搜索树结点数 的估计

搜索树结点数估计

Monte Carlo方法

- 1. 从根开始,随机选择一条路经,直到不能分支为止,即从 $x_1, x_2, ...$,依次对 x_i 赋值,每个 x_i 的值是从当时的 S_i 中随机选取,直到向量不能扩张为止.
- 2. 假定搜索树的其他 $|S_i|$ –1 个分支与以上随机选出的路径一样,计数搜索树的点数.
- 3. 重复步骤 1 和 2,将结点数进行概率平均.

伪码

Monte Carlo

输入: n 为皇后数, t 为抽样次数

输出: sum,即t次抽样路长平均值

- 1. *sum*←0
- 2. for $i \leftarrow 1$ to t do // 取样次数 t
- **3.** *m*←Estimate(*n*) // *m*为结点数
- 4. $sum \leftarrow sum + m$
- 5. $sum \leftarrow sum / t$

一次抽 样结果

一次抽样

m为本次取样得到的树结点总数 k 为层数

 r_2 为上层结点数

 r_1 为本层结点数

 $r_1 = r_2 \cdot 分支数$

n 为树的层数

从树根向下计算,随机选择,直到树叶.

$$r_2 = 2$$

$$r_1 = r_2 \cdot 3 = 6$$

子过程的伪码

算法Estimate(n)

- 1. $m \leftarrow 1$; $r_2 \leftarrow 1$; $k \leftarrow 1 // m$ 为结点总数
- 2. while $k \le n$ do
- 3. if $S_k = \emptyset$ then return $m \neq \emptyset$

- 4. $r_1 \leftarrow |S_k|^* r_2$ // r_1 为扩张后结点总数
- 5. $m \leftarrow m + r_1$ // r_2 为扩张前结点总数
- 6. x_k 一随机选择 S_k 的元素
- 7. $r_2 \leftarrow r_1$
- 8. $k\leftarrow k+1$

随机选 择一步

4后搜索树遍历的结点

结点数=17

随机选择路径1

7

随机选择路径2

Case1: <2,4,1,3>, 结点数 17

随机选择路径3

Case3: <1,3>,

结点数 13

估计结果

假设 4 次抽样测试:

case1: 1次,

case2: 1次,

case3:2次,

平均结点数 =(21×1+17×1+13×2)/4=16

搜索空间访问的结点数为17

小结

• Monte Carlo 方法

目的: 估计搜索树真正访问结点数

步骤:

随机抽样,选择一条路径 用这条路径代替其他路径 逐层累加树的结点数 多次选择,取结点数的平均值