Part I (3 points each)

1.	For RSA mo	odulus <i>N</i> = 104 B. 13	.03 = 101×103, v	which can NOT D. 19	be a public exponent <i>e</i> E. None of the above					
2.	Apply Ferma	at's primality t	est on 21. Whic	h is NOT a <i>witn</i>	ess of compositeness?					
	A. 2	B. 4	C. 5	D. 8	E. None of the above					
3.	What is the	output length (in bits) of the ha	ash function SH	A-1?					
	A. 128	B. 144	C. 160	D. 192	E. None of the above					
4.	$\min_{a\neq 0}(W(a)$	+W(F(a)), wh	ere <i>a</i> is a 4-byte	-	of AES is defined by near transformation, number?					
	A. 5	B. 6	C. 7	D. 8	E. None of the above					
5.		Apply the Miller-Rabin test <i>t</i> times to an odd composite number. Which is the best estimate of the probability of finding at least one <i>witness of compositeness</i> ?								
	A. $(\frac{1}{2})^t$	B. $(\frac{3}{4})^t$	C. $1 - (\frac{3}{4})^t$	D. $1 - (\frac{1}{2})^t$	E. $1 - (\frac{1}{4})^t$					
6.	Which item B. Private ke	•		ertificate? xpiry date	•					
7.	A. SSL aims B. X509 def C. CA estab	ines a structure lishes the iden- list of the seria	annel security to e for public key tity of users, but							

8. Which statement is FALSE about Merkle-Damgård construction of hash functions? A. Use a collision-resistant compression function f with arbitrary length of input B. Add a single one bit to signal the end of a message, then pad with zeros C. The final block encodes the original length of the unpadded message in bits D. The internal state $H := f(H // m_i)$ is updated repeatedly with message block m_i E. None of the above

- 9. Which property is NOT provided by digital signature schemes?

 - A. Message confidentiality B. Message Authentication
 - C. Message integrity
- D. Non-repudiation
- E. None of the above
- 10. A cryptographic hash function should satisfy these three assumptions:
 - (a) Pre-image Resistant Given y, hard to find x such that h(x) = y
 - (b) Collision Resistant Hard to find any $x \neq x'$ such that h(x) = h(x')
 - (c) Second Pre-image Resistant Given h(x), hard to find $x' \neq x$ with h(x) = h(x')Denote "M > N" as "M is a stronger assumption than N". Which relation is correct?
 - (c) > (b) > (a)
- B. (b) > (a) > (c)
- C. (a) > (c) > (b)

D. (c) > (a) > (b)

E. None of the above

Part II (3 points each)

Represent F_{16} by polynomial representations with the irreducible $f(x) = x^4 + x + 1$. Choosing g = (0010) as a generator for F_{16} , we list all elements of F_{16} as follows.

$$\begin{array}{lll} 0 = (0000) & g^0 = (0001) & g^1 = (0010) & g^2 = (0100) \\ g^3 = (1000) & g^4 = (0011) & g^5 = (0110) & g^6 = (1100) \\ g^7 = (1011) & g^8 = (0101) & g^9 = (1010) & g^{10} = (0111) \\ g^{11} = (1110) & g^{12} = (1111) & g^{13} = (1101) & g^{14} = (1001) \end{array}$$

Consider the elliptic curve group G defined by $y^2 + xy = x^3 + g^4 x^2 + 1$ over F_{16} . There are 15 points satisfying the equation as the graph.

Let $P = (1, g^6)$ and $Q = (g^5, g^{11})$.

- The group order |G| = |11|.
- P + Q = |12|.
- -Q = |13|.
- 2P = 14
- 4P =

The formulas in Part III might help your computations.

• Factor n = 87463 with the Quadratic Sieve. Define $g(x) = x^2 - n$.

х	-1	2	3	13	17	19	29
265	1	1	1	0	1	0	0
278	1	0	1	1	0	0	1
296	0	0	0	0	1	0	0
299	0	1	1	0	1	1	0
307	0	1	0	1	0	0	1
316	0	0	0	0	1	0	0

The integers x_1 , x_2 , and b satisfy $g(265) \times g(278) \times g(x_1) \times g(x_2) \equiv b^2 \pmod{n}$.

- $\blacksquare \quad \text{If} \quad 0 < x_1 < x_2 \text{, then } x_2 = \boxed{16}.$
- If 0 < b < n, then b = 17.
- If $a \equiv 265 \times 278 \times x_1 \times x_2 \pmod{n}$ and 0 < a < n, then $a = \boxed{18}$.
- If $n = p \times q$ and 0 , $then <math>p = \boxed{19}$ and $q = \boxed{20}$.

