Curs VIII

ELEMENTE DE TEORIA GRUPURILOR

§ 8. GRUPURI DE PERMUTĂRI

Fie A o mulțime. Am observat că mulțimea S(A) a funcțiilor bijective de la A în A formează față de compunere un grup numit *grupul permutărilor* mulțimii A.

Propoziția 8.1. Dacă <u>A şi A' sunt două mulțimi echipotente</u> (sau între care există o funcție bijectivă), atunci grupurile de permutări <u>S(A) şi S(A') sunt izomorfe.</u>

Demonstrație. Fie $f: A \to A'$ o funcție bijectivă. Definim o funcție $\phi: S(A) \to S(A')$ care asociază oricărei funcții bijective $u \in S(A)$ funcția bijectivă f o u o $f^{-1} \in S(A')$, deci

$$\varphi(u) = f \circ u \circ f^{-1}$$
.

Să demonstrăm că φ este un izomorfism de grupuri. Într-adevăr,

$$\varphi(u \circ v) = f \circ (u \circ v) \circ f^{-1} = f \circ u \circ (f^{-1} \circ f) \circ u \circ f^{-1} = (f \circ u \circ f^{-1}) \circ (f \circ v \circ f^{-1}) = \varphi(u) \circ \varphi(y),$$

adică φ este morfism de grupuri.

Să arătăm că φ este bijecție. Dacă $\varphi(u) = \varphi(v)$, atunci

$$f \circ u \circ f^{-1} = f \circ v \circ f^{-1}$$
,

de unde compunând la stânga cu f $^{-1}$ și la dreapta cu f, rezultă u = v și deci ϕ este injectivă. Dacă u' \in S(A'), atunci f $^{-1}$ o u' o f \in S(A) și

$$\phi(f^{-1} \circ u' \circ f) = f \circ (f^{-1} \circ u' \circ f) \circ f^{-1} = (f \circ f^{-1}) \circ u' \circ (f \circ f^{-1}) = u',$$
 deci ϕ este surjectivă.

Observație. În particular, dacă A este o mulțime finită cu n elemente, există o bijecție între A și mulțimea $\{1, 2, ..., n\}$, deci grupurile de permutări S(A) și $S(\{1, 2, ..., n\})$ sunt izomorfe. Atunci, pentru a studia grupul de permutări al unei mulțimi cu n elemente este suficient să studiem grupul S_n al permutărilor mulțimii $\{1, 2, ..., n\}$.

Definiția 8.2. Grupul S_n se numește grupul simetric de grad n sau grupul permutărilor de grad n. Elementele lui S_n se numește permutări de n elemente sau permutări de grad n. Elementul neutru e din n se numește permutarea identică de grad n.

Să considerăm $\sigma \in \mathbf{S}_n$ o permutare de n elemente, adică o funcție bijectivă de la mulțimea $\{1, 2, ..., n\}$ în ea însăși. Punând în evidență valoarea $\sigma(i)$ a funcției σ pentru $i \in \{1, 2, ..., n\}$, vom nota permutarea astfel

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ & & & \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right),$$

unde $\sigma(1)$, $\sigma(2)$, ..., $\sigma(n)$ sunt numerele 1, 2, ..., n, eventual în altă ordine.

Vom arăta că S_n are n! elemente. Vom demonstra acest fapt folosind teorema lui Lagrange. Notăm $\overline{S}_{n-1} = \{ \sigma \in S_n \mid \sigma(n) = n \}$, mulțimea permutărilor de n elemente care invariază pe n. Este clar că \overline{S}_{n-1} este un un subgrup al lui S_n , izomorf cu grupul S_{n-1} al permutărilor de n-1 elemente. Izomorfismul este dat de funcția

$$\theta: \mathbf{S}_{n-1} \rightarrow \overline{\mathbf{S}}_{n-1},$$

definită prin

$$\theta(\sigma) = \overset{-}{\sigma}$$
, unde $\overset{-}{\sigma}(i) = \sigma(i)$, pentru $1 \le i \le n-1$ și $\overset{-}{\sigma}(n) = n$.

