线性代数期中试卷 答案 (2018.11.17)

一. 简答与计算题(本题共5小题,每小题8分,共40分)

1. 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & -\lambda \end{pmatrix}$$
 经过多次初等行变换和列变换得到 $B = \begin{pmatrix} -5 & 17 & 6 \\ -7 & 0 & 5 \\ 13 & 9 & -8 \end{pmatrix}$,求参数 λ .

解: 做初等行变换,
$$A \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1-\lambda \end{pmatrix}, B \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & 7 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, 秩相等得 $\lambda = 1$.

解法三:
$$B \stackrel{r}{\rightarrow} \begin{pmatrix} 1 & -2 & -1 \\ 0 & 7 & 1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{c}{\rightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{r}{\rightarrow} \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \stackrel{c}{\rightarrow} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & -1 \end{pmatrix}, \therefore \lambda = 1.$$

2. 设
$$A = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 2 & & & \\ & & \ddots & \ddots & \\ & & & 0 & n-1 \\ n & & & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}, 其中 n \ge 2, 求 C^{-1}.$$

$$2. \ \ \mathcal{B} \ A = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ & \ddots & \ddots \\ & & 0 & n-1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}, \ \ \sharp \vdash n \geq 2, \ \ \sharp C^{-1}.$$

$$\mathbb{A} \ H: \ (A,E) \to \begin{pmatrix} 1 & & & 0 \\ & 1 & & & 1/0 \\ & & 1 & & 1/2 & 0 \\ & & \ddots & & \ddots & \\ & & & 1 & & 1/(n-1) & 0 \end{pmatrix}, \ \ A^{-1} = \begin{pmatrix} 0 & & 1/n \\ 1 & 0 & & \\ & 1/2 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1/(n-1) & 0 \end{pmatrix}, \ B^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}, \ C^{-1} = \begin{pmatrix} A^{-1} & & \\ & B^{-1} \end{pmatrix}.$$

3. 设 $A \in \mathbb{R}^{3 \times 3}$, $|A| \neq 0$, 且有 $A_{ij} = 2a_{ij}$, i, j = 1, 2, 3, 其中 A_{ij} 为矩阵元素 a_{ij} 的 代数余子式,求 $|A^*|$.

解: $A^* = 2A^T$, $2A^TA = A^*A = |A|E$, 取行列式, $2^3|A|^2 = |2A^TA| = |A|^3$.

因为 $|A| \neq 0$,故|A| = 8,于是有 $|A^*| = |2A^T| = 8|A| = 64$.

解法二:
$$|A| \neq 0$$
,则 $|A^*| = |A|A^{-1} = |A|^2$,又有 $|A^*| = |A|^2$,又有 $|A^*| = |A|$,故 $|A| = 8$,且 $|A^*| = 8|A| = 64$.

4. 设矩阵 $A = MN^{T}$,其中 $M, N \in \mathbb{R}^{n \times r}$ $(r \leq n), |N^{T}M| \neq 0$. 证明: $\mathbf{r}(A^{2}) = \mathbf{r}(A)$. 证: $|N^{\mathrm{T}}M| \neq 0, (N^{\mathrm{T}}M)^3$ 可逆,

故 $r = r((N^{\mathrm{T}}M)^3) = r(N^{\mathrm{T}}A^2M) \le r(A^2M) \le r(A^2) \le r(A) \le r(M) \le r$,从而 $r(A^2) = r(A)$.

证法二: $|N^{\mathrm{T}}M| \neq 0 \Rightarrow r = r(N^{\mathrm{T}}M) \leq r(N^{\mathrm{T}}) = r(N) \leq r$, $\therefore r(N) = r, r(M) = r$.

$$M, N$$
 列满秩,有 $M = P\begin{pmatrix} E_r \\ O \end{pmatrix}, N = Q\begin{pmatrix} E_r \\ O \end{pmatrix}$,其中 P, Q 可逆.

$$M,N$$
 列满秩,有 $M=P\begin{pmatrix}E_r\\O\end{pmatrix}, N=Q\begin{pmatrix}E_r\\O\end{pmatrix}$,其中 P,Q 可逆. 于是有 $\mathbf{r}(A)=\mathbf{r}(P\begin{pmatrix}E_r\\O\end{pmatrix}(E_r,O)Q^\mathrm{T})=\mathbf{r}(P\begin{pmatrix}E_r\\O\end{pmatrix}Q^\mathrm{T})=\mathbf{r}\begin{pmatrix}E_r\\O\end{pmatrix}=r.$

