in \mathbb{N},$

then

-P(m) is true for all $m \in \mathbb{N}$.

As an inference rule:

$$\frac{P(0), \forall n \in \mathbb{N}. (P(0) \lor P(1) \land \dots \land P(n)) \implies P(n+1)}{\forall m \in \mathbb{N}. P(m)}$$

With arbitrary basis, $b \in \mathbb{N}$:

$$\frac{P(b), \forall n \in \mathbb{N}. (P(b) \lor P(b+1) \land \dots \land P(n)) \implies P(n+1)}{\forall m \in \{b, b+1, b+2, \dots\}. P(m)}$$

Show that *strong* induction is not actually stronger than regular induction. (Hint: if the predicate for strong induction is P(m), explain how to construct a predicate, P'(m), that works with regular induction.

Example Strong Induction Proof

Theorem: Every number, $n \in \mathbb{N}$ can be written as $\alpha \cdot 2 + \beta \cdot 5$ where $\alpha, \beta \in \mathbb{N}$. Proof by Strong Induction:

1. First we need to define the predicate:

$$P(n) := \exists \alpha, \beta \in \mathbb{N}. n = \alpha \cdot 2 + \beta \cdot 5$$

.

cs2102: Class 12: Review 2

2. Basis: we are proving for all n > 3:

```
P(4): \alpha = 2, \beta = 0 gives 4 = 2 \cdot 2 + 0 \cdot 5.

P(5): \alpha = 0, \beta = 1 gives 5 = 0 \cdot 2 + 1 \cdot 5.
```

3. Induction step: $\forall n \in \{5, 6, \ldots\}$

By strong induction, assume P(m) is true for all $m \in 4, 5, 6, \ldots, m$.

Show P(m+1): Since P(m-1) is true (but the strong induction hypothesis), we know $\exists \alpha, \beta \in \mathbb{N}.m-1=\alpha\cdot 2+\beta\cdot 5$. We can show P(m+1) since $m+1=(\alpha+1)\cdot 2+\beta\cdot 5$.

Proof by Contra-Positive (Review)

Recall: $P \implies Q$ is equivalent to $\neg Q \implies \neg P$. (If you are shaky on this, prove it to yourself using a truth table.)

Typical use: where the negation of the proposition is easier to reason about than the original proposition (e.g., irrational is a complex property to describe, but rational (NOT irrational) is a simple one.

Proof by Contradiction (Review)

To prove P, show $\neg P \implies False$.

Example: Proving the \mathbb{Z} is not well ordered.

Goal: $G := \mathbb{Z}$ has no minimum.

- 1. To prove by contradiction, assume $\neg G$ (that is, \mathbb{Z} does have a minimum).
- 2. Then, $\exists m \in \mathbb{Z}$ that is the minimum of \mathbb{Z} .
- 3. But, this leads to a contradiction: $m-1 \in \mathbb{Z}$ and m-1 < m. So, the m we said was the minimum of \mathbb{Z} is not the minimum.
- 4. Thus, we have a contradiction, so something must be wrong. All our logical inferences after step 1 are correct, so the assumption we made in step 1 must be invalid. If $\neg G$ is invalid, G must be true.