Algorithms (Part 1) – Searching

If-then-else, loops, arrays, and functions work together.

What is "search"?

Given a search space, find the target, or see if the target exists

Outline

 Common data searching tasks on a data set (numeric or strings):

```
#1: Look for the Minimum / Maximum?
```

#2: Look for the i-th member? (e.g., i-th smallest/largest)

#3: Query the existence of a specific value?

First of all, any idea to do so?
What is the algorithm or procedure?

- Looking for the minimum item:
 - Method 1: if you know the input data range
 - <u>Strategy</u>: start "min" with a value bigger than any item

```
1 int main( void )
      double array[5] = {1.1, 191.9, 34, 0, 999.9};
      double min = 1001; // bigger than any possible value
5
      int len
                        = 5
      for ( int i = 0 ; i < len ; i++ )
                                           Key idea? Keep track of
          if ( min > array[ i ] )
                                          the smallest value that the
               min = array[ i ];
                                           procedure has seen so far
10
11
      printf( "Minimum = %f\n" , min );
12
      return 0;
13 }
```

- Looking for the minimum item:
 - Method 2: if you don't know the input data range
 - <u>Strategy</u>: start "min" with the first array element

```
1 int main( void )
2 { 3
      double array[ 5 ] = { 1.1 , 191.9 , 34 , 0 , 999.9 } ;
   double min = array[0]; // the first item
5
      int len = 5:
     for ( int i = 1; i < len; i++) // skip the first item
8
          if ( min > array[ i ] )
              min = array[ i ];
10
11
      printf( "Minimum = %f\n" , min );
12
     return 0;
13 }
```

- Looking for the minimum item:
 - <u>Method 3</u>: not sure if there is <u>at least one data value</u>?
 - <u>Strategy</u>: start "min" with the largest double value

```
1 int main( void )
2 { 3
      double array[ 5 ] = { 1.1 , 191.9 , 34 , 0 , 999.9 } ;
   double min = DBL_MAX; // include <float.h>
5
     int len
                      = 5 :
     for ( int i = 0 ; i < len ; i++ ) // skip the first item
8
          if ( min > array[ i ] )
               min = array[ i ];
10
11
      printf( "Minimum = %f\n" , min );
12
      return 0;
13 }
```

What if there are only two items?

– Simple:

```
1 double a = 10 , b = 11 , min ;
2
3 if ( a < b )
4     min = a ;
5 else
6     min = b ;
7
8 printf( "Minimum = %f\n" , min );</pre>
```

– Simpler:

```
1 double a = 10 , b = 11 , min ;
2
3 min = ( a < b ) ? a : b ;
4
5 printf( "Minimum = %f\n" , min );</pre>
```

?: - ternary conditional operator

Ternary operator: an n-ary operator, where n = 3

If Input 1 is non-zero, the operator returns Input 2.
 Else, the operator returns Input 3.

?: - ternary conditional operator

They are the same!

```
double min = ( input1 < input2 ) ? input1 : input2 ;</pre>
1 double minimum( double a , double b )
3 if (a < b)
return a; else
    return b ;
7 }
9 double min = minimum( input1 , input2 );
                                                        But...
                                                      which one
 How about this?
                                                       is faster?
double min =           ( input1 < input2 ) * input1</pre>
            + ( 1 - ( input1 < input2 ) ) * input2;
```

Find the maximum

 Looking for the maximum is similar to looking for the minimum.

How to change the code to look for max instead of min?

Find the maximum

 Looking for the maximum is similar to looking for the minimum.

Outline

 Common data searching tasks on a data set (numeric or strings):

```
#1: Look for the Minimum / Maximum?
```

#2: Look for the i-th member? (e.g., i-th smallest/largest)

#3: Query the existence of a specific value?

Sorting – What is it?

• "In general", we can sort the data...

