Homework 1. Probs 1-4

- 1. Show by Induction
 - a. Show $5^2n + 3n 1$ is divisible by 9
 - i. Hypothesis: $5^2n + 3n 1$ is divisible by 9, n is integer
 - ii. Base case: $n = 1 = 5^2 + 3 1 = 25 + 2 = 27$
 - 1. 27 is divisible by 9 (27/9 = 3)
 - iii. Induction proof: Assume $5^2n + 3n 1$ is divisible by 9 (= 9m), show this holds for (n + 1) also
 - 1. $5^2(n+1) + 3(n+1) 1 = 5^2(2n+2) + 3n + 3 1$
 - $2. = 5^2 * 5^2 n + 3n + 2 = (9m 3n + 1)*25 + 3n + 2$
 - 3. = 9m*25 75n + 25 + 3n + 2 = 9*25*m 72n + 27
 - 4. 72 and 27 ar multiples of 9 so can pull 9 out the whole thing
 - 5. = 9 * (25m 8n + 3)
 - 6. Since our final equation is a multipe of 9, the equation as a whole will always be divisible by 9 and therefore we have proved 5^2(n+1) + 3(n+1) -1 is divisible by 9
 - b. Show $n! > 3^n$ for n >= 7 and n is integer
 - i. Hypothesis: $n! > 3^n$ for n >= 7 and n is integer
 - ii. Base case: $n = 7. \Rightarrow 7! > 3^7 = 5040 > 2187$
 - 1. This is true 5040 > 2187
 - iii. Induction proof: Assume n! > 3^n for n >=7 and n is integer, show this holds for n+1
 - 1. $(n+1)! > 3^{(n+1)} = (n+1)*n! > 3*3^n$

- 2. With n starting at 7, n+1 is a minimum of 8
- 3. With the assumption of n!>3^n, multiplying the already larger side by 8 and the smaller side by 3 will yield the same results therefore (n+1)! > 3^(n+1) is true
- c. Show $\sum_{i=1}^{n} \frac{1}{i(i+1)} = n / (n+1)$ for positive integers n
 - i. Hypothesis: $\sum_{i=1}^{n} \frac{1}{i(i+1)} = n / (n+1)$ for positive integers n is true
 - ii. Base case: $n = 1 \Rightarrow 1 / 1(2) = 1 / (1+1) \Rightarrow \frac{1}{2} = \frac{1}{2}$
 - 1. This is true $\frac{1}{2} = \frac{1}{2}$
 - iii. Induction proof: Assume $\sum_{i=1}^{n} \frac{1}{i(i+1)} = n / (n+1)$ for positive integers n, is true. Show it holds for n+1

1.
$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = (n+1) / (n+1+1)$$

2. Left side

a.
$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = 1/(n+1)(n+2) + \sum_{i=1}^{n} \frac{1}{i(i+1)}$$

b. Based on assumption

c. =
$$1/(n+1)(n+2) + n/(n+1)$$

d. =
$$(1 + n(n+2)) / (n+1)(n+2)$$

e. =
$$n^2 + 2n + 1 / (n+1)(n+2)$$

f.
$$(n+1)^2 / (n+1)(n+2) = (n+1)/(n+2)$$

- iv. Since the left side now equals the right, the assumed holds for n+1 and we have proved $\sum_{i=1}^n \frac{1}{i(i+1)} = n$ (n+1)
- d. Show $\sum_{i=1}^{n} i = (n*(n+1))/2$
 - i. Hypothesis: $\sum_{i=1}^{n} i = (n*(n+1))/2$ is true

- ii. Base case: $n = 1 \Rightarrow 1 = 1(2)/2 \Rightarrow 1 = 1$
 - 1. This is true
- iii. Induction Proof: Assume $\sum_{i=1}^{n} i = (n^*(n+1))/2$ is true, show this holds for n+1

1.
$$\sum_{i=1}^{n+1} i = (n+1)*(n+2))/2$$

2. *LHS*

a.
$$\sum_{i=1}^{n+1} i = n+1 + \sum_{i=1}^{n} i$$

b. Using assumed

c.
$$(n+1) + (n*(n+1))/2 = \frac{1}{2} 2(n+1) + n^2 + n$$

d. =
$$\frac{1}{2}(2n + 2 + n^2 + n) = \frac{1}{2}(n^2 + 3n + 2)$$

e. =
$$(n+1)(n+2) / 2$$

- 3. Since the left side now equals the right side, the case holds for n+1 and we have proved $\sum_{i=1}^{n} i = (n*(n+1))/2$ is true for all positive n.
- 2. Compute the sums

a.
$$\sum_{i=3}^{n+1} 1 = (n+1-3+1)1 = n-1$$

i. Second simple series from class notes

b.
$$\sum_{i=3}^{n+1} i = n+1 + \sum_{i=3}^{n} i = n+1 + \sum_{i=1}^{n} i - \sum_{i=1}^{3} i$$

