Systems Design and Databases (CIS1018-N)

Week 1

Module Introduction,

Systems Design, Introduction to Databases - DDL, DML, DCL & TCL

Requirement List & MoSCoW & User Story

Teaching Team

Module Leader & Lecturer: Dr Yar Muhammad

Email: Yar.Muhammad@tees.ac.uk

Office: G0.39 (Greig Building)

Tutor:

- Dr Mengda He
- Mr Mansha Nawaz
- Mr Vishalkumar Thakor

See Blackboard Ultra for online materials: https://bb.tees.ac.uk/

Lectures & IT Labs

Lectures - Dr Yar Muhammad	Tuesdays @ 2-3 pm	
Week 1 – Week 12	CL1.87	OL7

Tutor – Thursday	IT Lab Session Room #: OL8
Mr Mansha Nawaz	Time: 9 – 10 am
<u>M.Nawaz@tees.ac.uk</u>	Room #: OL8
Mr Mansha Nawaz	Time: 3 – 4 pm
<u>M.Nawaz@tees.ac.uk</u>	Room #: IT2.42

Tutor – Friday	IT Lab Session Room #: OL3
Dr Yar Muhammad Yar.Muhammad@tees.ac.uk	Time: 9 – 11 am & 11 am – 1 pm
Dr Mengda He <u>M.He@tees.ac.uk</u>	Time: 9 – 11 am
Mr Vishalkumar Thakor V.Thakor@tees.ac.uk	Time: 11 am - 1 pm & 1 - 3 pm
Mr Mansha Nawaz M.Nawaz@tees.ac.uk	Time: 1 – 3 pm

This Week's Agenda

Module Introduction

- Get familiar with the module aims and learning outcomes.
- Familiarise ourselves with how this module will be delivered.
- Take a look at how the module will be assessed.

Jumping to Systems Design & Databases

- Systems Design,
- Introduction to Databases
- DDL, DML, DCL & TCL
- Requirement List & MoSCoW
 Wireframe Design & Template
- User Story

Module Aims

- Introduce and explore the **systems development lifecycle and methods**.
- Introduce the students to the Unified Modelling Language (UML) and other diagramming techniques.
- Develop database design and implementation skills.
- Introduce the student to a tools-driven approach to database development.

Learning Outcomes 1/2

Personal and Transferable Skills

- PTS1. Understand the use of appropriate process models to specify, design, implement and evaluate an Information System.
- PTS2. Articulate a design derived from requirements gathering within an agreed timescale.
- PTS3. Participate in team activities to achieve a common objective and reflect on your own and the team's performance as future computing professionals.

Research, Knowledge and Cognitive Skills

- RKC1. Identify one or more potential solutions to a project brief through the development of system models.
- RKC2. Select and use appropriate methods and tools to design and develop a solution that satisfies user requirements.

Learning Outcomes 2/2

Professional Skills

- PS1. Demonstrate industry standard communication skills in key activities such as interviewing a stakeholder, documenting the proposed new system and reviewing the design.
- PS2. Design and construct a relational database as a solution to a given Information System problem.
- PS3. Demonstrate an understanding of appropriate data protection legislation/regulations.

Assessment – ICA

Element # 1 - UML Portfolio -> 50% (Teamwork)

- There are a number of Systems Design (SD) Challenge Deliverables you will need to submitted in the form of a UML Portfolio (for more detail, see *ICA Specification document, NHS Family Voice UML Case Study and Systems Design Report*).
- Each member of the Teams needs to be involved in developing a UML Solution and these activities have been scheduled in your Labs.

Element # 2 - Database Portfolio -> 50% (Individual work)

- Based on the any of the ICA designated SQL Server Database available on Blackboard.
- Note:
 - You must not use the teaching sample database TSQL.
 - The component is individual Work

More detail to follow ICA brief documents

Lectures

 Introduce you to theoretical concepts through practical demonstrations in the lectures

Tutorial Activities

- Solve problems using the concepts introduced in the lectures.
- As you progress, the problems will increase in complexity.
- Provide an opportunity to work on the assessment later in the semester.
- Receive regular formative feedback from your tutors and each other to reflect upon and take forward to future activities.

Schedule 1/3

* Subject to change

Systems Design and Databases CIS1018-N Weekly Plan for the Activities

•
5
<u>_</u>
ī
Φ
S
<u>a</u>
in
~
(J)

Week	Lecturer	Lecture Demo	Lab Exercises & Solutions	ICA Tasks:
01	 Module Introduction, System Design, Introduction Databases (DDL, DML, DCL, TCL) 	 Requirement List & MoSCoW Wireframe Design & Templates, User Stories 	 Team Setup, Hands-on to collect/pick the Requirements from MoSCoW and write Writing User stories on each Tutorial 1 	Requirements List & MosCOW, User stories
02	UML and UML Tool,	Use Case Diagrams from Requirements List and Wireframe	 Hands-on Use Case Diagrams Activities Tutorial 2 	Each Wireframe has associated Use Case Activity Deadline for Team Setup is Week # 2, by Friday 07/10/2022 before 4pm
03	Sequence Diagrams	Class Diagrams	 Hands-on Sequence & Class Diagrams Activities Tutorial 3 	Each Wireframe has associated Sequence and Class Diagrams
04	Entity Relationship Diagrams (ERD) A Data Modelling Case Tool for Relational Databases	 Introduction to SQL Server Walk-through: SQL Quick Guide 1 - How to use SSMS to build Databases 	Tutorial 4 Lab Resources: SQL Quick Guide 1	Each Wireframe has associated Class Diagram

1			· · · · · · · · · · · · · · · · · · ·		
Week	Lecturer	Lecture Demo		ICA Tasks:	
05	Querying with Select	Demo A – Writing Simple SELECT Statements Demo B/C – Eliminating Duplicates with DISTINCT	1-4	SQL Task A: TSQL03 Querying with Select Writing Simple SELECT Statements	
		Demo D - Writing Simple CASE		 Eliminating Duplicates with DISTINCT Using Column and Table Aliases Writing Simple CASE Expressions 	
06	Querying with Multiple Tables	Demo B – Relating 2 or more tables – Joins & Joining multiple tables – inner, <u>outer</u> and cross.	TSQL-Mod04 Exercise 1-5 Tutorial 6	SQL Task B: TSQL04 – Querying with Multiple Tables Relating 2 or more tables – Joins Joining multiple tables – inner, outer and cross.	
07	Sorting and Filtering Data	Demo A – Sort with ORDER BY Demo B – Filter with WHERE Clause Demo C – Filtering with Top OffsetFetch Demo D – Handling NULL		SQL Task C: TSQL <u>05</u> – Sort and Filtering Data • Sort with Order By • Filter with Where By • Filter with top offsetfetch • Handling Nulls	
Sub	Submission ICA 1 (Group Submission) -> Deadline is Wednesday 16/11/2022 before 4pm				
08	Working with SQL Server Data	Demo A - Conversion in a Query Demo B - collation in a query Demo C - date and time functions	TSQL-Mod06 Exercise 1 – 4 Tutorial 8	SQL Task D: TSQL06 – Working with SQL Server Data Conversion in a Query collation in a query date and time functions	

09	Using DML to modify Data	Demo A - Adding Data to Tables Demo B - Modifying and Removing Data Demo C - Generating Automatic Column Values	 TSQL-Mod07 Exercise 1 – 2 Tutorial 9 	SQL Task E: TSQL07– Using DML to Modify Data Adding Data to Tables Modifying and Removing Data Generating Automatic Column Values
10	Using built in Functions	Demo A – Scalar Functions Demo B – Cast Functions Demo C – If Functions Demo D – IsNull Functions	TSQL-Mod08 Exercise 1 – 3 Tutorial 10	SQL Task F: TSQL08– Using Built-In Functions • Writing Queries with Built-In Functions • Using Conversion Functions • Using Logical Functions • Using Functions to Work with NULL
11	Walk through SQL Quick Guide 2 - Create a Tables and Relationships via SSMS GUI	Walk through: SQL Quick Guide 3 - Create Query, View through Designer	Hands-on: • SQL Server Quick Guide 2	SQL Server – Introduction to SQL Server and SSMS
12	Support	Support	Hands-on: • SQL Server Quick Guide 3	SQL Server – Introduction to SQL Server and SSMS

Getting Support

I'm available on email

- You get in touch via email at: Yar.Muhammad@tees.ac.uk
- I'll aim to get back to you as soon as I possibly can.

Recommended Reading

- Learning UML 2.0, Miles, Russ; Hamilton, Kim, 2006
- UML 2.0 in a nutshell, Pilone, Dan; Pitman, Neil, 2005
- System analysis and design UML version 2.0: an object-oriented approach, Tegarden, David Paul; Tegarden, David; Dennis, Alan; Wixom, Barbara Haley 2012 4th ed., International student version
- A first course in database systems, Ullman, Jeffrey D; Widom, Jennifer, 2014 3rd ed.
- Welcome to the SQL Server Community
- Microsoft SQL documentation SQL Server
 Microsoft Docs

System Design and Databases

Systems Design

 Systems design is the process of defining elements of a system like modules, architecture, components and their interfaces and data for a system based on the specified requirements.

Databases

 A database is an organized collection of structured information, or data, typically stored electronically in a computer system.

What is Databases - Definition 1

• A database is a <u>shared</u> collection of <u>logically related data</u>, that store to meet the requirements of <u>different users</u> an organization

Data :- Raw facts

Database Definition 2

- A database is a <u>self-describing</u> collection of <u>integrated records</u>.
- Database structure, schema, metadata
- integrated record link each other

Database Definition 3

• A database models a <u>particular real world system</u> in the computer in the form of data

 Real World System like Reservation System, ATM System, e-vision so on which work in real environment because different people and operations are involved.

The Concept of a Shared Organizational Database

• Each Dept. is separated but database is single, this is concept of shared org database

File Processing System/ Environment

 FPS is a collection that perform service for end user for producing reports

University File Processing System/ Environment

Problems?

- Individual data is maintained
- Data Interdependent (make changes in all)

Problems

- Duplication of Data
- Inconsistency
- Storage

Library

Reg_No

Name

Father Name

Books Issue

Fine

Exam

Reg_No

Name

Address

Class

Semester

GPA

Reg

Reg_No

Name

Father

Name

Phone

Address

Class

Advantage of Database Approach

- Data Sharing
- Control Redundancy
- Data Independence
- Better Data Integrity.

Further Advantages of Database System

- Data Consistency
- Better data security
- Faster development of new applications
- Economy scale
- Better concurrency control
- Better backup and recovery procedures

Data Consistency

- All the occurrence have same value for any specific data item
- Data inconsistency leads to a number of problems
 - Loss of information
 - Incorrect result.

Better Data Security

- All application programs access data through DBMS
- DBMS very efficiently check which user is performing which action and accessing which part of data.

Fast Application Development

- Due to following reason
 - The data needed for the new application already resides in the database.
 - The data might not already reside in the database, but it could be derived from the data present in the database

Better Concurrency Control

- Access a database from as number of point simultaneously.
- Database access completed correctly and transparently
 - ATM Machine

Better Backup and Recovery

- Data is very important resource for organization.
- It is necessary to take periodic backup of data
- Sudden due to disastrous situation the database crashes
 (improper shutdown, invalid disk access, etc), should be able to recover the database

Disadvantages

- Higher costs
- Conversion cost
- More difficult recovery

TSQL Statement Types

SQL Statement Types – Transactional SQL or TSQL

Data Manipulation Language (DML)	Data Definition Language (DDL)	Data Control Language (DCL)
Statements for	Statements for	Statements for
querying and	defining database	assigning security
modifying data:	objects:	permissions:
• SELECT	• CREATE	• GRANT
• INSERT	• ALTER	 REVOKE
• UPDATE	• DROP	• DENY
• DELETE		

Primary focus on DML

TSQL Statement Types: Data Definition Language DDL

- DDL is <u>Data Definition Language</u>: it is used to define data structures.
- **Data Definition Language DDL:** is the TSQL script code which deals with database schemas and descriptions, of how the data should reside in the database.
- DDL is the instruction set to create and maintain Relational DB and its Tables.

CREATE – to create database and its objects like (table, index, views, store procedure, function and triggers).

ALTER – alters the structure of the existing database.

DROP – delete objects from the database.