 $Deci \mid \mathbf{S}_{n-1} \mid = \mid \ \overline{\mathbf{S}}_{n-1} \mid.$

Vom demonstra prin inducție după n că avem $|\mathbf{S}_n| = n!$. Pentru n=1 este evident că $|\mathbf{S}_1| = 1 = 1!$. Să presupunem că $|\mathbf{S}_{n-1}| = (n-1)!$. Conform teoremei lui Lagrange avem că $|\mathbf{S}_n| = [\mathbf{S}_n : \mathbf{\bar{S}}_{n-1}] |\mathbf{\bar{S}}_{n-1}|$ adică, $|\mathbf{S}_n| = [\mathbf{S}_n : \mathbf{\bar{S}}_{n-1}] (n-1)!$.

Să calculăm indicele $[S_n: \overline{S}_{n-1}]$ al subgrupului \overline{S}_{n-1} în S_n , adică numărul claselor de echivalență (la stânga) modulo \overline{S}_{n-1} . Dacă σ , $\tau \in S_n$, atunci $\sigma \equiv_s \tau \pmod{\overline{S}_{n-1}}$ dacă și numai dacă $\sigma^{-1}\tau \in \overline{S}_{n-1}$, adică $\sigma^{-1}\tau$ (n) = n sau echivalent τ (n) = σ (n). Deci există n clase de echivalența (la stânga):

$$[\sigma_1], [\sigma_2], \ldots, [\sigma_n],$$

 $\text{unde } [\sigma_i] = \{\sigma \in \mathbf{S}_n \mid \sigma(n) = i\}, \text{ oricare ar fi } i = 1, 2, \dots, n. \text{ Aṣadar, } [\mathbf{S}_n : \overline{\mathbf{S}}_{n-1}] = n \text{ și deci } \\ \mid \mathbf{S}_n \mid = n \ (n-1)! = n!.$

Definiția 8.3. Fie
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ & & & & \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
 o permutare de n elemente. O

pereche (i, j) se numește *inversiune* a permutării σ dacă i \leq j și σ (i) $> \sigma$ (j). Notăm cu inv(σ) numărul inversiunilor permutării σ .

Dacă $\sigma \in S_n$ este o permutare, definim numărul

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

care se numește semnul (signatura) permutării σ.

Observăm că orice diferență $\sigma(j)-\sigma(i)$, cu i < j, de la numărătorul produsului din formula care definește $\epsilon(\sigma)$, se simplifică cu una dintre diferențele de la numitor, care apare eventual cu semn schimbat dacă (i,j) este o inversiune. Deci $\epsilon(\sigma)$ este un produs de +1 și -1, factorul -1 apărând de atâtea ori câte inversiuni are permutarea σ . Deci $\epsilon(\sigma)=(-1)^{inv(\sigma)}$.

O permutare σ se numește *pară* dacă $\varepsilon(\sigma) = 1$, adică are un număr par de inversiuni și se numește *impară* dacă $\varepsilon(\sigma) = -1$, adică are un număr impar de inversiuni.

Există permutări pare ca, de exemplu, permutarea identică. Vom arăta că pentru orice $n \ge 2$ există și permutări impare.

Fie
$$n \ge 2$$
 şi k, $l \in \{1, 2, ..., n\}$ cu $k \ne l$. Permutarea τ_{kl} definită prin $\tau_{kl}(k) = l$, $\tau_{kl}(l) = k$, $\tau_{kl}(i) = i$, dacă $i \ne k$ și $i \ne l$,

se numește *transpoziție*. Transpoziția τ_{kl} se mai notează (k l).

Propoziția 8.4. Dacă $n \ge 2$ este un număr natural, atunci orice transpoziție din S_n este permutare impară.

Demonstrație. Fie transpoziția (k l) și să presupunem că k < l. Atunci

$$(k \ l) = \begin{bmatrix} 1 & 2 \dots k-1 & k \dots l-11 \dots n \\ \\ 1 & 2 \dots k-1 & 1 \dots l-1 & k \dots n \end{bmatrix}$$

și numărul de inversiuni este (1-k) + (1-k-1) = 2(1-k) - 1. Deci $\varepsilon((k, l)) = -1$.

Propoziția 8.5. Dacă $n \ge 2$ este un număr natural, funcția

$$\varepsilon: \mathbf{S}_n \to \{-1, 1\},\$$

de la grupul permutărilor S_n la grupul multiplicativ $\{-1, 1\}$, este un morfism surjectiv de grupuri.

