

United States Patent and Trademark Office

h

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/629,768	07/30/2003	Akira Katou	1614.1354	7690
21171 7590 01/24/2008 STAAS & HALSEY LLP SUITE 700			EXAMINER	
			DWIVEDI, MAHESH H	
1201 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005		•	ART UNIT	PAPER NUMBER
		·	2168	
			[
			MAIL DATE	DELIVERY MODE
			01/24/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)			
Office Action Summary	10/629,768	KATOU ET AL.			
5,7,00 7,000.1 Carrinary	Examiner	Art Unit			
The MAILING DATE of this communication app	Mahesh H. Dwivedi	2168 orrespondence address			
Period for Reply					
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DATE of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period was a Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tin will apply and will expire SIX (6) MONTHS from a cause the application to become ABANDONE	N. nely filed the mailing date of this communication. 0 (35 U.S.C. § 133).			
Status					
1) Responsive to communication(s) filed on 22 Oc	<u>ctober 2007</u> .	•			
, —	·				
	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is				
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.					
Disposition of Claims		•			
4) Claim(s) 1-23 is/are pending in the application. 4a) Of the above claim(s) is/are withdray 5) Claim(s) is/are allowed. 6) Claim(s) 1-23 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or	vn from consideration.				
Application Papers					
9) The specification is objected to by the Examiner. 10) The drawing(s) filed on 20 July 2003 is/are: a) accepted or b) objected to by the Examiner.					
Applicant may not request that any objection to the					
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).					
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.					
Priority under 35 U.S.C. § 119	•				
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 					
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail D 5) Notice of Informal F 6) Other:	ate			

10/629,768 Art Unit: 2168

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 08/04/2006 has been entered.

Remarks

2. Receipt of Applicant's Amendment, filed on 10/22/2007, is acknowledged. The amendment includes the amending of claims 1, 6, 11, 16, and 23.

Priority

3. Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Claim Rejections - 35 USC § 103

- 4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 5. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was

10/629,768 Art Unit: 2168

not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

- 6. Claims 1-3, 5-8, 10-13, 15-18, and 20-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over **Fujieda** (U.S. PGPUB 2001/0007997) in view of **Chartier et al.** (U.S. Patent 6,636,211).
- 7. Regarding claim 1, **Fujieda** teaches a system comprising:
- A) a storage section, formed by hardware, configured to store file information in units of generations (Paragraphs 143-144, 146-150, Figures 9-10);
- B) each file information having <u>a</u> different <u>generation</u> before and after a modification by an editing process (Paragraphs 143-144, 146-150, Figures 9-10);
- C) an inter-file correspondence table, formed by hardware, configured to store corresponding relationships of the file information stored in the storage, including generation information (Paragraphs 121-122, 143-144, 146-150, Figures 7, and 9-10); and
- F) a processing unit configured to refer to the inter-file correspondence table to display relationships of the file information corresponding to the icon data (Paragraphs 143-144, 146-150, Figures 9-10);
- G) wherein a modification of one of two related <u>units of</u> file information by the editing process affects <u>the</u> other of the two <u>units of</u> related file information, including generation information (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that **Fujieda** teaches "a storage section, formed by hardware, configured to store file information in units of generations" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and

10/629,768 Art Unit: 2168

"The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "each file information having a different generation before and after a modification by an editing process" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "an inter-file correspondence table, formed by hardware, configured to store corresponding relationships of the file information stored in the storage, including generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the

10/629,768 Art Unit: 2168

CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144), and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Fujieda teaches "a processing unit configured to refer to the inter-file correspondence table to display relationships of the file information corresponding to the icon data" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41.

10/629,768 Art Unit: 2168

Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows the relationship of the various parts in a tree structure with both Phase 1 and Phase 2. The examiner further notes that Fujieda teaches "wherein a modification of one of two related units of file information by the editing process affects the other of the two units of related file information, including generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Fujieda does not explicitly teach:

- D) an icon storage, formed by hardware, configured to store icon data corresponding to the file information;
- E) said icon data including an image representative of a CAD image corresponding to the file information; and

10/629,768 Art Unit: 2168

F) a processing unit configured to refer to the icon storage and to display, on the display unit, icon data of the file information stored in the storage section in units of generations.

