

Outline

- Introduction
- Dataset Description
- Objectives
- Results and Discussion
- Conclusion

Introduction

- Dementia
 - Decline in memory, reasoning or other thinking skills.
- Alzheimer's
 - Specific brain disease.
 - Affects memory, thinking and behavior.
 - Symptoms eventually grow severe enough to interfere with daily tasks.

Introduction

- While treatments are available to lessen the symptoms, there is no cure currently available.
- Brain Imaging via magnetic resonance imaging (MRI), is used for evaluation of patients with suspected AD.

Dataset Description

150 randomly selected subjects aged 60 to 96.

Objective of the Study

- Implementing a Marginal Ordinal Regression Model
- Implementing a Generalized Linear Mixed Effect Model for an Ordinal Response
- Assess changes in the odds of a more favorable response over the duration of the study
- Determining which covariates have a significant effect on CDR

Ordinal Model Without Covariates

Analysis of Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates							
				Standard	Wald		
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	
Intercept	2	1	-1.2579	0.0880	204.5319	<.0001	
Intercept	1	1	-0.00533	0.0730	0.0053	0.9418	

- Intercept 2 = -1.2579 = logit of response in category 2
- Intercept 1 = -0.0053 = logit of response in category 1 & 2

Probability of Responses

• Probability of response in category 2 (CDR = 2):

$$\frac{1}{[1+\exp(-(-1.2579))]} = 0.2213$$

• Probability of response in category 1 & 2 (CDR = 1 & 2):

$$\frac{1}{[1+\exp(-(-0.0053))]} = 0.4987$$

- Probability (CDR = 0): 376/750
- Probability (CDR = 1): 208/750
- Probability (CDR = 2): 166/750

Marginal Ordinal Regression Model

Analyzes the relationship between the response variable and covariates without taking into account the between subject heterogeneity.

Let Y_{ij} denote the ordinal response for the i^{th} subject at the j^{th} occasion with K categories

$$\begin{split} \log \left\{ &\frac{P(Y_{ij} \leq k)}{P(Y_{ij} > k)} \right\} \\ &= \alpha_k + \beta_1(time)_{ij} + \beta_2(Age)_i + \beta_3(Gender)_i + \beta_4(MMSE)_{ij} + \beta_5(eTIV)_{ij} + \beta_6(nWBV)_{ij} \\ &+ \beta_7(time)_{ij} * (MMSE)_{ij} + \beta_8(time)_{ij} * (nWBV)_{ij} \end{split}$$

$$i = 1, 2, ..., 150$$

 $j = 1, 2, ..., 5$
 $k = 1, 2$

Analysis Of GEE Parameter Estimates								
Empirical Standard Error Estimates								
Parameter		Estimate	Standard Error	95% Co Lin		Z	Pr > Z	
Intercept1		-27.2082	5.4584	-37.9064	-16.5099	-4.98	<.0001	
Intercept2		-22.4017	5.3760	-32.9385	-11.8649	-4.17	<.0001	
time		-14.5014	2.2537	-18.9186	-10.0842	-6.43	<.0001	
Age		0.0385	0.0202	-0.0012	0.0781	1.90	0.0574	
Gender	F	0.5647	0.2923	-0.0082	1.1375	1.93	0.0534	
Gender	M	0.0000	0.0000	0.0000	0.0000			
MMSE		0.7087	0.1068	0.4994	0.9181	6.63	<.0001	
eTIV		0.0014	0.0011	-0.0008	0.0035	1.23	0.2176	
nWBV		3.1034	5.4013	-7.4829	13.6897	0.57	0.5656	
time*MMSE		0.0232	0.0570	-0.0885	0.1349	0.41	0.6840	
time*nWBV		19.2936	2.0004	15.3728	23.2143	9.64	<.0001	

 $log\left\{\frac{P(Y_{ij} \le k)}{P(Y_{ij} > k)}\right\}$

 $= -27.2082 - 14.5014 time_{ij} + 0.0385 Age_i + 0.5647 Gender_i + 07087 MMSE_{ij} + 0.0014 eTIV_{ij} + 3.1034 nWBV_{ij} + 0.0232 time_{ij} * MMSE_{ij} + 19.2936 time_{ij} + 0.0232 ti$ $* nWBV_{ii}$

 $= -22.4017 - 14.5014 time_{ij} + 0.0385 Age_i + 0.5647 Gender_i + 07087 MMSE_{ij} + 0.0014 eTIV_{ij} + 3.1034 nWBV_{ij} + 0.0232 time_{ij} * MMSE_{ij} + 19.2936 time_{ij} + 0.0014 eTIV_{ij} + 0.0014 eT$ $* nWBV_{ij}$ 13

