5. FS - Rasterisierung

Linien

Linien werden in der Form y = m * x + b angegeben wobei m den Anstieg beschreibt und (0, b) den Schnittpunkt der y Achse.

Aus Endpunkten (x_0, y_0) und (x_1, y_1) kann man sich m und b berechnen:

$$m=rac{(y_1-y_0)}{(x_1-x_0)}$$

$$b = y_0 - m * x_0$$

5. Rasterisierung > Linienalgorithmen

Bresenham-Verfahren

Bei Linien lässt sich der nächste Punkt so berechnen:

$$y = m * (x_k + 1) + b$$

(lässt sich ganz einfach aus Linearen Funktionen erschließen)

Hier werden dann nicht die genauen y Werte berechnet sondern lediglich die Entscheidung getroffen, ob y_k oder y_{k+1} näher zum exakten y-Wert liegt.

Abstand zu y_k ist:

$$d_{lower} = y - y_k = m * (x_k + 1) + b - y_k$$

Abstand zu $y_k + 1$ ist:

$$d_{upper} = (y_k + 1) - y = y_k + 1 - m * (x_k + 1) - b$$

Nun berechnet man sich die Differenz zwischen d_{lower} und d_{upper} :

$$d_{lower} - d_{upper}$$

- Wenn diese Differenz negativ ist, dann nimmt man den unteren Punkt (x_{k+1},y_k)
- Wenn positiv den oberen (x_{k+1}, y_{k+1})

Optimierung durch Entscheidungsvariable

Um keine Fließkommaoperationen (Multiplikation/Division) durchführen zu müssen, wird eine **Entscheidungsvariable** eingeführt. Dazu setzt man:

$$m=rac{\Delta y}{\Delta x}$$
 mit $\Delta x=x_1-x_0,$ $\Delta y=y_1-y_0$

Multipliziert man die obige Differenz mit Δx , ergibt sich:

$$p_k = \Delta x \cdot (d_{lower} - d_{upper}) = 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

Diese Entscheidungsvariable hat dasselbe Vorzeichen wie $d_{lower} - d_{upper}$, benötigt aber keine Division mehr.

Rekursive Berechnung der nächsten Entscheidungsvariable:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x \cdot (y_{k+1} - y_k)$$

Das bedeutet: Die neue Entscheidungsvariable lässt sich **einfach aus der vorherigen berechnen**, je nachdem, ob y erhöht wurde oder nicht – also ganz ohne Neuberechnung des exakten y-Werts.

Startwert:

$$p_0 = 2\Delta y - \Delta x$$

<u>5. Rasterisierung > Bresenham-Verfahren</u>

Mischen von Farben

B... Hintergrundfarbe

F... Vordergrundfarbe

$$F: P = t * F + (1 - t) * B$$

5. Rasterisierung > Attribute von (2D-) Polygonen und Flächen

Barzentrische Koordinaten berechnen

Für ein Dreieck mit P_0, P_1, P_2 , berechne für einen Punkt P = (x, y):

$$g_{ij}(x,y) = (y_i - y_j)x + (x_j - x_i)y + (x_iy_j - x_jy_i)$$

Dann:

$$lpha = rac{g_{12}(x,y)}{g_{12}(x_0,y_0)}$$

$$eta = rac{g_{20}(x,y)}{g_{20}(x_1,y_1)}$$

$$\gamma = rac{g_{01}(x,y)}{g_{01}(x_2,y_2)}$$

Punkt liegt im Dreieck, wenn:

 $0 < \alpha < 1, \quad 0 < \beta < 1, \quad 0 < \gamma < 1$

Kantendefinition (für benachbarte Dreiecke):

Damit Kanten nicht doppelt gezeichnet werden:

- Nur Pixel rendern, wenn Mittelpunkt echt im Inneren liegt
- Für Kanten auf dem Rand: z. B. nur "unten" und "rechts" rendern, nicht "oben" oder "links" → eindeutige Kantenregel

<u>5. Rasterisierung > Berechnen der baryzentrischen Koordinaten</u>