Cours de Physique des Capteurs : Conditionneurs des capteurs passifs

A. Arciniegas N. Wilkie-Chancellier

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

Caractéristiques générales

2 Montage potentiométrique

3 Les ponts

Caractéristiques générales

Caractéristiques générales

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

ullet une source de tension v_g (ou de courant i_g)

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

- une source de tension v_a (ou de courant i_a)
- \bullet et généralement d'autres impédances Z_k constituant alors le conditionneur du capteur.

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

- une source de tension v_g (ou de courant i_g)
- ullet et généralement d'autres impédances Z_k constituant alors le conditionneur du capteur.

On peut distinguer deux groupes **principaux** de **conditionneurs** selon qu'ils transfèrent l'information liée aux ΔZ_C , soit sur :

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

- une source de tension v_a (ou de courant i_a)
- ullet et généralement d'autres impédances Z_{ν} constituant alors le conditionneur du capteur.

On peut distinguer deux groupes **principaux** de **conditionneurs** selon qu'ils transfèrent l'information liée aux ΔZ_{c} , soit sur :

• I'amplitude du signal de mesure, $v_m = v_a \cdot F(Z_k, Z_c)$; montages potentiométriques et ponts

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

- une source de tension v_a (ou de courant i_a)
- et généralement d'autres impédances Z_{ν} constituant alors le conditionneur du capteur.

On peut distinguer deux groupes **principaux** de **conditionneurs** selon qu'ils transfèrent l'information liée aux ΔZ_C , soit sur :

- I'amplitude du signal de mesure, $v_m = v_a \cdot F(Z_k, Z_c)$; montages potentiométriques et ponts
- la fréquence du signal de mesure, $f_m = G(Z_c, Z_k)$; oscillateurs

Les variations de l'impédance Z_c d'un capteur passif (notées ΔZ_c) liées aux variations d'un mesurande m (notées Δm) ne peuvent être traduites sous la forme d'un signal électrique qu'en associant au capteur :

- une source de tension v_g (ou de courant i_g)
- et généralement d'autres impédances Z_k constituant alors le conditionneur du capteur.

On peut distinguer deux groupes **principaux** de **conditionneurs** selon qu'ils transfèrent l'information liée aux ΔZ_C , soit sur :

- I'amplitude du signal de mesure, $v_m = v_q \cdot F(Z_k, Z_c)$; montages potentiométriques et ponts
- la fréquence du signal de mesure, $f_m = G(Z_c, Z_k)$; oscillateurs

Dans ce module ne seront abordés que les montages potentiométriques et les ponts.

Montage Potentiométrique

Montage en pont

Sensibilité

• Sensibilité du capteur : $S_C = \frac{\Delta Z_C}{\Delta m}$

Sensibilité

- Sensibilité du capteur : $S_{C}=rac{\Delta Z_{c}}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta v_m}{\Delta Z_c}$

Sensibilité

- Sensibilité du capteur : $S_{C}=rac{\Delta Z_{C}}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta v_m}{\Delta Z_c}$
- Sensibilité de la mesure : $S = S_C \cdot S_{cond} = \frac{\Delta Z_C}{\Delta m} \cdot \frac{\Delta v_m}{\Delta Z_C} = \frac{\Delta v_m}{\Delta m}$

Sensibilité

- Sensibilité du capteur : $S_C = \frac{\Delta Z_C}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta V_m}{\Delta Z_c}$
- Sensibilité de la mesure : $S = S_C \cdot S_{cond} = \frac{\Delta Z_C}{\Delta m} \cdot \frac{\Delta v_m}{\Delta Z_C} = \frac{\Delta v_m}{\Delta m}$

Remarques

• Le conditionneur est dit linéaire si S_{cond} est indépendante de Z_{c} (constante).

Sensibilité

- Sensibilité du capteur : $S_C = \frac{\Delta Z_C}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta v_m}{\Delta Z_c}$
- Sensibilité de la mesure : $S = S_C \cdot S_{cond} = \frac{\Delta Z_C}{\Delta m} \cdot \frac{\Delta v_m}{\Delta Z_C} = \frac{\Delta v_m}{\Delta m}$

Remarques

- Le conditionneur est dit linéaire si S_{cond} est indépendante de Z_{c} (constante).
- L'association d'un conditionneur linéaire et d'un capteur linéaire délivre un signal de mesure proportionnel aux variations du mesurande.

