Regression Analysis

Analysis of Variance

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Basics Concepts

About This Lesson Georgia Tech ⊻

ANOVA: Analysis of Variance

Population 1: (μ_1, σ_1^2) \longrightarrow Sample 1: $(Y_{1,1},...,Y_{1,n_1})$ \longrightarrow (\overline{Y}_1, s_1^2)

Population 2: (μ_2, σ_2^2) \longrightarrow Sample 2: $(Y_{2,1}, ..., Y_{2,n_2})$ \longrightarrow (\bar{Y}_2, s_2^2)

.....

Population k: (μ_k, σ_k^2) \longrightarrow Sample k: $(Y_{k,1}, ..., Y_{k,n_k})$ \longrightarrow (\bar{Y}_k, s_k^2)

ANOVA: Comparing the means of multiple samples

ANOVA Example 1: Global Suicide

Data Source:

Suicide Rate: Kaggle

https://www.kaggle.com/russellyates88/ suicide-rates-overview-1985-to-2016

ANOVA Example 1: Suicide Rate & Region

- 1. Is there a difference in the suicide rate by region?
- 2. Which region has higher suicide rate?

ANOVA Example 2: Keyboard Layout

Three different keyboard layouts are being compared in terms of typing speed.

Layout 1	Layout 2	Layout 3
23.8	30.2	27.0
25.6	29.9	25.4
24.0	29.1	25.6
25.1	28.8	24.2
25.5	29.1	24.8
26.1	28.6	24.0
23.8	28.3	25.5
25.7	28.7	23.9
24.3	27.9	22.6
26.0	30.5	26.0
24.6	*	23.4
27.0	*	*

Operation Time by Keyboard Layout

- 1. Is there a difference in the time taken to perform a task?
- 2. Which layout is more effective?

ANOVA: Objectives

Primary objectives in ANOVA:

- 1. Analysis of the variability in the data the ANOVA table
- 2. Testing for equal means

$$H_o: \mu_1 = \mu_2 = ... = \mu_k$$

3. Estimation of simultaneous confidence intervals for the mean differences

$$\mu_i - \mu_j$$
 for i and $j = 1, ..., k$

Summary Georgia Tech ∭

ANOVA: Model & Assumptions

Data: Y_{ij} for $j=1,\cdots,n_i; i=1,\cdots,k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij}$ where ε_{ij} = error term

Assumptions:

- Constant Variance Assumption: $Var(\varepsilon_{ij}) = \sigma^2$
- Independence Assumption: $\{\varepsilon_{1j}, \dots, \varepsilon_{kj}\}$ are independent random variables
- Normality Assumption: ε_{ij} ~ Normal $(0, \sigma^2)$

Georgia Tech

3

ANOVA: Variance Estimation

Comparing means from multiple populations assuming the variances are the same and equal to σ^2 :

Pooled Variance Estimator:

$$S_{\text{pool}}^{2} = \frac{\sum_{i=1}^{k} (n_{i}-1)S_{i}^{2}}{\sum_{i=1}^{k} (n_{i}-1)} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \left(Y_{i_{j}} - \overline{Y}_{i}\right)^{2}}{N-k} \quad \text{Where N = total number of samples = } (n_{1} + ... + n_{k})$$

The degrees of freedom is N-k because we replace $\mu_i \leftarrow \overline{Y}_i$ for i = 1,...,k, thus losing k degrees of freedom

Georgia Tech

ANOVA: Variance Estimation (cont'd)

$$\widehat{\sigma}^2 = \frac{\sum_{i=1}^k (n_i - 1) S_i^2}{\sum_{i=1}^k (n_i - 1)} = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} \left(Y_{i_j} - \overline{Y}_i \right)^2}{N - k} = \underline{MSE}$$

$$\sum_{i=1}^k \sum_{j=1}^{n_i} \left(Y_{i_j} - \bar{Y}_i \right)^2 = \underline{\mathbf{S}} \text{um of } \underline{\mathbf{S}} \text{quares of } \underline{\mathbf{E}} \text{rror} = \underline{\mathbf{SSE}}$$

We will use interchangeably Sum of Squared Errors and Sum of Squared Residuals.

Georgia Tech

5

Mean Squared Error (MSE)

 $S_1^2,...,S_k^2$ The sum of independent chi-square random variables is also chi-square

$$\frac{\text{SSE}}{\sigma^2} = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \dots + \frac{(n_k - 1)S_k^2}{\sigma^2} \sim \chi_{\nu}^2 \text{ where } \nu = N - k$$

The sampling distribution of the pooled variance is a chi-square distribution with N-k degrees of freedom.

Georgia Tech

Estimating Parameters in ANOVA

$$\hat{\mu}_i = \overline{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$

What is the sampling distribution?

If
$$Y_{i1},...,Y_{in} \sim N(\mu_i, \sigma^2)$$

If
$$Y_{i1},...,Y_{in} \sim N(\mu_i, \sigma^2)$$
 \implies $\hat{\mu}_i = \bar{Y}_i = \frac{Y_{i1} + ... + Y_{in}}{n_i} \sim N(\mu_i, \sigma^2/n_i)$

But σ^2 is unknown.

So replace σ^2 with the pooled variance estimation:

$$\sigma^2 \leftarrow MSE$$

$$\frac{\hat{\mu}_i - \mu_i}{\sqrt{\mathsf{MSE}/n_i}} \sim \mathsf{t}_{\mathsf{N}-k}$$

Why N – k?
$$MSE = \hat{\sigma}^2 \sim \chi_{N-k}^2$$

7

Confidence Intervals for the Means

We can use the estimated sample means

$$\hat{\mu}_i = \overline{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$
 for $i = 1, \dots, k$

and the estimated variance

$$\hat{\sigma}^2 = MSE$$

to calculate $(1 - \alpha)$ confidence intervals for the treatment means:

$$\left(\hat{\mu}_i - \mathsf{t}_{\alpha/2, \, \mathrm{N}-k} \sqrt{\mathrm{MSE}/n_i}, \hat{\mu}_i + \mathsf{t}_{\alpha/2, \, \mathrm{N}-k} \sqrt{\mathrm{MSE}/n_i}\right)$$

_

Example 1: Global Suicide by Region

What are the estimates for the mean suicide rates for the different regions?

Georgia Tech

3

Parameter Estimation

model = aov(suicidesper100k ~ region, data=reg_data) model.tables(model, type = "means")

Overall Mean: 10.276

 $\begin{array}{ll} \hat{\mu}_{easia} = 10.29 & n_{easia} = 10 \\ \hat{\mu}_{wasia} = 0.58 & n_{wasia} = 1 \\ \hat{\mu}_{eeurope} = 17.41 & n_{eeurope} = 15 \\ \hat{\mu}_{weurope} = 12.75 & n_{weurope} = 3 \\ \hat{\mu}_{west} = 11.68 & n_{west} = 18 \\ \hat{\mu}_{lamerica} = 7.86 & n_{lamerica} = 26 \\ \hat{\mu}_{mideast} = 2.46 & n_{mideast} = 7 \end{array}$

Georgia Tech

Example 2: Keyboard Layout

Three different keyboard layouts are being compared in terms of typing speed.

What are the estimates for the mean typing times for the different groups of keyboards?

Layout 1	Layout 2	Layout 3
23.8	30.2	27.0
25.6	29.9	25.4
24.0	29.1	25.6
25.1	28.8	24.2
25.5	29.1	24.8
26.1	28.6	24.0
23.8	28.3	25.5
25.7	28.7	23.9
24.3	27.9	22.6
26.0	30.5	26.0
24.6	*	23.4
27.0	*	*

Georgia Tech

5

Parameter Estimation

model = aov(speed ~ layout) model.tables(model, type = "means")

Tables of means Grand mean 26.21212 Layout

1

25.12 29.11 24.76 rep 12.00 10.00 11.00

3

2

 $\hat{\mu}_{\text{layout1}} = 25.12$ $\hat{\mu}_{\text{layout2}} = 29.11$

 $\hat{\mu}_{\text{layout3}} = 24.76$

Overall Mean: 26.21212

Georgia Tech

Regression Analysis

Analysis of Variance

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Hypothesis Test for Equal Means

About This Lesson Georgia Tech

Hypothesis Test for Equal Means

 H_0 : $\mu_1 = \mu_2 = \dots = \mu_k$ H_A : some means are different

Null Hypothesis

• Under the null hypothesis, combine k samples to estimate the overall mean with the overall sample mean (grand mean) \overline{Y} :

$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_i} Y_{ij}$$

• Base the null hypothesis variance estimate S_0^2 on this overall sample mean:

$$S_0^2 = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2}{N-1} = \frac{SST}{N-1}$$

- SST = <u>S</u>um of <u>S</u>quares <u>T</u>otal = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} \overline{Y})^2$
- Because we only estimate one mean, we lose only 1 df (unlike pooled variance)

$$\frac{(N-1)S_0^2}{\sigma^2} = \frac{SST}{\sigma^2} \sim \chi_{N-1}^2$$

SST Decomposition

We can *partition* SST into two separate parts:

$$SST = SSE + SST_R$$

where $\mathbf{SST}_{R} = \mathbf{S}$ um of \mathbf{S} quares of \mathbf{Tr} eatments $= \sum_{i=1}^{k} n_i (\overline{Y}_i - \overline{Y})^2$, and \overline{Y}_i is the ith sample mean.

Recall:

$$\mathbf{SST} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2$$

$$\mathbf{SSE} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2$$

- 1. MSE = SSE/(N-k) = within-group variability
- 2. $MSST_R = SST_R/(k-1) = between-group variability$
- 3. ANOVA: comparing between to within variability
- 4. F = between-group variability / within-group variability

Testing Equal Variances with F-Test

$$\frac{\text{SST}_{R}/(k-1)}{\text{SSE}/(N-k)} \equiv \frac{\text{MST}_{R}}{\text{MSE}} = F_{0} \sim F_{k-1,N-k}$$

if H_o is true

Reject H_0 if $F_0 > F_a(k-1,N-k)$, which is the upper α^{th} quantile of the F distribution.

P-value for the F-test = P(F > F_0), where F ~ $F_{(k-1,N-k)}$

Testing Equal Variances with F-Test

$$\frac{\text{SST}_{R}/(k-1)}{\text{SSE}/(N-k)} \equiv \frac{\text{MST}_{R}}{\text{MSE}} = F_{0} \sim F_{k-1,N-k}$$

if H_o is true

Reject H_0 if $F_0 > F_a(k-1,N-k)$, which is the upper α^{th} quantile of the F distribution.

P-value for the F-test = P(F >
$$F_0$$
), where F ~ $F_{(k-1,N-k)}$

Example 1: Global Suicide by Region

Are the mean suicide rates equal across the different country regions?

Testing for Equal Means

```
summary(aov(suicidesper100k ~ region, data=suicide_data))

Df Sum Sq Mean Sq F value Pr(>F)
region 9 1548 172.06 4.767 4.71e-05 ***
Residuals 77 2779 36.09
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
SST_R = 1548

k-1 = 9

SSE = 2779

N-k = 77

F-value = 4.767

P-value = 4.71e-05
```

P-value ≈ 0:

Reject the null hypothesis of equal mean heights

Example 2: Keyboard Layout

Three different keyboard layouts are being compared in terms of typing speed.

Are the mean typing times for the three keyboard layouts statistically different?

Layout 1	Layout 2	Layout 3
23.8	30.2	27.0
25.6	29.9	25.4
24.0	29.1	25.6
25.1	28.8	24.2
25.5	29.1	24.8
26.1	28.6	24.0
23.8	28.3	25.5
25.7	28.7	23.9
24.3	27.9	22.6
26.0	30.5	26.0
24.6	*	23.4
27.0	*	*

Testing for Equal Means

```
summary(aov(speed ~ layout))

Df Sum Sq Mean Sq F value Pr(>F)
layout 2 121.24 60.62 52.84 1.48e-10 ***
Residuals 30 34.42 1.15
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
SSTR = 121.24

k-1 = 2

SSE = 34.42

N-k = 30

F-value = 52.84

P-value = 1.48e-10
```

P-value ≈ 0:

Reject the null hypothesis of equal mean typing times

Summary

Pairwise Comparison of Means

One primary goal of ANOVA might be to determine which treatment means are bigger or smaller. One way to do this is to compare all k(k-1)/2 pairs of treatments. For a $(1 - \alpha)$ confidence interval for the mean difference $\mu_i - \mu_i$:

Georgia Tech

3

Difference Between t_{α} and q_{α}

Correct for simultaneous inference:

- q > t (at any fixed α and df)
- Intervals are wider to compensate for the fact that we are making simultaneous comparisons (multiplicity correction)

Why?

95% Cls for two populations \Rightarrow (.95)(.95) \approx .90 \Rightarrow The simultaneous or joint confidence level for the two parameters is roughly **90%**.

95% Cls for three populations \Rightarrow (.95)(.95)(.95) \approx .86 \Rightarrow The simultaneous or joint confidence level for the three parameters is roughly **86%**.

Georgia Tech

Example1: Global Suicide by Region

Which country regions have different suicide rates?

Georgia Tech

5

Pairwise Comparison

TukeyHSD(aov(suicidesper100k~region, data=suicide_data))

Tukey multiple comparisons of means 95% family-wise confidence level

\$region

	diff	lwr	upr	p adj
EASTERN EUROPE-ASIA	7.1256986	-0.8654681	15.1168654	0.1218931
GLOBAL WEST-ASIA	1.3948384	-6.3253621	9.1150390	0.9998655
LATIN AMER. & CARIB-ASIA	-2.4242761	-9.7079484	4.8593961	0.9848625
MIDDLE EAST-ASIA	-7.8183246	-17.4646356	1.8279865	0.2171605
NORTHERN AMERICA-ASIA	1.8826591	-18.6470201	22.4123382	0.9999996
OCEANIA-ASIA	-0.6423728	-13.5277421	12.2429965	1.0000000
SUB-SAHARAN AFRICA-ASIA	-4.2457218	-17.1310911	8.6396474	0.9858800
WESTERN ASIA-ASIA	-9.6996143	-30.2292935	10.8300649	0.8717761
WESTERN EUROPE-ASIA	2.4643324	-10.4210369	15.3497016	0.9997844
GLOBAL WEST-EASTERN EUROPE	-5.7308602	-12.5740866	1.1123662	0.1809537
LATIN AMER. & CARIB-EASTERN EUROPE	-9.5499748	-15.8966379	-3.2033117	0.0002123
MIDDLE EAST-EASTERN EUROPE	-14.9440232	-23.9039098	-5.9841367	0.000026

• • • • • • • • •

Georgia Tech

Pairwise Comparison

TukeyHSD(aov(suicidesper100k~region, data=suicide_data))
Tukey multiple comparisons of means
95% family-wise confidence level
\$region

	ani	IWI	upi	p auj
EASTERN EUROPE-ASIA	7.1256986	-0.8654681	15.1168654	0.1218931
GLOBAL WEST-ASIA	1.3948384	-6.3253621	9.1150390	0.9998655
LATIN AMER. & CARIB-ASIA	-2.4242761	-9.7079484	4.8593961	0.9848625
MIDDLE EAST-ASIA	-7.8183246	-17.4646356	1.8279865	0.2171605
NORTHERN AMERICA-ASIA	1.8826591	-18.6470201	22.4123382	0.9999996
OCEANIA-ASIA	-0.6423728	-13.5277421	12.2429965	1.0000000
SUB-SAHARAN AFRICA-ASIA	-4.2457218	-17.1310911	8.6396474	0.9858800
WESTERN ASIA-ASIA	-9.6996143	-30.2292935	10.8300649	0.8717761
WESTERN EUROPE-ASIA	2.4643324	-10.4210369	15.3497016	0.9997844
GLOBAL WEST-EASTERN EUROPE	-5.7308602	-12.5740866	1.1123662	0.1809537
LATIN AMER. & CARIB-EASTERN EUROPE	-9.5499748	-15.8966379	-3.2033117	0.0002123
MIDDLE EAST-EASTERN EUROPE	-14.9440232	-23.9039098	-5.9841367	0.000026

- 10 different categories, total of 45 different pairwise comparisons
- Two groups with only one observation and three groups with three observations—not sufficient data for comparison
- Only three pairs have an adjusted p-value smaller than 0.05: Latin America vs Eastern Europe, Middle East vs Eastern Europe and Middle East vs Global West

Georgia Tech

7

ANOVA Example 2: Keyboard Layout

Three different keyboard layouts are being compared in terms of typing speed.

Which mean typing times for the three keyboard layouts are different?

Layout 1	Layout 2	Layout 3
23.8	30.2	27.0
25.6	29.9	25.4
24.0	29.1	25.6
25.1	28.8	24.2
25.5	29.1	24.8
26.1	28.6	24.0
23.8	28.3	25.5
25.7	28.7	23.9
24.3	27.9	22.6
26.0	30.5	26.0
24.6	*	23.4
27.0	*	*

Georgia Tech

Pairwise Comparison

TukeyHSD(aov(speed ~ layout))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = speed ~ layout)

\$layout

diff lwr upr p adj 2-1 3.9850000 2.854395 5.1156053 0.0000000 3-1 -0.3613636 -1.463581 0.7408538 0.7008915 3-2 -4.3463636 -5.500092 -3.1926352 0.0000000

- Keyboard layout 2 has a statistically significantly higher typing time than keyboard layouts 1 and 3, on average.
- It is plausible that keyboard layouts 1 and 3 have similar typing time, on average.

Georgia Tech

9

_

ANOVA: Model & Assumptions

Data: Y_{ij} for $j=1,\cdots,n_i; i=1,\cdots,k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij}$ where ε_{ij} = error term

Assumptions:

- Constant Variance Assumption: $Var(\varepsilon_{ij}) = \sigma^2$
- Independence Assumption: $\{\varepsilon_{1j}, \cdots, \varepsilon_{kj}\}$ are independent random variables
- **Normality Assumption:** ε_{ij} ~ Normal(0, σ^2)

Georgia Tech

3

Residual Analysis

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

• In the model, ε_{ij} is the *error term*. We want $\varepsilon_{ij} \sim N(0, \sigma^2)$. To check to see if this is true, we examine the residual errors:

$$\widehat{\varepsilon}_{ij} = Y_{ij} - \widehat{\mu}_i$$

 If the model fit is a good fit, then the residuals should be scattered around zero (randomly).

Residual Analysis

Residual plots:

- plot $\hat{\epsilon}_{ij}$ for each treatment group
- plot the quantile-quantile normal plot of $\hat{\epsilon}_{ij}$
- plot the histogram of ε̂_{ii}

If the scatter of $\hat{\epsilon}_{ij}$ is <u>not random</u>, it could be that:

- · sample responses are not independent
- · variances of responses are not equal

If the quantile-quantile normal plot and the histogram show departure from normality, you may consider a transformation.

