AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

Claims 1-46 (Canceled)

47. (New) A dye composition comprising, in a suitable medium, at least one compound of formula (I), or an addition salt thereof:

wherein

• R₁ and R₂, which are independent of each other, are chosen from:

-hydrogen atoms,

-linear and branched, unsaturated and saturated C_1 - C_{10} hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms and SO_2 groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C_1 - C_2 (di)alkylamino, C_1 - C_2 alkoxy,

carboxyl, sulphonic, and thiol radicals; with the proviso that R_1 and R_2 do not comprise a peroxide bond, or a diazo or nitroso radical, and R_1 and R_2 are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom or a SO_2 group, and

- an onium radical Z,
- R₁ and R₂ form, with the nitrogen atom to which they are attached, a ring of formula (II):

formula (II)

wherein

- R' is chosen from:
 - a hydrogen atom;
 - a halogen atom;
 - a C₁-C₄ alkyl radical optionally substituted with at least one radical chosen from hydroxyl, carboxyl, C₁-C₄ alkoxycarbonyl, (C₁-C₄)alkylamido((C₁-C₄)alkylCONH-), (C₁-C₄)alkylcarbamoyl ((C₁-C₄)alkylNHCO-), (C₁-C₄)alkylsulphonyl ((C₁-C₄)alkylSO₂-), C₁-C₄

alkoxy, (C_1-C_4) alkylsulphonamido $((C_1-C_4)$ alkylSO₂NH-), (C_1-C_4) alkylsulphamoyl $((C_1-C_4)$ alkylNHSO₂-), and onium Z radicals;

- a NR'₃R'₄ radical;
- a carboxyl radical;
- a C₁-C₄ alkoxycarbonyl radical;
- a (C₁-C₄)alkylamido radical ((C₁-C₄)alkylCONH-);
- a (C₁-C₄)alkylsulphonyl radical (alkylSO₂-);
- an alkylsulphonamido radical ((C₁-C₄)alkylSO₂NH-);
- a hydroxyl radical;
- a C₁-C₄ alkoxy radical;
- a C₂-C₄ hydroxyalkoxy radical;
- a (C₁-C₄)alkylcarbamoyl radical ((C₁-C₄)alkylNHCO-);
- (C_1-C_4) alkylsulphamoyl $((C_1-C_4)$ alkyl-NH-SO₂-);
- a C₁-C₄ thioether radical;
- a sulphonic radical (SO₃H) and the addition salts thereof; and
- an onium radical Z,

wherein R'_3 and R'_4 , which may be identical or different, are chosen from hydrogen atoms and C_1 - C_4 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, amino, mono- and dialkylamino, $(C_1$ - C_4)alkylCO-, $(C_1$ - C_4)alkylCO-, and $(C_1$ - C_4)alkylCO-, radicals,

- n is an integer ranging from 1 to 8,

- m is an integer ranging from 0 to 3, and

- Y is chosen from a oxygen atom, a CR' radical, a NR'₅ radical, and a NR'₆R'₇ radical wherein

R'₅ is chosen from a hydrogen atom and a linear or branched, saturated or unsaturated C₁-C₁₀ hydrocarbon-based chain, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that R'₅ does not comprise a peroxide bond, or a diazo or nitroso radical, and R'₅ is not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

R'₆ and R'₇, which are independent of each other, are chosen from linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, wherein at least one carbon atom of the carbon-based chain, independently from the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that R'₆ and R'₇ do not comprise a peroxide bond, or a diazo or

nitroso radical, and R'₆ and R'₇ are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

- R₃ is chosen from:
 - a hydrogen atom,
 - a linear or branched, saturated or unsaturated C₁-C₁₀ hydrocarbon-based chain, which optionally forms at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di) alkylamino, C₁-C₂ alkoxy, carboxyl, sulphonic, and thiol radicals; with the proviso that R₃ does not comprise a peroxide bond, or a diazo or nitroso radical,
 - an NR'₁R'₂ radical, wherein R'₁ and R'₂ have the same definitions as R₁ and R₂, respectively,
- W₁ is chosen from an aromatic heterocyclic radical chosen from the following radicals:

R ₆ N _N Z ₁ R ₁₁ (R1)	R ₆ N Z ₂ Z ₄ -Z ₆ (RII)	R ₆ N _N Z ₆ R ₇ R ₈ (RIII)	Z ₁ NH ₂ NH ₂ (RIV)
R ₁ , R ₁₂ , R ₁₁ (RV)	R ₇ (R ₉) _p R ₇ R ₈ R ₁₁ (RVI)	R7 R 6 R 10 R 9 R 11 (RVII)	R6 N N R 11 (RVIII)

- Z₁ and Z₃, which are independent of each other, are chosen from hydrogen atoms, hydroxyl radicals and NR₁₁R₁₂ radicals,
- Z₂, Z₄ and Z₆, which are independent of each other, are chosen from nitrogen atoms, CR₁₂ radicals, and NR₁₁ radicals, wherein at least one of Z₂, Z₄ and Z₆ is a CR₁₂ radical and wherein there cannot be more than three contiguous nitrogen atoms,
- Z₈ is chosen from a nitrogen atom and a CR₁₅ radical,
- R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₅, which are independent of each other, are chosen from:
 - -hydrogen atoms,
 - -linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based

chain, independently of the the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amnio, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals R₆ to R₁₂ and R₁₅ do not comprise a peroxide bond, or a diazo or nitroso radical, and the radical R₁₁ is not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

- p ranges from 4 to 8,
- q ranges from 1 to 3, and
- r ranges from 0 to 2,
- * indicates a point of attachment of W₁ in formula (I).
- 48. (New) The composition according to claim 47, wherein R_3 is chosen from a hydrogen atom, and a C_1 - C_4 alkyl radical optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_2 alkoxy, amino, and C_1 - C_2 (di)alkylamino radicals.
- 49. (New) The composition according to claim 47, wherein R_1 and R_2 , independently of each other, are chosen from hydrogen atoms and C_1 - C_6 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, alkoxy, amino, and C_1 - C_4 (di)alkylamino radicals.

