Скворень

Стр.101 (96)

Древнегреческий философ Фалес Милецкий - потёр янтарную палочку о шерсть.

Электричество - янтарничество)

Два сорта (вида) электричества - положительное и отрицательное.

Электрический заряд, названный положительным, появляется у натёртого стекла. Отрицательный - у натёртой пластмассы.

107 типов атомов - химических элементов, из них 15 - искусственные.

Чем больше протонов, тем более далёкое место в таблице Менделеева имеет элемент.

Ио́н (др.-греч. ἰόν «идущее») — частица, в которой общее число протонов не равно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов, имеет отрицательный заряд и называется анионом.

Положительный ион и отрицательный ион - атомы, у которых нарушено электрическое равновесие.

Нейтральное состояние атома (одинаковое количество протонов в ядре и одинаковое кол-во электронов на орбитах) - нормальное состояние. Суммарный положительный и суммарный отрицательный заряды нейтрализуют друг друга.

Электрическое притяжение.

Протоны + Электроны -

Протон тяжелее электрона в 2000 раз.

Электричество - сила, притягивающая электрон к ядру.

У всех электронов сила электрических зарядов одинакова.

Ядро атома состоит из нейтронов и протонов.

Сила электрических зарядов у электрона и протона равна!

Атомы разных химических элементов различаются числом протонов в ядре и электронов на орбите.

Электронные орбиты = электронные оболочки.

Атомы соединяются друг с другом при помощи внешней оболочки электронов и образуют молекулы.

Электрический ток - упорядоченное движение свободных зарядов (электронов и положительных ионов).

Ток могут создавать как электроны, так и положительные ионы.

В твёрдом веществе могут быть свободные электроны.

Взаимодействие зарядов:

В жидкостях и газах может быть сразу три типа - свободные положительные, отрицательные ионы (атомы) и свободные электроны.

Проводники, полупроводники и диэлектрики - вещества с разным количеством свободных зарядов (ионов, электронов).

Свойства электрических зарядов

- Заряды электрона и протона численно равны и отпичаются только знаком
- Электрические заряды не возникают и не исчезают, они передаются от одного тела к другому или перемещаются внутри тела

К проводникам относятся все металлы. В их атомах внешние электроны связаны с ядром слабо и почти каждый атом превратился в положительный ион, выпустив в межатомное пространство один или несколько электронов.

Основные элементы электрической цепи - генератор (свободные заряды получают энергию) и нагрузка (свободные заряды отдают энергию).

Ток - от слова поток.

Поля бывают разных сортов: электрическое, магнитное, гравитационное и т.д. Именно через поля происходят взаимодействия на расстоянии.

Упорядоченное движение - это движение, возникшее под воздействием **внешних сил**. Поток электронов будет направлен к месту, где их не хватает (к +). Происходить это будет до тех пор, пока не произойдёт балансировка.

Задачи генератора электроэнергии:

- 1. Накапливать на своих клеммах избыточные заряды, которые при первой возможности создадут электрический ток;
- 2. Поддерживать избыточность электрического заряда.

Химический генератор энергии - гальванический элемент (Луиджо Гальвани - 200 лет назад). Химические реакции электризуют электроды.

Важная характеристика любого химического источника питания - его ёмкость. Она говорит о том, как долго источник питания может создавать ток той или иной величины.

Электродвижущая сила (Э.Д.С.) - показатель уровня электризации.

Электродвижущая сила (э.д.с.), ток и сопротивление - важнейшие характеристики электрической цепи!

Э.Д.С. - работа, которую может выполнить генератор, перемещая электрические заряды по цепи.

Джоуль - работа, которую производит сила в 1 ньютон на пути в 1 метр.

 Единица работы (энергии) — джоуль (Дж): работа, выполненная при подъеме массы 102 грамма на высоту 1 метр (Т-29).

 Чем больше ЭДС (напряжение), тем лучше поработает каждый заряд, пройдя по цепи. Единица ЭДС — вольт: каждый кулон выполняет работу в один джоуль (Т-30).