Georgia Tech

5

_

Residual Analysis

resid.model.1=residuals(model.1)

```
## Discard groups with 1 observation

region = suicide_data$region

groups.1 = c(which(region=="NORTHERN AMERICA"), which(region=="WESTERN ASIA"))

suicide_data = suicide_data[-groups.1,]

model.1 = aov(suicidesper100k ~ region, data=suicide_data)

## Diagnostic plots

plot(model.1)
```

Georgia Tech

9

Regression Analysis

Analysis of Variance

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

ANOVA vs Simple Linear Regression

About This Lesson Georgia Tech

ANOVA & Linear Regression

Simple Linear Regression:

Data: $\{(x_i, y_i), ..., (x_n, y_n)\}$

Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$; $i = 1, \dots, n$

ANOVA: A linear regression model where the predicting factor is a categorical variable.

ANOVA:

Data: Y_{ij} for $j=1,\cdots,n$; $i=1,\cdots,k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where $\sum_{i=1}^k \tau_i = 0$ and

 $\mu_i = i^{\text{th}}$ group mean decomposed into $\mu_i = \mu + au_i$

ANOVA & Linear Regression (cont'd)

ANOVA:

Data: Y_{ij} for $j = 1, \dots, n$; $i = 1, \dots, k$

Model: $Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where $\sum_{i=1}^k \tau_i = 0$ and $\mu_i = i^{\text{th}}$ group mean decomposed into $\mu_i = \mu + \tau_i$

Define Y to be the response variable (as a single column vector):

$$Y = (Y_{11}, \dots, Y_{1n_1}, Y_{21}, \dots, Y_{2n_2}, \dots, Y_{k1}, \dots, Y_{kn_k})$$

Define L to be the label/categorical variable (as a single column vector):

$$L = (L_{11}, \dots, L_{1n_1}, L_{21}, \dots, L_{2n_2}, \dots, L_{k1}, \dots, L_{kn_k})$$

Linear Regression: Y ~ L

ANOVA & Linear Regression (cont'd)

Categorical Variables in Linear Regression:

- Transform categories into column vector dummy variables $X_1 = (1,..,1,0,...,0); \ X_2 = (0,...,0,1,...,1,0,...,0); \ ...; \ X_k = (0,...,0,1,...,1)$ Each X_i has length N where $N = n_1 + n_2 + ... + n_k$. Each 1 indicates a Y value with the corresponding L label.a
- Let r index the rows of the column vectors X_i s and Y. If intercept in model, define k-1 dummy variables because of linear dependence: $(1,...,1) = X_1 + X_2 + ... + X_k$ **Model**: $Y_r = \beta_0 + \beta_1 X_{1r} + \beta_2 X_{2r} + \cdots + \beta_{k-1} X_{k-1r} + \varepsilon_r$; $r = 1, \cdots, N$
- If no intercept in the model, define all k dummy variables

Model:
$$Y_r = \beta_1 X_{1r} + \beta_2 X_{2r} + \dots + \beta_k X_{kr} + \varepsilon_r$$
; $r = 1, \dots, N$

ANOVA: A linear regression model with multiple predictors

Multiple Linear Regression

Summary

Cancer Survival

Reference:

Cameron, E. and Pauling, L. (1978)
Supplemental ascorbate in the supportive treatment of cancer: re-evaluation of prolongation of survival times in terminal human cancer.
Proceedings of the National Academy of Science USA, 75, 4538-4542.

