Northwestern University

MATH 291-3 Final Examination - Practice B Solutions Spring Quarter 2022 June 6, 2022

Last name: SOLUTIONS	Email address:
First name:	NetID:

Instructions

- This examination consists of 7 questions.
- Read all problems carefully before answering.
- You have 120 minutes to complete this examination.
- Do not use books, notes, calculators, computers, tablets, phones, smart watches, or similar devices.
- Possession of a digital communication device during a bathroom break will be treated as a *prima facie* violation of Northwestern's academic integrity policy.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show all of your work. Unsupported answers may not earn credit.

- 1. Determine whether each of the following statements is true or false. If true, then explain why. If false, then give a counterexample.
 - (a) If a bounded function $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous everywhere except on the ellipse $2x^2 + 3y^2 = 4$, then

$$\int_{-5}^{5} \int_{-6}^{6} f(x,y) \, dx dy = \int_{-6}^{6} \int_{-5}^{5} f(x,y) \, dy dx.$$

(b) The sum

$$\int_{-1}^{0} \int_{-x}^{\sqrt{2-x^2}} x^2 y \, dy dx + \int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} x^2 y \, dy dx$$

can be written as a single iterated integral in polar coordinates.

(c) Suppose that $D \subset \mathbb{R}^2$ is a region whose boundary consists of a simple piecewise-smooth closed curve C. Then the value of the line integral $\oint_C -y \, dx + (y^2 + x) \, dy$ depends only on the area of D.

Solution: (a) is true. To see why, note that f is integrable on the box $[-6,6] \times [-5,5]$ by Lebesgue's Criterion for Riemann Integrability because the ellipse $2x^2 + 3y^2 = 4$ has measure zero. Also, for each fixed x the function $y \mapsto f(x,y)$ has at most 2 points of discontinuity, and therefore is integrable on [-5,5]. Similarly, for each fixed y the function $x \mapsto f(x,y)$ has at most 2 points of discontinuity, and therefore is integrable on [-6,6]. Therefore f satisfies the hypotheses of Fubini's Theorem, so that each of the integrals in the problem statement are equal to $\iint_{[-6,6]\times[-5,5]} f \, dA$.

(b) is true. In polar coordinates, this is the integral of the function $x^2y = r^3\cos^2(\theta)\sin(\theta)$ (times the Jacobian factor r) over the region described by $0 \le r \le \sqrt{2}$ and $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$. Therefore the integral can be written as

$$\int_0^{\sqrt{2}} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} r^3 \cos^2(\theta) \sin(\theta) r \, d\theta dr.$$

(c) is false. Suppose that D is the unit disc $x^2 + y^2 \le 1$, so that C is the unit circle $x^2 + y^2 = 1$. Then Green's Theorem implies that

$$\oint_C -y \, dx + (y^2 + x) \, dy = \pm \iint_D 2 \, dA = \pm 2\pi,$$

where we have $+2\pi$ if C is oriented counterclockwise, and -2π if C is oriented clockwise. Therefore the value of the line integral might also depend on the orientation of C.

2. Consider the following iterated integral (in spherical coordinates):

$$\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\sqrt{2}} \rho^3 \sin^2(\phi) \cos(\theta) \, d\rho d\phi d\theta.$$

- (a) Rewrite this as a **single** iterated integral in rectangular coordinates.
- (b) Rewrite this as a **sum** of iterated integrals in cylindrical coordinates.

The point is that you have to determine for yourself which orders of integration give a single integral in (a) and a sum of integrals in (b).

Solution: Since the Jacobian of the spherical coordinate change of variables is $\rho^2 \sin(\phi)$, the given iterated integral represents the triple integral of $x = \rho \sin(\phi) \cos(\theta)$ over a region E in \mathbb{R}^3 . Since $0 \le \theta \le 2\pi$, the shape of E is completely determined by the bounds in ρ and ϕ . Since $0 \le \rho \le \sqrt{2}$, E is enclosed by the sphere $x^2 + y^2 + z^2 = 2$ of radius $\sqrt{2}$ centered at the origin. The restriction $0 \le \phi \le \frac{\pi}{4}$ says that E also lies above the cone $z = \sqrt{x^2 + y^2}$. We sketch E below.

