[MNUM] - Dokumentacja projektu nr 4

Marcin Dziedzic

11 czerwca 2018

1 Zadanie 1

1.1 Polecenie

Ruch punktu jest opisany równaniami:

$$x_1' = x_2 + x_1(0, 2 - x_1^2 - x_2^2)$$

$$x_2' = -x_1 + x_2(0, 2 - x_1^2 - x_2^2)$$

Należy obliczyć przebieg trajektorii na przedziale [0.20] dla następujących warunków początkowych:

$$a)x_1(0) = 8, x_2(0) = 7$$

$$b)x_1(0) = 0, x_2(0) = 0, 4$$

$$c)x_1(0) = 5, x_2(0) = 0$$

$$d)x_1(0) = 0, 01, x_2(0) = 0,001$$

1.2 Ogólny opis zagadnienia rozwiązywania układu równań różniczkowych

Rozważane jest zagadnienie układu równań (pogrubione wartości to wektory) różniczkowych zwyczajnych pierwszego rzędu (ale mogą być one nieliniowe). Dane jest równanie (układ rówań): $\mathbf{x}'(t) = \mathbf{f}(t,\mathbf{x})$, przy czym \mathbf{x} to szukana funkcja. Znany jest przedział, na którym szukamy \mathbf{x} : $t \in [a,b]$ oraz warunki początkowe: $\mathbf{x}(a)$, .Wyróżnia się metody jednokrokowe, bazujące tylko na punckie otzymanym w poprzedniej iteracji, oraz metody wielokrokowe, które opierają się na większej liczbie punktów.

2 Metoda RK4 ze stałym krokiem

2.1 Opis algorytmu

Metody Rungego - Kutty to grupa metod jednokrokowych. Na przedziale $[t_n, t_n + h]$ obliczane są pochodne \mathbf{x} (poprzez podstawienie do funkcji \mathbf{f} danej równaniu), w różnych punktach w badanym

przedziale, a następnie badana funkcja jest przybliżana przez pewną liniową kombinację tych pochodnych. Kompromisem pomiędzy dokładnością (rzędem metody) a nakładem obliczeń na jedną iterację jest metoda RK4 (obliczenie pochodnej w 4 punktach). Wzory opisujące jedną iterację:

$$\mathbf{x_{n+1}} = \mathbf{x_n} + \frac{1}{6}h(\mathbf{k_1} + 2\mathbf{k_2} + 2\mathbf{k_3} + \mathbf{k_4})$$

$$\mathbf{k_1} = \mathbf{f}(t_n, \mathbf{x_n})$$

$$\mathbf{k_2} = \mathbf{f}(t_n + \frac{1}{2}h, \mathbf{x_n} + \frac{1}{2}h\mathbf{k_1})$$

$$\mathbf{k_3} = \mathbf{f}(t_n + \frac{1}{2}h, \mathbf{x_n} + \frac{1}{2}h\mathbf{k_2})$$

$$\mathbf{k_4} = \mathbf{f}(t_n + h, \mathbf{x_n} + h\mathbf{k_3})$$

2.2 Kod funkcji zwracającej punkt określony równaniami

```
 \begin{array}{lll} & \text{function } [D] = md_fx(x) & 1 \\ \% & \text{Funkcja zwracajaca pochodne} & 2 \\ D(1) = x(2) + x(1)*(0.2 - x(1)^2 - x(2)^2); & 3 \\ D(2) = -x(1) + x(2)*(0.2 - x(1)^2 - x(2)^2); & 4 \\ \text{end} & 5 \\ \end{array}
```