Georgia Tech

3

ANOVA Example Data

Response Variable:

 Y_{ij} = The number of survival days for the j^{th} patient with i^{th} type of cancer

Categories:

Cancer type i for i = 1,2,3,4,5

Stomach	Bronchus	Colon	Ovary	Breast
124	81	248	1234	1235
42	461	377	89	24
25	20	189	201	1581
45	450	1843	356	1166
412	246	180	2970	40
51	166	537	456	727
1112	63	519		3808
46	64	455		791
103	155	406		1804
876	859	365		3460
146	151	942		719
340	166	776		
396	37	372		
	223	163		
	138	101		
	72	20		
	245	283		

Georgia Tech

Exploratory Data Analysis in R

Read data with 'read.table' R command for reading ASCII files cancer_data = read.table("CancerStudy.txt", header=T) ## Response Variable survival = cancer_data\$Survival

Explore the shape of the distribution of the response variable hist(survival, xlab="", ylab="Number of Survival Days", main="", nclass=15)

Transform due to skewness of the distribution hist(log(survival), xlab="", ylab="Number of Survival Days", main="", nclass=15)

Georgia Tech

5

ANOVA in R

Need to specify Response & Categorical Variables survival = log(survival) cancertype = cancer_data\$Organ ## Convert into categorical variable in R cancertype = as.factor(cancertype)

boxplot(survival~cancertype, xlab = "Cancer Type", ylab = "Log(Number of Survival Days)")....

- Within-variability some groups have higher variability than others
- Between-variability there is some variability between the means of the five groups
- Is the between-variability significantly larger than the withinvariability?

ANOVA in R (cont'd)

ANOVA in R: Is the between-variability significantly larger than within-variability model = aov(survival ~ cancertype)

summary(model)

Df Sum Sq Mean Sq F value Pr(>F) cancertype 4 24.49 6.122 4.286 0.00412 ***

Residuals 59 84.27 1.428

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Obtain estimated means model.tables(model, type="means")

Tables of means
Grand mean

5.555785

cancertype

Breast Bronchus Colon Ovary Stomach 6.559 4.953 5.749 6.151 4.968 11.000 17.000 17.000 6.000 13.000

Georgia Tech

7

Pairwise Comparison in R

Which means are statistically significantly different? Pairwise Comparison TukeyHSD(model)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = survival ~ cancertype)

\$cancertype

diff lwr p adj Bronchus-Breast -1.60543320 -2.906741 -0.3041254 0.0083352 Colon-Breast -0.80948110 -2.110789 0.4918267 0.4119156 Ovary-Breast -0.40798703 -2.114754 1.2987803 0.9615409 Stomach-Breast -1.59068365 -2.968399 -0.2129685 0.0158132 Colon-Bronchus 0.79595210 -0.357534 1.9494382 0.3072938 Ovary-Bronchus 1.19744617 -0.399483 2.7943753 0.2296079 Stomach-Bronchus 0.01474955 -1.224293 1.2537924 0.9999997 Ovary-Colon 0.40149407 -1.195435 1.9984232 0.9540004 -0.78120255 Stomach-Colon -2.020245 0.4578403 0.3981146 Stomach-Ovary -1.18269662 -2.842480 0.4770864 0.2763506

Statistically significant:

 $\log (\hat{\mu}_{Bronchus}) - \log (\hat{\mu}_{Breast})$ $\log (\hat{\mu}_{Stomach}) - \log (\hat{\mu}_{Breast})$

> Georgia Tech

Residual Analysis in R

par(mfrow=c(2,2))
qqnom(residuals(model))
qqline(residuals(model))
hist(residuals(model), main="Histogramof residuals",
xlab="Residuals")
plot(residuals(model), xlab="Order", ylab="Residuals")
abline(0, 0, lty=1, col="red")
plot(fitted(model), residuals(model), xlab="Fitted values",
ylab="Residuals")
abline(0, 0, lty=1, col="red")

- The quantiles align on the line and the histogram is approx. symmetric thus normality assumption holds
- Residuals are scattered around zero line with no pattern thus both the constant variance and uncorrelated errors hold

9

Cancer Survival: Findings

- There is strong evidence for the difference in the survival time across the five different types of cancer;
- Survival time: Breast cancer vs. Bronchus or Stomach cancer.