Sensibilité

- Sensibilité du capteur : $S_C = \frac{\Delta Z_C}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta v_m}{\Delta Z_c}$
- Sensibilité de la mesure : $S = S_C \cdot S_{cond} = \frac{\Delta Z_C}{\Delta m} \cdot \frac{\Delta v_m}{\Delta Z_C} = \frac{\Delta v_m}{\Delta m}$

Remarques

- Le conditionneur est dit linéaire si S_{cond} est indépendante de Z_{c} (constante).
- L'association d'un conditionneur linéaire et d'un capteur linéaire délivre un signal de mesure proportionnel aux variations du mesurande.
- Si le conditionneur n'est pas linéaire, il peut être linéarisé (montage « PUSH-PULL »).

Sensibilité

- Sensibilité du capteur : $S_C = \frac{\Delta Z_C}{\Delta m}$
- Sensibilité du conditionneur : $\mathcal{S}_{cond} = \frac{\Delta V_m}{\Delta Z_c}$
- Sensibilité de la mesure : $S = S_{\rm C} \cdot S_{cond} = \frac{\Delta Z_{\rm C}}{\Delta m} \cdot \frac{\Delta v_m}{\Delta Z_{\rm C}} = \frac{\Delta v_m}{\Delta m}$

Remarques

- ullet Le conditionneur est dit linéaire si S_{cond} est indépendante de Z_{c} (constante).
- L'association d'un conditionneur linéaire et d'un capteur linéaire délivre un signal de mesure proportionnel aux variations du mesurande.
- Si le conditionneur n'est pas linéaire, il peut être linéarisé (montage « PUSH-PULL »).
- Lorsque le capteur lui-même n'est pas linéaire, il est quelquefois possible de compenser sa non-linéarité par une non-linéarité opposée du conditionneur, l'ensemble ayant un fonctionnement qui est quasi-linéaire, au moins dans une plage limitée du mesurande.

Montage potentiométrique

On étudie le montage suivant :

Solution

On étudie le montage suivant :

Solution

lacktriangle On voit que $R_{\mathcal{C}}$ et $R_{\mathcal{C}}$ sont en parallèle. La résistance équivalente est donc :

$$R_{eq} = R_C / / R_d = \frac{R_C R_d}{R_C + R_d}$$

On étudie le montage suivant :

Solution

lacktriangle On voit que $R_{\mathcal{C}}$ et $R_{\mathcal{C}}$ sont en parallèle. La résistance équivalente est donc :

$$R_{eq} = R_{c} / / R_{d} = \frac{R_{c} R_{d}}{R_{c} + R_{d}}$$

• Un pont diviseur de tension permet d'exprimer v_m par :

$$v_{m} = \frac{R_{\Theta q}}{R_{g} + R_{1} + R_{\Theta q}} \cdot e_{g}$$

On étudie le montage suivant :

Solution

lacktriangle On voit que $R_{
m C}$ et $R_{
m d}$ sont en parallèle. La résistance équivalente est donc :

$$R_{eq} = R_{c} / / R_{d} = \frac{R_{c} R_{d}}{R_{c} + R_{d}}$$

• Un pont diviseur de tension permet d'exprimer v_m par :

$$v_{m} = \frac{R_{\Theta q}}{R_{Q} + R_{1} + R_{\Theta q}} \cdot e_{Q}$$

lacktriangled Dans le cas d'un générateur et un appareil de mesures idéaux, on a $R_g o 0$ et $R_d o \infty$, et donc :

On étudie le montage suivant :

Solution

lacktriangle On voit que $R_{\it C}$ et $R_{\it d}$ sont en parallèle. La résistance équivalente est donc :

$$R_{\Theta Q} = R_C / / R_d = \frac{R_C R_d}{R_C + R_d}$$

• Un pont diviseur de tension permet d'exprimer v_m par :

$$v_{m} = \frac{R_{\Theta Q}}{R_{Q} + R_{1} + R_{\Theta Q}} \cdot e_{Q}$$

lacktriangled Dans le cas d'un générateur et un appareil de mesures idéaux, on a $R_g o 0$ et $R_d o \infty$, et donc :

$$R_{\Theta Q} = rac{R_{C}R_{C}}{R_{C} + R_{C}}
ightarrow R_{C}$$

On étudie le montage suivant :