Chartier, however, teaches "an icon storage, formed by hardware, configured to store icon data corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14. which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), "said icon data including an image representative of a CAD image corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), and "a processing unit configured to refer to the icon storage and to display, on the display unit, icon data of the file information stored in the storage section in units

10/629,768 Art Unit: 2168

of generations" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Chartier's** would have allowed **Fujieda's** to provide a method for an improved system and method for displaying the features of a complex three-dimensional object which simplifies the identification and selection of features, as noted by **Chartier** (Column 2, lines 32-35).

Regarding claim 2, Fujieda further teaches a system comprising:

- A) an input controller configured to detect an input to the CAD generation management system (Paragraphs 145-150, Figure 10); and
- B) said processing unit displaying on the display unit the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data (Paragraphs 145-150, Figure 10).

The examiner notes that Fujieda teaches "an input controller configured to detect an input to the CAD generation management system" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by

(Paragraphs 145-150, Figure 10).

10/629,768 Art Unit: 2168

way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear. The examiner further notes that Fujieda teaches "said processing unit displaying on the display unit the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear.

Regarding claim 3, **Fujieda** further teaches a system comprising:

A) wherein the processing unit displays on the display unit the relationships of the file information corresponding to the icon data by lines connecting related icon data

The examiner further notes that Fujieda teaches "wherein the processing unit displays on the display unit the relationships of the file information corresponding to the icon data by lines connecting related icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to

10/629,768 Art Unit: 2168

phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows a tree structure with respect to phases 1 and 2, both of which contain lines depicting various relationships.

Regarding claim 5, **Fujieda** further teaches a system comprising:

A) means for acquiring a CAD program and/or the file information via one or more networks (Paragraphs 42 and 65, Figure 1).

The examiner notes that Fujieda teaches "means for acquiring a CAD program and/or the file information via one or more networks" as "When bulk data of a certain model is necessary, an inquiry is made with respect to the first server 1, and the corresponding meta-data and decryption key are acquired and transmitted to the terminal which has made the request. Accordingly, bulk data, which has a vast amount of information, need not be transferred from the second server to the first server 1, and thus the network can be prevented from being overloaded" (Paragraph 65). The examiner further wishes to state that Figure 1 clearly shows various terminals 3-1, 3-2, and 3-3 having network access to CAD material located on servers 1 and 2.

Regarding claim 6, Fujieda teaches a system comprising:

- A) a storage section, formed by hardware, configured to store font information in units of generations (Paragraphs 143-144, 146-150, Figures 9-10);
- D) a third storage, formed by hardware, configured to store the generation information of the file information, each file information having different generations before and after a modification by an editing process (Paragraphs 143-144, 146-150, Figures 9-10);
- E) a processing unit configured to refer to the generation information stored in the third storage in response to an instruction to display generation information of target file information (Paragraphs 143-144, 146-150, Figures 9-10);

10/629,768 Art Unit: 2168

F) wherein a modification of one of two related <u>units of</u> file information by the editing process affects <u>the</u> other of the two related <u>units of</u> file information, including the generation information (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that Fujieda teaches "a storage section, formed by hardware, configured to store font information in units of generations" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "a third storage, formed by hardware, configured to store the generation information of the file information, each file information having different generations before and after a modification by an editing process" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view

10/629,768 Art Unit: 2168

screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "a processing unit configured to refer to the generation information stored in the third storage in response to an instruction to display generation information of target file information" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows the relationship of the various parts in a tree structure with both Phase 1 and Phase 2. The examiner further notes that Fujieda teaches "wherein a modification of one of two related units of file information by the editing process affects the other of the two related units of file information, including the generation information" as "If, in the three-view drawing, the content of the part

10/629,768 Art Unit: 2168

column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Fujieda does not explicitly teach:

- B) a second storage, formed by hardware, configured to store icon data indicating file information;
- C) said icon data including an image representative of a CAD image corresponding to the file information;
- E) a processing unit configured to create and display, on the display unit, the icon data related to the generation information to be displayed on the display unit by combining the font information stored in the first storage and the icon data stored in the second storage.

