Chapter 1

General Gaussian Measures

1.1 Isonormal Gaussian processes

Definition 1.1. Let H be a real separable Hilbert space with inner product $\langle .,. \rangle_H$ and norm $\|.\|_H$. An isonormal Gaussian process over H is a centered Gaussian family

$$X = \{X(h) : h \in H\},\$$

indexed by H and defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, such that for all $h, g \in H$,

$$\mathbb{E}[X(h)X(g)] = \langle f, g \rangle_H.$$

Theorem 1.2. For every real separable Hilbert space H, there exists an isonormal Gaussian process over H.

Proof. Let $\{\xi_i : i \geq 1\}$ be a collection of i.i.d. random variables with normal distribution $\mathcal{N}(0,1)$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{e_i : i \geq 1\}$ be an ONB of H (it exists because H is separable). Let $h = \sum_{i=1}^{\infty} \langle e_i, h \rangle_H e_i \in H$. For all $N \geq 1$, define

$$X_N(h) := \sum_{i=1}^N \langle e_i, h \rangle_H \xi_i.$$

Then $X_N(h)$ is a centered Gaussian r.v. as a linear combination of i.i.d. centered Gaussian variables. For all M < N, we have

$$\mathbb{E}\left[\left(X_M(h) - X_N(h)\right)^2\right] = \mathbb{E}\left[\left(\sum_{i=M+1}^N \langle e_i, h \rangle_H \xi_i\right)^2\right]$$
$$= \sum_{i=M+1}^N \langle e_i, h \rangle_H^2 \mathbb{E}[\xi_i^2] = \sum_{i=M+1}^N \langle e_i, h \rangle_H^2 \xrightarrow[M,N\to\infty]{} 0$$

because $\mathbb{E}[\xi_i^2] = 1$ and $\sum_{i=1}^{\infty} \langle e_i, h \rangle_H^2 = ||h||_H^2 < +\infty$. This yields that $\{X_N(h) : N \geqslant 1\}$ is a Cauchy sequence in $L^2(\mathbb{P})$. Since $L^2(\mathbb{P})$ is complete, there exists a r.v. $X(h) \in L^2(\mathbb{P})$ such that

$$\mathbb{E}\left[\left(X_N(h)-X(h)\right)^2\right] \xrightarrow[N\to\infty]{} 0.$$

We have:

- (i) For all $h \in H$, $\mathbb{E}(X(h)) = 0$.
- (ii) For all $h_1, \ldots, h_d \in H$, the random vector $(X(h_1), \ldots, X(h_d))$ is Gaussian.

(iii) For all $h, g \in H$,

$$\mathbb{E}[X(h)X(g)] = \lim_{N \to \infty} \mathbb{E}[X_N(h)X_N(g)] = \lim_{N \to \infty} \sum_{i=1}^N \sum_{j=1}^N \langle e_i, h \rangle_H \langle e_j, g \rangle_H \mathbb{E}[\xi_i \xi_j]$$

$$= \lim_{N \to \infty} \sum_{i=1}^N \langle e_i, h \rangle_H \langle e_i, g \rangle_H = \sum_{i=1}^\infty \langle e_i, h \rangle_H \langle e_i, g \rangle_H = \langle h, g \rangle_H.$$

Proposition 1.3. Let $X = \{X(h) : h \in H\}$ be an isonormal Gaussian process. Then the following assertions are satisfied:

- (i) For all $h, g \in H$, $X(h) \perp \!\!\! \perp X(g) \iff \langle h, g \rangle_H = 0$.
- (ii) For all $h, g \in H$, X(h+g) = X(h) + X(g) a.s.
- (iii) For all $h \in H$ and $\alpha \in \mathbb{R}$, $X(\alpha h) = \alpha X(h)$.
- (iv) Let $G \subset H$ be a subset such that span G is dense in H. Then for all $h \in H$, there exists a sequence $\{g_n : n \ge 1\}$ of elements of span G such that $X(g_n) \xrightarrow{L^2(\mathbb{P})} X(h)$.
 - (v) Let H_0 be a closed subspace of H. We define

$$\sigma(H_0) := \sigma\{X(f) : f \in H_0\}.$$

Then for all $h \in H$, we have

$$\mathbb{E}[X(h) \mid \sigma(H_0)] = X(\operatorname{proj}(h|H_0)).$$

Proof. (i) We know that two jointly Gaussian r.v. are independent if and only if their covariance is zero. In addition, X(h) and X(g) are centered, so $\mathbb{E}[X(h)] = 0 = \mathbb{E}[X(g)]$. Therefore we have the following equivalences:

$$X(h) \perp \!\!\! \perp X(g) \iff \operatorname{Covar}(X(h), X(g)) = 0 \iff \\ \iff \mathbb{E}[X(h)X(g)] - \mathbb{E}[X(h)]\mathbb{E}[X(g)] = 0 \iff \mathbb{E}[X(h)X(g)] = 0 \iff \langle h, g \rangle_H = 0.$$

(ii) We compute

$$\mathbb{E}\left[\left\{X(h+g) - (X(h) + X(g))\right\}^{2}\right] =$$

$$= \mathbb{E}\left[X(h+g)^{2}\right] + \mathbb{E}\left[X(h)^{2}\right] + \mathbb{E}\left[X(g)^{2}\right] + 2\mathbb{E}\left[X(h)X(g)\right] - 2\mathbb{E}\left[X(h+g)\{X(h) + X(g)\}\right]$$

$$= \|h+g\|^{2} + \|h\|^{2} + \|g\|^{2} + 2\langle h, g\rangle - 2\langle h+g, h\rangle - 2\langle h+g, g\rangle$$

$$= \|h+g\|^{2} + \|h\|^{2} + \|g\|^{2} + 2\langle h, g\rangle - 2\|h\|^{2} - 2\langle g, h\rangle - 2\langle h, g\rangle - 2\|g\|^{2}$$

$$= \|h+g\|^{2} - \|h\|^{2} - \|g\|^{2} - 2\langle g, h\rangle = 0.$$

The last equality holds true because Hilbert space H is supposed to be real.

(iii) Analogous to (ii):

$$\mathbb{E}\left[\left\{X(\alpha h) - \alpha X(h)\right\}^2\right] = \mathbb{E}[X(\alpha h)^2] + \alpha^2 \mathbb{E}[X(h)^2] - 2\alpha \mathbb{E}[X(\alpha h)X(h)]$$
$$= \|\alpha h\|^2 + \alpha^2 \|h\|^2 - 2\alpha \langle \alpha h, h \rangle = 0.$$

(iv) Let $h \in H$. Since span G is dense in H, there exists a sequence $\{g_n \mid n \geqslant 1\} \subset \operatorname{span} G$ converging to h in H. Then

$$\mathbb{E}\left[\left\{X(g_n) - X(h)\right\}^2\right] = \mathbb{E}\left[X(g_n - h)^2\right] = \|g_n - h\|_H^2 \xrightarrow{n \to \infty} 0.$$

(v) Since H_0 is a closed subspace of H, any vector $h \in H$ can be written as $h = \text{proj}(h|H_0) + \text{proj}(h|H_0^{\perp})$. Then

$$\mathbb{E}[X(h) \mid \sigma(H_0)] = \mathbb{E}[X(\operatorname{proj}(h|H_0)) + X(\operatorname{proj}(h|H_0^{\perp})) \mid \sigma(H_0)]$$

$$= X(\operatorname{proj}(h|H_0)) + \mathbb{E}[X(\operatorname{proj}(h|H_0^{\perp}))]$$

$$= X(\operatorname{proj}(h|H_0)).$$

1.2 Gaussian measure

We fix a measurable space (A, A), which we assume to be a Polish space¹ with Borel σ -field. In addition, we fix a σ -finite positive measure μ on (A, A) such that $\mu(\{x\}) = 0$ for all $x \in A$.

Definition 1.4. A Gaussian measure over (A, \mathcal{A}) with control μ is a centered Gaussian family

$$G = \{G(B) : \mu(B) < +\infty\}$$

such that for all $B, C \in \mathcal{A}$,

$$\mathbb{E}[G(B)G(C)] = \mu(B \cap C).$$

Remarks.

- (i) If $B \cap C = \emptyset$, then $G(B) \perp \!\!\! \perp G(C)$.
- (ii) $\operatorname{Var} G(B) = \mathbb{E}[G(B)^2] \mathbb{E}[G(B)]^2 = \mu(B)$. Therefore $G(B) \sim \mathcal{N}(0, \mu(B))$.

Proposition 1.5. Gaussian measures exist.

Proof. $L^2(\mu)$ is separable, so by Theorem 1.2, there exists an isonormal Gaussian process $X = \{X(f): f \in L^2(\mu)\}$. Moreover, for all $B \in \mathcal{A}$ with $\mu(B) < +\infty$, we have $\mathbb{1}_B \in L^2(\mu)$. It follows that $G(B) = X(\mathbb{1}_B), \mu(B) < +\infty$, defines a Gaussian measure with control μ , since

$$\mathbb{E}[G(B)G(C)] = \mathbb{E}[X(\mathbb{1}_B)X(\mathbb{1}_C)] = \langle \mathbb{1}_B, \mathbb{1}_C \rangle_{L^2(\mu)} = \int_A \mathbb{1}_B(x)\mathbb{1}_C(x)\mu(\,\mathrm{d}x) = \mu(B \cap C). \quad \Box$$

Proposition 1.6. For any Gaussian measure G with control μ , the following properties are satisfied:

(i) G is σ -additive, i.e. for any sequence $\{B_i : i \geq 1\}$ of disjoint measurable sets such that $\mu(\bigcup_{i=1}^{\infty} B_i) < +\infty$, we have

$$G\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} G(B_i)$$
 in $L^2(\mathbb{P})$.

- (ii) For any $B, C \in \mathcal{A}$, $G(B \cup C) = G(B) + G(C) G(B \cap C)$.
- (iii) For any $x \in A$, $G(\lbrace x \rbrace) = 0$ a.s.

1.3 Gaussian measures are not usual measures

Remark. Let $N \sim \mathcal{N}(0, \sigma^2)$. Then $\mathbb{E}(N^4) = 3\sigma^4$.

¹A Polish space is a separable completely metrisable topological space.

Proof. First, we show that $\mathbb{E}[NP(N)] = \sigma^2 \mathbb{E}[P'(N)]$ for any polynomial P. This can be done by integrating by parts:

$$\int_{\mathbb{R}} x P(x) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx$$

$$= -\frac{1}{\sqrt{2\pi}} \left[\sigma P(x) \exp\left(-\frac{x^2}{2\sigma^2}\right)\right]_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} P'(x) \sigma \exp\left(-\frac{x^2}{2\sigma^2}\right) dx$$

$$= \sigma^2 \mathbb{E}[P'(N)].$$

Now, let $P(x) = x^n$. We obtain $\mathbb{E}[N^{n+1}] = \sigma^2 n \mathbb{E}[N^{n-1}]$. For n = 3, this yields $\mathbb{E}[N^4] = \sigma^2 3 \mathbb{E}[N^2] = 3\sigma^4$.

Remark. If G is a Gaussian measure with control μ then $\mathbb{E}[G(B)^4] = 3\mu(B)^2$.

Proof. Apply the preceding remark and use the fact that $\sigma^2(G(B)) = \operatorname{Var} G(B) = \mu(B)$.

Let B be a measurable set such that $\mu(B) < +\infty$, and let

$$\left\{B_1^{(n)}, \dots, B_{K(n)}^{(n)}\right\}_{n \ge 1}$$

be a sequence of measurable partitions of B such that

$$\max_{j=1,\dots,K(n)} \mu(B_j^{(n)}) \xrightarrow[n\to\infty]{} 0.$$

Then

$$\sum_{j=1}^{K(n)} \mu(B_j^{(n)})^2 \xrightarrow[n \to \infty]{} 0,$$

since $\sum_{j=1}^{K(n)} \mu(B_j^{(n)})^2 \leq \max_{j=1,\dots,K(n)} \mu(B_j^{(n)}) \mu(B)$.

Proposition 1.7. Let G be a Gaussian measure with control μ , B a measurable set with finite measure, and $\{B_1^{(n)}, \ldots, B_{K(n)}^{(n)}\}_{n\geqslant 1}$ a sequence of measurable partitions of B as above. Then

$$\sum_{j=1}^{K(n)} G(B_j^{(n)})^2 \xrightarrow[L^2(\mathbb{P})]{n\uparrow + \infty} \mu(B).$$

Proof. We compute

$$\mathbb{E}\left[\left(\sum_{j=1}^{K(n)} G(B_j^{(n)})^2 - \mu(B)\right)^2\right] = \mathbb{E}\left[\left(\sum_{j=1}^{K(n)} G(B_j^{(n)})^2 - \mu(B_j^{(n)})\right)^2\right]$$

$$= \sum_{j=1}^{K(n)} \mathbb{E}\left[\left(G(B_j^{(n)})^2 - \mu(B_j^{(n)})\right)^2\right]$$

$$= \sum_{j=1}^{K(n)} \left\{3\mu(B_j^{(n)})^2 + \mu(B_j^{(n)})^2 - 2\mu(B_j^{(n)})^2\right\}$$

$$= 2\sum_{j=1}^{K(n)} \mu(B_j^{(n)})^2 \xrightarrow{n\uparrow+\infty} 0.$$

The passage to the third line follows from the above remark.

