On DRC Hose Installment and Related Task, Approach, Status

Hao Dang, Peter K. Allen, Columbia University Youngbum Jun, Paul Oh, Drexel University

Hose Installment Task Specification

- Insert a hose into a hydrant
- Five sub-tasks to complete a hose installment task
 - Detect objects hose and hydrant, etc
 - Grasp the hose
 - Lift up the hose
 - Move to the hydrant
 - Insert into the hydrant

Our Approach

- Three major steps reconstruction + planning + execution
 - Perception
 - recognize the objects hose, hydrant, floor, table, obstacles...
 - reconstruct the scene for the planning/simulation environment
 - Planning
 - Grasping
 - Store a grasp, plan a grasp
 - plan collision free grasping trajectory
 - Manipulation
 - plan collision free rotation trajectory
 - Execution
 - Executing the trajectories in physics simulatio / real robot

Grasp Planning

- GraspIt! a universal grasp modeling, analysis, and simulation tool
 - Manually define a grasp within the UI (or automatically plan)
 - stability measurement: material + kinematics
 - Store grasps into a local/remote grasp database
 - grasp with tags rotational symmetry
 - Retrieve grasps from a local/remote grasp database

GraspIt! GUI

GWS projected onto force space

GWS projected onto torque space

Manipulation Planning

- CBiRRT + OpenRAVE
- Scene reconstructed using object models
 - Object models are pre-defined
 - Perception provides the pose of each object
- OpenRAVE uses the reconstructed scene and plans collision-free trajectories for grasping + manipulation
 - High-level trajectory is pre-determined for the task
 - lift-up, insertion, transportation

Manipulation Execution

- Simulation generates collision-free trajectories
- Physics simulation
 - Run generated trajectories inside OpenRAVE
- Execute with Hubo
 - Sample the generated collision-free trajectories
 - Convert the trajectories into Hubo format
 - Double check the velocity and acceleration along the trajectory
 - Run the trajectories on Hubo

Experiments

- Simulation experiment
 - grasp → lift up → move to hydrant → insert into hydrant

Experiments

Physical experiment

Some Observations We've Made

- Physics simulation
 - Servo controller is not performing accurately consistently
 - Drift effects
 - Performs differently on different machines with different computational power
- Physical experiments
 - More flexible arms
 - Stronger hands

New Hand/Arm Requirements

- make the arm 7-dof instead of 6-dof (huboplus is 6-dof)
- have joint angle sensor on each joint
- have 6-dof force/torque sensor on the wrist of the hand
- strain gauges on finger joints
- attach tactile sensors to the surface of the fingers (5mm by 5mm)
- have rubber coating on the fingers
- maybe have one less finger but make the motors more powerful

What's Next

- Perception System
 - In our experiments, we used a Mocap system
 - Markers were used to indicate the locations of the objects
 - We need to integrate object recognition
- Robot control
 - Some kind of adaptive grasping
 - We need to have better API's for the execution of trajectories
 - We are currently looking at ACH
 - Compliance?

Some Experience We Learned from the ARM-S

- Calibration
 - Arm kinematics
 - Play due to cable driven mechanism
 - Camera calibration
 - Swiss ranger 4000, point gray camera, bumblebee stereo
 - Neck kinematics
 - Two pan/tilt units connected
 - Play due to gap between gears
 - Non-linearity due to springs holding back the pan/tilt units
- Unexpected Collision
 - Object padding for collision avoidance
- Reactive Grasping
 - Sensor capability: vision, force/torque, strain gauges, tactile

Columbia University Robotics Group

Acknowledgement

- Youngbum Jun
- Dmitry Berenson
- Robert Ellenberg

