2-MA'RUZA. To'plamlar ustida amallar(4 soat). REIA

- 1. Eyler-Venn diagrammalari.
- 2. To'plamlarni taqqoslash. To'plamlarning tengligi.
- 3. To'plam quvvati. Teng quvvatli to'plamlar.
- 4. To'plamlarning xossalari.To'plamlarning birlashmasi, kesishmasi, ayirmasi. Simmetrik ayirma.
- 5. Sanoqli va kontenyun quvvatli to'plamlar.
- 6. Asosiy ayniyatlar.
- 7. To'plamlarga doir asosiy ayniyatlarni taqqoslashga doir misollar.

Kalit so'zlar: Eyler-Venn diagrammalari, to'plamlarni taqqoslash, to'plamlarning tengligi, to'plam quvvat, teng quvvatli to'plamlar, to'plamlarning xossalari, to'plamlarning birlashmasi, kesishmasi, ayirmasi, simmetrik ayirma, sanoqli va kontenyun quvvatli to'plamlar, ayniyatlar.

2.1 Eyler-Venn diagrammalari.

To`plamlarni tekislikda shakllar yordamida tasvirlash XIII asrda boshlangan. Birinchi "falsafiy komp`yuter" ixtirochisi R.Lulliy (taxminan 1235-1315 yy) aylanalar yordamida sonlar, harflar va ranglar ustida amallar bajargan.

Shvetsariyalik matematik, mexanik va fizik Leonard Eyler (1707-1783 yy) va ingliz matematigi va mantiqchisi Jon Venn (1834-1923 yy) turli tabiatli to`plamlarni o`rganishda diagramma nazariyasiga asos solishgan. Hozirda to`plamlarni chizmalar orqali tasvirlash **Eyler-Venn diagrammalari** deb yuritiladi.

2.2To'plamlarni taqqoslash. To'plamlarning tengligi.

Ta'rif 1. Ikkita **to'plam teng** deyiladi, agar ular bir xil elementlardan iborat bo'lsa (ya'ni to'plamlar bir xil elementlarni saqlasa va elementlarning tartibi inobatga olinmasa) va A = B kabi belgilanadi.

Aksincha, A va B **to'plamlar teng emas** deyiladi, agarda yo A da B ga tegishli bo'lmagan element mavjud, yoki B to'plam A ga tegishli bo'lmagan elementga ega bo'lsa. Bunda $A \neq B$ kabi belgilanadi.

 $A \subset B$ va A = B bajarilsa, $A \subseteq B$ kabi belgilanadi.

Teorema 1. Ixtiyoriy A, B, C to plamlar uchun quyidagilar o rinli:

- a) $A \subset A$;
- 6) $A \subseteq B$ va $B \subseteq C$ bo'lsa, u holda $A \subseteq C$ o'rinli.

Isboti: a) Haqiqatan ham $x \in A$ bo`lishidan $x \in A \Rightarrow x \in A$ ekanligi kelib chiqadi, ya`ni $x \in A \Rightarrow x \in A$ implikatsiya o`rinli.

b) Haqiqatan ham $(x \in A \Rightarrow x \in B) \cap (x \in B \Rightarrow x \in C) \Rightarrow (x \in A \Rightarrow x \in C)$ ni to`g`riligini ko`rsatish yetarli. Teorema isbotlandi.

Teorema 2. Ixtiyoriy A va B to plamlar uchun A = B tenglik o rinli bo ladi, faqat va faqat $A \subseteq B$ va $B \subseteq A$ bo lsa.

Demak, to 'plamlarning sonli qiymatlarining tengligi ularning bir-biriga tegishli ekanligini bildirmaydi, shuning uchun ham quyidagi shartlarni kiritamiz: $\forall a \in A$ uchun $\exists a \in B$ topilsaki, a = b bolib, $a \in B$ va $b \in A$ shart bajarilsa, u holda A = B bo'ladi.

Misol 1. Teng va teng bo`lmagan to`plamlar:

- a) $\{a, b, c, d\} = \{c, d, a, b\}.$
- b) $\{a, b, c, d\} \neq \{a, c, b\}.$
- d) $\{x|x^2-3x+2=0\} = \{1,2\}$

Misol 2. $A = \{1^2; 2^2; 3^2\}$ va $B = \{\sqrt{1}; \sqrt{16}; \sqrt{81}\}$ bu to`plamlar teng emas, chunki ularning berilish shakliga ko`ra elementlari mos kelmaydi. Agar ularni matematik amallarni bajarib, bir xil ko`rinishga keltirilsa, ya`ni $A = B = \{1; 4; 9\}$ ko`rinishda teng deb hisoblanadi.