TRUNCATE – remove all records from a table; also, all spaces allocated for the records are removed.

COMMENT – add comments to the data dictionary.

RENAME – rename an object.

TSQL Statement Types: Data Manipulation Language DML

- DML is <u>Data Manipulation Language</u>: it is used to manipulate data itself.
- **Data Manipulation Language DML** which deals with data manipulation, and includes most common SQL statements such SELECT, INSERT, UPDATE, DELETE etc, and it is used to store, modify, retrieve, delete and update data in database.
- DML commands help query and maintain the Relational DB Tables and its data. It helps relate table data via primary and foreign key mapping.

SELECT – retrieve data from one or more tables.

INSERT – insert data into a table.

UPDATE – updates existing data within a table.

DELETE – delete all records from a table.

MERGE – UPSERT operation (insert or update)

CALL – call a PL/SQL or Java subprogram.

EXPLAIN PLAN – interpretation of the data access path.

LOCK TABLE – concurrency control.

TSQL Statement Types: DCL and TCL

Data Control Language DCL: which includes commands such as GRANT, and mostly concerned with rights, permissions and other controls of the database system.

DCL is the instruction set to maintain user access to a Relational DB and its Tables.

•GRANT – allow users access privileges to database.

REVOKE – withdraw users access privileges given by using the GRANT command.

Transaction Control Language TCL: which deals with transaction within a database. TCL is the instruction set to maintain data integrity by allowing:

- •COMMIT commits a transaction.
- •ROLLBACK rollback a transaction in case of any error occurs.
- •SAVEPOINT a point inside a transaction that allows rollback state to what it was at the time of the savepoint.
- •SET TRANSACTION specify characteristics for the transaction.

System Development Life Cycle (SDLC)

- The systems development life cycle (SDLC) is a conceptual model used in project management that describes the stages involved in an information system development project, from an initial feasibility study through maintenance of the completed application.
- SDLC can apply to technical and non-technical systems.

SDLC Methodologies

- Waterfall methodology
- V-model
- Iterative
- Agile methodology
- DevOps.
- Spiral
- •

Waterfall Life Cycle Methodology

 The waterfall model is a sequential design process in which progress is seen as flowing steadily downwards (like a waterfall) through the phases

V-model Methodology

 The V-model is a type of SDLC model where process executes in a sequential manner in V-shape. It is also known as Verification and Validation model. It is based on the association of a testing phase for each corresponding development stage. Development of each step directly associated with the testing phase.

Iterative Methodology

 Iterative methodology allows software developers to adjust, refine, and review system development processes constantly to improve their performance incrementally.

Agile Methodology

- The Agile methodology is a way to manage a project by breaking it up into several phases.
- It involves constant collaboration with stakeholders and continuous improvement at every stage.
- Once the work begins, teams cycle through a process of planning, executing, and evaluating.
- The agile iterative approach creates opportunities for constant evaluation and improvement in development processes.

System Requirements

- System requirements is a statement that identifies the functionality that is needed by a system in order to satisfy the customer's requirements.
- System requirements are a broad and also narrow subject that could be implemented to many items.

Requirements

System requirements is a statement that identifies the functionality that is needed by a system in order to satisfy the customer's requirements.

System requirements are a broad and also narrow subject that could be implemented to many items.

Functional Requirement

- Define what a product must do, what its features and functions are.
- Authentication of a user on trying to log in to the system

Non - Functional Requirements

Non-Functional Requirement

- Describe the general properties of a system
- Testing such as usability, performance, stress, security, etc.
- The background colour of the screens should be light blue.

MoSCoW Method or MoSCoW Analysis

- It is a popular prioritization technique for managing requirements.
- The acronym MoSCoW represents four categories of initiatives:
 - must-have,
 - should-have,
 - could-have, and
 - won't-have, or will not have right now.

MoSCoW prioritization

MUST HAVE

All the requirements that are necessary for the successful completion of the project.

SHOULD HAVE

Requirements that are important for project completion but not necessary.

COULD HAVE

Requirements that are nice to have, but have a much smaller impact when left out of the project.

WILL NOT HAVE

All the requirements that have been recognized as not a priority for the project's timeframe.