Chartier, however, teaches "a second storage, formed by hardware, configured to store icon data indicating file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding

10/629,768 Art Unit: 2168

miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), "said icon data including an image representative of a CAD image corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), and "a processing unit configured to create and display, on the display unit, the icon data related to the generation information to be displayed on the display unit by combining the font information stored in the first storage and the icon data stored in the second storage" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can

10/629,768 Art Unit: 2168

also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Chartier's** would have allowed **Fujieda's** to provide a method for an improved system and method for displaying the features of a complex three-dimensional object which simplifies the identification and selection of features, as noted by **Chartier** (Column 2, lines 32-35).

Regarding claim 7, Fujieda further teaches a system comprising:

- A) an input controller configured to detect an input to the CAD generation management system, including the instruction (Paragraphs 145-150, Figure 10); and
- B) said processing unit displaying on the display unit the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data (Paragraphs 145-150, Figure 10).

The examiner notes that Fujieda teaches "an input controller configured to detect an input to the CAD generation management system, including the instruction" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear. The examiner further notes that Fujieda teaches "said processing unit displaying on the display unit the relationships of selected icon data with emphasis when the input controller detects an input

10/629,768 Art Unit: 2168

selecting the selected icon data from the displayed icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear.

Regarding claim 8, Fujieda further teaches a system comprising:

A) wherein the processing unit displays on the display unit the relationships of the file information corresponding to the icon data by lines connecting related icon data (Paragraphs 145-150, Figure 10).

The examiner further notes that Fujieda teaches "wherein the processing unit displays on the display unit the relationships of the file information corresponding to the icon data by lines connecting related icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows a tree structure with respect to phases 1 and 2, both of which contain lines depicting various relationships.

Regarding claim 10, Fujieda further teaches a system comprising:

10/629,768 Art Unit: 2168

A) means for acquiring a CAD program and/or the file information via one or more networks (Paragraphs 42 and 65, Figure 1).

The examiner notes that Fujieda teaches "means for acquiring a CAD program and/or the file information via one or more networks" as "When bulk data of a certain model is necessary, an inquiry is made with respect to the first server 1, and the corresponding meta-data and decryption key are acquired and transmitted to the terminal which has made the request. Accordingly, bulk data, which has a vast amount of information, need not be transferred from the second server to the first server 1, and thus the network can be prevented from being overloaded" (Paragraph 65). The examiner further wishes to state that Figure 1 clearly shows various terminals 3-1, 3-2, and 3-3 having network access to CAD material located on servers 1 and 2.

Regarding claim 11, **Fujieda** teaches a computer-readable storage medium comprising:

- A) a procedure to cause the computer to store file information in a storage in units of generations (Paragraphs 143-144, 146-150, Figures 9-10);
- B) each file information having <u>a</u> different <u>generation</u> before and after a modification by an editing process (Paragraphs 143-144, 146-150, Figures 9-10);
- C) a procedure to cause the computer to store corresponding relationships of the file information stored in the storage, including generation information, in an inter-file correspondence table (Paragraphs 121-122, 143-144, 146-150, Figures 7, and 9-10); and
- F) a control procedure to cause the computer to refer to the inter-file correspondence table to display relationships of the file information corresponding to the icon data (Paragraphs 143-144, 146-150, Figures 9-10);
- G) an editing procedure to cause the computer to carry out the editing process in which a modification of one of two related <u>units of</u> file information affects <u>the</u> other of the two related <u>units of</u> file information, including generation information (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

10/629,768 Art Unit: 2168

The examiner notes that Fujieda teaches "a procedure to cause the computer. to store file information in a storage in units of generations" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "each file information having a different generation before and after a modification by an editing process" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2

10/629,768 Art Unit: 2168

are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "a procedure to cause the computer to store corresponding relationships of the file information stored in the storage. including generation information, in an inter-file correspondence table" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the threeview drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144), and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Fujieda teaches "a control procedure to cause the computer to refer to the inter-file correspondence table to display relationships of the file information corresponding to the icon data" as "In this embodiment, different phases are set for a