Misol 3. $A = \{n : n^2 \text{ - toq butun son}\}\ \text{va}\ B = \{n : n \text{ - toq butun son}\}\ \text{to'plamlarning tengligini isbotlang.}$

Yechilishi: Agar $x \in A$ bo'lsa, u holda x^2 - toq butun son. Toq sonning kvadrati har doim toq son bo'ladi, demak, x ning o'zi ham toq va butun son. Bundan, $x \in B$, ya'ni $A \subset B$ ekanligi kelib chiqadi.

Teskarisini isbotlaymiz: aytaylik, $x \in B$ bo'lsin. U holda x - toq va butun son, demak, x^2 ham toq butun son, ya'ni $x \in A$. Olingan x elementni ixtiyoriy ekanligidan B ning barcha elementlari A ga tegishli, ya'ni $B \subset A$. Xulosa A = B.

Teorema 3. Ixtiyoriy A, B, C to plamlar uchun $A \subseteq B$ va $B \subset C$ munosabat o rinli bo lsa, u holda $A \subset C$ bo ladi.

Ta'rif 2. Agar to'plamning elementlari ham to`plamlardan iborat bo'lsa, bu berilgan to'plamga **to`plamlar oilasi** deyiladi va lotin alifbosining bosh harflarini yozma shaklida belgilanadi.

2.3. To'plam quvvati. Teng quvvatli to'plamlar.

Chekli toʻplamning asosiy xarakteristikasi bu uning elementlar sonidir. A chekli toʻplamdagi elementlar sonini n(A) yoki |A| kabi belgilanadi va A **toʻplamning tartibi** yoki **quvvati** deb ham yuritiladi.

Misol 1. $A = \{a,b,c,d\}$ to planning quvvati n(A)=4;

 $B = \{\emptyset\}$ bo`sh to`plamning quvvati n(B) = 0.

Teorema. Ikkita toʻplam birlashmasidan iborat toʻplamning quvvati $|A \cup B| = |A| + |B| - |A \cap B|$ ga teng.

Isboti: Haqiqatan ham, $A \cup B$ to'plam umumiy elementga ega bo'lgan $A \setminus B, A \cap B, B \setminus A$ qism to'plamlardan tashkil topgan, buni Eyler – Venn diagrammasida ko'rish mumkin.

Bundan tashqari, $A = (A \setminus B) \cup (A \cap B)$ va $B = (B \setminus A) \cup (A \cap B)$.

Quyidagi belgilashlarni kiritamiz: $|A \setminus B| = m$, $|A \cap B| = n$, $|B \setminus A| = p$. U holda |A| = m + n, |B| = n + p va bulardan

$$|A \cup B| = m + n + p = (m + n) + (n + p) - n = |A| + |B| - |A \cap B|$$
.

Teorema isbotlandi.

Natija 1. Uchta A, B, $C \in U$ to plamlar birlashmasidan iborat to plam quvvatini topish formulasi:

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Natija 2. Ixtiyoriy n ta $\{A_1, A_2, ..., A_n\} \in U$ to 'plamlar uchun ularning birlashmasidan iborat to 'plam quvvatini topish formulasi quyidagicha bo 'ladi:

$$n(A_1 \bigcup A_2 \bigcup ... \bigcup A_n) =$$

$$= \sum_{i=1}^{n} n(A_i) - \sum_{i \neq j=1}^{n} n(A_i \cap A_j) + \sum_{i \neq j \neq k=1}^{n} n(A_i \cap A_j \cap A_k) - \dots - (-1)^{n-1} n(A_1 \cap A_2 \cap \dots \cap A_n)$$

Misol 2. Diskret matematika fanini o'rganuvchi 63 nafar talabadan 16 kishi ingliz tilini, 37 kishi rus tilini va 5 kishi ikkala tilni ham o'rganmoqda. Nechta talaba nomlari keltirilgan fanlardan qo'shimcha darslarga qatnashmayapti?

Yechilishi: $A = \{ ingliz tili fanini o'rganuvchilar \},$

 $B = \{\text{rus tilini o'rganuvchilar}\},\$

 $A \cap B = \{$ ikkala tilni ham o'rganuvchilar $\}$ bo'lsin. U holda |A| = 16, |B| = 37, $|A \cap B| = 5$. Yuqoridagi teoremaga asosan,

$$|A \cup B| = |A| + |B| - |A \cap B| = 16 + 37 - 5 = 48$$
.

Bundan, 63-48=15 nafar talaba nomlari keltirilgan qo'shimcha darslarga qatnashmayotganligi aniqlanadi.

