UNIVERZITET CRNE GORE PRIRODNO-MATEMATIČKI FAKULTET

RAČUNARSKE MREŽE

NASTAVNIK: DOC. DR UGLJEŠA UROŠEVIĆ ugljesa@ucg.ac.me

SARADNIK: MR KOSTA PAVLOVIĆ kosta@ucg.ac.me

Nivo aplikacije

Primjeri mrežnih aplikacija

- □ E-mail
- Web
- "Instant messaging"
- "Remote login"
- "P2P file sharing"
- "Multi-user" mrežne igre
- "Streaming stored" video klipovi (Netflix, Hulu, YouTube,...)

- Internet telefon
- "Real-time" video konferencija
- "Grid computing"
- Društvene mreže
- Cloud computing
- Fog computing

Kreiranje mrežne aplikacije

Napisati programe koji

- se izvršavaju na različitim krajnjim sistemima i
- komuniciraju preko mreže.
- npr., Web: Web server software komunicira preko browser software

Ne piše se softver za uređaje na kičmi mreže

- mrežni uređaji na kičmi uglavnom ne funkcionišu na nivou aplikacije
- ovakav dizajn dozvoljava brzi razvoj aplikacija

Google Data Centri

- Procijenjena cijena jednog data centra: stotine miliona \$
- Google je svake godine potroši nekoliko milijardi \$
 u nove data centre
- Svaki data centar troši stotine MW električne energije

Google Data Centri

Americas

Berkeley County, South Carolina
Council Bluffs, Iowa
Douglas County, Georgia
Jackson County, Alabama
Lenoir, North Carolina
Mayes County, Oklahoma
Montgomery County, Tennessee
Quilicura, Chile
The Dalles, Oregon

Asia

Changhua County, Taiwan Singapore

Europe

Dublin, Ireland Eemshaven, Netherlands Hamina, Finland St Ghislain, Belgium

http://www.google.com/about/datacenters/inside/locations/index.html

Komuniciranje procesa

- Proces: program koji se izvršava na hostu.
- U samom hostu, dva procesa komuniciraju na bazi inter-procesne komunikacije (definisane u OS).
- Procesi na različitim hostovima komuniciraju razmjenom poruka

Klijent proces: proces koji inicijalizuje komunikaciju

Server proces: proces koji čeka da bude kontaktiran

 Napomena: aplikacije sa P2P arhitekturom imaju i klijent i server procese

Soketi

- □ Proces šalje/prima poruke preko svog "socket"-a
- "socket" je analogan vratima
 - Proces šalje poruke preko socketa
 - proces koji šalje se oslanja na transportnu infrastrukturu na drugoj stani vrata koja prenosi poruku do "socket" prijemnog procesa
- API: (1) izbor transportnog protokola; (2) mogućnost specificiranja nekoliko parametara (maksimalna veličina bafera i maksimalna veličina segmenta)

Adresiranje

- Za proces koji prima poruke, mora postojati identifikator
- Svaki host ima jedinstvenu 32-bitnu IP adresu
- Komanda ipconfig...
- P: Da li je IP adresa hosta na kojem se proces izvršava dovoljna za identifikaciju procesa?

- Identifikator uključuje i IP adresu i broj porta vezan za proces na hostu.
- Primjer brojeva porta:
 - o HTTP server: 80
 - Mail server: 25
- □ VIŠE KASNIJE

O: Ne, mnogi procesi se mogu izvršavati na istom hostu

Protokol nivoa aplikacije definiše

- Tipove poruka koje se razmjenjuju, npr., zahtjevi & poruke odgovora
- Tipove sintaksi poruka:
 koja su polja & kako su odvojena
- Semantika polja, npr., značenje informacija u poljima
- Pravila vezana kada i kako se šalju poruku i kako se odgovara na njih

Javni (public) protokoli:

- Definisani u RFC-ovima
- Dozvoljavaju interoperatibilnost
- □ npr, HTTP, SMTP
- Privatni (proprietary) protokoli:
- npr, Skype,...

Koji transportni servisi su potrebni aplikacijama?

