

DDR Memory Module - Lattice Radiant Software

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	
1. Introduction	
1.1. Features	
1.2. Conventions	
1.2.1. Nomenclature	
1.2.2. Signal Names	
2. Functional Description	
2.1. Overview	
2.2. Signal Description	
2.3. Attribute Summary	
3. Generation, Synthesis, and Validation	
3.1. Generating and Synthesizing the IP	
3.2. Core Validation	
4. Running the Simulation	
5. Licensing and Evaluation	
5.1. Hardware Evaluation	
5.2. Licensing the IP	
Appendix A. Resource Utilization	
References	
Technical Support Assistance	
Revision History	

Figures

Figure 2.1. DDR Memory Soft IP Top-level Diagram	9
Figure 2.2. DDR Memory Block Diagram	
Figure 3.1. Configure Block of DDR Memory Module	
Figure 3.2. Check Generating Result	
Figure 3.3. Synthesizing Design	
Figure 4.1. Simulation Wizard	19
Figure 4.2. Adding and Reordering Source	
Figure A.1. Configuration for Resource Utilization	
Tables	
Table 2.1. Available DDR Memory Interfaces	8
Table 2.2. Summary of DDR Memory Interface Support Logic	
Table 2.3. DDR Memory Ports	
Table 2.4. Attribute Table	15
Table 2.5. Clock/Address/Command Attribute Values	
Table A.1. Poscurse Utilization	21

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
DDR	Double Data Rate
FPGA	Field Programmable Gate Array
LPDDR	Low-Power Double Data Rate
LSE	Lattice Synthesis Engine

1. Introduction

The Lattice Semiconductor Double Data Rate (DDR) Memory Module generates a module that can be used to interface to a DDR Memory and includes a bidirectional port and the associated clocking scheme. The design is implemented in Verilog HDL. It can be targeted to Lattice FPGA devices built on the Lattice Nexus™ platform and implemented using the Lattice Radiant® software integrated with the synthesis tool.

1.1. Features

Key features of Double Data Rate Memory Module include:

- Supports DDR3, DDR3L, and LPDDR2/3 memory interface
- Frequency Supported: 400, 533 MHz
- Supported gearing ratio 4:1, 8:1
- Write Leveling support for DDR3/LPDDR3
- Dynamic valid window optimization (Read and Write Path)
- · Configurable address and data bus width
- Configurable number of chip selects
- Configurable number of clocks
- Optional PLL generation

1.2. Conventions

1.2.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.2.2. Signal Names

Signal names that end with:

- _n are active low
- _i are input signals
- _o are output signals
- _io are bi-directional input/output signals

2. Functional Description

2.1. Overview

DDR Memory Interface is bi-directional:

- On write (transmitting from controller to memory as a receiver), it is centered;
- On read (transmitting from memory to receiver on controller), it is aligned.

Table 2.1. Available DDR Memory Interfaces

Feature	Description	Comments				
DDR3/DDR3L						
MDDRX2/4.DQ	Input/Output Data Bus	_				
MDDRX2/4.DQS	Input/Output Data Strobe	Read Training support				
MDDRX2/4.DM	Input Data Mask	_				
ODDRX2/4.CK	DDR Memory Clock	_				
MOSHX2/4.CSN	Chip Select	_				
ODDRX2/4.ADDR_CMD_CKE_ODT	Address, Command, Clock Enable, On-Die Termination	_				
LPDDR2/LPDDR3						
MDDRX2/4.DQ	Input/Output Data Bus	_				
MDDRX2/4.DQS	Input/Output Data Strobe	Read Training/Write Levelling for LPDDR3 only				
MDDRX2/4.DM	Input Data Mask	_				
MDDRX2/4.CK_CKE_ODT	DDR Clock, Clock Enable, On-Die Termination	ODT for LPDDR3 only. A separate DQSBUF is used.				
MDDRX2/4.CA	Command/Address Inputs	CA Training supported. A separate DQSBUF is used. Margin test is not required in LPDDR2.				

