

How to create programs

- Requirements
- Analysis: bottom-up vs. top-down
- Design: data objects and operations
- Refinement and Coding
- Verification
 - Program Proving
 - Testing
 - Debugging

Algorithm

Definition

An *algorithm* is a finite set of instructions that accomplishes a particular task.

- Criteria
 - input
 - output
 - definiteness: clear and unambiguous
 - finiteness: terminate after a finite number of steps
 - effectiveness: instruction is basic enough to be carried out

Data Type

Data Type

A *data type* is a collection of *objects* and a set of *operations* that act on those objects.

Abstract Data Type

An *abstract data type(ADT)* is a data type that is organized in such a way that the specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations.

Specification vs. Implementation

- Operation specification
 - function name
 - the types of arguments
 - the type of the results
- Implementation independent

*Structure 1.1: Abstract data type Natural_Number (p.17) structure Natural Number is **objects**: an ordered subrange of the integers starting at zero and ending at the maximum integer (INT_MAX) on the computer functions: for all $x, y \in Nat_Number$; TRUE, $FALSE \in Boolean$ and where +, -, <, and == are the usual integer operations. Nat No Zero () Boolean $Is_Zero(x) ::= if(x) return FALSE$ else return TRUE ::= **if** $((x+y) \le INT_MAX)$ **return** x+y $Nat_No Add(x, y)$ else return INT_MAX Boolean Equal(x,y) ::= if(x==y) return TRUEelse return FALSE $Nat_No Successor(x) ::= if(x == INT_MAX) return x$ else return x+1 Nat_No Subtract(x,y) ::= **if** (x<y) **return** 0 else return x-y end Natural Number ::= is defined as

Measurements

- Criteria
 - Is it correct?
 - Is it readable?
 - **...**
- Performance Analysis (machine independent)
 - space complexity: storage requirement
 - time complexity: computing time
- Performance Measurement (machine dependent)

Space Complexity $S(P)=C+S_P(I)$

- Fixed Space Requirements (C)
 Independent of the characteristics of the inputs
 and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements (S_P(I))
 depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, local variables, return address

```
*Program 1.11: Recursive function for summing a list of numbers (p.20)
float rsum(float list[ ], int n)
 if (n) return rsum(list, n-1) + list[n-1];
 return 0;
                                         S_{sum}(I)=S_{sum}(n)=6n
Assumptions:
*Figure 1.1: Space needed for one recursive call of Program 1.11 (p.21)
                                    Name
                                             Number of bytes
    Туре
    parameter: float
                                    list[]
    parameter: integer
    return address: (used internally)
                                             2(unless a far address)
   TOTAL per recursive call
                                                                       10
```

Time Complexity

 $T(P)=C+T_P(I)$

- Compile time (C) independent of instance characteristics
- run (execution) time T_P
- Definition $T_P(n)=c_aADD(n)+c_sSUB(n)+c_lLDA(n)+c_{st}STA(n)$ A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.
- Example
 - abc = a + b + b * c + (a + b c) / (a + b) + 4.0
 - abc = a + b + c

Regard as the same unit machine independent

CHAPTER 1

11

Methods to compute the step count

- Introduce variable count into programs
- Tabular method
 - Determine the total number of steps contributed by each statement

step per execution \times frequency

- add up the contribution of all statements

Iterative summing of a list of numbers *Program 1.12: Program 1.10 with count statements (p.23) float sum(float list[], int n) float tempsum = 0; **count**++; /* for assignment */ int i; for (i = 0; i < n; i++) { count++; /*for the for loop */ tempsum += list[i]; **count**++; /* for assignment */ /* last execution of for */ count++; return tempsum; count++; /* for return */ 2n + 3 steps 13

```
*Program 1.13: Simplified version of Program 1.12 (p.23)

float sum(float list[], int n)

{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i++)
        count += 2;
    count += 3;
    return 0;
}
```

Recursive summing of a list of numbers *Program 1.14: Program 1.11 with count statements added (p.24) float rsum(float list[], int n) { count++; /* for if conditional */ if (n) { count++; /* for return and rsum invocation */ return rsum(list, n-1) + list[n-1]; } count++; return list[0]; }

Tabular Method

*Figure 1.2: Step count table for Program 1.10 (p.26)

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total		·	2n+3

19

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function (p.27)

s/e	Frequency	Total steps
0	0	0
0	0	0
1	n+1	n+1
1	n	n
1	1	1
0	0	0
		2n+2
	s/e 0 0 1 1 1 0	0 0 0 0 1 n+1

Exercise 1 *Program 1.18: Printing out a matrix (p.28) void print_matrix(int matrix[][MAX_SIZE], int rows, int cols) { int i, j; for (i = 0; i < row; i++) { for (j = 0; j < cols; j++) printf("%d", matrix[i][j]); printf("\n"); } }</pre>

Exercise 2

$\textcolor{red}{\bf *Program~1.19:} \textbf{Matrix multiplication function} (p.28)$

```
\label{eq:condition} \begin{array}{l} \mbox{void mult(int a[ ][MAX\_SIZE], int b[ ][MAX\_SIZE], int c[ ][MAX\_SIZE])} \\ \{ & \mbox{int i, j, k;} \\ \mbox{for } (i=0;i < MAX\_SIZE;i++) \\ \mbox{for } (j=0;j < MAX\_SIZE;j++) \\ \mbox{c[i][j]} = 0; \\ \mbox{for } (k=0;k < MAX\_SIZE;k++) \\ \mbox{c[i][j]} \ += \ a[i][k] * \ b[k][j]; \\ \mbox{} \} \\ \mbox{} \end{array}
```