= $n+1 + \sum_{i=1}^{n} i - 6 = n+1 + n(n+1)/2 - 6$
= $1/2 (2n + 2 + n^2 + n - 12) = \frac{1}{2} (n^2 + 3n - 10)$

i. Simple series from 1d above is close so got there

c.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} i j = \sum_{i=1}^{n} i \sum_{j=1}^{n} j = \sum_{i=1}^{n} i (n*(n+1)/2)$$

= $(n*(n+1)/2) \sum_{i=1}^{n} i = (n*(n+1)/2) * (n*(n+1)/2)$
= $n^2 (n+1)^2 / 4$

- i. 2 of that same 1d simple series, pull out "constants"
- 3. Determine order of growth (prove)

a.
$$(n^2 + 1)^10 = n^20 + ... + 1$$

i. O (n^20) by the polynomial theorem (#3)

b.
$$(10n^2 + 7n + 3)^1/2$$

- i. Limit test with n
- ii. Lim $n > \inf of (10n^2 + 7n + 3)^1/2 / n >> l'h$
- iii. Lim n>inf of $20n + 7 / (10n^2 + 7n + 3)^1/2 >> l'h$
- iv. Lim n>inf of $20(20n + 7)/(10n^2 + 7n + 3)^3/2 >>$
- v. This is approaching 1/inf = 0
- vi. Therefore $(10n^2 + 7n + 3)^1/2$ is in O(n)
- c. $2n \log ((n+2)^2) + (n+2)^2 \log (n/2)$
 - i. = $4n \log(n+2) + (n+2)^2(\log(n) \log(2))$
 - ii. = $4n \log(n+2) + (n+2)^2 \log(n) (n+2)^2$
 - iii. Limit test with n log(n)
 - iv. Lim n>inf of $(4n \log(n+2) + (n+2)^2 \log(n) (n+2)^2) / (n \log(n)) >> l'h$

After looking at the limit (it is very big and ugly) I am unsure I am doing this right.

- d. $2^{(n+1)} + 3^{(n-1)}$
 - i. 2ⁿ or 3ⁿ is a complexity class given
 - ii. As n approaches infinity the modifier to either will be negligible and so this will be big theta of 3ⁿ
 - iii. Lim $n > \inf of 2^n+1+3^n-1/3^n$
 - iv. = Lim n > inf of $(2^n+1/3^n) + 1/3$
 - v. = 1/3? therefore $2^{(n+1)} + 3^{(n-1)}$ is in big theta of 3^n
- e. Log(n)

i. Log n is a complexity class given so this would simply be Big theta(log(n))?

This doesn't seem right (too easy) not sure what am missing

- 4. Order of growth (justify)
 - a. $\sum_{i=1}^n \sum_{j=i}^n n$
 - i. N is not I or j so is constant and pulled out front

ii.
$$n \sum_{i=1}^{n} \sum_{j=i}^{n} 1 = n \sum_{i=1}^{n} n - i + 1 =$$

iii. n
$$(\sum_{i=1}^{n} n - \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1) = n(n^2 - n(n+1)/2 + n)$$

- iv. $n^3 n(n+1)/2 + n$
- v. This will have order of growth of n^3 by the polynomial theorem
- b. $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$

i.
$$\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} i + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} j =$$

ii.
$$\sum_{i=0}^{n-1} i \sum_{j=0}^{i-1} 1 + \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} j =$$

iii.
$$\sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} \frac{i(i+1)}{2} = n(n+1)(2n+1)/6 + 1/2$$

 $\sum_{i=0}^{n-1} i^2 + i$

- iv. $n(n+1)(2n+1)/6 + \frac{1}{2}(n(n+1)(2n+1)/6 + n(n+1)/2$
- This will have order of growth of n^3 by the polynomial theorem

c.
$$\sum_{i=0}^{n-1} (i^2 + 1)^2$$

i.
$$\sum_{i=0}^{n-1} i^4 + 2i^2 + 1 =$$

ii.
$$(n(n+1)(2n+1)/6)^2 + 2(n(n+1)(2n+1)/6) + n$$

iii. This will have order of growth of n^6 by the polynomial theorem

d.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} l$$

i.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{n(n+1)}{2}$$

- ii. Since no other variables all other summations result in n
- iii. N^3 (n(n+1)/2)
- iv. This will have order of growth of n^6 by the polynomial theorem

e.
$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n-2} i$$

i.
$$\sum_{i=0}^{n-1} i \sum_{j=i+1}^{n-2} 1 = \sum_{i=0}^{n-1} i (n-2-i-1+1)$$

ii.
$$\sum_{i=0}^{n-1} ni - 2i - i^2 = n^2(n+1)/2 - n(n+1) - n(n+1)(2n+1)/6$$

iii. This will have order of growth of -n^2 by the polynomial theorem