PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/31, C07K 14/22, 16/12, A61K 39/095 // (C12N 15/31, C12R 1:36)

A2

(11) International Publication Number:

WO 99/24578

(42

(43) International Publication Date:

20 May 1999 (20.05.99)

(21) International Application Number:

PCT/IB98/01665

(22) International Filing Date:

9 October 1998 (09.10.98)

(30) Priority Data:

tibiliy Data.		
9723516.2	6 November 1997 (06.11.97)	GB
9724190.5	14 November 1997 (14.11.97)	GB
9724386.9	18 November 1997 (18.11.97)	GB
9725158.1	27 November 1997 (27.11.97)	GB
9726147.3	10 December 1997 (10.12.97)	GB
9800759.4	14 January 1998 (14.01.98)	GB
9819016.8	1 September 1998 (01.09.98)	GB

(71) Applicant (for all designated States except US): CHIRON S.P.A. [IT/IT]; Via Fiorentina, 1, I-53100 Siena (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MASIGNANI, Vega [IT/IT]; Via Pantaneto, 105, I-53100 Siena (IT). RAP-PUOLI, Rino [IT/IT]; Via delle Rocche, 1, Vagliagli, I-53019 Castelnuovo Berardenga (IT). PIZZA, Mariagrazia [IT/IT]; Strada di Montalbuccio, 160, I-53100 Siena (IT). SCARLATO, Vincenzo [IT/IT]; Via Firenze, 3/37, I-53134 Colle Val d'Elsa (IT). GRANDI, Guido [IT/IT]; 9° Strada, 4, I-20090 Segrate (IT).

(74) Agent: HALLYBONE, Huw, George; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEISSERIAL ANTIGENS

(57) Abstract

The invention provides proteins from Neisseria meningitidis (strains A and B) and from Neisseria gonorrhoerae including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

102		ES	Spain	LS	Lesotho	SI	Slovenia
AL	Albania	FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria		Gabon	LV	Latvia	SZ	Swaziland
ΑU	Australia	GA		MC	Monaco	TD	Chad
ΑZ	Azerbaijan	GB	United Kingdom	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia	MG	-	TJ	Tajikistan
BB	Barbados	GH	Ghana		Madagascar	TM	Turkmenistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav		
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HÜ	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Ital y	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
CZ	•	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	. Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia	LK	Liucia	30	O.W.Puka-		

NEISSERIAL ANTIGENS

This invention relates to antigens from Neisseria bacteria.

BACKGROUND ART

5

10

Neisseria meningitidis and Neisseria gonorrhoeae are non-motile, gram negative diplococci that are pathogenic in humans. N.meningitidis colonises the pharynx and causes meningitis (and, occasionally, septicaemia in the absence of meningitis); N.gonorrhoeae colonises the genital tract and causes gonorrhea. Although colonising different areas of the body and causing completely different diseases, the two pathogens are closely related, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N.gonorrhoeae caused approximately 800,000 cases per year during the period 1983-1990 in the United States alone (chapter by Meitzner & Cohen, "Vaccines Against Gonococcal Infection", In: New Generation Vaccines, 2nd edition, ed. Levine, Woodrow, Kaper, & Cobon, Marcel Dekker, New York, 1997, pp.817-842). The disease causes significant morbidity but limited mortality.
Vaccination against N.gonorrhoeae would be highly desirable, but repeated attempts have failed. The main candidate antigens for this vaccine are surface-exposed proteins such as pili, porins, opacity-associated proteins (Opas) and other surface-exposed proteins such as the Lip, Laz, IgA1 protease and transferrin-binding proteins. The lipooligosaccharide (LOS) has also been suggested as vaccine (Meitzner & Cohen, supra).

N.meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of *N.meningitidis* have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease" in: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

5

10

15

20

25

30

Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different

porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic Neisseriae.

THE INVENTION

5

10

20

15 The invention provides proteins comprising the Neisserial amino acid sequences disclosed in the examples. These sequences relate to *N.meningitidis* or *N.gonorrhoeae*.

It also provides proteins comprising sequences homologous (ie. having sequence identity) to the Neisserial amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of identity is preferably greater than 50% (eg. 65%, 80%, 90%, or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between the proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

25 The invention further provides proteins comprising fragments of the Neisserial amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other Neisserial or host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the Neisserial nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (*ie.* having sequence identity) to the Neisserial nucleotide sequences disclosed in the examples.

10

25

Furthermore, the invention provides nucleic acid which can hybridise to the Neisserial nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least *n* consecutive nucleotides from the Neisserial sequences and, depending on the particular sequence, *n* is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

10

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae, or any strain of N. meningitidis, such as strain A, strain B or strain C).

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

5 General

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid 10 Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor 15 Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C. C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification. 20

All publications, patents, and patent applications cited herein are incorporated in full by reference. In particular, the contents of UK patent applications 9723516.2, 9724190.5, 9724386.9, 9725158.1, 9726147.3, 9800759.4, and 9819016.8 are incorporated herein.

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total 25 X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US patent 5,753,235).

Expression systems

5

10

15

20

25

30

The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

5

10

15

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only

10

in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) *Science* 236:1237].

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

- Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In
 Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].
- Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal

viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

15 Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

20 ii. Baculovirus Systems

25

30

5

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques

10

are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

- 15 Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.
- The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

10

15

20

25

30

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter

and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

5

- The newly formed baculovirus expression vector is subsequently packaged into an infectious 10 recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells 15 at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from 20 wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).
- Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iii. Plant Systems

5

10

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52.

References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

5

10

15

20

25

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

5

10

15

20

25

30

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

10

15

20

25

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

5

10

15

20

25

30

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21].

10

15

20

25

30

Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine *et al.* (1975) *Nature 254*:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of *E. coli* 16S rRNA [Steitz *et al.* (1979) "Genetic signals and nucleotide sequences in messenger RNA." In *Biological Regulation and Development: Gene Expression* (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook *et al.* (1989) "Expression of cloned genes in Escherichia coli." In *Molecular Cloning: A Laboratory Manual*].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* on *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al.

(1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

5

10

25

30

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coli outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental Manipulation of Gene Expression; Ghrayeb et al. (1984) EMBO J. 3:2437] and the E. coli alkaline phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal

10

15

20

element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al.
(1986) J. Mol. Biol. 189:113; EP-A-0 036 776,EP-A-0 136 829 and EP-A-0 136 907],

-22-

Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 15 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th 20 Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

5

10

25

30

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence

of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) *Proc. Natl. Acad. Sci. USA 80*:1].

- In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For 10 example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, 15 combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. 20 Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].
- A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

5

10

15

20

25

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

5

10

15

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the

10

15

20

30

chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4.929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse 25 (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

5

20

25

30

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to *in vivo* immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is

recovered by centrifugation (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

5

10

15

20

25

30

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²⁵I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²⁵I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be

-29-

readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Pharmaceutical Compositions

5

10

15

20

25

30

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

5

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

20

25

30

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents

such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronicblocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™); (3) saponin adjuvants, such as Stimulon™ (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59TM are preferred.

5

10

15

25

30

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-20 threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

20 Gene Delivery Vehicles

5

10

15

25

30

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus,

picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses *eg.* MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

5

10

15

20

25

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or

collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

5

10

15

20

25

30

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the

-35-

native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) *Gene* 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) *J. Virol.* 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) *Human Gene Therapy* 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

15

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for 5 example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 10 4.769.330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael 15 (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and 20 ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for 25 example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190. 30

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid

expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

5

20

25

30

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Chem.

262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA

91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; inWO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

15 Delivery Methods

5

10

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

5

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

20 C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

25 D.Lipids, and Liposomes

30

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the

10

25

use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, *eg.* Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

15 Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

5

10

15

20

25

30

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30:

WO 99/24578 -42-

443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann *et al.* PCT/US97/14465.

F.Polycationic Agents

10

15

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

25 <u>Immunodiagnostic Assays</u>

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum

samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

5

10

15

20

25

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The

10

15

20

25

30

total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1μg for a plasmid or phage digest to 10⁻⁹ to 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10⁸ cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/μg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm=
$$81 + 16.6(\log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\%formamide) - 600/n - 1.5(\%mismatch)$$
.

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology.

-45-

and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed

after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing

Nucleic Acid Probe Assays

stringencies should be tested in parallel.

5

10

15

20

25

30

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the

25

30

complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed

to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1-20 show biochemical data obtained in the Examples, and also sequence analysis, for ORFs 37, 5, 2, 15, 22, 28, 32, 4, 61, 76, 89, 97, 106, 138, 23, 25, 27, 79, 85 and 132. M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Western blots, the position of the main N.meningitidis immunoreactive band. TP indicates N.meningitidis total protein extract; OMV indicates N.meningitidis outer membrane vesicle preparation. In bactericidal assay results: a diamond (♠) shows preimmune data; a triangle (♠) shows GST control data; a circle (♠) shows data with recombinant N.meningitidis protein. Computer analyses show a hydrophilicity plot (upper), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes [Gao et al. (1989) J. Immunol. 143:3007; Roberts et al. (1996) AIDS Res Hum Retrovir 12:593; Quakyi et al. (1992) Scand J Immunol suppl.11:9) and is available in the Protean package of DNASTAR, Inc. (1228 South Park Street, Madison, Wisconsin 53715 USA).

EXAMPLES

25

The examples describe nucleic acid sequences which have been identified in *N.meningitidis*, along with their putative translation products, and also those of *N.gonorrhoeae*. Not all of the nucleic acid sequences are complete *ie*. they encode less than the full-length wild-type protein.

- 20 The examples are generally in the following format:
 - a nucleotide sequence which has been identified in N.meningitidis (strain B)
 - the putative translation product of this sequence
 - a computer analysis of the translation product based on database comparisons
 - corresponding gene and protein sequences identified in *N.meningitidis* (strain A) and in *N.gonorrhoeae*
 - a description of the characteristics of the proteins which indicates that they might be suitably antigenic
 - results of biochemical analysis (expression, purification, ELISA, FACS etc.)

10

PCT/IB98/01665 WO 99/24578

The examples typically include details of sequence identity between species and strains. Proteins that are similar in sequence are generally similar in both structure and function, and the sequence identity often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLASTn, BLASTn, tBLASTn, BLASTx, & tBLASTx [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

To compare Meningococcal and Gonococcal sequences, the tBLASTx algorithm was used, as implemented at http://www.genome.ou.edu/gono blast.html. The FASTA algorithm was also used to compare the ORFs (from GCG Wisconsin Package, version 9.0).

Dots within nucleotide sequences (eg. position 495 in SEQ ID 11) represent nucleotides which have 15 been arbitrarily introduced in order to maintain a reading frame. In the same way, doubleunderlined nucleotides were removed. Lower case letters (eg. position 496 in SEQ ID 11) represent ambiguities which arose during alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more 20 experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program 25 ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

Various tests can be used to assess the *in vivo* immunogencity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *ie*. the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

A) Chromosomal DNA preparation

5

15

20

25

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20% Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50μg/ml Proteinase K), and the suspension was incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4ml buffer (10mM Tris-HCl, 1mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

B) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

For most ORFs, the 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3' primers included

10

15

20

a XhoI restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).

5'-end primer tail: CGCGGATCCCATATG (BamHI-NdeI)

CGCGGATCCGCTAGC (BamHI-NheI)

CCGGAATTCTAGCTAGC (EcoRI-NheI)

3'-end primer tail: CCCGCTCGAG (XhoI)

For ORFs 5, 15, 17, 19, 20, 22, 27, 28, 65 & 89, two different amplifications were performed to clone each ORF in the two expression systems. Two different 5' primers were used for each ORF; the same 3' XhoI primer was used as before:

5'-end primer tail: GGAATTCCATATGGCCATGG (Ndel)

5'-end primer tail: CGGGATCC (BamHI)

ORF 76 was cloned in the pTRC expression vector and expressed as an amino-terminus His-tag fusion. In this particular case, the predicted signal peptide was included in the final product. NheI-BamHI restriction sites were incorporated using primers:

5'-end primer tail: GATCAGCTAGCCATATG (NheI)

3'-end primer tail: CGGGATCC (BamHI)

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridizeed to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

$$T_m = 4 (G+C) + 2 (A+T)$$
 (tail excluded)

 $T_m = 64.9 + 0.41 \text{ (% GC)} - 600/N$ (whole primer)

The average melting temperature of the selected oligos were 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table I (page 487) shows the forward and reverse primers used for each amplification. In certain cases, it will be noted that the sequence of the primer does not exactly match the sequence in the ORF. When initial amplifications were performed, the complete 5' and/or 3' sequence was not

known for some meningococcal ORFs, although the corresponding sequences had been identified in gonococcus. For amplification, the gonococcal sequences could thus be used as the basis for primer design, altered to take account of codon preference. In particular, the following codons were changed: ATA→ATT; TCG→TCT; CAG→CAA; AAG→AAA; GAG→GAA; CGA→CGC; CGG→CGC; GGG→GGC. Italicised nucleotides in Table I indicate such a change. It will be appreciated that, once the complete sequence has been identified, this approach is generally no longer necessary.

Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100µl or 1ml of water. OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration was determined and adjusted to 2-10pmol/µl.

C) Amplification

5

10

15

20

The standard PCR protocol was as follows: 50-200ng of genomic DNA were used as a template in the presence of 20-40µM of each oligo, 400-800µM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units *TaqI* DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

In some cases, PCR was optimsed by the addition of 10µl DMSO or 50µl 2M betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72°C.

The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	50-55℃	72°C
Last 30 cycles	30 seconds	30 seconds	30-60 seconds

95°C	65-70°C	72°C
·		

The elongation time varied according to the length of the ORF to be amplified.

The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30µl or 50µl of either water or 10mM Tris, pH 8.5.

10 D) Digestion of PCR fragments

15

20

25

The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:

- NdeI/XhoI or NheI/XhoI for cloning into pET-21b+ and further expression of the protein as a C-terminus His-tag fusion
- BamHI/XhoI or EcoRI/XhoI for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.
 - For ORF 76, Nhel/BamHI for cloning into pTRC-HisA vector and further expression of the protein as N-terminus His-tag fusion.
- EcoRI/PstI, EcoRI/SalI, SalI/PstI for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

Each purified DNA fragment was incubated (37°C for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40µl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50µl of either water or 10mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.

E) Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, and pGex-His)

10μg plasmid was double-digested with 50 units of each restriction enzyme in 200μl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50μl of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50μg/μl. 1μl of plasmid was used for each cloning procedure.

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

F) Cloning

10

15

20

25

The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20µl, a molar ratio of 3:1 fragment/vector was ligated using 0.5µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was

performed using the Boheringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, 100µl E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800µl LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200µl of the supernatant. The suspension was then plated on LB ampicillin (100mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37°C in either 2ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30µl. 5µl of each individual miniprep (approximately 1g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

For the cloning of ORFs 110, 111, 113, 115, 119, 122, 125 & 130, the double-digested PCR product was ligated into double-digested vector using *EcoRI-PstI* cloning sites or, for ORFs 115 & 127, *EcoRI-SaII* or, for ORF 122, *SaII-PstI*. After cloning, the recombinant plasmids were introduced in the *E.coli* host W3110. Individual clones were grown overnight at 37°C in L-broth with 50µl/ml ampicillin.

G) Expression

5

10

15

20

25

30

Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1μl of each construct was used to transform 30μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100μg/ml) in 100ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

H) GST-fusion proteins large-scale purification.

A single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia)

10

15

20

(previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700μl cold Glutathione elution buffer (10mM reduced glutathione, 50mM Tris-HCl) and fractions collected until the OD₂₈₀ was 0.1. 21μl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

I) His-fusion solubility analysis (ORFs 111-129)

To analyse the solubility of the His-fusion expression products, pellets of 3ml cultures were resuspended in buffer M1 [500μl PBS pH 7.2]. 25μl lysozyme (10mg/ml) was added and the bacteria were incubated for 15 min at 4°C. The pellets were sonicated for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The supernatants from all steps were analysed by SDS-PAGE.

The proteins expressed from ORFs 113, 119 and 120 were found to be soluble in PBS, whereas ORFs 111, 122, 126 and 129 need urea and ORFs 125 and 127 need guanidium-HCl for their solubilization.

J) His-fusion large-scale purification.

A single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml of either (i) cold

buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins.

The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.

For insoluble proteins, the supernatant was stored at -20°C, while the pellets were resuspended in 2ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000rpm for 40 minutes.

Supernatants were collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml buffer A or B for 10 minutes, resuspended in 1ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4°C with 2ml cold buffer A or (ii) room temperature with 2ml buffer B, until the flow-through reached OD₂₈₀ of 0.02-0.06.

The resin was washed with either (i) 2ml cold 20mM imidazole buffer (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the O.D₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

K) His-fusion proteins renaturation

10

15

20

25

10% glycerol was added to the denatured proteins. The proteins were then diluted to 20μg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C. Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

15

20

25

30

L) His-fusion large-scale purification (ORFs 111-129)

500ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer containing 500mM imidazole and dialysed against the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated before the next use.

10 M) Mice immunisations

20μg of each purified protein were used to immunise mice intraperitoneally. In the case of ORFs 2, 4, 15, 22, 27, 28, 37, 76, 89 and 97, Balb-C mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For ORFs 44, 106 and 132, CD1 mice were immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, rather than AL(OH)₃, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORFs 23, 32, 38 and 79, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.

N) ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed

15

20

25

three times with PBT. 200µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenildiamine and 10µl of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100µl H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD₄₉₀ was 2.5 times the respective pre-immune sera.

10 O) FACScan bacteria Binding Assay procedure.

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD620 of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in $200\mu l$ /well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H threshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

P) OMV preparations

5

10

20

25

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Q) Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes.

15 R) Western blotting

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, in transferring buffer (0.3 % Tris base, 1.44 % glycine, 20% methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled antimouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

S) Bactericidal assay

MC58 strain was grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37°C on a nutator and let to grow until OD₆₂₀ was 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf

tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD_{620} of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

50μl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25μl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25μl of the previously described bacterial suspension were added to each well. 25μl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.

Table II (page 493) gives a summary of the cloning, expression and prurification results.

Example 1

5

10

15 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 1>:

```
1 ATGARACAGA CAGTCAA.AT GCTTGCCGCC GCCCTGATTG CCTTGGGCTT
                    GAACCGACCG GTGTGGNCGG ATGACGTATC GGATTTTCGG GAAAACTTGC
                    A.GCGGCAGC ACAGGGAAAT GCAGCAGCCC AATACAATTT GGGCGCAATG
               101
                    TAT.TACAAA GGACGCGCGT GCGCCGGGAT GATGCTGAAG CGGTCAGATG
               151
                    GTATCGGCAG CCGGCGGAAC AGGGGTTAGC CCAAGCCCAA TACAATTTGG
                    GCTGGATGTA TGCCAACGGG CGCGC.GTGC GCCAAGATGA TACCGAAGCG
20
               201
                251
                    GTCAGATGGT ATCGGCAGGC GGCAGCGCAG GGGGTTGTCC AAGCCCAATA
                    CAATTTGGGC GTGATATATG CCGAAGGACG TGGAGTGCGC CAAGACGATG
                301
                351
                    TCGAAGCGGT CAGATGGTTT CGGCAGGCGG CAGCGCAGGG GGTAGCCCAA
                    GCCCAAAACA ATTTGGGCGT GATGTATGCC GAAAGANCGC GCGTGCGCCA
                401
25
                451
                     AGACCG...
```

This corresponds to the amino acid sequence <SEQ ID 2; ORF37>:

```
1 MKQTVXMLAA ALIALGLNRP VWXDDVSDFR ENLXAAAQGN AAAQYNLGAM
51 YXQRTRVRRD DAEAVRWYRQ PAEQGLAQAQ YNLGWMYANG RXVRQDDTEA
30 101 VRWYRQAAAQ GVVQAQYNLG VIYAEGRGVR QDDVEAVRWF RQAAAQGVAQ
151 AQNNLGVMYA ERXRVRQD...
```

Further work revealed the complete nucleotide sequence <SEQ ID 3>:

```
ATGAAACAGA CAGTCAAATG GCTTGCCGCC GCCCTGATTG CCTTGGGCTT
                    GAACCGAGCG GTGTGGGCGG ATGACGTATC GGATTTTCGG GAAAACTTGC
                    AGGCGGCAGC ACAGGGAAAT GCAGCAGCCC AATACAATTT GGGCGCAATG
               101
                    TATTACAAAG GACGCGGCGT GCGCCGGGAT GATGCTGAAG CGGTCAGATG
35
                    GTATCGGCAG GCGCCGAAC AGGGGTTAGC CCAAGCCCAA TACAATTTGG
               151
               201
                    GCTGGATGTA TGCCAACGGG CGCGGCGTGC GCCAAGATGA TACCGAAGCG
                    GTCAGATGGT ATCGGCAGGC GGCAGCGCAG GGGGTTGTCC AAGCCCAATA
                251
               301
                    CAATTTGGGC GTGATATATG CCGAAGGACG TGGAGTGCGC CAAGACGATG
                351
                    TCGAAGCGGT CAGATGGTTT CGGCAGGCGG CAGCGCAGGG GGTAGCCCAA
40
                401
                    GCCCAAAACA ATTTGGGCGT GATGTATGCC GAAAGACGCG GCGTGCGCCA
                451
                    AGACCGCGCC CTTGCACAAG AATGGTTTGG CAAGGCTTGT CAAAACGGAG
                501
                    ACCAAGACGG CTGCGACAAT GACCAACGCC TGAAGGCGGG TTATTGA
                551
```

This corresponds to the amino acid sequence <SEQ ID 4; ORF37-1>:

```
1 MKQTVKWLAA ALIALGLNRA VWADDVSDFR ENLQAAAQGN AAAQYNLGAM
51 YYKGRGVRRD DAEAVRWYRQ AAEQGLAQAQ YNLGWMYANG RGVRQDDTEA
101 VRWYRQAAAQ GVVQAQYNLG VIYAEGRGVR QDDVEAVRWF RQAAAQGVAQ
5 151 AQNNLGVMYA ERRGVRQDRA LAQEWFGKAC QNGDQDGCDN DQRLKAGY*
```

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 5>:

```
1 ATGAAACAGA CAGTCAAATG GCTTGCCGCC GCCCTGATTG CCTTGGGCTT
51 GAACCAAGCG GTGTGGGCGG ATGACGTATC GGATTTTCGG GAAAACTTGC
101 AGGCGGCAGC ACAGGGAAAT GCAGCAGCCC AAAACAATTT GGGCGTGATG
151 TATGCCGAAA GACGCGGCGT GCGCCAAGAC CGCGCCCTTG CACAAGAATG
201 GCTTGGCAAG GCTTGTCAAA ACGGATACCA AGACAGCTGC GACAATGACC
251 AACGCCTGAA AGCGGGTTAT TGA
```

This encodes a protein having amino acid sequence <SEQ ID 6; ORF37a>:

```
1 MKQTVKWLAA ALIALGLNQA VWADDVSDFR ENLQAAAQGN AAAQNNLGVM
51 YAERRGVRQD RALAQEWLGK ACQNGYQDSC DNDQRLKAGY *
```

The originally-identified partial strain B sequence (ORF37) shows 68.0% identity over a 75aa overlap with ORF37a:

```
20
                                               30
                                                                 50
                     {\tt MKQTVXMLAAALIALGLNRPVWXDDVSDFRENLXAAAQGNAAAQYNLGAMYXQRTRVRRD}
20
         orf37.pep
                           MKQTVKWLAAALIALGLNQAVWADDVSDFRENLQAAAQGNAAAQNNLGVMYAERRGVRQD
         orf37a
                             10
                                      20
                                               30
                                                        40
                                                                 50
25
                             70
                                      80
                                               90
                                                       100
                      DAEAVRWYRQPAEQGLAQAQYNLGWMYANGRXVRQDDTEAVRWYRQAAAQGVVQAQYNLG
         orf37.pep
                      RALAQEWLGKACQNGYQDSCDNDQRLKAGYX
         orf37a
                             70
                                      80
```

30 Further work identified the corresponding gene in N. gonorrhoeae <SEQ ID 7 >:

This encodes a protein having amino acid sequence <SEQ ID 8; ORF37ng>:

40 1 MKQTVKWLAA ALIALGLNQA VWAGDVSDFR ENLQAAEQGN AAAQFNLGVM
51 YENGQGVRQD YVQAVQWYRK ASEQGDAQAQ YNLGLMYYDG RGVRQDLALA
101 QQWLGKACQN GDQNSCDNDQ RLKAGY*

The originally-identified partial strain B sequence (ORF37) shows 64.9% identity over a 111aa overlap with ORF37ng:

45	orf37.pep	MKQTVXMLAAALIALGLNRPVWXDDVSDFRENLXAAAQGNAAAQYNLGAMYXQRTRVRRD	60
	orf37ng	MKQTVKWLAAALIALGLNQAVWAGDVSDFRENLQAAEQGNAAAQFNLGVMYENGQGVRQD	60
50	orf37.pep	DAEAVRWYRQPAEQGLAQAQYNLGWMYANGRXVRQDDTEAVRWYRQAAAQGVVQAQYNLG	120
50	orf37ng	:: : : : : : : :	120
	orf37.pep	VIYAEGRGVRQDDVEAVRWFRQAAAQGVAQAQNNLGVMYAERXRVRQD 168	
55	orf37ng	RLKAGY 126	

The complete strain B sequence (ORF37-1) and ORF37ng show 51.5% identity in 198 aa overlap:

5	orf37-1.pep	10 20 30 40 50 60 MKQTVKWLAAALIALGLNRAVWADDVSDFRENLQAAAQGNAAAQYNLGAMYYKGRGVRD
		100 110 120
10	orf37-1.pep	70 80 90 100 110 120 DAEAVRWYRQAAEQGLAQAQYNLGWMYANGRGVRQDDTEAVRWYRQAAAQGVVQAQYNLG :: : : :
		130 140 150 160 170 180
15	orf37-1.pep	VIYAEGRGVRQDDVEAVRWFRQAAAQGVAQAQNNLGVMYAERRGVRQDRALAQEWFGKAC
	orf37ng	LALAQQWLGKAC
20	orf37-1.pep	190 199 QNGDQDGCDNDQRLKAGYX :: QNGDQNSCDNDQRLKAGYX
		110 120

Computer analysis of these amino acid sequences indicates a putative leader sequence, and it was predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF37-1 (11kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 1A shows the results of affinity purification of the GST-fusion protein, and Figure 1B shows the results of expression of the His-fusion in *E.coli*. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), FACS analysis (Figure 1C), and a bactericidal assay (Figure 1D). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.

35 Figure 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF37-1.

Example 2

30

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:

```
40 TCGGCGA CATCGGCGGT TTGAAGGTCA ATGCCCCCGT CAAATCCGCA
GGCGTATTGG TCGGGCGCGT CGGCGCTATC GGACTTCACC CGAAATCCTA
TCAGGCGAGG GTGCGCCTCG ATTTGGACGG CAAGTATCAG TTCAGCAGCG
ACGTTTCCGC GCAAATCCTG ACTTCsGGAC TTTTGGGCGA GCAGTACATC
GGGCTGCAGC AGGGCGGCGA CACGGAAAAC CTTGCTGCCG GCGACACCAT
CTCCGTAACC AGTTCTGCAA TGGTTCTGGA AAACCTTATC GGCAAATTCA
TGACGAGTTT TGCCGAGAAA AATGCCGACG GCGCAATGC GGAAAAAGCC

45 GCCGAATAA
```

This corresponds to the amino acid sequence <SEQ ID 10>:

¹ FGDIGGLKVN APVKSAGVLV GRVGAIGLDP KSYQARVRLD LDGKYQFSSD 51 VSAQILTSGL LGEQYIGLQQ GGDTENLAAG DTISVTSSAM VLENLIGKFM

LO1 TSFAEKNADG GNAEKAAE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a hypothetical *H.influenzae* protein (ybrd.haein; accession number p45029) SEO ID 9 and ybrd.haein show 48.4% as identity in 122 as overlap:

```
5
         yrbd.h LGIGALVFLGLRVANVQGFAETKSYTVTATFDNIGGLKVRAPLKIGGVVIGRVSAITLDE
                                           1::|||||||:||:||:||:||:||:||
         N.m
                                           FGDIGGLKVNAPVKSAGVLVGRVGAIGLDP
                                                  10
                                                           20
                                                                     30
10
                  80
                           90
                                   100
                                            110
                                                     120
                                                              130
         yrbd.h KSYLPKVSIAINQEYNEIPENSSLSIKTSGLLGEQYIALTMGFDDGDTAMLKNGSQIQDT
                111: 1:1: 1
         N.m
                KSYQARVRLDLDGKY-QFSSDVSAQILTSGLLGEQYIGLQQG
                                                         GDTENLAAGDTISVT
15
                                 50
                                          60
                                                               80
                 140
                          150
         yrbd.h TSAMVLEDLIGQFL--YGSKKSDGNEKSESTEQ
                :||||||:||:|:|:
20
         N.m
                SSAMVLENLIGKFMTSFAEKNADGGNAEKAAEX
                          100
                                   110
```

Homology with a predicted ORF from N.gonorrhoeae

SEQ ID 9 shows 99.2% identity over a 118aa overlap with a predicted ORF from N. gonorrhoeae:

25		20	30	40	50	60	70	
	yrbd			FGGSDKTYAV				SLDP
	N.m	•			FGDTGGT			HIL
					1001001	10	20	30
30			00	100	110	100		
	yrbd	80 KSYQARVRLI	90 DLDGKYQFS	100 SSDVSAQILT:	110 SGLLGEOYIG	120 LOOGGDTENI	130 AAGDTISVTS	SSAM
	<u>-</u>	1111111111			1111111111	ПППППП	11111111111	HI.
35	N.m	KSYQARVRLI 4		SSDVSAQILT: 50	SGLLGEQYIG 60	LQQGGDTENI 70	AAGDTISVTS 80	SSAM 90
33				00		, ,	00	50
		140	150	160				
	yrbd	VLENLIGKE	MTSFAEKN?	aeggnaekaai	EX			
4.0			11111111	1:11111111	11			
40	N.m	VLENLIGKE	MTSFAEKN/	adggnaekaai	EX			
		. 10	0 :	110	120			

The complete yrbd *H.influenzae* sequence has a leader sequence and it is expected that the full-length homologous *N.meningitidis* protein will also have one. This suggests that it is either a membrane protein, a secreted protein, or a surface protein and that the protein, or one of its epitopes, could be a useful antigen for vaccines or diagnostics.

Example 3

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 11>:

	1	ATTTTGATAT	ACCTCATCCG	CAAGAATCTA	GGTTCGCCCG	TCTTCTTCTT
	51	TCAGGAACGC	CCCGGAAAGG	ACGGAAAACC	TTTTAAAATG	GTCAAATTCC
50	101	GTTCCATGCG	CGACGGCTTG	TATTCAGACG	GCATTCCGCT	GCCCGACGGA
	151	GAACGCCTGA	CACCGTTCGG	CAAAAAACTG	CGTGCCGcCA	GTWTGGACGA
	201	ACTGCCTGAA	TTATGGAATA	TCTTAAAAGG	CGAGATGAGC	CTGGTCGGCC
	251	CCCGCCCGCT	GCTGATGCAA	TATCTGCCGC	TGTACGACAA	CTTCCAAAAC
	301	CGCCGCCACG	AAATGAAACC	CGGCATTACC	GGCTGGGCGC	AGGTCAACGG

```
GCGCAACGCg CTTTCGTGGG ACGAAAAATT CGCCTGCGAT GTTTGGTATA
               351
                      TCGACCACTT CAGCCTGTGC CTCGACATCA AAATCCTACT GCTGACGGTT
               401
                       AAAAAGTAT TAATCAAGGA AGGGATTTCC GCACAGGGCG AACA.aCCAT
               451
                       GCCCCCTTTC ACAGGAAAAC GCAAACTCGC CGTCGTCGGT GCGGGCGGAC
               501
                       ACGGAAAAGT CGTTGCCGAC CTTGCCGCCG CACTCGGCCG GTACAGGGAA
5
               551
                       ATCGTTTTC TGGACGACCG CGCACAAGGC AGCGTCAACG GCTTTTCCGT
                601
                       CATCGGCACG ACGCTGCTGC TTGAAAACAG TTTATCGCCC GAACAATACG
                651
                       ACGTCGCCGT CGCCGTCGGC AACAACCGCA TCCGCCGCCA AATCGCCGAA
                701
                       AAAGCCGCCG CGCTCGGCTT CGCCCTGCCC GTACTGGTTC ATCCGGACGC
                751
                       GACCGTCTCG CCTTCTGCAA CAGTCGGACA AGGCAGCGTC GTTATGGCGA
10
                801
                       AAGCGGTCG..
                851
     This corresponds to the amino acid sequence <SEQ ID 12; ORF3>:
                     ..ILIYLIRKNL GSPVFFFQER PGKDGKPFKM VKFRSMRDGL YSDGIPLPDG
                       ERLTPFGKKL RAASXDELPE LWNILKGEMS LVGPRPLLMQ YLPLYDNFQN
                 51
                       RRHEMKPGIT GWAQVNGRNA LSWDEKFACD VWYIDHFSLC LDIKILLLTV
15
                101
                       KKVLIKEGIS AQGEXTMPPF TGKRKLAVVG AGGHGKVVAD LAAALGRYRE
                151
                       IVFLDDRAQG SVNGFSVIGT TLLLENSLSP EQYDVAVAVG NNRIRRQIAE
                201
                       KAAALGFALP VLVHPDATVS PSATVGQGSV VMAKAV..
                251
      Further sequence analysis revealed the complete nucleotide sequence <SEQ ID 13>:
                     ATGAGTAAAT TCTTCAAACG CCTGTTTGAC ATTGTTGCCT CCGCCTCGGG
20
                     ACTGATTTTC CTCTCGCCAG TATTTTTGAT TTTGATATAC CTCATCCGCA
                      AGAATCTAGG TTCGCCCGTC TTCTTCTTTC AGGAACGCCC CGGAAAGGAC
                 101
                      GGAAAACCTT TTAAAATGGT CAAATTCCGT TCCATGCGCG ACGCGCTTGA
                151
                      TTCAGACGGC ATTCCGCTGC CCGACGGAGA ACGCCTGACA CCGTTCGGCA
                 201
                      AAAAACTGCG TGCCGCCAGT TTGGACGAAC TGCCTGAATT ATGGAATATC
                 251
25
                      TTAAAAGGCG AGATGAGCCT GGTCGGCCCC CGCCCGCTGC TGATGCAATA
                      TCTGCCGCTG TACGACAACT TCCAAAACCG CCGCCACGAA ATGAAACCCG
                 351
                      GCATTACCGG CTGGGCGCAG GTCAACGGGC GCAACGCGCT TTCGTGGGAC
                 401
                      GAAAAATTCG CCTGCGATGT TTGGTATATC GACCACTTCA GCCTGTGCCT
                 451
                      CGACATCAAA ATCCTACTGC TGACGGTTAA AAAAGTATTA ATCAAGGAAG
                 501
 30
                      GGATTTCCGC ACAGGGCGAA GCCACCATGC CCCCTTTCAC AGGAAAACGC
                 551
                     AAACTCGCCG TCGTCGGTGC GGGCGGACAC GGAAAAGTCG TTGCCGACCT
                 601
                      TGCCGCCGCA CTCGGCCGGT ACAGGGAAAT CGTTTTTCTG GACGACCGCG
                 651
                      CACAAGGCAG CGTCAACGGC TTTTCCGTCA TCGGCACGAC GCTGCTGCTT
                 701
                      GAAAACAGTT TATCGCCCGA ACAATACGAC GTCGCCGTCG CCGTCGGCAA
 35
                 751
                      CAACCGCATC CGCCGCCAAA TCGCCGAAAA AGCCGCCGCG CTCGGCTTCG
                 801
                      CCCTGCCCGT TCTGGTTCAT CCGGACGCGA CCGTCTCGCC TTCTGCAACA
                 851
                      GTCGGACAAG GCAGCGTCGT TATGGCGAAA GCCGTCGTAC AGGCAGGCAG
                 901
                      CGTATTGAAA GACGGCGTGA TTGTGAACAC TGCCGCCACC GTCGATCACG
                 951
                      ACTGCCTGCT TAACGCTTTC GTCCACATCA GCCCAGGCGC GCACCTGTCG
                1001
 40
                      GGCAACACGC ATATCGGCGA AGAAAGCTGG ATAGGCACGG GCGCGTGCAG
                 1051
                      CCGCCAGCAG ATCCGTATCG GCAGCCGCGC AACCATTGGA GCGGGCGCAG
                 1101
                      TCGTCGTACG CGACGTTTCA GACGGCATGA CCGTCGCGGG CAATCCGGCA
                 1151
                      AAGCCGCTGC CGCGCAAAAA CCCCGAGACC TCGACAGCAT AA
       This corresponds to the amino acid sequence <SEQ ID 14; ORF3-1>:
  45
                      MSKFFKRLFD IVASASGLIF LSPVFLILIY LIRKNLGSPV FFFQERPGKD
                      GKPFKMVKFR SMRDALDSDG IPLPDGERLT PFGKKLRAAS LDELPELWNI
                      LKGEMSLVGP RPLLMQYLPL YDNFQNRRHE MKPGITGWAQ VNGRNALSWD
                      EKFACDVWYI DHFSLCLDIK ILLLTVKKVL IKEGISAQGE ATMPPFTGKR
                  201 KLAVVGAGGH GKVVADLAAA LGRYREIVFL DDRAQGSVNG FSVIGTTLLL
  50
                       ENSLSPEQYD VAVAVGNNRI RRQIAEKAAA LGFALPVLVH PDATVSPSAT
                  251
```

55 Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

301

351

401 KPLPRKNPET STA*

ORF3 shows 93.0% identity over a 286aa overlap with an ORF (ORF3a) from strain A of N. meningitidis:

VGQGSVVMAK AVVQAGSVLK DGVIVNTAAT VDHDCLLNAF VHISPGAHLS

GNTHIGEESW IGTGACSRQQ IRIGSRATIG AGAVVVRDVS DGMTVAGNPA

	orf3.pep	ILIYLIRKNLGSPVFFFQERPGKDGKPFKMVKFR
	orf3a	10 20 30 40 50 60
5		40 50 60 70 80 90
	orf3.pep	SMRDGLYSDGIPLPDGERLTPFGKKLRAASXDELPELWNILKGEMSLVGPRPLLMQYLPL
	orf3a	: :
10		70 80 90 100 110 120
		100 110 120 130 140 150
	orf3.pep	YDNFQNRRHEMKPGITGWAQVNGRNALSWDEKFACDVWYIDHFSLCLDIKILLLTVKKVL
15	orf3a	YDNFQNRRHEMKPGITGWAQVNGRNALSWDERFACDIWYIDHFSLCLDIKILLLTVKKVL
	•	130 140 150 160 170 180
		160 170 180 190 200 210
20	orf3.pep	<pre>IKEGISAQGEXTMPPFTGKRKLAVVGAGGHGKVVADLAAALGRYREIVFLDDRAQGSVNG </pre>
20	orf3a	<u>I</u> KEGISAQGEATMPPFTGKRKLAVVGAGGHGKVVAELAAALGTYGEIVFLDDRVQGSVNG
		190 200 210 220 230 240
25	orf3.pep	220 230 240 250 260 270 FSVIGTTLLLENSLSPEQYDVAVAVGNNRIRRQIAEKAAALGFALPVLVHPDATVSPSAT
23		
	orf3a	FPVIGTTLLLENSLSPEQFDIAVAVGNNRIRRQIAEKAAALGFALPVLIHPDSTVSPSAT 250 260 270 280 290 300
20		
30	orf3.pep	280 VGQGSVVMAKAV
	orf3a	: VGQGGVVMAKAVVQADSVLKDGVIVNTAATVDHDCLLDAFVHISPGAHLSGNTRIGEESW
•	01134	310 320 330 340 350 360
35	The complete le	ngth ORF3a nucleotide sequence <seq 15="" id=""> is:</seq>
	-	A MON CONNECTION OF THE CONTROL AND CONTROL CO
•	1 51	ATGAGTAAAT TCTTCAAACG CCTGTTTGAC ATTGTTGCCT CCGCCTCGGG ACTGATTTTC CTCTCGCCAG TATTTTTGAT TTTGATATAC CTCATCCGCA
	101	AGAATCTGGG TTCGCCCGTC TTCTTCTTTC AGGAACGCCC CGGAAAGGAC GGAAAACCTT TTAAAATGGT CAAATTCCGT TCCATGCACG ACGCGCTTGA
40	151	TTCAGACGGC ATTCTGCTGC CCGACGGAGA ACGCCTGACA CCGTTCGGCA
40	251	AAAAACTGCG TGCCGCCAGT TTGGACGAAC TGCCCGAACT GTGGAACGTC
	301	CTCAAAGGCG ACATGAGCCT GGTCGGCCCC CGCCCGCTGC TGATGCAATA
	351	TCTGCCGCTG TACGACAACT TCCAAAACCG CCGCCACGAA ATGAAACCGG
45	401 451	GCATTACCGG CTGGGCGCAG GTCAACGGGC GCAACGCGCT TTCGTGGGAC GAACGCTTCG CATGCGACAT CTGGTATATC GACCACTTCA GCCTGTGCCT
43	501	CGACATCAAA ATCCTACTGC TGACGGTTAA AAAAGTATTA ATCAAAGAAG
	551	GGATTTCCGC ACAGGGCGAA GCCACCATGC CCCCTTTCAC AGGAAAACGC
	601	
	651	TGCCGCCGCA CTCGGCACAT ACGGCGAAAT CGTTTTTCTG GACGACCGCG
50	701	TCCAAGGCAG CGTCAACGGC TTCCCCGTCA TCGGCACGAC GCTGCTGCTT
	751 801	GAAAACAGTT TATCGCCCGA ACAATTCGAC ATCGCCGTCG CCGTCGGCAA CAACCGCATC CGCCGCCAAA TCGCCGAAAA AGCCGCCGCG CTCGGCTTCG
	851	
	901	
55	951	
	. 1001	
	1051	
	1101	
60	1151 1201	
00		
	inis is predicted	to encode a protein having amino acid sequence <seq 16="" id="">:</seq>
		MSKFFKRLFD IVASASGLIF LSPVFLILIY LIRKNLGSPV FFFQERPGKD
	51	
CF		LKGDMSLVGP RPLLMQYLPL YDNFQNRRHE MKPGITGWAQ VNGRNALSWD
65		ERFACDIWYI DHFSLCLDIK ILLLTVKKVL IKEGISAQGE ATMPPFTGKR
	201	KLAVVGAGGH GKVVÆLAAA LGTYGEIVFL DDRVQGSVNG FPVIGTTLLL ENSLSPEQFD IAVAVGNNRI RRQIAEKAAA LGFALPVLIH PDSTVSPSAT
	231	THATALANDED TO AUTOMATE WASTURIAND PARTIES AND

301 VGQGGVVMAK AVVQADSVLK DGVIVNTAAT VDHDCLLDAF VHISPGAHLS 351 GNTRIGEESW IGTGACSRQQ IRIGSRATIG AGAVVVRDVS DGMTVAGNPA 401 KPLAGKNTET LRS*

Two transmembrane domains are underlined.

ORF3-1 shows 94.6% identity in 410 aa overlap with ORF3a: 5

9	0.44						
		10	20	30	40	50	60
	63	MOVEENDI EDINAÇA	SCI.TFI.SPV	FLILIYLIRK	NLGSPVFFFQ	ERPGKDGKPFI	MVKFR
	orf3a.pep		111111111	111111111	11111111	111111111	1111
	orf3-1	MSKFFKRLFDIVASA	SGLIFLSPV	FLILIYLIRK	NLGSPVFFFQ	ERPGKDGKPFI	VIAN UL U
10	0113-1	10	20	30	40	50	60
10				•			120
		70	80	90	100	110	
	orf3a.pep	SMHDALDSDGILLPD	GERLTPFGI	KKLRAASLDEL	PELWNVLKGE	MSLVGPRPLL	WOATET
	OLLGET	11:11111111 111	1111111	11111111111	: :	1111111111	MOVIDI
15	orf3-1	SMRDALDSDGIPLPD	GERLTPFG	KKLRAASLDEL	PELWNILKGE	MSLVGPRPLL 110	120
13	022 0 =	70	80	90	100	110	120
				150	160	170	180
		130 YDNFQNRRHEMKPGI	140	150	CUIMALURE.		
	orf3a.pep	YDNFQNRRHEMKPGI	TGWAQVNG	KNALSWUERER	CDIWITOME	111111111111	111111
20					COMMYTOHES	SICLDIKILLI	TVKKVL
	orf3-1	YDNFQNRRHEMKPGI	140	150	160	170	180
		130	140	130	100		
		190	200	210	220	230	240
		TWOOT CACCEATMD	PETCKRKT.A	VVGAGGHGKV	/AELAAALGT	YGEIVFLDDRV	OGSVNG
25	orf3a.pep		3	1111111111	11:11111	1 11311111	
	52.1	IKEGISAQGEATMP	PFTGKRKLA	VVGAGGHGKV	/ADLAAALGR	AKETAL PODK	1002ANG
	orf3-1	190	200	210	220	230	240
		200			•		
30		250	260	270	280	290	300
30	orf3a.pep	FPVIGTTLLENSL	SPEQFDIAV	AVGNNRIRRQ	IAEKAAALGF	ALPVLIHPDS	rvspsar
	Ollia.pep		1111.1.1.1	: 1 1 1 4 1 4 1 1 1 1 1	111111111	11111:111:]]]]]]]]
	orf3-1	FSVIGTTLLLENSL	SPEQYDVAV	/AVGNNRIRRQ	IAEKAAALGE	ALPVLVHPDA: 290	300
	0220	250	260	270	280	290	300
35				220	340	350	360
		310 VGQGGVVMAKAVVQ	320	330	DCTTDAWNIT		
	orf3a.pep	VGQGGVVMAKAVVQ	ADSVLKDG	ATANJAMIADU	TILL OF TILL	11111111111	: 111111
		VGQGSVVMAKAVVQ			DOLLNAFVHI	SPGAHLSGNT	HIGEESW
	orf3-1		320	330	340	350	360
40		310	320	330	5.0		
		370	380	390	400	410	
		IGTGACSRQQIRIG	DADITARE:	AVVVRDVSDGM	ITVAGNPAKPI	AGKNTETLRS	x
	orf3a.pep			1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1		
	52 1	IGTGACSRQQIRIG	SRATIGAG	AVVVRDVSDGN	TVAGNPAKPI	PERKNEFIZIA	X
45	orf3-1	370	380	390	400	410	
		3.3					

Homology with hypothetical protein encoded by yvfc gene (accession Z71928) of B. subtilis ORF3 and YVFC proteins show 55% aa identity in 170 aa overlap (BLASTp):

50	ORF3	-	IYLIRKNLGSPVFFFQERPGKDGKPFKMVKFRSMRDGLYSDGIPLPDGERLTPFGKKLRA 62 I ++R +GSPVFF Q RPG GKPF + KFR+M D S G LPD RLT G+ +R
	yvfc	27	I THE TGSFVFF Q KID AND THE TOTAL THE T
55	ORF3		ASXDELPELWNILKGEMSLVGPRPLLMQYLPLYDNFQNRRHEMKPGITGWAQVNGRNALS 122 S DELP+L N+LKG++SLVGPRPLLM YLPLY Q RRHE+KPGITGWAQ+NGRNA+S
22	yvfc	87	LSIDELPQLLNVLKGDLSLVGPRPLLMDYLPLYTEKQARRHEVKPGITGWAQINGRNAIS 146
	ORF3		WDEKFACDVWYIDHFSLCLDXXXXXXXXXXXXXXXXEGISAQGEXTMPPFTG 172 W++KF DVWY+D++S LD EGI T FTG
60	yvfc	147	WEKKFELDVWYVDNWSFFLDLKILCLTVRKVLVSEGIQQTNHVTAERFTG 196

Homology with a predicted ORF from N.gonorrhoeae

ORF3 shows 86.3% identity over a 286aa overlap with a predicted ORF (ORF3.ng) from N. gonorrhoeae:

5	orf3	<u> </u>	. 34
3	orf3ng	MSKAVKRLFDIIASA <u>SGLIVLSPVFLVLIYLI</u> RKNKGSPVFFIRERPGKDGKPFKMVKFR	60
	orf3	SMRDGLYSDGIPLPDGERLTPFGKKLRAASXDELPELWNILKGEMSLVGPRPLLMQYLPL	94
10	orf3ng	: :	120
	orf3	YDNFQNRRHEMKPGITGWAQVNGRNALSWDEKFACDVWYIDHFSLCLDIKILLLTVKKVL	154
	orf3ng	::	180
15	orf3	IKEGISAQGEXTMPPFTGKRKLAVVGAGGHGKVVADLAAALGRYREIVFLDDRAQGSVNG	214
	orf3ng		-240
20	orf3	FSVIGTTLLLENSLSPEQYDVAVAVGNNRIRRQIAEKAAALGFALPVLVHPDATVSPSAT	274
	orf3ng		300
·	orf3	VGQGSVVMAKAV	286
25	orf3ng	: IGQGSVVMAKAVVQAGSVLKDGVIVNTAATVDHDCLLDAFVHISPGAHLSGNTRIGEESR	360

The complete length ORF3ng nucleotide sequence <SEQ ID 17> is:

	1	ATGAGTAAAG	CCGTCAAACG	CCTGTTCGAC	ATCATCGCAT	CCGCATCGGG
	51	GCTGATTGTC	CTGTCGCCCG	TGTTTTTGGT	TTTAATATAC	CTCATCCGCA
30	101	AAAACTTAGG	TTCGCCCGTC	TTCTTCattC	GGGAACGCCc	cgGAAAGGAc
	151	ggaaaacCTT	TTAAAATGGT	CAAATTCCGT	TCCAtgcgcg	acgcgcttGA
	201	TTCAGACGGC	ATTCCGCTGC	CCGATAGCGA	ACGCCTGACC	GATTTCGGCA
	-251	AAAAATTACG	CGCCACCAGT	TTGGACGAAC	TTCCTGAATT	ATGGAATGTC
	301	CTCAAAGGCG	AGATGAGCCT	GGTCGGCCCC	CGCCCGCTTT	TGATGCAGTA
35	351	TCTGCCGCTT	TACAACAAAT	TTCAAAACCG	CCGCCACGAA	ATGAAACCGG
	401	GCATTACCGG	CTGGGCGCAG	GTCAACGGGC	GCAACGCGCT	TTCGTGGGAC
	451	GAAAAGTTCT	CCTGCGATGT	TTGGTACACC	GACAATTTCA	GCTTTTGGCT
	501	GGATATGAAA	ATCCTGTTTC	TGACAGTCAA	AAAAGTCTTG	ATTAAAGAAG
	551	GCATTTCGGC	GCAAGGGGAA	GCCACCATGC	CCCCTTTCGC	GGGGAATCGC
40	601	AAACTCGCCG	TTATCGGCGC	GGGCGGACAC	GGCAAAGTCG	TTGCCGAGCT
	651	TGCCGCCGCA	CTCGGCACAT	ACGGCGAAAT	CGTTTTTCTG	GACGACCGCA
	701	CCCAAGGCAG	CGTCAACGGC	TTCCCCGTCA	TCGGCACGAC	GCTGCTGCTT
	751	GAAAACAGTT	TATCGCCCGA	ACAATTCGAC	ATCACCGTCG	CCGTCGGCAA
	801	CAACCGCATC	CGCCGCCAAA	TCACCGAAAA	CGCCGCCGCG	CTCGGCTTCA
45	851	AACTGCCCGT	TCTGATTCAT	CCCGACGCGA	CCGTCTCGCC	TTCTGCAATA
	901	ATCGGACAAG	GCAGCGTCGT	AATGGCGAAA	GCCGTCGTAC	AGGCCGGCAG
	951	CGTATTGAAA	GACGGCGTGA	TTGTGAACAC	TGCCGCCACC	GTCGATCACG
	1001	ACTGCCTGCT	TGACGCTTTC	GtccaCATCA	GCCCGGGCGC	GCACCTGTCG
	1051	GGCAACACGC	GTATCGGCGA	AGAAAGCCGG	ATAGGCACGG	GCGCGTGCAG
50	1101	CCGCCAGCAG	ACAACCGTCG	GCAGCGGGGT	TACCgccgGT	GCAGGGGCGG
	1151	TTATCGTATG	CGACATCCCG	GACGGCATGA	CCGTCGCGGG	CAACCCGGCA
	1201	AAGCCCCTTA	CGGGCAAAAA	CCCCAAGACC	GGGACGGCAT	AA

This encodes a protein having amino acid sequence <SEQ ID 18>:

	1	MSKAVKRLFD	IIASASGLIV	LSPVFLVLIY	LIRKNLGSPV	FFIRERPGKD
55	51	GKPFKMVKFR	SMRDALDSDG	IPLPDSERLT	DFGKKLRATS	LDELPELWNV
	101	LKGEMSLVGP	RPLLMQYLPL	YNKFQNRRHE	MKPGITGWAQ	VNGRNALSWD
	151	EKFSCDVWYT	DNFSFWLDMK	ILFLTVKKVL	IKEGISAQGE	ATMPPFAGNR
	201	KLAVIGAGGH	GKVVAELAAA	LGTYGEIVFL	DDRTQGSVNG	FPVIGTTLLL
	251	ENSLSPEQFD	ITVAVGNNRI	RRQITENAAA	LGFKLPVLIH	PDATVSPSAI
60	301	IGQGSVVMAK	AVVQAGSVLK	DGVIVNTAAT	VDHDCLLDAF	VHISPGAHLS
	351	GNTRIGEESR	IGTGACSRQQ	TTVGSGVTAG	AGAVIVCDIP	DGMTVAGNPA
	401	KPLTGKNPKT	GTA*			

This protein shows 86.9% identity in 413 aa overlap with ORF3-1:

	F				
5	orf3-1.pep	10 20 30 40 50 MSKFFKRLFDIVASASGLIFLSPVFLILIYLIRKNLGSPVFFFQERPGKDGKPFKI	MVKFR 60		
10	orf3-1.pep	70 80 90 100 110 SMRDALDSDGIPLPDGERLTPFGKKLRAASLDELPELWNILKGEMSLVGPRPLLM	1111		
15	orf3-1.pep	130 140 150 160 170 YDNFQNRRHEMKPGITGWAQVNGRNALSWDEKFACDVWYIDHFSLCLDIKILLIT ::	1111		
20	orf3-1.pep	190 200 210 220 230 IKEGISAQGEATMPPFTGKRKLAVVGAGGHGKVVADLAAALGRYREIVFLDDRAQ	 GSVNG		
25	orf3-1.pep	190 200 210 220 230 250 260 270 280 290 FSVIGTTLLLENSLSPEQYDVAVAVGNNRIRRQIAEKAAALGFALPVLVHPDATV	240 300 SPSAT		
30	orf3ng	FPVIGTTLLLENSLSPEQFDITVAVGNNRIRRQITENAAALGFKLPVLIHPDATV 250 260 270 280 290 310 320 330 340 350	300 360		
35	orf3-1.pep orf3ng	VGQGSVVMAKAVVQAGSVLKDGVIVNTAATVDHDCLLNAFVHISPGAHLSGNTHI:	1111		
40	orf3-1.pep orf3ng	370 380 390 400 410 IGTGACSRQQIRIGSRATIGAGAVVVRDVSDGMTVAGNPAKPLPRKNPETSTAX : :			
	In addition, ORF3ng shows significant homology with a hypothetical protein from B. subtilis:				
45	<pre>gnl PID e238668 (Z71928) hypothetical protein [Bacillus subtilis] >gi 1945702 gnl PID e313004 (Z94043) hypothetical protein [Bacillus subtilis] >gi 2635938 gnl PID e1186113 (Z99121) similar to capsular polysaccharide biosynthesis [Bacillus subtilis]Length = 202 Score = 235 bits (594), Expect = 3e-61</pre>				
50	Identities	= 114/195 (58%), Positives = 142/195 (72%)	DD 64		
	+	KRLFDIIASASGLIVLSPVFLVLIYLIRKNLGSPVFFIRERPGKDGKPFKMVKFRSM KRLFD+ A+	D		
	,				
55		LDSDGIPLPDSERLTDFGKKLRATSLDELPELWNVLKGEMSLVGPRPLLMQYLPLYN DS G LPD RLT G+ +R S+DELP+L NVLKG++SLVGPRPLLM YLPLY RDSKGNLLPDEVRLTKTGRLIRKLSIDELPQLLNVLKGDLSLVGPRPLLMDYLPLYT	T		
60	Query: 125 (NRRHEMKPGITGWAQVNGRNALSWDEKFSCDVWYTDNFSFWLDMKILFLTVKKVLIK RRHE+KPGITGWAQ+NGRNA+SW++KF DVWY DN+SF+LD+KIL LTV+KVL+ DARRHEVKPGITGWAQINGRNAISWEKKFELDVWYVDNWSFFLDLKILCLTVRKVLVS	EG 184 EG		
	Query: 185	ISAQGEATMPPFAGN 199			
65		T F G+ IQQTNHVTAERFTGS 197			

The hypothetical product of yvfc gene shows similarity to EXOY of R.meliloti, an exopolysaccharide production protein. Based on this and on the two predicted transmembrane regions in the homologous N.gonorrhoeae sequence, it is predicted that these proteins, or their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 4

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 19>:

```
.. AACCATATGG CGATTGTCAT CGACGAATAC GGCGGCACAT CCGGCTTGGT
                51
                       CACCTTTGAA GACATCATCG AGCAAATCGT CGGCGAAATC GAAGACGAGT
                101
                       TTGACGAAGA CGATAGCGCC GACAATATCC ATGCCGTTTC TTCAGACACG
                       TGGCGCATCC ATGCAGCTAC CGAAATCGAA GACATCAACA CCTTCTTCGG
10
                151
                       CACGGAATAC AGCATCGAAG AAGCCGACAC CATT.GGCGG CCTGGTCATT
                201
                251
                       CAAGAGTTGG GACATCTGCC CGTGCGCGGC GAAAAAGTCC TTATCGGCGG
                301
                       TTTGCAGTTC ACCGTCGCAC GCGCCGACAA CCGCCGCCTG CATACGCTGA
                351
                       TGGCGACCCG CGTGAAGTAA GC......ACCGC CGTTTCTGCA
15
                       CAGTTTAG
                401
```

This corresponds to amino acid sequence <SEQ ID 20; ORF5>:

```
1 ..NHMAIVIDEY GGTSGLVTFE DIIEQIVGEI EDEFDEDDSA DNIHAVSSDT
51 WRIHAATEIE DINTFFGTEY SIEEADTIXR PGHSRVGTSA RARRKSPYRR
101 FAVHRRTRQ PPPAYADGDP REVS....XR RFCTV*
```

20 Further sequence analysis revealed the complete DNA sequence to be <SEQ ID 21>:

```
ATGGACGGCG CACAACCGAA AACGAATTTT TTTGAACGCC TGATTGCCCG
               51
                   ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTAAAC CTGCTTCGGC
              101
                   AGGCGCACGA GCAGGAAGTT TTTGATGCGG ATACGCTTTT AAGATTGGAA
              151
                   25
              201
                   CAGCCGTATG AACGTTTTAA AAGAAAACGA CAGCATCGAG CGCATCACCG
              251
                   CCTACGTTAT CGATACCGCC CATTCGCGCT TCCCCGTCAT CGGCGAAGAC
              301 AAAGACGAAG TTTTGGGCAT TTTGCACGCC AAAGACCTGC TCAAATATAT
                   GTTTAACCCC GAGCAGTTCC ACCTCAAATC CATTCTCCGC CCCGCCGTCT
              351
              401
                   TCGTCCCCGA AGGCAAATCG CTGACCGCCC TTTTAAAAGA GTTCCGCGAA
30
              451
                   CAGCGCAACC ATATGGCGAT TGTCATCGAC GAATACGGCG GCACATCCGG
              501
                   CTTGGTCACC TTTGAAGACA TCATCGAGCA AATCGTCGGC GAAATCGAAG
                   ACGAGTTTGA CGAAGACGAT AGCGCCGACA ATATCCATGC CGTTTCTTCC
              551
               601
                   GAACGCTGGC GCATCCATGC AGCTACCGAA ATCGAAGACA TCAACACCTT
                   CTTCGGCACG GAATACAGCA GCGAAGAAGC CGACACCATT CGGCCTGGTC
              651
35
              701
                   ATTCAAGAGT TGGGACATCT GCCCGTGCGC GGCGAAAAAG TCCTTATCGG
                   CGGTTTGCAG TTCACCGTCG CACGCGCCGA CAACCGCCGC CTGCATACGC
              751
              801
                   TGATGGCGAC CCGCGTGAAG TAAGCACCGC CGTTTCTGCA CAGTTTAGGA
                   TGACGGTACG GGCGTTTTCT GTTTCAATCC GCCCCATCCG CCAAACATAA
```

This corresponds to amino acid sequence <SEQ ID 22; ORF5-1>:

```
40

1 MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV FDADTLLRLE
51 KVLDFSDLEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
101 KDEVLGILHA KDLLKYMFNP EQFHLKSILR PAVFVPEGKS LTALLKEFRE
151 QRNHMAIVID EYGGTSGLVT FEDIIEQIVG EIEDEFDEDD SADNIHAVSS
201 ERWRIHAATE IEDINTFFGT EYSSEEADTI RPGHSRVGTS ARARRKSPYR
45
251 RFAVHRRTRR QPPPAYADGD PREVSTAVSA QFRMTVRAFS VSIRPIRQT*
```

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 23 >:

5	451 CF 501 TT 551 AT 601 GF 651 TT 701 GT 751 CC 801 CC 851 GC 901 TZ	CGCCCCCGA AGGCAAATCG CTGACCGCCC TTTTAAAAGA GTTCCGCGAA AGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG GCACGTCGGG TTGGTAACT TTTGAAGACA TCATCGAGCA AATCGTCGGC GACATCGAAG AGAGTTTGA CGAAGACGAA AGCGCGGACA ACATCCACGC CGTTTCCGCC AACGCTGGC GCATCCACGC GGCTACCGAA ATCGAAGACA TCAACGCCTT TTCGGCACG GAATACAGCA GCGAAGAAGC CGACACCATC GGCGGCCNTG TCATTCAGG AATTGGNACA CCTGCCCGTG CGCGGCGAAA AAGTCNTTAT GGCGNNTTG CANTTCACNG TCGCCNGCGC NGACAACCGC CGCCTGCATA GCTGATGGC GACCCGCGTG AAGTAAGCTC CGCCTGCATA GATGACGGT ACGGCGTTT TCTGTTTCAA TCCGCCCCAT CCGCCCANACA AAA			
	This encodes a protein having amino acid sequence <seq 24;="" id="" orf5a="">:</seq>				
15	51 K 101 K 151 Q 201 E 251 R 301 *				
20	The originally-ide	identified partial strain B sequence (ORF5) shows 54.7% identity over a 124aa			
	overlap with ORF5a:				
25	orf5.pep	10 20 30 NHMAIVIDEYGGTSGLVTFEDIIEQIVGEI			
30	orf5.pep orf5a	40 50 60 70 80 90 EDEFDEDDSADNIHAVSSDTWRIHAATEIEDINTFFGTEYSIEEADTIXRPGHSRVGTSA : ::			
35	orf5.pep orf5a	100 110 120 130 RARRKSPYRRFAVHRRTRRQPPPAYADGDPREVSXXXXXRRFCTV			
	The complete strain B sequence (ORF5-1) and ORF5a show 92.7% identity in 300 aa overlap:				
40	orf5a.pep	10 20 30 40 50 60 MDGAQPKTNFXXRLIARLAREPDSAEDVLTLLRQAHEQEVFDADTLLRLEKVLDFSDLEV			
45		10 20 30 10 20			
50	orf5a.pep orf5-1	70 80 90 100 110 120 RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYMFNP			
55	orf5a.pep orf5-1	130 140 150 160 170 180 EQFHLKSILRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIVG			
60	orf5a.pep	190 200 210 220 230 240 DIEDEFDEDESADNIHAVSAERWRIHAATEIEDINAFFGTEYSSEEADTIGGXGHSGIGT :			

304 aa overlap:

55

```
PARARRKSXYRRXAXHXRXRXQPPPAYADGDPREVSSAVSVQFRMTVRAFSVSIRPIRXT
                         orf5-1
                       {\tt SARARRKSPYRRFAVHRRTRRQPPPAYADGDPREVSTAVSAQFRMTVRAFSVSIRPIRQT
                     240
                               250
                                         260
                                                   270
                                                             280
     Further work identified the a partial DNA sequence in N. gonorrhoeae <SEQ ID 25> which encodes
     a protein having amino acid sequence <SEQ ID 26; ORF5ng>:
                    MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV FDADTLTRLE
                    KVLDFAELEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
                51
                    KDEVLGILHA KDLLKYMFNP EQFHLKSVLR PAVFVPEGKS LTALLKEFRE
               101
10
               151
                    QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE SADDIHSVSA
               201
                    ERWRIHAATE IEDINAFFGT EYGSEEADTI RRLGHSGIGT PARARRKSPY
               251
                    RRFAVHRRPR RQPPPAHADG DPREVSRACP HRRFCTV*
     Further analysis revealed the complete gonococcal nucleotide sequence <SEQ ID 27> to be:
                    ATGGACGCC CACAACCGAA AACAAATTTT TTTGAACGCC TGATTGCCCG
15
                    ACTCGCCCGC GAACCCGATT CCGCCGAAGA CGTATTAAAC CTGCTTCGGC
                    AGGCGCACGA ACAGGAAGTT TTTGATGCCG ACACACTGAC CCGGCTGGAA
               101
                    AAAGTATTGG ACTTTGCCGA GCTGGAAGTG CGCGATGCGA TGATTACGCG
               151
               201
                    CAGCCGCATG AACGTATTGA AAGAAAACGA CAGCATCGAA CGCATCACCG
                    CCTACGTCAT CGATACCGCC CATTCGCGCT TCCCCGTCAT CGGCGAAGAC AAAGACCAAG TTTTGGGCAT TTTGCACGCC AAAGACCTGC TCAAATATAT
               251
20
               301
                    GTTCAACCCC GAGCAGTTCC ACCTGAAATC CGTCTTGCGC CCTGCCGTTT
               351
               401
                    TCGTGCCCGA AGGCAAATCT TTGACCGCCC TTTTAAAAGA GTTCCGCGAA
                    CAGCGCAACC ATATGGCAAT CGTCATCGAC GAATACGGCG GCACGTCGGG
               451
                    TTTGGTCACC TTTGAAGACA TCATCGAGCA AATCGTCGGT GACATCGAAG
               501
25
                    ACGAGTTTGA CGAAGACGAA AGCGccgacg acatCCACTC cgTTTccgCC
               551
               601
                    GAACGCTGGC GCATCCacgc ggctaCCGAA ATCGAAGaca TCAACGCCTT
                    TTTCGGTACG GAatacggca gcgaagaagc cgacaccatc cggcggctTGGTCATTCAGG AATTGGGACA CCTGCCCGTG CGCGGCGAAA AAGTCCTTAt
               651
               701
                    cggcgGTTTG Cagttcaccg tCGCCCGCGC CGACAACCGC CGCCTGCACA
               751
30
               801
                    CGCTGATGGC GACCCGCGTG AAGTAAGCAG AGCCTGCCcg AccgccgttT
               851
                    CTGCacAGTT TAGGAtgACG gtaCGGTCGT TTTCTGTTTC AATCCGCCCC
               901
                    ATCCGCCAAA CATAA
     This encodes a protein having amino acid sequence <SEQ ID 28; ORF5ng-1>:
                    MDGAQPKTNF FERLIARLAR EPDSAEDVLN LLRQAHEQEV FDADTLTRLE
35
                    KVLDFAELEV RDAMITRSRM NVLKENDSIE RITAYVIDTA HSRFPVIGED
                51
                    KDEVLGILHA KDLLKYMFNP EQFHLKSVLR PAVFVPEGKS LTALLKEFRE
                    QRNHMAIVID EYGGTSGLVT FEDIIEQIVG DIEDEFDEDE SADDIHSVSA
               151
                    ERWRIHAATE IEDINAFFGT EYGSEEADTI RRLGHSGIGT PARARRKSPY
                201
                    RRFAVHRRPR RQPPPAHADG DPREVSRACP TAVSAQFRMT VRSFSVSIRP
                251
40
     The originally-identified partial strain B sequence (ORF5) shows 83.1% identity over a 135aa
     overlap with the partial gonococcal sequence (ORF5ng):
          orf5
                                                     NHMAIVIDEYGGTSGLVTFEDIIEOIVGEI
                                                                                      30
                                                     45
          orf5ng
                        FHLKSVLRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIVGDI
                                                                                     182
                        EDEFDEDDSADNIHAVSSDTWRIHAATEIEDINTFFGTEYSIEEADTIXRPGHSRVGTSA
          orf5
                                                                                      90
                        EDEFDEDESADDIHSVSAERWRIHAATEIEDINAFFGTEYGSEEADTIRRLGHSGIGTPA
           orf5ng
50
                        RARRKSPYRRFAVHRRTRRQPPPAYADGDPREVSX----RRFCTV 131
           orf5
                        RARRKSPYRRFAVHRRPRRQPPPAHADGDPREVSRACPHRRFCTV
           orf5ng
      The complete strain B and gonococcal sequences (ORF5-1 & ORF5ng-1) show 92.4% identity in
```

10 20 30 40 50 60 orf5ng-1.pep MDGAQPKTNFFERLIARLAREPDSAEDVLNLLRQAHEQEVFDADTLTRLEKVLDFAELEV

	orf5-1	
5	orf5ng-1.pep	70 80 90 100 110 120 RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYMFNP
10		70 80 90 100 110 120 130 140 150 160 170 180 EQFHLKSVLRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIVG
15	orf5ng-1.pep	EQFHLKSVERPAVFVPEGKSLTALLKEFREQRNHMAIVIDEIGGISGLVIFEDIIEQIVG :
20	orf5ng-1.pep	190 200 210 220 230 240 DIEDEFDEDESADDIHSVSAERWRIHAATEIEDINAFFGTEYGSEEADTIRRLGHSGIGT : : : : : : : : : : : :
		190 200 210 220 230 250 260 270 280 290 300
25	orf5ng-1.pep	250 260 270 280 290 300 PARARRKSPYRRFAVHRRPRRQPPPAHADGDPREVSRACPTAVSAQFRMTVRSFSVSIRP
30	orf5ng-1.pep	IRQTX
	orf5-1	IRQTX 300
	Computer analysis	of these amino acid sequences indicates a putative leader sequence, a
35	identified the follow	ing homologies:
	Homology with hem	olysin homolog TlyC (accession U32716) of H.influenzae
	ORF5 and TlyC prot	teins show 58% aa identity in 77 aa overlap (BLASTp).
40	нм	AIVIDEYGGTSGLVTFEDIIEQIVGEIEDEFDEDDSADNIHAVSSDTWRIHAATEIED 61 AIV+DE+G SGLVT EDI+EQIVG+IEDEFDE++ AD I +S T+ + A T+I+D AIVVDEFGAVSGLVTIEDILEQIVGDIEDEFDEEEIAD-IRQLSRHTYAVRALTDIDD 224
40	,	TFFGTEYSIEEADTI 78
	N	F T++ EE DTI BAQFNTDFDDEEVDTI 241
45	ORF5ng-1 also show	ws significant homology with TlyC:
		Initl: 301 Initn: 419 Opt: 668 an score: 668; 45.9% identity in 242 aa overlap
50	orf5ng-1.pep	10 20 30 40 50 MDGAQPKTNFFERLIARLAR-EPDSAEDVLNLLRQAHEQEVFDADTLTRLEK : :: : : :::::: ::::: : :
	tlyc_haein	MNDEQQNSNQSENTKKPFFQSLFGRFFQGELKNREELVEVIRDSEQNDLIDQNTREMIEG 10 20 30 40 50 60
55	orf5ng-1.pep	60 70 80 90 100 109 VLDFAELEVRDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILH ::: : :::::::::::::::
	tlyc_haein	VMEIAELRVRDIMIPRSQIIFIEDQQDLNTCLNTIIESAHSRFPVIADADDRDNIVGILH 70 80 90 100 110 120
60	orf5ng-1.pep	10 120 130 140 150 160 AKDLLKYMF-NPEQFHLKSVLRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGL
	tlyc_haein	AKDLLKFLREDAEVFDLSSLLRPVVIVPESKRVDRMLKDFRSERFHMAIVVDEFGAVSGL

		1	30	140	150	160	170	180
5	orf5ng-1.pep	: : VTIEDILE	1111111	111:1-11-1	200 HSVSAERWRI ::: : : : RQLSRHTYAV 210	: : : :	1 1:1:: :	H¢L
10	orf5ng-1.pep	:	:1 11:					

15 Homology with a hypothetical secreted protein from *E. coli*:

ORF5a shows homology to a hypothetical secreted protein from E.coli:

```
SP|P77392|YBEX_ECOLI HYPOTHETICAL 33.3 KD PROTEIN IN CUTE-ASNB INTERGENIC REGION
          >qi|1778577 (UB2598) similar to H. influenzae [Escherichia coli] >qi|1786879
          (AE000170) f292; This 292 aa ORF is 23% identical (9 gaps) to 272 residues of an
          approx. 440 aa protein YTFL_HAEIN SW: P44717 [Escherichia coli] Length = 292
20
           Score = 212 bits (533), Expect = 3e-54
           Identities = 112/230 (48%), Positives = 149/230 (64%), Gaps = 3/230 (1%)
                      DGAQPKTNFXXRLIARLAR-EPDSAEDVLTLLRQAHEQEVFDADTLLRLEKVLDFSDLEV 60
25
          Query: 2
                                 L+++L EP + +++L L+R + + ++ D DT
          Sbjct: 10 DTISNKKGFFSLLLSQLFHGEPKNRDELLALIRDSGQNDLIDEDTRDMLEGVMDIADQRV 69
          Ouery: 61 RDAMITRSRMNVLKENDSIERITAYVIDTAHSRFPVIGEDKDEVLGILHAKDLLKYM-FN 119
                      RD MI RS+M LK N +++
                                              +I++AHSRFPVI EDKD + GIL AKDLL +M +
30
          Sbjct: 70 RDIMIPRSQMITLKRNQTLDECLDVIIESAHSRFPVISEDKDHIEGILMAKDLLPFMRSD 129
          Query: 120 PEQFHLKSILRPAVFVPEGKSLTALLKEFREQRNHMAIVIDEYGGTSGLVTFEDIIEQIV 179
                       E F + +LR AV VPE K + +LKEFR QR HMAIVIDE+GG SGLVT EDI+E IV
           Sbjct: 130 AEAFSMDKVLRQAVVVPESKRVDRMLKEFRSQRYHMAIVIDEFGGVSGLVTIEDILELIV 189
35
           Query: 180 GDIEDEFDEDESADNIHAVSAERWRIHAATEIEDINAFFGTEYSSEEADT 229
                      G+IEDE+DE++ D
                                       +S
                                            W + A
                                                    IED N FGT +S EE DT
           Sbjct: 190 GEIEDEYDEEDDID-FRQLSRHTWTVRALASIEDFNEAFGTHFSDEEVDT 238
```

Based on this analysis, including the amino acid homology to the TlyC hemolysin-homologue from H. influenzae (hemolysins are secreted proteins), it was predicted that the proteins from N.meningitidis and N.gonorrhoeae are secreted and could thus be useful antigens for vaccines or diagnostics.

ORF5-1 (30.7kDa) was cloned in the pGex vector and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 2A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot analysis (Figure 1B). These experiments confirm that ORF5-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 5

45

- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:
 - 1 ATGCGCGGCG GCAGGCCGGA TTCCGTTACC GTGCAGATTA TCGAAGGTTC
 - 51 GCGTTTTTCG CATATGAGGA AAGTCATCGA CGCAACGCCC GACATCGGAC

yceg

```
ACGACACCAA AGGCTGGAGC AATGAAAAAC TGATGGCGGA AGTTGCGCCC
                      GATGCCTTCA GCGGCAATCC TGAAGGGCAG TTTTTCCCCG ACAGCTACGA
                101
                151
                      AATCGATGCG GGCGGCAGTG ATTTGCAGAT TTACCAAACC GCCTACAAGG
                      GCGATGCAAC GCCGCCTGAA TGAGGGCATG GGAAAGCAGG CAGGACGGGC
                201
                      TGCCTTATAA AAACCCTTAT GAAATGCTGA TTATGGCGAr CCTGGTCGAA
                251
                      AAGGAAACAG GGCATGAAGC CGASCSCGAC CATGTcGCTT CCGTCTTCGT
                301
5
                351
                      CAACCGCCTG AAAATCGGTA TGCGCCTGCA AACCGASSCG TCCGTGATTT
                      ACGGCATGGG TGCGGCATAC AAGGGCAAAA TCCGTAAAGC CGACCTGCGC
                401
                451
                      CGCGACACGC CGTACAACAC CTACACGCGC GGCGGTCTGC CGCCAACCCC
                501
                      GATTGCGCTG CCC..
                551
10
     This corresponds to the amino acid sequence <SEQ ID 30; ORF7>:
                      MRGGRPDSVT VQIIEGSRFS HMRKVIDATP DIGHDTKGWS NEKLMAEVAP
                      DAFSGNPEGQ FFPDSYEIDA GGSDLQIYQT AYKAMQRRLN EAWESRQDGL
                  51
                       PYKNPYEMLI MAXLVEKETG HEAXXDHVAS VFVNRLKIGM RLQTXXSVIY
                       GMGAAYKGKI RKADLRRDTP YNTYTRGGLP PTPIALP..
15
      Further sequence analysis revealed the complete DNA sequence <SEQ ID 31>:
                       ATGTTGAGAA AATTGTTGAA ATGGTCTGCC GTTTTTTTGA CCGTGTCGGC
                       AGCCGTTTTC GCCGCGCTGC TTTTTGTTCC TAAGGATAAC GGCAGGGCAT
                  51
                       ACCGAATCAA AATTGCCAAA AACCAGGGTA TTTCGTCGGT CGGCAGGAAA
                 101
                       CTTGCCGAAG ACCGCATCGT GTTCAGCAGG CATGTTTTGA CGGCGGCGGC
                 151
                       CTACGTTTTG GGTGTGCACA ACAGGCTGCA TACGGGGACG TACAGATTGC
 20
                 201
                       CTTCGGAAGT GTCTGCTTGG GATATCTTGC AGAAAATGCG CGGCGGCAGG
                 251
                       CCGGATTCCG TTACCGTGCA GATTATCGAA GGTTCGCGTT TTTCGCATAT
                  301
                       GAGGAAAGTC ATCGACGCAA CGCCCGACAT CGGACACGAC ACCAAAGGCT
                 351
                       GGAGCAATGA AAAACTGATG GCGGAAGTTG CGCCCGATGC CTTCAGCGGC
                  401
                       AATCCTGAAG GGCAGTTTTT CCCCGACAGC TACGAAATCG ATGCGGGCGG
 25
                       CAGTGATTTG CAGATTTACC AAACCGCCTA CAAGGCGATG CAACGCCGCC
                  451
                       TGAATGAGGC ATGGGAAAGC AGGCAGGACG GGCTGCCTTA TAAAAACCCCT
                  501
                       TATGAAATGC TGATTATGGC GAGCCTGGTC GAAAAGGAAA CAGGGCATGA
                  551
                  601
                       AGCCGACCGC GACCATGTCG CTTCCGTCTT CGTCAACCGC CTGAAAATCG
GTATGCGCCT GCAAACCGAC CCGTCCGTGA TTTACGGCAT GGGTGCGGCA
                  651
 30
                  701
                       TACAAGGGCA AAATCCGTAA AGCCGACCTG CGCCGCGACA CGCCGTACAA
                  751
                        CACCTACACG CGCGGCGGTC TGCCGCCAAC CCCGATTGCG CTGCCCGGCA
                  801
                       AGGCGGCACT CGATGCCGCC GCCCATCCGT CCGGCGAAAA ATACCTGTAT
TTCGTGTCCA AAATGGACGG CACGGGCTTG AGCCAGTTCA GCCATGATTT
                  851
                       GACCGAACAC AATGCCGCCG TCCGCAAATA TATTTTGAAA AAATAA
  35
       This corresponds to the amino acid sequence <SEQ ID 32; ORF7-1>:
                        MLRKLLKWSA VFLTVSAAVF AALLFVPKDN GRAYRIKIAK NQGISSVGRK
                        LAEDRIVFSR HVLTAAAYVL GVHNRLHTGT YRLPSEVSAW DILQKMRGGR
                        PDSVTVQIIE GSRFSHMRKV IDATPDIGHD TKGWSNEKLM AEVAPDAFSG
                   101
                        NPEGOFFPDS YEIDAGGSDL QIYOTAYKAM QRRLNEAWES RODGLPYKNP
  40
                        YEMLIMASLV EKETGHEADR DHVASVFVNR LKIGMRLQTD PSVIYGMGAA
                        YKGKIRKADL RRDTPYNTYT RGGLPPTPIA LPGKAALDAA AHPSGEKYLY
                        FVSKMDGTGL SQFSHDLTEH NAAVRKYILK K*
        Computer analysis of this amino acid sequence gave the following results:
  45
        Homology with hypothetical protein encoded by yeeg gene (accession P44270) of H.influenzae
        ORF7 and yceg proteins show 44% aa identity in 192 aa overlap:
                          MRGGRPDSVTVQIIEGSRFSHMRKVIDATPDIGHDTKGWSNEKLMA----EVAPDAFSG 55
              ORF7
                                                             K SNE++ A
                                    V+ IEG F RK ++ P +
                     102 LNSGKEVQFNVKWIEGKTFKDWRKDLENAPHLVQTLKDKSNEEIFALLDLPDIGQNLELK 161
   50
              yceg
                      56 NPEGQFFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWESRQDGLPYKNPYEMLIMAXLV 115
               ORF7
                                            +DL++ + + + M++ LN+AW R + LP NPYEMLI+A +V
                      162 NVEGWLYPDTYNYTPKSTDLELLKRSAERMKKALNKAWNERDEDLPLANPYEMLILASIV 221
                          N EG +PD+Y
               yceg
                      116 EKETGHEAXXDHVASVFVNRLKIGMRLQTXXSVIYGMGAAYKGKIRKADLRRDTPYNTYT 175
   55
               ORF7
                                       VASVF+NRLK M+LQT +VIYGMG Y G IRK DL
                                                                                TPYNTY
                      222 EKETGIANERAKVASVFINRLKAKMKLQTDPTVIYGMGENYNGNIRKKDLETKTPYNTYV 281
```

```
ORF7 176 RGGLPPTPIALP 187
GLPPTPIA+P
yceg 282 IDGLPPTPIAMP 293
```

The complete length YCEG protein has sequence:

5	. 1	MKKFLIAILL	LILILAGVAS	FSYYKMTEFV	KTPVNVQADE	LLTIERGTTS
	51	SKLATLFEQE	KLIADGKLLP	YLLKLKPELN	KIKAGTYSLE	NVKTVQDLLD.
	101	LLNSGKEVQF	NVKWIEGKTF	KDWRKDLENA	PHLVQTLKDK	SNEEIFALLD
	151	LPDIGQNLEL	KNVEGWLYPD	TYNYTPKSTD	LELLKRSAER	MKKALNKAWN
	201	ERDEDLPLAN	PYEMLILASI	VEKETGIANE	RAKVASVFIN	RLKAKMKLQT
10	251	DPTVIYGMGE	NYNGNIRKKD	LETKTPYNTY	VIDGLPPTPI	AMPSESSLQA
	301	VANPEKTDFY	YFVADGSGGH	KFTRNLNEHN	KAVQEYLRWY	RSQKNAK

Homology with a predicted ORF from N. meningitidis (strain A)

ORF7 shows 95.2% identity over a 187aa overlap with an ORF (ORF7a) from strain A of N.

15 meningitidis:

					1	.0 2	20 3	30
	orf7.pep				MRGGRPDSV	TVQIIEGSRE	SHMRKVIDAT	'P
					1111111111	THILLIAM	11111111111	1
	orf7a	AAYVLGVHN	RLHTGTYRLP	SEVSAWDIL	<u>QKMRGGRPDSV</u>	TVQIIEGSRE	SHMRKVIDAT	'P
20		70	80	90	100	110	120	
•	•							
•		. 4	0 5	0	60 7	0 8	30 9	90
	orf7.pep	DIGHDTKGW	SNEKLMAEVA	PDAFSGNPE	GQFFPDSYEID	AGGSDLQIY	TAYKAMQRRI	.N
		11 11111	11111111111	11111111	!!!!!!!!!!!	1111111:111	- H1111111	. 1
25 .	orf7a	DIEHDTKGW	SNEKLMAEVA	PDAFSGNPE	GQFFPDSYEID	AGGSDLRIY	ZIAYKAMQ RRI	ıN
	•	130	140	150	160	170	180	
		•						
	•	10			20 13			
	orf7.pep	EAWESRODO	LPYKNPYEML	IMAXLVEKE'	TGHEAXXDHVA	SVFVNRLKI	EMRLQTXXSVI	ľΥ
30		111111111		111 1:111		1111111111		П
	orf7a				TGHEADRDHVA			ľΥ
		190	200	210	220	230	240 .	
	• •			_				
0.5		16		•	80			
35	orf7.pep	GMGAAYKG	IRKADLRRDT	PYNTYTRGG:	LPPTPIALP			
•		111111111	111111111	1111111				
	orf7a		IRKADLRRDT		LPPTPIALPGE			M
		250	. 260	270	280	290	300	
40		DOMOT 00.00		D. 2017 T T T T T T T T T T T T T T T T T T T				
40	orf7a	-	HDLTEHNAAV					
		310	· 320	330				

The complete length ORF7a nucleotide sequence <SEQ ID 33> is:

	1	ATGTTGAGAA	AATTGTTGAA	ATGGTCTGCC	GTTTTTTTGA	CCGTATCGGC
	51	AGCCGTTTTC	GCCGCGCTGC	TTTTCGTCCC	TAAAGACAAC	GGCAGGGCAT
45	101	ACAGGATTAA	AATTGCCAAA	AACCAGGGTA	TTTCGTCGGT	CGGCAGGAAA
•	151	CTTGCCGAAG	ACCGCATCGT	GTTCAGCAGG	CATGTTTTGA	CGGCGGCGGC
	201	CTACGTTTTG	GGTGTGCACA	ACAGGCTGCA	TACGGGGACG	TACAGACTGC
	251	CTTCGGAAGT	GTCTGCTTGG	GATATCTTGC	AGAAAATGCG	CGGCGGCAGG
	301	CCGGATTCCG	TTACCGTGCA	GATTATCGAA	GGTTCGCGTT	TTTCGCATAT
50	351	GAGGAAAGTC	ATCGACGCAA	CGCCCGACAT	CGAACACGAC	ACCAAAGGCT
	401	GGAGCAATGA	AAAACTGATG	GCGGAAGTTG	CCCCTGATGC	CTTCAGCGGC
	451	AATCCTGAAG	GGCAGTTTTT	CCCCGACAGC	TACGAAATCG	ATGCGGGCGG
	501	CAGCGATTTA	CGGATTTACC	AAATCGCCTA	CAAGGCGATG	CAACGCCGAC
	551	TGAATGAGGC	ATGGGAAAGC	AGGCAGGACG	GGCTGCCTTA	TAAAAACCCT
55	601	TATGAAATGC	TGATTATGGC	GAGCCTGATC	GAAAAGGAAA	CAGGGCATGA
	651	AGCCGACCGC	GACCATGTCG	CTTCCGTCTT	CGTCAACCGC	CTGAAAATCG
	701	GTATGCGCCT	GCAAACCGAC	CCGTCCGTGA	TTTACGGCAT	GGGTGCGGCA
•	751	TACAAGGGCA	AAATCCGTAA	AGCCGACCTG	CGCCGCGACA	CGCCGTACAA
	801	CACCTACACG	CGCGGCGGTC	TGCCGCCAAC	CCCGATCGCG	CTGCCCGGCA
60	851	AGGCGGCACT	CGATGCCGCC	GCCCATCCGT	CCGGTGAAAA	ATACCTGTAT
	901	TTCGTGTCCA	AAATGGACGG	TACGGGCTTG	AGCCAGTTCA	GCCATGATTT
	951	GACCGAACAC	AACGCCGCCG	TTCGCAAATA	TATTTTGAAA	AAATAA

This is predicted to encode a protein having amino acid sequence <SEQ ID 34>:

```
1 MLRKLLKWSA VFLTVSAAVF AALLFVPKDN GRAYRIKIAK NQGISSVGRK
51 TAEDRIVFSR HVLTAAAYVL GVHNRLHTGT YRLPSEVSAW DILQKMRGGR
101 PDSVTVQIIE GSRFSHMRKV IDATPDIEHD TKGWSNEKLM AEVAPDAFSG
151 NPEGQFFPDS YEIDAGGSDL RIYQIAYKAM QRRLNEAWES RQDGLPYKNP
201 YEMLIMASLI EKETGHEADR DHVASVFVNR LKIGMRLQTD PSVIYGMGAA
251 YKGKIRKADL RRDTPYNTYT RGGLPPTPIA LPGKAALDAA AHPSGEKYLY
301 FVSKMDGTGL SQFSHDLTEH NAAVRKYILK K*
```

A leader peptide is underlined.

10 ORF7a and ORF7-1 show 98.8% identity in 331 aa overlap:

		10	20	30	40	50	60
	orf7a.pep	MLRKLLKWSAVE	LTVSAAVFAAL	LEVPKDNGRAY	RIKIAKNQGI	SSVGRKLAED	RIVFSR
	OII/a.pep		11111111111	11111111111	1111111	$\{111111111111111111111111111111111111$	11111
		MLRKLLKWSAVI	TTVSAAVFAAL	LEVPKDNGRAY	RIKIAKNQGI	SSVGRKLAED	RIVFSR
4.5	orf7-1	10	20	30	40	50	60
15		10	20				
		70	80	90	100	110	120
	50	11177 @N N N VVIT.C1	/HNRLHTGTYRL	PSEVSAWDILO	KMRGGRPDSV	TVQIIEGSRF	SHMRKV
	orf7a.pep	HAPINAMIARG		111111111111	пини	1111111111	111111
		}	VHNRLHTGTYRL	PSEVSAWDILO	KMRGGRPDSV	TVOLLEGSRE	SHMRKV
20	orf7-1	70	80	90	100	110	120
		70	00	30			
		120	140	150	160	170	180 '
		130	KGWSNEKLMAEV	A DOA ESCNDEC			IAYKAM
	orf7a.pep	IDATEDIERDI	KCMSINEVEN	MEDMESGNIEG			11111
25		111111111	KGWSNEKLMAEV				
	orf7-1		KGWSNEKLMAEV	150	160	170	180
		130	140	130	100	1,0	
		100	200	210	220	230	240
		190	QDGLPYKNPYEM	ZIU KT TMA CI TEKET			MRLOTD
30	orf7a.pep	QRRLNEAWESK	ODGPLIEN	IIIIII:III			
		11111111111	QDGLPYKNPYEN				
	orf7-1	QRRLNEAWESK	ODGTELVIALIEN	210	220	230	240
		190	200	210	220	230	
			2.50	270	280	290	300
35		250	260	Z / U			
	orf7a.pep	PSVIYGMGAAY	KGKIRKADLRRI	TPINTITRGG	PETETWER.		
		[]]]]]]]]]	11111111111	[ים של אל און ון ון ון ון פול אל	
	orf7-1		KGKIRKADLRRI	OTPYNTYTKGG.	PLEALLING	290	300
		250	260	270	280	290	300
40							
10		310	320	330			
	orf7a.pep	FVSKMDGTGLS	OFSHOLTEHNA	AVRKYILKKX			
	• •	11111111111	[4] [4] [4] [4] [4]				
	orf7-1	FVSKMDGTGLS	OFSHOLTEHNA	AVRKYILKKX			
45	 · -	310	320	330			•
72							

Homology with a predicted ORF from N.gonorrhoeae

ORF7 shows 94.7% identity over a 187aa overlap with a predicted ORF (ORF7.ng) from N. gonorrhoeae:

	80			
50	orf7	MRGGRPDSVTVQIIEGSRFSHMRKVIDATPDIGHDTKGWSNEKLMAEVAPDAFSGNPEG	1	
	orf7ng	MRGGRPDSVTVQIIEGSRFSHMRKVIDATPDIGHDTKGWSNEKLMAEVAPDAFSGNPEG	Q 60	
	orf7	FFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWESRQDGLPYKNPYEMLIMAXLVEKET	rg 120	
55	orf7ng	FFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWAGRQDGLPYKNPYEMLIMASLIEKET	rg 120	
	orf7	HEAXXDHVASVFVNRLKIGMRLQTXXSVIYGMGAAYKGKIRKADLRRDTPYNTYTRGGI	ł ł	
60	orf7ng	HEADRDHVASVFVNRLKIGMRLQTDPSVIYGMGAAYKGKIRKADLRRDTPYNTYTGGGI	LP 180	
	orf7	PTPIALP	187	

orf7ng PTRIALPGKAAMDAAAHPSGEKYLYFVSKMDGTGLSQFSHDLTEHNAAVRKYILKK 236

An ORF7ng nucleotide sequence <SEQ ID 35> is predicted to encode a protein having amino acid sequence <SEQ ID 36>:

	sequence <seq i<="" th=""><th>D 36>:</th><th>•</th><th>:</th></seq>	D 36>:	•	:
5	51 101 151	MRGGRPDSVT VQIIEGSRFS HMRK DAFSGNPEGQ FFPDSYEIDA GGSD PYKNPYEMLI MASLIEKETG HEAD GMGAAYKGKI RKADLRRDTP YNTY EKYLYFVSKM DGTGLSQFSH DLTE	LQIYQT AYKAMQRRLN EAWA RDHVAS VFVNRLKIGM RLQT TGGGLP PTRIALPGKA AMDA	GRQDGL DPSVIY
10	Further sequence	analysis revealed a partial DI	NA sequence of ORF7ng	<seq 37="" id="">:</seq>
	1 51 101 151	taccgaatca AGATTGCCAA AA ACTTGCcgaA GACCGCATCG TG CCTACGTTTT GGGTGTGCAC AA CCTTCGGAAG TGTCTGCTTG GG	TTCAGCAG GCATGTTTTG AC. CAGGCTGC ATACGGGGAC gT.	AGCGGCGG ACAGATTG
15	201 251 301 351 401	GCCGGATTCC GTTACCGTGC AG TGAGGAAAGT CATCGACGCA AC TGGAGCAATG AAAAACTGAT GG CAATCCTGAA GGGCAGTTTT TT GCAGCGATTT GCAGATTTAC CA	TTTATCGA AGGTTCGCGT TT GCCCGACA TCGGACACGA CA CGGAAGTT GCGCCCGATG CC CCCGACAG CTACGAAATC GA	TTCGCATA CCAAAGGC TTCAGCGG TGCGGGCG
20	451 501 551 601 651	CTGAACGAGG CATGGGCAGG CA TTATGAAATG CTGATTATGG CG AGGCCGACCG CGACCATGTC GC GGTATGCGCC TGCAAACCGA CC ATACAAGGGC AAAATCCGTA AA	GGCAGGAC GGGCTGCCTT AT. AGCCTGAT CGAAAAGGAA AC TTCCGTCT TCGTCAACCG CC CGTCCGTG ATTTACGGCA TG	AAAAACCC GGGGCATG TGAAAATC GGTGCGGC
25	701 751 801 851	aCAccTAtac gggcgggggc tt Aaggcggcaa tggatgccgc cg tttcgtgtcC AAAATGGACG GC TGACCGAACA CAACGCCGCc gT	gccgccaa cccggattgc gc cccacccg tccggcgaAa aa ACGGGCTT GAGCCAGTTC AG	tgcccggC tacctgTa CCATGATT
	This corresponds	to the amino acid sequence <	SEQ ID 38; ORF7ng-1>	
30 35	1 51 101 151 201 251	YRIKIAKNQG ISSVGRKLAE DR PSEVSAWDIL QKMRGGRPDS VT WSNEKLMAEV APDAFSGNPE GQ LNEAWAGRQD GLPYKNPYEM LII GMRLQTDPSV IYGMGAAYKG KII KAAMDAAAHP SGEKYLYFVS KM	VQIIEGSR FSHMRKVIDA TP FFPDSYEI DAGGSDLQIY QT MASLIEKE TGHEADRDHV AS RKADLRRD TPYNTYTGGG LP	DIGHDTKG AYKAMQRR VFVNRLKI PTRIALPG
		RF7-1 show 98.0% identity is		
40	orf7-1.pep orf7ng-1	10 20 KLLKWSAVFLTVSAAVFAALLFV	PKDNGRAYRIKIAKNQGISSVG YRIKIAKNQGISSVG	
			10	20 30
45	orf7-1.pep	70 80 TAAAYVLGVHNRLHTGTYRLPSE TAAAYVLGVHNRLHTGTYRLPSE	VSAWDILQKMRGGRPDSVTVQI 	1111111111111111
	OII/IIg I	40 50	60 70	80 90
50	orf7-1.pep orf7ng-1	130 140 TPDIGHDTKGWSNEKLMAEVAPD. TPDIGHDTKGWSNEKLMAEVAPD. 100 110	AFSGNPEGQFFPDSYEIDAGGS:	11131111111111
55	orf7-1.pep	190 200 LNEAWESRODGLPYKNPYEMLIM	210 220 2: ASLVEKETGHEADRDHVASVFV	30 240 NRLKIGMRLQTDPSV
60	orf7ng-1	LNEAWAGRQDGLPYKNPYEMLIM 160 170	ASLIEKETGHEADRDHVASVFVI 180 190	NRLKIGMRLQTDPSV 200 210

250

260

270

IYGMGAAYKGKIRKADLRRDTPYNTYTRGGLPPTPIALPGKAALDAAAHPSGEKYLYFVS

280

290

```
IYGMGAAYKGKIRKADLRRDTPYNTYTGGGLPPTRIALPGKAAMDAAAHPSGEKYLYFVS
          orf7ng-1
                                                                     260
                                                  240
                                        230
                           310
                                     320
                                               330
5
                       KMDGTGLSQFSHDLTEHNAAVRKYILKKX
          orf7-1.pep
                        111111111111111111111111111111111111
                        KMDGTGLSQFSHDLTEHNAAVRKYILKKX
          orf7ng-1
                                        290
                              280
10
     In addition, ORF7ng-1 shows significant homology with a hypothetical E.coli protein:
          sp|P28306|YCEG_ECOLI HYPOTHETICAL 38.2 KD PROTEIN IN PABC-HOLB INTERGENIC REGION
          gi|1787339 (AE000210) 0340; 100% identical to fragment YCEG_ECOLI SW: P28306 but
          has 97 additional C-terminal residues [Escherichia coli] Length = 340
            Score = 79 (36.2 bits), Expect = 5.0e-57, Sum P(2) = 5.0e-57
15
            Identities = 20/87 (22%), Positives = 40/87 (45%)
                     10 GISSVGRKLAEDRIVFSRHVLTAAAYVLGVHNRLHTGTYRLPSEVSAWDILQKMRGGRPD 69
           Ouery:
                                                           GTYR
                                                                  +++ ++L+ + G+
                                         v
                        G ++G +L D+I+
                     49 GRLALGEQLYADKIINRPRVFQWLLRIEPDLSHFKAGTYRFTPQMTVREMLKLLESGKEA 108
           Sbjct:
20
                     70 SVTVOIIEGSRFSHMRKVIDATPDIGH 96
           Query:
                                       K +
                                             PIH
                           ++++EG R S
                    109 QFPLRLVEGMRLSDYLKQLREAPYIKH 135
           Sbjct:
 25
            Score = 438 (200.7 bits), Expect = 5.0e-57, Sum P(2) = 5.0e-57
            Identities = 84/155 (54%), Positives = 111/155 (71%)
                    120 EGQFFPDSYEIDAGGSDLQIYQTAYKAMQRRLNEAWAGRQDGLPYKNPYEMLIMASLIEK 179
           Query:
                        EG F+PD++ A +D+ + + A+K M + ++ AW GR DGLPYK+ +++ MAS+IEK
 30
                    158 EGWFWPDTWMYTANTTDVALLKRAHKKMVKAVDSAWEGRADGLPYKDKNQLVTMASIIEK 217
           Sbjct:
                    180 ETGHEADRDHVASVFVNRLKIGMRLQTDPSVIYGMGAAYKGKIRKADLRRDTPYNTYTGG 239
           Query:
                             ++RD VASVF+NRL+IGMRLQTDP+VIYGMG Y GK+ +ADL
                                                                          T YNTYT
                     218 ETAVASERDKVASVFINRLRIGMRLQTDPTVIYGMGERYNGKLSRADLETPTAYNTYTIT 277
 35
            Sbjct:
                     240 GLPPTRIALPGKAAMDAAAHPSGEKYLYFVSKMDG 274
            Query:
                         GLPP IA PG ++ AAAHP+
                                                YLYFV+
                     278 GLPPGATATPGADSLKAAAHPAKTPYLYFVADGKG 312
            Sbjct:
 40
```

Based on this analysis, including the fact that the *H.influenzae* YCEG protein possesses a possible leader sequence, it is predicted that the proteins from *N meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 6

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 39>:

```
CGTTTCAAAA TGTTAACTGT GTTGACGGCA ACCTTGATTG CCGGACAGGT
                    ATCTGCCGCC GGAGGCGGTG CGGGGGATAT GAAACAGCCG AAGGAAGTCG
                51
                    GAAAGGTTTT CAGAAAGCAG CAGCGTTACA GCGAGGAAGA AATCAAAAAC
                    GAACGCGCAC GGCTTGCGGC AGTGGGCGAG CGGGTTAATC AGATATTTAC
                151
                    GTTGCTGGGA GGGGAAACCG CCTTGCAAAA GGGGCAGGCG GGAACGGCTC
50
                201
                    TGGCAACCTA TATGCTGATG TTGGAACGCA CAAAATCCCC CGAAGTCGCC
                251
                    GAACGCGCCT TGGAAATGGC CGTGTCGCTG AACGCGTTTG AACAGGCGGA
                301
                    AATGATTTAT CAGAAATGGC GGCAGATTGA GCCTATACCG GGTAAGGCGC
                351
                    AAAAACGGGC GGGGTGGCTG CGGAACGTGC TGAGGGAAAG AGGAAATCAG
                401
                    CATCTGGACG GACGGGAAGA AGTGCTGGCT CAGGCGGACG AAGGACAG
55
```

This corresponds to the amino acid sequence <SEQ ID 40; ORF9>:

- 1 ..RFKMLTVLTA TLIAGQVSAA GGGAGDMKQP KEVGKVFRKQ QRYSEEEIKN 51 ERARLAAVGE RVNQIFTLLG GETALQKGQA GTALATYMLM LERTKSPEVA
- 101 ERALEMAVSL NAFEQAEMIY QKWRQIEPIP GKAQKRAGWL RNVLRERGNQ

151 HLDGREEVLA QADEGQ

Further sequence analysis revealed the complete DNA sequence <SEQ ID 41>:

```
ATGTTACCTA ACCGTTTCAA AATGTTAACT GTGTTGACGG CAACCTTGAT
                51
                    TGCCGGACAG GTATCTGCCG CCGGAGGCGG TGCGGGGGAT ATGAAACAGC
5
               101
                    CGAAGGAAGT CGGAAAGGTT TTCAGAAAGC AGCAGCGTTA CAGCGAGGAA
                    GAAATCAAAA ACGAACGCGC ACGGCTTGCG GCAGTGGGCG AGCGGGTTAA
               151
                    TCAGATATTT ACGTTGCTGG GAGGGGAAAC CGCCTTGCAA AAGGGGCAGG
               201
               251
                    CGGGAACGCC TCTGGCAACC TATATGCTGA TGTTGGAACG CACAAAATCC
               301
                    CCCGAAGTCG CCGAACGCGC CTTGGAAATG GCCGTGTCGC TGAACGCGTT
10
                    TGAACAGGCG GAAATGATTT ATCAGAAATG GCGGCAGATT GAGCCTATAC
               351
                    CGGGTAAGGC GCAAAAACGG GCGGGGTGGC TGCGGAACGT GCTGAGGGAA
               401
                    AGAGGAAATC AGCATCTGGA CGGACTGGAA GAAGTGCTGG CTCAGGCGGA
               451
                    CGAAGGACAG AACCGCAGGG TGTTTTTATT GTTGGCACAA GCCGCCGTGC
               501
                    AACAGGACGG GTTGGCGCAA AAAGCATCGA AAGCGGTTCG CCGCGCGGCG
               551
15
                601
                    TTGAAATATG AACATCTGCC CGAAGCGGCG GTTGCCGATG TGGTGTTCAG
                    CGTACAGGGA CGCGAAAAGG AAAAGGCAAT CGGAGCTTTG CAGCGTTTGG
                651
               701
                    CGAAGCTCGA TACGGAAATA TTGCCCCCCA CTTTAATGAC GTTGCGTCTG
                    ACTGCACGCA AATATCCCGA AATACTCGAC GGCTTTTTCG AGCAGACAGA
                751
                801
                    CACCCAAAAC CTTTCGGCCG TCTGGCAGGA AATGGAAATT ATGAATCTGG
20
                    TTTCCCTGCA CAGGCTGGAT GATGCCTATG CGCGTTTGAA CGTGCTGTTG
                851
                    GAACGCAATC CGAATGCAGA CCTGTATATT CAGGCAGCGA TATTGGCGGC
                901
                    AAACCGAAAA GAAGGTGCTT CCGTTATCGA CGGCTACGCC GAAAAGGCAT
               951
                    ACGGCAGGGG GACGGAGGAA CAGCGGAGCA GGGCGGCGCT AACGGCGGCG
              1001
                    ATGATGTATG CCGACCGCAG GGATTACGCC AAAGTCAGGC AGTGGCTGAA
              1051
25
              1101
                     AAAAGTATCC GCGCCGGAAT ACCTGTTCGA CAAAGGTGTG CTGGCGGCTG
                     CGGCGGCTGT CGAGTTGGAC GGCGGCAGGG CGGCTTTGCG GCAGATCGGC
               1151
                     AGGGTGCGGA AACTTCCCGA ACAGCAGGGG CGGTATTTTA CGGCAGACAA
              1201
                     TTTGTCCAAA ATACAGATGC TCGCCCTGTC GAAGCTGCCC GATAAACGGG
               1251
               1301
                     AGGCTTTGAG GGGGTTGGAC AAGATTATCG AAAAACCGCC TGCCGGCAGT
                     AATACAGAGT TACAGGCAGA GGCATTGGTA CAGCGGTCAG TTGTTTACGA
30
               1351
               1401
                     TCGGCTTGGC AAGCGGAAAA AAATGATTTC AGATCTTGAA AGGGCGTTCA
               1451
                     GGCTTGCACC CGATAACGCT CAGATTATGA ATAATCTGGG CTACAGCCTG
                     CTGACCGATT CCAAACGTTT GGACGAAGGT TTCGCCCTGC TTCAGACGGC
               1501
                     ATACCAAATC AACCCGGACG ATACCGCTGT CAACGACAGC ATAGGCTGGG
               1551
35
                     CGTATTACCT GAAAGGCGAC GCGGAAAGCG CGCTGCCGTA TCTGCGGTAT
               1601
                     TCGTTTGAAA ACGACCCCGA GCCCGAAGTT GCCGCCCATT TGGGCGAAGT
               1651
                     GTTGTGGGCA TTGGGCGAAC GCGATCAGGC GGTTGACGTA TGGACGCAGG
               1701
                     CGGCACACCT TACGGGAGAC AAGAAAATAT GGCGGGAAAC GCTCAAACGT
               1751
                     CACGGCATCG CATTGCCCCA ACCTTCCCGA AAACCTCGGA AATAA
               1801
      This corresponds to the amino acid sequence <SEQ ID 42; ORF9-1>:
40
```

	1	MLPNRFKMLT	VLTATLIAGQ	VSAAGGGAGD	MKQPKEVGKV	FRKQQRYSEE
	51	EIKNERARLA	AVGERVNQIF	TLLGGETALQ	KGQAGTALAT	YMLMLERTKS
	101	PEVAERALEM	AVSLNAFEQA	EMIYQKWRQI	EPIPGKAQKR	AGWLRNVLRE
	151	RGNQHLDGLE	EVLAQADEGQ	NRRVFLLLAQ	AAVQQDGLAQ	KASKAVRRAA
45	201	LKYEHLPEAA	VADVVFSVQG	REKEKAIGAL	QRLAKLDTEI	LPPTLMTLRL
	251	TARKYPEILD	GFFEQTDTQN	LSAVWQEMEI	MNLVSLHRLD	DAYARLNVLL
	301	ERNPNADLYI	QAAILAANRK	EGASVIDGYA	EKAYGRGTEE	QRSRAALTAA
	351	MMYADRRDYA	KVRQWLKKVS	APEYLFDKGV	LAAAAAVELD	GGRAALRQIG
	401	RVRKLPEQQG	RYFTADNLSK	IQMLALSKLP	DKREALRGLD	KIIEKPPAGS
50	451	NTELQAEALV	QRSVVYDRLG	KRKKMISDLE	RAFRLAPDNA	QIMNNLGYSL
	501	LTDSKRLDEG	FALLQTAYQI	NPDDTAVNDS	IGWAYYLKGD	AESALPYLRY
	551	SFENDPEPEV	AAHLGEVLWA	LGERDQAVDV	WTQAAHLTGD	KKIWRETLKR
	601	HGTALPOPSR	KPRK*	-		

Computer analysis of this amino acid sequence gave the following results:

55 Homology with a predicted ORF from N. meningitidis (strain A)

ORF9 shows 89.8% identity over a 166aa overlap with an ORF (ORF9a) from strain A of N. meningitidis:

		10	20	30	40	50
	orf9.pep	RFKMLTVLTATLIAG	QVSAAGGG!	AGDMKQPKEVG	KVFRKQQRYS	EEEIKNERARLA
60	•	: : : : :				
	orf9a	MLPARFTILSVLAAALLAG	QayaaGi	aadakppkevg:	KVFRKQQRYS	EEEIKNERARLA

		10	20	30	10 50
		60 70	80	90	100 110
	orf9.pep	PARCEDINIOT PUT I CCETT	LOKGQAGTALA	YMLMLERTKS	PEVAERALEMAVSLNAFEQA
5		AVGERVNOTETLIGXETA		[]]]]]]]] [YMLMLERTKS]	
	orf9a	60 70	80	90 1	00 110
		120 130	140	150	160
10	orf9.pep	EMTYOKWROTEPTPGKA(OKRAGWLRNVLR	ERGNOHLDGRE	EVLAQADEGQ
				{	EXLAQADEXQNRRVFLLLAQ
	orf9a	120 130	140	150 1	60 170
		A AMOODET, A OKA SKAVRI	RAALRYEHLPEA	AVADVVFSVQX	REKEKAIGALQRLAKLDTEI
15	orf9a	180 190	200	210 2	20 230
	The complete ler	ngth ORF9a nucleotide	sequence <si< th=""><th>EQ ID 43> is</th><th>s:</th></si<>	EQ ID 43> is	s:
	The complete for				
	1	ATGTTACCCG CCCGTTTCA TGCCGGGCAG GCGTATGCC	C CATTTTATCT	GTGCTCGCGG	CAGCCCTGCT CCGCCGAAGG
20	51 101	AACTCCCAAA CCTTTTCAG	A AAGCAGCAGC	GTTACAGCGA	GGAAGAAATC
20	151	ANADACCAAC GCGCACGGC	T TGCGGCAGTG	GGCGAGCGGG	TTAATCAGAT
	201	ATTTACGTTG CTGGGANGG	G AAACCGCCTI	GCAAAAGGGG	CAGGCGGAA
	251	CGGCTCTGGC AACCTATAT GTCGCCGAAC GCGCCTTGG	G CTGATGTTGC	TCNCTGAAC	CGTTTGAACA
25	301 351	CCCCCNNNTC ATTTATCAG	A AATGGCGGC	A GATTGAGCC'	' ATACCGGGTA
25	401	ACCCCCANAN ACCCCCCCCC	C TGGCTGCGG	A ACGTGCTGAG	G GGAAAGAGGA
	451	AAMCACCAMC TAGACGGAC	T GGAAGAANTO	CTGGCTCAG	3 CGGACGAANG
	501	ACAGAACCGC AGGGTGTTT ACGGGTTGGC GCAAAAAGC	TATTGTTGGC	TTCGCCGCG	GGCGTTGAGA
20	551 601	MARCAACATC TCCCCGAAC	C GGCGGTTGC	C GATGTGGTG	r TCAGCGTACA
30	651	COMPCCCCAN AAGCAAAA	CAATCGGAG	C TTTGCAGCG	I TTGGCGAAGC
	701	MOCAMACCCA AATATTCCC	CCCACTTTA	A TGACGTTGC	G TCTGACTGCA
	751	CGCAAATATC CCGAAATAC AAACCTTTCG GCCGTCTGC	CT CGACGGCTT	I TICGAGCAGA A ARTTATGAA	T CTGGTTTCCC
25	801 851	MCCACACCCT CCATCATC	CC TATGCGCGT	T TGAACGTGC	T GTTGGAACGC
35	901	ANTICCONNUC CACACCTG	TA TATTCAGGC	A GCGATATTG	G CGGCAAACCG
	951	ススススクススパクの ここの中でごこので	TA TOGACGGCT	a cgccgaaaa	G GCATACGGCA
	1001	GGGGGACGG GGAACAGC TATGCCGACC GAAGGGAT	TA CACCAAAGT	C AGGCAGTGG	T TGAAAAAGI
40	1051 1101	CHCCCCCCCC CDATACCT	GT TCGACAAAG	G TGTGCTGGC	G GCTGCGGCGG
70	1151	CONCORCEA COME CONCOR	GC AGGGCGGCT	T TGCGGCAGA	T CGGCAGGGTG
	1201	CGGAAACTTC CCGAACAG CAAAATACAG ATGTTCGC	CA GGGGCGGTA	T TTTACGGCA	A CGGGAGGCTT
	1251 1301	MCACCCCCTT CCACAACA	ጥጥ አጥርርልእልጹ	C CGCCTGCCG	G CAGTAATACA
45	1351	CACHRACACC CACACCCA	TT GGTACAGCG	G TCAGTTGTI	T ACGATCGGCT
73	1401	TECENACECE AAAAAAT	GA TTTCAGATO	T TGAAAGGC	G TTCAGGCTTG
	1451	CACCCGATAA CGCTCAGA GATTCCAAAC GTTTGGAC	TT ATGAATAAT	C TEGECTACE	A CGGCATACCA
	1501 1551	A BECARCEC CACCATAC	YCG CTGTCAACG	A CAGCATAGO	C TGGGCGTATT
50	1601	ACCREATANCE CEACECES	AA AGCGCGCTC	C CGTATCTG	CG GTATTCGTTT
30	1651	GAAAACGACC CCGAGCCC	'GA AGTTGCCGC	C CATTTGGG	G AMGIGIIGIG
	1701	GGCATTGGGC GAACGCGA ACCTTACGGG AGACAAGA	ATC AGGCGGIIG	G AAACGCTC	AA ACGTCACGGC
	1751 1801	ATCGCATTGC CCCAACCT	TC CCGAAAAC	T CGGAAATA	Ą
	This amondos o	protein having amino a	acid sequence	<seo 44<="" id="" th=""><th>4>:</th></seo>	4> :
55	i ms encodes a				
	1	MLPARFTILS VLAAALL	AGO AYAAGAADI	AK PPKEVGKV	FR KQQRYSEEEI
	51		FTL LGXETALQ	KG QAGTALAT	AG WLRNVLRERG
	101 151	MOUT DOT FEY LACADEX	ONR RVFLLLAO	AA VQQDGLAQ	KA SKAVKKAALK
60	201	VEUT DEANUA DUMESUO	KRE KEKAIGAL	OR LAKLDTEI	LP PTLMTLRLTA
UU	251	DEVERTINGE EFOTOTO	NIS AVWOEMEI	MN LVSLHRLD	DA YARLNVLLER
	301	NPNADLYIQA AILAANRI YADRRDYTKV RQWLKKV	KEX ASVIDGYA KEX ASVIDGYA	EK AIGKGTGE Ta aaaaveta	XG RAALROIGRV
	401	DELDECOCON ETADNIS	KTO MFALSKLP	DK REALKGLU	KI IERPPAGSNI
65	453	ETONENTUOD SUMYDRU	CKR KKMISDLE	RA EKLAPUNA	OI MUNICIONDO
0,5	501	DOKOT DECEN T.T.OTAYO	TNP DDTAVNDS	IG WAYYLKXU	AE SALPILKISE
	551	ENDPEPEVAA HLGEVLW	ATC EKDÖVADA	MI ÖWWUDIGD	THE THEM SHIPMED

601 IALPQPSRKP RK*

ORF9a and ORF9-1 show 95.3% identity in 614 aa overlap:

5	orf9a.pep	10 20 30 40 50 MLPARFTILSVLAAALLAGQAYAAGAADAKPPKEVGKVFRKQQRYSEEEIKNERARLA
	orf9-1	MLPNRFKMLTVLTATLIAGOVSAAGGGAGDMKQPKEVGKVFRKQQRYSEEEIKNERARLA 10 20 30 40 50 60
10	orf9a.pep	60 70 80 90 100 110 AVGERVNQIFTLLGXETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFEQA
15	orf9-1	AVGERVNQIFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFEQA 70 80 90 100 110 120 120 130 140 150 160 170
•	orf9a.pep	120 130 140 150 160 170 EMIYQKWRQIEPIPGKAQKRAGWLRNVLRERGNQHLDGLEEXLAQADEXQNRRVFLLLAQ
20	0223	130 140 150 160 170 180 180 190 200 210 220 230
25	orf9a.pep	AAVQQDGLAQKASKAVRRAALRYEHLPEAAVADVVFSVQXREKEKAIGALQRLAKLDTEI
30	orf9a.pep	240 250 260 270 280 290 LPPTLMTLRLTARKYPEILDGFFEQTDTQNLSAVWQEMEIMNLVSLHRLDDAYARLNVLL
35	orf9a.pep	300 310 320 330 340 350 ERNPNADLYIQAAILAANRKEXASVIDGYAEKAYGRGTGEQRGRAAMTAAMIYADRRDYT
40	orf9a.pep	360 370 380 390 400 410 KVRQWLKKVSAPEYLFDKGVLAAAAAVELDXGRAALRQIGRVRKLPEQQGRYFTADNLSK
45	orf9-1	KVRQWLKKVSAPEYLFDKGVLAAAAAVELDGGRAALRQIGRVRKLPEQQGRYFTADNLSK 370 380 390 400 410 420
	orf9a.pep	420 430 440 450 460 470 IQMFALSKLPDKREALRGLDKIIEKPPAGSNTELQAEALVQRSVVYDRLGKRKKMISDLE :
50		430 440 450 460 470 480 480 490 500 510 520 530
55	orf9a.pep	RAFRLAPDNAQIMNNLGYSLLSDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLKXD
60	orf9a.pep	540 550 560 570 580 590 AESALPYLRYSFENDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLTGDKKIWRETLKR
65	orf9a.pep	600 610 HGIALPQPSRKPRKX HGIALPQPSRKPRKX 610

Homology with a predicted ORF from N.gonorrhoeae

ORF9 shows 82.8% identity over a 163aa overlap with a predicted ORF (ORF9.ng) from N. gonorrhoeae:

_	Orf9	RFKMLTVLTATLIAGQVSAAGGGAGDMKQPKEVGKVFRKQQRYSEEEIKNERAR	54
5	orf9ng	MIMLPARFTILSVLAAALLAGQAYAAGAADVELPKEVGKVLRKHRRYSEEEIKNERAR	58
	orf9	LAAVGERVNQIFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFE	114
10	orf9ng		118
10	Offsing	QAEMIYQKWRQIEPIPGKAQKRAGWLRNVLRERGNQHLDGREEVLAQADEGQ	166
	orf9	[178
	orf9ng	QAEMIYQKWRQIEPIPGEAQKPAGWLRNVLKEGGNPHLDRLEEVPAQSDYVHQPMIFLLL	110

The ORF9ng nucleotide sequence <SEQ ID 45> was predicted to encode a protein having including acid sequence <SEQ ID 46>:

```
1 MIMLPARFTI LSVLAAALLA GQAYAAGAAD VELPKEVGKV LRKHRRYSEE
51 EIKNERARLA AVGERVNRVF TLLGGETALQ KGQAGTALAT YMLMLERTKS
101 PEVAERALEM AVSLNAFEQA EMIYQKWRQI EPIPGEAQKP AGWLRNVLKE
151 GGNPHLDRLE EVPAQSDYVH QPMIFLLLVQ AAVQHGGVAQ KPSKAVRPAA
201 YNYEVLPETA GADAVFCVQG PQYEKAIQSF PPCGRNPQTE NIAPPFNELF
251 RPTARPISPK LLQRFFRTEP NLAKPFRPPG PEMETYQTGF PRPLTRNNPT
```

Amino acids 1-28 are a putative leader sequence, and 173-189 are predicted to be a transmembrane domain.

25 Further sequence analysis revealed the complete length ORF9ng DNA sequence <SEQ ID 47>:

	•					
	1	ATGTTACCCG	CCCGTTTCAC	TATTTTATCT	GTCCTCGCAG	CAGCCCTGCT
	51	TCCCCCACAC	CCCTATCCTG	CCGGCGCGGC	GGATGTGGAG	CIGCCGAAGG
	101	A A CTCCCA A A	CCTTTTAAGG	AAACATCGGC	GTTACAGCGA	GGAAGAAATC
	151	****	CCCCACGCCT	TGCGGCAGTG	GGCGAACGGG	TCAACAGGGT
20	201	CTTTTTCCCTC	TTGGGCGGTG	AAACGGCTTT	GCAGAAAGGG	CAGGCGGAA
30	251	CCCCTCTCCC	ADCCTATATG	CTGATGTTGG	AACGCACAAA	ATCCCCCGAA
	301	CTCCCCCAAC	GCGCCTTGGA	AATGGCCGTG	TCGCTGAACG	CGTTTGAACA
	351	CCCCCAAATC	ATTTATCAGA	AATGgcggca	gatcgagcct	ataccgggtg
	401		acca@caaaG	taactacaaa	acqtattqaa	ggaaggguua
35	451	MCACCAMC	TCCAcaaatt	пааапаппТС	CtggcgcaAT	cqqacyatu
33	501	CC3 3 3 3 3 3 6 6 6	$\Delta \alpha \sim \Delta \Phi \Phi$	TGCTGCTGGT	GCAAGCCGCC	Grecageagg
	551	~mccccmccc	ጥሮልልልልልፎሮል	TCGAAAGCGG	TTCGCCqcqc	GGCGCCGano
	601	MARCA ACARC	TCCCccaacc	aacaaTTGCC	GATGCGGTGT	TCGGCGTACA
	651	CCCTCCCCTT	AACCAAAAA	CaaTCGAAGC	TTTGCAGCGT	I I GGCGWWGC
40	701	ポククカ サカクククス	AATATTGCCC	CCCACTTTAA	TGACGTTGCG	TCTGACTGCA
40	751	ርርርአአአመ መውር	CCCAAATACT	CGACGGCTTT	TTCGAGCAGA	CAGACACCCCA
	801	አአአሮርምምምርር	CCCGTCTGGC	AGGAAATGGA	AATTATGAAT	CTGGTTTCCC
	851	mcccmxxccc	CCATCATCCC	TATGCGCGTT	TGAACGTGCT	GTTGGAACAC
	901	እ አ CCCC እ እጥር	CANACCTGTA	TATTCAGGCG	GCGATATTGG	CGGCAAACCG
45	951	AAAACAACCT	CCCTCCGTTA	TCGACGGCTA	CGCCGAAAAG	GCATACGGCA
43	1001	CCCCCACCCC	CCNACACCGG	GGCagggggg	CAATGaCGGC	GGCGATGATA
	1051	中かなこととといって	CCAGGGATTA	CGCCAAAGTC	AGGCAGTGGT	TGAMAMAGI
	1101	CTCCCCCCCCC	CANTACCTGT	TCGACAAAGG	CGTGCTGGCG	GCTGCGGCGG
	1151	ርጥርርርርስ አጥጥ	GGACGGAGGC	CGGGCGGCTT	TGCGGCAGAT	CGGCAGGGTG
50	1201	CCCDDDCTTC	CCGAACAGCA	GGGGCGGTAT	TTTACGGCAG	ACAATTTGTC
J U	1251	CANAMTACAC	ATCCTCGCCC	TGTCGAAGCT	GCCCGACAAA	CGGGAAGCCC
	1301	THE ATTECC C C CTT	CAACAACATC	: ATCGCCAAAC	TTTCGGCGGC	GGGAAGCACG
	1351	CA A COMMUNICO	· CCCAACCATT	GGCACAGCGT	TCCATTATTT	ACGARCAGIT
	1401	~~~~~~~~~~~~	CCAAAAATGA	\ TTGCCGACCT	tgaAACCGCG	CICAAACTIA
EE	1451	CCCCCCATA	TTAGATACA	' ATGAATAATC	TGGGCTACAG	CCTGCTTTCC
55	1501	CAMMCCAAAC	CTTTGGACGA	\ GGGTTTCGCC	CTGCTTCAGA	CGGCATACCA
	1551	3 3 m C 3 3 C C C C	· «አሮርልጥልሮርር	CCGTTAACGA	CAGCATAGGC	TGGGCGIAII
	1601	カククのクスカカクグ	CGDCgcgga7	A AGCGCGCTGC	CGTATCIGCG	gtattegttt
	1651	GAAAACGACG	CCGAGCCCGA	AGTTGCCGCC	CATTTGGGCG	AAGTGTTGTG
	TOOT	3				

		•			·		
	1751 A	SCATTGGGC GAACG	AGAAA ATATG	GCGGG AGACG	CTCAA ACGCT		
		regeettee eegag				•	
	This encodes a pro	tein having amii	no acid seque	nce <seq i<="" th=""><th>D 48>:</th><th></th><th>:</th></seq>	D 48>:		:
5	51 Ki 101 V	LPARFTILS VLAAF NERARLAAV GERVN AERALEMAV SLNAE	RVFTL LGGET. FEQAEM IYQKW	ĀLQKG QAGTA RQIEP IPGEA	LATYM LMLER! QKPAG WLRNV!	TKSPE LKEGG	
	201 Y	DHLDGLKEV LAQSE EHLPEAAVA DAVFO	VQGRE KEKAI	EALQR LAKLD	TEILP PTLMT	LRLTA	
10	301 N 351 Y	KYPEILDGF FEQTI PNANLYIQA AILA <i>F</i> ADRRDYAKV RQWLF KLPEQQGRY FTADN	NRKEG ASVID	GYAEK AYGRG KGVLA AAAAA	TGEQR GRAAM ELDGG RAALR	TAAMI QIGRV	
15	451 E 501 D 551 E	PLAEALAOR SIIYE SKRLDEGFA LLOT <i>E</i> NDPEPEVAA HLGEV ALPEPSRKP RK*	OFGKR GKMIA	DLETA LKLTP NDSIG WAYYI	DNAQI MNNLG KGDAE SALPY	YSLLS LRYSF	•
	ORF9ng and ORF		identity in 6	14 aa overla	p:		
		10	20	30	40	50	60
20	orf9-1.pep	MLPNRFKMLTVLT	TATLIAGQVSAA	GGGAGDMKQPK	EVGKVFRKQQR	YSEEEIKN	ERARLA
	orf9ng-1	MLPARFTILSVLA					
25	orf9-1.pep	70 AVGERVNQIFTLI	ECETALORGOA	90 CTAT ATVMI MI	100	110	120
	orf9ng-1		шинійні	H1111111111	111111111111	шніі	111111
30	Off Sing 1	60 70	80	90	100	110	MATEUM
30		130	140	150	160	170	180
	orf9-1.pep	EMIYQKWRQIEP:	HI: IÎI 3111	1111:1-1111	1111:11111:	1: Ī:H:	1111: Ĩ
35	orf9ng-1	EMIYQKWRQIEP 120 130	PGEAQKPAGWL 140	RNVLKEGGNQH 150	160	DDVQKRRI: 170	FLLLVQ
	orf9-1.pep	190 AAVQQDGLAQKAS	200 SKAVRRAALKYE	210 HLPEAAVADVV	220	230	240 KLDTEI
40	orf9ng-1	: AAVQQGGVAQKAS	[]]]	111111111111	1:11111111	ПППП	111111
70	Off sing 1	180 190	200	210	220	230	REDIEL
	orf9-1.pep	250 LPPTLMTLRLTAI	260 RKYPEILDGFFE	270 QTDTQNLSAVW	280 QEMEIMNLVSL	290 HRLDDAYA	300 RLNVLL
45	orf9ng-1						
		240 250	260	270	280	290	
50	orf9-1.pep	310 ERNPNADLYIQA					
	orf9ng-1	: : EHNPNANLYIQA 300 310					
55	•	370		. 390		410	400
33	orf9-1.pep	KVROWLKKVSAPI		AAVELDGGRAA		EQQGRYFT.	
	orf9ng-1	KVRQWLKKVSAPI	EYLFDKGVLAAA 380	AAAELDGGRAA 390	LRQIGRVRKLP	EQQGRYFT	ADNLSK
60					400	410	
	orf9-1.pep	430 IQMLALSKLPDKI	440 REALRGLDKIIE				
65	orf9ng-1		:: REALIGLNNIIA 440	::: KLSAAGSTEPI 450	: :: .AEALAQRSIIY 460	::: EQFGKRGK 470	: MIADLE
UJ.	•	490	500	510	520	530	540

```
RAFRLAPDNAQIMNNLGYSLLTDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLKGD
                      orf9-1.pep
                     TALKLTPDNAQIMNNLGYSLLSDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLKGD
         orf9ng-1
                                                                530
                                                       520
                                      500
                             490
                    480
5
                                             570
                                                      580
                                    560
                     AESALPYLRYSFENDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLTGDKKIWRETLKR
                     orf9-1.pep
                     AESALPYLRYSFENDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLRGDKKIWRETLKR
         orf9ng-1
                                               570
                                                       580
                                      560
                             550
                    540
10
                            610
                     HGIALPQPSRKPRKX
         orf9-1.pep
                     :111111:11111111
                     YGIALPEPSRKPRKX
15
         orf9ng-1
                             610
                     600
     In addition, ORF9ng shows significant homology with a hypothetical protein from P.aeruginosa:
          sp|P42810|YHE3_PSEAE HYPOTHETICAL 64.8 KD PROTEIN IN HEMM-HEMA INTERGENIC REGION
          >gi|1072999|pir||S49376 hypothetical protein 3 - Pseudomonas aeruginosa >gi|557259
          (X82071) orf3 [Pseudomonas aeruginosa] Length = 576
20
           Score = 128 bits (318), Expect = 1e-28
           Identities = 138/587 (23%), Positives = 228/587 (38%), Gaps = 125/587 (21%)
          Query: 67 VFTLLGGETALQKGQAGTALATYMLMLERTKSPEVAERALEMAVSLNAFEQAEMIYQKWR 126
          +++LL E A Q+ + AL+ Y++ ++T+ P V+ERA +A L A ++A W
Sbjct: 53 LYSLLVAELAGQRNRFDIALSNYVVQAQKTRDPGVSERAFRIAEYLGADQEALDTSLLWA 112
25
          Query: 127 QIEPIPGEAQKPAG------WLRNVLKEGGNQHLDGLKEVLAQSDDVQKRRI 172
                                   ++ VL G+ H D L
                     + P +AQ+ A
          Sbjct: 113 RSAPDNLDAQRAAAIQLARAGRYEESMVYMEKVLNGQGDTHFDFLALSAAETDPDTRAGL 172
 30
          KY + + A+ Q ++A+ L+ +
                                     ++
           Sbjct: 173 L----QSFDHLLKKYPNNGQLLFGKALLLQQDGRPDEALTLLEDNS 214
 35
           Query: 233 KLDTEILPPTLMTLRLTARK-----YPEILDGFFEQTDTQNLSAVWQEMEIMNLVSLRKP 287
                                          P + G E D + + + LV
                        E+ P L + L + K
           Sbjct: 215 ASRHEVAPLLLRSRLLQSMKRSDEALPLLKAGIKEHPDDKRVRLAYARL---LVEQNRL 270
           Query: 288 DDAYARLNVLLEHNPN----- 312
 40
                                                     A +Y++ +
                            L++ P+
           Sbjct: 271 DDAKAEFAGLVQQFPDDDDDLRFSLALVCLEAQAWDEARIYLEELVERDSHVDAAHFNLG 330
           Query: 313 -LAANRKEGASVIDGYAEKAYGRGTGEQRGRAAMTAAMIYADRRDYAKVRQWLKKVSAPE 371
           LA +K+ A +D YA+ G G + T ++ A R D A R + P+
Sbjct: 331 RLAEEQKDTARALDEYAQ--VGPGNDFLPAQLRQTDVLLKAGRVDEAAQRLDKARSEQPD 388
  45
           A L I+ ALS
            Y A L 1+ ALS +
Sbjct: 389 Y-----AIQLYLIEAEALSNNDQQE 408
  50
            Query: 432 EALIGLNNIIAKLSAAGSTEPLAEALAQRSIIYEQFGKRGKMIADLETALKLTPDNAQIM 491
                     +A + + + E L L RS++ E+
                                                      +M DL + PDNA +
            Sbjct: 409 KAWQAIQEGLKQYP----EDL-NLLYTRSMLAEKRNDLAQMEKDLRFVIAREPDNAMAL 462
  55
            Query: 492 NNLGYSLLSDSKRLDEGFALLQTAYQINPDDTAVNDSIGWAYYLKGDAESALPYLRYSFE 551
                      N LGY+L + R E L+ A+++NPDD A+ DS+GW Y +G A YLR + +
            Sbjct: 463 NALGYTLADRTTRYGEARELILKAHKLNPDDPAILDSMGWINYRQGKLADAERYLRQALQ 522
            Query: 552 NDPEPEVAAHLGEVLWALGERDQAVDVWTQAAHLRGDKKIWRETLKR 598
  60
                        P+ EVAAHLGEVLWA G + A +W + + D + R T+KR
            Sbjct: 523 RYPDHEVAAHLGEVLWAQGRQGDARAIWREYLDKQPDSDVLRRTIKR 569
             gi|2983399 (AE000710) hypothetical protein [Aquifex aeolicus] Length = 545
   65
             Score = 81.5 bits (198), Expect = 1e-14
             Identities = 61/198 (30%), Positives = 98/198 (48%), Gaps = 19/198 (9%)
             Query: 408 GRYFTADNL-SKIQMLALSKLPDKREALIGLNNIIAKLSAAGSTEPLAEALAQ----- 459
                                        PDK+E L + +K
                      GYALK++LA
   70
```

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 7

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 49>:

```
AACCTCTACG CCGGCCCGCA GACCACATCC GTCATCGCAA ACATCGCCGA
20
                51
                    CAACCTGCAA CTGGCCAAAG ACTACGGCAA AGTACACTGG TTCGCCTCCC
               101
                    CGCTCTTCTG GCTCCTGAAC CAACTGCACA ACATCATCGG CAACTGGGGC
                    TGGGCGATTA TCGTTTTAAC CATCATCGTC AAAGCCGTAC TGTATCCATT
               151
                    GACCAACGCC TCTTACCGCT CTATGGCGAA AATGCGTGCC GCCGCACCCA
               201
                    AACTGCAAGC CATCAAAGAG AAATACGGCG ACGACCGTAT GGCGCAACAA
               251
25
               301
                    CAGGCGATGA TGCAGCTTTA CACAGACGAG AAAATCAACC CGaCTGGGCG
                    GCTGCCTGCC TATGCTGTTG CAAATCCCCG TCTTCATCGG ATTGTATTGG
               351
                    GCATTGTTCG CCTCCGTAGA ATTGCGCCAG GCACCTTGGC TGGGTTGGAT
                401
                    TACCGACCTC AGCCGCGCG ACCCCTACTA CATCCTGCCC ATCATTATGG
                451
                501
                    CGGCAACGAT GTTCGCCCAA ACTTATCTGA ACCCGCCGCC GACCGACCCG
30
                    ATGCagGCGA AAATGATGAA AATCATGCCG TTGGTTTTCT CsGwCrTGTT
                    CTTCTTCTTC CCTGCCGGks TGGTATTGTA CTGGGTAGTC AACAACCTCC
                601
                651 TGACCATCGC CCAGCAATGG CACATCAACC GCAGCATCGA AAAACAACGC
                701 GCCCAAGGCG AAGTCGTTTC CTAA
```

This corresponds to the amino acid sequence <SEQ ID 50; ORF11>:

```
1 ..NLYAGPQTTS VIANIADNLQ LAKDYGKVHW FASPLFWLLN QLHNIIGNWG
51 WAIIVLTIIV KAVLYPLTNA SYRSMAKMRA AAPKLQAIKE KYGDDRMAQQ
101 QAMMQLYTDE KINPLGGCLP MLLQIPVFIG LYWALFASVE LRQAPWLGWI
151 TDLSRADPYY ILPIIMAATM FAQTYLNPPP TDPMQAKMKK IMPLVFSXXF
201 FFFPAGXVLY WVVNNLLTIA QQWHINRSIE KQRAQGEVVS *
```

40 Further sequence analysis revealed the complete DNA sequence <SEQ ID 51>:

	1	ATGGATTTTA	AAAGACTCAC	GGCGTTTTTC	GCCATCGCGC	TGGTGATTAT
	51	GATCGGCTGG	GAAAAGATGT	TCCCCACTCC	GAAGCCAGTC	CCCGCGCCCC
	101	AACAGGCAGC	ACAACAACAG	GCCGTAACCG	CTTCCGCCGA	AGCCGCGCTC
	151	GCGCCCGCAA	CGCCGATTAC	CGTAACGACC	GACACGGTTC	AAGCCGTCAT
45	201	TGATGAAAAA	AGCGGCGACC	TGCGCCGGCT	GACCCTGCTC	AAATACAAAG
	251	CAACCGGCGA	CGAAAATAAA	CCGTTCATCC	TGTTTGGCGA	CGGCAAAGAA
•	301	TACACCTACG	TCGCCCAATC	CGAACTTTTG	GACGCGCAGG	GCAACAACAT
	351	TCTAAAAGGC	ATCGGCTTTA	GCGCACCGAA	AAAACAGTAC	AGCTTGGAAG
	401	GCGACAAAGT	TGAAGTCCGC	CTGAGCGCGC	CTGAAACACG	CGGTCTGAAA
50	451	ATCGACAAAG	TTTATACTTT	CACCAAAGGC	AGCTATCTGG	TCAACGTCCG
	 501	CTTCGACATC	GCCAACGGCA	GCGGTCAAAC	CGCCAACCTG	AGCGCGGACT
	551	ACCGCATCGT	CCGCGACCAC	AGCGAACCCG	AGGGTCAAGG	TTACTTTACC
	601	CACTCTTACG	TCGGCCCTGT	TGTTTATACC	CCTGAAGGCA	ACTTCCAAAA
	651	AGTCAGCTTT	TCCGACTTGG	ACGACGATGC	CAAATCCGGC	AAATCCGAGG
55	701	CCGAATACAT	CCGCAAAACC	CCGACCGGCT	GGCTCGGCAT	GATTGAACAC
	751	CACTTCATGT	CCACCTGGAT	TCTCCAACCT	AAAGGCAGAC	AAAGCGTTTG
	801	CGCCGCAGGC	GAGTGCAACA	TCGACATCAA	ACGCCGCAAC	GACAAGCTGT
	851	ACAGCACCAG	CGTCAGCGTG	CCTTTAGCCG	CCATCCAAAA	CGGCGCGAAA
	901	GCCGAAGCCT	CCATCAACCT	CTACGCCGGC	CCGCAGACCA	CATCCGTCAT
60	951	CGCAAACATC	GCCGACAACC	TGCAACTGGC	CAAAGACTAC	GGCAAAGTAC

	1001 1051 1101 1151	ATCGGCAACT CGTACTGTAT	CTCCCCGCTC GGGGCTGGGC CCATTGACCA ACCCAAACTG	GATTATCGTT ACGCCTCTTA	TTAACCATCA CCGCTCTATG	TCGTCAAAGC GCGAAAATGC
5	1201 1251 1301	CGTATGGCGC CAACCCGCTG TCGGATTGTA	AACAACAGGC GGCGGCTGCC TTGGGCATTG	GATGATGCAG TGCCTATGCT TTCGCCTCCG	CTTTACACAG GTTGCAAATC TAGAATTGCG	ACGAGAAAAT CCCGTCTTCA CCAGGCACCT
10	1351 1401 1451 1501	GCCCATCATT CGCCGACCGA	GGATTACCGA ATGGCGGCAA CCCGATGCAG TGTTCTTCTT	CGATGTTCGC GCGAAAATGA	CCAAACTTAT TGAAAATCAT	CTGAACCCGC GCCGTTGGTT
	1551 1601	AGTCAACAAC	CTCCTGACCA ACGCGCCCAA	TCGCCCAGCA	ATGGCACATC	AACCGCAGCA

This corresponds to the amino acid sequence <SEQ ID 52; ORF11-1>:

```
MDFKRLTAFF AIALVIMIGW EKMFPTPKPV PAPQQAAQQQ AVTASAEAAL
15
                     APATPITVTT DTVQAVIDEK SGDLRRLTLL KYKATGDENK PFILFGDGKE
                 51
                     YTYVAQSELL DAQGNNILKG IGFSAPKKQY SLEGDKVEVR LSAPETRGLK
                101
                     IDKVYTFTKG SYLVNVRFDI ANGSGQTANL SADYRIVRDH SEPEGQGYFT
                151
                     HSYVGPVVYT PEGNFQKVSF SDLDDDAKSG KSEAEYIRKT PTGWLGMIEH
                201
                     HFMSTWILQP KGRQSVCAAG ECNIDIKRRN DKLYSTSVSV PLAAIQNGAK
20
                251
                     AEASINLYAG PQTTSVIANI ADNLQLAKDY GKVHWFASPL FWLLNQLHNI
                301
                     IGNWGWAIIV LTIIVKAVLY PLTNASYRSM AKMRAAAPKL QAIKEKYGDD
                     RMAQQQAMMQ LYTDEKINPL GGCLPMLLQI PVFIGLYWAL FASVELRQAP
                401
                     WLGWITDLSR ADPYYILPII MAATMFAQTY LNPPPTDPMQ AKMMKIMPLV
                451
                     FSVMFFFFPA GLVLYWVVNN LLTIAQQWHI NRSIEKQRAQ GEVVS*
25
                501
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a 60kDa inner-membrane protein (accession P25754) of *Pseudomonas putida* ORF11 and the 60kDa protein show 58% aa identity in 229 aa overlap (BLASTp).

```
LYAGPQTTSVIANIADNLQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAIIVLTIIVK 61
          ORF11
                     LYAGP+ S + ++ L+L DYG + + A P+FWLL +H+++GNWGW+IIVLT+++K
30
                 324 LYAGPKIQSKLKELSPGLELTVDYGFLWFIAQPIFWLLQHIHSLLGNWGWSIIVLTMLIK 383
          60K
                     AVLYPLTNASYRSMAKMRAAAPKLQAIKEKYGDDRXXXXXXXXXLYTDEKINPLGGCLPM 121
          ORF11
                                                                 LY EKINPLGGCLP+
                       + +PL+ ASYRSMA+MRA APKL A+KE++GDDR
                 384 GLFFPLSAASYRSMARMRAVAPKLAALKERFGDDRQKMSQAMMELYKKEKINPLGGCLPI 443
35
           60K
                 122 LLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTYLNPPPT 181
           ORF11
                      L+Q+PVF+ LYW L SVE+RQAPW+ WITDLS DP++ILPIIM ATMF Q LNP P
                  444 LVQMPVFLALYWVLLESVEMRQAPWILWITDLSIKDPFFILPIIMGATMFIQQRLNPTPP 503
           60K
40
                 182 DPMQAKMMKIMPLVXXXXXXXPAGXVLYWVVNNLLTIAQQWHINRSIE 230
           ORF11
                                            PAG VLYWVVNN L+I+QQW+I R IE
                      DPMQAK+MK+MP++
                  504 DPMQAKVMKMMPIIFTFFFLWFPAGLVLYWVVNNCLSISQQWYITRRIE 552
           60K
```

45 Homology with a predicted ORF from N. meningitidis (strain A)

ORF11 shows 97.9% identity over a 240aa overlap with an ORF (ORF11a) from strain A of N. meningitidis:

					10	20	30
orfll.pep				NLYAGPQ			KVHW
022227				1111111	,,,,,,,,,,	, , , , , , , ,	1111
orflla	IKRRNDKLY	STSVSVPI	AAIQNGAKSX	ASINLYAGPQ	TTSVIANIAD	NLQLXKDYG	KVHW
011-1-	280	290	300	310	320	330	
	4	10	50	60	70	80	90
orfli nen	FASPLEWLI	NOLHNII	NWGWAIIVLT	IIVKAVLYPL	TNASYRSMAK	MRAAAPKLQ	AIKE
Offir-beb	111111111			111111111	111111111	41111111	1111
orf11a	FASPLFWLI	NOLHNII	NWGWAIIVLT	IIVKAVLYPL	TNASYRSMAP	MRAAAPKLQ	AIKE
OLLILA	340	350	360	370	380	390	
	orflla orfll.pep orflla	orflla IKRRNDKLY 280 orfll.pep FASPLFWLI orflla FASPLFWLI	orf11a IKRRNDKLYSTSVSVPI 280 290 40 orf11.pep FASPLFWLLNQLHNIIG	orf11a IKRRNDKLYSTSVSVPLAAIQNGAKSX 280 290 300 40 50 orf11.pep FASPLFWLLNQLHNIIGNWGWAIIVLT orf11a FASPLFWLLNQLHNIIGNWGWAIIVLT	orfila	orf11.pep NLYAGPQTTSVIANIAD orf11a IKRRNDKLYSTSVSVPLAAIQNGAKSXASINLYAGPQTTSVIANIAD 280 290 300 310 320 orf11.pep FASPLFWLLNQLHNIIGNWGWAIIVLTIIVKAVLYPLTNASYRSMAK	orf11.pep NLYAGPQTTSVIANIADNLQLAKDYGI orf11a IKRRNDKLYSTSVSVPLAAIQNGAKSXASINLYAGPQTTSVIANIADNLQLXKDYGI 280 290 300 310 320 330 orf11.pep FASPLFWLLNQLHNIIGNWGWAIIVLTIIVKAVLYPLTNASYRSMAKMRAAAPKLQ orf11a FASPLFWLLNQLHNIIGNWGWAIIVLTIIVKAVLYPLTNASYRSMAKMRAAAPKLQ

		1	00 11	.0 120	130	140	150
	orfll.pep	KYGDDRMA	QQQAMMQLYTE	EKINPLGGCLE	MLLQIPVFIGI	YWALFASVELI	RQAPWĽGWI
					1111111111		
5	orflla				MLLQIPVFIGI		_
5		400	410	420	430	440	450
		1	60 17	0 180	190	. 200	210
	orf11.pep	TDLSRADP	YYILPIIMAAT	MFAQTYLNPPE	TDPMQAKMMK1	MPLVFSXXFF	FFPAGXVLY
10	orf11a			-	TDPMQAKMMK1		
		460	470	480	-490	500	510
		2	20 23	30 240			
	orf11.pep			EKQRAQGEVVS		-	
15				пінпин			
	orflla ,			EKQRAQGEVVS	SX	,	
		520	530	540	•		
	The complete le	noth ORE11a	nucleotide	seguence <s< th=""><th>FO ID 53> i</th><th>c.</th><th></th></s<>	FO ID 53> i	c.	
	The complete ic	iigui Old 110	nucleonae	sequence 45	DQ ID 33- 1	J.	
	1	ANGGATTTTA	AAAGACTCAC	NGNGTTTTTC	GCCATCGCAC	ТССТСАТТАТ	
20	51	GATCGGATNG					
	101	AACAGACGGC	ACAACAACAG	GCCGTAANCG	CTTCCGCCGA	AGCCGCGCTC	
	. 151	GCGCCCGNAN					
	201	TGATGAAAAA		_			•
25	251	CAACCGGCGA					
25	301 351	TACACCTACN TCTAAAAGGC					
	401	GCGACAAAGT					
	451	ATCGACAAAG					
	501	CTTCGACATC	GCCAACGGCA	GCGGTCAAAC	CGCCAACCTG	AGCGCGGACT	
30	551	ACCGCATCGT					
	601	CACTCTTACG					
	651 701	AGTCAGCTTC CCGAATACAT					
•	701 751				AAAGGCGGAC		
35	801				ACGCCGCAAC		
70	851	ACAGCACCAG					
	.901				CCACAGACCA		
	951				CAAAGACTAC		
40	1001	ACTGGTTCGC					
40	1051 1101	ATCGGCAACT CGTACTGTAT					
	1151				AAGAGAAATA		
	1201				CTTTACACAG		
0.2	1251	CAACCCGCTG	GGCGGCTGCC	TGCCTATGCT	GTTGCAAATC	CCCGTCTTCA	
45	1301				TAGAATTGCG		
	1351				GCCGACCCNT		
	1401 1451				CCAAACCTAT		
	1501				GGTCTGGTAT		
50	1551				ATGGCACATC		
•	1601			GGCGAAGTCG			
	mt · 1						
	This encodes a p	protein naving	g amino acio	i sequence <	SEQ ID 54>	:	
	1				PAPOOTAGOO		
55	. 51 101				KYKATGDXNK SLEGDKVEVR		
33	151				SADYRIVRDH		
	201				KSEAEYIRKT		
	251		_		DKLYSTSVSV		
	301				GKVHWFASPL		
60	351				AKMRAAAPKL		
	401				PVFIGLYWAL		
	451 501				LNPPPTDPMQ NRSIEKQRAQ		
						00110	
	ORF11a and OI	RF11-1 show	95.2% ident	tity in 544 aa	overlap:		
				<u> </u>	<u> </u>		
65			10	20	30	40 5	0 6

		XDFKRLTXFFAIALVIMIGXXXMFPTPKPVPAPQQTAQQQAVXASAEAALAPXXPITVTT
	orflla.pep	
	orfll-1	10 20 30 40 50 60
5		70 80 90 100 110 120
	orflla.pep	DTVQAVIDEKSGDLRRLTLLKYKATGDXNKPFILFGDGKXYTYXAXSELLDAQGNNILKG
	orf11-1	DTVQAVIDEKSGDLRRLTLLKYKATGDENKPF1LFGDGKE111VAQSEBBDAQSK122KS
10		70 80 90 100
		130 140 150 160 170 170 170 170 170 170 170 170 170 17
	orflla.pep	
15	orfll-1	IGFSAPKKQYSLEGDKVEVRLSAPETRGLKIDKVYTFTKGSYLVNVRFDIANGSGQTANL 130 140 150 160 170 180
		200 210 220 230 240
,	orfila.pep	200 TIPUUSE BECOCVETHSYVGPWYTPEGNFOKVSFSDLDDDAXSGKSEAEYIRKT
20		SADYRIVRDHSEFEGGGITTHSIVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	orf11-1	190 200 210 220 230 240
		250 260 270 280 290 300
25	orflla.pep	XTGWLGMIEHHFMSTWILQPKGGQSVCAAGDCXXDIKRRNDKLYSTSVSVPLAAIQNGAK
	orf11-1	PTGWLGMIEHHFMSTWILQPKGRQSVCAAGECNIDIKKKNDKLISISVSVEHAAIQKOIK
		250 260 270 200 350 360
30		310 320 330 340
	orflla.pep	SXASINLYAGFQIISVIANIADNAQAMNSSCHUMISHI
	orf11-1	AEASINLYAGPOTTSVIANIADNLQLARDIGKVIMVADI 21 350 360
35		370 380 390 400 410 420
	orflla.pep	LTIIVKAVLYPLTNASYRSMAKMRAAAPKLQAIKEKYGDDRMAQQQAMMQLYTDEKINPL
	orf11-1	LTIIVKAVLYPLTNASYRSMAKMRAAAPKLQAIKEKIGDDRAAQQQATTQBITBBRAAQ
40	01111 =	370 380 390 400 410 423
		430 440 450 460 470 480 GGCLPMLLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTY
	orflla.pep	
45	orfl1-1	GGCLPMLLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTY 430 440 450 460 470 480
		540
	orflla.pep	LNPPPTDPMQAKMMKIMPLVXSXXFFXFPAGLVLYWVINNLLTIAQQWHINRSIEKQRAQ
50		
	orf11-1	490 500 510 520 530 540
55	orflla.pep	GEVVSX
	orf11-1	GEVVSX

60 Homology with a predicted ORF from N.gonorrhoeae

ORF11 shows 96.3% identity over a 240aa overlap with a predicted ORF (ORF11.ng) from N. gonorrhoeae:

	e . 511	NLYAGPOTTSVIANIADNLQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAIIVLT	57
	Orf11		
65	orfllng	MAVNLYAGPQTTSVIANIADNLQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAIVVLT	•

	orf11	IIVKAVLYPLTNASYRSMAKMRAAAPKLQAIKEKYGDDRMAQQQAMMQLYTDEKINPLGG	117
·	orfllng	IIVKAVLYPLTNASYRSMAKMRAAAPELQTIKEKYGDDRMAQQQAMMQLFEDEEINPLGG	120
5	orf11	CLPMLLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTYLN	177
	orfllng	CLPMLLQIPVFIGLYWALFASVELRQAPWLGWITDLSRADPYYILPIIMAATMFAQTYLN	180
10	orf11	${\tt PPPTDPMQAKMMKIMPLVFSXXFFFFPAGXVLYWVVNNLLTIAQQWHINRSIEKQRAQGE}$	237
10	orfllng		240
	orf11	VVS 240	
15	orfllng	VVS 243	

An ORF11ng nucleotide sequence <SEQ ID 55> was predicted to encode a protein having amino acid sequence <SEQ ID 56>:

```
1 MAVNLYAGPQ TTSVIANIAD NLQLAKDYGK VHWFASPLFW LLNQLHNIIG
51 NWGWAIVVLT IIVKAVLYPL TNASYRSMAK MRAAAPELQT IKEKYGDDRM
20 101 AQQQAMMQLF EDEEINPLGG CLPMLLQIPV FIGLYWALFA SVELRQAPWL
151 GWITDLSRAD PYYILPIIMA ATMFAQTYLN PPPTDPMQAK MMKIMPLVFS
201 VMFFFFPAGL VLYWVVNNLL TIAQQWHINR SIEKQRAQGE VVS*
```

Further sequence analysis revealed the complete gonococcal DNA sequence <SEQ ID 57> to be:

```
ATGGATTTTA AAAGACTCAC GGCGTTTTTC GCCATCGCGC TGGTGATTAT
25
                     GATCGGCTGG GAAAAAATGT TCCCCACCCC GAAACCCGTC CCCGCGCCCC
               101
                    AACAGGCGGC ACAAAAACAG GCAGCAACCG CTTCCGCCGA AGCCGCGCTC
                     GCGCCCGCAA CGCCGATTAC CGTAACGACC GACACGGTTC AAGCCGTTAT
                     TGATGAAAAA AGTGGCGACC TGCGCCGGCT GACCCTGCTC AAATACAAAG
               201
               251
                     CAACCGGCGA CGAAAACAAA CCGTTCGTCC TGTTTGGCGA CGGCAAAGAA
30
               301
                     TACACCTACG TCGCCCAATC CGAACTTTTG GACGCGCAGG GCAACAACAT
               351
                     TCTGAAAGGC ATCGGCTTTA GCGCACCGAA AAAACAGTAC ACCCTCAACG
                     GCGACACAGT CGAAGTCCGC CTGAGCGCGC CCGAAACCAA CGGACTGAAA
               401
                    ATCGACAAAG TCTATACCTT TACCAAAGAC AGCTATCTGG TCAACGTCCG
                451
                501
                    CTTCGACATC GCCAACGGCA GCGGTCAAAC CGCCAACCTG AGCGCGGACT
35
                551
                     ACCGCATCGT CCGCGACCAC AGCGAACCCG AGGGTCAAGG CTACTTTACC
                     CACTCTTACG TCGGCCCTGT TGTTTATACC CCTGAAGGCA ACTTCCAAAA
                601
                     AGTCAGCTTC TCCgacTTgg acgACGATGC gaaaTccggc aaATccgagg
                     ccgaatacaT CCGCAAAACC ccgaccggtt ggctcggcat gattgaacac
                701
                751
                     cacttcatgt ccacctggat cctccAAcct aaaggcggcc aaaacgtttg
40
                801
                    cgcccaggga gactgccgta tcgacattaa aCgccgcaac gacaagctgt
                851
                     acagcgcaag cgtcagcgtg cctttaaccg ctatcccaac ccgggggcca
                901
                    aaaccgaaaa tggcggTCAA CCTGTATGCC GGTCCGCAAA CCACATCCGT
                951
                     TATCGCAAAC ATCGCcgacA ACCTGCAACT GGCAAAAGAC TACGGTAAAG
                     TACACTGGTT CGCATCGCCG CTCTTCTGGC TCCTGAACCA ACTGCACAAC
               1001
45
               1051
                     ATTATCGGCA ACTGGGGCTG GGCAATCGTC GTTTTGACCA TCATCGTCAA
               1101
                     AGCCGTACTG TATCCATTGA CCAACGCCtc ctACCGTTCG ATGGCGAAAA
               1151
                     TGCGTGccgc cgcacCcaaA CTGCAGACCA TCAAAGAAAA ATAcgGCGAC
                     GACCGTATGG CGCAACAGCA AGCGATGATG CAGCTTTACA AAgacgAGAA
               1201
               1251
                     AATCAACCCG CTGGGCGGCT GTctgcctat gctgttgCAA ATCCCCGTCT
50
               1301
                     TCATCGGCTT GTACTGGGCA TTGTTCGCCT CCGTAGAATT GCGCCAGGCA
               1351
                     CCTTGGCTGG GCTGGATTAC CGACCTCAGC CGCGCCGACC CCTACTACAT
                     CCTGCCCATC ATTATGGCGG CAACGATGTT CGCCCAAACC TATCTGAACC
               1401
                     CGCCGCCGAC CGACCCGATG CAGGCGAAAA TGATGAAAAT CATGCCGTTG
               1451
               1501
                     GTTTTCTCCG TCATGTTCTT CTTCTTCCCT GCCGGTTTGG TTCTCTACTG
55
               1551
                     GGTGGTCAAC AACCTCCTGA CCATCGCCCA GCAGTGGCAC ATCAACCGCA
               1601
                     GCATCGAAAA ACAACGCGCC CAAGGCGAAG TCGTTTCCTA A
```

This encodes a protein having amino acid sequence <SEQ ID 58; ORF11ng-1>:

	1	MDFKRLTAFF	AIALVIMIGW	EKMFPTPKPV	PAPQQAAQKQ	AATASAEAAL
	51	APATPITVTT	DTVQAVIDEK	SGDLRRLTLL	KYKATGDENK	PFVLFGDGKE
60 .	101	YTYVAQSELL	DAQGNNILKG	IGFSAPKKQY	TLNGDTVEVR	LSAPETNGLK
	151	IDKVYTFTKD	SYLVNVRFDI	ANGSGQTANL	SADYRIVRDH	SEPEGOGYFT
	201	HSYVGPVVYT	PEGNFQKVSF	SDLDDDAKSG	KSEAEYIRKT	PTGWLGMIEH
•	251	HFMSTWILQP	KGGQNVCAQG	DCRIDIKRRN	DKLYSASVSV	PLTAIPTRGP
	301	KPKMAVNLYA	GPQTTSVIAN	IADNLQLAKD	YGKVHWFASP	LFWLLNQLHN

351 IIGNWGWAIV VLTIIVKAVL YPLTNASYRS MAKMRAAAPK LQTIKEKYGD 401 DRMAQQQAMM QLYKDEKINP LGGCLPMLLQ IPVFIGLYWA LFASVELRQA 451 PWLGWITDLS RADPYYILPI IMAATMFAQT YLNPPPTDPM QAKMMKIMPL

VFSVMFFFFP AGLVLYWVVN NLLTIAQQWH INRSIEKQRA QGEVVS*

ORF11ng-1 and ORF11-1 shown 95.1% identity in 546 aa overlap: 5

itity in 540 an overtap.	1-1 SHOWII 93.1 /0 1	ORFIIng-1 and ORFI	5
0 30 40 50 60 WEKMFPTPKPVPAPQQAAQKQAATASAEAALAPATPITVTT	10 MDFKRLTAFFAIALVIM	orfllng-l.pep	
WEKMFPTPKPVPAPQQAAQQQAVTASAEAALAPATPITVTT 0 30 40 50 60	MDFKRLTAFFAIALVIM 10	orf11-1	10
0 90 100 110 120 LKYKATGDENKPFVLFGDGKEYTYVAQSELLDAQGNNILKG	111111111111111111	orfllng-l.pep	
LKYKATGDENKPFILFGDGKEYTYVAQSELLDAQGNNILKG 0 90 100 110 120	DTVOAVIDEKSGDLRRI 70	orfl1-1	15
0 150 160 170 180 RLSAPETNGLKIDKVYTFTKDSYLVNVRFDIANGSGQTANL	1111111111111111111	orfllng-1.pep	20
0 150 160 170 180	130	orfl1-1	
00 210 220 230 240 THSYVGPVVYTPEGNFQKVSFSDLDDDAKSGKSEAEYIRKT		orfllng-1.pep	25
THSYVGPVVYTPEGNFQKVSFSDLDDDAKSGKSEAEYIRKT 00 210 220 230 240	SADYRIVRDHSEPEGQO 190	orf11-1	
50 270 280 290 300 PPKGGQNVCAQGDCRIDIKRRNDKLYSASVSVPLTAIPTRGP		orfllng-1.pep	30
DPKGRQSVCAAGECNIDIKRRNDKLYSTSVSVPLAAIQN-GA 50 270 280 290	PTGWLGMIEHHFMSTW 250	orf11-1	
20 330 340 350 360 ANIADNLQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAIV		orfllng-l.pep	35
ANIADNIQLAKDYGKVHWFASPLFWLLNQLHNIIGNWGWAII 320 330 340 350	00 310	orf11-1 3	40
80 390 400 410 420 RSMAKMRAAAPKLQTIKEKYGDDRMAQQQAMMQLYKDEKINP	VLTIIVKAVLYPLTNA	orfllng-1.pep	45
380 390 400 410 40 450 460 470 480	430 430	3	
WALFASVELROAPWLGWITDLSRADPYYILPIIMAATMFAQT	LGGCLPMLLQIPVFIG	orfllng-1.pep	50
00 510 520 530 540 IPLVFSVMFFFFPAGLVLYWVVNNLLTIAQQWHINRSIEKQRA	1111111111111111	orfllng-1.pep orfl1-1	55
	 QGEVVSX 540	orfllng-1.pep orfll-1	60
00 510 520 530 PLVFSVMFFFFPAGLVLYWVVNNLLTIAQQWHINR	490 YLNPPPTDPMQAKMME YLNPPPTDPMQAKMME 480 490 QGEVVSX QGEVVSX	orfllng-1.pep orfll-1 orfllng-1.pep orfll-1	

In addition, ORF11ng-1 shows significant homology with an inner-membrane protein from the 65 database (accession number p25754):

5	AC P25 DT 01- DT 01- DT 01-	5754; -MAY-199 -MAY-199 -NOV-199	U STA 92 (REL. 92 (REL. 95 (REL. ER-MEMBRA	22, CREA 22, LAST 32, LAST	ATED) I SEQUENG I ANNOTA'	CE UPDA	AA. ATE) PDATE)			÷.
10	SCORES Smith-Wa	In aterman	itl: 107 score: 1	4 Initn: 406; 10	: 1293 (41.5% id	Opt: 1 dentity	.103 / in 574	aa overla	p 30	40
15	orf11ng- p25754	-1.pep	: MDIKRTIL	LTAFFALI	ALVIMIGW	:	: ALPTQNT	P ASTVAPGLP 40	KPVPAPQQ	AAQKQ
20	orf11ng-		: : : : VPSANAES	: 1 :1:	:: VALSKDLI	:: RVKTDVI	ELAIDPV	80 GGDLRRLTLL : : : : GGDIVQLNLP	KYKATGDE : KYPRRQDH	 PNIPF
25	orf11ng-		100 VLFGDGKE : QLFDNGGE	YTYVAQSI : : RVYLAQSI	:: GLTGTDGP	: :: I DA-RASC	GFSAPI :: GRPLYAAE(130 KKQYTL-NGD : : : : QKSYQLADGQ	: ::: EQLVVDLK	LSAPE
30	orf11ng p25754	-1.pep	150 TNGLKIDK	::1:	SYLVNVRF	1 1 1 1	180 GOTANLSAI	160 190 DYRIVRDHS- :: FAQLKRDASG	EPEGQGYE	1:1
35		-1.pep	: :::	EGNFQKV: ::	1::1:1	230 AKSGKSE	::	PTGWLGMIEH	HFMSTWIL	1:
40	p25754	-1.pep	240 270	250 21	80	260 290	300	SGGWVAWLQH 270 310 KPKMAVNLYA	280	20
45	p25754		: NNV 290	:: :: VQTRKI	:: DSQGNYII 300	: : : GYTGPVI 310	:: : :SVPA-GGI)	: :: KVETSALLYA 320	II: I: GPKIQSKI 330	KELSP
50	orf11ng	•	:1:1: 11	GKVHWF-	1:1:111	::: ::: QHIHSLI	11111:1:	O 37 VVLTIIVKAV : ::: :: IVLTMLIKGI 380	LYPLTNAS	11111
55	orf11ng p25754		: :	LQTIKEK	: : :	: : SQAMMEI		O 43 PLGGCLPMLI : : PLGGCLPILV 440	QIPVFIGI	11:1:
60	orfllng		: ESVEMRQA	.PWLGWIT : .PWILWIT	: DLSIKDPF	: FILPIIN	: GATMFIQ	TYLNPPPTDE QRLNPTPPDE	MQAKMMKI	11::1
65 .			460 510 SVMFFFFE : : ::	AGLVLYW	480 520 VVNNLLTI :	530 AQQWHIN	190 540 IRSIEKQRA		510	
	p25754		TFFFLWFE 520	AGLVLYW 530	VVNNCLSI 540		TRRIEAATI 550	560		

-92-

Based on this analysis, including the homology to an inner-membrane protein from *P. putida* and the predicted transmembrane domains (seen in both the meningococcal and gonoccal proteins), it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

5 Example 8

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 59>:

```
1 ..GCCGTCTTAA TCATCGAATT ATTGACGGGA ACGGTTATC TTTTGGTTGT

51 NAGCGCGGCT TTGGCGGGTT CGGGCATTGC TTACGGGCTG ACCGGCAGTA

101 CGCCTGCCGC CGTCTTGACC GNCGCTCTGC TTTCCGCGCT GGGTATTTNG

151 TTCGTACACG CCAAAACCGC CGTTAGAAAA GTTGAAACGG ATTCATATCA

201 GGATTTGGAT GCCGGACAAT ATGTCGAAAT CCTCCGNCAC ACAGGCGGCA

251 ACCGTTACGA AGTT.TTAT CGCGGTACG. ACTGGCAGGC TCAAAATACG

301 GGGCAAGAAG AGCTTGAACC AGGAACTCGC GCCCTCATTG TCCGCAAGGA

351 AGGCAACCTT CTTATTATCA CACACCCTTA A
```

15 This corresponds to the amino acid sequence <SEQ ID 60; ORF13>:

```
1 ..AVLIIELLTG TVYLLVVSAA LAGSGIAYGL TGSTPAAVLT XALLSALGIX
51 FVHAKTAVRK VETDSYQDLD AGQYVEILRH TGGNRYEVXY RGTXWQAQNT
101 GQEELEPGTR ALIVRKEGNL LIITHP*
```

Further sequence analysis elaborated the DNA sequence slightly <SEQ ID 61>:

20	•	1 51 101 151	GCCGTCTTAA nAGCGCGGCT CGCCTGCCGC TTCGTACACG	TTGGCGGGTT CGTCTTGACC	CGGGCATTGC GnCGCTCTGC	TTTCCGCGCT TTTCCGCGCT GTTGAAACGG	GGGTATTTNG ATTCATATCA
25		201 251 301 351	GGATTTGGAT	GCCGGACAAT AGTTTTTTAT AGCTTGAACC	ATGTCGAAAT CGCGGTACGC AGGAACTCGC	ACTGGCAGGC GCCTCATTG	ACAGGGGGCA

This corresponds to the amino acid sequence <SEQ ID 62; ORF13-1>:

```
30 51 AVLIIELLTG TVYLLVVSAA LAGSGIAYGL TGSTPAAVLT XALLSALGIX
FVHAKTAVRK VETDSYQDLD AGQYVEILRH TGGNRYEVFY RGTHWQAQNT
GQEELEPGTR ALIVRKEGNL LIITHP*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF13 shows 92.9% identity over a 126aa overlap with an ORF (ORF13a) from strain A of N.

35 meningitidis:

50 GIXF
1 1 1
CTWF.
GIWF 60
110 PGTRA
PGTRA
PGTRA 120
I

35

```
orf13a LIVRKEGNLLIIAKPX
130
```

```
ATGACTGTAT GGTTTGTTGC CGCTGTTGCC GTCTTAATCA TCGAATTATT
                     GACGGGAACG GTTTATCTTT TGGTTGTCAG CGCGGCTTTG GCGGGTTCGG
5
                 51
                101
                     GCATTGCTTA CGGGCTGACC GGCAGCACGC CTGCCGCCGT CTTGACCGCC
                     GCTCTGCTTT CCGCGCTGGG TATTTGGTTC GTACACGCCA AAACCGCCGT
                151
               . 201
                     GGGAAAAGTT GAAACGGATT CATATCAGGA TTTGGATGCC GGGCAATATG
                     CCGAAATCCT CCGGCACGCA GGCGGCAACC GTTACGAAGT TTTTTATCGC
                251
10
                     GGTACGCACT GGCAGGCTCA AAATACGGGG CAAGAAGAGC TTGAACCAGG
                301
                     AACGCGCGCC CTAATCGTCC GCAAGGAAGG CAACCTTCTT ATCATCGCAA
                351
                401
                     AACCTTAA
```

This encodes a protein having amino acid sequence <SEQ ID 64>:

```
1 MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT GSTPAAVLTA
51 ALLSALGIWF VHAKTAVGKV ETDSYQDLDA GQYAEILRHA GGNRYEVFYR
101 GTHWQAQNTG QEELEPGTRA LIVRKEGNLL IIAKP*
```

ORF13a and ORF13-1 show 94.4% identity in 126 aa overlap

	• •	10	20	30	40	50	60
	orf13a.pep	MTVWFVAAVAVLII	ELLTGTVYL	LVVSAALAGSO	IAYGLTGST:	PAAVLTAALLS	SALGIWE
20 .		11111		111111111111	$\mathbf{H}^{\dagger}\mathbf{H}^{\dagger}\mathbf{H}$	113111-111.	11111 1
	orfl3-1	AVLĪI	ELLTGTVYL	LVVSAALAGSO	IAYGLTGST:	PAAVLTXALLS	SALGIXF
			10	· 20	30	40	50
	*-					•	
		70	80	90	100	110	120
25	orf13a.pep	VHAKTAVGKVETDS	YQDLDAGQY	AEILRHAGGNE	YEVFYRGTH	WQAQNTGQEE	LEPGTRA
		111111111111	1111111	:11111:111	111111111	1111111111	111111
	orfl3-1	VHAKTAVRKVETDS	YQDLDAGQY	VEILRHTGGNE	YEVFYRGTH	WQAQNTGQEE	LEPGTRA
		. 60	70	. 80	90	100	110
20		130					
30			DΥ				
	orf13a.pep	LIVRKEGNLLIIAK			·		
		11111111111::	• •				
	orf13-1	LIVRKEGNLLIITH	PX				
		120	·				

Homology with a predicted ORF from N.gonorrhoeae

ORF13 shows 89.7% identity over a 126aa overlap with a predicted ORF (ORF13.ng) from N. gonorrhoeae:

40	orfl3	AVLIIELLTGTVYLLVVSAALAGSGIAYGLTGSTPAAVLTXALLSALGIXF	51
	orf13ng		60
	orf13	VHAKTAVRKVETDSYQDLDAGQYVEILRHTGGNRYEVXYRGTXWQAQNTGQEELEPGTRA	111
45	orf13ng		120
	orf13	LIVRKEGNLLIITHP 126	
٠.	orf13ng	:: LIVRKEGNLLIIANP 135	

50 The complete length ORF13ng nucleotide sequence <SEQ ID 65> is:

	1	ATGACTGTAT	GGTTTGTTGC	CGCTGTTGCC	GTCTTAATCA	TCGAATTATT
	51	GACGGGAACG	GTTTATCTTT	TGGTTGTCAG	CGCGGCTTTG	GCGGGTTCGG
	101	GCATTGCCTA	CGGGCTGACT	GGCAGCACGC	CTGCCGCCGT	CTTGACCGCC
•	1 51	GCACTGCTTT	CCGCGCTGGG	CATTTGGTTC	GTACATGCCA	AAACCGCCGT
55	201	GGGAAAAGTT	GAAACGGATT	CATATCAGGA	TTTGGATACC	GGAAAATATG
•	251	CCGAAATCCT	CCGATACACA	GGCGGCAACC	GTTACGAAGT	TTTTTATCGC
	301	GGTACGCACT	GGCAGGCGCA	AAATACGGGG	CAGGAAGTGT	TTGAACCGGG
	. 351	AACGCGCGCC	CTCATCGTCC	GCAAAGAAGG	TAACCTTCTT	ATCATCGCAA
	401	ልርርርጥጥልል				

This encodes a protein having amino acid sequence <SEQ ID 66>:

- 1 MTVWFVAAVA VLIIELLTGT VYLLVVSAAL AGSGIAYGLT GSTFAAVLTA
 51 ALLSALGIWF VHAKTAVGKV ETDSYQDLDT GKYAEILRYT GGNRYEVFYR
- 101 GTHWQAQNTG QEVFEPGTRA LIVRKEGNLL IIANP*
- 5 ORF13ng shows 91.3% identity in 126 aa overlap with ORF13-1:

9	U U						
	•		10	20	30	40	50
	orf13-1.pep	1111111	TITLE	LLVVSAALAGSO		11111 1111	11111
10	orf13ng	MTVWFVAAVAVLIIELL 10	TGTVY 20	LLVVSAALAGS(30	SIAYGLTGST 40	50	60
10		60	70	. 80	90	100	110
	orf13-1.pep	VHAKTAVRKVETDSYQI	11.1.1.	1:111: []]	1	31111111	- 1 1 1 1 1 1
15	orfl3ng	VHAKTAVGKVETDSYQI 70	DLDTGK 80	YAEILRYTGGN 90	RYEVFYRGTH 100	IWQAQNTGQEV 110	120
		120					
20	orf13-1.pep	LIVRKEGNLLIITHPX					
20	orf13ng	LIVRKEGNLLIIANPX 130					1

Based on this analysis, including the extensive leader sequence in this protein, it is predicted that ORF13 and ORF13ng are likely to be outer membrane proteins. It is thus predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 9

25

The following DNA sequence was identified in N.meningitidis <SEQ ID 67>:

```
ATGTWTGATT TCGGTTTTGG CGArCTGGTT TTTGTCGGCA TTATCGCCCT
30
                    GATWGECCTC GGCCCCGAAC GCSTGCCCGA GGCCGCCCGC AYCGCCGGAC
                 51
                    GGeTCATCGG CAGGCTGCAA CGCTTTGTCG GCAGCGTCAA ACAGGAATTT
                101
                    GACACTCAAA TCGAACTGGA AGAACTGAGG AAGGCAAAGC AGGAATTTGA
                151
                    AGCTGCCGcC GCTCAGGTTC GAGACAGCCT CAAAGAAACC GGTACGGATA
                201
                     TGGAAGGCAA TCTGCACGAC ATTTCCGACG GTCTGAAGCC TTGGGAAAAA
35
                251
                     CTGCCCGAAC AGCGGACACC TGCCGATTTC GGTGTCGATG AAAACGGCAA
                301
                     TCCGCT.TCC CGATGCGGCA AACACCCTAT CAGACGGCAT TTCCGACGTT
                     ATGCCGTC..
                401
```

This corresponds to the amino acid sequence <SEQ ID 68; ORF2>:

40 1 MXDFGLGELV FVGIIALIVL GPERXPEAAR XAGRLIGRLQ RFVGSVKQEF
51 DTQIELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD ISDGLKPWEK
101 LPEORTPADF GVDENGNPXS RCGKHPIRRH FRRYAV..

Further work revealed the complete nucleotide sequence <SEQ ID 69>:

45	51	ATGTTTGATT GATTGTCCTC GGCTCATCGG GACACTCAAA	GGCCCCGAAC	GCCTGCCCGA	GGCCGCCCGC GCAGCGTCAA	ACCGCCGGAC
50	151 201 251 301 351 401 451 501	AGCTGCCGCC TGGAAGGCAA CTGCCCGAAC TCCGCTTCCC TGCCGTCCGA	GCTCAGGTTC TCTGCACGAC AGCGGACACC GATGCGGCAA ACGTTCCTAC GTACAGCCGA	GAGACAGCCT ATTTCCGACG TGCCGATTTC ACACCCTATC GCTTCCGCCG ACCCGCGGAA	CAAAGAAACC GTCTGAAGCC GGTGTCGATG AGACGGCATT AAACCCTTGG ACCGACCAAG	TTGGGAAAAA AAAACGGCAA

	601 '	AAGTCAGCTA TATCGATACT GCTGTTGAAA CGCCTGTTCC GCACACCACT ICCCTGCGCA AACAGGCAAT AAGCCGCAAA CGCGATTTTC GTCCGAAACA CCGCGCCCAAA CCTAAATTGC GCGTCCGTAA ATCATAA	
	This corresponds	to the amino acid sequence <seq 70;="" id="" orf2-1="">:</seq>	
5	51 101 151 201	MFDFGLGELV FVGIIALIVL GPERLPEAAR TAGRLIGRLQ RFVGSVKQEF DTQIELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD ISDGLKPWEK LPEQRTPADF GVDENGNPLP DAANTLSDGI SDVMPSERSY ASAETLGDSG QTGSTAEPAE TDQDRAWREY LTASAAAPVV QTVEVSYIDT AVETPVPHTT SLRKQAISRK RDFRPKHRAK PKLRVRKS*	
10	Further work idea	ntified the corresponding gene in strain A of N. meningitidis <seq 71="" id="">:</seq>	
15	51 101 151 201 251	ATGTTTGATT TCGGTTTGGG CGAGCTGGTT TTTGTCGGCA TTATCGCCCT GATTGTCCTC GGCCCCGAAC GCCTGCCCGA GGCCGCCCGC ACCGCCGGAC GGCTCATCGG CAGGCTGCAA CGCTTTGTCG GCAGCGTCAA ACAGGAATTT GACACGCAAA TCGAACTGGA AGAACTAAGG AAGGCAAAGC AGGAATTTGA AGCTGCCGCT GCTCAGGTTC GAGACAGCCT CAAAGAAACC GGTACGGATA TGGAGGGTAA TCTGCACGAC ATTTCCGACG GTCTGAAGCC TTGGGAAAAA CTGCCCGAAC AGCGCACGCC TGCTGATTTC GGTGTCGATG AAAACGGCAA	
20	351 401 451 501 551 601	TCCCTTTCCC GATGCGGCAA ACACCCTATT AGACGGCATT TCCGACGTTA TGCCGTCCGA ACGTTCCTAC GCTTCCGCCG AAACCCTTGG GGACAGCGGG CAAACCGGCA GTACAGCCGA ACCCGCGGAA ACCGACCAAG ACCGTGCATG GCGGGAATAC CTGACTGCTT CTGCCGCCGC ACCCGTCGTA CAGACCGTCG AAGTCAGCTA TATCGATACC GCTGTTGAAA CCCCTGTTCC GCATACCACT TCGCTGCGTA AACAGGCAAT AAGCCGCAAA CGCGATTTGC GTCCTAAATC	
25	• • • • • • • • • • • • • • • • • • • •	ccgcgccaaa cctaaattgc gcgtccgtaa atcataa rotein having amino acid sequence <seq 72;="" id="" orf2a="">:</seq>	
30	1 51	MFDFGLGELV FVGIIALIVL GPERLPEAAR TAGRLIGRLQ RFVGSVKQEF DTQTELEELR KAKQEFEAAA AQVRDSLKET GTDMEGNLHD ISDGLKPWEK LPEQRTPADF GVDENGNPFP DAANTLLDGI SDVMPSERSY ASAETLGDSG QTGSTAEPAE TDQDRAWREY LTASAAAPVV QTVEVSYIDT AVETPVPHTT SLRKOAISRK RDLRPKSRAK PKLRVRKS*	
30	201		
30		dentified partial strain B sequence (ORF2) shows 97.5% identity over a 118	3aa
30		lentified partial strain B sequence (ORF2) shows 97.5% identity over a 118	8aa
35	The originally-ic	lentified partial strain B sequence (ORF2) shows 97.5% identity over a 118	8aa
	The originally-ic overlap with OR orf2.pep	Identified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	8aa
35	The originally-ic overlap with OR orf2.pep orf2a	Identified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	8aa
35 40	The originally-ic overlap with OR orf2.pep orf2a orf2.pep orf2a	lientified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	8aa
35 40	The originally-ic overlap with OR orf2.pep orf2a orf2.pep orf2a	lentified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	
35 40 45	The originally-ic overlap with OR orf2.pep orf2a orf2.pep orf2a The complete stoorf2a.pep	ientified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	p:
35 40 45	The originally-ic overlap with OR orf2.pep orf2a orf2.pep orf2a The complete storf2a.pep orf2-1	dentified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	p: 60
35 40 45	The originally-ic overlap with OR orf2.pep orf2a orf2.pep orf2a The complete stoorf2a.pep	dentified partial strain B sequence (ORF2) shows 97.5% identity over a 118 F2a: 10 20 30 40 50 60 MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR	p: 60 60 20

	orf2-1	DAANTLSDGISDVMPSERSYASAETLGDSGQTGSTAEPAETDQDRAWREYLTASAAAPVV 180
	orf2a.pep	QTVEVSYIDTAVETPVPHTTSLRKQAISRKRDLRPKSRAKPKLRVRKSX 229
5	orf2-1	QTVEVSYIDTAVETPVPHTTSLRKQAISRKRDFRPKHRAKPKLRVRKSX 229
	Further work ident	ified a partial DNA sequence <seq 73="" id=""> in N.gonorrhoeae encoding the</seq>

Further work identified a partial DNA sequence <SEQ ID 73> in N. gonorrhoeae encoding the following amino acid sequence <SEQ ID 74; ORF2ng>:

```
1 MFDFGLGELI FVGIIALIVL GPERLPEAAR TAGRLIGRLQ RFVGSVKQEL
51 DTQIELEELR KVKQAFEAAA AQVRDSLKET DTDMQNSLHD ISDGLKPWEK
101 LPEQRTPADF GVDEKGNSLS RYGKHRIRH FRRYAV*
```

Further work identified the complete gonococcal gene sequence <SEQ ID 75>:

```
1 ATGTTTGATT TCGGTTTGGG CGAGCTGATT TTTGTCGGCA TTATCGCCCT
                51 GATTGTCCTT GGTCCAGAAC GCCTGCCCGA AGCCGCCCGC ACTGCCGGAC
               101 GGCTTATCGG CAGGCTGCAA CGCTTTGTAG GAAGCGTCAA ACAAGAACTT
15
               151 GACACTCAAA TCGAACTGGA AGAGCTGAGG AAGGTCAAGC AGGCATTCGA
               201 AGCTGCCGCC GCTCAGGTTC GAGACAGCCT CAAAGAAACC GATACGGATA
                    TGCAGAACAG TCTGCACGAC ATTTCCGACG GTCTGAAGCC TTGGGAAAAA
               251
               301 CTGCCCGAAC AGCGCACGCc tgccgatttc gGTGTCGATg AAAacggcaa
                    tecettece gatacgcaa acaccgtate agacggcatt tecgacgtta
               20
               451 CAAACCGGCA GTACAGCCGA ACCTGCGGAA ACCGACAAAG ACCGCGCATG
               501 GCGGGAATAC CTGactgctt ctgccgccgc acctgtcgta Cagagggccg
                    tcgaagtcag ctaTATCGAT ACTGCTGTTG AAacgcctgT tccgcaCacc
               551
               601 acttectge gcaAACAGGC AATAAACCGC AAACGCGATT TttgtccgaA
651 ACACCGCGCc aAACCGAAat tgcgcgtcCG TAAATCATAA
25
```

This encodes a protein having the amino acid sequence <SEQ ID 76; ORF2ng-1>:

```
30 MFDFGLGELI FVGIIALIVL GPERLPEAAR TAGRLIGRLQ RFVGSVKQEL
DTQIELEELR KVKQAFEAAA AQVRDSLKET DTDMQNSLHD ISDGLKPWEK
LPEQRTPADF GVDENGNPLP DTANTVSDGI SDVMPSERSD TSAETLGDDR
151 QTGSTAEPAE TDKDRAWREY LTASAAAPVV QRAVEVSYID TAVETPVPHT
201 TSLRKQAINR KRDFCPKHRA KPKLRVRKS*
```

The originally-identified partial strain B sequence (ORF2) shows 87.5% identity over a 136aa overlap with ORF2ng:

```
MXDFGLGELVFVGIIALIVLGPERXPEAARXAGRLIGRLQRFVGSVKQEFDTQIELEELR
                                                                    60
35
        orf2.pep
                  MFDFGLGELIFVGIIALIVLGPERLPEAARTAGRLIGRLQRFVGSVKQELDTQIELEELR
        orf2ng
                  KAKQEFEAAAAQVRDSLKETGTDMEGNLHDISDGLKPWEKLPEQRTPADFGVDENGNPXS
        orf2.pep
                  \cdots
40
                  KVKQAFEAAAAQVRDSLKETDTDMQNSLHDISDGLKPWEKLPEQRTPADFGVDEKGNSLP
        orf2ng
                  RCGKHPIRRHFRRYAV 136
        orf2.pep
                   1 111 11111111111
                   RYGKHRIRRHFRRYAV
45
        orf2ng
```

The complete strain B and gonococcal sequences (ORF2-1 & ORF2ng-1) show 91.7% identity in 229 aa overlap:

50	orf2-1.pep orf2ng-1	10 MFDFGLGELVFVGIIA : MFDFGLGELIFVGIIA 10	11111	1111111111111	1111111	11111:1:1:1:	1111
55	orf2-1.pep orf2ng-1	70 KAKQEFEAAAAQVRDS : KVKQAFEAAAAQVRDS		11:::11111111	11111111		1111

15

30

35

		, · 70	80	90	100	110	120
		130	140	150	160	170	180
_	orf2-1.pep	DAANTLSDGISDVN		-	TAEPAETDQ	RAWREYLTA:	SAAAPVV
5		1:111:11111111	:	1111: 1111			
	orf2ng-1	DTANTVSDGISDVN	1PSERSDTSAE	TLGDDRQTGS	TAEPAETDKE	RAWREYLTA	SAAAPVV
		130	140	150	160	170	180
		190	200	210	220	229	•
10	orf2-1.pep	Q-TVEVSYIDTAVE	ETPVPHTTSLE	KQAISKKRDE	RPKHRAKPKI	RVRKSX	
		1:1111111111		1111:1111	311111111	111111	
	orf2ng-1	QRAVEVSYIDTAVE	ETPVPHTTSLE	KOAINRKRDE	CPKHRAKPKI	RVRKSX	
	-	190	200	210	220	230	

Computer analysis of these amino acid sequences indicates a transmembrane region (underlined), and also revealed homology (59% identity) between the gonococcal sequence and the TatB protein of *E.coli*:

```
gnl|PID|e1292181 (AJ005830) TatB protein [Escherichia coli] Length = 171
           Score = 56.6 bits (134), Expect = 1e-07
           Identities = 30/88 (34%), Positives = 52/88 (59%), Gaps = 1/88 (1%)
20
          Query: 1 MFDFGLGELIFVGIIALIVLGPERLPEAARTAGRLIGRLQRFVGSVKQELDTQIELEELR 60
                    MFD G EL+ V II L+VLGP+RLP A +T
                                                       I L+
                                                                +V+ EL +++L+E +
          Sbjct: 1 MFDIGFSELLLVFIIGLVVLGPQRLPVAVKTVAGWIRALRSLATTVQNELTQELKLQEFQ 60
25
          Query: 61 -KVKQAFEAAAAQVRDSLKETDTDMONS 87
                      +K+
                           +A+
                                 +
                                     LK + +++ +
          Sbjct: 61 DSLKKVEKASLTNLTPELKASMDELRQA 88
```

Based on this analysis, it was predicted that ORF2, ORF2a and ORF2ng are likely to be membrane proteins and so the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF2-1 (16kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification of the GST-fusion protein, and Figure 3B shows the results of expression of the His-fusion in *E.coli*. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blots (Figure 3C), ELISA (positive result), and FACS analysis (Figure 3D). These experiments confirm that ORF37-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 10

The following partial DNA sequence was identified in N. meningitidis <SEO ID 77>:

40	· 1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
	51	CGC.TGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GKTAAACqCT
	101	TTgCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
	151				AAAGTTGCAT	
	201	CACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGG	TCGCTACTCC
45	251	ATTGATGCAC	kGrTwCsTGG	CGAATACATA	AACAGCCCTG	CCGTCCGTAC
	301	CGATTACACC	TATCCACGTT	ACGAAACCAC	CGCTGAAACA	ACATCAGGCG
	351	GTTTGACAGG	TTTAACCACT	TCTTTATCTA	CACTTAATGC	CCCTGCACTC
	401	TCTCGCACCC	AATCAGACGG	TAGCGGAAGT	AAAAGCAGTC	TGGGCTTAAA
	451	TATTGGCGGG	ATGGGGGATT	ATCGAAATGA	AACCTTGACG	ACTAACCCGC

```
GCGACACTGC CTTTCTTTCC CACTTGGTAC AGACCGTATT TTTCCTGCGC
                    GGCATAGACG TTGTTTCTCC TGCCAATGCC GATACAGATG TGTTTATTAA
               551
                    CATCGACGTA TTCGGAACGA TACGCAACAG AACCGAAATG..
               601
     This corresponds to the amino acid sequence <SEQ ID 78; ORF15>:
                 1 MQARLLIPIL FSVFILSACG TLTGIPSHGG XKRFAVEQEL VAASARAAVK
5
                     DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDAXXXG EYINSPAVRT
                     DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
               101
                     IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
                201 IDVFGTIRNR TEM..
     Further work revealed the complete nucleotide sequence <SEQ ID 79>:
10
                  1 ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
                     CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
                 51
                     TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
                101
                     GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
                151
                     CACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
15
                     TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
                251
                     GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
                301
                     TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
                351
                     CTCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
                451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
20
                      CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
                 501
                      GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
                 551
                      ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
                 601
                      TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
                 651
                      GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
                 701
25
                      GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
                 751
                      AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
                 801
                      CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
                 851
                      AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
                 901
                      AGGACAACCT TGA
 30
                 951
      This corresponds to the amino acid sequence <SEQ ID 80; ORF15-1>:
                      MOARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
                      DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
                      DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
                 101
                      IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
 35
                 151
                      IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
                      AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
                 251
                  301 SHEGYGYSDE VVRQHRQGQP *
       Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 81>:
                   1 ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
  40
                      CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
                      TTGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
                  101
                       GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
                      AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
                  201
                       TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
  45
                       GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
                  301
                       TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
                  351
                       CGCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
                  401
                       ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
                  451
                       CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
  50
                       GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
                  551
                  601
                       TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
                  651
                       GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
                  701
                       GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA
                  751
  55
                       AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC
                       CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC
                  851
                       AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC GACATAGACA
```

This encodes a protein having amino acid sequence <SEQ ID 82; ORF15a>:

AGGGCAACCT TGA

60

¹ MOARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK

51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
5 251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN
301 SHEGYGYSDE AVRRHRQGQP *

The originally-identified partial strain B sequence (ORF15) shows 98.1% identity over a 213aa overlap with ORF15a:

		10	. 20	. 30	40	50	60
10	orfl5.pep	MQARLLIPILFS'	VFILSACGTLTG	IPSHGGXKRI	FAVEQELVAAS	ARAAVKDMDL	QALHGR
				111111 11		1111111111	HIIII
	orf15a	MQARLLIPILFS'	VFILSACGTLTG	I PSHGGGKRI	FAVEQELVAAS	ARAAVKDMDL	QALHGR
	•	10	20	30	. 40	50	60
						•	
15		70	. 80	90	100	110	120
	orf15.pep	KVALYIATMGDQ	GSGSLTGGRYSI	DAXXXGEYI	NSPAVRTDYTY	PRYETTAETT	SGGLTG
			11111111111	H HH	[111]		111111
	orf15a	KVALYIATMGDQ	GSGSLTGGRYSI	DALIRGEYI	NSPAVRTDYTY	PRYETTAETT	SGGLTG
		70	80	90	100	110	120
20					•		
20	· .	130	140	150	160	170	180
	orf15.pep	LTTSLSTLNAPA	LSRTQSDGSGSK	SSLGLNIGG	MGDYRNETLTI	'NPRDTAFLSH	LVQTVF
	• • •	311111111111111	11111111111	11111111		11111111111	HĪH
	orf15a	LTTSLSTLNAPA	LSRTOSDGSGSK	SSLGLNIGG	MGDYRNETLTI	NPRDTAFLSH	LVOTVE
25	••••	130	140	150	160	170	180
	٠.						
	•	190	200	210			
	orf15.pep	FLRGIDVVSPAN	ADTDVFINIDVF	GTIRNRTEM			
			пинини	11111111			
30	orf15a	FLRGIDVVSPAN	ADTOVFINIDVF	GTIRNRTEM	HLYNAETLKAC	TKLEYFAVDR	TNKKLL
-		190	200	210	220	230	240

The complete strain B sequence (ORF15-1) and ORF15a show 98.8% identity in 320 aa overlap:

		10	20	30	40	50	60
35	orf15a.pep	MQARLLIPILFSVFI					
33	orf15-1	MQARLLIPILFSVFI					
		10	20	30	40	50	60
	•						
40		70	80 .	90	100	110	120
40	orf15a.pep	KVALYIATMGDQGSG	STIGGERSI	DALIRGEIIN	SPAVRTDITI	PRIETTAETI	1111111
	orf15-1	KVALYIATMGDOGSG	SLTGGRYSI	DALIRGEYIN	SPAVRTDYTY	PRYETTAETI	SGGLTG
		70	80	90	100	110	120
4.5							
45		130	140	150	160	170	180
	orf15a.pep	LTTSLSTLNAPALSF					
	orf15-1	LTTSLSTLNAPALSE					
		130	140	150	160	170	180
50							
		190	200	210	220	230	240
	orf15a.pep	FLRGIDVVSPANAD	POVEINIDVE				
	orf15-1	FLRGIDVVSPANADT	HIIIIIIIIIII				
55	OIII3 I	190	200	210	220	230	240
·	•	250	260	270	280	290	300
	orf15a.pep	IKPKTNAFEAAYKEN	NYALWMGPYK	VSKGIKPTE	LMVDFSDIQE		
60	orf15-1						
00	01112-1	250	260	270	280	290	300
		200	200	2.0	.200	230	300
•	•	310	320				
	orf15a.pep	SHEGYGYSDEAVRRI				•	
65							
	orf15-1	SHEGYGYSDEVVRQ	HKÜGÜPX				

PCT/IB98/01665

310 320

```
Further work identified the corresponding gene in N.gonorrhoeae <SEQ ID 83>:
```

5		1 51 101 151 201	ATGCGGGCAC CGCCTGCGGG TCGCGGTCGA GACATGGATT AACTATGGGC	ACACTGACAG ACAAGAACTT TACAGGCATT GACCAAGGTT	GTATTCCATC GTGGCCGCTT ACACGGACGA CAGGCAGTTT	GCATGGCGGA CTGCCAGAGC AAAGTTGCAT GACAGGGGGT	TGCCGTTAAA TGTACATTGC CGCTACTCCA
10		251 301 351 401 451	NUMCCCCCCCA	ATCCGCGTTA TTAACCACTT ATCAGACGGT TGGGGGGATTA	CGAAACCACC CTTTATCTAC AGCGGAAGTA TCGAAATGAA	ACAGCCCTGC GCTGAAACAA ACTTAATGCC GGAGCAGTCT ACCTTGACGA GACCGTATTT	CATCAGGCGG CCTGCACTCT GGGCTTAAAT CCAACCCGCG
15		501 551 601 651 701 751	GCATAGACGT ATCGACGTAT TGCCGAAACA GAACCAATAA	TGTTTCTCCT TCGGAACGAT CTGAAAGCCC AAAATTGCTC	GCCAATGCCG ACGCAACAGA AAACAAAACT	ATACAGATGT ACCGAAATGC GGAATATTTC AAACCAATGC GGGCCGTATA	ACCTATACAA GCAGTAGACA GTTTGAAGCT AAGTAAGCAA
20	·	801 851 901 951	AGGAATCAAA	CCGACGGAAG TCATACGGGT GGTATGGATA	GATTGATGGT	CGATTTCTCC	AACATAGACA

This encodes a protein having amino acid sequence <SEQ ID 84; ORF15ng>:

```
25 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
30 301 SHEGYGYSDE AVRQHRQGQP *
```

The originally-identified partial strain B sequence (ORF15) shows 97.2% identity over a 213aa overlap with ORF15ng:

35	orf15.pep	MQARLLIPILFSVFILSACGTLTGIPSHGGXKRFAVEQELVAASARAAVKDMDLQALHGR :	60
35	orf15ng	MRARLLIPILESVEILSACGILIGIPSAGGGKKERVLQLLVIII	
	orf15.pep	KVALYIATMGDQGSGSLTGGRYSIDAXXXGEYINSPAVRTDYTYPRYETTAETTSGGLTG	120 120
	orf15ng	KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG	120
40	orf15.pep	LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF	180
	orf15ng	LTTSLSTLNAPALSRTQSDGSGSRSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF	180
	0222000		213
45	orf15.pep	FLRGIDVVSPANADTDVFINIDVFGTIRNRTEM	
	orf15ng	FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKKLL	240

The complete strain B sequence (ORF15-1) and ORF15ng show 98.8% identity in 320 aa overlap:

50	orf15-1.pep	10 MQARLLIPILFSVFI : MRARLLIPILFSVFI 10		. 1 1 1 1 3 1 1 1	1:1:1:1	111111111	11111
55	orf15-1.pep	70 KVALYIATMGDQGSC KVALYIATMGDQGSC 70		11111111111	11111111		.
60	orf15-1.pep	130 LTTSLSTLNAPALS	140 RTQSDGSGS	150 KSSLGLNIGGN	160 AGDYRNETLT	170 Inprotaflsi	180 HLVQTVF

	orf15ng	 LTTSLS						OTVE
	•		130	140	150	160	170	180
5			190	200	210	220	230	240
•	orf15-1.pep	FLRGID	VVSPANADTD	VFINIDVFGT	IRNRTEMHLY			
	orf15ng	FLRGID		 VETNTOVECT	 TRNRTEMHLY			
	021209		190	200	210	220	230	240
10			250	260	270	200	000	200
	orf15-1.pep	IKPKTN	AFEAAYKENY			280 VDFSDIRPYG	290 NHTGNSAPSVI	300 EADN
		1,11111		шшш	шинні	111111111	1111111111	Ш
1.5	orf15ng	IKPKTN	AFEAAYKENY					
15			250	260	270	280	290	300
	•		310	320			,	
	orf15-1.pep	SHEGYG	YSDEVVRQHR	QGQPX				
		111111						
20	orf15ng	SHEGYG	YSDEAVROHR					
			310 .	320				

Computer analysis of these amino acid sequences reveals an ILSAC motif (putative membrane lipoprotein lipid attachment site, as predicted by the MOTIFS program).

indicates a putative leader sequence, and it was predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF15-1 (31.7kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification of the GST-fusion protein, and Figure 4B shows the results of expression of the His-fusion in *E.coli*. Purified GST-fusion protein was used to immunise mice, whose sera were used for Western blot (Figure 4C) and ELISA (positive result). These experiments confirm that ORFX-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 11

30

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>:

35	1	GG.CAGCACA	AAAAACAGGC	GGTTGAACGG	AAAAACCGTA	TTTACGATGA
	51	TGCCGGGTAT	GATATTCGGC	GTATTCACGG	GCGCATTCTC	CGCAAAATAT
	101	ATCCCCGCGT	TCGGGCTTCA	AATTTTCTTC	ATCCTGTTTT	TAACCGCCGT
	151	CGCATTCAAA	ACACTGCATA	CCGACCCTCA	GACGGCATCC	CGCCCGCTGC
	201	CCGGACTGCC	CrGACTGACT	GCGGTTTCCA	CACTGTTCGG	CACAATGTCG
40	251	AGCTGGGTCG	GCATAGGCGG	CGGTTCACTT	TCCGTCCCCT	TCTTAATCCA
	301	CTGCGGCTTC	CCCGCCCATA	AAGCCATCGG	CACATCATCC	GGCCTTGCCT
	. 351	GGCCGATTGC	ACTCTCCGGC	GCAATATCGT	ATCTGCTCAA	CGGCCTGAAT
	401	ATTGCAGGAT	TGCCCGAAGG	GTCACTGGGC	TTCCTTTACC	TGCCCGCCGT
	451	CGCCGTCCTC	AGCGCGGCAA	CCATTGCCTT	TGCCCCGCTC	GGTGTCAAAA
45	501	CCGCCCACAA	ACTTTCTTCT	GCCAAACTCA	AAAAATC.TT	CGGCATTATG.
	551	TTGCTTTTGA	TTGCCGGAAA	AATGCTGTAC	AACCTGCTTT	AA

This corresponds to the amino acid sequence <SEQ ID 86; ORF17>:

- 1 ...GQHKKQAVNG KTVFTMMPGM IFGVFTGAFS AKYIPAFGLQ IFFILFLTAV
- 51 AFKTLHTDPQ TASRPLPGLP XLTAVSTLFG TMSSWVGIGG GSLSVPFLIH

```
101 CGFPAHKAIG TSSGLAWPIA LSGAISYLLN GLNIAGLPEG SLGFLYLPAV
151 AVLSAATIAF APLGVKTAHK LSSAKLKKSF GIMLLLIAGK MLYNLL*
```

Further work revealed the complete nucleotide sequence <SEQ ID 87>:

```
1 ATGTGGCATT GGGACATTAT CTTAATCCTG CTTGCCGTAG GCAGTGCGGC
                    AGGTTTTATT GCCGGCCTGT TCGGCGTAGG CGGCGGCACG CTGATTGTCC
5
                51
                    CTGTCGTTTT ATGGGTGCTT GATTTGCAGG GTTTGGCACA ACATCCTTAC
               101
                    GCGCAACACC TCGCCGTCGG CACATCCTTC GCCGTCATGG TCTTCACCGC
                151
                    CTTTTCCAGT ATGCTGGGGC AGCACAAAAA ACAGGCGGTC GACTGGAAAA
                201
                    CCGTATTTAC GATGATGCCG GGTATGATAT TCGGCGTATT CACGGGCGCA
                251
                     CTCTCCGCAA AATATATCCC CGCGTTCGGG CTTCAAATTT TCTTCATCCT
                301
10
                    GTTTTTAACC GCCGTCGCAT TCAAAACACT GCATACCGAC CCTCAGACGG
                351
                     CATCCCGCCC GCTGCCCGGA CTGCCCGGAC TGACTGCGGT TTCCACACTG
                401
                     TTCGGCACAA TGTCGAGCTG GGTCGGCATA GGCGGCGGTT CACTTTCCGT
                451
                     CCCCTTCTTA ATCCACTGCG GCTTCCCCGC CCATAAAGCC ATCGGCACAT
                501
                     CATCCGGCCT TGCCTGGCCG ATTGCACTCT CCGGCGCAAT ATCGTATCTG
                551
15
                     CTCAACGGCC TGAATATTGC AGGATTGCCC GAAGGGTCAC TGGGCTTCCT
                601
                     TTACCTGCCC GCCGTCGCCG TCCTCAGCGC GGCAACCATT GCCTTTGCCC
                651
                     CGCTCGGTGT CAAAACCGCC CACAAACTTT CTTCTGCCAA ACTCAAAAAA
                701
                     TC.TTCGGCA TTATGTTGCT TTTGATTGCC GGAAAAATGC TGTACAACCT
                751
                801 GCTTTAA
20
```

This corresponds to the amino acid sequence <SEQ ID 88; ORF17-1>:

```
25 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL DLQGLAQHPY
LSAKYIPAFG LQIFFILFLT AVAFKTLHTD PQTASRPLPG LPGLTAVSTL
101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTD PQTASRPLPG LPGLTAVSTL
151 FGTMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP IALSGAISYL
201 LNGLNIAGLP EGSLGFLYLP AVAVLSAATI AFAPLGVKTA HKLSSAKLKK
251 XFGIMLLLIA GKMLYNLL*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with hypothetical H.influenzae transmembrane protein HI0902 (accession number P44070)

30 ORF17 and HI0902 proteins show 28% aa identity in 192 aa overlap:

```
HKKQAVNGKTVFTMMPGMIFGVFT-GAFSAKYIPAFGLQIF--FILFLTAVAFKTLHTDP 59
          ORF17
                           + + V + P ++ VF G F +
                                                           +IF
                                                                +++L
                     HKLGNIVWQAVRILAPVIMLSVFICGLFIGRLDREISAKIFACLVVYLATKMVLSIKKD- 130
          HI0902
                  60 QTASRPLPGLPXLTAVSTLFGTMSSWVGIGGGSLSVPFLIHCGFPAHKAIGTSSGLAWPI 119
35
          ORF17
                                       L G SS GIGGG VPFL G
                                                                    +AIG+S+
                 131 QVTTKSLTPLSSVIG-GILIGMASSAAGIGGGGFIVPFLTARGINIKQAIGSSAFCGMLL 189
          HI0902
                  120 ALSGAISYLLNGLNIAGLPEGSLGFLYLPAVAVLSAATIAFAPLGVXXXXXXXXXXXXXXX 179
          ORF17
                                      +PE SLG++YLPAV ++A +
                       +SG S++++G
40
                  190 GISGMFSFIVSGWGNPLMPEYSLGYIYLPAVLGITATSFFTSKLGASATAKLPVSTLKKG 249
          HI0902
                  180 FGIMLLLIAGKM 191
          ORF17
                      F + L+++A M
           HI0902 250 FALFLIVVAINM 261
45
```

Homology with a predicted ORF from N. meningitidis (strain A)

ORF17 shows 96.9% identity over a 196aa overlap with an ORF (ORF17a) from strain A of N. meningitidis:

	•						
50					10	20	30
50	£17 non			GQH	KKQAVNGKT <u>V</u> E	TMMPGMIFG	VFTGAFS
	orf17.pep			111	11111: 1111	1111111:11	11:11:1
	orf17a	QGLAQHPYAQHLA	VGTSFAVMVFT	PAFSSMLGQH	KKQAVDWKT <u>VI</u>	TMMPGMVFG	VFAGALS
	OIII/a	50	60	70	80	90	100
55							00
33		40	50	60	70	80	90
	orf17.pep	AKYIPAFGLQIFF	ILFLTAVAFK.	rlhtdpqtas:	RPLPGLPXLT	AVSTLEGTMS	SWVGIGG
	OLLITTPOP	13111111111	1111111111	1111111	1111111 11	,,,,,,,,,,	
	orf17a	AKYIPAFGLQIFF	ILFLTAVAFK	TLHTDPQTAS:	RPLPGLPGLT	AVSTLFGTMS	SSWVGIGG
	0111.0						

-103-

		110	120	130	140	150	160
5	orf17.pep orf17a	100 GSLSVPFLIHCGE GSLSVPFLIHCGE 170		11111111111	1111111111	111111111111	111111111
10	orf17.pep orf17a	160 AVLSAATIAFAPI AVLSAATIAFAPI 230	ПППП	11111111 <u>111</u>	11111111	TITITI	
	The complete lengtl	n ORF17a nucl	eotide seq	uence <sec< th=""><th>) ID 89> i</th><th>s:</th><th></th></sec<>) ID 89> i	s:	
15	,	GTGGCATT GGGA	· ·		•	•	
15	51 AGC 101 CTC 151 GCC	GTTTTATT GCCGC GTCGTTTT ATGGC GCAACACC TCGCC FTTCCAGT ATGCT	SCCTGT TCC STGCTT GAT CGTCGG CAC	GGCGTAGG CG ITTGCAGG GT CATCCTTC GC	GCGGCACG TTGGCACA CGTCATGG	CTGATTGTCC ACATCCTTAC TCTTCACCGC	
20	251 CCC 301 CTC 351 GT	STATTTAC GATGA CTCCGCAA AATAT PTTTAACC GCCGT PCCCGCCC GCTGC	ATGCCG GG: PATCCC AGG PCGCAT TC	PATGGTAT TO CGTTCGGG CT AAAACACT GC	GGCGTATT TCAAATTT ATACCGAC	CGCTGGCGCA TCTTCATCCT CCTCAGACGG	
25	451 TTC 501 CCC 551 CA 601 CTC 651 TTZ	CGGCACAA TGTCC CCTTCTTA ATCCA ICCGGCCT TGCCT CAACGGCC TGAAT ACCTGCCC GCCGT	SAGCTG GGT ACTGCG GCT TGGCCG ATT TATTGC AGG TCGCCG TCG	PCGGCATA GG PTCCCCGC CC PGCACTCT CC GATTGCCC GA CTCAGCGC GG	CGGCGGTT CATAAAGCC CGGCGCAAT AGGGTCAC CCAACCATT	CACTTTCCGT ATCGGCACAT ATCGTATCTG TGGGCTTCCT GCCTTTGCCC	
30	701 CG	CTCGGTGT CAAA <i>I</i> CTTCGGCA TTATO ITTAA	ACCGCC CAC	CAAACTTT CT	TCTGCCAA	ACTCAAAAAA	
	This encodes a prot	ein having ami	no acid se	quence <se< th=""><th>Q ID 90>:</th><th></th><th></th></se<>	Q ID 90>:		
35	1 MWI 51 AQI 101 LS 151 FG 201 LNG	HWDIILIL LAVGS HLAVGTSF AVMVI AKYIPAFG LQIFF FMSSWVGI GGGSI GLNIAGLP EGSLG GIMLLLIA GKMLY	SAAGFI AGI TTAFSS MLC FILFLT AVI LSVPFL INC FFLYLP AVI	LFGVGGGT LI GQHKKQAV DW AFKTLHTD PQ CGFPAHKA IG	VPVVLWVL KTVFTMMP TASRPLPG TSSGLAWP	GMVFGVFAGA LPGLTAVSTL IALSGAISYL	
	ORF17a and ORF1	7-1 show 98.9%	% identity	in 268 aa ov	verlap:		
40	orf17a.pep	11111111111		IAGLFGVGGGT	LIVPVVLWV	0 50 LDLQGLAQHPY LDLQGLAQHPY	AQHLAVGTSF
45	OLIT-1	10	20			O 50	
43	orf17a.pep	11111111111	3111111	VDWKTVFTMMP	GMVFGVFAG	ALSAKYIPAFG	LQIFFILELT
50	orf17-1	AVMVFTAFSSN 70	ALGQHKKQAY 80	OWKTVFTMMP 90		ALSAKYIPAFG 0 110	
	orf17a.pep	130 AVAFKTLHTDI	140 PQTASRPLPO	GLPGLTAVSTL	FGTMSSWVG	0 170 IGGGSLSVPFL	IHCGFPAHKA
55	orf17-1	AVAFKTLHTDI 130	PQTASRPLPO	GLPGLTAVSTL	FGTMSSWVG	IGGGSLSVPFL	IHCGFPAHKA
60	orf17a.pep	11111111111		LLNGLNIAGLP LLNGLNIAGLP	EGSLGFLYL EGSLGFLYL	PAVAVLSAATI PAVAVLSAATI	AFAPLGVKTA
65	orf17a.pep	250 HKLSSAKLKKS	260 SFGIMLLLI				

orf17-1 HKLSSAKLKXXFGIMLLLIAGKMLYNLLX 250 260

5 Homology with a predicted ORF from N.gonorrhoeae

ORF17 shows 93.9% identity over a 196aa overlap with a predicted ORF (ORF17.ng) from N. gonorrhoeae:

	orf17.pep	GQHKKQAVNGKTVFTMMPGMIFGVFTGAFS	30
10	orf17ng	QGLAQHPYAQHLAVGTSFAVMVFTAFSSMLGQHKKQAVDWKTIFAMMPGMIFGVFAGALS	102
	orf17.pep	AKYIPAFGLQIFFILFLTAVAFKTLHTDPQTASRPLPGLPXLTAVSTLFGTMSSWVGIGG	90
15	orf17ng	AKYIPAFGLQIFFILFLTAVAFKTLHTGRQTASRPLPGLPGLTAVSTLFGAMSSWVGIGG	162
	orf17.pep	GSLSVPFLIHCGFPAHKAIGTSSGLAWPIALSGAISYLLNGLNIAGLPEGSLGFLYLPAV	150
	orf17ng	GSLSVPFLIHCGFPAHKAIGTSSGLAWPIALSGAISYLVNGLNIAGLPEGSLGFLYLPAV	202
20	orf17.pep	AVLSAATIAFAPLGVKTAHKLSSAKLKKSFGIMLLLIAGKMLYNLL 196	
	orf17ng	AVLSAATIAFAPLGVKTAHKLSSAKLKESFGIMLLLIAGKMLYNLL 268	

An ORF17ng nucleotide sequence <SEQ ID 91> is predicted to encode a protein having amino acid sequence <SEQ ID 92>:

```
25

1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL DLQGLAQHPY
51 AQHLAVGTSF AVMVFTAFSS MLGQHKKQAV DWKTIFAMMP GMIFGVFAGA
101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTG RQTASRPLPG LPGLTAVSTL
151 FGAMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP IALSGAISYL
201 VNGLNIAGLP EGSLGFLYLP AVAVLSAATI AFAPLGVKTA HKLSSAKLKE
30
251 SFGIMLLIA GKMLYNLL*
```

Further work revealed the complete gonococcal DNA sequence <SEQ ID 93>:

```
1 ATGTGGCATT GGGACATTAT CTTAATCCTG CTTGCcgtag gcAGTGCGGC
                51 AGGTTTTATT GCCGGCCTGT Tcggtgtagg cggcgGTACG CTGATTGTCC
                    CTGTCGTTTT ATGGGTGCTT GATTTGCAGG GTTTGGCACA ACATCCTTAC
               151 GCGCAACACC TCGCCGTCGG CAcaTccttc gcCGTCATGG TCTTCACCGC
35
                    CTTTTCCAGT ATGTTGGGGC AGCACAAAAA ACAGGCGGTC GACTGGAAAA
               201
                    CCATATTTGC GATGATGCCG GGTATGATAT TCGGCGTATT CGCTGGCGCA
               251
                    CTCTCCGCAA AATATATCCC CGCGTTCGGG CTTCAAATTT TCTTCATCCT
               301
               351 GTTTTTAACC GCCGTCGCAT TCAAAACACT GCATACCGGT CGTCAGACGG
                    CATCCCGCCC GCTGCCCGGG CTGCCCGGAC TGACTGCGGT TTCCACACTG
40
                401
                    TTCGGCGCAA TGTCGAGCTG GGTCGGCATA GGCGGCGGTT CACTTTCCGT
                451
               501 CCCCTTCTTA ATCCACTGCG GCTTCCCCGC CCATAAAGCC ATCGGCACAT
                551 CATCCGGCCT TGCCTGGCCG ATTGCACTCT CCGGCGCAAT ATCGTATCTG
                601 GTCAACGGTC TGAATATTGC AGGATTGCCC GAAGGGTCGC TGGGCTTCCT
                    TTACCTGCCC GCCGTCGCCG TCCTCAGCGC GGCAACCATT GCCTTTGCCC
45
                    CGCTCGGTGT CAAAACCGCC CACAAACTTT CTTCTGCCAA ACTCAAAGAA
                    TCCTTCGGCA TTATGTTGCT TTTGATTGCC GGAAAAATGC TGTACAACCT
                    GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 94; ORF17ng-1>:

```
50 1 MWHWDIILIL LAVGSAAGFI AGLFGVGGGT LIVPVVLWVL DLQGLAQHPY
51 AQHLAVGTSF AVMVFTAFSS MLGQHKKQAV DWKTIFAMMP GMIFGVFAGA
101 LSAKYIPAFG LQIFFILFLT AVAFKTLHTG RQTASRPLPG LPGLTAVSTL
151 FGAMSSWVGI GGGSLSVPFL IHCGFPAHKA IGTSSGLAWP IALSGAISYL
201 VNGLNIAGLP EGSLGFLYLP AVAVLSAATI AFAPLGVKTA HKLSSAKLKE
55 251 SFGIMLLLIA GKMLYNLL*
```

ORF17ng-1 and ORF17-1 show 96.6% identity in 268 aa overlap:

	orf17ng-1						
	55 22 5	10	20	30	40	.50	60
5		70	80	90	100	110	: 120
_	orf17-1.pep	AVMVFTAFSSMLG	DHKKQAVDWK	TVFTMMPGMIE	GVFTGALSAK	YIPAFGLQII	FFILFLT
	•			1:1:111111			
	orf17ng-1	AVMVFTAFSSMLG(
		70	80	90	100	110	120
10						4	
		130	140	150	160	170	180
	orf17-1.pep	AVAFKTLHTDPQT					
				:			
10	orf17ng-1	AVAFKTLHTGRQT					
15		. 130	140	150	160	170	180
	·	190	200	210	. 220	-230	240
	orf17-1.pep	IGTSSGLAWPIALS	SGAISYLLNO	LNIAGLPEGSI	LGFLYLPAVA\	/LSAATIAFA	PLGVKTA
	,		1111111:13	1111111111	11111111111		111111
20	orf17ng-1	IGTSSGLAWPIALS	SGAISYLVNO	LNIAGLPEGS	LGFLYLPAVA	LSAATIAFA	PLGVKTA
		190	200	210	220	230	240
		250	260	269	•		
	orf17-1.pep	HKLSSAKLKKXFG:	IMLLLIAGKN	ILYNLLX			
25		111111111111111111111111111111111111111	111111111111	111111		•	
	orf17ng-1	HKLSSAKLKESFG	IMLLLIAGK	LYNLLX			
		250	260				
•	In addition, ORF17n	g-1 shows signifi	icant homo	logy with a	hypothetica	ıl <i>H.influe</i> n	zae proteii
		ים שאבדאו שעם השמע מ	PTCAL PROT	ETN HTOGOS	nir1166401	5 himothet	ical prot

```
sp|P44070|Y902_HAEIN HYPOTHETICAL PROTEIN HI0902 pir||G64015 hypothetical protein
30
          HI0902 - Haemophilus influenzae (strain Rd KW20) gi|1573922 (U32772) H. influenzae
          predicted coding region HI0902 [Haemophilus influenzae]Length = 264
           Score = 74 (34.9 bits), Expect = 1.6e-23, Sum P(2) = 1.6e-23
           Identities = 15/43 (34%), Positives = 23/43 (53%)
35
                    55 AVGTSFAVMVFTAFSSMLGQHKKQAVDWKTIFAMMPGMIFGVF 97
          Query:
                       A+GTSFA +V T
                                     S
                                           НK
                                               + W+ + + P ++ VF
                    52 ALGTSFATIVITGIGSAQRHHKLGNIVWQAVRILAPVIMLSVF 94
          Sbjct:
           Score = 195 (91.9 bits), Expect = 1.6e-23, Sum P(2) = 1.6e-23
40
           Identities = 44/114 (38%), Positives = 65/114 (57%)
                    150 LFGAMSSWVGIGGGSLSVPFLIHCGFPAHKAIGTSSGLAWPIALSGAISYLVNGLNIAGL 209
          Query:
                                                    +AIG+S+
                       L G SS GIGGG
                                        VPFL
                                              G
                                                                + +SG S++V+G
                    148 LIGMASSAAGIGGGGFIVPFLTARGINIKQAIGSSAFCGMLLGISGMFSFIVSGWGNPLM 207
          Sbjct:
45
                    210 PEGSLGFLYLPAVAVLSAATIAFAPLGVKTAHKLSSAKLKESFGIMLLLIAGKM 263
          Query:
                        PE SLG++YLPAV ++A +
                                             + LG
                                                       KL + LK+ F + L+++A M
                    208 PEYSLGYIYLPAVLGITATSFFTSKLGASATAKLPVSTLKKGFALFLIVVAINM 261
           Sbjct:
```

This analysis, including the homology with the hypothetical *H.influenzae* transmembrane protein, suggests that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 12

50

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 95>: 55

		1	GGAAACGGAT	GGCAGGCAGA	CCCCGAACAT	CCGCTGCTCG	GGCTTTTTGC
	•	51	CGTCAGTAAT	GTATCGATGA	CGCTTGCTTT	TGTCGGAATA	TGTGCGTTGG
		101	TGCATTATTG	CTTTTCGGGA	ACGGTTCAAG	TGTTTGTGTT	TGCGGCACTG
		151	CTCAAACTTT	ATGCGCTGAA	GCCGGTTTAT	TGGTTCGTGT	TGCAGTTTGT
60	•	201	GCTGATGGCG	GTTGCCTATG	TCCACCGCTG	CGGTATAGAC	CGGCAGCCGC
		251	CGTCAACGTT	CGGCGGCTCG	CAGCTGCGAC	TCGGCGGGTT	GACGGCAGCG

301	TTGATGCAGG TCTCGGTACT	GGTGCTGCTG	CTTTCAGAAA	TTGGAAGATA
351	Δ			

This corresponds to the amino acid sequence <SEQ ID 96; ORF18>:

```
5 ...GNGWQADPEH PLLGLFAVSN VSMTLAFVGI CALVHYCFSG TVQVFVFAAL
LKLYALKPVY WFVLQFVLMA VAYVHRCGID RQPPSTFGGS QLRLGGLTAA
LMQVSVLVLL LSEIGR*
```

Further work revealed the complete nucleotide sequence <SEQ ID 97>:

	1	ATGATTTTGC	TGCATTTGGA	TTTTTTGTCT	GCCTTACTGT	ATGCGGCGGT
	51	TTTTCTGTTT	CTGATATTCC	GCGCAGGAAT	GTTGCAATGG	TTTTGGGCGA
10	101	GTATTATGCT	GTGGCTGGGC	ATATCGGTTT	TGGGGGCAAA	GCTGATGCCC
10	151	CCCATATGGG	GAATGACCCG	CGCCGCGCCC	TTGTTCATCC	CCCATTTTTA
	201	CCTGACTTTG	GGCAGCATAT	TTTTTTTCAT	CGGGCATTGG	AACCGGAAAA
	251	CAGATGGAAA	CGGATGGCAG	GCAGACCCCG	AACATCCGCT	GCTCGGGCTT
	301	TTTGCCGTCA	GTAATGTATC	GATGACGCTT	GCTTTTGTCG	GAATATGTGC
15	351	GTTGGTGCAT	TATTGCTTTT	CGGGAACGGT	TCAAGTGTTT	GTGTTTGCGG
13	401	CACTGCTCAA	ACTTTATGCG	CTGAAGCCGG	TTTATTGGTT	CGTGTTGCAG
	451	TTTGTGCTGA	TGGCGGTTGC	CTATGTCCAC	CGCTGCGGTA	TAGACCGGCA
	501	CCCCCCCTCA	ACCTTCGGCG	GCTCGCAGCT	GCGACTCGGC	GGGTTGACGG
	• • • •	GCCGCCGTCII	CCACCTCTCC	CTACTCCTCC	TGCTGCTTTC	AGAAATTGGA
	551		GCAGGICICG	GIACIGGIGG	1001001110	
20	601	AGATAA				

This corresponds to the amino acid sequence <SEQ ID 98; ORF18-1>:

```
25 MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIMLWLG ISVLGAKLMP
GIWGMTRAAP LFIPHFYLTL GSIFFFIGHW NRKTDGNGWQ ADPEHPLLGL
FAVSNVSMTL AFVGICALVH YCFSGTVQVF VFAALLKLYA LKPVYWFVLQ
FVLMAVAYVH RCGIDRQPPS TFGGSQLRLG GLTAALMQVS VLVLLLSEIG
201 R*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF18 shows 98.3% identity over a 116aa overlap with an ORF (ORF18a) from strain A of N.

30 meningitidis:

25	orf18.pep	TRAAPLFIPHI	FYLTLGSIFE 70	righwnri 80	1111111	111111111	20 AVSNVSMTLA AVSNVSMTLA 110	1111
35		00						
		40	50)	60	70	80	90
	orf18.pep	CALVHYCFSG	111111111			!	111111111	1111
40	orf18a	CALVHYCFSX	TVQVFVFAAI	LKLYALK	PVYWFVLQF	VLMAVAYVHR	CGIDRQPPST	FGGS
40	02220	120	130	140	150	160	170	
		100						
45	orf18.pep	QLRLGGLTAA	LMQVSVLVL]	<u>LLS</u> EIGRX				
~~	orf18a	OLRLGGLTAA 180	LMQXSVLVL	LLSEIGRX 200				

The complete length ORF18a nucleotide sequence <SEQ ID 99> is:

50	1 51 101 151 201 251 301	TTTTCTGTTT GTATTATGCT GGCATATGGG CCTGACTTTG CGGATGGAAA TTTGCCGTCA	CTGATATTCC GTGGCTGGGC GAATGACCCG GGCAGCATAT CGGATGGCAG GTAATGTATC	GCGCAGGAAT ATATCGGTTT CGCCGCGCCC TTTTTTTCAT GCAGACCCCG GATGACGCTT	GCCTTACTGT GTTGCAATGG TGGGGGCAAA TTGTTCATCC CGGGCATTGG AACATCCTCT GCTTTTGTCG	TTTTGGGCGA GCTGATGCCC CCCATTTTTA AACCGGAAAA GCTCGGGCTG GAATATGTGC
<i>33</i>	351	GTTGGTGCAT	TATTGCTTTT	CGNGAACGGT	TCAAGTGTTT	CGTGTTGCAG
	401	CACTGCTCAA	ACTTTATGCG	CTGAAGCCGG	TTTATTGGTT	CGTGTTGCAG

10

451	TTTGTGCTGA	TGGCGGTTGC	CTATGTCCAC	CGCTGCGGTA	TAGACCGGCA
501	GCCGCCGTCA	ACGTTCGGCG	GNTCGCAGCT	GCGACTCGGC	GGGTTGACGG
551	CAGCGTTGAT	GCAGNTCTCG	GTACTGGTGC	TGCTGCTTTC	AGAAATTGGA
601	ΔCΔΤΔΔ				•

5 This encodes a protein having amino acid sequence <SEQ ID 100>:

```
1 MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIMLWLG ISVLGAKLMP
51 GIWGMTRAAP LFIPHFYLTL GSIFFFIGHW NRKTDGNGWQ ADPEHPLLGL
101 FAVSNVSMTL AFVGICALVH YCFSXTVQVF VFAALLKLYA LKPVYWFVLQ
151 FVLMAVAYVH RCGIDRQPPS TFGGSQLRLG GLTAALMQXS VLVLLLSEIG
201 R*
```

ORF18a and ORF18-1 show 99.0% identity in 201 aa overlap:

	•	1	0 20	30	40	50	60
	orf18a.pep	MILLHLDFL	SALLYAAVFLF	LIFRAGMLQWI	FWASIMLWLG	ISVLGAKLMPG	IWGMTRAAP
		111111111	11111111111	111111111		11313111111	
15	orf18-1			LIFRAGMLQWI	FWAS IMLWLG	ISVLGAKLMPG	IWGMTRAAP
		1	0 20	30	40	50	60 ·
		7	0 80	90	100	110	120
	orf18a.pep	LFIPHFYLT	LGSIFFFIGHW	NRKTDGNGWQ	ADPEHPLLGL	FAVSNVSMTLA	FVGICALVH
20		111111111	11111111111	111111111111	1111111	1111111111111	111111111
	orf18-1	LFIPHFYLT	LGSIFFFIGHW	NRKT DGNGWQ/	ADPEHPLLGL	FAVSNVSMTLA	FVGICALVH
		7	0 80	90	100	110	120
		13	0 140	150	160	170	180
25	orf18a.pep	YCFSXTVQV	FVFAALLKLYA	LKPVYWFV L QI	FVLMAVAYVH	RCGIDRQPPST	FGGSQLRLG
		1111 1111	11111111111	1111111111	111111111	111111111111	111111111
	orf18-1	YCFSGTVQV	FVFAALLKLYA	LKPVYWFVLQ:	FVLMAVAYVH	RCGIDRQPPST	FGGSQLRLG
		13	0 140	150	160	170	180
30		19	0 200				
	orf18a.pep	GLTAALMQX	SVLVLLLSEIG	RX			
		11111111	1111111111111	11			
	orf18-1	GLTAALMQV	SVLVLLLSEIG	RX			
		19	0 200				
35	•						

Homology with a predicted ORF from N. gonorrhoeae

ORF18 shows 93.1% identity over a 116aa overlap with a predicted ORF (ORF18.ng) from N. gonorrhoeae:

40	orf18.pep	<u> </u>	30
40	orf18ng		115
	orf18.pep	CALVHYCFSGTVQVFVFAALLKLYALKPVYWFVLQFVLMAVAYVHRCGIDRQPPSTFGGS	90
45	orf18ng		175
	orf18.pep	QLRLGGLTAALMQVSVLVLLLSEIGR 116	
	orf18ng	QLRLGVLAAMLMQVAVTAMLLAEIGR 201	

50 The complete length ORF18ng nucleotide sequence is <SEQ ID 101>:

	1	ATGATTTTGC	TGCATTTGGA	TTTTTTGTCT	GCCTTACTGt	aTGCGGcggt
	. 51	tttTctgTTT	CTGATATTCC	GCGCAGGAAT	GTTGCAATGG	TTTTGGGCGA
	101	GTATTGCGTT'	GTGGCTCGGC	ATCTCGGTTT	TAGGGGTAAA	GCTGATGCCG
	151	GGGATGTGGG	GAATGACCCG	CGCCGCGCCT	TTGTTCATCC	CCCATTTTTA
55	201	CCTGACTTTG	GGCAGCATAT	TTTTTTTCAT	CGGGTATTGG	AACCGGAAAA
	251	CAGATGGAAA	CGGATGGCAG	GCAGACCCCG	AACATCCGCT	GCTCGGGCTT
	301	TTTGCCGTCA	GTAATGTATC	GATGACGCTT	GCTTTTGTCG	GAATATGTGC
•	351	GTTGGTGCAT	TATTGCTTTT	CGGGAACGGT	TCAAGTGTTT	GTGTTTGCGG
	401	CATTGCTCAA	ACTTTATGCG	CTGAAGCCGG	TTTATTGGTT	CGTGTTGCAG
60	451	TTTGTATTGA	TGGCGGttgC	CTATGTCCAC	CGCTGCGGTA	TAGACCGGCA
	501	GCCGCCGTCA	ACGTTCGGCG	GTTCGCAGCT	GCGACTCGGC	GTGTTGGCGG

CGATGTTGAT GCAGGTTGCG GTAACGGCGA TGCTGCTTGC CGAAATCGGC

AGATGA

This encodes a protein having amino acid sequence <SEQ ID 102>:

```
MILLHLDFLS ALLYAAVFLF LIFRAGMLQW FWASIALWLG ISVLGVKLMP
GMWGMTRAAP LFIPHFYLTL GSIFFFIGYW NRKTDGNGWQ ADPEHPLLGL
5
                     51
                          FAVSNVSMTL AFVGICALVH YCFSGTVQVF VFAALLKLYA LKPVYWFVLQ
                    101
                          FVLMAVAYVH RCGIDROPPS TFGGSQLRLG VLAAMLMQVA VTAMLLAEIG
                    151
```

This ORF18ng protein sequence shows 94.0% identity in 201 aa overlap with ORF18-1:

10	orf18-1.pep	10 MILLHLDFLSALLYA MILLHLDFLSALLYA	111111111	111111111	1 11111111	1:1111:11	
	orf18ng	10	20	30	40	50	60
15		70	80	90	100	110	120
	orf18-1.pep	LFIPHFYLTLGSIFF	111:1111	111111111	111111111	11111111	[[]]
20	orf18ng	LFIPHFYLTLGSIFF 70	FIGYWNRKT 80	DGNGWQADPE 90	100	110	120
		130	140	150	160	170 ,	180
	orf18-1.pep	YCFSGTVQVFVFAAL	111111111	1111111111		1	111111
25	orf18ng	YCFSGTVQVFVFAAI 130	LKLYALKPV 140	YWFVLQFVLM 150	IAVAYVHRCG 160	IDROPPSTFGG 170	180
		190	200				
30	orf18-1.pep	GLTAALMQVSVLVLI	1:1111		•		
5 0	orf18ng	VLAAMLMQVAVTAMI 190	LLAEIGRX 200				

Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 13

35

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 103>:

```
ATGAAAACCC CACTCCTCAA GCCTCTGCTN ATTACCTCGC TTCCCGTTTT
                    CGCCAGTGTT TTTACCGCCG CCTCCATCGT CTGGCAGCTA GGCGAACCCA
40
                51
               101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCCGGCGG CCTTGTCGAT
                    TTGGACAACC NCNTGACCGG ACGGCTNAAA AACATCATCA CCACCGTCGC
               151
                    CCTGTTCACC CTCTCCTCGC TCACGGCACA AAGCACCCTC GGCACAGGGC
                201
                    TGCCCTTCAT CCTCGCCATG ACCCTGATGA CTT.CG.CTT CACCATTTTA
                251
                301 GGCGCGGNCG ...
45
```

This corresponds to the amino acid sequence <SEQ ID 104; ORF19>:

- MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV LGIIAGGLVD LDNXXTGRLK NIITTVALFT LSSLTAQSTL GTGLPFILAM TLMTXXFTIL
- 101 GAX...
- Further work revealed the complete nucleotide sequence <SEQ ID 105>: 50
 - 1 ATGAAAACCC CACTCCTCAA GCCTCTGCTC ATTACCTCGC TTCCCGTTTT
 - 51 CGCCAGTGTT TTTACCGCCG CCTCCATCGT CTGGCAGCTA GGCGAACCCA 101 AGCTCGCCAT GCCCTTCGTA CTCGGCATCA TCGCCGGCGG CCTTGTCGAT
 - 151 TTGGACAACC GCCTGACCGG ACGGCTGAAA AACATCATCA CCACCGTCGC

```
CCTGTTCACC CTCTCCTCGC TCACGGCACA AAGCACCCTC GGCACAGGGC
               201
               251
                     TGCCCTTCAT CCTCGCCATG ACCCTGATGA CCTTCGGCTT CACCATTTTA
               301
                    GGCGCGGTCG GGCTCAAATA CCGCACCTTC GCCTTCGGTG CACTCGCCGT
                    CGCCACCTAC ACCACACTTA CCTACACCCC CGAAACCTAC TGGCTGACCA
5
               401
                    ACCCCTTCAT GATTTTATGC GGCACCGTAC TGTACAGCAC CGCCATCCTC
                     CTGTTCCAAA TCGTCCTGCC CCACCGCCCC GTCCAAGAAA GCGTCGCCAA
               451
                    CGCCTACGAC GCACTCGGCG GCTACCTCGA AGCCAAAGCC GACTTCTTCG
               501
                     ACCCCGATGA GGCAGCCTGG ATAGGCAACC GCCACATCGA CCTCGCCATG
               551
                    AGCAACACCG GCGTCATCAC CGCCTTCAAC CAATGCCGTT CCGCCCTGTT
                601
                     TTACCGCCTT CGCGGCAAAC ACCGCCACCC GCGCACCGCC AAAATGCTGC
10
               651
                     GTTACTACTT TGCCGCCCAA GACATACACG AACGCATCAG CTCCGCCCAC
               701
               751
                    GTCGATTATC AGGAAATGTC CGAAAAATTC AAAAACACCG ACATCATCTT
               801
                     CCGCATCCAC CGCCTGCTCG AAATGCAGGG ACAAGCCTGC CGCAACACCG
               851
                     CCCAAGCCCT GCGCGCAAGC AAAGACTACG TTTACAGCAA ACGCCTCGGC
15
               901
                     CGCGCCATCG AAGGCTGCCG CCAATCGCTG CGCCTCCTTT CAGACAGCAA
                     CGACAGTCCC GACATCCGCC ACCTGCGCCG CCTTCTCGAC AACCTCGGCA
               951
               1001
                     GCGTCGACCA GCAGTTCCGC CAACTCCAGC ACAACGGCCT GCAGGCAGAA
                     AACGACCGCA TGGGCGACAC CCGCATCGCC GCCCTCGAAA CCAGCAGCCT
               1051
                     CAAAAACACC TGGCAGGCAA TCCGTCCGCA GCTAAACCTC GAATCAGGCG
               1101
                     TATTCCGCCA TGCCGTCCGC CTGTCCCTCG TCGTTGCCGC CGCCTGCACC
20
               1151
                     ATCGTCGAAG CCCTCAACCT CAACCTCGGC TACTGGATAC TACTGACCGC
               1201
                     CCTTTTCGTC TGCCAACCCA ACTACACCGC CACCAAAAGC CGCGTCCGCC
               1251
                    AGCGCATCGC CGGCACCGTA CTCGGCGTAA TCGTCGGCTC GCTCGTCCCC TACTTCACCC CGTCTGTCGA AACCAAACTC TGGATTGTCA TCGCCAGTAC
               1301
               1351
25
                     CACCCTCTTT TTCATGACCC GCACCTACAA ATACAGTTTC TCCACCTTCT
               1401
                     TCATTACCAT TCAAGCCCTG ACCAGCCTCT CCCTCGCAGG TTTGGACGTA
               1451
                     TACGCCGCCA TGCCCGTACG CATCATCGAC ACCATTATCG GCGCATCCCT
               1501
                     TGCCTGGGCG GCAGTCAGCT ACCTGTGGCC AGACTGGAAA TACCTCACGC
               1551
                     TCGAACGCAC CGCCGCCCTT GCCGTATGCA GCAACGGTGC CTATCTCGAA
               1601
30
               1651
                     AAAATCACCG AACGCCTCAA AAGCGGCGAA ACCGGCGACG ACGTCGAATA
                     CCGCGCCACC CGCCGCCGC CCCACGAACA CACCGCCGCC CTCAGCAGCA
               1701
                     CCCTTTCCGA CATGAGCAGC GAACCCGCAA AATTCGCCGA CAGCCTGCAA
               1751
                     CCCGGCTTTA CCCTGCTCAA AACCGGCTAC GCCCTGACCG GCTACATCTC
               1801
               1851
                     CGCCCTCGGC GCATACCGCA GCGAAATGCA CGAAGAATGC AGCCCCGACT
35
               1901
                     TTACCGCACA GTTCCACCTC GCCGCCGAAC ACACCGCCCA CATCTTCCAA
                     CACCTGCCCG AAACCGAACC CGACGACTTT CAGACAGCAC TGGATACACT
               1951
                     GCGCGGCGAA CTCGACACCC TCCGCACCCA CAGCAGCGGA ACACAAAGCC
               2051
                     ACATCCTCCT CCAACAGCTC CAACTCATCG CCCGACAGCT CGAACCCTAC
               2101
                     TACCGCGCCT ACCGCCAAAT TCCGCACAGG CAGCCCCAAA ATGCAGCCTG
               2151 A
40
```

This corresponds to the amino acid sequence <SEQ ID 106; ORF19-1>:

```
MKTPLLKPLL ITSLPVFASV FTAASIVWQL GEPKLAMPFV LGIIAGGLVD
                      LDNRLTGRLK NIITTVALFT LSSLTAQSTL GTGLPFILAM TLMTFGFTIL
                      GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC GTVLYSTAIL
45
                      LFQIVLPHRP VQESVANAYD ALGGYLEAKA DFFDPDEAAW IGNRHIDLAM
                      SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ DIHERISSAH
VDYQEMSEKF KNTDIIFRIH RLLEMQGQAC RNTAQALRAS KDYVYSKRLG
                 201
                 251
                      RAIEGCROSL RLLSDSNDSP DIRHLRRLLD NLGSVDQQFR QLQHNGLQAE
                      NDRMGDTRIA ALETSSLKNT WQAIRPQLNL ESGVFRHAVR LSLVVAAACT
                 351
50
                 401
                      IVEALNLNLG YWILLTALFV CQPNYTATKS RVRQRIAGTV LGVIVGSLVP
                      YFTPSVETKL WIVIASTTLF FMTRTYKYSF STFFITIQAL TSLSLAGLDV
                 451
                      YAAMPVRIID TIIGASLAWA AVSYLWPDWK YLTLERTAAL AVCSNGAYLE
                 501
                      KITERLKSGE TGDDVEYRAT RRRAHEHTAA LSSTLSDMSS EPAKFADSLQ
                      PGFTLLKTGY ALTGYISALG AYRSEMHEEC SPDFTAQFHL AAEHTAHIFQ
                 601
55
                      HLPETEPDDF QTALDTLRGE LDTLRTHSSG TQSHILLQQL QLIARQLEPY YRAYRQIPHR QPQNAA*
                 651
```

Computer analysis of this amino acid sequence gave the following results:

Homology with predicted transmenbrane protein YHFK of *H. influenzae* (accession number P44289) ORF19 and YHFK proteins show 45% as identity in 97 as overlap:

```
60 orf19 6 LKPLLITSLPVFASVFTAASIVWQLGEPKLAMPFVLGIIAGGLVDLDNXXTGRLKNIITT 65
L +I++PVF +V AA +W +MP +LGIIAGGLVDLDN TGRLKN+ T
YHFK 5 LNAKVISTIPVFIAVNIAAVGIWFFDISSQSMPLILGIIAGGLVDLDNRLTGRLKNVFFT 64
```

orf19 66 VALFTLSSLTAQSTLGTGLPFILAMTLMTXXFTILGA 102 + F++SS Q +G + +I+ MT++T FT++GA YHFK 65 LIAFSISSFIVQLHIGKPIQYIVLMTVLTFIFTMIGA 101

5 Homology with a predicted ORF from N.meningitidis (strain A)

ORF19 shows 92.2% identity over a 102aa overlap with an ORF (ORF19a) from strain A of N. meningitidis:

		10	20	30	40	50	60
10	orf19.pep	MKTPLLKPLLITSLE	VFASVETAA	 SIVWQLGEPH	LAMPFVLGII	11111	1111
		10	20	30	40	20	00
		70	80	90	100		
15	orf19.pep	NIITTVALFTLSSL		PFILAMTLM	TXXFTILGAX		
		: NIIATVALFTLSSL	:		: rFGFTIMGAVO	LKYRTFAF GA	LAVATY
	orf19a	70	80	90	100	110	120
20	orf19a	TTLTYTPETYWLTN	PFMILCGTVI	LYSTAIILFQ	IILPHRPVQEN	NVANAYEALGS	YLEAKA
20	OIIIJa	130	140	150	160	170	180

The complete length ORF19a nucleotide sequence <SEQ ID 107> is:

	1	ATGAAAACCC	CACCCCTCAA	GCCTCTGCTC	ATTACCTCGC	TTCCCGTTTT
	51	CCCCACTCTC	TTTACCGCCG	CCTCCATCGT	CTGGCAGCTG	GGCGAACCCA
25	101	አርርጥርርርር <mark></mark> አጥ	GCCCTTCGTA	CTCGGCATCA	TCGCTGGCGG	CCTGGTCGAT
25	151	ሚጥርርእሮእስርር	GCCTGACCGG	ACGGCTGAAA	AACATCATCG	CCACCGTCGC
	201	CCTCTTCACC	CTCTCCTCAC	TTGTCGCGCA	AAGCACCCTC	GGCACAGGTT
	251	$TCCC\Delta TTC\Delta T$	CCTCGCCATG	ACCCTGATGA	CTTTCGGCTT	TACCATCATG
	301	CCCCCCCTCG	CCCTGAAATA	CCGCACCTTC	GCCTTCGGCG	CACTUGUUGT
20	351	CCCCACCTAC	ACCACACTTA	CCTACACCCC	CGAAACCTAC	TGGCTGACCA
30	401	እ CCCCጥጥጥ እጥ	CATTCTCTCC	GGAACCGTAC	TGTACAGCAC	CGCCATCATC
	451	CTCTTCCDDD	TCATCCTGCC	CCACCGCCCC	GTTCAAGAAA	ACGTCGCCAA
	501	CCCCTACCAA	GCACTCGGCA	GCTACCTCGA	AGCCAAAGCC	GACTTTTTCG
	551	ATCCCCACCA	ACCCGAATGG	ATAGGCAACC	GCCACATCGA	CCTCGCCATG
25	601	ACCAACACCG	CCCTCATCAC	CGCCTTCAAC	CAATGCCGTT	CCGCCCTGTT
35	651	ጥጥ አርርርርርርጥጥ	CCCCCCAAAC	ACCGCCACCC	GCGCACCGCC	AAAATGCTGC
	701	ርርጥን ርጥን ርጥጥ	CCCCCCCAA	GACATACACG	AACGCATCAG	CTCCGCCCAC
	751	CTCCACTACC	AAGAGATGTC	CGAAAAATTC	AAAAACACCG	ACATCATCTT
	801	CCCCDTCCAC	CCCCTCCTCG	AAATGCAGGG	ACAAGCCTGC	CGCAACACCG
40	851	CCCNACCCCT	CCCCCCAAGC	AAAGACTACG	TTTACAGCAA	ACGCCTCGGC
40	901	CCCCCCATCG	AAGGCTGCCG	CCAATCGCTG	CGCCTCCTTT	CAGACAGCAA
	951	CCACAATCCC	GACATCCGCC	ACCTGCGCCG	CCTTCTCGAC	AACCTCGGCA
	1001	CCCTCCACCA	CCACTTCCGC	CAACTCCAGC	ACAACGGCCT	GCAGGCAGAA
	1051	AACCACCCCA	TEGGCGACAC	CCGCATCGCC	GCCCTCGAAA	CCGGCAGCCT
45	1101	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TCCCACCCAA	TCCGTCCGCA	GCTAAACCTC	GAATCAGGCG
43	1151	TATTCCCCCA	TECCETCEC	CTGTCCCTTG	TCGTTGCCGC	CGCCTGCACC
	1201	ATCCTCCDAG	CCCTCAACCT	CAACCTCGGC	TACTGGATAC	TACTGACCGC
	1251	CCTTTTTCCTC	TGCCAACCCA	ACTACACCGC	CACCAAAAGC	CGCGTCCGCC
	1301	ACCCCATCCC	CGGCACCGTA	CTCGGCGTAA	TCGTCGGCTC	GCTCGTCCCC
50	1351	ጥእርጥጥጥእርርር	CCTCCGTCGA	AACCAAACTC	TGGATCGTCA	TCGCCAGTAC
30	1401	ር አ ር ር ር ጥር ጥጥጥ	TTCATGACCC	GCACCTACAA	ATACAGCTTC	TCGACATTT
	1451	ጥር አጥር አርር ልጥ	TCAAGCCCTG	ACCAGCCTCT	CCCTCGCAGG	GTTGGACGTA
	1501	TO CCCCCCCA	TECCCETACE	CATCATCGAC	: ACCATTATCG	GCGCATCCCT
	1551	TOCCTOCCCC	GCAGTCAGCT	ACCTGTGGCC	: AGACTGGAAA	TACCTCACGC
55	1601	TOGANOGONO	CGCCGCCCTT	' GCCGTATGC	, GCAACGGCGC	CTATCTCGAA
<i>33</i>	1651	<u>አአአአጥሮልሮሮ</u>	AACGCCTCAA	AAGCGGCGA	ACCGGCGACG	ACGTCGAATA
	1701	CCCCCCCACC	CGCCGCCGCG	: CCCACGAAC	CACCGCCGCC	CTCAGCAGCA
	1751	こことでです でここと	CATGAGCAGC	: GAACCCGCA!	AATTCGCCGA	CAGCCTGCAA
	1801	CCCCCCጥጥጥ እ	CCCTGCTCAZ	AACCGGCTAC	GCCCTGACCG	GCTACATCTC
60	1851	CCCCCTCCCC	CCATACCGC	A GCGAAATGC	A CGAAGAATGO	AGCCCCGACT
OU	1901	ምም አርርርር <u>እር</u> ጀ	CTTCCACCTC	: GCCGCCGAA	ACACCGCCC	A CATCTTCCAA
	1951	CACCTGCCCC	: AAACCGAAC(CGACGACTT'	CAGACAGCAC	TGGATACACT
	2001	CCCCCCCCA	CTCGACACC	TCCGCACCC	A CAGCAGCGG	A ACACAAAGCC
	2051	እር አጥርርጥርርባ	CCAACAGCT	CAACTCATC	CCCGGCAGC	r cgaaccctac
65	2101	TACCGCGCC	ACCGACAAA	TCCGCACAG	G CAGCCCCAA	A ACGCAGCCTG
03	2151					
	2131					

This encodes a protein having amino acid sequence <SEQ ID 108>:

	1	MKTPPLKPLL	ITSLPVFASV	FTAASIVWQL	GEPKLAMPFV	LGIIAGGLVD
	51	LDNRLTGRLK	NIIATVALFT	LSSLVAQSTL	GTGLPFILAM	TLMTFGFTIM
	101	GAVGLKYRTF	AFGALAVATY	TTLTYTPETY	WLTNPFMILC.	GTVLYSTAII
5	151	LFQIILPHRP	VQENVANAYE	ALGSYLEAKA	DFFDPDEAEW	IGNRHIDLAM
	201	SNTGVITAFN	QCRSALFYRL	RGKHRHPRTA	KMLRYYFAAQ	DIHERISSAH
	251	VDYQEMSEKF	KNTDIIFRIH	RLLEMQGQAC	RNTAQALRAS	KDYVYSKRLG
	301	RAIEGCRQSL	RLLSDSNDNP	DIRHLRRLLD	NLGSVDQQFR	QLQHNGLQAE
, '	351	NDRMGDTRIA	ALETGSLKNT	WQAIRPQLNL	ESGVFRHAVR	LSLVVAAACT
10	401	IVEALNLNLG	YWILLTALFV	CQPNYTATKS	RVRQRIAGTV	LGVIVGSLVP
	451	YFTPSVETKL	WIVIASTTLE	FMTRTYKYSF	STFFITIQAL	TSLSLAGLDV
	501	YAAMPVRIID	TIIGASLAWA	AVSYLWPDWK	YLTLERTAAL	AVCSNGAYLE
	551	KITERLKSGE	TGDDVEYRAT	RRRAHEHTAA	LSSTLSDMSS	EPAKFADSLQ
	601	PGFTLLKTGY	ALTGYISALG	AYRSEMHEEC	SPDFTAQFHL	AAEHTAHIFQ
15	651	HLPETEPDDF	QTALDTLRGE	LDTLRTHSSG	TQSHILLQQL	QLIARQLEPY
	701	YRAYRQIPHR	QPQNAA*			•

60 GRLK IIII GRLK 60 120 VATY
YTAY
VATY 120
180 EAKA EAKA
180 240 FAAQ
1111 FAAQ 240
300 KRLG IIII KRLG 300
360 TRIA IIII TRIA 360
420 ALFV IIII ALFV 420
480 KYSF
KYSF 480 540 TAAL

WO 99/24578 PCT/IB98/01665

-112-

	•						
	orf19-1	STFFITIQALTSLS	SLAGLDVYAA	MPVRIIDTIIG	SASLAWAAVSY	LWPDWKYLTI	LERTAAL
		490	500	510	520	530	540
		550	560	570	580	590	600
5	orf19a.pep	AVCSNGAYLEKITE	ERLKSGETGD	DVEYRATRRR	HEHTAALSST	LSDMSSEPAR	KFADSLQ
_							1111111
	orf19-1	AVCSNGAYLEKITE	ERLKSGETGD	DVEYRATRRR	HEHTAALSST	LSDMSSEPAR	KFADSLO
	01111	550	560	570	580	590	600
				• • •	•••	•••	•••
10		610	620	630	640	650	660
	orf19a.pep	PGFTLLKTGYALTO	GYISALGAYR	SEMHEECSPDE	TAOFHLAAEH	TAHI FOHLPE	ETEPDDE
	01240-1F-F			шинійн			
	orf19-1	PGFTLLKTGYALTO	SYISALGAYR	SEMHEECSPDE	TAOFHLAAEH	ITAHI FOHLPI	TEPDDF
	02227 =	610	620	630	640	650	660
15		V		•	0.0	, 550	000
13		670	680	690	700	710	
	orf19a.pep	QTALDTLRGELDT1	LRTHSSGTQS	HILLQQLQLIA	ARQLEPYYRAY	ROIPHROPON	XAAV
		- ÎHHHHHHHH			пінны		
	orf19-1	QTALDTLRGELDTI	LRTHSSGTOS	HILLOOLOLIA	ROLEPYYRAY	ROTPHROPOL	YAAY
20	01113 1	670	680	690	700	710	
20		0.0		-50	. 50	, 10	

Homology with a predicted ORF from N.gonorrhoeae

ORF19 shows 95.1% identity over a 102aa overlap with a predicted ORF (ORF19.ng) from N. gonorrhoeae:

```
orf19.pep MKTPLLKPLLITSLPVFASVFTAASIVWQLGEPKLAMPFVLGIIAGGLVDLDNXXTGRLK 60

orf19ng MKTPLLKPLLITSLPVFASVFTAASIVWQLGEPKLAMPFVLGIIAGGLVDLDNRLTGRLK 60

orf19.pep NIITTVALFTLSSLTAQSTLGTGLPFILAMTLMTXXFTILGAX 103

orf19ng NIIATVALFTLSSLTAQSTLGTGLPFILAMTLMTXFTILGAX 120
```

An ORF19ng nucleotide sequence <SEQ ID 109> is predicted to encode a protein having amino acid sequence <SEQ ID 110>:

```
35 51 LDNRLTGRLK NIIATVALFT LSSLTAQSTL GTGLPFILAM TLMTFGFTIL
101 GAVGLKYRTF AFGALAVATY TTLTYTPETY WLTNPFMILC GTVLYSTAII
151 LFQIILPHRP VQESVANAYE ALGGYLEAKA DFFDDEAAW IGNRHIDLAM
201 SNTGVITAFN QCRSALFYRL RGKHRHPRTA KMLRYYFAAQ DIHERISSAH
251 VDYQEMSEKF KNTDIIFRIR RLLEMQGQAC RNTAQAIRSG KDYVYSKRLG
40 301 RAIEGCRQSL RLLSDGNDSP DIRHLSRLLD NLGSVDQQFR QLRHSDSPAE
351 NDRMGDTRIA ALETGSFKNT *
```

Further work revealed the complete nucleotide sequence <SEQ ID 111>:

	1	ATGAAAACCC	CACTCCTCAA	GCCTCTGCTC	ATTACCTCGC	TTCCCGTTTT
	51	CGCCAGTGTC	TTTACCGCCG	CCTCCATCGT	CTGGCAGCTA	GGCGAACCCA
45	101	AGCTCGCCAT	GCCCTTCGTA	CTCGGCATCA	TCGCCGGCGG	CCTGGTCGAT
	151	TTGGACAACC	GCCTGACCGG	ACGGCTGAAA	AACATCATCG	CCACCGTCGC
	201	CCTGTTTACC	CTCTCCTCGC	TCACGGCGCA	AAGCACCCTC	GGCACAGGGC
	251	TGCCCTTCAT	CCTCGCCATG	ACCCTGATGA	CCTTCGGCTT	TACCATTTTA
	301	GGCGCGGTCG	GGCTGAAATA	CCGCACCTTC	GCCTTCGGCG	CACTCGCCGT
50	351	CGCCACCTAC	ACCACGCTTA	CCTACACCCC	CGAAACCTAC	TGGCTGACCA
	401	ACCCCTTCAT	GATTTTATGC	GGCACCGTAC	TGTACAGCAC	CGCCATCATC
	451	CTGTTCCAAA	TCATCCTGCC	CCACCGCCCC	GTCCAAGAAA	GCGTCGCCAA
	501	TGCCTACGAA	GCACTCGGCG	GCTACCTCGA	AGCCAAAGCC	GACTTCTTCG
	551	ACCCCGATGA	GGCAGCCTGG	ATAGGCAACC	GCCACATCGA	CCTCGCCATG
55	601	AGCAACACCG	GCGTCATCAC	CGCCTTCAAC	CAATGCCGTT	CCGCCCTGTT
	651	TTACCGTTTG	CGCGGCAAAC	ACCGCCACCC	GCGCACCGCC	AAAATGCTGC
	701	GCTACTACTT	CGCCGCCCAA	GACATCCACG	AACGCATCAG	CTCCGCCCAC
	751	GTCGACTACC	AAGAGATGTC	CGAAAAATTC	AAAAACACCG	ACATCATCTT
	801		CGCCTGCTCG			
60	851	CCCAAGCCAT	CCGGTCGGGC	AAAGACTAcg	tTTACAGCAA	ACGCCTCGGA
	901		aaggctgCCG			
	· 951	CGACAGTCCC	GACATCCGCC	ACCTGAGCCG	CCTTCTCGAC	AACCTCGgca

		cgacca gcagtTCcgc			
		accgca tgggcgacaC aaCAcc tggcaggCAA			
		CCGCCA TGCCGTCCGC			
5	1201 ATCG	TCgaag cCCTCAACCT	CAACCTCGGC	TACTGGATAC	TGCTGACCGC
	1251 CCTT	TTCGTC TGCCAACCCA	ACTACACCGC	CACCAAAAGC	CGCGTGTACC
	1301 AACG	CATCGC CGGCACCGTA	CTCGGCGTAA	TCGTCGGCTC	GCTCGTCCCC
	1351 TACT	TCACCC CCTCCGTCGA CTGTTC TTCATGACCC	GCACCTACAA	ATACACTTTC	TCGCCGGTAC
10	1451 TCAT	CACCAT TCAGGCACTG	ACCAGCCTCT	CCCTCGCAGG	TTTGGACGTA
	1501 TACG	CCGCCA TGCCCGTGCG	CATCATcgaC	ACCATTATCG	GCGCATCCCT
	1551 TGCC	TGGGCG GCGGTCAGCT	ACCTGTGGCC	AGACTGGAAA	TACCTCACGC
	1601 TCGA	ACGCAC CGCCGCCCTT	GCCGTATGCA	GCAGCGGCAC	ATACCTCCAA
15	1651 AAAA 1701 CCGC	TTGCCG AACGCCTCAA ATCACC CGCCGCCGCG	CCCACGAACA	CACCGCCGCC	ACATAGAATA
13		TTCCGA CATGAGCAGC			
		GCTTTA CCCTGCTCAA			
	1851 CGCC	CTCGGC GCATACCGCA	GCGAAATGCA	CGAAGAATGC	AGCCCCGACT
••		CGCACA GTTCCACCTT			
20		TGCCCG ACATGGGACC			
		GGCGAA CTCGGCACCC			
		CCTCCT CCAACAGCTC GCGCCT ACCGACAAAT	TCCCCACAGG	CAGCCCCAAA	ACCCACCCTC
	2151 A		TCCGCACAGG	CAGCCCCAAA	ACGCAGCCIG
25	This corresponds to the	ne amino acid seque	nce <seq ii<="" th=""><th>D 112; ORF</th><th>19ng-1>:</th></seq>	D 112; ORF	19ng-1>:
	1 10000	1 1 1 1 T T T T T T T T T T T T T T T T	DD 3 2 CT: T: CT		
	1 MKTP 51 LDNR	LLKPLL ITSLPVFASV LTGRLK NIIATVALFT	TRASIVWOL	GEPKLAMPEV	TIMECETI
	101 GAVG	LKYRTF AFGALAVATY	TTLTYTPETY	WLTNPFMILC	GTVLYSTATT
	151 LFQI	ILPHRP VQESVANAYE	ALGGYLEAKA	DFFDPDEAAW	IGNRHIDLAM
30	201 SNTG	VITAFN QCRSALFYRL	RGKHRHPRTA	KMLRYYFAAQ	DIHERISSAH
	251 VDYQ	EMSEKF KNTDIIFRIR	RLLEMQGQAC	RNTAQAIRSG	KDYVYSKRLG
	301 RAIE	GCRQSL RLLSDGNDSP	DIRHLSRLLD	NLGSVDQQFR	QLRHSDSPAE
	351 NDRM 401 IVEA	GDTRIA ALETGSFKNT LNLNLG YWILLTALFV	MONTKEOTHE	ESCVERHAVR DUVODIACTU	LSLVVAAACT
35		SVETKL WIVIAGTTLE			
		PVRIID TIIGASLAWA	AVSYLWPDWK	YLTLERTAAL	AVCSSGTYLO
	551 KIAE	RLKTGE TGDDIEYRIT	RRRAHEHTAA	LSSTLSDMSS	EPAKFADSLQ
	601 PGFT	LLKTGY ALTGYISALG	AYRSEMHEEC	SPDFTAQFHL	AAEHTAHIFQ
40		MGPDDF QTALDTLRGE RQIPHR QPQNAA*	LGTLRTRSSG	TOSHILLQQL	QLIARQLEPY
40	·				•
	ORF19ng-1 and ORF	19-1 show 95.5% id	dentity in 71	6 aa overlap:	
		10	00	20	
	orf19-1.pep	10 MKTPLLKPLLTTSLPV	20 FASVFTAASTVI		40 50 60 FVLGIIAGGLVDLDNRLTGRLK
	OILI3 1.pep	111111111111111111	11111111111	MQLGEFKLAMF.	
45	orf19ng-1	MKTPLLKPLLITSLPV	FASVFTAASIV	WOLGEPKLAMP	FVLGIIAGGLVDLDNRLTGRLK
		10	20		40 50 60
		70	80	00 1	20 110 100
	orf19-1.pep				00 110 120 ILGAVGLKYRTFAFGALAVATY
50	02223 2.505		11111111111	11111111111	!!!!!!!!!!!!!!!!!!
	orf19ng-1	NIIATVALFTLSSLTA	QSTLGTGLPF1:	LAMTLMTFGFT	ILGAVGLKYRTFAFGALAVATY
		70	80		00 110 120
		130	140	150	50 100
55	orf19-1.pep			150 1:	60 170 180 RPVQESVANAYDALGGYLEAKA
33		11111111111111111	11111111111	- - -	
	orf19ng-1	TTLTYTPETYWLTNPF	MILCGTVLYST	AIILFOIILPHI	RPVQESVANAYEALGGYLEAKA
		130			60 170 180
60		100	000		
60	orf19-1.pep	190			20 230 240
	orria-r.heb	DEEDEDEWWATCHKUT		MENQCKSALEY! 	RLRGKHRHPRTAKMLRYYFAAQ
	orf19ng-1	DFFDPDEAAWIGNRHI	DLAMSNTGVIT	AFNOCRSALFY	RLRGKHRHPRTAKMLRYYFAAQ
4-		190			20 230 240
65			0.50		
		250			30 290 300
	orf19-1.pep	DIHEKISSAHVDYQEM	>EKFKNTDIIF	KTHRLLEMQGQ	ACRNTAQALRASKDYVYSKRLG

WO 99/24578 PCT/IB98/01665

	orf19ng-1	 DIHERI			: FRIRRLLEMQ0 270		: :: RSGKDYVYS 290	IIII KRLG 300
5	orf19-1.pep orf19ng-1	111111	111111111111111111111111111111111111111		330 RLLDNLGSVDO RLLDNLGSVDO 330			1111
10	orf19-1.pep	1111:1	370 LKNTWQAIRP(:	380 QLNLESGVFRI	390 HAVRLSLVVA 	400 AACTIVEALNI	410 LNLGYWILLT	420 ALFV
15	orfl9ng-1	ALETGS.	370 430	380 440	HAVRLSLVVA 390 450	AACTIVEALNI 400 460	LNLGYWILLT 410 470	420
20	orf19-1.pep orf19ng-1	111111	ATKSRVRORIA	AGTVLGVIVG:	450 SLVPYFTPSVI SLVPYFTPSVI 450	ETKLWIVIAS:	TTLFFMTRTY	1111
25	orf19-1.pep orf19ng-1	111111			510 RIIDTIIGAS: RIIDTIIGAS: 510		111111111	HILL
30	orf19-1.pep	1111:1	:11:11:111	1:111111:1	570 YRATRRRAHEI YRITRRRAHEI 570	ппппп	шини	1111
35	orf19-1.pep	111111			630 HEECSPDFTA		HTÏIII:	HIII
40	orf19ng-1 orf19-1.pep		610 670	620 680	HEECSPDFTA(630 690 LQQLQLIARQ)	700	650 710	660
45	orf19ng-1	111111	11111 1111	:	IIIIIIIII LQQLQLIARQI 690		[!

In addition, ORF19ng-1 shows significant homology to a hypothetical gonococcal protein previously entered in the databases:

50	(AJ002423 Score =	9 YOR2_NEIGO HYPOTHETICAL 45.5 KD PROTEIN (ORF2) gnl PID e115443 3) hypothetical protein [Neisseria gonorrh] Length = 417 1512 (705.6 bits), Expect = 5.3e-203, P = 5.3e-203 ies = 301/326 (92%), Positives = 306/326 (93%)	8
	Query:	307 RQSLRLLSDGNDSPDIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS 366	
		RQSLRLLSDGNDS DIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS	
55	Sbjct:	1 RQSLRLLSDGNDSXDIRHLSRLLDNLGSVDQQFRQLRHSDSPAENDRMGDTRIAALETGS 60	
	Query:	367 FKNTWQAIRPQLNLESCVFRHAVRLSLVVAAACTIVEALNLNLGYWILLTALFVCQPNYT 426	
		FKNTWQAIRPQLNLES VFRHAVRLSLVVAAACTIVEALNLNLGYWILLT LFVCQPNYT	
60	Sbjct:	61 FKNTWQAIRPQLNLESGVFRHAVRLSLVVAAACTIVEALNLNLGYWILLTRLFVCQPNYT 120	
00	Query:	427 ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT 486	
	-	ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT	
	Sbjct:	121 ATKSRVYQRIAGTVLGVIVGSLVPYFTPSVETKLWIVIAGTTLFFMTRTYKYSFSTFFIT 180	
65	Query:	487 IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG 546	
	£J.	IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG	
	Sbict:	181 IQALTSLSLAGLDVYAAMPVRIIDTIIGASLAWAAVSYLWPDWKYLTLERTAALAVCSSG 240	
		TAT TENTIFICATION TITLE TOTAL TITLE TOTAL MANAGEMENT TO THE CANADA COSC SAN	

Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein (the first of which is also seen in the meningococcal protein), and on homology with the YHFK protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 14

10

The following DNA sequence, believed to be complete, was identified in *N.meningitidis* <SEQ ID 113>:

```
15
                     ATGAATATGC TGGGAGCTTT GGCAAAAGTC GGCAGCCTGA CGATGGTGTC
                 51
                     GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG GCATTCGGCG
                     CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT GCCCAACCTG
                101
                     CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT TTGTGCCGAT
                151
                     TTTGGCGGAA TACAAGGAAA CGCGTTCAAA AGAGGCGG.C GAAGCCTTTA
                201
20
                     TCCGCCATGT GGCGGGGATG CTGTCGTTTG TACTGGTTAT CGTTACCGCG
                251
                     CTGGGCATAC TTGCCGCGCC TTGGGTGATT TATGTTTCCG CACCCGAGTT
                301
                     TTGCCCAAGA TGCCGACAAA TTTCAGCTCT CCATCGATTT GCTGC\overline{G}GATT
                351
                     ACGTTTCCTT ATATATTATT GATTTCCCTG TCTTCATTTG TCGGCTCGGT
                401
                     ACTCAATTCT TATCATAAGT TCGGCATTCC GGCGTTTACG CCAC.GTTTC
                451
25
                     TGAACGTGTC GTTTATCGTA TTCGCGCTGT TTTTCGTGCC GTATTTCGAT
                501
                551
                     CCGCCCGTTA CCGCGCYGGC GTGGGCGGTC TTTGTCGGCG GCATTTTGCA
                601
                     ACTCGrmTTC CAACTGCCCT GGCTGGCGAA ACTGGGCTTT TTGAAACTGC
                     CCAAACtGAG TTTCAAAGAT GCGGCGGTCA ACCGCGTGAT GAAACAGATG
                651
                701
                     GCGCCTGCgA TTTTgGGCGT GAgCGTGGCG CAGGTTTCTT TGGTGATCAA
30
                     CACGATTTTC GCGTCTTATC TGCAATCGGG CAGCGTTTCA TGGATGTATT
                751
                801
                     ACGCCGACCG CATGATGGAG CTGCCCAGCG GCGTGCTGGG GGCGGCACTC
                     GGTACGATTT TGCTGCCGAC TTTGTCCAAA CACTCGGCAA ACCAAGATAC
                851
                901
                     GGaACAGTTT TCCGCCCTGC TCGACTGGGG TTTGCGCCTG TGCATGCtgc
                     TGACGCTGCC GGCGGCGGTC GGACTGGCGG TGTTGTCGTT cCCgCtGGTG
                951
               1001
35
                     GCGACGCTGT TTATGTACCG CGWATTTACG CTGTTTGACG CGCAGATGAC
                     GCAACACGCG CTGATTGCCT ATTCTTTCGG TTTAATCGGC TTAATCATGA
               1051
               1101
                     TTAAAGTGTT GGCACCCGGC TTCTATGCGC GGCAAAACAT CAAWAMGCCC
                     GTCAAAATCG CCATCTTCAC GCTCATCTGC mCGCAGTTGA TGAACCTTGs
               1151
                     CTTTAYCGGC CCACTrrAAC rCastCGGAC TTTCGCTTGC CATCGGTCTG
               1201
40
                     GGCGCGTGTA TCAATGCCGG ATTGTTGTTT TACCTGTTGC GCAGACACGG
               1251
                     TATTTACCAA CCTGG.CAAG GGTTGGGCAG CGTTCTT.AG CAAAAATGCT
               1301
               1351
                     GCTCTCGCTC GCCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 114; ORF20>:

```
1 MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA FFVAFKLPNL
45
                    LRRVFAEGAF AQAFVPILAE YKETRSKEAX EAFIRHVAGM LSFVLVIVTA
                 51
                     LGILAAPWVI YVSAPSFAQD ADKFQLSIDL LRITFPYILL ISLSSFVGSV
                151
                    LNSYHKFGIP AFTPXFLNVS FIVFALFFVP YFDPPVTAXA WAVFVGGILQ
                    LXFQLPWLAK LGFLKLPKLS FKDAAVNRVM KQMAPAILGV SVAQVSLVIN
                251
                     TIFASYLQSG SVSWMYYADR MMELPSGVLG AALGTILLPT LSKHSANODT
50
                     EQFSALLDWG LRLCMLLTLP AAVGLAVLSF PLVATLFMYR XFTLFDAQMT
                301
                351
                     QHALIAYSFG LIGLIMIKVL APGFYARQNI XXPVKIAIFT LICXQLMNLX
                     FXGPLXXIGL SLAIGLGACI NAGLLFYLLR RHGIYQPXQG LGSVLXQKCC
                401
                     SRSP*
                451
```

These sequences were elaborated, and the complete DNA sequence <SEQ ID 115> is:

^{55 1} ATGAATATGC TGGGAGCTTT GGCAAAAGTC GGCAGCCTGA CGATGGTGTC
51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG GCATTCGGCG

```
CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT GCCCAACCTG
                101
                151
                     CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT TTGTGCCGAT
                201
                     TTTGGCGGAA TACAAGGAAA CGCGTTCAAA AGAGGCGGCG GAGGCTTTTA
                     TCCGCCATGT GGCGGGGATG CTGTCGTTTG TACTGGTTAT CGTTACCGCG
                251
 5
                     CTGGGCATAC TTGCCGCGCC TTGGGTGATT TATGTTTCCG CACCCGGTTT
                301
                351
                     TGCCCAAGAT GCCGACAAAT TTCAGCTCTC CATCGATTTG CTGCGGATTA
                     CGTTTCCTTA TATATTATTG ATTTCCCTGT CTTCATTTGT CGGCTCGGTA
                401
                451
                     CTCAATTCTT ATCATAAGTT CGGCATTCCG GCGTTTACGC CCACGTTTCT
                     GAACGTGTCG TTTATCGTAT TCGCGCTGTT TTTCGTGCCG TATTTCGATC
                501
10
                     CGCCCGTTAC CGCGCTGGCG TGGGCGGTCT TTGTCGGCGG CATTTTGCAA
                551
                     CTCGGCTTCC AACTGCCCTG GCTGGCGAAA CTGGGCTTTT TGAAACTGCC
                601
                     CAAACTGAGT TTCAAAGATG CGGCGGTCAA CCGCGTGATG AAACAGATGG
                651
                     CGCCTGCGAT TTTGGGCGTG AGCGTGGCGC AGGTTTCTTT GGTGATCAAC
                701
                     ACGATTTTCG CGTCTTATCT GCAATCGGGC AGCGTTTCAT GGATGTATTA
                751
15
                801
                     CGCCGACCGC ATGATGGAGC TGCCCAGCGG CGTGCTGGGG GCGGCACTCG
                851
                     GTACGATTTT GCTGCCGACT TTGTCCAAAC ACTCGGCAAA CCAAGATACG
                901
                     GAACAGTTTT CCGCCCTGCT CGACTGGGGT TTGCGCCTGT GCATGCTGCT
                     GACGCTGCCG GCGGCGGTCG GACTGGCGGT GTTGTCGTTC CCGCTGGTGG
                951
               1001
                     CGACGCTGTT TATGTACCGC GAATTTACGC TGTTTGACGC GCAGATGACG
20
                     CAACACGCGC TGATTGCCTA TTCTTTCGGT TTAATCGGCT TAATCATGAT
               1051
               1101
                     TAAAGTGTTG GCACCCGGCT TCTATGCGCG GCAAAACATC AAAACGCCCG
                     TCAAAATCGC CATCTTCACG CTCATCTGCA CGCAGTTGAT GAACCTTGCC
               1151
                     TTTATCGGCC CACTGAAACA CGTCGGACTT TCGCTTGCCA TCGGTCTGGG
               1201
                     CGCGTGTATC AATGCCGGAT TGTTGTTTTA CCTGTTGCGC AGACACGGTA
               1251
25
               1301
                     TTTACCAACC TGGCAAGGGT TGGGCAGCGT TCTTAGCAAA AATGCTGCTC
                     TCGCTCGCCG TGATGTGCGG CGGACTGTGG GCAGCGCAGG CTTACCTGCC
               1351
               1401
                     GTTTGAATGG GCGCACGCCG GCGGAATGCG GAAAGCGGGG CAGCTCTGCA
                     TCCTGATTGC CGTCGGCGGC GGACTGTATT TCGCATCACT GGCGGCTTTG
               1451
               1501
                     GGCTTCCGTC CGCGCCATTT CAAACGCGTG GAAAACTGA
```

30 This corresponds to the amino acid sequence <SEQ ID 116; ORF20-1>:

```
MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA FFVAFKLPNL
                       LRRVFAEGAF AQAFVPILAE YKETRSKEAA EAFIRHVAGM LSFVLVIVTA
                   51
                       LGILAAPWVI YVSAPGFAQD ADKFQLSIDL LRITFPYILL ISLSSEVGSV
                  101
                       LNSYHKFGIP AFTPTFLNVS FIVFALFFVP YFDPPVTALA WAVFVGGILQ
                 151
35
                 201
                       LGFQLPWLAK LGFLKLPKLS FKDAAVNRVM KQMAPAILGV SVAQVSLVIN
                  251
                       TIFASYLQSG SVSWMYYADR MMELPSGVLG AALGTILLPT LSKHSANQDT
                  301
                       EQFSALLDWG LRLCMLLTLP AAVGLAVLSF PLVATLFMYR EFTLFDAQMT QHALIAYSFG LIGLIMIKVL APGFYARQNI KTPVKIAIFT LICTQLMNLA
                  351
                       FIGPLKHVGL SLAIGLGACI NAGLLFYLLR RHGIYQPGKG WAAFLAKMLL
                  401
40
                  451
                       SLAVMCGGLW AAQAYLPFEW AHAGGMRKAG QLCILIAVGG GLYFASLAAL
                 501
                       GFRPRHFKRV EN*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with the MviN virulence factor of S. typhimurium (accession number P37169) ORF20 and MviN proteins show 63% as identity in 440as overlap:

45	Orf20	1	MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF 6 MN+L +LA V S+TM SRVLGF RD ++AR FGAGMATDAFFVAFKLPNLLRR+FAEGAF	60
	MviN	14	MNLLKSLAAVSSMTMFSRVLGFARDAIVARIFGAGMATDAFFVAFKLPNLLRRIFAEGAF	73
50	Orf20	61	AQAFVPILAEYKETRSKEAXEAFIRHVAGMLSFVLVIVTALGILAAPWVIYVSAPSFAQD 1 +QAFVPILAEYK + +EA F+ +V+G+L+ L +VT G+LAAPWVI V+AP FA	120
50	MviN	74		L33
	Orf20	121	ADKFQLSIDLLRITFPYILLISLSSFVGSVLNSYHKFGIPAFTPXFLNVSFIVFALFFVP 1 ADKF L+ LLRITFPYILLISL+S VG++LN++++F IPAF P FLN+S I FALF P	180
55	MviN	134	ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPTFLNISMIGFALFAAP 1	L93
	Orf20	181	YFDPPVTAXAWAVFVGGILQLXFQLPWLAKLGFLKLPKLSFKDAAVNRVMKQMAPAILGV 2 YF+PPV A AWAV VGG+LQL +QLP+L K+G L LP+++F+D RV+KOM PAILGV	240
60	MviN	194	YF+PPV A AWAV VGG+LQL +QLP+L K+G L LP+++F+D RV+KQM PAILGV YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTGAMRVVKQMGPAILGV 2	253
	Orf20	241	SVAQVSLVINTIFASYLQSGSVSWMYYADRMMELPSGVLGAALGTILLPTLSKHSANQDT 3 SV+Q+SL+INTIFAS+L SGSVSWMYYADR+ME PSGVLG ALGTILLP+LSK A+ +	300
	Mvin	254		313

	Orf20	301 EQFSALLDWGLRLCMLLTLPAAVGLAVLSFPLVATLFMYRXFTLFDAQMTQHALIAYSFG 360
	MviN	+++ L+DWGLRLC LL LP+AV L +L+ PL +LF Y FT FDA MTQ ALIAYS G 314 DEYCRIMDWGLRLCFLLALPSAVALGILAKPLTVSLFQYGKFTAFDAAMTQRALIAYSVG 373
5	Orf20	361 LIGLIMIKVLAPGFYARQNIXXPVKIAIFTLICXQLMNLXFXXXXXXXXXXXXXXXXXXXXXXXXX 420 LIGLI++KVLAPGFY+RQ+I PVKIAI TLI QLMNL F C+
	MviN	374 LIGLIVVKVLAPGFYSRQDIKTPVKIAIVTLIMTQLMNLAFIGPLKHAGLSLSIGLAACL 433
10	Orf20	421 NAGLLFYLLRRHGIYQPXQG 440 NA LL++ LR+ I+ P G
	MviN	434 NASLLYWQLRKQNIFTPQPG 453

Homology with a predicted ORF from N. meningitidis (strain A)

ORF20 shows 93.5% identity over a 447aa overlap with an ORF (ORF20a) from strain A of N.

15 meningitidis:

	500	10	20	30	40	50	60
	orf20.pep	MNMLGALAKVGSLTM	VSRVLGFVF	RDTVIARAFG	GMATDAFFV <i>E</i>	FKLPNLLRR	/FAEGAF
	orf20a	MNMLGALVKVGSLTM	VSRVLGFVF	RDTVIARAFG <i>A</i>	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
20		10	20	30	40	50	60
		70	80	90	100	110	120
•	orf20.pep	AQAFVPILAEYKETR	SKEAXEAFI	RHVAGMLSFV	LVIVTALGII	<u>AA</u> PWVIYVS	ADGENOD.
25	orf20a	AQAFVPILAEYKETR	:	DHINGHT OF		111111111	1:11:1
23	011204	70	80	90	100	AAPWVIYVS? 110	APGFAKD 120
		. 130	140	150	160	170	180
	orf20.pep	ADKFQLSIDLLRITE	PYILLISLS	SFVGSVLNSY	HKEGTPAFTP	YFT.NVSFTVE	מוריים זמי
30			1111111111		111:11111	·	
	orf20a	ADKFQLSIDLLRITE	PYILLISLS 140	SSFVGSVLNSY	HKFSIPAFTP	TELNVSFIVE	ALFFVP
		130	140	150	160	170	180
		190	200	210	220	230	240
35	orf20.pep	YFDPPVTAXAWAVFV	GGILQLXFQ	LPWLAKLGFL	KI.PKI.SEKDA	AUNIDUMEOMA	DATICU
	orf20a	*	11111 11	1111111111	111111111	111111111	11111
	UIIZUA	YFDPPVTALAWAVFV	200	LPWLAKLGFL 210	KLPKLSFKDA 220		
	•		200	210	220	230	240
40		250	260	270	280	290	300
	orf20.pep	SVAQVSLVINTIFAS	YLOSGSVSW	MYYADRMMEL	PSGVLGAALG	TILLPTLSKH	SANODT
	orf20a				1:	111111111	111111
	022204	SVAQISLVINTIFAS	260	270	280	TILLPTLSKH 290	ISANQDT 300
45		•		2.0	200	290	300
	500	310	320	330	340	350	360
	orf20.pep	EQFSALLDWGLRLCM	LLTLPAAVG	LAVLS FPLVA	TLFMYRXFTL	FDAQMTQHAL	IAYSFG
	orf20a	EQFSALLDWGLRXCM	LITTIPAAVG	 	TIEMVDEETE	EDACMINATION TO	
50		310	320	330	340	350	360
						000	300
	orf20.pep	370	380	390	400	410	420
	Olizo.pep	LIGLIMIKVLAPGFY	HKONIXXEV	KIAIFTLICX	<u>QLMNLXFX</u> GP	LXXIGLS <u>LAI</u>	GLGACI
55	orf20a	LIGLIMIKVLAPGFY	ARONIKTPV	KIAIFTI.TCT	TIIII I II Olmniaetce	: <u> </u>	CICACT
		370	380	390	400	410	420
		430	440	450			
CO	orf20.pep	NAGLLFYLLRRHGIY	QPXQGLGSV	LXOKCCSRSP	x		
60	orf20a	-	11:1::	1:			
	OLIZUA	NAGLLFYLLRRHGIY(QPGKGWA <u>AF</u> 440	LAKMLLSLAV	MGGGLYAAQI		
		430	440	450	460	470	480

The complete length ORF20a nucleotide sequence <SEQ ID 117> is:

¹ ATGAATATGC TGGGAGCTTT GGTAAAAGTC GGCAGCCTGA CGATGGTGTC 51 GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGC GCATTCGGCG 101 CAGGCATGGC GACGGATGCG TTCTTTGTCG CGTTCAAACT GCCCAACCTG 65

	201 TT	rcgccgcg tgtttgcgga rggcggaa tataaggaaa	CGCGTTCTAA	AGAGGCGACG	GAGGCTTTTA
	251 TCC	CGCCATGT GGCGGGGATC	CTGTCGTTTG	TACTGGTCAT	CGTTACCGCG
_	301 CTC	GGGCATAC TTGCCGCGCC	TTGGGTGATT	TATGTTTCCG	CACCCGGTTT
5	351 TG0	CCAAAGAT GCCGACAAAT FTTCCTTA TATCTTATTG	TTCAGCTCTC	TATCGATTTG	CTGCGGATTA
		CAATTCCT ATCATAAATI			
		ACGTGTCG TTTATCGTAT			
	551 CTC	CCCGTTAC CGCGCTGGCT	TGGGCGGTTT	TTGTCGCGCGG	CATTTCCAIC
10	601 CTC	CGGCTTCC AACTGCCCTC	GCTGGCGAAA	CTGGGTTTTT	TGAAACTGCC
		AACTGAGT TTCAAAGATG			
		CCTGCGAT TTTGGGCGTG	AGCGTGGCGC	AGATTTCTTT	GGTGATCAAC
	751 ACC	GATTTTCG CGTCTTATCT	GCAATCGGGC	AGCGTTTCAT	GGATGTATTA
	801 CG	CCGACCGC ATGATGGAAC	TGCCCGGCGG	CGTGCTGGGG	GCGGCACTCG
15		ACGATTTT GCTGCCGACT			
		ACAGTTTT CCGCCCTGCT			
		CGCTGCCG GCGGCGGTCG			
	1001 CA	ACCTTGTT TATGTACCG	GAATTCACGC	TGTTTGACGC	GCAGATGACG
20	1051 CA	ACACGCGC TGATTGCCTA	TTCTTTCGGT	TTAATCGGTT	TAATCATGAT
20	1101 TA	AAGTGTTG GCGCCCGGCT	TTTATGCGCG	GCAAAACATC	AAAACGCCCG
		AAAATCGC CATCTTCACG			
		IATCGGCC CACTGAAACA CGTGTATC AATGCCGGAT			
	1301 TT	TACCAACC TGGCAAGGGT	TGIIGIIIIA TGCCCCACCCT	TCTTCCCAAA	AMCCOCCCC
25	1351 TC	GCTCGCCG TGATGGGAGG	CGGCCTGTAT	GCCGCCCAAA	TCTCCCTCCC
	1401 GT	CGACTGG GCACACGCCC	GCGGAATGCA	AAAGGCCGCC	CGGCTCTTCA
		CTGATTGC CGTCGGCGG			
		CTTCCGTC CGCGCCATT1			
			•	a=a ==	•
	-	ein having amino aci	-	•	
30	1 MNI	MLGALVKV GSLTMVSRVI	GFVRDTVIAR	AFGAGMATDA	FFVAFKLPNL
	51 LRI	RVFAEGAF AQAFVPILAE	YKETRSKEAT	EAFIRHVAG <u>M</u>	LSFVLVIVTA
	101 LG	ILAAPWVI YVSAPGFAKI	ADKFQLSIDL	LRITFPYILL	ISLSSFVGSV
	151 <u>L</u> N: 201 <u>L</u> GI	SYHKFSIP AFTPTFLNVS FQLPWLAK LGFLKLPKLS	FIVEALITY	YEDPPVTALA	WAVFVGGILO
35	251 <u>LG</u>	FASYLOSG SVSWMYYADE	MART DCCVIC	ANICTIIDE	ZAMOISTAIN
55	301 EO	FSALLDWG LRXCMLLTLE	PANCMAVI.SF	PI.VATI.FMVP	EFTI FDAOMT
	351 OH	ALIAYSFG LIGLIMIKVI	APGEYARONT	KTPVKTATET	I.TCTOLMNI.A
		GPLKHVGL SLAIGLGACI			
		AVMGGGLY AAQIWLPFDV	AHAGGMOKAA	RLFILIAVGG	GLYFASLAAL
40	501 GF	RPRHFKRV ES*			
	ORF20a and ORF20	0-1 show 96.5% iden	tity in 512 aa	a overlap:	
			-	-	
		10	20		40 50 60
	orf20a.pep	MNMLGALVKVGSLTMV	SRVLGEVRDTV	IARAFGAGMATI	DAFFVAFKLPNLLRRVFAEGAF
45					
45	orf20-1				DAFFVAFKLPNLLRRVFAEGAF
		10	20	30	50 60
		70	80	90 10	00 110 120
	orf20a.pep				TALGILAAPWVIYVSAPGFAKD
50	OIIZou.pcp		III: IIIIII	11111111111	
50	orf20-1	AOAFVPILAEYKETRS	KEAAEAFIRHV	AGMLSEVLVIV	PALGILAAPWVIYVSAPGFAQD
		70	80		00 110 120
		130			50 170 180
55	orf20a.pep	ADKFQLSIDLLRITF	YILLISLSSFV	GSVLNSYHKFS:	I PAFTPTFLNVSFIVFALFFVP
		11111111111111111	11111111111	111111111:	
	orf20-1				PAFTPTFLNVSFIVFALFFVP
		130	140	150 10	50 170 180
60		100	200	010	20
ου	~	190			20 230 240
	orf20a.pep	I FUPPVTALAWAV FVC	POTION GEOUPW	LAKLGFLKLPK	LSFKDAAVNRVMKOMAPAILGV
	orf20-1		11111111111111111111111111111111111111		CENTA MAINING COM DA TA CH
	01120-1	190			LSFKDAAVNRVMKQMAPAILGV 20 230 240
65		130	200	210 2	20 230 240
0.5		250	260	270 21	30 290 300
	orf20a.pep				LGAALGTILLPTLSKHSANODT

	orf20-1	:					
		250	260	270	280	290	300
5		310	320	330	340	350 .	360
	orf20a.pep	EQFSALLDWGLRXCMI			FMYREFTLFD	AOMTOHALIA	
	orf20-1	EQFSALLDWGLRLCM					
	01120 1	310	320	330	340	350	360
10							
		370	380	390	400	410	420
	orf20a.pep	LIGLIMIKVLAPGFY	ARQNIKTPVKI	AIFTLICTOL	MNLAFIGPLK	HVGLSLAIGI	LGACI
	orf20-1	LIGLIMIKVLAPGFY			 MNLAFIGPLK	 HVGLSLAIGI	 LGACI
15		370	380	390	400	410	420
	•	430	440	450	460	470	480
	orf20a.pep	NAGLLFYLLRRHGIY(IQKAA
					111:111 :1	11:111111	1:11:
20	orf20-1	NAGLLFYLLRRHGIY(
		430	440	450	460	470	480
		490	500	510			•
0.5	orf20a.pep	RLFILIAVGGGLYFA:	SLAALGFRPRE	IFKRVESX			
25	500.4	:		1{ :	•	•	
	orf20-1	QLCILIAVGGGLYFA:	SLAALGERPRE 500	510			٠

Homology with a predicted ORF from N.gonorrhoeae

ORF20 shows 92.1% identity over a 454aa overlap with a predicted ORF (ORF20ng) from N. gonorrhoeae:

	orf20.pep	MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF	60
35	orf20ng		60
33	orf20.pep	AQAFVPILAEYKETRSKEAXEAFIRHVAGMLSFVLVIVTALGILAAPWVIYVSAPSFAQD	120
	orf20ng	AQAFVPILAEYKETRSKEATEAFIRHVAGMLSFVLIVVTALGILAAPWVIYVSAPGFTKD	120
40	orf20.pep	ADKFQLSIDLLRITFPYILLISLSSFVGSVLNSYHKFGIPAFTPXFLNVSFIVFALFFVP	180
	orf20ng	ADKFQLSISLLRITFPYILLISLSSFVGSILNSYHKFGIPAFTPTFLNISFIVFALFFVP	1,80
45	orf20.pep	YFDPPVTAXAWAVFVGGILQLXFQLPWLAKLGFLKLPKLSFKDAAVNRVMKQMAPAILGV	240
	orf20ng	YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAAVNRVMKQMAPAILGV	240
	orf20.pep	SVAQVSLVINTIFASYLQSGSVSWMYYADRMMELPSGVLGAALGTILLPTLSKHSANQDT	300
50	orf20ng	SVAQISLVINTIFASYLQSGSVSWMYYADRMMELPGGVLGAALGTILLPTLSKHSANQDT	300
	orf20.pep	EQFSALLDWGLRLCMLLTLPAAVGLAVLSFPLVATLFMYRXFTLFDAQMTQHALIAYSFG	360
55	orf20ng	EQFSALLDWGLRLCMLLTLPAAAGLAVLSFPLVATLFMYREFTLFDAQMTQHALIAYSFG	360
55	orf20.pep	LIGLIMIKVLAPGFYARQNIXXPVKIAIFTLICXQLMNLXFXGPLXXIGLSLAIGLGACI	420
	orf20ng	LIGLIMIKVLASGFYARQNIKTPVKIAIFTLICTQLMNLAFIGPLKHAGLSLAIGLGACI	420
60	orf20.pep	NAGLLFYLLRRHGIYQPXQGLGSVLXQKCCSRSP 454	
	orf20ng	NAGLLFFLFRKHGIYRPGQGLGQPSWRKCCSRSP 454	

An ORF20ng nucleotide sequence <SEQ ID 119> was predicted to encode a protein having amino acid sequence <SEQ ID 120>:

-120-

```
MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA FFVAFKLPNL
                     LRRVFAEGAF AQAFVPILAE YKETRSKEAT EAFIRHVAGM LSFVLIVVTA
                 51
                     LGILAAPWVI YVSAPGFTKD ADKFQLSISL LRITFPYILL ISLSSFVGSI
                101
                     LNSYHKFGIP AFTPTFLNIS FIVFALFFVP YFDPPVTALA WAVFVGGILQ
                151
 5
                     LGFQLPWLAK LGFLKLPKLN FKDAAVNRVM KQMAPAILGV SVAQISLVIN
                201
                     TIFASYLOSG SVSWMYYADR MMELPGGVLG AALGTILLPT LSKHSANQDT
                251
                     EQFSALLDWG LRLCMLTLP AAAGLAVLSF PLVATLFMYR EFTLFDAQMT
                301
                     QHALIAYSFG LIGLIMIKVL ASGFYARQNI KTPVKIAIFT LICTQLMNLA
                351
                     FIGPLKHAGL SLAIGLGACI NAGLLFFLFR KHGIYRPGQG LGQPSWRKCC
                401
10
                451
                     SRSP*
     Further DNA sequence analysis revealed the following DNA sequence <SEQ ID 121>:
                     ATGAATATGC TTGGAGCTTT GGCAAAAGTC GGCAGCCTGA CGATGGTGTC
                  1
                     GCGCGTTTTG GGATTTGTGC GCGATACGGT CATTGCGCGG GCATTCGGCG
                 51
                     CGGGTATGGC GACGGATGCG TTTTTTGTCG CGTTCAAACT GCCCAACCTG
                101
15
                     CTTCGCCGCG TGTTTGCGGA GGGGGCGTTT GCCCAAGCGT TTGTGCCGAT
                151
                     TTTGGCGGAA TATAAGGAAA CGCGTTCTAA AGAGGCGAcg gAGGCTTTTA
                201
                     TCCGCCACGt tgcgggAatg CTGTCGTTTG TGCTGATcgt cGttacCGCG CTGGGCATAC TTGCCGCgcc tTGGGTGATT TATGTTtccg CgcccGGCTT
                251
                301
                     TACCAAAGAC GCGGACAAGT TCCAACTTTC CATCAGCCTG CTGCGGATTA
                351
                     CGTTTCCTTA TATATTATTG ATTTCTTTGT CTTCTTTTGT CGGCTCGATA
20
                401
                     CTCAATTCCT ACCATAAGTT CGGCATTCCC GCGTTTACGC CCACGTTTTT
                451
                     AAACATCTCT TTTATCGTAT TCGCACTGTT TTTCGTGCCG TATTTCGATC
                501
                     CGCCCGTTAC CGCGCTGGCG TGGGCGGTTT TTGTCGGCGG TATTTTGCAG
                551
                601 CTCGGTTTCC AACTGCCGTG GCTGGCGAAA CTGGGCTTTT TGAAACTGCC
                     CAAACTGAAT TTCAAAGATG CGGCGGTCAA CCGCGTCATG AAACAGATGG
CGCCTGCGAT TTTGGGCGTG agcgTGGCGC AAATTTCTTT GgttATCAAC
25
                651
                701
                751 ACGATTTCG CGTCTTATCT GCAATCGGGC AGCGTTTCAT GGATGTatta
                801
                     cgCCGACCGC ATGATGGAGc tgcgccGGGG CGTGCTGGGG GCTGCACTCG
                851
                     GTACAATTTT GCTGCCGACT TTGTCCAAAC ACTCGGCAAA CCAAGATACG
30
                     GAACAGTTTT CCGCCCTGCT CGACTGGGGT TTGCGCCTGT GCATGCTGCT
                901
                951 GACGCTGCCG GCGGCGGccg GACTGGCGGT ATTGTCGTTC CCGCTGGTGG
               1001
                     CGACGCTGTT TATGTACCGA GAATTCACGC TGTTTGACGC ACAAATGACG
                     CAACACGCGC TGATTGCCTA TTCTTTCGGT TTAATCGGTT TAATTATGAT
               1051
                     TAAAGTGTTG GCATCCGGCT TTTATGCGCG GCAAAACATC AAAACGCCCG
               1101
                     TCAAAATCGC CATCTTCACG CTCATCTGCA CGCAGTTGAT GAACCTCGCC
35
               1151
               1201
                     TTTATCGGTC CGTTGAAACA CGCCGGGCTT TCGCTCGCCA TCGGCCTGGG
                     CGCGTGCATC AACGCCGGAT TGTTGTTCTT CCTGTTGCGC AAACACGGTA
               1251
               1301
                     TTTACCGGCC cggcaggggt tgggcggcgt TCTTGGCGAA AATGCTGCTC
                     GCGCTCGCCG TGATGTGCGG CGGACTGTGG GCGGCGCAGG CTTGCCTGCC
               1351
40
               1401
                     GTTCGAATGG GCGCACGCCG GCGGAATGCG GAAAGCGGGG CAGCTCTGCA
                     TCCTGATTGC CGTCGGCGGC GGACTGTATT TCGCATCTCT GGCGGCTTTG
               1451
                     GGCTTCCGTC CGCGCCATTT CAAACGCGTG GAAAGCTGA
               1501
      This encodes the following amino acid sequence <SEQ ID 122; ORF20ng-1>:
                     MNMLGALAKV GSLTMVSRVL GFVRDTVIAR AFGAGMATDA FFVAFKLPNL
 45
                     LRRVFAEGAF AQAFVPILAE YKETRSKEAT EAFIRHVAGM LSFVLIVVTA
                     LGILAAPWVI YVSAPGFTKD ADKFQLSISL LRITFPYILL ISLSSFVGSI
                101
                     LNSYHKFGIP AFTPTFLNIS FIVFALFFVP YFDPPVTALA WAVFVGGILQ
                     LGFQLPWLAK LGFLKLPKLN FKDAAVNRVM KQMAPAILGV SVAQISLVIN
                201
                     TIFASYLQSG SVSWMYYADR MMELRRGVLG AALGTILLPT LSKHSANQDT
                251
 50
                     EQFSALLDWG LRLCMLLTLP AAAGLAVLSF PLVATLFMYR EFTLFDAQMT
                301
                     QHALIAYSFG LIGLIMIKVL ASGFYARQNI KTPVKIAIFT LICTQLMNLA
                     FIGPLKHAGL SLAIGLGACI NAGLLFFLLR KHGIYRPGRG WAAFLAKMLL
                401
                     ALAVMCGGLW AAQACLPFEW AHAGGMRKAG QLCILIAVGG GLYFASLAAL
                 451
                 501 GFRPRHFKRV ES*
 55
      ORF20ng-1 and ORF20-1 show 95.7% identity in 512 aa overlap:
                                                                 40
                                                      30
                                                                           50
                          {\tt MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF}
            orf20-1.pep
                           orf20ng-1
                          MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAFKLPNLLRRVFAEGAF
 60
                                                      30
                                                                 40
                                                       90
                                                                100
                                                                          110
                          AQAFVPILAEYKETRSKEAAEAFIRHVAGMLSFVLVIVTALGILAAPWVIYVSAPGFAQD
            orf20-1.pep
                           65
                          AQAFVPILAEYKETRSKEATEAFIRHVAGMLSFVLIVVTALGILAAPWVIYVSAPGFTKD
            orf20ng-1
```

20 20 20 20 20 20 21 250 260 270 280 20 20 21 250 260 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 280 280 280 280 280 280 280 280 28	
Orf20-1.pep	PTFLNVSFIVFALFFVP
Orf20ng-1	PTFLNISFIVFALFFVP 170 180 230 240 AAVNRVMKQMAPAILGV
190 200 210 220 10 orf20-1.pep YFDPPVTALAWAVFVGGILQLGFQLFWLAKLGFLKLPKLSFKD	230 240 AAVNRVMKQMAPAILGV
10 orf20-1.pep YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLSFKD	AAVNRVMKQMAPAILGV
orf20ng-1 SVAQVSLVINTIFASYLQSGSVSWMYYADRMMELPSGVLGAAL	
0rf20ng-1 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKD 190 200 210 220 250 260 270 280 0rf20-1.pep SVAQVSLVINTIFASYLQSGSVSWMYYADRMMELPSGVLGAAL	AAVNRVMKQMAPAILGV 230 240 290 300 GTILLPTLSKHSANQDT GTILLPTLSKHSANQDT 290 300 350 360 LFDAQMTQHALIAYSFG
250 260 270 280 orf20-1.pep SVAQVSLVINTIFASYLQSGSVSWMYYADRMELPSGVLGAAL	290 300 GTILLPTLSKHSANQDT GTILLPTLSKHSANQDT 290 300 350 360 LFDAQMTQHALIAYSFG
orf20-1.pep SVAQVSLVINTIFASYLQSGSVSWMYYADRMELPSGVLGAAL	GTILLPTLSKHSANQDT
20 20 20 20 21 250 260 270 280 280 290 200 200 200 200 200 200 200 200 20	
20 20 20 20 20 20 21 250 260 270 280 20 20 21 250 260 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 280 280 280 280 280 280 280 280 28	GTILLPTLSKHSANQDT 290 300 350 360 LFDAQMTQHALIAYSFG LFDAQMTQHALIAYSFG
20 310 320 330 340 orf20-1.pep	350 360 LFDAQMTQHALIAYSFG LFDAQMTQHALIAYSFG
310 320 330 340 orf20-1.pep EQFSALLDWGLRLCMLLTLPAAVGLAVLSFPLVATLFMYREFT	LFDAQMTQHALIAYSFG
25 orf20ng-1 EQFSALLDWGLRLCMLLTLPAAAGLAVLSFPLVATLFMYREFT 310 320 330 340 370 380 390 400 orf20-1.pep LIGLIMIKVLAPGFYARQNIKTPVKIAIFTLICTQLMNLAFIG	
25 orf20ng-1 EQFSALLDWGLRLCMLLTLPAAAGLAVLSFPLVATLFMYREFT 310 320 330 340 370 380 390 400 orf20-1.pep LIGLIMIKVLAPGFYARQNIKTPVKIAIFTLICTQLMNLAFIG	LFDAQMTQHALIAYSFG
370 380 390 400 orf20-1.pep LIGLIMIKVLAPGFYARONIKTPVKIAIFTLICTOLMNLAFIG	350 360
orf20-1.pep LIGLIMIKVLAPGFYARONIKTPVKIAIFTLICTOLMNLAFIG	330 300
	410 420
20	PLKHVGLSLAIGLGACI
30 orf20ng-1 LIGLIMIKVLASGFYARQNIKTPVKIAIFTLICTQLMNLAFIG	PLKHAGLSLAIGLGACI
370 380 390 400	410 420
430 440 450 460	470 480
orf20-1.pep NAGLLFYLLRRHGIYQPGKGWAAFLAKMLLSLAVMCGGLWAAQ	[[][[][][][][][][][][][][][][][][][][]
orf20ng-1 NAGLLFFLLRKHGIYRPGRGWAAFLAKMLLALAVMCGGLWAAQ 430 440 450 460	
430 440 400	470 480
490 500 510 40 orf20-1.pep QLCILIAVGGGLYFASLAALGFRPRHFKRVENX	•
orf20ng-1 QLCILIAVGGGLYFASLAALGFRPRHFKRVESX 490 500 510	
In addition, ORF20ng-1 shows significant homology with a virulence f	actor of S.typhimurium:
45 sp[P37169 MVIN_SALTY VIRULENCE FACTOR MVIN pir][S40271 mvi	N protein - Salmonella
typhimurium gi 438252 (Z26133) mviB gene product [Sagnl PID d1005521 (D25292) ORF2 [Salmonella typhimurium] Le	lmonella typhimurium]
Score = 1573 (750.1 bits), Expect = $1.1e-220$, Sum $P(2)$ =	1.1e-220
Identities = 309/467 (66%), Positives = 368/467 (78%).	
Query: 1 MNMLGALAKVGSLTMVSRVLGFVRDTVIARAFGAGMATDAFFVAF	
MN+L +LA V S+TM SRVLGF RD ++AR FGAGMATDAFFVAE Sbjct: 14 MNLLKSLAAVSSMTMFSRVLGFARDAIVARIFGAGMATDAFFVAE	
55 Query: 61 AQAFVPILAEYKETRSKEATEAFIRHVAGMLSFVLIVVTALGILA +QAFVPILAEYK + +EAT F+ +V+G+L+ L VVT G+LA	
Sbjct: 74 SQAFVPILAEYKSKQGEEATRIFVAYVSGLLTLALAVVTVAGMLF	
Query: 121 ADKFQLSISLLRITFPYILLISLSSFVGSILNSYHKFGIPAFTPT	FINISFIVEALERUP 180
ADKF L+ LLRITFPYILLISL+S VG+ILN++++F IPAF PT	FLNIS I FALF P
	FLNISMIGFALFAAP 193
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT	•
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAF	
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAF YF+PPV ALAWAV VGG+LQL +QLP+L K+G L LP++NF+D	RV+KQM PAILGV
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAF YF+PPV ALAWAV VGG+LQL +QLP+L K+G L LP++NF+D Sbjct: 194 YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTG	RV+KOM PAILGV AMRVVKOMGPAILGV 253
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAF YF+PPV ALAWAV VGG+LQL +QLP+L K+G L LP++NF+D Sbjct: 194 YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTG Query: 241 SVAQISLVINTIFASYLQSGSVSWMYYADRMMELRRGVLGAALGT	RV+KQM PAILGV AMRVVKQMGPAILGV 253 ILLPTLSKHSANQDT 300
Sbjct: 134 ADKFALTTQLLRITFPYILLISLASLVGAILNTWNRFSIPAFAPT Query: 181 YFDPPVTALAWAVFVGGILQLGFQLPWLAKLGFLKLPKLNFKDAF YF+PPV ALAWAV VGG+LQL +QLP+L K+G L LP++NF+D Sbjct: 194 YFNPPVLALAWAVTVGGVLQLVYQLPYLKKIGMLVLPRINFRDTG Query: 241 SVAQISLVINTIFASYLQSGSVSWMYYADRMMELRRGVLGAALGT	RV+KQM PAILGV AMRVVKQMGPAILGV 253 ILLPTLSKHSANQDT 300 ILLP+LSK A+ +

	-122-
	177
	-122-

```
301 EQFSALLDWGLRLCMLLTLPAAAGLAVLSFPLVATLFMYREFTLFDAQMTQHALIAYSFG 360
          Query:
                        +++ L+DWGLRLC LL LP+A L +L+ PL +LF Y +FT FDA MTQ ALIAYS G
                    314 DEYCRLMDWGLRLCFLLALPSAVALGILAKPLTVSLFQYGKFTAFDAAMTQRALIAYSVG 373
          Sbjct:
                    361 LIGLIMIKVLASGFYARQNIKTPVKIAIFTLICTQLMNLAFIGPLKHAGLSLAIGLGACI 420
5
          Query:
                        LIGLI++KVLA GFY+RQ+IKTPVKIAI TLI TQLMNLAFIGPLKHAGLSL+IGL AC+
                    374 LIGLIVVKVLAPGFYSRQDIKTPVKIAIVTLIMTQLMNLAFIGPLKHAGLSLSIGLAACL 433
          Sbjct:
                    421 NAGLLFFLLRKHGIYRPGRGWXXXXXXXXXXXXVMCGGLWAAQACLP 467
          Query:
                        NA LL++ LRK I+ P GW
10
                                                         VM
                                                             L+
          Sbjct:
                    434 NASLLYWQLRKQNIFTPQPGWMWFLMRLIISVLVMAAVLFGVLHIMP 480
           Score = 70 (33.4 bits), Expect = 1.1e-220, Sum P(2) = 1.1e-220
           Identities = 14/41 (34%), Positives = 23/41 (56%)
15
                    469 EWAHAGGMRKAGQLCILIAVGGGLYFASLAALGFRPRHFKR 509
           Query:
                        EW+
                              + + +L ++ G
                                              YFA+LA LGF+ + F R
                    481 EWSQGSMLWRLLRLMAVVIAGIAAYFAALAVLGFKVKEFVR 521
           Sbjct:
```

Based on this analysis, including the homology with a virulence factor from *S.typhimurium*, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 15

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 123>:

```
25
                     atGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG GCAGACCGGA
                     GCAAGCCGTT tACGACGGCC CGGCCaTTAC CGAAGtCGCG TTGCTTGGCG
                 51
                    AAGAATATGC CGGTATGCGC CCCTCGATGA AAGTCAAGGA AGGCGATGCC
                101
                151
                     GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC CGGGCGTGGT
                     GTTTACTGCG CCGGCTTCAG GCAAAATCGC CGCGATTCAC CGTGGCGAAA
                201
30
                     AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAArGCAA CGACGAAATC
                     GAGTTTGAAC GCTACGCACC TGAAGCGCTG GCAAACTTAA GCGGCGAAGA
                301
                     AGTGCGCCGC AACCTGATCC AATCCGGTTT GTGGACTGCG CTGCGCACCC
                     GTCCGTTCAG CAAAATTCCT GCCGTCGATG CCGAGCCGTT CGCCATCTTC
                401
                451
                    GTCAATGCGA tGGACACCAA TCCG..
```

35 This corresponds to the amino acid sequence <SEQ ID 124; ORF22>:

```
1 MIKIKKGLNL PIAGRPEQAV YDGPAITEVA LLGEEYAGMR PSMKVKEGDA
51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV VIAVEXNDEI
101 EFERYAPEAL ANLSGEEVRR NLIQSGLWTA LRTRPFSKIP AVDAEPFAIF
151 VNAMDTNP..
```

40 Further work revealed the complete nucleotide sequence <SEQ ID 125>:

```
1 ATGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG GCAGACCGGA
                51
                    GCAAGCCGTT TACGACGGCC CGGCCATTAC CGAAGTCGCG TTGCTTGGCG
                    AAGAATATGC CGGTATGCGC CCCTCGATGA AAGTCAAGGA AGGCGATGCC
               101
               151
                    GTCAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC CGGGCGTGGT
45
                    GTTTACTGCG CCGGCTTCAG GCAAAATCGC CGCGATTCAC CGTGGCGAAA
               201
               251
                    AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAAGGCAA CGACGAAATC
               301
                    GAGTTTGAAC GCTACGCACC TGAAGCGCTG GCAAACTTAA GCGGCGAAGA
               351
                    AGTGCGCCGC AACCTGATCC AATCCGGTTT GTGGACTGCG CTGCGCACCC
                401
                    GTCCGTTCAG CAAAATTCCT GCCGTCGATG CCGAGCCGTT CGCCATCTTC
                    GTCAATGCGA TGGACACCAA TCCGCTGGCT GCCGACCCTA CGGTCATTAT
50
                451
               501
                    CAAAGAAGCC GCCGAGGATT TCAAACGCGG CCTGTTGGTA TTGAGCCGTT
                    TGACCGAACG CAAAATCCAT GTTTGTAAGG CAGCTGGCGC AGACGTGCCG
                551
                     TCTGAAAATG CTGCCAACAT CGAAACACAT GAATTCGGCG GCCCGCATCC
                    TGCCGGTTTG AGTGGCACGC ACATTCATTT CATCGAGCCG GTCGGCGCGA
                651
55
                    ATAAAACCGT GTGGACCATC AATTATCAAG ATGTAATTAC CATTGGCCGT
                    TTGTTTGCAA CAGGCCGTCT GAACACCGAG CGCGTGATTG CCCTAGGTGG
                751
                    TTCTCAAGTC AACAAACCGC GCCTCTTGCG TACCGTTTTG GGTGCGAAAG
                801
                     TATCGCAAAT TACTGCGGGC GAATTGGTTG ACACAGACAA CCGCGTGATT
                851
                    TCCGGTTCGG TATTGAACGG CGCGATTACA CAAGGCGCGC ACGATTATTT
```

orf22a

```
GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC CGCAGCAAAG
               951
                     AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC CATCACGCGT
              1001
                     ACAACCCTCG GCCATTTCCT GAAAAACAAA CTCTTCAAGT TCAACACAGC
              1051
                     CGTCAACGGC GGCGACCGCG CCATGGTGCC GATTGGTACT TACGAGCGCG
              1101
5
              1151
                     TGATGCCCTT GGATATCCTG CCCACCCTGC TTTTGCGCGA TTTAATCGTC
                     GGCGATACCG ACAGCGCGCA GGCATTGGGT TGCTTGGAAT TGGACGAAGA
              1201
              1251
                     AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC GAATACGGCC
              1301 CGCTGTTGCG CAAAGTGCTG GAAACCATTG AGAAGGAAGG CTGA
     This corresponds to the amino acid sequence <SEQ ID 126; ORF22-1>:
10
                    MIKIKKGLNL PIAGRPEQAV YDGPAITEVA LLGEEYAGMR PSMKVKEGDA
VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV VIAVEGNDEI
                 51
               101
                     EFERYAPEAL ANLSGEEVRR NLIQSGLWTA LRTRPFSKIP AVDAEPFAIF
                     VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH VCKAAGADVP
                201
                     SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI NYQDVITIGR
15
                251
                     LFATGRLNTE RVIALGGSQV NKPRLLRTVL GAKVSQITAG ELVDTDNRVI
                301
                     SGSVLNGAIT QGAHDYLGRY HNQISVIEEG RSKELFGWVA PQPDKYSITR
                351 TTLGHFLKNK LFKFNTAVNG GDRAMVPIGT YERVMPLDIL PTLLLRDLIV
                401 GDTDSAQALG CLELDEEDLA LCSFVCPGKY EYGPLLRKVL ETIEKEG*
     Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 127>:
20
                  1 ATGATTAAAA TCAAAAAAGG TCTAAACCTG CCCATCGCGG GCAGACCGGA
                 51
                     GCAAGTCATT TATGACGGGC CCGTCATTAC CGAAGTCGCG TTGCTTGGCG
                     AAGAATATGC CGGTATGCGC CCCTNGATGA AAGTCAAGGA AGGCGATGCC
                101
               151 GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGNATC CGGGCGTGGT
                201
                     GTTTACCGCG CCNGTTTCAG GCAAAATCGC CGCCATCCAT CGCGGCGAAA
25
                251 AGCGCGTACT TCAGTCGGTC GTGATGCCG TTGAAGGCAA CGACGAAATC
                301
                     GAGTTCGAAC GCTACGCGCC CGAAGCGTTG GCAAACTTAA GCGGCGANGA
                351 ANTHNGNNGC AATCTGATCC AATCCGGTTT GTGGACTGCG CTGCGTANCC
                     GTCCGTTCAG CAAAATCCCT GCCGTCGATG CCGAGCCGTT CGCCATCTTC
                401
                451
                     GTCAATGCGA TGGACACCAA TCCGCTNGCG GCAGACCCTG TGGTTGTGAT
30
                     CAAAGAAGCC GNCGANGATT TCAGACGANG TNTGCTGGTA TTGAGCCGTT
                501
                551 TGACCGAGCG TAAAATCCAT GTGTGTAAGG CAGCTGGCGC AGACGTGCCG
                601 TCTGAAAATG CTGCCAACAT CGAAACACAT GAATTCGGCG GCCCGCATCC
                651
                     GGCCGGTTTG AGTGGCACGC ACATTCATTT CATTGAGCCG GTCGGTGCAA
                701 ACAAAACCGT TTGGACCATC AATTATCAAG ATGTAATTGC CATCGGACGT
                751 TTGTTTGCAA CAGGCCGTCT GAACACCGAG CGCGTGATTG CTTTGGGTGG
35
                    TTCTCAAGTC AACAAACCAC GCCTCTTGCG TACCGTTTTG GGTGCGAAAG
                801
                851
                     TATCGCAAAT TACTGCGGGC GAATTGGTTG ACGCAGACAA CCGCGTGATT
                     TCCGGTTCGG TATTGAACGG CGCGATTACA CAAGGCGCGC ACGATTATTT
                901
                     GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC CGCAGCAAAG
                951
40
               1001
                     AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC CATCACGCGT
               1051
                     ACGACCCTCG GCCATTTCCT GAAAAACAAA CTCTTCAAGT TCACGACAGC
                     CGTCAACGGT GGCGACCGCG CCATGGTGCC GATTGGTACT TACGAGCGCG
               1101
               1151
                     TAATGCCGCT AGACATCCTG CCTACCCTGC TTTTGCGCGA TTTAATCGTC
                     GGCGATACCG ACAGCGCGCA AGCATTGGGT TGCTTGGAAT TGGACGAAGA
               1201
45
               1251
                     AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC GAATANGGCC
               1301
                     CGCTGTTGCG TAAGGTGCTG GAAACCNTTG AGAAGGAAGG CTGA
      This encodes a protein having amino acid sequence <SEQ ID 128; ORF22a>:
                  1 MIKIKKGLNL PIAGRPEQVI YDGPVITEVA LLGEEYAGMR PXMKVKEGDA
                     VKKGQVLFED KKXPGVVFTA PVSGKIAAIH RGEKRVLQSV VIAVEGNDEI
50
                101 EFERYAPEAL ANLSGXEXXX NLIQSGLWTA LRXRPFSKIP AVDAEPFAIF
                151 VNAMDTNPLA ADPVVVIKEA XXDFRRXXLV LSRLTERKIH VCKAAGADVP
                201
                     SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI NYQDVIAIGR
                251
                     LFATGRLNTE RVIALGGSQV NKPRLLRTVL GAKVSQITAG ELVDADNRVI
                301
                     SGSVLNGAIT QGAHDYLGRY HNQISVIEEG RSKELFGWVA PQPDKYSITR
55
                     TTLGHFLKNK LFKFTTAVNG GDRAMVPIGT YERVMPLDIL PTLLLRDLIV
                351
                401 GDTDSAQALG CLELDEEDLA LCSFVCPGKY EXGPLLRKVL ETXEKEG*
      The originally-identified partial strain B sequence (ORF22) shows 94.2% identity over a 158aa
      overlap with ORF22a:
                                10
                                          20
                                                    30
                                                               40
                        MIKIKKGLNLPIAGRPEQAVYDGPAITEVALLGEEYAGMRPSMKVKEGDAVKKGQVLFED
60
           orf22.pep
```

 -124-

		10	20	30	40	50	60	
5	orf22.pep	70 KKNPGVVFTAPASGKI !	HIIII	[]]]]]	11111111	HHHHHH	1 1	
	orf22a	KKXPGVVFTAPVSGKI 70	80	90	100	APEALANLS 110	120	
10	orf22.pep	130 NLIQSGLWTALRTRPF						
	orf22a	NLIQSGLWTALRXRPF	SKIPAVDAI 140	EPFAIFVNAMD 150	TNPLAADPVV 160	VIKEAXXDF 170	RRXXLV 180	
	The complete strain	B sequence (ORF2	22-1) and	ORF22a sh	ow 94.9% i	dentity in	447 aa over	lap:
15	orf22a.pep	10 MIKIKKGLNLPIAG						
	orf22-1							
20	orf22a.pep	70 KKXPGVVFTAPVSG	80 KTAATHRGI	90	100	110	120	
25	orf22-1	: KKNPGVVFTAPASG	 KIAAIHRGI	 EKRVLQSVVIA	 VEGNDEIEFE	 RYAPEALAN	 LSGEEVRR	
25		70 130	80 140	90 1 50	100 160	110 170	120	
20	orf22a.pep	NLIQSGLWTALRXR	PFSKIPAVI	DAEPFAIFVNA 	MDTNPLAADE	VVVIKEAXX	DFRRXXLV	
30	orf22-1	NLIQSGLWTALRTR 130	PFSKIPAVI 140	DAEPFAIFVNA 150	MDTNPLAADI 160	TVIIKEAAE 170	DFKRGLLV 180	
35	orf22a.pep	190 LSRLTERKIHVCKA 	200 AGADVPSEI	210 NAANIETHEFG	220 GPHPAGLSGT	230 HIHFIEPVG	240 ANKTVWTI	!
55	orf22-1	LSRLTERKIHVCKA 190	AGADVPSEI 200	NAANIETHEFG 210	GPHPAGLSG1 220	HIHFIEPVG 230	ANKTVWTI 240	
40	orf22a.pep	250 NYQDVIAIGRLFAT						
	orf22-1	: NYQDVITIGRLFAT 250		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			: VDTDNRVI 300	
45	orf22a.pep	310 SGSVLNGAITQGAH	320 DYLGRYHN	330 DISVIEEGRSK	340 ELFGWVAPOE	350 PDKYSITRTT	360 LGHFLKNK	
	orf22-1	 SGSVLNGAITQGAH	 DYLGRYHN	 	 ELFGWVAPQE	 PDKYSITRTT	 LGHFLKNK	
50		310 370	320 380	330 390	340 400	350 410	360 420	
	orf22a.pep	LFKFTTAVNGGDRA	MVPIGTYE:	11111111111	LLRDLIVGD	DSAQALGCL	ELDEEDLA	
55	orf22-1	LFKFNTAVNGGDRA 370	MVPIGTYEI 380	RVMPLDILPTI 390	LLRDLIVGDT 400	DSAQALGCL 410	ELDEEDLA 420	
	orf22a.pep	430 LCSFVCPGKYEXGP						
60	orf22-1	IIIIIIIIIIIIIIIILIIIIIIIIIIIIIIIIIIIII						
	Thereto are arreaded delay	de la companial com		- KORO TE	100× C	3.7	, ,	

Further work identified a partial gene sequence <SEQ ID 129> from N.gonorrhoeae, which encodes the following amino acid sequence <SEQ ID 130; ORF22ng>:

65

¹ MIKIKKGLNL PIAGRPEQVI YDGPAITEVA LLGEEYVGMR PSMKIKEGEA 51 VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV VIAVEGNDEI 101 EFERYVPEAL AKLSSEKVRR NLIQSGLWTA LRTRPFSKIP AVDAEPFAIF

```
151
                   VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH VCKAAGADVP
                   SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI NYQDVIAIGR
              201
                   LFVTGRLNTE RVVALGGLQV NKPRLLRTVL GAKVSQLTAG ELVDADNRVI
              251
              301
                   SGSVLNGAIA QGAHDYLGRY HN*
5
    Further work identified complete gonococcal gene <SEQ ID 131>:
                   ATGATTAAAA TCAAAAAAGG TCTAAATCTG CCCATCGCGG GCAGACCGGA
               51
                   GCAAGTCATT TATGACGGCC CGGCCATTAC CGAAGTCGCG TTGCTTGGCG
                   AAGAATATGT CGGCATGCGC CCCTCGATGA AAATCAAGGA AGGTGAAGCC
              101
                   GTCAAAAAAG GCCAAGTGCT GTTTGAAGAC AAAAAGAATC CGGGCGTAGT
              151
10
                   ATTTACTGCG CCGGCTTCAG GCAAAATCGC CGCTATTCAC CGTGGCGAAA
              201
                   AGCGCGTACT TCAGTCAGTC GTGATTGCCG TTGAAGGCAA CGACGAAATC
              251
                   GAGTTCGAAC GCTACGTACC TGAAGCGCTG GCAAAATTGA GCAGCGAAAA
              301
                   AGTGCGCCGC AACCTGATTC AATCAGGCTT ATGGACTGCG CTTCGCACCC
              351
                   GTCCGTTCAG CAAAATCCCT GCCGTAGATG CCGAGCCGTT CGCCATCTTC
              401
15
                   GTCAATGCGA TGGACACCAA TCCGCTGGCT GCCGACCCTA CGGTCATCAT
              451
                   CAAAGAAGCC GCCGAAGACT TCAAACGCGG CCTGTTGGTA TTGAGCCGCC
              501
                   TGACCGAACG TAAAATCCAT GTGTGTAAAG CAGCAGGCGC AGACGTGCCG
              551
                   TCTGAAAATG CTGCCAATAT CGAAACACAT GAATTTGGCG GCCCGCATCC
              601
              651
                   TGCCGGCTTG AGTGGCACGC ACATTCATTT CATCGAGCCA GTCGGCGCGA
20
                   ATAAAACCGT GTGGACCATC AATTATCAAG ACGTGATTGC TATCGGACGT
              701
                   TTGTTCGTAA CAGGCCGTCT GAATACCGAG CGCGTGGTTG CCTTGGGCGG
              751
              801
                   CCTGCAAGTC AACAAACCGC GCCTCTTGCG TACCGTTTTG GGTGCGAAGG
                   TGTCTCAACT TACCGCCGGC GAATTGGTTG ACGCGGACAA CCGCGTGATT
              851
                   TCCGGTTCGG TATTGAACGG TGCGATTGCA CAAGGCGCGC ATGATTATTT
              901
25
                   GGGACGCTAC CACAATCAGA TTTCCGTTAT CGAAGAAGGC CGCAGCAAAG
              951
                   AGCTGTTCGG CTGGGTTGCG CCGCAGCCGG ACAAATACTC CATCACGCGC
              1001
                   ACCACTCTCG GCCATTTCCT AAAAAACAAA CTCTTCAAGT TCACGACAGC
             1051
             1101
                   CGTCAACGGC GGCGACCGCG CCATGGTACC GATCGGCACT TATGAGCGCG
                   TAATGCCGTT GGACATCCTG CCTACCTTGC TTTTGCGCGA TTTAATCGTC
             1151
30
              1201
                   GGCGATACCG ACAGCGCGCA GGCTTTGGGT TGCTTGGAAT TGGACGAAGA
                   AGACCTCGCT TTGTGCAGCT TCGTCTGCCC GGGCAAATAC GAATACGGCC
             1251
                   CGCTGTTGCG CAAAGTGCTG GAAACCATTG AGAAGGAAGG CTGA
              1301
     This encodes a protein having amino acid sequence <SEQ ID 132; ORF22ng-1>:
                   MIKIKKGLNL PIAGRPEQVI YDGPAITEVA LLGEEYVGMR PSMKIKEGEA
35
                   VKKGQVLFED KKNPGVVFTA PASGKIAAIH RGEKRVLQSV VIAVEGNDEI
               51
              101
                   EFERYVPEAL AKLSSEKVRR NLIQSGLWTA LRTRPFSKIP AVDAEPFAIF
              151
                   VNAMDTNPLA ADPTVIIKEA AEDFKRGLLV LSRLTERKIH VCKAAGADVP
                   SENAANIETH EFGGPHPAGL SGTHIHFIEP VGANKTVWTI NYQDVIAIGR
              201
                   LEVIGRINTE RVVALGGLQV NKPRLLRTVL GAKVSQLTAG ELVDADNRVI
              251
40
                   SGSVLNGAIA QGAHDYLGRY HNQISVIEEG RSKELFGWVA PQPDKYSITR
              301
                   TTLGHFLKNK LFKFTTAVNG GDRAMVPIGT YERVMPLDIL PTLLLRDLIV
              351
                   GDTDSAQALG CLELDEEDLA LCSFVCPGKY EYGPLLRKVL ETIEKEG*
              401
     The originally-identified partial strain B sequence (ORF22) shows 93.7% identity over a 158aa
     overlap with ORF22ng:
45
          orf22.pep
                      MIKIKKGLNLPIAGRPEQAVYDGPAITEVALLGEEYAGMRPSMKVKEGDAVKKGQVLFED
                                                                                   60
                      orf22ng
                      MIKIKKGLNLPIAGRPEQVIYDGPAITEVALLGEEYVGMRPSMKIKEGEAVKKGQVLFED
50
                      KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEXNDEIEFERYAPEALANLSGEEVRR
          orf22.pep
                      orf22ng
                      KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEGNDEIEFERYVPEALAKLSSEKVRR 120
          orf22.pep
                      NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNP
                                                                                  158
55
                      orf22ng
                      NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNPLAADPTVIIKEAAEDFKRGLLV
```

The complete sequences from strain B (ORF22-1) and gonococcus (ORF22ng) show 96.2% identity in 447 aa overlap:

60 10 20 30 40 50 60 orf22-1.pep MIKIKKGLNLPIAGRPEQAVYDGPAITEVALLGEEYAGMRPSMKVKEGDAVKKGQVLFED

-126-

	orf22ng-1		 PIAGRPE	:: OVIYDGPAT		GMRPSMKTKE	::::::::::::::::::::::::::::::::::::::	IIII LEED
	01101ng -	10		20	30	40	50	60
5	orf22-1.pep	70 KKNPGVVFTA KKNPGVVFTA	1111111	1111111111		111111111111111111111111111111111111111	1111:11:1:	:111
	orf22ng-1	70		80	90	100	110	120
10	orf22-1.pep	130 NLIQSGLWTA NLIOSGLWTA	LRTRPFSI		нинин	1111111111	111111111	1111
15	Offzziig-1	130		140	150	160	170	180
	orf22-1.pep	190 LSRLTERKIH	VCKAAGAI					
20	orf22ng-1	LSRLTERKIH 190	VCKAAGAI			PAGLSGTHIHE 220		
25	orf22-1.pep orf22ng-1	250 NYQDVITIGR : NYQDVIAIGR 250	LFATGRLI : LFVTGRLI	11111:111		1111111111:	111111111111111111111111111111111111111	1111
30	orf22-1.pep orf22ng-1	111111111:	QGAHDYL QGAHDYL	111111111		340 SWVAPQPDKYS SWVAPQPDKYS 340		1111
35	orf22-1.pep	: LFKFTTAVNG	GDRAMVP: GDRAMVP:			400 DLIVGDTDSAC		IIII EDLA
40		370		380	390	400	410	420
	orf22-1.pep	430 LCSFVCPGKY	EYGPLLRI		11			
45		430		440				

Computer analysis of these sequences gave the following results:

Homology with 48kDa outer membrane protein of *Actinobacillus pleuropneumoniae* (accession number U24492). ORF22 and this 48kDa protein show 72% aa identity in 158aa overlap:

50	Orf22	1	MIKIKKGLNLPIAGRPEQAVYDGPAITEVALLGEEYAGMRPSMKVKEGDAVKKGQVLFED 60 MI IKKGL+LPIAG P Q +++G + EVA+LGEEY GMRPSMKV+EGD VKKGOVLFED)
50	48kDa	1	MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGQVLFED 60)
	orf22	61	KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEXNDEIEFERYAPEALANLSGEEVRR 12	20
55	48kDa	61	KKNPGVVFTAPASG + I+RGEKRVLQSVVI VE +++I F RY LA+LS E+V++ KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 12	20
	orf22	121	NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNP 158 NLI+SGLWTA RTRPFSK+PA+DA P +IFVNAMDTNP	
60	48kDa	121	NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNP 158	

ORF22a also shows homology to the 48kDa Actinobacillus pleuropneumoniae protein:

gi|1185395 (U24492) 48 kDa outer membrane protein [Actinobacillus pleuropneumoniae] Length = 449

```
65 Score = 530 bits (1351), Expect = e-150
```

```
Identities = 274/450 (60%), Positives = 323/450 (70%), Gaps = 4/450 (0%)
          Query: 1
                    MIKIKKGLNLPIAGRPEQVIYDGPVITEVALLGEEYAGMRPXMKVKEGDAVKKGQVLFED 60
                     MI IKKGL+LPIAG P QVI++G + EVA+LGEEY GMRP MKV+EGD VKKGOVLFED
                    MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGQVLFED 60
5
          Sbict: 1
                    KKXPGVVFTAPVSGKIAAIHRGEKRVLQSVVIAVEGNDEIEFERYAPEALANLSGXEXXX 120
          Query: 61
                     KK PGVVFTAP SG + I+RGEKRVLQSVVI VEG+++I F RY
                    KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 120
          Sbjct: 61
10
          Query: 121 NLIQSGLWTALRXRPFSKIPAVDAEPFAIFVNAMDTNPLAADPVVVIKEAXXDFRRXXLV 180
                     NLI+SGLWTA R RPFSK+PA+DA P +IFVNAMDTNPLAADP VV+KE
                                                                     DF+
          Sbjct: 121 NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNPLAADPEVVLKEYETDFKDGLTV 180
15
          Query: 181 LSRL--TERKIHVCKAAGADVP-SENAANIETHEFGGPHPAGLSGTHIHFIEPVGANKTV 237
                     L+RL ++ +++CK A +++P S I F G HPAGL GTHIHF++PVGA K V
          Sbjct: 181 LTRLFNGQKPVYLCKDADSNIPLSPAIEGITIKSFSGVHPAGLVGTHIHFVDPVGATKQV 240
          Query: 238 WTINYQDVIAIGRLFATGRLNTERVIALGGSQVNKPRLLRTVLGAKVSQITAGELVDADN 297
20
                     W +NYQDVIAIG+LF TG L T+R+I+L G QV PRL+RT LGA +SQ+TA EL
          Sbjct: 241 WHLNYQDVIAIGKLFTTGELFTDRIISLAGPQVKNPRLVRTRLGANLSQLTANELNAGEN 300
          Query: 298 RVISGSVLNGAITQGAHDYLGRYHNQISVIEEGRSKELFGWVAPQPDKYSITRTTLGHFL 357
                     RVISGSVL+GA G DYLGRY Q+SV+ EGR KELFGW+ P DK+SITRT LGHF
25
          Sbjct: 301 RVISGSVLSGATAAGPVDYLGRYALQVSVLAEGREKELFGWIMPGSDKFSITRTVLGHFG 360
          K KLF FTTAV+GG+RAMVPIG YERVM
                                                              GDTDSAO
          Sbjct: 361 K-KLFNFTTAVHGGERAMVPIGAYERVMPLDIIPTLLLRDLAAGDTDSAQNLGCLELDEE 419
30
          Query: 418 XXXXXSFVCPGKYEXGPLLRKVLETXEKEG 447
                          ++VCPGK
                                   GP+LR LE EKEG
     ORF22ng-1 also shows homology with the OMP from A.pleuropneumoniae:
                        (U24492)
                                  48
                                       kDa
                                            outer
                                                    membrane
                                                               protein
                                                                         [Actinobacillus
35
          pleuropneumoniae] Length = 449
           Score = 555 bits (1414), Expect = e-157
           Identities = 284/450 (63%), Positives = 337/450 (74%), Gaps = 4/450 (0%)
          Query: 27 MIKIKKGLNLPIAGRPEQVIYDGPAITEVALLGEEYVGMRPSMKIKEGEAVKKGQVLFED 86
40
                     MI IKKGL+LPIAG P QVI++G + EVA+LGEEYVGMRPSMK++EG+ VKKGQVLFED
                     MITIKKGLDLPIAGTPAQVIHNGNTVNEVAMLGEEYVGMRPSMKVREGDVVKKGOVLFED 60
          Sbjct: 1
                     KKNPGVVFTAPASGKIAAIHRGEKRVLQSVVIAVEGNDEIEFERYVPEALAKLSSEKVRR 146
          Query: 87
                     KKNPGVVFTAPASG + I+RGEKRVLQSVVI VEG+++I F RY
45
          Sbjct: 61 KKNPGVVFTAPASGTVVTINRGEKRVLQSVVIKVEGDEQITFTRYEAAQLASLSAEQVKQ 120
          Query: 147 NLIQSGLWTALRTRPFSKIPAVDAEPFAIFVNAMDTNPLAADPTVIIKEAAEDFKRGLLV 206
                     NLI+SGLWTA RTRPFSK+PA+DA P +IFVNAMDTNPLAADP V++KE
          Sbjct: 121 NLIESGLWTAFRTRPFSKVPALDAIPSSIFVNAMDTNPLAADPEVVLKEYETDFKDGLTV 180
50
          Query: 207 LSRL--TERKIHVCKAAGADVP-SENAANIETHEFGGPHPAGLSGTHIHFIEPVGANKTV 263
                     L+RL ++ +++CK A +++P S
                                               I
                                                     F G HPAGL GTHIHF++PVGA K V
          Sbjct: 181 LTRLFNGQKPVYLCKDADSNIPLSPAIEGITIKSFSGVHPAGLVGTHIHFVDPVGATKQV 240
55
          Query: 264 WTINYQDVIAIGRLFVTGRLNTERVVALGGLQVNKPRLLRTVLGAKVSQLTAGELVDADN 323
                     W +NYQDVIAIG+LF TG L T+R+++L G QV PRL+RT LGA +SQLTA EL
           Sbjct: 241 WHLNYQDVIAIGKLFTTGELFTDRIISLAGPQVKNPRLVRTRLGANLSQLTANELNAGEN 300
           Query: 324 RVISGSVLNGAIAQGAHDYLGRYHNQISVIEEGRSKELFGWVAPQPDKYSITRTTLGHFL 383
60
                     RVISGSVL+GA A G DYLGRY Q+SV+ EGR KELFGW+ P DK+SITRT LGHF
           Sbjct: 301 RVISGSVLSGATAAGPVDYLGRYALQVSVLAEGREKELFGWIMPGSDKFSITRTVLGHFG 360
           K KLF FTTAV+GG+RAMVPIG YERVM
                                                              GDTDSAO
 65
           Sbjct: 361 K-KLFNFTTAVHGGERAMVPIGAYERVMPLDIIPTLLLRDLAAGDTDSAONLGCLELDEE 419
           Query: 444 XXXXXSFVCPGKYEYGPLLRKVLETIEKEG 473
                          ++VCPGK YGP+LR LE IEKEG
           Sbjct: 420 DLALCTYVCPGKNNYGPMLRAALEKIEKEG 449
 70
```

Based on this analysis, including the homology with the outer membrane protein of *Actinobacillus* pleuropneumoniae, it was predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF22-1 (35.4kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 5A shows the results of affinity purification of the GST-fusion protein, and Figure 5B shows the results of expression of the His-fusion in *E.coli*. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis (Figure 5C). These experiments confirm that ORF22-1 is a surface-exposed protein, and that it is a useful immunogen.

10 Example 16

5

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 133>:

```
..GCGnCGnAAA TCATCCATCC CC..nACGTC GTAGGCCCTG AAGCCAACTG
                 51
                       GTTTTTTATG GTAGCCAGTA CGTTTGTGAT TGCTTTGATT GGTTATTTTG
                       TTACTGAAAA AATCGTCGAA CCGCAATTGG GCCCTTATCA ATCAGATTTG
                101
15
                151
                       TCACAAGAAG AAAAAGACAT TCGGCATTCC AATGAAATCA CGCCTTTGGA
                       ATATAAAGGA TTAATTTGGG CTGGCGTGGT GTTTGTTGCC TTATCCGCCC
                201
                251
                       TATTGGCTTG GAGCATCGTC CCTGCCGACG GTATTTTGCG TCATCCTGAA
                       ACAGGATTGG TTTCCGGTTC GCCGTTTTTA AAATCGATTG TTGTTTTTAT
                301
                351
                       TTTCTTGTTG TTTGCACTGC CGGGCATTGT TTATGGCCGG GTAACCCGAA
                       GTTTGCGCGG CGAACAGGAA GTCGTTAATG CGmyGGCCGA ATCGATGAGT
20
                401
                451
                       ACTCTGGsGC TTTmTTTGsw CAkcATCTTT TTTGCCGCAC AGTTTGTCGC
                501
                       ATTTTTTAAT TGGACGAATA TTGGGCAATA TATTGCCGTT AAAGGGGCGA
                551
                       CGTTCTTAAA AGAAGTCGGC TTGGGCGGCA GCGTGTTGTT TATCGGTTTT
                601
                       ATTTTAATTT GTGCTTTTAT CAATCTGATG ATAGGCTCCG CCTCCGCGCA
25
                651
                       ATGGGCGGTA ACTGCGCCGA TTTTCGTCCC TATGCTGATG TTGGCCGGCT
                       ACGCGCCCGA AGTCATTCAA GCCGCTTACC GCATCGGTGA TTCCGTTACC
                701
                751
                       AATATTATTA CGCCGATGAT GAGTTATTTC GGGCTGATTA TGGCGACGGT
                       GrkCmmmTAC AAAAAAGATG CGGGCGTGGG TaCGcTGATT wCTATGATGT
                801
                851
                       TGCCGTATTC CGCTTTCTTC TTGATTGCgT GGATTGCCTT ATTCTGCATT
30
                       TGGGTATTTG TTTTGGGCCT GCCCGTCGGT CCCGGCGCGC CCACATTCTA
                901
                       TCCCGCACCT TAA
```

This corresponds to the amino acid sequence <SEQ ID 134; ORF12>:

```
1 ..AXXIIHPXXV VGPEANWFFM VASTFVIALI GYFVTEKIVE PQLGPYQSDL
51 SQEEKDIRHS NEITPLEYKG LIWAGVVFVA LSALLAWSIV PADGILRHPE
35 101 TGLVSGSPFL KSIVVFIFLL FALPGIVYGR VTRSLRGEQE VVNAXAESMS
151 TLXLXXXIF FAAQFVAFFN WTNIGQYIAV KGATFLKEVG LGGSVLFIGF
201 ILICAFINLM IGSASAQWAV TAPIFVPMLM LAGYAPEVIQ AAYRIGDSVT
251 NIITPMMSYF GLIMATVXXY KKDAGVGTLI XMMLPYSAFF LIAWIALFCI
301 WVFVLGLPVG PGAPTFYPAP *
```

40 Further sequence analysis revealed the complete DNA sequence <SEQ ID 135> to be:

```
ATGAGTCAAA CCGATACGCA ACGGGACGGA CGATTTTTAC GCACAGTCGA
                 1
                51
                    ATGGCTGGGC AATATGTTGC CGCATCCGGT TACGCTTTTT ATTATTTTCA
                    TTGTGTTATT GCTGATTGCC TCTGCCGTCG GTGCGTATTT CGGACTATCC
               101
               151
                    GTCCCCGATC CGCGCCCTGT TGGTGCGAAA GGACGTGCCG ATGACGGTTT
45
                    GATTTACATT GTCAGCCTGC TCAATGCCGA CGGTTTTATC AAAATCCTGA
               201
               251
                    CGCATACCGT TAAAAATTTC ACCGGTTTCG CGCCGTTGGG AACGGTGTTG
               301
                    GTTTCTTTAT TGGGCGTGGG GATTGCGGAA AAATCGGGCT TGATTTCCGC
                    ATTAATGCGC TTATTGCTCA CAAAATCGCC ACGCAAACTC ACTACTTTTA
               351
                    TGGTTGTTTT TACAGGGATT TTATCTAATA CCGCTTCTGA ATTGGGCTAT
               401
50
               451
                    GTCGTCCTAA TCCCTTTGTC CGCCATCATC TTTCATTCCC TCGGCCGCCA
                    TCCGCTTGCC GGTCTGGCTG CGGCTTTCGC CGGCGTTTCG GGCGGTTATT
               501
```

	551	CGGCCAATCT	GTTCTTAGGC	ACAATCGATC	CGCTCTTGGC	AGGCATCACC
	601	CAACAGGCGG	CGCAAATCAT	CCATCCCGAC	TACGTCGTAG	GCCCTGAAGC
	651	CAACTGGTTT	TTTATGGTAG	CCAGTACGTT	TGTGATTGCT	TTGATTGGTT
	701	ATTTTGTTAC	TGAAAAAATC	GTCGAACCGC	AATTGGGCCC	TTATCAATCA
5	751	GATTTGTCAC	AAGAAGAAAA	AGACATTCGG	CATTCCAATG	AAATCACGCC
•	801	TTTGGAATAT	AAAGGATTAA	TTTGGGCTGG	CGTGGTGTTT	GTTGCCTTAT
	851	CCGCCCTATT	GGCTTGGAGC	ATCGTCCCTG	CCGACGGTAT	TTTGCGTCAT
•	901	CCTGAAACAG	GATTGGTTTC	CGGTTCGCCG	TTTTTAAAAT	CGATTGTTGT
	951	TTTTATTTTC	TTGTTGTTTG	CACTGCCGGG	CATTGTTTAT	GGCCGGGTAA
10	1001	CCCGAAGTTT	GCGCGGCGAA	CAGGAAGTCG	TTAATGCGAT	GGCCGAATCG
•	1051	ATGAGTACTC	TGGGGCTTTA	TTTGGTCATC	ATCTTTTTTG	CCGCACAGTT
	1101	TGTCGCATTT	TTTAATTGGA	CGAATATTGG	GCAATATATT	GCCGTTAAAG
	1151	GGGCGACGTT	CTTAAAAGAA	GTCGGCTTGG	GCGGCAGCGT	GTTGTTTATC
0_	1201	GGTTTTATTT	TAATTTGTGC	TTTTATCAAT	CTGATGATAG	GCTCCGCCTC
15	1251	CGCGCAATGG	GCGGTAACTG	CGCCGATTTT	CGTCCCTATG	CTGATGTTGG
	1301	CCGGCTACGC	GCCCGAAGTC	ATTCAAGCCG	CTTACCGCAT	CGGTGATTCC
	1351	GTTACCAATA	TTATTACGCC	GATGATGAGT	TATTTCGGGC	TGATTATGGC
	1401	GACGGTGATC	AAATACAAAA	AAGATGCGGG	CGTGGGTACG	CTGATTTCTA
	1451	TGATGTTGCC	GTATTCCGCT	TTCTTCTTGA	TTGCGTGGAT	TGCCTTATTC
20	1501	TGCATTTGGG	TATTTGTTTT	GGGCCTGCCC	GTCGGTCCCG	GCGCGCCCAC
	1551	ATTCTATCCC	GCACCTTAA			

This corresponds to the amino acid sequence <SEQ ID 136; ORF12-1>:

	. 1	MSQTDTQRDG	RFLRTVEWLG	NMLPHPVTLF	IIFIVLLLIA	SAVGAYFGLS
	51	VPDPRPVGAK	GRADDGLIYI	VSLLNADGFI	KILTHTVKNF	TGFAPLGTVL
25	101	VSLLGVGIAE	KSGLISALMR	LLLTKSPRKL	TTFMVVFTGI	LSNTASELGY
	151	VVLIPLSAII	FHSLGRHPLA	GLAAAFAGVS	GGYSANLFLG	TIDPLLAGIT
	201	QQAAQIIHPD	YVVGPEANWF	FMVASTFVIA	LIGYFVTEKI	VEPQLGPYQS
	251	DLSQEEKDIR	HSNEITPLEY	KGLIWAGVVF	VALSALLAWS	IVPADGILRH
	301	PETGLVSGSP	FLKS <u>IVVFIF</u>	LLFALPGIVY	GRVTRSLRGE	QEVVNAMAES
30	351	MST <u>LGLYL</u> VI	IFFAAQFVAF	FNWTNIGQYI	AVKGATFLKE	VGLGGSVLFI
	401	GFILICAFIN	LMIGSASAQW	AVTAPIFVPM	LMLAGYAPEV	IQAAYRIGDS
	451	VTNIITPMMS	YFGLIMATVI	KYKKDAGVGT	LISMMLPYSA	FFLIAWIALF
	501	CIWVFVLGLP	VGPGAPTFYP	AP*		

Computer analysis of this amino acid sequence gave the following results:

35 Homology with a predicted ORF from N. meningitidis (strain A)

ORF12 shows 96.3% identity over a 320aa overlap with an ORF (ORF12a) from strain A of N. meningitidis:

	•				· 10	20	30
10	orf12.pep			AXX	KIIHPXXVVGI	PEANWFFMVAS	
40					1111 1111		
	orf12a	AAAFAGVSGGY					
		180	190	200	210	220	230
		40	50	60	70	80	90
45	orf12.pep	GYFVTEKIVEP	OLGPYOSDLSO		ITPLEYKGLIV		
		111111111111		11111111111	11111111111		11111111
	orf12a	GYFVTEKIVEP	DLGPYQSDLSQ	EEKDIRHSNE:	ITPLEYKGLIV	NAGVVFVALS	ALLAWSIV
		240	250	260	270	280	290
50	•			4.00			
50		100	110	120	130	140	150
	orf12.pep	PADGILRHPET	GLVSGSPFLKS	IVVFIFLLEA	LPGIVYGRVTI	RSLRGEQEVVI	
	610-	77777777	}	111111111			
	orf12a	PADGILRHPET					-
55		300	310	320	330	340	350
33	•	1.60	170	100	100		
	610	160	170	180	190	200	210
	orf12.pep	TLXLXLXXIFF			ATFLKEVGLG	SVLFIGFIL.	
	C1 0				(
60	orf12a	TLGLYLVIIFF					
60		360	370	380	390	400	410
		220	230	240	250	260	270
	orfl2.pep	IGSASAQWAVT	API EVPMLMLA				
		111111111111	1111111111				11111
				,			

-130-

	orf12a	IGSASAQV 420		MLAGYAPEVI 440	QAAYRIGDSVT1 450	NIITPMMSYFGL 460	IMATVIKY 470
5	orf12.pep			00 300 FFLIAWIALFC	310 EWVFVLGLPVG	320 PGAPTFYPAPX	
	orf12a		LISMMLPYSA				
	The complete le	ngth ORF12a	nucleotide	sequence <s< th=""><th>EO ID 137></th><th>· is:</th><th></th></s<>	EO ID 137>	· is:	
	<u>-</u>			_			
10	1 51	ATGAGTCAAA	CCGATACGCA	ACGGGACGGA	CGATTTTTAC TACGCTTTTT	GCACAGTCGA	
	101	TTGTGTTATT	GCTGATTGCC	TCTGCCGCCG	GTGCGTATTT	CGGACTATCC	
	151	GTCCCCGATC	CGCGCCCTGT	TGGTGCGAAA	GGACGTGCCG	ATGACGGTTT	
15	201				CGGTTTGATC		
15	251 301	CGCATACCGT	TAAAAATTTC	GATTGCGGAA	CGCCGTTGGG AAATCGGGCT	AACGGTGTTG	
	351				ACGCAAACTC		
	401				CCGCTTCTGA		
20	451 501				TTTCATTCCC CGGCGTTTCG		
20	551				CGCTCTTGGC		
	601	CAACAGGCGG	CGCAAATCAT	CCATCCCGAC	TACGTCGTAG	GCCCTGAAGC	
	651	CAACTGGTTT	TTTATGGTAG	CCAGTACGTT	TGTGATTGCT	TTGATTGGTT	
25	701 751	GATTTGTTAC	TGAAAAAATC	AGACATTCGA	AATTGGGCCC	TTATCAATCA	. ,
23	801	TTTGGAATAT	AAAGGATTAA	TTTGGGCTGG	CGTGGTGTTT	GTTGCCTTAT	•
	851	CCGCCCTATT	GGCTTGGAGC	ATCGTCCCTG	CCGACGGTAT	TTTGCGTCAT	•
	901 951				TTTTTAAAAT CATTGTTTAT		
30	1001	CCCGAAGTTT	GCGCGGCGAA	CAGGAAGTCG	TTAATGCGAT	GGCCGAATCG	
-	1051	ATGAGTACTC	TGGGGCTTTA	TTTGGTCATC	ATCTTTTTTG	CCGCACAGTT	
	1101 1151	TGTCGCATTT	TTTAATTGGA	CGAATATTGG	GCAATATATT GCGGCAGCGT	GCCGTTAAAG	
	1201	GGTTTTATTT	TAATTTGTGC	TTTTATCAAT	CTGATGATAG	GCTCCGCCTC	
35	1251	CGCGCAATGG	GCGGTAACTG	CGCCGATTTT	CGTCCCTATG	CTGATGTTGG	
	1301	CCGGCTACGC	GCCCGAAGTC	ATTCAAGCCG	CTTACCGCAT	CGGTGATTCC	
	1351 1401	GACGGTGATC	AAATACAAAA	AAGATGCGGG	TATTTCGGGC CGTGGGTACG	CTGATTATGGC	
	1451	TGATGTTGCC	GTATTCCGCT	TTCTTCTTGA	TTGCGTGGAT	TGCCTTATTC	
40	1501	TGCATTTGGG	TATTTGTTTT	GGGCCTGCCC	GTCGGTCCCG	GCGCGCCCAC	
	1551	ATTCTATCCC					
	This encodes a p	protein havin	g amino acid	l sequence <	SEQ ID 138	>:	
	1	MSQTDTQRDG	RFLRTVEWLG	NMLPHPVTLF	IIFIVLLLIA	SAAGAYFGLS	
45	51 101	VPDPRPVGAK	GRADDGLIHV	VSLLDADGLI	KILTHTVKNF TTFMVVFTGI	TGFAPLGTVL	
43	151	VVLIPLSAII	FHSLGRHPLA	GLAAAFAGVS	GGYSANLFLG	TIDPLLAGIT	
	201	QQAAQIIHPD	YVVGPEANWF	FMVASTFVIA	LIGYFVTEKI	VEPQLGPYQS	•
	251 301	DLSQEEKDIR	HSNEITPLEY	KGLIWAGVVF	VALSALLAWS	IVPADGILRH	
50	351	MSTLGLYLVI	IFFAAOFVAF	FNWTNIGOYI	GRVTRSLRGE AVKGATFLKE	VGLGGSVLFT	
	401	GFILICAFIN	LMIGSASAQW	AVTAPIFVPM	LMLAGYAPEV	IQAAYRIGDS	
	451		YFGLIMATVI VGPGAPTFYP		LISMMLPYSA	FFLIAWIALF	
	501	CIMALATGTE	VGPGAPTETP	AF*			
c c	ODE10 4 OI	DE10 1 -b	00.00/ :4	:: 500	•		
55	ORF12a and OF	CF 12-1 Snow	99.0% ideni	nty in 522 aa	i overlap:		
			10	20	30	40 50	60
	orf12a.pe	p MSQTD	rordgrflrtvi	EWLGNMLPHPV'	TLFIIFIVLLL	IASAAGAYFGLS	VPDPRPVGAK
		11111	111111111	111111111111	11111111111	1111:1111111	1311111111
60	orf12-1	MSQTD	rordgreletvi 10	EWLGNMLPHPV 20		IASAVGAYFGLS	
50						-30	60
			70	80	90 1	00 110	120
	orf12a.pe	p GRADDI 	:: : THAA2PPPDW	: THTV	KNETGFAPLGT 	VLVSLLGVGIAE	KSGLISALMR
65	orf12-1	GRADD	GLIYIVSLLNA	DGFIKILTHTV	KNFTGFAPLGT	VLVSLLGVGIAE	KSGLISALMR

			. 70	80	90	100	110	120
5	orfl2a.pep			{	[[[]]]	1111111111	170 HPLAGLAAAF7 HPLAGLAAAF7 170	1111
10	orf12a.pep	111111	[] [] [] [] [] [] [1111111111	111111111	1111111111	230 FVIALIGYFV VIALIGYFV 230	1111
15	orfl2a.pep		[]]]]	111111111	1441111111		290 LAWSIVPADG LAWSIVPADG	1111
20	orfl2a.pep	PETGLV	250 310 SGSPFLKSIV	260 320 VFIFLLFALP	270 330 GIVYGRVTRS	280 340 LRGEOEVVNA	290 350 MAESMSTLGLY	300 360
25	orf12-1	PETGLV	SGSPFLKSIV 310 370	VFIFLLFALP 320 380	GIVYGRVTRS 330 390	LRGEQEVVNA 340 400	MAESMSTLGLY 350 410	YLVI 360 420
30	orf12a.pep	111111	11111111		1111111111	11111111	AFINLMIGSAS AFINLMIGSAS 410	1111
35	orf12a.pep	111111	11111111	1111111111	1111111111	111111111	470 ATVIKYKKDAG ATVIKYKKDAG 470	1111 -
40	orf12a.pep orf12-1	111111	1111111111	1111111111	510 LGLPVGPGAP GLPVGPGAP 510	111111		. "

45 Homology with a predicted ORF from N.gonorrhoeae

ORF12 shows 92.5% identity over a 320aa overlap with a predicted ORF (ORF12.ng) from N. gonorrhoeae:

	orf12.pep	AXXIIHPXXVVGPEANWFFMVASTFVIALI	30
50	orf12ng		232
	orf12.pep	GYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNEITPLEYKGLIWAGVVFVALSALLAWSIV	90
55	orf12ng	GYFVTEKIVEPQLGPYQSDLSQEEKDIRHSNEITPLEYKGLIWAGVVFVALSALLAWSIV	292
	orf12.pep	PADGILRHPETGLVSGSPFLKSIVVFIFLLFALPGIVYGRVTRSLRGEQEVVNAXAESMS	150
	orf12ng	PADGILRHPETGLVAGSPFLKSIVVFIFLLFALPGIVYGRITRSLRGEREVVNAMAESMS	352
60	orf12.pep	TLXLXLXXIFFAAQFVAFFNWTNIGQYIAVKGATFLKEVGLGGSVLFIGFILICAFINLM	210
	orfl2ng	TLGLYLVIIFFAAQFVAFFNWTNIGQYIAVKGAVFLKKFRLGGSVLFIGFILICAFINLM	412
65	orf12.pep	IGSASAQWAVTAPIFVPMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATVXXY	270
	orf12ng	IGSASAQWAVTAPIFVPMLMLAGNAPQVIQAAYRIGDSVTNIITPMMSYFGLIMATVIKY	472

	orf12.pep					IWVFVLGLPVG		320
	orf12ng							522
	The complete le	ngth O	RF12ı	ng nucleotide	e sequence <	SEQ ID 139	> is:	
5	1	ATGAG'	TCAAA	CCGACGCGCG	TCGTAGCGGA	CGATTTTTAC	GCACAGTCGA	
	51	ATGGC'	TGGGC	AATATGTTGC	CGCACCCGGT	TACGCTTTTT	ATTATTTTCA	
	101 151					GTGCGTATTT GGACGTGCCG		
	201					CGGTTTGATC		
10	251	CGCAT	ACCGT	TAAAAATTTC	ACCGGTTTCG	CGCCGTTGGG	AACGGTGTTG	
	301					AAATCGGGCT		
	351 401					ACGCAAACTC CGGCTTCTGA		
	451					TTTCATTCGC		
15	501					CGGCGTTTCG		
	551					CGCTCTTGGC		
	601 651					TACGTCGTAG TGTGATTGCT		
	701					AATTGGGCCC	-	
20	751					CATTCCAATG		
	801					CGTGGTGTTT		
	851 901					CCGACGGTAT TTTTTAAAAT		
	951					CATTGTTTAT		
25	1001	CCCGA	AGTTT	GCGCGGCGAA	CGGGAAGTCG	TTAATGCGAT	GGCCGAATCG	1
	1051					ATCTTTTTTG		
	1101 1151					GCAATATATT		•
	1201					GCGGCAGTGT CTGATGATAG		
30	1251					CGTCCCTATG		
	1301					CTTACCGCAT		
	1351 1401					TATTTCGGGC CGTAGGCACG		
	1451					TTGCATGGAT		
35	1501					GTCGGTCCCG		
	1551	ATTCT	ATCCG	GTGCCTTAA				
	This encodes a p	protein	havin	g amino acid	l sequence <	SEQ ID 140	>:	
	1	MSQTD	ARRSG	RFLRTVEWLG	NMLPHPVTLF	IIFIVLLLIA	SAVGAYFGLS	
40	51					KILTHTVKNF		
40	101 151					TTFMVVFTGI GGYSANLFLG		
	201	OOAAO	TIHPD	YVVGPEANWE	FMAASTFVTA	LIGYFVTEKI	VEPOLGPYOS	
	251	DLSQE	EKDIR	HSNEITPLEY	KGLIWAGVVF	VALSALLAWS	IVPADGILRH	
45	301					GRITRSLRGE		
45	351 401					AVKGAVFLKK		
	451					LMLAGNAPQV LISMMLPYSA		
	501			VGPGTPTFYP			LIBRINGE	
	ORF12ng show	s 97.1%	— ∕6 iden	tity in 522 aa	a overlap wi	th ORF12-1:		
	_				-			
50	610.1			10	20		40 5	
	orf12-1.p							SVPDPRPVGAK
	orf12ng		MSOTD	ARRSGRFLRTVI	EWLGNMLPHPV	TLFIIFIVLLL	IASAVGAYFGI.	SVPDPRPVGAK
	,			10	20		40 5	
55								
	orf12-1.p	10D	CDADD	70	80 ~====================================		00 11	0 120 EKSGLISALMR
	U1112-1.p							
	orf12ng					KNFTGFAPLGT		
60	•			70	80	90 1	00 11	0 120
				130	140	150 1	60 17	0 100
	orf12-1.p	рер	LLITK				60 17 IIFHSLGRHPI	0 180 AGLAAAFAGVS
65	orf12ng							AGLAAAFAGVS

		130	140	150	160	170	180
		190	200	210	220	230	240
5	orf12-1.pep	GGYSANLFLGTIDPL					
	orf12ng	GGYSANLFLGTIDPL	LAGITQQAI	AQIIHPDYVVG 210	PEANWFFMAA 220	STFVIALIGY 230	FVTEKI
	•						240
10	orf12-1.pep	250 VEPQLGPYQSDLSQE	260 EKDIRHSNI	270 EITPLEYKGLI	280 WAGVVFVALS	290 SALLAWSIVPA	300 ADGILRH
	orfl2ng		 EKDIRHSNI	 EITPLEYKGLI		HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ADGILRH
	•	250	260	270	280	290	300
15		310	320	330	340	350	360
	orf12-1.pep	PETGLVSGSPFLKSI			111111:111		
	orf12ng	PETGLVAGSPFLKSI 310	VVFIFLLF 320	ALPGIVYGRIT 330	RSLRGEREVV 340	/Namaesmsti 350	GLYLVI 360
20		370 .	380	390	400	410	420
	orf12-1.pep	IFFAAQFVAFFNWTN	IGQYIAVK	GATFLKEVGLG	GSVLFIGFII	LICAFINLMIC	SSASAOW
25	orf12ng	I FFAAQFVAFFNWTN	IIG <u>O</u> YIAVK	GAVFLKEVGLG	GSVLFIGFII	LICAFINLMIC	SSASAQW
23		370	380	390	400	410	420
	orf12-1.pep	430 AVTAPIFVPMLMLAG	440 SYAPEVIQA	450 AYRIGDSVTNI	460 ITPMMSYFGI	470 LIMATVIKYKI	480 KDAGVGT
30	orf12ng			11111111111	1111111111		111111
		430	440	450	460	470	480
	610 1	490	500	510	520		
35	orf12-1.pep	LISMMLPYSAFFLIA		111111111111	:11111:11		
	orf12ng	LISMMLPYSAFFLIA 490	WIALFCIW 500	VFVLGLPVGPG 510	TPTFYPVPX 520	•	
	In addition, ORF12ng	g shows significan	t homolog	gy with a hy	potehtical 1	protein fron	n <i>E.coli</i> :
	SD P46133 YDAF	_ECOLI HYPOTHETI	ICAL 55.1	KD PROTEIN	IN OCT-DE	RPA TNTEPCI	INTO PECTON
40	>gi 1787597 (1 Length = 510	E000231) hypoth	etical p	rotein in o	ogt 5'regi	on [Esche	richia coli)
	Score = 329	bits (835), Expe	ect = 2e-	89			
4.5		178/507 (35%), I			_		
45		RFLRTVEWLGNMLPHE + VE +GN +PHE					OGL 67
		KLYGWVERIGNKVPH					GTP 64
50		VSLLDADGLIKILTHT / +LL +GL L +					KSP 127
30		KNLLSVEGLHWFLPN			AGLAERVGLI	+ ALM + + LPALMVKMASI	HVN 124
	Query: 128 RKI	TTFMVVFTGILSNTAS	SELGYVVLI	PLSAVIFHSLG	RHPLAGLAA	AFAGVSGGYS	ANL 187
55		++MV+F	S+ V++ SDAALVIMP	P+ A+IF ++G PMGALIFLAVG	RHP+AGL AA RHPVAGLLAA	A AGV G++) AIAGVGCGFT	ANL ANL 184
		TIDPLLAGITQQAAQ1					
	+	T D LL+GI+ +AA TTDVLLSGISTEAAA	+P V .	NW+FMA+S	V+ ++G	+T+KI+EP+	LG
60							_
	· +Q	DLSQEEKDIRHSNEIT + ++ + + S	GL	AGVV + A	+A ++P -	+GILR P	V
	Sbjct: 245 WQC	SNSDEKLQTLTESQRF-	GLR	IAGVVSLLFIA	AIALMVIPQ	NGILRDPINH'	IVM 298
65	Query: 308 GSI	PFLKSIVVFIFLLFALI PF+K IV I L F +	PGIVYGRIT	RSLRGEREVVN	AMAESMSTLO	GLYLXXXXXX	XXX 367
	Sbjct: 299 PSI	PFIKGIVPLIILFFFV	VSLAYGIAT	RTIRRQADLPH	LMIEPMKEM	AGFIVMVFPL	AQF 358
50	Query: 368 XXX	XXNWTNIGQYIAVKGA	VFLKEVGLG	GSVLFIGFILI	CAFINLMIG	SASAQWAVTA	PIF 427
70		NW+N+G++IAV	L+ GL	G F+G L+	+F+ + I :	S SA W++ A	PIF

-134-

Sbjct: 359 VAMFNWSNMGKFIAVGLTDILESSGLSGIPAFVGLALLSSFLCMFIASGSAIWSILAPIF 418 Query: 428 VPMLMLAGYAPEVIQAAYRIGDSVTNIITPMMSYFGLIMATVIKYKKDAGVGTLISMMLP 487 VPM ML G+ P Q +RI DS + P+ + L + + + YK DA +GT S++LP Sbjct: 419 VPMFMLLGFHPAFAQILFRIADSSVLPLAPVSPFVPLFLGFLQRYKPDAKLGTYYSLVLP 478 Query: 488 YSAFFLIAWIALFCIWVFVLGLPVGPG 514

FL+ W+ + W +++GLP+GPG Sbict: 479 YPLIFLVVWLLMLLAW-YLVGLPIGPG 504

10

5

Based on this analysis, including the presence of several putative transmembrane domains and the predicted actinin-type actin-binding domain signature (shown in bold) in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

15 Example 17

The following partial DNA sequence was identified in N. meningitidis < SEO ID 141>:

```
..ACAGCCGGCG CAGCAGGTTN CNCGGTCTTC GTTTTCGTAA CGGACAGTCA
                 51
                       GGTGGAGGTG TTCGGGAACA TCCAGACCGC AGTGGAAACA GGTTTTTTTC
                101
                       ATGGCATTTC GGTTTCGTCT GTGTTTGGTG CGGCGGCACA AGACTCGGCA
20
                151
                       ATGGCTTCGC GCAGTGCGTC TATACCGGTA TTTTCAGCAA CGGAAATGCG
                       GACGGCGGCA ATTTTTCCCG CAGCGTCGCG CCATATGCCC GTGTTTTGTT
                201
                251
                       CTTCAGACGG CAGCAGGTCG GTTTTGTTGT ACACCTTGAT GCACGGAaTA
                301
                       TCGCCGGCAT GGATTTCTTG CAGTACGTTT TCCACGTCTT CAATCTGCTG
                351
                       TCCGCTGTTC GGAGCGGCGG CATCGACGAC GTGCAGCAGC ACATCGGCTT
25
                401
                       gCGCGGTTTC TTCCAGCGTG GCGGAAAAGG CGGAAATCAG TTTGTGCGGC
                451
                       agATyGCTnA CGAATCCGAC GGTATCGGTC AGGATAATGC TGCATTCGGG
                501
                       ACT..
```

This corresponds to the amino acid sequence <SEQ ID 142; ORF14>:

```
.. TAGAAGXXVF VFVTDSQVEV FGNIQTAVET GFFHGISVSS VFGAAAQDSA
30
                 51
                       MASRSASIPV FSATEMRTAA IFPAASRHMP VFCSSDGSRS VLLYTLMHGI
                101
                       SPAWISCSTF STSSICCPLF GAAASTTCSS TSACAVSSSV AEKAEISLCG
                151
                       RXLTNPTVSV RIMLHSG..
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from *N.meningitidis* (strain A)

ORF14 shows 94.0% identity over a 167aa overlap with an ORF (ORF14a) from strain A of N. 35 meningitidis:

						10	20	30
	orfl4.pep						SQVEVFGNIQ	
40					1:1111		: : : :	
40	orf14a				CDCLTTGAAG			PAVET
		150	160	170	180	190	200	
			40	50	60	70	80	90
	orf14.pep	GEFHGIS			SIPVFSATEM	, •	• •	
45		111111		1 11111111		(11111
	orf14a	GFFHGIS	VSSVFGAAA	QYSAMASRS/	SIPVFSATEM	RTAAIFPAA:	SRHMPVFCSS	DGSRS
		210	220	230	240	250	260	
			100	110	120	130	140	150
50	orfl4.pep	VLLYTLM			CPLFGAAAST			
	out the p	111111	111111111	111111111		111111111	1111111111	
	orfl4a	VLLYTIA	HGISPAWIS	CSTFSTSSIC	CPLFGAAAST	TCSSTSACA	VSSSVARKAF	TSLCC
		270	280	290	300	310	320	

167

50

55

orfl4.pep

orfl4.pep

RXLTNPTVSVRIMLHSG

orfl4ng

orfl4ng

160

	orf14.pep	RXLTNPTVSVRIMLHSG
	£1.40	PCI MIDDICIO TM UCCI MVGDDAUIGGUA VGUGDA VGUGDA VGDA VGDA VGDA VGDA VGDA VGDA VGDA V
5	orf14a	RSLTNPTVSVRIMLHSGLMYSRRAVVSSVAKSWSFAYMPDLVSRLNRLDLPTLVX 330 340 350 360 370 380
		d Opport
	The complete le	ngth ORF14a nucleotide sequence <seq 143="" id=""> is:</seq>
	1	
	51	TCGGCAGCGC GAACATCATC GTCTGCATCA TCCCCAGCCC GGCAACGGCG
10	101	AGGCGGACGA TGTATTGTTT GCGTTCTTTT TGGTTGGCGG CTTCGATTTT
10	151 201	TTGCGCGTCA TAGGGTGCGG CGGTGTAGCC TATCTGCCTG ATTTTCAACA
	201 251	GAATGTCGGA AAGGCGGATT TTGCCGTCGT CCCAGACGAC GCGGCAGCGG TGCGTGCTGT AATTGAGGTC GATGCGGACG ATGCCGTCTG TACGCAAAAG
	301	CTGCTGTTCG ATCAGCCAGA CGCAGGCGGC GCAGGTGATG CCGCCGAGCA
	351	TTAAAACCGC CTCGCGCGTG CCGCCGTGGG TTTCCACAAA GTCGGACTGG
15	401	ACTTCGGGCA GGTCGTACAG GCGGATTTGG TCGAGGATTT CTTGGGGCCGG
	451	CAGCTCGGTT TTTTGCGCGT CGGCGGTGCG TTGTTTGTAA TAACTGCCCA
	501	AGCCCGCGTC AATAATGCTT TGTGCGACTG CCTGACAACC GGCGCAGCAG
	551	GTTTCGCGGT CTTCGTTTTC GTAACGGACG GTCAGATGCA GGTTTTCGGG
	601	AACGTCCAGC CCGCAGTGGA AACAGGTTTT TTTCATGGCA TTTCGGTTTC
20	651	GTCTGTGTTT GGTGCGGCGG CACAATACTC GGCAATGGCT TCGCGCAGTG
	701	CGTCTATACC GGTATTTCA GCAACGGAAA TGCGGACGGC GGCAATTTTT
	751	CCCGCAGCGT CGCGCCATAT GCCCGTGTTT TGTTCTTCAG ACGGCAGCAG
	801	GTCGGTTTTG TTGTACACCT TGATGCACGG AATATCGCCG GCATGGATTT
0.5	851	CTTGCAGTAC GTTTTCCACG TCTTCAATCT GCTGTCCGCT GTTCGGAGCG
25	901	GCGGCATCGA CGACGTGCAG CAGCACATCG GCTTGCGCGG TTTCTTCCAG
	951	CGTGGCGGAA AAGGCGGAAA TCAGTTTGTG CGGCAGATCG CTGACGAATC
	1001	CGACGGTATC GGTCAGGATA ATGCTGCATT CGGGACTGAT GTACAGCCGC
	1051 1101	
		CGACTTGGTC AGCCGGTTGA ACAGACTGGA TTTGCCGACA TTGGTATAG
30	This encodes a r	protein having amino acid sequence <seq 144="" id="">:</seq>
•	rane cancer as p	
	1	MEDLQEIGFD VAAVKVGRQR EHHRLHHPQP GNGEADDVLF AFFLVGGFDF
	51	LRVIGCGGVA YLPDFQQNVG KADFAVVPDD AAAVRAVIEV DADDAVCTQK
	101	LLFDQPDAGG AGDAAEH*NR LARAAVGFHK VGLDFGQVVQ ADLVEDFLGR
	151	QLGFLRVGGA LFVITAQARV NNALCDCLTT GAAGFAVFVF VTDGOMOVFG
35	201	NVQPAVETGF FHGISVSSVF GAAAQYSAMA SRSASIPVFS ATEMRTAAIF
	251	PAASRHMPVF CSSDGSRSVL LYTLMHGISP AWISCSTFST SSICCPLFGA
	301	
	351	RAVVSSVAKS WSFAYMPDLV SRLNRLDLPT LV*
	It should be note	ed that this sequence includes a stanged on at monition 110
	it should be note	ed that this sequence includes a stop codon at position 118.
40	Homology with	a predicted ORF from N. gonorrhoeae
	ODE14 1 0	0.00/ 11 44 147 147 1 14 14 15000 (0.000)
	ORF14 shows 8	9.8% identity over a 167aa overlap with a predicted ORF (ORF14.ng) from N.
	gonorrhoeae:	•
	gonor noeue.	·
	orf14.pep	TAGAAGXXVFVFVTDSQVEVFGNIQTAVET 30
4-		
45	orfl4ng	GRQFGFFRVGGASFVITAQAGIDDALCDCLTADAAGFAVFAFVADGQMQVFGNVQPAVET 208
	a=61 A ===	CEPUCT CUCCUECA A AODCAMA CD CA CERURGE TO COMPANION COM
	orf14.pep	GFFHGISVSSVFGAAAQDSAMASRSASIPVFSATEMRTAAIFPAASRHMPVFCSSDGSRS 90
	orf14ng	
50	OTTIANG	GFFHGISVSSVFGAAAQYSAMASRSASIPVFSATEMRTAAIFPAASRHMPVFCSSDGSRS 268

The complete length ORF14ng nucleotide sequence <SEQ ID 145> is predicted to encode a protein having amino acid sequence <SEQ ID 146>:

VLLYTLMHGISPAWISCSTFSTSSICCPLFGAAASTTCSSTSACAVSSSVAEKAEISLCG

```
1 MEDLQEIGFD VAAVKVGRQR EHHRLHHTQS GNGKADDVLF AFFLVGGFDF
51 LRVIGCGGVA CLPDFQQNVG EADFAVVPDD AAAVRAVIEV DADDAVCAQK
101 LLFDQPDAGG AGNAAEHQHC FVRAIMGFHK VGLDFGQVVQ ADLVEDFLGR
151 QFGFFRVGGA SFVITAQAGI DDALCDCLTA DAAGFAVFAF VADGQMQVFG
5 201 NVQPAVETGF FHGISVSSVF GAAAQYSAMA SRSASIPVFS ATEMRTAAIF
251 PAASRHMPVF CSSDGSRSVL LYTLMHGISW AWISCSTFST SSICCPLFRA
301 AASTTCSSTS ACTVSSKVAE KAEISLCGRS LTNPTVSVRI MLHAGLMYSR
351 RAVVSRVAKS WSFAYMPDLV SRLNRLDLPT LV*
```

Based on the putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 18

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 147>:

```
..GGCCATTACT CCGACCGCAC TTGGAAGCCG CGTTTGGNCG GCCGCCGTCT
15
                 51
                       GCCGTATCTG CTTTATGGCA CGCTGATTGC GGTTATTGTG ATGATTTTGA
                       TGCCGAACTC GGGCAGCTTC GGTTTCGGCT ATGCGTCGCT GGCGGCTTTG
                101
                151
                       TCGTTCGGCG CGCTGATGAT TGCGCTGTTA GACGTGTCGT CAAATATGGC
                       GATGCAGCCG TTTAAGATGA TGGTCGGCGA CATGGTCAAC GAGGAGCAGA
                201
                       AAA.NTACGC CTACGGGATT CAAAGTTTCT TAGCAAATAC GGGCGCGGTC
                251
                       GTGGCGGCGA TTCTGCCGTT TGTGTTTGCG TATATCGGTT TGGCGAACAC
20
                301
                       CGCCGANAAA GGCGTTGTGC CGCAGACCGT GGTCGTGGCG TTTTATGTGG
                351
                       GTGCGGCGTT GCTGGTGATT ACCAGCGCGT TCACGATTTT CAAAGTGAAG
                401
                       GAATACGANC CGGAAACCTA CGCCCGTTAC CACGGCATCG ATGTCGCCGC
                451
                       GAATCAGGAA AAAGCCAACT GGATCGCACT CTTAAAA.CC GCGC..
                501
```

25 This corresponds to the amino acid sequence <SEQ ID 148; ORF16>:

```
1 ..GHYSDRTWKP RLXGRRLPYL LYGTLIAVIV MILMPNSGSF GFGYASLAAL
51 SFGALMIALL DVSSNMAMQP FKMMVGDMVN EEQKXYAYGI QSFLANTGAV
101 VAAILPFVFA YIGLANTAXK GVVPQTVVVA FYVGAALLVI TSAFTIFKVK
151 EYXPETYARY HGIDVAANQE KANWIALLKX A..
```

30 Further work revealed the complete nucleotide sequence <SEQ ID 149>:

```
1 ATGTCGGAAT ATACGCCTCA AACAGCAAAA CAAGGTTTGC CCGCGCTGGC
                    AAAAAGCACG ATTTGGATGC TCAGTTTCGG CTTTCTCGGC GTTCAGACGG
                    CCTTTACCCT GCAAAGCTCG CAAATGAGCC GCATTTTCA AACGCTAGGC
               101
                    GCAGACCCGC ACAATTIGGG CTGGTTTTTC ATCCTGCCGC CGCTGGCGGG
               151
                    GATGCTGGTG CAGCCGATTG TCGGCCATTA CTCCGACCGC ACTTGGAAGC
35
               201
                     CGCGTTTGGG CGGCCGCCGT CTGCCGTATC TGCTTTATGG CACGCTGATT
               251
                     GCGGTTATTG TGATGATTTT GATGCCGAAC TCGGGCAGCT TCGGTTTCGG
               301
                     CTATGCGTCG CTGGCGGCTT TGTCGTTCGG CGCGCTGATG ATTGCGCTGT
                351
                     TAGACGTGTC GTCAAATATG GCGATGCAGC CGTTTAAGAT GATGGTCGGC
                401
                     GACATGGTCA ACGAGGAGCA GAAAGGCTAC GCCTACGGGA TTCAAAGTTT
40
                451
                     CTTAGCAAAT ACGGGCGCG TCGTGGCGGC GATTCTGCCG TTTGTGTTTG
                501
                     CGTATATCGG TTTGGCGAAC ACCGCCGAGA AAGGCGTTGT GCCGCAGACC
                551
                     GTGGTCGTGG CGTTTTATGT GGGTGCGGCG TTGCTGGTGA TTACCAGCGC
                601
                     GTTCACGATT TTCAAAGTGA AGGAATACGA TCCGGAAACC TACGCCCGTT
                651
                     ACCACGGCAT CGATGTCGCC GCGAATCAGG AAAAAGCCAA CTGGATCGAA
45
                701
                     CTCTTGAAAA CCGCGCCTAA GGCGTTTTGG ACGGTTACTT TGGTGCAATT
                751
                     CTTCTGCTGG TTCGCCTTCC AATATATGTG GACTTACTCG GCAGGCGCGA
                801
                     TTGCGGAAAA CGTCTGGCAC ACCACCGATG CGTCTTCCGT AGGTTATCAG
                851
                     GAGGCGGGTA ACTGGTACGG CGTTTTGGCG GCGGTGCAGT CGGTTGCGGC
                     GGTGATTTGT TCGTTTGTAT TGGCGAAAGT GCCGAATAAA TACCATAAGG
50
                951
                     CGGGTTATTT CGGCTGTTTG GCTTTGGGCG CGCTCGGCTT TTTCTCCGTT
               1001
                     TTCTTCATCG GCAACCAATA CGCGCTGGTG TTGTCTTATA CCTTAATCGG
               1051
                     CATCGCTTGG GCGGGCATTA TCACTTATCC GCTGACGATT GTGACCAACG
               1101
                     CCTTGTCGGG CAAGCATATG GGCACTTACT TGGGCTTGTT TAACGGCTCT
               1151
                     ATCTGTATGC CTCAAATCGT CGCTTCGCTG TTGAGTTTCG TGCTTTTCCC
55
               1201
                     TATGCTGGGC GGCTTGCAGG CCACTATGTT CTTGGTAGGG GGCGTCGTCC
               1251
                     TGCTGCTGGG CGCGTTTTCC GTGTTCCTGA TTAAAGAAAC ACACGGCGGG
               1301
               1351
                     GTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 150; ORF16-1>:

```
MSEYTPQTAK QGLPALAKST IWMLSFGFLG VQTAFTLQSS QMSRIFQTLG
                    51
                         ADPHNLGWFF ILPPLAGMLV QPIVGHYSDR TWKPRLGGRR LPYLLYGTLI
                   101
                          AVIVMILMPN SGSFGFGYAS LAALSFGALM IALLDVSSNM AMOPFKMMVG
                         DMVNEEQKGY AYGIQSFLAN TGAVVAAILP FVFAYIGLAN TAEKGVVPQT
VVVAFYVGAA LLVITSAFTI FKVKEYDPET YARYHGIDVA ANQEKANWIE
 5
                   151
                   201
                   251 LLKTAPKAFW TVTLVQFFCW FAFQYMWTYS AGAIAENVWH TTDASSVGYQ
                   301
                          EAGNWYGVLA AVQSVAAVIC SFVLAKVPNK YHKAGYFGCL ALGALGFFSV
                         FFIGNOYALV LSYTLIGIAW AGIITYPLTI VTNALSGKHM GTYLGLFNGS ICMPQIVASL LSFVLFPMLG GLOATMFLVG GVVLLLGAFS VFLIKETHGG
10
                   401
                   451
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF16 shows 96.7% identity over a 181aa overlap with an ORF (ORF16a) from strain A of N.

15 meningitidis:

	orf16.pep			<u>С</u> н	10 IYSDRTWKPRL	20 XGRR <u>LPYLL</u> Y	30 GTLIAVIV
20	orf16a	IFQTLGADPHSI 50	GW <u>FFILPPL</u> 60	AGMLVQPIVGH 70	 YSDRTWKPRL 80	 GGRR <u>LPYLL</u> Y 90	CTLIAVIV
25	orf16.pep	40 MILMPNSGSFGE				11111111111	11 11111
		110	120	130	140	150	160
30	orf16.pep	QSFLANTGAVVA QSFLANTGAVVA 170	11111111111		1111111111		THILL
35	orf16.pep	160 EYXPETYARYHG	 IDVAANQEKA	: WWIELLKTAP			
40	orf16a	230 AENVWHTTDASS 290	240 VGYQEAGNWY 300	250 G <u>VLAAVQSVA</u> 310	260 AVICSFVLAK 320	270 VPNKYHKAGY 330	280 FGCLALGA 340

The complete length ORF16a nucleotide sequence <SEQ ID 151> is:

•	1				CAAGGTTTGC	
4.5	51	AAAAAGCACG	ATTTGGATGC	TCAGTTTCGG	CTTTCTCGGC	GTTCAGACGG
45	101	CCTTTACCCT	GCAAAGCTCG	CAGATGAGCC	GCATCTTCCA	GACGCTCGGT
	151	GCCGATCCGC	ACAGCCTCGG	CTGGTTCTTT	ATCCTGCCGC	CGCTGGCGGG
	201	GATGCTGGTG	CAGCCGATTG	TCGGCCATTA	CTCCGACCGC	ACTTGGAAGC
	251	CGCGTTTGGG	CGGCCGCCGT	CTGCCGTATC	TGCTTTATGG	CACGCTGATT
	301				TCGGGCAGCT	
50	351	CTATGCGTCG	CTGGCGGCTT	TGTCGTTCGG	CGCGCTGATG	ATTGCGCTGT
	401			GCGATGCAGC		GATGGTCGGC
	451				GCCTACGGGA	
	501	CTTAGCGAAT	ACGGGCGCGG	TCGTGGCGGC	GATTCTGCCG	TTTGTGTTTG
	551				AAGGCGTTGT	
55	601	GTGGTCGTGG	CGTTTTATGT	GGGTGCGGCG	TTGCTGGTGA	TTACCAGCGC
	651				TCCGGAAACC	
	701				AAAAAGCCAA	
	751	CTCTTGAAAA	CCGCGCCTAA	GGCGTTTTGG	ACGGTTACTT	TGGTGCAATT
•	801	CTTCTGCTGG	TTCGCCTTCC	AATATATGTG	GACTTACTCG	GCAGGCGCGA
60	851	TTGCGGAAAA	CGTCTGGCAC	ACCACCGATG	CGTCTTCCGT	AGGTTATCAC
	901	GAGGCGGGTA	ACTGGTACGG	CGTTTTCCCC	GCGGTGCAGT	CECTTECCE
•	951	GGTGATTTGT	TCGTTTGTAT	TGGCGAAAGT	GCCGAATAAA	TACCATARCE
				- OCCOMMOI	CCCGMIAM	THUCKLIMAGG

5	1051 TTCTT 1101 CATCG 1151 CCTTG 1201 ATCTG 1251 TATGG 1301 TGCTG 1351 GTTTG		CGCGCTGGTG TCACTTATCC GGCACTTACT CGCTTCGCTG CCACTATGTT GTGTTCCTGA	TTGTCTTATA GCTGACGATT TGGGCCTGTT TTGAGTTTCG CTTGGTAGGG TTAAAGAAAC	CCTTAATCG GTGACCAAC TAACGGCTCG TGCTTTTCCG GGCGTCGTCC ACACGGCGC	GG CG CT CC CC	
	This encodes a protein	having amino acid	l sequence <	SEQ ID 152	2>:		
10	51 ADDH9	POTAK QGLPALAKST SLGWFF ILPPLAGMLV MILMPN SGSFGFGYAS	OPIVGHYSDR	. TWKPRLGGRF	LPYLLYGTI	<u>LI</u>	
15	151 DMVNI 201 VVVAI 251 LLKTZ 301 EAGNI 351 FFIGI 401 ICMPO 451 V*	EEQKGY AYGIQSFLAN FYVGAA LLVITSAFTI APKAFW TVTLVQFFCW WYGVLA AVQSVAAVIC NQYALV LSYTLIGIAW DIVASL LSFVLFPMLG	TGAVVAAILE FKVKEYNPET FAFQYMWTYS SFVLAKVPNK AGIITYPLTI GLQATMFLVG	YARYHGIDVA YARYHGIDVA GAGIAENVWI YHKAGYFGCI VTNALSGKHI GVVLLLGAFS	N TAEKGVVP(A ANQEKANW: H TTDASSVG' L ALGALGFF: M GTYLGLFN	QT IE YQ SV GS	
20	ORF16a and ORF16-	1 show 99.6% iden	tity in 451 a	a overlap:			
	orfl6a.pep	10 MSEYTPQTAKQGLPAL	1111111111	11111111111	111111111	1111111:11	[
25	orf16-1	10	20	30	40	50	60
	orf16a.pep	70 	1111111111	GGRRLPYLLYG	111111111		1111
30	orf16-1	ILPPLAGMLVQPIVGE	YSDRTWKPRL	GGRRLPYLLYG	TLIAVIVMII 100	MPNSGSFGF 110	GYAS 120
35	orf16a.pep orf16-1	130 LAALSFGALMIALLDV LAALSFGALMIALLDV 130		1111111111	11111111111		1111
40	orf16a.pep	190 FVFAYIGLANTAEKG	200 VVPOTVVVAFY	210 VGAALLVITSA	220 AFTIFKVKEYN	230 NPETYARYHG	240 SIDVA
	orf16-1	FVFAYIGLANTAEKG	VVPOTVVVAFY 200	VGAALLVITSA 210	FTIFKVKEYI 220	DPETYARYHG 230	IDVA 240
45	orfl6a.pep	250 ANQEKANWIELLKTA 	260 PKAFWTVTLVÇ	270 PFFCWFAFQYMV	280 VTYSAGAIAEI	290 NVWHTTDASS	300 SVGYQ
	orf16-1	ANQEKANWIELLKTA 250	PKAFWTVTLVC 260	FFCWFAFQYMV 270	NTYSAGAIAE 280	NVWHTTDASS 290	SVGYQ 300
50	orfl6a.pep	310	320 AAVICSFVLAF	330 KVPNKYHKAGYI	340 FGCLALGALG	350 FFSVFFIGNO	360 VALV
55	orf16-1		AAVICSFVLAR 320		FGCLALGALG 340	FFSVFFIGN(350	YALV 360
60	orf16a.pep orf16-1	370 LSYTLIGIAWAGIIT LSYTLIGIAWAGIIT			1111111111	1111111	11111
65	orf16a.pep orf16-1	370 430 GLQATMFLVGGVVLI IIIIIIIIIIIIII GLQATMFLVGGVVLI 430		450 ETHGGVX	300	320	

Homology with a predicted ORF from N.gonorrhoeae

ORF16 shows 93.9% identity over a 181aa overlap with a predicted ORF (ORF16.ng) from N. oonorrhoeae:

	gonorrhoeae:		
5	orf16.pep	GHYSDRTWKPRLXGRRLPYLLYGTLIAVIV	. 30
	orf16ng	HFSNARRPAQFGLVFHPAAAGGDAGSADSGYYSDRTWKPRLGGRRLPYLLYGTLIAVIV	131
10	orf16.pep	MILMPNSGSFGFGYASLAALSFGALMIALLDVSSNMAMQPFKMMVGDMVNEEQKXYAYGI	90
	orf16ng	MILMPNSGSFGFGYASLAALSFGALMIALLDVSSNMAMQPFKMMVGDMVNEEQKSYAYGI	191
	orf16.pep	QSFLANTGAVVAAILPFVFAYIGLANTAXKGVVPQTVVVAFYVGAALLVITSAFTIFKVK	150
15	orf16ng	QSFLANTDAVVAAILPFVFAYIGLANTAEKGVVPQTVVVAFYVGAALLIITSAFTISKVK	251
	orf16.pep	EYXPETYARYHGIDVAANQEKANWIALLKXA	181
	orf16ng		311
20	The complete len	gth ORF16ng nucleotide sequence <seq 153="" id=""> is:</seq>	
		ATGATAGGGG ATCGCCGCGC CGGCAACCAT TTCGGATTTT CCAAAGCAAA	
	51 101	PACTITICAA ATCAAAAAAA AGGATTTACT TTATGTCGGA ATATACGCCT	
		CAAACAGCAA AACAAGGTTT GCCCGCGCCG GCAAAAAGCA CGATTTGGAT GTTGAGCTTC GGCTATCTCG GCGTTCAGAC GGCCTTTACC CTGCAAAGCT	
25	201	CGCAGATGAG CCGCATTTTT CAAACGCTAG GCGCAGACCC GCACAATTTG	
		GGCTGGTTTT TCATCCTGCC GCCGCTGGCG GGGATGCTGG TTCAGCCGAT	
		AGTGGCTACT ACTCAGACCG CACTTGGAAG CCGCGCTTGG GCGGCCGCCG CCTGCCGTAT CTGCTTTACG GCACGCTGAT TGCGGTCATC GTGATGATTT	
		PGATGCCGAA CTCGGGCAGC TTCGGTTTCG GCTATGCGTC GCTGGCGGCC	٠.
30	451	TTGTCGTTCG GCGCGCTGAT GATTGCGCTG TTGGACGTGT CGTCGAATAT	
		GGCGATGCAG CCGTTTAAGA TGATGGTCGG CGATATGGTC AACGAGGAGC	
	551 601 6	AGAAAAGCTA CGCCTACGGG ATTCAAAGTT TCTTAGCGAA TACGGACGCG GTTGTGGCAG CGATTCTGCC GTTTGTGTTC GCGTATATCG GTTTGGCGAA	
		CACTGCCGAG AAAGGCGTTG TGCCACAAAC CGTGGTCGTA GCATTCTATG	
35	701	IGGGTGCGGC GTTACTGATT ATTACCAGTG CGTTCACAAT CTCCAAAGTC	
		AAAGAATACG ACCCGGAAAC CTACGCCCGT TACCACGGCA TCGATGTCGC CGCGAATCAG GAAAAAGCCA ACTGGTTCGA ACTCTTAAAA ACCGCGCCTA	
		AAGTGTTTTG GACGGTTACT CCGGTACAGT TTTTCTGCTG GTTCGCCTTC	
40	901	CGGTATATGT GGACTTACTC GGCAGGCGCG ATTGCAGAAA ACGTCTGGCA	
40		CACTACCGAT GCGTCTTCCG TAGGCCATCA GGAGGCGGGC AACCGGTACG	
		GCGTTTTGGC GGCGGTGTAG	
	This encodes a pr	otein having amino acid sequence <seq 154="" id="">:</seq>	
	1 1	MIGDRRAGNH FGFSKANTFQ IKKKDLLYVG IYASNSKTRF ARAGKKHDLD	
45	51 101	VELRLSRRSD GLYPAKLADE PHFSNARRRP AQFGLVFHPA AAGGDAGSAD SGYYSDRTWK PRLGGRRLPY LLYGTLIAVI VMILMPNSGS FGFGYASLAA	
10	151	LSFGALMIAL LDVSSNMAMQ PFKMMVGDMV NEEQKSYAYG IQSFLANTDA	
	201	VVAAILPFVF AYIGLANTAE KGVVPQTVVV AFYVGAALLI ITSAFTISKV	
		KEYDPETYAR YHGIDVAANQ EKANWFELLK TAPKVFWTVT PVQFFCWFAF RYMWTYSAGA IAENVWHTTD ASSVGHQEAG NRYGVLAAV*	
50		RF16-1 show 89.3% identity in 261 aa overlap:	
		20	
	orf16-1.pe	30 40 50 60 70 80 p MLSFGFLGVQTAFTLQSSQMSRIFQTLGADPHNLGWFFILPPLAGMLVQPI-VGHYSDF) om
		1::1 1 1 1: 1:11	11
<i>E E</i>	orf16ng	DVELRLSRRSDGLYPAKLADEPHFSNARRRPAQFGLVF-HPAAAGGDAGSADSGYYSDE	RT
55	•	50 60 70 80 90 100	
		90 100 110 120 130 140	כ
	orf16-1.pe	P WKPRLGGRRLPYLLYGTLIAVIVMILMPNSGSFGFGYASLAALSFGALMIALLDVSSN	AA.
60	orf16ng		
	·	110 120 130 140 150 160	'lA

5	orf16-1.pep	150 MQPFKMMVGDMVNEI IIIIIIIIIIIIIII MQPFKMMVGDMVNEI 170 180	111:111111	11111 [11	111111111	111111111	11111
10	orfl6-1.pep	210 VVAFYVGAALLVIT VVAFYVGAALLIIT 230 240	13111 1111	1111111111		111:11:11	11:111
15	orf16-1.pep	270 VTLVQFFCWFAFQY II IIIIIIIII!! VTPVQFFCWFAFRY 290 300			111:1111	111111	320 AAVICS

Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 19

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 155>:

```
25

1 ATGTTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGCATA CCTTGATGCT
51 GAACGGCTGT ACGTTGATGT TGTGGGGAAT GAACAACCCG GTCAGCGAAA
101 CAATCACCCG NAAACACGTT GNCAAAGACC AAATCCGNGN CTTCGGTGTG
151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG TGATGATGGG
201 CGGAAAATAC TGGTTCGTCG TCAATCCCGA AGATTCGGCG AA.NTGACGG
301 CCGAGCTATG C.TGCCACCA AGCCCTGCCG GTCAAACTCG GATCGNCTGG
351 CAGCCAGAAT...
```

This corresponds to the amino acid sequence <SEQ ID 156; ORF28>:

35 MLFRKTTAAV LAHTIMINGC TLMLWGMNNP VSETITRKHV XKDQIRXFGV
51 VAEDNAQIEK GSLVMMGGKY WFVVNPEDSA XXTGILXAGL DKPFQIVXDT
101 PSYXCHQALP VKLGSXGSQN...

Further work revealed the complete nucleotide sequence <SEQ ID 157>:

1	ATGTTGTTCC	GTAAAACGAC	CGCCGCCGTT	TTGGCGGCAA	CCTTGATGCT
51	CAACGCCTGT	ACGTTGATGT	TGTGGGGAAT	GAACAACCCG	GTCAGCGAAA
	CAATCACCCG	CAAACACGTT	GACAAAGACC	AAATCCGCGC	CTTCGGTGTG
	CTTCCCGAAG	ACAATGCCCA	ATTGGAAAAG	GGCAGCCTGG	TGATGATGGG
	CCCDADATAC	TEGTTCGTCG	TCAATCCCGA	AGATTCGGCG	AAGCTGACGG
	CCATTTTGAA	GGCAGGGCTG	GACAAACCCT	TCCAAATAGT	TGAGGATACC
	CCCACCTATG	CTCGCCACCA	AGCCCTGCCG	GTCAAACTCG	AATCGCCTGG
	CAGCCAGAAT	TTCAGTACCG	AAGGCCTTTG	CCTGCGCTAC	GATACCGACA
	AGCCTGCCGA	CATCGCCAAG	CTGAAACAGC	TCGGGTTTGA	AGCGGTCAAA
	CTCCACAATC	GGACCATTTA	CACGCGCTGC	GTATCCGCCA	AAGGCAAATA
	CTACGCCACA	CCGCAAAAAC	TGAACGCCGA	TTACCATTTT	GAGCAAAGTG
	TECCTECCEA	TATTTATTAC	ACGGTTACTG	AAGAACATAC	CGACAAATCC
	AAGCTGTTTG	CAAATATCTT	ATATACGCCC	CCCTTTTTGA	TACTGGATGC
	GGCGGGCGCG	GTACTGGCCT	TGCCTGCGGC	GGCTCTGGGT	GCGGTCGTGG
701					
	1 51 101 151 201 251 301 351 401 451 501 551 601 651 701	51 GAACGGCTGT 101 CAATCACCCG 151 GTTGCCGAAG 201 CGGAAAATAC 251 GCATTTTGAA 301 CCGAGCTATG 351 CAGCCAGAAT 401 AGCCTGCCGA 451 CTCGACAATC 501 CTACGCCACA 551 TGCCTGCCGA 601 AAGCTGTTTG 651 GGCGGGCGCG	51 GAACGGCTGT ACGTTGATGT 101 CAATCACCCG CAAACACGTT 151 GTTGCCGAAG ACAATGCCCA 201 CGGAAAATAC TGGTTCGTCG 251 GCATTTTGAA GGCAGGGCTG 301 CCGAGCTTATG CTCGCCACCA 351 CAGCCAGAAT TTCAGTACCG 401 AGCCTGCCGA CATCGCCAAG 451 CTCGACAATC GGACCATTTA 501 CTACGCCACA CCGCAAAAAC 551 TGCCTGCCGA TATTTATTAC 601 AAGCTGTTTG CAAATATCTT 651 GGCGGGCGCG GTACTGGCCT	51 GAACGGCTGT ACGTTGATGT TGTGGGGAAT 101 CAATCACCCG CAAACACGTT GACAAAGACC 151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG 201 CGGAAAATAC TGGTTCGTCG TCAATCCCGA 251 GCATTTTGAA GGCAGGCTG GACAAACCCT 301 CCGAGCTATG CTCGCCACCA AGCCCTGCCG 351 CAGCCAGAAT TTCAGTACCG AAGGCCTTTG 401 AGCCTGCCGA CATCGCCAAG CTGAAACAGC 451 CTCGACAATC GGACCATTTA CACGCGCTGC 501 CTACGCCACA CCGCAAAAAC TGAACGCCGA 551 TGCCTGCCGA TATTTATTAC ACGGTTACTG 601 AAGCTGTTTG CAAATATCTT ATATACGCCC 651 GGCGGGCGCG GTACTGGCCT TGCCTGCGGC	101 CAATCACCCG CAAACACGTT GACAAAGACC AAATCCGCGC 151 GTTGCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG 201 CGGAAAATAC TGGTTCGTCG TCAAATCCCGA AGATTCGGCG 251 GCATTTTGAA GGCAGGGCTG GACAAACCCT TCCAAAATAGT 301 CCGAGCTATG CTCGCCACCA AGCCCTGCCG GTCAAACTCG 351 CAGCCAGAAT TTCAGTACCG AAGGCCTTTG CCTGCGCTAC 401 AGCCTGCCGA CATCGCCAAG CTGAAACAGC TCGGGTTTGA 451 CTCGACAATC GGACCATTA CACGCGCTGC GTATCCGCCA 501 CTACGCCACA CCGCAAAAAC TGAACGCCCG TTACCATTTT 551 TGCCTGCCGA TATTTATTAC ACGGTTACTG AAGAACATAC 601 AAGCTGTTTG CAAATATCTT ATATACGCCC CCCTTTTTGA 651 GGCGGGCGCG GTACTGGCCT TGCCTGCGC GGCTCTGGGT

This corresponds to the amino acid sequence <SEQ ID 158; ORF28-1>:

	1	MLFRKTTAAV	LAATLMLNGC	TLMLWGMNNP	VSETITRKHV	DKDQIRAFGV
55	101	PSYARHOAT.P	VKLESPGSON	FSTEGLCLRY	KLTGILKAGL DTDKPADIAK	LKQLGFEAVK
	151	LDNRTIYTRC	VSAKGKYYAT	POKTNYDAHL	EQSVPADIYY	IVIEENIDA

201 KLFANILYTP PFLILDAAGA VLALPAAALG AVVDAARK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF28 shows 79.2% identity over a 120aa overlap with an ORF (ORF28a) from strain A of N.

5 meningitidis:

			LO .	20	_. 30	. 40	50	60
	orf28.pep	MLFRKTTA	VLAHTL	MLNGCTLM	LWGMNNPVSET	ITRKHVXKDQ	IRXFGVVAED	NAQLEK
	4	111111111			:1111:1-111	:1111 111	H HHH	HIH
10	orf28a			<u>MLNG</u> CTVM	Mwgmnspfset	TARKHVDKDC	IRAFGVVAED	NAQLEK
10		1	LO	- 20	30	40	50	· 60
		_						
			70	80	-90	100	110	120
	orf28.pep	GSLVMMGG	KYWFVVN	PEDSAXXT	GILXAGLDKPF	QIVXDTPSYX	CHQALPVKLG	SXGSQN
		111111111	1111111	11111		1:1 :1:	:	1:11
15	orf28a	GSLVMMGGF	CYWFVVN	PEDSAKLT	GILKAGLDKQF	OMVEPNPRFA	-YQALPVKLE	SPASON
		7	70	80	90	100	110	_
	orf28a	FSTEGLCLE	RYDTDRP	ADIAKLKO	LEFEAVELDNR	TIYTRCVSAK	GKYYATPOKT	NADVHE
	• •	120 1	L30	140	150	160	170	

20 The complete length ORF28a nucleotide sequence <SEQ ID 159> is:

		1	ATGTTGTTCC	GTAAAACGAC	CGCCGCCGTT	TTGGCGGCAA	CCTTGATGTT
		51	GAACGGCTGT	ACGGTAATGA	TGTGGGGTAT	GAACAGCCCG	TTCAGCGAAA
		101	CGACCGCCCG	CAAACACGTT	GACAAGGACC	AAATCCGCGC	CTTCGGTGTG
		151	GTTGCCGAAG	ACAATGCCCA	ATTGGAAAAG	GGCAGCCTGG	TGATGATGGG
25		201	CGGGAAATAC	TGGTTCGTCG	TCAATCCTGA	AGATTCGGCG	AAGCTGACGG
		251	GCATTTTGAA	GGCCGGGTTG	GACAAGCAGT	TTCAAATGGT	TGAGCCCAAC
		301	CCGCGCTTTG	CCTACCAAGC	CCTGCCGGTC	AAACTCGAAT	CGCCCGCCAG
		351	CCAGAATTTC	AGTACCGAAG	GCCTTTGCCT	GCGCTACGAT	ACCGACAGAC
••	•	401				AGTTTGAAGC	
30		451	GACAATCGGA	CCATTTACAC	GCGCTGCGTC	TCCGCCAAAG	GCAAATACTA
		501				TCATTTTGAG	
		551	CTGCCGATAT	TTATTACACG	GTTACGAAAA	AACATACCGA	CAAATCCAAG
		601				ACGTTGATAC	
		651	GGGCGCGGTG	CTGGCCTTGC	CTGTCGCGGC	GTTGATTGCA	GCCACGAATT
35		701	CCTCAGACAA	ATGA			

This encodes a protein having amino acid sequence <SEQ ID 160>:

	1	MLFRKTTAAV	LAATLMLNGC	TVMMWGMNSP	FSETTARKHV	DKDOIRAFGV
	51	VAEDNAQLEK	GSLVMMGGKY	WFVVNPEDSA	KLTGILKAGL	DKQFQMVEPN
	101	PRFAYQALPV	KLESPASQNF	STEGLCLRYD	TDRPADIAKL	KOLEFEAVEL
40	151	DNRTIYTRCV	SAKGKYYATP	QKLNADYHFE	QSVPADIYYT	VTKKHTDKSK
	201	LFENIAYTPT	TLILDAVGAV	LALPVAALIA	ATNSSDK*	

ORF28a and ORF28-1 show 86.1% identity in 238 aa overlap:

	au£20a man	M7 50 7	10	. 20	30	40	50	60
45	orf28a.pep	MPLKK	TTAAVLAATI	PWTMCCLAWW	WGMNSPFSET	TARKHVDKDQ	IRAFGVVAED!	NAQLEK
45		1111	11111111		1111:1-11:			HILL
	orf28-1	MLFRK	TTAAVLAATI	LMLNGCTLML	WGMNNPVSET	TITRKHVDKDQ	TRAFGVVAFN	NACIER
			10	20				
			10	20 -	30	40	50	. 60
					. 0.			
			70	80	90	100	110	119
50	orf28a.pep	GSLVM	MGGKYWFVVI	NPEDSAKLTG	ILKAGLDKO	OMVEPNPRFA	-YOALPUKLE	MOSAGS
		11111						
	orf28-1						:11111111	11:11
	01126-1	COTAM	MGGKIWFVVI	NPEDSAKLIG	ILKAGLDKPI	QIVEDTPSYA	RHQALPVKLE.	SPGSQN
			70.	80	90	100	110	120
55		120	130	140	150	160	170	179
	orf28a.pep	FOREC						1/9
	Orrzeg.beb	FOLEG	TCTKIDIDKI	SANTAKTYÖP	FREAVELDNI	RTIYTRCVSAK	GKYYATPQKL	NADYHF
		[]]] [1111:111		114111111	11111
	orf28-1	FSTEG	LCLRYDTDKI	PADIAKLKOL	GFEAVKT.DNI	RTIYTRCVSAK	GKYYATPOKT	שטעמגו
	•		130	140	150	160		
			100	110	130	100	170	180

5	orf28a.pep orf28-1	180 190 200 210 220 230 EQSVPADIYYTVTKKHTDKSKLFENIAYTPTTLILDAVGAVLALPVAALIAATNSSDKX
	Homology with a pre	edicted ORF from N.gonorrhoeae
	ORF28 shows 84.2%	6 identity over a 120aa overlap with a predicted ORF (ORF28.ng) from N.
10	gonorrhoeae:	
		MLFRKTTAAVLAHTLMLNGCTLMLWGMNNPVSETITRKHVXKDQIRXFGVVAEDNAQLEK 60
1.5		MLFRKTTAAVLAATLILNGCTMMLRGMNNPVSQTITRKHVDKDQIRAFGVVAEDNAQLEK 60
15		GSLVMMGGKYWFVVNPEDSAXXTGILXAGLDKPFQIVXDTPSYXCHQALPVKLGSXGSQN 120
		GSLVMMGGKYWFAVNPEDSAKLTGLLKAGLDKPFQIVEDTPSYARHOALPVKFEAPGSON 120 ORF28ng nucleotide sequence <seq 161="" id=""> is</seq>
		•
20	51 GAA 101 CAA 151 GTT	TTGTTCC GTAAAACGAC CGCCGCCGTT TTGGCGGCAA CCTTGATACT CGGCTGT ACGATGATGT TGCGGGGGAT GAACAACCCG GTCAGCCAAA TCACCCG CAAACACGTT GACAAAGACC AAATCCGCGC CTTCGGTGTG GCCGAAG ACAATGCCCA ATTGGAAAAG GGCAGCCTGG TGATGATGGG
25	251 GCC 301 CCG/ 351 CAGC 401 GACC	GAAATAC TGGTTCGCCG TCAATCCCGA AGATTCGGCG AAGCTGACGG ITTTGAA GGCCGGGTTG GACAAGCCCT TCCAAATAGT TGAGGATACC AGCTATG CCCGCCACCA AGCCCTGCCG GTCAAATTCG AAGCGCCCGG CCAGAAT TTCAGTACCG GAGGTCTTTG CCTGCGCTAT GATACCGGCA CTGACGA CATCGCCAAG CTGAAACAGC TTGAGTTTAA AGCGGTCAAA
30	501 CTAC 551 TGCC 601 AAGC 651 GGCC	GACCATT CACGCGCTGC GTATCCGCCA AAGGCAAATA CGCCACG CCGCAAAAAC TGAACGCCGA TTATCATTTT GAGCAAAGTG CCGCCGA TATTTATTAT ACGGTTACTG AAAAACATAC CGACAAATCC CTGTTTG GAAATATCTT ATATACGCCC CCCTTGTTGA TATTGGATGC GGCCGCG GTGCTGGTCT TGCCTATGGC TCTGATTGCA GCCGCGAATT CAGACAA ATGA
	This encodes a protei	in having amino acid sequence <seq 162="" id="">:</seq>
35	51 VAEI 101 PSYA 151 LDNI	RKTTAAV LAATLILNGC TMMLRGMNNP VSQTITRKHV DKDQIRAFGV DNAQLEK GSLVMMGGKY WFAVNPEDSA KLTGLLKAGL DKPFQIVEDT ARHQALP VKFEAPGSQN FSTGGLCLRY DTGRPDDIAK LKQLEFKAVK RTIYTRC VSAKGKYYAT PQKLNADYHF EQSVPADIYY TVTEKHTDKS GNILYTP PLLILDAAAA VLVLPMALIA AANSSDK*
40	ORF28ng and ORF2	8-1 share 90.0% identity in 231 aa overlap:
	orf28-1.pep	10 20 30 40 50 60 MLFRKTTAAVLAATLMLNGCTLMLWGMNNPVSETITRKHVDKDQIRAFGVVAEDNAQLEK
45	orf28ng	MLFRKTTAAVLAATLILNGCTMMLRGMNNPVSQTITRKHVDKDQIRAFGVVAEDNAQLEK 10 20 30 40 50 60
50	orf28-1.pep	70 80 90 100 110 120 GSLVMMGGKYWFVVNPEDSAKLTGILKAGLDKPFQIVEDTPSYARHQALPVKLESPGSQN : :
50	OTIZONG	GSLVMMGGKYWFAVNPEDSAKLTGLLKAGLDKPFQIVEDTPSYARHQALPVKFEAPGSQN 70 80 90 100 110 120
55	orf28-1.pep orf28ng	130 140 150 160 170 180 FSTEGLCLRYDTDKPADIAKLKQLGFEAVKLDNRTIYTRCVSAKGKYYATPQKLNADYHF
60	orf28-1.pep orf28ng	190 200 210 220 230 239 EQSVPADIYYTVTEEHTDKSKLFANILYTPPFLILDAAGAVLALPAAALGAVVDAARKX

-143-

190 200 210 220 230

Based on this analysis, including the presence of a putative transmembrane domain in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF28-1 (24kDa) was cloned in pET and pGex vectors and expressed in E.coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 6A shows the results of affinity purification of the GST-fusion protein, and Figure 6B shows the results of expression of the His-fusion in E.coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave a positive result. These experiments confirm that ORF28-1 is a surface-exposed protein, and that it may be a useful immunogen.

