決定木

7月17日(日)WSL勉強会 宗政一舟

もくじ

- 1. 決定木とは
- 2. 決定木学習のアルゴリズム
- 3. 分割の良さを表す指標
- 4. CARTアルゴリズム
- 5. ID3アルゴリズム
- 6. 枝刈り

1. 決定木とは

決定木とは

- 木構造をした決定を行うためのグラフ
- 与えられたデータから適切な決定木を作成することを決定木学習という

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

決定木とは

・属性:"根"を含む"葉"以外のノード

• 値:エッジ

クラス:葉

決定木の特徴

- 特定の結果をもたらす可能性の高いセグメントを見つける
 - 新しいデータに対して分類、予測を行う
- 特定の結果をもたらす要因・ルールを見つける
 - ・ 決定木の構築

決定木の特徴

・決定木による分類例

2.決定木学習アルゴリズム

決定木学習アルゴリズム

事例集合T

複数の属性とクラスを持つ事例を考え、その事例の集合をTとする。Tを学習事例と呼ぶ。

この時、事例の持つクラスは $\{C_1, C_2, \dots C_j, \dots, C_n\}$ とする。nはクラスの個数である。 属性 クラス

花見 湿度 風速 天気 晴れ 強い 高い No 曇り 弱い 高い Yes 曇り 強い 低い No 晴れ 弱い 高い Yes 雨 弱い 高い No

 $\{C_{Yes}, C_{No}\}$ であるからn = 2となる

2016/7/17 决定木学習 9

決定木学習アルゴリズム: Step1

Tがすべて同一のクラス C_j であるならば、Tに対する決定木は葉で あり、そのクラスはCiとする

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

天気	風速	湿度	花見
曇り	弱い	高い	Yes
晴れ	弱い	高い	Yes

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	強い	低い	No
雨	弱い	高い	No

2016/7/17 決定木学習 10

決定木学習アルゴリズム: Step2

Tが対象の属性を含まない場合、Step1と同様に葉とするが、そのクラスは事例からは決められない

ものによって処理が変わる

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	低い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

湿度:「高い」で分割後

天気	風速	湿度	花見
晴れ	強い	高い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

高い

湿度

低い

例えば親ノードの多数決でクラスを決める

決定木学習アルゴリズム: Step3

Tが複数のクラスを有する場合には、ある属性を選択して、その属性が持ちうる属性値により、事例Tを分割する。

そして分割された事例集合の各々についてStep1~ Step3 を再帰的に実行

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

YesとNoの2種類のクラスがあるので 分割させる必要がある

今日紹介する学習アルゴリズム

- 決定木学習で、分岐させる属性の決定方法が問題になる
- 生成された決定木の性能に大きな影響を与える
- 代表的な決定木作成アルゴリズム
 - ID3アルゴリズム
 - CARTアルゴリズム

3.分割の良さを表す指標

分割の良さを表す指標

- ・実際のどのようにして属性を決め、分割していくのがよいのか?
- 例では最初の属性は"天気"であったが、実際はもっと良い属性があるかもしれない

分割の良さを表す指標

- 情報ゲイン ← こっちを扱う
- ・ジニ不純度(* appendix)

情報ゲイン

- ・事例Tの分割前と分割後のエントロピーの差を利用
- 事例Tを{B₁, B₂, ... B_N}に分割するときの情報ゲインG(T)

エントロピー

$$E(T) = -\sum_{c \in C} p(c) \log p(c) \cdots (1)$$

p(c): 全体のクラスCに対するクラスcの割合

情報ゲイン

$$G(T) = E(T) - \sum_{b \in P} p(B_b) E(B_b) \cdots (2)$$

情報ゲインが大きい方が良い分割になる

例)「天気」の情報ゲイン

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No
	T		

$$E(T) = -\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.972$$

晴れ	強い	高い	No
晴れ	弱い	高い	Yes

$$E(B_{$$
晴れ $}) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$

曇り	弱い	高い	Yes
曇り	強い	低い	No

$$E(B_{\text{By}}) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$$

$$E(B_{\overline{||}}) = -\frac{1}{1}\log\frac{1}{1} = 0$$

$$G(T) = E(T) - \sum_{b \in B} p(B_b) E(B_b)$$

= 0.972 - $\left(\frac{2}{5} \cdot 1\right) + \left(\frac{2}{5} \cdot 1\right) + \left(\frac{1}{5} \cdot 0\right)$

= 0.172

風速、湿度についても 情報ゲインを算出 最大値が属性となる

情報ゲイン

- ・天気で分割した時
 - 情報ゲイン: 0.172
- ・風速で分割した時
 - •情報ゲイン: 0.423
- ・湿度で分割した時
 - •情報ゲイン: 0.172

最初の属性は"風速"が最適となる

4.ID3アルゴリズム

- Iterative Dichotomiser 3 Algorithm のこと
- ・属性値の種類が3種類以上あっても問題がない
- 属性値はカテゴリである必要がある

