LEC 29: DOUBLE SLIT EXPERIMENT. REFRACTIVE INDEX
LEC 30: DIFFRACTION GRATINGS

LEC 32: THIN FILM INTERFREENCE

LEC 31: DIFFRACTION OF LIGHT, RESOLVING POWER

CHAPTER 24: WAVE OPTICS

24.1: Young's double-slit experiment

24.2: REFRACTIVE INDEX, LIGHT SPEED, AND WAVE COHERENCE

24.3 Gratings: an application of Interference

24.5 DIFFRACTION OF LIGHT

24.6: RESOLVING POWER

24.7 SKILLS FOR APPLYING THE WAVE MODEL OF LIGHT

24.4 Thin-films interference*

24.1 Young's double slit experiment

https://www.falstad.com/ripple/

COHERENCE

Two waves are **coherent** if:

- They are monochromatic (single frequency/same wavelength)
- 2. There is a constant phase relation between them (in phase, out of phase or something in between).

PHASE TERMINOLOGY

Waves are **in phase** at a particular position if they are at the same part of their cycle.

Note: frequency must be the same to meaningfully compare phases as a function of position

Two-Slit Interference

Rays arrive in phase to the places where bright fringes are formed.

At 0^{th} order maximum (center) waves arrive after travelling through the same distance.

We say the **path difference** at that point is equal to zero, $r_2 - r_1 = 0$

At 1^{st} order maximum the wave from the closer source travels through the distance one wavelength shorter, $r_2 - r_1 = \lambda$

The same is true at two points (above and below 0^{th} order, therefore a symmetric pattern is observed.

Two-Slit Interference

Mathematically – a bright spot is observed when path diffrence δ :

$$\delta = m\lambda$$
 where $m = 0, \pm 1, \pm 2, \pm 3, ...$

$$\sin\theta = \frac{\delta}{d} = \frac{m\lambda}{d}$$

So, for any fringe m

$$\sin \theta_m = \frac{m\lambda}{d} \to d \sin \theta_m = m\lambda$$

Two-Slit Interference

The position of the bight post on the screen can be found if the distance between the screen and slits is known

$$\tan \theta_m = \frac{y_m}{R}$$

Realistically, the distance to the screen (here R, your textbook uses L) is much larger than the distance y at which the bright spot is observed on the screen relative to the center maximum.

This means that θ_m is a small angle and our favourite approximation:

$$\tan \theta_{\rm m} \approx \sin \theta_{m} = \frac{m\lambda}{d} \rightarrow \frac{y_{m}}{R} = \frac{m\lambda}{d} \rightarrow y_{m} = \frac{m\lambda R}{d}$$

EXAMPLE 24A

Light with $\lambda = 500 \text{ nm}$ is incident on 2 slits separated by 1 mm.

What is the position of the 1st order bright fringe? (angular)

Find the distance between the m=2 and m=3 bright fringes on a screen 1.0 m away.

a)
$$d \sin \theta_1 = m \lambda$$

 $\sin \theta_1 = \frac{m \lambda}{d} = \frac{1 \cdot 500 \times 10^{-9} \text{ m}}{1 \times 10^{-3} \text{ m}} = 500 \times 10^{-6} = 5 \times 10^{-4}$
b) $y_m = \frac{m R \lambda}{d}$
 $y_3 - y_2 = \frac{3R \lambda}{d} - \frac{2R \lambda}{d} = \frac{R \lambda}{d} = \frac{1.0m \times 500 \times 10^{-9} \text{ m}}{1 \times 10^{-3}}$
 $\Delta y = 5 \times 10^{-4} \text{ m}$

EXAMPLE 24A' (DIY - LC)

Light from a Nd:YAG laser (λ =532 nm) is incident on 2 slits separated by 0.125 mm. Find the distance between the m=2 and the m=-2 bright fringes on a screen 4.0 m away.

$$y_m = \frac{m R \lambda}{d}$$

$$\Delta y = y_2 - y_{(-2)} = \frac{2R\lambda}{d} - \frac{(-2)R\lambda}{d} = \frac{4R\lambda}{d}$$

$$\Delta y = \frac{4 \cdot 4 \cdot 0m \cdot 532 \times 10^{-9}m}{0.125 \times 10^{-3}m}$$

$$\Delta y = 6.8 cm$$

EXAMPLE 24B

What is the longest wavelength λ that can produce an interference pattern using slits separated by d?

$$d \sin \theta = m \lambda$$

$$m=1$$

$$d \sin \theta = \lambda$$

$$\sin \theta = 1 \rightarrow d = \lambda$$

LEARNING CATALYTICS

What is the path length difference between the center bright fringe (0^{th} order) and first minimum?

What equation could be used to find the location of the m^{th} minimum?

ELECTROMAGNETIC WAVES

Light is a travelling wave of electromagnetic fields

Halliday & Resnick Fig. 33-5

The speed of light in vacuum is defined (not measured) as

$$c \equiv 299 \ 792 \ 458 \text{ m/s}$$

 $c \approx 3.00 \times 10^8 \text{ m/s}$

Follows the same rules as the other waves we've dealt with, except for one exception: light has no preferred rest frame. → start of theory of relativity

ELECTROMAGNETIC SPECTRUM

Halliday & Resnick Fig. 33-1

24.2 REFRACTIVE INDEX

Wave speed depends on the medium the wave is traveling through.

For light (and all electromagnetic waves), the speed in a medium can be calculated as

$$v = \frac{c}{n}$$

where c is the speed of light in vacuum (3.0 × 10⁸ m/s)

Just like for mechanical waves, when the wave slows down, its wavelength changes.

$$\frac{\sin \theta_2}{\sin \theta_1} = \frac{\lambda_2}{\lambda_1} = \frac{\frac{v_2}{f}}{\frac{v_1}{f}} = \frac{v_2}{v_1}$$

Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2 \rightarrow \frac{\sin \theta_2}{\sin \theta_1} = \frac{n_1}{n_2}$

$$\frac{v_2}{v_1} = \frac{n_1}{n_2}$$