Quiz 2

Date: 2022-02-21 Name: SID:

Q1. Answer **True** or **False**. (3 pts)

(a)
$$rac{d^2y}{(dx)^2}=yrac{dy}{dx}+x$$
 is an ODE.

(b)
$$y_1=-2$$
 and $y_2=e^{\frac{1}{2}(t+1)}-2$ are both solutions of $\frac{dy}{dx}=\frac{y}{2}+1$.

- (c) Consider the linear differential equation $x'=2x+t^2e^t$ and assume that the function ϕ is a solution. Then any other solution to the equation is of the form $C\phi$ where C is a real constant.
- Q2. Consider the initial value problem $y'-\frac{3}{2}y=3t+2e^t$, $y(0)=y_0$. Find the value of y_0 that separates solutions that grow positively as $t\to\infty$ from those that grow negatively. (4 pts)
 - Q3. Solve the differential equation $\frac{dy}{dx} = \frac{y-4x}{x-y}$.(3 pts)

Solution

$$Q2 \quad y' - \frac{3}{2}y = 3t + 2e^{t}$$

$$u(t) = e^{-\frac{2}{2}t}$$

$$y = -2t - \frac{4}{3} - 4e^{t} + c - e^{\frac{3}{2}t}$$

$$y_0 = -\frac{4}{3} - 4 + C$$
 $C = y_0 + \frac{16}{3}$

as
$$t \to +\infty$$
. $y_0 = -\frac{16}{3}$

$$\frac{dy}{dx} = \frac{\frac{y}{x} - 4}{1 - \frac{y}{x}}$$

$$V = \frac{y}{x}$$
 $y > Vx$

$$V+ \times \frac{dV}{dx} = \frac{V-4}{1-V}$$

$$\times \frac{dV}{dx} = \frac{V^2 - 4}{1 - V}$$

$$\frac{1-v}{v^2-4} dv = \frac{1}{x} dx$$

$$-\frac{3}{4}\frac{dv}{v+2}-\frac{1}{4}\frac{dv}{v-2}=\frac{1}{x}dx$$

•
$$V = \pm 2$$
 $y = \pm 2x$