2.3 Kod funkcji zwracającej rozwiązania metodą RK4

```
function [Y] = md_rk4s(x, timelimit, stp)
                                                                           1
% Rozwiazanie ukladu metoda Rungego-Kutty czwartego rzedu
                                                                           2
\% \times - stan poczatkowy
                                                                           3
% timelimit — zakres czasu
                                                                           4
% step — rozmiar kroku
                                                                           5
                                                                           6
    Y = zeros(ceil(timelimit/stp),3); %macierz stanow x1, x2 i czasu
                                                                           7
    hstp=stp/2; %polowa kroku
                                                                           8
    for i = 1:( ceil(timelimit/stp))
                                                                           9
        Y(i,3) = i*stp;
                                                                           10
         k1 = md_fx(x);
                                                                           11
         k2 = md_fx(x+hstp*k1);
                                                                           12
         k3 = md_fx(x+hstp*k2);
                                                                           13
         k4 = md_fx(x+stp*k3);
                                                                           14
         x=x+(1/6)*stp*(k1+2*k2+2*k3+k4);
                                                                           15
        Y(i,1:2) = x;
                                                                           16
        %zapisanie punktu do wektora
                                                                           17
    end
                                                                           18
end
                                                                           19
```

2.4 Kod programu generujący dane wynikowe dla podpunktu 1

```
% Realizacja zadania 1
                                                                               1
% metoda RK4 ze stalym krokiem
                                                                               2
clear;
                                                                               3
zero = [8 \ 7; \ 0 \ 0.4; \ 5 \ 0; \ 0.01 \ 0.001]; %wektor stanow poczatkowych
                                                                               4
                                                                               5
step = 0.0004; %krok
                                                                               6
                                                                               7
for k = 3:3
    data = md_rk4s(zero(k,:),20,step);
                                                                               8
    h = figure;
                                                                               9
    plot (data (:,1), data (:,2), '-o');
                                                                               10
    I = size(data, 1);
                                                                               11
                                                                               12
    hold on;
    grid on;
                                                                               13
    name = ['metoda RK4 krok:' num2str(step) ' podpunkt:' num2str(k 14
       )];
    title (name);
                                                                               15
    saveas(h, name, 'jpg');
                                                                               16
end
                                                                               17
```

2.5 Dobieranie długości kroku

Największym wyzwaniem w powyższej metodzie jest dobranie odpowiedniej długości kroku. Moim zadaniem było dobranie go w taki sposób, aby był wystarczający do uzyskania założonej dokładności, ale nie powinien być znacznie mniejszy od wartości, przy której wymagana dokładność jest osągalna. Postanowiłem dokonać tego interaktywnie, na zasadzie prób i błędów. Posługiwałem się metodą przeszukiwania binarnego. Zainicjalizowałem zakres przeszukiwań od kroku bardzo małego do bardzo dużego, następnie wybierałem wartość środkową. W zależnośći, czy chciałem osągnąć lepszą lub gorszą aproksymację wybierałem lewą lub prawą połowę kolejnego przedziału.

2.6 Wyniki dla podpunktu 1

RK4 krok:0,03 podpunkt:1.jpg

RK4 krok:0,01 podpunkt:1.jpg

RK4 krok:2 podpunkt:2.jpg

RK4 krok:0,05 podpunkt:2.jpg

RK4 krok:0,1 podpunkt:3.jpg

RK4 krok:0,05 podpunkt:3.jpg

RK4 krok:2 podpunkt:4.jpg

RK4 krok:0,1 podpunkt:4.jpg

2.7 Wnioski

Metoda Rungego-Kutty dla podanych równań jest szybka przy odpowiednim kroku. Zmniejszając krok możaby coraz dokładniej wyznaczyć tor ruchu. Dobór odpowiedniej długości kroku w sposób interaktywny jest problematyczny ze względu na różnorodność kroków w zaleznosci od pountow startowych. Metoda róznież ma dość wysoki nakład obliczeniowy ponieważ jest on zależny tylko od przedziału i długości kroku, dlatego nie ma znaczenia czy równania są skomplikowane czy bardzo proste.

