

Specification of GD852P Hardware

Version: 1.0

Draw: Wang Huazhang

Check : Zhang Zhenpeng

Approval: Yuan Xiaoliu

INVENTEC APPLIANCES(JIANGNING) Corporation

Version 1.0 2008/2/12 Page 1/ 17

Content

1	Introd	uction of Function	3
2	Versio	on	4
3	The R	equirement of Design of GD852P Hardware	5
4	The S	cheme of GD852P Hardware	6
5	The D	escription of Hardcore of GD852P	7
	5.1	CPU MT6223	7
	5.2	STORAGE MODULE	8
	5.3	GSM SPECIFICATION	9
	5.4	Audio Controller Module	10
6	The D	escription of Circuit of GD852P	11
	6.1	CPU	11
	6.2	LCD Screen	11
	6.3	Scanning Keyboard	12
	6.4	Storage	12
	6.5	Audio Controller	12
	6.6	Scanning Keystroke	12
7	PIN A	SSIGN AND FUNCTION	13

1. The Introduction of Product

This Product is a type of GSM Telephones, including 96*64 Monochrome LCD Screen $\,^{\circ}$

2. Version

1. 2007/11/7 V1.0

Version 1.0 2008/2/12 Page 4/ 17

3. The Requirement of Design of GD852P Hardware

3.1 Power Supply

The voltage of CPU is 1.8V , and the voltage of Digital I/O I/F is 2.8V ,

3.2 Screen:

96*64 Monochrome LCD Screen.

3.3 Storage:

4M×16bits NOR Flash+2M×16bits SRAM Storage(TV00560002DDGB TOSHIBA)

3.4CPU

High-Speed 32 Bit Micro-Controller MT6223 (MediaTek)

3.5 GSM Module

Dual-Frequency Wireless Technique (MTK)

4.The Scheme of GD852P Hardware

Version 1.0 2008/2/12 Page 6/ 17

5. The Description of Hardcore of GD852P

5.1 CPU MT6223

- 5.1.1 MT6223 is a kind of high-speed 32 Bit Micro-Processing wafer.
- 5.1.2 characteristic:
 - 5.1.2.1 Integrated voice-band, audio-band and base-band analog front ends
 - 5.1.2.2 TFBGA 9mm×9mm, 224-ball, 0.5 mm pitch package
 - 5.1.2.3 ARM7EJ-S 32-bit RISC processor
 - 5.1.2.4 High performance multi-layer AMBA bus
 - 5.1.2.5 Java hardware acceleration for fast Java-based games and applets
 - 5.1.2.6 Operating frequency: 26/52 MHz
 - 5.1.2.7 Dedicated DMA bus
 - 5.1.2.8 7 DMA channels
 - 5.1.2.9 320K bits on-chip SRAM
 - 5.1.2.10 On-chip boot ROM for Factory Flash Programming
 - 5.1.2.11 Watchdog timer for system crash recovery
 - 5.1.2.12 3 sets of General Purpose Timer
 - 5.1.2.13 Circuit Switch Data coprocessor
 - 5.1.2.14 Division coprocessor

Version 1.0 2008/2/12 Page 7/ 17

5.2 Storage Module:

TV00560002DDGB

Characteristic:

- 5.2.1 Content of FLASH: 4M×16bits
- 5.2.2 Working Voltage of Write/Read: 2.7-3.3V
- 5.2.3 Block eraser architecture: 8×4Kwords/127×32Kwords
- 5.2.4 Bank architecture 16Mbits × 4Banks
- 5.2.5 Boot block architecture: top boot block
- 5.2.6 Erase/Program cycles: 100, 000 cycles typ
- 5.2.7 Ultra Low Power Consumption:
 - -Current for Reading : 55mA maximum
 - —Page Read operating: 5mA maximum
 - Standby Module : 10uA maximum

5.3 GSM Specification

On the downlink path, the sub-block between RX mixed-signal module and Baseband Serial Ports is RX Path. It mainly

consists of two parallel digital FIR filter with programmable tap number, two sets of multiplexing paths for loopback modes, interface for RX mixed-signal module, Interference Detection Circuit, I/Q Gain Mismatch compensation circuit, and interface for Baseband Serial Ports.