23

Exercise 3

*Program 1.20:Matrix product function(p.29)

```
\label{eq:continuous_size} \begin{tabular}{ll} void prod(int a[ ][MAX\_SIZE], int b[ ][MAX\_SIZE], int c[ ][MAX\_SIZE], int rowsa, int colsb, int colsa) \\ \{ & int i, j, k; \\ & for (i = 0; i < rowsa; i++) \\ & for (j = 0; j < colsb; j++) \{ \\ & c[i][j] = 0; \\ & for (k = 0; k < colsa; k++) \\ & c[i][j] \ += \ a[i][k] \ * \ b[k][j]; \\ \end{tabular}
```

Exercise 4

*Program 1.21:Matrix transposition function (p.29)

25

Asymptotic Notation (O)

- Definition
 - f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.
- Examples

```
-3n+2=O(n) /* 3n+2≤4n for n≥2 */
```

- -3n+3=O(n) /* $3n+3\leq 4n$ for $n\geq 3$ */
- -100n+6=O(n) /* $100n+6\le101n$ for $n\ge10$ */
- $-10n^2+4n+2=O(n^2) /* 10n^2+4n+2 \le 11n^2 \text{ for } n \ge 5 */$
- $-6*2^n+n^2=O(2^n) /*6*2^n+n^2 \le 7*2^n \text{ for } n \ge 4*/$

Example

- Complexity of $c_1n^2+c_2n$ and c_3n
 - for sufficiently large of value, $c_3 n$ is faster than $c_1 n^2 + c_2 n$
 - for small values of n, either could be faster
 - $c_1=1, c_2=2, c_3=100 --> c_1 n^2 + c_2 n \le c_3 n$ for $n \le 98$
 - $c_1=1, c_2=2, c_3=1000 --> c_1 n^2 + c_2 n \le c_3 n$ for $n \le 998$
 - break even point
 - no matter what the values of c1, c2, and c3, the n beyond which c_3n is always faster than $c_1n^2+c_2n$

2

O(1): constant
O(n): linear
O(n²): quadratic
O(n³): cubic
O(2ⁿ): exponential
O(logn)
O(nlogn)

Substitution method

The most general method:

- 1. Guess the form of the solution.
- **2.** *Verify* by induction.
- 3. *Solve* for constants.

Example: T(n) = 4T(n/2) + 100n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + 100n$$

$$\leq 4c(n/2)3 + 100n$$

$$= (c/2)n3 + 100n$$

$$= cn \ 3 - ((c / 2) n \ 3 - 100n) \qquad \longleftarrow desired - residual$$

 $\leq cn \ 3 \leftarrow desired$

whenever $(c/2)n^3 - 100n \ge 0$, for example, if $c \ge 200$ and $n \ge 0$

residual

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + 100n$$

$$\leq$$
 cn 2 + 100n

 $\leq cn 2$

for *no* choice of c > 0. Lose!

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + 100n$$

$$\leq 4(c_1(n/2)2 - c_2(n/2)) + 100n$$

$$= c_1 n 2 - 2c_2 n + 100n$$

$$= c_1 n 2 - c_2 n - (c_2 n_1 \overline{oo}_n)$$

$$\leq c_1 n 2 - c_2 n \quad \text{if } c_2 > 100.$$

Pick c_1 big enough to handle the initial conditions.

Recursion-tree method

A recursion tree models the costs (time) of a recursive execution of an algorithm.

The recursion tree method is good for generating guesses for the substitution method.

The recursion-tree method can be unreliable, just like any method that uses ellipses (...).

The recursion-tree method promotes intuition, however.


```
Three common cases (cont.)

Compare f(n) with n^{\log ba}:

f(n) = \Omega(n^{\log ba + \varepsilon}) for some constant \varepsilon > 0.

• f(n) grows polynomially faster than n^{\log ba} (by an n^{\varepsilon} factor), and f(n) satisfies the regularity condition that a f(n/b) \le c f(n) for some constant c < 1.

Solution: T(n) = \Theta(f(n)).
```



```
Examples

T(n) = 4T(n/2) + n
a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.

CASE 1: f(n) = O(n^{2-\varepsilon}) for \varepsilon = 1.

\therefore T(n) = \Theta(n^2).

T(n) = 4T(n/2) + n^2
a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.

CASE 2: f(n) = \Theta(n^2 \lg^0 n), that is, k = 0.

\therefore T(n) = \Theta(n^2 \lg n).
```

```
Examples

T(n) = 4T(n/2) + n^3
a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.
CASE 3: f(n) = \Omega(n^{2+\epsilon}) for \epsilon = 1
and 4(\epsilon n/2)^3 \le \epsilon n^3 (reg. cond.) for \epsilon = 1/2.
\therefore T(n) = \Theta(n^3).
T(n) = 4T(n/2) + n^2/\lg n
a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.
Master method does not apply. In particular, for every constant \epsilon > 0, we have n^{\epsilon} = \omega(\lg n).
```