776 Computer Vision

Jan-Michael Frahm, Enrique Dunn Spring 2013

SIFT-detector

Problem: want to detect features at different scales (sizes) and with different orientations!

SIFT-detector

Scale and image-plane-rotation invariant feature descriptor
 [Lowe 2004]

-Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT-detector

• Empirically found to perform very good [Mikolajczyk

2003]

Scale = 2.5Rotation = 45^0

Scale invariance

• Difference-of-Gaussian with constant ratio of scales is a close approximation to Lindeberg's scale-normalized Laplacian [Lindeberg 1998]

Scale invariance

• Difference-of-Gaussian with constant ratio of scales is a close approximation to Lindeberg's scale-normalized Laplacian [Lindeberg 1998]

Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for sub-pixel and subscale interpolation (Brown & Lowe, 2002)

• Ti
$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

• Offset of extremum (use finite different $\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$ ves):

Orientation normalization

 Histogram of local gradient directions computed at selected scale

 Assign principal orientation at peak of smoothed histogram

 Each key specifies stable 2D coordinates (x, y, scale, orientatio

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

- (a) 233x189 image
- (b) 832 DOG extrema

MINO HILOUHOIG

ng

curvatures

SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

Sift feature detector

Goal

[0, 0, 1, 0, 1, 1, 0, 1, Binary Descriptor

BRIEF

Binary Robust Independent Elementary Features

Calonder et al. ECCV 2010

Feature Description

BRIEF: Method

Descriptor 011010...

BRIEF: Sampling

Endpoints from 2D Gaussian

BRIEF: Descriptor

BRIEF: Descriptor

- 128, 256, or 512 bits
 16, 32, or 64 bytes
- Hamming distance matching

BRIEF: Summary

- Pros
 - Highly efficient
- Cons
 - No scale invariance
 - No rotation invariance
 - Sensitive to noise

ORB

An Efficient Alternative to SIFT or SURF

Rublee et at. ICCV 2011

Limitations of BRIEF

No rotation invariance

ORB: Method

Descriptor 011010...

ORB: Gradient Alignment

ORB: Rotation Invariance

Feature Direction

Intensity Centroid

ORB: Descriptor

Candidate Arrangement

Learned Arrangement

Low Endpoint Correlation

High

ORB: Summary

Pros

- Efficient
- Rotation invariance

Cons

- No scale invariance
- Sensitive to noise

BRISK

Binary Robust Invariant Scalable Keypoints

Leutenegger et al. ICCV 2011

Limitations of BRIEF

- No rotation invariance
- No scale invariance
- Sensitive to noise

BRISK: Method

Descriptor 011010...

BRISK: Rotation Invariance

Long-distance comparisons

Gradient direction

BRISK: Scale Invariance

maximum

BRISK: Descriptor

2D Gaussian around each feature

Robust to noise

Centers: **BLUE** Gaussian: **RED**

BRISK: Descriptor

512 Comparisons 64 bytes

Avoid shortdistance comparisons

Centers: **BLUE** Gaussian: **RED**

BRISK: Summary

Pros

- Efficient
- Rotation invariance
- Scale invariance
- Robust to noise

Summary

BRIEF

• Efficient

ORB

- Efficient
- Rotation

BRISK

- Efficient
- Rotation
- Scale
- Noise

Results: BRIEF

slide: J. Heinly

Results: BRIEF

37

Results: ORB

Results: BRISK

Results: BRISK

Results

Many more tests…

Key Observation: Results are comparable to traditional feature descriptors.

Efficiency

Normalized Time \	SURF	SIFT	BRIEF	ORB	BRISK
*	1.0	19.0	0.027	0.070	0.087
Speedup→			37.2	14.2	11.5

Summary

Efficient Binary Descriptors

Future Work

- Improved robustness
 - Rotation
 - o Scale
 - o Noise
- Coupling with detector