More detailed proof of Proposition 1.7.

$$\begin{split} \mathbb{E}\left[\left(\sum_{j=1}^{K(n)}G(B_{j}^{(n)})^{2}-\mu(B)\right)^{2}\right] &= \mathbb{E}\left[\left(\sum_{j=1}^{K(n)}G(B_{j}^{(n)})^{2}-\mu(B_{j}^{(n)})\right)^{2}\right] \\ &= \mathbb{E}\left[\left(\sum_{j=1}^{K(n)}G(B_{j}^{(n)})^{2}\right)^{2}-2\left(\sum_{j=1}^{K(n)}G(B_{j}^{(n)})^{2}\right)\left(\sum_{j=1}^{K(n)}\mu(B_{j}^{(n)})\right)+\left(\sum_{j=1}^{K(n)}\mu(B_{j}^{(n)})\right)^{2}\right] \\ &= \left(\sum_{i,j=1}^{K(n)}\mathbb{E}\left[G(B_{i}^{(n)})^{2}G(B_{j}^{(n)})^{2}\right]\right)-2\left(\sum_{j=1}^{K(n)}\mu(B_{j}^{(n)})\right)\mu(B)+\mu(B)^{2} \\ &=\sum_{i=1}^{K(n)}\mathbb{E}\left[G(B_{i}^{(n)})^{4}\right]+\sum_{\substack{i,j=1\\i\neq j}}\mathbb{E}\left[G(B_{i}^{(n)})^{2}\right]\mathbb{E}\left[G(B_{j}^{(n)})^{2}\right]-\mu(B)^{2} \\ &=\sum_{i=1}^{K(n)}\mathbb{E}\left[G(B_{i}^{(n)})^{4}\right]+\sum_{\substack{i,j=1\\i\neq j}}\mathbb{E}\left[G(B_{i}^{(n)})\mu(B_{j}^{(n)})-\mu(B)^{2} \\ &=\sum_{i=1}^{K(n)}3\mu(B_{i}^{(n)})^{2}+\sum_{\substack{i,j=1\\i\neq j}}\mathbb{E}\left[H(B_{i}^{(n)})\mu(B_{j}^{(n)})-\mu(B)^{2} \\ &=\sum_{i=1}^{K(n)}3\mu(B_{i}^{(n)})^{2}-\sum_{i,j=1}^{K(n)}\mu(B_{i}^{(n)})\mu(B_{j}^{(n)})-\sum_{i,j=1}^{K(n)}\mu(B_{i}^{(n)})\mu(B_{j}^{(n)}) \\ &=\sum_{i=1}^{K(n)}3\mu(B_{i}^{(n)})^{2}-\sum_{i=1}^{K(n)}\mu(B_{i}^{(n)})^{2}\frac{n\uparrow+\infty}{i\uparrow+\infty}+0. \end{split}$$

To pass from the fourth line to the fifth line, we used the fact that $G(B_i^{(n)}) \perp \!\!\! \perp G(B_i^{(n)})$ whenever $i \neq j$.

1.4 Wiener-Itô integrals for deterministic functions

Let (A, \mathcal{A}, μ) be a measure space where A is a Polish space, \mathcal{A} the Borel σ -field on A and μ a non-atomic σ -finite measure. We consider a Gaussian measure $G = \{G(B) : \mu(B) < +\infty\}$ with control μ . Our goal is to define the integral " $\int_A f(x)G(dx)$ " of a deterministic function f with respect to the Gaussian measure G.

Let us denote by \mathcal{E} the class of simple functions, that is, functions of the type

$$f(x) = \sum_{j=1}^{M} c_j \mathbb{1}_{B_j}(x), \tag{1.1}$$

where the $B_j \in \mathcal{A}$ are measurable sets of finite measure, $c_j \in \mathbb{R}$ and $M \in \{1, 2, ...\}$. Set \mathcal{E} is dense in $L^2(\mu)$. Indeed, if $g \perp \mathcal{E}$, then $\int_B g(x)\mu(\,\mathrm{d}x) = 0$ for any measurable set B of finite measure, which together with the σ -finiteness of μ implies that g = 0 a.e.- μ .

Definition 1.8. For a simple function $f \in \mathcal{E}$ of the form (1.1), we define

$$\int_A f(x)G(dx) := \sum_{j=1}^M c_j G(B_j).$$

We may also use the shorthand notation

$$\int f \, \mathrm{d}G = \int_A f(x)G(\,\mathrm{d}x).$$

Proposition 1.9. (i) For any simple functions $f, g \in \mathcal{E}$, we have $\mathbb{E}\left[\int f \, dG \times \int g \, dG\right] = \langle f, g \rangle_{L^2(\mu)}$. (ii) If $\{f_n\}_{n=1}^{\infty} \subset \mathcal{E}$ is a Cauchy sequence in $L^2(\mu)$, then $\{\int f_n \, dG\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\mathbb{P})$.

Proof. (i) Let f and g be simple functions defined by

$$f(x) = \sum_{j=1}^{M_1} c_j^{(1)} \mathbb{1}_{B_j^{(1)}}(x), \qquad g(x) = \sum_{j=1}^{M_2} c_j^{(2)} \mathbb{1}_{B_j^{(2)}}(x).$$

Without loss of generality, we can assume that $B^{(1)} = B^{(2)} =: B_j$, $M_1 = M_2 =: M$ and $B_j \cap B_\ell = \emptyset$ whenever $j \neq \ell$. Then

$$\mathbb{E}\left[\int f \, dG \times \int g \, dG\right] = \mathbb{E}\left[\left(\sum_{j=1}^{M} c_j^{(1)} G(B_j)\right) \left(\sum_{j=1}^{M} c_j^{(2)} G(B_j)\right)\right] = \sum_{j=1}^{M} c_j^{(1)} c_j^{(2)} \mu(B_j) = \langle f, g \rangle_{L^2(\mu)}.$$

The second equality follows from the fact that $G(B_j)$ and $G(B_\ell)$ are independent r.v. for $j \neq \ell$ and hence $\mathbb{E}[G(B_j)G(B_\ell)] = \mathbb{E}[G(B_j)]\mathbb{E}[G(B_\ell)] = 0$.

(ii) Let $\{f_n\}_{n=1}^{\infty} \subset \mathcal{E}$ be a Cauchy sequence in $L^2(\mu)$. Since \mathcal{E} is a vector space, $f_n - f_m$ is an element of \mathcal{E} for all $n, m \in \mathbb{N}$. We can therefore apply point (i) to $f_n - f_m$, which yields

$$\mathbb{E}\left[\left(\int f_n \,\mathrm{d}G - \int f_m \,\mathrm{d}G\right)^2\right] = \mathbb{E}\left[\left(\int f_n - f_m \,\mathrm{d}G\right)^2\right] = \|f_n - f_m\|_{L^2(\mu)}^2.$$

Thus $\{\int f_n dG\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\mathbb{P})$.

Definition 1.10. Let $f \in L^2(\mu)$. Then there exists a sequence $\{f_n\}_{n=1}^{\infty} \subset \mathcal{E}$ of simple functions converging to f in $L^2(\mu)$. So from point (ii) of the preceding proposition, $\{\int f_n dG\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\mathbb{P})$. We therefore define

$$\int_{A} f(x)G(dx) = \int f dG := \lim_{n \to +\infty} \int f_n dG.$$

Theorem 1.11. (i) The definition of $\int f dG$ is well-given.

(ii) The class $\{\int_A f dG : f \in L^2(\mu)\}$ is an isonormal Gaussian process over $L^2(\mu)$.

Proof. (i) Let $\{f_n\}_{n=1}^{\infty}, \{f'_n\}_{n=1}^{\infty} \subset \mathcal{E}$ be two sequences of simple functions converging to f in $L^2(\mu)$. Then

$$\mathbb{E}\left[\left(\int f_n \,\mathrm{d}G - \int f_n' \,\mathrm{d}G\right)^2\right]^{1/2} = \|f_n - f_n'\|_{L^2(\mu)} \leqslant \|f_n - f\|_{L^2(\mu)} + \|f_n' - f\|_{L^2(\mu)} \xrightarrow{n\uparrow+\infty} 0.$$

(ii) The class $\{\int_A f dG : f \in L^2(\mu)\}$ is centered and jointly Gaussian. This follows from the fact that the L^2 -limit of Gaussian r.v. is again a Gaussian r.v. Now, let f, g be two functions in $L^2(\mu)$, and let $\{f_n\}_{n=1}^{\infty}, \{g_n\}_{n=1}^{\infty} \subset \mathcal{E}$ be sequences of simple functions such that $f_n \to f$ and $g_n \to g$ in $L^2(\mu)$. Then

$$\mathbb{E}\left[\int f \,\mathrm{d}G \times \int g \,\mathrm{d}G\right] = \lim_{n \to +\infty} \mathbb{E}\left[\int f_n \,\mathrm{d}G \times \int g_n \,\mathrm{d}G\right] = \lim_{n \to +\infty} \langle f_n, g_n \rangle_{L^2(\mu)} = \langle f, g \rangle_{L^2(\mu)}.$$

Note that the interchanges of integration and taking limits in the last line are allowed by continuity of scalar product in any Hilbert space.

Definition 1.12. Let $f \in L^2(\mu)$. The (Gaussian) random variable

$$\int_A f(x)G(\,\mathrm{d} x)$$

is the "Wiener-Itô integral of f with respect to G". The relation

$$\mathbb{E}\left[\int f \, \mathrm{d}G \times \int g \, \mathrm{d}G\right] = \langle f, g \rangle_{L^2(\mu)}$$

is the "Wiener-Itô isometry".

Remark. From the properties of isonormal Gaussian processes (see Proposition 1.3), we deduce that

- (i) $\int (\alpha f + g) dG = \alpha \int f dG + \int g dG$, for any $\alpha \in \mathbb{R}$ and $f, g \in L^2(\mu)$,
- (ii) $\int fg \, d\mu = 0 \iff \int f \, dG \perp \int g \, dG$,
- (iii) $\mathbb{E}\left[\int f \, dG \mid \sigma\{\int h \, dG : h \in H_0\}\right] = \int \operatorname{proj}(f|H_0) \, dG$, for any closed subspace H_0 of $L^2(\mu)$.

Chapter 2

Brownian Motion

2.1 Definition and first properties

We fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 2.1. Let I be either $\mathbb{R}_+ = [0, \infty)$ or [0, T] with $T < +\infty$. A standard Brownian motion, or Wiener process, on I is a Gaussian process $W = \{W_t : t \in I\}$ such that

- (a) $W_0 = 0$ a.s.- \mathbb{P} ,
- (b) $\mathbb{E}[W_t] = 0$ for all $t \in I$,
- (c) $\mathbb{E}[W_s W_t] = s \wedge t$ for all $s, t \in T$,
- (d) The mapping $t \mapsto W_t : I \to \mathbb{R}$ is continuous with probability 1.

Remark. Property (d) means that there exists a measurable set $D \in \mathcal{F}$ with $\mathbb{P}(D) = 1$ such that the map $t \mapsto W_t(\omega)$ is continuous for all $\omega \in D$.

A Gaussian process satisfying (a), (b) and (c) but not necessarily (d) is called a pre-brownian motion.

Proposition 2.2. There exists a pre-brownian motion over I.

Proof. There exists a Gaussian measure G over I with control given by the Lebesgue measure μ . Then $W_t := G([0,t])$ is a pre-brownian motion. Indeed, $W_0 = G(\{0\}) = 0$, $\mathbb{E}[W_t] = 0$ and $\mathbb{E}[W_sW_t] = \mathbb{E}[G([0,s])G([0,t])] = \mu([0,s] \cap [0,t]) = s \wedge t$.

Remark. It follows from properties (b) and (c) that $W_t \sim \mathcal{N}(0,t)$ for every $t \in I$.

Proposition 2.3. Let I be a fixed interval as above. The following assertions are equivalent:

- (i) $W = \{W_t : t \in I\}$ is a pre-Brownian motion.
- (ii) $W_0 = 0$ a.s. and for all $t > s \ge u \ge 0$, $W_t W_s \sim \mathcal{N}(0, t s)$ and $(W_t W_s) \perp W_u$.
- (iii) $W_0 = 0$ a.s. and for all $0 < t_1 < t_2 < \cdots < t_n$,

$$(W_{t_1}, W_{t_2} - W_{t_1}, \dots, W_{t_n} - W_{t_{n-1}}) \sim \mathcal{N} \begin{pmatrix} t_1 & 0 & \cdots & 0 & 0 \\ 0 & t_2 - t_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{n-1} - t_{n-2} & 0 \\ 0 & 0 & \cdots & 0 & t_n - t_{n-1} \end{pmatrix} .$$

(iv) $W_0 = 0$ a.s. and for all $0 < t_1 < t_2 < \cdots < t_n$, the vector

$$(W_{t_1}, W_{t_2} - W_{t_1}, \dots, W_{t_n} - W_{t_{n-1}})$$

has a density given by

$$f(x_1, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \dots (t_n - t_{n-1})}} \exp\left(-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - x_{i-1})^2}{t_1 - t_{i-1}}\right)$$

with $x_0 \equiv 0$.

Remark. A pre-Brownian motion has "stationary increments", that is, for any $t, h \ge 0$, the r.v. $W_{t+h} - W_t$ follows the same law as $W_h - W_0 = W_h \sim \mathcal{N}(0, h)$.

Proposition 2.4. Let $\{W_t : t \in \mathbb{R}_+\}$ be a standard Brownian motion.

- (i) The process $\{-W_t: t \ge 0\}$ is also a standard Brownian motion.
- (ii) For any c > 0, the process $\{\frac{1}{c}W_{tc^2} : t \ge 0\}$ is also a standard Brownian motion. This means that W is a self-similar process (or random fractal).
- (iii) (Weak Markov property) For any u > 0, the process $\{W_{u+t} W_u : t \ge 0\}$ is again a standard Brownian motion, independent of $\sigma\{W_s : s \le u\}$.
- (iv) (Time reversal) For any T > 0, the process $\{W_{T-t} W_T : t \in [0,T]\}$ is a Brownian motion on [0,T].

Proof. The processes in (i), (ii), (iii) and (iv) are all Gaussian, centered and continuous, so all we have to do is to check covariances:

- (i) $\mathbb{E}[(-W_s)(-W_t)] = s \wedge t$.
- (ii) $\mathbb{E}[(\frac{1}{c}W_{sc^2})(\frac{1}{c}W_{tc^2})] = \frac{1}{c^2}(c^2s \wedge c^2t) = s \wedge t.$
- (iii) $\mathbb{E}[(W_{u+s}-W_u)(W_{u+t}-W_u)]=u+s\wedge t-u-u+u=s\wedge t$. Moreover, for all $s\leqslant u$, $\mathbb{E}[(W_{u+t}-W_u)W_s]=s-s=0$, so $\{W_{u+t}-W_u\}_{t\geqslant 0}$ is independent of W_s for all $s\leqslant u$.

