

Gasphasenoxidationskatalysator mit definierter Vanadiumoxid-Teilchengröße-
verteilung

Beschreibung

5

Die Erfindung betrifft einen Titandioxid und Vanadiumoxid umfassenden Gasphasen-
oxidationskatalysator mit definierter Vanadiumoxid-Teilchengrößeverteilung, ein Ver-
fahren zu seiner Herstellung, sowie die Verwendung des Katalysators zur Herstellung
von Phthalsäureanhydrid aus o-Xylool, Naphthalin oder Gemischen davon.

10

Eine Vielzahl von Carbonsäuren und/oder Carbonsäureanhydriden wird technisch
durch die katalytische Gasphasenoxidation von aromatischen Kohlenwasserstoffen,
wie Benzol, den Xylolen, Naphthalin, Toluol oder Durol, in Festbettreaktoren herge-
stellt. Man kann auf diese Weise z. B. Benzoesäure, Maleinsäureanhydrid, Phthalsäu-
reanhydrid, Isophthalsäure, Terephthalsäure oder Pyromellithsäureanhydrid erhalten.
Im Allgemeinen leitet man ein Gemisch aus einem sauerstoffhaltigen Gas und dem zu
oxidierenden Ausgangsmaterial durch Rohre, in denen sich eine Schüttung eines Kata-
lysators befindet. Zur Temperaturregelung sind die Rohre von einem Wärmeträgerme-
dium, beispielsweise einer Salzschmelze, umgeben.

15

Als Katalysatoren haben sich für diese Oxidationsreaktionen so genannte Schalenkata-
lysatoren bewährt, bei denen die katalytisch aktive Masse schalenförmig auf einem
inerten Trägermaterial, wie Steatit aufgebracht ist. Als katalytisch aktiver Bestandteil
der katalytisch aktiven Masse dieser Schalenkatalysatoren dient im allgemeinen neben
20 Titandioxid Vanadiumpentoxid. Des weiteren können in der katalytisch aktiven Masse
in geringen Mengen eine Vielzahl anderer oxidischer Verbindungen enthalten sein, die
als Promotoren die Aktivität und Selektivität des Katalysators beeinflussen.

25

Zur Herstellung derartiger Schalenkatalysatoren wird eine wässrige Suspension der
Aktivmassenbestandteile und/oder deren Vorläuferverbindungen auf das Trägermateri-
al bei erhöhter Temperatur aufgesprühlt, bis der gewünschte Aktivmassenanteil am
Katalysatorgesamtgewicht erreicht ist.

30

Die DE-A 2550686 beschreibt ein Verfahren, bei dem eine wässrige Lösung, die Titan-
tetrachlorid und ein Vanadium(IV)-salz enthält, auf einen Träger aufgebracht wird.

35

Bei der in der DE-A 1442590 veranschaulichten Herstellung wird zu einer Lösung von
Vanadyloxalat, Formamid und Wasser feinteiliges Titandioxid in der Anatas-
Modifikation gegeben. Die erhaltene Aufschlämmung wird auf inerte Katalysatorträger
40 aufgebracht.

45

Die WO 00/12214 beschreibt ein Herstellungsverfahren, bei dem ein Gemisch aus Ti-
tandioxid, Vanadyloxalat, organischem Binder und gegebenenfalls Promotoren durch
Aufsprühen in der Dragiertrommel, Beschichtung in einer Wirbelschicht oder Pulverbe-
schichtung schalenförmig in zwei konzentrischen Schichten auf inerte Trägerringe auf-
gebracht wird.