Gubici podataka

- Neke aplikacije (audio) mogu tolerisati određeni nivo gubitaka
- Druge aplikacije (file transfer, telnet) zahtijevaju 100% pouzdani transfer podataka

Vrijeme

Neke aplikacije
 (Internet telefonija,
 interaktivne igre)
 zahtijevaju malo
 kašnjenje

Brzina prenosa

- Neke aplikacije

 (multimedija) zahtijevaju
 preciziranje minimalne
 dostupne brzine prenosa
- Druge aplikacije ("elastične aplikacije") koriste onoliko opsega koliko mogu dobiti

Zaštita

Enkripcija, integritet podataka, ...

Transportni servisni zahjevi zajednički za sve aplikacije

Aplikacija	Gubici	Brzina prenosa	Vrem. osjet.
file transfer	bez	elastičan	ne
e-mail	bez	elastičan	ne
Web dokumenti	bez	elastičan	ne
real-time audio/video	tolerantne	audio: 5kb/s-1Mb/s video:10kb/s-5Mb/s	da, 100-tinak ms
stored audio/video	tolerantne	Isti kao gore	da, nekoliko s
Interaktivne igre	tolerantne	nekoliko kb/s i više	da, 100-tinak ms
instant messaging	bez	elastičan	da i ne

"5G trougao"

Enhanced Mobile Broadband

Capacity Enhancement

Qorvo: LTE-A, Pro, Extended Bands, Fixed Wireless mmW, Beam Steering Infrastructure, Efficient FEMs

Massive IoT

Massive Connectivity

Qorvo: Ultra Low Power RF Connectivity, ZigBee, Wi-Fi, Cat M, Thread

Low Latency

Ultra-High Reliability & Low Latency

Qorvo: Massive MIMO, Carrier Aggregation, Infrastructure

Servisi transportnih protokola Interneta

TCP servisi:

- konektivnost: uspostavljanje komunikacije se zahtijeva između klijentskih i serverskih procesa
- pouzdani transport između procesa slanja i prijema
- kontrola protoka: pošiljalac ne smije da "zaguši" prijemnik
- kontrola zagušenja: usporava pošiljaoca kada je mreža zagušena
- Ne obezbjeđuje: tajming, garantovanje minimalnog opsega, zaštitu

UDP servisi:

- Nepouzdani prenos podataka između procesa slanja i prijema
- Ne obezbjeđuje: uspostavljanje veze, pozdanost, kontrolu protoka, kontrolu zagušenju, tajming, garantovani opseg, zaštitu
- P: Zašto oba? Zašto UDP?

Internet aplikacije: aplikacija, transportni protokoli

	Aplikacija	Protokoli nivoa aplikacije	Transportni protokol
	e-mail	SMTP [RFC 2821]	TCP
	udaljeni terminal	Telnet [RFC 854]	TCP
	Web	HTTP [RFC 2616]	TCP
	file transfer	FTP [RFC 959]	TCP
strea	ming multimedia	HTTP (e.g., YouTube),	TCP ili UDP
		RTP [RFC 1889]	
ĺ	nternet telefonija	SIP, RTP, proprietary	
		(e.g., Skype)	TCP ili UDP
_			

Zaštita i TCP

TCP & UDP

- Nema kriptovanja
- Tekstualne lozinke se prenose preko Interneta

SSL

- Omogućava enkripciju
 TCP konekcije
- Integritet podataka
- Autorizacija od kraja do kraja

SSL je na nivou aplikacije

□ Aplikacije koriste SSL biblioteke, koje "komuniciraju"sa TCP

SSL socket API

 Tekstualna lozinka se šalje kriptovana preko Interneta

Web i HTTP

Termini

- Web stranica se sastoji od objekata
- Objekat može biti HTML fajl, JPEG slika, Java "applet", audio fajl,...
- Web stranica se sastoji od osnovnog HTML-fajla koji sadrži više referenci objekata
- Svaki objekat se adresira sa URL (Uniform Resource Locators)
- Primjer URL:

http://www.cftmn.ac.me/index.html

ime hosta

ime puta

Pregled HTTP-a

HTTP: hypertext transfer protokol

- Web-ov protokol nivoa aplikacije
- klijent/server model
 - klijent: "browser" koji zahtijeva, prima, prikazuje Web objekte
 - server: Web server šalje objekte kao odgovor na zahtjeve

Pregled HTTP-a (nastavak)

Koristi TCP:

- klijent inicijalizuje TCP vezu (kreira socket) prema serveru, port 80
- server prihvata TCP vezu od klijenta
- HŤTP poruke zahtjeva i poruke odgovora (poruke protokola nivoa aplikacije) se razmjenjuju između "browser"-a (HTŤP klijent) i Web servera (HTŤP server)
- TCP veza se zatvara

HTTP je "stateless"

 server ne čuva informacije o prethodnim korisnikovim zahtjevima (ne raspoznaje korisnike)

Pored toga

Protokoli koji nadziru "stanje" su kompleksni!

