Processamento de Linguagens Semântica das linguagens de programação

João Reis

Universidade da Beira Interior

2018/2019

Significado

Como podemos definir o significado de um programa escrito numa determinada linguagem?

Na maioria das vezes, aceitamos uma descrição informal, em linguagem natural (norma ISO, *standard*, manual de referência, etc.).

É algo pouco satisfatório na verdade, porque muitas vezes é impreciso e até mesmo ambíguo.

Semântica informal

Exemplo

The Java programming language guarantees that the operands of operators appear to be evaluated in a specific evaluation order, namely, from left to right.

It is recommended that code not rely crucially on this specification.

Semântica formal

A **semântica formal** carateriza matematicamente os cálculos descritos num programa.

Útil para o desenvolvimento do ferramentas (interpretadores, compiladores, etc.).

Indispensável para raciocinar sobre programas.

Uma outra questão

Mas o que é um programa?

Como objeto sintático (conjunto de caracteres), é muito difícil de trabalhar.

É preferível usar a **sintaxe abstrata**.

Semântica

É sobre a sintaxe abstrata que definimos a semântica.

Existem diversas abordagens:

- semântica axiomática
- semântica denotacional
- semântica por tradução
- semântica operacional

Semântica axiomática

Também conhecida como lógica de Hoare

Carateriza os programas por intermédio de propriedades cumpridas pelas variáveis; introduzimos o triplo

$$\{P\} \ i \ \{Q\}$$

que significa "se a fórmula P é verdadeira previamente à execução da instrução i, então a fórmula Q será verdadeira após a execução desta instrução".

Exemplo:

$${x \ge 0} \ x := x + 1 \ {x > 0}$$

Exemplo de regra:

$$\{P[x \leftarrow E]\} \ x := E \ \{P(x)\}\$$

Semântica denotacional

A semântica denotacional associa a cada expressão e a denotação [e], que é um objeto matemático que representa o cálculo nomeado por e.

Exemplo: expressões aritméticas com uma só variável x

$$e ::= x \mid n \mid e + e \mid e * e \mid \cdot \cdot$$

A denotação pode ser uma função que associa ao valor de x o valor da expressão:

Semântica por tradução

(Também conhecida como semântica denotacional à la Strachey).

Podemos definir a semântica de uma linguagem traduzindo-a para uma outra cuja semântica já é conhecida.

Semântica operacional

A **semântica operacional** descreve o sequência de cálculos elementares que levam uma expressão ao seu resultado (ao seu valor).

Esta opera diretamente sobre os objetos sintáticos (sintaxe abstrata).

Duas formas de semântica operacional:

"semântica natural" (ou "big-steps semantics")

$$e \rightarrow v$$

"semântica por reduções" (ou "small-steps semantics")

$$e \rightarrow e1 \rightarrow e2 \rightarrow \cdots \rightarrow v$$

Linguagem WHILE

Definimos a semântica operacional sobre esta linguagem minimal.

$$\begin{array}{lll} e & ::= & & \textbf{expressão} \\ & | & c & & \text{constante} \\ & | & x & & \text{variável} \\ & | & e \ op \ e & \text{operação binária} \ \big(+, <, \ldots \big) \end{array}$$

Linguagem WHILE

S	::=		instrução
		$x \leftarrow e$	atribuição
		if e then s else s	condicional
		while e do s	ciclo
		s; s	sequência
		skip	não fazer nada

Exemplo

$$\begin{aligned} & a \leftarrow 0; \\ & b \leftarrow 1; \\ & \text{while } b < 100 \text{ do} \\ & b \leftarrow a + b; \\ & a \leftarrow b - a \end{aligned}$$

Semântica operacional big-steps do WHILE

Procuramos definir uma relação entre uma expressão e e um **valor** v

$$e \rightarrow v$$

Os valores são aqui reduzidos aos inteiros e aos booleanos

$$v ::=$$
 valor $\mid n \mid n$ valor inteiro $\mid b \mid n \mid n$ valor booleano

(de uma maneira geral, os valores não coincidem necessariamente com as constantes)

Valor de uma variável

O valor de uma variável é dado por um **ambiente** E (uma função de variáveis para valores).

