第六章常微分方程的数值解法

王志明

wangzhiming@ustb.edu.cn

引言

一阶常微分方程的初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

假设函数f(x,y)连续,且满足Lipschitz条件:

$$|f(x,y)-f(x,\bar{y})| \le L|y-\bar{y}|$$
 (与数值不必大)

一常用的离散化方法包括: 差商近似导数、数值积分、泰勒展开近似。

1、用差商近似导数

$$\frac{y(x_{n+1}) - y(x_n)}{h} \approx f(x_n, y(x_n)) \quad (n = 0, 1, ...)$$

$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

2、用数值积分方法

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$
 $(n = 0, 1, ...)$

运用矩形公式:
$$\int_{x_n}^{x_{n+1}} f(x, y(x)) dx \approx h f(x_n, y_n)$$

迭代求解:
$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

3、用Taylor多项式近似

$$y(x_{n+1}) = y(x_n + h) \approx y(x_n) + hy'(x_n)$$

= $y(x_n) + hf(x_n, y(x_n))$

迭代求解:
$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

第六章常微分方程的数值解法

- 6.1 欧拉法与改进欧拉法(红色)
 - 6.2 龙格-库塔法
 - 6.3 收敛性与稳定性
 - 6.4 一阶方程组与高阶方程的解法

§ 6.1 欧拉(Euler)法

§ 6.1.1 Euler方法

$$\begin{cases} y_{i+1} = y_i + hf(x_i, y_i) \\ y_0 = y(a) \end{cases}$$

又称为Euler折线法。

【例1】Euler方法求解初值问题:

$$\begin{cases} y' = x - y + 1 & 0 \le x \le 0.5 \\ y(0) = 1 & \text{fight:} \quad y = x + e^{-x} \end{cases}$$

迭代公式:
$$y_{i+1} = y_i + h(x_i - y_i + 1)$$

X _i	$\mathbf{y_i}$	$y(x_i)$	$ \mathbf{y}(\mathbf{x_i}) - \mathbf{y_i} $
0.0	1.000000	1.000000	0.000000
0.1	1.000000	1.004837	0.004837
0.2	1.010000	1.018731	0.008731
0.3	1.029000	1.040818	0.011818
0.4	1.056100	1.070320	0.014220
0.5	1.090490	1.106531	0.016041

§ 6.1.2 Euler公式的局部截断误差与精度分析

整体截断误差: $e_{i+1} = y(x_{i+1}) - y_{i+1}$

定义1: 若 y_{i+1} 是在 $y_i = y(x_i)$ 的假设下由某一近似方法得到的 $y(x_{i+1})$ 的近似值,则称 $R_{i+1} = y(x_{i+1}) - y_{i+1}$ 为该数值方法的局部截断误差。

利用泰勒展开式估计局部截断误差:

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(\xi_i)$$
$$y'(x_i) = f(x_i, y(x_i)), \quad y_i = y(x_i)$$

$$y(x_{i+1}) = y_i + hf(x_i, y_i) + \frac{h^2}{2}y''(\xi_i)$$

$$y_{i+1} = y_i + hf(x_i y_i)$$

$$R_{i+1} = y(x_{i+1}) - y_{i+1} = \frac{h^2}{2}y''(\xi_i)$$

$$R_{i+1} = \frac{1}{2}h^2y''(x_i) + O(h^3) \Rightarrow O(h^2)$$

定义2 如果一个数值方法的局部截断误差为O(hp+1),则称该方法是p阶的。

§ 6.1.3 改进的欧拉方法

向后差商代替导数:
$$\frac{y(x_{i+1}) - y(x_i)}{h} \approx f(x_{i+1}, y(x_{i+1}))$$

向后差商代替导数:
$$\frac{y(x_{i+1})-y(x_i)}{h} \approx f(x_{i+1},y(x_{i+1}))$$
 向后隐式迭代法:
$$\begin{cases} y_{i+1}=y_i+hf(x_{i+1},y_{i+1}) & (i=0,1,...) \\ y_0=y(a) \end{cases}$$

迭代求解:
$$\begin{cases} y_{i+1}^{(0)} = y_i + hf(x_i, y_i) \\ y_{i+1}^{(k+1)} = y_i + hf(x_{i+1}, y_{i+1}^{(k)}) \quad (k = 0, 1, ...) \end{cases}$$

局部截断误差:
$$R_{i+1} = \frac{1}{2} (h^2) y''(x_i) + O(h^3)$$
 一阶方法!

