Disclaimer

This document is an exam summary that follows the slides of the *Probabilistic Artificial Intelligence* lecture at ETH Zurich. The contribution to this is a short summary that includes the most important concepts, formulas and algorithms. This summary was created during the fall semester 2020. Due to updates to the syllabus content, some material may no longer be relevant for future versions of the lecture. This work is published as CC BY-NC-SA.

@**()**(\$)

I do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas. For the full LATEX source code, consider github.com/ymerkli/eth-summaries.

Basics	BLinR $f^* = \mathbf{w}^T \mathbf{x}^*$, $y^* = f^* + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_v^2)$	- Local: distance decaying kernel (e.g. RBF), on-	MCMC Approx pred. distr. $p(y^* x^*, x_{1:n}, y_{1:n}) =$
Product: $P(X,Y) = P(X Y)P(Y) = P(Y X)P(X)$	· 9_	ly condition on points x' where $ k(x,x') > \tau$	
Chain: $P(X_1, X_2,, X_n) = P(X_{1:n}) =$	$p(\mathbf{w}) = \mathcal{N}(0, \sigma_w^2 \mathbf{I}), p(y_i \mathbf{x}_i, \mathbf{w}, \sigma_y) = \mathcal{N}(y_i; \mathbf{w}^T \mathbf{x}_i, \sigma_y^2)$	- k approx: $k(x,x') \approx \phi(x)^T \phi(x')$, then do BLR	$\int p(y^* x^*,\theta)p(\theta (x,y)_{1:n})d\theta = \mathbb{E}_{\theta \sim p(\cdot (x,y)_{1:n})}[f(\theta)]$
$= P(X_1)P(X_2 X_1)P(X_3 X_{1:2})P(X_n X_{1:n-1})$	$p(\mathbf{w} \mathbf{X},\mathbf{y}) = \mathcal{N}(\mathbf{w};\overline{\mu},\overline{\Sigma}), \ \overline{\Sigma} = (\sigma_y^{-2}\mathbf{X}^T\mathbf{X} + \sigma_w^{-2}\mathbf{I})^{-1},$	- RFF: Stationary kernel has Fourier	$\approx \frac{1}{m} \sum_{i=1}^{m} f(\theta^{(i)})$, sample $\theta^{(i)} \sim p(\theta (x,y)_{1:n})$
Sum: $P(X_{1:n}) = \sum_{y} P(X_{1:n}, Y = y) =$	$\overline{\mu} = \sigma_{y}^{-2} \overline{\Sigma} \mathbf{X}^{T} \mathbf{y}; \ p(f^{*} \mathbf{X}, \mathbf{y}, \mathbf{x}^{*}) = \mathcal{N}(\mathbf{x}^{*T} \overline{\mu}, \mathbf{x}^{*T} \overline{\Sigma} \mathbf{x}^{*});$	transf.: $k(x, x') = \int_{\mathbb{R}^d} p(\omega) e^{j\omega^T (x-x')} d\omega =$	from MC with stationary distribution
$\sum_{y} P(X_{1:n} Y=y)P(Y=y) = \int_{y} P(X_{1:n} Y=y)P(Y=y)dy$	$p(y^* \mathbf{X}, \mathbf{y}, \mathbf{x}^*) = \mathcal{N}(\mathbf{x}^{*T}\overline{\mu}, \mathbf{x}^{*T}\overline{\Sigma}\mathbf{x}^* + \sigma_y^2)$	$\mathbb{E}_{\omega,b}[z_{w,b}(x)z_{w,b}(x')] \approx \frac{1}{m} \sum_{i} z_{w^{(i)},b^{(i)}}(x) z_{w^{(i)},b^{(i)}}(x'),$	$p(\theta (x,y)_{1:n})$. Hoeffding: Assume $f \in [0,C]$: $P(\mathbb{E}_P[f(X)] - \frac{1}{N} \sum_{i=1}^N f(x_i) > \epsilon) \le 2exp(-2N\epsilon^2/C^2)$
Bayes: $P(X Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(Y X)P(X)}{P(Y)}$	Epistemic : uncertainty about model due to		Given unnormalized distr. $Q(x) > 0$, design MC
	lack of data. Aleatoric: Irreducible noise	$\omega \sim p(\omega), b \sim \mathcal{U}[0, 2\pi], z_{\omega,b}(x) = \sqrt{2}\cos(\omega^T x + b)$	s.t. $\pi(x) = \frac{1}{Z}Q(x)$. If MC satisfies detailed
X, Y indep.: $P(X Y) = P(X), P(X,Y) = P(X)P(Y)$	Recursive updates: $\mathbf{X}_{t+1}^T \mathbf{X}_{t+1} = \mathbf{X}_t^T \mathbf{X}_t + x_{t+1} x_{t+1}^T$	$\rightarrow k(x,x') \approx \phi(x)^T \phi(x') \ (\phi_i(x) = \frac{1}{\sqrt{m}} z_{w^{(i)},b^{(i)}}(x))$	balance equation (DBE) $\forall x, x'$:
Expec: $\mathbb{E}_{x}[f(X)] = \int f(x)p(x)dx = \sum_{x} f(x)p(x)$	$\mathbf{X}_{t+1}^{I} y_{t+1} = \mathbf{X}_{t}^{I} y_{t} + y_{t+1} x_{t+1}$	- Inducing Points Methods: Summarize data via	$Q(x)P(x' x) = Q(x')P(x x') \implies \pi(x) = \frac{1}{7}Q(x).$
Lin Exp: $\mathbb{E}_{x,y}[aX + bY] = a\mathbb{E}_x[X] + b\mathbb{E}_y[Y]$	BLogR $p(y_i x_i,\theta) = \sigma(y_i w^T x_i), \ \sigma(a) = \frac{1}{1+e^{-a}}$	values of f at inducing points $\mathbf{u} = [u_1,, u_m]$.	Gibbs Sampling: Asympt. correct but slow
