

Domaine de LICENCE: SCIENCES, TECHNOLOGIE (ST)

Mentions : Sciences pour l'Ingénieur – Mathématiques Informatique

MECANIQUE DU POINT MATERIEL

Session N°2: Operations vectorielles

EXERCICES pour TESTER

Exo Test 1 - Pièges à éviter en trigonométrie

- 1°) Compléter : $sin 30^{\circ} = ...$; $sin 60^{\circ} = ...$ $sin 30^{\circ} + sin 60^{\circ} = ...$; $sin (90^{\circ}) = sin (30^{\circ} + 60^{\circ}) = ...$ Conclure.
- 2°) De même, compléter : $\cos 30^\circ = \ldots$; $\cos 60^\circ = \ldots$ $\cos 30^\circ + \cos 90^\circ = \ldots$; $\cos (90^\circ) = \cos (30^\circ + 90^\circ) = \ldots$ Conclure.
- 3°) Pour aller plus loin :

Donner les formules de : $\sin{(a+b)}$ et $\cos{(a+b)}$ en fonction de \sin{a} , \cos{a} , \sin{b} et \cos{b} . En déduire la formule de $\sin{(30^\circ + 60^\circ)}$ en fonction de $\sin{30^\circ}$, $\cos{30^\circ}$, $\sin{60^\circ}$ et $\cos{60^\circ}$. En déduire la formule de $\cos{(30^\circ + 60^\circ)}$ en fonction de $\sin{30^\circ}$, $\cos{30^\circ}$, $\sin{60^\circ}$ et $\cos{60^\circ}$.

Exo Test n°2 - Résultante de plusieurs vecteurs

On note \vec{i} , \vec{j} , les vecteurs unitaires respectifs des axes x et y (**Figure 1**).

On donne les **longueurs** : $\overline{OH_1} = 4$

- $\overline{OH_2} = 3$.
- 1°) Déterminer les coordonnées cartésiennes de chacun des vecteurs \vec{V}_1 et \vec{V}_2 .
- 2°) Déterminer la **résultante** \vec{R} (somme) des deux vecteurs (retrouver ce résultat graphiquement).
- 3°) Déterminer la norme $\|\vec{R}\|$ du vecteur \vec{R} . Comparer avec la somme des normes $\|\vec{V}_1\|$ et $\|\vec{V}_2\|$.

Exo Test n°3 - Résultante de plusieurs vecteurs forces

Les vecteurs unitaires respectifs des axes x et y (Figure 2) seront notés \vec{i} et \vec{j} .

Les angles sont définis par : $\theta_1 = (Ox, \vec{F}_2) = 60^\circ$ et $\theta_2 = (Ox, \vec{F}_3) = -60^\circ$.

On donne : $\|\vec{F}_1\| = 30 N$; $\|\vec{F}_2\| = 30 N$; $\|\vec{F}_3\| = 30 N$ (échelle de forces : 1 cm \rightarrow 10 N).

1°) Déterminer les coordonnées cartésiennes de chacun des vecteurs forces \vec{F}_1 , \vec{F}_2 et \vec{F}_3 .

2°) Déterminer la **résultante** \vec{R} de ces trois forces et sa norme $\|\vec{R}\|$. Conclure.

Exo Test n°4 - Produit scalaire de deux vecteurs

1°) Déterminer, par deux méthodes différentes (calcul avec les composantes et calcul avec les normes des vecteurs), le produit scalaire des vecteurs $\vec{V_1}$ et $\vec{V_2}$.

Exo Test n°5 - Produit vectoriel de deux vecteurs

Deux vecteurs \vec{U} et \vec{V} sont définis par leurs coordonnées dans un repère : $[O, \vec{i}, \vec{j}, \vec{k}]$

$$\vec{U} = 2\vec{i} + 3\vec{j} - 4\vec{k}$$
; $\vec{V} = \vec{i} - 2\vec{j} + 3\vec{k}$.

1°) Déterminer le produit vectoriel de ces deux vecteurs.

Exo Test n°6 - Moments d'une force

La poutre représentée sur la Figure 4 est soumise à une force exercée au point P, et de norme : $\|\vec{F}\| = 500 \ N$. Les axes Ox, Oy et Oz ont pour vecteurs unitaires respectifs \vec{i} , \vec{j} , \vec{k} . La mesure de l'**angle orienté** θ est donnée par : $\theta = (P\vec{i}, \vec{F}) = -30^{\circ}$.

On désire calculer les moments, par rapport à un point et par rapport à des axes, de cette force $\, ec{F} \,$.

- 1°) Déterminer la valeur des coordonnées cartésiennes de la force \vec{F} (résultat sous la forme : $\vec{F}=....\vec{i}+....\vec{j}+....\vec{k}$).
- 2°) Indiquer la valeur du moment, par rapport au point \emph{O} , de cette force \vec{F} .
- 3°) Indiquer les valeurs des moments respectifs, par rapport aux axes Ox, Oy, Oz, de cette force \vec{F} .