# Dataset of pm2.5 with lat and lon only

### 0. Load the modules

```
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

In [101... # API Key and City Information
api_key = '
city_name = 'Bangkok,TH'
```

#### 1. Get Dataset API and convert to dataframe

```
# Get coordinates from city name (Geocoding API)
In [102...
          geocode url = f'http://api.openweathermap.org/geo/1.0/direct?q={city name}&limit=1&appid={api key}'
          response = requests.get(geocode url)
          location data = response.json()
          if not location data:
              raise ValueError("Invalid city name or no location data available.")
          # List of monitoring stations with their coordinates
          stations = [
              {'name': '3T', 'lat': 13.7563, 'lon': 100.5018},
              {'name': '5T', 'lat': 13.7367, 'lon': 100.5231},
              {'name': '10T', 'lat': 13.7291, 'lon': 100.7750},
              {'name': '11T', 'lat': 13.7898, 'lon': 100.4486},
              {'name': '12T', 'lat': 13.8225, 'lon': 100.5147},
              {'name': '15T', 'lat': 13.7083, 'lon': 100.3728},
              {'name': '61T', 'lat': 13.6796, 'lon': 100.6067},
              # {'name': '52T (Roadside, Bangkok)', 'Lat': 13.7563, 'Lon': 100.5018},
              # {'name': '54T (Roadside, Bangkok)', 'lat': 13.7367, 'lon': 100.5231}
```

```
In [103... # Fetch PM2.5 data for each station
          start date = int(pd.Timestamp("2023-01-01 00:00:00").timestamp())
          end date = int(pd.Timestamp.now().timestamp())
          pm25_data = []
In [104... for station in stations:
              lat = station['lat']
              lon = station['lon']
              pollution url = (
                  f'http://api.openweathermap.org/data/2.5/air pollution/history?'
                  f'lat={lat}&lon={lon}&start={start date}&end={end date}&appid={api key}'
              )
              response = requests.get(pollution url)
              data = response.json()
              if 'list' in data:
                  for entry in data['list']:
                      dt = pd.to_datetime(entry['dt'], unit='s')
                      pm2_5 = entry['components']['pm2_5']
                      pm25_data.append({
                          'datetime': dt,
                          'station': station['name'],
                          'lat': lat,
                          'lon': lon,
                          'pm2 5': pm2 5
                      })
              else:
                  print(f"No data available for station {station['name']} (lat={lat}, lon={lon})")
          # Convert to DataFrame
          pm25_df = pd.DataFrame(pm25_data)
          print(pm25 df.head())
                      datetime station
                                            lat
                                                      lon
                                                            pm2 5
                                    3T 13.7563 100.5018 158.36
        0 2023-01-01 00:00:00
        1 2023-01-01 01:00:00
                                    3T 13.7563 100.5018 199.19
                                    3T 13.7563 100.5018 226.01
         2 2023-01-01 02:00:00
         3 2023-01-01 03:00:00
                                    3T 13.7563 100.5018 235.79
        4 2023-01-01 04:00:00
                                    3T 13.7563 100.5018 187.84
```

Out[105... (132538, 5)

In [106... pm25\_df.head()

Out[106...

|   | datetime            | station | lat     | lon      | pm2_5  |
|---|---------------------|---------|---------|----------|--------|
| 0 | 2023-01-01 00:00:00 | 3T      | 13.7563 | 100.5018 | 158.36 |
| 1 | 2023-01-01 01:00:00 | 3T      | 13.7563 | 100.5018 | 199.19 |
| 2 | 2023-01-01 02:00:00 | 3T      | 13.7563 | 100.5018 | 226.01 |
| 3 | 2023-01-01 03:00:00 | 3T      | 13.7563 | 100.5018 | 235.79 |
| 4 | 2023-01-01 04:00:00 | 3T      | 13.7563 | 100.5018 | 187.84 |

In [107... pm25\_df

Out[107...

|        | datetime            | station | lat     | lon      | pm2_5  |
|--------|---------------------|---------|---------|----------|--------|
| 0      | 2023-01-01 00:00:00 | 3T      | 13.7563 | 100.5018 | 158.36 |
| 1      | 2023-01-01 01:00:00 | 3T      | 13.7563 | 100.5018 | 199.19 |
| 2      | 2023-01-01 02:00:00 | 3T      | 13.7563 | 100.5018 | 226.01 |
| 3      | 2023-01-01 03:00:00 | 3T      | 13.7563 | 100.5018 | 235.79 |
| 4      | 2023-01-01 04:00:00 | 3T      | 13.7563 | 100.5018 | 187.84 |
| •••    |                     |         |         |          |        |
| 132533 | 2025-03-13 17:00:00 | 61T     | 13.6796 | 100.6067 | 29.20  |
| 132534 | 2025-03-13 18:00:00 | 61T     | 13.6796 | 100.6067 | 29.09  |
| 132535 | 2025-03-13 19:00:00 | 61T     | 13.6796 | 100.6067 | 31.42  |
| 132536 | 2025-03-13 20:00:00 | 61T     | 13.6796 | 100.6067 | 33.79  |
| 132537 | 2025-03-13 21:00:00 | 61T     | 13.6796 | 100.6067 | 34.96  |

