

Doge Tickets: Uncovering Domain-general Language Models by Playing Lottery Tickets

Yi Yang, Chen Zhang, Benyou Wang, Dawei Song

Outline

- · Background: Out-of-domain Generalization
- Motivation
- Method: Identifying the Doge Tickets
- Experiments
- Results & Analysis
- Conclusions

Background

- Out-of-domain Generalization
 - Given M training domains $D_{train} = \{D^i | i = 1,...,M\}$ where $D^i = \{(x_j^i, y_j^i)\}_{j=1}^{n_i}$ denotes the i-th domain.
 - Domain generalization tends to learn a robust predictive function $h: X \to Y$ from D_{train} to achieve minimum prediction error on an unseen test domain D_{test} .
 - i.e., D_{test} cannot be accessed in training.

Motivation

- Over-parameterized LMs suffer from the limitation of large learning variance when faced with multiple domains.
- A pilot study on how different parameters of BERT behave over multiple domains.
- A critical portion of parameters are domain-specific while others are domain-general.

Motivation

- We posit that a domain-general LM underpinned by domain-general parameters can be derived from the original LM.
- The domain-general LM would facilitate a better domain generalization.
- Lottery tickets hypothesis states that a pruned model is capable of performing as expressive as the original over-parametrized model.
- We propose to identify domain-general parameters (dubbed *doge tickets*) by playing lottery tickets under the guidance of a domain-general score.

Method

- The identification of doge tickets follows a *first fine-tuning, then pruning, finally rewinding* paradigm.
- We apply structured pruning in LM by pruning MHA heads and FFN blocks.

Method

- Previous work identifies winning tickets by referring to the expressive scores of parameters.
- We approximate the expressive scores by masking elements of fine-tuned LM.

$$^{\circ}\text{MHA}(\mathbf{X}) = \sum_{i=1}^{n} \xi^{(i)} \mathbf{H}^{(i)}(\mathbf{X}) \mathbf{W}_{O}^{(i)} \qquad ^{\circ}\text{FFN}(\mathbf{Z}) = \nu \mathbf{W}_{2} \text{GELU}(\mathbf{W}_{1} \mathbf{Z})$$

• Expressive scores

$$\mathbb{I}_{\text{MHA}}^{(i)} = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \xi^{(i)}} \right| \qquad \qquad \mathbb{I}_{\text{FFN}} = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \nu} \right|$$

- We propose a domain-general score which take the mean and variance of expressive scores across domains into account to identify the *doge tickets*.
- Domain-general scores

$$\mathbb{I}_{\text{MHA}}^{(i)\prime} = \mathbb{E}_{d \sim \mathcal{D}} \mathbb{E}_{(x,y) \sim d} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \xi^{(i)}} \right| \qquad \qquad \mathbb{I}_{\text{FFN}}^{\prime} = \mathbb{E}_{d \sim \mathcal{D}} \mathbb{E}_{(x,y) \sim d} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \nu} \right| \\
- \lambda \mathbb{V}_{d \sim \mathcal{D}} \mathbb{E}_{(x,y) \sim d} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \xi^{(i)}} \right| \qquad \qquad - \lambda \mathbb{V}_{d \sim \mathcal{D}} \mathbb{E}_{(x,y) \sim d} \left| \frac{\partial \mathcal{L}(x,y)}{\partial \nu} \right|$$

Experiments

Out-of-domain datasets

- The Amazon sentiment classification dataset
- The MNLI language inference dataset
- The OntoNotes named entity recognition dataset

Baselines

• BERT

• BERT w. *IRM*

• BERT w. random tickets

• BERT w. doge tickets

• BERT w. winning tickets

Dataset	\mathcal{D}	#train.	#dev.	\mathcal{D}'	
AmazonA	{All Beauty, Automotive, Digital Music, Gift Cards}	5,400 600		{Industrial and Scientific, Movies, Software}	
AmazonB	{All Beauty, Industrial and Scientific, Movies, Software}			{Automotive, Digital Music, Gift Cards}	6,000
AmazonC	{Digital Music, Gift Cards, Movies, Software}			{All Beauty, Automotive, Industrial and Scientific}	
MNLI	{Fiction, Government, Slate, Telephone, Travel}	78,540	1,963	{Face to Face, Letters, Nine, Oup, Verbatim}	1,966
ONTONOTES	{Broadcast Conversation, Broadcast News, Magazine, Newswire}	16,111	2,488	{Telephone Conversation, Web Data}	1,837

Table 1: Statistics of datasets. **#train.**, **#dev.**, and **#test** indicate average number of training, development, and test examples per domain.

Results

• BERT w. *doge tickets* certainly generalizes better than baselines over all tasks.

	Datasets						Average
Model	AmazonA	AmazonB	AmazonC	Mnli	OntoNotes	Average Score	Sparsity
	Acc	Acc	Acc	Acc	F1		
BERT	69.8	72.6	69.6	84.8	57.2	70.8	0.0%
w/IRM	70.4	72.5	70.7	84.3	56.3	70.8	0.0%
w/ random tickets	71.4	73.3	70.1	84.6	57.9	71.5	12.8%
w/ winning tickets	70.9	73.7	71.3	84.8	57.9	71.7	17.5%
w/ doge tickets	71.7	73.8	72.2	85.0	58.5	72.2	15.0%

Table 2: Main comparison results in percentage. The best results on datasets are **boldfaced**. Average Score is the average metric over used datasets. Average Sparsity is the average sparsity to achieve best out-of-domain generalization among all sparsity levels over used datasets.

	Datasets	Average Sparsity	
Model	AMAZONA		
	Acc		
BERT-large	73.1	0.0%	
w/IRM	73.5	0.0%	
w/ winning tickets	74.0	15.0%	
w/ doge tickets	74.3	15.0%	

Table 3: Extended comparison results in percent. Larger LMs are used.

Analysis

• Sensitivity to Learning Variance

Figure 3: *doge tickets* on AMAZONA under various λ values with two sparsity levels.

- Impact of Training Domains
 - The impact of domain-specific (or domain-general) parameters on generalization becomes more significant.

		Average			
Model	MNLI-5	MNLI-4	MNLI-3	Sparsity	
	Acc	Acc	Acc	-	
BERT	84.8	84.2	83.0	0.0%	
w/ winning tickets	84.8	84.3	83.3	8.7%	
w/ doge tickets	85.0	84.5	83.6	5.3%	
Δ	0.2	0.3	0.6	_	

Table 4: Results in percentage on MNLI with different training domain numbers. Δ means generalization margin.

Analysis

- Existence of Domain-specific Manner
 - High mean with high variance (HMHV)
- Low mean with high variance (LMHV)
- High mean with low variance (HMLV)
- Ligh mean with low variance (LMLV)

Figure 4: Illustration of expressive scores across domains. Each pie represents a parameterized element (either an MHA head or FFN block). The mean is measured by the radius of a pie. We use 4 distinguished colors to represent domains, whose details are shown in legend. The variance is measured by the proportion of each color in a pie.

Analysis

- Consistency with Varying Sparsity Levels
 - Doge tickets outperforms winning tickets most of the time.

Figure 5: Transitions with varying sparsity levels.

Conclusions

- We propose to identify domain-general parameters by playing lottery tickets to uncover the domain-general LM.
- We propose a domain-general score to guide the identification of doge tickets.
- *Doge tickets* shows advantages over previous *winning tickets* and the original over parameterized model on the out-of-domain datasets.
- arXiv: https://arxiv.org/abs/2207.09638
- Github: https://github.com/Ylily1015/DogeTickets

Thanks for your listening