

Tutorial: Neural Network Accelerator Co-Design with

Yaman Umuroglu, Michaela Blott (Xilinx Research Labs) Zaid Al-Ars (TU Delft)

International Symposium on FPGAs 2021-02-28

Tutorial Agenda

- ▶ Introduction to FINN (~25m)
- A tour of the repositories and the flow (~10m)
- ▶ The FINN community (~10m)

------ Break + Q&A (~10m)

- ▶ Hands-on part (~1h) -- different Zoom link!
 - Training a quantized MLP with Brevitas
 - Exporting the MLP and verification
 - From MLP to custom hardware with the FINN compiler

Michaela Blott Distinguished Engineer, Xilinx Research Labs

FINN: The Beginning (FPGA'17)

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

Yaman Umuroglu*†, Nicholas J. Fraser*‡, Giulio Gambardella*, Michaela Blott*,
Philip Leong‡, Magnus Jahre† and Kees Vissers*
*Xilinx Research Labs; †Norwegian University of Science and Technology; †University of Sydney

FINN – Project Mission

Mission

 Tools and platforms for creation of high throughput, ultra-low latency DNN compute architectures

▶ End-to-end flow

 Users can easily create specialized hardware architectures on an FPGA and benefit from custom architectures and custom precision

Open source

Transparency and flexibility to adapt to end-users' applications

Two Key Techniques for Customization in FINN

Streaming Dataflow Architectures with FPGAs & FINN

Custom Precision Few-bit weights & activations

Customized Dataflow Processing versus More Generic Architectures

Matrix of Processing Engines (MPE) (Vitis AI, ASICs, GPUs):

- Customized for typical DNN operations
 - for example multiply accumulate
- Lower throughput (~10KRps)
- Flexibility for ASICs
- Applications: CV, Speech

- Customized/adapt for specific DNN topologies
- Streaming interfaces
- Specialization -> higher efficiency
- Lower latency (no intermediate buffering)
- Higher throughput (~100MRps)
- Flexibility through reconfiguration
- Applications: TBD, networking, material science, particle physics – smaller DNNs

Dataflow Processing:

Scaling to Meet Performance & Resource Requirements

- 1. Scale performance & resources to meet the application requirements
- 2. If resources allow, we can completely unfold to create a circuit that inferences at clock speed

Customizing Arithmetic to Minimum Precision Required

- Reducing precision shrinks hardware cost/ scales performance
 - Instantiate n-times more compute within the same fabric, thereby scale performance n-times
 - $8b/8b \rightarrow 1b/1b$, RTL => 70x

RTL Compression

HLS Compression

Precision

1b

8b

32b

1.1*C

C= size of accumulator * size of weight * size of activation

- Potential to reduce memory footprint
 - NN model can stay on-chip => no memory bottlenecks
- Inherently saves power

	•	
_ [

1800

1600

1400

Modelsize [MB]

(ResNet50)

3.2

25.5

102.5

© Copyright 2020 Xilinx

Granularity of Customizing Arithmetic

Dataflow architectures can exploit custom arithmetic at a greater degree

Results

Few-bit DNNs + FPGA Dataflow: Showcases

Low-Power, Real-Time Image Classification

CIFAR-10 CNV on PYNQ-Z1
3kFPS @ 2.5 W
1ms latency

Single and multi-node ImageNet
Classification
(on XACC)

We'll tell you more about this later...

ResNet-50, MobileNet on Alveo U280 & U250

MNv1: 5.9kFPS, 2.2 msec

(2x U280)

RN50: 3.1kFPS, 1.7msec

(1x U250)

Deep Network Intrusion Detection System (NIDS)

NIDS Results

Matrix of **Processing Engines**

Dataflow Architecture with 2b arithmetic

Same DNN, but trained for reduced precision, with Brevitas

Resources		
Compute (KLUTs, DSPs*)		
Memory (BRAM, URAM**)		
Clock		

Low resource footprint (especially memory) Low clock rate

>1000x performance improvement over Vitis AI, less resources, 100Gbps line rate (150MRps) Through dataflow processing, reduced precision

*DSPs: 8b or 16b Multiply Accumulates

XILINX. **BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

The FINN Framework

FINN Framework: From DNN to FPGA Deployment

Brevitas Training in pytorch Algorithmic optimizations

Train or even learn reduced precision DNNs

- Library of standard layers
- Pretrained examples

FINN compiler
Specializations of
hardware architecture

- Perform optimizations
- Map to Vivado HLS
- Create DNN hardware IP

Deployment

- Embeds the DNN IP into an infrastructure design
- Generates Python run-time
- Enables integration with your application
- Works on embedded and Alveo platforms
 - Including XACC

Brevitas:

A PyTorch Library for Quantization-Aware Training

GitHub

https://github.com/Xilinx/brevitas

EXILINX.

FINN Compiler

Transform DNN into Custom Dataflow Architecture

Input is ONNX description of the quantized DNN

- ▶ FINN uses the ONNX-based intermediate representation as intermediate representation (IR)
- FINN is a python library of graph transformations
- Synthesizable description of each layer is produced (in HLS)
- After synthesis each layer as IP block
 - AXI stream inputs and outputs

Output is the stitched DNN accelerator IP

FINN Flows

Every Step is a ONNX Graph Transformations

Optimization, lowering, code generation... are all transformations

FINN Compiler for Hardware Generation In 3 Steps

- 1. Import, streamlining transformations, conversion to HLS
- 2. Adjust folding to suit performance/resource requirements
- 3. Generate IP, and stitched IP design

FINN Compiler: Import, Optimization & HLS Generation


```
hls::stream<ap_int<185>> in
hls::stream<ap_int<100>> inter0, inter1, ...

StreamingFCLayer<BINARY, BINARY, ..>(in, inter0, ...)
StreamingFCLayer<BINARY, BINARY, ..>(inter0, inter1, ..)
...
```


- ▶ Generate calls to a pre-optimized Vivado HLS C++ library
- Support arbitrary-precision datatypes via templates
- Synthesizable to RTL

The FINN HLS Library

- An optimized, templated Vivado HLS C++ library of 10+ common DNN layers
- Key component: MVTU (Matrix Vector Threshold Unit)

FINN Compiler: Adjusting Performance/Resources

- 1. Import, streamlining transformations, conversion to HLS
- 2. Adjust folding to suit performance/resource requirements
- 3. Generate IP, and stitched IP design

FINN Compiler: IP Generation Flow

- 1. Import, streamlining transformations, conversion to HLS
- 2. Adjust folding to suit performance/resource requirements
- 3. Generate IP, and stitched IP design
- Stream-in, stream-out FPGA IP block
 - » Easy "bump-in-the-wire" integration into streaming systems
 - » Simple data movement, fully deterministic

Deployment with PYNQ for Python Productivity

```
instantiate the accelerator
accel = models.cnv w2a2 cifar10()
 generate an empty numpy array to use as input
dummy_in = np.empty(accel.ishape_normal,
dtype=np.uint8)
# perform inference and get output
dummy out = accel.execute(dummy in)
```


- Use PYNQ-provided Python abstractions and drivers
- User provides Numpy array in, calls driver, gets Numpy array out
 - Internally use PYNQ DMA driver to wr/rd NumPy arrays into I/O streams

https://github.com/Xilinx/PYNQ https://github.com/Xilinx/finn-examples

Infrastructure for Experimentation & Collaboration

Xilinx academic compute clusters (XACC)

- 4 centres world-wide
- Free to use
- Enabling research community
- ▶ Flexibility, shared hardware, networked FPGAs
- ▶ Not only for FINN

FINN Status

- Many example designs available at github/finn
 - Increasing application & feature & platform support
- Ongoing development (3 researchers + community)

- Training material
 - Tutorials (more coming!)
 - University classes with FINN @ Stanford, Charlotte, NTNU
 - EPFL and Technion in preparation

Looking to build-up community, applications and functionality

If you're interested in collaborating, please be in touch ©

Yaman Umuroglu Senior Research Scientist, Xilinx Research Labs

Overview of the FINN software stack

Tour of the FINN software stack

finn-examples: prebuilt dataflow accelerators

- Dataflow accelerators for MNIST, CIFAR-10, ImageNet
 - Bitfiles for PYNQ boards and Alveo U250
- Jupyter notebook example to run each accelerator
 - Based on PYNQ Python driver

```
# on your PYNQ board or Alveo U250
pip3 install finn-examples
pynq get-notebooks --from-package finn-examples -p .
```

- Scripts to rebuild the examples
- More examples on the way
 - ResNet-50 toolflow (bitfiles already on Xilinx/ResNet50-PYNQ)
 - speech recognition & keyword spotting
 - <your cool dataflow accelerator example here!>

Tour of the FINN software stack

finn: dataflow compiler

- ONNX -> bitfile (or IPI design) build automation
- Docker environment with all dependencies
- Large library of graph transformations
 - Streamlining to remove floating point scaling factors
 - Lowering to finn-hlslib ops
 - Stitching generated IPs in Vivado IPI
- Custom ops corresponding to finn-hlslib
 - Including code generation and verification
- Jupyter notebook tutorials (basic, advanced, end2end)

Tour of the FINN software stack

brevitas: quantization-aware training in PyTorch

- Train NNs with quantized weights and activations
- Quantized versions of many PyTorch layers
 - e.g. brevitas.nn.QuantConv2D iNStead Of torch.nn.Conv2D
- Flexible quantization schemes
 - Mixed precision with fixed or learnable bitwidths
- Example pretrained models + training scripts
 - image classification, speech-to-text, text-to-speech
 - <your quantized DNN model contribution here!>
- Different ONNX export flows for different backends in progress
 - FINN, Xilinx DPU, standard ONNX

Tour of the FINN software stack

finn-hIslib: library of Vivado HLS components

- ▶ 10+ common DNN layer types in Vivado HLS
 - <your HLS layer contribution here!>

- Input, weight, output datatypes (precision)
- Parallelism along different axes
- Mapping to FPGA resources (LUT or DSP, LUTRAM or BRAM...)

- Easily composable components
 - AXI stream-in, AXI stream-out

Tour of the FINN software stack

FINN project landing page: https://xilinx.github.io/finn

finn-base: ONNX compiler infrastructure

- Infrastructure for manipulating + verifying custom ONNX graphs
 - Not tied to FINN's HLS op implementations or lowering flow
 - Useful for exploring DNN compilation without full FINN
- Three key parts
 - Wrapper around ONNX protobuf with helper functions
 - Defining + executing (for verification) custom ops
 - Defining + applying graph transformations
- Various other utilities
 - e.g. execute Verilog as part of ONNX custom op (with pyverilator)

Putting it all together: a FINN end-to-end flow

Zaid Al-Ars Associate Professor, TU Delft

Call for community building

1300+ stars on GitHub across repos, 600+ citations across papers

There are many other users + use-cases we don't know about -- we want to hear from you!

We welcome partners to work together to build and extend FINN!

We enable community efforts and provide support

Various types of engagement with FINN

Contribution to FINN framework

Using FINN in research

Using FINN in industry

Using FINN in education

Various types of engagement with FINN

Contribution to FINN framework	Heidelberg UniversityDelft University of Technology
Using FINN in research	 Research organizations: ESA, Fraunhofer, CERN, hls4ml Various other FPGA NN papers use code from FINN LUTNet [FCCM'19], ReBNet [FCCM'18]
Using FINN in industry	 Companies: Daimler and Thales Ongoing evaluation by networking companies
Using FINN in education	 University classes in Stanford, UNC Charlotte, NTNU, et al.

Two examples from collaborators

Contribution to FINN framework

Tool chain parallelism and pruning in FINN

Hendrik Borras, Heidelberg University

Using FINN in research

Low-latency pipeline for detection of gravitational waves

Martijn de Rooij & Jakoba Petri-König, Nikhef & TUDelft

Hendrik Borras, Heidelberg University

Tool chain parallelism and pruning in FINN

- Enabling parallelism in transformations
- Significant time savings
 - 59 min → 24 min
- Plot:
 - Build time for VGG-like example network
 - Long running transformations as stacked bar plot

Hendrik Borras, Heidelberg University

Tool chain parallelism and pruning in FINN

- Currently exploring two pruning methods
- ▶ Both plots: VGG-like network

Using FINN in research

Low-latency pipeline for detection of gravitational waves

Martijn de Rooij & Jakoba Petri-König, Nikhef & TUDelft

Low-latency pipeline: For detection of gravitational waves

Low-latency pipeline: Design choices

- Neural network
 - Results at least every 0.1ms

FINN

- Dataflow-style architecture
- Latency, throughput and resource utilization can be adjusted by user

Convolutional Neural Network

Design exploration: Results

Call for community building

- For questions and collaboration ideas please contact!
- Gitter channel for communication
 - https://gitter.im/xilinx-finn/community
- ▶ Zaid Al-Ars: <u>z.al-ars@tudelft.nl</u>
- Jakoba Petri-König: J.Petri-Koenig@tudelft.nl
- Yaman Umuroglu: yamanu@xilinx.com

Q&A session

Thank You

