Roll No. 160100116

EE-101, S4: Quiz # 2

Date: 6th Nov, 2017

Time: 12:20pm to 12:40pm

Max. Marks: 15

Imp. Notes: (a) Answer only in the space provided next to the question

(b) Please answer all questions

Q1. In the DAC circuit shown below, determine V_0 for the given states of the SPDT switches (represented by b_i). What would be V_0 if the given binary number is 1101. (4 marks)

Q2. Truth table for a logic function Y(A, B, C) is shown below. Using a K-map obtain an optimum expression for Y for its actual hardware implementation. (4 marks)

	A	B	C	Y						
	0	0	0	0						
	0	0	1	1						_
	0	1	0	1			BC	BC	1180	IOBC
	0	1	1	0		-+	00	0)		
	1	0	0	1		Ā		1		
	1	0	1	0		0				
	1	1	0	0		A.	1		1	1
	1	1	1	1		-				
1			71	(A,B,C) =	ĀBC	+/	ABC+	A B (+ Ā	BC

Q3. The operational driving point impedance across a pair of terminals 'a-b' of an electrical network is given by:

$$z_{ab} = \frac{2p^2 + 4p}{4p^2 + 11p + 8}; \text{ If } v_{ab}(t) = 20e^{-0.5t}, \text{ determine the forced current response.}$$

$$i = \frac{\text{Vab}(t)}{\text{Zab}} = \frac{\text{Vab}(t)}{\text{Zp}^2 + 4p}$$

$$(2p^2 + 4p) \quad \hat{c} = 4p^2 + 11p + 8$$

$$(2p^2 + 4p) \quad \hat{c} = 4p^2 + 11p + 8$$

Q4. Determine 'V' and '
$$\phi$$
' for the following: (4 marks)
$$v(t) = \sqrt{2V} \times \cos(\omega t + \phi) = 25 \times \sin(\omega t + 60^{\circ}) - 15 \times \cos(\omega t + 120^{\circ}) + 30 \times \sin(\omega t + 240^{\circ}) \text{V}$$

$$t = 0$$

$$25 \sin (600) - 15 \cos 120^{\circ} + 30 \sin 240^{\circ}$$

$$= 25 \sin (wt + 60^{\circ}) = 25 \cos (20^{\circ} + 30^{\circ})$$

$$= 25 \cos (20^{\circ} + 30^{\circ})$$

25 (cos wt)
$$(\frac{13}{2})$$
 + 25 (sin wt) $\frac{1}{2}$ - 15 (cos wt) $(-\frac{1}{2})$ + 15 (sin wt) $(\frac{13}{2})$ + 30 cos wt $(-\frac{13}{2})$ - 30 sin wt $(\frac{1}{2})$

$$V = 5.09$$

$$V = 5.09$$