Ottava esercitazione

Esercizio 1.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
			_

Taglio di capacitá minima: $N_s = N_t = N_t$

b) Si consideri il problema dell'albero dei cammini minimi di radice 1 sulla seguente rete. Completare la tabella applicando l'algoritmo di Dijkstra e disegnare l'albero dei cammini minimi.

	iter 1	iter 2	iter 3	iter 4	iter 5	iter 6	iter 7
	π p						
nodo							
visitato							
nodo 2							
nodo 3							
nodo 4							
nodo 5							
nodo 6							
nodo 7							
insieme							
Q							
		2		4		6	
	1						

Esercizio 2.

a) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacitá minima:

N_s =	$N_t =$

b) Si consideri il problema dell'albero dei cammini minimi di radice 1 sulla seguente rete. Completare la tabella applicando l'algoritmo di Dijkstra e disegnare l'albero dei cammini minimi.

	ite	r 1	ite	r 2	ite	r 3	iter 4		ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
insieme												
Q												

<u>(1)</u>

Esercizio 1.

a)

	_		
cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	8	(5, 8, 0, 5, 0, 8, 0, 0, 13, 0, 0)	13
1 - 2 - 4 - 6 - 5 - 7	2	(7, 8, 2, 5, 0, 8, 2, 0, 15, 2, 0)	15

Taglio di capacitá minima: $N_s = \{1, 2, 3, 4, 5, 6\}$

$$N_s = \{1, 2, 3, 4, 5, 6\}$$
 $N_t = \{7\}$

b)

	iteı	: 1	iter 2		iter 3		iter 4		iter 5		iter 6		iter 7	
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato	1		3		2		5	5		1	7		6	
nodo 2	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 3	11	1	11	1	11	1	11	1	11	1	11	1	11	1
nodo 4	$+\infty$	-1	$+\infty$	-1	31	2	21	5	21	5	21	5	21	5
nodo 5	$+\infty$	-1	19	3	18	2	18	2	18	2	18	2	18	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	40	4	40	4	40	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	32	5	32	5	32	5	32	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2, 5		4, 5		4, 7		6, 7		6		Ø	

Esercizio 2.

a)

cammino aumentante	δ	x	v
1 - 2 - 4 - 6	5	(5, 0, 5, 0, 0, 5, 0, 0, 0)	5
1 - 2 - 5 - 4 - 6	9	(14, 0, 5, 9, 0, 14, 0, 9, 0)	14

Taglio di capacitá minima:
$$N_s = \{1, 2, 3, 5\}$$
 $N_t = \{4, 6\}$

	iter	: 1	iter	2	iter	: 3	iter	: 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo												
visitato	1		2		5		3		4	1	6	5
nodo 2	7	1	7	1	7	1	7	1	7	1	7	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	$+\infty$	-1	26	2	16	5	16	5	16	5	16	5
nodo 5	$+\infty$	-1	11	2	11	2	11	2	11	2	11	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	25	4	25	4
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2,	3	3, 4	, 5	3, 4		4		6		Q)

