Trabajo Final

Curso: Control Digital

ALUMNO: CARLOS HERRERA

Circuito RC RC

Tiempo de subida

Frecuencia 1.25 Hz

Frecuencia 1 Hz

Tiempo de Subida

- Frecuencia de muestreo 100 Hz
- Formato 16 bits

Tiempo de Subida

- $t_r = 1.6937 1.5207$
- $t_r = 0.173$ segundos

Identificación

Modelo Teórico

$$G(s) = \frac{1}{0.00039s^2 + 0.059s + 1}$$

• Señales de Prueba

- Señal Cuadrada
- PRBS
- Ruido RNG

Módulo DMA – NUCLEO F429

Identificación con Escalón

Frecuencia de muestreo:

100 Hz

G(s) teórico:

$$G(s) = \frac{1}{0.00039s^2 + 0.059s + 1}$$

H(z) teórico:

$$H(z) = \frac{0.08058z + 0.04887}{z^2 - 1.091z + 0.2203}$$

Orden	Numerador (z)	Denominador (z)	Error
1	[0.415, -0.307]	[1,-0.893]	0.0683
2	[0.0912,-0.212,0.280]	[1,-0.479,-0.362]	3.158
3	[-0.096,-0.407,0.194,0.546]	[1,0.074,-0.756,-0.0813]	10.390

Identificación PRBS

[1,

- Periodo de muestreo proyectado PRBS: 0.01922222222222222
- Periodo de muestreo mínimo seleccionado PRBS: 0.02
- Máximo número de muestras por PULSO: 10
- Tiempo máximo de pulso 0.2 > tiempo de subida 0.173
- Frecuencia de muestreo PRBS: 50.0
- Longitud total de la secuencia (n° muestras): 1023
- Tiempo total del ensayo: 20.46

Orden	Numerador (z)
1	[-0.002, 0.023]
2	[-5.427e-04, 0.007, 0.012]
3	[-8.260e-04,0.007, 0.008, 0.012]

Denominador (z)	Error
[1, -0.980]	16.6975
[1,-1.198, 0.216]	11.9850
,-1.012, 0.159, -0.121]	11.7885

Identificación con Ruido

500 Hz

G(s) teórico:

$$G(s) = \frac{1}{0.00039s^2 + 0.059s + 1}$$

H(z) teórico:

$$H(z) = \frac{0.004644z + 0.004199}{z^2 - 1.73z + 0.7389}$$

Orden	Numerador (z)	Denominador (z)	Error
1	[5.194e-05,0.012]	[1, -0.988]	43.3634
2	[1.634e-04, 0.007, 0.008]	[1, -1.280, 0.294]	14.0723
3	[1.257e-04, 0.007, 0.007, 0.006]	[1, -1.082, 0.154, -0.052]	12.9128

Identificación con Ruido 2

Frecuencia de muestreo:

500 Hz

$$H(z) = \frac{0.004644z + 0.004199}{z^2 - 1.73z + 0.7389}$$

Numerador: [0.0011 0.0076 0.0129]

Denominador: [1.0000 -1.0856 0.1072]

Controlador PID - Ziegler - Nichols

$$x1 = 0.0414$$

$$x2 = 0.1352$$

$$y1 = 1.034$$

$$y^2 = 2$$

Controlador PID - Ziegler - Nichols

$$x1 = 0.0414$$

$$x2 = 0.1352$$

y1 = 1.034

$$y^2 = 2$$

$$L = x1$$
$$T = x2 - x1$$

$$A = B = 2$$

Controlador PID - Resultado Python

El valor de Kp es

2.7188

El valor de Ki es

32.8362

El valor de Kp es

0.0563

Controlador PID - Sintonizando

El valor de Kp es

16.313

El valor de Ki es

656.7248

El valor de Kd es

0.2701

Periodo de muestreo

- Frecuencia de muestreo mínima: Con un tiempo de subida de 20 milisegundos podemos tener como mínimo una frecuencia de muestreo de 200 Hz (20 milisegundos / 4 muestras)
- Frecuencia de muestreo máxima: Para lo cual se debe tener en cuenta el tiempo que demora en muestrear, el tiempo de procesamiento y el tiempo del conversor digital/analógico.

Controlador PID - Microcontrolador

Frecuencia de muestreo : 100 Hz

$$Kp = 2.9$$

$$Ki = 44$$

$$Kd = 0.1$$

Beta = 1

N = 20

Controlador PID - Microcontrolador

tr(antiguo) = 0.173 tr(nuevo) = 0.398-0.389 = 0.0099 milisegundos

