

Vv186 Recitation

Week 11

By Yahoo

Outline

- Real and Complex Power Series
- Exponential and Trigonometric Function

Real and Complex Power Series

Formal Power Series

For any complex sequence (a_k) , the expression

$$\sum_{k=0}^{\infty} a_k z^k$$

is called a (formal) complex power series.

Convergent Power Series

Let $\sum_{k=0}^{\infty} a_k z^k$ be a complex power series. Then there exists a unique number $\varrho \in [0,\infty]$ such that

- 1. $\sum_{k=0}^{\infty} a_k z^k$ is absolutely convergent if $|z| < \varrho$
- 2. $\sum_{k=0}^{\infty} a_k z^k$ diverges if $|z| > \varrho$.

Example

The radius of convergence of $\sum_{k=0}^{\infty} z^k$ is 1. When |z| < 1, $\sum_{k=0}^{\infty} z^k$ converges. When |z| > 1, $\sum_{k=0}^{\infty} z^k$ diverges.

Remark

When $|z| = \varrho$, the series be either convergent or divergent.

Example: $\sum_{k=0}^{\infty} z^k$ diverges to infinity when z=1. $(\sum_{k=0}^{\infty} z^k$ converges to 1/2 when z=-1.)

Hadamard's formula

The radius of convergence of the power series is given by

$$\varrho = \begin{cases} \frac{1}{\overline{\lim} \ \sqrt[k]{|a_k|}}, & 0 < \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} < \infty \\ 0, & \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} = \infty, \\ \infty, & \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} = 0. \end{cases}$$

Practice

- 1. Find the radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{1}{2^k} z^k$.
- 2. Find the radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{1}{2^k} z^{k^2}$.

Uniform Convergence of Power Series

If $\sum_{k=0}^{\infty} a_k z^k$ is a complex power series with radius of convergence ϱ , then for any $R < \varrho$ the series converges uniformly on |z| < R.

Example

Radius of convergence of $\sum_{k=0}^{\infty} (-1)^k x^k$ is 1 and $\sum_{k=0}^{\infty} (-1)^k x^k$ converges when |x| < 1. Therefore, $\sum_{k=0}^{\infty} (-1)^k x^k$ converges uniformly on [-R, R] for any 0 < R < 1.

However, $\sum_{k=0}^{\infty} (-1)^k x^k$ does not converge uniformly on (-1, 1).

Exponential and Trigonometric Function

Power series definition

- Exponential Function
- Trigonometric Function

Useful results

Derivative

- 1. Sin'(x)=Cos(x)
- 2. Exp'(x)=Exp(x)

sin(x+y)=sin(x)cos(y)+cos(x)sin(y)

Thank you for your attention!