Ньютон — производная единица. Исходя из второго закона Ньютона она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы

Ватт - работа в 1 джоуль, выполненная за 1 секунду. Если генератор нарабатывает 1 джоуль в 2 сек., то мощность этого генератора 0,5 ватта. А если работа в 1 дж. выполняется за 0,1 сек., то, значит, генератор работает энергичней, его мощность 10 ватт.

Кулон - единица электрического заряда. 6 миллиардов миллиардов зарядов электрона.

Название приставки	Сокращенное обозначение		Соотношение с основной
	русское	междуна- родное	единицей
тера	T	T	$10^{12} = 1\ 000\ 000\ 000\ 000$
гига	Γ	G	$10^9 = 1000000000$
мега	М	М	$10^6 = 1000000$
кило	κ	κ	$10^3 = 1000$
гекто	г	h	$10^2 = 100$
дека	дa	da	10
деци	ð	d	$10^{-1} = 0,1$
санти	c	c	$10^{-2} = 0.01$
милли	м	m	$10^{-3} = 0,001$
микро	мк	μ	$10^{-6} = 0,000\ 001$
нано	н	n	$10^{-9} = 0,000\ 000\ 001$
пико	n	p	$10^{-12} = 0,000000000001$

Примеры: 1 мкА = $10^{-6}A = 0{,}000~001~A$; 5 МГц = $5 \cdot 10^6~$ Гц = 5~000~000~ Гц; $0{,}02~B = 20~$ мВ; 3 мг = $0{,}003~$ г; $0{,}5~$ м = 50~ см; 1 $n\Phi = 10^{-12}~$ $\Phi = 10^{-6}~$ мк $\Phi = 0{,}000~001~$ мк Φ ; 10~000~ $n\Phi = 0{,}01~$ мк Φ ; 2 нсек = $2 \cdot 10^{-9}~$ сек = $0{,}000~$ 000 000 сек и т. д.

Ток (ампер) - это количество кулонов, которые проходят по цепи в 1 секунду.

Ток - это интенсивность движения электрических зарядов.

Вольт (напряжение) - это электродвижущая сила, при которой каждый кулон, пройдя по цепи, совершит работу в 1 джоуль.

Напряжение - работоспособность электрических зарядов.

Скорость свободного падения увеличивается на 9,8 м/с каждую секунду

Закон Ома

Ток прямо пропорционален э.д.с. генератора и обратно пропорционален сопротивлению цепи.

Ток возрастает с увеличением Э.Д.С. и уменьшается с ростом сопротивления.

В количественной связи главный смысл закона Ома и его важное практическое применение.

- во сколько раз возрастает э.д.с. (напряжение), во столько же раз возрастает ток; во столько раз возрастает сопротивление, во столько же раз ток уменьшается.

Формулы - короткий и удобный способ записи влияния одних величин на другие. Формулы - язык математики.

I = U/R

Пояснение: I - зависит от двух величин - напряжения (э.д.с.) и сопротивления. U находится в числителе дроби, значит с увеличением U ток I возрастёт. Это прямая зависимость тока I от напряжения U (э.д.с.). Величина R стоит в знаменателе, значит с увеличением сопротивления R ток I уменьшается.

По формуле - если какая либо величина в числителе - она работает на увеличение результата (как U в формуле закона Ома, а результат - это I). Если в знаменателе - работает на уменьшение (как R в той же формуле).

Э.Д.С (U). - характеристика генератора электрических зарядов и от сопротивления никак не зависит.??

Последовательное соединение

По всем элементам последовательной цепи идёт один и тот же ток:

Зависимость: чем меньше сопротивление, тем меньше напряжение.

Общее сопротивление в последовательной цепи равно сумме всех сопротивлений.

Из двух последовательно соединённых резисторов главный тот, чьё сопротивление выше, он в основном определяет общее сопротивление.

