Performance Engineering Tutorial Revision

Exercise 1. Consider the following probability transition matrix

$$P = [p_{ij}] = \begin{bmatrix} E & S_1 & S_2 & S_3 & S_4 & X \\ S_1 & 0 & 1.0 & 0 & 0 & 0 & 0 \\ S_1 & 0 & 0.4 & 0.2 & 0.4 & 0 \\ S_2 & 0 & 0 & 0 & 0 & 0 & 1.0 \\ S_3 & 0 & 0.5 & 0 & 0 & 0 & 0.5 \\ S_4 & 0 & 0 & 0 & 0.5 & 0 & 0.5 \\ X & 0 & 0 & 0 & 0 & 0 & 1.0 \end{bmatrix}$$

describing user interactions with an IT system hosting services S_1 , S_2 , S_3 , S_4 , and where E and X respectively denote entry and exit states.

Question 1.1 Determine the mean session length.

Solution:

The visits are obtained from the system of linear equations

$$\begin{split} V_E &= 1 \\ V_1 &= V_E + 0.5 V_3 \\ V_2 &= 0.4 V_1 \\ V_3 &= 0.2 V_1 + 0.5 V_4 \\ V_4 &= 0.4 V_1 \\ V_X &= 1 \end{split}$$

which has solutions $V_E=V_X=1,~V_1=\frac{5}{4},~V_2=V_3=V_4=\frac{1}{2}.$ Thus the mean session length is $L=V_1+V_2+V_3+V_4=\frac{11}{4}=2.75$ requests.

Question 1.2 Give a formula to compute the probability of ending the session after exactly three requests. *Solution:*

$$\begin{split} \pi^0 &= [\pi_E^0, \pi_1^0, \pi_2^0, \pi_3^0, \pi_4^0, \pi_X^0] = [1, 0, 0, 0, 0, 0] \\ \pi^2 &= [\pi_E^2, \pi_1^2, \pi_2^2, \pi_3^2, \pi_4^2, \pi_X^2] = \pi^0 P^2 \\ \pi^3 &= [\pi_E^3, \pi_1^3, \pi_3^3, \pi_3^3, \pi_4^3, \pi_X^3] = \pi^0 P^3 \end{split}$$

The requested value is $\pi_X^3 - \pi_X^2$.

Question 1.3 Assume that the application has n=10 users, each starting a new session at rate $\lambda=0.11$ sessions/min. The front server is hosted on two M=2 virtual machines (VMs) whereas the database server is hosted on a single machine. The requests require the following service times:

Time [min]	FS VMs	DB
S_1	0.25	0.1
S_2	0.10	0.15
S_3	0.33	0.15
S_4	0.20	0.15

For a load balancer using a round-robin policy, what would be the expected CPU utilization at the front servers and at the database?

Solution:

The arrival rate is $\lambda' = n\lambda = 1.1$ sessions/min. The arrival rate of requests for each service type is thus

$$\lambda_1 = V_1 \lambda' = \frac{5}{4} \frac{11}{10} = \frac{55}{40} = 1.375$$
$$\lambda_2 = V_4 \lambda' = \frac{1}{2} \frac{11}{10} = \frac{11}{20} = 0.550$$
$$\lambda_2 = \lambda_3 = \lambda_4$$

Due to round-robin, a VM hosting a front server instance receives requests at a rate reduced by a factor 1/M, since only one request is M is forwarded to that particular VM.

Let $T_{i,j}$ be the processing time of service i at VM j, then by the utilization law

$$U_1 = \sum_{i=1}^{4} \lambda_i T_{i,1} = 1.375 \cdot 0.25 / M + 0.55 \cdot 0.10 / M + 0.55 \cdot 0.33 / M + 0.55 \cdot 0.20 / M = 0.692 / M = 0.346 (34.6\%)$$

$$U_2 = \sum_{i=1}^{4} \lambda_i T_{i,2} = 1.375 \cdot 0.10 + 0.55 \cdot 0.15 + 0.55 \cdot 0.15 + 0.55 \cdot 0.15 = 0.385 (38.5\%)$$

$$U_2 = \sum_{i=1} \lambda_i T_{i,2} = 1.375 \cdot 0.10 + 0.55 \cdot 0.15 + 0.55 \cdot 0.15 + 0.55 \cdot 0.15 = 0.385 \quad (38.5\%)$$

We may observe that the database is the bottleneck for utilization.

Exercise 2. Suppose we investigate the throughput X of a database using a 2^k factorial design without replication and with k=2 factors. The first factor is *cache size* (C) with levels 512MB and 1GB. The second factor is threading level (T) with levels 256 and 512. The following throughput measurements are obtained:

X [ms]	512MB	1GB
256	4	5
512	8	6

Question 2.1 Give the sign table for the design and quantify the effects q_0 , q_C , q_T , q_{CT} . Solution:

I	C	T	CT
+1	-1	-1	+1
+1	+1	-1	-1
+1	-1	+1	-1
+1	+1	+1	+1

Therefore,

$$q_0 = (4+5+8+6)/4 = 5.75,$$

$$q_C = (-4+5-8+6)/4 = -.25,$$

$$q_T = (-4-5+8+6)/4 = 1.25,$$

$$q_{CT} = (4-5-8+6)/4 = -.75,$$

Question 2.2 Quantify the percentages of variation explained by the factors and by their interaction. Discuss your findings.

Solution:

$$SST = 4(q_C^2 + q_T^2 + q_{CT}^2) = 8.75$$
$$SS - C = 4(q_C^2) = 0.25$$
$$SS - T = 4(q_T^2) = 6.25$$
$$SS - TC = 4(q_{CT}^2) = -2.25$$

Therefore, the threading level explains 6.25/8.75 = 71% of the total variation and the rest is mainly due to the interaction between threading levels and cache.

Question 2.3 Assume a third factor H (hyper-threading) is also included in the experiments, with levels ON and OFF. Give the sign table for a 2^{3-1} fractional factorial design. Indicate all the confoundings.

Solution:

This is obtained from the previous design by the substitution H = CT.

I	C	T	H
+1	-1	-1	+1
+1	+1	-1	-1
+1	-1	+1	-1
+1	+1	+1	+1

The confoundings are generated by the generating relation H=CT. We have $H^2=I=CTH$, $HT=CT^2=C$, $CH=C^2T=T$.

Exercise 3. A server I-O is described in terms of the transfer function

$$H(z) = \frac{Y(z)}{U(z)} = \frac{4}{z}$$

where $Y(z) = \mathcal{Z}[y_t]$ and $U(z) = \mathcal{Z}[u_t]$ are the z-transforms of the input and output signals.

We wish to describe the system response in the time domain as a function h_t that produces the output according to a convolution of the inputs, i.e.,

$$y_t = \sum_{k=-\infty}^{+\infty} h_{t-k} u_k \tag{1}$$

You are asked to determine the discrete time series h_t , assuming that $h_t = 0$ for t < 0. Hint: note that Y(z) = H(z)U(z).

Solution:

By the convolution property of the z-transform, h_t is the time series such that $H(z) = \mathcal{Z}[h_t]$, since

$$y_t = \sum_{k=-\infty}^{+\infty} h_{t-k} u_k \iff Y(z) = H(z)U(z)$$
 (2)

By the definition of z transform, we also know that

$$H(z) = h_0 + h_1 z^{-1} + h_2 z^{-2} + \dots$$

By matching the last expression to the particular expression $H(z) = 4z^{-1}$ given in this exercise, we see that h_n is the time series

$$h_0 = 0, h_1 = 4, h_2 = 0, h_3 = 0, \dots$$

Exercise 4. A software probe monitors the memory usage m_t of a software system ($m_t = 1$ implies 1 Gb). Based on the current value, the probe determines a reference queue-length threshold r_t that is passed to an admission controller that controls the parallelism level u_t in the server. The server and the admission controller have the following transfer functions

$$P(z) = \frac{z}{z^2 + \theta} \qquad \qquad S(z) = \frac{1}{z+1} \qquad \qquad C(z) = \frac{z}{z-1}$$

and a block diagram

where $e_t = r_t - y_t$ is an error signal.

Question 4.1 Determine if the control system is stable for some choices of θ .

Solution:

The system features a mix of open-loop and closed-loop controllers. We can first determine the transfer function of the closed-loop subsystem as

$$H_c(z) = \frac{S(z)C(Z)}{1 + S(z)C(Z)} = \frac{z}{z^2 + z - 1}$$

For the system as a whole we then have the transfer function

$$H(z) = P(z)H_c(z) = P(z)\frac{S(z)C(Z)}{1 + S(z)C(Z)} = \frac{z^2}{(z^2 + z - 1)(z^2 + \theta)}$$

Since the denominator is a product of two second-order polynomials, we can solve each of them and find the poles $\lambda_1 = -\sqrt{-\theta}$, $\lambda_2 = +\sqrt{-\theta}$, $\lambda_3 = -\sqrt{5}/2 - 1/2 = -1.6180$, $\lambda_4 = \sqrt{5}/2 - 1/2 = 0.6180$. It is clear that no choice of θ ensures stability, where we need to require that $\lambda = \max_k |\lambda_k| \le 1$, since the system pole at -1.6180 cannot be changed if we alter θ .

Question 4.2 Assume now that $\theta = 0$ and that the memory consumption of a running job is exactly 1 Gb, so that y_t is also the instantaneous memory usage in gigabytes. How would the previous answer change if we were to modify the system topology as follows?

Solution:

In general, the transfer function is now given by

$$H(z) = \frac{P(z)H_c(z)}{1 + P(z)H_c(z)} = \frac{z^2}{z^4 + z^3 + \theta z^2 + \theta z - \theta}$$

Thus, for $\theta = 0$ this reduces to

$$H(z) = \frac{P(z)H_c(z)}{1 + P(z)H_c(z)} = \frac{1}{z^2 + z}$$

that has poles $\lambda_1=0$ and $\lambda_2=-1$. Therefore, the control system is now stable.

It should be noted that since $\lambda = \max\{|\lambda_1|, |\lambda_2|\} = 1$, the settling time of this control is infinite. The following plot shows how alternative parameterizations of θ produce in some cases controllers with faster settling times ($\lambda < 1$):

For example, for $\theta=-0.08$, we get $\lambda=0.8577$ and the settling time is $T\approx 26$ time steps.