Máquinas Térmicas e de Fluxo Aula 11: Segunda Lei da termodinâmica

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 19 de junho 2023

Samuel Moreira Duarte Santos

Agenda

- Revisão: Princípio da conservação da energia: sistema fechado;
- Sistemas aberto;
- Fluxo de massa através da fronteira;
- Balanço de massa;
- Primeira lei da termodinâmica em sistemas abertos;
- Trabalho de fluxo;
- Energia total de uma substância escoando;
- Primeira lei da termodinâmica em sistemas aberto (Regime permanente);
- Equipamentos;
- Aplicação prática;

- A 1^a Lei da Termodinâmica quantifica a energia que entra ou sai de um sistema ou volume de controle;
- A grande maioria dos processos naturais ocorrem espontaneamente numa direção preferencial; e
- A 1^a Lei da Termodinâmica não prevê a direção dos processos.

- Processo de troca de calor ocorrendo espontaneamente
- Este processo não ocorre espontaneamente; e
- É necessário que a vizinhança realize trabalho para que ele ocorra!
 Samuel Moreira Duarte Santos
 3

• Ex.: Gás (Sistema isolado)

• A energia tem uma direção preferencial

Processo espontâneo

• Ex.: Sólidos em contato (Sistema isolado)

• A energia tem uma direção preferencial

Processo espontâneo

20°C

 A Primeira Lei da Termodinâmica não impõe restrições com relação as direções dos fluxos de calor e energia;

Vaja abaixo alguns exemplos que a primeira lei é válida porém não acontece

 Assim, a segunda lei da termodinâmica foi criada para corrigir esse problema da direção em que a energia deve fluir.

- Além de não prever a direção preferencial dos processos, a 1^a Lei da
 Termodinâmica não os qualifica sob ponto de vista do uso energético;
- Embora Calor e Trabalho sejam duas formas de energia em trânsito, cada um tem seu valor sob ponto de vista termodinâmico.

 No contexto da Termodinâmica, calor é uma forma de energia menos nobre porque transferência de calor gera entropia.

Entropia

- A segunda lei da termodinâmica afirma que a entropia de um sistema isolado nunca diminui com o tempo;
- Sistemas isolados evoluem espontaneamente em direção ao equilíbrio termodinâmico, o estado com entropia máxima;
- Sistemas não isolados, podem perder a entropia, desde que a entropia de seu ambiente aumente pelo menos essa quantidade, de modo que a entropia total (Sistema +Ambiente aumente ou permaneça constante.

Entropia

• O universo é tudo o que existe.

• • Portanto ele pode ser considerado um sistema isolado.

- Assim, devido ao postulado da segunda lei da
- termodinâmica, a entropia do universo (sistema isolado)
- nunca diminui com o tempo.

Máquinas térmicas

- Trabalho pode ser facilmente convertido em outras formas
- de energia, mas a conversão de outras formas de energia em trabalho não é tão fácil;
- Essa energia pode então ser retirada da água sob a forma de calor. Sabemos por experiência que qualquer tentativa de realizar o processo inverso falhará;
- Ou seja, transferir calor para a água não fará o eixo girar; e
- A conversão de calor em trabalho exige a utilização de dispositivos especiais Samuel Moreira Duarte Santos

Máquinas térmicas

- Recebem calor de uma fonte à alta temperatura (energia solar, fornalha, reator nuclear, etc.).
- 2. Convertem parte desse calor em trabalho (em geral, na forma de um eixo rotativo).
- Rejeitam o restante do calor para um sumidouro à baixa temperatura (a atmosfera, os rios, etc.).
- 4. Operam em um ciclo.

Máquinas térmicas

Uma parte do trabalhoproduzido por uma máquina térmica é consumida internamente para manter uma operação contínua.

Rendimento das Máquinas térmicas

$$\eta = \frac{Saída}{Entrada} = \frac{Saída\ Líquida\ de\ trabalho}{Entrada\ total\ de\ calor}$$

$$\eta = \frac{Saída\ Líquida\ de\ trabalho}{Entrada\ total\ de\ calor}$$

$$\eta_T = rac{W_{Liq}}{Q_{Ent}}$$

$$\eta_T = \frac{Q_H - Q_L}{Q_H}$$

$$\eta_T = 1 - \frac{Q_L}{Q_H}$$

Segunda lei da termodinâmica: Enunciado de Clausius

impossível construir um refrigerador, que operando ciclicamente dois entre térmicos reservatórios com temperaturas diferentes, transfira calor do reservatório de menor temperatura para o de maior sem realizar trabalho sobre ele.

