1. Exercise 1.3

- If $A \in \mathcal{G}_1$ and is different from empty set and the whole set, then A^c is closed and doe not belong to \mathcal{G}_1 . Thus, \mathcal{G}_1 is not an algebra.
- If a = b then $\emptyset \in \mathcal{G}_2$. If $b \leq a$, then $\mathbb{R} \in \mathcal{G}_2$. Thus by definition of G_2 , it is an algebra.
- If a = b then $\emptyset \in \mathcal{G}_2$. If $b \leq a$, then $\mathbb{R} \in \mathcal{G}_2$. Thus by definition of G_2 , it is an σ -algebra.

2. Exercise 1.7

- \mathcal{A} is a σ -algebra. Thus, by definition it contains $\{\emptyset, X\}$
- \mathcal{A} is a σ -algebra. By definition it is a family of subsets of X, thus, $\mathcal{A} \subset \mathcal{P}(X)$.

3. Exercise 1.10

- $\emptyset \in \mathcal{S}_{\alpha} \ \forall \alpha \Rightarrow \emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha}$
- If $A \in \cap_{\alpha} \mathcal{S}_{\alpha}$, then $A \in \mathcal{S}_{\alpha}$ and $A^c \in \mathcal{S}_{\alpha} \ \forall \alpha$, hence, $A^c \in \cap_{\alpha} \mathcal{S}_{\alpha}$
- If $A_n \in \cap_{\alpha} S_{\alpha}$, then then $A_n \in S_{\alpha}$ and $\bigcup_n A_n \in S_{\alpha} \ \forall \alpha$, hence, $\bigcap_n A_n \in \bigcup_{\alpha} S_{\alpha}$

4. Exercise 1.22

- $A \subset B \Rightarrow B = A \cup (B \cap A^c)$. Since A and $B \cap A^c$ are disjoint, $\mu(B) = \mu(A) + \mu(B \cap A^c)$. Thus, $\mu(A) \leq \mu(B)$.
- $A = (A \cap B^c) \cup (A \cap B)$ and $B = (B \cap A^c) \cup (B \cap A)$. $\mu(A) + \mu(B) = \mu(A \cap B) + \mu($

5. Exercise 1.23

- $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0.$
- $\lambda(\cup_n \mathcal{A}_n) = \mu((\cup_n \mathcal{A}_n) \cap B) = \mu(\cup_n (\mathcal{A}_n \cap B)) = \sum_n \mu(\mathcal{A}_n \cap B) = \sum_n \lambda(\mathcal{A}_n).$ ({ \mathcal{A}_n }) disjoint.)

6. Exercise 1.26

• $\mu(\cap_n \mathcal{A}_n) = \mu((\cup_n \mathcal{A}_n^c)^c) = \mu(X) - \mu(\cup_n \mathcal{A}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{A}_n^c) = \mu(X) - \lim_{n \to \infty} \mu(\mathcal{A}_n) - \lim_{n \to \infty} \mu(\mathcal{A}_n)$. By (i).