Goal: order (re-arrange) the data values in an array in

Ascending order:

For all i > 0, array[i-1] <= array[i]

Descending order:

For all i > 0, array[i-1] >= array[i]

Selection sort algorithm [Example]

int A[6] = { 4 , 5 , 7 , 2 , 9 , 1 };

Iteration #	Sub-array to be processed: A[i] A[N-1]	Locate the smallest item in sub-array	Swap the smallest item with A[i]
i = 0	457291	45729 <u>1</u>	1 57294
i = 1	1 5 7 2 9 4	1 5 7 <u>2</u> 9 4	12 7594
i = 2	12 7594	12 759 <u>4</u>	124 597
i = 3	124 597	124 <u>5</u> 97	124597 NO SWAI
i = 4	1245 97	12459 <u>7</u>	124579

Selection sort algorithm [Code]

```
1 // Sort an array of N elements, so that a[i] <= a[i+1]
 2 void selection_sort( int a[] , int N )
 3
   {
       int minPos , tmp ;
       for ( int i = 0 ; i < | ; i++ )
           // Find the position of the next minimum number
           minPos = i ; // let's first take a[i] as the min. value
           for ( int j = | ; j | ; j++ )
10
               if ( a[ minPos ] > a[ j ] )
11
12
                   minPos = i ;
13
14
           // Swap a[i] with a[minPos] if necessary
           if ( minPos != i )
15
16
17
18
19
20
21 }
```

[Complete Code]

```
1 // Sort an array of N elements, so that a[i] <= a[i+1]
 2 void selection_sort( int a[] , int N )
 3
   {
       int minPos , tmp ;
 6
       for ( int i = 0 ; i < N - 1 ; i++ )
 7
8
          // Find the position of the next minimum number
9
          minPos = i ; // let's first take a[i] as the min. value
10
          for ( int j = i + 1; j < N; j++)
               if ( a[ minPos ] > a[ j ] )
11
                  minPos = i;
12
13
          // Swap a[i] with a[minPos] if necessary
14
          if ( minPos != i )
15
16
17
              tmp = a[i]
              a[i] = a[minPos];
18
               a[ minPos ] = tmp
19
20
21 }
```

Sidetrack: pass an array to functions

• **Important**: pass an array into a function:

```
void selection_sort( int a[] , int N )
```

- But, array is a special storage:
 - After processed by selection_sort(), the caller will find the array elements changed (re-arranged)!
 - The content of the array will be updated if the function (callee) updates the array.

Sidetrack: pass an array to functions

```
1 void print array( int a[] , int len )
    for ( int i = 0 ; i < len ; i++ )
           printf( "%d " , a[ i ] );
    printf( "\n" );
     <del>len = 0 ;</del> // len is not an array; won't affect the caller
 7
                  // it is in fact a **local variable**
 9 int main( void )
10 {
       int array[ 6 ] = { 4 , 5 , 7 , 2 , 9 , 1 };
11
       int size = 6;
12
13
14
       print array ( array , size );
       selection_sort ( array , size ); // array is updated!
15
       print_array ( array , size );
16
17
18
       return 0;
19 }
```

Sidetrack Question: Discussion

- If we want to find the **k-th largest number** in a list of integers..... How to do?
- Do we <u>really need to sort</u> the data first?
- Which way is faster? Searching a sorted array? Or searching an unsorted array?
 - It really depends, e.g.,
 - What is the value of k? If k is just a small number, say 2 or 3?
 - Do you need to search many times? Hint: use a small heap!

[As a **self exercise** – find the **median** without sorting; **hint**: modify the well-known "quick sort" algorithm]

Outline

 Common data searching tasks on a data set (numeric or strings):

```
#1: Look for the Minimum / Maximum?
```

#2: Look for the i-th member? (e.g., i-th smallest/largest)

#3: Query the existence of a specific value?