Solution

lacktriangle On voit que $R_{\it C}$ et $R_{\it d}$ sont en parallèle. La résistance équivalente est donc :

$$R_{\Theta Q} = R_C / / R_d = \frac{R_C R_d}{R_C + R_d}$$

• Un pont diviseur de tension permet d'exprimer v_m par :

$$v_{m} = \frac{R_{eq}}{R_{g} + R_{1} + R_{eq}} \cdot e_{g}$$

lacktriangled Dans le cas d'un générateur et un appareil de mesures idéaux, on a $R_g o 0$ et $R_d o \infty$, et donc :

$$R_{eq} = \frac{R_{c}R_{d}}{R_{c} + R_{d}} \rightarrow R_{c}$$

$$v_{m} = \frac{R_{c}}{R_{1} + R_{c}} \cdot e_{g}$$

La tension v_m n'est pas une fonction linéaire de R_c .

La tension v_m n'est pas une fonction linéaire de R_c .

• Si le capteur est linéaire et R₁ fixe, le conditionnement n'est pas linéaire.

La tension v_m n'est pas une fonction linéaire de R_c .

- Si le capteur est linéaire et R₁ fixe, le conditionnement n'est pas linéaire.
- Si le capteur est linéaire et que R_1 est une résistance variable tel que $R_1 + R_C = cte$ alors le conditionnement est linéaire (montage « PUSH-PULL »).

La tension v_m n'est pas une fonction linéaire de R_c .

- Si le capteur est linéaire et R₁ fixe, le conditionnement n'est pas linéaire.
- Si le capteur est linéaire et que R_1 est une résistance variable tel que $R_1 + R_C = cte$ alors le conditionnement est linéaire (montage « PUSH-PULL »).
- Si le capteur n'est pas linéaire on peut linéariser la mesure autour d'une valeur m_0 du mesurande.

La tension v_m n'est pas une fonction linéaire de R_c .

- ullet Si le capteur est linéaire et R_1 fixe, le conditionnement n'est pas linéaire.
- Si le capteur est linéaire et que R_1 est une résistance variable tel que $R_1 + R_C = cte$ alors le conditionnement est linéaire (montage « PUSH-PULL »).
- Si le capteur n'est pas linéaire on peut linéariser la mesure autour d'une valeur m_0 du mesurande.

Inconvénient

La difficulté majeure lors de l'utilisation du montage potentiométrique risque de venir de sa sensibilité aux dérives de la source et aux parasites.

Les ponts

Les ponts

Ponts de mesure

• L'utilisation d'un montage potentiométrique présente le défaut d'avoir en sortie la présence d'une tension continue, et ceci en l'absence de variations du mesurande ($v_m \neq 0$ quand m = 0).

Ponts de mesure

- L'utilisation d'un montage potentiométrique présente le défaut d'avoir en sortie la présence d'une tension continue, et ceci en l'absence de variations du mesurande ($v_m \neq 0$ quand m = 0).
- Le montage en pont permet de s'affranchir de cette tension continue.

Ponts de mesure

- L'utilisation d'un montage potentiométrique présente le défaut d'avoir en sortie la présence d'une tension continue, et ceci en l'absence de variations du mesurande ($v_m \neq 0$ quand m = 0).
- Le montage en pont permet de s'affranchir de cette tension continue.
- L'idée est de faire une mesure de tension basée sur une différence de deux tensions (mesure différentielle).

$$V_m = V_A - V_B$$

Pont de Wheatstone (1/2)

Montage en 1/4 de pont

Principe

On s'intéresse ici au montage en 1/4 de pont avec :

Pont de Wheatstone (1/2)

Montage en 1/4 de pont

Principe

On s'intéresse ici au montage en 1/4 de pont avec :

• 1 capteur résistif $R_{c} = R_{c0} + \Delta R$

Montage en 1/4 de pont

Principe

On s'intéresse ici au montage en 1/4 de pont avec :

- 1 capteur résistif $R_{c}=R_{c0}+\Delta R$
- 3 résistances R₁, R₂ et R₃

Montage en 1/4 de pont

Principe

On s'intéresse ici au montage en 1/4 de pont avec :

- 1 capteur résistif $R_{\rm C}=R_{\rm c0}+\Delta R$
- 3 résistances R₁, R₂ et R₃
- 1 générateur de tension

Montage en 1/4 de pont

Principe

On s'intéresse ici au montage en 1/4 de pont avec :