Variance: $Var[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	Kalman Filter $X_{t+1} \perp X_{1:t-1} X_t, Y_t \perp Y_{1:t-1}, X_{1:t-1} X_t$ State X_t , Observation Y_t , Prior $P(X_1) \sim \mathcal{N}(\mu, \Sigma)$	$p(f^*,f) = \int p(f^*,f,u)du = \int p(f^*,f u)p(u)du$	1. Init $\mathbf{x}^{(0)}$, fix observed RVs X_B to \mathbf{x}_B
Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) Covariance: $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	Motion model: $P(\mathbf{X}_{t+1} \mathbf{X}_t) = \mathcal{N}(x_{t+1}; \mathbf{F}X_t, \Sigma_x)$,	$p(f^*,f) \approx q(f^*,f) = \int q(f^* u)q(f u)p(u)du$	2. Repeat: set $\mathbf{x}^{(t)} = \mathbf{x}^{(t-1)}$; select $j \in [1:m] \setminus B$
	$\mathbf{X}_{t+1} = \mathbf{F}\mathbf{X}_t + \boldsymbol{\epsilon}_t, \boldsymbol{\epsilon}_t \sim \mathcal{N}(0, \boldsymbol{\Sigma}_x)$	with $p(f u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, K_{f,f} - Q_{f,f}),$	(1)
CoV: $Y = g(X)$, $f_Y(y) = f_X(g^{-1}(y)) \cdot \left \frac{d}{dy} g^{-1}(y) \right $	Sensor model: $P(\mathbf{Y}_t \mathbf{X}_t) = \mathcal{N}(y_t; HX_t, \Sigma_v)$,	$p(f^* u) = \mathcal{N}(K_{f^*,u}K_{u,u}^{-1}u, K_{f^*,f^*} - Q_{f^*,f^*}),$	$x_j^{(t)} \sim P(X_j \mathbf{x}_{[1:m]\setminus\{j\}}^{(t)})$ (efficient samples)
Gauss : $\mathcal{N} = \frac{1}{\sqrt{(2\pi)^d \Sigma }} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$	$\mathbf{Y}_{t} = \mathbf{H}\mathbf{X}_{t} + \eta_{t}, \eta_{t} \sim \mathcal{N}(0, \Sigma_{v})$	and $Q_{a,b} = K_{a,u} K_{u,u}^{-1} K_{u,b}$, $p(\mathbf{u}) \sim \mathcal{N}(0, K_{u,u})$	Random: fulfills DBE, find correct distr.
CDF: $\Phi(u; \mu, \sigma^2) = \int_{-\infty}^{u} \mathcal{N}(y; \mu, \sigma^2) dy = \Phi(\frac{u - \mu}{\sqrt{-2}}; 0, 1);$	Kalman update: $\mu_{t+1} = F\mu_t + K_{t+1}(\mathbf{y}_{t+1} - \mathbf{H}F\mu_t)$	Subset of Regressors: assume $K_{f,f} - Q_{f,f} = 0$,	Determin.: not fulfill DBE, still correct distr.
Multivar. Gauss: $X_V = [X_1,, X_d] \sim \mathcal{N}(\mu_V, \Sigma_{VV})$	$\Sigma_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1} \mathbf{H})(\mathbf{F} \Sigma_t \mathbf{F}^T + \Sigma_x)$	replace $p(f u)$ by $q_{SoR}(f u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, 0)$	Expectations via MCMC: Use MCMC sampler
index sets $A = \{i_1,, i_k\}, B = \{j_1,, j_m\}, A \cap B = \emptyset$	Kalman gain: $\frac{1}{K_{t+1}} = (F\Sigma_t F^T + \Sigma_x)$	resulting model is degenerate GP with cova-	(e.g. GS) to get samples $X^{(1:T)}$. After burn-in
Marginal: $X_A = [X_{i_1},, X_{i_k}] \sim \mathcal{N}(\mu_A, \Sigma_{AA})$ with	$\cdot \mathbf{H}^T (\mathbf{H} (\mathbf{F} \Sigma_t \mathbf{F}^T + \Sigma_x) \mathbf{H}^T + \Sigma_y)^{-1}$	riance function $k_{SoR}(x, x') = k(x, u)K_{u,u}^{-1}k(u, x')$	time t_0 : $\mathbb{E}[f(\mathbf{X}) \mathbf{x}_b] \approx \frac{1}{T-t_0} \sum_{\tau=t_0+1}^T f(\mathbf{X}^{(\tau)})$
$\mu_{A} = [\mu_{i_{1}},, \mu_{i_{k}}], \Sigma_{AA}^{(m,n)} = \sigma_{i_{m}, i_{n}} = \mathbb{E}[(x_{i_{m}} - \mu_{i_{m}})(x_{i_{n}} - \mu_{i_{n}})]$	9	FITC: Assume $f_i \perp \perp f_i u, \forall i \neq j$	Metropolis/Hastings: Generate MC s.t. DBE
Conditional: $P(X_A X_B = x_B) = \mathcal{N}(\mu_{A B}, \Sigma_{A B})$	X_t using rec. formula. Start $P(X_1) = \mathcal{N}(\mu, \Sigma)$.	$q_{FITC}(f u) = \mathcal{N}(K_{f,u}K_{u,u}^{-1}u, diag(K_{f,f} - Q_{f,f}))$	1) Proposal $R(X' X)$, given $X_t = x$, sample
with $\mu_{A B} = \mu_A + \sum_{AB} \sum_{BB}^{-1} (x_B - \mu_B)$ and	At time t : assume we have $P(X_t y_{1:t-1})$	Laplace Approx $p(w (x,y)_{1:n}) \approx q_{\lambda}(\theta) = \mathcal{N}(\hat{\theta}, \Lambda^{-1})$	$x' \sim R(X' X=x)$; 2) For $X_t = x$, w.p. $\alpha = x$
	Conditioning: $P(X_t y_{1:t}) = \frac{1}{Z}P(y_t X_t)P(X_t y_{1:t-1})$	$\hat{\theta} = \arg \max_{\theta} p(\theta y), \Lambda = -\nabla \nabla \log p(\hat{\theta} y)$	$\min\{1, \frac{Q(x')R(x x')}{Q(x)R(x' x)}\}: X_{t+1} = x'; \text{ w.p. } 1 - \alpha: X_{t+1} = x$