Search an array

- What is searching?
 - Goal. Look up a value in the input array
 - <u>Result</u>. Two kinds of implementations:
 - 1. Decision problem:
 - Return 1 (true) when the target value is found
 - Return 0 (false) otherwise
 - 2. Location problem:
 - Return the index of the target value in the array if there is more than one value that matches the target value, return the index of the first encountered value
 - Return -1 if the target value is not found

Search an array - Sequential

Sequential search: <u>decision</u>

Search an array - Sequential

Sequential search: <u>location</u>

```
int seq_search( int array[] , int len , int target )

for ( int i = 0 ; i < len ; i++ )
        if ( array[ i ] == target )
        return i ;  // target index array

return -1 ;  // -1 is never an array index
}</pre>
```

Search an array - Sequential

- Computer scientists are interested to know how a program performs: <u>How fast is a program?</u>
- Let's analyze the performance of sequential search:
 - Best-case, worst-case, & average-case scenarios
- Performance metrics:
 the number of comparisons performed
 (say C)
 before we get the answer

What is the best case?

What is the worst case?

```
— Input: Array 1 2 3 4 5
```

– Search target: 5

-C = 5

- What is the average case?
 - Let's randomly choose a number in [1,5] as the target.
 - Each target is assumed to have an equal probability to be chosen, i.e., 1/5
 - Input: Array 1 2 3 4 5
 - If target is 3, we say C = 3 (each num. has same prob.)

$$\mathbf{C} = 1 \times \frac{1}{5} + 2 \times \frac{1}{5} + 3 \times \frac{1}{5} + 4 \times \frac{1}{5} + 5 \times \frac{1}{5}$$

- Let C_n be the number of comparisons over an array of size n
 - C_n = k means the target element is in the k-th position in the array, where 1 <= k <= n.</p>
 - Let's also assume that the target is always in the array.

A.k.a. **Expected Value** in statistics

$$E[C_n] = \sum_{k=1}^{n} P(C_n = k) \times k$$

$$= \frac{1}{n} \sum_{k=1}^{n} k$$
probability
$$= \frac{1}{n} \times \frac{n \times (n+1)}{2}$$

$$= \frac{n+1}{2}$$

Average Case: C = (n+1) / 2

 In computer science, we are typically interested in the worst-case scenario.

Best Case	1
Average Case	(n+1) / 2
Worst Case	n

 We call "the running time of the sequential search algorithm is of <u>order n</u>", or a <u>linear-time algorithm</u>.

Is it possible to search faster?

Search an array - Binary search

- If an array is sorted, we can use a faster search implementation: binary search.
 - (0) Define left = 0 and right = array-length 1 (search range)
 - (1) Look at the middle element in range [left, right]
 - (2) If it is the target (or left > right) then
 stop // found (or not found)
 - (3) Else if **target** is smaller than the middle element, then right = middle 1
 - (4) Else if target is larger than the middle element, then left = middle + 1
 - (5) Go back to (1)

• Target = 5:

• Target = 5:

• Target = 5:

Found!

Index	0	1	2	3	4	5	6	7	8
Value	5	6	10	21	77	200	689	1999	2000

Left	Right	Middle
0	0	0/2 = 0

• Target = 2000:

Left	Right	Middle
0	8	8/2 = 4

• Target = 2000:

• Target = 2000:

Round 3

New Left

• Target = 2000:

Found!

Index	0	1	2	3	4	5	6	7	8
Value	5	6	10	21	77	200	689	1999	2000

Left	Right	Middle
8	8	16/2 = 8

Binary search – Implementation

```
int bin_search( int array[] , int target , int left , int right )
   {
       while ( left <= right )</pre>
           int mid = ( left + right ) / 2;
           if ( array[ mid ] == target )
8
               return mid;
                                          // found it!!!
           else
10
           if ( array[ mid ] > target )
               right = mid - 1;
11
           else
12
               left = mid + 1;
13
14
      return -1;
15
16 }
```

Binary search – Analysis

Back to previous illustration:

Round 1	5	6	10	21	77	200	689	1999	2000
Round 2	5	6	10	21	77	200	689	1999	2000
Round 3	5	6	10	21	77	200	689	1999	2000
Round 4	5	6	10	21	77	200	689	1999	2000

• After each round of iteration, the search range is halved, more precisely: $\left|\frac{length}{\Omega}\right|$

Binary search – Analysis

- Let
 - n be the length of the array and let n be a power of 2
 - k be the number of iterations for range to reduce to 1

$$\frac{n}{2^k} = 1$$

$$2^k = n$$

$$k = log_2 n$$

Question:

What if n is not a power of 2? Then, what is k?