- Die EP-A 539878 veranschaulicht die Herstellung von Katalysatoren zur Herstellung von Phthalsäureanhydrid in der Gasphase. Ammoniummetavanadat wird in wässriger Oxalsäurelösung gelöst und gemeinsam mit Promotoren geführt. Anschließend erfolgt 5 die Zugabe von TiO_2 , das aus Titansulfat nach dem Sulfat-Verfahren hergestellt ist. Die erhaltene Suspension wird homogenisiert und bei erhöhter Temperatur auf Katalysatorträger aufgesprührt.
- 10 Gemäß der DE-A 2106796 und der DE-A 19633757 wird eine wässrige Suspension von Anatas und Titandioxid-Hydrat, V_2O_5 und einer organischen Binderkomponente auf die Träger aufgebracht.
- 15 Die bekannten Herstellungsverfahren lassen sich hinsichtlich der verwendeten Vanadi umquelle in zwei Klassen unterteilen: In einem Fall wird als Vanadiumquelle eine lösliche Vanadium(IV)-Verbindung, wie Vanadyloxalat, verwendet. Die Reduktion zum Vanadium(IV) erfolgt mit organischen Reduktionsmitteln, wie Oxalsäure. Im anderen Fall werden unlösliche Vanadium(V)-verbindungen wie V_2O_5 zur wässrigen Suspension gegeben. Da hier das Erfordernis des Reduktionsmittels entfällt, sind die Kosten für die Einsatzstoffe geringer. Nachteilig ist allerdings, dass die V_2O_5 -Teilchen beim Beschich- 20 tungsvorgang in einer Wirbelschicht zur Entmischung neigen und nicht vollständig auf den zu beschichtenden Träger gelangen, sondern teilweise z. B. mit der Prozessluft entweichen oder sich als Belag an der Beschichtungsapparatur absetzen. Um den Verlust auszugleichen, muss ein Überschuss an V_2O_5 verwendet werden. Es ist wün- schenswert, den erforderlichen Überschuss so gering wie möglich zu halten.
- 25 Der Erfindung liegt die Aufgabe zu Grunde, ein wirtschaftliches Verfahren zur Herstellung von Titandioxid und Vanadiumoxid enthaltenden Gasphasenoxidationskatalysatoren und die danach erhältlichen Katalysatoren bereitzustellen.
- 30 Es wurde nun gefunden, dass die Effizienz der Beschichtung stark von der Teilchengrößenverteilung des in der Beschichtungssuspension suspendierten V_2O_5 abhängt.
- 35 Die Erfindung betrifft einen Katalysator für Gasphasenoxidationen, der einen inerten Träger und eine darauf aufgebrachte katalytisch aktive Masse umfasst, die 1 bis 40 Gew.-% Vanadiumoxid, berechnet als V_2O_5 , und 60 bis 99 Gew.-% Titandioxid, be- rechnet als TiO_2 , enthält, und durch Aufbringen einer Suspension von TiO_2 - und V_2O_5 - 40 Teilchen auf den Träger erhältlich ist, worin wenigstens 90 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 20 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 - Teilchen einen Durchmesser von 30 μm oder weniger aufweisen.
- 45 Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines Katalysators für Gasphasenoxidationen, bei dem man auf einen fluidisierten inerten Träger eine Sus- pension von TiO_2 - und V_2O_5 -Teilchen aufbringt, worin wenigstens 90 Vol.-% der V_2O_5 - Teilchen einen Durchmesser von 20 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 30 μm oder weniger aufweisen.