In rectangular coordinates, we can express this triple integral as a single iterated integral in the order dzdydx. To see why, note that the shadow of E in the xy-plane is exactly the unit disc $x^2+y^2 \le 1$ (and therefore we have $-1 \le x \le 1$ and $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$). For each of x and y in this disc, z runs from the cone $z = \sqrt{x^2+y^2}$ to the sphere $z = \sqrt{2-x^2-y^2}$. Therefore we can write this as a single iterated integral as

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} x \, dz dy dx.$$

In cylindrical coordinates, we see that if r is the 'innermost' integration variable, then the upper bound of r changes from r=z (when $0 \le z \le 1$) to $r=\sqrt{2-z^2}$ (when $1 \le z \le \sqrt{2}$). Therefore we can express the triple integral as a sum of iterated integrals in cylindrical coordinates as

$$\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{z} r^{2} \cos(\theta) dr dz d\theta + \int_{0}^{2\pi} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-z^{2}}} r^{2} \cos(\theta) dr dz d\theta.$$

3. Let D be the region in \mathbb{R}^2 enclosed by the circle with equation $x^2 + y^2 = 4x$. Show that

$$\iint_D (y^{101} + \sqrt{x^2 + y^2}) \, dA(x, y) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{64}{3} \cos^3(\theta) \, d\theta.$$

You do **NOT** need to compute the integral on the right.

Solution: D is enclosed by the circle $(x-2)^2 + y^2 = 4$ of radius 2 centered at (2,0), and therefore is symmetric about the x-axis. Because y^{101} is an odd function of y, we immediately have

$$\iint_D y^{101} dA(x,y) = 0,$$

and therefore

$$\iint_D (y^{101} + \sqrt{x^2 + y^2}) \, dA(x, y) = \iint_D \sqrt{x^2 + y^2} \, dA(x, y).$$

We convert to polar coordinates. Note that the disc D contains at least one point on the ray from (0,0) through (x,y) as long as x>0, and therefore we can take $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. For each θ in this interval r runs from 0 (the origin) until it hits the circle, where $r^2=x^2+y^2=4x=4r\cos(\theta)$. This equation is satisfied when r=0 (since the circle passes through the origin) and when $r=4\cos(\theta)$. Therefore $0 \le r \le 4\cos(\theta)$, and we have

$$\iint_{D} (y^{101} + \sqrt{x^{2} + y^{2}}) dA(x, y) = \iint_{D} \sqrt{x^{2} + y^{2}} dA(x, y)$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{4\cos(\theta)} r \cdot r \, dr d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{r^{3}}{3} \Big|_{0}^{4\cos(\theta)} d\theta \right]$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{64}{3} \cos^{3}(\theta) \, d\theta$$

as desired.

4. Prove the **Fundamental Theorem of Line Integrals** for smooth curves: If C is a smooth, oriented curve in \mathbb{R}^n that starts at $\vec{a} \in \mathbb{R}^n$ and ends at $\vec{b} \in \mathbb{R}^n$, and if $f : \mathbb{R}^n \to \mathbb{R}$ is C^1 on C, then

$$\int_{C} \nabla f \cdot d\vec{s} = f(\vec{b}) - f(\vec{a}).$$

Solution: Let $\vec{x}:[a,b]\to\mathbb{R}^n$ be a C^1 parametrization of C with $\vec{x}'(t)\neq\vec{0}$ for each t, and such that $\vec{x}(b)=\vec{b}$ and $\vec{x}(a)=\vec{a}$. Then

$$\int_{C} \nabla f \cdot d\vec{s} = \int_{a}^{b} \nabla f(\vec{x}(t)) \cdot \vec{x}'(t) dt$$

$$= \int_{a}^{b} Df(\vec{x}(t)) D\vec{x}(t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} [f(\vec{x}(t))] dt$$

$$= f(\vec{x}(b)) - f(\vec{x}(a))$$

$$= f(\vec{b}) - f(\vec{a}).$$

5. Suppose that $S \subset \mathbb{R}^3$ is a smooth oriented surface and that $\vec{X}: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ and $\vec{Y}: E \subset \mathbb{R}^2 \to \mathbb{R}^3$ are two orientation preserving parametrizations of S. Suppose further that $\vec{Y} = \vec{X} \circ T$ for some C^1 bijective function $T: E \to D$ such that DT(s,t) is invertible throughout E. Prove that

$$\iint_E \vec{Y}(s,t) \cdot N_{\vec{Y}}(s,t) \, dA(s,t) = \iint_D \vec{X}(u,v) \cdot N_{\vec{X}}(u,v) \, dA(u,v).$$

You may take it for granted (as proved earlier in the course) that $N_{\vec{Y}}(s,t) = \det DT(s,t)N_{\vec{X}}(T(s,t))$.

Solution: First note that since \vec{X} and \vec{Y} are orientation-preserving parametrizations, we have

$$\frac{1}{\|N_{\vec{X}}(T(s,t))\|}N_{\vec{X}}(T(s,t)) = \vec{n}(\vec{X}(T(s,t))) = \vec{n}(\vec{Y}(s,t)) = \frac{1}{\|N_{\vec{Y}}(s,t)\|}N_{\vec{Y}}(s,t)$$

at each $(s,t) \in E$, where $\vec{n}(\vec{p})$ is the unit normal vector to S at $\vec{p} \in S$ given by the orientation of S.