(iv)
$$\mathbb{E}[(W_{T-s} - W_T)(W_{T-t} - W_T)] = T - s \lor t - (T - s) - (T - t) + T = s \land t.$$

2.2 Construction of Brownian motion (Lévy-Ciesielski, 1957)

In this section, we shall prove the following result:

Theorem 2.5. On some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, there exists a standard Brownian motion $\{W_t : t \geq 0\}$.

To prove this theorem, we need five lemmata.

Lemma 2.6 (Borel-Cantelli). Let $\{A_n\}_{n\geq 1}$ be a sequence of events. Set

$$\limsup_{n} A_n := \{ A_n \text{ infinitely often} \} = \bigcap_{k \geqslant 1} \bigcup_{n \geqslant k} A_n.$$

Then

$$\sum_{n\geqslant 1} \mathbb{P}(A_n) < +\infty \quad implies \quad \mathbb{P}(\limsup_n A_n) = 0.$$

Proof. For all k, we have $\mathbb{P}(\limsup_n A_n) \leq \mathbb{P}(\bigcup_{n \geq k} A_n) \leq \sum_{n \geq k} \mathbb{P}(A_n)$. By assumption, the last expression goes to zero for $k \to \infty$.

Lemma 2.7. The set $C_{[0,1]}$ of continuous functions on [0,1] is a Banach space with respect to the supremum norm $||f||_{\infty} := \sup_{t \in [0,1]} |f(t)|$.

Proof. Omitted.
$$\Box$$

Lemma 2.8. Let $\{f_k\}_{k\geqslant 1}\subset C_{[0,1]}$ be a sequence of continuous functions on [0,1], and let $F_n:=\sum_{k=1}^n$ for all $n\geqslant 1$. Assume that there exists a sequence $\{b_k\}_{k\geqslant 1}\subset \mathbb{R}_+^*$ of strictly positive real numbers with $\sum_{k=1}^\infty b_k<\infty$. Then $\lim_{n\to\infty}F_n=F$ in $C_{[0,1]}$ for some $F\in C_{[0,1]}$.

Proof. For all N > M, we have $||F_N - F_M||_{\infty} \leqslant \sum_{k=M+1}^N b_k \xrightarrow{M,N\uparrow+\infty} 0$, so that $\{F_n\}_{n\geqslant 1}$ is a Cauchy sequence.

Lemma 2.9. If $Z \sim \mathcal{N}(0,1)$, then for all c > 0, we have

$$\mathbb{P}(|Z| > c) \leqslant \frac{2}{\sqrt{2\pi}} \frac{1}{c} e^{-c^2/2}.$$

Proof. We compute

$$\mathbb{P}(|Z| > c) = 2\mathbb{P}(Z > c) = 2\frac{1}{\sqrt{2\pi}} \int_{c}^{\infty} e^{-y^{2}/2} \, \mathrm{d}y \leqslant \sqrt{\frac{2}{\pi}} \frac{1}{c} \int_{c}^{\infty} y e^{-y^{2}/2} \, \mathrm{d}y = \sqrt{\frac{2}{\pi}} \frac{1}{c} e^{-c^{2}/2}.$$

The inequality in this computation is due to the fact that $\frac{y}{c} \geqslant 1$ for $y \in [c, \infty)$.

Lemma 2.10. We introduce the "Haar system"

$$\mathbb{H} = \{f_0, f_{n,j} : n \geqslant 1, j = 1, \dots, 2^{n-1}\}\$$

defined as $f_0 \equiv 1$, and setting k = 2j - 1,

$$f_{n,j}(t) = \begin{cases} 2^{(n-1)/2} & \text{if } t \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), \\ -2^{(n-1)/2} & \text{if } t \in \left(\frac{k}{2^n}, \frac{k+1}{2^n}\right], \\ 0 & \text{elsewhere.} \end{cases}$$

Then \mathbb{H} is a complete orthonormal system (or ONB) of $L^2([0,1], dt)$, where dt stands for the Lebesgue measure.

Proof. See handwritten notes.

We introduce also the "Schauder functions":

$$\mathbb{S} = \{F_0, F_{j,n} : n \geqslant 1, j = 1, \dots, 2^{n-1}\},\$$

where

$$F_0(t) := \int_0^t f_0(x) \, \mathrm{d}x = t$$

and, putting k = 2j - 1,

$$F_{j,n}(t) = \int_0^t f_{n,j}(x) \, \mathrm{d}x = \begin{cases} 2^{(n-1)/2} (t - \frac{k-1}{2^n}) & \text{if } t \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), \\ 2^{(n-1)/2} (\frac{k+1}{2^n} - t) & \text{if } t \in \left(\frac{k}{2^n}, \frac{k+1}{2^n}\right], \\ 0 & \text{elsewhere.} \end{cases}$$

Proof of Theorem 2.5. See handwritten notes.

2.3 Hölder continuity and the Kolmogorov-Čentsov criterion

Definition 2.11. Let X and \tilde{X} be two stochastic processes on I = [0, T] or \mathbb{R}_0 .

- (i) We say that X is a modification of \tilde{X} if for all $t \in I$, $\mathbb{P}\{X_t = \tilde{X}_t\} = 1$.
- (ii) We say that X and \tilde{X} are indistinguishable if there exists a measurable set D with $\mathbb{P}(D) = 1$ such that $D \subset \{X_t = \tilde{X}_t \text{ for all } t \in I\}$. That is, if a.s.- \mathbb{P} , " $X_t = \tilde{X}_t$, $\forall t \in I$ ".

Remark. Condition (ii) implies condition (i), but the converse is false in general (because the index set I may be uncountable). For instance, let I = [0,1], $X_t \equiv 0$, $U \sim \mathbb{U}_{[0,1]}$ and $\tilde{X}_t = \mathbb{1}_{t=U}$ for $t \in [0,1]$. Then

$$\forall t \in [0,1], \quad \mathbb{P}(X_t = \tilde{X}_t) = \mathbb{P}(U \neq t) = 1,$$

but, since $\{X_t = \tilde{X}_t, \forall t \in [0, 1]\} = \{U \notin [0, 1]\},\$

$$\mathbb{P}(X_t = \tilde{X}_t, \forall t \in [0, 1]) = \mathbb{P}(U \notin [0, 1]) = 0.$$

However, we have

Lemma 2.12. Let X and \tilde{X} have a.s. continuous paths. Then, if X and \tilde{X} are modifications, they are indistinguishable.

Proof. X and \tilde{X} have a.s. continuous paths, so there exist measurable sets D_1 and D_2 with $\mathbb{P}(D_1) = \mathbb{P}(D_2) = 1$ such that

$$D_1 \subset \{\omega : X(\omega) \text{ is continuous}\}, \qquad D_2 \subset \{\omega : \tilde{X}(\omega) \text{ is continuous}\}.$$

Let $B = \bigcap_{t \in I \cap \mathbb{Q}} \{X_t = \tilde{X}_t\}$, so that $\mathbb{P}(B) = 1$. Writing $D := D_1 \cap D_2 \cap B$, one has $\mathbb{P}(D) = 1$ and, by density of \mathbb{Q} and by continuity,

$$D \subset \{X_t = \tilde{X}_t \text{ for all } t \in I\}.$$

Remark. It is easy to see that

X is a modification of Y Y is a modification of Z

and

 $\left. egin{array}{l} X \text{ is indistinguishable of } Y \\ Y \text{ is indistinguishable of } Z \end{array} \right\} \Longrightarrow X \text{ is indistinguishable of } Z.$

This means that both of these relations are equivalence relations.

Theorem 2.13 (Kolmogorov-Čentsov). Let $I = \mathbb{R}_+$ or [0,T]. Let $\{X_t : t \in I\}$ be an \mathbb{R}^d -valued stochastic process such that for all $[0,S] \subset I$, there exist $C, \alpha, \beta > 0$ (with C possibly depending on S) such that

$$\mathbb{E}\left[\|X_t - X_s\|_{\mathbb{R}^d}^{\alpha}\right] \leqslant C|t - s|^{1+\beta}, \qquad \forall t, s \in [0, S].$$

Then there exists a modification \tilde{X} of X such that for any $\omega \in \Omega$, the map $t \mapsto \tilde{X}_t(\omega)$ is locally γ -Hölder continuous for all $\gamma < \frac{\beta}{\alpha}$. That is,

$$\forall [0, S] \subset I, \ \forall \gamma < \frac{\beta}{\alpha}, \ \forall \omega \in \Omega, \ \exists C_{S, \gamma}(\omega) \quad \text{such that} \quad \|\tilde{X}_t(\omega) - \tilde{X}_s(\omega)\|_{\mathbb{R}^d} \leqslant C_{S, \gamma}(\omega) \|t - s\|^{\gamma}.$$

This modification is unique up to indistinguishability.

Proof. Omitted for the moment.

Corollary 2.14. Let $\{W_t : t \in \mathbb{R}_+\}$ be a standard Brownian motion. Then the paths of W are almost surely Hölder continuous (locally), for any $\gamma < \frac{1}{2}$.

Proof. See handwritten notes.

Example (1). Let $\{W_t: t \ge 0\}$ be a standard Brownian motion. Set

$$X_t := \begin{cases} 0 & \text{if } t = 0, \\ tW_{1/t} & \text{if } t > 0. \end{cases}$$

Then X is a standard Brownian motion on \mathbb{R}_+ . Indeed, for all $t, s \in \mathbb{R}_+$, we have $\mathbb{E}[X_t] = 0$ and $\mathbb{E}[X_tX_s] = ts\mathbb{E}[W_{1/t}W_{1/s}] = \frac{ts}{t\vee s} = t \wedge s$, and the paths of X are almost surely continuous on $(0,\infty)$. We have to prove continuity at 0. The key fact is that

$$\{X_t: t \in (0,\infty) \cap \mathbb{Q}\} \stackrel{\text{Law}}{=} \{W_t: t \in (0,\infty) \cap \mathbb{Q}\}$$

(this follows from the fact that both sides are countable families of Gaussian r.v. with the same covariances). In particular,

$$\mathbb{P}\{\lim_{\substack{t\downarrow 0\\t\in \mathbb{O}}} X_t = 0\} = \mathbb{P}\{\lim_{\substack{t\downarrow 0\\t\in \mathbb{O}}} W_t = 0\} = 1.$$

By continuity,

$$\lim_{\substack{t\downarrow 0\\t\in\mathbb{O}}} X_t = \lim_{t\downarrow 0} X_t,$$

proving the statement.

Example (2). We can build a pre-brownian motion with discontinuous paths. Let $\{W_t : t \in [0,1]\}$ be a Brownian motion, and let $U \sim \mathbb{U}_{[0,1]}$ be independent of W. Define

$$\tilde{W}_t := W_t + \mathbb{1}_{t=U}.$$

 \tilde{W} is not a Brownian motion (since discontinuous), but it is a pre-brownian motion. To show this, we just have to prove that \tilde{W} is a modification of W; indeed, for all t,

$$\mathbb{P}(W_t = \tilde{W}_t) = \mathbb{P}(U \neq t) = 1.$$

Remark. If X and \tilde{X} are modifications then they have the same finite-dimensional distributions, i.e. for any integer $d \geq 1$, we have

$$(X_{t_1},\ldots,X_{t_d}) \stackrel{\text{Law}}{=} (\tilde{X}_{t_1},\ldots,\tilde{X}_{t_d}) \qquad (\forall t_1,\ldots,t_d \in I).$$

Example (3). One consequence of Example (1) is that, almost surely,

$$\lim_{t \to \infty} \frac{W_t}{t} = 0$$

(since $\frac{W_t}{t} = X_{1/t}$). This is the strong law of large numbers for Brownian motions. We have in fact

$$\frac{W_N}{N} = \frac{\sum_{i=1}^{N} (W_i - W_{i-1})}{N}.$$

2.4 "Canonical" construction of Brownian motion

Fact (*). Let $C(\mathbb{R}_+, \mathbb{R})$ be the set of continuous real-valued functions on \mathbb{R}_+ , endowed with the topology of uniform convergence on compacts. The Borel σ -field of $C(\mathbb{R}_+, \mathbb{R})$, denoted by \mathcal{C} , is generated by "cylindrical sets", which are by definition of the form

$$A = \{ \omega = \{ \omega(t) : t \geqslant 0 \} : \omega(t_1) \in B_1, \dots, \omega(t_n) \in B_n \}, \qquad B_1, \dots, B_n \in \mathcal{B}(\mathbb{R}).$$

[For instance, if $t_1 = 0$, $t_2 = 2\pi$ and $B_1 = B_2 = \{0\}$, then $\sin \in \{\omega : \omega(t_1) \in B_1, \omega(t_2) \in B_2\}$.] By using e.g. "a monotone class argument" (see the tutorial on the webpage), we can show the following result:

Fact (**). If \mathbb{P} and \mathbb{Q} are two probability measures on $(C(\mathbb{R}_+, \mathbb{R}), \mathcal{C})$ such that $\mathbb{P}(A) = \mathbb{Q}(A)$ for all cylindrical sets A, then $\mathbb{P}(B) = \mathbb{Q}(B)$ for all $B \in \mathcal{C}$.

Fact (***). Let $W = \{W_t : t \ge 0\}$ be a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$, then the set function

$$\mathbb{W}(B) := \mathbb{P}\{W \in B\} \qquad (B \in \mathcal{C})$$

defines a probability measure on $(C(\mathbb{R}_+, \mathbb{R}), \mathcal{C})$ and due to (**) the definition of \mathbb{W} is independent of the choice of the Brownian motion.

Definition 2.15. (i) The measure \mathbb{W} is called the Wiener measure on $(C(\mathbb{R}_+,\mathbb{R}),\mathcal{C})$.

- (ii) The probability space $(C(\mathbb{R}_+, \mathbb{R}), \mathcal{C}, \mathbb{W})$ is the canonical space.
- (iii) The process $X = \{X_t : t \ge 0\}$ defined as

$$X_t(\omega) = \omega(t), \qquad t \geqslant 0, \, \forall \omega \in C(\mathbb{R}_+, \mathbb{R})$$

is called the canonical process.

Proposition 2.16. On the canonical space, the canonical process is a standard Brownian motion.

2.5 Donsker theorem and universality (invariance principles)

Recall that if $\{\xi_k : k \ge 1\}$ is a sequence of i.i.d. r.v. with $\mathbb{E}[\xi_1] = 0$ and $\mathbb{E}[\xi_1^2] = 1$ and if $S_n = \sum_{k=1}^n \xi_k$, then the central limit theorem says that

$$\frac{1}{\sqrt{n}}S_n \xrightarrow{\text{Law}} Z \sim \mathcal{N}(0,1),$$

which means that for all $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}(S_n / \sqrt{n} \leqslant t) = \mathbb{P}(Z \leqslant t).$$

Now, for any $n \in \mathbb{N}$ we can consider the interpolated process on [0, 1] defined as

$$X_n(t) := \frac{1}{\sqrt{n}} \left\{ S_{[nt]} + (nt - [nt]) \xi_{[nt]+1} \right\}.$$

Then $X_n(1) = S_n$, and in general, for all $j = 0, \ldots, n$, we have $X_n(\frac{j}{n}) = \frac{1}{\sqrt{n}}S_j$, with $S_0 = 0$.

Theorem 2.17 (Donsker). For all $n \in \mathbb{N}$, $X_n = \{X_n(t) : t \in [0,1]\}$ is a continuous process, starting from zero. Moreover, X_n converges in law to W, where $W = \{W_t : t \in [0,1]\}$ is a standard Brownian motion. This means that for any continuous and bounded function $\varphi : C([0,1],\mathbb{R}) \to \mathbb{R}$, we have

$$\lim_{n\to\infty} \mathbb{E}[\varphi(X_n)] = \mathbb{E}[\varphi(W)].$$

2.6 Behaviour of Brownian motion around zero

Let $W = \{W_t : t \geq 0\}$ be a standard Brownian motion started from 0, on $(\Omega, \mathcal{F}, \mathbb{P})$. We define the filtration of W to be

$$\mathcal{F}_t = \sigma\{W_u : u \leqslant t\} \qquad (\forall t \geqslant 0).$$

Note that $\mathcal{F}_s \subset \mathcal{F}_t$ whenever s < t.

Proposition 2.18 (Blumental's 0-1 law, la loi de tout ou de rien). Consider the σ -field

$$\mathcal{F}_{0+} := \bigcap_{\varepsilon > 0} \mathcal{F}_{\varepsilon}.$$

If $A \in \mathcal{F}_{0+}$, then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Proof. Fix $A \in \mathcal{F}_{0+}$. Let $0 < t_1 < t_2 < \cdots < t_n$ and let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous and bounded. Then

$$\mathbb{E}[\mathbb{1}_{A}f(W_{t_{1}},\ldots,W_{t_{n}})] = \lim_{\varepsilon \downarrow 0} \mathbb{E}[\mathbb{1}_{A}f(W_{t_{1}}-W_{\varepsilon},\ldots,W_{t_{n}}-W_{\varepsilon})]$$

$$= \lim_{\varepsilon \downarrow 0} \mathbb{P}(A)\mathbb{E}[f(W_{t_{1}}-W_{\varepsilon},\ldots,W_{t_{n}}-W_{\varepsilon})]$$

$$= \mathbb{P}(A)\mathbb{E}[f(W_{t_{1}},\ldots,W_{t_{n}})]$$

(the second equality follows from the fact that $W_{t_j} - W_{\varepsilon} \perp \!\!\! \perp A$ whenever $\varepsilon < t_1$, since $A \in \mathcal{F}_{\varepsilon/2}$). Since r.v.'s of the type $f(W_{t_1}, \ldots, W_{t_n})$ generate $\sigma\{W_t : t > 0\}$, we deduce that \mathcal{F}_{0+} is independent of $\sigma\{W_t : t > 0\} \vee \sigma\{W_0\}$, so $\mathcal{F}_{0+} \perp \!\!\! \perp \sigma\{W_t : t \geqslant 0\}$, and therefore $\mathcal{F}_{0+} \perp \!\!\! \perp \mathcal{F}_{0+}$, and the conclusion follows.

Corollary 2.19. Almost surely, for any $\varepsilon > 0$, we have $\sup_{t \in [0,\varepsilon]} W_t > 0$ and $\inf_{t \in [0,\varepsilon]} W_t < 0$.

Proof. By continuity, we can focus on $\sup_{t\in[0,\varepsilon]\cap\mathbb{Q}}W_t$ and $\inf_{t\in[0,\varepsilon]\cap\mathbb{Q}}W_t$. Let $\{\varepsilon_p\}_{p=1}^{\infty}\subset\mathbb{Q}$ be a sequence such that $\varepsilon_p\downarrow\varepsilon$. Then

$$A:=\{\sup_{t\in[0,\varepsilon]\cap\mathbb{Q}}W_t>0\}=\bigcap_{p\geqslant 1}\{\sup_{t\in[0,\varepsilon_p]\cap\mathbb{Q}}W_t>0\}\in\mathcal{F}_{0+}.$$

Then, using the continuity from above of probability measures, we get

$$\mathbb{P}(A) = \lim_{p \to \infty} \mathbb{P}\left(\sup_{t \in [0, \varepsilon_p] \cap \mathbb{Q}} W_t > 0\right) \geqslant \lim_{p \to \infty} \underbrace{\mathbb{P}(W_{\varepsilon_p} > 0)}_{=\frac{1}{2}} = \frac{1}{2}.$$

By Blumental's 0-1 law, $\mathbb{P}(A) = 1$. To deal with the infimum, replace W with -W (which is again a Brownian motion).

Corollary 2.20. For $a \in \mathbb{R}$, let $T_a := \inf\{t \ge 0 : W_t = a\}$ be the hitting time of a (with the convention inf $\emptyset = +\infty$). Then for all $a \in \mathbb{R}$, $\mathbb{P}(T_a < +\infty) = 1$.

Proof. We deal with a > 0 (and implicitly we take suprema with rationals). We have to prove that for all A > 0, $\mathbb{P}(\sup_{t \ge 0} W_t > A) = 1$. We have

$$\begin{split} \mathbb{P}(\sup_{t\geqslant 0}W_t>A) &= \mathbb{P}(\sup_{t\geqslant 0}\frac{1}{A}W_t>1) = \mathbb{P}(\sup_{t\geqslant 0}\frac{1}{A}W_{tA^2}>1) \stackrel{*}{=} \\ \stackrel{*}{=} \mathbb{P}(\sup_{t\geqslant 0}W_t>1) \stackrel{\circledast}{=} \lim_{\delta\downarrow 0}\mathbb{P}(\sup_{t\in [0,\frac{1}{\delta^2}]}W_t>1) \stackrel{*}{=} \lim_{\delta\downarrow 0}\mathbb{P}(\sup_{t\in [0,\frac{1}{\delta^2}]}\frac{1}{\delta}W_{t\delta^2}>1) = \\ &= \lim_{\delta\downarrow 0}\mathbb{P}(\sup_{t\in [0,1]}W_t>\delta) \stackrel{\circledast}{=} \mathbb{P}(\sup_{t\in [0,1]}W_t>0) = 1, \end{split}$$

where equalities marked with * hold by the scaling property of Brownian motion and equalities marked with * are due to the continuity of \mathbb{P} . The last equality follows from Corollary 2.19. To deal with a < 0, replace W with -W.

Corollary 2.21. With probability 1, $\limsup_{T\to+\infty}W_T=+\infty$ and $\liminf_{T\to+\infty}W_T=-\infty$.

In other words, "fluctuations become more and more pronounced as time advances".

Corollary 2.22. With probability 1, a standard Brownian motion W is nowhere monotone, that is: with probability 1, for all $t \in \mathbb{R}_+$ the following property holds:

$$P(t): \forall \eta > 0$$
, the mapping $t \mapsto W_t$ is not monotone on $[t, t + \eta]$.

Proof. Fix $\in \mathbb{R}$. By the weak Markov property, $\{W_{t+s} - W_s : s \ge 0\}$ is a standard Brownian motion (independent of \mathcal{F}_t). So, by Corollary 2.19, with probability 1, we have for all $\eta > 0$

$$\sup_{s \in [0,\eta]} \{ W_{s+t} - W_t \} > 0 \quad \text{and} \quad \inf_{s \in [0,\eta]} \{ W_{s+t} - W_t \} < 0,$$

which implies that t has property P(t) (with probability 1). So with probability 1, every $t \in \mathbb{Q} \cap \mathbb{R}_+$ has property P(t) (just an intersection of countably many events of probability 1). Hence, by density of \mathbb{Q} in \mathbb{R} , with probability 1 every $t \in \mathbb{R}_+$ has property P(t).

The results given in the remainder of this section provide some information about maxima of a Brownian motion W. To obtain analogous results for minima, replace W with -W.

Corollary 2.23. Given two non-overlapping (i.e. with disjoint interiors) closed intervals $[a_1, b_1]$ and $[a_2, b_2]$, $(a_1 < b_1 \le a_2 < b_2)$, then with probability 1,

$$m_1 := \max_{t \in [a_1, b_1]} W_t \neq \max_{t \in [a_2, b_2]} W_t =: m_2.$$

Proof. By the weak Markov property, $W_{a_2} < m_2$, meaning that $m_2 = \max_{t \in [a_2+1/n,b_2]} W_t$ for some $n \ge 1$, so we can assume without loss of generality that $b_1 < a_2$. Again by the weak Markov property,

- (1) $W_{a_2} W_{b_1} \perp \!\!\! \perp W_{b_1} m_1$,
- (2) $m_2 W_{a_2} \perp W_{a_2} W_{b_1}$
- (3) $m_2 W_{a_2} \perp W_{b_1} m_1$.

In addition, we have the equivalence

$$m_1 = m_2 \iff W_{a_2} - W_{b_1} = W_{a_2} - m_2 + m_1 - W_{b_1}.$$

Let $Y := W_{a_2} - m_2 + m_1 - W_{b_1}$. $W_{a_2} - W_{b_1}$ is a continuous r.v. and by (1) and (2), it is independent of Y. Therefore

$$\mathbb{P}(m_1 = m_2) = \mathbb{P}(W_{a_2} - W_{b_1} = Y) = \int_{\Omega} \mathbb{P}(W_{a_2} - W_{b_1} = y) \, \mathcal{L}_Y(dy) = 0.$$

The second equality is due to $W_{a_2}-W_{b_1}\perp Y$ and the last equality follows from the fact that $\mathbb{P}(W_{a_2}-W_{b_1}=y)=0$ for all $y\in\mathbb{R}$, since $W_{a_2}-W_{b_1}$ is Gaussian.

Corollary 2.24. With probability 1, every local maximum of W is strict.

By saying that x_0 is a local maximum of f, we mean that there exists $\varepsilon > 0$ such that $f(x) < f(x_0)$ for all x with $0 < |x - x_0| < \varepsilon$.

Proof. Due to Corollary 2.23, with probability 1, for all non-overlapping closed intervals I_1 , I_2 with rational endpoints, we have $\max_{t \in I_1} W_t \neq \max_{t \in I_2} W_t$, and this property implies that there are no non-strict local maxima.

Corollary 2.25. With probability 1, the points of local maxima of W are dense in \mathbb{R}_+ and countable.

Proof. Exercise.
$$\Box$$

Corollary 2.26. For any T > 0, define

$$S_T := \max_{t \in [0,T]} W_t.$$

Then with probability 1, for any T > 0 there exists a unique $t^* \leq T$ such that $W_{t^*} = S_T$. We then define

$$t^* =: \underset{t \leq T}{\operatorname{arg max}} W_t.$$

Proof. Assume that there exist $t_1 < t_2 \le T$ such that $W_{t_1} = W_{t_2} = S_T$. Then there exist two non-overlapping closed intervals $I_1, I_2 \subset [0, T]$ such that $\max_{t \in I_1} W_t = \max_{t \in I_2} W_t = S_T$. This event has probability 0.

2.7 Some properties related to "variations"

Let $W = \{W_t : t \ge 0\}$ be a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$ with $W_0 = 0$.

Proposition 2.27. Fix $T \in (0, +\infty)$. Let $t^{(n)} = \{0 = t_0^{(n)} < t_1^{(n)} < \cdots < t_{K_n}^{(n)} = T\}$ be a sequence of partitions of [0, T] such that

$$\operatorname{mesh}\left(t^{(n)}\right) := \max_{j=1,\dots,K_n} \left[t_j^{(n)} - t_{j-1}^{(n)} \right] \xrightarrow[n\uparrow+\infty]{} 0.$$

Then

$$\sum_{j=1}^{K_n} \left(W_{t_j^{(n)}} - W_{t_{j-1}^{(n)}} \right)^2 \xrightarrow[n \uparrow + \infty]{} T, \quad \text{in } L^2(\mathbb{P}).$$

Proof. The conclusion is equivalent to

$$\mathbb{E}\left[\left\{\sum_{j=1}^{K_n}\left(W_{t_j^{(n)}}-W_{t_{j-1}^{(n)}}\right)^2-T\right\}^2\right]\xrightarrow[n\uparrow+\infty]{}0;$$

this property only depends on the finite-dimensional distribution of W, so we can assume that W is (any) pre-brownian motion (like Brownian motion, but not necessarily continuous). Let

$$G = \{G(A) : A \in \mathcal{B}(\mathbb{R}_+), \lambda(A) < +\infty\}$$

be a centered Gaussian measure, controlled by the Lebesgue measure λ (see Definition 1.4). Then we know that

(1) $t \mapsto G([0,t])$ is a pre-brownian motion (see the proof of Proposition 2.2),

(2) by Proposition 1.7, for any measurable set B with $\lambda(B) < +\infty$ and for every sequence $\{B_1^{(n)} \cup \cdots \cup B_{K_n}^{(n)}\}$ of partitions of B such that

$$\max_{j=1,\dots,K_n} \lambda(B_j^{(n)}) \xrightarrow[n\uparrow+\infty]{} 0,$$

we have

$$\sum_{i=1}^{K_n} G(B_j^{(n)})^2 \xrightarrow[n\uparrow+\infty]{L^2(\mathbb{P})} \lambda(B).$$

Selecting B = [0, T] and $B_j^{(n)} = (t_{j-1}^{(n)}, t_j^{(n)}]$ for $j \ge 2$ and $B_1^{(n)} = [0, t_1^{(n)}]$ gives the result.

