ACCQ204 December 2018

Enseignant: Aslan Tchamkerten Cours 3

1 Codes de Reed-Solomon (vers 1950): appréciez l'élégance!

Soit $k \in [1, n]$, \mathbb{F}_q tel que $n \leq q$ et $\alpha_1, \alpha_2, ..., \alpha_n$ des "points d'évaluation" distincts de \mathbb{F}_q . A un message on associe un polynôme:

$$m = (m_0, m_2, \dots, m_{k-1}) \leftrightarrow f_m(X) = \sum_{i=1}^{k-1} m_i X^i.$$

Le code de Reed-Solomon (RS) est

$$C = \{RS(m) = (f_m(\alpha_1), f_m(\alpha_2), ..., f_m(\alpha_n)) : f_m(X) \in \mathbb{F}_q[X], deg(f) < k\}$$

On observe que pour tout message m et m'

$$f_m(X) + f_{m'}(X) = f_{m+m'}(X)$$

et

$$a \cdot f_m(X) = f_{a \cdot m}(X)$$

et donc (comme $deg(f_{m+m'}(X)) < k$)

$$RS(m) + RS(m') \in C$$

et

$$a \cdot RS(m) \in C$$
.

Un code RS est donc linéaire. Alternativement, la linéarité se voit car l'encodage correspond à

$$(x_1, x_2, \dots, x_n) = (m_1, m_2, \dots, m_k) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \alpha_n^{k-1} \end{pmatrix}$$

avec à droite la "matrice d'évaluation" correpondant à la matrice génératrice.

Ce code a pour paramètres:

- \bullet longueur n
- dimension q^k . Pour établir ceci il suffit de montrer que tout polynôme donne un mot code différent. Si il existait $f_1 \neq f_2$ t.q. $f_1(\alpha_i) = f_2(\alpha_i) \,\forall i$ et telles que $deg(f_1) < k$ et $deg(f_2) < k$, alors en posant

$$g = f_1 - f_2$$

on aurait que le nombres de racines de g est $\geq n \geq k$ alors que deg(g) < k ce qui impossible.

• une distance minimale d = n - k + 1. En effet

$$d = \min_{c \in C, c \neq 0} w(c)$$

et comme

$$w(c) = n - nbre\ racines$$

et que le nombre de racines est au plus k-1, on a que

$$d \ge n - (k - 1)$$
.

Il suit que d = n - k + 1 par la borne supérieure de Singleton.

Observation 1 Les codes de Reed-Solomon sont donc des codes MDS.

Observation 2 $RS(n, k-1) \subseteq RS(n, k)$ car les polynôme de degré $\leq k-1$ sont aussi de degré $\leq k$.

Observation 3 Eliminer (ponctuer) une même coordonnée à tous les mots codes d'un code de RS(n,k) donne un code de Reed Solomon (on fait une évaluation en moins) pour autant que $n-1 \ge k$.

1.1 Décodage

Soit C un code RS, $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{F}_q^n$, et $c \in C$ tel que $c_i = f(\alpha_i)$ On observe y = c + e et l'on veut retrouver y.

CAS 1: Pas d'erreur $y_i = f(\alpha_i) \, \forall i$.

Alors

$$\begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & \alpha_1 & {\alpha_1}^2 & \dots & {\alpha_1}^{k-1} \\ 1 & \alpha_2 & {\alpha_2}^2 & \dots & {\alpha_2}^{k-1} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \dots & {\alpha_n}^{k-1} \end{pmatrix} \cdot \begin{pmatrix} m_0 \\ \cdot \\ \cdot \\ m_{k-1} \end{pmatrix}$$

La matrice des alphas étant de rang plein (matrice de vandermonde) on peut retrouver le message m (la matrice est inversible a gauche).

<u>CAS 2</u>: erreurs On définit

$$\Lambda(X) = \prod_{j:e_j \neq 0} (X - \alpha_j)$$

comme étant le polynôme localisateur d'erreur. On remarque que les racines de Λ donnent les localisations des erreurs. Si l'on parvient à connaître Λ , on peut retrouver et éliminer les erreurs pour autant que leur nombre est $\leq d-1$ (propriété MDS).

Observation 4 Le polynôme Λ satisfait

$$\Lambda(\alpha_i) \cdot y_i = \Lambda(\alpha_i) \cdot f(\alpha_i)$$

car si il y a erreur en i, $\Lambda(\alpha_i) = 0$, et sinon, $y_i = f(\alpha_i) = c_i$ la ième coordonnée du vecteur envoyé.

Le problème de décodage est donc

Problème 1 Trouver $\Lambda(X)$ et f(X) tels que

$$\Lambda(\alpha_i) \cdot (y_i - f(\alpha_i)) = 0 \quad \forall i$$
 (1)

avec $deg(f) \le k - 1$ et $deg(\Lambda)$ minimal.