132538 rows × 5 columns

# 2. EDA

```
In [108...
         pm25 df['datetime'].diff().value counts()
Out[108... datetime
          0 days 01:00:00
                                  132454
          1 days 01:00:00
                                      56
          2 days 01:00:00
                                      21
          -803 days +03:00:00
          Name: count, dtype: int64
          Handling gaps
         actual range = pd.date range(start=pm25 df['datetime'].min(), end=pm25 df['datetime'].max(), freq='h')
In [109...
          actual range
Out[109... DatetimeIndex(['2023-01-01 00:00:00', '2023-01-01 01:00:00',
                          '2023-01-01 02:00:00', '2023-01-01 03:00:00',
                          '2023-01-01 04:00:00', '2023-01-01 05:00:00',
                          '2023-01-01 06:00:00', '2023-01-01 07:00:00',
                          '2023-01-01 08:00:00', '2023-01-01 09:00:00',
                          '2025-03-13 12:00:00', '2025-03-13 13:00:00',
                          '2025-03-13 14:00:00', '2025-03-13 15:00:00',
                          '2025-03-13 16:00:00', '2025-03-13 17:00:00',
                          '2025-03-13 18:00:00', '2025-03-13 19:00:00',
                          '2025-03-13 20:00:00', '2025-03-13 21:00:00'],
                         dtype='datetime64[ns]', length=19270, freq='h')
In [110... # Create a new DataFrame with all datetime and station combinations
          stations = pm25 df[['lat', 'lon']].drop duplicates()
          # Create full cartesian product of stations × timestamps
          full index = pd.MultiIndex.from product([actual range, stations.itertuples(index=False, name=None)],
                                                  names=["datetime", "station info"])
In [111... # Convert station lat/lon to tuples for merging
          pm25 df["station info"] = list(zip(pm25 df["lat"], pm25 df["lon"]))
          # Merge with full datetime-station grid to fill missing timestamps per station
          full_df = pd.DataFrame(index=full_index).reset_index().merge(pm25_df, on=["datetime", "station_info"], how="left")
          # Split 'station info' back into separate Lat/Lon columns
          full_df[["lat", "lon"]] = pd.DataFrame(full_df["station_info"].tolist(), index=full_df.index)
```

# **Check missing values**

### **Handling missing values**

```
In [114... # # Handling missing values for station

# # Sort data for consistency
# full_df.sort_values(by=['lat', 'lon', 'datetime'], inplace=True)

# # Fill missing station names using mode per (lat, lon) group
# full_df['station'] = full_df.groupby(['lat', 'lon'])['station'].transform(lambda x: x.mode()[0] if not x.mode().empty else None)

# # Final check
# print(full_df.isna().sum())
```

```
In [115... # # Handling missing PM2.5 values per station while keeping trends
# full_df.sort_values(by=['lat', 'lon', 'datetime'], inplace=True)

# # Reset index before interpolation
# full_df.reset_index(inplace=True)

# # Interpolate missing PM2.5 values per station
# full_df['pm2_5'] = full_df.groupby(['lat', 'lon'])['pm2_5'].transform(lambda group: group.interpolate(method='linear'))

# # Use backward fill for any remaining missing values
# full_df['pm2_5'].fillna(method='bfill', inplace=True)

# # Restore original index
# full_df.set_index('datetime', inplace=True)

# # Final check
# print(full_df.isna().sum())
```

### Check unique values of lat and lon

```
full_df['lat'].unique()
In [116...
Out[116...
           array([13.7563, 13.7367, 13.7291, 13.7898, 13.8225, 13.7083, 13.6796])
          full_df['lon'].unique()
In [117...
           array([100.5018, 100.5231, 100.775 , 100.4486, 100.5147, 100.3728,
Out[117...
                  100.6067])
          full_df['station'].unique()
In [118...
          array(['3T', '5T', '10T', '11T', '12T', '15T', '61T', nan], dtype=object)
Out[118...
In [119...
          full_df.isna().sum()
Out[119...
          datetime
                          0
           station
                       2352
           lat
                          0
           lon
           pm2_5
                       2352
           dtype: int64
          full_df.groupby(['lat', 'lon'])['station'].nunique()
In [120...
```

```
Out[120...
          lat
                    lon
           13.6796 100.6067
                                1
          13.7083 100.3728
                                1
          13.7291 100.7750
                                1
          13.7367 100.5231
                                1
          13.7563 100.5018
          13.7898 100.4486
          13.8225 100.5147
          Name: station, dtype: int64
In [121...
          full_df[full_df['station'].isna()]
Out[121...
                           datetime station
                                                          lon pm2_5
                                                 lat
             8911 2023-02-23 01:00:00
                                       NaN 13.7563 100.5018
                                                                NaN
             8912 2023-02-23 01:00:00
                                        NaN 13.7367 100.5231
                                                                NaN
             8913 2023-02-23 01:00:00
                                       NaN 13.7291 100.7750
                                                                NaN
             8914 2023-02-23 01:00:00
                                        NaN 13.7898 100.4486
                                                                NaN
             8915 2023-02-23 01:00:00
                                       NaN 13.8225 100.5147
                                                                NaN
          133730 2025-03-07 00:00:00
                                        NaN 13.7291 100.7750
                                                                NaN
          133731 2025-03-07 00:00:00
                                        NaN 13.7898 100.4486
                                                                NaN
          133732 2025-03-07 00:00:00
                                       NaN 13.8225 100.5147
                                                                NaN
          133733 2025-03-07 00:00:00
                                        NaN 13.7083 100.3728
                                                                NaN
          133734 2025-03-07 00:00:00
                                       NaN 13.6796 100.6067
                                                                NaN
          2352 rows × 5 columns
```

full\_df['station'].value\_counts()

In [122...

```
Out[122...
           station
                  18934
           3T
           5T
                  18934
           10T
                  18934
           11T
                  18934
           12T
                  18934
           15T
                  18934
                  18934
           61T
           Name: count, dtype: int64
          isna = full df['station'].isna().value counts()
In [123...
          missing stations = full df[full df['station'].isna()]
In [124...
          missing stations
Out[124...
                            datetime station
                                                  lat
                                                           lon pm2_5
                                        NaN 13.7563 100.5018
                                                                  NaN
             8911 2023-02-23 01:00:00
             8912 2023-02-23 01:00:00
                                        NaN 13.7367 100.5231
                                                                  NaN
             8913 2023-02-23 01:00:00
                                        NaN 13.7291 100.7750
                                                                  NaN
             8914 2023-02-23 01:00:00
                                        NaN 13.7898 100.4486
                                                                  NaN
             8915 2023-02-23 01:00:00
                                        NaN 13.8225 100.5147
                                                                  NaN
           133730 2025-03-07 00:00:00
                                        NaN 13.7291 100.7750
                                                                  NaN
           133731 2025-03-07 00:00:00
                                        NaN 13.7898 100.4486
                                                                  NaN
           133732 2025-03-07 00:00:00
                                        NaN 13.8225 100.5147
                                                                  NaN
                                        NaN 13.7083 100.3728
           133733 2025-03-07 00:00:00
                                                                  NaN
           133734 2025-03-07 00:00:00
                                        NaN 13.6796 100.6067
                                                                  NaN
          2352 rows × 5 columns
          full_df['lat'].unique()
In [125...
```

array([13.7563, 13.7367, 13.7291, 13.7898, 13.8225, 13.7083, 13.6796])

Out[125...

```
full df['lon'].unique()
In [126...
Out[126...
          array([100.5018, 100.5231, 100.775 , 100.4486, 100.5147, 100.3728,
                 100.6067])
In [127...
         full_df.isna().sum()
Out[127...
          datetime
                         0
          station
                      2352
          lat
                         0
          lon
                         0
          pm2 5
                      2352
          dtype: int64
In [128...
          full_df.groupby('station')[['lat', 'lon']].nunique()
Out[128...
                  lat lon
          station
                  1
             10T
                       1
             11T
                 1
             12T
                 1
                       1
             15T 1
              3T
                       1
              5T
                      1
             61T
                 1
                     1
          full_df.groupby(['lat', 'lon'])['station'].nunique()
In [129...
Out[129...
          lat
                   lon
          13.6796 100.6067
                               1
          13.7083 100.3728
                               1
          13.7291 100.7750
                               1
          13.7367
                  100.5231
                               1
          13.7563
                  100.5018
                               1
          13.7898 100.4486
                               1
          13.8225 100.5147
          Name: station, dtype: int64
```

### Remove the (Roadside, Bangkok) emtries that shared the same lat, lon

```
full_df.groupby(['lat', 'lon'])['station'].unique()
In [130...
Out[130...
           lat
                    lon
           13.6796 100.6067
                                 [61T, nan]
           13.7083
                   100.3728
                                 [15T, nan]
           13.7291 100.7750
                                 [10T, nan]
           13.7367
                   100.5231
                                 [5T, nan]
           13.7563 100.5018
                                 [3T, nan]
           13.7898 100.4486
                                 [11T, nan]
           13.8225 100.5147
                                 [12T, nan]
           Name: station, dtype: object
          full_df.head()
In [131...
Out[131...
                                              lon pm2_5
                datetime station
                                     lat
                             3T 13.7563 100.5018 158.36
           0 2023-01-01
           1 2023-01-01
                             5T 13.7367 100.5231
                                                  158.36
           2 2023-01-01
                            10T 13.7291 100.7750
                                                    63.83
           3 2023-01-01
                            11T 13.7898 100.4486
                                                    71.83
           4 2023-01-01
                            12T 13.8225 100.5147 158.36
          full_df.index.diff().value_counts()
In [132...
                  134889
Out[132...
           1.0
           Name: count, dtype: int64
          full_df.isna().sum()
In [133...
Out[133...
           datetime
                          0
           station
                       2352
           lat
                          0
           lon
           pm2 5
                       2352
           dtype: int64
```

### 3. Save the dataframe

```
full_df.to_csv('pm25_bangkok_2025_lat_lon.csv', index=True)
In [134...
In [135...
          full_df
Out[135...
                           datetime station
                                                          lon pm2_5
                                                 lat
               0 2023-01-01 00:00:00
                                         3T 13.7563 100.5018
                                                               158.36
                1 2023-01-01 00:00:00
                                             13.7367 100.5231
                                                               158.36
               2 2023-01-01 00:00:00
                                             13.7291 100.7750
                                                                63.83
               3 2023-01-01 00:00:00
                                        11T 13.7898 100.4486
                                                                71.83
                4 2023-01-01 00:00:00
                                        12T 13.8225 100.5147 158.36
          134885 2025-03-13 21:00:00
                                        10T 13.7291 100.7750
                                                                34.96
          134886 2025-03-13 21:00:00
                                        11T 13.7898 100.4486
                                                                21.47
          134887 2025-03-13 21:00:00
                                        12T 13.8225 100.5147
                                                                33.04
          134888 2025-03-13 21:00:00
                                        15T 13.7083 100.3728
                                                                 5.86
          134889 2025-03-13 21:00:00
                                        61T 13.6796 100.6067
                                                                34.96
         134890 rows × 5 columns
          full_df.index.diff().value_counts()
In [136...
Out[136...
          1.0
                  134889
          Name: count, dtype: int64
          4. Try loading the saved dataset and start analysis
```

df = pd.read\_csv('pm25\_bangkok\_2025\_lat\_lon.csv', parse\_dates=['datetime'])