These congruences might reduce your computational effort:

$$265 \times 307 = 81355 \equiv -6108 \pmod{n}$$

 $265 \times 316 = 83740 \equiv -3723 \pmod{n}$
 $278 \times 296 = 82288 \equiv -5175 \pmod{n}$
 $278 \times 299 = 83122 \equiv -4341 \pmod{n}$
 $3^5 \times 13 \times 17 \times 29 \equiv -16947 \pmod{n}$
 $3^4 \times 13^2 \times 17 \times 29 \equiv 14026 \pmod{n}$

x	2 3 13 17 19 29	$x^2 - n$ splits
261	X X	
262	X X	
263	XX	
264		
265	XXXX	$-2\cdot 3\cdot 13^2\cdot 17$
266	X	
267	X	
268	XX	
269	XX	
270		
271	XX X	
272	X	
273	X X	
274	X	
275	XX	
276		
277	XX	
278	X X X	$-3^3 \cdot 13 \cdot 29$
279	X X	
280	X X	
	-	

x	2 3 13 17	$19\ 29$	$x^2 - n$ splits
296	× ×		$3^2 \cdot 17$
297	Χ		
298	X		
299	XX X	Χ	$2 \cdot 3 \cdot 17 \cdot 19$
300			
301	XX		
302	X	Χ	
303	X		
304	XX		
305	XX		
306			
307	XXX	Χ	$2\cdot 3^2\cdot 13\cdot 29$
308	X		
309	X	Χ	
310	X		
311	XX		
312			
313	XX X		
314	X		
315	X		
316	X X		$3^6 \cdot 17$

• The solution to the system of congruences

$$2x \equiv 3 \pmod{7} \qquad 3x \equiv 6 \pmod{11} \qquad 4x \equiv 10 \pmod{13}$$
 is $x \equiv 21 \pmod{22}$

- Consider the RSA signature scheme with the public key n = 85 and e = 3.
 - The private key for signing is $d = \boxed{23}$.
 - Signing the message m = 4, a user obtains its digital signature s = 24.

- In a Diffie-Hellman key exchange scheme on \mathbb{Z}_{31} with the generator g = 3, Alice chooses 9 and Bob chooses 7 in private. Then Alice sends 25 to Bob, and the agreed key is 26.
- Decrypting the ciphertext c = 39 of the Rabin public-key cryptosystem $c = m \times (m+10) \pmod{187}$, a user obtains four possible corresponding plaintexts $m = 3, 20, \boxed{27}$, and $\boxed{28}$ (in increasing order).
- If a message m is divided into t blocks $m_1, m_2, ..., m_t$, then the CBC-MAC with a cipher e and a key k is derived by the process $I_1 = m_1$, $O_1 = e_k(I_1)$, $I_i = m_i \oplus \boxed{29}$, and $O_i = \boxed{30}$ for i = 2, 3, ..., t.

Part III (Write down all details of your work)

31 (5 points)

Derive arithmetic formulas of elliptic curve groups defined by $y^2 + xy = x^3 + ax^2 + b$ with $b \ne 0$ over F_{2m} .

- (a) $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two distinct points on the curve with $P_1 \neq -P_2$. If $(x_3, y_3) = P_1 + P_2$ and $s = (y_1 + y_2)/(x_1 + x_2)$, show that $x_3 = s^2 + s + x_1 + x_2 + a$ and $y_3 = s(x_1 + x_3) + x_3 + y_1$.
- (b) $P_0 = (x_0, y_0)$ is a point on the curve with $x_0 \ne 0$. If $(x_4, y_4) = 2P$, show that $x_4 = {x_0}^2 + (b/{x_0}^2)$ and $y_4 = {x_0}^2 + x_4 (y_0/x_0 + x_0 + 1)$.

32 (5 points)

As the MixColumn operation of AES, we work on polynomials of degree 3 over F_{256} . Let $a(x) = a_3(x+1)^3 + a_2(x+1)^2 + a_1(x+1) + a_0$ and

 $b(x) = b_3(x+1)^3 + b_2(x+1)^2 + b_1(x+1) + b_0$ be two polynomials with a_i , b_i in F_{256} .

- (a) If $a(x)b(x) \equiv 1 \pmod{(x^4+1)}$, show that
 - (i) $b_0 = a_0^{-1}$
 - (ii) $b_1 = a_1 b_0 a_0^{-1}$

(Also $b_2 = (a_2 b_0 + a_1 b_1) a_0^{-1}$ and $b_3 = (a_3 b_0 + a_2 b_1 + a_1 b_2) a_0^{-1}$, but you do not have to show them.)

(b) Find all *self-inverse* polynomials. That is, indicate the conditions on a(x) such that $a(x)^2 \equiv 1 \pmod{(x^4 + 1)}$. Prove your claim.

Cryptography

Midterm Exam II

2008/06/02

Name: _____ Student ID number: _____

1	2	3	4	5	6	7	8	9	10
1	.1	12		13		14		15	
1	.6	1	7	18		19		20	
21		2	22		23		4	25	
26		2	7	2	8	2	9	3	0

31 32

Solution

1	2	3	4	5	6	7	8	9	10
C	D	C	A	Е	В	C	A	A	E
11		12		13		14		15	
16		(g^{10})	$, g^{8})$	(g^5,g^3)		(0, 1)		O (Infinity)	
1	6	1	7	18		19		20	
307 (316)		28052(77542)		34757(9921)		149		587	
2	21		22		3	2	4	25	
607		10	01	4	3	64		29	
26		2	7	28		29		30	
27		15	57	174		O_{i-1}		$e_k(I_i)$	

32

⁽b) $a(x) = a_3(x+1)^3 + a_2(x+1)^2 + 1$ with a_3 , a_2 in F_{256} , or $a(x) = b_3 x^3 + b_2 x^2 + b_3 x + (b_2+1)$ with b_3 , b_2 in F_{256} .