Rappels de probabilités

Calcul Stochastique, M1 IM-MFA

Note: Les questions marqués d'un (*) peuvent se montrer plus difficiles et ne sont pas prioritaires.

1 Mesure et Intégration

- 1. Soit A_1, \ldots, A_n une partition de \mathbb{R} . Montrer que $\mathcal{A} = \{\bigcup_{i \in I} A_i : I \subset \{1, \ldots, n\}\}$ est une tribu. (\mathcal{A} est constituée de toutes les réunions possibles d'ensembles A_i .)
- 2. Soit $\Omega = \mathbb{Z}$. On considère T la tribu engendrée par les ensembles $S_n = \{n, n+1, n+2\}$ avec $n \in \mathbb{Z}$. Quels sont les éléments de la tribu T?
- 3. Soient X un ensemble et $h: X \to \overline{\mathbb{R}}_{\geq 0}$ une application. Montrer que l'application $\mu: \mathcal{P}(X) \to \overline{\mathbb{R}}_{\geq 0}$ définie par $\mu(A) = \sum_{x \in A} h(x)$ est une mesure.
- 4. Soit (X,T) un espace mesuré, et soit $f:(X,T)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une application mesurable. Soit a>0 et f_a la fonction définie sur E par

$$f_a(x) = \begin{cases} f(x) & \text{si } |f(x)| < a, \\ a & \text{si } f(x) \ge a, \\ -a & \text{si } f(x) \le -a. \end{cases}$$

Démontrer que f_a est mesurable.

- 5. (\star) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ est mesurable. Est-ce que f est mesurable?
- 6. Soit f une fonction mesurable positive. Montrer que pour tout a > 0, $\mu(\{x \in E : f(x) \ge a\}) \le \frac{1}{a} \int f d\mu$.
- 7. Déterminer les limites lorsque $n \to \infty$ des intégrales suivantes :

$$A. \int_0^{\pi/4} (\tan t)^n dt \qquad B. \int_0^{+\infty} \frac{e^{-x/n}}{1+x^2} dx \quad C. \int_{-\infty}^{+\infty} \frac{n \sin nx}{n^2 + x^4} dx \qquad D. \int_0^{\sqrt[n]{n}} \sqrt{1+x^n} dx$$

8. Soit $F: y \mapsto \int_0^{+\infty} \frac{1 - e^{-x^2 y}}{x^2} dx$. Montrer que F est dérivable sur \mathbb{R}_+^* et calculer F' sur cet intervalle.

2 Espaces L^p , Espaces produits

- 1. Soient $f, g \in L^3(\mathbb{R})$. Démontrer que f^2g est intégrable.
- 2. Soient a, b deux réels avec a < b et soit $f \in L^{\infty}([a, b])$. Démontrer que

$$\lim_{p \to +\infty} \|f\|_p = \|f\|_{\infty}.$$

3. Montrer que pour tous $x_1, \ldots, x_n \ge 1$, on a $\sum_{k=1}^n \frac{1}{1+x_k} \ge \frac{n}{1+\sqrt[n]{x_1\cdots x_n}}$. (Indication : on établira dans un premier temps la convexité de $s\mapsto 1/(1+e^s)$)

1

- 4. Caluler $I = \int_{(0,1]^2} \frac{\min(x,y)}{\max(x,y)} dxdy$.
- 5. Calculer $J = \int_D (x+y)e^{-(x+y)} dxdy$ where $D = \{(x,y) \in \mathbb{R}_+^2, x+y \le 1\}$

3 Calculs de lois

- 1. Soit X une variable aléatoire réelle de loi de densité $\mathcal{N}(m, \sigma^2)$. Soit U une variable aléatoire réelle de loi de densité $\mathcal{N}(0, 1)$.
 - (a) Montrer que $\sigma U + m$ a même loi que X.
 - (b) Calculer $\mathbb{E}(X)$ et Var(X).
 - (c) Calculer la densité de la loi de Y = aX + b pour a et b réels.
 - (d) Calculer $\mathbb{E}(Y)$ et Var(Y).
- 2. Soit (X,Y) une variable aléatoire à valeurs dans \mathbb{R}^2 de loi de densité $(x,y)\mapsto \frac{3}{4}\exp\left(-|x+2y|-|x-y|\right)$. Calculer la densité de la loi de (X+2Y,X-Y), puis les densités des lois de X et Y. (Indication : On pourra utiliser un changement de variable approprié.)
- 3. Soit Y une variable aléatoire réelle de densité $\frac{1}{\pi(1+x^2)}$. Montrer que $\frac{1}{Y}$ a même loi que Y.
- 4. Soient X, Y deux variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$. Montrer que X+Y et X-Y sont indépendantes.
- 5. Soient U et V deux variables aléatoires indépendantes, de même loi U([0;1]) (uniforme sur [0,1]). Calculer la fonction de répartition de $\inf(U,V)$.
- 6.