(12)

EUROPÄISCHE PATENTANMELDUNG

- 21) Anmeidenummer: 91106870.8
- 2 Anmeldetag: 27.04.91

(a) Int. Cl.5: **C07D** 207/408, C07D 207/38, C07D 403/12, C07D 207/404, C07D 405/12, A01N 43/36

- Priorität: 10.05.90 DE 4014941 08.03.91 DE 4107394
- Veröffentlichungstag der Anmeldung: 13.11.91 Patentblatt 91/46
- Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL
- (7) Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

2 Erfinder: Krauskopf, Birgit, Dr. Kicke 19 W-5060 Bergisch Gladbach 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Klerspel-Strasse 151

W-5060 Bergisch Gladbach(DE)

Erfinder: Santel, Hans-Joachim, Dr.

Gruenstrasse 9a

W-5090 Leverkusen 1(DE)

Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach(DE) .

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Kriescherstrasse 81 W-4019 Monheim(DE) Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23

W-4019 Monheim 2(DE) Erfinder: Erdelen, Christoph, Dr.

Unterbuescherhof 22 W-5653 Leichlingen 1(DE)

- (54) 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.
- (I) Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel

$$\begin{array}{c|c}
A & R-0 & X \\
\hline
 & & Z_n \\
\hline
 & & Y
\end{array}$$

bereitgestellt, in welcher

- Χ für Alkyl, Halogen, Alkoxy steht,
- für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- für eine Zahl von 0-3 steht.
- für Wasserstoff oder für die Gruppen
 - -CO-R1, -CO-O-R2 oder E9
 - steht, in welchen
- für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyal-R1 kyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

Rank Xerox (UK) Business Services

- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden und für ein Metallionäquivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

Die Erfindung betrifft neue 3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et. al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenyl-pyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger Liebigs Ann. Chem. 1985 1095 synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A 0 262 399 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist.

In DE-A 3 525 109 werden ähnlich strukturierte 1-H-3-Arylpyrrolidin-2,4-dione offenbart, die als Zwischenprodukte für Farbstoffsynthesen verwendet wurden.

Es wurden nun neue 3-Aryl-pyrrolidin-2,4-dion-Derivate gefunden, die durch die Formel (I) dargestellt sind,

15

20

25

30

in welcher

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen -CO-R¹, -CO-O-R² oder E°

steht, in welchen

- R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
 - B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

40 oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen Carbocyclus bilden

E* für ein Metallionäquivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Im folgenden seien die folgenden Untergruppen definiert:

(la): Verbindungen der Formel (l) worin R = Wasserstoff,

(lb): Verbindungen der Formel (l) worin R = COR1,

(lc): Verbindungen der Formel (l) worin R = COOR2.

(Id): Verbindungen der Formel (I) worin R = E* für ein Metallionäquivalent oder ein Ammoniumion steht.

Weiterhin wurde gefunden, daß man 3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (la)

55

50

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben, erhält, wenn man

(A)

N-Acylaminosäureester der Formel (II)

5

10

$$\begin{array}{c|c}
A & CO_2R^3 \\
R & & X \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

15 in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

und

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

Außerdem wurde gefunden, daß man Verbindungen der Formel (lb)

25

20

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

30

in welcher A, B, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la),

35

40

45

55

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

(C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

15

20

5

10

$$\begin{array}{c|c}
 & 0 \\
 & \parallel \\$$

25 in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

30

40

45

35 in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben, mit Chlorameisensäureester der allgemeinen Formel (V)

R2-O-CO-CI (V)

in welcher

R² die oben angegebene Bedeutung hat,

gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

ď

Weiterhin wurde gefunden, daß man Verbindungen der Formel (I)

50

$$A \xrightarrow{B} 0^{\Theta} X \xrightarrow{E^{\Theta}} Y \qquad (Id)$$

55

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

erhält, wenn man Verbindungen der Formel (la)

$$A \xrightarrow{B} HO X Z_{n} Y \qquad (Ia)$$

10

5

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben, mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

20 in welchen

Me für ein- oder zweiwertige Metallionen,

s und t für die Zahlen 1 und 2 und

R⁴, R⁵ und R⁶ unabhängig voneinander für Wasserstoff und Alkyl

stehen.

25 gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Überraschenderweise wurde gefunden, daß die neuen 3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) sich durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Bevorzugt sind 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I), in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

30 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff (la) oder für die Gruppen der Formel

35

-CO-R
1
 oder -CO-O-R 2 oder E $^{\Theta}$

40

45

50

55

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_6 -Alkyl-, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl;

für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,

für gegebenenfalls durch Halogen- und C1-C6-Alkyl-substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen- und C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl steht, für gegebenenfalls durch Halogen, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C₁-C₆-A

für gegebenenfalls durch Halogen, Amino und C_1 - C_6 -Alkyl-substituiertes Hetaryloxy- C_1 - C_6 -Alkyl-sub

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-substituiertes Phenyl steht,

A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-

alkyl, C₁-C₁₀-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl-C₁- C₆-Haloalkyl-, C₁-C₆-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₁-C₈-Alkoxyalkyl steht,

5 oder worin

20

30

35

40

50

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 8-gliedrigen Ring bilden,

E* für ein Metallionenäquivalent oder ein Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

10 Besonders bevorzugt sind Verbindungen der Formel (I) in welcher

X für C1-C4-Alkyl, Halogen, C1-C4-Alkoxy steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,

Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

n für eine Zahl von 0-3 steht,

15 R für Wasserstoff (la) oder für die Gruppen der Formel

-CO-R¹ oder -CO-O-R² oder
$$E^{\Theta}$$
(Ib) (Ic) (Id)

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂25 C₆-alkyl, C₁-C₆-Alkylthio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht,

für gegebenenfalls durch Halogen, Nitro-C₁₀-Alkylk, C₁₀-C₁₀-Alkoxya, C₁₀-C₁₀-Halogenalkylk, C₁₀-C₁₀-Alkoxya, C₁₀-C

für gegebenenfalls durch Halogen-, Nitro-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,

für gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, C₁-C₃-Halogenalkyl-, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,

für gegebenenfalls duch Halogen- und C₁-C6-Alkyl-substituiertes Hetaryl steht,

gegebenenfalls für durch Halogen- und C1-C4-Alkyl-substituiertes Phenoxy-C1-C5-alkyl steht,

für gegebenfalls durch Halogen, Amino und C_1 - C_4 -Alkyl-substituiertes Hetaryloxy- C_1 - C_5 -alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,

für gegebenenfalls durch Halogen, Nitro-, C₁-C₄-Alkyl, C₁-C₃-Alkoxy-, C₁-C₃-Halogenalkyl-substituiertes Phenyl steht.

- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl-, C₁-C₄-Haloalkyl-C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl steht,
 - B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxyalkyl steht,

45 oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 7-gliedrigen Ring bilden,

für ein Metallionenäquivalent oder ein Ammoniumion steht

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I) in welcher

- X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
- Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
- 55 n für eine Zahl von 0-3 steht,
 - R für Wasserstoff (la) oder für die Gruppen der Formel

$$-CO-R^1$$
 oder $-CO-O-R^2$ oder E^Θ
(Ib) (Ic) (Id)

steht, in welcher

5

10

15

30

R¹ für gegebenenfalls durch Fluor oder Chlor substituiertes: C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylthio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxyl-C₂-C₄-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht, für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy- substituiertes Phenyl-C₁-C₂-alkyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,

für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy-C₁-C₄-alkylsteht, für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,

20 R² für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht, oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl steht,

A für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁25 C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₆-Polyalkoxy-C₂-C₄-alkyl,
C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder
Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro susbtituiertes Aryl, Pyridin,
Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl steht,

B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht, oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen 3 bis 6-gliedrigen Ring bilden,

F für ein Metallionenäquivalent oder ein Ammoniumion steht

sowie die enantiomerenreinen Formen von Verbindungen der Formel I.

Verwendet man gemäß Verfahren (A) N-2,6-Dichlorphenylacetyl-alaninethylester,so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6-Trimethylphenyl)-5-isopropyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,6-Trimethylphenyl)-5-cyclopentyl-pyrrolidin-2,4- in dion und Acetanhydrid, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren C 3-(2,4-6-Trimethylphenyl)-5-phenyl-pyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren D 3-(2,4-Dichlorphenyl)-5-(2-indolyl)-pyrrolidin-2,4-dion und Methylamin, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

10

A, B, X, Y, Z, n und R³ die oben angegebene Bedeutung haben sind teilweise bekannt oder lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. Acyl-aminosäureester der Formel (II), wenn man

a) Aminosäurederivate der Formel (VIII),

A CO₂R⁷
(VIII)

25 in welcher

30

R⁷ für Wasserstoff (VIIIa) und Alkyl (VIIIb) steht und

A die oben angegebene Bedeutung haben mit Phenylessigsäurehalogeniden der Formel (IX)

in welcher

40 X, Y, Z und n die oben angegebene Bedeutung haben und Hal für Chlor oder Brom steht, acyliert (Chem. Reviews 52 237-416 (1953); oder wenn man Acylaminosäuren der Formel (Ila),

A CO_2R^7 H N Z_n (IIa)

in welcher

55

A, B, X, Y, Z und n die oben angegebene Bedeutung haben und

R⁷ für Wasserstoff steht, verestert (Chem. Ind. (London) 1568 (1968).

Beispielhaft seien folgende Verbindungen der Formel (II) genannt:

- 1. N-2,4-Dichlorphenyl-acetyl-glycinethylester
- 2. N-2,6-Dichlorphenyl-acetyl-glycinethylester
- 3. N-(2,6-Dichlorphenyl-acetyl)-alanin-ethylester
- 4. N-(2,6-Dichlorphenyl-acetyl)-valin-ethylester

5

15

20

45

- 5. N-(2,6-Dichlorphenyl-acetyl)-leucin-ethylester
- 6. N-(2,6-Dichlorphenyl-acetyl)-methionin-ethylester
- 7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin-ethylester
- 8. N-(2.6-Dichlorphenyl-acetyl)-tryptophan-ethylester
- 9. N-(2,6-Dichlorphenyl-acetyl)-isoleucin-ethylester
 - 10. N-(2,4,6-Trimethylphenyl-acetyl)-glycin-methylester
 - 11. N-(2,4,6-Trimethylphenyl-acetyl)-alanin-ethylester
 - 12. N-(2,4,6-Trimethylphenyl-acetyl)-valin-ethylester
 - 13. N-(2,4,6-Trimethylphenyl-acetyl)-leucin-ethylester
 - 14. N-(2,4.6-Trimethylphenyl-acetyl)-isoleucin-ethylester
 - 15. N-(2,4,6-Trimethylphenyl-acetyl)-methionin-ethylester
 - 16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalaninethylester
 - 17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan-ethylester
 - 18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin-ethylester
 - N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein-ethylester
 - 20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein-ethylester
 - 21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin-ethylester
 - 22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin-ethylester
 - 23. N-(2,4,6-Trimethylphenyl-acetyl)-histidin-ethylester
- 25 24. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin-ethylester
 - 25. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopropan-carbonsäure-methylester
 - 26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentan-carbonsäure-methylester
 - 27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexan-carbonsäure-methylester
 - 28. N-(2,4,6-Trimethylphenyl-acetyl)-amino-isobuttersäure-methylester
- 29. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester
 - 30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester
 - 31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester
 - 32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester Beispielhaft seien folgende Verbindungen der Formel (IIa) genannt:
- 1. N-2,4-Dichlorphenyl-acetyl-glycin
 - 2. N-2,6-Dichlorphenyl-acetyl-glycin
 - 3. N-(2,6-Dichlorphenyl-acetyl)-alanin
 - 4. N-(2,6-Dichlorphenyl-acetyl)-valin
 - 5. N-(2,6-Dichlorphenyl-acetyl)-leucin6. N-(2,6-Dichlorphenyl-acetyl)-methionin
 - U. 14-(2,0-Dichlorphonyl-acetyl)-medilenin
 - 7. N-(2,6-Dichlorphenyl-acetyl)-phenylalanin
 - 8. N-(2,6-Dichlorphenyl-acetyl)-tryptophan
 - 9. N-(2,6-Dichlorphenyl-acetyl)-isoleucin
 - N-(2,4,6-Trimethylphenyl-acetyl-glycin
 N-(2,4,6-Trimethylphenyl-acetyl)-alanin
 - 40. N. (0.40 Trimethylphonyl-acetyl) unlin
 - 12. N-(2,4,6-Trimethylphenyl-acetyl)-valin
 - N-(2,4,6-Trimethylphenyl-acetyl)-leucin
 N-(2,4,6-Trimethylphenyl-acetyl)-isoleucin
 - 15. N-(2,4,6-Trimethylphenyl-acetyl)-methionin
 - 16. N-(2,4,6-Trimethylphenyl-acetyl)-phenylalanin
 - 17. N-(2,4,6-Trimethylphenyl-acetyl)-tryptophan
 - 18. N-(2,4,6-Trimethylphenyl-acetyl)-(4-chlorphenyl)-alanin
 - 19. N-(2,4,6-Trimethylphenyl-acetyl)-S-methyl-cystein
 - 20. N-(2,4,6-Trimethylphenyl-acetyl)-S-benzyl-cystein
- 55 21. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-threonin
 - 22. N-(2,4,6-Trimethylphenyl-acetyl)-tert.-butyl-alanin
 - 23. N-(2.4.6-Trimethylphenyl-acetyl)-histidin
 - 24. N-(2,4,6-Trimethylphenyl-acetyl)-O-methyl-tyrosin

- 25. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopropancarbonsäure
- 26. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclopentancarbonsäure
- 27. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-cyclohexancarbonsäure tancarbonsäure
- 28. N-(2,4,6-Trimethylphenyl-acetyl)-1-amino-isobuttersäure
- 29. N-(2,4,6-Trimethylphenyl-acetyl)-2-ethyl-2-amino-buttersäure-methylester
- 30. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-buttersäure-methylester
- 31. N-(2,4,6-Trimethylphenyl-acetyl)-2-methyl-2-amino-valeriansäure-methylester
- 32. N-(2,4,6-Trimethylphenyl-acetyl)-2,3-dimethyl-2-amino-valeriansäure-methylester

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (IX) und Aminosäuren der Formel (VIIIa) nach Schotten-Baumann (Organikum 9. Auflage 446 (1970) VEB Deutscher Verlag der Wissenschaften, Berlin) erhältlich.

Verbindungen der Formel (VIIIa) und (VIIIb) sind bekannt oder aber nach im Prinzip bekannten Literaturverfahren einfach herstellbar.

Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, X, Y, 75 Z, n und R³ die oben angegebene Bedeutung haben in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle üblichen inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glylkoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methylpyrrolidon.

Als Deprotonierungsmittel können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natriummethylat und Kalium-tert.-butylat einsetzbar.

Die Recktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb, eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (B α) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Ba) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden 'Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Bα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren ($B\alpha$) auch bei der

5

Adogen 464 = Methyltrialkyl(C₀-C₁₀)ammoniumchlorid

TDA 1 = Tris-(methoxyethoxylethyl)-amin

Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bα) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (Bß) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

10

45

Verwendet man bei dem erfindungsgemäßen Verfahren (Bß) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (Bß) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Chlorameisensäureestern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende (Chlorameisensäureester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Moi) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abzlehen des Verdünnungsmittels einengt.

Das Verfahren (D) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallhydroxiden (VI) oder Aminen (VII) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ishanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (D) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperatur liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (D) werden die Ausgangsstoffe der Formel (la) bzw. (VI = oder (VII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Herstellungsbeispiele

Beispiel 1

H₃C OH CH₃

20

10

15

124,9 g (0,428 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valinmethylester werden in 430 ml abs. Toluol suspendiert. Nach Zugabe von 51,6 g Kalium-tert.-butylat (95 %ig) wird unter DC-Kontrolle unter Rückfluß erhitzt. Man rührt in 500 ml Eiswasser ein, trennt das Toluol ab und tropft die wäßrige Phase bei 0-20 °C in 600 ml 1N HCl. Der Niederschlag wird abgesaugt, getrocknet und aus Chloroform/Methyl-tert.-butyl-Ether/n-Hexan umkristallisiert.

