Association Rules – the Apriori Algorithm

V.S. Subrahmanian
University of Maryland
vs@cs.umd.edu

Basic Idea

- An association rule (AR) tries to find dependencies of the form $A_1, ..., A_n \rightarrow B$ where $A_1, ..., A_n, B$ are attributes (or conditions over attributes). B is different from all of the A's.
- Intuitively this says: When $A_1, ..., A_n$ occur together, B is also likely to occur.
- The "goodness" of an AR is captured by two quantities
 - Support,
 - Confidence

- You work for a grocery store.
- Every time a person checks out, the system identifies the set of items the person bought.
- Thus, each transaction at the checkout register is a row in a table and the items bought are listed.

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

6 items: A, B, C, D, E, F

Itemset

- An itemset is a set of items in our example, any subset of {A,B,C,D,E,F}.
- An itemset is *frequent* if it occurs often enough, i.e. if it occurs over a certain number of times.
- Suppose $r = A_1, ..., A_n \rightarrow B$ is an AR.
- Support(r) = Probability that a random transaction contains $\{A_1, ..., A_n, B\}$. NOTE: Sometimes people just use the number of transactions whose itemsets contain $\{A_1, ..., A_n, B\}$.
- Confidence(r) = Probability of B being in an itemset, given that $\{A_1, \dots, A_n\}$ are in it.

- Let $r = A \rightarrow B$
- Support(r) = 3/7 as A,B occur together in 3 out of 7 transactions.
- Confidence(r) = ¾ as B
 occurs in 3 out of 4
 transactions in which A
 occurs.

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

6 items: A, B, C, D, E, F

- Let $r = A, B \rightarrow F$
- Support(r) = 1/7 as
 A,B,F occur together in
 1 out of 7 transactions.
- Confidence(r) = 1/3 as F
 occurs in 1 out of 3
 transactions in which A
 and B both occur.

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

6 items: A, B, C, D, E, F

Association Rule Mining Problem

- Given a database DB having the schema (Transaction, Itemset) and to integers s,c find all association rules r having
 - $-Support(r) \geq s$,
 - $-Confidence(r) \ge c$.

Apriori Algorithm

- For each $i \geq 1$, L_i denotes the set of all frequent itemsets of cardinality i.
- The idea is to iteratively expand L_i to $L_{\{i+1\}}$.
- Once $L_i = \emptyset$ for some j, we can stop.
- At this stage. $L_1, L_2, ..., L_{\{j-1\}}$ would represent the set of all frequent itemsets (i.e. satisfying the support requirement).
- Check these to see if the confidence levels hold.

Join Operation

- Compute $L_{\{j+1\}}$ by joining L_j with itself.
- Suppose j=2 and $L_j = \{\{A, B\}, \{A, C\}, \{C, D\}\}.$
- The *join* of L_i with itself is
 - {A,B,C}: join {A,B} with {A,C}
 - {A,B,C,D}: join {A,B} with {C,D} but rejected in join as it has 4 elements;
 - {A,C,D}: join {A,C} with {C,D}.
- So the returned join is {{A,B,C},{A,C,D}}.

Pruning Step

- **Theorem.** If X is a frequent itemset (i.e. it occurs in a sufficiently high percentage of transactions) then so must any subset $Y \subseteq X$.
- Proof?
- Implication.
 - If X is a candidate to be inserted into L_i but some subset Y of cardinality (i-1) is not in $L_{\{i-1\}}$, then X should not go into L_i .

Apriori Algorithm, Phase I: Find AR conditions having enough support

```
L_1 = \{ \{x\} \mid x \text{ is an item} \}; \text{ %singletons} \}
i=1;
While (L_i \neq \emptyset) do
        { j=j+1; }
          C_i = join(L_i, L_i); % find candidates
         L_i = \{x \mid x \in C_i \& support(x) \ge c\};
Return \bigcup_i L_i
```

- Let s = 0.2.
- COUNTs are as follows:

Item	COUNT
Α	4
В	5
С	3
D	1
E	3
F	4

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

So
$$L_1 = \{\{A\}, \{B\}, \{C\}, \{E\}, \{F\}\}\}$$

- Let *s* = 0.2.
- Pruning Step: Nothing containing D can be in L_2 . Why?
- Instead of considering 18 pairs, we only need to consider10 pairs.
- What makes it into L_2 ?
- {A,B}:3,{A,F}:2
- {B,E}:2,{B,F}:2
- {C,F}:2
- All of these occur at least twice in the data, so support is enough.