$\Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$	Prediction: $P(X_{t+1} y_{1:t}) = \int P(X_{t+1} x_t)P(x_t y_{1:t})dx$		Cont RVs: log-concave $p(x) = \frac{1}{Z}exp(-f(x))$, f
$Y = MX_A, M \in \mathbb{R}^{m \times d}, Y \sim \mathcal{N}(M\mu_A, M\Sigma_{AA}M^T)$	Gaussian Processes Gaussian distr. over func-	with $q(f^*) = \int p(f^* \theta)q_{\lambda}(\theta)d\theta$. LA first greedily	convex. M/H: $\alpha = \min\{1, \frac{R(x x')}{R(x' x)} exp(f(x) - f(x'))\}$
$Y = X_A + X_B$, $Y \sim \mathcal{N}(\mu_A + \mu_B, \Sigma_{AA} + \Sigma_{BB})$	tions $f = CP(u(x), V(x))$ (so dim Caussian)	fits mode, then matches curvature (over-conf.).	MALA/LMC: $R(x' x) = \mathcal{N}(x'; x - \tau \nabla f(x); 2\tau I)$
KL: $ KL(p q) = \mathbb{E}_p[log\frac{p(x)}{q(x)}] = \sum_{x \in X} p(x) \cdot log\frac{p(x)}{q(x)} $	Infinite set of RVs X s.t. $\forall A \subseteq X, A = \{x_1,, x_m\}$	Variational Inference $p(\theta y) = \frac{1}{Z}p(\theta,y) \approx q_{\lambda}(\theta)$	\rightarrow Use gradient information for convergence
$= \left(\frac{n(x)\log \frac{p(x)}{dx}}{dx} \right) n = a \cdot KL(n a) = 0$	it holds $Y_A = [Y_{x_1},, Y_{x_m}] \sim \mathcal{N}(\mu_A, K_{AA})$ where	$q_{bwd}^* \in \arg\min_{q \in \mathcal{Q}} KL(q p): q \approx p \text{ where q large}$	BNN NN weights have distribution
Entropy: $\frac{H(q) = \mathbb{E}_q[-\log q(\theta)] = -\int q(\theta) \log q(\theta) d\theta}{\ln q(\theta)}$	$\mu_{AA}^{(ij)} = k(x_i, x_i)$ and $\mu_{AA}^{(i)} = \mu(x_i)$ with covariance	$q_{fwd}^* \in \arg\min_{q \in \mathcal{Q}} KL(p q)$: $q \approx p$ where p large	MAP/SGD: $\hat{\theta} = amin_{\theta} - \log p(\theta) - \sum_{i} \log p(y_{i} x_{i}, \theta)$
$\frac{-\sum_{\theta} q(\theta) \log q(\theta)}{\ \mathbf{q}(\theta)\ _{2}} = \frac{1}{2} \frac{q(\theta) \log q(\theta)}{\ \mathbf{q}(\theta)\ _{2}} = \frac{1}{$	function $k(\cdot,\cdot)$, mean function $\mu(\cdot)$		\rightarrow Handles heteroscedastic noise well, fails to
	Covariance <i>k</i> : symmetric, PSD, kernel compo-	$= amax_q \mathbb{E}_{\theta \sim q_\lambda(\theta)} [\log p(y \theta)] - KL(q(\theta) p(\theta))$	predict epistemic uncertainty → use VI
$H(N(\mu,\Sigma)) = \frac{1}{2}ln 2\pi e\Sigma ; H(p,q) = H(p) + H(q p)$ $H(S T) \ge H(S T,U)$ 'information never hurts'	sition rules hold, stationary: $k(x, x') = k(x - x')$,	ELBO: $amax_q \mathbb{E}_{\theta \sim q_\lambda}[\log p(y \theta)] - KL(q(\theta) p(\theta))$	VI(BbB): SGD-opt ELBO via $\nabla_{\lambda} L(\lambda)$. Find VI
Orth: A: $A^{-1} = A^{T}$, $AA^{T} = A^{T}A = A _{2}^{2} = I$	isotropic: if $k(x, x') = k(x - x' _2)$.	$\leq \log p(y) \to \nabla_{\lambda} L(\lambda)$ tricky due to $\theta \sim q_{\lambda}(\cdot)$	approx q_{λ} . Draw m weights $\theta^{(j)} \sim q_{\lambda}(\cdot)$. Predict
$det(A) \in \{+1, -1\}, (A^{-1})^T = (A^T)^{-1}, rank(A) = n$	GP Prediction $p(f) = GP(f; \mu(x), k(x, x')), \text{ ob-}$	Reparametrization Trick: Suppose $\epsilon \sim \phi$,	$p(y^* x^*, x_{1:n}, y_{1:n}) \approx \frac{1}{m} \sum_{j} p(y^* x^*, \theta^{(j)})$
	serve $y_i = f(x_i) + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, $A = \{x_1,, x_m\}$. Common convention: prior mean $\mu(x) = 0$	$\theta = g(\epsilon, \lambda)$. Then: $q(\theta \lambda) = \phi(\epsilon) \nabla_{\epsilon}g(\epsilon;\lambda) ^{-1}$	MCMC : produce seq. of weights $\theta^{(1)}$,, $\theta^{(T)}$ via
Inv: $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix};$	Then $p(f x_{1:m}, y_{1:m}) = GP(f; \mu', k')$ where	and $\mathbb{E}_{\theta \sim q_{\lambda}}[f(\theta)] = \mathbb{E}_{\epsilon \sim \phi}[f(g(\epsilon; \lambda))]$, which allows $\nabla \mathbb{E}_{\theta} = [f(\theta)] = \mathbb{E}_{\theta} = [\nabla f(g(\epsilon; \lambda))]$	SGLD, LD, SG-HMC; predict by avg. weights.
Deriv: $(fg)' = f'g + fg'$; $(f/g)' = (f'g - fg')/g^2$	$\mu'(x) = \mu(x) + \mathbf{k}_{x,A}(\mathbf{K}_{AA} + \sigma^2 \mathbf{I})^{-1}(\mathbf{y}_A - \mu_A)$	lows $\nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}}[f(\theta)] = \mathbb{E}_{\epsilon \sim \phi}[\nabla_{\lambda} f(g(\epsilon; \lambda))]$	Active Learning Get x max. reducing uncertainty Mutual Info : $I(X;Y) = H(X) - H(X Y) = I(Y;X)$
$f(g(x))' = f'(g(x))g'(x); \log(x)' = 1/x$ Convey $g(x)$ is convey $f(x) = 1/x$	$\frac{\mu(x) - \mu(x) + \mathbf{k}_{x,A}(\mathbf{k}_{AA} + \sigma^{T}) (\mathbf{y}_{A} \mu_{A})}{k'(x, x') = k(x, x') - \mathbf{k}_{x,A}(\mathbf{k}_{AA} + \sigma^{T})^{-1} \mathbf{k}_{x',A}^{T}}$	Markov Chains A stationary MC is a sequence of RVs $X_1,,X_N$ with prior $P(X_1)$ and transi-	Information gain: utility function $f(S)$, $S \subseteq D$,
Convex: $g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1]$: $g''(x) > 0$; $g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	$k_{x,A} = [k(x,x_1),,k(x,x_m)]$	tion probability $P(X_{t+1} X_t)$ independent of t .	$F(S) := H(f) - H(f y_S) = I(f;y_S) = \frac{1}{2} \log I + \sigma^{-2} K_S $
Jensen inequality: $g ext{ convex: } g(E[X]) \leq E[g(X)]$	Predictive posterior: $p(y^* x_{1:m}, y_{1:m}, x^*) =$	MC is ergodic if $\exists t < \infty$ s.t. every state is re-	Greedy MI optimization: $S_t = \{x_1,,x_t\}$
g concave (e.g. log): $g(E[X]) \ge E[g(X)]$	$\mathcal{N}(\mu_v^*, \sigma_v^{2^*}), \mu_v^* = \mu'(x^*), \sigma_v^{2^*} = \sigma^2 + k'(x^*, x^*)$	achable from every state in <i>exactly t</i> steps.	$x_{t+1} = \arg\max_{x \in D} F(S_t \cup \{x\}) = \arg\max_{x \in D} \sigma_{r S_t}^2$
Bayesian Learning: Prior $p(\theta)$;	Forward sampling GP: Chain rule on	Markovian Assumption : $X_{t+1} \perp \!\!\!\perp X_{1:t-1} X_t \forall t$	
Likelihood $p(y_{1:n} x_{1:n},\theta) = \prod_{i=1}^{n} p(y_i x_i,\theta);$	$P(f_1,,f_n)$, iteratively sample univariate Gauss	Stationary Distribution: A stationary ergodic	Uncertainty sampling: $x_t = \arg \max_{x \in D} \sigma_{t-1}^2(x)$
Posterior $p(\theta x_{1:n}, y_{1:n}) = \frac{1}{Z}p(\theta)\prod_{i=1}^{n}p(y_i x_i, \theta);$	Model selection: max. marginal likelihood	MC has a unique and positive stationary distr. $\pi(X) > 0$ s.t. $\forall x$: $\lim_{N \to \infty} P(X_N = x) = \pi(x)$ and	Heteroscedastic: $\underset{x \in D}{\operatorname{arg max}} \sigma_f^2(x) / \sigma_n^2(x)$
where $Z = \int p(\theta) \prod_{i=1}^{n} p(y_i x_i,\theta) d\theta$; Prediction:	$\hat{\theta} = amax_{\theta}p(y X,\theta) = amax_{\theta} \int p(y X,f)p(f \theta)df$	$\pi(X) > 0$ s.t. $\forall X$. $\min_{N \to \infty} P(X_N - X) = h(X)$ and $\pi(X)$ is independent of prior $P(X_1)$.	BALD : $x_{t+1} = \arg\max_{x} I(\theta; y_x x_{1:t}, y_{1:t}) =$
$p(y^* x^*, x_{1:n}, y_{1:n}) = \int p(y^* x^*, \theta) p(\theta x_{1:n}, y_{1:n}) d\theta$	Fast GPs : GP prediction has cost $\mathcal{O}(A ^3)$	Simulate MC via forward sampling (chain rule)	$\arg\max_{x} H(y x,(x,y)_{1:t}) - \mathbb{E}_{\theta \sim p(\cdot (x,y)_{1:t})}[H(y x,\theta)]$
** ^ + - * **** / ****/	I 1 /	1 8	

```
get y_t = f(x_t) + \epsilon_t, find max<sub>x</sub> f(x) s.t. T small
                                                                       states \equiv beliefs P(X_t|y_{1:t}) in the orig. POMDP.
