-	Aditya	Sanjay	Mhaske

	5
Question 1:	
1)	X, -> discrete random variables As well as follows Bernoulli's distribution. There fore, this variable is Bernoulli's random Variable.
11>	Range of X1 = {0, 1};
	$EX_1 = p$ Value of P is given = 1/6 (P= 1/6) = 0.16
	$Var X_1 = p(1-p)$ = 1/6 (1-1/6) = 1/6 X 5/6 = 5/36 = 0.139
\	Y = Known Random Variable = include multiple Bernoulli's Random Variable (n = 30)
	Therefore, It is called Binomial Random Variable
IV)	Range of y = {0,1,2,3,4,,30}
	Expected Value EY = $n \times P$ $= 30 \times (VG)$ EY = 5
	$VorY = 0 \times p \times (1-p)$ $= 5 \times (1-(1/6))$
	$5 \times 5/6$ = 25/6 VorY = 4.167

U>	Expected Value of $P(8 < Y < 13)$	
	Y - Discrete Random Variable	
	Probability Mass function (PMF) using	P
	R code:	
	sum (dbinom (9:12, 30, 0.166)	
	calculation of $9 \le 7 \le 12$	
	output:	
	0.04894431	
/וט	Approximate value of P(8< y<13) using Normal Approximan	fion
רוט		fion
\ \ 	Approximate value of P(8< y<13) using Normal Approximan n = 30 P = 0.6	fion
\ יוט	n = 30	fion
\ 	n = 30 P = 0.6 There fore Normal Approximation can be used.	fion
\ 	n = 30 P = 0.6	fion
VI>	n = 30 $p = 0.6$ Therefore Normal Approximation can be used. $u = 5$ $u = 4.167$	
VI>	n = 30 $p = 0.6$ Therefore Normal Approximation can be used. $u = 5$ mean $var = 4.167$ variance code	
VI>	n = 30 P = 0.6 There fore Normal Approximation can be used. Ll = 5 mean Var = 4.167 Variance code pnorm (13, 5, Sqrt (4.167) - pnorm (8, 5, Sqrt (4.16	
VI>	n = 30 P = 0.6 There fore Normal Approximation can be used. Ll = 5 mean Var = 4.167 Variance code pnorm (13, 5, Sqrt (4.167) - pnorm (8, 5, Sqrt (4.16	
VI	n = 30 P = 0.6 There fore Normal Approximation can be used. 21 = 5 mean 22 = 4.167 variance code pnorm (13, 5, Sqrt (4.167) - pnorm (8, 5, Sqrt (4.16)) output	