Università di Parma - Facoltà di Ingegneria

Prova intermedia di sistemi multivariabili del 26 Novembre 2020

Es. 1) (9 punti)

a) Trova una rappresentazione con un modello di stato per il seguente circuito elettrico, in cui il generatore di tensione u rappresenta l'ingresso e la tensione y l'uscita. I parametri R_1, R_2, L, C sono strettamente positivi.

- b) Trova l'insieme di raggiungibilità X_R in funzione dei parametri R_1, R_2, L, C .
- c) Posto $R_1 = R_2 = R$, metti il sistema nella forma standard di raggiungibilità, mettendo in evidenza le componenti strutturali delle matrici \hat{A} e \hat{B} della forma ottenuta.
 - d) Nella stessa ipotesi del punto c), trova la funzione di trasferimento.

Es. 2) (6 punti) Considera il sistema a tempo discreto

$$\begin{cases} x(k+1) = Ax(k) \\ x(0) = x_0, \end{cases}$$

con

$$A = \left[\begin{array}{rrr} -1 & 1 & 0 \\ -4 & 3 & 0 \\ -4 & 2 & 0 \end{array} \right]$$

- a) Calcola il polinomio caratteristico e il polinomio minimo di A.
- b) Calcola la potenza di matrice A^k .
- c) Il sistema è asintoticamente stabile? E' semplicemente stabile?

Es. 3) (7 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k)$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 1 & 1 & 0 \\ 2 & -3 & a & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Trova l'insieme degli stati raggiungibili $X_R(k)$ per ogni $k \in \mathbb{N}$ in funzione del parametro $a \in \mathbb{R}$.

Continua dietro.

Es. 4) (8 punti) Considera il sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + bu(t) \,,$$

con

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix} b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

- a) Metti il sistema nella forma canonica di controllo.
- b) Trova un vettore riga f tale che A + bf abbia tutti gli autovalori in -1.

Es. 5) (3 punti bonus) Considera il sistema

$$\begin{cases} \dot{x}(t) = Ax(t) + kBz(t) \\ \dot{z}(t) = Az(t) + kBx(t) \end{cases}$$

dove $x(t) \in \mathbb{R}^n$, $z(t) \in \mathbb{R}^n$, $A, B \in \mathbb{R}^{n \times n}$ sono simmetriche e B è definita positiva (cioè ha tutti gli autovalori positivi) e $k \in \mathbb{R}$. Mostra che esiste sempre un valore di k, sufficientemente grande, tale che, per ogni stato iniziale x(0), z(0) la soluzione del sistema soddisfa la proprietà

$$\lim_{t \to \infty} (x(t) - z(t)) = 0.$$

Nota: può essere utile la proprietà seguente, se $M \in \mathbb{R}^{n \times n}$ è simmetrica, allora,

$$(\forall v \in \mathbb{C}^{n \times n}) \lambda_{min}(M) \|v\|^2 \le v^* M v \le \lambda_{max}(M) \|v\|^2$$

dove $\lambda_{min}(M)$ e $\lambda_{max}(M)$ sono gli autovalori minimo e massimo di M.

$$(\dot{V}(t) = \lambda, (t) + \dot{\chi}_{2}(t)$$

 $L\dot{\lambda}_{1}(t) = \lambda(t) - V(t) - R\dot{\lambda}_{1}(t)$
 $L\dot{\lambda}_{2}(t) = \lambda(t) - V(t) - R\dot{\chi}_{2}(t)$

$$\mathcal{L} = \begin{bmatrix} V \\ A_1 \\ A_2 \end{bmatrix}$$

$$\mathcal{L}(4) = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{R^{2}}{2} & 0 \\ -\frac{1}{2} & 0 & -\frac{R^{2}}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & -\frac{R^{2}}{2} \\ A & 0 & -\frac{R^{2}}{2} \end{bmatrix}$$

$$Y(1) = \prod_{i=1}^{N} \frac{1}{2} = \lim_{i=1}^{N} \frac{1}{2}$$

$$X_{R}(2) = X_{R}(1) + \lim_{i=1}^{N} AM$$

$$= X_{R}(1) + \lim_{i=1}^{N} \frac{2}{2} - \frac{R_{1}}{2} - \frac{R_{1}}{2} - \frac{R_{2}}{2} = \lim_{i=1}^{N} \frac{2}{2} = \lim_{i=1}$$

