Hodina 17. novembra 2023

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli: Ešte bude trocha projektívnej geometrie.
- 3. Afínna geometria a komplexné čísla.
- 4. Domáca úloha (nová)
- 5. Program na budúci týždeň

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

Majme šesťuholníkový biliardový stôl.

Guľa sa nachádza na spojnici P_2P_6 . Máte guľu postrčiť tak, aby sa prvýkrát odrazila od strany P_1P_2 alebo P_4P_5 a druhý odraz ju poslal do vrecka P_4 . Kde všade na červenej spojnici sa môže guľa nachádzať, aby bol takýto strk možný?

Riešenie

Toto nie je presné riešenie, ale takto sa na to treba pozerať:

Príklad 2 Nájdite polomer kruhu.

Riešenie

Veta o skrížených tetivách a neutopiť sa v číslach.

Označme x dĺžku úsečky od bodu C po X, priesečník s kružnicou pod DE. Potom

$$(r+10) \cdot (2r-r-10) = 21 \cdot x$$

 $r^2 = 100 + 21x$

Potom z pravouhlého trojuholníka ABX máme

$$16^2 + (21+x)^2 = (2r)^2$$

Dosadenie za x vedie ku škaredým číslam, ľahšie je dosadiť za r:

$$256 + 441 + 42x + x^{2} = 400 + 84x$$
$$x^{2} - 42x + 297 = 0$$
$$(x - 9)(x - 33) = 0$$

Druhý koreň je nereálny, takže x = 9 a

$$r^2 = \frac{16^2 + 30^2}{4} = 289$$

a teda r = 17.

2. Príklady na zahriatie

Ešte trocha projektívnej geometrie

Pappusova veta

Sľúbil som dôkaz, a síce nebude s vektormi, ale bude pekne projektívny a nebudeme prechádzať do afínnej roviny.

Ppappusovu veta tvrdí, že body C_1, C_2, C_3 sú kolineárne. Prekreslíme si obrázok a pozrieme sa bližšie, ako tu veci fungujú.

Máme tu zobrazenie bodov B_1,B_2,B_3 na body A_1,A_2,A_3 pomocou dvoch perspektívnych projekcií: Prvá projekcia s ohniskom A_3 "stiahne" body B_1,B_2,B_3 na červenú priamku (zelené šípky). Druhá projekcia s ohniskom B_3 pošle body z červenej čiary do bodov A_1,A_2,A_3 . Máme tu tri takéto dvojice, ale skúmame iba túto jednu. Nemáme žiadnu záruku, že bod C_3 leží na červenej čiare - to práve potrebujeme dokázať.

Pre náš dôkaz bude podstatné, čo sa udeje s bodmi P a Q, Prvá projekcia stiahne bod P do bodu Q, a druhá ho ponechá na mieste, pretože už leží na priamke A_1A_2 . O bode Q pozitívne vieme, že leží na červenej čiare.

Pozrime sa teraz na inverzné zobrazenie:

Na tomto obrázku máme dvojicu projekcií, ktoré zobrazjú body A_1,A_2,A_3 na B_1,B_2,B_3 . Červená čiara na tomto obrázku nemusí byť nutne totožná s červenou čiarou na predošlom obrázku, konkrétne nevieme povedať, či na nej leží bod C_1 .

Čo ale vieme je, že toto zobrazenie je inverzné k projekciám na predošlom obrázku. Pretože kombinácia projekcií na dvoch obrázkoch zobrazuje body B_1, B_2, B_3 na seba, musí toto platiť pre všetky body na priamke B_1B_2 , a teda aj pre priessečník P. To ale znamená, že bod Q musí ležať na oboch červených priamkach, a pretože na oboch červených priamkach musí ležať aj bod C_2 , musia byť priamky totožné.

3. Vektory a komplexné čísla

Van Aubelova veta

Spojnice štvorcov sú na seba kolmé a majú rovnakú dĺžku.

To som minule pokašľal, ale snáď teraz to už je jasné.

Rovnica priamky

Parametrickú rovnicu sme už mali:

Body, ležiace na priamke, prechádzajúcej bodmi A,B sú X=A+t(B-A).

• Toto nejde ľahko zovšeobecniť na zložitejšie krivky (teda ide, ale užitočné to je iba občas.

Afinny priestor: máme body, vektory, a vzdialenosti medzi nimi.

- ullet Vzdialenosť bodov: $|B-A|=\sqrt{(b_x-a_x)^2+(b_y-b_x)^2}$
- Vzdialenosť vektorov meria odchýlku ich smerov:

$$ec{a}\cdotec{b}=|ec{a}||ec{b}|\cosngle(ec{a},ec{b})=a_x\cdot b_x+a_y\cdot b_y.$$

Body nemôžeme sčítať, ale vektory áno. Body ale môžeme odčítať, pričom dostávame vektor.

Normálová rovnica priamky

Priamku, kolmú na vektor \vec{n} a prechádzajúcu bodom A, tvoria body, pre ktoré platí $(X-A)\cdot\vec{n}=0$, čo vedie k rovnici tvaru ax+by+c=0.

Komplexné čísla

Komplexné čísla sú čisla tvaru z=x+iy, kde x, y sú reálne súradnice v rovine a $i^2=-1$.

Transformácie

Vektor je posunutie, takže posunutia sú ľahké.

Rotácie sú ťažšie, ale sú ľahké v komplexných číslach.

Zamyslenie na domácu úlohu: Čo ostatné izometrie roviny?

Zrkadlenie? Stredová symetria? Posunuté zrkadlenie?

(Porozmýšlať: aké ingrediencie na toto potrebujeme a v akom vyjadrení to je najprirodzenejšie.)

4. Domáca úloha (nová)

- 1. Máme kvadratickú formu $y^2-8y-x+19=0$, ktorá popisuje parabolu v rovine. Nájdte vrchol paraboly, ohnisko, smerovú priamku (pre ohnisko a riadiacu priamku platí, že body na parabole majú rovnakú vzdialenosť od ohniska a riadiacej priamky), a os paraboly.
- 2. Vyriešte.

AB=AD , BC=2 , CD=3 \angle BAD = \angle BCD = 90° Blue shaded area = ?

5. Program na budúci týždeň

Grupy symetrií a dlaždice možno dáme nabudúce.

Ale robíme analytickú geometriu a komplexné čísla.