Notes:

- MDDRX2/4.DQ, MDDRX2/4.DQS, and MDDRX2/4.DM implementation is same for DDR3, DDR3L, LPDDR2, and LPDDR3.
- ODDRX2/4.CK, MOSHX2/4.CSN and ODDRX1/4.ADDR_CMD_CKE_ODT are applicable only to DDR3 and DDR3L.
- MDDRX2/4.CK_CKE_ODT and MDDRX2/4.CA are applicable only to LPDDR2 and LPDDR3.

Table 2.2. Summary of DDR Memory Interface Support Logic

Module	Description			
MEM SYNC	Needed to avoid issues on DDR Memory bus and update code			
INIEINI_3TINC	in operation without interrupting interface operation.			

Figure 2.1 illustrates the top-level design of DDR Memory Module.

Figure 2.1. DDR Memory Soft IP Top-level Diagram

Figure 2.2. DDR Memory Block Diagram

© 2019-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.2. Signal Description

Table 2.3. DDR Memory Ports

Pin Name	Direction	Width (Bits)	Description		
Clocks and Reset					
eclk_i	IN	1	Input clock		
sync_clk_i	IN	1	Low speed continuously running clock input		
sync_rst_i	IN	1	Active HIGH reset signal		
sclk_o	OUT	1	Output divided clock		
User Interface	·I		,		
sync_update_i	IN	1	Used to update the code, perform training, or write leveling after ready_o goes high		
pll_lock_i	IN	1	Used to indicate that clock source is already stable		
pause_i	IN	1	Used to stop input clock for write leveling and code update		
rd_clksel_dqs0_i, rd_clksel_dqs1_i, rd_clksel_dqs(q)_i	IN	4	Used to select read clock source and polarity control per DQS group.		
rd_dir_dqs0_i, rd_dir_dqs1_i, rd_dir_dqs(q)_i	IN	1	Used to control the direction for DDR Read operation per DQS group. 0 to increase and 1 to decrease the code. Available only when Enable Dynamic Margin Control on Clock Delay is set.		
rd_loadn_dqs0_i, rd_loadn_dqs1_i, rd_loadn_dqs(q)_i	IN	1	Asynchronous reset the final delay code to factory default value for DDR Read operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.		
rd_dqs0_i, rd_dqs1_i rd_dqs(q)_i	IN	4	Read signal for DDR Read mode per DQS group. This is used to determine the location of the DQS signal.		
rd_move_dqs0_i, rd_move_dqs1_i, rd_move_dqs(q)_i	IN	4	At rising edge, it changes the code according to the direction set for DDR Read operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.		
selclk_i	IN	1	Selects between output of the read section's delay cell or sclk for the clock to be used		
wr_dir_dqs0_i, wr_dir_dqs1_i, wr_dir_dqs(q)_i	IN	1	Used to control the direction for DDR Write operation per DQS group. 0 to increase and 1 to decrease the code. Available only when Enable Dynamic Margin Control on Clock Delay is set.		
wr_loadn_dqs0_i, wr_loadn_dqs1_i, wr_loadn_dqs(q)_i	IN	1	Asynchronous reset the final delay code to factory default value for DDR Write operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.		
wr_move_dqs0_i, wr_move_dqs1_i, wr_move_dqs(q)_i	IN	1	At rising edge, it changes the code according to the direction set for DDR Write operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.		
wrlvl_loadn_dqs0_i, wrlvl_loadn_dqs1_i, wrlvl_loadn_dqs(q)_i	IN	1	Asynchronous reset the final delay code to factory default value for DDR Write Leveling operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set and 'Interface Type' is DDR3/LPDDR3.		
wrlvl_dir_dqs0_i, wrlvl_dir_dqs1_i, wrlvl_dir_dqs(q)_i	IN	1	Used to control the direction for DDR Write Leveling operation per DQS group. 0 to increase and 1 to decrease the code. Available only when Enable Dynamic Margin Control on Clock Delay is set and Interface Type is DDR3/LPDDR3		

