Estrutura de Dados I: Regras e Datas

Manassés Ribeiro

Ementa

- Listas lineares e suas generalizações:
 - listas ordenadas
 - listas encadeadas
 - o pilhas e filas.
- Aplicações de listas.
- Algoritmos para pesquisa e ordenação em memória principal e secundária.
- Tabelas Hash.

Organização do curso

- A disciplina está dividida em 3 partes:
 - Aulas expositivas preparada pelo professor;
 - Seminários preparados e apresentados pelos estudantes;
 - Preparação e apresentação do trabalho final.

Seminários

Temas:

- 1. Pesquisa linear e busca binária
- 2. Bubble sort, insertion sort e selection sort
- 3. Comb sort e bogo sort
- 4. Merge sort e heapsort
- Shell sort e radix sort
- 6. Gnome sort e counting sort
- Bucket sort e Cocktail sort
- 8. Ordenação externa (Two-way merge sort e external merge sort)
- 9. Intercalação multi-dispositivos e intercalação polifásica

Seminários

- Trabalhos em grupos de no máximo 3 integrantes;
- Aspectos mínimos esperados:
 - a. Conceituação/teoria/histórico (livros, artigos, sites);
 - b. Aplicação (exemplos de aplicação prática e/ou mini-curso);
 - c. Tendências futuras;
 - d. Criatividade da equipe na elaboração;
 - e. Apresentação entre 20min + 10min perguntas/discussão;

Datas dos Seminários

Tema				
1	Pesquisa linear e busca binária	07/06		
2	Bubble sort, insertion sort e selection sort	07/06		
3	Comb sort e bogo sort	07/06		
4	Merge sort e heapsort	07/06		
5	Shell sort e radix sort	07/06		
6	Gnome sort e counting sort	14/06		
7	Bucket sort e Cocktail sort	14/06		
8	Ordenação externa (Two-way merge sort e external merge sort)	14/06		
9	Intercalação multi-dispositivos e intercalação polifásica	14/06		

Calendário

AER	C/h	Conteúdo
1	2 h/a	Apresentação da disciplina, apresentação do plano
'		de ensino
	8 h/a	Revisão algoritmos: vetores, matrizes,
2		modularização, TAD, ponteiros e passagem
		parâmetro referência.
	10 h/a	Introdução à estrutura de dados; Listas: ordenadas
3		e encadeadas
		Atividade prática de lista encadeada simples
		Listas: duplamente encadeada e circular
4	10 h/a	Atividade prática de lista encadeada dupla
		Avaliação do laboratório de listas - 05/04/2022
	10 h/a	Filas e Pilhas
5		Atividade prática de filas e pilhas
		Avaliação do laboratório de filas - 26/04/2022

Calendário

6	10 h/a	Tabela de espalhamento (hashing) Atividade prática de tabela hashing Avaliação do laboratório de pilhas - 17/05/2022
7	15 h/a	Seminários: preparação e apresentação Apresentações (1,2,3,4,5) - 07/06/2022 Apresentações (6,7,8 e 9) - 14/06/2022
8	15 h/a	Trabalho final individual - Até 12/07/2022

Pré-requisitos

- Programação (Algoritmos e C);
- Sistema operacional linux.

Aulas

- Uso de slides para apresentação dos conceitos;
- Exercícios para facilitar compreensão;
- Aulas práticas.

Avaliação

- LAB1 (peso = 0,1), LAB2 (peso = 0,1) e LAB3 (peso = 0,1)
- Seminários (SEM = 0,2)
- Trabalho Final (TRAB = 0,5):
 - Trabalho envolvendo todo o conteúdo
 - Trabalho único para todos
- Regras do Trabalho Final:
 - Individual;
 - Relatório escrito no formato de artigo (Padrão IEEE Conferência – mín. de 2 páginas de conteúdo);
 - Apresentação do desenvolvimento (implementação) e arguição;
- Nota Final = (LAB1 x 0,1 + LAB2 x 0,1 + LAB3 x 0,1 + SEM x 0,2 + TRAB x 0,5)

Trabalhos de implementação

- Para todos os trabalhos de implementação devem ser utilizados o GitHub como repositório: https://github.com/
- Instruções
 - Criar um repositório para a disciplina;
 - Colocar o repositório como privado
 - ATENÇÃO: é importante deixar privado para evitar cópias indevidas
 - Colocar o professor como colaborador do projeto
 - manasses.ribeiro@ifc.edu.br
 - Incluir o link do repositório na planilha
 - Realizar os commits com frequência para que o professor possa avaliar a evolução das implementações.

Bibliografia

BÁSICAS:

- CORMEN, Thomas H; LEISERSON, Charles Eric; RIVEST, Ronald L.; STEIN, Clifford. Algoritmos: teoria e prática. 3. ed. Rio de Janeiro: Elsevier, Campus, 2012. 926p.
- SILVA, Osmar Quirinoda. Estrutura de dados e algoritmos usando C: fundamentos e aplicações. Rio de Janeiro, RJ: Ciência Moderna, 2007. 460 p.
- Pereira, S. L. Estrutura de dados fundamentais: conceitos e aplicações. 12.ed. rev. e atual. São Paulo: Érica, 2009
- GERSTING, Judith L. Fundamentos matemáticos para a ciência da computação: um tratamento moderno de matemática discreta. 5. ed. Rio de Janeiro: LTC, 2004.

Bibliografia

COMPLEMENTARES:

- FORBELLONE, A. L. V.& Eberspächer, H. F. Lógica de programação: a construção de algoritmos e estruturas de dados. 3. ed. São Paulo: Pearson Prentice Hall, 2005.
- FEOFILOFF, Paulo. Algoritmos em linguagem C. Rio de Janeiro: Elsevier, 2009
- CASTRO, Joubert Peixoto de. Linguagem C na prática. Rio de Janeiro, RJ: Ciência Moderna, 2008
- ASCENCIO, Ana Fernanda Gomes; ARAUJO, Graziela Santos de. Estruturas de dados: algoritmos, análise da complexidade e implementações em Java e C/C++. São Paulo: Pearson Prentice Hall, 2010. xii, 432 p.
- DEITEL, Harvey M.; DEITEL, Paul J. Java como programar. 8.
 ed. São Paulo, SP: Pearson Prentice Hall, 2010. xl, 1110p.
- TANENBAUM, A. M.; LANGSAM, Y.; AUGENSTEIN, M.J. Estruturas de dados Usando C. Makron Books, 1995