Therapeutic Drug Monitoring

Hereafter TDM, you're welcome

- Some drugs have different therapeutic and toxic doses (hard to OD on THC)
 - > Therapeutic Range
 - Some drugs have narrow differences between therapeutic and toxic
- Drug-drug interactions for complex therapies
- Disease States may change levels

Definitions

- Pharmacodynamics
 - > What the drugs do to the body
- Pharmacokinetics
 - What the body does to the drug
- CLADME
 - Compliance
 - Liberation
 - > Absorption
 - > Distribution
 - Metabolism
 - Excretion

Compliance

- Single largest reason for insufficient drug levels
 - Patients deciding to change dosage
 - Expensive drugs
 - Not seeing effects quickly enough
 - Complex dosage regimen

Liberation

- Release of drug from dosage form
 - > Tablets, capsules, syrup etc is not immediately absorbable
 - Liberation allows for absorption of active compounds

Absorption

- Different depending on route of administration
 - Oral, IM, IV, topical, suppository
 - Factors affecting absorption
 - Solubility
 - Stability/pH
 - Drug-drug interactions
 - Nutritional status

Absorption

- If it has to go past the liver only some makes it
 - Bioavailability inversely related to hepatic extraction rate
 - > Small intestine portal vein liver

Absorption

- A brief reminder about pH
 - > pKa = ½ species is protonated
 - Above pKa drug isn't protonated
 - Below pKa drug is protonated
- In order to cross lipid bilayers, drugs must be UNCHARGED

Examples

- Aspirin (a weak acid)
 - At low pH is protonated
 - Neutral
 - Absorbed in the stomach
- Morphine (weak base)
 - At low pH is protonated
 - + charge
 - Cannot be absorbed in stomach

- Binding to plasma proteins
 - Bound drugs exert no effect
 - > Free drugs are active drugs!
 - Different drugs have different affinity for proteins
 - Disease states will affect this process

Capillary pores

	Pore diameter (Å)	
Intestinal epithelium	4	
Capillary endothelium	40-80	
Muscle capillaries	60	
Glomerular capillaries	75-100	
Glomerular endothelium	1000	
Liver capillaries	1000	

Perfusion Rates where does most of your blood go?

Organ	Perfusion rate	Percent of
	(mL/min/mL of tissue)	cardiac output
Bone	0.02	5
Brain	0.5-0.55	14-15
Fat	0.01-0.03	2-4
Heart	0.6-0.7	4
Kidneys	4.0-4.5	22-24
Liver	0.8-0.95	25-27
Muscle	0.025-0.030	15
Skin	0.04-0.05	5-6

- Recap of distribution
 - Lipid solubility
 - Must cross membranes
 - pH
 - Capillary permeability
 - Blood perfusion
 - > Volume of distribution
 - $V_{cl} = D/C_{tl}$
 - D= dose in mg/g
 - C_t= concentration in mg/L or g/L

Metabolism

- Liver contains enzymes
 - Converts non-polar drug to polar contents of urine
 - Phase I: Modify Chemical Structure
 - Phase II: Conjugate to another species
 - Phase III: Take over the world
 - Metabolism affected by:
 - Age, weight, gender, genetics, disease, GI disorder, nutrition, other drugs

Drug vs. Drug

- Every drug has its own binding affinity for respective enzymes
 - Some drugs share enzymes (sharing is caring!)
 - This can lead to large amounts of the drug with lower affinity building up due to slowed metabolism

Elimination

- Elimination of the actual drug
 - Only the free drug can be filtered
 - Hitching a ride on albumin is like hiding in the laundry cart to escape prison
 - Some drugs can be actively secreted
 - Some drugs can be reabsorbed by the tubules
- Polar conjugates are easily cleared by the kidney

Elimination

- Kinetics is back!
 - LOW drug concentration
 - Elimination depends upon drug concentration
 - ½ life is constant
 - Occurs when only some of the enzymes are occupied

First Order Elimination

Concentration vs. time

Concentration falls exponentially with time

LOG Concentration vs. time

Log of concentration is linear

Elimination

- Kinetics is back!
 - > HIGH drug concentration
 - Elimination is independent of drug concentration
 - ½ decreases with decreasing concentration
 - Common with drugs that are extensively metabolized
 - Enzymes become saturated, limited cofactors available

Zero Order Elimination

Concentration vs. time

Zero order plot is linear Zero order plot is **not**

LOG Concentration vs. time

linear

Reality of Elimination

- Combination of zero

 first order elimination
 - > Start out high, go to low

The Full Picture

What is the goal?

- Steady state kinetics
 - > Rate in = rate out
 - Usually take 4-7 half-lives
 - Not actually steady, but it bounces between 2 points

- Why do TDM?
 - > ID non-compliance
 - Prevent OD/UD
 - Maximize therapeutic effect
 - Unpredictable dose/response relationship
 - Very toxic drug
 - Optimize dose regimen, control for physiological differences
 - Protein binding
 - Renal function
 - Hepatic function

- Therapeutic Drug Ranges
 - Aka Therapeutic index
 - Ratio between toxic dose and therapeutic dose
 - > Therapeutic Range= $\frac{TD 50}{ED_{50}}$

Digoxin

- Cardiac glycoside derived from digitalis
 - Increases strength of cardiac contraction
 - Treats CHF
 - Measure 8-10 hours after dose for peak
 - Most drugs are 2-3 hours
 - Digoxin sequesters inside myocytes
 - Digibind
 - Antidote: Ovine Anti-Digoxin
 - Only free-digoxin should be ordered

- Quinidine (antiarrhythmic)
 - > Sulfate = immediate 2 hrs
 - > Gluconate = slow release 4-5hrs
 - Cause nausea, vomiting, abdominal discomfort
 - Usually only need to make sure it is at least therapeutic

- Procainamide (antiarrhythmic)
 - Rapidly absorbed ~1 hr
 - > N-acetylprocainamide
 - Hepatic metabolite, still antiarrhythmic
 - Must take into account this metabolite
- Disopyramide(antiarrhythmic)
 - Used when adverse effects found to quinidine
 - Patients with low GFR will be extra slow to clear

- Aminoglycosides (gram antibiotic)
 - Next level antibiotics (bring out the big guns)
 - Gentamicin, tobramycin, amikacin, kanamycin
 - > Nephrotoxic, ototoxic
 - Some irreversible
 - Not well absorbed from GI tract
 - IV and IM administration
 - Peaks AND trough measured

- Vancomycin (gram + antibiotic)
 - > Glycopeptide (GPC and bacilli)
 - Poor GI absorption, IV administration
 - Some toxic effects occur in therapeutic range!
 - Red Man Syndrome
 - Mast cell degranulation (no IgE)
 - Nephrotoxic, ototoxic
 - Usually only trough measured

- Phenobarbital (anti-seizure)
 - > Slow oral absorption ~ 10 hrs
 - Compromised renal or hepatic patients will be slow to eliminate
 - Only trough levels usually taken
 - Downiness, fatigue, depression, reduced mental capacity
 - Induces MFO system, up dosage after 2 weeks
 - Primidone- Inactive prodrug, you make the phenobarbital

- Phenytoin (anti-seizure) Dilantin
 - Variable GI absorption
 - Variable protein binding capacity too
 - Easily displaced by other drugs
 - > Odd side-effects
 - Hirsutism, gingival hyperplasia, Vit D & folate def.
 - > MFO inducer

- Valproic acid (anti-seizure) Depakote
 - Rapid and complete absorption
 - Many drug-drug interactions
 - Nausea, lethargy, and weight gain
 - Pancreatitis, hallucination, hyperammonemia with further increased levels
- Carbamazepine (anti-seizure) Tegretol
 - > Induces own metabolism
 - Diverse Side effects (leukopenia, vertigo, rash)

- Gabapentin (anti-seizure)
 - > Bioavailability decreases with antacid use
- Levetiracetam (anti-seizure)
 - Not usually monitored unless pregnant
- Oxcarbazepine (anti-seizure)
 - > Prodrug metabolized to licarbazepine

- Lithium (anti-mania)
 - Ingested as salt (carbonate) Li₂CO₃
 - Distributes throughout all water-based compartments
 - May cause lethargy, speech difficulty, weakness
 - With more, rigidity, seizures, coma
 - > ISE, flame emission photometry, AAS

- Tricyclic Antidepressants (guess)
 - Original anti-depressants
 - Amitriptyline, doxepin, imipramine most important
 - Imipramine → Desipramine (also active)
 - Amitriptyline

 Nortriptyline (also active)
 - Effects not seen for 2-4 weeks
 - Drowsiness, constipation, blurred vision
 - Seizure, arrhythmia, unconsciousness at higher dose
 - Polyclonal antibodies will detect many TCAs
 - Total TCAs

- Clozapine (antipsychotic)
 - > Treatment-refractory schizophrenia
 - Check for compliance, altered pharmacokinetics
- Olanzapine (antipsychotic)
 - Schizophrenia, acute mania
 - Men and smokers tend to metabolize faster

- Cyclosporine (immunosuppressant)
 - > Absorption of cyclosporine between 5-50%
 - TDM important to establish dose
 - Cyclosporine is sequestered into RBCs
 - This is done in temperature dependent manner
 - Instead of trying to make sure we keep it a certain temp, we just test whole blood
 - Heart, liver, pancreas Tx require highest levels

- Tacrolimus (FK-506)
 - Discovered in fungus from Japan
 - Thought to have low toxicity
 - Whoops...
 - Nephrotoxicity similar to cyclosporine
 - Metabolic products eliminated into bile

- Sirolimus (immune suppressant) rapamycin
 - Discovered on Rapa Nui
 - Largely variable both intra&inter-individual
- Mycophenolic acid (immune suppressant)
 - > Lymphocyte proliferation inhibitor
 - Supplement for renal transplant

- Methotrexate (antineoplastic)
 - Leucovorin used to rescue patients
 - > MTX inhibits DNA synthesis
 - Leucovorin reverses actions of MTX, if not done cytotoxicity will affect all cells