Chapter 7

Ensemble Classifiers

August 11, 2017

Learning with ensembles

- Our goal is to combined multiple classifiers
- Mixture of experts, e.g. 10 experts
- Predictions more accurate and robust
- Provide an intuition why this might work
- Simplest approach: majority voting

Majority voting

- Majority voting refers to binary setting
- Can easily generalize to multi-class: plurality voting
- Select class label that receives the most votes (mode)

Combining predictions: options

- Train m classifiers C_1, \ldots, C_m
- Build ensemble using different classification algorithms (e.g. SVM, logistic regression, etc.)
- Use the same algorithm but fit different subsets of the training set (e.g. random forest)

General approach

Combining predictions via majority voting

We have predictions of individual classifiers C_j and need to select the final class label \hat{y}

$$\hat{y} = mode\{C_1(\mathbf{x}), C_2(\mathbf{x}), \dots, C_m(\mathbf{x})\}$$

For example, in a binary classification task where $class_1 = -1$ and $class_2 = +1$, we can write the majority vote prediction as follows:

$$C(\mathbf{x}) = sign \left[\sum_{j}^{m} C_j(\mathbf{x}) \right] = \begin{cases} 1 & \text{if } \sum_{j} C_j(\mathbf{x}) \geq 0 \\ -1 & \text{otherwise} \end{cases}$$

Intuition why ensembles can work better

Assume that all n base classifiers have the same error rate ϵ . We can express the probability of an error of an ensemble can be expressed as a probability mass function of a binomial distribution:

$$P(y \ge k) = \sum_{k}^{n} {n \choose k} \epsilon^{k} (1 - \epsilon)^{n-k} = \epsilon_{\text{ensemble}}$$

Here, $\binom{n}{k}$ is the binomial coefficient n choose k. In other words, we compute the probability that the prediction of the ensemble is wrong.

Example

Imagine we have 11 base classifiers (n=11) with an error rate of 0.25 ($\epsilon=0.25$):

$$P(y \ge k) = \sum_{k=6}^{11} {11 \choose k} 0.25^k (1 - 0.25)^{11-k} = 0.034$$

So the error rate of the ensemble of n=11 classifiers is much lower than the error rate of the individual classifiers.

Same reasoning applied to a wider range of error rates

Voting classifier in scikit-learn

- Simply instantiate several classifiers
- Make a list
- Pass to sklearn.ensemble.VotingClassifier(...)
- ◆ API link

```
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)]
ens_clf = VotingClassifier(estimators)
ens_clf = eclf1.fit(X, y)
```

Boostrap aggregation (bagging)

- We used the entire training set for the majority vote classifier
- Here we draw **bootstrap samples**
- In statistics, bootstrapping is any test or metric that relies on random sampling with replacement.
- Hypothesis testing: bootstrapping often used as an alternative to statistical inference based on the assumption of a parametric model when that assumption is in doubt
- The basic idea of bootstrapping is that inference about a population from sample data, can be modelled by resampling with replacement the sample data and performing inference about a sample from resampled data.

Bagging

Boostrapping example

Sample indices	Bagging round 1	Bagging round 2	
1	2	7	
2	2	3	
3	1	2	
4	3	1	
5	7	1	
6	2	7	
7	4	7	
	c_1	, C ₂	c_m

- Seven training examples
- Sample randomly with replacement
- ullet Use each boostrap sample to train a classifier C_j
- ullet C_j is typically a decision tree
- Random Forests: also use random feature subsets

Bagging in scikit-learn

- Instantiate a decision tree classifier
- Make a bagging classifier with decision trees
- Check that the accuracy is higher for the bagging classifier

Boosting

- Basic idea: start with weak learners that have only a slight performance advantage over random guessing (e.g. a decision tree stump) and try to boost their performance by focusing on training samples that are hard to classify
- Very simple base classifiers learn from misclassified training examples
- The original boosting algorithm was formulated by Robert Schapire in 1990
- It was later refined into AdaBoost
- AdaBoost (short for Adaptive Boosting) is the most common implementation of boosting

Original boosting algorithm

- **①** Draw a random subset of training samples d_1 without replacement from the training set D to train a weak learner C_1
- ② Draw second random training subset d_2 without replacement from the training set and add 50 percent of the samples that were previously misclassified to train a weak learner C_2
- § Find the training samples d_3 in the training set D on which C_1 and C_2 disagree to train a third weak learner C_3
- **①** Combine the weak learners C_1 , C_2 , and C_3 via majority voting

AdaBoost

- In contrast, AdaBoost uses the complete training set to train the weak learners
- Training samples are reweighted in each iteration to build a strong classifier
- End goal is to build a strong classifier that learns from the mistakes of the previous weak learners in the ensemble

AdaBoost algorithm

- **①** Set weight vector **w** to uniform weights where $\sum_i w_i = 1$.
- ② For j in m boosting rounds, do the following:
 - Train a weighted weak learner: $C_j = train(\mathbf{X}, \mathbf{y}, \mathbf{w})$.
 - **2** Predict class labels: $\hat{y} = predict(C_j, \mathbf{X})$.
 - **3** Compute the weighted error rate: $\epsilon = \mathbf{w} \cdot (\hat{\mathbf{y}} \neq \mathbf{y})$.
 - **1** Compute the coefficient α_j : $\alpha_j = 0.5 \log \frac{1-\epsilon}{\epsilon}$.
 - **3** Update the weights: $\mathbf{w} := \mathbf{w} \times \exp\left(-\alpha_j \times \hat{\mathbf{y}} \times \mathbf{y}\right)$.
 - **6** Normalize weights to sum to 1: $\mathbf{w} := \mathbf{w} / \sum_{i} w_{i}$.
- Ompute the final prediction:

$$\hat{\mathbf{y}} = (\sum_{j=1}^{m} (\alpha_j \times predict(C_j, \mathbf{X})) > 0).$$

Notes: For clarity, we will denote element-wise multiplication by the cross symbol (\times) and the dot product between two vectors by a dot symbol (\cdot), respectively. Note that the expression ($\hat{\mathbf{y}} == \mathbf{y}$) in step 5 refers to a vector of 1s and 0s, where a 1 is assigned if the prediction is incorrect and 0 is assigned otherwise.