Pin Name	Direction	Width (Bits)	Description	
wrlvl_move_dqs0_i, wrlvl_move_dqs1_i, wrlvl_move_dqs(q)_i	IN	1	At rising edge, it changes the code according to the direction set for DDR Write Leveling operation per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set and <i>Interface Type</i> is DDR3/LPDDR3.	
dq_outen_n_i	IN	g	Tristate control port for DQ	
data_dqs0_i, data_dqs1_i, data_dqs(q)_i	IN	n*2*g	Parallel data bus input	
dcnt_o	OUT	8	DDRDLL delay code	
ready_o	OUT	1	Indicate that startup is finished and RX circuit is ready to operate.	
sync_pause_o	OUT	1	PAUSE signal from MEM_SYNC module	
data_dqs0_o, data_dqs1_o, data_dqs(q)_o	OUT	n*2*g	Parallel data bus output	
dqs_rd_section_o	OUT	1*q	Read training clock adjusted in the write section per DQS group. 1-bit output bus width per DQS group.	
burst_detect_dqs0_o, burst_detect_dqs1_o, 	OUT	1	Read burst detect output	
burst_detect_dqs(q)_o burst_detect_sclk_dqs0 _o,	OUT	1	Clock generated using burst_detect_o	
_o, burst_detect_sclk_dqs1 _o, burst_detect_sclk_dqs(q)_o				
data_valid_dqs0_o, data_valid_dqs1_o, data_valid_dqs(q)_o	OUT	1	Data valid flag for READ mode per DQS group	
rd_cout_dqs0_o, rd_cout_dqs1_o, rd_cout_dqs(q)_o	OUT	1	Margin test output flag for READ to indicate the under-flow or over-flow per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.	
wr_cout_dqs0_o, wr_cout_dqs1_o, wr_cout_dqs(q)_o	OUT	1	Margin test output flag for WRITE to indicate the under-flow or over-flow per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set.	
wrlvl_cout dqs0_o, wrlvl_cout dqs1_o, wrlvl_cout dqs(q)_o	OUT	1	Margin test output flag for WRITE LEVELING to indicate the under-flow or over-flow per DQS group. Available only when <i>Enable Dynamic Margin Control on Clock Delay</i> is set and <i>Interface Type</i> is DDR3/LPDDR3.	
dqwl_dqs0_o, dqwl_dqs1_o, dqwl_dqs(q)_o	OUT	8	Data output of write leveling. Available only when <i>Interface Type</i> is DDR3/DDR3L.	
dqs_outen_n_dqs0_i, dqs_outen_n_dqs1_i, dqs_outen_n_dqs(q)_i	IN	g	Tristate control port for DQS per DQS group	
dqs0_i, dqs1_i, dqs(q)_i	IN	g	Parallel DQS input per DQS group	
data_mask_dqs0_i, data_mask_dqs1_i, data_mask_dqs(q)_i	IN	2*g	Parallel Data Mask input per DQS group. Available only when Data Mask Enable attribute is set.	

Pin Name	Direction	Width (Bits)	Description	
csn_din0_i, csn_din1_i, csn_din2_i and csn_din3_i	IN	k	Chip Select input Available only when Clock/Address/Command Enable is set.	
addr_din0_i and addr_din1_i	IN	р	Address input Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	
ba_din0_i and ba_din1_i	IN	j	Bank Address input Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	
casn_din0_i and casn_din1_i	IN	1	Column Address input Available for DDR3 and DDR3L only, when Clock/Address/Command Enable is set.	
rasn_din0_i and rasn_din1_i	IN	1	Row Address input Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	
wen_din0_i and wen_din1_i	IN	1	Write Enable input Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	
odt_din0_i and odt_din1_i	IN	1	On-die Termination input Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L/LPDDR3.	
cke_din0_i and cke_din1_i	IN	2*k (for non- LPDDR2/3), or g (otherwise)	Clock Enable input Available only when Clock/Address/Command Enable is set.	
pause_cmd_i	IN	1	Separate pause input for DQSBUF used for Command/Address output path. Available only when Clock/Address/Command Enable, Enable Dynamic Margin Control on Clock Delay are set and Interface Type is LPDDR3.	
ca_i	IN	l*2*g	Command/Address input Available only when Clock/Address/Command Enable is set and Interface Type is LPDDR2/LPDDR3.	
I/O Pad Interface				
dq_dqs0_io, dq_dqs1_io, dq_dqs(q)_io	INOUT	8	Data bus to/from I/O	
dqs0_io, dqs1_io, dqs2_io	INOUT	1	Data strobe to/from I/O	
dm_dqs0_o, dm_dqs1_o, dm_dqs(q)_o	OUT	1	Data Mask output to I/O per DQS group Available only when <i>Data Mask Enable</i> attribute is set.	
ck_o	OUT	m (for non- LPDDR2/3), or 1 (otherwise)	DDR Clock output to I/O Available only when Clock/Address/Command Enable is set.	
csn_o	OUT	k (for non- LPDDR2/3), or 1 (otherwise)	Chip Select output to I/O Available only when Clock/Address/Command Enable is set.	
addr_o	OUT	р	Address output to I/O Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	
ba_o	OUT	j	Bank Address output to I/O Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.	

