FLN2-4400

Density: 7.45 g/cm³

Material: Prealloyed Steel (0.85% Mo, 0.20% Mn, balance Fe) + mixed additions of 2% Regular Ni, 0.25%Graphite and 0.75% lubricant.

Treatment: Warm Die Compact, Sinter at 1120°C

Table - Strain and Stress Amplitudes vs. Reversals to Failure

Test #	Stress Amplitude	TRUE Stress Amplitude	Strain Amplitude	TRUE Strain Amplitude	Plastic Strain Amplitude	Elastic Strain Amplitude	Reversals to Fallure
	(MPa)	(MPa)	(%)	(%)	(%)	(%)	
8	451	453	0.536	0.534	0.276	0.259	784
9	455	458	0.528	0.527	0.266	0.261	832
5	453	455	0.516	0.515	0.255	0.26	806
7	438	440	0.438	0.437	0.186	0.251	1900
6	431	433	0.437	0.436	0.189	0.247	1460
4	413	415	0.421	0.421	0.184	0.237	2080
3	382	383	0.32	0.32	0.101	0.219	7600
2	388	389	0.317	0.316	0.094	0.222	5600
1	373	374	0.315	0.314	0.1	0.214	7200
17	342	342	0.259	0.259	0	0.259	15602
18	324	325	0.208	0.21	0	0.21	46700
16	314	314	0.204	0.204	0.024	0.18	70976
10	255	256	0.15	0.15	0.004	0.146	445252
13	258	258	0.149	0.149	0.002	0.148	686258
14	254	255	0.147	0.147	0.002	0.145	502314
12	217	217	0.124	0.124	0.001	0.124	*20000000
15	212	212	0.123	0.123	0.002	0.121	*20000000
11	208	208	0.12	0.12	0.001	0.119	*20000000

ND = Not Determined * = run out

True Cyclic Stress-Strain Curve

True Cyclic Strain, %

Constant amplitude Strain-Life Curve

Cycles to Failure

Cyclic Properties (see Row D)

Material Designation	Cyclic Yield Strength 0.2% offset K'(0.002) ^{n'} MPa (10 ³ psi)	Cyclic Strength Coefficient K' MPa (10 ³ psi)	Cyclic Strain Hardening Exponent n'	Cyclic Elastic Modulus E c GPa (10 ³ psi)	Fatigue Strength Coefficient or'; MPa (10 ³ psi)	Fatigue Strength Exponent b	Fatigue Ductility Coefficient	Fatigue Ductility Exponent c	Modulus E GPa (10 ³ psi)
Α	NPD	NPD	NPD	180 (26107)	2561 (371.4)	-0.136	NPD	NPD	ND
В	432 (62.7)	1299 (188.4)	0.177	ND	819(118.8)	-0.089	0.063	-0.5	175 (25.4)
С	NPD	NPD	NPD	180 (26107)	1610 (233.5)	-0.188	NPD	NPD	ND
D	455 (66.0)	1141	0.148	ND	928 (134.6)	-0.091	0.078	-0.5	179 (26.0)
E	NPD	NPD	NPD	180 (26107)	2225 (322.7)	-0.144	NPD	NPD	ND
F	483 (70.1)	776 (112.5)	0.074	ND	725 (105.2)	-0.042	1.110	-0.7	183 (26.5)
NPD = No Plastic Deformation Oyclic stress-strain curve: $\Delta \varepsilon / 2 = \Delta \sigma / 2E + (\Delta \sigma / 2K)^{3/6}$ ND = Not Determined Constant amplitude fatigue life curve: $\Delta \varepsilon / 2 = \sigma^* / E (2N_*)^b + \varepsilon^* / (2N_*)^b + \varepsilon^$									(2N,)°