Report : Big Data Assignment 1

Dataset

Source: https://www.kaggle.com/dansbecker/aer-credit-card-data

Description: A small credit card dataset for simple econometric analysis,

Content

card: Dummy variable, 1 if application for credit card accepted, 0 if not

• reports: Number of major derogatory reports

• age: Age n years plus twelfths of a year

income: Yearly income (divided by 10,000)

• owner: 1 if owns their home, 0 if rent

• selfempl: 1 if self employed, 0 if not.

• months: Months living at current address

Methods

Imputation methods used:

- 1. **1 Nearest Neighbour**: Finds the nearest neighbour and imputes the value with neighbour's value.
- 2. **K Nearest Neighbour** (KNN where k=7): find the nearest K (here K=7) neighbours and impute with average value of the K neighbours in case of numerical attribute. But, in case of categorical attribute impute with the **Mode** of class.
- 3. **Weighted KNN** here I have used distance weighted KNN where if have modified the calculation for categorical feature to incorporate its contributions as well.

Distance measure used:

1. **Euclidian Distance (numerical) :** The distance between two points defined as the square root of the sum of the squares of the differences between the corresponding coordinates of the points;

- Chi-squared Distance (numerical): The distance between two points defined as the half
 of sum of the squares of the sum between the corresponding coordinates of the points
 divided by difference between the corresponding coordinates.
- 3. **Hamming Distance (categorical):** The distance between two points defined as the sum of the absolute differences between the corresponding coordinates of the points;

Feature Scaling methods used:

- 1. **Z-score Scaling** : $z = (X \mu) / \sigma$ where z is the z-score, X is the value of the element, μ is the population mean, and σ is the standard deviation
- 2. **Min-Max Scaling:** y= (x-min)/(max-min) where min and max are the minimum and maximum values in X, where X is the set of observed values of x.

Accuracy measure:

1. **For Numerical Attributes**: R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

2. **For Categorical Attributes :** Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y true.

Tools and Library:

Programming Language : Python 3.7 **IDE :** Jupyter Labs/ Jupyter notebook

Libraries: Numpy, Pandas, Scikit learn, Scipy

Results

Accuracy output for unscaled features

			Col	umn	<u>s</u>				
			card	reports	age	income	owner	selfemp	months
5% Missing	K =1	Euclidian	0.651515	-0.701473	-1.677208	-1.458000	0.484848	0.878788	-1.852147
		Hamming	0.696970	-0.572790	-1.673214	-1.205211	0.439394	0.893939	-1.869624
		Chi Square	0.696970	-2.217071	-1.258416	-0.893644	0.484848	0.893939	-1.117754
	K=7	Euclidian	0.757576	-0.423414	-0.686513	-0.025474	0.515152	0.939394	-0.315987
		Hamming	0.757576	-0.221051	-0.584000	-0.036608	0.545455	0.939394	-0.322893
		Chi Square	0.712121	-0.465875	-0.502183	-0.060203	0.439394	0.939394	-0.228356
	Weighted	Euclidian	0.772727	-0.071062	-0.543245	-0.090693	0.560606	0.939394	-0.231012
		Hamming	0.772727	-0.053341	-0.573477	-0.075928	0.575758	0.939394	-0.206262
		Chi Square	0.727273	-0.445153	-0.922091	-0.258225	0.515152	0.924242	-0.425157
10% Missing	K=1	Euclidian	0.696970	-0.593057	-1.703559	-0.674203	0.553030	0.886364	-1.013810
		Hamming	0.727273	-0.376130	-1.756284	-0.457344	0.545455	0.893939	-0.992117
		Chi Square	0.689394	-1.643796	-1.375845	-0.587657	0.507576	0.893939	-0.993401
	K=7	Euclidian	0.757576	-0.319702	-0.597577	-0.159445	0.507576	0.946970	-0.332576
		Hamming	0.750000	-0.352500	-0.619180	-0.148756	0.507576	0.946970	-0.309511
		Chi Square	0.689394	-0.868941	-0.746573	-0.197682	0.454545	0.946970	-0.193802
	Weighted	Euclidian	0.742424	-0.030262	-0.650815	-0.095542	0.590909	0.946970	-0.141303
		Hamming	0.742424	-0.051500	-0.680965	-0.107458	0.560606	0.946970	-0.124621
		Chi Square	0.742424	-0.564115	-1.017960	-0.259990	0.522727	0.939394	-0.217987
20% Missing	K=1	Euclidian	0.651515	-0.921923	-0.847226	-0.976188	0.515152	0.901515	-1.886306
		Hamming	0.651515	-0.584130	-0.856760	-0.878566	0.500000	0.897727	-1.973947
		Chi Square	0.643939	-0.921923	-0.860392	-0.919987	0.518939	0.878788	-2.463650
	K=7	Euclidian	0.742424	-0.142255	-0.325531	-0.270511	0.526515	0.939394	-0.634215
		Hamming	0.761364	-0.131246	-0.335584	-0.266712	0.488636	0.939394	-0.587740
		Chi Square	0.734848	-0.285704	-0.297867	-0.263862	0.492424	0.939394	-0.550112
	Weighted	Euclidian	0.768939	-0.074496	-0.311341	-0.124576	0.564394	0.939394	-0.260506
		Hamming	0.765152	-0.069332	-0.314610	-0.134083	0.564394	0.939394	-0.250164