Definition 2.28. Let f be a real-valued function defined on an interval $[a, b] \subset \mathbb{R}$. The total variation of f is by definition

$$V_{[a,b]}(f) := \sup_{t^{(n)}} \sum_{j=1}^{n} \left| f(t_j^{(n)}) - f(t_{j-1}^{(n)}) \right|,$$

where the supremum is taken over all partitions of [0,T]. A function f is said to be of bounded variation on [a,b] if $V_{[a,b]}(f) < +\infty$.

Proposition 2.29. Let T > 0 be arbitrary. Then with probability 1,

$$V_{[0,T]}(W) = +\infty.$$

In other words, a Brownian motion does not have bounded variation (a.s.) on any finite time interval.

Proof. See handwritten notes.

Remark. Functions of bounded variations have the following basic properties:

- (1) The following are equivalent for $f:[0,T]\to\mathbb{R}$:
 - (a) f has bounded variation on [0, T],
 - (b) f(t) = F(t) G(t), where F and G are non-decreasing.
- (2) The following are equivalent for $f: [0,T] \to \mathbb{R}$:
- (a) There exists a finite signed measure¹ μ on [0,T] such that $f(x) f(a) = \mu([a,x])$ for all $0 \le a \le x \le T$,
 - (b) f has bounded variation on [0, T] and is right continuous on [0, T].
 - (3) If f is of bounded variation on [0, T], then the following conditions hold:
 - (i) f is continuous, except at most on a countable set.
 - (ii) f is λ -a.e. differentiable and $f' \in L^1((0,T),\lambda)$.

2.8 The strong Markov property of Brownian motions

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that there exists a standard Brownian motion $W = \{W_t : t \geq \}$ satisfying the following conditions:²

- (a) $\mathcal{F} = \sigma(W)$,
- (b) the mapping $t \mapsto W_t(\omega)$ is continuous $\forall \omega \in \Omega$.

¹A signed measure μ on a measurable space (A, \mathcal{A}) is a map $\mu \colon \mathcal{A} \to [-\infty, +\infty]$ such that $\mu(\emptyset) = 0$ and $\sum_i \mu(A_i) = \mu(A)$ for all disjoint sets A_i such that $A = \bigcup_i A_i$.

²If (b) is not satisfied, we can set the Brownian motion to 0 at a set of measure 0.

Let \mathcal{N} denote the \mathbb{P} -null sets of Ω . We extend \mathbb{P} to

$$\mathcal{F}_* := \mathcal{F} \vee \sigma(\mathcal{N}).$$

Our reference filtration will be

$$\mathcal{F}_t = \sigma\{W_u : u \leqslant t\} \lor \sigma(\mathcal{N}) \qquad (t \geqslant 0).$$

This filtration is the "canonical augmentation" of the Brownian filtration. Obviously, it satisfies $\mathcal{F}_t \subset \mathcal{F}_*$ for all t. Moreover, one can show that it has the following properties:

- (i) $W_t W_s \perp \mathcal{F}_s$ for all $0 \leq s < t$,
- (ii) $\{\mathcal{F}_t: t \geqslant 0\}$ satisfies the "usual conditions", i.e.
 - (a) $\mathcal{F}_0 \supset \sigma(\mathcal{N})$,
 - (b) $\mathcal{F}_{t+} := \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon} = \mathcal{F}_t$.

We know that a Brownian motion W satisfies the weak Markov property, that is, for any deterministic time T, the process $\{W_{T+t}-W_T:t\geqslant 0\}$ is again a Brownian motion. This property is no longer true if T is a random time. For instance, the random time $T:=t^*=\arg\max_{t\leqslant S}W_t$ (with S deterministic) provides a counterexample. However, if T is a stopping time, W satisfies what is called the strong Markov property, which will be stated below.

Definition 2.30. (a) A random variable $T \ge 0$ (possibly infinite) is called a \mathcal{F}_t -stopping time if for all $t \ge 0$,

$$\{T \leqslant t\} \in \mathcal{F}_t.$$

(b) Let T be a \mathcal{F}_t -stopping time. We define

$$\mathcal{F}_T := \{ A \in \mathcal{F}_* : A \cap \{ T \leqslant t \} \in \mathcal{F}_t, \, \forall t \geqslant 0 \}.$$

Examples. (a) For any $a \in \mathbb{R}$, the hitting time $T_a := \inf\{s \ge 0 : W_s = a\}$ is an \mathcal{F}_t -stopping time, since

$$\{T_a \leqslant t\} = \begin{cases} \{\max_{s \leqslant t} W_s \geqslant a\} & \text{if } a > 0, \\ \{\min_{s \leqslant t} W_s \leqslant a\} & \text{if } a \leqslant 0. \end{cases}$$

- (b) $t^* = \arg \max_{t \leq T} W_t$ with T deterministic is not a stopping time (see Corollary 2.32).
- (c) $g = \sup\{t \leq 1 : W_t = 0\}$ is not a stopping time (see Corollary 2.32).

Exercise. (1) \mathcal{F}_T is a σ -field.

- (2) $T \in \mathcal{F}_T$.
- (3) If $T \equiv t$ is deterministic, then T is a stopping time and $\mathcal{F}_T = \mathcal{F}_t$.

Other properties: see handwritten notes.

Theorem 2.31 (Strong Markov property). Let T be an \mathcal{F}_{t} -stopping time and set

$$W_t^{(T)} = \{W_{T+t} - W_T\} \mathbb{1}_{\{T < +\infty\}} \quad (\forall t \ge 0).$$

Then, conditionally on $\{T < +\infty\}$, $W^{(T)}$ is a standard Brownian motion issued from 0 and independent of \mathcal{F}_T . More precisely,

- * $W^{(T)}$ has continuous paths,
- * $\forall B \in \mathcal{F}_t, \forall d \geqslant 1, \forall (\lambda_1, \dots, \lambda_d) \in \mathbb{R}^d \text{ and } \forall (t_1, \dots, t_d) \in \mathbb{R}^d_+, \text{ we have } d$

$$\mathbb{E}\left[\mathbbm{1}_{B} \exp\left(i \sum_{j=1}^{d} \lambda_{j} W_{t_{j}}^{(T)}\right) \middle| T < +\infty\right] = \mathbb{P}(B \mid T < +\infty) \times \mathbb{E}\left[\exp\left(i \sum_{j=1}^{d} \lambda_{j} W_{t_{j}}\right)\right]$$

Proof. See handwritten notes.

Corollary 2.32. The random variables $t^* = \arg \max_{t \leq T} W_t$ (with T deterministic) and $g = \sup\{t \leq 1 : W_t = 0\}$ are not \mathcal{F}_t -stopping times.

Proof. The behaviours around t = 0 of $t \mapsto (W_{t^*+t} - W_{t^*})$ and $t \mapsto (W_{g+t} - W_g)$ are not Brownian (they have a constant sign).

One important application of the strong Markov property is the "reflection principle", associated with the problem: "What is the law of $S_t = \max_{s \leq t} W_s$?"

Theorem 2.33 (Reflection principle). Fix t > 0. Then for any $y \ge 0$ and $z \ge 0$,

$$\mathbb{P}\{W_t < z - y, S_t \geqslant z\} = \mathbb{P}\{W_t > z + y\}$$

(where $S_t = \max_{s \leq t} W_s$).

Proof. Let T_z be the hitting time of z, i.e. $T_z = \inf\{s \ge 0 : W_s = z\}$. Then

$$\begin{split} \mathbb{P}\{S_{t} \geqslant z, \, W_{t} < z - y\} &= \mathbb{P}\{T_{z} \leqslant t, \, W_{T_{z} + (t - T_{z})} - z < -y\} \\ &\stackrel{\circledast}{=} \mathbb{P}\{T_{z} \leqslant t, \, W_{t - T_{z}}^{(T_{z})} < -y\} \\ &\stackrel{*}{=} \mathbb{P}\{T_{z} \leqslant t, \, -W_{t - T_{z}}^{(T_{z})} < -y\} \\ &\stackrel{\circledast}{=} \mathbb{P}\{T_{z} \leqslant t, \, z - W_{t} < -y\} \\ &= \mathbb{P}\{W_{t} > z + y\}. \end{split}$$

The equality labeled with * follows from the strong Markov property applied to the process $W^{(T_z)}$. Equalities labeled with * rely on the fact that $z = W_{T_z}$.

Corollary 2.34. For any fixed $t \ge 0$, the r.v. S_t has the same law as $|W_t|$.

Proof. Fix $z \ge 0$. Then

$$\mathbb{P}\{S_t \geqslant z\} = \mathbb{P}\{S_t \geqslant z, W_t \geqslant z\} + \mathbb{P}\{S_t \geqslant z, W_t < z\} \stackrel{\circledast}{=} 2\mathbb{P}\{W_t \geqslant z\} = \mathbb{P}\{|W_t| \geqslant z\}.$$

The equality labeled with \circledast is obtained by applying the reflection principle with y=0 and using the fact that $\{W_t \ge z\} \subset \{S_t \ge z\}$.

Remark. We have $S_t \stackrel{\text{Law}}{=} |W_t|$ for all $t \ge 0$, but it is not an equality in the sense of stochastic processes. For instance, note that S_t is, unlike $|W_t|$, always non-decreasing.

Corollary 2.35. Fix z > 0. Then the law of the hitting time T_z is

$$T_z \stackrel{\text{Law}}{=} \frac{z^2}{W_1^2} \sim \frac{z^2}{\mathcal{N}(0,1)^2}.$$

Proof. Using Corollary 2.34 in * and the scaling property of Brownian motions in ⊛, we obtain

$$\mathbb{P}\{T_z \leqslant t\} = \mathbb{P}\{S_t \geqslant z\} \stackrel{*}{=} \mathbb{P}\{|W_t| \geqslant z\} \stackrel{\circledast}{=} \mathbb{P}\{\sqrt{t}|W_1| \geqslant z\} = \mathbb{P}\left\{\frac{z^2}{W_1^2} \leqslant t\right\}.$$

Corollary 2.36. Then process $\{T_z : z \ge 0\}$ is

- (1) non-decreasing,
- (2) with independent increments, i.e. for all z > z', we have $(T_z T_{z'}) \perp \sigma \{T_u : u \leq z'\}$,
- (3) the law of $T_z T_{z'}$ only depends on z z' (stationary increments).

So $z \mapsto T_z$ is a non-decreasing Lévy process, also called a "subordinator".

Proof. See handwritten notes.

Corollary 2.37 (Zeroes of a Brownian motion). Let $Z := \{t \ge 0 : W_t = 0\}$ be the set of zeroes of W. The set Z is a.s.

- (a) closed,
- (b) with no isolated points,
- (c) with Lebesgue measure equal to 0.

Proof. See handwritten notes.

Exercise. Use the reflection principle to show that for any t > 0, (S_t, W_t) has a joint density given by

$$g(x,y) = \frac{2(2x-y)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2x-y)^2}{2t}\right) \mathbb{1}_{(x>0, y\leqslant x)}.$$

Exercise. Use Corollary 2.35 to prove that for any z > 0, T_z has a density

$$f(t) = \frac{z}{\sqrt{2\pi t^3}} \exp\left(-\frac{z^2}{2t}\right) \mathbb{1}_{\{t>0\}}.$$

Remark. If z < 0, then $T_z \stackrel{\text{Law}}{=} T_{-z}$ (since $W \stackrel{\text{Law}}{=} -W$).

2.9 Some further definitions

Definition 2.38. For every $d \ge 1$, a d-dimensional Brownian motion issued from 0 is

$$\overline{W}_t = (W_t^{(1)}, \dots, W_t^{(d)})$$

where the $W^{(j)}$'s are independent Brownian motions.

Definition 2.39. Let W be a one-dimensional Brownian motion. Then the process

$$X_t = x + \mu t + \sigma W_t \qquad (x \in \mathbb{R}, \ \mu, \sigma \in \mathbb{R})$$

is called a Brownian motion issued from x with drift μ and volatility σ . In particular, $X_t \sim \mathcal{N}(x + \mu t, \sigma^2 t)$.

Definition 2.40. Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we call filtration an increasing collection $\{\mathcal{H}_t : t \geq 0\}$ of sub- σ -fields of \mathcal{F} . ("Increasing" means that $\mathcal{H}_s \subset \mathcal{H}_t$ whenever s < t.)

Definition 2.41. Given a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{H}_t), \mathbb{P})$, we say that $W = \{W_t : t \ge 0\}$ is an \mathcal{H}_t -Brownian motion if

- (i) $W_0 = 0$ a.s.,
- (ii) W has a.s. continuous paths,
- (iii) W_t is \mathcal{H}_t -measurable for every t (i.e. W_t is \mathcal{H}_t -adapted),
- (iv) $W_t W_s \perp \mathcal{H}_s$ whenever t > s and $W_t W_s \sim \mathcal{N}(0, t s)$.

Examples. (1) Any Brownian motion W is a \mathcal{H}_t -Brownian motion with respect to its canonical filtration $\mathcal{H}_t := \sigma\{W_u : u \leq t\}$ and with respect to the filtration $\mathcal{F}_t := \sigma\{W_u : u \leq t\} \vee \sigma(\mathcal{N})$.

(2) Let Y be a r.v. independent of a Brownian motion W. Then W is a \mathcal{H}_t -Brownian motion for $\mathcal{H}_t := \mathcal{F}_t \vee \sigma(Y)$.