- 50. (New) The composition according to claim 47, wherein R_1 and R_2 form, with the nitrogen atom to which they are attached, a 5- or 8-membered heterocycle chosen from pyrrolidine, piperidine, homopiperidine, piperazine, homopiperazine, and optionally substituted diazepane heterocycles.
- 51. (New) The composition according to claim 47, wherein R₁ and R₂ form a heterocycle chosen from pyrrolidine, 3-hydroxypyrrolidine, 3-aminopyrrolidine, 3-acetamidopyrrolidine, 3-(methylsulphonylamino)pyrrolidine, proline, 3-hydroxyproline, piperidine, hydroxypiperidine, homopiperidine, diazepane, N-methylhomopiperazine, N-β-hydroxyethylhomopiperazine, and the addition salts thereof.
- 52. (New) The composition according to claim 50, wherein R_1 and R_2 form, with the nitrogen atom to which they are attached, an optionally substituted pyrrolidine ring.
- 53. (New) The composition according to claim 47, wherein the onium radical Z is a radical of formula (III)

wherein

- D is chosen from a covalent bond and a linear and branched C₁-C₁₄ alkylene chain which optionally comprises at least one entity chosen from at least one hetero atom chosen from oxygen, sulphur and nitrogen; SO₂; and at least one ketone function, wherein the chain optionally is substituted with at least one radical chosen from hydroxyl, C₁-C₆ alkoxy, amino, and C₁-C₄ (di)alkylamino radicals,
- R_{16} , R_{17} and R_{18} , which are independent of each other, are chosen from C_1 - C_{15} alkyl radicals; C_1 - C_6 monohydroxyalkyl radicals; C_2 - C_6 polyhydroxyalkyl radicals; $(C_1$ - $C_6)$ alkoxy $(C_1$ - $C_6)$ alkyl radicals; aryl radicals; benzyl radicals; C_1 - C_6 amidoalkyl radicals; $tri(C_1$ - $C_6)$ alkylsilane $(C_1$ - $C_6)$ alkyl radicals; C_1 - C_6 aminoalkyl radicals wherein the amine is mono- or disubstituted with at least one radical chosen from C_1 - C_4 alkyl, $(C_1$ - $C_6)$ alkylcarbonyl, amido and $(C_1$ - $C_6)$ alkylsulphonyl radicals; a carbamyl $(C_1$ - $C_6)$ alkyl radical; a $(C_1$ - $C_6)$ alkylcarboxy $(C_1$ - $C_6)$ alkyl radical; a $(C_1$ - $C_6)$ alkyl radical; and a N- $(C_1$ - $C_6)$ alkyl radical;
- R₁₆, R₁₇ and R₁₈ together, in pairs, form, with the nitrogen atom to which they are attached, a 4-, 5-, 6- or 7-membered carbon-based saturated ring which optionally comprises at least one hetero atom, wherein the carbon-based ring optionally is substituted with at least one entity chosen from halogen atoms, hydroxyl radicals, C₁-C₆ alkyl radicals, C₁-C₆ monohydroxyalkyl radicals, C₂-C₆ polyhydroxyalkyl radicals, C₁-C₆

alkoxy radicals, $tri(C_1-C_6)$ alkylsilane(C_1-C_6)alkyl radicals, amido radicals, carboxyl radicals, C_1-C_6 alkylcarbonyl radicals, thio radicals, C_1-C_6 thioalkyl radicals, (C_1-C_6) alkylthio radicals, amino radicals, and amino radicals mono- or disubstituted with at least one radical chosen from (C_1-C_6)alkyl, (C_1-C_6)alkylcarbonyl, amido, and (C_1-C_6)alkylsulphonyl radicals;

- R₁₉ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with at least one radicalchosen from (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido, and (C₁-C₆)alkylsulphonyl radicals; a carboxy(C₁-C₆)alkyl radical; a carbamyl(C₁-C₆)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; a N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical; and a N-(C₁-C₆)alkylsulphonamido(C₁-C₆)alkyl radical;
- x is 0 or 1,
 - when x is equal to 0, then linker arm D is attached to the nitrogen atom bearing the radicals R_{16} to R_{18} ,

- when x is equal to 1, then two of the radicals R_{16} to R_{18} form, together with the nitrogen atom to which they are attached, a 5-, 6- or 7-membered saturated ring and the linker arm D is linked to a carbon atom of the saturated ring; and
- T is a counterion.
- 54. (New) The composition according to claim 53, wherein when x is equal to 0, R_{16} , R_{17} and R_{18} , independently of each other, are chosen from C_1 - C_6 alkyl radicals, C_1 - C_4 monohydroxyalkyl radicals, C_2 - C_4 polyhydroxyalkyl radicals, $(C_1$ - C_6)alkoxy(C_1 - C_4)alkyl radicals, C_1 - C_6 amidoalkyl radicals, and tri(C_1 - C_6)alkyl silane(C_1 - C_6)alkyl radicals.
- 55. (New) The composition according to claim 53, wherein when x is equal to 0, R_{16} and R_{17} together form a ring chosen from azetidine, pyrrolidine, piperidine, homopiperidine, piperazine, homopiperazine and morpholine rings, and R_{18} is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical; an aminoalkyl radical wherein the amine is mono- or disubstituted with at least one radical chosen from $(C_1$ - C_4)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido and $(C_1$ - C_6)alkylsulphonyl radicals; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6)alkylsilane $(C_1$ - C_6)alkyl radical; a $(C_1$ - C_6)alkylcarbonyl $(C_1$ - C_6)alkyl radical; and a N- $(C_1$ - C_6)alkylcarbomyl $(C_1$ - C_6)alkyl radical.

