Université des Sciences et de la Technologie Houari Boumediène Faculté d'Electronique et d'Informatique Département d'Informatique LMD Master 1ère Année RSD 2009/10 Module "Algorithmique Avancée et Complexité"

Corrigé de l'interrogation

Exercice 1 (complexité du tri) :

On considère l'algorithme suivant de tri par insertion d'un tableau A de n entiers :

Entrée : Un tableau A de n entiers

Sortie: Le tableau A trié par ordre croissant

```
TRI-INSERTION(A){

Pour j=2 à n{
    clé= A[j]
    i=j-1

Tant que i>0 et A[i]>clé{
        A[i+1]=A[i]
        i=i-1
    }

A[i+1]=clé
    }
}
```

1. Calculez en fonction de n le nombre T(n) d'opérations dans le pire des cas de l'algorithme. Expliquez.

Réponse:

Instruction	Nombre d'opérations	Nombre de fois
1	1	1
2	1	n-1
2a	1	n-1
2b	2	n-1
2c	2	$\sum_{j=2}^{n} (j-1)$
2c(i)	1	$\sum_{j=2}^{n} (j-1)$
2c(ii)	2	$\sum_{j=2}^{n} (j-1)$
2d	1	n-1

Le nombre total d'opérations de l'algorithme, dans le pire des cas, est donc :

$$T(n) = 1 + 4(n-1) + 5\sum_{j=2}^{n} (j-1) = 4n-3 + 5\sum_{j=1}^{n-1} j = 4n-3 + 5\frac{(n-1)n}{2} = \frac{8n-6+5n^2-5n}{2} = \frac{5n^2+3n-6}{2}$$

2. Trouvez une fonction $f(n)=n^k$ (k constante) vérifiant T(n)=O(f(n)) et f(n)=O(T(n)). Expliquez.

Réponse:

La fonction f demandée est $f(n) = n^2$

$$T(n)=O(f(n))$$
?

Il suffit de trouver un entier $n_0 \ge 0$ et une constante réelle $c \ge 0$ tels que pour tout $n \ge n_0$ on ait $T(n) \le c * f(n)$, c'est-à-dire $\frac{5n^2 + 3n - 6}{2} \le c * n^2$, ou encore $\frac{5}{2} + \frac{3n - 6}{2n^2} \le c$ (prendre $n_0 = 2$ et c = 4)

$$f(n)=O(T(n))$$
?

Il suffit de trouver un entier $n_0 \ge 0$ et une constante réelle $c \ge 0$ tels que pour tout $n \ge n_0$ on ait $f(n) \le c T(n)$, c'est-à-dire $n^2 \le c * \frac{5n^2 + 3n - 6}{2}$, ou encore $\frac{2n^2}{5n^2 + 3n - 6} \le c$ (prendre $n_0 = 2$ et c = 1)

3. Que pouvez-vous déduire de la réponse à la question 2 ?

Réponse:

On déduit de la réponse à la question 2 que $T(n) = f = \Theta(n^2)$

Exercice 2 (NP-complétude):

1. Illustrez à travers un exemple la notion d'instance d'un problème.

Réponse:

- Le problème SAT
 - Description : une conjonction de m clauses construites à partir de n propositions atomiques
 - O Question: la conjonction est-elle satisfiable?
- Instance du problème SAT
 - $\circ \quad La \ conjonction \ p \lor q \land p \lor \neg r \land \neg p \lor \neg q \lor \neg r$

- 2. Définissez les notions suivantes de la théorie de la NP-complétude :
 - a. Certificat
 - b. Algorithme de validation
 - c. La classe NP
 - d. Problème NP-complet

Réponse : voir cours

3. Donnez un algorithme polynomial de validation pour le problème SAT (SATisfiabilité). Utilisez la terminologie vue en TP, en TD et en cours. Expliquez.

Réponse:

L'algorithme de validation est comme suit. Il est écrit sous forme d'une fonction booléenne à quatre entrées n, m, C et inst. Le triplet (n,m,C) donne l'instance du problème (le nombre n de clauses, le nombre m de propositions atomiques, et la n*m-matrice C représentant la conjonction de clauses). L'algorithme retourne VRAI si et seulement si le certificat valide l'instance.

Si un entier est représenté sur p bits, le triplet (n,m,C) peut être vu comme un mot de {0,1}* de longueur p*(n*m+2) : les p premiers bits (0 ou 1) coderont le nombre n de clauses, les p suivants coderont le nombre m de propositions atomiques, les p*m suivants coderont la 1ère clause, ..., les p*m derniers bits coderont la toute dernière clause.

Exercice 3 (Structures de données) : Une pile est une structure de données mettant en œuvre le principe « dernier entré premier sorti » (LIFO : Last In First Out). On considère ici le cas d'une pile implémentée avec un tableau.

1. Une pile doit être initialisée. Expliquez comment.

Réponse:

On initialise la longueur longueur(P) de la pile P, l'indice sommet(P) du sommet de pile , et l'élément P[sommet(P)] de sommet de pile : on suppose que la pile est implémentée avec un tableau P de taille 100 dont les éléments sont indicés de 1 à 100, que l'indice du sommet de pile est initialement 1, et que le sommet de pile lui-même est le symbole spécial \$ (tester si la pile est vide reviendra à tester si le sommet de pile est ce symbole spécial \$) :

```
longueur(P)=100 ;
Sommet(P)=1 ;
P[sommet(P)]=$ ;
```

2. Ecrivez les différentes fonctions et procédures permettant la gestion d'une pile.

Réponse:

Les fonctions et procédures permettat la gestion d'une pile sont comme suit :

```
PILE-VIDE(P){
       \underline{Si} sommet(P)=$
               alors retourner VRAI
               sinon retourner FAUX
        }
EMPILER(P,x){
       <u>Si</u> sommet(P)=longueur(P)
                       alors erreur (débordement positif)
                       \underline{sinon}\{ sommet(P)=sommet(P)+1 \}
                              P[sommet(P)]=x
       }
DEPILER(P){
       Si PILE-VIDE(P)
                       alors erreur (débordement négatif)
                       \underline{sinon}{ sommet(P)=sommet(P)-1
                              retourner P[sommet(P)+1]
       }
```