Example 20

5

10

25

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 163>:

```
..GTCAGTCCTG TACTGCCTAT TACACACGAA CGGACAGGGT TTGAAGGTGT
15
                51
                       TATCGGTTAT GAAACCCATT TTTCAGGGCA CGGACATGAA GTACACAGTC
                101
                       CGTTCGATCA TCATGATTCA AAAAGCACTT CTGATTTCAG CGGCGGTGTA
                151
                       GACGGCGGTT TTACTGTTTA CCAACTTCAT CGAACATGGT CGGAAATCCA
                       TCCGGAGGAT GAATATGACG GGCCGCAAGC AGCG.ATTAT CCGCCCCCG
                201
                251
                       GAGGAGCAAG GGATATATAC AGCTATTATG TCAAAGGAAC TTCAACAAAA
20
                301
                       ACAAAGACTA GTATTGTCCC TCAAGCCCCA TTTTCAGACC GTTGGCTAGA
                       AGAAAATGCC GGTGCCGCCT CTGGT..
```

This corresponds to the amino acid sequence <SEQ ID 164; ORF29>:

```
.. VSPVLPITHE RTGFEGVIGY ETHFSGHGHE VHSPFDHHDS KSTSDFSGGV
       DGGFTVYQLH RTWSEIHPED EYDGPQAAXY PPPGGARDIY SYYVKGTSTK
101
       TKTSIVPQAP FSDRWLEENA GAASG..
```

Further work revealed the complete nucleotide sequence <SEQ ID 165>:

	1	ATGAATTTGC	CTATTCAAAA	ATTCATGATG	CTGTTTGCAG	CAGCAATATC
	51	GTTGCTGCAA	ATCCCCATTA	GTCATGCGAA	CGGTTTGGAT	GCCCGTTTGC
	101	GCGATGATAT	GCAGGCAAAA	CACTACGAAC	CGGGTGGTAA	ATACCATCTG
30	151	TTTGGTAATG	CTCGCGGCAG	TGTTAAAAAG	CGGGTTTACG	CCGTCCAGAC
	201	ATTTGATGCA	ACTGCGGTCA	GTCCTGTACT	GCCTATTACA	CACGAACGGA
	251	CAGGGTTTGA	AGGTGTTATC	GGTTATGAAA	CCCATTTTTC	AGGGCACGGA
	301	CATGAAGTAC	ACAGTCCGTT	CGATCATCAT	GATTCAAAAA	GCACTTCTGA
	351	TTTCAGCGGC	GGTGTAGACG	GCGGTTTTAC	TGTTTACCAA	CTTCATCGAA
35	401	CAGGGTCGGA	AATCCATCCG	GAGGATGGAT	ATGACGGGCC	GCAAGGCAGC
	451	GATTATCCGC	CCCCGGAGG	AGCAAGGGAT	ATATACAGCT	ATTATGTCAA
•	501	AGGAACTTCA	ACAAAAACAA	AGACTAATAT	TGTCCCTCAA	GCCCCATTTT
	551	CAGACCGTTG	GCTAAAAGAA	AATGCCGGTG	CCGCCTCTGG	TTTTTTCAGC
	601	CGTGCGGATG	AAGCAGGAAA	ACTGATATGG	GAAAGCGACC	CCAATAAAAA
40	651	TTGGTGGGCT	AACCGTATGG	ATGATGTTCG	CGGCATCGTC	CAAGGTGCGG
	. 701	TTAATCCTTT	TTTAATGGGT	TTTCAAGGAG	TAGGGATTGG	GGCAATTACA
	751	GACAGTGCAG	TAAGCCCGGT	CACAGATACA	GCCGCGCAGC	AGACTCTACA
•	801	AGGTATTAAT	GATTTAGGAA	AATTAAGTCC	GGAAGCACAA	CTTGCTGCCG
	851	CGAGCCTATT	ACAGGACAGT	GCTTTTGCGG	TAAAAGACGG	TATCAACTCT
45	901	GCCAAACAAT	GGGCTGATGC	CCATCCAAAT	ATAACAGCTA	CTGCCCAAAC
	951	TGCCCTTTCC	GCAGCAGAGG	CCGCAGGTAC	GGTTTGGAGA	GGTAAAAAAG
•	1001	TAGAACTTAA	CCCGACTAAA	TGGGATTGGG	TTAAAAATAC	CGGTTATAAA
	1051	AAACCTGCTG	CCCGCCATAT	GCAGACTTTA	GATGGGGAGA	TGGCAGGTGG
	1101	GAATAAACCT	ATTAAATCTT	TACCAAACAG	TGCCGCTGAA	AAAAGAAAAC
50	1151	AAAATTTTGA	GAAGTTTAAT	AGTAACTGGA	GTTCAGCAAG	TTTTGATTCA

-144-

	1201	GTGCACAAAA	CACTAACTCC	CAATGCACCT	GGTATTTTAA	GTCCTGATAA
	1251	AGTTAAAACT	CGATACACTA	GTTTAGATGG	AAAAATTACA	ATTATAAAAG
	1301	ATAACGAAAA	CAACTATTTT	AGAATCCATG	ATAATTCACG	AAAACAGTAT
	1351	CTTGATTCAA	ATGGTAATGC	TGTGAAAACC	GGTAATTTAC	AAGGTAAGCA
5	1401	AGCAAAAGAT	TATTTACAAC	AACAAACTCA	TATCAGGAAC	TTAGACAAAT
	1451	GA				

This corresponds to the amino acid sequence <SEQ ID 166; ORF29-1>:

```
1 MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK HYEPGGKYHL
51 FGNARGSVKK RVYAVQTFDA TAVSPVLPIT HERTGFEGVI GYETHFSGHG
101 HEVHSPFDHH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP EDGYDGPQGS
151 DYPPPGGARD IYSYYVKGTS TKTKTNIVPQ APFSDRWLKE NAGAASGFFS
201 RADEAGKLIW ESDPNKNWAN NRDDVRGIV QGAVNPFLMG FQGVGIGAIT
251 DSAVSPVTDT AAQQTLQGIN DLGKLSPEAQ LAAASLLQDS AFAVKDGINS
301 AKQWADAHPN ITATAQTALS AAEAAGTVWR GKKVELNPTK WDWVKNTGYK
351 KPAARHMQTL DGEMAGGNKP IKSLPNSAAE KRKQNFEKFN SNWSSASFDS
401 VHKTLTPNAP GILSPDKVKT RYTSLDGKIT IIKDNENNYF RIHDNSRKQY
451 LDSNGNAVKT GNLQGKQAKD YLQQQTHIRN LDK*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF29 shows 88.0% identity over a 125aa overlap with an ORF (ORF29a) from strain A of N. meningitidis:

	orf29.pep			VSE	10 PVLPITHERTO	20 SFEGVIGYET	30 HFSGHGHE
						1111:1111	
25	orf29a	EPGGKYHLFGNAR		/QTFDATAVGE	PILPITHERTO	FEGIIGYET	HFSGHGHE
		50	60	70	80	90	100
		40	50	60	70	80	90
	orf29.pep	VHSPFDHHDSKST	SDFSGGVDG	FTVYQLHRTW	SEIHPEDEY(GPQAAXYPP	PGGARDIY
30		111111:11111	11111111111				1111111
	orf29a	VHSPFDNHDSKST	SDFSGGVDG	FTVYQLHRTG	SEIHPEDGYI	GPOGSDYPP	PGGARDIY
		110	120	130	140	150	160
		100	110	120			
35	orf29.pep	SYYVKGTSTKTKT	SIVPQAPFSI	DRWLEENAGAA	ASG		
		11111111111:	:111:1111	:	11		
	orf29a	XXYVKGTSTKTKS	NIVPRAPFSI	DRWLKENAGAA	SGFFSRADE	AGKLIWESDP	NKNWWANR
		170	180	190	200	210	220
40	orf29a	MDDIRGIVQGAVN	PFLMGFOGV	GIGAITDSAVS	SPVTDTAAOO1	T.OGXNHT.GX	T.SPEAOT.A
		230	240	250	260	270	280

The complete length ORF29a nucleotide sequence <SEQ ID 167> is:

	1	ATGAATTNGC	CTATTCAAAA	ATTCATGATG	CTGTTTGCAG	CAGCAATATC
	51	GTNGCTGCAA	ATCCCNATTA	GTCATGCGAA	CGGTTTGGAT	GCCCGTTTGC
45	101	GCGATGATAT	GCAGGCAAAA	CACTACGAAC	CGGGTGGTAA	ATACCATCTG
	151	TTTGGTAATG	CTCGCGGCAG	TGTTAAAAAT	CGGGTTTACG	CCGTCCAAAC
	201	ATTTGATGCA	ACTGCGGTCG	GCCCCATACT	GCCTATTACA	CACGAACGGA
•	251	CAGGATTTGA	AGGCATTATC	GGTTATGAAA	CCCATTTTTC	AGGACATGGA
	301	CATGAAGTAC	ACAGTCCGTT	CGATAATCAT	GATTCAAAAA	GCACTTCTGA
50	351	TTTCAGCGGC	GGCGTAGACG	GTGGTTTTAC	CGTTTACCAA	CTTCATCGGA
	401	CAGGGTCGGA	AATCCATCCG	GAGGATGGAT	ATGACGGGCC	GCAAGGCAGC
	451	GATTATCCGC	CCCCCGGAGG	AGCAAGGGAT	ATATACANNT	ANTATGTCAA
	501	AGGAACTTCA	ACAAAAACAA	AGAGTAATAT	TGTTCCCCGA	GCCCCATTTT
	551	CAGACCGCTG	GCTAAAAGAA	AATGCCGGTG	CCGCCTCTGG	TTTTTTCAGC
55	601	CGTGCTGATG	AAGCAGGAAA	ACTGATATGG	GAAAGCGACC	CCAATAAAAA
	651	TTGGTGGGCT	AACCGTATGG	ATGATATTCG	CGGCATCGTC	CAAGGTGCGG
	701	TTAATCCTTT	TTTAATGGGT	TTTCAAGGAG	TAGGGATTGG	GGCAATTACA
	751	GACAGTGCAG	TAAGCCCGGT	CACAGATACA	GCCGCGCAGC	AGACTCTACA
	801	AGGTATNAAT	CATTTAGGAA	ANTTAAGTCC	CGAAGCACAA	CTTGCGGCTG
60	851	CAACCGCATT	ACAAGACAGT	GCTTTTGCGG	TAAAAGACGG	TATCAATTCC
	901	GCCAGACAAT	GGGCTGATGC	CCATCCGAAT	ATAACTGCAA	CAGCCCAAAC

5	1001 TAGA 1051 ACAC 1101 GAAT 1151 CACA 1201 CATG 1251 TATC 1301 ATCC 1351 NATA	CCTTGCC GTAGCAGANG ACTTAA CCCGACCAAA CTGCTG TTCGCACCAT AGACCG CCTAAATCTA ACCGTC TTTACAAGCG CCTTATA ACAAGCATGT AATTCA CCAGCAGATT ANCAAA TATGAAAGAG AAACAG GGACNATAGT GCATTT AGACCAACAT	TGGGATTGGG GCATACTTTG TAACGTCCAA CAACTAATTG CATAAGACAA TTGCTCGGCA TTACCTCGCG TATCCGAGAT CAGGTAAAAA	TTAAAAATAC GATGGGGAAA CAGCAAAGCA GAGAACAAAT CAAGAATTTA TATTGAAAAT GTAGAACTGC AAAAATTCTG ATATTATGAT	NGGCTATAAI TGGCCGGTGG GATGCTTCC: TANNNNNGGC CGGATTTAAI ATTGTTAGCG GTATTGGGAGG ACGATGGAGG GATTTATAG	N G A G G C C
	This encodes a protein	n naving amino acio	sequence <	2EQ ID 168	>:	
15 20	51 FGNA 101 HEVH 151 DYPP 201 RADE 251 DSAV 301 ARQW 351 TPAV 401 HAYN	TOKFMM LFAAAISXLO RGSVKN RVYAVQTFDA SPFDNH DSKSTSDFSG PGGARD IYXXYVKGTS AGKLIW ESDPNKNWWA SPVTDT AAQQTLQGXN ADAHPN ITATAQTALA RTMHTL DGEMAGGNRP KHVIRQ QEFTDLNINS	TAVGPILPIT GVDGGFTVYQ TKTKSNIVPR NRMDDIRGIV HLGXLSPEAQ VAXAATTVWG PKSITSNSKA PADFARHIEN	HERTGFEGII LHRTGSEIHP APFSDRWLKE QGAVNPFLMG LAAATALQDS GKKVELNPTK DASTQPSLQA IVSHPXNMKE	GYETHFSGH EDGYDGPQG: NAGAASGFF: FQGVGIGAI AFAVKDGIN: WDWVKNTGY: QLIGEQIXX	G S S T S S K
		1 show 90 19/ ident				
	ORF29a and ORF29-	1 Show 90.1% Ident	uty in 363 aa	a overlap:		
25	orf29a.pep orf29-1	10 MNXPIQKFMMLFAAAI; MNLPIQKFMMLFAAAI; 10	1 111111111	GLDARLRDDMQ GLDARLRDDMQ	AKHYEPGGKY AKHYEPGGKY	
30	orf29a.pep orf29-1	70 RVYAVQTFDATAVGPI !!!!!!!!!!!!!!!!!		GIIGYETHFSG	HGHEVHSPFDI	: [] [] [] [] []
		70	80			10 120
35	orf29a.pep	130 GVDGGFTVYQLHRTGSI	EIHPEDGYDGP	QGSDYPPPGGA	RDIYXXYVKG	111111:1111:
40	.orf29-1	GVDGGFTVYQLHRTGSI 130 190	140	150 1	60 1	TSTKTKTNIVPQ 70 180 30 240
	orf29a.pep	APFSDRWLKENAGAAS	GFFSRADEAGK	LIWESDPNKNW	WANRMDDIRG:	IVQGAVNPFLMG
45	orf29-1	APFSDRWLKENAGAAS(gffsradeagk	LIWESDPNKNW	WANRMDDVRG:	IVQGAVNPFLMG 30 240
50	orf29a.pep orf29-1	250 FQGVGIGAITDSAVSP	VTDTAAQQTLQ VTDTAAQQTLQ	GXNHLGXLSPE 	AQLAAATALQ : AQLAAASLLQ	
55	orf29a.pep orf29-1	310 ARQWADAHPNITATAQ: : AKQWADAHPNITATAQ: 310	TALAVAXAATT :: TALSAAEAAGT	VWGGKKVELNP VWRGKKVELNP	TKWDWVKNTG TKWDWVKNTG	1 11:1 1:11
60	orf29a.pep orf29-1	370 DGEMAGGNRPPKSITSI : : DGEMAGGNKPIKSLP-1 370	NSKADASTOPS:	LQAQLIGEQIX EKFNSNWSSAS	XGHAYNKHVII FDSVHKTLTPI	

-146-

Homology with a predicted ORF from N.gonorrhoeae

ORF29 shows 88.8% identity over a 125aa overlap with a predicted ORF (ORF29.ng) from N. gonorrhoeae:

-	orf29.pep	VSPVLPITHERTGFEGVIGYETHFSGHGHE	30
3	orf29ng	: :	102
	orf29.pep	VHSPFDHHDSKSTSDFSGGVDGGFTVYQLHRTWSEIHPEDEYDGPQAAXYPPPGGARDIY	90
10	orf29ng	VHSPFDNHDSKSTSDFSGGVDGGFTVYQLHRTGSEIHPEDGYDGPQGGGYPPPGGARDIY	162
	orf29.pep	SYYVKGTSTKTKTSIVPQAPFSDRWLEENAGAASG	125
	orf29ng	:: : :	222

The complete length ORF29ng nucleotide sequence <SEQ ID 169> is predicted to encode a protein having amino acid sequence <SEQ ID 170>:

```
MNLPIQKFMM LFAAAISLLQ IPISHANGLD ARLRDDMQAK HYEPGGKYHL
                       FGNARGSVKN RVCAVQTFDA TAVGPILPIT HERTGFEGVI GYETHFSGHG
                  51
                 101
                       HEVHSPFDNH DSKSTSDFSG GVDGGFTVYQ LHRTGSEIHP EDGYDGPQGG
                      GYPPPGGARD IYSYHIKGTS TKTKINTVPQ APFSDRWLKE NAGAASGFLS
20
                 151
                      RADEAGKLIW ENDPDKNWRA NRMDDIRGIV QGAVNPFLTG FQGLGVGAIT
                 201
                 251 DSAVSPVTYA AARKTLQGIH NLGNLSPEAQ LAAATALQDS AFAVKDSINS
                 301 ARQWADAHPN ITATAQTALA VTEAATTVWG GKKVELNPAK WDWVKNTGYK
351 KPAARHMQTV DGEMAGGNKP LESKNTVTTN NFFENTGYTE KVLRQASNGD
25
                 401
                      YHGFPQSVDA FSENGTVIQI VGGDNIVRHK LYIPGSYKGK DGNFEYIREA
                 451 DGKINHRLFV PNQQLPEK*
```

In a second experiment, the following DNA sequence <SEQ ID 171> was identified:

	_					
	1			ATTCATGATG		
• •	51			GTCATGCGAA		
30	101			CACTACGAAC		
	151			TGTTAAAAAT		
	201			GCCCCATACT		
	251			GGCTATGAAA		
22	301	CACGAAGTAC	ACAGTCCGTT	CGATAATCAT	GATTCAAAAA	GCACTTCTGA
35	351	TTTCAGCGGC	GGCGTAGACG	GCGGTTTTAC	CGTTTACCAA	CTTCATCGGA
	401	CAGGGTCGGA	AATACATCCC	GCAGACGGAT	ATGACGGGCC	TCAAGGCGGC
	451	GGTTATCCGG	AACCACAAGG	GGCAAGGGAT	ATATACAGCT	ACCATATCAA
	501	AGGAACTTCA	ACCAAAACAA	AGATAAACAC	TGTTCCGCAA	GCCCCTTTTT
	551	CAGACCGCTG	GCTAAAAGAA	AATGCCGGTG	CCGCTTCCGG	TTTTCTCAGC
40	601	CGTGCGGATG	AAGCAGGAAA	ACTGATATGG	GAAAACGACC	CCGATAAAAA
	651	TTGGCGGGCT	AACCGTATGG	ATGATATTCG	CGGCATCGTC	CAAGGTGCGG
	701	TTAATCCTTT	TTTAACGGGT	TTTCAAGGGG	TAGGGATTGG	GGCAATTACA
	751	GACAGTGCGG	TAAGCCCGGT	CACAGATACA	GCCGCTCAGC	AGACTCTACA
	801	AGGTATTAAT	GATTTAGGAA	ATTTAAGTCC	GGAAGCACAA	CTTGCCGCCG
45	851	CGAGCCTATT	ACAGGACAGT	GCCTTTGCGG	TAAAAGACGG	CATCAATTCC
	901	GCCAGACAAT	GGGCTGATGC	CCATCCGAAT	ATAACAGCAA	CAGCCCAAAC
	951	TGCCCTTGCC	GTAGCAGAGG	CCGCAGGTAC	GGTTTGGCGC	GGTAAAAAAG
	1001	TAGAACTTAA	CCCGACCAAA	TGGGATTGGG	TTAAAAATAC	CGGCTATAAA
	1051	AAACCTGCTG	CCCGCCATAT	GCAGACTGTA	GATGGGGAGA	TGGCAGGGGG
50	1101	GAATAGACCG	CCTAAATCTA	TAACGTCGGA	AGGAAAAGCT	AATGCTGCAA
	1151	CCTATCCTAA	GTTGGTTAAT	CAGCTAAATG	AGCAAAACTT	AAATAACATT
	1201	GCGGCTCAAG	ATCCAAGATT	GAGTCTAGCT	ATTCATGAGG	GTAAAAAAAA
	1251	TTTTCCAATA	GGAACTGCAA	CTTATGAAGA	GGCAGATAGA	CTAGGTAAAA
	1301	TTTGGGTTGG	TGAGGGTGCA	AGACAAACTA	GTGGAGGCGG	ATGGTTAAGT
55	1351	AGAGATGGCA	CTCGACAATA	TCGGCCACCA	ACAGAAAAAA	AATCACAATT
	1401	TGCAACTACA	GGTATTCAAG	CAAATTTTGA	AACTTATACT	ATTGATTCAA
	1451	ATGAAAAAAG	AAATAAAATT	AAAAATGGAC	ATTTAAATAT	TAGGTAA

This encodes a protein having amino acid sequence <SEQ ID 172; ORF29ng-1>:

^{60 1} MNLPIQKFMM LLAAAISMLH IPISHANGLD ARLRDDMQAK HYEPGGKYHL 51 FGNARGSVKN RVCAVQTFDA TAVGPILPIT HERTGFEGVI GYETHFSGHG

	101	HEVHSPFDNH	DSKSTSDFSG	GVDGGFTVYQ	LHRTGSEIHP	ADGYDGPQGG
	151	GYPEPQGARD	IYSYHIKGTS	TKTKINTVPQ	APFSDRWLKE	NAGAASGELS
	201	RADEAGKLIW	ENDPDKNWRA	NRMDDIRGIV	QGAVNPFLTG	FQGVGIGAIT
_	251	DSAVSPVTDT	AAQQTLQGIN	DLGNLSPEAQ	LAAASLLQDS	AFAVKDGINS
5	301	ARQWADAHPN	ITATAQTALA	VAEAAGTVWR	GKKVELNPTK	WDWVKNTGYK
	351	KPAARHMQTV	DGEMAGGNRP	PKSITSEGKA	NAATYPKLVN	OLNEONLNNI
	401	AAQDPRLSLA	IHEGKKNFPI	GTATYEEADR	LGKIWVGEGA	ROTSGGGWLS
	451	RDGTRQYRPP	TEKKSQFATT	GIQANFETYT	IDSNEKRNKI	KNGHLNIR*

ORF29ng-1 and ORF29-1 show 86.0% identity in 401 aa overlap:

10	orf29ng-1.pep	10	20	30	40	50	60
		MNLPIQKFMMLLAAA	[]:]:]]			FILL THEFT	11111.
	orf29-1	MNLPIQKFMMLFAAA	ISLLQIPISH	LANGLDARLR	DDMQAKHYEP	GGKYHLFGNAF	RGSVKK
15		10	20	30	40	50	60
	orf29ng-1.pep	70 RVCAVQTFDATAVGP:	80 11.DTTTUTTOTC	90	100	110	120
	oracing ripop	11 111111111111111111111111111111111111	:	111111111	HESGRGHEVH.	SPFONHOSKST	ISDESG
••	orf29-1	RVYAVQTFDATAVSP	VLPITHERT	FEGVIGYET	HFSGHGHEVH	SPFDHHDSKS	CSDESG
20		70	80	90	100	110	120
	orf29ng-1.pep	130	140	150	160	170	180
	orrand-r.pep	GVDGGFTVYQLHRTG:	::::::::::::::::::::::::::::::::::::::	GPQGGGIPE	PQGARDIYSY	HIKGTSTKTKI	INTVPQ
25	orf29-1	GVDGGFTVYQLHRTG	SEIHPEDGYI	GPOGSDYPP	PGGARDIYSY	··IIIIIIII YVKGTSTKTKT	ווו ו ספעזמיז
		130	140	150	160	170	180
	• .	190	200	210	220	230	240
20	orf29ng-1.pep	APFSDRWLKENAGAA:	SGFLSRADE <i>I</i>	GKLIWENDP	DKNWRANRMD	DIRGIVOGAVN	NPFLTG
30	orf29-1	111111111111111111111111111111111111111	111:11111	111111:11	:111 11111	1:111111111	$\Pi\Pi\Pi$
	0F129-1	APFSDRWLKENAGAA:	SGFFSRADEA 200	GKLIWESDP 210	NKNWWANRMD 220		
		130	200	210	. 220	230	240
25		250	260	270	280	290	300
35	orf29ng-1.pep	FOGVGIGAITDSAVS	PVTDTAAQQT	LOGINDLGN	LSPEAQLAAA	SLLQDSAFAV	KDGINS
	orf29-1	FOGVGIGAITDSAVS				11111111	
	OIIZJ I	250	260	270	LSPEAQLAAA 280	SLLQDSAFAVI 290	RDGINS 300
		777		270	200	230	300
40		310	320	330	340	350	360
	orf29ng-1.pep	ARQWADAHPNITATA	OTALAVAEAA	GTVWRGKKV	ELNPTKWDWV	KNTGYKKPAAF	VTQMH
	orf29-1	i:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				:
		310	320	330	340	350	360
45							300
	orf29ng-1.pep	370	380	390	400	410	419
	orizang-i.pep	DGEMAGGNRPPKSI-	rsegkanaa1	YPKLVNQLN		DPRLSLAIHE	KKNFP
	orf29-1	DGEMAGGNKPIKSLP	NSAAEKRKON	FEKFNSNWS:	::::: SASEDSVHKT	T.TDNADCTT.SD	ייישונאמוס
50		370	380	390	400	410	420
	*						
		20 430	440	450	460	470	479
	orf29ng-1.pep	IGTATYEEADRLGKI	WVGEGARQTS	GGGWLSRDG	ľkoyrppteki	KSQFATTGIQA	MFETY
55	orf29-1	RYTSLDGKITIIKDNI	ENNYFRIHDN	SRKOYLDSN	SNAVKTGNI.O	GKOAKDYT.OOC	מפדעיני
		430	440	450	460	470	480

Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 21

60

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 173>:

```
1 ATGAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
    CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAATGTTCC
51
```

101 ACACGCGGGC AGATGCACCG ATGCAG...

This corresponds to the amino acid sequence <SEQ ID 174; ORF30>:

5 1 MKKQITAAVM MLSMIAPAMA NGLDNOAFED OMFHTRADAP MO...

Further work revealed the complete nucleotide sequence <SEQ ID 175>:

```
1 ATGAAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
                      CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC
                  51
                 101
                      ACACGCGGGC AGATGCACCG ATGCAGTTGG CGGAGCTTTC TCAAAAGGAG
10
                      ATGAAGGAGA CAGAGGGGC GTTTCTTCCA TTGGCTATCT TGGGTGGTGC TGCCATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA
                 151
                 201
                 251
                      GACCAGCTTC TGTTAGAGAT GTTGCTATTG CTGGCGGATT AGGCGCAATT
                      CCTGGTGGTG TAGGCGCCGC AGGAAAGGTT GTTTCCTTTG CTAAATATGG
                 301
                      ACGTGAGATT AAAATCGGCA ATAATATGCG GATAGCCCCT TTCGGTAATA
                 351
15
                 401
                      GAACAGGTCA TCCTATTGGA AAATTTCCCC ATTATCATCG TCGAGTTACG
                      GATAATACGG GCAAGACTTT GCCTGGACAG GGAATTGGTC GTCATCGCCC
                      TTGGGAATCA AAATCTACGG ACAGATCATG GAAAAACCGC TTCTAA
```

This corresponds to the amino acid sequence <SEQ ID 176; ORF30-1>:

```
MKKQITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE
20
                     MKETEGAFLP LAILGGAAIG MWTQHGFSYA TTGRPASVRD VAIAGGLGAI
                 51
                     PGGVGAAGKV VSFAKYGREI KIGNNMRIAP FGNRTGHPIG KFPHYHRRVT
                101
                     DNTGKTLPGQ GIGRHRPWES KSTDRSWKNR F*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF30 shows 97.6% identity over a 42aa overlap with an ORF (ORF30a) from strain A of N. meningitidis:

```
10
                                    20
                                             30
                    MKKQITAAVMMLSMIAPAMANGLDNQAFEDQMFHTRADAPMQ
         orf30.pep
                    30
         orf30a
                    MKKQITAAVMMLSMIAPAMANGLDNQAFEDQVFHTRADAPMQLAELSQKEMKXTXGAFLP
                                    20
                                            30
                                                     40
                                                              50
         orf30a
                    LXILGGAAIGMWTQHGFSYATTGRPASVRDVAIAGGLGAIPGXVGAAGKVVSFAKYGREI
                                                    100
```

35 The complete length ORF30a nucleotide sequence <SEQ ID 177> is:

```
1 ATGAAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATTGCCCC
                51
                    CGCAATGGCA AACGGCTTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC
                    ACACGCGGGC AGATGCACCG ATGCAGTTGG CGGAGCTTTC TCAAAAGGAG
               101
               151
                    ATGAAGGANA CAGNGGGGGC GTTTCTTCCA TTGGNTATCT TGGGTGGTGC
40
                    TGCCATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA
               201
                    GACCAGCTTC TGTTAGAGAT GTTGCTATTG CTGGCGGATT AGGCGCAATT
               251
                    CCTGGTGNTG TAGGCGCCGC AGGAAAGGTT GTTTCCTTTG CTAAATATGG
               301
               351
                    ACGTGAGATT AAAATCGGCA ATAATATGCG GATAGCCCCT TTCGGTAATA
                    GAACAGGTCA TCCTATTGGN AAATTTCCCC ATTATCATCG TCGAGTTACG
               401
45
               451
                    GATAATACGG GCAAGACTTT GCCTGGACAG GGAATTGGTC GTCATCGCCC
               501 TTGGGAATCA AAATCTACGG ACAGATCATG GAAAAACCGC TTCTAA
```

This encodes a protein having amino acid sequence <SEQ ID 178>:

```
MKKQITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE
                    MKXTXGAFLP LXILGGAAIG MWTQHGFSYA TTGRPASVRD VAIAGGLGAI
                51
50
                    PGXVGAAGKV VSFAKYGREI KIGNNMRIAP FGNRTGHPIG KFPHYHRRVT
                    DNTGKTLPGQ GIGRHRPWES KSTDRSWKNR F*
```

ORF30a and ORF30-1 show 97.8% identity in 181 aa overlap:

	•		
	orf30-1		60
5	orf30a.pep	LXILGGAAIGMWTQHGFSYATTGRPASVRDVAIAGGLGAIPGXVGAAGKVVSFAKYGREI	120
•	orf30-1	LAILGGAAIGMWTQHGFSYATTGRPASVRDVAIAGGLGAIPGGVGAAGKVVSFAKYGREI	120
	orf30a.pep	KIGNNMRIAPFGNRTGHPIGKFPHYHRRVTDNTGKTLPGQGIGRHRPWESKSTDRSWKNR	180
10	orf30-1	KIGNNMRIAPFGNRTGHPIGKFPHYHRRVTDNTGKTLPGQGIGRHRPWESKSTDRSWKNR	180
	orf30a.pep	FX 	
15	orf30-1	FX	•
	Homology with a pre	dicted ORF from N.gonorrhoeae	
	ORF30 shows 97.6%	identity over a 42aa overlap with a predicted ORF (ORF30.ng) from	m <i>N</i> .
	gonorrhoeae:		
20	orf30.pep M	KKQITAAVMMLSMIAPAMANGLDNQAFEDQMFHTRADAPMQ 	42
	orf30ng M	KKQITAAVMMLSMIAPAMANGLDNQAFEDQVFHTRADAPMQLAELSQKEMKETEGAFLP	60
	The complete length	ORF30ng nucleotide sequence <seq 179="" id=""> is</seq>	
	1 ATGA 51 CGCA	AAAAAC AAATCACCGC AGCCGTAATG ATGCTGTCTA TGATCGCCCC ATGGCA AACGGATTGG ACAATCAGGC ATTTGAAGAC CAAGTGTTCC	
25	101 ACAC	GCGGGC AGATGCGCCG ATGCAGTTGG CGGAGCTTTC TCAGAAGGAG AGGAGA CTGAAGGGGC TTTTCTTCCA TTGGCTATCT TGGGTGGTGC	
	201 TGCC	ATTGGT ATGTGGACAC AGCATGGTTT TAGTTATGCA ACGACAGGCA AGCTTC TGTTAGAGAT GTTGCTGGCG GATTAGGCGC AATTCCTGGT	
30	301 GATG	TAGGTG CTGCAGGAAA GGTTGTTTCC TTTGCTAAAT ATGGACGTGA	•
30	401 GTCA	AAAATC GGCAATAATA TGCGGATAGC CCCTTTCGGT AATAGAACAG TCCTAT TGGAAAATTT CCCCATTATC ATCGTCGAGT TACGGATAAT	
	451 ACGG	GCAAGA CTTTGCCTGG ACAGGGAATT GGTCGTCATC GCCCTTGGGA AAATCT ACGGACAGAT CATGGAAAAA CCGCTTCTAA	
	• • • • • • • • • • • • • • • • • • • •	n having amino acid sequence <seq 180="" id="">:</seq>	
35	1 <u>MKKQ</u> 51 MKET	ITAAVM MLSMIAPAMA NGLDNQAFED QVFHTRADAP MQLAELSQKE EGAFLP LAILGGAAIG MWTQHGFSYA TTGRPASVRD VAGGLGAIPG	
	101 DVGA	AGKVVS FAKYGREIKI GNNMRIAPFG NRTGHPIGKF PHYHRRVTDN LPGQGI GRHRPWESKS TDRSWKNRF*	
		-1 show 98.3% identity in 181 aa overlap:	•
40		10 00 0	
	orf30ng.pep	10 20 30 40 50 60 MKKQITAAVMMLSMIAPAMANGLDNQAFEDQVFHTRADAPMQLAELSQKEMKETEGAFLP	
	orf30-1	MKKQITAAVMMLSMIAPAMANGLDNQAFEDQVFHTRADAPMQLAELSQKEMKETEGAFLP	
45	·	70 00 00	
	orf30ng.pep	LAILGGAAIGMWTQHGFSYATTGRPASVRDVAGGLGAIPGDVGAAGKVVSFAKYGREI	
50	orf30-1	LAILGGAAIGMWTQHGFSYATTGRPASVRDVAIAGGLGAIPGGVGAAGKVVSFAKYGREI	
		120	
	orf30ng.pep	120 130 140 150 160 170 KIGNNMRIAPFGNRTGHPIGKFPHYHRRVTDNTGKTLPGQGIGRHRPWESKSTDRSWKNR	
55	orf30-1	KIGNNMRIAPFGNRTGHPIGKFPHYHRRVTDNTGKTLPGQGIGRHRPWESKSTDRSWKNR	
		130 140 150 160 170 180 180	
60	orf30ng.pep	FX II	
	orf30-1	FX	

WO 99/24578

-150-

Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 22

10

20

5 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 181>:

```
1 ATGAATAAAA CTCTCTATCG TGTAATTTTC AACCGCAAAC GTGGGGCTGT
51 GrTAGCCGTT GCTGAAACTA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
101 GTGATTCAGG CAGCGCTCAT GTGAAATCTG TTCCTTTTGG TACTACTCAT
151 GCACCTGTTT GTG.CGTTAC AAATATCTTT TCTTTTTCTT TATTGGGCTT
201 TTCTTTATGT TTGGCTGTAG GtacGGyCAA TATTGCTTTT GCTGATGGCA
```

This corresponds to the amino acid sequence <SEQ ID 182; ORF31>:

- 1 MNKTLYRVIF NRKRGAVXAV AETTKREGKS CADSDSGSAH VKSVPFGTTH
- 51 APVCXVTNIF SFSLLGFSLC LAVGTXNIAF ADGI..
- 15 Further work revealed a further partial nucleotide sequence <SEQ ID 183>:

```
1 ATGAATAAAA CTCTCTATCG TGTAATTTTC AACCGCAAAC GTGGGGCTGT
51 GGTAGCCGTT GCTGAAACTA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
101 GTGATTCAGG CAGCGCTCAT GTGAAATCTG TTCCTTTTGG TACTACTCAT
151 GCACCTGTTT GTCGTTCAAA TATCTTTTCT TTTTCTTTAT TGGGCTTTTC
201 TTTATGTTTG GCTGTAGGTA CGGCCAATAT TGCTTTTGCT GATGGCATT..
```

This corresponds to the amino acid sequence <SEQ ID 184; ORF31-1>:

- 1 MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSDSGSAH VKSVPFGTTH
- 51 APVCRSNIFS FSLLGFSLCL AVGTANIAFA DGI..

Computer analysis of this amino acid sequence gave the following results:

25 Homology with a predicted ORF from N. gonorrhoeae

ORF31 shows 76.2% identity over a 84aa overlap with a predicted ORF (ORF31.ng) from N. gonorrhoeae:

35 The complete length ORF31ng nucleotide sequence <SEQ ID 185> is:

```
ATGAACAAAA CCCTCTATCG TGTGATTTTC AACCGCAAAC GCGGTGCTGT
                51
                   GGTAGCTGTT GCCGAAACCA CCAAGCGCGA AGGTAAAAGC TGTGCCGATA
               101
                    GTGGTTCGGG CAGCGTTTAT GTGAAATCCG TTTCTTTCAT TCCTACTCAT
               151
                    TCCAAAGCCT TTTGTTTTTC TGCATTAGGC TTTTCTTTAT GTTTGGCTTT
40
                    GGGTACGGTC AATATTGCTT TTGCTGACGG CATTATTACT GATAAAGCTG
               201
               251 CTCCTAAAAC CCAACAAGCC ACGATTCTGC AAACAGGTaa cGGCATACCG
                    CAAGTCAATA TTCAAACCCC TACTTCGGCA GGGGTTTCTG TTAATCAATA
               301
               351
                    TGCCCAGTTT GATGTGGGTA ATCGCGGGGC GATTTTAAAC AACAGTCGCA
               401
                    GCAACACCCA AACACAGCTA GGCGGTTGGA TTCAAGGCAA TCCTTGGTTG
45
               451 ACAAGGGGCG AAGCACGTGT GGTTGTAAAC CAAATCAACA GCAGCCATCC
               501
                    TTCACAACTG AATGGCTATA TTGAAGTGGG TGGACGACGT GCAGAAGTCG
                    TTATTGCCAA TCCGGCAGGG ATTGCAGTCA ATGGTGGTGG TTTTATCAAT
               551
               601
                    GCTTCCCGTG CCACTTTGAC GACAGGCCAA CCGCAATATC AAGCAGGAGA
               651
                    CTTTAGCGGC TTTAAGATAA GGCAAGGCAA TGCTGTAATC GCCGGACACG
```

50

-151-

```
GTTTGGATGC CCGTGATACC GATTTCACAC GTATTCTTGT ATGCCAACAA
               701
                    AATCACCTTG ATCAGTACGG CCGAACAAGC AGGCATTCGT AA
     This encodes a protein having amino acid sequence <SEQ ID 186>:
                    MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSGSGSVY VKSVSFIPTH
5
                    SKAFCFSALG FSLCLALGTV NIAFADGIIT DKAAPKTQQA TILQTGNGIP
                51
               101
                    QVNIQTPTSA GVSVNQYAQF DVGNRGAILN NSRSNTQTQL GGWIQGNPWL
                    TRGEARVVVN QINSSHPSQL NGYIEVGGRR AEVVIANPAG IAVNGGGFIN
               151
               201
                    ASRATLTTGQ PQYQAGDFSG FKIRQGNAVI AGHGLDARDT DFTRILVCQQ
               251 NHLDQYGRTS RHS*
     This gonococcal protein shares 50% identity over a 149aa overlap with the pore-forming
10
     hemolysins-like HecA protein from Erwinia chrysanthemi (accession number L39897):
                    96 GNGIPQVNIQTPTSAGVSVNQYAQFDVGNRGAILNNSRSN-TQTQLGGWIQGNPWLTRGE 154
                        GNG+P VNI TP ++G+S N+Y F+V NRG ILNN + T +QLGG IQ NP L
                       GNGVPVVNIATPDASGLSHNRYHDFNVDNRGLILNNGTARLTPSQLGGLIQNNPNLNGRA 104
          HecA
15
          Orf31ng
                   155 ARVVVNQINSSHPSQLNGYIEVGGRRAEVVIANPAGIAVNGGGFINASRATLTTGQPQYQ 214
                        A ++N++ S + S+L GY+EV G+ A VV+ANP GI +G GF+N R TLTTG PO+
                    105 AAAILNEVVSPNRSRLAGYLEVAGQAANVVVANPYGITCSGCGFLNTPRLTLTTGTPQFD 164
          HecA
20
          Orf3lng 215 -AGDFSGFKIRQGNAVIAGHGLDARDTDF 242
                         AG SG +R G+ +I G GLDA +D+
                    165 AAGGLSGLDVRGGDILIDGAGLDASRSDY 193
          HecA
     Furthermore, ORF31ng and ORF31-1 show 79.5% identity in 83 aa overlap:
                                          20
                        {\tt MNKTLYRVIFNRKRGAVVAVAETTKREGKSCADSDSGSAHVKSVPFGTTHAPVCRSNIFS}
25
          orf31-1.pep
                        orf31ng
                        MNKTLYRVIFNRKRGAVVAVAETTKREGKSCADSGSGSVYVKSVSFIPTH-
                                                                               -SKAFC
                                          20
                                                    30
30
                                70
                        FSLLGFSLCLAVGTANIAFADGI
           orf31-1.pep
                        11 [1111111:11:11111111
                        FSALGFSLCLALGTVNIAFADGIITDKAAPKTQQATILQTGNGIPQVNIQTPTSAGVSVN
           orf31ng
                                               80
                                                                  100
35
     On this basis, including the homology with hemolysins, and also with adhesins, it is predicted that
      the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens
      for vaccines or diagnostics, or for raising antibodies.
      Example 23
      The following partial DNA sequence was identified in N. meningitidis <SEQ ID 187>:
40
                     ATGAATACTC CTCCTTTTGT CTGTTGGATT TTTTGCAAGG TCATCGACAA
                 51
                     TTTCGGCGAC ATCGGCGTTT CGTGGCGGCT CGCCCGTGTT TTGCACCGCG
                101
                     AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC CGCCTTGCGT
                     GCGCTTTGCC CTGATTTGCC CGATGTTCCC TGCGTTCATC AGGATATTCA
                151
                     TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC GCG..
45
      This corresponds to the amino acid sequence <SEQ ID 188; ORF32>:
                     MNTPPFVCWI FCKVIDNFGD IGVSWRLARV LHRELGWQVH LWTDDVSALR
                 51 ALCPDLPDVP CVHQDIHVRT WHSDAADIDT A..
      Further work revealed the complete nucleotide sequence <SEQ ID 189>:
                     ATGAATACTC CTCCTTTTGT CTGTTGGATT TTTTGCAAGG TCATCGACAA
```

51 TTTCGGCGAC ATCGGCGTTT CGTGGCGGCT CGCCCGTGTT TTGCACCGCG
101 AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC CGCCTTGCGT

651

701

751

60

```
GCGCTTTGCC CTGATTTGCC CGATGTTCCC TGCGTTCATC AGGATATTCA
                    TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC GCGCCTGTTC
               201
                    CCGATGTCGT CATCGAAACT TTTGCCTGCG ACCTGCCCGA AAATGTGCTG
               251
                    CACATTATCC GCCGACACAA GCCGCTTTGG CTGAATTGGG AATATTTGAG
               301
                    CGCGGAGGAA AGCAATGAAA GGCTGCATCT GATGCCTTCG CCGCAGGAGG
5
               351
                    GTGTTCAAAA ATATTTTTGG TTTATGGGTT TCAGCGAAAA AAGCGGCGGG
               401
                     TTGATACGCG AACGTGATTA CTGCGAAGCC GTCCGTTTCG ATACTGAAGC
               451
                     CCTGCGAGAG CGGCTGATGC TGCCCGAAAA AAACGCCTCC GAATGGCTGC
               501
                    TTTTCGGCTA TCGGAGCGAT GTTTGGGCAA AGTGGCTGGA AATGTGGCGA
               551
                     CAGGCAGGCA GCCCGATGAC ACTGTTGCTG GCGGGGACGC AAATCATCGA
10
                601
                     CAGCCTCAAA CAAAGCGGCG TTATTCCGCA AGATGCCCTG CAAAACGACG
                651
                     GCGATGTTTT TCAGACGGCA TCCGTCCGCC TCGTCAAAAT CCCTTTCGTG
                701
                     CCGCAACAGG ACTTCGACCA ACTGCTGCAC CTTGCCGACT GCGCCGTCAT
                751
                     CCGCGGCGAA GACAGTTTCG TGCGCGCCCA GCTTGCGGGC AAACCCTTCT
                801
                     TTTGGCACAT CTACCCGCAA GACGAGAATG TCCATCTCGA CAAACTCCAC
15
                851
                     GCCTTTTGGG ATAAGGCACA CGGTTTCTAC ACGCCCGAAA CCGTGTCGGC
                901
                     ACACCGCCGT CTTTCGGACG ACCTCAACGG CGGAGAGGCT TTATCCGCAA
                951
                     CACAACGCCT CGAATGTTGG CAAACCCTGC AACAACATCA AAACGGCTGG
               1001
                     CGGCAAGGCG CGGAGGATTG GAGCCGTTAT CTTTTCGGGC AGCCGTCAGC
               1051
                     TCCTGAAAAA CTCGCTGCCT TTGTTTCAAA GCATCAAAAA ATACGCTAG
20
     This corresponds to the amino acid sequence <SEQ ID 190; ORF32-1>:
                  1 MNTPPFVCWI FCKVIDNFGD IGVSWRLARV LHRELGWQVH LWTDDVSALR
                     ALCPDLPDVP CVHQDIHVRT WHSDAADIDT APVPDVVIET FACDLPENVL
                     HIIRRHKPLW LNWEYLSAEE SNERLHLMPS PQEGVQKYFW FMGFSEKSGG
                101
                     LIRERDYCEA VRFDTEALRE RLMLPEKNAS EWLLFGYRSD VWAKWLEMWR
25
                151
                     QAGSPMTLLL AGTQIIDSLK QSGVIPQDAL QNDGDVFQTA SVRLVKIPFV
                201
                     POODFDOLLH LADCAVIRGE DSFVRAQLAG KPFFWHIYPO DENVHLDKLH
                251
                     AFWDKAHGFY TPETVSAHRR LSDDLNGGEA LSATQRLECW QTLQQHQNGW
                301
                     RQGAEDWSRY LFGQPSAPEK LAAFVSKHQK IR*w
      Computer analysis of this amino acid sequence gave the following results:
30
      Homology with a predicted ORF from N. meningitidis (strain A)
      ORF32 shows 93.8% identity over a 81aa overlap with an ORF (ORF32a) from strain A of N.
      meningitidis:
                                                                         50
                                                               40
                                                     30
                         MNTPPFVCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDVP
 35
            orf32.pep
                                   MNTPPFSAGXFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDVX
            orf32a
                                                               40
                                           20
                                                     30
                                           80
 40
                         CVHQDIHVRTWHSDAADIDTA
            orf32.pep
                         111111111111111111111111
                         CVHQDIHVRTWHSDAADIDTAPVXDVVIETFACDLPENVLHIIRRHKPLWLXWEYLSAEX
            orf32a
                                                                        110
                                           80
                                                     90
                                                              100
                                 70
       The complete length ORF32a nucleotide sequence <SEQ ID 191> is:
 45
                      ATGAATACTC CTCCTTTTC TGCTGGANTT TTTTGCAAGG TCATCGACAA
                                            CGTGGCGGCT TGCCCGTGTT TTGCACCGCG
                      TTTCGGCGAC ATCGGCGTTT
                  51
                      AACTCGGTTG GCAGGTGCAT TTGTGGACGG ACGATGTGTC CGCCTTGCGT
                 101
                      GCGCTTTGCC CTGATTTGCC CGATGTTCNC TGCGTTCATC AGGATATTCA
                 151
                      TGTCCGCACT TGGCATTCCG ATGCGGCAGA TATTGATACC GCGCCTGTTC
  50
                 201
                      NCGATGTCGT CATCGAAACT TTTGCCTGCG ACCTGCCCGA AAATGTGCTG
                 251
                      CACATCATCC GCCGACACAA GCCGCTTTGG CTGAANTGGG AATATTTGAG
                 301
                      CGCGGAGGAN AGCAATGAAA GGCTGCACNT GATGCCTTCG CCGCAGGAGA
                 351
                      GTGTTCNAAA ATANTTTTGG TTTATGGGTT TCAGCGAANN NAGCGGCGGA
                  401
                      CTGATACGCG AACGCGATTA CTGCGAAGCC GTCCGTTTCG ATAGCGGAGC
  55
                  451
                      CTTGCGCAAG AGGCTGATGC TTCCCGAAAA AAACGNCCCC GAATGGCTGC
                  501
                      TTTTCGGCTA TCGGAGCGAT GTTTGGGCAA AGTGGCTGGA AATGTGGCGA
                  551
                      CAGGCAGGCA GTCCGTTGAC ACTTTTGCTG GCNGGGGCGC ANATTATCGA
                  601
                      CAGCCTCAAA CAAAACGGCG TTATTCCGCA AGATGCCCTG CAAAACGACG
```

GCGATGTTTT TCAGACGGCA TCCGTCCGCC TCGTCAAAAT CCCTTTCGTG

CCGCAACAGG ACTTCGACAA ACTGCTGCAC CTTGCCGACT GCGCCGTCAT

```
CCGCGCGAA GACAGTTTCG TGCGCGCCCA GCTTGCGGGC AAACCCTTCT
                  TTTGGCACAT CTACCCGCAA GATGAGAATG TCCATCTCGA CAAACTCCAC
              851
              901
                  GCCTTTTGGG ATAAGGCACA CGGTTTCTAC ACGCCCGAAA CCGCATCGGC
                  ACACCGCCGC CTTTCAGACG ACCTCAACGG CGGAGAGGCT TTATCCGCAA
              951
                  CACAACGCCT CGAATGTTGG CAAATCCTGC AACAACATCA AAACGGCTGG
5
             1001
             1051
                  CGGCAAGGCG CGGAGGATTG GAGCCGTTAT CTTTTTGGGC AGCCTTCCGC
             1101
                  ATCCGAAAAA CTCGCCGCCT TTGTTTCAAA GCATCAAAAA ATACGCTAG
    This encodes a protein having amino acid sequence <SEO ID 192>:
                  MNTPPFSAGX FCKVIDNFGD IGVSWRLARV LHRELGWQVH LWTDDVSALR
10
               51
                  ALCPDLPDVX CVHQDIHVRT WHSDAADIDT APVXDVVIET FACDLPENVL
                  HIIRRHKPLW LXWEYLSAEX SNERLHXMPS PQESVXKXFW FMGFSEXSGG
              101
                  LIRERDYCEA VRFDSGALRK RLMLPEKNXP EWLLFGYRSD VWAKWLEMWR
              151
              201
                  QAGSPLTLLL AGAXIIDSLK QNGVIPQDAL QNDGDVFQTA SVRLVKIPFV
              251
                  POODFDKLLH LADCAVIRGE DSFVRAQLAG KPFFWHIYPO DENVHLDKLH
15
              301
                  AFWDKAHGFY TPETASAHRR LSDDLNGGEA LSATQRLECW QILQQHQNGW
              351
                  RQGAEDWSRY LFGQPSASEK LAAFVSKHQK IR*
    ORF32a and ORF32-1 show 93.2% identity in 382 aa overlap:
                                     20
                                             30
                     MNTPPFVCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDVP
         orf32-1.pep
20
                              orf32a
                     MNTPPFSAGXFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDVX
                                     20
                                             30
                                                      40
                                                               50
                            70
                                     80
                                             90
                                                     100
                                                              110
                                                                       120
25
                     CVHQDIHVRTWHSDAADIDTAPVPDVVIETFACDLPENVLHIIRRHKPLWLNWEYLSAEE
         orf32-1.pep
                     CVHQDIHVRTWHSDAADIDTAPVXDVVIETFACDLPENVLHIIRRHKPLWLXWEYLSAEX
         orf32a
                            70
                                     80
                                             90
                                                     100
                                                              110
30
                           130
                                    140
                                             150
                                                     160
                                                              170
                     SNERLHLMPSPQEGVQKYFWFMGFSEKSGGLIRERDYCEAVRFDTEALRERLMLPEKNAS
         orf32-1.pep
                     SNERLHXMPSPQESVXKXFWFMGFSEXSGGLIRERDYCEAVRFDSGALRKRLMLPEKNXP
         orf32a
                           130
                                    140
                                             150
                                                     160
                                                              170
35
                           190
                                    200
                                             210
                                                     220
                     EWLLFGYRSDVWAKWLEMWRQAGSPMTLLLAGTQIIDSLKQSGVIPQDALQNDGDVFQTA
                     orf32a
                     EWLLFGYRSDVWAKWLEMWRQAGSPLTLLLAGAXIIDSLKQNGVIPQDALQNDGDVFQTA
40
                           190
                                    200
                                             210
                                                     220
                           250
                                    260
                                             270
                                                     280
                                                              290
          orf32-1.pep
                     SVRLVKIPFVPQQDFDQLLHLADCAVIRGEDSFVRAQLAGKPFFWHIYPODENVHLDKLH
                     45
          orf32a
                     SVRLVKIPFVPQQDFDKLLHLADCAVIRGEDSFVRAQLAGKPFFWHIYPQDENVHLDKLH
                           250
                                    260
                                             270
                                                     280
                                                              290
                                                                       300
                                    320
                                             330
                                                     340
                                                              350
                     {\tt AFWDKAHGFYTPETVSAHRRLSDDLNGGEALSATQRLECWQTLQQHQNGWRQGAEDWSRY}
          orf32-1.pep
 50
                     AFWDKAHGFYTPETASAHRRLSDDLNGGEALSATQRLECWQILQQHQNGWRQGAEDWSRY
          orf32a
                           310
                                    320
                                             330
                                                     340
                           370
                                    380
 55
                     LFGQPSAPEKLAAFVSKHOKIRX
          orf32-1.pep
                     LFGQPSASEKLAAFVSKHQKIRX
          orf32a
                           370
     Homology with a predicted ORF from N. gonorrhoeae
 60
```

ORF32 shows 95.1% identity over a 82aa overlap with a predicted ORF (ORF32.ng) from N. gonorrhoeae:

orf32.pep MNTPPF-VCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLP

WO 99/24578 PCT/IB98/01665

-154-

```
orf32ng
                        MVMNTYAFPVCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLP
                        DVPCVHQDIHVRTWHSDAADIDTA
                                                                                       81
          orf32.pep
                        111 1111111111111111111
 5
                        DVPFVHQDIHVRTWHSDAADIDTAPVPDAVIETFACDLPENVLNIIRRHKPLWLNWEYLS 120
          orf32ng
     An ORF32ng nucleotide sequence <SEQ ID 193> was predicted to encode a protein having amino
     acid sequence <SEQ ID 194>:
                     MVMNTYAFPV CWIFCKVIDN FGDIGVSWRL ARVLHRELGW QVHLWTDDVS
                 1
                     ALRALCPDLP DVPFVHQDIH VRTWHSDAAD IDTAPVPDAV IETFACDLPE
10
                     NVLNIIRRHK PLWLNWEYLS AEESNERLHL MPSPQEGVQK YFWFMGFSEK
               101
               151
                     SGGLIRERDY REAVREDTEA LRRRLVLPEK NAPEWLLFGY RGDVWAKWLD
               201
                     MWQQAGSLMT LLLAGAQIID SLKQSGVIPQ NALQNEGGVF QTASVRLVKI
                251
                     PFVPQQDFDK LLHLADCAVI RGEDSFVRTQ LAGKPFFWHI YPQDENVHLD
                     KLHAFWDKAY GFYTPETASV HRLLSDDLNG GEALSATORL ECGVL*
               301
15
     Further sequencing revealed the following DNA sequence <SEQ ID 195>:
                 1 · ATGAATACAT ACGCTTTTCC TGTCTGTTGG ATTTTTTGCA AGGTCATCGA
51 · CAATTTCGGC GACATCGGCG TTTCGTGGCG GCTCGCCCGT GTTTTGCACC
                     GCGAACTCGG TTGGCAGGTG CATTTGTGGA CGGACGACGT GTCCGCCTTG
                101
                151
                     CGCGCGCTTT GTCCCGATTT GCCCGATGTT CCCTTCGTTC ATCAGGATAT
20
                201
                     TCATGTCCGC ACTTGGCATT CCGATGCGGC AGACATTGAT ACCGCGCCCG
                     TTCCCGATGC CGTTATCGAA ACTTTTGCCT GCGACCTGCC CGAAAATGTG
                251
                     CTGAACATCA TCCGCCGACA CAAACCGCTT TGGCTGAATT GGGAATATTT
                301
                351
                     GAGCGCGGAG GAAAGCAATG AAAGGCTGCA CCTGATGCCT TCGCCGCAGG
                401
                     AGGGCGTTCA AAAATATTTT TGGTTTATGG GTTTCAGCGA AAAAAGCGGC
25
                451
                     GGGTTGATAC GCGAACGCGA TTACCGCGAA GCCGTCCGTT TCGATACCGA
                     AGCCCTGCGC CGGCGGCTGG TGCTGCCCGA AAAAAACGCC CCCGAATGGC
                501
                551
                     TGCTTTTCGG CTATCGGGGC GATGTTTGGG CAAAGTGGCT GGACATGTGG
                601
                     CAACAGGCAG GCAGCCTGAT GACCCTACTG CTGGCGGGGG CGCAAATTAT
                     CGACAGCCTC AAACAAAGCG GCGTTATTCC GCAAAACGCC CTGCAAAAtg
                651
30
                     aaggcgGTGT CTTTCagacG gcatccgTcC gccttGTCAA AAtcCCGTTC
                701
                751
                     GTGCcGCAAC AGGACTTCGA CAAATTGCTG CAcctcgcCG ACTGCGCCGT
                801
                     GATACGCGGC GAAGACAGTT TCGTGCGTAC CCAGCTTGCC GGAAAACCCT
                     TTTTTTGGCA CATCTACCCG CAAGACGAGA ATGTCCATCT CGACAAACTC
                851
                901
                     CACGCCTTTT GGGATAAGGC ATACGGCTTC TACACGCCCG AAACCGCATC
35
                951
                     GGTGCACCGC CTCCTTTCGG ACGACCTCAA CGGCGGAGAG GCTTTATCCG
               1001
                     CAACACAACG CCTCGAATGT TGGCAAACCC TGCAACAACA TCAAAACGGC
               1051
                     TGGCGGCAAG GCGCGGAGGA TTGGAGCCGT TATCTTTTCG GGCAGCCTTC
                     CGCATCCGAA AAACTCGCCG CCTTTGTTTC AAAGCATCAA AAAATACGCT
               1101
               1151
      This encodes a protein having amino acid sequence <SEQ ID 196; ORF32ng-1>:
40
                     MNTYAFPVCW IFCKVIDNFG DIGVSWRLAR VLHRELGWQV HLWTDDVSAL
                 51
                     RALCPDLPDV PFVHQDIHVR TWHSDAADID TAPVPDAVIE TFACDLPENV
                101
                     LNIIRRHKPL WLNWEYLSAE ESNERLHLMP SPQEGVQKYF WFMGFSEKSG
                151
                     GLIRERDYRE AVRFDTEALR RRLVLPEKNA PEWLLFGYRG DVWAKWLDMW
45
                201
                     QQAGSLMTLL LAGAQIIDSL KQSGVIPQNA LQNEGGVFQT ASVRLVKIPF
                251
                     VPQQDFDKLL HLADCAVIRG EDSFVRTQLA GKPFFWHIYP QDENVHLDKL
                301
                     HAFWDKAYGF YTPETASVHR LLSDDLNGGE ALSATQRLEC WQTLQQHQNG
                     WRQGAEDWSR YLFGQPSASE KLAAFVSKHQ KIR*
      ORF32ng-1 and ORF32-1 show 93.5% identity in 383 aa overlap:
50
                                                       30
                          MNTPPF-VCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDV
           orf32-1.pep
                              MNTYAFPVCWIFCKVIDNFGDIGVSWRLARVLHRELGWQVHLWTDDVSALRALCPDLPDV
           orf32ng-1
                                  10
                                            20
                                                      30
                                                                40
                                                                          50
 55
                                             80
                                                       90
                                                                100
                                                                          110
                          PCVHQDIHVRTWHSDAADIDTAPVPDVVIETFACDLPENVLHIIRRHKPLWLNWEYLSAE
           orf32-1.pep
                          orf32ng-1
                          PFVHQDIHVRTWHSDAADIDTAPVPDAVIETFACDLPENVLNIIRRHKPLWLNWEYLSAE
 60
                                            80
                                  70
                                                      90
                                                               100
                                                                         110
                                                                                   120
                        120
                                  130
                                                      150
                                                                160
                                                                          170
                                                                                   179
```

	orf32-1.pep	ESNER	LHLMPSPQEG	SVQKYFWFMGE	SEKSGGLIR	ERDYCEAVRFI	TEALRERLM	
•	orf32ng-1	ESNER				ERDYREAVRFI	DTEALRRRLV	LPEKNA
5	•		130	140	150	160	170	180
•	520 1	180	190	200	210	220	230	239
	orf32-1.pep	SEWLL	:GYRSDVWAR	(WLEMWRQAGS		QIIDSLKQSG ¹		
10	orf32ng-1	PEWLL	GYRGDVWAI	WLDMWQQAGS	LMTLLLAGA	QIIDSLKQSG	VI PQNALQNE	GGVFQT
10			190	200	210	220	230	240
	500 1	240	250	260	270	280	290	299
	orf32-1.pep	ASVRL	/KIPFVPQQE	OFDQLLHLADC	AVIRGEDSF	VRAQLAGKPF1	FWHIYPQDEN'	VHLDKL
15	orf32ng-1	ASVRL	KIPFVPQQ	FDKLLHLADO		VRTQLAGKPFI		VHLDKL
			250	260	270	280	2,90	300
•	520 1	300	310	320	330	340	350	359
20	orf32-1.pep		KAHGFYTPET		LNGGEALSA 	TQRLECWQTL	QQHQNGWRQG/	AEDWSR
	orf32ng-1	HAFWDI	KAYGFYTPET	ASVHRLLSDE	LNGGEALSA	TQRLECWQTL		AEDWSR
		٠.	310	320	330	340	350	360
25		360	370	380		4		
25	orf32-1.pep	11111		VSKHQKIRX				•
•	orf32ng-1	YLFGQ		VSKHOKIRX			!	
•			370	380				

On this basis, including the RGD sequence in the gonococcal protein, characteristic of adhesins, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF32-1 (42kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 7A shows the results of affinity purification of the His-fusion protein, and Figure 7B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA, giving a positive result. These experiments confirm that ORF32-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 24

35

40 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 197>:

```
..TTGTTCCTGC GTGTNAAAGT GGGGCGTTTT TTCAGCAGTC CGGCGACGTG
                51
                      GTTTCGGGNC AAAGACCCTG TAAATCAGGC GGTGTTGCGG CTGTATNCGG
                      ACGAGTGGCG GCA.ACTTCG GTACGTTGGA AAATAGNCGC AACGTCGCAC
               101
               151
                      AGCCTGTGGC TCTGCACGCT GCTCGGAATG CTGGTGTCGG TATTGTTGCT
45
                      GCTTTTGGTG CGGCAATATA CGTTCAACTG GGAAAGCACG CTGTTGAGCA
               201
                      ATGCCGCTTC GGTACGCGCG GTGGAAATGT TGGCATGGCT GCCGTCGAAA
               251
                      CTCGGTTTCC CTGTCCCCGA TGCGCGGTCG GTCATCGAAG GCCGTCTGAA
               301
               351
                      CGGCAATATT GCCGATGCGC GGGCTTGGTC GGGGCTGCTG GTCGNCAGTA
                      TCGCCTGCTA NGGCATCCTG CCGCGCCTG..
```

50 This corresponds to the amino acid sequence <SEQ ID 198; ORF33>:

- 1 ..LFLRVKVGRF FSSPATWFRX KDPVNQAVLR LYXDEWRXTS VRWKIXATSH 51 SLWLCTLLGM LVSVLLLLLV RQYTFNWEST LLSNAASVRA VEMLAWLPSK
- 101 LGFPVPDARS VIEGRLNGNI ADARAWSGLL VXSIACXGIL PRL..

Further work revealed the complete nucleotide sequence <SEQ ID 199>:

```
ATGTTGAATC CATCCCGAAA ACTGGTTGAG CTGGTCCGTA TTTTGGACGA
                51
                    AGGCGGTTTT ATTTTCAGCG GCGATCCCGT ACAGGCGACG GAGGCTTTGC
               101
                    GCCGCGTGGA CGGCAGTACG GAGGAAAAAA TCATCCGTCG GGCGGAGATG
5
               151
                    ATTGACAGGA ACCGTATGCT GCGGGAGACG TTGGAACGTG TGCGTGCGGG
               201
                    GTCGTTCTGG TTGTGGGTGG TGGCGGCGAC GTTTGCATTT TTTACCGGTT
                    TTTCAGTCAC TTATCTTCTA ATGGACAATC AGGGTCTGAA TTTCTTTTTG
               251
               301
                    GTTTTGGCGG GCGTGTTGGG CATGAATACG CTGATGCTGG CAGTATGGTT
                    GGCAATGTTG TTCCTGCGTG TGAAAGTGGG GCGTTTTTTC AGCAGTCCGG
               351
10
               401
                    CGACGTGGTT TCGGGGCAAA GACCCTGTAA ATCAGGCGGT GTTGCGGCTG
               451
                    TATGCGGACG AGTGGCGGCA ACCTTCGGTA CGTTGGAAAA TAGGCGCAAC
               501
                    GTCGCACAGC CTGTGGCTCT GCACGCTGCT CGGAATGCTG GTGTCGGTAT
               551
                    TGTTGCTGCT TTTGGTGCGG CAATATACGT TCAACTGGGA AAGCACGCTG
               601
                    TTGAGCAATG CCGCTTCGGT ACGCGCGGTG GAAATGTTGG CATGGCTGCC
15
               651
                    GTCGAAACTC GGTTTCCCTG TCCCCGATGC GCGGGCGGTC ATCGAAGGCC
                    GTCTGAACGG CAATATTGCC GATGCGCGGG CTTGGTCGGG GCTGCTGGTC
               701
               751
                    GGCAGTATCG CCTGCTACGG CATCCTGCCG CGCCTGCTGG CTTGGGTAGT
                    GTGTAAAATC CTTTTGAAAA CAAGCGAAAA CGGATTGGAT TTGGAAAAGC
               801
               851
                    CCTATTATCA GGCGGTCATC CGCCGCTGGC AGAACAAAAT CACCGATGCG
20
               901
                    GATACGCGTC GGGAAACCGT GTCCGCCGTT TCACCGAAAA TCATCTTGAA
               951
                    CGATGCGCCG AAATGGGCGG TCATGCTGGA GACCGAGTGG CAGGACGGCG
              1001
                    AATGGTTCGA GGGCAGGCTG GCGCAGGAAT GGCTGGATAA GGGCGTTGCC
              1051
                    ACCAATCGGG AACAGGTTGC CGCGCTGGAG ACAGAGCTGA AGCAGAAACC
                    GGCGCAACTG CTTATCGGCG TGCGCGCCCA AACTGTGCCG GACCGCGGCG
              1101
25
              1151
                    TGTTGCGGCA GATTGTCCGA CTCTCGGAAG CGGCGCAGGG CGGCGCGGTG
                    GTGCAGCTTT TGGCGGAACA GGGGCTTTCA GACGACCTTT CGGAAAAGCT
              1201
                    1251
                    CTGACAGGGC GGCGCAGGAA GGGCGTTTGA AAGACCAATA A
              1301
```

This corresponds to the amino acid sequence <SEQ ID 200; ORF33-1>:

30	1	MLNPSRKLVE	LVRILDEGGF	IFSGDPVQAT	EALRRVDGST	EEKIIRRAEM
	51	IDRNRMLRET	LERVRAGSFW	LWVVAATFAF	FTGFSVTYLL	MDNQGLNFFL
	101	VLAGVLGMNT	LMLAVWLAML	FLRVKVGRFF	SSPATWFRGK	DPVNQAVLRL
	151	YADEWRQPSV	RWKIGATSHS	LWLCTLLGML	VSVLLLLLVR	QYTFNWESTL
0 =	201	LSNAASVRAV	EMLAWLPSKL	GFPVPDARAV	IEGRLNGNIA	DARAWSGLLV
35	251	GSIACYGILP	RLLAWVVCKI	LLKTSENGLD	LEKPYYQAVI	RRWONKITDA
	301	DTRRETVSAV	SPKIILNDAP	KWAVMLETEW	QDGEWFEGRL	AQEWLDKGVA
	351	TNREQVAALE	TELKQKPAQL	LIGVRAQTVP	DRGVLRQIVR	LSEAAQGGAV
	401	VQLLAEQGLS	DDLSEKLEHW	RNALAECGAA	WLEPDRAAQE	GRLKDQ*

Computer analysis of this amino acid sequence gave the following results:

40 Homology with a predicted ORF from N.meningitidis (strain A)

ORF33 shows 90.9% identity over a 143aa overlap with an ORF (ORF33a) from strain A of N. meningitidis:

45	orf33.pep				LFLRVK	10 VGRFFSSPAT	20 WFRXKDPVNQA	30 VLR
75	orf33a	T.MDNOGI	NEET.VI.AGV	YCMNTT.MT AV	ווווו שמיס וש זאמ זעו		WFRGKDPVNOA	111
	011334	90	100	110	120	130	140	MTA
		70	100	110	120	130	140	
			40	50	60	70	80	90
50	orf33.pep	LYXDEW	RXTSVRWKIX	ATSHSLWLCT	LLGMLVSVLL	LLLVRQYTFN	WESTLLSNAAS	VRA
		11 111	11 111111	1111111 <u>111</u>	1111111111	111111111111	111111::::1	11
	orf33a	LYADEW	RXPSVRWKIG	ATSHSLWLCT	LLGMLVSVLL	LLLVRQYTFN	WESTLLGDSSS	VRL
		150	160	170	180	190	200	
E E								
55			100	110	120	130	140	
	orf33.pep			DARSVIEGRL	ngniadaraw	SGLLVXSIAC	XGILPRL	
			:	111:11111	111111111	11111 1111	1 1 1 1 1	
	orf33a				NGNIADARAW		YGILPRLLAWA	VCK
		210	220	230	240	250	260	
60	500	******						
	orf33a						'LNDAPKWAVMI	ETE
		270	280	290	300	310	320	

The complete length ORF33a nucleotide sequence <SEQ ID 201> is:

						•
	1 A7	TGTTGAATC	CATCCCGAAA	ACTGGTTGAG	CTGGTCCGTA	TTTTGGAAGA
	51 AC	GCGGCTTT .	ATTTTCAGCG	GCGATCCCGT	GCAGGCGACG	GAGGCTTTGC
5	101 GC 151 AT	CGCGTGGA	CGGCAGTACG	GAGGAAAAA	TCATCCGTCG	GGCGAAGATG
,	201 GT	PCGTTCTGG	TTCTCCCTCC	CCCCCCCCAC	TTGGAACGTG GTTTGCGTTT	TGCGTGCGGG
	. 251 TT	TCAGTTAC	TTATCTTCTA	ATCCACAATC	AGGGTCTGAA	NTTACCGNTT
	301 G7	TTTGGCGG	GCGTGNTGGG	CATGAATACG	CTGATGCTGG	CAGTATEGTT
	, 351 GG	CAATGTTG	TTCCTGCGCG	TGAAAGTGGG	GCGTTTTTTC	AGCAGTCCGG
10	401 CG	SACGTGGTT	TCGGGGCAAA	GACCCTGTCA	ATCAGGCGGT	GTTGCGGCTG
	451 T <i>F</i>	ATGCGGACG	AGTGGCGGCN	ACCTTCGGTA	CGTTGGAAAA	TAGGCGCAAC
	501 G1	CGCACAGC	CTGTGGCTCT	GCACGCTGCT	CGGAATGCTG	GTGTCGGTAT
	551 TG	STTGCTGCT	TTTGGTGCGG	CAATATACGT	TCAACTGGGA	AAGCACGCTG
15	601 TI	rGGGCGATT	CGTCTTCGGT	ACGGCTGGTG	GAAATGTTGG	CATGGCTGCC
13	651 TG 701 GT	CGAAACIG	GGTTTTCCCG	TGCCTGATGC	GCGGGCGGTC	ATCGAAGGTC
	701 G1 751 G0	CIGAACGG	CAATATTGCC	GATGCGCGGG	CTTGGTCGGG	GCTGCTGGTC
	901 AT	CAGIAICG	CCIGCIACG	CATCCTGCCG	CGCCTCTTGG CGGCTTGGAT	CITGGGCGGT
	851 NO	NNNNNTCN	NNCCNTCATC	CAAGCGAAAA	AGAACAAAAT	TTGGAAAAGC
20	901 GA	TACGCGTC	GGGAAACCGT	GTCCGCCGTT	TCGCCGAAAA	TCCTCTTC A
		ATGCGCCG	AAATGGGCGG	TCATGCTGGA	GACCGAATGG	CAGGACGCC
	1001 AF	ATGGTTCGA	GGGCAGGCTG	GCGCAGGAAT	GGCTGGATAA	CCCCTTCCC
	1051 GC	CAATCGGG	AACAGGTTGC	CGCGCTGGAG	ACAGAGCTGA	AGCAGAAACC
	1101 GG	SCGCAACTG	CTTATCGGCG	TGCGCGCCCA	AACTGTGCCC	GACCGCGCCG
25	1151 TG	STTGCGGCA	GATCGTCCGA	CTTTCGGAAG	CGGCGCAGGG	CGGCGCGGTG
	1201 GT	GCANCTTT	TGGCGGAACA	GGGGCTTTCA	GACGACCTTT	CGGAAAAGCT
*	1251 GG	BAACATTGG	CGTAACGCGC	TGACCGAATG	CGGCGCGCG	TGGCTGGAAC
	1301 CC	CGACAGAGC	GGCGCAGGAA	GGCCGTCTGA	AAACCAACGA	CCGCACTTGA
	This encodes a pro-	tein havino	amino acid	sequence <	SEU ID 202	、 .
	Timb checado a pro-	tom navme	, attitio acid	sequence <		•
30	1 MI	NPSRKLVE	LUBITERCE.	TECCHOUCAT	EALRRVDGST	EEVIIDDMA.
50	· 51 II	RNRMI.RET	LERVRACSEW	TESCOPVQAT	XTXFSVTYLL	MDVOCINER
	101 VI	AGVXGMNT	I.MI.AVWI.AMI.	FIRVKVCRFF	SSPATWFRGK	DEMONUS DI
	151 YA	DEWRXPSV	RWKIGATSHS	LWLCTLLGMI.	VSVLLLLLVR	OYTENMESTI
	201 LG	SDSSSVRLV :	EMLAWLPAKL	GFPVPDARAV	IEGRLNGNIA	DARAWSGLLV
35	251 GS	SIACYGILP	RLLAWAVCKI	LXXTSENGLD	LEKXXXXXXI	RRWONKITDA
	301 DI	RRETVSAV	SPKIVLNDAP	KWAVMLETEW	ODGEWFEGRL	AOEWLDKGVA
	351 AN	REQVAALE	TELKQKPAQL	LIGVRAQTVP	DRGVLROIVR	LSEAAOGGAV
	401 VX	CLLAEQGLS	DDLSEKLEHW	RNALTECGAA	WLEPDRAAQE	GRLKTNDRT*
	ORF33a and ORF3	3-1 show	94 1% ident	ity in AAA oo	overlon	
		,5 1 bilow .	74.170 Ideili	ity iii 777 aa	overiap.	
40		•	10	20	30 4	0 50 40
10	orf33a.pep	MINPSR				0 50 60 TEEKIIRRAKMIDRNRMLRET
		111111				
	orf33-1	MLNPSR	KLVELVRILDE	GGFIFSGDPVC	ATEALRRVDGS	TEEKIIRRAEMIDRNRMLRET
			10	20		0 50 60
45						
	622		70	80	90 10	0 110 120
	orf33a.pep	LERVRA	GSFWLWVAAAT	'FAFXTXFSVTY	LLMDNQGLNFE	LVLAGVXGMNTLMLAVWLAML
	orf33-1	111111				
50	01133 1	DEKVKA	70	80	90 10	LVLAGVLGMNTLMLAVWLAML
					30 10	0 110 120
	*	•	130	140 1	.50 16	0 170 180
	orf33a.pep	FLRVKV	GRFFSSPATWE		RLYADEWRXPS	VRWKIGATSHSLWLCTLLGML
		111111	пинин	ПППППП	1111111111111	
55	orf33-1	FLRVKV	GRFFSSPATWF	RGKDPVNQAVI	RLYADEWROPS	VRWKIGATSHSLWLCTLLGML
			130		.50 16	
	522				10 22	0 230 . 240
60	orf33a.pep	VSVLLL	LLVRQYTFNWE	STLLGDSSSVR	LVEMLAWLPAK	LGFPVPDARAVIEGRLNGNIA
UU	orf33-1	Veviii			:	
	01133-1	יוויויו א כי א	190			LGFPVPDARAVIEGRLNGNIA
			190	200 2	10 22	0 230 240
			250	260 2	70 28	0 .290 300
65	orf33a.pep	DARAWS			KILXXTSENGI	0 290 300 DLEKXXXXXXIRRWONKITDA
_		111111	1111111111	11111111:11		

PCT/IB98/01665

-158-

	orf33-1	DARAWSGLLVGSIA 250	CYGILPRLLA 260	WVVCKILLKT 270	SENGLDLEKE 280	PYYQAVIRRWQ 290	NKITDA 300
5	orf33a.pep	310 DTRRETVSAVSPKI DTRRETVSAVSPKI 310	::::::::::::::			350 VLDKGVAANRE : VLDKGVATNRE 350	11111
10	orf33a.pep	370 TELKQKPAQLLIGT TELKQKPAQLLIGT 370			1111111	11111111111	
15 20	orf33a.pep orf33-1	430 RNALTECGAAWLE : RNALAECGAAWLE 430	1111111111	1		,	

Homology with a predicted ORF from N.gonorrhoeae

WO 99/24578

ORF33 shows 91.6% identity over a 143aa overlap with a predicted ORF (ORF33.ng) from N. gonorrhoeae:

25	orf33.pep	LFLRVKVGRFFSSPATWFRXKDPVNQAVLR.	30				
	orf33ng	LMDNQGLNFFLVLAGVLGMNTLMLAVWLATLFLRVKVGRFFSSPATWFRGKGPVNQAVLR	100 				
30	orf33.pep	LYXDEWRXTSVRWKIXATSHSLWLCTLLGMLVSVLLLLLVRQYTFNWESTLLSNAASVRA	90				
	orf33ng		160				
35	orf33.pep	VEMLAWLPSKLGFPVPDARSVIEGRLNGNIADARAWSGLLVXSIACXGILPRL					
	orf33ng		220				

An ORF33ng nucleotide sequence <SEQ ID 203> was predicted to encode a protein having amino acid sequence <SEQ ID 204>:

```
40 IDDRDRMLRD TLERVRAGSF WLWVVVASMM FTAGFSGTYL LMDNQGLNFF

LVLAGVLGMN TLMLAVWLAT LFLRVKVGRF FSSPATWFRG KGPVNQAVLR

101 LYADQWRQPS VRWKIGATAH SLWLCTLLGM LVSVLLLLLV RQYTFNWEST

151 LLSNAASVRA VEMLAWLPSK LGFPVPDARA VIEGRLNGNI ADARAWSGLL

201 VGSIVCYGIL PRLLAWVVCK ILLKTSENGL DLEKTYYQAV IRRWQNKITD

251 ADTRRETVSA VSPKIVLNDA PKWALMLETE WQDGQWFEGR LAQEWLDKGV

301 AANREQVAAL ETELKQKPAQ LLIGVRAQTV PDRGVLRQIV RLSEAAQGGA

45 351 VVQLLAEQGL SDDLSEKLEH WRNALTECGA AWLEPDRVAQ EGRLKDQ*
```

Further sequence analysis revealed the following DNA sequence <SEQ ID 205>:

	1 51 101	accacatage	attttcagcg	ACTGgttgag gcgatcctgt GAggAaaaa gcgggACaCg	gcaggcgacg tcttccqtcg	GGCGGAGAtg
50	151 201 251 301 351	gtcgtTctgG TTTCAGgcac GTTTTggcgG	TTATGGGTGG ttatCttCTG GAGTGTtggG TTCCTGCGCG	TggtggCAtC ATGGACaatC CATGaatacG TGAAAGTGGG	gATGATGTtt AGGGGCtGAA ctgATGCTGG ACGGTTTTTC	accgccgar TtTCTTTTA CAGTATGGtt AGCAGTCCGG
55	401 451 501 551 601	CGACGTGGTT TATGCGGACC GGCGCACAGC TGCTGCTGCT TTGAGCAATG	TCGGGGCAAA AGTGGCGGCA TTGTGGCTCT TTTGGTGCGG CCGCTTCGGT	GGCCCTGTAA ACCTTCGGTA GCACGCTGCT CAATATACGT ACGCGCGGTG	ATCAGGCGGT CGATGGAAAA CGGAATGCTG TCAACTGGGA GAAATGTTGG	TAGGCGCTG TAGGCGCAAC GTGTCGGTAT AAGCACGCTG CATGGCTGCC
60	651 701 751	GTCTGAACGG	CAATATTGCC	TCCCCGATGC GATGCGCGGG CATCCTGCCG	CTTGGTCGGG	GCTGCTGGTC CTTGGGTAGT

5	851 CC 901 GF 951 CG 1001 AF 1051 GC 1101 GC 1151 TC 1201 GT	TGTAAAATC CTTTTGAAAA TTATTATCA GGCGGTCATC ATACGCGTC GGGAAACCGT ATGCGCCG AAATGGGCGC ATGGTTCGA GGGCAGGCTG CCAATCGGG AACAGGTTGC GCGCAACTG CTTATCGGCG GCTGCGGCA GATTGTGCGG TGCAGCTT TGGCGGAACA GAACATTGG CGTAACGCGC	CGCCGCTGGC GTCCGCCGTT TCATGCTGGA GCGCAGGAAT CGCGCTGGAG TACGCGCCCA CTTTCGGAAG GGGGCTTTCA	AGAACAAAT TCGCCGAAAA GACCGAGTGG GGCTGGATAA ACAGAGCTGA AACTGTGCCG CGGCGCAGGG GACGACCTTT CGGCGCGCGCG	CACCGATGCG TCGTCTTGAA CAGGACGGCC GGGCGTTGCC AGCAGAAACC GACCGGGGCG CGGCGCGCGTG CGGAAAAGCT TGGCTTGAGC	:
	This encodes a pro	tein having amino aci	d sequence <	SEQ ID 206	; ORF33ng-	1>:
15 20	1 MI 51 II 101 VI 151 Y7 201 LS 251 GS 301 DI	LNPSRKLVE LVRILNKGGE DRDRMLRDT LERVRAGSEW LAGVLGMNT LMLAVWLATI ADQWRQPSV RWKIGATAHS SNAASVRAV EMLAWLPSKI SIVCYGILP RLLAWVVCKI TRRETVSAV SPKIVLNDAE NREQVAALE TELKQKPAQI	IFSGDPVQAT LWVVVASMMF FLRVKVGRFF LWLCTLLGML GFPVPDARAV LLKTSENGLD KWALMLETEW	EALRRVDGST TAGFSGTYLL SSPATWFRGK VSVLLLLLVR IEGRLNGNIA LEKTYYQAVI QDGQWFEGRL	EEKIFRRAEM MDNQGLNFFL GPVNQAVLRL QYTFNWESTL DARAWSGLLV RRWQNKITDA AQEWLDKGVA	
20		OLLAEQGLS DDLSEKLEHW				
•	ORF33ng-1 and O	RF33-1 show 94.6% i	dentity in 44	6 aa overlap:		
25	orf33-1.pep orf33ng-1	10 MLNPSRKLVELVRILE MLNPSRKLVELVRILN 10	:::::::::::::::::::::::::::::::::::::::	QATEALRRVDG QATEALRRVDG	STEEKIIRRAE : STEEKIFRRAE	1111:1111:1
30	orf33-1.pep	70 LERVRAGSFWLWVVAF	:: I : I I I	YLLMDNQGLNF YLLMDNQGLNF	1111111111111	TLMLAVWLAML
35	orf33-1.pep orf33ng-1	130 FLRVKVGRFFSSPATV FLRVKVGRFFSSPATV	vergkdpvnqav	LRLYADEWRQP	1111111111111	SLWLCTLLGML
40		130	140	150 1	60 17	0 180
	orf33-1.pep	190 VSVLLLLLVRQYTFNV	vestllsnaasv	RAVEMLAWLPS		VIEGRLNGNIA
45	orf33ng-1	VSVLLLLLVRQYTFNV 190	vestllsnaasv	RAVEMLAWLPS:		VIEGRLNGNIA
50	orf33-1.pep orf33ng-1		(GILPRLLAWVV (GILPRLLAWVV	CKILLKTSENG CKILLKTSENG	IIIII IIIII LDLEKTYY <u>Q</u> AV	IRRWQNKITDA
55	orf33-1.pep orf33ng-1	250 310 DTRRETVSAVSPKIII DTRRETVSAVSPKIVI 310	320 LNDAPKWAVMLE LNDAPKWALMLE	330 3 TEWQDGEWFEG : TEWQDGQWFEG	11111111111111	0 360 ATNREQVAALE :
60	orf33-1.pep orf33ng-1	370 TELKQKPAQLLIGVRI TELKQKPAQLLIGVRI 370	AQTVPDRGVLRQ AQTVPDRGVLRQ	IVRLSEAAQGG IVRLSEAAQGG	нинийн	SDDLSEKLEHW
65	orf33-1.pep	430 RNALAECGAAWLEPDI				

orf33ng-1 RNALTECGAAWLEPDRVAQEGRLKDQX 430 440

Based on the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 25

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:

```
..CAGAAGAGTT TGTCGAGAAT TTCTTTATGG GGTTTGGGCG GCGTGTTTTT
                        CGGGGTGTCC GGTCTGGTAT GGTTTTCTTT GGGCGTTTCT TT.GAGTGCG
                  51
10
                        CCTGTTTTTC GGGTGTTTCT TTTCGGGGTT CGGGACGGGG GACGTTTGTG
                101
                        GGCAGTACGG GGGTTTCTTT GAGTGTGTTT TCAGCTTGTG TTCC.GGCGT
                 151
                        CGTCCGGCTG CCTGTCGGTT TGAGCTGTGT CGGCAGGTTG CG..GTTTGA
                 201
                        CCCGGTTTTT CTTGGGTGCG GCAGGGGACG TCATTCTCCT GCCGCTTTCG
                 251
                        TCTGTGCCGT CCGGCTGTGC GGGTTCGGAT GAGGCGGCGT GGTGGTGTTC
15
                 301
                        GGGTTGGGCG GCATCTTGT\underline{\underline{T}} CCGACTACGC CGTTTGGCAG CCAGAATTCG
                 351
                        GTTTCGCGGG GGCTGTCGGT GTGTTGCGGT TCGGCTTGAA GGGTTTTGTC
                 401
                 451
                        GTCC..
```

This corresponds to the amino acid sequence <SEQ ID 208; ORF34>:

```
20 1 .QKSLSRISLW GLGGVFFGVS GLVWFSLGVS XECACFSGVS FRGSGRGTFV
51 GSTGVSLSVF SACVXGVVRL PVGLSCVGRL XXLTRFFLGA AGDVILLPLS
101 SVPSGCAGSD EAAWWCSGWA ASCPTTPFGS QNSVSRGLSV CCGSA*RVLS
151 S..
```

Further work revealed the complete nucleotide sequence <SEQ ID 209>:

1	ATGATGATGC	CGTTCATAAT	GCTTCCTTGG	ATTGCkGGTG	
_			CCAGAATTTC		TTGGGCGGCG
					CGTTTCTTTG
	GGCTGCGCCT	GTTTTTCGGG	TGTTTCTTTT	00000	GACGGGGGAC
	GTTTGTGGGC	AGTACGGGGG	TTTCTTTGAG		
			1000	0.0.0	AGGTTGCGGT
	TTGACCCGGT	TTTTCTTGGG			CGCTGCCGCT
	TTCGTCTGTG	CCGTCCGGCT	01000000		
401	GTTCGGGTTG	GGCGGCATCT			CAGCCAGAAT
451	TCGGTTTCGC	GGGGGCTGTC	001010110		GAAGGGTTTT
501	GTCGCCGTTC	GGGTTGAATG			AATGCGCCGA
551	TGGCGGCGAT	ACAGATGAGC			TTTGGGGGTC
601	AGCCTGAAGG	GTTTGTTCGG			TGCTTTTGGG
651	GTGTCGGGCA				GCCGAGTCAG
701	CGTTGGACGT				
751	GGTGCTGACT				
801	CCATAACGTA	• • • • • • •			
851	GTGGCGGGGC				
901	AGTGTCGCCG		• • • • • • • • • • • • • • • • • • • •		
951	TATAGTTGTA	CACGCCTTCG			
1001	ACGAACTGTT				
1051	GCGGTTGTAG	•			- ·
1101	TGTTTTGGCG		• • • • • • •		
1151	ACGTTGTCGT				
1201	CGCGCCGACG		•••••		
1251	CAAGGCTGAA				
1301	TTCATCGGGT		TTGGGCGTTT	CAGACGGCAT	TGCTTTGCGC
1351	CATGCCGTCT	GA			
	451 501 551 601 651 701 751 801 851 901 951 1001 1151 1101 1151 1201 1251	51 GCCGGGTCAG 101 TGTTTTCGG 151 GGCTGCGCCT 201 GTTTGTGGGC 251 CGGCGTCGTC 301 TTGACCCGGT 351 TTCGTCTGTG 401 GTTCGGGTTG 451 TCGGTTTCGC 501 GTCGCCGTTC 551 TGGCGGCGAT 601 AGCCTGAAGG 651 GTGTCGGGCA 701 CGTTGGACGT 751 GGTGCTGACT 801 CCATAACGTA 851 GTGGCGGGCC 901 AGTGTCGCCG 951 TATAGTTGTA 1001 ACGAACTGTT 1051 GCGGTTGTAG 1101 TGTTTTGGCG 1151 ACGTTGTCGCG 1251 CAAGGCTGAA 1301 TTCATCGGGT	51 GCCGGGTCAG AATAGGTTGT 101 TGTTTTTCGG GGTGTCCGGT 151 GGCTGCGCT GTTTTTCGGG 201 GTTTGTGGGC AGTACGGGGG 251 CGGCGTCGTC CGGCTGCCTG 301 TTGACCCGGT TTTTCTTGGG 351 TTCGTCTGTG CCGTCCGGCT 401 GTTCGGGTTG GGCGGCATCT 451 TCGGTTTCGC GGGGGCTGTC 501 GTCGCCGTTC GGGTTGAATG 551 TGGCGGCAT ACAGATGAGC 601 AGCCTGAAGG GTTTGTTCGG 651 GTGTCGGGCA ATGCCGTCTG 701 CGTTGGACGT AGTTTTGGTA 751 GGTGCTGACT TTTTGGGTAA 801 CCATAACGTA GGTTACGTTG 851 GTGCGGGCC TGATGCCCAA 901 AGTGTCGCC GCGATGTCGC 951 TATAGTTGTA CACGCCTTCG 1001 ACGAACTGTT TTTCGCCTTC 1051 GCGGTTGTAG CCGACGACGG 1101 TGTTTTGGCG CAGATAGGAA 1151 ACGTTGTCGT CGGTTTGCGC 1201 CGCGCCGACG GCGGCGCTTCC 1251 CAAGGCTGAA AATGGCGGCAA 1301 TTCATCGGGT GCTTCCTTTC	51 GCCGGGTCAG AATAGGTTGT CCAGAATTTC 101 TGTTTTCGG GGTGTCCGGT TTGGTATGGT 151 GGCTGCGCT GTTTTTCGGG TGTTTCTTTT 201 GTTTGTGGGC AGTACGGGGG TTTCTTTGAG 251 CGGCGTCGTC CGGCTGCCTG TCGGTTTGAG 301 TTGACCCGGT TTTTCTTGGG TGCGGCAGGG 351 TTCGTCTGTG CGCTCCGGCT TGTCGGGTTC 401 GTTCGGGTTG GGCGGCATCT TGTCCGACTA 451 TCGGTTTCGC GGGGGCTGTC GGTGTGTTGC 501 GTCGCCGTTC GGGTTGAATG TGCTGACGAT 551 TGGCGGCAT ACAGATGAGC AATACGGCGC 601 AGCCTGAAGG GTTTGTTCGG TTTTTTTTTGCC 701 CGTTGGACGT AGTTTTGGTA GAGGGGGTTC 701 CGTTGGACGT AGTTTTGGTA TCTCGCGCTG 801 CCATAACGTA GGTTACGTTG CCGTAGGTAA 851 GTGCCGGGC TGATGCCCAA CAGCGTGGCG 901 ACTGTCGCC GCGATGTCGC CGGCAGTGCG 901 ACTGTCGCC GCGATGTCGC CGGCAGTGCG 1001 ACGAACTGTT TTTCGCCTTC GGTGGCGACT 1001 ACGAACTGTT TTTCGCCTTC GGTGGCGACT 1001 TGTTTTGGC CCACGACGA AGATTTGGGG 1101 TGTTTTGGCC CAGACTAGAA CGGCGGTGGT 1201 CGCGCCGACG GCGGCGCTTC CGATTACTGC 1251 CAAGGCTGAA AATGGCGGCA ATCAGGGTGC 1301 TTCATCGGGT GCTTCCTTC TTGGGCGTTT	101 TGTTTTCGG GGTGCCGT TTGGTATGGT TTTTTTGGGT TTTTTTTGG GGTGTCCGGT TTGTTTCTTT CGGGGTTCGGT TTTTTTTT

This corresponds to the amino acid sequence <SEQ ID 210; ORF34-1>:

1	MMMPFIMLPW	IAGVPAVPGQ	NRLSRISLWG	LGGVFFGVSG	LVWFSLGVSL
101	GCACFSGVSF LTRFFLGAAG SVSRGLSVCC	DGSPLPLSSV	PSGCAGSDEA	AWWCSGWAAS	CPTTPFGSQN

		201	SLKGLFGFFA	ILIVLLGCRA	MPSEGGSDGI	AESALDVVLV	EGDDFLYADG
		251	GADFLGNLRL	FFGGEDAHNV	GYVAVGNDFD	ARLCGGADAQ	QRGADFGCVP
•	•	301	SVAGDVAGSA	RQGGDGNIVV	HAFGGLFGTC	NLTDELFFAF	GGDLSEQQQV
		351	AVVADDGDLG	RVAFGLVVLA	QIGTGGGFDT	QRHNVVVGLR	AGGSAVDGGF
5		401	RADGGASDYC	ADAAAKGKAE	NGGNQGADGV	RFGFHRVLPF	LGVSDGIALR
=		451	HAV*				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF34 shows 73.3% identity over a 161aa overlap with an ORF (ORF34a) from strain A of N.

10 meningitidis:

				10	20	30	
	orf34.pep		. Q	KSLSRISLWG	LGGVFFGVSGL	VWFSLGVSXE	CAC
			1	1 11 1111	111 []]]	T1111111111	TII
	orf34a	MMXPXIMLPW:	IAGVPAVPGQ	KRLSRXSLWG:	LGGXFFGVSGL	VWFSLGVSXS	LGVSXGCAC
15		10	20	30	40	50	60
_					•		
	*	40	50	60	70 .	80	90
	orf34.pep	FSGVSFRGSGI	RGTFVGSTGV	SLSVFSACVX	GVVRLPVGLSC	VGRLXX	-LTRFFLGA
	,		11111111		1:: :1	::	111 1 11:
20	orf34a	FSGVSFRGSG	RGTFVGSTGV	SLSVFSACA-	PASSGC	LSVXAVSAGC	GLTRXFXGA
•		70	80		90	100	110
							•
		100	110	120	130	140	150
- T-	orf34.pep	AGDVILLPLS:	SVPSGCAGSD	EAAWWCSGWA	ASCPTTPFGSQ	NSVSRGLSVC	CGSAXRVLS
25		111 1111	111111111111	1 1 11111		11111111111	111: 1111
	orf34a	AGDGSPLPLS:	SVPSGCAGAD	EEAXXCSGWA.	ASCPTTPFGSQ	NSVSRGLSVC	CGSVWRVLS
		120	130	140	150	160	170
30	orf34.pep	S	•				
	orf34a		_		GVSLKGLFXFE		AMPSEGGSD
		180	190	200	210	220	230

The complete length ORF34a nucleotide sequence <SEQ ID 211> is:

35		1	ATGATGATNC	CGTTNATAAT	GCTTCCTTGG	ATTGCGGGTG	TGCCTGCCGT
	•	51	GCCGGGTCAG	AAGAGGTTGT	CGAGAANTTC	TTTATGGGGT	TTAGGCGGCN
		101	TGTTTTTCGG	GGTGTCCGGT	TTGGTATGGT	TTTCTTTGGG	CGTTTCTNTT
		151	TCTTTGGGTG	TTTCTNTGGG	CTGTGCCTGT	TTTTCGGGTG	TTTCTTTTCG
		201	GGGTTCGGGA	CGGGGGACGT	TTGTGGGCAG	TACNGGGGTT	TCTTTGAGTG
40	•	251	TGTTTTCAGC	TTGTGCTCCG	GCGTCGTCCG	GCTGCCTGTC	GGTTTNAGCT
		301	GTGTCGGCAG	GTTGCGGTTT	GACCCGGNTT	TTCTTNGGTG	CGGCAGGGGA
		351	CGGCAGTCCG	CTGCCGCTTT	CGTCTGTGCC	GTCCGGCTGT	GCGGGTGCGG
•		401	ATGAGGAGGC	GTNGTNGTGT	TCGGGTTGGG	CGGCATCTTG	TCCGACTACG
		451	CCGTTTGGCA	GCCAGAATTC	GGTTTCGCGG	GGGCTGTCGG	TGTGTTGCGG
45		501	TTCGGTNTGG	AGGGTTTTGT	CNCCGTTCGG	GTNGAATGTG	CTGACGATGC
		551	CTATTGCCAA	TGCGCCGATG	GCGGTGATAC	AGATGAGCAA	TACGGCGCGT
		601	ATCAGGAGTT	TGGGGGTCAG	CCTGAAGGGT	TTGTTCNGTT	TTTTTGCCAT
		651	TTTGATTGTG	CTTTTGGGGT	GTCGGGCAAT	GCCGTCTGAA	GGCGGTTCAG
		701	ACGGCATTGC	CGAGTCAGCG	TTGGACGTAG	TTTNGGTAGA	GGGTGATGAC
50		751	TTTTTGTACG	CCGACGGTGG	TGCTGACTTT	TTGGGTAATC	TGCGCCTGTT
		801	CTTCGGGGGT	GAGGATGCCC	ATAACGTAGG	TTACGTTGCC	GTAGGTAACG
•		851	ATTTTGACGC	GCGCCTGTGT	GGCGGGGCTG	ATGCCCAACA	GCGTGGCGCG
		901	GACTTTGGAT	GTGTTCCAAG	TGTCGCCGGC	GATGTCGCCG	GCAGTGCGCG
		951	GCAGGGAGGC	GACGGTAATG	TANTTGTACA	CGCCTTCGGC	GGCCTGTTCG
55		1001	GAACGTGCAA	TCTGACCGAC	GAACTGTTTC	TCGCCTTCGG	TGGCGACTTG
		1051	TCCGAGCAGC	AGCAGGTGGC	GGTTGTAGCC	GACAACGGAG	ATTTGGGGCG
	•	1101	TGTANCCTTT	GGTTTGGTTG	TTTTGGCGCA	GATAGGAGCG	GGCGGTGGTT
		1151	TCGATACGCA	GCGCCATTAC	GTTGTCGTCG	GTTNGCGCGC	CGGTGGTTCG
		1201	GCGGTCGACG	GCGGATTTCG	CGCCGACCGC	CGCGCCGCCG	ACGACTGCGC
60		1251	TGACGCAGCC	GCCGAGGGCA	AGGCTGAGGA	CGGCGGCAGT	CAGGGTGCGG
		1301	ACGGTGTGCG	GTTTGGGTTT	CATCGGGTGC	TTCCTTTCTT	GGGCGTTTCA
		1351	GACGGCATTG	CTTTGCGCCA	TGCCGTCTGA		

This encodes a protein having amino acid sequence <SEQ ID 212>:

	1	MMXPXIMLPW	IAGVPAVPGQ	KRLSRXSLWG	LGGXFFGVSG	LVWFSLGVSX
	51	SLGVSXGCAC	FSGVSFRGSG	RGTFVGSTGV	SLSVFSACAP	ASSGCLSVXA
	101	VSAGCGLTRX	FXGAAGDGSP	LPLSSVPSGC	AGADEEAXXC	SGWAASCPTT
5	151	PFGSQNSVSR	GLSVCCGSVW	RVLSPFGXNV	LTMPIANAPM	AVIQMSNTAR
	201	IRSLGVSLKG	LFXFFAILIV	LLGCRAMPSE	GGSDGIAESA	LDVVXVEGDD
	251	FLYADGGADF	LGNLRLFFGG	EDAHNVGYVA	VGNDFDARLC	GGADAQQRGA
	301	DFGCVPSVAG	DVAGSARQGG	DGNVXVHAFG	GLFGTCNLTD	ELFLAFGGDL
	351	SEQQQVAVVA	DNGDLGRVXF	GLVVLAQIGA	GGGFDTQRHY	VVVGXRAGGS
10	401	AVDGGFRADR	RAADDCADAA	AEGKAEDGGS	QGADGVRFGF	HRVLPFLGVS
	451	DGTAT.RHAV*				

ORF34a and ORF34-1 show 91.3% identity in 459 aa overlap:

	•===	•
15	orf34a.pep	10 20 30 40 50 60 MMXPXIMLPWIAGVPAVPGQKRLSRXSLWGLGGXFFGVSGLVWFSLGVSXSLGVSXGCAC
	orf34-1	MMMPFIMLPWIAGVPAVPGQNRLSRISLWGLGGVFFGVSGLVWFSLGVSLGCAC 10 20 30 40 50
20	orf34a.pep	70 80 90 100 110 120 FSGVSFRGSGRGTFVGSTGVSLSVFSACAPASSGCLSVXAVSAGCGLTRXFXGAAGDGSP
	orf34-1	FSGVSFRGSGRGTFVGSTGVSLSVFSACVPASSGCLSVXAVSAGCGLTRFFLGAAGDGSP 60 70 80 90 100 110
25	orf34a.pep	130 140 150 160 170 180 LPLSSVPSGCAGADEEAXXCSGWAASCPTTPFGSQNSVSRGLSVCCGSVWRVLSPFGXNV
30	orf34-1	LPLSSVPSGCAGSDEAAWWCSGWAASCPTTPFGSQNSVSRGLSVCCGSAXRVLSPFGLNV 120 130 140 150 160 170
30	orf34a.pep	190 200 210 220 230 240 LTMPIANAPMAVIQMSNTARIRSLGVSLKGLFXFFAILIVLLGCRAMPSEGGSDGIAESA
35	orf34-1	
	orf34a.pep	250 260 270 280 290 300 LDVVXVEGDDFLYADGGADFLGNLRLFFGGEDAHNVGYVAVGNDFDARLCGGADAQQRGA
40	orf34-1	LDVVLVEGDDFLYADGGADFLGNLRLFFGGEDAHNVGYVAVGNDFDARLCGGADAQQRGA 240 250 260 270 280 290
45	orf34a.pep	310 320 330 340 350 360 DFGCVPSVAGDVAGSARQGGDGNVXVHAFGGLFGTCNLTDELFLAFGGDLSEQQQVAVVA
43	orf34-1	DFGCVPSVAGDVAGSARQGGDGNIVVHAFGGLFGTCNLTDELFFAFGGDLSEQQQVAVVA 300 310 320 330 340 350
50	orf34a.pep	370 380 390 400 410 420 DNGDLGRVXFGLVVLAQIGAGGGFDTQRHYVVVGXRAGGSAVDGGFRADRRAADDCADAA
	orf34-1	:
55	orf34a.pep	430 440 450 460 AEGKAEDGGSQGADGVRFGFHRVLPFLGVSDGIALRHAVX
	orf34-1	: : : :
60		

Homology with a predicted ORF from N.gonorrhoeae

ORF34 shows 77.6% identity over a 161aa overlap with a predicted ORF (ORF34.ng) from N. gonorrhoeae:

	orf34ng		60
5	orf34.pep	FSGVSFRGSGRGTFVGSTGVSLSVFSACVXGVVRLPVGLSCVGRLXXLTRFFLGA	90
3	orf34ng	FSGVSFRGSGWGAFVGSTGVSLSVFSACVPVPVNESAARAASEGRGLTRFFLGA	114
	orf34.pep	AGDVILLPLSSVPSGCAGSDEAAWWCSGWAASCPTTPFGSQNSVSRGLSVCCGSAXRVLS	150
10	orf34ng	AGDGSPLPLSSVPSGCAGSDEAAWWCSGWAASCPTAPFGSQNSVSRGLSVCCGSVWRVLS	174
	orf34.pep	s	175
	orf34ng	${\tt PFGLNVLTMPTANAPMAVIQMSNTARIRSLGVSLKGLFGFFAILIVLLGCRAMPSEGGSD}$	234
15	The complete length	h ORF34ng nucleotide sequence <seq 213="" id=""> is:</seq>	
	1 AT	GATGATGC CGTTCATAAT GCTTCCTTGG ATTGCGGGTG TGCCTGCCGT	
	51 GC	CGGGTCAA AAGAGGTTGT CGAGAATCTC TTTATGGGGT TTGGCCGGCG	
	101 TG 151 TC	TTTTTCGG GGTGTCCGGT TTGGTATGGT TTTCTTTGGG CGTTTCTTTT TTTGGGTG TTTCTTTGGG CTGCGCCTGT TTTTCGGGTG TTTCTTTTCG	
20	201 GG	GTTCGGGA TGGGGGGCGT TTGTGGGCAG TACGGGGGTT TCTTTGAGTG	
20	251 TG	TTTTCAGC TTGTGTTCCG GTGCCGGTTA ACGAATCGGC TGCCCGGGCC	
	301 GC	ATCCGAAG GGCGCGGTTT gACCCGGTTT TTCTTGGGTG CGGCAGGGGA	
	351 CG	GCAGTCCG CTGCCGCTTT CTTCTGTGCC GTCCGGCTGT GCGGGTTCGG	
25	401 AT 451 CC	GAGGCGGC GTGGTGGTGT TCGGGTTGGG CGGCATCTTG TCCGACGGCG GTTTGGCA GCCAGAATTC GGTTTCGCGG GGGCTGTCGG TGTGTTGCGG	
23	501 TT	CGGTTTGG AGGGTTTTGT CGCCGTTCGG GTTGAATGTG CTGACGATGC	
	551 CT	ACTGCCAA TGCGCCGATG GCGGTGATAC AGATGAGCAA TACGGCGCGT	
	601 AT	CAGGAGTT TGGGGGTCAG CCTGAAGGGT TTGTTCGGTT TTTTTGCCAT	
30	651 TT 701 AC	TGATTGTG CTTTTGGGGT GTCGGGCAAT GCCGTCTGAA GGCGGTTCAG GGCATTGC CGAGTCAGCG TTGGACGTAG TTTTGGTAGA GGGTAATGAC	
50	751 TT	TTTGTACG CCGAcggTGG TGCTGACTTT TTGGGTAGTC TGCGCCTGTT	
	801 CT	TCGGGGGT GAGGATGCCC ATAACGTAGG TTACATTGCC GTAGGTAATG	
. •		TTTGACGC GCGCCTGTGT AGCGGGGCTG ATGCCCAGCA GcgtgGCGCG	
35 -		CTTTGGAC GTGTTCCAAG TGTCGCCGGC GATGTCGCCC GCAGTGCGCG AGGGAGGC GACGGTAATG TAGTTGTATA CGCCTTCGGC GGCCTGTTCG	
33	1001 GA	ACGTGCAA TCTGACCGAC GAACTGTTTT TCGCCTTCGG TGGCGACTTG	
	1051 TC	CGAGCAGC AGCAGGTGGC GGTTGTAGCC GACGACGGAG ATTTGGGGCG	
	1101 TG	TAGCCTTT GGTTTGGTTG TTTTGGCGCA GGTAGGAACG GGCGGTGGTT	
40	1151 TC 1201 gC	GATACGCA ACGCCATAAC GTtgtCATCG GTTtgcgcgc CGGTGGTTcg GGTCGATG ACGGATTTTG CGCCGACGGC GGCCCCGCCG ACGACTGCGC	•
40		AAGCAGCC GCCGAGGGCA AGGCTGAGGA CGGCGCAAT CAGGGTGCGG	
	1301 AC	GGTGTGTG GTTTGGGTTT CATCGGGGAC TTCCTTTCTT GGGCGTTTCA	
	1351 GA	CGGCATTG CTTTGCGCCA TGCCGTCTGA	
	This encodes a prot	tein having amino acid sequence <seq 214="" id="">:</seq>	
45	. 1 MM	MPFIMLPW IAGVPAVPGQ KRLSRISLWG LAGVFFGVSG LVWFSLGVSF	
10	51 SI	GVSLGCAC FSGVSFRGSG WGAFVGSTGV SLSVFSACVP VPVNESAARA	
	101 AS	EGRGLTRF FLGAAGDGSP LPLSSVPSGC AGSDEAAWWC SGWAASCPTA	
		GSQNSVSR GLSVCCGSVW RVLSPFGLNV LTMPTANAPM AVIQMSNTAR	
50		SIG <u>VSLKG LFGFFAILIV LL</u> GCRAMPSE GGSDGIAESA LDVVLVEGND YADGGADF LGNLRLFFGG EDAHNVGYIA VGNDFDARLC SGADAQQRGA	
50	301 DE	GRVPSVAG DVARSARQGG DGNVVVYAFG GLFGTCNLTD ELFFAFGGDL	
	351 SE	QQQVAVVA DDGDLGRVAF GLVVLAQVGT GGGFDTQRHN VVIGLRAGGS	
		DDGFCADG GPADDCAEAA AEGKAEDGGN QGADGVWFGF HRGLPFLGVS	
55	ODE2/ng and ODI	34-1 show 90.0% identity in 459 aa overlap:	
33	OKT-24118 and OKT	54-1 snow 90.0% identity in 459 as overlap.	
		10 20 30 40 4 50	
	orf34-1.pep	MMMPFIMLPWIAGVPAVPGQNRLSRISLWGLGGVFFGVSGLVWFSLGVSLGCA	IC.
60	orf34ng	MMMPFIMLPWIAGVPAVPGQKRLSRISLWGLAGVFFGVSGLVWFSLGVSFSLGVSLGCF	
00	·	10 20 30 40 50	50
		60 70 80 90 100 110	
	orf34-1.pep	FSGVSFRGSGRGTFVGSTGVSLSVFSACVPASSGCLSVXAVSAGCGLTRFFLGAAGDGS	
65	orf34ng		
0 5,	OLLOTIN	r 2042 transmant ago 1042 T24C A EAM D3WWWWY2 DGWG D.I.K.E.T.GWWG DGS	אנ

-164-

			70		80	90	100	110	120
5	orf34-1.pep orf34ng	LPLSSVE	HHHH	IIII DEAAV		111111:1	11111111111	160 SLSVCCGSAXR : SLSVCCGSVWR	
10	orf34-1.pep	 LTMPTAN	1111:1	IIII TNRMQ:	11111	1111111	11111111111	220 LGCRAMPSEGO LGCRAMPSEGO 230	111111111
15	orf34-1.pep	111111	1:1111	$\mathbf{H}\mathbf{H}\mathbf{H}$	\square	11111111	1111111:11	280 GNDFDARLCGO	111131314
20	orf34ng	300	GNDFLY 250		ADFLGN 260	LRLFFGGE 270 320	DAHNVGYIAV 280 330	GNDFDARLCS 290 340	GADAQQRGA 300 350
	orf34-1.pep	DFGCVPS	111111	GSAR(111111	IVVHAFGG	LFGTCNLTDE	LFFAFGGDLS	EQQQVAVVA
25	orf34ng	DFGRVPS	VAGDVA 310	RSAR(2GGDGN 320	VVVYAFGG 330	SLFGTCNLTDE 340	LFFAFGGDLS 350	EQQQVAVVA 360
30	orf34-1.pep orf34ng	DDGDLGR	111111	: VLAQV	: [] [] [11111111	1:1111111	400 AVDGGFRADGGI AVDDGFCADGGI 410	:1 11:11
35	orf34-1.pep orf34ng	: : AEGKAED	111111	DGVWI		11111111	450 GIALRHAVX GIALRHAVX 460		

Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be 40 useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 26

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 215>:

	1	ATGAAAACCT	TCTTCAAAAC	CCTTTCCGCC	GCCGCACTCG	CGCTCATCCT
45	51	CGCCGCCTGC	GGATT.CAAA	AAGACAGCGC	GCCCGCCGCA	TCCGCTTCTG
						TCGGCACGAC
	201	AGAAAAAAGG	CTACACCGTC	AAACTGGTCG	AGTTTACCGA	CTATGTACGC

50 This corresponds to the amino acid sequence <SEQ ID 216; ORF4>:

- 1 MKTFFKTLSA AALALILAAC G.QKDSAPAA SASAAADNGA AKKEIVFGTT 51 VGDFGDMVKE QIQAELEKKG YTVKLVEFTD YVRPNLALAE GEL

Further sequence analysis revealed the complete nucleotide sequence <SEQ ID 217>:

	1	ATGAAAACCT	TCTTCAAAAC	CCTTTCCGCC	GCCGCACTCG	CGCTCATCCT
55						TCCGCTTCTG
						CGGCACGACC
	151	GTCGGCGACT	TCGGCGATAT	GGTCAAAGAA	CAAATCCAAG	CCGAGCTGGA
						TATGTACGCC

```
251
                    CGAATCTGGC ATTGGCTGAG GGCGAGTTGG ACATCAACGT CTTCCAACAC
                301
                     AAACCCTATC TTGACGACTT CAAAAAGAA CACAATCTGG ACATCACCGA
                    AGTCTTCCAA GTGCCGACCG CGCCTTTGGG ACTGTACCCG GGCAAGCTGA
               351
                     AATCGCTGGA AGAAGTCAAA GACGGCAGCA CCGTATCCGC GCCCAACGAC
               401
 5
                451
                     CCGTCCAACT TCGCCCGCGT CTTGGTGATG CTCGACGAAC TGGGTTGGAT
                     CAAACTCAAA GACGGCATCA ATCCGTTGAC CGCATCCAAA GCGGACATCG
                501
                551
                     CCGAGAACCT GAAAAACATC AAAATCGTCG AGCTTGAAGC CGCGCAACTG
                     CCGCGTAGCC GCGCCGACGT GGATTTTGCC GTCGTCAACG GCAACTACGC
                601
                651
                     CATAAGCAGC GGCATGAAGC TGACCGAAGC CCTGTTCCAA GAACCGAGCT
10
                701
                     TTGCCTATGT CAACTGGTCT GCCGTCAAAA CCGCCGACAA AGACAGCCAA
                751
                     TGGCTTAAAG ACGTAACCGA GGCCTATAAC TCCGACGCGT TCAAAGCCTA
                801
                     CGCGCACAAA CGCTTCGAGG GCTACAAATC CCCTGCCGCA TGGAATGAAG
               851
                    GCGCAGCCAA ATAA
     This corresponds to the amino acid sequence <SEQ ID 218; ORF4-1>:
```

```
1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA AKKEIVFGTT
51 VGDFGDMVKE QIQAELEKKG YTVKLVEFTD YVRPNLALAE GELDINVFQH
101 KPYLDDFKKE HNLDITEVFQ VPTAPLGLYP GKLKSLEEVK DGSTVSAPND
151 PSNFARVLVM LDELGWIKLK DGINPLTASK ADIAENLKNI KIVELEAAQL
201 PRSRADVDFA VVNGNYAISS GMKLTEALFQ EPSFAYVNWS AVKTADKDSQ
20 251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF4 shows 93.5% identity over a 93aa overlap with an ORF (ORF4a) from strain A of N. meningitidis:

```
25
                            10
                                     20
                                               30
                                                        40
                                                                  50
                     MKTFFKTLSAAALALILAACG-QKDSAPAASASAAADNGAAKKEIVFGTTVGDFGDMVKE
         orf4.pep
                     orf4a
                     MKTFFKTLSAAALALILAACGGQKDSAPAASASAAADNGAAXKEIVFGTTVGDFGDMVKE
                            10
                                              30
                                                       40
                                                                 50
                                                                          60
30
                                      80
         orf4.pep
                     QIQAELEKKGYTVKLVEFTDYVRPNLALAEGEL
                      11 11111111111111 11111 11111
         orf4a
                     XIQPELEKKGYTVKLVEXTDYVRXNLALAEGELDINVXQHXXYLDDXKKXHNLDITXVXQ
35
                                     80
                                              90
                                                       100
                                                                110
                     VPTAPLGLYPGKLKSLXXVKXGSTVSAPNDPXXFXRVLVMLDELGXIKLKDXIXXXXXXX
         orf4a
                           130
                                    140
                                             150
```

The complete length ORF4a nucleotide sequence <SEQ ID 219> is:

				·			
40		1	ATGAAAACCT	TCTTCAAAAC	CCTTTCCGCC	GCCGCACTCG	CGCTCATCCT
		51	CGCCGCCTGC	GGCGGTCAAA	AAGATAGCGC	GCCCGCCGCA	TCCGCTTCTG
		101.	CCGCCGCCGA	CAACGGCGCG	GCGAANAAAG	AAATCGTCTT	CGGCACGACC
		151	GTCGGCGACT	TCGGCGATAT	GGTCAAAGAA	CANATCCAAC	CCGAGCTGGA
		201	GAAAAAAGGC	TACACCGTCA	AACTGGTCGA	GTNTACCGAC	TATGTGCGCN
45		251				ACATCAACGT	
		301	ANACNCTATC	TTGACGACTN	CAAAAAANAA	CACAATCTGG	ACATCACCNN
		351	AGTCTTNCAA	GTGCCGACCG	CGCCTTTGGG	ACTGTACCCG	GGCAAGCTGA
		401	AATCGCTGGA	NNAAGTCAAA	GANGGCAGCA	CCGTATCCGC	GCCCAACGAC
		451				CTCGACGAAC	
50		501				NNNANCNANA	
		551			NNNNNCNNCG		NNNNNNNNN
		601	NCGNNTNNNN	NNGCNNNNNT	NNANNNTNNN	NNCNNCNNNN	NNNNTNNNN
		651		GGCATGAAGC		CCTGTTCCAA	
	•	701	TTGCCTATGT	CAACTGGTCT		CCGCCGACAA	
55		751			GGCCTATAAC		TCAAAGCCTA
		801				CCCTGCCGCA	
		851	GCGCAGCCAA				

This is predicted to encode a protein having amino acid sequence <SEQ ID 220>:

¹ MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA AXKEIVFGTT

	51	VGDFGDMVKE	XIQPELEKKG	YTVKLVEXTD	YVRXNLALAE	GELDINVXQH
	101	XXYLDDXKKX	HNLDITXVXQ	VPTAPLGLYP	GKLKSLXXVK	XGSTVSAPND
						XXXXXXXXX
	201	XXXXXXXXX	XXXXXXXXX	GMKLTEALFQ	EPSFAYVNWS	AVKTADKDSQ
5	251	WLKDVTEAYN	SDAFKAYAHK	RFEGYKSPAA	WNEGAAK*	

A leader peptide is underlined.

Further analysis of these strain A sequences revealed the complete DNA sequence <SEQ ID 221>:

	1	ስጥር እ አ አ አ ር ር ጥ	ምርጥጥሮልልልል ር	CCTTTCCCCC	GCCGCACTCG	CGCTCATCCT
	_					
	51	CGCCGCCTGC			GCCCGCCGCA	
10	101	CCGCCGCCGA	CAACGGCGCG	GCGAAAAAAG	AAATCGTCTT	CGGCACGACC
	151	GTCGGCGACT			CAAATCCAAC	
	201	GAAAAAAGGC	TACACCGTCA	AACTGGTCGA	GTTTACCGAC	TATGTGCGCC
	251	CGAATCTGGC	ATTGGCTGAG	GGCGAGTTGG	ACATCAACGT	CTTCCAACAC
	301	AAACCCTATC	TTGACGACTT	CAAAAAAGAA	CACAATCTGG	ACATCACCGA
15	351	AGTCTTCCAA	GTGCCGACCG	CGCCTTTGGG	ACTGTACCCG	GGCAAGCTGA
	401	AATCGCTGGA	AGAAGTCAAA	GACGGCAGCA	CCGTATCCGC	GCCCAACGAC
	451	CCGTCCAACT	TCGCCCGCGT	CTTGGTGATG	CTCGACGAAC	TGGGTTGGAT
	501	CAAACTCAAA	GACGGCATCA	ATCCGCTGAC	CGCATCCAAA	GCGGACATTG
	551	CCGAAAACCT	GAAAAACATC	AAAATCGTCG	AGCTTGAAGC	CGCGCAACTG
20	601	CCGCGTAGCC	GCGCCGACGT	GGATTTTGCC	GTCGTCAACG	GCAACTACGC
	651	CATAAGCAGC	GGCATGAAGC	TGACCGAAGC	CCTGTTCCAA	GAACCGAGCT
	701	TTGCCTATGT	CAACTGGTCT	GCCGTCAAAA	CCGCCGACAA	AGACAGCCAA
	751	TGGCTTAAAG	ACGTAACCGA	GGCCTATAAC	TCCGACGCGT	TCAAAGCCTA
	801	CGCGCACAAA	CGCTTCGAGG	GCTACAAATC	CCCTGCCGCA	TGGAATGAAG
25	851	GCGCAGCCAA	ATAA	•		

This encodes a protein having amino acid sequence <SEQ ID 222; ORF4a-1>:

```
1 MKTFFKTLSA AALALILAAC GGQKDSAPAA SASAAADNGA AKKEIVFGTT
51 VGDFGDMVKE QIQPELEKKG YTVKLVEFTD YVRPNLALAE GELDINVFQH
101 KPYLDDFKKE HNLDITEVFQ VPTAPLGLYP GKLKSLEEVK DGSTVSAPND
30 151 PSNFARVLVM LDELGWIKLK DGINPLTASK ADIAENLKNI KIVELEAAQL
201 PRSRADVDFA VVNGNYAISS GMKLTEALFQ EPSFAYVNWS AVKTADKDSQ
251 WLKDVTEAYN SDAFKAYAHK RFEGYKSPAA WNEGAAK*
```

ORF4a-1 and ORF4-1 show 99.7% identity in 287 aa overlap:

		10	20	30	40	50	60
35	orf4a-1	MKTFFKTLSAAALAL	ILAACGGQI	KDSAPAASASA	AAADNGAAKKE	IVFGTTVGDF	GDMVKE
			1111111			11111111	11111
	orf4-1	MKTFFKTLSAAALAL					GDMVKE
		10	20	30	40	50	60
40		70	80	90	100	110	120
	orf4a-1	OIOPELEKKGYTVKL	VEFTDYVR	PNLALAEGELI	DINVFQHKPYL	DDFKKEHNLD	ITEVFQ
	-	- 111 11111111111	11111111	1111111111	111111111111	11111111111	111111
	orf4-1	OIOAELEKKGYTVKL	VEFTDYVR	PNLALAEGELI	DINVFOHKPYL	DDFKKEHNLD	ITEVFQ
		70	80	90	100	110	120
45		•					
40		130	140	150	160	170	180
	orf4a-1	VPTAPLGLYPGKLKS	LEEVKDGS	TVSAPNDPSN	FARVLVMLDEI	GWIKLKDGIN	PLTASK
	022.0 2		1111111	111111111		1111111111	111111
	orf4-1	VPTAPLGLYPGKLKS	LEEVKDGS	TVSAPNDPSN	FARVLVMLDEI	.GWIKLKDGIN	PLTASK
50	0114 1	130	140	150	160	170	180
30		230		200		,	
		190	200	210	220	230	240
	orf4a-1	ADIAENLKNIKIVEL					
	01144-1	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LILLLIC	1111111111	11111111111		
EE		ADIAENLKNIKIVEI	ENNOT DDC	11111111111111111111111111111111111111	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
55	orf4-1	190	200	210	220	230	240
		190	200	210	220	230	240
		050	0.00	070	200		
		250	260	270	280	333707	
	orf4a-l	AVKTADKDSQWLKDV		FKAYAHKRFE	GYKSPAAWNE	SAAKA	
60				111111111	111111111	11111	
	orf4-1	AVKTADKDSQWLKDV				JAAKX	
		250	260	270	280		

Homology with an outer membrane protein of Pasteurella haemolitica (accession q08869). ORF4 and this outer membrane protein show 33% aa identity in 91aa overlap:

	ORF4 and this outer memorane protein snow 33% aa identity in 91aa overlap:
	10 20
_	lip2.pasha MNFKKLLGVALVSALALTACKDEKAQAP
5	:: : ORF4 VXTPNPDGRTPCPSFLFETATTSGENMKTFFKTLSAAALALILAACGFKKTARPPHPL
	110 120 130 140 150
10	30 40 50 60 70 80 lip2.pasha -ATTAKTENKAPLKVGVMTGPEAQMTEVAVKIAKEKYGLDVELVQFTEYTQPNAALHSKD
•	: :: : :: :: ::
	ORF4 LPPPTTARRKKEIVFGTTVGDFGDMVKEQIQAELEKKGYTVKLVEFTDYVRPNLALAEGE 160 170 180 190 200 210
	100 170 100 190 200 210
15	90 100 110 120 130 140
	lip2.pasha LDANAFQTVPYLEQEVKDRGYKLAIIGNTLVWPIAAYSKKIKNISELKDGATVAIPNNAS
	ORF4 L
20	Homology with a predicted ORF from N.gonorrhoeae
20	
	ORF4 shows 93.6% identity over a 94aa overlap with a predicted ORF (ORF4.ng) from N.
	gonorrhoeae:
	gonor roeae.
	10 20 30
25	orf4nm.pep MKTFFKTLSAAALALILAACGXQKDSAPAA
23	orf4ng RANAVXTPNPDGRTPCLSFLFETATTSGENMKTFFKTLSTASLALILAACGGQKDSAPAA
	200 210 220 230 240 250
	40 50 60 70 80 89
30	orf4nm.pep SASA-AADNGAAKKEIVFGTTVGDFGDMVKEQIQAELEKKGYTVKLVEFTDYVRPNLALA
	ii::::::::::::::::::::::::::::::::::::
	260 270 280 290 300 310
35	90
•	orf4nm.pep EGEL
	320 330 340 350 360 370
40	The complete length ORF4ng nucleotide sequence <seq 223="" id=""> was predicted to encode a</seq>
-10	
	protein having amino acid sequence <seq 224="" id="">:</seq>
	1 MUNICIPAL OF ACIALTIANS COMPONED CANADOM ANGUETHES
	1 MKTFFKTLST ASLAL <u>ILAAC</u> GGQKDSAPAA SAAAPSADNG AAKKEIVFGT 51 TVGDFGDMVK EQIQAELEKK GYTVKLVEFT DYVRPNLALA EGELDINVFQ
45	101 HKPYLDDFKK EHNLDITEAF QVPTAPLGLY PGKLKSLEEV KDGSTVSAPN
45	151 DPSNFARALV MLNELGWIKL KDGINPLTAS KADIAENLKN IKIVELEAAQ 201 LPRSRADVDF AVVNGNYAIS SGMKLTEALF QEPSFAYVNW SAVKTADKDS
	251 QWLKDVTEAY NSDAFKAYAH KRFEGYKYPA AWNEGAAK*
	Further analysis revealed the complete length ORF4ng DNA sequence <seq 225="" id=""> to be:</seq>
	- man and the second and to improve to inguity and the second of the sec
50	1 atgAAAACCT TCTTCAAAAC cctttccgcc gccgcaCTCG CGCTCATCCT
30	51 CGCAGCCTGc ggCggtcaAA AAGACAGCGC GCCCgcagcc tctgcCGCCG 101 CCCCTTCTGC CGATAACGgc gCgGCGAAAA AAGAAAtcgt ctTCGGCACG
	151 Accgtgggcg acttcggcgA TAtggTCAAA GAACAAATCC AagcCGAgct
	201 gGAGAAAAA GgctACACcg tcAAattggt cgaatttacc gactatgtGC 251 gCCCGAATCT GGCATTGGCG GAGGGCGAGT TGGACATCAA CGTCTTCCAA
55	301 CACAAACCCT ATCTTGACGA TTTCAAAAAA GAACACAACC TGGACATCAC
	351 CGAAGCCTTC CAAGTGCCGA CCGCGCCTTT GGGACTGTAT CCGGGCAAAC
	401 TGAAATCGCT GGAAGAAGTC AAAGACGGCA GCACCGTATC CGCGCCCAac 451 gACccgTCCA ACTTCGCACG CGCCTTGGTG ATGCTGAACG AACTGGGTTG
<i>c</i> 0	501 GATCAAACTC AAAGACGGCA TCAATCCGCT GACCGCATCC AAAGCCGACA
60 .	551 TCGCGGAAAA CCTGAAAAAC ATCAAAATCG TCGAGCTTGA AGCCGCACAA

-168-

```
CTGCCGCGCA GCCGCGCGA CGTGGATTTT GCCGTCGTCA ACGGCAACTA
                    CGCCATAAGC AGCGGCATGA AGCTGACCGA AGCCCTGTTC CAAGAGCCGA
               651
                    GCTTTGCCTA TGTCAACTGG TCTGCCgtcA AAACCGCCGA CAAAGACAGC
               701
                    CAATGGCTTA AAGACGTAAC CGAGGCCTAT AACTCCGACG CGTTCAAAGC
               751
5
                    CTACGCGCAC AAACGCTTCG AGGGCTACAA ATACCCTGCC GCATGGAATG
               801
               851 AAGGCGCAGC CAAATAA
```

This encodes a protein having amino acid sequence <SEQ ID 226; ORF4ng-1>:

```
MKTFFKTLSA AALALILAAC GGQKDSAPAA SAAAPSADNG AAKKEIVFGT
                     TVGDFGDMVK EQIQAELEKK GYTVKLVEFT DYVRPNLALA EGELDINVFQ
                 51
                     HKPYLDDFKK EHNLDITEAF QVPTAPLGLY PGKLKSLEEV KDGSTVSAPN
10
                101
                     DPSNFARALV MLNELGWIKL KDGINPLTAS KADIAENLKN IKIVELEAAQ
                151
                     LPRSRADVDF AVVNGNYAIS SGMKLTEALF QEPSFAYVNW SAVKTADKDS
                201
                     QWLKDVTEAY NSDAFKAYAH KRFEGYKYPA AWNEGAAK*
                251
```

This shows 97.6% identity in 288 as overlap with ORF4-1:

```
15
                                  20
                                          30
                                                  40
                                                          50
                    MKTFFKTLSAAALALILAACGGQKDSAPAASASA-AADNGAAKKEIVFGTTVGDFGDMVK
        orf4-1.pep
                    {\tt MKTFFKTLSAAALALILAACGGQKDSAPAASAAAPSADNGAAKKEIVFGTTVGDFGDMVK}
        orf4ng-1
                          10
                                  20
                                          30
                                                  40
                                                         50
20
                                           90
                                                  100
                                   80
                    EQIQAELEKKGYTVKLVEFTDYVRPNLALAEGELDINVFQHKPYLDDFKKEHNLDITEVF
        orf4-1.pep
                    EQIQAELEKKGYTVKLVEFTDYVRPNLALAEGELDINVFQHKPYLDDFKKEHNLDITEAF
        orf4ng-1
25
                                  80
                                          90
                                                 100
                                  140
                                          150
                                                  160
                   120
                    QVPTAPLGLYPGKLKSLEEVKDGSTVSAPNDPSNFARVLVMLDELGWIKLKDGINPLTAS
        orf4-1.pep
                    QVPTAPLGLYPGKLKSLEEVKDGSTVSAPNDPSNFARALVMLNELGWIKLKDGINPLTAS
30
        orf4ng-1
                                 140
                                         150
                                                 160
                                                         170
                   180
                          190
                                  200
                                          210
                                                  220
                                                          230
                                                                 239
                    KADIAENLKNIKIVELEAAQLPRSRADVDFAVVNGNYAISSGMKLTEALFQEPSFAYVNW
        orf4-1.pep
35
                    KADIAENLKNIKIVELEAAQLPRSRADVDFAVVNGNYAISSGMKLTEALFQEPSFAYVNW
        orf4ng-1
                          190
                                 200
                                         210
                                                 220
                                                         230
                                                                 240
                           250
                                  260
                                          270
                                                  280
                    SAVKTADKDSQWLKDVTEAYNSDAFKAYAHKRFEGYKSPAAWNEGAAKX
40
         orf4-1.pep
                    SAVKTADKDSQWLKDVTEAYNSDAFKAYAHKRFEGYKYPAAWNEGAAKX
         orf4ng-1
                          250
                                 260
                                         270
                                                 280
```

In addition, ORF4ng-1 shows significant homology with an outer membrane protein from the 45 database:

```
ID
               LIP2 PASHA
                               STANDARD;
                                              PRT;
                                                     276 AA.
               Q08869;
          AC
                01-NOV-1995 (REL. 32, CREATED)
          DT
               01-NOV-1995 (REL. 32, LAST SEQUENCE UPDATE)
01-NOV-1995 (REL. 32, LAST ANNOTATION UPDATE)
50
          DT
               28.2 KD OUTER MEMBRANE PROTEIN PRECURSOR. . .
          DE
                       Init1:
                               279 Initn:
                                             416 Opt:
                                                      494
          Smith-Waterman score: 494;
                                        36.0% identity in 275 aa overlap
55
                                                        30
                                              20
          orf4ng-1.pep
                          MKTFFKTLSAAAL--ALILAACGGQKDSAPAASAAAPSADNGAAKKEIVFGTTVGDFGDM
                              :::| | |
                                                                            1::1::1
                            MNFKKLLGVALVSALALTACKDEKAQAPATTA---KTENKAPLK---VGVMTGPEAQM
          lip2 pasha
60
                                    10
                                              20
                                                        30
                                                                     40
                                                                                  50
                                    70
                                                        90
                                                                 100
                                              80
                          VKEOIOAELEKKGYTVKLVEFTDYVRPNLALAEGELDINVFQHKPYLDDFKKEHNLDITE
           orf4ng-1.pep
                                                          11 1 1:11:11:1::11 11
```

•	lip2_pasha	TEVAVKIA 60		VELVQFTEY 70	TOPNAALHSI 80	KDLDANAFQTV 90	PYLEQEVKDR 100	RGYKLAI 110
_		120	130	140	150	160	170	
5	orf4ng-1.pep	AFQVPTAP			GSTVSAPND: : : :		LNELGWIKLKD	
	lip2_pasha	•	IAAYSKK				LOAHGLLKLKI 160	
10		180	190	200	210	220	230)
	orf4ng-1.pep	ASKADIAE		VELEAAQLP		VVNGNYAISS	GMKLTEALE	QEPSFA : :
	lip2_pasha	ATENDIIE		VQADTSLLT 190	RMLDDVELA	VINNTYAGQA(210	GLSPDKDGIIV 220	ESKDSP 230
15		.10	U	190		210	220	230
	orf4ng-1.pep	240 YVNWSAVK	250 TADKDSQ	260 WLKDVTEAY		0 28: HKRFEGYKYP		
	lima maaba	::		: ::::		:	OL.	•
20	lip2_pasha	24		250	260	LKLFNGGVVK 270	JW	

Based on this analysis, including the homology with the outer membrane protein of *Pasteurella haemolitica*, and on the presence of a putative prokaryotic membrane lipoprotein lipid attachment site in the gonococcal protein, it was predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF4-1 (30kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figures 8A and 8B show, repsectively, the results of affinity purification of the His-fusion and GST-fusion proteins. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result), Western blot (Figure 8C), FACS analysis (Figure 8D), and a bactericidal assay (Figure 8E). These experiments confirm that ORF4-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 8F shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF4-1.

35 **Example 27**

30

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 227>:

```
CCTCGTCGTC CTCGGCATGC TCCAGTTTCA AGGGGCGATT TACTCCAAGG
                    CGGTGGAACG TATGCTCGGC ACGGTCATCG GGCTGGGCGC GGGTTTGGGC
               101
                    GTTTTATGGC TGAACCAGCA TTATTTCCAC GGCAACCTCC TCTTCTACCT
40
               151
                    CACCGTCGGC ACGGCAAGCG CACTGGCCGG CTGGGCGGCG GTCGGCAAAA
               201
                    ACGGCTACGT CCCTmTGCTG GCAGGGCTGA CGATGTGTAT GCTCATCGGC
               251
                    GACAACGGCA GCGAATGGCT CGACAGCGGA CTCATGCGCG CCATGAACGT
               301
                    CCTCATCGGC GYGGCCATCG CCATCGCCGC CGCCAAACTG CTGCCGCTGA
               351
                    AATCCACACT GATGTGGCGT TTCATGCTTG CCGACAACCT GGCCGACTGC
45
               401
                    AGCAAAATGA TTGCCGAAAT CAGCAACGGC AGGCGCATGA CCCGCGAACG
               451
                    CCTCGAGGAG AACATGGCGA AAATGCGCCA AATCAACGCA CGCATGGTCA
                    AAAGCCGCAG CCATCTCGCC GCCACATCGG GCGAAAGCTG CATCAGCCCC
               501
               551
                    GCCATGATGG AAGCCATGCA GCACGCCCAC CGTAAAATCG TCAACACCAC
               601
                    CGAGCTGCTC CTGACCACCG CCGCCAAGCT GCAATCTCCC AAACTCAACG
```

This corresponds to the amino acid sequence <SEQ ID 228; ORF8>:

```
1 .....PRRP RHAPVSRGDL LQGGGTYARH GHRAGRGFGR FMAEPALFPR
51 QPPLLPHRRH GKRTGRLGGG RQKRLRPXAG RADDVYAHRR QRQRMARQRT
10 101 HARHERPHRR GHRHRRQTA AAEIHTDVAF HACRQPGRLQ QNDCRNQQRQ
151 AHDPRTPRGE HGENAPNQRT HGQKPQPSRR HIGRKLHQPR HDGSHAARPP
201 XNRQHHRAAP DHRRQAAISQ TQRQRNPAAX PPLHTAPN......Q
251 TRPPHPHRHR HQPRTGSPRR TPPLPMAGLP LAQHRYASGN FRPRHPAATH
301 PPOMAGCPRT PTPAPKPA*
```

15 Computer analysis of this amino acid sequence gave the following results:

Sequence motifs

ORF8 is proline-rich and has a distribution of proline residues consistent with a surface localization. Furthermore the presence of an RGD motif may indicate a possible role in bacterial adhesion events.

20 Homology with a predicted ORF from N.gonorrhoeae

ORF8 shows 86.5% identity over a 312aa overlap with a predicted ORF (ORF8.ng) from N. gonorrhoeae:

	orf8ng	1	MDRDDRLRRPRHAPVPRRDLLQRGGTYARYGHRAGRGFGRFMAEPALFPR	50
25	orf8.pep	1	PRRPRHAPVSRGDLLQGGGTYARHGHRAGRGFGRFMAEPALFPR	44
	orf8ng	51	QPPLLPDHRHGKRTGRLGGGRQKRLRPYVGGADDVHAHRRQRQRMARQRP	100
30	orf8.pep	45	QPPLLPHRRHGKRTGRLGGGRQKRLRPXAGRADDVYAHRRQRQRMARQRT	94
30	orf8ng	101	DARDERPHRRHRHCRRQTAAAEIHTDVAFHACRQPGRLQQNDCRNQQRQ	150
	orf8.pep	95	HARHERPHRRGHRHRRRQTAAAEIHTDVAFHACRQPGRMQQNDCRNQQRQ	144
35	orf8ng	151	AYDARTFGAEYGQNAPNQRTHGQKPQPPRRHIGRKPHQPLHDGSHAARPP	200
	orf8.pep	145	AHDPRTPRGEHGENAPNQRTHGQKPQPSRRHIGRKLHQPRHDGSHAARPP	194
40	orf8ng	201	QNRQHHRAAPDHRRQAAISQTQRQRNPAARPPLHTAPNRPATNRRPHQRQ	250
40	orf8.pep	195	XNRQHHRAAPDHRRQAAISQTQRQRNPAAXPPLHTAPNQ	244
	orf8ng	251	TRPPHPHRHRHQPRTGSPRRTPPLPMAGFPLAQHQYASGNFRPRHPPATH	300
45	orf8.pep	245	TRPPHPHRHRHQPRTGSPRRTPPLPMAGLPLAQHRYASGNFRPRHPAATH	294
	orf8ng	301	PPQMAGCPRTPTPAPKPA* 319	
	orf8.pep	295	PPQMAGCPRTPTPAPKPA* 313	

The complete length ORF8ng nucleotide sequence <SEQ ID 229> is predicted to encode a protein having amino acid sequence <SEQ ID 230>:

- 1 MDRDDRLRRP RHAPVPRRDL LQRGGTYARY GHRAGRGFGR FMAEPALFPR
- 51 QPPLLPDHRH GKRTGRLGGG RQKRLRPYVG GADDVHAHRR QRQRMARQRP
- 101 DARDERPHRR RHRHCRRQTA AAEIHTDVAF HACRQPGRLQ QNDCRNQQRQ
- 55 151 AYDARTFGAE YGQNAPNQRT HGQKPQPPRR HIGRKPHQPL HDGSHAARPP

- 201 QNRQHHRAAP DHRRQAAISQ TQRQRNPAAR PPLHTAPNRP ATNRRPHQRQ
- TRPPHPHRHR HQPRTGSPRR TPPLPMAGFP LAQHQYASGN FRPRHPPATH
- 301 PPOMAGCPRT PTPAPKPA*

Based on the sequence motifs in these proteins, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 28

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 231>:

```
..GAAATCAGCC TGCGGTCCGA CNACAGGCCG GTTTCCGTGN CGAAGCGGCG
10
                 51
                       GGATTCGGAA CGTTTTCTGC TGTTGGACGG CGGCAACAGC CGGCTCAAGT
                       GGGCGTGGGT GGAAAACGGC ACGTTCGCAA CCGTCGGTAG CGCGCCGTAC
                101
                       CGCGATTTGT CGCCTTTGGG CGCGGAGTGG GCGGAAAAGG CGGATGGAAA
                151
                       TGTCCGCATC GTCGGTTGCG CTGTGTGCGG AGAATTCAAA AAGGCACAAG
                201
                251
                       TGCAGGAACA GCTCGCCCGA AAAATCGAGT GGCTGCCGTC TTCCGCACAG
15
                       GCTTT.GGCA TACGCAACCA CTACCGCCAC CCCGAAGAAC ACGGTTCCGA
                301
                351
                       CCGCTGGTTC AACGCCTTGG GCAGCCGCCG CTTCAGCCGC AACGCCTGCG
                401
                       TCGTCGTCAG TTGCGGCACG GCGGTAACGG TTGACGCGCT CACCGATGAC.
                451
                       GGACATTATC TCGGAGA.GG AACCATCATG CCCGGTTTCC ACCTGATGAA
                       AGAATCGCTC GCCGTCCGAA CCGCCAACCT CAACCGGCAC GCCGGTAAGC
                501
20
                551
                       GTTATCCTTT CCCGACCGG..
```

This corresponds to the amino acid sequence <SEQ ID 232; ORF61>:

```
1 ..EISLRSDXRP VSVXKRRDSE RFLLLDGGNS RLKWAWVENG TFATVGSAPY
51 RDLSPLGAEW AEKADGNVRI VGCAVCGEFK KAQVQEQLAR KIEWLPSSAQ
101 AXGIRNHYRH PEEHGSDRWF NALGSRRFSR NACVVVSCGT AVTVDALTDD
25 GHYLGXGTIM PGFHLMKESL AVRTANLNRH AGKRYPFPT..
```

Further work revealed the complete nucleotide sequence <SEQ ID 233>:

	1	ATGACGGTTT	TGAAGCTTTC	GCACTGGCGG	GTGTTGGCGG	AGCTTGCCGA
	51	CGGTTTGCCG	CAACACGTCT	CGCAACTGGC	GCGTATGGCG	GATATGAAGC
	101	CGCAGCAGCT	CAACGGTTTT	TGGCAGCAGA	TGCCGGCGCA	CATACGCGGG
30	151	CTGTTGCGCC	AACACGACGG	CTATTGGCGG	CTGGTGCGCC	CATTGGCGGT
	201	TTTCGATGCC	GAAGGTTTGC	GCGAGCTGGG	GGAAAGGTCG	GGTTTTCAGA
	251	CGGCATTGAA	GCACGAGTGC	GCGTCCAGCA	ACGACGAGAT	ACTGGAATTG
	301		•		ACCATATGCG	
	351				GAAGTGGTCG	
35	401				TGTTTGACCG	
	451				GTGGCGTGTC	
	501				GTGGCCCAAT	
	551				TTGAAACGGT	
4.0	601				ATCAATTTTG	
40	651				GCTGTTTCAG	
	701				TGGAAACGCT	
	751				GACGGATTTG	
	801				CGGCAAGGCG	
	851				CGGTTAAAGG	
45	901				GGCAAACAGA	
	951				GCCGGTTTCC	
	1001				ACGGCGGCAA	
	1051				GCAACCGTCG	
••	1101				GTGGGCGGAA	
50	1151				GCGGAGAATT	
	1201				GAGTGGCTGC	
	1251				CCACCCGAA	
	1301				GCCGCTTCAG	
	1351				ACGGTTGACG	
55	1401			-	GCCCGGTTTC	
	1451				TCAACCGGCA	
	1501			_	GCCGTCGCCA	
	1551					TTGAAAGAAA
	1601	AAACCGGGGC	GGGCAAGCCT	GTCGATGTCA	TCATTACCGG	CGGCGCGCG

-172-

1651	GCAAAAGTTG	CCGAAGCCCT	GCCGCCTGCA	TTTTTGGCGG	AAAATACCGT
1701	GCGCGTGGCG	GACAACCTCG	TCATTTACGG	GTTGTTGAAC	ATGATTGCCG
1751	CCGAAGGCAG	GGAATATGAA	CATATTTAA		

This corresponds to the amino acid sequence <SEQ ID 234; ORF61-1>:

```
5
                 1 MTVLKLSHWR VLAELADGLP QHVSQLARMA DMKPQQLNGF WQQMPAHIRG
                51
                    LLROHDGYWR LVRPLAVFDA EGLRELGERS GFQTALKHEC ASSNDEILEL
               101
                    ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS FGWVFDRPQY
                    ELGSLSPVAA VACRRALSRL GLDVQIKWPN DLVVGRDKLG GILIETVRTG
               201 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA AVLLETLLVE
10
               251
                    LDAVLLQYAR DGFAPFVAEY QAANRDHGKA VLLLRDGETV FEGTVKGVDG
                301
                    QGVLHLETAE GKQTVVSGEI SLRSDDRPVS VPKRRDSERF LLLDGGNSRL
                351
                    KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KADGNVRIVG CAVCGEFKKA
                    QVQEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA LGSRRFSRNA
                401
                451
                    CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR TANLNRHAGK
15
                501 RYPFPTTTGN AVASGMMDAV CGSVMMMHGR LKEKTGAGKP VDVIITGGGA
                    AKVAEALPPA FLAENTVRVA DNLVIYGLLN MIAAEGREYE HI*
```

Figure 9 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF61-1. Further computer analysis of this amino acid sequence gave the following results:

Homology with the baf protein of B. pertussis (accession number U12020).

20 ORF61 and baf protein show 33% aa identity in 166aa overlap:

```
orf61 23
                    LLLDGGNSRLKWAWVE-NGTFATVGSAPYR----DLSPLGAEWAEKADGNVRIVGCAVCG 77
                     +L+D GNSRLK W + +
                                        Α
                                             AP
                                                      DL LG A
                                                                      R +G V G
                 3
          baf
                     ILIDSGNSRLKVGWFDPDAPQAAREPAPVAFDNLDLDALGRWLATLPRRPQRALGVNVAG 62
25
          orf61
                 78 EFKKAQVQEQLAR---KIEWLPSSAQAXGIRNHYRHPEEHGSDRW---FNALGSRRFSRN 131
                                     I WL + A G+RN YR+P++ G+DRW
                          + L
                                                                     L +
          baf
                 63
                     LARGEAIAATLRAGGCDIRWLRAQPLAMGLRNGYRNPDQLGADRWACMVGVLARQPSVHP 122
          orf61 132 ACVVVSCGTAVTVDALTDDGHYLGXGTIMPGFHLMKESLAVRTANL 177
30
                       +V S GTA T+D + D + G G I+PG +M+ +LA TA+L
          baf
                 123 PLLVASFGTATTLDTIGPDNVFPG-GLILPGPAMMRGALAYGTAHL 167
```

Homology with a predicted ORF from N. meningitidis (strain A)

ORF61 shows 97.4% identity over a 189aa overlap with an ORF (ORF61a) from strain A of N.

35 meningitidis:

						10	20	30
	orf61.pep				EISLRSDX	(RPVSVXKRRE	SERFLLLDG	GNS
					1111111	11111 1111		111
40	orf6la		_		/SGEISLRSDI			GNS
40		290	300	310	320	330	340	
		4	0 5	50	60	70	80	90
	orf61.pep		-		aewaekadgni			
	Offor beb	IIIIIIIII	IIIIIIIII	1111111111	111111:111			
45	orf61a	RLKWAWVEN	GTFATVGSA	PYRDLSPLGA	AEWAEKVDGN\			
			360	370	380	390	400	.—_`
		10	0 13	10 1	120 1	130 1	140	150
	orf61.pep	KIEWLPSSA	QAXGIRNHYI	RHPEEHGSDI	RWFNALGSRRI	SRNACVVVSC	CGTAVTVDAI	TDD
50			11 111111	11111111	[]]]]		ПППП	Пн
	orf61a			RHPEEHGSDI	RWFNALGSRRI		<u>:GTAVTVDAI</u>	<u>.T</u> DD
		410	420	430	440	450	460	
EE	561	16	-			39		
55	orf61.pep	GHYLGXGTI	MPGFHLMKE	SLAVRTANLI	NRHAGKRYPF	PT		
	orf61a	CUVIC	IIIIIIIIIII				CMMDATIOCOL	2001
	Ollola	470	480	490	500	510	520	, Lateria
		470	400	430	300	310	320	
60	orf61a	HGRIKEKTO	AGKPVDVTT	TGGGAAKWA	EALPPAFLAEI	NTVRVADNI.VI	THGT.T.NT.TA	AECC
00	0-2044	"IGITATION IC		- OGGENATION A WIT	AUNE EUR NUM		ATTIVITIES	200

530 540 550 560 570 580 The complete length ORF61a nucleotide sequence <SEO ID 235> is: 1 ATGACGGTTT TGAAGCCTTC GCACTGGCGG GTGTTGGCGG AGCTTGCCGA CGGTTTGCCG CAACACGTCT CGCAACTGGC GCGTATGGCG GATATGAAGC 51 5 CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA CATACGCGGG 101 CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC CATTGGCGGT TTTCGATGCC GAAGGTTTGC GCGAGCTGGG GGAAAGGTCG GGTTTTCAGA 151 201 CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT ACTGGAATTG 251 GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGTG TGACCCACCT 301 10 351 GCAAAGTAAG GGCAGGGGGC GGCAGGGGCG GAAGTGGTCG CACCGTTTGG 401 GCGAGTGTCT GATGTTCAGT TTTGGCTGGG TGTTTGACCG GCCGCAGTAT GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA GTGGCGTGCC GGCGCGCCTT 451 GTCGCGTTTG GGTTTGAAAA CGCAAATCAA GTGGCCAAAC GATTTGGTCG 501 TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACGGT CAGGACGGGC 551 15 GGCAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTCG TGCTGCCCAA GGAAGTGGAA AACGCCGCTT CCGTGCAATC GCTGTTTCAG ACGGCATCGC 601 651 GGCGGGGAAA TGCCGATGCC GCCGTGTTGC TGGAAACGCT GTTGGCGGAA 701 CTTGATGCGG TGTTGTTGCA ATATGCGCGG GACGGATTTG CGCCTTTTGT 751 801 GGCGGAATAT CAGGCTGCCA ACCGCGACCA CGGCAAGGCG GTATTGCTGT 20 TGCGCGACGG CGAAACCGTG TTCGAAGGCA CGGTTAAAGG CGTGGACGGA 851 901 CAAGGCGTTC TGCACTTGGA AACGGCAGAG GGCAAACAGA CGGTCGTCAG CGGCGAAATC AGCCTGCGGT CCGACGACAG GCCGGTTTCC GTGCCGAAGC 951 GGCGGGATTC GGAACGTTTT CTGCTGTTGG ACGGCGGCAA CAGCCGGCTC 1001 AAGTGGGCGT GGGTGGAAAA CGGCACGTTC GCAACCGTCG GTAGCGCGCC 1051 25 GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA AAGGTGGATG 1101 GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATT CAAAAAGGCA 1151 CAAGTGCAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC CGTCTTCCGC 1201 ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA GAACACGGTT 1251 1301 CCGACCGCTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG CCGCAACGCC 30 TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG CGCTCACCGA 1351 TGACGGACAT TATCTCGGGG GAACCATCAT GCCCGGTTTC CACCTGATGA AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGGCA CGCCGGTAAG 1401 1451 1501 CGTTATCCTT TCCCGACCAC AACGGGCAAT GCCGTCGCCA GCGGCATGAT 1551 GGATGCGGTT TGCGGCTCGG TTATGATGAT GCACGGGCGT TTGAAAGAAA 35 1601 AAACCGGGGC GGGCAAGCCT GTCGATGTCA TCATTACCGG CGGCGGCGCG GCAAAAGTTG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG AAAATACCGT 1651 GCGCGTGGCG GACAACCTCG TCATTCACGG GCTGCTGAAC CTGATTGCCG 1701 CCGAAGGCGG GGAATCGGAA CATACTTAA 1751 This encodes a protein having amino acid sequence <SEQ ID 236>: 40 MTVLKPSHWR VLAELADGLP QHVSQLARMA DMKPQQLNGF WQQMPAHIRG LLRQHDGYWR LVRPLAVFDA EGLRELGERS GFQTALKHEC ASSNDEILEL 51 ARIAPDKAHK TICVTHLQSK GRGRQGRKWS HRLGECLMFS FGWVFDRPQY ELGSLSPVAA VACRRALSRL GLKTQIKWPN DLVVGRDKLG GILIETVRTG 151 GKTVAVVGIG INFVLPKEVE NAASVQSLFQ TASRRGNADA AVLLETLLAE 45 LDAVLLQYAR DGFAPFVAEY QAANRDHGKA VLLLRDGETV FEGTVKGVDG QGVLHLETAE GKQTVVSGEI SLRSDDRPVS VPKRRDSERF LLLDGGNSRL KWAWVENGTF ATVGSAPYRD LSPLGAEWAE KVDGNVRIVG CAVCGEFKKA 251 301 351 QVQEQLARKI EWLPSSAQAL GIRNHYRHPE EHGSDRWFNA LGSRRFSRNA 401 CVVVSCGTAV TVDALTDDGH YLGGTIMPGF HLMKESLAVR TANLNRHAGK 451 50 RYPFPTTTGN AVASGMMDAV CGSVMMMHGR LKEKTGAGKP VDVIITGGGA 501 AKVAEALPPA FLAENTVRVA DNLVIHGLLN LIAAEGGESE HT* ORF61a and ORF61-1 show 98.5% identity in 591 aa overlap: 10 20 30 40 MTVLKPSHWRVLAELADGLPQHVSQLARMADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR orf6la.pep 55 ${\tt MTVLKLSHWRVLAELADGLPQHVSQLARMADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR}$ orf61-1 10 20 30 40 RO 90 60 LVRPLAVFDAEGLRELGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK orf6la.pep LVRPLAVFDAEGLRELGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK orf61-1 70 80 90 100 110 120 65 140 130 150 160 170 180 WO 99/24578 PCT/IB98/01665

5	orf61a.pep	11111	[111111111	PVAAVACRRAI PVAAVACRRAI 160	111111 : 11	THE
10	orf61a.pep orf61-1	11111	DKLGGILIETV	/RTGGKTVAV	VGIGINFVLP	ZZU KEVENAASVQ: KEVENAASVQ: 220	SLFQTASRRG SLFQTASRRG	NADA IIII NADA
10	orf6la.pep	AVLLET	250 LLAELDAVLL	260 QYARDGFAPF	270 VAEYQAANRDI	280 HGKAVLLLRD	230 290 GETVFEGTVK	300 GVDG
15	orf61-1	AVLLET	LLVELDAVLL(250	QYARDGFAPF 260	VAEYQAANRD 270	HGKAVLLLRDO 280	GETVFEGTVK 290	GVDG 300
20	orf61a.pep	111111			111111111	340 SERFLLLDGGI SERFLLLDGGI 340		1111
25	orf61a.pep	111111	1111111111	11111:1111	111111111	400 FKKAQVQEQLI 	1111111111	1111
30	orf61a.pep	111111	1111111111		1111111111	460 GTAVTVDALTI GTAVTVDALTI	1111111111	1111
35	orf61a.pep	HLMKES:	430 490 LAVRTANLNRI	440 500 HAGKRYPFPT	450 510 TTGNAVASGM	460 520 MDAVCGSVMMI	470 530 MHGRLKEKTG	480 540 SAGKP
40	orf61-1							
45	orf61a.pep	111111	шшш	1111111111	111111111:	GLLNLIAAEGO : GLLNMIAAEGO 580	1-11	

Homology with a predicted ORF from N.gonorrhoeae

ORF61 shows 94.2% identity over a 189aa overlap with a predicted ORF (ORF61.ng) from N.

50 gonorrhoeae:

	orf61.pep	EISLRSDXRPVSVXKRRDSERFLLLDGGNS	30
	orf6lng		211
55	orf61.pep	RLKWAWVENGTFATVGSAPYRDLSPLGAEWAEKADGNVRIVGCAVCGEFKKAQVQEQLAR	90
	orf61ng	RLKWAWVENGTFATVGSAPYRDLSPLGAEWAEKADGNVRIVGCAVCGESKKAQVKEQLAR	271
60	orf61.pep	KIEWLPSSAQAXGIRNHYRHPEEHGSDRWFNALGSRRFSRNACVVVSCGTAVTVDALTDD	150
00	orf61ng		331
	orf61.pep	GHYLGXGTIMPGFHLMKESLAVRTANLNRHAGKRYPFPT	189
65	orf6lng		390

An ORF61ng nucleotide sequence <SEQ ID 237> was predicted to encode a protein having amino acid sequence <SEQ ID 238>:

```
1 MFSFGWAFDR PQYELGSLSP VAALACRRAL GCLGLETQIK WPNDLVVGRD
51 KLGGILIETV RAGGKTVAVV GIGINFVLPK EVENAASVQS LFQTASRRGN
101 ADAAVLLETL LAELGAVLEQ YAEEGFAPFL NEYETANRDH GKAVLLLRDG
151 ETVCEGTVKG VDGRGVLHLE TAEGEQTVVS GEISLRPDNR SVSVPKRPDS
201 ERFLLLEGGN SRLKWAWVEN GTFATVGSAP YRDLSPLGAE WAEKADGNVR
251 IVGCAVCGES KKAQVKEQLA RKIEWLPSSA QALGIRNHYR HPEEHGSDRW
301 FNALGSRFFS RNACVVVSCG TAVTVDALTD DGHYLGGTIM PGFHLMKESL
10 351 AVRTANLNRP AGKRYPFPTT TGNAVASGMM DAVCGSIMMM HGRLKEKNGA
401 GKPVDVIITG GGAAKVAEAL PPAFLAENTV RVADNLVIHG LINLIAAEGG
```

Further analysis revealed the complete gonococcal DNA sequence <SEQ ID 239> to be:

```
ATGACGGTTT TGAAGCCTTC GCATTGGCGG GTGTTGGCGG AGCTTGCCGA
                     CGGTTTGCCG CAACACGTAT CGCAATTGGC GCGTGAGGCG GACATGAAGC
15
                     CGCAGCAGCT CAACGGTTTT TGGCAGCAGA TGCCGGCGCA TATACGCGGG
                101
                      CTGTTGCGCC AACACGACGG CTATTGGCGG CTGGTGCGCC CCTTGGCGGT
                201
                     TTTCGATGCC GAAGGTTTGC GCGATCTGGG GGAAAGGTCG GGTTTTCAGA
                      CGGCATTGAA GCACGAGTGC GCGTCCAGCA ACGACGAGAT ACTGGAATTG
                251
20
                     GCGCGGATTG CGCCGGACAA GGCGCACAAA ACCATATGCG TGACCCACCT
                301
                     GCAAAGTAAG GGCAGGGGCC GGCAGGGGCC GAAGTGGTCG CACCGTTTGG
                351
                     GCGAGTGCCT GATGTTCAGT TTCGGCTGGG CGTTTGACCG GCCGCAGTAT
               401
                      GAGTTGGGTT CGCTGTCGCC TGTTGCGGCA CTTGCGTGCC GGCGCGCTTT
                451
                     GGGGTGTTTG GGTTTGGAAA CGCAAATCAA GTGGCCAAAC GATTTGGTCG
                501
25
                551
                     TCGGACGCGA CAAATTGGGC GGCATTCTGA TTGAAACAGT CAGGGCGGGC
                     GGTAAAACGG TTGCCGTGGT CGGTATCGGC ATCAATTTCG TGCTGCCCAA
                601
                     GGAAGTGGAA AACGCCGCTT CCGTGCAGTC GCTGTTTCAG ACGGCATCGC
GGCGGGGCAA TGCCGATGCC GCCGTATTGC TGGAAACATT GCTTGCGGAA
                651
                701
                      CTGGGCGCGG TGTTGGAACA ATATGCGGAA GAAGGGTTCG CGCCATTTTT
                751
30
                801
                      AAATGAGTAT GAAACGGCCA ACCGCGACCA CGGCAAGGCG GTATTGCTGT
                     TGCGCGACGG CGAAACCGTG TGCGAAGGCA CGGTTAAAGG CGTGGACGGA CGAGGCGTTC TGCACTTGGA AACGGCAGaa ggcgaACAGa cggtcgtcag
                851
                901
                      cggcgaaaTC AGcctGCggc ccgacaacaG GTCGGtttcc gtgccgaagc
                951
               1001
                      ggccggatTC GgaacgtTTT tTGCtgttgg aaggcgggaa cagccgGCTC
35
                     AAGTGGGCGT GggtggAAAa cggcacgttc gcaaccgtgg gcagcgcgCc
                1051
                      GTACCGCGAT TTGTCGCCTT TGGGCGCGGA GTGGGCGGAA AAGGCGGATG
               1101
               1151
                      GAAATGTCCG CATCGTCGGT TGCGCCGTGT GCGGAGAATC CAAAAAGGCA
                      CAAGTGAAGG AACAGCTCGC CCGAAAAATC GAGTGGCTGC CGTCTTCCGC
                1201
                1251
                      ACAGGCTTTG GGCATACGCA ACCACTACCG CCACCCCGAA GAACACGGTT
40
                1301
                      CCGACCGTTG GTTCAACGCC TTGGGCAGCC GCCGCTTCAG CCGCAACGCC
                1351
                      TGCGTCGTCG TCAGTTGCGG CACGGCGGTA ACGGTTGACG CGCTCACCGA
                      TGACGGACAT TATCTCGGCG GAACCATCAT GCCCGGCTTC CACCTGATGA
                1401
                1451
                      AAGAATCGCT CGCCGTCCGA ACCGCCAACC TCAACCGCCC CGCCGGCAAA
                1501
                      CGTTACCCTT TCCCGACCAC AACGGGCAAC GCCGTCGCAA GCGGCATGAT
45
                1551
                      GGACGCGGTT TGCGGCTCGA TAATGATGAT GCACGGCCGT TTGAAAGAAA
                      AAAACGGCGC GGGCAAGCCT GTCGATGTCA TCATTACCGG CGGCGCGCG
                1601
                1651
                      GCGAAAGTCG CCGAAGCCCT GCCGCCTGCA TTTTTGGCGG AAAATACCGT
                      GCGCGTGGCG GACAACCTCG TCATCCACGG GCTGCTGAAC CTGATTGCCG
                1701
                1751
                      CCGAAGGCGG GGAATCGGAA CACGCTTAA
```

50 This corresponds to the amino acid sequence <SEQ ID 240; ORF61ng-1>:

	1	MTVLKPSHWR	VLAELADGLP	QHVSQLAREA	DMKPQQLNGF	WQQMPAHIRG
	51	LLRQHDGYWR	LVRPLAVFDA	EGLRDLGERS	GFQTALKHEC	ASSNDEILEL
	101	ARIAPDKAHK	TICVTHLQSK	GRGRQGRKWS	HRLGECLMFS	FGWAFDRPQY
	151				DLVVGRDKLG	
55	201	GKTVAVVGIG	INFVLPKEVE	NAASVQSLFQ	TASRRGNADA	AVLLETLLAE
	251	LGAVLEQYAE	EGFAPFLNEY	ETANRDHGKA	VLLLRDGETV	CEGTVKGVDG
	301	RGVLHLETAE	GEQTVVSGEI	SLRPDNRSVS	VPKRPDSERF	LLLEGGNSRL
•	351	KWAWVENGTF	ATVGSAPYRD	LSPLGAEWAE	KADGNVRIVG	CAVCGESKKA
	401				EHGSDRWFNA	
60	451					TANLNRPAGK
	501	RYPFPTTTGN	AVASGMMDAV	CGSIMMMHGR	LKEKNGAGKP	VDVIITGGGA
	551	AKVAEAT.PPA	FT.AENTVRVA	DNIATHGLIN	TITAAFGGESE	HD*

ORF61ng-1 and ORF61-1 show 93.9% identity in 591 aa overlap:

-176-

	orf61ng-1.pep	MTVLKPSHWRVLAELADGLPQHVSQLAREADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR 60
	orf61-1	MTVLKLSHWRVLAELADGLPQHVSQLARMADMKPQQLNGFWQQMPAHIRGLLRQHDGYWR 60
5	orf61ng-1.pep	LVRPLAVFDAEGLRDLGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK 120
	orf61-1	LVRPLAVFDAEGLRELGERSGFQTALKHECASSNDEILELARIAPDKAHKTICVTHLQSK 120
10	orf61ng-1.pep	GRGRQGRKWSHRLGECLMFSFGWAFDRPQYELGSLSPVAALACRRALGCLGLETQIKWPN 180
10	orf61-1	GRGRQGRKWSHRLGECLMFSFGWVFDRPQYELGSLSPVAAVACRRALSRLGLDVQIKWPN 180
	orf61ng-1.pep	DLVVGRDKLGGILIETVRAGGKTVAVVGIGINFVLPKEVENAASVQSLFQTASRRGNADA 240
15	orf61-1	DLVVGRDKLGGILIETVRTGGKTVAVVGIGINFVLPKEVENAASVQSLFQTASRRGNADA 240
	orf61ng-1.pep	AVLLETLIAELGAVLEQYAEEGFAPFLNEYETANRDHGKAVLLLRDGETVCEGTVKGVDG 300
20	orf61-1	AVLLETLIVELDAVLLQYARDGFAPFVAEYQAANRDHGKAVLLLRDGETVFEGTVKGVDG 300
20	orf61ng-1.pep	RGVLHLETAEGEQTVVSGEISLRPDNRSVSVPKRPDSERFLLLEGGNSRLKWAWVENGTF 360
	orf61-1	QGVLHLETAEGKQTVVSGEISLRSDDRPVSVPKRRDSERFLLLDGGNSRLKWAWVENGTF 360
25	orf6lng-1.pep	ATVGSAPYRDLSPLGAEWAEKADGNVRIVGCAVCGESKKAQVKEQLARKIEWLPSSAQAL 420
	orf61-1	ATVGSAPYRDLSPLGAEWAEKADGNVRIVGCAVCGEFKKAQVQEQLARKIEWLPSSAQAL 420
30	orf6lng-1.pep	GIRNHYRHPEEHGSDRWFNALGSRRFSRNACVVVSCGTAVTVDALTDDGHYLGGTIMPGF 480
30	orf61-1	GIRNHYRHPEEHGSDRWFNALGSRRFSRNACVVVSCGTAVTVDALTDDGHYLGGTIMPGF 480
	orf61ng-1.pep	HLMKESLAVRTANLNRPAGKRYPFPTTTGNAVASGMMDAVCGSIMMMHGRLKEKNGAGKP 540
35	orf61-1	HLMKESLAVRTANLNRHAGKRYPFPTTTGNAVASGMMDAVCGSVMMMHGRLKEKTGAGKP 540
	orf61ng-1.pep	VDVIITGGGAAKVAEALPPAFLAENTVRVADNLVIHGLLNLIAAEGGESEHAX 593
40	orf61-1	VDVIITGGGAAKVAEALPPAFLAENTVRVADNLVIYGLLNMIAAEGREYEHIX 593
-TU		

Based on this analysis, including the homology with the baf protein of *B. pertussis* and the presence of a putative prokaryotic membrane lipoprotein lipid attachment site, it is predicted that these proteins from *N. meningitidis* and *N. gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

45 Example 29

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 241>:

```
1 ATGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT CGTTTATTGC
                51 CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG GTCGGCGTGC
                    GCCTGCTAAT TGCCGCGCTG CCTGCACTGC CCGCCTGCCG CCGTCATGTC
               101
                    GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG TGTCGTTCGT
50
               151
                    CAACTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG AAATACACTT
               201
                    CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT GCTGATGGTG
               251
                    TTTGTCGGAC ACTTTTCTT CAACGACAAA GCGCGTGCCT ACCACTGGAT
                301
                    ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG GCGGGCGGTG
                351
55
                    CGGaAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT GGTGTTGTTG
                401
                    GCGGGCGCG GCTTTTGTGC CGCTATGCGT CCGACGCAAA GGCTGATTGC
                451
                    ACGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC GCCGCATCGT
                501
                    TGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA TACCGTGGAC
                551
                    TGGAGCGTCG GGATGGTATT GTCGCTGCTG TATTTGGGTT TGGGGTGC..
```

This corresponds to the amino acid sequence <SEQ ID 242; ORF62>:

orf62.pep

	•	-1//-
5	51 G 101 F 151 A	FYQILALII WSSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV KIPREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV VGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD SVGMVLSLL YLGLGC
	Further work reve	aled the complete nucleotide sequence <seq 243="" id="">:</seq>
10	51 C 101 G	TGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT CGTTTATTGC GCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG GTCGGCGTGC CCTGCTAAT TGCCGCGCTG CCTGCACTGC CCGCCTGCCG CCGTCATGTC GCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG TGTCGTTCGT
	201 C 251 C 301 T 351 A	AACTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG AAATACACTT CGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT GCTGATGGTG TTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT ACCACTGGAT TGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG GCGGGCGGTG
15	451 G 501 A 551 T	GGAAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT GGTGTTGTTG CGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA GGCTGATTGC CGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC GCCGCATCGT GATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA TACCGTGGAC GGAGCGTCG GGATGGTATT GTCGCTGCTG TATTTGGGTT TGGGGTGCGG
20	651 C 701 A 751 G	TGGTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT GTTCCTGCCA TGTTTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG CGTGCTGCTG CGGTTTTGA TTTTGGGCGA ACACCTGTCG CCCGTGTCCG CCTTGGGCGT TTTGTCGTC ATCGCCGCCA CCTTGGTTGC CGGCCGGCTG TCGCATCAAA
25		to the amino acid sequence <seq 244;="" id="" orf62-1="">:</seq>
30	1 M 51 G 101 H 151 Z 201 W 251 Z	STATE OF THE STATE
		76 show 50% as identity in 114aa overlap:
35	Orf62 1 HI0976 1	MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRXXXXXXXXXXXCRRHVGKIPREEWKP 60 M YQILAL+IWSSS I K Y +DP L+V VR R KI + K MLYQILALLIWSSSLIVGKLTYSMMDPVLVVQVRLIIAMIIVMPLFLRRWKKIDKPMRKQ 60
40	Orf62 61 HI0976 61	LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAY 114 L ++F NY LLQF+GLKYTSA+SA ++GLEPLL+VFVGHFFF K + LWWLAFFNYTAVFLLQFIGLKYTSASSAVTMIGLEPLLVVFVGHFFFKTKQNGF 114
		predicted ORF from N.meningitidis (strain A) 50% identity even a 216 as eventon with an ORF (ORF63a) from atmin A of N
45	meningitidis:	.5% identity over a 216aa overlap with an ORF (ORF62a) from strain A of N.
50	orf62.pep orf62a	10 20 30 40 50 60 MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWKP
55	orf62.pep orf62a	70 80 90 100 110 120 LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICGA

130 140 150 160 170 180 AAFAGVALLMAGGAEEGGEVGWFGCLLVLLAGAGFCAAMRPTQRLIARIGAPAFTSVSIA

PCT/IB98/01665 WO 99/24578

-178-

	orf62a	
5	orf62.pep	190 200 210 AASLMCLPFSLALAQSYTVDWSVGMVLSLLYLGLGC
10	orf62a	AASLMCLPFSLALAQSYTVDWSVGMVLSLLYLGVGCSWYAYWLWNKGMSRVPANVSGLLI 190 200 210 220 230 240
10	orf62a	SLEPVVGVLLAVLI LGEHLSPVSVLGVFVVIAATLVAGRLSHQKX 250 260 270 280
	The complete len	gth ORF62a nucleotide sequence <seq 245="" id=""> is:</seq>
15	51 (101 (151 (201 (ATGTTTTACC AAATCCTTGC CCTGATTATC TGGAGCAGCT CGTTTATTGC CGCCAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG GTCGGCGTGC GCCTGCTGAT TGCTGCGCTG CCTGCACTGC CCGCCTGCCG CCGTCATGTC GGCAAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG TGTCGTTCGT CAACTATGTG CTGACCCTGC TACTTCAGTT TGTCGGGTTG AAATACACTT
20	301 351 401	CCGCCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCACT GCTGATGGTG PTTGTCGGAC ACTTTTTCTT CAACGACAAA GCGCGTGCCT ACCACTGGAT ATGCGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG GCGGGCGGTG CGGAAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT GGTGTTGTTG GCGGGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA GGCTGATTGC
25	501 551 601 651	ACGCATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC GCCGCATCGT FGATGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA TACCGTGGAC FGGAGCGTCG GAATGGTATT GTCGCTGCTG TATTTTGGGCG TGGGGTGCAG CTGGTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT GTTCCTGCCA ACGTTTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG CGTGCTGCTG
30	751 801	GCGGTTTTGA TTTTGGGCGA ACACCTGTCG CCCGTGTCCG TCTTGGGCGT GTTTGTCGTC ATCGCCGCCA CCTTGGTTGC CGGCCGGCTG TCGCATCAAA AATAA
35	1 51 101 151 201 251	otein having amino acid sequence <seq 246="" id="">: MFYQILALII WSSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV GKIPREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV FVGHFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL AGGAGFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD WSVGMVLSLL YLGVGCSWYA YWLWNKGMSR VPANVSGLLI SLEPVVGVLL AVLILGEHLS PVSVLGVFVV IAATLVAGRL SHQK* F62-1 show 98.9% identity in 284 aa overlap:</seq>
40	orf62a.pep	MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWKP 60
45	orf62a.pep	LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICGA 120
50	orf62a.pep	
55	orf62a.pep	
	orf62a.per orf62-1	SLEPVVGVLLAVLILGEHLSPVSVLGVFVVIAATLVAGRLSHQKX 285

Homology with a predicted ORF from N.gonorrhoeae 60

ORF62 shows 99.5% identity over a 216aa overlap with a predicted ORF (ORF62.ng) from N. gonorrhoeae:

	orf62.pep N	MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWKP	60
	orf62ng N	MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWKP	60
5	•	LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICGA	120
		LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICGA	120
10	/	AAFAGVALLMAGGAEEGGEVGWFGCLLVLLAGAGFCAAMRPTQRLIARIGAPAFTSVSIA 	180
		AAFAGVALLMAGGAEEGGEVGWFGCLLVLLAGAGFCAAMRPTQRLIARIGAPAFTSVSIA	180
		AASLMCLPFSLALAQSYTVDWSVGMVLSLLYLGLGC 	216
15	orf62ng F	AASLMCLPFSLALAQSYTVDWSVGMVLSLLYLGLGCGWYAYWLWNKGMSRVPANASGLLI	240
	The complete length	ORF62ng nucleotide sequence <seq 247="" id=""> is:</seq>	
20	51 CGCC 101 GCCT 151 GGCZ 201 CAAC 251 CCGC 301 TTTC	TTTTACC AAATCCTTGC CCTGATTATC TGGGGCAGCT CGTTTATTGC CAAATAT GTCTATGGCG GCATCGATCC CGCATTGATG GTCGGCGTGC TGCTGAT TGCCGCGTG CCTGCACTGC CCGCCTGCCG CCGTCATGTC AAGATTC CGCGTGAGGA ATGGAAGCCG TTGCTGATTG TGTCGTTCGT CTATGTG CTGACCCTGC TGCTTCAGTT TGTCGGGTTG AAATACACTT CCGCCAG CGCATCGGTC ATTGTCGGAC TCGAGCCGCT GCTGATGGTG GTCGGAC ACTTTTCTT CAACGACAAA GCGCGTGCCT ACCACTGGAT	
25	351 ATG0	CGGCGCG GCGGCATTTG CCGGTGTCGC GCTGCTGATG GCGGGCGGTG	
23	401 CGGF 451 GCGG	AAGAGGG CGGCGAAGTC GGCTGGTTCG GCTGCCTGCT GGTGTTGTTG GGCGCGG GCTTTTGTGC CGCTATGCGT CCGACGCAAA GGCTGATTGC	
	501 CCG0	CATCGGC GCACCGGCAT TCACATCTGT TTCCATTGCC GCCGCATCGT	
	551 TGAT	TGTGCCT GCCGTTTTCG CTTGCTTTGG CGCAAAGTTA TACCGTGGAC	,
30	601 TGG <i>F</i> 651 CTG	AGCGTCG GGATGGTATT GTCGCTGTTG TATTTGGGTT TGGGGTGCGG GTACGCC TATTGGCTGT GGAACAAGGG GATGAGCCGT GTTCCTGCCA	!
30	701 ACG0	CGTCGGG ACTGTTGATT TCGCTCGAAC CCGTCGTCGG CGTGCTGTTG	į
	. 751 GCGG	GTTTTGA TTTTGGGCGA ACATTTATCG CCCGTGTCCG CCTTGGGCGT	1
	801 GTT1	TGTCGTC ATCGCCGCCA CTTTCGCCGC CGGCCGGCTG TCGCGCAGGG	
	851 ACGC	CGCAAAA CGGCAATGCC GTCTGA	
35	This encodes a protei	in having aming said assumes CEO ID 0405	
	THIS CHOOLES & DIVIEL	ui naving amino acid sequence < NEO 11) /4x>,	
55	This encodes a protei	in having amino acid sequence <seq 248="" id="">:</seq>	
33	1 <u>MFY</u> (OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV	
55	1 <u>MFYC</u> 51 GKII	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLOFVGL KYTSAASASV IVGLEPLLMV	
33	1 <u>MFYC</u> 51 GKII 101 FVGF	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLOFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVIL	
	1 <u>MFYC</u> 51 GKII 101 <u>F</u> VGF 151 A GAC	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLOFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTORLIARIG APAFTSVSIA AASLMCLPFS LALAOSYTVD	
40	1 <u>MFYC</u> 51 GKII 101 <u>FV</u> GF 151 <u>AGAC</u> 201 WSVC	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL	
	1 MFYC 51 GKIE 101 FVGF 151 AGAC 201 WSVC 251 AVL	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLOFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTORLIARIG APAFTSVSIA AASLMCLPFS LALAOSYTVD	
	1 MFYC 51 GKIE 101 FVGF 151 AGAC 201 WSVC 251 AVL	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 12-1 show 97.9% identity in 283 aa overlap:	
40	1 MFYC 51 GKII 101 EVGF 151 AGAC 201 WSVC 251 AVLI	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 10 20 30 40 50	60 XB
	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP
40	1 MFYC 51 GKII 101 EVGF 151 AGAC 201 WSVC 251 AVLI	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* (2-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP
40	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* (2-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP
40 45	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVAILM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGILI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 72-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP
40	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 72-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 11 11 11 11 11 11 11 11 11 11 11 11 11	KP II KP 60 20
40 45	1 MFYC 51 GKIR 101 FVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI HILLIIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI	KP II KP 60 20 GA
40 45	1 MFYC 51 GKIR 101 FVGF 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP II KP 60 20 GA II
40 45 50	1 MFYC 51 GKIR 101 FVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP II KP 60 20 GA
40 45	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI	KP KP 60 20 GA GA 20
40 45 50	1 MFYC 51 GKIR 101 FVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI HIIIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIH	KP KP 60 20 GA GA 20
40 45 50	1 MFYC 51 GKIR 101 EVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSTA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 10 20 30 40 50 TO 80 90 100 110 12 LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICG 111111111111111111111111111111111111	KP 11 KP 60 20 GA 11 GA 20 80
40 45 50	1 MFYC 51 GKIH 101 EVGH 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI HIIIHHIIHHIIHHIIHHIIHHIIHHIIHHIIHHIIH	KP 11 60 20 3A 11 3A 20 80 11 11
40 45 50	1 MFYC 51 GKIR 101 EVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGEV GWFGCLLVLL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI MFYQILALIIWSSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 10 20 30 40 50 70 80 90 100 110 12 LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAYHWICG 111111111111111111111111111111111111	KP 11 KP 600 20 GA 11 GA 200 B0
40 45 50	1 MFYC 51 GKIE 101 EVGE 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep orf62-1 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVIL GFCAAMR PTQRLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 11 11 11 11 11 11 11 11 11 11 11 11 11	KP 11 KKP 60 20 20 3A 11 3A 220 80 11 11 11 11 11 11 14
40 45 50	1 MFYC 51 GKIR 101 EVGR 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF6 orf62ng.pep orf62-1 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRRHV PREEWKP LLIVSFVNYV LTLLLOFVGL KYTSAASASV IVGLEPLLMV HFFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTORLIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* (2-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 11	KP 11 KP 60 20 GA 11 GA 220 80 IA II II II II II II II II II
40 45 50 55	1 MFYC 51 GKIE 101 EVGE 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep orf62-1 orf62ng.pep orf62-1	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRHV PREEWKP LLIVSFVNYV LTLLLQFVGL KYTSAASASV IVGLEPLLMV HFFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRIIARIG APARTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 11	KP 11 KP 600 200 GA 11 11 80 80 11 11
40 45 50	1 MFYC 51 GKIE 101 EVGF 151 AGAC 201 WSVC 251 AVLI ORF62ng and ORF62 orf62ng.pep orf62-1 orf62ng.pep orf62-1 orf62ng.pep	OILALII WGSSFIAAKY VYGGIDPALM VGVRLLIAAL PALPACRHV PREEWKP LLIVSFVNYV LTLLIQFVGL KYTSAASASV IVGLEPLLMV HFFFFNDK ARAYHWICGA AAFAGVALLM AGGAEEGGEV GWFGCLLVLL GFCAAMR PTQRIARIG APAFTSVSIA AASLMCLPFS LALAQSYTVD GMVLSLL YLGLGCGWYA YWLWNKGMSR VPANASGLLI SLEPVVGVLL ILGEHLS PVSALGVFVV IAATFAAGRL SRRDAQNGNA V* 62-1 show 97.9% identity in 283 aa overlap: 10 20 30 40 50 MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRLLIAALPALPACRRHVGKIPREEWI 11	KP 11 KP 600 200 GA 11 30 80 80 80 80 80 80 80 80 80

WO 99/24578 PCT/IB98/01665

-180-

```
250
                                 260
                                         270
                                                          290
                    SLEPVVGVLLAVLILGEHLSPVSALGVFVVIAATFAAGRLSRRDAQNGNAVX
       orf62ng.pep
                    SLEPVVGVLLAVLILGEHLSPVSALGVFVVIAATLVAGRLSHQKX
5
       orf62-1
                         250
                                 260
                                         270
```

Furthermore, ORF62ng shows significant homology to a hypothetical *H.influenzae* protein:

```
sp|Q57147|Y976_HAEIN HYPOTHETICAL PROTEIN HI0976 >gi|1074589|pir||B64163
          hypothetical protein HI0976 - Haemophilus influenzae (strain Rd KW20)
10
          >gi|1574004 (U32778) hypothetical [Haemophilus influenzae] Length = 128
           Score = 106 bits (262), Expect = 2e-22
           Identities = 56/114 (49%), Positives = 68/114 (59%)
           Query: 1
                     MFYQILALIIWGSSFIAAKYVYGGIDPALMVGVRXXXXXXXXXXXCRRHVGKIPREEWKP 60
15
                      M YQILAL+IW SS I K Y +DP L+V VR
                                                                    R
                                                                        KI +
                     MLYQILALLIWSSSLIVGKLTYSMMDPVLVVQVRLIIAMIIVMPLFLRRWKKIDKPMRKQ 60
           Sbjct: 1
           Query: 61
                     LLIVSFVNYVLTLLLQFVGLKYTSAASASVIVGLEPLLMVFVGHFFFNDKARAY 114
                                  LLQF+GLKYTSA+SA ++GLEPLL+VFVGHFFF K
                      L ++F NY
20
           Sbjct: 61 LWWLAFFNYTAVFLLQFIGLKYTSASSAVTMIGLEPLLVVFVGHFFFKTKQNGF 114
```

Based on this analysis, including the homology with the transmembrane protein of H.influenzae and the putative leader sequecne and several transmembrane domains in the gonococcal protein, it is predicted that these proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 30

25

The following partial DNA sequence was identified in N. meningitidis < SEO ID 249>:

```
ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCmGwms TCCTGkkGTA
                51
                    SGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG GATTATTTCT
30
                    GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT GTCCGCCGTT
               101
               151
                    TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG ACGGCGTATT
                    CGGTTCGCtA srTyGCCAAA gsGCCTgkks TGGG.ATGTT TACGCTGGTT
               201
                    GCCGKACTGC CCGGCGTGTT TCTGTTCGGC TTTCCCGCAC AGTTCATCAA
               251
                    CGGCACGATT AATTCGTGGT TCGGCAACGA TACCCACGAG GCGCTTGAAC
               301
35
                    GCAGCCTCAA TTTGAGCAAG TCCGCATTGA ATTTGGCGGC AGACAACGCC
               351
                    CTCGGCAACG CCGTCCCCGT GCAGATAGAC CTCATCGGCG CGGCTTCCCT
               401
                    GCCCGGGGAT ATGGGCAGGG TGCTGGAACA TTACGCCGGC AGCGGTTTTG
               451
               501
                    CCCAGCTTGC CCTGTACAAy ksCGCAAGCG GCAAAATCGA AAAAAGCATC
               551 AACCCGCACA AGCTCGATCA GCCGTTTCCA GGTAAGGCGC GTTGGGAaAa
40
                    AATCCAACGG GCGGGTTCGG TCAGGGATTT GGAAAGCATA GGCGGCGTAT
               601
               651
                    TGTaCGCGCA GGGCTGGCTG TCGGCGGGTA CGCACWACGG GCGCGATTAC
               701
                    GCCTTGTTTT TCCGTCAGCC GGTTCCCAAA GGCGTGGCAG AGGATGCCGT
               751
                    AAGGTTTGCA GACCTTTTTC CTGGCAACCC TGCTGATTGC CTCGCTGCTG
               801
45
               851
                    TCGATTTTC TTGCACTGGT CATGGCACTG TATTTCGCCC GCCGTTTCGT
               901
                    CGAACCCGTC CTATCGCTTG CCGAGGGGGC GAAGGCGGTG GCGCAAGGCG
               951
                    ATTTCAGCCA GACGCGCCCC GTGTTGCGCA ACGACGAGTT CGGACGCTTG
                    ACCArGTTGT TCAACCACAT GACCGAGCAG CTTTCCATCG CCAAAGATGC
              1001
              1051
                    AGACGAGCGC AACCGCCGGC GCGAGGAAGC CGCCAGGCAT TATCTTGAAT
50
                    GCGTGTTGGA GGGGCTGACC ACGGGCGTGG TGGTGTTTGA CGAACAAGGC
              1101
              1151
                    TGTCTGAAAA CCTTCAACAA AGCGGCGGGT ACC..
```

This corresponds to the amino acid sequence <SEQ ID 250; ORF64>:

```
MRRFLPIAAI CAXXLXXGLT AATGSTSSLA DYFWWIVAFS AMLLLVLSAV
                    LARYVILLLK DRRDGVFGSX XAKXPXXXMF TLVAXLPGVF LFGFPAQFIN
                51
55
                101
                    GTINSWFGND THEALERSLN LSKSALNLAA DNALGNAVPV QIDLIGAASL
                     PGDMGRVLEH YAGSGFAQLA LYNXASGKIE KSINPHKLDQ PFPGKARWEK
               151
                201
                     IQRAGSVRDL ESIGGVLYAQ GWLSAGTHXG RDYALFFRQP VPKGVAEDAV
                    LIEKARAKYA ELSYSKKGLQ TFFLATLLIA SLLSIFLALV MALYFARRFV
```

301 EPVLSLAEGA KAVAQGDFSQ TRPVLRNDEF GRLTXLFNHM TEQLSIAKDA 351 DERNRREEA ARHYLECVLE GLTTGVVVFD EQGCLKTFNK AAGT..

Further work revealed the complete nucleotide sequence <SEQ ID 251>:

```
1 ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG TCCTGTTGTA
                    CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG GATTATTTCT
5
                    GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT GTCCGCCGTT
               101
                    TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG ACGGCGTATT
               151
                    CGGTTCGCAG ATTGCCAAAC GCCTTTCTGG GATGTTTACG CTGGTTGCCG
               201
                    TACTGCCCGG CGTGTTTCTG TTCGGCGTTT CCGCACAGTT CATCAACGGC
               251
                    ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC TTGAACGCAG
10
               301
                    CCTCAATTTG AGCAAGTCCG CATTGAATTT GGCGGCAGAC AACGCCCTCG
               351
                    GCAACGCCGT CCCCGTGCAG ATAGACCTCA TCGGCGCGGC TTCCCTGCCC
               401
                    GGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG GTTTTGCCCA
               451
                    GCTTGCCCTG TACAATGCCG CAAGCGGCAA AATCGAAAAA AGCATCAACC
               501
15
                    CGCACAAGCT CGATCAGCCG TTTCCAGGTA AGGCGCGTTG GGAAAAAATC
               551
                    CAACGGGCGG GTTCGGTCAG GGATTTGGAA AGCATAGGCG GCGTATTGTA
               601
               651
                    CGCGCAGGGC TGGCTGTCGG CGGGTACGCA CAACGGGCGC GATTACGCCT
                    TGTTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA TGCCGTCTTA
               701
                    ATCGAAAAGG CAAGGGCGAA ATATGCTGAG TTGAGTTACA GCAAAAAAGG
               751
                    TTTGCAGACC TTTTTCCTGG CAACCCTGCT GATTGCCTCG CTGCTGTCGA
20
               801
                    TTTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG TTTCGTCGAA
               851
                    CCCGTCCTAT CGCTTGCCGA GGGGGGGAAG GCGGTGGCGC AAGGCGATTT
               901
               951
                    CAGCCAGACG CGCCCCGTGT TGCGCAACGA CGAGTTCGGA CGCTTGACCA
                    AGTTGTTCAA CCACATGACC GAGCAGCTTT CCATCGCCAA AGAAGCAGAC
              1001
25
              1051
                    GAGCGCAACC GCCGGCGCA GGAAGCCGCC AGGCATTATC TTGAATGCGT
                    GTTGGAGGGG CTGACCACGG GCGTGGTGGT GTTTGACGAA CAAGGCTGTC
              1101
              1151
                    TGAAAACCTT CAACAAAGCG GCGGAACAGA TTTTGGGGAT GCCGCTTACC
                    CCCTGTGGG GCAGCAGCCG GCACGGTTGG CACGGCGTTT CGGCGCAGCA
               1201
                    1251
                    ACAAACCGGT CCATGTGAAA TATGCCGCGC CGGACGATGC CAAAATCCTG
30
               1301
                     CTGGGCAAGG CAACCGTCCT GCCCGAAGAC AACGGCAACG GCGTGGTAAT
               1351
                     GGTGATTGAC GACATCACCG TTTTGATACA CGCGCAAAAA GAAGCCGCGT
               1401
                     GGGGCGAAGT GGCGAAGCGG CTGGCACACG AAATCCGCAA TCCGCTCACG
               1451
                     CCCATCCAGC TTTCCGCCGA ACGGCTGGCG TGGAAATTGG GCGGGAAGCT
               1501
                     GGATGAGCAG GATGCGCAAA TCCTGACGCG TTCGACCGAC ACCATCGTCA
35
               1551
                     AACAGGTGGC GGCATTGAAG GAAATGGTCG AAGCATTCCG CAATTATGCG
               1601
                     CGTTCCCCTT CGCTCAAATT GGAAAATCAG GATTTGAACG CCTTAATCGG
               1651
                     CGATGTGTTG GCATTGTATG AAGCCGGTCC GTGCCGGTTT GCGGCGGAGC
               1701
               1751
                     TTGCCGGCGA ACCGCTGACG GTGGCGGCGG ATACGACCGC CATGCGGCAG
                     GTGCTGCACA ATATTTCAA AAATGCCGCC GAAGCGGCGG AAGAAGCCGA
40
               1801
                     TGTGCCCGAA GTCAGGGTAA AATCGGAAAC AGGGCAGGAC GGTCGGATTG
               1851
                     TCCTGACGGT TTGCGACAAC GGCAAAGGGT TCGGCAGGGA AATGCTGCAC
               1901
                     AACGCCTTCG AGCCGTATGT AACGGACAAA CCGGCGGGAA CGGGATTGGG
               1951
                     TCTGCCTGTG GTGAAAAAA TCATTGAAGA ACACGGCGGC CGCATCAGCC
               2001
 45
                     TGAGCAATCA GGATGCGGGT GGCGCGTGTG TCAGAATCAT CTTGCCAAAA
               2051
                     ACGGTAAAAA CTTATGCGTA G
               2101
```

This corresponds to the amino acid sequence <SEQ ID 252; ORF64-1>:

	1 ·	MRRFLPIAAI	CAVVLLYGLT	AATGSTSSLA	DYFWWIVAFS	AMLLLVLSAV
	51	LARYVILLLK	DRRDGVFGSQ	IAKRLSGMFT	LVAVLPGVFL	FGVSAQFING
50	101				NALGNAVPVQ	
	151	GDMGRVLEHY	AGSGFAQLAL	YNAASGKIEK	SINPHKLDQP	FPGKARWEKI
	201	QRAGSVRDLE	SIGGVLYAQG	WLSAGTHNGR	DYALFFRQPV	PKGVAEDAVL
	251				LLSIFLALVM	
	301	PVLSLAEGAK	AVAQGDFSQT	RPVLRNDEFG	RLTKLENHMT	EQLSIAKEAD
55	351				QGCLKTFNKA	
	401	PLWGSSRHGW	HGVSAQQSLL	AEVFAAIGAA	AGTDKPVHVK	YAAPDDAKIL
	451	LGKATVLPED	NGNGVVMVID	DITVLIHAQK	EAAWGEVAKR	LAHEIRNPLT
	501	PIOLSAERLA	WKLGGKLDEQ	DAQILTRSTD	TIVKQVAALK	EMVEAFRNYA
	551	RSPSLKLENO	DLNALIGDVL	ALYEAGPCRF	AAELAGEPLT	VAADTTAMRQ
60	601	VLHNI FKNAA	EAAEEADVPE	VRVKSETGQD	GRIVLTVCDN	GKGFGREMLH
	651	NAFEPYVTDK	PAGTGLGLPV	VKKIIEEHGG	RISLSNQDAG	GACVRIILPK
	701	TVKTYA*			_	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF64 shows 92.6% identity over a 392aa overlap with an ORF (ORF64a) from strain A of N. meningitidis:

	meningitiuis.	
		10 20 30 40 50 60
		10 20 30 40 50 60 MRRFLPIAAICAXXLXXGLTAATGSTSSLADYFWWIVAFSAMLLLVLSAVLARYVILLLK
5	orf64.pep	
•		
	orf64a	MRRFLPIAAICAVVLLYGLTAATGSTSSLADYFWWIVAFSAMLLLVLSAVLARYVILLLK
	0110	10 20 30 40 50 60
• •		70 80 90 100 110 120
10		DRRDGVFGSXXAKXPXXXMFTLVAXLPGVFLFGFPAQFINGTINSWFGNDTHEALERSLN
	orf64.pep	
		[
	orf64a	DRRDGVFGSQIAKR-LSGMFTLVAVLPGVFLFGVSAQFINGTINSWFGNDTHEALERSLN
		70 80 90 100 110
15		
15		130 140 150 160 170 180
		TOWAL NI BADNAL CNAVDVOTDLIGASI.PGDMGRVLEHYAGSGFAQLALYNXASGKIE
	orf64.pep	LSRSALNDAADNADSRAVIVQIDIIGIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
		THE THE TAX OF THE TAX
	orf64a	LSKSALNLAADNALGNAIPVOIDXIGAASLPXDMGRVLEHYAGSGFAQLALYNAASGKIE
20		120 130 140 150 160 170
20		222
		190 200 210 220 230 240
	###	WOTHPULL DOREDCKARWEKTORAGSVRDLESIGGVLYAOGWLSAGTHXGRDYALFFRQP
	orf64.pep	KSINPALDQFFFGGGAWARIQGEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
		KSINPHKLDQPFPGKARWEKIQQAGSVRDXESIGGVLYAXGWLSAXTHNGRDYALFFRQP
25	orf64a	
		180 190 200 210 220 230
		250 270 280 290 300
	orf64.pep	VPKGVAEDAVLIEKARAKYAELSYSKKGLQTFFLATLLIASLLSIFLALVMALYFARRFV
~~	Off64.pep	
30		VPKGVAEDAVLIEKARAXXXXLSYSKKGLQTFFLATLLIASLLSIFLALVMALYFARRFV
	orf64a	
		240 250 260 270 280 290
		330 330 340 350 360
35	orf64.pep	EPVLSLAEGAKAVAOGDFSQTRPVLRNDEFGRLTXLFNHMTEQLSLAKDADERNKREEA
33	Offor beb	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		EPVLSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRREEA
	orf64a	
		300 310 320 330 340 330
		200
40		370 380 390
-10	orf64.pep	ARHYLECVLEGLTTGVVVFDEQGCLKTFNKAAGT
	OLLUTTE	
	FCA -	ARHYLECVLEGLTTGVVVFDEQGCLKTFNKAAEQILGMPLTPLWGSSRHGWHGVSAQQSL
	orf64a	360 370 380 390 400 410
		360 370 300
45		LAEVFAAIGAAAGTDKPVHVKYAAPDDAKILLGKATVLPEDNXNGVVMVIDDITVLIHAQ
	orf64a	
		420 430 440 450 460 470
		2000 ID 262 in
	The complete le	ngth ORF64a nucleotide sequence <seq 253="" id=""> is:</seq>
	In company	
		ATGCGCCGTT TTCTACCGAT CGCAGCCATA TGCGCCGTCG TCCTGTTGTA
	1	CGGACTGACG GCGGCAACCG GCAGCACCAG TTCGCTGGCG GATTATTTCT
50	51	CGGACTGACG GCGGCAACCG GCACACCAG TCGTCTT CTCCCCCTT
	101	GGTGGATTGT TGCGTTCAGC GCAATGCTGC TGCTGGTGTT GTCCGCCGTT
	151	TTGGCACGTT ATGTCATATT GCTGTTGAAA GACAGGCGCG ACGGCGTATT
	201	CGGTTCGCAG ATTGCCAAAC GCCTTTCCGG GATGTTTACG CTGGTTGCCG
	251	MACRECOCCE CETETTTETE TTEGGEGTTT CEGEACAGTT TATUAACGC
		ACGATTAATT CGTGGTTCGG CAACGATACC CACGAGGCGC TTGAACGCAG
55		ACGATTAATT CGTGGTTCGG CAACGATACO CHOCAGAC AACGCCCTTG CCTCAATTTG AGCAAGTCCG CATTGAATCT GGCGGCAGAC AACGCCCTTG
	351	CCTCAATTTG AGCAAGICG CAITGAATGT MOCCCCCCC TTCCCTGCCC
	401	GCAACGCCAT CCCCGTGCAG ATAGACNTCA TCGGCGCGGC TTCCCTGCCC
	451	NGGGATATGG GCAGGGTGCT GGAACATTAC GCCGGCAGCG GTTTTGCCCA
	501	COMMCCOCOMO TROCA DE CONGCOGGICA ANTIGAMAMA AGUATUMACO
<i>c</i> ^		CCACACACCE CGATCAGCCG TTTCCAGGTA AGGCGCGTTG GGAAAAAA
60		CARCACCCC CTTCCCTCAC GCATNNGGAA AGCATAGGCG GCGTATTGIA
	601	CAACAGGCGG GITCGGICAG GGAINNGGAA ACACGGGCGC GATTACGCCT CGCGCANGGC TGGCTGTCGG CAGNNACGCA CAACGGGCGC GATTACGCCT
	651	CGCGCANGGC TGGCTGTCGG CAGNNACGCA TGCCGTCTTA
	701	TGTTTTTCCG TCAGCCGGTT CCCAAAGGCG TGGCAGAGGA TGCCGTCTTA
	751	AMOCA AACC CAACGCCCNA ANANNATNAG TTGAGTTACA GCAAAAAAGG
65		THE CALCACT THE THE CANCECTECT GATTGCCTON CIGCIGICAN
C.O.	TOO T	TARGETT AND THE MECCACOCC PRINCETCE A
•	0.54	TOUCHE TOUCHER
-	851	TTTTCTTGC ACTGGTCATG GCACTGTATT TCGCCCGCCG TTTCGTCGAA

	901 C	CCGTCCTAT	CGCTTGCCGA	GGGGGCGAAG	GCGGTGGCGC	AAGGCGATTT	
	. 951 C	CAGCCAGACG	CGCCCCGTGT	TGCGCAACGA	CGAGTTCGGA	CGCTTGACCA	
					CCATCGCCAA		
_		SAGCGCAACC	GCCGGCGCGA	GGAAGCCGCC	AGACATTATC	TCGAATGCGT	
5					GTTTGACGAA TTTTGGGGAT		
					CACGGCGTTT		
	1251 6	20001G1GGG	GCCGAAGTGT	TTGCCGCCAT	CGGCGCGGCG	GCAGGTACGG	
	1301 A	CAAACCGGT	CCATGTGAAA	TATGCCGCGC	CGGACGATGC	CAAAATCCTG	
10	1351	TGGGCAAGG	CAACCGTCCT	GCCCGAAGAC	AACNGCAACG	GCGTGGTAAT	
••	1401 0				CGCGCAAAAA		
	,	GGGCGAAGT	GGCAAAACGG	CTGGCACACG	AAATCCGCAA	TCCGCTCACG	
		CCCATCCAGC	TTTCTGCCGA	ACGGCTGGCG	TGGAAATTGG	GCGGGAAGCT	
		GGACGAGCAN	GACGCGCAAA	TCCTGACACG	TTCGACCGAC	ACCATCATCA	
15						CAATTACNCG CCTTAATCGG	
	1651 0 1701 0	CATCCCCII	CCNCICAAII	ARCTCCTCC	GTGCCGGTTT	GCGGCGGAAC	
	1751 7	PTCCCCCCCA	ACCECTEATE	ATGGCGGCGG	ATACGACCGC	CATGCGGCAG	
	1801	TIGCCOCCACA	ATATTTTCAA	AAATGCCGCC	GAAGCGGCGG	AAGAAGCCGA	
20	1851	TGTGCCCGAA	GTCAGGGTAA	AATCGGAAGC	GGGGCAGGAC	GGACGGATTG	
20	1901	TCCTGACAGT	TTGCGACAAC	GGCAAGGGGT	TCGGCAGGGA	AATGCTGCAC	
	1951 /	AATGCCTTCG	AGCCGTATGT	AACGGACAAA	CCGGCTGGAA	CGGGATTGNG	
	2001	ACTGCCCGTG	GTGAAAAAA	TCATTGAAGA	ACACGGCGGC	CNCATCAGCC	
					TCAGAATCAT	CTTGCCAAAA	
25	2101	ACGGTAGAAA	CTTATGCGTA	G į			•
	This area don n m	otoin havin	a amina acid	l comence <	SEO ID 254	>.	i
	This encodes a pr	otem navm	g ammo acio	i sequence \	3EQ ID 234	·	
		MODEL DESSE	CANDITIVE	7 7 T C C T C C T 7	DVEWMINARC	AMLLLVLSAV	
	1 ! 51	MRRELPIAAI	DEBDCAECEO	TAKRISCHET	I.VAVI.DCVRI.	FGVSAQFING	
						IDXIGAASLP	
30	151	XDMGRVLEHY	AGSGFAOLAL	YNAASGKIEK	SINPHKLDOP	FPGKARWEKI	
, 50	201	OOAGSVRDXE	SIGGVLYAXG	WLSAXTHNGR	DYALFFROPV	PKGVAEDAVL	
	251	IEKARAXXXX	LSYSKKGLQT	FFLATLLIAS	LLSIFLALVM	ALYFARREVE	
	. 301	PVLSLAEGAK	AVAQGDFSQT	RPVLRNDEFO	RLTKLFNHMT	EQLSIAKEAD	
	351	ERNRRREEAA	RHYLECVLEG	LTTGVVVFDE	: QGCLKTFNKA	AEQILGMPLT	
35	401	PLWGSSRHGW	HGVSAQQSLL	AEVFAAIGA	AGTDKPVHVK	YAAPDDAKIL	
		LGKATVLPED	NXNGVVMVID	DITVLIHAQE	CEAAWGEVAKR	LAHEIRNPLT	
	501	PIQLSAERLA	WKLGGKLDEX	DAQILTKSTL) TIIKQVAALK	EMVEAFRNYX MAADTTAMRQ	
	601	KSPSKQLENQ	DEMMERADADE	MILEAGECKI	CETULTUCON	GKGFGREMLH	
40	651	A DUNT L VIVE	PAGTGI.XI.PV	VKKTTEEHGO	XISLSNODAG	GAXVRIILPK	
40		TVETYA*	thoromas.	***************************************			
	ORF64a and OR	F64-1 show	96.6% iden	tity in 706 a	a overlap:		
					30 40		
4.5	orf64a.pep	MRRFLPI	AAICAVVLLYG	LTAATGSTSS	LADIEWWIVAE:	SAMLLLVLSAVL	WKIATPPPV
45		MDDETDT	11111111111			SAMLLLVLSAVL	ARVVII.I.K
	orf64-1	MKKELET	10		30 40		60
			10				
			70		90 100		120
50	orf64a.pep					STINSWFGNDTH	
		[11][11]	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$				[] [] [] [] []
	orf64-1	DRRDGVF				STINSWEGNDTH	
		•	70	80	90 100	110	120
E E	•		130	140 1	50 160	170	180
55	auficas por	- CVCATNI				YAGSGFAQLALY	
	orf64a.per	O SESTINI	HANDNALGNAI	HILL HILL	II IIIIII.	11111111111	IIIIIIIIII
	orf64-1	SKSALNI	AADNALGNAVI	VOIDLIGAAS	LPGDMGRVLEH	YAGSGFAQLALY	NAASGKIEK
	01104-1	OKOMENI			50 160		180
60				_			
V V	•				10 22		
	orf64a.pep	p SINPHKI	DOPFPGKARWI	EKIQQAGSVRD	XESIGGVLYAX	GWLSAXTHNGRI	DYALFFRQPV
		1111111	ПППППП		11111111		
	orf64-1	SINPHKI				GWLSAGTHNGRI	
65			190	200 2	10 22	0 230	240

_	orf64a.pep	PKGVAEDAVLIEKARAXXXXLSYSKKGLQTFFLATLLIASLLSIFLALVMALYFARRFVE	
5	orf64a.pep	310 320 330 340 350 360 PVLSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRRREEAA	
10	orf64-1	PVLSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRRREEAA 310 320 330 340 350 360	
	orf64a.pep	370 380 390 400 410 420 RHYLECVLEGLTTGVVVFDEQGCLKTFNKAAEQILGMPLTPLWGSSRHGWHGVSAQQSLL	
15	orf64-1	RHYLECVLEGLTTGVVVFDEQGCLKTFNKAAEQILGMPLTPLWGSSRHGWHGVSAQQSLL 370 380 390 400 410 420	
	orf64a.pep	430 440 450 460 470 480 AEVFAAIGAAAGTDKPVHVKYAAPDDAKILLGKATVLPEDNXNGVVMVIDDITVLIHAQK	
20	orf64-1	AEVFAAIGAAAGTDKPVHVKYAAPDDAKILLGKATVLPEDNGNGVVMVIDDITVLIHAQK 430 440 450 460 470 480	
25	orf64a.pep	490 500 510 520 530 540 EAAWGEVAKRLAHEIRNPLTPIQLSAERLAWKLGGKLDEXDAQILTRSTDTIIKQVAALK	:
	orf64-1		
30	orf64a.pep	550 560 570 580 590 600 EMVEAFRNYXRSPSXQLENQDLNALIGDVLALYEAGPCRFAAELAGEPLMMAADTTAMRQ	2
	orf64-1	EMVEAFRNYARSPSLKLENODLNALIGDVLALYEAGPCRFAAELAGEPLTVAADTTAMRQ 550 560 570 580 590 600	2
35	orf64a.pep	610 620 630 640 650 660 VLHNIFKNAAEAAEEADVPEVRVKSEAGQDGRIVLTVCDNGKGFGREMLHNAFEPYVTDK	<
40	orf64-1	VLHNIFKNAAEAAEEADVPEVRVKSETGQDGRIVLTVCDNGKGFGREMLHNAFEPYVTDF 610 620 630 640 650 660	K
	orf64a.pep	670 680 690 700 PAGTGLXLPVVKKIIEEHGGXISLSNQDAGGAXVRIILPKTVETYAX	
45	orf64-1	PAGTGLGLPVVKKIIEEHGGRISLSNODAGGACVRIILPKTVKTYAX 670 680 690 700	
		u commo v v	

Homology with a predicted ORF from N.gonorrhoeae

ORF64 shows 86.6% identity over a 387aa overlap with a predicted ORF (ORF64.ng) from N.

50 gonorrhoeae:

	orf64.pep	MRRFLPIAAICAXXLXXGLTAATGSTSSLADYFWWIVAFSAMLLLVLSAVLARYVILLLK	60
	orf64ng	MRRFLPIAAICAVVLLYGLTAATGSTSSLADYFWWIVSFSAMLLLVLSAVLARYVILLLK	60
55	orf64.pep	DRRDGVFGSXXAKXPXXXMFTLVAXLPGVFLFGFPAQFINGTINSWFGNDTHEALERSLN	120
	orf64ng	DRRNGVFGSQIAKR-LSGMFTLVAVLPGLFLFGISAQFINGTINSWFGNDTHEALERSLN	119
60	orf64.pep	LSKSALNLAADNALGNAVPVQIDLIGAASLPGDMGRVLEHYAGSGFAQLALYNXASGKIE	180
60	orf64ng	LSKSALDLAADNAVSNAVPVQIDLIGTASLSGNMGSVLEHYAGSGFAQLALYNAASGKIE	179
	orf64.pep	KSINPHKLDQPFPGKARWEKIQRAGSVRDLESIGGVLYAQGWLSAGTHXGRDYALFFRQP	240
65	orf64ng	KSINPHQFDQPLPDKEHWEQIQQTGSVRSLESIGGVLYAQGWLSAGTHNGRDYALFFRQP	239

	orf64.pep	VPKGVAEDAVLIEKARAKYAELSYSKKGLQTFFLATLLIASLLSIFLALVMALYFARRFV : :: : :	300
	orf64ng	I PENVAQDAVLIEKARAKYAELSYSKKGLQTFFLVTLLIASLLSIFLALVMALYFARRFV	299
5	orf64.pep	EPVLSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTXLFNHMTEQLSIAKDADERNRREEA	360
	orf64ng	EPILSLAEGAKAVAQGDFSQTRPVLRNDEFGRLTKLFNHMTEQLSIAKEADERNRRREEA	359
10	orf64.pep	ARHYLECVLEGLTTGVVVFDEQGCLKTFNKAAGT 394	
••	orf64ng	ARHYLECVLDGLTTGVVVSYPLSCCRTAVFSTCHSSPLSYF 400	

An ORF64ng nucleotide sequence <SEQ ID 255> was predicted to encode a protein having amino acid sequence <SEQ ID 256>:

```
1 MRRFLPIAAI CAVVLLYGLT AATGSTSSLA DYFWIVSFS AMLLLVLSAV

15 LARYVILLIK DRRNGVFGSQ IAKRLSGMFT LVAVLPGLFL FGISAQFING
101 TINSWFGNDT HEALERSLNL SKSALDLAAD NAVSNAVPVQ IDLIGTASLS
151 GNMGSVLEHY AGSGFAQLAL YNAASGKIEK SINPHQFDQP LPDKEHWEQI
201 QQTGSVRSLE SIGGVLYAQG WLSAGTHNGR DYALFFRQPI PENVAQDAVL
251 IEKARAKYAE LSYSKKGLQT FFLVTLLIAS LLSIFLALVM ALYFARRFVE
20 301 PILSLAEGAK AVAQGDFSQT RPVLRNDEFG RLTKLFNHMT EQLSIAKEAD
351 ERNRREEAA RHYLECVLDG LTTGVVVSYP LSCCRTAVFS TCHSSPLSYF*
```

Further work revealed the complete gonococcal DNA sequence <SEQ ID 257>:

							•
		1	ATGCGCCGCT	TCCTACCGAT	CGCAGCCATA	TGCGCCGTCG	TCCTGCTGTA
		51			GCAGCACCAG		
25		101	GGTGGATAGT	CTCGTTCAGC	GCAATGCTGC	TGCTGGTGTT	GTCCGCCGTT
		151	TTGGCACGTT	ATGTCATATT	GCTGTTGAAA	GACAGGCGCA	ACGGCGTGTT
		201	CGGTTCGCAG	ATTGCCAAAC	GCCTTTCCGG	GATGTTCACG	CTGGTCGCCG
		251	TACTGCCCGG	CTTGTTCCTG	TTCGGCATTT	CCGCGCAGTT	TATCAACGGC
		301	ACGATTAATT	CGTGGTTCGG	CAACGACACC	CACGAAGCCC	TCGAACGCAG
30		351	CCTTAATTTG	AGCAAGTCCG	CACTGGATTT	GGCGGCAGAC	AATGCCGTCA
		401	GCAACGCCGT	TCCCGTACAG	ATAGACCTCA	TCGGCACCGC	CTCCCTGTCG
		451			GGAACACTAC		
		501	GCTTGCCCTG	TACAATGCCG	CAAGCGGGAA	AATCGAAAAA	AGCATCAATC
		551			CTTCCCGACA		
35		601	CAGCAGACCG	GTTCGGTTCG	GAGTTTGGAA	AGCATAGGCG	GCGTATTGTA
	٠.	651	CGCGCAGGGA	TGGTTGTCGG	CAGGTACGCA	CAACGGGCGC	GATTACGCGC
		701			CCCGAAAATG		
		751			ATATGCCGAA		
		801			TAACCCTGCT		
40		851	TTTTTCTTGC	GCTGGTAATG	GCACTGTATT	TTGCCCGCCG	TTTCGTCGAA
		901			GGGCGCAAAG		
		951			TGCGCAACGA		
		1001	AGCTGTTCAA	CCATATGACC	GAGCAGCTTT	CCATCGCCAA	AGAAGCAGAC
		1051	GAACGCAACC	GCCGGCGCGA	GGAAGCCGCC	CGTCACTACC	TCGAGTGCGT
45		1101	GTTGGATGGG	TTGACTACCG	GTGTGGTGGT	GTTTGACGAA	AAAGGCCGTT
		1151	TGAAAACCTT	CAACAAGGCG	GCGGAACAGA	TTTTGGGGAT	GCCGCTCGCC
		1201	CCCCTGTGGG	GCAGCAGCCG	GCACGGTTGG	CACGGCGTTT	CGGCGCAGCA
		1251	GTCCCTGCTT	GCCGAAGTGT	TtgccgccAT	CGGTGCGGCG	GCAGGTACGG
		1301	ACAAACCGGT	CCAGGTGGAA	TATGCCGCGC	CGGACGATGC	CAAAATCCTG
50		1351	CTGGGCAAGG	CGACGGTATT	GCCCGAAGAC	AACGGCAACG	GCGTGGTGAT
		1401	GGTGATTGAC	GACATCACCG	TGCTGATACG	CGCGCAAAAA	GAAGCCGCGT
		1451					TCCGCTCACG
	•	.1501	CCCATCCAGC	TTTCCGCCGA	ACGGCTGGCG	TGGAAATTGG	GCGGGAAGCT
		1551					ACCATCATCA
55		1601	AACAGgtggc	gGCGTTAAAA	GAAATGGTCG	AGGCATTCCG	CAATTACGCG
		1651	CGCGCCCCTT	CGCTCAAACT	GGAAAATCAG	GATTTGAACG	CCTTAATCGG
		1701	CGATGTTTTG	GCCCTGTACG	AAGCCGGCCC	GTGCCGGTTT	GAGGCGGAAC
		1751	TTGCCGGCGA	ACCGCTGATG	ATGGCGGCGG	ATACGACCGC	CATGCGGCAG
		1801	GTGCTGCACA	ATATTTTCAA	AAATGCCGCC	GAAGCGGCGG	AAGAAGCCGA
60		1851	TATGCCCGAA	GTCAGGGTAA	AATCGGAAAC	GGGGCAGGAC	GGACGGATTG
		1901	TCCTGACGGT	TTGCGACAAC	GGCAAGGGAT	TCGGCAAGGA	AATGCTGCAC
		1951	AATGCTTTCG	AGCCGTATGT	GACGGATAAG	CCGGCGGGAA	CGGGACTGGG
		2001	TCTGCCTGTA	GTGAAAAAA	TCATTGGAGA	ACACGGCGGC	CGCATCAGCC
		2051	TGAGCAATCA	GGATGCGGGT	GGGGCGTGTG	TCAGAATCAT	CTTGCCAAAA
65		2101	ACGGTAGAAA	CTTATGCGTA	G		

This corresponds to the amino acid sequence <SEQ ID 258; ORF64ng-1>:

	1 51 101	TINSWEGNDT	DRRNGVFGSQ HEALERSLNL	IAKRLSGMFT SKSALDLAAD YNAASGKIEK	NAVSNAVPVQ SINPHQFDQP	IDLIGTASLS LPDKEHWEQI
5	151 201 251	QQTGSVRSLE	SIGGVLYAQG LSYSKKGLOT	WLSAGTHNGR FFLVTLLIAS	DYALFFROPI LLSIFLALVM RLTKLFNHMT	ALYFARREVE
10	301 351 401	ERNRRREEAA	RHYLECVLDG	LTTGVVVFDE AEVFAAIGAA	KGRLKTFNKA AGTDKPVQVE	YAAPDDAKIL
10	451 501	DIOT CAPPIA	WKT.GGKT.DDO	DAOILTRSTD	EAAWGEVAKR TIIKQVAALK EAELAGEPLM	EMVEAFRNYA
15	551 601 651	THE UNITERNAL	FAAFFADMPE	VRVKSETGQD	GRIVLTVCDN RISLSNQDAG	GKGFGKEMLH
15	701	TVETYA*				

ORF64ng-1 and ORF64-1 show 93.8% identity in 706 aa overlap:

ORFO4fig-1 and ORFO4-1 show 35.577 testing a							
			20	30	40	50	60
		10 MRRFLPIAAICAVVLI	2U .vct.maa.ec	טכ ששישערו או איים פיים	TVSFSAMT.T.		ILLLK
	orf64ng-1.pep	MRRFLPIAAICAVVLI	YGLTAAIG	OIOOMWILLIN	11.111111		HILL
20		MRRFLPIAAICAVVLI		CONCET A DVENIG	TVAFSAMI.I.	.VI.SAVI.ARYV	TLLLK
_	orf64-1		TIGLIAAIG	30	40	50	60
		10	20	30	40		
			00	90	100	110	120
		70 DRRNGVFGSQIAKRLS	80	שני מאר היו היו היי	OFINCTING		RSLNL
25	orf64ng-1.pep	DRRNGVFGSQIAKKL	SGMETLVAV	PEGPEPEGISE	OF THUILING	11111111111	11111
	·	DRRNGVFGSQIAKKLS DRRDGVFGSQIAKRLS	11111111	111:11:11:11	OFTNOTING	WECNDTHEALE	RSLNL
	orf64-1		SGMITLVAV	90	100	110	120
		70	80	90	100		
		4.00	140	150	160	170	180
30		130 SKSALDLAADNAVSN	140	CUN OI SCHMC	DPDAYHTUP		SGKIEK
•	orf64ng-1.pep	SKSALDLAADNAVSN	WA BAGIDE1	GIASLSGNMG.			11111
		: : SKSALNLAADNALGN	I I I I I I I I I I	CANGIDEDME	PVIEHYAGSG	FAOLALYNAA	SGKIEK
	orf64-1		140	150	160	170	180
		130	140	130	100		
35		100	200	210	220	230	240
		190 SINPHQFDQPLPDKE	ZUU URREATAAN	210 2000 ST. FST.CC	VILYAOGWISA		FFRQPI
	orf64ng-1.pep	SINPHORDOPLPDRE	HMEGIGGI	11111111111	11111111111		HIÏI:
		SINPHKLDQPFPGKA	PWENTODA		VI.YAOGWI.SZ	GTHNGRDYAL	FFROPV
	orf64-1		KMEVIČKU	210	220	230	240
40		190	200	210	220	200	
		0.50	260	270	280	290	300
		250 PENVAQDAVLIEKAF	260	CVVCI OTETI U	77.T.TAST.T.S		ARREVE
	orf64ng-1.pep	PENVAQDAVLIEKAP	CARIALLSI	OVVGTÖTETTA			111111
		PKGVAEDAVLIEKAF		1111111111	יווווווווו מדידית מדודית.	TET.AT.VMAT.YF	ARREVE
45	orf64-1		(AKIAELSI	270	280	290	300
		250	260	210	200		
		210	320	330	340	350	360
		310 PILSLAEGAKAVAQ	32U	フラリ オウバロコマロエグド	CT. FNIHMTEOT.		RREEAA
	orf64ng-1.pep	PILSLAEGAKAVAQK	-UESQIKEV	TEMPERGERII			111111
50		PVLSLAEGAKAVAQ		יווווווון; זיי, זמבים המואם זי	CT.FNHMTEOL	STAKEADERNI	RREEAA
	orf64-1		320	330	340	350	360
		310	320	330	0.0		
		270	380	390	400	410	420
	_	370 RHYLECVLDGLTTG	NAMEDERCE	TKTFNKAAEO	TLGMPLAPLW		SAQQSLL
55	orf64ng-1.pep	KHATECATORILIE	V V V E DERGE	11111111111.	111111:11	1111111111	1111111
		RHYLECVLEGLTTG	111111111	ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ	TLCMPLTPLW	GSSRHGWHGV	SAQQSLL
	orf64-1		380	390	400	410	420
		370	360	330	.00	• • • • • • • • • • • • • • • • • • • •	
		420	440	450	460	470	480
60		430 AEVFAAIGAAAGTD	440	ADDDAKITICK ADDDAKITICK	ATVI.PEDNGN		VLIRAQK
	orf64ng-1.pep	AEVFAAIGAAAGTD	LII.I.II	111111111111			111:111
			11111111	TITTABANGA	ATVI.PEDNC	GVVMVIDDIT	VLIHAOK
	orf64-1		440	450	460	470	480
		430	440	420	300		
65		400	500	510	520	530	540
		490 EAAWGEVAKRLAHE	UUC Tamidkati	OT GYBBI'VIKL	CCKT DDODA		KOVAALK
	orf64ng-1.peg	EAAWGEVAKRLAHE	PIKMEDIAT	Angkevrywyr	11111:111		1111111
		[]][]]		11111111111	111111111		

```
EAAWGEVAKRLAHEIRNPLTPIQLSAERLAWKLGGKLDEQDAQILTRSTDTIVKQVAALK
         orf64-1
                              490
                                        500
                                                 510
                                                           520
                                                                    530
                              550
                                        560
                                                 570
                                                           580
                                                                    590
5
          orf64ng-1.pep
                        EMVEAFRNYARAPSLKLENQDLNALIGDVLALYEAGPCRFEAELAGEPLMMAADTTAMRO
                        EMVEAFRNYARSPSLKLENQDLNALIGDVLALYEAGPCRFAAELAGEPLTVAADTTAMRQ
          orf64-1
                                        560
                                                 570
                                                           580 ·
10
                              610
                                        620
                                                 630
                                                           640
                                                                    650
                                                                             660
          orf64ng-1.pep
                        VLHNIFKNAAEAAEEADMPEVRVKSETGQDGRIVLTVCDNGKGFGKEMLHNAFEPYVTDK
                        VLHNIFKNAAEAAEEADVPEVRVKSETGQDGRIVLTVCDNGKGFGREMLHNAFEPYVTDK
          orf64-1
                              610
                                        620
                                                 630
                                                           640
                                                                    650
15
                              670
                                        680
                                                 690
                                                          700
                        PAGTGLGLPVVKKIIGEHGGRISLSNQDAGGACVRIILPKTVETYAX
          orf64ng-1.pep
                        PAGTGLGLPVVKKIIEEHGGRISLSNQDAGGACVRIILPKTVKTYAX
          orf64-1
20
                                        680
                                                 690
                                                           700
     Furthermore, ORF64ng-1 shows significant homology to a protein from A. caulinodans:
          sp|Q04850|NTRY AZOCA NITROGEN REGULATION PROTEIN NTRY >gi|77479|pir||S18624 ntry
          protein - Azorhizobium caulinodans >gi|38737 (X63841) NtrY gene product
          [Azorhizobium caulinodans] Length = 771
25
           Score = 218 bits (550), Expect = 7e-56
           Identities = 195/720 (27%), Positives = 320/720 (44%), Gaps = 58/720 (8%)
                    IAAICAVVLLYGLTAATGSTSSLADYFWWIXXXXXXXXXXXXXXXXXXXXXXXXXXXX 66
          Query: 7
                    I+A+
                          ++L GLT
                                                               R + + K R G
30
          Sbjct: 35 ISALATFLILMGLTPVVPTHQVVIS----VLLVNAAAVLILSAMVGREIWRIAKARARGR 90
          Query: 67
                    FGSQIAKRLSGMFTLVAVLPGLFLFGISAQFINGTINSWFGNDTHEALERSLNLSKSALD 126
                      +++ R+ G+F +V+V+P + + +++ ++ WF T E + S++++++ +
          Sbjct: 91 AAARLHIRIVGLFAVVSVVPAILVAVVASLTLDRGLDRWFSMRTQEIVASSVSVAQTYVR 150
35
          Query: 127 LAADNAVSNAVPVQIDLIGTASLSGNMGSVLEHYAG--SGFAQLALYNAASGKIEKSINP 184
                      A N + + + DL
                                        S÷
                                                   YG SFQ+
                                                                 AA
          Sbjct: 151 EHALNIRGDILAMSADLTRLKSV-
                                                  --YEGDRSRFNQILTAQAALRNLPGAMLI 200
40
          Query: 185 HQFDQPLPDKEHWEQIQQTGSVRSLESIGGVLYAQGWLSAGTHNGRDYA----- 233
                     + D + ++ + I + V + +IG
                                                  Q +
                                                           N DY
          Sbjct: 201 RR-DLSVVERAN-VNIGREFIVPANLAIGDATPDOPVIYLP--NDADYVAAVVPLKDYDD 256
          Query: 234 --LFFRQPIPENVAQDAVLIEKARAKYAELSYSKKGLQTFFLVTXXXXXXXXXXXXXXVMA 291
45
                      L+ + I V
                                      ++ A Y L
                                                  + G+Q F +
          Sbjct: 257 LYLYVARLIDPRVIGYLKTTQETLADYRSLEERRFGVQVAFALMYAVITLIVLLSAVWLG 316
          Query: 292 LYFARRFVEPILSLAEGAKAVAQGDFSQTRPVLRND-EFGRLTKLFNHMTEQLSIXXXXX 350
                    L F++ V PI L A VA+G+
                                               P+ R + + L + FN MT +L
50
          Sbjct: 317 LNFSKWLVAPIRRLMSAADHVAEGNLDVRVPIYRAEGDLASLAETFNKMTHELRSQREAI 376
          Query: 351 XXXXXXXXXXXXYLECVLDGLTTGVVVFDEKGRLKTFNKAAEQILGMPLAPLWGSSRHGW 410
                               + E VL G+ GV+ D + R+
                                                     N++AE++LG L+ +
          Sbjct: 377 LTARDQIDSRRRFTEAVLSGVGAGVIGLDSQERITILNRSAERLLG--LSEVEALHRHLA 434
55
          Query: 411 HGVSAQQSLLAEVFXXXXXXXXTDKPVQVEYAAPDDAKILLGKATVLPEDNG---NGVVM 467
                           LL E
                                          + VQ
                                                     D + +
                                                             VE+
                                                                        +G V+
          Sbjct: 435 EVVPETAGLLEEA-----EHARQRSVQGNITLTRDGRERVFAVRVTTEQSPEAEHGWVV 488
60
          Query: 468 VIDDITVLIRAQKEAAWGEVAKRLAHEIRNPLTPIQLSAERLAWKLGGKLDDQDAQILTR 527
                     +DDIT LI AQ+ +AW +VA+R+AHEI+NPLTPIQLSAERL K G + OD +I +
          Sbjct: 489 TLDDITELISAORTSAWADVARRIAHEIKNPLTPIQLSAERLKRKFGRHV-TODREIFDO 547
          Query: 528 STDTIIKQVAALKEMVEAFRNYARAPSLKLENQDLNALIGDVLALYEAGPCRFEAELAGE 587
65
                     TDTII+QV + MV+ F ++AR P
                                              +++QD++ +I + L G
          Sbjct: 548 CTDTIIRQVGDIGRMVDEFSSFARMPKPVVDSQDMSEIIRQTVFLMRVGHPEVVFDSEVP 607
          Query: 588 PLMMAA-DTTAMRQVLHNIFKNXXXXXXXXDMPEVRVK-
                                                              -SETGQDGRIVLTVCD 639
                    PMAD + QLNIKN
                                                  P+VR +
                                                              + G+D +V+ + D
70
          Sbjct: 608 PAMPARFDRRLVSQALTNILKNAAEAIEAVP-PDVRGQGRIRVSANRVGED--LVIDIID 664
```

```
Query: 640 NGKGFGKEMLHNAFEPYVTDKPAGTGLGLPVVKKIIGEHGGRISLSNQDAG-GACVRIIL 698
NG G +E + EPYVT + GTGLGL +V KI+ EHGG I L++ G GA +R+ L
Sbjct: 665 NGTGLPQESRNRLLEPYVTTREKGTGLGLAIVGKIMEEHGGGIELNDAPEGRGAWIRLTL 724
```

Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

10 Example 31

5

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 259>:

```
1 ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT TCCGGCTGGT
                    GCTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG GTGCAGTTCC
                    CTTTCCAAAT TTTCGGCATC CACACCACTT GGGGCGCATT TTCCTTTCCC
               101
                    TTCATCTTCC TTGCCACCGA CCTGACCGTC CGCATTTTCG GTTCTCACTT
15
                    GGCACGGCGG ATTATCTTTT GGGTGATGTT CCCCGCCCTT TTGCTTTCCT
               201
               251 ACGTCTTTC CGTTTTGTTC CACAACGGCA GTTGGACAGG CTTGGGCGCG
                    CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCCTTAG CCAGCTTTGC
               301
               351 CGCCTACGCG ATCGGACAAA TCCTTGATAT TTTTGTATTC AACAAATTAC
                    GCCGTCTGAA AGCGTGGTGG ATTGCACCGA ACGCATCAAC CGTCATCGGG
                401
20
                    CACGCGTTGG ATACG...
                451
```

This corresponds to the amino acid sequence <SEQ ID 260; ORF66>:

```
25 MYAFTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFQIFGI HTTWGAFSFP
FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF HNGSWTGLGA
LSEFNTFVGR IALASFAAYA IGQILDIFVF NKLRRLKAWW IAPNASTVIG
```

Further work revealed the complete nucleotide sequence <SEQ ID 261>:

```
1 ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT TCCGGCTGGT
                    GCTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG GTGCAGTTCC
                51
                    CTTTCCAAAT TTTCGGCATC CACACCACTT GGGGCGCATT TTCCTTTCCC
30
               101
               151 TTCATCTTCC TTGCCACCGA CCTGACCGTC CGCATTTTCG GTTCTCACTT
                    GGCACGGCGG ATTATCTTTT GGGTGATGTT CCCCGCCCTT TTGCTTTCCT
               201
                    ACGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACAGG CTTGGGCGCG
                251
                    CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCCTTAG CCAGCTTTGC
                301
                    CGCCTACGCG ATCGGACAAA TCCTTGATAT TTTTGTATTC AACAAATTAC
35
                351
                    GCCGTCTGAA AGCGTGGTGG ATTGCACCGA CCGCATCAAC CGTCATCGGC
                401
                    AACGCCTTGG ATACGCTGGT ATTTTTCGCC GTTGCCTTCT ACGCAAGCAG
                451
                    CGATGGATTT ATGGCGGCAA ACTGGCAGGG CATCGCTTTT GTCGATTACC
                501
                    TGTTCAAACT TACCGTCTGC ACCCTCTTCT TCCTGCCCGC CTACGGCGTG
                551
                    ATACTGAATC TGCTGACGAA AAAACTGACA ACCCTGCAAA CCAAACAGGC
                601
40
                    GCAAGACCGC CCCGCGCCCT CGCTGCAAAA TCCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 262; ORF66-1>:

```
45 MYAFTAAQQQ KALFRLVLFH ILIIAASNYL VQFPFQIFGI HTTWGAFSFP
FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF HNGSWTGLGA
101 LSEFNTFVGR IALASFAAYA IGQILDIFVF NKLRRLKAWW IAPTASTVIG
151 NALDTLVFFA VAFYASSDGF MAANWQGIAF VDYLFKLTVC TLFFLPAYGV
201 ILNLLTKKLT TLQTKQAQDR PAPSLQNP*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with the hypothetical protein o221 of E. coli (accession number P37619)

ORF66 and o221 protein show 67% aa identity in 155aa overlap:

	•	-189-
	orf66 l	MYAFTAAQQQKALFRLVLFHILIIAASNYLVQFPFQIFGIHTTWGAFSFPFIFLATDLTV 60 M F+ Q+ KALF L LFH+L+I +SNYLVQ P I G HTTWGAFSFPFIFLATDLTV
•	0221 1	MNVFSQTQRYKALFWLSLFHLLVITSSNYLVQLPVSILGFHTTWGAFSFPFIFLATDLTV 60
5	orf66 61	RIFG+ LARRIIF VM PALL+SYV S LF+ GSW G GAL+ FN FV RIA ASF AYA
	0221 61	RIFGAPLARRIIFAVMIPALLISYVISSLFYMGSWQGFGALAHFNLFVARIATASFMAYA 120
10	orf66 12	1 IGQILDIFVFNKLRRLKAWWIAPNASTVIGHALDT 155 +GQILD+ VFN+LR+ + WW+AP AST+ G+ DT
	0221 12	1 LGQILDVHVFNRLRQSRRWWLAPTASTLFGNVSDT 155
		a predicted ORF from N. meningitidis (strain A)
	ORF66 shows 9	6.1% identity over a 155aa overlap with an ORF (ORF66a) from strain A of N.
15	meningitidis:	
	.666	10 20 30 40 50 60
-	orf66.pep	
20	orf66a	MYAFTAAQQQKALFWLVLFHILIIAASNYLVQFPFQISGIHTTWGAFSFPFIFLATDLTV 10 20 30 40 50 60
	orf66.pep	70 80 90 100 110 120 RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSEFNTFVGRIALASFAAYA
25		
23	orf66a	RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSEFNTFVGRIALASFAAYA 70 80 90 100 110 120
	orf66.pep	130 140 150 IGQILDIFVFNKLRRLKAWWIAPNASTVIGHALDT
30	orf66a	:
	011000	130 140 150 160 170 180
35	orf66a	VDYLFKLT <u>VCGLFFLPAYGVILNLL</u> TKKLTTLQTKQAQDRPAPSLQNPX 190
•	The complete le	ngth ORF66a nucleotide sequence <seq 263="" id=""> is:</seq>
	1	ATGTACGCAT TTACCGCCGC ACAGCAACAG AAGGCACTCT TCTGGCTGGT
	51 101	GCTTTTTCAT ATCCTCATCA TCGCCGCCAG CAACTATCTG GTGCAGTTCC CCTTCCAAAT TTCCGGCATC CACACCACTT GGGGCGCGTT TTCCTTTCCC
40	151	TTCATCTTCC TCGCCACCGA CCTGACCGTC CGCATTTTCG GTTCGCACTT
	201 251	GGCACGGCGG ATTATCTTTT GGGTCATGTT CCCCGCCCTT TTGCTTTCCT ACGTCTTTTC CGTTTTGTTC CACAACGGCA GTTGGACGGG CTTGGGCGCG
	301 351	CTGTCCGAAT TCAACACCTT TGTCGGACGC ATCGCGCTGG CAAGTTTTGC CGCCTACGCG CTCGGACAAA TCCTTGATAT TTTTGTGTTC AACAAATTAC
45	401	GCCGTCTGAA AGCGTGGTGG GTTGCCCCGA CTGCATCAAC CGTCATCGGC
	451 501	AACGCCTTAG ATACGTTGGT ATTTTTCGCC GTTGCCTTCT ACGCAAGCAG CGATGGATTT ATGGCGGCAA ACTGGCAGGG CATCGCTTTT GTCGATTACC
	551	TGTTCAAACT CACCGTCTGC GGTCTGTTTT TCCTGCCCGC CTACGGCGTG
50	601 651	ATTCTGAATC TGCTGACGAA AAAACTGACG ACCCTGCAAA CCAAACAGGC GCAAGACCGC CCCGCGCCCT CGCTGCAAAA TCCGTAA
•	This encodes a	protein having amino acid sequence <seq 264="" id="">:</seq>
	1	MYAFTAAQQQ KALFWLVLFH ILIIAASNYL VQFPFQISGI HTTWGAFSFP
	51	FIFLATDLTV RIFGSHLARR IIFWVMFPAL LLSYVFSVLF HNGSWTGLGA
55	101 151	LSEFNTFVGR IALASFAAYA LGQILDIFVF NKLRRLKAWW VAPTASTVIG NALDTLVFFA VAFYASSDGF MAANWQGIAF VDYLFKLTVC GLFFLPAYGV
55	201	ILNLLTKKLT TLQTKQAQDR PAPSLQNP*
	ORF66a and OI	RF66-1 show 97.8% identity in 228 aa overlap:
		10 20 30 40 50 60
60	orf66a.pe	P MYAFTAAQQQKALFWLVLFHILIIAASNYLVQFPFQISGIHTTWGAFSFPFIFLATDLTV
4 0	orf66-1	MYAFTAAQQQKALFRLVLFHILIIAASNYLVQFPFQIFGIHTTWGAFSFPFIFLATDLTV
		· ·

	РСТ/ІВ98/01665
WO 99/24578	

	WO 99/24578					PCI	1000			
			-:	190-						
		10	20	30	40	50	60			
5	orf66a.pep orf66-1	70 RIFGSHLARRIIFWV 								
10	orf66a.pep orf66-1	130 LGQILDIFVFNKLRI : IGQILDIFVFNKLRI 130								
15	orf66a.pep	190 VDYLFKLTVCGLFF VDYLFKLTVCTLFF 190	11111111		11111111	11111				
20	Homology with a predicted ORF from N. gonor noede									
	ORF66shows 94.	2% identity over a	a 155aa o	verlap with a	predicted	ORF (ORI	66.ng) from λ	I.		
	gonorrhoeae:									
25	orf66.pep	MYAFTAAQQQKALI								
23	orf66ng	MYALTAAQQQKAL RIFGSHLARRIIF	FRLVLFHII	PITAASNILVQE	PERTEGILL	1110112 2 2 2 2 2 2				
	orf66.pep	RIFGSHLARRIIF RIFGSHLARRIIF								
30	orf66ng	RIFGSHLARRITE IGQILDIFVFNKL				_	155			
	orf66.pep orf66ng	: : LGQILDIFVFDKL	 RRLKAWWI	APAASTVIGNAL	DTLVFFAVA		ANWQGIAF 180			
35	The complete lea	ngth ORF66ng nuc								
40 45		CEGTCCCAAT TCAA CGCCTACGCG CTCG GCCGTCTGAA AGCG AATGCACTGG ACAC CGATGAATTT ATGC TGTTCAAACT TACCT	TCATCA TC SGCATC CF CACCGA CC CACCGA CC TTGTTT GC TTGTTC CA CACCTT TC GACAAA TC TGGTGG A' GGTTAGT A' GGCAA A GGTCTGC A	ACACCACTA GGC ACACCACTT GGC ACACCACTT GGC GGTGATGTT CCC ACAAACGGCA GT GTCGGACGC AT CCTTGATAT TT TTGCCCCGG CC TTTTTTGCC GT CTTGCAGGG CA CCCTCTTCT TC AAACTGACG GC	GEGGCGTT CATTTTCG CCGCCCTT CGGACGGG CGCGCTGG CGCGTATTC CGCATCAAC TCGCTTTT TCGCTTTT CTGCCCGC CCTGCAAA	TTCCTTTCCC GTTCGCACTT ttgCTTTCat CTTGGGCGCG CAAGTTTTGC GACAAATTAC CGTCATCGGC ACGCAAGCAG GTCGATTACC CTTACGGCGTG				
	651	GCAAGACCGC CCCG	recer c	GCIGCMAMA 10						
50			कारसार एस उ	TTTABGNVI. VC	FPFRIFGI	HTTWGAFSFP				
55	51 101 151 5 201	MYALTAAQQQ KALE FIFLATDLTV RIFC PSQFNTFVGR IALL NALDTLVFFA VAF ILNLLTKKLT ALQ	ASFAAYA I YASSDEF N TKQAQDR I	GQILDIFVF DE	T.RRLKAWW	IAPAASTVIG	}			
			. 83 TV 103	ILIIAASNYL V	OFPFRIFGI	HTTWGAFSFI	·			
6	51 101	FIFLATDLTV RIF LSQFNTFVGR IAL NALDTLVFFA VAF	GSHLARR ASFAAYA YASSDEF	LGQILDIEVE D MAANWQGIAF V	KIRRIKAWW	IAPAASTVI	3			

ORF66ng and ORF66-1 show 96.1% identity in 228 aa overlap:

```
orf66-1.pep
                MYAFTAAQQQKALFRLVLFHILIIAASNYLVQFPFQIFGIHTTWGAFSFPFIFLATDLTV
                 orf66ng
                 MYALTAAQQQKALFRLVLFHILIIAASNYLVQFPFRIFGIHTTWGAFSFPFIFLATDLTV
5
       orf66-1.pep
                 RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSEFNTFVGRIALASFAAYA 120
                 RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSQFNTFVGRIALASFAAYA 120
       orf66ng
10
                 IGQILDIFVFNKLRRLKAWWIAPTASTVIGNALDTLVFFAVAFYASSDGFMAANWQGIAF 180
       orf66-1.pep
                 LGQILDIFVFDKLRRLKAWWIAPAASTVIGNALDTLVFFAVAFYASSDEFMAANWQGIAF 180
       orf66ng
       orf66-1.pep
                 VDYLFKLTVCTLFFLPAYGVILNLLTKKLTTLQTKQAQDRPAPSLQNPX
                                                      229
15
                 VDYLFKLTVCTLFFLPAYGVILNLLTKKLTALQTKQAQDRPVPSLQNPX
       orf66ng
                                                      229
```

Furthermore, ORF66ng shows significant homology with an E.coli ORF:

```
sp|P37619|YHHQ ECOLI HYPOTHETICAL 25.3 KD PROTEIN IN FTSY-NIKA INTERGENIC
           REGION (0221)
20
           >gi|1073495|pir||S47690 hypothetical protein o221 - Escherichia coli >gi|466607
           (U00039) No definition line found [Escherichia coli] >gi|1789882 (AE000423)
           hypothetical 25.3 kD protein in ftsY-nikA intergenic region [Escherichia coli]
           Length = 221
            Score = 273 bits (692), Expect = 5e-73
25
            Identities = 132/203 (65%), Positives = 155/203 (76%)
                      {\tt MYALTAAQQQKALFRLVLFHILIIAASNYLVQFPFRIFGIHTTWGAFSFPFIFLATDLTV~60}
           Query: 1
                          + Q+ KALF L LFH+L+I +SNYLVQ P I G HTTWGAFSFPFIFLATDLTV
                      MNVFSQTQRYKALFWLSLFHLLVITSSNYLVQLPVSILGFHTTWGAFSFPFIFLATDLTV 60
           Sbjct: 1
· 30
                      RIFGSHLARRIIFWVMFPALLLSYVFSVLFHNGSWTGLGALSQFNTFVGRIALASFAAYA 120
           Query: 61
                      RIFG+ LARRIIF VM PALL+SYV S LF+ GSW G GAL+ FN FV RIA ASF AYA
                      RIFGAPLARRIIFAVMIPALLISYVISSLFYMGSWQGFGALAHFNLFVARIATASFMAYA 120
           Sbict: 61
35
           Query: 121 LGQILDIFVFDKLRRLKAWWIAPAASTVIGNALDTLVFFAVAFYASSDEFMAANWQGIAF 180
                       LGQILD+ VF++LR+ + WW+AP AST+ GN DTL FF +AF+ S D FMA +W IA
           Sbjct: 121 LGQILDVHVFNRLRQSRRWWLAPTASTLFGNVSDTLAFFFIAFWRSPDAFMAEHWMEIAL 180
           Query: 181 VDYLFKLTVCTLFFLPAYGVILN 203
 40
                       VDY FK+ + +FFLP YGV+LN
           Sbjct: 181 VDYCFKVLISIVFFLPMYGVLLN 203
```

Based on this analysis, including the homology with the *E.coli* protein and the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 32

45

The following partial DNA sequence was identified in *N.meningitidis* <SEO ID 267>:

	1	ATGGTCATAA	AATATACAAA	TTTGAATTTT	GCGAAATTGT	CGATAATTGC
50	51	AATTTTGATG	ATGTATTCGT	TTGAAGCGAA	TGCAAAyGCA	GTmwrAATAT
	101	CTGAAACTGT	TTCAGTTGAT	ACCGGACAAG	GTGCGAAAAT	TCATAAGTTT
	151				GATTTAATAA	
	201	TTTAACACAC	AyyCCTACGG	GCGCAAAAGC	CCGAATCAAC	GCCAAAATAA
	251	CCGCCAGCGT	ATCCCGCGCC	GGCGTATTGG	CGGGGGTCGG	CAAACTTGCC
55	301	CGCTTAGgCG	CGAAATTCAG	CACAAGGGCG	GTtCCCTATG	TCGGAACAGC
	351					ATACAGGCAC
	401	GAGGCTACCA	ATACGACCCC	GAAACCGACA	AATTTGTAAA	AGGCTACGAA
	451	TATAGTAATT	GCCTTTGGTA	CGAAGACAAA	AGACGTATTA	ATAGAACCTA

-192-

501 TGGCTGCTAC GGCGTTGAT..

This corresponds to the amino acid sequence <SEQ ID 268; ORF72>:

```
1 MVIKYTNLNF AKLSIIAILM MYSFEANANA VXISETVSVD TGQGAKIHKF
51 VPKNSKTYSS DLIKTVDLTH XPTGAKARIN AKITASVSRA GVLAGVGKLA
5 101 RLGAKFSTRA VPYVGTALLA HDVYETFKED IQARGYQYDP ETDKFVKGYE
151 YSNCLWYEDK RRINRTYGCY GVD..
```

Further work revealed the complete nucleotide sequence <SEQ ID 269>:

```
1 ATGGTCATAA AATATACAAA TTTGAATTTT GCGAAATTGT CGATAATTGC
                51 AATTITGATG ATGTATTCGT TTGAAGCGAA TGCAAATGCA GTAAAAATAT
                    CTGAAACTGT TTCAGTTGAT ACCGGACAAG GTGCGAAAAT TCATAAGTTT
10
               101
               151 GTACCTAAAA ATAGTAAAAC TTATTCATCT GATTTAATAA AAACGGTAGA
               201 TTTAACACAC ATCCCTACGG GCGCAAAAGC CCGAATCAAC GCCAAAATAA
                    CCGCCAGCGT ATCCCGCGCC GGCGTATTGG CGGGGGTCGG CAAACTTGCC
               251
                    CGCTTAGGCG CGAAATTCAG CACAAGGGCG GTTCCCTATG TCGGAACAGC
               301
                    CCTTTTAGCC CACGACGTAT ACGAAACTTT CAAAGAAGAC ATACAGGCAC
               351
15
                    GAGGCTACCA ATACGACCCC GAAACCGACA AATTTGCAAA GGTCTCAGGC
                401
                451
```

This corresponds to the amino acid sequence <SEQ ID 270; ORF72-1>:

```
20 MVIKYTNINF AKLSIIAILM MYSFEANANA VKISETVSVD TGQGAKIHKF
VPKNSKTYSS DLIKTVDLTH IPTGAKARIN AKITASVSRA GVLAGVGKLA
101 RLGAKFSTRA VPYVGTALLA HDVYETFKED IQARGYQYDP ETDKFAKVSG
151 *
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF72 shows 98.0% identity over a 147aa overlap with an ORF (ORF72a) from strain A of N. meningitidis:

		10	20	30	40	50	60
	orf72.pep	MVIKYTNLNFAKLS	IIAILMMYSF	<u>EANA</u> NAVXIS	ETVSVDTGQG	AKIHKEVPKN	SKTYSS
•			11111111111	11111111111			
30	orf72a	MVIKYTNLNFAKLS	IIAILMMYSF			akihkevpkn	241122
50		10	20	30	40	50	60
		70	80	90	100	110	120
	orf72.pep	DLIKTVDLTHXPTO	AKARINAKIT	ASVSRAGVL	AGVGKLARLGA	KFSTRAVPYV	GTALLA
35	OLL 12.pep			111111111			
33	orf72a	DLIKTVDLTHIPTO	AKARINAKIT	ASVSRAGVL	AGVGKLARLGA	KFSTRAVPYV	GTALLA
	011724	70	80	90	100	110	120
		130	140	150	160	170	
40		HDVYETFKEDIQA				IRTYGCYGVD	
40	orf72.pep	HDAIFLIKEDIÓW		11:1	001111111111111111111111111111111111111		
	orf72a	HDVYETFKEDIQA		150			
		130	140	150			

The complete length ORF72a nucleotide sequence $\langle SEQ~ID~271 \rangle$ is:

-						
45	1 51 101 151	AATTTTGATG CTGAAACTGT GTACCTAAAA	ATGTATTCGT TTCAGTTGAT ATAGTAAAAC	TTGAAGCGAA ACCGGACAAG TTATTCATCT	GCGAAATTGT TGCAAATGCA GTGCGAAAAT GATTTAATAA	GTAAAAATAT TCATAAGTTT AAACGGTAGA
	201	TTTAACACAC	ATCCCTACGG	GCGCAAAAGC	CCGAATCAAC	GCCAAAATAA
50	251 301	CCGCCAGCGT	ATCCCGCGCC	GGCGTATTGG	CGGGGGTCGG	CAAACTTGCC TCGGAACAGC
	351	CCGGGGGGGCCC	CACGACGTAT	ACGAAACTTT	CAAAGAAGAC	ATACAGGCAC
	401 451	GAGGCTACCA TAA	ATACGACCCC	GAAACCGACA	AATTTGCAAA	GGTCTCAGGC

55 This encodes a protein having amino acid sequence <SEQ ID 272>:

1	MVIKYTNLNF	AKLSIIAILM	MYSFEANANA	VKISETVSVD	TGQGAKIHKF
51	VPKNSKTYSS	DLIKTVDLTH	IPTGAKARIN	AKITASVSRA	GVLAGVGKLA
101	RLGAKFSTRA	VPYVGTALLA	HDVYETFKED	IQARGYQYDP	ETDKFAKVSG
151	*	••			

5 ORF72a and ORF72-1 show 100.0% identity in 150 aa overlap:

		10	20	30	40	50	60
	orf72a.pep	MVIKYTNLNFAKL	SIIAILMMYSE	EANANAVKI	SETVSVDTGQG	AKIHKFVPK	1SKTYSS
	• •		111111111111	111111111		1111111111	
	orf72-1	MVIKYTNLNFAKL	SIIAILMMYSE	eananavki:	SETVSVDTGQ0	AKIHKFVPK	1SKTYSS
10		10	20	30	40	50	60
		70	80	, 90	100	110	120
	orf72a.pep	DLIKTVDLTHIPT	GAKARINAKIT	'ASVSRAGVL	AGVGKLARLG <i>I</i>	KFSTRAVPY	JGTALLA
			111111111111	11111111	\$		
15	orf72-1	DLIKTVDLTHIPT	GAKARINAKIT	PASVSRAGVL	AGVGKLARLG <i>I</i>	KFSTRAVPY	VGTALLA
		70	80	90	100	110	120
		130	140	150	•		
•							
	orf72a.pep	HDVYETFKEDIQA	KGIQIDPETDI	VEARVOGA			
20		. 111111111111	111111	1111111			
	orf72-1	HDVYETFKEDIQA					
		130	140	150			

Homology with a predicted ORF from N. gonorrhoeae

ORF72 shows 89% identity over a 173aa overlap with a predicted ORF (ORF72.ng) from N.

```
gonorrhoeae:
                MVIKYTNLNFAKLSIIAILMMYSFEANANAVXISETVSVDTGQGAKIHKFVPKNSKTYSS
                                                            60
       orf72.pep
                MVTKHTNLNFAKLSIIAILMMYSFEANANAVKISETLSVDTGQGAKVHKFVPKSSNIYSS
                                                            60
       orf72ng
30
       orf72.pep
                DLIKTVDLTHXPTGAKARINAKITASVSRAGVLAGVGKLARLGAKFSTRAVPYVGTALLA
                                                           120
                DLTKAVDLTHIPTGAKARINAKITASVSRAGVLSGVGKLVRQGAKFGTRAVPYVGTALLA
                                                           120
       orf72ng
35
       orf72.pep
                HDVYETFKEDIQARGYQYDPETDKFVKGYEYSNCLWYEDKRRINRTYGCYGVD
                                                           173
                orf72ng
```

An ORF72ng nucleotide sequence <SEQ ID 273> was predicted to encode a protein having amino acid sequence <SEQ ID 274>:

40	1	MVTKHTNLNF	AKLSIIAILM	MYSFEANANA	VKISETLSVD	TGQGAKVHKF
	51	VPKSSNIYSS	DLTKAVDLTH	IPTGAKARIN	AKITASVSRA	GVLSGVGKLV
•	101	RQGAKFGTRA	VPYVGTALLA	HDVYETFKED	IQARGCRYDP	ETDKFVKGYE
	151	YANCLWYEDE	RRINRTYGCY	GVDSSIMRLM	PDRSRFPEVK	QLMESQMYRL
	201	ARPFWNWRKE	ELNKLSSLDW	NNFVLNRCTF	DWNGGGCAVN	KGDDFRAGAS
45	251	FSLGRNPKYK	EEMDAKKPEE	ILSLKVDADP	DKYIEATGYP	GYSEKVEVAP
	301	GTKVNMGPVT	DRNGNPVQVA	ATFGRDAQGN	TTADVQVIPR	PDLTPASAEA
	351	PHAOPLPEVS	PAENPANNPD	PDENPGTRPN	PEPDPDLNPD	ANPDTDGQPG
	401	TSPDSPAVPD	RPNGRHRKER	KEGEDGGLSC	DYFPEILACQ	EMGKPSDRMF
	451	HDISIPOVTD	DKTWSSHNFL	PSNGVCPQPK	TFHVFGRQYR	ASYEPLCVFA
50	501	EKIRFAVLLA	FIIMSAFVVF	GSLGGE*		

After further analysis, the following gonococcal DNA sequence <SEQ ID 275> was identified:

	1	ATGGTCACAA	AACATACAAA	TTTGAATTTT	GCGAAATTGT	CGATAATTGC
	51	AATTTTGATG	ATGTATTCGT	TTGAAGCGAA	TGCAAATGCA	GTAAAAATAT
	101	CTGAAACTCT	TTCGGTTGAT	ACCGGACAAG	GCGCGAAAGT	TCATAAGTTC
55	151	GTTCCTAAAT	CAAGTAATAT	TTATTCATCT	GATTTAACAA	AAGCGGTAGA
	201	TTTAACGCAT	ATCCCCACGG	GCGCAAAAGC	CCGAATCAAC	GCCAAAATAA
	251	CCGCCAGCGT	ATCCCGCGCC	GGCGTATTGT	CGGGGGTCGG	CAAACTTGTC
	301	CGCCAAGGCG	CGAAATTCGG	CACAAGGGCG	GTTCCCTATG	TCGGAACAGC
	351	CCTTTTAGCC	CACGACGTAT	ACGAAACTTT	CAAAGAAGAC	ATACAGGCAC
60	401	GAGGCTGCCG	ATACGATCCC	GAAACCGACA	AATTT	

This corresponds to the amino acid sequence <SEQ ID 276; ORF72ng-1>:

- MVTKHTNLNF AKLSIIAILM MYSFEANANA VKISETLSVD TGQGAKVHKF
- VPKSSNIYSS DLTKAVDLTH IPTGAKARIN AKITASVSRA GVLSGVGKLV 51
- 101 RQGAKFGTRA VPYVGTALLA HDVYETFKED IQARGCRYDP ETDKF
- ORF72ng-1 and ORF721-1 show 89.7% identity in 145 aa overlap: 5

```
60
                                                           50
                                                   40
                                           30
                          10
        orf72ng-1.pe MVTKHTNLNFAKLSIIAILMMYSFEANANAVKISETLSVDTGQGAKVHKFVPKSSNIYSS
                    MVIKYTNLNFAKLSIIAILMMYSFEANANAVKISETVSVDTGQGAKIHKFVPKNSKTYSS
         orf72-1
                                                                    60
                                                   40
                                                           50
                                           30
                                   20
                          10
10
                                                           110
                                                  100
                                           90
                                   80
                          70
         orf72ng-1.pe DLTKAVDLTHIPTGAKARINAKITASVSRAGVLSGVGKLVRQGAKFGTRAVPYVGTALLA
                    DLIKTVDLTHIPTGAKARINAKITASVSRAGVLAGVGKLARLGAKFSTRAVPYVGTALLA
         orf72-1
15
                                                   100
                                                           110
                                           90
                                   80
                          130
         orf72ng-1.pe HDVYETFKEDIQARGCRYDPETDKF
                    111111111111111111111111111111111
20
                    HDVYETFKEDIQARGYQYDPETDKFAKVSGX
         orf72-1
                                  140
                          130
```

Based on this analysis, including the presence of a putative leader sequence and transmembrane domains in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 33

25

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 277>:

- ATGAGATTTT TCGGTATCGG TTTTTTGGTG CTGCTGTTTT TGGAGATTAT 30 GTCGATTGTG TGGGTTGCCG ATTGGCTGGG CGGCGGCTGG ACGTTGTTTT 51 TGATGGCGGC AGGTTTTGCC GCCGGCGTGC TGATGCTCAG GCAAACCGGG 101 GCTGACCGGT CTTTTATTGG CGGGCGCGGC AATGAGAAGC GGCGGGAAGG 151 TATCCGTTTA TCAGATGTTG TGGCCTATC..
- This corresponds to the amino acid sequence <SEQ ID 278; ORF73>: 35
 - MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAAGFA AGVLMLRQTG
 - LTGLLLAGAA MRSGGKVSVY QMLWPI..

