

Computer Security and Cryptography

CS381

来学嘉 计算机科学与工程系 电院3-423室 34205440 13564100825 laix@sjtu.edu.cn

2016-03

Organization

- Week 1 to week 16 (2016-02-24 to 2016-06-08)
- 东上院502
- Monday 3-4节; week 9-16
- Wednesday 3-4节; week 1-16
- lecture 10 + exercise 40 + random tests 40 + other 10
- Ask questions in class counted as points
- · Turn ON your mobile phone (after lecture)
- · Slides and papers:
 - http://202.120.38.185/CS381
 - computer-security
 - http://202.120.38.185/references
- TA: '薛伟佳' xue_wei_jia@163.com, '黄格仕' <huang.ge.shi@foxmail.com>
- Send homework to: laix@sjtu.edu.cn and to TAs

Rule: do not disturb others!

2

Contents

- · Introduction -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions/MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking

Network security

SSL IPSEC Firewall VPN

Computer security

Access control Malware DDos Intrusion

Examples

Bitcoin Hardware Wireless

3

References

- W. Stallings, Cryptography and network security principles and practice, Prentice Hall.
- W. Stallings, 密码学与网络安全: 原理与实践(第4版), 刘玉珍等译, 电子工业出版社, 2006
- Lidong Chen, Guang Gong, *Communication and System Security*, CRC Press, 2012.
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, *Handbook of Applied Cryptography*. CRC Press, 1997, ISBN: 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/index.html
- B. Schneier, *Applied cryptography*. John Wiley & Sons, 1995, 2nd edition.
- 裴定一,徐祥,信息安全数学基础, ISBN 978-7-115-15662-4, 人民邮电出版社,2007.

4

The IDEA cipher

- · International Data Encryption Algorithm
- · Block length 64-bit, key length 128-bit
- EU Project OASIS (88) (initial)
 - Key length of DES is too short (56 bits)
 - US export restrictions
 - Provable security (crypto is more art than science)
- · Lai-Massy, Eurocrypt 90 (PES)
- Lai-Massey-Murphy, Eurocrypt 91 (IPES)
- · Naming 92

3

Key schedule

128-bit key (16 blocks) Z_1 , Z_2 , Z_3 , Z_4 , Z_5 , Z_6 , Z_7 , Z_8 $Z_9, Z_{10}, Z_{11}, Z_{12}, Z_{13}, Z_{14}, Z_{15}, Z_{16}$ Cyclic-shift to left by 25 bits $Z_{49}, Z_{50}, Z_{51}, Z_{52}$

$$\begin{vmatrix} Z_1, & Z_2, & Z_3, & Z_4, & Z_5, & Z_6 \\ Z_7, & Z_8, & Z_9, & Z_{10}, Z_{11}, & Z_{12} \\ Z_{13}, & Z_{14}, & Z_{15}, & Z_{16}, & Z_{17}, & Z_{18} \\ Z_{19}, & Z_{20}, & Z_{21}, & Z_{22}, & Z_{23}, & Z_{24} \\ Z_{25}, & Z_{26}, & Z_{27}, & Z_{28}, & Z_{29}, & Z_{30} \\ Z_{31}, & Z_{32}, & Z_{33}, & Z_{34}, & Z_{35}, & Z_{36} \\ Z_{37}, & Z_{38}, & Z_{39}, & Z_{40}, & Z_{41}, & Z_{42} \\ Z_{43}, & Z_{44}, & Z_{45}, & Z_{46}, & Z_{47}, & Z_{48} \\ Z_{49}, & Z_{50}, & Z_{51}, & Z_{52} \end{vmatrix}$$

encryption

$$\begin{bmatrix} Z_{49}^{-1}, -Z_{50}, -Z_{51}, Z_{52}^{-1}, Z_{47}, Z_{48} \\ Z_{43}^{-1}, -Z_{45}, -Z_{44}, Z_{46}^{-1}, Z_{41}, Z_{42} \\ Z_{37}^{-1}, -Z_{39}, -Z_{38}, Z_{40}^{-1}, Z_{35}, Z_{36} \\ Z_{31}^{-1}, -Z_{33}, -Z_{32}, Z_{34}^{-1}, Z_{29}, Z_{30} \\ Z_{25}^{-1}, -Z_{27}, -Z_{26}, Z_{28}^{-1}, Z_{23}, Z_{24} \\ Z_{19}^{-1}, -Z_{11}, -Z_{20}, Z_{22}^{-1}, Z_{17}, Z_{18} \\ Z_{13}^{-1}, -Z_{15}, -Z_{14}, Z_{16}^{-1}, Z_{11}, Z_{12} \\ Z_{7}^{-1}, -Z_{9}, -Z_{8}, Z_{10}^{-1}, Z_{5}, Z_{6} \\ Z_{1}^{-1}, -Z_{2}, -Z_{3}, Z_{4}^{-1} \end{bmatrix}$$

