- 0.1 Instructions for Assignment
- · 0.2 Pre-setting
- 0.3 Knitr Global Options
- 0.4 Data Processing
 - o 0.4.1 Loading the data
 - o 0.4.2 Explore the Dataset
 - o 0.4.3 Cleaning the data
 - o 0.4.4 Data Processing 1
 - o 0.4.5 Data Processing 2
 - o 0.4.6 Data Processing 3
 - o 0.4.7 Data Processing 4
 - o 0.4.8 Data Processing 4
- 0.5 Exploratory Analysis
- 0.6 Analysis:
 - o 0.6.1 Which categories are most harmful?
 - o 0.6.2 Which categories are most destructive?
- 0.7 Results
 - o 0.7.1 Combined Plots in single Graphical Output
 - 0.7.2 Q1, and answer
 - o 0.7.3 Q2. and answer
- 0.8 End of Report.

Coursera #Duration 4 weeks / July-Aug2015 Reproducible Research

Assignment2 - Storms https://class.coursera.org/repdata-031/human_grading/view/courses/975144/assessments /4/submissions (https://class.coursera.org/repdata-031/human_grading/view/courses/975144/assessments/4/submissions) Storm-events in the database start in the year 1950 and end in November 2011 NOAA Storm Database: verylarge CSV bzip2 [47Mb] #https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2 (https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2) Instructions / Variable Name: #https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2Fpd01016005curr.pdf (https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2Fpd01016005curr.pdf) FAQ #https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2FNCDC%20Storm%20Events-FAQ%20Page.pdf (https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2FNCDC%20Storm%20Events-FAQ%20Page.pdf)

0.1 Instructions for Assignment

Document Layout Title: Your document should have a title that briefly summarizes your data analysis Synopsis: describes and summarizes your analysis in at most 10 complete sentences.

section titled Data Processing which describes (in words and code) how the data were loaded into R and processed for analysis. In particular, your analysis must start from the raw CSV file containing the data. You cannot do any preprocessing outside the document. If preprocessing is time-consuming you may consider using the cache = TRUE option for certain code chunks.

section titled Results in which your results are presented. At least one figure containing a plot/ no more than three figures. You must show all your code for the work in your analysis document.echo = TRUE

Submission of Output/ Code / Analysis Results: Final rendered HTML output at Rpubs: Reproducible study available at Github:

0.2 Pre-setting

```
setwd("D:/VIVEK/DataAnalysis/Coursera/5 RepRes/RepRes_Assignment2_Storms"); getwd()
## [1] "D:/VIVEK/DataAnalysis/Coursera/5 RepRes/RepRes_Assignment2_Storms"
```

require(stringr, quietly = TRUE)

```
## Warning: package 'stringr' was built under R version 3.2.1
require(lubridate, quietly = TRUE)
## Warning: package 'lubridate' was built under R version 3.2.1
require(reshape2, quietly = TRUE)
## Warning: package 'reshape2' was built under R version 3.2.1
require(grid, quietly = TRUE)
require(gridExtra, quietly = TRUE)
## Warning: package 'gridExtra' was built under R version 3.2.1
require(ggplot2, quietly = TRUE)
## Warning: package 'ggplot2' was built under R version 3.2.1
require(scales, quietly = TRUE)
## Warning: package 'scales' was built under R version 3.2.1
require(knitr, quietly = TRUE)
## Warning: package 'knitr' was built under R version 3.2.1
require(dplyr, quietly = TRUE)
## Warning: package 'dplyr' was built under R version 3.2.1
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:lubridate':
##
##
      intersect, setdiff, union
##
## The following objects are masked from 'package:stats':
##
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
sessionInfo()
```

```
## R version 3.2.0 (2015-04-16)
## Platform: i386-w64-mingw32/i386 (32-bit)
## Running under: Windows XP (build 2600) Service Pack 2
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] grid stats graphics grDevices utils
                                                      datasets methods
## [8] base
##
## other attached packages:
## [1] dplyr_0.4.2 knitr_1.10.5 scales_0.2.5
                                                    ggplot2_1.0.1
## [5] gridExtra_2.0.0 reshape2_1.4.1 lubridate_1.3.3 stringr_1.0.0
## loaded via a namespace (and not attached):
## [1] Rcpp_0.11.6 magrittr_1.5 MASS_7.3-40 munsell_0.4.2
## [5] colorspace_1.2-6 R6_2.1.0 plyr_1.8.3 tools_3.2.0 ## [9] parallel_3.2.0 gtable_0.1.2 DBI_0.3.1 htmltools_0.2.6
## [13] yaml_2.1.13 digest_0.6.8 assertthat_0.1 formatR_1.2
## [17] memoise_0.2.1 evaluate_0.7 rmarkdown_0.7 stringi_0.5-5
## [21] proto_0.3-10
```

```
#Version 0.99.442 - © 2009-2015 RStudio, Inc.
```

