DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

Tutorial and practice problems on Single Variable Calculus

MA-101: Mathematics-I

Tutorial Problem Set - 8

October 09, 2013

PART-A (Tutorial)

1. Find the supremum and the infimum (if they exist) of the sets defined below.

(i)
$$S_1 = \{1/n : n \in \mathbb{N}\};$$
 (ii) $S_2 = \{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\};$ (iii) $S_3 = \{\frac{2n^2 + 1}{3n + 2} : n \in \mathbb{N}\}.$

- 2. Let S be a nonempty subset of \mathbb{R} and $m, M \in \mathbb{R}$.
 - (i) Show that $M = \sup S$ if and only if $x \leq M$ for all $x \in S$ and for any $\epsilon > 0$ there exists $x \in S$ such that $M \epsilon < x \leq M$.
 - (ii) Show that $m = \inf S$ if and only if $x \ge m$ for all $x \in S$ and for any $\epsilon > 0$ there exists $x \in S$ such that $m \le x < m + \epsilon$.

Solution: (i) If M is the supremum then it is evident that for any $\epsilon > 0$ there exists $x \in S$ such that $M \ge x > M - \epsilon$. Conversely, suppose that M is an upper bound of S and that for any $\epsilon > 0$ there exists $x \in S$ such that $x > M - \epsilon$. If possible suppose that $M > \sup S$. Then for $\epsilon := M - \sup S$, there exists $x \in S$ such that $x > M - \epsilon = \sup S$ which is a contradiction. Hence we must have $M = \sup S$.

- (ii) Proof is similar. Leave as an exercise.
- 3. Use the definition of convergence of a sequence to examine whether the sequences (x_n) defined below are convergent or not.

(i)
$$x_n = \frac{n^2}{n^2 + n}$$
; (ii) $x_n = \frac{2}{\sqrt{n}} + \frac{1}{n} + 3$; (iii) $x_n = \frac{3n + 2}{n + 1}$; (iv) $x_n = \frac{5}{n^{3/2}}$.

- 4. Examine whether the sequences (x_n) defined below are convergent or not. Also, find the limits when they exist.
 - (i) $x_n := \sin(\frac{n\pi}{2});$ (ii) $x_n := (-1)^n;$ (iii) $x_n := n^k x^n$, where $k \in \mathbb{N}$ and |x| < 1;
 - (iv) $x_n := \frac{n}{x^n}$, where x > 1; (v) $x_n := n^{3/2}(\sqrt{n+1} \sqrt{n})$.

Solution: (i) Note that $x_{2n} = 0$ and $x_{2n-1} = \pm 1$. Hence (x_n) does not converge.

- (ii) The subsequences (x_{2n}) and (x_{2n-1}) , respectively, converge to 1 and -1. Hence (x_n) does not converge.
- (iii) We have $|x_{n+1}/x_n| = |x|(1+1/n)^k \to |x| < 1$. Hence $x_n \to 0$.
- (iv) We have $|x_{n+1}/x_n| = (1 + 1/n)/|x| \to 1/|x| < 1$. Hence $x_n \to 0$.
- (v) It follows that $x_n \to \infty$.
- 5. Let (x_n) be a sequence of real numbers.
 - (i) If $x_n := x^{1/n}$, where x > 0, then show that $x_n \to 1$ as $n \to \infty$.

- (ii) If $x_n := n^{1/n}$ then show that $x_n \to 1$ as $n \to \infty$.
- (iii) If $x_n := x^n$, where |x| < 1, then show that $x_n \to 0$ as $n \to \infty$.

Solution: (i) If x > 1 then $x^{1/n} = 1 + d_n$ for some $d_n > 0$. Hence $x = (1 + d_n)^n > nd_n$ [binomial theorem]. Consequently $|x^{1/n}-1|=d_n < x/n$. This shows that $x_n \to 1$ as $n\to\infty$. Indeed, for any $\epsilon>0$, by Archimedean property, there exists $m\in\mathbb{N}$ such that $1/m < \epsilon/x$. Hence $|x_n - 1| < x/n < \epsilon$ for all $n \ge m$.

If x < 1 then the result follows by considering $(1/x)^{1/n}$.

The case x = 1 is trivial.

- (ii) For n > 1, we have $n^{1/n} = 1 + d_n$ for some $d_n > 0$. Hence $n = (1 + d_n)^n > 0$ $1 + n(n-1)d_n^2/2$ for n > 1 [binomial theorem]. This shows that $d_n^2 < 2/n$ for n > 1. Choose $\epsilon > 0$. Then there exists [Archimedean property] $m \in \mathbb{N}$ such that $1/m < \epsilon^2/2$. Therefore $d_n^2 < 2/n < \epsilon^2$ for all $n \ge \max(2, m)$. Hence the result follows.
- (iii) Note that $|x_n| = 1/(1+\delta_x)^n$ for some $\delta_x > 0$. Hence the result follows.
- 6. Let (x_n) be a sequence of real numbers.
 - (i) Suppose that $x_1 := 2$ and $x_{n+1} := 2 + 1/x_n$ for $n \in \mathbb{N}$. Show that (x_n) converges and find the limit.
 - (ii) Suppose that $x_1 := 1$ and $x_{n+1} := x_n/(1+2x_n)$ for $n \in \mathbb{N}$. Show that (x_n) converges and find the limit.
 - (iii) If $x_n \to L$ as $n \to \infty$ then show that $(x_1 + \cdots + x_n)/n \to L$ as $n \to \infty$.