Definimos uma relação na forma

$$E, e \rightarrow v$$

que se lê como "num ambiente E, a expressão e tem o valor v"

Exemplo

No ambiente

$$E = \{a \mapsto 34, b \mapsto 55\}$$

a expressão

$$a + b$$

tem o valor

89

que denotamos como

$$E, a + b \rightarrow 89$$

Regras de inferência

Uma relação poderá definir-se como a **menor relação** que satisfaz um conjunto de regras sem premissas (axiomas) na forma

e um conjunto de regras com premissas na forma

$$\frac{P_1 \ P_2 \ \cdots \ P_n}{P}$$

Estas são chamadas regras de inferência.

Regras de inferência

Exemplo: podemos definir a relação Even(n) com as duas regras

$$\frac{1}{\mathsf{Even}(0)} \quad e \quad \frac{\mathsf{Even}(n)}{\mathsf{Even}(n+2)}$$

que se devem ler como

em primeiro lugar Even(0)
em segundo lugar
$$\forall n$$
. Even(n) \Rightarrow Even($n + 2$)

A menor relação que satisfaz estas duas propriedades coincide com a propriedade "n é um inteiro par".

Árvore de derivação

Uma **derivação** é uma árvore cujos nós correspondem às regras com premissas e as folhas correspondem aos axiomas; exemplo:

 $\frac{\mathsf{Even}(0)}{\mathsf{Even}(0)}$

Even(2)

Even(4)

O conjunto de derivações possíveis caraterizam exatamente a menor relação que satisfaz as regras de inferência.

Semântica das expressões

A relação $E, e \rightarrow v$ é definida pelas regras de inferência seguintes:

$$\overline{E, n \twoheadrightarrow n} \quad \overline{E, b \twoheadrightarrow b}$$

$$\overline{E, x \twoheadrightarrow E(x)}$$

$$\frac{E, e_1 \twoheadrightarrow n_1 \quad E, e_2 \twoheadrightarrow n_2 \quad n = n_1 + n_2}{E, e_1 + e_2 \twoheadrightarrow n} \quad \text{etc.}$$

Semântica das instruções

Uma instrução pode modificar o valor de certas variáveis (atribuição).

Para darmos a semântica de uma instrução s, introduzimos a relação

$$E,s \rightarrow\!\!\!\!\rightarrow E'$$

que se lê "no ambiente E, a avaliação da instrução s termina e leva ao ambiente E'"

Semântica das instruções

$$\frac{E, \operatorname{skip} \twoheadrightarrow E}{E, \operatorname{skip} \twoheadrightarrow E} \qquad \frac{E, s_1 \twoheadrightarrow E_1 \quad E_1, s_2 \twoheadrightarrow E_2}{E, s_1; s_2 \twoheadrightarrow E_2}$$

$$\frac{E, e \twoheadrightarrow v}{E, x \leftarrow e \twoheadrightarrow E\{x \mapsto v\}}$$

$$\frac{E, e \twoheadrightarrow \text{true} \quad E, s_1 \twoheadrightarrow E_1}{E, \text{ if } e \text{ then } s_1 \text{ else } s_2 \twoheadrightarrow E_1} \qquad \frac{E, e \twoheadrightarrow \text{ false} \quad E, s_2 \twoheadrightarrow E_2}{E, \text{ if } e \text{ then } s_1 \text{ else } s_2 \twoheadrightarrow E_2}$$

$$\frac{E, e \twoheadrightarrow \text{true} \quad E, s \twoheadrightarrow E_1 \quad E_1, \text{ while } e \text{ do } s \twoheadrightarrow E_2}{E, \text{ while } e \text{ do } s \twoheadrightarrow E_2}$$

$$\frac{E, e \twoheadrightarrow \text{ false}}{E, \text{ while } e \text{ do } s \twoheadrightarrow E}$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かり()C

Exemplo de derivação

Consideremos o ambiente $E = \{a \mapsto 21\}$

$$\frac{E, a \twoheadrightarrow 21 \quad E, 0 \twoheadrightarrow 0}{E, a > 0 \twoheadrightarrow \text{true}} \quad \frac{\frac{E, 2 \twoheadrightarrow 2 \quad E, a \twoheadrightarrow 21}{E, 2 \times a \twoheadrightarrow 42}}{\frac{E, 2 \times a \twoheadrightarrow 42}{E, a \leftarrow 2 \times a \twoheadrightarrow \{a \mapsto 42\}}}$$

$$E, \text{ if } a > 0 \text{ then } a \leftarrow 2 \times a \text{ else skip} \twoheadrightarrow \{a \mapsto 42\}$$

Expressões sem valor

Existem expressões e para as quais não existe um valor v tal que $E, e \twoheadrightarrow v$ Exemplo: 1+ true

Da mesma forma, existem instruções s para as quais não existe uma avaliação $E,s \twoheadrightarrow E'$

Exemplo: while 0 = 0 do skip

Recorrência na derivação

Para se estabelecer uma propriedade de uma relação definida por um conjunto de regras de inferência, podemos raciocinar por **indução estrutural** na derivação *i.e.* podemos aplicar a hipótese de indução a qualquer sub-derivação.