Definition 2.42. We say that a filtration $\{\mathcal{H}_t\}$ satisfies the usual conditions if

$$\mathcal{H}_0 \supset \sigma(\mathcal{N})$$
 and $\bigcap_{\varepsilon>0} \mathcal{H}_{t+\varepsilon} = \mathcal{H}_t \quad (\forall t \geqslant 0).$

Recall also the notation

$$\mathcal{H}_{t+} := \bigcap_{\varepsilon > 0} \mathcal{H}_{t+\varepsilon}.$$

Definition 2.43. A stochastic process $X = \{X_t : t \ge 0\}$ is called a

$$\begin{array}{l} \mathcal{H}_{t}\text{-martingale} \\ \mathcal{H}_{t}\text{-submartingale} \\ \mathcal{H}_{t}\text{-supermartingale} \end{array} \right\} \text{ if } \forall t, \ \left[\begin{array}{l} X_{t} \in \mathcal{H}_{t} \text{ and} \\ X_{t} \in L^{1}(\mathbb{P}) \end{array} \right] \text{ and } \forall s < t, \ \left\{ \begin{array}{l} \mathbb{E}[X_{t} \mid \mathcal{H}_{s}] = X_{s}, \\ \mathbb{E}[X_{t} \mid \mathcal{H}_{s}] \geqslant X_{s}, \\ \mathbb{E}[X_{t} \mid \mathcal{H}_{s}] \leqslant X_{s}. \end{array} \right.$$

Chapter 3

Stochastic Integrals

3.1 Construction of the stochastic integral

For this chapter, we fix a complete probabilistic space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\{\mathcal{H}\}_{t\geq 0}$ of \mathcal{F} satisfying the usual conditions.

Definition 3.1. Let $X = \{X_t : t \ge 0\}$ be a stochastic process.

- (a) X is measurable if $(t, \omega) \mapsto X_t(\omega)$ is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{F}$ -measurable.
- (b) X is \mathcal{H}_t -adapted, if for all $t, X_t \in \mathcal{H}_t$.
- (c) X is \mathcal{H}_t -progressively measurable if for any fixed deterministic T > 0, the mapping $(t, \omega) \mapsto X_t(\omega)$ restricted to $[0, T] \times \Omega$ is $\mathcal{B}([0, T]) \otimes \mathcal{H}_T$ -measurable.

Remark. If X is \mathcal{H}_{t} -progressive, then X is \mathcal{H}_{t} -adapted and measurable.

Lemma 3.2. Suppose that X is a.s. right-continuous or a.s. left continuous. Then, if X is \mathcal{H}_t -adapted, it is also progressive with respect to \mathcal{H}_t .

Proof. We just prove the right-continuous case. For all $n \ge 1$, let us consider the process

$$X_t^n(\omega) = \sum_{k=0}^{\infty} \mathbb{1}_{\left[\frac{k-1}{n}, \frac{k}{n}\right)}(t) X_{\frac{k}{n}}(\omega)$$

(we discretize X). By right continuity,

$$X_t^n(\omega) \xrightarrow[n\uparrow+\infty]{} X_t(\omega).$$

Moreover, by construction, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for any $n \ge N$, the process X_t^n is $\mathcal{H}_{t+\varepsilon}$ -progressive, meaning that X_t is $\mathcal{H}_{t+\varepsilon}$ -progressive for all $\varepsilon > 0$. This means that for any $A \in \mathcal{B}(\mathbb{R})$ and for any T > 0, we have

$$\{(t,\omega)\in[0,T]\times\Omega:X_t(\omega)\in A\}\in\bigcap_{\varepsilon>0}\big(\mathcal{B}([0,T])\otimes\mathcal{H}_{T+\varepsilon}\big)=\mathcal{B}([0,T])\otimes\mathcal{H}_T,$$

the last equality being true by the right continuity of \mathcal{H}_t . So, X is \mathcal{H}_t -progressive.

Counterexample (Total disorder process). On $(\Omega, \mathcal{F}, \mathbb{P})$, let $\{N_t : t \geq 0\}$ be a continuous collection of i.i.d. $\mathcal{N}(0,1)$ random variables. Then the mapping $(t,\omega) \mapsto N_t(\omega)$ cannot be jointly measurable.

Indeed, if it was the case, then for any s < u,

$$\mathbb{E}\left[\left(\int_{s}^{u} N_{t} dt\right)^{2}\right] \stackrel{\text{Fubini}}{=} \int_{s}^{u} \int_{s}^{u} \mathbb{E}[N_{t} N_{t'}] dt dt' = 0.$$

This would imply that

$$\mathbb{P}\left\{ \int_{s}^{u} N_{t} \, \mathrm{d}t = 0 \text{ for all } s, u \right\} = 1,$$

whence

$$\mathbb{P}\{N_t = 0 \text{ for almost every } t\} = 1.$$

But this is absurd, since

$$\mathbb{E}\left[\int_0^T N_t^2 \, \mathrm{d}t\right] \stackrel{\text{Fubini}}{=} \int_0^T \mathbb{E}[N_t^2] \, \mathrm{d}t = \int_0^T 1 \, \mathrm{d}t = T.$$

Definition 3.3. We denote by $\operatorname{Prog}(\mathcal{H}_t)$ or Prog the smallest σ -field on $\mathbb{R}_+ \times \Omega$ such that all \mathcal{H}_t -progressive processes X are measurable (in (t, ω)). Then, then space

$$L^2(\text{Prog}) := L^2(\mathbb{R}_+ \times \Omega, \text{Prog}, dt \times d\mathbb{P})$$

of square-integrable progressive processes is a real Hilbert space. It consists of all processes $h_t = h(t, \omega)$ which are \mathcal{H}_t -progressive and satisfy

$$\mathbb{E}\left(\int_0^\infty h_t^2 \, \mathrm{d}t\right) < +\infty.$$

Definition 3.4. We denote by ${\mathcal E}$ the space of elementary processes, i.e.

$$\mathcal{E} := \left\{ f(t, \omega) \middle| f(t, \omega) = \sum_{j=0}^{N-1} F_{t_j}(\omega) \mathbb{1}_{(t_j, t_{j+1}]}(t), \text{ with } \left\{ \begin{array}{l} 0 \leqslant t_0 < t_1 < t_2 < \dots < t_N < +\infty, \\ F_{t_j} \in \mathcal{H}_{t_j} \text{ bounded} \end{array} \right\} \right\}$$

Theorem 3.5.

- (a) $\mathcal{E} \subset L^2(\text{Prog})$,
- (b) \mathcal{E} is a vector space,
- (c) \mathcal{E} is dense in $L^2(\text{Prog})$.

Proof. (a) Each element of \mathcal{E} is

$$\begin{array}{l}
- \text{ adapted to } \mathcal{H}_t \\
- \text{ left-continuous} \\
- \text{ bounded} \\
- \text{ with compact support in the variable } t
\end{array}$$

$$\begin{array}{l}
\longrightarrow \mathcal{E} \subset L^2(\text{Prog}).$$

As for (b) and (c), see handwritten notes.

From now on, $W = \{W_t : t \ge 0\}$ is a standard \mathcal{H}_t -Brownian motion issued from 0.

Definition 3.6. Let $f(t,\omega) \in \mathcal{E}$ be given by

$$f(t,\omega) = \sum_{k=0}^{N-1} F_{t_k}(\omega) \mathbb{1}_{(t_k, t_{k+1}]}(t)$$

with $F_{t_k} \in \mathcal{H}_{t_k}$ and bounded. We set

$$\int_0^\infty f(t) \, dW_t = \int_0^\infty f \, dW := \sum_{k=0}^{N-1} F_{t_k} (W_{t_{k+1}} - W_{t_k}).$$

For every $t \ge 0$, we set

$$\int_0^t f(s) \, \mathrm{d}W_s = \int_0^t f \, \mathrm{d}W := \int_0^\infty f \mathbb{1}_{[0,t]} \, \mathrm{d}W = \sum_{k=0}^{N-1} F_{t_k} (W_{t_{k+1} \wedge t} - W_{t_k \wedge t}).$$

In particular,

$$\int_0^0 f \, \mathrm{d}W = 0.$$

Remark. Thus $\int_0^\infty f \, dW$ is a sum of increments $W_{t_{k+1}} - W_{t_k}$, each of them multiplied by a weight random function F_{t_k} , which is independent of the increments (since $W_{t_{k+1}} - W_{t_k} \perp \mathcal{H}_{t_k}$).

Proposition 3.7.

(1) For any $f, g \in \mathcal{E}$,

$$\int_0^\infty (f+g) \, \mathrm{d}W = \int_0^\infty f \, \mathrm{d}W + \int_0^\infty g \, \mathrm{d}W.$$

(2) For any $f, g \in \mathcal{E}$,

$$\mathbb{E}\left[\int_0^\infty f\,\mathrm{d}W\times\int_0^\infty g\,\mathrm{d}W\right] = \langle f,g\rangle_{L^2(\mathrm{Prog})} = \mathbb{E}\left[\int_0^\infty f(t)g(t)\,\mathrm{d}t\right].$$

(3) For any $f \in \mathcal{E}$,

$$\mathbb{E}\left[\int_0^\infty f \, \mathrm{d}W\right] = 0.$$

Proof. (1) is trivial. (3) comes from

$$\mathbb{E}\left[F_{t_k}(W_{t_{k+1}}-W_{t_k})\right] = \mathbb{E}\left[F_{t_k}\right]\mathbb{E}\left[(W_{t_{k+1}}-W_{t_k})\right] = 0.$$

To show (2), it is sufficient to consider the case f = g, since $f \mapsto \int_0^\infty f \, dW$ is linear by point (1). We have

$$\begin{split} \mathbb{E}\left[\left(\int_{0}^{\infty}f(t)\,\mathrm{d}W_{t}\right)^{2}\right] &= \mathbb{E}\left[\left(\sum_{k=0}^{N-1}F_{t_{k}}(W_{t_{k+1}}-W_{t_{k}})\right)^{2}\right] \\ &= \sum_{k=0}^{N-1}\sum_{j=0}^{N-1}\mathbb{E}\left[F_{t_{k}}F_{t_{j}}(W_{t_{k+1}}-W_{t_{k}})(W_{t_{j+1}}-W_{t_{j}})\right] \\ &= \sum_{k=0}^{N-1}\mathbb{E}\left[F_{t_{k}}^{2}(W_{t_{k+1}}-W_{t_{k}})^{2}\right] \\ &= \sum_{k=0}^{N-1}\mathbb{E}\left[F_{t_{k}}^{2}(W_{t_{k+1}}-t_{k})\right]. \end{split}$$

So

$$\mathbb{E}\left[\left(\int_0^\infty f \, dW\right)^2\right] = \mathbb{E}\left[\sum_{k=0}^{N-1} F_{t_k}^2(t_{k+1} - t_k)\right] = \mathbb{E}\left[\int_0^\infty f(t)^2 \, dt\right].$$

Corollary 3.8. Let $\{g_n\}_{n\geqslant 1}\subset \mathcal{E}$ be a sequence which is Cauchy in $L^2(\operatorname{Prog})$. Then $\{\int_0^\infty g_n \, \mathrm{d}W : n\geqslant 1\}$ is Cauchy in $L^2(\mathbb{P})$.

Proof. Follows from the isometry relation

$$\mathbb{E}\left[\left(\int_0^\infty g_n \,\mathrm{d}W - \int_0^\infty g_m \,\mathrm{d}W\right)^2\right] = \|g_n - g_m\|_{L^2(\mathrm{Prog})}.$$

Definition 3.9. Let $g \in L^2(\operatorname{Prog})$. Then by density, there exists a sequence $\{g_n\}_{n \geq 1} \subset \mathcal{E}$ converging in $L^2(\operatorname{Prog})$ to g. By Corollary 3.8, $\{\int_0^\infty g_n dW\}_{n \geq 1}$ is Cauchy in $L^2(\mathbb{P})$. We define

$$\int_0^\infty g(t) \, \mathrm{d}W_t = \int_0^\infty g \, \mathrm{d}W := \lim_{n \uparrow + \infty} \int_0^\infty g_n \, \mathrm{d}W.$$

Proposition 3.10. For all $g \in L^2(\operatorname{Prog})$, the definition of $\int_0^\infty g \, dW$ is well-given. Moreover, all assertions of Proposition 3.7 remain valid for every $f, g \in L^2(\operatorname{Prog})$. In particular, assertion (2) of Proposition 3.7 says that the mapping $f \mapsto \int_0^\infty f \, dW$ is an isometry from $L^2(\operatorname{Prog})$ into $L^2(\mathbb{P})$.

Proof. See handwritten notes. \Box

Definition 3.11. We define

$$L^2_{\mathrm{loc}}(\mathrm{Prog}) := \left\{ f(t, \omega) : \forall T \geqslant 0 \text{ deterministic}, f \mathbb{1}_{[0, T]} \in L^2(\mathrm{Prog}) \right\}.$$

For all $f \in L^2_{loc}(Prog)$, we define

$$\int_0^t f(s) \, dW_s = \int_0^t f \, dW = \int_0^\infty f \mathbb{1}_{[0,t]} \, dW.$$

Remark. We have, of course, $L^2(\text{Prog}) \subset L^2_{\text{loc}}(\text{Prog})$.

Proposition 3.12. For every $f \in L^2_{loc}(Prog)$, the process $\{\int_0^t f dW : t \ge 0\}$ is a \mathcal{H}_t -martingale.

Proof. By density, we can take $f \in \mathcal{E}$, and by linearity, we can take f of the form $f(t) = F_a \mathbb{1}_{(a,b]}(t)$ with F_a bounded and \mathcal{H}_a -measurable. Then

$$\int_0^t f \, \mathrm{d}W = \begin{cases} 0 & \text{if } t \leqslant a, \\ F_a(W_t - W_a) & \text{if } t \in (a, b], \\ F_a(W_b - W_a) & \text{if } t > b. \end{cases}$$

So for all $t \ge 0$, $\int_0^t f dW \in \mathcal{H}_t$, and one can prove the martingale property by considering all possible cases, e.g.:

- (1) if $s < t \leq a$, then there is nothing to show;
- (2) if $a \leq s < t \leq b$, then

$$\mathbb{E}\left[\int_0^t f \,dW \mid \mathcal{H}_s\right] = \mathbb{E}[F_a(W - t - W_a) \mid \mathcal{H}_s]$$
$$= F_a \mathbb{E}[W_t \mid \mathcal{H}_s] - F_a W_a$$
$$= F_a(W_s - W_a) = \int_0^s f \,dW;$$

and so on. \Box

¹We will prove later on that it has an a.s. continuous modification.