Demonstrație. Fie $\sigma, \tau \in \mathbf{S}_n$. Deoarece $\tau(1), \tau(2), \ldots, \tau(n)$ sunt numerele $1, 2, \ldots, n$, eventual într-o altă ordine și cum în produsul care-l dă pe $\epsilon(\sigma)$ diferențele de la numitor se pot face și în altă ordine decât cea din definiție, rezultă că avem

$$\epsilon(\sigma) = \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma\left(\tau(i)\right)}{\tau(j) - \tau(i)}.$$

Atunci:

$$\begin{split} \epsilon(\sigma \circ \tau) &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j - i} &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} &= \\ &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j - \tau(i)} &= \\ &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} &= \\ &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} &= \\ &= \sigma(\sigma) \; \epsilon(\tau), \end{split}$$

deci ε este un morfism de grupuri. Deoarece orice transpoziție este impară, iar permutarea identică este pară, rezultă că ε este surjectiv.

Definiția 8.6. Să notăm cu $A_n = \{ \sigma \in \mathbf{S}_n \mid \epsilon(\sigma) = 1 \}$, mulțimea permutărilor pare din \mathbf{S}_n . Este clar că A_n este un subgrup (normal) al lui \mathbf{S}_n , deci la rândul său este grup, numit grupul altern de grad n.

Evident A_n = Ker ϵ și din teorema fundamentală de izomorfism pentru grupuri rezultă că grupul factor \mathbf{S}_n/A_n este izomorf cu grupul multiplicativ $\{-1, 1\}$, deci indicele $[\mathbf{S}_n \colon A_n]$ este 2.

Corolarul 8.7. A_n are n!/2 elemente.

Definiția 8.8. O permutare $\sigma \in \mathbf{S}_n$ se numește *ciclu de lungime m*, $2 \le m \le n$, dacă există m numere $i_1, i_2, ..., i_m \in \{1, 2, ..., n\}$ astfel încât să avem:

$$\begin{array}{l} 1^{\circ} \text{ oricare ar fi } i \not\in \{i_{1},\,i_{2},\,...\,\,,\,i_{m}\},\,\sigma(i)=i,\\ 2^{\circ} \,\,\sigma(i_{1})=i_{2},\,\sigma(i_{2})=i_{3},\,...\,\,,\,\sigma(i_{m-1})=i_{m,}\,\sigma(i_{m})=i_{1}. \end{array}$$

Acest ciclu

$$\sigma = \begin{bmatrix} 1 & \dots & i_1 & \dots & i_2 & \dots & i_3 & \dots & i_{m-1} & \dots & i_m & \dots & n \\ \\ 1 & \dots & i_2 & \dots & i_3 & \dots & i_4 & \dots & i_m & \dots & i_1 & \dots & n \end{bmatrix}$$

îl vom nota $\sigma = (i_1 \ i_2 \ ... \ i_m)$

Observăm că la orice sistem de m numere $i_1, i_2, ..., i_m$ cuprinse între 1 și n putem să asociem cel puțin un ciclu de lungime m si, mai mult,

$$(i_1 \ i_2 \dots i_m) = (i_2 \ i_3 \dots i_m \ i_1) = \dots = (i_m \ i_1 \dots i_{m-1}).$$

Așadar, numărul ciclilor de lungime m, $2 \le m \le n$, este $C_n^m (m-1)!$. De exemplu, orice transpoziție este un ciclu de lungime 2. Prin urmare, rezultă că numărul transpozițiilor din grupul S_n este C_n^2 .

Propoziția 8.9. Dacă $\sigma = (i_1 \ i_2 \ ... \ i_m) \in \mathbf{S}_n$ este un ciclu de lungime m, atunci

- 1) $\sigma^{-1} = (i_m i_{m-1} \dots i_1),$
- 2) ord(σ) = m.

Demonstrație. 1) Se verifică imediat.

