w_2 , 记所得树为 T^* , 则 T^* 是带权为 w_1, w_2, \cdots, w_t 的最优树.

定理 14.13 设 $r(r \ge 2)$ 叉正则树 T 分支点数为 i,树叶数为 t,则 (r-1)i = t-1.

定理 14.14 一棵二叉树可以产生一个前缀码.

推论 一棵二叉正则树可以产生唯一的一个前缀码.

定理 **14.15** 设 $G = \langle V, E, W \rangle$ 是 n 阶完全带权图,各边带的权均为正,并且对于任意的 $v_i, v_j, v_k \in V$,边 $(v_i, v_j), (v_i, v_k), (v_i, v_k)$ 带的权 w_{ij}, w_{jk}, w_{ik} 满足三角不等式,即

$$w_{ij} + w_{jk} \ge w_{ik}$$

则

$$\frac{d}{d_0} \le \frac{1}{2}(\lceil \log_2 n \rceil + 1),$$

其中, d_0 是G中最短哈密顿回路的权,而d是用最邻近法走出的哈密顿回路的权.

定理 **14.16** 设 $G = \langle V, E, W \rangle$ 为 $n(n \geq 3)$ 阶无向完全带权图,各边的权均大于 0,对任意的 $v_i, v_j, v_k \in V$,边 $(v_i, v_j), (v_j, v_k), (v_i, v_k)$ 的权满足三角不等式: $w_{ij} + w_{jk} \geq w_{ik}$, d_0 是 G 中最短哈密顿回路的权,H 是用最小生成树法走出的 G 的哈密顿回路,其权为 d,则

$$\frac{d}{d_0} < 2.$$

定理 14.17 定理的条件同定理 14.16, 则

$$\frac{d}{d_0} < \frac{3}{2}.$$

其中 d_0 是 G 中最短哈密顿回路的权,d 是用最小权匹配法得到的哈密顿回路的权.