Let the position a wordinate at time step t -> Xe Let the position y - condinate at time step t - Yt Similarly Voi velocity a coordinate at time stept

Vy - velocity y - coordinate at time stept Prediction Model - (Lidar)/(Raday)
According to the motion equations 200 = xt + 1 ax dt 2 yt = yt + vydt = 1 aydt 3 Vy = Vy + aydt acceleration of the vehicle which is not knowns As the acceleration is not known we will consider it in noise state transition equation is 1/20x di2 X 1/2 aydt2 1 dx dt ay dt 1 1/20xd+2 SO o cit 0 to find the covaniance Q' from V 1/2 9xc1+2 1/2 aydt2 axdt Oydt Q = QE [QQT) 67 GQVGT (Q = E(UVI) Vary

To Calculate the Jacobsan Hy Mar. Ht = 3xt 3xt 3xt 2 3φ - tan" (yx/x+)

$$\frac{\partial \phi}{\partial y_{t}} = \frac{-\frac{x_{t}}{\sqrt{x_{t}^{2} + y_{t}^{2}}}^{2}}{\sqrt{x_{t}^{2} + y_{t}^{2}}}^{2}$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \rho}{\partial x_{t}} = \frac{\partial}{\partial x_{t}} \left(\frac{\sqrt{x_{t}^{2} + y_{t}^{2}}}{\sqrt{x_{t}^{2} + y_{t}^{2}}} \right)$$

$$\frac{\partial \hat{P}}{\partial V_{x}} = \frac{X_{t}}{\sqrt{X_{t}^{2} + y_{t}^{2}}}$$

$$\frac{\partial \dot{y}}{\partial v_y} = \frac{v_t}{\sqrt{v_t^2 + v_t^2}}$$

to convent p, p, p to our state variables

Now the measurement model is

		20	A	₹ Xt	٦, <u> </u>	0	0	α.	
		7		1x12+42	V 24 4 4 2			1	
		21	*	- AF	18	0	0	9t	
		φ	1 4	(J2+42)	2 (\sigma x + y =) 2		V	
		7.	p. die	9. (Vx y - V4	XF) XIXX	u v) - 20	· u	المرا	
	1	Sp.		1 x2 42	13	1 Ut x 1 = 3 /2/2	المراد المراد	V	
		- 10 to 1		the 12th) (\sqrt{\pi_4}	+ 4,)	10+ 10+3E	(at	
1					A 1			- 11 (番)	

So $\frac{2}{\sqrt{\alpha_1^2 + y_1^2}} \frac{y_1}{\sqrt{\alpha_1^2 + y_1^2}}$ $\frac{-y_{t}}{(\sqrt{x_{t}^{2}+y_{t}^{2}})^{2}(\sqrt{x_{t}^{2}+y_{t}^{2}})^{2}}$ E -N(O, Radasi) Rodou = [0.0928 0 0] can be obtained from clota Fixed values - Ruday, Rraday, Q, F, Hooder, History Varying Lupclating variables - P, X, K.

Initial Condition

Xo = first neading of the sensor

As the value of velocity is not known we can initialize its covariance as 1200.

And as the mading of X+ & X+ is received