The purpose of the uplink path inside Baseband Front End is to sink TX symbols, from DSP, then perform GMSK modulation on them, then perform offset cancellation on I/Q digital signals, and finally control TX mixed-signal module to make D/A conversion on I/Q signals out of GMSK Modulator with offset cancellation. Accordingly, the uplink path is composed of uplink parts of Baseband Serial Ports, GSM Encryptor, GMSK Modulator and several compensation circuits including I/Q DC offset, I/Q Quadrature Phase Compensation, and I/Q Gain Mismatch.

General

	Specification			
	GSM850 TX:824~849MHz RX:869~894MHz			
Frequency Range TDMA and AMPS	PCS1900 TX:1850~1910MHz RX:1930~1990MHz			
Channel Spacing	200KHz			
	GSM850: 124 Channels(128~251),			
Channels	PCS1900: 299 Channels(512~810)			
	0.3 GMSK Modulation			
Transmitter Error Vector Module	Phase rms error: less than 5 degree;			
Transmitter error vector Module	Phase peak error :less than 20 degree;			
Duplex Spacing	GSM850: 45MHz; PCS1900: 80MHz			
Frequency Stability	± 0.1ppm			
	DC input: 5.0Vdc +/-10% 500mA			
Operating Voltage	Battery Operation Voltage: Nominal 3.6Vdc			
Transmit Current (Talk mode)	GSM850: Typical 300mA			
	PCS1900: Typical 230mA			

Version 1.0 2008/2/12 Page 9/ 17

Transmitter

	Specification			
RF Power Output	GSM850 (33dBm) (power class4)			
Kr Power Output	PCS1900 (30dBm) (power class1)			
Output Impedance	50ohm			
Harmonic and Spurious Emissions	Radiated spurious emissions are attenuated below the maximum level of emission of the carrier frequency by at least43+10[log10(mean output power in watts)]			

Receiver

	Specification			
RX Bit error rate	Less than 2.4 % at -102 dBm (GSM850)			
KA DIL EITOI Tale	Less than 2.4 % at -102 dBm (PCS1900)			
Channel Han Time	576.92 usec (TDMA slot)			
Channel Hop Time	4.615msec (TDMA frame)			

5.4 Audio Controller Module

5.4.1 Audio

OCP7190 Charactistic

5.4.1.1 Working Voltage:2.2V~5.5V

5.4.1.2 Vdd: 5V,217Hz ;PSRR:62dB

5.4.1.3 Current for Turnoff: 0.1uA

5.4.1.4 Overheat Protector

5.4.1.5 Outer Adjustable Controller

5.4.1.7 BTL output can drive capacitive loads

6. The Description of Circuit of GD852P

The circuit of GD852P includes:

- 1. CPU Section
- 2. LCD Section
- 3. Keyboard Induction Section
- 4. Storage Section.
- 5. Audio Controller Section

6.1 CPU Section.

Power and Supply Management:

2.8V to 5.5V Input Range

Charger Input up to 8V

Seven LDOs Optimized for Specific GSM Sub-systems; One LDO for RF transceiver

Two Open-Drain Output Switches to Control the LED and Vibrator

Three NMOS switches to control RGB LEDs

6.2 LCD Section

6.3.1 LCD

96*64 Monochrome LCD Screen

Two LED Light

6.3 Keyboard Scanning Section

MT6223 Special Interface is used for output and input of Keyboard Scanning. The Keystroke includes 0~9, *,#,OK,NO,UP,DOWN,LEFT,RIGHT et al •

6.4 Storage Section

4M×16bits NOR Flash+2M×16bits SRAM Storage

6.5 Audio Controller Section

MT6223 Inner Compositive Coder/Decoder are adopted as Digital/Analogue, Analogue / Digital Coder/ Decoder.

6.6 Keystroke Scanning Section

7. Pin Assign and Function

	Assign and Fur	Pin		Connection	Function
HA Part	Pin Name JRTCK	NO U8	1/0	Connection JRTCK	Function ITAC test part returned clock output
_			0		JTAG test port returned clock output
	JTRST_B	R8	ı	JTRST_B	JTAG test port reset input
JTAG	JTCK	U9	ı	JTCK	JTAG test port clock input
port	JTDI	P8	ı	JTDI	JTAG test port data input
-	JTMS	Т9	I	JTMS	JTAG test port mode switch
-	JTDO	R9	0	JTDO	JTAG test port data output
	BPI_BUS9	U5	Ю		
=	BPI_BUS8	U4	Ю		
	BPI_BUS7	T4	Ю	RFVCOEN	RFVCO ENABLE
	BPI_BUS6	R4	Ю		
RF Parallel	BPI_BUS5	P3	Ю	DCS_ON	DCS ON
Control Unit	BPI_BUS4	Т3	Ю	PA_EN	PA ENABLE
Office	BPI_BUS3	U3	0		
	BPI_BUS2	R3	0		
	BPI_BUS1	T2	0	LB_TX	GSM850 SWITCH
	BPI_BUS0	R2	0	HB_TX	DCS1900 SWITCH
RF Serial	BSI_DATA	R5	Ю	SYNTHDATA	SYNTH DATA
Control	BSI_CLK	U6	0	SYNTHCLK	SYNTH CLOCK
Unit	BSI_CS0	T5	0	SYNTHEN	SYNTH ENABLE
PWM Interface	PWM/GPIO25	P7	Ю	DISP_LIGHT	LCD BACKLIGHT CONTROL
	LCD_D8	T10	Ю	LCD_CLK	LCD CLOCK
-	LCD_D7	R10	Ю	LCD_SI	LCD DATA
	LCD_D6	P10	Ю	LCD_A0	LCD DATA CO
Parallel	LCD_D5	U10	Ю		
LCD Interface	LCD_D4	U11	Ю		
	LCD_D3	T11	Ю		
_	LCD_D2	R11	Ю		
	LCD_D1	U12	Ю		
-	LCD_D0	T13	Ю		
Serial LCD/PM	LCD_RSTB/ GPIO8	T12	0	LCD_RST	LCD RESET
IC	LCD_WR_B	R12	0		
Interface	LCD_RD_B	U13	0		

Version 1.0 2008/2/12 Page 13/17

		Ť		Zi Haluwai	
	LCD_A0	R13	0		
	LCD_CS0_B/ GPIO13	R14	0	LCD_CS	LCD CS
	LCD_CS1_B	U14	0		
SIM Card	SIMIO	B5	Ю	SIMDATA	SIM DATA
Interface	SIMCLK	D6		SIMCLK	SIM CLOCK
	SIMRST	C6		SIMRST	SIM RESET
Dedicate d GPIO —	SYSRST_B	T8	I	/SYSRST	SYSTEM RESET
Interface	WATCHDOG	T14	0	/WATCHDOG	WATCHDOG
	KCOL0	A13	I	KCOL0	KCOL0
	KCOL1	B14	I	KCOL1	KCOL1
	KCOL2	A14	I	KCOL2	KCOL2
	KCOL3	B15	I	KCOL3	KCOL3
Keypad	KCOL4	A15	I	KCOL4	KCOL4
Interface	KROW0	C12	0	KROW0	KROW0
	KROW1	B12	0	KROW1	KROW1
	KROW2	A12	0	KROW2	KROW2
	KROW3	C13	0	KROW3	KROW3
	KROW4	B13	0	KROW4	KROW4
	EINT0	D12	I	INT_HOOK	INT HOOK
External	EINT1	B11	I		
Interrupt Interface	EINT2	C11	I		
	EINT3	D11	I		
External	ED0	T16	Ю	ED0	ED0
Memory	ED1	U17	Ю	ED1	ED1
Interface	ED2	T17	Ю	ED2	ED2
	ED3	P14	Ю	ED3	ED3
	ED4	R16	Ю	ED4	ED4
	ED5	R17	Ю	ED5	ED5
	ED6	P17	Ю	ED6	ED6
	ED7	P16	Ю	ED7	ED7
	ED8	P15	Ю	ED8	ED8
	ED9	N17	Ю	ED9	ED9
	ED10	N16	Ю	ED10	ED10
	ED11	N15	Ю	ED11	ED11
	ED12	M17	Ю	ED12	ED12
	ED13	M16	Ю	ED13	ED13
	ED14	M15	Ю	ED14	ED14
	ED15	L17	Ю	ED15	ED15

Version 1.0 2008/2/12 Page 14/ 17

				o opodinoation
/ERD_B	L16	0	/ERD	/ERD
/EWR_B	L15	0	/EWR	/EWR
/ECS0_B	L14	0	/ECS0_FLASH	ECS0 FLASH
/ECS1_B	K17	0	/ECS1_SRAM	ECS1 SRAM
/ECS2_B	K16	0		
/ELB	K14	0	/ELB	ELB
/EUB	J17	0	/EUB	EUB
EA0	J16	0	EA0	EA0
EA1	J15	0	EA1	EA1
EA2	J14	0	EA2	EA2
EA3	H17	0	EA3	EA3
EA4	H16	0	EA4	EA4
EA5	H15	0	EA5	EA5
EA6	G17	0	EA6	EA6
EA7	G16	0	EA7	EA7
EA8	G15	0	EA8	EA8
EA9	F17	0	EA9	EA9
EA10	F16	0	EA10	EA10
EA11	F15	0	EA11	EA11
EA12	E17	0	EA12	EA12
EA13	E16	0	EA13	EA13
EA14	E15	0	EA14	EA14
EA15	E14	0	EA15	EA15
EA16	D17	0	EA16	EA16
EA17	D16	0	EA17	EA17
EA18	D15	0	EA18	EA18
EA19	D14	0	EA19	EA19
EA20	C17	0	EA20	EA20
EA21	C16	0	EA21	EA21
EA22	C14	0	EA22	EA22
EA23	B17	0	EA23	EA23
EA24	B16	0		
EA25	P13	0		
URXD1	C7	I	URXD1	URXD1
UTXD1	C10	0	UTXD1	UTXD1
/UCTS1	F10	ı		
/URTS1	E12	0		
AU_VIN1_P	K2		MICP1	MICP1

Version 1.0 2008/2/12 Page 15/ 17

		GDC	3321 Haluwale 3	pecinication
	AU_VIN1_N	K1	MICN1	MICN1
Analog	AU_VIN0_N	J2	MICN0	MICN0
Interface	AU_VIN0_P	J1	MICP0	MICP0
	AU_VREF_PO	H4		
	AU_VREF_NI	НЗ		
	AU_MICBIAS_N	H2	MICBIASN	MICBIASN
	AU_MICBIAS_P	G3	MICBIASP	MICBIASP
	AU_OUT0_P	G2	SPKP0	RECEIVER
	AU_OUT0_N	G1	SPKN0	RECEIVER
	AU_MOUTR	F1	SPKN1	SPKR
	AU_MOUTL	F2	SPKP1	SPKR
	BDLAQP	L1	QP	QP
	BDLAQN	L2	QN	QN
	BDLAIN	L3	IN	IN
	BDLAIP	L4	IP	IP
Supply	VDDK	N4	VCORE	VCORE
Voltages -	VDDK	P9	VCORE	VCORE
	VDDK	D9	VCORE	VCORE
	VDDK	H14	VCORE	VCORE
-	VDD33	D13	VDD	VDD
	VDD33	P4	VDD	VDD
	VDD33	P5	VDD	VDD
-	VDD33_EMI	P12	VMEM	VMEM
	VDD33_EMI	N14	VMEM	VMEM
	VDD33_EMI	M14	VMEM	VMEM
	VDD33_EMI	G14	VMEM	VMEM
	VDD33_EMI	F14	VMEM	VMEM
	VSS33	K7	GND	GND
	VSS33	L7	GND	GND
	VSS33	K8	GND	GND
	VSS33	J11	GND	GND
	VSS33	J7	GND	GND
	DGND	H9	GND	GND
	DGND	H7	GND	GND
	DGND	H11	GND	GND
	DGND	H10	GND	GND
	AVDD_MBUFL	F4	AVDD	AVDD
		1 1	i I	

Version 1.0 2008/2/12 Page 16/ 17

AVDD_GSMRFTX	J4	AVDD	AVDD
AVDD_REF	E1	AVDD	AVDD
AVDD_PLL	M4	AVDD	AVDD
AVSS_MBUFL	G4	GND	GND
AGND_AFE	H1	GND	GND
AVSS_AFE	J3	GND	GND
AGND_RFE	K3	GND	GND
AVSS_GSMRFTX	M1	GND	GND
AVSS_RFE	P1	GND	GND
AVSS_PLL	T1	GND	GND
AVDD_RTC	B10	VRTC	VRTC

Version 1.0 2008/2/12 Page 17/ 17