Лабораторная работа 16

Тагиев Б. А.

10 июня 2023

Российский университет дружбы народов, Москва, Россия

Цель работы

Смоделировать "модель" двух стратегий обслуживания.

Выполнение работы

Задача

Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1. автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2. автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

1. Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель

```
Multitled Model 1 ap
GENERATE (Exponential(1,0,1.75))
TEST LE Q$Other1,Q$Other2,Obs1 2
TEST E Q$Other1,Q$Other2,Obs1 1
TRANSFER 0.5, Obs1 1, Obs1 2
; пункт 1
Obs1 1 OUEUE Other1
SEIZE punkt1
DEPART Other1
ADVANCE 4.3
RELEASE punkt1
TERMINATE
: пункт 2
Obs1 2 OUEUE Other2
SEIZE punkt2
DEPART Other2
ADVANCE 4.3
RELEASE punkt2
TERMINATE
GENERATE 10080
TERMINATE 1
START 1
```

Figure 1: Модель при двух очередях

2. Сформируем отчет, поступило 5853 автомобиля, в первый пункт 2928 (2541 обслужено), во второй 2925 (2537 обслужено). Коеффициент нагрузки 0.997 и 0.996 соответственно.

Figure 2: Отчет по модели при двух очередях

1. Для второй стратегии обслуживания, когда прибывающие автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

```
punkt STORAGE 2

GENERATE (Exponential(1,0,1.75))

QUEUE Other
ENTER punkt,1

DEPART Other
ADVANCE 4,3

LEAVE punkt,1

TERMINATE

GENERATE 10080

TERMINATE 1

START 1
```

Figure 3: Модель при одной очереди

2. Сформируем отчет, поступило 5719 автомобиля, было обслужено 5049.

Figure 4: Отчет по модели при одной очереди

Сравнение стратегий

1. Составим таблицу с необходимыми результатами для сравнения ??. В ней можно явно наблюдать, что вторая стратегия работает лучше, среднее время ожидания меньше, длина очереди также меньше, при почти одинаковом количестве обслуженных автомобилей.

Сравнение стратегий

Показатель	стратеги	я 1	СТ	стратегия 2
Hokasarenb	пункт 1	пункт 2	в целом	стратегия 2
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2541	2537	5078	5049
Коэффициент загрузки	0.997	0.996	0.997	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187.098	187.114	374.212	344.466
Среднее время ожидания	644.107	644.823	644.465	607.138

- 1. Для первой стратегии изменим количество КПП для соответствия следующим условиям:
- коэффициент загрузки пропускных пунктов принадлежит интервалу [0,5; 0,95];
- среднее число автомобилей, одновременно находящихся на контрольно-пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

2. Для первой стратегии минимальное количество КПП, необходимое для соответствия вышеописанным условиям является 4. При меньших параметрах не выполняются определнные условия.

Figure 5: 1 ΚΠΠ

FACILITY	ENTRIES	UTIL.	AVE.
PUNKT2	2537	0.996	
PUNKT1	2541	0.997	

Figure 6: 2 ΚΠΠ

Figure 7: 3 КПП

FACILITY	ENTRIE	S UT	IL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELA
PUNKT4	1413	. 0	. 557	3.971	1	5623	0	0	0	
PUNKT3	1378	. 0	.545	3.989	1	0	0	0	0	
PUNKT2	1366	0	.541	3.993	1 1	0	0	0	0	
PUNKT1	1465	0	. 584	4.016	1 1	5621	0	0	0	
	1405		.504	4,020		DOZI				
	1405		.504	4,020		DORI				
OUEUE		CONT.	ENTRY	ENTRY (0)	AVE. CO	NT. AV	. TIME	AV	E. (-0)	RETR
OTHER4	MAX 7	CONT.	ENTRY 1413	ENTRY (0) 628	AVE . CO.	NT. AV	2.958	AV	E. (-0) 5.325	RETR O
		CONT.	ENTRY 1413 1378	ENTRY (0) 628 655	AVE. CO	NT. AV	2.958 2.527	AV	E. (-0)	RETR
OTHER4	MAX 7	CONT.	ENTRY 1413	ENTRY (0) 628	AVE . CO.	NT. AV	2.958	AV	E. (-0) 5.325	RETR

Figure 8: $4 \text{ } \text{K}\Pi\Pi$

2. Сделаем тоже самое для второй стратегии. Для второй минимальное количество кпп равно 3 (также можно использовать 4).

Figure 9: 1 ΚΠΠ

Figure 10: 2 ΚΠΠ

Figure 11: 3 ΚΠΠ

Figure 12: 4 ΚΠΠ

Выводы

Я смоделировал модель двух стратегий обслуживания.