10/629,768 Art Unit: 2168

model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows the relationship of the various parts in a tree structure with both Phase 1 and Phase 2. The examiner further notes that Fujieda teaches "an editing procedure to cause the computer to carry out the editing process in which a modification of one of two related units of file information affects the other of the two related units of file information, including generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the

10/629,768 Art Unit: 2168

phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Fujieda does not explicitly teach:

- D) a procedure to cause the computer to store icon data corresponding to the file information in an icon storage;
- E) said icon data including an image representative of a CAD image corresponding to the file information;
- F) a control procedure to cause the computer to refer to the inter-file correspondence table and the icon storage and to display icon data of the file information stored in the storage section in units of generations.

Chartier, however, teaches "a procedure to cause the computer to store icon data corresponding to the file information in an icon storage" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), "said icon data including an image representative of a CAD image corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been

10/629,768 Art Unit: 2168

defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), and "a control procedure to cause the computer to refer to the inter-file correspondence table and the icon storage and to display icon data of the file information stored in the storage section in units of generations" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Chartier's** would have allowed **Fujieda's** to provide a method for an improved system and method for displaying the features of a complex three-dimensional object which simplifies the identification and selection of features, as noted by **Chartier** (Column 2, lines 32-35).

Regarding claim 12, **Fujieda** further teaches a computer-readable storage medium comprising:

10/629,768 Art Unit: 2168

- A) an input procedure to cause the computer to detect an input to the computer (Paragraphs 145-150, Figure 10); and
- B) said control procedure causing the computer to display the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data (Paragraphs 145-150, Figure 10).

The examiner notes that Fujieda teaches "an input procedure to cause the computer to detect an input to the computer" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear. The examiner further notes that Fujieda teaches "said control procedure causing the computer to display the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rearsuspension button in interface 70, interfaces 71 and 72 appear.

10/629,768 Art Unit: 2168

Regarding claim 13, **Fujieda** further teaches a computer readable storage medium comprising:

A) wherein the control procedure causes the computer to display the relationships of the file information corresponding to the icon data by lines connecting related icon data (Paragraphs 145-150, Figure 10).

The examiner further notes that Fujieda teaches "wherein the control procedure causes the computer to display the relationships of the file information corresponding to the icon data by lines connecting related icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows a tree structure with respect to phases 1 and 2, both of which contain lines depicting various relationships.

Regarding claim 15, **Fujieda** further teaches a computer readable storage medium comprising:

A) a procedure to cause the computer to acquire a CAD program and/or the file information via one or more networks (Paragraphs 42 and 65, Figure 1).

The examiner notes that Fujieda teaches "a procedure to cause the computer to acquire a CAD program and/or the file information via one or more networks" as "When bulk data of a certain model is necessary, an inquiry is made with respect to the first server 1, and the corresponding meta-data and decryption key are acquired and transmitted to the terminal which has made the request. Accordingly, bulk data, which has a vast amount of information, need not be transferred from the second server to the first server 1, and thus the network can be prevented from being overloaded"

10/629,768 Art Unit: 2168

(Paragraph 65). The examiner further wishes to state that Figure 1 clearly shows various terminals 3-1, 3-2, and 3-3 having network access to CAD material located on servers 1 and 2.

Regarding claim 16, **Fujieda** teaches a computer storage medium comprising:

A) a procedure to cause the computer to store font information indicating generation information in a first storage (Paragraphs 143-144, 146-150, Figures 9-10);

- D) a procedure to cause the computer to store the generation information of the file information in a third storage, each file information having different generations before and after a modification by an editing process (Paragraphs 143-144, 146-150, Figures 9-10);
- E) a control procedure to cause the computer to refer to the generation information stored in the third storage in response to an instruction to display information of target file information (Paragraphs 143-144, 146-150, Figures 9-10);
- F) an editing procedure to cause the computer to carry out the editing process in which a modification of one of two related <u>units of</u> file information affects <u>the</u> other of the two related <u>units of</u> file information, including generation information (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that Fujieda teaches "a procedure to cause the computer to store font information indicating generation information in a first storage" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG.