2) Din definiția ciclului obținem că $\sigma^k(i_1) = i_{k+1}$ pentru orice $1 \le k \le m-1$ și $\sigma^m(i_1) = i_1$. Deoarece $i_1 \ne i_k$, pentru orice $2 \le k \le m$, avem că $\sigma^k \ne e$, pentru orice $1 \le k \le m-1$. Să arătăm că $\sigma^m = e$. Dacă $i \not\in \{i_1, i_2, ..., i_m\}$, atunci $\sigma(i) = i$ și deci $\sigma^m(i) = i$. Dacă $i = i_1$ am observat că $\sigma^m(i_1) = i_1$, iar dacă $i = i_{k+1}$, $1 \le k \le m-1$, atunci $\sigma^m(i) = \sigma^m(\sigma^k(i_1)) = \sigma^k(\sigma^m(i_1)) = \sigma^k(i_1) = i$. Deci oricare ar fi i, $1 \le i \le n$, avem că $\sigma^m(i) = i$, adică $\sigma^m = e$. Am demonstrat astfel că ord $(\sigma) = m$.

Propoziția 8.10. Fie σ , $\tau \in S_n$, iar A, B două submulțimi nevide și disjuncte ale mulțimii $\{1, 2, ..., n\}$ astfel încât:

- 1. Dacă $s \notin A$, atunci $\sigma(s) = s$, iar dacă $s \in A$, atunci $\sigma(s) \in A$;
- 2. Dacă $t \notin B$, atunci $\tau(t) = t$, iar dacă $t \in B$, atunci $\tau(t) \in B$.

Atunci $\sigma \tau = \tau \sigma \operatorname{si} \operatorname{ord}(\sigma \tau) = \operatorname{c.m.m.m.c.} (\operatorname{ord}(\sigma), \operatorname{ord}(\tau)).$

Demonstrație. Fie $r \in \{1, 2, ..., n\}$ un element oarecare. Dacă $r \notin A \cup B$ atunci $\sigma(r) = r$ și $\tau(r) = r$ și deci $(\sigma \tau)(r) = (\tau \sigma)(r) = r$. Presupunem că $r \in A \cup B$. Dacă $r \notin A$, atunci $r \in B$ și deci $\tau(r) = r$. Avem $(\sigma \tau)(r) = \sigma(\tau(r)) = \sigma(r)$, iar $(\tau \sigma)(r) = \tau(\sigma(r))$. Dar cum $\sigma(r) \in A$, atunci $\sigma(r) \notin B$ și deci $\sigma(\tau(r)) = \sigma(r)$. Rezultă că și în acest caz $(\sigma \tau)(r) = (\tau \sigma)(r)$. Analog, dacă $r \in B$, rezultă $(\sigma \tau)(r) = (\tau \sigma)(r)$. Deci $(\sigma \tau)(r) = (\tau \sigma)(r)$, oricare ar fi $r \in \{1, 2, ..., n\}$, adică $\sigma \tau = \tau \sigma$.

Fie acum $ord(\sigma) = k$, $ord(\tau) = l$, $ord(\sigma, \tau) = m$ și să notăm u = c.m.m.m.c.(k, l). Avem $(\sigma, \tau)^m = e$ și cum $\sigma, \tau = \tau$ σ , rezultă $\sigma, \tau^m = e$ sau $\sigma, \tau^m = \tau$. Vom arăta că $\sigma, \tau^m = e$

 τ^m . Într-adevăr, dacă $\sigma^m \neq e$, atunci există $r \in \{1, 2, ..., n\}$ astfel încât $\sigma^m(r) \neq r$ și deci neapărat $r \in A$. Din $\sigma^m(r) = \tau^{-m}(r)$, avem $\tau^{-m}(r) \neq r$, deci $\tau^m(r) \neq r$ și deci neapărat $r \in B$. Așadar $r \in A \cap B$, contradicție cu faptul că $A \cap B = \emptyset$. Am obținut astfel că $\sigma^m = e = \tau^m$.

Prin urmare, $k \mid m$ și $l \mid m$ și deci $u \mid m$. Fie k', $l' \in \mathbb{N}$ astfel încât u = kk' și u = ll'. Deci $(\sigma \tau)^u = \sigma^u \tau^u = (\sigma^l)^{l'} (\tau^k)^{k'} = e$, de unde obținem că $m \mid u$. Din $u \mid m$ și $m \mid u$ rezultă că m = u și propoziția este demonstrată.

