Introduction to pair trading -Based on cointegration-

- Shinichi Takayanagi
 - Kohta Ishikawa

Topics

- 1. What is pair trading?
- 2. What is cointegration?
- 3. Idea of pair trading based on cointegration
- 4. Simulation by R language
- 5. Summary & concluding remarks

1. What is pair trading?

Pair trading was pioneered by ...

- Gerry Bamberger and Nunzio Tartaglia
- Quantitative group at Morgan Stanley
- Around 1980s
- D.E. Shaw & Co. is famous for this strategy

Pair trading is ...

Market neutral trading strategy

Pair trading belongs to ...

Physics, Information theory

Statistical Arbitrage

PCA, ICA, Autoregress Revision Neural N. Neural Net Pattern Recognition

Select two stocks which move similarly

Sell high priced stock Buy low priced stock

Usually, monitor
the difference
between two stock prices

the difference between two stock prices

2. What is cointegration?

Cointegration is ...

- Pioneered by Engle and Granger
- Statistical property of time series
- Around 1990s

Cointegration is ...

Not correlation

Cointegration and correlation

Correlation

- -Specify co-movement of return
- -Short term relationship

Cointegration

- —Specify co-movement of price
- -Long term relationship

(weak) Stationary time series

Not depend on time

•
$$E(X_t) = \mu$$

$$\cdot \operatorname{var}(\mathbf{X}_{\mathsf{t}}) = \sigma^2$$

$$\cdot \operatorname{cov}(X_{t}, X_{t-s}) = \gamma(s)$$

Example of stationary time series

White noise

•
$$E(\varepsilon_t) = 0$$

$$\cdot \operatorname{var}(\varepsilon_{\mathsf{t}}) = \sigma^2$$

$$\cdot \cot(\varepsilon_t, \varepsilon_s) = 0, t \neq s$$

Non stationary time series

Depend on time

•
$$E(X_t) = \mu_t$$

$$\cdot \operatorname{var}(X_{t}) = \sigma_{t}^{2}$$

$$\cdot \operatorname{cov}(X_{t}, X_{t-s}) = \gamma(t, s)$$

Example of non stationary time series

Brownian motion

$$\cdot E(W_t) = 0$$

$$\cdot var(W_t) = t$$

$$\cdot \operatorname{cov}(W_t, W_{t-s}) = t - s$$

Lag operator ____

•
$$LX_t = X_{t-1}$$

• $(1-L)X_t = X_t - X_{t-1} = \Delta X_t$

Integrated of order P

X_t: non stationary

$$(1-L)^p X_t$$
: stationary

Example of "integrate"

$$Z_t = Z_{t-1} + \varepsilon_t$$
: Random walk

 $\varepsilon_{\scriptscriptstyle t}$: White noise

Calculate difference

$$\Delta Z_{t} = Z_{t} - Z_{t-1} = \varepsilon_{t}$$
: Stationary

$$\therefore Z_t \sim I(1)$$

X_i and Y_i are cointegrated if ...

$$u_{t} = Y_{t} - (\alpha + \beta X_{t})$$

$$u_{t} : \sim I(0), \text{ stationary process}$$

$$X_{t}, Y_{t} : \sim I(1)$$

^{*}This is a special version of general cointegration for I(1)

Example of cointegrated time series

Example of cointegrated time series

Plot : ut = Yt - 0.5 Xt

ut seems to be...

Stationary

&

Mean reversion

Question

Can we apply this idea to trading strategy?

3. Idea of pair trading based on cointegration

Geometric brownian motion

The most widely used model of stock price

$$\frac{dS_{t}}{C} = \mu dt + \sigma dW_{t}$$

S_t:Stock price

 μ : Average return

 σ : Volatility

W_t: Brownian motion

From Ito's lemma

$$d \log(S_t) = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dW_t$$

Log price follow Brownian motion

Brownian motion(log price) is ...