- Vorzugsweise weisen wenigstens 90 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 15 µm oder weniger und wenigstens 95 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 20 µm oder weniger auf.
- 5 In besonders bevorzugten Ausführungsformen weisen wenigstens 60 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 4 µm oder weniger auf, wenigstens 80 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 10 µm oder weniger, wenigstens 90 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 15 µm oder weniger und wenigstens 95 Vol.-% der V₂O₅-Teilchen einen Durchmesser von 20 µm oder weniger auf.
- 10 Vorzugsweise weisen wenigstens 50 Vol.-% der V₂O₅-Teilchen einen Durchmesser von mehr als 2 µm auf. Der volumenbezogene D₅₀-Wert liegt vorzugsweise im Bereich von 2,0 bis 2,5 µm.
- 15 Die volumenbezogene Teilchengrößenverteilung wird für die Zwecke der vorliegenden Anmeldung geeigneterweise mittels Laserbeugung und Auswertung nach der Fraunhofer-Methode bestimmt. Bei dieser Methode wird parallel ausgerichtetes Laserlicht an den Teilchen gebeugt. Jedes Teilchen erzeugt ein für seine Größe charakteristisches Beugungsbild. Das Beugungsspektrum wird mit Detektoren erfasst und mit einem Mikrocomputer die Korngrößenverteilung als Volumenverteilung berechnet.
- 20 Vanadiumoxide geeigneter Teilchengrößenverteilung lassen sich durch ausreichend lange Mahlung in geeigneten Mühlen herstellen. Es eignen sich z. B. Prallmühlen, Wälzmühlen, Schwingmühlen, Mahlkörpermühlen oder Sturzmühlen. Mahlkörpermühlen sind bevorzugt. Sie bestehen aus einem horizontal gelagerten zylindrischen Arbeitsraum, der um einen festen Drehpunkt rotiert. Der Arbeitsraum ist mit Mahlkörpern in der Regel unterschiedlicher Größe gefüllt. Das Mahlgut befindet sich im Lückenvolumen der Mahlkörper. Als Mahlkörper werden verschleißfeste geschmiedete oder gegossene Stahlkugeln, Stangen bzw. Stangenabschnitte verwendet. In Abhängigkeit von der Drehzahl der Mühle werden sich bestimmte Bewegungsformen der Mahlkörper und damit unterschiedliche Beanspruchungsarten des Mahlgutes wie Reibung, Schlag, Prall und Druck einstellen, wodurch die größeren Teilchen des Mahlguts zerteilt werden.
- 25 30 35 40 Neben den fakultativen Zusätzen Cäsium und Phosphor können im Prinzip in der katalytisch aktiven Masse in geringen Mengen eine Vielzahl anderer oxidischer Verbindungen enthalten sein, die als Promotoren die Aktivität und Selektivität des Katalysators beeinflussen, beispielsweise indem sie seine Aktivität absenken oder erhöhen. Als solche Promotoren seien beispielhaft die Alkalimetallocide, insbesondere außer dem

- genannten Cäslumoxid, Lithium-, Kalium- und Rubidiumoxid, Thallium(I)oxid, Aluminiumoxid, Zirkoniumoxid, Eisenoxid, Nickeloxid, Kobaltoxid, Manganoxid, Zinnoxid, Silberoxid, Kupferoxid, Chromoxid, Molybdänoxid, Wolframoxid, Iridiumoxid, Tantaloxid, Nioboxid, Arsenoxid, Antimonoxid, Ceroxid genannt. In der Regel wird aus dieser Gruppe Cäsium als Promotor verwendet.

Ferner kommen von den genannten Promotoren noch bevorzugt als Zusätze die Oxide von Niob und Wolfram in Mengen von 0,01 bis 0,50 Gew.-%, bezogen auf die katalytisch wirksame Masse in Betracht. Als die Aktivität erhöhenden aber die Selektivität verminderten Zusatz kommen vor allem oxidische Phosphorverbindungen insbesondere Phosphorpentoxid in Betracht.

Das eingesetzte Titandioxid besteht vorteilhaft aus einem Gemisch eines TiO_2 mit einer BET-Oberfläche von 5 bis 15 m^2/g und eines TiO_2 mit einer BET-Oberfläche von 15 bis 50 m^2/g . Man kann auch ein einzelnes Titandioxid mit einer BET-Oberfläche von 5 bis 50 m²/g, vorzugsweise 13 bis 28 m²/g verwenden.