 $A^2 = MN^{\mathrm{T}}MN^{\mathrm{T}} = (M)((N^{\mathrm{T}}M)N^{\mathrm{T}}) = M\hat{N}^{\mathrm{T}}, |N^{\mathrm{T}}M| \neq 0 \Rightarrow (N^{\mathrm{T}}M)$ 可逆, 故 $\mathbf{r}(\tilde{N}^{\mathrm{T}}) = \mathbf{r}((N^{\mathrm{T}}M)N^{\mathrm{T}}) = \mathbf{r}(N^{\mathrm{T}}) = r$,且 $\tilde{N}^{\mathrm{T}} \in \mathbf{R}^{r \times n}$,于是也有 $\mathbf{r}(A^2) = \mathbf{r}(M\tilde{N}^{\mathrm{T}}) = r$,

从而 $r(A^2) = r(A)$.

5. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & n-1 \\ 3 & 4 & 5 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n & n-1 & n-2 & \cdots & 1 \end{vmatrix}$$
. $(D$ 的元素 $a_{ij} = \begin{cases} i+j-1, & \exists i+j \leq n+1, \\ 2n+1-i-j, \exists i+j > n+1. \end{cases}$)
$$\mathbf{M}: \ D \stackrel{r_{i+1}-r_i}{=} \begin{vmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 1 & \cdots & 1 & -1 \\ 1 & 1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & \cdots & -1 & -1 \end{vmatrix} \stackrel{c_i+c_1}{=} \stackrel$$

$$\text{M: D} \stackrel{r_{i+1}-r_i}{=} \stackrel{1}{\overset{c_{i}+1}-r_i}{\stackrel{1}{=}} \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 1 & \cdots & 1 & -1 \\ 1 & 1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & -1 & \cdots & -1 & -1 \end{pmatrix} \stackrel{c_{i}+c_1}{\stackrel{i=2,\cdots,n}{=}} \begin{pmatrix} 1 & 3 & \cdots & n & n+1 \\ 1 & 2 & \cdots & 2 & 0 \\ 1 & 2 & \cdots & 2 & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix},$$

依次按最后一行展开: $D = (-1)^{(n+1)+n+\cdots+3}2^{n-2}(n+1) = (-1)^{n(n-1)/2}2^{n-2}(n+1)$.

二.(10分) 设有向量组

$$\alpha_1 = \begin{pmatrix} 2 \\ -2 \\ -1 \\ 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ -4 \\ 1 \\ -1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \alpha_5 = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 7 \end{pmatrix}.$$

- (1)求一个极大无关组,并用极大无关组表示其系
- (2) 在4维列向量组 e_1, e_2, e_3, e_4 中找出所有不能被向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 线性表示的向量,

(2) 任4維列向重组
$$e_1, e_2, e_3, e_4$$
 中秋语所有不能被向重组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 线性表示的问其中 $e_1 = (1,0,0,0)^{\mathrm{T}}, e_2 = (0,1,0,0)^{\mathrm{T}}, e_3 = (0,0,1,0)^{\mathrm{T}}, e_4 = (0,0,0,1)^{\mathrm{T}}.$

解: $(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5|e_1,e_2,e_3,e_4) \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & 1 & 2/3 & 1/3 & -1/3 & 0 \\ 0 & 1 & 3 & 0 & -1.5 & -2/3 & -5/6 & 1/3 & 0 \\ 0 & 0 & 0 & 1 & 1.5 & 1/3 & 1/6 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 & -1 & 0 & 1 \end{pmatrix}$.

- (1) 一个极大无关组为 $\alpha_1, \alpha_2, \alpha_4$,且 $\alpha_3 = -\alpha_1 + 3\alpha_2, \alpha_5 = \alpha_1$
- (2) 第4行分量非零的向量不能表示,即向量 e_1, e_2, e_4 .

(2) 第4行分量非零的问量不能表示,即问量
$$e_1, e_2, e_4$$
.

