

Derivator			
$y = \operatorname{arctan}(\tan y) \left(-\frac{\pi}{2}\right)$	< J< $\frac{\pi}{2}$)		
dx: 1= arctan (tan y) tan'y= a	arctan'(tan y) costy		
(OSY= arctan'(tan y)			
$\frac{S_1^2 y + c_0 s^2 y = 1}{cos^2 y + cos^2 y} = \frac{1}{cos^2 y}$			
$\frac{\sin^2 y}{\cos^2 y} + \frac{\cos^2 y}{\cos^2 y} = \frac{1}{\cos^2 y}$			
tan'4.1=cos'4			
$arctan'(tan y) = cos^2 y = \overline{t}$	any+1 tany=x =>	$arctan'(x) = \frac{1}{1+x^2}$	
J= arcsin(sin y)			
dx: 1= arcsin'(sin y)cosy			
$arcsin(sint) = \frac{1}{cost} = 6$	$\frac{1}{91 + 90 + 9}$ \Rightarrow $\alpha r(sin(x) = \frac{1}{1 - 90})$	1	
Implicit derivering			
Vad ar tangenten +1111	cirkeln X+y2=4 ; punkte	$(\sqrt{3} \ 1)^{7}$	
	To a pointed		
Tank att y=J(x). Derive	CG MCD V		
2×+295=0	THE PART A.		
y' = -2x = = x = \(\frac{1}{3}\) => Tange	nters ekvaion (3(x+13):(4.	-1)	
0 23 5 14/10	10cm 0x1000 13(x103) (3		
Explicit			
Explicit $y^2 = 4 - x^2$			
y= \(4-\chi^2 = \left(4-\chi^2\right)^\frac{1}{2}			
$y' = \frac{1}{2} (L_1 - x^2)^{\frac{1}{2}} (-2x) = \frac{1}{2} \frac{1}{\sqrt{17}} ($	-1)(-1=)=1=		
0 2 (1 ×) (××)+ × 11 (
Linjär approximation			
$f(x+h) - f(x) \approx f'(x)h$			
f(x+h) = f(x) + f(x) h			
1 (XTM)/~ 1 (X)/-1 (X)/h			
Ex Sin(42°)			
$= \sin(\frac{\pi}{4} + \frac{2\pi}{160}) \approx \sin \frac{\pi}{4} + \cos \frac{\pi}{4} = \frac{2\pi}{4}$	μπ. 1/1 π		
- Sin(4+180) 4 Sin 4 + CO 4 1	80 - 12 (1 90)		
Ex: Imp der			
	45		
Destam Siny dar 9 ar La	osning till ekladionen e X+Y	, X=2±0,061	
<			
Siny= Sin(y(x))			
d Sin(y(x)) = cos(y(x)) y'(x) 1 (=> e 3'- y=1 (=> y'= e=1		
derivera e=x+y mapx:			
For X=2 ger maclab: Y=			
	0,4659		
	05y= 0,4120		
	n y= 0,9112		
1 or x=2=0,01 for vi: S	5in y= 0,9112 ± 0,010,4569.0,01 =	0,9112 ± 0,00 919	