2.4. To'plamlarning xossalari.To'plamlarning birlashmasi, kesishmasi, ayirmasi. Simmetrik ayirma.

Ta'rif 1. A va B to plamlarning **birlashmasi** deb, bu to plamlarning hech bo lmaganda bittasiga tegishli bo lgan elementlardan iborat to plamga aytiladi va u $A \cup B$ kabi belgilanadi. Ba'zi hollarda A va B to plamlarning birlashmasiga **yigindi** deb ham yuritiladi. U inglizcha "union" — "qo'shma" so zining birinchi harfidan olingan.

Misol 1. $A = \{1;3;5\}$ va berilgan bo`lsin. U

 $B = \{4;5;6\}$ to plamlar

 $A \cup B = \{1;3;4;5;6\}$ bo`ladi.

Ta'rif 2. A va B to'plamlarning **kesishmasi** deb, ham A to`plamga, ham B to`plamga tegishli elementlardan iborat to'plamga aytiladi va $A \cap B$ kabi belgilanadi. Ba`zi hollarda A va B to`plamlarning kesishmasiga **ko`paytma** deb ham yuritiladi.

Misol 2. $A = \{1;3;5\}$ berilgan bo`lsin. U $A \cap B = \{5\}$ bo`ladi.

va B={4;5;6} to`plamlar holda ularning kesishmasi

Ta'rif 3. \boldsymbol{A} ayirmasi \boldsymbol{A} deb. tegishli bo'lmagan to'plamga aytiladi va belgilanadi.

to'plamdan B to'plamning to'plamning B to'plamga elementlaridan iborat $A \setminus B$ ko`rinishida

Misol 3. $A = \{1,3,5\}$ va

 $B = \{4;5;6\}$ to`plamlar

berilgan bo`lsin. U holda ularning ayirmasi $A \setminus B = \{1,3\}$ va $B \setminus A = \{4,6\}$ ga teng.

Ta'rif 4. A va B to'plamlarning **simmetrik ayirmasi** deb, A to'plamning B to'plamga, B to'plamning A to'plamga tegishli bo'lmagan elementlaridan iborat to'plamga aytiladi va AAB kabi belgilanadi. Ba'zi hollarda halqali yig'indi $A\Delta B = A \oplus B = (A \backslash B) \cup (B \backslash A)$ deb ham yuritiladi:

Misol 4. $A = \{1;3;5\}$ berilgan bo`lsin.

 $B = \{4;5;6\}$ to`plamlar Ularning ayirmalari

= $\{1,3\}$ va B\A= $\{4,6\}$ ga teng bo`lsa, simmetrik ayirmasi $A\triangle B = A \oplus B = \{1,3,4,6\}$ bo`ladi.

Ta'rif 5. U to'plamning A to'plamga tegishli bo'lmagan elementlaridan tuzilgan $\overline{\mathbf{A}}$ to'plamga A to'plamning to'ldiruvchisi (qarama-qarshisi) deyiladi va quyidagicha aniqlanadi:

$$\overline{\mathbf{A}} = \mathbf{U} \backslash \mathbf{A} = \{ \exists x : x \in U , x \notin A \}$$

Misol 5. U – haqiqiy ratsional sonlar

sonlar to`plami va A to plami bo lsa, u holda \overline{A}

irratsional sonlar to`plami bo`ladi. Sanogli va kontenyun quvvatli to'plamlar.

Ta'rif 4. Agar cheksiz to'plam elementlarini natural sonlar qatori bilan ragamlab chiqish mumkin bo'lsa, u holda bu to'plam sanoqli to'plam deyiladi, aks holda sanoqsiz toʻplam boʻladi.

Bo'sh to'plam chekli va sanoqli to'plam hisoblanadi va $\emptyset \neq \{0\}$.

Misol 8. a) butun sonlar to`plamini sanogli.

- b) irratsional sonlar to`plamini sanoqsiz deb qarash mumkin.
- d) just sonlar to 'plami ham sanoqli to 'plamga misol bo 'la oladi.

Chekli to'plamning asosiy xarakteristikasi bu uning elementlar sonidir. A chekli to'plamdagi elementlar sonini n(A) yoki |A| kabi belgilanadi va A to'plamning tartibi yoki quvvati deb ham yuritiladi.

Misol 1. $A = \{a,b,c,d\}$ to planning quvvati n(A)=4;

 $B = \{\emptyset\}$ bo`sh to`plamning quvvati n(B) = 0.

Teorema. Ikkita toʻplam birlashmasidan iborat toʻplamning quvvati $|A \cup B| = |A| + |B| - |A \cap B|$ ga teng.