3 Metody wielokrokowe

Metody wielokrokwe w odróżnieniu od iteracyjnych uzywają do wyznaczenia punktu wartości obliczonych w poprzednich krokach. Wynika z tego że przy rozpoczynaniu rozwiązywania zagadnienia metodą wielokrokową musimy wyznaczyć punkty początkowe (zazwiczaj jedną z metod iteracyjnych) a następnie na podstawie wartości początkowch obliczane są kolejne punkty. Medod tych używa się w przypadku gdy wyznaczanie wartości bezpośrednio ze wzoru jest czasochłonne, ponieważ metody wielokrokowe rzadziej wykorzystują bezpośrednie obliczanie wartości funkcji. Wyróżniamy metody jawne które wykorzystują jedynie wartości funkcji w poprzednio obliczonych punktach oraz niejawne, które dodatkowo korzystają z wartości w punkcie bierzącym.

3.1 Metoda predyktor-korektor Adamsa

Metoda predykcyjno-korekcyjna łączy zalety metod jawnych i niejawnych. Dzięki temu zachowuje wysoki rząd i małą stałą błędu na szerokim obszarze przy zachowaniu małej liczby iteracji. Praktyczne realizacja metody polega na obliczeniu czterech członów: P - predykcja, E - ewaluacja, K - korekcja, E - kolejna ewaluacja. Dla metody predyktor - korektor Adamsa rozwiązanie możemy przybliżyć następującymi równaniami:

$$P: y_n^{[0]} = y_{n-1} + h \sum_{j=1}^k \beta_j f_{n-j}$$

$$E: f_n^{[0]} = f(x_n, y_n^{[0]})$$

$$K: y_n = y_{n-1} + h \sum_{j=1}^k \beta_j^* f_{n-j} + h \beta_0^* f_n^{[0]}$$

$$E: f_n = f(x_n, y_n)$$

3.2 Realizacja funkcji RK4 w programie Matlab

```
function[Y] = md_pkadams(x, timelimit, stp)
                                                                          1
\%funkcja zwracajaca wektor wyznacziony metoda PK adamsa
                                                                          2
                                                                          3
%dane wejsciowe
%x — wektor danych
                                                                          4
%timelimit — zakres czasu
                                                                          5
%stp - dlugosc kroku
                                                                          6
                                                                          7
    Y = zeros(timelimit/stp,3); %wektor stanow x1, x2, czasu, i
                                                                          8
       bledu
                                                                          9
    hstp=stp/2;
    for i = 1:3 %generowanie punktow poczatkowych
                                                                          10
        Y(i,3) = i*stp; %generowanie czasu
                                                                          11
```

```
k1 = md_fx(x); %pochodna w punkcie y(xn);
                                                                        12
        k2 = md_fx(x+hstp*k1); %pochodna w punkcie y(xn+stp/2*k1)
                                                                        13
        k3 = md_fx(x+hstp*k2); %pochodna w punkcie y(xn+stp/2*k2)
                                                                        14
        k4 = md_fx(x+stp*k3); %pochodna w punkcie y(xn+stp*k3)
                                                                        15
        x=x+(1/6)*stp*(k1+2*k2+2*k3+k4); %obliczenie nastepnego
                                                                        16
           punktu
        Y(i,1:2) = x; %zapisanie punktu do wektora
                                                                        17
    end
                                                                        18
    for i = 4:(timelimit/stp)
                                                                        19
        Y(i,3) = i*stp; %gererowanie czasu
                                                                        20
        tmp = x + stp/24*(55*md_fx(x) - 59*md_fx(Y(i-1,1:2)) + 37*
                                                                        21
           md_fx(Y(i-2,1:2)) - 9*md_fx(Y(i-3,1:2))); % predykcja i
           ewaluacia
        x = x + stp/24*(9*md_fx(tmp) + 19*md_fx(x) - 5*md_fx(Y(i))
                                                                        22
           (-1,1:2) + md_fx(Y(i-2,1:2)); % korekcja i ewaluacja
        Y(i,1:2) = x; %zapis wyniku
                                                                        23
    end
                                                                        24
                                                                        25
end
```

