Quantitative Methods in Finance

Tutorial, Part 5:

Testing hypotheses about regression coefficients and their linear combinations.

Example 1: We gathered a sample of data for 32 European countries for the year 2003. We have the following variables available (the data are provided in Stata Data file health.dta, while the programming code is given in Stata Do file health-commands-t05.do):

- life expectancy at birth (*LIFE*; in years);
- health expenditure per capita (*EXP*; in U.S. dollars);
- percentage of smokers among adults (*TOBACCO*);
- consumption of alcohol per capita (ALCO; in litres of distilled spirits).

Estimate the linear regression model: $LIFE_i = \beta_1 + \beta_2 EXP_i + \beta_3 TOBACCO_i + u_i$ and answer the questions below by applying the appropriate procedures of hypotheses testing.

- a) Does the percentage of smokers among adults affect the life expectancy at birth?
- b) Can we claim that an increase of health expenditure per capita by 100 U.S. dollars extends the life expectancy at birth by more than two months (given that the percentage of smokers among adults remains unchanged)?
- c) Test the null hypothesis that a decrease of life expectancy at birth due to an increased percentage of smokers among adults by one percentage point can be »compensated« by an increase of health expenditure per capita of 100 U.S. dollars.

Computer printout of the results in Stata:

Estimation of the model for Exercises a, b and c

. regress life exp tobacco

Source	SS	df	MS		Number of obs F(2, 29)	
Model Residual Total	385.751827 174.97295 560.724777	29 6.03	875914 354999 087896		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.6880
life	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exp tobacco _cons	.0023323 2503555 79.62409	.0003709 .0889983 2.796632	6.29 -2.81 28.47	0.000 0.009 0.000	.0015736 4323774 73.90433	.0030909 0683335 85.34384

Testing hypotheses by applying the t-test in scalar notation (Exercises a, b and c)

. estat vce

Covariance matrix of coefficients of regress model

```
_cons
       e(V)
                             tobacco
                   exp
       exp | 1.376e-07
    tobacco | 9.960e-06 .0079207
_cons | -.00048708 -.24150696
                                        7.8211512
. display 2*ttail(29, abs(-2.81))
```

- .00878239
- . display ttail(29, 1.78)
- .04277883
- . display 2*ttail(29, abs(-0.16))
- .87399033

Testing hypotheses by applying the t-test in matrix notation (Exercises b and c)

- . matrix beta=(e(b))'
- . matrix list beta

beta[3,1]

exp .00233227 tobacco -.25035545 _cons 79.624085

- . matrix vcm=e(V)
- . matrix list vcm

symmetric vcm[3,3]

tobacco _cons exp exp 1.376e-07 tobacco 9.960e-06 .0079207 _cons -.00048708 -.24150696 7.8211512

- . matrix c=(100\0\0)
- . matrix list c

c[3,1]

c1

r1 100

r2 0

r3

. matrix varcb=c'*vcm*c

0

. matrix list varcb

symmetric varcb[1,1]

c1 .00137602

- . scalar secb=sqrt(varcb[1,1])
- . display secb
- .03709481
- . matrix tb=(c'*beta-0.167)/secb

. matrix list tb

symmetric tb[1,1] c1 r1 1.7853439

- . display ttail(29, 1.7853439)
- .04233458
- . matrix c=(100\1\0)
- . matrix list c

c[3,1] c1 r1 100 r2 1 r3 0

- . matrix varcb=c'*vcm*c
- . matrix list varcb

- . scalar secb=sqrt(varcb[1,1])
- . display secb

.10624835

- . matrix tc=(c'*beta-0)/secb
- . matrix list to

symmetric tc[1,1] c1 rl -.16121158

. display 2*ttail(29, abs(-.16121158))

.87304462

Testing a hypothesis by applying the F-test (Exercise c)

- . gen x_transf=exp-100*tobacco
- . regress life x_transf

Source	SS	df 	MS		Number of obs = $F(1, 30) =$	~ -
Model Residual + Total	385.59502 175.129757 560.724777	30 5.83	5.59502 8765858 087896		Prob > F = R-squared = Adj R-squared =	= 0.0000 = 0.6877
life	Coef.	Std. Err.	t	P> t	[95% Conf.]	Interval]
x_transf _cons	.0023683 79.18374	.0002914	8.13 134.14	0.000	.0017732 77.97814	.0029634

. display Ftail(1,29,0.026)

.87301842

. regress life exp tobacco

Source	SS	df	MS		Number of obs	=	32
	+				F(2, 29)	=	31.97
Model	385.751827	2 192.	875914		Prob > F	=	0.0000
Residual	174.97295	29 6.03	354999		R-squared	=	0.6880
	+				Adj R-squared	=	0.6664
Total	560.724777	31 18.	087896		Root MSE	=	2.4563
life	Coef.	Std. Err.	t	P> t	[95% Conf.	Int	erval]
	+						
exp	.0023323	.0003709	6.29	0.000	.0015736	. 0	0030909
4 1						_	
tobacco	2503555	.0889983	-2.81	0.009	4323774	(0683335
_cons	2503555 79.62409	.0889983 2.796632	-2.81 28.47	0.009	4323774 73.90433		5.34384

. test 100*exp+tobacco=0

```
( 1) 100*exp + tobacco = 0

F( 1, 29) = 0.03

Prob > F = 0.8730
```

Example 2: We analyse an aggregate consumption function for the period 1965–1989, which has the following specification (the data are provided in Stata Data file consumption.dta, while the programming code is given in Stata Do file consumption-commands.do):

$$C_{t} = \beta_{1} + \beta_{2}Y_{t} + \beta_{3}ST_{t} + \beta_{4}TR_{t} + \beta_{5}FT_{t} + u_{t},$$

where C represents the consumption of households, Y denotes personal incomes, ST represents social transfers, TR denotes other transfers, and FT represents foreign transfers (all in mil. monetary units and in 1972 prices).