Corolarul 8.11. Fie $\sigma \in \mathbf{S}_n$, $n \ge 2$, o permutare astfel încât $\sigma = \tau_1 \ \tau_2 \dots \tau_t$, unde τ_1 , τ_2, \dots, τ_t sunt cicli disjuncți. Atunci ord $(\sigma) = c.m.m.m.c.(\text{ord}(\tau_1), \text{ord}(\tau_2), \dots, \text{ord}(\tau_t))$.

Demonstrație. Rezultă imediat prin generalizarea punctului 2 al propoziției de mai sus.

Definiția 8.12. Ciclurile $\sigma=(i_1\ i_2\ ...\ i_m)$ și $\tau=(j_1\ j_2\ ...\ j_k)$ se numesc *disjuncte* dacă

$$\{i_1, i_2, \ldots, i_m\} \cap \{j_1, j_2, \ldots, j_k\} = \emptyset.$$

Propoziția precedentă aplicată în cazul ciclurilor disjuncte σ și τ ne spune că σ $\tau = \tau$ σ și ord(σ τ) = c.m.m.m.c.(m, k).

Teorema 8.13. Orice permutare $\sigma \in S_n$, $\sigma \neq e$, se descompune ca un produs finit de cicli disjuncți. Mai mult, această descompunere este unică, abstracție făcând de ordinea factorilor.

Demonstrație. Fie n_{σ} numărul de elemente ale mulțimii $\{1, 2, ..., n\}$ permutate efectiv de către σ , adică

$$n_{\sigma} = |\{i \mid \sigma(i) \neq i\}|.$$

Deoarece $\sigma \neq e$, există i astfel încât $\sigma(i) \neq i$ și cum σ este injectivă avem $\sigma(\sigma(i)) \neq \sigma(i)$ și deci $n_{\sigma} \geq 2$. Vom face demonstrația prin inducție după acest număr.

Dacă $\sigma \in \mathbf{S}_n$, astfel încât $n_{\sigma} = 2$, atunci există $i \neq j$, astfel încât $\sigma(i) = j$, $\sigma(j) = i$ și $\sigma(k) = k$ oricare ar fi $k \neq i$ și $k \neq j$. În acest caz σ este transpoziția (i, j).

Presupunem teorema adevărată pentru toate permutările τ care permută efectiv mai puțin de n_{σ} elemente, adică $n_{\tau} < n_{\sigma}$, și să arătăm că ea este adevărată și pentru σ .

Dacă $i_1 \in \{1, 2, ..., n\}$ astfel încât $\sigma(i_1) \neq i_1$, notăm $i_2 = \sigma(i_1)$, ..., $i_{k+1} = \sigma(i_k)$, Este clar că $i_{k+1} = \sigma^k(i_1)$, oricare ar fi $k \geq 1$. Dacă $t = \text{ord}(\sigma)$, atunci $\sigma^t = e$ și deci $\sigma^t(i_1) = i_1$, adică $i_{t+1} = i_1$. Din proprietatea de bună ordonare a mulțimii N a numerelor naturale, există un cel mai mic număr natural nenul m cu proprietatea că $i_{m+1} = i_1$.

Numerele i_1, i_2, \ldots, i_m sunt distincte. Într-adevăr, dacă $i_r = i_s$, cu $r \neq s$, și $1 \leq r$, $s \leq m$, atunci $\sigma^{r-1}(i_1) = \sigma^{s-1}(i_1)$. Să presupunem că r > s și fie p = r - s. Atunci $\sigma^{r-s}(i_1) = i_1$, adică $\sigma^p(i_1) = i_1$ sau $i_{p+1} = i_1$. Dar egalitatea $i_{p+1} = i_1$, unde 0 , este în contradicție cu alegerea numărului m.