Demonstration – Requirement List & MoSCoW (Requirements List - workbook)

Sample	Requirements List			
R1	The ECP shall display a list of all products offered by Music-Mansh Limited.			
R2	The ECP shall organise the list of products by product category.			
R3	The ECP shall display detailed product descriptions consisting of name, photograph, price and description on demand.			
R4	The ECP shall display the number of items currently in the shopping basket on each page of the catalog.			
R5	The ECP shall accept all major credit cards.			
R6	The ECP shall validate payment with the credit card processing company.			
R7	The ECP shall automatically calculate and add a shipping charge to the order.			
R8	The ECP shall automatically calculate and add tax to the order.			
R9	The ECP shall allow the customer to place items into a shopping basket.			
R10	The ECP shall allow the customer to prace items from their shopping basket.			
R11	The ECP shall allow the customer to "check out" and pay for their products.			
R12	The ECP user interface shall support the insertion of adverts.			
R13	The ECP shall raise a new customer order at the point of payment.			
R14	The ECP shall notify the dispatch department once the order has been paid for.			
R15	The ECP shall send a copy of the current order to the customer when payment is accepted and the order confirmed.			
R16	The ECP shall allow customers to view their order history.			
R17	The ECP shall allow a customer to cancel a customer order provided that the order has not been dispatched.			
R18	The ECP shall notify the dispatch department when an order is cancelled.			
R19	When the order is cancelled the ECP shall refund the cost of the order.			
R20	The ECP shall allow the dispatch department to view all orders.			
R21	The ECP shall allow a customer to register with the site.			
R22	The ECP shall use the customer's email ad- dress as the username for logon purposes.			
R23	The ECP shall require the customer to set a password.			
	The ECP shall collect customer information consisting of name, address, email address, phone number, fax number, credit card			
R24	information.			
R25	The ECP shall allow customers to view and edit their customer information.			
R26	The ECP shall authenticate all customers prior to making payment, viewing outstanding orders or viewing customer information.			
R27	The ECP shall support 100,000 transactions per day.			
R28	The ECP shall support a peak transaction rate of 10 transactions per second.			
R29	The ECP shall support 10,000 concurrent ses- sions.			
R30	The ECP shall be available 24 hours per day, 360 days per year.			
R31	The ECP shall store sales transaction data.			
R32	The ECP shall accept payment and raise an order within 5 seconds in 95% of the cases.			
R33	The ECP shall log in a customer within 5 seconds.			
R34	The ECP shall use a browser as its user interface.			
1	Requirements List Requirements List-Individual Requirements List-Group			

Requirement List - Example

Functional Requirements

ID	Details	Туре	Priority
RO	The ECP shall accept all major credit cards.	Payment Functional	MustHave
R1	The ECP user interface shall support the insertion of adverts.	User Interface Functional	WantToHave

Non-Functional Requirements

R0	The ECP shall be available 24 hours per day, 360 days per year.	Availability Non-Functional	MustHave

User Story

- User story is an informal, natural language description of features of a software system.
- They are written from the perspective of an end user or user of a system, and may be recorded on index cards, Post-it notes, or digitally in project management software.

Writing a user story

- 1 Define your end user
- 2 Specify what they want
- 3 Describe the benefit
- 4 Add acceptance criteria

Copyright © 2019 Knowledge Train Limited

How to write User Story - Examples

- As a Customer, I want to provide credit card details for payment So that
 I can place an order.
- As a User, I want the system to support various features So that new adverts can be inserted easily in the future.
- As an Order confirmation officer, I want to notify the dispatch department once the order has been paid for So that it could be dispatched and delivered on time.

Supporting Material

Highly recommended to walk through in your own time

System Development Life Cycle

https://youtu.be/05Un7kPMibk

DevOps In 5 Minutes

https://youtu.be/Xrgk023I4II

Systems Design Phase in SDLC

https://youtu.be/rAR5sbaphwU

Software Development Lifecycle in 9 minutes!

https://youtu.be/i-QyW8D3ei0

HOW TO WRITE SOFTWARE REQUIREMENTS SPECIFICATION

https://youtu.be/PtJmjPkrSUE

What Is a Functional Requirement?

https://youtu.be/wbCAiLzOE30