Solution: (i) Note that $x_n \geq 2$ for $n \in \mathbb{N}$. Now $|x_{n+1} - x_n| = |1/x_n - 1/x_{n-1}| =$ $\frac{|x_n-x_{n-1}|}{x_nx_{n-1}} \le \frac{1}{4}|x_n-x_{n-1}|$ shows that (x_n) is a Cauchy sequence. Suppose that $x_n \to x$. Then we have x=2+1/x which gives $x=1\pm\sqrt{2}$. Since $x\geq 2$, we have $x=1+\sqrt{2}$.

- (ii) It follows that $x_n \geq 0$ and $x_{n+1} < x_n$ for all $n \in \mathbb{N}$. Hence by monotone convergence theorem (x_n) converges. Let x be the limit. Then by the limit theorem x = x/(1+2x)which gives x = 0.
- (iii) Choose $\epsilon > 0$. Then there exists $m \in \mathbb{N}$ such that $|x_n L| < \epsilon/2$ for $n \geq m$. Let $y_n := (x_1 + \dots + x_n)/n$. Then $|y_n - L| \le (|x_1 - L| + \dots + |x_m - L|)/n + (n - m)\epsilon/2n$ for $n \ge m$. By Archimedean Property there exists $k \in \mathbb{N}$ such that $(|x_1 - L| + \cdots + |x_m - L|)/k < \epsilon/2$. Hence for $n \ge \max(k, m)$ we have $|y_n - L| < \epsilon/2 + (1 - m/n)\epsilon/2 < \epsilon$. Consequently $y_n \to L$.

7. Let (x_n) be a sequence of nonzero real numbers. Prove or disprove the following:

- (i) If (x_n) is not bounded, then $\lim_{n\to\infty}\frac{1}{x_n}=0$.
- (ii) If (x_n) does not have any convergent subsequence, then $\lim_{n\to\infty}\frac{1}{x_n}=0$.

Solution: (i) Need not be true. For example, the sequence $(x_n) = (1, 2, 1, 3, 1, 4, ...)$ is

not bounded, but $\frac{1}{x_n} \not\to 0$, because $(\frac{1}{x_n})$ has a subsequence $(1,1,\ldots)$ converging to 1. (ii) True. If $\lim_{n\to\infty}\frac{1}{x_n}\neq 0$, then there exists $\varepsilon>0$ such that for each $n\in\mathbb{N}$, there exists a positive integer m > n satisfying $\left|\frac{1}{x_m}\right| \ge \varepsilon$, i.e. $|x_m| \le \frac{1}{\varepsilon}$. Thus we get positive integers $n_1 < n_2 < \cdots$ such that $|x_{n_k}| \leq \frac{1}{\varepsilon}$ for each $k \in \mathbb{N}$. So (x_{n_k}) is a bounded subsequence of (x_n) and hence by Bolzano-Weierstrass theorem, (x_{n_k}) has a convergent subsequence, which is also a convergent subsequence of (x_n) , which contradicts the hypothesis.

PART-B (Homework/Practice problems)

1. Let $a, b \in \mathbb{R}$. If $|a - b| < \frac{1}{n}$ for all $n \in \mathbb{N}$ then show that a = b.

If $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$ then show that $a \leq b$.

Let $a \in \mathbb{R}$. Show that for any $n \in \mathbb{N}$ there is a rational number $r_n \in \mathbb{Q}$ such that $|a - r_n| < \frac{1}{n}$. (This shows the denseness of \mathbb{Q} in \mathbb{R} .)

Solution: If $a \neq b$ then by Archimedean property there exists $n \in \mathbb{N}$ such that n > 1/|b-a|, that is, |b-a| > 1/n which is a contradiction. Hence a = b.

The proof is immediate. Indeed, if a > b then there exists $n \in \mathbb{N}$ such that n > 1/(a-b), that is, a > b + 1/n which is a contradiction.

Finally, for each $n \in \mathbb{N}$, by the density of rational, there is a rational number between a-1/n and a+1/n, that is, there exists $r_n \in \mathbb{Q}$ such that $a-1/n < r_n < a+1/n$. Hence $|a-r_n| < 1/n$.

2. Given any $a, b \in \mathbb{R}$ with $a \neq b$, show that there exists $\delta > 0$ such that the intervals $(a - \delta, a + \delta)$ and $(b - \delta, b + \delta)$ have no point in common. (This is sometimes called the Housdorff property.)

Solution: WLOG, suppose that a < b. Then by the density of rational, there exists $\delta \in \mathbb{Q}$ such that $0 < \delta < (b-a)/2$. Since $a+\delta < a+(b-a)/2=(a+b)/2=b-(b-a)/2 < b-\delta$, we conclude that the intervals $(a-\delta,a+\delta)$ and $(b-\delta,b+\delta)$ are disjoint.

