

Objectives

At the end of this Unit, the student should:

- Know and understand the design of CMOS integrated circuits
 - Complementary CMOS logic
 - Logic design based on transmission gates
- Know a wide range of CMOS logic circuits
 - Combinational, sequential, RAM memory cells
- Know how to characterize electrically the CMOS integrated circuits
 - Parameters of voltage, current, delay and power consumption
 - Special outputs: open drain, tri-state.
- Know the main CMOS subfamilies
 - Buffered outputs, high speed, low voltage, etc.
- Understand the foundations of design and manufacture of VLSI chips

Contents

- 4.1 Introduction
 - 4.1.1 Main features. Historical evolution. Moore's Law
- 4.2 Combinational Circuits
 - 4.2.1 The inverter
 - 4.2.2 Other basic gates
 - 4.2.3 Design of general functions in CMOS Complementary Logic
 - 4.2.4 Design with transmission gates. Multiplexers
- 4.3 Flip-flops: level and edge triggered
- 4.4 Special outputs
 - 4.4.1 Open drain
 - 4.4.2 Tri-state
- 4.5 Electrical characteristic parameters
- 4.6 CMOS Subfamilies
- 4.7 Compatibility between families
 - 4.7.1 Level Converters
- 4.8 VLSI Design Basics
 - 4.8.1 Fabrication Process. Masks.
 - 4.8.2 Cells layout.
 - 4.8.3 Design flow based on standard cells
 - 4.8.4. Current and future trends

Bibliography

Theory

- "Digital design". Wakerly. Ed. Prentice-Hall. 2006. Chapter 3.
- "Electronics". Hambley. Ed. Prentice-Hall. 2002. Chapter 6.
- "CMOS circuits". R.M. Marston. Ed. Paraninfo. 1995.
- "Digital integrated circuits". Jan Rabaey et al. Ed. Prentice-Hall. 2004.
- www.intel.com/technology
- "International Technology Roadmap for Semiconductors ITRS09"

Problems

• G.Benet; J.V.Benlloch; J.V.Busquets; D.Gil; P.Perez, *Ejercicios Resueltos de Tecnologia de Computadores, Cap.5,* SPUPV 2006.916

4.1. Introduction

- CMOS is the logic family with more looking forward to future.
- Application scope :
 - Most LSI and VLSI I.C.: Memories and Processors
 - SSI and MSI, together with TTL
- Relevant features
 - Low power consumption
 - Simple manufacturing process
 - Excellent noise immunity
 - Variable supply voltage
 - High Speed subfamilies.

4.1. Introduction. Historical evolution

- In 1970's the manufacturing processes for processors and memories was typically based on NMOS transistors
 - Cheap, but have static consumption

Intel 1101 256-bit SRAM

Intel 4004 4-bit μProc

4.1. Introduction. Historical evolution

 From 1980's to present: CMOS technology: Low static power

Intel 286

Intel Pentium

Intel-i7

4.1. Introduction. Moore's law

- 1965: Gordon Moore predicted the evolution of the number of transistors per chip
 - It fits a straight line in a semi-logarithmic scale
 - The number of transistors doubles every 18-24 months

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

4.1. Introduction. Moore's law

Feature Size brings down an 30% every 2-3 years

4.1. Introducción. Ley de Moore

- Many other factors grow exponentially
 - Ex: clock frequency, processor performance

4.1 Introduction. Power

- The power consumed by chips has also grown exponentially, because:
 - Intensive integration, High frequency
- Power consumption is a key factor, as soon as:
 - Limits the integration density: Heat dissipation
 - It is specially important in systems powered with batteries

4.1 Introduction. Power density

4.2. Combinational circuits

- MOS transistors as ideal switches:
 - MOS transistors can be seen as voltage-controlled switches (model)
 - The gate voltage controls the connection between drain and source terminals

Digital input: $V_I = 0V = "0"$ $V_I = V_{DD} = "1"$

$$V_{GS1} = V_{DD} - V_{DD} = 0V > -V_T \Rightarrow PMOS \ \mathbf{OFF}$$

 $V_{GS2} = V_{DD} - 0V = V_{DD} > V_T \Rightarrow NMOS \ \mathbf{ON}$

$$V_{GS1} = 0V - V_{DD} = -V_{DD} < -V_{T} \Rightarrow PMOS \ \mathbf{ON}$$

 $V_{GS2} = 0V - 0V = 0V < V_{T} \Rightarrow NMOS \ \mathbf{OFF}$

An easier symbol for MOS transistors

Structure: PMOS transistors in parallel and NMOS in series

Structure: NMOS transistors in parallel and PMOS in series

4.2.2 Other basic gates

- Buffer = NOT + NOT
- AND = NAND + NOT
- OR = NOR + NOT

4.2.3 Design of general functions in CMOS Complementary Logic (1)

General case:

- NMOS and PMOS blocks are dual

→ Intermediate function G

NMOS block connected to ground

$$F = \overline{G}$$

PMOS block
 connected to VDD
 F = G, but inverted inputs

CMOS complementary logic

4.2.3 Design of general functions in CMOS Complementary Logic (2)

- Any inverted function can be implemented
- Ex: $Y = \overline{(A.B) + (C.D)}$ (AND-OR-INVERT-22)

8 transistors

Chip area and power reduction

16 transistors

4.2.3 Design of general functions in CMOS Complementary Logic (3)

Example: OAI-31

$$Y = \overline{(A+B+C)\cdot D}$$

4.2.3 Design of general functions in CMOS Complementary Logic (4)

Example: OAI-31

4.2.3 Design of general functions in CMOS Complementary Logic (5)

- If the function is not inverted:
- We have two solutions:
 - Transform it to an equivalent inverted function, applying involution and De Morgan laws:
 - NMOS block design
 - PMOS block design with dual structure of NMOS block.
 - Design from PMOS block, inverting the inputs. NMOS block is designed with the dual structure of the PMOS.
- Example: design the carry out function of a fulladder:

$$F = AB + AC + BC$$

$$F = \overline{F} = \overline{AB + AC + BC} = (\overline{A} + \overline{B}).(\overline{A} + \overline{C}).(\overline{B} + \overline{C})$$

$$G = (\overline{A} + \overline{B}).(\overline{A} + \overline{C}).(\overline{B} + \overline{C}) \rightarrow \text{Bloc NMOS}$$
Bloc PMOSdual

4.2.4 Transmission gates (1): NMOS

- Bi-directional switch that opens or closes controlled by an external signal
 - NMOS transmission gate:
 - If $V_G = 0V \rightarrow Open Switch \rightarrow V_O = 0V$
 - If V_G = V_{DD} → Closed Switch
 The transmission of "1" degrades V_T volts
 The transmission of "0" is not degraded

4.2.4 Transmission gates (2): NMOS

4.2.4 Transmission gates (3): PMOS

- PMOS transmission gate
 - If $V_G = V_{DD}$ → Open Switch → $V_O = 0V$ If $V_G = 0V$ → Closed Switch
 The transmission of "1" is not degraded
 The transmission of "0" is degraded V_T

4.2.4 Transmission gates (4): PMOS

4.2.4 Puertas de transmisión (5): CMOS

- They join the characteristics of the two gates (NMOS and PMOS), not degrading the output
 - If $V_G = 0V$ →NMOS and PMOS **OFF** → $V_O = 0V$
 - If V_G = V_{DD} → NMOS and PMOS **ON** The NMOS transmits the "0" without degradation
 The PMOS transmits the "1" without degradation

4.2.4 Transmission gates (6): Multiplexer

- Analog multiplexer
 - Inputs V_A, V_B, selection Sel, output V_F

4.2.4 Transmission gates (7): Multiplexer

4.2.4 Transmission gates (8): Multiplexer

Digital multiplexer: CMMOS inverter at the output

4.2.4 Transmission gates (9): Multiplexer

- Design of the multiplexer with basic gates:
- How many transistors do we need? (exercise) $F = B \cdot Sel + A \cdot \overline{Sel}$

4.3 Latches and Flip-flops (1): The D Latch

- If CLK = 1, the latch is transparent
 - (we can see D from Q)
 - D is transmitted to Q as in a buffer
- If CLK = 0, the latch is opaque
 - (we can see nothing from Q)
 - Q stores the old value independently of D
- Also called transparent or level-triggered latch

4.3 Latches and Flip-flops (2): Design of a D Latch from transmission gates

Multiplexer selects D or holds Q

4.3 Latches and Flip-flops (3): Latch D operation

4.3 Latches and Flip-flops (4): The D Flip-flop

- When CLK has a rising edge, D passes to Q
- Otherwise, Q holds its old value
- Also called edge-triggered flip-flop, master-slave flip-flop

4.3 Latches and Flip-flops (6): Design of a D Flip-flop

Master-slave design from latches:

4.3 Latches and Flip-flops (6): D Flip-flop operation

4.4 CMOS special outputs (1)

- Open-drain output
- Open-drain CMOS NAND
- R_{PU} is required

Integrated circuit (IC)

4.4 CMOS special outputs (2)

- Tri-state output:
 - Tri-state inverter

- Tri-state buffer (not inverting buffer):
 - Inverter+Tri-state inverter

4.5 Characteristic parameters (related to standard CMOS)

- Supply voltage:
 - V_{DD} typically between 3V and 15V in SSI and MSI chips
 - GND $(V_{SS}) = 0 V$
 - In 1980's, $V_{DD} = 5V$
 - V_{DD} has been reducing over the years in VLSI chips:
 - High V_{DD} may affect small current transistors of nowadays
 - A low V_{DD} decreases power consumption
 - $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$
 - VLSI chips have normally with 2 voltage supplies:
 - Logic "Core": low V_{DD} (e.g. 1V)
 I/O cells: high V_{DD} (e.g. 2.5V)

4.5 CMOS characteristic parameters (2)

- Power Consumption:
 - Consequences:
 - Battery life (portable systems)
 - Wiring design (V_{DD}, V_{SS})
 - Refrigeration systems
 - Noise immunity
 - Reliability
 - Static consumption and Dynamic consumption:

$$P_{total} = P_{static} + P_{dynamic}$$

4.5 CMOS characteristic parameters (2)

- Power Consumption:
 - Static regime: virtually null (≈ nA, pA), as there is always a transistor in cut-off mode (PMOS or NMOS)
 - Leakage currents:
 - Insulated Gate
 - Subthreshold (when V_{GS} < V_T if V_T is very small)
 - Increasingly important in VLSI (a billion transistors nowadays)

$$P_{leakage} = V_{DD} \times I_{leakage}$$

4.5 CMOS characteristic parameters (3)

- Dynamic regime: $P_d = (V_{DD})^2 C_L f_i$, where:
 - C_L→parasitic capacitance of the load
 - f_i →switching frequency of inputs
 - This dissipated power is due to:
 - loading / unloading of C_L
 - Current peaks during transitions: the two transistors (PMOS and NMOS) conduct simultaneously.
 - Dynamic power consumption is the most important in CMOS technology:
 - In fact, static power consumption can be neglected
 - Note: If we refer P_d to the clock frequency "f" of the system:
 - $P_d = \alpha (V_{DD})^2 C_L f$ where:
 - α → average activity factor of the inputs (average number of transitions in one clock cycle)
 - α <1

4.5 CMOS characteristic parameters (4): Dynamic power consumption

- The relevant dynamic consumption occurs in the transition L →H
- In the transition H → L there are only consumption due to simultaneous conduction of 2 transistors: short circuit.

4.5 CMOS characteristic parameters (5)

Logic levels. Noise Immunity

Input voltage

 V_{DD}

 $V_{DD}/2$

Very ideal transfer curve

$$V_{OHmin} = V_{DD} - 0.1V$$

 $V_{OLmax} = 0.1V$
 $NM \approx 30\% V_{DD}$

Excellent noise inmunity (increases with $V_{\tiny DD}$)

4.5 CMOS characteristic parameters (6)

Current levels. FAN-OUT (Standard CMOS current values)

I _{OH} -0.5 mA	High level output current	Exits
I _{OL} 0.5 mA	Low level output current	Enters
I _{IH} 10 pA	High level input current	Enters
I _{IL} -10 pA	Low level input current	Exits

 Very small input currents → We can connect a lot of inputs to a single output

$$Fan - Out_L = \left| \frac{I_{OL}}{I_{IL}} \right| = 50.000.000$$
 $Fan - Out_H = \left| \frac{I_{OH}}{I_{IH}} \right| = 50.000.000$

 Real constraint to not increase the delays and dynamic power consumption: the manufacturer recommends Fan-out = 50

4.5 CMOS characteristic parameters (7)

Propagation delays

$$t_p = \frac{1}{2} \left(t p_{LH} + t p_{HL} \right) \approx \frac{C_L}{2V_{DD}} \left(\frac{1}{K_p} + \frac{1}{K_n} \right)$$

- Depend on V_{DD}, C_L and K of transistors
 - Lower delay if high V_{DD}
 - Higher delay for high C₁
 - Lower delay if high K

- CMOS is now very fast, with similar delays to TTL
 - High Speed CMOS Subfamilies