- Relative to baseline, the odds of a more favorable response at the end of the study is approximately zero $(e^{-14.5014*5})$.
- The odds of clinical dementia rating is greater among the female subjects $(e^{0.5647} = 1.76)$ compared the male subjects
- For each one unit increase in MMSE, cumulative log odds of clinical dementia rating change by 0.7087, while holding other variables constant

Generalized Linear Mixed Model for an Ordinal Response

• Let Y_{ij} denote the ordinal response for the i^{th} subject at the j^{th} occasion

$$log\left\{\frac{P(Y_{ij} \leq k | b_i)}{P(Y_{ij} > k | b_i)}\right\} = \alpha_k + \beta_1(time)_{ij} + \beta_2(Age)_i + \beta_3(Gender)_i + \beta_4(MMSE)_{ij} + \beta_5(eTIV)_{ij} + \beta_6(nWBV)_{ij} + \beta_7(time)_{ij} * (MMSE)_{ij} + \beta_8(time)_{ij} * (nWBV)_{ij} + b_{1i} + b_{2i} (time)_{ij}$$

$$i = 1, 2, ..., 150$$

 $j = 1, 2, ..., 5$

 b_{1i} - Random effect of intercept for subject i

 b_{2i} - Random effect of slope of time for subject i

Random Intercept Model or Random Intercept-Slope Model

Random Intercept Model

Fit Statistics					
-2 Log Likelihood	554.77				
AIC (smaller is better)	576.77				
AICC (smaller is better)	577.13				
BIC (smaller is better)	609.89				
CAIC (smaller is better)	620.89				
HQIC (smaller is better)	590.23				

Random Intercept-Slope Model

Fit Statistics				
-2 Log Likelihood	553.53			
AIC (smaller is better)	575.53			
AICC (smaller is better)	575.88			
BIC (smaller is better)	608.64			
CAIC (smaller is better)	619.64			
HQIC (smaller is better)	588.98			

 H_0 : Random intercept model is adequate

 H_1 : Random intercept- slope model is adequate

- -2 Log Likelihood for Random Intercept Model: 554.77
- -2 Log Likelihood for Random Intercept-Slope Model: 553.53

Test value: 554.77 - 553.53 = 1.24

At 95% confidence level, we can conclude that the random interceptslope model is adequate.

Random Intercept-Slope Model

Solutions for Fixed Effects							
				Standard			
Effect	CDR	Gender	Estimate	Error	DF	t Value	Pr > t
Intercept	0		-26.6089	6.1611	149	-4.32	<.0001
Intercept	1		-20.8880	6.0566	149	-3.45	0.0007
time			-12.3192	2.3932	149	-5.15	<.0001
Age			0.01183	0.02520	442	0.47	0.6388
Gender		F	0.6314	0.3752	442	1.68	0.0931
Gender		M	0	•	•	•	•
MMSE			0.8404	0.08986	442	9.35	<.0001
eTIV			0.000137	0.001120	442	0.12	0.9026
nWBV			2.6129	6.6338	442	0.39	0.6939
time*MMSE			-0.02259	0.02998	442	-0.75	0.4514
time*nWBV			17.9713	3.4153	442	5.26	<.0001

- Intercept 1: Log of odds of clinical dementia rating 0 vs. 1.
- Intercept 2: Log of odds of clinical dementia rating (0,1) & 2.
- Conditioned on random effects, the odds of CDR decreasing is approximately zero $(e^{-12.3192} \approx 0)$ for each year.
- Given two subjects have the same random effect, with one unit increase in MMSE, the log of odds of clinical dementia rating increases by 0.8404
- Given two subjects have the same random effect, the odds of clinical dementia rating is greater among female group ($e^{0.6314}$ = 1.88) as compared to the male group.

Conclusions

- At the completion of the study, most of the subjects had the same clinical dementia rating they had at the beginning of the study.
- Mini-mental health examination score have a highly significant effect on clinical dementia rating. Higher values of MMSE indicates lower clinical dementia rating.

References

- 1. Applied longitudinal analysis / Garrett M. Fitzmaurice, Nan M. Laird, James H. Ware
- 2. Analyzing longitudinal data and use of the generalized linear model in health and social sciences. / Arnau, J., Bono, R., Bendayan, R., & Blanca, M. J. (2015). Quality & Quantity, 50(2), 693–707.
- 3. Hedeker, D. (2008). Multilevel models for ordinal and nominal variables. In J.de Leeuw & E.Meijer (Eds.), Handbook of Multilevel Analysis. Springer, NewYork.
- 4. Kiernan, K. (2018). Insights into Using the GLIMMIX Procedure to Model Categorical Outcomes with Random Effects.
- 5. Nick R. Parsons, Matthew L. Costa, Juul Achten, Nigel Stallard, Repeated measures proportional odds logistic regression analysis of ordinal score data in the statistical software package R, Computational Statistics & Data Analysis, Volume 53, Issue 3, 2009,

THANK YOU!

