DIGITAL LOGIC DESIGN LAB (EET1211)

LAB VI: DESIGN OF MAGNITUDE COMPARATOR, DECODER, ENCODER AND MULTIPLEXER CIRCUIT

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch:			Section:
S. No.	Name	Registration No.	Signature

Marks:	_/10
--------	------

Remarks:

Teacher's Signature

I. OBJECTIVE:

- Design a combinational circuit that compares two 4-bit numbers to check if they are equal.
 The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.
- 2. Design a 2 X 1 Multiplexer that will select the binary information from one of the two input lines and direct it to a single output line based on the value of a selection line.
- 3. Design a 4 bit priority encoder with inputs D_3 (MSB), D_2 , D_1 and D_0 (LSB) and outputs X, Y and V. The priority assigned to inputs is $D_3 > D_2 > D_1 > D_0$. The output V shows a value 1 when one or more inputs are equal to one. If all inputs are 0, V is equal to 0. When V=0, then other two outputs are not inspected and are specified as don't care conditions.
- 4. Design a full adder using 3 to 8 line decoder and external OR gates.

II. PRE-LAB

For Obj. 1:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for the output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 2:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for the output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 3:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 4:

- a. Write the truth table for the circuit.
- b. Derive the Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

III. LAB:						
Components Required:						
<u>S. No</u>	Name of the Component	Specification	Quantity			
HDL Program:						
Observ	ration:					
Conclu	sion:					

- 1. Logically derive the Boolean expressions for the output variables of a 4 bit magnitude comparator.
- 2. Why is a multiplexer known as data selector?

IV. POST LAB:

3. Implement a Full Adder using two 4 X 1 multiplexers.