Name: Gaurav Patil

Reducing Screen complexity of current GUI

Title:

GUI for screen complexity

Problem Statement:

To Redesign Existing Graphical User Interface with screen complexity

Learning Objective:

- 1) To study principles of good screen design
- 2) To apply the screen complexity rules to a GUI to improvise it.
- 3) To analyse the human considerations in Interface and screen design.

Learning Outcomes:

- 1) Design better screens in interfaces based on visually pleasing structure
- 2) Learn to organize the elements on an interface screen by properly calculating the screen complexity.
- 3) Learning the factors that affect the screen design quality with respect to user expectations

Software and Hardware Requirement:

Any GUI screen from a selected application

❖ Theory:

Any GUI screen from a selected application.

General structure of the elements on the screen to measure complexity factors.

To calculate the complexity first determine the following:

- (1) the number of elements on the screen
- (2) the number of horizontal (column) alignment points

- (3) the number of vertical (row) alignment points
- (4) Total:
- (5) Complexity:

An example is given below:

Original Design of the GUI

In the above screen the elements are not placed in a proper symmetry, which creates user confusion and loss of interest in the interface.

- \checkmark The first requirement is to identify the text boxes and their places on the screen and then place them in a proper order , also group them as per requirement.
- ✓ The re-designed screen for the above example is shown in the figure below.
- \checkmark To validate the improved screen, complexity of the screen is calculated which shows the optimization of screen space as well as the user friendly interface.

Re-designed Screen design

Calculation of complexity:

GROUNI	D. FAULT T-G
	NAL DC RESISTANCE
•	3500.00 K OHMS T-R
	14.21 K OHMS T-B
	3500.00 K OHMS R-G
3 TERMI	NAL DC VOLTAGE
_	0.00 VOLTS T-G
-	0.00 VOLTS R-G
VALID A	C SIGNATURE
	NAL AC RESISTANCE
- TETIMI	8.82 K OHMS T-R
	14.17 K OHMS T-R
_	628.52 K OHMS R-G
LONCITI	UDINAL BALANCE POOR
LUNGIII	39 DB
COLLE	00 00
_	NOT COUNT RINGERS DUE TO
LOW	RESISTANCE

Calculate Screen Complexity:

Original Design

- 1. 22 elements
- 2. 7 horizontal (column) alignment points
- 3. 20 vertical (row) alignment points
- 4. 49 = Total

V_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Vertical Element Cut / Total)

H_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Horizontal point Element Cut / Total)

Total Complexity = V_Complexity + H_Complexity

Redesigned Screen

- 1. 18 elements
- 2. 6 horizontal (column) alignment points
- 3. 8 vertical (row) alignment points
- 4.32 = Total

V_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Vertical Element Cut / Total)

H_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
; where p_n = (Horizontal point Element Cut / Total)

Total Complexity = V_Complexity + H_Complexity

❖ Output

Original Design

- 1. 32 elements
- 2. 12 horizontal (column) alignment points
- 3. 22 vertical (row) alignment points
- 4. 66 = Total

V_Complexity =
$$-N \sum_{n=1}^{m} p_n \log_2 p_n$$
; where p_n = (Vertical Element Cut / Total)

H_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Horizontal point Element Cut / Total)

Total Complexity = V_Complexity + H_Complexity

After calculating,

V_Complexity = 16.90626667 H_Complexity = 14.30942033

So the total complexity is

Total Complexity = 31.215687

Redesigned Screen

- 1. 32 elements
- 2. 11 horizontal (column) alignment points
- 3. 12 vertical (row) alignment points
- 4. 55 = Total

V_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Vertical Element Cut / Total)

H_Complexity =
$$-N \sum_{n=1}^m p_n \log_2 p_n$$
 ; where p_n = (Horizontal point Element Cut / Total)

Total Complexity = V_Complexity + H_Complexity

After calculating,

V_Complexity = 15.33484599 H_Complexity = 14.86033981

So the total complexity is

Total Complexity = 30.1951858