Pin Name	Direction	Width (Bits)	Description
casn _o	OUT	1	Column Address output to I/O Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.
rasn_o	OUT	1	Row Address output I/O Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.
wen_o	OUT	1	Write Enable output to I/O Available only when Clock/Address/Command Enable is set and Interface Type is DDR3/DDR3L.
odt_o	OUT	k (for non- LPDDR3), or 1 (otherwise)	On-die termination output to I/O Available only when <i>Clock/Address/Command Enable</i> is set and <i>Interface Type</i> is DDR3/DDR3L/LPDDR3.
cke_o	OUT	k (for non- LPDDR2/3), or 1 (otherwise)	Clock Enable output to I/O Available only when Clock/Address/Command Enable is set.
ca_o	OUT	1	Command/Address output to I/O Available only when Clock/Address/Command Enable is set and Interface Type is LPDDR2/LPDDR3.

Notes:

- n = number of DQ per DQS group; currently set to 8;
- q = number of DQS groups;
- m = number of DDR clocks selected (NUM DDRCLK);
- p = Address width selected (ADDR_WIDTH);
- k = number of Chip Select (NUM_CS);
- j = Bank Address bus width selected (BA_WIDTH);
- g = DDR gearing used (2 = X2 gearing; 4 = X4 gearing);
- I = command/address bus width; currently set to 10.

2.3. Attribute Summary

Table 2.4. Attribute Table

Attribute	Selectable Values	Default	Dependency on Other Attributes	
General Tab				
General Group				
Interface Type	DDR3, DDR3L, LPDDR2, LPDDR3	LPDDR3	_	
I/O Buffer Type	SSTL15_I, SSTL15_II	SSTL15_I	Interface Type = DDR3	
	SSTL135_I, SSTL135_II	SSTL135_I	Interface Type = DDR3L	
	HSUL12	HSUL12	Interface Type = LPDDR2 or LPDDR3	
Gearing Ratio	4:1, 8:1	4:1	_	
Number of DQ per DQS	8	8	Display Information only	
Data Bus Width	8, 16, 24, 32	16	Interface Type = DDR3 or DDR3L	
	16		Interface Type = LPDDR2 or LPDDR3	
Number of DQS Group	Calculated = (Data Bus Width)/ (Number of DQs per DQS group, which is set to 8)	N/A	Data Bus Width	
Data Mask Enable	Checked, Unchecked	Unchecked	_	
Clock/ Address/ Command Enable	Checked, Unchecked	Unchecked	_	
Enable Dynamic Margin Control on Clock Delay	Checked, Unchecked	Unchecked	_	
DDR Memory Frequency (MHz)	400, 533	400	533 is only available If Gearing Ratio = 8:1	
System Clock Frequency (MHz)	Calculated = (DDR Memory Frequency) /Gearing Ratio	N/A	Display Information only	
Enable PLL	Checked, Unchecked	Unchecked	_	
PLL CLKI: Frequency (MHz)	10 – 800	100	Enable PLL is Checked	
PLL Reference Clock from Pin	Checked, Unchecked	Unchecked	Enable PLL is Checked	
I/O Standard for Reference Clock	LVDS, SUBLVDS, SLVS, HSTL15_I, HSTL15D_I, LVTTL33, LVCMOS33, LVCMOS25, LVCMOS18, LVCMOS18H, HSTL15D_I, LVCMOS15, LVCMOS15H, LVCMOS12, LVCMOS12H, LVCMOS10H, LVCMOS10, LVCMOS10R	SLVS	Enable PLL and PLL Reference Clock from Pin are both Checked	
CLKOP Tolerance (%)	0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0	0.1	Enable PLL is Checked	
DDR Memory Actual Frequency (MHz)	Calculated	N/A	Display Information only	
Clock/Address/Command				
Number of Clocks	umber of Clocks 1, 2, 4		Interface Type = DDR3 or DDR3L and	
Address Width	13, 14, 15, 16	13	Clock/Address/Command Enable is Checked	
Number of Chip Selects	1, 2	1		
Number of Chip ODT	Calculated = Number of Chip Selects	1		
Number of Clock Enables	Calculated = Number of Chip Selects	1		
Bank Address Width	3	3		