10/629,768 Art Unit: 2168

11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "a procedure to cause the computer to store the generation information of the file information in a third storage, each file information having different generations before and after a modification by an editing process" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "a control procedure to cause the computer to refer to the generation information stored in the third storage in response to an instruction to display information of target file information" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the

10/629,768 Art Unit: 2168

version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows the relationship of the various parts in a tree structure with both Phase 1 and Phase 2. The examiner further notes that Fujieda teaches "an editing procedure to cause the computer to carry out the editing process in which a modification of one of two related units of file information affects the other of the two related units of file information, including generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the threeview drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

10/629,768 Art Unit: 2168

Fujieda does not explicitly teach:

- B) a procedure to cause the computer to store icon data indicating file information in a second storage;
- C) said icon data including an image representative of a CAD image corresponding to the file information;
- E) a control procedure to cause the computer to create and display icon data related to the generation information to be displayed by combining the font information stored in the first storage and the icon data stored in the second storage.

Chartier, however, teaches "a procedure to cause the computer to store icon data indicating file information in a second storage" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), "said icon data including an image representative of a CAD image corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship

10/629,768 Art Unit: 2168

between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2), and "acontrol procedure to cause the computer to create and display icon data related to the generation information to be displayed by combining the font information stored in the first storage and the icon data stored in the second storage" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Chartier's** would have allowed **Fujieda's** to provide a method for an improved system and method for displaying the features of a complex three-dimensional object which simplifies the identification and selection of features, as noted by **Chartier** (Column 2, lines 32-35).

Regarding claim 17, **Fujieda** further teaches a computer-readable storage medium comprising:

A) an input procedure to cause the computer to detect an input to the computer, including the instruction (Paragraphs 145-150, Figure 10); and

10/629,768 Art Unit: 2168

B) said control procedure causing the computer to display the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data (Paragraphs 145-150, Figure 10).

The examiner notes that Fujieda teaches "an input procedure to cause the computer to detect an input to the computer, including the instruction" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear. The examiner further notes that Fujieda teaches "said control procedure causing the computer to display the relationships of selected icon data with emphasis when the input controller detects an input selecting the selected icon data from the displayed icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows that as a result of a user action to the rear-suspension button in interface 70, interfaces 71 and 72 appear.

Regarding claim 18, **Fujieda** further teaches a computer readable storage medium comprising:

10/629,768 Art Unit: 2168

A) wherein the control procedure causes the computer to display the relationships of the file information corresponding to the icon data by lines connecting related icon data (Paragraphs 145-150, Figure 10).

The examiner further notes that Fujieda teaches "wherein the control procedure causes the computer to display the relationships of the file information corresponding to the icon data by lines connecting related icon data" as "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Figure 10 clearly shows a tree structure with respect to phases 1 and 2, both of which contain lines depicting various relationships.

Regarding claim 20, **Fujieda** further teaches a computer readable storage medium comprising:

A) a procedure to cause the computer to acquire a CAD program and/or the file information via one or more networks (Paragraphs 42 and 65, Figure 1).

The examiner notes that Fujieda teaches "a procedure to cause the computer to acquire a CAD program and/or the file information via one or more networks" as "When bulk data of a certain model is necessary, an inquiry is made with respect to the first server 1, and the corresponding meta-data and decryption key are acquired and transmitted to the terminal which has made the request. Accordingly, bulk data, which has a vast amount of information, need not be transferred from the second server to the first server 1, and thus the network can be prevented from being overloaded" (Paragraph 65). The examiner further wishes to state that Figure 1 clearly shows

10/629,768 Art Unit: 2168

various terminals 3-1, 3-2, and 3-3 having network access to CAD material located on servers 1 and 2.

