

دانشگاه اصفهان دانشکده مهندسی کامپیوتر

عنوان:

فاز دوم تمرین دوم هوش محاسباتی: پیاده سازی کنترل کننده منطق فازی برای سیستم آبیاری خودکار گیاه

نگارش

دانیال شفیعی مهدی مهدیه امیررضا نجفی

استاد راهنما دكتر كارشناس

درس مبانی هوش محاسباتی فهرست مطالب

٣	مقلمه	•
٣	پیادهسازی	١
٣	۱.۱ تعریف توابع عضویت	
۴	۲.۱ تعریف و استنتاج قواعد فازی	
۴	۳.۱ خروجی (Defuzzification)	
۴	نتايج آزمايشها	۲
۴	۱.۲ مقایسه روشهای Defuzzification (ورودی نمونه)	
۵	۲.۲ شبیهسازی ۱۰ روزه	
۵	نتیجهگیری	٣
۵	نمودار ها	۴

درس مبانی هوش محاسباتی صفحه ۳ از ۷

۰ مقدمه

در این گزارش، پیادهسازی یک سیستم کنترل فازی برای آبیاری هوشمند خاک بررسی میشود. هدف، نگهداشتن رطوبت خاک در محدوده بهینه با توجه به شرایط جوی متغیر است.

۱ پیادهسازی

۱.۱ تعریف توابع عضویت

برای ورودی های Soil Moisture (رطوبت خاک)، Weather Condition (رطوبت خاک)، Soil Moisture (شرایط جوی) و خروجی Soil Moisture (مقدار آبیاری)، از توابع عضویت مثلثی، ذوزنقه ای و گاوسی کتابخانه scikit-fuzzy استفاده شد:

رطوبت خاک:

- trapmf([0,0,20,40]) خشک
 - متوسط: ([30,50,70]) -
- trapmf([60,80,100,100]) مرطوب:

• شرايط جوى:

- trapmf([0,0,10,25]) آفتابی:
 - trimf([20,50,80]) ابری: -
- trapmf([60,85,100,100]): بارانی:

• مقدار آبیاری:

- $\operatorname{trapmf}([0,0,1,2])$ بدون آب:
 - trimf([1,3,4]) کم:
 - $\operatorname{trimf}([3,5,7])$ متوسط:
 - trapmf([6,8,10,10]) زیاد: -

درس مبانی هوش محاسباتی صفحه ۴ از ۷

۲.۱ تعریف و استنتاج قواعد فازی

در اینجا نه قاعده فازی به کار رفته است:

- ۱. اگر خاک خشک و هوا آفتابی باشد، مقدار آب زیاد است.
- ۲. اگر خاک خشک و هوا ابری باشد، مقدار آب متوسط است.
 - ۳. اگر خاک خشک و هوا بارانی باشد، مقدار آب کم است.
- ۴. اگر خاک متوسط و هوا آفتابی باشد، مقدار آب متوسط است.
 - ۵. اگر خاک متوسط و هوا ابری باشد، مقدار آب کم است.
 - ۶. اگر خاک متوسط و هوا بارانی باشد، بدون آب است.
 - ۷. اگر خاک مرطوب و هوا آفتابی باشد، مقدار آب کم است.
 - ۸. اگر خاک مرطوب و هوا ابری باشد، بدون آب است.
 - ۹. اگر خاک مرطوب و هوا بارانی باشد، بدون آب است.

برای استنتاج از عملگر min برای AND و max برای ترکیب نتایج استفاده شد. سپس همه مقادیر قطعشده خروجی با max برای تجمیع گردید.

(Defuzzification) خروجی ۳.۱

روش اصلی خروجیگیری، مرکز ثقل (Centroid) بود. همچنین برای مقایسه از چهار روش دیگر mom، mom و som ،lom ،mom و bisector

۲ نتایج آزمایشها

۱.۲ مقایسه روشهای Defuzzification (ورودی نمونه)

برای ورودی نمونه با مقدار رطوبت خاک 30% و شرایط جوی 40%، نتایج defuzzification به صورت جدول زیر به دست آمد:

جدول ۱: نتایج مقایسه روشهای Defuzzification

مقدار خروجي	روش
٠٠.۵	Centroid
٠٠.۵	(MoM) maxima of Mean
• • . 9	(LoM) maxima of Largest
4	(SoM) maxima of Smallest
٠٠.۵	Bisector

درس مبانی هوش محاسباتی صفحه ۵ از ۷

۲.۲ شبیهسازی ۱۰ روزه

برای ارزیابی عملکرد سیستم، شبیهسازی ۱۰ روزه با شرایط اولیه زیر انجام شد:

- رطوبت اولیه خاک: %15
- توالی روزانه جوی: آفتابی، آفتابی، ابری، بارانی، آفتابی، ابری، بارانی، آفتابی، ابری، بارانی

-5% اثر جوی: آفتابی -5%، ابری -2%، بارانی

۳ نتیجهگیری

در این پروژه با استفاده از منطق فازی، توابع عضویت و قواعد مناسب، سیستم کنترل آبیاری پیادهسازی شد. نتایج -defuzzifi و شبیهسازی نشان دادند که سیستم قادر است رطوبت خاک را در شرایط جوی مختلف در سطح بهینه حفظ کند.

۴ نمودارها

شكل ١: توابع عضويت رطوبت خاك

شكل ٢: توابع عضويت شرايط جوى

شكل ٣: توابع عضويت مقدار آبياري

شکل ۴: رطوبت خاک در طول ۱۰ روز شبیهسازی

شکل ۵: مقدار آبیاری روزانه در شبیهسازی