Temporary Doc Calc 3

Giacomo Cappelletto
23/10/24

Contents

Chapter 1	Vector Valued Functions $f: \mathbb{R} \to \mathbb{R}^n$	Page 2
1.1	Cylindrical Coordinate Axes	3
1.2	Spherical Coordinate Axes	3
1.3	Shapes Represented in Spherical Coordinates	4
	Overview of Spherical Coordinates — 4 • Shapes in Spherical Coordinates — 4	

Chapter 1

Vector Valued Functions $f: \mathbb{R} \to \mathbb{R}^n$

1.1 Cylindrical Coordinate Axes

Example 1.1.1 (Cylinders and Cones Example)

Cylinders:

$$r = 1$$
, $v = 2$

Cones:

$$z = \frac{\sqrt{3}}{3}r, \quad z = \sqrt{3}r$$

Ranges:

• r is bounded by the cylinders: $1 \le r \le 2$

• z is bounded by the cones: $\frac{\sqrt{3}}{3}r \leqslant z \leqslant \sqrt{3}r$

• θ is unbounded: $0 \le \theta \le 2\pi$

Volume:

$$V = \int_0^{2\pi} \int_1^2 \int_{\frac{\sqrt{3}}{3}r}^{\sqrt{3}r} r \, dz \, dr \, d\theta$$

(Simplify to evaluate)

1.2 Spherical Coordinate Axes

The relationships between Cartesian coordinates (x, y, z) and spherical coordinates (ρ, ϕ, θ) are as follows:

Definition 1.2.1: Polar - Spherical Relationships

$$x = \rho \cos \phi \cos \theta$$
$$y = \rho \cos \phi \sin \theta$$

$$z = \rho \sin \phi$$

Conversely, the spherical coordinates can be expressed in terms of Cartesian coordinates as:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\phi = \tan^{-1}\left(\frac{z}{\sqrt{x^2 + y^2}}\right)$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

The volume element in spherical coordinates is:

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

The integral of a function f(x, y, z) in spherical coordinates becomes:

$$\iiint_P f(x,y,z)\,dV = \iiint_P f\left(\rho\cos\phi\cos\theta,\rho\cos\phi\sin\theta,\rho\sin\phi\right)\rho^2\sin\phi\,d\rho\,d\phi\,d\theta$$

1.3 Shapes Represented in Spherical Coordinates

1.3.1 Overview of Spherical Coordinates

- **Definition**: Spherical coordinates (r, θ, ϕ) are defined as:
 - -r: Radial distance from the origin.
 - $-\theta$: Polar angle (angle from the positive z-axis, $0 \le \theta \le \pi$).
 - ϕ : Azimuthal angle (angle in the xy-plane from the positive x-axis, $0 \le \phi < 2\pi$).
- Conversion to Cartesian coordinates:

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

1.3.2 Shapes in Spherical Coordinates

1. Sphere

Equation: r = R

Description: A sphere of radius R centered at the ori-

Representation: Independent of θ and ϕ .

2. Half-Sphere

Equation: r = R, $0 \le \theta \le \frac{\pi}{2}$ Description: Upper half of a sphere centered at the origin, constrained by the polar angle.

3. Spherical Shell

Equation: $R_1 \le r \le R_2$

Description: A hollow spherical region with inner ra-

dius R_1 and outer radius R_2 .

4. Cone

Equation: $\theta = \theta_0$

Description: A cone with its vertex at the origin, opening angle $2\theta_0$, symmetric around the z-axis. Constraints: r > 0, ϕ varies from 0 to 2π .

5. Circular Disc (in the xy-Plane)

Equation: r = R, $\theta = \frac{\pi}{2}$

Description: A circular disc of radius R centered on

the origin in the xy-plane.

6. Cylinder

Equation: $r \sin \theta = a$

Description: A cylinder of radius a around the z-axis.

Constraints:

5

• $0 \le \phi < 2\pi$,

• $r\cos\theta$ is unbounded (representing the

coordinate).

7. Torus (Approximation)

Equation: $r = R + r_0 \sin \theta$

Description: A torus with major radius R and minor radius r_0 , approximately represented in spherical coordinates.

Constraints:

- ϕ varies from 0 to 2π ,
- Specific parametric constraints apply.

8. Plane

Equation: $\theta = \text{constant}$ or $\phi = \text{constant}$ Description:

- $\theta = \text{constant}$: A conical plane cutting through the origin at a fixed polar angle.
- ϕ = constant: A vertical plane slicing through the z-axis at a fixed azimuthal angle.

9. Lemniscate Shape

Equation: $r = a \sin \theta \sin 2\phi$

Description: A figure-eight or lemniscate shape in

spherical coordinates.

10. Wave-like Surfaces

Equation: $r = R + A\cos(k\theta)$

Description: Oscillating surface around a spherical shell, useful in representing waves or perturbations on a sphere.