Параллельное соединение

Зависимость: чем меньше сопротивление, тем больше ток.

При параллельном соединении <u>их общее сопротивление меньше любого из сопротивлений</u>. Чтобы подсчитать сопротивление двух элементов цепи, соединённых параллельно, нужно произведение этих сопротивлений

разделить на их сумму.

$$R(o) = R1 \times R2 / (R1 + R2)$$

При параллельном соединении главный тот, чьё сопротивление меньше. Именно он в основном определяет общее сопротивление.

Основной электрический ток в параллельной цепи идёт по пути наименьшего сопротивления.

Сумма тока в параллельных ветвях равна току до разветвления и току после разветвления.

$$I(nap) = I(1) + I(2) + I(3)$$

Подробнее по теме

http://physiclib.ru/books/item/f00/s00/z0000051/st062.shtml

Последовательное соединение резисторов

Параллельное соединение резисторов

произведение делённое на сумму

Общий ток любой сложной цепи, как бы он не разветвлялся, определяется общим количеством зарядов, которое двигает генератор. Этот общий ток подсчитывается по формуле закона Ома, в которую уже входит общее сопротивление всей цепи.

$$I(oбщ.) = I(1)+I(2)$$

Э.Д.С. (напряжение) - скопившиеся на клеммах генератора (источника питания) избыточные заряды. Они-то и создают э.д.с.

""Важная особенность любой электрической цепи— ток во всех её участках одинаков: при разветвлении имеется в виду сумма тока в ветвях. Чем больше сопротивление на участке цепи, тем сильней проталкиваются через него свободные электроны, поэтому на всех участках цепи, не зависимо от их сопротивления устанавливается одинаковый ток. - это только для последовательного соединения или смешанного?"

Подробнее по теме

http://electricalschool.info/main/osnovy/443-posledovatelnoe-i-parallelnoe.html

Закон Ома для участка цепи

- По всей последовательной цепи течёт один и тот же ток (А) но разное напряжение
- По всей параллельной цепи одно и то же напряжение но разный ток
- В замкнутой цепи не должно быть электрического обрыва

Местное напряжение (падение напряжение) - при параллельном соединении несколько уменьшается общее сопротивление участка, а значит и действующее в нём напряжение.

Общее напряжение равно сумме всех напряжений на участках цепи.

$$U(oбш.) = U(1) + U(2)$$

Напряжение говорит о той энергии, с которой проталкивается каждый кулон свободных электрических зарядов (работа, которую он выполняет). Напряжение - это работа, которую выполняет каждый кулон свободных зарядов.

Чем больше потребляемый ток, тем меньше напряжение на выходе генератора. Внутреннее сопротивление генератора R(внутр.) - такой же элемент цепи, как и все остальные. Если увеличится потребляемый от генератора ток, то в полном согласии с законом Ома увеличится и внутреннее напряжение в генераторе, а значит, уменьшится напряжение на выходе генератора. Чтобы изменение нагрузки меньше влияло на выходное напряжение генератора, его внутреннее сопротивление стараются свести к минимуму. Кстати, напряжение батарейки со временем уменьшается, т.к. её внутреннее сопротивление увеличивается.

Последовательная цепь - делитель напряжения. Параллельная цепь - делитель тока.

Последовательная цепь - делитель напряжения. Можно так подобрать элементы последовательной цепи, чтобы на каком нибудь из них получить

напряжение, по сравнению с исходным уменьшенное во сколько угодно раз. Чем меньшую часть исходного напряжения мы хотим получить и подать на нагрузку, тем меньше должно быть сопротивление участка, с которого оно снимается. Кроме того, сопротивление участка делителя, с которого снимается напряжение, должно быть значительно меньше, чем сопротивление нагрузки, которая к этому участку будет подключена. Иначе подключение нагрузки изменит сопротивление всего участка цепи и напряжение на нём снизится.

Параллельная цепь - делитель тока.

Подключив резистор параллельно нагрузке можно уменьшить идущий в неё ток

Резистор, который подключают для ответвление лишнего тока, называют шунтом (шунт - обходной путь). Процесс уменьшения тока с помощью шунта называют шунтированием. Чем меньше сопротивление шунта, тем большая часть тока пойдёт в него и меньшая - на нагрузку.

Любое электронное устройство - есть электрическая цепь.

Законы электрических цепей.

С помощью графиков можно записать несколько самых разных зависимостей.

Первая - зависимость тока I в цепи от напряжения U при котором постоянное сопротивление R. Строится график следующим образом: задаёмся некоторыми значениями напряжения - 1 V, 2 V, 3 V и т.д. - и подсчитываем для них соответствующие величины тока по формуле закона Ома. При R 2 Ом получается соответственно 0,5 A, 1 A, 1,5 A. и т.д. Теперь из соответствующих точек на осях I и U проводим перпендикуляры до их пересечения и получаем на поле между осями точки, каждая из которых говорит: "при U = 1 V ток 0,5A", "при U = 1.5 V ток 1A", "при U = 3 V ток 1,5A" и т.д. Соединяем точки и получаем линию, которая как раз показывает, как именно ток I зависит от напряжения U. Одного взгляда достаточно, чтобы увидеть, что с увеличением напряжения ток растёт пропорционально (линейно). Для экономии места на одном графике можно показать несколько зависимостей I от U при разных сопротивлениях цепи. Легко заметить, что с ростом сопротивления цепи R ток I при увеличении U нарастает не так резко. График так же может показать, что величина тока обратно пропорциональна сопротивлению.

Величина тока или сила тока говорит о том, какова интенсивность движения зарядов.

Приборы измерения

Вольтметр измеряет разницу между количеством избыточных зарядов в двух участках цепи, определяет, каких зарядов и где больше, и насколько, сразу вычисляет какую работу выполнит каждый кулон электричества при такой разнице концентрации зарядов.

Подключается к двум точкам, между которыми нужно измерить напряжение.

Главное условие - собственное сопротивление вольтметра должно быть во много раз <u>больше</u>, чем сопротивление, к которому он подключён!

Амперметр - счётчик движущихся зарядов со встроенным секундомером. Подсчитывает кол-во зарядов, проходящих по цепи за 1 сек. Прибор подключается последовательно.

Собственное сопротивление амперметра должно быть во много раз меньше общего сопротивления цепи.

Омметр - комбинированный прибор, который одновременно измеряет напряжение и ток и сразу по закону Ома вычисляет сопротивление.

Электрическая мощность

Электрическая мощность - произведение напряжения (напряжение - работа, выполняемая кулонами движ.зарядов) на ток.

P = U*I

Единица измерения - ватт.

Мощность (Р) - это работа, выполненная за единицу времени.

Ватт = 1 дж. за 1 сек. (джоуль - работа, которую производит **сила в 1 ньютон на пути в 1 метр**)

Мощность (Р), потребляемая участком цепи - это произведение тока на напряжение (произведение числа кулонов в сек. на число дж., которое нарабатывает каждый кулон).

Мощность возрастает с увеличением напряжения, и с увеличением тока.

$$P = U * I$$

Мощность, как характеристика, может относиться к генератору и к любому другому элементу цепи.

Если превысить допустимую мощность, элемент может перегреться и выйти из строя.

Мощность (Р) — работа за единицу времени. Единица мощности — ватт (Вт): работа в 1 джоуль выполняется за 1 секунду (Т-29).

Мощность в электрической цепи — произведение тока на напряжение (Т-41).

Конденсатор

Конденсатор - устройство для накопления электрических зарядов.

Устройство конденсатора: две металлические пластины, находящиеся друг от друга на небольшом расстоянии. Положительные и отрицательные заряды накапливаются на них и задерживаются, потому, что разноимённые заряды притягиваются друг к другу.

