Lecture 3: Complementary Metal Oxide Semiconductor (CMOS)

Outline

- CMOS Inverter Operating Principle
 - Operating in logical high, low and transitions
- CMOS Inverter Voltage Transfer Characteristic (VTC)
 - Five operating regions
 - VTC Construction
- CMOS Inverter Reliability and Design Rules
 - Switching Threshold
 - Noise Margin 噪声容忍门限

Review: Static CMOS VTC

Noise in Digital ICs

- □ Noise unwanted variations of voltages and currents at the logic nodes.
- □ Digital system is one where:
 - Analog signals are quantized to discrete values
 - All the elements (gates) can somehow reject noise
 - For sufficiently "small" noise, the system acts as if it was noise-free

For large noise, the logic state may be changed!

Switching Threshold of Inverter

- ☐ The switching threshold compares the <u>relative</u> <u>driving strengths</u> between the NMOS and PMOS
- \square At switching threshold: $V_{in} = V_{out} = V_{M}$
- \square $V_{DS} = V_{GS} \rightarrow Both PMOS & NMOS are <u>saturated</u>$

Switching Threshold Calculation

□ Apply Kirchhoff's Current Law & Velocity-Sat *I-V* Model (neglecting CLM)

$$k_n \cdot V_{DSATn} \cdot \left(V_M - V_{Tn} - \frac{V_{DSATn}}{2}\right) + k_p \cdot V_{DSATp} \cdot \left(V_M - V_{DD} - V_{Tp} - \frac{V_{DSATp}}{2}\right) = 0$$

$$W_p$$

$$k_n = \mu_n C_{ox} \frac{W_n}{L}$$
 on $k_p = \mu_p C_{ox} \frac{W_p}{L}$

$$r = \frac{k_p V_{DSATp}}{k_n V_{DSATn}} = \frac{v_{satp} W_p}{v_{satn} W_n}$$

$$k_n V_{DSATn} = \frac{v_{satp} W_p}{v_{satn} W_n}$$

$$k_n V_{DSAT} = \mu \cdot V_{DSAT} / L$$

$$V_M \approx \frac{rV_{DD}}{1+r}$$

□ For large V_{DD} $V_{M} \approx \frac{rV_{DD}}{1 \perp r}$ V_{M} can be controlled by transistor size!

Real Case Switching Threshold Variation

 \Box Increasing the width of PMOS moves $V_{\rm M}$ towards $V_{\rm DD}$ whereas increasing the width of NMOS moves $V_{\rm M}$ towards GND

 \square To make $V_M = V_{DD}/2$, we need to choose a wider PMOS.

Impact of Process Variations

Impact of Supply Voltage V_{DD}

Noise Rejection

- ☐ To see if a gate rejects noise
 - ➤ Look at its DC voltage transfer characteristic (VTC)
 - > See what happens when input is not exactly 1 or 0
- ☐ Ideal digital gate:

 \triangleright Noise needs to be larger than $V_{DD}/2$ to have any effect on gate output

DC Operation – More Realistic VTC

Noise Margin

Ideal Case vs. Real Case

Noise Rejection of Inverter Chain

☐ A chain of inverters **V**out V_5 v_6 v_0 Noice reject finv(V) "Good" VTC "Bad" VTC finv(V) "Trap" around V_M f(*V*) (V) **V**out

Summary of Static CMOS Inverter

- □Static CMOS inverter is the simplest logic gate for digital integrated circuit design.
- □VTC of static CMOS inverter is obtained by analyzing the operation regions of NMOS & PMOS.
- □ Region 1 and region 4 are ideal operation regions.
- □static CMOS inverter serves as the building block for static CMOS logic gates.