

Parallel Programming Application: Matrix Multiplication

(senol@be.itu.edu.tr)

Outline

- Matrix Multiplication (BLAS3 Operation)
- Cannon Algorithm
- Fox Algorithm

Matrix Multiplication (BLAS3)

A and B nxn matrices => C=AxB

```
void Serial_mat_mult(mt_A,mt_B,mt_C,int n)
{
    int i,j,k;
for (i=0;i<n;i++){
        for (j=0;j<n;j++){
            C[i][j]=0.0;
            for (k=0;k<n;k++)
            C[i][j]= C[i][j]+A[i][k]*B[k][j];
    }
}</pre>
```

• This algorithm requires n^3 multiplications and n^3 additions, leading to a sequential time complexity of $O(n^3)$

Serial Matrix Multiplication

 During the first iteration of loop variable *i* the first matrix *A* row and all the columns of matrix *B* are used to compute the elements of the first result matrix *C* row

Partitioning Matrices:Block Stripping

Uniform block-striped partitioning of 16 x 16 matrix on 4 processors

ULUSAL YÜKSEK BAŞARIMLI H E S A P L A M A M E R K E Z İ İSTANBUL TEKNİK ÜNİVERSİTESİ

Partitioning Matrices: Checkerboard

(0, 0) (0, 1)	(0, 2) (0, 3)	(0, 4) (0, 5)	(0, 6) (0, 7)
		P ₀₂	
(1,0) (1,1)	(1, 2) (1, 3)	(1,4) $(1,5)$	(1, 6) (1, 7)
(2, 0) (2, 1)	(2, 2) (2, 3)	(2, 4) (2, 5)	(2, 6) (2, 7)
P ₁₀	P ₁₁	P 12	P ₁₃
(3, 0) (3, 1)	(3, 2) (3, 3)	(3, 4) (3, 5)	(3, 6) (3, 7)
1	l		(4, 6) (4, 7)
P ₂₀	P ₂₁	P 22	P 23
(5, 0) (5, 1)	(5, 2) (5, 3)	(5, 4) (5, 5)	(5, 6) (5, 7)
1	l		(6, 6) (6, 7)
P ₃₀	P ₃₁	P ₃₂	P ₃₃
(7, 0) (7, 1)	(7, 2) (7, 3)	(7, 4) (7, 5)	(7, 6) (7, 7)

(0, 0) (0, 4)	(0, 1) (0, 5)	(0, 2) (0, 6)	(0, 3) (0, 7)
P ₀₀	P ₀₁	P ₀₂	P 03
		(4, 2) (4, 6)	
I .	ı	(1, 2) (1, 6)	l
P ₁₀	P ₁₁	P ₁₂	P ₁₃
(5, 0) (5, 4)	(5, 1) (5, 5)	(5, 2) (5, 6)	(5, 3) (5, 7)
(2, 0) (2, 4)	(2, 1) (2, 5)	(2, 2) (2, 6)	(2, 3) (2, 7)
P ₂₀	P ₂₁	P ₂₂	P ₂₃
		(6, 2) (6, 6)	
(3, 0) (3, 4)	(3, 1) (3, 5)	(3, 2) (3, 6)	(3, 3) (3, 7)
P ₃₀	P ₃₁	P ₃₂	P ₃₃
(7, 0) (7, 4)	(7, 1) (7, 5)	(7, 2) (7, 6)	(7, 3) (7, 7)

(a) Block-checkboard mapping

(b) Cyclic-checkboard partitioning

Parallel Matrix Multiplication

Partitioning into Submatrices

• Suppose the matrix is divided into s^2 submatrices. Each submatrix has $n/s \times n/s$ elements. Using the notation Ap,q as the submatrix in submatrix row p and submatrix column q:

```
for (p = 0; p < s; p++)
  for (q = 0; q < s; q++) {
    Cp,q = 0; /* clear elements of submatrix */
    for (r = 0; r < m; r++) /* submatrix multiplication and */
        Cp,q = Cp,q + Ap,r * Br,q;/* add to accumulating
        submatrix */
  }</pre>
```

The line

Cp,q = Cp,q + Ap,r * Br,q; means multiply submatrix Ap,r and Br,q using matrix multiplication and add to submatrix Cp,q using matrix addition.

Algorithm

1. Initially processor $P_{i,j}$ has elements $a_{i,j}$ and $b_{i,j}$ $(0 \le i < n, 0 \le k < n)$.

2. Elements are moved from their initial position to an "alligned" position.

The complete *i*th row of A is shifted *i* places left and the complete *j*th column of B is shifted *j* places upward.