In [137...

df.head()

| Out[137 |   | Unnamed: 0 | datetime   | station | lat     | lon      | pm2_5  |
|---------|---|------------|------------|---------|---------|----------|--------|
|         | 0 | 0          | 2023-01-01 | 3T      | 13.7563 | 100.5018 | 158.36 |
|         | 1 | 1          | 2023-01-01 | 5T      | 13.7367 | 100.5231 | 158.36 |
|         | 2 | 2          | 2023-01-01 | 10T     | 13.7291 | 100.7750 | 63.83  |
|         | 3 | 3          | 2023-01-01 | 11T     | 13.7898 | 100.4486 | 71.83  |
|         | 4 | 4          | 2023-01-01 | 12T     | 13.8225 | 100.5147 | 158.36 |

#### Validate the loaded dataframe

```
In [138...
          df.isna().sum()
Out[138...
          Unnamed: 0
                            0
           datetime
                            0
           station
                         2352
           lat
                            0
           lon
           pm2_5
                         2352
           dtype: int64
          df.set_index('datetime', inplace=True)
In [139...
In [140...
          df.index.diff().value_counts()
          datetime
Out[140...
           0 days 00:00:00
                              115620
           0 days 01:00:00
                               19269
           Name: count, dtype: int64
In [141... df.head()
```

| $\cap$ | пH | tΓ  | 1. | / | 1  |  |
|--------|----|-----|----|---|----|--|
| $\cup$ | иı | L I | т, | + | ㅗ. |  |

| datetime   |   |     |         |          |        |
|------------|---|-----|---------|----------|--------|
| 2023-01-01 | 0 | ЗТ  | 13.7563 | 100.5018 | 158.36 |
| 2023-01-01 | 1 | 5T  | 13.7367 | 100.5231 | 158.36 |
| 2023-01-01 | 2 | 10T | 13.7291 | 100.7750 | 63.83  |
| 2023-01-01 | 3 | 11T | 13.7898 | 100.4486 | 71.83  |
| 2023-01-01 | 4 | 12T | 13.8225 | 100.5147 | 158.36 |

lat

lon pm2\_5

Unnamed: 0 station

In [142... df.reset\_index(inplace=True) df

Out[142...

|        | datetime            | Unnamed: 0 | station | lat     | lon      | pm2_5  |
|--------|---------------------|------------|---------|---------|----------|--------|
| 0      | 2023-01-01 00:00:00 | 0          | 3T      | 13.7563 | 100.5018 | 158.36 |
| 1      | 2023-01-01 00:00:00 | 1          | 5T      | 13.7367 | 100.5231 | 158.36 |
| 2      | 2023-01-01 00:00:00 | 2          | 10T     | 13.7291 | 100.7750 | 63.83  |
| 3      | 2023-01-01 00:00:00 | 3          | 11T     | 13.7898 | 100.4486 | 71.83  |
| 4      | 2023-01-01 00:00:00 | 4          | 12T     | 13.8225 | 100.5147 | 158.36 |
| •••    |                     | •••        |         |         |          |        |
| 134885 | 2025-03-13 21:00:00 | 134885     | 10T     | 13.7291 | 100.7750 | 34.96  |
| 134886 | 2025-03-13 21:00:00 | 134886     | 11T     | 13.7898 | 100.4486 | 21.47  |
| 134887 | 2025-03-13 21:00:00 | 134887     | 12T     | 13.8225 | 100.5147 | 33.04  |
| 134888 | 2025-03-13 21:00:00 | 134888     | 15T     | 13.7083 | 100.3728 | 5.86   |
| 134889 | 2025-03-13 21:00:00 | 134889     | 61T     | 13.6796 | 100.6067 | 34.96  |

134890 rows × 6 columns

| $\cap$ |   | + | [1/12  |  |
|--------|---|---|--------|--|
| U      | и | L | [ T+>" |  |

|        | datetime            | Unnamed: 0 | station | lat     | lon      | pm2_5  |
|--------|---------------------|------------|---------|---------|----------|--------|
| 0      | 2023-01-01 00:00:00 | 0          | 3T      | 13.7563 | 100.5018 | 158.36 |
| 1      | 2023-01-01 00:00:00 | 1          | 5T      | 13.7367 | 100.5231 | 158.36 |
| 2      | 2023-01-01 00:00:00 | 2          | 10T     | 13.7291 | 100.7750 | 63.83  |
| 3      | 2023-01-01 00:00:00 | 3          | 11T     | 13.7898 | 100.4486 | 71.83  |
| 4      | 2023-01-01 00:00:00 | 4          | 12T     | 13.8225 | 100.5147 | 158.36 |
| •••    |                     | •••        |         |         |          |        |
| 134885 | 2025-03-13 21:00:00 | 134885     | 10T     | 13.7291 | 100.7750 | 34.96  |
| 134886 | 2025-03-13 21:00:00 | 134886     | 11T     | 13.7898 | 100.4486 | 21.47  |
| 134887 | 2025-03-13 21:00:00 | 134887     | 12T     | 13.8225 | 100.5147 | 33.04  |
| 134888 | 2025-03-13 21:00:00 | 134888     | 15T     | 13.7083 | 100.3728 | 5.86   |
| 134889 | 2025-03-13 21:00:00 | 134889     | 61T     | 13.6796 | 100.6067 | 34.96  |