Als inertes Trägermaterial können praktisch alle Trägermaterialien des Standes der Technik, wie sie vorteilhaft bei der Herstellung von Schalenkatalysatoren für die Oxidation aromatischer Kohlenwasserstoffe zu Aldehyden, Carbonsäuren und/oder Carbonsäureanhydriden eingesetzt werden, Verwendung finden, beispielsweise Quarz (SiO_2), Porzellan, Magnesiumoxid, Zinnoxid, Siliciumcarbid, Rutil, Tonerde (Al_2O_3), Aluminiumsilikat, Steatit (Magnesiumsilikat), Zirkoniumsilikat, Cersilikat oder Mischungen dieser Trägermaterialien. Das Trägermaterial ist in der Regel nicht-porös. Der Ausdruck "nicht-porös" ist dabei im Sinne von "bis auf technisch unwirksame Mengen an Poren nicht-porös" zu verstehen, da technisch unvermeidlich eine geringe Anzahl Poren im Trägermaterial, das idealerweise keine Poren enthalten sollte, vorhanden sein können. Als vorteilhafte Trägermaterialien sind insbesondere Steatit und Siliciumcarbid hervzuheben. Die Form des Trägermaterials ist für die erfindungsgemäßen Prækatalysatoren und Schalenkatalysatoren im Allgemeinen nicht kritisch. Beispielsweise können Katalysatorträger in Form von Kugeln, Ringen, Tabletten, Spiralen, Röhren, Extrudaten oder Splitt verwendet werden. Die Dimensionen dieser Katalysatorträger entsprechen denen üblicherweise zur Herstellung von Schalenkatalysatoren für die Gasphasenpartialoxidation von aromatischen Kohlenwasserstoffen verwendeten Katalysatorträgern. Bevorzugt wird Steatit in Form von Kugeln mit einem Durchmesser von 3 bis 6 mm oder von Ringen mit einem äußeren Durchmesser von 5 bis 9 mm und einer Länge von 3 bis 8 mm und einer Wandstärke von 1 bis 2 mm verwendet.

Beim erfindungsgemäßen Verfahren erfolgt das Aufbringen der Schicht(en) des Schalenkatalysators durch Aufsprühen einer Suspension von TiO_2 und V_2O_5 , die gegebenenfalls Quellen der oben genannten Promotorelemente enthält, auf den fluidisierten Träger. Vor der Beschichtung wird die Suspension vorzugsweise ausreichend lange, z. B. 2 bis 30 Stunden, insbesondere 12 bis 25 Stunden, gerührt, um Agglomerate der suspendierten Feststoffe aufzubrechen und eine homogene Suspension zu erhalten. Die Suspension hat typischerweise einen Feststoffgehalt von 20 bis 50 Gew.-%. Das Suspensionsmedium ist im Allgemeinen wässrig, z. B. Wasser selbst oder ein wässri-

ges Gemisch mit einem wassermischbaren organischen Lösungsmittel, wie Methanol, Ethanol, Isopropanol, Formamid und dergleichen.

In der Regel werden der Suspension organische Binder, bevorzugt Copolymeren, vor-
5 teilhaft in Form einer wässrigen Dispersion, von Vinylacetat/Vinylaurat, Vinylace-
tat/Acrylat, Styrol/Acrylat sowie Vinylacetat/Ethylen zugesetzt. Die Binder sind als
wässrige Dispersionen handelsüblich, mit einem Feststoffgehalt von z. B. 35 bis 65
Gew.-%. Die eingesetzte Menge solcher Binderdispersionen beträgt im Allgemeinen 2
bis 45 Gew.-%, vorzugsweise 5 bis 35 Gew.-%, besonders bevorzugt 7 bis 20 Gew.-%,
10 bezogen auf das Gewicht der Suspension.

Der Träger wird in einer Wirbelschicht- bzw. Fließbettapparatur in einem aufsteigenden
Gasstrom, insbesondere Luft, fluidisiert. Die Apparate bestehen meist aus einem koni-
schen oder kugelförmigen Behälter, bei dem das fluidisierende Gas von unten oder von
15 oben über ein Tauchrohr eingeführt wird. Die Suspension wird über Düsen von oben,
seitlich oder von unten in die Wirbelschicht eingesprühlt. Vorteilhaft ist der Einsatz ei-
nes mittig bzw. konzentrisch um das Tauchrohr angeordneten Steigrohrs. Innerhalb
des Steigrohrs herrscht eine höhere Gasgeschwindigkeit, die die Trägerpartikel nach
oben transportiert. Im äußeren Ring liegt die Gasgeschwindigkeit nur wenig oberhalb
20 der Lockerungsgeschwindigkeit. So werden die Partikel kreisförmig vertikal bewegt.
Eine geeignete Fließbettvorrichtung ist z. B. in der DE-A 4006935 beschrieben.

