Analysis II

Mark

Chapter 5: differentiation

1 Derivatives

f is **differentiable** at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) \text{ exists in } \mathbb{R}$$

If f'(c) exists, a function $f^*(x)$ **continuous** at c such that

$$f(x) - f(c) = (x - c)f^*(x)$$
 with $f^*(c) = f'(c)$.

Proof: follows directly from definition of f * (x)

–note subscript c in f_c^* emphasizes that f^* depends on c.

-f'(c) exists, means f'(c) can be ∞.

If f is **differentiable** at c, then it's **continuous** at c

*f'(c) need not be continuous!

Note,
$$f(x) = f(c) + f_c^*(x)(x - c)$$
.
Since f_c^* is continous, the RHS is continous.

Product Rule proof idea: construct $(fg)_c^*$, show it's continous.

Quotient Rule idea: from last semester, f is non-zero at a point and continous means there exists neighborhood of inputs where f is nonzero. Use to show $\frac{1}{g(x)}$ is nonzero.

Chain Rule

For g differentiable at c and f differentiable at g(c),

$$(f \circ g)'(c) = g'(c)f'(g(c))$$

Proof: h(x) = f(g(x)).

Write h(x) - h(c) with the hopes of finding $h_c^*(x)$ continous.

Right/Left Limits

For $f : [a, b] \to \mathbb{R}$, continous,

$$f'_{+}(c) = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$$

if limit exists (even as ∞).

e.g.
$$f(x) = \sqrt{x}$$
 on $[0,1]$. Then, $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = +\infty$, $f'_{-}(1) = \frac{1}{2}$.

$$f'(c) > 0$$
 exists $\iff f'_{+}(c) = f'_{-}(c)$ both exist and are > 0

f'(c) > 0 exists $\iff f'_+(c) = f'_-(c)$ both exist and are > 0 Key: neighborhood where f'(c) > r > 0. right-half of neighborhood, $f'_+(c)$ checks out (similarly for left).

Extremum

Local **max** at *c* means there exists neighborhood of *x* such that for all x, $f(c) \ge f(x)$.

If local max/min at
$$c$$
 and $f'(c)$ exists, $f'(c) = 0$ proof: rule out $f'(c) > 0$, since $f(c + \delta) > f(c)$ (similarly for < 0) Thus, $f'(c) = 0$. —max can occur without $f'(c) = 0$ if $f'(c)$ doesn't exist.

Mean Value 2

Rolle's Theorem

 $f:[a,b]\to\mathbb{R}$, continuous on [a,b], and f'(x) exists on (a,b)

If
$$f(a) = f(b)$$
, there exists $c \in (a, b)$ such that $f'(c) = 0$

"smooth curve with end points must a turning point" (or is constant) proof: max/min exists by EVT since f is continous on a compact set, call f(c) max/min.

Case 1: either max or min occurs at c in $(a,b) \rightarrow f'(c) = 0$.

Case 2: neither max nor min in (a, b)

implies max and min at c = a = b.

Thus, f is constant. \square

Recall, **Extreme Value Theorem** continous function on a compact set has a max/min. continous image of compact is compact \rightarrow (by Heine-Borel in \mathbb{R}) closed, bounded. Thus, contains sup, inf.

Mean Value Theorem

 $f:[a,b]\to\mathbb{R}$, continous on [a,b], and f'(x) exists on (a,b), for some $c\in(a,b)$,

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

"line connecting end points has same slope as some point on curve" physical: "instantaneous velocity at some point = average velocity" proof, follows from below by letting g(x) = x. *f'(x) can exist both as a finite real or as infinity.

Generalized Mean Value Theorem, "Cauchy"

f(x), g(x) continuous on [a,b] and differentiable on (a,b) (c)(f(b)-f(a)).

nicely written for g(b) - g(a), $g'(c) \neq 0$ as

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

proof:

Define

$$h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a))$$

Note,

1. h(x) is continuous, since all terms are.

2. h'(x) exists for all x.

Furthermore h(a) = h(b).

Thus, by Rolle's Theorem, there exists c such that h'(c) = 0.

IDEA: define h(x) with equality we want. Use Rolle's.

CAUTION: tempting to say $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) = g(a)}$, but *C* is different for *f* and *g*!.

Increasing Functions

f'(x) exists on (a,b) and f'(x) > 0, then

f(x) is strictly increasing.

Let a < x < y < b.

By MVT there exists *c* such that

$$f(y) - f(x) = f'(c)(y - x)$$

RHS > 0, so f(y) - f(x) > 0.

L'Hôpital's Rule

f(x), g(x) continous and differentiable, f(c) = g(c) = 0, and g'(x) never 0 in $(c - \delta, c + \delta) \setminus \{c\}$.

If
$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$$
, then $L = \lim_{x \to c} \frac{f(x)}{g(x)}$.

WWTS $\lim_{x\to c^+} \frac{f(x)}{g(x)} = L$ (similarly for c^-).

(note $\frac{f(x)}{g(x)}$ by the contraposition of Rolle's: $g'(x) \neq 0 \rightarrow g(x)$) (1) On (c,x) with $x < c + \delta$, by GMVT there exists α such that

$$f'(\alpha)(g(x) - g(c)) = g'(\alpha)(f(x) - f(c))$$

$$\to$$

$$\frac{f(x)}{g(x)} = \frac{f'(\alpha)}{g'(\alpha)} \text{ since } g(c) = f(c) = 0$$

Intermediate Value Theorem

f continuous on [a, b].

For f(a) > c > f(b), there is $x \in [a, b]$ such that f(x) = c. proof only given for IVT for Derivs below.

Intermediate Value Theorem for Derivatives

 $f:[a,b]\to\mathbb{R}$ differentiable on (a,b).

If $f'_{+}(a)$ exists and is < 0,

 $f'_{-}(b)$ exists, > 0.

Then, there exists $c \in (a, b)$ such that f'(c) = 0.

*Wilson diverges from Apostle's proof.

f is continous on [a,b] (on (a,b) since differentiable and a since $f'_+(a)$ exists, implicitly indicating continuity).

There there exists a least value for the function, say at *c*:

$$f(c) \le f(x)$$
 for all $x \in [a, b]$

If $c \neq a : f'_{+}(a) < 0 \rightarrow f(x) < f(c)$ in $(a, a + \delta)$. If $c \neq b : f'_{-}(b) > 0 \rightarrow f(x) < f(b)$ in $(b - \delta, b)$.?

Generalization

For t between $f'_+(a)$, $f'_-(b)$, there exists $c \in [a,b]$ such that f'(c) = t.

(or if
$$a = c$$
 ($b = c$), then $f'_{+}(a) = f'_{+}(t)$)

*careful, this doesn't imply derivative is continuous. e.g.,

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{for } x \neq 0\\ 0 & x = 0 \end{cases}$$

but $\lim_{x\to 0} f'(x)$ doesn't exists, hence the derivative is not continuous. IVT for derivatives revisit as well as discontinuity idea below

Discontinuity of Continuous Increasing

f on (a,b) is increasing.

Then,

 $f(x^+)$ exists for all x such that $f(x) \le f(x^+)$ and f is continuous at x

$$\iff$$

$$f(x^-) = f(x^+)$$

For any fixed x_0 .

 $f(x_0)$ is a lower bound of $\{f(x): x > x_0\}$.

Let α be the infimum, then

 $f(x_0) \le \alpha$ (since $f(x_0)$ is a lower bound.

If
$$x_0 < x' < x$$
, $\alpha \le f(x') \le f(x) \le \alpha + \epsilon$.

Thus, $|f(x)\alpha - \alpha| < \epsilon$.

Increasing function can only have jump discontinuities.

f'(x) exists and f'(x) is monotonic, then f'(x) is continuous. If it wasn't, we'd have a jump discontinuity, violating the IVT.

3 Cardinality

Equinumerous sets A, B means there is a bijective map between the sets. denoted, $A \sim B$.

This defines an equivalence relation.

 $A \sim B$, $B \sim C \rightarrow A \sim C$ by composition of bijective functions.

countable means finite or countably infinite.

*for countable sets, we can assume without loss of generality the set is \mathbb{N} .

A, B countable $\rightarrow A \times B$ is countable.

The output is never the same for any two inputs, based on the prime factorization of integers.

Idea of counting N through sieve.

A, B countable $\rightarrow A \cup B$ countable.

For $x \in A \cup B$,

$$f(x) = \begin{cases} 2^{f_1(x)} & x \in A \\ 3^{f_2(x)} & x \in B \setminus A \end{cases}$$

second line accounts for elements in both sets.

Q is countable.

$$\mathbb{Q} = \{\pm \frac{m}{n}\}.$$
For $x \in \mathbb{O}$

For $x \in \mathbb{Q}$,

$$f(x) = \begin{cases} 23^m 5^n & x > 0\\ 2^2 3^m 5^n & x < 0 \end{cases}$$

$\bigcup_{1}^{\infty} A_i$ is countable for A_i countable

k(x) = i for i the smallest A_i containing x.

Then, $f(x) = 2^{k(x)} 3^{f_{k(x)}(x)}$

No set is equinumerous to its powerset

Suppose between S and P(S), the powerset of S, there exists a bijective map f(S).

KEY: $R = \{a \in S : a \notin f(a)\}$

- (a) R is a subset of S, hence in range of f(S): $R = f(\alpha)$
- (b) α is in R, hence $\alpha \notin f(\alpha)$.

idea: $R = \{a : a \notin a\}$. Ask is $a \in R$?

"Russel's Paradox"

Godel talked about a similar notion for sets: "I am a false statement". Prove the statement.

Power set of N is uncountable

N is not equinumerous with its powerset by above.

R is uncountable

(1) [0,1) is uncoutable

proof: suppose $f: \mathbb{N} \to [0,1)$ $f(1) = a_{11}a_{12}a_{13}...$, some number. $f(2) = a_{11}a_{12}a_{13}...$, some number Then, defined b_k to differ at the last digit from all possible outputs. Hence, [0,1) uncountable.

(2) A subset of \mathbb{R} is uncountable, hence \mathbb{R} is too.

Let
$$E \subset (0, \infty)$$
. $M = Sup\{\sum_{x \in F} x : F \subset E \text{ and finite}\}$

If $M < \infty$, *E* is countable.

By way of contradiction, suppose E is uncountable and $M < \infty$. Then idea unclear of proof and what we're trying to prove.

Tips

• "epsilon the sup": $s = \sup\{A\}$ implies there is $x \in A$ such that $x < \sup -\epsilon$.

Chapter 6 Functions of Bounded Variation

Let $\mathcal{P}[a, b]$ be the collection of all possible **partitions** of [a, b].

f is of **bounded variation** on [a,b] if for any partition,

$$\sum_{k=1}^{n} |\Delta f_k| \le M$$

*M need not be fixed, as long as $<\infty$ (follows from BV $\iff V_f <\infty$).

Sweet consequences of BV

- f increasing on $[a, b] \implies BV$
- f BV $\Longrightarrow f$ is bounded.
- f cont on [a,b], f' exists, and $|f'(x)| \le R \implies f$ BV

counterexample with $x \cos(\pi/x)$ on [0,1] see book for deets

Useful idea:

$$f$$
 increasing $\Longrightarrow \sum f(x_k^+) - f(x_k^-) \le f(b) - f(a)$ for any partition. "degree of discontinuity, or jump"

proof: pick $y_i \in (x_i, x_{i+1})$ So,

$$f(x_i) \le f(y_i) \le f(x_{i+1})$$

then, idea: $f(y_i)$ and $f(y_{i-1})$ surround $f(x_i)$.

So, $\sum f(y_i) \geq \sum f(x_i^{\pm})$, but sum using y_i is bounded by f(b) - f(a). \square

idea: surround x_i with points y_i whose sum is less than f(b) - f(a)

If f is **monotonic** on [a, b], then set of discontinuities is **countable**.

Proof: discontinuity at x means: $f(x^+) > f(x^-)$ Look at all discontinuities with jump greater than 1/nLet m be the number of discontinuities, then

$$m\frac{1}{n} \le \sum f(x_k^+) - f(x_k^-) \le f(b) - f(a)$$

so, $m \le n(f(b) - f(a))$.

Let $n \to \infty$, to get countably many. \square

4 Total Variation

The **total variation** of f on [a, b] is

$$V_f(a,b) = \sup\{\sum |\Delta f_k| \text{ of all partition}\}\$$

Properties

- $V_f = 0 \iff f \text{ is constant}$
- f is of **BV** \iff V_f is **finite**.
- $\frac{1}{f}$ is of **BV** if $0 < m \le |f(x)|$ for all x. condition ensures $\frac{1}{f}$ is never zero

Finer partition $\implies \sum |\Delta f_k|$ increases.

look at difference $\sum_{p'} - \sum_{p}$ where p' is finer.

Algebra of Total Variation

• $V_{f+g} = V_f + V_g$ triangle inequality with sums

- $V_{fg} \le \sup(|g(x)|)V_f + \sup(|f(x)|)V_g$
- $V_f(a,b) = V_f(a,c) + V_f(c,b)$ "total variation breaks up over interval sums" First $V_f(a,c) + V_f(c,b) \le V_f(a,b)$, follows by taking union of partitions, since V_f is supremum over any partition.

Second inequality follows by adding c to partiion of (a, b).

-
$$f$$
 BV on $(a,b) \implies f$ BV on (a,c) and (c,b) .

 $V_f - f$ is increasing

for x < y, consider V(a, y) - f(y) - (V(a, x) - f(x)) use $f(y) - f(x) \le V(x, y)$.

f on [a,b] is of **bounded variation**

f can be expressed as the difference of two increasing functions.

*representation as two increasing functions is not unique.

 $\rightarrow f = f_1 - f_2$ use algebra above.

 $\leftarrow f = V - (V - f)$, with V - f is increasing and V increasing.

Chapter 7 Riemann-Stieltjes Integral

We begin with a more general concept than traditional Riemann Intergal (cutting up into rectangles) using **two functions** of x, f(x) and $\alpha(x)$.

Allows us to compute integral of partly continuous functions (useful in physics)

Notation

For a partition P, ||P|| is called the norm of P and is the **length of the largest subinterval.**

A partition *A* is **finer** than *P* if *A* contains all the points of *P*.

For Riemann-Stieltjes Integration we **assume** f(x), $\alpha(x)$ are **real-valued**, **bounded** functions.

Riemann-Stieltjes Integral

The **Riemann-Stieltjes sum** of f with respect to α and a partition P is

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) [\alpha(x_k) - \alpha(x_{k-1})]$$

for any choice of t_k in $[x_{k-1}, x_k]$.

f is **Riemann-Stieltjes Integrable** if for all partitions P finer than P_{ϵ} ,

$$|S(P, f, \alpha) - A| < \epsilon$$
.

The value A, denoted $\int_a^b f(x)d\alpha(x)$, is **unique**. proof of uniquess:

If $A_1 \neq A_2$ both satisfy integral, then, for P_{ϵ} finer than both P_1 , P_2 ,

$$|A_1 - A_2| < 2\epsilon \implies A_1 = A_2.\square$$

Properties of the Riemann-Stieltjes Integral

 c_1, c_2 constants

- "sum/constant multiple": $\int_a^b (c_1 f(x) + c_2 g(x)) d\alpha(x) = c_1 \int_a^b f(x) d\alpha(x) + c_2 \int_a^b g(x) d\alpha(x)$. proof follows directly by manipulating sums
- "sum/multiple over $\alpha(x)$ ": $\int_a^b f(x)d(c_1\beta(x)+c_2\gamma(x))=c_1\int_a^b f(x)d\beta(x)+c_2\int_a^b f(x)d\gamma(x)$.
- "split over interval": $\int_a^b = \int_a^c + \int_c^b$, if two of the three integrals exist. *can't be used to prove \int_a^c exists

We define $\int_a^b f(x)d\alpha(x) = -\int_b^a f(x)d\alpha(x)$.

*Careful: $S(P, f, \alpha) - S(P, f, \alpha) \neq 0$, depends on choice of t_k .

Wilson's "Cauchy-Criterion" like Result

recall Cauchy Convergence Criterion: x_n converges $\iff |x_i - x_j| < \epsilon$ for any i > N. For all P, Q finer than some P_{ϵ} ,

$$f(x) \in R(\alpha) \iff |S(P, f, \alpha) - S(Q, f, \alpha)| < \epsilon.$$

Proof: \rightarrow) triangle.

 \leftarrow) construct sequence of partitions $P_1 \subseteq P_2 \dots$

Then, $S(P_k, f, \alpha)$ satisfies Cauchy Criterion, thus converges to a limit (there's a bit more to it). \square

up to exam 1

Integration by Parts

f, α bounded.

and

$$f \in R(\alpha) \iff \alpha \in R(f)$$

$$f \in R(\alpha) \iff \alpha \in R(f)$$

$$\int_{a}^{b} f d\alpha + \int_{a}^{b} \alpha df = f\alpha \Big|_{a}^{b}$$

proof: $f\alpha \Big|_a^b = \sum_P \Delta(f\alpha)$ since it telescopes. Then, $f\alpha \Big|_a^b - S(P,\alpha,f) = S(P',f,\alpha)$ for some P' which includes additional points

Then,
$$f\alpha\Big|_a^b - S(P, \alpha, f) = S(P', f, \alpha)$$

implying $|S(P', f, \alpha) - \int_a^b f d\alpha| < \epsilon$. \square

*easy to misread sum with respect to α as f! careful!

Lower and Upper Riemann-Stieltjes Integral

Notation

- $M_k(f) = \sup f(x) \text{ for } x \in [x_{k-1}, x_k]$
 - $m_k(f)$ for inf
- Upper Stieltjes Sum: $U(P, f, \alpha) = \sum_{P} M_k(f) \Delta \alpha$
 - lower, $L(P, f, \alpha)$ is with m_k
- For $\alpha \nearrow$, **Upper Stieltjes Integral** $\int_a^{\bar{b}} f d\alpha = \bar{I} = \inf$ of $U(P, f, \alpha)$ over all partitions. *CAREFUL: Upper -> Inf

Properties when $\alpha \nearrow$

• $L(P, f, \alpha) < S < U$

• For $P' \supseteq P$, $U(P') \le U(P)$ idea: sup f on larger interval \ge on smaller interval prove using only one additional point, then generalize

$$-L(P') \ge L(P)$$

- For any two partiions, $L(P_1) \le U(P_2)$ by above $L(P_1) \le L(P_1 \cup P_2) \le U(P_1 \cup P_2) \le U(P_2)$
- $\underline{I} \leq \overline{I}$ key: $U \geq L$. So inf $U \geq u \geq l > supL \epsilon$

Triangle for Upper and lower

$$\bar{\int_a^b} = \bar{\int_c^b} + \bar{\int_c^b}$$

However,

$$\bar{\int_a^b} f + g d\alpha \le \bar{\int_a^b} f d\alpha + \bar{\int_a^b} g d\alpha$$

(similarly with \geq for lower integral)

6 Riemann's Condition

f satisfies **Riemann's condition** if for all P finer than P_{ϵ}

$$0 \le U - L \le \epsilon$$

For $\alpha \nearrow$, below are equivalent

- 1. $f \in R(\alpha)$
- 2. f satisfies **Riemann's condition**
- 3. $\underline{I} = \overline{I}$

$$(1 \rightarrow 2)$$

L and U can be considered partitions; use def so that $|L-U|<\epsilon$ $(1_\to 3)$

$$\int_{a}^{\overline{b}} f d\alpha = inf(U) < sup(L) = \int_{\underline{a}}^{b} f d\alpha + \epsilon$$

Comparison Theorems

For $\alpha \nearrow$, $f, g \in R(\alpha)$,

• If $f(x) \le g(x)$ for all $x \in [a, b]$,

$$\int_{a}^{b} f(x)d\alpha(x) \le \int_{a}^{b} g(x)d\alpha(x)$$

proof: $U(P, f, \alpha) \le U(P, g, \alpha)$

• $|f| \in R(\alpha)$ and

$$\left| \int_{a}^{b} f(x) d\alpha(x) \right| \leq \int_{a}^{b} |f(x)| d\alpha(x)$$

• $f^2 \in R(\alpha)$

$$f(t)^{2} - f(s)^{2} = (f(t) + f(s))(f(t) - f(s))$$

$$\leq 2Msup(f(t) - f(s)) \qquad \text{(M is bound of f)}$$

$$\leq 2M(M_{k}(f) - m_{k}(f))$$

$$\leq 2M * U - L \leq 2M\epsilon \leq \epsilon \qquad \text{(with adjustment)}$$

• product $f(x)g(x) \in R(\alpha)$

*Careful: $|f| \in R(\alpha) \not \Longrightarrow f \in R(\alpha)$ **Example**,

$$f(x) = \begin{cases} 1 & : x \in \mathbb{Q} \\ -1 & : x \notin \mathbb{Q} \end{cases}$$

U(|f|) = L(|f|) = 1, but U(f) = 1 and L(f) = -1.

7 Integrators of Bounded Variation

Assume α is of **bounded variation**.

Let V(x) be the total variation of α on [a,b] with V(a)=0. Then for f **bounded** on [a,b],

$$f \in R(\alpha) \implies f \in R(V)$$

in class proved: $\alpha \in BV$, $f \in R(\alpha)$, $V_f = V_\alpha \implies f \in R(\alpha)$ For α of **bounded variation**, $f \in R(\alpha)$ on [a, b]

$$f \in R(\alpha)$$
 on every subinterval of $[a,b]$

For $f, g \in R(\alpha)$ with $\alpha \nearrow$

$$\int_{a}^{b} f(x)g(x)d\alpha(x) = \int_{a}^{b} f(x)dG(x) = \int_{a}^{b} g(x)dF(x)$$

proof???

When does Riemann-Stieltjes exist? 8

Big Theorem

$$\alpha \in BV$$
, f continuous $\implies f \in R(\alpha)$

 $\alpha \in BV$, f continuous $\implies f \in R(\alpha)$ proof: only consider $\alpha \nearrow$ since BV implies α can be written as difference of increasing functions.

 $f cont \implies uniformly continuous (by last semester)$

Choose partition *P* such that $||P|| < \delta$

$$U - L = \sum (M_k - m_k) \Delta \alpha$$

$$\leq \epsilon \sum \Delta \alpha \qquad \text{(by uniform cont)}$$

$$\leq \epsilon$$

Consequences:

- 1. $\int_a^b f(x)dx$ exists for f continous!
- 2. $f \in BV$, $\alpha cont \implies f \in R(\alpha)$

by Integration by Parts $\alpha \in R(f) \iff f \in \alpha(f)$

Exercises

1. Find f(x), $\alpha(x)$ such that the Riemann-Stieltjes integral does not exist. On [-1,1],

$$f(x) = \alpha(x) \begin{cases} 1 : x \ge 0 \\ 0 : x < 0 \end{cases}$$

Select partition to include point 0. Then, somehow contradicts?

Fundamental Theorems of Calculus

 $\alpha \nearrow$, $f \in R(\alpha)$, and there exists m, M such that $m \le f(x) \le M$, then

$$\int_{a}^{b} f(x) d\alpha = u(\alpha(b) - \alpha(a)$$
 (some $u \in [m, M]$)

proof: choose $u = \frac{\int_a^b f(x)d\alpha}{\alpha(b) - \alpha(a)}$, with $m \le U \le M$ since $m \le L(P) \le U(P) \le M$.

Intermediate Value Theorem for Integrals

f cont, $\alpha \nearrow$, then there exists $x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x) d\alpha(x) = f(x_0)(\alpha(b) - \alpha(a))$$

proof: since f is cont., use IVT

First Fundamental Theorem of Calculus

*slightly less general than apostol $\alpha \nearrow f \in R(\alpha)$. Define, $F(x) = \int_a^x f(t) d\alpha(t)$.

- 1. $F(x) \in BV$
- 2. F(x) is continuous where α is
- 3. F'(x) exists where $\alpha'(x)$ exists and f is cont.
 - (a) $F'(x) = f(x)\alpha'(x)$ when it exists.

proof

Then,

Second Fundamental Theorem of Calculus

*differs from Apostol's

 $f \in R$, g is cont on [a,b], g' = f(x) exists on (a,b)(continuity assumption ensures g cont on endpoints)

$$\int_a^b f(x) \ dx = \int_a^b g'(x) \ dx = g(x) \bigg|_a^b$$

*baby version assumes *f* is continuous, which this version doesn't!

Extensions of the FTC

 $\alpha \nearrow$, f, g $\in R(\alpha)$. Then,

$$f \in R(G), g \in R(F)$$

and

$$\int_{a}^{b} f dG = \int_{a}^{b} g dF = \int_{a}^{b} f(t)g(t)d\alpha(t)$$

*F, G are antiderivatives

proof

For $f \in R$, α cont. and $\alpha' \in R$,

$$f \in R(\alpha)$$
 and $\int_a^b f d\alpha = \int_a^b f(t)\alpha'(t)dt$

by previous theorem

Change of Variables

Part I

Chapter 8: Infinite Produtcs (and series review)

Infinite Series

Infinite Products

Part II

Chapter 9: Sequences of Functions

goal: sequence f_n has a property say cont., integrable etc. does $\lim_{n\to\infty} f_n$?

A sequence of functions $\{f_n\}_1^{\infty}$ is **uniformly Cauchy** if

$$|f_n - f_m| < \epsilon$$
 (for all m, n \geq some N)

 f_n converges uniformly to some $f \iff \{f_n\}_1^\infty$ is uniformly Cauchy proof later copy application

Weierstrauss M-Test for Infinite Products

 $f_n: A \to \mathbb{C}, |f_n| \le M_n$ for all $x \in A$, and $\sum_{1}^{\infty} M_n = B < \infty$, then

$$\prod_{1}^{\infty} (1 + f_n) \text{ converges uniformly to some } f \qquad (f \text{ also on } A \to \mathbb{C})$$

proof to come

BIG

BIG

copy application

Uniform Convergence of Integrals and Derivatives

 $\alpha \in BV$ on [a,b] in \mathbb{R} , f_n converges uniformly, and $f_n \in R(\alpha)$, then

$$f \in R(\alpha)$$
 and $\int_a^b f_n d\alpha \to \int_a^b f d\alpha$

"uniformly convergent sequence, $\lim \int f_n = \int \lim f_n$ " copy application

for derivatives

*slightly different from Apostol's who assume $\lim_{n\to\infty} f_n(x_0)$ exists

If $f_n \to \mathbb{R}$ and f'_n exists; $f'_n \to g$ uniformly (for some g); $f_n(x_0) = 0$ for some x_0 and all n. THEN,

1.
$$f_n \rightarrow f$$
 uniformly (some f)
2. f' exists with $f' = g$

Power Series

A **power series** in $z - z_0$ is of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

converg with $a_n, z, z_0 \in \mathbb{C}$.

If power series converges at a **single point**, it converges **uniformly**. A power series **converges absolutely** if

$$|z - z_0| < \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}}$$

The values of z satisfying is the above forms the **disk of convergence** with center z_0 . The series **converges uniformly** on every **compact** subset of the disk of convergence.

proof by root test

see next file