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

情報ゲイン最大

情報ゲイン: 0.172

情報ゲイン:0.172

・風速:「強い」で分割後

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	強い	低い	No

クラスの値がNoになったので こちら側の分岐は終了

・風速:「弱い」で分割後

天気	風速	湿度	花見
曇り	弱い	高い	Yes
晴れ	弱い	高い	Yes
雨	弱い	高い	No

情報ゲイン最大

情報ゲイン:0.0

・風速:「弱い」で分割後

天気	風速	湿度	花見
曇り	弱い	高い	Yes
晴れ	弱い	高い	Yes
雨	弱い	高い	No

それぞれの属性に対して クラスが同一になるので 終了

- Classification And Regression Tree Algorithmのこと
- •2分岐でしか考えていない
- ・属性値はカテゴリでも、数値でも対応

湿度 花見 天気 風速 晴れ 強い 60 No 曇り 弱い 40 Yes 曇り 強い 70 No 晴れ 弱い 30 Yes 雨 弱い 80 No

この中から、情報ゲインが最も高いもの を最初の属性にする。

• 風速:「強い?」 True で分割後

天気	風速	湿度	花見
晴れ	強い	60	No
曇り	強い	70	No

クラスの値がすべてNo になったので こちら側は終了

湿度:>80?

True

風速:強い?
True False
No ココの属性

• 風速:「強い?」 True で分割後

天気	風速	湿度	花見
曇り	弱い	40	Yes
晴れ	弱い	30	Yes
雨	弱い	80	No

• 風速:「強い?」 True で分割後

天気	風速	湿度	花見
曇り	弱い	40	Yes
晴れ	弱い	30	Yes
雨	弱い	80	No

クラスの値が 雨であった時:すべてYes 雨でなかった時:すべてNo になったので終了

6.枝刈り

- 決定木学習の問題の中に過学習がある
- ・紹介したアルゴリズム(ID3,CART)はクラスを唯一にするまで分割する
- 最後まで分割を行えば、少しずつエントロピーは減少するが学習 データに対して厳密になりすぎ汎化性が失われる可能性がある
- ・枝刈りでは親ノードを共有するノード群について、合成した時(平均値)のエントロピーの上昇が指定の未満かチェックする

閾値:1.0

親ノード(分割前)のエントロピー

天気	風速	湿度	花見
曇り	弱い	40	Yes
晴れ	弱い	30	Yes
雨	弱い	80	No

$$-\frac{2}{3}\log\frac{2}{3} - \frac{1}{3}\log\frac{1}{3} = 0.918$$

子ノード(分割後)のエントロピー

天気	風速	湿度	花見
曇り	弱い	40	Yes
晴れ	弱い	30	Yes

$$-\frac{2}{2}\log\frac{2}{2} = 0.0$$

天気	風速	湿度	花見
雨	弱い	80	No

$$-\frac{1}{1}\log\frac{1}{1} = 0.0$$

$$0.918 - \frac{(0.0 + 0.0)}{2.0} = 0.918 < 1.0$$
 枝刈り確定!!

閾値:1.0

親ノード(分割前)のエントロピー

天気	風速	湿度	花見
晴れ	強い	60	No
曇り	弱い	40	Yes
曇り	強い	70	No
晴れ	弱い	30	Yes
雨	弱い	80	No

 $-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5} = 0.970$

子ノード(分割後)のエントロピー

天気	風速	湿度	花見
曇り	弱い	40	Yes
晴れ	弱い	30	Yes
雨	弱い	80	No

$$-\frac{2}{3}\log\frac{2}{3} - \frac{1}{3}\log\frac{1}{3} = 0.918$$

$$-\frac{2}{2}\log\frac{2}{2} = 0.0$$

 $0.970 - \frac{(0.918 + 0.0)}{2.0} = 0.511 < 1.0$ 枝刈り確定!!

・ 閾値を1.0に設定した時、分割しないほうがいいらしいです

Yes: 2つ, No:3つ

ご清聴ありがとうございました。

appendix

ジニ不純度

- 集合をある属性で分割し、属性値の中でランダムにひとつを当て はめる場合の期待誤差率
- 値が高いほど集合の要素はバラついている

$$GINI = \sum_{c \in C} \{p(c) \cdot p(\bar{c})\} \cdots (3)$$

 $c \in C$: ある属性で分割した時のクラスの集合

p(c): クラス集合C内の要素cが選ばれる確率

 $p(\bar{c})$:要素cに対して誤った属性の値あ当てはめられる場合

例)「天気」のジニ不純度

天気	風速	湿度	花見
晴れ	強い	高い	No
曇り	弱い	高い	Yes
曇り	強い	低い	No
晴れ	弱い	高い	Yes
雨	弱い	高い	No

属性:天気 ランダムに選んだ属性値:晴れ

天気	風速	湿度	花見
晴れ	強い	高い	No
晴れ	弱い	高い	Yes

GINI

$$= \sum_{c \in C} \{ p(c) \cdot p(\bar{c}) \}$$

$$= \left(\frac{1}{2} \cdot \frac{1}{2}\right) + \left(\frac{1}{2} \cdot \frac{1}{2}\right)$$

$$= 0.5$$

ジニ不純度

- ・天気で分割した時
 - ランダムな属性値「晴れ」
 - ・ ジニ不純度: 0.5
- ・風速で分割した時
 - ・ランダムな属性値「弱い」
 - ジニ不純度: 0.44
- ・湿度で分割した時
 - ランダムな属性値「高い」
 - ・ジニ不純度:0.5

最初の属性は"風速"が最適となる