Tarea 2. Funciones de densidad y MLE

Análisis Estadístico Multivariado

Emmanuel Alcalá

Nota:

Recuerden que en el repositorio de Github se encuentran varios tutoriales de R

- 1. r_intro para una vista eficiente al lenguaje de R, como llamadas de función, operaciones, etc
- 2. r_flujo_funciones para una introducción rápida a control de flujo y creación de funciones en R.
- 3. r_data_wrangling_dplyr para una introducción a la paquetería de manipulación de tablas y data.frames, dplyr.
- 4. data_viz_ggplot para una introducción rápida al uso de la paquetería de visualización de ggplot2.

Ejemplo ilustrativo 1 (cálculo de probabilidades conjuntas)

Sean X, Y variables aleatorias continuas con función de densidad

$$f_{xy}(x,y) = \frac{1}{2}x + \frac{3}{2}y \quad \text{para } 0 \leq x \leq 1, 0 \leq y \leq 1$$

La función de distribución acumulada, o cdf, está dada por

$$F(x,y) = \int_0^x \int_0^y \left(\frac{1}{2}u + \frac{3}{2}v\right) dv du$$

Para obtener la cdf, integramos primero la parte interna

$$F(x,y) = \int_0^x \left\{ \int_0^y \left(\frac{1}{2}u + \frac{3}{2}v \right) dv \right\} du$$

Considerando x constante, la integral nos da

$$F(x,y) = \int_0^x \left\{ \frac{1}{2}uv + \frac{3}{2}\frac{v^2}{2} \right\}_0^y du = \int_0^x \left(\frac{1}{2}uy + \frac{3}{4}y^2 \right) du$$

La segunda integral nos da

$$F(x,y) = \int_0^x \left(\frac{1}{2}uy + \frac{3}{4}y^2\right) du = \left(\frac{1}{2}\frac{u^2}{2}y + \frac{3}{4}uy^2\right)_0^x = \frac{1}{4}x^2y + \frac{3}{4}xy^2$$

La funciones marginales se obtienen una variable con respecto a la otra. Para obtener la distribución marginal de x, tenemos la expresión

$$f_x(x) = \int_0^1 f_{xy}(x, y) dy = \int_0^1 \left(\frac{1}{2}x + \frac{3}{2}y\right) dy$$

Integrando la expresión, obtenemos

$$f_x(x) = \frac{1}{2}xy + \frac{3}{2}\frac{y^2}{2}\Big|_0^1 = \frac{1}{2}x + \frac{3}{4}$$

Ejercicio 1

a) Encontrar las densidades condicionales de x dado y y de y dado x, que están dadas por

$$f_{x|y}(x \mid y) = \frac{f_{xy}(x,y)}{f_x(x)}, \quad f_{y|x}(y \mid x) = \frac{f_{xy}(x,y)}{f_y(y)}$$

b) Demuestra que X,Y no son independientes. Para eso sírvete de la regla que se cunmple cuando son independientes $f_{xy}(x,y)=f_x(x)f_y(y)$.

Ejemplo ilustrativo 2 (uso de R para obtener los MLE)

Simularemos un conjunto de datos para una distribución normal usando la función rnorm() de R, con media y desviación estándar que definiremos. Posteriormente, estimaremos los parámetros del vector aleatorio creado. Si el método funciona bien, debemos obtener estimadores cercanos a los parámetros reales que usamos.

El siguiente chunck de código se puede reproducir en un script de R

```
# asignar parámetros reales
mu real <- 50
sd_real <- 5
# simular variable aleatoria normal con media mu real y desviación estándar sd real
rx_sim <- rnorm(100, mu_real, sd_real)</pre>
# graficar; par(las=2) solo modifica cómo se ven los ticks del gráfico
par(las=2)
# creamos un histograma, el argumento freq = FALSE indica que no cree frecuencia
# (es decir, conteo) sino densidad de probabilidad, que es freq/rango
hist(rx_sim, freq = FALSE)
# la función curve crea una curva continua basada en la función que coloquemos
# como primer argumento, dnorm en este caso; dejamos x sin especificar, pero
# agregamos from y to para definir el rango del cómputo de la densidad en x;
# notar también que aunque no especificamos x, sí especificamos mean y sd
# finalmente, add=TRUE indica que sobreponga la curva al histograma; sin este
# argumento, no se sobrepondría y crearía un gráfico aparte
curve(dnorm(x, mean = mu real, sd = sd real), from = 0, to = 200, add = TRUE)
```

