Exercices: 10 - Réseaux

— Solutions —

A. Maximums Principaux

1. Réalisation d'un réseau

Réponses : $I = \frac{I_0}{2} [1 + \cos(\frac{2\pi}{\lambda} 2 \sin \frac{\alpha}{2} y)]$; $i = \frac{\lambda}{2 \sin(\alpha/2)}$; 36, 9°.

2. Ordres présents pour un réseau par transmission

Réponses : $\sin\theta = 0, 4p \ \theta = 0^{\circ} \pm 24^{\circ} \pm 53^{\circ}, \sin\theta = 0, 48p \ 0^{\circ}, \pm 29^{\circ} \pm 74^{\circ}, \Delta\theta_{0} = 0^{\circ}, \Delta\theta = 5^{\circ}, \Delta\theta = 21^{\circ}, \sin\theta = 0, 5+0, 4p-44, 4^{\circ}-17, 5^{\circ}5, 7^{\circ}30^{\circ}64, 2^{\circ} \text{ et } \sin\theta = 0, 5+0, 48p-70^{\circ}-27^{\circ}1^{\circ}30^{\circ}79^{\circ}, \sin\theta = 0, 5+0, 404p-45, 4^{\circ}-17, 9^{\circ}5, 5^{\circ}30^{\circ}64, 7^{\circ}\Delta\theta_{p}$ maximal pour les ordres |p| les plus grands, ici p=-3 où $\Delta\theta_{p=-3}=1, 0^{\circ}$.

3. Ordre manquant

Réponses : $\mathcal{D}(i) = \mathrm{sinc}^2 \frac{\pi \ell \sin i}{\lambda}$ est une fonction lente qui sert d'enveloppe à la fonction d'interférences ; $\mathcal{I}(i) = \frac{\sin^2 N \frac{\pi a \sin i}{\lambda}}{\sin^2 \frac{\pi a \sin i}{\lambda}}$, $a = 5\ell$.

4. Réseau sous incidence normale

Réponses: On écrit la formule fondamentale des réseaux, sachant que l'on est en incidence normale. Pour la raie verte, dans l'ordre 1, on a $\sin i_{\text{vert}} = \frac{\lambda_{\text{vert}}}{a}$. Pour la raie rouge, dans l'ordre 2, on a $\sin i_{\text{rouge}} = 2 \frac{\lambda_{\text{rouge}}}{a}$. Alors, $\lambda_{\rm rouge} = \frac{1}{2} \frac{\sin i_{\rm rouge}}{\sin i_{\rm vert}} \lambda_{\rm vert} = 762,9$ nm. De même, on tire $\lambda_{\rm bleu} = 479,8$ nm. La précision sur les mesures des angles autoriserait une bonne précision sur λ s'il n'y avait pas une autre cause d'incertitude. On peut penser au rôle du nombre fini N de traits éclairés qui provoque un élargissement des ordres d'environ $2\pi/N$ en phase mais ce n'est pas la cause la plus importante d'incertitude avec les réseaux assez performants et une évaluation chiffrée peut nous en convaincre. Par exemple, à l'ordre 1 et aux petits angles (pour plus rapidement se fixer les idées), on aurait une incertitude angulaire relative (en s'appuyant sur $\varphi \simeq \frac{2\pi}{\lambda}$ à $i = \frac{\Delta i}{i} \simeq \frac{\Delta \varphi}{\varphi} = \frac{2\pi/N}{2\pi} = \frac{1}{N} \simeq 0,05\%$) pour un réseau médiocre de 100 traits/mm éclairé sur une largeur de 2 cm. Cela reste assez précis (précision d'environ une moitié de minute d'arc si l'on revient aux angles)! En pratique, on utilise des réseaux avec N plus élevé! Par exemple, on peut adopter un réseau de 1000 traits/mm et l'éclairer sur une largeur de 5 cm et on déduit une précision relative angulaire de $2.10^{-3}\%$. La principale cause d'incertitude réside surtout dans l'hypothèse de l'incidence normale. On ne sait pas bien repérer la normale d'un réseau. On pourrait penser à utiliser la réflexion dans l'ordre 0 pour repérer cette direction avec une lunette autocollimatrice. On voit sur la figure 1 que lorsque le réticule lumineux se superpose avec son image par réflexion dans l'ordre 0, le plan du réseau est normal à l'axe de la lunette. Cependant, il n'est pas certain que la réflexion dans l'ordre 0 soit suffisamment intense pour permettre un tel repérage!