Chi Square 0.685606 -0.335159 -0.446534 -0.369830 0.511364 0.928030 -0.863873

-Aethooks

Accuracy output with Z-score Scaling

Columns

				card	reports	age	income	owner	selfemp	months		
3	5% Missing	K=1	Euclidian	0.696970	-1.845321	-2.789064	-0.911683	0.409091	0.909091	-1.579102		
			Hamming	0.696970	-2.231369	-2.387223	-0.939483	0.409091	0.909091	-1.432679		
			Chi Square	0.742424	-0.286828	-2.082352	-0.833151	0.636364	0.878788	-2.133153		
		K=7	Euclidian	0.727273	-0.878175	-0.586820	-0.315867	0.439394	0.939394	-0.333468		
			Hamming	0.742424	-0.949792	-0.528348	-0.263201	0.439394	0.939394	-0.316769		
			Chi Square	0.742424	-0.388702	-0.626321	-0.090323	0.575758	0.939394	-0.419762		
		Weighted	Euclidian	0.712121	-1.064645	-0.721001	-0.403442	0.500000	0.939394	-0.403825		
			Hamming	0.712121	-1.133276	-0.677886	-0.343997	0.515152	0.939394	-0.458769		
			Chi Square	0.757576	-0.344021	-0.728207	-0.284039	0.590909	0.939394	-0.561087		
	10% Missing	K=1	Euclidian	0.651515	-1.711586	-1.301599	-0.608955	0.507576	0.893939	-0.951710		
			Hamming	0.666667	-2.199671	-1.245872	-0.624314	0.553030	0.901515	-1.066737		
			Chi Square	0.674242	-1.325185	-1.388390	-0.501973	0.484848	0.886364	-1.961310		
		K=7	Euclidian	0.674242	-0.838223	-0.465398	-0.175896	0.537879	0.946970	-0.419783		
))			Hamming	0.674242	-0.851935	-0.505592	-0.186654	0.530303	0.946970	-0.352388		
			Chi Square	0.727273	-0.297162	-0.535503	-0.258734	0.469697	0.946970	-0.212413		
		Weighted	Euclidian	0.681818	-0.902449	-0.458162	-0.223252	0.553030	0.946970	-0.399022		
ر			Hamming	0.674242	-0.976475	-0.635089	-0.192826	0.553030	0.946970	-0.503911		
_			Chi Square	0.727273	-0.403517	-0.633503	-0.288940	0.469697	0.946970	-0.347306		
	20% Missing	K=1	Euclidian	0.666667	-1.078006	-0.565095	-0.949810	0.511364	0.901515	-1.722505		
			Hamming	0.647727	-1.331933	-0.663667	-0.893368	0.515152	0.897727	-1.916606		
			Chi Square	0.625000	-0.803113	-0.978113	-0.473771	0.522727	0.863636	-1.759033		
		K=7	Euclidian	0.689394	-0.446333	-0.202359	-0.236532	0.500000	0.939394	-0.551791		
			Hamming	0.678030	-0.425800	-0.165121	-0.233559	0.473485	0.939394	-0.563870		
			Chi Square	0.738636	-0.090429	-0.234336	-0.161968	0.488636	0.939394	-0.290337		

