МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования

исполнительного адреса

Студентка гр. 1383	Сапожников А.Э	
Преподаватель	Ефремов М.А.	

Санкт-Петербург

2022

Цель работы.

Получение знаний о режимах адресации на языке Ассемблере.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, необходимо объяснить в отчете по которые работе, а соответствующие команды закомментировать ДЛЯ прохождения трансляции. Необходимо составить протокол выполнения программы в таблицы предыдущей пошаговом режиме отладчика ПО типу 1 лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

- 1. Изменен файл lr2 comp.asm.
- В файле lr2_comp.asm изменены vec1, vec2, lr2 в соответствии с условием задания
- 2. Протранслирована программа lr2_comp.asm, с помощью программы:

>MASM.EXE

В результате получены ошибки:

mov mem3,[bx] (пересылка m,m)

mov cx,vec2[di] (разная длинна операндов)

mov cx,matr[bx][di] (разная длинна операндов)

mov ax,matr[bx*4][di] (нельзя умножать базовый регистр)

mov ax,matr[bp+bx] (>1 базовый регистр)

mov ax,matr[bp+di+si] (>1 индексный регистр)

Данные строчки были закомментированны и программа была заново протранслированна

3. Скомпонован объектный файл LR2_COMP.OBJ, с помощью программы:

>LINK.EXE

В результате создан исполняемый файл LR2_COMP.EXE

- 4. Запущена программа отладки:
- >AFDPRO.EXE HELLO1.EXE
- 5. Начальное содержимое сегментных регистров

$$CS = 1A0A$$
, $DS = 19F5$, $SS = 1A0A$, $ES = 19F5$

Таблица 1- исполнение файла LR2_COMP.EXE

Адрес команды	Символичес кий код команды	16-ричный код команды	Содержимое ячеек до выполнения	Содержимое ячеек после выполнения		
0000	PUSH DS	1E	SP = 18 IP = 0000 Stack: +0 0000 +2 0000 +4 0000 +6 0000	SP = 16 IP = 0001 Stack: +0 19F5 +2 0000 +4 0000 +6 0000		
0001	SUB AX, AX	2BC0	IP = 0001 AX = 0000	IP = 0003 AX = 0000		
0003	PUSH AX	50	SP = 16 IP = 0003 Stack: +0 19F5	SP = 14 IP = 0004 Stack: +0 0000		

				,
			+2 0000 +4 0000 +6 0000	+2 19F5 +4 0000 +6 0000
0004	MOV AX, 1A07	B8071A	AX = 0000 IP = 0004	AX = 1A07 $IP = 0007$
0007	MOV DS, AX	8ED8	DS = 19F5 $IP = 0007$	DS = 0A07 $IP = 0009$
0009	MOV AX, 01F4	B8F401	AX = 1A07 $IP = 0009$	AX = 01F4 $IP = 000C$
000C	MOV CX, AX	8BC8	CX = 00B0 $IP = 000C$	CX = 01F4 $IP = 000E$
000E	MOV BL, 24	B324	BX = 0000 $IP = 000E$	BX = 0024 IP = 0010
0010	MOV BH, CE	B7CE	BX = 0024 IP = 0010	BX = CE24 $IP = 0012$
0012	MOV [0002], FFCE	C7060200CE FF	IP = 0012 DS:0000 00 00 00 00 00 00 15 16	IP = 0018 DS:0000 00 00 CE FF 00 00 15 16
0018	MOV BX, 0006	BB0600	BX = CE24 IP = 0018	BX = 0006 $IP = 001B$
001B	MOV [0000], AX	A30000	IP = 001B DS:0000 00 00 CE FF 00 00 15 16	IP = 001E DS:0000 F4 01 CE FF 00 00 15 16
001E	MOV AL, [BX]	8F07	AX = 01F4 $IP = 001E$	AX = 0115 IP = 0020
0020	MOV AL, [BX+03]	8A4703	AX = 0115 IP = 0020	AX = 0018 IP = 0023
0023	MOV CX, [BX+03]	8B4F03	CX = 01F4 $IP = 0023$	CX = 1C18 $IP = 0026$