- 1 capteur résistif $R_{c}=R_{c0}+\Delta R$
- 3 résistances R₁, R₂ et R₃
- 1 générateur de tension

La tension de mesure ou tension d'équilibre est :

$$V_m = V_A - V_B$$

Montage en 1/4 de pont

Tension d'équilibre (1/2)

En appliquant 2 ponts diviseurs de tensions, on peut exprimer les potentiels V_A et V_B :

Montage en 1/4 de pont

Tension d'équilibre (1/2)

En appliquant 2 ponts diviseurs de tensions, on peut exprimer les potentiels V_A et V_B :

$$V_A = \frac{R_C}{R_C + R_1} \cdot V_g$$

$$V_B = \frac{R_3}{R_2 + R_3} \cdot v_g$$

et on obtient alors une tension de mesure :

Montage en 1/4 de pont

Tension d'équilibre (1/2)

En appliquant 2 ponts diviseurs de tensions, on peut exprimer les potentiels V_A et V_B :

$$V_A = \frac{R_C}{R_C + R_1} \cdot V_g$$

$$V_B = \frac{R_3}{R_2 + R_3} \cdot v_g$$

et on obtient alors une tension de mesure :

$$V_m = V_A - V_B = \frac{R_C R_2 - R_1 R_3}{(R_C + R_1)(R_2 + R_3)} \cdot V_g$$

Montage en 1/4 de pont

Tension d'équilibre (2/2)

Rappel:

$$v_m = V_A - V_B = \frac{R_c R_2 - R_1 R_3}{(R_c + R_1)(R_2 + R_3)} \cdot v_g$$

 $\text{avec } R_{\text{c}} = R_{\text{c}0} + \Delta R$

Montage en 1/4 de pont

Tension d'équilibre (2/2)

Rappel:

$$V_{m} = V_{A} - V_{B} = \frac{R_{C}R_{2} - R_{1}R_{3}}{(R_{C} + R_{1})(R_{2} + R_{3})} \cdot V_{g}$$

avec $R_{c}=R_{c0}+\Delta R$

Pour assurer $v_m=0$ lorsque m=0 (cas stable où $\Delta R=0$ et donc $R_c=R_{c0}$), on trouve la condition d'équillibre d'un pont de Wheatstone :

Montage en 1/4 de pont

Tension d'équilibre (2/2)

Rappel:

$$V_{m} = V_{A} - V_{B} = \frac{R_{C}R_{2} - R_{1}R_{3}}{(R_{C} + R_{1})(R_{2} + R_{3})} \cdot V_{g}$$

avec $R_{c}=R_{c0}+\Delta R$

Pour assurer $v_m=0$ lorsque m=0 (cas stable où $\Delta R=0$ et donc $R_c=R_{c0}$), on trouve la condition d'équilibre d'un pont de Wheatstone :

$$R_{c0}R_2=R_1R_3$$

Montage en 1/4 de pont

Tension de déséquilibre

Rappel:

$$v_m = V_A - V_B = \frac{R_C R_2 - R_1 R_3}{(R_C + R_1)(R_2 + R_3)} \cdot v_g$$

avec $R_c = R_{c0} + \Delta R$

Montage en 1/4 de pont

Tension de déséquilibre

Rappel:

$$v_{m} = V_{A} - V_{B} = \frac{R_{C}R_{2} - R_{1}R_{3}}{(R_{C} + R_{1})(R_{2} + R_{3})} \cdot v_{g}$$

avec $R_{c} = R_{c0} + \Delta R$

Prenons maintenant le cas où $R_{c0}=R_1=R_2=R_3=R$: cela correspond à une sensibilité maximum pour le cas de la branche potentiométrique, et l'on suppose que le mesurande évolue autour d'une valeur $R_{c0}:R_c-R_{c0}=\Delta R$, avec $R_{c0}=R$.

