Graphentheorie II

Martin Thoma, Tobias Sturm

14. Mai 2012

Inhaltsverzeichnis

- Minimale Spannbäume
 - Algorithmus von Prim
 - Algorithmus von Kruskal
- Starke Zusammenhangskomponenten
 - Starke Zusammenhangskomponenten
 - Worum geht es?
 - Brücke
 - Artikulationspunkt
 - Zweifachverbundener Graph
 - Tiefensuche
- Färbung von Graphen
- 4 Kreise
 - Eulerkreisproblem
 - Hamiltonkreisproblem

- Minimale Spannbäume
 - Algorithmus von Prim
 - Algorithmus von Kruskal
 - Starke Zusammenhangskomponenten

Starke Zusammenhangskomponenten

- Worum geht es?
- Brücke
- Artikulationspunkt
- Zweifachverbundener Graph
- Tiefensuche
- Eulerkreisproblem
- Hamiltonkreisproblem

Färbung von Graphen

Algorithmus von Prim Prim's algorithm

Algorithmus von Prim Prim's algorithm

Algorithmus von Prim Prim's algorithm

Färbung von Graphen

Algorithmus von Prim Prim's algorithm

Färbung von Graphen

- Algorithmus von Prim
- Algorithmus von Kruskal
- 2 Starke Zusammenhangskomponenten
 - Starke Zusammenhangskomponenten
 - Worum geht es?
 - Brücke
 - Artikulationspunkt
 - Zweifachverbundener Graph
 - Tiefensuche
 - Eulerkreisproblem
 - Hamiltonkreisproblem

Starke Zusammenhangskomponenten Strongly connected components

Starke Zusammenhangskomponente

Ein induzierter Teilgraph G[U] für eine Teilmenge $U\subset V$ heißt starke Zusammenhangskomponente von G, falls G[U] stark zusammenhängend ist und kein stark zusammenhängender induzierter Teilgraph von G existiert, der G[U] echt enthält.

Färbung von Graphen

Worum geht es?

Gegeben ist ein Graph G(V, E):

Frage: Gibt es Teilgraphen G'(V', E') mit $V' \subset V$ und $E' \subset E$, sodass gilt: $\forall a, b \in V$: $\exists \mathsf{Pfad}$ von a nach $\mathsf{b} \in G$

Antwort: Ja, gibt es:

Starke Zusammenhangskomponenten

0000000

Brücke Bridge

Artikulationspunkt

Articulation vertex or cut vertices

Auch "Gelenkpunkt"genannt

Zweifachverbundener Graph Biconnected graph

0000000

Starke Zusammenhangskomponenten

Tiefensuche Tiefensuche

Tiefensuche

.

Färbung von Graphen

Färbung von Graphen Graph coloring

- Ist für 2 entscheidbar
- Für 3 schon schwer
- blub

- Algorithmus von Prim
- Algorithmus von Kruskal
- Starke Zusammenhangskomponenten
- Worum geht es?
- Brücke
- Artikulationspunkt
- Zweifachverbundener Graph
- Tiefensuche

- Eulerkreisproblem
- Hamiltonkreisproblem

Eulerkreisproblem Eulerian path

Hamiltonkreisproblem Hamiltonian path