0.3 Knitr Global Options

```
opts_chunk$set(echo=TRUE, eval=TRUE, results='as.is', cache= FALSE, strip.white= TRUE, tidy = T
RUE)
```

0.4 Data Processing

0.4.1 Loading the data

Sets the paths to the dataset/ files

```
webURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
zipfilepath <- "repdata_data_StormData.csv.bz2"
rdsfilepath <- "StormData.RDS"</pre>
```

•

Checks if the file is avalable in local folder / If not downloads the zipfile

```
if (!file.exists(zipfilepath)) {
    message("wait for file to be downloaded from website-url")
    download.file(url = webURL, destfile = zipfilepath) # not used method = 'curl'
}
```

•

Checks if the data has been uploaded/ If not extracts data from the zipfile directly If data was already uploaded/ look for RDS file [As filesize is large, cache is necessary] If available, reads file from RDS (much faster, and is the option used to knit this report)

```
RDSloaded <- FALSE
message("main data set is being loaded")
```

```
## main data set is being loaded
```

```
if (!file.exists("rdsfilepath")) {
    message("large file...do patiently wait...will take many minutes")
    mdata <- read.csv(file = bzfile(zipfilepath), strip.white = TRUE)
    saveRDS(mdata, file = "rdsfilepath")
} else {
    message("extracting from compressed file and reading dataset into environment")
    mdata <- readRDS("rdsfilepath")
    RDSloaded <- TRUE
}</pre>
```

 $\ensuremath{\#\#}$ extracting from compressed file and reading dataset into environment

0.4.2 Explore the Dataset

Knowing the dataset and understanding the variable provides scope Build a stratergy sequence to process the dataset

```
dim(mdata) #ncol= records #nrow = variables

## [1] 902297 37
```

str(mdata)

```
902297 obs. of 37 variables:
## 'data.frame':
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224
2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",...: 272 287 2705 1683 2584 3186 242 1683
3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT", "AKS", "AST",...: 7 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "", "5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",...
: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK", "AL", "AM", ...: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834
834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 ...
## $ BGN AZI : Factor w/ 35 levels ""," N"," NW",...: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
              : int 3 2 2 2 2 2 2 1 3 3 ...
## $ F
            : num 00000000000...
## $ MAG
## $ FATALITIES: num 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 1...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
          : Factor w/ 542 levels ""," CI","$AC",...: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",...: 1 1 1 1 1 1 1 1 1 1 ...
\#\# $ ZONENAMES : Factor w/ 25112 levels "","
                                                                          " __truncated__,.
.: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM
             : num 1 2 3 4 5 6 7 8 9 10 ...
names(mdata) #head(mdata, n=3)
```

```
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"

## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"

## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"

## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"

## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"

## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"

## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"

## [36] "REMARKS" "REFNUM"
```

```
# issues: large dataset, not tidy, manual record entry, arbitarery naming.
```

Pictoral Exploration: provides a quick visual of the large datatable. Graphical plots invisible for report/ used for understanding only.

```
invisible(plot(table(mdata$STATE___))) #
invisible(plot(log(table(mdata$TIME_ZONE)))) #
invisible(plot(table(mdata$STATE))) #
invisible(plot(log(table(mdata$EVTYPE)))) #
invisible(plot(log(table(mdata$FATALITIES)))) #
invisible(plot(log(table(mdata$INJURIES)))) #
invisible(table(mdata$PROPDMGEXP)) #
invisible(table(mdata$CROPDMGEXP)) #
```

0.4.3 Cleaning the data

The datset is not tidy / List_levels not defined Lot of manual entry / spelling mistakes Many fields of of Blank data Wrong / irrelevant / incomprehensible entries

0.4.4 Data Processing 1

The USD value is in two seperate columns; one with the numerical value; second the multiplier

0.4.5 Data Processing 2

convert dates to POSIXct format

```
str(mdata$BGN_DATE)

## Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980
3980 ...

mdata$dateUTC <- mdy(str_extract(mdata$BGN_DATE, "[^ ]+"))
message("column added for Date as POSIXct")

## column added for Date as POSIXct</pre>
```

0.4.6 Data Processing 3

cleaning the EVTYPE and making Category EVTYPE column retained; new EVTYPEcat column added

```
str(mdata$EVTYPE) #levels(mdata$EVTYPE)
```

```
levels(mdata$EVTYPE) <- tolower(levels(mdata$EVTYPE))
mdata$EVTYPEcat <- mdata$EVTYPE</pre>
```