Binary search – Analysis

- Any assumption in our binary search algorithm?
- Think carefully...

What if the data values are not unique?

- Even the data is sorted, several data values may be the same. So?

How if we need to answer a more complex question...

- Is value t inside the data?
- If inside, how many of them in the data? e.g., how many students get 75 marks?

Searching algorithm – Summary

Sequential search has a running time of order n

- Binary search is a much faster algorithm of running time of order log₂n
 - However, you have to sort the entire array before you can use the binary search algorithm.

Searching algorithm – Summary

Sidetrack – Root Finding

- A well-defined field of study in solving non-linear Eqn.
 - Related course in Math department:
 http://www.math.cuhk.edu.hk/course/1516/math3230a
- Let's look at <u>bisection method</u>, which is a simple method very similar to binary search!
- Task:

Solve
$$f(x) = x^6 - x - 1 = 0$$
 for $x \in [-1,0]$

- Note: f(-1) = +1, f(0) = -1, and f(x) is continuous, so f(x) must go through x-axis

Step 1:

Set low = 0 Set high = 1

F(low) and F(high)
must have opposite signs
(To you: why?)

Calculate the midpoint:
"mid = (low+high)/2"

Step 2:

```
Evaluate F(mid)
```

Since

```
sign of F(mid) ==
sign of F(hi),
set high = mid
```

Calculate the midpoint:

"mid =
$$(low+high)/2$$
"

Step 3:

```
Evaluate F(mid)
```

Since

```
sign of F(mid) ==
sign of F(hi),
set high = mid
```

Calculate the midpoint:

"mid =
$$(low+high)/2$$
"

<u>Step 4:</u>

```
Evaluate F(mid)
```

Since

```
sign of F(mid) ==
sign of F(low) ,
set low = mid
```

Calculate the midpoint:

```
"mid = (low+high)/2"
```

Step	low	f(low)	high	f(high)	mid	f(mid)
1	-1	+	0	-	-0.5	-
2	-1	+	-0.5	-	0.75	-
3	-1	+	-0.75	-	-0.875	+
4	-0.875	+	-0.75	=	-0.8125	+
5	-0.8125	+	-0.75	-	-0.78125	+
6	-0.78125	+	-0.75	-	-0.765625	-
7	-0.78125	+	-0.765625	-	• • •	• • •

Question: When should the process stop?

Answer: Depending on the precision you want!

Bisection method – Bound

- Let a and b be the initial low and initial high points, respectively
- Let a_n and b_n be the low and high points at the n-th iteration, respectively

$$b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n)$$

$$\Rightarrow b_n - a_n = \frac{1}{2^{n-1}}(b - a)$$

Bisection method - Bound

- Let α be the true root
- Let c_n be the mid-point obtained in n-th iteration

$$|\alpha - c_n| \le \frac{1}{2^n} (b - a)$$

 \therefore As $n \to \infty$, the difference tends to 0.

Bisection method – Bound

• Say, the bound that we want to achieve is ε .

$$|\alpha - c_n| \le \epsilon$$

$$\Rightarrow \frac{1}{2^n} (b - a) \le \epsilon$$

$$\Rightarrow 2^n \ge \frac{b - a}{\epsilon}$$

Taking log₂ on both sides,

$$n \ge log_2\left(\frac{b-a}{\epsilon}\right)$$

Bisection method - Bound

- Given a = -1 and b = 0,
- How many iterations are needed if we want to obtain a result up to <u>4 decimal places</u>?

Round to 4 decimal places: $\epsilon = 0.0001$.

$$n \geq log_2\left(\frac{b-a}{\epsilon}\right) = log_2\left(\frac{1}{0.0001}\right)$$

$$\Rightarrow n \geq 13.2877$$

∴ At least 14 iterations