

ADC

• Molteplici principi di funzionamento dipendenti da:

- accuratezza

- tempo di misurazione

- complessità circuitale

- automazione della misurazione

- costo dello strumento

- evoluzione tecnologica dei componenti elettronici

MISELN-DIP-ADC

Convertitori ad approssimazioni successive

Marco Parvis

11

- Pregi
 - Poco costoso: un comparatore un circuito SAR
 - Converte N bit in N colpi di clock
- Difetti
 - Meno veloce del convertitore flash
 - Richiede una tensione in ingresso stabile per tutto il periodo di conversione (sample&hold)

Torino, 28-May-02

Convertitori subranging

• 'Piccoli' convertitori flash in cascata

• Il codice del primo convertitore viene riconvertito in tensione e si converte la differenza tra ingresso e segnale rigenerato

Vin Plash distribute del primo convertitore viene riconvertito in tensione e si converte la differenza tra ingresso e segnale rigenerato

Convertitori subranging

Pregi

Flash semplici e meno costosi (per 8 bit servono 2 convertitori da 4 bit cioé 32 comparatori)

Le specifiche di incertezza del primo comparatore sono ridotte

Difetti

Più lento del convertitore Flash

MISELN-DIP-ADC

Convertitori ad

Convertitori ad 'integrazione'

- Forniscono un'uscita legata al valore 'medio' dell'ingresso in un certo intervallo di tempo
- Sono caratterizzati da
 - Tempo di integrazione
 - Tempo di conversione
 - Risoluzione

Torino, 28-May-02

MISELN-DIP-ADC

A rampa semplice

- Si effettua l'integrale del segnale di ingresso
- Il risultato si ottiene dal tempo impiegato per raggiungere un valore di tensione prefissato

Torino, 28-May-02

15

Marco Parvis

Se la tensione in ingresso è costante:

$$V_{u}(t) = -\frac{1}{RC}V_{x}t \Longrightarrow V_{x} = -\frac{V_{T}}{T_{T}}RC$$

Torino, 28-May-02

MISELN-DIP-ADC

A doppia rampa

- due fasi:
 - carica di un condensatore tramite la tensione incognita Vx
 - scarica del condensatore tramite una tensione di riferimento Vr
- si misurano i tempi di carica e di scarica

Torino, 28-May-02

17

Marco Parvis

Doppia rampa • fase di "run-up": si chiude l'interruttore lu e si carica il condensatore • uscita integratore: tensione a rampa

MISELN-DIP-ADC

Marco Parvis

Confronto Semplice/Doppia rampa

 Rampa semplice: devono essere misurati V_T,T_T,R,C

$$V_{x} = \frac{V_{T}}{T_{T}}RC$$

 Doppia rampa devono essere misurati: V_r ed il rapporto T_d/T_u

$$V_x = V_r \frac{T_d}{T_u}$$

Doppia rampa: non contano le derive di R,C e della base tempi

Torino, 28-May-02

23

MISELN-DIP-ADC

Marco Parvis

Evoluzioni: ADC Multirampa (multislope)

- Si impiegano rampe di scarica con diversa pendenza in sequenza
- Maggiore risoluzione con tempo di scarica inferiore
- In altri casi si inizia la scarica durante il periodo di integrazione (che rimane costante!)

Torino, 28-May-02

MISELN-DIP-ADC

Marco Parvis

Convertitori Sigma-Delta

- Il modulatore opera ad 1 bit ma ad una frequenza molto alta (100-1000 volte la frequenza di campionamento all'uscita)
- Il rumore di quantizzazione all'ingresso del filtro digitale è
 - molto elevato (convertitore ad un bit)
 - a spettro esteso su una banda molto ampia (legata alla frequenza del modulatore) con poco rumore alle basse frequenze (grazie all'integratore nella catena diretta)
- Il filtro digitale opera
 - come una sorta di contatore up-down (aumentando il numero di bit)
 - come filtro passa-basso (eliminando il rumore ad alta frequenza)
 - come decimatore (riducendo la frequenza di campionamento)

Torino, 28-May-02

27

Politecnico di Torino - Dip. Elettronica

Caratterizzazione degli A/D.

Caratterizzazione degli ADC

- L'accuratezza di un convertitore viene espressa dai costruttori, talvolta in modo implicito, con una serie di numeri sotto forma di: non-linearità differenziale, nonlinearità integrale, accuratezza assoluta, accuratezza relativa, ecc.
- Il costruttore normalmente preferisce indicare il valore a lui più favorevole, cosa che generalmente si ottiene:
 - in condizioni statiche,
 - riferendosi al "full-range"
 - in condizioni ambientali ottimali

Torino, 28-May-02

