תרגילים 7- 6. תחשיב פסוקים.

- 1) הוכיחו כי
- א) אם פסוקים $(x \rightarrow \neg z)$ ו- $(\neg z \lor \neg y)$ טאוטולוגיות אז גם $(\neg z \lor \neg y)$ טאוטולוגיה.
 - . טאוטולוגיה $(A \land (A \rightarrow B)) \rightarrow B$ פסוק (ב
 - $A \leftrightarrow B$ פסוק $A \leftrightarrow B$ טאוטולוגיה אם ורק אם $A \leftrightarrow B$ פסוק ($A \leftrightarrow B$
 - . טאוטולוגיה $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ פסוק (**ד**
 - 2) הוכיחו שקלויות לוגיות.
 - $(A \wedge B) \vee ((A \vee B) \wedge (\neg A \vee \neg B)) \Leftrightarrow A \vee B$ (X
 - $(A \lor B) \land (A \lor \neg B) \Leftrightarrow A$
- אם ורק אם ורק אם A,B,C אם ורק אם 3 משתנים פסוק אם (3 א הרכיבו פסוק עם 3 משתנים משתנים מקיימים ערך F אם ורך בדיוק 2 משתנים מקיימים ערך
- ב) מצאו כל פסוקים בצורה הדיסיונקטיבית הנורמאלית הקנונית על קבוצת משתנים $\{x,y\}$.
 - מצאו את הצורה הדיסיונקטיבית הנורמאלית הקנונית של פסוק (ג $(A \rightarrow C) \land (A \rightarrow (B \land C))$
 - מצאו את הצורה הדיסיונקטיבית הנורמאלית הקנונית של פסוק (\mathbf{T} $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow \neg C) \rightarrow (A \rightarrow \neg B))$
 - - . הוכיחו כי מערכות הבאות של קשרים שלמות.
- א) נגדיר פעולות נוספות עם פסוקים $A \downarrow B = \neg (A \lor B)$ היא מערכת פעולות שלמה,
 - , כאשר F פסוק שקר, $\{ \rightarrow, F \}$ מערכת קשרים (ב
 - $,\{
 ightarrow , -\},$ מערכת קשרים
- $Val(A+B,s) = egin{cases} F, & s(A) = s(B) \\ T, & s(A)
 eq s(B) \end{cases}$ מערכת קשרים $\{+,\lor,T\}$, כאשר ד
 - $A+B \Leftrightarrow \neg(A \leftrightarrow B) \$

 - 6) הוכיחו כי מערכות הבאות של קשרים לא שלמות.
 - $A*B= \neg A \wedge B$ כאשר $\{*,\wedge\}$ מערכת קשרים (
 - $\{\neg\}$ מערכת קשרים (
 - $\{\land,\lor\}$ מערכת קשרים (

- א) בטא \vee במערכת קשרים $\{ \rightarrow \}$ ז"א מצא פסוק בנוי ממשתנים פסוקים רק $(x \vee y)$ דעזרת קשר $(x \vee y)$ ושקול ל
 - $, \{ \rightarrow, F \}$ בטא במערכת קשרים
 - בטא במערכת קשרים $\{+,T\}$, כאשר קשר + מוגדר ב שאלה 5 ד.
- א) או הוכיחו כי קשר \leftrightarrow אי אפשר לבטא במערכת קשרים (\land,\lor) ז"א לא קיים אוכיחו (x,\lor) אי אפשר לבטא במערכת קשר (x,\lor) אושקול ל- (x,\lor) אושקול ל- (x,\lor) אושקול ל-
 - $,\{\land,\lor,\rightarrow,\leftrightarrow\}$ הוכיחו כי קשר \neg אי אפשר לבטא במערכת קשרים (ב
- + אי אפשר לבטא במערכת קשרים $\{\land,\lor,+\}$, כאשר קשר \leftrightarrow אי אפשר לבטא במערכת קשרים \leftrightarrow ד.
 - A,B,C (פרמטרים) א כפסוקים במשתנים (פרמטרים) א (**9** ($A \rightarrow X) \Leftrightarrow (A \rightarrow (B \land C))$ ער ש-

X כמה קיימים פסוקים כאלה לא שקולים לוגית זה לזה ? כמה קיימות פתרונות כפסוקים במשתנים (פרמטרים) ? A,B,C,D

 $(A \wedge X) \Leftrightarrow (B \wedge A)$ -ב) אין מצאו כל $(A \wedge X) \Leftrightarrow (B \wedge A)$ כך ש- $(A \wedge X) \Leftrightarrow (A \vee C)$

X כמה קיימים פסוקים כאלה לא שקולים לוגית זה לזה ? כמה קיימות פתרונות כפסוקים במשתנים (פרמטרים) A,B,C,D

- . הוכיחו או הפריכו את הטענות הבאות.
- א) קיימים בדיוק 4 פונקציות אמת עם 2 משתנים.
- קיים פסוק φ שמקיים תנאי הבא עבור כל פסוק ψ : אם φ גורר לוגית את פסוק (ב φ אז ψ שקול לוגית ל φ .
 - **ג)** קיים פסוק φ שמקיים תנאי הבא: כל פסוק שגורר לוגית את פסוק φ הוא שקול לוגית ל- φ .
 - ד) קיימים בדיוק 7 צורות הדיסיונקטיביות הנורמאליות הקנוניות (לא ריקות) על קבוצת משתנים $\{x,y,z\}$
 - מצאו צורה דיסיונקטיבית נורמאלית מינימאלית עבור פסוק (11
 - $(Y \wedge \neg Z) \vee (\neg X \wedge \neg Y \wedge Z) \vee (\neg Y \wedge \neg Z)$ (X
 - $(Y \land \neg Z) \lor (\neg X \land \neg Y \land Z) \lor (\neg Y \land \neg Z) \lor (X \land Y \land Z)$
 - $(X \wedge Y) \vee (X \wedge \neg Y \wedge Z \wedge T) \vee (\neg X \wedge T) \vee (X \wedge \neg Y \wedge \neg Z \wedge T)$ (λ

<u>רמז.</u> אפשר_להשתמש במפות קרנו.

בהצלחה!