Further work revealed the complete nucleotide sequence <SEQ ID 279>:

	1	ATGAGATTTT	TCGGTATCGG	TTTTTTGGTG	CTGCTGTTTT	TGGAGATTAT
40	51	GTCGATTGTG	TGGGTTGCCG	ATTGGCTGGG	CGGCGGCTGG	ACGTTGTTTT
40	101	TONTOCOCCO	AGGTTTTGCC	GCCGGCGTGC	TGATGCTCAG	GCATACGGGG
	151	CTCTCCCCTC	TTTTATTGGC	GGGCGCGGCA	ATGAGAAGCG	GCGGGAGGGT
	201	AUCCCUTTAT	CAGATGTTGT	GGCCTATCCG	TTATACGGTG	GCGGCTGTGT
		AICCGITIAL	TCCGGGATTC	CTATCCTCGG	TGTTGGCGGT	ATTGCTGCTG
	251	GTCTGATGAG	AGGGAGGGC	A CENTER COAC	CCACCACCTC	CCCAAAATTT
45	301	CTGCCGTTTA	AGGGAGGGGC	AGTGTTGCAG	GCAGGAGGIO	CCCCAMCACC
	351	TTTCAACATG	AACCAATCGG	GCAGAAAAGA	GGGCTTTTCC	CGCGAIGACG
	401	ATATTATCGA	GGGAGAATAT	ACGGTTGAAG	AGCCTTACGG	CGGCAATCGT
	451	TCCCGAAACG	CCATCGAACA	CAAAAAAGAC	GAATAA	

This corresponds to the amino acid sequence <SEQ ID 280; ORF73-1>:

MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAAGFA AGVLMLRHTG 50 LSGLLLAGAA MRSGGRVSVY QMLWPIRYTV AAVCLMSPGF VSSVLAVLLL 101 LPFKGGAVLQ AGGAENFFNM NQSGRKEGFS RDDDIIEGEY TVEEPYGGNR

151 SRNAIEHKKD E*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF73 shows 90.8% identity over a 76aa overlap with an ORF (ORF73a) from strain A of N.

5 meningitidis:

30

		10	20	30	40	50	60
	orf73.pep	MRFFGIGFLVLL	FLEIMSIVWVA	DWLGGGWTLFL	MAAGFAAGVL	MLRQTGLTGL	LLAGAA
	•	111111111111	111111111111	11111111111	III. IIIII:	111:111:11	
	orf73a	MRFFGIGFLVLL	FLEIMSIVWVA	DWLGGGWTLFL	<u>Maat fa</u> agvv	MLRHTGLSGL	LLAGAA
10		10	20	30	40	50	60
		70					
	orf73.pep	MRSGGKVSVYQM	LWPI		٠.		
			11 1				
15	orf73a	MRSGGRVSVYXM	LWXIRYTVAAV	CXMSPGFVSSV	XAVLLXLPFK	GGAVLQAGGA	enffnm
							•

The complete length ORF73a nucleotide sequence <SEQ ID 281> is:

	1	ATGAGATTTT	TCGGTATCGG	TTTTTTGGTG	CTGCTGTTTT	TGGAGATTAT
	51	GTCGATTGTG	TGGGTTGCCG	ATTGGTTGGG	CGGCGGTTGG	ACGCTGTTTC
•	101	TAATGGCGGC	AACCTTTGCC	GCCGGCGTGG	TGATGCTCAG	GCATACGGGG
20	151	CTGTCCGGTC	TTTTATTGGC	GGGCGCGGCA	ATGAGAAGCG	GCGGGAGGGT
	201	ATCCGTTTAT	CANATGTTGT	GGCNTATCCG	TTATACGGTG	GCGGCGGTGT
	251	GTCNGATGAG	TCCGGGATTC	GTATCCTCGG	TGTNGGCGGT	ATTGCTGNTG
	301	CTNCCGTTTA	AGGGAGGTGC	AGTGTTGCAG	GCAGGAGGTG	CGGAAAATTT
	351	TTTCAACATG	AACCANTCGG	GCAGAAAAGA	NGGCNTTTCC	CGCGATGACG
25	401	ATATTATCGA	GGGGGAATAT	ACGGTTGAAG	ANCCTTACGG	CGGCANTCGT
	451	TTCCGAAACG	CCNTNGAACA	CAAAAAAGAC	GAATAA	

This encodes a protein having amino acid sequence <SEQ ID 282>:

1 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAATFA AGVVMLRHTG
51 LSGLLLAGAA MRSGGRVSVY XMLWXIRYTV AAVCXMSPGF VSSVXAVLLX
101 LPFKGGAVLQ AGGAENFFNM NXSGRKXGXS RDDDIIEGEY TVEXPYGGXR
151 FRNAXEHKKD E*

ORF73a and ORF73-1 show 91.3% identity in 161 aa overlap

35	orf73a.pep	10 MRFFGIGFLVLLFLE MRFFGIGFLVLLFLE 10	пінни	11111111	1111 11111:	1111111111	шш
		70	80	90 .	100	110	120
40	orf73a.pep	MRSGGRVSVYXMLWX	KIRYTVAAVO	XMSPGFVSS	VXAVLLXLPFK	GGAVLQAGGA	ENFFNM
		1111111111 111	31111111			111111111	
	orf73-1	MRSGGRVSVYQMLWI					
		70	80	90	100	110	120
45		130	140	150	160		
	orf73a.pep	NXSGRKXGXSRDDD:	I IEGEYTVE	(PYGGXRFRN	AXEHKKDEX		
	• •	1 1111 1 11111	111111111	1111 1 11	1 1111111		
	orf73-1	NOSGRKEGFSRDDD	IIEGEYTVE	EPYGGNRSRN	AIEHKKDEX		
		130	140	150·	160		
50							

Homology with a predicted ORF from N. gonorrhoeae

ORF73 shows 92.1% identity over a 76aa overlap with a predicted ORF (ORF73 ng) from N. gonorrhoeae:

WO 99/24578

5

```
orf73ng MRFFGIGFLVLLFLEIMSIVWVADWLGGGWTLFLMAATFAAGVLMLRHTGLSGLLLAGAA 60
orf73.pep MRSGGKVSVYQMLWPI
::|:|||||||||||||
orf73ng VKSSGKVSVYQMLWPIRYTVAAVCLMSPGFVSSVLAVLLLLPFKGGAVLQAGGAENFFNM 120
```

-196-

The complete length ORF73ng nucleotide sequence <SEQ ID 283> is:

```
1 ATGAGATTTT TCGGTATCGG TTTTTTTGGTG CTGCTGTTTT TGGAAATTAT

51 GTCGATTGTG TGGGTTTGCCG ATTGGCTGGG CGGCGGTTGG AcgcTGTTC

101 TAATGGCGGC AACCTTTGCC GCCGGTGTGC TGATGCTCAG GCATAcggGG

AACCTTTGCC TTGGCGGCG GTAAAAAgta gtgGGAAGGT

201 ATCTGTTTAT CAgatgtTGT GGCCTATCCG TTATACggtg gcggcggtgT

251 GTCTGatgag tCcggGATTC GTATCCTccg tgttgGCGGT ATTGCTGCTG

301 CTGCcgttta aggGaggGg agtgttgcag gcaggaggtg cggaaaATTT

351 TTTCAACATg aaCcaatcgg gcagaaAaga gggatttttc cacgatgacg

401 atattatcga gggagaatat acggttgaaa aacctgacgg cggcaatcgt

451 tcccgaAAcg ccatcgaaca cgaaaAagac gaataA
```

This encodes a protein having amino acid sequence <SEQ ID 284>:

```
20 MRFFGIGFLV LLFLEIMSIV WVADWLGGGW TLFLMAATFA AGVLMLRHTG
LSGLLLAGAA VKSSGKVSVY QMLWPIRYTV AAVCLMSPGF VSSVLAVLLL
LPFKGGAVLQ AGGAENFFNM NQSGRKEGFF HDDDIIEGEY TVEKPDGGNR
151 SRNAIEHEKD E*
```

ORF73ng and ORG73-1 show 93.8% identity in 161 aa overlap

	Old 1212 and 2112		•				
		10 MRFFGIGFLVLLFI	20	30	40 MAAGFAAGVIJ	50 MI.RHTGLSGL	60 LLAGAA
	orf73-1.pep		1111111111	111111111	1111 111111	111111111	11111
25		MRFFGIGFLVLLFI	ETMCTUMUAT	WI.CCCWTI.FI	MAATFAAGVL	MLRHTGLSGL:	LLAGAA
	orf73ng			30	40	50	60
		10	20	30	30		
		70	80	90	100	110	120
		70 MRSGGRVSVYQMLV	0U	1 MCDCE1/661	UT AUT.T.T.T.PFK	GGAVI.OAGGA	ENFFNM
30	orf73-1.pep	MRSGGRVSVYQMLV	PIRITVAAVO	MOLGE 422	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111	111111
•	-	:: : :		11111111	!	1111111111	PNIPENIM
	orf73ng	VKSSGKVSVYQML	IPIRYTVAAV (LMSPGFVSS	APWAPPPPFER	'G'CHATOUGH	ENEENE
	011,0119	70	80	90	100	110	120
	•	400	140	150	160		
35		130	140				
	orf73-1.pep	NOSGRKEGFSRDD	DITECEALAR	PIGGNRSKN	ATEUKKDEK		
	• •	11111111111111		:1 11111111	1111:1111		
	orf73ng	NOSGRKEGFFHDD	DIIEGEYTVE!	KPDGGNRSRN	AIEHEKDEX		
	011/3119	130	140	150	160		

Based on this analysis, including the presence of a putative leader sequence and putative transmembrane domain in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 34

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 285>:

50 2	51 A0 .01 T0 .51 G0 .201 C0 .251 G0 .351 A	GCCTCCGAC CGGCAATTT CG GCGTACGGC GCAGATGGC CACAGGTTT CTCGCCCGC	AGCGTCGTCG GGCGGACATTGCCGA ATTCAGGGCA GGACAAGATT CCGATGCGG CGCGTGCGTG GCTGATGGCG	GAGGGACATT ACCCTGCGCG AGACACGCGC AACTCGTCAG GTCGGCTATC TACGCCGGCC AGGCCGGGTT GCTTTGAGCG	TTTCAGACGG GTGTGCGACC TAAAGTCGTT TGGCCGGTGT	ATTGCAAAAG
55	451 G	ATTTTTATT	TCAACGGTTT	IGIHCCGCCG	MMICGGGNG	

5	551 601 651 701 751 801 851	ACTGTTTGCC AAATGGGTGC GGGCGGCGTT TCCTATCGTC ATGTTTGAAA CGCCGCACCG CATCGGTGCA GCGCTTGCCG ATATGGCGGA ACTGTTCCCC GAACGCCGAT TAATGCTGGC GCGCGAAATT ACGAAAACGT TTGAAACGTT CTTAAGCGGC ACGGTTGGGG AAATTCAGAC GGCATTGTCT GCCGACGGCG ACCAATCGCG CGGCGAGATG GTGTTGGTGC TTTATCCGGC GCAGGATGAA AAACACGAAG GCTTGTCCGA GTCCGCGCAA AACATCATGA AAATCCTCAC AGCCGAGGTG CCGACCAAAC AGGCGGCGGA GCTTGCTGCC AAAATCACGG GCGAGGGAAA GAAAGCTTTG TACGAT
	This correspond	s to the amino acid sequence <seq 286;="" id="" orf75="">:</seq>
10 15	51 101 151 201	MFVFQTAFXM FQKHLQKASD SVVGGTLYVV ATPIGNLADI TLRALAVLQK AAEDTR VTAQLLSAYG IQGKLVSVRE HNERQMADKI VGYLSDGMVV AQVSDAGTFA VCDPGAKLAR RVREAGFKVV PVVGAXAVMA ALSVAGVEGS DFYFNGFVPP KSGERRKLFA KWVRAAFPIV MFETPHRIGA ALADMAELFP ERRLMLAREI TKTFETFLSG TVGEIQTALS ADGDQSRGEM VLVLYPAQDE KHEGLSESAQ NIMKILTAEL PTKQAAELAA KITGEGKKAL YD
13		realed the complete nucleotide sequence <seq 287="" id="">:</seq>
,	· 1 51	ATGTTTCAGA AACATTTGCA GAAAGCCTCC GACAGCGTCG TCGGAGGGAC ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCGGAC ATTACCCTGC
20	101 151 201	GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATCTGTGC CGAAGACACG
25	301 351 401 451	GCCGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC GTGAGGCCGG GTTTAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTGATG GCGGCTTTGA GCGTGGCCGG TGTGGAAGGA TCCGATTTTT ATTTCAACGG TTTTGTACCG
30	501 551 601 651	GTTTCCTATC GTCATGTTTG AAACGCCGCA CCGCATCGGT GCGACGCTTG CCGATATGGC GGAACTGTTC CCCGAACGCC GATTAATGCT GGCGCGCGAA ATTACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG GGGAAATTCA
	701 751 801 851	TGCTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC CGAGTCCGCG CAAAACATCA TGAAAATCCT CACAGCCGAG CTGCCGACCA AACAGGCGGC GGAGCTTGCT GCCAAAATCA CGGGCGAGGG AAAGAAAGCT TTGTACGATC
35	•	s to the amino acid sequence <seq 288;="" id="" orf75-1="">:</seq>
40	51	ITKTFETFLS GTVGEIQTAL SADGNQSRGE MVLVLYPAQD EKHEGLSESA
		sis of this amino acid sequence gave the following results:
	Homology with	a predicted ORF from N.meningitidis (strain A)
	ORF75 shows 9	5.8% identity over a 283aa overlap with an ORF (ORF75a) from strain A of N.
45	meningitidis:	
	orf75.pep	10 20 30 40 50 60 MFVFQTAFXMFQKHLQKASDSVVGGTLYVVATPIGNLADITLRALAVLQKAXXXXAEDTR
50	orf75a	MFQKHLQKASDSVVGGTLYVVATPIGNLADITLRALAVLQKADIICAEDTR 10 20 30 40 50
55	orf75.pep	

130 140 150 160 170 180 RVREAGFK<u>VVPVVGAXAVMAALSVA</u>GVEGSDFYFNGFVPPKSGERRKLFAKWVRAAFPIV

orf75.pep

WO 99/24578 PCT/IB98/01665

-198-

			111111 1111					:111:1
	orf75a	RVREVGFKV 120	VPVVGASAVM	AALSVAGVA	GSDFYFNG	FVPPKSGEI 150	160	VAFPVV 170
5		19	90 20	0 2	210	220	230	240 OSRGEM
J	orf75.pep		30 200 SAALADMAELF: :	1111111		1 1 1 1 1 1 1 1 1 1		11111
	orf75a	MFETPHRIC	GATLADMAELF	PERRLMLAI	REITKTFET DO	FLSGTVGE 210	IQTALAADGN 220	230
10						280	290	
10	orf75.pep	THE STATE AND A CO	50 26 DEKHEGLSESA	ONTMKILT	270 AELPTKQAI	ELAAKITG	EGKKALYD	
	•							ALSWKNK
15	orf75a	24		2	60	270	280	290
15	orf75a	x						
	The complete ler		nucleotide	sequence	<seq id<="" th=""><th>289> is:</th><th></th><th></th></seq>	289> is:		
	The complete let						CONCCONC	
20	1 51	ATGTTTCAGA ATTATACGTG	COMCCCACGC	CCATCGGC	AA TTTGG	CGGAC AT	IACCCIGC	
20	101	GCGCTTTGGC CGCGTTACCG	፫፫ሜካጥጥርር ል ል	AAGGCGG	CA TCATC	TGTGC CG	AAGACACG	
	151 201	as accompance	CNNCNCNNCG	AACGGCAG	AT GGCGC	ACAAG AL	1910901	
	251	ATCTTTCAGA	CGGCATGGTT	GTGGCACA	AGG TTTCC CCC CGCCG	CGTGC GT	GAGGTCGG	
25	301 351		GTCCCTGTTG TGTGGCGGGA	でしていること	AAG CGCGG	TUALU UU	GGCTIIGN	
	401 451			יאידים מממ	PPP GCCA	MIGGG IG	CGGGIGGC	
	501	GTTTCCCGTC	GTGATGTTTG	AAACGCC	GCA CCGC! GCC GATT!	ATGCT GG	CGCGCGAA	
30	551 601			CTTTTTA	AGC GGCA	JGG11G GG	GUNUITOR	
	651 701		GCGCGGACG GGCGCAGGAT	CAAAAAC	ACG AAGG	CITICITY CO	MGICCGCG	
	751		TGAAAATCCI GCCAAAATCA	י ראראכרר	CAG CTGC	LIGALUA AF	CAGGCGGC	
35	801 851	TGGCACTGCC	TTGGAAAAA	AAATGA	.000 11111			
	This encodes a	protein havir	ng amino aci	d sequen	ce <seq< th=""><th>ID 290>:</th><th></th><th></th></seq<>	ID 290>:		
	Tills checodes a		DSVVGGTLY				ADIICAEDT	
	1 51		, ヘナヘヘピエ マノᢗマズ	S FUNERON	IADK IVGY	LSDGMA AV	40 A DDVQ T T	
40	101	AVCDPGAKLA	RRVREVGFK	V VPVVGAS	RIG ATLA	DMAELF P	ERRLMLARE	
	151 201	ITKTFETFL	CTVCETOTA	t. AADGNOS	SRGE MVLV	LITAMOD E	VUEGESSON	
	251		E LPTKQAAEL					
	ORF75a and O	RF75-1 show	w 98.3% ide	ntity in 25	aa ove	nap.		
45			10 QKASDSVVGGT	20	30	40	50 DTICAEDTRV	60 TAOLLSAY
	orf75a.p				1111111			, , , , , , , , , ,
	orf75-1	MFOKHL	OKASDSVVGGT 10	LYVVATPI 20	GNLADITL 30	RALAVLOKA 40	DIICAEDIRA 50	60 60
50					90	100	110	120
	orf75a.r	oep GIQGKL	70 VSVREHNERQN	80 MADKIVGYL	SDGMVVAO	VSDAGTPA\	CDPGAKLAR	RVREVGFKV
					1111111	1 1 1 1 1 1 1 1		RVREAGFKV
55	orf75-1	GIĞGVI	70	80	90	100	110	120
			130	140	150	160	170	180
	orf75a.		130 ASAVMAALSVA(1 4 1 1 1 1 1 1	1:1:::::	1 1 1 1 1 1 1 1 1
60	orf75-1		ASAVMAALSVA	GVEGSDFY	NGEVPPKS	GERRKLFA 160	KWVRAAFPIV 170	MFETPHRIG 180
00			130	140	150			
		pep m ATLAD	190 Marifperrlm	200 LAREITKT	210 FETFLSGT\	220 GEIQTALA	230 ADGNQSRGEM	240 VLVLYPAQD
65		pep m ATLAD	MAELEPERRE!	11111111	11111111	штіш:	пиши	нинин
٠.	-							

AACAAAcgca cgctcgaATT GCGCCACGGC TACCGTTACA GCGGcacgcC

	. 651 CGGa	acGCGCc gactaCAATC AGGTTtcctt cCAAAAacTc aacctgATta
		SCACCAC GCCCAAacTT ATCGaccCCG TTTCCCACCG CCGCACCATT
5		ACCGCCC AACTGATTGG CAGCAGCAAT CCGCAACATC AGGCAGAATT STGGCGC ATCTCGCTGA CCGTCAGCGT CCTCCTGCTC TGCCTACTCG
,		GCCGCT TTCCTATTTC AACCCGCGCA GCGGACATAC CTACAATATC
		ATTGCCA TCGGTTTGTT TTTAATTTAC CAAAACGGGC TGACCCTGCT
		TGAAGCC GTGGAAGACG GCAAAATCCA TTTTTGGCTC GGACTGCTGC
10		TGCACAT CATCATGTTC GTCATCGCAA TCGTACTTCT GCGCGTCCGC
10		ATGCCCA GCCAGCCCTT CTGGCAGGCG GTTGGCAAAA GTCTGACATT AGGCGGA AAATGA
	This corresponds to t	he amino acid sequence <seq 506;="" id="" orf101ng-1="">:</seq>
		ORNLIKE LSFTAVGIFV VLLAVLVSTO AINLLGRAAD GRVAIDAVLA TWVIGMT PLLLVLTAFI STLTVLTRYW RDSEMSVWLS CGLALKOWIR
15		OFAVPFA ILIAVMQLWV IPWAELRSRE YAEILKQKQE LSLVEAGEFN
13	151 NLG	KRNGRVY FVETFDTESG IMKNLFLREQ DKNGGDNIIF AKEGNFSLKD
	201 NKR	rlelrhg yrysgtpgra dyngvsfgkl nliisttpkl idpvshrrti
	251 STA	OLIGSSN POHOAELMWR ISLTVSVLLL CLLAVPLSYF NPRSGHTYNI
20		IGLFLIY ONGLTLLFEA VEDGKIHFWL GLLPMHIIMF VIAIVLLRVR
20	351 SMP	SQPFWQA VGKSLTLKGG K*
	ORF101ng-1 and OF	RF101-1 show 97.6% identity in 371 aa overlap:
•	orf101-1.pep	10 20 30 40 50 60 MIYQRNLIKELSFTAVGIFVVLLAVLVSTQAINLLGRAADGRVAIDAVLALVGFWVIGMT
	Offici-1.pep	
25	orf101ng-1	MIYQRNLIKELSFTAVGIFVVLLAVLVSTQAINLLGRAADGRVAIDAVLALVGFWVIGMT
	-	10 20 30 40 50 60
		70 80 90 100 110 120
	orf101-1.pep	PLLLVLTAFISTLTVLTRYWRDSEMSVWLSCGLALKQWIRPVMQFAVPFAVLVAVMQLWV
30		
	orf101ng-1	PLLLVLTAFISTLTVLTRYWRDSEMSVWLSCGLALKQWIRPVMQFAVPFAILIAVMQLWV
		70 80 90 100 110 120
	•	130 140 150 160 170 180
35 .	orf101-1.pep	IPWAELRSREYAEILKQKQELSLVEAGEFNSLGKRNGRVYFVETFDTESGIMKNLFLREQ
	orf101ng-1	IPWAELRSREYAEILKQKQELSLVEAGEFNNLGKRNGRVYFVETFDTESGIMKNLFLREQ
		130 140 150 160 170 180
40		190 200 210 220 230 240
	orf101-1.pep	
	6101 1	
	orf101ng-1	DKNGGDNIIFAKEGNFSLKDNKRTLELRHGYRYSGTPGRADYNOVSFOKLNLIISTTPKL 190 200 210 220 230 240
45		250 200 210 220 230 240
		250 260 270 280 290 300
	orf101-1.pep	IDPVSHRRTIPTAQLIGSSNPQHQAELMWRISLTVSVLLLCLLAVPLSYFNPRSGHTYNI
	orf101ng-1	
50	orriorny r	250 260 270 280 290 300
	•	
	ouf101 1 mon	310 320 330 340 350 360
	orf101-1.pep	LIAIGLFLIYQNGLTLLFEAVEDGKIHFWLGLLPMHIIMFAVALILLRVRSMPSQPFWQA
55	orf101ng-1	LIAIGLFLIYQNGLTLLFEAVEDGKIHFWLGLLPMHIIMFVIAIVLLRVRSMPSQPFWQA
-		310 320 330 340 350 360
		270
	orf101-1.pep	370 VGKSLTLKGGKX
60	orrior-r.heb	
	orf101ng-1	VGKSLTLKGGKX
		370
	Based on this analys	is including the presence of a putative leader sequence (double-underl

Based on this analysis, including the presence of a putative leader sequence (double-underlined) and several putative transmembrane domains (single-underlined) in the gonococcal protein, it is

predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 60

35

50

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 507>:

```
..GGTGGTGGTT TTATCAATGC TTCCTGTGCC ACTTTGACGA CAGCCAAACC
5
                       GCAATATCAA GCAGGAGACC TTAGCGCTTT TAAGATAAGG CAAGGCAATG
                 51
                       TTGTAATCGC CGGACACGGT TTGGATGCAC GTGATACCGA TTACACACGT
                101
                       ATTCTCAGTT ATCATTCCAA AATCGATGCA CCCGTATGGG GACAAGATGT
                151
                       TCGTGTCGTC GCGGGACAAA ACGATGTGGC CGCAACAGGT GATGCACATT
                201
                       CGCCTATTCT CAATAATGCT GCTGCCAATA CGTCAAACAA TACAGCCAAC
10
                251
                       AACGGCACAC ATATCCCTTT ATTTGCGATT GATACAGGCA AATTAGGAGG
                301
                       TAT.GTATGC CAACAAAATC ACCTTGATCA GTACGGTCGA GCAAGCAGGC
                351
                       ATTCGTAA
                401
```

This corresponds to the amino acid sequence <SEQ ID 508; ORF113>:

1 ..GGGFINASCA TLTTAKPQYQ AGDLSAFKIR QGNVVIAGHG LDARDTDYTR
51 ILSYHSKIDA PVWGQDVRVV AGQNDVAATG DAHSPILNNA AANTSNNTAN
101 NGTHIPLFAI DTGKLGGXVC QQNHLDQYGR ASRHS*

Computer analysis of this amino acid sequence gave the following results:

Homology with with pspA putative secreted protein of N. meningitidis (accession AF030941)

20 ORF and pspA show 44% aa identity in 179aa overlap:

```
GGGFINASCATLTTAKPQYQAGDLSAFKIRQGNVVIAGHGLDARDTDYTRILSYHSKIDA 60
                                      G+L+ F + G VVI G GLD D DYTRILS ++I+A
                   GGG INA+ TLT+ P
                   GGGLINAASVTLTSGVPVLNNGNLTGFDVSSGKVVIGGKGLDTSDADYTRILSRAAEINA 256
          pspa
                   PVWGQDVRVVAGQNDVAATGDAHSPILXXXXXXXXXXXXXXGTHIPLFAIDTGKLGGMYA 120
25
          orf113
                                                            + P AIDT LGGMYA
                    VWG+DV+VV+G+N +
                   GVWGKDVKVVSGKNKLDFDG-----SLAKTASAPSSSDSVTPTVAIDTATLGGMYA 307
          pspa
                   NKITLISTVEQAGIRNQGQWFASAGNVAVNAEGKLVNTGMIAATGENHAVSLHARNVHN 179
          orf113
                             A IRN+G+ FA+ G V ++A+GKL N+G I A
                                                                   +++ A+ V N
                   +KITLIST
30
                   DKITLISTDNGAVIRNKGRIFAATGGVTLSADGKLSNSGSIDAA----EITISAQTVDN 362
          pspa
```

Homology with a predicted ORF from N.gonorrhoeae

ORF113 shows 86.5% identity in 52aa overlap at the N- terminal part and 94.1% identity in 17aa overlap at the C-terminal part with a predicted ORF (ORF113ng) from N. gonorrhoeae:

	orf113	GGGFINASCATLTTAKPQYQAGDLSAFKIR	30
	orf113ng	SHPSQLNGYIEVGGRRAEVVIANPAGIAVNGGGFINASRATLTTGQPQYQAGDFSGFKIR	224
40	orf113	QGNVVIAGHGLDARDTDYTRILSYHSKIDAPVWGQDVRVVAGQNDVAATGDAHSPILNNA	90
	orf113ng	QGNAVIAGHGLDARDTDFTRILVCQQNHLDQYGRTSRHS 263	
45	orf113	IDTGKLGGXVCQQNHLDQYGRASRHS 135	
45	orfl13ng	DFSGFKIRQGNAVIAGHGLDARDTDFTRILVCQQNHLDQYGRTSRHS 263	

The complete length ORF113ng nucleotide sequence <SEQ ID 509> is predicted to encode a protein having amino acid sequence <SEQ ID 510>:

¹ MNKTLYRVIF NRKRGAVVAV AETTKREGKS CADSGSGSVY VKSVSFIPTH 51 SKAFCFSALG FSLCLALGTV NIAFADGIIT DKAAPKTQQA TILQTGNGIP

```
101 QVNIQTPTSA GVSVNQYAQF DVGNRGAILN NSRSNTQTQL GGWIQGNPWL
```

- 201 ASRATLTTGQ PQYQAGDFSG FKIRQGNAVI AGHGLDARDT DFTRILVCQQ
- 251 NHLDQYGRTS RHS*
- Based on this analysis, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 61

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 511>:

```
..TCAACGGGAC ATAGCGAACA AAATTACACT TTGCCGCGAG AAATCACACG
10
                      51
               101
                      GCCATCATGC GCCCAGCCAA GGCACTGAGT TGCCGCAAAG CAACGGTATT
               151
                      TCGCTACCCT ATACGTCCAA TTCTTTTACC CCATTACCCA GCAGCAGCTT
               201
                      ATACATTATC AATCCTGTCA ATAAAGGCTA TCTTGTTGAA ACCGATCCAC
               251
                      GCTTTGCCAA CTACCGTCAA TGGTTGGGTA GTGACTATAT GCtGGACAGC
15
               301
                      CTCAAACTAG ACCCAAACAA TTTACATAAA CGTTTGGGTG ATGGTTATTA
                      CGAGCAACGT TTAATCAATG AACAAATCGC AGAGCTGACA GGGCATCGTC
               351
                      GTTTAGACGG TTATCAAAAC GACGAAGAAC AATTTAAAGC CTTAATGGAT
               401
               451
                      AATGGCGCGA CTGCGGCACG TTcGATGAAT CTCAGCGTTG GCATTGCATT
                      AAGTGCCGAG CAAGTAGCGC AACTGACCAG CGATATTGTT TGGTTGGTAC
               501
20
               551
                      AAAAAGAAGT TAAGCTTCCT GATGGCGGCA CACAAACCGT ATTGGTGCCA
               601
                      CAGGTTTATG TACGCGTTAA AAATGGCGAC ATAGACGGTA AAGGTGCATT
               651
                      GTTGTCAGGC AGCAATACAC AAATCAATGT TTCAGGCAGC CTGAAAAACT
               701
                      CAGGCACGAT TGCAGGGCGC AATGCGCTTA TTATCAATAC CGATACGCTA
                      GACAATATCG GTGGGCGTAT TCATGCGCAA AAATCAGCGG TTACGGCCAC
               751
25
               801
                      ACAAGACATC AATAATATTG GCGGCATGCT TTCTGCCGAA CAGACATTAT
                      TGCTCAACGC AGGCAACAAC ATCAACAGCC AAAGCACCAC CGCCAGCAGT
               851
               901
                      CAAAATACAC AAGGCAGCAG CACCTACCTA GACCGAATGG CAGGTATTTA
               951
                      TATCACAGGC AAAGAAAAAG GTGTTT..
```

This corresponds to the amino acid sequence <SEQ ID 512; ORF115>:

```
1 ..stghseqnyt Lpreitrnis Lgsfayeshr kalshhapsq gtelpqsngi
51 slpytsnsft plpssslyii npvnkgylve tdprfanyrq wlgsdymlds
101 lkldpnnlhk rlgdgyyeqr lineqiaelt ghrrldgyqn deeqfkalmd
151 ngataarsmn lsvgialsae qvaqltsdiv wlvqkevklp dggtqtvlvp
201 qvyvrvkngd idgkgallsg sntqinvsgs lknsgtiagr naliintdtl
35 251 dniggrihaq ksavtatqdi nniggmlsae qtlllnagnn insqsttass
301 qntqgsstyl drmagiyitg kekgv..
```

Computer analysis of this amino acid sequence gave the following results:

Homology with the pspA putative secreted protein of *N. meningitidis* (accession number AF030941) ORF115 and pspA protein show 50% aa identity in 325aa overlap:

```
40
          Orf115: 1
                       STGHSEQNYTLPREITRNISLGSFAYESHRKALSHHAPSQGTELPQSNGISLPYTSNSFT 60
                       STG+S
                                    E++ +I +G AY+ +
                                                           P
                               Y
                                                        +
                                                                      NGI
          pspA:
                  778
                       STGYSRSPYEPAPEVS-SIRMGISAYKGYAPQQASDIPGTVVPVVAENGIHPTFT---- 831
                       PLPSSSLYIINPVNKGYLVETDPRFANYRQWLGSDYMLDSLKLDPNNLHKRLGDGYYEQR 120
          Orf115: 61
45
                        LP+SSL+ I P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+
                       -LPNSSLFAIAPNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQK 890
          pspA:
                  832
          Orf115: 121 LINEQIAELTGHRRLDGYQNDEEQFKALMDNGATAARSMNLSVGIALSAEQVAQLTSDIV 180
                       L+NEQIA+LTG+RRLDGY NDEEQFKALMDNG T A+ + L+ GIALSAEQVA+LTSDIV
50
                       LVNEQIAKLTGYRRLDGYTNDEEQFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIV 950
          pspA:
                       WLVQKEVKLPDGGTQTVLVPQVYVRVKNGDIDGKGALLSGSNTQINVSGSLKN-SGTIAG 239
          Orf115: 181
                       WL + V LPDG TQTVL P+VYVR + D++G+GALLSGS
                                                                  I SG+++N G IAG
                       WLENETVTLPDGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAG 1009
          pspA:
55
```

¹⁵¹ TRGEARVVVN QINSSHPSQL NGYIEVGGRR AEVVIANPAG IAVNGGGFIN

```
RNALIINTDTLDNIGGRIHAQKSAVTATQDINNIGGMLSAEQTLLLNAGXXXXXXXXXX 299
         Orf115: 240
                                              A DING + AE LLL A
                      R ALI+N
                               + N+ G + +
                 1010 REALILNAQNIKNLQGDLQGKNIFAAAGSDITNTGS-IGAENALLLKASNNIESRSETRS 1068
         pspA:
5
         Otf115: 300 XXXXXXXXXYLDRMAGIYITGKEKG 324
                               + R+AGIY+TG++ G
                 1069 NQNEQGSVRNIGRVAGIYLTGRQNG 1093
         pspA:
     Homology with a predicted ORF from N.gonorrhoeae
     ORF115 shows 91.9% identity over a 334aa overlap with a predicted ORF (ORF115ng) from
10
     N.gonorrhoeae:
                                                 STGHSEQNYTLPREITRNISLGSFAYESHRK
                                                                                31
          orf115.pep
                                                  111 111111:1111:1111111111111111
                      NEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDISLGSFAYESHSK
                                                                                71
          orf115ng
15
          orf115.pep
                      ALSHHAPSQGTELPQSN-----GISLPYTSNSFTPLPSSSLYIINPVNKGYLVET
                      111:11111111111
                                               ALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYIINPANKGYLVET
          orf115ng
                                                                               131
20
                      DPRFANYRQWLGSDYMLDSLKLDPNNLHKRLGDGYYEQRLINEQIAELTGHRRLDGYQND
          orf115.pep
                                                                               141
                      DPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELTGHRRLDGYQND
          orfl15ng
                                                                               191
          orf115.pep
                      EEQFKALMDNGATAARSMNLSVGIALSAEQVAQLTSDIVWLVQKEVKLPDGGTQTVLVPQ
                                                                               201
25
                      orf115ng
                      EEQFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLPDGGTQTVLMPQ
                                                                               251
          orf115.pep
                      VYVRVKNGDIDGKGALLSGSNTQINVSGSLKNSGTIAGRNALIINTDTLDNIGGRIHAOK
                      30
          orfl15ng
                      VYVRVKNGGIDGKGALLSGSNTQINVSGSLKNSGTIAGRNALIINTDTLDNIGGRIHAQK
          orf115.pep
                      SAVTATQDINNIGGMLSAEQTLLLNAGNNINSQSTTASSQNTQGSSTYLDRMAGIYITGK
                                                                               321
                      SAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTYLDRMAGIYITGK
          orfl15ng
                                                                               371
35
          orf115.pep
                      EKGV
                                                                               325
                       1111
          orf115ng
                      EKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQEIHFDADNHTIR 431
     An ORF115ng nucleotide sequence <SEQ ID 513> was predicted to encode a protein having amino
     acid sequence <SEQ ID 514>:
40
                 1 MLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD ETGHREQNYT
                51
                   LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD NIRTAKSNGI
                   SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ WLGSDYMLGS
               101
                   LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN DEEQFKALMD
               151
45
                   NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP DGGTQTVLMP
               201
                   QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR NALIINTDTL
               251
                   DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN INNQSTAKSS
               301
                   QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ ISNQSDQGQT
               351
                   RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS IQTKGDVTLL
               401
 50
                   SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD ASKHTGRSGG
               451
                   GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS NVISDNGTRI
               501
                   QAGNHVRIGT TOTOSOSETY HOTOKSGLMS AGIGFTIGSK TNTOENOSOS
               551
                   NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS TQSMDIGAAQ
               601
               651
                   NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAK QFDKAKTTAL
 55
                   MPWRLPMQVG RLFKQAKAPK K*
               701
      Further work revealed the following partial gonococcal DNA sequence <SEQ ID 515>:
                    TTGCTTGTGC AAACAGAAAA AGACGGTTTG CATAACGAGC AAACCTTTGG
                51
                    CGAGAAGAAA GTCTTCAGCG AAAATGGTAA GTTGCACAAC TACTGGCGTG
                    CGCGTCGTAA AGGACATGAT GAAACAGGGC ATCGTGAACA AAATTATACT
               101
 60
               151
                    TTGCCGGAGG AAATCACACG CGACATTTCA CTGGGTTCAT TTGCCTATGA
```

ATCGCATAGC AAAGCATTAA GCCGTCATGC GCCCAGCCAA GGCACTGAGT

TGCCACAAAG TAACCGGGAT AATATCCGTA CTGCGAAAAG CAACGGTATT

201

```
TCGCTACCCT ATACGCCCAA TTCTTTTACC CCATTACCCG GCAGCAGCTT
                301
                351
                     ATACATTATC AATCCTGCCA ATAAAGGCTA TCTTGTTGAA ACCGATCCAC
                401
                      GCTTTGCCAA CTACCGTCAA TGGTTGGGTA GTGACTATAT GCTGGGCAGC
                      CTCAAACTAG ACCCAAACAA TTTACATAAA CGTTTGGGTG ATGGTTATTA
                451
5
                      CGAGCAACGT TTAATCAATG AACAAATCGC AGAGCTGACA GGGCATCGTC
                501
                551
                      GTTTAGACGG TTATCAAAAC GACGAAGAAC AATTTAAAGC CTTAATGGAT
                601
                      AAGTGCCGAG CAAGCAGCGC AACTGACCAG CGATATTGTT TGGTTGGTAC
                651
                701
                      AAAAAGAAGT TAAACTTCCT GATGGCGGCA CACAAACCGT ATTGATGCCA
                      CAGGTTTATG TACGCGTTAA AAATGGCGGC ATAGACGGTA AAGGTGCATT
10
                751
                801
                      GTTGTCAGGC AGCAATACAC AAATCAATGT TTCAGGCAGC CTGAAAAACT
                      CAGGCACGAT TGCAGGGCGC AATGCGCTTA TTATCAATAC CGATACGCTA
                851
                901
                      GACAATATCG GTGGGCGTAT TCATGCGCAA AAATCAGCGG TTACGGCCAC
                      ACAAGACATC AATAATATTG GCGGCATTCT TTCTGCCGAA CAGACATTAT
                951
15
               1001
                      TGCTCAATGC GGGTAACAAC ATCAACAACC AAAGCACGGC CAAGAGCAGT
                      CAAAATGCAC AAGGTAGCAG CACCTACCTA GACCGAATGG CAGGTATTTA
               1051
               1101
                      TATCACAGGC AAAGAAAAAG GTGTTTTAGC AGCGCAGGCA GGCAAAGACA
                      TCAACATCAT TGCCGGTCAA ATCAGCAATC AATCAGATCA AGGGCAAACC
               1151
               1201
                      CGGCTGCAGG CAGGACGCGA CATTAACCTG GATACGGTAC AAACCGGCAA
                     ATATCAAGAA ATCCATTTTG ATGCCGATAA CCATACCATC CGAGGTTCAA
20
               1251
               1301
                      CGAACGAAGT CGGCAGCAGC ATTCAAACAA AAGGCGATGT TACCCtatTG
                      TCAGGGAATA ATCTCAATGC CAAAGCTGCC GAAGTCGGCA GCGCAAAAGG
               1351
               1401
                      CACACTTGCC GTGTATGCTA AAAATGACAT TACTATCAGC TCAGGCATCC
                     ATGCCGGCCA AGTTGATGAT GCGTCCAAAC ATACAGGCAG AAGCGGCGGC
               1451
                      GGTAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC ACGAAACTGC
TCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG GCAGGAAACG
25
               1501
               1551
               1601
                      ATGCCAACAT CCTTGGCAGT AATGTTATTT CCGATAATGG CACCCGGATT
                      CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC AAAGCCAAAG
               1651
                     CGAAACCTAT CATCAAACCC AAAAATCAGG ATTGATGAGT GCAGGTATCG
GCTTCACTAT TGGCAGCAAG ACAAACACA AAGAAAACCA ATCCCAAAGC
               1701
30
               1751
                      AACGAACATA CAGGCAGTAC CGTAGGCAGC CTGAAAGGCG ATACCACCAT
               1801
                      TGTTGCAAGC AAACACTACG AACAAACCGG CAGCAACGTT TCCAGCCCTG
                1851
                1901
                      AGGGCAACAA CCTTATCAGC ACGCAAAGTA TGGATATTGG CGCAGCACAA
                1951
                      AACCAATTAA ACAGCAAAAC CACCCAAACC TACGAACAAA AAGGCTTAAC
35
                2001
                      GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA GCGATTGCCG
                      TAGCACACAA AGCAGCAAAC AAGTCGGACA AAGCAAAAAC GACCGCGTTA
                2051.
                2101
                      ATGCCATGGC GGCTGCCAAT GCAGGTTGGC AGGCCTATCA AACAGGCAAA
                2151
                     GGCGCACAAA ACTTAG
      This corresponds to the amino acid sequence <SEQ ID 516; ORF115ng-1>:
40
                      LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD ETGHREONYT
                     LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD NIRTAKSNGI
                      SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRO WLGSDYMLGS
                      LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN DEEQFKALMD
                      NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP DGGTQTVLMP
QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR NALIINTDTL
45
                 251
                      DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN INNQSTAKSS
                      QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ ISNQSDQGQT
                 351
                      RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS IQTKGDVTLL
SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD ASKHTGRSGG
                 451
 50
                      GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS NVISDNGTRI
QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK TNTQENQSQS
                 551
                 601
                      NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS TQSMDIGAAQ
                      NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAN KSDKAKTTAL
                 651
                      MPWRLPMQVG RPIKQAKAHK T*
 55
      This gonococcal protein (ORF115ng-1) shows 91.9% identity with ORF115 over 334aa:
                                            30
                                                      40
                                                                 50
            orf115ng-1.p NEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDISLGSFAYESHSK
                                                         111 1111111: [11]: [11] [11]
            orfl15
                                                        STGHSEQNYTLPREITRNISLGSFAYESHRK
 60
                                                                 10
                                                                            20
                                            90
                                                     100
                                                                110
                                                                           120
            orf115ng-1.p ALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYIINPANKGYLVET
                          111:111111111111
                                                     65
            orf115
                          ALSHHAPSQGTELPQSN-
                                                      -GISLPYTSNSFTPLPSSSLYIINPVNKGYLVET
                                                      50
                                                                 60
                                                                            70
                                 40
                                                                                      80 -
```

-303-

5	orfl15ng-1.p orfl15	140 150 160 170 180 190 DPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELTGHRRLDGYQND	
10	orfl15ng-1.p	200 210 220 230 240 250 EEQFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLPDGGTQTVLMPQ	
15	orf115ng-1.p	260 270 280 290 300 310 VYVRVKNGGIDGKGALLSGSNTQINVSGSLKNSGTIAGRNALIINTDTLDNIGGRIHAQK	
20	orf115ng-1.p	320 330 340 350 360 370 SAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTYLDRMAGIYITGK	
25	orf115ng-1.p	380 390 400 410 420 430 EKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQEIHFDADNHTIR EKGV	
		s homology with a secreted <i>N.meningitidis</i> protein in the database:	
30	,	AF030941) putative secreted protein [Neisseria meningitidis]	Length
	= 2273 Score = 60	4 bits (1541), Expect = e-172 = 325/678 (47%), Positives = 449/678 (65%), Gaps = 22/678 (3%)	
35		LLVQTEKDGLHNEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDIS L+V T + L N++T G K + ++ G LH Y R +KG D TG+ Y E++ I LIVGTPESALDNDETLGTKTI-TDKGDLHRYHRHHKKGRDSTGYSRSPYEPAPEVS-SIR	
40	Query: 61 Sbjct: 797	LGSFAYESHSKALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYII +G AY+ + AP Q +++P + + NGI +T LP SSL+ I MGISAYKGYAPQQASDIPGTVVPVVAENGIHPTFTLPNSSLFAI	
45		NPANKGYLVETDPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELT P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+L+NEQIA+LT APNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQKLVNEQIAKLT	
	·· -	GHRRLDGYONDEEOFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLP G+RRLDGY NDEEOFKALMDNG T A+ + L+ GIALSAEQ A+LTSDIVWL + V LP GYRRLDGYTNDEEOFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIVWLENETVTLP	
50	Query: 241	DGGTQTVLMPQVYVRVKNGGIDGKGALLSGSNTQINVSGSLKN-SGTIAGRNALIINTDT DG TQTVL P+VYVR + ++G+GALLSGS I SG+++N G IAGR ALI+N	
	Sbjct: 961	DGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAGREALILNAQN	
55		LDNIGGRIHAQKSAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTY + N+ G + + A DI N G I AE LLL A NNI ++S +S+QN QGS IKNLQGDLQGKNIFAAAGSDITNTGSI-GAENALLLKASNNIESRSETRSNQNEQGSVRN	
	_	LDRMAGIYITGKEKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQ	
60	-	+ R+AGIY+TG++ G + AG +I + A +++NQS+ GQT L AG DI DT + Q IGRVAGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTVLNAGGDIRSDTTGISRNQ	
	-	EIHFDADNHTIRGSTNEVGSSIQTKGDVTLLSGNNLNAKAAEVGSAKGTLAVYAKNDITI	
65	Sbjct: 1139	FD+DN+ IR NEVGS+I+T+G+++L + ++ +AAEVGS +G L + A DI + NTIFDSDNYVIRKEQNEVGSTIRTRGNLSLNAKGDIRIRAAEVGSEQGRLKLAAGRDIKV	1198
	Query: 480	SSGIHAGQVDDASKHTGRSGGGNKLVITDKAQSHHETAQSSTFEGKQVVLQAGNDANILG +G + +DA K+TGRSGGG K +T ++ + A S T +GK+++L +G D + G	539
70	Sbjct: 1199	EAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNGQAVSGTLDGKEIILVSGRDITVTG	1258

```
Query: 540 SNVISDNGTRIQAGNHVRIGTTQTQSQSETYHQTQKSGLM-SAGIGFTIGSKTNTQENQS 598
SN+I+DN T + A N++ + +T+S+S ++ +KSGLM S GIGFT GSK +TQ N+S
Sbjct: 1259 SNIIADNHTILSAKNNIVLKAAETRSRSAEMNKKEKSGLMGSGGIGFTAGSKKDTQTNRS 1318

5 Query: 599 QSNEHTGSTVGSLKGDTTIVASKHYEQTGSNVSSPEGNNLISTQSMDIGAAQNQLNSKTT 658
++ HT S VGSL G+T I A KHY QTGS +SSP+G+ IS+ + I AAQN+ + ++
Sbjct: 1319 ETVSHTESVVGSLNGNTLISAGKHYTQTGSTISSPQGDVGISSGKISIDAAQNRYSQESK 1378

Query: 659 QTYEQKGLTVAFSSPVTD 676
Q YEQKG+TVA S PV +
Sbjct: 1379 QVYEQKGVTVAISVPVVN 1396
```

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 62

35

15 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 517>:

```
..TCAGGGAATA ACCTCAATGC CAAAGCTGCC GAAGTCAGCA GCGCAAACGG
                 51
                       TACACTCGCT GTGTCTGCCA ATAATGACAT CAACATCAGC GCAGGCATCA
                101
                       ACACGACCCA TGTTGATGAT GCGTCCAAAC ACACAGGCAG AAGCGGTGGT
                151
                       GGCAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC ACGAAACCGC
20
                201
                       CCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG GCAGGAAACG
                       ATGCCAACAT CCTTGGCAGC AATGTTATTT CCGATAATGG CACCCAGATT
                251
                301
                       CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC AAAGCCAAAG
                351
                       CGAAACCTAT CATCAAACCC AGAAATCAGG ATTGATGAGT GCAGGTATCG
                401
                       GCTTCACTAT TGGCAGCAAG ACAAACACAC AAGAAAACCA ATCCCAAAGC
25
                451
                       AACGAACATA CAGGCAGTAC CGTAGGCAGC TTGAAAGGCG ATACCACCAT
                501
                       TGTTGCAGGC AAACACTACG AACAAATCGG CAGTACCGTT TCCAGCCCGG
                551
                       AAGGCAACAA TACCATCTAT GCCCAAAGCA TAGACATTCA AGCGGCACAC
                601
                       AACAAATTAA ACAGTAATAC CACCCAAACC TATGAACAAA AAGG.CTAAC
                651
                       GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA ...
```

30 This corresponds to the amino acid sequence <SEQ ID 518; ORF117>:

```
1 ...SGNNLNAKAA EVSSANGTLA VSANNDINIS AGINTTHVDD ASKHTGRSGG
51 GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS NVISDNGTQI
101 QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK TNTQENQSQS
151 NEHTGSTVGS LKGDTTIVAG KHYEQIGSTV SSPEGNNTIY AQSIDIQAAH
201 NKLNSNTTQT YEQKXLTVAF SSPVTDLAQQ ...
```

Computer analysis of this amino acid sequence gave the following results:

Homology with the pspA putative secreted protein of *N. meningitidis* (accession number AF030941) ORF117 and pspA protein show 45% aa identity in 224aa overlap:

```
Orf117: 4
                       NLNAKAAEVSSANGTLAVSANNDINISAGINTTHVDDASKHTGRSGGGNKLVITDKAOSH 63
40
                          +AAEV S G L ++A DI + AG
                                                      T +DA K+TGRSGGG K +T
          pspA:
                  1173 DIRIRAAEVGSEQGRLKLAAGRDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQ 1232
          Orf117: 64
                       HETAQSSTFEGKQVVLQAGNDANILGSNVISDNGTQIQAGNHVRIGTTQTQSQSETYHOT 123
                       + A S T +GK+++L +G D + GSN+I+DN T + A N++ +
45
          pspA:
                  1233 NGQAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILSAKNNIVLKAAETRSRSAEMNKK 1292
          Orf117: 124
                       QKSGLM-SAGIGFTIGSKTNTQENQSQSNEHTGSTVGSLKGDTTIVAGKHYEQIGSTVSS 182
                       +KSGLM S GIGFT GSK +TQ N+S++ HT S VGSL G+T I AGKHY Q GST+SS
                  1293 EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS 1352
          pspA:
50
          Orf117: 183
                       PEGNNTIYAQSIDIQAAHNKLNSNTTQTYEOKXLTVAFSSPVTD 226
                       P+G+ I + I I AA N+ + + Q YEQK +TVA S PV +
                  1353 PQGDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVN 1396
          pspA:
```

-305-

Homology with a predicted ORF from N.gonorrhoeae

ORF117 shows 90% identity over a 230aa overlap with a predicted ORF (ORF117ng) from N.gonorrhoeae:

5	orf117.pep	SGNNLNAKAAEVSSANGTLAVSANNDINIS	30
-	orf117ng	IHFDADNHTIRGSTNEVGSSIQTKGDVTLLSGNNLNAKAAEVGSAKGTLAVYAKNDITIS	480
	orfl17.pep	AGINTTHVDDASKHTGRSGGGNKLVITDKAQSHHETAQSSTFEGKQVVLQAGNDANILGS	90
10	orf117ng	: ::::	540
	orfl17.pep	NVISDNGTQIQAGNHVRIGTTQTQSQSETYHQTQKSGLMSAGIGFTIGSKTNTQENQSQS	150
15	orf117ng	NVISDNGTRIQAGNHVRIGTTQTQSQSETYHQTQKSGLMSAGIGFTIGSKTNTQENQSQS	600
13	orf117.pep	NEHTGSTVGSLKGDTTIVAGKHYEQIGSTVSSPEGNNTIYAQSIDIQAAHNKLNSNTTQT	210
	orf117ng	NEHTGSTVGSLKGDTTIVASKHYEQTGSNVSSPEGNNLISTQSMDIGAAQNQLNSKTTQT	660
20	orf117.pep	YEQKXLTVAFSSPVTDLAQQ	230
	orf117ng	YEQKGLTVAFSSPVTDLAQQAIAVAHKAAKQFDKAKTTALMPWRLPMQVGRLFKQAKAPK	720

An ORF117ng nucleotide sequence <SEQ ID 519> was predicted to encode a protein having amino acid sequence <SEQ ID 520>:

```
25
                    ..LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD ETGHREONYT
                       LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD NIRTAKSNGI
                101
                       SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ WLGSDYMLGS
                       LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN DEEQFKALMD
                151
                201
                       NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP DGGTQTVLMP
30
                       QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR NALIINTDTL
                251
                301
                       DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN INNQSTAKSS
                351
                       QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ ISNQSDQGQT
                401
                       RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS IQTKGDVTLL
                451
                       SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGOVDD ASKHTGRSGG
                       GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS NVISDNGTRI
35
                501
                551
                       QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK TNTQENQSQS
                601
                       NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS TQSMDIGAAQ
                       NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAK QFDKAKTTAL
                651
                701
                       MPWRLPMQVG RLFKQAKAPK K*
```

40 Further work revealed the following gonococcal partial DNA sequence <SEQ ID 521>:

	1	TTCCTTCTCC	AAACACAAAA	AGACGGTTTG	CAMAACCACC	3 3 3 CCMMMCC
				_		
	51			AAAATGGTAA		
	101	CGCGTCGTAA	AGGACATGAT	GAAACAGGGC	ATCGTGAACA	AAATTATACT
	151	TTGCCGGAGG	AAATCACACG	CGACATTTCA	CTGGGTTCAT	TTGCCTATGA
45	201	ATCGCATAGC	AAAGCATTAA	GCCGTCATGC	GCCCAGCCAA	GGCACTGAGT
	251	TGCCACAAAG	TAACCGGGAT	AATATCCGTA	CTGCGAAAAG	CAACGGTATT
	301	TCGCTACCCT	ATACGCCCAA	TTCTTTTACC	CCATTACCCG	GCAGCAGCTT
	351	ATACATTATC	AATCCTGCCA	ATAAAGGCTA	TCTTGTTGAA	ACCGATCCAC
	401	GCTTTGCCAA	CTACCGTCAA	TGGTTGGGTA	GTGACTATAT	GCTGGGCAGC
50	451	CTCAAACTAG	ACCCAAACAA	TTTACATAAA	CGTTTGGGTG	ATGGTTATTA
	501	CGAGCAACGT	TTAATCAATG	AACAAATCGC	AGAGCTGACA	GGGCATCGTC
	551	GTTTAGACGG	TTATCAAAAC	GACGAAGAAC	AATTTAAAGC	CTTAATGGAT
	601	AATGGCGCGA	CTGCGGCACG	TTCGATGAAT	CTCAGCGTTG	GCATTGCATT
	651	AAGTGCCGAG	CAAGCAGCGC	AACTGACCAG	CGATATTGTT	TGGTTGGTAC
55	701	AAAAAGAAGT	TAAACTTCCT	GATGGCGGCA	CACAAACCGT	ATTGATGCCA
	751	CAGGTTTATG	TACGCGTTAA	AAATGGCGGC	ATAGACGGTA	AAGGTGCATT
	801	GTTGTCAGGC	AGCAATACAC	AAATCAATGT	TTCAGGCAGC	CTGAAAAACT
	851	CAGGCACGAT	TGCAGGGCGC	AATGCGCTTA	TTATCAATAC	CGATACGCTA
	901	GACAATATCG	GTGGGCGTAT	TCATGCGCAA	AAATCAGCGG	TTACGGCCAC
60	951	ACAAGACATC	AATAATATTG	GCGGCATTCT	TTCTGCCGAA	CAGACATTAT
	1001	TGCTCAATGC	GGGTAACAAC	ATCAACAACC	AAAGCACGGC	CAAGAGCAGT
	1051				GACCGAATGG	

40

```
1101
                    TATCACAGGC AAAGAAAAAG GTGTTTTAGC AGCGCAGGCA GGCAAAGACA
                    TCAACATCAT TGCCGGTCAA ATCAGCAATC AATCAGATCA AGGGCAAACC
              1151
                    CGGCTGCAGG CAGGACGCGA CATTAACCTG GATACGGTAC AAACCGGCAA
              1201
              1251
                    ATATCAAGAA ATCCATTTTG ATGCCGATAA CCATACCATC CGAGGTTCAA
5
                    CGAACGAAGT CGGCAGCAGC ATTCAAACAA AAGGCGATGT TACCCtatTG
              1301
                    TCAGGGAATA ATCTCAATGC CAAAGCTGCC GAAGTCGGCA GCGCAAAAGG
              1351
              1401
                    CACACTTGCC GTGTATGCTA AAAATGACAT TACTATCAGC TCAGGCATCC
                    ATGCCGGCCA AGTTGATGAT GCGTCCAAAC ATACAGGCAG AAGCGGCGGC
              1451
                    GGTAATAAAT TAGTCATTAC CGATAAAGCC CAAAGTCATC ACGAAACTGC
              1501
                    TCAAAGCAGC ACCTTTGAAG GCAAGCAAGT TGTATTGCAG GCAGGAAACG
10
              1551
              1601 ATGCCAACAT CCTTGGCAGT AATGTTATTT CCGATAATGG CACCCGGATT
                    CAAGCAGGCA ATCATGTTCG CATTGGTACA ACCCAAACTC AAAGCCAAAG
              1651
              1701
                    CGAAACCTAT CATCAAACCC AAAAATCAGG ATTGATGAGT GCAGGTATCG
              1751
                    GCTTCACTAT TGGCAGCAAG ACAAACACAC AAGAAAACCA ATCCCAAAGC
15
              1801
                    AACGAACATA CAGGCAGTAC CGTAGGCAGC CTGAAAGGCG ATACCACCAT
              1851
                    TGTTGCAAGC AAACACTACG AACAAACCGG CAGCAACGTT TCCAGCCCTG
              1901 AGGGCAACAA CCTTATCAGC ACGCAAAGTA TGGATATTGG CGCAGCACAA
                    AACCAATTAA ACAGCAAAAC CACCCAAACC TACGAACAAA AAGGCTTAAC
              1951
                    GGTGGCATTC AGTTCGCCCG TTACCGATTT GGCACAACAA GCGATTGCCG
              2001
                    TAGCACACAA AGCAGCAAAC AAGTCGGACA AAGCAAAAAC GACCGCGTTA
20
              2051
                    ATGCCATGGC GGCTGCCAAT GCAGGTTGGC AGGCCTATCA AACAGGCAAA
              2101
              2151 GGCGCACAAA ACTTAG
```

This corresponds to the amino acid sequence <SEQ ID 522; ORF117ng-1>:

```
LLVQTEKDGL HNEQTFGEKK VFSENGKLHN YWRARRKGHD ETGHREQNYT
25
                      LPEEITRDIS LGSFAYESHS KALSRHAPSQ GTELPQSNRD NIRTAKSNGI
                      SLPYTPNSFT PLPGSSLYII NPANKGYLVE TDPRFANYRQ WLGSDYMLGS
                101
                     LKLDPNNLHK RLGDGYYEQR LINEQIAELT GHRRLDGYQN DEEQFKALMD
                151
                201 NGATAARSMN LSVGIALSAE QAAQLTSDIV WLVQKEVKLP DGGTQTVLMP
                     QVYVRVKNGG IDGKGALLSG SNTQINVSGS LKNSGTIAGR NALIINTDTL
                251
30
                      DNIGGRIHAQ KSAVTATQDI NNIGGILSAE QTLLLNAGNN INNQSTAKSS
                301
                      QNAQGSSTYL DRMAGIYITG KEKGVLAAQA GKDINIIAGQ ISNQSDQGQT
                351
                      RLQAGRDINL DTVQTGKYQE IHFDADNHTI RGSTNEVGSS IQTKGDVTLL
                401
                451
                      SGNNLNAKAA EVGSAKGTLA VYAKNDITIS SGIHAGQVDD ASKHTGRSGG
                      GNKLVITDKA QSHHETAQSS TFEGKQVVLQ AGNDANILGS NVISDNGTRI
QAGNHVRIGT TQTQSQSETY HQTQKSGLMS AGIGFTIGSK TNTQENQSQS
                501
35 .
                 551
                 601
                      NEHTGSTVGS LKGDTTIVAS KHYEQTGSNV SSPEGNNLIS TQSMDIGAAQ
                 651
                      NQLNSKTTQT YEQKGLTVAF SSPVTDLAQQ AIAVAHKAAN KSDKAKTTAL
                      MPWRLPMQVG RPIKQAKAHK T*
```

ORF117ng-1 shows the same 90% identity over a 230aa overlap with ORF117. In addition, it shows homology with a secreted *N.meningitidis* protein in the database:

```
gi|2623258 (AF030941) putative secreted protein [Neisseria meningitidis]Length =
           Score = 604 bits (1541), Expect = e-172
           Identities = 325/678 (47%), Positives = 449/678 (65%), Gaps = 22/678 (3%)
45
                      LLVQTEKDGLHNEQTFGEKKVFSENGKLHNYWRARRKGHDETGHREQNYTLPEEITRDIS 60
                      L+V T + L N++T G K + ++ G LH Y R +KG D TG+
                                                                     Y
                                                                           E++ . T
                      LIVGTPESALDNDETLGTKTI-TDKGDLHRYHRHHKKGRDSTGYSRSPYEPAPEVS-SIR 796
          Sbjct: 739
50
                      LGSFAYESHSKALSRHAPSQGTELPQSNRDNIRTAKSNGISLPYTPNSFTPLPGSSLYII 120
          Query: 61
                      +G AY+ +
                                      AP Q +++P +
                                                          NGI
                      MGISAYKGY-----APQQASDIPGTV---VPVVAENGIHPTFT-----LPNSSLFAI 840
          Sbjct: 797
                      NPANKGYLVETDPRFANYRQWLGSDYMLGSLKLDPNNLHKRLGDGYYEQRLINEQIAELT 180
          Query: 121
55
                       P NKGYL+ETDP F +YR+WLGS YML +L+ DPN++HKRLGDGYYEQ+L+NEQIA+LT
                      APNNKGYLIETDPAFTDYRKWLGSGYMLAALQQDPNHIHKRLGDGYYEQKLVNEQIAKLT 900
          Sbjct: 841
                      GHRRLDGYQNDEEQFKALMDNGATAARSMNLSVGIALSAEQAAQLTSDIVWLVQKEVKLP 240
          Query: 181
                      G+RRLDGY NDEEQFKALMDNG T A+ + L+ GIALSAEQ A+LTSDIVWL + V LP
60
                      GYRRLDGYTNDEEQFKALMDNGITIAKELQLTPGIALSAEQVARLTSDIVWLENETVTLP 960
          Sbjct: 901
          Query: 241
                      DGGTQTVLMPQVYVRVKNGGIDGKGALLSGSNTQINVSGSLKN-SGTIAGRNALIINTDT 299
                      DG TQTVL P+VYVR +
                                         ++G+GALLSGS I SG+++N G IAGR ALI+N
          Sbjct: 961
                      DGTTQTVLKPKVYVRARPKDMNGQGALLSGSVVDIG-SGAIENRGGLIAGREALILNAQN 1019
65
          Query: 300 LDNIGGRIHAQKSAVTATQDINNIGGILSAEQTLLLNAGNNINNQSTAKSSQNAQGSSTY 359
```

WO 99/24578 PCT/II

-307-

```
A DINGIAE LLL ANNI ++S +S+QN QGS
                      + N+ G + +
          Sbjct: 1020 IKNLQGDLQGKNIFAAAGSDITNTGSI-GAENALLLKASNNIESRSETRSNQNEQGSVRN 1078
          Query: 360 LDRMAGIYITGKEKGVLAAQAGKDINIIAGQISNQSDQGQTRLQAGRDINLDTVQTGKYQ 419
                      + R+AGIY+TG++ G + AG +I + A +++NQS+ GQT L AG DI DT
5
          Sbjct: 1079 IGRVAGIYLTGRQNGSVLLDAGNNIVLTASELTNQSEDGQTVLNAGGDIRSDTTGISRNQ 1138
          Query: 420 EIHFDADNHTIRGSTNEVGSSIQTKGDVTLLSGNNLNAKAAEVGSAKGTLAVYAKNDITI 479
                         FD+DN+ IR
                                   NEVGS+I+T+G+++L + ++ +AAEVGS +G L + A DI +
           Sbjct: 1139 NTIFDSDNYVIRKEQNEVGSTIRTRGNLSLNAKGDIRIRAAEVGSEQGRLKLAAGRDIKV 1198
10
           Query: 480 SSGIHAGQVDDASKHTGRSGGGNKLVITDKAQSHHETAQSSTFEGKQVVLQAGNDANILG 539
                             + +DA K+TGRSGGG K +T
                                                    ++ + A S T +GK+++L +G D + G
           Sbjct: 1199 EAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNGQAVSGTLDGKEIILVSGRDITVTG 1258
15
                      SNVISDNGTRIQAGNHVRIGTTQTQSQSETYHQTQKSGLM-SAGIGFTIGSKTNTQENQS 598
           Query: 540
                       SN+I+DN T + A N++ + +T+S+S ++ +KSGLM S GIGFT GSK +TQ N+S
           Sbjct: 1259 SNIIADNHTILSAKNNIVLKAAETRSRSAEMNKKEKSGLMGSGGIGFTAGSKKDTQTNRS 1318
                      QSNEHTGSTVGSLKGDTTIVASKHYEQTGSNVSSPEGNNLISTQSMDIGAAQNQLNSKTT 658
20
                       ++ HT S VGSL G+T I A KHY QTGS +SSP+G+ IS+ + I AAQN+ + ++
           Sbjct: 1319 ETVSHTESVVGSLNGNTLISAGKHYTQTGSTISSPQGDVGISSGKISIDAAQNRYSQESK 1378
           Query: 659 QTYEQKGLTVAFSSPVTD 676
25
                       Q YEQKG+TVA S PV +
           Sbjct: 1379 QVYEQKGVTVAISVPVVN 1396
```

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 63

30 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 523>:

```
1 ATGATTTACA TCGTACTGTT TCTAGCTGTC GTCCTCGCCG TTGTCGCCTA
51 CAACATGTAT CAGGAAAACC AATACCGCAA AAAAGTGCGC GACCAGTTCG
101 GACACTCCGA CAAAGATGCC CTGCTCAACA GCAWAACCAG CCATGTCCGC
151 GACGGCAAAC CGTCCGGCGG GTCAGTCATG ATGCCGAAAC CCCAACCGGC
351 AACAGGATGC CGTCTACATC GCCAAGCAGA AACAGGCAAA AGCCTCCCCG
301 TTCAAAACCG AAATCGAAAC CGCCTTGGAA GAAAGCGGCA TTATCGGCAA
351 CTCCGCCCAC ACCGTTTCCG AACCCCAAAC CGGACATTCC GCAACGAAAC
401 CTGCCGACGC GTCGGCAAAA CCTGCACCG TTCCGCAAAC ACCTGCAAAA
451 CCGCTGATTA CGCTCAAAGA ACTGTCAAAA GTCGAATTAT CCTGGTTTGA
501 CGTGCGCATC GACTTCATCT CCTAT...
```

This corresponds to the amino acid sequence <SEQ ID 524; ORF119>:

```
1 MIYIVLFLAV VLAVVAYNMY QENQYRKKVR DQFGHSDKDA LLNSXTSHVR
51 DGKPSGGSVM MPKPQPAVKK TAKPQDPXMR NLQEQDAVYI AKQKQAKASP
45 101 FKTEIETALE ESGIIGNSAH TVSEPQTGHS ATKPADASAK PAPVPQTPAK
151 PLITLKELSK VELSWFDVRI DFISY...
```

Further work revealed the complete nucleotide sequence <SEQ ID 525>:

	4	3 m C 3 m m m 3 C 3	TCGTACTGTT	mcmx comemo	CHCCHCCCCC	mmcmccccma
	1	ATGATTTACA	TCGTACTGTT	TCIAGCIGIC	GICCICGCCG	TIGICGCCIA
	51	CAACATGTAT	CAGGAAAACC	AATACCGCAA	AAAAGTGCGC	GACCAGTTCG
50	101	GACACTCCGA	CAAAGATGCC	CTGCTCAACA	GCAAAACCAG	CCATGTCCGC
	151	GACGGCAAAC	CGTCCGGCGG	GTCAGTCATG	ATGCCGAAAC	CCCAACCGGC
	201	GGTCAAAAAA	ACGGCAAAAC	CCCAAGACCC	CGCCATGCGC	AACCTGCAAG
	251	AACAGGATGC	CGTCTACATC	GCCAAGCAGA	AACAGGCAAA	AGCCTCCCCG
	301	TTCAAAACCG	AAATCGAAAC	CGCCTTGGAA	GAAAGCGGCA	TTATCGGCAA
55	351	CTCCGCCCAC	ACCGTTTCCG	AACCCCAAAC	CGGACATTCC	GCACCGAAAC
	401	CTGCCGACGC	GCCGGCAAAA	CCTGCACCCG	TTCCGCAAAC	ACCTGCAAAA
	451	CCGCTGATTA	CGCTCAAAGA	ACTGTCAAAA	GTCGAATTAC	CCTGGTTTGA
	501	CGTGCGCTTC	GACTTCATCT	CCTATATCGC	GCTGACCGAA	GCCAAAGAAC
	551	TGCACGCACT	GCCGCGCCTT	TCCAACCGCT	GCCGCTACCA	GATTGTCGGC
60	601	TGCACCATGG	ACGACCATTT	CCAGATTGCC	GAACCCATCC	CGGGCATCCG

	651	CTATCAGGCA	TTTATCGTGG	GTATTCAGGC	AGTCAGCCGC	AACGGACTTG
	701	CCTCGCAGGA	AGAACTCTCC	GCATTCAACC	GCCAGGTGGA	CGCATTCGCA
	751	CAAAGCATGG	GCGGTCAGAC	GCTGCACACC	GACCTTGCCG	CCTTTATCGA
	801	AGTGGCTTCC	GCACTGGACG	CATTCTGCGC	GCGCGTCGAC	CAGACCATCG
5	851	CCATCCATTT	GGTTTCCCCG	ACCAGCATCA	GCGGCGTAGA	ACTGCGTTCC
• •	901	GCCGTAACGG	GCGTGGGTTT	CGTTTTGGAA	GACGACGGCG	CGTTCCACTA
	951	TACCGACACG	TCGGGCTCGA	CCATGTTCTC	CATCTGCTCG	CTCAACAACG
	1001	AGCCGTTTAC	CAACGCCCTT	TTGGACAACC	AGTCCTACAA	AGGCTTCAGT
	1051	ATGCTGCTCG	ACATCCCGCA	CTCTCCGGCA	GGCGAAAAA	CCTTCGACGA
10	1101	TTTGTTTATG	GATTTGGCGG	TACGCCTGTC	CGGCCAGTTG	AACCTGAATC
	1151	TGGTCAACGA	CAAAATGGAA	GAAGTTTCGA	CCCAATGGCT	CAAAGACGTG
	1201	CGCACTTATG	TATTGGCGCG	TCAGTCCGAG	ATGCTCAAAG	TCGGTATCGA
	1251	ACCGGGCGGC	AAAACCGCAT	TGCGCCTGTT	CTCCTAA	

This corresponds to the amino acid sequence <SEQ ID 526; ORF119-1>:

15	1	MIYIVLFLAV	VLAVVAYNMY	QENQYRKKVR	DQFGHSDKDA	LLNSKTSHVR
	51	DGKPSGGSVM	MPKPQPAVKK	TAKPQDPAMR	NLQEQDAVYI	AKQKQAKASP
	101	FKTEIETALE	ESGIIGNSAH	TVSEPQTGHS	APKPADAPAK	PAPVPQTPAK
	151	PLITLKELSK	VELPWFDVRF	DFISYIALTE	AKELHALPRL	SNRCRYQIVG
	201	CTMDDHFQIA	EPIPGIRYQA	FIVGIQAVSR	NGLASQEELS	AFNROVDAFA
20	251	QSMGGQTLHT	DLAAFIEVAS	ALDAFCARVD	QTIAIHLVSP	TSISGVELRS
	301	AVTGVGFVLE	DDGAFHYTDT	SGSTMFSICS	LNNEPFTNAL	LDNQSYKGFS
	351	MLLDIPHSPA	GEKTFDDLFM	DLAVRLSGQL	NLNLVNDKME	EVSTQWLKDV
	401		MLKVGIEPGG			

Computer analysis of this amino acid sequence gave the following results:

25 Homology with a predicted ORF from N.meningitidis (strain A)

ORF119 shows 93.7% identity over a 175aa overlap with an ORF (ORF119a) from strain A of N. meningitidis:

30	orf119.pep	10 MIYIVLFLAVVLA MIYIVLFLAAVLA		 YRKKVRDQF(1 11111111	1111 11
		10	20	30	40	50	60
26		70	80	90	100	110	120
35	orf119.pep	MPKPQPAVKKTAK	PODPXMRNLQE	ODAVYIAKO	KQAKASPFKTI	EIETALEESG:	IIGNSAH
	orf119a	MPKPQPAVKKTAK				 Eletaleesg:	 [IGNSAH
		70	80	90 -	100	110	120
40		130	140	150	160	170	
	orf119.pep	TVSEPQTGHSATK	Padasakpapv	POTPAKPLI	"LKELSKVEL	SWFDVRIDFI:	SY
			1111 111:43			11111111	H
	orf119a	TVPEPQTGHSAPK		_		PWFDVRFDFI:	SYIALTE
45	•	130	140	150	160	170	180
	orf119a	AKELHALPRLSNR					ASQEELS
		190	200	210	220	230	240

The complete length ORF119a nucleotide sequence <SEQ ID 527> is:

,	1	ATGATTTACA	TCGTACTGTT	CCTCGCCGCC	GTCCTCGCCG	TTGTCGCCTA
50	51			AATACCGCAA		
	101			CTGCTCAACA		
	151			GCCAGTCATG		
	201			CCCAAGACCC		
	251			GCCAAGCAGA		
55	301			CGCCTTGGAA		
	351			AACCCCAAAC		
	401			CCTGTTCCCG		
	451	CCGCTGATTA	CGCTCAAAGA	GCTGTCGAAG	GTCGAGCTGC	CCTGGTTTGA
	501			CTTATATCGC		
60	551	TGCACGCACT	GCCGCGCCTT	TCCAACCGCT	GCCGCTACCA	GATTGTCGGC
	601	TGCACCATGG	ACGACCATTT	CCAGATTGCC	GAACCCATCC	CGGGCATCCG

		CAGGCA TTTATCGTGG				
		GCAGGA AGAACTCTCC				
	-	AGCATGG GCGGTCAGAC				
5		CCATTT GGTTTCCCCG				
5		STAACGG GCGTGGGTTT				
	·	GACACG TCGGGCTCGA				
		GTTTAC CAATGCCCTT				
		TGCTCG ACATCCCGCA				
10		TTTATG GATTTGGCGG				
		CAACGA CAAAATGGAA				
	1201 CGC#	CTTATG TATTGGCTCG	TCAGTCCGAG	ATGCTCAAAG	TCGGTATCGA	
	1251 ACC	GGCGGC AAAACCGCAT	TGCGCCTGTT	CTCCTAA		
	This encodes a protei	n having amino acio	l sequence <	SEO ID 528	>:	
1.5	-		_			
15		VLFLAA VLAVVAYNMY				
		SGGPVM MPKPQPAVKK				
		EIETALE ESGIIGNSAH LKELSK VELPWFDVRF	-			
		DHFQIA EPIPGIRYQA				
20		GOTLHT DLAAFIEVAS				
20		SVGFVLE DDGAFHYTDT				
		DIPHSPA GEKTFDDLFM				
		LARQSE MLKVGIEPGG			-	
	ORF119a and ORF1	19-1 show 98.6% id	entity in 428	aa overlap:		
25		10	20	30	40 50	0 60
23	orf119a.pep	MIYIVLFLAAVLAVVA				-
	OTTITIONFOR	111111111111111111111111111111111111111				
	orf119-1	MIYIVLFLAVVLAVVA				
		10	20	30	40 50	0 60
30						
		70	80		00 11	
	orf119a.pep	MPKPQPAVKKTAKSQD				
	6110 1					
35	orf119-1	MPKPQPAVKKTAKPQD 70	80 видеора В		00 11	
55		70	00	30 1	.00	0 120
		130	140	150 1	60 17	0 180
	orf119a.pep	TVPEPQTGHSAPKPAD				
		11 111111111111	11111:11111	1111111111111		11111111111
40	orf119-1	TVSEPQTGHSAPKPAD	APAKPAPVPQT	PAKPLITLKEL	SKVELPWFDVR	FDFISYIALTE
		130	140	150 1	.60 17	0 180
		190	200	210 2	20 23	0 240
	orf119a.pep	AKELHALPRLSNRCRY				
45	Ollilja.pep	1111111111111111				
	orf119-1	AKELHALPRLSNRCRY	OIVGCTMDDHF	OIAEPIPGIRY	OAFIVGIOAVS	RNGLASOEELS
		190	200		20 23	
		250	260		80 29	
50	orfll9a.pep	AFNRQVDAFAHSMGGQ				
	6110-1					
	orf119-1	AFNRQVDAFAQSMGGQ 250	TEHTOLAAFIE 260			
		250	200	210 2	180 29	0 300
55		310	320	330 3	40 35	0 360
55	orf119a.pep	AVTGVGFVLEDDGAFH				
	orf119-1	AVTGVGFVLEDDGAFH				
		310	320		340 35	
60						
		370	380		00 41	
	orf119a.pep	GEKTFDDLFMDLAVRI				
	6110 1					
65	orf119-1	GEKTFDDLFMDLAVRI 370	SGQLNLNLVNI 380		KDVRTYVLARQS 100 41	
$\mathbf{u}_{\mathcal{I}}$		310	200	JJU 4	41	0 420

5 Homology with a predicted ORF from N.gonorrhoeae

ORF119 shows 93.1% identity over a 175aa overlap with a predicted ORF (ORF119ng) from

N	gonorrhoeae:
74.	gonornicae.

	orfl19.pep	MIYIVLFLAVVLAVVAYNMYQENQYRKKVRDQFGHSDKDALLNSXTSHVRDGKPSGGSVM	60
10	orf119ng		60
	orf119.pep	MPKPQPAVKKTAKPQDPXMRNLQEQDAVYIAKQKQAKASPFKTEIETALEESGIIGNSAH	120
15	orf119ng		120
	orf119.pep	TVSEPQTGHSATKPADASAKPAPVPQTPAKPLITLKELSKVELSWFDVRIDFISY	175
	orfl19ng	TVSEPQTGHSAPKPADAPAKPVPVPQTPAKPLITLKELSKVELPWFDVRFDFISYIALTE	180

The complete length ORF119ng nucleotide sequence <SEQ ID 529> is:

20	1 :	ATGATTTACA	TCGTACTGTT	CCTCGCCGCC	GTCCTCGCCG	TTGTCGCCTA
	• 51	CAATATGTAT	CAGGAAAACC	AATACCGCAA	AAAAGTGCGC	GACCAGTTCG
•	101	GACACTCCGA	CAAAGATGCC	CTGCTCAACA	GCAAAACCAG	CCATGTCCGC
	151	GACGGCAAAC	CGTCCGGCGG	GCCAGTCATG	ATGCCGAAAC	CCCAACCGGC
	201	GGTCAAAAAA	CCGGCCAAAC	CCCAAGACTC	CGCCATGCGC	AACCTGCAAG
25	251	AACAGGATGC	CGTCTACATC	GCCAAGCAGA	AACAGGCAAA	AGCCTCCCCG
	301	TTCAAAACCG	AAATCGAAAC	CGCCTTGGAA	GAAATCGGCA	TTATCGGCAA
	351	CTCCGCCCAC	ACCGTTTCCG	AACCCCAAAC	CGGACATTCC	GCACCGAAAC
	401	CTGCCGACGC	GCCGGCAAAA	CCCGTTCCCG	TTCCGCAAAC	GCCGGCAAAA
	451	CCGCTGATTA	CGCTCAAAGA	GCTGTCGAAG	GTCGAGCTGC	CCTGGTTTGA
30	501	CGTGCGCTtc	GACTTCATCT	CCTATATCGC	GCTGACCGAA	GCCAAAGAAC
	551				GCCGCTACCA	
	601	TGCACCATGG	ACGACCATTT	CCAGATTGCC	GAACCCATCC	CGGGCATCCG
	651	CTATCAGGCA	TTTATCGTGG	GTATCCAGGC	AGTCAGCCGC	AACGGACTTG
	701	CCTCGCAGGA	AGAACTCTCC	GCATTCAACC	GCCAGGCGGA	CGCATTCGCA
35	751	CAAAGCATGG	GCGGTCAGAC	GCTGCACACC	GACCTTGCCG	CCTTTATCGA
	801				GCGCGTCGAC	
	851				GCGGCGTAGA	
	901	GCCGTAACGG	GCGTGGGTTT	CGTTTTGGAA	GACGACGCC	CGTTCCACTA
.0	951	TACCGACACG	TCGGGCTCGA	CCATGTTCTC	CATCTGCTCG	CTCAACAACG
40	1001	AGCCGTTTAC	CAATGCCCTT		AGTCCTACAA	
	1051	ATGCTGCTCG	ACATCCCGCA	CTCTCCGGCA	GGCGAAAAA	CCTTCGACGA
	1101				CGGTCAGTTG	
	1151				CCCAATGGCT	
	1201				ATGCTCAAAG	
45	1251			TGCGCCTGTT		

This encodes a protein having amino acid sequence <SEQ ID 530>:

	•	L MIYIVLFLAA	VLAVVAYNMY	QENQYRKKVR	DQFGHSDKDA	LLNSKTSHVR
	5:	DGKPSGGPVM	MPKPQPAVKK	PAKPQDSAMR	NLQEQDAVYI	AKQKQAKASP
	10:	l FKTEIETALE	EIGIIGNSAH	TVSEPQTGHS	APKPADAPAK	PVPVPQTPAK
50	. 15	l plitlkelsk	VELPWFDVRF	DFISYIALTE	AKELHALPRL	SNRCRYQIVG
	20:	l CTMDDHFQIA	EPIPGIRYQA	FIVGIQAVSR	NGLASQEELS	AFNRQADAFA
	25	E			QTIAIHLVSP	
	30	l avtgygfyle	DDGAFHYTDT	SGSTMFSICS	LNNEPFTNAL	LDNQSYKGFS
	35	l MLLDIPHSPA	GEKTFDDLFM	DLAVRLSGQL	NLNLVNDKME	EVSTQWLKDV
55	40.	l rtyvlarose	MLKVGIEPGG	KTALRLFS*		_

ORF119ng and ORF119-1 show 98.4% identity over 428 aa overlap:

		10	20	30	40	50	60
	orfl19ng	MIYIVLFLAAVLAVV	AYNMYQEN	QYRKKVRDQFGI	ISDKDALL NS	KTSHVRDGKP	SGGPVM
60		111111111111111111111111111111111111111					
	orf119-1	MIYIVLFLAVVLAVV	aynmyqen	QYRKKVRDQFGI	isdkdallns	KTSHVRDGKP	SGGSVM
		10	20	30	40	50	60

-311-

		70	80	90	100	110	120
	orf119ng	MPKPQPAVKKPAKPQ	DSAMRNLQ	EQDAVYIAKQK	oakaspekte	IETALEEIGI:	IGNSAH
	0222		1 111111				 TCNSAH
5	orf119-1	MPKPQPAVKKTAKPQ	DPAMRNLQ	EQDAVYTAKQK 90	QAKASPEKTE 100	110	120
_		70	80	90	100	110	
		130	140	150	160 '	170	180
		TVSEPQTGHSAPKPA	DAPAKPVP	VPOTPAKPLIT	LKELSKVELE	WFDVRFDFIS	YIALTE
10	orfl19ng		111111111	1111111111	1111111111		11111
10	orf119-1	TVSEPQTGHSAPKPA	DAPAKPAP	VPQTPAKPLIT	LKELSKVELI	MEDAKEDETS	LIALIL
	OFILIA	130	140	150	160	170	180
							240
		190	200	210	220	230	
15	orf119ng	AKELHALPRLSNRCF	YQIVGCTM	IDDHFQIAEPIE	GIRYQAFIV	31QAVSKNGLA	POČETPO
	_				HIIIIIIII		111111 CORRIG
	orf119-1	AKELHALPRLSNRCF	RYQIVGCTN	MODHFQIAEFII 210	220	230	240
		190	200	210	220	230	2.10
		250	260	270	280	290	300
20	10	AFNRQADAFAQSMG(ZOU COTT.HTDT.	AAFTEVASALDA		AIHLVSPTSIS	GVELRS
	orf119ng	:				11111111111	111111
	orf119-1	AFNRQVDAFAQSMG	COTLHTDL	AAFIEVASALD	AFCARVDQTI	AIHLVSPTSIS	2GAETK2
	OFIII9-I	250	260	270	280	290	300
25							200
23		310	320	330 _.	340	350	360
	orfl19ng	AVTGVGFVLEDDGA	FHYTDTSG:	STMFSICSLNN	EPFTNALLDN	OSYKGFSMLL	DIPHSPA
		111111111111111111111111111111111111111	1111111				T DHCDA
	orf119-1	AVTGVGFVLEDDGA	FHYTDTSG	STMFSICSLNN 330	340	350	360
30		310	320	330	340	330	• • • • • • • • • • • • • • • • • • • •
		370	380	390	400	410	420
	5110	CERTEDDI EMDIAV	RISCOLNI	NI.VNDKMEEVS	TOWLKDVRTY	VLARQSEMLK	VGIEPGG
	orf119ng	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111	111111	111111111	11111111	11111
35	orf119-1	GEKTFDDLFMDLAV	RLSGQLNL	NLVNDKMEEVS	TOWLKDVRTY	VLARQSEMLK	VGIEPGG
33	011119 1	370	380	390	400	410	420
		429					
	orf119ng	KTALRLFSX					
40		11111111					
	orf119-1	KTALRLFSX					
							l

Based on this analysis, including the presence of a putative leader sequence in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

45 Example 64

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 531>

1GCGCGGCACG	GCACGGAAGA	TTTCTTCATG	AACAACAGCG	ACAC.ATCAG
1 GCAGATAGTC	GAAAGCACCA	CCGGTACGAT	GAAGCTGCTG	ATTTCCTCCA
1 TOCCOOTEST	TTCATTGGTA	GTCGGCGGCA	TCGGCGTGAT	GAACATCATG
1 CTGGTGTCCG	TTACCGAGCG	CACCAAAGAA	ATCGGCATAC	GGATGGCAAT
of cecececes	CCCGCCAATA	TTTVGCAGCA	GTTTTTGATT	GAGGCGGTGT
T CGGCGCGG	CATCCCCCCC	TTEGTCGGCG	TEGETTTETC	CGCCGCCGTC
TAATCIGCGI	CHICGGCGGI	116616666	TTCCCC2 TCC	N CARROLL CCCC
11 AGCCTCGTGT	TCAATCATTT	TGTAACCGAC	TTCCCGATGG	ACATTICCGC
1 CAMCTCCCTC	ATCCCCCCCC	TCGCCTGTTC	GACCGGAATC	GGCATCGCGT
of Careffeed	ALCOGCOCOG	1000010110	NACHOR AMOC	CATACACCCA
)1 TCGGCTTTAT	GCCTGCCAAT	AAAGCAGCCA	AACTCAATCC	GATAGACGCA
	GCAGATAGTC TCGCCCTGAT TCGCCCTGAT TCGCGTGTCCG TCGGCGCGCGGG TAATCTGCGT AGCCTCGTGT CATGTCCGTC TCGGCTTTAT	GCAGATAGTC GAAAGCACCA TCGCCCTGAT TTCATTGGTA TCGCCCTGAT TTCATTGGTA TCGCGCGCGG TTACCGAGCG CGCGCGCAATA TAATCTGCGT CATCGCCGGT AGCCTCGTGT TCAATCATTT CATGTCCGTC ATCGCCGCG TCGGCTTAT GCCTGCCAAT	GCAGATAGTC GAAAGCACCA CCGGTACGAT TCGCCCTGAT TTCATTGGTA GTCGGCGGCA TCGCTGTTCCG TTACCGAGCG CACCAAAGAA CGCGCGCGCG CGCGCAATA TTTYGCAGCA TAATCTGCGT CATCGGCGGT TTGGTCGGCG AGCCTCGTGT TCAATCATTT TGTAACCGAC CATGTCCGTC ATCGGCGCG TCGCCTGTTC CTCGGCTTTAT GCCTGCCAAT AAAGCAGCCA	TCGCCCTGAT TTCATTGGTA GTCGGCGGCA TCGGCGTGAT CTGGTGTCCG TTACCGAGCG CACCAAAGAA ATCGGCATAC CGGCGCGCGG CGCGGCAATA TTTYGCAGCA GTTTTTGATT TAATCTGCGT CATCGGCGGT TTGGTCGGCG TGGGTTTGTC AGCCTCGTGT TCAATCATTT TGTAACCGAC TTCCCGATGG CATGTCCGTC ATCGGCGCGG TCGCCTGTTC GACCGGAATC TCGGCTTTAT GCCTGCCAAT AAAGCAGCCA AACTCAATCC

This corresponds to the amino acid sequence <SEQ ID 532; ORF134>:

60 101 151	ARHGTEDFFM LVSVTERTKE SLVFNHFVTD LAQD*	IGIRMAIGAR	RGNIXOOFLI	EAVLICVIGG	LVGVGLSAAV
---------------	---	------------	------------	------------	------------

```
Further work revealed the complete nucleotide sequence <SEQ ID 533>:
```

```
ATGTCGGTGC AAGCAGTATT GGCGCACAAA ATGCGTTCGC TTCTGACGAT
                     GCTCGGCATC ATCATCGGTA TCGCGTCGGT GGTTTCCGTC GTCGCATTGG
                 51
                     GCAATGGTTC GCAGAAAAA ATCCTTGAAG ACATCAGTTC GATAGGGACG
                101
5
                     AACACCATCA GCATCTTCCC GGGGCGCGGC TTCGGCGACA GGCGCAGCGG
                151
                201
                     CAGGATTAAA ACCCTGACCA TAGACGACGC AAAAATCATC GCCAAACAAA
                     GCTACGTTGC TTCCGCCACG CCCATGACTT CGAGCGGCGG CACGCTGACT
                251
                301
                     TACCGCAACA CCGACCTGAC CGCCTCGCTT TACGGCGTGG GCGAACAATA
                     TTTCGACGTG CGCGGACTGA AGCTGGAAAC GGGGCGGCTG TTTGACGAAA
                351
10
                401
                     ACGATGTGAA AGAAGACGCG CAGGTCGTCG TCATCGACCA AAATGTCAAA
                     GACAAACTCT TTGCGGACTC GGATCCGTTG GGTAAAACCA TTTTGTTCAG
                451
                501
                     GAAACGCCCC TTGACCGTCA TCGGCGTGAT GAAAAAGAC GAAAACGCTT
                     TCGGCAATTC CGACGTGCTG ATGCTTTGGT CGCCCTATAC GACGGTGATG
                551
                601
                     CACCAAATCA CAGGCGAGAG CCACACCAAC TCCATCACCG TCAAAATCAA
15
                651 AGACAATGCC AATACCCAGG TTGCCGAAAA AGGGCTGACC GATCTGCTCA
                701 AAGCGCGGCA CGGCACGGAA GATTTCTTCA TGAACAACAG CGACAGCATC
                751
                     AGGCAGATAG TCGAAAGCAC CACCGGTACG ATGAAGCTGC TGATTTCCTC
                     CATCGCCCTG ATTTCATTGG TAGTCGGCGG CATCGGCGTG ATGAACATCA
                801
                     TGCTGGTGTC CGTTACCGAG CGCACCAAAG AAATCGGCAT ACGGATGGCA
                851
20
                901 ATCGGCGCG GGCGCGGCAA TATTTTGCAG CAGTTTTTGA TTGAGGCGGT
                951
                     GTTAATCTGC GTCATCGGCG GTTTGGTCGG CGTGGGTTTG TCCGCCGCCG
                     TCAGCCTCGT GTTCAATCAT TTTGTAACCG ACTTCCCGAT GGACATTTCC GCCATGTCCG TCATCGGCGC GGTCGCCTGT TCGACCGGAA TCGGCATCGC
               1001
               1051
                     GTTCGGCTTT ATGCCTGCCA ATAAAGCAGC CAAACTCAAT CCGATAGACG
               1101
25
               1151
                     CATTGGCACA GGATTGA
```

This corresponds to the amino acid sequence <SEQ ID 534; ORF134-1>:

```
1 MSVQAVLAHK MRSLLTMLGI IIGIASVVSV VALGNGSQKK ILEDISSIGT
51 NTISIFPGRG FGDRRSGRIK TLTIDDAKII AKQSYVASAT PMTSSGGTLT
101 YRNTDLTASL YGVGEQYFDV RGLKLETGRL FDENDVKEDA QVVVIDQNVK
151 DKLFADSDPL GKTILFRKRP LTVIGVMKKD ENAFGNSDVL MLWSPYTTVM
201 HQITGESHTN SITVKIKDNA NTQVAEKGLT DLLKARHGTE DFFMNNSDSI
251 RQIVESTTGT MKLLISSIAL ISLVVGGIGV MNIMLVSVTE RTKEIGIRMA
301 IGARRGNILQ QFLIEAVLIC VIGGLVGVGL SAAVSLVFNH FVTDFPMDIS
351 AMSVIGAVAC STGIGIAFGF MPANKAAKLN PIDALAQD+
```

35 Computer analysis of this amino acid sequence gave the following results:

Homology with the hypothetical protein o648 of *E.coli* (accession number AE000189) ORF134 and o648 protein show 45% as identity in 153aa overlap:

```
Orf134: 2
                      RHGTEDFFMNNSDXIRQIVESTTGTMKXXXXXXXXXXXVVGGIGVMNIMLVSVTERTKEI 61
                      RHG +DFF N D + + VE TT T++
                                                             VVGGIGVMNIMLVSVTERT+EI
40
          0648:
                   496 RHGKKDFFTWNMDGVLKTVEKTTRTLQLFLTLVAVISLVVGGIGVMNIMLVSVTERTREI 555
          Orf134: 62
                      GIRMAIGARRGNIXQQFLIEAXXXXXXXXXXXXXXXXXXXXXXXXXINHFVTDFPMDISAMSVI 121
                       GIRMA+GAR ++ QQFLIEA
                                                                    F+ + + S ++++
          0648:
                  556 GIRMAVGARASDVLQQFLIEAVLVCLVGGALGITLSLLIAFTLQLFLPGWEIGFSPLALL 615
45
          Orf134: 122 GAVACSTGIGIAFGFMPANKAAKLNPIDALAQD 154
                        A CST GI FG++PA AA+L+P+DALA++
          0648:
                   616 LAFLCSTVTGILFGWLPARNAARLDPVDALARE 648
```

50 Homology with a predicted ORF from N. meningitidis (strain A)

ORF134 shows 98.7% identity over a 154aa overlap with an ORF (ORF134a) from strain A of N. meningi*idis:

						10	. 2	•	30
<i></i>	orf134.pep				A	RHGTEDFFMN	NSDXIRQI'	VESTTGTMK	CLL
22				•	1	1111111111	111 1111	1111111111	111
	orf134a	GESHTNSI	TVKIKDNAN	ITQVAEKGL [.]	TDLLKA	RHGTEDFFMN	NSDSIRQI	VESTTGTMK	(LL
		210	220	23	0	240	250	260	
			40	50	60	70	R	n	90

-313-

		ISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMAIGARRGNIXQQFLIEAVLICVIGG
		ISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMAIGARRGNILQQFLIEAVLICVIGG
5		270 280 290 300 310 320
		100 110 120 130 140 150 LVGVGLSAAVSLVFNHFVTDFPMDISAMSVIGAVACSTGIGIAFGFMPANKAAKLNPIDA
		LVGVGLSAAVSLVFNHFVTDFPMDISAMSVIGAVACSTGIGIAFGFMPANKAAKLNPIDA
10		330 340 350 360 370 380
		LAQDX
15		LAQDX
	The complete length ORF134a nucleotide sequence <seq 535="" id=""> is:</seq>	
1 ATGTCGGTGC AAGCAGTATT GGCGCACAAA ATGCGTTCGC TTCTGACGAT		
		CGGCATC ATCATCGGTA TCGCTTCGGT TGTCTCCGTC GTCGCATTGG ACGGTTC GCAGAAAAAA ATCCTTGAAG ACATCAGTTC GATAGGGACG
20	151 AAC	ACCATCA GCATCTTCCC AGGGCGCGGC TTCGGCGACA GGCGCAGCGG
		FATTAAA ACCCTGACCA TAGACGACGC AAAAATCATC GCCAAACAAA ACGTTGC TTCCGCCACG CCCATGACTT CGAGCGGCGG CACGCTGACT
	301 TAC	CGCAATA CCGACCTGAC CGCTTCTTTG TACGGTGTGG GCGAACAATA
25		CGACGTG CGCGGGCTGA AGCTGGAAAC GGGGCGGCTG TTTGACGAAA
25		ATGTGAA AGAAGACGCG CAGGTCGTCG TCATCGACCA AAATGTCAAA AAACTCT TTGCGGACTC GGATCCGTTG GGTAAAACCA TTTTGTTCAG
	501 GAA	ACGCCCC TTGACCGTCA TCGGCGTGAT GAAAAAAGAC GAAAACGCTT
		GCAATTC CGACGTGCTG ATGCTTTGGT CGCCCTATAC GACGGTGATG
30		CAAATCA CAGGCGAGAG CCACACCAAC TCCATCACCG TCAAAATCAA CAATGCC AATACCCAGG TTGCCGAAAA AGGGCTGACC GATCTGCTCA
	701 AAG	CGCGGCA CGGCACGGAA GATTTCTTCA TGAACAACAG CGACAGCATC
		CAGATAG TCGAAAGCAC CACCGGTACG ATGAAGCTGC TGATTTCCTC
		CGCCCTG ATTTCATTGG TAGTCGGCGG CATCGGCGTG ATGAACATCA IGGTGTC CGTTACCGAG CGCACCAAAG AAATCGGCAT ACGGATGGCA
35	901 ATC	GGCGCGC GGCGCGAA TATTTTGCAG CAGTTTTTGA TTGAGGCGGT
		AATCTGC GTCATCGGCG GTTTGGTCGG CGTGGGTTTG TCCGCCGCCG
		GCCTCGT GTTCAATCAT TTTGTAACCG ACTTCCCGAT GGACATTTCC ATGTCCG TCATCGGCGC GGTCGCCTGT TCGACCGGAA TCGGCATCGC
		CGGCTTT ATGCCTGCCA ATAAAGCAGC CAAACTCAAT CCGATAGATG
40		TGGCGCA GGATTGA
This encodes a protein having amino acid sequence <seq 536="" id="">:</seq>		
		<u>QAVLAHK MRSLLTMLGI IIGIASVVSV VALG</u> NGSQKK ILEDISSIGT
		SIFPGRG FGDRRSGRIK TLTIDDAKII AKQSYVASAT PMTSSGGTLT TDLTASL YGVGEQYFDV RGLKLETGRL FDENDVKEDA QVVVIDQNVK
45	151 DKL	FADSDPL GKTILFRKRP LTVIGVMKKD ENAFGNSDVL MLWSPYTTVM
		TGESHTN SITVKIKDNA NTQVAEKGLT DLLKARHGTE DFFMNNSDSI
		VESTTGT MKLLISSIAL ISLVVGGIGV MNIMLVSVTE RTKEIGIRMA RRGNILQ QFLIEAVLIC VIGGLVGVGL SAAVSLVFNH FVTDFPMDIS
		VIGAVAC STGIGIAFGF MPANKAAKLN PIDALAQD*
50	ORF134a and ORF134-1 show 100.0% identity in 388 aa overlap:	
	orf134a.pep	MSVQAVLAHKMRSLLTMLGIIIGIASVVSVVALGNGSQKKILEDISSIGTNTISIFPGRG
	orf134-1	
55	orf134a.pep	FGDRRSGRIKTLTIDDAKIIAKQSYVASATPMTSSGGTLTYRNTDLTASLYGVGEQYFDV
	orf134-1	
60	orf134a.pep	${\tt RGLKLETGRLFDENDVKEDAQVVVIDQNVKDKLFADSDPLGKTILFRKRPLTVIGVMKKD}$
60	orf134-1	
	orf134a.pep	ENAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTQVAEKGLTDLLKARHGTE
65	orf134-1	ENAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTQVAEKGLTDLLKARHGTE

	orf134a.pep	DFFMNNSDSIRQIVESTTGTMKLLISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMA
5	orf134-1	DFFMNNSDSIRQIVESTTGTMKLLISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMA
3	orf134a.pep	IGARRGNILQQFLIEAVLICVIGGLVGVGLSAAVSLVFNHFVTDFPMDISAMSVIGAVAC
	orf134-1	IGARRGNILQQFLIEAVLICVIGGLVGVGLSAAVSLVFNHFVTDFPMDISAMSVIGAVAC
10	orf134a.pep	STGIGIAFGFMPANKAAKLNPIDALAQDX
	orf134-1	

Homology with a predicted ORF from N.gonorrhoeae

ORF134 shows 96.8% identity over a 154aa overlap with a predicted ORF (ORF134.ng) from N. gonorrhoeae:

•	orf134.pep	ARHGTEDFFMNNSDXIRQIVESTTGTMKLL	30
20	orf134ng		264
	orf134.pep	ISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMAIGARRGNIXQQFLIEAVLICVIGG	90
•	orf134ng	ISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMAIGARRGNILQQFLIEAVLICIIGG	324
25	orf134.pep	LVGVGLSAAVSLVFNHFVTDFPMDISAMSVIGAVACSTGIGIAFGFMPANKAAKLNPIDA	150
	orf134ng	LVGVGLSAAVSLVFNHFVTDFPMDISAASVIGAVACSTGIGIAFGFMPANKAAKLNPIDA	384
30	orf134.pep	LAQD 154	į
	orf134ng	LAQD 388	

The complete length ORF134ng nucleotide sequence <SEQ ID 537> is:

	1	ATGTCGGTGC	AAGCAGTATT	GGCGCACAAA	ATGCGTTCGC	TTCTGACCAT
	51	GCTCGGCATC	ATCATCGGTA	TCGCTTCGGT	TGTCTCCGTC	GTCGCGCTGG
35	101	GCAACGGTTC	GCAGAAAAA	ATCCTCGAAG	ACATCAGTTC	GATGGGGACG
	151	AACACCATCA	GCATCTTCCC	CGGGCGCGC	TTCGGCGACA	GGCGCAGCGG
	201	CAAAATCAAA	ACCCTGACCA	TAGACGACGC	AAAAATCATC	GCCAAACAAA
	251				CGAGCGGCGG	CACGCTGACC
40	301			CGCTTCTTTG		GCGAACAATA
40	351			AGCTGGAAAC		TTTGATGAGA
	401				TCATCGACCA	
	451				GGTAAAACCA	
	501				GAAAAAAGAC	
	551				CGCCCTATAC	
45	601				TCCATCACCG	
	651				AGGGCTGGCC	
	701				TGAACAACAG	
	751				ATGAAGCTGC	
	801				CATCGGTGTG	
50	851	TGCTGGTGTC	CGTTACCGAG	CGCACCAAAG	AAATCGGCAT	ACGGATGGCA
	901	ATCGGCGCGC	GGCGCGGCAA	TATTTTGCAG	CAGTTTTTGA	TTGAGGCGGT
	951	GTTAATCTGC	ATCATCGGAG	GCTTGGTCGG	CGTAGGTTTG	TCCGCCGCCG
	1001	TCAGCCTCGT	GTTCAATCAT	TTTGTAACCG	ATTTCCCGAT	GGACATTTCG
	1051	GCGGCATCCG			TCGACCGGAA	
55	1101	GTTCGGCTTT	ATGCCTGCCA	ATAAGGCAGC	CAAACTCAAT	CCGATAGATG
	1151	CATTGGCGCA	GGATTGA			

This encodes a protein having amino acid sequence <SEQ ID 538>:

	1	MSVQAVLAHK	MRSLLTMLGI	IIGIASVVSV	VALGNGSQKK	ILEDISSMGT
	51	NTISIFPGRG	FGDRRSGKIK	TLTIDDAKII	AKQSYVASAT	PMTSSGGTLT
60	101					
	151	DKLFADSDPL	GKTILFRKRP	LTVIGVMKKD	ENAFGNSDVL	MLWSPYTTVM
	201	HQITGESHTN	SITVKIKDNA	NTRVAEKGLA	ELLKARHGTE	DFFMNNSDSI
	251	ROMVESTTGT	MKLLISSIAL	ISLVVGGIGV	MNIMLVSVTE	RTKEIGIRMA
•	301					FVTDFPMDIS.

351 AAS<u>VIGAVAC STGIGIAFGF</u> MPANKAAKLN PIDALAQD*

ORF134ng and ORF134-1 show 97.9% identity in 388 aa overlap:

5	orf134ng orf134-1	MSVQAVLAHKMRSLLTMLGIIIGIASVVSVVALGNGSQKKILEDISSMGTNTISIFPGRG 					
	orf134ng	FGDRRSGKIKTLTIDDAKIIAKQSYVASATPMTSSGGTLTYRNTDLTASLYGVGEQYFDV :					
10	orf134ng	RGLKLETGRLFDENDVKEDAQVVVIDQNVKDKLFADSDPLGKTILFRKRPLTVIGVMKKD					
15	orf134ng	ENAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTRVAEKGLAELLKARHGTE					
20	orf134-1 orf134ng	ENAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTQVAEKGLTDLLKARHGTE DFFMNNSDSIRQMVESTTGTMKLLISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMA					
	orf134-1 orf134ng	DFFMNNSDSIRQIVESTTGTMKLLISSIALISLVVGGIGVMNIMLVSVTERTKEIGIRMA IGARRGNILQQFLIEAVLICIIGGLVGVGLSAAVSLVFNHFVTDFPMDISAASVIGAVAC					
25	orf134-1						
	orf134ng orf134-1	STGIGIAFGFMPANKAAKLNPIDALAQDX 					
30	ORF134ng also show	s homology to an E.coli ABC transporter:					
35	<pre>sp P75831 YBJZ_ECOLI HYPOTHETICAL ABC TRANSPORTER ATP-BINDING PROTEIN YBJZ >gi5 (AE000189) o648; similar to YBBA_HAEIN SW: P45247 [Escherichia coli] Length = 648 Score = 297 bits (753), Expect = 6e-80</pre>						
33	•	162/389 (41%), Positives = 230/389 (58%), Gaps = 1/389 (0%) /QAVLAHKMRSLLTMLXXXXXXXXXXXXXXXLGNGSQKKILEDISSMGTNTISIFPGRG 60					
40	Sbjct: 260 MAW	+A+ A+KMR+LLTML +G+ +++ +L DI S+GTNTI ++PG+ VRALAANKMRTLLTMLGIIIGIASVVSIVVVGDAAKQMVLADIRSIGTNTIDVYPGKD 319					
	FGI	DRRSGKIKTLTIDDAKIIAKQSYVASATPMTSSGGTLTYRNTDLTASLYGVGEQYFDV 120 D + L DD I KQ +VASATP S L Y N D+ AS GV YF+V DDDPQYQQALKYDDLIAIQKQPWVASATPAVSQNLRLRYNNVDVAASANGVSGDYFNV 379					
45	G-	LKLETGRLFDENDVKEDAQVVVIDQNVKDKLFAD-SDPLGKTILFRKRPLTVIGVMKK 179 G F++ + AQVVV+D N + +LF +D +G+ IL P VIGV ++ ATFSEGNTFNQEQLNGRAQVVVLDSNTRRQLFPHKADVVGEVILVGNMPARVIGVAEE 439					
50	Query: 180 DEN	NAFGNSDVLMLWSPYTTVMHQITGESHTNSITVKIKDNANTRVAEKGLAELLKARHGT 239 + FG+S VL +W PY+T+ ++ G+S NSITV++K+ ++ AE+ L LL RHG					
	Sbjct: 440 KQS	SMFGSSKVLRVWLPYSTMSGRVMGQSWLNSITVRVKEGFDSAEAEQQLTRLLSLRHGK 499					
55	+DI	FFMNNSDSIRQMVESTTGTMKXXXXXXXXXXVVGGIGVMNIMLVSVTERTKEIGIRM 299 FF N D + + VE TT T++ VVGGIGVMNIMLVSVTERT+EIGIRM FFFTWNMDGVLKTVEKTTRTLQLFLTLVAVISLVVGGIGVMNIMLVSVTERTREIGIRM 559					
		GARRGNILQQFLIEXXXXXXXXXXXXXXXXXXXXXXFNHFVTDFPMDISAASVIGAVA 359 GAR ++LQQFLIE F+ + + S +++ A					
60		GARASDVLQQFLIEAVLVCLVGGALGITLSLLIAFTLQLFLPGWEIGFSPLALLLAFL 619					
	CS	IGIGIAFGFMFANNAALNFIDALAQD 366 F GI FG++PA AA+L+P+DALA++ TVTGILFGWLPARNAARLDPVDALARE 648					
60	A+0	GAR ++LQQFLIE F+ + + S +++ A					
	CS						

-316-

Based on this analysis, including the presence of the leader peptide and transmembrane regions in the gonococcal protein, it is prediceted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 65

5 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 539>:

```
..GGGACGGGAG CGATGCTGCT GCTGTTTTAC GCGGTAACGA T.CTGCCTTT
                 51
                       GGCCACTGGC GTTACCCTGA GTTACACCTC GTCGATTTTT TTGGCGGTAT
                101
                       TTTCCTTCCT GATTTTGAAA GAACGGATTT CCGTTTACAC GCAGGCGGTG
                151
                       CTGCTCCTTG GTTTTGCCGG CGTGGTATTG CTGCTTAATC CCTCGTTCCG
10
                201
                       CAGCGGTCAG GAAACGGCGG CACTCGCCGG GCTGGCGGGC GGCGCGATGT
                251
                       CCGGCTGGGC GTATTTGAAA GTGCGCGAAC TGTCTTTGGC GGGCGAACCC
                       GGCTGGCGCG TCGTGTTTTA CCTTTCCGTG ACAGGTGTGG CGATGTCGTC
                301
                351
                       GGTTTGGGCG ACGCTGACCG GCTGGCACAC CCTGTCCTTT CCATCGGCAG
                       TTTATCTGTC GTGCATCGGC GTGTCCGCGC TGATTGCCCA ACTGTCGATG
                401
15
                451
                       ACGCGCGCCT ACAAAGTCGG CGACAAATTC ACGGTTGCCT CGCTTTCCTA
                501
                       TATGACCGTC GTTTTTCCG CTCTGTCTGC CGCATTTTTT CTGGGCGAAG
                       AGCTTTTCTG GCAGGAAATA CTCGGTATGT GCATCATCAT CCTCAGCGGT
                551
                601
                       ATTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 540; ORF135>:

```
20 1 ...GTGAMLLEY AVTILPLATG VTLSYTSSIF LAVFSFLILK ERISVYTQAV
51 LLLGFAGVVL LLNPSFRSGQ ETAALAGLAG GAMSGWAYLK VRELSLAGEP
101 GWRVVFYLSV TGVAMSSVWA TLTGWHTLSF PSAVYLSCIG VSALIAQLSM
151 TRAYKVGDKF TVASLSYMTV VFSALSAAFF LGEELFWQEI LGMCIIISAV
201 F*
```

25 Further work revealed the complete nucleotide sequence <SEQ ID 541>:

```
ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
                51
                    GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA
                    AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
               101
               151
                    ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA mCTTCCGCAC
30
                    GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA
               201
               251
                    TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACTGGCGTT
                    ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT
               301
                    TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT.
               351
               401
                    TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
35
               451
                    ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA
               501
                    TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG
                    TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCGTCGGT TTGGGCGACG
               551
               601
                    CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG
                    CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG CGCGCCTACA
               651
40
                    AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT
               701
                    TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GGCGAAGAGC TTTTCTGGCA
               801
                    GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA
                    TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA
               851
               901
```

This corresponds to the amino acid sequence <SEQ ID 542; ORF135-1>:

```
1 MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS
51 TVALGAAAVL RRDXFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV
101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
151 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT
50 201 LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
251 FSALSAAFFL GEELFWQEIL GMCIIILSGI LSSIRPTAFK QRLQSLFRQR
301 *
```

Computer analysis of this amino acid sequence gave the following results:

-317-

Homology with a predicted ORF from N.meningitidis (strain A)

ORF135 shows 99.0% identity over a 197aa overlap with an ORF (ORF135a) from strain A of N. meningitidis:

		10 20 30
5	orf135.pep	GTGAMLLLFYAVTILPLATGVTLSYTSSIF
	orf135a	STVALGAAAVLRRDTFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIF 50 60 70 80 90 100
		50 60 70 80 90 100
10		40 50 60 70 80 90
	orf135.pep	LAVFSFLILKERISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLK
	orf135a	LAVFSFLILKERISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLK 110 120 130 140 150 160
15		110 120 130 140 130 100
13		100 110 120 130 140 150
	orf135.pep	
	64.05	
20	orf135a	VRELSLAGEPGWRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSM 170 180 190 200 210 220
20		170 100 170 200 210 220
		160 170 180 190 200
	orf135.pep	
25	6125-	<pre> </pre>
25	orf135a	230 240 250 260 270 280
	orf135a	KQRLQSLFRQRX
		290 300
30	The complete ler	ngth ORF135a nucleotide sequence <seq 543="" id=""> is:</seq>
50	The complete for	ight Old 1554 hadrondo boquenoo 4552 ib 5 15 16.
	1	ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
		GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA
		AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
35		ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA CCTTCCGCAC GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA
33	201 251	TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACCGGCGTT
	301	ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT
	351	TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT
40	401	TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
40	451	ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA
	501 551	TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCATCGGT TTGGGCGACG
	601	CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG
	651	CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG CGCGCCTACA
45	701	AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT
	751	TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GCCGAAGAGC TTTTCTGGCA
	801 851	GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA
	901	TAA
50	This encodes a p	rotein having amino acid sequence <seq 544="" id="">:</seq>
	1	MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS
	51 101	TVALGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
	151	TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT
55	201	LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
	251	FSALSAAFFL AEELFWOEIL GMCIIILSGI LSSIRPTAFK QRLQSLFRQR
	301	•
	OPE135a and O	RF135-1 show 99.3% identity in 300 aa overlap:
	OICE 1998 WITH O	14 155-1 bilon 77.570 idollity in 500 at 0 voliap.

orf135a.pep

orf135-1

60

 $\verb|MDTAKKDILGSGWMLVAAACFTIMNVLIKEASAKFALGSGELVFWRMLFSTVALGAAAVL|$

	orf135a.pep	RRDTFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE
5 .	orf135-1	RRDXFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE
	orf135a.pep	RISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG
	orf135-1	RISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG
10	orf135a.pep	WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT
	orf135-1	WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT
15	orf135a.pep	VASLSYMTVVFSALSAAFFLAEELFWQEILGMCIIILSGILSSIRPTAFKQRLQSLFRQR
	orf135-1	VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPŢAFKQRLQSLFRQR

Homology with a predicted ORF from N. gonorrhoeae

ORF135 shows 97% identity over a 201aa overlap with a predicted ORF (ORF135ng) from

20 N.gonorrhoeae:

	orf135.pep	GTGAMLLLFYAVTXLPLATGVTLSYTSSIF	30
	orf135ng		335
25	orf135.pep	LAVFSFLILKERISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLK	90
	orf135ng	LAVFSFLILKERISVYTQAVLLLGFAGVVLLLNPSFRSGQEPAALAGLAGGAMSGWAYLK	395
30	orfl35.pep	VRELSLAGEPGWRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSM	150
50	orf135ng	VRELSLAGEPGWRVVFYLSATGVAMSSVWATLTGWHTLSFPSAVYLSGIGVSALIAQLSM	455
	orf135.pep	TRAYKVGDKFTVASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIISAVF 201	
35	orf135ng	TRAYKVGDKFTVASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIISAAF 506	

An ORF135ng nucleotide sequence <SEQ ID 545> was predicted to encode a protein having amino acid sequence <SEQ ID 546>:

```
MPSEKAFRRH LRTASFQGLH LHHFHQKVGK CGIIGFGIHI FPTLLPAAQG
                            ILDIQLGLFR IDFAALAVYR RTQVDFIHTV IDGIASDQAF SEVVQILRRL
40
                            NLGHFTDTHL IAQARRFIAD FGNIRPMRRG EAKTFCRCFR FDGIDGIHGD FRQCGHINRL APGKDCRNGK RDKVFFHTRH YNQVCLEKTN CSARKIKFRH
                     101
                     151
                     201
                            QKQAKTHSTS LAARFTIRPS LSQRPFMDTA KKDILGSGWM LVAAACFTVM
                     251
                            NVLIKEASAK FALGSGELVF WRMLFSTVTL GAAAVLRRDT FRTPHWKNHL
                            NRSMVGTGAM LLLFYAVTHL PLTTGVTLSY TSSIFLAVFS FLILKERISV
YTQAVLLLGF AGVVLLNPS FRSGQEPAAL AGLAGGAMSG WAYLKVRELS
LAGEPGWRVV FYLSATGVAM SSVWATLTGW HTLSFPSAVY LSGIGVSALI
                      301
45
                     351
                     401
                      451
                            AQLSMTRAYK VGDKFTVASL SYMTVVFSAL SAAFFLGEEL FWQEILGMCI
                      501
                            IISAAF*
```

Further work revealed the following gonococcal sequence <SEQ ID 547>:

·						
50	1	ATGGATACCG	CAAAAAAAGA	CATTTTAGGA	TCGGGCTGGA	TGCTGGTGGC
•	51	GGCGGCCTGC	TTCACCGTTA	TGAACGTATT	GATTAAAGAG	GCATCGGCAA
	101	AATTTGCCCT	CGGCAGCGGC	GAATTGGTCT	TTTGGCGCAT	GCTGTTTTCA
	151	ACCGTTACGC	TCGGTGCTGC	CGCCGTATTG	CGGCGCGACA	CCTTCCGCAC
	201	GCCCCATTGG	AAAAACCACT	TAAACCGCAG	TATGGTCGGG	ACGGGGGCGA
55	251	TGCTGCTGCT	GTTTTACGCG	GTAACGCATC	TGCCTTTGAC	AACCGGCGTT
	301	ACCCTGAGTT	ACACCTCGTC	GATTTTTttg	GCGGTATTTT	CCTTCCTGAT
	351	TTTGAAAGAA	CGGATTTCCG	TTTACACGCA	GGCGGTGCTG	CTCCTTGGTT
	401	TTGCCGGCGT	GGTATTGCTG	CTTAATCCCT	CGTTCCGCAG	CGGTCAGGAA
	451	CCGGCGGCAC	TCGCCGGGCT	GGCGGGCGGC	GCGATGTCCG	GCTGGGCGTA
60	501	TTTGAAAGTG	CGCGAACTGT	CTTTGGCGGG	CGAACCCGGC	TGGCGCGTCG
	551	TGTTTTACCT	TTCCGCAACC	GGCGTGGCGA	TGTCGTCggt	ttgggcgacg
	601	Ctgaccggct	ggCACAcccT	GTCCTTTcca	tcggcagttt.	ATCtgtCGGG

```
651 CATCGGCGTG tccgcgCtgA TTGCCCAaCT GtcgatgAcg cGCGcctaca
701 aaGTCGGCGA CAAATTCACG GTTGCCTCGC tttcctaTAt gaccgtcGTC
751 TTTTCCGCCC TGTCTGCCGC ATTTTTTCTG ggcgaagagc tttTCtggCA
801 GGAAATACTC GGTATGTGCA TCATTAtccT CAGCGGCATT TTGAGCAGCA
5 851 TCCGCCCCAT TGCCTTCAAA CAGCGGCTGC AAGCCCTCTT CCGCCAAAGA
901 TAA
```

This corresponds to the amino acid sequence <SEQ ID 548; ORF135ng-1>:

```
1 MDTAKKDILG SGWMLVAAAC FTVMNVLIKE ASAKFALGSG ELVFWRMLFS
51 TVTLGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV
KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV
KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV
KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV
LISPALAGLAGG AMSGWAYLKV RISVYTQAVL LLGFAGVVLL LNPSFRSQQE
151 PAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSAT GVAMSSVWAT
201 LTGWHTLSFP SAVYLSGIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
251 FSALSAAFFL GEELFWQEIL GMCIIILSGI LSSIRPIAFK QRLQALFRQR
301 *
```

ORF135ng-1 and ORF135-1 show 97.0% identity in 300 aa overlap:

```
orf135ng-1.pep MDTAKKDILGSGWMLVAAACFTVMNVLIKEASAKFALGSGELVFWRMLFSTVTLGAAAVL
                    MDTAKKDILGSGWMLVAAACFTIMNVLIKEASAKFALGSGELVFWRMLFSTVALGAAAVL
        orf135-1
        orf135ng-1.pep RRDTFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLTTGVTLSYTSSIFLAVFSFLILKE
20
                    RRDXFRTPHWKNHLNRSMVGTGAMLLLFYAVTHLPLATGVTLSYTSSIFLAVFSFLILKE
        orf135-1
        orf135ng-1.pep RISVYTQAVLLLGFAGVVLLLNPSFRSGQEPAALAGLAGGAMSGWAYLKVRELSLAGEPG
                    այսնության արտան անկանության անկան
25
                    RISVYTQAVLLLGFAGVVLLLNPSFRSGQETAALAGLAGGAMSGWAYLKVRELSLAGEPG
        orf135-1
        orf135ng-1.pep WRVVFYLSATGVAMSSVWATLTGWHTLSFPSAVYLSGIGVSALIAQLSMTRAYKVGDKFT
                    WRVVFYLSVTGVAMSSVWATLTGWHTLSFPSAVYLSCIGVSALIAQLSMTRAYKVGDKFT
30
         orf135-1
         orf135ng-1.pep VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPIAFKQRLQALFRQR
                     որթարդուսարությունությունությունություն
                    VASLSYMTVVFSALSAAFFLGEELFWQEILGMCIIILSGILSSIRPTAFKQRLQSLFRQR
         orf135-1
```

Based on this analysis, including the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 66

The following DNA sequence was identified in N.meningitidis <SEQ ID 549>:

40	1	ATGAAGCGGC	GTATAGCCGT	CTTCGTCCTG	TTCCCGCAGA	TAATCCGAGT
70	51	TTTCCCACAA	CTGTTGCCGA	AAATCGTCAA	TACAGTTCCG	GCACATCGGA
	101	TECTCTTCCA	GATTTTCGGG	ATGTTCTTTT	TCTTCATACA	CCAGCAATAT
	151	CTGCCCGGGA	TCGCCGAAAT	CGATTCCCCA	TGCGGCATCG	TGTTCGGTGC
	201	CCTCCTCTTC	CGTCATCTGC	CCGCGCATTG	CCTGTATGGT	AAAGCCGCCG
45	251	TAGGGGATGC	COTTGCACAC	GAACATCCAG	TCGCTGATGT	CGTCAACCGG
43	301	AACGCAAACG	CTTTCGCCTT	GTTCGACATT	GGTCAGTTCG	CCsGGTTCAT
	351	TOTTO	ACCGTAAATA	TAAAGACCGT	CAAAATAAAT	ATCGTCGATC
		CACAMATCTT	CCCAAATTTC	CCCTCTTCG	CCGTCTTGGA	AAAAAGGGAC
	401	CACATATOTT	CCANANTCCA	ACCCCGAAAT	AATGCGGCGG	CGTTCCCAAA
	451	TITGACCATG	CCNANATOON	መጥር እ አጥር ጥጥጥ	TACGGGCGCG	TTCGTCGGCA
50	501	AAAGCTCGCG	CCAAAAAIAI	TIGHTIGITI	TAATAAATGA	CGGAATCGCC
	551	CGGTTTACCG	GITCGTCTGC	CTGTTCTACA	IMMINMATON	CCUTTACTCCC
	601	CATCATATCT	GCTCCTCAAC	GTGTACGGTA	TCTGTTTGCA	DODDATION
	651	GCTTTCTgcC	kTCGGCATCC	GATTCGGATT	TGAAAAGTTC	mmrwyATTCG
	701	GAATAG				

- 55 This corresponds to the amino acid sequence <SEQ ID 550; ORF136>:
 - 1 MKRRIAVFVL FPQIIRVLGQ LLPKIVNTVP AHRMLFQIFG MFFFFIHQQY 51 LPGIAEIDSP CGIVFGALLF RHLPAHCLYG KAAVGDAVAH EHPVADVVNR

5

10

15

20

25

30

35

40

45

50

55

201

251

```
-320-
                NANAFALFDI GQFAXFIVQH TVNIKTVKIN IVDPHMFANF AVFAVLEKRD
          101
                FDHGKIQGGN NAAAFPKKLA PKIFECFTGA FVGTVYRFVC LFYIINDGIA
                HHSAPQRVRY LFAPYCGFLP SASDSDLKSS XXSE*
          201
Further work revealed the complete nucleotide sequence <SEQ ID 551>:
                ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGTTCCCGC AGATAATCCG
AGTTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT CCGGCACATC
            51
                GGATGCTCTT CCAGATTTTC GGGATGTTCT TTTTCTTCAT ACACCAGCAA
          101
                TATCTGCCCG GGATCGCCGA AATCGATTCC CCATGCGGCA TCGTGTTCGG
          151
                TGCGCTCCTC TTCCGTCATC TGCCCGCGCA TTGCCTGTAT GGTAAAGCCG
           201
           251
                CCGTAGGGGA TGCCGTTGCA CACGAACATC CAGTCGCTGA TGTCGTCAAC
                CGGAACGCAA ACGCTTTCGC CTTGTTCGAC ATTGGTCAGT TCGCCGGGTT
           301
                CATTGTTCAG CACACCGTAA ATATAAAGAC CGTCAAAATA AATATCGTCG
           351
                ATCCACATAT GTTCGCAAAT TTCGCCGTCT TCGCCGTCTT GGAAAAAAGG
           401
                GACTTTGACC ATGGCAAAAT CCAAGGCGGA AATAATGCGG CGGCGTTCCC AAAAAAGCTC GCGCCAAAAA TATTTGAATG TTTTACGGGC GCGTTCGTCG
           451
           501
                GCACGGTTTA CCGGTTCGTC TGCCTGTTCT ACATAATAAA TGACGGAATC
           551
           601
                GCCCATCATT CTGCTCCTCA ACGTGTACGG TATCTGTTTG CACCTTACTG
                CGGCTTTCTG CCTTCGGCAT CCGATTCGGA TTTGAAAAGT TCCAAATATT
           651
           701
                CGGAATAG
This corresponds to the amino acid sequence <SEQ ID 552; ORF136-1>:
                {\tt MMKRR} \underline{{\tt IAVFV}} \  \  \underline{{\tt LFPQIIRVLG}} \  \  \underline{{\tt QL}} \underline{{\tt LPKIVNTV}} \  \  \underline{{\tt PAHRMLFQIF}} \  \  \underline{{\tt GMFFFFIHQQ}}
                YLPGIAEIDS PCGIVFGALL FRHLPAHCLY GKAAVGDAVA HEHPVADVVN
                RNANAFALFD IGQFAGFIVQ HTVNIKTVKI NIVDPHMFAN FAVFAVLEKR
           101
                DFDHGKIQGG NNAAAFPKKL APKIFECFTG AFVGTVYRFV CLFYIINDGI
                AHHSAPQRVR YLFAPYCGFL PSASDSDLKS SKYSE*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. meningitidis (strain A)
ORF136 shows 71.7% identity over a 237aa overlap with an ORF (ORF136a) from strain A of N.
meningitidis:
                                                  30
      orf136.pep
                     {\tt MKRRIAVFVLFPQIIRVLGQLLPKIVNTVPAHRMLFQIFGMFFFFIHQQYLPGIAEIDS}
                     orf136a
                    MMKRRIAVFVLLMQKIRILGQLLPKIVNTVPAHRMLFQXFGMFFFFIHQQYLPGIAEIDS
                            10
                                      20
                                                 30
                                                            40
                                                                       50
                   60
                             70
                                        80
                                                  90
                                                            100
                                                                       110
                                                                                 119
      orf136.pep
                    PCGIVFGALLFRHLPAHCLYGKAAVGDAVAHEHPVADVVNRNANAFALFDIGQFAXFIVQ
                    orf136a
                    PCGIVFGTLLFRHXSTHCLYGKAAVGNAVAHEHPVADVVNRNANAFALFDIGOFAGFIVO
                            70
                                                 90
                                      80
                                                           100
                                                                      110
                  120
                                       140
                                                                       170
                                                 150
                                                            160
      orf136.pep
                    HTVNIKTVKINIVDPHMFANFAVFAVLEKRDFDHGKIQGGNNAAAFPKKLAPKIFECFTG
                    orf136a
                    HAINVKTVKINIVDPHMFANFAXFAVLEKRALTMAKSKXXXMRRRSQKSSRQKYLNVLRA
                           130
                                      140
                                                150
                                                           160
                                                                      170
                  180
                            190
                                       200
                                                     210
                                                               220
      orf136.pep
                    AFVGTVYRFVCLFYIINDGIAHH---SAPQRVRYLFAPYCGFLPSASDSDLKSSXXSEX
                           11: 1
                                        :::
                                               1111111111111111111111111111111
                    R---SPARFTGLSACSTXXMTESPIISAPQRVRYLFAPYCGFLPSASDSDLKSSKYSEX
      orf136a
                              190
                                         200
 The complete length ORF136a nucleotide sequence <SEQ ID 553> is:
                 ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGCTCATGC AGAAAATCCG
                 GATTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT CCGGCACATC
           101
                 GGATGCTCTT CCAGATNTTC GGGATGTTCT TTTTCTTCAT ACACCAGCAA
```

TACCTGCCCG GGATCGCCGA AATCGATTCC CCATGCGGCA TCGTGTTCGG TACGCTCCTC TTCCGTCATC NGTCCACGCA TTGCCTGTAT GGTAAAGCCG

CCGTAGGGAA TGCCGTTGCA CACGAACATC CAGTCGCTGA TGTCGTCAAC

5	351 CAT 401 ATC 451 GCT 501 AAF 551 CAC 601 CCC 651 CGC	EAACGCAA ACGCTTTCGC TTGTTCAG CACGCCATAA CCACATAT GTTCGCAAAT TTGACCA TGGCAAAATC AAAGCTCG CGCCAAAAAT CAGTTTAC CGGTTTGTCT CATCATAT CTGCTCCTCA GCTTTCTG CCTTCGGCAT GAATAG	ATGTAAAGAC TTCGCCNTCT TAAGGNGNNA ATTTGAATGT GCCTGTTCTA ACGTGTACGG	CGTCAAAATA TCGCCGTCTT NNGATGCGGC TTTGCGGGCG CATAATAAAT TATCTGTTTG	AATATCGTCG GGAAAAAAGG GGCGTTCCCA CGTTCGCCGG GACGGAATCG CACCTTACTG	·	
10	This encodes a prote	ein having amino acid	l sequence <	SEQ ID 554	>:		
15	51 YLI 101 RNA 151 ALT 201 PI	RRIAVFV LLMQKIRILG PGIAEIDS PCGIVFGTLL ANAFALFD IGQFAGFIVQ FMAKSKXX XMRRRSQKSS ISAPQRVR YLFAPYCGFL 136-1 show 73.1% ide	FRHXSTHCLY HAINVKTVKI RQKYLNVLRA PSASDSDLKS	GKAAVGNAVA NIVDPHMFAN RSPARFTGLS SKYSE*	HEHPVADVVN FAXFAVLEKR		
	014 1004 454 514		20	30	40 5	0 60	
	orf136a.pep	10 MMKRRIAVFVLLMQKI	RILGQLLPKIV	NTVPAHRMLFQ		QYLPGIAEIDS	3
20	orf136-1	: MMKRRIAVFVLFPQIII 10				QYLPGIAEIDS	3
	54 D S	70	80		00 11		
25	orf136a.pep		1111111111:	111111111111	11111111111	11111111111	Ī
	orf136-1	PCGIVFGALLFRHLPAI 70	HCLYGKAAVGDI 80		VNRNANAFALF 00 11		-
30	orf136a.pep	130 HAINVKTVKINIVDPHI :: : HTVNIKTVKINIVDPHI	MFANFAXFAVLI MFANFAVFAVLI	EKRALTMAKSK ::: : EKRDFDHGKIQ	: GGNNAAAFPKK	SRQKYLNVLRA :: : : LAPKIFECFT(A :
25		130			60 17		J
35	orf136a.pep	190 RSPARFTGLSACS					
	orf136-1	AFVGTVYRFVCLFYIII	NDGIAHHS	APQRVRYLFAP			
40		190	200	210	220	230	
	Homology with a p	redicted ORF from N.	gonorrhoea	e			
	ORF136 shows 92.	3% identity over a 2	34aa overlap	with a pre	dicted ORF	(ORF136ng) from
	N.gonorrhoeae:						
45	orf136.pep	MKRRIAVFVLFPQIIRV					59
43	orf136ng	MMKRRIAVFVLLMOKIRI					60
	orf136.pep	PCGIVFGALLFRHLPAHC					119
50	orf136ng	PGGIVFGTLLFRHLSAHC					120
	orf136.pep	HTVNIKTVKINIVDPHMF					179
<i></i>	orf136ng						180
55	orf136.pep	AFVGTVYRFVCLFYIIND					
	orf136ng	AFAGTVYRFVCLFYIIND	GIAHHTAPORV	RYLFAPYRGFI	LPPASDSDLKS	SKYSE 235	

The complete length ORF136ng nucleotide sequence <SEQ ID 555> is:

60

¹ ATGATGAAGC GGCGTATAGC CGTCTTCGTC CTGCTCATGC AGAAAATCCG 51 GATTTTGGGA CAACTGTTGC CGAAAATCGT CAATACAGTT CCGGCACATC

		101	GGATGCTCTT	CCAAATTTTC	GGGATGTTCT	TTTTCTTCAT	ACACCGGCAA
		151				CCAGGCGGTA	
	•	201				TTGCCTGTAC	
	•	251	CCGTAGGGGA	TGCCGTTGCA	CACGAACATC	CAGTCGCTGA	TGTCGCCAAC
5		301	CGGAACGCAA	ACGCTTTCGC	CTTGTTCGAC	ATTGGTCAGT	CCGCCGGGTT
	•	351	CATTGTTCAG	CACACCGTAA	ATATAAAGAC	CGTCAAAATA	AATATCGTCG
		401	ATCCACATAT	GTTCGCAAAT	TTCGCCGTCT	TCGCCGTCTT	GGAAAAAAGG
		451	GACTTTGACC	ATGGCAAAAT	CCAAGGCGGA	AATAATGCGG	CGGCGTTCCC
	•	501	AAAAAAGCTC	GCGCCAAAAG	TATTTGAATG	TTTTACGGGC	GCGTTCGCCG
10		551	GCACGGTTTA	CCGGTTCGTC	TGCCTGTTCT	ACATAATAAA	TGACGGAATC
		601	GCCCATCATA	CTGCTCCTCA	ACGTGTACGG	TATCTGTTTG	CACCTTACCG
		651	CGGTTTTCTA	CCTCCGGCAT	CCGATTCGGA	TTTGAAAAGT	TCCAAATATT
	•	701	CGGAATAG				

This encodes a protein having amino acid sequence <SEQ ID 556>:

```
1 MMKRRIAVFV LLMQKIRILG QLLPKIVNTV PAHRMLFQIF GMFFFFIHRQ
51 YLPGIAEIDS PGGIVFGTLL FRHLSAHCLY GKAAVGDAVA HEHPVADVAN
101 RNANAFALFD IGQSAGFIVQ HTVNIKTVKI NIVDPHMFAN FAVFAVLEKR
151 DFDHGKIQGG NNAAAFPKKL APKVFECFTG AFAGTVYRFV CLFYIINDGI
201 AHHTAPQRVR YLFAPYRGFL PPASDSDLKS SKYSE*
```

20 ORF136ng and ORF136-1 show 93.6% identity in 235 aa overlap:

	orf136ng	MMKRRIAVFVLLMQKIRILGQLLPKIVNTVPAHRMLFQIFGMFFFFIHRQYLPGIAEIDS
•	orf136-1	MMKRRIAVFVLFPQIIRVLGQLLPKIVNTVPAHRMLFQIFGMFFFFIHQQYLPGIAEIDS
25	orf136ng	PGGIVFGTLLFRHLSAHCLYGKAAVGDAVAHEHPVADVANRNANAFALFDIGQSAGFIVQ
	orf136-1	PCGIVFGALLFRHLPAHCLYGKAAVGDAVAHEHPVADVVNRNANAFALFDIGQFAGFIVQ
30	orf136ng	HTVNIKTVKINIVDPHMFANFAVFAVLEKRDFDHGKIQGGNNAAAFPKKLAPKVFECFTG
	orf136-1	
	orf136ng	AFAGTVYRFVCLFYIINDGIAHHTAPQRVRYLFAPYRGFLPPASDSDLKSSKYSEX
35	orf136-1	:

Based on the presence of the putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 67

40 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 557>:

```
1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT TGGCAATCGC
51 CGCCGCCGCG TTGCTTGCCG CC.TGCGGAC GGCGGAAAT AATGCTGTCC
101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGG TTTGGCACTC
151 GGTGGCGGC CATCTAAAGG ATTTGCCCAT GTAGGTATTA TTAAGGTTTT
45 201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACC TCCGCAGGTT
251 CGATTGTCGG CAACCTTTTT GCATCGGGTA TGTCGCCCGA CCGCCTCGAA
301 TTGGAAGCCG AAATTTTAGG CAAAACCGAT TTGGTCGATT TAACCTTGTC
351 CACCAATGGG TTTATCAAAG GCGCAAAGCT GCAAAATTAC ATCAACCGAA
401 AACTCCGCGG CATGCAGATT CAGCAGTTTC CCATCAAATT TGCCGCC.
```

50 This corresponds to the amino acid sequence <SEO ID 558; ORF137>:

```
1 MENMYTFSKI RPLLAIAAAA LLAAXRTAGN NAVRKPVQTA KPAAVVGLAL
51 GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGNLF ASGMSPDRLE
```

101 LEAEILGKTD LVDLTLSTNG FIKGAKLONY INRKLRGMOI QOFPIKFAA...

Further work revealed the complete nucleotide sequence <SEQ ID 559>:

	-323-
5	1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT TGGCAATCGC 101 GCAAGCCGGT TTGCTTGCCG CCTGCGGCAC GGCGGGAAAT AATGCTGTCC 101 GCAAGCCGGT GCAAACCCGCC CAGTGGTCGG TTTGGCACTC 151 GGTGGCGGGG CATCTAAAGG ATTTGCCCAT GTAGGTATTA TTAAGGTTTT 201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA TCGGCAGGTT 251 CGATTGTCGG CAGCCTTTTT GCATCGGTA TGTCGCCCGA CCGCCTCGAA 301 TTGGAAGCCG AAATTTTAGG CAAAACCGAT TTGGTCGATT TAACCTTGTC 351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC ATCAACCGAA 401 AAGTCGGCGG CAGGCAGATT CAGCAGTTTC CCATCAAATT TGCCGCCGTT
10	451 GCTACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC AGGGGAATGC 501 CGGGCAGGCT GTGCGCGCTT CCGCCGCCAT TCCCAATGTG TTCCAACCCG 551 TTATCATCGG CAGGCATACA TATGTTGACG GCGGTCTGTC GCAGCCCGTG 601 CCCGTCAGTG CCGCCCGGCG GCAGGGGGGCG AATTTCGTGA TTGCCGTCGA
15	701 TCGATCAGAC GCTGAACGTA ATGAGCGTTT CTGCGTTGCA AAATGAGTTG 751 GGGCAGGCGG ATGTGGTTAT CAAACCGCAG GTTTTGGATT TGGGTGCAGT 801 CGGCGGATTC GATCAGAAAA AACGCGCCAT CCGGTTGGGT GAGGAGGCAG 851 CACGTGCCGC ATTGCCTGAA ATCAAACGCA AACTGGCGGC ATACCGTTAT 901 TGA
20	This corresponds to the amino acid sequence <seq 560;="" id="" orf137-1="">:</seq>
25	MENMYTFSKI RPLLAIAAAA LLAACGTAGN NAVRKPVQTA KPAAVVGLAL GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGSLF ASGMSPDRLE LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRQI QQFPIKFAAV 151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHT YVDGGLSQPV 201 PVSAARRQGA NFVIAVDISA RPGKNISQGF FSYLDQTLNV MSVSALQNEL 251 GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE IKRKLAAYRY 301 *
	Computer analysis of this amino acid sequence gave the following results:
	Homology with a predicted ORF from N. meningitidis (strain A)
30	ORF137 shows 93.3% identity over a 149aa overlap with an ORF (ORF137a) from strain A of N.
	meningitidis:
	10 20 30 40 50 60
	orf137.pep MENMVTFSKIRPLLAIAAAALLAAXRTAGNNAVRKPVQTAKPAAVVGLALGGGASKGFAH
35	orf137a MENMVTFSKIRPLLAIAAAALLAACGTAGNNAARKPVQTAKPAAVVGLALGGGASKGFAH 10 20 30 40 50 60
40	70 80 90 100 110 120 orf137.pep VGIIKVLKENGIPVKVVTGTSAGSIVGNLFASGMSPDRLELEAEILGKTDLVDLTLSTNG
	70 80 90 100 110 120
45	130 140 149 orf137.pep FIKGAKLQNYINRKLRGMQIQQFPIKFAA
	130 140 150 160 170 180
	The complete length ORF137a nucleotide sequence <seq 561="" id=""> is:</seq>
50	1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGACCGCTTT TGGCAATCGC 51 CGCCGCGCG TTGCTTGCCG CCTGCGGCAC GGCGGGAAAT AATGCTGCCC
	101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGG TTTGGCACTC 151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT GTAGGTATTA TTAAGGTTTT
55	201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA TCGGCAGGTT 251 CGATAGTCGG CAGCCTTTTT GCATCGGGTA TGTCGCCCGA CCGCCTCGAA
	211 VV: ******* TTT - :
))	301 TTGGAAGCCG AAATTTTAGG TAAAACCGAT TTGGTCGATT TAACCTTGTC 351 CACCAGTGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC ATCAACCGAA
JJ	301 TTGGAAGCCG AAATTTTAGG TAAAACCGAT TTGGTCGATT TAACCTTGTC 351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC ATCAACCGAA 401 AAGTCGGCGG CAGGCGGATT CAGCAGTTTC CCATCAAATT TGCCGCCGTT 451 GCTACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC AAGGGAATGC

5	601 CCCGTCAGTG CCGCCCGGCG GCANGNNNNG NATNTCGTGA TTGCCGTCGA 651 TATTTCCGCC CGTCCGAGCA AAAACATCAG CCAAGGCTTC TTCTCTTATC 701 TCGATCAGAC GCTGAACGTA ATGAGCGTTT CCGCGTTGCA AAATGAGTTG 751 GGGCAGGCGG ATGTGGTTAT CAAACCGCAG GTTTTGGATT TGGGTGCAGT 801 CGGCGGATTC GATCAGAAAA AACGCGCCAT CCGGTTGGGT GAGGAGGCAG 851 CACGTGCCGC ATTGCCTGAA ATCAAACGCA AACTGGCGGC ATACCGTTAT 901 TGA	•
	This encodes a protein having amino acid sequence <seq 562="" id="">:</seq>	
10	1 MENMVTFSKI RPLLAIAAAA LLAACGTAGN NAARKPVQTA KPAAVVGLAL 51 GGGASKGFAH VGIIKVLKEN GIPVKVVTGT SAGSIVGSLF ASGMSPDRLE 101 LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRRI QQFPIKFAAV 151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHT YVDGGLSQPV 201 PVSAARXXX XXVIAVDISA RPSKNISQGF FSYLDQTLNV MSVSALQNEL 251 GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE IKRKLAAYRY	
15	301 *	
_	ORF137a and ORF137-1 show 97.3% identity in 300 aa overlap:	
20	orf137a.pep MENMVTFSKIRPLLAIAAAALLAACGTAGNNAARKPVQTAKPAAVVGLALGGGASKGFAH	
20	orf137a.pep VGIIKVLKENGIPVKVVTGTSAGSIVGSLFASGMSPDRLELEAEILGKTDLVDLTLSTSG	
25	orf137a.pep FIKGEKLQNYINRKVGGRRIQQFPIKFAAVATDFETGKAVAFNQGNAGQAVRASAAIPNV	
23	orf137-1 FIKGEKLQNYINRKVGGRQIQQFPIKFAAVATDFETGKAVAFNQGNAGQAVRASAAIPNV	'
30	orf137a.pep FQPVIIGRHTYVDGGLSQPVPVSAARRXXXXXVIAVDISARPSKNISQGFFSYLDQTLNV	
35	orf137a.pep MSVSALQNELGQADVVIKPQVLDLGAVGGFDQKKRAIRLGEEAARAALPEIKRKLAAYRY	
	Homology with a predicted ORF from N.gonorrhoeae	
	ORF137 shows 89.9% identity over a 149aa overlap with a predicted ORF (ORF137ng)	fron
	N.gonorrhoeae:	
40	orf137.pep MENMVTFSKIRPLLAIAAAALLAAXRTAGNNAVRKPVQTAKPAAVVGLALGGGASKGFAH	60
	orf137ng	60
45	orf137.pep VGIIKVLKENGIPVKVVTGTSAGSIVGNLFASGMSPDRLELEAEILGKTDLVDLTLSTNG	120.
43	orf137ng ::::::::::::::::::::::::::::::::::::	120
	orf137.pep FIKGAKLQNYINRKLRGMQIQQFPIKFAA	149
50	orf137ng FIKGEKLQNYINRKVGGRQIQQFPIKFAAVATDFETGKAVAFNQGNAGQAVRASAAIPNV	180
	The complete length ORF137ng nucleotide sequence <seq 563="" id=""> is:</seq>	
55	1 ATGGAAAATA TGGTAACGTT TTCAAAAATC AGATCATTTT TGGCAATCGC 51 CGCCGCGCG TTGCTTGCCG CCTGCGGTAC GGCGGGAAAC AATGCCGCCC 101 GCAAGCCGGT GCAAACCGCC AAACCCGCCG CAGTGGTCGC TTTGGCACTC 151 GGTGGCGGCG CATCTAAAGG ATTTGCCCAT ATAGGAATTG TTAAGGTTTT 201 GAAAGAAAAC GGTATTCCTG TGAAGGTGGT TACCGGCACA TCGGCAGGTT 251 CGATAGTCGG CAGCCTTTTG GCATCGGTA TGTCGCCCGA CCGCCTCGAA	
60	301 TTGGAAGCCG AGATTTTAGG TAAAACCGAT TTAGTCGATT TAACCTTGTC 351 CACCAGTGGT TTTATCAAAG GCGAAAAGCT GCAAAATTAC ATCAACCGAA 401 AAGTCGGCGG CAGGCAGATT CAGCAGTTTC CCATCAAATT TGCCGCCGTT 451 GCCACTGATT TTGAAACCGG CAAGGCCGTC GCTTTCAATC AAGGGAATGC	

	501	CGGGCAGGCG	GTTCGTGCTT	CCGCCGCCAT	TCCCAATGTG	TTCCAGCCAG
	551	TCATCATCGG	CAGGCACAAA	TATGTTGACG	GCGGTCTGTC	GCAGCCCGTG
	601	CCCGTCAGTG	CCGCTCGGCG	GCAGGGGGCG	AATTTCGTGA	TTGCCGTCGA
	651	TATTTCCGCA	CGTCCGAGCA	AAAATGTCGG	TCAAGGTTTC	TTCTCTTATC
5	701	TCGATCAGAC	GCTGAACGTG	ATGAGCGTTT	CCGTGTTGCA	AAACGAGTTG
	751	gggcAGGCGG	ATGTGGTTAT	CAAACCGCag	gtTTTGGATT	TGGGTGCAGT
	801	CGGCGGATTC	GATCAGAAAA	AGCGCGCCAT	CCGGTTGGGC	GAGGAGGCAG
	851	CACGTGCCGC	ATTGCCTGAA	ATCAAACGCA	AACTGGCGGC	ATACCGTTAT
	901	TGA				

This encodes a protein having amino acid sequence <SEQ ID 564>: 10

```
1 MENMVTFSKI RSFLAIAAAA LLAACGTAGN NAARKPVQTA KPAAVVALAL
                51 GGGASKGFAH IGIVKVLKEN GIPVKVVTGT SAGSIVGSLL ASGMSPDRLE
                101 LEAEILGKTD LVDLTLSTSG FIKGEKLQNY INRKVGGRQI QQFPIKFAAV
               151 ATDFETGKAV AFNQGNAGQA VRASAAIPNV FQPVIIGRHK YVDGGLSQPV
15
                201 PVSAARRQGA NFVIAVDISA RPSKNVGQGF FSYLDQTLNV MSVSVLQNEL
                251
                    GQADVVIKPQ VLDLGAVGGF DQKKRAIRLG EEAARAALPE IKRKLAAYRY
                301
```

ORF137ng and ORF137-1 show 96.0% identity in 300 aa overlap:

20	orf137ng	MENMVTFSKIRSFLAIAAAALLAACGTAGNNAARKPVQTAKPAAVVALALGGGASKGFAH
	orf137-1	MENMVTFSKIRPLLAIAAAALLAACGTAGNNAVRKPVQTAKPAAVVGLALGGGASKGFAH
	orf137ng	IGIVKVLKENGIPVKVVTGTSAGSIVGSLLASGMSPDRLELEAEILGKTDLVDLTLSTSG: :
25	orf137-1	VGIIKVLKENGIPVKVVTGTSAGSIVGSLFASGMSPDRLELEAEILGKTDLVDLTLSTSG
	orf137ng	FIKGEKLQNYINRKVGGRQIQQFPIKFAAVATDFETGKAVAFNQGNAGQAVRASAAIPNV
30	orf137-1	FIKGEKLQNYINRKVGGRQIQQFPIKFAAVATDFETGKAVAFNQGNAGQAVRASAAIPNV
30	orf137ng	FQPVIIGRHKYVDGGLSQPVPVSAARRQGANFVIAVDISARPSKNVGQGFFSYLDQTLNV
	orf137-1	FQPVIIGRHTYVDGGLSQPVPVSAARRQGANFVIAVDISARPGKNISQGFFSYLDQTLNV
35	orf137ng	MSVSVLQNELGQADVVIKPQVLDLGAVGGFDQKKRAIRLGEEAARAALPEIKRKLAAYRY
	orf137	MSVSALQNELGQADVVIKPQVLDLGAVGGFDQKKRAIRLGEEAARAALPEIKRKLAAYRY

Based on the presence of a predicted prokaryotic membrane lipoprotein lipid attachment site (underlined) in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 68

40

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 565>:

	1	ATGTTTCGTT	TACAATTCAG	GCTGTTTCCC	CCTTTGCGAA	CCGCCATGCA
45	51	CATCCTGTTG	ACCGCCCTGC	TCAAATGCCT	CTCCCTGcTG	CCGCTTTCCT
	101	GTCTGCACAC	GCTGGGAAAC	CGGCTCGGAC	ATCTGGCGTT	TTACCTTTTA
	151	AAGGAAGACC	GCGCGCGCAT	CGTCGCCmAT	ATGCGGCAGG	CGGGTTTGAA
	201	CCCCGACCCC	AAAACGGTCA	AAGCCGTTTT	TGCGGAAACG	GCAAAAGGCG
	251	GTTTGGAACT	TGCCCCCGCG	TTTTTCAGAA	AACCGGAAGA	CATAGAAACA
50	301				GTGCAGCAGG	
	351		CTGCTATTC.			

This corresponds to the amino acid sequence <SEQ ID 566; ORF138>:

- 1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL 51 KEDRARIVAX MRQAGLNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET
- 55 101 MFKAVHGWEH VQQALDKHEG LLF

Further work revealed the complete nucleotide sequence <SEQ ID 567>:

```
ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA CCGCCATGCA
                51
                    CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG CCGCTTTCCT
               101
                    GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT TTACCTTTTA
                    AAGGAAGACC GCGCGCGAT CGTCGCCAAT ATGCGGCAGG CGGGTTTGAA
5
               151
                     CCCCGACCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG GCAAAAGGCG
               201
                     GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA CATAGAAACA
               251
               301
                    ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG CTTTGGACAA
                    ACACGAAGGG CTGCTATTCA TCACGCCGCA CATCGGCAGC TACGATTTGG
               351
10
               401
                     GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCCGCTGAC CGCCATGTAC
                    AAACCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG CGGGCAGGGT
                451
                501
                     TCGCGGCAAA GGAAAAACCG CGCCTACCAG CATACAAGGG GTCAAACAAA
                     TCATCAAAGC CCTGCGTTCG GGCGAAGCAA CCATCGTCCT GCCCGACCAC
                551
                     GTCCCCTCCC CTCAAGAAGG CGGGGAAGGC GTATGGGTGG ATTTCTTCGG
                601
15
                651
                     CAAACCTGCC TATACCATGA CGCTGGCGGC AAAATTGGCA CACGTCAAAG
                701
                     GCGTGAAAAC CCTGTTTTTC TGCTGCGAAC GCCTGCCTGG CGGACAAGGT
                751
                     TTCGATTTGC ACATCCGCCC CGTCCAAGGG GAATTGAACG GCGACAAAGC
                     CCATGATGCC GCCGTGTTCA ACCGCAATGC CGAATATTGG ATACGCCGTT
                801
                     TTCCGACGCA GTATCTGTTT ATGTACAACC GCTACAAAAT GCCGTAA
                851
     This corresponds to the amino acid sequence <SEQ ID 568; ORF138-1>:
```

20

```
1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL
     KEDRARIVAN MRQAGLNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET
     MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ QLPFPLTAMY
101
     KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS GEATIVLPDH
151
     VPSPQEGGEG VWVDFFGKPA YTMTLAAKLA HVKGVKTLFF CCERLPGGQG
201
     FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTQYLF MYNRYKMP*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF138 shows 99.2% identity over a 123aa overlap with an ORF (ORF138a) from strain A of N.

