

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

N MOSFET

Dual N-Channel Enhancement Mode Field Effect Transistor \$8205A

■ Features

• 5A,20V. $r_{DS(on)} = 0.025 \Omega @ V_{GS} = 4.5 V$ $r_{DS(on)} = 0.040 \Omega @ V_{GS} = 2.5 V.$

■ Absolute Maximum Ratings Ta = 25°C

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	VDS	20	V
Gate-Source Voltage	Vgs	±8	V
Continuous Drain Current	ΙD	5	Α
Pulsed Drain Current	Ірм	20	А
Maximum Power Dissipation TA = 25℃	Pp	2.0	W
T _A = 70°C	FD	1.6	W
Thermal Resistance,Junction-to-Ambient	R ⊕ JA	78	°C/W
Thermal Resistance,Junction-to-Case	R⊕JC	40	°C/W
Jumction temperature and Storage temperature	Tj.Tstg	-55 to +150	$^{\circ}$

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

N MOSFET

S8205A

■ Electrical Characteristics Ta = 25°C

Parameter	Symbol	Testconditons	Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	VDSS	Vgs = 0 V, ID = 250 µ A	20			V	
Zero Gate Voltage Drain Current	Inco	Vps = 20V , Vgs = 0V			1		
	IDSS	Vps = 20V , Vgs = 0V , TJ =55℃			5	uA	
Gate-Body Leakage	Igss	V_{DS} = 0V , V_{GS} = $\pm 8V$			±50	nA	
Gate Threshold Voltage	VGS(th)	V _{DS} = V _{GS} , I _D = 250uA	0.5		1.0	V	
Drain-Source On-State Resistance *	WDQ()	Vgs = 4.5V , I _D = 5A		0.020	0.025	Ω	
	rDS(on)	Vgs = 2.5V , ID = 4A		0.035	0.040		
On-State Drain Current *	ID(on)	Vps = 5V , Vgs = 4.5V	15			Α	
Forward Transconductance *	gfs	Vps = 5V , Ip =3A		11		S	
Input Capacitance	Ciss	V _{DS} = 10 V, V _{GS} = 0 V,f = 1.0 MHz		700		pF	
Output Capacitance	Coss			175		pF	
Reverse Transfer Capacitance	Crss			85		pF	
Total Gate Charge	Qg			7	10	nC	
Gate-Source Charge	Qgs	Vps = 10V , Vgs = 4.5V , Ip = 3A		1.2			
Gate-Drain Charge	Qgd			1.9			
Turn-On Delay Time	td(on)			8	16	ns	
Rise Time	tr	VDD = 10V		10	18		
Turn-Off Delay Time	td(off)	ID = 1A , Vgs = 4.5V , Rg = 6Ω		18	29		
Fall Time	tf	1		5	10		
Maximum Continuous Drain-Source Diode Forward Current	Is				1.3	А	
Diode Forward Voltage *	VsD	Is = 1.7 A, VGS = 0 V		0.65	1.2	V	

^{*} Pulse test; pulse width \leqslant 300 $\,\mu$ s, duty cycle \leqslant 2 %.