- Ranije stanje mora biti nadzirano
- ako server/klijent "padne", njihovi uvidi u "stanje" mogu biti inkonzistentni, moraju biti ponovo razmotreni

HTTP konekcije

<u>Neperzistentni (neistrajan)</u> HTTP

- Najviše jedan objekat je poslat preko TCP konekcije.
- Povlačenje više objekata podrazumijeva otvaranje više konekcija

Perzistentni HTTP

Više objekata može biti poslato preko jedne TCP veze između klijenta i servera.

Neperzistentni HTTP

Pretpostavimo da korisnik unese sledeći URL http://www.cftmn.ac.me/index.html

- 1a. HTTP klijent inicijalizuje TCP vezu do HTTP servera (procesa) na www.cftmn.ac.me po portu 80
- 2. HTTP klijent šalje HTTP poruku zahtjeva (sadrži URL) u socket TCP veze. Poruka indicira da klijent želi objekat /index.html
- 1b. HTTP server na hostu

 www.cftmn.com čeka na TCP
 konekcije na portu 80.
 "Prihvata" vezu, obaveštava
 klijenta
- HTTP server prima poruku zahtjeva, formira poruku
 odgovora koja sadrži zahtijevani objekat i šalje poruku svom socketu

Neperzistentni HTTP(nastavak)

 HTTP klijent prima poruku odgovora koja sadrži html fajl, prikazuje html, tumači html fajl, pronalazi upućene objekte

Vrijeme

6. Koraci 1-5 se ponavljaju za svaki objekat 4. HTTP server zatvara TCP vezu.

<u>Modelovanje vremena odgovora</u>

Definicija RTT (Round Trip

Time): vrijeme prenosa malog paketa od klijenta do servera i nazad.

Vrijeme odgovora:

- □jedan RTT za inicijalizaciju TCP veze
- □jedan RTT za HTTP zahtjev i vraćanje prvih nekoliko bajtova HTTP odgovora
- □Vrijeme prenosa fajla

ukupno = 2RTT+vrijeme prenosa fajla

Persistentni HTTP

Problemi neperzistentnog HTTP-a:

- zahtijeva 2 RTT po objektu
- OS mora raditi i dodijeliti resurse hosta za svaku TCP vezu
- Problem je što browser-i često otvaraju paralelne TCP veze za povlačenje zahtijevanih objekata

Perzistentni HTTP

- server zadržava vezu otvorenu poslije slanja odgovora
- sekvencijalne HTTP poruke između istog klijent/servera se šalju istom vezom
- Zatvara konekciju poslije određenog vremena neaktivnosti

Perzistentni bez "pipelining":

- Klijent šalje novi zahtjev samo kada je prethodni odgovor primljen
- jedan RTT za svaki upućeni objekat
- Kada nema zahtjeva TCP konekcija je slobodna

Perzistentni sa "pipelining":

- klijent šalje zahtjeve odmah po dobijanju referenci objekata
- Veličine svega po jedan RTT za svaki referencirani objekat

HTTP poruka zahtjeva

```
Dva tipa HTTP poruka: zahtjev, odgovor
  ☐ HTTP poruka zahtjeva:

    ASCII (format čitljiv čovjeku)

                                              carriage return karakter
                                               line-feed karakter
Linija zahtjeva
                   GET /index.html HTTP/1.1\r\n
(GET, POST,
                   Host: www.cftmn.ac.me\r\n
HEAD komande)
                   User-Agent: Firefox/3.6.10\r\n
                   Accept: text/html,application/xhtml+xml\r\n
           Linije
                   Accept-Language: en-us,en;q=0.5\r\n
        zaglavlja |
                   Accept-Encoding: gzip,deflate\r\n
                   Accept-Charset: ISO-8859-1, utf-8; q=0.7\r
                   Keep-Alive: 115\r\n
carriage return,
                   Connection: keep-alive\r\n
line feed na
                   \r\n
početku linije
označavaju kraj zaglavlja
```

