

Métodos Computacionais A

Plano de Ensino – 1º semestre de 2023

Prof. Bernhard Enders bernhard@unb.br - 61-3107-8069 - FUP, sala AT-07/46

Ementa

- ◆ Álgebra linear, autovalores e autovetores de uma matriz.
- ◆ Integração aproximação de funções, funções especiais, zero de funções.
- ◆ Equações não lineares.
- ◆ Equações diferenciais ordinárias.

■ Objetivo

- ◆ Apresentar os fundamentos dos métodos numéricos utilizados em modelagem computacional de problemas físicos.
- ◆ Desenvolver as habilidades de programação em Python, tanto na implementação dos métodos numéricos como na utilização de bibliotecas numéricas estado da arte.

Bibliografia

- ◆ Linge, S. Langtangen, H. P. *Programming for Computations Python*. 2^a ed. Springer, 2020. Disponível em: <<u>https://doi.org/10.1007/978-3-030-16877-3_5</u>>
- ◆ Burden, R.L., Faires, J.D. e Burden, A.M. Análise Numérica, 3ª ed., São Paulo: Cengage Learning, 2015. Disponível em:
 https://integrada.minhabiblioteca.com.br/reader/books/9788522123414
- ◆ Press, W.H.; Saul, A.T.; William T.V.; Flannery, B.P. *Numerical recipes 3rd edition: The art of scientific computing*. 3^a ed. Cambridge: Cambridge University Press, 2007.

Método de ensino

- ◆ Apresentação do conteúdo por meio de aulas expositivas.
- ◆ Demonstração em ambiente de desenvolvimento em Python, da implementação e uso dos métodos numéricos e pacotes.
- Atividades em sala utilizando os métodos estudados.
- ◆ Exercícios no aprender3 de programação em Python.
- ◆ Desenvolvimento de um projeto envolvendo a solução numérica de um problema físico.

■ Atendimento extraclasse

- Haverá um fórum para dúvidas. Não costumo responder perguntas à noite e nos fins de semana. Agradeço aos alunos que colaborarem respondendo dúvidas de outros alunos.
- ◆ As notas serão disponibilizadas exclusivamente via Moodle. O aluno que não se

cadastrar não terá acesso às suas notas ou às provas corrigidas.

■ Avaliação

- ◆ *E* Média dos exercícios de programação em <u>aprender3.unb.br</u>
- ◆ *T* Trabalhos/seminários de aplicação dos algoritmos desenvolvidos
- ♦ *P* Média das provas

$$NF = 0.4E + 0.2T + 0.4P$$

◆ Para ser aprovado o aluno deve obter nota final (NF) maior ou igual a 5,0.

Aula	Dia	Programação
1	28/mar	Apresentação do professor e da disciplina, instalação e uso do Python
2	30/mar	Introdução ao Python, operadores, variáveis, bibliotecas
3	04/abr	Formatação, tipos enumeráveis, bibliotecas, "list comprehension"
4	06/abr	Programação estruturada x programação orientada a objetos
5	11/abr	Precisão e implementação de variáveis numéricas. Numpy: vetores e matrizes
6	13/abr	Evitando erros numéricos
7	18/abr	Gráficos usando bibliotecas do Python
8	20/abr	Zero de funções: bissecção
9	25/abr	Zero de funções: Newton-Rapson
10	27/abr	Interpolação de dados
11	02/mai	Ajuste de funções e extrapolação
12	04/mai	Minimização de funções.
13	09/mai	Diferenciação numérica. Introdução
14	11/mai	Método de diferenças finitas
15	16/mai	Primeira Avaliação
16	18/mai	Integração numérica: método do trapézio.
17	23/mai	Integração numérica: método de Simpson.
18	25/mai	PVI: método de Euler.
19	30/mai	PVI: método de Runge-Kutta.
20	01/jun	PVI: métodos adaptativos.
21	06/jun	Sistemas lineares, determinantes e inversão de matrizes
22	08/jun	Autovalores e autovetores
23	13/jun	Sistemas não lineares I
24	15/jun	Sistemas não lineares II.
25	20/jun	Definição dos projetos
26	22/jun	Segunda prova
27	27/jun	Revisão
28	29/jun	
29	04/jul	
30	06/jul	
31	11/jul	
32	13/jul	