

In this video ...

- →a brief history of data
- → the future of data → knowledge
- →introduction to data warehousing

Data: The Story So Far

"In the Beginning ... were the Data"

Data - the story so far

Databases considered so far have been:

- →(comparatively) small and finite
 - → historically, storage in a computer system was limited, so we stored the minimum necessary
- → simple data / facts (numbers, text)
- → designed to hold specific data + queries
- →designed to model the present
 - → older facts are overwritten by newer facts
- →typically focussed on transaction processing
 - → if done "live" called OnLine Transaction Processing (OLTP)

Data - the future

The trend is towards:

- → collecting data on everything
 - → and keeping it all (nothing is overwritten)!
- →pulling in data from other external databases
- →use of complex data types (images, video, sounds) which are now practical ... and also analysis of their content

The desire is to:

→find unknown patterns (wisdom) in the data

→use this wisdom to predict future events

"Big Data"

Hence we need:

- → massive data warehouses:
 - → new data are being added all the time

But ... so much data that it's hard to find the knowledge within it:

- → we need tools which can use the data warehouse to extract the wisdom:
 - → collectively known as Business Intelligence:
 - → processing lots of data
 - → guided searching to look in the right places

"Big Data" - caveat

- N.B. What is referred to as "big data" is not all about the quantity of data the term specifically refers to:
- → large quantities of data, and ...
- → data drawn from different sources, and ...
- →integrating the information from various sources, and ...
- →extracting information (wisdom) from the integrated sources to get "added value"

Business Intelligence

- →OnLine Transaction Processing (OLTP) giving way to OnLine Analytical Processing (OLAP)
- → New ways to handle "multi-dimensional" data
- →Querying databases when we don't know what we're looking for
- → Data mining looking for hidden patterns inside the mass of data
- → Visualising the data to help make sense of it
- →BI is complex ... but offers massive dividends
- → Big Data / BI is a new domain ... still evolving

Data Warehousing Concepts

Objectives

- → How data warehousing has evolved
- →The main concepts and benefits associated with data warehousing
- → How online transaction processing (OLTP) systems differ from data warehouses
- →The problems associated with data warehousing
- →The architecture and main components of a data warehouse

Objectives

- →The tools associated with data warehousing
- →The main requirements for a data warehouse DBMS and the importance of managing meta data
- →The concept of the data mart and the main reasons for implementing a data mart

The Evolution of Data Warehousing

- →Since the 1970s, organisations have gained competitive advantage through systems that automate business processes to offer more efficient and cost-effective services to the customer
- →This resulted in accumulation of growing amounts of data in operational databases

The Evolution of Data Warehousing

- →Organisations now focus on ways to use operational data to support decision-making, as a means of gaining competitive advantage ... however, operational systems were never designed to support such business activities
- → Businesses typically have numerous operational systems with overlapping and sometimes contradictory definitions these are often legacy systems that evolved with the business (they were not part of a "master plan")

The Evolution of Data Warehousing

- →Organisations need to turn their archives of data into a source of knowledge, so that a single integrated / consolidated view of the organisation's data is presented to the user
- →The data warehouse (DW)* is a widelyadopted solution to meet the requirements of a system capable of supporting decision-making, receiving data from multiple operational data sources

^{*} you may also see Enterprise Data Warehouse (EDW) - same as DW

Data Warehousing Concepts

A data warehouse is:

→ "a subject-oriented, integrated, timevariant, and non-volatile collection of data in support of management's decisionmaking process"

Inmon (1993)

Subject-oriented Data

- → The warehouse is organised around the major subjects of the enterprise (e.g. customers, products, and sales) rather than the major application areas (e.g. customer invoicing, stock control, and product sales)
- →This is reflected in the need to store decision-support data rather than application-oriented data

Integrated Data

- →The data warehouse integrates corporate application-oriented data from different source systems
- →These sources often contain data that is inconsistent
- →The integrated data sources must be made consistent to present a unified view of the data to the users

Time-variant Data

- → Data in the warehouse is only accurate and valid at some point in time or over some time interval (which needs stored too)
- →Time-variance is also shown in the extended time that the data is held, the implicit or explicit association of time with all data, and the fact that the data represents a series of snapshots

Non-volatile Data

- →New data is always added as a supplement to the database, rather than a replacement (no overwriting)
- → Data in the warehouse is not normally updated in real-time (RT), but is refreshed from operational systems on a regular basis:
 - → although there is an emerging trend towards RT or near-RT DWs
 - → often, the most recent data is the most valuable

Oh no!

based on relational databases, and much of the data will typically be sourced from existing relational databases, so all of our RDB experience remains valid!

Data Warehouse Queries

- → The type of queries that a data warehouse is expected to answer ranges from the relatively simple to the highly complex and is dependent on the type of end-user access tools that are used
- → End-user access tools include:
 - → traditional reporting and query
 - → OnLine Analytical Processing (OLAP)
 - → data mining

Sample Data Warehouse Queries

- → What was the total revenue for Scottish branches in Q3 of 2018?
- → What was the total revenue for property sales for each type of property in Great Britain in 2018?
- → What are the three most popular areas in each city for the renting of property in 2018 and how does this compare with the figures for the previous two years?
- → What is the monthly revenue for property sales at each branch office, compared with rolling 12-monthly prior figures?
- → Which type of property sells for prices above the average selling price for properties in the main cities of Great Britain and how does this correlate to demographic data?
- → What is the relationship between the total annual revenue generated by each branch office and the total number of sales staff assigned to each branch office?

Sample Data Warehouse Queries

- → How do we maximise conversion of applicants to students?
- → When is the best time to put the Christmas stock on display?
- → What adverts should we show to a specific customer to maximise the chance of a new purchase?
- → Can we predict a heart attack based on current medical data?
- → Which people are likely to buy our product if we mail them a coupon?
- → Which people are likely to buy our product if we cold call them?
- → When is the best time of day to call customers?
- → Is my car using more fuel than it should?
- → Which of these images contains a ship?
- → In the ten minutes before the bomb went off, which mobile phone transmissions included the word "bomb"?

Summary

We have seen:

→ the reasons for data warehousing

→the main features of a data warehouse

irmurray@dundee.ac.uk