显式和隐式欧拉法都是一阶方法,但误差中2阶项符号相 反,是否可以结合得到更精确的方法?

$$y(x_{i+1}) - \frac{h}{2}(\tilde{y}_{i+1} + \tilde{\tilde{y}}_{i+1}) = O(h^3)$$

梯形公式: $y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$

$$R_{i+1} = y(x_{i+1}) - y(x_i) - \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y(x_{i+1}))]$$

$$= \frac{h^3}{12} y'''(\xi) \quad (x_n < \xi < x_{n+1}) \qquad R(T) = -\frac{h^3}{12} f''(\eta)$$

$$R(T) = -\frac{h^3}{12} f''(\eta)$$

梯形公式为二阶方法,属隐式格式,需迭代法求解。

迭代求解:

$$\begin{cases} y_{i+1}^{(0)} = y_i + hf(x_i, y_i) \\ y_{i+1}^{(k+1)} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k)})] & (k = 0, 1, ...) \end{cases}$$

根据Lipschitz条件:

$$|y_{i+1}^{(k+1)} - y_{i+1}^{(k)}| = \frac{h}{2} |f(x_{i+1}, y_{i+1}^{(k)}) - f(x_{i+1}, y(y_{i+1}^{(k-1)}))|$$

$$\leq \frac{hL}{2} |y_{i+1}^{(k)} - y_{i+1}^{(k-1)}|$$
收敛条件:
$$\frac{hL}{2} < 1$$

改进欧拉法: 在梯形公式中, 隐式公式的求解只迭代一次.

为编程方便,改写为:

$$\begin{cases} y_p = y_i + hf(x_i, y_i) \\ y_q = y_i + hf(x_i + h, y_p) \\ y_{i+1} = (y_p + y_q)/2 \end{cases}$$

改进欧拉法算法

(1)输入 $a,b,f(x,y),N,y_0$

(2)
$$h = \frac{b-a}{N}$$
, $i = 0$, $x = a$, $y = y_0$, $\text{ fix } \exists (x, y)$

$$(3) \begin{cases} y_p = y + hf(x, y), & x = x + h \\ y_q = y + hf(x, y_p) \end{cases}$$
$$(y_p + y_q)/2 \Rightarrow y, 输 出(x, y)$$

(4)若 $i < N, i+1 \Rightarrow i,$ 转(3); 否则退出。

【例2】用改进Euler法求解(h=0.1, N=5):

$$\begin{cases} y' = x - y + 1 & 0 \le x \le 0.5 \\ y(0) = 1 \end{cases}$$

迭代形式为:

$$\begin{cases} \tilde{y}_{i+1} = y_i + 0.1(x_i - y_i + 1) \\ y_{i+1} = y_i + 0.05[(x_i - y_i + 1) + (x_{i+1} - \tilde{y}_{i+1} + 1)] \end{cases}$$

$$y_{i+1} = 0.095x_i + 0.905y_i + 0.1$$

$$= (-0.05x_i) + 0.05x_i + 0.05 + 0.05x_i + 0.05$$

改进欧拉法与欧拉法对比:

Xi	y_i	$y(x_i)$	$ y(x_i)-y_i $	欧拉法
0.0	1.000000	1.000000	0.000000	0.000000
0.1	1.005000	1.004837	0.000163	0.004837
0.2	1.019025	1.018731	0.000294	0.008731
0.3	1.041218	1.040818	0.000399	0.011818
0.4	1.070802	1.070320	0.000482	0.014220
0.5	1.107076	1.106531	0.000545	0.016041

§ 6.2 龙格-库塔法

§ 6.2.1龙格-库塔法构造原理

(1)Euler法:

$$\begin{cases} y_{i+1} = y_i + hK_1 & \text{将函数近似为线性,利用函数f(x,y)} \\ K_1 = f(x_i, y_i) & \text{在左端点的值近似斜率} \end{cases}$$

(2)改进Euler法:

$$\begin{cases} y_{i+1} = y_i + h(K_1 + K_2)/2 \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h, y_i + hK_1) \end{cases}$$
用函数f(x,y)在左右端点值的均值近似斜率

是否可以利用函数在更多点的值加权得到更精确的近似斜率?

龙格-库塔公式

$$\begin{cases} y_{i+1} = y_i + h \sum_{k=1}^{m} \alpha_k K_k \\ K_1 = f(x_i, y_i) \end{cases}$$

$$K_j = f(x_i + \lambda_j h, y_i + h \sum_{k=1}^{j-1} \mu_{jk} K_k)$$

参数确定原则:其Taylor展开式与y(x_i)在x_i处尽可能多项重合。

在m=2时:
$$\begin{cases} y_{i+1} = y_i + h(\alpha_1 K_1 + \alpha_2 K_2) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + \lambda_2 h, y_i + \mu_{21} h K_1) \end{cases}$$

迭代公式的Taylor展开式:

$$y_{i+1} = y_i + \alpha_1 h K_1 + \alpha_2 h K_2$$

 $= y_i + \alpha_1 h f(x_i, y_i) + \alpha_2 h [f(x_i, y_i) + \lambda_2 h f'_x(x_i, y_i) + \mu_{21} h f(x_i, y_i) f'_y(x_i, y_i) + O(h^2)]$
 $= y_i + [\alpha_1 + \alpha_2) h f(x_i, y_i)$
 $+ \alpha_2 h^2 [\lambda_2 f'_x(x_i, y_i) + \mu_{21} f(x_i, y_i) f'_y(x_i, y_i)] + O(h^3)$
 $y(x_{i+1})$ 在 x_i 处的Taylor展开式:
 $y(x_{i+1}) = y(x_i) + h y'(x_i) + \frac{1}{2} h^2 y''(x_i) + O(h^3)$
 $= y_i + f(x_i, y_i) h$

 $+h^2/2[f'_x(x_i,y_n)+f'_y(x_i,y_i)f(x_i,y_i)]+O(h^3)$

要求局部截断误差为O(h³),则前两式的前三项相同,得:

$$\begin{cases} \alpha_1 + \alpha_2 = 1 \\ \alpha_2 \lambda_2 = 1/2 \\ \alpha_2 \mu_{21} = 1/2 \end{cases}$$

上式有无穷多解,如取 $a_1 = a_2 = 1/2$, $\lambda_2 = \mu_{21} = 1$,则:

$$\begin{cases} y_{i+1} = y_i + h(K_1 + K_2) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h, y_i + hK_1) \end{cases}$$

改进Euler公式!

如取
$$a_1$$
= 0, a_2 =1, λ_2 = μ_{21} =1/2,则:

$$\begin{cases} y_{i+1} = y_i + hK_2 \\ K_1 = f(x_i, y_i) \end{cases}$$
 中点公式!
$$K_2 = f(x_i + h/2, y_i + hK_1/2)$$
 中点公式!

常用的三阶方法:

$$\begin{cases} y_{i+1} = y_n + h/6 \cdot (K_1 + 4K_2 + K_3) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h/2, y_i + hK_1/2) \\ K_3 = f(x_i + h, y_i - hK_1 + 2hK_2) \end{cases}$$

§ 6.2.2 经典龙格-库塔法

经典四阶方法:

$$\begin{cases} y_{i+1} = y_i + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h/2, y_i + hK_1/2) \\ K_3 = f(x_i + h/2, y_i + hK_2/2) \\ K_4 = f(x_i + h, y_i + K_3) \end{cases}$$

【例3】用四阶RK方法求解(h=0.1, N=5):

$$\begin{cases} y' = x - y + 1 & (0 \le x \le 0.5) \\ y(0) = 0 \end{cases}$$

$$\begin{cases} K_1 = x_i + y_i - 1 \\ K_2 = x_i - y_i - 0.05K_1 + 1.05 \\ K_3 = x_i - y_i - 0.05K_2 + 1.05 \\ K_4 = x_i - y_i - 0.1K_3 + 1.1 \\ y_{i+1} = y_i + (K_1 + 2K_2 + 2K_3 + K_4) / 60 \end{cases}$$

