Can 1: $f(x) = \frac{2x-1}{x-1} = 2 + \frac{1}{x-1} \Rightarrow f(x) = 3.$ $f'(x) = \frac{-1}{(x-1)^2} \Rightarrow f'(x) = -1$ $J''(x) = \frac{2}{(x-1)^3} = J''(2) = 2$ $\int_{1}^{11} (\chi) = \frac{-6}{(\chi - 1)^4} = \int_{1}^{11} (2) = -6.$ Chai triển Taylor tại x = 2 đến cấp 3 cuộ ham j(x) = 2x-1 là: $J(x) = 3. + (-1)(x-2) + 2(x-2)^2 + (-6)(x-2)^3 + o((x-2)^3)$ $= 3 - (1-2) + (x-2)^{2} + - (x-2)^{3} + o((x-2)^{3})$ Caûz: $\int_{x^{2}-5x+6}^{(x)} \frac{x-1}{(x-3)(x-2)} = \frac{2}{x-3} = \frac{1}{x-2}$ $=\frac{1}{3} \frac{-2}{3-x} + \frac{1}{2-x} = \frac{-2}{3} \cdot \frac{1}{1-\frac{x}{2}} + \frac{1}{2} \cdot \frac{1}{1-\frac{x}{2}}$ $=\frac{-2}{3}\left(1+\frac{\chi_{+}}{3}+\frac{\chi_{-}^{2}}{9}+\frac{\chi_{-}^{3}}{2}+o(\chi_{-}^{3})\right)+\chi_{-}^{3}$ $\frac{1}{2}$ $\frac{1}$ $= \frac{-1}{6} + \frac{1}{36} + \frac{11}{216} + \frac{49}{1296} + \frac{3}{1296} + o(x^3)$ (a) 3: $g(x) = \ln (2 + 3x) = g(1) = \ln 5$ 3 7 1'(1) = 3 112

Scanned with CamScanne

Cau 5:

A)
$$\int |x| = \frac{x^2 + 3e^x}{e^{2x}}$$
 $\Rightarrow \int |0| = 3$.

$$\int |x| = \frac{x^2 + 3e^x}{e^{2x}} + 2x^2 e^{2x} - 3 e^{3x} \Rightarrow \int |0| = 3$$
.

$$\int |x| = \frac{4x^2 e^{6x} - 6x e^{6x} + 3e^{7x} + 2e^{6x}}{e^{7x}} \Rightarrow \int |0| = 5$$
.

$$\int |x| = \frac{4x^2 e^{6x} - 6x e^{6x} + 3e^{7x} + 2e^{6x}}{e^{7x}} \Rightarrow \int |0| = 5$$
.

$$\int |x| = \frac{x^2 + 2e^{14x} - 8x^2 e^{14x} - 3e^{15x} - 12e^{14x}}{e^{16x}} \Rightarrow \int |0| = 7$$

Khai taich Maclauain cua fram $y = \frac{x^2 + 3e^x}{e^{2x}}$ chen cap $3 = 6$.

$$\int |x| = 3 - 3x + \frac{5}{2}x^2 - \frac{5}{2}x^3 + o(x^3)$$
.

2)
$$\int |x| = \ln \frac{2 - 3x}{3 + 2x} \Rightarrow \int |0| = \ln \frac{2}{3}$$