Rudolf Clausius (1822-1888)

Max Karl Ernst Ludwig Planck (1858-1947)

Segunda lei da termodinâmica: Enunciado de Kelvin-Planck

É impossível construir um motor térmico, que operando ciclicamente entre dois reservatórios térmicos com temperaturas diferentes, converta integralmente calor em trabalho.

William Thomson (1824-1907)

Refrigeradores

Refrigeradores: Coeficiente de performance

$$COP = rac{Efeito\ Desejado}{Entrada\ Necess\'{a}ria}$$

$$COP = rac{Q_L}{W_{Liq}}$$
 $COP = rac{Q_L}{Q_H - Q_L}$
 $COP = rac{1}{rac{Q_H}{Q_L} - 1}$

Bombas de calor: Coeficiente de performance

$$COP = rac{Efeito\ Desejado}{Entrada\ Necess\'{a}ria}$$

$$COP = \frac{Q_H}{W_{Liq}}$$
 $OP = \frac{Q_H}{Q_H - Q_L}$
 $COP = \frac{1}{Q_L}$

Comparativo

$$COP_R = \frac{1}{\frac{Q_H}{Q_L} - 1}$$

$$COP_{BC} = \frac{1}{1 - \frac{Q_H}{Q_L}}$$

$$COP_{BC} = COP_R + 1$$

Máxima eficiência de conversão

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

Máxima eficiência de conversão

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

Máxima eficiência de conversão: máquina térmica

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

Máxima eficiência: menor distúrbio total (sistema e ambiente)

Máxima eficiência de conversão: refrigeração

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

Máxima eficiência: menor distúrbio total (sistema e ambiente)

Máxima eficiência de conversão: refrigeração

- Máxima Eficiência: ocorre quando a máquina térmica é reversível !!!
 - Reversibilidade estrita: ocorre quando a troca de calor e a realização de trabalho entre os sistemas e o ambiente for nulo para o processo combinado (original e inverso), o que sabemos ser IMPOSSÍVEL!

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

Máxima eficiência: postulados de Carnot

- $\eta < 1$ para $\Delta T < \infty$;
- $\eta_{rev} > \eta_{Irrev}$;
- $\eta_{rev,n} = \eta_{rev,m} \ \forall \ n \ e \ m;$
- $\eta_{rev} = f(T_f, T_q)$; e
- É a diferença de temperatura entre os reservatórios que influencia na eficiência e não a pressão como se pensava inicialmente,

Nicolas Léonard Sadi Carnot em 1824, aos vinte anos de idade

$$\oint \frac{\delta Q}{T} \le 0 \begin{cases}
\oint \frac{\delta Q}{T} = 0, & REVERSÍVEL \\
\oint \frac{\delta Q}{T} < 0, & IRREVERSÍVEL
\end{cases}$$

Rudolf Clausius (1822-1888)

Rudolf Clausius (1822-1888)

$$\eta = \frac{W_{Liq}}{Q_H} \stackrel{1^{\underline{a}}Lei}{=} 1 - \frac{Q_L}{Q_H} \stackrel{2^{\underline{a}}Lei}{=} 1 - \frac{T_L}{T_H} \Rightarrow \frac{Q_L}{Q_H} = \frac{T_L}{T_H} \Rightarrow \frac{Q_L}{T_L} \stackrel{Rev}{=} \frac{Q_H}{T_H}$$

Rudolf Clausius (1822-1888)

Rudolf Clausius (1822-1888)

$$\oint \frac{\delta Q}{T} = \frac{1}{T_H} \int_{2}^{3} \delta Q + \frac{1}{T_L} \int_{4}^{1} \delta Q$$
Rev

Rudolf Clausius (1822-1888)

$$\oint_{Rev} \frac{\delta Q}{T} = 0 = \oint_{2}^{3} \oint_{T} \frac{\delta Q}{T} + \oint_{4} \frac{\delta Q}{T} = \frac{Q_{H}}{T_{H}} - \frac{Q_{L}}{T_{L}} = \frac{Q_{L}}{T_{L}} \stackrel{Rev}{=} \frac{Q_{H}}{T_{H}}$$