Regarding claim 21, Fujieda further teaches a system comprising:

A) wherein the processing unit carries out the editing process in response to an input from the input device (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that Fujieda teaches "wherein the processing unit carries out the editing process in response to an input from the input device" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the threeview drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Regarding claim 22, Fujieda further teaches a system comprising:

A) wherein the processing unit carries out the editing process in response to an input from the input device (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that Fujieda teaches "wherein the processing unit carries out the editing process in response to an input from the input device" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is

10/629,768 Art Unit: 2168

modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Regarding claim 23, Fujieda teaches a method comprising:

- A) storing a plurality of file information including respective generation information of each file information (Paragraphs 143-144, 146-150, Figures 9-10);
- B) each file information having <u>a</u> different <u>generation</u> before and after a modification by an editing process (Paragraphs 143-144, 146-150, Figures 9-10);
- C) interrelating the stored file information, based upon the respective generation information (Paragraphs 121-122, 143-144, 146-150, Figures 7, and 9-10); and
- F) displaying the interrelationships of the stored file information using the respective corresponding icons (Paragraphs 143-144, 146-150, Figures 9-10);
- G) wherein a modification of one of two related <u>units of</u> file information by the editing process affects <u>the</u> other of the two related <u>units of</u> file information, including the generation information (Paragraphs 121-122, and 146-148, Figures 7, and 9-10).

The examiner notes that Fujieda teaches "storing a plurality of file information including respective generation information of each file information" as "In this embodiment, different phases are set for a model and the version number is

10/629,768 Art Unit: 2168

assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "each file information having a different generation before and after a modification by an editing process" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows multiple versions of the same

10/629,768 Art Unit: 2168

part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). The examiner further notes that Fujieda teaches "interrelating the stored file information, based upon the respective generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a clue" (Paragraphs 143-144), and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further notes that Fujieda teaches "displaying the interrelationships of the stored file information using the respective corresponding icons" as "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is possible to acquire target data by using the phase as a

10/629,768 Art Unit: 2168

clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of Fujieda clearly shows the relationship of the various parts in a tree structure with both Phase 1 and Phase 2. The examiner further notes that Fujieda teaches "wherein a modification of one of two units of related file information by the editing process affects the other of the two related units of file information, including the generation information" as "If, in the three-view drawing, the content of the part column 60a or of the title columns 60b is modified, the CPU 40a detects such modification and simultaneously modifies the attribute data assigned to the corresponding model stored in the HDD 40d as well as the content shown in the attribute view. In cases where the attribute data assigned to the model has been modified, the part column 60a and title columns 60b of the three-view drawing and also the display content of the attribute view are simultaneously modified" (Paragraphs 121-122), and "If, in a PDM configuration view shown in FIG. 10, trial manufacture of "Rear Suspension", for example, is requested, the CPU 40a judges that a transition of phases has occurred. Accordingly, the CPU registers the bulk data of the rear suspension in the HDD 40d as phase-#1 bulk data, prohibits modification or revision of the bulk data, and sets the status of the bulk data to "Master". Subsequently, the CPU 40a copies the phase-#1 bulk data of the rear suspension to a predetermined area of the HDD 40d and sets the copy as phase #2. All subsequent revisions are made with respect to the phase-#2 data" (Paragraphs 146-147).

Fujieda does not explicitly teach:

D) corresponding an icon for each file information;

10/629,768 Art Unit: 2168

E) <u>said icon information including an image representative of a CAD image</u> corresponding to the file information.

Chartier, however, teaches "corresponding an icon for each file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2) and "said icon information including an image representative of a CAD image corresponding to the file information" as "Turning to FIG. 1, there is shown a representative display 10 of a graphical object 12 which has been created using a computerized design tool. The object 12 is comprised of a number of separate features, such as cylinders, holes, two-dimensional sketches, etc., which have been combined to produce the object. For each of these features, a corresponding miniature 16 has been defined. The miniatures 16 can be displayed in a feature tree 14 which, in this representation, is organized in a hierarchical manner to show how the various features have been combined to create the object. Other ways of displaying the relationship between various miniatures 16 can also be used. Each of the miniatures are preferably rendered in an orientation or rotation which corresponds to the rotation used to display to the object 12" (Column 3, lines 66-67-Column 4, lines 1-12, Figures 1-2).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching Chartier's would have allowed Fujieda's to provide a method for an improved system

10/629,768 Art Unit: 2168

and method for displaying the features of a complex three-dimensional object which simplifies the identification and selection of features, as noted by **Chartier** (Column 2, lines 32-35).