四阶R-K方法结果:

$\mathbf{x_i}$	y_i	$y(x_i)$	$ \mathbf{y}(\mathbf{x_i}) - \mathbf{y_i} $	欧拉法	改进欧拉法
0.0	1.00000000	1.00000000	0.00000000	0.000000	0.000000
0.1	1.00483750	1.00483742	0.00000008	0.004837	0.000163
0.2	1.01873090	1.01873075	0.0000015	0.008731	0.000294
0.3	1.04081842	1.04081822	0.00000020	0.011818	0.000399
0.4	1.07032029	1.07032005	0.00000024	0.014220	0.000482
0.5	1.10653093	1.10653066	0.00000027	0.016041	0.000545

【例4】分别用欧拉法(h=0.025)、改进欧拉法(h=0.05)及经典四阶RK方法(h=0.1)求解初值问题:

$$\begin{cases} y' = -y & x \in [0,1] \\ y(0) = 1 \end{cases}$$

欧拉法:
$$\tilde{y}_{i+1} = y_i - 0.025 y_i = 0.975 y_i$$

改进欧拉法:
$$\begin{cases} \tilde{y}_{i+1} = y_i - 0.05y_i = 0.95y_i \\ y_{i+1} = y_i + 0.025[-y_i - \tilde{y}_{i+1}] = 0.95125y_i \end{cases}$$

经典四阶RK方法:

$$\begin{cases} K_1 = -y_i \\ K_2 = -y_i - 0.05K_1 = -0.95y_i \\ K_3 = -y_i - 0.05K_2 = -0.9525y_i \\ K_4 = -y_i - 0.1K_3 = -0.90475y_i \\ y_{i+1} = y_i + 0.1 \cdot (K_1 + 2K_2 + 2K_3 + K_4) / 6 \\ = 0.9048375y_i \end{cases}$$

X _i	欧拉法	改进欧拉法	四阶R-K法	精确值
0.0	1.00000000	1.00000000	1.00000000	1.00000000
0.1	0.90368789	0.90487656	0.90483750	0.90483742
0.2	0.81665180	0.81880159	0.81873090	0.81873075
0.3	0.73799835	0.74091437	0.74081842	0.74081822
0.4	0.66692017	0.67043605	0.67032029	0.67032005
0.5	0.60268768	0.60666187	0.60653093	0.60653066
0.6	0.54464156	0.54895411	0.54881193	0.54881164
0.7	0.49218598	0.49673570	0.49658562	0.49658530
0.8	0.44478251	0.44948450	0.44932929	0.44932896
0.9	0.40194457	0.40672799	0.40656999	0.40656966
1.0	0.36323244	0.36803862	0.36787977_	0.36787944

§ 6.2.3 步长的自动选择

y(x)变化可能不均匀,等步长求解可能有些地方精度过高, 有些地方精度过低。

如何根据精度自动调节步长? Richardson外推法.

以p阶公式、步长h计算:
$$y(x_{i+1}) - y_{i+1}^{(h)} = ch^{p+1} + O(h^{p+2})$$

以步长h/2计算两次:
$$y(x_{i+1}) - y_{i+1}^{(h/2)} = 2c \left(\frac{h}{2}\right)^{p+1} + O(h^{p+2})$$

$$(2^{p}-1)y(x_{i+1})-2^{p}y_{i+1}^{(h/2)}+y_{i+1}^{(h)}=O(h^{p+2})$$

$$y(x_{i+1}) = \frac{2^{p} y_{i+1}^{(h/2)} - y_{i+1}^{(h)}}{2^{p} - 1} + O(h^{p+2})$$

