Phase 1 Project

- Student name: Ezekiel Ngungu Kathoka
- · Student pace: part time
- Scheduled project review date/time: November 24th 2024
- · Instructor name: Bonface Manyara
- Blog post URL:

Business Understanding

The primary objective is to analyze and predict the risk involved in purchasing and operating airplanes for commercial and private entreprises as part of a my company's new diversification plan.

Problem statement

I am aiming to analyze the AviationData dataset to identify key factors that would affect the viability of the project by analysing the risk of airplane accidents and the survival rates from such accidents.

Objectives

- 1) Analyze the the relationship between engine type and number of accidents.
- 2) Analyze the the corelation between the number of engines per aircraft and number of accidents recorded.
- 3) Identify and analyze key factors that contribute to aircraft accidents e.g weather conditions, amateur built.
- 4) Develop visualizations to effectively communicate the insights and findings derived from the analysis

Research Questions

- 1) What are the key airplane features that influence the likelihood of an aircraft accident?
- 2) Does the countries of operation matter when evaluating the likelihood of an airplane accident?
- 3) How does the phase of the flight affect the survival rate of passengers incase of an accident

Data Understanding

```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

Aviation_Data = pd.read_csv('Aviation_Data.csv', low_memory=False)

csv_file_path = "./Aviation_Data.csv"

with open(csv_file_path) as csvfile:
    print(csvfile.readline())
```

Fvent.Id, Investigation. Type, Accident. Number, Event. Date, Location, Country, Latitude, Longitude, Airport. Code, Airport. Name, Injury. Severity, Air

Aviation_Data.head()

₹		Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airport.N
	0	20001218X45444	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID	United States	NaN	NaN	NaN	1
	1	20001218X45447	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA	United States	NaN	NaN	NaN	1
	2	20061025X01555	Accident	NYC07LA005	1974-08-30	Saltville, VA	United States	36.922223	-81.878056	NaN	1
	3	20001218X45448	Accident	LAX96LA321	1977-06-19	EUREKA, CA	United States	NaN	NaN	NaN	1
	4	20041105X01764	Accident	CHI79FA064	1979-08-02	Canton, OH	United States	NaN	NaN	NaN	1
	5 rc	ows × 31 columns									
	4										>

Aviation_Data.tail()

_		Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airport.Na
	90343	20221227106491	Accident	ERA23LA093	2022-12-26	Annapolis, MD	United States	NaN	NaN	NaN	N
	90344	20221227106494	Accident	ERA23LA095	2022-12-26	Hampton, NH	United States	NaN	NaN	NaN	N
	90345	20221227106497	Accident	WPR23LA075	2022-12-26	Payson, AZ	United States	341525N	1112021W	PAN	PAYSO
	90346	20221227106498	Accident	WPR23LA076	2022-12-26	Morgan, UT	United States	NaN	NaN	NaN	N
	90347	20221230106513	Accident	ERA23LA097	2022-12-29	Athens, GA	United States	NaN	NaN	NaN	N
	5 rows ×	31 columns									
	4										•

 $\ensuremath{\mathtt{\#}}$ To get the summary information about the dataset Aviation_Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90348 entries, 0 to 90347
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Event.Id	88889 non-null	object
1	Investigation.Type	90348 non-null	object
2	Accident.Number	88889 non-null	object
3	Event.Date	88889 non-null	object
4	Location	88837 non-null	object
5	Country	88663 non-null	object
6	Latitude	34382 non-null	object
7	Longitude	34373 non-null	object
8	Airport.Code	50249 non-null	object
9	Airport.Name	52790 non-null	object
10	Injury.Severity	87889 non-null	object
11	Aircraft.damage	85695 non-null	object
12	Aircraft.Category	32287 non-null	object
13	Registration.Number	87572 non-null	object
14	Make	88826 non-null	object
15	Model	88797 non-null	object
16	Amateur.Built	88787 non-null	object
17	Number.of.Engines	82805 non-null	float64
18	Engine.Type	81812 non-null	object
19	FAR.Description	32023 non-null	object
20	Schedule	12582 non-null	object
21	Purpose.of.flight	82697 non-null	object
22	Air.carrier	16648 non-null	object
23	Total.Fatal.Injuries	77488 non-null	float64
24	Total.Serious.Injuries	76379 non-null	float64
25	Total.Minor.Injuries	76956 non-null	float64
26	Total.Uninjured	82977 non-null	float64