Attribute	Selectable Values	Default	Dependency on Other Attributes
Advanced Settings			
DQS Read Delay Adjustment Enable	Checked, Unchecked	Unchecked	Enable Dynamic Margin Control on Clock
DQS Read Delay Adjustment Sign	POSITIVE, COMPLEMENT	POSITIVE	Delay is Checked
DQS Read Delay Adjustment Value	0-511	0	
DQS Read Delay Adjustment Actual Value	Calculated: Performs 2's complement of 'DQS Read Delay Adjustment Value' when selected sign is COMPLEMENT	N/A	Display Information only
DQS Write Delay Adjustment Enable	Checked, Unchecked	Unchecked	Enable Dynamic Margin Control on Clock Delay is Checked
DQS Write Delay Adjustment Sign	POSITIVE, COMPLEMENT	POSITIVE	
DQS Write Delay Adjustment Value	0-511	0	
DQS Write Delay Adjustment Actual Value	Calculated: Performs 2's complement of 'DQS Write Delay Adjustment Value' when selected sign is COMPLEMENT	N/A	Display Information only

Table 2.5 shows a brief summary of possible Clock/Address/Command attribute options depending on the *Interface Type* you have chosen from the user interface:

Table 2.5. Clock/Address/Command Attribute Values

	Interface Type							
Attribute	DDR3	DDR3 DDR3L LPDDR2 LPDDR3						
CLK	1, 2, 4	1, 2, 4	1	1				
CA	13,14,15,16	13,14,15,16	Set to 10	Set to 10				
BA	3	3	0 (N/A)	0 (N/A)				
CSN	1, 2	1, 2	1	1				
ODT	Same as CSN	Same as CSN	0 (N/A)	1				
CKE	Same as CSN	Same as CSN	1	1				

3. Generation, Synthesis, and Validation

This chapter provides information on how to generate and synthesize DDR Memory Module using Lattice Radiant software. For more on Lattice Radiant software, refer to the Lattice Radiant Software 2.1 User Guide.

3.1. Generating and Synthesizing the IP

Lattice Radiant software allows you to generate and customize modules and IPs and integrate them into the device architecture.

To generate the DDR Memory Module in Lattice Radiant software:

- 1. In the Module/IP Block Wizard create a new Lattice Radiant Software project for DDR Memory module.
- 2. In the dialog box of the Module/IP Block Wizard window, configure DDR Memory module according to custom specifications using drop-down menus and check boxes. As a sample configuration, see Figure 3.1. For configuration options, see Table 2.4.

Figure 3.1. Configure Block of DDR Memory Module

3. Click **Generate**. The Check Generating Result dialog box opens, showing design block messages and results as shown in Figure 3.2.