更精确的估计:

$$y_{i+1} \approx \frac{2^{p} y_{i+1}^{(h/2)} - y_{i+1}^{(h)}}{2^{p} - 1} = y_{i+1}^{(h/2)} + \frac{1}{2^{p} - 1} (y_{i+1}^{(h/2)} - y_{i+1}^{(h)})$$

$$y(x_{i+1}) - y_{i+1}^{(h/2)} \approx \frac{1}{(2^p - 1)} (y_{i+1}^{(h/2)} - y_{i+1}^{(h)})$$

误差估计:
$$\Delta = \left| y_{i+1}^{(h/2)} - y_{i+1}^{(h)} \right|$$

缩小或放大h直到达到要求计算精度。

§ 6.3 收敛性与稳定性

§ 6.3.1 收敛性

定义3 如果一个数值方法对任意固定点 $x_{i+1}=x_0+ih$,当 $h=(x_i-x_0)/i\to 0$ 时都有 $y_i\to y(x_i)$,则称该方法是收敛的.

定理1 如果f(x,y)关于y满足利普希茨条件,即存在常数L,使得: $|f(x,y_1)-f(x,y_2)| \le L|y_1-y_2|$

且y"(x)有界,则欧拉方法的整体截断误差满足:

$$|y(x_i) - y_i| \le e^{L(b-a)} |y(x_0) - y_0| + \frac{Mh}{2L} (e^{L(b-a)} - 1)$$

$$M = \max_{x \in [a,b]} |y''(x)|$$

证明:由欧拉公式和y(x_i)在x_{i-1}处的泰勒展开式可得

$$y_{i} = y_{i-1} + hf(x_{i-1}, y_{i-1})$$

$$y(x_{i}) = y(x_{i-1}) + y'(x_{i-1})h + \frac{1}{2}y''(\zeta)h^{2}$$

$$= y(x_{i-1}) + f(x_{i-1}, y(x_{i-1}))h + \frac{1}{2}y''(\zeta)h^{2}$$

$$y(x_{i}) - y_{i} = y(x_{i-1}) - y_{i-1}$$

$$+ h[f(x_{i-1}, y(x_{i-1})) - f(x_{i-1}, y_{i-1})] + \frac{1}{2}y''(\zeta)h^{2}$$

$$|y(x_{i}) - y_{i}| \le |y(x_{i-1}) - y_{i-1}| + hL|y(x_{i-1}) - y_{i-1}| + \frac{1}{2}Mh^{2}$$

$$|y(x_i) - y_i| \le (1 + hL)|y(x_{i-1}) - y_{i-1}| + \frac{1}{2}Mh^2$$

反复递推可得:

$$|y(x_{i}) - y_{i}| \leq (1 + hL)^{i} |y(x_{0}) - y_{0}| + \frac{Mh}{2L} [(1 + hL)^{i} - 1]$$

$$1 \leq (1 + hL)^{i} \leq \left(1 + \frac{L(b - a)}{n}\right)^{n} \leq e^{L(b - a)} |y(x_{0}) - y_{0}| + \frac{Mh}{2L} (e^{L(b - a)} - 1)$$

$$|y(x_{i}) - y_{i}| \leq e^{L(b - a)} |y(x_{0}) - y_{0}| + \frac{Mh}{2L} (e^{L(b - a)} - 1)$$

$$|y(x_{i}) - y_{i}| \leq \frac{Mh}{2L} (e^{L(b - a)} - 1)$$

§ 6.3.2 稳定性

定义4设用某一数值方法计算 y_i 时,所得到的实际计算结果为 \tilde{y}_i ,且由误差 $\delta_i = y_i - \tilde{y}_i$ 引起以后各结点处 y_j 的误差为 δ_j (j > i),如果总有 $\left|\delta_i\right| \leq \left|\delta_i\right|$,则称方法是绝对稳定的.

