Multilabel Classification Techniques

Amit Nandi(CMS1503)¹
guided by
Prof. VK Jayaraman
and
Dr.B.S.Pujari

¹Center for Modeling and Simulation University of pune

Mid-sem Final-project Presentation, 2017

- Introduction
 - What is Multilabel Classification?
- 2 Literature Survey
 - Available Algorithms
- Frame Work
 - Algorithms
 - Performance Measures

- Introduction
 - What is Multilabel Classification?
- 2 Literature Survey
 - Available Algorithms
- Frame Work
 - Algorithms
 - Performance Measures

What is Multilabel Data?

Introduction

Single label classification: Is this a picture of a beach? $\epsilon\{yes, no\}$

Multi label classification¹: Which labels are relevant to this picture?

 $\subseteq \{\mathit{beach}, \mathit{foilage}, \mathit{field}, \mathit{mountain}\}$

i.e. each example could belongs to more than one label So, for a given image we could express above problem into below format:

X	Beach	Foilage	Field	Mountain
Ex1	1	0	0	1

¹Multi-label classification by Jasse Read

Multilabel data

Types of Method

- 1. Problem Transformation Method²
- 2. Algorithm Adaptation Method

Project Focus Area

Problem Transformation Method

- Problem Transformation Method.
- Project work involves learning and implementing various algorithm to tackle given data and produce result to validate the algorithm.

- - What is Multilabel Classification?
- Literature Survey
 - Available Algorithms
- - Algorithms
 - Performance Measures

Literature Survey

- 1. Major Algorithm³:
 - Binary Relevance
 - a) Chain Classifier
 - b) Two Level classifier
 - RAkEL
 - a) Disjoint
 - b) Overlap
 - Label Power-set

- Introduction
 - What is Multilabel Classification?
- 2 Literature Survey
 - Available Algorithms
- Frame Work
 - Algorithms
 - Performance Measures

Algorithms - Examples

Ex1: Beach

Ex3: Beach + Mountain

Ex2: Foliage

Ex4: Field + Mountain

Algorithms - Binary Relevance

Creates L separate binary problems (L = no. of labels) Generate 4 models for our 4 label problem (considering a single label at a time) Beach Foliage Field Mountain Ex1 1 0 0 0 Fx2 0 1 0 0 1 Ex3 0 0 1 Ex4 0 0 1 1 Beach **Foliage** Field Mountain Ex1 1 Ex1 0 Ex1 0 Ex1 0 Ex2 0 Ex2 Ex2 0 Ex2 0 Ex3 1 Ex3 0 Ex3 0 Ex3 1 Ex4 0 Ex4 0 Ex4 1 Ex4 1

Algorithms - Binary Relevance

Algorithms - Label Powerset

Here, every distinct labelset in the original multi-label data is considered as a new class

The multi-label problem is converted into a multiclass (single label) problem with 2^L possible class values (L = no. of labels)

	beacii	rollage	rieiu	iviountain
Ex1	1	0	0	0
Ex2	0	1	0	0
Ex3	1	0	0	1
Ex4	0	0	1	1
		₹		
	Ex1	1000 🗲		
	Ex2	Ex2 0100 <		
	Ex3 1001		01 🖝	
	Ex4	x4 0011 ←		
-				

Foliage Field Mountain

Algorithms - Label Powerset

Algorithms - RAkEL

Randomly select a value of k (size of a label subset) and build m Label-Powerset classifiers

 2^k problems are considered at a time rather than 2^L problems like in LP (L = no. of labels)

For k = 2 and L = 4 \implies m = 6 models

Algorithms - RAkEL

Learn and train LP classifiers with varying values of k and m at each iteration For an unknown instance, LP classifier predicts a label from the corresponding to k-labelset A total (or average) is calculated for each label in L Final label is assigned based on a certain Threshold value If the total (average) is greater than the threshold (T), then label is positive

Algorithms - RAkEL

- Introduction
 - What is Multilabel Classification?
- 2 Literature Survey
 - Available Algorithms
- Frame Work
 - Algorithms
 - Performance Measures

Performance Measures

Multilabel Algorithm performance is evaluated with below mentioned measures:

- 1. Accuracy
 - 1.1 Denotes proportion of Correctly predicted class to total number of class
- 2. Precision
 - 2.1 Denotes proportion of predicted correct labels to total number of Actual labels, averaged over all instances.
- 3. Recall
 - 3.1 Denotes proportion of predicted correct labels to total number of Predicted labels
- 4. F1-measure
 - 4.1 Harmonic mean of Precision and Recall.
- 5. Hamming Loss
 - 5.1 It is a loss function which calculates the proportion of misclassified labels to the total number of labels

Thank you

