MATH 109 - HOMEWORK 8

Due Friday, March 8st. Handwritten submissions only. The exercises in this homework are worth 16 points.

Problem 1

Consider the two functions

$$f: \mathbb{R} \setminus \{1, 2, 3\} \to \mathbb{R}, \quad x \mapsto \frac{5x^3 - 8x^2 - 27x + 18}{(x - 1)(x - 2)(x - 3)},$$

 $g: \mathbb{R} \setminus \{0, 1, 2\} \to \mathbb{R}, \quad x \mapsto \frac{5x^3 + 7x^2 - 6x}{x(x - 1)(x - 2)},$

Find the largest set $A \subseteq \mathbb{R}$ such that $A \subseteq \text{dom}(f)$ and $A \subseteq \text{dom}(g)$ and $f_{|A} = g_{|A}$.

Problem 2

Let X be a set. Consider the following relation \sim on the power set $\mathfrak{P}(X)$:

$$\forall A, B \in \mathfrak{P}(X) : A \sim B \leftrightarrow A \cap B \neq \emptyset$$

Is \sim reflexive, symmetric, or transitive? Either prove or give a counterexample.

Problem 3

Let R be a binary relation over a set X that is both symmetric and antisymmetric. Prove that R is a subset of the equality relation over X.

Problem 4

We introduce the following relation R on the rational numbers \mathbb{Q} . For $x, y \in \mathbb{Q}$ we write $x \sim_R y$ if there exist natural numbers $m, n \in \mathbb{N}$ such that $x^m = y^n$. Show that R is an equivalence relation.

Problem 5

Consider the following relation on the real numbers: for all $x, y \in \mathbb{R}$ we write

$$x \sim y \qquad :\Longleftrightarrow \qquad |x| \le |y|.$$

Show that \sim is reflexive and transitive, but not antisymmetric.

Problem 6

Let X be a set. Under which conditions is the empty set \emptyset a partial order over X?

Problem 7 (Ungraded)

Consider the set \mathbb{R} equipped with the canonical order \leq . Let ∞ and $-\infty$ be two symbols and define

$$\overline{\mathbb{R}} := \{-\infty, \infty\} \cup \mathbb{R}.$$

We define a relation R on $\overline{\mathbb{R}}$ as follows:

$$\forall x, y \in \mathbb{R} : (x \sim_R y : \iff x \leq y),$$
$$\forall x \in \overline{\mathbb{R}} : (-\infty \leq x) \land (x \leq \infty),$$
$$-\infty \leq -\infty, \quad -\infty \leq \infty, \quad \infty \leq \infty.$$

Show that R is a partial order over $\overline{\mathbb{R}}$.

Problem 8 (Ungraded)

Let R denote the canonical order of set $N_0^8 = \{0, 1, \dots, 7, 8\}$. Suppose that S is another partial order over N_0^8 such that $R \subseteq S$ and $(8,0) \in S$. Show that S is the equality relation over N_0^8 .