De maneira equivalente, podemos dizer que raciocinamos por indução sobre a altura da derivação.

Exemplo

Proposição (determinismo da avaliação)

Se
$$E, e \rightarrow v$$
 e $E, e \rightarrow v'$ então $v = v'$.

Por recorrência sobre as derivações de E,e woheadrightarrow v e de E,e woheadrightarrow v' Caso de uma adição $e=e_1+e_2$

Com
$$v = n_1 + n_2$$
 e $v' = n'_1 + n'_2$
Por HI temos que $n_1 = n'_1$ e $n_2 = n'_2$, então $v = v'$

(Os outros casos são idênticos ou também muito simples).

Exemplo

Proposição (determinismo da avaliação)

Se
$$E, s \rightarrow E'$$
 e $E, s \rightarrow E''$ então $E' = E''$.

Exercício: fazer a prova.

No caso da regra

$$\frac{E, e \twoheadrightarrow \texttt{true} \quad E, s \twoheadrightarrow E_1 \quad E_1, \texttt{while} \ e \ \text{do} \ s \twoheadrightarrow E_2}{E, \ \texttt{while} \ e \ \text{do} \ s \twoheadrightarrow E_2}$$

vemos que a recorrência é feita sobre da derivação e não sobre da instrução (que não diminui).

Determinismo

Nota: a relação de avaliação não é necessariamente determinista.

Exemplo: juntemos uma primitiva random para tirar ao azar um inteiro 0 ou 1 e, portanto, a regra

$$\frac{0 \le n < 2}{E, \text{ random } \rightarrow n}$$

Temos então que E, random $\rightarrow 0$ bem como E, random $\rightarrow 1$.

Defeitos da semântica natural

A semântica natural não permite distinguir os programas cujos cálculos falhem, como

1 + true

assim como programas cuja avaliação não termine, como

while true do skip

Semântica operacional small-steps

A semântica operacional **small-steps** ultrapassa os limites mencionados anteriormente introduzindo uma noção de etapa elementar de cálculo $E_1, s_1 \rightarrow E_2, s_2$, que vamos iterar.

Podemos então distinguir três situações

1 a iteração termina (leva a um valor)

$$E, s \rightarrow E_1, s_1 \rightarrow E_2, s_2 \rightarrow \cdots \rightarrow E', \text{ skip}$$

$$E,s\to E_1,s_1\to E_2,s_2\to\cdots E_n,s_n$$

a iteração não termina

$$E, s \rightarrow E_1, s_1 \rightarrow E_2, s_2 \rightarrow \cdots$$

Semântica operacional small-steps para WHILE

$$\frac{E, e \twoheadrightarrow v}{E, x \leftarrow e \rightarrow E\{x \mapsto v\}, \text{skip}}$$

$$\frac{E, s_1 \rightarrow E_1, s_1'}{E, \text{skip}; s \rightarrow E, s} \qquad \frac{E, s_1 \rightarrow E_1, s_1'}{E, s_1; s_2 \rightarrow E_1, s_1'; s_2}$$

$$\frac{E, e \twoheadrightarrow \texttt{true}}{E, \texttt{if } e \texttt{ then } s_1 \texttt{ else } s_2 \to E, s_1} \qquad \frac{E, e \twoheadrightarrow \texttt{false}}{E, \texttt{if } e \texttt{ then } s_1 \texttt{ else } s_2 \to E, s_2}$$

$$E, e woheadrightarrow ext{true}$$
 $E, while e ext{ do } s o E, s; ext{while } e ext{ do } s$ $E, e woheadrightarrow ext{false}$ $E, ext{while } e ext{ do } s o E, ext{skip}$

Nota

Mantemos a semântica *big-steps* para as expressões visto que estas sempre terminam.

Equivalência

Proposição (equivalência de duas semânticas)

As duas semânticas operacionais são equivalentes para os programas cuja avaliação termina, *i.e.*

$$E, s \rightarrow E'$$
 se e apenas se $E, s \rightarrow^* E'$, skip

 $(\to^*$ é o fecho reflexivo transitivo de $\to)$

Proposição (big steps implica small steps)

Se $E, s \rightarrow E'$, então $E, s \rightarrow^* E'$, skip.