Ausbeute: 51,5 g (= 46,4 % d.Th.) der illustrierten Verbindung Fp. 126 °C

Beispiel 2

30 Deispiei

$$H_{3}$$
C H_{3} C H

40

35

5,46 g (20 mmol) 5-Isobutyl-3-(2,4,6-Trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.-Butyl-Ether suspendiert und mit 3,4 ml (20 mmol) Hünig-Base versetzt. Bei 0-10°C werden 2,52 ml (20 mmol) Pivaloylchlorid in 5 ml Methyl-tert.-butyl-Ether zugetropft und εnschließend unter Dünnschichtchromatographie-Kontrolle weitergerührt. Der Niederschlag wird abgesaugt, nachgewaschen und das Filtrat einrotiert. Nach SC an Kieselgel mit Cyclohexan/Essigester 1:1 und Kristallisation aus Methyl-tert.-butyl-Ether/n-Hexan erhielt man 2,14 g (29,9 % d.Th.) der illustrierten Verbindung vom Schmp. 154°C.

Beispiel 3

4,19 g (20 mmol) 5-Isopropyl-3-(2,4,6-trimethylphenyl)-pyrrolidin-2,4-dion werden in 70 ml Methyl-tert.butyl-Ether suspendiert und mit 3,4 ml (20 mmol) HÜnig-Base versetzt. Bei -70°C tropft man 1,92 ml (20 mmol) Chlorameisensäure-ethylester in 5 ml Methyl-tert.-butyl-Ether zu und läßt auf Raumtemperatur erwärmen. Nach dem Einrotieren wird der Rückstand in Methylenchlorid aufgenommen, mit Wasser gewaschen, getrocknet und erneut einrotiert. Nach Kristallisation aus Methyl-tert.-butyl-Ether/n-Hexan erhält man 2,6 g (= 39,3 % d.Th.) der illustrierten Verbindung vom Schmp. 190°C.

Die folgenden Verbindungen der Tabellen 1, 2 und 3 können in Analogie zu den Beispielen 1, 2 bzw. 3 hergestellt werden.

25

5

15

30

35

40

45

50

5																		
10				Fp° C														
.•				В	x	I	H	CH ₃	CH ₃	C2H5	cH_3	CH ₃	. 2	1 4	5,	X	Ŧ	H
15			(Ia)				H3)2					Н7	$-(CH_2)_2^-$	-(CH ²)	-(CH ²)		3)3	CH ₂ CH(CH ₃) ₂
20			<u>,</u> .	A	Ħ,	СНЭ	CH(CH ³) ²	снз	C2HS	C2HS	C3H2	i-C ₃ H ₇				C2HS	C(CH	CHSC
25		× E	, z	2n	H	x	Ħ	H	×	H	×	×	×	H	×	x	×	I
30		4	— <u>+</u>	>	CJ	C	CI	ប	ເວ	CI	CI	CI	C	CI	ប៊	C	CJ	ដ
35				×	CI	ដ	ິເ	CJ	ü	ប	ច	ដ	ប	ប	បី	ប	CI	C
40	Tabelle 1			BspNr.	4	ហ	9	~	80	6	10	11	12	13	14	15	16	17

5									
10		Fp° C							
15		8	x	Ξ	I	Ħ		Œ	I
20			CH ₃	CH2-CH2-S-CH3	H2-S-CH3	H2-S-CH2-C6H5	CH2-C6H5	# Z_Z E B B	CH ₂
25		4	`H	ບ	U	O	O	O	0
		Zn	x	x	I	×	×	x .	æ
30	(bunz	>-	ប	ប	CI	CI	CI	CI	CI
35	(Fortset	×	ប	CJ	ប	ជ	CJ	ប	CJ
40	<u>Tabelle 1</u> (Fortsetzung)	BspNr.	18	19	20	21	22	83	24
45									

50

. 55

5		Fp⁰ C								> 230	223					225		
10		В	I	x	I	æ	Ŧ	I	I	I	CH ₃	СНЗ	c_2H_5	CH ₃	CH ₃	-(CH ₂) ₂ -	·(CH ₂)4-	2)2-
15					A1			41								•	- (CH2	-(CH)
20		Ą	н	снз	CH(CH3)5	æ	CH ₃	CH(CH ₃) ₂	H	снз	снз	C2H5	C2H5	C ₃ H ₂	i-C3H7			
25		2 _n	6-01	6-C1	6-C1	Ŧ	x	×	6-CH ₃	6-CH3	6-CH ₃	6-CH3	€-СН3	6-CH ₃				
30	(Bunz	~	I	Ħ	Ħ	СНЗ	снз	снз	снэ	снэ	снз	снз	CH ₃	СНЭ	снз	снз	CH ₃	СНЭ
35	Fortset	×	C	CI	CI	CH ₃	CH ₃	CH3	снз	СНЗ	CH ₃	СНЭ	CH ₃	CH ₃	CH3	CH ₃	CH ₃	СНЗ
40	Tabelle 1 (Fortsetzung)	BspNr.	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

10		Бр°С			> 220							
		EA	x	æ	Ŧ	ĸ	H	Ħ	I		x	H
20		A	6-сн3 С2Н5	C(CH ₃) ₃	$cH_2cH(cH_3)_2$	CH C ₂ H ₅	CH2-CH2-S-CH3	CH2-S-CH3	CH2-S-CH2-C6H5	CH2-C6H5	H N N N H	CH ₂
25		z _n	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH3	6-CH3	6-CH3	6-CH ₃	6-сн ₃	6 - CH ₃
30	(Bun	+		CH3		снз	CH3	снз	СНЭ	СНЗ	снэ	снз
35	(Fortsetz	×	снз	СНЗ	CH ₃	CH ₃	СНЗ	CH3	CH3	снз	CH3	СНЗ
40	Tabelle 1 (Fortsetzung)	BspNr.	41	42	43	44	45	46	47	48	49	20

--

45

5			Fp° C							٦.	3)2	H2-	с(сн ₃) ₂	H2)8-
10			R1	снз	снз	C(CH ³) ³	снз	(сн ³) ⁵ сн-	-э ^в (Енэ)	CH3-(CH ₂)3-	C2H5-C(CH3)2	- ² нэ-э [£] (Енэ)	(CH ₃) ₂ CH-C(CH ₃) ₂	CH2 = CH - (CH2) 8 -
20		(Ib)	В	Ħ	Ħ	×	снз	снз	CH ₃	снз	снэ	снз	снз	cH ₃
25	×	z n	V	Ħ	CH ₃	CH ₃	CH ₃	CH3	CH ₃	снз	снз	снз	снз	снз
30	2 m m	T E	Y Z _n	С1 Ж	C) H	C1 H	С1 Н	С1 Н	Cl H	C1 H	C1 H	C1 H	С1	C) H
35			×	CI	ប	ប	ຜ	ເວ	ប	G	CI	CI	ບີ	C
40	Tabelle 2		BspNr.	51	25	53	54	55	26	22	S B	59	09	61

EP 0 456 063 A2

		Fp° C						
5			_	H _S	_	_	-	
10		R1	H ₃ CCH ₃	C4H9-CH-C2H5	C1 CH ₃	н ₃ с-о—	H ₃ C-0 CH ₃	H ₃ C
15			m		m	Ħ		
20		æ	CH3	CH ₃	CH3	CH3	CH ₃	СНЗ
25		A	СНЗ	снэ	CH ₃	снз	СН3	снз
		2 _n	æ	x	æ	Ħ	I	I
30	tzung)	>-	ច	CJ	C1	CJ	CI	CI
35	2 (Fortsetzung)	×	G	5	C	CJ	CJ	C1
40	Tabelle ;	BspNr.	8	£ 9	64	65	99	29

5		₽p⁰ C						
10			н ₃ с-s-сн ₂ -	CcH ₃		OCH3	r.	
15		R1	нзс	٩^٩	ρ^,		000н3	→ оо [€] н
20		æ	снз	CH3	СНЗ	CH ₃	CH ₃	CH ₃
25		٧	СНЗ	СНЗ	CH ₃	CH3	CH ₃	снз
		2 _n	æ	x	æ	æ	×	×
30	(gunz	>-	ប	C1	ü	CJ	CJ	C1
35	Fortset	×	C1	G	CI	C1	C1	C
40	Tabelle 2 (Fortsetzung)	BspNr.	89	69	20	7.1	22	73

5		Fp ^e C					
10			CH ₃			NO N	
15		R1		E I	Н3с		NO ₂
20		В	СНЭ	CH3	CH ₃	CH ₃	CH ₃
25		4	СНЗ	СНЗ	снз	CH ₃	CH ₃
30		2n	æ	æ	Ħ	æ	æ
35	tzung)	>	C1	C1	CI	ü	G
	(Fortsetzung)	×	C1	CI	CI	CI	CJ
40	N	Nr.					
45	Tabelle	BspNr.	7.4	75	92	22	78

EP 0 456 063 A2

5		₽p° C					
10			\downarrow	5			
15		R1	O _Z NZO		Ų, i	C1	
20		В	CH ₃	CH ₃	снз	CH3	СНЭ
25		Ą	CH ₃	CH ₃	снз	CH ₃	снз
30		2n	¤	æ	æ	Ħ	Ħ
35	tzung)	> -	CI	ü	ü	CJ	ប
33	Fortse	×	CI	ច	CI	CJ	C1
40	Tabelle 2 (Fortsetzung)	-Nr.					
45	Tabe	BspNr.	79	80	81	82	83

		Fp⁰ C										
5									H3)2	t m		
10				j		12,3-	CH3)2	-CH2-) - -	(CH ₂)	снз	1-C2H5
15		R1	ţ	6 n d	(CH ₃) ₃ C-	СН3-(СН ²⁾³⁻	C2H5-C(CH3)2	(сн ³) ³ С-сн ² -	(сн ³) ⁵ сн-с(сн ³) ⁵	CH ₂ =CH-(CH ₂)8-	C1 H ₃ C	C4H9-CH-C2H5
20		æ	ē	E 1	CH ₃	CH ₃	СНЗ	снэ	снз	снэ	СНЗ	снз
25		4	5	C2n2	C2H5	C ₂ H ₅	C2H5	C2H5	c ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C2H5
30		2 _n	5	ב	: :::	I	r	Ξ	r	Ħ	æ	r
	(gunz	>	5	3 5	; ;;	ដ	ü	ប	CI	CI	CJ	C
35	(Fortsetzung)	×	Ę	3	ទី បី	CI	C	ច	ü	CJ	C1	
40	8 2 (F	ı.										
4 5	Tabelle 2	BspNr.	0	יי על מ	86	87	8	8	06	91	8	6

EP 0 456 063 A2

5		₽p⁰ C								
10	~		× cH ₃	CH ₃	× cH ₃		н ₃ с-s-сн ₂ -	$\stackrel{CH_3}{\sim}$	C2H5	осн ₃
15		R1	611	—э ^с н	H ₃ C-0—	H ₃ C H ₃ C	H3C-			
20		В	снэ	CH ₃	CH ₃	снз	снз	снз	СНЗ	снэ
25		A	C ₂ H ₅	C2H5	C ₂ H ₅	C2HS	C2H5	c ₂ H ₅	C ₂ H ₅	C2H5
30		2 _n	Ħ	Ħ	Ħ	æ	æ	Ħ	x	x
	(sang)	*	ប៊	C1	CJ	C ₁	ជ	ü	CI	ប
35	(Fortse	×	ប៊	Ü	C1	ü	C1	ច	C1	.
40	Tabelle 2 (Fortsetzung)	BspNr.		95	96	26	98	66	100	10
45	Ta	Bs	·	·	•	•	۷.	•	10	101

EP 0 456 063 A2

5		₽p ⁰ C		ı				
15		R1	осн3	Н³со√	CH ₃	CH ₃	H ₃ C	NO2
20		æ	СНЗ	снз	CH3	CH3	снэ	CH3
25			C2H5	C ₂ H ₅	C2H5	C2H5	C2H5	C2H5
30	_	2 _n	æ	Ħ	×	x	H 	Ħ
35	atzung	>-		CI	C]	CI	CI	C1
	(Fortsetzung)	×	C1	ប	C1	ប	C1	C
40 .	Tabelle 2	BspNr.	102	103	104	105	106	107

50 -

Ç

EP 0 456 063 A2

		₽p⁰ C						
5		_						•
10			ı	1	I	ı	ı	<
15		R1	No ₂	OZN			C1-C1	
20		В	СНЗ	CH3 OSN	снз	CH ₃	снз	СНЭ
25		A	C2HS	C2H5	C2H5	C2HS	C2HS	C_2H_5
30		2 ⁿ	æ	I	×	ĸ	×	Ħ
35	tzung)	>	ជ	ເ	ប៊	CJ	ü	CJ
	(Fortse	×	G	C1	CI	CI	C1	Cl
40	Tabelle 2 (Fortsetzung)	-Nr.						
45	Tabe	BspNr.	108	109	110	111	112	113

		Fp° C										
5		īz,							0,1			
10		R1	снз	(CH ₃) ₂ CH-	(CH ₃) ₃ C-	сн ³ -(сн ⁵) ³ -	C2H5-C(CH3)2	'сн _з) _з с-сн _г -	(сн ³⁾ 2сн-с(сн ³⁾ 2	CH2=CH-(CH2)8-	C1 CH3	C4H9-CH-C2H5
20		В	C2H5	C ₂ H ₅	C2HS	c_2H_5	C2H5	C2H5	C ₂ H ₅	c ₂ H ₅	C2H5	C2H5
25		V	C2H5	C2H5	C2HS	C2H5	C ₂ H ₅	C2H5	C2H5	C2H5	C2HS	C2H5
30		2 _n	H	Ħ	×	x	Ħ	æ	ĸ	æ	×	Ξ
	(gun:	>-	ប	ប	ច	ប	ដ	ဌ	ប៊	ខ	G	C
35	Tabelle 2 (Fortsetzung)	×	ü	CI	C	CJ	CJ	CI	ບ	ເລ	C1	ü
40	18 2 (Nr.										
45	Tabel	BepNr.	114	115	116	117	118	119	120	121	122	123

EP 0 456 063 A2

4 5	40	35	30	25	20	15	5	
Tabelle	Tabelle 2 (Fortsetzung)	etzung)						
BapNr.	×	> -	$^{2}_{n}$	⋖	В	R1	Fp⁰ C	ပ
124	CI	C	x	C2H5	C2HS	c1 CH3		
125	ប	C1	æ	c ₂ H ₅	C ₂ H ₅	H_3^{C-O}		
126	CI	C1	×	C2H5	C2H5	H ₃ C-0 CH ₃		
127	C1	CI	×	C ₂ H ₅	C2HS	H ₃ C H ₃ C		
128	C1	CJ	I	C2H2	C2H5	H3C-S-CH2-		
129	C1	C 3	æ	C2H5	C2H5	CH3		
130	C	CI	×	c ₂ H ₅	c ₂ H ₅		<u>"</u>	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C2H5 C2H5 C2H5 C2H5
25 C2 H5 C2 H5 C2 H5 C2 H5 C2 C3 C3 C3 C3 C3 C3 C4
₃₀ г н н н
zung) Y C1 C1 C1
Fortsetzung) X Y C1 C1 C1 C1 C1 C1 C1 C1
Tabelle 2 (BspNr.

