Analysis 1B

Luc Veldhuis

6 December 2016

Lineare differentiaal vergelijking

$$y(x), y: \mathbb{R} \mapsto \mathbb{R}$$

 $a_n(x)y^{(n)} + \cdots + a_0(x)y = f(x)$ (*)

- Linear in $y, \ldots, y^{(n)}$
- Niet noodzakelijk linear in x
- Inhomogeen namelijk $f(x) \not\equiv 0$ maakt de vergelijking niet homogeen
 - Homogeen als $f(x) \equiv 0$ (**)
- Lineare algebra: $A\overline{y} = \overline{f}$, $A\overline{y} = 0$
- Orde van de volgorde is n

Voorbeeld:
$$2y'' - 2y' + y = 3$$

Link met lineare algebra

Stel ϕ_1, ϕ_2 oplossingen van de vergelijking (**) $\lambda_1 \phi_1 + \lambda_2 \phi_2 = \phi_3$ is weer een oplossing

$$A(\lambda_{1}\phi_{1} + \lambda_{2}\phi_{2}) = \lambda_{1}A(y_{1}) + \lambda_{2}A(y_{2})$$

$$a_{n}\lambda_{1}\phi_{1}^{(n)} + \dots + a_{0}\lambda_{1}\phi_{1} = 0$$

$$a_{n}\lambda_{2}\phi_{2}^{(n)} + \dots + a_{0}\lambda_{2}\phi_{2} = 0$$

$$a_{n}\lambda_{1}\phi_{1}^{(n)} + a_{n}\lambda_{2}\phi_{2}^{(n)} + \dots + a_{0}\lambda_{1}\phi_{1} + a_{0}\lambda_{2}\phi_{2} = 0$$

$$a_{n}\phi_{3} + \dots + a_{0}\phi_{3} = 0$$

Stelling

Als geldt $a_n(x) \neq 0$ op \mathbb{R} dan zijn er n linear onafhankelijke oplossingen voor (**)

$$\phi_1, \dots, \phi_n$$

$$\phi_i \neq \sum_{k \neq i}^n \lambda_k \phi_k \forall x \text{ (Linear onafhankelijk)}$$

ledere oplossing kan geschreven worden als $\phi = \lambda_1 \phi_1 + \dots + \lambda_n \phi_n$ Dimentie van de kern is de hoogste afgeleide in de vergelijking.

Vragen

- Hoe vind je ϕ_1, \ldots, ϕ_n ?
- Hoe gebruik ik ϕ_1, \ldots, ϕ_n om (*) op te lossen?
- Hoe vind ik de y_p (particuliere oplossing)?

$\psi_1, \psi_2 \text{ van (*)}$

$$Ly = f$$

$$L = a_n \frac{d^n}{dx^n} + \dots + a_0$$

$$L\psi_1 = f, L\psi_2 = f$$

$$L(\lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 L y_1 + \lambda_2 L y_2$$

$$L\psi_1 - L\psi_2 = L(\psi_1 - \psi_2) = f - f = 0$$

$$\psi_1 - \psi_2 = \lambda_1 \phi_1 + \dots + \lambda_n \phi_n$$

$$\psi_1 = \psi_2 + \lambda_1 \phi_1 + \dots + \lambda_n \phi_n = y_p + y_h$$

Particuliere oplossing + homogene oplossing. Net als bij lineare algebrae met een nulruimte + offset vanaf de oorsprong.

Vinden van ϕ_1, \ldots, ϕ_n

Neem de vergelijking $a_n y^{(n)} + a_{n-1}(x) y^{(n-1)} + \cdots + a_0(x) y = f(x)$ Als $\forall k, a_k$ constant is kun je de volgende manier gebruiken: Los eerst homogene vergelijking op: $a_n y^{(n)} + \cdots + a_0(x) y = 0$ Substitueer $y = e^{\lambda x}$, $y^{(n)} = \lambda^n e^{\lambda x}$

$$a_n(x)\lambda^n e^{\lambda x} + \cdots + a_0(x)e^{\lambda x} = 0$$

$$e^{\lambda x}(a_n\lambda^n+\cdots+a_0)=0,\ e^{\lambda x}\neq 0$$

 $a_n\lambda^n+\cdots+a_0=0$ (Characteristic equation/Karakterestieke vergelijking)

Als $\lambda \in \mathbb{C}$ dan zijn er n oplossingen (eigenwaarden) $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ $e^{\lambda_1 x} = \phi_1, \ldots, e^{\lambda_n x} = \phi_n$ oplossingen van de vergelijking.

- In het algemeen geldt, λ_1 tot en met λ_n allemaal verschillend zijn en dus ϕ_1, \ldots, ϕ_n linear onafhankelijk
- Het kan geburen dat $\lambda_i = \lambda_i$ etc. Wat moet je dan doen?

Wat te doen als $\lambda_1 = \lambda_2 = \lambda_3, \lambda_4, \dots, \lambda_n$?

Gebruik de oplossingen: $e^{\lambda_1 x}, xe^{\lambda_2 x}, x^2 e^{\lambda_3 x}, e^{\lambda_4 x}, \dots, e^{\lambda_n x}$

Wat te doen met complexe oplossingen van λ ?

$$\lambda = a + bi$$
, $e^{(a+bi)x} = e^{ax}e^{bix} = e^{ax}(\cos(bx) + i\sin(bx))$
 $\lambda = a + bi$

We vinden ook:
$$\lambda = a - bi = \overline{a + bi}$$

$$\overline{a_n\lambda^n + \dots + a_0} = 0$$

$$a_n\overline{\lambda}^n+\cdots+a_0=0$$

Geeft $e^{ax}(\cos(bx) - i\sin(bx))$ als oplossingen.

Dan vallen de sin tegen elkaar weg.

Voorbeeld verschillende eigenwaarden

$$y'' + 6y' + 5y = 0$$

Karakterestieke vergelijking:

$$\lambda^2 + 6\lambda + 5 = 0$$
 Oplossen:

$$(\lambda+5)(\lambda+1)=0$$

$$\lambda_1 = -5$$
, $\lambda_2 = -1$

$$\phi_1 = e^{-5x}$$
, $\phi_2 = e^{-x}$

$$y_h = c_1 e^{-5x} + c_2 e^{-x}$$

Voorbeeld zelfde eigenwaarden

$$y'' + 2y'' + y = 0$$
$$\lambda^2 + 2\lambda + 1 = 0$$

$$(\lambda+1)^2=0$$

$$\lambda_1=-1$$
, $\lambda_2=-1$

Let op! Twee keer dezelfde waarde!

$$\phi_1 = e^{-x}, \ \phi_2 = xe^{-x}$$

$$y_h = c_1 e^{-x} + c_2 x e^{-x}$$

Voorbeeld complexe eigenwaarden

$$\begin{split} y'' + 2y' + 10y \\ \lambda^2 + 2\lambda + 10 &= 0 \\ \lambda_{1,2} &= \frac{-2 \pm \sqrt{-36}}{2} = \frac{-2 \pm 6i}{2} = -1 \pm 3i \\ \lambda_1 &= -1 + 3i, \ \lambda_2 = -1 - 3i \\ \phi_1 &= e^{-x} \cos(3x), \ \phi_2 = e^{-x} \sin(3x) \\ y_h &= c_1 e^{-x} \cos(3x) + c_2 e^{-x} \sin(3x) \end{split}$$

Uitwerken van complexe oplossingen

$$(a+bi)e^{-x+3i} + (p-iq)e^{-x-3i} = (a-bi)e^{-x-3i} + (p+iq)e^{-x+3i}$$
Dus $p = a$ en $q = b$

$$(a+bi)e^{-x+3i} + (a-ib)e^{-x-3i} = (a+bi)(\cos(3x) + i\sin(3x)) + (a-ib)(\cos(3x) - i\sin(3x))$$

$$= e^{-x}(2a\cos(3x) - 2b\sin(3x)) = c_1e^{-x}\cos(3x) + c_2e^{-x}\sin(3x)$$

Voorbeeld

$$y''' - 3y'' + 3y' - y = 0$$

 $\lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0$
 $\lambda_1 = 1$ (Moet je zien)
Staart delen geeft: $\lambda - 1/\lambda^3 - 3\lambda^2 + 2\lambda - 1 \setminus lambda^2 - 2\lambda + 1$
 $(\lambda - 1)(\lambda^2 + 2\lambda - 1)$
 $\lambda_1 = \lambda_2 = \lambda_3 = 1$
 $\phi_1 = e^x, \phi_2 = xe^x, \phi_3 = x^2e^x$
Controle:
 $\phi'_2 = e^x + xe^x$
 $\phi''_3 = 3e^x + xe^x$
 $3e^x + xe^x - 6e^x - 3xe^x + 3e^x + 3xe^x - xe^x = 0$ Klopt!