```
In [1]: import pandas as pd
from pandas_profiling import ProfileReport

import altair as alt
import import_data

In [68]: file_path = "../data/raw/ice_thickness.csv"

try:
    df = pd.read_csv(file_path)
    except:
    import_data.download_data()
    df = pd.read_csv(file_path)

df['Date'] = pd.DatetimeIndex(df['Date'])
```

# Summary of the data set

The data set is from the Canadian Ice Thickness Program. The data has been collected weekly since 1947. The program was updated in 2002, so we are only looking at data prior to the update. Ice thickness is measured to the nearest centimetre using one of two methods; special auger kit or hot wire ice thickness gauge.

#### Data overview

Our data set has a range of dates from 1984 - 1996. There are 195 different stations at which measurements are taken.

```
df
In [71]:
                                                              Ice
Out[71]:
                                      Station
                                                                              Snow
                                                                                         Measurement
                                                                                                                    Surface
                                                                                                                                 Cracks and
                   StationID/ID
                                                       Thickness/
                                                                   depth/Profondeur Method/Méthode Topology/Topographie
                                  Name/Nom
                                               Date
                                                                                                                             Leads/Fissures
                     de station
                                                        Épaisseur
                                   de station
                                                                         de la neige
                                                                                                                de la surface
                                                                                           de mesure
                                                                                                                                 et chenaux
                                                       de la glace
                                    14A (END
                                              1984-
               0
                          Q25
                                 BECANCOUR
                                                             40.0
                                                                                 1.0
                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                                        NaN
                                              01-07
                                  DOCK) Q25
                                    14A (END
                                              1984-
                          Q25
                                 BECANCOUR
                                                             49.0
                                                                               20.0
                                                                                                 NaN
                                                                                                                        NaN
                                                                                                                                        NaN
                                              01-16
                                  DOCK) Q25
```

|       | StationID/ID de station | Station<br>Name/Nom<br>de station  | Date               | lce<br>Thickness/<br>Épaisseur<br>de la glace | Snow<br>depth/Profondeur<br>de la neige | Measurement<br>Method/Méthode<br>de mesure | Surface<br>Topology/Topographie<br>de la surface | Cracks and<br>Leads/Fissures<br>et chenaux |
|-------|-------------------------|------------------------------------|--------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|
| 2     | Q25                     | 14A (END<br>BECANCOUR<br>DOCK) Q25 | 1984-<br>01-21     | 42.0                                          | 8.0                                     | NaN                                        | NaN                                              | NaN                                        |
| 3     | Q25                     | 14A (END<br>BECANCOUR<br>DOCK) Q25 | 1984-<br>01-28     | 43.0                                          | 20.0                                    | NaN                                        | NaN                                              | NaN                                        |
| 4     | Q25                     | 14A (END<br>BECANCOUR<br>DOCK) Q25 | 1984-<br>02-<br>04 | 41.0                                          | 22.0                                    | NaN                                        | NaN                                              | NaN                                        |
| •••   |                         |                                    | •••                |                                               |                                         |                                            |                                                  |                                            |
| 51186 | YZF                     | YELLOWKNIFE<br>YZF                 | 1996-<br>03-<br>29 | 140.0                                         | 18.0                                    | 1.0                                        | 0.0                                              | 0.0                                        |
| 51187 | YZF                     | YELLOWKNIFE<br>YZF                 | 1996-<br>04-<br>05 | 136.0                                         | 24.0                                    | 1.0                                        | 0.0                                              | 0.0                                        |
| 51188 | YZF                     | YELLOWKNIFE<br>YZF                 | 1996-<br>04-12     | 144.0                                         | 14.0                                    | 1.0                                        | 0.0                                              | 0.0                                        |
| 51189 | YZF                     | YELLOWKNIFE<br>YZF                 | 1996-<br>04-19     | 143.0                                         | 10.0                                    | 1.0                                        | 0.0                                              | 0.0                                        |
| 51190 | YZF                     | YELLOWKNIFE<br>YZF                 | 1996-<br>04-<br>26 | 154.0                                         | 4.0                                     | 1.0                                        | 0.0                                              | 0.0                                        |

51191 rows × 8 columns

# In [72]: df["Station Name/Nom de station"].value\_counts()

| Out[72]: | EUREKA WEU        | 1731 |
|----------|-------------------|------|
|          | RESOLUTE YRB      | 1641 |
|          | ALERT YLT         | 1434 |
|          | CAMBRIDGE BAY YCB | 1389 |
|          | MOULD BAY YMD     | 1388 |
|          |                   |      |
|          | P1 (MONTREAL) Q01 | 4    |

```
P23 (NORTHWEST SECTION) Q23 2
P24 (OFF PUBLIC DOCK) Q24 2
SOURIS YG6 2
SUMMERSIDE YG1 2
```

Name: Station Name/Nom de station, Length: 195, dtype: int64

## Data value ranges

We have 5112 ice thickness measurements. The mean ice thickness over all dates is  $\sim$ 93.26. The standard deviation is  $\sim$ 57.63, and the measurements range from 0 - 345.