0.4.7 Data Processing 4

Important: EVTYPE categories are defined

- 1. "lightning" 2. "rain_shower" 3. "tornado_landwinds" 4. "typhoon_seawinds"
- 5. "fire & smoke" 6. "low_visibility" 7. "tsunami_oceansurge" 8. "heat_temparature"
- 9. "volcanic_activity" 10. "flood, erosion & avalanche" 11. "unknown condition" 12. "others"

note: there is no documentation available from the dataset authorities for this categorisation step Data Processing

```
levels(mdata$EVTYPEcat)[grepl("lightning |lightning|lightning|lightning| lightning| lightning|li
ghtning.|lighting",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "lightning"</pre>
levels(mdata$EVTYPEcat)[grepl("thunder|rain|hail|wet|downburst|precip|precipatation|shower|micr
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "rain_shower"</pre>
levels(mdata$EVTYPEcat)[grep("snow|winter|wintry|blizzard|glaze|hail|spout|sleet|cold|ice|freez
|icy|frost",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "winter_conditions"</pre>
levels(mdata$EVTYPEcat)[grepl("tornado|torndao|wnd|wind|gustnado|funnel", levels(mdata$EVTYPEca
         ignore.case = T)] <- "tornado_landwinds"</pre>
levels(mdata$EVTYPEcat)[grep1("typhoon|swells|storm|hurricane|tropical +storm|turbulence",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "typhoon_seawinds"</pre>
levels(mdata$EVTYPEcat)[grepl("fire|smoke", levels(mdata$EVTYPEcat), ignore.case = T)] <- "fire</pre>
  & smoke"
levels(mdata$EVTYPEcat)[grepl("fog|visibility|dark|dust", levels(mdata$EVTYPEcat),
         ignore.case = T)] <- "low_visibility"</pre>
levels(mdata$EVTYPEcat)[grepl("marine| surf|surge|tide|tstm|tsunami|current|rough + seas|wave|d
epression | rapidly rising water | seas",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "tsunami_oceansurge"</pre>
levels(mdata$EVTYPEcat)[grepl("heat|high +temp|temperature|record +temp|warm|dry|hot",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "heat_temparature"</pre>
levels(mdata$EVTYPEcat)[grepl("volcan", levels(mdata$EVTYPEcat), ignore.case = T)] <- "volcanic</pre>
 activity"
levels(mdata$EVTYPEcat)[grepl("avalance|avalanche|flooding|fld|stream|+flood|slide|mud|dam|flas
h | landslump | erosion | erosin | rapidly rising water",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "flood, erosion & avalanche"</pre>
levels(mdata$EVTYPEcat)[grepl("summary|southeast|vog|none|northern|\\?|other|urban|small|criter
ia|apache|floyd",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "unknown condition"</pre>
levels(mdata$EVTYPEcat)[grepl("wallcloud|county|record+low|excessive|high|seiche|heavy mix|exce
ssive no severe weather",
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "unknown condition"</pre>
\textbf{levels}(\texttt{mdata} \texttt{SEVTYPE} \texttt{cat}) [\textbf{grepl}(\texttt{"hyperthermia/exposure}|\texttt{drowning}|\texttt{unseasonal low temp}|\texttt{driest}|\texttt{record}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drowning}|\texttt{drown
  low|unseasonably cool|cool spell|drought|large wall cloud|record cool|mild pattern|wall cloud"
         levels(mdata$EVTYPEcat), ignore.case = T)] <- "others"</pre>
```

Important: The inital dataset had 985 factors for EVTYPE; it is now reduced to 13 categories as stored in EVTYPEcat

```
str(mdata$EVTYPEcat)
## Factor w/ 13 levels "tsunami_oceansurge",..: 4 4 4 4 4 4 4 4 4 ...
levels(mdata$EVTYPEcat)
                               "flood, erosion & avalanche"
## [1] "tsunami_oceansurge"
## [3] "lightning"
                                 "tornado_landwinds"
## [5] "winter_conditions"
                                 "unknown condition"
## [7] "heat_temparature"
                                  "rain_shower"
## [9] "low_visibility"
                                   "fire & smoke"
## [11] "typhoon_seawinds"
                                   "others"
## [13] "volcanic_activity"
table(mdataSEVTYPEcat)
          tsunami_oceansurge flood, erosion & avalanche
##
##
                        2302
                   lightning
##
                                    tornado_landwinds
##
                      15780
                                               320425
##
           winter_conditions
                                   unknown condition
##
                    50234
                                                  195
##
            heat_temparature
                                          rain_shower
                      3085
##
                                               412486
                                        fire & smoke
##
              low_visibility
```

0.4.8 Data Processing 4

##

##

##

##

##

Make dataset lean, improve speed of system: Purge many columns from the dataset, which will not be used in analysis.