134890 rows × 6 columns

# 5. Feature engineering

```
In [144... #Add more feature about time
    df['datetime'] = pd.to_datetime(df['datetime'])

# Extract hour as 'time'
    df['hour'] = df['datetime'].dt.hour

# Extract month
    df['month'] = df['datetime'].dt.month

# Extract day of the week as a number (0 as Monday to 6 as Sunday)
    df['day_of_week'] = df['datetime'].dt.dayofweek

# Display the updated DataFrame
    print(df.head())
```

```
datetime Unnamed: 0 station
                                                 lat
                                                                 pm2 5 hour
                                                           lon
                                                                              month \
         0 2023-01-01
                                 0
                                        3T 13.7563 100.5018
                                                                158.36
         1 2023-01-01
                                 1
                                        5T 13.7367 100.5231
                                                                158.36
                                                                                   1
                                 2
                                       10T 13.7291 100.7750
         2 2023-01-01
                                                                 63.83
                                                                                   1
                                 3
         3 2023-01-01
                                            13.7898 100.4486
                                                                                   1
                                       11T
                                                                 71.83
         4 2023-01-01
                                 4
                                       12T 13.8225 100.5147 158.36
                                                                                   1
            day of week
         0
                       6
         1
                       6
         2
                       6
         3
                       6
                       6
In [145...
          df2 = pd.read_csv(r'df2.csv',header=0)
          df = df.merge(df2, on=['station'])
In [146...
          df.head()
In [147...
Out[147...
                        Unnamed:
              datetime
                                  station
                                                       lon pm2_5 hour month day_of_week sea_level population population_density household
                                               lat
              2023-01-
           0
                                0
                                       3T 13.7563 100.5018 158.36
                                                                       0
                                                                               1
                                                                                            6
                                                                                                     23
                                                                                                              64468
                                                                                                                               9046.87
                                                                                                                                           58039
                    01
              2023-01-
           1
                                      5T 13.7367 100.5231 158.36
                                                                                                     10
                                1
                                                                       0
                                                                               1
                                                                                            6
                                                                                                             40077
                                                                                                                               4788.74
                                                                                                                                           32138
                    01
              2023-01-
           2
                                2
                                      10T 13.7291 100.7750
                                                                       0
                                                                               1
                                                                                            6
                                                                                                     20
                                                                                                                               1452.45
                                                              63.83
                                                                                                             179899
                                                                                                                                           105461
                    01
              2023-01-
           3
                                3
                                     11T 13.7898 100.4486
                                                                       0
                                                                                            6
                                                                                                     26
                                                                                                            101330
                                                              71.83
                                                                               1
                                                                                                                               3437.36
                                                                                                                                           44465
                    01
              2023-01-
                                     12T 13.8225 100.5147 158.36
                                                                       0
                                                                               1
                                                                                            6
                                                                                                      3
                                                                                                            118634
                                                                                                                              10275.79
                                                                                                                                           78240
                                4
                    01
In [148...
          def map_season(month):
               if 3 <= month <= 4:
                   return 'Hot Season'
```

elif 5 <= month <= 10:</pre>

else:

return 'Rainy Season'

```
return 'Cool Season'

# AppLy the function to create a new 'season' column
df['season'] = df['month'].apply(map_season)

In [149... seasonal_pm25 = df.groupby('season')['pm2_5'].mean().reset_index()

# Create a bar plot
plt.figure(figsize=(10, 5))
sns.barplot(data=seasonal_pm25, x='season', y='pm2_5', palette='coolwarm')
plt.title('Average PM2.5 Levels by Season')
plt.xlabel('Season')
plt.ylabel('Average PM2.5 Levels')
plt.show()

C:\Users\Aimmy\AppData\Local\Temp\ipykernel_30320\2605075261.py:5: FutureWarning:

Passing 'palette' without assigning 'hue' is deprecated and will be removed in v0.14.0. Assign the 'x' variable to 'hue' and set 'l egend=False' for the same effect.

sns.barplot(data=seasonal_pm25, x='season', y='pm2_5', palette='coolwarm')
```

## Average PM2.5 Levels by Season



```
In [150... df=pd.get_dummies(df, columns=['season'], drop_first=True)
In [151... # Add time step column
# df['time_step'] = df.index.to_List()
In [152... # df['time_step']
In [153... # df.set_index('datetime', inplace=True)
In [154... df.dtypes
```

```
Out[154... datetime
                                  datetime64[ns]
          Unnamed: 0
                                           int64
                                          object
           station
           lat
                                         float64
                                         float64
           lon
                                         float64
           pm2 5
           hour
                                           int32
           month
                                           int32
          day of week
                                           int32
                                           int64
           sea level
           population
                                           int64
          population_density
                                         float64
           household
                                           int64
           household density
                                         float64
                                         float64
           green space
           green space area
                                         float64
                                           int64
           factory num
           factory area
                                           int64
                                            bool
           season Hot Season
           season Rainy Season
                                            bool
           dtype: object
In [155...
          df.columns
Out[155...
          Index(['datetime', 'Unnamed: 0', 'station', 'lat', 'lon', 'pm2_5', 'hour',
                  'month', 'day_of_week', 'sea_level', 'population', 'population_density',
                  'household', 'household_density', 'green_space', 'green_space_area',
                  'factory_num', 'factory_area', 'season_Hot Season',
                  'season Rainy Season'],
                 dtype='object')
```