Figure 1 – Réseau par réflexion et collimateur

Pour faire des mesures précises de longueur d'onde, on peut utiliser plusieurs méthodes. La plus connue consiste à utiliser le minimum de déviation $D_{p,\min}$ dans l'ordre p, tel que $2\sin\frac{D_{p,\min}}{2}=p\frac{\lambda}{a}$. On peut démontrer cette formule comme suit. La déviation de l'ordre p par le réseau est $D_p=\theta_p-\theta_0$. Celle-ci est extrémale lorsque $\frac{\mathrm{d}D_p}{\mathrm{d}\theta_0}=\frac{\mathrm{d}\theta_p}{\mathrm{d}\theta_0}-1=0$. Or, la relation fondamentale des réseaux différenciée donne $\cos\theta_p\,\mathrm{d}\theta_p-\cos\theta_0\,\mathrm{d}\theta_0=0$ donc $\frac{\mathrm{d}D_p}{\mathrm{d}\theta_0}=\frac{\cos\theta_0}{\cos\theta_p}-1=0$. Ainsi, la déviation est extrémale lorsque $\theta_p=\pm\theta_0$. Le cas avec le signe + n'est possible que pour l'ordre 0 pour lequel la déviation est nulle (on le savait déjà) et bien minimale. Ce n'est pas ce qui nous intéresse. On retient donc $\theta_p=-\theta_0$ qui correspond à une déviation extrémale (avec le réseau bissecteur des rayons incidents et diffractés dans l'ordre p!) $D_{p,\mathrm{extr.}}=2\,\theta_p$ et la formule fondamentale des réseaux permet de conclure aisément sur la formule proposée mais il reste à prouver que l'on a bien un minimum de déviation. Ceci

est en fait évident puisque la déviation est supérieure lorsque $\theta_0 = 0$. En appliquant la méthode du minimum de déviation développée, il vient donc $\lambda_{\text{rouge}} = \lambda_{\text{vert}} \frac{\sin \frac{D_{p,\text{min,rouge}}}{2}}{\sin \frac{D_{p,\text{min,vert}}}{2}}$ sans nécessiter de connaître l'angle d'incidence.

5. Spectre de la lampe à vapeur d'hydrogène

Réponses : Diffraction, interférences, $\sin\theta_k=\sin i+kn\lambda$, $D_k=\theta_k-i$, $\theta_k=\pm i$ signes différents d'où $\theta_k=-i$, $D_{km}=2\theta_k=-2i$, $\theta_1=8,5\,^\circ$ $\lambda_0=\frac{2}{n}\sin\theta_1$, $\Delta\lambda_0=\frac{2}{n}\cos\theta_1\Delta\theta_1$, $\lambda_0=608,5\pm1,2\,\mathrm{nm}$, $i_0=-19,2\,^\circ$, 6 ordres complets $\{-2,-1,1,2,3,4\}$, $x_\beta=-f'\tan\beta_1=-3,4\,\mathrm{cm}$, $x_\gamma=-4,5\,\mathrm{cm}$, $x_\delta=-5,0\,\mathrm{cm}$.

6. Réseau par réflexion

Réponses : $\sin \theta + \sin i = pn\lambda$, $2\sin \theta = pn\lambda$, $\theta = 0^{\circ} 8, 3^{\circ} 16, 8^{\circ} 25, 6^{\circ} 35, 2^{\circ}$ et $46, 2^{\circ}$, $x_{\lambda} = 14, 58$ cm, $x_{\lambda'} = 14, 63$ cm, $\Delta x = 0, 5$ mm.

7. Position des raies dans la figure de diffraction

Réponses : $\sin\theta = 0, 5 + 0, 2356p$, ordres de 2 à -6 $\theta = 76, 2° 47, 4° 30° 15, 3° 1, 7° <math>-11, 9° -26, 3° -42, 7° -66, 0°, <math>\frac{\Delta\lambda}{\lambda} = pN$ $N = n\ell$, $\ell = 1, 2$ mm, $\Delta\theta = 0, 1°$.