3.3 Skrypt generujący wykresy do zadania

```
% Realizacja zadania 2
                                                                             1
% metoda metoda predyktor-korektor Adamsa 4-rzedu
                                                                             2
                                                                             3
clear:
zero = [8 \ 7; \ 0 \ 0.4; \ 5 \ 0; \ 0.01 \ 0.001]; %wektor stanow poczatkowych
                                                                             4
step = 0.01; %krok
                                                                             5
                                                                             6
for k = 1:1
                                                                             7
                                                                             8
                                                                             9
    data = md_pkadams(zero(k,:),20,step);
                                                                             10
    h = figure;%('visible','off');
                                                                             11
    plot (data(:,1), data(:,2), '-o');
                                                                             12
    I = size(data, 1);
                                                                             13
    hold on;
                                                                             14
    grid on;
                                                                             15
    name = ['metoda Adamsa krok:' num2str(step) ' podpunkt:'
                                                                             16
       num2str(k)];
    title (name);
                                                                             17
    saveas(h, name, 'jpg');
                                                                             18
end
                                                                             19
```

3.4 Dobieranie długości kroku

Podobnie jak w poprzednim podpunkcie, długość kroku była wprowadzana przez użytkownika w trybie interaktywnym.

3.5 Wyniki

Adamsa krok:0,025 podpunkt:1.jpg

Adamsa krok:0,01 podpunkt:1.jpg

Adamsa krok:0,5 podpunkt:2.jpg

Adamsa krok:0,1 podpunkt:2.jpg

Adamsa krok:0,1 podpunkt:3.jpg

Adamsa krok:0,05 podpunkt:3.jpg

Adamsa krok:0,5 podpunkt:4.jpg

Adamsa krok:0,1 podpunkt:4.jpg

3.6 Wnioski

Metoda predyktor-korektor Adamsa zdaje się być bardziej dokadna, jeśli porównamy ją do poprzedniej metody przy tym samym kroku. Zaobserwowałem, że dla większyk kroków metoda ma problemy z ustabilizowaniem się. Co więcej, inaczej niż w poprzedniej metodzie, różnica między długością kroku dla którego metoda predyktor-korektor Adamsa jest dokładna a zbieżna jest bardzo mała. Metoda podobnie jak RK4 słabo sprawdza się dla dżych punktów początkowych, musiałem dobrać stosunkowo krótki krok aby uzyskać zbierzność w podanym przedziale

4 Metoda RK4 ze zmiennym krokiem

4.1 Opis algorytmu

Jeżeli chodzi o metodę obliczeń to jest ona identyczna jak w tej ze stałym krokiem. Na szczególną uwagę zasługuje sposób oceny błędu i na tej podstawie regulacji długości kroku. Określanie błedu jest realizowane metodą połowienia kroku. W pojedyńczej iteracji obliczne są wartości funkcji dla całego kroku i jego połowy, następnie jeżeli różnica między otrzymanymi wartościami jest mniejsza niż założony współczynnik dokładności, to krok jest zwiększany, a gdy większa to zmniejszany. Jako wartość funkcji brana pod uwagę jest zawsze ta wyznaczona za pomocą dwóch mniejszych kroków. Długość kroku jest dodatkowo mnożona przez współczynnik bezpieczeństwa tak aby wzrost kroku nie był zbyt drastyczny, i aby również drastycznie nie zmalał, co doprowadziło by do znacznego wydłużenia czasu obliczeń.

