Gradual Typing from a Categorical Perspective

Harley Eades III and Michael Townsend

June 2016

Abstract

TODO

1 Introduction

TODO

2 Categorical Model

Definition 1. Suppose C is a category. Then an object A is a **retract** of an object B if there are morphisms $i:A \longrightarrow B$ and $r:B \longrightarrow A$ such that the following diagram commutes:

Definition 2. An untyped λ -model, (C, ?, split, squash), is a cartesian closed category C with a distinguished object ? and two morphisms $\text{squash}: (? \rightarrow ?) \longrightarrow ?$ and $\text{split}: ? \longrightarrow (? \rightarrow ?)$ making the object $? \rightarrow ?$ a retract of ?.

Theorem 3 (Scott [1980]). An untyped λ -model is a sound and complete model of the untyped λ -calculus.

Definition 4. An object \mathbb{N} of a category \mathcal{C} with a terminal object 1 is a **natural number object** (NNO) if and only if there are morphisms $z:1 \longrightarrow \mathbb{N}$ and $s:\mathbb{N} \longrightarrow \mathbb{N}$ such that for any other object A and morphisms $z':1 \longrightarrow A$ and $s':A \longrightarrow A$ there is a unique morphism $u:\mathbb{N} \longrightarrow A$ making the following diagram commute:

Definition 5. A gradual λ -model, $(\mathcal{T},\mathcal{C},?,\mathsf{T},\mathsf{split},\mathsf{squash},\mathsf{box},\mathsf{unbox})$, where \mathcal{T} and \mathcal{C} are cartesian closed categories with NNOS, $(\mathcal{C},?,\mathsf{split},\mathsf{squash})$ is an untyped λ -model, $\mathsf{T}:\mathcal{T}\longrightarrow\mathcal{C}$ is a cartesian closed embedding – a full and faithful cartesian closed functor that is injective on objects and preserves the NNO – and for every object, A, of \mathcal{T} there are morphisms $\mathsf{box}_A: TA\longrightarrow ?$ and $\mathsf{unbox}_A:?\longrightarrow TA$ making TA a retract of ?.

3 Grady

References

Dana Scott. Relating theories of the lambda-calculus. In *To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism (eds. Hindley and Seldin)*, pages 403–450. Academic Press, 1980.

A The Complete Spec of Grady

```
termvar, x, z
index, k
                                  term
                                     variable
               triv
                                     unit
               squash
                                     injection of the retract
               split
                                     surjection of the retract
               box t
                                     generalize to the untyped universe
               \mathsf{unbox}_T
                                     specialize the untyped universe to a specific type
               \lambda x : A.t
                                     \lambda-abstraction
               t_1 t_2
                                     function application
               (t_1, t_2)
                                     pair constructor
               \mathsf{fst}\ t
                                     first projection
               \mathsf{snd}\; t
                                     second projection
                                     successor function
               \mathrm{succ}\,t
               0
                                     zero
               (t)
                            S
h
                                  head-normal forms
               triv
               split
               squash
               \mathsf{box}\,t
               \mathsf{unbox}_T
               \lambda x : A.t
```

ZERO

 $\overline{\Gamma \vdash \mathsf{split} : ? \to (? \to ?)}$

 $\overline{\Gamma \vdash \mathsf{triv} : 1}$

 $\overline{\Gamma \vdash 0 : \mathbb{N}}$

$$\frac{\Gamma \vdash t : \mathbb{N}}{\Gamma \vdash \operatorname{succ} t : \mathbb{N}} \quad \operatorname{SUCC}$$

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash (t_1, t_2) : T_1 \times T_2} \quad \operatorname{PAIR}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash \operatorname{fist} t : T_1} \quad \operatorname{FST}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash \operatorname{snd} t : T_2} \quad \operatorname{SND}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash \operatorname{snd} t : T_2} \quad \operatorname{SND}$$

$$\frac{\Gamma, x : A_1 \vdash t : A_2}{\Gamma \vdash \lambda x : A_1 \cdot t : A_1 \to A_2} \quad \operatorname{LAM}$$

$$\frac{\Gamma \vdash t_1 : A_1 \to A_2 \quad \Gamma \vdash t_2 : A_1}{\Gamma \vdash t_1 t_2 : A_2} \quad \operatorname{APP}$$

