Bayesian Neural Networks

Ava, Conor, Taylor

Reed College

April 1, 2024

A Brief History

Intro

000

Applications

Intro

SIMPLE ANSWERS

TO THE QUESTIONS THAT GET ASKED ABOUT EVERY NEW TECHNOLOGY:

WILL MAKE US ALL GENIUSES?	NO
WILL MAKE US ALL MORONS?	NO
WILL DESTROY WHOLE INDUSTRIES?	YES
WILL MAKE US MORE EMPATHETIC?	NO
WILL MAKE US LESS CARING?	NO
WILL TEENS USE FOR SEX?	YES
WERE THEY GOING TO HAVE SEX ANYWAY?	YES
WILL DESTROY MUSIC?	NO
WILL DESTROY ART?	NO
BUT CAN'T WE GO BACK TO A TIME WHEN-	NO
WILL BRING ABOUT WORLD PEACE?	NO
WILL CAUSE WIDESPREAD AUENATION BY CREATING A WORLD OF EMPTY EXPERIENCES?	WE WERE AUREADY ALIENATED

What are....

Neural Networks (NN)

Figure: Example neural network

Issues with Neural Networks

Stir data and pray

Convolutional Neural Networks (CNN)

Figure: CNN pipeline [9]

Convolutional Neural Networks (CNN)

Convolutional Kernel Input Matrix

Output Feature Map

Ava, Conor, Taylor (Reed College)

Why we use CNNs

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

ANSWER QUICKLY-OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

Figure: XKCD: "Self Driving" [6]

- They are more efficient for image based tasks
- Channels

Ava, Conor, Taylor (Reed College)

Neural Networks Bayesian Neural Networks Simulation Closing References

Bayesian Neural Network

Bayesian Neural Networks Neural Networks

BNN Neuron

Figure: Example BNN Neuron [2]

Ava, Conor, Taylor

(Reed College)

Bayesian Neural Networks

Neural Networks Bayesian Neural Networks Simulation Closing References

00000 00000 0

Why we use BNN

I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

Figure: XKCD: "Error Bars" [6]

- We can put uncertainty on our weights
- ...

Difference between BNNs and BCNNs

Figure: XKCD: "The General Problem" [8]

The relationship between BNNs and BCNNs is the same as NNs and CNNs.

Neural Networks Bayesian Neural Networks Simulation Closing Reference

CIFAR-10

Neural Networks Bayesian Neural Networks Simulation Closing Reference

○○○○○ ○○○○○○ ○

Hyperparameters

Hyperparameter	CNN	BCNN
Epochs	50	50
Time to train	Adamw	Adamw
Learning Rate	0.0004	0.0004
Regularization Rate	0.0001	0.0001
Optimizer	Adamw	Adamw

Simulation 000000

Results

Metrix	CNN	BCNN
Train Accuracy	81.609%	70.664%
Validation Accuracy	64.499%	61.399%
Optimizer	Adamw	Adamw

Neural Networks Bayesian Neural Networks Simulation Closing References

○○○○ ○○○○ ○

Confusion Matrix (CNN)

Neural Networks Bayesian Neural Networks Simulation Closing References

○○○○○ ○○○●○ ○

Confusion Matrix (BCNN)

Neural Networks Bayesian Neural Networks Simulation Closing Reference 00000 0000 0

Live Demo

Figure: XKCD: "Laws of Physics" [4]

Questions

SIMPLE ANSWERS

TO THE QUESTIONS THAT GET ASKED ABOUT EVERY NEW TECHNOLOGY:

WILL MAKE US ALL GENIUSES?	NO
WILL MAKE US ALL MORONS?	NO
WILL DESTROY WHOLE INDUSTRIES?	YES
WILL MAKE US MORE EMPATHETIC?	NO
WILL MAKE US LESS CARING?	NO
WILL TEENS USE FOR SEX?	YES
WERE THEY GOING TO HAVE SEX ANYWAY?	YES
WILL DESTROY MUSIC?	NO
WILL DESTROY ART?	NO
BUT CAN'T WE GO BACK TO A TIME WHEN-	NO
WILL BRING ABOUT WORLD PEACE?	NO
WILL CAUSE WIDESPREAD ALIENATION BY CREATING A WORLD OF EMPTY EXPERIENCES?	WE WERE ALREADY ALIENATED

Figure: XKCD: "Simple Answers" [7]

References I

- [1]Jacek Fleszar. "Bayesian Neural Networks - Capturing The Uncertainty Of The Real World!!" In: (Sept. 2023).
- [2] Florian Häse et al. "How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry". In: Chemical science 10.8 (2019), pp. 2298–2307.
- [3] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. "CIFAR-10" (Canadian Institute for Advanced Research)". In: (). URL: http://www.cs.toronto.edu/~kriz/cifar.html.
- [4] Randall Monroe. XKCD: Laws of Physics. Apr. 2016.
- [5] Randall Monroe. XKCD: Machine Learning. May 2017.
- [6] Randall Monroe. XKCD: Self Driving. Oct. 2017.

20/21

Neural Networks Bayesian Neural Networks Simulation Closing References

References II

- [7] Randall Monroe. XKCD: Simple Answers. Nov. 2013.
- [8] Randall Monroe. XKCD: The General Problem. Nov. 2011.
- [9] Sumit Saha. "A Guide to Convolutional Neural Networks the ELI5 way". In: (Dec. 2018).