基于试验方程y'= λy讨论方程的稳定性

 $\tilde{h} = \lambda h$ 的允许取值范围称为绝对稳定域

欧拉法:
$$y_{i+1} = y_i + h\lambda y_i = (1+\tilde{h})y_i$$

$$\delta_{i+1} = (1+\tilde{h})\delta_i$$
 $\left|1+\tilde{h}\right| \leq 1$ 当 λ 为实数时: $\lambda h \in [-2,0)$ $\hat{h} = x+y\hat{j} \Rightarrow (1+x)^2+y^2 \leq 1$

改进欧拉法:

$$\left|1+\tilde{h}+\frac{1}{2}\tilde{h}^2\right|\leq 1$$

当λ为实数时: λh∈ [-2, 0)

经典R-K方法:

$$\left|1+\tilde{h}+\frac{1}{2}\tilde{h}^2+\frac{1}{6}\tilde{h}^3+\frac{1}{24}\tilde{h}^4\right|\leq 1$$

当λ为实数时: λh∈ [-2.78, 0)

【例5】对于初值问题:

$$\begin{cases} y' = -20y & x \in [0,1] \\ y(0) = 1 \end{cases}$$

分别以h=0.1、h=0.2为步长,用经典四阶RK方法求解.

Xi	h=0.1	h=0.2
0.0	0.000000	0.000000
0.2	-0.092795	4.98
0.4	0012010	25.0
0.6	-0.001366	125.0
0.8	-0.000152	625.0
1.0	-0.000017	3125.0

$$\lambda h = -2 \in [-2.78, 0)$$

$$\lambda h = -4 \notin [-2.78, 0)$$

§ 6.4 一阶方程组与高阶方程的解法

§ 6.4.1 一阶方程组初值问题的数值解法

当y和f都是向量时,一阶方程变成了方程组:

$$\begin{cases} y' = f(x, y, z), y(x_0) = y_0 \\ z' = g(x, y, z), z(x_0) = z_0 \end{cases}$$

$$\begin{cases} y_{i+1} = y_i + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) \\ z_{i+1} = z_i + h/6 \cdot (L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$

$$\begin{cases} K_1 = f(x_i, y_i, z_i) \\ L_1 = g(x_i, y_i, z_i) \end{cases}$$

$$\begin{cases} K_{2} = f(x_{i} + h/2, y_{i} + hK_{1}/2, z_{i} + hL_{1}/2) \\ L_{2} = g(x_{i} + h/2, y_{i} + hK_{1}/2, z_{i} + hL_{1}/2) \end{cases}$$

$$\begin{cases} K_{3} = f(x_{i} + h/2, y_{i} + hK_{2}/2, z_{i} + hL_{2}/2) \\ L_{3} = g(x_{i} + h/2, y_{i} + hK_{2}/2, z_{i} + hL_{2}/2) \end{cases}$$

$$\begin{cases} K_{4} = f(x_{i} + h, y_{i} + hK_{3}, z_{i} + hL_{3}) \\ L_{4} = g(x_{i} + h, y_{i} + hK_{3}, z_{i} + hL_{3}) \end{cases}$$

记向量符号:
$$\mathbf{y} = \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix}, \mathbf{f} = \begin{bmatrix} \mathbf{f} \\ \mathbf{g} \end{bmatrix}, \mathbf{y}_i = \begin{bmatrix} \mathbf{y}_i \\ \mathbf{z}_i \end{bmatrix}, \mathbf{K}_i = \begin{bmatrix} \mathbf{K}_i \\ \mathbf{L}_i \end{bmatrix}$$

初值问题记为:
$$\begin{cases} \mathbf{y'} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \\ \mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0 \end{cases}$$

经典四阶RK方法:

$$\begin{cases} y_{i+1} = y_i + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h/2, y_i + hK_1/2) \\ K_3 = f(x_i + h/2, y_i + hK_2/2) \\ K_4 = f(x_i + h, y_i + K_3) \end{cases}$$

§ 6.4.2 高阶方程初值问题的数值解法

$$\begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0, y'(x_0) = y_0' \end{cases}$$

通过引入新变量z=y'将高阶化为一阶:

$$\begin{cases} y' = z, y(x_0) = y_0 \\ z' = f(x, y, z), z(x_0) = y_0 \end{cases}$$

$$\begin{cases} y_{i+1} = y_i + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) & K_1 = z_i \\ z_{i+1} = z_i + h/6 \cdot (L_1 + 2L_2 + 2L_3 + L_4) & L_1 = f(x_i, y_i, z_i) \end{cases}$$

$$\begin{cases} K_2 = z_i + hL_1/2 \\ L_2 = f(x_i + h/2, y_i + hK_1/2, z_i + hL_1/2) \end{cases}$$

$$\begin{cases} K_3 = z_i + hL_2/2 \\ L_3 = f(x_i + h/2, y_i + hK_2/2, z_i + hL_2/2) \end{cases}$$

$$\begin{cases} K_4 = z_i + hL_3 \\ L_4 = f(x_i + h, y_i + hK_3, z_i + hL_3) \end{cases}$$