Nethools

Accuracy using Min Max Scaling

Columns

				card	reports	age	income	owner	selfemp	months
	5% Missing	K=1	Euclidian	0.681818	-1.616551	-1.670180	-1.275929	0.469697	0.909091	-1.149999
			Hamming	0.666667	-2.102686	-1.716083	-1.338062	0.469697	0.909091	-0.970179
			Chi Square	0.696970	-1.759532	-1.754554	-1.766074	0.530303	0.924242	-0.908887
		K=7	Euclidian	0.696970	-0.837568	-0.414757	-0.232329	0.515152	0.939394	-0.307345
			Hamming	0.712121	-1.003332	-0.387350	-0.217529	0.515152	0.939394	-0.257814
			Chi Square	0.712121	-0.807122	-0.436045	-0.190086	0.484848	0.939394	-0.299000
		Weighted	Euclidian	0.712121	-0.959411	-0.579451	-0.320996	0.484848	0.924242	-0.313594
			Hamming	0.712121	-1.020607	-0.623153	-0.306009	0.469697	0.924242	-0.380142
			Chi Square	0.696970	-1.002305	-0.535927	-0.265148	0.484848	0.939394	-0.321282
	10% Missing	K=1	Euclidian	0.674242	-1.542112	-1.320322	-0.743742	0.545455	0.886364	-0.957064
			Hamming	0.674242	-1.623459	-1.239395	-0.686261	0.522727	0.893939	-1.047817
			Chi Square	0.689394	-1.474322	-1.412463	-0.702016	0.537879	0.878788	-0.957433
		K=7	Euclidian	0.704545	-0.528020	-0.547506	-0.198818	0.560606	0.946970	-0.377037
			Hamming	0.689394	-0.612773	-0.512321	-0.213056	0.583333	0.946970	-0.355359
			Chi Square	0.704545	-0.503469	-0.579411	-0.200880	0.545455	0.946970	-0.375768
)		Weighted	Euclidian	0.674242	-0.632104	-0.546114	-0.211440	0.560606	0.939394	-0.387861
•			Hamming	0.666667	-0.708299	-0.558968	-0.197302	0.560606	0.939394	-0.481031
			Chi Square	0.674242	-0.512251	-0.574895	-0.243186	0.568182	0.946970	-0.393418
	20% Missing	K=1	Euclidian	0.696970	-1.210794	-0.559600	-0.979430	0.530303	0.878788	-1.788611
			Hamming	0.693182	-1.415799	-0.659350	-0.921369	0.496212	0.882576	-1.863247
			Chi Square	0.708333	-1.292330	-0.612116	-1.329382	0.534091	0.863636	-1.955068
		K=7	Euclidian	0.731061	-0.537302	-0.248798	-0.311168	0.537879	0.939394	-0.576034
			Hamming	0.734848	-0.521866	-0.225425	-0.311445	0.522727	0.939394	-0.573689
			Chi Square	0.723485	-0.502668	-0.239997	-0.285488	0.511364	0.939394	-0.578843
		Weighted	Euclidian	0.742424	-0.560182	-0.292027	-0.332229	0.556818	0.939394	-0.640154
			Hamming	0.731061	-0.554777	-0.283570	-0.361580	0.503788	0.935606	-0.717313
			Chi Square	0.731061	-0.574812	-0.248218	-0.348957	0.507576	0.931818	-0.743424

Mother

Observation/Conclusions

- Weighted KNN tends to give more accuracy as compared to KNN.
- When we apply scaling accuracy increases for each feature.