Operating research hw0

b07703001 Hung-Chieh Liao

February 25, 2023

1 Problem 1

- 1. To find a in f(x) that maximizes at x = 2, we need to find the number of a such that f'(2) = 0. f'(x) = 2ax + 4 so that we solve f'(2) = 4a + 4 = 0. Therefore, a = -1.
- 2. To solve F(x), we first solve $\int f(x)dx = \frac{a}{3}x^3 + 2x^2 + 6x + c$. Then we get $F(x) = (\frac{a}{3}t^3 + 2t^2 + 6t + c) (0+c) = \frac{a}{3}t^3 + 2t^2 + 6t$ for all t > 0.
- 3. First name the matrix in the problem A . To let the inverse of the matrix given in the question not exist, det(A) should equal zero. Which is solving the equation det(A) = a + 0 + 4 3 0 2 = 0. And we got a = 1.

2 Problem 2

1. When A = 1, B = 4, the graph will be

The optimal solution is at point B(9,0), $2x_1 + x_2$ will be maximized at 18.

2. When A = 5, B = 4, the graph will be

The optimal solution is at point A(7,2), $2x_1 + 5x_2$ will be maximized at 24.

3. When A = 1, B = -1, the graph will be

There is no optimal solution since $x_2 \leq -1$ violates $x_2 \geq 0$.

3 Problem 3

1. We want to find the optimal profit by finding the ideal number of barrels to be distributed. We let X_{11} , X_{12} , X_{21} , X_{22} be the number of barrels that have the same starting point and ending point as P_{11} , P_{12} , P_{21} , P_{22} respectively. The following linear program can represent the problem.

$$\max \quad X_{11}P_{11} + X_{12}P_{12} + X_{21}P_{21} + X_{22}P_{22}$$
s.t.
$$X_{11} + X_{12} \le K_1$$

$$X_{21} + X_{22} \le K_2$$

$$X_{11} + X_{21} \le D$$

$$X_{12} + X_{22} \le D$$

$$X_{11}, X_{12}, X_{21}, X_{22} \le 0$$

$$(1)$$

2. We want to find the optimal profit by finding the ideal number of barrels to be distributed. We let X_{ij} be the number of barrels that have the same starting point and ending point as P_{ij} . The following linear program can represent the problem.

$$\max \sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij} P_{ij}$$
s.t.
$$\sum_{j=1}^{m} X_{ij} \leq K_{i}, \forall \{i \ni 1 \leq i \leq n\}$$

$$\sum_{i=1}^{n} X_{ij} \leq D, \forall \{j \ni 1 \leq j \leq m\}$$

$$X_{ij} \leq 0, \forall \{i \ni 1 \leq i \leq n\}, \forall \{j \ni 1 \leq j \leq m\}$$

$$(2)$$

3. Continue from 2. We want to find the optimal profit in T years by finding the ideal number of barrels to be distributed. We let X_{ij} be the number of barrels that have the same starting point and ending point as P_{ij} . Then we let N_i be the amount added after expending in city i. The following linear program can represent the problem.

$$\max \quad T \times \sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij} P_{ij} - \sum_{i=1}^{n} C_{i} N_{i}$$
s.t.
$$\sum_{j=1}^{m} X_{ij} \leq K_{i} + N_{i}, \forall \{i \ni 1 \leq i \leq n\}$$

$$\sum_{i=1}^{n} X_{ij} \leq D, \forall \{j \ni 1 \leq j \leq m\}$$

$$X_{ij} \leq 0, \forall \{i \ni 1 \leq i \leq n\}, \forall \{j \ni 1 \leq j \leq m\}$$

$$N_{i} \leq 0, \forall \{i \ni 1 \leq i \leq n\}$$

$$(3)$$

4. Continue from 3. We want to find the optimal profit in T years by finding the ideal number of barrels to be distributed. We let X_{ij} be the number of barrels that have the same starting point and ending point as P_{ij} . Then we let N_i be the amount added after expending in city i. The following linear program can represent the problem.

$$\max \quad T \times \sum_{i=1}^{n} \sum_{j=1}^{m} X_{ij} P_{ij} - \sum_{i=1}^{n} C_{i} N_{i}$$
s.t.
$$\sum_{j=1}^{m} X_{ij} \leq K_{i} + N_{i}, \forall \{i \ni 1 \leq i \leq n\}$$

$$\sum_{i=1}^{n} X_{ij} \leq D_{jt}, \forall \{j \ni 1 \leq j \leq m\}, \forall \{t \ni 1 \leq t \leq T\}$$

$$X_{ij} \leq 0, \forall \{i \ni 1 \leq i \leq n\}, \forall \{j \ni 1 \leq j \leq m\}$$

$$N_{i} \leq 0, \forall \{i \ni 1 \leq i \leq n\}$$

$$(4)$$