	Sunday, 8 October 2023, 6:03 PM
	Finished
	Sunday, 8 October 2023, 6:38 PM
	35 mins 22 secs
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
. 31	
Concepts of detecti	on theory can be used
Select one:	
Only in Wireles	s Technology
All of these ✓	
\circ	
Only in RADAR	
Only in Machine	e Learning
,	
Your answer is corre	ect.
The correct answer	is:
All of these	
Question 2	
Correct	
Mark 1.00 out of 1.00	
The general proble	n in detection is
3 1	
Select one:	
\bigcirc	
Multiple cost de	etermination
Binary hypothe	sis testing 🗸
Gaussian discrir	ninant analysis
Optimal pattern	recognition
optimal pattern	
Your answer is corre	ect.
The correct answer	is: Binary hypothesis testing
Question 3	
Correct	
Mark 1.00 out of 1.00	

Consider the binary hypothesis testing problem described in lectures with noise variance 4. The distribution of the output under H_0 is
Select one:

- $\mathcal{N}(0,2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 4\mathbf{I})$
- \circ $\mathcal{N}(0,4\mathbf{I}) \checkmark$

Your answer is correct.

The correct answer is: $\mathcal{N}(0,4\mathbf{I})$

Question **4**

Correct

Mark 1.00 out of 1.00

Consider the binary hypothesis testing problem described in lectures with noise variance 1. The distribution of the output under H₁ is

Select one:

- $\mathcal{N}(\bar{\mathbf{s}},\mathbf{I})$
- $\mathcal{N}(0,\mathbf{I})$
- $\mathcal{N}(0,2\mathbf{I})$
- $\mathcal{N}(\bar{\mathbf{s}}, 2\mathbf{I})$

Your answer is correct.

The correct answer is: $\mathcal{N}(\bar{\mathbf{s}},\mathbf{I})$

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the binary hypothesis testing problem described in lectures with noise variance σ^2 . The likelihood of H₀ is

Select one:

$$\bigcirc \quad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y(i)}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\left(\sum_{i=0}^{N} y(i) - s(i)\right)^2}{2\sigma^2}}$$

$$\qquad \qquad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^Ny^2(i)}{2\sigma^2}} \checkmark$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\sum_{i=0}^{N} \left(y(i)-s(i)\right)^2}{2\sigma^2}}$$

Your answer is correct.

The correct answer is:	$\left(\frac{1}{2\pi\sigma^2}\right)$	$\frac{N}{2}e$	$\frac{\sum_{i=1}^{N} y^2(i)}{2\sigma^2}$
,	$(2\pi\sigma^2)$, .	

Question **6**

Correct

Mark 1.00 out of 1.00

Consider the binary hypothesis testing problem described in lectures with noise variance σ^2 . The likelihood of H₁ is

Select one:

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^{N}y(i)}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{\left(\sum_{i=0}^{N} y(i) - s(i)\right)^2}{2\sigma^2}}$$

$$\bigcirc \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=1}^N y^2(i)}{2\sigma^2}}$$

$$\bigcirc \qquad \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=0}^{N}\left(y(i)-s(i)\right)^2}{2\sigma^2}} ~\checkmark$$

Your answer is correct.

The correct answer is: $\left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}}e^{-\frac{\sum_{i=0}^{N}\left(y(i)-s(i)\right)^2}{2\sigma^2}}$

Question 7

Correct

Mark 1.00 out of 1.00

The principal tool in detection is

Select one:

- Maximum Likelihood
- Likelihood Ratio Test
- Maximum Aposteriori Probability
- Minimum Mean Squared Error

Your answer is correct.

The correct answer is: Likelihood Ratio Test

Question **8**

Correct

Mark 1.00 out of 1.00

Select one:

$$\bigcirc \ \frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} \geq 1$$

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}};\!\mathcal{H}_0)}{p(\bar{\mathbf{y}};\!\mathcal{H}_1)} < \widetilde{\gamma}$$

$$\bigcirc \quad \frac{p(\bar{\mathbf{y}};\mathcal{H}_0)}{p(\bar{\mathbf{y}};\mathcal{H}_1)} < 1$$

Your answer is correct.

The correct answer is: $rac{p(ar{\mathbf{y}}:\mathcal{H}_0)}{p(ar{\mathbf{y}}:\mathcal{H}_1)} \geq \widetilde{\gamma}$

Question **9**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

The LRT for the signal detection problem reduces to choose H_0 if

Select one:

$$\bar{\mathbf{s}}^T \bar{\mathbf{y}} \leq 1$$

$$\bar{\mathbf{s}}^T\bar{\mathbf{y}} > 1$$

Your answer is correct.

The correct answer is: $\ ar{\mathbf{s}}^T ar{\mathbf{y}} \leq \gamma$

Question 10

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

The LRT reduces to the ML decision rule for γ =

Select one:

$$\frac{\|\bar{s}\|^2}{4}$$

Your answer is correct.

The correct answer is: $\frac{\|\bar{s}\|^2}{2}$

Finish review