Tipovi

HTTP/1.0

- □ GET
- POST
- □ HEAD
 - Pita servera da pusti traženi sadržaj (otklanjanje grešaka)

HTTP/1.1

- GET, POST, HEAD
- PUT
 - Uploaduje fajl na mjesto u Web serveru definisano u URL polju
- DELETE
 - Briše fajl definisan u URL polju

HTTP poruka odgovora

statusna linija (protokol statusni kod statusna fraza)

Linije zaglavlja

```
HTTP/1.1 200 OK\r\n
Date: Sun, 06 Mar 2016 10:52:45 GMT\r\n
Server: Apache/2.2.0 (CentOS)\r\n
Last-Modified: Sun, 18 Feb 2018 10:12:14 GMT\r\n
ETag: "2c5799-1da5-506b53b26510d"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2455\r\n
Keep-Alive: timeout=15, max=100\r\n
Connection: Keep-Alive\r\n
```

Content-Type: text/html; charset=WINDOWS-1250\r\n \r\n

data data data data ...

podaci, npr., zahtijevani HTML fajl

HTTP kodovi statusnog odgovora

U prvoj liniji u server->klijent poruci odgovora. Nekoliko primjera kodova statusa i odgovarajućih poruka:

200 OK

Zahtjev uspješan, zahtijevani objekat se nalazi u poruci

301 Moved Permanently

 Zahtijevani objekat preseljen, nova lokacija specificirana u poruci (Lokacija:)

400 Bad Request

Server ne razumije poruku zahtijeva

404 Not Found

Zahtijevani dokument nije pronađen na ovom serveru

505 HTTP Version Not Supported

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Cookies: vode računa o "stanju" (RFC 6265)

Mnogi Web sajtovi koriste cookies

<u>Četiri komponente:</u>

- Linija zaglavlja Set-cookie u HTTP poruci odgovora
- Linija zaglavlja Cookie u HTTP poruci zahtjeva
- Cookie fajl se čuva na korisnikovom hostu i održava se od strane korisnikovog browser-a
- Baza podataka na Web sajtu

<u> Primjer:</u>

- Neko pristupa
 Internetu uvijek preko
 istog PC-a
- Posjećuje specifične ecommerce sajtove po prvi put
- Kada inicijalni HTTP
 zahtjevi dođu na sajt,
 sajt kreira jedinstveni
 ID i kreira
 odgovarajuću
 informaciju u bazi
 podataka za ID

https://tools.ietf.org/html/rfc6265

Cookies: vode računa o "stanju" (nastavak)

Cookies: vode računa o "stanju" (nastavak)

<u>Šta cookies donose:</u>

- autorizaciju
- "shopping cards"
- preporuke
- stanje korisnikove sesije (Web e-mail)

Pored toga.

Cookies i privatnost:

- Cookies dozvoljavaju sajtu da dosta nauči o korisniku
- Mogu se dostaviti imena i kontakt podaci
- Pretraživači koriste cookies da nauče više o korisnicima
- Kompanije dobijaju dodatne informacije preko weba

Web "caches" (proxy server)

Cilj: zadovoljenje klijentovog zahtjeva bez uključivanja originalnog servera

 Korisnik setuje browser:
 Web pristup preko proxy servera

- browser šalje sve HTTP zahtjeve proxy serveru
 - objekat u proxy-u: proxy šalje objekat
 - ili proxy zahtijeva objekat od željenog servera, tada vraća objekat klijentu

https://tools.ietf.org/html/rfc7234

Više o proxy serveru

- Proxy server radi i kao klijent i kao server
- Tipično proxy instalira ISP (univerzitet, kompanija, rezidencijalni ISP)

Zašto proxy server?