Lo siguiente que haremos es crear una función de verosimilitud para estos datos. Recordar que la función de verosimilitud es una distribución conjunta para cada X_1, X_2, \dots, X_n . En nuestra simulación, n=100, y cada X_i corresponde a un valor de $\mathtt{rx_sim}$. Por lo tanto, nuestra distribución conjunta es una probabilidad para cada valor de $\mathtt{rx_sim}$.

Para obtener la probabilidad de un X_i en rx_sim usaremos dnorm(). Por ejemplo, la probabilidad del primer dato de rx_sim, que lo obtenemos como rx_sim[1], asumiendo que tiene media de 10 y desviación estándar de 3, se obtendría como

```
dnorm(rx_sim[1], 10, 3)
```

[1] 2.199711e-35

Ahora crearemos una función llamada neg_log_lik_gaussian. El neg_ es porque obtendremos la función de verosimilitud negativa. Notar que si una función es cóncava si es positiva,

Histogram of rx_sim

Figure 1: Gráfico de datos simulados.

al multiplicarla por -1 se convierte en convexa. Si en una cóncava buscamos el máximo, en una convexa buscamos el mínimo, sin pérdida de generalidad. Haremos esto porque el algoritmo que usaremos, implementado en una función llamada nlm (non-linear optimization), trabaja mejor buscando mínimos que buscando máximos.

```
# argumentos:
# theta: numeric de longitud 2, su primer valor es la media, el segundo la sd
# x: numeric con los datos de entrada
neg_log_lik_gaussian <- function(theta, x) {</pre>
  # creamos la función de verosimilitud; log=TRUE retorna la transformación
  # logarítmica, de otra forma tendríamos que obtener L, luego 1 <- log(L)
  1 <- dnorm(x, theta[1], theta[2], log=TRUE)</pre>
  # dado que ya hicimos la transformación logarítmica, sumamos la log-prob
  # notar que multiplicamos por -1 (signo negativo por delante de sum())
  # esto nos va a retornar la log_likelihood negativa
  -sum(1)
}
# Ahora vamos a definir un vector de parámetros iniciales. La mayoría
# de los algoritmos de optimización necesitan parámetros iniciales para
# comenzar con la búsqueda de los mejores parámetros.
# Al parámetro inicial de mu lo asignamos al primer valor de rx sim;
# al parámetro inicial de sd como la media del rango intercuartílico.
```

```
# Esto podría funcionar o no; escoger parámetros iniciales es un arte
  theta.start < c(rx_sim[1], IQR(rx_sim)/2)
  # Ahora usaremos el algoritmo de optimización no lineal, nlm.
  # Se puede pedir ayuda con ?nlm.
  # Los argumentos necesarios son una función, los parámetros iniciales,
  # el vector x (que es un argumento de la función neg log lik gaussian)
  # y agrego el argumento interlim para aumentar la cantidad de iteraciones
  # por defecto tiene 100, que pueden ser insuficientes
  nlm(neg_log_lik_gaussian, theta.start, x=rx_sim, iterlim = 1e5)
Warning in dnorm(x, theta[1], theta[2], log = TRUE): NaNs produced
Warning in nlm(neg_log_lik_gaussian, theta.start, x = rx_sim, iterlim = 1e+05):
NA/Inf replaced by maximum positive value
Warning in dnorm(x, theta[1], theta[2], log = TRUE): NaNs produced
Warning in nlm(neg_log_lik_gaussian, theta.start, x = rx_sim, iterlim = 1e+05):
NA/Inf replaced by maximum positive value
$minimum
[1] 298.2409
$estimate
[1] 50.435126 4.775367
$gradient
[1] -2.094917e-06 -2.328318e-06
$code
[1] 1
$iterations
[1] 15
```

Cuando se corre este algoritmo puede arrojar warnings, pero no necesariamente es algo malo. Lo que a veces sucede es que en la búsqueda de parámetros, puede obtener valores de densidad con dnorm() para los cuales el logaritmo no está definido (por ejemplo, log(-1)). Los estimadores de la media y la desviación se darán en el output como \$estimate.