4260

2527

others

0.5 Exploratory Analysis

Graphical plots invisible for report/ used for understanding only.

1992

1852

29

typhoon_seawinds

volcanic_activity

```
invisible(hist(mdata$dateUTC, breaks = 61))
invisible(plot(mdata$dateUTC, mdata$FATALITIES))
invisible(plot(mdata$dateUTC, mdata$INJURIES))
invisible(pairs(EVTYPE ~ FATALITIES + INJURIES + propDamage + cropDamage, data = mdata,
    main = "pairs plot", subset = FATALITIES > 0 & INJURIES > 0 & propDamage >
        0 & propDamage > 0))
invisible(plot(mdata$EVTYPE, mdata$propDamage))
invisible(plot(mdata$EVTYPE, mdata$cropDamage))
```

•

Understanding the Dataset; the number of events/ ratios

```
t <- nrow(mdata) #Ans: total recorded incidents\t\t[1] 902,297

dl <- sum(mdata$FATALITIES) #Ans: death_count \t \t\t\t\t\t[1] 15,145

icd <- sum(mdata$FATALITIES > 0, na.rm = TRUE) #Ans: fatality_incidents\t\t\t\t[1] 6,974

jl <- sum(mdata$INJURIES) #Ans: injury_count\t\t\t\t\t\t[1] 140,528

ici <- sum(mdata$INJURIES > 0, na.rm = TRUE) #Ans: injury_incidents \t\t\t\t\t[1] 17,604

pl <- sum(mdata$propDamage) #Ans: Total Dollar Value \t\t\t[1] 427,318,652,972

icp <- sum(mdata$propDamage > 0, na.rm = TRUE) #Ans: propertyloss_incidents \t\t[1] 239,174

cl <- sum(mdata$cropDamage) #Ans: Total Dollar Value\t\t\t[1] 49,104,192,181

icc <- sum(mdata$cropDamage > 0, na.rm = TRUE) #Ans: croploss_incidents \t\t\t[1] 22,099
```

•

Ratio of number of Human_Incident to total recorderd Incidents

```
t/icd #1 in every 130, recorded incidents has led to atleast 1 fatality
```

[1] 129.3801

t/ici #1 in every 51, recorded incidents has led to atleast 1 injury

[1] 51.25523

•

Ratio of number of Damage_Incident to total recorderd Incidents

```
t/icp #1 in every 3, recorded incidents has caused property damage
```

[1] 3.772555

t/icc #1 in every 40, recorded incidents has caused crop damage

[1] 40.82977

Average per incident

```
# fatality_incident
dl/icd #Ans: 2.17 average deaths per incident
```

[1] 2.171638

injury_incident
jl/ici #Ans: 7.98 average persons injured per incident

[1] 7.982731

```
# propertyloss_incident
pl/icp #Ans: $1,786,643 average loss per incident

## [1] 1786643

# croploss_incident
cl/icc #Ans: $2,222,010 average loss per incident
```

```
## [1] 2222010
```

caution note: for below code block, group_by does not work if 'plyr'is loaded after 'dplyr search() #display the packages detach("package:dplyr", unload=TRUE) #unload the package

0.6 Analysis:

0.6.1 Which categories are most harmful?

Impact on Human Life (Fatalities and Injuries)

0.6.1.1 Analysis Code 1

Analysing the effect of Event-type-categories on human_incidents (deaths and injuries)

0.6.1.2 Presentation Code 1

The ggplot grapplots only the top four EVTYPEcat / as the rest comparitively have less impact

```
plot1 <- ggplot(data = meltharmful, aes(x = reorder(EVTYPEcat, desc(value)),
    y = value/10^3, fill = variable)) + geom_bar(stat = "identity", width = 0.8,
    position = "dodge") + theme(axis.text.x = element_text(angle = 60, hjust = 1)) +
    ylab("Number of Person ( in Thousand)") + xlab("Major Event Category") +
    labs(fill = "Incidents") + theme(legend.position = c(0.8, 0.8), legend.background = element
    _rect(fill = "transparent")) +
        ggtitle("Top 4 Weather Events | Dangerous for Human Life") + theme(plot.title = element_tex
    t(size = 12,
        lineheight = 0.6, face = "bold")) + geom_text(aes(label = value), size = 3,
        hjust = 1.2, vjust = -0.8, alpha = 0.4)</pre>
```