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

So
$$L_2 = \{\{A, B\}, \{A, F\}, \{B, E\}, \{B, F\}, \{C, F\}\}$$

- What makes it into L_3 ?
- {A,B,F}:1
- {A,B,E}: 1. Can prune because AE is not in L_2 .
- {A,C,F}:1. Can prune because AC is not in L_2 .
- {A,B,E,F}:0 X
- {B,E,F}:1. Can prine because EF is not in L_2 .
- {B,C,F}:1. Can prune as BC is not in L_2 .

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

So
$$L_3 = \emptyset$$
.
So our iteration can stop.

Apriori Algorithm, Phase II: Find ARs satisfying confidence condition

foreach itemset X, $|X| \ge 2$ ret. by Phase I do foreach a in X do

if
$$conf(X - \{a\} \rightarrow a) \ge c$$
 then
SOL = SOL **U** $\{X - \{a\} \rightarrow a\}$;

Return SOL.

Apriori Algorithm, Phase II: Find ARs satisfying confidence condition

SOL = {};
foreach itemset X,
$$|X| \ge 2$$
 ret. by Phase I **do**
foreach $a \subseteq X$ s. t. $|X - a| \ge 1$ **do**
if $conf(X - \{a\} \rightarrow a) \ge c$ then
SOL = SOL **U** $\{X - \{a\} \rightarrow a\}$;

Allows rule heads to have multiple items.

Return SOL.

Candidate Itemsets

- Itemsets with enough support are:
- $L = \left\{ \{A\}, \{B\}, \{C\}, \{E\}, \{F\}, \{A, B\}, \{A, F\}, \{B, E\}, \{B, F\}, \{C, F\} \right\}.$
- Of these, the only ones that can give rise to a rule are the doubletons [singletons can't generate a rule – why?]

Assoc. Rule	Confidence
A => B	
B => A	
A => F	
F => A	
B => E	
E => B	
B => F	
F => B	
C => F	
F => C	

Candidate Itemsets

Transaction	Items
1	A,B,D
2	A,B,F
3	B,C,F
4	C,E
5	A,C,F
6	A,B,E
7	B,E,F

The association rules discovered are now based on the confidence threshold. For example, if the threshold is 65%, then the rules returned are highlighted in red.

Assoc. Rule	Confidence
A => B	³ / ₄ = 75%
B => A	3/5 = 60%
A => F	1/4 = 25%
F => A	2/4 = 50%
B => E	2/5 = 50%
E => B	2/3 = 66.67%
B => F	3/5 = 60%
F => B	³ / ₄ = 75%
C => F	2/3 = 66.67%
F => C	2/4 = 50%

Are ARs good?

- Not necessarily why?
- Give an example

Lift

• Lift
$$(A \to B) = \frac{P(B|A)}{P(B)}$$
.

- Intuition:
 - Rule could have high support.
 - Rule could have high confidence.
 - But if P(B) is almost the same as P(B|A), then A could not have much to do with B being true.
 - On the other hand, if "lift" is high, then having A
 be true makes a difference in whether B is true.

Flaws with A Priori Algorithm

- Too slow!
- Number of possible candidates (C_j step) can be enormous when the join is done in Phase I.

In Class Exercise

Transaction	Items
1	A,B,D
2	A,B,E,F
3	A,B,C,F
4	C,E,D
5	A,C,E,F
6	A,B,E
7	B,C,F
8	A,D,E,F
9	A,C,D
10	B,E,F

Support = 3/10 Confidence = 55%