Research Project

Develop and apply a cell population model of stem cell differentiation. Stem cells are determined by the presence of the factor, Oct-4. The dynamics of two, undifferentiated and differentiated, subpopulations are presented by the sketch:

where g_c , g_u , and g_d are, respectively, self-renewal rate of undifferentiated cells, differentiation rate, and self-renewal rate of differentiated cells in day-1 units. Mathematically, cell dynamics are described by the equations:

$$\frac{dU}{dt} = g_u U - g_c U$$

$$\frac{dD}{dt} = g_d D + g_c U$$

where U(t) and D(t) are the numbers of differentiated and differentiated cells, respectively.

1. Solve the system of ODEs and find analytical expressions for U(t) and D(t) if U(0) = 20, D(0) = 0

Using dsolve, we obtain $U(t) = 20e^{-(g_c - g_u)t}$ and $D(t) = \frac{20g_c}{g_c + g_d - g_u}e^{g_d t} - 20g_c e^{-t(\frac{g_c - g_u}{g_c + g_d - g_u})t}$

2. Fit the D(t) function to the experimental data below and determine the g_c , g_u , and g_d rates for two substrates.


```
t_gelatin = [2 4 6];
num_cells_gelatin = [0 3 14];
t_gelatin_FGF4 = [1 4 6];
num_cells_gelatin_FGF4 = [0 5 20];
```


Using experimental data for gelatin substate, we obtain $g_c=0.06633$, $g_u=-11.25$, and $g_d=0.8089$

Using experimental data for gelatin and FGF4 substate, we obtain $g_c = 0.3392$, $g_u = -23.08$, and $g_d = 0.711$

3. Predict the numbers, U(t = 8) and D(t = 8)

Using
$$g_c = 0.3392$$
, $g_u = -23.08$, and $g_d = 0.711$, $U(t = 8) = 8.5980 \times 10^{-81}$ and $D(t = 8) = 83.0218$