Si decidimos asignar los resultados a un objeto, debemos hacer algo como lo siguiente para obtener los estimadores

```
estimadores <- nlm(neg_log_lik_gaussian, theta.start, x=rx_sim, iterlim = 1e5)
Warning in dnorm(x, theta[1], theta[2], log = TRUE): NaNs produced
Warning in nlm(neg_log_lik_gaussian, theta.start, x = rx_sim, iterlim = 1e+05):
NA/Inf replaced by maximum positive value
Warning in dnorm(x, theta[1], theta[2], log = TRUE): NaNs produced
Warning in nlm(neg_log_lik_gaussian, theta.start, x = rx_sim, iterlim = 1e+05):</pre>
```

estimadores\$estimate

NA/Inf replaced by maximum positive value

[1] 50.435126 4.775367

En mi caso, arroja valores bastantes cercanos (media de 49.07, sd de 4.49) con solo 19 iteraciones.

Para saber qué tan buenos resultados se obtienen con estos estimadores con respecto a los datos reales, podemos simular datos y graficarlos encima de los datos reales para visualizar gráficamente

```
# simulación de diferentes valores aleatorios
# primero graficamos el histograma original, pero añadimos altura en y
# para mejorar la simulación
hist(rx_sim, freq = FALSE, ylim = c(0, 0.1))

# guardamos los estimadores en un vector que llamaremos coefs
coefs <- estimadores$estimate
# simularemos 100 veces la variable aleatoria
nsims <- 100
# la cantidad de X en rx será de 100 también, como nuestro vector original,
# es decir cada experimento aleatorio será de 100 valores
n <- length(rx_sim)
# usaremos un ciclo for para crear líneas
for (i in 1:nsims) {
# creamos una variable aleatoria temporal que se renueva en cada ciclo;</pre>
```

```
# usaremos los coeficientes coefs obtenidos con nlm
 rx \leftarrow rnorm(n, mean = coefs[1], sd = coefs[2])
 # usaremos la función density() de R, que obtiene densidades
 # usando un algoritmo no paramétrico llamado kernel density estimate;
 # por el momento, lo importante es que permite obtener densidad de probabilidad
 # y la usaremos para crear líneas que sobrelapen al histograma antes creado
 # obtendremos la densidad entre 0 y 150
 den_rx <- density(rx, from = 0, to = 150)
  # la función lines permite añadir elementos al gráfico original, en este
 # caso, el creado con hist(). lwd es el grosor de la línea; haremos
 # líneas muy delgadas
 lines(den_rx$x, den_rx$y, lwd = 0.1)
# repetir la curva original con los datos reales, pero en color rojo y gruesa
 dnorm(x, mean = mu_real, sd = sd_real),
 col = 'red',
 lwd = 2,
 from = 0, to = 200, add = TRUE)
```

Histogram of rx_sim

Podemos ver que con los parámetros obtenidos, obtenemos densidades (líneas negras) bastante próximas a los parámetros reales (línea roja).

Ejercicio 1

Dado el siguiente vector de datos aleatorios \mathbf{x} , obtén estimadores de la media y la desviación estándar asumiendo que están normalmente distribuidos.

```
# vector de datos aleatorios x \leftarrow c(115, 122, 130, 127, 149, 160, 152, 138, 149, 180) # coloca correctamente entre las comas los argumentos de la función para # obtener los estimadores # estimadores \leftarrow nlm(, , , iterlim = 1e5) # quita el primer '#'
```

Luego, realiza un gráfico de histograma y añade 100 simulaciones con los parámetros estimados en el paso anterior, y verifica qué tan bien se ajusta la simulación a los datos en x.

Ejercicio 2

Realiza una simulación con datos exponencialmente distribuidos, similar al ejemplo ilustrativo, con n=100 y una tasa de 60.

Para obtener la variable aleatoria de datos exponenciales, se usa rexp(100, 1/60). Por diseño, en R la tasa en las exponenciales se parametriza como el inverso; en vez de lambda=60, es rate=1/lambda.

En la función de verosimilitud negativa que hagas, en vez de usar dnorm ahora usarás dexp. Comprueba tus resultados guiándote con el ejemplo ilustrativo.