Dimensionamento para Juiz de Fora

Sumário

1.	М	1ódulo SL6P60-240W	. 2
2	C	onfiguração dos módulos	3
		Simulando configuração final	
3.	Τe	emperaturas	. 5

1. Módulo SL6P60-240W

Suprindo 10kW.

Dados do Módulo - SL6P60-240W

Icurto [A] Vpmax [V] Ipmax [A] Vmax [V] Pmax [W] Eficiência %/°C Pmax %/°C Voc 8,52 30,1 7,96 37,2 240 14,76% -0,44% -0,30%

Valores do módulo simulados no PSIM

Vpotmax [V] Ipotmax [A] Pmax [W] T (°C) P V 31,259591 6,68797 226,68426 0° 250,77789 29,719804 V 80° 172,70096 24,280020 V

Simulando um módulo em condições ideais (S=1000W/m² e T=25°C)

2. Configuração dos módulos

Define-se o inversor a ser utilizado:

Time (s)

Imax-curto [A]	Faixa de tens	ão MPP [V]	Vmax [V]	Vmin [V]	Pmax [Wp]	Eficiência
22	360	750	900	360	12.800	97,80%

Com esses valores, utilizando o Solver no Excel, encontra-se a melhor configuração a ser utilizada:

23 agrupamentos em série2 agrupamentos em paralelo

Total de módulos usados: 46

Potência (ideal) de saída: 10,198 kW

2.1. Simulando configuração final

Simulação de temperatura para um módulo:

• 23 em Série:

23*Número de células	1380
23*Máxima Potência	5520
23*V _{POTÊNCIA} MÁXIMA	692,3
23*Voc	855,6
23*dv/di (slope) Voc	-15,64

Tempo: 6 ms

Potência: **5,2137380 kW**Tensão de saída: 30,722802 V
Corrente de saída: 8,5199119 A

• 2 strings (de 23 em série) em paralelo:

 2*Máxima Potência
 11040

 2*I_{POTÊNCIA MÁXIMA}
 15,92

 2*Isc
 17,04

 dv/di (slope) Voc / 2
 -7,82

Tempo: 6 ms

Potência: **10,412568 kW**Tensão de saída: 61,445836 V
Corrente de saída: 17,039888 A

Potência Final: 10,412 kW

3. Temperaturas

Simulando em **0°**:

Tempo: 6 ms

Potência: **11,520671 kW**Tensão de saída: 60,677767 V
Corrente de saída: 16,826890 A

Simulando em 80°:

Tempo: 6 ms

Potência: **7,9299424 kW**Tensão de saída: 63,134411 V
Corrente de saída: 17,508156 A