The Finite Lattice Representation Problem

William DeMeo

joint work with

Ralph Freese, Peter Jipsen, Bill Lampe, J.B. Nation

University of Hawai'i at Mānoa

ARCS Presentation April 23, 2011

Apology

I am sorry...

Apology

I am sorry...

...this talk is about math.

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of **A**

F is a family of operations acting on A

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of **A**

F is a family of operations acting on A

An algebra $\langle A, F \rangle$ is called finite if |A| is finite.

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of A

F is a family of operations acting on A

An algebra $\langle A, F \rangle$ is called finite if |A| is finite.

Example: The set of integers

$$A = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of A

F is a family of operations acting on A

An algebra $\langle A, F \rangle$ is called finite if |A| is finite.

Example: The set of integers

$$A = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

along with the operations $F = \{+, -, \times\}$.

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of A

F is a family of operations acting on A

An algebra $\langle A, F \rangle$ is called finite if |A| is finite.

• Example: The set of integers

$$A = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

along with the operations $F = \{+, -, \times\}$.

Question: Is \div an operation on this set, A?

...an utterly fundamental object in mathematics.

Definition

An algebra **A** is an ordered pair $\mathbf{A} = \langle A, F \rangle$ where

A is a nonempty set, called the *universe* of **A**

F is a family of operations acting on A

An algebra $\langle A, F \rangle$ is called finite if |A| is finite.

Example: The set of integers

$$A = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

along with the operations $F = \{+, -, \times\}$.

 Other Examples: semigroups, groups, quasigroups, rings, modules, lattices, Boolean algebras, *-algebras, etc.

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L and binary operations:

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L and binary operations:

```
x \wedge y = \text{g.l.b.}(x, y) the "meet" of x and y
x \vee y = \text{l.u.b.}(x, y) the "join" of x and y
```

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L and binary operations:

```
x \wedge y = \text{g.l.b.}(x, y) the "meet" of x and y
x \vee y = \text{l.u.b.}(x, y) the "join" of x and y
```

- Examples of lattices:
 - subsets of a set
 - closed subsets of a topology
 - subgroups of a group, normal subgroups of a group
 - ideals of a ring
 - submodules of a module
 - invariant subspaces of an operator or operator algebra

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L and binary operations:

$$x \wedge y = \text{g.l.b.}(x, y)$$
 the "meet" of x and y
 $x \vee y = \text{l.u.b.}(x, y)$ the "join" of x and y

• Examples of lattices:

• A lattice is an algebra $\mathbf{L} = \langle L, \wedge, \vee \rangle$ with universe L and binary operations:

$$x \wedge y = \text{g.l.b.}(x, y)$$
 the "meet" of x and y
 $x \vee y = \text{l.u.b.}(x, y)$ the "join" of x and y

• Examples of lattices:

The Key Features

Given an algebra **A**, there are three other important algebras which enable us to characterize and understand **A**. These are...

The Key Features

Given an algebra **A**, there are three other important algebras which enable us to characterize and understand **A**. These are...

• SubA, the lattice of subalgebras of A.

The Key Features

Given an algebra **A**, there are three other important algebras which enable us to characterize and understand **A**. These are...

- SubA, the lattice of subalgebras of A.
- EndA and AutA, the endomorphisms and automorphisms of A.

The Key Features

Given an algebra **A**, there are three other important algebras which enable us to characterize and understand **A**. These are...

- SubA, the lattice of subalgebras of A.
- EndA and AutA, the endomorphisms and automorphisms of A.
- ConA, the lattice of congruence relations of A.

The Key Features

Given an algebra **A**, there are three other important algebras which enable us to characterize and understand **A**. These are...

- SubA, the lattice of subalgebras of A.
- EndA and AutA, the endomorphisms and automorphisms of A.
- ConA, the lattice of congruence relations of A.

...okay, there are four.

$$\theta_1 = (a_0, a_1, \dots | a_2, a_8, \dots | a_3 \dots)$$

$$\theta_1 = (a_0, a_1, \dots | a_2, a_8, \dots | a_3 \dots)$$

$$\theta_1 = (a_0, a_1, \dots | a_2, a_8, \dots | a_3 \dots)$$

$$\theta_2 = (a_0, a_1, a_2, \dots | a_3, \dots | \dots), \quad \theta_1 = (a_0, a_1, \dots | a_2, a_8, \dots | a_3 \dots)$$

Congruence Decompositions

We know an algebra by the congruences it keeps.

Α

The shape/structure of **ConA** tells us how the algebra can be decomposed.

Congruence Decompositions

We know an algebra by the congruences it keeps.

The Problem

What are the possible shapes of congruence lattices?

The Problem

What are the possible shapes of congruence lattices?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

The Problem

What are the possible shapes of congruence lattices?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

Thus, there is essentially no restriction on the shape of a congruence lattice of an *infinite* algebra.

The Problem

What are the possible shapes of congruence lattices?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

Thus, there is essentially no restriction on the shape of a congruence lattice of an *infinite* algebra.

What if the algebra is finite?

<u>Problem</u>: Given a finite lattice L, does there exist a *finite* algebra A such that $ConA \cong L$?

The Problem

What are the possible shapes of congruence lattices?

Theorem (Grätzer-Schmidt, 1963)

Every algebraic lattice is isomorphic to the congruence lattice of an algebra.

Thus, there is essentially no restriction on the shape of a congruence lattice of an *infinite* algebra.

What if the algebra is finite?

<u>Problem</u>: Given a finite lattice **L**, does there exist a *finite*

algebra **A** such that **ConA** \cong **L**?

status: open

age: 50+ years

Known Results: lattices of size \leq 6 are congruence lattices.

Known Results: lattices of size \leq 6 are congruence lattices.

Theorem: Every lattice with at most 6 elements is a congruence lattice of a finite algebra.

LATTICES OF SIZE ≤ 7 NOT YET KNOWN TO BE CONGRUENCE LATTICES OF FINITE ALGEBRAS

Figure courtesy of Peter Jipsen.

18*

LATTICES OF SIZE ≤ 7 NOT YET KNOWN TO BE CONGRUENCE LATTICES OF FINITE ALGEBRAS

21*

18*

LATTICES OF SIZE ≤ 7 NOT YET KNOWN TO BE CONGRUENCE LATTICES OF FINITE ALGEBRAS

LATTICES OF SIZE ≤ 7 NOT YET KNOWN TO BE CONGRUENCE LATTICES OF FINITE ALGEBRAS

LATTICES OF SIZE ≤ 7 NOT YET KNOWN TO BE CONGRUENCE LATTICES OF FINITE ALGEBRAS 13 11*

18*

21*