- Smanjuje vrijeme odziva na zahtjev.
- Smanjuje saobraćaj na linku institucije prema Internetu.
- Internet sa proxy serverom omogućava "slabim" provajderima sadržaja efikasniju predaju sadržaja

<u>Primier:</u>

Pretpostavke:

- Srednja veličina objekta: 100000 bita
- Srednji broj zahtjeva prema željenim serverima: 19 zahtjeva/s
- Srednja brzina: 1.9Mb/s
- RTT od rutera institucije do željenog servera: 2s
- Brzina na pristupnom linku: 2Mb/s

Posledice:

Iskorišenje LAN-a: 0.19%

♦ Iskorišenje pristupnog linka € 95%

- Ukupno kašnjenje= kašnjenje na Internetu+ kašnjenje u pristupu+ LAN kašnjenje
 - = 2s + minuti + μs

Primjer: brži pristupni link

pretpostavke:

- Srednja veličina objekta: 100000 bit
- Srednji broj zahtjeva:19 zahtjeva/s
- Srednja brzina: 1.9Mb/s
- RTT od rutera institucije do željenog servera: 2s
- Brzina pritupnog linka: 100Mb/s

posledice:

- Iskorišenje LAN-a: 0.19%
- Iskorišćenje linka= 1.9%
- Ukupno kašnjenje= Internet kašnjenje + pristupno kašnjenje+ LAN kašnjenje
 - $= 2s + ms + \mu s$

Troškovi: povećanje brzine pristupa je skupo!

Primjer: Lokalni proxy

pretpostavke:

- Srednja veličina objekta: I 00000 bita
- Srednja brzina zahtjeva:19 zahtjeva/s
- Srednja brzina: I.9Mb/s
- RTT od rutera institucije do željenog servera: 2s
- Brzina pristupa: 2Mb/s

posledice:

- LAN utilization: 0.19%
- Iskorišćenje pristupnog linka=?
- Ukupno kašnjenje=?

Kako izračunati iskorišćenje i kašnjenje?

Troškovi: proxy nije skup!

Primjer: Lokalni proxy

Izračunavanje iskorišćenja i kašnjenja:

- Pretpostavimo da je vjerovatnoća pogađanja 0.4
 - 40% zahtjeva se posluži na proxy serveru, 60% zahtjeva na željenom serveru

Iskorišćenje pristupnog linka:

- 60% zahtjeva koristi pristupni link
- Brzina prenosa preko pristupnog linka= 0.6*1.9Mb/s = 1.14Mb/s
 - iskorišćenje = 1.14/2 = .57
 - Ukupno kašnjenje
 - = 0.6 * (kašnjenje od željenih servera)
 +0.4 * (kašnjenje do proxy servera)
 - = 0.6 (2.0) + 0.4 (~ms)
 - = ~ 1.2 s
 - Manje nego pristupni link od 100Mb/s

Conditional GET

- Cilj: ne slati objekat ako cache ima up-to-date sačuvanu verziju
- cache: specificira datum čuvanja kopije u HTTP zaglavlju

If-modified-since: <date>

 server: odgovor ne sadrži objekat ako je sačuvana kopija up-to-date:

HTTP/1.0 304 Not Modified

HTTP poruka GET If-modified-since: <date> Objekat nije modifikovan HTTP odziv HTTP/1.0 304 Not Modified HTTP poruka zahtjeva If-modified-since: <date> objekat modifikovan HTTP odziv HTTP/1.0 200 OK <data>

https://tools.ietf.org/html/rfc7232

FTP: the file transfer protocol

- 🗖 transfer fajla od/do udaljenog hosta
- klijent/server model
 - klijent: strana koja inicijalizuje prenos (ili od/do udaljenog hosta)
 - o server: udaljeni host
- ftp: RFC 959
- ftp server: port 21

FTP: kontrolna veza i veze za prenos podataka

- FTP klijent kontaktira FTP server na port 21, definišući TCP kao transportni protokol
- Klijent dobija autorizaciju preko kontrolne veze
- Klijent pregleda udaljene direktorijume slanjem komandi preko kontrolne veze.
- Kada server primi komandu za prenos fajla, server otvara
 TCP vezu za prenos podataka do klijenta (port 20)
- Poslije slanja jednog fajla server zatvara vezu.

