Chapitre 3 **Statique des Fluides**

3.1 FORCES AGISSANT SUR UN FLUIDE

3.1.1 Force massique

- → Force agissant sur toutes les particules conduisant à un certain champ de force
- → Magnitude (grandeur) de force massique est proportionnelle à la masse du fluide ou au volume du fluide
- ▶ Lorsque le volume de particule du fluide tends vers zéro, $\Delta V \rightarrow 0$

$$dF_m = dm \cdot a_m = dm(Xi + Yj + Zk),$$

dF_m: force massique unitaire, d_m: masse unitaire, a_m: accélération

3.1.2 Force superficielle

- ◆ Force agissant sur la surface de contact des particules du fluide par une couche adjacente du fluide ou un autre fluide
- ◆ Sa valeur est proportionnelle à la surface de contact
- ▶ Forces superficielles peuvent être divisées en 2 catégories : force normale perpendiculaire à la surface agissante (pression) & force de cisaillement pareille à la contrainte de cisaillement parallèle à la surface agissante

3.2 PRESSION ABSOLUE & PRESSION EFFECTIVE

- Par rapport à une référence, on a pression absolue (P_{abs}) ou effective (P_{eff} = jauge).
- Pression absolue, référence = 0
- Pression effective, référence = P_{atm}
- Relation entre P_{atm}, P_{abs} et P_{eff}:

$$P_{abs} = P_{atm} + P_{eff}$$

- P_{abs} tjrs positive ou nulle (vide)
- ▶ P_{eff} peut être positive, négative ou nulle
- → Relation fondamentale de l'hydrostatique (en pression absolue ou pression effective):

3.2 MESURE DE PRESSION

3.2.1 Pression atmosphérique (Baromètre)

Baromètre à aiguille

Baromètre à mercure (expérience de Torricelli)

Baromètre électronique

3.2 MESURE DE PRESSION

3.2.2 Pression effective (Manomètres)

3.2.3 Pression des liquides (Tubes piézométriques)

3.2 MESURE DE PRESSION

3.2.4 Pression des liquides (Tubes en U)

3.2 PRESSION EN UN POINT

La pression en un point dans un fluide est la même dans toutes les directions

- Pression dans un fluide au repos :
 - ne change pas dans la direction horizontale (sur un même plan horizontal)
 - augmente avec la profondeur

$$\sum F_z = ma_z = 0: \qquad P_2 \Delta x - P_1 \Delta x - \rho g \Delta x \Delta z = 0$$

$$W = mg = \rho g \Delta x \Delta z$$

$$\Delta P = P_2 - P_1 = \rho g \Delta z = \gamma_s \Delta z$$

$$P = P_{atm} + \rho gh$$

$$P_{gage} = \rho gh$$

Pour des fluides dont la masse volumique change avec l'élévation

$$\frac{dP}{dz} = -\rho g$$

$$\Delta P = P_2 - P_1 = -\int_1^2 \rho g \, dz$$

$$P_A = P_B = P_C = P_D = P_E = P_F = P_G = P_{atm} + \rho gh$$

 $P_H \neq P_I$

- ▶ Loi de Pascal (Blaise Pascal : 1623-1662) :
 - pression appliquée à un fluide confiné augmente la pression partout dans le système par la même quantité
 - force appliquée par un fluide est proportionnelle à la surface

$$P_2 = P_{atm} + \rho gh$$

Exemple 1

Un manomètre est utilisé pour mesurer la pression dans une citerne. Le fluide a une densité de 0.85 et la colonne du manomètre a une hauteur de 55 cm. Si la pression atmosphérique locale est 96 kPa, calculer la pression absolue dans la citerne.

Exemple 2

Pour la Figure ci-haut, déterminer la pression au point A et en déduire la différence de pression entre A et B.

Plusieurs problèmes en ingénierie et quelques manomètres impliquent multiples fluides non miscibles de différentes masses volumiques empilés les uns sur les autres.

$$\mathsf{P}_{\mathsf{atm}} + \rho_1 \mathsf{gh}_1 + \rho_2 \mathsf{gh}_2 + \rho_3 \mathsf{gh}_3 = \mathsf{P}_1$$

$$P_1 + \rho_1 g(a + h) - \rho_2 gh - \rho_1 ga = P_2$$

Exemple 3

Déterminer la pression dans la citerne si $h_1 = 0.5$ m, $h_2 = 0.2$ m, $h_3 = 0.35$ m. Les masses volumiques de l'eau, de l'huile et du mercure sont respectivement 1000 kg/m³, 850 kg/m³ et 13600 kg/m³.