RC model for propagation delay

• The delays are given by the charging time of C_L through R_p , and by the discharging time of C_L through R_n)

4.6 CMOS subfamilies

- CD 4XXX : original family
 - 4XXXA: conventional
 - 4XXXB: with output buffer
- 74CXXX: TTL functionally CMOS compatible (pins and functions), but not electrically
- 74HCXXX: high speed CMOS
- 74HCTXXX: high speed CMOS with TTL compatible inputs
- 74ACXXX: Advanced high speed CMOS
- 74ACTXXX: Advanced high speed CMOS with TTL compatible inputs
- 74FCTXXX: Fast CMOS, TTL compatible
- BCT: BiCMOS (Bipolar-CMOS)
- ABT: Advanced BiCMOS
- LVC, ALVC: Low Voltage CMOS

4.6 CMOS subfamilies (2)

- The HC, AC and BCT subfamilies:
 - Have higher output current than standard CMOS
 - Are faster
 - The logic levels are not as extreme
 - More restricted supply voltage (between 2V and 6V)
- The HCT, ACT and FCT subfamilies:
 - Have TTL compatible inputs and CMOS outputs
 - Have a voltage supply of +5 V, as TTL
- LVC and ALVC subfamilies:
 - Work with V_{DD} less or equal to 3.3V (2.5, 1.8, 1.5,..)
 - Low-power applications

4.6 CMOS subfamilies (2)

- Example: 54/74HC00 (4 2-input NAND gates)
 - 54HC: military version (it works between -40 ° C to +85 ° C)
 - 74HC: commercial version (it works between -55 ° C to +125 ° C)
- VDD between 2V and 6V (typical = +5V)
 - $-V_{IHmin} = 3.15V, V_{ILmax} = 1.35V$
 - $-V_{OHmin} = 3.84V, V_{OLmax} = 0.33V$
 - $-I_{IHmax} = 1\mu A, I_{ILmax} = -1\mu A$
 - $I_{OHmax} = -4mA$, $I_{IHmax} = 4mA$
 - $I_{CC(typ)}$ = 2 μA (average static current consumption)
 - $-T_{pd(typ)} = 9 \text{ ns (average delay)}$
 - C_{pd} (gate capacity, without load) = 22pF
 - Comparing with standard CMOS:
 - Less extreme output voltage levels
 - Lower noise margin
 - Higher output currents
 - More speed

4.7 VLSI design foundations

- Manufacturing Process:
 - CMOS transistors are manufactured in thin silicon wafers
 - Photo-lithographic process:
 - Sequence of photographic and chemical steps
 - At each step, different materials are deposited or printed
 - In each step, different materials are settled or engraved

4.7.1 Manufacturing Process

Chip manufacturing in wafers:

Diameter: 75-300 mm

Thickness: ~1mm

4.7.1 Manufacturing Process

CAD design→ masks→photolithography

4.7.2 Cells layout: layers

- CMOS inverter on the wafer. Layers of materials
 (1):
 - Cross section of the inverter
 - P-substrate typically used for nMOS transistors
 - Requires n-well as a substrate of pMOS transistors

4.7.2 Cells layout: layers

- CMOS inverter on the wafer. Layers of materials
 (2):
 - Well and substrate contacts
 - The substrate must be connected to GND and the n-well to VDD
 - Contacts (taps) are made with heavily doped Si in substrate and the n-well

4.7.2 Cells layout: layers

- Normally, there are several metal layers:
 - Interconnections
 - V_{DD}, GND
 - Clock
- Example with 2 metal layers

4.7.2 Cells layout: masks

- CMOS inverter. Masks
 - Transistors and connections are defined by masks
 - Top view:

4.7.2 Cells layout: masks

- Example: 6 masks
- n-well

- Polysilicon
- n+ diffusion
- p+ diffusion
- Contact

Metal

4.7.2 Photolitography

- Masks are projected over the wafer
- The parts on shadow are eliminated (Engrave)
- In the eliminated parts materials are settled (Place)
 glass plate chromium

Patterning - Photolithography

- 1. Oxidation
- 2. Photoresist (PR) coating
- 3. Stepper exposure
- Photoresist development and bake
- Acid etching

Unexposed (negative PR) Exposed (positive PR)

- 6. Spin, rinse, and dry
- Processing step

Ion implantation Plasma etching Metal deposition

Photoresist removal (ashing)

4.7.2 Cells layout: Inverter layout

4.7.2 Cells layout: 3 input NAND

4.7.2 Cells layout

$$Y = \overline{(A+B+C).D}$$

5.7.2 Cells layout: Exercise

Which function implements this layout?

4.7.3 Design flow with standard cells

- Layouts of simple circuits
 - Logic gates, FF, full-adder, multiplexers, cell input / output,
- Cells stored in cell libraries
- Different sizes and output currents
- Predesigned and verified (area, delay, power consumption)
- Deposited on the chip to form more complex designs
 - Computer Aided Design (CAD): place and route
 - Reusability
 - Modularity
- Automatic design of macro-cells (macro-modules) memory modules, multipliers, ...

Standard Cells

XOR-2

4.7.3 Design flow with estándar cells

Provision of standard cells on the chip:

Cells arranged in rows, with the same height and variable width

V_{DD} and GND shared

Routing channel

The interconnecting channels are reduced by increasing the presence of more metallization layers

Standard Cell Layout

4.7.3 Design flow with estándar cells

Design flow based on standard cells

4.7.3 Design flow with estándar cells

Steps in the flowchart

- 0. System specification using a natural or formal language
- 1. Initial description of the design. Behavioral description using HDL languages -Hardware Description Languages-(Verilog, VHDL).
- 2. Logic synthesis. It automatically generates the netlistdescription of the standard cells needed and the connections between them.
- 3. System partition. Divides a large system into blocks.
- 4. Pre-layout simulation. Verification of correct operation.
 Approximate temporal verification based on the cells delays.
- 5 .Floor planning. Organize (place) blocks in the chip netlist.
- 6. Placement. Deciding the location of cells within a block.
- 7.Routing. Make connections between cells and block
- 8.Extraction. Determine the resistance and capacitance of interconnections.
- 9. Post-layout simulation. Verification of timing requirements with the R and C values of the actual interconnections.

4.7.3 Design flow with estándar cells: examples

Pentium 4

Intel® Pentium® processor Extreme Edition processor die

Dual-Core Processors

4.7.4 Full-custom design

- Some cells or parts of the design require optimal features of the area, consumption or speed
 - Clock circuits (PLL, drivers, ...)
 - High-speed arithmetic circuits (floating point, ...)
 - Input / Output Drivers
 - _ ...
- For these cases, a full-custom design is used
 - Mask-level design (geometric)
 - More optimal design than based on Standard Cells (semicustom)
 - For critical parts of small size
 - CAD Tools:
 - Graphical layout editor
 - Primitives: transistors, contacts, wires, ports
 - Automatic verification

4.7.4 Full-custom design

Layout editor

Post-Layout Simulation

4.7.5 VLSI design: current and future trends

- Historical evolution:
 - 4004: 10 μm technology
 - **–**
 - Pentium 4: 0.13 μm technology, 90nm (submicron)
 - Dual-core, 4-cores, 8 cores, ... (thousands of millions of transistors)
- Current technologies: 90nm, 65nm, 45nm, 32nm, 22 n
- Current trends: technological and design improvements in CMOS
 - (www.intel.com /technology, ITRS 09)
 - New materials
 - New designs
- Future Trends: Research in Nanotechnology (ITRS 09)
 - Nanotubes, nanowires, graphene, spintronics, SET, molecular,
 quantum

4.7.4 VLSI design: New trends of today and future

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L_{gate} (nm)	20	14	10	7	5
$V_{DD}\left(\mathbf{V}\right)$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

4.7.4 VLSI design: New trends of today and future

- Multicore era
 - Simpler Core microprocessors
 - Less voltage and frequency
 - More performance as there are more cores/chip

e.g. Intel 10 Core Xeon Westmere-EX

> 1.73-2.66 GHz (vs. previous Xeons at 4 Ghz)

Summary

- In the first part of the unit we have introduced the structure and operation of CMOS basic gates (NOT, NAND, NOR, ...).
- After that, we have addressed the design of generic combinational circuits using the complementary CMOS logic methodology.
- Then, the transmission gates have been introduced, studying their use in several logic circuits, such as multiplexers and flip-flops.
- We have also addressed the special CMOS outputs (open drain and tristate), which allow for bus connections.
- We have also described the main characteristic parameters of the CMOS family and subfamilies, discussing the high-speed and low voltage CMOS subfamilies.
- Subsequently, we have seen a summary of the fundamentals of VLSI design and manufacturing.
- Finally, we have commented on the current and future trends in the design and manufacture of VLSI chips.