

حساب معدل سرعة التفاعل ح قياس الزيادة قياس النقصان في تركيز المادة في تركيز المادة

ً المتفاعلة

الزمن (s) 🕂 التركيز (mol/l)

🕳 معدل سرعة التفاعل (mol/l.s)

لتفاعلات البطيئة (mol/l.h) أو (mol/l.h)

يتم تتبع سير هذا التفاعل عن طريق قياس :

🖈 النقصان في تركيز البروبان الحلقي (المادة المتفاعلة) ﴿ الزيادة في تركيز البروبين (المادة الناتجة)

3 1.0	<u>/</u>
ل سرعة التناقع 0.8	
2 8 0.0	
في تركيز ال 0.4 °01)	
ان ا	
الجراس والمساورة	7.0.5 1.0 1.5 (mol/L) [البروبان الحلقي]
	ر د دی این این این این این این این این این ای

الشكل ٦-١ معدل سرعة التناقص في تركيز البروبان الحلقي.

(s ⁻¹)	معدل سرعة التفاعل [البروبان الحلقي]	معدل سرعة التفاعل (mol/L.s)	[البروبان الحلقي] (mol/L)
	6.67 × 10 ⁻⁴	1.00 × 10⁻³	1.50
	6.67 × 10 ⁻⁴	6.67 × 10 ⁻⁴	1.00
	6.60 × 10 ⁻⁴	3.30 × 10⊸	0.50

🥎 من الرسم البياني نستنتج /

[البروبان الحلقي] فإن معدل سرعة التفاعل قل للنصف يقل للنصف

اشراف الأستاذة: فديجة المعمري مدرسة كهنات للتعليم الأساسي

إعدادالطالبة: اليقين بنت سنان المعمرية .

معدل سرعة التفاعل الميل = _____ التركيز

رياضياً /

معدل سرعة التفاعل = K = [البروبان الحلقي] معادلة معدل سرعة التفاعل

k = أبت معدل سرعة التفاعل

(لكل تفاعل كيميائي قيمة ثابتة من k عند درجة حرارة معيّنة)

معادلة معدل سرعة التفاعل : معادلة توضح العلاقات بين ثابت معدل سرعة التفاعل وتراكيز الجسيمات التي تؤثر في معدل سرعة التفاعل .

ثابت معدل سرعة التفاعل : هو ثابت التناسب K الموجود في معادلة معدل سرعة التفاعل . سرعة التفاعل .

هملاحظة / يمكن تحديد معدل سرعة التفاعل : عن طريق البيانات التجريبية (تنفيذ سلسلة من التجارب) / ايجادها عن طريق التناسب الكيميائي من المعادلة 💢

معادلة معدل سرعة التفاعل	معادلة التناسب الكيميائي	رقم التفاعل
$rate = k [NH_3]^0$	$2NH_3(g)$ $\xrightarrow{Pt البلاتين} N_2(g) + 3H_2(g)$	1
rate = $k [H_2] [I_2]$	$H_2(g) + I_2(g) \longrightarrow 2HI(g)$	2
rate = k [NO] ²	$NO(g) + CO(g) + O_2(g) \rightarrow NO_2(g) + CO_2(g)$	3
rate = $k [H_2] [NO]^2$	$2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$	4
rate = $k [BrO_3^-] [Br^-] [H^+]^2$	$BrO_3^-(aq) + 5Br^-(aq) + 6H^*(aq) \rightarrow 3Br_2(aq) + 3H_2O(1)$	5

ويوضح الجدول التالي بعض معادلات معدل سرعة التفاعل ومعادلة التناسب الكيميائي تجريبيًا .

الكيميائي الله الله الكيميائي معدلات سرعة التفاعل الكيميائي الكيميائي ومعاملات التناسب الكيميائي في معادلة التفاعل

اشراف الأستاذة: خديجة المعمري مدرسة كهنات للتعليم الأساسي

إعدادالطالبة: اليقين بنت سنان المعمرية .

مثال / ايجاد معادلة معدل التفاعل :

 $2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$

يتم تغير تركيز أحد المواد المتفاعلة مع إبقاء تراكيز المواد المتفاعلة الأخرى ثايتة .

النتائج	الشروط	الطريقة	استنتاج
معدل سرعة التفاعل يتناسب طردياً مع تركيز الهيدروجين (rate α[H₂])	إبقاء تركيز No (g)	تغییر ترکیز H₂ (g)	كيف يؤثر تركيز $H_2(g)$ على معدل سرعة التفاعل .
معدل سرعة التفاعل يتناسب طردياً مع مربع تركيز No تركيز α[NO]²)	إبقاء تركيز H ₂ (g)	تغییر ترکیز No (g)	كيف يؤثر تركيز (Ro (g على معدل سرعة التفاعل .

rate = K [H_2] [No]² : cos

تتضمن معادلات معدل سرعة التفاعل لبعض التفاعلات ﴿ مركبات غير موجودة في المعادلة الكيميائية.

← مثل : العوامل الحفازة

 $2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g) /$ مثال

باستخدام إنزيم كتاليز كعامل حفاز .

rate = $k[H_2O_2]$ [catalase]

العامل الحفاز معدل سرعة التفاعل

> **تتأثر سرعة التفاعل بـ :** بدرجة الحرارة. العوامل الحفازة.

اشراف الأستاذة: خديجة المعمري مدرسة كهنات للتعليم الأساسي

إعدادالطالبة: اليقين بنت سنان المعمرية .