- 56. (New) The composition according to claim 53, wherein when x is equal to 1, R₁₉ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with at least one radical chosen from (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido, and (C₁-C₆)alkylsulphonyl radicals; a C₁-C₆ carbamylalkyl radical; a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical; a (C_1-C_6) alkylcarboxy (C_1-C_6) alkyl radical; a (C₁-C₆)alkylcarbonyl(C₁-C₆)alkyl radical; and a N-(C₁-C₆)alkylcarbamyl(C₁-C₆)alkyl radical, R₁₆ and R₁₇ together form a ring chosen from an azetidine, pyrrolidine, piperidine, homopiperidine, piperazine, homopiperazine, and morpholine rings, and R₁₈ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with at least one radical chosen from (C1-C4)alkyl, (C₁-C₆)alkylcarbonyl, amido, and (C₁-C₆)alkylsulphonyl radicals; a C₁-C₆ carbamylalkyl radical; a tri (C_1-C_6) alkylsilane (C_1-C_6) alkyl radical; a (C_1-C_6) alkylcarboxy (C_1-C_6) alkyl radical; a (C_1-C_6) alkylcarbonyl (C_1-C_6) alkyl radical; and a N- (C_1-C_6) alkylcarbamyl $(C_1-C_$ C₆)alkyl radical.
- 57. (New) The composition according to claim 53, wherein x is equal to 0 and R_{16} , R_{17} and R_{18} are alkyl radicals.
- 58. (New) The composition according to claim 53, wherein D is chosen from a covalent bond and a C_1 - C_6 alkylene chain, which is optionally substituted.

59. (New) The composition according to claim 47, wherein the onium radical Z is a radical of formula (IV)

$$-D = \begin{bmatrix} (R_{19})_x & E \\ N & G \\ L & J \end{bmatrix}$$

$$T$$

$$(IV)$$

wherein

- D is chosen from a covalent bond and a linear and branched C₁-C₁₄ alkylene chain which optionally comprises at least one entity chosen from at least one hetero atom chosen from oxygen, sulphur and nitrogen; SO₂; and at least one ketone function, wherein the chain optionally is substituted with at least one radical chosen from hydroxyl, C₁-C₆ alkoxy, amino, and C₁-C₄ (di)alkylamino radicals,
 - E, G, J and L, which may be identical or different, are chosen from carbon, oxygen, sulphur, and nitrogen atoms to form a ring chosen from pyrazole, imidazole, triazole, oxazole, isoxazole, thiazole, and isothiazole rings,
 - a is an integer ranging from 0 to 3;
 - b is an integer ranging from 0 to 1;

- a+b is an integer ranging from 2 to 4,
- R, which may be identical or different, is chosen from hydrogen and halogen atoms; a hydroxyl radical; a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ alkoxy radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; an amido radical; a carboxyl radical; a C₁-C₆ alkylcarbonyl radical; a thio radical; a C₁-C₆ thioalkyl radical; a (C₁-C₆)alkylthio radical; an amino radical; an amino radical mono- or disubstituted with at least one radical chosen from (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido, and (C₁-C₆)alkylsulphonyl radicals; a C₁-C₆ monohydroxyalkyl radical and a C₂-C₆ polyhydroxyalkyl radical; a benzyl radical; and a phenyl radical optionally substituted with at least one radical chosen from methyl, hydroxyl, amino, and methoxy radicals; wherein the radicals R are borne by a carbon atom;
- R₂₀ is chosen from a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical, a C₂-C₆ polyhydroxyalkyl radical, a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical, a (C₁-C₆)alkoxy(C₁-C₆)alkyl radical, a C₁-C₆ carbamylalkyl radical, a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical, and a benzyl radical; wherein the radical R₂₀ is borne by a nitrogen atom,
- R₁₉ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine

is mono- or disubstituted with at least one radical chosen from (C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido, and (C_1 - C_6)alkylsulphonyl radicals; a carboxy(C_1 - C_6)alkyl radical; a carbamyl(C_1 - C_6)alkyl radical; a C_1 - C_6 trifluoroalkyl radical; a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical; a C_1 - C_6 sulphonamidoalkyl radical; a (C_1 - C_6)alkylcarboxy(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkylsulphinyl(C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl radical; a (C_1 - C_6)alkyl radical; a C_1 - C_6)alkyl radical; a C_1 - C_6)alkyl radical; and a C_1 - C_6 0alkyl radical; and a C_1 - C_6 0alkylsulphonamido(C_1 - C_6 0alkyl radical,

- x is equal to 0 or 1,
 - when x is equal to 0, the linker arm D is attached to the nitrogen atom,
 - when x is equal to 1, the linker arm D is attached to one ring member chosen from E, G, J, and L when E, G, J or L is chosen from a carbon atom, and
- T is a counterion.
- 60. (New) The composition according to claim 59, wherein the ring members E, G, J and L form a ring chosen from imidazole, pyrazole, oxazole, thiazole, and triazole rings.

- 61. (New) The composition according to claim 59, wherein x is equal to 0, and D is chosen from a single bond and a C_1 - C_4 alkylene chain which is optionally substituted.
- 62. (New) The composition according to claim 47, wherein the onium radical Z is a radical of formula (V)

wherein

- D is chosen from a covalent bond and a linear and branched C₁-C₁₄ alkylene chain which optionally comprises at least one entity chosen from at least one hetero atom chosen from oxygen, sulphur and nitrogen; SO₂; and at least one ketone function, wherein the chain optionally is substituted with at least one radical chosen from hydroxyl, C₁-C₆ alkoxy, amino, and C₁-C₄ (di)alkylamino radicals,
- R, which may be identical or different, is chosen from hydrogen and halogen atoms; a hydroxyl radical; a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ alkoxy radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; an amido radical; a carboxyl

radical; a C_1 - C_6 alkylcarbonyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a $(C_1$ - C_6)alkylthio radical; an amino radical; an amino radical mono- or disubstituted with at least one radical chosen from $(C_1$ - C_6)alkyl, $(C_1$ - C_6)alkylcarbonyl, amido, and $(C_1$ - C_6)alkylsulphonyl radicals; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a benzyl radical; and a phenyl radical optionally substituted with at least one radical chosen from methyl, hydroxyl, amino, and methoxy radicals; wherein the radicals R are borne by a carbon atom;