3. Let $a, b \in \mathbb{R}$ with a > 0. Show that there exists $n \in \mathbb{N}$ such that na > b. (This is equivalent to the Archimedean property.)

Solution: Archimedean property says that if $x \in \mathbb{R}$ then there is some $n \in \mathbb{N}$ such that n > x. So taking x = b/a, we have na > b.

- 4. Let (x_n) be a sequence in \mathbb{R} .
 - (i) Suppose that $x_n \geq a$ for all $n \in \mathbb{N}$, where $a \in \mathbb{R}$. If $x_n \to x$ as $n \to \infty$ then show that $x \geq a$. Give an example where $x_n > a$ but x = a.
 - (ii) Let (y_n) be a sequence satisfying $a x_n \le x \le a y_n$ for all $n \in \mathbb{N}$, where $a, x \in \mathbb{R}$. If $x_n \to 0$ and $y_n \to 0$ as $n \to \infty$ then show that x = a.
 - (iii) If $x_n \to x$ as $n \to \infty$ then show that $|x_n| \to |x|$ as $n \to \infty$. Is the converse true?
 - (iv) Suppose that $x_n \geq 0$ for $n \in \mathbb{N}$. If $x_n \to x$ as $n \to \infty$ then show that $\sqrt{x_n} \to \sqrt{x}$ as $n \to \infty$.

Solution: (i) If possible, suppose that x < a. Then taking $\epsilon := a - x$, for all large n, we have $x_n < x + \epsilon = a$ which is a contradiction. Considering $x_n = 1/n$ and a = 0 we have $x_n > a$ but x = 0 = a.

- (ii) Since $a x \le x_n$ and $x_n \to 0$, by (i) we have $a x \le 0$. Again, since $y_n \le a x$ and $y_n \to 0$, we have $0 \le a x$. Hence we conclude that x = a.
- (iii) Since $||x_n| |x|| \le |x x_n|$, the result follows. The converse need not be true. Consider $x_n := (-1)^n$.
- (iv) If x = 0 then the result follows. Suppose that x > 0. Then $|\sqrt{x_n} \sqrt{x}| = |x_n x|/(\sqrt{x_n} + \sqrt{x}) \le |x_n x|/\sqrt{x}$. Hence the result follows.

5. Suppose that $|x_n - x_{n+1}| \le r^n$ for $n \in \mathbb{N}$, where 0 < r < 1. Show that (x_n) is a Cauchy sequence. Give an example of a sequence (x_n) such that $|x_n - x_{n+1}| \to 0$ as $n \to \infty$ but (x_n) is not a Cauchy sequence.

Solution: Note that $|x_n-x_{n+p}| \leq |x_n-x_{n+1}| + \cdots + |x_{n+p-1}-x_{n+p}| \leq r^n(1+\cdots+r^{p-1})$. Since $1+\cdots+r^{p-1}=\frac{1-r^p}{1-r} < 1/(1-r)$, we have $|x_n-x_{n+p}| < r^n/(1-r)$ for all $n,p\in\mathbb{N}$. Since $r^n\to 0$, for any $\epsilon>0$ there exists $m\in\mathbb{N}$ such that $r^n<(1-r)\epsilon$ for $n\geq m$. This shows that $|x_n-x_{n+p}|< r^n/(1-r)<\epsilon$ for all n>m and $p\in\mathbb{N}$. Hence (x_n) is a Cauchy sequence.

Consider $x_n := \sqrt{n}$. Then $|x_n - x_{n+1}| \to 0$ but (x_n) does not converge.

6. Let (x_n) be a sequence defined by $x_1 > 0$ and $x_{n+1} := (2 + x_n)^{-1}$ for $n \in \mathbb{N}$. Show that (x_n) converges and find the limit.

Solution: Show that $|x_{n+1} - x_n| \le r|x_n - x_{n-1}|$ for some 0 < r < 1.

- 7. Examine whether the sequences (x_n) defined below are convergent or not. Also, find the limits when they exist.
 - (i) $x_n := n^2 a^n$, where 0 < a < 1; (ii) $x_n := \frac{x^n}{n^2}$, where x > 1.
 - (iii) $x_n := \frac{x^n}{n!}$; (iv) $x_n := \frac{n!}{n^n}$.

Solution: Use the test for null sequence: Let $\left|\frac{x_{n+1}}{x_n}\right| \to L$ as $n \to \infty$.

- (i) If L < 1 then $x_n \to 0$ as $n \to \infty$.
- (ii) If L > 1 then $|x_n| \to \infty$ as $n \to \infty$.
- 8. Consider the sequences (x_n) and (y_n) . Prove or disprove the following.
 - (i) The sequence $(x_n y_n)$ converges if (x_n) converges.
 - (ii) The sequence $(x_n y_n)$ converges if (x_n) converges and (y_n) is bounded.

Solution: Easy. Left as an exercise. ■

*** End ***