4. CONTENT-BASED RECOMMENDER SYSTEMS

4.4. LEARNING USER PROFILES AND FILTERING

4.4.3. Bayes Classifier

4.4.3.2. Example of Bayes Model

Table 4.1: Illustration of the Bayes method for a content-based system
--

$Keyword \Rightarrow$	Drums	Guitar	Beat	Classical	Symphony	Orchestra	Like or
Song-Id ↓]						Dislike
1	1	1	1	0	0	0	Dislike
2	1	1	0	0	0	1	Dislike
3	0	1	1	0	0	0	Dislike
4	0	0	0	1	1	1	Like
5	0	1	0	1	0	1	Like
6	0	0	0	1	1	0	Like
Test-1	0	0	0	1	0	0	?
Test-2	1	0	1	0	0	0	?

- The user profile, represented by Table 4.1 clearly seems to suggest a preference for classical music over rock music.
- Test set 두 개 중 첫 번째 item만 유저의 취향과 맞을 것으로 보인다. 이를 Bayes approach로 확인해보자.
- 이 예시에서는 Laplacian smoothing을 사용하지 않았는데 실제로는 이런 smoothing 기법을 적용해주는 것이 매우 중요하다.

$$egin{aligned} P(c(\overline{X}) = 1 | x_1 \dots x_d) &= rac{P(c(\overline{X}) = 1) \cdot P(x_1 \dots x_d | c(\overline{X}) = 1)}{P(x_1 \dots x_d)} \ &\propto P(c(\overline{X}) = 1) \cdot P(x_1 \dots x_d | c(\overline{X}) = 1) \ &= P(c(\overline{X}) = 1) \cdot \prod_{i=1}^d p(x_i | c(\overline{X}) = 1) ext{ [Naive Assumption]} \end{aligned}$$

• 책에 나오는 식

$$\begin{split} P(\text{Like}|\textit{Test-1}) &\propto 0.5 \prod_{i=1}^{6} P(\text{Like}|x_i) \\ &= (0.5) \cdot \frac{3}{4} \cdot \frac{2}{2} \cdot \frac{3}{4} \cdot \frac{3}{3} \cdot \frac{1}{4} \cdot \frac{1}{3} \\ &= \frac{3}{128} \\ P(\text{Dislike}|\textit{Test-1}) &\propto 0.5 \prod_{i=1}^{6} P(\text{Dislike}|x_i) \\ &= (0.5) \cdot \frac{1}{4} \cdot \frac{0}{2} \cdot \frac{1}{4} \cdot \frac{0}{3} \cdot \frac{3}{4} \cdot \frac{2}{3} \\ &= 0 \end{split}$$

- normalizing 을 해주기 위해서 P(Like | test-1) + P(Dislike | test-1) = 1이 될 수 있도록 계산해 주면, P(Like | test-1) = 1, P(Dislike | test-1) = 0 이 된다.
- Laplacian smoothing을 사용하면 특정 클래스가 매우 높은 확률을 가지더라도 1,0 처럼 극단적인 확률 값을 가지지 않게 된다.
- Laplacian smoothing is advisable because a single 0-value in the productwise form of the expression on the right-hand side of the Bayes rule can result in a conditional probability value of 0.
- Naive Assumption을 적용해서 풀어본 식

$$egin{aligned} P(Like|Test-1) &\propto P(Like) \cdot \prod_{i=1}^6 P(x_i|Like) \ &= (0.5) \cdot rac{0}{3} \cdot rac{1}{3} \cdot rac{0}{3} \cdot rac{3}{3} \cdot rac{2}{3} \cdot rac{2}{3} \end{aligned}$$

• 내 생각 - 틀린생각

$$P(Like|x_4) \propto P(Like) \cdot P(x_4|Like)$$

= $(0.5) \cdot \frac{3}{3}$

 $P(Dislike|x_4) \propto P(Dislike) \cdot P(x_4|Dislike)$

$$= (0.5) \cdot \frac{0}{3}$$

 $P(Dislike|x_1, x_3) \propto P(Dislike) \cdot P(x_1|Dislike) \cdot P(x_3|Dislike)$

$$= (0.5) \cdot \frac{2}{3} \cdot \frac{2}{3}$$
$$= \frac{4}{18}$$

• Laplacian smoohing parameter β >0 를 적용하면 아래와 같다.

$$P(x_i|c(\overline{X}) = 1) = \frac{q^+(x_i) + \beta}{|\mathcal{D}_L^+| + 2 \cdot \beta}$$

4.4.4 Rule-based Classifiers

- 다양한 Rule-based methods 중 Associative classifiers에 대해 알아본다.
- Ch. 3의 3.3에서 다룬적이 있었는데, association rule의 정의와 support 와 confidence 와
 같은 measures 에 대하여 소개하였다.
- Confidence 는 조건(antecedent)을 만족하는 rows에서 결과(consequent)를 만족하는 비율이다.
- "satisfying"의 의미는 예시와 함께 조금 더 구체적으로 알아보자.
- rule의 조건적 요소가 collaborative filtering에서는 item의 rating이었다. 반면에 content based에서는 item을 설명하는 특정 keyword의 존재 유무 이다.