- R₁₉ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical wherein the amine is mono- or disubstituted with at least one radical chosen from (C₁-C₆)alkyl, (C₁-C₆)alkylcarbonyl, amido, and (C₁-C₆)alkylsulphonyl radicals; a carboxy(C₁-C₆)alkyl radical; a carbamyl(C₁-C₆)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a tri(C₁-C₆)alkylsilane(C₁-C₆)alkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a (C₁-C₆)alkylcarboxy(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphinyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkylsulphonyl(C₁-C₆)alkyl radical; a (C₁-C₆)alkyl radical; and a N-(C₁-C₆)alkylsulphonamido(C₁-C₆)alkyl radical,
 - E, G, J, L and M, which may be identical or different, are chosen from carbon and nitrogen atoms, and form a ring chosen from pyridine, pyrimidine, pyrazine, triazine and pyridazine rings,
 - d is an integer ranging from 3 to 5,

- x is equal to 0 or 1,
 - when x is equal to 0, the linker arm D is attached to the nitrogen atom,
 - when x is equal to 1, the linker arm D is attached to one ring member chosen from E, G, J, L, and M, when E, G, J, L or M is chosen from a carbon atom, and
- T is a counterion.
- 63. (New) The composition according to claim 62, wherein the ring members E, G, J, L and M form, with the nitrogen of the ring, a ring chosen from pyridine, pyrimidine, pyridazine, and pyrazine rings.
- 64. (New) The composition according to claim 59, wherein x is equal to 0 and R is chosen from a hydroxyl radical; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 alkoxy radical; a tri(C_1 - C_6)alkylsilane(C_1 - C_6)alkyl radical; an amido radical; a C_1 - C_6 alkylcarbonyl radical; an amino radical; an amino radical mono- or disubstituted with at least one radical chosen from (C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido, and (C_1 - C_6)alkylsulphonyl radicals; a C_1 - C_6 monohydroxyalkyl radical; and a C_2 - C_6 polyhydroxyalkyl radical; wherein the radical R is borne by a carbon atom.
- 65. (New) The composition according to claim 59, wherein when x is equal to 1,

 R_{19} is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 aminoalkyl radical, wherein the amine is mono- or disubstituted with at least one radical chosen from $(C_1$ - $C_6)$ alkyl, $(C_1$ - $C_6)$ alkylcarbonyl, amido, and $(C_1$ - $C_6)$ alkylsulphonyl radicals; a C_1 - C_6 carbamylalkyl radical; a tri $(C_1$ - $C_6)$ -alkylsilane $(C_1$ - $C_6)$ alkyl radical; a $(C_1$ - $C_6)$ alkylcarbonyl $(C_1$ - $C_6)$ alkyl radical; and a N- $(C_1$ - $C_6)$ alkylcarbamyl $(C_1$ - $C_6)$ alkyl radical; and

R is chosen from a hydroxyl radical, a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical, a C_2 - C_6 polyhydroxyalkyl radical, a C_1 - C_6 alkoxy radical, a C_1 - C_6 alkylsilane(C_1 - C_6)alkyl radical, an amido radical, a C_1 - C_6 alkylcarbonyl radical, an amino radical, and an amino radical mono- or disubstituted with at least one radical chosen from (C_1 - C_6)alkyl, (C_1 - C_6)alkylcarbonyl, amido, and (C_1 - C_6)alkylsulphonyl radicals.

- 66. (New) The composition according to claim 59, wherein R and R_{19} are C_1 - C_4 alkyl radicals which are optionally substituted.
- 67. (New) The composition according to claim 47, wherein W₁ is chosen from 5-aminopyrazole, 5-hydroxypyrazole, pyrazolo[1,5-b]pyridine, pyrazolo[1,5-a]pyrimidine, pyrazolo[3,2-c]triazole, pyrazolo[1,5-b]triazole, aminopyrimidine, triaminopyrimidine, hydroxyaminopyrimidine, 2-aminopyridine, indoline, and indole radicals.
- 68. (New) The composition according to claim 67, wherein W_1 is chosen from the 5-aminopyrazole and 5-hydroxypyrazole radicals of formula (R1).

- 69. (New) The composition according to claim 68, wherein W_1 is chosen from 5-aminopyrazole and 5-hydroxypyrazole radicals wherein R_6 and R_{11} , which may be identical or different, are chosen from hydrogen atoms and linear and branched, saturated and unsaturated C_1 - C_{10} hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of each other, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_2 groups, and optionally substituted with at least one entity chosen from a halogen atom, and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals R_6 to R_{12} do not comprise a peroxide bond, or a diazo or nitroso radical and the radical R_{11} is not linked directly to the nitrogen atom via an oxygen, sulphur or nitrogen atom.
- 70. (New) The composition according to claim 69, wherein R_6 and R_{11} , which are independent of each other, are chosen from hydrogen atoms and linear and branched, saturated and unsaturated C_1 - C_4 hydrocarbon-based chains, which optionally form at least one 5- or 6-membered carbon-based ring, wherein the carbon atoms of the carbon-based chain, independently of each other, are optionally substituted with at least one entity chosen from a halogen atom, a hydroxyl radical, and amino radicals.
- 71. (New) The composition according to claim 47, wherein W_1 is chosen from a compound of formula RIII

wherein R₆, R₇, R₈, and R₉, which are independent of each other, are chosen from:

-hydrogen atoms,

-linear and branched, saturated and unsaturated C_1 - C_{10} hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_2 groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals R_6 to R_9 do not comprise a peroxide bond or diazo or nitroso radicals, and

Z₈ is chosen from a nitrogen atom and a CR₁₅ radical.

