Universidad de San Andrés Práctica D: Polinomio de Taylor

- 1. Hallar el polinomio de Taylor de las siguientes funciones hasta el orden indicado en el punto dado.
 - (a) $f(x) = (1+x)^3$, orden 4, x = 0
- (g) $f(x) = \cos(3x)$, orden 4, x = 0
- (b) $f(x) = \ln(x)$, orden 5, x = 1
- (h) $f(x) = \sqrt{2x}$, orden 3, x = 2
- (c) $f(x) = \ln(1+x)$, orden 5, x = 0
- (i) $f(x) = \sqrt[3]{1-x}$, orden 3, x = 0
- (d) $f(x) = \frac{1}{1+x}$, orden 4, x = 0
- (i) $f(x) = e^{3x-3}$, orden 3, x = 1
- (e) $f(x) = \frac{1}{1-x}$, orden 3, x = 0
- (k) $f(x) = \sqrt{2x-1} + \frac{2}{x-4}$, orden 2, x = 5
- (f) $f(x) = \sin(2x)$, orden 4 y 5, x = 0
- 2. Escribir los siguientes polinomios en potencias de $(x-x_0)$ para los x_0 indicados.
 - (a) $p(x) = -3x^4 + x^2 + x$; para $x_0 = 1$ y $x_0 = -2$.
 - (b) $p(x) = (x-1)^2 3(x-1) + 2$; para $x_0 = -1$ y $x_0 = 0$.
- 3. (a) Reconstruir el polinomio p(x) de grado 3 del que se sabe que p(0)=2, p'(0)=3, p''(0)=6 y p'''(0)=-4.
 - (b) Sea q(x) un polinomio de grado 2 tal que q(2) = -1, q'(2) = 3 y q''(2) = 4. Expresar dicho polinomio en potencias de (x 2).
 - (c) Expresar el polinomio q(x) del ítem anterior como suma de potencias de x.
- 4. En cada caso, aproximar mediante el polinomio de Taylor el valor pedido usando la f más conveniente del Ejercicio 1. Elegir un \tilde{x} apropiado para la evaluación. (Por ejemplo, para el ítem (i) considerar $f(x) = (1+x)^3$ y su polinomio de Taylor desarrollado en x=0, y luego evaluarlo en $\tilde{x}=0.02$.)
 - (i) $(1.02)^3$

(iii) $\sin(0.5)$

(v) $\sqrt[3]{0.5}$

(ii) ln(1.1)

(iv) $\sqrt{4.2}$

- (vi) e^{-1}
- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ una función cuatro veces derivable tal que su polinomio de Taylor de grado 3 centrado en x=2 es $p(x)=-\frac{1}{2}x^3+3x+3$.
 - (a) Calcular f(2), f'(2), f''(2), f'''(2).
 - (b) Sea $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) = x^2 f(x^4 + 1)$. Calcular h(-1), h'(-1) y h''(-1).
 - (c) Dar el polinomio de Taylor de orden 2 de h en x = -1.
- 6. Sea f una función tres veces derivable tal que su polinomio de Taylor de orden 3 alrededor de x=1 es

$$p(x) = -1 + (x - 1) - 2(x - 1)^{2} + (x - 1)^{3}.$$

Hallar el polinomio de Taylor de orden 3 en $x_0 = 1$ de $g(x) = (3f(x) + 1)x^2$.

- 7. Sea $f: \mathbb{R} \to \mathbb{R}$ una función cuatro veces derivable tal que su polinomio de Taylor de grado 3 centrado en x = 0 es $p(x) = x^3 5x^2 + 7$.
 - (a) Calcular f(0), f'(0), f''(0), f'''(0).
 - (b) ¿Se puede conocer el valor de $f^{iv}(0)$? Si se sabe que p(x) es el polinomio de Taylor de orden 4 de f desarrollado en x = 0, ¿cuánto vale $f^{iv}(0)$?
 - (c) Sea $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) = f(x^2 3x + 2)$. Asumiendo que p(x) es el polinomio de Taylor de orden 4 de f en x = 0, dar el polinomio de Taylor de orden 4 de h(x) desarrollado en x = 2.
- 8. Sea $p(x) = x^3 3x^2 + x$, el polinomio de Taylor de orden 3 de una función f alrededor de $x_0 = 2$. Hallar el polinomio de Taylor de orden 3 de la función $g(x) = e^{f(x)+2}$ alrededor de $x_0 = 2$.
- 9. Sean $p(x) = 3(x+1)^2 2(x+1) + 4$ y $q(x) = 2(x+1)^2 1$ los polinomios de Taylor de orden 2 de f y g respectivamente, desarrollados en x = -1. Hallar el polinomio de Taylor de orden 2, desarrollado en x = -1 de
 - (a) f(x) + 3g(x)

(c) $\frac{f(x)}{g(x)}$

(b) f(x)g(x)

- (d) f(2x+1) g(4x+3)
- 10. Sean f y g dos funciones 3 veces derivables tales que el polinomio de Taylor de orden 2 de f alrededor de x=2 es

$$p(x) = -x^2 + 6x - 7$$

y el polinomio de Taylor de orden 2 de galrededor de x=1es

$$q(x) = \frac{1}{4}x^2 + \frac{3}{2}x - \frac{5}{4}.$$

Hallar el polinomio de Taylor de orden 2 de $h(x) = (g \circ f)(x)$ alrededor de $x_0 = 2$.

- 11. Sea $p(x) = x^2 3x + 3$, el polinomio de Taylor de orden 2 de una función f alrededor de $x_0 = 2$. Sea g una función dos veces derivable tal que $(g \circ f)(x) = -x^2$. Hallar el polinomio de Taylor de orden 2 de g alrededor de x = 1.
- 12. Hallar todos los valores de a y $b \in \mathbb{R}$ tal que el polinomio de Taylor de orden 2 de $f(x) = (1+bx)e^{ax}$ en x = 0 sea $p(x) = 1 + 3x + \frac{9}{2}x^2$.
- 13. Determine los valores de a y b para que el polinomio de Taylor de $f(x) = \ln(1+x) + ax^2 + bx$ desarrollado en x = 0 empiece con la potencia de x de exponente lo más grande posible.
- 14. Determinar todos los valores de $a \neq 0$ para que el polinomio de Taylor centrado en x = 1 de la función $f(x) = ae^{a(x-1)^2} + a(x-1)^2 a$ comience con la potencia más alta posible.
- 15. Hallar a y b para que los polinomios de Taylor de orden 2 centrados en x=0 de las funciones $f(x)=\ln(ax^2+1)+\frac{x}{2}$ y $g(x)=\frac{x^2-2}{x+b}+\frac{2}{b}$ sean iguales.