- 8. Claims 4, 9, 14, and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over **Fujieda** (U.S. PGPUB 2001/0007997) in view of **Chartier et al.** (U.S. Patent 6,636,211) as applied to claims 1-3, 5-8, 10-13, 15-18, and 20-23 and further in view of **Miller et al.** (U.S. Patent 6,661,437).
- 9. Regarding claim 4, **Fujieda** and **Chartier** do not explicitly teach a system comprising:
- A) wherein a kind, width and color of the lines connecting the icon data are set differently for each generation.

Miller, however, teaches "wherein a kind; width and color of the lines connecting the icon data are set differently for each generation" as "In addition, both menu entry and exit points and previously selected menu items are identified (e.g., by dashed lines or dashed features or by highlighting, coloring, shading including three dimensional shading, or hatching" (Column 5, lines 20-23).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Miller's** would have allowed **Fujieda's** and **Chartier's** to provide a method for improving the ability for users to readily see the menu navigation of hierarchical tree structures, as noted by **Miller** (Column 5, lines 24-25).

Regarding claim 9, **Fujieda** and **Chartier** do not explicitly teach a system comprising:

A) wherein a kind, width and color of the lines connecting the icon data are set differently for each generation.

Miller, however, teaches "wherein a kind, width and color of the lines connecting the icon data are set differently for each generation" as "In addition, both menu entry and exit points and previously selected menu items are identified (e.g.,

10/629,768 Art Unit: 2168

by dashed lines or dashed features or by highlighting, coloring, shading including three dimensional shading, or hatching" (Column 5, lines 20-23).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Miller's** would have allowed **Fujieda's** and **Chartier's** to provide a method for improving the ability for users to readily see the menu navigation of hierarchical tree structures, as noted by **Miller** (Column 5, lines 24-25).

Regarding claim 14, **Fujieda** and **Chartier** do not explicitly teach a computer-readable storage medium comprising:

A) wherein a kind, width and color of the lines connecting the icon data are set differently for each generation.

Miller, however, teaches "wherein a kind, width and color of the lines connecting the icon data are set differently for each generation" as "In addition, both menu entry and exit points and previously selected menu items are identified (e.g., by dashed lines or dashed features or by highlighting, coloring, shading including three dimensional shading, or hatching" (Column 5, lines 20-23).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Miller's** would have allowed **Fujieda's** and **Chartier's** to provide a method for improving the ability for users to readily see the menu navigation of hierarchical tree structures, as noted by **Miller** (Column 5, lines 24-25).

Regarding claim 19, **Fujieda** and **Chartier** do not explicitly teach a computer-readable storage medium comprising:

A) wherein a kind, width and color of the lines connecting the icon data are set differently for each generation.

Miller, however, teaches "wherein a kind, width and color of the lines connecting the icon data are set differently for each generation" as "In addition,

10/629,768 Art Unit: 2168

both menu entry and exit points and previously selected menu items are identified (e.g., by dashed lines or dashed features or by highlighting, coloring, shading including three dimensional shading, or hatching" (Column 5, lines 20-23).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the teachings of the cited references because teaching **Miller's** would have allowed **Fujieda's** and **Chartier's** to provide a method for improving the ability for users to readily see the menu navigation of hierarchical tree structures, as noted by **Miller** (Column 5, lines 24-25).

Response to Arguments

10. Applicant's arguments with respect to claims 1, 6, 11, 16, and 23 ("said icon data including an image representative of a CAD image corresponding to the file information" have been considered but are moot in view of the new ground(s) of rejection.

Applicant's arguments filed 10/22/2007 have been fully considered but they are not persuasive.