Montage en 1/4 de pont

Tension de déséquilibre

Rappel:

$$v_m = V_A - V_B = \frac{R_c R_2 - R_1 R_3}{(R_c + R_1)(R_2 + R_3)} \cdot v_g$$

avec $R_{c}=R_{c0}+\Delta R$

Avec $R_{c0}=R_1=R_2=R_3=R$ on obtient alors :

$$V_A = rac{1 + rac{\Delta R}{R}}{1 + rac{\Delta R}{2R}} \cdot rac{v_g}{2}$$
 et $V_B = rac{v_g}{2}$

$$V_m = \frac{\frac{\Delta R}{R}}{1 + \frac{\Delta R}{2D}} \cdot \frac{V_g}{4}$$

La tension v_m n'est pas une fonction linéaire de $\frac{\Delta R}{R}$.

$$v_m = \frac{\frac{\Delta R}{R}}{1 + \frac{\Delta R}{2R}} \cdot \frac{v_g}{4}$$

La tension v_m n'est pas une fonction linéaire de $\frac{\Delta R}{R}$.

$$v_m = \frac{\frac{\Delta R}{R}}{1 + \frac{\Delta R}{2R}} \cdot \frac{v_g}{4}$$

Cependant, pour de très faibles variations de $R_{\rm C}$, en faisant une étude autour du voisinage de zéro (avec $\frac{\Delta R}{R} \ll 1$), **on peut linéariser la relation entre** v_m **et** ΔR :

$$v_m = \frac{\Delta R}{R} \cdot \frac{v_g}{4}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (1/2)

D'après le schéma, $v_A = \frac{Z_{C2}}{Z_{C1} + Z_{C2}} \cdot v_g$ et $v_B = \frac{v_g}{2}$, alors :

$$V_{m} = V_{A} - V_{B}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (1/2)

D'après le schéma,
$$v_A=\frac{Z_{C2}}{Z_{C1}+Z_{C2}}\cdot v_g$$
 et $v_B=\frac{v_g}{2}$, alors :

$$V_{m} = V_{A} - V_{B}$$

$$V_{m} = \frac{Z_{C2} - Z_{C1}}{Z_{C1} + Z_{C2}} \cdot \frac{V_{G}}{2}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (1/2)

D'après le schéma, $v_A = \frac{Z_{C2}}{Z_{C1} + Z_{C2}} \cdot v_g$ et $v_B = \frac{v_g}{2}$, alors :

$$v_{m} = v_{A} - v_{B}$$

$$v_{m} = \frac{\frac{1}{j_{\omega}C_{2}} - \frac{1}{j_{\omega}C_{1}}}{\frac{1}{j_{\omega}C_{1}} + \frac{1}{j_{\omega}C_{2}}} \cdot \frac{v_{g}}{2}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (1/2)

D'après le schéma, $v_A=\frac{Z_{C2}}{Z_{C1}+Z_{C2}}\cdot v_g$ et $v_B=\frac{v_g}{2}$, alors :

$$V_{m} = V_{A} - V_{B}$$

$$V_{m} = \frac{\frac{1}{C_{2}} - \frac{1}{C_{1}}}{\frac{1}{C_{1}} + \frac{1}{C_{2}}} \cdot \frac{v_{g}}{2}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (1/2)

D'après le schéma, $v_A=\frac{Z_{C2}}{Z_{C1}+Z_{C2}}\cdot v_g$ et $v_B=\frac{v_g}{2}$, alors :

$$V_m = V_A - V_B$$

$$V_m = \frac{C_1 - C_2}{C_1 + C_2} \cdot \frac{V_g}{2}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Tension de déséquilibre (2/2)

Si
$$C_2 = C_0 + \Delta C$$
 et $C_1 = C_0$,

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Pont de Sauty

Tension de déséquilibre (2/2)

Si
$$C_2 = C_0 + \Delta C$$
 et $C_1 = C_0$,

$$v_m = \frac{-\Delta C}{2C_0 + \Delta C} \cdot \frac{v_g}{2}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Tension de déséquilibre (2/2)

Si
$$C_2 = C_0 + \Delta C$$
 et $C_1 = C_0$,

$$v_m = -\frac{\Delta C}{C_0 \left(1 + \frac{\Delta C}{2C_0}\right)} \cdot \frac{v_g}{4}$$

Dans le cas très fréquent où le capteur est un condensateur dont le diélectrique est l'air, les pertes sont négligeables et l'impédance se réduit à celle de la capacité.

Tension de déséquilibre (2/2)

Si
$$C_2 = C_0 + \Delta C$$
 et $C_1 = C_0$,

$$v_m = -\frac{\Delta C}{C_0 \left(1 + \frac{\Delta C}{2C_0}\right)} \cdot \frac{v_g}{4}$$

dont l'approximation linéaire est :

$$v_m = -\frac{\Delta C}{C_0} \cdot \frac{v_g}{4}$$