Item contains keyword set $A \Rightarrow Rating = Like$ Item contains keyword set $B \Rightarrow Rating = Dislike$

- 만약 모든 keyword가 특정 antecedent에 포함된다면 그 antecedent가 만족(satisfy)되었다고 할 수 있다.
- A row is said to satisfy the consequent of that rule if the rating value in the consequent matches the dependent variable (rating) of that row.

- Table 4.1을 예로 했을때 {Classical, Symphony} => Like
 위 rule 은 33%의 support 와 100% confidence를 가진다.
- 기본적인 아이디어는 active user로 부터 모든 가능한 rules를 뽑고, user의 interest를 모르는 item에 대하여 어떤 rule이 *fired* 되는지 찾는 것이다.
- A rule is fired by a target item description if the former's antecedent keywords are included in the latter.
- ullet (Training phase) : Determine all the relevant rules from the user profile at the desired level of minimum support and confidence from the training data set D_L .
- ullet (Testing phase) : For each item description in D_U , determine the fired rules and an average rating. Rank the items in D_U on the basis of this average rating.
- 한 가지 Rule based system의 큰 장점은 high level의 interpretability이다.

4.4.4.1 Example of Rule-based Methods

- Support : The support of an itemset $X \subseteq I$ is the fraction of transactions in T , of which X is a subset.
- Confidence: The confidence of the rule $X \Rightarrow Y$ is the conditional probability that a transaction in T contains Y, given that it also contains X. Therefore, the confidence is obtained by dividing the support of $X \cup Y$ with the support of X.

```
Rule 1: {Classical} \Rightarrow Like (50%, 100%)
Rule 2: {Symphony} \Rightarrow Like (33%, 100%)
Rule 3: {Classical, Symphony} \Rightarrow Like (33%, 100%)
Rule 4: {Drums, Guitar} \Rightarrow Dislike (33%, 100%)
Rule 5: {Drums} \Rightarrow Dislike (33%, 100%)
Rule 6: {Beat} \Rightarrow Dislike (33%, 100%)
Rule 7: {Guitar} \Rightarrow Dislike (50%, 75%)
```

The aforementioned rules are primarily sorted in order of decreasing confidence, with ties broken in order of decreasing support.

2222

It is evident that rule 1 is fired by Test-1, whereas rules 5 and 6 are fired by Test-2. Therefore, Test-1 should be preferred over Test-2 as a recommendation to the active user. Note that the rules fired by Test-1 also provide an understanding of why it should be considered the best recommendation for the active user.

4.4.5. Regression-Based Models

- 다양한 regression models 가 있다. 그 중 linear regression 모델에 대해 알아보자.
- $\overline{y} pprox D_L \overline{\overline{W}}^T$
- objective function O

$$\text{Minimize } O = ||D_L \overline{\overline{W}}^T - \overline{y}||^2 + \lambda ||\overline{\overline{W}}||^2$$

• 위 문제를 풀기 위해서 W에 대한 gradient 가 0이 되도록 한다.

$$egin{aligned} D_L^T (D_L \overline{W}^T - \overline{y}) + \lambda \overline{W}^T &= 0 \ (D_L^T D_L + \lambda I) \overline{W}^T &= D_L^T \overline{y} \ \overline{W}^T &= (D_L^T D_L + \lambda I)^{-1} D_L^T \overline{y} \end{aligned}$$

- ullet unlabeled set D_U 에서 주어진 document vector (item description) \overline{X} 에 \overline{W} 를 dot product해서 rating을 예측할 수 있다.
- ullet Tikhonov regularization은 L2-regularization term $\lambda \cdot ||W||^2$ 을 사용한다.
- L1-regularization을 사용할 수도 있다. Lasso라고도 불리운다. 이는 feature selection의 효과를 가진다.
- This is because such methods have the tendency to select sparse coefficient vectors for W, in which most components of W take on the value of 0. Such features can be discarded. Therefore, L1- regularization methods provide highly interpretable insights about important subsets of features for the recommendation process.
- 데이터셋이 적을때는 linear model이 더 성능이 좋을 수 있다 왜냐하면 overfitting에 덜 영향을 받기 때문이다.

Table 4.2: The family of regression models and applicability to various types of ratings

Regression Model	Nature of Rating (Target Variable)		
Linear Regression	Real		
Polynomial Regression	Real		
Kernel Regression	Real		
Binary Logistic Regression	Unary, Binary		
Multiway Logistic regression	Categorical, Ordinal		
Probit	Unary, Binary		
Multiway Probit	Categorical, Ordinal		
Ordered Probit	Ordinal, Interval-based		