                                                                                                                                              \mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau) \nabla \log \pi_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau) - b) \nabla \log \pi_{\theta}(\tau)] W.p. \epsilon_t: rand. action; w.p. 1 - \epsilon_t: best action.
                                                                       States \mathcal{B} = \{b : \{1,...,n\} \to [0,1], \sum_{x \in X} b(x) = 1\},\
                                                                                                                                              Rew2Go: G_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}; b_t(x_t) = 1/T \sum_{t=0}^{T-1} G_t
                                                                                                                                                                                                                      If \epsilon_t \models RM \implies converge to \pi^* w.p. 1.
Cumu. Regret: R_T = \sum_{t=1}^T \max_{x \in D} f(x) - f(x_t)
                                                                       Actions A = \{1,...,m\}, Transitions: P(Y_{t+1} =
                                                                                                                                                                                                                      Robbins Monro (RM): \sum_{t} \epsilon_{t} = \infty, \sum_{t} \epsilon_{t}^{2} < \infty
GP-UCB: x_t = \arg\max_{x \in D} \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)
                                                                                                                                              \nabla J_T(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \sum_{t=0}^T \gamma^t G_t \nabla_{\theta} \log \pi(a_t | x_t; \theta) \right]
                                                                       y|b_t, a_t) = \sum_{x,x'} b_t(x) P(x'|x, a_t) P(y|x'); b_{t+1}(x') =
                                                                                                                                                                                                                      \mathbf{R}_{\text{max}} Algorithm: Set unknown r(x, a) to R_{max}
(upper confidence bound \geq best lower bound)
                                                                                                                                              Mean over returns: replace G_t with (G_t - b_t(x_t))
                                                                                                                                                                                                                      r(x,a) \leq R_{max}, \forall x,a, add fairy tale state x^*, set
                                                                       \frac{1}{7}\sum_{x}b_{t}(x)P(X_{t+1}=x'|X_{t}=x,a_{t})P(y_{t+1}|x')
\mu(x), \sigma(x) from GP marginal. \beta_t EE-tradeoff.
                                                                                                                                               REINFORCE (On): Input \pi(a|x;\theta), init \theta
                                                                                                                                                                                                                      P(x^*|x,a) = 1, compute \pi. Repeat: run \pi while
                                                                       Reward: r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)
Thm: f \sim GP, correct \beta_t: \frac{1}{T}R_T = \mathcal{O}^*(\sqrt{\gamma_T/T}),
                                                                                                                                               Repeat: generate episode (x_i, a_i, r_i), i = 0 : T;
                                                                                                                                                                                                                      updating r(x, a), P(x'|x, a), then recompute \pi.
\gamma_T = \max_{|S| < T} I(f; y_S) (max. information gain)
                                                                       Reinforcement Learning Agent actions change
                                                                                                                                              for t = 0: T: set G_t, update \theta:
                                                                                                                                                                                                                      Thm(*): W.p. 1 - \delta, R_{max} will reach \epsilon-opt policy
                                                                       state. State change ~ unknown MDP.
EI: choose x_t = \arg \max_{x \in D} EI(x) where
                                                                                                                                                                                                                      in #steps poly in |X|, |A|, T, 1/\epsilon, \log(1 - \delta), R_{max}.
                                                                                                                                               \theta = \theta + \eta \gamma^t G_t \nabla_{\theta} \log \pi(A_t | X_t; \theta)
                                                                       - On-policy: agent has full control (actions)
EI(x) = \mathbb{E}[(y^* - y)_+] = \int_{-\infty}^{\infty} max(0, y^* - y)p(y|x)dy
                                                                                                                                                                                                                      Note: MDP is assumed ergodic.
                                                                                                                                              Advantage Func: A^{\pi}(x, a) = Q^{\pi}(x, a) - V^{\pi}(x)

    Off-policy: no control, only observational data

Thompson sampling: at t, draw from GP post.
                                                                                                                                                                                                                      Problems of Model-based RL: - Memory re-
                                                                                                                                              \forall x, a : A^{\pi^*}(x, a) \leq 0; \forall \pi, x : \max_a A^{\pi}(x, a) \geq 0
                                                                       Model-free RL Directly estimate value function
                                                                                                                                                                                                                      quired: P(x'|x,a) \approx \mathcal{O}(|X|^2|A|), r(x,a) \approx \mathcal{O}(|X||A|)
\tilde{f} \sim P(f|x_{1:t}, y_{1:t}), select x_{t+1} \in \arg\max_{x \in D} \tilde{f}(x)
                                                                                                                                              Actor-Critic (On) Approx both V^{\pi} and policy
                                                                       TD-Learning: (On) Follow \pi, get (x, a, r, x').

