Redutio ad absurdum

Prove the following sequents.

- $1. \ \neg P \ \vdash \ \neg (P \land Q)$
- $2. \ \neg (P \lor Q) \ \vdash \ \neg P$
- $3. \ \vdash \ P \lor \neg P$
- $4. \ \neg (P \land Q) \ \vdash \ \neg P \lor \neg Q$

Truth tables

- 1. Let ϕ be a sentence. How can you tell whether or not ϕ can be proven?
- 2. Let ϕ_1, \ldots, ϕ_n and ψ be sentences. How can you tell whether the sequent $\phi_1, \ldots, \phi_n \vdash \psi$ can be proven?
- 3. Write the truth table for the following sentence:

$$(P \to Q) \land \neg Q$$

- 4. Determine the truth values of the following statements when P and Q are true and R is false
 - (a) $P \to \neg(\neg P \land (Q \lor \neg R))$
 - (b) $\neg Q \lor ((\neg P \land R) \to Q)$
- 5. Determine whether the following sequents are provable, and briefly explain your answer.
 - (a) $\neg (P \land Q) \vdash \neg P$
 - (b) $\neg (P \land Q) \vdash \neg P \lor \neg Q$
 - (c) $(P \to Q) \to R, \neg Q, \neg R \vdash P$
 - (d) $(P \lor Q) \to (R \land D), R \to D \vdash \neg P$