EP 0 456 063 A2

Tabelle 2 ((Fortsetzung)		7 30	25	₂₀ 🕮	10 T 15	S S
137	61	. 61	т ж	C ₂ H ₅	c ₂ H ₅	NO2	
138	21	C1	¤	C2H5	C2H5	Noz	
139	CI	ប៊	x	C2H5	C2H5	N ² O	
140	61	CI	I	C ₂ H ₅	C2H5	5	
141	ច	CJ	Ħ	C2H5	c ₂ H ₅	C10	
142	CI	ដ	æ	C2H5	c ₂ H ₅	C1	
143		G	×	C2H5	C2H5		

5		Fp° C										
10			снз	H ₃) ₂ CH-	(CH ₃) ₃ C-	сн ₃ -(сн ₂) ₃ -	C2H5-C(CH3)2	-2но-ов (вно)	(снз) ² сн-с(снз) ²	CH2=CH-(CH2)8-	C1 CH ₃	с ₄ н9-сн-с ₂ н5
15		R ₁	CH	0)	Ü	CH	ບິ	9	0	S		Ω ₄
20		æ	СНЗ	CH3	снз	снз	снз	снз	снз	снз	снз	cH3
25		A	C3H2	C3H2	C3H2	C3H2	C3H2	C ₃ H ₇	C3H2	C3H7	C3H2	C ₃ H ₇
30		2 _n	Ξ	Ħ	Ξ	H	x	H	æ	×	×	Ħ
	(Gun	>-	ច	ប	C	CI	CJ	CI	ប	G	CI	ប
35	Tabelle 2 (Fortsetzung)	×	C	ដ	C1	CI	ប	ប	CJ	CJ	ច	C1
40	elle 2 (BspNr.	4	ro L	9	2	ω	6	0	T.	8	eg.
45	Tab	Ввр	144	145	146	147	148	149	150	15	152	153

EP 0 456 063 A2

5	9	Fp° C								
10			c1 CH ₃	3c-07 H3c CH3	-0- CH ₃		н ₃ с-s-сн ₂ -	CH ₃	C ₂ H ₅	OCH ₃
15	ţ	ř.		н ₃ с-о-	н ³ С-О-	ж ж ж ж	H3C	~	°~°	
20	¢	m	СНЗ	снз	снз	CH ₃	снз	енэ	снз	снз
25	•	٧	C ₃ H ₇	C ₃ H ₂	СЗН7	C3H2	C3H7	C3H2	C3H2	C3H2
30	ŧ	Z _n	æ	I	Ħ	Ħ	x	æ	π	×
	(gunz	>	ເວ	CJ	ច	ប	CJ	CJ	CJ	CJ
35	(Fortsetzung)	×	C	Cl	CI	C1	C1	5	C	C
40	Nj	BspNr.	154	155	156	157	158	159	160	161

5		Fp⁰ C							
10		1	OCH ₃	\Diamond	CH ₃	CH ₃	\Diamond	NOS	No2
15 .		R1		H ³ CO-			H ³ C-		
20		æ	CH3	CH ₃	СНЗ	снэ	CH3	СНЗ	снз
25		4	C ₃ H ₇	C3H2	C3H7	C ₃ H ₇	C3H2	C3H2	C ₃ H ₂
		2n	x	Ħ	æ	æ	×	ヸ	Ξ
30	tzung)	>	បី	C1	CI	C1	ច	CJ	ជ
35	(Fortsetzung)	×	CI	G	G	C	CJ	ដ	
40	Tabelle 2	BspNr.	162	163	164	165	166	167	168

EP 0 456 063 A2

5		Fp° C										
10				រី 🉏		\downarrow			(сн ₃) ₂ сн-	-) ³ C-	сн ³ - (сн ²) ³ -	с ₂ н ₅ -с(сн ₃) ₂
15		R1	N20		₩ ₂	C1		CH3	(сн ₃	(CH ₃	снз-	C2H5
20		В	снз	енэ	сн _э	снэ	снз		снз			CH ₃
25		K	C ₃ H ₇	C ₃ H ₇	C ₃ H ₇	c _{3H7}	C ₃ H ₇	i-C3H7	i-C3H2	i-C3H7	i-C3H7	i -C ₃ H ₇
		2 _n	Ħ	×	Ħ.	×	æ	Ħ	æ	×	×	×
30	(bunz	> -	C1	C1	CJ	CJ	CI	₁	CJ	Cl	ដ	ដ
35	(Fortsetzung)	×	ប៊	បី	ប៊	C1	ü	ເວ	CJ	CJ	C1	C1
40	Tabelle 2 (F	BspNr.	169	170	171	172	173	174	175	176	177	178

EP 0 456 063 A2

		Fp⁰ C									
5			1	CH ₃) ₂	-8(ίν				
10		R1	(снз)зс-сн2-	(сн ³) ² сн-с(сн ³) ²	СН2=СН-(СН2)8-	C1 CH3 CH3	C4H9-CH-C2H5	C1 CH3	H ₃ C-0	H ₃ C-0 CH ₃	
15			_								о ` о е н н эс
20		а	CH ₃	СНЗ	снз	снз	снз	снз	снз	снэ	СНЗ
25		¥	i-C ₃ H ₇	i-C ₃ H ₇	i -C ₃ H ₇	i-C ₃ H ₇	i-C3H7	i-C3H7			
20		2 _n	I	I	Ħ	æ	×	æ	ĸ	x	x
30	(Sunz	۲	CJ	G	C1	C1	ເວ	CI	ប៊	ជ	CJ
35	Fortse	×	ប	CI	CI	C1	င	ເລ	ប៊	CI	
40	Tabelle 2 (Fortsetzung)	BspNr.	179	180	181	182	183	184	185	186	187

EP 0 456 063 A2

5		Fp⁰ C								
10		R1	н ₃ с-s-сн ₂ -	CCH ₃	C_{2H_5}	OCH3	OCH ₃		CH ₃	g C
15		æ	снз	СНЗ	снз	снз	снз	сн ³ н ³ со-	снэ	снэ
20		4	i-c ₃ H ₇	i-C3H7	i-c ₃ H ₇	i -C3H7	i-C3H7			
25		z _n	x	x	x	ĸ	æ	æ	æ	x
30	(gunz	>	C	CI	CI	C1	ច	C	CI	CI
35	(Fortsetzung)	×	C1	CJ	ច	CI	ប	ü	5	5
40	Tabelle 2	BspNr.	188	189	190	191	192	193	194	195

5		₽p°C	Ţ	NOS	人	Ļ	5 . 人	人	人
15		R1	H ₃ C		So S	OZN			
20		æ	снэ	снэ	снз	СНЗ	снэ	снз	снз
		V	i-C ₃ H ₇ CH ₃	i-C ₃ H ₇	1-C ₃ H ₇	i-C ₃ H ₇	i -C3H7	i -C ₃ H ₇	i-c ₃ H ₇
25		z _n	×	I	æ	π	æ	Ħ	Ħ
30	(Bunz	>-	C1	CJ	CJ	C1	ເວ	CJ	CI
35	(Fortsetzung)	×	CI	CI	CI	C1	C1	C1	CJ
40	Tabelle 2	BspNr.	196	197	198	199	200	201	202

EP 0 456 063 A2

		Fp ^o C											
5							-E(H3)2	CH2-	(CH ₃) ₂ CH-C(CH ₃) ₂	CH2)8-	снз	c ₂ H ₅
10				снз	CH3) SCH	CH3)3C-	$CH_3 - (CH_2)_3 -$	с ₂ н ₅ -с(сн ₃₎ ₂	(сн ³) ³ С-СН ² -	сн ³) ² сн	сн2=сн-(сн2)8-	$\begin{array}{c} c_1 \\ H_3 c \\ \end{array}$	C4H9-CH-C2H5
15		R1		U	•	•	J	J	Ū		J		Ü
20		æ	i-c ₃ H ₇ CH ₃	-(CH ₂)4-	H2)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4~	-(CH ₂) ₄ -
25		4	υ •••	D) -	(C) -) -	- (۵	D) -	D) -	(D) -	י (מ	ان ا	D) -
30		2 _n	Ħ	I	I	×	X	Ħ	I	Ħ	Ħ	Ħ	I
	atzung)	> -	C1	ប		CI		ប	C1	C1	C1	C1	ដ
35	(Forts	×	C1	CI	CJ	CI	CJ	C	C1	CI	CI	ប៊	CI
40	<u>Tabelle 2</u> (Fortsetzung)	BspNr.	203	204	205	206	202	208	509	210	211	212	213

EP 0 456 063 A2

5		Fp ⁰ C							
10			⟨ CH ₃	CH ₃	CH ₃		-2	CH ₃	C2H5
15		R1	15	H ₃ C-0	H ₃ C-0	H ₃ C	н ³ с-s-сн ⁵ -		
20		æ	- 4-	- 7 -	- 4 -	.)4-	.)4-	- 4-	- 6 (
25		A	-(CH ²) ⁴ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ²) ⁴ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-
30		2 _n	æ	æ	x	<u> </u>	×	Ħ	æ
05	(bunz	>	C1	C1	ü	Cl	C1	CI	C1
35	ortset	×	C	CJ	Cl	C	ជ	G ₃	ច
40	Tabelle 2 (Fortsetzung)	-Nr.							
45	Tabe	BspNr.	214	215	216	217	218	219	220

EP 0 456 063 A2

5 10		R ¹ Fp ⁰ C	OCH ₃	OCH ₃		CH ₃	CH ₃	
20		В	> 4-		-,4 - H ₃ co	> 4 <)
25		A	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	
30	(bunz :	Y Z _n	С1 Н	С1 Н	С1	C1 H	С1 Н	5
35 40	Tabelle 2 (Fortsetzung)	×	C1	C1	CJ	C1	C1	5
45	Tabelle 2	BepNr.	221	222	223	224	225	766

5		Fpº C	<u>.</u> 84 .						{
15		R1	NO2	Nos	$\bigcup_{N^{Z_0}}$	5	្តិ	CI	
20		В	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -			
30		2 _n	æ	#	Ħ	π	Ħ	.	¤
35	tzung)	>	CI	C1	ເ	C1	C1	CI	CJ
	Fortse	×	G	C1	C1	Cl	C1	CJ	
40 45	Tabelle 2 (Fortsetzung)	BspNr.	227	228	229	230	231	232	233

50

55 ·

4 5	35 40	05	30	25	20	15	10	5
Tabelle 2	(Fartsetzung)	(gunz						
BspNr.	×	*	Zn	«	В	R1		Fp⁰ C
	į	į	;	į		į		
234 4	ច ច	ច ច	= 2	-(CH2)	ונו	CH3	#H.J. (
236	ចី ចី	ដ	: : :	- (CH ₂)	n n	(CH ₂	-56-	
237	ច	c ₁	I	- (CH ²)	υ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	CH3.	сн ₃ ~(čн ₂) ₃ -	
238	C	ប	I	-(CH ₂) ₅ -	ا ئ	C2H5	C2H5-Ç(CH3)2	
							_	
239	Cl	ប៊	I	-(CH ²) ² .	l S	(CH ₃	- ² но-о ^є (^є но)	
240	CJ	ប៊	=	-(CH ₂)5	ري در	(CH ³	(CH3)5CH-C(CH3)5	61
							_	
241	Cl	CJ	I	-(CH ²) ² -	ı L	CH ₂ =	CH ₂ =CH-(CH ₂)8-	
						C	}	
242	ü	CI	Ħ	-(CH ₂) ₅ -	្រ	H ₃ C-	$\searrow_{_{\mathrm{CH}_3}}$	
243	C	CI	I	-(CH ₂) ₅ -	- LG	C4H9	C4H9-CH-C2H5	
						Ĉ	· - 1	
244	CJ	ប៊	I	-(CH ₂)5	- S -		CH ₃	

5		Fp ^o C							
10			° cH₃	CH ₃		-2-	CH ₃	\c2Hs	- Д
15		R1	H ₃ C-0	H ₃ C-0	H ₃ C	H3C-S-CH2-			
20		æ	.5-	5(-2) ₅ -	2)5) ₅ -) ₅ -
25		Ą	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(C ₂ H ₂)5	-(CH ₂) ₅ -	-(CH ^S)-
30		2 _n	¤	x	æ	Ħ	x	I	×
	(Bunz	>	CI	C1	ü	C	ບ	C	ប៊
35	Fortset	×	CJ	CI	CI	CJ	ប៊	CJ	C1
40	Tabelle 2 (Fortsetzung)	BspNr.	245	246	247	248	249	250	251
45	Tal	Bsj	ñ	Ň	Ň	Ň	Ň	Ñ	Ñ

5		Fp° C							
10 15		R1	осн3	\Diamond	E G	CH ₃	\Diamond	NO2	No ₂
20		æ	(CH ₂) ₅ -	-(CH ₂) ₅ - H ₃ CO-	· -(CH ₂) ₅ -	-(CH ₂) ₅ -	-(сн ₂) ₅ - н ₃ с-	-(CH ₂) ₅ -	-(CH ²) ² -
25		Z _n A	1						
	_	7	Ħ	I	I	I	I	I	I
30	gunz	>-	CI	C1	ច	ច	C1	CI	CI
35	(Fortsetzung)	×	CI	ជ	ប	CI	61	CI	
40	Tabelle 2	BspNr.	252	253	254	255	256	257	258

5		Fp ^o C											
10			1	ij Д	Ţ	Ţ	\)3)ع		
15		R1	N ² O			C1		СНЗ	C(CH ₃)3	снз	С(СН3	CH ₃	CHU
20		В	.)5-	- 9 -	.)5-	.) 5 -	- 5-2	Ħ	H	H	Ħ	I	7
25		4	-(CH2)5-	-(CH ₂) ₅ -	Ħ	Ħ	снз	снз	H	2			
		Zn	Ħ	æ	Ħ	I	x	6-01	6-C1	6-C1	6-C1	Ξ	a
30	(Buna	> -	CI	CI	C3	C 3	CI	×	I	I	I	снз	מ
35	ort,set 2	×	CI	C1	ប៊	c1	C 1	C	CJ	C	C1	CH3	į
40	Tabelle 2 (Fort,setzung)	BspNr.	259	260	261	262.	263	264	265	266	267	268	0

EP 0 456 063 A2

		Fp° C												132		152
5									m							
10		R1	снз	C(CH ₃) ₃	снз	сн(сн ³) ²	CH ₃) ₃	CH3)2CH2C1	сн3)2сн2-0-сн	CH2-S-CH3	GH ₃	i i		<u>.</u> e	CH(CH ₃) ₂	c(c _H ³) ³
15		".	່ວ	ŭ	ប់	ប់	ວັ	ວັ	ິບ	ភ	0~0	Ť		снз	Ü	ິວ
20		В	x	x	ĸ	×	Ħ	x	Ħ	x	×	æ	ж	x	x	I
25		Ą	снэ	снз	I	r	I	I	I	x	Ħ	æ	ĸ	снз	снз	СНЭ
23		2 _n	×	H	6-CH3	6-CH3	6-CH3	6-CH3	6-CH3	6-CH ₃	^Е нэ-9	^Е но-9	€-сн³	6-CH ₃	6-CH3	6-сн3
30	(Buna	*	СНЭ	снэ	снз	снэ	СНЭ	снз	снз	СНЗ	снэ	СНЗ	CH ₃	снз	СНЭ	снз
35	(Fortset:	×	CH ₃	СНЭ	CH3	СНЭ	СНЗ	СНЗ	CH3	снз	cH ₃	снз	снэ	CH3	CH3	снэ
40	Tabelle 2 (Fortsetzung)	BspNr.	270	271	272	273	274	275	276	277	278	279	280	281	282	283

BepNr. X Y Zn A B R¹ Fp0c 284 CH3 CH3 CH3 H C(CH3)2CH2C1 Fp0c 285 CH3 CH3 H C(CH3)2CH2C1 Fp0c 286 CH3 CH3 H C(CH3)2CH2-O-CH3 286 CH3 CH3 H C(CH3)2CH2-O-CH3 286 CH3 CH3 H C(CH3)2CH2-O-CH3 287 CH3 CH3 H C(CH3)2CH2-O-CH3 288 CH3 CH3 H C(CH3)2CH2-O-CH3 289 CH3 CH3 H C(CH3)3CH2-O-CH3 290 CH3 CH3 H C(CH3)3CH2-O-CH3 291 CH3 CH3 H C(CH3)3CH2-O-CH3 292 CH3 CH3 H C(CH3)3CH2-O-CH3 293 CH3 CHCH3 CH3 CH3 CH3 294 CH3 CHCH3 CH4 CHCH3 CH4 2	40	35		30	25	20	10	5	
T Z _n A B R¹ CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C0-CH ₃ CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C0-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ <t< td=""><td>14</td><td>ortset.</td><td>(gun;</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	14	ortset.	(gun;						
CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH ₃ H CH ₂ -S-CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ -S-CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₃ H C(CH ₃) ₃	1	×	>-	2 _n	4	æ	R1	F	ပ္မွင္
CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ -0-CH ₃ CH ₃ 6-CH ₃ CH ₃ H C(CH ₃) ₂ CH ₂ -0-CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃		į	-		;				
CH3 6-CH3 CH3 H C(CH3)2CH2-0-CH3 CH3 6-CH3 CH3 H CH2-S-CH3 CH3 CH3 H CH2-S-CH3 CH3 CH3 H CH3-S-CH3 CH3 CH3 H CH3-S-CH3 CH3 CH3 H CH3-S-CH3 CH3 CH(CH3)2 H CH(CH3)2 CH3 CH(CH3)2 H CH(CH3)3 CH3 CH(CH3)2 H CH(CH3)3 CH3 CH(CH3)2 H CH(CH3)2 CH3 CH(CH3)3		СНЗ	CH3	6-сн3	cH3	Ξ	$c(cH_3)_2cH_2c1$		
CH ₃ 6-CH ₃ CH ₃ H CH ₂ -S-CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₂ -S-CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CI CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₂ -S-CH ₃		СНЗ	СНЗ	6-CH3	СНЗ	x	$c(cH_3)_2 cH_2 - 0$	СНЗ	
CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -O-CH ₃		снз	СНЗ	6-CH3	снз	Ħ	CH2-S-CH3	1	
CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH ₃ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1		снз	снз	е-сн ³	снз	Ħ	CH ₃		
CH ₃ 6-CH ₃ CH ₃ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -0-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -0-CH ₃		снз	снз	6-CH ₃	снз	Ħ	C ₁		
CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -0-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -0-CH ₃		CH3	снз	6-CH ₃	снз	æ			
CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH(CH ₃) ₂ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ C1 CH ₃ 6-CH ₃ CH(CH ₃) ₂ H C(CH ₃) ₂ CH ₂ -0-CH ₃ CH ₃ 6-CH ₃ CH(CH ₃) ₂ H CH ₂ -5-CH ₃		снз	CH3	6-CH ₃	снсснз		CH3	•	188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CH ₃	СНЗ	6-CH3	снсснз		CH(CH ³) ²		
$CH_3 ext{ } 6-CH_3 ext{ } CH(CH_3)_2 ext{ } H$ $CH_3 ext{ } 6-CH_3 ext{ } CH(CH_3)_2 ext{ } H$ $CH_3 ext{ } 6-CH_3 ext{ } CH(CH_3)_2 ext{ } H$		СНЭ	CH ₃	6-CH3	снсснз		C(CH ₃) ₃	.,	213
CH_3 6- CH_3 $CH(CH_3)_2$ H CH_3 6- CH_3 $CH(CH_3)_2$ H		CH3	СНЗ	6-CH ₃	снсснз		C(CH ₃) ₂ CH ₂	C1	
сн ₃ 6-сн ₃ сн(сн ₃) ₂ н		CH3	CH3	6-CH3	снсснз		C(CH ₃) ₂ CH ₂	-о-сн3	
		снз	CH3	6-CH3	снсснз		CH2-S-CH3		