#### **Visualize**

```
In [156... green_space_per_station = df.groupby('station')['green_space'].mean().reset_index()

# Create the bar graph
plt.figure(figsize=(10, 5))
sns.barplot(x='station', y='green_space', data=green_space_per_station)
plt.title('Green Space Distribution by Station')
plt.xlabel('Station')
plt.ylabel('Average Green Space')
plt.ylabel('Average Green Space')
plt.xticks(rotation=45) # Rotate station names for better readability
plt.show()
```

## Green Space Distribution by Station



```
In [157... # Create histogram for PM2.5 distribution
    plt.figure(figsize=(10, 5))
    plt.hist(df['pm2_5'], bins=30, color='skyblue', edgecolor='black')
    plt.title('Distribution of PM2.5 Values')
    plt.xlabel('PM2.5 Levels')
    plt.ylabel('Frequency')
    plt.grid(True)
    plt.show()
```

#### Distribution of PM2.5 Values



```
In [158... # Calculate average PM2.5 per month
    average_pm25_per_month = df.groupby('month')['pm2_5'].mean().reset_index()

# Create bar chart
    plt.figure(figsize=(10, 5))
    sns.barplot(data=average_pm25_per_month, x='month', y='pm2_5')
    plt.title('Average PM2.s Levels per Month')
    plt.xlabel('Month')
    plt.ylabel('Average PM2.s Levels')
    plt.grid(True)
    plt.show()
```

## Average PM2.5 Levels per Month



```
In [159... hourly_pm25_trends = df.groupby('hour')['pm2_5'].mean().reset_index()

# Create Line plot for hourly trends
plt.figure(figsize=(10, 5))
sns.lineplot(data=hourly_pm25_trends, x='hour', y='pm2_5', marker='o', color='skyblue')
plt.title('Hourly PM2.5 Trends')
plt.xlabel('Hour of the Day')
plt.ylabel('Average PM2.5 Levels')
plt.grid(True)
plt.show()
```

## Hourly PM2.5 Trends



#### Monthly PM2.5 Trends



```
In [161... # Box plot for PM2.5 distribution per day of the week
plt.figure(figsize=(10, 6))
sns.barplot(data=df, x='day_of_week', y='pm2_5', palette='coolwarm')
plt.title('PM2.5 Distribution Per Day of the Week')
plt.xlabel('Day of the Week')
plt.ylabel('PM2.5 Levels')
plt.grid(True)
plt.show()
```

```
C:\Users\Aimmy\AppData\Local\Temp\ipykernel_30320\2316793127.py:3: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

```
sns.barplot(data=df, x='day_of_week', y='pm2_5', palette='coolwarm')
```





```
bars1 = plt.bar(index, station_stats['green_space'], bar_width, label='Green Space')
bars2 = plt.bar([p + bar_width for p in index], station_stats['pm2_5'], bar_width, label='PM2.5')

# Adding labels, title, and legend
plt.xlabel('Station')
plt.ylabel('Values')
plt.title('Green Space and PM2.5 Levels Per Station')
plt.xticks([p + bar_width / 2 for p in index], station_stats['station'], rotation=45)
plt.legend()

# Show the plot
plt.tight_layout()
plt.show()
```

#### Green Space and PM2.5 Levels Per Station



```
In [163... average_pm25_by_greenspace = df.groupby('green_space')['pm2_5'].mean().reset_index()
    average_pm25_by_greenspace = average_pm25_by_greenspace.sort_values('green_space')
```

```
# Create a line plot for the average PM2.5 Levels by green space
plt.figure(figsize=(10, 6))
sns.lineplot(x='green_space', y='pm2_5', data=average_pm25_by_greenspace, marker='o', color='blue')
plt.title('Average PM2.5 Levels by Green Space')
plt.xlabel('Green Space')
plt.ylabel('Average PM2.5 Level')
plt.grid(True) # Optional: Adds a grid for better readability
plt.show()
```





# We need to use these analysis

• Trend analysis

- Cyclicity analysis
- Seasonal analysis

```
In [184... # Selected features for heatmap correlation analysis
selected_cols = ['lat', 'lon','pm2_5','sea_level', 'hour','month','day_of_week', 'population', 'population_density', 'household',
```

## Heatmap with pearson method: Good for linear relationship



# Heatmap with spearman method: Good for non-linear relationship



1.00

## We use spearman method of correlation

- Because we are relying on rendom forest, XGBoost, Decision Tree!
- This is the non-parametric method!
- And we will compare performance for these 3 models (non-parametric method) to Linear models like Linear Regression, Ridge, Lasso Regression (Parametric method), and non-machine-learning method such as moving average to make sure that our assumption of non-parametric method is the best suited for PM2.5 prediction
- Additionally, spearman (non-linear relation) captures relationship better than pearson (Linear relation)

## 6. Feature selection

#### Choose the most salient X

- Rule of thumb: Good features MUST NOT BE correlated, i.e., independent
- Rule of thumb: Correlation is not causation; don't pick features using correlation only; it should make sense!
- Rule of thumb: For ML, less features are usually better (but NOT necessarily for DL)

### Specify the y

#### Split train / test

```
In [167... features = df[['population_density','factory_area','season_Hot Season', 'season_Rainy Season']]
    target = df[['pm2_5']

In [168... # Selecting X and y features
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.1, random_state=42)
In [169... X_train
```

| $\cap$ |   | + | Γ | 1 | 6 | 0 |  |
|--------|---|---|---|---|---|---|--|
| U      | и | L | L | Т | U | フ |  |

|        | population_density | factory_area | season_Hot Season | season_Rainy Season |
|--------|--------------------|--------------|-------------------|---------------------|
| 82890  | 3437.36            | 144736       | False             | True                |
| 16340  | 1452.45            | 4770457      | True              | False               |
| 126622 | 4542.29            | 631723       | False             | False               |
| 101661 | 9046.87            | 123059       | False             | True                |
| 30376  | 3437.36            | 144736       | False             | True                |
| •••    |                    | •••          |                   |                     |
| 110268 | 10275.79           | 297638       | False             | True                |
| 119879 | 10275.79           | 297638       | False             | False               |
| 103694 | 3437.36            | 144736       | False             | True                |
| 131932 | 3437.36            | 144736       | True              | False               |
| 121958 | 10275.79           | 297638       | False             | False               |

119284 rows × 4 columns

In [170... X\_test

| $\cap$ | + | [170 |
|--------|---|------|
| UU     | L | T/0  |

|        | population_density | factory_area | season_Hot Season | season_Rainy Season |
|--------|--------------------|--------------|-------------------|---------------------|
| 30811  | 10275.79           | 297638       | False             | True                |
| 24784  | 10275.79           | 297638       | False             | True                |
| 46354  | 9046.87            | 123059       | False             | True                |
| 48040  | 4542.29            | 631723       | False             | True                |
| 13770  | 4788.74            | 54185        | True              | False               |
| •••    |                    | ***          |                   |                     |
| 111203 | 4788.74            | 54185        | False             | False               |
| 54600  | 9046.87            | 123059       | False             | False               |
| 3377   | 3437.36            | 144736       | False             | False               |
| 72664  | 10275.79           | 297638       | True              | False               |
| 93206  | 4788.74            | 54185        | False             | True                |

13254 rows × 4 columns

| Ι | n |  | 1 | 7 | 1 |  |
|---|---|--|---|---|---|--|
|   |   |  |   |   |   |  |

Out[171... 82890 19.77 16340 22.66 126622 99.46 101661 43.06 30376 16.07 . . . 110268 550.57 119879 61.50 8.01 103694 131932 83.88 121958 213.60

y\_train

Name: pm2\_5, Length: 119284, dtype: float64

In [172... y\_test

```
92.66
Out[172...
          30811
          24784
                      90.74
          46354
                      61.78
                      92.88
          48040
          13770
                      39.16
                      . . .
          111203
                     192.50
          54600
                     110.26
                      88.48
          3377
          72664
                      25.59
          93206
                      32.59
          Name: pm2_5, Length: 13254, dtype: float64
```

In [173...

X\_train

Out[173...

|        | population_density | factory_area | season_Hot Season | season_Rainy Season |
|--------|--------------------|--------------|-------------------|---------------------|
| 82890  | 3437.36            | 144736       | False             | True                |
| 16340  | 1452.45            | 4770457      | True              | False               |
| 126622 | 4542.29            | 631723       | False             | False               |
| 101661 | 9046.87            | 123059       | False             | True                |
| 30376  | 3437.36            | 144736       | False             | True                |
| •••    |                    |              |                   |                     |
| 110268 | 10275.79           | 297638       | False             | True                |
| 119879 | 10275.79           | 297638       | False             | False               |
| 103694 | 3437.36            | 144736       | False             | True                |
| 131932 | 3437.36            | 144736       | True              | False               |
| 121958 | 10275.79           | 297638       | False             | False               |

119284 rows × 4 columns

In [174... X\_train.isna().sum()

```
Out[174...
          population density
          factory_area
          season_Hot Season
          season_Rainy Season
          dtype: int64
         X_test.isna().sum()
In [175...
Out[175...
          population_density
                                  0
          factory_area
          season_Hot Season
          season_Rainy Season
          dtype: int64
In [176...
          y_train.shape
Out[176...
          (119284,)
          y_train.isna().sum()
In [177...
          np.int64(0)
Out[177...
In [178...
          y_test.shape
Out[178...
          (13254,)
          y_test.isna().sum()
In [179...
          np.int64(0)
Out[179...
          Handling Missing Values After Spliting
```

```
In [180... # Drop missing values in y_train and y_test
    X_train = X_train[~y_train.isna()]
    y_train = y_train.dropna()

X_test = X_test[~y_test.isna()]
    y_test = y_test.dropna()
```

# 7. Modeling

## Modeling using non-parametric method (XGBoost, RandomForest, DecisionTree)

#### Scaling for XGBoost model

• We will use these scaled X features for XGBoost model only