In [5]:

df.describe()

Out[5]:

| • |       | Ice Thickness/<br>Épaisseur de la glace | Snow<br>depth/Profondeur de<br>la neige | Measurement<br>Method/Méthode de<br>mesure | Surface<br>Topology/Topographie de la<br>surface | Cracks and<br>Leads/Fissures et<br>chenaux |
|---|-------|-----------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------|
|   | count | 51125.000000                            | 48652.000000                            | 15604.000000                               | 15425.000000                                     | 15428.000000                               |
|   | mean  | 93.257643                               | 14.493978                               | 0.981287                                   | 0.599481                                         | 0.436349                                   |
|   | std   | 57.632578                               | 13.532427                               | 0.144664                                   | 1.582073                                         | 0.669096                                   |
|   | min   | 0.000000                                | 0.000000                                | 0.000000                                   | 0.000000                                         | 0.000000                                   |
|   | 25%   | 46.000000                               | 4.000000                                | 1.000000                                   | 0.000000                                         | 0.000000                                   |
|   | 50%   | 79.000000                               | 10.000000                               | 1.000000                                   | 0.000000                                         | 0.000000                                   |
|   | 75%   | 135.000000                              | 21.000000                               | 1.000000                                   | 0.000000                                         | 1.000000                                   |
|   | max   | 345.000000                              | 152.000000                              | 3.000000                                   | 9.000000                                         | 9.000000                                   |
|   |       |                                         |                                         |                                            |                                                  |                                            |

## Data types and completeness

StationID/ID de station

Each row has a Date, Station ID, and a Station Name. There are 66 rows that are missing an Ice Thickness measurement.

51191 non-null object

```
Station Name/Nom de station
                                                51191 non-null object
 1
 2
    Date
                                                51191 non-null datetime64[ns]
    Ice Thickness/Épaisseur de la glace
 3
                                                51125 non-null float64
    Snow depth/Profondeur de la neige
                                                48652 non-null float64
    Measurement Method/Méthode de mesure
                                                15604 non-null float64
    Surface Topology/Topographie de la surface 15425 non-null float64
    Cracks and Leads/Fissures et chenaux
                                                15428 non-null float64
dtypes: datetime64[ns](1), float64(5), object(2)
memory usage: 3.1+ MB
```

#### Variables and interactions

Most of the rows have the same Measurement Method, but there are some that are missing the method or have a different method. We will need to make sure we are only using rows with the same measurement method in our sample.

```
In [7]: df["Measurement Method/Méthode de mesure"].value_counts()
Out[7]: 1.0    15278
    0.0    310
    2.0    14
    3.0    2
    Name: Measurement Method/Méthode de mesure, dtype: int64
In [8]: ProfileReport(df)
```

| <del>1</del> 0 | UIÐ | 1.070 |
|----------------|-----|-------|
| 38             | 672 | 1.3%  |
| 46             | 671 | 1.3%  |
| 61             | 640 | 1.3%  |
| 53             | 623 | 1.2%  |
| 56             | 616 | 1.2%  |
| 43             | 604 | 1.2%  |
| 51             | 594 | 1.2%  |

| 41                 | 588   | 1.1%  |  |
|--------------------|-------|-------|--|
| Other values (284) | 44733 | 87.4% |  |

| Value | Count | Frequency (%) |
|-------|-------|---------------|
| 0     | 45    | 0.1%          |
| 1     | 37    | 0.1%          |
| 2     | 54    | 0.1%          |
| 3     | 93    | 0.2%          |
| 4     | 62    | 0.1%          |

| Value | Count Fre | equency (%) |
|-------|-----------|-------------|
| 345   | 1         | < 0.1%      |
| 343   | 1         | < 0.1%      |
| 340   | 1         | < 0.1%      |

Out[8]:

# **Exploratory analysis of Ice Thickness**

To better understand our data and to determine how to sample it we explored:

- Number of ice thickness measurements per date
- Number of stations per date

- General change in ice thickness over time
- Distribution of ice thickness over all time
- Distribution of ice thickness for each date of interest
- Determine if there are outliers in the ice thickness measurements

We removed records with Measurement Method not equal to 1 in order to make sure the measurement method we are looking at is consistent. We also removed all records missing an Ice Thickness measurement.

```
df filtered = df.copy()
In [9]:
         df filtered = df filtered.rename(columns={
              "StationID/ID de station" : "station id",
              "Station Name/Nom de station" : "station name",
              "Date" : "date",
              "Ice Thickness/Épaisseur de la glace" : "ice thickness",
              "Snow depth/Profondeur de la neige" : "snow depth",
              "Measurement Method/Méthode de mesure" : "measurement method",
              "Surface Topology/Topographie de la surface" : "surface_topology",
              "Cracks and Leads/Fissures et chenaux" : "cracks leads"
         })
         df_filtered = df_filtered[df_filtered["measurement_method"] == 1]
         df filtered = df filtered[df filtered["ice thickness"] > 0]
         df filtered.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 15253 entries, 233 to 51190
         Data columns (total 8 columns):
              Column
                                   Non-Null Count Dtype
                                 _____
             station_id 15253 non-null object station_name 15253 non-null object date 15253 non-null datetime64[ns] ice_thickness 15253 non-null float64 snow_depth 15056 non-null float64
          1
          2
          3
          5
              measurement method 15253 non-null float64
              surface_topology 15101 non-null float64
          7
              cracks leads
                             15104 non-null float64
         dtypes: datetime64[ns](1), float64(5), object(2)
         memory usage: 1.0+ MB
```