0026	MOV DI, 0002	BF0200	DI = 0000 IP = 0026	DI = 0002 IP = 0029
0029	MOV AL, [000E+DI]	8A850E00	AX = 0118 IP = 0029	AX = 01D8 $IP = 002D$
002D	MOV BX, 0003	BB0300	BX = 0006 $IP = 002D$	BX = 0003 IP = 0030
0030	MOV AL, [0016+BX+D I]	8A811600	AX = 01D8 $IP = 0030$	AX = 0108 IP = 0034
0034	MOV AX, 1A07	B8071A	AX = 0108 IP = 0034	AX = 1A07 $IP = 0037$
0037	MOV ES, AX	8EC0	ES = 19F5 IP = 0037	ES = 1A07 $IP = 0039$
0039	MOV AX, ES:[BX]	268B07	AX = 1A07 $IP = 0039$	AX = 00FF $IP = 003C$
003C	MOV AX, 0000	B80000	AX = 00FF $IP = 003C$	AX = 0000 $IP = 003F$
003F	MOV ES, AX	8EC0	ES = 1A07 $IP = 003F$	ES = 0000 IP = 0041
0041	PUSH DS	1E	SP = 0014 IP = 0041 Stack: +0 0000 +2 19F5 +4 0000 +6 0000	SP = 0012 IP = 0042 Stack: +0 1A07 +2 0000 +4 19F5 +6 0000
0042	POP ES	07	ES = 0000 SP = 0012 IP = 0042	ES = 1A07 SP = 0014 IP = 0043
			Stack: +0 1A07 +2 0000	Stack: +0 0000 +2 19F5

			+4 19F5 +6 0000	+4 0000 +6 0000
0043	MOV CX, ES:[BX-01]	268B4FFF	CX = 1C18 $IP = 0043$	CX = FFCE IP = 0047
0047	XCHG AX,CX	91	AX = 0000 $CX = FFCE$ $IP = 0047$	AX = FFCE $CX = 0000$ $IP = 0048$
0048	MOV DI, 0002	BF0200	DI = 0002 IP = 0048	DI = 0002 DI = 004B
004B	MOV ES:[BX+DI], AX	268901	IP = 004B DS:0000 F4 01 CE FF 00 00 15 16	IP = 004E DS:0000 F4 01 CE FF 00 CE FF 16
004E	MOV BP, SP	8BEC	BP = 0000 $IP = 004E$	BP = 0014 IP = 0050
0050	PUSH [0000]	FF360000	SP = 0014 IP = 0050 Stack: +0 0000 +2 19F5 +4 0000 +6 0000	SP = 0012 IP = 0054 Stack: +0 01F4 +2 0000 +4 19F5 +6 0000
0054	PUSH [0002]	FF360200	SP = 0012 IP = 0050 Stack: +0 01F4 +2 0000 +4 19F5 +6 0000	SP = 0010 IP = 0058 Stack: +0 FFCE +2 01F4 +4 0000 +6 19F5
0058	MOV BP, SP	8BEC	BP = 0014 IP = 0058	BP = 0010 IP = 005A
005A	MOV DX, [BP+02]	8B5602	DX = 0000 $IP = 005A$	DX = 01F4 $IP = 005D$
005D	RET FAR 0002	CA0200	SP = 0010 $CS = 1A0A$	SP = 0016 $CS = 01F4$

+6 19F5 +6 0000

Программный код см. в приложении А.

Файлы диагностических сообщений см. в приложении Б.

Выводы.

Получены знания о режимах адресации на языке Ассемблере.

Приложение А

Исходный код программы

Название файла: lr2 comp.asm

```
EOL EOU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 21,22,23,24,28,27,26,25
vec2 DB 40,50,-40,-50,20,30,-20,-30
matr DB 5, 6, -8, -7, 7, 8, -6, -5, 1, 2, -4, -3, 3, 4, -2, -1
DATA ENDS
; Код программы
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
    push DS
    sub AX, AX
    push AX
    mov AX, DATA
    mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
    mov ax, n1
    mov cx, ax
    mov bl, EOL
    mov bh, n2
; Прямая адресация
    mov mem2, n2
```

```
mov bx, OFFSET vec1
    mov mem1,ax
; Косвенная адресация
    mov al, [bx]
     mov mem3, [bx]
; Базированная адресация
    mov al, [bx]+3
    mov cx, 3[bx]
; Индексная адресация
    mov di, ind
    mov al, vec2[di]
      mov cx, vec2[di]
; Адресация с базированием и индексированием
    mov bx, 3
    mov al, matr[bx][di]
      mov cx, matr[bx] [di]
      mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
    mov ax, SEG vec2
    mov es, ax
    mov ax, es:[bx]
    mov ax, 0
; ---- вариант 2
    mov es, ax
    push ds
    pop es
    mov cx, es: [bx-1]
    xchg cx, ax
; ---- вариант 3
    mov di, ind
    mov es:[bx+di],ax
; ----- вариант 4
    mov bp, sp
      mov ax, matr[bp+bx]
      mov ax, matr[bp+di+si]
; Использование сегмента стека
    push mem1
    push mem2
    mov bp, sp
    mov dx, [bp] + 2
    ret 2
Main ENDP
```

