Tutorium Hardware- und Systemgrundlagen

Gruppe 1

Raum F109 | Mittwoch, 11.30 Uhr

Mirko Bay

[mirko.bay@htwg-konstanz.de]

Gruppe 2

Raum F110 | Mittwoch, 11.30 Uhr

Michael Bernhardt

[michael.bernhardt@htwg-konstanz.de]

Zahlensysteme II

Dual-, Oktal-, Dezimal-, Hexadezimalsystem

Betrag + Vorzeichen Einer- / Zweierkomplement

IEEE-P 754-Floating-Point-Standard BCD-Zahl

Tutorium Hardware- & Systemgrundlagen Sommersemester 2015 Mirko Bay & Michael Bernhardt

Zahlensysteme II: Mögliche Aufgabentypen

Eine Zahl zur Basis 2 kann als "normale" Dualzahl, mit Betrag+Vorzeichen (B+VZ), als Einerkomplement (EK) und als Zweierkomplement (ZK) dargestellt werden:

Beispiel:
$$-(77)_{10} = -(0100\ 1101)_2 = (1100\ 1101)_{B+VZ} = (1011\ 0010)_{EK} = (1011\ 0011)_{ZK}$$

Dezimal
$$\rightarrow$$
 Dual $-(77)_{10} \rightarrow -(?)_{2}$

$$-(77)_{10} = -(64+8+4+1)_{10}$$
$$= -(0100 1101)_{2}$$

Dual → Betrag+Vorzeichen - $(0100\ 1101)_2$ → $(?)_{B+VZ}$

Bei Darstellung als Betrag+Vorzeichen wird ein Bit zusätzlich (das vorderste Bit) für das Vorzeichen benötigt:

$$-(0100\ 1101)_2 = (1100\ 1101)_{B+VZ}$$

Dual \rightarrow Einerkomplement - $(0100\ 1101)_2 \rightarrow (?)_{EK}$

Bei der Darstellung als Einerkomplement werden alle Ziffern der Dualzahl "herumgedreht", also aus 0 wird 1 und umgekehrt:

$$-(0100 1101)_{2}$$
 $(1011 0010)_{EK}$

Dual		EK
0000 = 0)	1000 = -7
0001 = 3	1	1001 = -6
0010 = 2	2	1010 = -5
0011 = 3	3	1011 = -4
0100 =	4	1100 = -3
0101 = 5	5	1101 = -2
0110 =	6	1110 = -1
0111 = '	7	1111 = -0

Einerkompl. \rightarrow Zweierkompl. (1011 0010)_{FK} \rightarrow (?)_{ZK}

Das Zweierkomplement baut auf dem Einerkomplement auf. Daher ist für die Ermittlung des ZK immer das EK notwendig!

Für das ZK muss zum EK noch eine (1), hinzu addiert werden:

Aufgabe 1: (-28)₁₀ als 16-Bit-Zahl im Einer- und Zweierkomplement!

Aufgabe 2: -(2⁶)₁₀ ins Zweierkomplement (Klausur SS 05)

Aufgabe 3: -(23)₁₂ in Zweierkomplementzahl mit 8 Stellen

(Klausur WS 06/07)

Erst Einerkomplement bilden (durch negieren), dann 1 addieren für Zweierkomplement!

Aufgabe 4:

Füllen Sie die Tabelle aus und geben Sie jeweils das Ergebnis der arithmetischen Operation in binärer Darstellung an. Darstellung mit 8 Bit.

(Testat WS 02/03)

Dezimal	Betrag + Vorzeichen	Einerkomplement	Zweierkomplement
- 71	$-(71)_{10} = (1100 \ 0111)_{B+VZ}$		$-(71)_{10} = (1011\ 1001)_{ZK}$
	$+(38)_{10} = (0010 \ 0110)_{B+VZ}$	$+(38)_{10} = (0010 \ 0110)_{EK}$	$+(38)_{10} = (0010 \ 0111)_{ZK}$
- 33	(1010 0001) _{B+VZ}	$= (1101 \ 1110)_{EK}$	$= (1110 \ 0000)_{ZK}$

Vorsicht! Addition in B+VZ nicht (wirklich) möglich! Am Besten Ergebnis aus Dezimal übertragen!

Aufgabe 5: $-|\sqrt{(40)_{16}}|$ als Zweierkomplement mit 8 Stellen

(Klausur SS 10)

$$(40)_{16} = 4 \cdot 16^{1} + 0 \cdot 16^{0}$$

$$= (64)_{10}$$

$$-|\sqrt{(64)_{10}}| = -(8)_{10}$$

$$- (8)_{10} = -(0000 \ 1000)_{2}$$

- $(0000\ 1000)_2 = (1111\ 0111)_{EK}$ $(1111\ 0111)_{EK} = (1111\ 1000)_{ZK}$ Erst Einerkomplement bilden (durch negieren), dann 1 addieren für Zweierkomplement!