Fie acum ciclul $\tau = (i_1 \ i_2 \ ... \ i_m)$ și să considerăm permutarea $\sigma' = \tau^{-1}\sigma$. Dacă $\sigma(i)$ = i, atunci i $\notin \{i_1, i_2, ..., i_m\}$ și deci $\tau^{-1}(i)$ = i, de unde $\sigma'(i)$ = i. Mai mult, dacă $i_k \in \{i_1, ..., i_m\}$ este clar că $\sigma'(i_k) = (\tau^{-1}\sigma)(i_k) = \tau^{-1}(\sigma(i_k)) = i_k$ și deci, în plus, elementele $i_1, i_2, ..., i_m$

 i_m rămân neschimbate dacă le aplicăm permutarea σ' . Așadar $n_{\sigma'} < n_{\sigma}$ și conform ipotezei de inducție există ciclurile disjuncte τ_2 , τ_3 , ..., τ_t astfel încât $\sigma' = \tau_2$ τ_3 ... τ_t sau $\tau^{-1}\sigma = \tau_2$ τ_3 ... τ_t , de unde $\sigma = \tau$ τ_2 τ_3 ... τ_t . Mai mult, din demonstrație rezultă că ciclul τ este disjunct de fiecare din ciclurile disjuncte τ_2 , τ_3 , ..., τ_t . Notând $\tau_1 = \tau$ obținem descompunerea $\sigma = \tau_1$ τ_2 τ_3 ... τ_t în produs de cicli disjuncți. Tot din demonstrație se observă că această descompunere este unică, abstracție făcând de ordinea factorilor.

Propoziția 8.14. Orice ciclu din S_n este un produs de transpoziții.

Demonstrație. Dacă $\sigma=(i_1\ i_2\ ...\ i_m)$ este un ciclu de lungime m, atunci prin calcul direct rezultă

$$\sigma = (i_1 i_m)(i_1 i_{m-1}) \dots (i_1 i_2) = (i_1 i_2)(i_2 i_3) \dots (i_{m-1} i_m).$$

Corolarul 8.15. Orice permutare $\sigma \in \mathbf{S}_n$, $n \ge 2$, este produs de transpoziții.

Demonstrație. Dacă $\sigma = e$, atunci $\sigma = e = (1, 2)(1, 2)$. Dacă $\sigma \neq e$, afirmația rezultă din teorema și propoziția de mai sus.

Observație. Din cele de mai sus se observă că descompunerea unei permutări în produs de transpoziții nu este unică, în schimb paritatea numărului de transpoziții care apar în orice descompunere a unei permutări este aceeași. Într-adevăr, fie $\sigma = \tau_1 \ \tau_2 \dots \ \tau_t = \sigma_1 \ \sigma_2 \dots \ \sigma_s$, unde $\tau_1, \ \tau_2, \dots, \ \tau_t \ \text{și} \ \sigma_1, \ \sigma_2, \dots, \ \sigma_s \ \text{sunt transpoziții}$. Ținând cont că semnul unei transpoziții este -1, obținem $\epsilon(\sigma) = (-1)^t = (-1)^s$, de unde rezultă că r și s sunt în același timp pare sau impare.

Aplicație. Fie permutarea $\sigma \in S_{10}$, unde

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \\ 3 & 5 & 1 & 4 & 7 & 10 & 8 & 2 & 6 & 9 \end{pmatrix}$$

Să scriem permutarea σ ca produs de cicli disjuncți și ca produs de transpoziții. De asemenea, să determinăm ordinul permutării σ .

Considerăm numărul 1 care este permutat efectiv de σ , deoarece $\sigma(l) = 3$. Cum $\sigma(3) = l$ obținem $\tau_1 = (1\ 3)$. Considerăm acum următorul număr care este permutat efectiv de σ și care nu aparține mulțimii $\{1,\ 3\}$. Acesta este 2. Cum $\sigma(2) = 5$, $\sigma(5) = 7$, $\sigma(7) = 8$, $\sigma(8) = 2$ obținem ciclul $\tau_2 = (2\ 5\ 7\ 8)$. Fie acum numărul 6 care este permutat efectiv de σ . Avem $\sigma(6) = 10$, $\sigma(10) = 9$, $\sigma(9) = 6$ și astfel obținem ciclul (6 10 9). Deci σ se scrie ca produs de cicluri disjuncte astfel: $\sigma = (1\ 3)\ (2\ 5\ 7\ 8)\ (6\ 10\ 9)$.

Din ultima propoziție a acestui paragraf rezultă că σ se poate scrie ca produs de transpoziții astfel: $\sigma = (1\ 3)\ (2\ 8)\ (2\ 7)\ (2\ 5)\ (6\ 9)\ (6\ 10)$.

În final avem ord(σ) = c.m.m.m.c.(2, 4, 3) = 12.