2024年6月2日 14:24

一、单项选择题(共48分,每小题4分)

- 1. 微分方程组 $\begin{cases} \frac{dy_1}{dx} = 2y_1 + 3y_2 \\ \frac{dy_2}{dx} = 3y_1 + 2y_2 \end{cases}$ 的通解为 ()
 - (A) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{5x}$.

(B)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{5x}$$
.

(C) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^x + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-5x}$.

(D)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^x + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-5x}$$
.

2. 曲面 $x^2 + y^3 + z^4 - xy = 2$ 在点(1,1,1) 处的切平面方程为()

(A)
$$2x + 3y + 4z = 9$$
.

(B)
$$\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{4}$$
.

(C)
$$x+2y+4z=7$$
.

(D)
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{4}$$
.

3. 设 f(u,v) 具有二阶连续偏导数, z = f(xy, x-y) ,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)

(A)
$$xyf_{11}'' + (x-y)f_{12}'' - f_{22}''$$
.

(B)
$$f_1' + xyf_{11}'' + (x-y)f_{12}'' - f_{22}''$$
.

(C)
$$f_1' + x f_{11}'' + (x-1) f_{12}'' - f_{22}''$$
.

(D)
$$f_1' + xyf_{11}'' - (x+y)f_{12}'' - f_{22}''$$
.

4. 设函数 f(x,y) 可微,向量 $l_1 = (1,0)$, $l_2 = (0,-1)$, l = (3,4), 且 $\frac{\partial f}{\partial l_1} \bigg|_{P} = 3$,

$$\left. \frac{\partial f}{\partial \boldsymbol{l}_2} \right|_P = 4$$
, $\left. \mathbb{M} \frac{\partial f}{\partial \boldsymbol{l}} \right|_P = ($

(B)
$$-7$$
.

(C)
$$\frac{7}{5}$$
.

(D)
$$-\frac{7}{5}$$
.

5.	$\int_0^1 dy \int_y^{\sqrt{2-y^2}} (x^2 + y^2) dx = ($)

- (A) $\frac{\pi}{16}$. (C) $\frac{\pi}{8}$.

(B) $\frac{\sqrt{2}\pi}{6}$.

(D) $\frac{\pi}{4}$.

(A) $\frac{4\pi}{5}$.

(B) $\frac{8\pi}{5}$.

(C) $\frac{8\pi}{15}$.

(D) $\frac{4\pi}{15}$.

7. 设 $S = \{(x, y, z) | x^2 + y^2 + z^2 = a^2, z \ge 0 \}$ (a > 0),则 $\iint_S (x + y + z)^2 dS = ($

(A) $2\pi a^2$.

(B) $2\pi a^4$.

(C) $4\pi a^2$.

(D) $4\pi a^4$.

8. 设曲线 $L: x = t, y = \frac{t^2}{2}, z = \frac{t^3}{3} (0 \le t \le 1)$ 上分布着质量,其质量线密度为

 $\rho(x,y,z) = \sqrt{2y}$,则其质量m = (

(A)
$$\int_0^1 t \sqrt{1+t^2+t^4} dt$$
.

(B)
$$\int_0^1 t^2 \sqrt{1 + t^2 + t^4} \, dt.$$

(C)
$$\int_0^1 \sqrt{1+t^2+t^4} dt$$
.

(D)
$$\int_0^1 \sqrt{t} \cdot \sqrt{1 + t^2 + t^4} \, dt$$
.

9. 设 $A(x,y,z) = \frac{(x,y,z)}{(x^2+y^2+z^2)^{\frac{3}{2}}}(x^2+y^2+z^2\neq 0)$,则div A(x,y,z) = ()

(C)
$$\frac{1}{x^2+y^2+z^2}$$
.

(D)
$$\frac{1}{(x^2+y^2+z^2)^2}$$
.

2 2 46 + + + + + + + + + + + + + + + + + +	in Mt. M.	
10. 函数 $\frac{2}{2-x}$ 的麦克劳林(Maclauri	in)级数为()	
2 - 3		
(A) $\stackrel{2}{\sum} x^n$	(B) $\sum_{n=0}^{\infty} (-1)^n x^n = 0$	2)
(A) $\frac{2}{2-x} = \sum_{n=0}^{\infty} \frac{x^n}{2^n}, x \in (-2,2).$	(B) $\frac{2}{2-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n, x \in (-2, -2)$	2).
\boldsymbol{z} \boldsymbol{x} $\boldsymbol{n}=0$ \boldsymbol{z}	\boldsymbol{z} \boldsymbol{x} \boldsymbol{n} =0 \boldsymbol{z}	
2 ∞	2 ∞	
(C) $\frac{2}{2-x} = 2\sum_{n=0}^{\infty} (x-1)^n, x \in (0,2).$	(D) $\frac{2}{2-x} = 2\sum_{n=0}^{\infty} (1-x)^n, x \in (0, 2)$	2).
$2-x$ $\frac{1}{n=0}$	$2-x$ $\frac{1}{n=0}$	

11. 幂级数
$$\sum_{n=1}^{\infty} \frac{x^{n+1}}{n}$$
 在收敛域 [-1,1) 上的和函数 $S(x) = ($

(A) ln(1-x).

(B) $-\ln(1-x)$.

(C) $-x \ln(1-x)$.

(D) $x \ln(1-x)$.

12. 以下四个级数之中,发散的是()

(A)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \left(1 + \frac{1}{n} \right) \right).$$

(B)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{2^n + 1}.$$

(C)
$$\sum_{n=2}^{\infty} \frac{1}{n^{1.1} \cdot \sqrt{\ln n}}.$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt[n]{n}}.$$

五、(10 分) 计算曲线积分 $\int_L \frac{x dy - y dx}{x^2 + y^2}$, 其中 L 是曲线 $(x-1)^2 + y^2 = 4$ $(y \ge 0)$ 上由点 A(-1,0) 到点 B(3,0) 的有向弧段. 六、(10分)计算曲面积分 $I = \iint_{\Sigma} (xz + \sin y) dydz + (xy + \sin z) dzdx + (\sin x + y)(z + 1) dxdy,$

其中,有向曲面 $\Sigma: x^2 + y^2 + \frac{z^2}{4} = 1 (z \ge 0)$,取上侧.
4