- 3. Each processor $P_{i,j}$ muliply its elements.
- 4. The *i*th row of A is shifted one place right, and the *j*th column of B is shifted one place upward.

- 5. Each processor $P_{i,j}$ muliplies its elements brought to it and adds the results to the accumulating sum.
- 6. Step 4 and 5 are repeated until the final result is obtained (n-1) shifts with n rows and n columns of elements).

- Initially the matrix A:
- Row0 is unchanged.
- Row1 is shifted 1 place left.
- Row2 is shifted 2 places left.
- Row3 is shifted 3 places left.

- Initially the matrix B:
- Column 0 is unchanged.
- Column1 is shifted 1 place up.
- Column2 is shifted 2 places up.
- Column3 is shifted 3 places up.

ULUSAL YÜKSEK BAŞARIMLI H E S A P L A M A M E R K E Z İ İSTANBUL TEKNİK ÜNİVERSİTESİ

Cannon Algorithm

 $A_{0,0}$ $B_{0,0}$

 $A_{0,1}$ $B_{0,1}$

 $A_{0,2}$ $B_{0,2}$

A 0,3
B 0,3

 $A_{0,0}$ $B_{0,0}$

 $A_{0,1}$ $B_{1,1}$

 $\begin{bmatrix} A \\ 0,2 \\ B \\ 2,2 \end{bmatrix}$

 $\begin{bmatrix} A \\ 0,3 \\ B \\ 3,3 \end{bmatrix}$

 $egin{array}{c} A \\ I,0 \\ B \\ I,0 \end{array}$

A 1,1 B 1,1

A 1,2 B 1,2

A 1,3 B 1,3 A_{1,1} B_{1,0} A
1,2
B
2,1

A
1,3
B
3,2

 $\begin{bmatrix} A \\ 1,0 \\ B \\ 0.3 \end{bmatrix}$

 $\begin{bmatrix} A \\ 2,0 \\ B \\ 2,0 \end{bmatrix}$

A 2,1 B 2,1 A 2,2 B 2,2

A 2,3 B 2,3

 $A_{2,2} \\ B_{2,0}$

A 2,3
B 3,1

A_{2,0} B_{0,2}

 $\begin{bmatrix} A \\ 2,1 \\ B \\ 1,3 \end{bmatrix}$

3,0 B 3,0 $\begin{bmatrix} A \\ 3, I \\ B \\ 3, I \end{bmatrix}$

A 3,2 B 3,2 A 3,3 B 3,3

A 3,3 B 3,0 $\begin{bmatrix} A \\ 3,0 \\ B \\ 0,1 \end{bmatrix}$

 $\begin{array}{c}
A \\
3,1 \\
B \\
1,2
\end{array}$

A 3,2 B 2,3

Cannon Algorithm (0)

 a_{00}

 \mathcal{Q}_{11}

 b_{10}

 Q_{01}

 a_{12}

 b_{21}

 a_{02}

 $b_{\!\scriptscriptstyle 22}$

 a_{13}

 b_{32}

 \mathcal{Q}_{03}

 b_{33}

 a_{10}

 b_{03}

 $c_{00} = a_{00}$ b_{00} $c_{10} = a_{11}$ b_{10}

 $c_{01} = a_{01}$ b_{11} $c_{11} = a_{12}$ b_{21}

 $c_{02} = a_{02}$ b_{22} $c_{12} = a_{13}$ b_{32}

 $c_{03} = a_{03}$ b_{33} $c_{13} = a_{10}$ b_{03}

 a_{22}

 b_{20}

 a_{33}

 a_{23}

 b_{31}

 a_{30}

 a_{20}

 b_{02}

 a_{31}

 a_{21}

 b_{13}

 a_{32}

 $c_{20} = a_{22}$ b_{20} $c_{30} = a_{33}$ b_{30}

 $c_{21} = a_{23}$ b_{31} $c_{31} = a_{30}$ b_{01}

 $c_{22} = a_{20}$ b_{02} $c_{32} = a_{31}$ b_{12}

 $c_{23} = a_{21}$ b_{13} $c_{33} = a_{32}$ b_{23}

Cannon Algorithm (1)

 b_{21}

 \mathcal{Q}_{03}

 a_{00}

 a_{11}

 b_{13}

 $c_{00} + = a_{01}$ b_{10} $c_{10} + = a_{12}$ b_{20}

 $c_{01} + = a_{02}$ b_{21} $c_{11} + = a_{13}$ b_{31}

 $c_{02} + = a_{03}$ b_{32} $c_{12} + = a_{10}$ b_{02}

 $c_{03} + = a_{00} \quad b_{03} \quad c_{13} + = a_{11} \quad b_{13}$

 a_{12} b_{20}

 a_{23}

 b_{30}

 a_{30}

 $b_{\!\scriptscriptstyle 00}$

 $b_{\!\scriptscriptstyle 31}$

 b_{02}

 a_{21}

 $b_{\!\scriptscriptstyle 12}$

 Q_{10}

 a_{22}

 $c_{20} + = a_{23}$ b_{30} $c_{30} + = a_{30}$ b_{00}

 $c_{21} + = a_{20}$ b_{01} $c_{31} + = a_{31}$ b_{11}

 $c_{22} + = a_{21}$ b_{12} $c_{32} + = a_{32}$ b_{22}

 $c_{23} + = a_{22}$ b_{23} $c_{33} + = a_{33}$ b_{33}

 \mathcal{Q}_{01}

 a_{13}

 a_{20}

 $b_{\!\scriptscriptstyle 01}$

 a_{31}

 $b_{\!\scriptscriptstyle 11}$

 a_{32}

 b_{22}

 a_{33} b_{33}

Cannon Algorithm (2)

 \mathcal{A}_{02}

 b_{20}

 a_{13}

 b_{30}

 a_{03}

 a_{00}

 \mathcal{Q}_{01}

 Q_{12}

 b_{23}

 $c_{00} + = a_{02}$ b_{20} $c_{10} + = a_{13}$ b_{30}

 $c_{01} + = a_{03}$ b_{31} $c_{11} + = a_{10}$ b_{01}

 $c_{02} + = a_{00} \quad b_{02} \quad c_{12} + = a_{11} \quad b_{12}$

 $c_{03} + = a_{01}$ b_{13} $c_{13} + = a_{12}$ b_{23}

 a_{20}

 b_{00}

 a_{31}

 a_{21}

 $b_{\!\scriptscriptstyle 11}$

 \mathcal{A}_{32}

 a_{22}

 b_{22}

 a_{23}

 $c_{20} + = a_{20}$ b_{00} $c_{30} + = a_{31}$ b_{10}

 $c_{21} + = a_{21}$ b_{11} $c_{31} + = a_{32}$ b_{21}

 $c_{22} + = a_{22}$ b_{22} $c_{32} + = a_{33}$ b_{32}

 $c_{23} + = a_{23}$ b_{33} $c_{33} + = a_{30}$ b_{03}

 Q_{10}

 b_{01}

 a_{11}

 b_{12}

a₃₀ 1 a_{33}

Cannon Algorithm (3)

 Q_{03}

 a_{10}

 b_{00}

 a_{00}

 \mathcal{Q}_{11}

 $b_{\!\scriptscriptstyle 11}$

 Q_{01}

 a_{12}

 b_{22}

 a_{02}

 a_{13}

 b_{33}

 $c_{00} + = a_{03}$ b_{00} $c_{10} + = a_{10}$ b_{00}

 $c_{01} + = a_{00} \quad b_{01} \quad c_{11} + = a_{11} \quad b_{11}$

 $c_{02} + = a_{01}$ b_{12} $c_{12} + = a_{12}$ b_{22}

 $c_{03} + = a_{02}$ b_{23} $c_{13} + = a_{13}$ b_{33}

 a_{21}

 b_{10}

 a_{22}

 a_{23}

 $b_{\!\scriptscriptstyle 32}$

 a_{20}

 a_{31}

 $c_{20} + = a_{21}$ b_{10} $c_{30} + = a_{32}$ b_{20}

 $c_{21} + = a_{22}$ b_{21} $c_{31} + = a_{33}$ b_{31}

 $c_{22} + = a_{23}$ b_{32} $c_{32} + = a_{30}$ b_{02}

 $c_{23} + = a_{20}$ b_{03} $c_{33} + = a_{31}$ b_{13}

 a_{32} b_{20}

 Q_{33}

 b_{31}

a₃₀ b_{02}

1D-2D-3D Topologies

Interconnection Networks Figure 1.10 Ring.

Figure 1.13 Three-dimensional hypercube.

Figure 1.11 Two-dimensional array (mesh).

Creating Topology

- Grid Elements:
 - the dimension: 1, 2, 3 etc
 - the sizes of each dimension
 - the periodicity if the extreme are adjacent
- MPI Methods:
 - MPI_Cart_create() to create the grid
 - MPI_Card_coords() to get the coordinates
 - MPI_Card_rank() to find the rank

Computation Analysis

- Each submatrix multiplication requires m^3 multiplications and m^3 additions.
- Hence, with s 1 shifts, $tcomp = 2s m^3 = 2 m^2 n$ or a computational time complexity of $O(m^2 n)$

Communication Analysis

- Given s^2 submatrices, each of size mxm, the initial alignment requires a maximum of s-1 shift (communication) operations. After that, there will be s-1 shift operations
- Each shift operation involves mxm elements.

$$t_{\text{comm}} = 2(s - 1)(t_{\text{startup}} + m^2 t_{\text{data}})$$

or a communication time complexity of $O(sm^2)$ or O(mn)

Fox Algorithm

 Both n matrices A and B are partitioned among p processors so that each processor initially stores

$$(n/\sqrt{p}) \times (n/\sqrt{p})$$

- The algorithm uses one to all broadcasts of the blocks of matrix A in processor rows, and single-step circular upwards shifts of the blocks of matrix B along processor columns
- Initially, each diagonal block Aii is selected for broadcast

Fox Algorithm

- Steps (repeated √p times)
 - Broadcast A_{i,i} to all processors in the row
 - Multiply block of A received with resident block of B
 - Send the block of B up one step (with wraparound)
 - Select block $A_{i,(j+1)mod\sqrt{p}}$ (where $A_{i,j}$ is the block broadcast in the previous step) and broadcast to all processors in row. Go to 2

Fox Algorithm (0)

Initially broadcast the diagonal elements of A

Fox Algorithm (1)

 Broadcast the next element of A in rows, shift B in column and perform multiplication

Fox Algorithm (2)

 Broadcast the next element of A in rows, shift B in column and perform multiplication

$oldsymbol{b}_{\!\scriptscriptstyle 20}$	$oldsymbol{b}_{\!\scriptscriptstyle 21}$	$egin{aligned} oldsymbol{d}_{02} \ oldsymbol{b}_{22} \end{aligned}$	$oldsymbol{b}_{\!\scriptscriptstyle 23}$	$c_{00} + = a_{02}$ b_{20} $c_{10} + = a_{13}$ $c_{01} + = a_{02}$ b_{21} $c_{11} + = a_{13}$	b_{31}
b_{30}	$oldsymbol{b}_{\!\scriptscriptstyle 31}$	$b_{\!\scriptscriptstyle 32}$	$egin{aligned} oldsymbol{a}_{13} \ oldsymbol{b}_{33} \end{aligned}$	$c_{02} + = a_{02}$ b_{22} $c_{12} + = a_{13}$ $c_{03} + = a_{02}$ b_{23} $c_{13} + = a_{13}$	
$egin{aligned} m{d}_{20} \ m{b}_{00} \end{aligned}$	$oldsymbol{b}_{\!\scriptscriptstyle{ m O1}}$	$oldsymbol{b}_{\!\scriptscriptstyle 02}$	b_{03}	$c_{20} + = a_{20}$ b_{00} $c_{30} + = a_{31}$ $c_{21} + = a_{20}$ b_{01} $c_{31} + = a_{31}$	$b_{\!\scriptscriptstyle 11}$
$oxed{b}$	$egin{aligned} oldsymbol{d}_{31} \ oldsymbol{b}_{11} \end{aligned}$	h	h	$c_{22} + = a_{20}$ b_{02} $c_{32} + = a_{31}$ $c_{23} + = a_{20}$ b_{03} $c_{33} + = a_{31}$	

Fox Algorithm (3)

 Broadcast the next element of A in rows, shift B in column and perform multiplication

ULUSAL YÜKSEK BAŞARIMLI H E S A P L A M A M E R K E Z İ İSTANBUL TEKNİK ÜNİVERSİTESİ

Fox Algorithm (4)

 Shifting is over. Stop the ITERATION

$$b_{21}$$

$$egin{aligned} oldsymbol{a}_{\!\scriptscriptstyle 22}\ oldsymbol{b}_{\!\scriptscriptstyle 22} \end{aligned}$$

$$\begin{vmatrix} b_{22} \end{vmatrix} \begin{vmatrix} b_{23} \end{vmatrix}$$

- Fox algorithm is a memory efficient method.
- Communication overhead is more than cannon algorithm