- 72. (New) The composition according to claim 71, wherein W_1 is a pyrazolo[1,5-b]pyridine radical wherein R_6 , R_7 , R_8 , R_9 and R_{15} , which may be identical or different, are chosen from
 - hydrogen atoms,

• linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals do not comprise a peroxide bond or diazo or nitroso radicals,

- hydroxyl and amino radicals, the amine radical optionally substituted with a linear or branched, saturated or unsaturated C₁-C₄ hydrocarbon-based chain, which optionally forms at least one 5- or 6-membered carbon-based ring, wherein the carbon atoms of the carbon-based chain, independently of each other, are optionally substituted with at least one entity chosen from halogen atoms and hydroxyl and amino radicals.
- 73. (New) The composition according to Claim 72, wherein W_1 is a pyrazolo[1,5-b]pyridine radical wherein R_6 , R_7 , R_8 , R_9 and R_{15} , which may be identical or different, are chosen from:
 - hydrogen atoms,
 - linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbonbased chains, which optionally form at least one 4- to 8-membered

carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic and thiol radicals; with the proviso that the radicals do not comprise a peroxide bond or diazo or nitroso radicals,

- hydroxyl or amino radicals, the amine radical is optionally substituted with a linear or branched, saturated or unsaturated C₁-C₄ hydrocarbon-based chain, which optionally forms at least one 6-membered carbon-based ring, wherein the carbon atoms of the carbon-based chain, which are independent of each other, optionally are substituted with at least one entity chosen from halogen atoms, and hydroxyl and amino radicals.
- 74. (New) The composition according to claim 71, wherein W_1 is a pyrazolo[1,5-b]pyridine radical wherein R_6 , R_7 , R_8 , R_9 and R_{15} , which may be identical or different, are chosen from:
 - hydrogen atoms,
 - linear and branched, saturated and unsaturated C₁-C₁₀
 hydrocarbon-based chains, which optionally form at least one 4- to 8 membered carbon-based ring, wherein the carbon atoms of the carbon-based chain, independently of each other, optionally are substituted with

at least one entity chosen from halogen atoms and hydroxyl, amino, monosubstituted or disubstituted amino, C₁-C₄ alkoxy, C₁-C₄ thioether, carboxyl, sulphonic, and thiol radicals;

- hydroxyl and amino radicals, the amine optionally substituted with a linear or branched, saturated or unsaturated C₁-C₄ hydrocarbon-based chain, which optionally forms at least one 5- or 6-membered carbon-based ring, wherein the carbon atoms of the carbon-based chain, independently of each other, optionally are substituted with at least one entity chosen from halogen atoms and hydroxyl, and amino radicals.
- 75. (New) The composition according to Claim 72, wherein the radicals R₆, R₇, R₈, R₉ and R₁₅ are chosen from hydrogen atoms and linear and branched C₁-C₄ hydrocarbon-based chains which are optionally saturated or unsaturated, wherein the carbon atoms of the carbon-based chain, independently of each other, optionally are substituted with at least one entity chosen from halogen atoms, hydroxyl and amino radicals.
- 76. (New) The composition according to claim 71, wherein W_1 is a pyrazolo[1,5-a]pyrimidine radical wherein

 R_7 and R_9 are chosen from hydrogen atoms; linear and branched C_1 - C_6 alkyl radicals; C_1 - C_6 monohydroxyalkyl radicals; C_2 - C_6 polyhydroxyalkyl radicals; C_1 - C_6 aminoalkyl radicals and C_1 - C_6 aminoalkyl radicals wherein the amine is mono- or disubstituted with at least one radical chosen from a $(C_1$ - C_6)alkyl radical; a

(C₁-C₆)alkylcarbonyl radical; a hydroxyl radical; and an amino radical, wherein the amino is optionally substituted with a linear or branched C₁-C₁₀ hydrocarbon-based chain, which optionally forms at least one 5- or 6-membered carbon-based ring which is saturated or unsaturated, wherein the carbon atoms of the carbon-based chain, independently of each other, optionally are substituted with at least one entity chosen from halogen atoms and hydroxyl and amino radicals;

 R_6 and R_8 are chosen from hydrogen atoms; linear and branched C_1 - C_6 alkyl radicals; C_1 - C_6 monohydroxyalkyl radicals; C_2 - C_6 polyhydroxyalkyl radicals; C_1 - C_6 aminoalkyl radicals; and C_1 - C_6 aminoalkyl radicals wherein the amine is mono- or disubstituted with at least one radical chosen from $(C_1$ - $C_6)$ alkyl and $(C_1$ - $C_6)$ alkylcarbonyl radicals.

77. The composition according to claim 76, wherein

 R_7 and R_9 are chosen from hydrogen atoms; linear and branched C_1 - C_4 alkyl radicals; C_1 - C_4 monohydroxyalkyl radicals; C_2 - C_4 polyhydroxyalkyl radicals; C_1 - C_4 aminoalkyl radicals; and C_1 - C_4 aminoalkyl radicals wherein the amine is mono- or disubstituted with at least one radical chosen from $(C_1$ - $C_2)$ alkyl, hydroxyl, and amino radicals, wherein the amino is optionally substituted with a linear or branched C_1 - C_4 hydrocarbon-based chain, wherein the carbon atoms of the carbon-based chain, independently of each other, optionally are substituted with at least one entity chosen from hydroxyl and amino radicals, and

 R_6 and R_8 are chosen from hydrogen atoms; linear and branched C_1 - C_4 alkyl radicals; C_1 - C_4 monohydroxyalkyl radicals; C_2 - C_4 polyhydroxyalkyl radicals; C_1 - C_4 aminoalkyl radicals; C_1 - C_4 aminoalkyl radicals wherein the amine is mono- or disubstituted with at least one radical chosen from $(C_1$ - $C_2)$ alkyl and C_1 - C_2 alkoxy radicals.