Bei der Beschichtung des Katalysatorträgers mit der katalytisch aktiven Masse werden
im Allgemeinen Beschichtungstemperaturen von 20 bis 500 °C angewandt, wobei die
25 Beschichtung unter Atmosphärendruck oder unter reduziertem Druck erfolgen kann. Im
Allgemeinen erfolgt die Beschichtung bei 0 °C bis 200 °C, vorzugsweise bei 20 bis 150
°C, insbesondere bei 60 bis 120 °C durchgeführt.

Die katalytisch aktive Masse kann auch in zwei oder mehreren Schichten aufgebracht
30 sein, wobei z. B. die innere Schicht oder die innere Schichten einen Antimonoxidegehalt
von bis zu 15 Gew.-% und die äußere Schicht einen um 50 bis 100% verringerten An-
timonoxidegehalt aufweisen. Dabei ist in der Regel die innere Schicht des Katalysators
phosphorhaltig und die äußere Schicht phosphorarm oder phosphorfrei.
35 Die Schichtdicke der katalytisch aktiven Masse beträgt in der Regel 0,02 bis 0,2 mm,
vorzugsweise 0,05 bis 0,15 mm. Der Aktivmasseanteil am Katalysator beträgt übli-
cherweise 5 bis 25 Gew.-%, meist 7 bis 15 Gew.-%.

Durch thermische Behandlung des so erhaltenen Prækatalysators bei Temperaturen
40 über 200 bis 500 °C entweicht das Bindemittel durch thermische Zersetzung und/oder
Verbrennung aus der aufgetragenen Schicht. Vorzugsweise erfolgt die thermische Be-
handlung *in situ* im Gasphasenoxidationsreaktor.

45 Die erfindungsgemäßen Katalysatoren eignen sich generell zur Gasphasenoxidation
aromatischer C₆- bis C₁₀-Kohlenwasserstoffe, wie Benzol, den Xylenen, Toluol, Naph-
thalin oder Durol (1,2,4,5-Tetramethylbenzol) zu Carbonsäuren und/oder Carbonsäu-

reanhydriden wie Maleinsäureanhydrid, Phthalsäureanhydrid, Benzoësäure und/oder Pyromellithsäureanhydrid.

Zu diesem Zweck werden die erfindungsgemäß hergestellten Katalysatoren in von außen auf die Reaktionstemperatur, beispielsweise mittels Salzschmelzen, thermostasierte Reaktionsrohre gefüllt und über die so bereitete Katalysatorschüttung das Reaktionsgas Temperaturen von im allgemeinen 300 bis 450 °C, vorzugsweise von 320 bis 420 °C und besonders bevorzugt von 340 bis 400 °C und bei einem Überdruck von im allgemeinen 0,1 bis 2,5 bar, vorzugsweise von 0,3 bis 1,5 bar mit einer Raumschwindigkeit von im allgemeinen 750 bis 5000 h⁻¹ geleitet.

Das dem Katalysator zugeführte Reaktionsgas wird im allgemeinen durch Vermischen von einem molekularen Sauerstoff enthaltenden Gas, das außer Sauerstoff noch geeignete Reaktionsmoderatoren und/oder Verdünnungsmittel, wie Dampf, Kohlendioxid und/oder Stickstoff, enthalten kann, mit dem zu oxidierenden, aromatischen Kohlenwasserstoff erzeugt, wobei das molekularen Sauerstoff enthaltende Gas im allgemeinen 1 bis 100 mol-%, vorzugsweise 2 bis 50 mol-% und besonders bevorzugt 10 bis 30 mol-% Sauerstoff, 0 bis 30 mol-%, vorzugsweise 0 bis 10 mol-% Wasserdampf sowie 0 bis 50 mol-%, vorzugsweise 0 bis 1 mol-% Kohlendioxid, Rest Stickstoff, enthalten kann. Zur Erzeugung des Reaktionsgases wird das molekularen Sauerstoff enthaltende Gas im allgemeinen mit 30 g bis 150 g je Nm³ Gas des zu oxidierenden, aromatischen Kohlenwasserstoffs beschickt.