Isboti: Haqiqatan ham, $A \cup B$ to'plam umumiy elementga ega bo'lgan $A \setminus B, A \cap B, B \setminus A$ qism to'plamlardan tashkil topgan, buni Eyler – Venn diagrammasida ko'rish mumkin.

Bundan tashqari, $A = (A \setminus B) \cup (A \cap B)$ va $B = (B \setminus A) \cup (A \cap B)$.

Quyidagi belgilashlarni kiritamiz: $|A \setminus B| = m$, $|A \cap B| = n$, $|B \setminus A| = p$. U holda |A| = m + n, |B| = n + p va bulardan

$$|A \cup B| = m + n + p = (m + n) + (n + p) - n = |A| + |B| - |A \cap B|$$
.

Teorema isbotlandi.

Natija 1. Uchta A, B, $C \in U$ to plamlar birlashmasidan iborat to plam quvvatini topish formulasi:

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Natija 2. Ixtiyoriy n ta $\{A_1, A_2, ..., A_n\} \in U$ to 'plamlar uchun ularning birlashmasidan iborat to 'plam quvvatini topish formulasi quyidagicha bo'ladi:

$$n(A_1 \bigcup A_2 \bigcup ... \bigcup A_n) =$$

$$= \sum_{i=1}^{n} n(A_i) - \sum_{i \neq j=1}^{n} n(A_i \cap A_j) + \sum_{i \neq j \neq k=1}^{n} n(A_i \cap A_j \cap A_k) - \dots - (-1)^{n-1} n(A_1 \cap A_2 \cap \dots \cap A_n)$$

Misol 2. Diskret matematika fanini o'rganuvchi 63 nafar talabadan 16 kishi ingliz tilini, 37 kishi rus tilini va 5 kishi ikkala tilni ham o'rganmoqda. Nechta talaba nomlari keltirilgan fanlardan qo'shimcha darslarga qatnashmayapti?

Yechilishi: $A = \{ ingliz tili fanini o'rganuvchilar \},$

 $B = \{\text{rus tilini o'rganuvchilar}\},\$

 $A \cap B = \{ \text{ ikkala tilni ham o'rganuvchilar} \} \text{ bo'lsin.} \quad \text{U holda} \\ |A| = 16, \quad |B| = 37, \quad |A \cap B| = 5.$

Yuqoridagi teoremaga asosan,

$$|A \cup B| = |A| + |B| - |A \cap B| = 16 + 37 - 5 = 48$$
.

Bundan, 63-48=15 nafar talaba nomlari keltirilgan qo'shimcha darslarga qatnashmayotganligi aniqlanadi.

2.6. Asosiy ayniyatlar.

U universal toʻplamning A, B, C qism toʻplamlari uchun quyidagi xossalar oʻrinli (ba'zi xossalarning isbotini keltiramiz, qolganlari shunga oʻxshash isbotlanadi. Isbotni Eyler-Venn diagrammasida bajarish ham mumkin):

Kommutativlik (o`rin almashtirish) xossasi:
$$1^0$$
) $A \cup B = B \cup A$ 2^0) $A \cap B = B \cap A$

 1^0 —xossaning isboti: $x \in A \cup B$ bo`lsa, u holda $x \in A$ va $x \in B$ bo`ladi. Shuningdek, $x \in B \cup x \in A$ bo`lsa, $x \in B \cup A$ kelib chiqadi. Bundan $x \in A \cup B \Leftrightarrow x \in B \cup A$ hosil bo`ladi. Bularni umumlashtirilsa, $A \cup B = B \cup A$ kommutativlik xossasi isbotlanadi.

Assotsiyativlik (guruhlash) xossasi: 3^0) $(A \cup B) \cup C = A \cup (B \cup C)$

$$4^0$$
) $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivlik (taqsimot qonunlari) xossasi:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Yutilish qonunlari:

$$7^0$$
) $A \cap (A \cup B) = A$

$$8^0$$
) $A \cup (A \cap B) = A$

De Morgan qonunlari (Ogastes de-Morgan (1806-1871yy) Shotlandiyalik matematik va mantiqchi, mantiqiy munosabatlar asoschisi):

90)
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

10°)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

9° - xossaning isboti:
$$\overline{A \cap B} = \{x : x \notin (A \cap B)\} = \{x : \overline{x \in (A \cap B)}\} = \{x : \overline{(x \in A) \cap (x \in B)}\}$$
, $\overline{A \cup B} = \{x : (x \notin A) \cup (x \notin B)\} = \{x : \overline{x \in A} \cup \overline{x \in B}\} = \{x : \overline{((x \in A) \cup (x \in B))}\}$

