自觉遵守考试规则,诚信考试,谢绝作弊

北京科技大学 2013-2014 学年第二学期

高等数学 AII 期中试卷

院(系)	班级	学号	姓名	考试教室

题号	_	=	Ξ	Д	课程考核成绩
得分					
评阅				IM	

说明: 1、要求正确的写出主要的计算或推倒过程,过程有错或只写答案者不得分;

- 2、考场、学院、班级、学号、姓名均需全写,不写全的试卷为废卷;
- 3、涂改学号以及姓名的试卷为废卷;
- 4、请在试卷上作答,在其它纸上解答一律无效.

得 分

一、填空题(本题共36分,每小题4分)

- 1. 设 $\vec{a} = (1,2,3)$, $\vec{b} = (-1,2,2)$, 以 \vec{a} 和 \vec{b} 为邻边的平行四边形的面积为_
- 2. 设 $D \not\in xOy$ 平面上圆心在原点,半径为a(a>0)的圆域,则 $\iint_D (a-\sqrt{x^2+y^2})dxdy =$
- 3. 设 $z = f(x + y, \frac{x}{y}, x)$, 其中 f 具有一届的连续偏导数,则 dz =______
- 5. 曲面 $x^2 + y^2 + z^2 = 14$ 在点 (1,2,3) 处的切平面的方程为_____

- 6. 设 f(x) 为连续的函数, $F(t) = \int_{1}^{x} dy \int_{1}^{x} f(x) dx$,则 F'(2) =_______.
- 7. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数是
- 8. 两曲面 $z = x^2 + 2y^2$ 与 $z = 3 2x^2 y^2$ 的交线 C 在 xOy 面上的投影曲线的方程为_
- 9. 曲线 Γ : $\begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$ 在点(1, -1, 2)的法平面的方程为_____.

二、选择题(本题共36分,每小题4分)

10. 已知 f(x, y) 在 (x_0, y_0) 的偏导数存在,则(

Af(x,y)在点 (x_0,y_0) 连续

B f(x,y)在点 (x_0,y_0) 可微

 $C f(x, y_0)$ 在点 x_0 连续

D f(x, y)在点 (x_0, y_0) 有任意方向的方向导数

11. 设有闭区域 $D = \{(x, y) | x^2 + y^2 \le 1, x \ge 0\}$,则二重积分 $\iint_D \frac{1 + xy}{1 + x^2 + y^2} dxdy$ 的值等于()

$$A \frac{\pi}{2}$$

$$A = \frac{\pi}{2} \ln 2$$
 $C = \frac{\pi}{2} \ln 3$

$$C = \frac{\pi}{2} \ln \frac{\pi}{2}$$

$$D \ln 2$$

12. 函数 $u = xy^2z$ 在点 (1, -1, 2) 处的最大方向导数的值为(

 $A \sqrt{21}$

 $B \quad 2\sqrt{21}$

 $C \quad 3\sqrt{21}$

 $D = 4\sqrt{21}$

13. 曲面 $z = x^2 + y^2$ 与平面 2x + 4y - z = 0 平行的切平面的方程为(

 $A \quad 2x + 4y - z = 5$

 $B \quad 4x + 2y - z = 5$

C 2x-4y+z=5 D 2x-4y-z=5

- 14. 已知函数 f(x,y) 在点 (0,0) 处的某邻域内有定义,且 f(0,0)=0, $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}=1$,则 f(x,y) 18. 函数 $u=xy+\frac{z}{y}$ 在点 (2,1,1) 处的梯度为(

- 在点(0,0)处()
- A 极限存在但不连续
- B 连续但偏导数不存在
- C 偏导数存在但不可微
- 15. 设函数 f(x,y) 连续,则二次积分 $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$ 等于(

$$A \int_{0}^{1} dx \int_{0}^{x-1} f(x, y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x, y) dy$$

$$B \int_0^1 dx \int_0^{1-x} f(x,y) dy + \int_{-1}^0 dx \int_{-\sqrt{1-x^2}}^0 f(x,y) dy$$

$$C \int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\rho\cos\theta, \rho\sin\theta) d\rho + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(\rho\cos\theta, \rho\sin\theta) d\rho$$

$$D \int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$

16. 读
$$I_1 = \iint_D \cos \sqrt{x^2 + y^2} d\sigma$$
, $I_2 = \iint_D \cos(x^2 + y^2) d\sigma$, $I_3 = \iint_D \cos(x^2 + y^2)^2 d\sigma$, 其中

$$D = \{(x, y) | x^2 + y^2 \le 1\}$$
, 则有 (

- $A I_1 > I_2 > I_3$
- $B \quad I_3 > I_2 > I_1$
- $C I_2 > I_1 > I_3$ $D I_3 > I_1 > I_2$
- 17. 二元函数 f(x,y) 在点(0,0) 处可微的一个充分条件是(

$$A \quad \lim_{(x,y)\to(0,0)} (f(x,y) - f(0,0)) = 0$$

$$B \quad \lim_{x \to 0} \frac{\left(f(x,0) - f(0,0) \right)}{x} = 0 = \lim_{x \to 0} \frac{\left(f(0,y) - f(0,0) \right)}{y} = 0$$

$$C \quad \lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y}{\sqrt{x^2 + y^2}} = 0$$

$$D \quad \lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)y] = 0$$

$$A$$
 $(1,-1,-1)$

$$B$$
 (1,1, -1)

$$C$$
 (1,-1,1)

$$D$$
 (1,1,1)

得 分

三、解答题(每题10分,满分20分)

19. 设
$$a,b$$
为正常数, $D = \{(x,y) | -a \le x \le a, -b \le y \le b\}$,计算 $I = \iint_D e^{\max\{b^2x^2, a^2y^2\}} dxdy$.

20. 求二元函数 $f(x, y) = x^2(2 + y^2) + y \ln y$ 的极值.

得 分

三、证明题(满分8分)

21. 设u=f(x,y,xyz),函数z=z(x,y)有方程 $\int_{xy}^{z}g(xy+z-t)dt=e^{xyz}$ 确定,其中f可微,g连续,证明 $x\frac{\partial u}{\partial x}-y\frac{\partial u}{\partial y}=xf_{1}^{'}-yf_{2}^{'}$.

参考答案

一、填空题

1.
$$3\sqrt{5}$$
 2. $\frac{\pi a^3}{3}$ 3. $(f_1' + \frac{1}{y}f_2' + f_3')dx + (f_1' - \frac{x}{y^2}f_2')dy$ 4. -40 5. $x + 2y + 3z - 14 = 0$

6.
$$f(2)$$
 7. $\frac{1}{2}$ 8. $\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$ 9. $8x + 10y + 7z - 12 = 0$

二、选择题

10	11	12	13	14	15	16	17	18
С	В	А	A	D	D	В	С	D

三、解答题

19.
$$I = \frac{4}{ab} (e^{a^2b^2} - 1)$$
.

- **20**. 有极小值 $-\frac{1}{e}$,无极大值.
- 21. 略.