

UNIVERSIDADE FEDERAL DO RIO GRANDE CAMPUS CARREIROS ESCOLA DE ENGENHARIA CURSO DE ENGENHARIA CIVIL

Mauro Fernandes Viana

Desenvolvimento de um Software de Representação de Alvenaria Estrutural

Rio Grande

LISTA DE FIGURAS

Figura 1 - Demonstração das Fiadas	4
Figura 2 - Alinhamento da Porta	5
Figura 3 - Alinhamento da Janela	6
Figura 4 - Representação do Graute	6
Figura 5 - Representação Armadura Vertical	7
Figura 6 - Representação da Armadura Horizontal	7
Figura 7 - Representação Corte Transversal	8
Figura 8 - Salvamento	8
Figura 9 – Arquivos	9
Figura 10 – Elevações	9

SUMÁRIO

REFERÊ	NCIAS	11
1.1.2	EXECUÇÃO	.8
1.1.1.6	CORTE TRANSVERSAL	. 7
1.1.1.5.2	ARMADURA HORIZONTAL	.7
1.1.1.5.1	ARMADURA VERTICAL	.7
1.1.1.5	ARMADURA	. 6
1.1.1.4	GRAUTE	. 6
1.1.1.3	JANELAS	. 5
1.1.1.2	PORTAS	. 5
1.1.1.1	FIADAS	. 4
1.1.1	PROJETO	.4
1.1	INSTRUÇÕES DE UTILIZAÇÃO	. 4

1.1 INSTRUÇÕES DE UTILIZAÇÃO

Nesta etapa serão apresentadas instruções de como o usuário final deve proceder para garantir o funcionamento do programa.

1.1.1 PROJETO

A primeira etapa que o usuário deve realizar é a representação das fiadas em planta baixa. Para que o *software* consiga identificar e realizar as elevações, é necessário que seja indicado em planta baixa as fiadas, portas e janelas.

1.1.1.1 *FIADAS*

A representação das fiadas em planta baixa devem estar separadas do restante do projeto para que o programa identifique a parede a ser desenhada. Além disso as fiadas devem estar alinhadas para que não haja erro de posicionamento nas elevações. Se o intuito for representar mais de uma parede, as outras fiadas também devem estar alinhadas horizontalmente com as primeiras.

As fiadas devem ser feitas com os blocos presentes no *template*, para que o programa identifique e reproduza de forma adequada. Além disso as fiadas devem ser diferenciadas através dos *layers*, as fiadas ímpares devem estar no *layer* "fiada1" e as pares no "fiada2". A Figura 1 demonstra como deve ser feito o lançamento dos blocos, respeitando os passos citados acima.

Figura 1 - Demonstração das Fiadas

1.1.1.2 *PORTAS*

Para serem representadas nas elevações, as portas devem ser indicadas em planta baixa através de blocos pré-definidos no template. Além disso, é necessário que as portas inseridas estejam no layer "porta", para que o programa identifique adequadamente este elemento. Por se tratar de um bloco dinâmico, as portas podem ter suas alturas alteradas, para isso basta modificar o atributo altura do bloco inserido. Já para a escolha da largura, é preciso selecionar o bloco correspondente a largura que se deseja. Como é possível observar na Figura 2, o bloco do vão da porta deve estar alinhado com os blocos da primeira fiada.

Figura 2 - Alinhamento da Porta

1.1.1.3 *JANELAS*

As janelas, diferente das portas, não necessitam estar em um determinado *layer*, além disso é importante ressaltar que a representação visual das janelas em planta baixa será sempre a mesma, isto é, independente da largura inserida o bloco não será modificado. Para definir a largura, altura e peitoril, é preciso inserir essas informações nos atributos do bloco dinâmico. Desta forma, apesar de o bloco continuar com as dimensões estáticas, o programa irá reconhecer seu tamanho pelos atributos inseridos. Da mesma forma como as portas, as janelas devem ser inseridas alinhadas com a primeira fiada, o ponto indicado pelo bloco representa o início da janela. A Figura 3 demonstra a maneira correta de inserção do bloco "Janela".

Fonte: Autor

Alinhamento da la fiada com bloco da porta

Ponto de início da janela

Janela 91x120/100

1.1.1.4 *GRAUTE*

Para a perfeita representação do graute vertical, deve ser inserido um bloco chamado "graute" na representação da primeira fiada de blocos estruturais, necessitando informar se o graute deve ser contabilizado no quantitativo, além disto o bloco deve estar na *layer* "graute". O graute deve ser inserido no vazado do bloco de alvenaria para que seja preenchido adequadamente. A Figura 4 mostra como o bloco deve ser inserido.