5 10		R ¹ Fp ⁰	CH ₃			сн ₃ 169	C2H5	CH(CH ₃) ₂	C(CH ₃) ₂ CH ₂ C1	C(CH ₃) ₂ CH ₂ -0-CH ₃	CH2-S-CH3	CH ₃	
20		B	×	±	ж	×	H	н	H	H	æ	I	.
25		Y	6-сн ₃ сн(сн ₃) ₂	сн(сн ³) ₂	СН(СН ₃)2	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	(10)10 10			
30		Z _n	6-CH ₃	е-сн3	6-CH ₃	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	6-сн3	6-CH ₃	#D - 7
35	(gun;	Y	снз	CH3	CH3	снз	СНЗ	CH3	снз	снз	снз	CH ₃	į
40	(Fortsetz	×	СНЗ	СНЗ	CH ₃	CH3	CH3	CH3	CH3	CH3	снз	СНЭ	į
4 5	Tabelle 2 (Fortsetzung)	BspNr.	296	297	298	299	300	301	302	303	304	305	Č

5		Fpº		184				e H	
10					сн(сн ₃)2	C(CH ₃) ₃	c(ch ₃) ₂ ch ₂ c1	с(снз)2сн2-0-сн3	CH ₂ -S-CH ₃
15		R1	1	СНЗ	CH(C	5) 0	C(C	C (CI	CHZ
20		m	I	Ħ	×	Ħ	ж	Ħ	Ħ
25		A	6-ch ₃ Ch ₂ CH(Ch ₃) ₂	CH C2H5	CH ₃	CH ^C CH ₃	CH ₂ CH ₃	CH ₂ C ₂ H ₅	CH C2H5
30		z_n	6-CH3	6-сн3	£но-9	6-CH ₃	6-CH3	6-СН3	6-CH ₃
35	(Bun	۲	снз	снз	снз	снз	CH3	CH ₃	снз
40	(Fortsetz	×	CH3	СНЗ	снэ	снз	CH3	снз	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	307	308	309	310	311	312	313

EP 0 456 063 A2

5		Fp ⁰								снз	
10			CH ₃	i i			CH(CH ₃) ₂	c(cH ₃) ₂	c(cH ₃) ₂ cH ₂ c1	с(сн ₃) ₂ сн ₂ -о-сн ₃	CH2-S-CH3
15		R1	γ^ γ	Y		CH3	CHC	0)0	ם(מ	2)2	CH ₂
20		B	æ	π	¤	Ξ	Ħ	Ξ	H	H	Ħ
25		Ą	CH CH3	CH C2H5	CH C2H5	6-СН ₃ -(СН ₂) ₂ SCH ₃	6-CH3 - (CH2)2SCH3	6-сн3 -(сн2)28сн3	6-СH ₃ -(СH ₂) ₂ SCH ₃	6-сн ₃ -(сн ₂) ₂ sсн ₃	6-CH3 - (CH2)2SCH3
30		2 _n	но Ено-9	6-сн3	6-CH ₃	6-CH ₃	6-CH3	6-CH ₃	6-CH ₃	€ - CH ³	€H2-9
35	(Sunz	>	CH ₃	СНЭ	СНЗ	снз	снз	СНЗ	СНЭ	снэ	снэ
40 .	Tabelle 2 (Fortsetzung)	×	CH ₃	СНЗ	CH ₃	СНЭ	СНЭ	CH3	CH3	CH3	СНЗ
45	Tabelle 2	BspNr.	314	315	316	317	318	319	320	321	322

5		Fp				94	95	216		> 230		183	175	22
10			CH ₃	io C			3)3		-HJZ	- ₂ c-	CH3-(CH2)3-	C2H5-C(CH3)2	- ² нэ-э ^в (сн ³ -	(снз)5сн-с(сн3)5
15		R1			\	СНЭ	-с(сн ³) ³	CH3	(CH ₃)	(CH ₃)	сн3-(C2H5-	(CH ₃)	(CH ³)
20		æ	Ħ	ĸ	I			снэ	CH ₃	снэ	снз	снэ	СНЗ	снз
25		Ą	6-сн ₃ -(сн ₂) ₂ sсн ₃	6-сн ₃ -(СН ₂) ₂ SCH ₃	6-СН _З -(СН ₂) ₂ SCH ₃	-(CH ₂) ₂ -	$-(CH_2)_2^-$	снз	снз	CH3	снз	снэ	СНЗ	снз
30		2 _n	е-снз -	- Єно-9	е-сн ³ -	6-CH3	6-CH ₃					6-CH ₃	6-CH ₃ (6 -CH ₃ (
35	(gunz	٨	CH3	снз	снз	CH3	снз	снз	снз	СНЗ	снз	снз	снз	снз
40	(Fortsetzung)	×	снэ	СНЗ	СНЭ	CH3	снэ	СНЭ	СНЭ	СНЭ	CH ₃	СНЗ	снз	снэ
45	Tabelle 2	BspNr.	323	324	325	326	327	328	329	330	331	332	333	334

EP 0 456 063 A2

		Fpº								
5										
10		R1	СН2=СН-(СН2)8-	$^{\text{c1}}$	C4H9-CH-C2H5	C1 CH ₃	н ₃ с-о—	H ₃ C-0 H ₃ C-0	ي ر	н ₃ с-s-сн ₂ -
15			O	O H	ပ		±°,	E E	ж ³ с,	II,
20		В	снз	снз	снз	снз	снз	снз	снз	снз
25			m	m		m	m	m	m	
		<	СНЗ	СНЭ	снз	снэ	снз	снз	СНЗ	снз
30		Zn	6-CH ₃	6-CH ₃	6-сн3	6-СН3	6-СН3	6-CH ₃	^Е но-9	€но-9
35	(Bunz	>	снэ	СНЭ	снз	CH ₃	снз	СНЗ	CH3	снз
40	(Fortset	×	снз	снэ	снэ	СНЗ	СНЗ	CH3	снэ	снз
45	Tabelle 2 (Fortsetzung)	BspNr.	338	336	337	338	339	340	341	342

5		ەر							
ū		Fр							
10			× cH ₃	$\times_{c_2 H_5}$	OCH3			CH ₃	
15		R1				SHOO!	н ³ со-		£
20		B	СНЗ	СНЗ	снэ	снз	снз	снэ	CH ₃
25									
		4	снэ	CH ₃	СКЗ	снз	снэ	c _H 3	CH3
30		$^{2}_{n}$	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3
35	(gunz	¥	CH ₃	СНЭ	СНЗ	СНЭ	СНЗ	СНЗ	CH ₃
40 .	2 (Fortsetzung)	×	СНЗ	снз	CH3	СНЗ	CH ₃	СНЗ	CH3
45	Tabelle	BepNr.	343	344	345	346	347	348	349

EP 0 456 063 A2

5		Fp ⁰							
10				NO Z	Vos 20N		ē 📥		
15		R1	H³C	~	Ž	OZN		~~15	CI
20		В	CH3	CH3	CH3	снз	снз	снз	CH ₃
25									
		<	снз	CH3	снз	CH3	СН3	снэ	снз
30		2 _n	6-CH ₃	6-сн3					
35	(gunz	*	CH ₃	снз	СНЗ	CH3	CH3	СНЗ	СНЗ
40	(Fortset	×	CH3	СНЗ	CH3	снэ	снз	снз	CH ₃
45	Tabelle 2 (Fortsetzung)	BspNr.	. 320	351	352	353	354	355	356

		1											
5		Fр ^о						N		H3)2	l m		
10				m	(сн ³) ² сн-	-2 ^E (EH2)	сн ₃ -(сн ₂)3-	² -с(сн ^{3) 2}	-zнэ-эє(енэ)	(сн ^{3) 2} сн-с(сн ^{3) 2}	CH ₂ =CH-(CH ₂) ₈ -	H ₃ C CH ₃	C4H9-CH-C2HS
15		R1		CH3	Ċ	5	H	ບັ	3	Ö	Ġ.	i ri	C4!
20		В	снз	СНЭ	СНЭ	СНЗ	снз	снэ	снз	CH3	снз	снз	CH3
25													
		A	снэ	C2HS	c_2H_5	c_2H_5	$c_{2}H_{5}$	c_2H_5	C2H5	C2H5	c_2H_5	C2HS	c_2H_5
30		2 _n	6-CH ₃	6-CH ₃	6-CH3	6-CH3	€-СН ³	€-сн³	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃	6-сн3
35	(Buna	٨	снз	CH ₃	снэ	СНЭ	снз	CH ₃	снз	снэ	снэ	СНЭ	СНЭ
40	(Fortsetz	×	снз	СНЭ	CH3	СНЭ	снэ	снэ	СНЭ	снз	снз	СНЭ	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.	357	358	359	360	361	362	363	364	365	366	296

EP 0 456 063 A2

5		1 Fp ⁰	1 CcH ₃	₁ с-о _{Н3} с сн ₃	-0 CH ₃		н ₃ с-s-сн ₂ -	H.	$\bigvee_{C_2H_5}$	i
15		R1	-t5	-Э ^Е Н	н ₃ с-о-	де н зое н	Н ³ С	~~		
20		6	СНЗ	снз	снз	снз	CH3	снз	снз	
25		A	C2HS	c ₂ H ₅	C2H5	C2Hs	C2HS	C2HS	c ₂ H ₅	
30		2 _n	6-CH ₃	€н⊃-9	е-сн ³	6-CH ₃	é-сн ³	6-сн3	£но-9	
35	(gu	*	сн3 (сн3 (CH ₃	CH ³ (сн3 (снз (сн3 (
	Fortsetzung)	×	снз	снз	снэ	снз	снз	снз	Енэ	
40	_									
4 5	Tabelle 2	BepNr.	368	369	370	371	372	373	374	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 9 [[Tabelle 2 (Fortsetzung)	35 (bunz	30	25	20	10	5
CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ CH ₃ 6-CH ₃ C ₂ H ₅		×	. *	2 _n	Ą	В	R1	P. Oct.
CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ CH ₃ H ₃ CO CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃		снз	СНЗ	6-CH ₃	c ₂ H ₅	СНЗ	OCH ₃	
CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ CH ₃ 6-CH ₃ C ₂ H ₅		снэ	СНЗ	6-CH3	C2H5	снэ	Н3со	·
CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ C		CH3	СНЗ	6-CH ₃	C2H5	СН3	CH ₃	
CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃ H ₃ C CH ₃ 6-CH ₃ C ₂ H ₅ CH ₃		СН3	снз	6-CH ₃	C2H5	CH ₃	CH ₃	v
сн ₃ 6-сн ₃ с ₂ н ₅ сн ₃ сн ₃		снз	снэ	6-сн3	c ₂ H ₅	СНЗ	H ₃ c	
снз 6-снз С2 ^н 5 снз		CH3	CH3	6-CH ₃	C2H5	CH3	NO2	•
		снз	CH3	6-CH ₃	c ₂ H ₅	CH ₃		

EP 0 456 063 A2

45	40	35	30	25	20	10	5
Tabelle 2 (Fortsetzung)	(Fortset:	(gunz					
BspNr.	×	¥	Zn	¥	В	R ¹	Fр
383	снз	снз	6-СН3	C2H5	СНЗ	OSN	
8. 4.	СНЗ	снз	6-сн3	C2H5	СН _З	ē ↓	
385	СНЗ	снз	£но-9	c ₂ H ₅	СН _З		
386	снэ	СНЗ	6-CH3	C ₂ H ₅	CH3	C1	
387	СНЗ	CH3	6-сн3	C2H5	снз		
388	CH3	CH ₃	е _{но-9}	C2HS	C2H5	CH ₃	
389	CH3	снз	6-CH ₃	C2H5	C2HS	(CH ³) ⁵ CH-	
390	СНЗ	CH ₃	€ - CH ³	c_2H_5	C2H5	-oe (EHO)	
391	снэ	снз	6-CH3	c_2H_5	C2HS	СН ³ -(СН ²) ³ -	
392	CH3	снэ	6-CH ₃	C ₂ H ₅	C2H5	C ₂ H ₅ -C(CH ₃) ₂	3,5

		Fpº									
5		F	CH2-	с(сн ₃) ₂	.H ₂) ₈ -	ָ ב	.n.3 12H5		m	m	
10		1	(сн ³) ³ с-сн ⁵ -	(CH ₃) ₂ CH-C(CH ₃) ₂	CH ₂ =CH-(CH ₂) ₈ -	\times	C4H9-CH-C2H5			\times	
15		R1						0 0	-0- ^{2E} Н	н ₃ с-о- н ₃ с-о-	H 3C
20		В	C2H5	C2H5	C2H5	C2H5	C2H5	C2HS	C2H5	C2H5	C2H5
25			C2H5	C2H5	c ₂ H ₅	c ₂ H ₅	C2H5	c2H5	C2H5	c ₂ H ₅	C ₂ H ₅
		4									
30		2 _n	6-CH ₃	€-сн3	€н⊃-9	€н2-9	ено-9	6-сн3	6-CH ₃	€-сн3	6-CH ₃
35	(Bunz	٨	снз	снз	СНЭ	СНЗ	снз	CH ₃	СНЭ	снэ	CH3
40	(Fortset	×	CH3	CH3	CH3	СНЗ	CH3	СНЗ	CH3	СНЗ	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.	393	394	395	396	397	398	399	400	401

45	40	35	30		25	20	15	10	5
Tabelle 2 (Fortsetzung)	Fortset;	(gunz							
BapNr.	×	,	2 _n	4		В	R1		Fр ⁰
402	СНЭ	снз	€-сн3	C2H5	0	C2H5	H3C-S-CH2-	l O	
403	снэ	снз	6-сн3	C ₂ H ₅	0	c ₂ H ₅		СНЗ	
404	снз	снз	^Е но-9	C2H5	0	c ₂ H ₅		C2H5	
405	CH3	снз	6-CH ₃	C2H5	0	C2HS		och ₃	
406	СНЗ	CH ₃	6-CH3	C2H5	6	C2HS	OCH ₃	ı	
407	снз	снз	^е но-9	CZHS	O	C2HS	H ₃ CO	\downarrow	
408	снз	снэ	6-CH ₃	C2H5	ŭ	c ₂ H ₅		CH ₃	