Aufgabe 6:

Gegeben sie eine Menge Z von Oktalzahlen $Z = \{ 7, 24, 52 \}$.

- a) Welche Dezimalzahl K ergibt sich aus der Summe der drei Oktalzahlen?
- b) Dezimalzahl K aus a) als Zahl in Form Betrag + Vorzeichen mit 8 Bit
- c) Dezimalzahl aus a) als negative Zahl (-K) im Zweierkomplement mit 8 Bit (Testat SS 06)

a) b) c) $(7)_8 = 7 \cdot 8^0 = (7)_{10}$ $(24)_8 = 2 \cdot 8^1 + 4 \cdot 8^0 = (20)_{10}$ $(52)_8 = 5 \cdot 8^1 + 2 \cdot 8^0 = (42)_{10}$ $= (69)_{10}$ $(69)_{10} = (64 + 4 + 1)_{10}$ $= (0100 \ 0101)_2$ $= (0101 \ 0101)_{EK} = (1011 \ 1011)_{ZK}$ $= (0100 \ 0101)_{B+VZ}$

Aufgabe 7:

Wie lautet die dezimale Summe, wenn zur Zahl (1001 0110) $_{\rm ZK}$ die Zahl (63) $_{\rm 10}$ hinzu addiert wird?

(Testat SS 03)

Rückinterpretation von ZK: Erste Ziffer nimmt man negativ, die anderen werden hinzu addiert!

$$(1001\ 0110)_{ZK} = -2^7 + 2^4 + 2^2 + 2^1$$

$$= -128 + 16 + 4 + 2$$

$$= - (106)_{10}$$

$$(63)_{10} = (0011\ 1111)_2$$

$$+ (1001\ 0110)_{ZK}$$

$$(1101\ 0101)_{ZK}$$

$$- (106)_{10} + (63)_{10} = - (43)_{10}$$

Aufgabe 8:

Wie viele binäre Stellen braucht man mindestens, damit die Zahl $(64)_{10}$ in Zweierkomplement-Form darstellbar ist?

(Klausur WS 07/08)

 $(64)_{10} = (0100\ 0000)_2$ $(0100\ 0000)_2 = (0100\ 0000)_{ZK}$ => 8 Stellen, da das Vorzeichen mit beachtet werden muss

Aufgabe 9:

Wandeln Sie $-|\sqrt{(61)_8}|$ in eine Zweierkomplement-Zahl mit 8 Stellen um!

(Klausur WS 11/12)

$$(61)_8 = 6 \cdot 8^1 + 1 \cdot 8^0$$

$$= (49)_{10}$$

$$-|\sqrt{(49)_{10}}| = -(7)_{10}$$

$$- (7)_{10} = -(0000\ 0111)_2$$

-
$$(0000\ 0111)_2 = (1111\ 1000)_{EK}$$

 $(1111\ 1000)_{EK} = (1111\ 1001)_{ZK}$

Erst Einerkomplement bilden (durch negieren), dann 1 addieren für Zweierkomplement!

Tutorium Hardware- & Systemgrundlagen Sommersemester 2015 Mirko Bay & Michael Bernhardt

Aufgabe 10:

Wie lauten die größte positive (z_{max}) und die kleinste negative $(-z_{min})$ Dezimalzahl, die sich mit m Stellen in der Form Betrag + Vorzeichen darstellen lassen?

(Klausur SS 2010)

z.B.
$$m = 3$$
:
 $z_{max} = (011)_2 = 2^{(3-1)} - 1 = (3)_{10}$
 $z_{min} = (111)_2 = -2^{(3-1)} - 1 = (-3)_{10}$
 $z_{max} = 2^{(m-1)} - 1$
 $z_{min} = -2^{(m-1)} - 1$

Aufgabe 11:

In einem Rechnersystem müssen die beiden hexadezimalen Zahlen (45C,4)₁₆ und (1BD,F)₁₆ addiert werden. Zusätzlich muss dazu noch die Oktalzahl (37,2)₈ addiert werden. Geben Sie das Ergebnis der Addition der drei Zahlen als Hexadezimal und Zahl im Zweierkomplement an!

(Testat SS 06)

```
\begin{array}{ll} (45\text{C},4)_{16} & = (0100\ 0101\ 1100,\ 0100)_{ZK} \\ + (1\text{BD},F)_{16} & = (0001\ 1011\ 1101,\ 1111)_{ZK} \\ + (37,2)_8 & = (0000\ 0001\ 1111,\ 0100)_{ZK} \\ \hline & = (0110\ 0011\ 1001,\ 0111)_{ZK} \\ = (639,7)_{16} \end{array}
```