# CMPT 413 Computational Linguistics

#### Anoop Sarkar

http://www.cs.sfu.ca/~anoop

1/15/07

### Formal Languages: Recap

- Symbols: a, b, c
- Alphabet : finite set of symbols  $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string:  $\varepsilon$  Define:  $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings:  $\Sigma^*$  cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings

```
\{a^n b^n : n > 0\}
```

### Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. \{a^m b^n : m, n \text{ are } + \text{ve integers }\}
```

1/15/07

### Regular Languages

- Defining the set of all regular languages:
  - The empty set and  $\{a\}$  for all a in  $\Sigma^{\epsilon}$  are regular languages
  - If  $L_1$  and  $L_2$  and L are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)  
 $L_1 \cup L_2$  (union)  
 $L^* = \bigcup_{i=0}^{\infty} L^i$  (Kleene closure)  
are also regular languages

• There are no other regular languages

#### Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a regular expression is a concise description of a regular language
   (alb)\*abb: is the set of all strings over the alphabet {a, b} which end in abb

1/15/07

# Regular Expressions: Definition

- Every symbol of  $\Sigma \cup \{ \epsilon \}$  is a regular expression
- If r<sub>1</sub> and r<sub>2</sub> are regular expressions, so are
  - Concatenation: r<sub>1</sub> r<sub>2</sub>
  - Alternation:  $r_1 | r_2$
  - Repetition: r<sub>1</sub>\*
- Nothing else is.
  - Grouping re's: e.g. aalbc vs. ((aa)lb)c

### Regular Expressions: Examples

- Alphabet { V, C } V: vowel C: consonant
- A set of consonant-vowel sequences (CVICCV)\*
- All strings that do not contain "VC" as a substring C\*V\*
- Need a decision procedure: does a particular regular expression (regexp) accept an input string
- Provided by: Finite State Automata

1/15/07

#### Finite Automata: Recap

- A set of states S
  - One start state q<sub>0</sub>, zero or more final states F
- An alphabet  $\sum$  of input symbols
- A transition function:
  - $-\delta$ :  $S \times \Sigma \Rightarrow S$
- Example:  $\delta(1, a) = 2$

# Finite Automata: Example

• What regular expression does this automaton accept?



Answer: (0|1)\*00

1/15/07

#### **NFAs**

- NFA: like a DFA, except
  - A transition can lead to more than one state, that is,  $\delta$ : S x  $\Sigma \Rightarrow 2^S$
  - One state is chosen non-deterministically
  - Transitions can be labeled with  $\epsilon$ , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

# Recognition of strings (NFAs)



- Input string: aba#
- Recognition problem: Is input string in the language generated by the NFA?
- Recognition (without conversion to DFA) is also called simulation of NFA

1/15/07

# Recognition of strings (NFAs)



- Input tape: 0 a 1 b 2 a 3 # 4
- Start State: A Agenda:  $\{(A, 0)\}$
- Pop (A, 0) from Agenda
- q(A, a) = B, Agenda:  $\{(B, 1)\}$
- Pop (B, 1) from Agenda

 $^{1/1}$   $^{\bullet 07}$   $q(B, b) = \{ D, C \}$  Agenda:  $\{ (D, 2), (C, 2) \}^{12}$ 

# Recognition of strings (NFAs)



- Input tape: 0 a 1 b 2 a 3 # 4
- Pop (D, 2) from Agenda
- $q(D, a) = \{ B \}$  Agenda:  $\{ (B, 3), (C, 2) \}$
- Pop (B, 3) from Agenda: B is not a final state
- Pop (C, 2) from Agenda: if Agenda empty, reject
- $\stackrel{1/15/07}{\bullet} q(\mathbf{C}, \mathbf{a}) = \{ \mathbf{D} \} \quad \text{Agenda: } \{ (\mathbf{D}, 3) \}$

# Recognition of strings (NFAs)



- Input tape:  $_0$  a  $_1$  b  $_2$  a  $_3$  #  $_4$
- Pop (D, 3) from Agenda
- Is (D, 3) an accept item?
- Yes: D is a final state **and** 3 is index of the end-of-string marker #

# Recognition of strings (NFAs)

```
function NDRecognize (tape[], q):

Agenda = { (start-state, 0) }

Current = (state, index) = pop(Agenda)

while (true) {

if (Current is an accept item) return accept

else Agenda = Agenda ∪ GenStates(q, state, tape[index])

if (Agenda is empty) return reject

else Current = (state, index) = pop(Agenda)
}

function GenStates (q, state, index):

return { (q', index) : for all q' = q(state, ε) } ∪

{ (q', index+1) : for all q' = q(state, tape[index+1]) }
```

# Algorithms for FSMs

(finite-state machines)

- Recognition of a string in a regular language: is a string accepted by an NFA?
- Conversion of regular expressions to NFAs
- Determinization: converting NFA to DFA
- Converting an NFA into a regular expression
- Other useful *closure* properties: union, concatenation, Kleene closure, intersection