In [1]: import pandas as pd
import numpy as np
import seaborn as sns

In [8]: df = pd.read_excel('StudentsPerformanceTest1.xlsx')

In [9]: df

Out[9]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.0	72.0	74.0	78.0	1	Pune
1	female	69.0	90.0	88.0	NaN	2	NaN
2	female	90.0	95.0	93.0	74.0	2	Nashik
3	male	47.0	57.0	NaN	78.0	1	NaN
4	male	NaN	78.0	75.0	81.0	3	Pune
5	female	71.0	NaN	78.0	70.0	4	NaN
6	male	12.0	44.0	52.0	12.0	2	Nashik
7	male	NaN	65.0	67.0	49.0	1	Pune
8	male	5.0	77.0	89.0	55.0	0	NaN

In [12]: df.isna()

Out[12]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	False	False	False	False	False	False	False
1	False	False	False	False	True	False	True
2	False	False	False	False	False	False	False
3	False	False	False	True	False	False	True
4	False	True	False	False	False	False	False
5	False	False	True	False	False	False	True
6	False	False	False	False	False	False	False
7	False	True	False	False	False	False	False
8	False	False	False	False	False	False	True

In [13]: df.isnull()

Out[13]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	False	False	False	False	False	False	False
1	False	False	False	False	True	False	True
2	False	False	False	False	False	False	False
3	False	False	False	True	False	False	True
4	False	True	False	False	False	False	False
5	False	False	True	False	False	False	True
6	False	False	False	False	False	False	False
7	False	True	False	False	False	False	False
8	False	False	False	False	False	False	True

```
In [14]: | df.isna().sum()
```

Out[14]: gender

0 math score 2 reading score 1 writing score 1 Placement Score 1 placement offer count 0 Region 4 dtype: int64

In [15]: df.isnull().sum()

Out[15]: gender

0 math score 2 reading score 1 writing score 1 Placement Score 1 placement offer count 0 Region 4 dtype: int64

In [16]: # implacing missing values with the mean mean_math_score = df['math score'].mean() df['math score'].fillna(mean_math_score, inplace=True)

```
In [17]: df.isnull().sum()
Out[17]: gender
                                      0
          math score
                                      0
          reading score
                                      1
          writing score
                                      1
          Placement Score
                                      1
          placement offer count
                                      0
          Region
                                      4
          dtype: int64
In [18]: mean_reading_score = df['reading score'].mean()
          df['reading score'].fillna(mean_reading_score, inplace=True)
In [20]: mean_writing_score = df['writing score'].mean()
          df['writing score'].fillna(mean_writing_score, inplace=True)
In [30]: mean placement score = df['Placement Score'].mean()
          df['Placement Score'].fillna(mean_placement_score, inplace=True)
In [24]: df.isnull().sum()
Out[24]: gender
                                      0
          math score
                                      0
          reading score
                                      0
          writing score
                                      0
          Placement Score
                                      0
          placement offer count
                                      0
          Region
                                      4
          dtype: int64
In [28]: df.describe()
Out[28]:
                 math score reading score writing score
                                                      Placement Score placement offer count
                   9.000000
                                9.000000
                                               9.0000
                                                            9.000000
                                                                                9.000000
           count
                                                            62.125000
           mean
                  52.285714
                                72.250000
                                              77.0000
                                                                                1.777778
                  28.123452
                                15.698328
                                                            21.791268
             std
                                              12.5499
                                                                                1.201850
                   5.000000
                               44.000000
                                                                                0.000000
            min
                                              52.0000
                                                            12.000000
            25%
                  47.000000
                                65.000000
                                              74.0000
                                                            55.000000
                                                                                1.000000
            50%
                  52.285714
                                72.250000
                                              77.0000
                                                            70.000000
                                                                                2.000000
            75%
                  71.000000
                                78.000000
                                              88.0000
                                                            78.000000
                                                                                2.000000
                  90.000000
                                95.000000
                                              93.0000
                                                            81.000000
                                                                                4.000000
            max
In [32]: # dealing with missing string values by dropping
          df.drop('Region',axis=1,inplace=True)
```

In [33]: df

Out[33]:

	gender	math score	reading score	writing score	Placement Score	placement offer count
0	female	72.000000	72.00	74.0	78.000	1
1	female	69.000000	90.00	88.0	62.125	2
2	female	90.000000	95.00	93.0	74.000	2
3	male	47.000000	57.00	77.0	78.000	1
4	male	52.285714	78.00	75.0	81.000	3
5	female	71.000000	72.25	78.0	70.000	4
6	male	12.000000	44.00	52.0	12.000	2
7	male	52.285714	65.00	67.0	49.000	1
8	male	5.000000	77.00	89.0	55.000	0

In [34]: # dealing with outliers
sns.boxplot(x=df['math score'])

Out[34]: <AxesSubplot: xlabel='math score'>


```
In [48]: # removing outliers that are beyond 1.5 times the interquartile range
Q1 = df['math score'].quantile(0.25)
Q3 = df['math score'].quantile(0.75)
IQR = Q3 - Q1
threshold = 1.5 * IQR

upper = Q3 + threshold
lower = Q1 - threshold

upper_array = np.array(df['math score'] >= upper)
lower_array = np.array(df['math score'] >= lower)

outliers = df[(df['math score'] > lower) & (df['math score'] < upper)]</pre>
```

In [49]: outliers

Out[49]:

	gender	math score	reading score	writing score	Placement Score	placement offer count
0	female	72.000000	72.00	74.0	78.000	1
1	female	69.000000	90.00	88.0	62.125	2
3	male	47.000000	57.00	77.0	78.000	1
4	male	52.285714	78.00	75.0	81.000	3
5	female	71.000000	72.25	78.0	70.000	4
7	male	52.285714	65.00	67.0	49.000	1

```
In [50]: df = df[(df['math score'] <= upper) & (df['math score'] >= lower)]
```

```
In [52]: sns.boxplot(x = df['math score'])
```

Out[52]: <AxesSubplot: xlabel='math score'>

In []: