36225 Probability

ZhenTing Liu

Contents

13

Chapter 1	Multivariate Distribution	Page 2
1.1	Multivariate distribution	2
1.2	Marginal and Conditional distribution	3
	Examples — 4	
1.3	Independence	5
1.4	Expected Value	5
1.5	Covariance	6
	correlation coeff — 6	
1.6	Linear Combination, Conditional Expectation	7
1.7	Conditional Expectation	7
Chapter 2	Functions of Random Variables	Page 9
2.1	Method of distribution functions	9
2.2	Method of transformation	9
2.3	Moment Generating Functions	10
Chapter 3	Finals review lecture	Page 12
3.1	Bivariate Distribution Functions	12
3.2	Expectation and Covariance	12
3.3	Conditional Expectation and Variance	12
3.4	Distribution of Functions of Random Variables	13

3.5 Sampling Distributions

Chapter 1

Multivariate Distribution

1.1 Multivariate distribution

Definition 1.1.1

Let Y_1 and Y_2 be discrete random variables. The joint (or bivariate) probability function for Y_1 and Y_2 is given by

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

In the single-variable case, the probability function for a discrete random variable Y assigns nonzero probabilities to a finite or countable number of distinct values of Y in such a way that the sum of the probabilities is equal to 1. Similarly, in the bivariate case the joint probability function $p(y_1, y_2)$ assigns nonzero probabilities to only a finite or countable number of pairs of values (y_1, y_2) . Further, the nonzero probabilities must sum to 1.

Theorem 1.1.1 Discrete random variables

If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$, then

- 1. $p(y_1, y_2) \ge 0 \quad \forall y_1, y_2$
- 2. $\sum_{y_1,y_2} p(y_1,y_2) = 1$

As in the case of univariate random variables, the distinction between jointly discrete and jointly continuous random variables may be characterized in terms of their (joint) distribution functions.

Definition 1.1.2

For any random variables Y_1 and Y_2 , the joint (bivariate) distribution function $F(y_1, y_2)$ is

$$F(y_1,y_2) = P(Y_1 \leq y_1,Y_2 \leq y_2) \quad -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

Note:-

If Y_1 and Y_2 are random variables with joint distribution function $F(y_1, y_2)$, then

- 1. $F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0$
- 2. $F(\infty, \infty) = 1$

Theorem 1.1.2 Continous random variables

If Y_1 and Y_2 are jointly continuous random variables with a joint density function given by $f(y_1, y_2)$, then

- 1. $f(y_1, y_2) \ge 0$, for all y_1, y_2
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$

1.2 Marginal and Conditional distribution

univariate event $(Y_1 = y_1)$ is the union of bivariate events of the type $(Y_1 = y_1, Y_2 = y_2)$, with the union being taken over all possible values for y_2 .

Definition 1.2.1: Marginal Distribution

Let Y_1 and Y_2 be jointly discrete random variables with probability function $p(y_1, y_2)$. Then the marginal probability functions of Y_1 and Y_2 , respectively, are given by

$$p_1(y_1) = \sum_{\text{all } y_2} p(y_1, y_2)$$
 and $p_2(y_2) = \sum_{\text{all } y_1} p(y_1, y_2)$

Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$. Then the marginal density functions of Y_1 and Y_2 , respectively, are given by

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
 and $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$

The term **marginal**, as applied to the univariate probability functions of Y_1 and Y_2 , has intuitive meaning. To find $p_1(y_1)$, we sum $p(y_1, y_2)$ over all values of y_2 , and hence accumulate the probabilities on the y_1 axis (or margin).

Note:-

To find marginal pdf

- 1. integrate over the other variable
- 2. fix a line corresponding to a value of desired marginal pdf
- 3. find the limit of integral: intersecting points between this line and support of the joint pdf
- 4. check if the boundary of support is straight line
- 5. remember to specify the support of the resulting marginal pdf

Definition 1.2.2: Conditional Distribution discrete case

If Y_1 and Y_2 are jointly discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then the conditional discrete probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)}$$

Definition 1.2.3: Conditional Distribution cont. case

If Y_1 and Y_2 are jointly continuous random variables with joint density function $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$ respectively, then the conditional distribution function of Y_1 given $Y_2 = y_2$ is

$$F(y_1|y_2) = P(Y_1 \le y_1|Y_2 = y_2)$$

$$= \int_{-\infty}^{y_1} \frac{f(t_1, y_2)}{f_2(y_2)} dt_1$$

We will call the integrand of this expression the conditional density function of Y_1 given $Y_2 = y_2$ and we will denote it by $f(y_1|y_2)$.

Note for any $f_2(y_2) > 0$, the conditional density of Y_1 given $Y_2 = y_2$ is given by

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

and, for any $f_1(y_1) > 0$, the conditional density of Y_2 given $Y_1 = y_1$ is given by

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}$$

Notice that $F(y_1|y_2)$ is a function of y_1 for a fixed value of y_2

Note:-

$$P(a < Y_1 < b|Y_2 = y_2) = \int_a^b f(y_1|y_2)dy_1$$

also for a valid pmf/pdf for Y_1 or Y_2 as univariate r.v.

1.
$$f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)} \ge 0$$

2.
$$\int_{-\infty}^{\infty} f(y_1|y_2)dy_1 = \int_{-\infty}^{\infty} \frac{f(y_1,y_2)}{f_2(y_2)}dy_1 = 1$$

1.2.1 Examples

$$f(y_1, y_2) = \begin{cases} 30y_1y_2^2, & y_1 - 1 \le y_2 \le 1 - y_1, \ 0 \le y_1 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Question 1:

- a show that the marginal density of Y_1 is a beta density with $\alpha = 2$ and $\beta = 4$
- b Derive the marginal density of Y_2
- c Derive the conditional density of Y_2 given $Y_1 = y_1$
- d Find $P(Y_2 > 0|Y_1 = 0.75)$

Solution:

a

$$f_1(y_1) = \begin{cases} \int_{y_1 - 1}^{1 - y_1} 30y_1 y_2^2 dy_2, & 0 \le y_1 \le 1\\ 0, & \text{elsewhere.} \end{cases}$$

 \sim Beta(2,4) after integration b

$$f_2(y_2) = \begin{cases} \int_0^{1-y_2} 30y_1y_2^2dy_1, & 0 \leq y_2 \leq 1\\ \int_0^{y_2+1} 30y_1y_2^2dy_1, & -1 \leq y_2 \leq 0\\ 0, & \text{elsewhere.} \end{cases}$$

$$\mathbf{c}$$

$$f(y_2|y_1) = \frac{f(y_1, y_1)}{f_1(y_1)} = \frac{30y_1y_2^2}{20y_1(1 - y_1)^3} = \frac{3y_2^2}{2(1 - y_1)^3} \quad y_1 - 1 \le y_2 \le 1 - y_1, 0 \le y_1 \le 1$$

d

$$\int_0^{(1-0.75)} \frac{3y_2^2}{2(1-0.75)^3} dy_2 = \frac{1}{2}$$

1.3 Independence

Definition 1.3.1: The r.v. Y_1, Y_2 are independent if and only if

discrete:

$$p(y_1, y_2) = p_1(y_1)p_2(y_2) \quad \forall y_1, y_2 \in \mathbb{R}^2$$

coninuous:

$$f(y_1, y_2) = f_1(y_1)f_2(y_2) \quad \forall y_1, y_2 \in \mathbb{R}^2$$

CDF:

$$F(y_1, y_2) = F_1(y_1)F_2(y_2) \quad \forall y_1, y_2 \in \mathbb{R}^2$$

Theorem 1.3.1 Determining independence

Given two r.v.'s Y_1, Y_2 Step 1: is the support of joint pmf/pdf rectangular with sides parallel to the axis?

- "No" \Longrightarrow Not independent
- "Yes" \implies Move to step 2

Step 2: Can the joint pmf/pdf be written as the product of the form $p(y_1, y_2) = h(y_a)g(y_b)$, $a, b \in \{1, 2\}$

- "No" \Longrightarrow Not independent
- \bullet "Yes" \Longrightarrow Independent

tip: To rigorously prove "cannot be factorized", one way is to find one pair of $(y_1, y_2) \in \mathbb{R}^2$ such that

$$f_1(y_1)f_2(y_2) \neq f(y_1, y_2)$$

1.4 Expected Value

Definition 1.4.1

Let $g(Y_1, Y_2, ..., Y_k)$ be a function of the discrete random variables, $Y_1, Y_2, ..., Y_k$, which have probability function $p(y_1, y_2, ..., y_k)$. Then the *expected value* of $g(Y_1, Y_2, ..., Y_k)$ is

$$E[g(Y_1, Y_2, \dots, Y_k)] = \sum_{\text{all } y_k} \dots \sum_{\text{all } y_2} \sum_{\text{all } y_1} g(y_1, y_2, \dots, y_k) p(y_1, y_2, \dots, y_k).$$

If Y_1, Y_2, \ldots, Y_k are continuous random variables with joint density function $f(y_1, y_2, \ldots, y_k)$, then

$$E[g(Y_1, Y_2, \dots, Y_k)] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2, \dots, y_k) f(y_1, y_2, \dots, y_k) dy_1 dy_2 \dots dy_k.$$

Note:-

In general, $E(Y_1Y_2) \neq E(Y_1)E(Y_2)$ except for when Y_1 and Y_2 are independent

Important: Independence $\Rightarrow E(Y_1Y_2) = E(Y_1)E(Y_2)$ but $E(Y_1Y_2) = E(Y_1)E(Y_2) \Rightarrow$ Independence

Consider two random variables Y_1, Y_2 with density function $f(y_1, y_2)$.

$$E(Y_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 f(y_1, y_2) dy_2 dy_1$$

1.5 Covariance

The covariance between two random variables Y_1 and Y_2 , a measure of dependence between Y_1, Y_2 , is defined as

$$cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)]$$
 $\mu_i = E(Y_i)$ $i = 1, 2$

which can also be written in shortcut form as

$$cov(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1)E(Y_2)$$

note if $Y_1 = Y_2 = Y$ then cov(Y, Y) = V(Y)

Corollary 1.5.1

if Y_1,Y_2 are independent, then $cov(Y_1,Y_2)=0$ because

$$E(Y_1Y_2) = E(Y_1)E(Y_2)$$

but $cov(Y_1Y_2)=0$ does not imply independence

The larger the absolute value of the covariance of Y_1 and Y_2 , the greater the linear dependence between Y_1 and Y_2 . Positive values indicate that Y_1 increases as Y_2 increases; negative values indicate that Y_1 decreases as Y_2 increases. A zero value of the covariance indicates that the variables are uncorrelated and that there is no linear dependence between Y_1 and Y_2

1.5.1 Correlation Coefficient

correlation coefficient ρ is a measurement of dependency and is defined as

$$\rho = \frac{Cov(Y_1Y_2)}{\sigma_1\sigma_2}$$

where σ_1, σ_2 are the standard deviation of Y_1, Y_2 respectively.

Note

$$-1 \le \rho_{Y_1Y_2} \le 1$$

- $\rho = 0 \iff Y_1, Y_2 \text{ uncorrelated}$
- $\rho=1 \iff$ Perfect Positive linear dependence $Y_1=aY_2+b$, a>0
- $\rho = -1 \iff$ Perfect Negative linear dependence $Y_1 = -aY_2 + b$, a > 0

1.6 Linear Combination, Conditional Expectation

Theorem 1.6.1

Let Y_1, Y_2, \dots, Y_n and X_1, X_2, \dots, X_m be random variables with $E(Y_i) = \mu_i$ and $E(X_j) = \xi_j$. Define

$$U_1 = \sum_{i=1}^{n} a_i Y_i$$
 and $U_2 = \sum_{j=1}^{m} b_j X_j$

for constants a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_m . Then the following hold:

- a. $E(U_1) = \sum_{i=1}^n a_i \mu_i$. b. $V(U_1) = \sum_{i=1}^n a_i^2 V(Y_i) + 2 \sum_{1 \le i < j \le n} a_i a_j \text{Cov}(Y_i, Y_j)$, where the double sum is over all pairs (i, j) with i < j.
- c. $Cov(U_1, U_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(Y_i, X_j)$.

1.7 Conditional Expectation

Definition 1.7.1

If Y_1 and Y_2 are any two random variables, the conditional expectation of $g(Y_1)$, given that $Y_2 = y_2$, is defined to be

$$E(g(Y_1) \mid Y_2 = y_2) = \int_{-\infty}^{\infty} g(y_1) f(y_1 \mid y_2) dy_1$$

if Y_1 and Y_2 are jointly continuous and

$$E(g(Y_1) \mid Y_2 = y_2) = \sum_{\text{all } y_2} g(y_1) p(y_1 \mid y_2)$$

if Y_1 and Y_2 are jointly discrete.

Example 1.7.1

Consider random variable Y_1, Y_2 with joint density function

$$f(y_1, y_2) = \begin{cases} \frac{1}{2}, & 0 \le y_1 \le y_2 \le 2\\ 0, & \text{elsewhere.} \end{cases}$$

Find the conditional expectation of the amount of sales, Y_1 , given that $Y_2 = 1.5$

Solution: Note if $0 < y_2 \le 2$,

$$f(y_1|y_2) = \begin{cases} \frac{1}{y_2}, & 0 < y_1 \le y_2\\ 0, & \text{elsewhere.} \end{cases}$$

so for any value of y_2 such that $0 < y_2 \le 2$,

$$E(Y_1|Y_2 = y_2) = \int_{-\infty}^{\infty} y_1 f(y_1|y_2) dy_1$$
$$= \int_{0}^{y_2} y_1 \frac{1}{y_2} dy_1 = \frac{y_2}{2}$$

Theorem 1.7.1 The Towering Rule

Let Y_1 and Y_2 denote random variables. Then

$$E(Y_1) = E[E(Y_1 | Y_2)],$$

where on the right-hand side the inside expectation is with respect to the conditional distribution of Y_1 given Y_2 and the outside expectation is with respect to the distribution of Y_2 .

Proof: Suppose that Y_1 and Y_2 are jointly continuous with joint density function $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. Then

$$E(Y_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 f(y_1, y_2) \, dy_1 \, dy_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 f(y_1 \mid y_2) f_2(y_2) \, dy_1 \, dy_2$$

$$= \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} y_1 f(y_1 \mid y_2) \, dy_1 \right\} f_2(y_2) \, dy_2$$

$$= \int_{-\infty}^{\infty} E(Y_1 \mid Y_2 = y_2) f_2(y_2) \, dy_2 = E[E(Y_1 \mid Y_2)].$$

The proof is similar for the discrete case.

The conditional variance of Y_1 given $Y_2 = y_2$ is defined by analogy with an ordinary variance, again using the conditional density or probability function of Y_1 given $Y_2 = y_2$ in place of the ordinary density or probability function of Y_1 . That is,

⊜

(

$$V(Y_1|Y_2 = y_2) = E(Y_1^2|Y_2 = y_2) - [E(Y_1|Y_2 = y_2)]^2$$

Theorem 1.7.2

Let Y_1 and Y_2 denote random variables. Then

$$V(Y_1) = E[V(Y_1 \mid Y_2)] + V[E(Y_1 \mid Y_2)].$$

Proof: As previously indicated, $V(Y_1 \mid Y_2)$ is given by

$$V(Y_1 \mid Y_2) = E(Y_1^2 \mid Y_2) - [E(Y_1 \mid Y_2)]^2$$

and

$$E[V(Y_1 \mid Y_2)] = E[E(Y_1^2 \mid Y_2)] - E\{[E(Y_1 \mid Y_2)]^2\}.$$

By definition,

$$V[E(Y_1 \mid Y_2)] = E\{[E(Y_1 \mid Y_2)]^2\} - \{E[E(Y_1 \mid Y_2)]\}^2.$$

The variance of Y_1 is

$$V(Y_1) = E[Y_1^2] - [E(Y_1)]^2$$

$$= E\{E[Y_1^2 \mid Y_2]\} - \{E[E(Y_1 \mid Y_2)]\}^2$$

$$= E[Y_1^2 \mid Y_2] - \{E[E(Y_1 \mid Y_2)]\}^2 + E\{[E(Y_1 \mid Y_2)]^2\} - \{E[E(Y_1 \mid Y_2)]\}^2$$

$$= E[V(Y_1 \mid Y_2)] + V[E(Y_1 \mid Y_2)].$$

Conditional Variancec

$$V[Y_1|Y_2 = y_2] = E(Y_1^2|Y_2 = y_2) - (E(Y_1|Y_2 = y_2))^2$$

Chapter 2

Functions of Random Variables

2.1 Method of distribution functions

Steps:

- 1. identify u = g(Y) or $u = g(Y_1, Y_2)$
- 2. cdf: $F_u(u) = P(U \leq u)$

$$= P(g(Y) \le u) = \begin{cases} \sum_{y_1, y_2 : g(y_1, y_2) \le u} p(y_1 y_2) \\ \int \int_{(y_1, y_2) : g(y_1, y_2) \le u} f(y_1, y_2) dy_1 dy_2 \end{cases}$$

3. if *u* is continuous, pdf $f_u(u) = \frac{dF_u(u)}{du}$

Corollary 2.1.1 Summary of the Distribution Function Method

Let *U* be a function of the random variables Y_1, Y_2, \ldots, Y_n .

- 1. Find the region U = u in the $(y_1, y_2, ..., y_n)$ space.
- 2. Find the region $U \leq u$.
- 3. Find $F_U(u) = P(U \le u)$ by integrating $f(y_1, y_2, \dots, y_n)$ over the region $U \le u$.
- 4. Find the density function $f_U(u)$ by differentiating $F_U(u)$. Thus,

$$f_U(u) = \frac{dF_U(u)}{du}.$$

2.2Method of transformation

The method of transformation is a special case of the method of distribution, where U = (Y) with function h strictly monotone on support of Y

Suppose that h(y) is an increasing function of y and that U = h(Y), where Y has density function $f_Y(y)$. Then $h^{-1}(u)$ is an increasing function of u: If $u_1 < u_2$, then $h^{-1}(u_1) = y_1 < y_2 = h^{-1}(u_2)$. We see from Figure 6.8 that the set of points y such that $h(y) \le u$ is precisely the same as the set of points y such that $y \le h^{-1}(u)$. Therefore (see Figure 6.8),

$$P(U \leq u) = P(h(Y) \leq u) = P(h^{-1}[h(Y)] \leq h^{-1}(u)) = P(Y \leq h^{-1}(u)).$$

or

$$F_U(u) = F_Y(h^{-1}(u)).$$

Then differentiating with respect to u, we have

$$f_U(u) = \frac{dF_U(u)}{du} = \frac{dF_Y(h^{-1}(u))}{du} = f_Y(h^{-1}(u))\frac{d[h^{-1}(u)]}{du}.$$

To simplify notation, we will write dh^{-1}/du instead of $d[h^{-1}(u)]/du$ and

$$f_U(u) = f_Y(h^{-1}(u)) \frac{dh^{-1}}{du}.$$

Thus, we have acquired a new way to find $f_U(u)$ that evolved from the general method of distribution functions. To find $f_U(u)$, solve for y in terms of u; that is, find $y = h^{-1}(u)$ and substitute this expression into $f_Y(y)$. Then multiply this quantity by $\frac{dh^{-1}}{du}$.

Corollary 2.2.1

Let Y have probability density function $f_Y(y)$. If h(y) is either increasing or decreasing for all y such that $f_Y(y) > 0$, then U = h(Y) has density function

$$f_U(u) = f_Y[h^{-1}(u)] \left| \frac{dh^{-1}}{du} \right|,$$

where

$$\frac{dh^{-1}}{du} = \frac{d[h^{-1}(u)]}{du}.$$

Note:-

Direct application of the method of transformation requires that the function h(y) be either increasing or decreasing for all y such that $f_Y(y) > 0$. If you want to use this method to find the distribution of U = h(Y), you should be very careful to check that the function $h(\cdot)$ is either increasing or decreasing for all y in the support of $f_Y(y)$. If it is not, the method of transformations cannot be used, and you should instead use the method of distribution functions

Summary of the Transformation Method

Let U = h(Y), where h(y) is either an increasing or decreasing function of y for all y such that $f_Y(y) > 0$.

- 1. Find the inverse function, $y = h^{-1}(u)$.
- 2. Evaluate

$$\frac{dh^{-1}}{du} = \frac{d[h^{-1}(u)]}{du}.$$

3. Find $f_U(u)$ by

$$f_U(u)=f_Y[h^{-1}(u)]\left|\frac{dh^{-1}}{du}\right|.$$

2.3 Moment Generating Functions

Theorem 2.3.1

Let $m_X(t)$ and $m_Y(t)$ denote the moment-generating functions of random variables X and Y, respectively. If both moment-generating functions exist and $m_X(t) = m_Y(t)$ for all values of t, then X and Y have the same probability distribution.

For a random variable Y, all the moments of Y are encapsulated in its moment generating function, denoted as $m_Y(t)$.

$$m_Y(t) = E(e^{tY})$$

$$= P(g(Y) \le u) = \begin{cases} \sum_{y} e^{ty} p(y) \\ \int_{-\infty}^{\infty} e^{ty} f(y) dy \end{cases}$$

The method of moment-generating functions is often very useful for finding the distributions of sums of independent random variables.

Theorem 2.3.2

Let Y_1, Y_2, \dots, Y_n be independent random variables with moment-generating functions $m_{Y_1}(t), m_{Y_2}(t), \dots, m_{Y_n}(t)$, respectively. If $U = Y_1 + Y_2 + \dots + Y_n$, then

$$m_U(t) = m_{Y_1}(t) \times m_{Y_2}(t) \times \cdots \times m_{Y_n}(t).$$

We know that, because the random variables Y_1, Y_2, \ldots, Y_n are independent,

$$m_U(t) = \mathbb{E}\left[e^{t(Y_1+\cdots+Y_n)}\right] = \mathbb{E}\left(e^{tY_1}e^{tY_2}\cdots e^{tY_n}\right)$$

$$= \mathbb{E}\left(e^{tY_1}\right) \times \mathbb{E}\left(e^{tY_2}\right) \times \cdots \times \mathbb{E}\left(e^{tY_n}\right).$$

Thus, by the definition of moment-generating functions,

$$m_U(t) = m_{Y_1}(t) \times m_{Y_2}(t) \times \cdots \times m_{Y_n}(t).$$

Chapter 3

Finals review lecture

3.1 Bivariate Distribution Functions

- joint pdf: $f(y_1, y_2)$
- Conditional pdf: $f(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)}$, $y_1 \in D(y_2)$, (remember to specify domain)
- Independence: if $f(y_1, y_2) = f_1(y_1)f_2(y_2)$ for all $y_1, y_2 \in \mathbb{R}^2$, also the two-step procedure.

3.2 Expectation and Covariance

- Expectation: $E(g(Y_1,Y_2)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1,y_2) f(y_1,y_2) dy_1 dy_2$
- if $Y_1 \perp Y_2$, $E(h(Y_1)g(Y_2)) = E(h(Y_1))E(g(Y_2))$ Q: $E(Y_1/Y_2) = E(Y_1)/E(Y_2)$? not true in general $E(Y_1 \frac{1}{Y_2}) = E(Y_1)E(\frac{1}{Y_2})$
- $Cov(Y_1, Y_2) = E(Y_1Y_2) E(Y_1)E(Y_2)$
- Correlation: $-1 \le \rho = \frac{Cov(Y_1, Y_2)}{\sigma(Y_1)\sigma(Y_2) \le 1}$ independence \implies uncorrelation but not the other way around

3.3 Conditional Expectation and Variance

- $E(Y_1|Y_2 = y_2) = \int_{-\infty}^{\infty} y_1 f(y_1|y_2) dy_1$ (is a function of y_2) then $E(Y_1|Y_2)$ is just a random variable because it is a function of r.v. Y_2
- Unconditional: $E(Y_1)=E(E(Y_1|Y_2))$, towering rule $Q:E(Y_1Y_2)=E(E(Y_1Y_2|Y_2))=E(Y_2E(Y_1|Y_2)), \text{ useful for } Cov(Y_1,Y_2)$
- $V(Y_1|Y_2 = y_2) = E(Y_1^2|Y_2 = y_2) (E(Y_1|Y_2 = y_2))^2$ $V(Y_1|Y_2)$ is a r.v.
- unconditional: $V(Y_1) = E(V(Y_1|Y_2)) + V(E(Y_1|Y_2))$

3.4 Distribution of Functions of Random Variables

• Method of distribution functions

$$\text{CDF: } F_u(u) = P(g(Y) \leq u)$$

PDF:
$$f_u(u) = \frac{dF_u(u)}{du}$$

• Method of Transformation

if g is monotone on the support of Y_1 , then $y=g^{-1}(u) \implies \frac{dg^{-1}(u)}{du}$ (doesn't have to be monotone across entire domain, just the support of Y)

$$f_u(u) = f_Y(g^{-1}(u)) |\frac{dg^{-1}(u)}{du}|$$

• Method of MGF

$$u = \sum_{i=1}^{n} a_i Y_i + b, Y_i's$$
 are independent

$$m_u(0) = \prod_{i=1}^n m_{Y_i}(a_i t) e^{bt}$$

$$M_Y(t) = E(e^{tY})$$

$$E(Y^k) = \left| \frac{d^k m_Y(t)}{dt^k} \right|_{t=0}$$

3.5 Sampling Distributions

- Exact Normality
- Approximation under Central Limit Theorem