Es hat sich als besonders vorteilhaft erwiesen, wenn in der Katalysatorschüttung Katalysatoren eingesetzt werden, die sich in ihrer katalytischen Aktivität und/oder chemischen Zusammensetzung ihrer Aktivmasse unterscheiden. Vorzugsweise wird bei Anwendung zweier Reaktionszonen in der ersten, also zum Gaseintritt des Reaktionsgases hin gelegenen Reaktionszone, ein Katalysator eingesetzt, der in Vergleich zum Katalysator, welcher sich in der zweiten, also zum Gasaustritt hin gelegenen Reaktionszone, befindet, eine etwas geringere katalytische Aktivität hat. Im allgemeinen wird die Umsetzung durch die Temperatureinstellung so gesteuert, dass in der ersten Zone der größte Teil der im Reaktionsgas enthaltenen aromatischen Kohlenwasserstoff bei maximaler Ausbeute umgesetzt wird. Bevorzugt werden drei- bis fünflagige Katalysatorsysteme verwendet, insbesondere drei- und vierlagige Katalysatorsysteme.

35

Die Erfindung wird durch die folgenden Beispiele näher veranschaulicht.

Die Messung der Teilchengrößenverteilung erfolgte mit Hilfe eines Frisch Particle Sizer "analysette 22" im Messbereich von 0,3 bis 300 µm mit einer Auflösung von 62 Kanälen. Die V₂O₅-Probe wurde zur Messung in Wasser suspendiert und in der Messzelle umgepumpt. Die Messdauer betrug 2 Scans. Die Auswertung erfolgte nach der Fraunhofer-Methode..

45

Beispiel 1

54,227 kg Anatas (BET-Oberfläche 9 m²/g), 126,517 kg Anatas (BET-Oberfläche 20 m²/g), 14,195 kg V₂O₅, 3,549 kg Sb₂O₃, 0,805 kg Cäsiumcarbonat wurden in 519,035 5 kg entionisiertem Wasser suspendiert und gerührt, um eine homogene Verteilung zu erzielen. Das V₂O₅ hatte folgende volumenbezogene Teilchengrößenverteilung: 10 % ≤ 0,58 µm; 20 % ≤ 0,87 µm; 30 % ≤ 1,20 µm; 40 % ≤ 1,61 µm; 50 % ≤ 2,21 µm; 60 % ≤ 3,26 µm; 70 % ≤ 5,52 µm; 80 % ≤ 9,46 µm; 90 % ≤ 14,92 µm; 95 % ≤ 19,51 µm; 99,9 % ≤ 169,33 µm. Der Suspension wurden 80 kg eines organischen Binders, bestehend 10 aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen Dispersion zugesetzt. In einer Wirbelbettbeschichtungsapparatur wurden 60 kg dieser Suspension auf 150 kg Steattringe (Magnesiumsilikat) der Abmessungen 7 x 7 x 4 mm (Außendurchmesser x Höhe x Innendurchmesser) aufgesprührt und getrocknet. Die Beschichtung erfolgte bei Temperaturen von 80-120 °C und einer Luftmenge von 6000 15 m³/h.

Die Analyse der bei 400 °C kalzinierten Katalysatoren ergab einen V₂O₅-Anteil in der Aktivmasse von 6,85 Gew.-%. Der rechnerische Sollwert des V₂O₅-Anteils der geglühten Aktivmasse beträgt dagegen 7,12 Gew.-%. Es lag eine Fehlmenge von 0,27 % 20 (absolut) vor. Um den V₂O₅-Verlust bei der Beschichtung zu kompensieren und Katalysatoren mit der vorgegebenen V₂O₅-Mengen herzustellen, musste die V₂O₅-Menge in der Suspension um 0,543 kg erhöht werden.