- Server otvara drugu TCP vezu podataka za prenos drugog fajla.
- Kontrola veze: "out of band", kao kod RTSP.
- FTP server nadzire "state": trenutni direktorijum, ranija identifikacija. "statefull"

FTP komande, odgovori

<u>Primjeri komandi:</u>

- Šalje kao 7 bitni ASCII tekst preko kontrolnog kanala, identično kao HTTP.
- USER ime
- PASS lozinka
- LIST vraća spisak fajlova u direktorijumu
- RETR imefajla povloči fajl
- STOR imefajla smješta fajl na udaljeni host

<u>Primjer kodova odgovora</u>

- status kodovi i fraze (kao u HTTP)
- 331 Username OK, password required
- 125 data connection already open; transfer starting
- 1 425 Can't open data connection
- 452 Error writing file

Elektronska Pošta

Tri glavne komponente:

- 🗖 korisnički agenti
- 🗖 mail serveri
- SMTP (Simple Mail Transfer Protocol)

Korisnički Agent

- "mail reader"
- sastavljanje, editovanje, čitanje mail poruka
- Eudora, Thunderbird, iPhone mail client
- odlazne, dolazne poruke se čuvaju na hostu

Elektronska Pošta: mail serveri

IIII izlazni baferi poruka

Mail Serveri

- Mailbox sadrži dolazne poruke korisnika
- Red čekanja odlaznih poruka koje trebaju da se pošalju
- SMTP protokol između mail servera za slanje email poruka
 - klijent: slanje mail serveru
 - "server": prijem sa mail servera

Elektronska Pošta: SMTP [RFC 5321]

- koristi TCP za pouzdani transfer email poruke od klijenta do servera po portu 25
- 🗖 direktan transfer: od servera pošiljaoca do servera primaoca
- Tri faze transfera
 - handshaking (upoznavanje)
 - o prenos poruke
 - zatvaranje
- komanda/odgovor interakcije
 - komande: ASCII tekst
 - odgovor: status kod ili fraza
- Poruke moraju u kompletu biti 7-bitne ASCII.

Scenario slanja poruke

- 1) Korisnik A koristi korisnički agent da sastavi poruku i adresira je na korisnikb@ac.me
- Korisnički agent korisnika A šalje poruku njenom mail serveru; poruka se smješta u red čekanja
- Klijentska strana SMTP otvara TCP vezu sa mail serverom korisnika B

- SMTP klijent šalje poruku poruku Korisnika A preko TCP veze
- 5) Mail server korisnika B prima poruku i SMTP-ov serverski dio smješta poruku u mailbox Korisnika B
- Korisnik B aktivira svoj korisnički agent da pročita poruku

Primjer SMTP interakcije

```
S: 220 mail.ac.me
C: HELO mail.t-com.me
S: 250 Hello mail.t-com.me, pleased to meet you
C: MAIL FROM: <korisnika@mail.t-com.com>
S: 250 korisnika@mail.t-com.me... Sender ok
C: RCPT TO: <korisnikb@ac.me>
S: 250 korisnikb@ac.me ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 ac.me closing connection
```

SMTP: kraj

- SMTP koristi perzistentne konekcije
- SMTP zahtijeva poruke u
 7-bit ASCII formatu
- SMTP server koristi
 CRLF.CRLF da odredi kraj
 poruke

Upoređenje sa HTTP:

- ☐ HTTP: "pull"
- SMTP: "push"
- Oba imaju ASCII komande/ odgovore, kodove statusa, ali se razlikuju po tijelima poruke.
- HTTP: svaki objekat se smješta u sopstvenoj poruci odgovora
- SMTP: više objekata se šalje u višedjelnoj (multipart) poruci

Format mail poruke (RFC 5322)

SMTP: protokol za
razmjenu email poruka

RFC 5322: standard za
format tekstualnih poruka

Zaglavlja linija, npr.,

To:
Subject:
Različito od SMTP komardi
SMTP MAIL FROM, RCPT
TO: I

- tijelo
 - poruka, samo ASCII karakteri

Format poruke: multimedija

- MIME: multimedia mail extension, RFC 2045, 2046, 2047, 2048, 2049
- Dodatne linije u zaglavlju poruke deklarišu tip MIME sadržaja

MIME verzija

Metod korišćen za

kodiranje podataka

Tip multimedijalnih

podataka, podtip,

deklaracija parametara

Kodirani podaci

From: korisnikA@t-com.me

To: korisnikB@ac.me

Subject: Domaći rad

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.....base64 encoded data

MIME tipovi

Tip sadržaja: tip/podtip; parametri

Tekst

 Primjeri podtipova: plain, html

Slike

Primjeri podtipova: jpeg, gif

Audio

 Primjeri podtipova: basic (8-bit mu-law kodiranje), 32kadpcm (32 kb/s kodiranje)

