Introduction to Computer Programming

Week 4.3: Recursive functions

Bristol

Recursive functions

Recursive functions are functions that call themselves.

Example: consider the following code, which prints the integers \$n\$, \$n-1\$, ..., \$1\$.

```
In [1]: def print_numbers(n):
if n == 0:
    return
else:
    print(n)
    print_numbers(n-1)
```

If \$n \neq 0\$, then the function calls itself.

3 2

Recursion can help to break up complex calculations into simpler steps.

In general, a recursive function is made up of two parts:

- 1. A recursive statement, where the function calls itself using a different argument
- 2. A stopping condition, which determines the value of the function for a specific argument

This seems a bit abstract, so let's examine a specific example.

Example: Compute the value of \$x^n\$, where \$n\$ is an integer, using recursion

Solution: We do this by noticing that we can write $x^n = x \cdot x^n = x \cdot x$

Summary

- · Recursive functions are those which call themselves
- They consist of two parts: a recursive statement and a stopping condition