La Thyroïde

Pr C.AOUATI-BITAT

Généralités

- une glande endocrine
- la face antérieure du cou, en avant de la trachée.
- poids : 15à 20 g
- comporte deux lobes latéraux réunis par un isthme médian.

Rappel embryologique

3 étapes

Première étape: formation du tubercule thyroïdien.

Apparaît vers la fin de la 3ème semaine de la V.I.U II dérive du plancher de l'intestin pharyngien d'origine entoblastique.

Extension dans le mésoblaste sous-jacent.

Deuxième étape : évolution du tubercule thyroïdien en poche de Bochdalek.

Se fait vers la 4^{ème} semaine de la vie intra embryonnaire.

La poche de Bochdalek migre dans le mésoblaste et reste liée à l'épithélium pharyngien par le canal thyréoglosse.

Troisième étape : évolution du pédicule thyréoglosse en tractus thyréoglosse.

la fin de la 4^{ème} semaine de la vie intra embryonnaire.

Oblitération de la lumière du canal thyréoglosse donnant le tractus thyréoglosse.

Les cellules parafolliclaires, (cellules C) productrices de calcitonine, dérivent de la crête neurale

Structure histologique

• une capsule conjonctive qui envoie divers prolongements pour subdiviser le parenchyme en lobules.

-des follicules : (unités morpho-fonctionnelles), sphériques, de dimensions variables (selon l'état) séparés par un stroma conjonctivo-vasculaire.

entouré d'un réseau capillaire sanguin très dense; le follicule comprend :

- -un épithélium simple
- -une cavité centrale : refermant une substance d'aspect gélatineux : la colloïde.

BV vaissea CI colloïde CT tissu co F follicule FC cellules N noyau PF cellule (

Epithélium folliculaire

épithélium cubique ou prismatique simple selon l'état ;repose sur une membrane basale très fine doublée d'une enveloppe de réticuline

comprend deux types cellulaires :
-les cellules folliculaires principales

- -les cellules folliculaires principales (thyréocytes);
- -les cellules parafolliculaires (cellules C).

Les cellules folliculaires principales

Prismatiques, présentent une double polarité: -un pôle apical au contact de la colloïde

- -un pôle basal en étroit rapport avec les capillaires.
 on note également :
- un noyau central, plus ou moins arrondi, à chromatine fine, possédant un à deux nucléoles;
 - -cytoplasme basophile riche en réticulum endoplasmique granuleux; appareil de Golgi bien développé.
- Les cellules folliculaires (ou thyréocytes) sécrètent les hormones thyroïdiennes T3 (tri-iodothyronine) et T4 (tétra-iodothyronine ou thyroxine)

Le pôle apical : présente des microvillosités courtes; lysosomes primaires et secondaires et des gouttelettes de colloïde.

le pôle basal présente des citernes ergastoplasmiques ; des mitochondries; et de nombreux replis de la membrane basale

-Des complexes de jonction relient les cellules entre elles

Pâle basal CELLULE FOLUICULAIRE

Les Cellules parafolliculaires

- -cellules C (sécrétant de la calcitonine, hormone hypocalcémiante) mois nombreuses
- -situées entre les cellules folliculaires principales et la membrane basale.
- -cellules globuleuses à cytoplasme très peu colorable (cellules claires), un appareil de Golgi bien développé; des lysosomes et des mitochondries peu abondants; et des Granules denses de sécrétion (la calcitonine).

La cavité centrale

- Contient la colloïde thyroïdienne : matériel protéique riche en en thyroglobuline
- Cette dernière est une forme de stockage de la thyroxine
- Selon l'état fonctionnel de la glande, les follicules peuvent présenter certaines modifications.

Les cellules folliculaires ont un aspect qui varie selon leur degré d'activité :

- -en cas d'hyperactivité : elles augmentent de volume, deviennent prismatiques hautes avec un développement considérable de leurs organites
- En même temps, la colloïde diminue.

- -en cas d'hypoactivité : les phénomènes sont inverses :
- les thyréocytes diminuent de taille et deviennent cubiques voire aplatis, tandis que leurs organites se réduisent et la colloïde augmente de volume

ronicules au repos

follicules actifs

La sécrétion thyroïdienne

- Les cellules folliculaires principales sécrètent les hormones thyroïdiennes : la triodothyronine T3; la tétraiodothyronine ou thyroxine T4.
- Ces hormones stimulent le métabolisme général de l'organisme ainsi que la croissance; et sont indispensables au développement du système nerveux fœtal

La biosynthèse hormonale

Synthèse de la thyroglobuline(glycoprotéine) dans la cellule folliculaire:

-sa fraction protéique synthétisée par les ribosomes dans le REG à partir d'acides aminés du sang

-sa fraction glucidique est synthétisée dans l'appareil de Golgi

-les vésicules golgiennes gagnent le pôle apical de la cellule et par exocytose déversent la thyroglobuline dans la lumière folliculaire, contribuant ainsi à former la colloïde

Captation et concentration de l'iode circulant

La cellule folliculaire capte les iodures sanguins (de façon active ; forte dépense d'énergie) et les déverse dans la colloide où ils se concentrent et s'oxydent.

lodation de la thyroglobuline

-l'iode s'incorpore à la thyroglobuline sous forme de mono-iodo-tyrosine (MIT) et de di-iodo-tyrosines (DIT) qui se condensent ensuite, au sein de la molécule de thyroglobuline, en triodothyronine (T3) et tétraiodothyronine (Thyroxine)(T4).

Sécrétion hormonale

- La colloïde (thyroglobuline iodée) est ensuite phagocytée par les cellules folliculaires sous forme de gouttelettes de colloïde intracytoplasmiques.
- -Les lysosomes migrent vers ces gouttelettes de colloïde et la thyroglobuline iodée est dégradée par hydrolyse et protéolyse, libérant T3 et T4.
- Ces deux hormones sont déversées dans les capillaires sanguins.

Recyclage de l'iode

Les iodotyrosines résiduelles sont désiodées, et donnent :

-d'une part, de la tyrosine, qui regagne les capillaires sanguins;

-et d'autre part de l'iode minéral qui va à nouveau participer au cycle de l'iode, soit en étant réutilisé directement sur place, soit en retournant dans le courant sanguin.

Aspect pathologique

- 1-hyperthyroïdie :
- -augmentation de la thyroïde (goitre)
- -augmentation des hormones thyroidiennes
- 2-hypothyroidie : diminution de la sécrétion de la TSH ou TRH (pas de goitre)
- Thyroidite (autoimmune)
- Hypotyroidie médicamenteuse
- Lésions malignes

Sécrétion de la calcitonine

- Sécrétée par les cellules C
- Hormone hypocalcémiante
- Inhibe la déminéralisation de l'os (évite le passage du calcium dans le sang)
- Régulée par le taux de calcium dans le sang