解法二: (1) $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 3 & 0 & -1.5 \\ 0 & 0 & 0 & 1 & 1.5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

一个极大无关组为 $\alpha_1, \alpha_2, \alpha_4$,且 $\alpha_3 = -\alpha_1 + 3\alpha_2$

$$(2) (\alpha_1, \alpha_2, \alpha_4 | e_1, e_2, e_3, e_4) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2/3 & 1/3 & -1/3 & 0 \\ 0 & 1 & 0 & -2/3 & -5/6 & 1/3 & 0 \\ 0 & 0 & 1 & 1/3 & 1/6 & 1/3 & 0 \\ 0 & 0 & 0 & -3 & -1 & 0 & 1 \end{pmatrix}.$$

第4行分量非零的向量不能表示,即向量 e

三.
$$(10分)$$
 设 $A \in \mathbb{R}^{3\times 3}$, A 的第一列为 $\alpha_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$,且 $\xi_1 = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$ 和 $\xi_2 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$

是齐次线性方程组 $(A-2E)x = \theta$ 的非零解,求 A.

解: $Ae_1 = \alpha_1, A\xi_1 = 2\xi_1, A\xi_2 = 2\xi_2$, 故 $A(e_1, \xi_1, \xi_2) = (\alpha_1, 2\xi_1, 2\xi_2)$,

$$A = (\alpha_1, 2\xi_1, 2\xi_2)(e_1, \xi_1, \xi_2)^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 6 & -9 \\ -1 & 4 & -7 \end{pmatrix}.$$

解法二: 设
$$A = \begin{pmatrix} 2 & a_{12} & a_{13} \\ -1 & a_{22} & a_{23} \\ -1 & a_{32} & a_{33} \end{pmatrix}$$
, 由 $(A - 2E)\xi_i = \theta, i = 1, 2$,

得
$$\begin{cases} 3a_{12} + a_{13} = 0, \\ 3a_{22} + a_{23} = 9, \\ 3a_{32} + a_{33} = 5, \\ -2a_{12} - a_{13} = 0, \\ -2a_{22} - a_{23} = -3, \\ -2a_{32} - a_{33} = -1, \end{cases}$$
解得
$$\begin{cases} a_{12} = a_{13} = 0, \\ a_{22} = 6, \ a_{23} = -9, & \text{id } A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 6 & -9 \\ -1 & 4 & -7 \end{pmatrix}. \end{cases}$$

解法三: $(A-2E)(\xi_1,\xi_2)=O$,故 $\begin{pmatrix} \xi_1^{\mathrm{T}} \\ \xi_2^{\mathrm{T}} \end{pmatrix} (A-2E)^{\mathrm{T}}=O$,即 $(A-2E)^{\mathrm{T}}$ 的列为方程组 $\begin{pmatrix} \xi_1^{\mathrm{T}} \\ \xi_2^{\mathrm{T}} \end{pmatrix} x=\theta$ 的解.

$$\begin{pmatrix} \xi_1^{\mathrm{T}} \\ \xi_2^{\mathrm{T}} \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1/9 \\ 0 & 1 & 4/9 \end{pmatrix}, \quad 通解为 \ x = k \begin{pmatrix} 1 \\ -4 \\ 9 \end{pmatrix}. \ 易知 \ (A - 2E)^{\mathrm{T}} \ 的第一行为 \ (0, -1, -1),$$

故
$$(A-2E)^{\mathrm{T}} = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 4 & 4 \\ 0 & -9 & -9 \end{pmatrix}$$
,最后有 $A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 6 & -9 \\ -1 & 4 & -7 \end{pmatrix}$.

四. (15分) 设下列非齐次线性方程组有3个线性无关的解向量:

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 &= 1, \\ \lambda x_1 + x_2 + 2x_3 + 7\mu x_4 &= -2, \\ 4x_1 + 9x_2 - 5x_3 - 6x_4 &= 5. \end{cases}$$

- (1) 求出该方程组系数矩阵的秩; (2) 求出参数 λ, μ 的值以及方程组的通解.
- 解: (1) $(A,b) \rightarrow \begin{pmatrix} 1 & 0 & 1 & 3 & -1 \\ 0 & 1 & -1 & -2 & 1 \\ 0 & 0 & 3 \lambda & 7\mu + 2 3\lambda & \lambda 3 \end{pmatrix}$, 无关解向量 $\alpha_1, \alpha_2, \alpha_3$.

易知 $\alpha_1 - \alpha_2, \alpha_1 - \alpha_3$ 是 $Ax = \theta$ 的两个无关解, 故 r(A) = 2.