30 meningitidis:

25

	•		10	20	30	40	50	60
	orf138.pep	MFRLQFRI	LEPPLRTAME	HILLTALLKC	LSLLPLSCLH	TLGNRLGHLA	FYLLKEDRAR	XAVI
		11111111			111111111	111111111	1111111111	111
	orf138a	MFRLQFRI	LFPPLRTAM	ILLTALLKC			.FYLLKEDRAR	
35			10	20	30	40	50	60
			_1					
			70	80	90	100	110	120
	orf138.pep	MRQAGLNI	PDPKTVKAVI	FAETAKGGLE:	Lapaffrkpe	DIETMFKAVH	GWEHVQQALD	KHEG
				[111111111	111111111	111111111	1111
40	orf138a	MRQAGLNI	PDPKTVKAVI	FAETAKGGLE:	Lapaferkpe	DIETMFKAVH	GWEHVQQALD	KHEG
			70	80	90	100	110	120
						•	•	
	orf138.pep	LLF						
45		111						
	orf138a	LLFITPH:	IGSYDLGGR'	YISQQLPFPL'	TAMYKPPKIK	AIDKIMQAGR	VRGKGKTAPT	SIQG
		. :	130	140	150	160	170	180

The complete length ORF138a nucleotide sequence <SEQ ID 569> is:

1	ATGTTTCGTT	TACAATTCAG	GCTGTTTCCC	CCTTTGCGAA	CCGCCATGCA
51	CATCCTGTTG	ACCGCCCTGC	TCAAATGCCT	CTCCCTGCTG	CCGCTTTCCT
101	GTCTGCACAC	GCTGGGAAAC	CGGCTCGGAC	ATCTGGCGTT	TTACCTTTTA
151	AAGGAAGACC	GCGCGCGCAT	CGTCGCCAAT	ATGCGTCAGG	CAGGCATGAA
201	TCCCGACCCC	AAAACGGTCA	AAGCCGTTTT	TGCGGAAACG	GCAAAAGGCG
251	GTTTGGAACT	TGCCCCCGCG	TTTTTCAGAA	AACCGGAAGA	CATAGAAACA
301	ATGTTCAAAG	CGGTACACGG	CTGGGAACAT	GTGCAGCAGG	CTTTGGACAA
351	ACACGAAGGG	CTGCTATTCA	TCACGCCGCA	CATCGGCAGC	TACGATTTGG
401	GCGGACGCTA	CATCAGCCAG	CAGCTTCCGT	TCCCGCTGAC	CGCCATGTAC
451	AAACCGCCGA	AAATCAAAGC	GATAGACAAA	ATCATGCAGG	CGGGCAGGGT
501	TCGCGGCAAA	GGAAAAACCG	CGCCTACCAG	CATACAAGGG	GTCAAACAAA
551	TCATCAAAGC	CCTGCGTTCG	GGCGAAGCAA	CCATCGTCCT	GCCCGACCAC
	101 151 201 251 301 351 401 451 501	51 CATCCTGTTG 101 GTCTGCACAC 151 AAGGAAGACC 201 TCCCGACCCC 251 GTTTGGAACT 301 ATGTTCAAAG 351 ACACGAAGGG 401 GCGGACGCTA 451 AAACCGCCGA 501 TCGCGGCAAA	51 CATCCTGTTG ACCGCCCTGC 101 GTCTGCACAC GCTGGGAAAC 151 AAGGAAGACC GCGCGCGCAT 201 TCCCGACCCC AAAACGGTCA 251 GTTTGGAACT TGCCCCCGCG 301 ATGTTCAAAG CGGTACACGG 351 ACACGAAGGG CTGCTATTCA 401 GCGGACGCTA CATCAGCCAG 451 AAACCGCCGA AAATCAAAGC 501 TCGCGGCAAA GGAAAAACCG	51 CATCCTGTTG ACCGCCTGC TCAAATGCCT 101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC 151 AAGGAAGACC GCGCGCGCAT CGTCGCCAAT 201 TCCCGACCCC AAAACGGTCA AAGCCGTTTT 251 GTTTGGAACT TGCCCCCGCG TTTTTCAGAA 301 ATGTTCAAAG CGGTACACGG CTGGGAACAT 351 ACACGAAGGG CTGCTATTCA TCACGCCGCA 401 GCGGACGCTA CATCAGCCAG CAGCTTCCGT 451 AAACCGCCGA AAATCAAAGC GATAGACAAA 501 TCGCGGCAAA GGAAAAACCG CGCCTACCAG	101 GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT 151 AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGTCAGG 201 TCCCGACCCC AAAACGGTCA AAGCCGTTTT TGCGGAAACG 251 GTTTGGAACT TGCCCCCGCG TTTTTCAGAA AACCGGAAGA 301 ATGTTCAAAG CGGTACACGG CTGGGAACAT GTGCAGCAGG 351 ACACGAAGGG CTGCTATTCA TCACGCCGCA CATCGGCAGC 401 GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCCGCTGAC 451 AAACCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG 501 TCGCGGCAAA GGAAAAACCG CGCCTACCAG CATACAAGGG

```
601 GTCCCCTCCC CTCAAGAAGG CGGGGAAGGC GTATGGGTGG ATTTCTTCGG
                   CAAACCTGCC TATACCATGA CGCTGGCGGC AAAATTGGCA CACGTCAAAG
              651
                   GCGTGAAAAC CCTGTTTTTC TGCTGCGAAC GCCTGCCTGG CGGACAAGGT
              701
                   TTCGATTTGC ACATCCGCCC CGTCCAAGGG GAATTGAACG GCGACAAAGC
              751
                  CCATGATGCC GCCGTGTTCA ACCGCAATGC CGAATATTGG ATACGCCGTT
5
              801
              851 TTCCGACGCA GTATCTGTTT ATGTACAACC GCTACAAAAT GCCGTAA
     This encodes a protein having amino acid sequence <SEQ ID 570>:
                1 MFRLQFRLFP PLRTAMHILL TALLKCLSLL PLSCLHTLGN RLGHLAFYLL
                   KEDRARIVAN MRQAGLNPDP KTVKAVFAET AKGGLELAPA FFRKPEDIET MFKAVHGWEH VQQALDKHEG LLFITPHIGS YDLGGRYISQ QLPFPLTAMY
               51
10
              101
                   KPPKIKAIDK IMQAGRVRGK GKTAPTSIQG VKQIIKALRS GEATIVLPDH
              151
                   VPSPQEGGEG VWVDFFGKPA YTMTLAAKLA HVKGVKTLFF CCERLPGGQG
              201
                   FDLHIRPVQG ELNGDKAHDA AVFNRNAEYW IRRFPTQYLF MYNRYKMP*
     ORF138a and ORF138-1 show 99.7% identity over a 298aa overlap:
                       MFRLQFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAN
15
          orf138a.pep
                       MFRLOFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAN
          orf138-1
                       MROAGMNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG
          orf138a.pep
                       20
                       MRQAGLNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG
          orf138-1
                       LLFITPHIGSYDLGGRYISQQLPFPLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTSIQG
          orf138a.pep
                       LLFITPHIGSYDLGGRYISOOLPFPLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTSIQG
25
          orf138-1
                       VKQIIKALRSGEATIVLPDHVPSPQEGGEGVWVDFFGKPAYTMTLAAKLAHVKGVKTLFF
          orf138a.pep
                       VKQIIKALRSGEATIVLPDHVPSPQEGGEGVWVDFFGKPAYTMTLAAKLAHVKGVKTLFF
          orf138-1
30
                       CCERLPGGOGFDLHIRPVOGELNGDKAHDAAVFNRNAEYWIRRFPTQYLFMYNRYKMP
          or:138a.pep
                       CCERLPGGQGFDLHIRPVQGELNGDKAHDAAVFNRNAEYWIRRFPTQYLFMYNRYKMP
          orf138-1
     Homology with a predicted ORF from N. gonorrhoeae
35
      ORF138 shows 94.3% identity over a 123aa overlap with a predicted ORF (ORF138ng) from
     N.gonorrhoeae:
                      MFRLQFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAX
                                                                                60
           orf138.pep
                       MFRLQFRLFPPLRTAMHILLTALLKCLSLLSLSCLHTLGNRLGHLAFYLLKEDRARIVAN
                                                                                60
 40
           orf138ng
                       \mathtt{MRQAGLNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG}
           orf138.pep
                       MRQAGLNPDTQTVKAVFAETAKCGLELAPAFFKKPEDIETMFKAVHGWEHVQQALDKGEG
                                                                               120
           orf138ng
 45
                                                                                123
           orf138.pep
                       LLF
                       \mathbf{H}
                       LLFITPHIGSYDLGGRYISQQLPFHLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTGIQG 180
           orf138ng
      The complete length ORF138ng nucleotide sequence <SEQ ID 571> is:
 50
                 1 ATGTTTCGTT TACAATTCAG GCTGTTTCCC CCTTTGCGAA CCGCCATGCA
                    CATCCTGTTG ACCGCCCTGC TCAAATGCCT CTCCCTGCTG TCGCTTTCCT
                51
                    GTCTGCACAC GCTGGGAAAC CGGCTCGGAC ATCTGGCGTT TTACCTTTTA
               101
                    AAGGAAGACC GCGCGCGCAT CGTCGCCAAT ATGCGGCAGG CGGGTTTGAA
                151
                    CCCCGACACG CAGACGGTCA AAGCCGTTTT TGCGGAAACG GCAAAATGCG
                201
                    GTTTGGAACT TGCCCCCGCG TTTTTCAAAA AACCGGAAGA CATCGAAACA
 55
                251
                    ATGTTCAAAG CGGTACACGG CTGGGAACAC GTGCAGCAGG CTTTGGACAA
GGGCGAAGGG CTGCTGTTCA TCACGCCGCA CATCGGCAGC TACGATTTGG
                301
                351
                    GCGGACGCTA CATCAGCCAG CAGCTTCCGT TCCACCTGAC CGCCATGTAC
                401
                451 AAGCCGCCGA AAATCAAAGC GATAGACAAA ATCATGCAGG CGGGCAGGGT
                    GCGCGGCAAA GGCAAAACcg cgccaccgg catACAAGGG GTCAAACAAA
 60
                501
                551 tcatcaAGGC CCTGCGCGCG GGCGAGGCAA CCAtcATCCT GCCCGACCAC
```

55

```
GTCCCTTCTC CGCAGGAagg cggCGGCGTG TGGGCGGATT TTTTCGGCAA
ACCTGCATAc acCATGACAC TGGCGGCAAA ATTGGCACAC GTCAAAGGCG
TGAAAACCCT GTTTTCTGC TGCGAACGCC TGCCCGACGG ACAAGGCTTC
              601
              651
              701
                   GTGTTGCACA TCCGCCCCGT CCAAGGGGAA TTGAACGGCA ACAAAGCCCA
              751
5
              801
                   CGATGCCGCC GTGTTCAACC GCAATACCGA ATATTGGATA CGCCGTTTTC
                   CGACGCAGTA TCTGTTTATG TACAACCGCT ATAAAACGCC GTAA
    This encodes a protein having amino acid sequence <SEQ ID 572>:
                   MFRLQFRLFP PLRTAMHILL TALLKCLSLL SLSCLHTLGN RLGHLAFYLL
                   KEDRARIVAN MRQAGLNPDT QTVKAVFAET AKCGLELAPA FFKKPEDIET
               51
10
              101
                   MFKAVHGWEH VQQALDKGEG LLFITPHIGS YDLGGRYISQ QLPFHLTAMY
                   KPPKIKAIDK IMQAGRVRGK GKTAPTGIQG VKQIIKALRA GEATIILPDH
              151
                   VPSPQEGGGV WADFFGKPAY TMTLAAKLAH VKGVKTLFFC CERLPDGQGF
              201
                   VLHIRPVQGE LNGNKAHDAA VFNRNTEYWI RRFPTQYLFM YNRYKTP*
              251
     ORF138ng and ORF138-1 show 94.3% identity over 299aa overlap:
15
          orf138-1.pep MFRLQFRLFPPLRTAMHILLTALLKCLSLLPLSCLHTLGNRLGHLAFYLLKEDRARIVAN
                       orf138ng
                       MFRLQFRLFPPLRTAMHILLTALLKCLSLLSLSCLHTLGNRLGHLAFYLLKEDRAR IVAN
          orf138-1.pep
                       {\tt MRQAGLNPDPKTVKAVFAETAKGGLELAPAFFRKPEDIETMFKAVHGWEHVQQALDKHEG}.
                       20
          orf138ng
                       MRQAGLNPDTQTVKAVFAETAKCGLELAPAFFKKPEDIETMFKAVHGWEHVQQALDKGEG
          orf138-1.pep
                       LLFITPHIGSYDLGGRYISQQLPFPLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTSIQG
                       25
          orf138ng
                       LLFITPHIGSYDLGGRYISQQLPFHLTAMYKPPKIKAIDKIMQAGRVRGKGKTAPTGIQG
          orf138-1.pep
                       VKQIIKALRSGEATIVLPDHVPSPQEGGEGVWVDFFGKPAYTMTLAAKLAHVKGVKTLFF
                       orf138ng
                       VKQIIKALRAGEATIILPDHVPSPQEGG-GVWADFFGKPAYTMTLAAKLAHVKGVKTLFF
30
          orf138-1.pep
                        CCERLPGGQGFDLHIRPVQGELNGDKAHDAAVFNRNAEYWIRRFPTQYLFMYNRYKMP
                        orf138ng
                        CCERLPDGQGFVLHIRPVQGELNGNKAHDAAVFNRNTEYWIRRFPTQYLFMYNRYKTP
     In addition, ORF138ng is homologous to htrB protein from Pseudomonas fluorescens:
35
          gnl|PID|e334283 (Y14568) htrB [Pseudomonas fluorescens] Length = 253
           Score = 80.8 bits (196), Expect = 9e-15
           Identities = 49/151 (32%), Positives = 79/151 (51%), Gaps = 6/151 (3%)
          Query: 101 MFKAVHGWEHVQQALDKGEGLLFITPHIGSYD-LGGRYISQQLPFHLTAMYKPPKIKAID 159
40
                    + + V G E +++AL G+G++ IT H+G+++ L
                                                      Y SQ P
                                                                   Y+PPK+KA+D
          Sbjct: 94 LVREVEGLEVLKEALASGKGVVGITSHLGNWEVLNHFYCSQCKPI---IFYRPPKLKAVD 150
          Query: 160 KIMQAGRVRGKGKTAPTGIQGVKQIIKALRAGEATIILPDHVPSPQEGGGVWADFFGKPA 219
                     ++++ RV+
                               KA + +G+ +IK +RG
                                                     I D P P E G++ FF
45
          Sbjct: 151 ELLRKQRVQLGNKVAASTKEGILSVIKEVRKGGQVGIPAD--PEPAESAGIFVPFFATQA 208
          Quary: 220 YTMTLAAKLAHVKGVKTLFFCCERLPDGQGF 250
                                          RLPDG G+
          Sbjct: 209 LTSKFVPNMLAGGKAVGVFLHALRLPDGSGY 239
50
     Based on this analysis, including the presence of a putative transmembrane domain in the
     gonococcal protein, it was predicted that the proteins from N.meningitidis and N.gonorrhoeae, and
     their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
```

ORF138-1 (57kDa) was cloned in the pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 14A shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis

(Figure 14B). These experiments confirm that ORF138-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 69

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 573>:

```
5
                      ..GCGTGGTCGG CCGGCGAATC GTGGCGTGTG TTAATGGAAA GTGAAACGTG
                  51
                         GCATGCGGTG TGGAATACTT TGCGCTTCTC GGCGGCGGCG GTGTATGCGG
                         CAGCGGTTTT GGGTGTGGTG TATGCGGCGC CGGCGGGGG GTCGGCGTGG
                 101
                         ATGCGCGGGC TGATGTTTTA GCCGTTTATG GTGTCGCCGG TTTGTGTTTC
GGCGGGCGTG CTGCTGCTTT ATCCGCAGTG GACGGCTTCG TTGCCGTTGC
                 151
                 201
10
                 251
                         TGCTGGCGAT GTATGCGCTG CTGGCGTATC CGTTTGTGGC AAAAGATGTT
                 301
                         TTATCAGCCT GGGATGCACT GCCGCCGGAT TACGGCAGGG CGGCGGGGG
                 351
                         TTTGGGTGCA AACGGCTTTC AGACGGCATG CCGCATCACG TTCCCCCTCT
                 401
                         TGAAACCGGC GTTGCGGCGC GGTCTGACTT TGGCGGCGGC AACCTGCGTG
                 451
                         GGCGAATTTG CGGCGACATT GTTTCTGTCG CGTCCGGAAT GGCAGACGCT
15
                 501
                         GACGACTTTG ATTTATGCCT ATTTGGGACG CGCGGGTGAG GATAATTACG
                         CGCGGCGAT GGTGCTG..
```

This corresponds to the amino acid sequence <SEQ ID 574; ORF139>:

```
1 ...AWSAGESWRV LMESETWHAV WNTLRFSAAA VYAAAVLGVV YAAPARRSAW
51 MRGLMFXPFM VSPVCVSAGV LLLYPQWTAS LPLLLAMYAL LAYPFVAKDV
20 101 LSAWDALPPD YGRAAAGLGA NGFQTACRIT FPLLKPALRR GLTLAAATCV
151 GEFAATLFLS RPEWQTLTTL IYAYLGRAGE DNYARAMVL..
```

Further work revealed the complete nucleotide sequence <SEQ ID 575>:

```
ATGGATGGAC GGCGTTGGGT GGTATGGGGT GCTTTTGCCC TGCTGCCTTC
                     GGCTTTTTTG GCGGTAATGG TCGTTGCGCC TTTGTGGGCG GTGGCGGCGT
25
                    ATGACGGTTT GGCGTGCCGC GCGGTGCTGT CGGATGCCTA TATGCTCAAA
                101
                     CGTTTGGCGT GGACGGTATT TCAGGCAGCG GCAACCTGTG TGCTGGTGCT
                    GCCTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG GCGTTTCCGG
                201
                     GGCGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCTTTTGT GATGCCCACG
                251
                    TTGGTGGCGG GCGTGGGCGT GCTGGCCCTG TTCGGGGCGG ACGGGCTGTT
                301
30
                351
                    GTGGCGCGC AGGCAGGATA CGCCGTATCT GTTGTTGTAC GGCAATGTGT
                    TTTTCAACCT TCCTGTGTTG GTCAGGGCGG CGTATCAGGG GTTTGTGCAA
                401
                451
                     GTGCCTGCGG CACGGCTTCA GACGGCACGG ACGTTGGGCG CGGGGGCGTG
                    GCGGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG TGGCTTGCCG
                501
                551
                     GCGGCGTGTG CCTTGTCTTT CTGTATTGTT TTTCCGGGTT CGGGCTGGCG
35
                     CTGCTGCTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG AAATTTACCA
                601
                651
                     GTTGGTCATG TTCGAACTCG ATATGGCGGT TGCTTCGGTG CTGGTGTGGC
                701
                    TGGTGTTGGG GGTAACGGCG GCGGCAGGGT TGCTGTATGC GTGGTTCGGC
                751
                    AGGCGCGCG TTTCGGATAA GGCGGTTTCC CCTGTGATGC CGTCGCCGCC
                801
                     GCAGTCGGTC GGGGAATATG TGCTGCTGGC GTTTGCGGCG GCGGTGTTGT
40
                     CTGTGTGCTG CCTGTTTCCT TTGTTGGCAA TTGTTGTGAA AGCGTGGTCG
                851
                901
                     GCCGGCGAAT CGTGGCGTGT GTTAATGGAA AGTGAAACGT GGCAGGCGGT
                951
                     GTGGAATACT TTGCGCTTCT CGGCGGCGGC GGTGTATGCG GCGGCGGTTT
                     TGGGTGTGGT GTATGCGGCG GCGGCGCGC GGTCGGCGTG GATGCGCGGG
               1001
               1051
                     CTGATGTTTT TGCCGTTTAT GGTGTCGCCG GTTTGTGTTT CGGCGGGCGT
45
                     GCTGCTGCTT TATCCGCAGT GGACGGCTTC GTTGCCGTTG CTGCTGGCGA
               1101
                     TGTATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT TTTATCAGCC
               1151
               1201
                     TGGGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCGG GTTTGGGTGC
                     AAACGGCTTT CAGACGGCAT GCCGCATCAC GTTCCCCCTC TTGAAACCGG
               1251
                     CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CAACCTGCGT GGGCGAATTT
               1301
50
                     GCGGCGACAT TGTTTCTGTC GCGTCCGGAA TGGCAGACGC TGACGACTTT
               1351
                     GATTTATGCC TATTTGGGAC GCGCGGGTGA GGATAATTAC GCGCGGGCGA
                     TGGTGCTGAC ATTGCTGTTG GCGGCGTTCG CGCTGGGTAT TTTCCTGCTG
               1451
               1501
                     TTGGACGCC GCGAAGGCGG AAAACAGACG GAAACGTTAT AA
```

This corresponds to the amino acid sequence <SEQ ID 576; ORF139-1>:

55	1	MDGRRWVVWG	AFALLPSAFL	AVMVVAPLWA	VAAYDGLAWR	AVLSDAYMLK
	51	RLAWTVFQAA	ATCVLVLPLG	VPVAWVLARL	AFPGRALVLR	LLMLPFVMPT
	101	LVAGVGVLAL	FGADGLLWRG	RODTPYLLLY	GNVFFNLPVL	VRAAYQGFVQ
	151	VPAARLOTAR	TLGAGAWRRF	WDIEMPVLRP	WLAGGVCLVF	LYCFSGFGLA

1251

```
201 <u>LL</u>LGGSRYAT VEVEIYQLVM FELDMAVASV LVWLVLGVTA AAGLLYAWFG
                     251 RRAVSDKAVS PVMPSPPQSV GEYVLLAFAA AVLSVCCLFP LLAIVVKAWS
301 AGESWRVLME SETWQAVWNT LRFSAAAVYA AAVLGVVYAA AARRSAWMRG
351 LMFLPFMVSP VCVSAGVLLL YPQWTASLPL LLAMYALLAY PFVAKDVLSA
5
                      401 WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT LAAATCVGEF
                      451
                             AATLFLSRPE WOTLTTLIYA YLGRAGEDNY ARAMVITLLL AAFALGIFLL
                      501
                             LDGGEGGKQT ETL*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF139 shows 94.7% identity over a 189aa overlap with an ORF (ORF139a) from strain A of N. 10 meningitidis:

	orf139.pep	10 20 30	ı
	011155.pcp	AWSAGESWRVLMESETWHAVWNTLRFSAAA	-
15	orf139a	QSVGEYVLLAFAAAVXSVCCLFXLLAIVVKAWSAGESWRVLMESETWQAVWNTXRFSAAA	L
	•	270 280 290 300 310 320	•
	·	40 50 60 70 80 90	
	orf139.pep	VYAAAVLGVVYAAPARRSAWMRGLMFXPFMVSPVCVSAGVLLLYPOWTASI.PL.L.AMYAI.	
20			-
	orf139a	VYAAAVLGVVYAAAARRSAWMRGLMFLPFMVSPVCVSAGVLLLXPQWTASLPLLLAMYAL	
		330 340 350 360 370 380	
		100 110 120 130 140 150	
25	orf139.pep	LAYPFVAKDVLSAWDALPPDYGRAAAGLGANGFOTACRITFPLLKPALRRGLTLAAATCV	,
		-	
	orf139a	LAY PEVAKUVLSAXDALPPDYGRAAAGLGANGFQTACRITFPLLKPALRRGLTLAAATCV	,
		390 400 410 420 430 440	
30	,	160 170 180 189	
	orf139.pep	GEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNYARAMVL	
	-	- 113 113 11 - 14 - 14 114 14 14 14 14 14 14 14 14 14 14 14	
	omf139a	GEFAATLFXSRXEWQTLTTLIYAYXGRAGXDNYARAMVLTLLLAAFALGXFLLLDGGEGG	j
		450 460 470 480 490 500	
35	The complete lengt	h ORF139a nucleotide sequence <seq 577="" id=""> is:</seq>	
	vop.1010 10228.	is one rest interconde soquence DEQ ID 3/1> 15.	
	1 AT	GGATGGAC GGCGTTGGGC GGTATGGGGT GCTTTTGCCC TGCTGCCTTC	
	51 GG	CTTTTTTG GCGCCAATGG TCGTTGCGCC TTTGTGGGCG GTGGCGCCCT	
	101 AT	GACGGTTT GGCGTGCGC GCGGTGCTGT CGGATGCCTA TATGCTCAAA	
40	151 CG	TTTGGCGT GGACGGTATT TCAGGCAGCG GCAACCTGTG TGCTGGTGCT	
40	201 GC 251 GG	CTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG GCGTTTCCGG	
	301 TT	CGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCTTTTGT GATGCCCACG GGTGGCGG GCGTGGGCGT GCTGGCTCTG TTCGGGGCGG ACGGCCTGTN	
	351 GT	GGCGCGGC TGGCAGGATA CGCCGTATCT GTTGTTGTAC GGCAATGTGT	
	401 TT	TTTNACCT TCCTGTGTTG GTCAGGGCGG CATATCAGGG GTTTGTGCAA	
45	451 GT	GCCTGCGG CACGGCTTCA GACGGCACNG ACATTGGGCG CGGGGCCGTC	
	501 GC	GGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG TGGCTTGCCC	
	551 GC	GGCGTGTG CCTTGTCTTC CTGTATTGTT TTTCGGGGTT CGGGCTGGCA	
	601 TT 651 GT	GCTGCTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG AAATTTACCA	
50		TGGTCATG TTCGAACTCG ATATGGCGGT TGCTTCGGTG CTNGTGTGGC GTGTNGGG GGTAACNGCG GCGGCAGGGT TGCTGTATGC GTGGTTCGGC	
50	751 AG	GCGCGCGG TTTCGGATAA GGCNGTTTCC CCTGTGATGC CGTCGCCGCC	
	801 GC	AGTCGGTC GGGGAATATG TGCTNCTGGC GTTTGCGGCG GCGGTGTNGT	
	851 CT	GTGTGCTG CCTGTTTCNT TTGTTGGCAA TTGTTGTGAA AGCGTGGTCG	
	901 GC	CGGCGAAT CGTGGCGTGT GTTAATGGAA AGTGAAACGT GGCAGGCGGT	
55	951 GT	GGAATACT NTGCGCTTCT CGGCGGCGGC GGTGTATGCG GCGGCGCTTT	
	1001 TG	GGTGTGGT GTATGCGGCG GCGCGCGGC GGTCGGCGTG GATGCGCGGG	
	1051 CT	GATGTTTT TGCCGTTTAT GGTGTCGCCG GTTTGTGTTT CGGCGGGCGT	
	1101 GC 1151 TG	TGCTGCTT NATCCGCAGT GGACGGCTTC GTTGCCGCTG CTGCTGGCGA	
60	1201 TG	TATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT TTTATCAGCC NGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCGG GTTTGGGTGC	
•	1251 AA	ACGCCTTT CAGACGCAT CCCCCATCAC CTTCCCCCTC TTCACACACCCC	

AAACGGCTTT CAGACGGCAT GCCGCATCAC GTTCCCCCTC TTGAAACCGG CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CAACCTGCGT GGGCGAATTT 1351 GCGGCAACCT TGTTCNTGTC GCGTCNCGAG TGGCAGACGC TGACGACTTT WO 99/24578 PCT/IB98/01665

	1451 TG0	TTTATGCC TATNTGGGAC GCGCGGTGA NGATAATTAC GCGCGGCGA GTGCTGAC ATTGCTGTTG GCGGCGTTCG CGCTGGGTAT NTTCCTGCTG GGACGGCG GCGAAGGCGG AAAACGGACG GAAACGTTAT AA
	This encodes a prote	ein having amino acid sequence <seq 578="" id="">:</seq>
5	51 RL/ 101 LV/ 151 VP/ 201 LL/	GRRWAVWG AFALLPSAFL AAMVVAPLWA VAAYDGLAWR AVLSDAYMLK AWTVFQAA ATCVLVLPLG VPVAWVLARL AFPGRALVLR LLMLPFVMPT AGVGVLAL FGADGLXWRG WQDTPYLLLY GNVFFXLPVL VRAAYQGFVQ AARLQTAX TLGAGAWRFF WDIEMPVLRP WLAGGVCLVF LYCFSGFGLA LGGSRYAT VEVEIYQLVM FELDMAVASV LVWLVXGVTA AAGLLYAWFG
10 15	301 AG 351 LM 401 XD 451 AA	AVSDKAVS PVMPSPPQSV GEYVLLAFAA AVXSVCCLFX LLAIVVKAWS ESWRVLME SETWQAVWNT XRFSAAAVYA AAVLGVVYAA AARRSAWRG FLPFMVSP VCVSAGVLLL XPQWTASLPL LLAMYALLAY PFVAKDVLSA ALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT LAAATCVGEF TLFXSRXE WQTLTTLIYA YXGRAGXDNY ARAMVLTLLL AAFALGXFLL CCECCEVER FULL
15	-	GGEGGKRT ETL* 139-1 show 96.5% homology over a 514aa overlap:
,	orf139a.pep	MDGRRWAVWGAFALLPSAFLAAMVVAPLWAVAAYDGLAWRAVLSDAYMLKRLAWTVFQAA
20	orf139-1	:
20	orf139a.pep	ATCVLVLPLGVPVAWVLARLAFPGRALVLRLLMLPFVMPTLVAGVGVLALFGADGLXWRG
	orf139-1	
25	orf139a.pep	WQDTPYLLLYGNVFFXLPVLVRAAYQGFVQVPAARLQTAXTLGAGAWRRFWDIEMPVLRP
	orf139-1	RQDTPYLLLYGNVFFNLPVLVRAAYQGFVQVPAARLQTARTLGAGAWRRFWDIEMPVLRP
30	orf139a.pep	WLAGGVCLVFLYCFSGFGLALLLGGSRYATVEVEIYQLVMFELDMAVASVLVWLVXGVTA
	orf139-1	WLAGGVCLVFLYCFSGFGLALLLGGSRYATVEVEIYQLVMFELDMAVASVLVWLVLGVTA
	orf139a.pep	AAGLLYAWFGRRAVSDKAVSPVMPSPPQSVGEYVLLAFAAAVXSVCCLFXLLAIVVKAWS
35	orf139-1	AAGLLYAWFGRRAVSDKAVSPVMPSPPQSVGEYVLLAFAAAVLSVCCLFPLLAIVVKAWS
	orf139a.pep	AGESWRVLMESETWQAVWNTXRFSAAAVYAAAVLGVVYAAAARRSAWMRGLMFLPFMVSP
40	orf139-1	AGESWRVLMESETWQAVWNTLRFSAAAVYAAAVLGVVYAAAARRSAWMRGLMFLPFMVSP
	orf139a.pep	VCVSAGVLLLXPQWTASLPLLLAMYALLAYPFVAKDVLSAXDALPPDYGRAAAGLGANGF
	orf139-1	VCVSAGVLLLYPQWTASLPLLLAMYALLAYPFVAKDVLSAWDALPPDYGRAAAGLGANGF
45	orf139a.pep	QTACRITFPLLKPALRRGLTLAAATCVGEFAATLFXSRXEWQTLTTLIYAYXGRAGXDNY
	orf139-1	QTACRITFPLLKPALRRGLTLAAATCVGEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNY
50	orf139a.pep	ARAMVLTLLLAAFALGXFLLLDGGEGGKRTETLX
	orf139-1	ARAMVLTLLLAAFALGIFLLLDGGEGGKQTETLX
		predicted ORF from N.gonorrhoeae
		.2% identity over a 189aa overlap with a predicted ORF (ORF139ng) from
55	N.gonorrhoeae:	
	orf139.pep	Awsageswrvimesetwhavwntirfsaaa 30
	orf139ng	QSVGEYVLLAFSVAVLSVCCLFPLSAIVVKAWSAGESRRVLMESETWQAVWNTLRFSAAA 327
60	orf139.pep	VYAAAVLGVVYAAPARRSAWMRGLMFXPFMVSPVCVSAGVLLLYPQWTASLPLLLAMYAL 90 :
	orf139ng	VFAAAVLGVVYAAAARRLVWMRGLVFLPFMVSPVCVSAGVLLLYPGWTASLPLLLAMYAL 387

189

```
orf139.pep
                         LAYPFVAKDVLSAWDALPPDYGRAAAGLGANGFQTACRITFPLLKPALRRGLTLAAATCV
                         {\tt LAYPFVAKDVLSAWDALPPDYGRAAAGLGANGFQTACRITFPLLKPALRRGLTLAAATCV}
           orf139ng
           orf139.pep
                         GEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNYARAMVL
                         orf139ng
                         GEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNYARAMVLTLLLSAFAVCIFLLLDNGEGG
     The complete length ORF139ng nucleotide sequence <SEQ ID 579> is predicted to encode a
     protein having amino acid sequence <SEQ ID 580>:
10
                      MDGRCWAVRG AFSLLPSAFL AVMVVAPLWA VAAYDGLAWR AVLSDAYMLK
                      RLAWTVFQAA ATCVLVLPLG VPVAWVLARL AFPGRALVLR LLMLPFVMPT
                101
                      LVAGVGVLAL FGADGLLWRG RODTPYLLLY GNVFFNLPVL VRAAYQGFAQ
                151
                      VPAARLQTAR TLGAGAWRPF WDIEMPVLRP WLAGGVCLVF LYCFSGFGLA
                      LLLGGSRYAT VEVEIYQLVM FELDMAGASA LVWLVLGVTA AAGLLYAWFG
                201
15
                251
                      RRAVSDKAVS PVMPSPPQSV GEYVLLAFSV AVLSVCCLFP LSAIVVKAWS
                301
                      AGESRRVLME SETWQAVWNT LRFSAAAVFA AAVLGVVYAA AARRLVWMRG
                      LVFLPFMVSP VCVSAGVLLL YPGWTASLPL LLAMYALLAY PFVAKDVLSA
                351
                      WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT LAAATCVGEF
                401
                      AATLFLSRPE WOTLTTLIYA YLGRAGEDNY ARAMVLTLLL SAFAVCIFLL
                 451
20
                      LDNGEGGKRT ETL*
     Further work revealed a variant gonococcal DNA sequence <SEQ ID 581>:
                      ATGGATGGAC GGTGTTGGGC GGTACGGGGT GCTTTTTCCC TGCTGCCTTC
                 51
                      GGCTTTTTTG GCGGTAATGG TCGTTGCGCC TTTGTGGGCG GTGGCGGCGT
                      ATGACGGTTT GGCGTGCGC GCGGTGCTGT CGGATGCCTA TATGCTCAAA
CGTTTGGCGT GGACGGTGTT TCAGGCGGCG GCAACCTGTG TGCTGGTGCT
                101
25
                151
                201
                      GCCTTTGGGC GTGCCTGTCG CGTGGGTGCT GGCGCGGCTG GCGTTCCCGG
                 251
                      GGCGGGCTTT GGTGCTGCGC CTGCTGATGC TGCCGTTTGT GATGCCCACG
                 301
                      CTGGTGGCGG GCGTGGGCGT GCTGGCTCTG TTCGGGGCGG ACGGGCTGTT
                 351
                      GTGGCGCGC CGGCAGGATA CGCCGTATCT GTTGTTGTAC GGCAATGTGT
30
                      TTTTCAACCT GCCCGTGTTG GTCAGGGCGG CGTATCAGGG GTTTGCTCAA
                 401
                      GTGCCTGCGG CACGGCTTCA GACGGCACGG ACGTTGGGCG CGGGGGCGTG
                 451
                     GCGGCGGTTT TGGGACATTG AAATGCCCGT TTTGCGCCCG TGGCTTGCCG
GCGGCGTGTG CCTTGTCTTC CTGTATTGTT TTTCGGGGTT CGGGCTGGCA
                501
                 551
                 601
                      TTGCTGTTGG GCGGCAGCCG TTATGCCACG GTCGAAGTGG AAATTTACCA
35
                 651
                      GTTGGTTATG TTCGAACTCG ATATGGCGGG GGCTTCGGCG CTGGTGTGGC
                     TGGTGTTGGG GGTAACGGCG GCGGCAGGGT TGCTGTATGC GTGGTTCGGC AGGCGCGCG TTTCGGATAA GGCGGTTTCC CCCGTGATGC CGTCGCCGCC
                 701
                 751
                 801
                      GCAATCGGTG GGGGAATATG TATTGCTGGC ATTTTCGGTG GCGGTGTTGT
                 851
                      CCGTGTGCTG CCTGTTTCCT TTGTCGGCAA TTGTTGTGAA AGCGTGGTCG
40
                      GCCGGCGAAT CGCGGCGTGT GTTAATGGAA AGTGAAACGT GGCAGGCAGT
                 901
                      GTGGAATACt ttGCGCTTTT CGGCGGCGGC GGTGTTTGCG GCGGCGGTTT
                951
               1001
                      TGGGTGTGGT GTATGCGGCG GCGGCGCGGC GGCTGGTGTG GATGCGCGGA
                1051
                      CTGGTGTTTT TACCGTTTAT GGTGTCGCCG GTTTGTGTTT CGGCGGGCGT
               1101
                      GCTGCTGCTT TATCCGGGGT GGACGGCTTC GTTACCGCTG CTGCTGGCGA
45
                      TGTATGCGCT GCTGGCGTAT CCGTTTGTGG CAAAAGATGT TTTATCGGCC
                1151
               1201
                      TGGGATGCAC TGCCGCCGGA TTACGGCAGG GCGGCGGCAG GTTTGGGCGC
                      AAACGGCTTT CAGACGGCAT GCCGTATCAC GTTCCCCCTC TTGAAACCGG
                1251
                      CGTTGCGGCG CGGTCTGACT TTGGCGGCGG CGACGTGTGT GGGCGAATTT
               1301
                      GCGGCAACCT TGTTCCTGTC GCGTCCGGAA TGGCAGACGT TGACGACTTT
                1351
50
                      GATTTATGCC TATTTGGGGC GTGCGGGTGA GGACAATTAT GCGCGGGCAA
                1401
                1451
                      TGGTGTTGAC ATTGCTGTTG TCGGCATTTG CGGTGTGCAT TTTCCTGCTG
                1501
                      TTGGACAACG GCGAAGGCGg aaaACGGACG GAAACGTTAT AA
      This corresponds to the amino acid sequence <SEQ ID 582; ORF139ng-1>:
                      MDGRCWAVRG AFSLLPSAFL AVMVVAPLWA VAAYDGLAWR AVLSDAYMLK
55
                      RLAWTVFQAA ATCVLVLPLG VPVAWVLARL AFPGRALVLR LIMLPFVMPT
                      LVAGVGVLAL FGADGLLWRG RQDTPYLLLY GNVFFNLPVL VRAAYQGFAQ
VPAARLQTAR TLGAGAWRRF WDIEMPVLRP WLAGGVCLVF LYCFSGFGLA
                 101
                      LLLGGSRYAT VEVEIYQLVM FELDMAGASA LVWLVLGVTA AAGLLYAWFG
                 201
                      RRAVSDKAVS PVMPSPPQSV GEYVLLAFSV AVLSVCCLFP LSAIVVKAWS
                 251
60
                      AGESRRVLME SETWQAVWNT LRFSAAAVFA AAVLGVVYAA AARRLVWMRG
LVFLPFMVSP VCVSAGVLLL YPGWTASLPL LLAMYALLAY PFVAKDVLSA
                 301
                 351
                 401
                      WDALPPDYGR AAAGLGANGF QTACRITFPL LKPALRRGLT LAAATCVGEF
                 451
                      AATLFLSRPE WQTLTTLIYA YLGRAGEDNY ARAMVLTLLL SAFAVCIFLL
```

LDNGEGGKRT ETL*

ORF139ng-1 and ORF139-1 show 95.9% identity over 513aa overlap:

	orf139ng	MDGRCWAVRGAFSLLPSAFLAVMVVAPLWAVAAYDGLAWRAVLSDAYMLKRLAWTVFQAA
5	orf139-1	MDGRRWVVWGAFALLPSAFLAVMVVAPLWAVAAYDGLAWRAVLSDAYMLKRLAWTVFQAA
3	orf139ng	ATCVLVLPLGVPVAWVLARLAFPGRALVLRLLMLPFVMPTLVAGVGVLALFGADGLLWRG
	orf139-1	ATCVLVLPLGVPVAWVLARLAFPGRALVLRLLMLPFVMPTLVAGVGVLALFGADGLLWRG
10	orf139ng	RQDTPYLLLYGNVFFNLPVLVRAAYQGFAQVPAARLQTARTLGAGAWRRFWDIEMPVLRP
	orf139-1	RQDTPYLLLYGNVFFNLPVLVRAAYQGFVQVPAARLQTARTLGAGAWRRFWDIEMPVLRP
15	orf139ng	WLAGGVCLVFLYCFSGFGLALLLGGSRYATVEVEIYQLVMFELDMAGASALVWLVLGVTA
13	orf139-1	WLAGGVCLVFLYCFSGFGLALLLGGSRYATVEVEIYQLVMFELDMAVASVLVWLVLGVTA
	orf139ng	AAGLLYAWFGRRAVSDKAVSPVMPSPPQSVGEYVLLAFSVAVLSVCCLFPLSAIVVKAWS
20	orf139-1	AAGLLYAWFGRRAVSDKAVSPVMPSPPQSVGEYVLLAFAAAVLSVCCLFPLLAIVVKAWS
	orf139ng	AGESRRVLMESETWQAVWNTLRFSAAAVFAAAVLGVVYAAAARRLVWMRGLVFLPFMVSP
25	orf139	AGESWRVLMESETWQAVWNTLRFSAAAVYAAAVLGVVYAAAARRSAWMRGLMFLPFMVSP
	orf139ng	VCVSAGVLLLYPGWTASLPLLLAMYALLAYPFVAKDVLSAWDALPPDYGRAAAGLGANGF
	orf139-1	VCVSAGVLLLYPQWTASLPLLLAMYALLAYPFVAKDVLSAWDALPPDYGRAAAGLGANGF
30	orf139ng	QTACRITFPLLKPALRRGLTLAAATCVGEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNY
	orf139-1	QTACRITFPLLKPALRRGLTLAAATCVGEFAATLFLSRPEWQTLTTLIYAYLGRAGEDNY
25	orf139ng	ARAMVLTLLLSAFAVCIFLLLDNGEGGKRTETL
35	orf139-1	ARAMVLTLLLAAFALGIFLLLDGGEGGKQTETL

Based on the presence of a predicted binding-protein-dependent transport systems inner membrane component signature (underlined) in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 70

40

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 583>:

	1	ATGGACGGCT	GGACACAGAC	GCTGTCCGCG	CAAACCCTGT	TGGGCATTTC
	51	GGCGGCGGCA	ATCATCCTCA	TTCTGATTTT	AATCGTCAGA	TTCCGCATCC
45	101	ACGCGCTGCT	GACACTGGTC	ATCGTCAGCC	TGCTGACGGC	TTTGGCAACC
	151	GGTTTGCCCA	CAGGCAGCAT	TGTCAAAGAC	ATACTGGTCA	AAAACTTCGG
	201	CGGCACGCTC	GGCGGCGTGG	CGCTTCTGGT	CGGCCTGGGC	GCGATGCTCG
	251	AACGTTTGGT	C			

This corresponds to the amino acid sequence <SEQ ID 584; ORF140>:

50 1 MDGWTQTLSA QTLLGISAAA IILILILIVR FRIHALLTLV IVSLLTALAT 51 GLPTGSIVKD ILVKNFGGTL GGVALLVGLG AMLERLV..

Further work revealed the complete nucleotide sequence <SEQ ID 585>:

	1	ATGGACGGCT	GGACACAGAC	GCTGTCCGCG	CAAACCCTGT	TGGGCATTTC
	51	GGCGGCGGCA	ATCATCCTCA	TTCTGATTTT	AATCGTCAAA	TTCCGCATCC
55	101	ACGCGCTGCT	GACACTGGTC	ATCGTCAGCC	TGCTGACGGC	TTTGGCAACC
	151	GGTTTGCCCA	CAGGCAGCAT	TGTCAACGAC	ATACTGGTCA	AAAACTTCGG

```
CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGCCTGGGC GCGATGCTCG
                      GACGTTTGGT CGAAACATCC GGCGGCGCAC AGTCGCTGGC GGACGCGCTG
                      ATCCGGATGT TCGGCGAAAA ACGCGCACCG TTCGCGCTGG GCGTTGCCTC
                 301
                       GCTGATTTTC GGCTTCCCGA TTTTCTTCGA TGCCGGACTA ATCGTCATGC
                 351
 5
                      TGCCCATCGT GTTCGCCACC GCACGGCGCA TGAAACAGGA CGTACTGCCC
                 401
                 451
                       TTCGCGCTTG CCTCCATCGG CGCATTTTCC GTCATGCACG TCTTCCTGCC
                 501
                      GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC GCGAACATCG
                       GCCAAGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC ATGGTATTTC
                 551
                 601
                       AGCGGCTATA TGCTCGGCAA AGTGTTGGGG CGCACCATCC ATGTTCCCGT
10
                 651
                      TCCCGAACTG CTCAGCGGCG GCACGCAAGA CAACGACCTG CCGAAAGAAC
                 701
                       CTGCCAAAGC AGGAACGGTC GTCGCCATCA TGCTGATTCC CATGCTGCTG
                       ATTTTCCTGA ATACCGGCGT ATCGGCCCTC ATCAGCGAAA AACTCGTAAG
                 751
                 801
                       TGCGGACGAA ACCTGGGTTC AGACGGCAAA AATAATCGGT TCGACACCGA
                 851
                       TCGCCCTTCT GATTTCCGTA TTGGTCGCAC TGTTTGTCTT GGGACGCAAA
15
                 901
                       CGCGGCGAAA GCGGCAGCGC GTTGGAAAAA ACCGTGGACG GCGCACTCGC
                 951
                       CCCCGTCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT ATGTTCGGCG
                       GCGTTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA CAGCATGGCG
                1001
                       GATTTGGGCA TTCCCGTCCT TTTGGGCTGT TTCCTTGTCG CCTTGGCACT
                1051
                1101
                       GCGTATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACC GCCGCCGCGC
20
                1151
                       TGATGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG GCAGCTCGCC
                1201
                       TGTATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA GCCACTTCAA
                       CGACTCCGGC TTCTGGCTGG TCGGCCGTCT CTTGGACATG GACGTACCGA
                1251
                1301
                       CCACGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC ACTCATCGGC
                1351
                       TTTGCCTTGT CCGCACTGCT GTTCGCCATC GTCTGA
25
      This corresponds to the amino acid sequence <SEQ ID 586; ORF140-1>:
                       MDGWTQTLSA QTLLGISAAA IILILILIVK FRIHALLTLV IVSLLTALAT
                      GLPTGSIVND ILVKNFGGTL GGVALLVGLG AMLGRLVETS GGAQSLADAL IRMFGEKRAP FALGVASLIF GFPIFFDAGL IVMLPIVFAT ARRMKQDVLP FALASIGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG LPTAFITWYF
                  51
                 101
                 151
30
                 201
                       SGYMLGKVLG RTIHVPVPEL LSGGTQDNDL PKEPAKAGTV VAIMLIPMLL
                 251
                       IFLNTGVSAL ISEKLVSADE TWVQTAKIIG STPIALLISV LVALFVLGRK
                       RGESGSALEK TVDGALAPVC SVILITGAGG MFGGVLRASG IGKALADSMA
DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA AAGFTDWQLA
                 301
                 351
                       CIVLATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT VNQTLIALIG
                 401
35
                 451
                      FALSALLFAI V*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF140 shows 95.4% identity over a 87aa overlap with an ORF (ORF140a) from strain A of N. meningicidis:

```
40
                        10
                                        30
                                                40
        orf140.pep
                  MDGWTQTLSAQTLLGISAAAIILILILIVRFRIHALLTLVIVSLLTALATGLPTGSIVKD
                  orf140a
                  MDGWTQTLSAQTLLGISAAAIILILILIVKFRIHALLTLVIVSLLTALATGLPTGSIVND
                                                        50
45
                        70
                                80
        orf140.pep
                  ILVKNFGGTLGGVALLVGLGAMLERLV
                  orf140a
                  VLVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFALGVASLIF
50
                        70
                                        90
                                80
```

The complete length ORF140a nucleotide sequence <SEQ ID 587> is:

	1			GCTGTCCGCG		
	51	GGCGGCGGCA	ATCATCCTCA	TTCTGATTTT	AATCGTCAAA	TTCCGCATCC
	101	ACGCGCTGCT	GACACTGGTC	ATCGTCAGCC	TGCTGACGGC	TTTGGCAACC
55	151	GGTTTGCCCA	CAGGCAGCAT	TGTCAACGAC	GTACTGGTCA	AAAACTTCGG
	201	CGGCACGCTC	GGCGGCGTGG	CGCTTCTGGT	CGGCCTGGGC	GCGATGCTCG
	251	GACGTTTGGT	CGAAACATCC	GGCGGCGCAC	AGTCGCTGGC	GGACGCGCTG
	301	ATCCGGATGT	TCGGCGAAAA	ACGCGCACCG	TTCGCGCTGG	GCGTTGCCTC
	351	GCTGATTTTC	GGCTTCCCGA	TTTTCTTCGA	TGCCGGACTA	ATCGTCATGC
60	401	TGCCCATCGT	GTTCGCCACC	GCACGGCGCA	TGAAACAGGA	CGTACTGCCC
	451	TTCGCGCTTG	CCTCCATCGG	CGCATTTTCC	GTCATGCACG.	TCTTCCTGCC

501 GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC GCGAACATCG

	* - ·	CCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC GCGAACATCG
		AAGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC ATGGTATTTC
	601 AGC	GGCTATA TGCTCGGCAA AGTGTTGGGG CGCACCATCC ATGTTCCCGT
	651 TCC	CGAACTG CTCAGCGGCG GCACGCAAGA CAACGACCTG CCGAAAGAAC
5	701 CTG	CCAAAGC AGGAACGGTC GTCGCCATCA TGCTGATTCC CATGCTGCTG
-	751 ATT	TTCCTGA ATACCGGCGT ATCGGCCCTC ATCAGCGAAA AACTCGTAAG
		GGACGAA ACCTGGGTTC AGACGGCAAA AATAATCGGT TCGACACCGA
		CCCTTCT GATTTCCGTA TTGGTCGCAC TGTTTGTCTT GGGACGCAAA
		GGCGAAA GCGGCAGCGC GTTGGAAAAA ACCGTGGACG GCGCACTCGC
10		
10		CGTCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT ATGTTCGGCG
		TTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA CAGCATGGCG
		TTGGGCA TTCCCGTCCT TTTGGGCTGT TTCCTTGTCG CCTTGGCACT
	1101 GCG	TATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACC GCCGCCGCGC
	1151 TGA	TGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG GCAGCTCGCC
15	1201 TGT	ATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA GCCACTTCAA
		CTCCGGC TTCTGGCTGG TCGGCCGCCT CTTGGACATG GACGTACCGA
		CGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC ACTCATCGGC
		GCCTTGT CCGCACTGCT GTTCGCCATC GTCTGA
	1351 111	GCCTTGT CCGCACTGCT GTTCGCCATC GTCTGA
	This encodes a prote	in having amino acid sequence <seq 588="" id="">:</seq>
20	1 MDG	WTQTLSA QTLLGISAAA IILILILIVK FRIHALLTLV IVSLLTALAT
		TGSIVND VLVKNFGGTL GGVALLVGLG AMLGRLVETS GGAQSLADAL
		FGEKRAP FALGVASLIF GFPIFFDAGL IVMLPIVFAT ARRMKQDVLP
		ASIGAFS VMHVFLPPHP GPIAASEFYG ANIGOVLILG LPTAFITWYF
25		MLGKVLG RTIHVPVPEL LSGGTQDNDL PKEPAKAGTV VAIMLIPMLL
25	251 <u>IFL</u>	NTGVSAL ISEKLVSADE TWVQTAKIIG STPIALLISV LVALFVLGRK
		SGSALEK TVDGALAPVC SVILITGAGG MFGGVLRASG IGKALADSMA
		IPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA AAGFTDWQLA
	401 CIV	LATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT VNQTLIALIG
	451 FAL	SALLFAI V*
30	ORF140a and ORF1	40-1 show 99.8% identity over a 461aa overlap:
	orf140-1.pep	MDGWTQTLSAQTLLGISAAAIILILILIVKFRIHALLTLVIVSLLTALATGLPTGSIVND 60
	• •	
	orf140a	MDGWTQTLSAQTLLGISAAAIILILILIVKFRIHALLTLVIVSLLTALATGLPTGSIVND 60
	0111100	
35	orf140-1 non	TI WANDCOTI COUNTI UCI CAMI CDI UDRICCONOCI ADNI IDMECEVENDENI CUN CI TE 120
33	orf140-1.pep	ILVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFALGVASLIF 120
		: [] []
	orf140a	VLVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFALGVASLIF 120
	orf140-1.pep	GFPIFFDAGLIVMLPIVFATARRMKQDVLPFALASIGAFSVMHVFLPPHPGPIAASEFYG 180
40		
	orf140a	GFPIFFDAGLIVMLPIVFATARRMKQDVLPFALASIGAFSVMHVFLPPHPGPIAASEFYG 810
	orf140-1.pep	ANIGQVLILGLPTAFITWYFSGYMLGKVLGRTIHVPVPELLSGGTQDNDLPKEPAKAGTV 240
	OIII40-I.pep	
45		THE COMPTENT OF THE PROPERTY O
45	orf140a	ANIGQVLILGLPTAFITWYFSGYMLGKVLGRTIHVPVPELLSGGTQDNDLPKEPAKAGTV 240
	orf140-1.pep	VAIMLIPMLLIFLNTGVSALISEKLVSADETWVQTAKIIGSTPIALLISVLVALFVLGRK 300
	orf140a	VAIMLIPMLLIFLNTGVSALISEKLVSADETWVQTAKIIGSTPIALLISVLVALFVLGRK 300
50		
• •	orf140-1.pep	RGESGSALEKTVDGALAPVCSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGC 360
	V	
	orf140a	RGESGSALEKTVDGALAPVCSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGC 360
	Offiqua	RGESGSALERI V DGALAF V CS VILII GAGGMI GG V LRASGI GRALADSMADLGI F V LLGC 500
<i>E E</i>	51.40.1	
55	orf140-1.pep	FLVALALRIAQGSATVALTTAAALMAPAVAAAGFTDWQLACIVLATAAGSVGCSHFNDSG 420
	orf140a	FLVALALRIAQGSATVALTTAAALMAPAVAAAGFTDWQLACIVLATAAGSVGCSHFNDSG 420
	orf140-1.pep	FWLVGRLLDMDVPTTLKTWTVNQTLIALIGFALSALLFAIV 461
60	• -1-	
	orf140a	FWLVGRLLDMDVPTTLKTWTVNQTLIALIGFALSALLFAIV 461

Homology with a predicted ORF from N.gonorrhoeae

ORF140 shows 92% identity over a 87aa overlap with a predicted ORF (ORF140ng) from

65 N.gonorrhoeae:

```
MDGWTQTLSAQTLLGISAAAIILILILIVRFRIHALLTLVIVSLLTALATGLPTGSIVKD
                         orf140ng
                         MDGRTQTLSAQTLLGISAAAIILILILIVKFRIRALLTLVIASLLTALATGLPTGSIVND
                                                                                             60
5
           orf140.pep
                         ILVKNFGGTLGGVALLVGLGAMLERLV
                                                                                             87
                         VLVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFAPGVASLIF 120
           orf140ng
     The complete length ORF140ng nucleotide sequence <SEQ ID 589> was predicted to encode a
     protein having amino acid sequence <SEQ ID 590>:
10
                      MDGRTOTLSAOTLLGISAAAIILILILIVKFRIRALLTLVIASLLTALATGLPTGSIVNDVLVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFAPGVASLIFGFPIFFDAGLIVMLPIVFATARRMKQDVLP
                 51
                101
                      FALASVGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG LPTAFITWYF
                151
                201
                      SGYMLGKVLG RAIHVPVPEL LSGGTQDSDP PKEPAKAGTV VAVMLIPMLL
                      IFLNTGVSAL ISEKLVSADE TWVQTAKMIG STPVALLISV LAALLVLGRK
RGESGSTLEK TVDGALAPAC SVILITGAGG MFGGVLRASG IGKALADSMA
15
                251
                301
                      DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA AAGFTDWQLA
                351
                      CIVLATAAGS VGCSHFNDSG FWLVGRLSDM DVPTTLKTWT VNQTLIAFIG
                451 FALSALLFAI V*
     Further work revealed a variant gonococcal DNA sequence <SEQ ID 591>:
20
                      ATGGACGGCC GGACACAGAC GCTGTCCGCG CAAACCTTGT TGGGCATTTC
                  51
                      GGCGGCGGCA ATCATCCTCA TTCTGATTTT AATCGTCAAA TTCCGCATCC
                      GCGCGCTGCT GACACTGGTC ATCGCCAGCC TGCTGACGGC TTTGGCAACC
                101
                151
                      GGTTTGCCCA CAGGCAGCAT CGTCAACGAC GTACTGGTCA AAAACTTCGG
25
                      CGGCACGCTC GGCGGCGTGG CGCTTCTGGT CGGTCTGGGC GCAATGCTCG
                201
                251
                      GACGTTTGGT AGAAACATCC GGCGGCGCAC AGTCGCTGGC GGACGCGCTG
                      ATCCGGATGT TCGGCGAAAA ACGCGCACCG TTCGCTCCGG GCGTTGCCTC
                301
                      GCTGATTTTC GGCTTCCCGA TTTTCTTCGA TGCCGGACTA ATCGTCATGC
                351
                      TGCCCATCGT ATTCGCCACC GCACGGCGCA TGAAACAGGA CGTACTGCCC
                 401
30
                451
                      TTCGCGCTTG CCTCCGTCGG CGCATTTTCC GTCATGCACG TCTTCCTGCC
                      GCCCCATCCG GGCCCGATTG CCGCTTCCGA ATTTTACGGC GCGAACATCG
                501
                551
                      GCCAGGTTTT GATTTTGGGT CTGCCGACCG CCTTCATCAC ATGGTATTTC
                 601
                      AGCGGCTATA TGCTCGGCAA AGTGTTGGGG CGCGCCATCC ATGTTCCCGT
                 651
                      TCCCGAACTG CTCAGCGGCG GCACGCAAGA CAGCGACCCG CCGAAAGAAC
35
                      CTGCCAAAGC AGGAACGGTC GTCGCCGTCA TGCTGATTCC CATGCTGCTG
                701
                751
                      ATTTTCCTGA ATACCGGCGT ATCAGCCCTC ATCAGCGAAA AACTCGTAAG
                      TGCGGACGAA ACTTGGGTTC AGACGGCAAA AATGATCGGT TCGACACCTG
                801
                 851
                      TCGCCCTTCT GATTTCCGTA TTGGCCGCAC TGTTGGTCTT GGGACGCAAA
                      CGCGGCGAAA GCGGCAGCAC GTTGGAAAAA ACCGTGGACG GCGCACTCGC
CCCCGCCTGT TCCGTGATTC TGATTACCGG CGCGGGCGGT ATGTTCGGCG
                 901
40
                951
                      GCGTTTTGCG CGCTTCCGGC ATCGGCAAGG CACTCGCCGA CAGCATGGCG
               1001
               1051
                      GATTTGGGCA TTCCCGTCCT TTTGGGCTGC TTCCTTGTCG CCTTGGCACT
                      GCGTATCGCG CAAGGTTCGG CAACCGTCGC CCTGACCACA GCCGCCGCGC
               1101
                      TGATGGCTCC TGCCGTTGCC GCCGCCGGCT TTACCGACTG GCAGCTCGCC
               1151
45
                      TGTATCGTAT TGGCAACGGC GGCAGGTTCG GTCGGTTGCA GCCACTTCAA
               1201
               1251
                      CGACTCCGGC TTCTGGCTGG TCGGCCGCCT CTTGGATATG GACGTACCGA
                      CCACGCTGAA AACCTGGACG GTCAACCAAA CCCTCATCGC ATTCATCGGC
               1301
               1351
                      TTTGCCTTGT CCGCACTGCT GTTTGCCATC GTCTGA
      This corresponds to the amino acid sequence <SEQ ID 592; ORF140ng-1>:
50
                      MDGRTQTLSA QTLLGISAAA IILILILIVK FRIRALLTLV IASLLTALAT
                      GLPTGSIVND VLVKNFGGTL GGVALLVGLG AMLGRLVETS GGAQSLADAL IRMFGEKRAP FAPGVASLIF GFPIFFDAGL IVMLPIVFAT ARRMKQDVLP
                  51
                 101
                 151
                      FALASVGAFS VMHVFLPPHP GPIAASEFYG ANIGQVLILG LPTAFITWYF
                      SGYMLGKVLG RAIHVPVPEL LSGGTQDSDP PKEPAKAGTV VAVMLIPMLL
                 201
55
                      IFLNTGVSAL ISEKLVSADE TWVQTAKMIG STPVALLISV LAALLVLGRK
                 251
                      RGESGSTLEK TVDGALAPAC SVILITGAGG MFGGVLRASG IGKALADSMA
                      DLGIPVLLGC FLVALALRIA QGSATVALTT AAALMAPAVA AAGFTDWQLA
                 351
                      CIVLATAAGS VGCSHFNDSG FWLVGRLLDM DVPTTLKTWT VNQTLIAFIG
                 401
                      FALSALLFAI V*
60
      ORF140ng-1 and ORF140-1 show 96.3% identity over 461aa overlap:
```

orf140ng-1.pep MDGRTQTLSAQTLLGISAAAIILILILIVKFRIRALLTLVIASLLTALATGLPTGSIVND

WO 99/24578 PCT/IB98/01665

```
MDGWTQTLSAQTLLGISAAAIILILILIVKFRIHALLTLVIVSLLTALATGLPTGSIVND
         orf140-1
         orf140ng-1.pep VLVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFAPGVASLIF
                       ILVKNFGGTLGGVALLVGLGAMLGRLVETSGGAQSLADALIRMFGEKRAPFALGVASLIF
5
         orf140-1
         orf140ng-1.pep GFPIFFDAGLIVMLPIVFATARRMKQDVLPFALASVGAFSVMHVFLPPHPGPIAASEFYG
                       GFPIFFDAGLIVMLPIVFATARRMKQDVLPFALASIGAFSVMHVFLPPHPGPIAASEFYG
         orf140-1
10
         orf140ng-1.pep ANIGQVLILGLPTAFITWYFSGYMLGKVLGRAIHVPVPELLSGGTQDSDPPKEPAKAGTV
                       ANIGQVLILGLPTAFITWYFSGYMLGKVLGRTIHVPVPELLSGGTQDNDLPKEPAKAGTV
         orf140-1
         orf140ng-1.pep VAVMLIPMLLIFLNTGVSALISEKLVSADETWVQTAKMIGSTPVALLISVLAALLVLGRK
15
                       or £140-1
                       VAIMLIPMLLIFLNTGVSALISEKLVSADETWVQTAKIIGSTPIALLISVLVALFVLGRK
          orf140ng-1.pep RGESGSTLEKTVDGALAPACSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGC
                       20
          orf140-1
                       RGESGSALEKTVDGALAPVCSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGC
          orf140ng-1.pep FLVALALRIAQGSATVALTTAAALMAPAVAAAGFTDWQLACIVLATAAGSVGCSHFNDSG
                       FLVALALRIAQGSATVALTTAAALMAPAVAAAGFTDWQLACIVLATAAGSVGCSHFNDSG
25
          orf140-1
          orf140ng-1.pep FWLVGRLLDMDVPTTLKTWTVNQTLIAFIGFALSALLFAIV
                        FWLVGRLLDMDVPTTLKTWTVNQTLIALIGFALSALLFAIV
          orf140-1
     Furthermore, ORF140ng-1 is homologous to an E.coli protein:
30
          gi|882633 (U29579) ORF_o454 [Escherichia coli] >gi|1789097 (AE000358) o454;
          This 454 aa ORF is 34% identical (9 gaps) to 444 residues of an approx. 456 aa
          protein GNTP_BACLI SW: P46832 [Escherichia coli] Length = 454
           Score = 21\overline{0} bits (529), Expect = 1e-53
Identities = 130/384 (33%), Positives = 194/384 (49%), Gaps = 19/384 (4%)
35
          Query: 88 ETSGGAQSLADALIRMFGEKRAPFAPGVASLIFGFPIFFDAGLIVMLPIVFATARRMKQD 147
                    E SGGA+SLA+ R G+KR A +A+
                                                G P+FFD G I++ PI++ A+ K
          Sbict: 80 EHSGGAESLANYFSRKLGDKRTIAALTLAAFFLGIPVFFDVGFIILAPIIYGFAKVAKIS 139
40
          Query: 148 VLPFALASVGAFSVMHVFLPPHPGPIAASEFYGANIGQVLILGLPTAFITWYFSGYMLGK 207
                     LFL G
                                +HV +PPHPGP+AA+
                                                 A+IG + I+G+ + I
                                                                   GY
          Sbjct: 140 PLKFGLPVAGIMLTVHVAVPPHPGPVAAAGLLHADIGWLTIIGIAIS-IPVGVVGYFAAK 198
          Query: 208 VLGRAIHVPVPELL-----SGGTQDSDPPKEPAKAGTVVAVMLIPMLLIFLNTGV 257
 45
                                                    P A V ++++IP+ +I
                    ++ + +
                             E+L
                                          G T+ SD
          Sbjct: 199 IINKRQYAMSVEVLEQMQLAPASEEGATKLSDKINPPGVA-LVTSLIVIPIAIIMAGT-- 255
          Query: 258 SALISEKLVSADETWVQTAKMIGSTPXXXXXXXXXXXXXXXXXRRGESGSTLEKTVDGALA 317
                                 + T ++IGS
                                                         +RG S
 50
                       +S L+
          Sbjct: 256 ---VSATLMPPSHPLLGTLQLIGSPMVALMIALVLAFWLLALRRGWSLQHTSDIMGSALP 312
          Query: 318 PACSVILITGAGGMFGGVLRASGIGKALADSMADLGIPVLLGCFLVALALRIAQGSXXXX 377
                     A VIL+TGAGG+FG VL SG+GKALA+ + + +P+L
                                                         F+++LALR +QGS
           Sbict: 313 TAAVVILVTGAGGVFGKVLVESGVGKALANMLQMIDLPLLPAAFIISLALRASQGS--AT 370
 55
           Query: 378 XXXXXXXXXXXXXXXXGFTDWQLACIVLATAAGSVGCSHFNDSGFWLVGRLLDMDVPTTLK 437
                                        + LA G +G SH NDSGFW+V + L + V
                                 G
                                      Q
           Sbjct: 371 VAILTTGGLLSEAVMGLNPIQCVLVTLAACFGGLGASHINDSGFWIVTKYLGLSVADGLK 430
 60
           Ouery: 438 TWTVNQTLIAFIGFALSALLFAIV 461
                    TWTV T++ F GF ++ ++A++
           Sbjct: 431 TWTVLTTILGFTGFLITWCVWAVI 454
      Based on this analysis, including the identification of the presence of a putative leader sequence
```

65 (double-underlined) and several putative transmembrane domains (single-underlined) in the

gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 71

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 593>:

```
5
                     ..GATTTCGGCA TATCGCCCGT GTATCTTTGG GTTGCCGCCG CGTTCAAACA
                 51
                       TTTGCTGTCG CCGTGGGCTG CCGACTCATA CGATGTCGCA CGCTTTGCAG
                       GCGTATTTTT TGCCGTTATC GGACTGACTT CCTGCGGCTT TGCCGGTTTC
                101
                       AACTTTTTGG GCAGACACCA CGGGCGCAC. GTCGTCCTGA TTCTCATCGG
                151
                       CTGTATCGGG CTGATTCCAG TTGCCCATTT CCTCAACCCC GCTGCCGCCG
                201
10
                251
                       CCTTTGCCGC CGCCGGACTG GTGCTGCACG GTTATTCTTT GGCTCGCCGG
                       CGCGTGATTG CCGCCTCTTT TCTGCTCGGT ACGGGCTGGA CGCTGATGTC
                301
                351
                       GTTGGCAGCA GCTTATCCGG CAGCATTTGC CCTGATGCTG CCCTTGCCCG
                401
                       TACTGATGTT TTTCCGTCCG ...
```

This corresponds to the amino acid sequence <SEQ ID 594; ORF141>:

```
1 ..DFGISPYYLW VAAAFKHLLS PWAADSYDVA RFAGVFFAVI GLTSCGFAGF
51 NFLGRHHGRX VVLILIGCIG LIPVAHFLNP AAAAFAAAGL VLHGYSLARR
101 RVIAASFLLG TGWTLMSLAA AYPAAFALML PLPVLMFFRP ...
```

Further work revealed the complete nucleotide sequence <SEQ ID 595>:

```
ATGCTGACCT ATACCCCGCC CGATGCCCGC CCGCCGCCA AAACCCACGA
20
                    AAAGCCGTGG CTGCTGCTGT TGATGGCGTT TGCCTGGTTG TGGCCCGGCG
                51
               101
                    TGTTTTCCCA CGATTTGTGG AATCCTGACG AACCTGCCGT CTATACCGCC
                    GTCGAAGCAC TGGCAGGCAG CCCCACCCC TTGGTTGCCC ATCTGTTCGG
               151
                    TCAAACCGAT TTCGGCATAC CGCCCGTGTA TCTTTGGGTT GCCGCCGCGT
               201
                    TCAAACATTT GCTGTCGCCG TGGGCTGCCG ACTCATACGA TGCCGCACGC
               251
25
                    TTTGCAGGCG TATTTTTTGC CGTTATCGGA CTGACTTCCT GCGGCTTTGC
               301
                    CGGTTTCAAC TTTTTGGGCA GACACCACGG GCGCAGCGTC GTCCTGATTC
               351
                    TCATCGGCTG TATCGGGCTG ATTCCAGTTG CCCATTTCCT CAACCCCGCT
               401
                    GCCGCCGCCT TTGCCGCCGC CGGACTGGTG CTGCACGGTT ATTCTTTGGC
               451
               501
                    TCGCCGGCGC GTGATTGCCG CCTCTTTTCT GCTCGGTACG GGCTGGACGC
30
                    TGATGTCGTT GGCAGCAGCT TATCCGGCAG CATTTGCCCT GATGCTGCCC
               551
                    TTGCCCGTAC TGATGTTTTT CCGTCCGTGG CAAAGCAGGC GTTTGATGTT
               601
                    GACGGCAGTC GCCTCACTTG CCTTTGCCCT GCCGCTTATG ACCGTTTACC
               651
               701
                    CGCTGCTCTT GGCAAAAACG CAGCCCGCGC TGTTCGCGCA ATGGCTCGAC
               751
                    TATCACGTTT TCGGTACGTT CGGCGGCGTG CGGCACGTTC AGACGGCATT
35
               801
                    CAGTTTGTTT TACTATCTGA AAAACCTGCT TTGGTTTGCA TTGCCCGCGC
                    TGCCGCTGGC GGTTTGGACG GTTTGCCGCA CGCGCCTGTT TTCGACCGAC
               851
               901
                    TGGGGGATTT TGGGCGTCGT CTGGATGCTT GCCGTTTTGG TGCTGCTTGC
               951
                    CGTCAATCCG CAGCGTTTTC AGGATAACCT CGTCTGGCTG CTTCCGCCGC
              1001
                    40
              1051
                    GCGTTTGTCA ACTGGTTCGG CATTATGGCG TTCGGACTGT TTGCCGTGTT
              1101 .
                    CCTGTGGACG GGCTTTTTCG CCATGAATTA CGGCTGGCCC GCCAAGCTTG
                    CCGAACGCGC CGCCTATTC AGCCCGTATT ATGTTCCTGA TATCGATCCC
              1151
              1201
                    ATTCCGATGG CGGTTGCCGT ACTGTTCACA CCCTTGTGGC TGTGGGCGAT
                    TACCCGGAAA AACATACGCG GCAGGCAGGC GGTTACCAAC TGGGCGGCAG
              1251
45
              1301
                    GCGTTACCCT GACCTGGGCT TTGCTGATGA CGCTGTTCCT GCCGTGGCTG
                    GACGCGGCGA AAAGCCACGC GCCGGTCGTC CGGAGTATGG AGGCATCGCT
              1351
              1401
                    TTCCCCGGAA TTGAAACGGG AGCTTTCAGA CGGCATCGAG TGTATCGGCA
                    TAGGCGGCGG CGACCTGCAC ACGCGGATTG TTTGGACGCA GTACGGCACA
               1451
                    TTGCCGCACC GCGTCGGCGA TGTACAATGC CGCTACCGCA TCGTCCTCCT
               1501
50
               1551
                    GCCCCAAAAT GCGGATGCGC CGCAAGGCTG GCAGACGGTT TGGCAGGGTG
                    CGCGTCCGCG CAACAAAGAC AGTAAGTTCG CACTGATACG GAAAATCGGG
               1601
                    GAAAATATAT AA
```

This corresponds to the amino acid sequence <SEQ ID 596; ORF141-1>:

	1	MLTYTPPDAR	PPAKTHEKPW	LLLLMAFAWL	WPGVFSHDLW	NPDEPAVYTA
55	51	VEALAGSPTP	LVAHLFGQTD	FGIPPVYLWV	AAAFKHLLSP	WAADSYDAAR
	101	FAGVFFAVIG	LTSCGFAGEN	FLGRHHGRSV	VLILIGCIGL	IPVAHFLNPA
	151	AAAFAAAGLV	LHGYSLARRR	VIAASFLLGT	GWTLMSLAAA	YPAAFALMLP
	201	LPVLMFFRPW	QSRRLMLTAV	ASLAFALPLM	TVYPLLLAKT	QPALFAQWLD

WO 99/24578 -339-

251 YHVFGTFGGV RHVQTAFSLF YYLKNLLWFA LPALPLAVWT VCRTRLFSTD 301 WGILGVVWML AVLVLLAVNP QRFQDNLVWL LPPLALFGAA QLDSLRRGAA 351 AFVNWFGIMA FGLFAVFLWT GFFAMNYGWP AKLAERAAYF SPYYVPDIDP 401 IPMAVAVLFT PLWLWAITRK NIRGRQAVTN WAAGVTLTWA LLMTLFLPWL DAAKSHAPVV RSMEASLSPE LKRELSDGIE CIGIGGGDLH TRIVWTQYGT 501 LPHRVGDVQC RYRIVLLPQN ADAPQGWQTV WQGARPRNKD SKFALIRKIG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

551 ENI*

5

ORF141 shows 95.0% identity over a 140aa overlap with an ORF (ORF141a) from strain A of N. 10 meningitidis:

	•					10	20	30
	orf141.pep				DFGISP	VYLWVAAAFKI	ILLSPWAADSY	DVA
					1111 1	11111111111		1:1
15	orf141a						HLLSPWAADPY	DAA
		40	50	60	70	80	90	
			40	50	60	70	80	90
	orf141.pep	RFAGVF					FLNPAAAAFAA	-
20		ШШ				111111::11		111
	orf141a	RFAGVF	AVVGLTSCG	AGFNFLGRH	IGRSVVLILI	GCIGLIPTVHE	LNPAAAAFAA	AGL
•		100	110	₁₂₀	130	140	150	
		•	100	110	120	130	140	
25	orf141.pep	VLHGYSI	ARRR <u>VIAAS</u>	FLLGTGWTLM	SLAAAYPAAF.	ALMLPLPVLME	FFRP	
		1111111	11111111			1111111111		
	orf141a				SLAAAYPAAF.		<u>F</u> RPWQSRRL <u>M</u>	LTA
		160	170	180	190	200	210	
30	orf141a	VASLAFA	J.PI.MTVYPI.	LI.AKTOPAI.F	AOMI.DDHVFG	TECCURATORS	AFSLFYYLKNL	J.WF
		220	230	240	250	260	270	_,

The complete length ORF141a nucleotide sequence <SEQ ID 597> is:

	1	ATGCTGACCT	ATACCCCGCC	CGATGCCCGC	CCGCCCGCCA	AAACCCACGA
	51	AAAGCCGTGG	CTGTTGCTGT	TGATGGCGTT	TGCCTGGTTG	TGGCCCGGCG
35	101	TGTTTTCCCA	CGATTTGTGG	AATCCTGACG	AACCTGCCGT	CTATACCGCC
	151	GTCGAAGCAC	TGGCAGGCAG	CCCCACCCCT	TTGGTTGCCC	ATCTGTTCGG
	201	TCAAATCGAT	TTCGGCATAC	CGCCCGTGTA	TCTTTGGGTT	GCCGCCGCGT
	251	TCAAACATTT	GCTGTCGCCG	TGGGCTGCCG	ACCCGTATGA	TGCCGCACGC
	301	TTTGCCGGCG	TGTTTTTCGC	CGTTGTCGGA	CTGACTTCCT	GCGGCTTTGC
40	351	CGGTTTCAAC	TTTTTGGGCA	GACACCACGG	GCGCAGCGTC	GTCCTGATTC
	401	TCATCGGCTG	TATCGGGCTG	ATTCCGACCG	TACACTTTCT	CAACCCCGCT
	451	GCCGCCGCCT	TTGCCGCCGC	CGGACTGGTG	CTGCACGGTT	ATTCTTTGGC
	501	TCGCCGGCGC	GTGATTGCCG	CCTCTTTTCT	GCTCGGTACG	GGTTGGACGC
	551	TGATGTCGTT	GGCAGCAGCT	TATCCGGCGG	CATTTGCCCT	GATGCTGCCC
45	601		TGATGTTTTT			
	651	GACGGCAGTC	GCCTCGCTTG	CCTTTGCCCT	GCCGCTTATG	ACCGTTTACC
	701		GGCAAAAACG			
	751		TCGGTACGTT			
	801		TACTATCTGA			
50	851		GGTTTGGACG			
	901		TGGGCGTCGT			
	951	CGTCAATCCG	CAGCGTTTTC	AGGATAACCT	CGTCTGGCTG	CTTCCGCCGC
	1001	TTGCCCTGTT	CGGCGCGGCG	CAACTGGACA	GCCTGAGACG	CGGCGCGGCG
	1051		ACTGGTTCGG			
55	1101		GGCTTTTTCG			
	1151		CGCCTATTTC			
	1201		CGGTTGCCGT			
	1251		AACATACGCG			
60	1301		GACCTGGGCT			
60	1351		AAAGCCACGC			
	1401		TTAAAACGGG			
	1451		CGACCTACAC			
	1501		GCGTCGGCGA			
	1551	GCCCCAAAAC	GCGGATGCGC	CGCAAGGCTG	GCAGACGGTC	TGGCAGGGTG

1601 CGCGCCCGCG CAACAAAGAC AGTAAGTTCG CACTGATACG GAAAACCGGG 1651 GAAAATATAT TAAAAACAAC AGATTGA

This encodes a protein having amino acid sequence <SEQ ID 598>:

	. 1	MLTYTPPDAR	PPAKTHEKPW	LLLLMAFAWL	WPGVFSHDLW	NPDEPAVYTA
5	51	VEALAGSPTP	LVAHLFGQID	FGIPPVYLWV	AAAFKHLLSP	WAADPYDAAR
-	101	FAGVFFAVVG	LTSCGFAGEN	FLGRHHGRSV	VLILIGCIGL	IPTVHFLNPA
	151	AAAFAAAGLV	LHGYSLARRR	VIAASFLLGT	GWTLMSLAAA	YPAAFALMLP
	201	LPVLMFFRPW	QSRRLMLTAV	ASLAFALPLM	TVYPLLLAKT	QPALFAQWLD
	251	DHVFGTFGGV	RHIQTAFSLF	YYLKNLLWFA	LPALPLAVWT	VCRTRLFSTD
10	301	WGILGVVWML	AVLVLLAVNP	QRFQDNLVWL	LPPLALFGAA	QLDSLRRGAA
	351	AFVNWFGIMA	FGLFAVFLWT	GFFAMNYGWP	AKLAERAAYF	SPYYVPDIDP
	401			NIRGROAVIN		
	451	DAAKSHAPVV	RSMEASLSPE	LKRELSDGIE	CIDIGGGDLH	TRIVWTQYGT
	501	LPHRVGDVQC	RYRIVRLPQN	ADAPQGWQTV	WQGARPRNKD	SKFALIRKTG
15	551	ENILKTTD*				

ORF141a and ORF141-1 show 98.2% identity in 553 aa overlap:

20	orf141a.pep orf141-1	MLTYTPPDARPPAKTHEKPWLLLLMAFAWLWPGVFSHDLWNPDEPAVYTAVEALAGSPTP
20	orf141a.pep	LVAHLFGQIDFGIPPVYLWVAAAFKHLLSPWAADPYDAARFAGVFFAVVGLTSCGFAGFN
25	orf141a.pep	FLGRHHGRSVVLILIGCIGLIPTVHFLNPAAAAFAAAGLVLHGYSLARRRVIAASFLLGT
30	orf141a.pep	GWTLMSLAAAYPAAFALMLPLPVLMFFRPWQSRRLMLTAVASLAFALPLMTVYPLLLAKT
35	orf141a.pep	QPALFAQWLDDHVFGTFGGVRHIQTAFSLFYYLKNLLWFALPALPLAVWTVCRTRLFSTD
40	orf141a.pep orf141-1	WGILGVVWMLAVLVLLAVNPQRFQDNLVWLLPPLALFGAAQLDSLRRGAAAFVNWFGIMA
40	orf141a.pep	FGLFAVFLWTGFFAMNYGWPAKLAERAAYFSPYYVPDIDPIPMAVAVLFTPLWLWAITRK
45	orf141a.pep	NIRGRQAVTNWAAGVTLTWALLMTLFLPWLDAAKSHAPVVRSMEASLSPELKRELSDGIE
50	orf141a.pep	CIDIGGGDLHTRIVWTQYGTLPHRVGDVQCRYRIVRLPQNADAPQGWQTVWQGARPRNKD
55	orf141a.pep	SKFALIRKTGENI SKFALIRKIGENI

Homology with a predicted ORF from N.gonorrhoeae

ORF141 shows 95% identity over a 140aa overlap with a predicted ORF (ORF141ng) from N.gonorrhoeae:

60	orf141.pep	DFGISPVYLWVAAAFKHLLSPWAADSYDVA	30
		######################################	
	orf141ng	WNPAEPAVYTAVEALAGSPTPLVAHLFGOTDFGIPPVYLWVAAAFKHLLSPWAAHPYDAA	126

-341-

	OLLILIP	RFAGVFFAVIGLTSCGFAGFNFLGRHHGRXVVLILIGCIGLIPVAHFLNPAAAAFAAAGL	90 186
5	orf141.pep	VLHGYSLARRRVIAASFLLGTGWTLMSLAAAYPAAFALMLPLPVLMFFRP	140
	orfl4lng	VLHGYSLARRRVIAASFLLGTGWTLMSLAAAYPAAFALMLPLPVLMFFRPWQSRRLMLTA	246

An ORF141ng nucleotide sequence <SEQ ID 599> was predicted to encode a protein having amino acid sequence <SEQ ID 600>:

```
MPSEAVSARP LCEYLLHLAI RPFLLTLMLT YTPPDARPPA KTHEKPWLLL
10
                        LMAFAWLWPG VFSHDLWNPA EPAVYTAVEA LAGSPTPLVA HLFGQTDFGI
                        PPVYLWVAAA FKHLLSPWAA HPYDAARFAG VFFAVIGLTS CGFAGFNFLG
                        RHHGRSVVLI HIGCIGLIPV AHFFNPAAAA FAAAGLVLHG YSLARRRVIA
ASFLLGTGWT LMSLAAAYPA AFALMLPLPV LMFFRPWQSR RLMLTAVASL
                         AFALPLMTVY PLLLAKTOPA LFAQWLNYHV FGTFGGVRHI QRAFSLFHYL
15
                   251
                        KNLLWFAPPG LPLAVWTVCR TRLFSTDWGI LGIVWMLAVL VLLAFNPQRF
QDNLVWLLPP LALFGAAQLD SLRRGAAAFV NWFGIMAFGL FAVFLWTGFF
                   351
                         AMNYGWPAKL AERAAYFSPY YVPDIDPIPM AVAVLFTPLW LWAITRKNIR
                   401
                         GRQAVTNWAA GVTLTWALLM TLFLPWLDAA KSHAPVVRSM EASFSPELKR
                   451
                         ELSDGIECIG IGGGDLHTRI VWTQYGTLPH RVGDVRCRYR IVRLPQNADA
20
                   551 PQGWQTVWQG ARPRNKDSKF ALIRKIGENI LKTTD*
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 601>:

```
1 ATGCTGACCT ATACCCCGCC CGATGCCCGC CCGCCCGCCA AAACCCACGA
51 AAAACCGTGG CTGCTGCTGT TGATGGCGTT TGCCTGGCTG TGGCCCGGCG
                    TGTTTTCCCA CGATTTGTGG AATCCTGCCG AACCTGCCGT CTATACCGCC
25
               101
                    GTCGAAGCAC TGGCAGGCAG CCCCACCCCC TTGGTTGCCC ATCTGTTCGG
                151
                    TCAAACCGAT TTCGGCATAC CGCCCGTGTA TCTTTGGGTT GCCGCCGCAT
                    TCAAACATTT GCTGTCGCCG TGGGCAGCCG ACCCGTATGA TGCCGCACGC
                251
                    TTTGCAGGCG TATTTTTTGC CGTTATCGGA CTGACTTCTT GCGGCTTTGC
                301
                    CGGTTTCAAC TTTTTGGGCA GACACCACGG GCGCAGCGTT GTTTTAATCC
30
                351
                401 ATATCGGCTG TATCGGGCTG ATTCCGGTTG CCCATTTCCT CAATCCcgcc
                    geogeoget tTGCCGCCGC CGGACTGGTG CTGCacggct actcgctgGC
                451
                    ACGCCGGCGC GTGATtgccg cctctTtccT GCTCGGTACG GGTTGGACGT
                501
                    TGATGTCGCT GGCGGCAGCT TATCCGGCGG CGTTTGCGCT GATGCTGCCC
                551
                     CTGCCCGTGC TGATGTTTTT CCGTCCGTGG CAAAGCAGGC GTTTGATGTT
35
                601
                    GACGGCAGTC GCCTCGCTTG CCTTTGCCCT GCCGCTTATG ACCGTTTACC
                651
                701 CGCTGCTCtt gGCAAAAACG CAGCCCGCGC TGTTTGCGCA ATGGCTCAAC
                     TATCACGTTT TCGGTACGTt cggcgGCGTG CGGCAcaTTC AGAggGCatT
                751
                     Cagtttgttt cactatctgA AAaatctgct ttggttcgca ccgcccgggC
                801
                     TGCCGCTGGC GGTTTGGACG GTTTGCCGCA CACGCCTGTT TTCGACCGAC
40
                851
                     TGGGGGATTT TGGGCATTGT CTGGATGCTT GCCGTTTTGG TGCTGCTCGC
                901
                     CTTTAATCCG CAGCGTTTTC AAGACAACCT CGTCTGGCTG CTGCCGCCGC
                951
                     1001
                     GCTTTTGTCA ACTGGTTCGG CATTATGGCG TTCGGGCTGT TTGCCGTGTT
               1051
               1101 CCTGTGGACG GGCTTTTTCG CCATGAATTA CGGCTGGCCC GCCAAGCTTG
 45
                     CCGAACGCGC CGCCTACTTC AGCCCGTATT ACGTTCCCGA CATCGATCCC
               1151
               1201 ATTCCGATGG CGGTTGCCGT ACTGTTCACA CCCTTGTGGC TGTGGGCCGAT
                     TACCCGGAAA AACATACGCG GCAGGCAGGC GGTTACCAAC TGGGCGGCAG
               1251
                     GCGTTACCCT GACCTGGGCT TTGCTGATGA CGCTGTTCCT GCCGTGGCTG
               1301
                     GACGCGGCGA AAAGCCACGC GCCCGTCGTC CGGAGTATGG AGGCATCGTT
 50
               1351
                     TTCCCCGGAA TTAAAACGGG AGCTTTCAGA CGGCATCGAG TGTATCGGCA
                1401
                     TAGGCGGCGG CGACCTGCAC ACGCGGATTG TTTGGACGCA GTACGGCACA
                1451
                     TTGCCGCACC GCGTCGGCGA TGTCCGTTGC CGCTACCGTA TCGTCCGCCT
                1501
                     GCCCCAAAAC GCGGATGCGC CGCAAGGCTG GCAGACGGTC TGGCAGGGTG
                     CGCGCCCGCG CAACAAAGAC AGTAAGTTTG CACTGATACG GAAAATCGGG
 55
                1601
                     GAAAATATAT TAAAAACAAC AGATTGA
```

This corresponds to the amino acid sequence <SEQ ID 602; ORF141ng-1>:

	1	MLTYTPPDAR	PPAKTHEKPW	LLLLMAFAWL	WPGVFSHDLW	NPAEPAVYTA
	5.1	VEALAGSPTP	LVAHLFGOTD	FGIPPVYLWV	AAAFKHLLSP	WAADPYDAAR
60	101	FACUFFAUTG	LTSCGFAGEN	FLGRHHGRSV	VLIHIGCIGL	IPVAHFLNPA
00	151	ADDEDDAGLV	LHGYSLARRR	VIAASFLLGT	GWTLMSLAAA	YPAAFALMLP
	201	I DUI MEER PW	OSRRIMLTAV	ASLAFALPLM	TVYPLLLAKT	QPALFAQWLN
	251	VENTECT FCCV	RHTORAFSLE	HYLKNILWEA	PPGLPLAVWT	VCRTRLFSTD
	201	MOTICTIMMI	AVIVITATION	OR FODNI VWI.	LPPLALFGAA	OLDSLRRGAA
	301	MOTIGIAMAIT	VATIATITUTION	Ster Shuttann	D	_

- 351 AFVNWFG<u>IMA FGLFAVFLWT GFFAM</u>NYGWP AKLAERAAYF SPYYVPDIDP 401 <u>IPMAVAVLFT PLWLWAITRK NIRGRQAVTN WAAGVTLTWA LLMTLFLPWL</u> 451 DAAKSHAPVV RSMEASFSPE LKRELSDGIE CIGIGGGDLH TRIVWTQYGT
- 501 LPHRVGDVRC RYRIVRLPQN ADAPQGWQTV WQGARPRNKD SKFALIRKIG

551 ENILKTTD*

ORF141ng-1 and ORF141-1 show 97.5% identity in 553 aa overlap:

	orf14lng-1.pep	MLTYTPPDARPPAKTHEKPWLLLLMAFAWLWPGVFSHDLWNPAEPAVYTAVEALAGSPTP
10	orf141-1	MLTYTPPDARPPAKTHEKPWLLLLMAFAWLWPGVFSHDLWNPDEPAVYTAVEALAGSPTP
••	orf14lng-1.pep	LVAHLFGQTDFGIPPVYLWVAAAFKHLLSPWAADPYDAARFAGVFFAVIGLTSCGFAGFN
	orf141-1	LVAHLFGQTDFGIPPVYLWVAAAFKHLLSPWAADSYDAARFAGVFFAVIGLTSCGFAGFN
15	orf14lng-1.pep	FLGRHHGRSVVLIHIGCIGLIPVAHFLNPAAAAFAAAGLVLHGYSLARRRVIAASFLLGT
	orf141-1	FLGRHHGRSVVLILIGCIGLIPVAHFLNPAAAAFAAAGLVLHGYSLARRRVIAASFLLGT
20	orf14lng-1.pep	GWTLMSLAAAYPAAFALMLPLPVLMFFRPWQSRRLMLTAVASLAFALPLMTVYPLLLAKT
	orf141-1	GWTLMSLAAAYPAAFALMLPLPVLMFFRPWQSRRLMLTAVASLAFALPLMTVYPLLLAKT
	orf14lng-1.pep	QPALFAQWLNYHVFGTFGGVRHIQRAFSLFHYLKNLLWFAPPGLPLAVWTVCRTRLFSTD
25	orf141-1	QPALFAQWLDYHVFGTFGGVRHVQTAFSLFYYLKNLLWFALPALPLAVWTVCRTRLFSTD
	orf141ng-1.pep	WGILGIVWMLAVLVLLAFNPQRFQDNLVWLLPPLALFGAAQLDSLRRGAAAFVNWFGIMA
30	orf141-1	WGILGVVWMLAVLVLLAVNPQRFQDNLVWLLPPLALFGAAQLDSLRRGAAAFVNWFGIMA
-%-	orfl4lng-1.pep	FGLFAVFLWTGFFAMNYGWPAKLAERAAYFSPYVVPDIDPIPMAVAVLETPLWLWAITRK
	orf141-1	FGLFAVFLWTGFFAMNYGWPAKLAERAAYFSPYYVPDIDPIPMAVAVLFTPLWLWAITRK
35	orf141ng-1.pep	NIRGRQAVTNWAAGVTLTWALLMTLFLPWLDAAKSHAPVVRSMEASFSPELKRELSDGIE
	orf141-1	NIRGRQAVTNWAAGVTLTWALLMTLFLPWLDAAKSHAPVVRSMEASLSPELKRELSDGIE
40	orf14lng-1.pep	CIGIGGGDLHTRIVWTQYGTLPHRVGDVRCRYRIVRLPQNADAPQGWQTVWQGARPRNKD
	orf141-1	CIGIGGGDLHTRIVWTQYGTLPHRVGDVQCRYRIVLLPQNADAPQGWQTVWQGARPRNKD
4.5		SKFALIRKIGENILKTTDX
45	orf141-1	SKFALIRKIGENIX

Based on the presence of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 72

- 50 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 603>:
 - 1 ...CAATCCGCCA AATGGTTATC GGGCCAAACT CTAGTCGGCA CAGCAATTGG
 - 51 GATACGCGGG CAGATAAAGC TTGGCGGCAA CCTGCATTAC GATATATTTA
 - 101 CCGGCCGCG ATTGAAAAG CCCGAATTTT TCCAATCAAG GAAATGGGCA
 - 151 AGCGGTTTTC AGGTAGGCTA TACGTTTTAA
- This corresponds to the amino acid sequence <SEQ ID 604; ORF142>:
 - 1 ...QSAKWLSGQT LVGTAIGIRG QIKLGGNLHY DIFTGRALKK PEFFQSRKWA
 51 SGFOVGYTF*

Further work revealed the complete nucleotide sequence <SEQ ID 605>:

1 ATGGATAATT CGGGTAGTGA GGCGACAGGA AAATACCAAG GAAATATCAC 51 TTTCTCTGCC GACAATCCTT TGGGACTGAG TGATATGTTC TATGTAAATT 101 ATGGACGTTC GATTGGCGGT ACGCCCGATG AGGAAAGTTT TGACGGCCAT 151 CGCAAAGAAG GCGGATCAAA CAATTACGCC GTACATTATT CAGCCCCTT 5 201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT TACCATCAGG 251 CAGTTTCCGG ATTATCGGAA GTCTATACAAA TGGCTACCGT TACCATCAGG 351 CTATCTCGGT GTAAAACTGT GGATGAGGAA AACTACACAA 351 CTATCTCGGT GTAAAACTGT GGATGAGGAA AACAAAAAAGT TACAATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGGTTG GTTGGCAGAA 501 ATATAAACGC GCCACCGGCA TGAAAGATGC TCTGCGGGGT GGTTGGCAAAAC 501 ATATAAACGC GCCACCGGCA TGAAAGATGC TCTGCGCGCG CCTGAAGAAG 551 CCTTTGGCAA AGGACTCA CGGTAAAAAA TTTGGACGGC ATCGGCTGAT 661 GTAAATACTC CTTTTCAAAT CGGTAAAAAA TTTTGACGGC ATCGCCTGAT 661 GTAAATACCC CTTTTCAAAT CGGTAAAAAA TTTTGACAGC ATCGACACTC 651 CCTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAAACTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGACACATC 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGACTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGACTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGACTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGACTTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CTATCGGCGG ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CTATCGGCGA ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CTATCGGCGA ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CTATCGGCGA ACACCACACC GTACGTGCT TCGACGGTGA AATGAGTTTG 651 CCGCCGCAA ATGGTTATC TTGGCGCAAC GACTATTAAC GTTTCAGGAC AATGGGCAAC TTGGCGCAAC AGCAATTTAA 601 ACCAGGCCAT AACATCACC CTGCATTACG AATTATTTAC 651 CGGCCGCAA AAGACTACAC CTGCATTACG AATTATTTAC 651 CCGCCGCAA AGGATAAAAGC CCGAATTTAAA 601 ACCAGGCAA TTGAAAAAGC CCGAATTTAA 601 AATCGCGGC AATTAAAAGC CCGAATTTTAC CCAATCAAGG AAATGGGCAA							
101 ATGGACGTTC GATTGGCGGT ACGCCCGATG AGGAAAGTTT TGACGGCCAT 151 CGCAAAGAAG GCGGATCAAA CAATTACGCC GTACATTATT CAGCCCCTTT 5 201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT TACCATCAGG 251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA AAGTTACAAT 301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 501 ATATAAACGC GGCACCGGCA TGAAAAGTGC TCTGCGCGC CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTATGAAAAA TTTTGGACGCC CTGAAGAAG 601 GTAAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACTC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA ACGACACTC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT TCGACGGTGA AATGACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT TCGACGGTGA AATGACATC 651 CTATCGCCGAG GGGGATGGTA TTGGCGCAAC GACAAACTGG 701 CTATCGCCGAG GGGGATGGTA TTGGCGCAAC GACAAACTGG 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGCAC AGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGCAC AGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG TTGGGGCTAC TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGAG 851 AATCCGCCAA ATGGTTATCG TTGGCGCAAC CTGCATTACG ATATATTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCCAATCAAGG AAATGGGCAA		1	ATGGATAATT	CGGGTAGTGA	GGCGACAGGA	AAATACCAAG	GAAATATCAC
5 201 CGCTAAATGG ACATGGCAT TCAATCACAA TGGCTACCGT TACCATCAGG 251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAA AAGTTACAAT 301 ACTGATTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGAA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAAA CGGCGTAAAA CTGCGGGTTG GTTGCCACA AAGAATATAT CGGTCGCAGT ACGCAGAAT TTAAGTTGAA AAGATATAT CGGTCGCAGT ACGCCAGAT TTAAGTTGAA AGGATAAAC CGGTTAAAAAC CTGCGGGTTG GTTGCCAGA AGGAACACAACAC		51	TTTCTCTGCC	GACAATCCTT	TGGGACTGAG	TGATATGTTC	TATGTAAATT
5 201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT TACCATCAGG 251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA AAGTTACAAT 301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 10 451 CTTTCCCACA AAGAATATAT CGGTCGCAGT ACGCCAGAT TTAAGTTGAA 501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGC CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTAAAACAG TTTGGACGC ATCGGCTGAT 601 GTAAATATCT CTTTTCAAAT CGGTCAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT TCGACGTGA AATGACATC 651 CTATCGCGAG ACACCACACC GTACGTGGCT TCGACGTGA AATGACATC 651 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GACTTCAACATC 651 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGT 701 CTATCGCGG ACACCACACC GTACGTGGCT TCGACGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGCCAC AGCAATTGAG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA		101	ATGGACGTTC	GATTGGCGGT	ACGCCCGATG	AGGAAAGTTT	TGACGGCCAT
5 201 CGGTAAATGG ACATGGGCAT TCAATCACAA TGGCTACCGT TACCATCAGG 251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA AAGTTACAAT 301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 501 ATATAAACGC GGCACCGGCA TGAAAAGTGC CCTGAAGAAG 501 ATATAAACGC GGCACCGGCA TGAAAAGTGC CTTGCGCGCG CTGAAGAAA 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGCCGAG GACACACCC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GACTACATC 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGAG 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA		151	CGCAAAGAAG	GCGGATCAAA	CAATTACGCC	GTACATTATT	CAGCCCCTTT
251 CAGTTTCCGG ATTATCGGAA GTCTATGACT ATAATGGAAA AAGTTACAAT 301 ACTGATTTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 501 ATATAAACGC GGCACCGGCA TGAAAAGTGC TCTGCGCGC CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGGTAAAAAAGT TTAAGTTGAA 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACTC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGATTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GACTAACTG 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGAG 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA	5		CGGTAAATGG	ACATGGGCAT	TCAATCACAA	TGGCTACCGT	TACCATCAGG
301 ACTGATTCG GCTTCAACCG CCTGTTGTAT CGTGATGCCA AACGCAAAAC 351 CTATCTCGGT GTAAAACTGT GGATGAGGGA AACAAAAAGT TACATTGATG 401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 10 451 CTTTCCCACA AAGAATATAT CGGTCGCAGT ACGCCAGAT TTAAGTTGAA 501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGC CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTTAAACAA CTATTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCGCT ACATCGCAA GACAACATG 651 CGTTCATGCA CAATGGAACA AAACCCCGCT TCGACGGCGA AATGACATC 651 TCTGCCCGAGC GGGGATGGTA TTGGCGCAA GACAACACTG 701 CTATCGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGATTTA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GGCAATTTAA 801 ACCAGGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA	<i>3</i>		CAGTTTCCGG	ATTATCGGAA	GTCTATGACT	ATAATGGAAA	AAGTTACAAT
401 ATGCCGAACT GACTGTACAA CGGCGTAAAA CTGCGGGTTG GTTGGCAGAA 10 451 CTTTCCCACA AAGAATATAT CGGTCGCAGT ACGCCAGATT TTAAGTTGAA 501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGCG CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGGC ATCGGCTGAT 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCCAATTTTT CCCAATCAAG AAATGGGCAA			ACTGATTTCG	GCTTCAACCG	CCTGTTGTAT	CGTGATGCCA	AACGCAAAAC
10 451 CTTTCCACA AAGAATATAT CGGTCGCAGT ACGGCAGATT TTAAGTTGAA 501 ATATAAACGC GGCACCGCA TGAAAGATGC TCTGCGCGC CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGCC ATCGGCTGAT 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCCAATTTTT CCCAATCAAG AAATGGGCAA		351	CTATCTCGGT	GTAAAACTGT	GGATGAGGGA	AACAAAAAGT	TACATTGATG
10 451 CTTTCCCACA AAGAATATAT CGGTCGCAGT ACGGCAGATT TTAAGTTGAA 501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGCG CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGGC ATCGGCTGAT 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCAG CAATGGAACA AAACCCCGCT AACATCGCAA GACAACTGG 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTT CCCAATCAAGG AAATGGGCAA		401	ATGCCGAACT	GACTGTACAA	CGGCGTAAAA	CTGCGGGTTG	GTTGGCAGAA
501 ATATAAACGC GGCACCGGCA TGAAAGATGC TCTGCGCGCG CCTGAAGAAG 551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGCC ATCGCTGAT 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGGCGG ACACCACCC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCCAATTTTT CCCAATCAAGG AAATGGGCAA	10		CTTTCCCACA	AAGAATATAT	CGGTCGCAGT	ACGGCAGATT	TTAAGTTGAA
551 CCTTTGGCGA AGGCACGTCA CGTATGAAAA TTTGGACGGC ATCGGCTGAT 601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGC 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCCAATTTTT CCCAATCAAGG AAATGGGCAA	10	501	ATATAAACGC	GGCACCGGCA	TGAAAGATGC	TCTGCGCGCG	CCTGAAGAAG
601 GTAAATACTC CTTTTCAAAT CGGTAAACAG CTATTTGCCT ATGACACATC 651 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCCAATTTTT CCCAATCAAGG AAATGGGCAA			CCTTTGGCGA	AGGCACGTCA	CGTATGAAAA	TTTGGACGGC	ATCGGCTGAT
15 CGTTCATGCA CAATGGAACA AAACCCCGCT AACATCGCAA GACAAACTGG 15 701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 1751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 1801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 1851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 1901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 1762 20 20 20 20 20 20 20 20 20 20 20 20 20			GTAAATACTC	CTTTTCAAAT	CGGTAAACAG	CTATTTGCCT	ATGACACATC
701 CTATCGGCGG ACACCACACC GTACGTGGCT TCGACGGTGA AATGAGTTTG 751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA		651	CGTTCATGCA	CAATGGAACA	AAACCCCGCT	AACATCGCAA	GACAAACTGG
751 TCTGCCGAGC GGGGATGGTA TTGGCGCAAC GATTTGAGCT GGCAATTTAA 801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA	15		CTATCGGCGG	ACACCACACC	GTACGTGGCT	TCGACGGTGA	AATGAGTTTG
801 ACCAGGCCAT CAGCTTTATC TTGGGGCTGA TGTAGGACAT GTTTCAGGAC 851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA	13	751	TCTGCCGAGC	GGGGATGGTA	TTGGCGCAAC	GATTTGAGCT	GGCAATTTAA
851 AATCCGCCAA ATGGTTATCG GGCCAAACTC TAGTCGGCAC AGCAATTGGG 901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA			ACCAGGCCAT	CAGCTTTATC	TTGGGGCTGA	TGTAGGACAT	GTTTCAGGAC
901 ATACGCGGGC AGATAAAGCT TGGCGGCAAC CTGCATTACG ATATATTTAC 20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTT CCAATCAAGG AAATGGGCAA			AATCCGCCAA	ATGGTTATCG	GGCCAAACTC	TAGTCGGCAC	AGCAATTGGG
20 951 CGGCCGCGCA TTGAAAAAGC CCGAATTTTT CCAATCAAGG AAATGGGCAA		•	ATACGCGGGC	AGATAAAGCT	TGGCGGCAAC	CTGCATTACG	ATATATTTAC
	20		CGGCCGCGCA	TTGAAAAAGC	CCGAATTTTT	CCAATCAAGG	AAATGGGCAA
	20						

This corresponds to the amino acid sequence <SEQ ID 606; ORF142-1>:

```
1 MDNSGSEATG KYQGNITFSA DNPLGLSDMF YVNYGRSIGG TPDEESFDGH
51 RKEGGSNNYA VHYSAPFGKW TWAFNHNGYR YHQAVSGLSE VYDYNGKSYN
25 101 TDFGFNRLLY RDAKRKTYLG VKLWMRETKS YIDDAELTVQ RRKTAGWLAE
151 LSHKEYIGRS TADFKLKYKR GTGMKDALRA PEEAFGEGTS RMKIWTASAD
201 VNTPFQIGKQ LFAYDTSVHA QWNKTPLTSQ DKLAIGGHHT VRGFDGEMSL
251 SAERGWYWRN DLSWQFKPGH QLYLGADVGH VSGQSAKWLS GQTLVGTAIG
301 IRGQIKLGGN LHYDIFTGRA LKKPEFFQSR KWASGFQVGY TF*
```

30 Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF142 shows 88.1% identity over a 59aa overlap with a predicted ORF (ORF142ng) from N.gonorrhoeae:

The complete length ORF142ng nucleotide sequence <SEQ ID 607> is:

	1	ATGGATAATT	CGGGTAGTGA	GGCGACAGGA	AAATACCAAG	GAAATATCAC
	51	TTTCTCTGCC	GACAATCCTT	TTGGACTGAG	TGATATGTTC	TATGTAAATT
	101	ATGGACGTTC	AATTGGCGGT	ACGCCCGATG	AGGAAAATTT	TGACGGCCAT
45	151	CGCAAAGAAG	GCGGATCAAA	CAATTACGCC	GTACATTATT	CAGCCCCTTT
	201	CGGTAAATGG	ACATGGGCAT	TCAATCACAA	TGGCTACCGT	TACCATCAGG
	251	CGGTTTCCGG	ATTATCGGAA	GTCTATGACT	ATAATGGAAA	AAGTTACAAC
	301	ACTGATTTCG	GCTTCAACCG	CCTGTTGTAT	CGTGATGCCA	AACGCAAAAC
	351	CTATCTCAGT	GTAAAACTGT	GGACGAGGGA	AACAAAAAGT	TACATTGATG
50	401	ATGCCGAACT	GACTGTACAA	CGGCGTAAAA	CCACAGGTTG	GTTGGCAGAA
	451	CTTTCCCACA	AAGGATATAT	CGGTCGCAGT	ACGGCAGATT	TTAAGTTGAA
	501	ATATAAACAC	GGCACCGGCA	TGAAAGATGC	TCTGCGCGCG	CCTGAAGAAG
	551	CCTTTGGCGA	AGGCACGTCA	CGTATGAAAA	TTTGGACGGC	ATCGGCTGAT
	601	GTAAATACTC	CTTTTCAAAT	CGGTAAACAG	CTATTTGCCT	ATGACACATC
55	651	CGTTCATGCA	CAATGGAACA	AAACCCCGCT	AACATCGCAA	GACAAACTGG
	701	CTATCGGCGG	ACACCACACC	GTACGTGGCT	TCGACGGTGA	AATGAGTTTG
	751	CCTGCCGAGC	GGGGATGGTA	TTGGCGCAAC	GATTTGAGCT	GGCAATTTAA
	801	ACCAGGCCAT	CAGCTTTATC	TTGGGGCTGA	TGTAGGACAT	GTTTCAGGAC
	851	AATCCGCCAA	ATGGTTATCG	GGCCAAACTC	TAGCCGGCAC	AGCAATTGGG
60	901	ATACGCGGGC	AGATAAAGCT	TGGCGGCAAC	CTGCATTACG	ATATATTTAC
•	951	CGGCCGTGCA	TTGAAAAAGC	CCGAATATTT	TCAGACGAAG	AAATGGGTAA

1001 CGGGGTTTCA GGTGGGTTAT TCGTTTTGA

This encodes a protein having amino acid sequence <SEQ ID 608>:

```
1 MDNSGSEATG KYQGNITFSA DNPFGLSDMF YVNYGRSIGG TPDEENFDGH
51 RKEGGSNNYA VHYSAPFGKW TWAFNHNGYR YHQAVSGLSE VYDYNGKSYN
5 101 TDFGFNRLLY RDAKRKTYLS VKLWTRETKS YIDDAELTVQ RRKTTGWLAE
151 LSHKGYIGRS TADFKLKYKH GTGMKDALRA PEEAFGEGTS RMKIWTASAD
201 VNTPFQIGKQ LFAYDTSVHA QWNKTPLTSQ DKLAIGGHHT VRGFDGEMSL
251 PAERGWYWRN DLSWQFKPGH QLYLGADVGH VSGQSAKWLS GQTLAGTAIG
301 IRGQIKLGGN LHYDIFTGRA LKKPEYFQTK KWVTGFQVGY SF*
```

The underlined sequence (aromatic-Xaa-aromatic amino acid motif) is usually found at the C-terminal end of outer membrane proteins.

ORF142ng and ORF142-1 show 95.6% identity over 342aa overlap:

```
orf142-1.pep MDNSGSEATGKYQGNITFSADNPLGLSDMFYVNYGRSIGGTPDEESFDGHRKEGGSNNYA
                 15
       orf142ng-1
                 MDNSGSEATGKYQGNITFSADNPFGLSDMFYVNYGRSIGGTPDEENFDGHRKEGGSNNYA
       orf142-1.pep VHYSAPFGKWTWAFNHNGYRYHQAVSGLSEVYDYNGKSYNTDFGFNRLLYRDAKRKTYLG
                 orf142ng-1
                 VHYSAPFGKWTWAFNHNGYRYHQAVSGLSEVYDYNGKSYNTDFGFNRLLYRDAKRKTYLS
20
       orf142-1.pep VKLWMRETKSYIDDAELTVQRRKTAGWLAELSHKEYIGRSTADFKLKYKRGTGMKDALRA
                 orf142ng-1
                 VKLWTRETKSYIDDAELTVQRRKTTGWLAELSHKGYIGRSTADFKLKYKHGTGMKDALRA
25
       orf142-1.pep PEEAFGEGTSRMKIWTASADVNTPFQIGKQLFAYDTSVHAQWNKTPLTSODKLAIGGHHT
                 orf142ng-1
                 PEEAFGEGTSRMKIWTASADVNTPFQIGKQLFAYDTSVHAQWNKTPLTSODKLAIGGHHT
       orf142-1.pep VRGFDGEMSLSAERGWYWRNDLSWQFKPGHQLYLGADVGHVSGQSAKWLSGOTLVGTAIG
30
                 orf142ng-1
                 VRGFDGEMSLPAERGWYWRNDLSWQFKPGHQLYLGADVGHVSGQSAKWLSGQTLAGTAIG
        orf142-1.pep_IRGQIKLGGNLHYDIFTGRALKKPEFFQSRKWASGFQVGYTF
                 35
        orf142ng-1
                 IRGQIKLGGNLHYDIFTGRALKKPEYFQTKKWVTGFQVGYSF
```

In addition, ORF142ng is homologous to the HecB protein of E.chrysanthemi:

```
gi|1772622 (L39897) HecB [Erwinia chrysanthemi] Length = 558
           Score = 119 \text{ bits } (295), \text{ Expect = } 3e-26
           Identities = 88/346 (25%), Positives = 151/346 (43%), Gaps = 22/346 (6%)
40
                     DNSGSEATGKYQGNITFSADNPFGLSDMFYVNYGRSIGGTPDEENFDGHRKEGGSNNYAV 61
                     DNSG ++TG+ Q N + + DN FGL+D ++++ G S +
                                                                + D + G
          Sbjct: 230 DNSGQKSTGEEQLNGSLALDNVFGLADQWFISAGHS---SRFATSHDAESLQAG----- 280
45
          Query: 62 HYSAPFGKWTWAFNHNGYRYHQAVSGLSEVYDYNGKSYNTDFGFNRLLYRDAKRKTYLSV 121
                      +S P+G W
                                +N++ RY
                                                   + GS
                                                             F +R+++RD
          Sbjct: 281 -FSMPYGYWNLGYNYSQSRYRNTFINRDFPWHSTGDSDTHRFSLSRVVFRDGTMKTAIAG 339
          Query: 122 KLWTRETKSYIDDAELTVQRRKTTGWLAELSHKGYIGRSTADFKLKYKHGTGMKDALRAP 181
50
                            +Y++ + L
                         R
                                         RK +
                                                  ++H
                                                             A F
                                                                  Y G
          Sbjct: 340 TFSQRTGNNYLNGSLLPSSSRKLSSVSLGVNHSQKLWGGLATFNPTYNRGVRWLGSETDT 399
          Query: 182 EEAFGEGTSRMKIWTASADVNTPFQIGKQLFAYDTSVHAQWNKTPLTSQDKLAIGGHHTV 241
                     +++ E +
                                  WT SA
                                           P
                                                     Y S++ Q++ L
55
           Sbjct: 400 DKSADEPRAEFNKWTLSASYYHPV---TDSITYLGSLYGQYSARALYGSEQLTLGGESSI 456
           Query: 242 RGFDGEMSLPAERGWYWRNDLSWQFKP----GHQLYLGA-DVGHVSGQSAKWLSGQTLAG 296
                     RGF E
                                 RG YWRN+L+WQ
                                                    G+ ++ A D GH+
                                                                          + +L G
           Sbjct: 457 RGF-REQYTSGNRGAYWRNELNWQAWQLPVLGNVTFMAAVDGGHLYNHKQDNSTAASLWG 515
60 ·
           Query: 297 TAIGIRGQIKLGGNLHYDIFTGRALKKPEYFQTKKWVTGFQVGYSF 342
```

+ G + P + Q

V G++VG SF

L

A+G+

Sbjct: 516 GAVGMTVASRW---LSQQVTVGWPISYPAWLQPDTMVVGYRVGLSF 558

On the basis of this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

5 Example 73

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 609>:

```
1 ATGCGGACGA AATGGTCAGC AGTGAGAAGC TGC<u>TT</u>ACTTG GGCGGACACC
51 GCCGACATCG ATACCGCTTT GAACCTGTTG TACCGTTTGC AAAAAACTCGA
101 ATTCCTCTAT GGCGATGAAA ACGGTCATTC AGACGGCATC AATTTGWCGG
151 ACGAGCAATT GCCGTTGCTG ATGGAACAAT TGTCCGGCAG CGGTAAGGCG
201 TTATTGGTCG ATCGGAACGG TCTGTATCTT GCCAACGCCA ATTTCCATCA
251 TGAGGCGGCG GAAGAGTTGG GGTTGTTGGC GGCAGAAGTC GCACAGATGG
301 AAAAGAAATA CCGGCTGCTG ATTAAGAACA AC..
```

This corresponds to the amino acid sequence <SEQ ID 610; ORF143>:

```
1 MRTKWSAVRS CTWADTADID TALNLLYRLQ KLEFLYGDEN GHSDGINLXD
51 EQLPLLMEQL SGSGKALLVD RNGLYLANAN FHHEAAEELG LLAAEVAQME
101 KKYRLLIKNN ...
```

Further work revealed the complete nucleotide sequence <SEQ ID 611>:

```
ATGGAATCAA CACTTTCACT ACAAGCAAAT TTATATCCCC GCCTGACTCC
                    TGCCGGTGCA TTTTATGCCG TATCCAGCGA TGCCCCCAGT GCCGGTAAAA
20
               101 CTTTGTTGCA CAGCCTGTTG AAAGCAGATG CGGACGAAAT GGTCAGCAGT
                    GAGAAGCTGC TTACTTGGGC GGACACCGCC GACATCGATA CCGCTTTGAA
                201 CCTGTTGTAC CGTTTGCAAA AACTCGAATT CCTCTATGGC GATGAAAACG
                251 GTCATTCAGA CGGCATCAAT TTGTCGGACG AGCAATTGCC GTTGCTGATG
                    GAACAATTGT CCGGCAGCGG TAAGGCGTTA TTGGTCGATC GGAACGGTCT
25
                301
                351 GTATCTTGCC AACGCCAATT TCCATCATGA GGCGGCGGAA GAGTTGGGGT
                401 TGTTGGCGGC AGAAGTCGCA CAGATGGAAA AGAAATACCG GCTGCTGATT
                451 AAGAACAACC TGTATATCAA CAATAACGCT TGGGGCGTTT GCGATCCTTC
                     CGGTCAGAGC GAATTGACAT TTTTCCCATT GTATATCGGT TCAACCAAAT
                501
                     TTATTTTGGT TATCGGCGGC ATTCCCGATT TGGGCAAAGA GGCATTTGTT
30
                551
                601 ACTITGGTAA GGATTITATA CCGCCGTTAC AGCAACCGCG TGTAA
```

This corresponds to the amino acid sequence <SEQ ID 612; ORF143-1>:

```
1 MESTLSLQAN LYPRLTPAGA FYAVSSDAPS AGKTLLHSLL KADADEMVSS
51 EKLLTWADTA DIDTALNLLY RLQKLEFLYG DENGHSDGIN LSDEQLPLLM
101 EQLSGSGKAL LVDRNGLYLA NANFHHEAAE ELGLLAAEVA QMEKKYRLLI
151 KNNLYINNNA WGVCDPSGQS ELTFFPLYIG STKFILVIGG IPDLGKEAFV
201 TLVRILYRRY SNRV*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF143 shows 92.4% identity over a 105aa overlap with an ORF (ORF143a) from strain A of N. meningitidis:

	or:143.pep			MRT	10 KWSAVRSCTW	20 ADTADIDTALI	30 NLLYRLQKLEFL
45	orf143a	GAFYAVSSE 20	XPSAGKTLL 30	HSLLKADADE 40	MVSSEKLLTW. 50	AXTADIDTALI 60	NLLYRLQKLEFL 70
50	orf143.pep	40 YGDENGHSI	50 OGINLXDEQL	60 PLLMEQLSGS	70 GKALLVDRNG 	80 LYLANANFHH 	90 EAAEELGLLAAE !!!!!!!!!!!

acid sequence <SEQ ID 616>:

	orf143a YG	GDENGHSDGINLSDEQLE 0 90		ALLVDRNGLYL 10 12		LLAAE	
5		100 110 AQMEKKYRLLIKNN					
		AQMEKKYRLXIKNNLYIN		QSELT <u>FFPLYI</u> 70 18		LGKEA	
	The complete length (ORF143a nucleotide	sequence <	SEQ ID 613:	> is:		
10	51 TGCC0 101 CTTT0	AATCAA CANTTTCACT GGTGCA TTTTATGCCG GTTGCA CAGCCTGTTG AGCTGC TTACCTGGGC	TATCCAGCGA AAAGCGGATG	TGNCCCCAGT CGGACGAAAT	GCCGGTAAAA GGTNAGCAGT		
15	201 CCTG 251 GTCA 301 GAAC 351 GTAT	TTGTAC CGTTTGCAAA TTCAGA CGGCATCAAT AATTGT CCGGCAGCGG CTTGCC AACGCCAATT	AACTCGAATT TTGTCGGACG TAAGGCGTTA TCCATCATGA	CCTCTATGGC AGCAATTGCC TTGGTCGATC GGCGGCGGAA	GATGAAAACG GTTGCTGATG GGAACGGTCT GAGTTGGGGT		
20	451 AAGA 501 CGGT 551 TTAT 601 ACTT	GGCGGC AGAAGTCGCA ACAACC TGTATATCAA CAGAGC GAATTGACAT TTTGGT TATCGGCGGC TGGTAA GGATNTTATA AGAGAG GANGGGTTAT	CAATAACGCT TTTTCCCATT ATTCCCGATT CCNCCNGTTA	TGGGGCGTTT GTATATCGGT TGGGCAAAGA CAGCAACCGC	GCGATCCTTC TCAACCAAAT GGCATTTGTT		
•	This encodes a protein				>:		
25	51 EKLL 101 EQLS	XSLQAN LYXRLTPAGA TWAXTA DIDTALNLLY GSGKAL LVDRNGLYLA YINNNA WGVCDPSGQS	RLQKLEFLYG NANFHHEAAE	DENGHSDGIN ELGLLAAEVA	LSDEQLPLLM QMEKKYRLXI	•	
	201 TLVR	XLYXXL QQPRVKLGRE	XGLCSNY*		IPDLGREAFV	•	į
30	ORF143a and ORF14		•	•			
	orf143a.pep orf143-1	MESTXSLQANLYXRLTE	111111111	111111111111	11111111111111111	1111 11	
35	orf143a.pep	DIDTALNLLYRLQKLEF	TLYGDENGHSDG	INLSDEQLPLI	MEQLSGSGKALLVDI	RNGLYLA	
4.0	orf143a.pep	NANFHHEAAEELGLLAF	LEVAQMEKKYRL	XIKNNLYINNN	IAWGVCDPSGQSELT	FFPLYIG	
40	orf143-1	NANFHHEAAEELGLLAF	EVAQMEKKYRL	 LIKNNLYINNN		 FFPLYIG	;
45	orf143a.pep	STKFILVIGGIPDLGKE				·	
45	orf143-1	STKFILVIGGIPDLGKE		•			
	Homology with a pred ORF143 shows 95.5%				isted ODE (OD)	71 42~)	· C
	N.gonorrhoeae:		ioaa overiap	with a pred	icied OAF (OKI	: 14311g)	, пош
50		RTKWSAVRSCTWADTAD]	[DTALNLLYRLQ	KLEFLYGDENG	HSDGINLXDEQLPL	LMEQL	60
	l			11111111111	111111 11111	11111	60
55	1	GSGKALLVDRNGLYLANA	111111:11111	шшіш	1111111:11		110
	orf143ng S	GSGKALLVDRNGLYLAN <i>i</i>	anfhhesaeelg	LLAAEVAQMEK	KYRLLIRNNLYINN		120
	An ORF143ng nucleon	nne sedneuce /2EA	m 012> was	bremered to	encode a protein	naving	amino

-347-

```
1 MRTKWSAVRS CSRADTADID TALNLLYRLQ KLEFLYGDEN GHSDGINLSD
               51 EQLPLLMEQL SGSGKALLVD RNGLYLANAN FHHESAEELG LLAAEVAQME
              101 KKYRLLIRNN LYINNNAWGV CDPSGQSELT FFPLYIGSTK FILVIAGIPD
                   LSKGGICYFG KDFIPPLQQP RVKLGTGGIM RQLLISILED LNNTSTDIIA
              151
                   SAVISTOGLP MATMLPSHLN SDRVGAISAT LLALGSRSVQ ELACGELEQV
              201
              251 MIKGKSGYIL LSQAGKDAVL VLVAKETGRL GLILLDAKRA ARHIAEAI*
5
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 617>:

```
1 ATGGAATCAA CACTTTCACT ACAAGCGAAT TTATATCCCT GCCTGACTCC
                    TGCCGGTGCA TTTTATGCCG TATCCAGCGA TGCCCCCAGT GCCGGTAAAA
                    CTTTGTTGCG CAGCCTGTTG AAAGCGGATG CGGACGAAGT GGTCAGCAGT
                51
10
               101
                    GAGAAGCTGC TCGCGGCGGA CACCGCCGAC ATCGATACCG CTTTGAACCT
               151
               201 GTTGTACCGT TTGCAAAAAC TCGAATTCCT CTATGGCGAT GAAAACGGTC
               251 ATTCAGACGG CATCAATTTG TCGGACGAGC AATTGCCGTT GCTGATGGAA
                    CAATTGTCCG GCAGCGGTAA GGCATTATTG GTCGATCGGA ACGGTCTGTA
               301
                    TCTTGCCAAC GCCAATTTCC ATCATGAGTC GGCGGAAGAG TTGGGGTTGT
               351
                    TGGCGGCAGA AGTCGCACAG ATGGAAAAGA AATACCGGCT GCTGATTAGG
15
                401
                    AACAACCTGT ATATCAACAA TAACGCTTGG GGCGTTTGCG ATCCTTCCGG
                    TCAGAGCGAA TTGACATTTT TCCCATTGTA TATCGGTTCA ACCAAATTTA
                451
                     TTTTGGTTAT CGCCGGCATT CCCGATTTGA GCAAAGAGGC ATTTGTTACT
                501
                551
                    TTGGTAAGGA TTTTATACCG CCGTTACAGC AACCGCGTGT AA
                601
20
```

This corresponds to the amino acid sequence <SEQ ID 618; ORF143ng-1>:

```
1 MESTLSLQAN LYPCLTPAGA FYAVSSDAPS AGKTLLRSLL KADADEVVSS
                    EKLLAADTAD IDTALNLLYR LQKLEFLYGD ENGHSDGINL SDEQLPLLME
                51
                    QLSGSGKALL VDRNGLYLAN ANFHHESAEE LGLLAAEVAQ MEKKYRLLIR
                    NNLYINNNAW GVCDPSGQSE LTFFPLYIGS TKFILVIAGI PDLSKEAFVT
25
                151
                201 LVRILYRRYS NRV*
```

ORF143ng-1 and ORF143-1 show 95.8% identity in 214 aa overlap:

```
orf143ng-1.pep MESTLSLQANLYPCLTPAGAFYAVSSDAPSAGKTLLRSLLKADADEVVSSEKLLA-ADTA
                     առանում առանանանում: «Արանանանան ար
                     MESTLSLQANLYPRLTPAGAFYAVSSDAPSAGKTLLHSLLKADADEMVSSEKLLTWADTA
        orf143-1
30
        orf143ng-1.pep DIDTALNLLYRLQKLEFLYGDENGHSDGINLSDEQLPLLMEQLSGSGKALLVDRNGLYLA 119
                     DIDTALNLLYRLOKLEFLYGDENGHSDGINLSDEQLPLLMEQLSGSGKALLVDRNGLYLA 120
         orf143-1
         orf143ng-1.pep NANFHHESAEELGLLAAEVAQMEKKYRLLIRNNLYINNNAWGVCDPSGQSELTFFPLYIG 179
35
                     វាណា: ពេលពេកពេកពេកពេក នៃពេកពេកពេកពេកពេកពេកពេក
                     NANFHHEAAEELGLLAAEVAQMEKKYRLLIKNNLYINNNAWGVCDPSGQSELTFFPLYIG 180
         orf143-1
         orf143ng-1.pep STKFILVIAGIPDLSKEAFVTLVRILYRRYSNRV
40
                      STKFILVIGGIPDLGKEAFVTLVRILYRRYSNRV
         orf143-1
```

Based on the presence of the putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 74

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 619>:

```
1 ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA AAATCTGTGC
                    GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC GTACCGCAGI
                51
                    CGGCGGCAAG CATGACGTTT ACGACGCTGC TGGCACTCGT CCCCGTGCTG
               101
50
                    ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG ACCGCTGGTC
               151
                    GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG CA.GGCGCGG
               251 ACATGGTGTT CGACTATATC AATGCGTTCC GCGAGCAGGC GAACCGGCTG
                    ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCTGA TGCTGATTCG
               301
               351 GACGATAGAC AATACGTTCA ACCGCATCTG GACGGGTCAA WTYCCAGCGT
55
                401 CCGTGGATG..
```

This corresponds to the amino acid sequence <SEQ ID 620; ORF144>:

```
1 MTFLQRLQGL ADNKICAFAW FVVRRFDEER VPQXAASMTF TTLLALVPVL
51 TVMVAVASIF PVFDRWSDSF VSFVNQTIVP XGADMVFDYI NAFREQANRL
101 TAIGSVMLVV TSLMLIRTID NTFNRIWRVX XQRPWM...
```

5 Further work revealed the complete nucleotide sequence <SEQ ID 621>:

```
ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA AAATCTGTGC
                51
                    GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC GTACCGCAGG
               101
                    CGGCGGCAAG CATGACGTTT ACGACGCTGC TGGCACTCGT CCCCGTGCTG
                    ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG ACCGCTGGTC
               151
10
                201
                    GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG CAGGGCGCGG
                    ACATGGTGTT CGACTATATC AATGCGTTCC GCGAGCAGGC GAACCGGCTG
                251
                301
                     ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCTGA TGCTGATTCG
                     GACGATAGAC AATACGTTCA ACCGCATCTG GCGGGTCAAT TCCCAGCGTC
                351
                401
                     CGTGGATGAT GCAGTTTCTC GTCTATTGGG CTTTACTGAC GTTCGGGCCG
15
                451
                     CTGTCTTTGG GCGTGGGCAT TTCCTTTATG GTCGGCTCGG TACAGGATGC
                501
                     CGCGCTTGCC TCAGGTGCGC CGCAGTGGTC GGGCGCGTTG CGAACGGCGG
                551
                    CGACGCTGAC CTTCATGACG CTTTTGCTGT GGGGGCTGTA CCGCTTCGTG
                601
                     CCAAACCGCT TCGTTCCCGC GCGGCAGGCG TTTGTCGGGG CTTTGGCAAC
                651
                     AGCGTTTTGT CTGGAAACCG CGCGCTCCCT CTTCACTTGG TATATGGGCA
20
                     ATTTCGACGG CTACCGCTCG ATTTACGGCG CGTTTGCCGC CGTGCCGTTT
                701
                751
                     TTTCTGTTGT GGCTGAACCT GTTGTGGACG CTGGTCTTGG GCGGCGCGGT
                801 GCTGACTTCT TCACTCTCCT ACTGGCAGGG AGAAGCGTTC CGCAGGGGCT
                851
                    TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT GCTGCTTCTG
                     GATGCGGCGC AAAAAGAAGG CAAAGCCTTG CCTGTTCAGG AGTTCAGACG
                901
25
                951
                     GCATATCAAT ATGGGCTACG ACGAGTTGGG CGAGCTTTTG GAAAAGCTGG
               1001
                     CGCGGCACGG CTACATCTAT TCCGGCAGAC AGGGTTGGGT GTTGAAAACG
                     GGGGCGGATT CGATTGAGTT GAACGAACTC TTCAAGCTCT TCGTTTACCG
               1051
               1101
                     TCCGTTGCCT GTGGAAAGGG ATCATGTGAA CCAAGCTGTC GATGCGGTAA
               1151
                     TGACACCGTG TTTGCAGACT TTGAACATGA CGCTGGCAGA GTTTGACGCT
30
               1201
                     CAGGCGAAAA AACGGCAGTA G
```

This corresponds to the amino acid sequence <SEQ ID 622; ORF144-1>:

```
MTFLORLOGL ADNKICAFAW FVVRRFDEER VPQAAASMTF TTLLALVPVL
                    TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI NAFREQANRL
                    TAIGSVMLVV TSLMLIRTID NTFNRIWRVN SQRPWMMQFL VYWALLTFGP
               101
35
                    LSLGVGISFM VGSVQDAALA SGAPQWSGAL RTAATLTFMT LLLWGLYRFV
               151
                    PNRFVPARQA FVGALATAFC LETARSLFTW YMGNFDGYRS IYGAFAAVPF
               251
                    FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRGFDSRGRF DDVLKILLLL
                    DAAQKEGKAL PVQEFRRHIN MGYDELGELL EKLARHGYIY SGRQGWVLKT
               301
                    GADSIELNEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT LNMTLAEFDA
40
                401
                    QAKKRQ*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF144 shows 96.3% identity over a 136aa overlap with an ORF (ORF144a) from strain A of N. meningitidis:

45		10	20	30	40	50	60
	orf144.pep	MTFLQRLQGLADNKI	CAFAWEVV	RRFDEERVPQX	AASMTFTTLI	ALVPVLTVMV	AVASIF
			ПППП	14111111Ï	$\Pi \Pi \Pi \Pi \Pi \overline{\Pi}$	111111111	TITTE
	orfl44a	MTFLQRLQGLADNKI		RRFDEERVPQA	aasmtftt <u>li</u>	ALVPVLTVMV	AVASIF
60		10	20	30	40	50	60
50							
	61.44	70	80	90	100	110	120
	orf144.pep	PVFDRWSDSFVSFVN	ZTIVPXGA	DMVFDYINAFR	EOANRLTAIC	SVMLVVTSLM	LIRTID
•	63 440			1 1 1 1 1 1 1	1111111111	111111111	111111
55	orf144a	PVFDRWSDSFVSFVN					
33		70	80	. 90	100	110	120
		130					•
	orfl44.pep	NTFNRIWRVXXQRPWN	4				
		[[]]					
60	orf144a	NTFNRIWRVNSQRPW	MQFLVYW	ALLTFGPLSLG	VGISFXVGSV	'QDAALASGA F	OWSGAL

WO 99/24578 PCT/IB98/01665

-349-

180 160 170 140 150 130 The complete length ORF144a nucleotide sequence <SEQ ID 623> is: 1 ATGACCTTTT TACAACGTTT GCAAGGTTTG GCAGACAATA AAATCTGTGC 51 GTTTGCATGG TTCGTCGTCC GCCGCTTTGA TGAAGAACGC GTACCGCAGG CGGCGGCAAG CATGACGTTT ACGACACTGC TGGCACTCGT CCCCGTGCTG 5 151 ACCGTGATGG TGGCGGTCGC TTCGATTTTC CCCGTGTTCG ACCGNTGGTC 101 GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG CAGGGCGCGG 201 ACATGGTNTT CGACTATATC AATGCGTTCC GCGAGCAGGC GAACCGGCTG 251 ACGGCAATCG GCAGCGTGAT GCTGGTCGTT ACCTCGCNGA TGCTGATTCG 301 GACGATAGAC AATACGTTCA ACCGCATCTG GCGGGTCAAT TCCCAGCGTC 351 10 CGTGGATGAT GCAGTTTCTC GTCTATTGGG CTTTACTGAC GTTCGGGCCG 401 CTGTCTTTGG GCGTGGGCAT TTCCTTTATN GTCGGCTCGG TACAGGATGC CGCGCTTGCC TCAGGTGCGC CGCAGTGGTC GGGCGCGTTG CGAACGGCGG 451 501 CGACGCTGAN CTTCATGACG CTTTTGCTGT GGGGGCTGTA CCGCTNCGTG 551 CCAAACCGCT TCGTTCCCGC GCGGCANGCG TTTGTCGGGG CTTTGGCAAC 15 601 651 AGCGTTCTGT CTGGAAACCG CGCGTTCCCT CTTTACTTGG TATATGGGCA 701 ATTTCGACGG CTACCGCTCG ATTTACGGNG CGTTTGCCGC CGTGCCGTTT TTTCTGTTGT GGCTGAACCT GTTGTGGACG CTGGTCTTGG GCGGCGCGGT 751 GCTGACTTCT TCACTCTCCT ACTGGCAGGG AGAAGCGTTC CGCAGGGNCT 801 TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT GCTGCTTCTG 851 20 901 GATGCGGCGC AAAAAGAAGG CNAAGCCTTG CCTGTTCAGG AGTTCAGACG GCATATCAAT ATGGGCTACG ACGAGTTGGG CGAGCTTTTG GAAAAGCTGG 951 CGCGGCACGG CTACATCTAT TCCGGCAGAC AGGGTTGGGT GTTGAAAACG GGGGCGGATT CGATTGAGTT GAACGAACTC TTCAAGCTCT TCGTTTACCG 1001 1051 TCCGTTGCCT GTGGAAAGGG ATCATGTGAA CCAAGCTGTC GATGCGGTAA 1101 25 TGATGCCGTG TTTGCAGACT TTGAACATGA CGCTGGCAGA GTTTGACGCT 1151 CAGGCGAAAA AACAGCAGCA ATCTTGA 1201 This encodes a protein having amino acid sequence <SEQ ID 624>: 1 MTFLORLOGL ADNKICAFAW FVVRRFDEER VPQAAASMTF TTLLALVPVL TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI NAFREQANRL TAIGSVMLVV TSXMLIRTID NTFNRIWRVN SQRPWMMQFL VYWALLTFGP 30 51 101 LSLGVGISFX VGSVQDAALA SGAPQWSGAL RTAATLXFMT LLLWGLYRXV 151 PNRFVPARXA FVGALATAFC LETARSLFTW YMGNFDGYRS IYGAFAAVPF FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRXFDSRGRF DDVLKILLLL 201 251 DAAQKEGXAL PVQEFRRHIN MGYDELGELL EKLARHGYIY SGRQGWVLKT 35 301 GADSIELNEL FKLFVYRPLP VERDHVNQAV DAVMMPCLQT LNMTLAEFDA 351 QAKKQQQS* 401 ORF144a and ORF144-1 show 97.8% identity in 406 aa overlap: MTFLQRLQGLADNKICAFAWFVVRRFDEERVPQAAASMTFTTLLALVPVLTVMVAVASIF orf144a.pep \mathbf{m} 40 MTFLQRLQGLADNKICAFAWFVVRRFDEERVPQAAASMTFTTLLALVPVLTVMVAVASIF orf144-1 PVFDRWSDSFVSFVNQTIVPQGADMVFDYINAFREQANRLTAIGSVMLVVTSXMLIRTID orf144a.pep PVFDRWSDSFVSFVNQTIVPQGADMVFDYINAFREQANRLTAIGSVMLVVTSLMLIRTID 45 orf144-1 NTFNRIWRVNSQRPWMMQFLVYWALLTFGPLSLGVGISFXVGSVQDAALASGAPQWSGAL orf144a.pep NTFNRIWRVNSQRPWMMQFLVYWALLTFGPLSLGVGISFMVGSVQDAALASGAPQWSGAL orf144-1 50 RTAATLXFMTLLLWGLYRXVPNRFVPARXAFVGALATAFCLETARSLFTWYMGNFDGYRS orf144a.pep RTAATLTFMTLLLWGLYRFVPNRFVPARQAFVGALATAFCLETARSLFTWYMGNFDGYRS orf144-1 IYGAFAAVPFFLLWLNLLWTLVLGGAVLTSSLSYWQGEAFRRXFDSRGRFDDVLKILLLL 55 orfl44a.pep IYGAFAAVPFFLLWLNLLWTLVLGGAVLTSSLSYWQGEAFRRGFDSRGRFDDVLKILLLL orf144-1 DAAQKEGXALPVQEFRRHINMGYDELGELLEKLARHGYIYSGRQGWVLKTGADSIELNEL orf144a.pep 60 DAAQKEGKALPVQEFRRHINMGYDELGELLEKLARHGYIYSGRQGWVLKTGADSIELNEL orf144-1 FKLFVYRPLPVERDHVNQAVDAVMMPCLQTLNMTLAEFDAQAKKQQQS orf144a.pep FKLFVYRPLPVERDHVNQAVDAVMTPCLQTLNMTLAEFDAQAKKRQ 65 orf144-1

Homology with a predicted ORF from N. gonorrhoeae

ORF144 shows 91.2% identity over a 136aa overlap with a predicted ORF (ORF144ng) from *N.gonorrhoeae*:

```
5
                     MTFLQRLQGLADNKICAFAWFVVRRFDEERVPQXAASMTFTTLLALVPVLTVMVAVASIF
         orfl44.pep
                     14141 47 147714411441:111:341141 477744141111441414111114
         orfl44ng
                     MTFLQCWQGSADNKICAFAWFVIRRFSEERVPQAAASMTFTTLLALVPVLTVMVAVASIF
                                                                             60
         orf144.pep
                     PVFDRWSDSFVSFVNQTIVPXGADMVFDYINAFREQANRLTAIGSVMLVVTSLMLIRTID
10
                     orfl44ng
                     PVFDRWSDSFVSFVNQTIVPQGADMVFDYIDAFRDQANRLTAIGSVMLVVTSLMLIRTID
                     NTFNRIWRVXXQRPWM
         orf144.pep
                                                                            136
                     1:1111111 :11111
15
         orfl44ng
                     NAFNRIWRVNTQRPWMMQFLVYWALLTFGPLSLGVGISFMVGSVQDSVLSSGAQQWADAL
```

The complete length ORF144ng nucleotide sequence <SEQ ID 625> is predicted to encode a protein having amino acid sequence <SEQ ID 626>:

```
MTFLQCWQGS ADNKICAFAW FVIRRFSEER VPQAAASMTF TTLLALVPVL
                    TVMVAVASIF PVFDRWSDSF VSFVNQTIVP QGADMVFDYI DAFRDQANRL
                51
20
                    TAIGSVMLVV TSLMLIRTID NAFNRIWRVN TQRPWMMQFL VYWALLTFGP
               101
                    LSLGVGISFM VGSVQDSVLS SGAQQWADAL KTAARLAFMT LLLWGLYRFV
               151
                    PNREVPARQA FVGALITAFC LETARFLFTW YMGNFDGYRS IYGAFAAVPF
               201
                    FLLWLNLLWT LVLGGAVLTS SLSYWQGEAF RRGFDSRGRF DDVLKILLLL
               251
               301
                    DAAQKEGRTL SVQEFRRHIN MGYDELGELL EKLARYGYIY SGRQGWVLKT
25
               351
                    GADSIELSEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT LNMTLAEFDA
               401
                    QAKKQQQS*
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 627>:

```
1
                   ATGACCTTTT TACAACGTTG GCAAGGTTTG GCGGACAATA AAATCTGTGC
                   ATTTGCATGG TTCGTCATCC GCCGTTTCAG TGAAGAGCGC GTACCGCAGG
30.
                   CAGCGGCGAG CATGACGTTT ACGACACTGC TGGCACTCGT CCCCGTACTG
              101
                   ACCGTAATGG TCGCGGTCGC TTCGATTTTC CCCGTGTTCG ACCGCTGGTC
              151
              201
                   GGATTCGTTC GTCTCCTTCG TCAACCAAAC CATTGTGCCG CAGGGCGCGG
                   ATATGGTGTT CGACTATATC GACGCATTCC GCGATCAGGC AAACCGGCTG
              251
                   ACCGCCATCG GCAGCGTGAT GCTGGTCGTA ACCTCGCTGA TGCTGATTCG
              301
35
              351
                   GACGATAGAC AATGCGTTCA ACCGCATCTG GCGGGTTAAC ACGCAACGCC
                   CCTGGATGAT GCAGTTCCTC GTTTATTGGG CGTTGCTGAC TTTCGGGCCT
              401
               451
                   501
                   CAAGGCTGGC TTTCATGACG CTTTTGCTGT GGGGGCTGTA CCGCTTCGTG
              551
40
               601
                   CCCAACCGCT TCGTGCCCGC CCGGCAGGCG TTTGTCGGAG CTTTGATTAC
               651
                   GGCATTCTGC CTGGAGACGG CACGTTTCCT GTTCACCTGG TATATGGGCA
                   ATTTCGACGG CTACCGCTCG ATTTACGGCG CATTTGCCGC CGTGCCGTTT
              701
                   TTCCTGCTGT GGTTAAACCT GCTGTGGACG CTGGTCTTGG GCGGGGGGGT
              751·
              801
                   GCTGACTTCG TCGCTGTCTT ATTGGCAGGG CGAGGCCTTC CGCAGGGGAT
45
                   TCGACTCGCG CGGACGGTTT GACGACGTGT TGAAAATCCT GCTGCTTCTG
              851
               901
                   GATGCGGCGC AAAAAGAAGG CCGAACCCTG TCCGTTCAGG AGTTCAGACG
               951
                   GCATATCAAT ATGGGTTACG ATGAATTGGG CGAGCTTTTG GAAAAGCTGG
              1001
                   CGCGGTACGG CTATATCTAT TCCGGCAGAC AGGGCTGGGT TTTGAAAACG
              1051
                   GGGGCGGATT CGATTGAGTT GAGCGAACTC TTCAAGCTCT TCGTGTACCG
50
                   CCCGTTGCct gtggaAAGGG ATCATGTGAA CCAAGCTGtc gaTGCGGTAA
              1101
                   TGAcgccgtG TTTGCAGACT TTGAACATGA CGCTGGCGGA GTTTGACGCT
              1151
                   CAGgcgAAAA AACAGCAGCA GTCTTGA
```

This encodes a variant of ORF144ng, having the amino acid sequence <SEQ ID 628; ORF144ng-1>:

						TTLLALVPVL
55	51	TVMVAVASIF	PVFDRWSDSF	VSFVNQTIVP	QGADMVFDYI	DAFRDQANRL
	101	TAIGSVMLVV	TSLMLIRTID	NAFNRIWRVN	TORPWMMQFL	VYWALLTFGP
						LLLWGLYRFV
						IYGAFAAVPF
	251	FLLWLNLLWT	LVLGGAVLTS	SLSYWQGEAF	RRGFDSRGRF	DDVLKILLLL
60	301	DAAQKEGRTL	SVQEFRRHIN	MGYDELGELL	EKLARYGYIY	SGRQGWVLKT

351 GADSIELSEL FKLFVYRPLP VERDHVNQAV DAVMTPCLQT LNMTLAEFDA

401 QAKKQQQS*

ORF144ng-1 and ORF144-1 show 94.1% identity in 406 aa overlap:

```
orf144ng-1.pep MTFLQRWQGLADNKICAFAWFVIRRFSEERVPQAAASMTFTTLLALVPVLTVMVAVASIF
                  5
                  MTFLQRLQGLADNKICAFAWFVVRRFDEERVPQAAASMTFTTLLALVPVLTVMVAVASIF
       orf144-1
       orf144ng-1.pep PVFDRWSDSFVSFVNQTIVPQGADMVFDYIDAFRDQANRLTAIGSVMLVVTSLMLIRTID
                  PVFDRWSDSFVSFVNQTIVPQGADMVFDYINAFREQANRLTAIGSVMLVVTSLMLIRTID
10
       orf144-1
       orfl44ng-1.pep NAFNRIWRVNTQRPWMMQFLVYWALLTFGPLSLGVGISFMVGSVQDSVLSSGAQQWADAL
                  NTFNRIWRVNSQRPWMMQFLVYWALLTFGPLSLGVGISFMVGSVQDAALASGAPQWSGAL
       orf144-1
15
       orf144ng-1.pep KTAARLAFMTLLLWGLYRFVPNRFVPARQAFVGALITAFCLETARFLFTWYMGNFDGYRS
                  RTAATLTFMTLLLWGLYRFVPNRFVPARQAFVGALATAFCLETARSLFTWYMGNFDGYRS
       orf144-1
       orf144ng-1.pep IYGAFAAVPFFLLWLNLLWTLVLGGAVLTSSLSYWQGEAFRRGFDSRGRFDDVLKILLLL
20
                   IYGAFAAVPFFLLWLNLLWTLVLGGAVLTSSLSYWQGEAFRRGFDSRGRFDDVLKILLLL
       orf144-1
        orf144ng-1.pep DAAQKEGRTLSVQEFRRHINMGYDELGELLEKLARYGYIYSGRQGWVLKTGADSIELSEL
                   25
                  DAAQKEGKALPVQEFRRHINMGYDELGELLEKLARHGYIYSGRQGWVLKTGADSIELNEL
        orf144-1
        orf144ng-1.pep FKLFVYRPLPVERDHVNQAVDAVMTPCLQTLNMTLAEFDAQAKKQQQS
                   FKLFVYRPLPVERDHVNQAVDAVMTPCLQTLNMTLAEFDAQAKKRQ
30
        orf144-1
```

On this basis of this analysis, including the identification of several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

35 Example 75

40

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 629>:

```
1 ..AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC CCGAACTGGA
51 AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC CTCTGGCTCA
101 GCACCGATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT GCTGCAACGC
151 ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC TGCGCCAAAG
201 CCTGCTTGAA ACACGGGAAC ACGGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 630; ORF146>:

- 1 ..RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTDMRQE ISALVILLQR 51 TRRKWLDAHE RQHLRQSLLE TREHG*
- Further work revealed the complete nucleotide sequence <SEQ ID 631>:

	1	ATGAACACCT	CGCAACGCAA	CCGCCTCGTC	AGCCGCTGGC	TCAACTCCTA
			CGCTACCGCC			
	101	CCGTCCTGTT	CGCCACCGCC	TCCGCCCGGC	TGCTCCACCT	CCAACACGGC
			GGATGACCGT			
50	201	AGGGGCGATT	TACTCCAAGG	CGGTGGAACG	TATGCTCGGC	ACGGTCATCG
~ ~	251					TTATTTCCAC
	301	GGCAACCTCC	TCTTCTACCT	CACCGTCGGC	ACGGCAAGCG	CACTGGCCGG
	351	CTGGGCGGCG	GTCGGCAAAA	ACGGCTACGT	CCCTATGCTG	GCAGGGCTGA
	401	CGATGTGTAT	GCTCATCGGC	GACAACGGCA	GCGAATGGCT	CGACAGCGGA
55	451	CTCATGCGCG	CCATGAACGT	CCTCATCGGC	GCGGCCATCG	CCATCGCCGC

	501	CGCCAAACTG	CTGCCGCTGA	AATCCACACT	GATGTGGCGT	TTCATGCTTG
·	551	CCGACAACCT	GGCCGACTGC	AGCAAAATGA	TTGCCGAAAT	CAGCAACGGC
	601	AGGCGCATGA	CCCGCGAACG	CCTCGAGGAG	AACATGGCGA	AAATGCGCCA
_	651	AATCAACGCA	CGCATGGTCA	AAAGCCGCAG	CCATCTCGCC	GCCACATCGG
5	701	GCGAAAGCCG	CATCAGCCCC	GCCATGATGG	AAGCCATGCA	GCACGCCCAC
	751	CGTAAAATCG	TCAACACCAC	CGAGCTGCTC	CTGACCACCG	CCGCCAAGCT
	801	GCAATCTCCC	AAACTCAACG	GCAGCGAAAT	CCGGCTGCTT	GACCGCCACT
	851	TCACACTGCT	CCAAACCGAC	CTGCAACAAA	CCGTCGCCCT	TATCAACGGC
• •	901	AGACACGCCC	GCCGCATCCG	CATCGACACC	GCCATCAACC	CCGAACTGGA
10	951	AGCCCTCGCC	GAACACCTCC	ACTACCAATG	GCAGGGCTTC	CTCTGGCTCA
	1001	GCACCAATAT	GCGTCAGGAA	ATTTCCGCCC	TCGTCATCCT	GCTGCAACGC
	1051	ACCCGCCGCA	AATGGCTGGA	TGCCCACGAA	CGCCAACACC	TGCGCCAAAG
	1101		ACACGGGAAC			

This corresponds to the amino acid sequence <SEQ ID 632; ORF146-1>:

```
1 MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA SARLLHLQHG
51 EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG VLWLNQHYFH
101 GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWLDSG
151 LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC SKMIAEISNG
201 RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP AMMEAMQHAH
251 RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD LQQTVALING
301 RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE ISALVILLQR
351 TRRKWLDAHE RQHLRQSLLE TREHG*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF146 shows 98.6% identity over a 74aa overlap with an ORF (ORF146a) from strain A of N. meningitidis:

	orf146.pep			RHAI	10 RRIRIDTAINE	20 ELEALAEHLI	30 HYQWQGF
30	orf146a	KLNGSEIRLLDRHE	TLLQTDLQQ	 VALINGRHAI			HYQWQGF
		280	290	300	310	320	330
		40	50	60	. 30		
35	orf146.pep	LWLSTDMRQEISAL	VILLORTRR	WLDAHEROHI	70 LROSLLETREH	GX	
33	orf146a	: LWLSTNMRQEISAL	 VILLQRTRRI			: :SX	
		340	350	360	370		

The complete length ORF146a nucleotide sequence <SEQ ID 633> is:

40	1	ATGAACACCT	CGCAACGCAA	CCGCCTCGTC	AGCCGCTGGC	TCAACTCCTA
40	51	CGAACGCTAC	CGCTACCGCC	GCCTCATCCA	CGCCGTCCGG	CTCGGCGGGG
	101	CCGTCCTGTT	CGCCACCGCC	TCCGCCCGGC	TGCTCCACCT	CCAACACGGC
	151	GAGTGGATAG	GGATGACCGT		CTCGGCATGC	
	201	AGGGGCGATT	TACTCCAAGG		TATGCTCGGC	
	251	GGCTGGGCGC	GGGTTTGGGC		TGAACCAGCA	
45	301	GGCAACCTCC	TCTTCTACCT			CACTGGCCGG
	351	CTGGGCGGCG	GTCGGCAAAA		CCCTATGCTG	GCGCGCCTCA
	401	CGATGTGCAT	GCTCATCGGC		GCGAATGGTT	CGACAGCGGC
	451				GCGGCCATCG	CCATCCCCCC
	501	CGCCAAACTG	CTGCCGCTGA		GATGTGGCGT	TTCATGCTTG
50	551	CCGACAACCT			TTGCCGAAAT	
	601	AGGCGCATGA	CCCGCGAACG	CCTCGAAGAG	AACATGGCGA	AAATCCCCCA
	651	AATCAACGCA	CGCATGGTCA	AAAGCCGCAG	CCACCTCGCC	CCCACAMOCCA
	701	GCGAAAGCCG	CATCAGCCCC	CCCATGATGG	AAGCCATGCA	CCACACCATCGG
	751	CGTAAAATTG	TCAACACCAC	CCACCTCCTC	CTGACCACCG	CCCCCAC
55	801	GCAATCTCCC	AAACTCAACG	GCAGCGAAAT	CTGACCACCG	
	851			CTGCAACAAA		GACCGCCACT
	901		CCCCCATCCC	CARCCACACA		TATCAACGGC
	951	AGCCCTCGCC	CAACACCTCC	ACTINGACACC		
	1001	GCACCAATAT				
60	1051		A ATTCCCTTCCA	ATTTCCGCCC	TCGTCATCCT	GCTGCAACGC
00	1101	CCTCCTTCAA	ACTOCCONTO	TGCCCACGAA	CGCCAACACC	TGCGCCAAAG
	TIOT	CCIGCIIGAA	ACACGGGAAC	ACAGTTGA.		

This encodes a protein having amino acid sequence <SEQ ID 634>:

```
1 MNTSQRNRLV SRWLNSYERY RYRRLIHAVR LGGAVLFATA SARLLHLQHG
51 EWIGMTVFVV LGMLQFQGAI YSKAVERMLG TVIGLGAGLG VLWLNQHYFH
101 GNLLFYLTVG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWFDSG
5 151 LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLTDC SKMIAEISNG
201 RRMTRERLEE NMAKMRQINA RMVKSRSHLA ATSGESRISP AMMEAMQHAH
251 RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD LQQTVALING
301 RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE ISALVILLQR
351 TRRKWLDAHE RQHLRQSLLE TREHS*
```

ORF146a and ORF146-1 show 99.5% identity in 374 aa overlap:

```
MNTSQRNRLVSRWLNSYERYRYRRLIHAVRLGGAVLFATASARLLHLQHGEWIGMTVFVV
        orf146a.pep
                   orf146-1
                   MNTSQRNRLVSRWLNSYERYRYRRLIHAVRLGGAVLFATASARLLHLQHGEWIGMTVFVV
15
        orf146a.pep
                   LGMLQFQGAIYSKAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTVGTASALAGWAA
                   orf146-1
                   LGMLQFQGAIYSKAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTVGTASALAGWAA
                   VGKNGYVPMLAGLTMCMLIGDNGSEWFDSGLMRAMNVLIGAAIAIAAAKLLPLKSTLMWR
        orf146a.pep
                   20
        orf146-1
                   VGKNGYVPMLAGLTMCMLIGDNGSEWLDSGLMRAMNVLIGAAIAIAAAKLLPLKSTLMWR
        orf146a.pep
                   {\tt FMLADNLTDCSKMIAEISNGRRMTRERLEENMAKMRQINARMVKSRSHLAATSGESRISP}
                   25
        orf146-1
                   FMLADNLADCSKMIAEISNGRRMTRERLEENMAKMRQINARMVKSRSHLAATSGESRISP
        orf146a.pep
                   {\tt AMMEAMQHAHRKIVNTTELLLTTAAKLQSPKLNGSEIRLLDRHFTLLQTDLQQTVALING}
                   orf146-1
                   AMMEAMQHAHRKIVNTTELLLTTAAKLQSPKLNGSEIRLLDRHFTLLQTDLQQTVALING
30
        orf146a.pep
                   RHARRIRIDTAINPELEALAEHLHYQWQGFLWLSTNMRQEISALVILLQRTRRKWLDAHE
                   orf146-1
                   RHARRIRIDTAINPELEALAEHLHYQWQGFLWLSTNMRQEISALVILLQRTRRKWLDAHE
35
                   RQHLRQSLLETREHSX
        orf146a.pep
                   1111111111111111
                   ROHLROSLLETREHGX
        orf146-1
```

Homology with a predicted ORF from N.gonorrhoeae

40 ORF146 shows 97.3% identity over a 75aa overlap with a predicted ORF (ORF146ng) from N.gonorrhoeae:

An ORF146ng nucleotide sequence <SEQ ID 635> was predicted to encode a protein having amino

50 acid sequence <SEQ ID 636>:

```
1 MSGVRFPSPA PIPSTDPPSG SLCFFTFPLQ TASDMNSSQR KRLSGRWLNS
                    YERYRHRRLI HAVRLGGTVL FATALARLLH LOHGEWIGMT VFVVLGMLQF
                51
               101
                    QGAIYSNAVE RMLGTVIGLG AGLGVLWLNQ HYFHGNLLFY LTIGTASALA
                    GWAAVGKNGY VPMLAGLTMC MLIGDNGSEW LDSGLMRAMN VLIGAAIAIA
               151
55
                    AAKLLPLKST LMWRFMLADN LADCSKMIAE ISNGRRMTRE RLEQNMVKMR
               201
                    QINARMVKSR SHLAATSGES RISPSMMEAM QHAHRKIVNT TELLLITTAAK
                251
                    LQSPKLNGSE IRLLDRHFTL LQTDLQQTAA LINGRHARRI RIDTAINPEL
                301
                    EALAEHLHYQ WQGFLWLSTN MRQEISALVI PLQRTRRKWL DAHERQHLRQ
                351
                    SLLETREHG*
                401
```

60 Further work revealed the following gonococcal DNA sequence <SEQ ID 637>:

```
ATGAACTCCT CGCAACGCAA ACGCCTTTCC GgccGCTGGC TCAACTCCTA
                          51
                                 CGAACGCTac cGCCaccGCC GCCTCATACA TGCCGTGCGG CTCGGCggaa
                         101
                                 ccgtCCTGTT CGCCACCGCA CTCGCCCGgc tACTCCACCT CCAacacggc
                                 GAATGGATAG GGAtgaCCGT CTTCGTCGTC CTCGGCATGC TCCAGTTCCA
                         151
 5
                         201
                                 AGGCgcgatt tActccaacg cggtgGAacg taTGctcggt acggtcatcg
                         251
                                 ggctgGGCGC GGGTTTGGgc gTTTTATGGC TGAACCAGCA TTAtttccac
                                ggcaacCTcc tettetacet gaccategge aeggcaageg caetggeegg
                         301
                                 ctGGGCGGCG GTCGGCAAAA acggctacgt ccctatgctg GCGGGGctgA
                         351
                         401
                                 CGATGTGCAT geteatcggc gACAACGGCA GCGAATGGCT CGACAGCGGC
10
                                 CTGATGCGCG CGATGAACGT CCTCATCGGC GCCGCCATCG CCATTGCCGC
                         451
                                CGCCAAACTG CTGCCGCTGA AATCCACACT GATGTGGCGT TTCATGCTTG
                         501
                                CCGACAACCT GGCCGACTGC AGCAAAATGA TTGCCGAAAT CAGCAACGGC
                         551
                         601
                                AGGCGTATGA CGCGCGAACG TTTGGAGCAG AATATGGTCA AAATGCGCCA
                                AATCAACGCA CGCATGGTCA AAAGCCGCAG CCACCTCGCC GCCACATCGG
                         651
15
                         701
                                GCGAAAGCCG CATCAGCCCC TCCATGATGG AAGCCATGCA GCACGCCCAC
                                CGCAAAATCG TCAACACCAC CGAGCTGCTC CTGACCACCG CCGCCAAGCT
                         751
                                GCAATCTCCC AAACTCAACG GCAGCGAAAT CCGGCTGCTC GACCGCCACT
                         801
                         851
                                TCACACTGCT CCAAACCGAC CTGCAACAAA CCGCCGCCCT CATCAACGGC
                                AGACACGCCC GCCGCATCCG CATCGACACC GCCATCAACC CCGAACTGGA AGCCCTCGCC GAACACCTCC ACTACCAATG GCAGGGCTTC CTCTGGCTCA
                        901
20.
                         951
                       1001
                                GCACCAATAT GCGTCAGGAA ATTTCCGCCC TCGTCATCCT GCTGCAACGC
                                ACCCGCCGCA AATGGCTGGA TGCCCACGAA CGCCAACACC TGCGCCAAAG
                       1051
                       1101
                                CCTGCTTGAA ACACGGGAAC ACGGCTGA
        This corresponds to the amino acid sequence <SEQ ID 638; ORF146ng-1>:
25
                                MNSSQRKRLS GRWLNSYERY RHRRLIHAVR LGGTVLFATA LARLLHLQHG
                          51
                                EWIGHTVFVV LGMLQFQGAI YSNAVERMLG TVIGLGAGLG VLWLNQHYFH
                                GNLLFYLTIG TASALAGWAA VGKNGYVPML AGLTMCMLIG DNGSEWLDSG
                        101
                        151
                                LMRAMNVLIG AAIAIAAAKL LPLKSTLMWR FMLADNLADC SKMIAEISNG
                                RRMTRERLEQ NMVKMRQINA RMVKSRSHLA ATSGESRISP SMMEAMQHAH
                        201
30
                                RKIVNTTELL LTTAAKLQSP KLNGSEIRLL DRHFTLLQTD LQQTAALING
                        251
                                RHARRIRIDT AINPELEALA EHLHYQWQGF LWLSTNMRQE ISALVILLQR
                                TRRKWLDAHE ROHLROSLLE TREHG*
        ORF146ng-1 and ORF146-1 show 96.5% identity in 375 aa overlap
                orf146-1.pep
                                        {\tt MNTSQRNRLVSRWLNSYERYRYRRLIHAVRLGGAVLFATASARLLHLQHGEWIGMTVFVV}
35 -
                                        orfl46ng-1
                                        MNSSQRKRLSGRWLNSYERYRHRRLIHAVRLGGTVLFATALARLLHLQHGEWIGMTVFVV
                orf146-1.pep
                                        LGMLQFQGAIYSKAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTVGTASALAGWAA
                                        40
                orf146ng-1
                                        LGMLQFQGAIYSNAVERMLGTVIGLGAGLGVLWLNQHYFHGNLLFYLTIGTASALAGWAA
                orf146-1.pep
                                        VGKNGYVPMLAGLTMCMLIGDNGSEWLDSGLMRAMNVLIGAAIAIAAAKLLPLKSTLMWR
                                        orf146ng-1
                                        VGKNGYVPMLAGLTMCMLIGDNGSEWLDSGLMRAMNVLIGAAIAIAAAKLLPLKSTLMWR
45
                                        FMLADNLADCSKMIAEISNGRRMTRERLEENMAKMRQINARMVKSRSHLAATSGESRISP
                orf146-1.pep
                                        orf146ng-1
                                        {	t FMLADNLADCSKMIAEISNGRRMTRERLEQNMVKMRQINARMVKSRSHLAATSGESRISP}
50
                                        AMMEAMQHAHRKIVNTTELLLTTAAKLQSPKLNGSEIRLLDRHFTLLQTDLQQTVALING
                orf146-1.pep
                                        SMMEAMQHAHRKIVNTTELLLTTAAKLQSPKLNGSEIRLLDRHFTLLQTDLQQTAALING
                orf146ng-1
                orf146-1.pep
                                        RHARRIRIDTAINPELEALAEHLHYQWQGFLWLSTNMRQEISALVILLQRTRRKWLDAHE
55
                                        (1111) | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1
                orf146ng-1
                                       RHARRIRIDTAINPELEALAEHLHYQWQGFLWLSTNMRQEISALVILLQRTRRKWLDAHE
                orf146-1.pep
                                       RQHLRQSLLETREHGX
                                        60
                orf146ng-1
                                       RQHLRQSLLETREHGX
```

Furthermore, ORF146ng-1 shows homology with a hypothetical E.coli protein:

sp|P33011|YEEA_ECOLI HYPOTHETICAL 40.0 KD PROTEIN IN COBU-SBMC INTERGENIC REGION >gi|1736674|gnl|PID|d1016553 (D90838) ORF_ID:0348#20; similar to [SwissProt Accession Number P33011] [Escherichia coli] >gi|1736682|gnl|PID|d1016560 (D90839) ORF_ID:0348#20; similar to [SwissProt Accession Number P33011] [Escherichia coli]

```
>gi|1788318 (AE000292) f352; 100% identical to fragment YEEA ECOLI SW: P33011 but
          has 203 additional C-terminal residues [Escherichia coli] Length = 352
           Score = 109 bits (271), Expect = 2e-23
           Identities = 89/347 (25%), Positives = 150/347 (42%), Gaps = 21/347 (6%)
5
          Query: 20 YRHRRLIHAVRLGGTVLFATALARLLHLQHGEWIGMTVFVVLGMLQFQGAIYSNAVERML 79
                     YRH R++H R+ L + RL + W +T+ V++G + F G + A ER+
          Sbjct: 15 YRHYRIVHGTRVALAFLLTFLIIRLFTIPESTWPLVTMVVIMGPISFWGNVVPRAFERIG 74
10
          Query: 80 GTVIGLGAGLGVLWLNQHYFHGNLLFYLTIGTASALAGWAAVGKNGYVFMLAGLTMCMLI 139
                     GTV+G GL L L + A L GW A+GK Y +L G+T+ +++
          Sbjct: 75 GTVLGSILGLIALQLE---LISLPLMLVWCAAAMFLCGWLALGKKPYQGLLIGVTLAIVV 131
          Query: 140 GDNGSEWLDSGLMRAMNVLIGXXXXXXXXKLLPLKSTLMWRFMLADNLADCSKMIAEISN 199
15
                         E +D+ L R+ +V++G + P ++ +WR LA +L + +++
          Sbjct: 132 GSPTGE-IDTALWRSGDVILGSLLAMLFTGIWPQRAFIHWRIQLAKSLTEYNRVYQSAFS 190
          Query: 200 GRRMTRERLEQNMVKMRQINARMVKSRSHLAATSGESRISPSMMEAMQHAHRKIVNXXXX 259
                       + R RLE ++ K+
                                         VK R +A S E+RI S+ E +Q +R +V
20
          Sbjct: 191 PNLLERPRLESHLQKLL---TDAVKMRGLIAPASKETRIPKSIYEGIQTINRNLVCMLEL 247
          Query: 260 XXXXXXXQSPK---LNGSEIRLLDRHFXXXXXXXXXAALINGRHARRIRIDTAINPEL 316
                                   LN ++R D
                                                         AL G
          Sbjct: 248 QINAYWATRPSHFVLLNAQKLR--DTQHMMQQILLSLVHALYEGNPQPVFANTEKLNDAV 305
25
          Query: 317 EALAEHL--HYQWQ-----GFLWLSTNMRQEISALVILLQRTRRK 354
                     E L + L H+ +
                                        G++WL+
                                                  ++ L L+ R RK
          Sbjct: 306 EELRQLLNNHHDLKVVETPIYGYVWLNMETAHQLELLSNLICRALRK 352
```

On the basis of this analysis, including the identification of several transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 76

30

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 639>

```
..GCCGAAGACA CGCGCGTTAC CGCACAGCTT TTGAGCGCGT ACGGCATTCA
35
                  51
                        GGGCAAACTC GTCAGTGTGC GCGAACACAA CGAACGGCAG ATGGCGGACA
                        AGATTGTCGG CTATCTTTCA GACGGCATGG TTGTGGCACA GGTTTCCGAT
                 101
                        GCGGGTACGC CGGCCGTGTG CGACCCGGGC GCGAAACTCG CCCGCCGCGT
                 151
                        GCGTGAGGCC GGGTTTAAAG TCGTTCCCGT CGTGGGCGCA AC.GCGGTGA
TGGCGGCTTT GAGCGTGGCC GGTGTGGAAG GATCCGATTT TTATTTCAAC
                 201
                 251
40
                        GGTTTTGTAC CGCCGAAATC GGGAGAACGC AGGAAACTGT TTGCCAAATG
                 301
                 351
                        GGTGCGGCCG GCGTTTCCTA TCGTCATGTT TGAAACGCCG CACCGCATCG
                        GTGCAGCGCT TGCCGATATG GCGGAACTGT TCCCCGAACG CCGATTAATG
                 401
                 451
                        CTGGCGCGC AAATTACGAA AACGTTTGAA ACGTTCTTAA GCGGCACGGT
                 501
                        TGGGGAAATT CAGACGGCAT TGTCTGCCGA CGGCGACCAA TCGCGCGGCG
45
                        AGATGGTGTT GGTGCTTTAT CCGGCGCAGG ATGAAAAACA CGAAGGCTTG
                 551
                 601
                        TCCGAGTCCG CGCAAAACAT CATGAAAATC CTCACAGCCG AGCTGCCGAC
                        CAAACAGGCG GCGGAGCTTG CTGCCAAAAT CACGGGCGAG GGAAAGAAAG
                 651
                 701
                        CTTTGTACGA T..
```

This corresponds to the amino acid sequence <SEQ ID 640; ORF147>:

```
50 1 ..AEDTRVTAQL LSAYGIQGKL VSVREHNERQ MADKIVGYLS DGMVVAQVSD
51 AGTPAVCDPG AKLARRVREA GFKVVPVVGA XAVMAALSVA GVEGSDFYFN
101 GFVPPKSGER RKLFAKWVRA AFPIVMFETP HRIGAALADM AELFPERRLM
151 LAREITKTFE TFLSGTVGEI QTALSADGDQ SRGEMVLVLY PAQDEKHEGL
201 SESAQNIMKI LTAELPTKQA AELAAKITGE GKKALYD..
```

55 Further work revealed the complete nucleotide sequence <SEQ ID 641>:

- 1 ATGTTTCAGA AACATTTGCA GAAAGCCTCC GACAGCGTCG TCGGAGGGAC 51 ATTATACGTG GTTGCCACGC CCATCGGCAA TTTGGCGGAC ATTACCCTGC
- 101 GCGCTTTGGC GGTATTGCAA AAGGCGGACA TCATCTGTGC CGAAGACACG
- 151 CGCGTTACCG CACAGCTTTT GAGCGCGTAC GGCATTCAGG GCAAACTCGT

	201 CA	GTGTGCGC GAACACAACG AACGGCAGAT GGCGGACAAG ATTGTCGGCT
		CTTTCAGA CGGCATGGTT GTGGCACAGG TTTCCGATGC GGGTACGCCG
	. 301 GC	CGTGTGCG ACCCGGGCGC GAAACTCGCC CGCCGCGTGC GTGAGGCCGG
_		TTAAAGTC GTTCCCGTCG TGGGCGCAAG CGCGGTGATG GCGGCTTTGA
5		GTGGCCGG TGTGGAAGGA TCCGATTTTT ATTTCAACGG TTTTGTACCG
	451 CC	GAAATCGG GAGAACGCAG GAAACTGTTT GCCAAATGGG TGCGGGCGGC
	501 GT	TTCCTATC GTCATGTTTG AAACGCCGCA CCGCATCGGT GCGACGCTTG GATATGGC GGAACTGTTC CCCGAACGCC GATTAATGCT GGCGCGCGAA
	601 AT	TACGAAAA CGTTTGAAAC GTTCTTAAGC GGCACGGTTG GGGAAATTCA
10	651 GA	CGGCATTG TCTGCCGACG GCAACCAATC GCGCGGCGAG ATGGTGTTGG
10	701 TG	CTTTATCC GGCGCAGGAT GAAAAACACG AAGGCTTGTC CGAGTCCGCG
		AAACATCA TGAAAATCCT CACAGCCGAG CTGCCGACCA AACAGGCGGC
		AGCTTGCT GCCAAAATCA CGGGCGAGGG AAAGAAAGCT TTGTACGATC
	851 TG	GCTCTGTC TTGGAAAAAC AAATAG
15	This same and to	the amino acid sequence <seq 642;="" id="" orf147-1="">:</seq>
13	This corresponds to	the annio acid sequence \SEQ ID 042; ORF 147-1>:
	1 10	
	I ME	QKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ KADIIC <i>AEDT</i> TAQLLSAY GIQGKLVSVR EHNERQMADK IVGYLSDGMV VAQVSDAGTP
	101 AV	CDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVEG SDFYFNGFVP
	151 PK	SGERRKLF AKWVRAAFPI VMFETPHRIG ATLADMAELF PERRIMLARE
20		KTFETFLS GTVGEIQTAL SADGNQSRGE MVLVLYPAOD EKHEGLSESA
		IMKILTAE LPTKQAAELA AKITGEGKKA LYDLALSWKN K*
	Computer analysis	of this amino acid sequence gave the following results:
	Homology with hyp	pothetical protein ORF286 of E. coli (accession number U18997)
	ORF147 and E.coli	ORF286 protein show 36% aa identity in 237aa overlap:
25	Orf147: 1	AEDTRVTAQLLSAYGIQGKLVSVREHNERQMADKIVGYLSDGMVVAQVSDAGTPAVCDPG 60
	5005 40	AEDTR T LL +GI +L ++ +HNE+Q A+ ++ L +G +A VSDAGTP + DPG
	Orf286: 43	AEDTRHTGLLLQHFGINARLFALHDHNEQQKAETLLAKLQEGQNIALVSDAGTPLINDPG 102
	0×f147. 61	AKLARRVREXXXXXXXXXXXXXXXXXXXXXXXX EGSDFYFNGFVPPKSGERRKLFAKWVRA 120
30	011147. 01	L R RE F + GF+P KS RR
20	Orf286: 103	YHLVRTCREAGIRVVPLPGPCAAITALSAAGLPSDRFCYEGFLPAKSKGRRDALKAIEAE 162
	Orf147: 121	AFPIVMFETPHRIGAALADMAELFPERR-LMLAREITKTFETFLSGTVGEIQTALSADGD 179
26	•	++ +E+ HR+ +L D+ + E R ++LARE+TKT+ET
35	Orf286: 163	PRTLIFYESTHRLLDSLEDIVAVLGESRYVVLARELTKTWETIHGAPVGELLAWVKEDEN 222
	0×£147. 190	OCDCEMBILITY VDAODEVIECT CECAONTMICT MAD DRIVOTAGE AND TO COMMITTED OF
	011147: 180	QSRGEMVLVLYPAQDEKHEGLSESAQNIMKILTAELPTKQAAELAAKITGEGKKALY 236 + +GEMVL++
	Orf286: 223	RRKGEMVLIV-EGHKAQEEDLPADALRTLALLQAELPLKKAAALAAEIHGVKKNALY 278
40		The state of the s
	Homology with a p	predicted ORF from N. meningitidis (strain A)
	ORF147 shows 96.6	6% identity over a 237aa overlap with ORF75a from strain A of N. meningitidis:
		1
		10 20 30
	orf147.pep	AEDTRVTAQLLSAYGIQGKLVSVREHNERQ
45		
	orf75a	TLYVVATPIGNLADITLRALAVLQKADIICAEDTRVTAQLLSAYGIQGKLVSVREHNERQ
		20 30 40 50 60 70
		40 50 60 70 80 90
50	orf147.pep	40 50 60 70 80 90 MADKIVGYLSDGMVVAQVSDAGTPAVCDPGAKLARRVREAGFK <u>V</u> VPVVGAXAVMAALSVA
50	orra, beb	
	orf75a	MADKIVGYLSDGMVVAQVSDAGTPAVCDPGAKLARRVREVGFK <u>VVP</u> VVGASAVMAALSVA
		80 90 100 110 120 130
		•
55		100 110 120 130 140 150
	orf147.pep	GVEGSDFYFNGFVPPKSGERRKLFAKWVRAAFPIVMFETPHRIGAALADMAELFPERRLM
		11 111181111111111111111111111111111111
	orf75a	GVAGSDFYFNGFVPPKSGERRKLFAKWVRVAFPVVMFETPHRIGATLADMAELFPERRLM
60		140 150 160 170 180 190
00		160 170 180 190 200 210
	orf147.pep	LAREITKTFETFLSGTVGEIQTALSADGDQSRGEMVLVLYPAQDEKHEGLSESAQNIMKI
		Z

WO 99/24578 PCT/IB98/01665

-357-

 LAREITK 200				 LYPAQDEKHE 240	
1111111	1111111111	1111111111			
LTAELPT	KQAAELAAKI'	rgegkkalydi	LALSWKNKX		
260	270	280	290		
	200 pep LTAELPTF LTAELPTF	200 210 220 2 pep LTAELPTKQAAELAAKIT LTAELPTKQAAELAAKIT	LAREITKTFETFLSGTVGEIQTALAADO 200 210 220 220 230 POP LTAELPTKQAAELAAKITGEGKKALYD	200 210 220 230 220 230 pep LTAELPTKQAAELAAKITGEGKKALYD	LAREITKTFETFLSGTVGEIQTALAADGNQSRGEMVLVLYPAQDEKHE 200 210 220 230 240 220 230 pep LTAELPTKQAAELAAKITGEGKKALYD

ORF147a is identical to ORF75a, which includes aa 56-292 of ORF75.

Homology with a predicted ORF from N.gonorrhoeae

ORF147 shows 94.1% identity over a 237aa overlap with a predicted ORF (ORF147ng) from N. gonorrhoeae:

15	orf147.pep	AEDTRVTAQLLSAYGIQGKLVSVREHNERQ	30
	orf147ng	TLYVVATPIGNLADITLRALAVLQKADIICAEDTRVTAQLLSAYGIQGRLVSVREHNERQ	85
	orf147.pep	MADKIVGYLSDGMVVAQVSDAGTPAVCDPGAKLARRVREAGFKVVPVVGAXAVMAALSVA	90
20	orf147ng	MADKVIGFLSDGLVVAQVSDAGTPAVCDPGAKLARRVREAGFKVVPVVGASAVMAALSVA	145
	orf147.pep	GVEGSDFYFNGFVPPKSGERRKLFAKWVRAAFPIVMFETPHRIGAALADMAELFPERRLM	150
25	orf147ng	GVAESDFYFNGFVPPKSGERRKLFAKWVRAAFPVVMFETPHRIGATLADMAELFPERRLM	205
23	orf147.pep	LAREITKTFETFLSGTVGEIQTALSADGDQSRGEMVLVLYPAQDEKHEGLSESAQNIMKI	210
	orf147ng	LAREITKTFETFLSGTVGEIQTALAADGNQSRGEMVLVLYPAQDEKHEGLSESAQNAMKI	265
30	orf147.pep	LTAELPTKQAAELAAKITGEGKKALYD 237	
	orf147ng	LAAELPTKQAAELAAKITGEGKKALYDLALSWKNK 300	

An ORF147ng nucleotide sequence <SEQ ID 643> was predicted to encode a protein having amino acid sequence <SEQ ID 644>:

```
35
1 MSVFQTAFFM FQKHLQKASD SVVGGTLYVV ATPIGNLADI TLRALAVLQK
51 ADIICAEDTR VTAQLLSAYG IQGRLVSVRE HNERQMADKV IGFLSDGLVV
101 AQVSDAGTPA VCDPGAKLAR RVREAGFKVV PVVGASAVMA ALSVAGVAES
151 DFYFNGFVPP KSGERRKLFA KWVRAAFPVV MFETPHRIGA TLADMAELFP
201 ERRLMLAREI TKTFETFLSG TVGEIQTALA ADGNQSRGEM VLVLYPAQDE
40 251 KHEGLSESAQ NAMKILAAEL PTKQAAELAA KITGEGKKAL YDLALSWKNK
301 *
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 645>:

	1	ATGTTTCAGA	AACACTTGCA	GAAAGCCTCC	GACAGCGTCG	TCGGAGGGAC
	51	ATTATACGTG	GTTGCCACGC	CCATCGGCAA	TTTGGCAGAC	ATTACCCTGC
45	101	GCGCTTTGGC	GGTATTGCAA	AAGGCGGACA	TCATTTGTGC	CGAAGACACG
	151	CGCGTTACTG	CGCAGCTTTT	GAGCGCGTAC	GGCATTCAGG	GCAGGTTGGT
	201	CAGTGTGCGC	GAACACAACG	AGCGGCAGAT	GGCGGACAAG	GTAATCGGTT
	251	TCCTTTCAGA	CGGCCTGGTT	GTGGCGCAGG	TTTCCGATGC	GGGTACGCCG
	301	GCCGTGTGCG	ACCCGGGCGC	GAAACTCGCC	CGCCGCGTGC	GCGAAGCAGG
50	351	GTTCAAAGTC	GTTCCCGTCG	TGGGCGCAAG	CGCGGTAATG	GCGGCGTTGA
	401	GTGTGGCCGG	TGTGGCGGAA	TCCGATTTTT	ATTTCAACGG	TTTTGTACCG
	451	CCGAAATCGG	GCGAACGTAG	GAAATTGTTT	GCCAAATGGG	TGCGGGCGGC
	501	ATTTCCTGTC	GTCATGTTTG	AAACGCCGCA	CCGAATCGGG	GCAACGCTTG
	551	CCGATATGGC	GGAATTGTTC	CCCGAACGCC	GTCTGATGCT	GGCGCGCGAA
55	601	ATCACGAAAA	CGTTTGAAAC	GTTCTTAAGC	GGCACGGTTG	GGGAAATTCA
	651	GACGGCATTG	GCGGCGGACG	GCAACCAATC	GCGCGGCGAG	ATGGTGTTGG
	701	TGCTTTATCC	GGCGCAGGAT	GAAAAACACG	AAGGCTTGTC	CGAGTCTGCG
	751	CAAAATGCGA	TGAAAATCCT	TGCGGCCGAG	CTGCCGACCA	AGCAGGCGGC
	801	GGAGCTTGCC	GCCAAGATTA	CAGGTGAGGG	CAAAAAGGCT	TTGTACGATT
60	851	TGGCACTGTC	GTGGAAAAAC	AAATGA		

5

This corresponds to the amino acid sequence <SEQ ID 646; ORF147ng-1>:

```
1 MFQKHLQKAS DSVVGGTLYV VATPIGNLAD ITLRALAVLQ KADIICAEDT
51 RVTAQLLSAY GIQGRLVSVR EHNERQMADK VIGFLSDGLV VAQVSDAGTP
101 AVCDPGAKLA RRVREAGFKV VPVVGASAVM AALSVAGVAE SDFYFNGFVP
151 PKSGERRKLF AKWVRAAFPV VMFETPHRIG ATLADMAELF PERRLMLARE
201 ITKTFETFLS GTVGEIQTAL AADGNQSRGE MVLVLYPAQD EKHEGLSESA
251 QNAMKILAAE LPTKQAAELA AKITGEGKKA LYDLALSWKN K*
```

ORF147ng shows homology to a hypothetical E.coli protein:

```
sp|P45528|YRAL_ECOLI HYPOTHETICAL 31.3 KD PROTEIN IN AGAI-MTR INTERGENIC REGION
10
          (F286)
          >gi|606086 (U18997) ORF_f286 [Escherichia coli]
          >gi|1789535 (AE000395) hypothetical 31.3 kD protein in agai-mtr intergenic region
          [Escherichia coli] Length = 286
           Score = 218 bits (550), Expect = 3e-56
15
           Identities = 128/284 (45%), Positives = 171/284 (60%), Gaps = 4/284 (1%)
                     KHLQKASDSVVGGTLYVVATPIGNLADITLRALAVLQKADIICAEDTRVTAQLLSAYGIQ 63
          Query: 4
                                 G LY+V TPIGNLADIT RAL VLQ D+I AEDTR T LL +GI
          Sbjct: 2
                     KQHQSADNSQ--GQLYIVPTPIGNLADITQRALEVLQAVDLIAAEDTRHTGLLLQHFGIN 59
20
                     GRLVSVREHNERQMADKVIGFLSDGLVVAQVSDAGTPAVCDPGAKLARRVREAGFKVVPV 123
          Query: 64
                      RL ++ +HNE+Q A+ ++ L +G +A VSDAGTP + DPG L R REAG +VVP+
                     ARLFALHDHNEQQKAETLLAKLQEGQNIALVSDAGTPLINDPGYHLVRTCREAGIRVVPL 119
          Sbjct: 60
25
          Query: 124 VGASAVMAALSVAGVAESDFYFNGFVPPKSGERRKLFAKWVRAAFPVVMFETPHRIGATL 183
                      G A + ALS AG+
                                        F + GF+P KS RR
                                                                   ++ +E+ HR+ +L
          Sbjct: 120 PGPCAAITALSAAGLPSDRFCYEGFLPAKSKGRRDALKAIEAEPRTLIFYESTHRLLDSL 179
          Query: 184 ADMAELFPERR-LMLAREITKTFETFLSGTVGEIQTALAADGNQSRGEMVLVLYPAQDEK 242
30
                      D+ + E R ++LARE+TKT+ET
                                                  VGE+ + D N+ +GEMVL++
          Sbjct: 180 EDIVAVLGESRYVVLARELTKTWETIHGAPVGELLAWVKEDENRRKGEMVLIV-EGHKAQ 238
          Query: 243 HEGLSESAQNAMKILAAELPTKQAAELAAKITGEGKKALYDLAL 286
                           A
                               + +L AELP K+AA LAA+I G K ALY AL
35
          Sbjct: 239 EEDLPADALRTLALLQAELPLKKAAALAAEIHGVKKNALYKYAL 282
```

Based on the computer analysis and the presence of a putative transmembrane domain in the gonococcal protein, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 77

40 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 647>

	1	ATGAAAACAA	CCGACAAACG	GACAACCGAA	ACACACCGCA	AAGCCCCGAA
	51	AACCGGTCGC	ATCCGCTTCT	C.GCTGCTTA	CTTAGCCATA	TGCCTGTCGT
	101	TCGGCATTCT	TCCCCAAGCC	TGGGCGGGAC	ACACTTATTT	CGGCATCAAC
4-	151	TACCAATACT	ATCGCGACTT	TGCCGAAAAT	AAAGGCAAGT	TTGCAGTCGG
45	201	GGCGAAAGAT	ATTGAGGTTT	ACAACAAAAA		GTCGGCAAAT
	251	CAATGACAAA	AGCCCCGATG	ATTGATTTTT	CTGTGGTGTC	GCGTAACGGC
	301	GTGGCGGCAT	TGGTGGGCGt	ATCAATATAT	TGTGAGCGTG	GCACATAACG
•	351	GCGGCTATAA	CAACGTTGAT	TTTGGTGCGG	AAGGAAk.AA	tateee car
	401	CAACAwCGww	TTACTTATAA	AATTGTGAAA	CGGAATAATT	ATADAGCAGG
50	451	GACTAAAGGC	CATCCTTATG	GCGGCGATTA	TCATATGCCG	CGTTTCCATA
	501	AATWTGTCAC	AGATGCAGAA	CCTGTTGAAA	TGACCAGTTA	TATECATECE
£	551	CGGAAATATA	TCGATCAAAA	TAATTACCCT	GACCGTGTTC	CTATTCCCCC
	601	AGGCAGGCAA	TATTGGCGAT	CTGATGAAGA	TCACCCCAAT	AACCGCGAAA
	651	GTTCATATCA	TATTGCAAGT		·····	AACCGCGAAAA
55	701			ACCAATGTTT	ATCTATGATG	CCCDADACCA
	751	AAAGTGGTTA	ATTAATGGGG	TATTCCAAAC	GGGCAACCCC	TATAMAGCA TATAMAGCA
	801	AAAGCAATGG	CTTCCAGCTG	CTTCCTAAAC	ATTGGTTCTA	TATATAGGAA
	851	TTTGCTGGAG	ATACCCATTC	DETECTANA	GAACCACGTC	TGATGAAATC
	901	አጥልርጥርጥጥጥጥ	AACCACCATA	AGIAITCTAC	AGGAAAAATC	AAAATGGGAA
	501	AIACICITII	MOUNCONIA	ATAATGGCAC	AGGAAAAATC	AATGCCAAAC

	951	ATGAACACAA	TTCTCTGCCT	AATAGATTAA	AAACACGAAC	CGTTCAATTG
	1001	TTTAATGTTT	CTTTATCCGA	GACAGCAAGA	GAACCTGTTT .	ATCATGCTGC
	1051	AGGTGGTGTC	AACAGTTATC	GACCCAGACT	GAATAATGGA	GAAAATATTT
	1101	ССТТТАТТСА	CGAAGGAAAA	GGCGAATTGA	TACTTACCAG	CAACATCAAT
· 5	1151	CARCCTCCTG	GAGGATTATA	TTTCCAAGGA	GATTTTACGG	TCTCGCCTGA
3	1201	AAATAACGAA	ACTTGGCAAG	GCGCGGGCGT	TCATATCAGT	GAAGACAGTA
	1251	CCCMBY CBBC	CANACTANAC	CCCCTCCCAA	ACGACCGCCT	GTCCAAAATC
		CCGTTACTIG	CCCDC	GGCGIGGCAA		010012222
	. 1301	GGCAAAGGCA	CGCIG	//		
• •						CDTDDDC
10	2101		*******************************	ACCCACAMCA	GCGGCAATGT	CCATCTTCCC
	2151	TGACTGCTTC	ATTGACTAAG	ACCGACATCA	CCCACACTC	ACCCCA ATCT
	2201	GATCACGCTC	ATTTAAATCT	CACAGGGCTT	GCCACACTCA	ACGGCAAICI
	2251	TAGTGCAAAT	GGCGATACAC	GTTATACAGT	CAGCCACAAC	GCCACCCAAA
	2301	ACGGCAACCK	TAGCCtCGtG	G.SAATGCCC	AAGCAACATT	TAATCAAGCC
15	2351	ACATTAAACG	GCAACACATC	GGCTTCgGGC	AATGCTTCAT	TTAATCTAAG
	2401	CGACCACGCC	GTACAAAACG	GCAGTCTGAC	GCTTTCCGGC	AACGCTAAGG
	2451	CAAACGTAAG	CCATTCCGCA	CTCAACGGTA	ATGTCTCCCT	AGCCGATAAG
	2501	GCAGTATTCC	ATTTTGAAAG	CAGCCGCTTT	ACCGGACAAA	TCAGCGGCGG
	2551	CAagGATACG	GCATTACACT	TAAAAGACAG	CGAATGGACG	CTGCCGTCAg
20	2601	GarCGGAATT	AGGCAATTTA	AACCTTGACA	ACGCCACCAT	TACaCTCAAT
20	2601 2651	TCCGCCTATC	GCCACGATGC	GGCAGGGGCG	CAAACCGGCA	GTGCGACAGA
	2701	TGCGCCGCGC	CGCCGTTCGC	GCCGTTCGCG	CCGTTCCCTA	TTATmCGTTA
	2751	CACCCCCAAC	TTCGGTAGAA	TCCCGTTTCA	ACACGCTGAC	GGTAAACGGC
		AAATTCAACG	GTCAGGGAAC	ATTCCCCTTT	ATGTCGGAAC	TCTTCGGCTA
25	2801 2851	CCCCACCCAC	AAATTCAACC	TGGCGGAAAG	TTCCGAAGGC	ACTTACACCT
25	2901	TCCCCCTCAA	CANTACCEC	DACCAACCTC	CAAGCCTCGA	ACAATTGACG
	***	TOGCOGICAL	CANTACOGGO	CANACCECTC	TCCGAAAACC	ጥጥልልጥጥጥሮልር
	2951	GTAGTGGAAG	CARAMONCAN	AMCCACCCC	GTGG	111111110110
	3001	CCTGCAAAAC	GAACACGICG	//	G1GG	
		•		7/		CCCNACACCC
30	3551			TTAGAC	CGCGTATTTG	CACHAGACCG
	3601	CCGCAACGCC	GTTTGGACAA	GCGGCATCCG	GGACACCAAA	CACTACCGTT
	3651	CGCAAGATTT	CCGCGCCTAC	CGCCAACAAA	CCGACCTGCG	CCAAATCGGT
	3701	ATGCAGAAAA	ACCTCGGCAG	CGGGCGCGTC	GGCATCCTGT	TTTCGCACAA
	3751	CCGGACCGAA	AACACCTTCG	ACGACGCAT	CGGCAACTCG	GCACGGCTTG
35	3801	CCCACGGCGC	CGTTTTCGGG	CAATACGGCA	TCGACAGGTT	CTACATCGGC
	3851				CAGCCTTTCA	
	3901	GAGsmAAAwT	CCGCCGCCGC	: GTGCtGCATT	ACGGCATTCA	GGCACGATAC
	3951	CGCGCCGgtt	tCggCGgATt	: CGGCATCGAA	CCGCACATCG	GCGCAACGCg
	4001	ctATTTCGTC	CAAAAAGCGG	ATTACCGCTA	CGAAAACGTC	AATATCGCCA
40	4051	CCCCCGGCCT	TGCATTCAAC	CGCTACCGCG	CGGGCATTAa	GGCAGATTAT
	4101	TCATTCAAAC	CGGCGCAACA	CATTTCCATC	ACGCCTTATT	TGAGCCTGTC
	4151	CTATACCGAT	GCCGCTTCGG	GCAAAGTCCG	AACACGCGTC	AATACCGCCG
	4201	TATTGGCTCA	GGATTTCGGC	C AAAACCCGCA	GTGCGGAATG	GGgCGTAAAC
	4251	GCCGAAATCA	AAGGTTTCAC	CGCTGTCCCTC	CACGCTGCCG	CCGCCAAAGG
45	4301	CCCGCAACTG	GAAGCGCAAC	ACAGCGCGG	CATCAAATTA	GGCTACCGCT
43	4351	GGTAA				
	This correspond	is to the ami	no acid sequ	ence <seo i<="" td=""><td>D 648: ORF</td><td>1>:</td></seo>	D 648: ORF	1>:
	THIS COLLESPON	ab to the thin	20 2012 004	· · · · · · · · · · · · · · · · · · ·	,	
						MACUMVECTM
	_1	MKTTDKRTTE	THRKAPKTGE	X IRFXAAILA	CTREATTE	WAGHTYFGIN
	51	YQYYRDFAEN	KGKFAVGAKI) LEVYNKKGEI	VGKSMTKAPM	IDFSVVSRNG
50	101		VSVAHNGGY	N NVDFGAEGXI	IXDQXRXTYK	IVKRNNYKAG
	151					NYPDRVRIGA
	201) EPNNRESSYI	H IAS		PMFIYDAQKQ
	251	KWLINGVLQT	GNPYIGKSNO	G FQLVRKDWF	C DEIFAGDTHS	VFYEPRQNGK
	301	YSFNDDNNGT	GKINAKHEHI	N SLPNRLKTR	r volfnyslse	TAREPVYHAA
55	351	GGVNSYRPRI	. NNGENISFI	D EGKGELILT:	S NINQGAGGLY	FQGDFTVSPE
	401	NNETWOGAGV	/ HISEDSTVT	W KVNGVANDR	L SKIGKGTL	
		_		//		
	701		DKVTA	S LTKTDISGN	V DLADHAHLNI	TGLATLNGNL
	751		SHNATONGN	X SLVXNAOAT	F NOATLNGNTS	ASGNASFNLS
60	801					SRFTGQISGG
00	851	KDTALHLKDS	S EWTLPSGXE	I. GNINLDNAT	TLNSAYRHDA	AGAQTGSATD
	901					FRFMSELFGY
						KPLSENLNFT
	951				· ·······	
CF	1001	TAMPLA DUR	. w	//		
65						.LDRVFAEDR
	1151			E DAVEORET	D OTCMOPAILCE	CDVCTT FCUN
	1201	KNAVWTSGI	K DIKHIKSQD	r KWIKOOTOP	E ATCLESCICA	GRVGILFSHN
	1251	RTENTEDDG:	L GNSAKLAHG	W ARROATED	I TRIPACACE	SSGSLSDGIG
	1301	XKXRRRVLH'	Y GIQARYRAG	r GGFGIEPHI	G ATKYFVQKAI	YRYENVNIAT
70	1351	PGLAFNRYR	A GIKADYSFK	P AQHISITPY	L SLSYTDAAS	KVRTRVNTAV

1401 LAQDFGKTRS AEWGVNAEIK GFTLSLHAAA AKGPQLEAQH SAGIKLGYRW 1451 *

Further sequencing analysis revealed the complete nucleotide sequence <SEQ ID 649>:

	•	1	ATCABABCAB	CCCACAAACC	CACAACCCAA	ACACACCGCA	A A C C C C C C C A A
5		51	ANCCCCCCCC	ATTCCCCTTCCT	CCCCTCCTTT	CTTAGCCATA	MAGCCCCGAA
,			MCCCCX mmcm	MICCOCTICI	CGCCTGCTTA	CTTAGCCATA	TGCCTGTCGT
		101 151	TCGGCATICI	1CCCCAAGCC	TGGGCGGGAC	ACACTTATTT	CGGCATCAAC
			TACCAATACT	ATCGCGACTT	TGCCGAAAAT	AAAGGCAAGT	TTGCAGTCGG
		201	GGCGAAAGAI	ATTGAGGTTT	ACAACAAAAA	AGGGGAGTTG	GTCGGCAAAT
10		251	CHATGACAAA	AGCCCCGATG	ATTGATTTTT	CTGTGGTGTC	GCGTAACGGC
10		301	GIGGCGGCAI	TGGTGGGCGA	TCAATATATT	GTGAGCGTGG	CACATAACGG
		351	CGGCTATAAC	AACGTTGATT	TTGGTGCGGA	AGGAAGAAAT	CCCGATCAAC
	•	401	ATCGTTTTAC	TTATAAAATT	GTGAAACGGA	ATAATTATAA	AGCAGGGACT
		451	MANGGCCATC	CTTATGGCGG	CGATTATCAT	ATGCCGCGTT	TGCATAAATT
15		501	TGTCACAGAT	GCAGAACCTG	TTGAAATGAC	CAGTTATATG	GATGGGCGGA
13		551	AATATATCGA	TCAAAATAAT	TACCCTGACC	GTGTTCGTAT	TGGGGCAGGC
		601 651	AGGCAATATT	CCAACTCTGA	TGAAGATGAG	CCCAATAACC	GCGAAAGTTC
		701	CACAAAAMCC	AMCACCMCCM	ATTCTTGGCT	CGTTGGTGGC ACTTAGGTAG	AATACCTTTG
	,	751	ABACATACCC	Characcana	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	GGAGGCTCAT	TGAAAAAATT
20		801	TECETENCE	AUCUUUNTUUTI	ATCATCCCA	AAAGCAAAAG	TIGGCGACAG
20		851	ATGGGGGTATT	CONNECCC	AIGHIGCCCA	TAGGAAAAAG	CARROCCORRO
		901	CACCTCCTTC	CTAAACOGGC	CTTCTATCAT	GAAATCTTTG	CMCCACAMAC
		951	CCATTCACTA	TTCTACCAAC	CACCTCAAAA	TGGGAAATAC	CIGGAGATAC
		1001	ACGATAATAA	TECENCORRE	AAAATCAATA	CCAAACATGA	1CITITAACG
25		1051	CTGCCTAATA	CATTAAAAAC	ACGAACCGTT	CAATTGTTTA	ACACAATICI
	•	1101	ATCCGAGACA	GCAAGAGAAC	CTGTTTATCA	TGCTGCAGGT	CCTCTCAACA
		1151	GTTATCGACC	CAGACTGAAT	AATGGAGAAA	ATATTTCCTT	TATTCACCA
		1201	GGAAAAGGCG	AATTGATACT	TACCAGCAAC	ATCAATCAAG	GTGCTGGAGG
		1251	ATTATATTTC	CAAGGAGATT	TTACGGTCTC	GCCTGAAAAT	AACCAAACTT
30		1301	GGCAAGGCGC	GGGCGTTCAT	ATCAGTGAAG	ACAGTACCGT	TACTTGGAAA
		1351	GTAAACGGCG	TGGCAAACGA	CCGCCTGTCC	AAAATCGGCA	AAGGCACGCT
	•	1401	GCACGTTCAA	GCCAAAGGGG	AAAACCAAGG	CTCGATCAGC	GTGGGCGACG
	•	1451	GTACAGTCAT	TTTGGATCAG	CAGGCAGACG	ATAAAGGCAA	AAAACAAGCC
		1501	TTTAGTGAAA	TCGGCTTGGT	CAGCGGCAGG	GGTACGGTGC	AACTGAATGC
35	•	1551	CGATAATCAG	TTCAACCCCG	ACAAACTCTA	TTTCGGCTTT	CGCGGCGGAC
		1601	GTTTGGATTT	AAACGGGCAT	TCGCTTTCGT	TCCACCGTAT	TCAAAATACC
		1651	GATGAAGGGG	CGATGATTGT	CAACCACAAT	CAAGACAAAG	AATCCACCGT
		1701	TACCATTACA	GGCAATAAAG	ATATTGCTAC	AACCGGCAAT	AACAACAGCT
40		1751	TGGATAGCAA	AAAAGAAATT	GCCTACAACG	GTTGGTTTGG	CGAGAAAGAT
40		1801	ACGACCAAAA	CGAACGGGCG	GCTCAACCTT	GTTTACCAGC	CCGCCGCAGA
		1851	AGACCGCACC	CTGCTGCTTT	CCGGCGGAAC	AAATTTAAAC	GGCAACATCA
		1901	CGCAAACAAA	CGGCAAACTG	TTTTTCAGCG	GCAGACCAAC	ACCGCACGCC
		1951	TACAATCATT	TAAACGACCA	TTGGTCGCAA	AAAGAGGGCA	TTCCTCGCGG
45		2001	GGAAATCGTG	TGGGACAACG	ACTGGATCAA	CCGCACATTT	AAAGCGGAAA
43		2051	ACTTCCAAAT	TAAAGGCGGA	CAGGCGGTGG	TTTCCCGCAA	TGTTGCCAAA
		2101	GTGAAAGGCG	ATTGGCATTT	GAGCAATCAC	GCCCAAGCAG	TTTTTGGTGT
		2151	CGCACCGCAT	CAAAGCCACA	CAATCTGTAC	ACGTTCGGAC	TGGACGGGTC
		2201	TGACAAATTG	TGTCGAAAAA	ACCATTACCG	ACGATAAAGT	GATTGCTTCA
50		2251	TTGACTAAGA	CCGACATCAG	CGGCAATGTC	GATCTTGCCG	ATCACGCTCA
JU		2301 · 2351	CCCARACTCTC	ACAGGGCTTG	CCACACTCAA	CGGCAATCTT	AGTGCAAATG
		2401				CCACCCAAAA	
		2451	CAACACATGG	CCTTCCCCCA	AGCAACATTT	AATCAAGCCA TAATCTAAGC	CATTAAACGG
		2501	TACAAAACCC	CACTCTCTCACC	COMMOCCCCCA	ACGCTAAGGC	GACCACGCCG
55		2551	CATTCCCCAC	TCAACCCTAA	TCTCTCCCTA	GCCGATAAGG	CACEARROCA
		2601	TTTTGAAAGC	ACCCCCTTTA	CCCCACAAAT	CAGCGGCGGC	AACCAMACCC
		2651	CATTACACTO	AAAAGACAGC	CADTCCACAC	TGCCGTCAGG	CACCCAAMMA
		2701	GGCAATTTAA	ACCTTGACAA	CCCCACCATT	ACACTCAATT	CCCCCTATCC
		2751	CCACGATGCG	GCAGGGGGGCGC	AAACCGCCAG	TGCGACAGAT	CCGCCTATCG
60		2801	GCCGTTCGCG	CCGTTCGCGC	CGTTCCCTAT	TATCCGTTAC	ACCCCAACT
•		2851	TCGGTAGAAT	CCCGTTTCAA	CACGCTGACG	GTAAACGGCA	AATTCAACCC
		2901	TCAGGGAACA	TTCCGCTTTA	TGTCGGAACT	CTTCGGCTAC	CCCACCCACA
		2951	AATTGAAGCT	GGCGGAAAGT	TCCGAAGGCA	CTTACACCTT	GGCGGTCAAC
		3001	AATACCGGCA	ACGAACCTGC	AAGCCTCGAA	CAATTGACGG	TAGTGGAAGG
65		3051	AAAAGACAAC	AAACCGCTGT	CCGAAAACCT	TAATTTCACC	CTGCAAAACG
		3101	AACACGTCGA	TGCCGGCGCG	TGGCGTTACC	AACTCATCCG	CAAAGACGGC
		3151	GAGTTCCGCC	TGCATAATCC	GGTCAAAGAA	CAAGAGCTTT	CCGACAAACT
		3201	CGGCAAGGCA	GAAGCCAAAA	AACAGGCGGA	AAAAGACAAC	GCGCAAAGCC
		3251	TTGACGCGCT	GATTGCGGCC	GGGCGCGATG	CCGTCGAAAA	GACAGAAAGC
70		3301	GTTGCCGAAC	CGGCCCGGCA	GGCAGGCGGG	GAAAATGTCG	GCATTATGCA

```
GGCGGAGGAA GAGAAAAAAC GGGTGCAGGC GGATAAAGAC ACCGCCTTGG
                     CGAAACAGCG CGAAGCGGAA ACCCGGCCGG CTACCACCGC CTTCCCCCGC
               3401
                     GCCCGCCGCG CCCGCCGGGA TTTGCCGCAA CTGCAACCCC AACCGCAGCC
               3451
                     CCAACCGCAG CGCGACCTGA TCAGCCGTTA TGCCAATAGC GGTTTGAGTG
               3501
                     AATTTTCCGC CACGCTCAAC AGCGTTTTCG CCGTACAGGA CGAATTAGAC
5
               3551
                     CGCGTATTTG CCGAAGACCG CCGCAACGCC GTTTGGACAA GCGGCATCCG
               3601
                     GGACACCAAA CACTACCGTT CGCAAGATTT CCGCGCCTAC CGCCAACAAA
               3651
                     CCGACCTGCG CCAAATCGGT ATGCAGAAAA ACCTCGGCAG CGGGCGCGTC
               3701
                     GGCATCCTGT TTTCGCACAA CCGGACCGAA AACACCTTCG ACGACGGCAT
               3751
                     CGGCAACTCG GCACGGCTTG CCCACGGCGC CGTTTTCGGG CAATACGGCA
10
               3801
                     TCGACAGGTT CTACATCGGC ATCAGCGCGG GCGCGGGTTT TAGCAGCGGC
               3851
                     AGCCTTTCAG ACGCCATCGG AGGCAAAATC CGCCGCCGCG TGCTGCATTA
               3901
                     CGGCATTCAG GCACGATACC GCGCCGGTTT CGGCGGATTC GGCATCGAAC
               3951
                     CGCACATCGG CGCAACGCGC TATTTCGTCC AAAAAGCGGA TTACCGCTAC
               4001
                     GAAAACGTCA ATATCGCCAC CCCCGGCCTT GCATTCAACC GCTACCGCGC
15
               4051
                     GGGCATTAAG GCAGATTATT CATTCAAACC GGCGCAACAC ATTTCCATCA
               4101
                     CGCCTTATTT GAGCCTGTCC TATACCGATG CCGCTTCGGG CAAAGTCCGA
               4151
                     ACACGCGTCA ATACCGCCGT ATTGGCTCAG GATTTCGGCA AAACCCGCAG
               4201
                     TGCGGAATGG GGCGTAAACG CCGAAATCAA AGGTTTCACG CTGTCCCTCC
               4251
                     ACGCTGCCGC CGCCAAAGGC CCGCAACTGG AAGCGCAACA CAGCGCGGGC
20
               4301
                     ATCAAATTAG GCTACCGCTG GTAA
               4351
```

This corresponds to the amino acid sequence <SEQ ID 650; ORF1-1>:

```
MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA WAGHTYFGIN
                      YQYYRDFAEN KGKFAVGAKD IEVYNKKGEL VGKSMTKAPM IDFSVVSRNG
                      VAALVGDQYI VSVAHNGGYN NVDFGAEGRN PDQHRFTYKI VKRNNYKAGT
25
                101
                      KGHPYGGDYH MPRLHKFVTD AEPVEMTSYM DGRKYIDQNN YPDRVRIGAG
                151
                      ROYWRSDEDE PNNRESSYHI ASAYSWLVGG NTFAQNGSGG GTVNLGSEKI
                201
                      KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG NPYIGKSNGF
                      QLVRKDWFYD EIFAGDTHSV FYEPRONGKY SFNDDNNGTG KINAKHEHNS
LPNRLKTRTV QLFNVSLSET AREPVYHAAG GVNSYRPRLN NGENISFIDE
                 301
30
                 351
                 401
                      GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVH ISEDSTVTWK
                      VNGVANDRLS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQ QADDKGKKQA
                 451
                      FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH SLSFHRIQNT
                 501
                      DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEI AYNGWFGEKD
                 551
35
                      TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKL FFSGRPTPHA
                 601
                      YNHLNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGG QAVVSRNVAK
                 651
                      VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEK TITDDKVIAS
                 701
                      LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTV SHNATQNGNL
                 751
                      SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLT LSGNAKANVS
                 801
                      HSALNGNVSL ADKAVFHFES SRFTGQISGG KDTALHLKDS EWTLPSGTEL
40
                 851
                      GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRRRSRRSR RSLLSVTPPT
                 901
                      SVESRENTLT VNGKLNGQGT FREMSELFGY RSDKLKLAES SEGTYTLAVN
                 951
                      NTGNEPASLE QLTVVEGKDN KPLSENLNFT LQNEHVDAGA WRYQLIRKDG
                1001
                      EFRLHNPVKE QELSDKLGKA EAKKQAEKDN AQSLDALIAA GRDAVEKTES
                1051
                      VAEPARQAGG ENVGIMQAEE EKKRVQADKD TALAKQREAE TRPATTAFPR
45
                1101
                      ARRARRDLPQ LQPQPQPQPQ RDLISRYANS GLSEFSATLN SVFAVQDELD
                1151
                      RVFAEDRRNA VWTSGIRDTK HYRSQDFRAY RQQTDLRQIG MQKNLGSGRV
                1201
                1251
                      GILFSHNRTE NTFDDGIGNS ARLAHGAVFG QYGIDRFYIG ISAGAGFSSG
                      SLSDGIGGKI RRRVLHYGIQ ARYRAGFGGF GIEPHIGATR YFVQKADYRY
                1301
50
                1351
                      ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLS YTDAASGKVR
                      TRVNTAVLAQ DFGKTRSAEW GVNAEIKGFT LSLHAAAAKG PQLEAQHSAG
                1401
                1451
                      IKLGYRW*
```

Computer analysis of these sequences gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF1 shows 57.8% identity over a 1456aa overlap with an ORF (ORF1a) from strain A of N. meningitidis:

		10	20	30	40	50	60
	orfl.pep	MKTTDKRTTETHRK	APKTGR <u>IRF</u> X				
	-	111111111111111				1111111111	
60	orf1a	MKTTDKRTTETHRK	APKTGRIRES	PAYLAICLSE	<u>GIL</u> PQAWAGH	ITYFGINYQYY	RDFAEN
		10	20	30	40	50	60
		70	80	90	100	110	120
	orfl.pep	KGKFAVGAKDIEVY	NKKGELVGKS	MTKAPMIDES	VVSRNGVAAI	LVGVQYIVSV	HNGGYN

	orfla		EVYNKKGEL 80	VGKSMTKAPM	IDFSVVSRNG	VAALVGDQYI'	VSVAHNGGYN
5	orfl.pep	130 NVDFGAEGXNI		IVKRNNYKAG	TKGHPYGGDY	HMPRLHKXVT	DAEPVEMTSY
	orfla	NVDFGAEGXN-	PDQHRFSYQ	IVKRNNYKPD	NS-HPYNGDX	HMPRLHKFVT	DAEPVEMTSD
10		190	200	210	-	-	
	orfl.pep	MDGRKYIDQNI	:11:11111:	1::111 1:1	:		- 11
15	orfla	MRGNTYSDKEI 180 19		GHHYWRYDDD 00 2			GWGNNGVXSL 30
	orf1.pep	220 RESSYH-			240 PAQKQKWLING :: :		
20	orfla	SGDVRHANDY	SPMPIAGAA G	DSGSPMFIYD	KTNNKWLLNG	VLQTGYPYSG	
25	orfl.pep	270 DWFYDEIFAGI	280 OTHSVFYEPR	290 QNGKYSFNDD	300 NNGTGKINAK	310 HEHNSLPNRL	320 KTRTVQLFNV
23	orfla	DWFYDDIYRGI 300 3:	OTHTVXFEPR	SNGHFSFTSN	INNGTGTVTET	NEKVSNP-KL	:: : : KVQTVRLFDE 350
30	orf1.pep	330 SLSETAREPV	340 YHAAGGVNSY	350 RPRLNNGENI	360 SFIDEGKGEL	370 ILTSNINQGA	380 GGLYFQGDFT
	orfla	: : SLNETDKEPV 360					
35		390	400	410	420	430	
	orfl.pep	VSPENNETWQ	1111111111	HILLIAM		11	
40	orfla .	VSPENNETWQ	GAGVHISEDS 430	STVTWKVNGVA 440	NDRLSKIGKG 450	TLHVQAKGEN 460	QGSISVGDGT 470
.0	orf1.pep						*
45	orfla	VILDQQADDKO 480	GKKQAFSEIG 490	ELXSGRGTVQI 500	NADNQFNPDK 510	LYFGFRGGRL 520	DLNGHSLSFH 530
	orf1.pep						
50	orfla	RIQNTDEGAM	IXXHNATTTS 550	STVTITGNESI 560	TOPSGKNINR 570	LNYSKEIAYN 580	GWFGEKDTTK 590
	orfl.pep			·			
55	orfla	TNGRLNLVYQ 600	PAAEDRTXLI 610	SGGTNLNGNI 620	TOTNGKLFFS 630	GRPTPHAYNH 640	LGSGWSKMEG 650
60	orf1.pep						
00	orfla	IPOGEIVWDN	DWIXRTFKAE	ENFHIOGGOAV	/ISRNVAKVEG	DXHLSNHAOA	VFGVAPHQSH
		660	670	680	690	700	710
65	orfl.pep						480 ATLNGNLSAN
	orfla		LTNCVEXXI		(TDXSGXVXLX	XXXXXXLXGX	: CAXLXGNLSAN
70		720	730 500	740 510	750 520	760 530	770 540
	orfl.pep						VQNGSLTLSG

-363-

	orfla	
5	orfl.pep	550 560 570 580 590 600 NAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWTLPSGXELGNL
10	orfl.pep	610 620 630 640 650 660 NLDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRLXVTPPTSVESRFNTLTVNG
15	orfla	NLDNATITLNSAYRHDAAGAQTGXVSDTPRRRSRRSLLSVTPPTSVESRFNTLTVNG 900 910 920 930 940 950 670 680 690 700 710 720
20	orfl.pep	KINGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKDNKPL
25	orfl.pep	730 740 750 SENLNFTLQNEHVDAGAW
30	orfl.pep	
35	orfla	LDALIAAGRDAAEKTESVAEPARXAGGENVGIMQAEEEKKRVQADKDSALAKQREAETRP 1080 1090 1100 1110 1120 1130 760
40	orfl.pep	TITAFPRARXARRDLPQPQPQPQPQPQPQPQPQRDLXSRYANSGLSEFSATLNSVFAVQDELDR 1140 1150 1160 1170 1180 1190
40	orfl.pep	770 780 790 800 810 820 VFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRVGILFSHNRTEN
45	orfl.pep	1200 1210 1220 1230 1240 1250 830 840 850 860 870 880 TFDDGIGNSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGIGXKXRRRVLHYGIQA
50	orfla	:
55	orfl.pep	890 900 910 920 930 940 RYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAGIKADYSFKPAQHI
60	orfl.pep	950 960 970 980 990 1000 SITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSAEWGVNAEIKGFTLSLHAAAAKGP
65	orfl.pep	1010 1020 QLEAQHSAGIKLGYRWX

70 The complete length ORF1a nucleotide sequence <SEQ ID 651> is:

		4	DMCDDDDCDD	000101100			
		1	ATGAAAACAA	CCGACAAACG	GACAACCGAA	ACACACCGCA	AAGCCCCGAA
*		51	MACCGGCCGC	ATCCGCTTCT	CGCCTGCTTA	CTTAGCCATA	TGCCTGTCGT
		101	TUGGUATTUT	TCCCCAAGCT	TGGGCGGGAC	ACACTTATTT	CGGCATCAAC
5		151	TACCAATACT	ATCGCGACTT	TGCCGAAAAT	AAAGGCAAGT	TTGCAGTCGG
3	٠.	201	GGCGAAAGAT	ATTGAGGTNT	ACAACAAAAA	AGGGGAGTTG	GTCGGCAAAT
		251	CAATGACAAA	AGCCCCGATG	ATTGATTTTT	CTGTGGTGTC	GCGTAACGGC
		301	GTGGCGGCAT	TGGTGGGCGA	TCAATATATT	GTGAGCGTGG	CACATAACGG
		351	CGGCTATAAC	AACGTTGATT	TTGGTGCGGA	AGGAAGNAAT	CCCGATCAGC
10		401	ACCGTTTTC	TTACCAAATT	GTGAAAAGAA	ATAATTATAA	GCCTGACAAT
10		451	TCACACCCTT	ACAACGGCGA	TTANCATATG	CCGCGTTTGC	ATAAATTTGT
		501	CACAGATGCA	GAACCTGTCG	AAATGACGAG	TGACATGAGG	GGGAATACCT
		551	ATTCCGATAA	AGAAAAATAT	CCCGAGCGTG	TCCGCATCGG	CTCAGGACAC
		601	CACTATTGGC	GTTATGATGA	TGACAAACAC	GGCGATTTAT	CCTACTCCGG
15		651	CGCATGGTTA	ATTGGCGGCA	ATACACATAT	GCAGGGTTGG	GGAAATAATG
13		701	GCGTANTTAG	TTTGAGCGGC	GATGTGCGCC	ATGCCAACGA	CTATGGCCCT
		751	ATGCCGATTG	CAGGTGCGGC	AGGCGACAGC	GGTTCGCCAA	TGTTTATTTA
		801	TGACAAAACA	AACAATAAAT	GGCTGCTCAA	CGGAGTTTTA	CAAACCGGCT
		851	ACCCTTATTC	CGGCAGGGAA	AACGGTTTCC	AGCTGATACG	CAAAGATTGG
20		901	TTCTACGATG	ACATTTACAG	AGGCGATACA	CATACCGTCT	NTTTTGAACC
20		951	GCGCAGTAAC	GGACATTTTT	CCTTTACATC	CAACAACAAC	GGTACGGGTA
	•	1001	CGGTAACAGA	AACCAACGAA	AAGGTNTCCA	ATCCAAAGCT	TAAAGTACAG
		1051	ACAGTCCGAC	TGTTTGACGA	ATCTTTGAAT	GAAACTGATA	AAGAACCAGT
		1101	TTACGCGGCA	GGGGGTGTTA	ATCAGTACCG	TCCAAGGTTA	AACAACGGTG
25		1151	AAAACCTTTC	TTTTATCGAT	TACGGCAACG	GCAAACTCAT	CTTATCAAAC
25		1201	AACATCAACC	AAGGCGCGGG	CGGTTTGTAT	TTTGAAGGTG	ATTTTACGGT
		1251	CTCGCCTGAA	AACAACGAAA	CGTGGCAAGG	CGCGGGCGTT	CATATCAGTG
		1301	AAGACAGTAC	CGTTACTTGG	AAAGTAAACG	GCGTGGCAAA	CGACCGCCTG
		1351	TCCAAAATCG	GCAAAGGCAC	GCTGCACGTT	CAAGCCAAAG	GGGAAAACCA
30		1401	AGGCTCGATC	AGCGTGGGCG	ACGGTACAGT	CATTTTGGAT	CAGCAGGCAG
30		1451	ACGATAAAGG	CAAAAAACAA	GCCTTTAGTG	AAATCGGCTT	GNTCAGCGGC
•		1501	AGGGGTACGG	TGCAACTGAA	TGCCGATAAT	CAGTTCAACC	CCGACAAACT
		1551 1601	COMMOGRAGE	TTTCGCGGCG	GACGTTTGGA	TTTAAACGGG	CATTCGCTTT
		1651	AATTCCACCG	TATTCAAAAT	ACCGATGAAG	GGGCGATGAT	TGNCNATCAT
35	•	1701	AAIGCCACAA	CAACATCCAC	CGTTACCATT	ACAGGGAATG	AAAGTATTAC
55		1751	CCTACAACC	TOCCOMMOCCO	TCAATAGACT	TAATTACAGC	AAAGAAATTG
•		1801	CTCAACCTTC	THUTTOCACCC	GAGAAAGATA	CGACCAAAAC	GAACGGGCGG
		1851	CICAACCIIG	AAMMONAACC	CGCCGCAGAA	.GACCGCACCC	NGCTGCTTTC
		1901	TTTTCACCCC	CACACCCACA	GCAACATCAC CCGCACGCCT	GCAAACAAAC	GGCAAACTGT
40		1951	TCCTCAAAAA	TGGAAGGTAT	CCCACAAGGA	ACAATCATTT	AGGAAGCGGG
		2001	CTGGATCNAC	CCCACCTTTA	AAGCGGAAAA	CAAATCGTGT	GGGACAACGA
		2051	AGGCGGTGAT	TTCCCCCAAT	GTTGCCAAAG	TITICATATT	CAGGGGGGGG
		2101	AGCAATCACG	CCCAAGCAGT	TTTTGGTGTC	CCACCCCATC	ANACCORMAG
		2151	AATCTGTACA	CGTTCGGACT	GGACNGGTCT	GCACCGCATC	COCCARANA
45		2201	NCATTACCGA	CGATAAAGTG	ATTGCTTCAT	TCDCTTDDCTC	NC A CHITTINA CO
		2251	GGCANTGTNA	GNCTNNCCNA	TNACGNTNNT	TNIANANICTON	CNCCCOMMCC
		2301	NNCACTNAAN	GGCAATCTTA	GTGCAAATGG	CCDADCVCCA	CNGGGCNTGC
		2351	GCCACAACGC	CACCCAAAAC	GGCAACCTTA	CCCTCCTCCC	CAARCCCCCAA
		2401	GCAACATTTA	ATCAAGCCAC	ATTAAACGGC	AACNCATCGG	NTTCCCCCAA
50		2451	TGCTTCATTT	AATCTAAGCA	ACAACGCCGC	ACADAACGC	ACTOTOROGG
•		2501	TTTCCGACAA	CGCTAAGGCA	AACGTAAGCC	ATTCCCCACT	CAACCCCAAM
		2551	GTCTCCCTAG	CCGATAAGGC	AGTATTCCAT	TTTCADADACA	CULCCUTTURE
		2601	CGGACAACTC	AGCGGCAGCA	AGGANACAGC	ስተተው ርዕር ተሞል ስተተው ርዕር ተሞል	DARGACACCC
		2651	AATGGACGCT	GCCGTCAGGC	ACGGAATTAG	CCDDTTTDDD	CCTTCACAAC
55		2701	GCCACCATTA	CACTCAATTC	CGCCTATCGC	CACGATGCTG	CACCCCCCA
		2751	AACCGGCAGN	GTGTCAGACA	CGCCGCGCCG	CCGTTCGCGC	CAGGCGCGCA
		2801	TATCCGTTAC	ACCGCCAACT	TCGGTAGAAT	CCCGTTTCAA	CACCCTCACC
		2851	GTAAACGGCA	AATTGAACNG	TCAAGGAACA	TTCCCCTTTTA	TCTCCCD ACT
		2901	CTTCGGCTAC	CGAAGCGACA	AATTGAAGCT	GGCGGAAAGT	TCCCDACCNA
60		2951	CTTACACCTT	GGCGGTCAAC	AATACCGGCA	ACGAACCCCT	ANCCCTCCAT
		3001	CAATTGACGG	TAGTGGAAGG	GAAAGACAAC	AAACCGCTGT	CCCDDDDCCT
		3051	TAATTTCACC	CTGCAAAACG	AACACGTCGA	TGCCGGCGCG	TECCETTALCE
		3101	AACTCATCCG	CAAAGACGGC	GAGTTCCGCC	TGCATAATCC	CCTCDAACAA
		3151	CAAGAGCTTT	CCGACAAACT	CGGCAAGGCA	GAAGCCAAAA	DD COCCCCO
65		3201	AAAAGACAAC	GCGCAAAGCC	TTGACGCGCT	GATTGCGGCC	GGGCGCGATC :
		3251	CCGCCGAAAA	GACAGAAAGC	GTTGCCGAAC	CGGCCCCGCCA	CCCACCCCAIG
		3301	GAAAATGTCG	GCATTATGCA	GGCGGAGGAA	GAGAAAAAA	GCCTCCACCC
		3351	GGATAAAGAC	AGCGCNTTGG	CGAAACAGCG	CGAAGCGGAA	VCCCCCCCC
		3401	NTACCACCGC	CTTCCCCCCC	GCCCGCNGCG	CCCCCCCCCV	ででしているのでしている
70	•	3451	CCGCAGCCCC	AACCGCAACC	TCAACCCCAA	CCGCAGCGCG	ACCTGATNAG
		3501	CCGTTATGCC	AATAGCGGTT	TGAGTGAATT	TTCCGCCACG	CTCAACAGCG
		3551	TTTTCGCCGT	ACAGGACGAA	TTGGACCGCG	TGTTTGCCGA	AGACCGCCGC

	3601	AACGCNGTTT	GGACAAGCNG	CATCCGGNAC	ACCAAACACT	ACCGTTCGCA
	3651	AGATTTCCGC	GCCTACCGCC	AACAAACCGA	CCTGCGCCAA	ATCGGTATGC
	3701	AGAAAAACCT	CGGCAGCGGG	CGCGTCGGCA	TCCTGTTTTC	GCACAACCGG
	3751	ACCGAAAACA	NCTTCGACGA	CGGCATCGGC	AACTCGGCAC	GGCTTGCCCA
5	3801	CGGCGCCGTT	TTCGGGCAAT	ACGGCATCGG	CAGGTTCGAC	ATCGGCATCA
	3851	GCACGGGCGC	GGGTTTTAGC	AGCGGCANTC	TNTCAGACGG	CATCGGAGGC
	3901	AAAATCCGCC	GCCGCGTGCT	GCATTACGGC	ATTCAGGCAC	GATACCGCGC
	3951	CGGTTTCGGC	GGATTCGGCA	TCGAACCGTA	CATCGGCGCA	ACGCGCTATT
	4001	TCGTCCAAAA	AGCGGATTAC	CGCTACGAAA	ACGTCAATAT	CGCCACCCC
10	4051	GGTCTTGCGT	TCAACCGNTA	CCGNGCGGGC	ATTAAGGCAG	ATTATTCATT
	4101	CAAACCGGCG	CAACACATNT	CCATCACNCC	TTATTTNAGC	CTGTCCTATA
	4151	CCGATGCCGC	TTCGGGCAAA	GTCCGAACAC	GCGTCAATAC	CGCNGTATTG
	4201	GCTCAGGATT	TCGGCAAAAC	CCGCAGTGCG	GAATGGGGCG	TAAACGCCGA
	4251	AATCAAAGGT	TTCACGCTGT	CCNTCCACGC	TGCCGCCGCC	AAAGGNCCGC
15	4301	AACTGGAAGC	GCAACACAGC	GCGGGCATCA	AATTAGGCTA	CCGCTGGTAA

This encodes a protein having amino acid sequence <SEQ ID 652>:

	1	MKTTDKRTTE	THRKAPKTGR	IRFSPAYLAI	CLSFGILPQA	WAGHTYFGIN
	51	YQYYRDFAEN	KGKFAVGAKD	IEVYNKKGEL	VGKSMTKAPM	IDFSVVSRNG
	101	VAALVGDQYI	VSVAHNGGYN	NVDFGAEGXN	PDQHRFSYQI	VKRNNYKPDN
20	151	SHPYNGDXHM	PRLHKFVTDA	EPVEMTSDMR	GNTYSDKEKY	PERVRIGSGH
	201				GNNGVXSLSG	
	251	MPIAGAAGDS	GSPMFIYDKT	NNKWLLNGVL	QTGYPYSGRE	NGFQLIRKDW
	301	FYDDIYRGDT	HTVXFEPRSN	GHFSFTSNNN	GTGTVTETNE	KVSNPKLKVQ
	351	TVRLFDESLN	ETDKEPVYAA	GGVNQYRPRL	NNGENLSFID	YGNGKLILSN
25	401				HISEDSTVTW	
	451	SKIGKGTLHV	QAKGENQGSI	SVGDGTVILD	QQADDKGKKQ	AFSEIGLXSG
	501	RGTVQLNADN	QFNPDKLYFG	FRGGRLDLNG	HSLSFHRIQN	TDEGAMIXXH
	551				KEIAYNGWFG	
	601	LNLVYQPAAE	DRTXLLSGGT	NLNGNITQTN	GKLFFSGRPT	PHAYNHLGSG
30	651	WSKMEGIPQG	EIVWDNDWIX	RTFKAENFHI	QGGQAVISRN	VAKVEGDXHL
	701		APHQSHTICT	RSDWTGLTNC	VEXXITDDKV	IASLTKTDXS
	751				YTVSHNATQN	
	801		NXSXSGNASF	NLSNNAAQNG	SLTLSDNAKA	NVSHSALNGN
	851	VSLADKAVFH	FENSRFTGQL	SGSKXTALHL	KDSEWTLPSG	TELGNLNLDN
35	901				RSLLSVTPPT	
	951				SEGTYTLAVN	
	1001	QLTVVEGKDN	KPLSENLNFT	LQNEHVDAGA	WRYQLIRKDG	EFRLHNPVKE
	1051	QELSDKLGKA	EAKKQAEKDN	AQSLDALIAA	GRDAAEKTES	VAEPARXAGG
	1101	ENVGIMQAEE	EKKRVQADKD	SALAKQREAE	TRPXTTAFPR	ARXARRDLPQ
40	1151	PQPQPQPQPQ	PQRDLXSRYA	NSGLSEFSAT	LNSVFAVQDE	LDRVFAEDRR
	1201	NAVWTSXIRX	TKHYRSQDFR	AYRQQTDLRQ	IGMQKNLGSG	RVGILFSHNR
	1251		NSARLAHGAV	FGQYGIGRFD	IGISTGAGFS	SGXLSDGIGG
	1301	KIRRRVLHYG	IQARYRAGFG	GFGIEPYIGA	TRYFVQKADY	RYENVNIATP
	1351				LSYTDAASGK	
45	1401	aqdfgktrsa	EWGVNAEIKG	FTLSXHAAAA	KGPQLEAQHS	AGIKLGYRW*

A transmembrane region is underlined.

