KAIWEN SHENG

Email: kaiwen.sheng.21@ucl.ac.uk | Website: https://holmosaint.github.io | GitHub: @holmosaint

EDUCATION

University College LondonLondon, UKMRes in Biosciences: NeuroscienceExpected Sept 2022Peking UniversityBeijing, CNBS in Computer ScienceJun 2020

RESEARCH PROJECTS

A computational framework to investigate the functional specificity of cortical neurons

University College London

Advised by Prof. Michael Häusser and Dr. Brendan Bicknell

Dec 2021 - Present

- Developed a general learning rule with which detailed models of neurons, comprising 3D reconstructed morphologies and an array of active conductances, can be 'trained' to perform sophisticated computational tasks.
- Trained biophysical models from Allen Cell Types Database to implement nonlinear feature-binding computations, Boolean logic operations, and a regression task designed to test the limits of stimulus selectivity.
- Identified a diverse set of morphological and biophysical features to explain the computational performances of different neuron models.

Inferring Neural Properties from Neural Data across Scales

Beijing Academy of Artificial Intelligence

Advised by Dr. Kai Du, Dr. Shanghang Zhang and Dr. Lei Ma

Jan 2020 - Present

- Proposed a general domain adaptive neural inference framework to infer biophysical properties and connectivity.
- Designed self-training and domain adaptation to avoid biased inference results caused by out-of-distribution problem.
- Accurately and efficiently inferred biophysical properties of 550 neurons across 14 brain regions of mice and those of a microcircuit with 3 neurons of *Cancer Borealis*.
- Achieved near-optimal accuracy in inferring monosynaptic connectivity of networks in the CA1 region of mice.

A Human Perception-based Criterion for Cell Membrane Segmentation

Aug 2020 - March 2022

• Helped design, organize perceptual experiments, and analyze subjects' result.

• Manually annotated cell membranes of electron microscopy images.

A General-Purpose Tracker for Animal Behavior Analysis

Beijing Academy of Artificial Intelligence

Beijing Academy of Artificial Intelligence

Advised by Dr. Kai Du and Dr. Lei Ma

Advised by Dr. Kai Du and Dr. Tingting Jiang

Aug 2019 - March 2022

- Performed accuracy comparison between SNAP-tracker, DeepLabCut and LEAP.
- Analyzed animal behavior based on the tracking results of SNAP-tracker.

PUBLICATIONS

- Sheng, K., Zhang, S., Beau, M., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. (2022). Domain Adaptive Neural Inference. bioRxiv.
- Shi, R., Wang, W., Li, Z., He, L., **Sheng, K.**, Ma, L., ... & Huang, T. (2022). U-RISC: an annotated ultra-high-resolution electron microscopy dataset challenging existing deep learning algorithms. *Frontiers in Computational Neuroscience*, 21
- Su, L.*, Wang, W.*, **Sheng, K.**, Liu, X., Du, K., Tian, Y., & Ma, L. (2022). Siamese Network-Based All-Purpose-Tracker, a Model-Free Deep Learning Tool for Animal Behavioral Tracking. *Frontiers in Behavioral Neuroscience*, 48. (* equally contributed)
- Sheng, K., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. (2021). A General LSTM-based Deep Learning Method for Estimating Neuronal Models and Inferring Neural Circuitry. *bioRxiv*.
- Shi, R., Wang, W., Li, Z., He, L., **Sheng, K.**, Ma, L., ... & Huang, T. (2020). Human Perception-based Evaluation Criterion for Ultra-high Resolution Cell Membrane Segmentation. *arXiv* preprint *arXiv*:2010.08209.
- Zheng, S., Liang, Y., Wang, S., Chen, R., & Sheng, K.. (2020, March). FlexTensor: An Automatic Schedule Exploration
 and Optimization Framework for Tensor Computation on Heterogeneous System. In Proceedings of the Twenty-Fifth
 International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 859-873).

PRESENTATIONS

Posters

• **Sheng, K.**, Bicknell, B.A., Häusser, M. Computational Specialization of Cortical Dendrites. *UCL Neuroscience Symposium* 2022; June 2022; London, United Kingdom.

- Bicknell, B.A., **Sheng, K.**, Häusser, M. Learning to Harness Dendritic Computations. *Dendrites* 2020: *Dendritic anatomy, molecules and function*; May 2022; Heraklion, Greece.
- Sheng, K., Qu, P., Yang, L., Liu, X., He, L., Ma, L., & Du, K. A General LSTM-based Deep Learning Method for Estimating Neuronal Models and Inferring Neural Circuitry

Third Chinese Computational and Cognitive Neuroscience Conference; June 2021; Shenzhen, China.

WORKING EXPERIENCE

Leader of Application Research Team

Beijing Academy of Artificial Intelligence

Life Simulation Research Center

Jun 2021 - Sept 2021

- Organized research cooperation among researchers and interns.
- Scheduled and summarized weekly discussions on the progress of research projects of the group members.

Software Development Engineer

Beijing Academy of Artificial Intelligence

Life Simulation Research Center

Jun 2020 - Sept 2021

- Developed an automatic tool for parameter estimation and optimization for computational neural models.
- Published a preprint paper of the tool on bioRxiv.

TEACHING EXPERIENCE

Compiler Practice Peking University

Teaching Assistant Feb 2020 - Jun 2020

• Guided students to work through each stage of compiler design, including symbol table construction, type check, intermediate representation generation, register allocation.

Algorithm Design and Analysis Seminar

Peking University

Teaching Assistant

Feb 2019 - Jun 2019

- Reviewed and expanded lecture content based on Introduction to Algorithms
- Designed exam papers and provided references on reinforcement learning.

ACADEMIC SERVICE

Reviewer of Bioscience Horizons

Nov 2021 - Present

AWARDS

Yanhong Li Scholarship of Peking University Sept 2019

Excellent Research of Peking University Sept 2019

Ke Chuanglong Scholarship of Peking University

Sept 2018

Merited Student of Peking University

Sept 2018 & Sept 2017

May Fourth Scholarship of Peking University Sept 2017