Exemple 4

Déterminer la pression dans le cylindre (g = 9.81 m/s²). Si une chaleur est transférée au gaz et son volume double, est-ce que la pression à l'intérieur du cylindre va doubler?

Plaque exposée à un liquide (vanne d'un barrage) :

- ◆ forces hydrostatiques = un système de forces parallèles
- ◆ Autre face de plaque exposée à l'atmosphère et P_{atm} agit sur les deux faces de la plaque
- Résultante nulle de P_{atm} ⇒ existence de la jauge de pression seule

Sur une plaque complètement submergée :

Pression absolue à n'importe quel point de la plaque est :

$$P = P_0 + \rho gh = P_0 + \rho gy \sin \theta$$

Force hydrostatique résultante agissant sur la plaque est :

$$F_R = \int_A P dA = \int_A (P_0 + \rho gy \sin \theta) dA = P_0 A + \rho g \sin \theta \int_A y dA$$

Sur une plaque complètement submergée :

Coordonnée y du centroïde est :

$$y_C = \frac{1}{A} \int_A y \, dA$$

$$F_R = (P_0 + \rho gy_C \sin \theta)A = (P_0 + \rho gh_C)A = P_C A = P_{ave} A$$

- Grandeur de la force résultante agissant sur une surface plane d'une plaque complètement submergée dans un fluide homogène = produit de la pression au centroïde de la plaque & superficie de la plaque
- Point d'intersection entre ligne d'action de F_R & surface de la plaque → centre de pression

Sur une plaque complètement submergée :

 Localisation verticale de ligne d'action est déterminée en égalant le moment de F_R & moment de la force de pression distribuée sur l'axe X

$$\begin{split} y_P F_R &= \int_A y P \, dA = \int_A y (P_0 + \rho g y \sin \theta) \, dA = P_0 \int_A y \, dA + \rho g \sin \theta \, \int_A y^2 \, dA \\ y_P F_R &= P_0 y_C \, A + \rho g \sin \theta \, I_{xx,\,O} \\ I_{xx,\,O} &= \int_A y^2 \, dA \qquad \qquad I_{xx,\,O} : moment \, d'inertie \\ I_{xx,\,O} &= I_{xx,\,C} + y_C^2 \, A \qquad \qquad I_{xx,\,C} : moment \, d'inertie \end{split}$$

$$y_P = y_C + \frac{I_{xx, C}}{[y_C + P_0/(\rho g \sin \theta)]A}$$

$$y_P = y_C + \frac{I_{xx, C}}{y_C A}$$
 $P_0 = 0 (P_{atm} ignorée)$

A = ab,
$$I_{xx, C} = ab^3/12$$

(a) Rectangle

A =
$$\pi R^2$$
, $I_{xx, C} = \pi R^4/4$
(b) Circle

A = ab/2, $I_{xx, C} = ab^3/36$ (d) Triangle

A =
$$\pi R^2/2$$
, $I_{xx, C} = 0.109757R^4$
(e) Semicircle

A =
$$\pi ab/2$$
, $I_{xx, C} = 0.109757ab^3$
(f) Semiellipse

Sur une plaque complètement submergée :

Exemple 5

Déterminer la force hydrostatique sur la porte & la localisation de la force résultante.

3.5 FORCES HYDROSTATIQUES SUR DES SURFACES IMMERGÉES COURBÉES

 $F_H = F_X$ Composante horizontale de la force sur la surface courbée

 $F_V = F_V + W$ Composante verticale de la force sur la surface courbée

$$F_R = \sqrt{F_H^2 + F_V^2}$$
 $\tan \alpha = F_V/F_H$

3.5 FORCES HYDROSTATIQUES SUR DES SURFACES IMMERGÉES COURBÉES

Dans le cas d'une surface courbée au-dessus du liquide, le poids du liquide est soustrait de la composante verticale de force hydrostatique (ils agissent en sens opposés)

Lorsque la surface plane est en fluides multicouches :

$$F_R = \sum F_{R,\,i} = \sum P_{C,\,i}\,A_i$$

3.5 FLOTTABILITÉ & STABILITÉ

$$F_B = F_{bottom} - F_{top} = \rho_f g(s + h)A - \rho_f gsA = \rho_f ghA = \rho_f gV$$

Force de flottabilité agissant sur un corps immergé dans un fluide est égale au poids du fluide déplacé par le corps, et agit à travers le centroïde du volume déplacé

$$F_B = W \rightarrow \rho_f g V_{sub} = \rho_{ave, body} g V_{total} \rightarrow \frac{V_{sub}}{V_{total}} = \frac{\rho_{ave, body}}{\rho_f}$$

3.5 FLOTTABILITÉ & STABILITÉ

(a) Stable

(b) Neutrally stable