0.6.1.2 Record the year of events, for the top categories - harmful incident.

0.6.1.3 Analysis Code 2

Subset the primary cleandataset for the four category variables

0.6.1.4 Presentation Code 2

The gaplot plots both deaths and injuries

```
plot2 <- ggplot(harmloc, aes(x = dateUTC, y = INJURIES, group = EVTYPEcat)) +
    geom_line(aes(stat = "identity", colour = "human_injuries"), alpha = 0.2) +
    geom_line(data = harmloc, aes(y = FATALITIES, stat = "identity", colour = "human_deaths"),
        alpha = 0.5) + scale_y_continuous(limits = c(0, 400), oob = rescale_none) +
    facet_wrap(~EVTYPEcat, nrow = 1) + coord_flip() + xlab("time-line.years 1950-2011") +
    ylab("quantity of casuality") + ggtitle("Timeline: Annual Casuality Incidents. EVTYPE by Pa
nel - for the Top 4 Weather Events - dangerous for humanlife") +
    theme(plot.title = element_text(size = 10, lineheight = 0.6, face = "bold")) +
    theme(legend.position = c(0.9, 0.3), legend.background = element_rect(fill = "transparent")
) +
    theme(legend.title = element_text(colour = "darkgrey", size = 10, face = "bold")) +
    scale_color_discrete(name = "Incidents")</pre>
```

0.6.2 Which categories are most destructive?

Economic Consequences (Property and Crop Damage)

0.6.2.1 Analysis Code 3

0.6.2.2 Presentation Code 3

The ggplot grapplots only the top five EVTYPEcat / as the rest comparitively have less impact

0.7 Results

0.7.1 Combined Plots in single Graphical Output

Setting up the multiplot function

http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_%28ggplot2%29/ (http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_%28ggplot2%29/)

```
\# Multiple plot function ggplot objects can be passed in ..., or to plotlist
# (as a list of ggplot objects) - cols: Number of columns in layout -
# layout: A matrix specifying the layout. If present, 'cols' is ignored. If
\# the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then
# plot 1 will go in the upper left, 2 will go in the upper right, and 3 will
# go all the way across the bottom.
multiplot <- function(..., plotlist = NULL, file, cols = 1, layout = NULL) {</pre>
    library(grid)
    # Make a list from the ... arguments and plotlist
    plots <- c(list(...), plotlist)</pre>
    numPlots = length(plots)
    # If layout is NULL, then use 'cols' to determine layout
    if (is.null(layout)) {
        # Make the panel ncol: Number of columns of plots nrow: Number of rows
        # needed, calculated from # of cols
        layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), ncol = cols,</pre>
            nrow = ceiling(numPlots/cols))
    }
    if (numPlots == 1) {
        print(plots[[1]])
    } else {
        # Set up the page
        grid.newpage()
        pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
        # Make each plot, in the correct location
        for (i in 1:numPlots) {
            # Get the i,j matrix positions of the regions that contain this subplot
            matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))</pre>
            print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, layout.pos.col = mat
chidx$col))
        }
    }
}
```

0.7.1.1 Presentation Code 3

Analysis of data in visible form

```
grid.newpage()
pushViewport(viewport(layout = grid.layout(3, 2)))
vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
print(plot2, vp = vplayout(1, 1:2)) # key is to define vplayout
print(plot1, vp = vplayout(2:3, 1))
print(plot3, vp = vplayout(2:3, 2))</pre>
```


message("Graphical Output: Single figure with Three plots and multi-pane")

Graphical Output: Single figure with Three plots and multi-pane

message("This meets the assignement instructions to have less than three plots in the report")

This meets the assignement instructions to have less than three plots in the report

0.7.2 Q1. and answer

Which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?[Across the United States]

Ans1: From the output, we find the harmful for humans (fatalities + injuries) 'Top Five Categories' are 1. tornado_landwinds 2. heat_temparature 3. winter_conditions 4. flood, erosion & avalanche The harm-impact of the other 9 categories is comparitively negligible, hence not plotted. -

0.7.3 Q2. and answer

Which types of events have the greatest economic consequences?[Across the United States]

Ans2: From the output, we find the destructive (propDamage + cropDamage) 'Top Five Categories' are 1.tornado_landwinds 2.flood, 3.erosion & rain_shower 4.winter_conditions 5. fire&smoke The harm-impact of the other 10 categories is comparitively negligible, hence not plotted. -

Note: Analysing for the Categories, there is a key-obervation to be made. Records for tornado_landwinds available since 1950 | for the others there is minimal records and mostly not available till 1996

0.8 End of Report.