ORF1-1 shows 86.3% identity over a 1462aa overlap with ORF1a:

50	orfla.pep	10 MKTTDKRTTETHRI MKTTDKRTTETHRI 10	11111111111	1111111111	11111111111	1111111111	111111
<i>E E</i>		70	80	90	100	110	120
55	orfla.pep	KGKFAVGAKDIEV	YNKKGELVGKS	MTKAPMIDES	SVVSRNGVAAL	VGDQYIVSVA	HNGGYN
		1111111111111	111111111	111111111	1	шинши	
	orfl-l	KGKFAVGAKDIEV				JVGDQYIVSVA	HNGGYN
		70	80	90	100	110	120
60		130	140	150	1.60		
00	61			150	160	170	179
	orfla.pep	NVDFGAEGXNPDQ	HRFSYQIVKRN	NYKPDNS-HI	PYNGDXHMPRI	HKFVTDAEPV	EMTSDM
			: :		:	1111111111	1111
	orf1-1	NVDFGAEGRNPDQ	HRFTYKIVKRN	nykagtkghi	PYGGDYHMPRI	HKFVTDAEPV	EMTSYM
		130	140	150	160	170	180
65							

	orfla.pep	180 190 200 210 220 230 RGNTYSDKEKYPERVRIGSGHHYWRYDDDKHGDLSYSGAWLIGGNTHMQGWGNN ::: : ::::
5	orf1-1	DGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGG 190 200 210 220 230 240
	orfla.pep	240 250 260 270 280 290 GVXSLSGD-VRHANDYGPMPIAGAAGDSGSPMFIYDKTNNKWLLNGVLQTGYPYSGRENG :: :::::::::::::::::::::::::::::::::
10	orfl-1	: : ::: :: : : : :: :
1.5	orfla.pep	300 310 320 330 340 350 FQLIRKDWFYDDIYRGDTHTVXFEPRSNGHFSFTSNNNGTGTVTETNEKVSNP-KLKVQT
15	orf1-1	: : : : : : : : :: ::
20	orfla.pep	360 370 380 390 400 410 VRLFDESLNETDKEPVY-AAGGVNQYRPRLNNGENLSFIDYGNGKLILSNNINQGAGGLY
·	orfl-1	: : : :
25	orfla.pep	420 430 440 450 460 470 FEGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSI
	orf1-1	FQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLHVQAKGENQGSI
30		480 490 500 510 520 520
•	orfla.pep	SVGDGTVILDQQADDKGKKQAFSEIGLXSGRGTVQLNADNQFNPDKLYFGFRGGRLDLNG
35		SVGDGTVILDQQADDKGKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGRLDLNG 480 490 500 510 520 530
	orfla.pep	540 550 560 570 580 590 HSLSFHRIQNTDEGAMIXXHNATTTSTVTITGNESITQPSGKNINRLNYSKEIAYNGWFG
40	orf1-1	
45	orfla.pep	600 610 620 630 640 650 EKDTTKTNGRLNLVYQPAAEDRTXLLSGGTNLNGNITQTNGKLFFSGRPTPHAYNHLGSG
	orf1-1	
50	orfla.pep	660 670 680 690 700 710 WSKMEGIPQGEIVWDNDWIXRTFKAENFHIQGGQAVISRNVAKVEGDXHLSNHAQAVFGV
	orf1-1	: : : : :
55	orfla.pep	720 730 740 750 760 770 APHQSHTICTRSDWTGLTNCVEXXITDDKVIASLTKTDXSGXVXLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	orf1-1	APHQSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHLNLTGLATLN
60		720 730 740 750 760 770
	orfla.pep	780 790 800 810 820 830 GNLSANGDTRYTVSHNATQNGNLSLVGNAQATFNQATLNGNXSXSGNASFNLSNNAAQNG
65	orf1-1	
	orfla.pep	840 850 860 870 880 890 SLTLSDNAKANVSHSALNGNVSLADKAVFHFENSRFTGQLSGSKXTALHLKDSEWTLPSG
70	orf1-1	

-367-

		900 TELGNLNLDNATIT	910	920	930	940 SUPPOPESVESPEN	
	orfla.pep	1111111111111111	111111111		111111 11	11111111111	
5	orf1-1	TELGNLNLDNATIT	LNSAYRHDAAG 920	AQTGSATDAPRI 930	940	950	
		950 960	970	980	990	1000	
	orfla.pep	TLTVNGKLNXQGTF					
10	orf1-1	TLTVNGKLNGQGTF					
						1060	
	orfla.pep	1010 1020 KDNKPLSENLNFTL	_	-		DKLGKAEAKKQAE	
15	orf1-1						
		1020 1030	1040	1050	1060	1070	
20	aufla non	1070 1080 KDNAQSLDALIAAG	1090	1100	1110	1120	
20	orfla.pep	$ 1111\overline{1}1111111111111111111111111111111$	111:111111	ши шш	шінш		
	orf1-1	KDNAQSLDALIAAG 1080 1090	RDAVEKTESVA 1 1 00	EPARQAGGENV 1110	GIMQAEEEKKE 1120	1130	
25		1130 1140	1150	1160	1170	1180	
	orfla.pep	EAETRPXTTAFPRA					
	orf1-1	EAETRPATTAFPRA		PQPQPQPQR			
30				1170			
	orfla.pep	1190 1200 QDELDRVFAEDRRN	1210 AVWTSXIRXTK	1220 HYRSQDFRAYR	1230 QQTDLRQIGM(1240 KNLGSGRVGILFS	
	orf1-1	! !					
35	0111	1200 121			1240	1250	
	61	1250 1260 HNRTENXFDDGIGN	1270	1280	1290	1300	
	orfla.pep	111111:1111111	11111111111	1111 11 113	1:111111		
40	orf1-1	HNRTENTFDDGIGN 1260 127			SAGAGFSSGSI 1300	LSDGIGGKIRRRVL 1310	
		1310 1320	1330	1340	1350	1360	
45	orfla.pep	HYGIQARYRAGFGG	FGIEPYIGATR	YFVQKADYRYE	NVNIATPGLA		
40	orfl-1	HYGIQARYRAGFGG	FGIEPHIGATE	YFVQKADYRYE	NVNIATPGLA	FNRYRAGIKADYSF	
		1320 133			1360	1370	
50	orfla.pep	1370 1380 KPAQHXSITPYXSI	1390 SYTDAASGKVR	1400 TRVNTAVLAQD	1410 FGKTRSAEWG	1420 VNAEIKGFTLSXHA	
	orf1-1	 					
	0111 1	1380 139		-	1420	1430	
55		1430 1440	1450				
	orfla.pep	AAAKGPQLEAQHSA	111111111				
	orf1-1	AAAKGPQLEAQHSA 1440 145					
60	TT -1 11 11				. 		2071
		esion and penetration p					38/)
	Amino acids 23-4	23 of ORF1 show 59	9% aa identii	ty with hap p	protein in 45	0aa overlap:	
	orfl 23	FXAAYLAICLSFGILPO					
65	hap 6	F +L C+S GI QA FRLNFLTACVSLGIASQA					
	orf1 83	KSMTKAPMIDFSVVSRNO				DQXRXTYKIV 142	
	hap 66	SMTKAPMIDFSVVSRNO TSMTKAPMIDFSVVSRNO				DQ R TY+IV DQHRFTYQIV 124	
	•		=			-	

			· .	
	orfl		KRNNYKAGTKGHPYGGDYHMPRLHKXVTDAEPVEMTSYMDGRKYIDQNNYPDRVRIGAGR KRNNY+A + HPY GDYHMPRLHK VT+AEPV MT+ MDG+ Y D+ NYP+RVRIG+GR	
5	hap	125	KRNNYQAWERKHPYDGDYHMPRLHKFVTEAEPVGMTTNMDGKVYADRENYPERVRIGSGR	184
	orfl	203	QYWRSDEDEPNNRESSYHIA	222
	hap	185	QYWRTDKDEETNVHSSYYVSGAYRYLTAGNTHTQSGNGNGTVNLSGNVVSPNHYGPLPTG	244
10	orfl	223	SGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTHSVF	277
	hap	245	SGSPMFIYDA+K++WLIN VLQTG+P+ G+ NGFQL+R++WFY+E+ A DT SVF GSKGDSGSPMFIYDAKKKQWLINAVLQTGHPFFGRGNGFQLIREEWFYNEVLAVDTPSVF	304
15	orfl	278	YEPRONGKYSFNDDNNGTGKIN-AKHEHNSLPNRLKTRTVQLFNVSLSETAREPVYHA	334
13	hap	305	Y P NG YSF +N+GTGK+ + + + + + $+$ TV+LFN SL++TA+E V A QRYIPPINGHYSFVSNNDGTGKLTLTRPSKDGSKAKSEVGTVKLFNPSLNQTAKEHV-KA	363
	orfl	335	AGGVNSYRPRLNNGENISFIDEGKGELILTSNINQGAGGLYFQGDFTV-SPENNETWQGA A G N Y+PR+ G+NI D+GKG L + +NINOGAGGLYF+G+F V +NN TWOCA	393
20	hap	364	A G N Y+PR+ G+NI D+GKG L + +NINQGAGGLYF+G+F V +NN TWQGA AAGYNIYQPRMEYGKNIYLGDQGKGTLTIENNINQGAGGLYFEGNFVVKGKQNNITWQGA	423
	orfl	394	GVHISEDSTVTWKVNGVANDRLSKIGKGTL 423 GV I +D+TV WKV+ NDRLSKIG GTL	
	hap	424	GVSIGQDATVEWKVHNPENDRLSKIGIGTL 453	
25	Amino acids	715-	1011 of ORF1 show 50% aa identity with hap protein in 258aa overl	ap:
	Orf1	41	DTRYTVSHNATQ-NGNXSLVXNAQATFNQ-ATLNGNTSASGNASFNLSDHAVQNGSLTLS DT+ S TO NG+ +L NA + A LNGN + ++ F LS+A O G++ LS	98
	hap	733	$\mathtt{DT+}$ S TQ $\mathtt{NG+}$ +L \mathtt{NA} + A \mathtt{LNGN} + ++ F $\mathtt{LS++A}$ Q G++ LS $\mathtt{DTKVINSIPITQINGSINLTNNATVNIHGLAKLNGNVTLIDHSQFTLSNNATQTGNIKLS}$	792
30	orf1	99	GNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWTLPSGXELGN	158
	hap	793	+A A V+++ LNGNV L D A F ++S F QI G KDT + L+++ WT+PS L N NHANATVNNATLNGNVHLTDSAQFSLKNSHFWHQIQGDKDTTVTLENATWTMPSDTTLQN	852
.35	orf1	159	LNLDNATITLNSAYRHDAAGAQTGSATDAPXXXXXXXXXXLLXVTPPTSVESRFNTLTVN	218
	hap	853	L L+N+T+TLNSAY + S+ +AP L T PTS E RENTLTVN LTLNNSTVTLNSAYSASSNNAPRHRRSLETETTPTSAEHRENTLTVN	899
	orf1	219	GKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKDNKP	278
40	hap	900	GKL+GQGTF+F S LFGY+SDKLKL+ +EG YTL+V NTG EP +LEQLT++E DNKP GKLSGQGTFQFTSSLFGYKSDKLKLSNDAEGDYTLSVRNTGKEPVTLEQLTLIESLDNKP	959
	orf1	279	LSENLNFTLQNEHVDAGA 296 LS+ L FTL+N+HVDAGA	
	hap		LSDKLKFTLENDHVDAGA 977	
45	Amino acids	1192	2-1450 of ORF1 show 41% aa identity with hap protein in 259aa over	rlap:
•	Orf1	1	LDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRVGILFSHNF LDR+F + ++AVWT+ +D + Y S FRAY+Q+T+LRQIG+QK L +GR+G +FSH+F	٤ 60
	hap	1135	DDRLFVDQAQSAVWTNIAQDKRRYDSDAFRAYQQKTNLRQIGVQKALANGRIGAVFSHSF	1194
50	orfl	61	TENTFDDGIGNSARLAHGAVFGQYGIDRFYXXXXXXXXXXXXXXXXXXXIGXKXRRRVLHYG	120
	hap	1195	++NTFD+ + N A L + F QY K R+ ++YO S SDNTFDEQVKNHATLTMMSGFAQYQWGDLQFGVNVGTGISASKMAEEQSRKIHRKAINYO	; ; 1254
55	orf1	121	The state of the s	180
33	hap	1255	+ A Y+ G GI+P+ G RYF+++ +Y+ E V + TP LAFNRY AGI+ DY+F P VNASYQFRLGQLGIQPYFGVNRYFIERENYQSEEVRVKTPSLAFNRYNAGIRVDYTFTPT	1314
	orf1	181	QHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSAEWGVNAEIKGFTLSLHAAAF	240
60	hap	1315	+IS+ PY ++Y D ++ V+T VN VL Q FG+ E G+ AEI F +S + + DNISVKPYFFVNYVDVSNANVQTTVNLTVLQQPFGRYWQKEVGLKAEILHFQISAFISKS	- 3 1374
	orfl	241	KGPQLEAQHSAGIKLGYRW 259	
65	hap	1375	+G QL Q + G+KLGYRW 5 QGSQLGKQQNVGVKLGYRW 1393	

WO 99/24578 PCT/IB98/01665

Homology with a predicted ORF from N.gonorrhoeae

The blocks of ORF1 show 83.5%, 88.3%, and 97.7% identities in 467, 298, and 259 aa overlap, respectively with a predicted ORF (ORF1ng) from *N.gonorrhoeae*:

5	orfl.pep	MKTTDKRTTETHRKAPKTGRIRFXAAYLAICLSFGILPQAWAGHTYFGINYQYYRDFAEN	60				
	orflng	MKTTDKRTTETHRKAPKTGRIRFSPAYLAICLSFGILPQARAGHTYFGINYQYYRDFAEN	60				
10	orfl.pep	KGKFAVGAKDIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALVGVQYIVSVAHNGGYN	120				
10	orflng	KGKFAVGAKDIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALAGDQYIVSVAHNGGYN	120				
	orfl.pep	NVDFGAEGXNIXDQXRXTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKXVTDAEFVEMTSY	180				
15	orflng	NVDFGAEGSN-PDQHRFSYQIVKRNNYKAGTNGHPYGGDYHMPRLHKFVTDAEPVEMTSY	179				
	orfl.pep	MDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSYHIAS					
	orflng	MDGWKYADLNKYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSG	239				
20	orfl.pep	GSPMFIYDAQKQKWLINGVLOTGNPYIGKSNG	255				
	orflng	GGTVNLGSEKIKHSPYGFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNG	289				
25	orf1.pep	FOLVRKDWFYDEIFAGDTHSVFYEPRONGKYSFNDDNNGTGKINAKHEHNSLPNRLKTRT	315				
20	orflng	<u>FOL</u> VRKDWFYDEIFAGDTHSVFYEPHQNGKYFFNDNNNGAGKIDAKHKHYSLPYRLKTRT	359				
	orfl.pep	VQLFNVSLSETAREPVYHAAGGVNSYRPRLNNGENISFIDEGKGELILTSNINQGAGGLY	375				
30	orflng	VQLFNVSLSETAREPVYHAAGGVNSYRPRLNNGENISFIDKGKGELILTSNINQGAGGLY					
	orfl.pep	FQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGT	422				
35	orflng	FEGNFTVSPKNNETWQGAGVHISDGSTVTWKVNGVANDRLSKIGKGTLLVQAKGENQGSV	479				
33	orfl.pep	DKVTASLTKTDISGNVDLADHAHLNLTGLA	744				
	orflng		774				
40	orfl.pep	TLNGNLSANGDTR-YTVSHNATQNGNXSLVXNAQATFNQATLNGNTSASGNASFNLSDHA	803				
	orflng	: :::: :					
45	orfl.pep						
43		VQNGSLTLSGNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWT	863				
	orflng	VQNGSLTLSGNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWT	863 893				
50	orflng		893				
50	orflng orfl.pep		893 923				
	orflng orfl.pep orflng	VQNGSLTLSDNAKANVSHSALNGNVSLADKAVFHFENSRFTGKISGGKDTALHLKDSEWT LPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRRSLLXVTPPTSVE	893 923 950 983				
50 55	orfl.pep orfl.pep orfl.pep		893 923 950 983				
	orflng orflng orflnpep orflng	UPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRLLXVTPPTSVE LPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRRSLLXVTPPTSVE LIII:	893 923 950 983 1010 1011				
	orflng orfl.pep orflng orfl.pep orflng orfl.pep	UPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRLLXVTPPTSVE LPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRRSLLXVTPPTSVE LII::!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	893 923 950 983 1010 1011 1070				
55	orflng orfl.pep orflng orfl.pep orflng orfl.pep orflng	UPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRLLXVTPPTSVE LPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRRSLLXVTPPTSVE LPSGTELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRSLLSVTPPTSAE SRFNTLTVNGKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLT	893 923 950 983 1010 1011 1070				
55 60	orflng orfl.pep orflng orfl.pep orflng orfl.pep orflng orfl.pep	UPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRLLXVTPPTSVE LPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRSLLXVTPPTSVE LII:	893 923 950 983 1010 1011 1070 1211 1239				
55	orflng orfl.pep orflng orfl.pep orflng orfl.pep orflng orfl.pep orflng	UPSGXELGNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRSRRSRLLXVTPPTSVE	893 923 950 983 1010 1011 1070 1211 1239 1271				

	orfl.pep	IGISAGAGFSSGSLSDGIGXKXRRRVLHYGIQARYRAGFGGFGIEPHIGATRYFVQKADY 1331
5	orfl.pep	RYENVNIATPGLAFNRYRAGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVNTAVL 1391
10	orfl.pep	AQDFGKTRSAEWGVNAEIKGFTLSLHAAAAKGPQLEAQHSAGIKLGYRW 1440

The complete length ORF1ng nucleotide sequence was identified <SEQ ID 653>:

				:		•
	1	ATGAAAACAA	CCGACAAACG	GACAACCGAA	ACACACCGCA	AAGCCCCTAA
	51	AACCGGCCGC	ATCCGCTTCT	CGCCCGCTTA	CTTAGCCATA	TECCTETCET
15	101	TCGGCATTCT	GCCCCAAGCC	CGGGCGGGAC	ACACTTATTT	CGGCATCAAC
	151	TACCAATACT	ATCGCGACTT	TGCCGAAAAT	AAAGGCAAGT	TTGCAGTCGG
	201	GGCGAAAGAT	ATTGAGGTTT	ACAACAAAAA	AGGGGAGTTG	GTCGGCAAAT
	251	CGATGACGAA	AGCCCCGATG	ATTGATTTTT	CTGTGGTATC	GCGTAACGGC
	301	GTGGCGGCAT	TGGCGGGCGA	TCAATATATT	GTGAGCGTGG	CACATAACGG
20	351	CGGCTATAAC	AATGTTGATT	TTGGTGCGGA	GGGAAGCAAT	CCCGATCAGC
	401	ACCGCTTTTC	TTACCAAATT	GTGAAAAGAA	ATAATTATAA	AGCAGGGACT
	451	AACGGCCATC	CTTATGGCGG	CGATTATCAT	ATGCCGCGTT	TGCACAAATT
	501	TGTCACAGAT	GCAGAACCTG	TTGAGATGAC	CAGTTATATG	GATGGGTGGA
12	551	AATACGCTGA	TTTAAATAAA	TACCCTGATC	GTGTTCGAAT	CGGAGCAGGC
25	601	AGACAATATT	GGCGGTCTGA	TGAAGACGAA	CCCAATAACC	GCGAAAGTTC
	651	ATATCATATT	GCAAGCGCAT	ATTCTTGGCT	CGTCGGTGGC	AATACCTTTC
	701	CACAAAATGG	ATCAGGTGGT	GGCACAGTCA	ACTTAGGTAG	CGAAAAAATT
	751	AAACATAGCC	CATATGGTTT	TTTACCAACA	GGAGGCTCAT	TTGGCGACAG
	801	TGGCTCACCA	ATGTTTATCT	ATGATGCCCA	AAAGCAAAAG	ΤΕΚΤΤΑΑΤΤΑ
30	851	ATGGGGTATT	GCAAACAGGC	AACCCCTATA	TAGGAAAAAG	CAATGGCTTC
	901	CAGCTAGTTC	GTAAAGATTG	GTTCTATGAT	GAAATCTTTG	CTGGAGATAC
	951	CCATTCAGTA	TTCTACGAAC	CACATCAAAA	TGGGAAATAC	ጥጥጥጥጥ አ አ ር ር
•	1001	ACAATAATAA	TGGCGCAGGA	AAAATCGATG	CCAAACATAA	ACACTATTCT
	1051	CTACCTTATA	GATTAAAAAC	ACGAACCGTT	CAATTGTTTA	ATGTTTCTTT
35	1101	ATCCGAGACA	GCAAGAGAAC	CTGTTTATCA.	TGCTGCAGGT	GGGGTCAACA
	1151	GTTATCGACC	CAGACTGAAT	AATGGAGAAA	ATATTTCCTT	TATTGACAAA
	1201	GGAAAAGGTG	AATTGATACT	TACCAGCAAC	ATCAACCAAG	GCGCGGGCGG
	1251	TTTGTATTT	GAGGGTAATT	TTACGGTCTC	GCCTAAAAAC	AACGAAACGT
	1301	GGCAAGGCGC	GGGCGTTCAT	ATCAGTGATG	GCAGTACCGT	TACTTGGAAA
40	1351	GTAAACGGCG	TGGCAAACGA	CCGCCTGTCC	AAAATCGGCA	AAGGCACGCT
	1401	GCTGGTTCAA	GCCAAAGGGG	AAAACCAAGG	CTCGGTCAGC	GTGGGCGACG
	1451	GTAAAGTCAT	CTTAGATCAG	CAGGCGGACG	ATCAAGGCAA	AAAACAAGCC
	1501	TTTAGTGAAA	TCGGCTTGGT-	CAGCGGCAGG	GGGACGGTGC	AACTGAATGC :
4.5	1551	CGATAATÇAG	TTCAACCCCG	ACAAACTCTA	TTTCGGCTTT	CGCGGCGGAC
45	1601	GTTTGGATTT	GAACGGGCAT	TCGCTTTCGT	TCCACCGCAT	TCAAAATACC
	1651	GATGAAGGGG	CGATGATTGT	CAACCACAAT	CAAGACAAAG	AATCCACCCT
	1701	TACCATTACA	GGCAATAAAG	ATATTACTAC	AACCGGCAAT	AACAACAACT
•	1751	TGGATAGCAA	AAAAGAAATT	GCCTACAACG	GTTGGTTTGG	CGAGAAAGAT
60	1801	GCAACCAAAA	CGAACGGGCG	GCTCAATCTG	AATTACCAAC	CGGAAGAAGC
50	1851	GGATCGCACT	TTACTGCTTT	CCGGCGGAAC	AAATTTAAAC	GGCAATATCA
	1901	CGCAAACAAA	CGGCAAACTG	TTTTTCAGCG	GCAGACCGAC	ACCGCACGCC
	1951	TACAATCATT	TAGGAAGCGG	GTGGTCAAAA	ATGGAAGGTA	TCCCACAAGG
	2001	AGAAATCGTG	TGGGACAACG	ATTGGATCGA	CCGCACATTT	AAAGCGGAAA
<i>C C</i>	2051	ACTTCCATAT	TCAGGGCGGA	CAAGCGGTGG	TTTCCCGCAA	ТСТТСССДДД
55	2101	GTGGAAGGCG	ATTGGCATTT	AAGCAATCAC	GCCCAAGCAG	TTTTCGGTGT
•	2151	CGCACCGCAT	CAAAGCCACA	CAATCTGTAC	ACGTTCGGAC	TGGACGGGTC
	2201	TGACAAGTTG	TACCGAAAAA	ACCATTACCG	ACGATAAAGT	GATTGCTTCA
•	2251	TTGAGCAAGA	CCGACATCAG	AGGCAATGTC	AGCCTTGCCG	ATCACGCTCA
CO	2301	TTTAAATCTC	ACAGGACTTG	CCACACTCAA	CGGCAATCTT	AGTGCAGGCG
60	2351	GAGACACGCA	CTATACGGTT	ACGCGCAACG	CCACCCAAAA	CGGCAACCTC
	2401	AGCCTCGTGG	GCAATGCCCA	AGCAACATTT	AATCAAGCCA	CATTAAACGG
	2451	CAACACATCG	GCTTCGGACA	ATGCTTCATT	TAATCTAAGC	AACAACGCCG
	2501	TACAAAACGG	CAGTCTGACG	CTTTCCGACA	ACGCTAAGGC	AAACGTAAGC
6.5	2551	CATTCCGCAC	TCAACGGCAA	TGTCTCCCTA	GCCGATAAGG	CAGTATTCCA
65	2601	TTTTGAAAAC	AGCCGCTTTA	CCGGAAAAAT	CAGCGGCGGC	AAGGATACGG
	2651	CATTACACTT	AAAAGACAGC	GAATGGACGC	TGCCGTCGGG	CACGGAATTA
	2701	GGCAATTTAA	ACCTTGACAA	CGCCACCATT	ACACTCAATT	CCGCCTATCG
•	2751	ACACGATGCG	GCAGGCGCGC	AAACCGGCAG	TGCGGCAGAT	GCGCCGCGCC
50	2801	GCCGTTCGCG	CCGTTCCCTA	TTATCCGTTA	CGCCGCCAAC	TTCGGCAGAA
70	2851	TCCCGTTTCA	ACACGCTGAC	GGTAAACGGC	AAATTGAACG	GTCAGGGAAC

						00007.00000	2 2 2 MMC 2 2 CC
,		2901	ATTCCGCTTT	ATGTCGGAAC	TCTTCGGCTA	CCGCAGCGGC	AAATTGAAGC
		2951	TGGCGGAAAG	TTCCGAAGGC	ACTTACACCT	TGGCTGTCAA	CAATACCGGC
		3001	AACGAACCCG	TAAGTCTCGA	GCAATTGACG	GTAGTGGAAG	GAAAAGACAA
		3051	CACACCGCTG	TCCGAAAATC	TTAATTTCAC	CCTGCaaaAc	gaacacgtcg
5		3101	atgccggcgc	atggCGTTAT	CAGCTTATCC	gcaaagacgG	CGAGTTCCgc
Ū		3151	CTGCATAATC	CGGTCAAAGA	ACAAGAGCTT	TCCGACAAAC	TCGGCAAGgc
		3201	gggagaaACA	GAggccgccT	TGACGGCAAA	ACAGGCacaA	CTTGCCGCCA
		3251	AAcaacaggc	ggaaaAAGAC	AACgcgcaaa	gccttgAcgc	gctgattgcg
		3301	gCcgggcgca	atgccaccga	AAAGGCAgaa	agtgttgccg	aaccgGCCCG
10		3351	GCAGGCAGGC	GGGGAAAAtg	CCGGCATTAT	GCAGGCGGAG	GAAGAGAAAA
10		3401	AACGGGTGCA	GGCGGATAAA	GACACCGCCT	TGGCGAAACA	GCGCGAAGCG
		3451	GAAACCCGGC	CGGCTACCAC	CGCCTTCCCC	CGCGCCCGCC	GCGCCCGCCG
		3501	GGATTTGCCG	CAACCGCAGC	CCCAACCGCA	ACCCCAACCG	CAGCGCGACC
		3551	TGATCAGCCG	TTATGCCAAT	AGCGGTTTGA	GTGAATTTTC	CGCCACGCTC
15		3601	AACAGCGTTT	TCGCCGTACA	GGACGAATTG	GACCGCGTGT	TTGCCGAAGA
		3651	CCGCCGCAAC	GCCGTTTGGA	CAAGCGGCAT	CCGGGACACC	AAACACTACC
		3701	GTTCGCAAGA	TTTCCGCGCC	TACCGCCAAC	AAACCGACCT	GCGCCAAATC
		3751	GGTATGCAGA	AAAACCTCGG	CAGCGGGCGC	GTCGGCATCC	TGTTTTCGCA
		3801	CAACCGGACC	GGAAACACCT	TCGACGACGG	CATCGGCAAC	TCGGCACGGC
20	•	3851	TTGCCCACGG	TGCCGTTTTC	GGGCAATACG	GCATCGGCAG	GTTCGACATC
		3901	GGCATCAGCG	CGGGCGCGGG	TTTTAGTAGC	GGCAGCCTTT	CAGACGGCAT
		3951	CAGAGGCAAA	ATCCGCCGCC	GCGTGCTGCA	TTACGGCATT	CAGGCAAGAT
		4001	ACCGCGCAGG	TTTCGGCGGA	TTCGGCATCG	AACCGCACAT	CGGCGCAACG
		4051	CGCTATTTCG	TCCAAAAAGC	GGATTACCGA	TACGAAAACG	TCAATATCGC
25		4101	CACCCCGGGC	CTTGCATTCA	ACCGCTACCG	CGCGGGCATT	AAGGCAGATT
		4151	ATTCATTCAA	ACCGGCGCAA	CACATTTCCA	TCACGCCTTA	TTTGAGCCTG
		4201	TCCTATACCG	ATGCCGCTTC	CGGCAAAGTC	CGAACGCGCG	TCAATACCGC
		4251	CGTATTGGCG	CAGGATTTCG	GCAAAACCCG	CAGTGCGGAA	TGGGGCGTAA
		4301	ACGCCGAAAT	CAAAGGTTTC	ACGCTGTCCC	TCCACGCTGC	CGCCGCCAAG
30		4351	GGGCCGCAAT	TGGAAGCGCA	GCACAGCGCG	GGCATCAAAT	TAGGCTACCG
		4401	CTGGTAA				

This is predicted to encode a protein having amino acid sequence <SEQ ID 654>:

	1	MKTTDKRTTE	THRKAPKTGR	IRFSPAYLAI	CLSFGILPQA	RAGHTYFGIN
	51				VGKSMTKAPM	
35	101	VAALAGDQYI	VSVAHNGGYN	NVDFGAEGSN	PDQHRFSYQI	VKRNNYKAGT
	151	NGHPYGGDYH	MPRLHKFVTD	AEPVEMTSYM	DGWKYADLNK	YPDRVRIGAG
	201	RQYWRSDEDE	PNNRESSYHI	ASAYSWLVGG	NTFAQNGSGG	GTVNLGSEKI
	251	KHSPYGFLPT	GGSFGDSGSP	MFIYDAQKQK	WLINGVLOTG	<u>NPYIGKSNGF</u>
	301	OLVRKDWFYD	EIFAGDTHSV	FYEPHQNGKY	FFNDNNNGAG	KIDAKHKHYS
40	351	LPYRLKTRTV	QLFNVSLSET	AREPVYHAAG	GVNSYRPRLN	NGENISFIDK
••	401	GKGELILTSN	INQGAGGLYF	EGNFTVSPKN	NETWQGAGVH	ISDGSTVTWK
	451	VNGVANDRLS	KIGKGTLLVQ	AKGENQGSVS	VGDGKVILDQ	QADDQGKKQA
	501	FSEIGLVSGR	GTVQLNADNQ	FNPDKLYFGF	RGGRLDLNGH	SLSFHRIQNT
	551	DEGAMIVNHN	QDKESTVTIT	GNKDITTTGN	NNNLDSKKEI	AYNGWFGEKD
45	601	ATKTNGGLNL	NYPPEEADRT	LLLSGGTNLN	GNITQTNGKL	FFSGRPTPHA
	651	YNHLGSGWSK	MEGIPQGEIV	WDNDWIDRTF	KAENFHIQGG	QAVVSRNVAK
	701	VEGDWHLSNH	AQAVFGVAPH	QSHTICTRSD	WTGLTSCTEK	TITDDKVIAS
	751	LSKTDVRGNV	SLADHAHLNL	TGLATFNGNL	VQAETRTIRL	RANATQNGNL
	801	SLVGNAQATF	NOATLNGNTS	ASDNASFNLS	NNAVQNGSLT	LSDNAKANVS
50	851	HSALNGNVSL	ADKAVFHFEN	SRFTGKISGG	KDTALHLKDS	EWTLPSGTEL
	901	GNLNLDNATI	TLNSAYRHDA	AGAQTGSAAD	APRRRSRRSL	LSVTPPTSAE
	951	SRFNTLTVNG	KLNGQGTFRF	MSELFGYRSG	KLKLAESSEG	TYTLAVNNTG
	1001	NEPVSLEQLT	VVEGKDNTPL	SENLNFTLQN	EHVDAGAWRY	QLIRKDGEFR
	1051	LHNPVKEQEL	SDKLGKAGET	EAALTAKQAQ	LAAKQQAEKD	NAQSLDALIA
55	1101	AGRNATEKAE	SVAEPARQAG	GENAGIMQAE	EEKKRVQADK	DTALAKQREA
	1151	ETRPATTAFP	RARRARRDLP	QPQPQPQPQP	QRDLISRYAN	SGLSEFSATL
	1201	NSVFAVQDEL	DRVFAEDRRN	AVWTSGIRDT	KHYRSQDFRA	YRQQTDLRQI
	1251	GMQKNLGSGR	VGILFSHNRT	GNTFDDGIGN	SARLAHGAVF	GQYGIGRFDI
	1301	GISAGAGFSS	GSLSDGIRGK	IRRRVLHYGI	QARYRAGFGG	FGIEPHIGAT
60	1351	RYFVQKADYR	YENVNIATPG	LAFNRYRAGI	KADYSFKPAQ	HISITPYLSL
	1401			QDFGKTRSAE	WGVNAEIKGF	TLSLHAAAAK
	1451	GPQLEAQHSA	GIKLGYRW*			

Underlined and double-underlined sequences represent the active site of a serine protease (trypsin family) and an ATP/GTP-binding site motif A (P-loop).

ORF1-1 and ORF1ng show 93.7% identity in 1471 aa overlap:

	orfl-1.pep	MKTTDKRT	10 TETHRKAPK	20 TGRIRFSPAY	30 /LAICLSFGII	40 PQAWAGHTYE	50 GINYQYYRD	60 FAEN
5	orflng-l	MKTTDKRT	 TETHRKAPK 10	 TGRIRFSPAY 20			GINYQYYRD 50	IIII FAEN 60
	orfl-1.pep		70 KDTEVYNKK	80 GELVGKSMTE	90 Kapmidfsvvs	100	110	120
10	orflng-1	 KGKFAVGA	11111111	11111111111	(APMIDFSVVS		111131111	1111
		1	30	140	150	160	170	180
15	orf1-1.pep orf1ng-1	 NVDFGAEG	: SNPDQHRFS	: YQIVKRNNYI	KAGTKGHPYGO : KAGTNGHPYGO			 TSYM
20		1	30 90	200	150 210	160 .220	170 230	180 240
20	orf1-1.pep orf1ng-1	11 11 1	1:111111		DEDEPNNRESS		11111111	1111
25		1	90	200	210	220	230	240
23	orf1-1.pep	GTVNLGSE	11111111		270 SGSPMFIYDAÇ 			LIII
30	orflng-1	GTVNLGSE 2	KIKHSPYGF 50	TLPTGGSFGDS 260	GSPMFIYDAQ 270	OKOKWLINGVI 280	LQTGNPYIGK 290	SNGF 300
	orf1-1.pep	QLVRKDWF	10 YDEIFAGDT	320 HSVFYEPRON	330 NGKYSFNDDNI :	340 IGTGKINAKHE	350 EHNSLPNRLK	360 TRTV
35	orflng-1	QLVRKDWF	YDEIFAGDT 10	HSVFYEPHQN 320	IGKYFFNDNNI 330	IGAGKIDAKHI 340	CHYSLPYRLK 350	TRTV 360
	orf1-1.pep	QLFNVSLS	70 ETAREPVYH	380 IAAGGVNSYRI	390 PRLNNGENISI	400 FIDEGKGELII	410 TSNINQGAG	420 GLYF
40	orflng-1	QLFNVSLS	ETAREPVYH 70	IAAGGVNSYRI 380	PRLNNGENISI 390	FIDKGKGELII 400	TSNINQGAG	GLYF 420
45	orfl-1.pep	QGDFTVSP	30 Ennetwoga	440 AGVHISEDST	450 TWKVNGVANI	460 DRLSKIGKGTI	470 LHVQAKGENQ	480 GSIS
	orflng-1	EGNFTVSP	KNNETWQGA 30	AGVHISDGSTV	TWKVNGVANI 450	ORLSKIGKGTI 460	LLVQAKGENQ 470	GSVS 480
50	orfl-1.pep	VGDGTVIL	90 DOOADDKGK	500 KQAFSEIGL	510 /SGRGTVQLN/	520 DNOFNPDKL	530 YFGFRGGRLD	540 LNGH
	orflng-1	VGDGKVIL	DQQADDQGK 90	KKQAFSEIGLV 500		ADNOFNPDKLY 520	FGFRGGRLD 530	LNGH 540
55	orf1-1.pep	SLSFHRIQ	50 NTDEGAMIV	560 NHNQDKESTV	570 /TITGNKDIA	580 TTGNNNSLDSE	590 KEIAYNGWF	600 GEKD
60	orfing-1	SLSFHRIQ	(: /TITGNKDIT1 570		 KEIAYNGWF 590	GEKD 600
60	orf1-1.pep		10 NLVYOPAAE	620 CDRTLLLSGG	630 TNLNGNITQTI	640 IGKLFFSGRP	650 PPHAYNHIND	660 HWSO
65	orflng-1	: ATKTNGRL	11 111	3111111111		[1] [[[[[[[[[[[[[[[[[[11111111::	11:
	orfl-1.pep	6	70	680	690 [KGGQAVVSR]	700	710	720
70	orflng-1	: MEGIPQGE		:	: : EQGGQAVVSRI 690	: VAKVEGDWH]	 LSNHAQAVFG	IIII VAPH
		0	, 0	000	070	700	710	720

WO 99/24578 PCT/IB98/01665

	orf1-1.pep	730 740 750 760 770 780 QSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHLNLTGLATLNGNL
5	orf1ng-1	
	orf1-1.pep	790 800 810 820 830 840 SANGDTRYTVSHNATQNGNLSLVGNAQATFNQATLNGNTSASGNASFNLSDHAVQNGSLT
10	orflng-1	: : :: ::
1.5	orfl-1.pep	850 860 870 880 890 900 LSGNAKANVSHSALNGNVSLADKAVFHFESSRFTGQISGGKDTALHLKDSEWTLPSGTEL
15	orflng-1	
20	orf1-1.pep	910 920 930 940 950 960 GNLNLDNATITLNSAYRHDAAGAQTGSATDAPRRRSRRSRRSLLSVTPPTSVESRFNTLT
	orflng-l	
25	orfl-1.pep	970 980 990 1000 1010 1020 VNGKLNGQGTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGKDN
30	orflng-l	
30	orfl-1.pep	1030 1040 1050 1060 1070 KPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLGKA
35	orflng-1	
	orf1-1.pep	1080 1090 1100 1110 1120EAKKQAEKDNAQSLDALIAAGRDAVEKTESVAEPARQAGGENVGIMQAEEEKKRVQ :
40	orflng-1	QAQLAAKQQAEKDNAQSLDALIAAGRNATEKAESVAEPARQAGGENAGIMQAEEEKKRVQ 1080 1090 1100 1110 1120 1130
45	orf1-1.pep	1130 1140 1150 1160 1170 1180 ADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPQPQPQPQRDLISRYANSGLSEFS
43	orflng-1	ADKDTALAKQREAETRPATTAFPRARRARRDLPQPQPQPQPQPQPQRDLISRYANSGLSEFS 1140 1150 1160 1170 1180 1190
50	orfl-1.pep	1190 1200 1210 1220 1230 1240 ATLNSVFAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLG
	orflng-1	ATLNSVFAVQDELDRVFAEDRRNAVWTSGIRDTKHYRSQDFRAYRQQTDLRQIGMQKNLG 1200 1210 1220 1230 1240 1250
55	orfl-1.pep	1250 1260 1270 1280 1290 1300 SGRVGILFSHNRTENTFDDGIGNSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGI
60	orflng-1	SGRVGILFSHNRTGNTFDDGIGNSARLAHGAVFGQYGIGRFDIGISAGAGFSSGSLSDGI 1260 1270 1280 1290 1300 1310
	orfl-1.pep	1310 1320 1330 1340 1350 1360 GGKIRRVLHYGIQARYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYR
65	orflng-1	RGKIRRRVLHYGIQARYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYR 1320 1330 1340 1350 1360 1370
	orfl-1.pep	1370 1380 1390 1400 1410 1420 AGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSAEWGVNAEI
70	orflng-1	AGIKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSAEWGVNAEI 1380 1390 1400 1410 1420 1430

		1430	1440	1450	
	orf1-1.pep	KGFTLS	LHAAAAKGPQI	LEAQHSAGIK	LGYRWX
	orflng-1	KGFTLS	LHAAAAKGPQI	LEAQHSAGIK	LGYRWX
5		1440	1450	1460	

In addition, ORF1ng shows 55.7% identity with hap protein (P45387) over a 1455aa overlap:

	In addition, ORFIng	shows 55.7% identity with hap protein (P45387) over a 1455aa overlap
10		nitl: 1104 Initn: 4632 Opt: 2680 n score: 5165; 55.7% identity in 1455 aa overlap
10	orflng-1.pep	10 20 30 40 50 60 MKTTDKRTTETHRKAPKTGRIRFSPAYLAICLSFGILPQARAGHTYFGINYQYYRDFAEN
15	p45387	: : : :
	orflng-1.pep	70 80 90 100 110 120 KGKFAVGAKDIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALAGDQYIVSVAHNGGYN
20	p45387.	: :: : : :
25	orflng-1.pep	130 140 150 160 170 180 NVDFGAEGSNPDQHRFSYQIVKRNNYKAGTNGHPYGGDYHMPRLHKFVTDAEPVEMTSYM : : : :
	p43307	110 120 130 140 150 160
30	orflng-1.pep	190 200 210 220 230 240 DGWKYADLNKYPDRVRIGAGRQYWRSDEDEPNNRESSYHIASAYSWLVGGNTFAQNGSGG : : : : : : : : : :: : :: : : : :
	p45387	NGSTYSDRTKYPERVRIGSGRQFWRNDQDKGDQVAGAYHYLTAGNTHNQRGAGN 170 180 190 200 210
35	orflng-1.pep	250 260 270 280 290 300 GTVNLGSEKIKHSPYGFLPTGGSFGDSGSPMFIYDAQKQKWLINGVLQTGNPYIGKSNGF
40	p45387	GYSYLGGDVRKAGEYGPLPIAGSKGDSGSPMFIYDAEKOKWLINGILREGNPFEGKENGF 220 230 240 250 260 270
	orflng-1.pep	310 320 330 340 350 360 QLVRKDWFYDEIFAGDTHSVFYEPHQNGKYFFNDNNNGAGKIDAKHKHYSLPYRLKTRTV
45	p45387	QLVRKSYF-DEIFERDLHTSLYTRAGNGVYTISGNDNGQGSITQKSGIPSEIKI 280 290 300 310 320
,	orflng-1.pep	370 380 390 400 410 419 QLFNVSLSETAREPVYHAA-GGVNSYRPRLNNGENISFIDKGKGELILTSNINQGAGGLY : :: ::
50	p45387	TLANMSLPLKEKDKVHNPRYDGPNIYSPRLNNGETLYFMDQKQGSLIFASDINQGAGGLY 330 340 350 360 370 380
55	orflng-1.pep	420 430 440 450 460 470 479 FEGNFTVSPKNNETWQGAGVHISDGSTVTWKVNGVANDRLSKIGKGTLLVQAKGENQGSV
	p45387	FEGNFTVSPNSNQTWQGAGIHVSENSTVTWKVNGVEHDRLSKIGKGTLHVQAKGENKGSI 390 400 410 420 430 440
60	orflng-1.pep	480 490 500 510 520 530 539 SVGDGKVILDQQADDQGKKQAFSEIGLVSGRGTVQLNADNQFNPDKLYFGFRGGRLDLNG
	p45387	SVGDGKVILEQQADDQGNKQAFSEIGLVSGRGTVQLNDDKQFDTDKFYFGFRGGRLDLNG 450 460 470 480 490 500
65	orflng-1.pep	: :
70		510 520 530 540 550 560

5	orflng-1.pep p45387	600 610 620 630 640 650 EKDATKTNGRLNLNYQPEEADRTLLLSGGTNLNGNITQTNGKLFFSGRPTPHAYNHLGSG :
10	orflng-1.pep p45387	660 670 680 690 700 710 WSKMEGIPQGEIVWDNDWIDRTFKAENFHIQGGQAVVSRNVAKVEGDWHLSNHAQAVFGV :
15	orflng-1.pep	720 730 740 750 760 770 APHQSHTICTRSDWTGLTSCTEKTITDDKVIASLSKTDIRGNVSLADHAHLNLTGLATLN : : :
20	orfing-1.pep	780 790 800 810 820 830 GNLSAGGDTHYTVTRNATQNGNLSLVGNAQATFNQATLNGNTSASDNASFNLSNNAVQNG :: :::: : : GNVTLTNHSQFTLSNNATQIG 750 760 770
25	orfing-1.pep	840 850 860 870 880 890 SLTLSDNAKANVSHSALNGNVSLADKAVFHFENSRFTGKISGGKDTALHLKDSEWTLPSG :: : ::: :: : :: :: NIRLSDNSTATVDNANLNGNVHLTDSAQFSLKNSHFSHQIQGDKGTTVTLENATWTMPSD
30	p45387	780 790 800 810 820 830 900 910 920 930 940 950
35	p45387	
40	orflng-1.pep	960 970 980 990 1000 1010 VNGKLNGQGTFRFMSELFGYRSGKLKLAESSEGTYTLAVNNTGNEPVSLEQLTVVEGKDN : :
45	orflng-1.pep	1020 1030 1040 1050 1060 1070 TPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLGKAGETEAALTAK : :
50	orflng-1.pep	::: ::::: ::::: : : ::::: : QVEPTAKTOTGEPKVRSRRAARAAFPDTLPPQSLLNALEAKQAE-LTAETOKSKAKTKKV
55	orflng-1.pep	1140 1150 1160 1170 1180 1190 1190 1190 1190 1190 1190 119
60	p45387	RSKRAVFSDPLLDOSLFALEAALEVIDAPQOSEKDRLAQEEAEKQ-RKQKDLISRYSNSA 1060 1070 1080 1090 1100 1110 1200 1210 1220 1230 1240 1250
65	orf1ng-1.pe	: : : :
70	orflng-1.pe	1260 1270 1280 1290 1300 1310 MOKNLGSGRVGILFSHNRTGNTFDDGIGNSARLAHGAVFGQYGIGRFDIGISAGAGFSSG : :: : : : : : : :: : : :: : : :: : : :

-376-

5	orflng-1.pep p45387	::::	KIRRRVL	HYGIQARYRA	:1:11:1:	:: ::: :::	1360 KADYRYENVN : : : : RENYQSEEVR 1290	: 11:1
10	orflng-1.pep p45387	11111	SIKADYSF	KPAQHISITE ::: :	1: ::::::::	::::1:1 11	1420 TAVLAQDFGK' : : LTVLQQPFGR' 1350	: 1
15	orflng-1.pep p45387	1::111	FTLSLHA	AAAKGPQLEA	1460 AQHSAGIKLGY ::: : KQQNVGVKLGY 1390	111	•	

Based on this analysis, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

20 **Example 78**

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 655>:

```
.. AAGGTGTGGC AATTTGTCGA AGA.CCGCTG CGTGCCGTCG TGCCTGCCGA
                 51
                       CAGTTTTGAA CCGACCGCGC AAAAATTGAA CCTGTTTAAG GCGGGTGCGG
                       CAACCATTTT GTTTTATGAA GATCAAAATG TCGTCAAAGG TTTGCAGGAG
                101
25
                151
                       CAGTTCCCTG CTTATGCCGC TAACTTCCCC GTTTGGGCGG ATCAGGCAAA
                       CGCGATGGTG CAGTATGCCG TTTGGACGAC ACTTGCCGCG GTCGGCGTAG
                201
                251
                       GTGCAAACCT GCAACATTAC AATCCCTTGC CCGATGCGGC GATTGCCAAA
                       GCGTGGAATA TCCCCGAAAA CTGGTTGTTG CGCGCACAAA TGGTTATCGG
                301
                351
                       CGGTATTGAA GGGGCGCAG GTGAAAAGAC CTTTGAACCC GTTGCAGAAC
30
                401
                       GTTTGAAAGT GTTCGGCGCA TAA
```

This corresponds to the amino acid sequence <SEQ ID 656; ORF6>:

```
1 .KVWQFVEXPL RAVVPADSFE PTAQKLNLFK AGAATILFYE DQNVVKGLQE
51 QFPAYAANFP VWADQANAMV QYAVWTTLAA VGVGANLQHY NPLPDAAIAK
101 AWNIPENWLL RAQMVIGGIE GAAGEKTFEP VAERLKVFGA *
```

35 Further sequence analysis revealed a further partial DNA sequence <SEQ ID 657>:

40	51 101 151 201 251	ATGTCGTCAA CCCGTTTGGG GACACTTGCC TGCCCGATGC	AAGGCGGTG AGGTTTGCAG CGGATCAGGC GCGGTCGGCG GGCGATTGCC	CGGCAACCAT GAGCAGTTCC AAACGCGATG TAGGTGCAAA AAAGCGTGGA	TTTGTTTTAT CTGCTTATGC GTGCAGTATG CCTGCAACAT ATATCCCCGA	GAAGATCAAA CGCTAACTTC CCGTTTGGAC TACAATCCCT AAACTGGTTG
	301 351	TTGCGCGCAC	AAATGGTTAT	CGGCGGTATT	GAAGGGGCGG AGTGTTCGGC	CAGGTGAAAA

This corresponds to the amino acid sequence <SEQ ID 658; ORF6-1>:

```
1 ..LRAVVPADSF EPTAQKLNLF KAGAATILFY EDQNVVKGLQ EQFPAYAANF
51 PVWADQANAM VQYAVWTTLA AVGVGANLQH YNPLPDAAIA KAWNIPENWL
101 LRAQMVIGGI EGAAGEKTFE PVAERLKVFG A*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF6 shows 98.6% identity over a 140aa overlap with an ORF (ORF6a) from strain A of N. meningitidis:

-377-

	orf6.pep	KVWQFVEXPLRAVVPADSFEPTAQKLNLFK
	orf6a	QIVEHAVLHTPSSFNSQSARVVVLFGEEHDKVWQFVEDALRAVVPADSFEPTAQKLNLFK 40 50 60 70 80 90
5 10	orf6.pep	40 50 60 70 80 90 AGAATILFYEDQNVVKGLQEQFPAYAANFPVWADQANAMVQYAVWTTLAAVGVGANLQHY
15	orf6.pep orf6a	100 110 120 130 140 NPLPDAAIAKAWNIPENWLLRAQMVIGGIEGAAGEKTFEPVAERLKVFGAX
	The complete lengt	th ORF6a nucleotide sequence <seq 659="" id=""> is:</seq>
20	51 TI 101 TC 151 CC 201 CC	TGACCCGTC AATCTCTGCA ACAGGCTGCC GAAAGCCGCC GTTCCATTTA TCGTTAAAT AAAAATCTGC CCGTCGGCAA AGATGAAATC GTCCAAATCG CGAACACGC CGTTTTGCAC ACACCTTCTT CGTTCAATTC CCAATCTGCC GTGTGGTCG TGCTGTTTGG CGAAGAGCAT GATAAGGTGT GGCAATTTGT GAACGCGC CTGCGTGCCG TCGTGCCTGC CGACAGTTTT GAACCGACCG GCAAAAATT GAACCTGTTT AAGGCGGGTG CGGCAACTAT TTTGTTTTAT
25	301 G/ 351 CC 401 CC 451 T/ 501 A/	AAGATCAAA ATGTCGTCAA AGGTTTGCAG GAGCAGTTCC CTGCTTATGC GCCAACTTT CCCGTTTGGG CGGACCAGGC GAACGCGATG GTGCAGTATG CGTTTGGAC GACACTTGCC GCGGTCGGCG TAGGTGCAAA CCTGCAACAT ACAATCCCT TGCCCGATGC GGCGATTGCC AAAGCGTGGA ATATCCCCGA AACTGGTTG TTGCGCGCAC AAATGGTTAT CGGCGGTATT GAAGGGCCGG
30	601 G	AGGTGAAAA GACCTTTGAA CCAGTTGCAG AACGTTTGAA AGTGTTCGGC CATAA
	This is predicted to	o encode a protein having amino acid sequence <seq 660="" id="">:</seq>
35	51 R 101 E	TRQSLQQAA ESRRSIYSLN KNLPVGKDEI VQIVEHAVLH TPSSFNSQSA VVVLFGEEH DKVWQFVEDA LRAVVPADSF EPTAQKLNLF KAGAATILFY DQNVVKGLQ EQFPAYAANF PVWADQANAM VQYAVWTTLA AVGVGANLQH NPLPDAAIA KAWNIPENWL LRAQMVIGGI EGAAGEKTFE PVAERLKVFG *
	ORF6a and ORF6	-1 show 100.0% identity in 131 aa overlap:
40	orf6a.pep orf6-1	50 60 70 80 90 100 TPSSFNSQSARVVVLFGEEHDKVWQFVEDALRAVVPADSFEPTAQKLNLFKAGAATILFY
45	orf6a.pep	110 120 130 140 150 160 EDQNVVKGLQEQFPAYAANFPVWADQANAMVQYAVWTTLAAVGVGANLQHYNPLPDAAIA
50		40 50 60 70 80 90
	orf6a.pep	170 180 190 200 KAWNIPENWLLRAQMVIGGIEGAAGEKTFEPVAERLKVFGAX
55	orf6-1	KAWNIPENWLLRAQMVIGGIEGAAGEKTFEPVAERLKVFGAX 100 110 120 130

Homology with a predicted ORF from N.gonorrhoeae

ORF6 shows 95.7% identity over a 140aa overlap with a predicted ORF (ORF6ng) from N.gonorrhoeae:

	orf6.pep	KVWQFVEXPLRAVVPADSFEPTAQKLNLFK	30
	orf6ng		64
5	orf6.pep	AGAATILFYEDQNVVKGLQEQFPAYAANFPVWADQANAMVQYAVWTTLAAVGVGANLQHY	90
	orf6ng	AGAATILFYEDQNVVKGLQEQFPAYAANFPVWADQANAMVQYAVWTTLAAVGAGANLQHY	124
10	orf6.pep	NPLPDAAIAKAWNIPENWLLRAQMVIGGIEGAAGEKTFEPVAERLKVFGA 140	
	orf6ng	NPLPDVAIAKAWNIPENWLLRAQMVIGGIEGAAGEKVFEPVAERLKVFGA 174	

The complete length ORF6ng nucleotide sequence <SEQ ID 661> was identified as:

	1	ATGGCCGTTG	CGTCAAATGT	CAGCTTGGAT	ATGTCCAATC	CTACGGTGTT
15	51	ACGCATGGGA	TTACCCTTAT	ATATTGCGTC	CCTAAGAAGG	GGCGCAATAT
	101	ATAAGGTGTG	GCAATTTGTC	GAAGACGCGC	TGCGTGCCGT	CGTGCCTGCC
	151	GACAGTTTTG	AACCGACCGC	GCAAAAATTG	AAGCTGTTTA	AGGCGGGCGC
•	201	GGCAACCATT	TTGTTTTATG	AAGATCAAAA	TGTCGTCAAA	GGTTTGCAGG
	251	AGCAGTTCCC	TGCTTATGCC	GCCAACTTTC	CCGTTTGGGC	GGACCAGGCG
20	3.01	AACGCTATGG	TACAGTATGC	CGTCTGGACG	ACACTTGCCG	CGGTCGGTGC
	351	AGGTGCAAAT	CTGCAACATT	ACAACCCCTT	GCCCGATGTG	GCGATTGCTA
	401	AAGCGTGGAA	TATTCCCGAA	AACTGGCTGT	TGCGCGCGCA	AATGGTTATC
	451	GGTGGTATTG	AAGGGGcggc	aggtgaaaaa	.gtctttgaac	CCGTTGCgga
•	501	acgtttgAAA	GTGTTCGGCG	CATAA		

This encodes a protein having amino acid sequence <SEQ ID 662>: 25

```
MAVASNVSLD MSNPTVLRMG LPLYIASLRR GAIYKVWQFV EDALRAVVPA
```

DSFEPTAQKL KLFKAGAATI LFYEDQNVVK GLQEQFPAYA ANFPVWADQA

NAMVQYAVWT TLAAVGAGAN LQHYNPLPDV AIAKAWNIPE NWLLRAQMVI GGIEGAAGEK VFEPVAERLK VFGA*

ORF6ng and ORF6-1 show 96.9% identity in 131 aa overlap:

	•				10	20	30
	orf6-1.pep			LRA	VVPADSFEPT	'AQKLNLFKA(SAATILFY
25				. 111			
35	orf6ng	PTVLRMGLPLYI				_	
		20	30	40	50	60	70
		40	50	60	70	80	90
	orf6-1.pep	EDQNVVKGLQEQ	FPAYAANFPV	WADQANAMVQY	/AVWTTLAAVG	VGANLQHYNI	PLPDAAIA
40			11111111111	111111111111		:11111111	111:111
•	orf6ng	EDQNVVKGLQEQ	FPAYAANFPV	WADQANAMVQY	YAVWTTLAAVG	AGANLQHYNI	PLPDVAIA
•		80	90	100	110	120	130
		100	110	120	130		·.
45	orf6-1.pep	KAWNIPENWLLE	LAQMVIGGIE	AAGEKT FEPV	AERLKVFGAX		
		111111111111	1111111111	11111:1111			•
	orf6ng	KAWNIPENWLLF	LAQMVIGGIE	AAGEKVFEPV <i>I</i>	ERLKVFGAX		
	•	140	150	160	170		-

It is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could 50 be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 79

30

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 663>

1	GGCTACAACT	ACCTGTTCGC	GCGCGGCAGC	CGCATCGCCA	ACTACCAAAT
51	CAACGGCATC	CCCGTTGCCG	ACGCGCTGGC	CGATACGGG <u>t</u>	CAATGCCAAC
101	ACCGCCGCCT	ATGAGCGCGT	AGAAGTCGTG	CGCGGCGTGG	CGGGGCTGCT
151	GGACGGCACG	GGCGAGCCTT	CCGCCACCGT	CAATCTGGTG	CGCAAACGCC
201	TGACCCGCAA	GCCATTGTTT	GAAGTCCGCG	CCGAAGCgGG	CAACCGCAAA
	51 101 151	51 CAACGGCATC 101 ACCGCCGCCT 151 GGACGGCACG	51 CAACGGCATC CCCGTTGCCG 101 ACCGCCGCT ATGAGCGCGT 151 GGACGGCACG GGCGAGCCTT	51 CAACGGCATC CCCGTTGCCG ACGCGCTGGC 101 ACCGCCGCT ATGAGCGCGT AGAAGTCGTG 151 GGACGGCACG GGCGAGCCTT CCGCCACCGT	101 ACCGCCGCCT ATGAGCGCGT AGAAGTCGTG CGCGGCGTGG 151 GGACGGCACG GGCGAGCCTT CCGCCACCGT CAATCTGGTG

65

```
CATTTCGGGC TGGACGCGGA CGTATCGGGC AGCCTGAACA CCGAAG.crC
                            rCTGCGCGGC CGCCTGGTTT CCACCTTCGG ACGCGGCGAC TCGTGGCGGC
GGCGCGAACG CAGCCGskAT GCCGAACTCT ACGGCATTTT GGAATACGAC
                   301
                   351
                            ATCGCACCGC AAACCCGCGT CCACGCAYGC ATGGACTACC AGCAGGCGAA
                   401
                            AGAAACCGCC GACGCGCCGC TCAGCTACGC CGTGTACGAC AGCCAAGGTT
 5
                   451
                            ATGCCACCGC CTTCGGCCCG AAAGACAACC CCGCCACAAA TTGGGCGAAC
AGCCACCACC GTGCGCTCAA CCTGTTCGCC GGCATCGAAC ACCGCTTCAA
                   501
                   551
                            CCAAGACTGG AAACTCAAAG CCGAATACGA CTAC..
                   601
      This corresponds to the amino acid sequence <SEQ ID 664; ORF23>:
                          ..GYNYLFARGS RIANYQINGI PVADALADTG NANTAAYERV EVVRGVAGLL
10
                             DGTGEPSATV NLVRKRLTRK PLFEVRAEAG NRKHFGLDAD VSGSLNTEXX
                             LRGRLVSTFG RGDSWRRRER SRXAELYGIL EYDIAPQTRV HAXMDYQQAK
                    101
                             ETADAPLSYA VYDSQGYATA FGPKDNPATN WANSHHRALN LFAGIEHRFN
                    151
                             QDWKLKAEYD Y..
                    201
      Further work revealed the complete nucleotide sequence <SEQ ID 665>:
15
                      1 ATGACACGCT TCAAATATTC CCTGCTGTTT GCCGCCCTGT TGCCCGTGTA
                    151 GACGGCTACA CTGTTTCCGG CACGCACACC CCGCTCGGGC TGCCCATGAC
                    201 CCTGCGCGAA ATCCCGCAGA GCGTCAGCGT CATCACATCG CAACAAATGC
20
                    251 GCGACCAAAA CATCAAAACG CTCGACCGCG CCCTGTTGCA GGCGACCGGC
301 ACCAGCCGCC AGATTTACGG CTCCGACCGC GCGGGCTACA ACTACCTGTT
                          CGCGCGCGC AGCCGCATCG CCAACTACCA AATCAACGGC ATCCCCGTTG
                    351
                    401 CCGACGCGCT GGCCGATACG GGCAATGCCA ACACCGCCGC CTATGAGCGC
                    451 CCGACGCGCI GGCCGATACG GGCAATGCCA ACACCGCGC CTAGAGGCC
451 GTAGAAGTCG TGCGCGGCGT GGCGGGGCTG CTGGACCGCA CGGGCGAGCC
501 TTCCGCCACC GTCAATCTGG TGCGCAAACG CCTGACCCGC AAGCCATTGT
551 TTGAAGTCCG CGCCGAAGCG GGCAACCGCA AACATTTCGG GCTGGACGCG
25
                    601 GACGTATCGG GCAGCCTGAA CACCGAAGGC ACGCTGCGCG GCCGCCTGGT
                    651 TTCCACCTTC GGACGCGGCG ACTCGTGGCG GCGGCGCGAA CGCAGCCGCG
701 ATGCCGAACT CTACGGCATT TTGGAATACG ACATCGCACC GCAAACCCGC
30
                    751 GTCCACGCAG GCATGGACTA CCAGCAGGCG AAAGAAACCG CCGACGCGCC
                    801 GCTCAGCTAC GCCGTGTACG ACAGCCAAGG TTATGCCACC GCCTTCGGCC
                          CGAAAGACAA CCCCGCCACA AATTGGGCGA ACAGCCGCCA CCGTGCGCTC
AACCTGTTCG CCGGCATCGA ACACCGCTTC AACCAAGACT GGAAACTCAA
                    851
                    901
                    951 AGCCGAATAC GACTACACCC GCAGCCGCTT CCGCCAGCCC TACGGCGTAG
 35
                           CAGGCGTGCT TTCCATCGAC CACAACACCG CCGCCACCGA CCTGATTCCC
                   1051 GGTTATTGGC ACGCCGACCC GCGCACCCAC AGCGCCAGCG TGTCATTGAT
1101 CGGCAAATAC CGCCTGTTCG GCCGCGAACA CGATTTAATC GCGGGTATCA
                   1151 ACGGTTACAA ATACGCCAGC AACAAATACG GCGAACGCAG CATCATCCCC
                   1201 AACGCCATTC CCAACGCCTA CGAATTTTCC CGCACGGGTG CCTACCCGCA
 40
                           GCCTGCATCG TTTGCCCAAA CCATCCCGCA ATACGGCACC AGGCGGCAAA TCGGCGGCTA TCTCGCCACC CGTTTCCGCG CCGCCGACAA CCTTTCGCTG
                   1251
                   1301
                   1351 ATTTTGGGCG GACGATACAC CCGTTACCGC ACCGGCAGCT ACGACAGCCG
                   1401 CACACAAGGC ATGACCTATG TGTCCGCCAA CCGTTTCACC CCCTACACAG
                   1451 GCATCGTGTT CGACCTGACC GGCAACCTGT CTCTTTACGG CTCGTACAGC
1501 AGCCTGTTCG TCCCGCAATC GCAAAAAGAC GAACACGGCA GCTACCTGAA
 45
                   1551 ACCCGTAACC GGCAACAATC TGGAAGCCGG CATCAAAGGC GAATGGCTTG
                   1601 AAGGCCGTCT GAACGCATCC GCCGCCGTGT ACCGCGCCCG TAAAAACAAC
                   1651 CTCGCCACCG CAGCAGGACG CGACCCGAGC GGCAACACCT ACTACCGCGC 1701 CGCCAACCAA GCCAAAACCC ACGGCTGGGA AATCGAAGTC GGCGGCCGCA
 50
                    1751 TCACGCCCGA ATGGCAGATA CAGGCAGGTT ACAGCCAAAG CAAAACCCGC
                           GACCAAGACG GCAGCCGCCT GAACCCCGAC AGCGTACCCG AACGCAGCTT
                    1851 CAAACTCTTC ACTGCCTACC ACTTTGCCCC CGAAGCCCCC AGCGGCTGGA
1901 CCATCGGCGC AGGCGTGCGC TGGCAGAGCG AAACCCACAC CGACCCTGCC
                    1951 ACGCTCCGCA TCCCCAACCC CGCCGCCAAA GCCCGCGCCG CCGACAACAG
 55
                           CCGCCAAAAA GCCTACGCCG TCGCCGACAT CATGGCGCGT TACCGCTTCA
                           ATCCGCGCGC CGAACTGTCG CTGAACGTGG ACAATCTGTT CAACAAACAC
                    2051
                           TACCGCACCC AGCCCGACCG CCACAGCTAC GGCGCACTGC GGACAGTGAA
                    2101
                           CGCGGCGTTT ACCTATCGGT TTAAATAA
                    2151
         This corresponds to the amino acid sequence <SEQ ID 666; ORF23-1>:
  60
                       1 MTRFKYSLLF AALLPVYAQA DVSVSDDPKP QESTELPTIT VTADRTASSN 51 DGYTVSGTHT PLGLPMTLRE IPQSVSVITS QQMRDQNIKT LDRALLQATG
                     101 TSRQIYGSDR AGYNYLFARG SRIANYQING IPVADALADT GNANTAAYER
                      151 VEVVRGVAGL LDGTGEPSAT VNLVRKRLTR KPLFEVRAEA GNRKHFGLDA
```

201 DVSGSLNTEG TLRGRLVSTF GRGDSWRRRE RSRDAELYGI LEYDIAPQTR

		251	VHAGMDYQQA	KETADAPLSY	AVYDSQGYAT	AFGPKDNPAT	NWANSRHRAL
		301	NLFAGIEHRF	NODWKLKAEY	DYTRSRFRQP	YGVAGVLSID	HNTAATDLIP
		351	GYWHADPRTH	SASVSLIGKY	RLFGREHDLI	AGINGYKYAS	NKYGERSIIP
_	•	401	NAIPNAYEFS	RTGAYPQPAS	FAQTIPQYGT	RRQIGGYLAT	RFRAADNLSL
5		451			MTYVSANRFT		
	•	501	SLFVPQSQKD	EHGSYLKPVT	GNNLEAGIKG	EWLEGRLNAS	AAVYRARKNN
		551					QAGYSQSKTR
		601					WQSETHTDPA
	•	651	TLRIPNPAAK	ARAADNSRQK	AYAVADIMAR	YRFNPRAELS	LNVDNLFNKH
10		701	YRTQPDRHSY	GALRTVNAAF	TYRFK*		

Computer analysis of this amino acid sequence gave the following results:

Homology with the ferric-pseudobactin receptor PupB of *Pseudomonas putida* (accession number P38047) ORF23 and PupB protein show 32% aa identity in 205aa overlap:

```
Orf23
                     FARGSRIANYQINGIPVADALADTGNANTAAYERVEVVRGVAGLLDGTGEPSATVNLVRK 65
15
                          I NY+++G+P + L D + + A ++RVE+VRG GL+ G G PSAT+NL+RK
                 215 WSRGFAIQNYEVDGVPTSTRL-DNYSQSMAMFDRVEIVRGATGLISGMGNPSATINLIRK 273
          PupB
                   RLTRKPLFEVRAEAGNRKHFGLDADVSGSLNTEXXLRGRLVSTFXXXXXXXXXXXXXXXX 125
          Orf23 · 66
                             + EAGN
                                       +G
                                            DVSG L
                                                       +RGR V+ +
20
                 274 RPTAEAQASITGEAGNWDRYGTGFDVSGPLTETGNIRGRFVADYKTEKAWIDRYNQQSQL 333
          PupB
          Orf23
                 126 LYGILEYDIAPQTRVHAXMDYQQAKETADAPLSYAVYD--SQGYATAFGPKDNPATNWAN 183
                                        Y + D+PL +
                                                            S G T
                 334 MYGITEFDLSEDTLLTVGFSY--LRSDIDSPLRSGLPTRFSTGERTNLKRSLNAAPDWSY 391
          PupB
25
          Orf23
                 184 SHHRALNLFAGIEHRFNQDWKLKAE 208
                          + F IE +
                 392 NDHEQTSFFTSIEQQLGNGWSGKIE 416
          PupB
```

30 Homology with a predicted ORF from N. meningitidis (strain A)

ORF23 shows 95.7% identity over a 211aa overlap with an ORF (ORF23a) from strain A of N. meningitidis:

		•		•	10	20	30
	orf23.pep			CVX		NYQINGIPVAI	
35	OIIII.pcp			GIN	IDEARGSKIA	MIQINGIPVA	DALADIG
55		OWDDONTERS				11111111	
	orf23a	QMRDQNIKALDR	ALLQATGTSRC				
		90	100	110	120	130	140
		40	50	60	70	80	90
40	orf23.pep	NANTAAYERVEV	VRGVAGLLDGI	GEPSATVNLV	RKRLTRKPLF	EVRAEAGNRK	HFGLDAD
		11111111111111	11111111111	11111111111	111 111111		1111 11
	orf23a	NANTAAYERVEV	VRGVAGLLDGT	GEPSATVNLV	RKRPTRKPLF	EVRAEAGNRK	HEGICAD
		150	160	170	180	190	200
	·			2.0	100	1,70	, 200
45		100	110	120	130	140	150
•••	orf23.pep	VSGSLNTEXXLR					
	orres.pcp	111111:1:11					
	orf23a		, 				1111111
	OLIZSA	VSGSLNAEGTLR					
50		210	220	230	240	250	260
50	•						
		160	170	180	190	200	210
	orf23.pep	ETADAPLSYAVY	DSQGYATAFGE	KDNPATNWAN	SHHRALNLFA	GIEHRFNODW!	KLKAEYD
		1111111111111					1111111
	orf23a	ETADAPLSYAVY	DSOGYATAFGE	KDNPATNWAN	SRHRALNLFA	GIEHRFNODW	KLKAEYD
55		270	280	290	300	310	320
		- · ·		_,,	000	310	320
						•	
	orf23.pep	Y					
	orres.beb	•		•			_
60	orf23a	I VMD CD ED ODVOV	XC111 CTD111		* * * * * * * * * * * * * * * * * * *		
00	011739	YTRSRFRQPYGV					
		330	340	350	360	370	380

The complete length ORF23a nucleotide sequence <SEQ ID 667> is:

	_						
	_1				GCCGCCCTGT		
	51				CCCAAAACCG		
	101				ACCGCACCGC		
_	151	GACGGCTACA	CTGTTTCCGG	CACGCACACC	CCGCTCGGGC	TGCCCATGAC	
5	201	CCTGCGCGAA	ATCCCGCAGA	GCGTCAGCGT	CATCACATCG	CAACAAATGC	
	251	GCGACCAAAA	CATCAAAGCG	CTCGACCGCG	CCCTGTTGCA	GGCGACCGGC	
	301	ACCAGCCGCC	AGATTTACGG	CTCCGACCGC	GCGGGCTACA	ACTACCTGTT	
	. 351				AATCAACGGC		
	401				ACACCGCCGC		
10	451	CURCARCUCCI	TCCCCCCCCC	CCCCCCCCCC	CTGGACGGCA	CCCCCACCC	
10							
	501				CCCGACCCGC		
	551	TTGAAGTCCG	CGCCGAAGCG	GGCAACCGCA	AACATTTCGG	GCTGGGCGCG	
	601	GACGTATCGG	GCAGCCTGAA	TGCCGAAGGC	ACGCTGCGCG	GCCGCCTGGT	
	651				GCAGCGCGAA		
15	701				ACATCGCACC		
13	751						
					AAAGAAACCG		
	801				TTATGCCACC		
	851	CGAAAGACAA	CCCCGCCACA	AATTGGGCGA	ACAGCCGCCA	CCGTGCGCTC	
	901	AACCTGTTCG	CCGGCATCGA	ACACCGCTTC	AACCAAGACT	GGAAACTCAA	
20	951	AGCCGAATAC	GACTACACCC	GCAGCCGCTT	CCGCCAGCCC	TACGGCGTAG	
	1001				CCGCCACCGA		
	1051				AGCGCCAGCG		
	1101				CGATTTAATC		
	1151				GCGAACGCAG		
25	1201	AACGCCATTC	CCAACGCCTA	CGAATTTTCC	CGCACGGGTG	CCTACCCGCA	
	1251	GCCTGCATCG	TTTGCCCAAA	CCATCCCGCA	ATACGGCACC	AGGCGGCAAA	
	1301				CCGCCGACAA		
	1351				ACCGGCAGCT		
	1401				CCGTTTCACC		
30	1451				CGCTTTACGG		
30		CATCGIGII	CGACCIGACC	GGCAACCTGT	CGCTTTACGG	CTCGTACAGC	
	1501				GAACACGGCA		
	1551				CATCAAAGGC		
	1601				ACCGCGCCCG		
	1651	CTCGCCACCG	CAGCAGGACG	CGACCCGAGC	GGCAACACCT	ACTACCGCGC	
35	1701				AATCGAAGTC		
	1751				ACAGCCAAAG		
	1801				AGCGTACCCG		•
		CAR A COCOMO	A CITIC COURT CC	ACREMICOCCOAC	AGCGIACCCG	AACGCAGCII	
	1851				CGAAGCCCCC		
40	1901				AAACCCACAC		
40	1951	ACGCTCCGCA	TCCCCAACCC	CGCCGCCAAA	GCCCGCGCCG	CCGACAACAG	
	2001				CATGGCGCGT		
	2051	ATCCGCGCGC	CGAACTGTCG	CTGAACGTGG	ACAATCTGTT	CAACAAACAC	
	2101				GGCGCACTGC		
	2151		ACCTATEGGT				
	220-	5555555111					
45	This encodes a p	orotein havin	o amino acid	seguence <	833 CT OTZ	>•	
43	Timb offoodes a l	protozzi ilavili	6 minio acio	boquonoo	DEC ID 000	•	
	1	MTRFKYSLLF	AALLPVYAQA	DVSVSDDPKP	QESTELPTIT	VTADRTASSN	
	51	DGYTVSGTHT	PLGLPMTLRE	IPQSVSVITS	QQMRDQNIKA	LDRALLQATG	
	101				IPVADALADT		
	151				KPLFEVRAEA		
50	201				RSRDAELYGI		
•	251				AFGPKDNPAT		
		VIMONDIQQA	MODERATEDI	AVIDOQUIAI	ACGENDARAI	MANDACHAM	
	301	NEFAGIERRE	NODWKLKAEY	DYTRSRIRQP	YGVAGVLSID	HNTAATDLIP	
	351	GYWHADPRTH	SASVSLIGKY	RLFGREHDLI	AGINGYKYAS	NKYGERSIIP	
	401	NAIPNAYEFS	RTGAYPQPAS	FAQTIPQYGT	RRQIGGYLAT	RFRAADNLSL	
55	451	ILGGRYSRYR	TGSYDSRTQG	MTYVSANRFT	PYTGIVFDLT	GNLSLYGSYS	
	501				EWLEGRLNAS		
	551				GGRITPEWQI		
		DODCCDIND	CHILITITATIO	UVIIIONETEA	CONTIEDIO	NVG12/SVIV	
	601	DODGSKENED	SALEVSEYPE	TAIREAPEAP	SGWTIGAGVR	WQSETHTUPA	
CO	651				YRFNPRAELS	LNVDNLFNKH	
60	701	YRTQPDRHSY	GALRTVNAAF	TYRFK*			
	ORF23a and OF	KF23-1 show	99.2% iden	hty in 725 aa	overlap:		
				-	-		
			10	20	30	40 5	0 60
	orf23a.pe	MTRFK			PKPQESTELPT:		
	JIII Juipe	11111		<u>Vara (0</u> 400).		4 TUDIVIUOO	TITITITITI
65		1111					111111111
65	orf23-1	PIREK			PKPQESTELPT		
			10	20	30	40 5	0 60

5	orf23a.pep orf23-1	70 80 90 100 110 120 PLGLPMTLREIPQSVSVITSQQMRDQNIKALDRALLQATGTSRQIYGSDRAGYNYLFARG
10	orf23a.pep orf23-1	130 140 150 160 170 180 SRIANYQINGIPVADALADTGNANTAAYERVEVVRGVAGLLDGTGEPSATVNLVRKRPTR
15	orf23a.pep orf23-1	190 200 210 220 230 240 KPLFEVRAEAGNRKHFGLGADVSGSLNAEGTLRGRLVSTFGRGDSWRQRERSRDAELYGI
20	orf23a.pep orf23-1	250 260 270 280 290 300 LEYDIAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAFGPKDNPATNWANSRHRAL
25	orf23a.pep orf23-1	310 320 330 340 350 360 NLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHNTAATDLIPGYWHADPRTH
35	orf23a.pep	370 380 390 400 410 420 SASVSLIGKYRLFGREHDLIAGINGYKYASNKYGERSIIPNAIPNAYEFSRTGAYPQPAS
40	orf23a.pep orf23-1	430 440 450 460 470 480 FAQTIPQYGTRRQIGGYLATRFRAADNLSLILGGRYSRYRTGSYDSRTQGMTYVSANRFT
45	orf23a.pep	490 500 510 520 530 540 PYTGIVFDLTGNLSLYGSYSSLFVPQSQKDEHGSYLKPVTGNNLEAGIKGEWLEGRLNAS
50	orf23a.pep orf23-1	550 560 570 580 590 600 AAVYRAKNNLATAAGRDPSGNTYYRAANQAKTHGWEIEVGGRITPEWQIQAGYSQSKTR
55	orf23a.pep orf23-1	610 620 630 640 650 660 DQDGSRLNPDSVPERSFKLFTAYHFAPEAPSGWTIGAGVRWQSETHTDPATLRIPNPAAK
60 65	orf23a.pep orf23-1	670 680 690 700 710 720 ARAADNSRQKAYAVADIMARYRFNPRAELSLNVDNLFNKHYRTQPDRHSYGALRTVNAAF
70	orf23a.pep orf23-1	TYRFKX TYRFKX

WO 99/24578 PCT/IB98/01665

Homology with a predicted ORF from N.gonorrhoeae

20

ORF23 shows 93.4% identity over a 211aa overlap with a predicted ORF (ORF23.ng) from N. gonorrhoeae:

5	orf23.pep	GYNYLFARGSRIANYQINGIPVADALADTGNANTAAYERVEVVRGVAGLLD	51
3	orf23ng		60
	orf23.pep	GTGEPSATVNLVRKRLTRKPLFEVRAEAGNRKHFGLDADVSGSLNTEXXLRGRLVSTFGR	111
10	orf23ng		120
	orf23.pep	GDSWRRRERSRXAELYGILEYDIAPQTRVHAXMDYQQAKETADAPLSYAVYDSQGYATAF	171
15	orf23ng	GDSWRQLERSRDAELYGILEYDIAPQTRVHAGMDYQQAKETADAPLSYAVYDSQGYATAF	180
13	orf23.pep	GPKDNPATNWANSHHRALNLFAGIEHRFNQDWKLKAEYDY	211
	orf23ng	GPKDNPATNWSNSRNRALNLFAGIEHRFNQDWKLKAEYDYTRSRFRQPYGVAGVLSIDHS	240

The ORF23ng nucleotide sequence <SEQ ID 669> is predicted to encode a protein comprising amino acid sequence <SEQ ID 670>:

```
SAVDACRIPG YNYLFARGSR IANYQINGIP VADALADTGN ANTAAYERVE
                     VVRGVAGLPD GTGEPSATVN LVRKHPTRKP LFEVRAEAGN RKHFGLGADV
                    SGSLNAEGTL RGRLVSTFGR GDSWRQLERS RDAELYGILE YDIAPQTRVH
                101
                    AGMDYQQAKE TADAPLSYAV YDSQGYATAF GPKDNPATNW SNSRNRALNL
25
                201
                    FAGIEHRFNQ DWKLKAEYDY TRSRFRQPYG VAGVLSIDHS TAATDLIPGY
                251
                     WHADPRTHSA SMSLTGKYRL FGREHDLIAG INGYKYASNK YGERSIIPNA
                     IPNAYEFSRT GAYPQPSSFA QTIPQYDTRR QIGGYLATRF RAADNLSLIL
                301
                    GGRYSRYRAG SYNSRTQGMT YVSANRFTPY TGIVFDLTGN LSLYGSYSSL
                351
                     FVPQLQKDEH GSYLKPVTGN NLEADIKGEW LEGRLNASAA VYRARKNNLA
                401
30
                451 TAAGRDQSGN TYYRAANQAK THGWEIEVGG RITPEWQIQA GYSQSKPRDQ
                501 DGSRLNPDSV PERSFKLFTA YHLAPEAPSG RTIGAGVRRQ GETHTDPAAL
                551 RIPNPAAKAR AVANSRQKAY AVADIMARYR FNPRTELSLN VDNLFNKHYR
                601 TOPDRHSYGA LRTVNAAFTY RFK*
```

Further work revealed the complete nucleotide sequence <SEQ ID 671>:

35	1	ATGACACGCT	TCAAATACTC	CCTGCTTTTT	GCCGCCCTGC	TACCCGTGTA
	51	CGCGCAGGCC	GATGTTTCTG	TTTCAGACGA	CCCCAAACCG	CAGGAAAGCA
	101	CCGAATTGCC	GACCATCACC	GTTACCGCCG	ACCGCACCGC	GAGTTCCAAC
	151	GACGGCTACA	CCGTTTCCGG	CACGCACACC	CCGTTCGGGC	TGCCCATGAC
	201	CCTGCGCGAA	ATCCCGCAGA	GCGTCAGCGT	CATCACATCG	CAACAAATGC
40	251	GCGACCAAAA	CATCAAAACG	CTCGACCGCG	CCCTGTTGCA	GGCGACCGGC
	301	ACCAGCCGCC	AGATTTACGG	CTCCGACCGC	GCGGGCTACA	ACTACCTGTT
	351	CGCGCGCGGC	AGCCGCATCG	CCAACTACCA	AATCAACGGC	ATCCCCGTTG
	401	CCGACGCGCT	GGCCGATACG	GGCAATGCCA	ACACCGCCGC	CTATGAGCGC
	451	GTAGAAGTCG	TGCGCGGCGT	GGCGGGGCTG	CCGGACGGCA	CGGGCGAGCC
45	501	TTCTGCCACC	GTCAATCTGG	TACGCAAACA	CCCGACCCGC	AAGCCATTGT
	551			GGCAACCGCA		
	601			CGCCGAAGGC		
	651	TTCCACCTTC	GGACGCGGCG	ACTCGTGGCG	GCAGCTCGAA	CGCAGCCGCG
	701	ATGCCGAACT	CTACGGCATT	TTGGAATACG	ACATCGCACC	GCAAACCCGC
50	751	GTCCACGCAG	GCATGGACTA	CCAGCAGGCG	AAAGAAACCG	CAGACGCGCC
	801	GCTCAGCTAC	GCCGTGTACG	ACAGCCAAGG	TTATGCCACC	GCCTTCGGCC
	851	CAAAAGACAA	CCCCGCCACA	AATTGGTCGA	ACAGCCGCAA	CCGTGCGCTC
	901	AACCTGTTCG	CCGGCATAGA	ACACCGCTTC	AACCAAGACT	GGAAACTCAA
	951	AGCCGAATAC	GACTACACCC	GTAGCCGCTT	CCGCCAGCCC	TACGGTGTGG
55	1001	CAGGCGTACT	TTCCATCGAC	CACAGCACTG	CCGCCACCGA	CCTGATTCCC
	1051	GGTTATTGGC	ACGCcgatcc	GCGCACCCAC	AGCGCCAGCA	TGTCATTGAC
	1101	CGGCAAATAC	CgcctGTTCG	GCCGCGAGCA	CGATTTAATC	GCGGGTATCA
	1151	ACGGCTACAA	ATACGCCAGC	AACAAATACG	GCGAACGCAG	CATCATTCCC
	1201	AACGCCATTC	CCAACGCCTA	CGAATTTTCC	CGCACGGGCG	CCTATCCGCA
60	1251	GCCATCATCG	TTTGCCCAAA	CCATCCCGCA	ATACGACACC	AGGCGGCAAA
	1301	TCGGCGGCTA	TCTCGCCACC	CGTTTCCGCG	CCGCCGACAA	CCTTTCGCTG
	1351	ATACTCGGCG	GCAGATACAG	CCGCTACCGC	GCAGGCAGCT	ACAACAGCCG

	1401 CACA	CAAGGC ATGACCTAT	TGTCCGCCAA	CCGTTTCACC	CCCTACACAG	
	1451 GCAT	CGTGTT CGATCTGAC	C GGCAACCTGT	CGCTTTACGG	CTCGTACAGC	
	1501 AGCC	TGTTCG TCCCGCAAT	r gcaaaaagac	GAACACGGCA	GCTACCTGAA	
5	1551 ACCC	GTAACC GGCAACAAT	TGGAAGCCGA	CATCAAAGGC	GAATGGCTTG	
3	1601 AAGG	GCGTCT GAACGCATC	GCCGCCGTGT	ACCGCGCCCG	TAAAAACAAC	
	1701 CGCC	CCACCG CAGCAGGACC AACCAA GCCAAAACC	CGACCAGAGC	GGCAACACCT	ACTATCGCGC	
	1751 TCAC	GCCCGA ATGGCAGAT	ACGGCIGGGA	ARICGAAGIC	CARACCCCCC	
	1801 GACC	AAGACG GCAGCCGCC	r caddcaddci	ACCCTACCC	AACCCACCT	
10		CTCTTC ACCGCCTAC				
		cggTGC GGGTGTGCG				•
		TCCGCA TCCCCAACC				
		CAGAAA GCCTACGCC				
	2051 ATCC	GCGCAC CGAACTGTC	G CTGAACGTGG	ACAACCTGTT	CAACAAACAC	
15	2101 TACC	GCACCC AGCCCGACC	G CCACAGCTAC	GGCGCACTGC	GGACAGTGAA	
	2151 CGCG	GCGTTT ACCTATCGG	AATAAATT 1	•	•	
	This same and so th		<070 T	D (72. ODE)	32 15	
	This corresponds to the	ne amino acid sequ	ence <seq i<="" th=""><th>D 6/2; ORF2</th><th>23ng-1>:</th><th></th></seq>	D 6/2; ORF2	23ng-1>:	
	1 MTRF	KYSLLF AALLPVYAQ	DVSVSDDPKP	OESTELPTIT	VTADRTASSN	
•		VSGTHT PFGLPMTLR				
20	101 TSRQ	IYGSDR AGYNYLFAR	SRIANYOING	IPVADALADT	GNANTAAYER	
	151 VEVV	RGVAGL PDGTGEPSA	T VNLVRKHPTR	KPLFEVRAEA	GNRKHFGLGA	
	201 DVSG	SLNAEG TLRGRLVST	F GRGDSWRQLE	RSRDAELYGI	LEYDIAPOTR	
	251 VHAG	MDYQQA KETADAPLS	Y AVYDSQGYAT	AFGPKDNPAT	NWSNSRNRAL.	
~-	301 NLFA	GIEHRF NQDWKLKAE	Y DYTRSRFRQP	YGVAGVLSID	HSTAATDLIP	i
25		ADPRTH SASMSLTGK				
	401 NAIP	NAYEFS RTGAYPQPS	S FAQTIPQYDT	RRQIGGYLAT	RFRAADNLSL	•
	451 ILGG	RYSRYR AGSYNSRTQ	G MTYVSANRFT	PYTGIVFDLT	GNLSLYGSYS	
	501 SLFV	POLOKD EHGSYLKPV	r GNNLEADIKG	EWLEGRLNAS	AAVYRARKNN	
30	551 LATA 601 DQDG	AGRDQS GNTYYRAAN SRLNPD SVPERSFKL	D WEATHOWETEN	GGRITPEWQI	QAGYSQSKPR	
50	651 ALRI	PNPAAK ARAVANSRQ	E IMINLAPEAR	SGRIIGAGVK	ROGETHTOPA	
	701 YRTO	PDRHSY GALRTVNAA	E AABEK* . V WIWAWDIHWK	IKENEKIELS	TUADUTENCH	
	,01 1111	LDIGIOT OFMICTORY	LIMIN			
	ORF23ng-1 and ORF	23-1 show 95.9%	identity in 72	5 aa overlap:		
	ORF23ng-1 and ORF			•		
25		10	20	30	40 50) 60
35	ORF23ng-1 and ORF	10 MTRFKYSLLFAALLP	20 VYAQADVSVSDD	30 PKPQESTELPT	40 50 ITVTADRTASSN	DGYTVSGTHT
35	orf23-1.pep	10 MTRFKYSLLFAALLP	20 VYAQADVSVSDD	30 PKPQESTELPT	40 50 ITVTADRTASSN	NDGYTVSGTHT
35		10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP	20 VYAQADVSVSDD VYAQADVSVSDD	30 PKPQESTELPT PKPQESTELPT	40 50 ITVTADRTASSN ITVTADRTASSN	DGYTVSGTHT
35	orf23-1.pep	10 MTRFKYSLLFAALLP	20 VYAQADVSVSDD	30 PKPQESTELPT PKPQESTELPT	40 50 ITVTADRTASSN	DGYTVSGTHT
35	orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10	20 VYAQADVSVSDD VYAQADVSVSDD 20	30 PKPQESTELPT PKPQESTELPT	40 50 ITVTADRTASSN ITVTADRTASSN 40 50	NDGYTVSGTHT
	orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10	20 VYAQADVSVSDD VYAQADVSVSDD 20 80	30 PKPQESTELPT PKPQESTELPT 30	40 50 ITVTADRTASSN ITVTADRTASSN 40 50	NDGYTVSGTHT
	orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 TGTSRQIYGSDF	DGYTVSGTHT DGYTVSGTHT 60 120 RAGYNYLFARG
	orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN	30 PKPQESTELPT PKPQESTELPT 30 90 1 IKTLDRALLQA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 IGTSRQIYGSDF	NDGYTVSGTHT
40	orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN	30 PKPQESTELPT PKPQESTELPT 30 90 1 IKTLDRALLQA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 IGTSRQIYGSDF	NDGYTVSGTHT NDGYTVSGTHT 60 120 RAGYNYLFARG
	orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80	30 PKPQESTELPT PKPQESTELPT 30 90 1 IKTLDRALLQA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 ITGTSRQIYGSDF	NDGYTVSGTHT NDGYTVSGTHT 60 120 RAGYNYLFARG
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 TGTSRQIYGSDF TGTSRQIYGSDF 00 110 60 170	DGYTVSGTHT DGYTVSGTHT 60 120 RAGYNYLFARG RAGYNYLFARG 120
40	orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140 ALADTGNANTAA	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10	40 50 ITVTADRTASSN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DGYTVSGTHT DGYTVSGTHT DGYTVSGTHT DGYTVSGTHT DGYTVSGTHT DGYTVSGTHT DGYTVSGTHT DGGYNYLFARG DGYNYLFARG DGYNYLFARG DGYNYLFARG DGYNYLFARG DGYVNLFARG DGYVNLFARG
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQOMRDON SVITSQOMRDON 80 140 ALADTGNANTAA	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10	40 50 ITVTADRTASSN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	NDGYTVSGTHT
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140 ALADTGNANTAA	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 10 150 10 YERVEVVRGVA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 OO 110 TGTSRQIYGSDF TGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT	DGYTVSGTHT DGYTVSGTHT 60 120 RAGYNYLFARG RAGYNYLFARG 120 180 FVNLVRKRLTR :
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140 ALADTGNANTAA	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 10 150 10 YERVEVVRGVA	40 50 ITVTADRTASSN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DGYTVSGTHT DGYTVSGTHT 60 120 RAGYNYLFARG RAGYNYLFARG 120 180 FVNLVRKRLTR :
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQOMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA 110	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 10 150 10 YERVEVVRGVA YERVEVVRGVA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 IGTSRQIYGSDE IGTSRQIYGSDE 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT	DGYTVSGTHT
40	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 10 150 10 YERVEVVRGVA YERVEVVRGVA 10 11 150 10 YERVEVVRGVA 10 11 11 11 11 11 11 11 11 12 10 20 20	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170	DGYTVSGTHT
40 45 50	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN	30 PKPQESTELPT PKPQESTELPT 30 90 1 IKTLDRALLQA IKTLDRALLQA 90 1 150 1 YERVEVVRGVA YERVEVVRGVA 150 1	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 TFGRGDSWRRR	DGYTVSGTHT
40	orf23-1.pep orf23-1.pep orf23-1.pep orf23-1.pep orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 210 20 TEGTLRGRLVS :	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRRE	DGYTVSGTHT
40 45 50	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRRE	
40 45 50	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA 90 10 IKTLDRALLQA 90 10 IKTLDRALLQA 10 IKTLDRALLQA 10 ICTLDRALLQA 1	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF IGGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRRR ITFGRGDSWRQLE 20 230	DGYTVSGTHT
40 45 50	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV 1: PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA IKTLDRALLQA 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS AEGTLRGRLVS 210 2	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF 00 110 GLIDGTGEPSAT GLIDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 TFGRGDSWRRRE TFGRGDSWRRE TFGRGDSWRQLE 20 230	DGYTVSGTHT
40 45 50 55	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQQMRDQN 80 140 ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200 260 DYQQAKETADAP	30 PKPQESTELPT PKPQESTELPT 30 90 1 IKTLDRALLQA IKTLDRALLQA 90 1 150 1 YERVEVVRGVA YERVEVVRGVA YERVEVVRGVA YERVEVVRGVA YERVEVVRGVA YERVEVVRGVA	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 IGTSRQIYGSDF IGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRE TFGRGDSWRQLE 20 230 80 290 ATAFGPKDNPAT	DGYTVSGTHT
40 45 50	orf23-1.pep orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQOMRDON SVITSQOMRDON 80 140 ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200 260 DYQQAKETADAP	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS AEGTLRGRLVS 210 20 270 20 LSYAVYDSQGY	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDE ITGTSRQIYGSDE 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT TFGRGDSWRRE TFGRGDSWRQLE 20 230 80 290 ATTAFGPKDNPAT	DGYTVSGTHT
40 45 50 55	orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQOMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200 260 DYQQAKETADAP	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS AEGTLRGRLVS 210 20 270 20 LSYAVYDSQGY	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 IGTSRQIYGSDF IGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRE ITFGRGDSWRQLE 20 230 80 290 ATAFGPKDNPAT	DGYTVSGTHT
40 45 50 55	orf23-1.pep orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQOMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA 140 200 FGLDADVSGSLN FGLGADVSGSLN 200 260 DYQQAKETADAP	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS AEGTLRGRLVS 210 20 270 20 LSYAVYDSQGY	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDE ITGTSRQIYGSDE 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT TFGRGDSWRRE TFGRGDSWRQLE 20 230 80 290 ATTAFGPKDNPAT	DGYTVSGTHT
40 45 50 55 60	orf23-1.pep orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN 200 260 DYQQAKETADAP DYQQAKETADAP 260	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA 150 10 210 20 TEGTLRGRLVS : AEGTLRGRLVS 210 20 LSYAVYDSQGY LSYAVYDSQGY 270 20	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 TGTSRQIYGSDF TGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 TFGRGDSWRRRF TFGRGDSWRQLF 20 230 80 290 ATAFGPKDNPAT ATAFGPKDNPAT	DGYTVSGTHT
40 45 50 55	orf23-1.pep orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM LEYDIAPQTRVHAGM 250 310 NLFAGIEHRFNQDWK	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN 200 260 DYQQAKETADAP DYQQAKETADAP 260 320 LKAEYDYTRSRF	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA 90 10 IKTLDRALLQA 90 10 150 10 YERVEVVRGVA YERVEVVRGVA YERVEVVRGVA AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS AEGTLRGRLVS	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT 60 170 20 230 ITFGRGDSWRRRF ITFGRGDSWRRRF ITFGRGDSWRQLF 20 230 40 350 IDHNTAATDLI	
40 45 50 55 60	orf23-1.pep orf23-1.pep orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep orf23ng-1 orf23-1.pep	10 MTRFKYSLLFAALLP MTRFKYSLLFAALLP 10 70 PLGLPMTLREIPQSV : PFGLPMTLREIPQSV 70 130 SRIANYQINGIPVAD SRIANYQINGIPVAD 130 190 KPLFEVRAEAGNRKH KPLFEVRAEAGNRKH 190 250 LEYDIAPQTRVHAGM LEYDIAPQTRVHAGM 250	20 VYAQADVSVSDD VYAQADVSVSDD 20 80 SVITSQQMRDQN SVITSQOMRDQN 80 140 ALADTGNANTAA ALADTGNANTAA 140 200 FGLDADVSGSLN 200 260 DYQQAKETADAP DYQQAKETADAP 260 320 LKAEYDYTRSRF	30 PKPQESTELPT PKPQESTELPT 30 90 10 IKTLDRALLQA 90 10 IKTLDRALLQA 90 10 IKTLDRALLQA 1	40 50 ITVTADRTASSN ITVTADRTASSN 40 50 00 110 ITGTSRQIYGSDF ITGTSRQIYGSDF 00 110 60 170 GLLDGTGEPSAT GLPDGTGEPSAT TFGRGDSWRRE TFGRGDSWRQLE 20 230 80 290 ATAFGPKDNPAT ATAFGPKDNPAT 80 290 40 350 IDHNTAATDLII	DGYTVSGTHT

310

WO 99/24578 PCT/IB98/01665

320 330 340

360

350

		310	320	330	340	350	360
		370	380	390	400	410	420
5	orf23-1.pep	SASVSLIGKYRLFG					
3	orf23ng-1	: SASMSLTGKYRLFG					
	01200	370	380	390	400	410	420
		430	440	450	460	470	480
10	orf23-1.pep	FAQTIPQYGTRRQI					
	orf23ng-1		CCVL PURE PA	ADMI CLIL	: :	:	
	0f123lig=1	430	440	450	460	470	480
15		490	500	. 510	500	500	F 4.0
13	orf23-1.pep	PYTGIVFDLTGNLS	500 SLYGSYSSLFV	510 POSOKDEHGS	520 YLKPVTGNNL	530 EAGIKGEWLE	540 EGRLNAS
				11 1111111	1111111111	H H H H H	1111111
	orf23ng-1	PYTGIVFDLTGNLS 490	500	POLOKDENGS 510	SYLKPVTGNNL 520	EADIKGEWLI 530	EGRLNAS 540
20			• • •				
	orf23-1.pep	550 AAVYRARKNNLATA	560 AAGRDPSGNTY	570 Yraanoakth	580 IGWETEVGGRT	590 TPEWOTOAGS	600 YSOSKTR
		_11111111111111		1111111111	11111111111		11111
25	orf23ng-1	AAVYRARKNNLATA 550	AGRDQSGNTY 560	YRAANQAKTH 570	IGWEIEVGGRI 580	TPEWQIQAGY	YSQSKPR 600
						330	000
	orf23-1.pep	610 DQDGSRLNPDSVPE	620 2825KI 572V	630 IFA DFA DSCW1	640	650 TUTODATE D	660
••				: [] [] [] []		111111:11	111111
30	orf23ng-1	DQDGSRLNPDSVPE 610	ERSFKLFTAYH 620	ILAPEAPSGRT 630	IGAGVRRQGE: 640	THTDPAALR: 650	IPNPAAK 660
		010		030	040	650	660
	orf23-1.pep	670 ARAADNSRQKAYAV	680 77 D T M T D V D E W	690	700	710	720
35	01123-1.pep	:					
	orf23ng-1	ARAVANSRQKAYAV 670	ADIMARYRFN 680	IPRTELSLNVI 690	NLFNKHYRTQ 700		
		070	000	050	700	710	720
40	orf23-1.pep	TYRFKX					
40		111111					
	orf23ng-1	TYRFKX					
	In addition, ORF23ng	g-1 shows signifi	cant homol	ogy with an	OMP from	E.coli:	
45	SPIPI6869 FHUE	_ECOLI OUTER-N AND FE(III)-RH	MEMBRANE I ODOTRULIC I	RECEPTOR I ACID PRECUE	FOR FE(III RSOR >ai 16	:) -COPROGE 51542 an 1	N, FE(III)- IPIDId1015403
	(D90745) Out	er membrane	protein	FhuE p	recursor	[Escheri	chia coli]
	>g1 1651545 gn (Escherichia d	il PID d1015405 coli] >gi 17873	(D90746) 44 (AE0002	Outer me	mbrane pro	otein Fhu receptor	<pre>iE precursor for Fe(III)-</pre>
50	coprogen, Fe	(III)-ferrioxam	ine B a	nd Fe(II	I)-rhodotru	ilic acid	d precursor
50		oli) Length = 7 bits (843), Exp		90			
	Identities =	228/717 (31%),	Positives	= 350/717	(48%), Gap	s = 60/71	7 (8%)
	Ouerv: 38 TIT	'VTADRTASSNDG	/TVSGTHTPF0	T.PMTT.RETPO	NOORTIVRVR	(RDONTKTI.D	RAT. 95
55	T+	V TA + + 3	(+V+ T	+ MT R+IPO	QSV++++ Q+M	I DO ++TL	+
	Sbjct: 43 TVI	VEGSATAPDDGEND	YSVTSTSAGTI	(MQMTQRDIP(QSVTIVSQQRM	EDQQLQTLG	EVM 102
	Query: 96 LQA	TGTSRQIYGSDRAG		ANYQINGIP-	VAD	ALADTGNAN	TAA 147
60	Shict: 103 FNT	G S+ SDRA ? LGISKSQADSDRAL?		NY ++GIP		AL+D	A 154
OU							
		RVEVVRGVAGLPDGT(
		RVEVVRG GL GTO RVEVVRGATGLMTGTO			+V AE G+ GDVSAEYGSWN	AD+ KERYVADLQ	L SPL 214
65						-	
	-	EGTLRGRLVSTFGRGI +G +R R+V + I	DSWRQLERSRI DSW S	DAELYGILEYI GI++ I			'ADA 266 +
		OGKIRARIVGGYQNNI					
70	Ouerv: 267 PLS	SYAVYDSQGYATAFG	PKDNPATNWS	ISRNRAT.NI.F	AGIEHRFNODW	/KLKAEYDY#	RSR 326
. •	gavage me. am						320

```
+++ G + ++
                                        + A + W + +
                                                       +F
                                                          ++ +F
                                                                   W+
          Sbjct: 275 WGGLPRWNTDGSSNSYDRARSTAPDWAYNDKEINKVFMTLKQQFADTWQATLNATHSEVE 334
          Query: 327 F--RQPYGVAGVLSIDHSTAA--TDLIPGY------WHADPRTHSA-SMSLTGKYRLFG 374
 5
                     F + Y A V D
                                           ++ PG+
                                                         W++ R
                                                                 A +
          Sbjct: 335 FDSKMMYVDAYVNKADGMLVGPYSNYGPGFDYVGGTGWNSGKRKVDALDLFADGSYELFG 394
          Query: 375 REHDLIAGINGYKYASNKYGER--SIIPNAIPNAYEFSRTGAYPQPSSFAQTIPQYDTRR 432
                     R+H+L+ G Y +N+Y
                                            +I P+ I + Y F+ G +PQ
10
          Sbjct: 395 RQHNLMFG-GSYSKQNNRYFSSWANIFPDEIGSFYNFN--GNFPQTDWSPQSLAQDDTTH 451
          Query: 433 QIGGYLATRFRAADNLSLILGGRYSRYRAGSYNSRTQGMTY-VSANRFTPYTGIVFDXXX 491
                               AD L LILG RY+ +R +
                         Y ATR
                                                          +TY + N TPY G+VFD
          Sbjct: 452 MKSLYAATRVTLADPLHLILGARYTNWRVDT-----LTYSMEKNHTTPYAGLVFDIND 504
15
          Query: 492 XXXXXXXXXXFVPQLQKDEHGSYLKPVTGNNLEADIKGEWLEGRLNASAAVYRARKNNL 551
                                F PQ +D G YL P+TGNN E +K +W+ RL + A++R ++N+
          Sbjct: 505 NWSTYASYTSIFQPQNDRDSSGKYLAPITGNNYELGLKSDWMNSRLTTTLAIFRIEQDNV 564
20
          Query: 552 ATAAGR---DQSGNTYYRAANQAKTHGWEIEVGGRITPEWQIQAGYSQSKPRDQDGSRLN 608
                     A + G
                                +G T Y+A + + G E E+ G IT WQ+ G ++
                                                                        D +G+ +N
          Sbjct: 565 AQSTGTPIPGSNGETAYKAVDGTVSKGVEFELNGAITDNWQLTFGATRYIAEDNEGNAVN 624
          Query: 609 PDSVPERSFKLFTAYHLAPEAPSGRTIGAGVRRQGETHTDPAALRIPNPAAKARAVANSR 668
25
                     P ++P + K+FT+Y L P P T+G GV Q +TD
                                                                         RA
          Sbjct: 625 P-NLPRTTVKMFTSYRL-PVMPE-LTVGGGVNWQNRVYTDTV----TPYGTFRA-+-E 672
          Query: 669 QKAYAVADIMARYRFNPRTELSLNVDNLFNKHYRTQPDRH-SYGALRTVNAAFTYRF 724.
                     Q +YA+ D+ RY+
                                        L NV+NLF+K Y T +
                                                              YG R
30
          Sbjct: 673 QGSYALVDLFTRYQVTKNFSLQGNVNNLFDKTYDTNVEGSIVYGTPRNFSITGTYQF 729
```

Based on this analysis, it was predicted that these proteins from N.meningitidis and N.gonorrhoede, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF23-1 (77.5kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 15A shows the results of affinity purification of the His-fusion protein, and Figure 15B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot (Figure 15C) and for ELISA (positive result). These experiments confirm that ORF23-1 is a surface-exposed protein, and that it is a useful immunogen.

40 Example 80

35

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 673>:

- 1 ATGCGCACGG CAGTGGTTTT GCTGTTGATC ATGCCGATGG CGGCTTCGTC
 51 GGCAATGATG CCGGAAATGG TGTGCGCGG CGTGTCGCCG GGAACGGCAA
 101 TCATATCCAA GCCGACCGAA CAAACGGCGG TCATGGCTTC GAGTTTGTCC
 45 151 AGCGTCAGCA CGCCTGCTTC GGCGGCGGCG ATCATACCTT CGTCTTCGGA
 201 AACGGGGATA AACGCGCCAC TCAAACCCCC GACCGCGCTG GAAGCCATCA
 251 TGCCGCCTTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC TGCTGTTGTG
 301 CCGTGCGTAC CGCAGACGCT CAAGCCCATT TNTTCAAGAA TGCGTGCCAC
 351 TNAGTCGCCG ACGGGG.
- 50 This corresponds to the amino acid sequence <SEQ ID 674; ORF24>:
 - 1 MRTAVVLLLI MPMAASSAMM PEMVCAGVSP GTAIISKPTE QTAVMASSLS
 - 51 SVSTPASAAA IIPSSSETGI NAPLKPPTAL EAIMPPFFTA SFSNAKAAVV
 - 101 PCVPQTLKPI XSRMRATXSP TG..

Further work revealed the complete nucleotide sequence <SEQ ID 675>:

	1	ATGCGCACGG	CAGTGGTTTT	GCTGTTGATC	ATGCCGATGG	CGGCTTCGTC
	51	GGCAATGATG	CCGGAAATGG	TGTGCGCGGG	CGTGTCGCCG	GGAACGGCAA
	101	TCATATCCAA	GCCGACCGAA	CAAACGGCGG	TCATGGCTTC	GAGTTTGTCC
5	151	AGCGTCAGCA	CGCCTGCTTC	GGCGGCGGCA	ATCATACCTT	CGTCTTCGGA
	201	AACGGGGATA	AACGCGCCAC	TCAAACCCCC	GACCGCGCTG	GAAGCCATCA
	251	TGCCGCCTTT	TTTCACGGCA	TCGTTCAGCA	ATGCCAAAGC	TGCTGTTGTG
	301	CCGTGCGTAC	CGCAGACGCT	CAAGCCCATT	TCTTCAAGAA	TGCGTGCCAC
	351	TGAGTCGCCG	ACGGCGGGG	TCGGCGCCAG	CGACAAGTCG	AGAATACCAA
10	401	ACGGGATATT	CAGCATTTTT	GAGGCTTCGC	GGCCGATGAG	TTCGCCCACG
	451	CGGGTAATTT	TGAAAGCAGT	TTTCTTCACT	ACTTCCGCAA	CTTCGGTCAA
	501	TGTCGTTGCA	TCTGAATTTT	CCAACGCGGC	TTTTACGACA	CCTGGGCCGG
	551	ATACGCCGAC	ATTGATAACG	GCATCCGCTT	CGCCCGAACC	ATGAAACGCG
	601	CCCGCCATAA	ACGGGTTGTC	TTCCACCGCG	TTGCAGAACA	CGACAATTTT
15	651	AGCGCAGCCG	AAACCTTCGG	GCGTGATTTC	CGCCGTGCGT	TTGACGGTTT
	701	CGCCCGCCAG	CTTGACCGCA	TCCATATTGA	TACCGGCACG	CGTACTGCCG
	751	ATATTGATGG	AGCTGCACAC	AATATCGGTA	GTCTTCATCG	CTTCGGGAAT
	801	GGAGCGGATT	AACACCTCAT	CCGAAGGCGA	CATCCCTTTT	TGCACCAACG
	851	CGGAAAAACC	GCCGATAAAA	GACACACCGA	TGGCTTTGGC	AGCTTTATCC
20	901	AAAGTTTGCG	CCACGCTGAC	GTAA		

This corresponds to the amino acid sequence <SEQ ID 676; ORF24-1>:

	1	MRTAVVLLLI	MPMAASSAMM	PEMVCAGVSP	GTAIISKPTE	QTAVMASSLS
	51	SVSTPASAAA	IIPSSSETGI	NAPLKPPTAL	EAIMPPFFTA	SFSNAKAAVV
	101	PCVPQTLKPI	SSRMRATESP	TAGVGASDKS	RIPNGIFSIF	EASRPMSSPT
25	151	RVILKAVFFT	TSATSVNVVA	SEFSNAAFTT	PGPDTPTLIT	ASASPEP*NA
	201	PAINGLSSTA	LQNTTILAQP	KPSGVISAVR	LTVSPASLTA	SILIPARVLP
	251	ILMELHTISV	VFIASGMERI	NTSSEGDIPF	CTNAEKPPIK	DTPMALAALS
	301	KVCATLT*				

Computer analysis of this amino acid sequence gave the following results:

30 <u>Homology with a predicted ORF from N.meningitidis (strain A)</u> ORF24 shows 96.4% identity over a 307 aa overlap with an ORF (ORF24a) from strain A of N.

meningitidis:

35	orf24a.pep	10 MRTAVVLLLIMP MRTAVVLLLIMP 10	111111111111	11111111		:111111:111	111111
40		70	80	90	100	110	120
40	orf24a.pep	IIPSSSXTGINA	PLKPPTALEAIN	IPPFFTASFSI			
	# 0.4	IIIIII IIIII					
	orf24	IIPSSSETGINA 70	80	90	100	110	120
		70	80	90	100	110	120
45		130	140	150	160	170	180
	orf24a.pep	TAGVGASDKSRI					
		1111111111111	111111111111	111111111			111111
	orf24	TAGVGASDKSRI	PNGIFSIFEASE	RPMSSPTRVI	LKAVFFTTSAT	SVNVVASEFS	SNAAFTT
5 0		130	140	150	160	170	180
50							
		190	200	210	220	230	240
	orf24a.pep	PGPDTPTLITAS		_	-		
	604						
55	orf24	PGPDTPTLITAS 190	ASPEPANAPATI 200	GLSSTALQN 210	TTILAQPKPSC 220	230	PASLTA 240
<i>33</i>		190	200	210	220	230	240
		250	260	270	280	290	300
	orf24a.pep	SILIPARVLPII					
60	orf24	SILIPARVLPII	MELHTISVVFI	SGMERINTS	SEGDI PFCTN/	AEKPPIKDTP	
		250	260	270	280	290	300

5 The complete length ORF24a nucleotide sequence <SEQ ID 677> is:

	1	ATGCGCACGG	CAGTGGTTTT	GCTGTTGATC	ATGCCGATGG	CGGCTTCGTC
•	51				TGTGTCGCCG	
•	101				TCATCGCTTC	
	151				ATCATACCTT	
10	201	NACGGGGATA	AACGCGCCAC	TCAAACCGCC	AACCGCGCTC	GAAGCCATCA
	251				ATGCCAAAGC	
	301	CCGTGCGTAC	CGCAGACGCT	CAAACCCATT	TCTTCAAGAA	TGCGCGCCAC
	351				CGACAAGTCG	
	401	ACGGGATATT	CAGCATTTTT	GAGGCTTCGC	GGCCGATGAG	TTCGCCCACG
15	451	CGGGTAATTT	TGAAGGCGGT	TTTCTTCACA	ACTTCGGCAA	CTTCGGTCAA
	501				TTTTACGACA	
	551	ATACGCCGAC	ATTAATCACA	GCATCCGCTT	CGCCTGAGCC	GTGAAACGCG
•	601				TTGCAGAACA	
	651	GGCGCAGCCG	AAACCTTCTA	GTGTGATTTC	ANCCGTGCGT	TTGATGGTTT
20	701				TACCGGCGCG	
	751	ATATTGATGG	AGCTGCACAC	GATATCAGTA	GTCTTCATCG	CTTCGGGAAT
	801				CATACCTTTT	
	851	CGGAAAAGCC	GCCAATAAAA	GACACGCCGA	TGGCTTTGGC	AGCCTTATCC
•	901		CCACGCTGAC		•	

25 This encodes a protein having amino acid sequence <SEQ ID 678>:

	1	MRTAVVLLLI	MPMAASSAMM	PEMVCAGVSP	GTAIISXPTE	QTAVIASSLS
•	51	NVSTPASAAA	IIPSSSXTGI	NAPLKPPTAL	EAIMPPFFTA	SFSNAKAAVV
	101	PCVPQTLKPI	SSRMRATESP	TAGVGASDKS	RIPNGIFSIF	EASRPMSSPT
	151	RVILKAVFFT	TSATSVNVVA	SEFSNAAFTT	PGPDTPTLIT	ASASPEP*NA
30	201	PAIXGLSSXA	LQNTTILAQP	KPSSVISXVR	LMVSPASLTA	SILIPARVLP
	251	ILMELHTISV	VFIASGMERX	NTSSEGDIPF	CTSAEKPPIK	DTPMALAALS
	301	KVCATLT*				

It should be noted that this protein includes a stop codon at position 198.

ORF24a and ORF24-1 show 96.4% identity in 307 aa overlap:

35		10	20	30	40	50	60
	orf24a.pep	MRTAVVLLLIMPM				TASSLSNVST	PASAAA
		-111111111111	! ! !	11111111	111 111111	:11111:11	THEFT
	orf24-1	MRTAVVLLLIMPM	aassammpemv	CAGVSPGTA:		MASSLSSVST	PASAAA
40		. 10	20	30	40	50	60
40	•	70	00				
•	orf240 non	70	80	90	100	110	120
•	orf24a.pep	IIPSSSXTGINAP:	LKPPTALEAIN	IPPFFTASFSI			
	orf24-1	TIDESERTATION					111111
45	01124 1	IIPSSSETGINAP	80	90	100		
		,,	80	90	100	110	120
		· 130	140	150	160	170	180
	orf24a.pep	TAGVGASDKSRIP	NGIFSIFEASP	PMSSPTRVI	LKAVFFTTSAT		
50				111111111	11111111111	1111111111	111111
50	orf24-1	TAGVGASDKSRIP	NGIFSIFEASF		LKAVFFTTSAT	SVNVVASEFS	NAAFTT
		130	140	150	160	170	180
		190	200	210	220	020	0.40
	orf24a.pep	PGPDTPTLITASA				230	240
55	0222.4.202		1111111111				PASLIA
;	orf24-1	PGPDTPTLITASA	SPEPXNAPAIN				וווווו
		190	200	210	220	230	240
						230	240
		250	260	270	280	290	300
60	orf24a.pep	SILIPARVLPILM	ELHTISVVFIA	SGMERXNTS	SEGDIPFCTSA	EKPPIKDTPM	IALAALS
	•••	1131311111111	1111111111	11111 111	11111111:1	1111111111	111111
	orf24-1	SILIPARVLPILM	ELHTISVVF1 <i>A</i>			EKPPIKDTPM	IALAALS
		250	260	270	280	290	300

	orf24a.pep	KVCATLTX	
5	orf24-1		
	Homology with a p	redicted ORF from N. gonorrhoeae	
		% identity over a 121 aa overlap with a predicted ORF (ORF24ng)	from
	N.gonorrhoeae:	,	,
10	•		
10	orf24.pep	MRTAVVLLLIMPMAASSAMMPEMVCAGVSPGTAIISKPTEQTAVMASSLSSVSTPASAAA	60
	orf24ng	MRTAVVLLLIMPMAASSAMMPEMVCAGVSPGTAIMSKPTEQTAVMASSLSSVNTPASAAA	60
15	orf24.pep	IIPSSSETGINAPLKPPTALEAIMPPFFTASFSNAKAAVVPCVPQTLKPIXSRMRATXSP	120
	orf24ng	IIPSSSETGINAPLKPPTALEAIMPPFFTASFSNAKAAVVPCVPQTLKPISSRMRATESP	120
	orf24.pep	TG I:	122
20	orf24ng	TAGVGASDKSRMPNGIFSIFEASRPMSSPTRVILKAVFFTTSATSVRLTASEFSSAALTT	180
	The complete lengt	h ORF24ng nucleotide sequence <seq 679="" id=""> is:</seq>	
		GCGCACGG CGGTGGTTTT GCTGTTGATC ATGCCGATGG CGGCTTCGTC CGATGATG CCGGAAATGG TGTGCGCGGG CGTGTCGCCG GGAACGGCAA	
		ATGTCCAA ACCAACGGAG CAGACGGCGG TCATGGCTTC GAGTTTGTCC	
25		CGTCAACA CGCCTGCCTC GGCGGCGGCA ATCATACCTT CGTCTTCGGA CGGGGATA AACGCGCCGC TCAAACCGCC GACCGCGCTG GAAGCCATCA	
		CCGCCCTT TTTCACGGCA TCGTTCAGCA ATGCCAAAGC TGCTGTTGTG	
	301 CC	GTGCGTAC CGCAGACGCT CAAGCCCATT TCTTCAAGAA TGCGCGCCAC	
20		AGTCGCCG ACGGCGGGG TCGGTGCCAG CGACAAATCG AGAATGCCGA	
30		GGGATATT CAGCATTTTT GAGGCTTCGC GACCGATGAG TTCGCCCACG GGTGATTT TGAAAGCGGT TTTCTTCACG ACTTCGGCGA CCTCGGTCAG	
		TGACCGCG TCCGAATTTT CCAGCGCGGC TTTGACCACG CCTGGACCGG	
		ACGCCGAC ATTAATCACA GCATCCGCTT CGCCCGAGCC GTGGAACGCA	
35		CGCCATAA ACGGATTGTC TTCCACCGCG TTGCAGAACA CGACGATTTT	
33		CGCAGCCG AAACCTTCGG GTGTGATTTC AGCCGTGCGT TTGATGGTTT CCTGCCAG CTTGACCGCA TCCATATTGA TACCGGCACG CGTGCTGCCG	
		ATTGATGG AGCTGCACAC GATATCGGTA GTTTTCATCG CTTCGGGAAC	
		AACGGATC AACACCTCAT CCGAAGGCGA CATACCTTTT TGCACCAGCG	
40		GAAAAGCC GCCGATAAAG GACACGCCGA TGGCTTTGGC TGCCTTGTCC AGTCTGCG CCACGCTGAC ATAA	
+0			
	rms encodes a pro	tein having amino acid sequence <seq 680="" id="">:</seq>	
		TAVVILLI MPMAASSAMM PEMVCAGVSP GTAIMSKPTE QTAVMASSLS	
		NTPASAAA IIPSSSETGI NAPLKPPTAL EAIMPPFFTA SFSNAKAAVV VPOTLKPI SSRMRATESP TAGVGASDKS RMPNGIFSIF EASRPMSSPT	
45		ILKAVFFT TSATSVRLTA SEFSSAALTT PGPDTPTLIT ASASPEPWNA	
		INGLSSTA LQNTTILAQP KPSGVISAVR LMVSPASLTA SILIPARVLP	
		MELHTISV VFIASGTERI NTSSEGDIPF CTSAEKPPIK DTPMALAALS	
		F24-1 show 96.1% identity in 307 aa overlap:	
50	Old 2-lig mid Old	·	_
50	orf24-1.pep	10 20 30 40 50 60 MRTAVVLLLIMPMAASSAMMPEMVCAGVSPGTAIISKPTEQTAVMASSLSSVSTPASAA	
			l
	orf24ng	MRTAVVLLLIMPMAASSAMMPEMVCAGVSPGTAIMSKPTEQTAVMASSLSSVNTPASAAI 10 20 30 40 50 60	
55			
	orf24-1.pep	70 80 90 100 110 120 IIPSSSETGINAPLKPPTALEAIMPPFFTASFSNAKAAVVPCVPQTLKPISSRMRATES	
			1
60	orf24ng	IIPSSSETGINAPLKPPTÄLEAIMPPFFTASFSNAKAAVVPCVPQTLKPISSRMRATES 70 80 90 100 110 12	
UU		70 80 90 100 110 12	U

-390-

		130	140	150	160	170	180
	orf24-1.pep	TAGVGASDKSRIPN	GIFSIFEAS	RPMSSPTRVIL	Kavffttsat	SVNVVASEFS	SNAAFTT
			111111111		1111111111		1:11:11
_	orf24ng	TAGVGASDKSRMPN				SVRLTASEFS	SSAALTT
)		130	140	150	160	170	180
	•	190	200	210	220	230	240
	orf24-1.pep	PGPDTPTLITASAS					
			111 1111	1111111111		ILLILLI	HILLII
10	orf24ng	PGPDTPTLITASAS	PEPWNAPATI	NGI.SSTAT.ONT		UNICVAPINI	
		190	200	210	220	230	240
						230	~
		250	260	270	280	290	300
	orf24-1.pep	SILIPARVLPILME	LHTISVVFI.	ASGMERINTSS	EGDI PFCTNA	EKPPIKOTP	MALAALS
15	•	1111111111111	11111111	131 1111111	111111111111111111111111111111111111111	111111111	
	orf24ng	SILIPARVLPILME	LHTISVVFI	ASGTERINTSS	EGDIPFCTS!	EKPPIKDTP	
		250	260	270	280	290	300
		•					
20	CO.4. 1						
20	orf24-1.pep	KVCATLTX	•				
•	60 4	1111111					
	orf24ng	KVCATLTX					

Based on this analysis, including the presence of a putative leader sequence (first 18 aa – double-underlined) and putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 81

25

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 681>:

```
1 .ACCGACGTGC AAAAAGAGTT GGTCGGCGAA CAACGCAAGT GGGCGCAGGA
51 AAAAATCAGC AACTGCCGAC AAGCCGCCGC GCAGGCAGCA CGCCAGGAAT
101 ACGCCGAATA CCTCAAGCTG CAATGCGACA CGCGGATGAC GCGCGAACGG
151 ATACAGTATC TTCGCGGCTA TTCCATCGAT TAG
```

This corresponds to the amino acid sequence <SEQ ID 682; ORF25>:

1 ... TDVQKELVGE QRKWAQEKIS NCRQAAAQAD RQEYAEYLKL QCDTRMTRER
51 IQYLRGYSID *

Further work revealed the complete nucleotide sequence <SEQ ID 683>:

	1 ·	ATGTATCGGA	AACTCATTGC	GCTGCCGTTT	GCCCTGCTGC	TTGCCGCTTG
	51	CGGCAGGGAA	GAACCGCCCA	AGGCATTGGA	ATGCGCCAAC	CCCGCCGTGT
40	101	TGCAAGGCAT	ACGCGGCAAT	ATTCAGGAAA	CGCTCACGCA	GGAAGCGCGT
	151	TCTTTCGCGC	GCGAAGACGG	CAGGCAGTTT	GTCGATGCCG	ACAAAATTAT
	201	CGCCGCCGCC	TACGGTTTGG	CGTTTTCTTT	GGAACACGCT	TCGGAAACGC
	251	AGGAAGGCGG	GCGCACGTTC	TGTATCGCCG	ATTTGAACAT	TACCGTGCCG
	301	TCTGAAACGC	TTGCCGATGC	CAAGGCAAAC	AGCCCCCTGT	TGTACGGGGA
45	351				GACGGGCGGC	
	401			GCAGCCGTCC		CGTCAAAGAC
	451			CAACACGGTC		CGCAAACGCT
	501			ACGGCGTGAA		ATGATAGACG
	551			GACGCGGTCA		CGGAAAAGCC
50	601			ACCCACGCCC		TGGAACACAA
50	651		GGCGATGCGG		AGCCGCAGAA	
	701		CCTGCATCCT		AGCGTGCCGA	
	751					
			GCGAAGTGGA		GTACAAAACC	AGCGTGCGGA
EE	801	ATCCGAAATT	ACCAAACTTT	GGGGAGGACT	CGATACCGAC	GTGCAAAAAG
55	851	AGTTGGTCGG			AGGAAAAAAT	CAGCAACTGC
	901	CGACAAGCCG	CCGCGCAGGC	AGACCGGCAG	GAATACGCCG	AATACCTCAA
	951	GCTGCAATGC	GACACGCGGA	TGACGCGCGA	ACGGATACAG	TATCTTCGCG
	1001	GCTATTCCAT	CGATTAG	•	•	

This corresponds to the amino acid sequence <SEQ ID 684; ORF25-1>:

```
1 MYRKLIALPF ALLLAACGRE EPPKALECAN PAVLQGIRGN IQETLTQEAR
51 SFAREDGRQF VDADKIIAAA YGLAFSLEHA SETQEGGRTF CIADLNITVP
101 SETLADAKAN SPLLYGETAL SDIVRQKTGG NVEFKDGVLT AAVRFLPVKD
151 GQTAFVDNTV GMAAQTLSAA LLPYGVKSIV MIDGKAVKKE DAVRILSGKA
201 REEEPSKPTP EDILEHNAAG GDAGVPQAAE GAPEPEILHP DDGERADTVT
251 VSRGEVEEAR VQNQRAESEI TKLWGGLDTD VQKELVGEQR KWAQEKISNC
301 RQAAAQADRQ EYAEYLKLQC DTRMTRERIQ YLRGYSID*
```

Computer analysis of this amino acid sequence gave the following results:

10 Homology with a predicted ORF from N. meningitidis (strain A)

ORF25 shows 98.3% identity over a 60aa overlap with an ORF (ORF25a) from strain A of N. meningitidis:

```
20
                                                     10
                                              TDVQKELVGEQRKWAQEKISNCRQAAAQAD
         orf25.pep
                                               инини ининийний
15
                    VTVSRGEVEEARVQNQRAESEITKLWGGLDTDVQKELVGEXRKWAQEKISNCRQAAAQAD
         orf25a
                                                               300
                                                      290
                            260
                                     270
                                              280
                    250
                     RQEYAEYLKLQCDTRMTRERIQYLRGYSIDX
20
         orf25.pep
                     RQEYAEYLKLQCDTRMTRERIQYLRGYSIDX
         orf25a
                             320
                                     330
```

The complete length ORF25a nucleotide sequence <SEQ ID 685> is:

25	1	ATGTATCGGA	AACTCATTGC	GCTGCCGTTT	GCCCTGCTGC	
23	51	CGGCAGGGAA	GAACCGCCCA	AGGCATTGGA		
	101	TGCAANGCAT	ACGCNGCAAT	ATTCAGGAAA		
	151	TCTTTCGCGC	GCGAAGACNG	CANGCAGTTT	GTCGATGCCG	ACNAAATTAT
	201	CGCCGCCGCC	TANGNTNNGN	NGNTNTCTTT	GGAACACGCT	TCGGAAACGC
30	251	AGGAAGGCGG	GCGCACGTTC	TGTNTCGCCG		TACCGTGCCG
50	301	TCTGAAACGC	TTGCCGATGC	CAAGGCAAAC	AGCCCCCTGC	TGTACGGGGA
	351	AACCGCTTTG	TCGGATATTG	TGCGGCAGAA		AATGTCGAGT
	401	TTAAAGACGG	CGTATTGACG	GCAGCCGTCC	GCTTCCTACC	CGTCAAAGAC
	451	GGTCAGANGG	CATTTGTCGA	CAACACGGTC	GGTATGGCGG	CGCAAACGCT
35	501	GTCTGCCGCG	TTGCTGCCTT	ACGGCGTGAA	GAGCATCGTG	ATGATAGACG
55	551	GCAAGGCGGT	AAAAAAAGAA	GACGCGGTCA	GGATTNTGAG	CNGANAAGCC
	601	CGTGAANAAG	AACCGTCCAA	ANCCNNGCCC	GAAGACATTT	TGGAACATAA
	651	TGCCGCCGGA	GGGGATGCAG	ACGTACCCCA	AGCCGGAGAA	GACGCGCCCG
	701	AACCGGAAAT	CCTGCATCCT	GACGACGGCG	AGCGTGCCGA	
40	751	GTATCACGGG	GCGAAGTGGA	AGAGGCGCGN	GTACAAAACC	
40	801	ATCCGAAATT	ACCAAACTTT	GGGGAGGACT	CGATACCGAC	
	851	AGTTGGTCGG	CGAANAACGC	AAGTGGGCGC	AGGAAAAAAT	
	901	CGACAAGCCG	CCGCGCAGGC	AGACCGGCAG	GAATACGCCG	
	951	GCTGCAATGC	GACACGCGGA	TGACGCGCGA	ACGGATACAG	TATCTTCGCG
45	1001	GCTATTCCAT	CGATTAG			

This encodes a protein having amino acid sequence <SEQ ID 686>:

```
1 MYRKLIALPF ALLLAACGRE EPPKALECAN PAVLQXIRXN IQETLTQEAR
51 SFAREDXXQF VDADXIIAAA XXXXXSLEHA SETQEGGRTF CXADLNITVP
101 SETLADAKAN SPLLYGETAL SDIVRQKTGG NVEFKDGVLT AAVRFLPVKD
151 GQXAFVDNTV GMAAQTLSAA LLPYGVKSIV MIDGKAVKKE DAVRIXSXXA
201 REXEPSKXXP EDILEHNAAG GDADVPQAGE DAPEPEILHP DDGERADTVT
251 VSRGEVEEAR VQNQRAESEI TKLWGGLDTD VQKELVGEXR KWAQEKISNC
301 RQAAAQADRQ EYAEYLKLQC DTRMTRERIQ YLRGYSID*
```

ORF25a and ORF25-1 show 93.5% identity in 338 aa overlap:

55	10 20 30 40 50 60								
	orf25a.pep	MYRKLIALPFALLL		1 11 11111	111111111	11 11			
	orf25-1	MYRKLIALPFALLL	AACGREEPPI	KALECANPAVL	QGIRGNIQET	LTQEARSFAR	EDGRQF		

-392-

		10	20 .	30	40	50	60
		70	80	90	100	110	120
_	orf25a.pep	VDADXIIAAAXXXX	KXSLEHASETC	EGGRTFCXAL	OLNITVPSETI		
.						4111111111	111111
	orf25-1	VDADKIIAAAYGL					
		70	80	90	100	110	120
		130	140	150	160	170	180
10	orf25a.pep	SDIVRQKTGGNVE	FKDGVLTAAVF	FLPVKDGQX	afvdntvgma <i>i</i>	QTLSAALLPY	GVKSIV
				11111111:	[]]]][]]	FILLER	111111
	orf25-1	SDIVRQKTGGNVE					(GVKSIV
		130	140	150	160	170	180
15		190	200	210	220	000	0.40
13	orf25a.pep	MIDGKAVKKEDAVI			220	230	240
	OIIIJa.pcp	IIIIIIIIIIIII	II I III I				SEFTPHE
	orf25-1	MIDGKAVKKEDAV	RTLSGKAREEF				
		190	200	210	220	230	240
20		•			, ====	200	2.10
		250	260	270	280	290	300
	orf25a.pep	DDGERADTVTVSR	GEVEEARVONO	RAESEITKL	WGGLDTDVQKE	LVGEXRKWA	DEKISNC
					111111111		
25	orf25-1	DDGERADTVTVSRO					
25		250	260	270	280	290	300
		310	320	330	339	į	
	orf25a.pep	RQAAAQADRQEYAI					
	orread bob	1111111111111					,
30	orf25-1	RQAAAQADRQEYAI	<i>.</i>				
		310	320	330			

Homology with a predicted ORF from N.gonorrhoeae

ORF25 shows 100% identity over a 60aa overlap with a predicted ORF (ORF25ng) from

35 N.gonorrhoeae:

The complete length ORF25ng nucleotide sequence <SEQ ID 687> is:

4.0	1	ATGTATCGGA	AACTCATTGC	GCTGCCGTTT	GCCCTGCTGC	TTGCAGCGTG
45	51	CGGCAGGGAA	GAACCGCCCA	AGGCGTTGGA	ATGCGCCAAC	CCCGCCGTGT
	101	TGCAGGACAT	ACGCGGCAGT	ATTCAGGAAA	CGCTCACGCA	GGAAGCGCGT
	151	TCTTTCGCGC	GCGAAGACGG	CAGGCAGTTT	GTCGATGCCG	ACAAAATTAT
	201			CGTTTTCTTT		
	251	AGGAAGGCGG	GCGCACGTTC	TGTATCGCCG	ATTTGAACAT	TACCGTGCCG
50	301	TCTGAAACGC	TTGCCGATGC	CGAGGCAAAC	AGCCCCCTGC	TGTATGGGGA
	351			TGCAGCAGAA		
	401			GCAGCCGTCC		
	451			CAACACGGTC		
	501			ACGGCGTGAA		
55	551			GACGCGGTCA		
	601			ACCCACCCC		
	651			GCGTACCCCA		
	701			GACGACGTCG		
•	751			AGAGGCGCGC		
60	801			GGGGAGGACT		
	851			AAGTGGGCGC		
	901	CGACAAGCCG	CCGCGCAGGC	AGACCGGCAG	CAATACCCCC	AATACCTCAA
	951	GCTCCAATGC	GACACGCGGA	TGACGCGCGA	ACadaTACAG	TATCTTCCCC
	1001	GCTATTCCAT		LONCOCOCON	Acggaracac	THICTICGCG
		CIMITOM	COLLING			

65 This encodes a protein having amino acid sequence <SEQ ID 688>:

50

55

	1	MYRKLIALPF	ALLLAACGRE	EPPKALECAN	PAVLQDIRGS	IQETLTQEAR
	51	SFAREDGRQF	VDADKIIAAA	YGLAFSLEHA	SETQEGGRTF	CIADLNITVP
	101				NVEFKDGVLT	
		ARTAFIDNTV				
5	201	REEEPSKPTP	EDILEHNAAG	GDAGVPQAAE	GAPEPEILHP	DDVERADTVT
•	251				VQKELVGEQR	KWAQEKISNC
	301	RQAAAQADRQ	EYAEYLKLQC	DTRMTRERIQ	YLRGYSID*	•

ORF25ng and ORF25-1 show 95.9% identity in 338 aa overlap:

10	orf25-1.pep orf25ng	10 MYRKLIALPFALLL MYRKLIALPFALLL 10	1111111111	111111111111111111111111111111111111111	1 111:1111	1141111111	11111
15		70	80	90	100	110	120
	orf25-1.pep	VDADKIIAAAYGLA	FSLEHASET(EGGRTFCIAL			
	orf25ng	70	80	90	100	110	120
20							
		130 SDIVROKTGGNVEF	140	150	160	170	180
	orf25-1.pep	SDIVKOKTGGNVER		RELEVADGQ12		ULISAALDE.	
	orf25ng	ADIVQQKTGGNVEF			AFIDNTVGMAT	QTLSAALLP	YGVKSIV
25		130	140	150	160	170	180
		190	200	210	220	230	240
	orf25-1.pep	MIDGKAVKKEDAVR		EPSKPTPEDII			
		1111111 111111	:				
30	orf25ng	MIDGKAVTKEDAVR 190	VLSGKAREE 200	210	LEHNAAGGDAG 220	230	240
		130	200	210	220		-
		250	260	270	280	290	300
25	orf25-1.pep	DDGERADTVTVSRG	EVEEARVQN	QRAESEITKL	WGGLDTDVQKE	SLVGEQRKWA	QEKISNC
35	orf25ng	DDVERADTVTVSRG	EVEEARVON	ORAESEITKL	WGGLDTDVQK	ELVGEQRKWA	
	01140119	250	260	270	280	290	300
		310	320	330	339		
40	orf25-1.pep	RQAAAQADRQEYAE			GYSIDX		
		111111111111111					
	orf25ng	RQAAAQADRQEYAE 310	YLKLQCDTR 320	MTRERIQYLR 330	GYSIDX		
		310	320	330			

Based on this analysis, including the presence of a predicted prokaryotic membrane lipoprotein lipid attchment site (underlined) in the gonococcal protein, it was predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF25-1 (37kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 16A shows the results of affinity purification of the GST-fusion protein, and Figure 16B shows the results of expression of the His-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot (Figure 16C), ELISA (positive result), and FACS analysis (Figure 16D). These experiments confirm that ORF25-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 16E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF25-1.

Example 82

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 689>

```
1 ATGCAGCTGA TCGACTATTC ACATTCATTT TTCTCGGTTG TGCCACCCTT
                     TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG CTGTCTTTAG
GCATCGGTAT TCTGGWYSGC GTTGCCTTTT TGGTCGGCGG CAACCCCGTC
GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG CTTGGTCAGA
5
                101
                     CGsyGATTGG TCGCTGGGCA AACCAAAAAT CTTGGTTTTC CKGATACTTT
                     TGGGTATTTT TACTTCCCTG CTGACCTACT CCGGCAGCAA T.....
10
                                                    //
                                                         .....AC TTCGCTGGTA
                901
                     TTCGGCGGCA CTTGCGGCGT CTTTGCCGTC GTTCTCTGCA CGCTCGGCAC
                     GATTAAAACC GCCGACTATC CCAAAGCCGT TTGGCAGGGT GCGAAATCTA
                951
               1001
                     TGTTCGGCGC AATCGCCATT TTAATCCTCG CTTGGCTCAT CAGTACGGTT
15
               1051
                     GTCGGCGAAA TGCACACCGG CGATTACCTC TCCACACTGG TTGCGGGCAA
                     CATCCATCCC GGCTTCCTGC CCGTCATCCT CTTCCTGCTC GCCAGCGTGA
               1101
               1151
                     TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT TATGCTGCCG
               1201
                     ATTGCCGCCG CCATGGCGGT CAAAGTCGAA CCCGCGCTGA TTATCCCGTG
                     TATGTCCGCA GTAATGGCGG GGGCGGTATG CGGCGACCAC TGCTCGCCCA
               1251
20
               1301
                     TTTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG CAACCACATC
               1351
                     GACCACGTTA CCTCGCAACT GCCTTACGCC TTAACCGTTG CCGCCGCCGC
               1401
                     CGCATCGGGC TACCTCGCAT TGGGTCTGAC AAAATCCGCG CTGTTGGGCT
                     TTGGCACGAC AGGCATTGTA TTGGCGGTGC TGATTTTTCT GTTGAAAGAT
               1451
               1501
                     AAAAAA..
25
     This corresponds to the amino acid sequence <SEQ ID 690; ORF26>:
                     MQLIDYSHSF FSVVPPFLAL ALAVITRRVL LSLGIGILXX VAFLVGGNPV
                     DGLTHLKDMV VGLAWSDXDW SLGKPKILVF XILLGIFTSL LTYSGSN...
                251
30
                     FGGTCGVFAV VLCTLGTIKT ADYPKAVWQG AKSMFGAIAI LILAWLISTV
                     VGEMHTGDYL STLVAGNIHP GFLPVILFLL ASVMAFATGT SWGTFGIMLP
                     IAAAMAVKVE PALIIPCMSA VMAGAVCGDH CSPISDTTIL SSTGARCNHI
                     DHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGTTGIV LAVLIFLLKD
                451
35
     Further work revealed the complete nucleotide sequence <SEQ ID 691>:
                     ATGCAGCTGA TCGACTATTC ACATTCATTT TTCTCGGTTG TGCCACCCTT
                 51
                     TTTGGCACTG GCACTTGCCG TCATTACCCG CCGCGTACTG CTGTCTTTAG
                     GCATCGGTAT TCTGGTCGGC GTTGCCTTTT TGGTCGGCGG CAACCCCGTC
                     GACGGTCTGA CACACCTGAA AGACATGGTC GTCGGCTTGG CTTGGTCAGA
40
                     CGGCGATTGG TCGCTGGGCA AACCAAAAAT CTTGGTTTTC CTGATACTTT
                     TGGGTATTTT TACTTCCCTG CTGACCTACT CCGGCAGCAA TCAGGCGTTT
                     351
                     GACCGCCTGC CTCGTGTTCG TAACCTTTAT CGACGACTAT TTCCACAGTC
                     TCGCCGTCGG TGCGATTGCC CGCCCCGTTA CCGACAAGTT TAAAGTTTCC CGCACCAAAC TCGCCTACAT CCTCGACTCC ACTGCCGCTC CTATGTGCGT
                401
45
                451
                     GCTGATGCCC GTTTCAAGCT GGGGCGCGTC GATTATCGCC ACGCTTGCCG
                551
                     GACTGCTCGT TACCTACAAA ATCACCGAAT ACACGCCGAT GGGGACGTTT
                     GTCGCCATGA GCCTGATGAA CTATTACGCA CTGTTTGCCC TGATTATGGT
                     GTTCGTCGTC GCATGGTTTT CCTTCGACAT CGGCTCGATG GCACGTTTCG
                651
50
                     AACAAGCCGC GTTGAACGAA GCCCACGATG AAACTGCCGT TTCAGACGCT
                     ACCAAAGGTC GTGTTTACGC ACTGATTATT CCCGTTTTGG CCTTAATCGC
                751
                     CTCAACGGTT TCCGCCATGA TCTACACCGG CGCGCAGGCA AGCGAAACCT
                851
                     TCAGCATTTT GGGGGCATTT GAAAACACGG ACGTAAACAC TTCGCTGGTA
                     TTCGGCGGCA CTTGCGGCGT CCTTGCCGTC GTTCTCTGCA CGCTCGGCAC
                901
55
                     GATTAAAACC GCCGACTATC CCAAAGCCGT TTGGCAGGGT GCGAAATCTA
                951
                     TGTTCGGCGC AATCGCCATT TTAATCCTCG CTTGGCTCAT CAGTACGGTT
               1001
               1051
                     GTCGGCGAAA TGCACACCGG CGATTACCTC TCCACACTGG TTGCGGGCAA
                     CATCCATCCC GGCTTCCTGC CCGTCATCCT CTTCCTGCTC GCCAGCGTGA
               1101
               1151
                     TGGCGTTTGC CACAGGCACA AGCTGGGGGA CGTTCGGCAT TATGCTGCCG
60
                     ATTGCCGCCG CCATGGCGGT CAAAGTCGAA CCCGCGCTGA TTATCCCGTG
               1201
               1251
                     TATGTCCGCA GTAATGGCGG GGGCGGTATG CGGCGACCAC TGCTCGCCCA
```

TTTCCGACAC GACCATCCTG TCGTCCACCG GCGCGCGCTG CAACCACATC

1301

1401 1451	GACCACGTTA CGCATCGGGC TTGGCACGAC AAAAAACGCG	TACCTCGCAT AGGCATTGTA	TGGGTCTGAC TTGGCGGTGC	AAAATCCGCG	CTGTTGGGCT
--------------	--	--------------------------	--------------------------	------------	------------

5 This corresponds to the amino acid sequence <SEQ ID 692; ORF26-1>:

	1 51 101	DGLTHLKDMV	FSVVPPFLAL VGLAWSDGDW RRGAKMLTAC	SLGKPKILVF	LILLGIFTSL	LTYSGSNQAF
10	151 201	RTKLAYILDS VAMSLMNYYA	TAAPMCVLMP LFALIMVFVV	VSSWGASIIA AWFSFDIGSM	TLAGLLVTYK ARFEQAALNE	ITEYTPMGTF AHDETAVSDA
10	251 301	TKGRVYALII FGGTCGVLAV	PVLALIASTV VLCTLGTIKT	SAMIYTGAQA ADYPKAVWQG	SETFSILGAF AKSMFGAIAI	ENTDVNTSLV LILAWLISTV
	351 401	ĪAAAMAVKVE	STLVAGNIHP PALIIPCMSA	VMAGAVCGDH	CSPISDTTIL	SSTGARCNHI
15	451 501	DHVTSQLPY <u>A</u> KKRANA*	LTVAAAAASG	YLALGLTKSA	LLGFGTTGIV	LAVLIFLIKU

Computer analysis of this amino acid sequence gave the following results:

Homology with the hypothetical transmembrane protein HI1586 of *H.influenzae* (accession number P44263) ORF26 and HI1586 show 53% and 49% amino acid identity in 97 and 221 aa overlap at the

20 N-terminus and C-terminus, respectively:

```
MQLIDYSHSFFSVVPPFLALALAVITRRVXXXXXXXXXXXXVAFLVGGNPVDGLTHLKDMV 60
          Orf26 1
                    M+LID+S S +S+VP LA+ LA+ TRRV
          HI1586 14 MELIDFSSSVWSIVPALLAIILAIATRRVLVSLSAGIIIGSLMLSDWQIGSAFNYLVKNV 73
          Orf26 61 VGLAWSDXDWSLGKPKILVFXILLGIFTSLLTYSGSN 97
25
                    V L ++D + + I++F +LLG+ T+LLT SGSN
          HI1586 74 VSLVYADGEIN-SNMNIVLFLLLLGVLTALLTVSGSN 109
30
          Orf26 86 IFTSLLTYSGS--NTSLVFGGTCGVFAVVLCTL--GTIKTADYPKAVWQGAKSMFGXXXX 141
                    +F+ L T+ + TSLV GG C + L + + +Y ++ G KSM G
          HI1586 299 VFSVLGTFENTVVGTSLVVGGFCSIIISTLLIILDRQVSVPEYVRSWIVGIKSMSGAIAI 358
          Orf26 142 XXXXXXXSTVVGEMHTGDYLSTLVAGNIHPGFLPVILFLLASVMAFATGTSWGTFGIMLP 201
35
                           + +VG+M TG YLS+LV+GNI FLPVILF+L + MAF+TGTSWGTFGIMLP
          HI1586 359 LFFAWTINKIVGDMQTGKYLSSLVSGNIPMQFLPVILFVLGAAMAFSTGTSWGTFGIMLP 418
          Orf26 202 IAAAMAVKVEPALIIPCMSAVMAGAVCGDHCSPISDTTILSSTGARCNHIDHVTSQXXXX 261
                    IAAAMA P L++PC+SAVMAGAVCGDHCSP+SDTTILSSTGA+CNHIDHVT+Q
40
          HI1586 419 IAAAMAANAAPELLLPCLSAVMAGAVCGDHCSPVSDTTILSSTGAKCNHIDHVTTQLPYA 478
          S L GF T + L V+IF +K +
          HI1586 479 ATVATATSIGYIVVGFTYSGLAGFAATAVSLIVIIFAVKKR 519
45
```

Homology with a predicted ORF from N. meningitidis (strain A)

ORF26 shows 58.2% identity over a 502aa overlap with an ORF (ORF26a) from strain A of N. meningitidis:

50		10	20	30	40	50	60
	orf26.pep	MQLIDYSHSFFSVV	PPFLALALAV	TITRRVLLSLG	IGILXXVAFI	<u>.V</u> GGNPVDGLTI	HLKDMV
	0222017		TITLE	11111111111	1111 1111	THILLIA	11111
	orf26a	MOLIDYSHSFFSVV	PPFLALALAV	ITRRVLLSLG	IGILVGVAFI	VGGNPVDGLT	HLKDMV
	OIIZOG	10	20	30	40	 50	60
55				*-			
33		70	80	90	99		
	orf26.pep	VGLAWSDXDWSLGK	PKILVFXIL	GIFTSLLTYS	GSNXX		
		1111111 111111	11 111 11		111		
•	orf26a	VGLAWSDGDWSLGK	PKXLVFLILI	GIFTSLLTYS	GSNQAFADWA	AKRHIKNRRGA	KMLTAC
60	OTTEVA	70	80	90	100	110	120

	orf26.pep						
5	orf26a	LVFVTFIDDYFHSLAV	CAYADDUTH	KEWICO NYI I	NYTT DOWN	DMCUI MDUC	NOR OTT N
•	OIIZUA	130	140	150	160	170	180
10	orf26.pep						
10	orf26a	TLAGLLVTYKITEYTP			IMVFVVAWI	SFDIGSMAR	FEQAALNE
		190	200	210	220	230	240
15	orf26 non				1	100 1	110
13	orf26.pep				*******	,	TS <u>LV</u>
,	orf26a	AHDETAVSDGSWGRVY) 250	ALIIPVLAL 260	IASTVSAMI	TGAQASET 280	FSILGAFENT 290	DVNTSLV 300
20							
20	orf26.pep	120 130 FGGTCGVFAVVLCTLG	140 TIKTADYPK	AVWQGAKSMI	FGAIAILII	AWLISTVVG	L70 EMHTGDYL
	orf26a	FGGTCGVLAVVLCTLG					
25	011204	310	320	330	340	350	360
25		180 190	200	. 210) ;	220 2	230
	orf26.pep	STLVAGNIHPGFLPVII	LFLLASVMA	FATGTSWGT	GIMLPIA	AMAVKVEPAI	IIPCMSA
20	orf26a	STLVAGNIHPGFLXVI	LFLLASVMA	<u>FA</u> TGTSWGTI	GIMLPIA	AMAVKVDPSI	LIIPCMSA
30		370	380	390	400	410	420
	orf26.pep	240 250 NMACAUCCONCERTED	260	270) . 2	80 2	290
25		VMAGAVCGDHCSPISD	11111111				ППП
35	orf26a	VMAGAVCGDHCSPISD	TTILSSTGA 440	RCNHIDHVTS 450	SQLPYALTY 460	AAAAASGYLI 470	ALGLTKSA 480
		300 310		,	100	410	400
40	orf26.pep	300 310 LLGFGTTGIVLAVLIF	LLKDKK				
40	orf26a	:		Δ¥			
		490	500				
	The complete lengt	th ORF26a nucleotic	de sequenc	ce <seq ii<="" th=""><th>O 693> is</th><th>:</th><th></th></seq>	O 693> is	:	
	1 AT	GCAGCTGA TCGACTAT	ምሮ እሮእምምሮ	3.000 mmcm/	CCMMC M		
45	51 TI	TGGCACTG GCACTTGC	CG TCATTA	CCCG CCGCC	STACTG CT	GTCTTTAG	
	101 GC 151 GA	CATCGGTAT TCTGGTCG ACGGTCTGA CACACCTG	GC GTTGCC AA AGACAT	TTTT TGGT(CGGCGG CA	ACCCCGTC	
	201 CG	GCGATTGG TCGCTGGG	CA AACCAA	AANT CTTGO	STTTTC CT	GATACTTT	
50	301 GC	GGTATTTT TACTTCCC CCGACTGGG CAAAACGG	CA CATTAA	AAAC CGGCC	SCGGCG CG	AAAATGCT	
	351 GA	ACCGCCTGC CTCGTGTT CGCCGTCGG TGCGNTTG	CG TAACCT	TTAT CGACO	SACTAT TI	CCACAGTC	
	451 CG	SCGCCAAAC TCGCCTAC	AT CCTCGA	CTCC ACTGO	CCGCGC CT	ATGTGCGT	
55	501 GC 551 GA	TGATGCCC GTTTCAAG CTGCTCGT TACCTACA	CT GGGGCG AA ATCACC	CGTC GATT! GAAT ACAC	ATCGCC AC	GCTTGCCG	
	· 601 GI	CGCCATGA GCCTGATG	AA CTATTA	CGCA CTGTT	TTGCCC TO	ATTATGGT	
	701 AA	TCGTCGTC GCATGGTT(CAAGCCGC GTTGAACG	AA GCCCAC	GATG AAACT	GCCGT TI	CAGACGGC	
60	751 AG 801 CT	CTGGGGCA GGGTTTAC CAACGGTT TCCGCCAT	GC ATTGAT	TATT CCCGT	TTTTGG CC	TTAATCGC	
	851 TC	AGCATTTT GGGTGCAT	TT GAAAAT.	ACGG ACGTO	SAACAC TI	CGCTGGTA	
	901 TT 951 GA	CGGCGGCA CTTGCGGC TTAAAATC GCCGATTA	GT GCTTGC TC CCAAAG	CGTC GTCCT CCGT TTGG	CTGCA CO	CTCGGCAC	
65	1001 TG	STTCGGCGC AATCGCCA'	TT TTAATC	CTTG CCTGC	SCTCAT CA	GTACGGTT	
UJ.	1101 CA	CGGCGAAA TGCACACA ATCCATCCC GGCTTCCT	GN CCGTCA	TCCT TTTCC	CTGCTC GO	CAGCGTGA	
	1151 TG	GCGTTTGC CACAGGCA TTGCCGCCG CCATGGCG	CA AGCTGG	GGGA CGTTC	CGGCAT CA	TGCTGCCG	
70	1251 TA	ATGTCCGCC GTGATGGC	GG GGGCGG	TATG CGGCC	SACCAC TO	CTCGCCCA	
70	1301 TT	TCCGACAC GACCATCC	TG TCGTCC	ACCG GCGCC	SCGCTG CA	ACCACATC	

			-397-				
1351 1401 1451 1501	GACCACGTTA CNT CGCATCGGGN TAC TTGGCANGAC AGAAAAAACGCG CCA	CCTCGCAT T SCATTGTA T AACGCCTG A	GGGTCTGAC TGGCGGTGC	AAAATCCGCG TGATTTTTCT	GTTGAAAGA	T	
This encodes a p	protein having a	mino acid s	sequence <	SEQ LU 934	· .		
1 51 101 151 201 251 301 351 401 451 501	MQLIDYSHSF FS' DGLTHLKDMV VG ADWAKRHIKN RR RAKLAYILDS TA VAMSLMNYYA LF SWGRVYALII PV FGGTCGVLAV VL VGEMHTGDYL ST IAAAMAVKVD PS DHVTSQLPYA LT KKRANA*	LAWSDGDW S GAKMLTAC I APMCVLMP \ ALIMVFVV I LALIASTV S CTLGTIKI I LVAGNIHP (LIIPCMSA \ VAAAAAASG	BLGKPKXLVF LVFVTFIDDY JSSWGASIIA AWFSFDIGSM BAMIYTGAQA ADYPKAVWQG GFLXVILFLL VMAGAVCGDH YLALGLTKSA	LILLGIFTSL FHSLAVGAXA TLAGLLVTYK ARFEQAALNE SETFSILGAF AKSMFGAIAI ASVMAFATGT CSPISDTTIL LLGFGXTGIV	RPVTDKFKV ITEYTPMGT AHDETAVSE ENTDVNTSI LILAWLIST SWGTFGIMI SSTGARCNE	S S S S S S S S S S S S S S S S S S S	
ORF26a and Ol	RF26-1 show 97	.8% identi	ty in 500 aa	i overrap.			
orf26a.pe			1111111111	111111111		50 NPVDGLTHLKD NPVDGLTHLKD 50	11
orf26a.p		11111111	11111111111	TSLLTYSGSN	QAFADWAKRH	IKNRRGAKMLT	[]]
orf26-1	VGLAWSD	GDWSLGKPKI 70	LVFLILLGIE 80	TSLLTYSGSN 90	QAFADWAKKH 100	IKNRRGAKMLT	120
orf26a.p orf26-1	ep LVFVTFI LVFVTFI	1111111111		FKVSRAKLAYI : FKVSRTKLAYI	LDSTAAPMCV	LMPVSSWGAS:	IIA 180
orf26a.p	ep TLAGLLV	111111111		NYYALFALIMV	1111111111	[GSMARFEQAA GSMARFEQAA	1 1 1
orf26a.g		250 SDGSWGRVY	260 ALIIPVLALI	11:11:11:11		290 LGAFENTDVNT	113
orf26-1	AHDETAV	SDATKGRVY	ALIIPVLALI 260	ASTVSAMIYTO 270	GAQASETFSI 280	LGAFENTDVNT 290	300
orf26a.] orf26-1	111111	310 /LAVVLCTLG	320 TIKIADYPKA	330 VWQGAKSMFGA	340 AIAILILAWL	350 ISTVVGEMHTG ISTVVGEMHTG 350	1111
orf26a. orf26-1	111111				111111111	410 VKVDPSLIIPO : : VKVEPALIIPO 410	1111
orf26a. orf26-1	111111	11111111	1	1	1111111111	470 AAASGYLALGL AAASGYLALGL 470	1111

LLGFGXTGIVLAVLIFLLKDKKRANAX orf26a.pep

orf26-1

5 Homology with a predicted ORF from N. gonorrhoeae

ORF26 shows 94.8% and 99% identity in 97 and 206 as overlap at the N-terminus and C-terminus, respectively, with a predicted ORF (ORF26ng) from N. gonorrhoeae:

lospooti ();	· · · · · · · · · · · · · · · · · · ·	60 .
orf26.pep		60 .
orf26ng	MQLIDYSHSFFSVVPPFLALALAVITRRVLLSLGIGILVGVAF EVGGRE VDGHTMAN	
f26 pep	VGLAWSDXDWSLGKPKILVFXILLGIFTSLLTYSGSN	97
OILZO.Pep		120
orf26ng	VGLAWADGDWSLGKPKILVFLILLGIFTSLLTISGSNQAFADWARGGITAWNOG	
	· //	•
	TSLVFGGTCGVFAVVLCTLGTIKTADYPKA	326
orf26.pep	111111111111111111111111111111111111111	326
orf26ng	· ·	
orf26.pep	VWQGAKSMFGAIAILILAWLISTVVGEMHTGDYLSTLVAGNIHPGFLPVILFLLASVMAF	386
022207		386
orf26ng		446
orf26.pep	ATGTSWGTFGIMLPIAAAMAVKVEPALIIPCMSAVMAGAVCGDHCSPISDTTILSSTGAR	440
•		446
orf26ng		502
orf26.pep	CNHIDHVTSQLPYALTVAAAAASGYLALGLTKSALLGFGTTGIVLAVLIFLLKDKK	502
		506
orf26ng	CNHIDHVTSQLPIADIVAAAAASGIMMOOTI	
	orf26.pep orf26.pep orf26ng orf26ng orf26.pep orf26.pep orf26ng orf26pep	orf26.pep MQLIDYSHSFFSVVPPFLALALAVITRRVLLSLGIGILXXVAFLVGGNPVDGLTHLKDMV orf26ng MQLIDYSHSFFSVVPPFLALALAVITRRVLLSLGIGILVGVAFLVGGNPVDGLTHLKDMV orf26.pep VGLAWSDXDWSLGKPKILVFXILLGIFTSLLTYSGSN

The complete length ORF26ng nucleotide sequence <SEQ ID 695> is:

	. 1	ATGCAGCTGA '	TTGACTATTC	ACATTCATTT	TTCTCGGTTG	TGCCACCCTT
05	51		へへみんのかにとして	TO ATTIME LALLS	CCGCGTWCTG	010101111
35	101		MMMCCTCCCC	C. Ա.	TGGTCGGCGG	CHACCCCGIC
	151		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	አሮአሮአጥርርጥር	GTCGGCTTGG	CIIGGGCAGA
•	201		macamacaca A	AACCAAAAAT	CTTGGTTTTC	CIGNINCILI
	251			CTCACCTACT	CCGGCAGCAA	ICEGCGIII
40	301		~~~~~~~~~~	:)מממממידמי	CGGTGCGCG	COMMUNICI
40	351			ጥ እ እ ርርጥጥ ነገ A ነገ	CGACGACIAI	ITCCHCROCC
	401		MCCC NUMCCC	CCCCCCGTTA	CCGACAAGTI	IMMAGILICO
	451		macacan a car	- ^ ^ ՄԻՐ ՀՀ Հ ՄԻՐ Հ Հ	ACTGCCTCGC	CCWIGIGGGI
	501			CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GATTATUGUU	ACGCT I GCCG
AF	551		$m_{\lambda} \sim c_{\lambda} m_{\lambda} \sim \lambda \lambda \lambda \lambda$	- አጥጥአሮርGAA'I'	ACACGCCGAI	GGGGGCGIII
45	601		CCCTCATCAA	CTATTACGCG	CTGTTTGCCC	IGNITATEGE
	651		ことが中には中中で中	- CCTTCGACAT	CGGCTCGACG	gcocorrico
	701		CHINCANCONN	- accesagasca	aaaccoccoc	CICAGACGCI
	751			ATTGATTATT	CCCGIIII	CCIIMITOGO
50	801		macacat かがこり	-TCTACACCGG	CGCGCAGGCA	MGCGWWYCCI
50	851		へんととととこれが不可	CABBATACC	ACGTAAACAC	TICGCIGGIA
	901			COUNTICACION	GICCICIGCA	Calleagene
	951		- へへへへ カヤヤカヤ(' CCAAAGCCCG'	' GIGGCAGGGI	GCGWWICCW
	1001		* * * መረረረረ ሲጥባ	י ጥጥልልጥሮርፕርር	CUTGGCTCAT	CAGIACGGII
55	1051		かたなかたかたただ	:	TCCACGCTGG	TIGCGGGCAA
33	1101			·	CITCUIGUI	, GCCAGCGIGA
	1151		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A ACCTGGGGG	A CGTTCGGCA.	INIGCIGCOG
	1201			r caaactcga	a CCCGCGCTG	4 IIMCCCCGIG
	1251		CTANTICCCC	: CCCCCGTAT	3 CGGCGACCA	LIGITOGCCCA
60	1301		• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	TOCTOCACO	- 66666666	3 CANCORONIC
60	1351		. ~~~~~~~~~ ~	r cccmmatgc	CTGACGGIIV	3 CCGCCGCCGC
	1401		・ かみつつずつはつひ	TO TO TO TO THE PROPERTY TO T	C AAAATCCGC	e Cigiiagei
	1451	TTGGCACGAC	CGGTATTGT	A TTGGCGGTG	C TGATTTTC	T GTTGAAAGAT
	1501	AAAAAACGC	CCGACGTTT	G A		•
	100		•		<\$FO ID 69	ć.
	_		ima aa	Accuse b.	< > MI 1 II 1 NY	11/.

This encodes a protein having amino acid sequence <SEQ ID 696>:

		-399-
5	51 D 101 A 151 R 201 V 251 T 301 <u>F</u> 401 <u>F</u> 451 F	QLIDYSHSF FSVVPPFLAL ALAVITRRUL LSLGIGILUG VAFLUGGNPV GLTHLKDMV VGLAWADGDW SLGKPKILVF LILLGIFTSL LTYSGSNQAF DWAKRHIKN RCGAKMLTAC LVFVTFIDDY FHSLAVGAIA RPVTDKFKVS AKLAYILDS TASPMCVLMP VSSWGASIIA TLAGLLVTYK ITEYTPMGTF AMSLMNYYA LFALIMVFVV AWFSFDIGSM ARFEQAALNE AQDETAASDA EGGTCGVLAV VLCTFGTIKT ADYPKAVWQG AKSMFGAIAI LILAWLISTV GGEMHTGDYL STLVAGNIHP GFLPVILFLL ASVMAFATGT SWGTFGIMLP GAAMAVKVE PALIIPCMSA VMAGAVCGDH CSPISDTTIL SSTGARCNHI EHVTSQLPYA LTVAAAAASG YLALGLTKSA LLGFGTTGIV LAVLIFLLKD
15	orf26-1.pe	10 20 30 40 50

		10	20	30	40	50	60
	orf26-1.pep		LALALA	/ITRRVLLSLG]	GILVGVAFLV	GGNPVDGLTH	ILKUMV
15		MQLIDYSHSFFSVVPPI MQLIDYSHSFFSVVPPI			GILVGVAFLV	GGNPVDGLT	
	orf26ng	MOLIDISHSFESVVEE	20	30	40	50	60
				0.0	100	110	120
	.	70 VGLAWSDGDWSLGKPK	80 ************************************	90 LGT FTSLLTYS	SNOAFADWAK	RHIKNRRGAI	KMLTAC
20	orf26-1.pep						11111
	orf26ng	VGLAWADGDWSLGKPK	ITALTIT	FGTF12PF112	GSNQAFADWAF 100	KRHIKNRCGA 110	120
	V224 ****5	70	80	90	100	110	100
0.5		130	140	150	160	170	180
25	orf26-1.pep		GAIARPV	TDKFKVSRTKL	AYILDSTAAPI	WCATW5A22M	HIIII
		LVFVTFIDDYFHSLAV LVFVTFIDDYFHSLAV	 Catarpy		AYILDSTASPI	MCVLMPVSSW	O
	orf26ng	130	140	150	160	170	180
30			000	210	220	230	240
	***	190 TLAGLLVTYKITEYTI	200 MGTFVAN	CT MIVVAL PAT	TMUFVVAWES	FDIGSMARFE	QAALNE
	orf26-1.pep					1 1 1 1 1 1 1 1 5 1 1	
	orf26ng	TLAGLLVTYKITEYT	MGT FVAN	ISLMNYYALFAI 210	IMVFVVAWFS 220	230	240
35		190	200	210	220		
		250	260	270	280	290	300 V.12maya
	orf26-1.pep	AHDETAVSDATKGRV		1 1 1 1 1 1 1 1 1 1 1 1			
40	co.c	: : AQDETAASDATKGRV	IIIIIII YALIIPV	<u>LALIASTVSAM</u>	IYTGAQASETI	SILGMEDIAL	Dinzes
40	orf26ng	250	260	270	280	290	300
		310	320	330	340	350	360
	orf26-1.pep		CMILMOVI	VDEVIMOCVES	MFGAIAILIL	WLISTVVGE	MHTGDYL
45	Off20-1.pep						
43	orf26ng	FGGTCGVLAVVLCTF	GTIKTAD 320	YPKAVWOGAKS 330	340	350	360
		310	320				420
		370	380	390	400	410 amavkvepat	
50	orf26-1.pep	STLVAGNIHPGFLPV					
	orf26ng	STLVAGNIHPGFLP	/ILFLLAS	SVMAFATGTSWG	LEGIMPLIAN	TATE A TO A TO TAKE	JIIPCMSA 420
	Offzong	370	380	390	400	410	420
		430	440	450	460	470	480
55	orf26-1.pep		COMMITTE	STGARCNHIDH	TSQLPYALTV	AAAAASGYL	ALGLTKSA
	OTTEG TIPE	VMAGAVCGDHCSPI					,,,,,,,,
	orf26ng	VMAGAVCGDHCSP1:	440	450	460	470	480
60							
00		490	500	ジロカ バカ V			
	orf26-1.pep	LLGFGTTGIVLAVL	 	111::			
	orf26ng	LLGFGTTGIVLAVL	IFLLKOK	KRADVX			
65	011103	490	500				
				-1 hz	mothetical A	I influenza	e protein:

In addition, ORF26 ng shows significant homology to a hypothetical H.influenzae protein:

	sp P44263 YF86_HAEIN HYPOTHETICAL PROTEIN HI1586 >gi 1074850 pir C64037 hypothetical
	protein HI1586 - Haemophilus influenzae (strain Rd KW20) >gi 1574427 (U32832) H.
•	influenzae predicted coding region HI1586 [Haemophilus influenzae] Length = 519
5 .	Score = 538 bits (1370), Expect = e-152 Identities = 280/507 (55%), Positives = 346/507 (68%), Gaps = 7/507 (1%)
	Query: 1 MQLIDYSHSFFSVVPPFLALALAVITRRXXXXXXXXXXXXXXAFLVGGNPVDGLTHLKDMV 60 M+LID+S S +S+VP LA+ LA+ TRR L +L V
10	Sbjct: 14 MELIDFSSSVWSIVPALLAIILAIATRRVLVSLSAGIIIGSLMLSDWQIGSAFNYLVKNV 73
	Query: 61 VGLAWADGDWSLGKPKILVFLILLGIFTSLLTYSGSNQAFADWAKRHIKNRCGAKMLTAC 120 V L +ADG+ + I++FL+LLG+ T+LLT SGSN+AFA+WA+ IK R GAK+L A
15	Sbjct: 74 VSLVYADGEIN-SNMNIVLFLLLLGVLTALLTVSGSNRAFAEWAQSRIKGRRGAKLLAAS 132
13	Query: 121 LVFVTFIDDYFHSLAVGAIARPVTDKFKVSRAKLAYILDSTASPMCVLMPVSSWGASIIA 180 LVFVTFIDDYFHSLAVGAIARPVTD+FKVSRAKLAYILDSTA+PMCV+MPVSSWGA II
	Sbjet: 133 LVFVTFIDDYFHSLAVGAIARPVTDRFKVSRAKLAYILDSTAAPMCVMMPVSSWGAYIIT 192
20	Query: 181 TLAGLLVTYKITEYTPMGTFVAMSLMNYYALFALIMVFVVAWFSFDIGSMARFEQAALNE 240 + GLL TY ITEYTP+G FVAMS MN+YA+F++IMVF VA+FSFDI SM R E+ AL
	Sbjct: 193 LIGGLLATYSITEYTPIGAFVAMSSMNFYAIFSIIMVFFVAYFSFDIASMVRHEKLALKN 252
25	Query: 241 AQDETAASDATKGRVYALIIPVLALIASTVSAMIYTGAQASETFSILGAFENTDVN 296 +D+ TKG+V LI+P+L LI +TVS MIYTGA+A + FS+LG FENT V
23	Sbjct: 253 TEDQLEEETGTKGQVRNLILPILVLIIATVSMMIYTGAEALAADGKVFSVLGTFENTVVG 312
	Query: 297 TSLVFGGTCGVLAVVLCTFGTIKTADYPKAVWQGAKSMFGXXXXXXXXXXXXXXXTVVGEM 354 TSLV GG C ++ +++ + +Y ++ G KSM G + +VG+M
30	Sbjct: 313 TSLVVGGFCSIIISTLLIILDRQVSVPEYVRSWIVGIKSMSGAIAILFFAWTINKIVGDM 372
	Query: 355 HTGDYLSTLVAGNIHPGFLPVILFLLASVMAFATGTSWGTFGIMLPIAAAMAVKVEPALI 414 TG YLS+LV+GNI FLPVILF+L + MAF+TGTSWGTFGIMLPIAAAMA P L+
35	Sbjct: 373 QTGKYLSSLVSGNIPMQFLPVILFVLGAAMAFSTGTSWGTFGIMLPIAAAMAANAAPELL 432
	Query: 415 IPCMSAVMAGAVCGDHCSPISDTTILSSTGARCNHIDHVTSQXXXXXXXXXXXXXXXXXXXX 474 +PC+SAVMAGAVCGDHCSP+SDTTILSSTGA+CNHIDHVT+O
	Sbjct: 433 LPCLSAVMAGAVCGDHCSPVSDTTILSSTGAKCNHIDHVTTQLPYAATVATATSIGYIVV 492
40	Query: 475 XXXKSALLGFGTTGIVLAVLIFLLKDK 501 S L GF T + L V+IF +K +
	Sbjct: 493 GFTYSGLAGFAATAVSLIVIIFAVKKR 519

Based on this analysis, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 83

45

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 697>:

	1	AAGCAATGGT	ATGCCGACGN	.AGTATCAAG	ACGGAAATGG	TTATGGTCAA
	51	CGATGAGCCT	GCCAAAATTC	TGACTTGGGA	TGAAAGCGGC	CGATTACTCT
50	101	CGGAACTGTC	TATCCGCCAC	CATCAACGCA	ACGGGGTGGT	TTTGGAGTGG
	151	TATGAAGATG	GTTCTAAAAA	GAGCGAAGT.	GTTTATCAGG	ATGACAAGTT
	201	GGTCAGGAAA	ACCCAGTGGG	ATAAGGATGG	TTATTTAATC	GAACCCTGA

This corresponds to the amino acid sequence <SEQ ID 698; ORF27>:

1 ..KQWYADXSIK TEMVMVNDEP AKILTWDESG RLLSELSIRH HQRNGVVLEW
55 51 YEDGSKKSEX VYQDDKLVRK TQWDKDGYLI EP*

Further work revealed the complete nucleotide sequence <SEQ ID 699>:

```
1 ATGAAAAAAT TATCTCGGAT TGTATTTCA ACTGTCCTGT TGGGTTTTTC
51 GGCCGCTTTG CCGGCGCAGA CCTATTCTGT TTATTTTAAT CAGAACGGAA
101 AGCTGACGGC GACGATGTCT TCTGCCGCTT ATATCAGGCA ATATAGTGTG
60 151 GTGGCGGGTA TTGCGCACGC GCAGGATTTT TATTATCCGT CGATGAAGAA
```

	-401-
5	201 ATATTCTGAA CCTTATATCG TTGCTTCAAC GCAAATCAAA TCTTTTGTGC 251 CTACCCTGCA AAACGGTATG TTGATTTTGT GGCATTTTAA TGGTCAGAAA 301 AAAATGGCGG GGGGCTTCAG CAAGGGTAAG CCGGACGGGG AGTGGGTCAA 351 CTGGTATCCG AACGGTAAAA AATCTGCCGT TATGCCTTAT AAAAATGGCT 401 TGAGTGAGGG TACGGGATAC CGCTATTACC GTAACGGCGG CAAGGAAAGC 451 GAAATCCAGT TTAAGCAAAA TAAGGCAAAC GGCGTATGGA AGCAATGGTA 501 TGCCGACGGC AGTATCAAGA CGGAAATGGT TATGGTCAAC GATGAGCCTG 551 CCAAAATTCT GACTTGGGAT GAAAGCGGCC GATTACTCTC GGAACTGTCT 601 ATCCGCCACC ATCAACGCAA CGGGGTGGTT TTGGAGTGGT ATGAAGATGG 651 TTCTAAAAAG AGCGAAGCTG TTTATCAGGA TGACAAGTTG GTCAGGAAAA 701 CCCAGTGGGA TAAGGATGGT TATTTAATCG AACCCTGA
	This corresponds to the amino acid sequence <seq 700;="" id="" orf27-1="">:</seq>
15	1 MKKLSRIVFS TVLLGFSAAL PAQTYSVYFN QNGKLTATMS SAAYIRQYSV 51 VAGIAHAQDF YYPSMKKYSE PYIVASTQIK SEVPTLQNGM LILWHFNGQK 101 KMAGGFSKGK PDGEWVNWYP NGKKSAVMPY KNGLSEGTGY RYYRNGGKES 151 EIQFKQNKAN GVWKQWYADG SIKTEMVMVN DEPAKILTWD ESGRLLSELS 201 IRHHQRNGVV LEWYEDGSKK SEAVYQDDKL VRKTQWDKDG YLIEP*
	Computer analysis of this amino acid sequence gave the following results:
	Homology with a predicted ORF from N. meningitidis (strain A)
20	ORF27 shows 91.5% identity over a 82aa overlap with an ORF (ORF27a) from strain A of N.
	meningitidis:
	10 20 30
	orf27.pep KQWYADXSIKTEMVMVNDEPAKILTWDESG
25	orf27a LSEGTGXRYYRNGGKESEIQFKQNKANGVWKQWYADGNIKTEMVMVNDEPAKILTWDESG 140 150 160 170 180 190
30	40 50 60 70 80 orf27.pep RLLSELSIRHHQRNGVVLEWYEDGSKKSEXVYQDDKLVRKTQWDKDGYLIEPX
	The complete length ORF27a nucleotide sequence <seq 701="" id=""> is:</seq>
35	1 ATGAAAAAT TATCTCGGAT TGTATTTTCA ACTGTCCTGT TGGGTTTTTC 51 GGCCGCTTTG CCGGCGCAGA NCTATTCTGT TTATTTTAAT CAGAACGGGA 101 AACTGACGGC GACGNTGTCT TCTGCCGCNT ATATCAGGCA ATATAGTGTG 151 GCGGAGGGTA TTGCGCACGC GCAGGANTTT TANTATCCGT CGATGAAGAA 201 ATATTCCGAA CCTTATATCG TTGCTTCAAC GCAAATCAAA TCTTTTGTGC
40	251 CTACCCTGCA AAACGGTATG TTGATTTTGT GGCATTTTAA NGGTCAGAAA 301 AAAATGGCNG GGGGCTTCAG CAAGGGTAAG CCGGACGGGG AGTGGGTCAA 351 CTGGTATCCG AACGGTAAAA AATCTGCCGT TATGCCTTAT AAAAATGGTT 401 TGAGTGAAGG TACGGGGTNN CGCTATTACC GTAACGGCGG CAAGGAAAGC
45	GAAATCCAGT TTAAACAGAA TAAGGCAAAC GGCGTATGGA AGCAATGGTA TGCCGACGGC AATATCAAAA CGGAAATGGT TATGGTCAAT GATGAGCCTG CCAAAATTCT GACATGGGAT GAAAGCGGTC GATTACTCTC GGAACTGTCT ATCCATCATC ATNAACGTAA TGGAGTAGTC TTAGAGTGGT ATGAAGATGG TTCTAAAAAG ANTGAAGCTG TTTATCAGGA TGATAAGTTG GTCAGGAAAA CCCAGTGGGA TAANGATGGT TATTTAATCG AACCCTGA
	This encodes a protein having amino acid sequence <seq 702="" id="">:</seq>
50	1 MKKLSRIVFS TVLLGFSAAL PAQXYSVYFN QNGKLTATXS SAAYIRQYSV 51 AEGIAHAQXF XYPSMKKYSE PYIVASTQIK SFVPTLQNGM LILWHFXGQK 101 KMAGGFSKGK PDGEWVNWYP NGKKSAVMPY KNGLSEGTGX RYYRNGGKES 151 EIQFKQNKAN GVWKQWYADG NIKTEMVMVN DEPAKILTWD ESGRLLSELS 201 IHHHXRNGVV LEWYEDGSKK XEAVYQDDKL VRKTQWDXDG YLIEP*
55	ORF27a and ORF27-1 show 94.7% identity in 245 aa overlap:
	10 20 30 40 50 60

10 20 30 40 50 60 orf27a.pep MKKLSRIVFSTVLLGFSAALPAQXYSVYFNQNGKLTATXSSAAYIRQYSVAEGIAHAQXF

				•				
	orf27-1	MKKLSRIVFSTVLLGE		iiiiiiiiiiiiii VYFNQNGKLTA 30	 TMSSAAYIR 40	: QYSVVAGI 50	IIIII AHAQDF 60	٠
5	orf27a.pep	70 VVDSMVVVSEDVIVA	80		100	110	120	
		XYPSMKKYSEPYIVAS	}	111111111	141111111	11111111	11111	
10	orf27-1	YYPSMKKYSEPYIVAS 70	80 80		GQKKMAGGF: 100	SKGKPDGE 110	WVNWYP 120	
10		130	140	150	160	170	180	
	orf27a.pep	NGKKSAVMPYKNGLSE		111111111111	1111111	1111:111	11111	
15	orf27-1	NGKKSAVMPYKNGLSE 130	EGTGYRYYRNG 140		KANGVWKQW: 160	YADGSIKTI 170	EMVMVN 180	
		190	200		220	230	240	
	orf27a.pep	DEPAKILTWDESGRLI	LSELSIHHHXRI	NGVVLEWYEDG	SKKXEAVYQI	DDKLVRKT(OWDXDG	
20	orf27-1	DEPAKILTWDESGRLI 190	LSELSIRHHORI 200	NGVVLEWYEDG	SKKSEAVYQI 220	DDKLVRKT	OWDKDG 240	
							240	
25	orf27a.pep	YLIEPX						
	orf27-1	YLIEPX		•		. !		
	Homology with a pre-	dicted ORF from Λ	I.gonorrhoed	<u>1e</u>				
	ORF27 shows 96.3%	6 identity over 82	2 aa overlap	with a pro	edicted Ol	RF (ORF	27ng)	from
. 30	N.gonorrhoeae:		•	•		,	0,	
	orf27.pep			KQWYADXSI	eremanaini	e da est mui	DESC	30
		SEGTGYRYYRNGGKESI	ETOFKONKANG	1111111111	111111111	1111111	1111	30 193
35		LLSELSIRHHQRNGVVI						193
	1					1111		
	The complete length			•		Die 24.	,	,
		AGAAAT TATCTCGGAT	_			₽₩Ç		
40	51 GGCC	GCTTTG CCGGCGCAGA GACGGC GACGATGTCT	A CCTATTCTG	TTATTTTAA'	r cagaacgo	GGA		
	151 GCGG	CGGGTA TCGCACACGO TCCGAA CCTTATATCO	CGCAGGATTT	TATTATCCG	T CGATGAA	GAA		
45	251 CTAC	CCTGCA AAACGGTATO	TTGATTTTG	r ggcatttta	A TGGTCAG	AAA		
	351 CTGG	TGGCGG GGGGCTTCAC TATCCG AACGGTAAAA	A AATCTGCGG	TATGCCTTA	T AAAAATG	GCT .	•	
	451 GAAA	TGAGGG TACGGGATAC	A TAAGGCGAAG	GGCGTATGG	A AGCAATG	GTA		
50	551 CCAA	GATGGA AGTATCAAGA AATTCT GACTTGGGAT	GAAAGCGGC	C GATTACTTT	C GGAACTG	rct		
	651 TTCT	GCCACC ATAAACGCAA AAAAAG AGCGAGGCTO	TTTATCAGGA	A TGACAAGTT	r atgaaga: G gtcagga	rgg Aaa		
	701 CCCA	ATGGGA TAAGGATGG1	TATTTAATC	G AACCCTGA			4	
	This encodes a protein	n having amino aci	d sequence	<seq 70<="" id="" th=""><th>4>:</th><th></th><th></th><th></th></seq>	4> :			
55	1 <u>MKKL</u> 51 AAGI	SRIVES IVLLGESAAI	PAQTYSVYFT	N QNGKLTATM	S SAAYIRO	YSV		•
	101 KMAG	AHAQDF YYPSMKKYSE GFSKGK PDGEWVNWYE	NGKKSAVMP	Y KNGLSEGTG	Y RYYRNGGI	KES .		
	151 EIQF 201 IRHH	KONKAN GVWKOWYADO KRNGVV LEWYEDGSKI	SIKTEMVMVI SEAVYQDDKI	N DEPAKILTW L VRKTQWDKD	D ESGRLLSI G YLIEP*	ELS		
60	ORF27ng and ORF27	7-1 show 98.8% ide	entity in 245	aa overlap:	,			
		10	20	30	40	50	60	
	orf27-1.pep	MKKLSRIVFSTVLLG	SAALPAOTYS	VYFNONGKLTA'	IMSSAAYIR	CYSVVACT	AUNODE	

	orf27ng		IIIIIIIII SAALPAQT 20	30 30 30	 LTATMSSAAY 40	: IRQYSVAAGI 50	IIIIII AHAQDF 60
5	orf27-1.pep	70 YYPSMKKYSEPYIVAS	THURS		11111111	11111111	11111
	orf27ng	YYPSMKKYSEPYIVAS 70	80 80	90	100	110	120
10	orf27-1.pep	130 NGKKSAVMPYKNGLSE NGKKSAVMPYKNGLSE 130		1	111111111		11111
20	orf27-1.pep	190 DEPAKILTWDESGRL: DEPAKILTWDESGRL: 190		1:11111111			
25	orf27-1.pep	YLIEPX YLIEPX					

Based on this analysis, including the putative leader sequence in the gonococcal protein, it was predicted that the proteins from N. meningitidis and N. gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF27-1 (24.5kDa) was cloned in pET and pGex vectors and expressed in E.coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 17A shows the results of affinity purification of the GST-fusion protein, and Figure 17B shows the results of expression of the His-fusion in E.coli. Purified GST-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave a positive result, confirming that ORF27-1 is a surface-exposed protein and a useful immunogen.

Example 84

30

35

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 705>:

	1	ATGAAATTTA	CCAAGCACCC	CGTCTGGGCA	ATGGCGTTCC	GCCCATTTTA
40	51	TTCGCTGGCG	GCTCTGTACG	GCGCATTGTC	CGTATTGCTG	TGGGGTTTCG
	101	GCTACACGGG	AACGCACKAG	CTGTCCGGTT	TCTATTGGCA	CGCGCATGAg
	151	ATGATTTGGG	GTTATGCCGG	ACTGGTCGTC	ATCGCCTTCC	TGCTGACCGC
	201	CGTCGCCACT	TGGACGGGGC	AGCCGCCCAC	GCGGGGCGGC	GTaTCTGGTC
	251	GGCTTGACTA	TCTTTTGGCT	GGCTGCGCGG	ATTGCCGCCT	TTATCCCGGG
45	301	TTGGGGTGCG	TCGGCAAGCG	GCATACTCGG	TACGCTGTTT	TTCTGGTACG
	351	GCGCGGTGTG	CATGGCTTTG	CCCGTTATCC	GTTCGCAGAA	TCAACGCAAC
	401	TATGTTGCCG	TGTTCGCGCT	GTTCGTCTTG	GGCGGCACGC	ATGCGGCGTT
	451	CCACGTCCAG	CTGCACAACG	GCAACCTAGG	CGGACTCTTG	AGCGGATTGC
	501	AGTCGGGCTT				

This corresponds to the amino acid sequence <SEQ ID 706; ORF47>: 50

- 1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHX LSGFYWHAHE 51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTIFWL AARIAAFIPG
- 101 WGASASGILG TLFFWYGAVC MALPVIRSON ORNYVAVFAL FVLGGTHAAF

151 HVQLHNGNLG GLLSGLQSGL VM

Further work revealed the complete nucleotide sequence <SEQ ID 707>:

	1	ATGAAATTTA	CCAAGCACCC	CGTCTGGGCA	ATGGCGTTCC	GCCCATTTTA
-	51	TTCGCTGGCG	GCTCTGTACG	GCGCATTGTC	CGTATTGCTG	TGGGGTTTCG
5	. 101	GCTACACGGG	AACGCACGAG	CTGTCCGGTT	TCTATTGGCA	CGCGCATGAG
	151	ATGATTTGGG	GTTATGCCGG	ACTGGTCGTC	ATCGCCTTCC	TGCTGACCGC
	201	CGTCGCCACT	TGGACGGGGC	AGCCGCCCAC	GCGGGGCGGC	GTTCTGGTCG
	251	GCTTGACTAT			TTGCCGCCTT	TATCCCGGGT
	301			CATACTCGGT		TCTGGTACGG
10	351	CGCGGTGTGC	ATGGCTTTGC	CCGTTATCCG	TTCGCAGAAT	CAACGCAACT
	401	ATGTTGCCGT	GTTCGCGCTG	TTCGTCTTGG	GCGGCACGCA	TGCGGCGTTC
	451	CACGTCCAGC	TGCACAACGG	CAACCTAGGC	GGACTCTTGA	GCGGATTGCA
	501	GTCGGGCTTG	GTGATGGTGT	CGGGTTTTAT	CGGTCTGATT	GGTACGCGGA
	551	TTATTTCGTT	TTTTACGTCC	AAACGCTTGA	ATGTGCCGCA	GATTCCCAGT
15	601				CTGCCCATGC	
	651				GTCTGCCGTT	TTTGCCTTTG
	701			GTGCAGGTGT		GTATAAACCC
	751	GTGTTGAAAG			TTTGCCGGCT	
••	801	CGGATTGGGG			TTATTTCAAA	
20	851	TCAATCTGGG			GCGGTATCGG	
	901				CATACGGGCA	
	. 951					ATGGCGGCAA
	1001			GTATTTTCTT		CTACACGCAC
~ -	1051				CTCGCGCTTT	
25	1101	GTGGAAGTAT	ATTCCTTGGC	TGATTCGTCC	GCGTTCGGAC	GGCAGGCCCG
	1151	GTTGA		•		

This corresponds to the amino acid sequence <SEQ ID 708; ORF47-1>:

	1	MKFTKHPVWA	MAFRPFYSLA	ALYGALSVLL	WGFGYTGTHE	LSGFYWHAHE
	51	MIWGYAGLVV	IAFLLTAVAT	WTGQPPTRGG	VLVGLTIFWL	AARIAAFIPG
30	101	WGASASGILG	TLFFWYGAVC	MALPVIRSON	QRNYVAVFAL	FVLGGTHAAF
•	151					KRLNVPQIPS
	201	PKWVAQASLW	LPMLTAMLMA	HGVLAWLSAV	FAFAAGVIFT	VQVYRWWYKP
	251	VLKEPMLWIL	FAGYLFTGLG	LIAVGASYFK	PAFLNLGVHL	IGVGGIGVLT
	301	LGMMARTALG	HTGNPIYPPP	KAVPVAFWLM	MAATAVRMVA	VFSSGTAYTH
35	-351	SIRTSSVLFA	LALLVYAWKY	I PWLIRPRSD	GR PG*	

Computer analysis of this amino acid sequence predicts a leader peptide and also gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF47 shows 99.4% identity over a 172aa overlap with an ORF (ORF47a) from strain A of N.

40 meningitidis:

		10	20	30	40	. 50	60
	orf47.pep	MKFTKHPVWAMAFR	PFYSLAALY				
			111111111	11111111111	11111 1111	нінн пі	111111
4-	orf47a	MKFTKHPVWAMAFR		GALSVLLWGF	SYTGTHELSGF	YWHAHEMIWG	YAGLVV
45		10	20	30	40	50	60
٠.,	•	70	80 .	90	100	110	120
	orf47.pep	IAFLLTAVATWTGQ					
	ozzpcp	111111111111111	111111111	IIIIIIIIIII	LARE LEGWICKS	MOGITGITEE	WIGAVC
50	orf47a	IAFLLTAVATWTGO	1111111111	יוווווווווווווו ימאא זער שר די חיום	AAFIPGWGAS	1	111111
50 .	OLL 174	70	80	90			
	•	70 .	80	90	100	110	120
•		130	140	150	160	170	
	orf47.pep	MALPVIRSQNQRNY	VAVFALFVL	GGTHAAFHVQI	HNGNLGGLLS	GLOSGLVM	
55		<u>- 111</u> 1111111111	11111111			11111111	
	orf47a	MALPVIRSQNQRNY	VAVFALFVL	GGTHAAFHVOI	HNGNLGGLLS	GLOSGLVMVS	GETGIJ
		130	140	150	160	170	180
	orf47a	GTRIISFFTSKRLN	IVPOT PS PKW	MG.TW.T.P.AOAV	тамт мансум	י איז איז איז איז איז	A CUT EM
60		190	200	210	220	230	
~		130	200	210	220	230	240

The complete length ORF47a nucleotide sequence <SEQ ID 709> is:

	The complete len	6 0						
	1	አ ጥር አ አ አጥጥ አ	CCAAGCACCC	CGTTTGGGCA	ATGGCGTTCC	GCCCGTTTT	A	
	51	TTCACTGGCG	GCTCTGTACG	GCGCATTGTC	CGTATTGCTG	TGGGGTTTC	G	
	101	CCTACACGGG	AACGCACGAG	CTGTCCGGTT	TCTATTGGCA	CGCGCATGA	G	
5	151	ATGATTTGGG	GTTATGCCGG	ACTGGTCGTC	ATCGCCTTCC	TGCTGACCG	C	
	201	CGTCGCCACT	TGGACGGGC	AGCCGCCCAC	TTTCCCCCCTT	TATCCCCCC	G Tr	
	251	GCTTGACTAT	CTTTTGGCTG CGGCAAGCGG	CATACTCCCT	ACCCTCTTTT	TCTGGTACG	Ġ	
	301	CCCCCTCTCC	ATGGCTTTGC	CCGTTATCCG	TTCGCAGAAT	CAACGCAAT	Ť	
10	351 401	ATCTTCCCCT	GTTCGCGCTG	TTCGTCTTGG	GCGGTACGCA	CGCGGCGTT	c	
10	451	CACGTCCAGC	TGCACAACGG	CAACCTAGGC	GGACTCTTGA	GCGGATTGC	A	
	501	GTCGGGCTTG	GTGATGGTGT	CGGGTTTTAT	CGGTCTGATT	GGTACGCGG	A	
	551	TTATTTCGTT	TTTTACGTCC	AAACGGTTGA	ATGTGCCGCA	GATTCCCAG	T	
	601	CCGAAATGGG	TGGCGCAGGC	TTCGCTGTGG	CTGCCCATGC	TGACCGCCA	.T	
15	651	GCTGATGGCG	CACGGCGTGA	TGCCTTGGCT	GTCGGCGGCT	TTCGCGTTT	G m	
	701	CGGCAGGTGT	GATTTTTACC	GTGCAGGTGT	ACCGCTGGTG	AUCTOTOTO	C	
	751	GTGTTGAAAG	AGCCGATGCT CTGATTGCGG	GIGGATICIG	TTTGCCGGCT	CCCCCTTTC	ic 'C	
	801	CGGATTGGGG	TGTGCATCTG	ATCGGCGCTCG	CCCCTATCGG	CGTGCTGAC	Tr	
20	851 901	TURATUTGGG	TGGCGCGTAC	CCCCCTCCCT	CATACGGGCA	ATCCGATTT	'A	
20	951	TCCGCCGCCC	AAAGCCGTTC	CCGTTGCGTT	TTGGCTGATG	ATGGCGGCA	IA.	
	1001	CCGCCGTCCG	TATGGTTGCC	GTATTTTCTT	CCGGCACTGC	CTACACGCA	VC	
	1051	AGCATACGCA	CCTCTTCGGT	TTTGTTTGCA	CTCGCGCTTT	TGGTGTATG	SC .	
	1101	GTGGAAGTAT	ATTCCTTGGC	TGATTCGTCC	GCGTTCGGAC	GGCAGGCCC	CG ,	
25	1151	GTTGA						
	mi 'den o m	matain havii	a amina aci	d comence <	SEO ID 710)>·		
	This encodes a p	orotem navn	ig ammo aci	n seductice >	SEQ ID /IC			
	•	ARCOUNTED DISTRICT	MAFRPFYSLA	AT VCAT CUT I	WCFCYTCTHE	LSGFYWHAF	HE.	
		MKETKHEVWA	IAFLLTAVAT	MACO DE LE CO	VI.VGI.TTFWI	. AARIAAFII	PG	
	101	WCASASCII	TLFFWYGAVO	MALPVIRSON	ORNYVAVFAI	FVLGGTHA	AF	
30	151	HVOLHNGNLO	GLLSGLOSGI	. VMVSGFIGLI	GTRIISFFTS	KRLNVPQII	PS	
30	201	PKWVAOASL	LPMLTAMLMA	HGVMPWLSAA	FAFAAGVIF	' VQVYRWWYI	KP	
	251	VIKEPMLWII	FAGYLFTGLO	LIAVGASYF	C PAFLNLGVHI	_ IGVGGIGV	LT .	
	301	LGMMARTAL	HTGNPIYPP	KAVPVAFWLM	MAATAVRMV	VFSSGTAY	PH	
	351	SIRTSSVLF	LALLVYAWKY	IPWLIRPRSE	GRPG*			
35	ORF47a and OF	PEAT 1 show	00 20/ :4~					
47				itity in XXA a	a overian			
33	OKF4/a and Or	CF47-1 SHOV	v 99.2% luci	itity in 384 a	a overlap:			
))	ORF4/a and Or	CF47-1 SHOV				40	50	60
33			10	20	30	40 THELSGFYWH	50 AHEMIWGYAG	
33	orf47a and Or	p MKFT	10 KHPVWAMAFRPI	20 FYSLAALYGALS	30 SVLLWGFGYTG	THELSGFYWH	AHEMIWGYAG	I I I
33	orf47a.pe	p MKFT	10 KHPVWAMAFRPI	20 FYSLAALYGALS	30 SVLLWGFGYTG	THELSGFYWH	AHEMIWGYAG AHEMIWGYAG	LVV
		p MKFT	10 KHPVWAMAFRPI	20 FYSLAALYGALS	30 SVLLWGFGYTG	THELSGFYWH	AHEMIWGYAG	I I I
40	orf47a.pe	p MKFT	10 KHPVWAMAFRPI KHPVWAMAFRPI 10	20 FYSLAALYGALS FYSLAALYGALS	30 SVLLWGFGYTG' SVLLWGFGYTG' 30	THELSGFYWH THELSGFYWH 40	AHEMIWGYAG AHEMIWGYAG 50	LVV
	orf47a.pe	P MKFT	10 KHPVWAMAFRPI IIIIIIIII KHPVWAMAFRPI 10	20 FYSLAALYGALS FYSLAALYGALS 20 80	30 EVLLWGFGYTG SVLLWGFGYTG 30	THELSGFYWH THELSGFYWH 40	AHEMIWGYAG AHEMIWGYAG 50	LVV LVV 60
	orf47a.pe	P MKFT	10 KHPVWAMAFRPI IIIIIIIII KHPVWAMAFRPI 10 70 LTAVATWTGOP	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT	30 EVLLWGFGYTG EVLLWGFGYTG 30 90 	THELSGFYWH THELSGFYWH 40 100 IPGWGASASG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG	LVV III ELVV 60 120 GAVC
40	orf47a.pe orf47-1 orf47a.pe	P MKFT	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF	THELSGFYWH THELSGFYWH 40 100 IPGWGASASG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG	LVV III ELVV 60 120 EAVC
	orf47a.pe	P MKFT	10 KHPVWAMAFRPI IIIIIIII KHPVWAMAFRPI 10 70 LTAVATWTGQPI	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF	THELSGFYWHE	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG	LVV III ELVV 60 120 EAVC
40	orf47a.pe orf47-1 orf47a.pe	P MKFT	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF	THELSGFYWHE	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG	LVV III ELVV 60 120 EAVC III EAVC 120
40	orf47a.pe orf47-1 orf47a.pe	P MKFT MKFT 	10 KHPVWAMAFRPI IIIIIIIIIKHPVWAMAFRPI 10 70 LTAVATWTGQPI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT PTRGGVLVGLT	30 EVLLWGFGYTG' SVLLWGFGYTG' 30 90 IFWLAARIAAF	THELSGFYWHE ITHELSGFYWHE 40 100 IPGWGASASG ITHITTE	AHEMIWGYAG AHEMIWGYAG 50 110 LGTLFFWYG LGTLFFWYG 110 170	120 120 60 120 6AVC 111 6AVC 120
40 45	orf47a.pe orf47-1 orf47a.pe	P MKFT: MKFT: MKFT: MKFT: MKFT: MKFT:	10 KHPVWAMAFRPI IIIIIIIII KHPVWAMAFRPI 10 70 LTAVATWTGQPI IIIIIIIIIIIII LTAVATWTGQPI 70 130 VIRSONORNYV	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT PTRGGVLVGLT 80 140 AVFALFVLGGT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVOLHNG	THELSGFYWHE THELSGFYWHE 40 100 1PGWGASASG 1PGWGASASG 100 160 NLGGLLSGLQ	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF	LLVV III LLVV 60 120 GAVC III GAVC 120 120 180 IGLI
40	orf47a.pe orf47a.pe orf47a.pe orf47a.pe	P MKFT: MKFT: MKFT: MKFT: MKFT: MKFT: MKFT:	10 KHPVWAMAFRPI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT: PTRGGVLVGLT: 80 140 AVFALFVLGGT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG	THELSGFYWHE	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF:	11VV 111 12VV 60 120 GAVC 111 GAVC 120 180 IGLI IIII
40 45	orf47a.pe orf47a.pe orf47a.pe	P MKFT: MKFT: MKFT: MKFT: MKFT: MKFT: MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT PTRGGVLVGLT 80 140 AVFALFVLGGT	30 SVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF:	LLVV III ELVV 60 120 EAVC III EAVC 120 180 EGLI
40 45	orf47a.pe orf47a.pe orf47a.pe orf47a.pe	P MKFT: MKFT: MKFT: MKFT: MKFT: MKFT: MKFT:	10 KHPVWAMAFRPI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT: PTRGGVLVGLT: 80 140 AVFALFVLGGT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG	THELSGFYWHE	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF:	11VV 111 12VV 60 120 GAVC 111 GAVC 120 180 IGLI IIII
40 45	orf47a.pe orf47a.pe orf47a.pe orf47a.pe	P MKFT: MKFT: MKFT: MKFT: MKFT: MKFT: MKFT:	10 KHPVWAMAFRPI IIIIIIIII KHPVWAMAFRPI 10 70 LTAVATWTGQPI IIIIIIIIIIIIII LTAVATWTGQPI 70 130 VIRSQNQRNYV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT PTRGGVLVGLT 80 140 AVFALFVLGGT	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF:	LLVV III ELVV 60 120 EAVC III EAVC 120 180 EGLI
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1	P MKFT: MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV VIRSQNQRNYV 130 190	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT PTRGGVLVGLT 80 140 AVFALFVLGGT AVFALFVLGGT 140 200	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF 150 HAAFHVQLHNG HAAFHVQLHNG	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 160 220	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF: SGLVMVSGF: 170 230	120 60 120 6AVC 111 6AVC 120 180 16LI 1111 16LI 180
40 45	orf47a.pe orf47a.pe orf47a.pe orf47a.pe	P MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV VIRSQNQRNYV 130 190 LSFFTSKRLNV	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 11111111111111111111111111111111111	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG HAAFHVQLHNG 150 210 ASLWLPMLTAM	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 160 220 LMAHGVMPWI	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF: 230 SAAFAFAAG SAAFAFAAG	120 60 120 6AVC 111 6AVC 120 180 16LI 1111 180 240 VIFT
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe	P MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV VIRSQNQRNYV 130 190 LSFFTSKRLNV	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 11111111111111111111111111111111111	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG HAAFHVQLHNG 150 210 ASLWLPMLTAM	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 160 220 LMAHGVMPWI	AHEMIWGYAG AHEMIWGYAG 50 110 110 ILGTLFFWYG 110 170 SGLVMVSGF: SGLVMVSGF: 170 230 SAAFAFAAG LSAVFAFAAG SSAVFAFAAG	LLVV
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1	P MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV VIRSQNQRNYV 130 190 LSFFTSKRLNV	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 11111111111111111111111111111111111	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG HAAFHVQLHNG 150 210 ASLWLPMLTAM	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 160 220 LMAHGVMPWI	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF: 230 SAAFAFAAG SAAFAFAAG	120 60 120 6AVC 111 6AVC 120 180 16LI 1111 180 240 VIFT
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	P MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV VIRSQNQRNYV 130 190 LISFFTSKRLNV	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 11111111111111111111111111111111111	30 EVLLWGFGYTG EVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG HAAFHVQLHNG 150 210 ASLWLPMLTAM	THELSGFYWHE HELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ LEGGLLSGLQ	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 SGLVMVSGF: SGLVMVSGF: SSAAFAFAAG : SAVFAFAAG 230	120 60 120 6AVC 121 180 16LI 1111 180 240 VIFT 1111 VIFT 240
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	P MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 130 VIRSQNQRNYV 130 190 LISFFTSKRLNV LISFFTSKRLNV 190 250	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 1111111111 AVFALFVLGGT 140 200 PQIPSPKWVAQ 1111111111 PQIPSPKWVAQ 200 260	30 SVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF 11111111111111111111111111111111111	THELSGFYWHE HELSGFYWHE 40 100 100 PGWGASASG PGWGASASG 160 NLGGLLSGLQ NLGGLLSGLQ 1 NLGGLLSGLQ 1 1	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 PSGLVMVSGF: PSGLVMVSGF: PSGLVMVSGF: 170 230 230 230 290	120 60 120 6AVC 111 6AVC 120 180 16LI 1111 180 240 VIFT 1111 240 VIFT 240
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	P MKFT: MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 130 VIRSQNQRNYV 130 190 LISFFTSKRLNV LISFFTSKRLNV 190 250	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 1111111111 AVFALFVLGGT 140 200 PQIPSPKWVAQ 1111111111 PQIPSPKWVAQ 200 260 PMLWILFAGYLE	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF IFWLAARIAAF 90 150 HAAFHVQLHNG 150 210 ASLWLPMLTAM ASLWLPMLTAM 210 270 TGLGLIAVGAS	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 220 LMAHGVMPWI 220 280 YFKPAFLNLG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 PSGLVMVSGF: PSGLVMVSGF: : SGLVMVSGF: 230 LSANFAFAAG 230 290 EVHLIGVGGI	120 60 120 6AVC 111 6AVC 120 180 16LI 1111 180 240 VIFT 1111 VIFT 240 300 GVLT
40 45 50	orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	ep MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV 130 190 LISFFTSKRLNV LISFFTSKRLNV 190 250	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 111111111 AVFALFVLGGT 140 200 PQIPSPKWVAQ 1111111111 PQIPSPKWVAQ 200 260 MLWILFAGYLE	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF 11111111111111111111111111111111111	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 220 LIMAHGVMPWI 220 280 SYFKPAFLNLG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 170 SGLVMVSGF: 230 SAAFAFAAG : SSAVFAFAAG 230 290 EVHLIGVGGI	11VV
40 45 50	orf47a.pe orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	ep MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 130 VIRSQNQRNYV 131 VIRSQNQRNYV 131 190 LISFFTSKRLNV 190 250 CRWWYKPVLKEE	20 FYSLAALYGALS FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 11111111111111111111111111111111111	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF 91 150 HAAFHVQLHNG 150 210 ASLWLPMLTAM 210 270 TGLGLIAVGAS	THELSGFYWHE HELSGFYWHE 40 100 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ LIMAHGVMPWI 220 280 YFKPAFLNLG SYFKPAFLNLG SYFKPAFLNLG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 170 SGLVMVSGF: 230 SAAFAFAAG : SSAVFAFAAG 230 290 EVHLIGVGGI	11VV
40 45 50	orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1 orf47a.pe orf47-1	ep MKFT:	10 KHPVWAMAFRPI KHPVWAMAFRPI 10 70 LTAVATWTGQPI LTAVATWTGQPI 70 130 VIRSQNQRNYV 130 190 LISFFTSKRLNV LISFFTSKRLNV 190 250	20 FYSLAALYGALS FYSLAALYGALS 20 80 PTRGGVLVGLT 80 140 AVFALFVLGGT 111111111 AVFALFVLGGT 140 200 PQIPSPKWVAQ 1111111111 PQIPSPKWVAQ 200 260 MLWILFAGYLE	30 EVLLWGFGYTG SVLLWGFGYTG 30 90 IFWLAARIAAF 11111111111111111111111111111111111	THELSGFYWHE THELSGFYWHE 40 100 IPGWGASASG IPGWGASASG 100 160 NLGGLLSGLQ NLGGLLSGLQ 220 LIMAHGVMPWI 220 280 SYFKPAFLNLG	AHEMIWGYAG AHEMIWGYAG 50 110 ILGTLFFWYG ILGTLFFWYG 110 170 230 230 230 230 230 250 290 EVHLIGVGGI EVHLIGVGGI EVHLIGVGGI	120 60 120 6AVC 120 180 16LI 16LI 180 180 16LI 180 17T 240 300 GVLT 1111 GVLT

35

	orf47a.pep	LGMMARTALGHTGN	PIYPPPKAVI	PVAFWLMMAAT	TAVRMVAVFS:	GTAYTHSIR1	SSVLFA
	orf47-1	LGMMARTALGHTGN	PIYPPPKAVI	PVAFWLMMAA1	TAVRMVAVES	GTAYTHSIRT	SSVLFA
		310	320	330	340	350	360
5	•			•			:
•		. 370	380				•
	orf47a.pep	LALLVYAWKYIPWI	IRPRSDGRP	GX			
		[HILLIHU	11		. *	•
	orf47-1	LALLVYAWKYIPWI	IRPRSDGRP	GX			
10	. •	370	380			•	

Homology with a predicted ORF from N.gonorrhoeae

ORF47 shows 97.1% identity over 172 aa overlap with a predicted ORF (ORF47ng) from N.gonorrhoeae:

```
15
              MKFTKHPVWAMAFRPFYSLAALYGALSVLLWGFGYTGTHELSGFYWHAHEMIWGYAGLVV
                                                            60
       ORF47
               60
       ORF47ng
              MKFTKHPVWAMAFRPFYSLAALYGALSVLLWGFGYTGTHELSGFYWHAHEMIWGYAGLVV
       ORF47
               IAFLLTAVATWTGQPPTRGGVLVGLTIFWLAARIAAFIPGWGASASGILGTLFFWYGAVC
                                                           120
20
               ORF47ng
               IAFLLTAVATWTGQPPTRGGVLVGLTAFWLAARIAAFIPGWGAAASGILGTLFFWYGAVC
                                                           120
                                                           172
       ORF47
               MALPVIRSQNQRNYVAVFALFVLGGTHAAFHVQLHNGNLGGLLSGLQSGLVM
               25
               MALPVIRSQNRRNYVAVFAIFVLGGTHAAFHVQLHNGNLGGLLSGLQSGLVMVWGFIGLI 180
```

The ORF47ng nucleotide sequence <SEQ ID 711> is predicted to encode a protein comprising amino acid sequence <SEQ ID 712>:

```
1 MKFTKHPVWA MAFRPFYSLA ALYGALSVLL WGFGYTGTHE LSGFYWHAHE
51 MIWGYAGLVV IAFLLTAVAT WTGQPPTRGG VLVGLTAFWL AARIAAFIPG
30 101 WGAAASGILG TLFFWYGAVC MALPVIRSON RRNYVAVFAI FVLGGTHAAF
151 HVQLHNGNLG GLLSGLQSGL VMVWGFIGLI GMKIISFFTS KRLKLPQIPS
201 PKWVAHASLW LPMLNAILMA HRVMPWLSAA FPFAAGVIFT VQVYAGGITP
251 IEETSCGSVA GICYRLGNSS G
```

The predicted leader peptide and transmembrane domains are identical (except for an Ile/Ala substitution at residue 87 and an Leu/Ile substitution at position 140) to sequences in the meningococcal protein (see also *Pseudomonas stutzeri* orf396, accession number e246540):

```
TM segments in ORF47ng
                INTEGRAL
                             Likelihood = -5.63
                                                                    52 -
                                                                           68
                                                   Transmembrane
                INTEGRAL
                             Likelihood = -3.88
                                                   Transmembrane
                                                                    169 - 185
                                                                    82 <del>-</del>
40
                INTEGRAL
                             Likelihood = -3.08
                                                   Transmembrane
                                                                          98
                INTEGRAL
                             Likelihood = -1.91
                                                   Transmembrane
                                                                    134 - 150
                             Likelihood = -1.44
                                                                    107 - 123
                INTEGRAL
                                                   Transmembrane
                INTEGRAL
                             Likelihood = -1.38
                                                   Transmembrane
                                                                    227 - 243
```

Further work revealed the complete gonococcal DNA sequence <SEQ ID 713>:

45	1	ATGAAATTTA	CCAAACATCC	CGTCTGGGCA	ATGGCGTTCC	GCCCGTTTTA
	51	TTCACTGGCG	GCACTGTACG	GCGCATTGTC	CGTATTGCTG	TGGGGTTTCG
	101	GCTACACGGG	AACGCACGAG	CTGTCCGGTT	TCTATTGGCA	CGCGCATGAG
	151	ATGATTTGGG	GTTATGCCGG	TCTCGTCGTC	ATCGCCTTCC	TGCTGACCGC
	201	CGTCGCCACT	TGGACGGGAC	AGCCGCCCAC	GAGGGGCGGC	GTTCTGGTCG
50	251	GCTTGACCGC	CTTTTGGCTG	GCTGCGCGGA	TTGCCGCCTT	TATCCCGGGT
	301	TGGGGTGCGG	CGGCAAGCGG	CATACTCGGT	ACGCTGTTTT	TCTGGTACGG
	351	CGCGGTGTGC	ATGGCTTTGC	CCGTTATCCG	TtcgCAAAAC	CGGCGCAACT
	401	ATGtcgCCGT	ATTCGCAATA	TTTGTGCTGG	GCGGTACGCA	TGCGgcgTTC
_	451	CACGtccAgc	tGCACAACGG	CAACCTAGGC	GGACTCTTGA	GCGGATTGCA
55	501	GTCGGGCCTG	GTTATGGTGT	CGGGCTTTAT	CGGCCTGATT	GGGATGAGGA
	551	TTATTTCGTT	TTTTACGTCC	AAACGGTTGA	ACGTGCCGCA	GATTCCCAGT
	601	CCGAAATGGG	TGGCGCAGGC	TTCGCTGTGG	CTACCCATGC	TGACCGCCAT

60

65

orf47-1.pep

orf47ng-1

			-4 07-				
5	701 CGGCG 751 GTATT 801 CGGAT 851 TCAAT 901 TTGGG 951 TCCGC 1001 CCGCC 1051 AGCAT 1101 GTGGAT 1151 GTTGAT This encodes a protein		etacagetet etggattete regececte ategegetee egeceteget ecetteget etatttett tttetteta ttatteca tgatecetee sequence	ACCECTEGTE TTTGCCGCT TTATTTCAAA GCGGTATCGC CATACGGCAA TTGGCTGATC CCGGCACTGC CTCGCGCTGC GCGTTCGGAC	ATCTGTTTA CCTGCCTTC CGTGCTGAC ATTCGATT ATGGCGGC CTACACGC CTACACGC CTGGTGTATC CGGCAGGCC CTGGTGTATC	CC CC CT TA AA AC GC GC	
15 20	51 MIWG 101 WGAA 151 HVQL 201 PKWV 251 VLKE	APPWA MARRETISLA YAGLUV IAFLLTAVAT ASGILG TLFFWYGAVC HNGNIG GLLSGLOSGL AQASLW LPMLTAILMA PMLWIL FAGYLFTGLG ARTALG HTGNSIYPPP SSVLFA LALLVYAWKY	WTGQPPTRGG MALPVIRSQN VMVSGFIGLI HGVMPWLSAA LIAVGASYFK KAVPVAFWLM	VLVGLTAFWI RRNYVAVFA GMRIISFFT FAFAAGVIF PAFLNLGVH MAATAVRMV	L AARIAAFI I FVLGGTHA S KRLNVPQI I VQVYRWWY L IGVGGIGV	PG <u>AF</u> PS KP LT	
	ORF47ng-1 and ORF	47-1 show 97.4% id	lentity in 38	34 aa overla	p:		
	OKI-4/IIg-1 and Old	,, , , , , , , , , , , , , , , , , , , ,					60
25	orf47-1.pep orf47ng-1	10 MKETKHPVWAMAFRPET MKETKHPVWAMAFRPET 10	1 1 1 1 1 1 1 1 1 1 1	11111111111			1111
30	orf47-1.pep orf47ng-1	70 IAFLLTAVATWTGQPP IAFLLTAVATWTGQPP 70	111111111				1111
35	orf47-1.pep orf47ng-1	130 MALPVIRSQNQRNYVA MALPVIRSQNRRNYVA 130	111:11111	1111111111	1111111	11111111	11111
40	orf47-1.pep orf47ng-1	190 GTRIISFFTSKRLNVE GMRIISFFTSKRLNVE	OIPSPKWVAC	 ASLWLPMLTA	: : ILMAHGVMPW	: LSAAFAFAA	1111
45	orf47-1.pep	250 190	200 260 MINTLEAGYLI	210 270 TGLGLIAVGA	220 280 SYFKPAFLNI	290 LGVHLIGVGG	300 SIGVLT
50	orf47ng-1	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 1 1 1 1 1 1 1 1 1 1	1 1 3 1 1 1 1 1 1 1 1 1	1111111111	LGVHLIGVGG 290	GIGVLT 300
	orf47-1.pep	310 LGMMARTALGHTGNP	1111111111	11111111111		!!!!!!!!!!!	11111
55	orf47ng-1	LGMMARTALGHTGNS 310	1YPPPKAVPV 320	AFWLMMAATAV 330	340	350	360

370 Furthermore, ORF47ng-1 shows significant homology to an ORF from Pseudomonas stutzeri:

380

380

370

LALLVYAWKYIPWLIRPRSDGRPGX

11111111111111111111111111111

LALLVYAWKYIPWLIRPRSDGRPGX

gnl|PID|e246540 (Z73914) ORF396 protein [Pseudomonas stutzeri] Length = 396 Score = 155 bits (389), Expect = 5e-37

```
Identities = 121/391 (30%), Positives = 169/391 (42%), Gaps = 21/391 (5%)
                    PVWAMAFRPFYSLAALYGALSVLLWGFGYTGTHELSGFY-----WHAHEMIWGYAGLV 59
         Query: 7
                                +LY L++ LW
                    P+W +AFRPF+
                                            +TG
                                                     GF
                                                              WH HEM++G+A
5
         Sbjct: 14 PIWRLAFRPFFLAGSLYALLAIPLWVAAWTGLWP--GFQPTGGWLAWHRHEMLFGFAMAI 71
                   VIAFLLTAVATWTGQPPTRGGVLVGLTAFWLAARIAAFIPGWGAAASGILGTLFFWYGAV 119
                    V FLLTAV TWTGQ
                                   G LVGL A WLAAR+ ++ G AA
         Sbjct: 72 VAGFLLTAVQTWTGQTAPSGNRLVGLAAVWLAARL-GWLFGLPAAWLAPLDLLFLVALVW 130
10
         + +RNY V + ++ G.
                                                                    +V+ + L
         Sbjct: 131 MMAQMLWAVRQKRNYPIVVVLSLMLGADVLILTGLLQGNDALQRQGVLAGLWLVAALMAL 190
15
         Query: 180 IGMRIISFFTSKRLNVPQIPSP-KWVAQASLWLPMLTAILMAHGV--
                    IG R+I FFT + L P W+ A L
                                                  + A+L A GV
                                                                 PL FA
         Sbjct: 191 IGGRVIPFFTQRGLGKVDAVKPWVWLDVALLVGTGVIALLHAFGVAMRPQPLLGLLFV-A 249
         Query: 235 AGVIFTVQVYRWWYKPVLKEPMLWILFAGYLFTGLGLIAVGASYF-KPAFXXXXXXXXXX 293
20
                         +++ RW+ K + K +LW L
                                              L+ +
                                                           +F
         Sbjct: 250 IGVGHLLRLMRWYDKGIWKVGLLWSLHVAMLWLVVAAFGLALWHFGLLAQSSPSLHALSV 309
         Query: 294 XXXXXXXXMMARTALGHTGNSIYPPPKAVPVAFWLXXXXXXXXXXXXXXFSSGTAYTHSIR 353
                            M+AR LGHTG + P + AF L
25
          Sbjct: 310 GSMSGLILAMIARVTLGHTGRPLQLPAGIIG-AFVL---FNLGTAARVFLSVAWPVGGLW 365
         Query: 354 TSSVLFALALLVYAWKYIPWLIRPRSDGRPG 384
                     ++V + LA +Y W+Y P L+ R DG PG
          Sbjct: 366 LAAVCWTLAFALYVWRYAPMLVAARVDGHPG 396
30
```

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 85

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 715>:

```
35
                      ..ATGCCGTCTG AAGGTTCAGA CGGCmTCGGT GyCGGGGAAY CAGAAGYGGT
                  51
                         AGCGCATGCC CAATGAGACT TCGTGGGTTT TGAAGCGGGT GTTTTCCAAG
                 101
                         CGTCCCCAGT TGTGGTAACG GTATCCGGTG TCYAArGTCA GCTTGGGYGT
                         GATGTCGAAa CCGACACCGG CGATGACACC AAGACCYAMG CTGCTGATTC
                 151
                         TGTkGCTTTC GTGATAGGSA GGTTTGyTGG kmksAsyTTG TAyrATwkkG
                 201
40
                         CCTssCwsTG kAGmGCCkTk CkyTGGTkkA swGrwArTAG TCGTGGTTTy
                 251
                         TRTTYYCACC GAATGAACYT GATGTTTAAC GTGTCCGTAG GCGACGCGCG
                 301
                        CGCCGATATA GGGTTTGAAT TTATCGTTGA GTTTGAAATC GTAAATGGCG
GACAAGCCGA GAGAAGAAAC GGCGTGGAAG CTGCCGTTTC CCTGATGTTT
                 351
                 401
                         TGTTTGGGTT TCTTTGTAGT TGTTGTTTAT CTCTTCAGTA ACTTTTTTAG
                 451
45
                         TAGAAGAATT ACTTTCTTTC CATTTTCTGT AACTGGCATA ATCTGCCGCT
                 501
                         ATTCTCCAGC CGCCGAAATC ...
```

This corresponds to the amino acid sequence <SEQ ID 716; ORF67>:

```
1 ..MPSEGSDGXG XGEXEXVAHA QXDFVGFEAG VFQASPVVVT VSGVXXQLGX
51 DVETDTGDDT KTXAADXVAF VIGRFXGXXL YXXAXXXXAX XWXXXXSRGF
50 101 XXHRMNLMFN VSVGDARADI GFEFIVEFEI VNGGQAERRN GVEAAVSLMF
151 CLGFFVVVVY LFSNFFSRRI TFFPFSVTGI ICRYSPAAEI ...
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF67 shows 51.8% identity over 199 aa overlap with a predicted ORF (ORF67ng) from

55 N.gonorrhoeae:

WO 99/24578 PCT/IB98/01665

-409-

	orf67.pep	MPSEGSDGXGXGEXEXVAHAQXDFVGFEAG	30
	orf67ng	TNFEIAVLSGMTVRVFYCARPAPVNGGRLKMPSEGSDGIGIGESEAVAHAQRGFVGFEAG 90 100 110 120 130 140	146
5		VFQASPVVVTVSGVXXQLGXDVETDTGDDTKTXAADXVAFVIGRFXGXXLYXXAXXXXXX	90
	orf67.pep		206
	orf67ng	VFQASPVVVAVAGVQGQAGRDVYAHARHRAEAQAAAAVAFLIGVFLRMSVRINRNCCVSI	200
10	orf67.pep	XWXXXXSRGFXXHRMNLMFNVSVGDARADIGFEFIVEFEIVNGGQAERRNGVEAAVSLMF	150
10	Olio,.bob	: : :: :: : :	266
	orf67ng		400
	orf67.pep	CLGFFVVVVYLFSNFFSRRITFF-PFSVTGIICRYSPAAEI	190
15	orf67ng	:: : : : :	326
	orraina		:_: .