消去K1、K2、K3、K4得:

$$\begin{cases} y_{i+1} = y_i + hz_i + h^2 / 6 \cdot (L_1 + L_2 + L_3) \\ z_{i+1} = z_i + h / 6 \cdot (L_1 + 2L_2 + 2L_3 + L_4) \end{cases}$$

$$\begin{cases} L_1 = f(x_i, y_i, z_i) \\ L_2 = f(x_i + h/2, y_i + z_i, z_i + hL_1/2) \\ L_3 = f(x_i + h/2, y_i + z_i + h^2L_1/4, z_i + hL_2/2) \\ L_4 = f(x_i + h, y_i + hz_i + h^2L_2/2, z_i + hL_3) \end{cases}$$

【例6】求解:(h=0.1):

$$\begin{cases} y'' - 2y' + 2y = e^{2x} \sin x, x \in [0,1] \\ y(0) = -0.4, y'(0) = -0.6 \end{cases}$$

$$\begin{cases} y'' - 2y' + 2y = e^{2x} \sin x, x \in [0,1] \\ y(0) = -0.4, y'(0) = -0.6 \end{cases} \begin{cases} y' = z \\ z' = e^{2x} \sin x - 2y + 2z \\ y(0) = -0.4 \\ z(0) = -0.6 \end{cases}$$

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y_i}$	$y(x_i)$	$ \mathbf{y}(\mathbf{x}_i)-\mathbf{y}_i $
0.0	-0.40000000	-0.40000000	0
0.1	-0.46173334	-0.46173297	$0.37*10^{-6}$
0.2	-0.52555988	-0.52555905	0.83*10-6
0.3	-0.58860144	-0.58860005	$0.139*10^{-5}$
0.4	-0.64661231	-0.64661028	0.203*10 ⁻⁵
0.5	-0.69356666	-0.69356395	$0.271*10^{-5}$
0.6	-0.72115190	-0.72114849	0.341*10 ⁻⁵
0.7	-0.71815295	-0.71814890	$0.405*10^{-5}$
0.8	-0.66971133	-0.66970677	0.456*10 ⁻⁵
0.9	-0.55644290	-0.55643814	$0.476*10^{-5}$
1.0	-0.35339886	-0.35339436	0.450*10 ⁻⁵

本章小结

• 欧拉(Euler)法

$$\begin{cases} y_{i+1} = y_i + hf(x_i, y_i) \\ y_0 = y(a) \end{cases}$$

• 改进的欧拉法

$$\begin{cases} \tilde{y}_{i+1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})] \end{cases}$$

龙格-库塔法

根据Taylor展开确定系数:

$$\begin{cases} y_{i+1} = y_i + h \sum_{k=1}^{m} \alpha_k K_k \\ K_1 = f(x_i, y_i) \end{cases}$$

$$K_j = f(x_i + \lambda_j h, y_i + h \sum_{k=1}^{j-1} \mu_{jk} K_k)$$

根据精度自动调节步长:

$$\Delta = \left| y_{i+1}^{(h/2)} - y_{i+1}^{(h)} \right|$$

一阶方程组初值问题的数值解法

$$\begin{cases} y' = f(x, y, z), y(x_0) = y_0 \\ z' = g(x, y, z), z(x_0) = z_0 \end{cases}$$

$$\begin{cases} y_{i+1} = y_i + h/6 \cdot (K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + h/2, y_i + hK_1/2) \\ K_3 = f(x_i + h/2, y_i + hK_2/2) \\ K_4 = f(x_i + h, y_i + K_3) \end{cases}$$

课后作业

第六章习题的1、2、3、5、6、注意:第2题保留到小数点4位。

