

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

AQA GCSE Maths: Higher

Algebraic Fractions

Contents

- * Simplifying Algebraic Fractions
- * Adding & Subtracting Algebraic Fractions
- Multiplying & Dividing Algebraic Fractions
- * Solving Equations with Algebraic Fractions

Simplifying Algebraic Fractions

Your notes

Simplifying Algebraic Fractions

What is an algebraic fraction?

 An algebraic fraction is a fraction with an algebraic expression on the top (numerator) and/or the bottom (denominator)

How do you simplify an algebraic fraction?

• If possible, factorise fully the top and bottom

• E.g.
$$\frac{2x}{x^2 + 3x} = \frac{2x}{x(x+3)}$$

- Cancel common factors
 - This factor may be a **single term**

$$E.g. \frac{\cancel{x}(5x-1)}{4\cancel{x}} = \frac{5x-1}{4}$$

■ It could also be a **common bracket**

• E.g.
$$\frac{x(x+2)}{(x+2)(x-1)} = \frac{x}{x-1}$$

- A common mistake is to cancel a factor that is not common to all terms in either the top or the bottom
 of a fraction
 - E.g. The fraction $\frac{6x}{x+1}$ cannot be simplified
 - X is not common to all terms in the bottom of the fraction
 - and the expression on the bottom cannot be factorised

Examiner Tips and Tricks

• When asked to **simplify** an algebraic fraction, **factorise** top and bottom

Head to www.savemyexams.com for more awesome resources

- It is very likely that one of the factors will be the same on the top and the bottom
- Use this fact to help you, if one of the expressions is difficult to factorise!

Worked Example

Simplify
$$\frac{4x+6}{2x^2-7x-15}$$

Factorise the top, by using 2 as a common factor

$$\frac{2(2x+3)}{2x^2-7x-15}$$

Factorise the bottom using your preferred method Using the fact that the top factorised to (2x + 3) may help!

$$\frac{2(2x+3)}{(2x+3)(x-5)}$$

The common factors on the top and bottom reduce to 1 (cancel out)

$$\frac{2(2x+3)}{(2x+3)(x-5)}$$

$$\frac{2}{(x-5)}$$

Test yourselfNext topic

Adding & Subtracting Algebraic Fractions

Your notes

Adding & Subtracting Algebraic Fractions How do I add (or subtract) two algebraic fractions?

- The rules for adding and subtracting algebraic fractions are the same as they are for fractions with numbers
- STEP1

Find the **lowest common denominator** (LCD)

- Sometimes the LCD can be found by **multiplying** the denominators together
 - E.g. The LCD for the fractions $\frac{1}{x+2}$ and $\frac{1}{x+5}$ is (x+2)(x+5)
 - Similarly, with numbers, the LCD of $\frac{1}{2}$ and $\frac{1}{5}$ is $2 \times 5 = 10$
- Although multiplying the denominators will always give you a multiple, it is not necessarily the lowest multiple
 - E.g. The LCD for the fractions $\frac{1}{x}$ and $\frac{1}{2x}$ is 2x (not $2x^2$) as both terms already include an x
 - Similarly, with numbers, the LCD of $\frac{1}{2}$ and $\frac{1}{4}$ is just 4, not $2 \times 4 = 8$
- Other examples include:

The LCD of
$$\frac{1}{x+2}$$
 and $\frac{1}{(x+2)(x-1)}$ is $(x+2)(x-1)$

The LCD of
$$\frac{1}{x+1}$$
 and $\frac{1}{(x+1)^2}$ is $(x+1)^2$

■ The LCD of
$$\frac{1}{(x+3)(x-1)}$$
 and $\frac{1}{(x+4)(x-1)}$ is $(x+3)(x-1)(x+4)$

STEP 2

Write each fraction over the lowest common denominator

Multiply the numerator of each fraction by the same amount as the denominator

$$E.g. \frac{x}{x-4} + \frac{1}{x+2} = \frac{x(x+2)}{(x-4)(x+2)} + \frac{(x-4)}{(x-4)(x+2)}$$

Your notes

STEP 3

Write as a single fraction over the lowest common denominator and simplify the numerator