The ORF67ng nucleotide sequence <SEQ ID 717> is predicted to encode a protein comprising amino acid sequence <SEQ ID 718>:

```
20 1 MPSETVGSIV NVGVDESVGF SPPFPSIQHF YRFHRIHRIR LFRPPGPMQL
51 NRHSHGSGNL GRGVWATVLS DKFPCGQVRI PACAGMTNFE IAVLSGMTVR
101 VFYCARPAPV NGGRLKMPSE GSDGIGIGES EAVAHAQRGF VGFEAGVFQA
151 SPVVVAVAGV QGQAGRDVYA HARHRAEAQA AAAVAFLIGV FLRMSVRINR
201 NCCVSITRVG GKSTCYFFSR IDAVSDVSVG DARTDIGFEF VVEFEIVNGG
251 QAERRNGVEC AVFLMFRLLV FYVKLVAAKS FIILSFQLFY VHGIFIVVPF
252 301 PVTGIIRGDA PAAEVVADRH PGVDGMRTDV SEIIAYRAYF VFAWSGWFRI
253 1 IVGNAFGGVG *
```

Based on the presence of a several putative transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

30 Example 86

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 719>

```
1 ATGTTTGCTT TTTTAGAAGC CTTTTTTGTC GAATACGGTT ATGCGGCTGT

51 TTTTTTTGTA TTGGTCATCT GCGGTTTCGG CGTGCCGATT CCCGAGGATT

101 TGACCTTGGT TACAGCGGC GTGATTCGG GTATGGTCG GGGACGGCAT

151 CATATTAGT TTGCAGTCG TATGCTCGG GTATTGGTCG GGGACGGCAT

201 CATGTTCGCC GCCGGACGAA TTTGGGGGCA GARARTCCTA rGGTTCARAC

251 CTATTGCGSG CATCATGACG CCGRAACGTT ATGAGCAGGT TCAGGAAAAA

301 TTCGACAAAT ACGGTAACTG GGTCTTATTT GTCGCCCGG TATCAGCCGC AAGGTTTCAT

351 TTTGAGAACG GCCGTATTTG TACAGCCGG TATCAGCCGC AAGGTTTCAT

40 401 ACTTGCGTTT TATCATTATG GATGGACTGG CCGCA...
```

This corresponds to the amino acid sequence <SEQ ID 720; ORF78>:

```
1 MFAFLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG VISGMGYTNP
51 HIMFAVGMLG VLVGDGIMFA AGRIWGQXXL XFXPIAXIMT PXRYEQVQEK
101 FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFIIM DGLAA...
```

45 Further work revealed the complete nucleotide sequence <SEQ ID 721>:

1 51 101 151 50 201 251 301 351 401 55	TGACCTTGGT CATATTATGT CATGTTCGCC CTATTGCGCG TTCGACAAAT TTTGAGAACG	TTGGTCATCT AACAGGCGGC TTGCAGTCGG GCCGGACGAA CATCATGACG ACGGTAACTG GCCGTAATTGG TATCATTATG	CTTTTTTGTC GCGGTTTCGG GTGATTTCGG TATGCTCGGC TTTGGGGGCA CCGAAACGTT GGTCTTATTT TTACAGCCGG GATGGACTGG ATACGTTGCG	CGTGCCGATT GTATGGGTTA GTATTGGTCG GAAAATCCTA ATGAGCAGGT GTCGCCCGTT TATCAGCCGC CCGCACTGAT	CCCGAGGATT TACCAATCCG GGGACGCAT AGGTTCAAAC TCAGGAAAAA TCCTGCCCGG AAGGTTTCAT TTCCGTCCCT
--	--	--	---	--	--

501	GGCGAAAATG	CACAGCCTGC	AATCGGGTAT	TTTTGTTATC	TTGGGTATAG
551	GTGCGACCGT	TGTCGCTTGG	ATTTGGTGGA	AAAAACGCCA	ACGTATCCAG
601	TTTTACCGCA	GCAAATTGAA	AGAAAAGCGG	GCGCAACGCA	AAGCCGCCAA
651	GGCAGCCAAA	AAAGCCGCGC	AAAGCAAACA	ATAA	

5 This corresponds to the amino acid sequence <SEQ ID 722; ORF78-1>:

- MFAFLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG VISGMGYTNP
- HIMFAVGMLG VLVGDGIMFA AGRIWGQKIL RFKPIARIMT PKRYEQVQEK 51
- FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFIIM DGLAALISVP IWIYLGEYGA HNIDWLMAKM HSLQSGIFVI LGIGATVVAW IWWKKRQRIQ 101
- 151
- 10 201 FYRSKLKEKR AQRKAAKAAK KAAQSKQ*

Computer analysis of this amino acid sequence predicts several transmembrane domains, and also gave the following results:

Homology with the dedA homologue of H.influenzae (accession number P45280)

ORF78 and the dedA homologue show 58% aa identity in 144aa overlap:

```
15
                     FLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGM--GYTNPHIMFAVGMLGV 61
          Orf78: 4
                     FL FF EYGY AV FVL+ICGFGVPIPED+TLV+GGVI+G+
                                                                    N H+M V M+GV
                     FLIGFFTEYGYWAVLFVLIICGFGVPIPEDITLVSGGVIAGLYPENVNSHLMLLVSMIGV 79
          Orf78: 62
                     LVGDGIMFAAGRIWGQXXLXFXPIAXIMTPXRYEQVQEKFDKYGNWVLFVARFLPGLRTA 121
20
                     L GD M+ GRI+G
                                      L F PI I+T R
                                                       V+EKF +YGN VLFVARFLPGLR
                     LAGDSCMYWLGRIYGTKILRFRPIRRIVTLQRLRMVREKFSQYGNRVLFVARFLPGLRAP 139
          Orf78: 122 VFVTAGISRKVSYLRFIIMDGLAA 145
                     +++ +GI+R+VSY+RF+++D AA
25
                 140 IYMVSGITRRVSYVRFVLIDFCAA 163
```

Homology with a predicted ORF from N. meningitidis (strain A)

ORF78 shows 93.8% identity over a 145aa overlap with an ORF (ORF78a) from strain A of N. meningitidis:

30	•	10	20	30	40	50	60
	orf78.pep	MFAFLEAFFVEYG <u>Y</u>	AVFFVLVI	GFGVPIPEDL	TLVTGGVISG	MGYTNPH <u>IM</u> F	AVGMLG
		Π Π Π Π Π Π		<u> </u>	11111111111	111111111111111111111111111111111111	111111
	orf78a	MFALLEAFFVEYG <u>Y</u>					AVGMLG
25		10	20	30	40	50	60
35		20					
	570	70	80	90	100	110	120
	orf78.pep	<u>VLVGDGIM</u> FAAGRIV	GOXXLXEX	LIAXIMIPXRY	EQVQEKFDKY	GNWVLEVARE	LPGLRT
		11111111111111111	11 1 1				311111
40	orf78a	<u>VLVGDGIM</u> FAAGRIV					
40	•	70	80	90	100	110	120
		130	140				
	orf78.pep	AVFVTAGISRKVSYI	CRFIIMDGL	AA.			
		<u> </u>	$H\overline{I:IIIII}$	Ī			
45	orf78a	<u>AVFV</u> TAGISRKVSYI	LRFLIMDGL	ALISVPVWIY	LGEYGAHNI	WLMAKMHSLO	SGIFIA
		130	140	150	160	170	180

The complete length ORF78a nucleotide sequence <SEQ ID 723> is:

	1	ATGTTTGCCC	TTTTGGAAGC	CTTTTTTGTC	GAATACGGCT	ATGCGGCCGT
	51	GTTTTTCGTT	TTGGTCATCT	GCGGTTTCGG	CGTGCCGATT	CCCGAGGATT
50	101	TGACCTTGGT	AACAGGCGGC	GTGATTTCGG	GTATGGGTTA	TACCAATCCG
	151	CATATTATGT	TTGCAGTCGG	TATGCTCGGC	GTATTGGTCG	GGGACGGCAT
	201	CATGTTCGCC	GCCGGACGCA	TCTGGGGGCA	GAAAATCCTC	AAGTTCAAAC
	251	CGATTGCGCG	CATCATGACG	CCGAAACGTT	ACGCACAGGT	TCAGGAAAAA
	301	TTCGACAAAT	ACGGCAACTG	GGTGTTATTT	GTCGCTCGTT	TCCTGCCCGG
55	351	TTTGCGGACT	GCCGTTTTCG	TTACCGCCGG	CATCAGCCGC	AAAGTATCGT
	401	ATCTGCGCTT	TCTGATTATG	GACGGGCTTG	CCGCGCTGAT	TTCCGTGCCC
	451	GTTTGGATTT	ACTTGGGCGA	GTACGGCGCG	CACAACATCG	ATTGGCTGAT

```
501 GGCGAAAATG CACAGCCTGC AATCCGGCAT CTTCATCGCA TTGGGCGTGC
    TGGCGGCGC GCTGGCGTGG TTCTGGTGGC GCAAACGCCG ACATTATCAG
551
601
    CTTTACCGCG CACAATTGAG CGAAAAACGC GCCAAACGCA AGGCGGAAAA
    GGCAGCGAAA AAAGCGGCAC AGAAGCAGCA GTAA
```

5 This encodes a protein having amino acid sequence <SEQ ID 724>:

```
MFALLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG VISGMGYTNP
   HIMFAVGMLG VLVGDGIMFA AGRIWGQKIL KFKPIARIMT PKRYAQVQEK
51
```

101

FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFLIM DGLAALISVP VWIYLGEYGA HNIDWLMAKM HSLQSGIFIA LGVLAAALAW FWWRKRRHYQ 151

LYRAQLSEKR AKRKAEKAAK KAAOKOO* 201

10

50

ORF78a and ORF78-1 show 89.0% identity in 227 aa overlap:

```
20
                                              40
                                                      50
                 MFALLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGMGYTNPHIMFAVGMLG
        orf78a.pep
                  15
                  MFAFLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGMGYTNPHIMFAVGMLG
        orf78-1
                        10
                               20
                                              40
                                       30
                                                      50
                        70
                               80
                                             100
                                                     110
                  VLVGDGIMFAAGRIWGQKILKFKPIARIMTPKRYAQVQEKFDKYGNWVLFVARFLPGLRT
        orf78a.pep
                  20
        orf78-1
                  VLVGDGIMFAAGRIWGQKILRFKPIARIMTPKRYEQVQEKFDKYGNWVLFVARFLPGLRT
                               80
                                       90
                                              100
                                                     110
                                                            120
                       130
                              140
                                      150
                                             160
                                                     170
25
        orf78a.pep
                  AVFVTAGISRKVSYLRFLIMDGLAALISVPVWIYLGEYGAHNIDWLMAKMHSLQSGIFIA
                  orf78-1
                  AVFVTAGISRKVSYLRFIIMDGLAALISVPIWIYLGEYGAHNIDWLMAKMHSLQSGIFVI
                              140
                                      150
                                             160
30
                       190
                              200
                                      210
                                             220
        orf78a.pep
                  LGVLAAALAWFWWRKRRHYQLYRAQLSEKRAKRKAEKAAKKAAQKQQX
                  orf78-1
                       190
                              200
                                      210
                                              220
35
```

Homology with a predicted ORF from N.gonorrhoeae

ORF78 shows 97.4% identity over 38 aa overlap with a predicted ORF (ORF78ng) from N. gonorrhoeae:

```
XXLXFXPIAXIMTPXRYEQVQEKFDKYGNWVLFVARFLPGLRTAVFVTAGISRKVSYLRF
         orf78.pep
40
                                               orf78ng
                                              YPVLFVARFLPGLRTAVFVTAGISRKVSYLRF
         orf78.pep
                     IIMDGLAA
                                                                            145
                     :111111
45
                     LIMDGLAALISVPVWIYLGEYGAHNIDWLMAKMHSLOSGIFIALGVLAAALAWFWWRKRR
```

The ORF78ng nucleotide sequence <SEQ ID 725> is predicted to encode a protein comprising amino acid sequence <SEQ ID 726>:

```
..YPVLFVARFL PGLRTAVFVT AGISRKVSYL RFLIMDGLAA LISVPVWIYL
```

51 GEYGAHNIDW LMAKMHSLQS GIFIALGVLA AALAWFWWRK RRHYQLYRAQ

101 LSEKRAKRKA EKAAKKAAOK OO*

Further work revealed the complete gonococcal nucleotide sequence <SEQ ID 727>:

	1	atgtttgccc	tttTggaagc	CTTTTTTGTC	GAAtacggCt	atgcGGCCGT
	51	GTTTTTCGTT	TTGGTCATCT	GCGGTTTCGG	CGTGCCGATT	CCCGAAGATT
	101	TGACCTTGGT	AACGGGCGGC	GTGATTTCGG	GTATGGGTTA	TACCAATCCG
55	151	CATATTATGT	TTGCGGTCGG	TATGCTCGGC	GTGTTGGCGG	GCGACGCCT
						AAGTTCAAAC
	251	CGATTGCGCG	CATCATGACG	CCGAAACGTT	ACGCGCAGGT	TCAGGAAAAA
	301	TTCGACAAAT	ACGGCAACTG	GCTTCTCTTT	CTCCCCCCTT	TCCTGCCGGG

-412-

351

```
TTTGCGGACT GCCGTTTTCG TTACCGCCGG CATCAGCCGC AAAGTATCGT
                   ATCTGCGCTT TCTGATTATG GACGGGCTGG CCGCGCTGAT TTCCGTGCCC
               401
                   GTTTGGATTT ACTTGGGCGA GTACGGCGCG CACAACATCG ATTGGCTGAT
               451
                   GGCGAAAATG CACAGCCTGC AATCGGGCAT CTTCATCGCA TTGGGCGTGC
               501
5
                   TGGCGGCGGC GCTGGCGTGG TTCTGGTGGC GCAAACGCCG ACATTATCAG
               551
                   CTTTACCGCG CACAATTGAG CGAAAAACGC GCCAAACGCA AGGCGGAAAA
               601
                   GGCAGCGAAA AAAGCGGCAC AGAAGCAGCA GTAa
               651
     This corresponds to the amino acid sequence <SEQ ID 728; ORF78ng-1>:
                   MFALLEAFFV EYGYAAVFFV LVICGFGVPI PEDLTLVTGG VISGMGYTNP HIMFAVGMLG VLAGDGVMFA AGRIWGQKIL KFKPIARIMT PKRYAQVQEK
10
                51
                   FDKYGNWVLF VARFLPGLRT AVFVTAGISR KVSYLRFLIM DGLAALISVP
               101
               151
                   VWIYLGEYGA HNIDWLMAKM HSLQSGIFIA LGVLAAALAW FWWRKRRHYQ
                   LYRAQLSEKR AKRKAEKAAK KAAQKQQ*
               201
     ORF78ng-1 and ORF78-1 show 88.1% identity in 227 aa overlap:
15
                                       20
                      MFAFLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGMGYTNPHIMFAVGMLG
          orf78-1.pep
                       orf78ng-1
                      MFALLEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGMGYTNPHIMFAVGMLG
                                       20
                                                 30
                                                          40
                                                                    50
                                                                              60
20
                              70
                                       80
                                                 90
                                                         100
                                                                   110
                                                                             120
                      VLVGDGIMFAAGRIWGQKILRFKPIARIMTPKRYEQVQEKFDKYGNWVLFVARFLPGLRT
          orf78-1.pep
                       orf78ng-1
                      VLAGDGVMFAAGRIWGQKILKFKPIARIMTPKRYAQVQEKFDKYGNWVLFVARFLPGLRT
25
                              70
                                       80
                                                 90
                                                         100
                                                                   110
                                                                             120
                                                150
                                                         160
                      AVFVTAGISRKVSYLRFIIMDGLAALISVPIWIYLGEYGAHNIDWLMAKMHSLQSGIFVI
          orf78-1.pep
                       30
          orf78ng-1
                       AVFVTAGISRKVSYLRFLIMDGLAALISVPVWIYLGEYGAHNIDWLMAKMHSLQSGIFIA
                             130
                                       140
                                                150
                                                         160
                                                                   170
                                                                             180
                             190
                                       200
                                                210
                                                          220
                      LGIGATVVAWIWWKKRQRIQFYRSKLKEKRAQRKAAKAAKKAAQSKQX
          orf78-1.pep
35
                       orf78ng-1
                       LGVLAAALAWFWWRKRRHYQLYRAQLSEKRAKRKAEKAAKKAAQKQQX
                             190
                                       200
                                                210
                                                          220
     Furthermore, orf78ng-1 shows homology to the dedA protein from H.influenzae:
          sp|P45280|YG29_HAEIN HYPOTHETICAL PROTEIN HI1629 >gi|1073983|pir||D64133 dedA
40
          protein (dedA) homolog - Haemophilus influenzae (strain Rd KW20)
          >gi|1574476 (U32836) dedA protein (dedA) [Haemophilus influenzae] Length = 212
           Score = 223 bits (563), Expect = 7e-58
           Identities = 108/182 (59%), Positives = 140/182 (76%), Gaps = 2/182 (1%)
45
          Query: 5
                     LEAFFVEYGYAAVFFVLVICGFGVPIPEDLTLVTGGVISGM--GYTNPHIMFAVGMLGVL 62
                     L FF EYGY AV FVL+ICGFGVPIPED+TLV+GGVI+G+
                                                                N H+M V M+GVL
          Sbict: 21
                    LIGFFTEYGYWAVLFVLIICGFGVPIPEDITLVSGGVIAGLYPENVNSHLMLLVSMIGVL 80
          Query: 63
                     AGDGVMFAAGRIWGQKILKFKPIARIMTPKRYAQVQEKFDKYGNWVLFVARFLPGLRTAV 122
50
                     AGD M+ GRI+G KIL+F+PI RI+T +R V+EKF +YGN VLFVARFLPGLR +
          Sbjct: 81
                     AGDSCMYWLGRIYGTKILRFRPIRRIVTLQRLRMVREKFSQYGNRVLFVARFLPGLRAPI 140
          Query: 123 FVTAGISRKVSYLRFLIMDGLAALISVPVWIYLGEYGAHNIDWLMAKMHSLQSGIFIALG 182
                     ++ +GI+R+VSY+RF+++D AA+ISVP+WIYLGE GA N+DWL ++
                                                                    O I+I +G
 55
           Sbjct: 141 YMVSGITRRVSYVRFVLIDFCAAIISVPIWIYLGELGAKNLDWLHTQIQKGQIVIYIFIG 200
           Query: 183 VL 184
           Sbjct: 201 YL 202
 60
```

-413-

Based on this analysis, including the presence of putative transmembrane domains, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 87

5 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 729>:

```
ATGAAAAAT TATTGGCGGC CGTGATGATG GCAGGTTTGG CAGGCGCGGT
                51
                    TTCCGCCGCC GGAGTCCACG TTGAGGACGG CTGGGCGCGC ACCACCGTCG
                    AAGGTATGAA AATAGGCGGC GCGTTCATGA AAATCCACAA CGACGAAGCC
               101
               151
                    AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCCGTTGCCG ACCGCGTCGA
10
               201 AGTGCATACC CACATCAACG ACAACGGCGT GATGCGGATG CGCGAAGTCG
               251
                    AAGGCGGCGT GCCTTTGGAA GCGAAATCCG TTACCGAACT CAAACCCGGC
               301
                    AGCTATCATG TGATGTTTAT GGGTTTGAAA AAACAATTAA AAGAGGGCGA
               351
                    TAAAATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG CAAACCGTCC
               401 AACTGGAAGT CAAAATCGCG CCGATGCCGG CAATGAACCA C...
```

15 This corresponds to the amino acid sequence <SEQ ID 730; ORF79>:

```
1 MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKIGG AFMKIHNDEA
51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE AKSVTELKPG
101 SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKIA PMPAMNH..
```

Further work revealed the complete nucleotide sequence <SEQ ID 731>:

```
20
                    ATGAAAAAT TATTGGCGGC CGTGATGATG GCAGGTTTGG CAGGCGCGGT
                    TTCCGCCGCC GGAGTCCACG TTGAGGACGG CTGGGCGCGC ACCACCGTCG
                101
                    AAGGTATGAA AATAGGCGGC GCGTTCATGA AAATCCACAA CGACGAAGCC
                151
                    AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCCGTTGCCG ACCGCGTCGA
                    AGTGCATACC CACATCAACG ACAACGGCGT GATGCGGATG CGCGAAGTCG
25
                    AAGGCGGCGT GCCTTTGGAA GCGAAATCCG TTACCGAACT CAAACCCGGC
                251
                    AGCTATCATG TGATGTTTAT GGGTTTGAAA AAACAATTAA AAGAGGGCGA
                301
                    TAAAATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG CAAACCGTCC
                351
                    AACTGGAAGT CAAAATCGCG CCGATGCCGG CAATGAACCA CGGTCATCAC
                    CACGGCGAAG CGCATCAGCA CTAA
```

This corresponds to the amino acid sequence <SEQ ID 732; ORF79-1>:

```
1 MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKIGG AFMKIHNDEA
```

- 51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE AKSVTELKPG
- 101 SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKIA PMPAMNHGHH
- 151 HGEAHQH*
- Computer analysis of this amino acid sequence revealed a putative leader peptide and also gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF79 shows 94.6% identity over a 147aa overlap with an ORF (ORF79a) from strain A of N. meningitidis:

40		10	20	30	40	50	60
	orf79.pep	MKKLLAAVMMAG	LAGAVSAAGV	HVEDGWART	TVEGMKIGGA	AFMKIHNDEAK	QDFLLGGSS
		11 111111111	111111111111111111111111111111111111111	111111111	1111111:111		111111111
	orf79a	MKXLLAAVMMAG	<u>LAGA</u> VSAAGI	HVEDGWART	TVEGMKMGG	afmkihndeak	QDFLLGGSS
		10	20	30	40	50	60
45							
		70	80	90	100	110	120
	orf79.pep	PVADRVEVHTHI					QLKEGDKIP
		111111111111					
	orf79a	PVADRVEVHTHI		VEGGVPLEA			QLKXGDKIP
50		70	80	90	100	110	120

	130 140 orf79.pep VTLKFKNAKAQTVQLEVKIAPMPAMNH
5	
	The complete length ORF79a nucleotide sequence <seq 733="" id=""> is:</seq>
10	1 ATGAAANAAC TATTGGCAGC CGTGATGATG GCAGGTTTGG CAGGCGCGGT 51 TTCCGCCGCC GGAATCCACG TTGAGGACGG CTGGGCGCGC ACCACCGTCG 101 AAGGTATGAA AATGGGCGGC GCGTTCATGA AAATCCACAA CGACGAAGCC 151 AAACAAGACT TTTTGCTCGG CGGAAGCAGC CCTGTTGCCG ACCGCGTCGA 201 AGTGCATACC CATATCAATG ATAACGGTGT GATGCGGATG CGCGAAGTCG 251 AAGGCGGCGT GCCTTTGGAG GCGAAATCCG TTACCGAACT CAAACCCGGC 301 AGCTATCATG TCATGTTTAT GGGTNTGAAA AAACAATTAA AAGANGGCGA
15	351 CAAGATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCA CAAACCGTCC 401 AACTGGAAGT CAAAACCGCG CCGATGTCGG CAATGGACCA CGGTCATCAC 451 CACGGCGAAG CGCATCAGCA CTAA
	This encodes a protein having amino acid sequence <seq 734="" id="">:</seq>
20	1 MKXLLAAVMM AGLAGAVSAA GIHVEDGWAR TTVEGMKMGG AFMKIHNDEA 51 KQDFLLGGSS PVADRVEVHT HINDNGVMRM REVEGGVPLE AKSVTELKPG 101 SYHVMFMGXK KQLKXGDKIP VTLKFKNAKA QTVQLEVKTA PMSAMDHGHH 151 HGEAHQH*
	ORF79a and ORF79-1 show 94.9% identity in 157 aa overlap:
25	10 20 30 40 50 60 orf79a.pep MKXLLAAVMMAGLAGAVSAAGIHVEDGWARTTVEGMKMGGAFMKIHNDEAKQDFLLGGSS
30	70 80 90 100 110 120 orf79a.pep PVADRVEVHTHINDNGVMRMREVEGGVPLEAKSVTELKPGSYHVMFMGXKKQLKXGDKIP
35	70 80 90 100 110 120
40	130 140 150 orf79a.pep VTLKFKNAKAQTVQLEVKTAPMSAMDHGHHHGEAHQHX
40	130 140 150
	Homology with a predicted ORF from N. gonorrhoeae ORF79 shows 96.1% identity over 76 aa overlap with a predicted ORF (ORF79ng) from
	N.gonorrhoeae:
45	orf79.pep FMKIHNDEAKQDFLLGGSSPVADRVEVHTHINDNGVMRMREVEGGVPLEAKSVTELKPGS 101
	orf79ng
50	orf79.pep YHVMFMGLKKQLKEGDKIPVTLKFKNAKAQTVQLEVKIAPMPAMNH 147
	An ORF79ng nucleotide sequence <seq 735="" id=""> was predicted to encode a protein comprising</seq>
	amino acid sequence <seq 736="" id="">:</seq>
55	1INDNGVMRMR EVKGGVPLEA KSVTELKPGS YHVMFMGLKK QLKEGDKIPV 51 TLKFKNAKAQ TVQLEVKTAP MSAMNHGHHH GEAHQH*

Further work revealed the complete gonococcal DNA sequence <SEQ ID 737>:

-415-

```
1 ATGAAAAAT TATTGGCAGC CGTGATGATG GCAGGTTTGG CAGGCGCGGT
                51
                    TTccgccgCc GGagTccAtG TCGAggACGG CTGGGCGCGc accaCTGtcg
                    aaggtATgaa aatggGCGGC GCgttCATga aaATCCACAA CGACGaaGcc
               101
               151 atacaaGACt ttgtgcTCgg CGGaagcatg cccgttgccg accgcGTCGA
201 AGTGCAtaca cacATCAACG ACAACGGCGT GATGCGTATG CGCGAAGTCA
5
               251
                    AAGGCGGCGT GCCTTTGGAG GCGAAATCCG TTACCGAACT CAAACCCGGC
                    AGCTATCACG TGATGTTTAT GGGTTTGAAA AAACAACTGA AAGAGGGCGA
               301
               351
                    CAAGATTCCC GTTACCCTGA AATTTAAAAA CGCCAAAGCG CAAACCGTCC
               401
                    AACTGGAAGT CAAAACCGCG CCGATGTCGG CAATGAACCA CGGTCATCAC
10
                    CACGGCGAAG CGCATCAGCA CTAA
               451
     This corresponds to the amino acid sequence <SEO ID 738; ORF79ng-1>:
                    MKKLLAAVMM AGLAGAVSAA GVHVEDGWAR TTVEGMKMGG AFMKIHNDEA
                    IQDFVLGGSM PVADRVEVHT HINDNGVMRM REVKGGVPLE AKSVTELKPG
                51
               101
                    SYHVMFMGLK KQLKEGDKIP VTLKFKNAKA QTVQLEVKTA PMSAMNHGHH
15
               151
                    HGEAHQH*
     ORF79ng-1 and ORF79-1 show 95.5% identity in 157 aa overlap:
                                                                      50
                       {\tt MKKLLAAVMMAGLAGAVSAAGVHVEDGWARTTVEGMKIGGAFMKIHNDEAKQDFLLGGSS}
          orf79-1.pep
                       20
          orf79ng-1
                       MKKLLAAVMMAGLAGAVSAAGVHVEDGWARTTVEGMKMGGAFMKIHNDEAIQDFVLGGSM
                               10
                                        20
                                                  30
                                                            40
                                                                     50
                                        80
                                                  90
                                                           100
                                                                    110
                                                                              120
          orf79-1.pep PVADRVEVHTHINDNGVMRMREVEGGVPLEAKSVTELKPGSYHVMFMGLKKOLKEGDKIP
25
                       orf79ng-1
                       PVADRVEVHTHINDNGVMRMREVKGGVPLEAKSVTELKPGSYHVMFMGLKKQLKEGDKIP
                               70
                                        80
                                                  90
                                                           100
                                                                    110
                                                                              120
                                       140
30
          orf79-1.pep
                       VTLKFKNAKAQTVQLEVKIAPMPAMNHGHHHGEAHQHX
                       VTLKFKNAKAQTVQLEVKTAPMSAMNHGHHHGEAHQHX
          orf79ng-1
                              130
                                       140
                                                 150
     Furthermore, ORF79ng-1 shows significant homology to a protein from Aquifex aeolicus:
35
          gi|2983695 (AE000731) putative protein [Aquifex aeolicus] Length = 151
           Score = 63.6 bits (152), Expect = 6e-10
           Identities = 38/114 (33%), Positives = 58/114 (50%), Gaps = 1/114 (0%)
          Query: 24 VEDGWARTTVEGMKMGGAFMKIHNDEAIQDFVLGGSMPVADRVEVHTHINDNGVMRMREV 83
40
                                       M I N+
                                                 D+++G
                                                          +A RVE+H + +N V +M
                     VKHPWVMEPPPGPNTTMMGMIIVNEGDEPDYLIGAKTDIAQRVELHKTVIENDVAKMVPQ 86
           Sbjct: 27
                     KGGVPLEAKSVTELKPGSYHVMFMGLKKQLKEGDKIPVTLKFKNAKAQTVQLEV 137
          Query: 84
                     + + + K
                                ΕK
                                      YHVM +GLKK++KEGDK+ V L F+ +
                                                                   TV+
```

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Sbjct: 87 ER-IEIPPKGKVEFKHHGYHVMIIGLKKRIKEGDKVKVELIFEKSGKITVEAPV 139

45

50

ORF79-1 (15.6kDa) was cloned in the pET vector and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 18A shows the results of affinity purification of the His-fusion protein. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA (positive result) and FACS analysis (Figure 18B) These experiments confirm that ORF79-1 is a surface-exposed protein, and that it is a useful immunogen.

Example 88

The following DNA sequence, believed to be complete, was identified in *N.meningitidis* <SEQ ID 739>:

```
ATGACGGTAA CTGCGGCCGA AGGCGGCAAA GCTGCCAAGG CGTTAAAAAA
 5
                     ATATCTGATT ACGGGCATTT TGGTCTGGCT GCCGATTGCG GTAACGGTTT
                51
                     GGGTGGTTTC CTATATCGTT TCCGCGTCCG ATCAGCTCGT CAACCTGCTG
               101
                     CCGAAGCAAT GGCGGCCGCA ATATGTTTTG GGGTTTAATA TCCCGGGGCT
               151
                     GGGCGTTATC GTTGCCATTG CCGTATTGTT TGTAACCGGA TTGTTTGCCG
               201
                     CCAACGTATT GGGTCGGCAG ATCCTCGCCG CGTGGGACAG CCTGTTGGGG
               251
10
                     CGGATTCCGG TTGTGAAALC CATCTATTCG AGTGTGAAAA AAGTATCCGA
               301
               351
                     ATacgTGCTG TCCGACAGCA GCCGTTCGTT TAAAACGCCG GTACTCGTGC
                     CGTTTCCCCA GCCCGGTATT TGGACGATYG CTTTCGTGTC AGGGCAGGTG
               401
               451
                     TCGAATGCGG TTAAGGCCGC ATTGCCGAAs GACGGCGATT ATCTTTCCGT
                     GTATGTTCCG ACCACGCCGA ATCCGACCGG CGGTTACTAT ATTATGGTAA
               501
15
               551
                     AGAAAAGCGA TGTGCGCGAA CTCGATATGA GCGTGGACGA ASCATTGAAA
                     TATGTGATTT CGCTGGGTAT GGTCATCCCT GACGACCTGC CCGTCAAAAC
                601
                651
                     ATTGGCASGA CCTATGCCGT CTGAAAAGGC GGATTTGCCC GAACAACAAT
                701
```

This corresponds to the amino acid sequence <SEQ ID 740; ORF98>:

```
20 1 MTVTAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV SASDQLVNLL
51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFAANVLGRQ ILAAWDSLLG
101 RIPVVKSIYS SVKKVSEYVL SDSSRSFKTP VLVPFPQPGI WTIAFVSGQV
151 SNAVKAALPX DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE LDMSVDEXLK
201 YVISLGMVIP DDLPVKTLAX PMPSEKADLP EQO*
```

25 Further work revealed the complete nucleotide sequence <SEQ ID 741>:

	1	ATGACGGAAC	nTGCGGCCGA	AGGCGGCAAA	GCTGCCAArG	CGTTAAAAAA
	51	ATATCTGATT	ACGGGCATTT	TGGTCTGGCT	GCCGATTGCG	GTAACGGTTT
	101	GGGTGGTTTC	CTATATCGTT	TCCGCGTCCG	ATCAGCTCGT	CAACCTGCTG
	151	CCGAAGCAAT	GGCGGCCGCA	ATATGTTTTG	GGGTTTAATA	TCCCGGGGCT
30	201	GGGCGTTATC	GTTGCCATTG	CCGTATTGTT	TGTAACCGGA	TTGTTTGCCG
	251	CCAACGTATT	GGGTCGGCAG	ATCCTCGCCG	CGTGGGACAG	CCTGTTGGGG
	301	CGGATTCCGG	TTGTGAAATC	CATCTATTCG	AGTGTGAAAA	AAGTATCCGA
	351	ATCGCTGCTG	TCCGACAGCA	GCCGTTCGTT	TAAAACGCCG	GTACTCGTGC
	401	CGTTTCCCCA	GCCCGGTATT	TGGACGATTG	CTTTCGTGTC	AGGGCAGGTG
35	451	TCGAATGCGG	TTAAGGCCGC	ATTGCCGAAG	GACGGCGATT	ATCTTTCCGT
	501	GTATGTTCCG	ACCACGCCGA	ATCCGACCGG	CGGTTACTAT	ATTATGGTAA
	551	AGAAAAGCGA	TGTGCGCGAA	CTCGATATGA	GCGTGGACGA	AGCATTGAAA
•	601	TATGTGATTT	CGCTGGGTAT	GGTCATCCCT	GACGACCTGC	CCGTCAAAAC
	651	ATTGGCAGGA	CCTATGCCGT	CTGAAAAGGC	GGATTTGCCC	GAACAACAAT
40	701	AA				

This corresponds to the amino acid sequence <SEQ ID 742; ORF98-1>:

```
45 MTEXAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV SASDQLVNLL
51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFAANVLGRQ ILAAWDSLLG
101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQPGI WTIAFVSGQV
151 SNAVKAALPK DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE LDMSVDEALK
201 YVISLGMVIP DDLPVKTLAG PMPSEKADLP EQQ*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF98 shows 96.1% identity over a 233aa overlap with an ORF (ORF98a) from strain A of N.

50 meningitidis:

5	orf98.pep orf98a	1111111	SVIVAIAVLFV SVIVAIAVLFV	TGLFAANVLGI TGLFAANVLGI	(Î111111111111111111111111111111111111	110 RIPVVKSIYSSVI RIPVVKSIYSSVI 110	1111 :1
10	orf98.pep orf98a	SDSSRSFI SDSSRSFI	 KTPVLVPFPQS	GIWTIAFVSG(GIWTIAFVSG([[]]]	170 DGDYLSVYVPTTI OGDYLSVYVPTTI 170	
15	orf98.pep orf98a	IMVKKSD IMVKKSD	VRELDMSVDEX VRELDMSVDEA 190 2	LKYVISLGMV KYVISLGMV 00 2:		230 PMPSEKADLPEQ PMPSEKADLPEQ 230	11
	The complete ler	ngth ORF98	a nucleotide	sequence <	SEQ ID 743>	is:	
20	1 51 101 151	ATATCTGATT GGGTGGTTTC CCGAAGCAAT	ACGGGCATTT CTATATCGTT GGCGGCCGCA	TGGTCTGGCTCCGCTCCGCTTTTTC	A GCTGCCAAGG I GCCGATTGCG G ATCAGCTCGT G GGGTTTAATA	GTAACGGTTT CAACCTGCTG TCCCGGGGCT	
25	201 251 301 351 401	CAAACGTATT CGGATTCCGG NTCGTTGCTG	GGGCCGGCAG TTGTGAAGTC TCCGACAGCA	ATTCTTGCCG CATCTATTCG GCCGTTCGT	I TGTAACCGGA G CGTGGGACAG G AGTGTGAAAA I TAAAACACCA G CATTCGTGTC	CTTGTTGGGG AAGTATCCGA GTACTCGTGC	. 1
30	451 501 551 601 651 701	TCGAATGCGG GTATGTTCCG AGAAAAGCGA TATGTGATTT	TTAAGGCCGC ACCACGCCGAA TGTGCGCGAA CGCTGGGTAT	ATTGCCGAAGA ATCCGACCGACCGACCGATATGACCCCCCCCCC	G GACGGCGATT G CGGTTACTAT A GCGTGGACGA T GACGACCTGC C GGATTTGCCC	ATCTTTCCGT ATTATGGTAA AGCGTTGAAA CCGTCAAAAC	
35	This encodes a p		g amino aci	d sequence	<seq 744<="" id="" th=""><th>>:</th><th></th></seq>	>:	
40	1 51 101 151 201 ORF98a and OR	PKQWRPQYVL RIPVVKSIYS SNAVKAALPK YVISLGMVIP	GFNIPGLGVI SVKKVSXSLI DGDYLSVYVE DDLPVKTLAG	VAIAVLEVT SDSSRSFKT TTPNPTGGY PMPSEKADL		ILAAWDSLLG WTIAFVSGQV	
	014 704 414 07				•		
45	orf98a.pe	111 111	311111111111	LITGILVWLP LITGILVWLP	11111111111111	SASDQLVNLLPK SASDQLVNLLPK	11111111
50	orf98a.pe	1111111	1111111111	/TGLFAANVLG /TGLFAANVLG	111111111111	RIPVVKSIYSSV RIPVVKSIYSSV	1111 1111
55	orf98a.pe	1111111	KTPVLVPFPQ: KTPVLVPFPQI	SGIWTIAFVSG PGIWTIAFVSG	111111111111	DGDYLSVYVPTT	11111111
60	orf98a.pe orf98-1	1111111	VRELDMSVDEA 	ALKYVISLGMV ALKYVISLGMV	1111111111111	SPMPSEKADLPEQ 	11
65							

Homology with a predicted ORF from N. gonorrhoeae

ORF98 shows 95.3% identity over a 233 aa overlap with a predicted ORF (ORF98ng) from N.gonorrhoeae:

	•	10	20	30	40	50	60 .	
5	orf98.pep	MTVTAAEGGKAAKAL	KKYLITGI	LVWLPIAVTVW	VSYIVSASDQ	LVNLLPKQW	RPQYVL	60
	. •	- 11 1111111111	11111111	1111111111111	1111111111	11111111111	111111	
	orf98ng	MTEPAAEGGKAAKAI	KKYLITGI	LVWLPIAVTVW	VSYIVSASDQ	LVNLLPKOW	RPQYVL	60
	orf98.pep	GFNIPGLGVIVAIAV						120
10		1111111111111111						
	orf98ng	GFNIPGLGVIVAIAV	LFVTGLFA	ANVLGRQILAAV	DSLLXRIPVV	KSIYSSVKK	/SESLL	120
	orf98.pep	SDSSRSFKTPVLVPF	POPGIWTI	AFVSGQVSNAVI	(AALPXDGDYL	SVYVPTTPNI	PTGGYY	180
		111111111111111	41-11111			1111111111		
15	orf98ng	SDSSRSFKTPVLVPF	POSGIWTI	AFVSGQVSNAVI	KAALPQDGDYL	SVYVPTTPNI	PTGGYY	180
	orf98.pep	IMVKKSDVRELDMSV	DEXLKYVI	SLGMVIPDDLP	/KTLAXPMPSE	KADLPEQQ	233	•
		1111111111111	11 11111	111111111111		11:11111		
	orf98ng	IMVKKSDVRELDMSV	DEALKYVI	SLGMVIPDDLP	KTLAGPMPPE	KAELPEQQ	233	
	m 1 . 1	1 00000 1					_	

The complete length ORF98ng nucleotide sequence <SEQ ID 745> is predicted to encode a protein having amino acid sequence <SEQ ID 746>:

```
1 MTEPAAEGGK AAKALKKYL<u>I TGILVWLPIA VTVWVVSYI</u>V SASDQLVNLL
51 PKQWRPQYVL GFNIPGLGV<u>I VAIAVLFVTG LFAAN</u>VLGRQ ILAAWDSLLX
101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQSGI WTIAFVSGQV
25 151 SNAVKAALPQ DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE LDMSVDEALK
201 YVISLGMVIP DDLPVKTLAG PMPPEKAELP EQQ*
```

Further work revealed the complete nucleotide sequence <SEQ ID 747>:

	1	ATGACGGAAC	CTGCGGCCGA	AGGCGGCAAA	GCTGCCAAGG	CGTTAAAAAA
	51	ATATCTGATT	ACAGGCATTT	TGGTCTGGCT	GCCGATTGCG	GTAACGGTTT
30	101	GGGTGGTTTC	CTATATCGTT	TCCGCGTCCG	ACCAGCTTGT	CAACCTGCTG
1	151	CCGAAGCAAT	GGCGGCCGCA	ATATGTTTTG	GGGTTTAATA	TCCCCGGGCT
2	201	CGGCGTTATT	GTTGCCATTG	CCGTATTGTT	TGTAACCGGA	TTATTTGCCG
. 2	251	CAAACGTGTT	GGGCCGGCAG	ATTCTTGCCG	CGTGGGACAG	CCTGTTgggg
	301	cggaTTCCGG	TTGTCAAATC	CATCTATTCG	AGTGTGAAAA	AAGTATCCGA
35	351	ATCGCTGCTG	TCCGACAGCA	GCCGTTCGTT	TAAAACGCCG	GTACTCGTGC
4	401	CGTTTCCCCA	ATCGGGTATT	TGGACAATCG	CATTCGTGTC	CGGTCAGGTG
•	451	TCGAATGCGG	TTAAGGCCGC	ATTGCCGCAG	GATGGCGATT	ATCTTTCCGT
į	501	GTATGTCCCG	ACCACGCCCA	ACCCGACCGG	CGGTTACTAT	ATTATGGTAA
		AGAAAAGCGA	TGTGCGCGAA	CTCGATATGA	GCGTGGACGA	AGCGTTGAAA
40	601	TATGTGATTT	CGCTGGGTAT	GGTCATCCCT	GACGACCTGC	CCGTCAAAAC
•	651	ATTGGCAGGA	CCTATGCCGC	CTGAAAAGGC	GGAGTTGCCC	GAACAACAAT
•	701	AA				

This corresponds to the amino acid sequence <SEQ ID 748; ORF98ng-1>:

```
45 MTEPAAEGGK AAKALKKYLI TGILVWLPIA VTVWVVSYIV SASDQLVNLL
51 PKQWRPQYVL GFNIPGLGVI VAIAVLFVTG LFAANVLGRQ ILAAWDSLLG
101 RIPVVKSIYS SVKKVSESLL SDSSRSFKTP VLVPFPQSGI WTIAFVSGQV
151 SNAVKAALPQ DGDYLSVYVP TTPNPTGGYY IMVKKSDVRE LDMSVDEALK
201 YVISLGMVIP DDLPVKTLAG PMPPEKAELP EOO*
```

ORF98ng-1 and ORF98-1 show 97.9% identity in 233 aa overlap:

50		10	20	30	40	50	60
	orf98-1.pep	MTEXAAEGGKAAKAL	KKYLITGII	VWLPIAVTVW	VVSYIVSASE	QLVNLLPKQW	RPQYVL
			111111111		1111111111	111111111	HIIII
	orf98ng-1	MTEPAAEGGKAAKAL	KKYLITGII	VWLPIAVTVW	VVSYIVSASE	QLVNLLPKQW	RPQYVL
		10	20	30	40	50	60
>>							
		70	80	90	100	110	120
	orf98-1.pep	GFNIPGLGVIVAIAV					
			1111111		111111111	11111111111	111111

-419-

	orf98ng-1	GFNIPGLGVIVAIA	VLFVTGLFA	ANVLGRQILA/	AWDSLLGRIP	/VKSIYSSVKI	KVSESLL
		70	80	90	100	110	120
		130	140	150	160	170	180
5	orf98-1.pep	SDSSRSFKTPVLVP	FPQPGIWTI.	afvsgqvsna ^v	VKAALPKDGDY	(LSVYVPTTP)	NPTGGYY
•			111 11111		11111:111		!
	orf98ng-1	SDSSRSFKTPVLVP	FPQSGIWTI.	AFVSGQVSNA	VKAALPQDGD'	(LSVYVPTTP)	NPTGGYY
	0220000	130	140	150	160	170	180
10		190	200	210	220	230	
	orf98-1.pep	IMVKKSDVRELDMS	VDEALKYVI	SLGMVIPDDL:	PVKTLAGPMPS	SEKADLPEQQ	X
			1111111111	11111111111	111111111	411:111	1
	orf98ng-1	IMVKKSDVRELDMS	VDEALKYVI	SLGMVIPDDL	PVKTLAGPMPI	PEKAELPEQQ:	X
		190	200	210	220	230	

Based on this analysis, including the fact that the putative transmembrane domains in the 15 gonococcal protein are identical to the sequences in the meningococcal protein, it is predicted that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 89

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 749>: 20

```
ATGAAAACGG TAGTCTGGAT TGTCGTCCTG TTTGCCGCCG CCGTCGGACT
                    GGCGCTGGCT TCGGGCATTT ACACCGGCGA CGTGTATATC GTACTCGGAC
                51
                    AGACCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG TTCGCTGATT
                101
                151
                    GCCGTCGTGG TGTGGTATTT CTTGTTTAAA TTCATTATCG GgGTACTCA
25
                    ATATCCCCGA AAAGATGCAG CGTTTCGGTT CGGCnCGTAA AGGCCkCAAG
                201
                    SSCGSGCTTG CCTTGAACAA GGCGGGTTTG GCGTATTTTG AAGGGCGTTT
                251
                    TGAAAAGGCG GAACTAGAAG CCTCACGCGT GTTGGTCAAC AAAGtAGGCC
                301
                    GAGAGACAAC CGGACTTTGG CATTGATGCT GTGCGCGCAC GCCGCCGGAC
                351
                    AGATGGAAAA CATCGASSTG CGCGACCGTT ATCTTGCGGA AATCGCCAAA
                401
30
                     CTGCCGGAAA AACAGCAGCT TTCCCGTTAT CTTTTGTTGG CGGAATCGGC
                451
                    GTTGAACCGG CGCGATTACG AAGCGGCGGA AGCCAATCTT CATGCGGCGG
                501
                     CGAAGATGAA TGCCAACCTT ACGCGCCTCG TGCGTCTGCA .ATTCGTTAC
                551
                    GCTTTCGACA GGGGCGACGC GTTGCAGGTT CTGGCAAAAA CCGAAAAACT
                601
                     TTCCAAGGCG GGCGCGTTGG GCAAATCGGA AATGGAACGG TATCAAAATT
                651
                     GGGCATATCC GTCGCCAGCT GGCGGATGCT GCCGATGCCG CCGCTTTGAA
35
                701
                     AACCTGCCTG AAGCGGATTC CCGACAGCCT CAAAAACGGG GAATTGAGCG
                751
                     TATCGGTTGC GGAAAAGTAC GAACGTTTGG GACTGTATGC CGATGCGGTC
                801
                851
                     AAATGGGTCA AACAGCATTA TCCGCASAAC CGCCGCCCCG AGCTTTTGGA
                    AGCCTTTGTC GAAAGCGTGC GCTTTTTGGG CGAGCGCGAA CAGCAGAAAG
                901
40
                951
                     CCATCGATTT TGCCGATGCT TGGCTGAAAG AACAGCCCGA TAACGCGCTT
                     CTGCTGATGT ATCTCGGTCG GCTCGCCTTC GGCCGCAAAC TTTGGGGCAA
               1001
               1051
                     GGCAAAAGGC TACCTTGAAG CGAGCATTGC ATTAAAGCCG AGTATTTCCG
                     CGCGTTTGGT TCTAACAAAG GTTTTCGACG AAATCGGAGA ACCGCAGAAG
               1101
               1151
                     GCGGAGGCGC AC...
```

45 This corresponds to the amino acid sequence <SEQ ID 750; ORF100>:

```
MKTVVWIVVL FAAAVGLALA SGIYTGDVYI VLGQTMLRIN LHAFVLGSLI
                    AVVVWYFLFK FIIGVLNIPE KMORFGSARK GXKXXLALNK AGLAYFEGRF
                    EKAELEASRV LVNKVGRDNR TLALMLXAHA AGQMENIXXR DRYLAEIAKL
               101
               151 PEKQQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT RLVRLXIRYA
50
                    FDRGDALQVL AKTEKLSKAG ALGKSEMERY QNWAYRRQLA DAADAAALKT
                    CLKRIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP XNRRPELLEA
               251
                    FVESVRFLGE REQOKAIDFA DAWLKEOPDN ALLLMYLGRL AFGRKLWGKA
               351 KGYLEASIAL KPSISARLVL TKVFDEIGEP QKAEAH...
```

Further work revealed the complete nucleotide sequence <SEQ ID 751>:

55	1	ATGAAAACGG	TAGTCTGGAT	TGTCGTCCTG	TTTGCCGCCG	CCGTCGGACT
	51	GGCGCTGGCT	TCGGGCATTT	ACACCGGCGA	CGTGTATATC	GTACTCGGAC
	101	AGACCATGCT	CAGAATCAAC	CTGCACGCCT	TTGTGTTAGG	TTCGCTGATT
	151	CCCCTCCTCC	ጥርጥርርጥልጥጥ	ርጥጥርጥጥጥ አ አ አ	TTCATTATCG	GCGTACTCAA

5	201 251 301 351 401 451 501	CCGCGCTTGC GAAAAGGCGG AGACAACCGG TGGAAAACAT CCGGAAAAAC	CTTGAACAAG AACTAGAAGC	GCGGGTTTGG CTCACGCGTG TGATGCTGGG GACCGTTATC CCGTTATCTT	TTGTTGGCGG	AGGGCGTTTT
10	551 601 651 701 751	AGATGAATGC TTCGACAGGG CAAGGCGGGC CATACCGCCG TGCCTGAAGC	CAACCTTACG GCGACGCGTT GCGTTGGGCA CCAGCTGGCG GGATTCCCGA	CGCCTCGTGC GCAGGTTCTG AATCGGAAAT GATGCTGCCG CAGCCTCAAA	GTCTGCAACT GCAAAAACCG GGAACGGTAT ATGCCGCCGC AACGGGGAAT	TCGTTACGCT AAAAACTTTC CAAAATTGGG TTTGAAAACC TGAGCGTATC
15	801 851 901 951 1001	GGGTCAAACA TTTGTCGAAA CGATTTTGCC TGATGTATCT	AAGTACGAAC GCATTATCCG GCGTGCGCTT GATGCTTGGC CGGTCGCTC	CACAACCGCC TTTGGGCGAG TGAAAGAACA GCCTACGGCC	GCCCGAGCT CGCGAACAGC GCCCGATAAC GCAAACTTTG	GCGCTTCTGC GGGCAAGGCA
20	1051 1101 1151 1201	AAAGGCTACC TTTGGTTCTA AGGCGCAGCG GCAGCGTTAG	TTGAAGCGAG GCAAAGGTTT CAACTTGGTT AGCAGCATAG	TCGACGAAAT TTGGAAGCCG	AAGCCGAGTA CGGAGAACCG TCTCCGATGA	TTTCCGCGCG CAGAAGGCGG CGAACGTCAC

This corresponds to the amino acid sequence <SEQ ID 752; ORF100-1>:

	1	MKTVVWIVVL	FAAAVGLALA	SGIYTGDVYI	VLGQTMLRIN	LHAFVLGSLI
	51	AVVVWYFLFK	FIIGVLNIPE	KMQRFGSARK	GRKAALALNK	AGLAYFEGRE
25	101	EKAELEASRV	LVNKEAGDNR	TLALMLGAHA	AGQMENIELR	DRYLAEIAKL
	151	PEKQQLSRYL	LLAESALNRR	DYEAAEANLH	AAAKMNANLT	RLVRLQLRYA
	201	FDRGDALQVL	AKTEKLSKAG	ALGKSEMERY	QNWAYRRQLA	DAADAAALKT
	251	CLKRIPDSLK	NGELSVSVAE	KYERLGLYAD	AVKWVKQHYP	HNRRPELLEA
	301	FVESVRFLGE	REQQKAIDFA	DAWLKEQPDN	ALLLMYLGRL	AYGRKLWGKA
30	351	KGYLEASIAL	KPSISARLVL	AKVFDEIGEP	QKAEAQRNLV	LEAVSDDERH
	401	AALEOHS*				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.meningitidis (strain A)

ORF100 shows 93.5% identity over a 386aa overlap with an ORF (ORF100a) from strain A of N.

35 meningitidis:

	orf100.pep	10 MKTVVWIVVLFAAAVG	20 LALASGIY	30 TGDVYIVLGO:	40 FMLRINLHAE	50 VLGSLIAVVV	60 WYFLFK
40	orf100a	MKTVVWIVVLFAAAXG	LALASGIX 20	TGDVYIVLGQ:	TMLRINLHAE 40	VLGSLIAVVV 50	WYFLFK 60
	orf100.pep	70 FIIGVLNIPEKMORFG	80 SARKGXKX	90 (XLALNKAGLA:	100 YFEGRFEKAE	110 ELEASRVLVNK	120 VGRDNR
45	orf100a	FIIGVLNXPEKMORFG 70	SARKGRKA 80	ALALNKAGLA 90	YFEGRFEKAE 100	ELEASRVLGNK 110	EAGDNR 120
50	orf100.pep	130 TLALMLXAHAAGQMEN TLALMLGAHAAGQMEN	1 11111		1131111111		111111
		130 190	140 200	150 210	160 220	170 230	180 240
55	orf100.pep	AAAKMNANLTRLVRLX	IRYAFDRO	GDALQVLAKTEI	KLSKAGALGR	(SEMERYONWA	YRRQLA
	orf100a	AAAKMNANLTRLVRLQ 190	LRYAFDRO 200	GDALQVLAKTEI 210	KXSKAGAXGF 220	(SEMERYQNWA 230	YRRQLX 240
60	orf100.pep	250 DAADAAALKTCLKRIF 	1111111	111111111	1111111111		111111
	orf100a	DAADAAALKTCLKRIF 250	DSLKNGEI 260	LSVSVAEKYERI 270	LGLYADAVKW 280	VKQHYPHNRR 290	PELLEA 300

		310 320 330 340 350 360 TVESVRFLGEREQQKAIDFADAWLKEQPDNALLLMYLGRLAFGRKLWGKAKGYLEASIAL
5		
J	OIII00a I	310 320 330 340 350 360
	orf100.pep F	370 380 KPSISARLVLTKVFDEIGEPQKAEAH
10		
		370 380 390 400
		ORF100a nucleotide sequence <seq 753="" id=""> is:</seq>
15	51 GGC	AAAACGG TAGTCTGGAT TGTCGTCCTG TTTGCCGCCG CNNTCGGGCT ATTGGCG TCGGGCATTN ACACCGGCGA CGTGTATATC GTACTCGGAC
		CCATGCT CAGAATCAAC CTGCACGCCT TTGTGTTAGG TTCGCTGATT STCGTGG TGTGGTATTT CCTGTTCAAA TTCATCATCG GCGTACTCAA
	201 TAN	CCCCGAA AAGATGCAGC GTTTCGGTTC GGCGCGTAAA GGCCGCAAGG CGCTTGC TTTGAACAAG GCGGGTTTGG CGTATTTTGA AGGGCGTTTT
20	301 GAA	AAGGCGG AACTTGAAGC CTCGCGCGTA TTGGGAAACA AAGAGGCGGG
	401 TGG	TAACCGG ACTTTGGCAT TGATGTTGGG CGCACATGCC GCCGGGCAGA AAAACAT CGAGCTGCGC GACCGTTATC TTGCGGAAAT CGCCAAACTG
		GAAAAGC AGCAGCTTTC CCGTTATCTT TTGTTGGCGG AATCGGCGTT CCGGCGC GATTACGAAG CGGCGGAAGC CAATCTTCAT GCGGCGGCGA
25	551 AGA	TGAATGC CAACCTTACG CGCCTCGTGC GTCTGCAACT TCGTTACGCT
		GACAGGG GCGACGCGTT GCAGGTTCTG GCAAAAACCG AAAAANTTTC GGCGGGC GCGTNGGGCA AATCGGAAAT GGAACGGTAT CAAAATTGGG
		ACCGCCG CCAGCTGNCG GATGCTGCCG ATGCCGCCGC TTTGAAAAACC CTGAAGC GGATTCCCGA CAGCCTCAAA AACGGGGAAT TGAGCGTATC
30		TGCGGAA AAGTACGAAC GTTTGGGACT GTATGCCGAT GCGGTCAAAT
		TCAAACA GCATTATCCG CACAACCGCC GACCCGAACT TTTGGAAGCN
		GTCGAAA GCGTGCGCTT TTTGGGCGAA CGCGATCAGC AGAAAGCCAT TTTTGCC GATGCTTGGC TGAAAGAACA GCCCGATAAT GCGCTTCTGC
25		NGTATCT CGGTCGGCTC GCCTACGGCC GCAAACTTTG GGGCAAGGCA GGCTACC TTGAAGCGAG CATTGCATTA AAGCCGAGTA TTTCCGCGCG
35		GGCTACC TIGAAGCGAG CATIGCATIA AAGCCGAGIA TITCCGCGCG GGTTCTG GCAAAGGTTT TTGACGAAAC CGGAGAACCG CAGAAGGCGG
		CGCAGCG CAACTTGGTT TTGGCAAGCG TTGCCGAGGA AAACCGNCCT GCCGAAA CCCATTGA
	This encodes a prote	in having amino acid sequence <seq 754="" id="">:</seq>
40	1 MKT	VVWIVVL FAAAXGLALA SGIXTGDVYI VLGQTMLRIN LHAFVLGSLI
40	51 <u>AVV</u>	VWYFLFK FIIGVLNXPE KMQRFGSARK GRKAALALNK AGLAYFEGRF
		ELEASRV LGNKEAGDNR TLALMLGAHA AGQMENIELR DRYLAEIAKL QQLSRYL LLAESALNRR DYEAAEANLH AAAKMNANLT RLVRLQLRYA
. :_	201 FDR	GDALQVL AKTEKXSKAG AXGKSEMERY QNWAYRRQLX DAADAAALKT
45	251 CLK 301 FVE	RIPDSLK NGELSVSVAE KYERLGLYAD AVKWVKQHYP HNRRPELLEA SVRFLGE RDQQKAIDFA DAWLKEQPDN ALLLXYLGRL AYGRKLWGKA
	351 KGY	LEASIAL KPSISARLVL AKVFDETGEP QKAEAQRNLV LASVAEENRP
		TH*
	ORF 100a and ORF	00-1 show 95.1% identity in 406 aa overlap:
50		10 20 30 40 50 60
	orf100a.pep	MKTVVWIVVLFAAAXGLALASGIXTGDVYIVLGQTMLRINLHAFVLGSLIAVVVWYFLFK
	orf100-1	MKTVVWIVVLFAAAVGLALASGIYTGDVYIVLGQTMLRINLHAFVLGSLIAVVVWYFLFK 10 20 30 40 50 60
55		
	orf100a.pep	70 80 90 100 110 120 FIIGVLNXPEKMQRFGSARKGRKAALALNKAGLAYFEGRFEKAELEASRVLGNKEAGDNR
60	orf100-1	FIIGVLNIPEKMORFGSARKGRKAALALNKAGLAYFEGRFEKAELEASRVLVNKEAGDNR 70 80 90 100 110 120
		130 140 150 160 170 180
	orf100a.pep	TLALMLGAHAAGQMENIELRDRYLAEIAKLPEKQQLSRYLLLAESALNRRDYEAAEANLH
65	orf100-1	TLALMLGAHAAGQMENIELRDRYLAEIAKLPEKQQLSRYLLLAESALNRRDYEAAEANLH

-422-

		•		•			
		130	140	150	160	170	180
		190	200	210	220	230	240
	orf100a.pep	AAAKMNANLTRLVR	LQLRYAFDE	GDALOVLAKTE	KXSKAGAXGE	KSEMERYONWA	YRROLX
5		11111111111111111	11111111	3411111111111	1 11111 11		HILL
-	orf100-1	AAAKMNANLTRLVR	LOLRYAFDE	GDALOVIAKTE	KLSKAGALGE		
		190	200	210	220	230	240
		250	260	270	280	290	300
10	orf100a.pep	DAADAAALKTCLKR	IPDSLKNGE	LSVSVAEKYER	LGLYADAVK	VKOHYPHNRR	PELLEA
	• •	11131111111111					
	orf100-1	DAADAAALKTCLKR	IPDSLKNGF	LSVSVAEKYER	T.GT.YADAVK	MAKUHA BHMBB	PRITEA
		250	260	270	280	290	300
		200		2.0	200	250	300
15		310	320	330	340	350	360
10	orf100a.pep	FVESVRFLGERDQQ					
	Officea.pep	1111111111111111		TILLIIIIII MUEÕEDKAPPT	VITCKTWICE	KKTMGKWKGIT	FASIAL
	orf100-1		, , , , , , , , ,	:	WYLCOLDYCY	11111111111	111111
	811100-1	FVESVRFLGEREQQ 310					
20		310	320	330	340	350	360
20		224	222				
	51.00	370	380	390	400		
	orf100a.pep	KPSISARLVLAKVF				ETHX	
05	orf100-1	KPSISARLVLAKVF				EQHSX	
25		370	380	390	400		
		•					

Homology with a predicted ORF from N. gonorrhoeae

ORF100 shows 93.3% identity over a 386 aa overlap with a predicted ORF (ORF100ng) from

N.gonorrhoeae:

30	orf100.pep	MKTVVWIVVLFAAAVGLALASGIYTGDVYIVLGQTMLRINLHAFVLG	SLIAVVVWYFLFK	60
	orf100ng	MKTVVWIVVLFAAAVGLALASGIYTGDVYIVLGQTMLRINLHAFVLO	GSLIAVVVWYFLFK	60 .
35	orf100.pep	FIIGVLNIPEKMQRFGSARKGXKXXLALNKAGLAYFEGRFEKAELE	ASRVLVNKVGRDNR	120
33	orf100ng	FIIGVLNIPENMRRSGSARKGRKAALALNKAGLAYFEGRFEKAELEA	ASRVLGNKEAGDNR	120
	orf100.pep	TLALMLXAHAAGQMENIXXRDRYLAEIAKLPEKQQLSRYLLLAESAI	NRRDYEAAEANLH	180
40	orf100ng	TLALMLGAHAAGQMENIELRDRYLAEIAKLPEKQQLSRYLLLAESAI	LNRRDYEAAEANLH	180
	orf100.pep	AAAKMNANLTRLVRLXIRYAFDRGDALQVLAKTEKLSKAGALGKSEN	ERYQNWAYRRQLA	240
45	orf100ng	AAAKMNANLTRLVRLQLRYAFDRGDALQVLAKTEKLSKAGALGKSEN	MERYQNWAYRRQMA	240
	orf100.pep	DAADAAALKTCLKRIPDSLKNGELSVSVAEKYERLGLYADAVKWVK(HYPXNRRPELLEA	300
	orf100ng	DAADAAALKTCLKRIPDSLKNGELSVSVAEKYERLGLYADAVKWVK(OHYPHNRRPELLEA	300
50	orf100.pep	FVESVRFLGEREQQKAIDFADAWLKEQPDNALLIMYLGRLAFGRKLW	GKAKGYLEASIAL	360
	orf100ng	FVESVRFLGEREQQKAIDFADSWLKEQPDNALLLMYLGRLAYGRKLV	VGKAKGYLEASIAL	360
55	orf100.pep	KPSISARLVLTKVFDEIGEPQKAEAH	386	
	orf100ng	KPSIPARLVLAKVFDETAQSQKAEAQRNLVLASVAGENRPSAETR	405	

The complete length ORF100ng nucleotide sequence <SEQ ID 755> is:

	1	ATGAAAACGG	TAGTCTGGAT	TGTTGTCCTG	TTTGCCGCCG	CCGTCGGACT
	51	GGCGCTGGCT	TCGGGCATTT	ACACCGGCGA	CGTGTATATC	GTACTCGGAC
60 -	101	AGACCATGCT	CAGAATCAAC	CTGCACGCCT	TTGTGTTAGG	TTCGCTGATT
	151	GCCGTCGTGG	TGTGGTATTT	CCTGTTTAAA	TTCATCATCG	GCGTACTCAA
•	201	TATCCCCGAA	AATATGCGGC	GTTCCGGTTC	GGCGCGGAAA	GGCCGCAAGG
	251				CGTATTTCGA	
	301	GAAAAGGCGG	AACTCGAAGC	CTCTCGAGTG	TTGGGCAACA	AAGAGGCCGG
65	351	AGACAACCGG	ACTTTGGCAT	TGATGCTGGG	CGCGCACGCG	GCAGGACAGA
	401				TTGCGGAAAT	

	501	AAACC	GCGC	AGCAGCTTTC GATTACGAAG	CGGCGGAAGC	CAATCTTCAT	GCGGCGGCG	SA .	
	551 601	AGATG	AATGC	CAACCTTACG GCGATGCGTT	CGCCTCGTGC	GTCTGCAACT	AAAAACTTT	ic rc	
5	651	CAAGG	CGGGC	GCGTTGGGCA	AATCGGAAAT	GGAACGGTAT	CAAAATTGG	€G	
3	701	CATAC	CGCCG	CCAGATGGCG	GATGCTGCCG	ATGCCGCCGC	TTTGAAAAC	CC	
	751	TGCCT	GAAGC	GGATTCCCGA AAGTACGAAC	CAGCCTCAAA	AACGGGGAAT	TGagcGTAT	.'C ኔጥ	
	801 851	GGTTG	AAACA	GCATTATCCG	CACAACCGCC	GCCCCGAGCT	TTTGGAAG	CC C	
10	901	TTTGT	CGAAA	GCGTGCGCTT	TTTGGGCGAG	CGCGAACAGC	AGAAAGCC	AT	
10	951	CGATT	TTGCC	GATTCTTGGC	TGAAAGAACA	GCCCGATAAC	GCGCTTCT	GC	
	1001	TGATG	TATCT	CGGCCGGCTC TTGAAGCGAG	GCCTACGGCC	AAGCCGAGTA	TTCCGGCG	JA CG	
	1051 1101	TTTGG	TGTTG	GCAAAGGTTT	TTGACGAAAC	CGCACAGTCG	CAAAAAGC	CG C	
15	1151	AAGCA	CAGCG	CAACTTGGTT	TTGGCAAGCG	TTGCCGGGGA	AAACCGCC	CT	
	1201	TCCGC	CGAAA	CCCGTTGA					
	This encodes a p								
	1	MKTVV	WIVVL	FAAAVGLALA	SGIYTGDVYI	VLGQTMLRIN	LHAFVLGS	r <u>ī</u>	
20	51	AVVVW	YFLFK	FIIGVLNIPE LGNKEAGDNR	NMRRSGSARK	GRKAALALNE	AGLAYFEG	Kr Kt.	
20	101 151	PEKOC	LSRYL	LLAESALNRR	DYEAAEANLH	AAAKMNANLT	RLVRLQLR	YA	
	201	FDRGD	ALOVL	AKTEKLSKAG	ALGKSEMERY	QNWAYRRQM/	A DAADAAAL	KT	
	251	CLKRI	PDSLK	NGELSVSVAE REQQKAIDFA	KYERLGLYAD	AVKWVKQHYI	NVCPKIWG	EA KV	
25	301 351	KGYLE	RELGE	KPSIPARLVL	AKVFDETAOS	OKAEAORNL	/ LASVAGEN	RP	
23	401	SAETE							
	ORF100ng and	ORF1	00-1 sl	how 95.3% i	dentity in 40)2 aa overla	p:		
				10	20	30	40	50	60
	orf100-1.	pep	MKTVV	WIVVLFAAAVG	LALASGIYTGI	VYIVLGQTML	RINLHAFVLG	SLIAVVVWYF	LFK
30	orf100ng		MKTVV		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	VYIVLGOTML	RINLHAFVLG	SLIAVVVWYF	LFK
	Officend		12112 7 7	10	20	30	40	50	60
				70	80	. 90	100	110	120
35	orf100-1.	pep	FIIGV	LNIPEKMORFG	SARKGRKAAL	LNKAGLAYFE	GRFEKAELEA	SRVLVNKEAC	DNR
•			11111						SUMB
	orf100ng		FIIGV	LNIPENMRRSG 70	80		100	110	120
							1.60	170	100
40			mr a r a	130 ILGAHAAGQMEN	140		160 RYLLLAESAI	170 NRRDYEAAEA	180 ANI.H
	orf100-1.	pep	1111	11111111111			1111111111		1111
	orf100ng		TLALM	ilgahaagomen	IIELRDRYLAE:	IAKLPEKQQLS	RYLLLAESAI	LNRRDYEAAE	ANLH
45				130	140	150	160	170	180
43				190	200		220	230	240
	orf100-1.	pep.	AAAKN	MANLTRLVRL	LRYAFDRGDA	LQVLAKTEKLS	KAGALGKSEI	4ERYQNWAYRI	RQLA
	orf100ng		ווווו	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		I I I I I I I I I I I I I I I I I I I	KAGALGKSEI	MERYONWAYR'	ROMA
50	Official		Armuu.	190	200	210	220	230	240
				0.50	0.00	270	280	290	300
	orf100-1	nen	DAADZ	250 AAALKTCLKRII	260 PDSLKNGELSV				
	OIIIOU I	ГРОР	1111		11111111111	111111111111	111111111	111111111	1111
55	orf100ng		DAADA	AAALKTCLKRI			YADAVKWVK 280	QHYPHNRRPE 290	LLEA 300
				250	260	270	280	290	300
				310	320	330	340	350	360
C 0	orf100-1	.pep	FVES	VRFLGEREQQK	AIDFADAWLKE	QPDNALLLMYI	GRLAYGRKL	WGKAKGYLEA 	SIAL
60	orf100ng		FVES	VRFLGEREQQK		OPDNALLLMYI	GRLAYGRKL	WGKAKGYLEA	SIAL
	Official		_ ,	310	320	330	340	350	360
				370	380	390	400		
65	orf100-1	.pep	KPSI	SARLVLAKVFD	EIGEPOKAEAC	RNLVLEAVSDI	DERHAALEQH	sx	
			1111	111111111111	1:: 111111	11111 : 1:	:: :		
	orf100n		KPSIP.	ARLVLAKVFDE	TAUSQKAEAQF	MLVLASVAGE	NRESHLIKA		

-424-

370 380 390 400

Based on this analysis, including the presence of a putative leader sequence, a putative transmembrane domain, and a RGD motif, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 90

The following DNA sequence, believed to be complete, was identified in *N.meningitidis* <SEQ ID 757>

This corresponds to the amino acid sequence <SEQ ID 758; ORF102>:

```
20 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN PEYVRLSGMA
51 VRLYRFMSPL GFGAVVFGAA IPFAAGWWGS GWVHVKLCLG LMLLAYQLYC
101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYXVVFK PF*
```

Further work revealed the complete nucleotide sequence <SEQ ID 759>:

```
1 ATGATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG TCATTTCGTG
                51
                    GTTTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT ATGGCGATGA
25
               101
                    TTGATGTGCC GCGCGGCAAT CCCGAGTATG TGCGTCTGTC GGGCATGGCG
               151 GTGCGGCTGT ACCGTTTTAT GTCGCCGTTG GGCTTCGGCG CGGTCGTGTT
                    CGGCGCGCG ATACCGTTTG CCGCCGGCTG GTGGGGCAGC GGCTGGGTAC
               201
               251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTACCA GTTGTATTGC
                    GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT TTTCACACCG
               301
30
                    CTGGTACCGC GTGTTCAACG AAATCCCCGT GCTGCTGATG GTTGCCGCGC
                351
                401 TGTATCTGGT CGTGTTCAAA CCGTTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 760; ORF102-1>:

- 1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN PEYVRLSGMA
- 35 VRLYRFMSPL GFGAVVFGAA IPFAAGWWGS GWVHVKLCLG LMLLAYQLYC
 101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYLVVFK PF*

Computer analysis of this amino acid sequence gave the following results:

Homology with HP1484 hypothetical integral membrane protein of *H. pylori* (accession number AE000647) ORF102 and HP1484 show 33% aa identity in 143aa overlap:

```
FSWFKLFHLFFVISWFAGLFYLPRIFVNMAMIDVPRGNPEYVRLSGMAVRLYRFMSPLGF 62
          orf102 3
40
                     F W K FH+ VISW A LFYLPR+FV A
                                                             V++
                     FLWVKAFHVIAVISWMAALFYLPRLFVYHAENAHKKEFVGVVQIQEK--KLYSFIASPAM 65
          HP1484 8
                 63 GAVVFGAAIPFAAG---WWGSGWVHVKLCLGLMLLAYQLYCGVLLRRFQDYSNAFSHRWY 119
          orf102
                                    +
                                        GW+H KL L ++LLAY YC
                                                               +R +
45
                 66 GFTLITGILMLLIEPTLFKSGGWLHAKLALVVLLLAYHFYCKKCMRELEKDPTRRNARFY 125
          HP1484
          orf102 120 RVFNEIPXXXXXXXXXXXXFKPF 142
          HP1484 126 RVFNEAPTILMILIVILVVVKPF 148
```

Homology with a predicted ORF from N.meningitidis (strain A)

ORF102 shows 99.3% identity over a 142aa overlap with an ORF (ORF102a) from strain A of N. meningitidis:

5		10	20	30	40	50	60
•	orf102.pep	MMFSWFKLFHLFI	FVISWFAGLFYL	PRIFVNMAM]	DVPRGNPEY	/RLSGMAVRLY	RFMSPL
	02227	1111111111111111	111111111111	111111111111111111111111111111111111111		1111111111	111111
	orf102a	MMFSWFKLFHLFI	FVISWFAGLFYL	PRIFVNMAM	DVPRGNPEY	/RLSGMAVRLY	RFMSPL
	01110	10	20	30	40	50	60
10						•	
10		70	80	. 90	100	110	120
	orf102.pep	GFGAVVFGAAIP	FAAGWWGSGWVH	VKLCLGLML1	LAYQLYCGVL	LRRFQDYSNA	SHRWYR
	_						
	orf102a	GFGAVVFGAAIP	FAAGWWGSGWVF	IVKLCLGLML	LAYQLYCGVL	LRRFQDYSNAI	SHRWYR
15		70	80	90	100	110	120
		130	140				
	orf102.pep	VFNEIPVLLMVA	ALYXVVFKPFX				
	02220-12-1	14111111111111	111 1111111				
20	orf102a	VFNEIPVLLMVA	ALYLVVFKPFX				
20		130	140				

The complete length ORF102a nucleotide sequence <SEQ ID 761> is:

```
25 101 TTGATGTCC GCGCGGCAAT CCCGAGGAT TTTCGTCAAT ATGGCGATGA
25 101 TTGATGTCC GCGCGGCAAT CCCGAGGAT TTTCGTCTC GGGCATGGCG
151 GTGCGGCTGT ACCGTTTTAT GTCGCCGTTG GGCTTCGCC CGGTCGTT
201 CGGCGCGGCG ATACCGTTTG CCGCCGCTG GTGGGGCAGC GGCTGGGTAC
251 ACGTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTACCA GTTGTATTGC
301 GGCGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT TTTCACACCG
301 TGTATCTGGT CGTGTTCAAAC CCGTTTTGA
```

This encodes a protein having amino acid sequence <SEQ ID 762>:

```
1 MMFSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDVPRGN PEYVRLSGMA
51 VRLYRFMSPL GFGAVVFGAA IPFAAGWWGS GWVHVKLCLG LMLLAYQLYC
35 101 GVLLRRFQDY SNAFSHRWYR VFNEIPVLLM VAALYLVVFK PF*
```

ORF102a and ORF102-1 show complete identity in 142 aa overlap:

		10	20	30	40	50	60
	orf102a.pep	MMFSWFKLFHLFFV	SWFAGLFYL	PRIFVNMAMI	DVPRGNPEYV	RLSGMAVRLY	RFMSPL
40	orf102-1	MMFSWFKLFHLFFV	ISWFAGLFYL	PRIFVNMAMI	DVPRGNPEYV	RLSGMAVRLY	RFMSPL
		10	20	30	40	50	60
		70	80	90	100	110	120
	orf102a.pep	GFGAVVFGAAIPFA	AGWWGSGWVH	VKLCLGLMLL	AYQLYCGVLI	RRFQDYSNAF	SHRWYR
45	orf102-1	GFGAVVFGAAIPFA			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	RRFODYSNAF	
	011102-1	70	80	90	100	110	120
		130	140				
50	orf102a.pep	VFNEIPVLLMVAAL					
	orf102-1	VFNEIPVLLMVAAL					
		130	140				

55 Homology with a predicted ORF from N. gonorrhoeae

ORF102 shows 97.9% identity over a 142 aa overlap with a predicted ORF (ORF102ng) from N. gonorrhoeae:

	orf102.pep orf102ng		i0 i0
5	orf102.pep	GFGAVVFGAAIPFAAGWWGSGWVHVKLCLGLMLLAYQLYCGVLLRRFQDYSNAFSHRWYR 12	
•	orf102ng		-
	orf102.pep	VFNEIPVLLMVAALYXVVFKPF 142	•
10	orf102ng		
	The complete lengt	h ORF102ng nucleotide sequence <seq 763="" id=""> is:</seq>	
15	51 GT 101 TT 151 GT 201 CG 251 AC	GATGTTTT CTTGGTTCAA GCTGTTTCAC TTGTTTTTTG TCATTTCGTG TTGCAGGG CTGTTTTACC TGCCGAGGAT TTTCGTCAAT ATGGCGATGA GATGCGCC GCGCGGCAAT CCCGAGTATG TGCGCCTGTC GGGGATGGCG GCGGTTGT ACCGTTTTAT GTCGCCTTTG GGTTTCGGCG CGGTCGTGTT GCGCGGCG ATACCGTTTG CCGCCGGCG GTGGGGCAGC GGCLGGGTTC GTCAAACT GTGTTTGGGC TTGATGCTCT TGGCTTATCA GTTGTATTGC CGTGCTGC TGCGCCGTTT TCAGGATTAC AGCAATGCTT TTTCACACCG	
20	351 CT	GGTACCGC GTGTTCAAcg aAATCCCCGT GCTGCTGATG GTTGCCGCGC TATCTGGT CGTGTTCAAA CCGTTTTGA	
		ein having amino acid sequence <seq 764="" id="">:</seq>	
25	1 <u>MM</u> 51 VR	FSWFKLFH LFFVISWFAG LFYLPRIFVN MAMIDAPRGN PEYVRLSGMA LYRFMSPL GFGAVVFGAA IPFAAGRWGS GWVHVKLCLG IMLLAYOLYC	
23		LLRRFODY SNAFSHRWYR VENEIPVLLM VAALYLVVEK PF* F102-1 show 98.6% identity in 142 aa overlap:	
	Old Tozing and Old	10 00 00	
30	orf102-1.pep orf102ng	10 20 30 40 50 60 MMFSWFKLFHLFFVISWFAGLFYLPRIFVNMAMIDVPRGNPEYVRLSGMAVRLYRFMSPL	
35	orf102-1.pep orf102ng	70 80 90 100 110 120	
40	orf102-1.pep	130 140 VFNEIPVLLMVAALYLVVFKPFX	
	In addition, ORF10	2ng shows significant homology to a membrane protein from H.pylori:	
45	gi 2314656 ({Helicobacte Score = 79.	AE000647) conserved hypothetical integral membrane protein r pylori] Length = 148 2 bits (192), Expect = 1e-14 = 50/147 (34%), Positives = 68/147 (46%), Gaps = 13/147 (8%)	
50	Query: 3 F	SWFKLFHLFFVISWFAGLFYLPRIFVNMAMIDAPRGNPEYVRLSGMAVRLYRFMSPLGF 62	
		W K FH+ VISW A LFYLPR+FV A + V++ +LY F++ LWVKAFHVIAVISWMAALFYLPRLFVYHAENAHKKEFVGVVQIQEKKLYSFIASPAM 65	
55	G	AVVFGAAIPFAAGRWGSGWVHVKLCLGLMLLAYQLYCGVLLRRFQDYSNAFS 115 + + F +G GW+H KL L ++LLAY YC +R + + FTLITGILMLLIEPTLFKSGGWLHAKLALVVLLLAYHFYCKKCMRELEKDPTRRN 121	
		RWYRVFNEIPXXXXXXXXXXXXFKPF 142	
60	. / / / / / / / /	R+YRVFNE P KPF RFYRVFNEAPTILMILIVILVVVKPF 148	

Based on this analysis, it is predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 91

The following partial DNA sequence was identified in N. meningitidis <SEO ID 765>:

```
5
                   ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG CGGCGGCAGC
                   GGTTTGGGGC GGATGGTCTT AACTGAAGCC CGAGCCGCAC GTGCTTGATA
                51
                   TTACGGAAAC GGTCAGGCGC GGC // .....
               //.. ATTTCGTTTA CGATTTTGTC CGAACCGGAT ACGCCGATTA AGGCGAAGCT
                51 CGACAGCGTC GACCCCGGGC TGACCACGAT GTCGTCGGGC GGTTACAACA
10
               101 GCAGTACGGA TACGGCTTCC AATGCGGTCT ACTATTATGC CCGTTCGTTT
               151 GTGCCGAATC CGGACGGCAA ACTCGCCACG GGGATGACGA CGCAGAATAC
               201
                    GGTTGAAATC GACGGCGTGA AAAATGTGCT GATTATTCCG TCGCTGACCG
                   TGAAAAATCG CGGCGGCAAG GCGTTTGTGC GCGTGTTGGG TGCGGACGGC
               251
               301 AAGGCGGCGG AACGCGAAAT CCGGACCGGT ATGAGAGACA GTATGAATAC
15
                    CGAAGTAAAA AGCGGGTTGA AAGAGGGGGA CAAAGTGGTC ATCTCCGAAA
               351
                    TAACCGCCGC CGAGCAACAG GAAAGCGGCG AACGCGCCCT AGGCGGCCCG
               401
               451 CCGCGCCGAT AA
     This corresponds to the amino acid sequence <SEQ ID 766; ORF85>:
                    MAKMMKWAAV AAVAAAAVWG GWS.LKPEPH VLDITETVRR G......
20
                51
                    101
                    151
                    ...... .... .... ..... ...... ......
                    ..... I SFTILSEPDT
               201
               251
                    PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV PNPDGKLATG
                    MTTQNTVEID GVKNVLIIPS LTVKNRGGKA FVRVLGADGK AAEREIRTGM
25
               301
               351 RDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP RR*
     Further work revealed the further partial nucleotide sequence <SEQ ID 767>:
                    ..GTATCGGTCG GCGCGCAGGC ATCGGGGCAG ATTAAGATAC TTTATGTCAA
                51
                      ACTCGGGCAA CAGGTTAAAA AGGGCGATTT GATTGCGGAA ATCAATTCGA
30
               101
                      CCTCGCAGAC CAATACGCTC AATACGGAAA AATCCAAGTT GGAAACGTAT
               151
                      CAGGCGAAGC TGGTGTCGGC ACAGATTGCA TTGGGCAGCG CGGAGAAGAA
                      ATATAAGCGT CAGGCGGCGT TATGGAAGGA AAACGCGACT TCCAAAGAGG
               201
               251
                      ATTTGGAAAG CGCGCAGGAT GCGTTTGCCG CCGCCAAAGC CAATGTTGCC
               301
                      GAGCTGAAGG CTTTAATCAG ACAGAGCAAA ATTTCCATCA ATACCGCCGA
35
               351
                      GTCGGAATTG GGCTACACGC GCATTACCGC AACGATGGAC GGCACGGTGG
                      TGGCGATTCT CGTGGAAGAG GGGCAGACTG TGAACGCGGC GCAGTCTACG
               401
               451
                      CCGACGATTG TCCAATTGGC GAATCTGGAT ATGATGTTGA ACAAAATGCA
               501
                      GATTGCCGAG GGCGATATTA CCAAGGTGAA GGCGGGGCAG GATATTTCGT
               551
                      TTACGATTTT GTCCGAACCG GATACGCCGA TTAAGGCGAA GCTCGACAGC
                      GTCGACCCCG GGCTGACCAC GATGTCGTCG GGCGGTTACA ACAGCAGTAC
40
               601
               651
                      GGATACGGCT TCCAATGCGG TCTACTATTA TGCCCGTTCG TTTGTGCCGA
               701
                      ATCCGGACGG CAAACTCGCC ACGGGGATGA CGACGCAGAA TACGGTTGAA
               751
                      ATCGACGGCG TGAAAAATGT GCTGATTATT CCGTCGCTGA CCGTGAAAAA
                      TCGCGGCGGC AAGGCGTTTG TGCGCGTGTT GGGTGCGGAC GGCAAGGCGG
               801
45
               851
                      CGGAACGCGA AATCCGGACC GGTATGAGAG ACAGTATGAA TACCGAAGTA
               901
                      AAAAGCGGGT TGAAAGAGGG GGACAAAGTG GTCATCTCCG AAATAACCGC
               951
                      CGCCGAGCAA CAGGAAAGCG GCGAACGCGC CCTAGGCGGC CCGCCGCGCC
               1001
                      GATAA
      This corresponds to the amino acid sequence <SEQ ID 768; ORF85-1>:
 50
                    ..VSVGAQASGQ IKILYVKLGQ QVKKGDLIAE INSTSQTNTL NTEKSKLETY
                 1
                51
                      QAKLVSAQIA LGSAEKKYKR QAALWKENAT SKEDLESAQD AFAAAKANVA
```

Computer analysis of this amino acid sequence gave the following results:

KSGLKEGDKV VISEITAAEQ QESGERALGG PPRR*

ELKALIROSK ISINTAESEL GYTRITATMO GTVVAILVEE GOTVNAAOST PTIVOLANLD MMLNKMOIAE GDITKVKAGO DISFTILSEP DTPIKAKLDS

VDPGLTTMSS GGYNSSTDTA SNAVYYYARS FVPNPDGKLA TGMTTQNTVE IDGVKNVLII PSLTVKNRGG KAFVRVLGAD GKAAEREIRT GMRDSMNTEV

101

151 201

251

301

55

Homology with a predicted ORF from N. meningitidis (strain A)

ORF85 shows 87.8% identity over a 41aa overlap and 99.3% identity over a 153aa overlap with an ORF (ORF85a) from strain A of N. meningitidis:

```
5
                      MAKMMKWAAVAAVAAAVWGGWS-LKPEPHVLDITETVRRG
          orf85.pep
                      orf85a
                      MAKMMKWAAVAAAAAVWGGWSYLKPEPQAAYITETVRRGDISRTVSATGEISPSNLVS
                             10
                                       20
                                                30
                                                         40
                                                                  50
10
                                                  80
                                                            90
                                                                    100
          orf85.pep
                                                  .ISFTILSEPDTPIKAKLDSVDPGLTTMSSG
                                                   orf85a
                      TIVQLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDTPIKAKLDSVDPGLTTMSSG
                    210
                              220
                                       230
                                                 240
                                                          250
15
                              120
                     110
                                        130
                                                  140
                                                           150
                      GYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLIIPSLTVKNRGGK
          orf85.pep
                      GYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLIIPSLTVKNRGGR
          orf85a
20
                    270
                              280
                                       290
                                                300
                                                          310
                     170
                               180
                                        190
                                                  200
                                                           210
                                                                     220
          orf85.pep
                      AFVRVLGADGKAAEREIRTGMRDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGGP
                      25
          orf85a
                      AFVRVLGADGKAAEREIRTGMRDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGGP
                    330
                              340
                                       350
                                                 360
                                                          370
                                                                    380
                     230
          orf85.pep
                      PRRX
30
                      1111
          orf85a
                      PRRX
                    390
     The complete length ORF85a nucleotide sequence <SEO ID 769> is:
                   ATGGCAAAAA TGATGAAATG GGCGGCTGTT GCGGCGGTCG CGGCGGCAGC
35
               51
                   GGTTTGGGGC GGATGGTCTT ATCTGAAGCC CGAGCCGCAG GCTGCTTATA
               101
                   TTACGGAAAC GGTCAGGCGC GGCGACATCA GCCGGACGGT TTCTGCAACA
               151
                   GGGGAGATTT CGCCGTCCAA CCTGGTATCG GTCGGCGCGC AGGCATCGGG
               201
                   GCAGATTAAG AAACTTTATG TCAAACTCGG GCAACAGGTT AAAAAGGGCG
               251
                   ATTTGATTGC GGAAATCAAT TCGACCTCGC AGACCAATAC GCTCAATACG
40
               301
                   GAAAAATCCA AATTGGAAAC GTATCAGGCG AAGCTGGTGT CGGCACAGAT
               351
                   TGCATTGGGC AGCGCGGAGA AGAAATATAA GCGTCAGGCG GCGTTGTGGA
               401
                   AGGATGATGC GACCGCTAAA GAAGATTTGG AAAGCGCACA GGATGCGCTT
               451
                   GCCGCCGCCA AAGCCAATGT TGCCGAGCTG AAGGCTCTAA TCAGACAGAG
               501
                   CAAAATTTCC ATCAATACCG CCGAGTCGGA ATTGGGCTAC ACGCGCATTA
45
               551
                   CCGCAACGAT GGACGCACG GTGGTGGCGA TTCTCGTGGA AGAGGGGCAG
               601
                   ACTGTGAACG CGGCGCAGTC TACGCCGACG ATTGTCCAAT TGGCGAATCT
               651
                   GGATATGATG TTGAACAAAA TGCAGATTGC CGAGGGCGAT ATTACCAAGG
               701
                    TGAAGGCGGG GCAGGATATT TCGTTTACGA TTTTGTCCGA ACCGGATACG
               751
                    CCGATTAAGG CGAAGCTCGA CAGCGTCGAC CCCGGGCTGA CCACGATGTC
50
               801
                    GTCGGGCGGC TACAACAGCA GTACGGATAC GGCTTCCAAT GCGGTCTACT
               851
                   ATTATGCCCG TTCGTTTGTG CCGAATCCGG ACGGCAAACT CGCCACGGGG
               901
                    ATGACGACGC AGAATACGGT TGAAATCGAC GGTGTGAAAA ATGTGCTGAT
               951
                    TATTCCGTCG CTGACCGTGA AAAATCGCGG CGGCAGGGCG TTTGTGCGCG
              1001
                    TGTTGGGTGC AGACGGCAAG GCGGCGGAAC GCGAAATCCG GACCGGTATG
55
              1051
                    AGAGACAGTA TGAATACCGA AGTAAAAAGC GGGTTGAAAG AGGGGGACAA
                    AGTGGTCATC TCCGAAATAA CCGCCGCCGA GCAGCAGGAA AGCGGCGAAC
              1101
                    GCGCCCTAGG CGGCCGCCG CGCCGATAA
              1151
     This encodes a protein having amino acid sequence <SEQ ID 770>:
                 1
                    MAKMMKWAAV AAVAAAAVWG GWSYLKPEPQ AAYITETVRR GDISRTVSAT
60
                51
                    GEISPSNLVS VGAQASGQIK KLYVKLGQQV KKGDLIAEIN STSQTNTLNT
               101
                    EKSKLETYQA KLVSAQIALG SAEKKYKRQA ALWKDDATAK EDLESAQDAL
```

AAAKANVAEL KALIRQSKIS INTAESELGY TRITATMDGT VVAILVEEGQ

TVNAAQSTPT IVQLANLDMM LNKMQIAEGD ITKVKAGQDI SFTILSEPDT PIKAKLDSVD PGLTTMSSGG YNSSTDTASN AVYYYARSFV PNPDGKLATG

MTTONTVEID GVKNVLIIPS LTVKNRGGRA FVRVLGADGK AAEREIRTGM

151 201

251

65

351 RDSMNTEVKS GLKEGDKVVI SEITAAEQQE SGERALGGPP RR* ORF85a and ORF85-1 show 98.2% identity in 334 aa overlap:

			40	50	60	70	80	
	orf85a.pep	PQAAYITETV	RRGDISRTV	SATGEISP	SNLVSVGAQA	SGQIKKLYVK	LGQQVKKGDI	LIAE
5	orf85-1					 SGOIKILYVK		
	01182-1				10101321	10	20	30
					100	130	140	
10		90 1	00 Naercri ed	110	120 OTALGSAFKK	130 YKRQAALWKDI		SAOD
10	orf85a.pep	1111111111	111111111		111111111	1111111:	: :	1111
	orf85-1	INSTSQTNTI	NTEKSKLET	TYQAKLVSA	QIALGSAEKK	YKRQAALWKE	NATSKEDLE	SAQD
		40	5	50 '	60	70	80	90
15		150 1	60	170	180	190	200	
13	orf85a.pep	ALAAAKANVA	ELKALIROS	KISINTAE	SELGYTRITA	TMDGTVVAIL	VEEGQTVNA	AQST
	•	1:11111111	311111111		11111111111	11111111111	11111111	1111
	orf85-1				SELGYTRITA 120	TMDGTVVAIL	VEEGQTVNA 140	AQST 150
20		100	1.	10	120	130	140	130
20			20	230	240	250	260	
	orf85a.pep	PTIVQLANLI	MMLNKMQI	AEGDITKVI	(AGQDISFTII	SEPDTPIKAK	LDSVDPGLT	TMSS
	orf85-1	POTYOT ANT	MMINKMOTI			 SEPDTPIKAK	T.DSVDPGT.T	TMSS
25	01183-1	160		70	180	190	200	210
23								
	40.5	270	280	290	300	310 TVEIDGVKNV	320	NEC
	orf85a.pep	GGYNSSTDTA	ASNAVYYYA.	KSEVPNPDC	SKLATGMIT <u>O</u> F		111111111	1111
30	orf85-1	GGYNSSTDT	SNAVYYYA	RSFVPNPDO	KLATGMTTQ	TVE IDGVKNV	LIIPSLTVK	NRGG
	-	22	2	30	240	250	260	270
		330	340	350	360	370	380	
	orf85a.pep	RAFVRVLGA	OGKAAERE I	RTGMRDSM	NTEVKSGLKE	DKVVISEITA	AEQQESGER	RALGG
35		:111111111	111111111	111111111			111111111	1111
	orf85-1			RTGMRDSM 90	NTEVKSGLKE(300	GDKVVISEITA 310	AEQQESGER 320	RALGG 330
		28	0 2	90	300	310	320	330
		390						
40	orf85a.pep	PPRRX						
	orf85-1	 PPRRX						
		renna 1 · Ct 1				A NADIJI		ODEC
		1 ((7) 1	1 1			- ^ ^ 11111 -		

Figure 19D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF85a..

Homology with a predicted ORF from N.gonorrhoeae

ORF85 shows a high degree of identity with a predicted ORF (ORF85ng) from N.gonorrhoeae:

	ORF85	1	MAKMMKWAAVAAAAVWGGWS.LKPEPHVLDITETVRRG
	ORF85ng	1	MAKMMKWAAVAAVAAAAVWGGWSYLKPEPQAAYITEAVRRGDISRTVSAT 50
50			
30	ORF85		
	ORF85ng	201	TVNAAQSTPTIVQLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDT 250
55	ORF85	251	PIKAKLDSVDPGLTTMSSGGYNSSTDTASNAVYYYARSFVPNPDGKLATG 300
	ORF85ng	251	PIKAKLDSVDPGLTTMSSGGYNSSTDTASNAVYYYARSFVPNPDGKLATG 300
60	ORF85	301	MTTONTVEIDGVKNVLIIPSLTVKNRGGKAFVRVLGADGKAAEREIRTGM 350
00	ORF85ng	301	MTTQNTVEIDGVKNVLLIPSLTVKNRGGKAFVRVLGADGKAVEREIRTGM 350
	ORF85	152	RDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGGPPRR 393
65	ORF85ng	351	KDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGGPPRR 393

The complete length ORF85ng nucleotide sequence <SEQ ID 771> is:

	1 51				GCGGCGGTCG CGAACCGCAG		
5	101 151 201	TTACGGAaac GgcgAGATTT	ggTCAGGCGC CGCCGTCCAA	GGCGATATCA CCTGGTATCG	GCCGGACGGT GTCGGCGCGC GCAACAGGTC	TTCCGCGACG AGGCTTCGGG	:
	251 301 351	GAAAAATCCA	AATTGGAAAC	GTATCAGGCG	AGACCAACAC AAGCTGGTGT GCGTCAGGCG	CGGCACAGAT	
10	401 451 501	GCCGCCGCCA	AAGCCAATGT	TGCCGAGTTG	AAAGCGCGCA AAGGCTTTAA TTTGGGCTAC	TCAGACAGAG	
15	551 601 651	CCGCGACGAT ACTGTGAACG GGATATGATG	GGACGCACG CGGCGCAGTC TTGAACAAAA	GTGGTGGCGA TACGCCGACG TGCAGATTGC	TTCCCGTGGA ATTGTCCAAT CGAGGGCGAT	AGAGGGGCAG TGGCGAATCT ATTACCAAGG	· ·
	701 751 801	CCGATTAAGG GTCGGGCGGC	CGAAGCTCGA TACAACAGCA	CAGCGTCGAC GTACGGATAC	TTTTGTCCGA CCCGGGCTGA GGCTTCCAAT	CCACGATGTC GCGGTCTATT	; •
20	851 901 951	ATGACGACGC TATTCCGTCG	AGAATACGGT CTGACCGTGA	TGAAATCGAC AAAATCGCGG	ACGGCAAACT GGTGTGAAAA CGGCAAGGCG	ATGTGTTGCT TTCGTACGCG	;
25	1001 1051 1101	AAAGACAGTA AGTGGTCATC	TGAATACCGA	AGTGAAAAGC CCGCCGCCGA	GCGAAATCCG GGGTTGAAAG GCAGCAGGAA	AGGGGGACAA	
	This encodes a p				SEQ ID 772	>:	
	1 51 101	GEISPSNLVS EKSKLETYQA	VGAQASGQIK KLVSAQIALG	KLYVKLGQQV SAEKKYKRQA	AAYITEAVRR KKGDLIAEIN ALWKDDATSK	STTQTNTIDM EDLESAQDAI	
30	151 201 251	TVNAAQSTPT PIKAKLDSVD	IVQLANLDMM PGLTTMSSGG	LNKMQIAEGD YNSSTDTASN	TRITATMDGT ITKVKAGQDI AVYYYARSFV	SFTILSEPDT PNPDGKLATO	; ;
35	301 351 ORF85ng and C	KDSMNTEVKS	GLKEGDKVVI	SEITAAEQQE	FVRVLGADGK SGERALGGPP		
33	· ·	30	40	50	_	70 8	30
	orf85ng				VSVGAQASGQI		KKGDLIAE
40	orf85-1				VSVGAQASGQ 10	IKILYVKLGQQ 20	OVKKGDLIAE 30
45	orf85ng	1111:11	11:: 111111	11111111111	ALGSAEKKYKR	111111::11	KEDLESAQD
45	orf85-1		40	50 6	ALGSAEKKYKR 0 70	. 80	90
50	orf85ng	1:1111	11111111111	итини:	LGYTRITATMD	GTVVAIPVEEC	111111111
	orf85-1			230		140	150
55	orf85ng orf85-1	PTIVQLA 	NLDMMLNKMQI 	AEGDITKVKAG	QDISFTILSEP 	DTPIKAKLDS	VDPGLTTMSS
60	01103-1	_	_	70 18	190	200	210 20
30	orf85ng orf85-1	GGYNSST	DTASNAVYYYA	RSFVPNPDGKI	ATGMTTQNTVE	:IDGVKNVLLI 	PSLTVKNRGG
65		330		350 24	10 250	260	270

orf85ng

-431-

KAFVRVLGADGKAVEREIRTGMKDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGG

```
orf85-1
                       KAFVRVLGADGKAAEREIRTGMRDSMNTEVKSGLKEGDKVVISEITAAEQQESGERALGG
                                        290
                                                  300
                                                            310
                              280
5
                      390
          orf85ng
                       PPRRX
                       11111
          orf85-1
                       PPRRX
     In addition, ORF85ng shows significant homology to an E.coli membrane fusion protein:
10
          gi|1787104 (AE000189) o380; 27% identical (27 gaps) to 332 residues from
          membrane fusion protein precursor, MTRC_NEIGO SW: P43505 (412 aa) [Escherichia
          coli] Length = 380
           Score = 193 bits (485), Expect = 2e-48
15
           Identities = 120/345 (34%), Positives = 182/345 (51%), Gaps = 13/345 (3%)
                     PQAAYITETVRRGDISRTVSATGEISPSNLVSVGAQASGQIKKLYVKLGQQVKKGDLIAE 88
                        Y T VR GD+ ++V ATG++
                                                   V VGAQ SGQ+K L V +G +VKK L+
          Sbict: 41
                     PVPTYQTLIVRPGDLQQSVLATGKLDALRKVDVGAQVSGQLKTLSVAIGDKVKKDQLLGV 100
20
                     INSTTQTNTIDMEKSKLETYQAKLVSAQIALGSAEKKYKRQAALWKDDATSKEXXXXXXX 148
                            N I ++ L +A+ A+ L A Y RQ L + A S++
          Sbjct: 101 IDPEQAENQIKEVEATLMELRAQRQQAEAELKLARVTYSRQQRLAQTKAVSQQDLDTAAT 160
25
          Query: 149 XXXXXXXXXXXXXXXXIRQSKISINTAESDLGYTRITATMDGTVVAIPVEEGQTVNAAQST 208
                                    I++++ S++TA+++L YTRI A M G V I
                                                                     +GOTV AAO
           Sbjct: 161 EMAVKQAQIGTIDAQIKRNQASLDTAKTNLDYTRIVAPMAGEVTQITTLQGQTVIAAQQA 220
           Query: 209 PTIVQLANLDMMLNKMQIAEGDITKVKAGQDISFTILSEPDTPIKAKLDSVDPGLTTMSS 268
30
                      P I+ LA++ ML K Q++E D+ +K GQ
                                                     FT+L +P T + ++ V P
           Sbjct: 221 PNILTLADMSAMLVKAQVSEADVIHLKPGQKAWFTVLGDPLTRYEGQIKDVLP----- 273
           Query: 269 GGYNSSTDTASNAVYYYARSFVPNPDGKLATGMTTQNTVEIDGVKNVLLIPSLTVKNRGG 328
                          + + ++A++YYAR VPNP+G L MT Q +++ VKNVL IP
35
           Sbjct: 274 ----TPEKVNDAIFYYARFEVPNPNGLLRLDMTAQVHIQLTDVKNVLTIPLSALGDPVG 328
           Query: 329 KAFVRV-LGADGKAVEREIRTGMKDSMNTEVKSGLKEGDKVVISE 372
                          +V L +G+ ERE+ G ++ + E+ GL+ GD+VVI E
           Sbjct: 329 DNRYKVKLLRNGETREREVTIGARNDTDVEIVKGLEAGDEVVIGE 373
40
     Based on this analysis, it was predicted that the proteins from N.meningitidis and N.gonorrhoeae,
      and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.
      ORF85-1 (40.4kDa) was cloned in the pGex vectors and expressed in E.coli, as described above.
      The products of protein expression and purification were analyzed by SDS-PAGE. Figure 19A
```

Example 92

45

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 773>:

shows the results of affinity purification of the GST-fusion protein. Purified GST-fusion protein

was used to immunise mice, whose sera were used for Western blot (Figure 19B), FACS analysis

(Figure 19C), and ELISA (positive result). These experiments confirm that ORF85-1 is a

```
50 1 ..ATTCCCGCCA CGATGACATT TGAACGCAGC GGCAATGCTT ACAAAATCGT
51 TTCGACGATT AAAGTGCCGC TATACAATAT CCGTTTCGAG TCCGGCGGTA
101 CGGTTGTCGG CAATACCCTG CACCCTACCT ACTATAGAGA CATACGCAGG
151 GGCAAACTGT ATGCGGAAGC CAAATTCGCC GACGGCAGCG TAACTTACGG
201 CAAAGCGGGC GAGAGCAAAA CCGAGCAAAG CCCCAAGGCT ATGGATTTGT
```

surface-exposed protein, and that it is a useful immunogen.

5	TCACGCTTGC CTGGCAGTTG GCGGCAAATG ACGCGAAACT CCCCCCGGGG TCACAAAATCA CCAACGGCAA AAAACTTTAT TCCGTCGGCG GTTTGAATAA TCACGGTACA GGAAAATACA GCATAGGCGG CGTGGAAACC GAAGTCGTCA AATATCGGGT GCGGCGGGC GACGATGCGG TAATGTATTT CTCGCACCG TCCCTGAACA ATATTCCGGC ACAAATCGGC TATACCGACG ACGGCAAAAC TCATACGCTG AAACTCAAAT CGGTGCAGAT CAACGGCCAG GCAGCCAAAC CGTAA
	This corresponds to the amino acid sequence <seq 774;="" id="" orf120="">:</seq>
10	1IPATMTFERS GNAYKIVSTI KVPLYNIRFE SGGTVVGNTL HPTYYRDIRR 51 GKLYAEAKFA DGSVTYGKAG ESKTEQSPKA MDLFTLAWQL AANDAKLPPG 101 LKITNGKKLY SVGGLNKAGT GKYSIGGVET EVVKYRVRRG DDAVMYFFAP 151 SLNNIPAQIG YTDDGKTYTL KLKSVQINGQ AAKP*
	Further work revealed the complete nucleotide sequence <seq 775="" id="">:</seq>
15	1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC 51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGCACT 101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC 151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG 201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT 251 ATAGAGACAT ACGCAGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
20	301 GGCAGCGTAA CTTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC 351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG 401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC 451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
25	501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA 551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT 601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA 651 CGGCCAGGCA GCCAAACCGT AA
	This corresponds to the amino acid sequence <seq 776;="" id="" orf120-1="">:</seq>
30	1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY 201 TDDGKTYTLK LKSVQINGQA AKP*
	Computer analysis of this amino acid sequence gave the following results:
35	Homology with a predicted ORF from N.meningitidis (strain A)
	ORF120 shows 92.4% identity over a 184aa overlap with an ORF (ORF120a) from strain A of N.
	meningitidis:
40	10 20 30 orf120.pep
45	40 50 60 70 80 90 orf120.pep SGGTVVGNTLHPTYYRDIRRGKLYAEAKFADGSVTYGKAGESKTEQSPKAMDLFTLAWQL
50	100 110 120 130 140 150 orf120.pep AANDAKLPPGLKITNGKKLYSVGGLNKAGTGKYSIGGVETEVVKYRVRRGDDAVMYFFAP
55	130 140 150 160 170 180

		160 170 180
	orf120.pep	SLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX
5	orf120a	SLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX
3		ORF120a nucleotide sequence <seq 777="" id=""> is:</seq>
	•	
	51 CCT	ATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC GCCGTGC GCGTATGCGG CAGGGCTGCC CNAATCCGCC GTGCTGCACT
10	101 ATT	CCGGCAG CTACGGCATT CCCGCCACNA NNANNTNNGN ACNNNGNGNC GCTTNCA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
10	201 TTT	CGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
	251 ATA	GAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC AGCGTAA CCTACGGCAA AGCGGNNNNN ANCNNNNNNG NGCAAAGCCC
	351 CAA	GGCTATG GATTTGTTCA CGCTTGCNTG GCAGTTGGCG GCAAATGACG
15	401 CGA	AACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
	451 GTC 501 GGA	GGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT AACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA
	551 TGT	ATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
20		GACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA CCAGGCA GCCAAACCGT AA
20	• • • • • • • • • • • • • • • • • • • •	in having amino acid sequence <seq 778="" id="">:</seq>
	-	
		TFKNIFS AAILSAALPC AYAAGLPXSA VLHYSGSYGI PATXXXXXXX KIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
	101 GSV	TYGKAXX XXXXQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
25		INKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY OGKTYTLK LKSVQINGQA AKP*
		20-1 show 93.3% identity in 223 aa overlap:
	ORF120a and ORF1	
	orf120a.pep	10 20 30 40 50 60 MMKTFKNIFSAAILSAALPCAYAAGLPXSAVLHYSGSYGIPATXXXXXXXXXXXXXXIXKIVSTIK
30		114717414174141414141414144141441444444141414
	orf120-1	MMKTFKNIFSAAILSAALPCAYAAGLPQSAVLHYSGSYGIPATMTFERSGNAYKIVSTIK 10 20 30 40 50 60
		70 80 90 100 110 120
35	orf120a.pep	VPLYNIRFESGGTVVGNTLHPTYYRDIRRGKLYAEAKFADGSVTYGKAXXXXXXQSPKAM
	orf120-1	VPLYNIRFESGGTVVGNTLHPTYYRDIRRGKLYAEAKFADGSVTYGKAGESKTEQSPKAM
		70 80 90 100 110 120
40		130 140 150 160 170 180
	orf120a.pep	DLFTLAWQLAANDAKLPPGLKITNGKKLYSVGGLNKAGTGKYSIGGVETEVVKYRVRRGD
	orf120-1	DLFTLAWQLAANDAKLPPGLKITNGKKLYSVGGLNKAGTGKYSIGGVETEVVKYRVRRGD
45		130 140 150 160 170 180
10		190 200 210 220
	orf120a.pep	DAVMYFFAPSLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX
	orf120-1	DAVMYFFAPSLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX
50		190 200 210 220
	Homology with a p	redicted ORF from N.gonorrhoeae
	ORF120 shows 97	8% identity over 184 aa overlap with a predicted ORF (ORF120ng) from
	N.gonorrhoeae:	
55	orf120.pep	ipatmtfersgnaykivstikvplynirfe 30
	orf120ng	
	orf120.pep	SGGTVVGNTLHPTYYRDIRRGKLYAEAKFADGSVTYGKAGESKTEQSPKAMDLFTLAWQL 90
60		161111111111111111111111111111111111111
	orf120ng	SGGTVVGNTLHPAYYKDIRRGKLYAEAKFADGSVTYGKAGESKTEQSPKAMDLFTLAWQL 129

		AANDAKLPPGLKITNGKKLYSVGGLNKAGTGKYSIGGVETEVVKYRVRRGDDAVMYFF	11
5	orf120.pep	SLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKP 184	
		SLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKP 223	
	The complete length	ORF120ng nucleotide sequence <seq 779="" id=""> is:</seq>	
10	1 ATG	ATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC	
	51 CCT 101 ATT	CCCGTGC GCGTATGCGG CAAGGCTACC CCAATCCGCC GTGCTGCACT CCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC	
	151 AAT	GCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG	
15	251 ATA	AAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC	
		AGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC AGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG	
	401 CGA	AACTCCC CCCGGGTCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC	
20	451 GTC 501 GGA	CGGCGGCC TGAATAAGGC GGGTACGGGA AAATACAGCA TaggCGGCGT AAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATACGGTAA	
20	551 CGT	ATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT	
	601 ACC	CGACGACG GCAAAACCTA TACGCTGAAG CTCAAATCGG TGCAGATCAA GACAGGCC GCCAAACCGT AA	
	This encodes a prote	ein having amino acid sequence <seq 780="" id="">:</seq>	
25	1 MMK	TTFKNIFS AAILSAALPC AYAARLPQSA VLHYSGSYGI PATMTFERSG	
23	51 NAY	KIVSTIK VPLYNIRFES GGTVVGNTLH PAYYKDIRRG KLYAEAKFAD	
		TYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS GLNKAGTG KYSIGGVETE VVKYRVRRGD DTVTYFFAPS LNNIPAQIGY	
		OGKTYTLK LKSVQINGQA AKP*	
30	In comparison with	ORF120-1, ORF120ng shows 97.8% identity in 223 aa overlap:	
		10 20 30 40 50	60
	orf120-1.pep	MMKTFKNIFSAAILSAALPCAYAAGLPQSAVLHYSGSYGIPATMTFERSGNAYKIV	VSTIK
	orf120ng		
35		10 20 30 40 50	60
	orf120-1.pep	70 80 90 100 110 VPLYNIRFESGGTVVGNTLHPTYYRDIRRGKLYAEAKFADGSVTYGKAGESKTEQS	120
	orrizo-i.pep		11111
40	orf120ng	VPLYNIRFESGGTVVGNTLHPAYYKDIRRGKLYAEAKFADGSVTYGKAGESKTEQS 70 80 90 100 110	SPKAM 120
	orf120-1.pep	130 140 150 160 170 DLFTLAWQLAANDAKLPPGLKITNGKKLYSVGGLNKAGTGKYSIGGVETEVVKYRV	180 VRRGD
45	orf120ng		11111
	Offizong	130 140 150 160 170	180
50		190 200 210 220	
50	orf120-1.pep	DAVMYFFAPSLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX :	
	orf120ng	DTVTYFFAPSLNNIPAQIGYTDDGKTYTLKLKSVQINGQAAKPX	
		190 200 210 220	

This analysis, including the presence of a putative leader sequence in the gonococcal protein suggests that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 93

55

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 781>:

orf121.pep

```
1 ATGTATCGGA GGAAAGGGCG GGGCATCAAG CCGTGGATGG GTGCCGGTGC
                      .GCGTTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC GATACTTTGA
                 51
                     CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA CCCTTTGGTC
                101
                151
                     GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT CGATGTCTGT
5
                     GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG ATTATCGTCC
                201
                251
                     CTATGCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT GCCCCAATTA
                     ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA ATACAATCGG
                301
                351
                     CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG CTTCAGGCGC
                     ATACGGGAGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC CGTTTTGATG
                401
10
                451 AGGCAGGGCG GCAATATT..
     This corresponds to the amino acid sequence <SEQ ID 782; ORF121>:
                  1 MYRRKGRGIK PWMGAGXAFA ALVWLVFALG DTLTPFAVAA VLAYVLDPLV
                 51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF NNLASRLPQL
                101 IGFMONTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN ALKAWFPVLM
15
                151 ROGGNI..
     Further work revealed the complete nucleotide sequence <SEQ ID 783>:
                   1 ATGTATCGGA GGAAAGGCG GGGCATCAAG CCGTGGATGG GTGCCGGTGC
                      GGCGTTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC GATACTTTGA
                  51
                101
                      CTCCGTTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA CCCTTTGGTC
20
                      GAATGGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT CGATGTCTGT
                151
                201
                      GATGGTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG ATTATCGTCC
                      CTATGCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT GCCCCAATTA
                251
                      ATCGGTTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA ATACAATCGG
                301
                      CGGATATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG CTTCAGGCGC
                 351
25
                      ATACGGGAGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC CGTTTTGATG
                 401
                      AGGCAGGGCG GCAATATTGT CAGCAGTATC GGCAACCTGC TGCTGCTTCC
                 451
                      CTTGCTGCTT TACTATTTCC TGCTGGATTG GCAGCGGTGG TCGTGCGGCA
                 501
                      TTGCCAAACT GGTTCCGAGG CGTTTTGCCG GTGCTTATAC GCGCATTACA
                 551
                      GGCAATTTGA ACGAGGTATT GGGCGAATTT TTGCGCGGGC AGCTTCTGGT
AATGCTGATT ATGGGCTTGG TTTACGGTTT GGGATTGGTG CTGGTCGGGC
                 601
30
                 651
                      TGGATTCGGG GTTTGCCATC GGTATGCTTG CCGGTATTTT GGTGTTTGTC
                 701
                      CCTTATCTCG GGGCGTTTAC GGGATTGCTG CTTGCCACCG TCGCCGCCTT
                 751
                      GCTCCAGTTC GGTTCGTGGA ACGGCATCCT ATCGGTTTGG GCGGTTTTTG
                 801
                      CCGTAGGACA GTTTCTCGAA AGTTTTTTCA TTACGCCGAA AATCGTGGGA
                 851
35
                 901
                      GACCGTATCG GGCTGTCGCC GTTTTGGGTT ATCTTTTCGC TGATGGCGTT
                      CGGGCAGCTG ATGGGCTTTG TCGGAATGTT GGCGGGATTG CCTTTGGCCG
                 951
                      CCGTAACCTT GGTCTTGCTT CGCGAGGGCG TGCAGAAATA TTTTGCCGGC
                1001
                1051 AGTTTTTACC GGGGCAGGTA G
      This corresponds to the amino acid sequence <SEQ ID 784; ORF121-1>:
                      MYRRKGRGIK PWMGAGAAFA ALVWLVFALG DTLTPFAVAA VLAYVLDPLV EWLQKKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF NNLASRLPQL
40
                  51
                 101
                      IGFMONTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN ALKAWFPVLM
                      RQGGNIVSSI GNLLLLPLLL YYFLLDWQRW SCGIAKLVPR RFAGAYTRIT
                 151
                      GNLNEVLGEF LRGQLLVMLI MGLVYGLGLV LVGLDSGFAI GMLAGILVFV
PYLGAFTGLL LATVAALLQF GSWNGILSVW AVFAVGQFLE SFFITPKIVG
                 201
 45
                 251
                      DRIGLSPFWV IFSLMAFGQL MGFVGMLAGL PLAAVTLVLL REGVQKYFAG
                 301
                      SFYRGR*
       Computer analysis of this amino acid sequence gave the following results:
       Homology with a predicted ORF from N.meningitidis (strain A)
       ORF121 shows 98.7% identity over a 156aa overlap with an ORF (ORF121a) from strain A of N.
 50
       meningitidis:
                                             20
                                                       30
                                                                  40
                          MYRRKGRGIKPWMGAGXAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR
            orf121.pep
                          55
                          MYRRKGRGIKPWMDAGAAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR
            orf121a
                                                                            50
                                  10
                                             20
                                                       30
                                                                  40
                                             80
                                                       90
                                                                 100
                                                                           110
                                                                                      120
```

ASASMSVMVFSLILLLALLLIIVPMLVGOFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV

	orfl21a A	GASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV 70 80 90 100 110 120	
5		130 140 150 IDQASIIAWLQAHTGELSNALKAWFFVLMRQGGNI	
10		IDQASIIAWLQAHTGELSNALKAWFPVLMRQGGNIVSSIGNLLLLPLLLYYFLLDWQRW 130 140 150 160 170 180	
10	orf121a S	CGIAKLVPRRFAGAYTRITGNLNEVLGEFLRGQLLVMLIMGLVYGLGLVLVGLDSGFAI 190 200 210 220 230 240	
	The complete length (ORF121a nucleotide sequence <seq 785="" id=""> is:</seq>	
15		ATCGGA GGAAAGGGCG GGGCATCAAG CCGTGGATGG ATGCCGGTGC FTTGCC GCCTTGGTCT GGCTGGTTTT CGCGCTCGGC GATACTTTGA	
13	. 101 CTCC	STTTGC GGTTGCGGCG GTGCTGGCGT ATGTATTGGA CCCTTTGGTC	
		GGTTGC AGAAAAAGGG TTTGAACCGT GCATCCGCTT CGATGTCTGT GTGTTT TCCTTGATTT TGTTGTTGGC ATTATTGTTG ATTATTGTCC	
	251 CTAT	GCTGGT CGGGCAGTTC AACAATTTGG CATCGCGCCT GCCCCAATTA	
20		STTTTA TGCAGAACAC GCTGCTGCCG TGGTTGAAAA ATACAATCGG TATGTG GAAATCGATC AGGCATCTAT TATTGCGTGG CTTCAGGCGC	
	401 ATAC	GGGCGA GTTGAGCAAC GCGCTTAAGG CGTGGTTTCC CGTTTTGATG	
		AGGGCG GCAATATTGT CAGCAGTATC GGCAACCTGC TGCTGCTTCC CTGCTT TACTATTTCC TGCTGGATTG GCAGCGGTGG TCGTGCGGCA	
25		CABACT GGTTCCGAGG CGTTTTGCCG GTGCTTATAC GCGCATTACA	
		ATTTGA ACGAGGTATT GGGCGAATTT TTGCGCGGGC AGCTTCTGGT	
	* *	CTGATT ATGGGTTTGG TTTACGGCTT GGGGTTGGTG CTGGTCGGGC TTCGGG GTTTGCAATC GGTATGGTTG CCGGTATTTT GGTTTTTGTT	
••	751 CCCT	ATTTGG GCGCGTTTAC AGGACTGCTG CTGGCAACCG TCGCCGCCTT	
30		CAGTTC GGTTCGTGGA ACGGCATCTT GGCTGTTTGG GCGGTTTTTG AGGACA GTTTCTCGAA AGTTTTTTCA TTACGCCGAA AATCGTGGGA	
		GTATCG GCCTGTCGCC GTTTTGGGTT ATCTTTTCGC TGATGGCGTT	
•		CAGCTG ATGGGCTTTG TCGGAATGTT GGCCGGATTG CCTTTGGCCG	
35		AACCTT GGTCTTGCTT CGCGAGGGCG TGCAGAAATA TTTTGCCGGC TTTACC GGGGCAGGTA G	
	This encodes a protein	n having amino acid sequence <seq 786="" id="">:</seq>	
	1 MYRR	KGRGIK PWMDAGAAFA ALVWLVFALG DTLTPFAVAA VLAYVLDPLV	
		KKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF NNLASRLPQL	
40		QNTLLP WLKNTIGGYV EIDQASIIAW LQAHTGELSN ALKAWFPVLM NIVSSI GNLLLLPLLL YYFLLDWQRW SCGIAKLVPR RFAGAYTRIT	
	201 GNLN	EVLGEF LRGQLLVMLI MGLVYGLGLV LVGLDSGFAI GMVAGILVFV	
		AFTGLL LATVAALLOF GSWNGILAVW AVFAVGOFLE SFFITPKIVG LSPFWV IFSLMAFGOL MGFVGMLAGL PLAAVTLVLL REGVOKYFAG	
	351 SFYF		
45	ORF121a and ORF12	21-1 show99.2% identity in 356 aa overlap:	
		10 20 30 40 50 60	
	orf121a.pep	MYRRKGRGIKPWMDAGAAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR	
	orf121-1	MYRRKGRGIKPWMGAGAAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR	
50		10 20 30 40 50 60	
	* .	70 80 90 100 110 120	
	orf121a.pep	ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV	
55	orf121-1	ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV	
33	011121-1	70 80 90 100 110 120	
		130 140 150 160 170 180	
	orf121a.pep	130 140 150 160 170 180 EIDQASIIAWLQAHTGELSNALKAWFPVLMRQGGNIVSSIGNLLLLPLLLYYFLLDWQRW	
60	•		
	orf121-1	EIDQASIIAWLQAHTGELSNALKAWFPVLMRQGGNIVSSIGNLLLLPLLLYYFLLDWQRW 130 140 150 160 170 180	
65	orf1212 man	190 200 210 220 230 240 SCGIAKLVPRRFAGAYTRITGNINEVLGEFLRGQLLVMLIMGLVYGLGLVLVGLDSGFAI	
U)	orf121a.pep	SCOTUMEN ELVELHOW LIKE LOUDING A DOSE PROGREDANTIAGEN LA PAGED SCHAT	

PCT/IB98/01665

-437-

	orf121-1	SCGIAKLVPRRFAGA					IIIIIII LDSGFAI 240
5		250	260	270	280	290	300
,	orf121a.pep	GMVAGILVFVPYLGA	FTGLLLAT	VAALLOFGSWN	GILAVWAVFA	VGOFLESFF	ITPKIVG
	OIIIZIa. heh	11.111111111111			111:11111		1111111
	orf121-1	GMLAGILVFVPYLG?	AFTGI.I.AT	VAALLOFGSWN		VGOFLESFF	ITPKIVG
	OTITAL	250	260	270	280	290	300
10		200					
10		310	320	330	340	350	
	orf121a.pep	DRIGLSPFWVIFSL	MAFGQLMGF	VGMLAGLPLAA	VTLVLLREGV	VOKYFAGSFY	RGRX
	Olliniarbob		[]]]	111111111111111111111111111111111111111	111111111111111111111111111111111111111		1111
	orf121-1	DRIGLSPFWVIFSL	MAFGOLMGE	VGMLAGLPLA	VTLVLLREGY	VOKYFAGSFY	RGRX
15	011121-1	310	320	. 330	340	350	

Homology with a predicted ORF from N.gonorrhoeae

ORF121 shows 97.4% identity over a 156 aa overlap with a predicted ORF (ORF121ng) from

N.gonorrhoeae:

WO 99/24578

20	orf121.pep	MYRRKGRGIKPWMGAGXAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR	60
	orf121ng	MYRRKGRGIKPWMGAGAAFAALVWLVYALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR	60
25	orf121.pep	ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV	120
	orf121ng	ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV	120
	orf121.pep	EIDQASIIAWLQAHTGELSNALKAWFPVLMRQGGNI	156
30	orf121ng	EIDQASIIAWFQAHTGELSNALKAWFPVLMKQGGNIVSTIGNLLLPPLLLYYFLLDWHRW	180

An ORF121ng nucleotide sequence <SEQ ID 787> was predicted to encode a protein having amino acid sequence <SEQ ID 788>:

```
1 MYRRKGRGIK PWMGAGAAFA ALVWLVYALG DTLTPFAVAA VLAYVLDPLV
51 EWLQKKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF NNLASRLPQL
35 101 IGFMQNTLLP WLKNTIGGYV EIDQASIIAW FQAHTGELSN ALKAWFPVLM
151 KQGGNIVSTI GNLLLPPLLL YYFLLDWHRW SCGIPKLVPR RFAGAYTRIT
201 GNLNKVWGKF LRGQLLGETE RGAVVCRVGR ECWEGGGARS RPSDDGWPRW
251 GGG*
```

Further work revealed the following gonoccocal DNA sequence <SEQ ID 789>:

40	1	ATGTATCGGA	GAAAAGGACG	GGGCATCAAG	CCGTGGATGG	GTGCCGGCGC
	51	GGCGTTTGCC	GCCTTGGTCT	GGCTGGTTTA	CGCGCTCGGC	GATACTTTGA
	101	CTCCGTTTGC	GGTTGCGGCG	GTGCTGGCGT	ATGTGTTGGA	CCCTTTGGTC
	151	GAATGGTTGC	AGAAAAAGGG	TTTGAACCGT	GCATCCGCTT	CGATGTCTGT
	201	GATGGTGTTT	TCCTTGATTT	TGTTGTTGGC	ATTATTGTTG	ATTATTGTCC
45	251	CTATGCTGGT	CGGGCAGTTC	AATAATTTGG	CATCTCGCCT	GCCCCAATTA
	301	ATCGGTTTTA	TGCAGAACAC	GCTGCTGCCG	TGGTTGAAAA	ATACAATCGG
	351	CGGATATGTG	GAAATCGATC	AGGCATCTAT	TATTGCGTGG	TTTCAGGCGC
	401	ATACGGGCGA	GTTGAGCAAC	GCGCTTAAGG	CGTGGTTTCC	CGTTTTGATG
	451	AAACAGGGCG	GCAATATTGT	CAGCAGTATC	GGCAACCTGC	TGCTGCCGCC
50	501	CTTGCTGCTT	TACTATTTCC	TGCTGGATTG	GCAGCGGTGG	TCGTGCGGCA
-	551	TCGCCAAACT	GGTTCCGAGG	CGTTTTGCCG	GTGCTTATAC	GCGCATTACG
	601	GGTAATTTGA	ACGAGGTATT	GGGCGAATTT	TTGCGCGGTC	AGCTTCTGGT
	651	GATGCTGATT	ATGGGCTTGG	TTTACGGTTT	GGGATTGATG	CTAGTCGGAC
	701	TGGATTCGGG	ATTTGCCATC	GGTATGGTTG	CCGGTATTTT	GGTGTTTGTC
55	751	CCCTATTTGG	GTGCGTTTAC	GGGATTGCTG	CTTGCCACTG	TTGCAGCCTT
••	801	GCTCCAGTTC	GGTTCGTGGA	ACGGAATCTT	GGCTGTTTGG	GCGGTTTTTG
•	851	CCGTCGGTCA	GTTTCTCGAA	AGTTTTTTCA	TTACGCCGAA	AATTGTAGGA
	901	GACCGTATCG	GCCTGTCGCC	GTTTTGGGTT	ATCTTTTCGC	TGATGGCGTT
	951	CGGAGAGCTG	ATGGGCTTTG	TCGGAATGTT	GGCCGGATTG	CCTTTGGCCG
60	1001	CCGTAACCTT	GGTCTTGCTT	CGCGAGGGCG	CGCAGAAATA	TTTTGCCGGC
-	1051	AGTTTTTACC	GGGGCAGGTA	. G		

This corresponds to the amino acid sequence <SEQ ID 790; ORF121ng-1>:

```
MYRRKGRGIK PWMGAGAAFA ALVWLVYALG DTLTPFAVAA VLAYVLDPLV
                  EWLQKKGLNR ASASMSVMVF SLILLLALLL IIVPMLVGQF NNLASRLPQL
              51
             101
                  IGFMONTLLP WLKNTIGGYV EIDQASIIAW FQAHTGELSN ALKAWFPVLM
                  KQGGNIVSSI GNLLLPPLLL YYFLLDWQRW SCGIAKLVPR RFAGAYTRIT
5
             151
             201
                  GNLNEVLGEF LRGQLLVMLI MGLVYGLGLM LVGLDSGFAI GMVAGILVFV
             251
                  PYLGAFTGLL LATVAALLQF GSWNGILAVW AVFAVGQFLE SFFITPKIVG
             301
                  DRIGLSPFWV IFSLMAFGEL MGFVGMLAGL PLAAVTLVLL REGAQKYFAG
                  SFYRGR*
             351
10
    ORF121ng-1 and ORF121-1 show 97.5% identity in 356 aa overlap:
                             10
                                               30
                                                       40
                                                                50
                                                                         60
         orf121-1.pep
                      MYRRKGRGIKPWMGAGAAFAALVWLVFALGDTLTPFAVAAVLAYVLDPLVEWLOKKGLNR
                       orf121ng-1
                      MYRRKGRGIKPWMGAGAAFAALVWLVYALGDTLTPFAVAAVLAYVLDPLVEWLQKKGLNR
15
                             10
                                      20
                                               30
                                                       40
                                                                50
                             70
                                      80
                                               90
                                                       100
                                                               110
         orf121-1.pep
                      ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMONTLLPWLKNTIGGYV
                      20
         orf121ng-1
                      ASASMSVMVFSLILLLALLLIIVPMLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYV
                             70
                                      80
                                               90
                                                       100
                                                               110
                            130
                                     140
                                              150
                                                       160
                       EIDQASIIAWLQAHTGELSNALKAWFPVLMRQGGNIVSSIGNLLLLPLLLYYFLLDWORW
25
                       orf121ng-1
                      EIDQASIIAWFQAHTGELSNALKAWFPVLMKQGGNIVSSIGNLLLPPLLLYYFLLDWQRW
                            130
                                     140
                                              150
                                                      160
                                                               170
                            190
                                     200
                                              210
                                                       220
                                                               230
                                                                        240
30
         orf121-1.pep
                      SCGIAKLVPRRFAGAYTRITGNLNEVLGEFLRGOLLVMLIMGLVYGLGLVLVGLDSGFAI
                       orf121ng-1
                       SCGIAKLVPRRFAGAYTRITGNLNEVLGEFLRGQLLVMLIMGLVYGLGLMLVGLDSGFAI
                            190
                                     200
                                              210
                                                       220
                                                               230
                                                                        240
35
                            250
                                     260
                                              270
                                                       280
                                                                290
         orf121-1.pep
                       GMLAGILVFVPYLGAFTGLLLATVAALLQFGSWNGILSVWAVFAVGOFLESFFITPKIVG
                       GMVAGILVFVPYLGAFTGLLLATVAALLQFGSWNGILAVWAVFAVGQFLESFFITPKIVG
         orf121ng-1
                             250
                                     260
                                              270
                                                       280
                                                                290
40
                             310
                                     320
                                              330
                                                       340
         orf121-1.pep
                       DRIGLSPFWVIFSLMAFGQLMGFVGMLAGLPLAAVTLVLLREGVQKYFAGSFYRGRX
                       orf121ng-1
                       DRIGLSPFWVIFSLMAFGELMGFVGMLAGLPLAAVTLVLLREGAQKYFAGSFYRGRX
45
                             310
                                     320
                                              330
                                                       340
     In addition, ORF121ng-1 shows homology to a permease from H.influenzae:
          sp|P43969|PERM HAEIN PUTATIVE PERMEASE PERM HOMOLOG Length = 349
          Score = 69.9 \text{ bits (168)}, Expect = 2e-11
          Identities = 67/317 (21%), Positives = 120/317 (37%), Gaps = 7/317 (2%)
50
                   VYALGDTLTPFAVAAVLAYVLDPLVEWL-QKKGLNRASASMSVMVFSXXXXXXXXXXXVP 84
         Query: 26
                   +Y GD + P +A VL+Y+L+ + +L Q
                                                 R A++ +
                   IYFFGDLIAPLLIALVLSYLLEIPINFLNQYLKCPRMLATILIFGSFIGLAAVFFLVLVP 91
          Sbjct: 32
55
                   MLVGQFNNLASRLPQLIGFMQNTLLPWLKNTIGGYVE-IDQASIIAWFQAHTGELSNALK 143
         Query: 85
                   ML Q +L S LP +
                                     N
                                         WL N
                                                 Y E ID + + + F +
          Sbjct: 92 MLWNQTISLLSDLPAMF----NKSNEWLLNLPKNYPELIDYSMVDSIFNSVREKILGFGE 147
          Query: 144 AWFPVLMKQGGNIVSSIGNXXXXXXXXXXXXXDWQRWSCGIAKLVPRRFAGAYTRITGNL 203
60
                                                     G+++ +P+
          Sbjct: 148 SAVKLSLASIMNLVSLGIYAFLVPLMMFFMLKDKSELLQGVSRFLPKNRNLAFXRWK-EM 206
          G+ V VPY
65
          Sbjct: 207 QQQISNYIHGKLLEILIVTLITYIIFLIFGLNYPLLLAFAVGLSVLVPYIGAVIVTIPVA 266
```

```
Query: 264 XXXXXQFGSWNGILAVWAVFAVGQFLESFFITPKIVGDRIGLSPFWVIFSLMAFGELMGF 323
QFG + FAV Q L+ + P + + L P + I S++ FG L GF
Sbjct: 267 LVALFQFGISPTFWYIIIAFAVSQLLDGNLLVPYLFSEAVNLHPLIIIISVLIFGGLWGF 326
Query: 324 VGMLAGLPLAAVTLVLL 340
G+ +PLA + ++
Sbjct: 327 WGVFFAIPLATLVKAVI 343
```

Based on this analysis, including the presence of a putative leader sequence and transmembrane domains in the two proteins, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 94

5

10

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 791>:

```
..ACTGCTTTTT CGGCGGCGCT GCGCTTGAGT CCATCATGAC TCGTCATATT
                       TTTGTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC TTAACATTTT
                 51
15
                       TTTGCACGTC CTGCCCGCCG CGTTCAAATG CGTACCAGCA ATACCGCCGC
                101
                       CTGCGCCTCT ATGCCTTCCA TCCGCCCGAG ATAGCCGAGT TTTTCGTTGG
                151
                       TTTTGCCTTT GATGTTGACG CACGAAATGT CTATGCCCAA ATCGGCGGCG
                201
                       ATGTTGGCAC GCATTTGCGG AATGTGCGGC GCGAGTGTGG GTTTCTGTGC
                251
                       AATCACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC GCCTGAACGC
20
                301
                       TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC TTTGAACTCT
                351
                       GCGGCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC CTGCCGCACC
                401
                       GAGCAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA TCGGAGTGTC
                451
                       CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG TATCAG..
                501
```

25 This corresponds to the amino acid sequence <SEQ ID 792; ORF122>:

```
1 ..TAFSAALRLS PSXLVIFLSF GKPYQQTAAI LTFFCTSCPP RSNAYQQYRR
51 LRLYAFHPPE IAEFFVGFAF DVDARNVYAQ IGGDVGTHLR NVRRECGFLC
101 NHGRIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM AADIAQTCRT
151 EQRVGNGVQQ RIGIGVSEQP FFKWDFNSAK YQ..
```

30 Further work revealed the complete nucleotide sequence <SEQ ID 793>:

```
1 ATATCGTACT GGGCAAGCAG TTCGCCGGAT TTTTTGGAAG TAGATACCGC
                    GCCTTTGATT TTTTTGCCGC TCTTACCCAA GGCTTCGATG AAAAAGTTGA
                    TGGTCGAGCC GGTACCGATG CCGATATATT CATTTTCGGG TACGAATTCG
               101
                    ACTGCTTTTT CGGCGGCGAT GCGCTTGAGT TCGTCTTGTG TCGTCATATT
                    TTTGTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC TTAACATTTT
35
               201
                    TTTGCACGTC CTGCCCGCCG CGTTCAAATG CGTACCAGCA ATACCGCCGC
               251
                    CTGCGCCTCT ATGCCTTCCA TCCGCCCGAG ATAGCCGAGT TTTTCGTTGG
               301
                351 TTTTGCCTTT GATGTTGACG CACGAAATGT CTATGCCCAA ATCGGCGGCG
                401 ATGTTGGCAC GCATTTGCGG AATGTGCGGC GCGAGTTTGG GTTTCTGTGC
                    AATCACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC GCCTGAACGC
40
                451
                    TTTGATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC TTTGAACTCT
                501
                    GCGGCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC CTGCCGCACC
                    GAGCAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA TCGGAGTGTC
                601
                     CGAGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG TATCAGCTTT
                651
                     CTGCCTTCGG TCAGTTGGTG GACATCGTAG CCCTGTCCGA TACGGATGTT
45
                701
                751 CGTCATCGTT TGTGTTCCTG A
```

This corresponds to the amino acid sequence <SEQ ID 794; ORF122-1>:

```
1 ISYWASSSPD FLEVDTAPLI FLPLLPKASM KKLMVEPVPM PIYSFSGTNS
51 TAFSAAMRLS SSCVVIFLSF GKPYQQTAAI LTFFCTSCPP RSNAYQQYRR
101 LRIYAFHPPE IAEFFVGFAF DVDARNVYAQ IGGDVGTHLR NVRREFGFLC
151 NHGRIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM AADIAQTCRT
201 EQRVGNGVQQ RIGIGVSEQP FFKWDFNSAK YQLSAFGQLV DIVALSDTDV
251 RHRLCS*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF122 shows 94.0% identity over a 182aa overlap with an ORF (ORF122a) from strain A of N. meningitidis:

	•	· · · · · · · · · · · · · · · · · · ·
	•	10 20 20
5	orf122.pep	10 20 30
,	OILIZZ.pep	TAFSAALRLSPSXLVIFLSFGKPYQQTAAI
	orf122a	FLPLLPKASMKKLMVEPVPMPMYSFSGTNSTAFSAAMRLSSSCVVIFLSFGKPYQQTAAI
	GIIIZZG	30 40 50 60 70 80
		30 40 30 60 70 80
10		40 50 60 70 80 90
10	orf122.pep	40 50 60 70 80 90 LTFFCTSCPPRSNAYQQYRRLRLYAFHPPEIAEFFVGFAFDVDARNVYAQIGGDVGTHLR
	Office.beb	
	orf122a	LTFFXTSCPPRSNPYQQYRRLRLYAFHAPEITEFFVGFAFXVDARNVYAQIGGDVGTHLR
	0111224	00 000 000
15		90 100 110 120 130 140
13	•	100 110 120 130 140 150
	-=f122 non	
	orf122.pep	NVRRECGFLCNHGRIDIDRLPTLRLNALIRRTQKDAAVRIFELCGGVGEMAADIAQTCRT
	6100-	
20		NMRREFGFLCNHGRIDIDRLPTLRLNALIRRTQKDAAVRIFELCGGVGEMAADIAQTCRT
20	· •	150 160 170 180 190 200

		160 170 180
		EQRVGNGVQQRIGIGVSEQPFFKWDFNSAKYQ
25		
23	orf122a	EQRVGNGVQQRIGIGVSEQPFFKWDFNSAKYQLSAFGQLVDIVALSDTDVRHRLCSX
		210 220 230 240 250
	The samulate langth	ODE100- molectide communication for the
	The complete length	ORF122a nucleotide sequence <seq 795="" id=""> is:</seq>
	1 ATA	TCATATT GGGCAAGCAG TTCACTGGAT TTTTTGGAAG TAGATACCGC
••	51 GCC	TTTGATT TTTTTGCCGC TCTTACCCAA GGCTTCGATG AAAAAGTTGA
30	101 TGG	TCGAACC GGTACCGATG CCGATGTATT CGTTTTCGGG TACGAATTCG
	151 ACT	GCNTTTT CGGCGGCGAT GCGCTTGAGT TCGTCTTGTG TCGTCATATT
	201 TTT	GTCCTTT GGGAAACCGT ATCAACAAAC AGCCGCCATC TTAACATTTT
	251 TTN	INNACGTC CTGCCCGCCG CGTTCAAATC CTTACCAGCA ATACCGCCGC
	301 CTG	CGACTCT ATGCCTTCCA TGCGCCCGAG ATAACCGAGT TTTTCGTTGG
35	351 TTT	TGCCTTT GANGTTGACG CACGAAATGT CTATGCCCAA ATCGGCGGCG
	401 ATG	TTGGCAC GCATTTGCGG AATATGCGGC GCGAGTTTGG GTTTCTGTGC
	451 AAT	CACGGTC GTATCGACAT TGACCGCCTG CCAACCCTGC GCCTGAACGC
	501 TTT	GATACGC CGCACGCAAA AGGACGCGGC TGTCCGCATC TTTGAACTCT
	551 GCG	GCGGTGT CGGGGAAATG GCTGCCGATA TCGCCCAAAC CTGCCGCACC
40	601 GAG	CAGCGCG TCGGTAACGG CGTGCAGCAG CGCATCGGCA TCGGAGTGTC
	651 CGA	AGCAGCCC TTTTTCAAAT GGGATTTCAA CTCCGCCAAG TATCAGCTTT
	701 CTG	SCCTTCGG TCAGTTGGTG GACATCGTAG CCCTGTCCGA TACGGATGTT
	751 CGT	CATCGTT TGTGTTCCTG A
		·
	This encodes a prote	ein having amino acid sequence <seq 796="" id="">:</seq>
	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45	1 ISY	WASSSLD FLEVDTAPLI FLPLLPKASM KKLMVEPVPM PMYSFSGTNS
,,,	51 TAF	SAAMRLS SSCVVIFLSF GKPYQQTAAI LTFFXTSCPP RSNPYQQYRR
	101 LRL	YAFHAPE ITEFFVGFAF XVDARNVYAQ IGGDVGTHLR NMRREFGFLC
	151 NHG	RIDIDRL PTLRLNALIR RTQKDAAVRI FELCGGVGEM AADIAQTCRT
	201 EOR	RYGNGVQQ RIGIGVSEQP FFKWDFNSAK YQLSAFGQLV DIVALSDTDV
50	251 RHR	CCS*
50	231 1411	ucs.
	ORF122a and ORF1	22-1 show 96.9% identity in 256 aa overlap:
	Old 122a and Old 1	122-1 show 70.976 identity in 230 aa overrap.
		10 20 30 40 50 60
	orf122a.pep	ISYWASSSLDFLEVDTAPLIFLPLLPKASMKKLMVEPVPMPMYSFSGTNSTAFSAAMRLS
55	orf122-1	ISYWASSSPDFLEVDTAPLIFLPLLPKASMKKLMVEPVPMPIYSFSGTNSTAFSAAMRLS
		10 20 30 40 50 60
		, 00
	•	70 80 90 100 110 120
	orf122a.pep	SSCVVIFLSFGKPYQQTAAILTFFXTSCPPRSNPYQQYRRLRLYAFHAPEITEFFVGFAF
60		
	orf122-1	SSCVVIFLSFGKPYQQTAAILTFFCTSCPPRSNAYQQYRRLRLYAFHPPEIAEFFVGFAF
		THE POST OF THE PO

-441-

			-441	-				
		70	80	90	100	110	120	
5	orf122a.pep orf122-1	11111111111	140 GDVGTHLRNMRRI : GDVGTHLRNVRRI 140	111111111	1111111111	111111111	$\Pi\Pi\Pi\Pi$	
10	orf122a.pep	111111111111	200 DIAQTCRTEQRVO DIAQTCRTEQRVO 200		111111111111111111111111111111111111111	шшпін	Шіш	
15	orf122a.pep orf122-1	250 DIVALSDTDVRH DIVALSDTDVRH 250	11111			,		
20	Homology with a pr		m <i>N.gonorrh</i>	<u>peae</u>				
	ORF122 shows 89.	6% identity over	a 182 aa ove	rlap with a	predicted	ORF (ORF	122ng)	from
	N.gonorrhoeae:							
25	orf122.pep				LRLSPSXLVI			30
	orf122ng	FLPLLPKASMKKLM		GTNSTAFSAA	MRLSSSCVVI	FLSFGKPYQQ	TAAI	80
20	orf122.pep	LTFFCTSCPPRSNA	111111111111111		11111:111	:: 11111111	1111	90
30	orf122ng	LTFFCTSWPPRSNP						40
	orf122.pep orf122ng	NVRRECGFLCNHGR NVRCEFGFLCNHGR	1111:111111	1111111111	1111111111	11:1111:11	1111	.50
35	orf122.pep	EQRVGNGVQQRIGI	GVSEQPFFKWDF	NSAKYQ		, 0.14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	182	
	orf122ng	EQRVGNGVQQRVGI			GQLVDIVALS	DTDIRHRLCS	256	
	The complete length	h ORF122ng nuc	eleotide seque	nce <seq 1<="" th=""><th>D 797> is:</th><th></th><th></th><th></th></seq>	D 797> is:			
40	1 AT	GTCGTACC GGGCAA	GCAG TTCGCCG	GAT TTTTTG	GAGG TTGAA	ACCGC		
	101 tg	CTTTGATT TTTTTA GTCGAACC GgtaCC	GATG CCGATGT	ATT CGTTTT	CGGG TACGA	ATTCG		
45	201 TT	TGCTTTTT CGGCGG TAtccttt gGGAAa	ccct atcaAca	AAc agccgc	catC TTAAC	ATTTT		
45	301 ct	TGCACGtc ctggcc gcgcctCT AtgcCT	TCCA TCCGCCC	GAG ATAGCO	GAGT TTTTC	GTTGG		
	401 AT	TTGCCTTT GATALT GTTGGCAC GCATTI	GCGG AATGTGC	GGT GCGAGT	TIGG GITTC	TGTGC		
50	501 TT	TCACGGTC GTATCG TGATACGC CGCACG	CAAA AGGACGC	GGC TGTCCG	CATC TTTGA	ACTCT		
	601 GA	GGCGGTGT CGGGAA GCAGCgcg tcggta	aCGG CGTGCAG	CAG cgcgTc	GGCA TCCGA	ATGCC		
	651 CG 701 CT	AGCAGCCC TTTTTC GCCTTCGG TCAATT	AAAT GGGATTT GGTG GACATCG	CAA CTCCGC	CAAG TATCA	GCTTT		
55	751 CG This encodes a prot	TCATCGTT TGTGTT ein having amin		e <sfo it<="" td=""><td>798></td><td></td><td></td><td></td></sfo>	798>			
	_		-	•				
60	51 T <u>A</u> 101 LR 151 NH	YRASSSPD FLEVET FSAAMRLS SSCVVI LYAFHPPE IAEFFY GRIDIDHL PTLRIA RVGNGVQQ RVGIRA RLCS*	ELSF GKPYQQT GFAF DIDARNI ALIR RTQKDAA	AAI LTFFCT DTQ IGGDVG VRI FELCGG	SWPP RSNPY THLR NVRCE VGKM AADVA	QQYRR FGFLC QTCRT		

ORF122ng and ORF122-1 show 92.6% identity in 256 aa overlap:

		10	20	30	40	. 50	60
	orf122-1.pep	ISYWASSSPDFI	EVDTAPLIFLPL	LPKASMKKLM	IVEPVPMPIYS	FSGTNSTAFS	AAMRLS
_		: 11 111111111	14:111111111	1111111111	11111111111111	11111111111	FFILL
5	orf122ng	MSYRASSSPDFI		LPKASMKKLN	IVEPVPMPMYS	FSGTNSTAFS	AAMRLS
	,	10	20	30	40	50	60
		70	80	90	100	110	120
	orf122-1.pep		(PYQQTAAILTFF				
10				111 11111			
	orf122ng	SSCVVIFLSFGE	PYQQTAAILTFF	CTSWPPRSNE	YOOYRRLRLY	AFHPPETAEF	
	_	70	- 80	90	100	110	120
		130	140	150	160	170	. 180
15	orf122-1.pep	DVDARNVYAQIO	GDVGTHLRNVRR	EFGFLCNHGF	RIDIDRLPTLE	LNALIRRTOK	DAAVRI
		1:1111::111		1111111111	1111: (111)	HIHHHÜE	піш
•	orf122ng	DIDARNIDTQI	GDVGTHLRNVRC	EFGFLCNHGF	RIDIDHLPTLE	LNALIRRTOK	DAAVRI
		130	140	150	160	170	180
00							
20		190	200	210	220	230	240
	orf122-1.pep		ADIAQTCRTEQRV	'GNGVQQRIG	[GVSEQPFFKV	densakyols:	AFGQLV
					1 :		
	orf122ng	FELCGGVGKMAZ	ADVAQTCRTEQRV				
25		190	200	210	220	230	240
25		250			•		
	orf122-1.pep	DIVALSDTDVR	IDT CCV				
	Offizz-1.pep	IIIIIIIIIII				,	
	orf122ng	DIVALSDTDIR					
30	OTTICENS	250	IVEOV				
55		230					

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 95

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 799>:

```
1 ...GCCGGCGCGA GTGCGAACAA CATTTCCGCG CGTTTTGCGG AAACACCCCGT
51 CGCTGTCAGC GTTACCCTGA TCGGCACGGT ACTTGCCGTC ATGCTGCCCG
101 TTACCGAATA TGAAAACTTC CTGCTGCTTA TCGGCTCGGT ATTTGCGCCG
151 ATGGGGCGGA TTTTGATTGC CGACTTTTTC GTCTTGAAAC GGCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 800; ORF125>:

1 ... AGASANNISA RFAETPVAVS VTLIGTVLAV MLPVTEYENF LLLIGSVFAP
51 MGGFDCRLFR LETA*

Further work revealed the complete nucleotide sequence <SEQ ID 801>:

	1	ATGTCGGGCA	ATGCCTCCTC	TCCTTCATCT	TCCTCCGCCA	TCGGGCTGAT
	51	TTGGTTCGGC	GCGGCGGTAT	CGATTGCCGA	AATCAGCACG	GGTACGCTGC
45	101	TTGCGCCTTT	GGGCTGGCAG	CGCGGTCTGG	CGGCTCTACT	TTTGGGTCAT
	151	GCCGTCGGCG	GCGCGCTGTT	TTTTGCGGCG	GCGTATATCG	GCGCACTGAC
	201	CGGACGCAGC	TCGATGGAAA	GCGTGCGCCT	GTCGTTCGGC	AAACGCGGTT
	251	CAGTGCTGTT	TTCCGTGGCG	AATATGCTGC	AACTGGCCGG	CTGGACGGCG
	- 301	GTGATGATTT	ACGCCGGCGC	AACGGTCAGC	TCCGCTTTGG	GCAAAGTGTT
50	351	GTGGGACGGC	GAATCTTTTG	TCTGGTGGGC	ATTGGCAAAC	GGCGCGCTGA
•	401	TTGTGCTGTG	GCTGGTTTTC	GGCGCACGCA	AAACAGGCGG	GCTGAAAACC
	451	GTTTCGATGC	TGCTGATGCT	GTTGGCGGTT	CTGTGGCTGA	GTGCCGAAGT
	501	CTTTTCCACG	GCAGGCAGCA	CCGCCGCACA	GGTTTCAGAC	GGCATGAGTT
	551	TCGGAACGGC	AGTCGAGCTG	TCCGCCGTGA	TGCCGCTTTC	CTGGCTGCCG
55	601	CTTGCCGCCG	ACTACACGCG	CCACGCGCGC	CGCCCGTTTG	CGGCAACCCT
	651	GACGGCAACG	CTCGCCTACA	CGCTGACCGG	CTGCTGGATG	TATGCCTTGG
	701	GTTTGGCAGC	GGCGTTGTTC	ACCGGAGAAA	CCGACGTGGC	AAAAATCCTG
	751	CTGGGCGCAG	GTTTGGGTGC	GGCAGGCATT	TTGGCGGTCG	TCCTCTCCAC

	801	CGTTACCACA	ACGTTTCTCG	ATGCCTATTC	CGCCGGCGCG	AGTGCGAACA
	851	ACATTTCCGC	GCGTTTTGCG	GAAACACCCG	TCGCTGTCGG	CGTTACCCTG
	901	ATCGGCACGG	TACTTGCCGT	CATGCTGCCC	GTTACCGAAT	ATGAAAACTT
	951	CCTGCTGCTT	ATCGGCTCGG	TATTTGCGCC	GATGGCGGCG	GTTTTGATTG
5	1001	CCGACTTTTT	CGTCTTGAAA	CGGCGTGAGG	AGATTGAAGG	CTTTGACTTT
	1051	GCCGGACTGG	TTCTGTGGCT	TGCGGGCTTC	ATCCTCTACC	GCTTCCTGCT
	1101	CTCGTCCGGC	TGGGAAAGCA	GCATCGGTCT	GACCGCCCCC	GTAATGTCTG
	1151	CCGTTGCCAT	TGCCACCGTA	TCGGTACGCC	TTTTCTTTAA	AAAAACCCAA
	1201	TCTTTACAAA	GGAACCCGTC	ATGA		

10 This corresponds to the amino acid sequence <SEQ ID 802; ORF125-1>:

```
1 MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH
51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA
101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT
151 VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP
15201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL
151 LGAGLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA ETPVAVGVTL
151 GTVLAVMLP VTEYENFLLL IGSVFAPMAA VLIADFFVLK RREEIEGFDF
1521 AGLVLWLAGF ILYRFLLSSG WESSIGLTAP VMSAVAIATV SVRLFFKKTQ
1531 AGLVLWLAGF ILYRFLLSSG WESSIGLTAP VMSAVAIATV SVRLFFKKTQ
154 AVGGALFFAA AYIGALTGRS KRGSVLFSV NMLQLAGWTA
```

20 Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF125 shows 76.5% identity over a 51aa overlap with an ORF (ORF125a) from strain A of N. meningitidis:

						10	20	30
25	orf125.pep				AGASANN	ISARFAETP	VAVSVTLIGI	VLAV
					11:111	111:::1	:11:1::::11	1:111
	orf125a	KILLGAG	SLGAAGILAV	VLSTVTTTFI	DAYSAGVSANN	IISAKLSEIP	IAVAVAVVG	LLAV
		250	260	270	280	290	300	
30			40	50	60			
	orf125.pep	MLPVTEY	ENFLLLIGS	VFAPMGGFDC	RLFRLETAX			
		:		11111:				
	orf125a	LLPVTEY	ENFLLLIGS	VFAPMAAVLI	ADFFVLKRREE	EIEG		
		310	320	330	340			

35 The ORF125a partial nucleotide sequence <SEQ ID 803> is:

	1	ATGTCGGGCA	ATGCCTCCTC	TCNTTCATCT	TCCGCCGCCA	TCGGGCTGAT	
	51	TTGGTTCGGC	GCGGCGGTAT	CGATTGCCGA	AATCAGCACG	GGTACACTGC	
	101	TTGCGCCTTT	GGGCTGGCAG	CGCGGTCTGG	CNGCTCTGCT	TTTGGGTCAT	
	151	GCCGTCGGCG	GCGCGCTGTT	TTTTGCGGCG	GCGTATATCG	GCGCACTGAC	
40	201	CGGACNCANC	TCGATGGAAA	GCGTGCGCCT	GTCGTTCGGC	AAACGCGGTT	
	251	CAGTGCTGTT	TTCCGTGGCG	AATATGCTGC	AACTGGCCGG	CTGGACGGCG	
	301	GTGATGATTT	ACGCCGGCGC	AACGGTCAGC	TCCGCTTTGG	GCAAAGTGTT	
	351	GTGGGACGGC	GAATCTTTTG	TCTGGTGGGC	ATTGGCAAAC	GGCGCGCTGA	
	401	TTGTGCTGTG	GCTGGTTTTC	GGCGCACGCA	AAACAGGCGG	GCTGAAAACC	
45	451	GTTTCGATGC	TGCTGATGCT	GTTGGCGGTT	CTGTGGCTGA	GTGCCGAANT	
	. 501	NTTTTCCACG	GCAGGCAGCA	CCGCCGCANN	GGTNNCAGAC	GGCATGAGTT	
	551	TCGGAACGGC	AGTCGAGCTG	TCCGCCGTNA	TGCCGCTTTC	TTGGCTGCCG	
	601	CTGGCCGCCG	ACTACACGCG	CCACGCGCGC	CGCCCGTTTG	CGGCAACCCT	
	651	GACGGCAACG	CTCGCCTACA	CGCTGACCGG	CTGCTGGATG	TATGCCTTGG	
50	701	GTTTGGCAGC	GGCGTTGTTC	ACCGGAGAAA	CCGACGTGGC	AAAAATCCTG	
	751	CTGGGCGCAG	GTTTGGGTGC	GGCAGGCATT	TTGGCGGTCG	TCCTGTCGAC	
	801	CGTTACCACC	ACTTTTCTCG	ATGCNTACTC	CGCCGGCGTA	AGTGCCAACA	
	851	ATATTTCCGC	CAAACTTTCG	GAAATACCNA	TCGCCGTTGC	CGTCGCCGTT	
	901	GTCGGCACAC	TGCTTGCCGT	CCTCCTGCCC	GTTACCGAAT	ATGAAAACTT	
55	951	CCTGCTGCTT	ATCGGCTCGG	TATTTGCGCC	GATGGCGGCG	GTTTTGATTG	
	1001	CCGACTTTTT	CGTCTTGAAA	CGGCGTGAGG	AGATTGAAGG	C.,	

This encodes a protein having the partial amino acid sequence <SEQ ID 804>:

¹ MSGNASSXSS SAAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH

⁵¹ AVGGALFFAA AYIGALTGXX SMESVRLSFG KRGSVLFSVA NMLQLAGWTA

10	1 VMIYAGATVS	SALGKVLWDG	ESFVWWALAN	GALIVLWLVF	GARKTGGLKT
15	1 VSMLLMLLAV	LWLSAEXFST	AGSTAAXVXD	GMSFGTAVEL	SAVMPLSWLP
20	1 LAADYTRHAR	RPFAATLTAT	LAYTLTGCWM	YALGLAAALF	TGETDVAKIL
25	1 LGAGLGAAGI	LAVVLSTVTT	TFLDAYSAGV	SANNISAKLS	EIPIAVAVĀV
5 30	1 VGTLLAVLLP	VTEYENFLLL	IGSVFAPMAA	VLIADFFVLK	RREEIEG

ORF125a and ORF125-1 show 94.5% identity in 347 aa overlap:

10	orf125a.pep	10 MSGNASSXSSSAAI	20 GLIWFGAAV:	30 SIAEISTGTLL	40 APLGWQRGLA	50 ALLLGHAVGO	60 GALFFAA
10	- 5105 1						
	orf125-1	MSGNASSPSSSSAT	GLIWEGAAV: 20	30	APLGWQRGLA 40	ALLLGHAVGO 50	GALFFAA 60
		. 10	20	30	40	50	00
	•	70	80	90	. 100	110	120
15	orf125a.pep	AYIGALTGXXSMES					
					1111111111		
	orf125-1	AYIGALTGRSSMES					
		70	. 80	90	100	110	120
20		130	140	150	160 .	170	180
	orf125a.pep	ESFVWWALANGALI	VLWLVFGAR	KTGGLKTVSML	LMLLAVLWLS	AEXFSTAGS	TAAXVXD
	•		11111111	11111111111	11111111111	11 111111	111 1
	orf125-1	ESFVWWALANGALI					
25		130	140	150	160	170	180
23		190	200	210	220	230	240
	orf125a:pep	GMSFGTAVELSAVM					
		1111111111111111				111111111	
	orf125-1	GMSFGTAVELSAVM	PLSWLPLAA	DYTRHARRPFA	ATLTATLAYT	LTGCWMYAL	GLAAALF
30		190	200	210	220	230	240
		250	260	270			
	orf125a.pep	TGETDVAKILLGAG			280	290	300
	OIIIZ3a.pcp	IIIIIIIIIIIII	IIIIIIII	11111111111			: : : :
35	orf125-1	TGETDVAKILLGAG	LGAAGTLAV	VI.ST VT TTFI.C			
		250	260	270	280	290	300
	•	310	320	220	240		
	orf125a.pep	VGTLLAVLLPVTEY		330 Kendanji ta	340	TEC	
40	orriga.beb	: : : :	711111111	ACUENTANATI		111	
	orf125-1	IGTVLAVMLPVTEY	ENFLLLIGS	TITTITTT		TEGEDEAGT:	VI.WI.ACF
		310	320	330	340	350	360

Homology with a predicted ORF from N.gonorrhoeae

ORF125 shows 86.2% identity over a 65aa overlap with a predicted ORF (ORF125ng) from N.gonorrhoeae:

An ORF125ng nucleotide sequence <SEQ ID 805> was predicted to encode a protein having amino

55 acid sequence <SEQ ID 806>:

	1	MSGNASSPSS				
	51	<u>AVGG</u> ALFFAA	AYIGALTGRS	SMESVRLSFG	KCGSVLFSVA	NMLQLAGWTA
	101				GALIVLWLVF	
	151	VSMLLMLLAV	LWLSVEVFAS	SGTNAAPAVS	DGMTFGTAVE	LSAVMPLSWL
60	201	PLAADYTRQA	RRPFAATLTA	TLAYTLTGCW	MYALGLAAAL	FTGETDVAKI
•	251	LLGAGLGITG	ILAVVLSTVT	TTFLDTYSAG	ASANNISARF	AEIPVAVGVT
	301	LIRTVLAVML	PVTEYKNFLL	LIRSVFGPMA	GGFDCRLFCL	KTA*

Further work revealed the following gonococcal DNA sequence <SEQ ID 807>:

5	1 51 101 151	TTGGTTCGGC TCGCCCCCTT	ATGCCTCCTC GCGGCGGTAT GGGCTGGCAG	CGATTGCCGA CGCGGTCTGG	AATCAGCACG CGGCCCTGCT	GGTACGCTGC TTTGGGTCAT	
3	201 251 301	CGGACGCAGC CAGTGCTGTT GTGATGATTT	GCGCGCTGTT TCGATGGAAA TTCCGTGGCG ACGTCGGCGC	GTGTGCGCCT AATATGCTGC AACGGTCAGC	GTCGTTCGGC AACTGGCCGG TCCGCTTTGG	AAATGCGGTT CTGGACGGCG GCAAAGTGTT	
10	351 401 451 501	TCGTGCTGTG GTTTCGATGC GTTCGCTTCG	GAATCCTTTG GCTGGTTTTC TGCTGATGCT TCCGGCACAA	GGCGCACGCA GCTTGCCGTG ACGCCGCGCC	GAACGGGCGG TTGTGGTTGA CGCCGTTTCA	GCTGAAAACC GCGTCGAAGT GACGGCATGA	
15	551 601 651 701	CCGCTGGCCG	GGCAGTCGAA CCGACTACAC ACGCTCGCCT GGCGGCTCTG	GCGCCAAGCA ATACGCTGAC	CGCCGCCCGT	TTGCGGCAAC ATGTATGCCT	
20	751 801 851	CTGTTGGGCG CACCGTTACC ACAACATTTC	CGGGCTTGGG ACAACGTTTC CGCGCGTTTT	CATAACGGGC TCGATACCTA GCGGAAATAC	ATTCTGGCAG TTCCGCCGGC CCGTCGCTGT	TCGTCCTCTC GCGAGTGCGA CGGCGTTACC	
20	901 951 1001 1051	CTTCCTGCTG	CGGTGCTTGC CTTATCGGCT TTTCGTCTTA TGGTTCTGTG	CGGTATTTGC AAACGGCGTG	GCCGATGGCG AGGAGATTGA	GCGGTTTTGA AGGCTTTGAC	
25	1101 1151 1201	GCTCTCGTCC	GGTTGGGAAA CATTGCCACC AAAGGAACCC	GCAGCATCGG GTATCGGTAC	TCTGACCGCC	CCCGTAATGT	
	This corresponds	s to the amin	no acid seque	nce <seq ii<="" th=""><th>O 808; ORF</th><th>125ng-1>:</th><th>,</th></seq>	O 808; ORF	125ng-1>:	,
30	1 51 101 151	AVGGALFFAA VMIYVGATVS	SAAIGLVWFG AYIGALTGRS SALGKVLWDG LWLSVEVFAS	SMESVRLSFG ESFVWWALAN	KCGSVLFSVA GALIVLWLVF	NMLQLAGWTA GARRTGGLKT	
35	201 251 301 351	PLAADYTROA LLGAGLGITG LIGTVLAVMI	RRPFAATLTA ILAVVLSTVT PVTEYKNFLL FILYRFLLSS	TLAYTLTGCW TTFLDTYSAG LIGSVFAPMA	MYALGLAAAL ASANNISARF AVLIADFFVL	FTGETDVAK <u>I</u> AE <u>IPVAVGVT</u> KRREEIEGFD	
	401 ORF125ng-1 an	QSLQRNPS*					
	-		10	20	30	40 50	60
40	orf125-1.p	11111	1111111:1111	:		WQRGLAALLLGHAVG 	1111111
45	orf125-1. _]				SVANMLQLAGW'	00 110 FAVMIYAGATVSSAI	
	orf125ng-	l AYIGA			SVANMLQLAGW'	TAVMIYVGATVSSAI 00 110	
50	orf125-1. ₁	• •		WLVFGARKTGG	LKTVSMLLMLL	60 170 AVLWLSAEVFSTAGS ::	
55	orf125ng-	1 ESFVW	WALANGALIVL 130 190		150 1	AVLWLSVEVFASSGI	180
	orf125-1.	pep DGMSE	GTAVELSAVMP	LSWLPLAADYT!	RHARRPFAATL	220 230 FATLAYTLTGCWMYA 	1111111
60	orf125ng-		190	200	210 2	TATLAYTLTGCWMYA 20 230	240
65	orf125-1.	240 pep FTGET	250 DVAKILLGAGL	260 GAAGILAVVLS	TVTTTFLDAYS	280 290 Agasannisarfaet	299 PVAVGVT
	orf125ng-		11111111111	1 :111111111	11111111111		111111

```
300
                          310
                                  320
                                          330
                                                  340
                                                         350
                    LIGTVLAVMLPVTEYENFLLLIGSVFAPMAAVLIADFFVLKRREEIEGFDFAGLVLWLAG
        orf125-1.pep
                    5
        orf125ng-1
                    LIGTVLAVMLPVTEYKNFLLLIGSVFAPMAAVLIADFFVLKRREEIEGFDFAGLVLWLAG
                         310
                                 320
                                         330
                                                 340 ·
                          370
                                  380
                                          390
                    FILYRFLLSSGWESSIGLTAPVMSAVAIATVSVRLFFKKTQSLQRNPSX
        orf125-1.pep
10
                    FILYRFLLSSGWESSIGLTAPVMSAVAIATVSVRLFFKKTQSLQRNPSX
        orf125ng-1
                          370
                                  380
                                          390
```

Based on this analysis, including the presence of putative leader sequence and transmembrane domains in the gonococcal protein, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 96

601

651

701

751

801

851 901

951

1001

1051 1101

50

55

15

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 809>:

```
ATGACCCGTA TCGCCATCCT CGGCGGCGGC CTCTCGGGAA GGCTGACCGC
20
                     GTTGCAGCTT GCAGAACAAG GTTATCAGAT TGCACTTTTC GATAAAAGCT
                 51
                101
                     GCCGCCGGGG CGAACACGCC GCCGCCTATG TAGCCGCCGC CATGCTCGCG
                     CCTGCAGCGG A.ACGGTCGA AGCCACGCCC GAAGTGGTCA GGCTGGGCAG
                151
                201
                     GCAGAGCATC CCGCTTTGGC GCGGCATCCG ATGCCGTCTG AACACGCACA
                     CGATGATGCA GGAAAACGGC AGCCTGATTG TATGGCACGG GCAGGACAAG
                251
25
                301
                     CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG GCGT.ACGGA
                     TGACGAAATC GTCCGTTGGC GCGCCGACGA CATCGCCGAA CGCGAACCGC
                351
                401
                     AACTCGGCGG ACGTTTTTAA GACGGCATCT ACCTGCCGAC CGAAGC.CAG
                     CTCGACGGC GGCAATTATA GTCTGCACTT GCCGACGCTT TGGACGAACT
                451
                501
                     GAACGTCCCC TGCCATTGGG AACACGAATG CGTCCCCGAA GCCTGCAAG..
     This corresponds to the amino acid sequence <SEQ ID 810; ORF126>:
30
                     MTRIAILGGG LSGRLTALQL AEQGYQIALF DKSCRRGEHA AAYVAAAMLA
                 51
                     PAAXTVEATP EVVRLGRQSI PLWRGIRCRL NTHTMMQENG SLIVWHGODK
                     PLSSEFVRHL KRGGXTDDEI VRWRADDIAE REPQLGGRFX DGIYLPTEXQ
                     LDGRQLXSAL ADALDELNVP CHWEHECVPE ACK...
35
     Further work revealed the complete nucleotide sequence <SEQ ID 811>:
                     ATGACCCGTA TCGCCATCCT CGGCGGCGCC CTCTCGGGAA GGCTGACCGC
                     GTTGCAGCTT GCAGAACAAG GTTATCAGAT TGCACTTTTC GATAAAGGCT
                 51
                101
                     GCCGCCGGGG CGAACACGCC GCCGCCTATG TTGCCGCCGC CATGCTCGCG
                     CCTGCGGCGG AAGCGGTCGA AGCCACGCCC GAAGTGGTCA GGCTGGGCAG
                151
40
                     GCAGAGCATC CCGCTTTGGC GCGGCATCCG ATGCCGTCTG AACACGCACA
                201
                     CGATGATGCA GGAAAACGGC AGCCTGATTG TGTGGCACGG GCAGGACAAG
                251
                301
                     CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG GCGTAGCGGA
                     TGACGAAATC GTCCGTTGGC GCGCCGACGA CATCGCCGAA CGCGAACCGC
                351
                401
                     AACTCGGCGG ACGTTTTCA GACGGCATCT ACCTGCCGAC CGAAGGCCAG
45
                     CTCGACGGC GGCAAATATT GTCTGCACTT GCCGACGCTT TGGACGAACT
                451
                501
                     GAACGTCCCC TGCCATTGGG AACACGAATG CGTCCCCGAA GGCCTGCAAG
                     CCCAATACGA CTGGCTGATC GACTGCCGCG GCTACGGCGC AAAAACCGCG
                551
```

TGGAACCAAT CCCCCGAGCA CACCAGCACC CTGCGCGGCA TACGCGGCGA AGTGGCGCG GTTTACACAC CCGAAATCAC GCTCAACCGC CCCGTGCGTC

TGCTCCATCC GCGTTATCCG CTCTACATCG CCCCGAAAGA AAACCACGTC

TTCGTCATCG GCGCGACCCA AATCGAAAGC GAAAGCCAAG CCCCGCCAG

CGTGCGTTCA GGGTTGGAAC TCTTGTCCGC ACTCTATGCC ATCCACCCCG CCTTCGGCGA AGCCGACATC CTCGAAATCG CCACCGGCCT GCGCCCCACG

CTCAACCACC ACAACCCCGA AATCCGTTAC AACCGCGCCC GACGCCTGAT

TGAAATCAAC GGCCTTTTCC GCCACGTTT CATGATCTCC CCCGCCGTAA CCGCCGCCGC CGCCAGATTG GCAGTGGCAC TGTTTGACGG AAAAGACGCG

CCCGAACGCG ATAAAGAAAG CGGTTTGGCG TATATCCGAA GACAAGATTA

This corresponds to the amino acid sequence <SEQ ID 812; ORF126-1>:

```
MTRIAILGGG LSGRLTALQL AEQGYQIALF DKGCRRGEHA AAYVAAAMLA
                    PAAEAVEATP EVVRLGRQSI PLWRGIRCRL NTHTMMQENG SLIVWHGODK
                51
               101
                    PLSSEFVRHL KRGGVADDEI VRWRADDIAE REPQLGGRFS DGIYLPTEGO
5
               151
                    LDGRQILSAL ADALDELNVP CHWEHECVPE GLQAQYDWLI DCRGYGAKTA
               201
                    WNQSPEHTST LRGIRGEVAR VYTPEITLNR PVRLLHPRYP LYIAPKENHV
                    FVIGATQIES ESQAPASVRS GLELLSALYA IHPAFGEADI LEIATGLRPT
               251
                    LNHHNPEIRY NRARRLIEIN GLFRHGFMIS PAVTAAAARL AVALFDGKDA
               301
               351
                    PERDKESGLA YIRRQD*
```

10 Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF126 shows 90.0% identity over a 180aa overlap with an ORF (ORF126a) from strain A of N. meningitidis:

```
20
                                        30
                                                40
15
        orf126.pep
                  MTRIAILGGGLSGRLTALQLAEQGYQIALFDKSCRRGEHAAAYVAAAMLAPAAXTVEATP
                  orf126a
                  MTRIAILGGGLSGRLTALQLAEQGYQIALFDKGCRRGEHAAAYVAAAMLAPAAEAVEATP
                        10
                                20
                                        30
                                                40
20
                         70
                                80
                                        90
                                               100
                                                       110
                                                              120
        orf126.pep
                  EVVRLGRQSIPLWRGIRCRLNTHTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGXTDDEI
                  EVVRLGRQXIPLWRGIRCHLKTPAMMXENGSLIVWHGQDKPLSNEFVRHLKRGGVADDXI
        orf126a
                         70
                                80
                                        90
                                               100
                                                       110
                                                              120
25
                        130
                                140
                                       150
                                               160
                                                       170
        orf126.pep
                  VRWRADDIAEREPQLGGRFXDGIYLPTEXQLDGRQLXSALADALDELNVPCHWEHECVPE
                  VRWRADDIAEREPQLGGRFSDGIYLPTEGQLDGRQILSALADALDELNVPCHWEHECAPE
        orf126a
30
                        130
                                140
                                       150
                                               160
                                                       170
```

The complete length ORF126a nucleotide sequence <SEQ ID 813> is:

	1	ATGACCCGTA	TCGCCATCCT	CGGCGGCGGC	CTCTCNGGAA	GGCTGACCGC
	51	ACTGCAGCTT	GCAGAACAAG	GTTATCAGAT	TGCACTTTTC	GATAAAGGCT
	101	GCCGCCGGGG	CGAACACGCC	GCCGCCTATG	TTGCCGCCGC	CATGCTCGCG
35	151	CCTGCGGCGG	AAGCGGTCGA	AGCCACGCCT	GAAGTGGTCA	GGCTGGGCAG
	201	GCAGANCATC	CCGCTTTGGC	GCGGCATCCG	ATGCCATCTG	AAAACGCCTG
	251	CCATGATGCA	NGAAAACGGC	AGCCTGATTG	TGTGGCACGG	GCAGGACAAA
	301	CCTTTATCCA	ACGAGTTCGT	CCGCCATCTC	AAACGCGGCG	GCGTAGCGGA
	351	TGACNAAATC	GTCCGTTGGC	GCGCCGACGA	CATCGCCGAA	CGCGAACCGC
40	401	AACTCGGCGG	ACGTTTTTCA	GACGGCATCT	ACCTGCCGAC	CGAAGGCCAG
	451	CTCGACGGGC	GGCAAATATT	GTCTGCACTT	GCCGACGCTT	TGGACGAACT
	501	GAACGTCCCC	TGCCATTGGG	AACACGAATG	TGCCCCGAA	GACTTGCAAG
	551	CCCAATACGA	CTGGCTGATC	GACTGCCGCG	GCTACGGCGC	AAAAACCGCG
	601	TGGAACCAAT	CCCCGANNA	NACCAGCACC	CTGCGCGGCA	TACGCGGCGA
45	651	AGTGGCGCGG	GTTTACACAC	CCGAAATCAC	GCTCAACCGC	CCCGTGCGCC
	701	TGCTACACCC	GCGCTATCCG	CTNTACATCG	CCCCGAAAGA	AAACCNCGTC
	751	TTCGTCATCG	GCGCGACCCA	AATCGAAAGC	GAAAGCCAAG	CACCTGCCAG
	801	CGTGCGTTCC	GGGCTGGAAC	TCTTATCCGC	ACTCTATGCC	GTCCACCCCG
	851	CCTTCGGCGA	AGCCGACATC	CTCGAAATCG	CCACCGGCCT	GCGCCCCACG
50	901	CTCAATCACC	ACAACCCCGA	AATCCGTTAC	AACCGCGCCC	GACGCCTGAT
	951	TGAAATCAAC	GGCCTTTTCC	GCCACGGTTT	CATGATCTCC	CCCGCCGTAA
	1001	CCGCCGCCGC	CGTCAGATTG	GCAGTGGCAC	TGTTTGACGG	AAAAGANGCG
	1051	CCCGAACGCG	ATGAAGAAAG	CGGTTTGGCG	TATATCCGAA	GACAAGATTA
	1101	A				

55 This encodes a protein having amino acid sequence <SEO ID 814>:

60

1	MTRIAILGGG	LSGRLTALQL	AEQGYQIALF	DKGCRRGEHA	AAYVAAAMLA
51	PAAEAVEATP	EVVRLGRQXI	PLWRGIRCHL	KTPAMMXENG	SLIVWHGQDK
101	PLSNEFVRHL	KRGGVADDXI	VRWRADDIAE	REPOLGGRES	DGIYLPTEGQ
151	LDGRQILSAL	ADALDELNVP	CHWEHECAPE	DLQAQYDWLI	DCRGYGAKTA
201					LYIAPKENXV

251 FVIGATQIES ESQAPASVRS GLELLSALYA VHPAFGEADI LEIATGLRPT 301 LNHHNPEIRY NRARRLIEIN GLFRHGFM<u>IS PAVTAAAVRL AVALF</u>DGKXA 351 PERDEESGLA YIRRQD*

ORF126a and ORF126-1 show 95.4% identity in 366 aa overlap:

5	orf126a.pep	10 MTRIAILGGGLSGRL	20	30	40	50	60
	OIIIZ0a.pep			ULALFUNGC	KRGEHAAA1V. 	AAAMLAPAAE 	AVEATP
	orf126-1	MTRIAILGGGLSGRL	TALQLAEQGY	QIALFDKGC	RRGEHAAAYV.	AAAMLAPAAE	AVEATP
10		1,0	20	30	40	50	60
10		70	80	90	100	110	120
	orf126a.pep	EVVRLGRQXIPLWRG	IRCHLKTPAN	MXENGSLIV	WHGQDKPLSN	EFVRHLKRGG	VADDXI
	orf126-1	 EVVRLGRQSIPLWRG	: : : TRCDINTHTN	MORNICSI TV			
15	011120 1	70	80	90	100	110	120
		130	140	150	160	170	180
	orf126a.pep	VRWRADDIAEREPQL	GGRFSDGIYI	PTEGQLDGR	QILSALADAL	DELNVPCHWE	HECAPE
20	5106 1		1111111111		1111111111	1111111111	111:11
20	orf126-1	VRWRADDIAEREPQL 130	GGRFSDGIYI 140	SPTEGQLDGR 150	QILSALADAL 160	DELNVPCHWE 170	HECVPE 180
		200	240	130	100	170	100
		190	200	210	220	230	240
25	orf126a.pep	DLQAQYDWLIDCRGY	GAKTAWNQSE		RGEVARVYTP		
	orf126-1	GLQAQYDWLIDCRGY	GAKTAWNQSI	PEHTSTLRGI	RGEVARVYTP.	EITLNRPVRL	LHPRYP
	•	190	200	210	220	230	240
		250	260	270	280	290	300
30	orf126a.pep	LYIAPKENXVFVIGA	TQIESESQAI	PASVRSGLEL	LSALYAVHPA	FGEADILEIA	TGLRPT
	orf126-1		! TOTESESOA:	PASVRSGLEL	 		7 CT D DT
	011110	250	260	270	280	290	300
35		310	320	330	340	350	360
	orf126a.pep	LNHHNPEIRYNRARR	LIEINGLFRE	GFMISPAVT	AAAVRLAVAL	FDGKXAPERD	EESGLA
	orf126-1		111111111		141:11111	1111 11111	:11111
	011120-1	LNHHNPEIRYNRARR 310	320	IGEMISPAVT 330	AAAARLAVAL 340	FDGKDAPERD 350	KESGLA 360
40				000	340	330	300
	orf126a.pep	YIRRQDX .					
	OIIII Oa. pep						
45	orf126-1	YIRRQDX					
45							

Homology with a predicted ORF from N.gonorrhoeae

ORF126 shows 90% identity over a 180 aa overlap with a predicted ORF (ORF126ng) from N.gonorrhoeae:

50	orf126.pep	MTRIAILGGGLSGRLTALQLAEQGYQIALFDKSCRRGEHAAAYVAAAMLAPAAXTVEATP	60
	orf126ng	MTRIAVLGGGLSGRLTALQLAEQGYQIELFDKGTRQGEHAAAYVAAAMLAPAAEAVEATP	60
	orf126.pep	EVVRLGRQSIPLWRGIRCRLNTHTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGXTDDEI	120
55	orf126ng	:	120
	orf126.pep	VRWRADDIAEREPQLGGRFXDGIYLPTEXQLDGRQLXSALADALDELNVPCHWEHECVPE	180
	orf126ng	VRWRADEIAEREPQLGGRFSDGIYLPTEGQLDGRQILSALADALDELNVPCHWEHECAPQ	180

An ORF126ng nucleotide sequence <SEQ ID 815> was predicted to encode a protein having amino 60 acid sequence <SEQ ID 816>:

¹ MTRIAVLGGG LSGRLTALQL AEQGYQIELF DKGTRQGEHA AAYVAAAMLA

PCT/IB98/01665

```
PAAEAVEATP EVIRLGRQSI PLWRGIRCRL NTLTMMQENG SLIVWHGQDK
                                   PLSSEFVRHL KRGGVADDEI VRWRADEIAE REPQLGGRFS DGIYLPTEGQ
                          101
                                  LDGRQILSAL ADALDELNVP CHWEHECAPQ DLQAQYDWVI DCRGYGAKTA
                          151
                                  WNQSPEHTST LRGIRGEVRG FTRPKSRSTA PCACCTRAIR STSPRKKTTS
                          201
                                   SSSARPKSKA KAKPPPAYVP GWNSYPRSMP STPPSAKPTS SKWRPGLRPT
 5
                          251
                                   LNHHNPEIRY SRERRLIEIN GLFRHGFMIS PAVTAAAVRL AVALFDGKDA
                          301
                                   PERDEESGLA YIGRQD*
                          351
        Further work revealed the following gonococcal DNA sequence <SEQ ID 817>:
                                   ATGACCCGTA TCGCCGTCCT CGGAGGCGGC CTTTCCGGAA GGCTGACCGC
                              1
                                   ATTGCAGCTT GCAGAACAAG GTTATCAGAT TGAACTTTTC GACAAGGGCA
10
                            51
                                   CCCGCCAAGG CGAACACGCC GCCGCCTATG TTGCCGCCGC GATGCTCGCG
                          101
                                   CCTGCGGCGG AAGCGGTCGA GGCAACGCCC GAAGTCATCA GGCTGGGCAG
                          151
                                   GCAGAGCATT CCGCTTTGGC GCGGCATCCG ATGCCGTCTG AACACGCTCA
CGATGATGCA GGAAAACGGC AGCCTGATTG TGTGGCACGG GCAGGACAAG
                          201
                          251
                                   CCATTATCCA GCGAGTTCGT CCGCCATCTC AAACGCGGCG GCGTAGCGGA
15
                          301
                                   TGACGAAATC GTCCGTTGGC GCGCCGATGA AATCGCCGAA CGCGAACCGC
                          351
                                   AACTCGGCGG ACGTTTTTCA GACGGCATCT ACCTGCCGAC CGAAGGCCAG
                           401
                                    CTCGACGGC GGCAAATATT GTCTGCACTT GCCGACGCTT TGGACGAACT
                           451
                                   GAACGTCCCT TGCCATTGGG AACACGAATG CGCCCCCCAA GACCTGCAAG
                           501
                                   CCCAATACGA CTGGGTAATC GACTGCCGGG GCTACGGCGC GAAAACCGCG
TGGAACCAAT CCCCCGAGCA CACCAGCACC TTGCGCGGCA TACGCGGCGA
20
                           551
                           601
                                    AGTGGCGCGG GTTTACACGC CCGAAATCAC GCTCAACCGC CCCGTGCGCC
                           651
                                    TGCTGCACCC GCGCTATCCG CTCTACATCG CCCCGAAAGA AAACCACGTC
                           701
                                    TTCGTCATCG GCGCGACCCA AATCGAAAGC GAAAGCCAAG CCCCCGCCAG
                           751
                                   CGTACGTTCC GGGCTGGAAC TCTTATCCGC GCTCTATGCC GTCCACCCCG
CCTTCGGCGA AGCCGACATC CTCGAAATCG CCGCCGGCCT GCGCCCCACG
 25
                           801
                           851
                                    CTCAACCACC ACAACCCCGA AATCCGCTAC AGCCGCGAAC GCCGCCTCAT
                           901
                                    CGAAATCAAC GGCCTTTTCC GGCACGGCTT TATGATTTCC CCCGCCGTAA
                           951
                                    CCGCCGCCGC CGTCAGATTG GCAGTGGCAC TGTTTGACGG AAAAGACGCG
                          1001
                                    CCCGAACGTG ATGAAGAAAG CGGTTTGGCG TATATCGGAA GACAAGATTA
 30
                          1051
                          1101 A
          This corresponds to the amino acid sequence <SEQ ID 818; ORF126ng-1>:
                                    MTRIAVLGGG LSGRLTALQL AEQGYQIELF DKGTRQGEHA AAYVAAAMLA
                                    PAAEAVEATP EVIRLGRQSI PLWRGIRCRL NTLTMMQENG SLIVWHGQDK
                              51
                                    PLSSEFVRHL KRGGVADDEI VRWRADEIAE REPOLGGRFS DGIYLPTEGO
 35
                            101
                                    LDGRQILSAL ADALDELNVP CHWEHECAPQ DLQAQYDWVI DCRGYGAKTA
                            151
                                    WNQSPEHTST LRGIRGEVAR VYTPEITLNR PVRLLHPRYP LYIAPKENHV
                            201
                                    FVIGATQIES ESQAPASVRS GLELLSALYA VHPAFGEADI LEIAAGLRPT
                            251
                                    LNHHNPEIRY SRERRLIEIN GLFRHGFMIS PAVTAAAVRL AVALFDGKDA
                            301
                            351 PERDEESGLA YIGRQD*
  40
           ORF126ng-1 and ORF126-1 show 95.1% identity in 366 aa overlap:
                                                                                                            40
                                                                                                                             50
                                                          10
                                             MTRIAILGGGLSGRLTALQLAEQGYQIALFDKGCRRGEHAAAYVAAAMLAPAAEAVEATP
                    orf126-1.pep
                                              MARCHARIA (MARCIA) (M
                                             MTRIAVLGGGLSGRLTALQLAEQGYQIELFDKGTRQGEHAAAYVAAAMLAPAAEAVEATP
  45
                    orf126ng-1
                                                          10
                                                                           20
                                                                                            30
                                                                                                            40
                                                                                                                             50
                                                                                                                                              60
                                                                                            90
                                                                                                           100
                                                                                                                           110
                                              EVVRLGRQSIPLWRGIRCRLNTHTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGVADDEI
                    orf126-1.pep
                                              50
                                              EVIRLGRQSIPLWRGIRCRLNTLTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGVADDEI
                     orf126ng-1
                                                                                            90
                                                                                                           100
                                                                                                                            110
                                                           70
                                                                           80
                                                                                                           160
                                                                          140
                                              VRWRADDIAEREPOLGGRFSDGIYLPTEGOLDGRQILSALADALDELNVPCHWEHECVPE
   55
                     orf126-1.pep
                                              VRWRADEIAEREPOLGGRFSDGIYLPTEGOLDGRQILSALADALDELNVPCHWEHECAPO
                     orf126ng-1
                                                                                                                                             180
                                                         130
                                                                                           150
                                                                                                           160
                                                                                                                            170
                                                                          140
                                                                                           210
                                                                                                           220
                                                                                                                            230
                                                                          200
    60
                                              GLQAQYDWLIDCRGYGAKTAWNQSPEHTSTLRGIRGEVARVYTPEITLNRPVRLLHPRYP
                      orf126-1.pep
                                                DLQAQYDWVIDCRGYGAKTAWNQSPEHTSTLRGIRGEVARVYTPEITLNRPVRLLHPRYP
                      orf126ng-1
                                                                                           210
                                                                                                           220
                                                                                                                            230
                                                          190
                                                                          200
    65
```

```
250
                                       260
                                                270
                                                         280
                       {\tt LYIAPKENHVFVIGATQIESESQAPASVRSGLELLSALYAIHPAFGEADILEIATGLRPT}
         orf126-1.pep
                       {\tt LYIAPKENHVFVIGATQIESESQAPASVRSGLELLSALYAVHPAFGEADILEIAAGLRPT}
         orf126ng-1
5
                                       260
                                                270
                                                                   290
                                                         280
                              310
                                       320
                                                330
                                                         340
                                                                   350
                                                                            360
                       LNHHNPEIRYNRARRLIEINGLFRHGFMISPAVTAAAARLAVALFDGKDAPERDKESGLA
         orf126-1.pep
                       10
                       LNHHNPEIRYSRERRLIEINGLFRHGFMISPAVTAAAVRLAVALFDGKDAPERDEESGLA
         orf126ng-1
                                       320
                                                330
                                                         340
                                                                   350
                       YIRRQDX
         orf126-1.pep
15
                       11 1111
         orf126ng-1
                       YIGRQDX
     Furthermore, ORF126ng-1 shows homology to a putative Rhizobium oxidase flavoprotein:
          gi|2627327 (AF004408) putative amino acid oxidase flavoprotein [Rhizobium etli]
          Length = 327
20
          Score = 169 bits (423), Expect = 3e-41
          Identities = 112/329 (34%), Positives = 163/329 (49%), Gaps = 25/329 (7%)
          Query: 3
                    RI V G G++G
                                A QL
                                      G+++ L ++
25
                    RILVNGAGVAGLTVAWQLYRHGFRVTLAERAGTVGA-GASGFAGGMLAPWCERESAEEPV 60
          Sbjct: 2
                    IRLGRQSIPLWRGIRCRLNTLTMMQENGSLIVWHGQDKPLSSEFVRHLKRGGVADDEIVR 122
          Query: 63
                    + LGR +
                                         +
                                            G+L+V G+D
                                                           F R
                    LTLGRLAADWWEAA-----LPGHVHRRGTLVVAGGRDTGELDRFSRRTS-GWEWLDEVA- 113
30
          Query: 123 WRADEIAEREPQLGGRFSDGIYLPTEGQLDGRQILSALADALDELNVPCHWEHECAPQDL 182
                        IA EP L GRF ++ E LD RO L+ALA L++ +
          Sbjct: 114 -----IAALEPDLAGRFRRALFFRQEAHLDPRQALAALAAGLEDARMRLTLG---VVGES 165
35
          Query: 183 QAQYDWVIDCRGYGAKTAWNQSPEHTSTLRGIRGEVARVYTPEITLNRPVRLLHPRYPLY 242
                       +D V+DC G
                                              LRG+RGE+ V T E++L+RPVRLLHPR+P+Y
          Sbjct: 166 DVDHDRVVDCTGAA-
                                       QIGRLPGLRGVRGEMLCVETTEVSLSRPVRLLHPRHPIY 218
          Query: 243 IAPKENHVFVIGATQIESESQAPASVRSGLELLSALYAVHPAFGEADILEIAAGLRPTLN 302
40
                    I P++ + F++GAT IES+
                                       P + RS +ELL+A YA+HPAFGEA + E AG+RP
          Sbjct: 219 IVPRDKNRFMVGATMIESDDGGPITARSLMELLNAAYAMHPAFGEARVTETGAGVRPAYP 278
          Query: 303 HHNPEIRYSRERRLIEINGLFRHGFMISP 331
                     + P R ++E R + +NGL+RHGF+++P
45
          Sbjct: 279 DNLP--RVTQEGRTLHVNGLYRHGFLLAP 305
```

This analysis suggests that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 97

The following DNA sequence, believed to be complete, was identified in N.meningitidis <SEQ ID

50 819>:

```
ATGACTGATA ATCGGGGGTT TACGCTGGTT GAATTAATAT CAGTGGTCTT
                51
                    GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT CGCAATTATG
               101
                    TTGAGAAAGC AAAGATAAAT GCAGTGCGGG CAGCCTTGTT AGAAAATGCA
                    CATTTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGGTTTA AACAAACATC
               151
55
               201
                    TACCAAGTGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC TTTTGTATCC
                    GTTTGAATGG AATCGCCGC CGGG..GCTT TAGACAGTAA ATTCATGTTG
               251
               301
                    AAGGCGGTAG CCATAGATAA AGATAAAAAT CCTTTTATTA TTAAGATGAA
                    TGAAAATCTA GTAACCTTTA ATTTGCAAGA AGTCCGCCAG TTCGTGTAGT
               401
                    GACGGGCTGG ATTATTTTAA AGGAAATGAT AAGGACTGCA AGTTACTTAA
60
               451
                    GTAG
```

5

This corresponds to the amino acid sequence <SEQ ID 820; ORF127>:

```
1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN AVRAALLENA
51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIVA RXALDSKFML
101 KAVAIDKDKN PFIIKMNENL VTFICKKSAS SCSDGLDYFK GNDKDCKLLK
151 *
```

Further work revealed the following DNA sequence <SEQ ID 821>:

```
1 ATGACTGATA ATCGGGGGTT TACGCTGGTT GAATTAATAT CAGTGGTCTT

51 GATATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT CGCAATTATG

101 TTGAGAAAGC AAAGATAAAT GCAGTGCGG CAGCCTTGTT AGAAAATGCA

102 TACCAAGTGG CCAAGTTTC CGGAAAT GGGAGGTTTA AACAAACATC

201 TACCAAGTGG CCAAGTTTC CGGATTAAAGA GGGAGGTTTA AACAAACATC

201 TACCAAGTGG AATCGCGCG GGGCTTTAG ACAGTAAATT CAGTGATGAC

201 TACCAAGTGG CAAGTTTC CATGTTAAAAAACATC TTTATTATTA AGATGAATGA

301 GCGGTAGCCA TAGATAAAGA TAAAAAATCCT TTTATTATTA AGATGAATGA

351 AAATCTAGTA ACCTTTATTT GCAAGAAGTC CGCCAGTTCG TGTAGTGACG

401 GGCTGGATTA TTTTAAAGGA AATGATAAGG ACTGCAAGTT ACTTAAGTAG
```

This corresponds to the amino acid sequence <SEQ ID 822; ORF127-1>:

- 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN AVRAALLENA 51 HFMEKFYLON GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR GALDSKFMLK
- 101 AVAIDKDKNP FIIKMNENLV TFICKKSASS CSDGLDYFKG NDKDCKLLK*
- 20 Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF127 shows 98.0% identity over a 150aa overlap with an ORF (ORF127a) from strain A of N. meningitidis:

		10	20	30	40	50	60
25	orf127.pep	MTDNRGFTLVELIS	SVVLILSVLAL	CVYPSYRNYV	EKAKINAVRA	ALLENAHFME	KFYLQN
23	-	111111111111111111111111111111111111111			 		KFYLON
	orf127a	MTDNRGFTLVELIS	20 20	30	40	50	60
		10				44.0	100
30		70	80	90	100	110	120
	orf127.pep	GRFKQTSTKWPSL		1111 11 11	111111111	, , , , , , , , , , , ,	111111
	orf127a	GRFKQTSTKWPSL	PIKEAEGFCIR	LNGI-ARGA	LDSKFMLKAV	AIDKDKNPFII	KMNENL
	02222	. 70	80	90	100	110	
35		130	140	150			
	orf127.pep	VTFICKKSASSCS	DGLDYFKGNDK	DCKLLKX			
	orf127a	VTFICKKSASSCS	DGLDYFKGNDK	DCKLLKX			
40	OILIE, W	120 130	140	150			

The complete length ORF127a nucleotide sequence <SEQ ID 823> is:

45	1 51 101 151 201 251	CTTTCAATCC	GTACTTGCTT AAAGATAAAT AAAAGTTTTA CCAAGTTTGC AATCGCGCGC	TAATTGTTTA ACAGTGCGGG TCTGCAGAAT CGATTAAAGA GGGGCCTTAG	TCCGAGCTAT CAGCCTTGTT GGGAGATTTA GGCAGAAGGC ACAGTAAATT	AGAAAATGCA AACAAACATC TTTTGTATCC CATGTTGAAG
	301	CCCCTACCCA	TAGATAAAGA	TAAAAATCCT	TTTATTATTA	AGATGAATGA
50	351 401	AAATCTAGTA	ACCTTTATTT	GCAAGAAGTC	ACTGCAAGTT	TGTAGTGACG ACTTAAGTAG
50	401	GGCIGGNIIN				

This encodes a protein having amino acid sequence <SEQ ID 824>:

- 1 MTDNRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN TVRAALLENA 51 HFMEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR GALDSKFMLK
- 101 AVAIDKDKNP FIIKMNENLV TFICKKSASS CSDGLDYFKG NDKDCKLLK*

60

d ORF127-1 show 99 3% identity in 149 as overlan-

	ORF127a and ORF1	27-1 show 99.3% identity in 149 aa overlap:
5	orf127a.pep orf127-1	10 20 30 40 50 60 MTDNRGFTLVELISVVLILSVLALIVYPSYRNYVEKAKINTVRAALLENAHFMEKFYLON
10	orf127a.pep orf127-1	70 80 90 100 110 120 GRFKQTSTKWPSLPIKEAEGFCIRLNGIARGALDSKFMLKAVAIDKDKNPFIIKMNENLV
15	orf127a.pep	130 140 150 TFICKKSASSCSDGLDYFKGNDKDCKLLKX TFICKKSASSCSDGLDYFKGNDKDCKLLKX 130 140 150
20		edicted ORF from <i>N.gonorrhoeae</i> % identity over a 150 aa overlap with a predicted ORF (ORF127ng) from
	N.gonorrhoeae:	
	٠.	MTDNRGFTLVELISVVLILSVLALIVYPSYRNYVEKAKINAVRAALLENAHFMEKFYLQN 60
25	orf127ng	
	orf127.pep orf127ng	GRFKQTSTKWPSLPIKEAEGFCIRLNGIVARXALDSKFMLKAVAIDKDKNPFIIKMNENL 120
30		VTFICKKSASSCSDGLDYFKGNDKDCKLLK 150
		vtfickksasscsdrldyfkgndkdckllk 149 ORF127ng nucleotide sequence <seq 825="" id=""> is:</seq>
35		
33	51 GAT 101 TTG 151 CAT	ACTGATA ATCGGGGGTT TACACTGGTT GAATTAATAT CAGTGGTCTT 'ATTGTCT GTACTTGCTT TAATTGTTTA TCCGAGCTAT CGCAATTATG 'AGAAAAGC AAAGATAAAT GCAGTGCGGG CAGCCTTGTT AGAAAATGCA 'TTTATGG AAAAGTTTTA TCTGCAGAAT GGGAGATTTA AACAAACATC
40	251 GTT 301 GCG 351 AAA	CAAATGG CCAAGTTTGC CGATTAAAGA GGCAGAAGGC TTTTGTATCC TGAATGG AATCGCGCG GGGGCTTTAG ACAGTAAATT CATGTTGAAG GTAGCCA TAGATAAAGA TAAAAATCCT TTTATTATTA AGATGAATGA TCTAGTA ACCTTTATTT GCAAGAAGTC CGCCAGTTCG TGTAGTGACG
		en having amino acid sequence <seq 826="" id="">:</seq>
45	1 MTI 51 HFM	ONRGFTLV ELISVVLILS VLALIVYPSY RNYVEKAKIN AVRAAFLENA MEKFYLQN GRFKQTSTKW PSLPIKEAEG FCIRLNGIAR GALDSKFMLK AIDKDKNP FIIKMNENLV TFICKKSASS CSDRLDYFKG NDKDCKLLK*
		F127-1 show 100.0% identity in 149 aa overlap:
		10 20 30 40 50 60
50	orf127-1.pep	MTDNRGFTLVELISVVLILSVLALIVYPSYRNYVEKAKINAVRAALLENAHFMEKFYLQN
	orf127ng-1	MTDNRGFTLVELISVVLILSVLALIVYPSYRNYVEKAKINAVRAALLENAHFMEKFYLQN 10 20 30 40 50. 60
55	orf127-1.pep	70 80 90 100 110 120 GRFKQTSTKWPSLPIKEAEGFCIRLNGIARGALDSKFMLKAVAIDKDKNPFIIKMNENLV
60	orf127ng-1	GRFKQTSTKWPSLPIKEAEGFCIRLNGIARGALDSKFMLKAVAIDKDKNPFIIKMNENLV 70 80 90 100 110 120
OU		

	130	140	150
orf127-1.pep	TFICKKSASSCSDG	LDYFKGNDK	DCKTTKX
OLLIZ, T.Pop	111111111111111111111111111111111111111	1111111111	111111
orf127ng-1	TFICKKSASSCSDG	LDYFKGNDK	DCKLLKX
Office and a	130	140	150

This analysis, including the fact that the predicted transmembrane domain is shared by the meningococcal and gonococcal proteins, suggests that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

10 Example 98

5

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 827>

```
..GTGTCGCTGG CTTCGGTGAT TGCCTCTCAA ATCTTCCTTT ACGAAGATTT
                     CAACCAAATG CGGAAAACCC GTGGAGCTAT CTGCGGTTTT CTTGTCCAAT
                51
                      ATTTATCTGG GGTTTCAGCA GGGGTATTTC GATTTGAGTG CCGACGAGAA
               101
                      CCCCGTACTG CATATCTGGT CTTTGGCAGT AGAGGAACAG TATTACCTCC
15
               151
                      TGTATCCCCT TTTGCTGATA TTTTGCTGCA AAAAAACCAA ATCGCTACGG
               201
                      GTGCTGCGTA ACATCAGCAT CATCCTGTTT TTGATTTTGA CTGCCTCATC
               251
                      GTTTTTGCCA AGCGGGTTTT ATACCGACAT CCTCAACCAA CCCAATACTT
               301
                      ATTACCTTTC GACACTGAGG TTTCCCGAGC TGTTGGCAGG TTCGCTGCTG
               351
                      GCGGTTTACG GGCAAACGCA AAACGGCAGA CGGCAAACAG CAAATGGAAA
20
               401
                      ACGGCAGTTG CTTTCATCAC TCTGCTTCGG CGCATTGCTT GCCTGCCTGT
               451
                      TCGTGATTGA CAAACACAAT CCGTTTATCC CGGGAATGAC CCTGCTCCTT
               501
                      CCCTGCCTGC TGACGGCACT GCTTATCCGG AGTATGCAAT ACGGGACACT
               551
                      TCCGACCCGC ATCCTGTCGG CAAGCCCCAT CGTATTTGTC GGCAAAATCT
               601
                      25
               651
                      ATTAGAGGCG GGAAACAGCT CGGACTGCCT GCCG..
               701
```

This corresponds to the amino acid sequence <SEQ ID 828; ORF128>:

```
30 ... VSLASVIASQ IFLYEDFNQM RKTVELSAVF LSNIYLGFQQ GYFDLSADEN
51 PVLHIWSLAV EEQYYLLYPL LLIFCCKKTK SLRVLRNISI ILFLILTASS
FLPSGFYTDI LNQPNTYYLS TLRFPELLAG SLLAVYGQTQ NGRRQTANGK
151 RQLLSSLCFG ALLACLFVID KHNPFIPGMT LLLPCLLTAL LIRSMQYGTL
201 PTRILSASPI VFVGKISYSL YLYHWIFIAF APLIRGGKQL GLPA..
```

Further work revealed the complete nucleotide sequence <SEQ ID 829>:

	1	ATGCAAGCTG	TCCGATACAG		GACGGATTGC	
35	51	CGTGCTATCC	GTCATGATTT	10011001	112100001	CTGCCCGGAG
33	101	GATTCCTGGG	GGTGGACATT	TTCTTTGTCA	10101101111	CCTCATTACC
	151	GGCATCATTC	TTTCTGAAAT	ACAGAACGGT	101111011	TCCGGGATTT
	201	TTATACCCGC	AGGATTAAGC	GGATTTATCC	100011111	GCGGCCGTGT
	251	CGCTGGCTTC		TCTCAAATCT	TCCTTTACGA	AGATTTCAAC
40	301	CAAATGCGGA		GCTTTCTGCG	GTTTTCTTGT	CCAATATTTA
1 0	351		CAGCAGGGGT	ATTTCGATTT	GAGTGCCGAC	GAGAACCCCG
	401	TACTGCATAT	CTGGTCTTTG	GCAGTAGAGG	AACAGTATTA	CCTCCTGTAT
	451	CCCCTTTTGC	TGATATTTTG	CTGCAAAAAA	ACCAAATCGC	
	501	GCGTAACATC	AGCATCATCC	TGTTTTTGAT	TTTGACTGCC	TCATCGTTTT
45	551		GTTTTATACC	GACATCCTCA	ACCAACCCAA	
7.7	601		TGAGGTTTCC	CGAGCTGTTG	GCAGGTTCGC	TGCTGGCGGT
	651	TTACGGGCAA	ACGCAAAACG	GCAGACGGCA	AACAGCAAAT	GGAAAACGGC
	701		ATCACTCTGC	TTCGGCGCAT	TGCTTGCCTG	CCTGTTCGTG
	751	ATTGACAAAC	ACAATCCGTT	TATCCCGGGA		
50	801	CCTGCTGACG	GCACTGCTTA	TCCGGAGTAT		ACACTTCCGA
30	851	CCCGCATCCT	GTCGGCAAGC	CCCATCGTAT		AATCTCTTAT
	901	TCCCTATACC	TGTACCATTG	GATTTTTATT	GCTTTCGCCC	ATTACATTAC
	951	AGGCGACAAA	CAGCTCGGAC	TGCCTGCCGT	ATCGGCGGTT	
	1001	CGGCCGGATT	TTCCCTGTTG	AGTTATTATT		GCCGCTTAGA
55	1051	AAACGGAAGA	TGACCTTCAA	AAAGGCATTT		ATCTCGCCCC
<i>))</i>	1101	GTCCCTGATA				ATATTGAAAC
	1151	AGGAACACCT			CCCTTGCTGC	GGAAAATCAT
	1101					

60

orf128.pep

	1201 TI	TTCCGGAAA CCGTCCTGAC CCTCGGCGAC TCGCACGCCG GACACCTGAG
	1251 GG	GGGTTTCTG GATTATGTCG GCAGCCGGGA AGGGTGGAAA GCCAAAATCC
	1301 TO	GTCCCTCGA TTCGGAGTGT TTGGTTTGGG TAGATGAGAA GCTGGCAGAC
5	1351 AA	ACCCGTTAT GTCGAAAATA CCGGGATGAA GTTGAAAAAG CCGAAGCCGT
3	1401 TT 1451 GF	TTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG CCTGTGCCGA
	. 1501 GF	ATTTGAAGC GCAATCCTTC CTAATACCCG GGTTCCCAGC CCGATTCAGG AAACCGTCA AAAGGATAGC CGCCGTCAAA CCCGTCTATG TTTTTGCAAA
	1551 CA	AACCOTCA AAAGGATAGC CGCCGTCAAA CCCGTCTATG TTTTTGCAAA AACACATCA ATCAGCCGTT CGCCCCTGAG GGAGGAAAAA TTGAAAAGAT
	1601 T7	GCCGCAAA CCAATATCTC CGCCCCATTC AGGCTATGGG CGACATCGGC
10	1651 A	AGAGCAATC AGGCGGTCTT TGATTTGATT AAAGATATTC CCAATGTGCA
	1701 TT	PGGGTGGAC GCACAAAAT ACCTGCCCAA AAACACGGTC GAAATATACG
	1751 GC	CCGCTATCT TTACGGCGAC CAAGACCACC TGACCTATTT CGGTTCTTAT
	1801 TA	ATATGGGGC GGGAATTCCA CAAACACGAA CGCCTGCTTA AATCTTCCCA
	1851 · C	GGCGGCGCA TTGCAGTAG
15	This compands to	o the emine said sequence CEO ID 920, ODE129 15
15	ims corresponds a	o the amino acid sequence <seq 830;="" id="" orf128-1="">:</seq>
	1 MQ	QAVRYRPEI DGLRAVAVLS VMIFHLNNRW LPGGFLGVDI FFVISGFLIT
	51 <u>GI</u>	ILLSEIQNG SFSFRDFYTR RIKRIYPAFI AAVSLASVIA SQIFLYEDFN
	101 QN 151 PI	MRKTVELSA VFLSNIYLGF QQGYFDLSAD ENPVLHIWSL AVEEQYYLLY
20	201 LS	LLLIFCCKK TKSLRVLRNI SIILFLILTA SSFLPSGFYT DILNOPNTYY STLRFPELL AGSLLAVYGO TONGRROTAN GKROLLSSLC FGALLACLFV
20	251 II	OKHNPFIPG MTLLLPCLLT ALLIRSMQYG TLPTRILSAS PIVFVGKISY
	301 SI	LYLYHWIFI AFAHYITGDK QLGLPAVSAV AALTAGFSLL SYYLIEQPLR
	351 KF	RKMTFKKAF FCLYLAPSLI LVGYNLYARG ILKQEHLRPL PGAPLAAENH
	401 F	PETVLTLGD SHAGHLRGFL DYVGSREGWK AKILSLDSEC LVWVDEKLAD
25	451 N	PLCRKYRDE VEKAEAVFIA QFYDLRMGGQ PVPRFEAQSF LIPGFPARFR
	501 ET	TVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAANOYL RPIOAMGDIG
	551 KS	SNQAVFDLI KDIPNVHWVD AQKYLPKNTV EIYGRYLYGD QDHLTYFGSY
	601 YN	MGREFHKHE RLLKSSHGGA LQ*
	Computer analysis	of this amino acid sequence gave the following results:
	Computer analysis	or this amino acid sequence gave the following results:
20	T7 i	41.41. 11.4 1 1 1 1 1 TWOOOD OFFI G
30	Homology with hypo	thetical integral membrane protein HI0392 of H.influenzae (accession number U32723)
	ORF128 and HI039	92 show 52% aa identity in 180aa overlap:
		22 bilow 3270 an identity in 100an overlap.
	Orf128: 1	VSLASVIASQIFLYEDFNQMRKTVELSAVFLSNIYLGFQQGYFDLSADENPVLHIWSLAV 60
		++L S IAS IF+Y DFN++RKT+EL+ FLSN YLG OGYFDLSA+ENPVLHIWSLAV
25	HI0392: 46	MALVSFIASAIFIYNDFNKLRKTIELAIAFLSNFYLGLTQGYFDLSANENPVLHIWSLAV 105
35		
	Orf128: 61	EEQXXXXXXXXIFCCKKTKSLRVLRNISIILFLILTASSFLPSGFYTDILNQPNTYYLS 120
	UT0302 · 106	E Q I KK + ++VL I++ILF IL A+SF+ + FY ++L+QPN YYLS EGQYYLIFPLILILAYKKFREVKVLFIITLILFFILLATSFVSANFYKEVLHQPNIYYLS 165
	110392. 100	EGGIIDITEDIDIDATKKEREVKVDETITLIDEFILDDATSEVSANEIKEVDHQPNIYYLS 165
40	Orf128: 121	TLRFPELLAGSLLAVYGQTQNGRRQTANGKRQLLSSLCFGALLACLFVIDKHNPFIPGMT 180
		LRFPELL GSLLA+Y N + Q + +L+ L L +CLF+++ + FIPG+T
	HI0392: 166	NLRFPELLVGSLLAIYHNLSN-KVQLSKQVNNILAILSTLLLFSCLFLMNNNIAFIPGIT 224
	Homology with a p	oredicted ORF from N. meningitidis (strain A)
	oppies i se	00/ 11 /1
45	ORF 128 shows 98.	.0% identity over a 244aa overlap with an ORF (ORF128a) from strain A of N.
	7.	
	meningitidis:	
		10 00 00
	orf128.pep	10 20 30
	OIIIZO.pep	VSLASVIASQIFLYEDFNQMRKTVELSAVF
50	orf128a	
	00000	60 70 80 90 100 110
		100 110
		40 50 60 70 80 90
	orf128.pep	LSNIYLGFQQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISI
55		
	orf128a	LSNIYLGFQQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISI
	•	120 130 140 150 160 170

100 110 120 130 140 150 ILFLILTASSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGK

	orf128a	ILFLILTATSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGK
		180 190 200 210
5	orf128.pep	RQLLSSLCFGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPI
	orf128a	RQLLSSLCFGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPI 240 250 260 270 280 290
10		220 230 240 VFVGKISYSLYLYHWIFIAFAPLIRGGKQLGLPA
	orf128.pep orf128a	
15	0111202	300 310 320 330 340 330
13	orf128a	KMTFKKAFFCLYLAPSLILVGYNLYARGILKQEHLRPLPGAPLAAENHFPETVLTLGDSH 360 370 380 390 400 410
	_	gth ORF128a nucleotide sequence <seq 831="" id=""> is:</seq>
	1 2	ATGCAAGCTG TCCGATACAG ACCGGAAATT GACGGATTGC GGGCCGTCGC
20		CGTGCTATCC GTCATGATTT TCCACCTGAA TAACCGCTGG CTGCCCGGAG GATTCCTGGG GGTGGACATT TTCTTTGTCA TCTCAGGATT CCTCATTACC
	4.54	COCAMORMO TEMPOTORANT ACAGARCECT TOTTTTTOTT TOUGHALLE
	001	TTATACCCGC AGGATTAAGC GGATTTATCC TGCTTTTATT GCGGCCGTGT CGCTGGCTTC GGTGATTGCC TCTCAAATCT TCCTTTACGA AGATTTCAAC
05	201	GANARICCCCA ANACCEPTERA ECTTTCTEGEG GTTTTCTTGT CCAMINITIA
25	251	MCMCCCCMMM CACCACCCCT ATTCCGATTC GAGTGCCGAC GAGAACCCCG
		MACHICOARAR CRECTETTE GCAGTAGAGG AACAGTATTA CCICCIGIAL
	451	TACTGCATAT CIGGICATION CTGCAAAAAA ACAAAATCGC TACGGGTGCT CCTCTTTTGC TGATATTTTG CTGCAAAAAA ACAAAATCGC TACGGTTGTT GCGTAACATC AGCATCATCC TATTTCTGAT TTTGACTGCC ACATCGTTTT GCGTAACATC AGCATCATCC TATTTCTGAT TTTGACTGCCAA TACGTTATTAC
30	501 551	MOOGANCOCC COMMONATACC GAMATMCTCA ACCAACCCAA TACIIAIIAC
30	601	CHREECTACAC TCACCTTTCC CGAGCTGTTG GCAGGTTCGC TGCIGGCGGI
	651	TTACGGCAAA ACGCAAAACG GCAGACGGCA AACAGCAAAT GGAAAACGGC AGTTGCTTTC ATCACTCTGC TTCGGCGCAT TGCTTGCCTG CCTGTTCGTG
	701	AMERICA CARAC ACARECCETT TATCCCGGGA ATGACCCTGC TCCITCCCTG
35	751 801	COMCOMON CONCENTRATION TO CONTRACT OF ACACTICOS
33	851	COCCOMMON CHOCGODAGO COCATOGTAT TTGTCGGCAA AAICICIAI
	901	TCCCTATACC TGTACCATTG GATTTTTATT GCTTTCGCCC ATTACATTAC
	951 1001	COCCCCAMP PERCECTED ACTEMPTATT TGATTGAACA GUUGUIAGA
40	1051	TARGOCARCA TOROCOTTONA AND COCATTO TO TO TO COCCOCOCOCOCOCOCOCOCOCOCOCO
70	1101	CHOCCHCAMA CHMCTCCCTT ACAACCTGTA CGCAAGGGGG ATAITGAAAC
	1151	AGGAACACCT CCGCCCGTTG CCCGGCGCGC CCCTTGCTGC GGAAAATCAT TTTCCGGAAA CCGTCCTGAC CCTCGGCGAC TCGCACGCCG GACACCTGCG
	1201 1251	
45	1301	TOTAL TACAMOUNT TO TOTAL
	1351	AACCCGTTAT GTCGAAAATA CCGGGATGAA GTTGAAAAAG CCGAAGCCGT TTTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG CCCGTGCCGA
	1401 1451	CAMMING A CC CCA ATCCTTC CTAATACCCG GGTTCCCAGC CCGAIICAGG
	1501	CARROCCUCA ARROCATAGO CGCCGTCAAA CCCGTCTATG IIIIIGCAAA
50	1551	CARCACARCA AMCAGCCCTT CGCCCCTGAG GGAGGAAAAA IIGAAAAGAI
	1601	TTGCCGCAAA CCAATATCTC CGCCCCATTC AGGCTATGGG CGACATCGGC AAGAGCAATC AGGCGGTCTT TGATTTGATT AAAGATATTC CCAATGTGCA
	1651 1701	MMCCCMCCAC CCACADAAT ACCTGCCCAA AAACACGGC GAAATATACG
	1751	GOOGGED TO THE CONTROL OF THE CONTRO
55	1801	TATATGGGGC GGGAATTTCA CAAACACGAA CGCCTGCTTA AATCTTCTCG
	1851	CGACGGCGCA TTGCAGTAG
	This encodes a	protein having amino acid sequence <seq 832="" id="">:</seq>
	1	TENER DESCRIPTION DESCRIPTION DESCRIPTION DE LA SOLICIA DE N
CO	51	ONDUMERED VETSNIVIGE OOGYFDLSAD ENPVLHIMSL AVELVIIDLI
60	101 151	DITITECCEN TREIDVIRNI STILFLILTA TSELPSGEIT DIENVENIII
	201	TOWN DEDELT ACCULATION TONGEROTAN GEROLLSSLC FGALLACTEV
	251	IDKHNPFIPG MTLLLPCLLT ALLIRSMOYG TLPTRILSAS PIVIVGRIST
	301	TENTO CONTROL DE COLVIADOLT LUCYNIVARG ILKOEMERPE PORFERMENT
65	351 401	PREMIT MICH CURCULEGET, DYVESREGWE AKILDLUDEC DYWYDERLAD
	4 51	

- 501 ETVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAANQYL RPIQAMGDIG 551 KSNQAVFDLI KDIPNVHWVD AQKYLPKNTV EIYGRYLYGD QDHLTYFGSY 601 YMGREFHKHE RLLKSSRDGA LQ*

ORF128a and ORF128-1 show 99.5% identity in 622 aa overlap:

5	orf128a.pep	MQAVRYRPEIDGLRAVAVLSVMIFHLNNRWLPGGFLGVDIFFVISGFLITGIILSEIQNG
	orf128-1	MQAVRYRPEIDGLRAVAVLSVMIFHLNNRWLPGGFLGVDIFFVISGFLITGIILSEIQNG
10	orf128a.pep	SFSFRDFYTRRIKRIYPAFIAAVSLASVIASQIFLYEDFNQMRKTVELSAVFLSNIYLGF
	orf128-1	SFSFRDFYTRRIKRIYPAFIAAVSLASVIASQIFLYEDFNQMRKTVELSAVFLSNIYLGF
	orf128a.pep	QQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISIILFLILTA
15	orf128-1	QQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISIILFLILTA
	orf128a.pep	TSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGKRQLLSSLC:
20	orf128-1	SSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGKRQLLSSLC
	orf128a.pep	FGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPIVFVGKISY
	orf128-1	FGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPIVFVGKISY
25	orf128a.pep	SLYLYHWIFIAFAHYITGDKQLGLPAVSAVAALTAGFSLLSYYLIEQPLRKRKMTFKKAF
	orf128-1	SLYLYHWIFIAFAHYITGDKQLGLPAVSAVAALTAGFSLLSYYLIEQPLRKRKMTFKKAF
30	orf128a.pep	FCLYLAPSLILVGYNLYARGILKQEHLRPLPGAPLAAENHFPETVLTLGDSHAGHLRGFL
	orf128-1	FCLYLAPSLILVGYNLYARGILKQEHLRPLPGAPLAAENHFPETVLTLGDSHAGHLRGFL
	orf128a.pep	DYVGSREGWKAKILSLDSECLVWVDEKLADNPLCRKYRDEVEKAEAVFIAQFYDLRMGGQ
35	orf128-1	DYVGSREGWKAKILSLDSECLVWVDEKLADNPLCRKYRDEVEKAEAVFIAQFYDLRMGGQ
	orf128a.pep	PVPRFEAQSFLIPGFPARFRETVKRIAAVKPVYVFANNTSISRSPLREEKLKRFAANQYL
40	orf128-1	PVPRFEAQSFLIPGFPARFRETVKRIAAVKPVYVFANNTSISRSPLREEKLKRFAANQYL
	orf128a.pep	RPIQAMGDIGKSNQAVFDLIKDIPNVHWVDAQKYLPKNTVEIYGRYLYGDQDHLTYFGSY
45	orf128-1	RPIQAMGDIGKSNQAVFDLIKDIPNVHWVDAQKYLPKNTVEIYGRYLYGDQDHLTYFGSY
45	orf128a.pep	YMGREFHKHERLLKSSRDGALQX
	orf128-1	YMGREFHKHERLLKSSHGGALQX

Homology with a predicted ORF from N.gonorrhoeae

ORF128 shows 93.4% identity over 244 as overlap with a predicted ORF (ORF128ng) from N. gonorrhoeae:

• •	orf128.pep	VSLASVIASQIFLYEDFNQMRKTVELSAVF	30
55	orf128ng		112
	orf128.pep	LSNIYLGFQQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISI	90
	orf128ng	LSNIYLGFRLGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCYKKTKSLRVLRNISI	172
60	orf128.pep	ILFLILTASSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGK	150
	orf128ng	ILFLILTASSFLPAGFYTDILNQPNTYYLSTLRFPELLVGSLLAVYGQTQNGRRQTENGK	232
65	orf128.pep	RQLLSSLCFGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPI	210
	orf128ng		292

```
244
                      VFVGKISYSLYLYHWIFIAFAPLIRGGKQLGLPA
         orf128.pep
                      VFVGKISYSLYLYHWIFIAFAHYITGDKQLGLPAVSAVAALTAGFSLLSYYLIEQPLRKR 352
         orf128ng
    The complete length ORF128ng nucleotide sequence <SEQ ID 833> is:
5
                   ATGCAAGCTG TCCGATACAG GCCTGAAATT GACGGATTGC GGGCCGTCGC
                    CGTGCTATCC GTCATTATTT TCCACCTGAA TAACCGCTGG CTGCCCGGAG
               51
                    GATTCCTGGG GGTGGACATT TTCTTTGTCA TCTCGGGATT CCTCATTACC
               101
                    AACATCATTC TTTCTGAAAT ACAGAACGGT TCTTTTTCTT TCCGGGATTT
               151
                    TTATACCCGC AGGATTAAGC GGATTTATCC TGCTTTTATT GCGGCCGTGT
10
               201
                    CCCTGGCTTC GGTGATTGCT TCTCAAATCT TCCTTTACGA AGATTTCAAC
               251
                    CAAATGAGGA AAACCATAGA GCTTTCTACG GTTTTTTTGT CCAATATTTA
               301
                    TTTGGGGTTC CGATTGGGGT ATTTCGATTT GAGTGCCGAC GAGAACCCCG
               351
                    TACTGCATAT CTGGTCTTTG GCGGTAGAGG AACAGTATTA CCTCCTGTAT
               401
                    CCTCTTTTGC TGATATTCTG TTACAAAAAA ACCAAATCAC TACGGGTGCT
15
               451
                    GCGTAATATC AGCATCATCC TGTTTCTGAT TTTGACCGCA TCATCGTTTT
               501
                    TGCCGGCCGG GTTTTATACC GACATCCTCA ACCAACCCaa TACTTATTAC
               551
                    CTTTCGACAC TGAGGTTTCC CGAGCTGTTG GTGGGTTCGC TGTTGGCGGT
               601
                    TTACGGGCAA ACGCAAAACG GCAGACGGCA AACAGAAAAT GGAAAACGGC
               651
                    AGTTGCTTTC ATTACTCTGT TTCGGCGCat tgCTTGTCTG CCTGTTCGTG
               701
20
                    ATCGACAAAC ACGATCCGTT TATCCCGGGA ATAACCCTGC TCCTTCCCTG
               751
                    CCTGCTGACG GCGCTGCTTA TCCGGAGTAT GCAATACGGG ACACTTCCGA
               801
                    CCCGCATCCT GTCGGCAAGC CCCATCGTAT TTGTCGGCAA AATCTCTTAT
               851
                    901
                    AGGCGACAAA CAGCTCGGAC TGCCTGCCGT ATCGGCGGTT GCCGCGTTGA
25
               951
                    CGGCCGGATT TTCCCTGTTG AGCTATTATT TGATTGAACA GCCGCTTAGA
               1001
                    AAACGGAAGA TGACCTTCAA AAAGGCATTT TTCTGCCTTT ATCTCGCCCC
               1051
                    GTCCCTGATG CTTGTCGGTT ACAACCTGTA TTCAAGAGGG ATATTGAAAC
               1101
                    AGGAACACCT CCGCCCGCTG CCCGGCACGC CCGTTGCTGC GGAAAATAAT
               1151
                    TTTCCGGAAA CCGTCTTGAC CCTCGGCGAC TCGCACGCCG GACACCTGCG
               1201
30
                    GGGGTTTCTG GATTATGTCG GCGGCAGGGA AGGGTGGAAA GCTAAAATCC
               1251
                     TGTCCCTCGA TTCGGAGTGT TTGGTTTGGG TGGATGAGAA GCTGGCAGAC
               1301
                    AACCCGTTGT GCCGAAAATA CCGGGATGAA GTTGAAAAAG CCGAAGCTGT
               1351
                     TTTCATTGCC CAATTCTATG ATTTGAGGAT GGGCGGCCAG CCCGTGCCGA
               1401
                     GATTTGAAGC GCAATCCTTC CTGATACCCG GGTTCAAAGC CCGATTCAGG
 35
               1451
                     GAAACCGTCA AGAGGATAGC CGCCGTCAAA CCTGTATATG TTTTTGCAAA
               1501
                     CAATACATCA ATCAGCCGTT CTCCCTTGAG GGAGGAAAAA TTGAAAAGAT
               1551
                     TTGCTATAAA CCAATACCTC CGGCCTATTC GGGCTATGGG CGACATCGGC
               1601
                     AAGAGCAATC AGGCGGTCTT TGATTTGGTT AAAGATATTC CCAATGTGCA
               1651
                     TTGGGTGGAC GCACAAAAT ACCTGCCCAA AAACACGGTC GAAATACACG
               1701
 40
                     GACGCTATCT TTACGGCGAC CAAGACCACC TGACCTATTT CGGTTCTTAT
               1751
                     TATATGGGGC GGGAATTTCA CAAACACGAA CGCCTGCTCA AGCATTCCCG
               1801
                     AGGCGGCGCA TTGCAGTAG
      This encodes a protein having amino acid sequence <SEQ ID 834>:
                     MQAVRYRPEI DGLRAVAVLS VIIFHLNNRW LPGGFLGVDI FFVISGFLIT
 45
                     NIILSEIONG SFSFRDFYTR RIKRIYPAFI AAVSLASVIA SQIFLYEDFN
                     QMRKTIELST VFLSNIYLGF RLGYFDLSAD ENPVLHIWSL AVEEQYYLLY
                 151 PLLLIFCYKK TKSLRVLRNI SIILFLILTA SSFLPAGFYT DILNQPNTYY
                     LSTLRFPELL VGSLLAVYGQ TONGRROTEN GKROLLSLLC FGALLVCLFV
                     IDKHOPFIPG ITLLLPCLLT ALLIRSMOYG TLPTRILSAS PIVFVGKISY
  50
                 251
                     SLYLYHWIFI AFAHYITGDK QLGLPAVSAV AALTAGFSLL SYYLIEQPLR
                     KRKMTFKKAF FCLYLAPSLM LVGYNLYSRG ILKQEHLRPL PGTPVAAENN
                 351
                     FPETVLTLGD SHAGHLRGFL DYVGGREGWK AKILSLDSEC LVWVDEKLAD
                     NPLCRKYRDE VEKAEAVFIA QFYDLRMGGQ PVPRFEAQSF LIPGFKARFR
                 451
                      ETVKRIAAVK PVYVFANNTS ISRSPLREEK LKRFAINQYL RPIRAMGDIG
  55
                 501
                      KSNQAVFDLV KDIPNVHWVD AQKYLPKNTV EIHGRYLYGD QDHLTYFGSY
                 551
                      YMGREFHKHE RLLKHSRGGA LQ*
       ORF128ng and ORF128-1 show 95.7% identity in 622 aa overlap:
                           {\tt MQAVRYRPEIDGLRAVAVLSVMIFHLNNRWLPGGFLGVDIFFVISGFLITGIILSEIQNG}
            orf128-1.pep
                           60
                           MQAVRYRPEIDGLRAVAVLSVIIFHLNNRWLPGGFLGVDIFFVISGFLITNIILSEIQNG
            orf128ng
                           SFSFRDFYTRRIKRIYPAFIAAVSLASVIASQIFLYEDFNQMRKTVELSAVFLSNIYLGF
             orf128-1.pep
                           SFSFRDFYTRRIKRIYPAFIAAVSLASVIASQIFLYEDFNQMRKTIELSTVFLSNIYLGF
   65
             orf128ng
```

	orf128-1.pep	QQGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCCKKTKSLRVLRNISIILFLILTA :
5	orf128ng	RLGYFDLSADENPVLHIWSLAVEEQYYLLYPLLLIFCYKKTKSLRVLRNISIILFLILTA
3	orf128-1.pep	SSFLPSGFYTDILNQPNTYYLSTLRFPELLAGSLLAVYGQTQNGRRQTANGKRQLLSSLC
	orf128ng	SSFLPAGFYTDILNQPNTYYLSTLRFPELLVGSLLAVYGQTQNGRRQTENGKRQLLSLLC
10	orf128-1.pep	FGALLACLFVIDKHNPFIPGMTLLLPCLLTALLIRSMQYGTLPTRILSASPIVFVGKISY
	orf128ng	FGALLVCLFVIDKHDPFIPGITLLLPCLLTALLIRSMQYGTLPTRILSASPIVFVGKISY
15	orf128-1.pep	SLYLYHWIFIAFAHYITGDKQLGLPAVSAVAALTAGFSLLSYYLIEQPLRKRKMTFKKAF
	orf128ng	SLYLYHWIFIAFAHYITGDKQLGLPAVSAVAALTAGFSLLSYYLIEQPLRKRKMTFKKAF
	orf128-1.pep	FCLYLAPSLILVGYNLYARGILKQEHLRPLPGAPLAAENHFPETVLTLGDSHAGHLRGFL
20	orf128ng	FCLYLAPSLMLVGYNLYSRGILKQEHLRPLPGTPVAAENNFPETVLTLGDSHAGHLRGFL
	orf128-1.pep	DYVGSREGWKAKILSLDSECLVWVDEKLADNPLCRKYRDEVEKAEAVFIAQFYDLRMGGQ
25	orf128ng	DYVGGREGWKAKILSLDSECLVWVDEKLADNPLCRKYRDEVEKAEAVFIAQFYDLRMGGQ
	orf128-1.pep	PVPRFEAQSFLIPGFPARFRETVKRIAAVKPVYVFANNTSISRSPLREEKLKRFAANQYL
	orf128ng	PVPRFEAQSFLIPGFKARFRETVKRIAAVKPVYVFANNTSISRSPLREEKLKRFAINQYL
30	orf128-1.pep	RPIQAMGDIGKSNQAVFDLIKDIPNVHWVDAQKYLPKNTVEIYGRYLYGDQDHLTYFGSY
	orf128ng	RPIRAMGDIGKSNQAVFDLVKDIPNVHWVDAQKYLPKNTVEIHGRYLYGDQDHLTYFGSY
35	orf128-1.pep	YMGREFHKHERLLKSSHGGALQX
	orf128ng	YMGREFHKHERLLKHSRGGALOX 610 620

In addition, ORF218ng shows homology to a hypothetical H.influenzae protein:

```
sp|P43993|Y392 HAEIN
                                 HYPOTHETICAL
                                                PROTEIN
                                                          HI0392
                                                                    >gi|1074385|pir||B64007
40
          hypothetical protein HI0392 - Haemophilus influenzae (strain Rd KW20)
          >gi|1573364 (U32723) H. influenzae predicted coding region HI0392 [Haemophilus
          influenzae] Length = 245
           Score = 239 bits (604), Expect = 3e-62
           Identities = 124/225 (55%), Positives = 152/225 (67%), Gaps = 1/225 (0%)
45
          Query: 38 VDIFFVISGFLITNIILSEIQNGSFSFRDFYTRRIKRIYPXXXXXXXXXXXXXXXXXFLYE 97
                     +DIFFVISGFLIT II++EIQ SFS + FYTRRIKRIYP
          Sbjct: 1
                     MDIFFVISGFLITGIIITEIQQNSFSLKQFYTRRIKRIYPAFITVMALVSFIASAIFIYN 60
50
                     DFNQMRKTIELSTVFLSNIYLGFRLGYFDLSADENPVLHIWSLAVEEQXXXXXXXXXIFC 157
          Query: 98
                     DFN++RKTIEL+ FLSN YLG
                                             GYFDLSA+ENPVLHIWSLAVE Q
                     DFNKLRKTIELAIAFLSNFYLGLTQGYFDLSANENPVLHIWSLAVEGQYYLIFPLILILA 120
          Sbjct: 61
          Query: 158 YKKTKSLRVLRNISIILFLILTASSFLPAGFYTDILNQPNTYYLSTLRFPELLVGSLLAV 217
55
                     YKK + ++VL I++ILF IL A+SF+ A FY ++L+QPN YYLS LRFPELLVGSLLA+
          Sbjct: 121 YKKFREVKVLFIITLILFFILLATSFVSANFYKEVLHQPNIYYLSNLRFPELLVGSLLAI 180
          Query: 218 YGQTQNGRRQTENGKRQLLSLLCFGALLVCLFVIDKHDPFIPGIT 262
                          N + Q
                                      +L++L
                                               L CLF+++ + FIPGIT
60
           Sbjct: 181 YHNLSN-KVQLSKQVNNILAILSTLLLFSCLFLMNNNIAFIPGIT 224
```

This analysis, including the identification of several putative transmembrane domains, suggests that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 99

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 835>:

```
1 ..ATTATTTACG AATACCGCTG GATGTTCTT TACGGCGCAC TGACGACCTT

51 GGGGCTGACG GTCGTGGCAA C..GCGGGCGG TTCGGTATTG GGTCTGTTGT

51 TGGCGTTGGC GCGCCTGATT CACTTGGAAA AAGCCGGTGC GCCGATGCGC

151 GTGCTGGCGT GGGCGTTGCG TAAAGTTTCG CTGCTGTATG TTACGCTGTT

201 CCGGGGTACG CCGCTGTTTG TGCAGATTGT GATTTGGGCG TATGTGTGGT

251 TTCCGTTTTT CGTC..
```

This corresponds to the amino acid sequence <SEQ ID 836; ORF129>:

1 ...IIYEYRWMFL YGALTTLGLT VVAXAGGSVL GLLLALARLI HLEKAGAPMR
51 VLAWALRKVS LLYVTLFRGT PLFVQIVIWA YVWFPFFV..

