Chapter 1:

Partial Derivatives

Noran Nur Wahida Khalili

Recall: Differentiation

Basic Properties

$$1. \quad \frac{d}{dx}(c) = 0$$

$$2. \quad \frac{d}{dx}(x) = 1$$

3.
$$\frac{d}{dx}(cf) = cf'$$

$$4. \quad \frac{d}{dx}(x^n) = nx^{n-1}$$

5.
$$\frac{d}{dx}(f \pm g) = f' \pm g'$$

6.
$$\frac{d}{dx}(fg) = fg' + gf'$$

7.
$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}$$

Trigonometric Functions

$$1. \quad \frac{d}{dx}(\sin x) = \cos x$$

$$2. \quad \frac{d}{dx}(\cos x) = -\sin x$$

3.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

4.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

5.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

6.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Common Derivatives

1.
$$\frac{d}{dx}(a^x) = a^x \ln a$$

$$2. \quad \frac{d}{dx}(e^x) = e^x$$

$$3. \quad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$4. \quad \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

Basic Chain Rule

1.
$$\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'$$

$$2. \quad \frac{d}{dx}(e^{f(x)}) = f'e^{f(x)}$$

3.
$$\frac{d}{dx}(\ln f(x)) = \frac{1}{f(x)}f'$$

4.
$$\frac{d}{dx}(\sin(f(x))) = \cos(f(x)) \cdot f'$$

5.
$$\frac{d}{dx}(\cos(f(x))) = -\sin(f(x)) \cdot f'$$

6.
$$\frac{d}{dx}(\tan(f(x))) = \sec^2(f(x)) \cdot f'$$

Chapter 1:

Partial Derivatives

Noran Nur Wahida Khalili

First Partial

For
$$z = f(x, y, z)$$
,
 $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$, $f_z = \frac{\partial f}{\partial z}$

Second Partial

For
$$z = f(x, y)$$
,
$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$f_{yy} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

Clairaut's Theorem

$$f_{xy}(a,b) = f_{yx}(a,b)$$

The same concept also applies for multivariable functions

$$f_{xyz} = f_{xzy} = f_{yxz} = f_{zyx} = \cdots$$
 etc

Implicit Differentiation

If y can be expressed completely in terms of x, then y is called an explicit function of x.

If it is not possible, then y is called an implicit function of x.

Case 1 Given an implicit function y = f(x) in an equation of the form F(x, y) = 0

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

Case 2 For z = f(x, y) in an equation of the form F(x, y, z) = 0 $\frac{\partial z}{\partial x} = -\frac{F_x}{2} \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{2}$

Chain Rule

Case 1

If z = f(x, y), x = g(t) and y = h(t), Then z is a composite function of t

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Case 2

If z = f(x, y), x = g(s, t) and y = h(s, t), Then z is a composite function of s and t

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Case 3

If $u = f(x_1, x_2, ..., x_n)$, and $x_i = h(t_1, t_2, ..., t_m)$,

 x_1 x_2 x_n Then z is a composite function of $t_1, t_2, ..., t_m$

$$\frac{du}{dt_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Chapter 1: Partial Derivatives

Partial Derivatives

Critical Points

- Critical point of f is when $f_x(x, y) = 0$ and $f_y(x, y) = 0$
- 3 types local min, local max or saddle point

Second Derivative Test (Max Min)

$$D(x,y) = f_{xx}f_{yy} - (f_{xy})^2$$

$f_{xx}(a,b)$	D(a,b)	Point type
$f_{xx} > 0$	D > 0	Local min
$f_{xx} < 0$	D > 0	Local max
	D < 0	Saddle
		point

Vector

- Has magnitude (length) and direction
- Can be written in the form:

$$\bar{a} = \mathbf{a} = \vec{a} = a_1 \bar{\iota} + a_2 \bar{\jmath} = \langle a_1, a_2 \rangle$$

Unit Vector

- Vector with length 1
- To convert any vector \bar{a} into \bar{u} , divide with its length

$$\bar{u} = \frac{\bar{a}}{|\bar{a}|} = \frac{a_1\bar{\iota} + a_2\bar{\jmath} + a_3\bar{k}}{\sqrt{a_1^2 + a_2^2 + a_3^2}}$$

• If given an angle θ ,

$$\bar{u} = \cos\theta \; \bar{\iota} + \sin\theta \, \bar{\jmath}$$

• If given 2 points; P and Q

$$\overline{PQ} = \overline{PO} + \overline{OQ}$$

$$\overline{u} = \frac{\overline{PQ}}{|\overline{PO}|}$$

• If no vector given, follow direction of ∇f

$$\bar{u} = \frac{\nabla f}{|\nabla f|}$$

Directional Derivatives

Gradient Vector, ∇f

Direction of maximum rate of change

Grad
$$f = \nabla f = \frac{\partial f}{\partial x}\bar{\iota} + \frac{\partial f}{\partial y}\bar{J} + \frac{\partial f}{\partial z}\bar{k}$$

To get $\nabla f(a, b, c)$ substitute a, b, c into x, y, z

Maximum Rate of Change, $|\nabla f|$

Maximum rate of change at (a, b, c)

$$|\nabla f(a, b, c)| = \sqrt{f_x(a, b, c)^2 + f_y(a, b, c)^2 + f(a, b, c)_z^2}$$

Directional Derivative, $D_u f$

• The rate of change at (a, b, c) $D_{u} f(a, b, c) = \nabla f(a, b, c) \cdot \bar{u}$