

H-1B Fee Impact Simulation 2025

Data Science Project

Companies

Economic Effects


```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
# -----
# Step 1: Dataset with 50 companies
# -----
companies_50 = [
    "Amazon", "TCS", "Ernst & Young", "Google", "Microsoft",
    "Infosys", "Meta", "Intel", "HCL", "Accenture",
    "Wipro", "Deloitte", "Capgemini", "IBM", "JPMorgan",
    "Qualcomm", "Cisco", "Oracle", "Salesforce", "Uber",
    "Tesla", "Snap", "Adobe", "VMware", "ServiceNow",
    "Pinterest", "Slack", "Dropbox", "Zoom", "RedHat",
    "Palantir", "Square", "Stripe", "Airbnb", "LinkedIn",
    "Spotify", "Atlassian", "SAP America", "SAP Labs 1", "SAP Labs 2",
    "SAP Labs 3", "SAP Labs 4", "SAP Labs 5", "SAP Labs 6", "SAP Labs 7",
    "SAP Labs 8", "SAP Labs 9", "SAP Labs 10", "SAP Labs 11", "SAP Labs
12"
beneficiaries 50 = [
    10044,5505,8723,7649,5189,
    4926,5123,3242,3059,2800,
    2500,2300,2100,1900,2440,
    1700, 1570, 1500, 1400, 1300,
    1200,1100,1000,950,900,
    850,800,750,700,650,
    600,550,500,450,400,
    350,300,250,200,150,
    100,50,25,10,5,
    3,2,1,0,0
]
# -------
# Step 1a: Additional 4 companies
# -----
companies 4 = ['A Company', 'B Company', 'C Company', 'D Company']
beneficiaries 4 = [5000, 1700, 25000, 1100]
employees_total_4 = [15000, 2400, 27000, 1000]
# Convert to DataFrame
df 50 = pd.DataFrame({"Company": companies 50[:50], "Beneficiaries":
beneficiaries 50})
df 4 = pd.DataFrame({"Company": companies 4, "Beneficiaries":
```

```
beneficiaries_4, "Total_Employees": employees_total_4})
# Merge datasets (fill missing Total_Employees for 50-company data
with NaN)
df 50["Total Employees"] = pd.NA
df = pd.concat([df 50, df 4], ignore index=True)
# ------
# Step 2: Create target variable
# >2000 beneficiaries => highly affected (1), else 0
# ------
df["Affected"] = df["Beneficiaries"].apply(lambda x: 1 if x > 2000
# -----
# Step 3: Train/Test Split
# -----
X = df[["Beneficiaries"]]
y = df["Affected"]
X train, X test, y train, y test = train test split(
   X, y, test_size=0.2, random_state=42, stratify=y
# -----
# Step 4: Train Random Forest Classifier
# -----
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# -----
# Step 5: Evaluate Model
# -----
y pred = model.predict(X test)
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
print(f"Accuracy: {accuracy*100:.2f}%")
print("Confusion Matrix:")
print (cm)
# ------
# Step 6: Visualize Before Fee
# -----
plt.figure(figsize=(12,6))
sns.scatterplot(x="Beneficiaries", y="Affected", data=df, s=100)
plt.axhline(0.5, color='red', linestyle='--', label="Decision
Threshold")
```

```
plt.title("H-1B Beneficiaries vs Highly Affected Companies")
plt.xlabel("Number of H-1B Beneficiaries")
plt.ylabel("Highly Affected (1=Yes, 0=No)")
plt.legend()
plt.show()
# -----
# Step 7: Simulate Trump $100k Fee (20% reduction)
# -----
df["Beneficiaries After Fee"] = df["Beneficiaries"] * 0.8
df["Affected_After_Fee"] = df["Beneficiaries_After_Fee"].apply(lambda
x: 1 \text{ if } x > 2000 \text{ else } 0)
# Predict using trained model
df[["Beneficiaries After Fee"]].rename(columns={"Beneficiaries After F
ee": "Beneficiaries"})
df["Predicted Affected"] = model.predict(X new)
# -----
# Step 8: Encode Real-world Impacts
# -----
df["Cost Increase"] = df["Affected After Fee"] * 1
df["Layoffs_Risk"] = df["Affected_After_Fee"] * 1
df["Inflation Contribution"] = df["Affected After Fee"] * 0.05
df["Economic Instability"] = df["Affected After Fee"] * 1
df["Labor_Cost_Saving"] = df["Beneficiaries_After_Fee"] * 0.36 *
100000
# Total Impact Score
df["Total Impact Score"] = (
   df["Cost Increase"] *0.3 +
   df["Layoffs Risk"]*0.3 +
   df["Inflation Contribution"]*0.2 +
   (df["Labor_Cost_Saving"]/1e6)*0.2
)
# -----
# Step 9: Show full results
# ------
print("\nSample of companies after Trump fee simulation:")
print(df[["Company", "Beneficiaries", "Beneficiaries After Fee",
"Affected After Fee",
         "Predicted_Affected", "Cost_Increase", "Layoffs_Risk",
         "Inflation Contribution", "Labor Cost Saving",
"Total Impact Score"]].head(15))
# -----
```

```
# Step 10: Top 10 Companies Most Affected After Fee
# -----
top_affected = df.sort_values("Total_Impact_Score",
ascending=False).head(10)
print("\nTop 10 Companies Most Affected After $100k Fee:")
print(top_affected[["Company", "Beneficiaries",
"Beneficiaries_After_Fee", "Affected_After_Fee",
"Total Impact Score"]])
# -----
# Step 11: Visualization After Fee
# -----
plt.figure(figsize=(12,6))
sns.barplot(x="Company", y="Total_Impact_Score", data=top_affected)
plt.xticks(rotation=90)
plt.title("Top 10 Companies by Total Impact Score Due to $100k H-1B
Fee")
plt.ylabel("Total Impact Score (scaled)")
plt.show()
```

