SE 160A: Project 2 Write Up

- **1.** A spinning engine rotor blade...
 - **a.**) Calculate the A- and B-Basis allowable strength properties.

Given that E = $16.0*10^6$ (16.0 Msi) and v = 0.31, G can be found by $G = \frac{E}{2(1+\nu)}$. This gives a G value of 6.106870229*10^6 (6.10687 Msi). Plugging the given inputs into the Input file and running my matlab code (SE160A_2_Dunn_Ryan.m) provides the following outputs for A-Basis and B-Basis:

2.)	ΑII	ow	abl	e S	tren	gths
-----	-----	----	-----	-----	------	------

Variable	Description	A-Basis	B-Basis	Units
σ_T^*	Allowable Tension	100.6667	105.3333	Ksi
σ_c^*	Allowable Compression	-103.3333	-107.3333	Ksi
τ*	Allowable Shear	63.3333	66.6667	Ksi
τ*	Allow Shear Tresca (Mixed)	51.0000	53.1667	Ksi

b.) Calculate the Margin of Safety (MS) using the Tresca, Rankine, and Von Mises failure theories for both the A- and B-Basis allowable strength properties.

largin of Safety	Rankine	Tresca*	Von Mises
Min Margin of Safety (A Bas	0.1185	0.1185	0.1185
Min Margin of Safety (B Bas	0.1704	0.1704	0.1704
- Transport	Min Margin of Safety (A Bas	Min Margin of Safety (A Bas 0.1185	Min Margin of Safety (A Bas 0.1185 0.1185

c.) Scale the stress state so that (MS = 0) for the B-Basis strength properties based upon the Von Mises failure theory.

Variable	Description	Von Mises	Units
σ_{xx}	Normal Stress - x	105.3333	Ksi
σ_{W}	Normal Stress - y	0.0000	Ksi
σ_{zz}	Normal Stress - z	0.0000	Ksi
τ_{yz}	Shear Stress - yz	0.0000	Ksi
τ_{xz}	Shear Stress - xz	0.0000	Ksi
τ_{xy}	Shear Stress - xy	0.0000	Ksi

- 2. Engineers at the aircraft engine company of problem (#1) are investigating the use of new nano-material technology to alter the stress state of the spinning rotor blade for the purpose of increasing the MS.
 - **a.**) What is the MS if the spinning blade stress state is altered to (...stress state...) Use B-basis allowables and the von Mises Failure Criteria.

For this stress state, B-basis does not pass the von Mises Criteria because it produces a -0.2149 margin

Margin of	Safety (MS)		
Minimum	Margin of Safety	Ran	Von Mises
MS _{min} (A)	Min Margin of Safet	y (A Bas	-0.2497
MS _{min} (B)	Min Margin of Safet	y (B Bas	-0.2149

Allowable S	Strengths		
Variable	Description	B-Basis	Units
σ_T^*	Allowable Tension	105.3333	Ksi
σ _c *	Allowable Compression	-107.3333	Ksi
τ*	Allowable Shear	66.6667	Ksi
τ*	Allow Shear Tresca (Mixed)	53.1667	Ksi

b.) What is the MS if the spinning blade stress state is altered to (...stress state...) Use B-basis allowables and the von Mises Failure Criteria.

However, in this stress state, the B-Basis did pass using von Mises Criteria because it produces a +0.1704 margin

Margin of	Safety (MS)		
Minimum	Margin of Safety	Rank	Von Mises
MS _{min} (A)	Min Margin of Safet	y (A Basi:	0.1185
MS _{min} (B)	Min Margin of Safet	y (B Basi:	0.1704

llowable S	Strengths		
Variable	Description	B-Basis	Units
σ_T^*	Allowable Tension	105.3333	Ksi
σ _c *	Allowable Compression	-107.3333	Ksi
τ*	Allowable Shear	66.6667	Ksi
τ*	Allow Shear Tresca (Mixed)	53.1667	Ksi

Table 1: Strength Properties for Ti-6Al-4V (solution treated) - Experimentally Measured