Video

 Primjeri podtipova: mpeg, quicktime

Aplikacije

- Drugi podaci koji moraju biti obrađeni odgovarajućim programom prije "gledanja"
- Primjeri podtipova: msword, octet-stream

Višedjelni tip

```
From: korisnikA@t-com.me
To: korisnikB@ac.me
Subject: Picture
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=StartOfNextPart
--StartOfNextPart
Dear Bob, Please find a picture of me.
--StartOfNextPart
Content-Transfer-Encoding: base64
Content-Type: image/jpeg
base64 encoded data .....
.....base64 encoded data
--StartOfNextPart
Do you want the recipe?
```

Protokoli Mail pristupa

- SMTP: predaja/smještanje na serveru primaoca
- 🗖 Protokol mail pristupa: povlačenja sa servera
 - POP: Post Office Protocol [RFC 1939]
 - autorizacija (agent <-->server) i povlačenje sadržaja
 - Port 110
 - IMAP: Internet Mail Access Protocol [RFC 3501]
 - Više funkcija (složeniji)
 - Port 143
 - Manipulacija sačuvanim porukama na serveru
 - HTTP: Hotmail, Yahoo! Mail, itd.

DNS: Domain Name System

Ljudi: imaju mnogo dokumenata za identifikaciju:

o ime, broj pasoša,...

Internet hostovi, ruteri:

- IP adresa (32 bit) koristi se za adresiranje datagrama
- "ime", npr., mail.ac.me koriste ga ljudi
- P: Kako mapirati IP adrese i imena?

Domain Name System:

- Distribuirana baza podataka implementirana kao hijerarhija velikog broja servera imena
- Protokol nivoa aplikacije host, ruteri, serveri imena komuniciraju za utvrđivanje imena (adresa/ime translacija)
 - napomena: ključna
 Internet funkcija,
 implementirana kao
 protokol nivoa aplikacije
 - Kompleksnost na "ivici" mreže
- Port 53,
- □ UDP,
- RFC 1034 i 1035.

DNS

Zašto ne centralizovani DNS?

- 🗖 Jedna tačka otkaza
- Obim saobraćaja
- Centralizovana baza podataka
- 🗖 Nadzor

Ne odgovara!

DNS servisi

- Translacija imena hosta u IP adresu
- 🗖 Host "aliasing"
 - Kanonska (<u>www.yahoo.akadns.com</u>) i alias imena (<u>www.yahoo.com</u>)
- Mail server "aliasing" "mail.ac.me" u "ac.me"
- Distribucija opterećenja
 - Replikacija Web servera: setovanje IP adresa za jedno kanoničko ime

Distribuirana i hijerarhijska baza podataka

Klijent želi IP adresu za "www.amazon.com" prva aproksimacija:

- Klijent pita root server da nađe com DNS server
- Klijent pita jedan od com DNS servera da nađe amazon.com DNS server
- Klijent pita amazon.com DNS server da mu pošalje IP adresu www.amazon.com

DNS: "Root" serveri imena

- 🗖 Kontaktiraju ih lokalni serveri imena kada ne mogu da pronađu ime
- root server imena:
 - kontaktira autoritativni server imena ako mapiranje nije poznato
 - dobija mapiranje
 - vraća mapiranje lokalnom serveru imena

TLD i Autorizacioni serveri

- Top-level domain (TLD) serveri: odgovorni za com, org, net, edu, etc, i sve "top-level" domene zemalja uk, fr, ca, jp,me.
 - "VeriSign" nadzire servere za com TLD
 - "Educause" za edu TLD
- Autoritativni DNS serveri: DNS serveri organizacije obezbjeđuju mapiranja imena hostova u IP adrese za servere organizacije (npr., Web i mail).
 - Može biti nadziran od strane organizacije ili servis provajdera

Lokalni DNS

- Striktno ne pripada hijerarhiji
- Svaki ISP (rezidencijalni ISP, kompanijski, univerzitet) ima jedan.
 - Još se zove "default DNS"
- Kada host napravi DNS upit, upit se šalje na njegov lokalni DNS server
 - Ponaša se kao DNS proxy, prosleđuje upite u hijerarhiju.

