

MicroRacer - PPO

Proximal Policy Optimization

Machine Learning a.y. 2020/2021

Salvatore Fiorilla 931332 Marianna Corinaldesi 946229

Project goal

Dive into Deep Reinforcement Learning by implementing PPO algorithm and evaluating its performances on MicroRacer environment

In-depth topics

- Tensorflow
- Keras
- Numpy
- Policy based algorithms

Challenges

- Math of PPO on continuous environment
 - Actions sampling on Truncated GD.
 - Adapting math of PPO properly.
- Debugging the agent
 - Use static track and lots of logs.
- Hardware limits
- Tuning hyperparameters
 - Experimental evaluation.

Reinforcement Learning 1/2

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{j=0}^T \gamma^j r_{t+j+1}$$

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|s=s_t] = \mathbb{E}_{\pi}\big[\textstyle\sum_{j=0}^T \gamma^j r_{t+j+1}\,|s=s_t\big]$$

$$V_{\pi}(s) = \max_{a} Q(s, a)$$

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{j=0}^{T} \gamma^j r_{t+j+1} | S_t = s, A_t = a]$$

Reinforcement Learning 2/2

Reinforcement Learning taxonomy as defined by OpenAI [Source]

Policy Based Model-Free

$$A(a_t, s_t) = Q(a_t, s_t) - V(s_t)$$

$$L^{PG}(\theta) = \hat{\mathbb{E}}_t \Big[\log \pi_{\theta}(a_t \mid s_t) \hat{A}_t \Big].$$

TRPO

LINE SEARCH METHOD

TRUST REGION METHOD

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

subject to
$$\hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta.$$

PPO

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right],$$

Deep into code

Actor starts with initial state s_0 which is obtained from environment.reset() stmt.

Benchmarks

We trained for

200 epochs, 4096 steps per epoch and 50 update iteration

with hyperparameters

Actor_Ir 3e-5

Critic_Ir 1e-4

clip_value 0.1

early stopping 0.0225

different "Actor - Critic" Networks' architectures

Benchmarks 1/4

CRITIC: 3 dense, ACTOR: 4 dense

- 32 units
 - training time: 4h 15 m
 - first completed path at epoch : never completed
- 128 units
 - training time: 1h 23 m
 - completed : 18/100
 - In 100 races:
 - mean length trajectories: 166
 - mean rewards: -0.52
 - first completed path at epoch: 62
- 512 units
 - training time: 2h
 - completed : 9/100
 - In **100** races:
 - mean length trajectories: 133
 - mean rewards: -0.65
 - first completed path at epoch: 76

Benchmarks 2/4

MEAN REWARDS

MEAN TRAJECTORIES LENGTH

128 units

512 units

Benchmarks 3/4

CRITIC: 3 dense, ACTOR: two towers of 3 dense layers each

- 32 units
 - training time: killed after 2 hours of no learning
 - first completed path at epoch: never completed
- 128 units
 - training time: 1h30 m
 - completed: 22/100
 - In **100** races:
 - mean length trajectories: 164
 - mean rewards: 0.249
 - first completed path at epoch: 54
- 512 units
 - training time: 1h 50m
 - completed: 11/100
 - In **100** races:
 - mean length trajectories: 161
 - mean rewards: -0.219
 - first completed path at epoch: 65

Benchmarks 4/4

MEAN REWARDS

MEAN TRAJECTORIES LENGTH

128 units

512 units

Conclusion

Two tower solution is always better for the same units number.

The model performs generally better for 128 neurons than 512

link to test

PPO vs DDPG

PPO get optimization, here the

comparison of the models on 100 races...

	Mean Rewards	Mean Trajectories Length	Completed Path
PPO	3.8460845947265625	228	64/100
DDPG	4.120152473449707	152	63/100

Future Works

- Make a race between models
- Explore other DRL algorithms

References

repo code

MariannaCor/MicroRacer Corinaldesi Fiorilla (github.com)

Salvatore Fiorilla Marianna Corinaldesi