PRÁCTICA

REPORTEII

PROYECTO: MEDICIÓN DE TENSIÓN SUPERFICIAL INTERFACIAL EN UNA GOTA COLGANTE

PRINCIPAL DIFERENCIA: VALOR DEL NÚMERO DE BOND

	OpenDrop				Actual			
	γ	Wo	Во	V	γ	Wo	Во	V
1	7.361	0.4938	0.2152	0.3552	8.18874	0.41712	0.19756	0.33392
2	7.452	0.4686	0.2087	0.3413	8.50363	0.39939	0.19085	0.33202
3	3.836	0.4626	0.248	0.1734	5.65419	0.36264	0.19944	0.20045
4	8.814	0.5975	0.2277	0.5147	10.0095	0.49781	0.20281	0.48713
5	6.192	0.4467	0.2139	0.2703	8.12197	0.37254	0.18468	0.58765
6	7.222	0.4747	0.2119	0.335	8.52219	0.37733	0.19534	0.31436
7	5.547	0.508	0.2348	0.2754	7.82512	0.38844	0.18923	0.29715
8	12.56	0.6934	0.2239	0.8509	14.47592	0.59108	0.20533	0.83648

ISOTRÓPICA

PRESIÓN ISOTROPICA:
ES CONSTANTE EN
TODA LA GOTA Y SE
PRESENTA CUANDO NO
HAY FUERZAS
EXTERNAS QUE
CAUSEN
DEFORMACIONES.

$$\Delta p = \frac{2\gamma}{R_o}$$

$$\cos \Delta p = p_i - p_e$$

ANISOTRÓPICA

PRESIÓN
ANISOTROPICA:
DEPENDE DEL PUNTO
EN LA SUPERFICIE DE
LA GOTA. SE PRESENTA
DONDE HAY
DEFORMACIONES.

$$\delta \sigma_{nn}(\theta, \phi) = 2\gamma \left(H(\theta, \phi) - \frac{1}{R_o} \right)$$

DEPENDEN DE LA PARAMETRIZACIÓN

CURVATURAS

CURVATURAS NORMALES

Corresponden al largo de la proyección del vector kn en un punto p

CURVAS PRINCIPALES

Corresponden a la máxima y mínima curvatura normal k1 y k2 en un punto p

$$k_n = k \cos(\theta) = |\alpha''| \langle n, N \rangle$$

CURVA PROMEDIO

$$H = \frac{\kappa_1 + \kappa_2}{2}$$

RECONSTRUCCIÓN EN 3D

Desde imágenes en 2D

UBICACIÓN EN LA DEFORMACIÓN

Desde la reconstrucción en 3D

OBTENCIÓN DE PARÁMETROS

Dado cierto punto en la superficie

PROBLEMAS

RADIO DE CURVATURA

1 ¿La gota tiene el mismo radio colgando y en el medio (sin fuerzas externas)?

PARAMETRIZACIÓN EN 3D

¿Cómo llevar a cabo la generación en 3D de las imágenes? ¿Como obtener los parámetros?

SENSIBILIDAD DE LA TENSIÓN

¿Qué tan exacta debe ser la tensión superficial obtenida?

GEOMETRÍA DIFERENCIAL

¿Cómo pasar la teoría de Geometría Diferencial al cálculo númerico en la superficie de la gota?