#### Number of ice thickness measurements

We looked at number of ice thickness measurements per day, month, and year. Each year, January - March had the largest number of measurements. July - September had the smallest number of measurements, with no measurements taken in August each year.

Presumably this is because the ice melts each summer.

```
alt.data_transformers.disable_max_rows()
In [88]:
          count_date_chart = alt.Chart(df_filtered).mark_bar().encode(
              x = alt.X("date", title="Day"),
              y = alt.Y("count()", title="Number of Measurements per Day"),
              tooltip = ["date", "count()"]
          ).properties(
              width=1000
          )
          count_month_chart = count_date_chart.encode(
              x = alt.X("yearmonth(date)", title="Month"),
              y = alt.Y("count()", title="Number of Measurements per Month"),
              tooltip = ["yearmonth(date)", "count()"]
          )
         count_year_chart = count_date_chart.encode(
              x = alt.X("year(date)", title="Year"),
              y = alt.Y("count()", title="Number of Measurements per Year"),
              tooltip = ["year(date)", "count()"]
          (count_date_chart & count_month_chart & count_year_chart).properties(
              title="Number of Ice Thickness Measurements by Date",
```

#### Out[88]: Number of Ice Thickness Measurements by Date









#### Mean ice thickness measurements by date

We looked at mean ice thickness measurements per day, month, and year. Each year, May - June had the highest mean ice thickness measurements. September had the smallest number of measurements, with no measurements taken in August each year. The mean ice thickness meausurements fluctuate year over year, but they seem to typically be around 100 cm.

```
In [125...
    measurement_date_chart = count_date_chart.encode(
        y = alt.Y("mean(ice_thickness)", title="Mean Ice Thickness (cm)"),
        tooltip = ["date", "mean(ice_thickness)"]
)

measurement_month_chart = count_month_chart.encode(
        y = alt.Y("mean(ice_thickness)", title="Mean Ice Thickness (cm)"),
        tooltip = ["yearmonth(date)", "mean(ice_thickness)"]
)

measurement_year_chart = count_year_chart.encode(
        y = alt.Y("mean(ice_thickness)", title="Mean Ice Thickness (cm)"),
        tooltip = ["year(date)", "mean(ice_thickness)"]
)

(measurement_date_chart & measurement_month_chart & measurement_year_chart).properties(
        title="Mean Ice Thickness Measurements by Date",
)
```

#### $_{\texttt{Out} \, \lceil \, 125 ...}$ Mean Ice Thickness Measurements by Date









```
ice_chart = alt.Chart(df_filtered, title="Mean Ice Thickness trend over time").mark_line().encode(
    x = alt.X("yearmonth(date)", title="Mean Ice Thickness per Month"),
    y = alt.Y("mean(ice_thickness)", title="Mean Ice Thickness per Month"),
    tooltip = ["yearmonth(date)", "mean(ice_thickness)"]
).properties(
    width=1000
)

ice_chart + ice_chart.mark_circle()
```

Out[128...



#### **Number of Stations**

Stations vary over the years but seem relatively consistent. Some stations seem to be replaced over time, but the stations with the majority of measurements have records for each year.

```
# Number of stations per year
In [74]:
           alt.Chart(df_filtered, title = "Stations by Year").mark_bar().encode(
               x = alt.X("station_name", title="Station", sort = '-y'),
               y = alt.Y("count()", title="Number of Stations"),
               color = "year(date)",
               tooltip = ["year(date)", "count()"]
           ).properties(
                width = 1000
                                                                      Stations by Year (January - March only)
Out[74]:
            700
            600 -
            500
          Number of Stations
            200
            100
                                                                                                                          P35 (Ġ
```

Station

We looked at the distribution of thickness measurements over all time, by month, and by year. The distribution over all time and the distributions per year are right skewed. The shape of the distributions by month vary from month to month.

#### Out[112...









### Looking for outliers

We looked at boxplots over all time and by month, as well as over all time per location. There are not many observations that seem out of place. The distributions vary by month, as we saw earlier as well.

Out[199...



```
alt.Chart(df_filtered, title="Mean Ice Thickness by Date").mark_boxplot().encode(
    x = alt.X("ice_thickness", title="Ice Thickness"),
    y = alt.Y("station_name", title="Station"),
    tooltip=["ice_thickness", "date"]
).properties(
    height=1600
)
```

Out[134...