В момент, когда конденсатор подключается к генератору питания, в цепи появляется **зарядный ток** - который будет протекать до тех пор, пока не зарядится конденсатор.

Если закоротить контакты конденсатора, то произойдёт быстрый разряд.

Электрическая цепь, состоящая из конденсатора и резистора - RC - цепочка - произведение RC = постоянная времени.

Магнетизм

Первопричина всех магнитных явлений - движение электрических зарядов.

Магнезия - город в Малой Азии, вблизи которого найдена магнитная руда.

Никакого самостоятельного магнетизма в природе не существует - магнетизм порождается электричеством.

Магнитное поле всегда замкнуто.

Магнитное поле порождается электрическим током, а так как электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами.

Магнитное поле - особая форма материи.

При изгибании проводника (медной проволоки) в кольцо происходит складывание магнитных полей.

У магнита есть полюса.

Стрелка компаса будет поворачиваться в сторону действия магнитных сил.

У постоянных магнитов магнитные свойства атомных токов суммируются.

Планета Земля - огромный магнит.

Возле проволочного витка с током можно выделить северный и южный магнитные области.

Наиболее сильное магнитное поле в районе центра проводника.

Синяя сторона стрелки - к области **северного** магнетизма, область **южного** магнетизма - **красная**.

Кольцевые токи. Согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.

Северный географический цент Земли - красный цвет стрелки компаса, а Южный - синий цвет. (Путница только с Землёй - на севере - южный магнитный полюс)

Правило буравчика - правило часов.

Катушка (индуктивность) - ток последовательно проходит по нескольким виткам проводника, суммируя их магнитные поля.

Ампер-витки: произведение тока на число витков.

Ферромагнитные и парамагнитные вещества в разной степени усиливают магнитное поле, диамагнитные ослабляют его. Можно во много раз усилить магнитное поле катушки, если вставить в неё сердечник из ферромагнитных веществ (железо (сталь), никель, кобальт, специальные сплавы).

Внешнее магнитное поле катушки действует на кольцевые токи в атомах ферромагнитного вещества, создавая в них собственное магнитное поле, которое может быть сильнее внешнего.

Относительная магнитная проницаемость - число, которое показывает, во сколько раз внутренние магнитные силы превышают внешние и. У стали относительная магнитная проницаемость 7000. Это значит, что в 7000 внутреннее магнитная сила превышает внешнюю (без стального сердечника). Стальной сердечник значительно усиливает его внутреннее и внешнее магнитное поле.

Напряженность, **индукция** и **магнитный поток** - основные характеристики магнитного поля.

Магнитные свойства проводника, по которому идёт ток 1 A, выбраны в качестве единицы магнитный свойств, **единицы магнетизма**.

Напряженность (H) поля показывает, абсолютно чистая характеристика (в вакууме), возможности магнита, который создаёт магнитное поле.

Напряженность (Н) говорит о том, что могло бы делать магнитное поле.

Ампер на метр(a/м) - единица **напряженности**. Магнитное поле с такой напряженностью появляется на расстоянии 16 см. от проводника с током в 1 А.

Магнитная индукция - показывает реальную силу (не в вакууме), с которой поле действует на пробный магнит.

Индукция говорит о том, что магнитное поле делает реально, с учётом среды.

Тесла (Т или Тл) - единица магнитной **индукции**.

Гс - **raycc**, более мелкая единица магнитной индукции из другой системы единиц (в 10 000 раз меньше Тл).

Магнитный поток (Ф) - 1 Тл, действующей на площади 1 м2.

Вебер (Вб) - единица магнитного потока в СИ. Соответствует индукции в 1 Тл, действующей на площади 1 м2.

С точки зрения источника питания, электродвигатель это просто резистор.

Закон Ома для магнитных цепей - магнитный поток пропорционален магнитодвижущей силе (ампер-витки катушки) и обратно пропорционален магнитному сопротивлению.

Магнитная цепь - путь, по которому замыкается магнитное поле.