ПРИЛОЖЕНИЕ В ФАЙЛЫ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: LR2.lst

```
Microsoft (R) Macro Assembler Version 5.10
    10/22/22 19:19:1
    Page 1-1
    1 = 0024
                        EOL EQU '$'
    2 = 0002
                        ind EQU 2
    3 = 01F4
                        n1 EOU 500
    4 = -0032
                        n2 EQU -50
                 ; Đ;Ñ,Đμа Đ;Ñ ĐŸĐ³Ñ Đ°ĐŒĐŒÑ<
    5
                        AStack SEGMENT STACK
    6 0000
    7 0000 000C[
                            DW 12 DUP(?)
    8 3333
    9
              ]
    10
    11 0018
                        AStack ENDS
                                     Đ"аĐœĐœÑ∢Đμ
    12
                            ;
Ð;Ñ ÐŸÐ³Ñ Ð°ÐŒÐŒÑ<
    13 0000
                        DATA SEGMENT
    14
                         ; Đ"ĐŽÑ ĐµĐ°Ñ,ĐŽĐ²Ñ<
ĐŸĐ;ĐŽÑ Đ°ĐœĐŽÑ Đ
                 ŽĐ°ĐœĐœÑ<Ñ...
    15 0000 0000
                        mem1 DW 0
    16 0002 0000
                        mem2 DW 0
    17 0004 0000
                        mem3 DW 0
    18 0006 15 16 17 18 1C 1B
                                      vec1 DB
21, 22, 23, 24, 28, 27, 26, 25
    19 1A 19
    20 000E 28 32 D8 CE 14 1E vec2
                                                DB
40,50,-40,-50,20,30,-20,-30
    21 EC E2
       0016 05 06 F8 F9 07
                                 08
                                     matr
                                                DB
5, 6, -8, -7, 7, 8, -6, -5, 1, 2, -4, -3, 3
                 , 4, -2, -1
```

```
23
            FA FB 01 02 FC FD
    24
             03 04 FE FF
    25 0026
                            DATA ENDS
                       ; ĐŠĐŸĐŽ Đ;Ñ ĐŸĐ³Ñ Đ°ĐŒĐŒÑ<
    26
    27 0000
                           CODE SEGMENT
    28
                            ASSUME CS:CODE, DS:DATA,
SS:ASt
                  ack
                            ; Đ"ĐŸĐ»ĐŸĐ²ĐœĐ°Ñ
    29
\tilde{D}: \tilde{N} \tilde{D} \tilde{Y} \tilde{N} \dagger \tilde{D} \mu \tilde{D} \tilde{Z} \tilde{N} f \tilde{N} \tilde{D}^{\circ}
    30 0000
                           Main PROC FAR
    31 0000 1E
                             push DS
    32 0001 2B C0
                                    sub AX, AX
    33 0003 50
                                push AX
    34 0004 B8 ---- R
                                mov AX, DATA
    35 0007 8E D8
                                    mov DS, AX
                        ; ĐỸĐ ĐĐ'ĐĐ ĐŠĐ Đ
    36
Đ Đ-Đ ĐợĐ Đ' Đ Đ"Đ
                      Đ Đ;Đ ĐŠĐ Đ ĐĐĐ ĐĐ Đ'Đ Đ
Ð;ĐœĐ Đ
                  ©Đ Đ Đ Đ TM
                         ; РеĐ³ĐŽÑ Ñ,Ñ ĐŸĐ²Đ°Ñ
    37
аĐŽÑ ĐuÑ Đ°Ñ†
                  ĐžÑ
    38 0009 B8 01F4
                                    mov ax, n1
    39 000C 8B C8
                                    mov cx,ax
    40 000E B3 24
                                    mov bl, EOL
    41 0010 B7 CE
                                    mov bh, n2
                                           ĐŸÑ Ñ ĐŒĐ°Ñ
    42
                                ;
аĐŽÑ ĐµÑ Đ°Ñ†ĐžÑ
    43 0012 C7 06 0002 R FFCE mov mem2, n2
    44 0018 BB 0006 R
                          mov bx, OFFSET vec1
    45 001B A3 0000 R
                              mov mem1,ax
                                   ĐŠĐŸÑ Đ²ĐμĐœĐœĐ°Ñ
    46
                            ;
аĐŽÑ ĐuÑ Đ°Ñ†ĐžÑ
    47 001E 8A 07
                                    mov al, [bx]
                          mov mem3,[bx]
    48
                      ;
Microsoft (R) Macro Assembler Version 5.10
    10/22/22 19:19:1
    Page 1-2
```

```
; Đ 'Đ °Đ ·Đ žÑ Đ ŸĐ ²Đ °Đ œĐ œĐ °Ñ
    49
аĐŽÑ ĐuÑ Đ°
                 цĐžÑ
    50 0020 8A 47 03
                                 mov al, [bx]+3
    51 0023 8B 4F 03
                                 mov cx, 3[bx]
    52
                                  Đ ĐœĐŽĐuаÑ ĐœĐ°Ñ
аĐŽÑ ĐµÑ Đ°Ñ†ĐžÑ
    53 0026 BF 0002
                                 mov di, ind
    54 0029 8A 85 000E R
                                 mov al, vec2[di]
    55
                     ; mov cx, vec2[di]
    56
                      ; Đ ĐŽÑ ĐμÑ Đ°Ñ†ĐŽÑ Ñ
баĐ·ĐžÑ ĐŸĐ²Đ
                             °ĐœĐžĐuĐŒ
                                                  Đž
ĐŽĐœĐŽĐuаÑ ĐŽÑ ĐŸĐ²Đ°ĐœĐŽ
                 ÐuÐŒ
    57 002D
            BB 0003
                                mov bx,3
    58 0030 8A 81 0016 R
                                                 mov
al, matr[bx] [di]
                     ; mov cx,matr[bx][di]
    59
                          mov ax,matr[bx*4][di]
    60
                      ; ĐỸĐ ĐĐ'ĐĐ ĐŠĐ Đ
    61
Ð Ð-Đ ĐứĐ Đ' Đ Đ"Đ
                     ĐĐ;ĐĐŠĐ Đ Đ;ĐĐĐĐĐĐ Đ¢ĐĐĐ Đứ
Ð;РГĐœĐ
                 Đ Đ¢Đ Đ'
    62
                                                   ;
Đ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\Đ\µĐ\"\
                 ĐŒĐμĐœÑ,а
    63
                    ; ----- Đ²Đ°Ñ ĐŽĐ°ĐœÑ. 1
                        mov ax, SEG vec2
    64 0034 B8 ---- R
    65 0037 8E C0
                                  mov es, ax
             26: 8B 07 mov ax, es:[bx]
    66 0039
    67 003C B8 0000
                                 mov ax, 0
                     ; ----- Đ²Đ°Ñ ĐžĐ°ĐœÑ, 2
    68
    69 003F
             8E C0
                                 mov es, ax
    70 0041
             1 E
                            push ds
    71 0042
            07
                            pop es
             26: 8B 4F FF
    72 0043
                                  mov cx, es: [bx-1]
    73 0047
             91
                            xchq cx, ax
                     ; ----- Đ²Đ°Ñ ĐžĐ°ĐœÑ. 3
    74
    75 0048 BF 0002
                                 mov di, ind
    76 004B
             26: 89 01 mov es:[bx+di],ax
                    ; ----- Đ²Đ°Ñ ĐžĐ°ĐœÑ, 4
    77
    78 004E 8B EC
                                 mov bp,sp
```

```
79
                  ; mov ax, matr[bp+bx]
                      mov ax, matr[bp+di+si]
   80
                   ; ĐN ĐỊĐYĐ»ÑŒĐ ĐYĐ²Đ°ĐŒĐŽĐụ
   81
Ñ ĐuĐ³ĐŒĐu
              ĐœÑ,а Ñ Ñ,Đμаа
   82 0050 FF 36 0000 R
                             push mem1
   83 0054 FF 36 0002 R
                             push mem2
   84 0058 8B EC
                             mov bp,sp
   85 005A 8B 56 02
                             mov dx, [bp] + 2
   86 005D CA 0002
                             ret 2
   87 0060
                      Main ENDP
   88 0060
                      CODE ENDS
   89
                      END Main
Microsoft (R) Macro Assembler Version 5.10
   10/22/22 19:19:1
   Symbols-1
Segments and Groups:
          Name
                         Length
                                        Align
Combine Class
0018
                                         PARA
STACK
0060
                                         PARA
NONE
0026
                                         PARA
NONE
Symbols:
                          Type
                                        Value
          Name
Attr
EOL
                             NUMBER
                                     0024
IND
                           NUMBER
                                     0002
                                         0000
MAIN . . . .
                                PROC
      Length = 0060
           . . . . . . . . . L BYTE
                                         0016
MATR . . . .
DATA
```

MEM1	•		•	•	•	•	•	•	•	•	•	•	•	•	L WORD	0000
DATA																
MEM2	•		•	•	•	•	•	•	•	•	•	•	•	•	L WORD	0002
DATA																
MEM3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L WORD	0004
DATA																
271															MANADED	01 7 4
N1 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	NUMBER	01F4
N2 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	NUMBER	-0032
T7D Q 1																0006
VEC1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L BYTE	0006
DATA															T DVMT	0000
VEC2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L BYTE	000E
DATA																
@CPU															TEXT 010	1 h
	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
@FILE	iN <i>E</i>	7MF	<u>'</u>	•	•	•	•	•	•	•	•	•	•	•	TEXT	LR2_COMP
01100	1 T /	\ 													mn.vm	
@VERS	Σ Τ (ЛN	•	•	•	•	•	•	•	•	•	•	•	•	TEXT 510	

- 82 Source Lines
- 82 Total Lines
- 19 Symbols

47286 + 457927 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors