Model .Derivative

Tree Transformation Illustrations

Notations

- x and y represent any variable nodes.
- ullet A and B represent any subtrees.
- Purple node represents the argument node of the tree transformation function.
- Orange node comes from node's duplication, which requires a positioning sequence (argument node → template node) as an item of the generation sequence.
- Teal subtree comes from subtree's duplication, which requires a Primer and a positioning sequence (argument node → template subtree's root node) as two items of the generation sequence.
- The sequence of 1s and rs at the bottom-right corner of the node(subtree) is its(its root node's) positioning sequence.
- The number at the bottom-left corner of the node(subtree) is its(its root node's) traversal order in depth-first search(DFS).

Element.LeftIdentity

Element.RightIdentity

Element.LeftZero

Element.RightZero

Element.Merger

Element.Absorption

Derivative.Element

Derivative.Addition

Derivative.Subtraction

Derivative.Multiplication

Derivative.Division

Derivative.Power

Derivative.SquareRoot

Derivative.CubeRoot

${\bf Derivative. Natural Exponent}$

${\bf Derivative.} {\bf Decimal Exponent}$

${\bf Derivative. Natural Logarithm}$

${\bf Derivative. Decimal Logarithm}$

Derivative.Sine

Derivative.Cosine

Derivative.Tangent

Derivative.Cotangent

Derivative.Secant

Derivative.Cosecant

Derivative.InverseSine

Derivative.InverseCosine

Derivative.InverseTangent

${\bf Derivative. Inverse Cotangent}$

Derivative.InverseSecant

Derivative.InverseCosecant

