Обзор сложностей некоторых головоломок и настольных игр

Кунин-Богоявленский Сергей

16 декабря 2023 г.

Аннотация

Данный проект подготовлен для зачета на курсе «Сложности вычислений» в МФТИ. Речь идет о вычислительной сложности различных головоломок и игр, показавшихся автору интересными. Также приведено доказательство **NP**-полноты ребусов определенного типа, именуемых «криптарифмами».

Введение

Различные игры и головоломки окружают нас с детства. Многие из них интересны своей сложностью — для решения иной головоломки приходится изрядно поломать голову. Часто эту сложность можно показать математически: каждая **NP**-полная задача в некотором смысле является головоломкой, и, наоборот, многие головоломки являются **NP**-полными. Игры для двух игроков обычно имеют более высокую сложность, например, являются **PSPACE**-полными.

Когда мы говорим о вычислительной сложности таких игр, речь идет не о классических их вариантах, которые, разумеется, лежат в Р просто из-за конечности числа каких-либо игровых конфигураций, а об их обобщениях до сколь угодно больших размеров.

Не стоит думать, что эта тема искусственна — многие ученые всерьез занимаются этим, подтверждением чему является международная конференция «Fun with Algorithms», каждый год привносящая в науку интересные статьи по самым разным играм и головоломкам.

В первую очередь я перечисляю здесь реальные игры и головоломки, которые были изобретены для того, чтобы в них играли, а не анализировали.

Игры и головоломки

Шахматы

<u>Описание:</u> Надеюсь, не нуждается в представлении, но основная идея состоит в том, чтобы передвигать фигуры по доске 8×8 , захватывая фигуры своих противников, до тех пор, пока игра не закончится или матом, или различными видами ничьих

<u>Сложсность:</u> Классический вариант конечен, но обобщение до $n \times n$ **PSPACE**-полно с «правилом 50-ти ходов», и **EXP**-полно — без него [3].

Рис. 1: Шахматы

Реверси

Описание: Играют двусторонними фишками на квадратной доске. Игроки поочередно размещают фишки на доске своим цветом вверх, переворачивая фишки цвета противника, зажатые между новой и старой фишкой своего цвета, захватывая таким образом отрезок. Цель — к концу игры занять своим цветом больше полей, чем противник.

<u>Сложность:</u> Обобщенная на $n \times n$, **PSPACE**-полна [4].

Рис. 2: Реверси

Пятнашки

<u>Описание:</u> В матрице 4×4 все поля, за исключением одного, заняты фишками. Фишки, примыкающие к пустому полю, могут быть сдвинуты на его место. Цель заключается в том, чтобы добиться определенной перестановки фишек.

<u>Сложсность</u>: Классика конечна, но легко обобщается до $n \times n$. Проверка того, существует ли решение, находится в **P**, но поиск решения с наименьшим количеством ходов является **NP**-полным [5].

Рис. 3: Пятнашки

Японские кроссворды

	1 1	1 2	3	2 1	1 1
1 1					
1 2					
2					
5					
1					

ветствующих строке или столбце, а сами числа— сколько слитных клеток содержит каждая из этих групп. Необходимо определить размещение черных клеток.

<u>Описание:</u> Изображение закодировано числами по строкам и по столбцам. Количество чисел показывает, сколько групп чёрных клеток находятся в соот-

Рис. 4: Решение японского кроссворда <u>Сложность:</u> **NP**-полна [6].

Го

<u>Описание:</u> Игра на доске размером 19×19 . Суть заключается в том, что нужно отгородить на игровой доске камнями своего цвета большую территорию, чем противник.

<u>Сложсность</u>: Обобщение до $n \times n$ **PSPACE**-полно. Вариация игры с ko-правилом (запретом повторения позиции на следующем ходу) **EXP**-полна [7].

Криптарифмы

Рис. 5: Го

<u>Описание:</u> В этих головоломках последовательность букв упорядочена в виде примера сложения в столбик. Задача заключается в том, чтобы построить биекцию между буквами и цифрами, в результате которой получится корректный пример.

<u>Сложность:</u> Обобщения на n-ичные основания **NP**-полны.

NP-полнота языка CRYPTA¹

Мы докажем, что язык CRYPTA, состоящий из множества корректных разрешимых криштарифмов, является ${\bf NP}$ -полным.

Принадлежность NP

Тривиально, в качестве сертификата посылается строка, задающая биекцию между алфавитом криптарифма и неотрицательными целыми числами меньше основания. Проверка корректности сложения выполняется за полином.

NP - трудность

Верно следующее: 3SAT \leq_p CRYPTA

Для доказательства сводимости нам необходимо предъявить полиномиально вычислимую функцию F, такую что $\forall \varphi \quad \varphi \in \mathsf{3SAT} \Leftrightarrow F(\varphi) \in \mathsf{CRYPTA}$

Построение криптарифма

Первым делом обязательно отдадим крайние правые три столбца под следующую конструкцию ($cm.\ cneвa$):

$$\begin{array}{ccc} k & p & k \\ k & p & k \\ \hline l & q & k \end{array} \implies \begin{array}{c} 0 & p & 0 \\ 0 & p & 0 \\ \hline 1 & q & 0 \end{array}$$

Для верности этой части критарифма необходимо, чтобы k=0 и l=1 (действительно, единственное значение k, при котором 2k~%~n=k— это 0, откуда из невозможности соответствия разным буквам одного числа следует, что на третий разряд происходит перенос, и это дает l значение 1). Таким образом, мы сразу зарезервировали буквы k и l, поэтому для простоты дальнейшем будем вместо них писать сразу 0 и 1 соответственно.

Теперь обратим свой взор на литералы и их отрицания. Следующая конструкция

обязывает буквы v_i и $\overline{v_i}$ быть по модулю 4 равными 0 и 1 или наоборот. В самом деле, b_i точно четно как $2a_i$, поэтому v_i равно либо $4a_i$, либо $4a_i+1$. В первом случае переноса при суммировании y_i не происходит, а значит $d_i=2c_i$, $e_i=2c_i+1$, $\overline{v_i}=4c_i+1$. Во втором случае аналогичными умозаключениями, но уже с переносом, получается $\overline{v_i}=4c_i+4$. Раз так, скажем, что v_i соответствует булевой истине, если по модулю 4 оно равно 1, и булевой лжи — в случае 0, а $\overline{v_i}$ есть её отрицание.

Наконец, в 3-КНФ формуле φ будут дизъюнкты вида $v_a \lor v_b \lor v_c$. Для них соорудим следующую конструкцию (для дизъюнкта $v_a \lor v_b \lor v_d$ нужно будет использовать ту же u_{ab} , что здесь)

Тут можно заметить, что h_i по модулю 4 равна либо 0, либо 1, а t_i равна либо h_i+1 , либо h_i+2 . Таким образом, t_i по модулю 4 может принимать значения 1,2,3- и только их. С другой стороны, $t_i=v_a+v_b+v_c$, каждая из которых по модулю 4 может принимать лишь 0 и 1 (предыдущую конструкцию мы соорудили для каждого литерала). Таким образом, t_i обязывает хотя бы одну из переменных v_a, v_b, v_c быть истинной – чего мы и хотим от дизъюнкта.

 $^{^{1}}$ Доказательство основано на материале Дэвида Эпштейна [2]

Итак, созданные ограничения гарантируют противоположные значения литералу и его отрицанию, а также истинность каждого дизъюнкта. Значит, решение криптарифма $F(\varphi)$ дает решение формулы φ . Это будет верно для любого основания нашего криптарифма. Однако нам также необходима возможность обратной операции — по разрешимой φ получить разрешимую $F(\varphi)$. Оказывается, при выборе основания, равного $3072n^3$, где n — число переменных в формуле φ , можно обеспечить и это.

Разрешение криптарифма

Возьмем основание, кратное 128, и сопоставим буквам следующие значения по модулю 128:

Буква:	a	b	c	d	e	f	g	h	v, \overline{v}	u	t	p, r, w, y	q, s, x, z
Значение:	2,34	4,68	1, 2, 33, 34	3,4	5,69	6,38	12,76	24, 25	8,9	16, 17	25, 26	7,71	14
	66,98		65, 66, 97, 98	67,68		70,102				18	27		

Каждой переменной x сопоставим класс $\left\lceil \frac{x}{128} \right\rceil$. Нужно чтобы у каждого экземпляра построенных выше конструкций был свой класс, и они не пересекались.

Можно заметить, что при сложении вида y+y+carry=x значение y определется так: $y=\left\lfloor \frac{x}{2}\right\rfloor$. Поэтому при заданных v и \overline{v} все остальные буквы, кроме последних двух столбцов таблички, будут определены однозначно. С заданием букв из этих столбцов проблем также не возникнет,

Оставшаяся проблема — ситуация, при которой букве необходимо присвоить значение, превосходящее основание криптарифма. Это решается выбором основания, большего чем утроенное максимальное значение, присвоенное переменным вида v (так как самая большая из задаваемых ими букв t_i будет суммой v_a , v_b , v_c).

мы выберем из возможных вариантов нужный в зависимости от того, нужен ли перенос.

Таким образом, наша задача свелась к тому, чтобы присвоить классам переменных v_i такие значения, чтобы суммы всевозможных троек из них не пересекались. Если у нас это получится, мы, в соответствии с таблицей, выберем для v_i остаток 8 или 9 по модуля 128 в зависимости от истинности или ложности переменной в формуле, и это задаст значения остальных букв.

Здесь мы воспользуемся результатом [1]. Доказано, что для любого k между 1 и k^3 найдется множество из k чисел, таких что суммы всевозможных троек различны. Поэтому достаточно, чтобы наши классы пробегали между 1 и $(2n)^3$. Умножив на $128\cdot 3$, чтобы все буквы вместились, получим $3072n^3$ - достаточный размер основания, при котором все буквы вместятся без поворений. То есть мы доказали и то, что по разрешимой формуле можно за полином построить и разрешимый криптарифм. **NP**-полнота доказана.

Список литературы

- [1] S.C. Bose and S. Chowla. Theory of numbers. Report Inst., University of Colorado, 1959.
- [2] D. Eppstein. On the NP-completeness of cryptarithms. SIGACT News, 1987.
- [3] A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for $n \times n$ chess requires time exponential in n. Proc. 8th Int. Coll. Automata, Languages, and Programming, Springer LNCS, 1981.
- [4] S. Iwata and T. Kasai. The Othello game on an $n \times n$ board is PSPACE-complete, volume 123. Theor. Comp. Sci., 1990.
- [5] D. Ratner and M. Warmuth. Finding a shortest solution for the $n \times n$ -extension of the 15-puzzle is intractable, volume 10. J. Symb. Comp., 1994.
- [6] Jan N. van Rijn. The complexity of Klondike, Mahjong, Nonograms and Animal Chess. Universiteit Leiden Opleiding Informatica, 1990.
- [7] D. Wolfe. Go endgames are hard. MSRI Combinatorial Game Theory Research Worksh., 2000.