Note that since D = T(E), and since T satisfies the hypotheses of the Change of Variables Theorem, and since $\vec{X}(u,v) \cdot (\vec{X}_u(u,v) \times \vec{X}_v(u,v))$ is continuous (and therefore integrable) on D, the Change of Variables Theorem implies that

$$\begin{split} \iint_D \vec{X}(u,v) \cdot N_{\vec{X}}(u,v) \, dA(u,v) \\ &= \iint_E \vec{X}(T(s,t)) \cdot N_{\vec{X}}(T(s,t)) |\det DT(s,t)| \, dA(s,t) \\ &= \iint_E (\vec{X} \circ T)(s,t) \cdot N_{\vec{X}}(T(s,t)) |\det DT(s,t)| \, dA(s,t) \\ &= \iint_E ((\vec{X} \circ T)(s,t) \cdot \vec{n}(\vec{X}(T(s,t)))) || (\det DT(s,t)) N_{\vec{X}}(T(s,t)) || \, dA(s,t) \\ &= \iint_E (\vec{Y}(s,t) \cdot \vec{n}(\vec{Y}(s,t))) || N_{\vec{Y}}(s,t) || \, dA(s,t) \\ &= \iint_E \vec{Y}(s,t) \cdot N_{\vec{Y}}(s,t) \, dA(s,t). \end{split}$$

6. Suppose $S \subset \mathbb{R}^3$ is a smooth closed surface and that \vec{F} is C^1 on an open set containing S. Show that $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S} = 0$. If needed, you may use without proof the fact that such a surface S can be written as the union of two smooth non-closed surfaces with the same boundary, and that this boundary consists of a single closed piecewise-smooth curve.

Solution: Write $S = S_1 \cup S_2$, where S_1 and S_2 are smooth oriented surfaces such that $\partial S_1 = C = \partial S_2$ for a piecewise-smooth closed curve C. Orient C so that it has the orientation induced by the orientation of S_1 . Then S_1 is "on the left" when viewed from "above" (where "above" is the direction of the orientation of S_1) as one traverses C. Therefore S_2 is "on the right" as one traverses C, so that -C has the orientation induced by the orientation of S_2 . We can therefore apply Stokes' Theorem to see that

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} = \iint_{S_{1}} \operatorname{curl} \vec{F} \cdot d\vec{S} + \iint_{S_{2}} \operatorname{curl} \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{s} + \oint_{-C} \vec{F} \cdot d\vec{s} = \oint_{C} \vec{F} \cdot d\vec{s} - \oint_{C} \vec{F} \cdot d\vec{s} = 0.$$

7. Suppose that $E \subset \mathbb{R}^3$ is a region whose boundary is a smooth closed surface S, that $u: \mathbb{R}^3 \to \mathbb{R}$ is C^2 with

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

on all of E, and that u(x, y, z) = 0 for every $(x, y, z) \in S$. Prove that u(x, y, z) = 0 for every $(x, y, z) \in E$. (Hint: Apply Gauss's Theorem to a well-chosen vector field.)

Solution: Give S the "outward" orientation relative to E. Consider the vector field $\vec{F} \stackrel{def}{=} uu_x \vec{i} + uu_y \vec{j} + uu_z \vec{k}$. Then \vec{F} is C^1 on \mathbb{R}^3 , and $\vec{F} = \vec{0}$ on S because u = 0 on S. Therefore Gauss's Theorem implies that

$$0 = \iint_{S} \vec{0} \cdot d\vec{S}$$

$$= \iint_{S} \vec{F} \cdot d\vec{S}$$

$$= \iiint_{E} \operatorname{div} \vec{F} dV$$

$$= \iiint_{E} (uu_{xx} + (u_{x})^{2} + uu_{yy} + (u_{y})^{2} + uu_{zz} + (u_{z})^{2}) dV$$

$$= \iiint_{E} (u \cdot (u_{xx} + u_{yy} + u_{zz}) + ||\nabla u||^{2}) dV$$

$$= \iiint_{E} ||\nabla u||^{2} dV.$$

Because $\|\nabla u(x,y,z)\|^2$ is continuous and non-negative, if $\|\nabla u(x,y,z)\|^2 > 0$ at any point then we would have $\iiint_E \|\nabla u\|^2 dV > 0$. But this is not the case, so that $\|\nabla u(x,y,z)\|^2 = 0$ for every $(x,y,z) \in E$. It follows that $\nabla u(x,y,z) = \vec{0}$ throughout E, so that $Du(x,y,z) = [0\ 0\ 0]$ throughout E. Therefore u is constant on E. By continuity and the fact that u = 0 on $S = \partial E$, we have u = 0 throughout E.