- Do this by adding or subtracting the numerators
- Take particular care if subtracting

$$E.g. \frac{x(x+2)+(x-4)}{(x-4)(x+2)} = \frac{x^2+2x+x-4}{(x-4)(x+2)} = \frac{x^2+3x-4}{(x-4)(x+2)}$$

STEP 4

Check at the end to see if the top factorises and the fraction can be simplified

E.g. $\frac{(x+4)(x-1)}{(x-4)(x+2)}$, the top factorises but there are no common factors so it is in its most simple form

Examiner Tips and Tricks

 Leaving the top and bottom of your answer in factorised form will help you see if anything cancels at the end

Worked Example

(a) Express
$$\frac{x}{x+4} - \frac{3}{x-1}$$
 as a single fraction.

The lowest common denominator is (x+4)(x-1)

Write each fraction over this common denominator, remember to multiply the top of the fractions too

$$\frac{x(x-1)}{(x+4)(x-1)} - \frac{3(x+4)}{(x-1)(x+4)}$$

Combine the fractions, as they now have the same denominator

$$\frac{x(x-1)-3(x+4)}{(x+4)(x-1)}$$

Be careful expanding with the negative signs

$$\frac{x^2 - x - 3x - 12}{(x+4)(x-1)} = \frac{x^2 - 4x - 12}{(x+4)(x-1)}$$

Factorise the top

$$\frac{(x+2)(x-6)}{(x+4)(x-1)}$$

There are no terms which would cancel here, so this is the final answer

$$\frac{(x+2)(x-6)}{(x+4)(x-1)}$$

(b) Express
$$\frac{x-4}{2(x-3)} - \frac{x-1}{2x}$$
 as a single fraction.

The lowest common denominator is 2x(x-3)

(You could also use 4x(x-3) but this wouldn't be the *lowest* common denominator)

Write each fraction over this common denominator, remember to multiply the top of the fractions too

$$\frac{x(x-4)}{2x(x-3)} - \frac{(x-1)(x-3)}{2x(x-3)}$$

Combine the fractions, as they now have the same denominator

$$\frac{x(x-4) - (x-1)(x-3)}{2x(x-3)}$$

Simplify the numerator

Be careful expanding with negative signs

$$\frac{(x^2-4x)-(x^2-4x+3)}{2x(x-3)} = \frac{x^2-4x-x^2+4x-3}{2x(x-3)} = \frac{-3}{2x(x-3)}$$

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

There is nothing else that can be factorised on the numerator, so this is the final answer

$$\frac{-3}{2x(x-3)}$$

There are other accepted answers, e.g. $\frac{3}{2x(3-x)}$

Multiplying & Dividing Algebraic Fractions

Your notes

Multiplying & Dividing Algebraic Fractions How do I multiply algebraic fractions?

STEP 1

Simplify both fractions first by fully factorising

$$E.g. \frac{x}{3x+6} \times \frac{2x+4}{x+7} = \frac{x}{3(x+2)} \times \frac{2(x+2)}{x+7}$$

STEP 2

Cancel any common factors on top and bottom (from either fraction)

• E.g.
$$\frac{x}{3(x+2)} \times \frac{2(x+2)}{x+7} = \frac{x}{3} \times \frac{2}{x+7}$$

STEP 3

Multiply the **tops** together Multiply the **bottoms** together

• E.g.
$$\frac{2x}{3(x+7)}$$

STEP 4

Check for any further factorising and cancelling

■ E.g.
$$\frac{2x}{3(x+7)}$$
 has no common factors so is in its simplest form

How do I divide algebraic fractions?

• Flip (find the reciprocal of) the second fraction and replace ÷ with ×

• So
$$\div \frac{a}{b}$$
 becomes $\times \frac{b}{a}$

$$E.g. \frac{3x-12}{x} \div \frac{2x+8}{x+3} = \frac{3x-12}{x} \times \frac{x+3}{2x+8}$$

SaveMyExams

Head to www.savemyexams.com for more awesome resources

Then follow the same rules for multiplying two fractions

Worked Example

Divide
$$\frac{x+3}{x-4}$$
 by $\frac{2x+6}{x^2-16}$, giving your answer as a simplified fraction.

