Using Compute Canada Resources

An Introduction for Newcomers

Guillaume Perrault-Archambault

University of Ottawa

November 16, 2018

Outline

- Overview
- Setting Up
- Running Jobs
- Managing Resources

Outline

- Overview
- Setting Up
- Running Jobs
- Managing Resources

What is Compute Canada?

- Partnership between 37 member research institutions
- Provides access to world-class computing resources
- Supported by 200 experts in member institutions
- Computing Resources are made available via clusters

Compute Canada Systems, or Clusters

• What are they?

Niagara supercomputer. Source: University of Toronto (https://goo.gl/Jzw5xz)

Compute Canada Systems, or Clusters

• Where are they?

Map of national systems. Source: Compute Canada (https://goo.gl/XbgF4H)

Cloud Compute Systems

- Remote virtual machines
- Useful for custom software install
- Dedicated compute resource
- Not designed for high computation speed
- Think of it as remote laptop with:
 - More power
 - Better software
 - A support team

Cloud System – Example Allocation

Default Allocation

Your project will be granted the default quota which consists of:

- o 2 instances (Virtual Machine)
- o 1 public IP
- 15G of RAM
- 4 VCPUs
- o 40G of permanent storage
- o 2 volumes
- o 2 snapshots

Default project allocation for cloud account. Source: Compute Canada (https://goo.gl/ML5Lnr)

Performance Compute Systems

- High performance parallel computing
- Shared between users not dedicated
- Not designed for visualization
 - Debug on your laptop and launch big jobs on PCS

Performance System – Example System Specs

Cedar, Graham Clusters

	Cedar	Graham
purpose	general-purpose cluster for a variety of workloads	
specs	https://docs.computecanada.ca/wiki/Cedar	https://docs.computecanada.ca/wiki/Graham
processor count	27,696 CPUs and 584 GPUs	32,136 CPUs and 320 GPUs
interconnect	100Gbit/s Intel OmniPath, non-blocking to 1024 cores	56-100Gb/s Mellanox InfiniBand, non-blocking to 1024 cores
128GB base nodes	576 nodes: 32 cores/node	800 nodes: 32 cores/node
256GB large nodes	128 nodes: 32 cores/node	56 nodes: 32 cores/node
0.5TB bigmem500	24 nodes: 32 cores/node	24 nodes: 32 cores/node
1.5TB bigmem1500	24 nodes: 32 cores/node	-
3TB bigmem3000	4 nodes: 32 cores/node	3 nodes: 56 cores/node
128GB GPU base	114 nodes: 24-cores/node, 4 NVIDIA P100 Pascal GPUs with 12GB HBM2 memory	160 nodes: 24-cores/node, 2 NVIDIA P100 Pascal GPUs with 12GB HBM2 memory
256GB GPU large	32 nodes: 24-cores/node, 4 NVIDIA P100 Pascal GPUs with 16GB HBM2 memory	- compute calcul canada canada

⁻ all nodes have on-node SSD storage

Cedar, Graham Specifications. Source: Compute Canada (https://goo.gl/DvJY2N)

National Systems

- You get access automatically with your CC account
- Standardized workflow
- National clusters:
 - Cedar
 - Graham
 - Beluga¹
 - Arbutus²

¹Available in January 2019

²Cloud only

Regional Systems

- Requires creation of regional or "consortium" account
- Each may have unique workflow
- Are being phased out in favor of national systems
 - Compute Canada calls them "Legacy Systems"
- Noteworthy regional clusters:
 - Hades (Calcul Quebec)
 - Guillimin (Calcul Quebec)
 - Mammouth¹ (Calcul Quebec)
 - Accelerator Research Cluster (SciNet)
 - Niagara¹ (SciNet)
- Use only if needed

Regional Systems – Applying

Application Page

Consortium account application page. Source: Compute Canada (https://goo.gl/sGZCW3)

Compute Cluster - Client Model

- Clients connect to login node
- Jobs submitted to compute node
- Multiple login nodes
- Clients share login nodes

Outline

- Overview
- Setting Up
- Running Jobs
- Managing Resources

Setting Up an Account

- Go to registration page and fill out form
 - Takes 5 minutes
 - Full instructions in Wiki
- Compute Canada will review then e-mail prof Mao to approve
 - Process may take a few days

Accessing a System

- ssh to Graham cluster (demo)
 - Can set up to be passwordless
 - Can set up a profile (putty example in Wiki)
- We are now on one of Graham's login nodes!
- Notice that the login nodes Unix-based
 - You will need to learn some basic Unix commands
 - See the wiki for two excellent Unix resources

Transferring Files To and From the Cluster

- Several methods
 - FTP client tool (demo with FileZilla)
 - SFTP mounting described in the wiki
 - Globus better for huge files, but works only off campus
- We are almost ready to run simulations!

Using Modules

- Compute Canada systems have a big stack of pre-installed software
- Some software cannot coexist in the same environment
 - eg two different versions of python
 - Collision can cause unintended behavior
- Solution: modules
 - Ensures a software environment with a consistent set of software
 - No collisions
- Simple to use
 - module avail
 - module list
 - module load/unload <module name>
- demo
- More info on Compute Canada Using Modules page

Installing Python Modules

- Compute Canada pre-installed python packages comes with limited number of python modules
- To install tensorflow or pytorch, follow special instructions
- For other modules, usepip install --user <name of module>
- demo
- Prescribed method by Compute Canada is different
 - Uses virtual environments; more complicated
 - Better if working on multiple big projects
 - Detailed here
 - Both flows are officially supported

Outline

- Overview
- 2 Setting Up
- Running Jobs
- Managing Resources

Running Jobs

 Now that we are on the login node

Running Jobs

- Now that we are on the login node
- How do we launch jobs on the compute nodes?

Running Jobs

- Now that we are on the login node
- How do we launch jobs on the compute nodes?
- The answer is to use a Job Scheduler (or Workload Manager)

Job Scheduler

- The scheduler is a program that manages which users get the compute nodes and when
- There are several popular job schedulers: SLURM, LSF, Torque
- The largest Compute Canada systems (Cedar, Graham, Niagara, Mammouth) use SLURM
- Several commands to launch a job: salloc, srun, sbatch
 - salloc allows you to run commands on the compute node itself
 - srun allows you to run an interactive job
 - sbatch allows you to run a batch (non-interactive) job
- Most common command is sbatch

Submitting a batch job

#!/bin/bash

- Tell SLURM what resources you need and what program you want to run
- Put these instructions inside a "batch" file:

```
#SBATCH --gres=gpu:1  # Number of GPUs (per no

#SBATCH --time=00:30:00

#SBATCH --job-name="quick test"

#SBATCH --mem=2gb

#SBATCH --output=%x-%j.out

echo 'Hello, world!'  # Replace this with your
```

Now we run:

```
sbatch <batch file name>
```

- Quick instructions here
- Compute Canada detailed instructions here

Monitoring and Canceling Jobs

- Monitoring your jobs' status squeue -u <username>
- Cancelling a job scancel <job id>
- demo

Outline

- Overview
- Setting Up
- Running Jobs
- Managing Resources

Check memory and CPU usage

- Max RAM usage
 sacct -j <job id> --format=JobID, JobName, MaxRSS, Elapsed
- Job efficiency seff <job id>
- demo

Storage space

Cedar storage allocation

Cedar Filesystem Characteristics. Source: Compute Canada (https://goo.gl/yZu6Bb)

- Key takeaways
 - Run jobs in scratch disk
 - Only keep important files on project space
 - Don't keep files in home directory

Check storage space usage

- Check usage with: diskusage_report
- Or per file/directory:
 du -sh <file or directory name>
- demo

Fairshare

- NormShares
 - Number of compute shares compared to other associations (fraction)
- NormShares
 - Number of compute shares compared to other associations (fraction)
- EffectvUsage
 - Associations' compute usage compared to other associations (fraction)
- UsageRate (my term)
 - EffectvUsage / NormShares
 - How much association has used of its fairshare
- LevelFS ("Level Fairshare")
 - NormShares / EffectvUsage (ie 1/UsageRate)
 - How "underserved" an association is
 - Number above 1.0 means association underserved jobs will have high priority

Check fairshare level

• Check CPU fairshare with:

```
sshare -l -A def-yymao_cpu -a
```

• Check GPU fairshare with:

```
sshare -l -A def-yymao_gpu -a
```

- demo
- both memory and CPU/GPU years count toward fairshare usage!

Common Project Space

- Used to share common scripts or templates
- Currently on Cedar
 - My bashrc (can be used as template or as-is)
 - SLURM run script
 - directory with simulation example (compatible with run script)
- Work in progress!
- demo

Getting Help

- Compute Canada Wiki
- Our Wiki
- Compute Canada technical support: support@computecanada.ca
 - Excellent!
- Centre for Advanced Computing team
 - support@computecanada.ca usually redirects to them
- Other students
- Me