8. Source à distance finie

Réponses : $\ell = Na = 2$ cm, $a\sin\theta = p\lambda$. Puisque l'incidence est normale, il y a symétrie des ordres par rapport à la normale. Les ordres observables sont p = 0, $p = \pm 1$, $p = \pm 2$ et $p = \pm 3$ avec les angles 0° , ± 15 , 1° , ± 31 , 3° et ± 51 , 3° . Il y a une différence de marche supplémentaire avant le réseau $\delta_{\rm avant} = \sqrt{D^2 + n^2a^2} - D$ pour la fente de rang n à partir de celle située en face de la source. En effectuant un développement imité, on arrive à $\delta_{\rm avant} \simeq \frac{n^2a^2}{2D}$. Il n'y aura pas de changement si $\delta_{\rm avant} = p'\lambda$ avec $p' \in \mathbb{N}$. On a donc $D = \frac{n^2a^2}{2p'\lambda}$, ceci doit être vrai $\forall n$. Si on pose la condition pour n = 1 à savoir $D = \frac{a^2}{2p'\lambda}$ alors on aura toujours $\delta_{\rm avant}$ multiple entier de la longueur d'onde puisque n^2 est toujours un entier. La plus grande valeur de D est obtenue pour p' = 1 à savoir $D = \frac{a^2}{2\lambda} = 3$, 8 µm. Cette valeur est très faible et ne respecte pas la condition $D \gg \ell$. On peut donc dire que la présence de la source à distance finie modifiera nécessairement la figure de diffraction fournie par le réseau.

B. Applications du réseau

9. Mesure de la vitesse du son dans l'eau

Réponses : Superposition d'ondes progressives se propageant en sens contraire, $a=\frac{\Lambda}{2}$ où $\Lambda=\frac{c}{\nu}$ est la longueur d'onde, $a\sin\theta=p\lambda, \ x=p\frac{\lambda f}{a}, \ \Delta x=\frac{\lambda f}{a}, \ c=\frac{2\lambda f\nu}{\Delta x}=1\,508\,\mathrm{m\cdot s^{-1}}$ supérieure à $340\,\mathrm{m\cdot s^{-1}}$ dans l'air logique, $s=Ks_0\exp j\omega t\int_{-d/2}^{d/2}\left(1+j\eta\cos\left(2\pi\frac{x}{a}\right)\right)\exp j\frac{2\pi x\sin\theta}{\lambda}\mathrm{d}x,$ maxima en x=0 et en $x=\pm\frac{\lambda f}{a},$ on observe 3 ordres $I=I_0\left[\sin^2\frac{\pi dx}{\lambda f}+\frac{\eta^2}{4}\left(\sin \pi d(\frac{1}{a}+\frac{x}{\lambda f})+\sin \pi d(-\frac{1}{a}+\frac{x}{\lambda f})\right)^2\right].$

10. Pouvoir de résolution d'un réseau

Réponses : $E = E_0 \frac{\sin^2 \frac{N\pi a \sin \theta}{\sin^2 \frac{\pi a \sin \theta}{\lambda}}}{\sin^2 \frac{n\pi a \sin \theta}{\lambda}}$ avec $\theta - i = \frac{x}{f}$, $\sin \theta = 0,2454p\ 0^\circ\ 14,2^\circ\ 29,4^\circ\ (p=2)\ 47,4^\circ\ 79,0^\circ$, l'ordre 2 se situe à $0,6^\circ$ de l'axe optique de la lentille, $x=0,52\,\mathrm{cm}$, $\sin \theta_k' = (k+\frac{1}{N})\frac{\lambda}{a}$, $\sin \theta_k = k\frac{\lambda}{a}$, $\theta_k' = \theta_k + \epsilon$ avec $\epsilon \ll \theta_k$, $\epsilon = \frac{\lambda}{Na\cos\theta_k}$, $\Delta x_{1/2} = \frac{\lambda fa}{\ell\sqrt{a^2-k^2\lambda^2}}$, $\ell \simeq \frac{a\lambda}{2\delta\lambda} = 1,2\,\mathrm{mm}$.