₹

27 Weather.Condition 84397 non-null object 28 Broad.phase.of.flight 61724 non-null object 29 Report.Status 82508 non-null object 30 Publication.Date 73659 non-null object

dtypes: float64(5), object(26)
memory usage: 21.4+ MB

#Statistical aspects of the data
Aviation_Data.describe()

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries	Total.Uninjured
count	82805.000000	77488.000000	76379.000000	76956.000000	82977.000000
mean	1.146585	0.647855	0.279881	0.357061	5.325440
std	0.446510	5.485960	1.544084	2.235625	27.913634
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	0.000000	0.000000	0.000000	0.000000
50%	1.000000	0.000000	0.000000	0.000000	1.000000
75%	1.000000	0.000000	0.000000	0.000000	2.000000
mav	§ 000000	310 000000	161 000000	380 000000	600 000000
4					

Identifying Missing Data

#missing values
Aviation_Data.isna().sum()

_		4450
	Event.Id	1459
	Investigation.Type	0
	Accident.Number	1459
	Event.Date	1459
	Location	1511
	Country	1685
	Latitude	55966
	Longitude	55975
	Airport.Code	40099
	Airport.Name	37558
	Injury.Severity	2459
	Aircraft.damage	4653
	Aircraft.Category	58061
	Registration.Number	2776
	Make	1522
	Model	1551
	Amateur.Built	1561
	Number.of.Engines	7543
	Engine.Type	8536
	FAR.Description	58325
	Schedule	77766
	Purpose.of.flight	7651
	Air.carrier	73700
	Total.Fatal.Injuries	12860
	Total.Serious.Injuries	13969
	Total.Minor.Injuries	13392
	Total.Uninjured	7371
	Weather.Condition	5951
	Broad.phase.of.flight	28624
	Report.Status	7840
	Publication.Date	16689
	dtype: int64	

Handling Missing Data

```
# Fill missing values (NaN) in specific columns of the 'Aviation_data' DataFrame
# Set missing values to 0
Aviation_Data = Aviation_Data.fillna({'Total.Fatal.Injuries': 0, 'Total.Serious.Injuries': 0, 'Total.Minor.Injuries': 0, 'Total.Uninjured': 0,
#Replacing missing values in the Aircraft damage/Phase of flight column
Aviation_Data = Aviation_Data.fillna({'Aircraft.damage': 'Unknown', 'Broad.phase.of.flight': 'Unknown'})
```

```
#Additional replacement of missing values
Aviation Data = Aviation Data.fillna({'Amateur.Built': 'Undefined', 'Engine.Type': 'Unknown', 'Weather.Condition': 'Unknown'})
#Additional replacement of missing values
Aviation_Data = Aviation_Data.fillna({'Accident.Number': 'Undefined', 'Event.Date': 'Unknown'})
#Additional replacement of missing values
Aviation_Data = Aviation_Data.fillna({'Country': 'Undefined', 'Location': 'Unknown', 'Injury.Severity': 'Unknown', 'Model': 0, 'Make': 'Unkn
#Dropping unneccesary columns with huge missing data
Aviation_Data = Aviation_Data.drop(['Aircraft.Category', 'Latitude', 'Longitude' ,'Airport.Code', 'FAR.Description', 'Air.carrier', 'Schedul
#Dropping additional unneccesary columns with huge missing data
Aviation_Data = Aviation_Data.drop(['Event.Id', 'Airport.Name', 'Registration.Number', 'Report.Status'], axis=1)
#Forward filing of missing data in publicattion date
Aviation_Data['Publication.Date'] = Aviation_Data['Publication.Date'].fillna(method='bfill')
#updated columns
Aviation_Data.isna().sum()
→ Investigation.Type
     Accident.Number
     Event.Date
                              0
     Location
    Country
                              0
     Injury.Severity
     Aircraft.damage
                              0
     Make
                              0
     Model
     Amateur.Built
                              0
     Number.of.Engines
                              0
     Engine.Type
     Purpose.of.flight
                              0
     Total.Fatal.Injuries
                              0
     Total.Serious.Injuries
                              0
     Total.Minor.Injuries
                              0
     Total.Uninjured
                              0
     Weather.Condition
                              0
     Broad.phase.of.flight
                              0
     Publication.Date
                              0
                              0
     Year
     dtype: int64
#Check if we have duplicated data
Aviation_Data.duplicated().sum()
→ 1002
Aviation_Data.drop_duplicates(keep='last')
```