- 78. (New) The composition according to claim 77, wherein R_6 , R_7 , R_8 and R_9 are chosen from hydrogen atoms; C_1 - C_4 alkyl radicals; amino radicals; C_1 - C_4 monoand dialkylamino radicals; C_1 - C_4 hydroxyalkyl radicals; and C_1 - C_2 alkoxy radicals.
- 79. (New) The composition according to claim 47, wherein the compound of formula (I) is a cationic compound substituted with at least one onium radical Z.
- 80. (New) The composition according to claim 79, wherein at least one of the radicals R_1 and R_2 is an onium radical Z.
- 81. (New) The composition according to claim 80, wherein R_1 and R_2 form a ring of formula (II) wherein R' is an onium radical Z.
 - 82. (New) The composition according to Claim 81, wherein Y is NR'₆R'₇.
- 83. (New) The composition according to claim 47, wherein the compound of formula (I) is a compound of the following formula

wherein R₁ and R₂, which are independent of each other, are chosen from:

-hydrogen atoms,

-linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently from the other carbon atoms, optionally is replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di)alkylamino, C₁-C₂ alkoxy, carboxyl, sulphonic, and thiol radicals; with the proviso that R₁ and R₂ do not comprise a peroxide bond, or a diazo or nitroso radical, and R₁ and R₂ are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom, or SO₂ group, and

- an onium radical Z, or alternatively

 R₁ and R₂ form, with the nitrogen atom to which they are attached, a ring of formula (II):

formula (II)

wherein

- R' is chosen from:
 - a hydrogen atom;
 - a halogen atom;
 - a C_1 - C_4 alkyl radical optionally substituted with at least one radical chosen from hydroxyl, carboxyl, C_1 - C_4 alkoxycarbonyl,

 $(C_1-C_4)alkylamido((C_1-C_4)alkylCONH-), (C_1-C_4)alkylcarbamoyl\\ \\ ((C_1-C_4)alkylNHCO-), (C_1-C_4)alkylsulphonyl ((C_1-C_4)alkylSO_2-), C_1-C_4\\ \\ alkoxy, (C_1-C_4)alkylsulphonamido ((C_1-C_4)alkylSO_2NH-),\\ \\$

(C₁-C₄)alkylsulphamoyl ((C₁-C₄)alkylNHSO₂-), and onium Z radicals;

- a NR'₃R'₄ radical;
- a carboxyl radical;
- a C₁-C₄ alkoxycarbonyl radical;

- a (C₁-C₄)alkylamido radical ((C₁-C₄)alkylCONH-);
- a (C₁-C₄)alkylsulphonyl radical (alkylSO₂-);
- an alkylsulphonamido radical ((C₁-C₄)alkylSO₂NH-);
- a hydroxyl radical;
- a C₁-C₄ alkoxy radical;
- a C₂-C₄ hydroxyalkoxy radical;
- a (C₁-C₄)alkylcarbamoyl radical ((C₁-C₄)alkylNHCO-);
- (C₁-C₄)alkylsulphamoyl ((C₁-C₄)alkyl-NH-SO₂-);
- a C₁-C₄ thioether radical;
- a sulphonic radical (SO₃H) and the addition salts thereof; and
- an onium radical Z,

wherein R'_3 and R'_4 , which may be identical or different, are chosen from hydrogen atom; and C_1 - C_4 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, amino, mono- and dialkylamino, $(C_1$ - C_4)alkylCO-, $(C_1$ - C_4)alkylCO-, and $(C_1$ - C_4)alkylCO-, radicals,

- n is an integer ranging from 1 to 8,
- m is an integer ranging from 0 to 3, and
- Y is chosen from a oxygen atom, a CR' radical, a NR'₅ radical, and a NR'₆R'₇ radical wherein

Application No.: 10/678,635

R'₅ is chosen from a hydrogen atom and a linear or branched, saturated or

unsaturated C₁-C₁₀ hydrocarbon-based chain, wherein at least one carbon

atom of the carbon-based chain, independently of the other carbon atoms,

optionally is replaced with an entity chosen from oxygen, nitrogen and

sulphur atoms, and SO₂ groups, and optionally substituted with at least

one entity chosen from halogen atoms and hydroxyl, amino, carboxyl,

sulphonic, and thiol radicals; with the proviso that R'₅ does not comprise a

peroxide bond, or a diazo or nitroso radical, and R'5 is not directly linked to

the nitrogen atom via an oxygen, sulphur or nitrogen atom,

R'₆ and R'₇, which are independent of each other, are chosen from linear

and branched C₁-C₁₀ hydrocarbon-based chains, which are saturated or

unsaturated, wherein at least one carbon atom of the carbon-based chain,

independently of the other carbon atoms, optionally is replaced with an

entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups,

and optionally substituted with at least one entity chosen from halogen

atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with

the proviso that R'₆ and R'₇ do not comprise a peroxide bond, or a diazo or

nitroso radical, and R'₆ and R'₇ are not directly linked to the nitrogen atom

via an oxygen, sulphur or nitrogen atom,

R₆ is chosen from:

-a hydrogen atom,

31

-a linear or branched, saturated or unsaturated C_1 - C_{10} hydrocarbon-based chain, which optionally forms at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, which may be identical or different, optionally is replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_2 groups, and optionally is substituted with at least one entity chosen from halogen atoms and hydroxyl, amnio, carboxyl, sulphonic, and thiol radicals; with the proviso that the radical R_6 does not comprise a peroxide bond or diazo or nitroso radicals.

84. (New) The composition according to claim 47, wherein the compound of formula (I) is chosen from

N-N N-N N-N N-N N-N N-N N-N N-N N-N N-N	N-N N-N N-N-NH ₂
N-N N-N N-N N-N N-N N-N N-N N-N N-N N-N	N-N NH ₂ N N N N N N N N N N N N N N N N N N N
N-N N-N N-N	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
THE STATE OF THE S	NH NH OH

N N N N N N N N N N N N N N N N N N N	N-N N-N N-N N-N
N-N N-N N-N-N-OH H	NH ₂ N NH ₂
N-N N-N NH ₂ NH ₂ NH ₂ NH ₂	N-N H ₂ N NH ₂ N NH ₂ N-N

- 85. (New) The composition according to claim 47, wherein the compound of formula (I) is present in an amount ranging from 0.01% to 10% by weight, relative to the total weight of the composition.
- 86. (New) The composition according to claim 47, further comprising at least one oxidation base chosen from para-phenylenediamines, bis(phenyl)alkylenediamines, para-aminophenols, ortho-aminophenols, heterocyclic bases, and the acid-addition salts thereof.
- 87. (New) The composition according to Claim 86, wherein the at least one oxidation base is present in an amount ranging from 0.001% to 10% by weight, relative to the total weight of the composition.
- 88. (New) The composition according to claim 47, further comprising at least one coupler chosen from meta-phenylenediamines, meta-aminophenols, meta-

diphenols, naphthalene-based couplers, heterocyclic couplers, and the acid-addition salts thereof.

