Sudoku

章 宇 ZHANG Yu y.zhang@swufe.edu.cn

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- Developed by Howard Garns and first published in 1979
- Popularized in Japan since 1980's
- Rules: to fill a 9x9 grid with digits so that
 - Each column contains all the digits from 1 to 9
 - Each row contains all the digits from 1 to 9
 - Each 3x3 block contains all the digits from 1 to 9
- Many algorithms available

Let's play...

6
2
2
8
6

Sudoku – optimization model

- Decision variables: $x_{ijk} \in \{0,1\}$
 - whether cell (i, j) contains digit k (binary)

- Objective ???
 - Nothing to maximize or minimize
 - Just looking for a feasible solution
 - Feasibility Problems

Sudoku – optimization model

Constraints:

- Only one k in each column
- Only one k in each row
- Only one k in each 3x3 block
- All cells must be filled
- The set of initially given numbers cannot be changed
- Binary

Sudoku – optimization model

Model

 $\min \ \mathbf{0}' \boldsymbol{x}$

s.t.
$$\sum_{i=1}^{9} x_{ijk} = 1$$
,

$$\forall j, k \in \{1, \dots, 9\}$$

: one k in each column

$$\sum_{j=1}^{3} x_{ijk} = 1,$$

$$\forall i, k \in \{1, \dots, 9\}$$

: one k in each row

$$\sum_{\substack{j=3(q-1)+1\\9}}^{3q} \sum_{i=3(p-1)+1}^{3p} x_{ijk} = 1$$

$$x_{ijk} = 1, \quad \forall k \in \{1, \dots, 9\}, p, q \in \{1, 2, 3\}$$

: one k in each submatrix

$$\sum x_{ijk} = 1,$$

 $x_{iik} \in \{0, 1\}$

$$\forall i, j \in \{1, \dots, 9\}$$

: position must be filled

: elements set to on

$$x_{ijk} = 1 \quad \forall (i, j, k) \in G$$

$$\forall i, j, k \in \{1, \dots, 9\}$$

$$\forall i,j$$