$$= \lim_{N \to \infty} \left[\begin{array}{c} 0 & 2L & R_{1} - R_{2} \\ 0 & 0 \\ 1 & C(R_{1} - R_{1}) & -\frac{C(R_{1} - R_{1})R_{2}}{L} \\ C(R_{1} - R_{1}) & -\frac{C(R_{1} - R_{1})R_{2}}{L} \\ = (R_{1} - R_{2}) \left(2R_{2} + R_{1} - R_{2} \right) C \\ = C(R_{1} - R_{1}) \left(R_{2} + R_{1} \right) C \\ = C(R_{1} - R_{1}) \left(R_{2} + R_{1} \right) C \\ R_{1} = -R_{2} \left(\frac{1}{1} R_{1} \cos \sin \sin \alpha \right) \\ R_{1} = -R_{2} \left(\frac{1}{1} R_{1} \cos \sin \sin \alpha \right) \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \sin \sin \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \sin \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \sin \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{2} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{1} R_{1} \cos \alpha \right) C \\ = R_{1} - R_{2} \left(\frac{1}{$$

$$= \frac{\frac{2}{CL}}{\frac{2}{S^{2} + \frac{SR}{L}} + \frac{2}{LC}} = \frac{2}{LCS^{2} + SRC + 2}$$

$$2) A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ -4 & 2 & 0 \end{bmatrix}$$

$$X_{A}(\lambda) = (\lambda^{2} - 2\lambda + 1)\lambda$$

$$= (\lambda^{-1})^{2}\lambda$$

$$= (\lambda^{-1})^{2}\lambda$$

$$= 1, \quad \text{Ker } A - 1 = \text{Ker } \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -4 & 2 & -1 \end{bmatrix}$$

$$= 1_{m} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\text{Ker } (A - 1)^{2} = \text{Ker } \begin{bmatrix} 0 & 0 & 0 \\ 4 & -2 & 1 \end{bmatrix}$$

$$= 1_{m} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$$

$$\begin{aligned}
\kappa_{en} & A = I_{m} \begin{bmatrix} \circ \\ i \end{bmatrix} \\
\chi_{A} & (\lambda) = \mu_{A} & (\lambda) = (\lambda - 1) \lambda \rightarrow (e) \\
A^{K} &= \begin{bmatrix} A^{K} v_{1}, A^{K} v_{2}, A^{K} v_{3} \end{bmatrix} \begin{bmatrix} v_{1}, v_{2}, v_{3} \end{bmatrix}^{-1} \\
A^{K} &= \begin{bmatrix} A^{K} v_{1} + \kappa \lambda^{K-1} & (A - \lambda 1) v_{2} \\
 &= I^{K} \begin{bmatrix} 0 \\ i \\ 2 \end{bmatrix} + KI^{K-1} \begin{bmatrix} i \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} K \\ 2K + 1 \\ 2 \end{bmatrix} \\
A^{K} &= \begin{bmatrix} 1 & K & 0 \\ 2 & 2K + 1 & 0 \\ 0 & 2 & \delta(K) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 2K & K & 0 \\ -4 + 4 \delta(K) & 2 - 2 \delta(K) & \delta(K) \end{bmatrix} \rightarrow (b)
\end{aligned}$$

C) LL SIST NON E NÉ ASINT. STABILE, Né SETIL. STABILE.

3)
$$\times_{R}(0) = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
 $\times_{R}(1) = I_{m} \begin{bmatrix} 3 \\ 0 \\ -1 \\ 0 \end{bmatrix}$
 $\times_{R}(1) = I_{m} \begin{bmatrix} 3 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} = I_{m} \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0$

$$\begin{bmatrix}
f_1 & f_2 & ++f_3 & -++f_4
\end{bmatrix}$$

$$c(\lambda) = (\lambda + 1)^4 = \lambda^4 + 4\lambda^3 + 6\lambda^2 + 4\lambda + 1$$

$$\begin{cases}
f_1 = -1 \\
f_2 = -4
\end{cases} \Rightarrow \begin{cases}
f_1 = -1 \\
f_2 = -4
\end{cases} \Rightarrow \begin{cases}
f_3 = -5 \\
-1 + f_4 = -4
\end{cases} f_4 = -3$$

$$f_{c} = [-1, -4, -5, -3]$$

$$f = f_{c} = f_{c} = [-1, -4, -5, -3]$$

$$= [5, -4, -5, 2]$$

Se
$$\lambda \in G(A - XB)$$
, $\lambda \in K$, $\forall V$:
$$(A - XB) V = \lambda V$$

$$V^*(A - XB) V = \lambda V^*V$$

$$\lambda = \frac{V^*AV - KV^*BV}{V^*V}$$

$$\leq \frac{\|V\|^2 \lambda_{MAX}(A) - \|V\|^2 \lambda_{MW}(B) K}{\|V\|^2}$$

$$= \lambda_{MAX}(A) - K \lambda_{MW}(B)$$
Se $K > \lambda_{MAX}(A)$, Allowa $\lambda < 0$

> Mm (B)