- 89. (New) The composition according to claim 47, further comprising at least one oxidizing agent.
- 90. (New) A direct dye of formula (I) comprising, in a suitable medium, at least one compound of formula (I), or an addition salt thereof:

wherein

- R₁ and R₂, which are independent of each other, are chosen from:
 - -hydrogen atoms,
 - -linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di)alkylamino, C₁-C₂ alkoxy,

carboxyl, sulphonic, and thiol radicals; with the proviso that R_1 and R_2 do not comprise a peroxide bond or diazo or nitroso radical, and R_1 and R_2 are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom or an SO_2 group, and

-onium radical Z, or alternatively

 R₁ and R₂ form, with the nitrogen atom to which they are attached, a ring of formula (II):

formula (II)

wherein

- R' is chosen from:
 - a hydrogen atom;
 - a halogen atom;
 - a C₁-C₄ alkyl radical optionally substituted with at least one radical chosen from hydroxyl, carboxyl, C₁-C₄ alkoxycarbonyl, (C₁-C₄)alkylamido((C₁-C₄)alkylCONH-), (C₁-C₄)alkylcarbamoyl ((C₁-C₄)alkylNHCO-), (C₁-C₄)alkylsulphonyl ((C₁-C₄)alkylSO₂-), C₁-C₄

alkoxy, (C_1-C_4) alkylsulphonamido $((C_1-C_4)$ alkylSO₂NH-), (C_1-C_4) alkylsulphamoyl $((C_1-C_4)$ alkylNHSO₂-), and onium Z radicals;

- a NR'₃R'₄ radical;
- a carboxyl radical;
- a C₁-C₄ alkoxycarbonyl radical;
- a (C₁-C₄)alkylamido radical ((C₁-C₄)alkylCONH-);
- a (C₁-C₄)alkylsulphonyl radical (alkylSO₂-);
- an alkylsulphonamido radical ((C₁-C₄)alkylSO₂NH-);
- a hydroxyl radical;
- a C₁-C₄ alkoxy radical;
- a C₂-C₄ hydroxyalkoxy radical;
- a (C₁-C₄)alkylcarbamoyl radical ((C₁-C₄)alkylNHCO-);
- (C₁-C₄)alkylsulphamoyl ((C₁-C₄)alkyl-NH-SO₂-);
- a C₁-C₄ thioether radical;
- a sulphonic radical (SO₃H) and the addition salts thereof; and
- an onium radical Z,

wherein R'_3 and R'_4 , which may be identical or different, are chosen from hydrogen atoms and C_1 - C_4 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, amino, mono- and dialkylamino, $(C_1$ - C_4)alkylCO-, $(C_1$ - C_4)alkylCO-, and $(C_1$ - C_4)alkylCO-, radicals,

Application No. 10/678 635

Application No.: 10/678,635

- n is an integer ranging from 1 to 8,

- m is an integer ranging from 0 to 3, and

- Y is chosen from a oxygen atom, a CR' radical, a NR'₅ radical, and a NR'₆R'₇ radical

wherein

R'₅ is chosen from a hydrogen atom and linear and branched, saturated

and unsaturated C₁-C₁₀ hydrocarbon-based chains, wherein at least one

carbon atom of the carbon-based chain, independently of the other carbon

atoms, is optionally replaced with an entity chosen from oxygen, nitrogen

and sulphur atoms, and SO₂ groups, and optionally substituted with at

least one entity chosen from halogen atoms and hydroxyl, amino,

carboxyl, sulphonic, and thiol radicals; with the proviso that R'₅ does not

comprise a peroxide bond, or diazo or nitroso radicals, and R'₅ is not

directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen

atom,

R'₆ and R'₇, which are independent of each other, are chosen from linear

and branched C₁-C₁₀ hydrocarbon-based chains, which are saturated or

unsaturated, wherein at least one carbon atom of the carbon-based chain,

independently of each other, may optionally be replaced with an entity

chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and

optionally substituted with at least one entity chosen from halogen atoms

and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the

39

proviso that R'₆ and R'₇ do not comprise a peroxide bond, or diazo or nitroso radical, and R'₆ and R'₇ are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

- R₃ is chosen from:
 - a hydrogen atom,
 - linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di) alkylamino, C₁-C₂ alkoxy, carboxyl, sulphonic, and thiol radicals; with the proviso that R₃ does not comprise a peroxide bond, or diazo or nitroso radical,
 - a NR'₁R'₂ radical, wherein R'₁ and R'₂ are defined as R₁ and R₂,
- W₁ is chosen from an aromatic heterocyclic radical chosen from the following radicals:

R ₆ N _N Z ₁ (R1)	N Z ₂ Z ₄ -Z ₆ (RII)	R ₅ N N Z ₅ R ₇ R ₈ (RIII)	Z ₁ NH ₂ NH ₂ (RIV)
R ₃ R ₈ R ₁₂ R ₁₁ (RV)	(RVI)	R7 R B R 11 (RVII)	R6 N N N R 11 (RVIII)

- Z₁ and Z₃, which are independent of each other, are chosen from hydrogen atoms, hydroxyl radicals and NR₁₁R₁₂ radicals,
- Z₂, Z₄ and Z₆, which are independent of each other, are chosen from nitrogen atoms, CR₁₂ radicals, and NR₁₁ radicals, wherein at least one of Z₂, Z₄, and Z₆ is a CR₁₂ radical and wherein there are no more than three contiguous nitrogen atoms,
- Z₈ is chosen from a nitrogen atom and a CR₁₅ radical,
- R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₅, which are independent of each other, are chosen from:
 - -hydrogen atoms,
 - -linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based

chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_2 groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amnio, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals R_6 to R_{12} and R_{15} do not comprise a peroxide bond, or diazo or nitroso radical, and the radical R_{11} is not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

