Data Structures and Abstractions with JavaTM

5th Edition

Chapter 14

Problem Solving with Recursion

Simple Solution to a Difficult Problem

FIGURE 14-1 The initial configuration of the Towers of Hanoi for three disks

Simple Solution to a Difficult Problem

Rules:

- Move one disk at a time. Each disk moved must be the topmost disk.
- No disk may rest on top of a disk smaller than itself.
- You can store disks on the second (extra) pole temporarily, as long as you observe the previous two rules.

Simple Solution to a Difficult Problem (Part 1)

(a) The beginning configuration

© 2019 Pearson Education, Inc.

(b) After moving a disk from pole 1 to pole 3

© 2019 Pearson Education, Inc.

(c) After moving a disk from pole 1 to pole 2

© 2019 Pearson Education, Inc.

© 2019 Pearson Education, Inc.

FIGURE 14-2 Sequence of moves for solving Towers of Hanoi problem with 3 disks

Simple Solution to a Difficult Problem (Part 2)

(e) After moving a disk from pole 1 to pole 3

© 2019 Pearson Education, Inc.

(f) After moving a disk from pole 2 to pole 1

© 2019 Pearson Education, Inc.

(g) After moving a disk from pole 2 to pole 3

© 2019 Pearson Education, Inc.

© 2019 Pearson Education, Inc.

FIGURE 14-2 Sequence of moves for solving Towers of Hanoi problem with 3 disks

A Smaller Problem

(a) The original configuration

(c) After you move one disk from pole 1 to pole 3

(d) After your friend moves three disks from pole 2 to pole 3

© 2019 Pearson Education, Inc.

FIGURE 14-3 The smaller problems in a recursive solution for four disks

Solutions

```
Algorithm to move numberOfDisks disks from startPole to endPole using tempPole
as a spare according to the rules of the Towers of Hanoi problem
if (numberOfDisks == 1)
Move disk from startPole to endPole
else
{
Move all but the bottom disk from startPole to tempPole
Move disk from startPole to endPole
Move all disks from tempPole to endPole
}
```

Recursive algorithm to solve any number of disks. Note: for n disks, solution will be $2^n - 1$ moves

Poor Solution to a Simple Problem

$$F_0 = 1$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ when $n \ge 2$

```
Algorithm Fibonacci(n) if (n <= 1)
return 1
else
return Fibonacci(n - 1) + Fibonacci(n - 2)</pre>
```

Algorithm to generate Fibonacci numbers. Why is this inefficient?

Poor Solution to a Simple Problem

(a) Recursively F_2 is computed 5 times F_3 is computed 3 times F_4 is computed once F_5 is computed once F_6 is computed once F_6 is computed once F_6 is F_7 F_8 F_9 F_9

© 2019 Pearson Education, Inc.

FIGURE 14-4a The computation of the Fibonacci number F6

Poor Solution to a Simple Problem

(a) Recursively

 F_2 is computed 5 times F_3 is computed 3 times F_4 is computed 2 times F_5 is computed once F_6 is computed once

(b) Iteratively

$$F_0 = 1$$

$$F_1 = 1$$

$$F_2 = F_1 + F_0 = 2$$

$$F_3 = F_2 + F_1 = 3$$

$$F_4 = F_3 + F_2 = 5$$

$$F_5 = F_4 + F_3 = 8$$

$$F_6 = F_5 + F_4 = 13$$

© 2019 Passon Education 1

FIGURE 14-4b The computation of the Fibonacci number F6

Backtracking

FIGURE 14-6 A two-dimensional maze with one entrance and one exit

Backtracking

FIGURE 14-7 A solution to the four-queens problem

Backtracking - Queens Solution (Part 1)

= Can be attacked by existing queens = Can be attacked by the newly placed queen = Rejected during backtracking

(a) The first queen in column 1.

(b) The second queen in column 2. All of column 3 is under attack.

(c) Backtrack to column 2 and try another square for the queen.

(d) The third queen in column 3. All of column 4 is under attack.

(e) Backtrack to column 3, but the queen has no other move.

FIGURE 14-8 Solving the four-queens problem by placing one queen at a time in each column

Backtracking - Queens Solution (Part 2)

= Can be attacked by existing queens = Can be attacked by the newly placed queen = Rejected during backtracking

(f) Backtrack to column 2, but the queen has no other move.

(g) Backtrack to column 1 and try another square for the queen.

(h) The second queen in column 2.

(i) The third queen in column 3.

(j) The fourth queen in column 4. Solution!

1 2 3 4

FIGURE 14-8 Solving the four-queens problem by placing one queen at a time in each column

End

Chapter 14