Accuracy: 100.00% Confusion Matrix: [[8 0] [0 3]] Sample of companies after Trump fee simulation:

Sample o							_		
Compan	Beneficia	_			Cost_Inc	Layoffs_	Inflation_	Labor_C	Total_Im
у	ries	ries_Afte	_After_F	d_Affect	rease	Risk	Contribut	ost_Savi	pact_Sc
		r_Fee	ee	ed			ion	ng	ore
Amazon	10044	8035.2	1	1	1	1	0.05	2892672	58.4634
								00.0	4
TCS	5505	4404.0	1	1	1	1	0.05	1585440	32.3188
								00.0	0
Ernst &	8723	6978.4	1	1	1	1	0.05	2512224	50.8544
Young								0.00	8
Google	7649	6119.2	1	1	1	1	0.05	2202912	44.6682
								0.00	4
Microsoft	5189	4151.2	1	1	1	1	0.05	1494432	30.4986
								0.00	4
Infosys	4926	3940.8	1	1	1	1	0.05	1418688	28.9837
40								0.00	6
Meta	5123	4098.4	1	1	1	1	0.05	1475424	30.11848
								0.00	
Intel	3242	2593.6	1	1	1	1	0.05	9336960	19.2839
								0.0	2
HCL	3059	2447.2	1	1	1	1	0.05	8809920	18.2298
								0.0	4
Accentur	2800	2240.0	1	1	1	1	0.05	8064000	16.7380
e								0.0	0
Wipro	2500	2000.0	0	0	0	0	0.00	7200000	14.4000
								0.0	0
Deloitte	2300	1840.0	0	0	0	0	0.00	6624000	13.2480
								0.0	0
Capgemi	2100	1680.0	0	0	0	0	0.00	6048000	12.0960
ni								0.0	0
IBM	1900	1520.0	0	0	0	0	0.00	5472000	10.9440
								0.0	0
JPMorga	2440	1952.0	0	0	0	0	0.00	7027200	14.0544
n								0.0	0

Top 10 Companies Most Affected After \$100k Fee:

Company	Beneficiaries	Beneficiaries_After	Affected_After_Fe	Total_Impact_Scor
		_Fee	е	е
C Company	25000	20000.0	1	144.61000
Amazon	10044	8035.2	1	58.46344
Ernst & Young	8723	6978.4	1	50.85448
Google	7649	6119.2	1	44.66824
TCS	5505	4404.0	1	32.31880
Microsoft	5189	4151.2	1	30.49864
Meta	5123	4098.4	1	30.11848
A Company	5000	4000.0	1	29.41000

Company	Beneficiaries	Beneficiaries_After	Affected_After_Fe	Total_Impact_Scor
		_Fee	е	е
Infosys	4926	3940.8	1	28.98376
Intel	3242	2593.6	1	19.28392

