Damping in the Winter's Model

Jeffrey J. Early

May 1, 2018

Using the terminology of Kraig Winters we need to define a reasonable coefficient for damping.

Given that,

$$\frac{\partial u}{\partial t} = \nu \nabla^{2n} u \tag{1}$$

is spectrally,

$$\frac{\partial u}{\partial t} = \nu (ik2\pi)^{2n} u \tag{2}$$

which has the solution

$$u = e^{\nu(ik2\pi)^{2n}t}. (3)$$

We want to convert this into an e-fold time, so we want

$$e^{-t/T} = e^{\nu(ik2\pi)^{2n}t}. (4)$$

Using that $k = \frac{1}{2\Delta}$ where Δ is the sample interval and solving for ν in terms of the other variables,

$$\nu = \frac{(-1)^{n+1}}{T} \left(\frac{\Delta}{\pi}\right)^{2n} \tag{5}$$

Now add some forcing,

$$\frac{\partial \hat{u}}{\partial t} = \hat{F} + \nu (ik2\pi)^{2n} \hat{u} \tag{6}$$

solution

$$\hat{u} = u_0 e^{\nu(-1)^n (k2\pi)^{2n} t} - (-1)^n \frac{F}{\nu(k2\pi)^{2n}}$$
(7)

Then, in steady state,

$$\hat{u}\hat{u}^* = \frac{F^2}{\nu^2} (2\pi k)^{-4n} \tag{8}$$

- We can compute the wavenumber at which damping drops the amplitude more than 50 percent during the length of the simulation.
- We can compute, given U, the cfl criteria, and then ask that the Reynolds number be one at the grid scale.