$$\int |x| = -13 - 13(12x + 5) \Rightarrow \int |x| = -65$$

$$(2 - 3x)^3 + (3 + 2x)^3 \Rightarrow \int |x| = -793$$

$$\int |x| = -54 + -16 \Rightarrow \int |x| = -793$$
Scanned with CanScanner

-	
	Khai triển Maclaurin của ham j(x) = ln 2-3x đến cấp 3 là:
	3 T X X
	$f(x) = \ln 2 \frac{13x}{6} \frac{65x^2}{6} \frac{793x^3}{1083!} + 0(x^3)$
	3 6 36 x 2 108 3!
	$= \frac{\ln 2}{3} - \frac{13x}{6} - \frac{65ic^2}{72} - \frac{793x^3 + 0(x^3)}{324}$
	3 6 72 324
	3). $\int (x) = \ln (x^2 + 3)(+2) = \ln (x+1) + \ln (x+2) = 100 - \ln 2$
	4'(10) = 2x + 3 = $4'(0) = 3$
	3). $\int (x) = \ln (x^2 + 3x + 2) = \ln (x + 1) + \ln (x + 2) = 0$ $\int (x) = 2x + 3$ $\int (x) = 2x + 3$ $\int (x) = 3$
	1''(x) = -1 -1 $51''(0) = -5$
	$\int_{0}^{11} (x) = -1 \qquad -1 \qquad \int_{0}^{11} (x+2)^{2} \qquad \int_{0}^{11} (0) = -5$
	f'''(x) = 2 + 2 (2) $f'''(0) = 9$
	$\int_{-\infty}^{\infty} (x) = \frac{2}{(x+1)^3} + \frac{2}{(x+2)^3} = \frac{1}{4} = \frac{9}{4}$
	$1^{(4)}(\chi) = -6$, -6 $31^{(4)}(0) = -51$
	$\int_{-\infty}^{(4)} (\chi) = \frac{-6}{(\chi + 1)^4} + \frac{-6}{(\chi + 2)^4} + \frac{-6}{(\chi + 2)^4} = \frac{-51}{8}$
	Chai triển Maclaulin của ham j (2) = ln (x + 3x+2) đến cấp 4 là:
	$f(x) = \ln 2 + \frac{3}{2}x + \frac{-5}{4}x^{2} + \frac{9}{4}x^{3} + \frac{51}{4}x^{4} + o(x^{4})$
	2 4 2 4 3! 8 4!
	$= \ln 2 + 3 x - 5 x^2 + 3 x^3 - 17 x^4 + o(x^4)$
	2 8 8 64
	Cau 7:
	1) lin WSX-1+2 LH lim - finx+x
	$\chi \rightarrow 0$ χ^4 $\chi \rightarrow 0$ $\chi \rightarrow 0$ $\chi \rightarrow 0$
	L'H lim - LOSX+1 L'H lim sinx
	- 2-10 12x² x70 24x.
	L'H lim coszc
	x-)0 24 24.
	$\mathcal{L}_{\mathcal{L}_{p}}(\mathcal{L}_{p})$

-	
	2) lim arc tanx - arc sinx.
	$x \rightarrow 0$ tank - finx
	Theo Khai triển Maclaurin to có:
-	$\operatorname{Cuctan} x = x - x^3 + o(x^3)$
	La Alphanes 3 Ep. The sellen and a sellen
	$\text{arcsin } x = x + x^3 + o(x^3)$
)= (n.	Dy (= (Set) al 6 (14x) al = (extres ex) al - (m) (e
	\Rightarrow arctanx - archinx = $-x^3 + o(x^3)$
	2
	$\frac{\tan x = x + x^3 + o(x^3)}{2}$
	13 (SAM) (SAM)
	$\frac{\sin x - x - x^3 + 6(x^3)}{6}$
	$\Rightarrow tanc - \sin x = x^3 + o(x^3)$
上海	-) $\lim_{x \to \infty} \arctan x - \arcsin x - \frac{x^3}{2} + o(x^3)$
(xx)	$x \rightarrow 0$ tance - fix $x = x^3 + 0$ (x^3)
~	
	3) lim 1+ 20 cos x - \ 1+220
	x-70 ln [1+x] - x.
	L'H 0: colx xciox + ==
	$\frac{L'H}{2c} \lim_{x \to \infty} \cos x - x \sin x + \sqrt{1+2x}$
	1:17-15.
	1+90 2011 2011
	- lin - finx - finx - 2 cosx + \(\sqrt{14+2x\sqrt{3}} \)
	- lem - sunx - sinx - 10 cos)c + \(\int \left(1+2\chi)^3\)
	$(4+x)^2$
ÅI TIẾN	~ -1
MI IIIM	

Môt số bài tâp trong oté thi cac rain. $f(x) = ln(1+2x+3x^2) = 1 f(0) = 0.$ j"(x) = -12x-18x2+2 ->j"(0)=2. |Chai triển Maclaurin trī số lang chuỗ x² cuả ham f(2)=ln(1+2x+3i) $f(x)=0+2x+2x^2=2x+x^2$ Cau 4: $g(x) = (1 + x^{3}) \cdot e^{x^{3}} \Rightarrow g(0) = 1$ $g'(x) = 6e^{x^{3}} \cdot x^{2} + 3e^{x^{3}} \cdot x^{5} \Rightarrow g'(0) = 0$ $g''(x) = 12e^{x^{3}} \cdot x + 33x^{4} \cdot e^{x^{3}} + 9e^{x^{3}} \cdot x^{7} \Rightarrow g''(0) = 0$ $g'''(x) = 168e^{x^{3}} \cdot x^{3} + 162x^{6} \cdot e^{x^{3}} + 27e^{x^{3}} \cdot x^{9} + 27e^{x^{3}} \cdot x^{$ Khai triển Maclaurin cuả $g(x) = (1+x^3)e^{x^3}$ to: cấp n = 20.16 là: $(x) = 1 + 0 \times x + 0 \times x^2 + 0 = 0$ $(x) = 1 + 0 \times x + 0 \times x^2 + 0 = 0$ (x) = 0.16= 2g(0)=0