5		Fpº							
10			1		NO _S	ı	1	5. 人	į
15		R1	e H	Н3С	2	O ₂ o ₂	O ₂ N ₂ O		\bigcirc ²
20		В	C2H5	C2H5 F	C2H5	C2H5	C2H5 (C2H5	c ₂ H ₅
25		A	C2HS	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅			
30		Z _n	9-сн3	6-СН3 (6-CH ₃	6-CH ₃	6-CH ₃	€но-9	€+0-9
35	(gun	~	снз	снэ	снз	снз	снз	снз	снэ
40	(Fortsetzung)	×	снэ	СНЗ	СНЗ	CH3	CH3	CH3	снз
45	Tabelle 2	BspNr.	409	410	411	412	413	414	415

5		Fpº											
10		Ē		/		_		33-	CH ³) ²	.сн ₃) ₃ с-сн ₂ -	(сн ³) ² сн-с(сн ³) ²	CH2=CH-(CH2)8-	\.
15	•	R ¹			CH ₃	-нэ ² (снэ)	-э ^E (СНЭ)	$CH_{3}-(CH_{2})_{3}-$	C2H5-C(CH3)2	(CH ₃)	(CH ³) ⁵ (CH2=CH-	CI
20		В	C ₂ H ₅	C2H5	снз	CH ₃	CH ₃	снз	снз	снэ	снз	снэ	2
25													
		4	C2H5	C2HS	C ₃ H ₇	C3H2	C3H2	C3H2	C3H2	C3H2	СЗН7	C ₃ H ₂	, ,
30		Zn	6-CH ₃	6-сн3	6-сн3	6-CH ₃	6-CH3	€H⊃-9	6-CH ₃	6-CH3	6-CH ₃	е-сн3	4-7H
35	(gun	>	снэ	снз	снз	снз	снз	снэ	снэ	CH3	СНЭ	снэ	ב כ
40	(Fortsetzung)	×	СНЗ	снз	СНЭ	CH3	CH ₃	снз	CH ₃	CH3	снз	cH ₃	ָב נ
45	Tabelle 2 (BspNr.	416	417	418	419	420	421	422	423	424	425	424

4 5	40	35	30	20	20 25	10	5
Tabelle 2	2 (Fortsetzung)	(guns					
BspNr.	×	>-	2 _n	V	В	R1	Fp
427	СНЗ	снэ	6-CH ₃	C3H2	CH ₃	C4H9-CH-C2H5	
428	СНЗ	снз	€-СН3	C ₃ H ₇	CH ₃	C1 CH3	
429	снэ	снз	6-сн3	СЗН7	CH ₃	$^{\mathrm{H_3^{C-O}}}$	
430	снз	снз	€но-9	C ₃ H ₂	снз	H ₃ C-0-1	
431	CH ₃	CH3	6-CH ₃	C3H7	снз	н ₃ с н ₃ с	
432	CH3	снз	€-сн³	C3H2	снз	н3с-8-сн2-	
433	снэ	СНЭ	6-сн3	C3H2	снэ	× CHO	
434	снз	снэ	6-сн3	C3H2	CH ₃	$\langle \qquad \qquad \qquad \qquad \langle \qquad \qquad \qquad \qquad \langle \qquad \qquad \qquad \qquad \langle \qquad \qquad \langle \qquad \qquad \qquad \langle \qquad \qquad \rangle \qquad \rangle$	

5	9 (i							
10		OCH3	<u>_</u>		CH ₃	$ \downarrow $	<u> </u>	200 J
15	α 1		ОСНЗ	Н3со⊥		H ₂	H _{3C}	
20	α	CH ₃	снз	. CH3	СНЗ	снз	снэ	ä
25		C ₃ H ₇	C3H7	c ₃ 47	c ₃ H ₂	C ₃ H ₇	C ₃ H ₇	þ
30	2	3 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	6-снз Сз	6-снз сз	6-снз с	6-снз сз	6-снз сз	# C
35		H 43	CH3	снз	снэ	снз	СНЗ	į
40	(Fortset X	CH ₃	CH3	снз	СНЗ	снз	CH3	Ĉ
45	Tabelle 2 (Fortsetzung) BspNr. X Y	435	436	437	438	439	440	

45	40	35	30	25	20	10	5	
Tabelle 2 (Fortsetzung)	(Fortset:	(Bunz						
BspNr.	×	٨	z_n	А	E0	R1	Fр	
442	СНЗ	СНЗ	6-CH ₃	C ₃ H ₇	СНЗ	No.2		
443	СНЗ	снэ	6-сн3	С ₃ н ₇	СНЗ	-V ² o		
444	CH3	CH3	6-CH ₃	C ₃ H ₇	CH ₃	$\vec{0}$		
445	СНЗ	снз	6-снз	C3H7	снз	្ន		
446	снз	СНЗ	6-CH ₃	C ₃ H ₇	снз	c1		
447	СНЗ	снз	6-CH ₃	Сзн7	CH3			
448	CH ₃	снэ	6-CH ₃	i-C ₃ H ₇	снз	снз		
449	снэ	снэ	6-сн3	i-C ₃ H ₇	снз	(сн ³) ² сн-		
450	снэ	CH3	6-CH3	i-C ₃ H ₇	снз	-э ^є (^Є нэ)		
451	снз	снз	6-CH ₃	i-C ₃ H ₇	снз	сн ³ -(сн ⁵) ³ -		

__

EP 0 456 063 A2

										·	
5		Fp ⁰									
10		1ª	C2H5-C(CH3)2	(CH3)3C-CH2	(сн ₃) ₂ сн-с(сн ₃₎ ₂	CH2=CH-(CH2)8-	$\begin{array}{c} c_1 \\ \\ H_3 \\ \end{array} C_{CH_3}$	C4H9-CH-C2H5	C1 CH3	H ₃ C-0 H ₃ C CH ₃	H ₃ C-0—X
20		В	CH ₃	CH3	СНЗ	снз	CH ₃	снз	СНЗ	снз	CH ₃
25		Ą	i-c ₃ H ₇	i-C3H7	i -c ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	i-c ₃ H ₇	i-C ₃ H ₇	i -C ₃ H ₇
30		zn	6-СН3	6-CH ₃	6-сн3	€но−9	€-сн3	6-сн3	^Е но-9	6-CH ₃	€+⊃-9
35	(gunz	*	СНЗ	CH ₃	СНЗ	снэ	снэ	снэ	cH ₃	CH3	снз
40	(Fortsetzung)	×	CH ₃	CH3	снз	снз	снз	СНЗ	СНЗ	снз	CH3
45	Tabelle 2	BspNr.	452	453	454	455	456	457	458	459	460

EP 0 456 063 A2

5	,	Fp								
10				,	3H2-	×cH ₃	$\times_{c_2H_5}$	енэо	\downarrow	\wedge
15	,	R1	H _{3C}	н ³ С	н ³ с-s-сн ⁵ -	~\ 			OCH ₃	H3CO
20		В		СНЭ	СНЭ	CH ₃	снз	снз	CH ₃	снз
25		A		i-C ₃ H ₇	i-c ₃ H ₇	i-C ₃ H ₇	i-c ₃ H ₇	i-C3H7	i-C3H7	i-C ₃ H ₇
30		Zn		€-сн3	6-CH3	€н2-9	6-CH ₃	6-CH ₃	6-CH ₃	6-CH ₃
35	(gun:	>		снз	снз	снз	снз	CH3	CH ₃	CH3
40	(Fortsetz	×		снэ	СНЗ	снз	снз	СНЗ	CH3	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.		461	462	463	464	465	466	467

45	40	35	30	25	20	10	5
Tabelle 2 (Fortsetzung)	(Fortset:	(Bunz					
BspNr.	×	Y	z_n	У	В	R1	Fр ^о
468	СНЗ	снз	6-сн3	i -C ₃ H ₇	н	CH ₃	
469	СНЗ	CH3	£но-9	i-C ₃ H ₇	Ħ	CH ₃	
470	СНЭ	снз	6-CH3	i-C ₃ H ₇	I	H_3c	
471	снз	снэ	е-сн ³	i-C ₃ H ₇	Ħ	NO ₂	
472	снз	снз	е-сн3	i -C ₃ H ₇	x	Con con	
473	СНЭ	СНЭ	6-сн ₃	i-C3H7	x		
474	СНЗ	снз	6-CH ₃	i-C ₃ H ₇	I	ro Co	

. 5	Fp				•	
10				<i>\</i>	13)2 -CH2-	-c(cH ₃) ₂
15	R1		CIO		сн ₃) ₂ сн- (сн ₃) ₃ с- сн ₃ -(сн ₂) ₃ - с ₂ н ₅ -с(сн ₃) ₂	(сн ₃) ₂ сн-с(сн ₃) ₂ сн ₂ =сн-(сн ₂) ₈ -
20	α	æ	Ħ	ĸ		
25	V.	i-C ₃ H ₇	i-C ₃ H ₇	i-C3H7	-(CH ₂) ₄ - -(CH ₂) ₄ - -(CH ₂) ₄ - -(CH ₂) ₄ - -(CH ₂) ₄ -	-(CH ₂) ₄ -
30	2 _n	6-СН3	6-CH3	6-CH3	EHD-9 EHD-9 EHD-9 EHD-9 EHD-9	6-CH ₃
35	rng)	снз	CH ₃	снз	CH ₃ CH ₃ CH ₃ CH ₃	сн3
40	(Fortsetz	снэ	снз	СНЗ	CH ₃ CH ₃ CH ₃ CH ₃	CH ₃
45	Tabelle 2 (Fortsetzung) BspNr. X Y	475	476	477	478 479 480 481 482	484 485

40 E	'n	35 G	<i>30</i>	•	25	20	15	10	5 <u>(</u>
×	1	-	Z _n	<		en	ž.		Pp.
CH ₃		снз	6-сн3		-(CH ₂) ₄ -			, cH ₃	
снз		снз	6-сн3	·	-(CH ₂) ₄ -		C4H9-CH-C2H5	.c ₂ H5	
СНЗ		снз	6-сн3	·	-(CH ₂) ₄ -		C12	CH ₃	
CH ₃	Ū	снз	€но-9	·	-(CH ₂) ₄ -		H ₃ C-0-	CH ₃	
CH ³ (O	снэ	ено- 9	•	-(CH ₂) ₄ -		H ₃ C-0	CH ₃	
сн ³ с	ð	снэ	6-сн3	·	-(CH ₂) ₄ -		н ₃ с Н ₃ с		
СНЗ	J	снз	€но-9	•	-(CH ₂) ₄ -		н ₃ с-s-сн ₂ -	- 2	٠
CH ₃	0	снз	6-CH ₃	•	-(CH ₂) ₄ -			CH3	
СНЭ	_	снз	€-сн3	•	-(CH ₂) ₄ -			C ₂ H ₅	

		Fpº						•	
5		F							
10			€ноо	\downarrow		CH ₃		\downarrow	S 7
15		R1		OCH3	H3co-		H H	H ₃ C	
20		B	,	ı		1	1	ŧ	1
25			-(CH ₂)4-	-(CH ₂)4-	-(CH2)4-	-(CH ₂)4	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-
30		¥	ę. T	£.	ဗ	e T	e H	e H	H 3
		zn	€н⊃-9	6 - CH ₃	6-сн3	6-CH ₃	6-СН3	Eно-9	6-CH ₃
35	(gun:	۴	СНЭ	CH3	СНЭ	снз	снз	CH3	CH3
40	(Fortsetz	×	снз	CH ₃	CH ₃	CH3	CH3	СНЭ	CH3
45	Tabelle 2 (Fortsetzung)	BspNr.	495	496	497	86 .	499	200	501

45	40	35	30	25	20	15	10	5
Tabelle 2 (Fortsetzung)	(Fortset:	(Bunz						
BspNr.	×	¥	Z _n A		В	R ¹		Fp ⁰
502	снз	снэ	6-CH ₃	-(CH ₂) ₄ -		NO ₂		
803	СНЭ	CH ₃	6-сн3	-(CH ₂) ₄ -	J	OZN		
504	СНЗ	снз	6-CH ₃	-(CH ₂) ₄ -		5		
505	CH3	снз	6-сн3	-(CH ₂) ₄ -				
506	CH3	снз	6-CH ₃	-(CH ₂) ₄ -		c1		
202	снэ	снэ	€н⊃-9	- (CH ₂) 4-				
508 509 510 511	CH3 CH3 CH3	CH ₃	6+3-9 6+3-9 6+3-9	-(CH ₂) ₅ - -(CH ₂) ₅ - -(CH ₂) ₅ -		сн ₃ (сн ₃) ₂ сн- (сн ₃) ₃ с-	1	
1 1 >	ייי	ກ :	<u>ה</u>	C . 7		7 7		

. 21	f f f f f f f f f f f f f f f f f f f	35 6 un	30	25	20	15	10	5
×		>	Z _n A	A	В	R1		Fp
υ	снз	снэ	6-CH ₃	-(CH ₂) ₅ -		С ₂ H5-С(СН3) ₂	2,5	
O	снз	снз	€ -сн³	-(CH ₂) ₅ -		-2но-о ^{е (ено)}	-2-	
O	снэ	снз	6-CH ₃	-(CH ₂) ₅ -	-	(сн ³) ⁵ сн-с(сн ³) ⁵	2(CH ³) ²	
G	снз	снэ	€-сн3	-(CH ₂) ₅ -		CH2=CH-(CH2)8-	¹ 2) 8 -	
0	снэ	снз	6-СН3	-(CH ₂) ₅ -		H ₃ c ₁	СНЭ	
Ö	CH3	снз	6-СН3	-(CH ₂) ₅ -		C4H9-CH-C2H5	·c ₂ H ₅	
O	СНЗ	CH ₃	6-CH ₃	-(CH ₂) ₅ -			、 克 大	
O	снз	снэ	6-сн3	-(CH ₂) ₅ -		н ^{3с-о}	CH ₃	
O	СНЗ	снэ	€-сн3	-(CH ₂)5-		H ₃ C-0	△ H ₃	

EP 0 456 063 A2

		Fp ⁰							
5		IT.							
10			ĺ	H3C-S-CH2"	E H	C2H5	OCH3	OCH ₃	
15		R1	H _{3C}	НЗС	°~°	°~°	\bigcirc	8	-02 [€] Н
20		В							
25			-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂)-	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -
		4							
30		2 _n	6-сн3	€но-9	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH3
35	(Buna	>	снэ	CH3	снз	снз	снз	снэ	снз
40	(Fortsetzung)	×	снз	СНЭ	снэ	CH ₃	снз	CH3	CH ₃
45	Tabelle 2	BspNr.	. 521	522	523	524	525	526	527

5		₽p⁰		·				·
10			снз	1	1	ZON.	į	i
15		R1		CH ₃	H ₃ C	Ž	No ₂	02N
20		В						J
25			-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
30		Z _n A	6-сн3	6-CH ₃	6-CH ₃	6-сн3	£но-9	6-CH ₃
35	(gun:	>	снэ	снз	снэ	CH ₃	снз	снз
40	(Fortsetzung)	×	СНЗ	CH ₃	СНЗ	снэ	снз	снэ
45	Tabelle 2	BspNr.	228	529	530	531	532	533

EP 0 456 063 A2

5		Fp ⁰				
10			ī ,	人	\downarrow	<u> </u>
15		R1			CI	
20		В			,	
25			-(CH ₂) ₅ -			
30		4				
		2 _n	6-CH ₃	6-CH ₃	6-CH ₃	€-сн3
35	(gunz	۲	CH ₃	CH ₃	СНЗ	снз
40	(Fortsetzung)	×	снз	СНЗ	снз	СНЗ
45	Tabelle 2 (Fo	BspNr.	534	535	536	537
50	- '	'				

		Fp° C											\
10		R ²	снэ	C2H5	(сн ³) ⁵ сн-	(CH3)2CH-CH2-	с ₂ н ₅ -сн-	снэ	-э ^ε (енэ)	$(CH^3)^3C-CH^2-$	\Diamond	C2H50	C2H50
15													
20	(Ic)	æ	снэ	снз	CH3	снз	СНЗ		CH3	CH ₃	CH ₃	CH ₃	снз
25	C L	Ą	снз	снз	снз	снэ	снэ		CH ₃	снз	снз	СНЗ	снз
30	×	z _n	Ξ	Ħ	x	I	Ŧ		x	I	Œ	I	I
35	HN O	,	CI	ដ	CJ	CJ	CI		ü	CI	CJ	C1	c1
40		×	c1	ប	ເລ	C1	C		C	ü	ប	c I	CI
45	Tabelle 3	BspNr.	538	539	540	541	542		543	544	545	546	547