11. Spectroscope à réseau

Réponses : Ordre ; $-\frac{1}{N\lambda_{bleu}} \le p \le \frac{1}{N\lambda_{bleu}}$; $i=-i_0,\ D=2i=-2i_0,\ \sin i=p\frac{N\lambda}{2}$; $\Delta\lambda=\frac{\lambda}{N_{tot}g}=31\,\mathrm{pm}$; transparence du réseau, diffraction.

12. Réseau de Michelson

Réponses : Réflexion en $\theta=0$, maximum d'interférences si $2e=p\lambda$; p=303,03 quasiment le cas ; amplitude diffractée en sinc $\frac{\pi a(\sin i-\sin \theta)}{\lambda}$; différence de marche $\delta=a(\sin i-\sin \theta)+e(\cos i+\cos \theta)$, amplitude des interférences en $\frac{\sin \frac{N\pi \delta}{\lambda}}{\sin \frac{\pi \delta}{\lambda}}$; maximum de diffraction si $i=\theta$ alors $\delta=2e\cos \theta$, maximum d'interférences si $2e\cos \theta=p\lambda$ avec $p\in\mathbb{N}, \frac{\lambda}{\Delta\lambda}=N\frac{2e}{\lambda}\simeq 6060$.

C. Interféromètre de Fabry et Perot

13. Éclairement transmis par l'interféromètre de Fabry et Perot

Réponses : $A_1 = \tau^2 A_0$, $A_2 = \tau^2 \rho^2 A_0$, $A_p = \tau^2 \rho^{2(p-1)} A_0$, $\Phi = 2kLn_0$, maximal si $\Phi \equiv 0[2\pi]$, $A_{tr,\max} = A_0 \tau^2 (1 + \rho^2 + \rho^4 + \rho^6 + \dots) = A_0 \frac{\tau^2}{1-\rho^2}$ d'où $A_{tr,\max} = A_0$ et $I_{tr,\max} = I_0$, minimal si $\Phi \equiv \pi[2\pi]$, $A_{tr,\min} = \tau^2 A_0 (1 - \rho^2 + \rho^4 - \rho^6 + \dots) = \frac{\tau^2}{1+\rho^2} A_0$ d'où $I_{tr,\min} = \left(\frac{1-\rho^2}{1+\rho^2}\right)^2 I_0$ ou encore $I_{tr,\min} = \left(\frac{1-R}{1+R}\right)^2$, $V = \frac{2\rho^2}{1+\rho^4}$, plus $\rho^2 \to 1$ élevé plus $V \to 1$ plus il y a d'écart entre les maxima et les minima $I_{tr,\min} \to 0$ et on voit bien les interférences, $T = 1 - \rho^2 = 1 - R$, $I_{tr} = I_0 \frac{(1-R)^2}{1+R^2-2R\cos\Phi}$, si $\Phi \equiv 0[2\pi]$ $I_{tr} = I_0$ et si $\Phi \equiv \pi[2\pi]$ $I_{tr} = I_0 \left(\frac{1-R}{1+R}\right)$, $\Theta = \frac{(1-R)^2}{1+R^2-2R\cos\Phi}$.

14. Signal optique dans l'interféromètre de Fabry et Perot

Réponses : Le terme $\exp\left(-jn_0k(x-L)\right)$ provient de l'onde allant dans le sens x croissant qui s'arrête en x et ne va pas jusqu'en L, le terme $\rho \exp\left(jn_0k(x-L)\right)$ représente l'onde réfléchie qui est allée de L vers x et qui n'est pas comptée dans $\underline{S}_{tr}(L,t)$, $\tau^2=1-\rho^2\simeq 2\varepsilon$, $I_{lam}=\frac{I_0\Theta}{2\varepsilon}(1+\rho^2+2\rho\cos\psi)$ où $\psi=n_0k(x-L)$, avec $\rho^2\simeq 1$ et $\rho\simeq -1$ on a $I_{lam}=\frac{2I_0\Theta}{\varepsilon}\sin^2\left(n_0k(x-L)\right)$, les représentations sur la figure 2.

FIGURE 2 – Signal optique dans la lame