Le difficulté est que (1) est une équation avec des termes multivariés (produits de coefficients de Λ et f) ce qui rend la solution possible mais complexe à trouver.

1.2 Relaxation du problème

Problème 2 Etant donné $y_1, y_2, ..., trouver \Lambda(X)$ et f(X) tels que

$$\Lambda(\alpha_i) \cdot y_i - h(\alpha_i) = 0 \quad \forall i$$
 (2)

avec $deg(h) < k + deg(\Lambda)$ et $deg(\Lambda)$ minimal (on a juste remplacé le terme non linéaire $\Lambda \cdot f$ dans (1) par un terme linéaire h).

Le problème s'écrit alors :

$$\begin{pmatrix} y_1 & 0 & \\ 0 & y_2 & \\ 0 & 0 & . \\ . & . & . & y_n \end{pmatrix} \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & . & \alpha_1^t \\ 1 & \alpha_2 & \alpha_2^2 & . & \alpha_2^t \\ . & . & . & . & . \\ . & . & . & . & \alpha_n^t \end{pmatrix} \begin{pmatrix} \Lambda_0 \\ . \\ . \\ . \\ \Lambda_t \end{pmatrix} = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & . & \alpha_1^{k+t-1} \\ 1 & \alpha_2 & \alpha_2^2 & . & \alpha_2^{k+t-1} \\ . & . & . & . & . \\ . & . & . & . & \alpha_n^{k+t-1} \end{pmatrix} \begin{pmatrix} h_0 \\ . \\ . \\ . \\ h_{k+t-1} \end{pmatrix}$$

où t est le degré de Λ . On essaie de résoudre pour $t=0,\,t=1,...$ jusqu'au moment où on trouve une solution pour Λ et h. Si h/λ est un polynôme de degré < k alors l'algorithme produit $\hat{f} = h/\lambda$. Sinon, il déclare une erreur.

1. Comment garantir qu'une paire (h, λ) existe? Il suffit pour cela d'avoir au moins n degrés de liberté. Donc il suffit que

$$t + 1 + k + t = n$$

ce qui est équivalent à la condition

$$t = \left| \frac{d}{2} \right| - 1$$

puisque d = n - k + 1. Donc l'algorithme trouve une paire (h, λ) pour un

$$t \le \left\lfloor \frac{d}{2} \right\rfloor - 1$$

(la motié de la distance minimale). De plus, une de ces paires (h, λ) est donnée par le polynôme localisateur $\lambda(X) = \prod_{e_i \neq 0} (X - \alpha_j)$, ce qui correspond donc à une solution valide.

2. Cette solution est-elle unique? Soit (h_1, λ_1) et (h_2, λ_2) deux solutions de (2) pour un même $t \leq \left\lfloor \frac{d}{2} \right\rfloor - 1$. Alors

$$h_1(\alpha_i) * \lambda_2(\alpha_i) = \lambda_1(\alpha_i) * y_i * \lambda_2(\alpha_i) = \lambda_1(\alpha_i) * h_2(\alpha_i)$$
 $i = 1, 2, \dots, n.$

Puisque les degrés de $h_1 * \lambda_2$ et de $h_2 * \lambda_1$ est $2t + k - 1 \le d + k - 2 = n - 1$ et que ces polynômes sont égaux sur n valeurs distinctes, ils sont égaux.

En combinant 1. et 2. il suit que la procédure de décodage s'arrête pour un

$$t \le \left\lfloor \frac{d}{2} \right\rfloor - 1$$

et que cette solution est correcte. De plus le décodage est de faible complexité; la résolution du système linéaire déquation plus haut peut se faire avec complexité $O(n^3)$.

2 Codes BCH (Bose, Ray-Chaudhuri, Hocquenghem)

Vu: pour $1 \le k \le n$ et \mathbb{F}_q t.q. $n \le q$ il existe un code RS(n, k, d = n - k + 1). Soit $n = q = p^m$, ou p est premier et m est entier. On définit le code

$$BCH_{p,m,d} \equiv RS[n, n-d+1, d]_{p^m} \cap \mathbb{F}_p^n$$

I.e., le sous-code de RS obtenu par la restriction des composantes dans le corps de base \mathbb{F}_p . Se décode donc comme un code RS.

Paramètres:

- longeur $n = p^m$
- distance minimale $\geq d$

Remarque:

Ces codes permettent d'atteindre la borne de Hamming pour certaines petites valeurs de n.

Théorème 1

$$\dim(BCH_{p,m,d}) \ge p^m - 1 - m \left\lceil \frac{(d-2)(d-1)}{p} \right\rceil$$

 $et\ donc\ pour\ tout\ m,t\geq 1\ entier\ BCH_{2,m,2t}\ est\ un\ [n,n-1-(2t-1)(t-1)\log_2 n,2t]_2\ code.$

Cette classe de codes est intéressante seulement si $t = O(\sqrt{n/\log n})$ (ce qui donne un taux élevé et une distance minimale faible, sous linéaire).