Modeling Pipeline

Modeling Tradeoffs

- Bias vs. Variance
- Inference vs. prediction
- Interpretability vs. flexibility
- Accuracy vs. performance (time)
- Optimization vs generalization

Bias Variance Decomposition

$$MSE(x_0) = E_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2$$

= $E_{\mathcal{T}}[\hat{y}_0 - E_{\mathcal{T}}(\hat{y}_0)]^2 + [E_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2$
= $Var_{\mathcal{T}}(\hat{y}_0) + Bias^2(\hat{y}_0).$

Bias and Variance

Optimal Bias-Variance Tradeoff

Interpretability vs Flexibility

Statistics vs Machine Learning

Traditional Statistics

A Data Science Continuum

White-box modelling

simpler computation, emphasis on introspection, form, causal effects and processes, finding a 'correct' model

Machine Learning

Black-box modelling

high computational complexity, emphasis on speed and quality of prediction, finding a 'performant' model