Further work revealed the complete nucleotide sequence <SEQ ID 837>:

15	1 51 101 151 201	CGGCGCACTG CGGTATTGGG GCCGGTGCGC	ACGACCTTGG TCTGTTGTTG CGATGCGCGT ACGCTGTTCC	TATTTACGAA GGCTGACGGT GCGTTGGCGC GCTGGCGTGG GGGGTACGCC CCGTTTTTCG	CGTGGCAACG GCCTGATTCA GCGTTGCGTA GCTGTTTGTG	CCGGGCGGTT CTTGGAAAAA AAGTTTCGCT CAGATTGTGA
20	251 301 351 401 451	TTGGTCAGCG GATTGCCGGT AGATTTTCCG	GCGAGCCGC TCTTTGGCAC CGCGGGCATC TGGGGCTGAC	AATCGCGCTG TGATCGCCAA CAGTCTATAG CTATCCGCAG TGCTGCCGCC	CGTCGCGGAT CTCGGGGGCG ACAAAGGACA GCGATGCGCT	ACGGGCCGCT TATATCTGTG GATGGAGGCG ATGTGATTCT
25	501 551 601 651 701	CGCTCTTGAA GCGTATGTTC	AGACAGCTCG AGAATACGAT GTCGCCCTGA	TGCTGCCGCC CTGCTGTCGG TACGGGCCGG TTTATCTGTT AAACGTTACA	TCATTGCTGT TATTCGGTTT GATGACGACT	ATGAAGAACC TTCTTAGGCT

This corresponds to the amino acid sequence <SEQ ID 838; ORF129-1>:

```
30 51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF PFFVHPSDGI
101 LVSGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI QSIDKGQMEA
151 ARSLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS LLSVIAVAEL
201 AYVQNTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE KRYNPQHR*
```

Computer analysis of this amino acid sequence gave the following results:

35 Homology with a predicted ORF from N. meningitidis (strain A)

ORF129 shows 98.9% identity over a 88aa overlap with an ORF (ORF129a) from strain A of N. meningitidis:

	10	20	30	40	50 WA דוופאמר אי
orf129.pep	IIYEYRWMFLY	GALTTLGLT <u>VV</u>	AXAGGSVLGLLL	1111111111	11111111
orf129a	MDFRFDIIYEYRWMFL		ATAGGSVLGLLL 30 40		GAPMRVLAW 60
	60 70	80			
orf129.pep		111111111111			
orf129a	ALRKVSLLYVTLFRGT:	PLFVQIVIWAYV 80	WFPFFVHPSDGI	LVSGEAAIALRI 110	RGYGP <u>LIAG</u> 120
orf129a	SLALIANSGAYICEIF	RAGIQSIDKGQN 140	MEAARSLGLTYP(150 160	AMRYVILPOAL 170	RRMLPPLAS 180
	orf129a orf129.pep orf129a	orf129.pep IIYEYRWMFLY orf129a MDFRFDIIYEYRWMFLY 10 60 70 orf129.pep ALRKVSLLYVTLFRGTY orf129a ALRKVSLLYVTLFRGTY 70 Orf129a SLALIANSGAYICEIF	orf129.pep IIYEYRWMFLYGALTTLGLTVV orf129a MDFRFDIIYEYRWMFLYGALTTLGLTVV 10 20 60 70 80 orf129.pep ALRKVSLLYVTLFRGTPLFVQIVIWAYV orf129a ALRKVSLLYVTLFRGTPLFVQIVIWAYV 70 80 orf129a SLALIANSGAYICEIFRAGIQSIDKGON	orf129.pep IIYEYRWMFLYGALTTLGLTVVAXAGGSVLGLLL orf129a MDFRFDIIYEYRWMFLYGALTTLGLTVVATAGGSVLGLLL 10 20 30 40 orf129.pep ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFV orf129a ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGI 70 80 90 100 orf129a SLALIANSGAYICEIFRAGIQSIDKGOMEAARSLGLTYPO	orf129.pep IIYEYRWMFLYGALTTLGLTVVAXAGGSVLGLLLALARLIHLEKAG

The complete length ORF129a nucleotide sequence <SEQ ID 839> is:

¹ ATGGATTTC GTTTTGACAT TATTTACGAA TACCGCTGGA TGTTTCTTTA

⁵¹ CGGCGCACTG ACGACCTTGG GGCTGACGGT CGTGGCGACG GCGGGCGGTT

	•	•	
	151 GCC	STATTGGG TCTGTTGTTG GCGTTGGCGC GCCTGATTCA CTTGGAAAAA CGGTGCGC CGATGCGCGT GCTGGCGTGG GCGTTGCGTA AGGTTTCGCT IGTATGTT ACGCTGTTCC GGGGTACGCC GCTGTTTGTG CAGATTGTGA	
5	251 TTT 301 TTC	REGECETA TETETEETT CCETTTTCE TCCATCCTTC AGACGECATT SETTAGCE GCGAGGCGGC AATCGCGCTG CGTCGCGGAT ACGGGCCGCT	
	401 AGA 451 GCC	PTGCCGGT TCTTTGGCAC TGATCGCCAA CTCGGGGGCG TATATCTGTG ATTTTCCG CGCGGGCATC CAGTCTATAG ACAAAGGACA GATGGAGGCG GCGTTCTT TGGGGCTGAC CTATCCGCAG GCGATGCGCT ATGTGATTCT	
10	551 CG0	CGCAGGCA TTGCGCCGTA TGCTGCCGCC TTTGGCGAGC GAGTTCATCA CTCTTGAA AGACAGCTCG CTGCTGTCGG TCATTGCTGT GGCGGAGTTG CTATGTTC AGAATACGAT TACGGGCCGG TATTCGGTTT ATGAAGAACC	
	701 GG	TTTACACC GTCGCCCTGA TTTATCTGTT GATGACGACT TTCTTAGGCT ATATTCCT GCGTTTGGAA AAACGTTACA ATCCGCAACA CCGCTGA	
	This encodes a prote	ein having amino acid sequence <seq 840="" id="">:</seq>	
15	1 MDI	FRFDIIYE YRWMFLYGAL TTLGLT <u>VVAT AGGSVLGLLL ALA</u> RLIHLEK	
	51 AG/ 101 LV	APMRVLAW ALRKVSLLYV TLFRGT <u>PLFV QIVIWAYVWF PFF</u> VHPSDGI SGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI QSIDKGQMEA	
	151 AR	SLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS LLSVIAVAEL	
	201 AY	VONTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE KRYNPQHR*	
20	•	129-1 show 100.0% identity in 248 aa overlap:	
	orf129a.pep	MDFRFDIIYEYRWMFLYGALTTLGLTVVATAGGSVLGLLLALARLIHLEKAGAPMRVLAW	
25	orf129a.pep	ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAG	
	orf129-1	ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAG	•
30	orf129a.pep	SLALIANSGAYICEIFRAGIQSIDKGQMEAARSLGLTYPQAMRYVILPQALRRMLPPLAS	
	orf129-1	SLALIANSGAYICEIFRAGIQSIDKGQMEAARSLGLTYPQAMRYVILPQALRRMLPPLAS	
25	orf129a.pep	EFITLLKDSSLLSVIAVAELAYVQNTITGRYSVYEEPLYTVALIYLLMTTFLGWIFLRLE	
35	orf129-1	EFITLLKDSSLLSVIAVAELAYVONTITGRYSVYEEPLYTVALIYLLMTTFLGWIFLRLE	
	orf129a.pep	KRYNPQHRX	
40	orf129-1	KRYNPQHRX	
	Homology with a pr	redicted ORF from N. gonorrhoeae	
	ORF129 shows 98.	.9% identity over a 88 aa overlap with a predicted ORF (ORF129ng)	from
	N.gonorrhoeae:		
45	orf129.pep	IIYEYRWMFLYGALTTLGLTVVAXAGGSVLGLLLALARLIHLEKAGAPMRVLAW	54
	orf129ng	MDFRFDIIYEYRWMFLYGALTTLGLTVVATAGGSVLGLLLALARLIHLEKAGAPMRVLAW	60
	orf129.pep	ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFV	88

45	orf129.pep orf129ng	IIYEYRWMFLYGALTTLGLTVVAXAGGSVLGLLLALARLIHLEKAGAPMRVLAW	54 60
	orf129.pep	ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFV	88
50	orf129ng	ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVILHTAFLGNAMRQSRRVPDKGRWIAG	120

An ORF129ng nucleotide sequence <SEQ ID 841> was predicted to encode a protein having amino acid sequence <SEQ ID 842>:

- 1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL ALARLIHLEK 51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF PFFVILHTAF
- 101 LGNAMRQSRR VPDKGRWIAG SLELNCOPRG RKTRGEFPPG ESNLGTEPRN 151 PLSMGQRRFP GCENWYPPON FIKK*

55

Further work revealed the following gonococcal sequence <SEQ ID 843>:

1 ATGGATTTTC gtTTTGACAT TATTTACGAA TACCGCTGGA TGTTTCTTTA

```
CGGCGCACTG Acgacettgg ggctgacggt cgtggcgacg gCGGGCGGTT CGGtattggG TCTGTTGTTG GCGTTGGCGC GCCTGATTCA CTTGGAAAAA
                     101
                             GCCGGTGCGC CGATGCGCGT GCTGGCGTGG GCGTTGCGTA AGGTTTCGCT
                     151
                             GCTGTACGTT ACCCTGTTCC GGGGTACGCC GCTGTTTGTG CAGATTGTGA
                      201
 5
                      251
                             TTTGGGCGTA TGTGTGGTTT CCGTTTTTCG TCCATCCTTC AGACGGCATT
                             TTGGTCAGCG GCGAGGCGGC AATCGCGCTG CGTCGCGGAT ACGGGCCGCT
                      301
                             GATTGCCGGT TCTTTGGCAC TGATCGCCAA CTCGGGGGCG TATATCTGTG
                      351
                             AGATTTTCCG CGCGGGCATC CAGTCTATAG ACAAAGGACA GATGGAGGCG
                      401
                             GCGTGTTCTT TGGGACTGAC CTATCCGCAG GCGATGCGCT ATGTGATTCT
                      451
                             GCCGCAGGCA TTGCGCCGTA TGCTGCCGCC TTTGGCGAGC GAGTTCATCA
10
                      501
                             CGCTCTTGAA AGACAGCTCG CTGCTGTCGG TCATTGCTGT GGCGGAGTTG
                      551
                      601
                             GCGTATGTTC AGAATACGAT TACGGGCCGG TATTCGGTTT ATGAAGAACC
                             GCTTTACACC GCCGCCCTGA TTTATCTGTT GATGACGACT TTCTTAGGCT
                      651
                             GGATATTCCT GCGTTTGGAA AAACGTTACA ATCCGCAACA CCGCTGA
        This corresponds to the amino acid sequence <SEQ ID 844; ORF129ng-1>:
15
                         1 MDFRFDIIYE YRWMFLYGAL TTLGLTVVAT AGGSVLGLLL ALARLIHLEK
                        51 AGAPMRVLAW ALRKVSLLYV TLFRGTPLFV QIVIWAYVWF PFFVHPSDGI
                      101 LVSGEAAIAL RRGYGPLIAG SLALIANSGA YICEIFRAGI QSIDKGQMEA
                             ARSLGLTYPQ AMRYVILPQA LRRMLPPLAS EFITLLKDSS LLSVIAVAEL
                      151
20
                             AYVONTITGR YSVYEEPLYT VALIYLLMTT FLGWIFLRLE KRYNPQHR*
        ORF129ng-1 and ORF129-1 show 99.2% identity in 248 aa overlap:
               orf129-1.pep MDFRFDIIYEYRWMFLYGALTTLGLTVVATAGGSVLGLLLALARLIHLEKAGAPMRVLAW
                                  MDFRFDIIYEYRWMFLYGALTTLGLTVVATAGGSVLGLLLALARLIHLEKAGAPMRVLAW
               orf129ng-1
25
               orf129-1.pep ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAG
                                  $ 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 
               orf129ng-1
                                  ALRKVSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAG
30
               orf129-1.pep SLALIANSGAYICEIFRAGIQSIDKGQMEAARSLGLTYPQAMRYVILPQALRRMLPPLAS
                                  SLALIANSGAYICEIFRAGIQSIDKGQMEAACSLGLTYPQAMRYVILPQALRRMLPPLAS
                orf129ng-1
                orf129-1.pep EFITLLKDSSLLSVIAVAELAYVQNTITGRYSVYEEPLYTVALIYLLMTTFLGWIFLRLE
 35
                                  EFITLLKDSSLLSVIAVAELAYVQNTITGRYSVYEEPLYTAALIYLLMTTFLGWIFLRLE
                orf129ng-1
                orf129-1.pep KRYNPQHRX
                                  11:11:11:1
 40
                orf129ng-1
                                  KRYNPQHRX
        In addition, ORF129ng-1 is homologous to an ABC transporter from A.fulgidus:
                2650409(AE001090) glutamine ABC transporter, permease protein (glnP)
                [Archaeoglobus fulgidus]Length = 224
                 Score = 132 bits (329), Expect = 2e-30
 45
                 Identities = 86/178 (48%), Positives = 103/178 (57%), Gaps = 18/178 (10%)
                Query: 65 VSLLYVTLFRGTPLFVQIVIWAYVWFPFFVHPSDGILVSGEAAIALRRGYGPLIAGSLAL 124
                                +S YV + RGTPL VQI+I
                                                                   +F P+ GI + E A
                Sbjct: 58 ISTAYVEVIRGTPLLVQILI-----VYFGLPAIGINLQPEPA----
                                                                                                     ----GIIAL 99
 50
                Query: 125 IANSGAYICEIFRAGIQSIDKGQMEAACSLGLTYPQAMRYVILPQALRRMLPPLASEFIT 184
                                    SGAYI EI RAGI+SI GOMEAA SLG+TY QAMRYVI PQA R +LP L +EFI
                Sbjct: 100 SICSGAYIAEIVRAGIESIPIGQMEAARSLGMTYLQAMRYVIFPQAFRNILPALGNEFIA 159
 55
                Query: 185 LLKDSSLLSVIAVAELAYVQNTITGRYSVYEEPLYTAALIYLLMTTFLGWIFLRLEKR 242
                                LLKDSSLLSVI++ EL V
                                                                                  AL YL+MT L +
                Sbjct: 160 LLKDSSLLSVISIVELTRVGRQIVNTTFNAWTPFLGVALFYLMMTIPLSRLVAYSQKK 217
         This analysis, including the identification of transmembrane domains in the two proteins, suggests
         that the proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful
         antigens for vaccines or diagnostics, or for raising antibodies.
  60
```

Example 100

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 845>:

```
..CTGAAAGAAT GCCGTCTGAA AGACCCTGTT TTTATTCCAA ATATCGTTTA
                           TAAGAACATC GCCATTACTT TCCTGCTCTT GCACGCCGCC GCCGAACTTT
                   51
 5
                           GGCTGCCCGC GCAAACCGCC GGTTTTACCG CGCTCGCCGT CGGCTTCATC
                  101
                 . 151
                           CTGCTCGCCA AGCTGCGTGA GCTTCACCAT CACGAACTCT TACGTAAACA
                           CTACGTCCGC ACTTATTACY TGCTCCAACT CTTTGCCGCC GCAGgcTAgT
TTGTGGACAG GCGCGGCGWA ATTACAAAAC CTGCCCGCYT CCGCGCCCCT
                  201
                  251
                           GCACCTGATT ACCCTCGGCG GCATGATGGG CGGCGTGATG ATGGTGTGGC
                  301
                           TGACCGCCGG ACTGTGGCAC AGCGGCTTTA CCAAACTCGA CTACCCCAAA
CTCTGCCGCA TTGCCGTCCC CATCCTTTTC GCCGCCGC TCTCGCGCGC
10
                   351
                   401
                           TTTCTTGTTG AACGTGAACC CGTTATTTTT CATTACCGTT CCTGCGATTC
                   451
                   501
                           TGACCGCCGC CGTATTCGTA CTGTATCTTT TCrCGTTTAT ACCGATATTT
                           CGGGCGAATG CGTTTACAGA CGATCCGGAr TAr
                   551
```

15 This corresponds to the amino acid sequence <SEQ ID 846; ORF130>:

```
1 ...LKECRLKDPV FIPNIVYKNI AITFLLLHAA AELWLPAQTA GFTALAVGFI
51 LLAKLRELHH HELLRKHYVR TYYLLQLFAA AGSLWTGAAX LQNLPASAPL
101 HLITLGGMMG GVMMVWLTAG LWHSGFTKLD YPKLCRIAVP ILFAAAVSRA
151 FLXNVNPXFF ITVPAILTAA VFVLYLFXFI PIFRANAFTD DPE*
```

20 Further work revealed the complete nucleotide sequence <SEQ ID 847>:

```
ATGCGGCCGT TTTTCGTCGG CGCGGCGGTG CTTGCCATAC TCGGTGCGCT
                 51
                     GGTGTTTTTC ATCAACCCCG GTGCCATCGT CCTGCACCGC CAAATTTTCT
                     TGGAACTTAT GCTGCCGGCG GCATACGGCG GTTTTTTGAC TGCGGCTTTG
                101
                     TTGGACTGGA CGGGTTTTTC GGGTAACCTG AAACCTGTCG CGACTTTGAT
25
                     GGCGGCATTA TTGCTCGCCG CATCCGCTAT ACTGCCCTTT TCGCCGCAAA CTGCCTCGTT TTTCGTCGCC GCCTATTGGC TGGTGTTGCT GCTGTTCTGC
                201
                     GCCCGGCTGA TTTGGCTAGA CCGAAACACC GACAACTTCG CCCTGCTAAT
                301
                     GTTACTTGCC GCGTTCACTG TTTTTCAGAC GGCATATGCC GTCAGCGGCG
                351
                401
                     ATTTGAACCT GTTGCGCGCG CAAGTGCATC TAAATATGGC GGCGGTGATG
30
                     TTCGTATCCG TGCGCGTCAG TATTCTTTTG GGCGCGGAAG CCCTGAAAGA
                451
                501
                     ATGCCGTCTG AAAGACCCTG TTTTTATTCC AAATATCGTT TATAAAAACA
                     TCGCCATTAC TTTCCTGCTC TTGCACGCCG CCGCCGAACT TTGGCTGCCC
                551
                601
                     GCGCAAACCG CCGGTTTTAC CGCGCTCGCC GTCGGCTTCA TCCTGCTCGC
                     CAAGCTGCGT GAGCTTCACC ATCACGAACT CTTACGTAAA CACTACGTCC
                651
35
                701
                     GCACTTATTA CCTGCTCCAA CTCTTTGCCG CCGCAGGCTA TTTGTGGACA
                     GGCGCGCGA AATTACAAAA CCTGCCCGCC TCCGCGCCCC TGCACCTGAT
                751
                801
                     TACCCTCGGC GGCATGATGG GCGGCGTGAT GATGGTGTGG CTGACCGCCG
                     GACTGTGGCA CAGCGGCTTT ACCAAACTCG ACTACCCCAA ACTCTGCCGC
                851
                     ATTGCCGTCC CCATCCTTTT CGCCGCCGCC GTCTCGCGCG CTTTCTTGAT
                901
40
                     GAACGTGAAC CCGATATTTT TCATTACCGT TCCTGCGATT CTGACCGCCG
                951
               1001
                     CCGTATTCGT ACTGTATCTT TTCACGTTTA TACCGATATT TCGGGCGAAT
                     GCGTTTACAG ACGATCCGGA ATAA
               1051
```

This corresponds to the amino acid sequence <SEQ ID 848; ORF130-1>:

```
45 S1 MRPFFVGAAV LAILGALVFF INPGAIVLHR QIFLELMLPA AYGGFLTAAL

101 ARLIWLDRNT DNFALLMLLA AFTVFQTAYA VSGDLNLLRA QVHLNMAAVM

151 FVSVRVSILL GAEALKECRL KDPVFIPNIV YKNIAITFLL LHAAAELWLP

201 AQTAGFTALA VGFILLAKLR ELHHHELLRK HYVRTYYLLQ LFAAAGYLWT

251 GAAKLQNLPA SAPLHLITLG GMMGGVMMVW LTAGLWHSGF TKLDYPKLCR

50 301 IAVPILFAAA VSRAFLMNVN PIFFITVPAI LTAAVFVLYL FTFIPIFRAN

351 AFTDDPE*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF130 shows 94.3% identity over a 193aa overlap with an ORF (ORF130a) from strain A of N.

55 meningitidis:

				10	20 30	
	orf130.pep				/YKNIAITFLLLHAA 	•
	orf130a LN	LLRAQVHLNMAAVMFVSVRV				
5		140 150	160	170 180	190	
		40 . 50	60	70	80 90	
		LWLPAQTAGFTALAVGFILI				
10	orf130a AE		[LFAAAGYLWTGAAK	
10	Offison in	200 210		230 240		
		100 110	120	130	140 150)
		NLPASAPLHLITLGGMMGGV	/MMVWLTAGLWH	SGFTKLDYPKLC	RIAVPILFAAAVSRA	
15						
	OLLI209 TA	260 270		290 30		•
		160 170	100	190		
20	orf130.pep FL	160 170 XNVNPXFFITVPAILTAAVI	180 FVLYLFXFIPIF			
20	1	1111 1111111111111111				
	orf130a VL	MNVNPIFFITVPAILTAAVI 320 330		RANAFTDDPEX 350		
	m					
	The complete length O	Kr i 30a nucleonde se	quence < SEC	(ID 849> IS:		
25	1 ATGCG	GCCGT TTTTCGTCGG CGC	CGGCGGTG CTT	GCCATAC TCGG		
	-	TTTTC ATCAACCCCG GTO CTTAT GCTGCCGGCG GCA				1
		CTGGA CGGGTTTTTC GG				
20		CATTA TTGCTCGCCG CA				
30		TCGTT TTTCGTCGCC GCC GCTGA TTTGGCTAGA CCC				
	351 GTTAC	TTGCC GCGTTCACTG TT	TTTCAGAC GGC	ATATGCC GTCA	GCGGCG	
		AACCT GTTGCGCGCG CAL ATCCG TGCGCGTCAG TA				
35	501 ATGCC	GTCTG AAAGACCCAG TA	TTCATCCC CAA	TGTCGTC TATA	AAAACA	
		ATTAC CTTCCTGCTC CT AACCG CCGGTTTTAC CT				
	651 CAAGO	TGCGT GAGCTTCACC AT	CACGAACT CCT	GCGCAAA CACT	ACGTCC	
40		TATTA CCTGCTCCAA CT GGCGA AATTACAAAA CC				
40	801 TACCO	TCGGT GGCATGATGG GC	AGCGTGAT GAT	GGTGTGG CTGA	CTGCCG	
		TGGCA CAGCGGCTTT ACCCGTCC CCATCCTNTT CG				
	951 GAACG	TAAAC CCGATATTCT TC.	ATCACCGT CCC	CGCAATT CTGA	CCGCCG	
45		STTCGT GCTTTACCTG CT TACAG ACGATCCGGA AT		CGATCTT TCGG	GCGAAC	
	This encodes a protein	having amino acid se	equence <seq< th=""><th>) ID 850>:</th><th></th><th></th></seq<>) ID 850>:		
	1 MRPFF	rvgaav lailgalvff in	PGAIVLHR OIE	LELMLPA AYGG	FLTAAL	
	51 LDWTG	FSGNL KPVATLMAAL LL	AASAILPF SPO	TASFFVA AYWL	VLLLFC	
50		VLDRNT DNFALLMLLA AF RVSILL GAEALKECRL KD				
	201 AQTAG	FTSLA VGFILLAKLR EL	HHHELLRK HYV	RTYYLLQ LFAA	AGYLWT	
	251 GAAKI 301 IAVPI	LONLPA SAPLHLITLG GM ILFAAA VSRAVLMNVN PI	MGSVMMVW LTA	AGLWHSGF TKLD	YPKLCR PIFRAN	
55	351 AFTDI	OPE*	ILLIAN DIF	UNIVERSITY DILLY	1111111	
	ORF130a and ORF13	0-1 show 98 3% ident	ity in 357 aa	overlan:		
	Old 1308 and Old 13	0-1 Show 70.570 Ident	ity iii 557 aa .	ovenup.		
	orf130a.pep	MRPFFVGAAVLAILGALV				
	orf130-1					
60						
	orf130a.pep	KPVATLMAALLLAASAII				
	orf130-1	KPVATLMAALLLAASAII				
<i>(</i>	•					
65	orf130a.pep	AFTVFQTAYAVSGDLNLI	TANDA H TINMAWA	JE ADAKADITING	THE TANKE OF TANKE A P. T.	PINVV

35

	orf130-1	
5	orf130a.pep	YKNIAITFLLLHAAAELWLPAQTAGFTSLAVGFILLAKLRELHHHELLRKHYVRTYYLLQ
J	orf130-1	YKNIAITFLLLHAAAELWLPAQTAGFTALAVGFILLAKLRELHHHELLRKHYVRTYYLLQ
	orf130a.pep	LFAAAGYLWTGAAKLQNLPASAPLHLITLGGMMGSVMMVWLTAGLWHSGFTKLDYPKLCR
10	orf130-1	
	orf130a.pep	IAVPILFAAAVSRAVLMNVNPIFFITVPAILTAAVFVLYLLTFVPIFRANAFTDDPE
15	orf130-1	IAVPILFAAAVSRAFLMNVNPIFFITVPAILTAAVFVLYLFTFIPIFRANAFTDDPE
13	Homology with a pre-	dicted ORF from N.gonorrhoeae

ORF130 shows 91.7% identity over a 193 aa overlap with a predicted ORF (ORF130ng) from N.gonorrhoeae:

20	orf130.pep	LKECRLKDPVFIPNIVYKNIAITFLLLHAA	30
20	orf130ng	::	201
	orf130.pep	AELWLPAQTAGFTALAVGFILLAKLRELHHHELLRKHYVRTYYLLQLFAAAGSLWTGAAX	90
25	orf130ng	AELWLPAQTAGFTALAVGFILLAKLRELHHHELLRKHYVRTYYLLQLFAAAGYLWTGAAK	261
	orf130.pep	LQNLPASAPLHLITLGGMMGGVMMVWLTAGLWHSGFTKLDYPKLCRIAVPILFAAAVSRA	150
30	orf130ng		321
30	orf130.pep	FLXNVNPXFFITVPAILTAAVFVLYLFXFIPIFRANAFTDDPE 193	
	orf130ng		

An ORF130ng nucleotide sequence <SEQ ID 851> was predicted to encode a protein having amino acid sequence <SEQ ID 852>:

```
1 MNKFFTHPMR PFFVGAAVLA ILGALVFFHQ PRRYHPAPPN FLGTYAAGCI
51 RRFFDYRFVG PDGFFRQPET CRYFDGGVVA CCGCFIAVFT ATCRIFRRRL
101 LAGVAAVLRL ADLARRQHRT LRSVDVTAAF TVFQTAYAVS GDLNLLRAQV
                                     101 LAGVAAVIRL ADLARROHRT LRSVDVTAAF TVFQTAYAVS GDLNLLRAQV
151 HLNMAAVMFV SVRVSVLLGT ETLKECRLKD PVFIPNVIYK NIAITLLLHA
201 AAELWLPAQT AGFTALAVGF ILLAKLRELH HHELLRKHYV RTYYLLQLFA
251 AAGYLWTGAA KLQNLPASAP LHLITLGGMT GGVMMVWLTA GLWHSGFTKL
40
                                      301 DYPKLCRIAV SILFASAVSR AVLMNVNPIF FITVPEILTA AVFMLYLLTF
                                                 VPIFRANAFT DDPE*
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 853>:

45	1	ATGCGCCCGT	TTTTCGTCGG	TGCGGCAGTA	CTTGCCATAC	TCGGTGCGTT
	51	GGTGTTTTTT	ATCAACCCCG	GCGCTATCAT	CCTGCACCGC	CAAATTTTCT
	101	TGGAACTTAT	GCTGCCGGCT	GCATACGGCG	GTTTTTTGAC	TACCGCTTTG
	151	TTGGACCGGA	CGGGTTTTTC	AGGCAACCTG	AAACCTGCCG	CTACTTTGAT
	201	GGCGGTGTTG	TTGCTTGTTG	CGGCTGTTTT	ATTGCCGTTT	TTACCGCAAC
50	251	TTGCCGCATT	TTTCGTCGCC	GCCTATTGGC	TGGTGTTGCT	GCTGTTCTGC
	301	GCCTGGCTGA	TTTGGCTCGA	CCGCAACACC	GACAACTTCG	CTCTGTTGAT
	351	GTTACTTGCC	GCATTTACCG	TTTTTCAGAC	GGCCTATGCC	GTCAGCGGCG
	401	ATTTGAACTT	ACTGCGCGCG	CAAGTGCATT	TGAATATGGC	GGCGGTCATG
	451	TTCGTATCCG	TCCGCGTCAG	CGTCCTTTTG	GGCACGGAAA	CCCTGAAAGA
55	501	ATGCCGTCTG	AAAGACCCCG	TATTCATCCC	CAACGTTATC	TATAAAAACA
	551	TCGCCATCAC	CCTGCTGCTG	CACGCCGCCG	CCGAACTTTG	GCTGCCCGCG
	601	CAAACCGCCG	GTTTTACTGC	GCTTGCCGTC	GGCTTCATCC	TGCTCGCCAA
	651	GCTGCGCGAA	CTGCACCATC	ACGAACTCTT	ACGCAAACAC	TACGTCCGCA
	701	CTTATTACCT	GCTCCAGCTC	TTTGCCGCCG	CAGGTTATCT	GTGGACAGGC
60	751	GCGGCGAAAC	TGCAAAACCT	GCCCGCCTCC	GCGCCCCTGC	ACCTGATTAC
•	801				GGTGTGGCTG	
	851				ACCCGAAACT	

901	GCCGTCTCCA	TCCTTTTCGC	CTCCGCCGTT	TCGCGCGCTG	TTTTAATGAA
951	CGTGAATCCG	ATATTCTTCA	TCACCGTTCC	CGAGATTCTG	ACCGCCGCCG
1001	TGTTCATGCT	TTACCTGCTG	ACGTTCGTAC	CGATTTTTCG	AGCGAACGCG
1051	TTTACAGACG	ATCCGGAATA	A		

5 This corresponds to the amino acid sequence <SEQ ID 854; ORF130ng-1>:

```
1 MRPFFVGAAV LAILGALVFF INPGAIILHR QIFLEMLPA AYGGFLTTAL
51 LDRTGFSGNL KPAATLMAVL LLVAAVLLPF LPQLAAFFVA AYWLVLLLFC
101 AWLIWLDRNT DNFALLMLLA AFTVFQTAYA VSGDLNLLRA QVHLNMAAVM
151 FVSVRVSVLL GTETLKECRL KDPVFIPNVI YKNIAITLLL HAAAELWLPA
10 201 QTAGFTALAV GFILLAKLRE LHHHELLRKH YVRTYYLLQL FAAAGYLWTG
251 AAKLQNLPAS APLHLITLGG MTGGVMVVWL TAGLWHSGFT KLDYPKLCRI
301 AVSILFASAV SRAVLMNVNP IFFITVPEIL TAAVFMLYLL TFVPIFRANA
351 FTDDPE*
```

ORF130ng-1 and ORF130-1 show 92.4% identity in 357 aa overlap:

15	orf130-1.pep orf130ng-1	MRPFFVGAAVLAILGALVFFINPGAIVLHRQIFLELMLPAAYGGFLTAALLDWTGFSGNL
20	orf130-1.pep orf130ng-1	KPVATLMAALLLAASAILPFSPQTASFFVAAYWLVLLLFCARLIWLDRNTDNFALLMLLA : : :::: :
25	orf130-1.pep orf130ng-1	AFTVFQTAYAVSGDLNLLRAQVHLNMAAVMFVSVRVSILLGAEALKECRLKDPVFIPNIV
30	orf130-1.pep orf130ng-1	YKNIAITFLLLHAAAELWLPAQTAGFTALAVGFILLAKLRELHHHELLRKHYVRTYYLLQ
30	orf130-1.pep orf130ng-1	LFAAAGYLWTGAAKLQNLPASAPLHLITLGGMMGGVMMVWLTAGLWHSGFTKLDYPKLCR !
35	orf130-1.pep orf130ng-1	IAVPILFAAAVSRAFLMNVNPIFFITVPAILTAAVFVLYLFTFIPIFRANAFTDDPEX

Based on this analysis, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

40 Example 101

55

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 855>:

```
ATGGAAATTC GGGCAATAAA ATATACGCCA ATGGCTGCGT TGCTTGCATT

51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT TCGTCCCTCA

101 CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT TTGGGATATT

151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGAC TACGACATAC CGCTTTCAGA

201 CGGCAATAGT TCCGCCAGG CAAACGAATA TGAATCCGCA CAACAATCTT

251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG C.TGCGGGCT GGATTGGCGT

301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG GAGGATTTGA

351 CTGCTTGGAA AAG..
```

50 This corresponds to the amino acid sequence <SEQ ID 856; ORF131>:

- 1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR KPAAIDFWDI
- 51 GGESPPSLGD YEIPLSDGNS SVRANEYESA QQSYFYRKIG KFEXCGLDWR
- 101 TRDGKPLIET FKQGGFDCLE K..

Further work revealed the complete nucleotide sequence <SEQ ID 857>:

1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT 51 TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT TCGTCCCTCA

orf131a.pep

KQGLRRNGLSERVRWX

	-466-
5	CCGGCTGGTG TAAGCCGAGA AAACCGGCTG CCATCGATTT TTGGGATATT 151 GGCGGCGAGA GTCCGCCGTC TTTAGGGGAC TACGAGATAC CGCTTTCAGA 201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA CAACAATCTT 251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGCT GGATTGGCGT 301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG GAGGATTTGA 351 CTGCTTGGAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC GAGCGCGTCC 401 GATGGTAA
	This corresponds to the amino acid sequence <seq 858;="" id="" orf131-1="">:</seq>
10	1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLTGWCKPR KPAAIDFWDI 51 GGESPPSLGD YEIPLSDGNR SVRANEYESA QQSYFYRKIG KFEACGLDWR 101 TRDGKPLIET FKQGGFDCLE KQGLRRNGLS ERVRW*
	Computer analysis of this amino acid sequence gave the following results:
	Homology with a predicted ORF from N. meningitidis (strain A)
	ORF131 shows 95.0% identity over a 121aa overlap with an ORF (ORF131a) from strain A of N.
15	meningitidis:
	10 20 30 40 50 60 orf131.pep MEIRAIKYTAMAALLAFTVAGCRLAGWYECSSLTGWCKPRKPAAIDFWDIGGESPPSLGD
20	10 20 30 40 50 60
25	70 80 90 100 110 120 orf131.pep YEIPLSDGNSSVRANEYESAQQSYFYRKIGKFEXCGLDWRTRDGKPLIETFKQGGFDCLE
	orf131a YEIPLSDGNRSVRANEYESAQQSYFYRKIGKFEACGLDWRTRDGKPLIETFKQEGFDCLK 70 80 90 100 110 120
30	orf131.pep K orf131a KQGLRRNGLSERVRWX
	The complete length ORF131a nucleotide sequence <seq 859="" id=""> is:</seq>
35	1 ATGGAAATTC GGGCAATAAA ATATACGGCA ATGGCTGCGT TGCTTGCATT 51 TACGGTTGCA GGCTGCCGGT TGGCAGGTTG GTATGAGTGT TCGTCCCTGT 101 CCGGCTGGTG TAAGCCCGAGA AAACCTGCCG CCATCGATTT TTGGGATATT 151 GGCGGCGAGA GTCCTCCGTC TTTAGAGGAC TACGAGATAC CGCTTTCAGA
40	201 CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCA CAACAATCTT 251 ACTTTTACAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT GGATTGGCGT 301 ACGCGTGACG GCAAACCTTT GATTGAGACG TTCAAACAGG AAGGTTTTGA 351 TTGTTTGAAA AAGCAGGGGT TGCGGCGCAA CGGTCTGTCC GAGCGCGTCC 401 GATGGTAA
	This encodes a protein having amino acid sequence <seq 860="" id="">:</seq>
45	1 MEIRAIKYTA MAALLAFTVA GCRLAGWYEC SSLSGWCKPR KPAAIDFWDI 51 GGESPPSLED YEIPLSDGNR SVRANEYESA QQSYFYRKIG KFEACGLDWR 101 TRDGKPLIET FKQEGFDCLK KQGLRRNGLS ERVRW*
	ORF131a and ORF131-1 show 97.0% identity in 135 aa overlap:
	orf131a.pep MEIRAIKYTAMAALLAFTVAGCRLAGWYECSSLSGWCKPRKPAAIDFWDIGGESPPSLED
50	orf131-1 MEIRAIKYTAMAALLAFTVAGCKLAGWYECSSLSGWCKPRKPAAIDFWDIGGESPPSLED
55	orf131a.pep YEIPLSDGNRSVRANEYESAQQSYFYRKIGKFEACGLDWRTRDGKPLIETFKQEGFDCLK

-467-

orf131-1 KQG

KOGLRRNGLSERVRWX

Homology with a predicted ORF from N.gonorrhoeae

ORF131 shows 89.3% identity over 121 aa overlap with a predicted ORF (ORF131ng) from

5 N.gonorrhoeae:

50

```
60
                  MEIRAIKYTAMAALLAFTVAGCRLAGWYECSSLTGWCKPRKPAAIDFWDIGGESPPSLGD
        orf131.pep
                  MEIRVIKYTATAALFAFTVAGCRLAGWYECLSLSGWCKPRKPAAIDFWDIGGESPLSLED
        orf131ng
                  YEIPLSDGNSSVRANEYESAQQSYFYRKIGKFEXCGLDWRTRDGKPLIETFKQGGFDCLE
10
        orf131.pep
                  YEIPLSDGNRSVRANEYESAQKSYFYRKIGKFEACGLDWRTRDGKPLVERFKQEGFDCLE
        orf131ng
        orf131.pep
                              121
                  K
15
                  KQGLRRNGLSERVRW
                             134
        orfl31ng
```

A complete length ORF131ng nucleotide sequence <SEQ ID 861> was predicted to encode a protein having amino acid sequence <SEQ ID 862>:

```
1 MEIRVIKYTA TAALFAFTVA GCRLAGWYEC LSLSGWCKPR KPAAIDFWDI
20 51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG KFEACGLDWR
101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 863>:

```
ATGGAAATTC GGGTAATAAA ATATACGGCA ACGGCTGCGT TGTTTGCATT
                   51
                       TACGGTTGCA GGCTGCCGGC TGGCGGGGTG GTATGAGTGT TCGTCCTTGT
25
                       CCGGCTGGTG TAAGCCGAGA AAACCTGCCG CCATCGATTT TTGGGATATT
                  101
                       GGCGGCGAGA GtccgctGTC TTTAGAGGAC TACGAGATAC CGCTTTCAGA
CGGCAATCGT TCCGTCAGGG CAAACGAATA TGAATCCGCG CAAAAATCTT
                  151
                  201
                       ACTTTTATAG GAAAATAGGG AAGTTTGAAG CCTGCGGGTT GGATTGGCGT
                  251
                       ACGCGTGACG GCAAACCTTT GGTTGAGAGG TTCAAACAGG AAGGTTTCGA
                  301
                       CTGTTTGGAA AAGCAGGGGT TGCGGCGCAA CGGCCTGTCC GAGCGCGTCC
30
                  351
                  401
                       GATGGTAA
```

This corresponds to the amino acid sequence <SEQ ID 864; ORF131ng-1>:

```
1 MEIRVIKYTA TAALFAFTVA GCRLAGWYEC SSLSGWCKPR KPAAIDFWDI
51 GGESPLSLED YEIPLSDGNR SVRANEYESA QKSYFYRKIG KFEACGLDWR
35 101 TRDGKPLVER FKQEGFDCLE KQGLRRNGLS ERVRW*
```

ORF131ng-1 and ORF131-1 show 92.6% identity in 135 aa overlap:

Based on the presence of a predicted prokaryotic membrane lipoprotein lipid attachment site, it is predicted that the proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

Example 102

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 865>

```
ATGAAACACA TCCATATTAT CGGTATCGGC GGCACGTTTA TGGGCGGGCT
                      TGCCGCCATT GCCAAAGAAG CGGGGTTTGA AGTCAGCGGT TGCGACGCGA
 5
                      AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG TATAGACGTG
                101
                      TATGAAGGCT TCGATGCCGC TCAGTTGGAC GAATTTAAAG CCGACGTTTA
                      CGTTATCGGC AATGTCGCCA AGCGCGGGAT GGATGTGGTT GAAGCGATTT
                      TGAACCTCGG CCTGCCtTAT ATtTcCGGCC CGCAATGGCT GTCGGAAAAC GTGCTGCACC ATCATTGGGT ACTCGGTGTG GCGGGGACGC ACGGCAAAAC
                301
10
                      GACCACCGCC TCCATGCTCG CATGGGTCTT GGAATATGCC GGCCTCGCGC
                351
                 401 CGGGCTTCCT TATLGGCGGC GTACC.GGAA AATLLCGGCG TTTCCGCCCG
                 451
                      CCTGCCGCAA ACGCCGCGCC AAGACCCGAA CAGCCAATCG CCGTTTTTcG
                      TCATCGAAGC CGACGAATAC GACACCGCCT TTLTCGACAA ACGTTCTAAA
                 501
                551 TtCGTGCATT ACCGTCCGCG TACCGCCGTG TTGAACAATC TGGAATTCGA
15
                 601
                      CCACGCCGAC ATCTTTGCCG ACTTGGGCGC GATACAGACC CAGTTCCACT
                      ACCTCGTGCG TACCGTGCCG TCTGAAGGCT TAATCGTCTG CAACGGACGG
CAGCAAAGCC TGCAAGATAC TTTGGACAAA GGCTGCTGGA CGCCGGTGGA
                 651
                 701
                 751 AAAATTCGGC ACGGAACACG GCTGGCA..
      This corresponds to the amino acid sequence <SEQ ID 866; ORF132>:
20
                      MKHIHIIGIG GTFMGGLAAI AKEAGFEVSG CDAKMYPPMS TQLEALGIDV
                  51 YEGFDAAQLD EFKADVYVIG NVAKRGMDVV EAILNLGLPY ISGPQWLSEN
                      VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG VXGKFRRFRP
                      PAANAAPRPE QPIAVFRHRS RRIRHRLFRQ TFXIRALPSA YRRVEQSGIR
                      PRRHLCRLGR DTDPVPLPRA YRAVXRLNRL QRTAAKPARY FGORLLDAGG
25
                 251 KIRHGTRLA..
      Further work revealed the complete nucleotide sequence <SEQ ID 867>:
                      ATGAAACACA TCCATATTAT CGGTATCGGC GGCACGTTTA TGGGCGGGCT
TGCCGCCATT GCCAAAGAAG CGGGGTTTGA AGTCAGCGGT TGCGACGCGA
                      AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG TATAGACGTG
                      TATGAAGGCT TCGATGCCGC TCAGTTGGAC GAATTTAAAG CCGACGTTTA
CGTTATCGGC AATGTCGCCA AGCGCGGGAT GGATGTGGTT GAAGCGATTT
30
                      TGAACCTCGG CCTGCCTTAT ATTTCCGGCC CGCAATGGCT GTCGGAAAAC
                 251
                      GTGCTGCACC ATCATTGGGT ACTCGGTGTG GCGGGGACGC ACGGCAAAAC
                 351
                      GACCACCGCC TCCATGCTCG CATGGGTCTT GGAATATGCC GGCCTCGCGC
35
                 401
                      CGGGCTTCCT TATTGGCGGC GTACCGGAAA ATTTCGGCGT TTCCGCCCGC
                      CTGCCGCAAA CGCCGCGCA AGACCCGAAC AGCCAATCGC CGTTTTTCGT
                 451
                      CATCGAAGCC GACGAATACG ACACCGCCTT TTTCGACAAA CGTTCTAAAT
                 551
                      TCGTGCATTA CCGTCCGCGT ACCGCCGTGT TGAACAATCT GGAATTCGAC
                      CACGCCGACA TCTTTGCCGA CTTGGGCGCG ATACAGACCC AGTTCCACTA
                 601
40
                      CCTCGTGCGT ACCGTGCCGT CTGAAGGCTT AATCGTCTGC AACGGACGGC
                 651
                      AGCAAAGCCT GCAAGATACT TTGGACAAAG GCTGCTGGAC GCCGGTGGAA
                      AAATTCGGCA CGGAACACGG CTGGCAGGCC GGCGAAGCCA ATGCCGACGG
                 751
                 801
                      CTCGTTCGAC GTGTTGCTCG ACGGCAAAAC CGCCGGACGC GTCAAATGGG
                 851 ATTTGATGGG CAGGCACAAC CGCATGAACG CGCTCGCCGT CATTGCCGCC
45
                 901
                      GCGCGTCATG TCGGTGTCGA TATTCAGACC GCCTGCGAAG CCTTGGGCGC
                 951
                      GTTTAAAAAC GTCAAACGCC GGATGGAAAT CAAAGGCACG GCAAACGGCA
                1001
                      TCACCGTTTA CGACGACTTC GCCCACCACC CGACCGCCAT CGAAACCACG
                     ATTCAAGGTT TGCGCCAACG CGTCGGCGGC GCGCGCATCC TCGCCGTCCT
                1051
                      CGAACCGCGT TCCAACACGA TGAAGCTGGG CACGATGAAG TCCGCCCTGC
                1101
50
                      CTGTAAGCCT CAAAGAAGCC GACCAAGTGT TCTGCTACGC CGGCGGCGTG
                1151
                      GACTGGGACG TCGCCGAAGC CCTCGCGCCT TTGGGCGGCA GGCTGAACGT
                1201
                      CGGCAAAGAC TTCGATGCCT TCGTTGCCGA AATCGTGAAA AACGCCGAAG
                1251
                      TAGGCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG CGGAATACAC
                1301
                      GGAAAGCTGC TGGAAGCTTT GAGATAG
                1351
 55
      This corresponds to the amino acid sequence <SEQ ID 868; ORF132-1>:
                      MKHIHIIGIG GTFMGGLAAI AKEAGFEVSG CDAKMYPPMS TQLEALGIDV
                      YEGFDAAQLD EFKADVYVIG NVAKRGMDVV EAILNLGLPY ISGPOWLSEN
                      VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG VPENFGVSAR
                      LPQTPRQDPN SQSPFFVIEA DEYDTAFFDK RSKFVHYRPR TAVLNNLEFD
                 151
 60
                      HADIFADLGA IQTQFHYLVR TVPSEGLIVC NGRQQSLQDT LDKGCWTPVE
                 201
                      KFGTEHGWQA GEANADGSFD VLLDGKTAGR VKWDLMGRHN RMNALAVIAA
```

ARHVGVDIQT ACEALGAFKN VKRRMEIKGT ANGITVYDDF AHHPTAIETT

351 IQGLRQRVGG ARILAVLEPR SNTMKLGTMK SALPVSLKEA DQVFCYAGGV

401 DWDVAEALAP LGGRLNVGKD FDAFVAEIVK NAEVGDHILV MSNGGFGGIH

451 GKLLEALR*

Computer analysis of this amino acid sequence gave the following results:

5 Homology with the hypothetical o457 protein of E.coli (accession number U14003)

ORF132 and o457 show 58% aa identity in 140 aa overlap:

```
IHIIGIGGTFMGGLAAIAKEAGFEVSGCDAKMYPPMSTQLEALGIDVYEGFDAAQLDEFK 63
                      IHI+GI GTFMGGLA +A++ G EV+G DA +YPPMST LE GI++ +G+DA+QL+ +
                      IHILGICGTFMGGLAMLARQLGHEVTGSDANVYPPMSTLLEKQGIELIQGYDASQLEP-Q 61
          0457:
                  3
10
          Orf132: 64 ADVYVIGNVAKRGMDVVEAILNLGLPYISGPQWLSENVLHHHWVLGVAGTHGKTTTASML 123
                                             +PY+SGPQWL + VL WVL VAGTHGKTTTA M
                       D+ +IGN RG VEA+L
                   62 PDLVIIGNAMTRGNPCVEAVLEKNIPYMSGPQWLHDFVLRDRWVLAVAGTHGKTTTAGMA 121
          0457:
          Orf132: 124 AWVLEYAGLAPGFLIGGVXG 143
15
                       W+LE G PGF+IGGV G
                   122 TWILEQCGYKPGFVIGGVPG 141
          0457:
```

Homology with a predicted ORF from N. meningitidis (strain A)

ORF132 shows 74.6% identity over a 189aa overlap with an ORF (ORF132a) from strain A of N. meningitidis:

			10	20	30	40	50	60
	orf132.pep	MKHIHIIG	IGGTFMGGL	AAIAKEAGFE	VSGCDAKMYE	PMSTQLEALG		
	• •	11111111	11111111:	11111111111	11111111	1111111111		1111
25	orf132a	MKHIHIIG	IGGTFMGGI	AAIAKEAGFE	CXSGCDAKMY	PMSTQLEALG	IGVYEGFDT	AQLD
			10	20	30	40	50	60
						100	110	120
			70	80	90	100		
	orf132.pep	EFKADVYV	'IGNVAKRGN	IDVVEAILNL		SENVLHHHWV		
30		11111111	111111111	11111	, , , , , , , , , , ,	: [,,,, ,,,,	1111
	orf132a	EFKADVYV	'IGNVAKRGN	IDVVEAILNR(SLPYISGPQWI	LAENXLHHHWX	(LGVAXTHGK	TTTA
			70	80	90	100	110	120
			.30	140	150	160		
35	orf132.pep							AVFR
35	orf132.pep	SMLAWVLE	YAGLAPGF	LIGGVXGKFR	RFRPPAAI	NAAPRPEQPI-		1.1
35	-	SMLAWVLE	YAGLAPGF	LIGGVXGKFR	RFRPPAAI	NAAPRPEQPI-		1.1
35	orf132.pep	SMLAWVLE	YAGLAPGFI	LIGGVXGKFR	RFRPPAAI	NAAPRPEQPI-		1.1
35	-	SMLAWVLE	YAGLAPGF	LIGGVXGKFR : KIGGVPENFS	RFRPPAAI : : VSARL-PQTPI	NAAPRPEQPI- :: : RQDPNSQSPFI	TOYEADEYD	1 1
	-	SMLAWVLE	YAGLAPGFI YAGLAPGFI 30	LIGGVXGKFR : KIGGVPENFS	RFRPPAAI : : VSARL-PQTPI	NAAPRPEQPI- :: : RQDPNSQSPFI	TOYEADEYD	1 1
35 40	orf132a	SMLAWVLE	YAGLAPGFI YAGLAPGFI 30	LIGGVXGKFR- : KIGGVPENFS 140	RFRPPAAI : : VSARL-PQTPI 150 200	NAAPRPEQPI- :: : RQDPNSQSPFI 160 210	FVIEADEYD1 170 220	 CAFFD
	-	SMLAWVLE SMLAWVLE 1 170 HRSRRIRE	YAGLAPGFI YAGLAPGFI 30 180 RLFRQTFX	LIGGVXGKFR- : KIGGVPENFS 140	RFRPPAAI : : VSARL-PQTPI 150 200	NAAPRPEQPI- :: : RQDPNSQSPFI 160	FVIEADEYD1 170 220	 CAFFD
	orf132a	SMLAWVLE SMLAWVLE 1 170 HRSRRIRF	YAGLAPGFI YAGLAPGFI 130 180 HRLFRQTFX	LIGGVXGKFR- : KIGGVPENFS 140 190 KRALPSAYRR	RFRPPAAI : : VSARL-PQTPI 150 200 VEQSGIRPRR	NAAPRPEQPI- :: : RQDPNSQSPFI 160 210 HLCRLGRDTD	FVIEADEYDT 170 220 PVPLPRAYRA	YAFFD
	orf132a	SMLAWVLE SMLAWVLE 1 170 HRSRRIRF	YAGLAPGFI YAGLAPGFI 130 180 HRLFRQTFX	LIGGVXGKFR- : KIGGVPENFS 140 190 KRALPSAYRR	RFRPPAAI : : VSARL-PQTPI 150 200 VEQSGIRPRR	NAAPRPEQPI- :: : RQDPNSQSPFI 160 210	FVIEADEYDT 170 220 PVPLPRAYRA	YAFFD

The complete length ORF132a nucleotide sequence <SEQ ID 869> is:

	1	ATGAAACACA	TCCACATTAT	CGGTATCGGC	GGCACGTTTA	TGGGTGGGAT
	51	TGCCGCCATT	GCCAAAGAAG	CAGGGTTTGA	ANTCAGCGGT	TGCGATGCGA
	101	AGATGTATCC	GCCGATGAGC	ACCCAGCTCG	AAGCCTTGGG	CATAGGCGTG
	151	TATGAAGGCT	TCGACACCGC	GCAGTTGGAC	GAATTTAAAG	CCGACGTTTA
50	201				GGATGTGGTT	
50	251	TGAACCGTGG	GCTGCCTTAT	ATTTCCGGCC	CGCAATGGCT	GGCTGAAAAC
	301		ATCATTGGNN			
	351	GACCACCGCG	TCTATGCTCG	CGTGGGTTTT	GGAATATGCC	GGACTCGCAC
	401	CGGGCTTCNT	TATCGGCGGC	GTACCGGAAA	ACTTCAGCGT	TTCCGCCCGC
55	451	CTGCCGCAAA	CGCCGCGCCA	AGACCCGAAC	AGCCAATCGC	CGTTTTTCGT
<i>33</i>	501		GACGAATACG			CGCTCCAAAT
	551	TCGTGCATTA	CCGTCCGCGT	ACCGCCGTGT	TGAACAATCT	GGAATTCGAC
	601	CACGCCGACA	TCTTCGCCGA	TTTGGGCGCG	ATACAGACCC	AGTTCCACCA
	651	CCTCGTGCGT	ACCGTGCCGT	CTGAAGGCCT	CATCGTCTGC	AACGGACGGC
60	701	AGCAAAGCCT	GCAAGACACT	TTGGACAAAG	GCTGCTGGAC	GCCGGTGGAA
00	751	AAATTCGGCA	CGGAACACGG	CTGGCAGGCC	GGCGAAGCCA	ATGCCGATGG

	801 CTCG	STTCGAC GTGTTGCTTG ACGGCAAAAA AGCCGGACAC GTCGCTTGGA
	851 GTTT	GATGGG CGGACACAAC CGCATGAACG CGCTCGCNGT CATCGCCGCC
	901 GCGC	COTCATG CCGGAGTNGA CATTCAGACG CCCTGCGAAG CCTTGAGCAC
	951 GCGC	AAAAAAC GTCAAACGCC GCATGGAAAT CAAAGGCACG GCAAACGGTA
5		
)		CCGTTTA CGACGACTTC GCCCACCATC CGACCGCTAT CGAAACCACG
		CAAGGTT TGCGCCAGCG CGTCGGCGGC GCGCGCATCC TCGCCGTCCT
		ACCGCGT TCCAATACGA TGAAGCTGGG TACGATGAAA GCCGCCCTGC
	1151 CCGC	CAAGCCT CAAAGAAGCC GACCAAGTGT TCTGNTACGC CGGCGGCGCG
10		GGGACG TTGCCGAAGC CCTCGCGCCT TTGGGCGGCA GGCTGCACGT
10		CAAAGAC TTCGATGCCT TCGTTGCCGA AATCGTGAAA AACGCCGAAG
		SCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG CGGAATACAC
	1351 ACCA	AAACTGC TGGACGCTTT GAGATAG
	This areadon a protoi	n having amine said someway (CEO TO 070).
	Ims encodes a protei	n having amino acid sequence <seq 870="" id="">:</seq>
		HIIGIG GTFMGGIAAI AKEAGFEXSG CDAKMYPPMS TQLEALGIGV
15	51 YEGE	FDTAQLD EFKADVYVIG NVAKRGMDVV EAILNRGLPY ISGPQWLAEN
		HWXLGV AXTHGKTTTA SMLAWVLEYA GLAPGFXIGG VPENFSVSAR
	151 LPQT	PRQDPN SQSPFFVIEA DEYDTAFFDK RSKFVHYRPR TAVLNNLEFD
	201 HADI	FADLGA IQTQFHHLVR TVPSEGLIVC NGRQQSLQDT LDKGCWTPVE
	251 KFGT	TEHGWQA GEANADGSFD VLLDGKKAGH VAWSLMGGHN RMNALAVIAA
20	301 ARHA	AGVDIQT ACEALSTFKN VKRRMEIKGT ANGITVYDDF AHHPTAIETT
	351 IQGI	LRQRVGG ARILAVLEPR SNTMKLGTMK AALPASLKEA DQVFXYAGGA
		VAEALAP LGGRLHVGKD FDAFVAEIVK NAEAGDHILV MSNGGFGGIH
	451 TKLI	LDALR*
	ÓDEIGO LOBEIG	20 1 1 00 00/ 11 1: 1 450
	ORF132a and ORF1.	32-1 show 93.9% identity in 458 aa overlap:
0.5		
25	orf132a.pep	MKHIHIIGIGGTFMGGIAAIAKEAGFEXSGCDAKMYPPMSTQLEALGIGVYEGFDTAQLD
	orf132-1	MKHIHIIGIGGTFMGGLAAIAKEAGFEVSGCDAKMYPPMSTQLEALGIDVYEGFDAAQLD
		Pota bindit division division at the contract of the contract
30	orf132a.pep	EFKADVYVIGNVAKRGMDVVEAILNRGLPYISGPQWLAENXLHHHWXLGVAXTHGKTTTA
ÞΩ	6122 1	
	orf132-1	EFKADVYVIGNVAKRGMDVVEAILNLGLPYISGPQWLSENVLHHHWVLGVAGTHGKTTTA
	£1332 - non	CNI ALUII EVACI A DODVI COUDDIVIDUIGA DI DOMBI ODDIVIO GRADIVITA DOLLO
	orf132a.pep	SMLAWVLEYAGLAPGFXIGGVPENFSVSARLPQTPRQDPNSQSPFFVIEADEYDTAFFDK
35		
33	orf132-1	SMLAWVLEYAGLAPGFLIGGVPENFGVSARLPQTPRQDPNSQSPFFVIEADEYDTAFFDK
	£133	DOVERNING DOMAIN AND DEPOS DE COMO COMO COMO COMO COMO COMO COMO COM
	orf132a.pep	RSKFVHYRPRTAVLNNLEFDHADIFADLGAIQTQFHHLVRTVPSEGLIVCNGRQQSLQDT
	5122 1	
40	orf132-1	${\tt RSKFVHYRPRTAVLNNLEFDHADIFADLGAIQTQFHYLVRTVPSEGLIVCNGRQQSLQDT}$
40	£122	I DVCCUMDUDVDCMDUCVOS COS VS DCCCDOVI I DCCCOS COS COS COS COS COS COS COS COS CO
	orf132a.pep	LDKGCWTPVEKFGTEHGWQAGEANADGSFDVLLDGKKAGHVAWSLMGGHNRMNALAVIAA
	om £1 22 1	
	orf132-1	LDKGCWTPVEKFGTEHGWQAGEANADGSFDVLLDGKTAGRVKWDLMGRHNRMNALAVIAA
45	orf132a.pep	ADUACIDIOTA CEA I CHERAIUR DMETROMAICTHIRID DA URBHA THEMATOCA DODING
73	Offisea.pep	ARHAGVDIQTACEALSTFKNVKRRMEIKGTANGITVYDDFAHHPTAIETTIQGLRQRVGG
	orf132-1	
	011132-1	ARHVGVDIQTACEALGAFKNVKRRMEIKGTANGITVYDDFAHHPTAIETTIQGLRQRVGG
	arf122a man	AD II AVI EDD CHMMU CMMUAAT DAGT WEARGONNO GOS BURNAS DAGT CONTRA
50	orf132a.pep	ARILAVLEPRSNTMKLGTMKAALPASLKEADQVFXYAGGADWDVAEALAPLGGRLHVGKD
20	o=£122_1	ARTIANA ERRONANTA CHARACTA DI ANTONIO DE LA CONTRACTOR DE
	orf132-1	ARILAVLEPRSNTMKLGTMKSALPVSLKEADQVFCYAGGVDWDVAEALAPLGGRLNVGKD

Homology with a predicted ORF from N.gonorrhoeae

orf132a.pep

orf132-1

55

ORF132 shows 89.6% identity over 259 as overlap with a predicted ORF (ORF132ng) from N. gonorrhoeae:

60	orf132.pep	MKHIHIIGIGGTFMGGLAAIAKEAGFEVSGCDAKMYPPMSTQLEALGIDVYEGFDAAQLD	60
	orfl32ng	MKHIHIIGIGGTFMGGIAAIAKEAGFKVSGCDAKMYPPMSTQLEALGIGVHEGFDAAQLE	60

PCT/IB98/01665

-471-

	orf132.pep	EFKADVYVIGNVAKRGMDVVEAII	NLGLPYISGPQWLSENVLHHHWVLGVAGTHGKTTTA	120
	orf132ng	EFQADIYVIGNVARRGMDVVEAII	NRGLPYISGPQWLAENVLHHHWVLGVAGTHGKTTTA	120
5	orf132.pep	SMLAWVLEYAGLAPGFLIGGVXGF	KFRRFRPPAANAAPRPEQPIAVFRHRSRRIRHRLFRQ	180
	orf132ng	SMLAWVLEYAGLAPGFLIGGVPG	(FRRFRPPTANAASRPEQQIAVFRHRSRRIRHRLFRQ	180
10	orf132.pep	TFXIRALPSAYRRVEQSGIRPRR	HLCRLGRDTDPVPLPRAYRAVXRLNRLQRTAAKPARY	240
10	orf132ng	TLQIRALSPAYRRVEQSGIRPRRI	HLRRLGRDTDPVPPPRAHRTIRRPHRLQRTAAKPARY	240
	orf132.pep	FGQRLLDAGGKIRHGTRLA	259	
15	orf132ng	FGQRLLDAGGKIRHRTRLADW	261	

An ORF132ng nucleotide sequence <SEQ ID 871> was predicted to encode a protein having amino acid sequence <SEQ ID 872>:

```
MKHIHIIGIG GTFMGGIAAI AKEAGFKVSG CDAKMYPPMS TQLEALGIGV
                     HEGFDAAQLE EFQADIYVIG NVARRGMDVV EAILNRGLPY ISGPQWLAEN
                     VLHHHWVLGV AGTHGKTTTA SMLAWVLEYA GLAPGFLIGG VPGKFRRFRP
20
                101
                     PTANAASRPE QQIAVFRHRS RRIRHRLFRQ TLQIRALSPA YRRVEQSGIR
                151
                     PRRHLRRLGR DTDPVPPPRA HRTIRRPHRL QRTAAKPARY FGQRLLDAGG
                201
                251 KIRHRTRLAD W*
```

Further work revealed the following gonococcal DNA sequence <SEQ ID 873>:

```
ATGAAACACA TCCACATTAT CGGTATCGGC GGCACGTTTA TGGGCGGGAT
25
                     TGCCGCCATT GCCAAAGAAG CCGGGTTCAA AGTCAGCGGT TGCGACGCGA
                 51
                     AGATGTATCC GCCGATGAGC ACCCAGCTCG AAGCCTTGGG CATAGGCGTA
                101
                     CACGAAGGCT TCGATGCCGC GCAGTTGGAA GAATTTCAAG CCGATATTTA
                151
                     CGTCATCGGC AATGTCGCCA GGCGCGGGAT GGATGTGGTC GAGGCGATTT
                201
                     TGAACCGTGG GCTGCCTTAT ATTTCCGGCC CGCAATGGCT GGCTGAAAac
30
                251
                     GTGCtgcacc atcaTTGGgt ACTCGGCGTG GcagggaCGC ACGGcaaAac
                301
                     gaccaCcGcg tCCATGCTCG CCTGGGTCTT GGAATATGCC GGACTCGCGC
                351
                     CGGGCTTCCT CATCGGCGGt gtaccggaAA ATTTCGGCGT TTCCGCCCGC
                401
                     CTACCGCAAA CGCCGCGTCA AGACCCGAAC AGCAAATCGC CGTTTTTCGT
                451
                     CATCGAAGCC GACGAATACG ACACCGCCTT TTTCGACAAA CGCTCCAAAT
35
                501
                     TCGTGCATTA TCGCCCGCGT ACCGCCGTGT TGAACAATCT GGAATTCGAC
                551
                     CACGCCGACA TCTTCGCCGA CTTGGGCGCG ATACAGACCC AGTTCCACCA
                601
                     CCTCGTGCGC ACCGTACCAT CCGAAGGCCT CATCGTCTGC AACGGACAGC
                651
                     AGCAAAGCCT GCAAGATACT TTGGACAAAG GCTGCTGGAC GCCGGTGGAA
                701
                     AAATTCGGCA CCGGACACGG CTGGCAGATT GGTGAAGTCA ATGCCGACGG
40
                751
                     CTCGTTCGAC GTATTGCTTG ACGGCAAAAA AGCCGGACAC GTCGCATGGG
                801
                     ATTTGATGGG CGGACACAAC CGCATGAACG CGCTCGCCGT CATCGCTGCC
                851
                     GCACGCCATG CCGGAGTCGA TGTTCAGACG GCCTGCGAAG CCTTGGGTGC
                901
                     GTTTAAAAAC GTCAAACGCC GCATGGAAAT CAAAGGCACG GCAAACGGCA
                951
                     TCACCGTTTA CGACGATTTC GCCCACCACC CGACCGCCAT CGAAACCACG
45
               1001
                     ATTCAAGGTT TGCGCCAACG TGTCGGCGGC GCGCGCATCC TCGCCGTCCT
               1051
                     CGAGCCGCGT TCCAACACCA TGAAACTCGG CACGATGAAG TCCGCCCTGC
               1101
                     CCGCAAGCCT CAAAGAAGCC GACCAAGTGT TCTGCTACGC CGGCGGCGCG
               1151
                     GACTGGGACG TTGCCGAAGC CCTCGCGCCT TTGGGCTGCA GGCTGCGCGT
               1201
                     CGGTAAAGAT TTCGATACCT TCGTTGCCGA AATTGTGAAA AACGCCCGAA
 50
               1251
                     CCGGCGACCA TATTTTGGTG ATGAGCAACG GCGGTTTCGG CGGAATACAC
               1301
                     ACCAAACTGC TGGACGCTTT GAGATAG
               1351
```

This corresponds to the amino acid sequence <SEQ ID 874; ORF132ng-1>:

	1				CDAKMYPPMS	
55	51	HEGFDAAQLE	EFQADIYVIG	NVARRGMDVV	EAILNRGLPY	ISGPQWLAEN
	101	VLHHHWVLGV	AGTHGKTTTA	SMLAWVLEYA	GLAPGFLIGG	VPENFGVSAR
	151	LPQTPRQDPN	SKSPFFVIEA	DEYDTAFFDK	RSKFVHYRPR	TAVLNNLEFD
	201	HADIFADLGA	IQTQFHHLVR	TVPSEGLIVC	NGQQQSLQDT	LDKGCWTPVE
	251	KFGTGHGWQI	GEVNADGSFD	VLLDGKKAGH	VAWDLMGGHN	RMNALAVIAA
60	301	ARHAGVDVQT	ACEALGAFKN	VKRRMEIKGT	ANGITVYDDF	AHHPTAIETT
	351	IQGLRQRVGG	ARILAVLEPR	SNTMKLGTMK	SALPASLKEA	DQVFCYAGGA
	401	DWDVAEALAP	LGCRLRVGKD	FDTFVAEIVK	NARTGDHILV	MSNGGFGGIH
	451	TKLLDALR*				

ORF132ng-1 and ORF132-1 show 93.2% identity in 458 aa overlap:

	11	KHIHIIGIGGTFMGGIAAIAKEAGFKVSGCDAKMYPPMSTQLEALGIGVHEGFDAAQLE
5	1	FQADIYVIGNVARRGMDVVEAILNRGLPYISGPQWLAENVLHHHWVLGVAGTHGKTTTA : :
10		MLAWVLEYAGLAPGFLIGGVPENFGVSARLPQTPRQDPNSKSPFFVIEADEYDTAFFDK
15	1	SKFVHYRPRTAVLNNLEFDHADIFADLGAIQTQFHHLVRTVPSEGLIVCNGQQQSLQDT
20	1	DKGCWTPVEKFGTGHGWQIGEVNADGSFDVLLDGKKAGHVAWDLMGGHNRMNALAVIAA
25	orf132-1 A	RHAGVDVQTACEALGAFKNVKRRMEIKGTANGITVYDDFAHHPTAIETTIQGLRQRVGG : :
	1	RILAVLEPRSNTMKLGTMKSALPASLKEADQVFCYAGGADWDVAEALAPLGCRLRVGKD
30	orf132-1 F	DTFVAEIVKNARTGDHILVMSNGGFGGIHTKLLDALRX : DAFVAEIVKNAEVGDHILVMSNGGFGGIHGKLLEALRX
	In addition, ORF132ng-	1 is homologous to a hypothetical E.coli protein:
35	ORF_o457 (Escher in fbp-pmba inte Score = 474 bi	thetical protein o457 - Escherichia coli >gi 537075 (U14003) ichia coli] >gi 1790680 (AE000494) hypothetical 48.5 kD protein rgenic region [Escherichia coli] Length = 457 ts (1207), Expect = e-133 9/439 (56%), Positives = 294/439 (66%), Gaps = 13/439 (2%)
40	++ G	KVSGCDAKMYPPMSTQLEALGIGVHEGFDAAQLEEFQADIYVIGNVARRGMDVVE 81 +V+G DA +YPPMST LE GI + +G+DA+QLE Q D+ +IGN RG VE EVTGSDANVYPPMSTLLEKQGIELIQGYDASQLEP-QPDLVIIGNAMTRGNPCVE 79
45	Query: 82 AILNR A+L +	GLPYISGPQWLAENVLHHHWVLGVAGTHGKTTTASMLAWVLEYAGLAPGFLIGGV 141 +PY+SGPQWL + VL WVL VAGTHGKTTTA M W+LE G PGF+IGGV NIPYMSGPQWLHDFVLRDRWVLAVAGTHGKTTTAGMATWILEQCGYKPGFVIGGV 139
50	P NF	VSARLPQTPRQDPNSKSPFFVIEADEYDTAFFDKRSKFVHYRPRTAVLNNLEFDH 201 VSA L +S FFVIEADEYD AFFDKRSKFVHY PRT +LNNLEFDH VSAHLGESDFFVIEADEYDCAFFDKRSKFVHYCPRTLILNNLEFDH 190
55	ADIF	DLGAIQTQFHHLVRTVPSEGLIVCNGQQQSLQDTLDKGCWTPVEKFGTGHGWQIG 261 DL AIQ QFHHLVR VP +G I+ +L+ T+ GCW+ E G WQ DLKAIQKQFHHLVRIVPGQGRIIWPENDINLKQTMAMGCWSEQELVGEQGHWQAK 250
, ,	++ D	OGS-FDVLLDGKKAGHVAWDLMGGHNRMNALAVIAAARHAGVDVQTACEALGAFKN 320 OS ++VLLDG+K G V W L+G HN N L IAAARH GV A ALG+F N OASEWEVLLDGEKVGEVKWSLVGEHNMHNGLMAIAAARHVGVAPADAANALGSFIN 310
60	+RR+	EIKGTANGITVYDDFAHHPTAIETTIQGLRQRVGG-ARILAVLEPRSNTMKLGTM 379 E++G ANG+TVYDDFAHHPTAI T+ LR +VGG ARI+AVLEPRSNTMK+G ELRGEANGVTVYDDFAHHPTAILATLAALRGKVGGTARIIAVLEPRSNTMKMGIC 370
65	K L	PASLKEADQVF-CYAGGADWDVAEALAPLGCRLRVGKDFDTFVAEIVKNARTGDHI 438 SL AD+VF W VAE D DT +VK A+ GDHI APSLGRADEVFLLQPAHIPWQVAEVAEACVQPAHWSGDVDTLADMVVKTAQPGDHI 430
	Query: 439 LVMSN	NGGFGGIHTKLLDAL 457

LVMSNGGFGGIH KLLD L Sbjct: 431 LVMSNGGFGGIHQKLLDGL 449

Based on this analysis, it was predicted that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

ORF132-1 (26.4kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 20A shows the results of affinity purification of the His-fusion protein, and Figure 20B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (Figure 20C) and ELISA (positive result). These experiments confirm that ORF132 is a surface-exposed protein, and that it is a useful immunogen.

Example 103

5

10

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 875>

```
..CCGGGCTATT ACGGCTCGGA TGACGAATTT AAGCGGGCAT TCGGAGAAAA
                       CTCGCCGACA TmCAAGAAAC ATTGCAACCG GAGCTGCGGG ATTTATGAAC
                 51
15
                       CCGTATTGAA AAAATACGGC AAAAAGCGCG CCAACAACCA TTCGGTCAGC
                101
                       ATTAGTGCGG ACTTCGGCGA TTATTTCATG CCGTTCGCCA GCTATTCGCG
                151
                       CACACACCGT ATGCCCAACA TCCAAGAAAT GTATTTTTCC CAAATCGGCG
                201
                       ACTCCGGCGT TCACACCGCC TTAAAACCAG AGCGCGCAAA CACTTGGCAA
                251
                       TTTGGCTTCr ATACCTATAA AAAAGGATTG TTAAAACAAG ATGATACATT
                301
                       AGGATTAAAA CTGGTCGGCT ACCGCAGCCG CATCGACAAC TACATCCACA
20
                351
                       ACGTTTACGG GAAATGGTGG GATTTGAACG GGGATATTCC GAGCTGGGTC
                401
                       AGCAGCACCG GGCTTGCCTA CACCATCCAA CATCGCTATT TCAWAGACAA
                451
                       AGTGCATCAA nnnnnnnnn nnnnnnnnn nnnntacgat tatgggcgtt
                501
                       TTTTCACCAA CCTTTCTTAC GCCTATCAAA AAAGCACGCA ACCGACCAAC
                551
25
                601
                       TTCAGCGATG CGAGCGAATC GCCCAACAAT GCGTCCAAAG AAGACCAACT
                       CAAACAAGGT TATGGGTTGA GCAGGGTTTC CGCCCTGCCG CGAGATTACG
                651
                       GACGTTTGGA AGTCGGTACG CGCTGGTTGG GCAACAAACT GACTTTGGGC
                701
                       GGCGCGATGC GCTATTTCGG CAAGAGCATC CGCGCGACGG CTGAAGAACG
                751
                       CTATATCGAC GGCACCAACG GGGGAAATAC CAGCAATTTC CGGCAACTGG
                801
                       GCAAGCGTTC CATCAAACAA ACCGAAACTC TTGCCCGCCA GCCTTTGATT
30
                851
                       TTWGATTTTa ACGCCGCTTA CGAGCCGAAG AAAAACCTTA TTTTCCGCGC
                901
                       CGAAGTCAAA AATCTGTTCG ACAGGCGTTA TATCGATCCG CTCGATGCGG
                951
                       GCAATGATGC GGCAAC.GAG CGTTATTACA GCTCGTTCGA CCCGAAAGAC
               1001
                       AAGGACTTAG ACGTAACGTG TAATGCTGAT AAAACGTTGT GCaACGGCAA
               1051
                       ATACGGCGGC ACAAGCAAAA GCGTATTGAC CAATTTTGCA CGCGGACGCA
35
               1101
                       CCTTTTTGAT GACGATGAGC TACAAGTTTT AA
               1151
```

This corresponds to the amino acid sequence <SEQ ID 876; ORF133>:

```
.. PGYYGSDDEF KRAFGENSPT XKKHCNRSCG IYEPVLKKYG KKRANNHSVS
                       ISADFGDYFM PFASYSRTHR MPNIQEMYFS QIGDSGVHTA LKPERANTWQ
                51
                       FGFXTYKKGL LKODDTLGLK LVGYRSRIDN YIHNVYGKWW DLNGDIPSWV
40
                101
                       SSTGLAYTIQ HRXFXDKVHQ XXXXXXXXYD YGRFFTNLSY AYQKSTQPTN
                151
                       FSDASESPNN ASKEDQLKQG YGLSRVSALP RDYGRLEVGT RWLGNKLTLG
                201
                       GAMRYFGKSI RATAEERYID GTNGGNTSNF RQLGKRSIKQ TETLARQPLI
                251
                       XDFNAAYEPK KNLIFRAEVK NLFDRRYIDP LDAGNDAAXE RYYSSFDPKD
                301
                       KDXDVTCNAD KTLCNGKYGG TSKSVLTNFA RGRTFLMTMS YKF*
45
```

Further work revealed the further partial DNA sequence <SEQ ID 877>:

	1	GAGGCGCAGA	TACAGGTTTT	GGAAGATGTG	CACGTCAAGG	CGAAGCGCGT
	51	ACCGAAAGAC	AAAAAAGTGT	TTACCGATGC	GCGTGCCGTA	TCGACCCGTC
	101	AGGATATATT	CAAATCCAGC	GAAAACCTCG	ACAACATCGT	ACGCAGCATC
50	151	CCCGGTGCGT	TTACACAGCA	AGATAAAAGC	TCGGGCATTG	TGTCTTTGAA
50	201	TATTCGCGGC	GACAGCGGGT	TCGGGCGGGT	CAATACGATG	GTGGACGGCA
	251	TCACGCAGAC	CTTTTATTCG	ACTTCTACCG	ATGCGGGCAG	GGCAGGCGGT

			•				
	30	01	TCATCTCAAT	TCGGTGCATC	TGTCGACAGC	AATTTTATTG	CCGGACTGGA
	35	51	TGTCGTCAAA	GGCAGCTTCA	GCGGCTCGGC	AGGCATCAAC	AGCCTTGCCG
						ATGACGTCGT	
-		51	AATACCTACG	GCCTGCTGCT	AAAAGGTCTG	ACCGGCACCA	ATTCAACCAA
5						CAAATGGCTG	
						GGCGCAGCGT	
						GGAAATTTTG	
	-					ACAAGAGGGT ATTTACAAAG	
10	. 7					CAAGAACTAC	
10						CCTg.CaCCG	
	_	51	TTACCCCCAT	CGATCCGTCC	AGCCTGAAGC	AGCAGTCGGC	AGGCAATCTG
						AAATACACGG	
						AATCATCAAC	
15	10					ATACCAACCT	
	10:					CCGAAAGGGT	
	11	01	AGGCTGGGGG	CTTTTAAAGG	ATTTTGAAAC	CTACAACAAC	GCGAAAATCC
	. 11	51	TCGACCTCAA	CAACACCGCC	ACCTTCCGGC	TGCCCCGCGA	AACCGAGTTG
	12					AACGAATACG	
20	12					CGGTCCTGAT	
	13					GCGATAAAGG	
		51				AGCCAATATT	
		01				TTACCGCTTA	
0.5	.14					AATATACGGG	
25	15					GAAAACTCGC	
		51				TGAACCCGTA	
		01				TCAGCATTAG	
		51 01				TCGCGCACAC	
30		51				GGCAATTTGG	
30		01				ACATTAGGAT	
		51				CCACAACGTT	
		01				GGGTCAGCAG	
		51				GACAAAGTGC	
35	20	01				GCGTTTTTTC	
	20)51	CTTACGCCTA	TCAAAAAAGC	ACGCAACCGA	CCAACTTCAG	CGATGCGAGC
	21	.01				CAACTCAAAC	
		.51				TTACGGACGT	
40		201				TGGGCGGCGC	
40		251				GAACGCTATA	
		301				ACTGGGCAAG	
		351				TGATTTTTGA	
		101 151				CGCGCCGAAG	GATGCGGCAA
45		501					CGAAGACGTA
73		551					GCGGCACAAG
		601					TTGATGACGA
		651			1100100000		
	This corresp	ond	s to the amin	o acid seque	ence <seq i<="" th=""><th>D 878; ORF</th><th>133-1>:</th></seq>	D 878; ORF	133-1>:
50		1	FACTOVIEDV	HAKAKBABKU	KKVFTDARAV	STRODIFKSS	ENLDNIVRSI
30		51					TSTDAGRAGG
		101					LGVDDVVQGN
		151					GHSRRSVAQN
		201					WERDLQRQQW
55		251					SLKQQSAGNL
	•	301	FKLEYDGVFN	KYTAQFRDLN	TKIGSRKIIN	RNYQFNYGLS	LNPYTNLNLT
	:	351	AAYNSGRQKY	PKGSKFTGWG	LLKDFETYNN	AKILDLNNTA	TFRLPRETEL
		401	QTTLGFNYFH	NEYGKNRFPE	ELGLFFDGPD	QDNGLYSYLG	RFKGDKGLLP
		451					FGGEYTGYYG
60		501					NHSVSISADF
		551					ANTWOFGENT
		601					IPSWVSSTGL
		651					TOPTNESDAS
CF		701					KLTLGGAMRY
65		751					ROPLIFDEYA
		801					FDPKDKDEDV
		851	TCNADKTLCN	GKIGGTSKSV	LINFARGRIE	PMIM21KF.	•

Computer analysis of this amino acid sequence gave the following results:

Homology with with the probable TonB-dependent receptor HI121 of *H.influenzae* (accession number U32801) ORF133 and HI121 show 57% aa identity in 363aa overlap:

	Orf133:	31	IYEPVLKKYGKKRANNHSVSISADFGDYFMPFASYSRTHRMPNIQEMYFSQIGDSGVHTA I EP+L K G K+A NHS ++SA+ DYFMPF +YSRTHRMPNIQEM+FSQ+ ++GV+TA	90
5	HI121:	563	INEPILHKSGHKKAFNHSATLSAELSDYFMPFFTYSRTHRMPNIQEMFFSQVSNAGVNTA	622
	Orf133:	91	LKPERANTWQFGFXTYKKGLLKQDDTLGLKLVGYRSRIDNYIHNVYGKWWDLNGDIPSWV LKPE+++T+O GF TYKKGI. ODD LG+KLVGYRS I NYIHNVYG WW +P+W	150
10	HI121:	623	LKPE+++T+Q GF TYKKGL QDD LG+KLVGYRS I NYIHNVYG WW +P+W LKPEQSDTYQLGFNTYKKGLFTQDDVLGVKLVGYRSFIKNYIHNVYGVWWRDGMPTWA	680
10	Orf133:	151	SSTGLAYTIQHRXFXDKVHXXXXXXXXXYDYGRFFTNLSYAYQKSTQPTNFSDASESPNN	210
	HI121:	681	S G YTI H+ + V YD GRFF N+SYAYQ++ QPTN++DAS PNN ESNGFKYTIAHQNYKPIVKKSGVELEINYDMGRFFANVSYAYQRTNQPTNYADASPRPNN	740
15	Orf133:	211	ASKEDOLKOGYGLSRVSALPRDYGRLEVGTRWLGNKLTLGGAMRYFGKSIRATAEERYID	270
	HI121:	741	AS+ED LKQGYGLSRVS LP+DYGRLE+GTRW KLTLG A RY+GKS RAT EE YI+ ASQEDILKQGYGLSRVSMLPKDYGRLELGTRWFDQKLTLGLAARYYGKSKRATIEEEYIN	800
20	Orf133:	271	GTNGGNTSNFRQLGKRSIKQTETLARQPLIXDFNAAYEPKKNLIFRAEVKNLFDRRYIDP	330
20	HI121:	801	G+ + R+ ++K+TE + +QP+I D + +YEP K+LI +AEV+NL D+RY+DP GSR-FKKNTLRRENYYAVKKTEDIKKQPIILDLHVSYEPIKDLIIKAEVQNLLDKRYVDP	859
	Orf133:	331	LDAGNDAAXERYYSSFDPKDKDXDVTCNADKTLCNGKYGGTSKSVLTNFARGRTFLMTMS	
25	HI121:	860	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	Orf133:	391	YKF 393	
	HI121:	911	YKF YKF 913	
30		_		

Homology with a predicted ORF from N. meningitidis (strain A)

ORF133 shows 90.8% identity over a 392aa overlap with an ORF (ORF133a) from strain A of N. meningitidis:

						10	20	30
35	orf133.pep				PGYYGS	DDEFKRAFGEN	ISPTXKKHCN:	RSCGI
					111 1	1111111111	+111 - +1111	:1111
	orf133a	FYFDAAI	LKKDIYRLNY	'STNTVGYRF	GXYTGYYXS	DDEFKRAFGEN	SPTYXKHCN	QSCGI
		450	460	470	480	490	500	
40			40	50	60	70	80	90
	orf133.pep	YEPVLKI	(YGKKRANNI	HSVSISADFGI	DYFMPFASYS	RTHRMPNIQEN	YFSQIGDSG	VHTAL
		11111		111111111				11111
	orf133a				OYFMPFASYS:	RTHRMPNIQEN	MYFSQIGDSG	VHTAL
		510	520	530	540	550	560	
45								
			100	110	120	130	140	150
	orf133.pep	KPERAN'	[WQFGFXTY]	KKGLLKQDDTI	LGLKLVGYRS	RIDNYIHNVYO	KWWDLNGDI	PSWVS
		111111		11111111		111 111111	11111111:1	
	orf133a	KPERAN'	IWQFGFNTY	KKGLLKQDDII	LGLKLVGYRS	RIDXYIHNVYO	SKWWDLNGNI	PSWVS
50		570	580	590	600	610	620	
			160	170	180	190	200	210
	orf133.pep	STGLAY'	FIQHRXFXD	KVHQXXXXXX	XXYDYGRFFT	NLSYAYQKSTO	PTNFSDASE	SPNNA
	-	111111	11111 1 1	111:	111 1111	11111111111	1111111111	11111
55	orf133a	STGLAY	FIQHRNFKD	KVHKHGFELE	LNYDYXRFFT	NLSYAYQKST(OPTNFSDASE	SPNNA
		630	640	650	660	670	680	
			220	230	240	250	260	270
	orf133.pep	SKEDQL	KQGYGLSRV	SALPRDYGRL	EVGTRWLGNK	LTLGGAMRYF	GKSIRATAEE	RYIDG
60		111111	1111111111			1111111111	1111111111	HH
	orf133a	SKEDQL	KQGYGLSRV	SALPRDYGRL	EVGTRWLGNK	LTLGGAMRYF	GKSIRATAEE	RYIDX
		690	700	710	720	730	740	
			280	290	300	310	320	330
65	orf133.pep	TNGGNT	SNFRQLGKR	SIKQTETLAR	QPLIXDFNAA	YEPKKNLIFR	AEVKNLFDRF	YIDPL
			_					

```
TNGXXTSNFRQLGKRSIXQTETLARQPLIFDXYAAYEPKKXLIFRAEVKNLFDRRYIDPL
          orf133a
                                                              790
                     750
                               760
                                         770
                                                    780
                                                                        800
 5
                              340
                                        350
                                                  360
                                                            370
                                                                      380
                       DAGNDAAXERYYSSFDPKDKDXDVTCNADKTLCNGKYGGTSKSVLTNFARGRTFLMTMSY
          orf133.pep
                        DAGNDAATQRYYSSFDPKDKDEEVTCNDDNTLCNGKYGGTSKSVLTNFARGXTFLITMSY
          orf133a
                     810
                               820
                                          830
                                                    840
                                                              850
10
                        KFX
          orf133.pep
                        111
          orf133a
                        KFX
15
                      870
     A partial ORF133a nucleotide sequence <SEQ ID 879> is:
                    AAAGACAAAA AAGTGTTTAC CGATGCGCGT GCCGTATCGA CCCGTCAGGA
                 51
                     TATATTCAAA TCCANCGAAA ACCTCGACAA CATCGTACGC ANCATCCCCG
                     GTGCGTTTAC ACANCAANAT AAAAGCTCGG GCNTTGTGTC TTTGAATATT
               101
20
                     CGCNGCGACA GCGGGTTCGG GCGGGTCAAT ACNATGGTNG ACGGCATCAC
               151
                     NCANACCTTT TATTCGACTT CTACCGATGC GGGCAGGGCA GGCGGTTCAT
                201
                     CTCAATTCGG TGCATCTGTC GACAGCAATT TTATNGCCGG ACTGGATGTC
               251
                301
                     GTCAAAGGCA GCTTCAGCGG CTCGGCAGGC ATCAACAGCC TTGCCGGTTC
                     GGCGAATCTG CGGACTTTAN GCGTGGATGA TGTCGTTCAG GGCAATANTA
                351
25
                401
                     CNTACGGCCT GCTGCTAAAA GGTCTGACCG GCACCAATTC AACCAAAGGT
                     AATGCGATGG CGGCGATAGG TGCGCGCAAA TGGCTGGAAA GCGGAGCATC
                451
                     TGTCGGTGTG CTTTACGGGC ACAGCAGGCG CAGCGTGGCG CAAAATTACC
                501
                     GCGTGGCGG CGCCGGCAG CACATCGGAA ATTTTGGCGC GGAATATCTG
                551
                     GAACGACGCA AGCAACGATA TTTTGAGCAA GAAGGCGGGT TGAAATTCAA
                601
30
                651
                     TTCCAACAGC GGAAAATGGG AGCGGGATTT CCAAAAGTCG TACTGGAAAA
                     CCAAGTGGTA TCAAAAATAC GATGCCCCCC AAGAACTGCA AAAATACATC
                701
                751
                     GAAGGTCATG ATAAAAGCTG GCGGGAAAAC CTGGCGCCGC AATACGACAT
                     CACCCCATC GATCCGTCCA GCCTGAAGCN GCAGTCGGCA GGCAACCTGT
                801
                851
                     TTAAATTGGA ATACGACGGC GTATTCAATA AATACACGGC GCAATTTCGC
35
                     GATTTAAACA CCAAAATCGG CAGCCGCAAA ATCATCAACC GCAATTATCA
                901
                     ATTCAATTAC GGTTTGTCTT TGAACCCGTA TACCAACCTC AATCTGACCG
                951
                     CAGCCTACAA TTCGGGCAGG CAGAAATATC CGAAAGGGTC GAAGTTTACA
               1001
                     GGCTGGGGGC TTTTNAAAGA TTTTGAAACC TACAACAACG CAAAAATCCT
               1051
               1101
                     CGACCTCANC AACACCTCCA CCTTCCGGCT GCCCCGTGAA ACCGAGTTGC
                     AAACCACTTT GGGCTTCAAT TATTTCCACA ACGAATACGG CAAAAACCGC
TTTCCTGAAG AATTGGGGCT GTTTTTCGAC GGTCCGGATC ANGACAACGG
40
               1151
               1201
               1251
                     GCTTTATTCC TATTTGGGGC GGTTTAAGGG CGATAAAGGG CTGCTGCCCC
                     AAAAATCAAC CATTGTCCAA CCGGCCGGCA GCCAATATTT CAACACGTTC
               1301
                     TACTTCGATG CCGCGCTCAA AAAAGACATT TACCGCTTAA ACTACAGCAC
               1351
                     CAATACCGTC GGCTACCGTT TCGGCGGCNA ATATACGGGC TATTACNGCT
 45
               1401
                     CGGATGACGA ATTTAAGCGG GCATTCGGAG AAAACTCGCC GACATACANG
               1451
                     AAACATTGCA ACCAGAGCTG CGGAATTTAT GAACCCGTAT TGAAAAAATA
               1501
                     CGGCAAAAAG CGCGCCAACA ACCATTCGGT CAGCATTAGT GCGGACTTCG
               1551
                     GCGATTATTT CATGCCGTTC GCCAGCTATT CGCGCACACA CCGTATGCCC
               1601
 50
                     AACATCCAAG AAATGTATTT TTCCCAAATC GGCGACTCCG GCGTTCACAC
               1651
                     CGCCTTAAAA CCAGAGCGCG CAAACACTTG GCAATTTGGC TTCAATACCT
               1701
               1751
                     ATAAAAAGG ATTGTTAAAA CAAGATGATA TATTAGGATT AAAACTGGTC
               1801
                     GGCTACCGCA GCCGCATCGA CNACTACATC CACAACGTTT ACGGGAAATG
                     GTGGGATTTG AACGGGAATA TTCCGAGCTG GGTCAGCAGC ACCGGGCTTG
               1851
 55
                     CCTACACCAT CCAACACCGC AATTTCAAAG ACAAAGTGCA CAAACACGGT
               1901
                     TTTGAGTTGG AGCTGAATTA CGATTATNGG CGTTTTTCA CCAACCTTTC
TTACGCCTAT CAAAAAAGCA CGCAACCGAC CAACTTCAGC GATGCGAGCG
               1951
               2001
               2051
                     AATCGCCCAA CAATGCGTCC AAAGAAGACC AACTCAAACA AGGTTATGGG
                     TTGAGCAGGG TTTCCGCCCT GCCGCGAGAT TACGGACGTT TGGAAGTCGG
               2101
 60
                     TACGCGCTGG TTGGGCAACA AACTGACTTT GGGCGGCGCG ATGCGCTATT
               2151
                2201
                     TCGGCAAGAG CATCCGCGCG ACGGCTGAAG AACGCTATAT CGACGNCACC
                     AATGGGGNAN NTACCAGCAA TTTCCGGCAA CTGGGCAAGC GTTCCATCAN
               2251
                2301
                     ACAAACCGAA ACCCTTGCCC GCCAGCCTTT GATTTTTGAT TTNTACGCCG
                     CTTACGAGCC GAAGAAAAAN CTTATTTTCC GCGCCGAAGT CAAAAATCTG
                2351
 65
                     TTCGACAGGC GTTATATCGA TCCGCTCGAT GCGGGCAATG ATGCGGCAAC
                2401
                     GCAGCGTTAT TACAGTTCGT TCGACCCGAA AGACAAGGAC GAAGAAGTAA
                2451
                     CGTGTAATGA TGATAACACG TTATGCAACG GCAAATACGG CGGCACAAGC
                2501
                     AAAAGCGTAT TGACCAATTT TGCACGCGGA CNCACCTTTT TGATAACGAT
                2551
```

GAGCTACAAG TTTTAA

This encodes a protein having (partial) amino acid sequence <SEQ ID 880>:

-	
51 RXD: 101 VKG: 151 NAM: 201 ERRI 251 EGH: 301 DLN: 351 GWG: 401 FPE: 451 YFD: 501 KHC: 551 NIQ: 601 GYR	CVFTDAR AVSTRODIFK SXENLDNIVR XIPGAFTXQX KSSGXVSLNI SGFGRVN TMVDGITXTF YSTSTDAGRA GGSSQFGASV SFSGSAG INSLAGSANL RTLXVDDVVQ GNXTYGLLLK AAIGARK WLESGASVGV LYGHSRRSVA QNYRVGGGQQ HIGNFGAEYL KQRYFEQ EGGLKFNSNS GKWERDFQKS YWKTKWYQKY DAPQELQKYI DKSWREN LAPQYDITPI DPSSLKXQSA GNLFKLEYDG VFNKYTAQFR TKIGSRK IINRNYQFNY GLSLNPYTNL NLTAAYNSGR QKYPKGSKFT LXKDFET YNNAKILDLX NTSTFRLPRE TELQTTLGFN YFHNEYGKNR ELGLFFD GPDXDNGLYS YLGRFKGDKG LLPQKSTIVQ PAGSQYFNTF AALKKDI YRLNYSTNTV GYRFGGXYTG YYXSDDEFKR AFGENSPTYX NQSCGIY EPVLKKYGKK RANNHSVSIS ADFGDYFMPF ASYSRTHRMP EMYFSQI GDSGVHTALK PERANTWQFG FNTYKKGLLK QDDILGLKLV SRIDXYI HNVYGKWWDL NGNIPSWVSS TGLAYTIQHR NFKDKVHKHG ELNYDYX RFFTNLSYAY OKSTOPTNFS DASESPNNAS KEDQLKQGYG
701 LSR 751 NGX 801 FDR 851 KSV	VSALPRD YGRLEVGTRW LGNKLTLGGA MRYFGKSIRA TAGERYIDXT XTSNFRQ LGKRSIXQTE TLARQPLIFD XYAAYEPKKX LIFRAEVKNL RYIDPLD AGNDAATQRY YSSFDPKDKD EEVTCNDDNT LCNGKYGGTS LTNFARG XTFLITMSYK F* 33-1 show 94.3% identity in 871 aa overlap:
ORF 135a and ORF 1	33-1 Show 34.370 Identity in 871 aa overlap.
	10 20 30 40
orf133a.pep orf133-1	KDKKVFTDARAVSTRQDIFKSXENLDNIVRXIPGAFTXQXKS
	50 60 70 80 90 100
orf133a.pep orf133-1	SGXVSLNIRXDSGFGRVNTMVDGITXTFYSTSTDAGRAGGSSQFGASVDSNFXAGLDVVK
	70 00 30 100 110 120
orf133a.pep orf133-1	110 120 130 140 150 160 GSFSGSAGINSLAGSANLRTLXVDDVVQGNXTYGLLLKGLTGTNSTKGNAMAAIGARKWL
	130 140 150 160 170 180
orf133a.pep	170 180 190 200 210 220 ESGASVGVLYGHSRRSVAQNYRVGGGGQHIGNFGAEYLERRKQRYFEQEGGLKFNSNSGK
orf133-1	ESGASVGVLYGHSRRSVAQNYRVGGGGQHIGNFGAEYLERRKQRYFVQEGALKFNSDSGK 190 200 210 220 230 240
orf133a.pep	230 240 250 260 270 280 WERDFQKSYWKTKWYQKYDAPQELQKYIEGHDKSWRENLAPQYDITPIDPSSLKXQSAGN
orf133-1	WERDLOROOWKYKPYKNYNN-QELOKYIEEHDKSWRENLXPOYDITPIDPSSLKOOSAGN 250 260 270 280 290
orf133a.pep	290 300 310 320 330 340 LFKLEYDGVFNKYTAQFRDLNTKIGSRKIINRNYQFNYGLSLNPYTNLNLTAAYNSGRQK
orf133-1	LFKLEYDGVFNKYTAQFRDLNTKIGSRKIINRNYQFNYGLSLNPYTNLNLTAAYNSGRQK 300 310 320 330 340 350
ow£1330 non	350 360 370 380 390 400 YPKGSKFTGWGLXKDFETYNNAKILDLXNTSTFRLPRETELQTTLGFNYFHNEYGKNRFP
oriissa.pep	111111111111111111111111111111111111111
orf133-1	YPKGSKFTGWGLLKDFETYNNAKILDLNNTATFRLPRETELQTTLGFNYFHNEYGKNRFP 360 370 380 390 400 410
orf133a.pep orf133-1	410 420 430 440 450 460 EELGLFFDGPDXDNGLYSYLGRFKGDKGLLPQKSTIVQPAGSQYFNTFYFDAALKKDIYR
	51 RXDS 101 VKGS 151 NAMF 201 ERRI 251 EGHI 301 DLNT 351 GWGI 401 FPEI 451 YFDI 501 KHCI 551 NIQI 601 GYRI 651 FELI 701 LSRI 751 NGXI 801 FDRI 851 KSVI ORF133a and ORF1 orf133a.pep orf133-1 orf133a.pep

5	orf133a.pep orf133-1	470 LNYSTNTVGYRFGG LNYSTNTVGYRFGG 480 490	11111 111	1111111111	H IIII .	H	11111
10	orf133a.pep orf133-1	530 NNHSVSISADFGDY NNHSVSISADFGDY 540 550	1111111111	11111111111		HILLIAN II	11111
15	orf133a.pep	590 TYKKGLLKQDDILG TYKKGLLKQDDTLG 600 610	1111111111	1 11111111	1111111:111		111111
20	orf133a.pep	650 KDKVHKHGFELELN KDKVHKHGFELELN 660 670	111 (1111)			111111111	111111
25	orf133a.pep	710 RVSALPRDYGRLEV RVSALPRDYGRLEV 720 730	11111111111		1111111111	11 111 11	шіш
30	orf133a.pep	770 KRSIXQTETLARQP	780 LIFDXYAAYE	790 PKKXLIFRAE	800 VKNLFDRRYI	810 DPLDAGNDAA	ППП
35	orf133a.pep	780 790 830 SFDPKDKDEEVTCN	800 840 DDNTLCNGKY	810 850 GGTSKSVLTN	820 860 FARGXTFLIT	830 870	
40	orf133-1	SFDPKDKDEDVTCN 840 850					

Homology with a predicted ORF from N.gonorrhoeae

ORF133 shows 92.3% identity over 392 aa overlap with a predicted ORF (ORF133ng) from N.

45 gonorrhoeae:

	orf133.pep	PGYYGSDDEFKRAFGENSPTXKKHCNRSCGI :: : : FYFDAALKKDIYRLNYSTNAINYRFGGEYTGYYGSENEFKRAFGENSPAYKEHCDPSCGL	31 560
50	orf133.pep	YEPVLKKYGKKRANNHSVSISADFGDYFMPFASYSRTHRMPNIQEMYFSQIGDSGVHTAL	91
	orf133ng	YEPVLKKYGKKRANNHSVSISADFGDYFMPFAGYSRTHRMPNIQEMYFSQIGDSGVHTAL	620
55	orf133.pep	KPERANTWQFGFXTYKKGLLKQDDTLGLKLVGYRSRIDNYIHNVYGKWWDLNGDIPSWVS	151
	orf133ng	KPERANTWQFGFNTYKKGLLKQDDILGLKLVGYRSRIDNYIHNVYGKWWDLNGDIPSWVG	680
	orf133.pep	STGLAYTIQHRXFXDKVHQXXXXXXXXYDYGRFFTNLSYAYQKSTQPTNFSDASESPNNA	211
60	orf133ng	STGLAYTIRHRNFKDKVHKHGFELELNYDYGRFFTNLSYAYQKSTQPTNFSDASESPNNA	740
	orf133.pep	SKEDQLKQGYGLSRVSALPRDYGRLEVGTRWLGNKLTLGGAMRYFGKSIRATAEERYIDG	271
65	orf133ng	SKEDQLKQGYGLSRVSALPRDYGRLEVGTRWLGNKLTLGGAMRYFGKSIRATAEERYIDG	800
	orf133.pep	TNGGNTSNFRQLGKRSIKQTETLARQPLIXDFNAAYEPKKNLIFRAEVKNLFDRRYIDPL	331
	orf133ng	TNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYEPKKNLIFRAEVKNLFDRRYIDPL	860

The complete length ORF133ng nucleotide sequence <SEQ ID 881> is predicted to encode a protein having amino acid sequence <SEQ ID 882>:

```
MRSSFRLKPI CFYLMGVMLY HHSYAEDAGR AGSEAQIQVL EDVHVKAKRV
                       PKDKKVFTDA RAVSTRQDVF KSGENLDNIV RSIPGAFTQQ DKSSGIVSLN
                       IRGDSGFGRV NTMVDGITQT FYSTSTDAGR AGGSSQFGAS VDSNFIAGLD
                       VVKGSFSGSA GINSLAGSAN LRTLGVDDVV QGNNTYGLLL KGLTGTNSTK
GNAMAAIGAR KWLESGASVG VLYGHSRRGV AQNYRVGGGG QHIGNFGEEY
15
                       LERRKOOYFV QEGGLKFNAG SGKWERDLQR QYWKTKWYKK YEDPQELQKY
                 251
                       IEEHDKSWRE NLAPQYDITP IDPSGLKQQS AGNLLNLEYD GVFNKYTAQF
                       RDLNTRIGSR KIINRNYQFN YGLSLNPYTN LNLTAAYNSG RQKYPKGAKF
                 351
                       TGWGLLKDFE TYNNAKILDL NNTATFRLPR ETELQTTLGF NYFHNEYGKN
                 401
                 451
                       RFPEELGLFF DGPDQDNGLY SYLGRFKGDK GLLPQKSTIV QPAGSQYFNT
20
                       FYFDAALKKD IYRLNYSTNA INYRFGGEYT GYYGSENEFK RAFGENSPAY
                  501
                       KEHCDPSCGL YEPVLKKYGK KRANNHSVSI SADFGDYFMP FAGYSRTHRM
                  551
                       PNIQEMYFSQ IGDSGVHTAL KPERANTWQF GFNTYKKGLL KQDDILGLKL
                  601
                       VGYRSRIDNY IHNVYGKWWD LNGDIPSWVG STGLAYTIRH RNFKDKVHKH
                  651
                       GFELELNYDY GRFFTNLSYA YQKSTQPTNF SDASESPNNA SKEDQLKQGY
25
                       GLSRVSALPR DYGRLEVGTR WLGNKLTLGG AMRYFGKSIR ATAEERYIDG
TNGGNTSNVR QLGKRSIKQT ETLARQPLIF DFYAAYEPKK NLIFRAEVKN
                  751
                  801
                       LFDRRYIDPL DAGNDAATQR YYSSFDPKDK DEDVTCNADK TLCNGKYGGT
                  851
                       SKSVLTNFAR GRTFLMTMSY KF*
```

30 A variant was also identified, being encoded by the gonococcal DNA sequence <SEQ ID 883>:

```
1 ATGAGATCTT CTTTCCGGTT GAAGCCGATT TGTTTTTATC TTATGGGTGT
                    TATGCTATAT CATCATAGTT ATGCCGAAGA TGCAGGGCGC GCGGGCAGCG
                    AGGCGCAGAT ACAGGTTTTG GAAGATGTGC ACGTCAAGGC GAAGCGCGTA
               101
                    CCGAAAGACA AAAAAGTGTT TACCGATGCG CGTGCCGTAT CGACCCGTca
                    gGATGTGTTC AAATCCGGCG AAAACCTCGA CAACATCGTA CGCAGCATAC
35
               201
                    CCGGTGCGTT TACACAGCAA GATAAAAGCT CGGGCATTGT GTCTTTGAAT
                    ATTCGCGGCG ACAGCGGGTT CGGGCGGGTC AATACGATGG TGGACGGCAT
                301
                    CACGCAGACC TTTTATTCGA CTTCTACCGA TGCGGGCAGG GCAGGCGGTT
                351
                    CATCTCAATT CGGTGCATCT GTCGACAGCA ATTTTATTGC CGGACTGGAT
                401
                    GTCGTCAAAG GCAGCTTCAG CGGCTCGGCA GGCATCAACA GCCTTGCCGG
40
                451
                    TTCGGCGAAT CTGCGGACTT TAGGCGTGGA TGACGTCGTT CAGGGCAATA
                501
                    ATACCTACGG CCTGCTGCTA AAAGGTCTGA CCGGCACCAA TTCAACCAAA
                551
                601
                    GGTAATGCGA TGGCGGCGAT AGGTGCGCGC AAATGGCTGG AAAGCGGAGC
                    GTCTGTCGGT GTGCTTTACG GGCACAGCAG GCGCGGCGTG GCGCAAAATT
                701 ACCGCGTGGG CGGCGGGGG CAGCACATCG GAAATTTTGG TGAAGAATAT
45
                     CTGGAACGGC GCAAACAGCA ATATTTTGTA CAAGAGGGTG GTTTGAAATT
                801 CAATGCCGGC AGCGGAAAAT GGGAACGGGA TTTGCAAAGG CAATACTGGA
                851 AAACAAAGTG GTATAAAAAA TACGAAGACC CCCAAGAACT GCAAAAAATAC
                    ATCGAAGAC ATGATAAAAG CTGGCGGGAA AACCTGGCGC CGCAATACGA
                901
                     CATCACCCCC ATCGATCCGT CCGGCCTGAA GCAGCAGTCG GCAGGCAATC
50
                951
                     TGTTTAAATT GGAATACGAC GGCGTATTCA ATAAATACAC GGCGCAATTT
               1001
                     CGCGATTTAA ACACCAGAAT CGGCAGCCGC AAAATCATCA ACCGCAATTA
               1051
               1101
                     TCAATTCAAT TACGGTTTGT CTTTGAACCC GTATACCAAC CTCAATCTGA
                     CCGCAGCCTA CAATTCGGGC AGGCAGAAAT ATCCGAAAGG GGCGAAGTTT
               1151
                    ACAGGCTGGG GGCTTTTAAA AGATTTTGAA ACCTACAACA ACGCGAAAAT
55
               1201
                     CCTCGACCTC AACAACACCG CCACCTTCCG GCTGCCCCGC GAAACCGAGT
               1251
                     TGCAAACCAC TTTGGGCTTC AATTATTTCC ACAACGAATA CGGCAAAAAC
               1301
                     CGCTTTCCTG AAGAATTGGG GCTGTTTTTC GACGGTCCTG ATCAGGACAA
               1351
                     CGGGCTTTAT TCCTATTTGG GGCGGTTTAA GGGCGATAAA GGGCTGTTGC
               1401
                     CTCAAAAATC AACCATTGTC CAACCGGCCG GCAGCCAATA TTTCAACACG
60
               1451
                     TTCTACTTCG ATGCCGCGCT CAAAAAAGAC ATTTACCGCT TAAACTACAG
               1501
                     CACCAATGCA ATCAACTACC GTTTCGGCGG CGAATATACG GGCTATTACG
               1551
                     GCTCGGAAAA CGAATTTAAG CGGGCATTCG GAGAAAACTC GCCGGCATAC
               1601
               1651 AAGGAACATT GCGACCCGAG CTGCGGGCTT TATGAACCCG TATTGAAAAA
               1701 ATACGGCAAA AAGCGCGCCA ACAACCATTC GGTCAGCATT AGTGCGGACT
 65
               1751 TCGGCGATTA TTTCATGCCG TTCGCCGGCT ATTCGCGCAC ACACCGTATG
```

1851 CACCACCTA ANACCAGAGG COCCAAACAC TTGCCAATTA GCTTCAATA 1951 GTGCATTAC GATTTAAAAA AGATTGTTA AAACACAGAGT ATTATTATAG ATTGAACTG 1951 GTGCATTACC GCACCACCACT TGACAACTG ATCACCAACC TTTACGGGAA 1951 GTGTTCTACC GCACCACCACCAC ATCACCAACC TTTACGGGAA 1951 GTTTTCACC TGGACTGAA TTACCATTAT GGGGTTTT TACCGACCT 1201 GGTTTTCACC TGGACTGAA TTACCATTAT GGGGTTTT TACCGACCT 1201 GGTTTCTACCC TGACAACACC CACCACCACCACT CACCATTC ACCACACCT 1201 GCGAATCGCC CACCAACACCC CACCATTC ACCACATTC ACCACACCT 1201 CCGAATCGCC CACCAACACCC CACCATTC ACCACATTC ACCACACCC 1201 CCGAATCGCC TGGTTCCGC CTCCCCCCCA GATTACCAC CTCGACCT 1201 CCGAATCGCC TGGTTCCGC CTCCCCCCCA GATTACCAC CTCTCGACT 1201 ACCAACGCC TGGTTCGCC CTCCCCCCCA GATTACCAC CTCTCAACCC 1201 ACCAACGCC TGGTTCAACCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCCC CAACTCCC CAACTCCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCC CAACTCCCC CAACTCCC CAACTCCCC CAACTCCC CAACTCCCC CAACTCCC CAACTCCCC CAACTCCCCC CAACTCCCCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCCCC CAACTCCCCC CAACTCCCCC CAACTCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCCCC CAACTCCC		1801 CCCAACATCC AAGAAATGTA TTTTTCCCAA ATCGGCGACT CCGGCGTTCA
1951 GTOGGCTACC GCACCCGCAT TGACAACTCA ATCCACAAC TTACGGGAA 2051 TTGCTTACAC CATCCGACC CACCCGAC 2051 TTGCCTACAC CATCCGACC CACCCGAC 2051 TTGCCTACAC CATCCGACC CACCCGAC 2051 TTGCCTACAC CATCCGACC CACCCGAC 2051 TTGCTTACAC CATCCGACC CACCCGACC 2051 TTCTTACGC TATCAAAAAA CACCCGACC GACCAATTCA CACAACTCA 2051 CACCAACACC 2051 CACCAACACC 2051 CACCAACACC 2051 CACCAACACC 2051 CACCAACACC 2051 CACCAACACC 2051 CACCAACCCC 2051 CACCAACCCC 2051 CACCAACCCC 2051 CACCAACCCC 2051 CACCAACCCC 2051 CACCAACCCCC 2051 CACCAACCCCCC 2051 CACCAACCCCCC 2051 CACCAACCCCCC 2051 CACCACCCCC 2051 CACCAACCCCCC 2051 CACCAACCCCCC 2051 CACCAACCCCCCC 2051 CACCAACCCCCCCC 2051 CACCAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		1851 CACCGCCTTA AAACCAGAGC GCGCAAACAC TTGGCAATTT GGCTTCAATA
2001 ATGGTGGGAT TIGAAGGGG ATATTCCGAGA CTGGTGGGC AGCACGGGC 2011 GGTTTGAGC TGGAGCTGAA TACGATATT AGGACAAAGT (CACAAGCAC 2101 GGTTTGAGC TGGAGCTGAA TACGATATT GGGGGTTTT TGACGAACAC 2101 GGTTTGAGC TGGAGCTGAA TACGATATT GGGGGTTTT TGACGAACAC 2201 GGGATGGCG CACAAGCATC ACCAAGCATTC ACCAGCGAC 2201 GGGATGGCG GGGTTTCGG CCTCCCCCGA ATTTCAGCAC TTTGAGAGT 2211 ATTTGGCAC CACAATCC CACGAGCGCGC 2211 ATTTGGCAC GGGGGTTTCGG CCTCCCCCGA ATTTCAGCAC TTTGGAAGT 2211 ATTTGGCAC GGGGGGTTCGGC CACAATCCAC 2211 ATTTGGCAC GGCGAGGGGT 1000 ACCAACGGGG AAACCCTT 2211 CACAACGGGA AAACCCTG CCCGAGGGCT 1000 ACCAACGGG AAACCCTG CACAACACC 2211 CACAACGGG AAACCCTG CCCGAGGGCC TTGATTTT GATTTTTAGG 2211 CACAACGGG AAACCCTG CACAACAC 2211 CACAACGGG AAACCCTG CACAGGACAC 2211 CACACGGGC AAACCCTTG CACCGGCCA ATGATGCGGC 2211 AGCGTGAA ACCACGGGCAAAAAC 2211 AACGGACACA CACAAAAAC 2211 AACGGAAAACAC 2211 AACGGAAAACC 2211 AACGGAAAACAC 2211 AACGGAAAACAC 2211 AACGGAAAACAC 2211 AACGGAAAACC 2211 AACGGAAAAC		1901 CCTATAAAAA AGGATIGITA AAACAAGATG ATATATTAGG ATTGAAACTG 1951 GTCGCTACC GCAGCCGCAT TGACAACTG ATCCACAACG TTTACCCCAAA
2051 TICCTICACA CATCCGACAC GCANTITCA AGACANACT GCACANACAC 2151 TICTITAGCC TATCANAMA GCACGACC GACCATTT CACCACCT 2151 TICTITAGCC TATCANAMA GCACGACC GACCATTT CACCACCT 2151 TICTITAGCC TATCANAMA GCACGACC GACCATTT CACCACCT 2231 GGATTGGCA GTTTCGCACCT 2231 GGATTGGCACCT GGTTTGCCACCT 2231 ATTICGCCA GGTTTCCC CCTCCCCCGC GATTACCGAC GTTTCGAACT 2231 ATTICGCAC GGTTCCCC CACCACCTC AGAACCACCT TATCACACCT 2231 ATTICGCAC GCACCACCT GACAACCTCA TATCACCCC 2231 ATTICGCCA GACCACCT GACCACCT CACCACCT CACCACCCC 2231 ATTICGCCAC GACCACCT CACCACCCC 2231 ATTICGCCAC GACCACCC GACCACCT CACCACCCC 2231 ATTICGCAC GCCACACCT CACCACCCC 2231 ATTICGCAC GCCACACCCC 2231 ATTICGCAC GCACACCCC AGACCACCA 2231 CACCACACCC 2231 CACCACCCC CACCACCCC CACCACCCC 2231 CACCACACCC 2231 CACCACCCC 2231 CACCACACCC 2231 CACCACCCC CACCACCCC CACCACCCC 2231 ACCCACCCC TATTACCACC CACCACCCC CACCACCCC 2231 CACCACCCC 2231 CACCACCCC CACCACCCC CACCACCCC CACCACCCC 2231 CACCACCCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCC CACCACCCCC CACCACCCCC CACCACCCC CACCACCCCC CACCACCCCC CACCACCCCC CACCACCCCC CACCACCCC CACCACCCCC CACCACCCCC CACCACCCCC CACCACCCCC CACCACCCC CACCACCCCCC CACCACCCCCC CACCACCCCCC CACCACCCCCC CACCACCCCC CACCACCCCCC CACCACCCCCCC CACCACCCCCCC CACCACCCCCCC CACCACCCCCCC CACCACCCCCCC CACCACCCCCCC CACCACCCCCCCC	5	2001 ATGGTGGGAT TTGAACGGGG ATATTCCGAG CTGGGTCGGC AGCACCGGGC
1		2051 TTGCCTACAC CATCCGACAC CGCAATTTCA AAGACAAAGT GCACAAACAC
10 2251 GGGATCGCC CARCANTCC E-casaraga ACCARCTCAN ACAGGTTAT 2301 2251 2301 2351 ATTTOGGCA GGGTTTCGGC CCTCCCCGGG GGTTAGGGGC 2301 ACCARCGGG CGGTTCGGAC CCCACCAGGGC ACTAGGGCC 2401 ACCARCGGG GAATACCAG CATAGCGGC CAACTAGGGC 2401 ACCARCGGG GAATACCAG CATAGCGGC AACAGCCTT ATTCGGGGGC ACCAGGGCT ACCAGGGGC ACCAGGGCT ACCAGGGC ACCAGGGCC AACAGAGGCT ACCAGACCATT ACCAACAACC CAACTAGGC AACAGAGGCT ACTTTATAGG 2501 CCCCTTAGGA ACCACAGAGA AACCTTATT TCCGGGCCGA AGTCAAAAAC ACCACAGGC AACCCAGGCC AACTGGGCA AGTCAAAAAC ACCACAGGC AACCCAGGCC AACCCAGGCCC AACCCAGGCC AACCCAGGCCC AACCCAGCCCC AACCCAGGCCCC AACCCAGGCCCC AACCCAGGCCCC AACCCAGGCCCC AACCCAGCCCC ACCCAGGCCCCC AACCCAGCCCC ACCCAGCCCCCCCCCC		2101 GGTTTTGAGC TGGAGCTGAA TTACGATTAT GGGCGTTTTT TCACCAACCT
1		2151 TTCTTACGCC TATCAAAAAA GCACGCAACC GACCAATTTC AGCGATGCGA
2301 CGSTAGGGG TEGTTTGGGCA ACAACTGGC TTTGGGGGG GCGATGGT	10	
2451 ACCAACGGGG GAAATACCAG CANTGTCCGG CAACTGGGCA AGCGTTCCAT 2451 CAAACAAAC GAACCTTG CCCGACACCT TITGATTTT ACT TATTTTACG 2551 CAGACAACAC GCGAACCTTG CACCGGCGA AGTCAAAACC 2551 CATGTCGACA GCGGAACCTT CATTCGACCC CATCGGGCA ATCATCACGCC 2661 AACGCGGGT TATTACACGT CGTTCGACCC GAAGACAGA GACGAAGAC 2761 AACGCGGAT ATCACACCT CGTTCGACCC GAAGACAGA GACGAAGAC 2761 AGCAAAACCG TATTGACCAA TTTCGCACCG GACGACACA CGCGACATA CGGGGGCACA 3761 AGCAAAACCG TATTGACCAA TTTCGCACG GGACGACCT TCTTGATGAC 1		
15		
2501 CGGCTTACGA GCGGAAGAAA AACCTTATTT TCCGCCGCGA AGTAGAGGC 2501 AACGCAGCGT TATTACAGCT CGTTCGACCC GATAGAGGCA ATGATGGGC 2601 AACGCAGCGT TATTACAGCT CGTTCGACCC GATAGAGCAGCA 2701 AGCAAAAGCG TATTACAGCT CGTTCGACCC GATAGAGCAACAC 2701 AGCAAAAGCG TATTACACCA TTTCGCACGC GGACGCACCT TCTTGATGAC 2701 AGCAAAAGCG TATTGACCAA TTTCGCACGC GGACGCACCT TCTTGATGAC 2701 AGCAAAAGCG TATTGACCAA TTTCGCACGC GGACGCACCT TCTTGATGAC 1		
2551 CTISTICGACA GGGGTTATAT GATCGGTC GATGGGGC 2651 TAACGGAGGT TATTACAGCT CGTTCGACC GAAGAGAAG GACGAAGCG 2651 TAACGTATAA TGGTGATAAA ACGTTGTGCA ACGGCAATA CGGCGGCACA 2701 AGCGAAGGT ATTGGCAA TTTGGCACGC GGACGCACT TCTTGATGAC 2701 AGCAAAAGGT ATTGGCACGC GGACGCACT TCTTGATGAC 2701 AGCAAAAGGT ATTGGCACGC GGACGCACCT TCTTGATGAC 2701 GATGAGCTAC AAGTTTAA This corresponds to the amino acid sequence <seq 884;="" id="" orf133ng-1="">: </seq>	15	
2651 TARCETGTAR TGGTGATARA ACGITGTGCA ACGCCACACTA CGGCGCCACA 2701 AGGARAAGGE TATTGACCA TITGGCAGCG GGAGGACCT TGTTGATGAC 2751 GATGAGCTAC AAGTITTAA		
2701 AGCARAGGG TATTGACCAR TITTGCACGC GGACGCACCT TCTTGATGAC 2751 GATGAGCACA AGATTTTA		
This corresponds to the amino acid sequence <seq 884;="" id="" orf133ng-1="">: This corresponds to the amino acid sequence <seq 884;="" id="" orf133ng-1="">: </seq></seq>		
This corresponds to the amino acid sequence <seq 884;="" id="" orf133ng-1="">: 1</seq>	20	
1 MRSSFRLKPI CFYLMGVMLY HHSYAEDAGR AGSEAQIOVL EDVHVKAKRV 51 PKDKKYFTDA RAVSTRODYF KSGENLDNIV RSIPGAFTQQ DKSSGIVSIN 101 INGDSGFGRV NTMVDGITQT FYSTSTDAGR AGGSSQFGAS VDSNETIAGID 101 VYKGSSTGSA GINSLAGSAN LRTLGYDDVV QGNTYGLLK KGLTGTNSTK 201 GNMAAIGAR KULESGASVG VLYGHSRRGV AQNYRVGGG GHIGNFGEEY 251 LERRKQCYFV QEGGLKRNAG SGKWERDLQR QWKTKWKKY EDPOELQKY 301 IEHDKSWRE NLAPGYDITF IDPSGLKQGS AGRLFFLEYD GVFNKYTAGF 305 RDLINTIGSR KIINRNYGFN YGLSLHEYTIN LNITARYNSG ROKYFGKKK 451 RFPEELGJEF DGPQDNGLY SYLGFKGKGK GLLPGYSTIV QPAGSCYFNT 501 FYFDAALKKD IYRLNYSTNA INVRFGGETT GYYGSENGEK RAFGENSBAY 551 KEHCDPSGLC YEPUKKYGK KARNHANSVI SADFGYSTV QPAGSCYFNT 501 FYFDAALKKD IYRLNYSTNA INVRFGGETT GYYGSENGEK RAFGENSBAY 551 KEHCDPSGCL YEPUKKYGK KARNHANSVI SADFGYFMF FAGYSRTRMK 601 PNIQEMYSG IGDSGVHTAL KDERANTWOF GFNTYKKGLL KQDDILGILL GLOSGYNTAL KDERANTWOF GFNTYKKGLL KQDDILGILL GLOSGYNTAL KDERANTWOF GFNTYKKGLL KQDDILGILL GLOSGYNT FAGYSRTRMK 601 FYFDAALKKD IYRLNYSTNA INVRFGGETT GYYGSENGEK RAFGENSBAY 551 KERICDPSGCL YEPUKKYGK KARNHANSVI SADFGYFMF FAGYSRTRMK 601 PNIQEMYSG GRSGVHTAL KDERANTWOF GFNTYKKGLL KQDDILGILL GLOSGYNTAL KDERANTWOF GFNTYKKGLL KQDDILGILL GLOSGYNT TOKTON Y HAVE GENERAL THE RIPKOKVHKH 701 GFELELNYDY GRFFTNLSYA KYSTOPTNE SDASESPNNA SKEDQLKGGY 751 GLSRVSALFR DYGRLEYGTR WLGNKLTLGG AMRYFGKSIR ATAEERYIDG 801 TNGGNTSNVR QLGKRSIKOT ETLARQFLIF DYTAAYEFKK NILTFRÆVKN 801 TNGGNTSNVR QLGKRSIKOT ETLARQFLIF DYTAAYEFKK NILTFRÆVKN 601 70 70 70 70 70 70 70	20	
101 1605CFGRV NTMVORGOVE KSGENLONIV RSIPCAFTOQ DKSSGIVSLN		This corresponds to the amino acid sequence <seq 884;="" id="" orf133ng-1="">:</seq>
101		
151		· · · · · · · · · · · · · · · · · · ·
201 GAMMAJGAR KWLESGASVG VLYGHSRRGY AQNYRVGGGG CHIGNFGEEY 251 LERRKQCYFV QEGGLEKTNAG SCKWERDLOR QYWTKWYKK YEDPOELOKY 301 IEEHDKSWRE NLAPQYDITF IDPSGLKQG AGNLFKLEYD GVFNKYTAGF 301 IEEHDKSWRE NLAPQYDITF IDPSGLKQG AGNLFKLEYD GVFNKYTAGF 301 TOWGLKOFF TYNNAKILDL NNTATFELPR ETELQTTLGF NYFNNEYGKN 451 RFFEELGLFF DGPDQDNGLY SYLGRFRGOK GLLPGKSTIV QPAGSQYFNT 501 FYFDALKKD TYNLNYSTNA INVFRGGEYT GYVSSEMEFK RAFGENSPAY 551 KEHCDPSGGL YEPULKYYGK KRANNHSVSI SADFGDYFMF FAGYSRTHRM 601 PNIQEMYFSQ IGDSGVHTAL KPERANTWGF GFNYTKKKLL KQDDILGLKL 701 GFELELNYDY GRFFINLSYA YCKSTQFTMF SDASESHNA SKEDOLKGGY 751 GLSRVSALPR DYGKLEVOTR WIGNIKILIGG AMRYFGKSIT ATAEERYIDG 401 TNIGGNTSNVR QLGKRSIKOT ETLARQFLIF DFYAAYEPKK NLIFRAEVKN 851 LFDRRYIDPL DAGNDATOR YYSSFDPKK DEDVTCNADK TLCNGKYGGT 5KSVLTNFAR GRTFLMTMSY KF* ORFI133ng-1.pep SFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVKAKRVPKDKKVFTDARAV 11111111111111111111111111111111111	25	•
251 LERRKQYFV QEGGIKFNAG SCKWERDLOR QYWKTKWYKK YEDPOELQKY 301 IEEHBKSWRE NLAPQYDITF 1DSGLKQOS AGNIFKLEYD QYFNKYMAGF 351 ROLMTRIGSR KIINRNYGFN YGLSINPYTH INLTAATNSG ROKYPKGAKF 451 REPEELGIFF DGPOQDNGLY SYLGRFRGOK GLLPQKSTIV QPAGSQYFNT 551 FYFDAALKKD IYRLNYSTNA INYRFGGETT GYYGSEMEFK RAFGENSPAY 551 FYFDAALKKD IYRLNYSTNA INYRFGGETT GYYGSEMEFK RAFGENSPAY 551 FYFDAALKKD IYRLNYSTNA INYRFGGETT GYYGSEMEFK RAFGENSPHAY 551 FYFDAALKKD IYRLNYSKYMD LNGDIFSWVG STGLAYTIRR NFKDKVHKH GFLELHYDY GRFFTNLSYA YQKSTQPFNF SDASESPNNA SKEDQLKQGY 751 GLSRVSALPR DYGRLEVGTR WLGNKLTLGG AMRYFGKSIR ATAERRYIDG 801 TNGGNTSNVR QLGKRSIKGT ETLARQELIF DFYAAYEPKK NLIFRAEVKN 851 LFDRRYIDPI DAGNDAATQR YYSSFDFKDK DEDVTCNADK TLCNGKYGGT SKSVLINFAR GRETHAMMSY KF*		
351 RELNTRIGER KIINENUGEN YCLSLNEYTH LALTAAYNSG ROKYPKCAKF 401 TGWGLIKUFET TYNNAKILDL NNTATFRIPR ETELQTTLGF NYFHNEYGKN 451 RFPEELGIFF DEPODONGLY SYLGREKGOK GLLPCKSTIV QPAGSQYFNT 551 KEHCDESCGL YEDVIKKYGK KRANHSVSI SADFGDYRMF FAGYSKTHEM 601 PNIQEMYFSQ IGDSGVHTAL KRERANTWGF GENTYKKGLL KQDDILGIKL 701 GFELENYDY GRFTNILSYA YQKSTQFINF SDASESHNA SKEDQLKQGY 751 GLSRVSALPR DYGKLEVGTR WIGNKLITIGG AMRYFGKSIR ATAEERYIDG 801 TNIGGNITSHVR QLGKRSIKQT ETLARQPLIF DFYAAYEEK KLIFRAEVKN 851 LFDRRYIDDF DAGNDAATOR YYSSEDPKDK DEDVTCNADK TLCNGKYGGT 601 SKSVLTNFAR GRTFIMTMSY KF* 601		251 LERRKQQYFV QEGGLKFNAG SGKWERDLQR QYWKTKWYKK YEDPQELQKY
1		
451	30	
S01	50	451 RFPEELGLFF DGPDODNGLY SYLGRFKGDK GLLPOKSTIV OPAGSOYFNT
Solidate Solidate	•	
10		
Total Gerleinydy Greftnlsyn ygkstopthe Sdasespnna Skedolkggy Glsrvsalpr Dygrlevgtr Wlgnkitigg Amryfgksir ataeeryidg Glsrvsalpr Dygrlevgtr Wlgnkitigg Amryfgksir ataeeryidg Hongmisnur Qlgkrsikot Etlarqplif Dfyaayepkk Nliffraevkn 851 Ledrryidpl Dagndaator yyssfdpkk Dedvtcnadk tlcngkyggt 901 SkSvltnfar Grtfimtmsy kf*	35	
10 20 30 40 50 60 60 60 60 60 60 6	33	
40 851 LFDRRYIDPL DAGNDAATOR YYSSFDPKDK DEDVTCNADK TLCNGKYGGT SKSVLTNFAR GRTFLMTMSY KF* ORF133ng-1 and ORF133-1 show 96.2% identity in 889 aa overlap: 10 20 30 40 50 60 orf133ng-1.pep SFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 20 30 50 0rf133-1 EAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 20 30 50 0rf133ng-1.pep STRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS 1111:111:1111111111111111111111111111		751 GLSRVSALPR DYGRLEVGTR WLGNKLTLGG AMRYFGKSIR ATAEERYIDG
ORF133ng-1 and ORF133-1 show 96.2% identity in 889 aa overlap: 10 20 30 40 50 60 orf133ng-1.pep SFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 20 30 45 orf133-1 EAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 20 30 0rf133ng-1.pep STRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS 1111:		
ORF133ng-1 and ORF133-1 show 96.2% identity in 889 aa overlap: 10 20 30 40 50 60 orf133ng-1.pep SFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 10 20 30 45 orf133-1 EAQIQVLEDVHVKAKRVPKDKKVFTDARAV 10 20 30 70 80 90 100 110 120 orf133ng-1.pep STRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS 1111:11:11111111111111111111111111111	40	
10		
orf133ng-1.pep SFRLKPICFYLMGVMLYHHSYAEDAGRAGSEAQIQVLEDVHVKAKRVPKDKKVFTDARAV orf133-1		ORF133ng-1 and ORF133-1 show 96.2% identity in 889 aa overlap:
45 orf133-1		
To Strong		
10 20 30 30 30 30 30 30 3	45	Orf133-1 EACTOVIEDVHVKAKRVPKNKKVFTDARAV
50 orf133ng-1.pep STRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS orf133-1 STRQDIFKSSENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS 40 50 60 70 80 90 55 orf133ng-1.pep TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN 111111111111111111111111111111111111	75	
50 orf133ng-1.pep STRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS orf133-1 STRQDIFKSSENLDNIVRSIPGAFTQQDKSSGIVSLNIRGDSGFGRVNTMVDGITQTFYS 40 50 60 70 80 90 55 orf133ng-1.pep TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN 111111111111111111111111111111111111		70 80 00 100 110 120
50		
130	50	
55 orf133ng-1.pep TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN		
55 orf133ng-1.pep TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN		40 50 60 70 80 90
orf133-1 TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN 100 110 120 130 140 150 190 200 210 220 230 240 Orf133ng-1.pep NTYGLLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSRRGVAQNYRVGGGGQHI		
orf133-1 TSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFSGSAGINSLAGSANLRTLGVDDVVQGN 100 110 120 130 140 150 60 190 200 210 220 230 240 orf133ng-1.pep NTYGLLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSRRGVAQNYRVGGGGQHI	55	
100 110 120 130 140 150 60		
60		
orf133ng-1.pep NTYGLLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSRRGVAQNYRVGGGGQHI		
65 orf133-1	60	
orf133-1 NTYGLLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSRRSVAQNYRVGGGGQHI 160 170 180 190 200 210 65 250 260 270 280 290 300		
65 160 170 180 190 200 210 250 260 270 280 290 300		orf133-1 NTYGLLLKGLTGTNSTKGNAMAAIGARKWLESGASVGVLYGHSRRSVAQNYRVGGGGOHI
250 260 270 280 290 300	65	
	03	250 260 270 280 290 200

	orf133-1	 GNFGAEYLERRK 220	: : QRYFVQEGALK 230	: FNSDSGKWERE 240	 DLQRQQWKYKI 250	: :: PYKNYNN-QE 260	LQKYIEE
5	orf133ng-1.pep	310 HDKSWRENLAPO IIIIIIIIIIIII HDKSWRENLXPO 170 280	111111111111	111111111	11111111	. . .	111111
10	orf133ng-1.pep	370 NRNYOFNYGLSI	380 MPYTNLNLTAA	390 YNSGROKYPKO	400 SAKFIGWGLLI	410 KDFETYNNAK	420 ILDLNNT
15	orf133-1		NPYTNLNLTAF 350	YNSGROKYPKO 360	SSKFTGWGLLI 370	KDFETYNNAK 380	ILDLNNT
20	orf133ng-1.per	430 ATFRLPRETEL ATFRLPRETEL 390 400		1 1 1 1 1 1 1 1 1 1	11111111	111111111	11111
25	orf133ng-1.pe	490 PQKSTIVQPAG PQKSTIVQPAG 450 460	1 1 1 1 1 1 1 1 1 1 1 1		111:::1111	111111111	::
30	orf133ng-1.pe	550 p GENSPAYKEHC : : GENSPTYKKHC 510 520	: : NRSCGIYEPVL	11111111111	111111111	111111:11	1111111
35	orf133ng-1.pe	610 p QEMYFSQIGDS QEMYFSQIGDS 570 580		111111111111	11111111		
40	orf133ng-1.pe		: IPSWVSSTGLA	141:111111			[]][]]
45	orf133ng-1.pe	730	740 ESPNNASKEDO	750 LKQGYGLSRVS	760 SALPRDYGRLI	770 EVGTRWLGNK	780 LTLGGAMR
50	orf133-1	1111111111	ESPNNASKEDO	11111111		1311111	111111
55	orf133ng-1.pe	1 1 1 1 1 1 1 1 1 1	 EERYIDGTNGGN	1111 11111		[]]]]]]	41111111
60	orf133ng-1.pe	850 EP FRAEVKNLFDI		1	11111111	1111111111	
65	orf133ng-1.po	910 ep VLTNFARGRT VLTNFARGRT 870 88	 FLMTMSYKFX			•	

70 In addition, ORF133ng-1 is homologous to a TonB-dependent receptor in *H.influenzae*:

5	<pre>sp P45114 YC17_HAEIN PROBABLE TONB-DEPENDENT RECEPTOR HI1217 PRECURSOR >gi 1075372 pir G64110 transferrin binding protein 1 precursor (tbp1) homolog - Haemophilus influenzae (strain Rd KW20) >gi 1574147 (U32801) transferrin binding protein 1 precursor (tbp1) [Haemophilus influenzae] Length = 913 Score = 930 bits (2377), Expect = 0.0 Identities = 476/921 (51%), Positives = 619/921 (66%), Gaps = 72/921 (7%)</pre>					
	Query:	38	QVLEDVHVKAKRVPKDKKVFTDARAVSTRQDVFKSGENLDNIVRSIPGAFTQQDKSSGIV	97		
10	Sbjct:	29	+ L + V K + DKK FT+A+A STR++VFK + +D ++RSIPGAFTQQDK SG+V ETLGQIDVVEKVISNDKKPFTEAKAKSTRENVFKETQTIDQVIRSIPGAFTQQDKGSGVV	88		
	Query:	98	${\tt SLNIRGDSGFGRVNTMVDGITQTFYSTSTDAGRAGGSSQFGASVDSNFIAGLDVVKGSFS}$	157		
	Sbjct:	89	S+NIRG++G GRVNTMVDG+TQTFYST+ D+G++GGSSQFGA++D NFIAG+DV K +FS SVNIRGENGLGRVNTMVDGVTQTFYSTALDSGQSGGSSQFGAAIDPNFIAGVDVNKSNFS	148		
15	Query:	158	GSAGINSLAGSANLRTLGVDDVVQXXXXXXXXXXXXXXXXXXXXXAMAAIGARKWLESGA G++GIN+LAGSAN RTLGV+DV+ M RKWL++G	217		
	Sbjct:	149	GASGINALAGSANFRILGVNDVITDDKPFGIILKGMTGSNATKSNFMTMAAGRKWLDNGG	208		
20	Query:	218	SVGVLYGHSRRGVAQNYRVGGGGQHIGNFGEEYLERRKQQYFVQEGGLKFNAGSGKWERD VGV+YG+S+R V+Q+YR+ GGG+ + + G++ L + K+ YF + G N G+W D	277		
	Sbjct:	209	YVGVYYGYSQREVSQDYRI-GGGERLASLGQDILAKEKEAYF-RNAGYILNP-EGQWTPD	265 [.]		
25	Query:	278	LQRQYWKTKWYKKYEDPQELQKYIEE L +++W +Y KK +D ++LOK IEE	303		
25			L +++W +Y KK +D ++LQK IEE LSKKHWSCNKPDYQKNGDCSYYRIGSAAKTREILQELLTNGKKPKDIEKLQKGNDGIEE			
	Query:	304	HDKSWRENLAPQYDITPIDPSGLKQQSAGNLFKLEYDGVFNKYTAQFRDLNTRIGSRKII DKS+ N QY + PI+P L+ +S +L K EY AQ R L+ +IGSRKI	363		
30	Sbjct:	326	TDKSFERN-KDQYSVAPIEPGSLQSRSRSHLLKFEYGDDHQNLGAQLRTLDNKIGSRKIE	384		
•	Query:	364	NRNYQFNYGLSLNPYTNLNLTAAYNSGRQKYPKGAKFTGWGLLKDFETYNNAKILDLNNT	423		
25	Sbjct:	385	NRNYQ NY + N Y +LNL AA+N G+ YPKG F GW + T N A I+D+NN+ NRNYQVNYNFNNNSYLDLNLMAAHNIGKTIYPKGGFFAGWQVADKLITKNVANIVDINNS	444		
35	Query:	424	ATFRLPRETELQTTLGFNYFHNEYGKNRFPEELGLFFDGPDQDNGLYSYLGRFKGDKG	481		
	Sbjct:	445	TF LP+E +L+TTLGFNYF NEY KNRFPEEL LF++ D GLYS+ GR+ G K HTFLLPKEIDLKTTLGFNYFTNEYSKNRFPEELSLFYNDASHDQGLYSHSKRGRYSGTKS	504		
40	Query:	482	LLPQKSTIVQPAGSQYFNTFYFDAALKKDIYRLNYSTNAINYRFGGEYTGYYGSENEFKR LLPQ+S I+QP+G Q F T YFD AL K IY LNYS N +Y F GEY GY	541		
	Sbjct:	505	LLPQRSVILQPSGKQKFKTVYFDTALSKGIYHLNYSVNFTHYAFNGEYVGY	555		
45	Query:	542	AFGENSPAYKEHCDPSCGLYEPVLKKYGKKRANNHSVSISADFGDYFMPFAGYSRTHRMP	601		
43	Sbjct:	556	EN+ + + EP+L K G K+A NHS ++SA+ DYFMPF YSRTHRMP ENTAGQQINEPILHKSGHKKAFNHSATLSAELSDYFMPFFTYSRTHRMP	604		
	Query:	602	NIQEMYFSQIGDSGVHTALKPERANTWQFGFNTYKKGLLKQDDILGLKLVGYRSRIDNYI	661		
50	Sbjct:	605	NIQEM+FSQ+ ++GV+TALKPE+++T+Q GFNTYKKGL QDD+LG+KLVGYRS I NYI NIQEMFFSQVSNAGVNTALKPEQSDTYQLGFNTYKKGLFTQDDVLGVKLVGYRSFIKNYI	664		
	Query:	662	HNVYGKWWDLNGDIPSWVGSTGLAYTIRHRNFKDKVHKHGFELELNYDYGRFFTNLSYAY HNVYG WW +P+W S G YTI H+N+K V K G ELE+NYD GRFF N+SYAY	721		
55	Sbjct:	665	HNVYGVWWRDGMPTWAESNGFKYTIAHQNYKPIVKKSGVELEINYDMGRFFANVSYAY	722		
<i>JJ</i>	Query:	722	QKSTQPTNFSDASESPNNASKEDQLKQGYGLSRVSALPRDYGRLEVGTRWLGNKLTLGGA	781		
	Sbjct:	723	Q++ QPTN++DAS PNNAS+ED LKQGYGLSRVS LP+DYGRLE+GTRW KLTLG A QRTNQPTNYADASPRPNNASQEDILKQGYGLSRVSMLPKDYGRLELGTRWFDQKLTLGLA	782		
60	Query:	782	MRYFGKSIRATAEERYIDGTNGGNTSNVRQLGKRSIKQTETLARQPLIFDFYAAYEPKKN	841		
	Sbjct:	783	RY+GKS RAT EE YI+G+ + +R+ ++K+TE + +QP+I D + +YEP K+ ARYYGKSKRATIEEEYINGSR-FKKNTLRRENYYAVKKTEDIKKQPIILDLHVSYEPIKD	841		
65	Query:	842	LIFRAEVKNLFDRRYIDPLDAGNDAATQRYYSSFDPKDKDEDVTCNADKTLCNGKYGGTS	901		
UJ	Sbjct:	842	LI +AEV+NL D+RY+DPLDAGNDAA+QRYYSS + + C D + C GG+ LIIKAEVQNLLDKRYVDPLDAGNDAASQRYYSSLNNSIECAQDSSACGGSD	892		
	Query:	902	KSVLTNFARGRTFLMTMSYKF 922			
70	Sbjct:	893	K+VL NFARGRT++++++YKF KTVLYNFARGRTYILSLNYKF 913			
			·			

The underlined motif in the gonococcal protein (also present in the meningococcal protein) is predicted to be an ATP/GTP-binding site motif A (P-loop), and the analysis suggests that these proteins from *N.meningitidis* and *N.gonorrhoeae*, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

5 Example 104

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 885>

```
ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT
                    TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT
                     ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGCTG
               101
                     GGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC TGATTCCCCT
10
                     CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT GCCGCCGGCA
                201
                     GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG
                251
                     TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT
                301
                     CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG
                351
                     CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG
15
                401
                     AAAGAAAAA ACAGCGTGAT CAATGTGCGC GAAATGTTGC CCGACCAT..
                451
```

This corresponds to the amino acid sequence <SEQ ID 886; ORF112>:

```
MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML
51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL
101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL
151 KEKNSVINVR EMLPDH...
```

Further work revealed further partal nucleotide sequence <SEQ ID 887>:

```
ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT
                    TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT
                51
                    ACGANACCGG CANCCTCGGC ANAGGCAGTT ACGGCATATG GGANATGCTG
25
               101
                    gGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC TGATTCCCCT
                     CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT GCCGCCGGCA
                201
                    GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG
                251
                    TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT
                    CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG
30
                351
                     CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG
                401
                    AAAGAAAAA ACAGCTTKAT CAATGTGCGC GAAATGTTGC CCGACCATAC
                451
                     GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC GAATTGGCAG
                501
                    AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG
                551
                     TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG TCGAGGTCTC
35
                     TATTGCGGCT GAAGAAAACT GGCCGATTTC CGTCAAACGC AACCTGATGG
                651
                     ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC
                     TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCGAA TCTACGCCAT
                751
                     CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG GTGATGGCGC
                     TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG CAATATGGGC
40
                851
                     TTAAAACTCT TCGGCGGCAT CTGTsTCGGA TTGCTGTTCC ACCTTGCCGG
                901
                951 ACGGCTCTTT GGGTTTACCA GCCAACTCGG...
```

This corresponds to the amino acid sequence <SEQ ID 888; ORF112-1>:

```
45 BILISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML

101 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL

101 LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL

151 KEKNSXINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS AVLNSDGSWQ

201 LKNIRRSTLG EDKVEVSIAA EENWPISVKR NLMDVLLVKP DQMSVGELTT

251 YIRHLQNNSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT PQTTRHGNMG

50 301 LKLFGGICXG LLFHLAGRLF GFTSQL...
```

Computer analysis of this amino acid sequence predicts two transmembrane domains and gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N.

```
meningitidis:
```

orf112a.pep

orf112a.pep

orf112-1

60

	meningiliais:	•
	•	10 20 30 40 50 60
_		
5	orf112 pep	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMLGYTALKMPAR
	orf112a	
		10 20 30 40 50 60
10		70 80 90 100 110 120
10		
	orf112.pep	:
	61125	AYELMPLAVLIGGLVSXSQLAAGSELXVIKASGMSTKKLLLILSQFGFIFAIATVALGEW
	orf112a	70 80 90 100 110 120
15	•	70 00 30 200 200
13		130 140 150 160
	orf112.pep	
	OIIIIE.Pop	[]
	orf112a	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSIINVREMLPDHTLLGIKIWARNDKN
20		130 140 150 160 170 180
	orf112a	ELAEAVEADSAVLNSDGSWQLKNIRRSTLGEDKVEVSIAAEEXWPISVKRNLMDVLLVKP
		190 200 210 220 230 240
		GEO TO 000; 1
	The ORF112a nu	scleotide sequence <seq 889="" id=""> is:</seq>
25	1	ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT
	51	TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT
	101	ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGNTG
	151	GGNTACACCG CCCTCAAAAT GNCCGCCCGC GCCTACGAAC TGATGCCCCT
		CGCCGTCCTT ATCGGCGGAC TGGTCTCTNT CAGCCAGCTT GCCGCCGGCA
30	251	GCGAACTGAN CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG
	301	TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT
	351	CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG
	401	CCGCGGCCAT CAACGGCAAA ATCAGTACCG GCAATACCGG CCTTTGGCTG
26	451	AAAGAAAAAA ACAGCATTAT CAATGTGCGC GAAATGTTGC CCGACCATAC
35	501	CCTGCTGGGC ATTAAAATCT GGGCCCGCAA CGATAAAAAC GAACTGGCAG
	551	AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG TCGAGGTCTC
	601	TATTGCGGCT GAAGAAANT GGCCGATTTC CGTCAAACGC AACCTGATGG
	651 701	ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC
40	701 751	TACATCCGCC ACCTCCAAAN NNACAGCCAA AACACCCGAA TCTACGCCAT
40	801	CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG GTGATGGCGC
	851	TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG CAATATGGGC
	901	TTAAAANTCT TCGGCGGCAT CTGTCTCGGA TTGCTGTTCC ACCTTGCCGG
	951	NCGGCTCTTC NGGTTTACCA GCCAACTCTA CGGCATCCCG CCCTTCCTCG
45	1001	NCGGCGCACT ACCTACCATA GCCTTCGCCT TGCTCGCCGT TTGGCTGATA
43	1051	CGCAAACAGG AAAAACGCTA A
	This encodes a r	protein having the amino acid sequence <seq 890="" id="">:</seq>
	•	
	1	MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEMX
	51	GYTALKMXAR AYELMPLAVL IGGLVSXSQL AAGSELXVIK ASGMSTKKLL
50	101	LILSOFGFIF ALATVALGEW VAPTLSOKAE NIKAAAINGK ISTGNTGLWL
	151	KEKNSIINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS AVLNSDGSWQ
	201	LKNIRRSTLG EDKVEVSIAA EEXWPISVKR NLMDVLLVKP DQMSVGELTT
	251	YIRHLOXXSO NTRIYAIAWW RKLVYPAAAW VMALVAFAFT PQTTRHGNMG
	301	LKXFGGICLG LLFHLAGRLF XFTSQLYGIP PFLXGALPTI AFALLAVWLI
55	351	RKQEKR*
		nna 1 1 0000/11 // 1 000 1:
	ORF112a and C	ORF112-1 show 96.3% identity in 326 aa overlap:
		·

 ${\tt MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMXGYTALKMXAR}$

AYELMPLAVLIGGLVSXSQLAAGSELXVIKASGMSTKKLLLILSQFGFIFAIATVALGEW

PCT/IB98/01665

		-485-
•	orf112-1	:
5	orf112a.pep	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSIINVREMLPDHTLLGIKIWARNDKN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	orf112-1 orf112a.pep	DI ARAMEA DEAMI NEDGEWOLKNIRRSTI GEDKVEVSIAAEEXWPI SVKRNLMDVLLVKP
10	orf112-1	
	orf112a.pep	DQMSVGELTTYIRHLQXXSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG
15	orf112-1	DQMSVGELTTYIRHLQNNSQNTRIYAIAWWRKLVYPAAAWVMALVAFAFTPQTTRHGNMG LKXFGGICLGLLFHLAGRLFXFTSQLYGIPPFLXGALPTIAFALLAVWLIRKQEKRX
	orf112a.pep	
20	-	predicted ORF from N.gonorrhoeae
	ORF112 shows 95	5.8% identity over 166aa overlap with a predicted ORF (ORF112ng) from N.
	gonorrhoeae:	
	orfl12.pep	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSYGIWEMLGYTALKMPAR 60
25	orf112ng	MNLISRYIIRQMAVMAVYALLAFLALYSFFEILYETGNLGKGSIGIWEMLGIIALKMIAK
	orf112.pep	AYELIPLAVLIGGLVSLSQLAAGSELTVIKASGMSTKKLLLILSQFGFIFAIATVALGEW 120 : : :
30	orf112ng	
	orf112.pep	VAPTLSQKAENIKAAAINGKISTGNTGLWLKEKNSVINVREMLPDH 166
	_	gth ORF112ng nucleotide sequence <seq 891="" id=""> is:</seq>
35	1 2	ATGAACCTGA TTTCACGTTA CATCATCCGC CAAATGGCGG TTATGGCGGT
	101	TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGCTG
	151	GGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC TCATGCCCCT GCCCGCCGCAC TCGCCCTCTCT CAGCCAGCTT GCCGCCGGCA
40	251	GCGAACTGGC CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG TTTCATTTTTTT GCTATTGCCG CCGTCGCGCT
	251	CGGCGATTGG GTTGCGCCCA CGCTGAGCCA AAAAGCCGAA AACATCAAag CCGCCGCCAt taacggCAAA ATCAGCAccg gcAATACCGG CCTTTggcTG
	451	ANACANANA CONCOMPAT CAATGTGCGC GGAATGTTGC CCGACCATAC
45	E E 1	GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC GAATTGGCAG AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGCTGGCAG
	CO1	TTGAAAACA TCCGCCGCAG CATCATGGGT ACAGACAAAA TCGAAACATC cgCCGCCGCC GAAGAAACTT GGCCGATTGC CGTCAGACGC AACCTGATGG
	701	ACCEDITECT CETCALCCC GACCALATGT CCGTCGGCGA GCIGACCACC
50	751	TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCAAA TCTACGCCAT CCCATCCTCC CGTAAACTCG TTTACCCCGT CGCCGCATGG GTCATGGCGC
	851	MCCMMCCCMM CCCCMTTACG CCGCAAACCA CGCGCCACGG CAATAIGGGC
	001	TTAAAACTCT TCGGCGGCAT CTGTCTCGGA TTGCTGTTCC ACCTTGCCGG CAGGCTCTTC GGGTTTACCA GCCAACTCTA CGGCACCCCA CCCTTCCTCG
55	1001	CCGGCGCACT GCCTACCATA GCCTTCGCCT TGCTCGCTGT TIGGCTGATA
33	1051	CGCAAACAGG AAAAACGTTG A
		A THE DESIGN OF A SMALL OF THE PROPERTY OF THE

This encodes a protein having amino acid sequence <SEQ ID 892>:

60 101 151 201 251 301	TWNTDDSTMC	AYELMPLAVL AIAAVALGEW GMLPDHTLLG TDKIETSAAA	IGGLASLSQL VAPTLSQKAE IKIWARNDKN EETWPIAVRR RKLVYPVAAW	AAGSELAVIK NIKAAAINGK ELAEAVEADS NLMDVLLVKP VMALVAFAFT	ASGMSTRALL ISTGNTGLWL AVLNSDGSWQ DQMSVGELTT PQTTRHGNMG
------------------------------------	------------	---	--	--	--

351 RKQEKR*

ORF112ng and ORF112-1 show 94.2% identity in 326 aa overlap:

		10	20	30	.40	50	60
	orf112ng	MNLISRYIIRQMA	VMAVYALLAF	LALYSFFEIL	YETGNLGKGSY	GIWEMLGYT?	LKMPAR
5	•		11111111111	1111111111			
	orf112-1	MNLISRYIIRQMA	VMAVYALLAF	LALYSFFEIL	YETGNLGKGSY	GIWEMLGYTA	ALKMPAR
		10	20	30	40	50	60
		7,0 .	80	90	100	110	120
10	orfll2ng	AYELMPLAVLIGG					
					. 	.	
	orf112-1	AYELIPLAVLIGG				_	
		70	80	90	100	110	120
	•						
15		130	140	150	160	· 170	180
	orf112ng	VAPTLSQKAENIK		GNTGLWLKEK			
		1111111111111					
	orf112-1	VAPTLSQKAENIK					
20		130	140	150	160	170	180
20		100	200	010		000	040
	C1 1 0	190	200	210	220	230	240
	orf112ng	ELAEAVEADSAVI					
	orf112-1	11111111111111				1 : :	
25	OFI112-1	ELAEAVEADSAVI 190	JNSDGSWQLKN 200	210	VEVSTAAEEN 220	1230 230	240
, 23	•	190	200	210	220	230	240
		250	260	270	280	290	300
	orf112ng	DOMSVGELTTYIF					
	011110009	111111111111		•		_	
30	orf112-1	DOMSVGELTTYIE					
• •		250	260	270	280	290	300
					•		,
		310	320	330	340	350 .	
	orfl12ng	LKLFGGICLGLL	PHLAGRLFGFT	SQLYGTPPFL	AGALPTIAFA:	LLAVWLIRKQ	EKRX
35	_		11111111111	111			
	orf112-1	LKLFGGICXGLL	THLAGRLFGFT	SQL			
	•	310	320		•		

This analysis suggests that these proteins from N.meningitidis and N.gonorrhoeae, and their epitopes, could be useful antigens for vaccines or diagnostics, or for raising antibodies.

It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

TABLE I – PCR primers

ORF	Primer	Sequence	Restriction sites
ORF 1	Forward	CGCGGATCCGCTAGC-GGACACACTTATTTCGG CCCGCTCGAG-CCAGCGGTAGCCTAATT	BamHI-NheI XhoI
ORF 2	Reverse Forward Reverse	GCGGATCCCATATG-TTTGATTTCGGTTTGGG CCCGCTCGAG-GACGGCATAACGGCG	BamHI-NdeI XhoI
ORF 2-1	Forward Reverse	GCGGATCCCATATG-TTTGATTTCGGTTTGGG CCCGCTCGAG-TGATTTACGGACGCGCA	BamHI-Ndel XhoI
ORF 4	Forward Reverse	GC <u>GGATCCCATATG</u> -TGCGGAGGTCAAAAAGAC CCCG <u>CTCGAG</u> -TTTGGCTGCGCCTTC	BamHI-NdeI XhoI
ORF 5	Forward Forward Reverse	GGAATTC <u>CATATGGCCATGG</u> -TGGAAGGCGCACAACC CG <u>GGATCC</u> -ATGGAAGGCGCACAAC CCCG <u>CTCGAG</u> -GACTGTGCAAAAACGG	Ndel-Ncol BamHl Xhol
ORF 6	Forward Reverse	CGCGGATCCCATATG-ACCCGTCAATCTCTGCA CCCGCTCGAG-TGCGCCGAACACTTTC	BamHI-Ndel XhoI
ORF 7	Forward Reverse	CGCGGATCCGCTAGC-GCGCTGCTTTTTGTTCC CCCGCTCGAG-TTTCAAAATATATTTGCGGA	BamHI-NheI XhoI
ORF 8	Forward Reverse	GCGGATCCCATATG-GCTCAACTGCTTCGTAC CCCGCTCGAG-AGCAGGCTTTGGCGC	BamHI-Ndel XhoI
ORF 9	Forward Reverse		BamHI-Ndel XhoI
ORF 10	Forward Reverse	COCCERCANCE TANTECCANACCTTCTTTT	BamHI-Ndel XhoI
ORF 11	Forward Reverse		BamHI-Nde XhoI
ORF 13	Forward Reverse	ACCOMPANCE ACCOMPANTANTANG	BamHI-Nde XhoI
ORF 15	Forwar Forwar Revers	d CGGGATCC-TGCGGGACACTGACAGG	NdeI-NcoI BamHI XhoI
ORF 17	7 Forwar	d GGAATTCCATATGGCCATGG -TTGCCGGCCTGTTCG	Ndel-Ncol

	F	CGGGATCC-ATTGCCGGCCTGTTCG	BamHI
	Forward	CCCGCTCGAG-AAGCAGGTTGTACAGC	
	Reverse	CCCGCTCGAG-AAGCAGGTTGTACAGC	XhoI
ORF 18	Forward	GCGGATCCCATATG-ATTTTGCTGCATTTGGAT	BamHI-NdeI
	Reverse	CCCGCTCGAG-TCTTCCAATTTCTGAAAGC	XhoI
	1000150		11101
ORF 19	Forward	GGAATTCCATATGGCCATGG -TCGCCAGTGTTTTTACC	NdeI-NcoI
	Forward	CGGGATCC-TTCGCCAGTGTTTTTACCG	BamHI
	Reverse	CCCG <u>CTCGAG</u> -GGTGTTTTTGAAGCTGCC	XhoI
1			
ORF 20	Forward	GGAATTCCATATGGCCATGG -TCGGCGCGGGTATG	NdeI-NcoI
	Forward	CGGGATCC-TTCGGCGCGGGTATG	BamHI
	Reverse	CCCG <u>CTCGAG</u> -CGGCGAGCGAGAGCA	XhoI
ORF 22	Forward	GGAATTCCATATGGCCATGG-TGATTAAAATCAAAAAAGGTCT	NdeI-NcoI
	Forward	CGGGATCC-ATGATTAAAATCAAAAAAGGTCTAAACC	BamHI
	Reverse	CCCGCTCGAG-ATTATGATAGCGGCCC	XhoI
		,	
ORF 23	Forward	CGC <u>GGATCCCATATG</u> -GATGTTTCTGTTTCAGAC	BamHI-NdeI
	Reverse	CCCGCTCGAG-TTTAAACCGATAGGTAAACG	XhoI
ORF 24	Forward	GGAATTCCATATGGCCATGG -TGATGCCGGAAATGGTG	NdeI-NcoI
	Forward	CGGGATCC-ATGATGCCGGAAATGGTG	BamHI
	Reverse	CCCG <u>CTCGAG</u> -TGTCAGCGTGGCGCA	XhoI
ORF 25	Forward	GCGGATCCCATATG-TATCGCAAACTGATTGC	BamHI-NdeI
010 25	Reverse	CCCGCTCGAG-ATCGATGGAATAGCCG	XhoI
	Reverse		Alloi
ORF 26	Forward	GCGGATCCCATATG -CAGCTGATCGACTATTC	BamHI-NdeI
	Reverse	CCCGCTCGAG-GACATCGGCGCGTTTT	XhoI
ORF 27	Forward	GGAATTC <u>CATATG</u> G <u>CCATGG</u> -AGACCTATTCTGTTTA	NdeI-NcoI
	Forward	CGGGATCC- CAGACCTATTCTGTTTATTTTAATC	BamHI
	Reverse	CCCGCTCGAG-GGGTTCGATTAAATAACCAT	XhoI
ODE 40	.		
ORF 28	Forward	GGAATTCCATATGGCCATGG-ACGGCTGTACGTTGATGT CGGGATCC-AACGGCTGTACGTTGATG	NdeI-NcoI
	Forward	CCCGCTCGAG-TTTGTCAGAGGAATTCGCG	BamHI
	Reverse	CCCGCTCGAG-TTTGTCAGAGGAATTCGCG	XhoI
ORF 29	Forward	GCGGATCCCATATG -AACGGTTTGGATGCCCG	BamHI-NdeI
1	Forward	CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG	BamHI-NheI
	Reverse	CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG	XhoI
	1.070130		
ORF 32	Forward	CGCGGATCCCATATG-AATACTCCTCCTTTTG	BamHI-NdeI
	Reverse	CCCGCTCGAG-GCGTATTTTTTGATGCTTTG	XhoI
ORF 33	Forward	GCGGATCCCATATG -ATTGATAGGGATCGTATG	BamHI-NdeI
	Reverse	CCCGCTCGAG-TTGATCTTTCAAACGGCC	XhoI
L	11040130		72001

ORF 35	Forward	GCGGATCC <u>CATATG</u> -TTCAGAGCTCAGCTT	BamHI-NdeI
ORF 35	1 OI Wate	CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT	BamHI-NheI
	10111444	CCCGCTCGAG-AAACAGCCATTTGAGCGA	XhoI
	Reverse	CCCGCICGAG AAACAGCAIIIGIGGG	Allor
	_	GCGGATCCCATATG-GATGACGTATCGGATTTT	BamHI-NdeI
ORF 37	1011144		XhoI
	Reverse	CCCG <u>CTCGAG</u> -ATAGCCCGCTTTCAGG	Allor
		CGCGGATCCGCTAGC-TCCGAACGCGAGTGGAT	BamHI-NheI
ORF 58	101 1101		XhoI
	Reverse	CCCG <u>CTCGAG</u> -AGCATTGTCCAAGGGGAC	Allor
		GGAATTCCATATGGCCATGG -TGCTGTATCTGAATCAAG	
ORF 65	Forward	GGAATTCCATATGGCCATGG -TGCTGTATCTGAMTGTEG	NdeI-NcoI
İ			BamHI
l	Forward	CGGGATCC-TTGCTGTATCTGAATCAAGG	i —
	Reverse	CCCG <u>CTCGAG</u> -CCGCATCGGCAGACA	XhoI
			D. TIT STATE
ORF 66	Forward	GCGGATCCCATATG-TACGCATTTACCGCCG	BamHI-NdeI
	Reverse	CCCGCTCGAG-TGGATTTTGCAGAGATGG	XhoI
ORF 72	Forward	CGCGGATCCCATATG - AATGCAGTAAAAATATCTGA	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -GCCTGAGACCTTTGCAA	XhoI
ORF 73	Forward	GCGGATCCCATATG-AGATTTTTCGGTATCGG	BamHI-NdeI
022	Reverse	CCCGCTCGAG-TTCATCTTTTCATGTTCG	XhoI
Ì			
ORF 75	Forward	GCGGATCCCATATG- TCTGTCTTTCAAACGGC	BamHI-NdeI
014	Reverse	CCCGCTCGAG-TTTGTTTTTGCAAGACAG	XhoI
1			
ORF 76	Forward	GATCAGCTAGCCATATG-AAACAGAAAAAAACCGC	NheI-NdeI
Old /s	Reverse	CGGGATCC-TTACGGTTTGACACCGTT	BamHI
1	Reverse		
ORF 79	Forward	CGCGGATCCCATATG-GTTTCCGCCGCCG	BamHI-NdeI
J Cha 13	Reverse	CCCGCTCGAG-GTGCTGATGCGCTTCG	XhoI
	ICCVCISC		
ORF 83	Forward	GCGGATCCCATATG-AAAACCCTGCTGCTGC	BamHI-NdeI
UKF 83	Reverse	CCCGCTCGAG-GCCGCCTTTGCGGC	XhoI
	Keverse		
ORF 84	E	GCGGATCCCATATG-GCAGAGATCTGTTTG	BamHI-NdeI
UKF 84		COCCOMOCA COMMUNICACION TICCON TICCON CON	XhoI
İ	Reverse	000000000000000000000000000000000000000	
OPEG		CGCGGATCCCATATG- GCGGTTTGGGGCGGA	BamHI-NdeI
ORF 85	1		XhoI
	Reverse	100000000000000000000000000000000000000	1200
		GGAATTCCATATGGCCATGG-CCATACCTTCTTATCA	NdeI-NcoI
ORF 89		COCCO TO COCO TO COMPONENTICACACAC	BamHI
	Forward	COCCOMOGA C MARATTECCCA MEACAAAACC	XhoI
	Reverse	CCCGCTCGAG-TTTTTTGCGATTAGAAAAAGC	Alloi
		COCCAMOCCAMANC. CAMOCMCCCACCCAAC	BamHI-NdeI
ORF 9	7 Forward	GCGGATCCCATATG-CATCCTGCCAGCGAAC	Dalimi-Indel

· · · · · · · · · · · · · · · · · · ·		CCCGCTCGAG-TTCGCCTACGGTTTTTTG	VII
	Reverse	CCCGCTCGAG-TTCGCCTACGGTTTTTG	XhoI
ORF 98	Forward	GCGGATCCCATATG-ACGGTAACTGCGG	BamHI-NdeI
Old so I to mad		CCCGCTCGAG-TTGTTGTTCGGGCAAATC	XhoI
	100 0150		
ORF 100	Forward	GCGGATCCCATATG-TCGGGCATTTACACCG	BamHI-NdeI
Old Ide Idenma		CCCG <u>CTCGAG</u> -ACGGGTTTCGGCGGAA	XhoI
ORF 101	Forward	GCGGATCCCATATG-ATTTATCAAAGAAACCTC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -TTTTCCGCCTTTCAATGT	XhoI
2:	,		
ORF 102	Forward	GCGGATCCCATATG-GCAGGGCTGTTTTACC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -AAACGGTTTGAACACGAC	XhoI
ORF 103	Forward	GCGGATCCCATATG-AACCACGACATCAC	BamHI-NdeI
OKF 103	Reverse	CCCGCTCGAG-CAGCCACAGGACGGC	XhoI
,	Venerge		Alloi
ORF 104	Forward	GCGGATCCCATATG-ACGTGGGGAACGC	BamHI-NdeI
	Reverse	CCCGCTCGAG-GCGCGTTTGAACGGC	XhoI
4			
ORF 105	Forward	GCGGATCCCATATG-ACCAAATTTCAAACCCCTC	BamHI-NdeI
	Reverse	CCCGCTCGAG-TAAACGAATGCCGTCCAG	XhoI
*			
ORF 106	Forward	GCGGATCCCATATG-AGGATAACCGACGGCG	BamHI-NdeI
	Reverse	CCCGCTCGAG-TTTGTTCCCGATGATGTT	XhoI
ORF 109	Forward	GCGGATCCCATATG-GAAGATTTATATATAATACTCG	BamHI-NdeI
OKI 109	Reverse	CCCGCTCGAG-ATCAGCTTCGAACCGAAG	XhoI
·	Reveise		
ORF110	Forward	AAAGAATTC-ATGAGTAAATCCCGTAGATCTCCC	EcoRI
	Reverse	AAACTGCAG-GGAAAACCACATCCGCACTCTGCC	PstI
07744		AAAGAATTC-GCACCGCAAAAAGGCAAAAACCGCA	E. DI
ORF111	Forward		EcoRI PstI
	Reverse	AAACTGCAG-TCTGCGCGTTTTCGGGCAGGGTGG	rsu
ORF113	Forward	AAAGAATTC-ATGAACAAAACCCTCTATCGTGTGATTTTCAACCG	EcoRI
	Reverse	AAACTGCAG-TTACGAATGCCTGCTTGCTCGACCGTACTG	PstI
ODE		AAAGAATTC-TTGCTTGTGCAAACAGAAAAAGACGG	FeeDi
ORF115	Forward	AAAAAAGTCGAC-CTATTTTTTAGGGGCTTTTGCTTGTTTGAAAAGCCTGCC	EcoRI SalI
	Reverse	AMMINGTOON CINITITINGGGGCTTTTGCTTGTTTGAAAAGCCTGCC	المقرا
ORF119	Forward	AAAGAATTC-TACAACATGTATCAGGAAÀACCAATACCG	EcoRI
	Reverse	AAACTGCAG-TTATGAAAACAGGCGCAGGGCGGTTTTGCC	PstI
OPELOS	.	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	FeeDI
ORF120	Forward	AAAGAATTC-GCAAGGCTACCCCAATCCGCCGTG AAACTGCAG-CGGTTTGGCTGCCTTGGCTGCCGTTGAT	EcoRI
	Reverse	TARACTOCAS COSTITUOCISCOSTISAT	PstI
ORF121	Forward	AAAGAATTC-GCCTTGGTCTGGCTGGTTTTCGC	EcoRI
	Reverse	AAACTGCAG-TCATCCGCCACCCCACCTCGGCCATCCATC	PstI
L	1 - 1 - 1 - 1 - 1	<u></u>	

ORF122	Forward Reverse	AAAAAAGTCGAC-ATGTCTTACCGCGCAAGCAGTTCTCC AAACTGCAG-TCAGGAACACAAACGATGACGAATATCCGTATC	SalI PstI
ORF125	Forward Reverse	AAAGAATTC-GCGCTGTTTTTTGCGGCGGCGTAT AAACTGCAG-CGCCGTTTCAAGACGAAAAAGTCG	EcoRI PstI
ORF126	Forward Reverse	AAA <u>GAATTC</u> -GCGGAAACGGTCGAAG AAA <u>CTGCAG</u> -TTAATCTTGTCTTCCGATATAC	EcoRI PstI
ORF127	Forward Reverse	AAAGAATTC-ATGACTGATAATCGGGGGTTTACG AAAAAAGTCGAC-CTTAAGTAACTTGCAGTCCTTATC	EcoRI SalI
ORF128	Forward Reverse	AAAGAATTC-ATGCAAGCTGTCCGCTACAGGCC AAACTGCAG-CTATTGCAATGCGCCGCCGCGGAATGTTTGAGCAGGCG	EcoRI PstI
ORF129	Forward Reverse	AAAGAATTC-ATGGATTTTCGTTTTGACATTATTTACGAATACCG AAACTGCAG-TTATTTTTTGATGAAATTTTTGGGGCGG	EcoRI PstI
ORF130	Forward Reverse	AAAGAATTC-GCAGTACTTGCCATTCTCGGTGCG AAACTGCAG-CTCCGGATCGTCTGTAAACGCATT	EcoRI PstI
ORF 131	Forward Reverse	GCGGATCCCATATG-GAAATTCGGGCAATAAAAT CCCGCTCGAG-CCAGCGGACGCGTTC	BamHI-NdeI XhoI
ORF 132	Forward Reverse	GCGGATCCCATATG-AAAGAAGCGGGGTTTG CCCGCTCGAG-CCAATCTGCCAGCCGT	BamHI-NdeI XhoI
ORF 133	Forward Reverse	CGC <u>GGATCCCATATG</u> -GAAGATGCAGGGCGCG CCCG <u>CTCGAG</u> -AAACTTGTAGCTCATCGT	BamHI-NdeI XhoI
ORF 134	Forward Reverse	GCGGATCCCATATG-TCTGTGCAAGCAGTATTG CCCGCTCGAG-ATCCTGTGCCAATGCG	BamHI-NdeI XhoI
ORF 135	Forward Reverse	GCGGATCCCATATG-CCGTCTGAAAAAGCTTT CCCGCTCGAG-AAATACCGCTGAGGATG	BamHI-NdeI XhoI
ORF 136	Forward Reverse	CGCGGATCCGCTAGC-ATGAAGCGGCGTATAGCC CCCGCTCGAG-TTCCGAATATTTGGAACTTTT	BamHI-NheI XhoI
ORF 137	Forward Reverse	CGC <u>GGATCCCATATG</u> -GGCACGGCGGGAAATA CCCG <u>CTCGAG</u> -ATAACGGTATGCCGCC	BamHI-NdeI XhoI
ORF 138	Forward Reverse		
ORF 139	Forward Reverse	GC <u>GGATCCCATATG</u> -GCTTTTTTGGCGGTAATG CCCG <u>CTCGAG</u> -TAACGTTTCCGTGCGTTT	BamHI-NdeI XhoI

ORF 140	Forward	GC <u>GGATCCCATATG</u> -TTGCCCACAGGCAGC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -GACGATGGCAAACAGC	XhoI
ORF 141	Forward Reverse	GCGGATCCCATATG-CCGTCTGAAGCAGTCT CCCGCTCGAG-ATCTGTTGTTTTTAAAATATT	BamHI-NdeI XhoI
ORF 142	Forward	GC <u>GGATCCCATATG</u> -GATAATTCTGGTAGTGAAG	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -AAACGTATAGCCTACCT	XhoI
ORF 143	Forward	GC <u>GGATCCCATATG</u> -GATACCGCTTTGAACCT	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -AATGGCTTCCGCAATATG	XhoI
ORF 144	Forward	GC <u>GGATCCCATATG</u> -ACCTTTTTACAACGTTTGC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -AGATTGTTGTTGTTTTTTCG	XhoI
ORF 147	Forward	GC <u>GGATCCCATATG</u> -TCTGTCTTTCAAACGGC	BamHI-NdeI
	Reverse	CCCG <u>CTCGAG</u> -TTTGTTTTTGCAAGACAG	XhoI

NB:

- restriction sites are underlined
- for ORFs 110-130, where the ORF itself carries an EcoRI site (eg. ORF122), a SalI site was used in the forward primer instead. Similarly, where the ORF carries a PstI site (eg. ORFs 115 and 127), a SalI site was used in the reverse primer.

TABLE II - Summary of cloning, expression and purification

ORF	PCR/cloning	His-fusion	GST-fusion	Purification
		expression	expression	
orf 1	+	+	+	His-fusion
orf 2	+	+	+	GST-fusion
orf 2.1	+	n.d.	+	GST-fusion
orf 4	+	+	+	His-fusion
orf 5	+	n.d.	+	GST-fusion
orf 6	+	+	+	GST-fusion
orf 7	+	+	+	GST-fusion
orf 8	+	n.d.	n.d.	
orf 9	. +	+	+	GST-fusion
orf 10	+	n.d.	n.d.	
orf 11	+	n.d.	n.d.	ı
orf 13	+	n.d.	+	GST-fusion
orf 15	+	+	+	GST-fusion
orf 17	+	n.d.	n.d.	
orf 18	+	n.d.	n.d.	
orf 19	+	n.d.	n.d.	
orf 20	+	n.d.	n.d.	
orf 22	+	+	+	GST-fusion
orf 23	+	+	+	His-fusion
orf 24	+	n.d.	n.d.	
orf 25	+	+	+	His-fusion
orf 26	+	n.d.	n.d.	
orf 27	+	+	+	GST-fusion
orf 28	+	+	+	GST-fusion
orf 29	+	n.d.	n.d.	
orf 32	+	+	+	His-fusion
orf 33	+	n.d.	n.d.	
orf 35	+	n.d.	n.d.	
orf 37	+	+	+	GST-fusion
orf 58	+	n.d.	n.d.	
orf 65	+	n.d.	n.d.	
orf 66	+	n.d.	n.d.	
orf 72	+	+_	n.d.	His-fusion
orf 73	+	n.d.	+	n.d.
orf 75	+	n.d.	n.d.	
orf 76	+	+	n.d.	His-fusion
orf 79	+	+	n.d.	His-fusion
orf 83	+	n.d.	+	n.d.
orf 84	+	n.d.	n.d.	

orf 85	+	n.d.	+	GST-fusion
orf 89	+	n.d.	+	GST-fusion
orf 97	+	+	+	GST-fusion
orf 98	+	n.d.	n.d.	
orf 100	+	n.d.	n.d.	
orf 101	+	n.d.	n.d.	
orf 102	+	n.d.	n.d.	
orf 103	+	n.d.	n.d.	
orf 104	+	n.d.	n.d.	"
orf 105	+	n.d.	n.d.	
orf 106	+	+	+ '	His-fusion
orf 109	+	n.d.	n.d.	
orf 110	+	n.d.	n.d.	
orf 111	+	+	n.d.	His-fusion
orf 113	+	+	n.d.	His-fusion
orf 115	n.d.	n.d.	n.d.	
orf 119	+	+	n.d.	His-fusion
orf 120	+	+	n.d.	His-fusion
orf 121	+	n.d.	n.d.	
orf 122	+	+	n.d.	His-fusion
orf 125	+	+	n.d.	His-fusion
orf 126	+	+	n.d.	His-fusion
orf 127	+	+	n.d.	His-fusion
orf 128	+	n.d.	n.d.	
orf 129	. +	+	n.d.	His-fusion
orf 130	+	n.d.	n.d.	
orf 131	+	+	+	n.d.
orf 132	+	+	+	His-fusion
orf 133	+	n.d.	+	GST-fusion
orf 134	+	n.d.	n.d.	
orf 135	+	n.d.	n.d.	
orf 136	+	n.d.	n.d.	
orf 137	+	n.d.	+	GST-fusion
orf 138	+	n.d.	+	GST-fusion
orf 139	+	n.d.	n.d.	
orf 140	+	n.d.	n.d.	
orf 141	+	n.d.	n.d.	
orf 142	+	n.d.	n.d.	<u> </u>
orf 143	+	n.d.	n.d.	
orf 144	+	n.d.	+	n.d.
orf 147	+	n.d.	n.d.	<u> </u>

CLAIMS

- 1. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, and 8.
- 2. A nucleic acid molecule which encodes a protein according to claim 1.
- 5 3. A nucleic acid molecule according to claim 2, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, and 7.
- A protein comprising an amino acid sequence selected from the group consisting of SEQ 4. IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 10 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 15 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 20 544, 546, 548, 550, 552, 554, 556, 558, 560, 562, 564, 566, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586, 588, 590, 592, 594, 596, 598, 600, 602, 604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626, 628, 630, 632, 634, 636, 638, 640, 642, 644, 646, 648, 650, 652, 654, 656, 658, 660, 662, 664, 666, 668, 670, 672, 674, 676, 678, 680, 682, 684, 686, 688, 690, 692, 694, 696, 698, 700, 702, 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742, 25 744, 746, 748, 750, 752, 754, 756, 758, 760, 762, 764, 766, 768, 770, 772, 774, 776, 778, 780, 782, 784, 786, 788, 790, 792, 794, 796, 798, 800, 802, 804, 806, 808, 810, 812, 814, 816, 818, 820, 822, 824, 826, 828, 830, 832, 834, 836, 838, 840, 842, 844, 846, 848, 850, 852, 854, 856, 858, 860, 862, 864, 866, 868, 870, 872, 874, 876, 878, 880, 882, 884, 886, 888, 890, & 892...
- 30 5. A protein having 50% or greater sequence identity to a protein according to claim 4.

- A protein comprising a fragment of an amino acid sequence selected from the group 6. consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 10 376, 378, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544, 546, 548, 550, 552, 554, 556, 558, 560, 562, 564, 566, 568, 570, 572, 574, 15 576, 578, 580, 582, 584, 586, 588, 590, 592, 594, 596, 598, 600, 602, 604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626, 628, 630, 632, 634, 636, 638, 640, 642, 644, 646, 648, 650, 652, 654, 656, 658, 660, 662, 664, 666, 668, 670, 672, 674, 676, 678, 680, 682, 684, 686, 688, 690, 692, 694, 696, 698, 700, 702, 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742, 744, 746, 748, 750, 752, 754, 756, 758, 760, 762, 764, 766, 768, 770, 772, 774, 20 776, 778, 780, 782, 784, 786, 788, 790, 792, 794, 796, 798, 800, 802, 804, 806, 808, 810, 812, 814, 816, 818, 820, 822, 824, 826, 828, 830, 832, 834, 836, 838, 840, 842, 844, 846, 848, 850, 852, 854, 856, 858, 860, 862, 864, 866, 868, 870, 872, 874, 876, 878, 880, 882, 884, 886, 888, 890, & 892...
 - 7. An antibody which binds to a protein according to any one of claims 4 to 6.
- 25 8. A nucleic acid molecule which encodes a protein according to any one of claims 4 to 6.
- 9. A nucleic acid molecule according to claim 8, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289,

291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 5 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, 555, 557, 559, 561, 563, 565, 567, 569, 571, 573, 575, 577, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 10 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743, 745, 747, 749, 751, 753, 755, 757, 759, 761, 763, 765, 767, 769, 771, 773, 775, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795, 797, 799, 801, 803, 805, 807, 809, 811, 813, 815, 817, 819, 821, 823, 825, 827, 829, 831, 833, 835, 837, 839, 841, 843, 845, 847, 849, 851, 853, 855, 857, 859, 861, 863, 865, 867, 869, 871, 873, 875, 877, 879, 881, 883, 885, 887, 889, 15 & 891..

A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the 10. group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 20 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 25 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 30 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, 555, 557, 559, 561, 563, 565, 567, 569, 571, 573, 575, 577, 579, 581, 583, 585, 587, 589, 591, 593, 595, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615, 617, 619, 621, 623, 625, 627, 629, 631, 633, 635, 637, 639, 641, 643, 645, 647, 649, 651, 653, 655, 657, 659, 661, 663, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 695, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733,35

- 735, 737, 739, 741, 743, 745, 747, 749, 751, 753, 755, 757, 759, 761, 763, 765, 767, 769, 771, 773, 775, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795, 797, 799, 801, 803, 805, 807, 809, 811, 813, 815, 817, 819, 821, 823, 825, 827, 829, 831, 833, 835, 837, 839, 841, 843, 845, 847, 849, 851, 853, 855, 857, 859, 861, 863, 865, 867, 869, 871, 873, 875, 877, 879, 881, 883, 885, 887, 889, & 891...
- 5 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 8 to 10.
 - 12. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 8-11.
- 13. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 8-12 under high stringency conditions.
 - 14. A composition comprising a protein, a nucleic acid molecule, or an antibody according to any preceding claim.
 - 15. A composition according to claim 14 being a vaccine composition or a diagnostic composition.
- 15 16. A composition according to claim 14 or claim 15 for use as a pharmaceutical.
 - 17. The use of a composition according to claim 14 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial bacteria.

1/24

FIG 1E

3/24

4/24

FIG. 3A

FIG. 3B

FIG. 3C

PCT/IB98/01665

5/24

FIGURE 4

Fig 4C

6/24

7/24 **FIGURE 6**

8/24

Fig. 8E

Fig. 8F

11/24

FIG. 10C

12/24

13/24

FIG. 12E

15/24

FIG. 13A

M1 ORF106

M2 ORF106

FIG. 13C

16/24

FIGURE 14

Fig. 14A

Fig. 14B

17/24

FIG. 15A

M1 ORF23

FIG. 15B

M2 ORF23

FIG 15C

18/24

FIG. 16A

FIG. 16B

FIG. 16C

FIG. 16D

FIG. 16E

FIG. 17A

M1 ORF27

FIG. 17B

M2 ORF27

FIGURE 18

FIG. 18A

FIG. 18B

22/24 IGURE 40

FIGURE 19

Fig. 19C

Fig 19D

24/24 FIGURE 20

FIG. 20B

M1 ORF132

M2 ORF132

FIG. 20C

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	INTERNATIONA	L APPLICATION PUBLISI	HED U	JNE	DER THE PATENT COOPERATION	TREATY (PCT)	
(51) International Patent Classification 6:				(11) International Publication Number:		WO 99/24578	
	, ·	14/22, 16/12, G01N 33/53, 2N 15/31, C12 R 1:36)	A3	(43	3) International Publication Date:	20 May 1999 (20.05.99)	
	(21) International Applic	cation Number: PCT/IB	98/016	65	(74) Agent: HALLYBONE, Huw, George 43 Bloomsbury Square, London V	e; Carpmaels & Ransford, WC1A 2RA (GB).	
١	(22) International Filing	Date: 9 October 1998 (09.10.9	8)			
	(30) Priority Data: 9723516.2 9724190.5 9724386.9 9725158.1 9726147.3 9800759.4 9819016.8 (71) Applicant (for all of S.P.A. [IT/IT]; V	6 November 1997 (06.11.97 14 November 1997 (14.11.9 18 November 1997 (18.11.9 27 November 1997 (27.11.9 10 December 1997 (10.12.9 14 January 1998 (14.01.98) 1 September 1998 (01.09.98)	OT) (0 OT) (0 OT) (0 OT) (0 B) (0	GB GB GB GB GB GB	(81) Designated States: AL, AM, AT, A BY, CA, CH, CN, CU, CZ, DE, GE, GH, GM, HR, HU, ID, IL, KZ, LC, LK, LR, LS, LT, LU, MW, MX, NO, NZ, PL, PT, RO, SL, TJ, TM, TR, TT, UA, UG, ARIPO patent (GH, GM, KE, LS Eurasian patent (AM, AZ, BY, K European patent (AT, BE, CH, GB, GR, IE, IT, LU, MC, NL, F BJ, CF, CG, CI, CM, GA, GN, TD, TG).	DK, EE, ES, FI, GB, GD, IS, JP, KE, KG, KP, KR, LV, MD, MG, MK, MN, RU, SD, SE, SG, SI, SK, US, UZ, VN, YU, ZW, MW, SD, SZ, UG, ZW), G, KZ, MD, RU, TJ, TM), CY, DE, DK, ES, FI, FR, PT, SE), OAPI patent (BF,	
	[IT/IT]; Via Pai PUOLI, Rino [I I-53019 Castelnu [IT/IT]; Strada d SCARLATO, Vi	ts (for US only): MASIGNA ntaneto, 105, I-53100 Siena (IT/IT]; Via delle Rocche, 1, uovo Berardenga (IT). PIZZA, Mii Montalbuccio, 160, I-53100 Sincenzo [IT/IT]; Via Firenze, 3/37 (IT). GRANDI, Guido [IT/IT]; ate (IT).	T). RA Vaglia; Iariagra Siena (I 7, I–531	ga AP- gli, zia T).	Published With international search report. (88) Date of publication of the internatio	nal search report: 2 March 2000 (02.03.00)	

(54) Title: NEISSERIAL ANTIGENS

(57) Abstract

The invention provides proteins from *Neisseria meningitidis* (strains A and B) and from *Neisseria gonorrhoerae* including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	. MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	· IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

International Application No PC1/IB 98/01665

a. classification of subject matter IPC 6 C12N15/31 C07K14/22 C12N15/31 C07K16/12 G01N33/53 A61K39/095 //(C12N15/31,C12R1:36) According to International Patent Classification (IPC) or to both national classification and IPC 8. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K G01N A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' WO 99 55873 A (SMITHKLINE BEECHAM 5-8, Ε 10-16 BIOLOGICALS S.A..) 4 November 1999 (1999-11-04) SEQ ID NOS: 1, 2, 3 and 4 page 82 -page 96 claims 3-5,10,11,17-21 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. X * Special categories of cited documents : "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report OB December 1999 (08.12.99) 1 December 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fuchs, U Fax: (+31-70) 340-3016

6

International Application No

		PC1, IB 98	3/01665
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	ROKBI, B. ET AL.: "Evaluation of Recombinant Transferrin-Binding Protein B Variants from Neisseria meningitidis for Their Ability To Induce Cross-Reactive and Bactericidal Antibodies against a Genetically Diverse Collection of Serogroup B Strains"		1-17
8	INFECTION AND IMMUNITY, vol. 65, no. 1, January 1997 (1997-01), pages 55-63, XP002086937 abstract		
	page 55, column 1, line 1 -page 56, column 2, line 78 page 57, column 1, line 31 -page 61, column 2, line 63 page 59; figure 3; table 2		
A	WO 96 12020 A (OREGON HEALTH SCIENCES UNIVERITY) 25 April 1996 (1996-04-25) abstract page 32 -page 38; examples 2-4	·	1-17
Α .	page 42 -page 44; example 9 page 45; table 3 WO 96 31618 A (THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL)		1-17
	10 October 1996 (1996-10-10) abstract page 19, line 21 -page 20, line 13 page 20, line 22 -page 21, line 11 page 22, line 23 -page 24, line 16	9	
٠			·

In. ational application No. PCT/IB 98/01665

	IM I ENIANTIONAL GENERAL	
Boxi	Observations where certain claims were	found unsearchable (Continuation of item 1 of first sheet)
	emational Search Report has not been established	in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not require	d to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International an extent that no meaningful International Searce	Application that do not comply with the prescribed requirements to such th can be carried out, specifically:
3.		ot drafted in accordance with the second and third sentences of Rule 6.4(a).
Boy	II Observations where unity of invention	is lacking (Continuation of item 2 of first sheet)
This	international Searching Authority found multiple inv	ventions in this international application, as follows:
	see additional sheet	
1. [searchable claims.	nely paid by the applicant, this International Search Report covers all
2.	As all searchable claims could be searched wo	without effort justifying an additional fee, this Authority did not invite payment
3. 1	COASUS DUIN (LIONA CIETTIES IOL ILLINE)	ch fees were timely paid by the applicant, this International Search Report paid, specifically claims Nos.:
	((1-3) completely) and ((4)	4-17) partially)
4.	No required additional search fees were time restricted to the invention first mentioned in	ely paid by the applicant. Consequently, this International Search Report is the claims; it is covered by claims Nos.:
R	emark on Protest	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1.Claims: ((1-3) completely) and ((4-17) partially)

A protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2,4,6 and 8 or fragments thereof; a protein having 50% or greater sequence identity to said protein; an antibody binding said protein; a nucleic acid encoding said protein; a nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOS: 1,3,5 and 7 or fragments thereof; a composition comprising said protein, said nucleic acid or said antibody; the use of said composition;

Invention 2 to 104. Claims (4-17) partially

Idem as subject 1 but limited to the ORFs corresponding to examples 2-104 characterized by SEQ ID NOS: 9-892. (Invention 2 is limited to SEQ ID NOS: 9-10; Invention 3 is limited to SEQ ID NOS: 11-18; Invention 4 is limited to SEQ ID NOS: 19-28;; Invention 104 is limited to SEQ ID NOS: 885-892).

In view of additional search fees paid, Inventions 5, 26, 55, 77 and 91 have been further searched.

I metion on patent family members

PC1, 18 98/01665

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9955873	A	04-11-1999	NONE	
WO 9612020	A	25-04-1996	US 5698438 A AU 705509 B AU 4007395 A CA 2203116 A EP 0793720 A FI 971634 A HU 77048 A JP 10508469 T NO 971768 A	16-12-1997 27-05-1999 06-05-1996 25-04-1996 10-09-1997 16-06-1997 02-03-1998 25-08-1998 03-06-1997
WO 9631618	A	10-10-1996	AU 5537096 A CA 2217522 A EP 0830456 A JP 11503322 T	23-10-1996 10-10-1996 25-03-1998 26-03-1999