时间序列模型概述

目标:

- 金融领域: GDP, 各种金融/财务因子
- 互联网:广告点击、流量监测
- 市场营销:销售、促销活动
- 工业: 电力负荷, 生产线异常检测
- 生物医药:心电图

颗粒度:

- 每个产品
- 一组产品
- 总销量
- 按地区
- 每周、月、年

预测区间:

- 短 (排班, 生产运输)
- 中 (资源安排, 采购, 招聘)
- 长 (战略规划)

时序模式

- 时间序列: 序列观测值 $s_t \in R$, 通常按时间排序
- 通用模型:

 $y_{t:t+T} = f(x_{t-1}, x_{t-2}, ..., x_1, \text{温度}, 周天, 月, 价格, 促销, ...)$

其中:

- $x_1, ..., x_{t-1}$ 历史观测值
- 温度, 周天, 月, 价格, 促销等为外部依赖变量。
- 趋势:长期的上升或者下降
- 季节:季节性规律,如周度、月度、年度规律
- 周期:以不固定周期震荡

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

 $\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2$

$$\frac{1}{n}\sum_{i=1}^{n}|\frac{y_i-\hat{y}_i}{y_i}|$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{|y_i| + |\hat{y}_i|}$$

$$\frac{1}{n} \sum_{i=1}^n \begin{cases} \alpha |y_i - \hat{y}_i| & \text{if } y_i > \hat{y}_i \\ (1-\alpha)|y_i - \hat{y}_i| & \text{if } y_i < \hat{y}_i \end{cases}$$

传统模型

🏠 简单平均

简单平均:

$$\hat{y}_{t+h|t} = \frac{1}{T} \sum_{i=t-1}^{t-T} y_i$$

www.

- 加权平均:
- $\hat{y}_{t+\mathrm{h}|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}$
 - $$\begin{split} \hat{y}_{t+h|t} &= l_t \\ l_t &= \alpha y_t + (1-\alpha)l_{t-1} \end{split}$$
- α 为平滑指数(衡量有效的历史数据)

Holt 线性趋势模型

• 分量形式:

$$\begin{split} \hat{y}_{t+h|t} &= l_t + hb_t \\ l_t &= \alpha y_t + (1-\alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1-\beta^*)b_{t-1} \end{split}$$

其中:

- $\begin{array}{l} & l_t$ 时刻的序列水平 \\ & b_t 时刻1字列的趋势 (斜率) α 水平的平滑参数($0 \le \alpha \le 1$) β^* 趋势的平滑参数($0 \le \beta^* \le 1$)
- 预测考虑了趋势的影响
- 水平和趋势都来自于指数平滑
- h 步的预测 = 最后一步的水平 + h * 最后一步的趋势 (斜率)

Holt-Winters 季节性预测模型

分量形式:

 $\hat{y}_{t+h|t} = l_t + hb_t + s_{t+h-m(k+1)}$ $\begin{aligned} l_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(l_{t-1} + b_{t-1}) \\ b_t &= \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - l_t) + (1 - \gamma)s_{t-m} \end{aligned}$

其中:

- l_t 时刻t的序列水平 b_t 时刻t序列的趋势 (斜率)

- γ 李节性的十項参数(υ)
 k 为(h-1)/m整数部分
- 预测为: 趋势 + 季节性
- 水平, 趋势, 季节性均使用指数平滑 (三次指数平滑)

自回归积分滑动平均模型

ARIMA(p, d, q):

$$y_t' = c + \phi_1 y_{t-1}' + \dots + \phi_p y_{t-p}' + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q} + \epsilon_t$$

- · y' 为d-阶差分序列
- · p 自回归项
- q滑动平均项
- 平稳性和可逆性条件
- ARIMA(p, 0, 0): p-阶自回归模型
- ARIMA(0, 0, q): q-阶滑动平均模型
- 差分:
 - d = 1: $y'_t = y_t y_{t-1}$
 - d = 2: $y'_t = y_t 2y_{t-1} + y_{t-2}$

平稳:

- 假设: 时间序列过去存在的相关性也会在未来重现
- 如果任取两个子序列 $X_{t_1},...,X_{t_n}$, $X_{t_1+k},...,X_{t_n+k}$ $(\forall n,t_1,...,t_n$ 和k) 他们的联合分布都一致,则称序 列 $X_1,...,X_t$ 为严格平稳。
- 过去发生也会在未来重复!
- 序列的平均值和方差都与时间无关:

$$E[X_t] = \mu, \quad Var[X_t] = \sigma^2$$

- 自相关系数: $\rho(k) = \frac{Cov[X_t, X_{t+k}]}{\sigma^2} = \frac{\gamma(k)}{\gamma(0)}$
- 偏自相关函数 $\pi(k)$: 度量 X_t 和 X_{t-k} 在剔除中间k-1个变量的影响以后的相关系数

总结: 传统时序模型

优点:

线性模型

只依赖于历史数据

参数较少,参数的含义明确

缺点:

很难加入其他特征(价格,产品描述,产品类别)

很难考虑序列间的关联

很难应用于多个序列(百万产品)

需要人为预缺失值处理

需要对每个序列进行统计分析来确定拟合参数

机器学习篇

拟合:

• 函数近似:

 $y = f(x) + \epsilon$

其中:

- ϵ 为随机噪音
- f(·) 确定函数 (未知)
- 训练数据: $\{(x_i, y_i), i = 1, ..., n\}$
- 机器学习通过训练数据拟合函数 $\hat{f}(x)$ 来逼近f(x)
- 参数化模型: f(x; θ) (线性拟合)
- 非参数化模型: f(x; D) (决策时, 支持向量机, k-近邻)
- · Holdout:

时序模型验证:滑动验证一、二

预测区间:

迭代式分步预测 可能导致误差累积 耗时(模型复杂,预测区间长) 模型无法抓住长时间的依赖过程

特征工程是传统机器学习的基石

手工加入季节性特征 趋势 滞后特征 (Xt-1) 类别编码 目标编码

模型选择:

广义线性模型

支持向量机

树模型 (随机森林、梯度提升树、XGBoost, Lightgbm)

高斯过程

Case: 杂货店销量预测

id	date	store_nbr	item_nbr	unit_sales	onpromotio n
0	1/1/13	25	103665	7	
1	1/1/13	25	105574	1	
2	1/1/13	25	105575	2	
3	1/1/13	25	108079	1	
4	1/1/13	25	108701	1	
5	1/1/13	25	108786	3	
6	1/1/13	25	108797	1	
7	1/1/13	25	108952	1	

store_nbr	city	state	type	cluster
1	Quito	Pichincha	D	13
2	Quito	Pichincha	D	13
3	Quito	Pichincha	D	8
4	Quito	Pichincha	D	9
5		Santo Domingo de los Tsachilas	D	4
6	Quito	Pichincha	D	13
7	Quito	Pichincha	D	8
8	Quito	Pichincha	D	8

item_nbr	family	class	perishable
96995	GROCERY I	1093	0
99197	GROCERY I	1067	0
103501	CLEANING	3008	0
103520	GROCERY I	1028	0
103665	BREAD/BAKERY	2712	1
105574	GROCERY I	1045	0
105575	GROCERY I	1045	0

· 预测指标: RMSLE, 消除销量大的产品的影响

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(\hat{y}_i + 1) - \log(y_i + 1))^2}$$

- 训练区间: 2013-01-01 to 2017-08-15
- 测试区间: 2017-08-16 to 2017-08-31
- # 门店: 54, # 产品: 4036, # 门店 + 产品: 174685
- 节假日 + 地震

- 过去三十天的统计值:产品/门店/门店类别/产品类别
- 过去三十天的统计值:城市/省份/类别/类
- 趋势: (mean_7_days mean_28_days)
- · 对类别特征进行label encoding
- 全局均值: 周天, 促销, 月

总结: 机器学习

优点: 很容易处理大数据/模型可解释强

缺点: 需要手工特征工程/泛化能力一般/比较难学习序列间的非线性关系

深度学习篇

- 通用的函数逼近器
- 不需要手工特征工程
- 可以处理非结构化数据
 - · 图像
 - 文本
 - 语音/视频
- 可以准确的学习复杂的非线性特征表示
- 深度学习在图像/自然语言处理领域表现卓越

线性拟合: y = wx + b
 Logistic拟合: y = σ(wx + b)

☆ 递归神经网络超参

- 递归单元种类(LSTM, GRU)
- RNN层数(1, 2)
- 隐藏神经元数量(32,64,128)
- 激活函数(tanh, relu, selu)
- 正规化(L1, L2, activation or hidden states, dropout)
- 批归一化

◎卷积递归网络(CNN-LSTM): 交通流

- 交通流同时具有时间和空间关联性
- 交通流具有拓扑局域性。
- 交通流具有季节性(周天,节假日,早/晚高峰)
- 一点交通延迟会扩散到周围临近区域
- 卷积提取局域路线信息(空间维度)
- 递归学习长程依赖关系(时间维度)

Darlis flow of larged day The file of the state of flow of fl

优点:

端到端解决方案 无需手工提取特征 支持各种类型数据 很容易学习序列非线性关系 缺点:可解释性差/超参数庞大

时序类型	深度学习	传统机器学习	传统时序模型
单一序列/少量多序列	数据量不足以训练模型	可能不适应	• 可解释性强 • 简单易上手
长序列/大量多序列	• 可以学习长程依赖 • 无需手工特征工程	• 需要手工特征工程 • 可以学习复杂关联	只在简单情况下适用(线性依赖)
大量多序列+海量其他信息	可以学习长程依赖 无需手工特征工程 支持所有类型数据 可学习非线性关联	• 需要手工特征工程 • 支持所有类型数据	无法学习非线性关联不支持其他类型数据很难应用到大量序列