EP 0 456 063 A2

4 5	40	35	30	20 25	15	10	5
Tabelle 3 (Fortsetzung)	Fortsetzu	ing)					
BspNr.	×	Y	2 _n	Ą	en en	R ²	₽p° C
548	ប	CJ	π	снз	снз		
549	បី	ເວ	æ	снэ	снз	C2H5-0~CH3	m
550	C1	CJ	x	снз	снэ	(сн ₃) ₂ сн-о	CH ₃
551	CI	C1	Ħ	снз	снэ	C3H7-0~CH3	m
552	ដ	C1	x	снэ	снз	C2H5-0~C2H5	f ₅
553	C1	CI	x	C ₂ H ₅	СН _З	CH ₃	
554	ជ	ច	Ξ	C2H5	CH ₃	C2H5	
555	ដ	C1	H	C2HS	снз	(CH3)SCH-	
556	C1	CJ	I	$c_2 H_5$	снз	$(cH_3)_2$ cH $-cH_2$ -	
557	C1	CI	x	C2H5	снз	с ₂ н ₅ -сн- сн ₃	
558	ដ	CJ	H	C ₂ H ₅	снз	-JE(EHJ)	
559	CI	C1	ж	C ₂ H ₅	CH ₃	$(CH_3)_3C-CH_2$	

EP 0 456 063 A2

5		Fp⁰ C		\	>		CH ₃	CH ₃	СНЗ	C2H5				.H2-
10		R ²		C ₂ H ₅ O	C2H5O		C2H5-0	(снз) 2сн-о-	C3H2-0	C2H5-0	снз	CZHS	(CH ₃) ₂ CH-	(CH ₃) ₂ CH-CH ₂ -
15														
20		В	снз	СНЗ	CH3	снз	снэ	CH3	снэ	снз	C2HS	C_2H_5	c_2H_5	C2H5
25		Ą	C2H5	C2H5	C2H5	C ₂ H ₅	C2H5	C2H5	C2HS	C2H5	C2H5	C_2H_5	c_2H_5	C2HS
30		z_n	ж	Ħ	Ħ	×	æ	Œ	Ŧ	æ	I	Ħ	H \	×
35	(gunz	4	CI	C1	CJ	CI	CJ	C1	C1	CI	C	CI	ប	CI
40	(Fortset:	×	c 1	ເາ	CI	C1	CJ	ប៊	CI	បី	CJ	ဌ	CI	CI
45	Tabelle 3 (Fortsetzung)	BspNr.	260	561	262	563	564	565	566	267	568	569	570	571

EP 0 456 063 A2

45	40	35	30	20	15	5
Tabelle 3	(Fortsetzung)	ing)				
BapNr.	×	+	2 _n	4	æ	R ² Fp ⁰ C
. 272	CJ	ü	æ	C ₂ H ₅	C2H5	с ₂ н ₅ -сн- сн ₃
573	CJ	c1	Ħ	C2H5	C2H5	-э ^г (сн ³)
574	C]	CJ	m	C2H5	C2H5	(CH ₃) ₃ c-CH ₂ -
575	C1	C1	æ	C2H5	C ₂ H ₅	\Diamond
929	CI	CJ	æ	C2H5	C2H5	C ₂ H ₅ 0
277	ដ	CJ	æ	C2H5	C2H5	c_{2} H $_{5}$ O \sim O \sim
578	C1	C1	ж	C ₂ H ₅	C ₂ H ₅	
579	C1	C1	æ	C ₂ H ₅	C2H5	C2H5-0-CH3
580	CJ	CJ	æ	C ₂ H ₅	C ₂ H ₅	(сн ₃) ₂ сн-о⁄сн ₃
581	C1	C1	æ	C2H5	C2H5	C3H7-0~CH3
582	CI	C1	æ	C ₂ H ₅	C2H5	C2H5-0~C2H5

5		Fp° C										\		m
10		R2	снз	2 ^H 5	(CH ₃) ₂ CH-	сн3)2сн-сн2-	с ₂ н ₅ -сн- сн ₃	.сн ₃) ₃ с-	- ² Hጋ- ^{2E} (EHЭ)	\Diamond	C2H50	C2H50		C2H5-0~CH3
15		œ	υ	ບ	J	٥	υ	•	.					U
20		Ø	снэ	снэ	снэ	снз	CH ₃	снз	снэ	снэ	CH3	снэ	снз	снэ
25		Y	C3H7	C ₃ H ₇	C3H2	C3H2	C ₃ H ₇	C ₃ H ₇	C3H2	C ₃ H ₂	C3H7	C3H2	C3H7	C3H2
30		2 _n	x	Ħ	Ħ	æ	æ	æ	I	Ħ	I	Ħ	x	ĸ
35	(gunz	>	CI	ប	ជ	ເວ	ប៊	CJ	ប៊	C1	CI	CJ	C	CI
40	(Fortsetzung)	×	CI	ເວ	ដ	CI	C1	ü	ដ	CJ	CI	CI	ប	CI
45	Tabelle 3	BspNr.	583	584	585	586	587	588	589	290	591	265	593	594

EP 0 456 063 A2

45	40	35	30	20		15	10	5
Tabelle 3	(Fortsetzung)	(Bun						
BepNr.	×	>-	Zn	4	В	E	R ²	Fp° C
595	C)	C1	x	C3H2	снз	•	∕о-но ² (€но)	CH ₃
596	C1	C1	Ħ	C3H2	снз	Ö	C3H7-0~CH3	ლ
597	C1	C1	x	C3H2	снз	O	C2H5-0~5HZ	-C ₂ H ₅
598	c1	C1	H	i-c ₃ H ₂	снз	,ن	CH ₃	
669	₁	C1	×	i-C3H7	снз	O	C2H5	
009	C1	ដ	x	i-C ₃ H ₇	СНЗ	~	(сн ³) ² сн-	
601	CJ	10	Ħ	i-C ₃ H ₇	CH ₃	~	(сн ₃) ₂ сн-сн ₂ -	
602	C1	ប	¤	i-c ₃ H ₇	снз	O	C2H5-CH- CH3 CH3	
603	CI	CJ	x	i-C3H7	снэ	~	сн ₃) ₃ с-	
604	CI	CJ	x	i -C ₃ H ₇	снз	•	(сн ³) ³ с-сн ⁵ -	,
605	CJ	CI	x	i-C3H2	снз		\Diamond	
909	C1	CJ	x	i-C ₃ H ₇	снз		C ₂ H ₅ 0	

		Fp⁰ C				снэ		w						
5			>	\downarrow	CH ₃	¥-0-#-	CH ₃	C2H5			-H-	H-CH2-	<u>.</u>	cH ₃
10		R ²	C2H50		C2H5-0	(сн ³) ² сн-0⁄	C3H7-0	C2H5-0	снз	C2HS	(сн ³) ⁵ сн-	(CH ₃) ₂ CH-CH ₂ -	C2H5-CH-	- ວົ
15														
20		В	снз	СНЭ	. СН3	снз	снз	СНЭ	H ₂)4-	H2 14 -	H2)4-	-(CH ₂) ₄ -	-(CH ₂)4-	
25		Ą	i-C ₃ H ₇	i-C ₃ H ₇	i-C ₃ H ₇	5)-	٥) -	D) -	5)-	٥) -				
30		Zn	ж	x	I	¤	x	Ħ	æ	Ħ	H	Ξ	Ħ	
35	rtsetzung)	*	CJ	CJ	CJ	C	C1	C1	CI	ប	C	C1	C1	
40 .	(Fortse	×	C1	C1	CJ	C	CI	CI	2	CJ	ວ	ប	C1	
45	Tabelle 3 (Fo	BspNr.	209	809	609	610	611	612	613	614	615	616	617	
50														

EP 0 456 063 A2

5		Fp° C		-2		\	>		CH ₃	CH ₃	CH3	C2H5
10		R ²	-э ^ε (снэ)	(сн ₃) ₃ с-сн ₂ -	\bigcirc	C2H50	C2H50		C2H5-0	(сн³)5сн-0-	C3H2-0	C2H5-0
15												
20		B	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂)4°
25		Y	·	·	·	•	•	·	·	·		
30		Zn	Ħ	I	æ	æ	ĸ	æ	ж	Ħ	Ħ	x
35	(B)	>	C1	C1	C1	ច	CJ	Cl	CI	ដ	CI	CI
40	3 (Fortsetzung)	×	CJ	បី	CJ	C1	CJ	CI	CJ	C1	CI	C1
4 5	Tabelle 3	BspNr.	618	619	620	621	622	623	624	625	929	627

		Fp° C									\	•	m
5		R ²	снз	C2H5	(CH ₃) ₂ CH-	$(CH_3)_2CH^-CH_2^-$	с ₂ н ₅ -сн- сн ₃	(CH ₃) ₃ C- (CH ₃) ₃ C-CH ₂ -		C ₂ H ₅ O	C2H50~0		C2H5-0-CH3
15													
20		æ	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ²) ² -	-(CH ₂) ₅ -	-(CH ₂) ₅ - -(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -
25		A	•	•	•	•	•	, .	·		·	·	
30		2 _n	Ħ	×	Ħ	ĸ	x	z z	æ	Ħ	ĸ	r	ĸ
35	Fortsetzung)	*	ເວ	CJ	ប	CJ	ប៊	ចីចី	ប	CJ	C1	CI	ប
40	(Fortse	×	CJ	CI	CJ	CI	CJ	ចួច	ប៊	ប	ប	ü	CI
4 5	Tabelle 3	BspNr.	628	629	630	631		633 634	635	929	637	638	639
50							•						

5 10		R ² Fp ⁰ C	(сн ³) ⁵ сн-о—сн ³	C3H2-0-CH3	C2H5-0~~C2H5	СН _З	CH ₃	$CH(CH_3)_2$	$CH_2C(CH_3)_3$	CH ₃	CH ₃	CH(CH ₃) ₂	$CH_2C(CH_3)_3$	CH ₃	C2H5	CH(CH ₃) ₂	CH2 CH
20		В	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂) ₅ -	I	Ħ	#	æ	Ξ	Ħ	Ħ	H	Ή	I	H	π
25		V	1	-	ī	I	CH ₃	CH ₃	CH ₃	Ħ	СНЗ	СНЗ	CH ₃	x	H	Ħ	æ
30		Zn	æ	I	ж	6-C1	6-C1	6-C1	6-C1	×	x	н	Ħ	е-сн ³	6-CH ₃	6-CH ₃	6-CH ₃
35	(gunz	*	CI	CJ	CJ	CJ	ເວ	CJ	CI	СНЗ	CH ₃	CH3	CH ₃	CH3	CH ₃	CH3	снэ
40	(Fortsetzung)	×	CJ	ü	ប៊	C	CJ	C1	C	снэ	снз	CH3	СНЗ	CH3	CH3	снэ	снэ
45	Tabelle 3	BspNr.	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654

5		Fp° C									٠		
10		R ²	CH2-C(CH3)3	(CH ₂) ₂ 0-C ₂ H ₅	\bigcirc		снз	C2HS	сн(сн ³) ²	CH C2H5	ch ₂ c(ch ₃) ₃	(CH ₂) ₂ 0-C ₂ H ₅	\Diamond
15		a	Ħ	×	Ħ	x	H	Ħ	H	×	æ	Ħ	æ
20													
25		4	Ħ	Ħ	x	x	CH3	CH3	СНЗ	СНЗ	СНЗ	CH3	СНЗ
30		Zn	6-CH ₃	енэ-9	ено-9	6-снз	6-CH ₃	6-CH3	€-СН3	6-снз	€но-9	6-CH ₃	6-сн3
35	tzung)	*	CH3	CH	СНЗ	CH ₃	CH3	CH3	CH ₃	СНЗ	CH ₃	снэ	СНЗ
40	3 (Fortsetzung)	×	СНЭ	CH ₃	снэ	снз	СНЭ	СНЗ	снз	снэ	СНЗ	снз	CH3
45	Tabelle	BspNr.	655	929	657	658	629	099	661	662	699	664	999

Ch3 8-Ch3	•
	EHD-9 EHD EHD-9 EHD EHD-9 EHD EHD-9 EHD
CH3 CH3	

5		Fp° C								•	
10		R ²	CH(CH ₃) ₂	сн ₂ сн(сн ₃) ₂	CH C2H5	CH ₂ C(CH ₃) ₃	(CH ₂) ₂ 0-C ₂ H ₅	\bigcirc		снз	CzHs
15											
20		В	3)2 H	3)2 H	3)2 н	3)2 H	3)2 H	з)2 н	н 2(Е	снз н	сн3 н
25		A	CH ₂ CH(CH ₃) ₂	CH ₂ CH(CH ₃) ₂	сн ² сн(сн ³⁾ 5	CH ₂ CH(CH ₃) ₂	сн ² сн(сн ³) ²	сн ² сн(сн ³⁾ ²	сн ² сн(сн ³⁾ 2	(CH ₂) ₂ -SCH ₃	(CH ₂) ₂ -SCH ₃
30		2n	6-CH ₃	6-CH ₃	6-сн3	6-CH3	6-CH ₃	€н ⊃- 9	€н⊃-9	6-CH ₃	€н2-9
35	(Sunz	٨	CH ₃	снз	CH ₃	снз	снз	снз	CH ₃	снз	СНЗ
40	(Fortse	×	снз	снэ	CH ₃	снз	снэ	CH ₃	снэ	СНЗ	CH3
45	Tabelle 3 (Fortsetzung)	BspNr.	229	678	. 629	680	681	. 289	683	684	685

5		Fp° C) a	C ₂ H ₅				140	- 161-163	-CH2-	86
15		R ²	CH(CH ₃) ₂	CH ^{CH3}	CH ₂ C(CH ₃	(CH ₂) ₂ 0-C ₂ H ₅	\bigcirc		СН ₃	C2H5	(сн ³) ⁵ сн-	(CH ₃) ₂ CH-CH ₂ -	C2H5-CH-
20		æ	Ħ	x	Ħ	Ħ	Ħ	æ	снз	CH3	снэ	CH ₃	снз
25		V	(CH ₂) ₂ -SCH ₃	(CH ₂) ₂ -SCH ₃	(сн ₂) ₂ -sсн ₃	(сн ₂) ₂ -sсн ₃	(СН ₂) ₂ -SCH ₃	(сн ₂) ₂ -sсн ₃	снз	снз	снз	снз	снз
35		Zn	6-CH3	6-CH3	6-CH ₃	6-CH ₃	енэ-9	€-сн3	6-CH ₃	6-CH ₃	6-сн3	€но-9	6-CH ₃
40	setzung)	٠	CH ₃	снз	СНЗ	снз	СНЗ	снз	x	CH3	СНЗ	снэ	СНЗ
45	(Fortse	×	cH ₃	снэ	снэ	CH3	сн ³	снз	CH3	СНЗ	СНЭ	CH ₃	СНЗ
50	Tabelle 3 (Fort	BspNr.	686	687	688	689	069	691	692	693	694	969	969

		U								ო		-
6		Fp° C					>		Енэ	CH ₃	CH3	$\mathcal{C}_{2}^{H_5}$
10		2	CH ₃) ₃ C-	- ² н2-2 ^E (Eн2)		C_2H_50	C ₂ H ₅ O		C2H5-0~CF	∕о-нэ²(€нэ)	C3H7-0~_CB	C2H5-0~~C
15		R ²	٥	٥					υ	•	b	G
20		æ	CH3	CH ₃	CH ₃	CH3	снз	снз	снз	снэ	CH3	снз
25		Ą	CH ₃	CH ₃	CH ₃	снз	снз	снз	снз	снз	снз	снз
30		2 _n	6-CH3	€н2-9	6-CH ₃	6-CH ₃	6-CH ₃	е-снз	6-CH ₃	€н⊃-9	6-CH ₃	е-сн ³
35	_		e.	снз	снз	снз	снз	снэ	снз	снэ	снз	снэ
40	Fortsetzung)	X	CH ₃ CF		сн3 сь	сн _з сн	снз	CH ₃ CF	CH ₃ Ct	CH ₃ Ci	CH ₃ CI	CH ₃ CI
4 5	<u>Tabelle 3</u> (For	BspNr.	269	869	669	700	701	702	703	704	705	206

