```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load iris
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Load the Iris dataset
iris = load iris()
X = iris.data
y = iris.target
# Standardize the features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Apply PCA for dimensionality reduction
pca = PCA(n components=2) # Reduce to 2 dimensions
X pca = pca.fit transform(X scaled)
# Create DataFrame for the reduced data
df pca = pd.DataFrame(data=X pca, columns=['PC1', 'PC2'])
df pca['Target'] = y
# Display the original dataset
print("Original Dataset:")
print(pd.DataFrame(data=X, columns=iris.feature names).head())
# Display the reduced dataset
print("\nReduced Dataset:")
print(df pca.head())
# Visualize the reduced dataset using Seaborn
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df pca, x='PC1', y='PC2', hue='Target',
palette='viridis', legend='full')
plt.title('PCA Dimensionality Reduction with Seaborn')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.grid(True)
plt.show()
```

Original Dataset:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Reduced Dataset:

	PC1	PC2	Target
0	-2.264703	0.480027	0
1	-2.080961	-0.674134	0
2	-2.364229	-0.341908	0
3	-2.299384	-0.597395	0
4	-2.389842	0.646835	0

