Statystyka stosowana 2023/2024

Lista 6

- 1. Na podstawie informacji uzyskanych w 12 losowo wybranych stacjach meteorologicznych wyznaczono (w dniach) średnią długość okresu wegetacyjnego $\overline{X} = 231.33$ dnia oraz $S^2 = 31.44$ dnia. Zakładając, że rozkład badanej cechy jest normalny, zbuduj przedział ufności dla średniej i wariancji długości okresu wegetacyjnego. Przyjmij poziom ufności $\alpha = 0.05$.
- 2. Rozważmy problem estymacji średniej w z rozkładu normalnego przy znanej wariancji. Jak duża powinna być długość próby, aby długość przedziału ufności dla średniej była równa 1/3 długości przedziału ufności przy próbie długości n?
- 3. Niech $X_1,...,X_n$ będzie próbą pochodzącą z rozkładu normalnego, dla którego średnia μ jest nieznana, natomiast wariancja σ^2 jest znana. Pokaż, że dla pewnego $u \in R$, $[-\infty, \overline{X} + u\sigma/\sqrt{n}]$ jest także przedziałem ufności dla μ przy poziomie ufności α . Znajdź u.
- 4. Wysymuluj próbę z rozkładu normalnego o długości n z parametrami $\mu=2.1$ oraz $\sigma=0.2$. Wyznacz przedział ufności dla μ przy współczynniku ufności $\alpha=0.02$. Powtórz te procedurę 1000 razy i sprawdź ile razy teoretyczna wartość μ wpada w wyznaczony przedział ufności. Wyniki sprawdź dla n=20,50 oraz n=100. Rozpatrz przypadki, gdy σ jest znana i nieznana.
- 5. Niech $X_1,...,X_n,X_{n+1}$ będzie próbą prostą z rozkładu normalnego z nieznaną średnią μ oraz znaną wariancją σ^2 . Na podstawie próby $X_1,...,X_n$ chcemy skonstruować przedział, zwany przedziałem predykcji, w którym przewidujemy wartość X_{n+1} z prawdopodobieństwem 0.95.
 - a) Jaki jest rozkład $X_{n+1} \frac{1}{n} \sum_{i=1}^{n} X_i$?
 - b) Wyznacz teoretyczny przedział ufności dla X_{n+1} wykorzystując punkt a).
 - c) Dla danych ze strony www wyznacz przedział predykcji zakładając, że $\sigma^2=20.$
- 6. Dla danych ze strony www wyznacz przedział ufności dla średniej oraz wariancji zakładając, że wektor obserwacji pochodzi z rozkładu normalnego. Przyjmij $\alpha=0.05$.