Fonte: Autor

1.1.1.5 ARMADURA

Como possuem armaduras dispostas em duas posições diferentes, vertical e horizontal, o método de inserção delas, apesar de parecidos, possuem algumas diferenças. Em ambos será

necessário inserir blocos na primeira fiada onde desejado, além disso os dois devem estar no *layer* "ferro".

1.1.1.5.1 ARMADURA VERTICAL

A armadura vertical deve ser inserida no interior dos blocos de alvenaria juntamente com graute, como visto anteriormente. Juntamente com isso é necessário preencher as informações solicitadas para que posteriormente sejam utilizadas em suas representações. A Figura 5 representa a inserção das armaduras verticais.

Figura 5 - Representação Armadura Vertical

Fonte: Autor

1.1.1.5.2 ARMADURA HORIZONTAL

O bloco da armadura horizontal deve ser inserido logo abaixo da primeira fiada, e deve ser posicionado no ponto inicial de onde se deseja o ferro. Depois é necessário preencher os atributos requeridos para que seja representada de forma adequada na elevação. Na Figura 6 é possível observar o bloco da armadura horizontal.

Figura 6 - Representação da Armadura Horizontal

Fonte: Autor

1.1.1.6 CORTE TRANSVERSAL

Quando desejado o corte transversal, é necessário inserir o bloco, representado pela Figura 7, na primeira fiada no local onde o corte deve ser feito. Ainda na Figura 7 é demonstrada a forma correta de introduzir o bloco.

Figura 7 - Representação Corte Transversal Fonte: Autor

1.1.2 EXECUÇÃO

Depois de desenhadas as paredes que serão representadas, o arquivo deve ser salvo. É necessário salvar o arquivo editado na mesma pasta em que se encontra o *software*, para que seja encontrado. Além disso, é necessário salvar o nome do arquivo em DXF com o nome de "INFILE", pois é assim que será procurado pelo programa. A figura ilustra como o arquivo deve ser salvo.

Figura 8 - Salvamento

Fonte: Autor

Após o salvamento basta reproduzir o programa executando seu ícone. Ele abrirá uma janela perguntando o pé direito, é importante reparar que a inserção desta medida deve ser em centímetros, para que os cálculos fiquem corretos. Depois que a janela se fechar, um arquivo chamado "OUTFILE" estará na mesma pasta do programa, este é onde estão as representações feitas automaticamente pelo *software*. A Figura 9 representa tanto o arquivo de entrada quanto o de saída.

 $Figura\ 9-Arquivos$

Abrindo o arquivo de saída é possível analisar o resultado das elevações realizadas pelo programa. A Figura 10 ilustra a modulação de duas paredes e ambas com os vãos das janelas e portas.

Fonte: Autor

Quando desejado que seja recalculado o quantitativo, devido a retiradas ou acréscimos de blocos, armaduras ou grautes, basta executar o programa "Quantitativo.py" que deve estar na mesma pasta do arquivo gerado anteriormente pelo outro *software*, OUTFILE.dxf. Desta forma gerará um novo arquivo de nome "Quantitativo.dxf".

REFERÊNCIAS

ABNT. **NBR 6136 Blocos vazados de concreto simples para alvenaria**. 5ª. ed. Rio de Janeiro: ABNT, v. I, 2016. 10 p.

ABNT. **ABNT NBR 16868-2 Alvenaria Estrutural Parte 2:** Execução e controle de obras. 1. ed. Rio de Janeiro: ABNT, v. 2, 2020. 23 p.

ABNT. **NBR 16868-1 Alvenaria estrutural Parte 1:** Projeto. 1. ed. Rio de Janeiro: ABNT, v. 1, 2020. 76 p.

BANIN, S. L. **Python 3:** Conceitos e aplicações : Uma abordagem didática. 1. ed. São Paulo: Editora Érica, 2018.

LEAL, D. F.; AL, E. Modulação Automática de Edifícios em Alvenaria Estrutural com a utilização da Plataforma CAD: Programa AlvMod, Viçosa, p. 27-38, 2009.

LTD., A. AutoCAD Reference Manual. Oakland: Autodesk, Inc., v. 10, 1989. 467 p.

MOHAMED, G.; ET AL. Construções em Alvenaria Estrutural – Materiais, projeto e desempenho. 2ª. ed. São Paulo: Edgard Blücher Ltda., 2015.

MOITZI, M. ezdxf Documentation. 0.16.5. ed...., 2021.

PARSEKIAN, G. A. **Alvenaria Estrutural em Blocos Cerâmicos**. São Paulo: Tula Melo, 2010.

RAMALHO, M.; CORRÊA, M. **Projeto de edifícios de alvenaria estrutural**. 1ª. ed. São Paulo: Pini Ltda., v. I, 2003. 174 p. ISBN ISBN 85-7266-147-6.

TAUIL, C. A.; NESE, F. J. M. **Alvenaria estrutural**. 1^a. ed. São Paulo: Pini, v. I, 2010. 188 p.