EP 0 456 063 A2

5		Fp° C			(сн ³) ² сн-	(сн ₃) ₂ сн-сн ₂ -	C ₂ H ₅ -CH- C ₂ H ₃	1	-2 ^E (EH3)	(сн ₃) ₃ с-сн ₂ -		c_2H_5O	C ₂ H ₅ O		CH2 CH3
15		R ²	CH3	C2H5	(CH ₃	(сн3	C ₂ H ₅		CH (CH	HO)	\smile	ບ	CZ	•	נ
20		æ	СНЗ	СНЭ	CH3	снз	снз		СНЗ	CH ₃	снз	снз	снэ	CH ₃	70
25		A	C2HS	C2H5	C2H5	C2H5	C2H5		C2HS	C2H5	c ₂ H ₅	C ₂ H ₅	C2H5	C2H5	:
30		Zn	e-ch3	6-CH ₃	6-CH ₃	€+0-9	6-CH ₃		6-CH ₃	6-CH ₃	€н⊃-9	6-CH3	6-CH ₃	6-CH ₃	;
35	(gunz	٨	H	СНЗ	СНЗ	CH3	снэ		СНЭ	снэ	CH ₃	СНЭ	СНЭ	снз	į
40	(Fortsetzung)	×	СНЭ	СНЗ	снз	CH3	снз		CH3	CH ₃	СНЭ	СНЗ	снз	снз	
4 5	Tabelle 3	BspNr.	707	708	404	710	711		712	713	714	715	716	717	

EP 0 456 063 A2

5		Fp⁰ C	-о-	CH ₃	C2H5			•	-сн ₂ -			-CH ₂ -	
10		R ²	(сн³)5сн-0-	C3H2-0~	C2H5-0	СНЗ	C2H5	(сн ³) ² сн-	(сн ³) ² сн-сн ² -	C2 ^{H5-CH-}	(CH ³) ³ C-	(сн ³) ³ с-сн ⁵ -	
20		В	снз	снз	. снз	C2H5	C2HS	C2HS	C2H5	c ₂ H ₅	C2H5	C_2H_5	C2H5
25		A	C ₂ H ₅	C2HS	C ₂ H ₅	C2HS			C ₂ H ₅	C ₂ H ₅	c_2H_5	C2H5	C2H5
30		2n	^Е нэ-9	€-СН ³	6-снз	6-CH ₃	€-сн3	€-сн3	6-CH ₃	6-CH ₃	€-сн³	6-CH ₃	6-CH ₃
35	(Bunz	¥	снз	снз	снз	Ħ	CH3	CH ₃	снз	CH ₃	CH ₃	снэ	снз
40	(Fortsetzung)	×	снэ	снз	снз	снз	CH ₃	снз	снз	снз	CH3	CH ₃	снз
45	Tabelle 3	BapNr.	719	720	721	722	723	724	725	726	727	728	729

EP 0 456 063 A2

45	40	35	30	25	20	15	5	
ကျ	Tabelle 3 (Fortsetzung)	(gunz						
BspNr.	×	*	Zn	V	В	R ²		Fp° C
	снэ	снз	^Е но-9	c ₂ H ₅	C2H5		c_2H_50	
	cH ₃	снз	6-CH ₃	C2H5	C2H5		C2H50~0	\
	снз	CH ₃	6-сн3	C ₂ H ₅	C2H5		\Diamond	
	СНЗ	снэ	6-CH ₃	C2H5	C2H5		C2H5-0~CH3	_
	снз	снз	€-СН ³	C2H5	C2H5	J	(сн ₃) ₂ сн-о	снз
	снэ	снз	6-CH ₃	C2H5	C2HS	υ	с34,-0-7с43	
	снэ	СНЗ	6-сн3	C2H5	C2H5	υ	C2H5-0~C2H5	
	CH3	×	6-CH ₃	C ₃ H ₇	CH ₃	υ	СН _Э	
	CH3	CH ₃	6-CH ₃	C3H2	СНЗ	O	C2HS	
	CH ₃	CH3	6-CH ₃	C ₃ H ₂	СНЗ	•	(CH ₃) ₂ CH-	
	снз	снз	€-сн3	C ₃ H ₂	СНЗ	•	- ² но-но ² (сн ³ -	
	снз	снэ	6-CH ₃	C ₃ H ₇	снз	Ö	C2H5-CH-	
							снэ	

EP 0 456 063 A2

5		Fp° C		,			>		CH3	CH ₃	CH3	C ₂ H ₅	
10			-э ^е (снз)	сн ³) ³ с-сн ² -		C ₂ H ₅ O	C2H50		C2H5-0	∕о-нэ ² (€нэ)	\	\	
15		R ²	†)	†)	~	ບັ	ΰ	·	C21	H)	C3H2-0	C2H5-0	CH3
		В	снз	снз	c _H 3	C2H5	снз	снз	снз	снэ	снэ	снз	снз
20 .		Ą	Н7	Н7	Н7	Н7	Н7	Н7	Н7	Н7	Н7	н ₇	i-C ₃ H ₇
25			H ₃ C ₃ H ₇		нз сзн7	нз сзн7	H ₃ C ₃ H ₇	Н3 С3Н7	H ₃ C ₃ H ₇	нз сзн7	Н3 С3Н7	н ₃ С ₃ н ₇	
30		$^{2}_{n}$	6-CH ₃	6-CH ₃	6-сн3	[€] НЭ-9	6-CH ₃	6-сн3	6-CH ₃	6-CH ₃	6-CH ₃	€+0-9	^Е НЭ-9
35	ortsetzung)	>-	CH3	снз	CH ₃	СНЗ	снз	CH ₃	СНЗ	снэ	СНЗ	СНЗ	x
40	F	×	снз	CH ₃	CH3	снэ	снэ	снэ	CH3	снз	снз	CH ₃	снз
45	Tabelle 3	BspNr.	742	743	744	745	746	747	748	749	750	751	752

EP 0 456 063 A2

5	Fp°C					-2		\	>		СНЭ
10	R ²	С ₂ Н ₅ (СН ₃) ₂ СН-	(СН ₃) ₂ СН-СН ₂ - С ₂ Н ₅ -С́Н-	CH ₃	-э ^є (^є нэ)	(сн ³) ³ с-сн ⁵ -		C2H50	C2H5O		C2H5-0
15											
	B	CH ₃	CH ₃	•	снз	снэ	снз	снз	снз	снз	снз
20											
25	~	i-C ₃ H ₂ i-C ₃ H ₂	i-C ₃ H ₇ i-C ₃ H ₇		i-C ₃ H ₇	i-C ₃ H ₇	i-c ₃ H ₇	i -C3H7	i-C ₃ H ₇	i-C ₃ H ₇	i-C3H7
30	Z _n	6-CH ₃	6-CH ₃	1	€ - СН3	6-CH ₃	6-CH ₃	6-CH3	6-CH3	6-CH ₃	6-CH ₃
35	y Y	CH ₃	CH ₃	ı	снз	снз	снз	снэ	снз	снз	СНЭ
40	(Fortsetzung) X Y	CH3 CH3	CH ₃	•	СНЗ	снз	снэ	снз	снз	СНЭ	снз
45	Tabelle 3 BepNr.	753 754	755 756		757	758	759	760	761	762	263
50											

5		Fp ^o C	CH ₃	CH ₃	C2H5				CH ₂ -			CH2-	
10		R ²	(сн ³) ⁵ сн-о	C3H2-0~	C2H5-0~	снз	C2HS	(сн ³) ⁵ сн-	(сн ³) ⁵ сн-сн ⁵ -	C2H5-CH- CH3	-э ^ε (сн ³) ³ с-	- ² но-о ^е (ено)	
15													
20		В	снз	CH3	CH ₃	-(CH ₂) ₄ -	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂)4-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
25		Y	i-C ₃ H ₇	i-C3H2	i-C ₃ H ₇	0) -	- (۵) -	٠ (۵	5) -) - ·	D) -	D) -
30		Zn	6-CH ₃	е-сн3	6-CH ₃	6-CH ₃	6-CH ₃	e-cH3	6-CH ₃	6-CH ₃	6-CH ₃	€ −СН3	6-CH ₃
35	(bun z	*	снз	снз	CH ₃	x	CH3	CH ₃	снз	снз	СН _З	снз	снэ
40	(Fortsetzung)	×	снз	снз	снз	CH3	снз	снз	CH3	снэ	снэ	снз	снз
45	Tabelle 3	BspNr.	764	765	992	767	892	692	270	771	772	773	774
50													

EP 0 456 063 A2

45	40	35	30	25	20	15	10	5
Tabelle 3	(Fortsetzung)	(bun						
BapNr.	×	¥	Zn	Y	В	R2		Fp° C
775	CH ₃	СНЗ	6-CH ₃	-(CH ₂)4-	-4-		C ₂ H ₅ O	
276	снэ	снз	€-СН3	-(CH ₂)4-	. 4-		C2H50	>
777	снз	снэ	€-сн³	-(CH ₂) ₄ -	- 4 -			
778	СНЗ	CH ₃	6-СН3	-(CH ₂) ₄ -	.)4-	υ	C2H5-0	снэ
779	снз	снэ	6-CH ₃	-(CH ₂) ₄ -	.)4-	O)	(сн₃)2сн-о∕	CH ₃
780	снз	снз	6-CH ₃	-(CH ₂) ₄ -	- 4-	င်	C3H2-0-4E2	c _H 3
781	CH ₃	снэ	€но-9	-(CH ₂) ₄ -	-4-	c ₂	C2H5-0~~C2H5	C2H5
782	CH ₃	Ħ	6-CH ₃	-(CH ₂) ₅ -	.) ₅ -	CH3	m	
783	СНЭ	СНЗ	6-CH ₃	-(CH ₂)5-	.)5-	S	C ₂ H ₅	
784	снз	CH ₃	€-CH ³	-(CH ²) ² -	.)s-	0)	(сн ₃) ₂ сн-	
785	снз	снз	€нр-9	-(CH ₂) ₅	.)5-	Ü	(CH ₃) ₂ CH-CH ₂ -	ı
786	снз	снэ	6-CH ₃	-(CH ₂) ₂ -	.) ₅ _	C	C2H5-CH- CH3	
							,	

5		Fp°C	- ₂ £	(сн ₃) ₃ с-сн ₂ -	人	>	>°>	<u> </u>	CH ₃	сн-о-сн3	CH ₃	C2H5
10		R ²	-э ^є (сн ³) ³ с-	(CH ³)	U	C2H5O	C ₂ H ₅ O		C2H5-0-	(сн³) ⁵ сн-0∕	C3H7-0	C2H5-0
15												
20		æ	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -	-(CH ₂)5-	-(CH ₂) ₅ -	-(CH ₂) ₅ -
25		4										
30		Zn	6-CH ₃	€но-9	6-CH ₃	€H2-9	€н2-9	6-сн3	6-CH ₃	6-CH ₃	е-сн ³	^Е НЭ-9
35	(gunz	>-	CH3	снэ	CH ₃	снз	СНЭ	CH ₃	CH ₃	СНЭ	снэ	снз
40	(Fortset:	×	снэ	снэ	снэ	снэ	CH ₃	снз	CH ₃	снз	снз	снз
45	Tabelle 3 (Fortsetzung)	BspNr.	787	788	789	790	791	792	793	794	295	962

Beispiel (III)

55

138 g (0,5 Mol) N-(2,4,6-Trimethylphenyl-acetyl)-valin werden in 500 ml Methanol suspendiert, mit 73 ml (0,55 Mol) Dimethoxypropan versetzt und nach Zugabe von 4,75 g (25 mmol) p-Toluolsulfonsäure-monohydrat und Dünnschicht-Chromatographie (DC)-Kontrolle unter Rückfluß erhitzt.

Nach Abrotieren des Lösungsmittels nimmt man den Rückstand in Methylenchlorid auf, wäscht mit Natriumhydrogencarbonat-Lösung, trocknet und rotiert ein.

Ausbeute: 127,6 g (= 88 % d.Th.)

Beispiel (Ila1)

20

25

30

35

50

58.8 g (0,5 Mol) L-Valin in 720 ml Wasser werden mit 10 g (0,25 Mol) NaOH-Plätzchen versetzt. Anschließend werden synchron 30 g (0,75 Mol) NaOh-Plätzchen in 150 ml Wasser und 98,2 g (0,5 Mol) Mesitylenessigsäurechlorid so zugetropft, daß die Temperatur 40°C, nicht überschreitet. Nach 1 h wird bei 0-20°C mit konz. Salzsäure angesäuert, das Produkt abgesaugt und i.Vak. bei 70°C über Diphosphorpentoxid getrocknet.

Ausbeute: 138 g (= 100 % d.Th.) Fp. 140 °C.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere der Klasse Arachnida und der Ordnung Milben (Acarina), die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Artn sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.,

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben.

Sie sind gegen normalsensible und resistente Arten und Stämme, sowie gegen alle parasitierenden und nicht parasitierenden Entwicklungsstadien der Ektoparasiten wirksam.

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe akarizide Wirksamkeit aus. Sie lassen sich mit besonders gutem Erfolg gegen pflanzenschädigende Milben, wie wie beispielsweise gegen die gemeine Spinnmilbe (Tetranychus urticae) einsetzen.

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel

und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Charakteristisch für die erfindungsgemäßen Verbindungen ist, daß sie eine selektive Wirksamkeit gegen monokotyle Unkräuter im Vor- und Nachlaufverfahren (Pre- und Postemergence) bei guter Kulturpflanzenverträglichkeit aufweisen.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lollum, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Welse auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Dabei zeigen die erfindungsgemäßen Wirkstoffe neben einer hervorragenden Wirkung gegen Schadpflanzen gute Verträglichkeit gegenüber wichtigen Kulturpflanzen, wie z. B. Weizen, Baumwolle, Sojabohnen, Citrusfrüchten und Zuckerrüben, und können daher als selektive Unkrautbekämpfungsmittel eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiwelßhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Milben, Zecken usw. auf dem Gebiet der Tierhaltung und Viehzucht, wobei durch die Bekämpfung der Schädlinge bessere Ergebnisse, z.B. höhere Milchleistungen, höheres Gewicht, schöneres Tierfell, längere Lebensdauer usw. erreicht werden können.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht auf diesem Gebiet in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale bzw. äußerliche Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießens (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion sowie ferner durch das "feed-through"-Verfahren. Daneben ist auch eine Anwendung als Formkörper (Halsband, Ohrmarke) möglich.

Bei den im folgenden aufgeführten biologischen Beispielen wurden folgende Verbindungen als Vergleichssubstanzen eingesetzt:

A)

35

40 bekannt aus DE-A 2 361 084 und US-A 4 632 698 B)

50 bekannt aus DE-A 2 361 084 und US-A 4 632 698
 C)

55

bekannt aus DE-A 2 361 084 und US-A 4 632 698

10 Beispiel A

5

20

30

Phaedon-Larven-Test

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
 Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik:

(1), (2), (32), (40), (278), (280), (290), (299).

Beispiel B

Plutella-Test

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella maculipennis) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden; 0 % bedeutet, daß keine Raupen abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (283), (299).

Beispiel C

45

Nephotettix-Test

50 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (Neophotettix cincticepa) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden

abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (1), (32), (43), (290), (292), (299), (301).

5 Beispiel D

Pre-emergence-Test

Lösungsmittel:

7 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant.
Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge
des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %
Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrollen. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle

100 % = totale Vernichtung

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel E

25

30

20

10

Post-emergence-Test

Lösungsmittel:

7 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 - 15 cm haben so, daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 2000 I Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle

100 % = totale Vernichtung

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (32), (281), (283).

Beispiel F

45 Tetranychus-Test (OP-resistent)

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit 50 der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnaß gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: (281), (283).

Patentansprüche

1. 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

5 (I)10 in welcher

15

20

25

30

35

45

55

Х für Alkyl, Halogen, Alkoxy steht,

Υ für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen

-CO-R1, -CO-O-R2 oder für E®

steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann,

gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

 \mathbb{R}^2 für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl oder Cycloalkyl steht,

Α für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht.