$$\boxed{\Gamma \vdash t : T} \quad \operatorname{Thunbox}_T (\operatorname{box} t) \leadsto t : T} \quad \operatorname{RD_RETRACT}$$

$$\frac{\Gamma \vdash t : T}{\Gamma \vdash \operatorname{unbox}_T (\operatorname{box} t) \leadsto \operatorname{wrong} : \operatorname{TypeError}} \quad \operatorname{RD_TWRONG}$$

$$\frac{h \neq \operatorname{box} t}{\Gamma \vdash \operatorname{unbox}_T t \leadsto \operatorname{wrong} : \operatorname{TypeError}} \quad \operatorname{RD_HWRONG}$$

$$\frac{h \neq \operatorname{box} t}{\Gamma \vdash \operatorname{unbox}_T t \leadsto \operatorname{unbox}_T t' : T} \quad \operatorname{RD_UNBOX}$$

$$\frac{\Gamma \vdash t : ? \to ?}{\Gamma \vdash \operatorname{split} t (\operatorname{squash} t) \leadsto t : ? \to ?} \quad \operatorname{RD_LTRACT}$$

$$\frac{\Gamma \vdash t \leadsto t' : ?}{\Gamma \vdash \operatorname{split} t \leadsto \operatorname{split} t' : ? \to ?} \quad \operatorname{RD_SPLIT}$$

$$\frac{\Gamma \vdash t : A_1 \to A_2 \quad x \notin \operatorname{FV}(t)}{\Gamma \vdash \lambda x : A_1 \cdot A_2 \quad x \notin \operatorname{FV}(t)} \quad \operatorname{RD_SPUASH}$$

$$\frac{\Gamma \vdash t : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \operatorname{fist} (t_1, t_2) \leadsto t_1 : T_1} \quad \operatorname{RD_PROJ1}$$

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \operatorname{snd} (t_1, t_2) \leadsto t_2 : T_2} \quad \operatorname{RD_PROJ2}$$

$$\frac{\Gamma \vdash t : T_1 \times T_2}{\Gamma \vdash (\mathsf{fst}\ t, \mathsf{snd}\ t) \leadsto t : T_1 \times T_2} \quad \text{RD_ETAP}$$

$$\frac{\Gamma, x : A_1 \vdash t \leadsto t' : A_2}{\Gamma \vdash \lambda x : A_1.t \leadsto \lambda x : A_1.t' : A_1 \to A_2} \quad \text{RD_LAM}$$

$$\frac{\Gamma \vdash t_1 \leadsto t_1' : A_1 \to A_2 \quad \Gamma \vdash t_2 : A_1}{\Gamma \vdash t_1 t_2 \leadsto t_1' t_2 : A_2} \quad \text{RD_APP1}$$

$$\frac{\Gamma \vdash t_1 : A_1 \to A_2 \quad \Gamma \vdash t_2 \leadsto t_2' : A_1}{\Gamma \vdash t_1 t_2 \leadsto t_1 t_2' : A_2} \quad \text{RD_APP2}$$

$$\frac{\Gamma \vdash t_1 : A_1 \to A_2 \quad \Gamma \vdash t_2 \leadsto t_2' : A_1}{\Gamma \vdash t_1 t_2 \leadsto t_1 t_2' : A_2} \quad \text{RD_APP2}$$

$$\frac{\Gamma \vdash t \leadsto t' : T_1 \times T_2}{\Gamma \vdash \mathsf{fst}\ t \leadsto \mathsf{fst}\ t' : T_1} \quad \text{RD_FST}$$

$$\frac{\Gamma \vdash t \leadsto t' : T_1 \times T_2}{\Gamma \vdash \mathsf{snd}\ t \leadsto \mathsf{snd}\ t' : T_2} \quad \text{RD_SND}$$

$$\frac{\Gamma \vdash t_1 \leadsto t_1' : T_1 \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash (t_1, t_2) \leadsto (t_1', t_2) : T_1 \times T_2} \quad \text{RD_PAIR1}$$

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 \leadsto t_2' : T_2}{\Gamma \vdash (t_1, t_2) \leadsto (t_1, t_2') : T_1 \times T_2} \quad \text{RD_PAIR2}$$