В проводнике, который движется в магнитном поле, индуцируется (наводится) электродвижущая сила (Э.Д.С.).

Величина наведённой Э.Д.С. зависит от длины проводника, от индукции внешнего магнитного поля и скорости движения проводника в нём.

Чем больше витков в катушке индуктивности, тем больше наведённая в ней Э.Д.С.

Взаимоиндукция - процесс получения Э.Д.С. с помощью двух катушек - первичной и вторичной. Такое устройство называется трансформатором.

Наведённая Э.Д.С. зависит от скорости изменения индукции. Наведённая в катушке Э.Д.С. тем больше, чем больше скорость изменения магнитного поля.

Самый удобный способ получать наведённое Э.Д.С. это вращать проводник (обмотку) в магнитном поле.

Индуктивность характеризует способность катушки создавать магнитное поле.

Генри - единица индуктивности.

Электричество - это возможность доставлять энергию на большие расстояния.

Электричество - это возможность делить энергию на любые пропорции.

Электричество - это быстрое превращение энергии в любую форму - тепло, свет, движение.

Переменный ток

График переменной Э.Д.С. показывает, как она меняется с течением времени.

Под действием переменной Э.Д.С. в цепи идёт переменный ток, а на участках цепи действуют переменные напряжения.

Всё, что происходит в электрической цепи, подчиняется закону Ома: если увеличивается или уменьшается Э.Д.С. то увеличивается или уменьшается ток, если меняется полярность генератора, то меняется направление тока. в соответствии с законом Ома (но уже для участка цепи) переменный ток, проходя по какому нибудь резистору, создаёт на нём переменное напряжение.

Переменный ток может работать так же хорошо, как и постоянный. От того, что переменная Э.Д.С. двигает заряды в разные стороны - то туда, то обратно, работоспособность этих зарядов ни чуть не уменьшается. Существуют двигатели переменного тока, которые работают не хуже двигателей постоянного тока.

Частота говорит о том, насколько быстро меняется переменный ток (насколько часто происходит смена его направлений).

Герц - единица частоты.

Частота смены направлений имеет две характеристики:

- 1. Период указывает время, в течении которого переменный ток (Э.Д.С., напряжение), изменяясь, проходит весь свой цикл, все свои возможные значения.
- 2. Частота сколько периодов, полных циклов изменения тока успевает произойти за единицу времени.

Единица частоты Герц (Гц) - число периодов в секунду. Чем медленнее происходят изменения тока, чем дольше длится период, тем меньше (принято говорить "ниже") частота.

Мгновенное значение и амплитуда говорят о работоспособности тока в данный момент: "эффективное значение" - в среднем за длительное время.

Например, в сети переменного тока с напряжением 220 В амплитуда напряжения 220 * 1,4 = 308 В.

Для элементов цепей переменного тока, как правило, указывают их эффективные напряжения и токи: 220 В на лампечке, имеется ввиду эффективное напряжение.

Фазу и сдвиг фазы удобно указывать не в секундах, а в градусах.

Фаза - это параметр переменного тока, который указывает, в какой именно

момент времени этот переменный ток (Э.Д.С., напряжение) имеет то или иное мгновенное значение.

HX TASLE

Активное сопротивление: ток и напряжение совпадают по фазе. Активным называют сопротивление, которое уменьшает ток в цепи и отбирает часть мощности.

Реактивное сопротивление, это когда элемент цепи (например резистор) оказывает сопротивление току, но не уменьшает при этом мощности.

События на участке цепи с активным сопротивление неуклонно подчиняются закону Ома, как для постоянного тока.

Постоянный ток через конденсатор не проходит. Однако в момент, когда конденсатор заряжается или разряжается, ток в цепи идёт. Зарядный и разрядный ток.

Переменный ток, подключённый к конденсатору обеспечивает непрерывный заряд-разряд и соответственно непрерывное появление зарядного и разрядного тока в цепи.

Что может показать синусоида:

