

COMP2054 Tutorial Session 5: Master Theorem

Rebecca Tickle
Warren Jackson
AbdulHakim Ibrahim

Session outcomes

- Identify which recurrences can the Master Theorem be applied to.
- Prove runtime complexities of recurrences using the M.T.

Master Theorem

Master Theorem cases and complexity proofs

Master Theorem "Cheat Sheet"

For a given recurrence of the form $T(n) = a \cdot T(n/b) + f(n)$ the M.T. can tell us the growth rate of T(n) according to three cases:

Case 1: Recurrence dominates (plus special case that f(n) = 0)

IF f(n) is $O(n^c)$ with $c < \log_b a$ THEN T(n) is $O(n^{\log_b a})$

Case 2: Neither term dominates

IF f(n) is $\Theta(n^c(\log n)^k)$ with $c = \log_b a$ and $k \ge 0$ THEN T(n) is $\Theta(n^c(\log n)^{k+1})$

Case 3: f(n) dominates

IF f(n) is $\Omega(n^c)$ with $c > \log_b a$ THEN T(n) is $\Theta(f(n))$

Q1. $T(n) = 2 \cdot T(n/2)$ and T(1) = 1

Q2.
$$T(n) = 2 \cdot T(n/2) + n$$
 and $T(1) = 1$

Q3. $T(n) = 2 \cdot T(n/4) + n$ and T(1) = 1

Q4.
$$T(n) = T(n-1) + 1$$
 and $T(1) = 1$

Identify which case of the Master Theorem each applies to (if any) and find the scaling behaviour

With the base case T(1) = 1:

• Q5.
$$T(n) = 2 \cdot T(n/4) + 1$$

• Q6.
$$T(n) = 4 \cdot T(n/2) + n^2$$

■ Q7.
$$T(n) = 2 \cdot T(n-1)$$

■ Q8.
$$T(n) = 3 \cdot T(n/3) + n \log n$$

• Q9.
$$T(n) = 2 \cdot T(n/2) + 2n^2$$

• Q10.
$$T(n) = 2 \cdot T(n/2) + n(\log n)^2$$

Additional Practice Questions

If you would like some additional practice with the Master Theorem, check the MT Additional Practice Questions document on Moodle.

Thank you