1. Why Gauss elimination does not change the null space of matrix A?

let M be the product of elementary matrixes of A.

• suppose $x \in N(A)$, so Ax = 0. we have:

$$MAx = M(Ax) = M.0 = 0$$

so
$$x \in N(MA)$$
 as well.

• suppose $y \in N(MA)$, so (MA).y=0. we have:

$$Ay = M^{-1}MAy = M^{-1}.0 = 0$$

so
$$y \in N(A)$$
 as well.

That means when you apply Gauss elimination, you do change the solution space.

2. Why every elementary is invertible?

https://en.wikipedia.org/wiki/Elementary_matrix

https://math.vanderbilt.edu/sapirmv/msapir/prleelementarv.html

3. If n vectors are independent, is their span \mathbb{R}^n ?

Yes. Here is why:

Proposition. Let W be a subspace of a finite-dimensional vector space V. If dim(W) = dim(V), then W=V.

If we are given linearly independent $\{v_1,\ldots,v_n\}\in R^n$, then $span\{v_1,\ldots,v_n\}$ is an n-dimensional subspace of R^n . Since $dim(R^n)=n$, the proposition implies that $span\{v_1,\ldots,v_n\}=R^n$

4. Proof: A invertible <=> A's columns are independent & A is squared.

$$A = [v_1, v_2, v_3, \dots, v_n] : v_i$$
is column vector

• Suppose A is invertible => A is squared

$$Ax = 0 <=> A^{-1}Ax = A^{-1}0 <=> x = 0$$

=> q.e.d

• Suppose A's columns are independent & A is squared.

 $\{v_1,v_2,\ldots,v_n\}$ are independent => $\{v_1,v_2,\ldots,v_n\}$ is a basis of R^n (see Q3). So:

$$I_n = A * \left[egin{array}{ccc} b_{1,1} & \dots b_{1,n} \ b_{2,1} & \dots b_{2,n} \ \dots \ b_{n,1} & \dots b_{n,n} \end{array}
ight] = A * B => B = A^{-1}$$

- 5. Proof: A's columns are independent => A^TA invertible.
 - $A^T A$ is squared.
 - A's columns are independent <=> N(A)={0}. Let $\vec{v} \in N(A^TA)$.We have:

$$A^{T}A \cdot \vec{v} = \vec{0}$$

 $<=> v^{T}A^{T}Av = v^{T} \cdot \vec{0} = 0$
 $<=> (Av)^{T} \cdot (Av) = 0$
 $<=> Av = 0$
 $<=> \begin{cases} \vec{v} = \vec{0} \\ \vec{v} \in N(A) \end{cases}$
 $<=> N(A) = N(A^{T}A) = \{0\}$

=> q.e.d

6. Proof: Orthonormal set of vector are independent.

https://www.quora.com/ls-an-orthonormal-set-of-vectors-a-linearly-independent-set/answer/Supreeth-Narasimhaswamy

7. Why different eigenvalues produce independent eigenvectors?

Suppose we have k = 2 eigenvalues and some combination of x_1 and x_2 produces 0:

$$c_1x_1+c_2x_2=0$$
 (1). We will prove that $c_1=c_2=0$:

$$Ac_1x_1 + Ac_2x_2 = 0 \iff c_1\lambda_1x_1 + c_2\lambda_2x_2 = 0$$
 (2)

Subtract $(1)\lambda_2$ to (2):

$$x_1c_1(\lambda_1-\lambda_2)=0 <=> c_1=0$$
 because $x_1\neq 0$ and eigenvalues are different.

Similarly, we can show that $\emph{c}_{2}=0.$ This same argument extends to any number of eigenvalue.

8. Why A is singular <=> A has an eigenvalue equal 0?

Because: $det(A) = \lambda_1 ... \lambda_n$

Eigenvectors of a symmetric matrix A corresponding to different eigenvalues are orthogonal.

http://www.maths.manchester.ac.uk/~peter/MATH10212/notes10.pdf