Verify with the trinity of econometric tests whether we can exclude other transfers and foreign transfers from the above model specification.

Computer printout of the results in Stata:

Estimation of the model

. regress c y st tr ft

· ·	SS		MS	Number of obs = 25 F(4, 20) = 130.82	
Model Residual	3.69668581 .141293465 .3.83797927	4 .9 20 .0	24171451 07064673	Prob > F = 0.0000 R-squared = 0.9632 Adj R-squared = 0.9558 Root MSE = .08405	0 2 3
c	Coef.			 [95% Conf. Interval]]
:				0062569 .802575	5

st	1.628632	.5127575	3.18	0.005	.559039	2.698226
tr	7.506952	6.290407	1.19	0.247	-5.614608	20.62851
ft	.4450372	.5246166	0.85	0.406	6492939	1.539368
_cons	.3635363	.1152333	3.15	0.005	.1231638	.6039088

Testing a reduction of the model with the F-test

. regress c y st

Source	SS	df	MS		Number of obs	
Model Residual Total	3.67855587 .1594234 3.83797927	22 .0	83927794 07246518 59915803		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.9585
c	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
y st _cons	.6648524 .9483866 .2653599	.0872809 .283467 .0937114	3.35	0.003	.4838429 .360512 .0710144	.8458619 1.536261 .4597054

- . display ((.1594234-.141293465)/2)/(.141293465/(25-5))
- 1.2831404
- . display Ftail(2,20,1.2831404)
- .29901989
- . qui regress ${\tt c}$ y st ${\tt tr}$ ft
- . test tr=ft=0
- (1) tr ft = 0 (2) tr = 0

$$F(2, 20) = 1.28$$

Prob > F = 0.2990

Testing a reduction of the model with the LM-test

. regress c y st

Source	SS	df	MS		Number of obs F(2, 22)	
Model Residual 	3.67855587 .1594234 3.83797927	22 .0	.83927794)07246518 		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.9585
c	Coef.	Std. Err		 P> t	[95% Conf.	
y st _cons	.6648524 .9483866 .2653599	.0872809	3.35	0.003	.4838429 .360512 .0710144	.8458619 1.536261 .4597054

. predict test, resid

. regress test y st tr ft

Source	SS	df		MS		Number of obs F(4, 20)	
Model Residual	.018129935	4 20		532484 064673		Prob > F R-squared Adj R-squared	= 0.6391 = 0.1137
Total	.159423401	24	.006	642642		Root MSE	= .08405
test	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
y st tr tr ft _cons	2666934 .6802458 7.506952 .4450372 .0981764	.1938 .5127 6.290 .5246 .1152	575 407 166	-1.38 1.33 1.19 0.85 0.85	0.184 0.200 0.247 0.406 0.404	6711094 3893476 -5.614608 6492939 1421961	.1377226 1.749839 20.62851 1.539368 .338549

- . scalar lm=25*0.1137
- . display lm
- 2.8425
- . display chi2tail(2,lm)
- .24141206

Testing a reduction of the model with the LR-test

. regress c y st tr ft

Source	SS	df	MS		Number of obs F(4, 20)	= 25 = 130.82
Model Residual	3.69668581 .141293465		24171451)7064673		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9632
Total	3.83797927	24 .15	59915803		Root MSE	= .08405
C		Std. Err.	t	P> t	[95% Conf.	Interval]
y st tr ft _cons	.3981591 1.628632 7.506952 .4450372 .3635363	.1938749 .5127575 6.290407 .5246166 .1152333	2.05 3.18 1.19 0.85 3.15	0.053 0.005 0.247 0.406 0.005	0062569 .559039 -5.614608 6492939 .1231638	.802575 2.698226 20.62851 1.539368 .6039088

- . scalar llb=e(ll)
- . display llb
- 29.223937
- . display -25/2*(ln(2*_pi)+ln(0.141293465/25)+1)
 29.223937

. regress c y st

Source	SS	df	MS	Number of obs =	25
	+			F(2, 22) = 2	53.82
Model	3.67855587	2	1.83927794	Prob > F = 0	.0000
Residual	.1594234	22	.007246518	R-squared = 0	.9585
	+			Adj R-squared = 0	.9547
Total	3.83797927	24	.159915803	Root MSE $=$.	08513

c	Coef.	Std. Err.		 [95% Conf.	Interval]
y st	.6648524 .9483866		7.62 3.35 2.83	.4838429 .360512 .0710144	.8458619 1.536261 .4597054

- . scalar llr=e(ll)
- . display llr

27.714881

. display -25/2*(ln(2*_pi)+ln(0.1594234/25)+1)
27.714881

- . display 2*(llb-llr)
- 3.0181129
- . display chi2tail(2, 2*(llb-llr))

.22111852

- . qui regress c y st tr ft
- . estimates store mb
- . qui regress c y st
- . estimates store mr
- . lrtest mr mb

Likelihood-ratio test LR chi2(2) = 3.02 (Assumption: mr nested in mb) Prob > chi2 = 0.2211

7