Figure 3.2. Check Generating Result

- 4. Click Finish to generate the Verilog file.
- 5. Upon generating your desired design, you can synthesize it by pressing **Synthesize Design** located on the top left corner of the screen, as shown in Figure 3.3.

Figure 3.3. Synthesizing Design

For general information and details on Lattice Radiant Software, refer to the Lattice Radiant Software User Guide and tutorials.

3.2. Core Validation

The functionality of the DDR Memory Module has been verified via simulation using Lattice's in-house testbench environment and hardware validation.

© 2019-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. Running the Simulation

To run simulation, perform the following steps:

1. Press the button located on the Toolbar on the top of your screen to initiate Simulation Wizard, as shown in Figure 4.1.

Figure 4.1. Simulation Wizard

2. Press Next to get to the Add and Reorder Source Screen, shown in Figure 4.2.

Figure 4.2. Adding and Reordering Source

3. Press Next to run simulation.

5. Licensing and Evaluation

5.1. Hardware Evaluation

There is no restriction on the hardware evaluation of this module.

5.2. Licensing the IP

No license is required for this module.

20

Appendix A. Resource Utilization

Table A.1 show configuration and resource utilization for LIFCL-40-9BG400I using Symplify Pro of Lattice Radiant Software 2.1. The configuration used in generating the resource utilization is shown in Figure A.1.

Figure A.1. Configuration for Resource Utilization

Table A.1. Resource Utilization

Configuration	sclk_o Fmax (MHz)*	Registers	LUTs	IDDR/ODDR/TDDR
Data Bus Width = 32, Others = Figure A.1	200	25	68	131
Data Bus Width = 24, Others = Figure A.1	200	25	68	104
Data Bus Width = 16, Others = Figure A.1	200	25	68	77
Data Bus Width = 8, Others = Figure A.1	200	25	68	50
Data Bus Width = 32, DDR Memory Frequency = 400MHz, Others = Figure A.1	200	25	68	131

*Note: The sclk_o Fmax is generated using a design that only contains the DDR Memory Module and a few linear-feedback shift registers. These values may be reduced when the IP Core is used with the user logic.

References

For complete information on Lattice Radiant Project-Based Environment, Design Flow, Implementation Flow and Tasks, as well as on the Simulation Flow, see the Lattice Radiant Software User Guide.

22

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Document Revision 1.3, Lattice Radiant SW version 2.1, June 2021

200ament nevision 210, 20th to nation to 1010 112, 14me 2022		
Section	Change Summary	
Introduction	 Replaced specific product names with Lattice FPGA devices built on the Lattice Nexus platform or Lattice Nexus devices. Removed Quick Facts section. 	
References	Updated this section.	

Document Revision 1.2, Lattice Radiant SW version 2.1, June 2020

Section	Change Summary	
Introduction	Added Certus-NX and LFD2NX-40 as supported FPGA family and device.	
Attribute Summary	 Updated Table 2.4 format and updated information to match DDR Memory Module v1.1.0. Updated CK and CSN entry in Table 2.5. 	
Generating and Synthesizing the IP	Updated Figure 3.1 and Figure 3.2.	
Appendix A. Resource Utilization	Added this section.	

Document Revision 1.1, Lattice Radiant SW version 2.0 Service Pack 1, February 2020

Section	Change Summary
Introduction	Updated Table 1.1 with the following changes:
	Removed Minimal Device Needed.
	Added LIFCL-17 as targeted device.
	Removed Data Path Width item.
Attribute Summary	Updated Table 2.4 format and updated information to match DDR Memory Module v1.0.1.
Generating and Synthesizing the IP	Updated Figure 3.1 and Figure 3.2.
Running the Simulation	Updated Figure 4.1 and Figure 4.2.

Document Revision 1.0, Lattice Radiant SW version 2.0, December 2019

Section	Change Summary	
All	Changed document status from Preliminary to final.	
Acronyms in This Document	Added this section.	

Document Revision 0.80, Lattice Radiant SW version 0.80, October 2019

botament Revision 6100, Lattice Radiant 511 Version 6100, October 2015		
Section	Change Summary	
All	Preliminary release	

© 2019-2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com