В für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebungen sind einen Carbocyclus bilden und

E® für ein Metallionäquivalent oder einen Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, in welcher

Х für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

Υ für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

n für eine Zahl von 0-3 steht,

> R für Wasserstoff (la) oder für die Gruppen der Formel

> > -CO-R1 (lb) oder -CO-O-R2 (lc)

oder Ee (Id) 50

steht, in weichen

R¹ für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl,

 $C_1-C_8-Alkoxy-C_2-C_8-alkyl, \quad C_1-C_8-Alkylthio-C_2-C_8-alkyl, \quad C_1-C_8-Polyalkoxy-C_2-C_8-alkyl-Polyalkoxy-C_2-C_8$ und Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann, steht,

		für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_6 -Alkyl-, C_1 - C_6 -Alkoxy-, c_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl;
5		für gegebenenfalls durch Halogen-, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy-, C_1 - C_6 -Halogenalkyl-, C_1 - C_6 -Halogenalkoxy-substituiertes Phenyl- C_1 - C_6 -alkyl steht,
		für gegebenenfalls durch Halogen- und C₁-C₀-Alkyl-substituiertes Hetaryl steht,
10		für gegebenenfalls durch Halogen- und C_1 - C_6 -Alkyl-substituiertes Phenoxy- C_1 - C_6 -alkyl steht,
		für gegebenenfalls durch Halogen, Amino und C_1 - C_6 -Alkyl-substituiertes Hetaryloxy- C_1 - C_6 -Alkyl steht,
15	R²	für gegebenenfalls durch Halogen substituiertes: C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_2 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_2 - C_8 -alkyl steht,
	A	für gegebenenfalls durch Halogen-, Nitro-, C ₁ -C ₆ -Alkyl-, C ₁ -C ₆ -Alkoxy-, C ₁ -C ₆ -Halogenalkyl substituiertes Phenyl oder Cycloalkyl mit 3-8 Ringatomen steht, für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder
20		verzweigtes C ₁ -C ₁₂ -Alkyl, C ₃ -C ₈ -Alkenyl, C ₃ -C ₈ -Alkinyl, C ₁ -C ₁₀ -Alkoxy-C ₂ -C ₈ -alkyl, C ₁ -C ₈ -Polyalkoxy-C ₂ -C ₈ -alkyl, C ₁ -C ₁₀ -Alkylthio-C ₂ -C ₈ -alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder gegebenenfalls durch Halogen, C ₁ -C ₆ -Alkyl-C ₁ -C ₆ -Halogenalkyl-, C ₁ -C ₆ -Alkoxy, Nitro substituiertes Aryl,
25	В,	Hetaryl oder Aryl-C ₁ -C ₆ -alkyl steht, für Wasserstoff, geradkettiges oder verzweigtes oder verzweigtes C ₁ -C ₁₂ -Alkyl, C ₁ -C ₈ -
	A und B	Alkoxyalkyl steht, oder gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen 3-8 gliedrigen Ring bilden oder
	E•	für einen Metallionenäquivalent oder ein Ammoniumion steht
30		sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
	3. 3-Aryl-pyrrolic	din-2,4-dion-Derivat der Formel (I) gemäß Anspruch 1 oder 2, in welcher
	X	für C ₁ -C ₄ -Alkyl, Halogen, C ₁ -C ₄ -Alkoxy steht,
35	Y Z	für Wasserstoff, C ₁ -C ₆ -Alkyl, Halogen, C ₁ -C ₄ -Alkoxy, C ₁ -C ₂ -Halogenalkyl steht, für C ₁ -C ₄ -Alkyl, Halogen, C ₁ -C ₄ -Alkoxy steht,
	n	für eine Zahl von 0-3 steht,
	R	für Wasserstoff (la) oder für die Gruppen der Formel
40		-CO-R¹ (lb), -CO-O-R² (lc) oder E [•] (ld)
		steht, in welchen
	R¹	für gegebenenfalls durch Halogen substituiertes C ₁ -C ₁₆ -Alkyl, C ₂ -C ₁₆ -Alkenyl, C ₁ -C ₆ -
45		Alkoxy- C_2 - C_6 -alkyl, C_1 - C_6 -Alkylthio- C_2 - C_6 -alkyl, C_1 - C_5 -Polyalkoxy- C_2 - C_6 -alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,
50		für gegebenenfalls durch Halogen-, Nitro-, C_1 - C_4 -Alkyl-, C_1 - C_4 -Alkoxy-, C_1 - C_3 -Halogenalkyl-, C_1 - C_3 -Halogenalkoxy-substituiertes Phenyl steht,
-		für gegebenenfalls durch Halogen-, C_1 - C_4 -Alkyi-, C_1 - C_4 -Alkoxy-, C_1 - C_3 -Halogenalkyi-, C_1 - C_3 -Halogenalkoxy-substituiertes Phenyi- C_1 - C_4 -alkyi steht,
£ E		für gegebenenfalls duch Halogen- und C ₁ -C ₆ -Alkyl-substituiertes Hetaryl steht,
55		gegebenenfalls für durch Halogen- und $C_1\text{-}C_4\text{-}Alkyl\text{-}substituiertes}$ Phenoxy- $C_1\text{-}C_5\text{-}alkyl\text{-}$ steht,

5	R²	für gegebenfalls durch Halogen, Amino und C_1 - C_4 -Alkyl-substituiertes Hetaryloxy- C_1 - C_5 -alkyl steht, für gegebenenfalls durch Halogen substituiertes C_1 - C_{16} -Alkyl, C_2 - C_{16} -Alkenyl, C_1 - C_{16} -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_2 - C_6 -alkyl steht, für gegebenenfalls durch Halogen, Nitro-, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy-, C_1 - C_3 -Halogenalkyl-substituiertes Phenyl steht,
10	A	für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C ₁ -C ₁₀ -Alkyl, C ₃ -C ₆ -Alkenyl, C ₃ -C ₆ -Alkinyl, C ₁ -C ₈ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₆ -Polyalkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₈ -Alkylthio-C ₂ -C ₆ -alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann oder geebenen-
15	В	falls durch Halogen-, C ₁ -C ₄ -Alkyl-,C ₁ -C ₄ -Halogenalkyl-C ₁ -C ₄ -Alkoxy-Nitro , substituiertes Aryl, Hetaryl oder Aryl-C ₁ -C ₄ -alkyl steht, für Wasserstoff, geradkettiges oder verzweigtes C ₁ -C ₁₀ -Alkyl, C ₁ -C Alkoxyalkyl steht oder
	A und B	gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen 3-7-gliedrigen Ring bilden und
20	E*	für ein Metallionenäquivalent oder ein Ammoniumion steht,
		sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
4.	3-Aryl-pyrrolic	lin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 bis 3, in welcher
25	X	für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
	Υ	für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tertButyl, Fluor, Chlor,
	Z	Brom, Methoxy, Ethoxy und Trifluormethyl steht, für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tertButyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,
30	n	für eine Zahl von 0-3 steht,
	R	für Wasserstoff (la) oder für die Gruppen der Formel
		-CO-R¹ (lb), -CO-O-R² (lc) oder E® (ld)
35	R¹	steht, in welcher für gegebenenfalls durch Fluor oder Chlor substituiertes: C ₁ -C ₁₄ -Alkyl, C ₂ -C ₁₄ -Alkenyl, C ₁ -C ₄ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Alkylthio-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Polyalkoxyl-C ₂ -C ₄ -alkyl
		und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff-und/oder Schwefelatome unterbrochen sein kann steht,
40		unterprochen sem kann stem,
40		für gegebenenfalls durch Fluor-, Chlor, Brom-, Methyl-, Ethyl-, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl-, Trifluormethoxy-, Nitro- substituiertes Phenyl steht,
45		für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C ₁ -C ₃ -alkyl steht,
		für gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,
50		für gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-substituiertes Phenoxy- C_1 - C_4 -alkylsteht,
55	H²	für gegebenenfalls durch Fluor-, Chlor-, Amino-, Methyl-, Ethyl-, substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl und Thiazolyloxy- C_1 - C_4 -alkyl steht, für gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_1 -Alkyl, C_2 - C_1 -Alkenyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_2 - C_6 -alkyl steht
		oder

für gegebenenfalls durch Fluor-, Chlor-, Nitro-, Methyl-, Ethyl-, Propyl-, i-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-substituiertes Phenyl steht,

- für Wasserstoff gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triasol, Indol, Thiazol oder
- B für Wasserstoff, geradkettiges oder verzweigtes C₁-C₈-Alkyl, C₁-C₄-Alkoxyalkyl steht,
- A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind ein 3-6 gliedrigen Ring bilden, und
- E[•] für ein Metallionenäquivalent oder ein Ammoniumion steht sowie die enantiomerenreinen Formen von Verbindungen der Formel I.
- 5. Verfahren zur Herstellung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der (I)

 $\begin{array}{c|c}
A & R-0 & X \\
\hline
H-N & 0
\end{array}$

.

10

15

20

25

in welcher

Α

X für Alkyl, Halogen, Alkoxy steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

R für Wasserstoff oder für die Gruppen

-CO-R1, -CO-O-R2

35

40

45

50

30

steht, in welchen

- R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und
- R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,
- A für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, , Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Haloalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
- B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind einen Carbocyclus bilden und
- E für einen Metallionäquivalent oder ein Ammoniumion steht, dadurch gekennzeichnet,
- daß man zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (la)

in welcher A, B, C, X, Y, Z und n die oben angegebene Bedeutung haben, (A)

N-Acylaminosäureester der Formel (II)

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben

und

5

10

15

20

25

30

35

40

45

50

55

R3 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert, (B)

oder daß man zum Erhalt von Verbindungen der Formel (lb)

$$\begin{array}{c|c}
R^{1}-C-O & X \\
\hline
 & & & \\
A & & & \\
H-N & & & \\
\end{array}$$
(1b)

in welcher A, B, X, Y, Z, R1 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la),

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,
 α) mit Säurehalogeniden der allgemeinen Formel (III)

10

15

in welcher

R1 die oben angegebene Bedeutung hat

und

Hal für Halogen, insbesondere Chlor und Brom steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R1 die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt,

(C)

25

30

20

oder daß man zum Erhalt von Verbindungen der Formel (Ic)

 $\begin{array}{c|c}
R^{2}O-C-O & X \\
\hline
A & & & \\
H-N & & & \\
\hline
0 & & & \\
\end{array}$

35

in welcher

A, B, C, X, Y, Z, R² und n die oben angegebene Bedeutung haben,

40

Verbindungen der Formel (la)

50

45

in welcher

A, B, X, Y, Z und n die oben angegebene Bedeutung haben,

mit Chlorameisensäureester der allgemeinen Formet (V)

55

R2-O-CO-CI (V)

in welcher

R² die oben angegebene Bedeutung hat, gegebenenfals in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

D)

oder daß man zum Erhalt von Verbindungen der Formel (ld)

15

5

10

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (la)

20

25

30

in welcher X, Y, Z, A, B und n die oben angegebene Bedeutung haben,

mit Metallhydroxiden oder Aminen der allgemeinen Formeln (VI) und (VII)

Me_sOH_t (VI)

35 R⁵

40 in welchen

Ме

für ein- oder zweiwertige Metallionen,

s und t

für die Zahl 1 und 2 und

R4, R5 und R6

unabhängig voneinander für Wasserstoff und Alkyl

stehen,

45

50

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

6. Insektizide, akarizide und herbizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I).

7 Vorfahran zur Baköm

- 7. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern, dadurch gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) auf Insekten und/oder Spinnentieren und/oder Unkräutern und/oder deren Lebensraum einwirken läßt.
- 55 8. Verwendung von 3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formei (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern.
 - 9. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden Mitteln, dadurch

gekennzeichnet, daß man 3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

(i) Veröffentlichungsnummer: 0 456 063 A3

12

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 91106870.8

2 Anmeldetag: 27.04.91

(i) Int. Cl.⁵: **C07D 207/38**, C07D 209/54. C07D 207/408, C07D 403/12, C07D 207/404, C07D 405/12, A01N 43/36

Priorität: 10.05.90 DE 4014941 08.03.91 DE 4107394

Veröffentlichungstag der Anmeldung: 13.11.91 Patentblatt 91/46

 Benannte Vertragsstaaten: BE CH DE ES FR GB GR IT LI NL

 Veröffentlichungstag des später veröffentlichten Recherchenberichts: 08.07.92 Patentblatt 92/28

(7) Anmelder: BAYER AG

W-5090 Leverkusen 1 Bayerwerk(DE)

Erfinder: Krauskopf, Birgit, Dr. Kicke 19 W-5060 Bergisch Gladbach 1(DE) Erfinder: Lürssen, Klaus, Dr. August-Kierspel-Strasse 151 W-5060 Bergisch Gladbach(DE) Erfinder: Santel, Hans-Joachim, Dr.

Gruenstrasse 9a

W-5090 Leverkusen 1(DE) Erfinder: Schmidt, Robert R., Dr.

Im Waldwinkel 110

W-5060 Bergisch Gladbach(DE)

Erfinder: Wachendorff-Neumann, Ulrike, Dr.

Kriescherstrasse 81 W-4019 Monheim(DE) Erfinder: Fischer, Reiner, Dr. Nelly-Sachs-Strasse 23 W-4019 Monheim 2(DE)

Erfinder: Erdelen, Christoph, Dr.

Unterbuescherhof 22 W-5653 Leichlingen 1(DE)

4 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate.

5) Es werden neue 3-Aryl-pyrrolidin-2,4-dion-Derivate der allgemeinen Formel (I)

$$\begin{array}{c|c}
A & R-O & X \\
\hline
H-N & O
\end{array}$$

bereitgestellt, in welcher

X für Alkyl, Halogen, Alkoxy steht,

Υ für Wasserstoff, Alkyl, Halogen, Alkoxy,

Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

für eine Zahl von 0-3 steht. n

R für Wasserstoff oder für die Gruppen -CO-R1, -CO-O-R2 oder E® steht, in welchen

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl und Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls subst. Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl und substituiertes Hetaryloxyalkyl steht und

R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl und gegebenenfalls substituiertes Phenyl steht,

Α für Wasserstoff, gegebenenfalls durch Halogen substituiertes AlkvI. AlkoxvalkvI. Alkylthioalkyl, gegebenenfalls durch Hetero-

atome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen-, Alkyl-, Halogenalkyl-, Alkoxy-, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht,

oder worin

A und B gemeinsam mit dem Kohlenstoff-

atom, an das sie gebunden sind ei-

nen Carbocyclus bilden und

E^e für ein Metallionäquivalent oder ein

Ammoniumion steht,

sowie die enantiomerenreinen Formen von Verbindungen der Formel

(I).

Die neuen Verbindungen der Formel (I) besitzen eine hervorragende herbizide, insektizide und akarizide Wirksamkeit.

EUROPÄISCHER RECHERCHENBERICHT

EP 91 10 6870

Nummer der Anmeldung

	EINSCHLÄGIG	GE DOKUMENT	E		
Kategorie	Kennzeichnung des Dokum der maßgebli		erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL5)
D,Y	US-A-4 632 698 (UNION Dezember 1986 Beispiel II, Spalte 7; Tabelle I * Spalte 4, Zeile 55 - * Spalte 5, Zeile 59 -	CARBIDE CORPORATIO Verbindungen 1-1 Spalte 5, Zeile 3	8 1n	1-9	C070207/38 C070209/54 C070207/408 C070403/12 C070207/404 C070405/12 A01N43/36
Y	US-A-3 272 842 (ELI LI September 1966 Beispiel 2; Anspruch * Spalte 3, Zeile 23 - * Spalte 3, Zeile 43 - * Spalte 4, Zeile 5 -	4 Ze11e 38 * Ze11e 46 *	3.	1-9	A1145/30
٧	WO-A-8 804 652 (NIPPON 1988 * das ganze Dokument *	SODA CO., LTD.) 3	O. Junt	1-9	
P,Y	EP-A-0 377 893 (BAYER A	AG) 18, Juli 1990		1-9	
P,Y	EP-A-0 415 185 (BAYER A	 AG) 6. MErz 1991		1-9	RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
P,Y	EP-A-0 423 482 (BAYER A	AG) 24. April 1991 —		1-9	ADIN
O,A	DE-A-2 361 084 (UNION 0 Juni 1974 * das ganze Dokument *	CARBIDE CORPORATIO	N) 20.	1-9	
Der vo	rtiegende Recherchenbericht wur Recherchaut	de für alle Patentansprüc			Peter
ı	MUENCHEN	07 MAI 19		HARTI	RAMPE G.W.
X : vos Y : vos ande A : techi O : nich	ATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kate nologischer Hintergrund schriftliche Offenberung cheuliteratur	tet g mit einer D gorie L:	titeres Patentiolin nach dem Anmelde : la der Anmeldung : aus andern Gründe	ment, das jedoc datum veröffen angeführtes Do n angeführtes I	tlicht worden ist kument

EPO FORM 1503 03.42 (PO003)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.