* Random walk can be considered as discretization of Brownian motion

Then, we can apply

Cointegration idea to log stock price

Log price spread(*) is...

Stationary

&

Mean reversion

XSpread_t := log(Y_t) - ($\alpha + \beta \log(X_t)$), X_t, Y_t : stock price

Simple trading idea

if Spread_t > very hish: Buy X_t, Sell Y_t if Spread_t < very low: Buy Y_t, Sell X_t

Spread_t = log(Y_t) - (
$$\alpha + \beta \log(X_t)$$
)
X_t, Y_t: stock price

4. Simulation by R language

Process

- 1. Find two likely cointegrated stocks
- 2. Estimate spreads
- 3. Check stationarity
- 4. Create trading signal
- 5. Run back-test

1. Find two likely cointegrated stocks

> library(PairTrading) > #load sample stock price data > data(stock.price) > #select 2 stocks > price.pair <- stock.price[,1:2]["2008-12-31::"] > head(price.pair) 7201 7203 2009-01-05 333 3010 2009-01-06 341 3050 2009-01-07 374 3200 2009-01-08 361 3140

^{*} Just load sample data in this case....

2. Estimate spreads

```
> reg <- EstimateParameters(price.pair, method = lm)
> str(reg)
List of 3
$ spread :An 'xts' object from 2008-12-30 to 2011-08-05 containing:
 Data: num [1:635, 1] -0.08544 -0.0539 -0.04306 -0.00426 -0.01966 ...
- attr(*, "dimnames")=List of 2
 ..$ : NULL
 ..$ : chr "B"
 Indexed by objects of class: [Date] TZ:
 xts Attributes:
NULL
$ hedge.ratio: num 0.0997
$ premium : num 7.48
```

2. Estimate spreads

> plot(reg\$spread, main = "Spread") spread

3. Check stationarity

```
> PP.test(as.numeric(reg$spread))
  Phillips-Perron Unit Root Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.2299, Truncation lag parameter = 6, p-value
  = 0.08278
> adf.test(as.numeric(reg$spread))
  Augmented Dickey-Fuller Test
data: as.numeric(reg$spread)
Dickey-Fuller = -3.6462, Lag order = 8, p-value = 0.02825
alternative hypothesis: stationary
```

4. Create trading signal

- > params < EstimateParametersHistorically(price.pair,
 period = 180)</pre>
- > signal <- Simple(params\$spread, 0.05)
- > barplot(signal,col="blue",space = 0, border =
 "blue",xaxt="n",yaxt="n",xlab="",ylab="")
- > par(new=TRUE)
- > plot(params\$spread, type="l", col = "red", lwd = 3, main = "Spread & Signal")

4. Create trading signal

Spread & Signal

5. Run back-test

- > return.pairtrading <-Return(price.pair, lag(signal), lag(params\$hedge.ratio))
- > plot(100 * cumprod(1 +
 return.pairtrading), main =
 "Performance of pair trading")

5. Run back-test

Performance of pair trading

5. Summary & concluding remarks

Summary & concluding remarks

- Pair trading is simple quantitative trading strategy
- Cointegration is long term relation ship of time series
- Idea of cointegration may give a chance to make a profit from financial market by pair trading

- Next step
 - Sophisticate parameter estimation & trading rule
 - Make a simulation close to real

Reference

- Pairs trade(http://en.wikipedia.org/wiki/Pairs_trade)
- Cointegration(http://en.wikipedia.org/wiki/Cointegration)
- Andrew Neil Burgess, "A Computational Methodology for Modeling the Dynamics of Statistical Arbitrage"
- Russell Wojcik, "Pairs Trading: A Professional Approach"
- Daniel Herlemont, "Pairs trading, convergence trading, cointegration"
- Paul Teetor, "Using R to Test Pairs of Securities for Cointegration" (http://quanttrader.info/public/testForCoint.html)
- Ganapathy Vidyamurthy, "Pairs Trading: Quantitative Methods and Analysis"