_ *		Investigation.Type	Accident.Number	Event.Date	Location	Country	Injury.Severity	Aircraft.damage	Make	Model	Ama
	0	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID	United States	Fatal(2)	Destroyed	Stinson	108-3	
	1	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA	United States	Fatal(4)	Destroyed	Piper	PA24- 180	
	2	Accident	NYC07LA005	1974-08-30	Saltville, VA	United States	Fatal(3)	Destroyed	Cessna	172M	
	3	Accident	LAX96LA321	1977-06-19	EUREKA, CA	United States	Fatal(2)	Destroyed	Rockwell	112	
	4	Accident	CHI79FA064	1979-08-02	Canton, OH	United States	Fatal(1)	Destroyed	Cessna	501	
!	90343	Accident	ERA23LA093	2022-12-26	Annapolis, MD	United States	Minor	Unknown	PIPER	PA-28- 151	
!	90344	Accident	ERA23LA095	2022-12-26	Hampton, NH	United States	Unknown	Unknown	BELLANCA	7ECA	
!	90345	Accident	WPR23LA075	2022-12-26	Payson, AZ	United States	Non-Fatal	Substantial	AMERICAN CHAMPION AIRCRAFT	8GCBC	
!	90346	Accident	WPR23LA076	2022-12-26	Morgan, UT	United States	Unknown	Unknown	CESSNA	210N	
	90347	Accident	ERA23LA097	2022-12-29	Athens, GA	United States	Minor	Unknown	PIPER	PA-24- 260	
8	9346 rc	ows × 20 columns									
4											•

#Check the shape of the data
Aviation_Data.shape

→ (90348, 20)

Data Analysis

1) Bar Graph- Number of accidents vs Engine type

#Creating a summary of number of accidents by engine type
Summary_data1 = Aviation_Data.pivot_table(aggfunc='size', index='Engine.Type', fill_value=0)
print(Summary_data1)

```
→ Engine. Type

    Electric
                          10
    Geared Turbofan
                          12
    Hybrid Rocket
                           1
    LR
                           2
    NONE
    None
                          19
    Reciprocating
                       69530
    Turbo Fan
                        2481
    Turbo Jet
                         703
    Turbo Prop
                        3391
    Turbo Shaft
                        3609
    UNK
    Unknown
                       10587
    dtype: int64
```

Aviation_Data['Engine.Type'].value_counts().plot(kind='bar')
plt.title('Count of Accidents Occured')
plt.xlabel('Engine.Type')
plt.ylabel('Count')
plt.show()

2.Bar Graph - Accidents Frequency vs Weather

```
Aviation_Data['Weather.Condition'].value_counts().plot(kind='bar')
plt.title('Accidents frequency Vs Weather')
plt.xlabel('weather.Type')
plt.ylabel('Count')
plt.show()
```


v 3) Pie Chart- Accidents Impact on Passengers

```
Aviation_data_selected = Aviation_Data[['Total.Fatal.Injuries', 'Total.Uninjured', 'Total.Serious.Injuries', 'Total.Minor.Injuries']].sum()

Aviation_data_selected.plot(kind='pie', autopct='%1.1f%%', figsize=(8, 8), title="Sum of Values")

plt.ylabel('')  # Hide the y label

plt.show()
```

₹

Sum of Values

3) Line Graphs- Accidents Trend by Year

```
# Compare the incidents Year to year from 1990 to 2022 in a bar chart
Aviation_Data['Publication.Date'] = pd.to_datetime(Aviation_Data['Publication.Date'], errors='coerce')
# Extract the year from the 'Event.Date' column
Aviation_Data['Year'] = Aviation_Data['Publication.Date'].dt.year
\mbox{\#} Filter the data to only include incidents from 1980 to 2022
Aviation_data_filtered = Aviation_Data[(Aviation_Data['Year'] >= 1990) & (Aviation_Data['Year'] <= 2022)]
\ensuremath{\mathtt{\#}} Group the data by year and count the number of incidents per year
Grouped_by_Year = Aviation_data_filtered.groupby('Year').size()
# Plot the incidents per year as a line chart
Grouped_by_Year.plot(kind='line', color='skyblue', marker='o', figsize=(10, 6))
# Generating Visuals
plt.title('Number of Aviation Accidents per Year', fontsize=14)
plt.xlabel('Year', fontsize=12)
plt.ylabel('Number of Accidents', fontsize=12)
# Show the plot
plt.show()
```


Data Limitations

Reporting StandardS Variations

- 1) Countries like the United States have a high likelihood of better/consistent accident reporting mechanisms and by extension shall report relatively more accidents
- 2) Unavailability of the volumes of air traffic data Countries like the united states shall have more incidents compared to countries like kenya because of the volumes they have. The high incidents does not reflect risks level