Property	A-Basis	B-Basis	S-Basis	Units
$\sigma_{\!\scriptscriptstyle \mathrm{Ty}}$	136	143	145	Ksi
$\sigma_{ ext{Tu}}$	151	158	160	Ksi
σ_{Cy}	-140	-150	-150	Ksi
$\sigma_{\!\scriptscriptstyle{ ext{Cu}}}$	-155	-161	-165	Ksi
$\sigma_{\!\scriptscriptstyle \mathrm{Sy}}$	86	89	91	Ksi
$\sigma_{ m Su}$	95	100	100	Ksi

3. A uniform bar is subjected to an axial force and a shear force. Students apply four strain gage rosettes along the bar length and then measure strains (a, b, c).

		Rosette Typ	е	Measu	ured Strains (μ	in/in)
(#)	$\theta_{\rm a}$	$\theta_{\!\scriptscriptstyle \mathrm{b}}$	$\theta_{\rm c}$	\mathcal{E}_{a}	Eb	\mathcal{E}_{c}
1	0°	45°	90°	1000.0	600.0	-300.0
2	0°	60°	120°	1000.0	241.5	-191.5
3	0 °	60°	120°	946.7	362.6	-259.3
4	0°	60°	120°	1033.5	123.7	-107.2

a.) Calculate the structural strains (xx, yy, xy) for the four gages.

Plugging in the values of strain for the rosette types above, and assuming the gage is orientated at 0 degrees, My matlab code produces the following results:

Gage #1

Variable	Description	Value	Units
€ _{XX}	normal strain (x)	1000.000	μ in/in
ε _{yy}	normal strain (y)	-300.000	μ in/in
Yxy	shear strain	500.000	μ in/in

Gage #2

Variable	Description	Value	Units
ε _{xx}	normal strain (x)	1000.000	μ in/in
ε _W	normal strain (y)	-300.000	μ in/in
Yxy	shear strain	499.985	μ in/in

shear strain is negligible ~500 micro in/in

Gage #3

Variable	Description	Value	Units
€ _{xx}	normal strain (x)	946.700	μ in/in
$\varepsilon_{_{W}}$	normal strain (y)	-246.700	μ in/in
γ _{xy}	shear strain	718.108	μ in/in

Gage #4

Variable	Description	Value	Units
€ _{XX}	normal strain (x)	1033.500	μ in/in
ε _W	normal strain (y)	-333.500	μ in/in
γ _{xy}	shear strain	266.620	μ in/in

b.) It was suspected that maybe the 3rd and 4th gages were orientated incorrectly since their results did not closely matched the strain gage (#2) results. A visual examination revealed that both gages were incorrectly positioned, but the observed angle could not be determined. Calculate the mis-alignment angle of gages (#3) and (#4).

To answer this, we must draw the correct mohr circle for strain gages 1 and 2. From my matlab code for case 1 and 2, the principal strains are found to be: ep1 = -346.419 and ep2 = +1046.419

The center is found by taking the average of these two values which is +350. Then, we draw the circle by plotting the points of gages #1 and 2. (strain-xx, shear strain /2). After this we find the following points:

	(x,y) coord in micro-in/in	angle produced from center (350,0)
Center	(350,0)	
Gages #1 and #2	(1000,250)	arctan(250/(1000-350)) = 21.037511025421818 degrees
Gage #3	(946.7, 359.054132409028)	arctan(359.054/(946.7-350)) = 31.036714321560599 degrees
Gage #4	(1033.5, 133.310177155885)	arctan(133.310177155885/(1033.5-350)) = 11.036444090371834 degrees

As we know, rotation on the Mohr circle is positive in the CCW direction and the angle on the circle is double the actual rotation angle. So,

Gage #3 rotation = 1/2*(alpha3 – alpha1) = 4.999601648069390 degrees

~5.000 degrees (CCW by convention)

and

Gage #4 rotation = 1/2*(alpha4 - alpha1) = -5.000433467524992 degrees

~ -5.000 degrees (CW by convention

A diagram of my work has been attached on a separate page explaining my visuals.