0 va 1 (bo`sh va universal to`plam) qonunlari:

$$11^0) \quad A \cap A = A$$

$$12^0$$
) $A \cup U = U$

$$13^0) A \cup \overline{A} = \mathbf{U}$$

$$14^0$$
) $A \cap \emptyset = \emptyset$

$$15^0) A \cap \overline{A} = \emptyset$$

16°)
$$\overline{U} = \emptyset$$

$$17^0$$
) $A \cup \emptyset = A$

18°)
$$\overline{\emptyset} = U$$

$$19^0) \qquad A \cap U = A$$

$$20^{\circ}$$
) A\A=Ø

Ayirishdan qutilish qonuni:

$$21^0) \quad A \backslash B = A \cap \overline{B}$$

Ikkilangan rad etish qonuni:

$$22^0$$
) $\overline{A} = A$

To'plamlar ustida amallarning xossalariga e'tibor berib qaraydigan bo'lsak, ular juft — juft yozilgan va har ikkinchisi birinchi xossada amalni o'zgartirish bilan hosil qilingan deyish mumkin, masalan, \cup amali \cap ga, \emptyset to'plam U ga almashtirib hosil qilingan. Xossalarning bunday mosligi **ikkiyoqlamalik qonunlari** deyiladi.

2.7. To'plamlarga doir asosiy ayniyatlarni taqqoslashga doir misollar.

- 1. "Filologiya" va "filosofiya" so'zlaridagi harflar to'plamining birlashmasi hamda kesishmasini toping.
- 2. "Matematika" va "grammatika" so'zlaridagi harflar to'plamining birlashmasi hamda kesishmasini toping.
- 3. U={1; 2; 3; 4; a; b; c; d; e} universal to 'plamda A va B to 'plamlar berilgan bo 'lsin. $A \cup B$; $A \cap B$; $A \oplus B$; $A \times B$; \overline{A} ; $\overline{A \cap B}$ to 'plamlarni toping va Eyler-Venn diagrammalarida tasvirlang.

a)
$$A=\{1; 2; a; b; c\},\$$

$$B={3; 4; b; c; e}$$

b)
$$A=\{1; 3; 4; a; c\},\$$

$$B={3; b; c; e}$$

c)
$$A=\{1; 2; 3; 4\},\$$

$$B=\{a;b;c;d;e\}$$

d)
$$A=\{1; 4; a; c; d; e\}$$

$$B=\{1; a; b; c; d\}$$

e)
$$A={3; 4; a; b}$$

$$B=\{1; 2; 3; 4; a; b; c; d; e\}.$$

4. U= $\{p; q; r; s; t; x; y; z\}$ universal toʻplamda A= $\{p; q; r; s\}$, B= $\{r; s; t; y\}$ va C= $\{q; s; x; z\}$ toʻplamlar berilgan boʻlsin. Quyidagi toʻplamlarni toping:

e)

a)
$$A \cup B$$

d)
$$A \times B$$

 \overline{A}

b)
$$A \cap B$$

A) $A \cup B$	B) $A \cap B$	C) B	D) Ø	E) A
5. $\overline{A \cap B}$ ifoda quyidagi ifodalarning qaysi biriga teng?				
A) $A \cup \overline{B}$	B) $A \cap B$	C) $\overline{A} \cup \overline{B}$	D) $\overline{A} \cap \overline{B}$	E) $\overline{A} \cup B$
6. $\overline{A \cup B}$ ifoda quyidagi ifodalarning qaysi biriga teng?				
•	•	C) $\overline{A \cap B}$		E) $\overline{A} \cap B$
7. $\overline{A} \cup \overline{B}$ ifoda quyidagi ifodalarning qaysi biriga teng?				
-		C) $\overline{A} \cap B$		E) $\overline{A \cap B}$
8. $\overline{A} \cap \overline{B}$ ifoda quyidagi ifodalarning qaysi biriga teng?				
-	•	C) $\overline{A\Delta B}$		E) $A \cup B$
9. $A \cap A$ ifoda quyidagi ifodalarning qaysi biriga teng?				
	B) \overline{A}		D) Ø	E) <i>A</i>
10. $A \cup \overline{A}$ ifoda quyidagi ifodalarning qaysi biriga teng?				
	quyldagi ifodalari B) U	0 1 .	•	E) $U \setminus A$
,	,	ŕ	0	
		ning qaysi biriga ter		E) U\A
A) A	B) U	C) \overline{A}	D) Ø	L) U\A