    Computation: repeatedly solve MDP (VI, PI)

Probab. Planning Control based on prob. model
                                                                                                                                            \pi_{\theta} (e.g. 2 NNs). Reinterpret score gradient:
                                                                       Update: \hat{V}^{\pi}(x) \leftarrow (1 - \alpha_t) \hat{V}^{\pi}(x) + \alpha_t (r + \gamma \hat{V}^{\pi}(x'))
                                                                                                                                                                                                                      Planning (off) (cont. obsv. states)
MDP: A (finite) MDP is defined by
                                                                                                                                              \nabla J(\theta_{\pi}) = \mathbb{E}_{\tau \sim \pi_0} \left[ \sum_{t=0}^{\infty} \gamma^t Q(x_t, a_t; \theta_Q) \nabla \log \pi(a_t | x_t; \theta_{\pi}) \right]
                                                                       Thm: \alpha_t \models RM and all (x,a) pairs chosen \infty
                                                                                                                                                                                                                      MPC (known deterministic dynamics)
States X = \{1, ..., n\}, Actions A = \{1, ..., m\}, Tran-
                                                                       often, then \hat{V} converges to V^{\pi} w.p. 1.
sition probabilities P(x'|x,a), Reward function
                                                                                                                                                                                                                      Assume known model x_{t+1} = f(x_t, a_t), plan
                                                                                                                                               =: \mathbb{E}_{(x,a) \sim \pi_{\theta}} [Q(x,a;\theta_{O}) \nabla_{\theta_{\pi}} \log \pi(a|x;\theta_{\pi})]
                                                                       Optimistic Q-learning (Off) Estimate Q^*(x, a)
r(x,a) (or r(x,a,x')), discount factor \gamma \in [0,1]
                                                                                                                                                                                                                      over finite horizon H. At each step t, maximize:
                                                                                                                                               Allows online updates:
                                                                      1) Init estimate / Q(x,a) = \frac{R_{max}}{1-y} \prod_{t=1}^{T_{init}} (1-\alpha_t)^{-1}
Planning in MDPs: Policy \pi: X \to A (det.), \pi:
                                                                                                                                                                                                                      J_H(a_{t:t+H-1}) := \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau})
                                                                                                                                              \theta_{\pi} \leftarrow \theta_{\pi} + \eta_t Q(x, a; \theta_O) \nabla \log \pi(a|x; \theta_{\pi})
X \to P(A) (rand.) induces a MC with transition
                                                                       2) Pick a (e.g. \epsilon_t greedy), get (x, a, r, x'), update:
                                                                                                                                                                                                                      x_{\tau}(a_{t:\tau-1}) = f(f(...(f(x_t, a_t), a_{t+1})..))
                                                                                                                                              \theta_O \leftarrow \theta_O - \eta_t \delta \nabla Q(x, a; \theta_O) (FA Q-learning)
probabilities P(X_{t+1} = x' | X_t = x) = P(x' | x, \pi(x))
                                                                                                                                                                                                                      then carry out a_t, then replan.
                                                                       Q(x, a) \leftarrow (1 - \alpha_t)Q(x, a) + \alpha_t(r + \gamma \max_{a'} Q(x', a'))
                                                                                                                                             Variance redution: replace with Q(x,a;\theta_0) –
(det.) or \sum_{a} \pi(a|x) P(x'|x, a) (rand.)
                                                                                                                                                                                                                      Optimize via gradient based methods (diff. r, f,
                                                                       Test time: greedy \pi_G(x) = \arg\max_a Q(x, a)
                                                                                                                                               V(x;\theta_V): advantage func. estimate \rightarrow A2C
                                                                                                                                                                                                                      cont. action) or via random shooting.
Value function: V^{\pi}(x) = J(\pi | X_0 = x) =
                                                                       Thm: \alpha_t \models RM, all (x, a) pairs chosen \infty often,
                                                                                                                                                                                                                      Random shooting: Pick rand. samples a_{t:t+H-1}^{(i)}
                                                                                                                                              Off-policy Actor Critic (off)
\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(X_t, \pi(X_t)) | X_0 = x\right] = \frac{r(x, \pi(x)) + r(x, \pi(x))}{r(x, \pi(x))}
                                                                       then Q converges to Q^* w.p. 1. Thm(*) holds.