Division is the same as multiplying by the reciprocal (the fraction flipped)

$$\frac{x+3}{x-4} \div \frac{2x+6}{x^2-16} = \frac{x+3}{x-4} \times \frac{x^2-16}{2x+6}$$

Factorise all numerators and denominators to see which factors cancel out You need to use the difference of two squares, $x^2 - 4^2 = (x - 4)(x + 4)$

$$\frac{x+3}{x-4} \times \frac{x^2 - 16}{2x+6} = \frac{x+3}{x-4} \times \frac{(x-4)(x+4)}{2(x+3)}$$

Multiply the remaining numerators and denominators together

$$\frac{1\times(x+4)}{1\times2} = \frac{x+4}{2}$$

Check to see if you missed any terms that are the same on the top and bottom that could be cancelled

$$\frac{x+4}{2}$$
 is already in its simplest form

$$\frac{x+4}{2}$$

Solving Equations with Algebraic Fractions

Your notes

Solving Algebraic Fractions

How do I solve an equation that contains algebraic fractions?

- There are **two methods** for **solving equations** that contain algebraic fractions
- One method is to add or subtract the algebraic fractions first and then solve as usual

For example, to solve
$$\frac{8}{x+1} - \frac{5}{x+2} = 1$$

First subtract the fractions and simplify,
$$\frac{3x+11}{(x+1)(x+2)} = 1$$

■ Then cross-multiply, expand and solve

$$3x + 11 = 1(x+1)(x+2)$$

$$3x + 11 = x^2 + 3x + 2$$

$$0 = x^2 - 9$$

$$0 = (x-3)(x+3)$$

$$x = 3 \text{ or } x = -3$$

Alternatively, you can remove the fractions first by multiplying everything on both sides of the
equation by each expression in the denominators and then solve

For example, to solve the equation
$$\frac{4}{x-3} + \frac{5}{x+1} = 5$$

- First multiply every term in the equation by both (x-3) and (x+1) and cancel common factors where possible
 - Multiply every term by (x-3) (this bracket goes in the **numerator** of any fractions)

$$\frac{4}{(x-3)}(x-3) + \frac{5(x-3)}{x+1} = 5(x-3)$$
$$4 + \frac{5(x-3)}{x+1} = 5(x-3)$$

• Then multiply every term by (x+1)

$$4(x+1) + \frac{5(x-3)}{(x+1)}(x+1) = 5(x-3)(x+1)$$
$$4(x+1) + 5(x-3) = 5(x-3)(x+1)$$

Then solve

$$4x + 4 + 5x - 15 = 5(x^{2} - 2x - 3)$$

$$9x - 11 = 5x^{2} - 10x - 15$$

$$0 = 5x^{2} - 19x - 4$$

$$0 = (5x + 1)(x - 4)$$

$$x = -\frac{1}{5} \text{ or } x = 4$$

Examiner Tips and Tricks

- When multiplying by an algebraic expression, use **brackets** around the expression, e.g.
- Multiplying by both denominators at once can speed up the process, but take care if choosing this technique in the exam!
 - and remember to multiply all terms on either side of the equation

Worked Example

$$\frac{2}{p+3} - \frac{5}{p} = 6p$$

Show that this equation can be written as $6p^3 + 18p^2 + 3p + 15 = 0$.

To clear the fractions, we multiply both sides of the equation by each denominator

Start by multiplying all terms in the equation by the denominator (p+3)The (p+3) on top and bottom will cancel in the first term

$$2 - \frac{5(p+3)}{p} = 6p(p+3)$$

Now multiply all terms on both sides by the next denominator, ${m p}$

The $oldsymbol{p}$ on top and bottom will cancel in the second term

$$2(p) - 5(p+3) = 6p(p+3)(p)$$

Expand brackets

Be careful with negative signs

$$2p-5(p+3) = 6p2(p+3)$$
$$2p-5p-15 = 6p3 + 18p2$$

Collect like terms

$$-3p - 15 = 6p^3 + 18p^2$$

Add 3p and 15 to both sides of the equation

$$0 = 6p^3 + 18p^2 + 3p + 15$$

$$6p^3 + 18p^2 + 3p + 15 = 0$$