Vergleichsbeispiel 2

25 Beispiel 1 wurde wiederholt, wobei jedoch das verwendete V₂O₅ folgende volumenbezogene Teilchengrößenverteilung aufwies: 10 % ≤ 0,62 µm; 20 % ≤ 0,93 µm; 30 % ≤ 1,25 µm; 40 % ≤ 1,63 µm; 50 % ≤ 2,10 µm; 60 % ≤ 2,76 µm; 70 % ≤ 3,84 µm; 80 % ≤ 6,27 µm; 90 % ≤ 24,24 µm; 95 % ≤ 46,58 µm; 99,9 % ≤ 300 µm.

30 Die Analyse der bei 400 °C kalzinierten Katalysatoren ergab einen V₂O₅-Anteil in der Aktivmasse von 5,55 Gew.-%. Gegenüber dem Sollwert von 7,12 Gew.-% lag eine Fehlmenge von 1,57 % (absolut) vor. Um den V₂O₅-Verlust bei der Beschichtung zu kompensieren und Katalysatoren mit der vorgegebenen V₂O₅-Mengen herzustellen, 35 musste die V₂O₅-Menge in der Suspension um 3,134 kg erhöht werden.

Die vorstehenden Beispiele zeigen, dass durch Einsatz von V₂O₅ mit definierter Teilchengrößenverteilung die erforderliche Einsatzmenge verringert werden kann.

Patentansprüche

1. Katalysator für Gasphasenoxidationen, umfassend einen inerten Träger und eine darauf aufgebrachte katalytisch aktive Masse, die 1 bis 40 Gew.-% Vanadium-
5 oxid, berechnet als V_2O_5 , und 60 bis 99 Gew.-% Titandioxid, berechnet als TiO_2 , enthält, erhältlich durch Aufbringen einer Suspension von TiO_2 - und V_2O_5 -Teilchen auf den Träger, worin wenigstens 90 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 20 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 30 μm oder weniger aufweisen.
- 10 2. Katalysator nach Anspruch 1, wobei wenigstens 90 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 15 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 20 μm oder weniger aufweisen.
- 15 3. Katalysator nach Anspruch 1 oder 2, wenigstens 50 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von mehr als 2 μm aufweisen.
- 20 4. Katalysator nach einem der vorhergehenden Ansprüche, wobei die katalytisch aktive Masse, bezogen auf die Gesamtmenge der katalytisch aktiven Masse, bis zu 1 Gew.-% einer Cäsiumverbindung, berechnet als Cs, bis zu 1 Gew.-% einer Phosphorverbindung, berechnet als P und bis zu 10 Gew.-% Antimonoxid, berechnet als Sb_2O_3 enthält.
- 25 5. Verfahren zur Herstellung eines Katalysators für Gasphasenoxidationen, bei dem man auf einen fluidisierten inerten Träger eine Suspension von TiO_2 - und V_2O_5 -Teilchen aufbringt, worin wenigstens 90 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 20 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 30 μm oder weniger aufweisen.
- 30 6. Verfahren nach Anspruch 5, wobei wenigstens 90 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 15 μm oder weniger und wenigstens 95 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von 20 μm oder weniger aufweisen.
- 35 7. Verfahren nach Anspruch 5 oder 6, wobei wenigstens 50 Vol.-% der V_2O_5 -Teilchen einen Durchmesser von mehr als 2 μm aufweisen.
8. Verfahren nach einem der Ansprüche 5 bis 7, wobei die Suspension außerdem wenigstens eine Cäsium-, Phosphor- und/oder Antimonquelle enthält.
- 40 9. Verwendung des Katalysators nach einem der Ansprüche 1 bis 4, zur Herstellung von Phthalsäureanhydrid aus o-Xylo, Naphthalin oder Gemischen davon.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/010749