4.2 Realizacja funkcji w programie Matlab

```
function [Y] = md_rk4d(x, timelimit, stp)
                                                                            1
%RK4 Rozwiazanie ukladu metoda Rungego-Kutty czwartego rzedu ze
                                                                            2
   zmiennym
%krokiem
                                                                            3
%x — stan poczatkowy
                                                                            4
%timelimit — zakres czasu
                                                                            5
%step — rozmiar kroku
                                                                            6
                                                                            7
                                                                            8
    Y = zeros(10,3);
                                                                            9
    x1 = x;
                                                                            10
    x2 = x;
                                                                            11
                                                                            12
    time = 0; %zmienna przechowujaca aktualny przedzial czasu
                                                                            13
    i=1; %iterator indeksu wektorow
                                                                            14
                                                                            15
    while (time <= time limit)</pre>
                                                                            16
                                                                            17
                                                                            18
         k1 = md_fx(x1);
         k2 = md_fx(x1+(stp/2)*k1);
                                                                            19
         k3 = md_fx(x1+(stp/2)*k2);
                                                                            20
         k4 = md_fx(x1+stp*k3);
                                                                            21
         x1=x1+(1/6)*stp*(k1+2*k2+2*k3+k4);
                                                                            22
                                                                            23
         k1 = md_fx(x2);%obliczenie wartosci z polowicznym krokeim
                                                                            24
```

```
k2 = md_fx(x2+(stp/4)*k1);
                                                                            25
        k3 = md_fx(x2+(stp/4)*k2);
                                                                            26
        k4 = md_fx(x2+(stp/2)*k3);
                                                                            27
        x2=x2+(1/6)*(stp/2)*(k1+2*k2+2*k3+k4);
                                                                            28
        k1 = md_fx(x2);
                                                                            29
        k2 = md_fx(x2+(stp/4)*k1);
                                                                            30
        k3 = md_fx(x2+(stp/4)*k2);
                                                                            31
        k4 = md_fx(x2+(stp/2)*k3);
                                                                            32
        x2=x2+(1/6)*(stp/2)*(k1+2*k2+2*k3+k4);
                                                                            33
                                                                            34
                                                                            35
        R = (x2-x1)/15;
                                                                            36
        if (abs(min(R)) < 0.00001) %kryterium bledu wzglednego
                                                                            37
             stp = stp *1.1;
                                                                            38
         else
                                                                            39
             if (stp > 0.05)
                                                                            40
                 stp = stp *0.9;
                                                                            41
                                                                            42
             end
        end
                                                                            43
        Y(i,1:2) = x2;
                                                                            44
        time = time+stp;
                                                                            45
        disp(stp);
                                                                            46
        Y(i,3) = time; %zapisanie czasu
                                                                            47
        i = i + 1;
                                                                            48
                                                                            49
    end
end
                                                                            50
```

4.3 Funkcja generująca rozwiązania do zadania

```
% Realizacja podpunktu 3
                                                                               1
% metoda metoda RK4 zmienny krok
                                                                               2
clear;
                                                                               3
zero = [8 \ 7; \ 0 \ 0.4; \ 5 \ 0; \ 0.01 \ 0.001]; %wektor krokow
                                                                               4
                                                                               5
step = 0.01; %krok
                                                                               6
for k = 1:4
                                                                               7
                                                                               8
    data = md_rk4d(zero(k,:),20,step);
                                                                               9
                                                                               10
    h = figure; %('visible','off')
                                                                               11
    plot (data (:,1), data (:,2), '-o');
                                                                               12
    I = size(data, 1);
                                                                               13
    hold on;
                                                                               14
    grid on;
                                                                               15
    name = ['metoda RK4 zmienny krok podpunkt:' num2str(k)];
                                                                               16
    title (name);
                                                                               17
    saveas(h, name, 'jpg');
                                                                               18
end
                                                                               19
```

4.4 Wyniki

RK4 zmienny krok podpunkt:1.jpg

RK4 zmienny krok podpunkt:2.jpg

RK4 zmienny krok podpunkt:3.jpg

RK4 zmienny krok podpunkt:4.jpg

4.5 Winoski

Metoda RK4 ze zmiennym krokiem znacznie wydajniej radzi sobie z obliczeniami ze względu na istotne zmniejszenie liczby kroków na gładkich odcinkach funkcji.

5 Wnioski końcowe

W przypadku metod jednopunktowych stałokrokowych najlepiej wypada metoda Adamsa ze względu na najniższy czas wykonania obliczeń. Ma jednak również sowoje wady - jest zbierzna w wąskim przedziale kroku.

Metoda RK4 ze zmiennym krokiem również bardzo dokładnie wyznacza trajektorie. Jednak wymaga większego nakładu obliczeniowego.

Metoda RK4 ze stałym krokeim jest szybka przy odpowiednio dużym korku, ponieważ zachowuje swoją zbierzność dla stosunkowo dużych kroków.