CS381-L Software Engineering Lab 02

Type of Lab: Close Ended

Weightage: 5%

CLO 2: Implement, in a programming language, an executable solution to a given problem using best practices.

Implement, in a	Cognitive/Apply	CLO2	Rubric A
programming			
language, an			
executable solution to a			
given problem using			
best practices.			

CLO 5: Comply with Plagiarism Policies.

Comply with	Cognitive/Understand	CLO2	Rubric B
Plagiarism Policies.			

Rubric A: Cognitive/Apply

CLO2	0	1	2	3	4
Implement, in a programmin g language, an executable solution to a given problem using best practices.	Student could not complete the task	Student understand the problem and solution but could not write the code	Student write code but with some minor errors	Student code is giving the desired results	Student code is correct with perfect indentation

Rubric B: Cognitive/Understand

CLO 5	0	1	2	3	4
Comply with plagiarism policies.	Students copied complete code from other fellows.	Student gives his code to other students.	Students partially copied or asked the code from other fellows.	Students copied the code but clearly mentioned the part of the code that has been taken.	Student did not copy the code and did not allow anyone to copy his code.

Lab 02

Assessment Criteria:

Implementation of Class Diagram: 4 points

GUI: 3 points

Validation: 1.5 points

Documentation Comments: 1.5 points

Assignment 2

Write a C# program in which you are required to implement the following design. Constraints for each attribute are given below.

Figure 1 Class diagram

- StudentName //should be alphabetic, special characters and numbers are not allowed
- **RegistrationNumber** //Format should be like this: 2015-CS-888, any other format should be handled in setter function
- **Degree** //it should be MS, BS or BE
- CourseID // Format should be valid according to your course codes given in your LMS. For instance, a software engineering lab has a course ID of CS381L. Length of course code should be from 2 to 8 characters.
- CourseTitle // should be alphabetic. Length of course code should be from 10 to 35 characters.
- **CreditHours** // values from 1 to 3 are allowed

- Marks // values from 0 to 100 are allowed
- Semester // valid range is from 1 to 8
- 1. Your Program should define three constructors for class of CourseResult
 - a. a constructor with **no parameter**
 - b. a constructor with **parameters**
 - c. copy constructor
- 2. **Student** will have only one constructor without parameter
- 3. Define getter setter for each data member in classes
- 4. Apart from getter, setter and constructor, define the following functions in respective classes according to class diagram
 - a. **getGrade()** it should calculate grade based on marks using the following criteria.
 - IF marks are less than 40 Grade is F
 - IF marks are between 40 and 50(exclusive) Grade is D
 - IF marks are between 50 and 55(exclusive) Grade is C
 - IF marks are between 55 and 60(exclusive) Grade is C+
 - IF marks are between 60 and 65(exclusive) Grade is B-
 - IF marks are between 65 and 70(exclusive) Grade is B+
 - IF marks are between 70 and 80(exclusive) Grade is A-
 - IF marks are above 80 Grade is A
- 5. **getGradePoints()** function should return grade points using the following criteria

Grade	CoursePoints
A	4.0
A-	3.7
B+	3.3
B-	3.0
C+	2.7
С	2.3
D	1.0
F	0

i. **getSemesters()** – it should return number of semesters based on course list

getSemesterGPA(semester: int) – calculate semester GPA according to following formula $SemesterGPA = \frac{\Sigma(SemesterCourseGradePoints*CreditHours)}{SemesterCreditHours}$

getCGPA(): calculate GPA using the following formula $CGPA = \frac{\Sigma(CourseGradePoints*CreditHours)}{TotalCreditHours}$

- ii. **getTotalCreditHours()** it should return number of credit hours based on course list
- iii. **getSemesterCreditHours(semester: int)** it should return number of credit hours for a given semester based on course list
- iv. **getSession()** extract session from RegistrationNumber
- v. **getDiscipline()**: extract discipline from RegistrationNumber
- vi. **toString()** Purpose of this function is to write all attributes of a class in desired format and return as a string
- vii. **ListOfSuspendedStudents():** this will return students with CGPA less than 2.0.
 - Create GUI to support the above class diagram. GUI will be your choice, better GUI will get more points
 - You don't need to write data in file or database.
 - Use DataGridView for Course List and Student List
 - ToString() of Student will show result in following format:

Name: Samyan Qayyum Degree: BS CS

Registration Number: 2009-CS-01

Session: 2009

Semester 1:

ID	Name	CH	Marks	Grade	
MTH134	Calculus	3	90	A	
CS141	Computing Fundamentals	2	79	A-	
PHY101	Physics	3	75	A-	
			SGPA: 3.8125		

Semester 2:

ID	Name	CH	Marks	Grade
MTH111	Linear Algebra	1	80	A
CS141	Programming Fundamentals	3	65	B+
		SGPA: 3.475		

CGPA: 3.7

Figure 2: Output format