subkey bits

Dependency of subkey bits on the master key bits of IDEA. i-th round

```
Z_5^{(i)}
                                           Z_6^{(i)}
    Z_1^{(i)}
          Z_2^{(i)}
                  Z_3^{(i)}
                           Z_{4}^{(i)}
1 0-15
          16-31
                  32 - 47
                           48-63 64-79
                                          80-95
                           41–56
2 96-111 112-127 25-40
                                  57-72
                                           73-88
3 89-104 105-120 121-8
                           9-24
                                   50-65
                                           66--81
4 82-97 98-113 114-1
                           2-17
                                   18-33
                                           34 - 49
5 75-90 91-106 107-122 123-10 11-26
                                           27 - 42
6 43–58 59–74
                  100–115 116–3
                                   4–19
                                           20 - 35
7 36–51 52–67
                  68-83
                           84-99
                                   125-12 13-28
                  61 - 76
8 29-44 45-60
                           77–92
                                   93-108 109-124
O 22-37 38-53
                  54-69
                           70-85
```


Group operations

- Design basis: mixing different group operations.
- For both confusion and diffusion
- Having "one-time-pad" security
- Object: n-bit blocks (n=8, 16, 32)
- Available: XOR, Add mod 2ⁿ
- Integer multiplication: available for most CPU, require Z_p*, P prime.
- Multiplication mod 2ⁿ+1 is invertible if n=1,2,4,8,16 (Fermat primes)
- It is unknown if other Fermat prime exists
- IDEA can have block size of 4, 8, 16, 32, 64 bits (unfortunately not 128).

10

2016/3/15 5

multiplication

- Example n=2, $Z_5^* = \{1,2,3,4\} \leftrightarrow \{1,2,3,0\} = F_2^2$
- $\{(00),(01),(10),(11)\} \leftrightarrow \{4,1,2,3\},4=100$
- · 2@3=1, 2@2=0

$$0 \odot 2 = (4 \times 2 \mod 5) = (-1 \times 2 \mod 5) = 3$$

•	0	1	2	3
0	1	0	3	2
1	0	1	2	3
2	3	2	0	1
3	2	3	1	0

11

Efficient computation of

For n=16, directly compute ab mod 65537 is expensive (division).

Low-high algorithm

- ab mod $2^n+1 =$ (ab mod 2^n) -(ab div 2^n) if (ab mod 2^n) \geq (ab div 2^n)
 (ab mod 2^n) -(ab div 2^n) $+2^n+1$ if (ab mod 2^n) < (ab div 2^n)
- where ab div 2ⁿ is the quotient when ab is divided by 2ⁿ
 - ab mod 2^n corresponds to the lower n bits of ab $q+r<2^n$
 - ab div 2^n is the higher n bits of ab $q+r \ge 2^n$
- Because $ab = q(2^{n}+1)+r = q2^{n} + (q+r)=(q+1)2^{n} + (q+r-2^{n})$
- Example: 4.8 mod 17= (32 mod 17)=(0010,0000) mod 17) =(32 mod 16)-(32 div 16) + 17 = (0000)-(0010)+17=15

Exp and log table look-up: $x \cdot y = g^{\log(x) + \log(y)}$

For n=16, size of table is 2.65536 bytes

2016/3/15

12

properties

- 3 group operations on 16-bit blocks
- · Incompatible: non-associative, non-distributive
- Non-isotopic:
 - Isotopic: exist f,g,h, s.t., f(a*b)=g(a)#h(b)
- Confusion
 - Interaction of 3 operations
 - Consecutive operations are different
- Diffusion
 - MA structure, In
 - Complete in 1 round (each input-bit influences every output bit)

13

MA and In

MA structure uses the least number of operations (4) to achieve 'complete diffusion' – each out put depends on every input

Involution In: In²=identity

- •In can be viewed as 2 round Feistel structure
- •Thus, 1 round of IDEA is more than 2 rounds Feistel
- •IDEA has 8.5 rounds

14

Known attacks

Attacks on reduced IDEA (total 8.5 rounds)

round			s (memo	ory) attacks
2.5	2 ¹⁰	2 ¹⁰⁶		differential (Meier 92)
2.5	2	2 ³⁷		square (Nakahara-Barreto-Preneel 02)
3	2 ²²	2^{50}		linear (Junod, FSE05)
3.5	2^{56}	2^{67}		truncated diff.(Borst-Knudsen-Rijmen 97)
3.5	103	2 ⁹⁷		linear (Junod, FSE05)
4	2^{37}	2^{70}		impossible (Biham-Birykov-Shamir 99)
4.5	2 ⁶⁴	2 ¹¹²		impossible differential (Alix-Biham-Shamir 98)
4.5	2^{24}	2 ¹²¹	(2^{64})	collision (Demirci-Ture-Selcuk, SAC03)
5	2^{24}	2 ¹²⁶	(2^{64})	collision (Demirci-Ture-Selcuk, SAC03)
5	2 ¹⁹	2 ¹⁰³		Biham-Dunkelman-Keller, AC06
6	2 ⁴⁹	2 ¹¹²		differential-linear (Sun-Lai, AC09)
6	2	2 ^{123.4}		Meet-in-the-Middle (Keller,Biham,,C11)
8.5	2 ⁵²	2 ^{126.06}		biclique(Khovratovich-Lurent-Rechberg,EC12)
Max	2 64	2 ¹²⁷		

15

Other issues

- No S-box, so nothing to hide
- Weak-keys:
 - Special value '0 (-1)' and '1' have less confusion and diffusion effect: $0 \oplus x = x$, $0 \otimes x = -x$, $1 \otimes x = x$
 - Linear key schedule
 - Sets of weak keys of size about 2⁵¹ [Daemen 94],
 2⁶³ [Hawks 98], 2⁶³ [Biryukov 02]
 - Simple fix: XOR a constant to subkeys
- Obtain non-standard but stronger version of IDEA.
- 128-bit version: MESH, IDEA-NXT, new ones?

16

Exercise 5.

- 1. prove the low-high algorithm for computing ⊙
- 2. prove that the In-structure in IDEA is an involution.

Deadline: before next lecture

AES — Advanced Encryption Standard

- Block cipher, 128-bit block; 128,194,256-bit key
- · Fast for SW and 8-bit processor
- More secure and faster than DES?
- 1997-04: requirements (128-bit?,free?,..)
- 1997-10: NIST 1-st call
- 1998-08: 1-st AES Conference, Ventura, USA
 - 15 accepted submissions
- 1999-03: 2-nd AES Conference, Rome
- 1999-8: five final candidates
- 2000-03: 3-rd AES Conference, New York
- 2000-10-02: decision -- Rijndael
- 2001-11: published as FIPS PUB 197

18

AES candidates

CAST-256 Entrust Tech. (rep. Carlisle Adams)

CRYPTON Future Systems, Inc. (rep Chae Hoon Lim)
 DEAL Richard Outerbridge, Lars Knudsen (attack 2⁷⁰)

DFC CNRS - Ecole Normale Superieure (rep Serge Vaudenay)

E2 NTT - (represented by Masayuki Kanda)

FROG TecApro Int. S.A. (rep Dianelos Georgoudis) - attack (2⁵⁶)

• HPC Rich Schroeppel (???)

LOKI97 Lawrie Brown, Josef Pieprzyk, Jennifer Seberry - Attacks known (2⁵⁶)

MAGENTA Deutsche Telekom (Klaus Huber) broken: trivial chosen plaintext; other 2⁵⁶

MARS IBM (represented by Nevenko Zunic) some weakness

RC6 RSA Laboratories (rep Matthew Robshaw)
 RIJNDAEL Joan Daemen, Vincent Riimen

RIJNDAEL Joan Daemen, Vincent Rijmen
 SAFER+ Cylink Corporation (rep Lily Chen)

SERPENT Ross Anderson, Eli Biham, Lars Knudsen

• TWOFISH B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson

10

AES parameters

Number of rounds 10 /12 /14

Keysize: 128/192/256 bit keys

Unit: 32-bit words

 Text: 128-bit data, represented as 4 by 4 matrix of 8-bit bytes.

AES-128 AES-192

AES-256

20

Add key operation

23

S-box

S

S(B ₀₀)	S(B ₀₁)	S(B ₀₂)	S(B ₀₃)
S(B ₁₀)	S(B ₁₁)	S(B ₁₂)	S(B ₁₃)
		S(B ₂₂)	
S(B ₃₁)	S(B ₃₁)	S(B ₃₂)	S(B ₃₃)

- 8-bit lookup table
- 16 lookups in parallel

24

Substitution: two-dimensional table look-up

S-box S(x,y)0 6 B D 7C 77 C5 63 7B F2 6B 6F 30 01 67 2B FE D7 AB 76 CA 82 C9 7D FA 59 47 F0AD A2 AF A4 FD 93 **B**7 26 36 3F F7 CC 34 A5 E5 FI 71 D8 31 15 23 18 05 07 E2 EB B2 75 04 C7 C3 96 9A 12 80 27 09 83 2C IA 1B 6E 5A 52 3B D6 **B**3 E3 2F 84 DI 00 B1 30 4C 53 ED 20 FC 5B 6A CB BE 4A 58 CF DO EF AA FB 43 4D 33 85 45 F9 02 71 50 3C 9F A8 51 A3 40 8F 92 9D 38 F5 BC 21 FFF3 D2 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 9 60 81 4F DC 22 90 88 46 EE B8 14 DE 5E OB DB 24 EO 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 **E**4 79 EA E7 C8 37 8D D5 4E A9 6C F4 7A AE 08 6D 56 BA 78 25 2E 1C A6 **B**4 C6 E8 DD 74 117 **4B** BD 8B8A D 70 3E **B5** 48 03 F6 0E 61 35 57 **B9** 86 CI 1D 9E E El F8 98 11 69 D9 8E 94 9BIE 87 E9 CE 55 DF 28 8C 16

byte {95} is replaced by row 9, column 5 (is {2A})

2016/3/15

26

25

Inverse S-box

			y														
		.0	1	2	3	4	5	6	7	- 8	- 9	A	В	C	D	E	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	OB	42	FA	C3	4E
	3	08	2E	AI	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7.	E4.	58	0.5	B8	B3	45	06
	7	DO	2C	1E	8F	CA	3F	OF	02	C1	AF	BD	03	01	13	8A	6B
x	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	FO	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	IC	75	DF	6E
	Α	47	FI	1A	71	ID	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	CO	FE	78	CD	5A	F4
	C	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	BO	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	Ei	69	14	63	-55	21	0C	7D

27

Rationale for S-box Design

- · low correlation between input and output bits
- output is no simple function of input
- S-box has no fixed points, i.e., $S(a) \neq a$
- S-box is not self-inverse, i.e., S(a) ≠ InvS(a)
- The mapping $x \to x^{-1}$ has high non-linear degree and good differential distribution.

30

Shift Row Transformation

- a circular byte shift in each each
 - 1st row is unchanged
 - 2nd row does 1 byte circular shift to left
 - 3rd row does 2 byte circular shift to left
 - 4th row does 3 byte circular shift to left
- · decrypt does shifts to right
- this step permutes bytes between the columns

31

Mix Column Transformation

33

MDS matrix

- A 4×4 matrix over GF(28).
- Matrix is an MDS (Maximum Distance Separable).
- Byte-Hamming weight of input + output is at least 5.

Input weight	Output weight
1	4
2	>= 3
3	>= 2
4	>= 1

•High diffusion – effective against differential and linear attacks

34

Inverse Mix Column Transformation

- just like Mix Column Transformation
- however, each column is multiplied modulo x^4+1 with fixed polynomial '0B' $x^3 + '0D$ ' $x^2 + '09$ ' x + '0E'
- same as:

$$\begin{bmatrix} s_{0,0}' & s_{0,1}' & s_{0,2}' & s_{0,3}' \\ s_{1,0}' & s_{1,1}' & s_{1,2}' & s_{1,3}' \\ s_{2,0}' & s_{2,1}' & s_{2,2}' & s_{2,3}' \\ s_{3,0}' & s_{3,1}' & s_{3,2}' & s_{3,3}' \end{bmatrix} = \begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

35

AES Key Expansion

Figure 5.6 AES Key Expansion

36

AES Decryption

Decryption process is different from encryption process

- Inverse S-box.
- Inverse of MDS matrix.
- Modified round keys, or modified operation order.
- Requires extra hardware.

Decryption key

- Cannot directly generate round keys in reverse order.
- Decryption must either store all round keys, or pre-compute the 'final' state and work backwards from that.
- Requires extra time from getting key to start of first decryption.

37

Implementation

- on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is simple byte shifting
 - add round key works on byte XORs
 - mix columns requires matrix multiply in GF(2⁸) which works on byte values, can be simplified to use a table lookup
- on 32-bit CPU
 - redefine steps to use 32-bit words
 - can pre-compute 4 tables of 256-words
 - each column in each round can be computed using 4 table lookups + 4 XORs
 - at a cost of 16Kb to store tables
- designers believe this efficient implementation was a key factor in its selection as the AES cipher
- Round function is embedded in new Intel CPU

Security

- Impossible Differential attack on 7-round: 2¹¹², 2¹¹², 2¹¹⁷
- Related-key attack on full AES [AC09].
- BiClique Attacks on full AES: complexity 2^k-1.3, for k=128, 192, 256. [AC 2011]
- Algebraic structures: BES, extended to a larger space GF(2⁸), easy to analyze. [Murphy-Robshaw, Crypto02]
- Algebraic attacks [Courteous-Pieprzyk, AC02]: written as an overdefined system of multivariate quadratic equations (MQ), solvable using XSL[Shamir, EC00];
 - claimed to be able to attack BES in about 2^{87} or 2^{100} operations??
 - Algebraic attacks may not work as expected [Cid-Leurent, AC05]
- Linearity and slow diffusion in key schedule

39