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07C51/265 C07C51/31 B01J23/22 B01J27/198 B01J37/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07C B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 586 361 B1 (LINDEN GERD ET AL) 1 July 2003 (2003-07-01) cited in the application claims 1,11,12; example 1	1-4,9
X	US 5 792 719 A (EBERLE HANS-JUERGEN ET AL) 11 August 1998 (1998-08-11) column 3, line 21 – line 38 claims 1,5,10	1-4,9
X	EP 1 181 097 A (CONSORTIUM ELEKTROCHEM IND) 27 February 2002 (2002-02-27) claims 1,10; examples 12-19; table 1 paragraph '0007!	1-4,9

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

21 January 2005

Date of mailing of the International search report

31/01/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Holzwarth, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/010749

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 6586361	B1	01-07-2003	DE 19839001 A1 AT 238838 T CN 1121907 B DE 59905354 D1 WO 0012214 A1 EP 1117484 A1 ES 2198952 T3 ID 27448 A JP 2002523232 T	02-03-2000 15-05-2003 24-09-2003 05-06-2003 09-03-2000 25-07-2001 01-02-2004 12-04-2001 30-07-2002
US 5792719	A	11-08-1998	DE 19519172 A1 AT 182087 T DE 59602423 D1 EP 0744214 A1 ES 2135819 T3 JP 3248560 B2 JP 8318160 A	28-11-1996 15-07-1999 19-08-1999 27-11-1996 01-11-1999 21-01-2002 03-12-1996
EP 1181097	A	27-02-2002	DE 19931902 A1 AT 227161 T BR 0012452 A CN 1130266 B DE 50000732 D1 WO 0103832 A1 EP 1181097 A1 ES 2186653 T3 JP 2003504181 T TW 581711 B US 6730631 B1	18-01-2001 15-11-2002 02-04-2002 10-12-2003 12-12-2002 18-01-2001 27-02-2002 16-05-2003 04-02-2003 01-04-2004 04-05-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/010749

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES	IPK 7 C07C51/265 C07C51/31 B01J23/22	B01J27/198	B01J37/02
--	--------------------------------------	------------	-----------

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07C B01J

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 6 586 361 B1 (LINDEN GERD ET AL) 1. Juli 2003 (2003-07-01) in der Anmeldung erwähnt Ansprüche 1,11,12; Beispiel 1	1-4,9
X	US 5 792 719 A (EBERLE HANS-JUERGEN ET AL) 11. August 1998 (1998-08-11) Spalte 3, Zeile 21 - Zeile 38 Ansprüche 1,5,10	1-4,9
X	EP 1 181 097 A (CONSORTIUM ELEKTROCHEM IND) 27. Februar 2002 (2002-02-27) Ansprüche 1,10; Beispiele 12-19; Tabelle 1 Absatz '0007!	1-4,9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

*'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

*'E' älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

*'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

*'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

*'P' Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

*'T' Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

*'V' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfandenscher Tätigkeit beruhend betrachtet werden

*'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfandenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

*& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

21. Januar 2005

31/01/2005

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Holzwarth, A

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/010749

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 6586361	B1	01-07-2003	DE AT CN DE WO EP ES ID JP	19839001 A1 238838 T 1121907 B 59905354 D1 0012214 A1 1117484 A1 2198952 T3 27448 A 2002523232 T	02-03-2000 15-05-2003 24-09-2003 05-06-2003 09-03-2000 25-07-2001 01-02-2004 12-04-2001 30-07-2002
US 5792719	A	11-08-1998	DE AT DE EP ES JP JP	19519172 A1 182087 T 59602423 D1 0744214 A1 2135819 T3 3248560 B2 8318160 A	28-11-1996 15-07-1999 19-08-1999 27-11-1996 01-11-1999 21-01-2002 03-12-1996
EP 1181097	A	27-02-2002	DE AT BR CN DE WO EP ES JP TW US	19931902 A1 227161 T 0012452 A 1130266 B 50000732 D1 0103832 A1 1181097 A1 2186653 T3 2003504181 T 581711 B 6730631 B1	18-01-2001 15-11-2002 02-04-2002 10-12-2003 12-12-2002 18-01-2001 27-02-2002 16-05-2003 04-02-2003 01-04-2004 04-05-2004