```
In [181...
         # Try StandardScaler
          from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          X train scaled = X train.copy()
          X test scaled = X test.copy()
          X train scaled = scaler.fit transform(X train)
          X test scaled = scaler.transform(X test)
In [182...
         # Checking XGBoost Scaling
          pd.DataFrame(X train scaled).describe()
                                                       2
Out[182...
                            0
                                          1
                                                                     3
                1.192840e+05 1.192840e+05 1.192840e+05 1.192840e+05
          count
                  1.854926e-16 -1.346221e-17 1.191346e-18 5.833129e-17
          mean
                  1.000004e+00 1.000004e+00 1.000004e+00 1.000004e+00
            min -1.365095e+00 -6.180545e-01 -4.464621e-01 -9.178206e-01
                 -6.799969e-01 -5.742038e-01 -4.464621e-01 -9.178206e-01
            50% -2.986269e-01 -4.630527e-01 -4.464621e-01 -9.178206e-01
                  1.256143e+00 7.886486e-02 -4.464621e-01 1.089538e+00
           75%
                 1.680309e+00 2.384704e+00 2.239832e+00 1.089538e+00
```

```
In [183... # Import modules for modeling
    from sklearn.ensemble import RandomForestRegressor
    from xgboost import XGBRegressor
    from sklearn.tree import DecisionTreeRegressor
```

```
from sklearn.model_selection import GridSearchCV
        from sklearn.model selection import cross val score
       ModuleNotFoundError
                                                 Traceback (most recent call last)
       Cell In[183], line 3
             1 # Import modules for modeling
             2 from sklearn.ensemble import RandomForestRegressor
       ---> 3 from xgboost import XGBRegressor
             4 from sklearn.tree import DecisionTreeRegressor
             5 from sklearn.model_selection import GridSearchCV
       ModuleNotFoundError: No module named 'xgboost'
In [ ]: # Double-Check Time Splits (Data Leakage Check)
        print("Train Date Range:", X train.index.min(), "to", X train.index.max())
        print("Test Date Range:", X test.index.min(), "to", X test.index.max())
In [ ]: # Define the models
        models = {
             "RandomForest": RandomForestRegressor(random state=42),
            "XGBoost": XGBRegressor(objective="reg:squarederror", random state=42),
            "DecisionTree": DecisionTreeRegressor(random state=42)
        # Define hyperparameter grids
        param grids = {
            "RandomForest": {
                "n estimators": [1000, 1500, 2000],
                "max_depth": [25, 30, 35],
                "min samples split": [10, 15, 20]
            },
            "XGBoost": {
                "n estimators": [1000, 1500, 2000],
                 "learning_rate": [0.1, 0.01, 0.001],
                "max depth": [25, 30, 35],
                "subsample": [0.7, 0.9],
                "colsample_bytree": [0.7, 1],
            },
            "DecisionTree": {
                 "max_depth": [25, 30, 35],
                "min_samples_split": [10, 15, 20]
```

```
In [ ]: # Perform Cross-Validation and GridSearchCV
        from sklearn.metrics import mean squared error, r2 score
        from sklearn.model selection import train test split, cross val score
        best models = {}
        for model name, model in models.items():
            print(f"Training {model name}...")
            # Use scaled data for XGBoost, but original data for RF and DT
            X train used = X train scaled if model name == "XGBoost" else X train
            X test used = X test scaled if model name == "XGBoost" else X test
            # GridSearchCV
            grid search = GridSearchCV(model, param grids[model name], cv=5, scoring="neg mean squared error", n jobs=-1)
            grid search.fit(X train used, y train)
            # Best model
            best model = grid search.best estimator
            best models[model name] = best model
            # Cross-validation RMSE
            scores = cross val score(best model, X train used, y train, cv=5, scoring="neg mean squared error")
            mean cv rmse = np.sqrt(-scores.mean())
            # Cross-validation R<sup>2</sup> Score
            cv_r2_scores = cross_val_score(best_model, X_train_used, y_train, cv=5, scoring="r2")
            mean_cv_r2 = cv_r2_scores.mean()
            # Evaluate on test set
            y pred = best model.predict(X test used)
            test rmse = np.sqrt(mean squared error(y test, y pred))
            test_r2 = r2_score(y_test, y_pred) # Compute R2 score
            # Print RMSE & R<sup>2</sup> scores
            print(f"{model_name} Mean CV Score (RMSE): {mean_cv_rmse}")
            print(f"{model_name} Mean CV R2 Score: {mean_cv_r2}")
            print(f"{model name} Test RMSE: {test rmse}")
            print(f"{model name} Test R2 Score: {test r2}\n")
```

```
In [ ]: # # Perform Cross-Validation and GridSearchCV
# from sklearn.metrics import mean_squared_error
```

```
# from sklearn.model_selection import train_test_split
# best models = {}
# for model_name, model in models.items():
      print(f"Training {model name}...")
     # Use scaled data for XGBoost, but original data for RF and DT
     X_train_used = X_train_scaled if model_name == "XGBoost" else X_train
     X_test_used = X_test_scaled if model_name == "XGBoost" else X_test
      # GridSearchCV
     grid search = GridSearchCV(model, param grids[model name], cv=5, scoring="neg mean squared error", n jobs=-1)
     grid search.fit(X train used, y train)
      # Best model
      best model = grid search.best estimator
     best models[model name] = best model
      # Cross-validation
     scores = cross val score(best model, X train used, y train, cv=5, scoring="neq mean squared error")
     print(f"{model name} Mean CV Score (RMSE): {np.sqrt(-scores.mean())}")
#
      # Evaluate on test set
     y pred = best model.predict(X test used)
     test rmse = np.sqrt(mean squared error(y test, y pred))
     print(f"{model name} Test RMSE: {test rmse}\n")
```