                                                                                                                                              Replace \max_{a'} Q(x', a'; \theta^{old}) in DQN L(\theta) by
                                                                                                                                                                                                                      and pick sample i^* = \arg \max_i J_H(a_{t:t+H-1}^{(i)})
\nu \sum_{x'} P(x'|x,\pi(x)) V^{\pi}(x') \Leftrightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi}
                                                                       Computation time: \mathcal{O}(|A|), Memory: \mathcal{O}(|X||A|)
                                                                                                                                              \pi(x';\theta_{\pi}), where \pi should follow the greedy
                                                                                                                                                                                                                     MPC with Value estimate: J_H(a_{t:t+H-1}) :=
V_i^{\pi} = V^{\pi}(i), r_i^{\pi} = r^{\pi}(i, \pi(i)), T_{i,j}^{\pi} = P(j|i, \pi(i))
                                                                       RL via Function Approx Learn parametric ap-
                                                                                                                                               policy to model \max_{a'}. This is equivalent to:
V^{\pi}(x) = \sum_{x'} P(x'|x,\pi(x))[r(x,\pi(x),x') + \gamma V^{\pi}(x')] prox. of (action) value function V(x;\theta), Q(x,a;\theta)
                                                                                                                                                                                                                      \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau}) + \gamma^{H} V(x_{t+H})
                                                                                                                                              \theta_{\pi}^* \in \arg\max_{\theta} \mathbb{E}_{x \sim \mu}[Q(x, \pi(x; \theta); \theta_O)], \text{ where}
                                                                                                                                                                                                                     H = 1: J_1(a_t) = Q(x_t, a_t); \pi_G = \arg\max_a J_1(a)
V^{\pi}(x) = Q^{\pi}(x, \pi(x)) (deterministic policy \pi)
                                                                       TD-learning as SGD (On): Tabular TD up-
                                                                                                                                              \mu(x) > 0 'explores all states'. If Q(\cdot; \theta_O), \pi(\cdot; \theta_\pi)
V^{\pi}(x) = \mathbb{E}_{a' \sim \pi(x)} Q^{\pi}(x, a') (prob. policy \pi(x))
                                                                       date rule can be viewed as SGD on loss
                                                                                                                                                                                                                     MPC (known stochastic dynamics)
                                                                                                                                                                                                                       \max \quad \mathbb{E} \quad [ \quad \sum \gamma^{\tau-t} r_{\tau} + \gamma^{H} V(x_{t+H}) | a_{t:t+H-1}]
                                                                      l_2(\theta; x, x', r) = \frac{1}{2} (V(x; \theta) - r - \gamma V(x'; \theta_{old})^2. Then,
                                                                                                                                              diff'able, use backprop to get stoch. gradients.
Fixed Point Iter: 1) init V_0^{\pi}; 2) for t = 1 : T do:
                                                                                                                                                                                                                      a_{t:t+H-1} x_{t+1:t+H} \tau = t:t+H-1
                                                                                                                                              \nabla_{\theta} J(\theta) = \mathbb{E}_{x \sim u} [\nabla_{\theta} Q(x, \pi(x; \theta); \theta_{O})]
                                                                       V \leftarrow V - \alpha_t \nabla_{V(x:\theta)} l_2 is equiv. to TD update.
V_t^{\pi} = r^{\pi} + \gamma T^{\pi} V_{t-1}^{\pi} \text{ (converges)}
                                                                                                                                                                                                                      Parametrized policy: (H = 0 \Leftrightarrow DDPG \text{ obj.})
                                                                       Function Approx Q-learning (Off) slow
                                                                                                                                              \nabla_{\theta} Q(x, \pi(x; \theta)) = \nabla_{a} Q(x, a)|_{a = \pi(x; \theta)} \cdot \nabla_{\theta} \pi(x; \theta)
Greedy policy w.r.t. V: V induces policy
                                                                                                                                                                                                                      J_H(\theta) = \underset{x_0 \sim \mu}{\mathbb{E}} \left[ \sum_{\tau = 0: H-1} \gamma^{\tau} r_{\tau} + \gamma^{H} Q(x_H, \pi(x_H, \theta)) | \theta \right]
                                                                       Loss l_2(\theta; x, a, r, x') = \frac{1}{2}\delta^2 where \delta = Q(x, a; \theta)
\pi_V(x) = \arg\max_a r(x, a) + \gamma \sum_{x'} P(x'|x, a) V(x')
                                                                                                                                              Needs deterministic \pi. Inject additional action
Optimal policy: \pi^* = \arg\max_a Q^*(x, a)
                                                                       r - \gamma \max_{a'} Q(x', a'; \theta). Alg: Until converged:
                                                                                                                                               noise (e.g. \epsilon_t greedy) to ensure exploration.
                                                                                                                                                                                                                      MPC (unknown dynamics): follow \pi, learn
Bellman Equation: Optimal policy satisfies BE
                                                                       State x, pick action a, observe r, x'. Update:
                                                                                                                                              Deep Deterministic Policy Gradient (DDPG)
                                                                                                                                                                                                                      f, r, Q off-policy from replay buf, replan \pi.
V^*(x) = \max_{a \in \mathcal{A}} | r(x, a) + \gamma \sum_{x' \in X} P(x'|x, a) V^*(x')
                                                                       \theta \leftarrow \theta - \alpha_t \nabla_{\theta} l_2 \Leftrightarrow \theta \leftarrow \theta - \alpha_t \delta \nabla_{\theta} Q(x, a; \theta)
                                                                                                                                              1) init \theta_0, \theta_{\pi} 2) repeat: observe x, execute
                                                                                                                                                                                                                     BUT: point estimates have poor performance,
                                                                       DQN (Off): Q-learning with NN as func. ap-
                                                                                                                                              a = \pi(x; \theta_{\pi}) + \epsilon, observe r, x', store in D. If time
                                                                                                                                                                                                                      errors compound \rightarrow use bayesian learning:
= \max_{a \in A} \mathbb{E}_{x'}[r(x, a) + \gamma V^*(x')] = \max_{a \in A} Q^*(x, a)
                                                                       prox. Use experience replay data D, cloned net-
                                                                                                                                              to update: for ITER: sample B from D, compute
                                                                                                                                                                                                                      Model distribution over f (BNN, GP) and use
Policy Iteration: 1) Init arbitrary policy \pi_0
                                                                       work to maintain constant NN across episode.
                                                                                                                                                                                                                      (approximate) inference (exact, VI, MCMC,...).