Example. Let

$$L^2_{\text{det}}(\mathbb{R}_+) = \left\{ f(t) \text{ deterministic} : \forall T > 0, \int_0^T f^2(t) \, dt < +\infty \right\}.$$

Then $L^2_{\text{det}}(\mathbb{R}_+) \subset L^2_{\text{loc}}(\text{Prog})$. Every function $f\mathbb{1}_{[0,T]}$ with $f \in L^2_{\text{det}}(\mathbb{R}_+)$ can be approximated by step functions of the type

$$\sum_{k=0}^{N-1} C_k \mathbb{1}_{(t_k, t_{k+1}]}$$

where C_k 's are (deterministic) real numbers. This means that for any $f \in L^2_{\text{det}}(\mathbb{R}_+)$, $\int_0^T f \, dW$ is the limit of r.v.'s of the type

$$\sum_{k=0}^{N-1} C_k (W_{t_{k+1}} - W_{t_k})$$

and $\int_0^T f \, dW$ coincides with the Wiener-Itô integral of Chapter 1 (Definitions 1.8, 1.10 and 1.12, case $A = \mathbb{R}_+$ and $\mu = \text{Leb}$). In particular:

Proposition 3.13. Let $d \ge 1$, and for j = 1, ..., d, let $f_j \in L^2_{det}(\mathbb{R}_+)$ and $t_j \in \mathbb{R}_+$. Set

$$I_j := \int_0^{t_j} f_j \, \mathrm{d}W.$$

Then $(I_1, \ldots, I_d) \sim \mathcal{N}_d(\mathbf{0}, C)$, where $C = \{C(i, j) : i, j = 1, \ldots, d\}$ is a $d \times d$ -matrix the entries of which are given by

$$C(i,j) = \int_0^{t_i \wedge t_j} f_i(x) f_j(x) \, \mathrm{d}x.$$

Remark. (i) Of course, $\int_0^t 1 dW = W_t$.

(ii) If $f \in L^2_{\det}(\mathbb{R}_+)$, the process $t \mapsto \int_0^t f \, \mathrm{d}W$ has the same law as the "time-changed" Brownian motion $t \mapsto W_{\int_0^t f^2(s) \, \mathrm{d}s}$. Indeed, $\min(\int_0^t f^2(s) \, \mathrm{d}s, \int_0^u f^2(s) \, \mathrm{d}s) = \int_0^{t \wedge u} f^2(s) \, \mathrm{d}s$, so both processes are Gaussian, centered and with the same covariance.

3.2 Stochastic integrals and continuity

First, let us recall Doob's maximal inequality:

Lemma 3.14. Let $\{X_n : n = 0, 1, 2, ... N\}$ be a discrete martingale. Then for all $p \ge 1$ and $\lambda > 0$, we have

$$\lambda^{p} \mathbb{P} \left\{ \sup_{0 \leqslant n \leqslant N} |X_{n}| \geqslant \lambda \right\} \leqslant \mathbb{E} \left[|X_{N}|^{p} \right] \leqslant \sup_{0 \leqslant n \leqslant N} \mathbb{E} |X_{n}|^{p}.$$

Moreover, for all p > 1, we have

$$\mathbb{E}\left[|X_N|^p\right] \leqslant \sup_{0 \leqslant n \leqslant N} \mathbb{E}\left[|X_n|^p\right] \leqslant \left(\frac{p}{p-1}\right)^p \mathbb{E}\left[|X_N|^p\right].$$

By apporximating general maxima and minima by maxima and minima over finite sets, we can prove Doob's maximal inequality for continuous martingales:

Proposition 3.15. Let $X = \{X_t : t \ge 0\}$ be a continuous martingale. Then for all $\lambda > 0$, T > 0 and $p \ge 1$, we have

$$\lambda^p \mathbb{P} \left\{ \sup_{0 \le t \le T} |X_t| \ge \lambda \right\} \le \sup_{0 \le t \le T} \mathbb{E} |X_t|^p.$$

Theorem 3.16. Let $f \in L^2_{loc}(Prog)$, then the process $\{\int_0^t f \ dW : t \ge 0\}$ has an a.s. continuous modification. This means that there exists an a.s. continuous process $J = \{J_t : t \ge 0\}$ such that for all $t \ge 0$,

$$\mathbb{P}\left\{J_t = \int_0^t f(s) \, \mathrm{d}W_s\right\} = 1.$$

Proof. See handwritten notes. The idea is to combine Doob's inequality (for continuous martingales), Borel-Cantelli and the fact that \mathcal{E} is dense in $L^2(\text{Prog})$.

Remark. From now on, we will always implicitly select a continuous version of $t \mapsto \int_0^t f \, dW$, for $f \in L^2_{loc}(Prog)$.

Example (Towards Itô formula). For instance, let us compute $\int_0^t W_s dW_s$. First of all, note that $\{W_t : t \geq 0\}$ is an element of $L^2_{loc}(\text{Prog})$. This follows from the fact that the process $W_s \mathbb{1}_{\{s \leq t\}}$ is approximated in $L^2(\text{Prog})$ by the sequence

$$\sum_{k=1}^{N_n} W_{t_{k-1}^{(n)}} \mathbb{1}_{\left(t_{k-1}^{(n)}, t_k^{(n)}\right]}(s),$$

where $0 = t_0^{(n)} < t_1^{(n)} < \dots < t_{N_n}^{(n)} = t$ is a sequence is partitions of [0, t] with mesh $(t^{(n)}) \xrightarrow{n \uparrow +\infty} 0$. This also shows that, by construction,

$$\int_0^t W_s \, \mathrm{d}W_s = \lim_{n \to \infty} \sum_{k=1}^{L^2(\mathbb{P})} W_{t_{k-1}^{(n)}} \left(W_{t_k^{(n)}} - W_{t_{k-1}^{(n)}} \right) = \frac{1}{2} W_t^2 - \frac{t}{2}.$$

This gives

$$W_t^2 = 2 \int_0^t W_s \, \mathrm{d}W_s + t,$$

which is a particular case of the Itô formula. A crucial fact in the above computation is

$$\lim_{n \to \infty} \sum_{k=1}^{N_n} \left(W_{t_k^{(n)}} - W_{t_{k-1}^{(n)}} \right)^2 = t.$$

Remark. (1) If s < t, we set

$$\int_s^t f(u) \, dW_u := \int_0^t f \, dW - \int_0^s f \, dW.$$

(2) Assume that $s < t, f \in L^2_{loc}(Prog)$ and $H \in L^2(\mathcal{H}_s)$. Then

$$Hf(u)\mathbb{1}_{\{s\leqslant u\leqslant t\}}\in L^2_{\mathrm{loc}}(\mathrm{Prog})$$

and

$$\int_{s}^{t} (Hf) \, \mathrm{d}W = H \int_{s}^{t} f \, \mathrm{d}W. \tag{*}$$

To see this, observe first that (*) is trivial when $f \in \mathcal{E}$. For general f, observe that if $\mathcal{E} \ni q_n \longrightarrow f\mathbb{1}_{(s,t]}$ in $L^2(\text{Prog})$, then $Hq_n\mathbb{1}_{(s,t]} \longrightarrow Hf\mathbb{1}_{(s,t]}$ in $L^2(\text{Prog})$. So that

$$\int_{s}^{t} Hq_n \, dW \xrightarrow{L^2(\mathbb{P})} \int_{s}^{t} Hf \, dW$$

and also

$$\int_{s}^{t} Hq_n \, dW = H \int_{s}^{t} q_n \, dW \xrightarrow{L^2(\mathbb{P})} H \int_{s}^{t} f \, dW.$$

(3) The same rule applies if H is independent (stochastically) of everything.

The next proposition gives some results on stopping times (proofs are sketched or omitted).

Proposition 3.17. (1) Let T be a \mathcal{H}_{t} -stopping time, and let $h \in L^{2}_{loc}(\operatorname{Prog})$. Then

$$(t \mapsto h(t)\mathbb{1}_{\{t \leqslant T\}}) \in L^2_{loc}(Prog).$$

(2) For any t > 0 deterministic,

$$\int_0^t h(s) \mathbb{1}_{\{s \leqslant T\}} dW_s = \int_0^u h(s) dW_s \bigg|_{u=t \land T}.$$

(3) If $h \in L^2(\text{Prog})$,

$$\int_0^\infty h(s) \mathbb{1}_{\{s \leqslant T\}} dW_s = \int_0^u h(s) dW_s \bigg|_{u=T}.$$

Proof. (2) and (3) can be proved approximating T by discrete stopping times (taking values in a countable set); see J.-F. Le Gall, or Mörters—Peres.

To prove (1), observe that $t \mapsto h(t) \mathbb{1}_{\{t \le T\}} =: \tilde{h}(t)$ is such that for all t,

$$\mathbb{E}\left[\int_0^t \tilde{h}(s)^2 \, \mathrm{d}s\right] \leqslant \mathbb{E}\left[\int_0^t h(s)^2 \, \mathrm{d}s\right] < +\infty.$$

We have to show that $\mathbb{1}_{\{\cdot \leq T\}}$ is progressively measurable. Since it is left-continuous, we shall only show that it is \mathcal{H}_t -adapted (see Lemma 3.2). But

$$\{t \leqslant T\} = \{T < t\}^c \in \mathcal{H}_t,$$

because T is a \mathcal{H}_t -stopping time.

Definition 3.18. We define

$$\mathcal{I}_{loc}(Prog) := \left\{ f \mid f \text{ is } \mathcal{H}_{t}\text{-progressive and } \forall T < +\infty, \text{ we have } \int_{0}^{T} f^{2}(t) \, \mathrm{d}t < +\infty, \text{ a.s.} \right\}.$$

Observe that $L^2(\text{Prog}) \subsetneq L^2_{\text{loc}}(\text{Prog}) \subsetneq \mathcal{I}_{\text{loc}}(\text{Prog})$. We will extend the stochastic integral to the class $\mathcal{I}_{\text{loc}}(\text{Prog})$.

Theorem 3.19.

I. There exists a unique mapping

$$\mathscr{J}: \mathcal{I}_{loc}(\operatorname{Prog}) \longrightarrow \{continuous, \mathcal{H}_{t}\text{-adapted process}\}\$$

 $\{g(t): t \geqslant 0\} \longmapsto \{J_{t}(g): t \geqslant 0\}$

such that

- (1) $J_t(g) = \int_0^t g \, dW$ as defined in previous lectures, for all $g \in L^2_{loc}(Prog)$,
- (2) \mathscr{J} is linear,
- (3) I is continuous in the sense that

$$\int_0^T (g^n(t))^2 dt \xrightarrow{\mathbb{P}} 0 \quad implies \quad \sup_{t \leqslant T} |J_t(g^n)| \xrightarrow{\mathbb{P}} 0.$$

II. The process $\{J_t(g): t \geq 0\}$ is not in general a \mathcal{H}_t -martingale, but only a local martingale, that is, there exists a sequence $\{T_n: n \geq 1\}$ of \mathcal{H}_t -stopping times such that $T_n \uparrow +\infty$, a.s., and $t \mapsto J_{t \wedge T_n}(g)$ is a uniformly integrable \mathcal{H}_t -martingale. One says that $\{T_n\}_{n \geq 1}$ "localizes" $J_t(g)$.

Proof. See handwritten notes.

Remark. A square-integrable martingale is a local martingale (and the opposite is false).

²We have indeed
$$\{T < t\} = \bigcup_{\varepsilon > 0} \{T \leqslant t - \varepsilon\}$$
 and $\{T \leqslant t - \varepsilon\} \in H_{t-\varepsilon} \subset \mathcal{H}_t$.

Summary

$L^2(\text{Prog})$	\subseteq	$L^2_{\mathrm{loc}}(\mathrm{Prog})$	\subseteq	$\mathcal{I}_{\mathrm{loc}}(\mathrm{Prog})$
The map $L^2(\text{Prog}) \ni f \mapsto \int_0^\infty f dW$ is well-defined. In addition, it is an isometry.		$\int_0^\infty f \mathrm{d}W$ is not defined for $f \in L^2_{\mathrm{loc}}(\mathrm{Prog})$ in general. The mapping $f \mathbb{1}_{[0,t]} \mapsto \int_0^t g(s) \mathrm{d}W_s$ is an isometry.		$\int_0^\infty f \mathrm{d}W$ is not defined for $f \in \mathcal{I}_{\mathrm{loc}}(\mathrm{Prog})$ in general.
$\int_0^t f dW$ is a square-integrable continuous \mathcal{H}_t -martingale.		$\int_0^t f dW$ is a square-integrable continuous \mathcal{H}_t -martingale.		$\int_0^t f dW$ is a continuous \mathcal{H}_t -local martingale. It is localized a.s. by the sequence $T_n = \inf\{t \ge 0: \int_0^t (1+g_s^2) \mathrm{d}s = n\}.$

Some further properties

Proposition 3.20. Suppose $g \in \mathcal{I}_{loc}(\operatorname{Prog})$ is such that $\int_0^t f \, dW = 0$ for all t a.s. Then $g_t(\omega) = 0$ almost everywhere- $dt \otimes \mathbb{P}(d\omega)$.

Proof. See handwritten notes.

More generally,

Theorem 3.21. If $g \in \mathcal{I}_{loc}(Prog)$ is such that $t \mapsto \int_0^t g \, dW$ is with bounded variation a.s.- \mathbb{P} , then necessarily $g \equiv 0$.

3.3 Itô processes

Lemma 3.22. Let $\{M_t\}_{t\geqslant 0}$ be a local \mathcal{H}_t -martingale with bounded variation (a.s.- \mathbb{P}) and such that $M_0=0$. Then $M_t=0$ for all t, a.s.- \mathbb{P} .

Proof. See handwritten notes.

Definition 3.23. For $p \ge 1$, we define

$$\mathcal{L}^p_{\mathrm{loc}}(\mathrm{Prog}) := \left\{ h \;\middle|\; h \; \mathrm{is} \; \mathcal{H}_t\text{-progressively measurable and } \int_0^t |h_s|^p \, \mathrm{d}s < +\infty \; \mathrm{for \; all} \; t > 0 \right\}.$$

Note that, in particular, $\mathcal{I}_{loc}(Prog) = \mathcal{L}_{loc}^2(Prog)$.

