

FIG.2

FIG.3

FIG.4

FIG.6

FIG.9

FIG.11

FIG.13

FIG.14

FIG.15

FIG. 16

FIG.17 [TABLE]

(COMPOSITION IS EXPRESSED IN ATOM%)

	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3	EXAMPLE 4	EXAMPLE 5	EXAMPLE 6	EXAMPLE 7	EXAMPLE 8	EXAMPLEI 9	EXAMPLE 10	EXAMPLE 11	EXAMPLE 12	EXAMPLE 13	EXAMPLE 14	EXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLEEXAMPLE
no	24.5	24.5 27.5 30.0 23.8	30'0	23.8	26.5	22.5	32,5	32.5	26.5 22.5 32.5 25.0 20.0 22.5 21.0 27.5 28.8	20,0	22.5	21.0	27.5	28.8	25.0
Fe	24.5	24.5 22.5 20.0 23.8	20.0	23.8	21.0	22.5	17.5	20.0	21.0 22.5 17.5 20.0 25.0 30.0 27.5 26.5 18.8 25.0 28.8	30.0	27.5	26,5	18.8	25.0	28.8
တ	51.0	51.0 50.0 50.0	20'0	52.5	52.5	55,0	50.0	52.5 55.0 50.0 47.5	10.0	50,0	50.0	52.5	10.0 50.0 50.0 52.5 53.7 46.2 46.2	46.2	46.2
Se									40.0						
[TOTAL] 100.0 100.0 100.0 100.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	100.0	100.0	100.0	1001	100.0	100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100.0	100.0
RESISTIVITY 200 (x10-3 gcm)	200	32	5,5	55	10	3.7	6	23	50	41	85	31	7	30	45

[TABLE 2]

(5)
	ſ	
L	L	

	[TABLE 3]
))
r)
•	

EXAMPLE16/EXAMPLE17/EXAMPLE18

27.5

27.5

22.0 5.5

Cu Ag

	KEFEKENCE EXAMPLE1	EXAMPLE 1 EXAMPLE 2 EXAMPLE 3	KEFEKENCE EXAMPLE 3
no	40.0	20.0	20.0
Тe	15.0	20.0	35.0
ဟ	45.0	0.09	45.0
[TOTAL]	100.0	100.0	100.0
RESISTIVITY(x10 ⁻³ Ωcm)	3000	1500	2010

20.5

27.5

27.5

27.5

(GROUP 1B ELEMENT TOTAL AMOUNT)

Fe ၀၁

2.5

no	40.0	20.0	20.0
Fe	15.0	20.0	35.0
တ	45.0	0.09	45.0
[TOTAL]	100.0	100.0	100.0
RESISTIVITY(x10 ⁻³ Ωcm)	3000	1500	2010

100,0

100.0

100.0 52

RESISTIVITY (x10-30 cm) [TOTAL] န

48

22.5 50.0

22.5 50.0

22.5 50,0

(GROUP 8 ELEMENT TOTAL AMOUNT)

Z

ဟ

2.0

FIG.20

FIG.21