Primjer 1

 Host cis.ac.me želi IP adresu za gaia.cs.umass.edu

Iterativni upit:

Kontaktirani server odgovara sa imenom servera kojeg treba kontaktirati

"Neznam ovo ime, ali pitaj ovaj server"

root DNS server TLD DNS server lokalni DNS server dns.ac.me autoritativni DNS server dns.cs.umass.edu cis.ac.me qaia.cs.umass.edu

Primjer 2

Rekurzivni upit:

- Stavlja problem utvrđivanja imena na kontaktirani DNS
- Veliko opterećenje?

gaia.cs.umass.edu

DNS: "caching" i "updating"

- Kada server imena definiše mapiranje on ga čuva:
 - Pri čemu se sačuvani podaci posle izvjesnog timeout perioda brišu
 - TLD serveri su tipično sačuvani u lokalnim DNS-ovima
 - Na taj način se root name serveri rijetko posjećuju
- "update/notify" mehanizmi su definisani od IETF
 - RFC 2136

DNS zapisi

DNS:

distribuirana baza podataka koja sadrži zapise resursa (resource records (RR))

RR format: (name, value, type, ttl)

- □ Type=A
 - name je ime hosta
 - o value je IP adresa
- □ Type=NS
 - o name je domen
 - value je IP adresa autoritativnog name servera za ovaj domen

- Type=CNAME
 - name je alias ime nekog "kanoničkog" (stvarnog) imena
 - value je kanoničko ime
 - o www.ibm.com je u stvari e2874.x.akamaiedge.net
- □ Type=MX
 - value je kanonično ime mail servera čiji je name alias ime.

DNS protokol, poruke

Upiti i *odgovori*, imaju isti format

Zaglavlje poruke

- identifikacija: 16 bitni broj za upit, odgovor na upit koristi isti broj
- oznake:
 - Upit ili odgovor
 - Poželjne rekurzije
 - Dostupne rekurzije
 - Odgovor (broj pojavljivanja tipova)

← 2 bajta → ← 2 bajta →		
identification	flags	
# questions	# answer RRs	
# authority RRs	# additional RRs	
questions (variable # of questions)		
answers (variable # of RRs)		
authority (variable # of RRs)		
additional info (variable # of RRs)		

DNS protokol, poruke

Ime, tip polja za upit

RR-ovi u odgovoru na upit

Podaci za autoritativne servere

Dodatna korisna informacija

identification	flags	
# questions	# answer RRs	
# authority RRs	# additional RRs	
questions (variable # of questions)		
answers (variable # of RRs)		
authority (variable # of RRs)		
additional info (variable # of RRs)		

2 bajta →

2 bajta :

<u>Ubacivanje zapisa u DNS</u>

- Primjer: osnovan je novi start up "Network Utopia"
- Registracija imena networkuptopia.com u registar (VeriSign)
 - Potrebno je dostaviti registru imena i IP adrese autoritativnog name server (primarnog i sekundarnog)
 - Registar ubacuje dva RR u sve com TLD servere:

```
(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
```

- Postavlja u autoritativni server Type NS zapis za www.networkutopia.com i Type A zapis za dns1.networkutopia.com
- Kako ljudi mogu saznati IP adresu nekog Web sajta?

Kako poslati DNS poruku upita direktno DNS serveru?

- nslookup komanda sa MSDOS comand prompta
- Pomoću odgovarajućih sajtova

Napadi na DNS

DDoS napadi

- Bombardovanje root servera prekomjernim saobraćajem
 - Neuspješan do sada
 - Filtriranje saobraćaja
 - Lokalni DNS serveri keširaju IP adrese TLD servera, što obezbjeđuje zaobilaženje root servera
- Bombardovanje TLD servera
 - Mnogo opasnije!

Indirektni napadi

- Man-in-middle
 - Presrijetanje upita
- DNS "poisoning"
 - Slanje pogrešnih odgovora povezanih sa DNS serverom, koji se keširaju

Korišćenje DNS za DDoS

- Slanje upita sa ukradenih
 IP adresa: cilj je IP
- Zahtijeva potvrdu