2장. 천체의 펄서 예측 신경망 과제

부산대학교 전기컴퓨터공학부 정보컴퓨터공학전공 201724579 정현모

1. 개요

기존의 정확도 평가 방법인 Accuracy는 균형 잡히지 않은 데이터 셋에서는 쉽게 높은 정확도에 도달이 가능하다. 따라서 새로운 접근으로 정확도를 판단해야 하는데, 그 방법으로 recall, precision, f1 score가 있다. Recall은 실제로 True인 데이터 중 모델이 True라고 인식한데이터의 수이다. Precision은 모델이 True라고 예측한데이터 중 실제로 True인데이터의 수이다. 위의 두 값을 이용해 조화평균을 구한 값이 F1 score이다. 데이터 개수가 비교적 적은 필서 데이터를 True, 비 필서 데이터는 False값으로 잡고 F1 score를 구하여 보다 의미 있는 정확도를 구해본다.

2. 원인 분석

A. adjust_ratio parameter

Pulsar_ext_test 파일을 보게 되면 adjust_ratio라는 파라미터를 사용하지 않은 결과와 사용한 결과가 나와있다. adjust_ratio 파라미터는 데이터에서 부족했던 펄서 데이터를 전처리를 통해 데이터 균형을 맞춰주는 방법을 의미한다. 이 과정에서 상대적으로 많았던 비펄서 데이터를 없애는 것이 아닌 부족했던 펄서 데이터를 복사해서 늘리는 방법을 택한다.

B. Recall 값의 증가

데이터의 균형만 맞춰 주었음에도 Recall 값과 F1 값이 크게 오른 것을 확인할 수 있다. 그에 반해, Accuracy 값은 약간 떨어지는 것을 확인할 수 있다. Recall 값이 증가한 이유는 수식 상에서 그 원인을 찾으려 하면 찾을 수 없다. 예시를 들어보겠다. adjust_ratio 파라미터로 실제 True값을 증가시켰다는 점에 주목하면 $\frac{tp}{(tp+fn)}$ 에서 tp값과 fn값이 모두 증가했는데 tp와 fn의 비율이 7:3이었다고 가정하고 x를 실제 True 값이라고 하겠다. 그럼 tp값은 0.7x이고 fn값은 0.3x가 되는데, 이를 Recall 함수에 넣어보면 $\frac{0.7x}{(0.7x+0.3x)}$ 가되고 이를 통해 우리는 x의 값이 증가한다고 실제 recall값은 증가하지 않음을 알 수 있다. 따라서 전처리를 통해 데이터의 균형을 맞췄을 때, 학습 과정에서 모델이 Recall값을 더 잘 나타낼 수 있도록 학습이 되었다는 것을 알 수 있다.

2장. 천체의 펄서 예측 신경망 과제

C. F1 score 값의 증가

F1 score는 Recall 함수의 허점을 해결하고 Precision과 Recall함수의 장점을 적절히 혼합하는데 그 의미가 있다. Recall함수는 모든 데이터를 True로 추정할 경우 Recall 정확도가 1이 나온다. 하지만 이는 잘못된 추정 방식으로, Precision 함수에선 그 값이 훨씬 낮게 나온다. 하지만 그렇다고 Recall값이 의미가 없는 것은 아니다. 현재는 이진분류 문제를 예시로 들었지만 여러 클래스(A, B, C, D)가 있는 문제라고 생각하면 Recall의 의미를 할 이해할 수 있다. 여러 클래스가 있을 때, A를 검출할 확률, B를 검출할 확률을 구할 수 있는 것이 Recall 함수의 장점이다. 따라서 여러 클래스가 왔을 때 그 중 원하는 클래스를 잘 검출해야 하고(Recall), 검출한 클래스들은 실제로 정확도가 높아야 한다(Precision)이 두 함수를 절충한 것이 F1 score이다.

이 문제에서 F1 score 값의 증가는 Recall값의 증가와 연관이 있다. F1 score 함수는 <u>precision * recall</u>이고, 이를 그래프로 그려보면 아래와 같은 그림이 나온다.

그림 1. 조화평균 3차원 그래프

그래프와 같이 recall값이나 precision이 증가하면 함께 F1 score도 증가함을 볼 수 있다. 하지만 한쪽만 높을 경우 F1 score값도 낮은 값이 나오는 것을 알 수 있다.

3. 결과

adjust_ratio 파라미터로 데이터의 균형을 맞춰주는 것이 신경망 학습에 얼마나 큰 영향을 미치는 지 알아보았다.