(2) 由 r(A) = 2 知 $\lambda = 3, \mu = 1$. 令 $x_3 = x_4 = 0$ 得一个特解 $\eta = (-1, 1, 0, 0)^{\mathrm{T}}$,

对应齐次方程组的基础解系为 $\beta_1 = (-1,1,1,0)^T$, $\beta_2 = (-3,2,0,1)^T$, 通解为 $\eta + k_1\beta_1 + k_2\beta_2$.

五.(15分) 设
$$A = \begin{pmatrix} 2 & 6 & 6 \\ 3 & -1 & 3 \\ -3 & -3 & -7 \end{pmatrix}$$
.

- (1) 计算矩阵 A 的特征值和特征向量; (2) 计算矩阵 $(A^2 + A^* + 2E)^{-1}$ 的特征值和特征向量.
- 解: (1) $|\lambda E A| = (\lambda 2)(\lambda + 4)^2$, 故特征值 $\lambda = 2, -4$ (二重).

 $\lambda = 2$, 特征向量为 $k_1\xi_1, \xi_1 = (-2, -1, 1)^{\mathrm{T}}$,

- $\lambda = -4$,特征向量为 $k_2\xi_2 + k_3\xi_3, \xi_2 = (-1, 1, 0)^{\mathrm{T}}, \xi_3 = (-1, 0, 1)^{\mathrm{T}}$.
- (2) |A| = 32, $\Rightarrow B = A^2 + A^* + 2E = A^2 + 32A^{-1} + 2E$, $B\xi_1 = (2^2 + 32 * (1/2) + 2)\xi_1 = 22\xi_1$,

 $B\xi_2 = 10\xi_2, B\xi_3 = 10\xi_3, \text{ if } B^{-1}\xi_1 = (1/22)\xi_1, B^{-1}\xi_2 = (1/10)\xi_2, B^{-1}\xi_3 = (1/10)\xi_3.$

于是 $(A^2 + A^* + 2E)^{-1}$ 的特征值为 1/22, 1/10, 1/10,对应特征向量为 ξ_1, ξ_2, ξ_3 .

- 六.(10分) 设矩阵 $A \in \mathbb{R}^{m \times n}$, $\mathbf{r}(A) < n$, 列向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 是齐次线性方程组 $Ax = \theta$ 的基础解系,矩阵 $N = (\alpha_1, \alpha_2, \cdots, \alpha_s) \in \mathbb{R}^{n \times s}$. 证明: $\mathbf{r}(A^T, N) = n$.
- 证: 只要证明r $\binom{A}{N^{\mathrm{T}}} = n$ 或 $\binom{A}{N^{\mathrm{T}}} x = \theta$ 只有零解.

因为解满足 $Ax = \theta$, 故x为基础解系的组合,从而存在s维向量 y 使得 x = Ny.

又 x 满足 $N^Tx = \theta$, 即 $N^TNy = \theta$, 故 $x^Tx = y^TN^TNy = 0$, 于是 $x = \theta$ 为零解, 结论得证.

证法二: 易知 $\mathbf{r}(A) = n - s$,取 A^{T} 列的极大无关组 $\beta_1, \dots, \beta_{n-s}$,令 $B = (\beta_1, \dots, \beta_{n-s})$,则有 $B^{\mathrm{T}}N = O$. 考虑 $k_1\beta_1 + \dots + k_{n-s}\beta_{n-s} + t_1\alpha_1 + \dots + t_s\alpha_s = \beta + \alpha = \theta$,

则有 $\beta^{\mathrm{T}}\alpha = x^{\mathrm{T}}B^{\mathrm{T}}Ny = 0$,故 $0 = \beta^{\mathrm{T}}\theta = \beta^{\mathrm{T}}(\beta + \alpha) = \beta^{\mathrm{T}}\beta$,故 $\beta = \theta$,于是 $\alpha = \theta$.

从而 $k_1 = \cdots = k_{n-s} = 0$, $t_1 = \cdots = t_s = 0$, 即 $(B, N) = (\beta_1, \cdots, \beta_{n-s}, \alpha_1, \cdots, \alpha_s)$ 的列线性无关,

故有 $\mathbf{r}(B,N) = n$,最后可得 $n = \mathbf{r}(B,N) \le \mathbf{r}(A^{\mathrm{T}},N) \le n$,即 $\mathbf{r}(A^{\mathrm{T}},N) = n$.