ID: Name:

BRAC University

Course Title: CIRCUITS AND ELECTRONICS

Full Marks: 25 Quiz: 1

Section: 14 Faculty: SHS Time: 25 minutes Date: October 2, 2019

[Each of the questions carry 5 marks]

1.

Aluminum has a resistivity of $2.75*10^{-8}\Omega m$ at $20^{\circ}C$ and a temperature co-efficient(α) of about $4.29*10^{-3}$ °C⁻¹. Assuming length and radius of the Aluminum wire doesn't change, what will be the

resistance of the wire at $50^{\circ}C$?

$$Y = 2 \text{ cm} = 0.02 \text{ m}$$

$$A = \pi \gamma^* = 0.0012566 \text{ m}^*$$

$$\approx 1.26 \times 10^{-3} \text{ m}^*$$

$$L = 2d = 2 \times 30 \text{ ft} = 60 \text{ ft} = 18.288 \text{ m}$$

$$R = \frac{PL}{A} = \frac{3.104 \times 10^{-8} \times 18.3}{1.26 \times 10^{-3}} \text{ Q}$$

4.51×10-4-2

2. Write the full name of the shaded component.

3. If an electric heater draws 2000 W when connected to a 220-V supply, what is the internal resistance of theheater? How much current is flowing through the heater?

Answer: 24.2.2. 9.09.7

Given that, V = 220 V P = 2000 WWe know that, $P = \sqrt{2}$ $P = \sqrt{2}$ P

4. What is Kirchhoff's Voltage Law? Calculate the value of the open circuit voltage (V_{ab}) .

KVL: Algebraic/Phasor sum of all the voltage drops around a mesh/supermesh (any closed loop) in a circuit must be zero. Mathematically, $\sum V = 0$.

 V_{ab} : 70V

 $V_{ab} = V_a - V_b$. Since, open circuit, current is zero. So, $V_{b} \rightarrow + end$ Voltage across R, $V_{R} = IR = 0 \times R = 0$. $V_{b} \rightarrow - end$ Applying KVL, $\Sigma V = 0$ $\Rightarrow 10 - 60 - 20 + 0 + V_{ab} = 0$

5. Identify all the nodes in the given circuit. What is the equivalent resistance of the network?