Rudolf Clausius (1822-1888)

$$\oint \frac{\delta Q}{T} = 0$$
Rev

$$\frac{Q_L}{T_L} \stackrel{Rev}{=} \frac{Q_H}{T_H}$$

$$\oint \frac{\delta Q}{T} = \frac{Q_H}{T_H} - \frac{Q_{L,Irrev}}{T_L} < \frac{Q_H}{T_H} - \frac{Q_{L,Rev}}{T_L} = 0$$
Irev

Samuel Moreira Duarte Santos

34

$$\eta_{Rev} \stackrel{2^{\underline{a}}Lei}{>} \eta_{rev} \Rightarrow \begin{cases} Q_{L,Rev} < Q_{L,Irev} \\ W_{Rev} > W_{Irev} \end{cases}$$

Entropia

 Considere uma determinada propriedade termodinâmica x, então é válida a seguinte relação:

$$\oint dx = 0$$

Para qualquer trajetória Γ

$$\oint \frac{\delta Q}{T} \bigg|_{Rev} = 0 \Rightarrow dS \stackrel{def}{=} \frac{\delta Q}{T} \Rightarrow S_{x} - S_{0} = \oint_{0}^{x} \frac{\delta Q}{T} \bigg|_{Rev} \left[\frac{kJ}{K} \right]$$

A entropia no inconsciente coletivo...

Entropia

 Considere uma determinada propriedade termodinâmica x, então é válida a seguinte relação:

$$\oint dx = 0$$

Para qualquer trajetória Γ

$$\oint \frac{\delta q}{T} = 0 \Rightarrow ds \stackrel{def}{=} \frac{\delta q}{T} \Rightarrow s_{x} - s_{0} = \oint_{0}^{x} \frac{\delta q}{T} \Big|_{Rev} \left[\frac{kJ}{kg K} \right]$$

ΔS é sempre calculada por uma trajetória reversível

Fontes de irreversibilidades:

- Transferência de calor AT finito;
- Atritos internos;
- Compressão/expansão não resistida;
- Mistura de substâncias diferentes;
- Reações químicas espontâneas;
- Passagem de corrente elétrica por uma resistência finita; e
 - Deformação inelástica de sólidos.

$$S_2 - S_1 = \left. \oint_0^x \frac{\delta Q}{T} \right|_{Rev} \neq \left. \oint_0^x \frac{\delta Q}{T} \right|_{Rev}$$

O calor gerado pela pelo fricção do êmbolo com a camisa é sempre aditivo, portanto não é possível inverter perfeitamente a transformação!

Clausius:

$$\oint \frac{\delta Q}{T} \le 0$$
Irev

$$\oint_{\Gamma} \frac{\delta Q}{T} = \oint_{1}^{2} \frac{\delta Q}{T} \Big|_{Irrev} + \oint_{2}^{1} \frac{\delta Q}{T} \Big|_{Rev} \le 0$$

$$\oint_{1}^{2} \frac{\delta Q}{T} \Big|_{Irrev} + (S_{1} - S_{2}) \le 0$$

$$(S_2 - S_1) \ge \oint_1^2 \frac{\delta Q}{T} \bigg|_{Irrev} \implies dS \ge \frac{\delta Q}{T}$$

$$(S_2 - S_1) \ge \frac{\delta Q}{T}$$

Variação da entropia de um sistema fechado durante processo irreversível.

Transferência de entropia via transferência de calor

$$\Delta S_{sistema} = \int_{1}^{2} \frac{\delta Q}{T} + S_{Gerado} \quad ----$$

$$S_{Gerado} \Rightarrow \begin{cases} > 0 \ Processo \ irreversivel \\ = 0 \ Processo \ reversivel \\ < 0 \ Processo \ impossivel \end{cases}$$

Entropia gerada durante o processo irreversível

Segunda lei da termodinâmica: Irreversibilidades

- Irreversibilidade Parcela de energia perdida ou degradada durante um processo;
- Calor é transferido por uma diferença de temperatura finita;
- Reação química espontânea;
- Atrito;
- Resistência elétrica
- •
- .

Segunda lei da termodinâmica: Eficiência isoentrópica

• A eficiência térmica (η) quantifica apenas perdas energéticas no processo de conversão de energia em trabalho ou trabalho em energia. Por isso é conhecida como eficiência de 1^a lei.

$$\eta = \frac{\dot{W}_{liq}}{\dot{Q}_{H}}$$

 À luz da 2ª lei da Termodinâmica, a eficiência isentrópica mede o grau de degradação de energia de um processo real em relação ao seu correspondente ideal isentrópico. Por isso, são conhecidas como eficiências de 2ª lei.

Segunda lei da termodinâmica: Eficiência isoentrópica - Turbinas

Segunda lei da termodinâmica: Eficiência isoentrópica - Compressores

Segunda lei da termodinâmica: Eficiência isoentrópica - Bombas

Bombeamento Isentrópico Bombeamento Real

- Vapor entra em uma turbina a pressão de 1 MPa, 300°C e 50 m/s;
- O vapor sai da turbina a 150 kPa e 200 m/s;
- Determine o trabalho por unidade de massa assumindo o processo reversível adiabático; e
- No processo real, o vapor sai da turbina saturado. Determine o rendimento isoentrópico da turbina.

Analysis -

The continuity equation gives us

$$\dot{m}_e = \dot{m}_i = \dot{m}$$

From the energy equation we have

$$h_i + \frac{\mathbf{V}_i^2}{2} = h_e + \frac{\mathbf{V}_e^2}{2} + w$$

and the second law is

$$s_e = s_i$$

Analysis -

The continuity equation gives us

$$\dot{m}_e = \dot{m}_i = \dot{m}$$

From the energy equation we have

$$h_i + \frac{\mathbf{V}_i^2}{2} = h_e + \frac{\mathbf{V}_e^2}{2} + w$$

and the second law is

$$s_e = s_i$$

From the steam tables, we get

$$h_i = 3051.2 \text{ kJ/kg}, \quad s_i = 7.1228 \text{ kJ/kg K}$$

The two properties known in the final state are pressure and entropy:

$$P_e = 0.15 \text{ MPa}, \qquad s_e = s_i = 7.1228 \text{ kJ/kg K}$$

The quality and enthalpy of the steam leaving the turbine can be determined as follows:

$$s_e = 7.1228 = s_f + x_e s_{fg} = 1.4335 + x_e 5.7897$$

 $x_e = 0.9827$
 $h_e = h_f + x_e h_{fg} = 467.1 + 0.9827(2226.5)$
 $= 2655.0 \text{ kJ/kg}$

Therefore, the work per kilogram of steam for this isentropic process is found using the energy equation:

$$w = 3051.2 + \frac{50 \times 50}{2 \times 1000} - 2655.0 - \frac{200 \times 200}{2 \times 1000} = 377.5 \text{ kJ/kg}$$

Segunda lei da termodinâmica: Entropia

 Conceito relacionado com a dissipação energética e as perdas em processos de conversão energética;

• A variação permite medir a perfeição de um processo qualquer;

$$\Delta S = \left(\frac{Q}{T}\right)_{rever} + S_{gerada}$$

• Uma parcela revers lel, determinada pela troca de calor, e uma parcela irrevers lel ou gerada, de magnitude proporcional às perdas no processo;

Segunda lei da termodinâmica: Entropia

- Em sistemas adiabáticos (sem troca de calor) os processos ideais devem ser isentrópicos (sem variação de entropia), apresentando portanto S_{gerada} nula;
- Os processos reais sempre apresentam imperfeições e perdas, a entropia sempre tende a se incrementar, podendo-se afirmar que "a entropia do Universo tende para um máximo".

$$W_{perdido} = T_0.S_{qerada} = Irreversibilidade$$

• Na geração de entropia, é perdido como calor um potencial para produzir trabalho, ou seja, a energia se degrada em qualidade.

Sistema e Volume de Controle

• **Sistema:** Quantidade de matéria com massa fixa. **Calor** e **trabalho** podem atravessar a fronteira do sistema.

Figure 5.1: Sistema.

• Volume de Controle: Massa, calor e trabalho podem atravessar a superfície de controle.

Figure 5.2: Volume de Controle.

Balanço de entropia em sistemas fechados

$$\sum \frac{Q_k}{T_k} + S_{ger} = \Delta S_{Sistema} = (S_2 - S_1)$$

$$S_{ger} = \sum \Delta S = \Delta S_{Sistema} + \Delta S_{Vizinhança}$$

Balanço de entropia em volumes de controle

Taxa de transferência de entropia

Regime permanente e uma entrada e uma saída

$$0 = \sum_{k} \frac{\dot{Q}_k}{T_k} + \dot{m}(s_1 - s_2) + \dot{S}_{gerado}$$

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546