Applicants argue on pages 9-10 that "The Office Action asserts that Fujieda discloses the claimed "a storage section...of generations" at paragraphs 143-144 and 146-150 and in Figs. 9-10. Applicants respectfully disagree because Fujieda...manages models based upon the model's phase" and "Fujieda discloses storing information based upon the stage the model is at, either the planning stage, the design stage or approval stage. In contrast, the claimed embodiment recites "a storage section...configured to store file information in units of generations," which differs from the "phases," i.e. steps of Fujieda". However, the examiner wishes to refer to paragraphs 143-144, and 149-150 which state "In this embodiment, different phases are set for a model and the version number is assigned to each phase, thus making it possible to manage the model by the phase. In the illustrated example, a model A has three kinds of phase, phases #1 to #3, and the version number starting with "1" is assigned to each phase. By thus generating an independent version number for each phase for the management of the model, it is

10/629,768 Art Unit: 2168

possible to acquire target data by using the phase as a clue" (Paragraphs 143-144) and "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The examiner further wishes to state that Figure 10 of **Fujieda** clearly shows multiple versions of the same part (Rear Cushion 1 in Phase 1 and Rear Cushion 2 in Phase 2). Moreover, because Figure 10 depicts the Rear Suspension as being modified (Rear Cushion 1 to rear Cushion 2), then as a result, that part is stored in multiple generations because the Phase 1 is different from the Phase 2 version. The examiner further wishes to state that the independent claims do not define what the generations of the file information units are, and as a result, the multiple parts of **Fujieda** teach the aforementioned limitation.

Applicants argue on pages 11-12 that "However, Figure 10 of Fujieda merely shows lines connecting various components which make up a rear suspension. That is, Fujieda discusses using lines to show the relationship between a rear suspension in a single phase of the rear suspension. Accordingly, Applicants respectfully submit that Fujieda fails to disclose...because Fujieda merely discusses using lines to show a relationship among the various components which make up the rear suspension". However, the examiner wishes to refer to paragraphs 149-150 of Fujieda which state "The PDM configuration view screen shows the latest phase, but it is also possible to display a plurality of phases on screen at the same time by executing a predetermined command etc. through operation of the input device 41. Such a screen is shown in FIG. 11, by way of example. In the illustrated example, "Rear Suspension Ph1" relating to phase #1 and "Rear Suspension Ph2" relating to phase #2 are shown on the same screen. This display screen permits the part or unit of a previous phase to be looked up with ease" (Paragraphs 149-150). The

10/629,768 Art Unit: 2168

examiner further notes that Figure 10 clearly shows a tree structure with respect to phases 1 and 2, both of which contain lines depicting various relationships. The examiner further wishes to state that Figure 9 of the instant application depicts the relationship of the part. However, Figure 10 of **Fujieda** also depicts a relationship with the parts because they are (just like Figure 9 of the instant application) connected by lines.

Conclusion

- 11. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
- U.S. Patent 6,557,002 issued to **Fujieda et al.** on 29 April 2003. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 6,944,515 issued to **Nakajima et al.** on 13 September 2005. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. PGPUB 2002/0080194 issued to **Fujieda et al.** on 27 June 2002. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 6,304,790 issued to **Nakamura et al.** on 16 October 2001. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 7,016,922 issued to **Sahoo** on 21 March 2006. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 6,760,735 issued to **Rusche** on 06 July 2004. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).

10/629,768 Art Unit: 2168

- U.S. PGPUB 2003/00218634 issued to **Kuchinsky et al.** on 27 November 2003. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 4,862,376 issued to **Ferriter et al.** on 29 August 1989. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 6,895,560 issued to **Das** on 24 May 2005. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 7,047,237 issued to **Suzuki et al.** on 16 May 2006. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view varying versions of parts in a CAD system efficiently).
- U.S. Patent 6,144,962 issued to **Weinberg et al.** on 07 November 2000. The subject matter disclosed therein is pertinent to that of claims 1-23 (e.g., methods to view icons).

The examiner notes that the **Fujieda** patent (U.S. Patent 6,577,002 displays analogous subject matter that is commonly owned by the assignee of the instant application.

Contact Information

12. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mahesh Dwivedi whose telephone number is (571) 272-2731. The examiner can normally be reached on Monday to Friday 8:20 am – 4:40 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tim Vo can be reached (571) 272-3642. The fax number for the organization where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only.

10/629,768 Art Unit: 2168 Page 44

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Mahesh Dwivedi Patent Examiner Art Unit 2168

January 10, 2008

TIM VO SUPERVISORY PATENT EXAMINER TECHNOLOGY CENTER 2100