- p ranges from 4 to 8,
- q ranges from 1 to 3, and
- r ranges from 0 to 2,
- * indicates a point of attachment of W₁ in formula (I).
- 91. (New) A process for dyeing keratin fibers comprising applying to said fibers for a period that is sufficient to obtain a desired coloration a dye composition comprising, in a suitable medium, at least one compound of formula (I), or an addition salt thereof:

wherein

• R₁ and R₂, which are independent of each other, are chosen from:

-hydrogen atoms,

-linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di)alkylamino, C₁-C₂ alkoxy, carboxyl, sulphonic, and thiol radicals; with the proviso that R₁ and R₂ do not comprise a peroxide bond, or diazo or nitroso radical, and R₁ and R₂ are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom or an SO₂ group, and

- an onium radical Z, or alternatively
- R₁ and R₂ form, with the nitrogen atom to which they are attached, a ring of formula (II):

formula (II)

wherein

- R' is chosen from:
 - a hydrogen atom;
 - a halogen atom;
 - a C_1 - C_4 alkyl radical optionally substituted with at least one radical chosen from hydroxyl, carboxyl, C_1 - C_4 alkoxycarbonyl,

 (C_1-C_4) alkylamido $((C_1-C_4)$ alkylCONH-), (C_1-C_4) alkylcarbamoyl $((C_1-C_4)$ alkylNHCO-), (C_1-C_4) alkylsulphonyl $((C_1-C_4)$ alkylSO₂-), C_1-C_4

alkoxy, (C_1-C_4) alkylsulphonamido $((C_1-C_4)$ alkylSO₂NH-),

(C₁-C₄)alkylsulphamoyl ((C₁-C₄)alkylNHSO₂-), and onium Z radicals;

- a NR'3R'4 radical;
- a carboxyl radical;
- a C₁-C₄ alkoxycarbonyl radical;
- a (C_1-C_4) alkylamido radical $((C_1-C_4)$ alkylCONH-);
- a (C₁-C₄)alkylsulphonyl radical (alkylSO₂-);
- an alkylsulphonamido radical ((C₁-C₄)alkylSO₂NH-);
- a hydroxyl radical;
- a C₁-C₄ alkoxy radical;
- a C₂-C₄ hydroxyalkoxy radical;
- a (C_1-C_4) alkylcarbamoyl radical $((C_1-C_4)$ alkylNHCO-);

- (C₁-C₄)alkylsulphamoyl ((C₁-C₄)alkyl-NH-SO₂-);
- a C₁-C₄ thioether radical;
- a sulphonic radical (SO₃H) and the addition salts thereof; and
- an onium radical Z,

wherein R'_3 and R'_4 , which may be identical or different, are chosen from hydrogen atoms and C_1 - C_4 alkyl radicals optionally substituted with at least one radical chosen from hydroxyl, C_1 - C_4 alkoxy, amino, mono- and dialkylamino, $(C_1$ - C_4)alkylCO-, $(C_1$ - C_4)alkylCO-, and $(C_1$ - C_4)alkylCO-, radicals,

- n is an integer ranging from 1 to 8,
- m is an integer ranging from 0 to 3, and
- Y is chosen from a oxygen atom, a CR' radical, a NR'₅ radical, and a NR'₆R'₇ radical wherein

 R_{5}^{\prime} is chosen from a hydrogen atom and linear and branched, saturated and unsaturated C_{1} - C_{10} hydrocarbon-based chains, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_{2} groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that R_{5}^{\prime} does not comprise a peroxide bond, or diazo or nitroso radical, and R_{5}^{\prime} is not

directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

R'₆ and R'₇, which are independent of each other, are chosen from linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, optionally is replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one halogen atom, hydroxyl, amino, carboxyl, sulphonic, and thiol radicals; with the proviso that R'₆ and R'₇ do not comprise a peroxide bond or diazo or nitroso radicals, and R'₆ and R'₇ are not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

R₃ is chosen from:

- a hydrogen atom,
- a linear and branched, saturated and unsaturated C₁-C₁₀ hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO₂ groups, and optionally substituted with at least one entity chosen from halogen atoms and hydroxyl, amino, C₁-C₂ (di) alkylamino, C₁-C₂ alkoxy,

carboxyl, sulphonic, and thiol radicals; with the proviso that R₃ does not comprise an entity chosen from a peroxide bond, or diazo or nitroso radical,

- a NR'₁R'₂ radical, wherein R'₁ and R'₂ being defined as R₁ and R₂,
- W₁ is chosen from an aromatic heterocyclic radical chosen from the following radicals:

- Z₁ and Z₃, which are independent of each other, are chosen from hydrogen atoms, hydroxyl radicals and NR₁₁R₁₂ radicals,
- Z₂, Z₄ and Z₆, which are independent of each other, are chosen from nitrogen atoms, CR₁₂ radicals, and NR₁₁ radicals, wherein at least one of Z₂, Z₄, and Z₆ is chosen from a CR₁₂ radical and wherein there are no more than three contiguous nitrogen atoms,
- Z₈ is chosen from a nitrogen atom and a CR₁₅ radical,

• R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₅, which are independent of each other, are chosen from:

-hydrogen atoms,

-linear and branched, saturated and unsaturated C_1 - C_{10} hydrocarbon-based chains, which optionally form at least one 4- to 8-membered carbon-based ring, wherein at least one carbon atom of the carbon-based chain, independently of the other carbon atoms, is optionally replaced with an entity chosen from oxygen, nitrogen and sulphur atoms, and SO_2 groups, and optionally is substituted with at least one entity chosen from halogen atoms and hydroxyl, amnio, carboxyl, sulphonic, and thiol radicals; with the proviso that the radicals R_6 to R_{12} and R_{15} do not comprise a peroxide bond, or diazo or nitroso radical, and the radical R_{11} is not directly linked to the nitrogen atom via an oxygen, sulphur or nitrogen atom,

- p ranges from 4 to 8,
- q ranges from 1 to 3, and
- r ranges from 0 to 2,
- * indicates a point of attachment of W_1 in formula (I).