Por recorrência sobre a derivação $E,s \twoheadrightarrow E'$ e por caso sobre a última regra utilizada

caso de s₁; s₂

$$\frac{E, s_1 \twoheadrightarrow E_1 \quad E_1; s_2 \twoheadrightarrow E_2}{E; s_1; s_2 \twoheadrightarrow E_2}$$

Proposição (big steps implica small steps)

Se $E, s \rightarrow E'$, então $E, s \rightarrow^* E'$, skip.

Por recorrência sobre a derivação $E,s \twoheadrightarrow E'$ e por caso sobre a última regra utilizada

• caso de *s*₁; *s*₂

$$\frac{E, s_1 \twoheadrightarrow E_1 \quad E_1; s_2 \twoheadrightarrow E_2}{E; s_1; s_2 \twoheadrightarrow E_2}$$

então $E, s_1 \rightarrow^* E_1, ext{skip por HI}$ portanto,

s

caso de while e do s
 se

$$\frac{\textit{E},\textit{e} \twoheadrightarrow \texttt{true} \quad \textit{E},\textit{s} \twoheadrightarrow \textit{E}_1 \quad \textit{E}_1, \texttt{while} \; \textit{e} \; \texttt{do} \; \textit{s} \twoheadrightarrow \textit{E}_2}{\textit{E}, \texttt{while} \; \textit{e} \; \texttt{do} \; \textit{s} \twoheadrightarrow \textit{E}_2}$$

 caso de while e do s se

$$\frac{E, e \twoheadrightarrow \texttt{true} \quad E, s \twoheadrightarrow E_1 \quad E_1, \texttt{while} \ e \ \texttt{do} \ s \twoheadrightarrow E_2}{E, \texttt{while} \ e \ \texttt{do} \ s \twoheadrightarrow E_2}$$

então

$$E, ext{while } e ext{ do } s o E, s; ext{ while } e ext{ do } s \ o^* E_1, ext{skip}; ext{ while } e ext{ do } s \ o^* E_1, ext{ while } e ext{ do } s \ o^* E_2, ext{ skip}$$

Exercício: tratar os outros casos

O outro significado

Lema

Se
$$E_1, s_1 \rightarrow E_2, s_2 \twoheadrightarrow E'$$
, então $E_1, s_1 \twoheadrightarrow E'$.

Por recorrência sobre a derivação →

- caso $s_1 = u_1; v_1$
 - caso $u_1 = skip$

Temos E_1 , skip; $v_1 \rightarrow E_1$, $v_1 \rightarrow v_1 \rightarrow E'$ e assim

$$\frac{E_1, \mathtt{skip} \twoheadrightarrow E_1 \quad E_1, v_1 \twoheadrightarrow E'}{E_1, \mathtt{skip}; v_1 \twoheadrightarrow E'}$$

• caso $u_1 \neq \text{skip}$

Temos
$$E_1,u_1;v_1\to E_2,u_2;v_1\twoheadrightarrow E'$$
, isto é, $E_1,u_1\to E_2,u_2$ e $E_2,u_2\twoheadrightarrow E'_2,v_1\twoheadrightarrow E'$

$$\frac{2, u_2 \twoheadrightarrow E_2, v_1 \twoheadrightarrow E_2}{E_2, u_2; v_1 \twoheadrightarrow E'}$$

Por HI deduzimos

$$\frac{E_1,\,u_1 \twoheadrightarrow E_2' \quad E_2',\,v_1 \twoheadrightarrow E'}{E_1,\,u_1;\,v_1 \twoheadrightarrow E'}$$

(Tratar os outros casos)

O outro significado

Deduzimos

Proposição (small steps implica big steps)

Se $E, s \rightarrow^* E'$, skip, então $E, s \rightarrow E'$.

Prova: temos

$$E,s
ightarrow E_1, s_1
ightarrow E_2, s_2
ightarrow \cdots
ightarrow E_n, s_n
ightarrow E', \mathtt{skip}$$

Sabemos que E', $\operatorname{skip} \twoheadrightarrow E'$ logo $E_s, s_n \twoheadrightarrow$ pelo lema precedente. De forma igual, $E_{n-1}, s_{n-1} \twoheadrightarrow E'$ pelo lema precedente, e por aí em diante, até que atingimos a forma $E, s \twoheadrightarrow E'$ (recorrência sobre o nome das etapas).