Definition 3.24. An Itô process $X = \{X_t : t \ge 0\}$ is a stochastic process of the type

$$X_t = X_0 + \int_0^t g_s \, dW_s + \int_0^t h_s \, ds, \tag{*}$$

where $X_0 \in \mathcal{H}_0$, $g \in \mathcal{I}_{loc}(Prog)$ and $h \in \mathcal{L}^1_{loc}(Prog)$.

Proposition 3.25. Representation (*) is unique, i.e., if

$$X_t = X_0 + \int_0^t \hat{g}_s \, dW_s + \int_0^t \hat{h}_s \, ds, \tag{$\hat{*}$}$$

with $\hat{g} \in \mathcal{I}_{loc}(\operatorname{Prog})$ and $\hat{h} \in \mathcal{L}^1_{loc}(\operatorname{Prog})$, then

$$\left. \begin{array}{l} g_s(\omega) = \hat{g}_s(\omega) \\ h_s(\omega) = \hat{h}_s(\omega) \end{array} \right\} \ \text{a.e.-} \, \mathrm{d} s \otimes \mathbb{P}(\,\mathrm{d} \omega).$$

Proof. See handwritten notes.

Chapter 4

Itô formula and applications

The framework is the same as in previous chapters. We consider a filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{H}_t\}, \mathbb{P})$ and a \mathcal{H}_t -Brownian motion $\{W_t\}$. We assume that $\{\mathcal{H}_t\}$ satisfies the usual conditions.

4.1 Simple statements, examples, applications

Theorem 4.1. Let $X_0 \in \mathcal{H}_0$, $g \in \mathcal{I}_{loc}(Prog)$ and $h, k \in \mathcal{L}^1_{loc}(Prog)$. Set

$$X_t := X_0 + \int_0^t g \, \mathrm{d}W + \int_0^t h_s \, \mathrm{d}s \qquad \text{and} \qquad A_t := \int_0^t k_s \, \mathrm{d}s,$$

and take $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(s, x) \mapsto f(s, x)$ to be of class $C^{1,2}$. Then

$$f(A_t, X_t) = f(0, X_0) + \int_0^t \frac{\partial}{\partial s} f(A_u, X_u) \, dA_u$$
$$+ \int_0^t \frac{\partial}{\partial x} f(A_u, X_u) \, dX_u$$
$$+ \frac{1}{2} \int_0^t \frac{\partial^2}{\partial x^2} f(A_u, X_u) \, d\langle X \rangle_t,$$

where

$$dA_u = k_u du,$$

$$dX_u = (g_u dW_u + h_u du)$$

$$d\langle X \rangle_u = g_u^2 du$$

and

$$\langle X \rangle_t = \langle X, X \rangle_t = \int_0^t g_s^2 \, \mathrm{d}s$$

is the quadratic variation of X.

Examples and applications

Example. Let $g \in \mathcal{I}_{loc}(Prog)$, and let $X_t = \int_0^t g \, dW$. We will compute X_t^2 using the above theorem with $f(x) := x^2$. We obtain

$$X_t^2 = f(X_t) = 2 \int_0^t X_u \, dX_u + \langle X \rangle_t$$
$$= 2 \int_0^t X_u g_u \, dW_u + \int_0^t g_u^2 \, du.$$

In particular, for any $g \in \mathcal{I}_{loc}(Prog)$, the process

$$t \longmapsto \left(\int_0^t g \, dW\right)^2 - \int_0^t g_s^2 \, ds = X_t^2 - \langle X \rangle_t$$

is a local martingale (with respect to \mathcal{H}_t). Also, $g \equiv 1$ gives

$$W_t^2 = 2 \int_0^t W_s \, \mathrm{d}W_s + t.$$

Example. Let $X_t = X_0 + \int_0^t g \, dW + \int_0^t h_s \, ds$ and $A_t = \int_0^t K_s \, ds$. We will compute $A_t X_t$ using the function f(s,x) := sx. We obtain

$$A_t X_t = f(A_t, X_t) = \underbrace{0}_{=A_0 X_0} + \int_0^t A_u \, dX_u + \int_0^t X_u \, dA_u.$$

Example. Let $g \in \mathcal{I}_{loc}(Prog)$, $\lambda \in \mathbb{R}$ and $i = \sqrt{-1}$. Then the process

$$Z_t^{\lambda} := \exp\left(i\lambda \int_0^t g \, dW + \frac{1}{2}\lambda^2 \int_0^t g_s^2 \, ds\right)$$

is a complex \mathcal{H}_t -local martingale such that

$$Z_t^{\lambda} = 1 + i\lambda \int_0^t Z_u^{\lambda} g_u \, \mathrm{d}W_u$$

(note that, in this case, $g_u dW_u = dX_u$). If g is deterministic, then Z^{λ} is a true \mathcal{H}_t -martingale.

4.2 Stochastic Differential Equations and Girasnov's theorem

 $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}, W_t, \cdots \text{ Consider a process } \theta \in \mathcal{I}_{loc}(Prog) \text{ such that } \mathbb{E}(\exp \frac{1}{2} \int_0^T \theta_s^2 ds) < \infty \text{ this } \Longrightarrow Z_t^\theta = \exp \int_0^t \theta_s dW_s - \frac{1}{2} \int_0^t \theta_s^2 ds \text{ is a uniform integrable martingale } (\forall [0, T]) \text{ such that } \mathbb{E}(Z_T^\theta) = 1 \forall T > 0$

Definition 4.2.

$$\mathbb{P}^{\theta}(A) := \mathbb{E} \mathbb{1}_A Z_T^{\theta} \tag{4.1}$$

Let $A \in \mathcal{F}_T$ where T is the deadline time. Note also that T is positive and fixed.

 $\mathbb{P}^{\theta}(\Omega) = \mathbb{E}[Z_T^{\theta}] = 1$ where \mathbb{P}^{θ} is a probability. We need to prove infinite additivity¹ If $A_{ii \geqslant 1}$ is a sequence of disjoint elements of \mathcal{F}_T

$$\mathbb{P}^{\theta}(\bigcup_{i=1}^{\infty}A_{i}) = \mathbb{E}(\sum_{i=1\text{by dominated convergence}}^{\infty}\mathbb{1}_{A_{i}}.Z_{T}^{\theta}) \underset{\uparrow}{=}$$

¹We seem to be able to read countably additive here

$$\sum_{i=1}^{\infty} \mathbb{E}(\mathbb{1}_{A_i} Z_T^{\theta}) \stackrel{\text{by 4.1}}{=} \sum_{i=1}^{\infty} \mathbb{P}^{\theta}(A_i)$$

Remark. \mathbb{P}^{θ} and \mathbb{P} are equivalent on $\mathcal{F}_T : \forall A \in \mathcal{F}_T$ $\mathbb{P}^{\theta}(A) = 0 \iff \mathbb{P}(A) = 0$

Proof. Indeed: Assume that $\mathbb{P}(A) = 0 \Rightarrow \mathbb{1}_A(\omega) = 0$, a.e. $\mathbb{P}(d\omega) \Rightarrow \mathbb{P}^{\theta}(A) = \mathbb{E}(\mathbb{1}_A Z_T^{\theta}) = 0$ The other direction: $\mathbb{P}^{\theta}(A) = 0 \Rightarrow \mathbb{1}_A(\omega) = 0$ a.e. $\mathbb{P}^{\theta}(d\omega) \Rightarrow \mathbb{P}(A) = \mathbb{E}^{\theta}(\mathbb{1}_A(Z_T^{\theta})^{-1}) = 0$

Remark. The definition of \mathbb{P}^{θ} implies that, whenever the expectation is well defined $\mathbb{E}^{\theta}(X) = \mathbb{E}[XZ_T^{\theta}]$

Remark. Using the above remark we can write the following equation $\mathbb{P}(A) = \mathbb{E}(\mathbb{1}_A) = \mathbb{E}(\mathbb{1}_A(Z_T^{\theta})^{-1}Z_T^{\theta})$ $\mathbb{E}^{\theta}(\mathbb{1}_A(Z_T^{\theta})^{-1}$

Definition 4.3. $\hat{W}_t = W_t - \int_0^t \theta_s ds$ (Brownian Motion with drift) The integral in the above definition is adapted, with finite variation

Remark. \hat{W}_t if \mathcal{F}_t - adapted (progressive) but not a Brownian motion under \mathbb{P} (or not an \mathcal{F}_t -BM under \mathbb{P}), (unless $\theta \equiv 0$) If \hat{W} was a \mathcal{F}_t -BM, then $(W_t - \hat{W}_t)$ would be a \mathcal{F}_t -martingale. But $\int_0^t \theta_s ds$ has finite variation and this only happens when $\theta \equiv 0$

Proof. The proof was iven in the course when stochastic integrals were introduced \Box

Example. Take $\theta_s = \theta \times s, \theta \neq 0$ Then: $\lim_{t \to \infty} \frac{W_t}{t} = 0$, a.s- $d\mathbb{P}^2$ But $\lim_{t \to \infty} \frac{\hat{W}_t}{t} = \theta \neq 0$ a.s- $d\mathbb{P}^2$ This example shows in particular, that laws of W and \hat{W} under \mathbb{P} (for this particular choice of θ) are singular: since $\mathbb{P}\frac{W_t}{t} \stackrel{\rightarrow}{t} \stackrel{\rightarrow}{t} \infty 0 = 1$, $\mathbb{P}\frac{\hat{W}_t}{t} \stackrel{\rightarrow}{t} \stackrel{\rightarrow}{t} \infty 0 = 0$ So supported by disjoint sets on \mathbb{R}_+

We now come to a very important theorem.

Theorem 4.4 (Girasnov's Theorem).

The graph shows two different measures the one on the right has its measure changed. Let $\theta \in \mathcal{I}_{loc}(Prog)$ ($T \in (0, +\infty)isfixed$) We need to verify the Novikov condition. Then, under \mathbb{P}^{θ} , $t \Rightarrow \hat{W}_t = W_t - \int_0^t \theta_s ds$ is a $\mathcal{F}_t - BM$ on [0, T]

²see Exercise sheet number 1

Remark. A sequence of Girasnov that the laws W and \hat{W} are equivalent on every interval [0,T] Indeed: assume that $\mathbb{P}(W|_{[0,T]} \in A) = 0$

$$\mathbb{P}(\hat{W} \in A) = \mathbb{E}^{\theta}(\mathbb{1}_{(\hat{W} \in A)}(Z_T^{\hat{\theta}})^{-1}) = 0,$$

since \hat{W} is a B.M. under \mathbb{P}^{θ}

If $\mathbb{P}(\hat{W} \in A) = \mathbb{E}^{\theta}(\mathbb{1}_{\hat{W} \in A}(Z_T^{\theta})^{-1})$ since $(Z_T^{\theta})^{-1} > 0$ by definition

$$\Rightarrow \mathbb{1}_{(\hat{W} \in A)} = 0 \text{ a.e. } d\mathbb{P}^{\theta}$$

$$\iff \mathbb{1}_{(W \in A)} = 0 \text{ a.e. } d\mathbb{P}$$

Of Girasnov's theorem. We just consider the case " θ_s is deterministic" We know - \hat{W}_t is continuous, $\hat{W}_0 = 0$, \hat{W}_t is \mathcal{F}_t -progressive ($\Rightarrow \mathcal{F}_t$ - adapted) Everything we need to show is that

$$\forall 0 \le t_0 < t_1 < t_2 < \dots < t_k \le T$$

$$(\hat{W}_{t_1} - \hat{W}_{t_0}, \cdots, \hat{W}_{t_k} - \hat{W}_{t_{k-1}}) \sim \mathcal{N} \begin{pmatrix} t_1 - t_0 & 0 & \cdots & 0 & 0 \\ 0 & t_2 - t_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{n-1} - t_{n-2} & 0 \\ 0 & 0 & \cdots & 0 & t_n - t_{n-1} \end{pmatrix} \end{pmatrix}.$$

Fix
$$(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$$

 $\mathbb{E}^{\theta}[\exp i \sum_{j=1}^k \lambda_j (\hat{W}_{t_j} - \hat{W}_{t_{j-1}}))](*)$

It is worth pointing out that a Goal of this section is to show that $exp-\frac{1}{2}\sum_{j=1}^k \lambda_j^2(t_j-t_{j-1})=*$ $=\mathbb{E}^{\theta}[\exp i\sum_{j=1}^k \lambda_j(W_{t_j}-W_{t_{j-1}}-\int_{t_{j-1}}^{t_j}]\theta_s ds=\mathbb{E}(\exp i\sum_{j=1}^k \lambda_j(W_{t_j}-W_{t_{j-1}}-\int_{t_{j-1}}^{t_j}Z_T^{\theta})$ (martingale property under \mathbb{P})

$$= \mathbb{E}[\exp i \sum_{j=1}^{k} \lambda_{j} (W_{t_{j}} - W_{t_{j-1}} - \int_{t_{j-1}}^{t_{j}} Z_{t_{k}}^{\overset{\downarrow}{ heta}}]$$

$$\mathbb{E}[\exp i \sum_{j=1}^{k} \lambda_j (W_{t_j} - W_{t_{j-1}} - \int_{t_{j-1}}^{t_j} \theta_s ds) \exp \int_0^{t_k} \theta_s dW_s - \frac{1}{2} \int_0^{t_k} \theta_s^2 ds]$$
(4.2)

(we can assume without loss of generatlity that $t_0=0$) Now we can write $\int_0^{t_k} \theta_s dW_s$ and $\int_0^{t_k} \theta_s^2 ds = \sum_{j=1}^k \int_{t_{j-1}}^{t_j} \theta_s^2 ds$ So that

$$4.2 = \mathbb{E}\left[\exp\sum_{j=1}^{k} \int_{\substack{t_j(i\lambda_j + \theta_s)dW_s - \sum_{j=1}^{k} \int_{t_{j-1}}^{t_j} i\lambda_j\theta_s ds - \frac{1}{2}}}^{k-1}\right] \qquad \Box$$