                                                                                                                                              targets y = r + \gamma Q(x', \pi(x', \theta_{\pi}^{old}), \theta_{O}^{old}), update
2) Until converged: compute V^{\pi_t}(x); compute
                                                                       L(\theta) = \sum_{i} (r + \gamma \max_{a'} Q(x', a'; \theta^{old}) - Q(x, a; \theta))
                                                                                                                                                                                                                      Greedy exploitation for model-based RL: (*)
greedy policy \pi_t^G w.r.t. V^{\pi_t}; set \pi_{t+1} \leftarrow \pi_t^G
                                                                                                                                              Critic: \theta_O \leftarrow \theta_O - \eta \nabla 1/|B| \sum_B (Q(x, a; \theta_O) - y)^2,
                                                                             (x,a,r,x')\in D
                                                                                                                                                                                                                      1) D = \{\}, prior P(f|\{\}) 2) repeat: plan new \pi to
Stop if V^{\pi_t}(x) = V^{\pi_{t+1}}(x). PI monotonically im-
                                                                                                                                              Actor: \theta_{\pi} \leftarrow \theta_{\pi} + \eta \nabla 1/|B| \sum_{B} Q(x, \pi(x; \theta_{\pi}); \theta_{Q}),
                                                                       Double DQN (Off): Current NN to evaluate
                                                                                                                                                                                                                      maximize \max_{\pi} \mathbb{E}_{f \sim P(\cdot|D)} J(\pi, f), rollout \pi, add
proves all values V^{\pi_{t+1}}(x) \geq V^{\pi_t}(x) \forall x. Finds
                                                                       action arg max; prevents maximization bias.
                                                                                                                                              Params: \theta_i^{old} \leftarrow (1 - \rho)\theta_i^{old} + \rho\theta_j for j \in \{\pi, Q\}
                                                                                                                                                                                                                      new data to D, update posterior P(f|D)
exact solution in \mathcal{O}(n^2m/(1-\gamma)).
                                                                       L^{\text{\tiny DDQN}}(\theta) = \sum_{(x,a,r,x') \in D} [r + \gamma \max_{a'} Q(x', a^*(\theta); \theta^{old})]
                                                                                                                                                                                                                      PETS algorithm: Ensemble of NNs predicting
                                                                                                                                              Randomized policy DDPG: For Critic: sam-
Q: Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x'|x, a) V_{t-1}(x')
                                                                       -Q(x,a;\theta)]^2, a^*(\theta) = \arg\max_{a'} Q(x',a';\theta)
                                                                                                                                                                                                                      cond. Gaussian transition distr., use MPC.
                                                                                                                                              ple a' \sim \pi(x'; \theta_{\pi}^{old}) to get unbiased y estimates.
Value Iteration: 1) Init V_0(x) = \max_a r(x, a)
                                                                       a_t = \arg\max_a Q(x_t, a; \theta) intractable for |A| large
                                                                                                                                                                                                                      Thompson Sampling: Like greedy* BUT in 2)
                                                                                                                                              For Actor: consider \nabla_{\theta_{\pi}} \mathbb{E}_{a \sim \pi(x; \theta_{\pi})} Q(x, a; \theta_{O})
2) for t = 1 : \infty: V_t(x) = \max_a Q_t(x, a). Stop if
                                                                       Policy Gradient Methods Parametric policy \pi_{\theta}
                                                                                                                                                                                                                      sample model f \sim P(\cdot|D) and then \max_{\pi} I(\pi, f)
\|V_t - V_{t-1}\|_{\infty} \le \epsilon, then choose greedy \pi_G w.r.t. V_t. Finds \epsilon-opt solution in poly time.
                                                                                                                                              Reparametrization trick: a = \psi(x; \theta_{\pi}, \epsilon)
                                                                       Maximize J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)] \ (\tau = x_{0:T}, y_{0:T}),
                                                                                                                                                                                                                      Use epistemic noise to drive exploration.
                                                                                                                                              \nabla_{\theta_{\pi}} \mathbb{E}_{a \sim \pi_{\theta_{\pi}}} Q(x, a; \theta_{Q}) = \mathbb{E}_{\epsilon} \nabla_{\theta_{\pi}} Q(x, \psi(x; \theta_{\pi}, \epsilon); \theta_{Q}) Optimistic exploration: Like greedy* BUT in
                                                                       r(\tau) = \sum_{t=0}^{T} \gamma^t r(x_t, a_t); via \nabla_{\theta} (On). Theorem:
POMDP is a controlled HMM. Can only obtain
                                                                                                                                              Model-based RL Learn MDP, optimize \pi on it
                                                                                                                                                                                                                      2) \max_{\pi} \max_{f \in M(D)} J(\pi, f); with M(D) set of
noisy obsy. Y_t of hidden state X_t. Finite horizon
                                                                       \nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} r(\tau) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]
                                                                                                                                               MLE estimate from path trajectory \tau:
                                                                                                                                                                                                                      plausible models given D.
T: exp. #belief states. BUT: most belief states
                                                                       MDP: \pi_{\theta}(\tau) = p(x_0) \prod_{t=0}^{T} \pi(a_t|x_t;\theta) p(x_{t+1}|x_t,a_t)
                                                                                                                                               P(X_{t+1}|X_t,A) \approx \frac{Cnt(X_{t+1},X_t,A)}{Cnt(X_t,A)}; r(x,a) \approx 1/N_{x,a} \sum_{t} R_t
never reached \rightarrow discretize space by sampling.
                                                                       Thus: \nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \sum_{t=0}^{T} \nabla_{\theta} \log \pi(a_{t} | x_{t}; \theta)]
Use policy gradients with parametric policy.
```

Reducing variance via baselines:

 ϵ_t greedy: Tradeoff exploration-exploitation

Belief-state MDP: POMDP as MDP where

Bayesian Optimization Seq. pick $x_1,...,x_T \in D$