Gaussian Elimination High-Performance Implementation

Mohamed Imad Eddine Ghodbane May, 2024

CONTENT

PROJECT OVERVEW

Primary Objective

- Develop a high-performance implementation of Gaussian elimination.
- Focus on exact linear algebra over finite fields (Fp=Z/pZ) with a prime number stored on 30 bits.

Existing Libraries

- FFLAS-FFPACK, Flint, NTL.
- High performance for large matrices and small prime fields.

Areas for Improvement

- Intermediate matrix dimensions (hundreds to thousands of elements).
- Larger prime numbers.

$$A = PLUQ$$

Input

• Matrix A of size $m \times n$ with entries elements in the finite field Fp.

Output

• LU decomposition of A, with permutation matrices P and Q.

Key Operations

- Swap rows and columns based on pivot (pivot = 0).
- Zero out elements below the pivot (Row Reduction).

Column Transposition

Let A be a 3×3 matrix:

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix}$$

pivot = 0

- Choose the next first non-zero entry in the row.
- Perform column transposition to move the non-zero entry to the pivot position.

Column Transposition

$$A = \begin{pmatrix} a_{01} & 0 & a_{02} \\ a_{11} & a_{01} & a_{12} \\ a_{21} & a_{01} & a_{22} \end{pmatrix} \qquad Q = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

pivot = 0

- Choose the next first non-zero entry in the row.
- Perform column transposition to move the non-zero entry to the pivot position.

Row Rotation

$$A = \begin{pmatrix} 0 & 0 & 0 \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix}$$

Perform row rotation to move the zero row to the last row position.

Row Rotation

$$A = \begin{pmatrix} a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \\ 0 & 0 & 0 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Perform row rotation to move the zero row to the last row position.

Row Reduction

$$A = \begin{pmatrix} a_{00}^{-1} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

Row Reduction

$$\begin{pmatrix} l_{10} \\ l_{20} \end{pmatrix} = a_{00}^{-1} \cdot \begin{pmatrix} a_{10} \\ a_{20} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ l_{10} & a_{11} & a_{12} \\ l_{20} & a_{21} & a_{22} \end{pmatrix}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

Row Reduction

$$\begin{pmatrix} a'_{11} \\ a'_{12} \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix} - l_{10} \cdot \begin{pmatrix} a_{01} \\ a_{02} \end{pmatrix}$$

$$\begin{pmatrix} a'_{21} \\ a'_{22} \end{pmatrix} = \begin{pmatrix} a_{21} \\ a_{22} \end{pmatrix} - l_{20} \cdot \begin{pmatrix} a_{01} \\ a_{02} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ l_{10} & a'_{11} & a'_{12} \\ l_{20} & a'_{21} & a'_{22} \end{pmatrix}$$

- Compute the inverse of the pivot modulo p.
- Multiply the pivot inverse by the elements of the pivot row.
- Use the updated pivot row to eliminate the elements below the pivot in the current column.

Output

$$P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \qquad A = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10} & u_{11} & u_{12} \\ l_{20} & l_{21} & u_{22} \end{pmatrix} \qquad Q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

One Iteration

```
/*
Find Pivot
*/
// Row Reduction
for (int k = matrixRank + 1; k < m; k++) {
    A->data[k * n + matrixRank] = mult(
    A->data[k * n + matrixRank], inv, p);
    for (int j = matrixRank + 1; j < n; j++)
        A->data[k * n + j] = sub(
        A->data[k * n + j],
        mult(A->data[k * n + matrixRank],
        A->data[matrixRank * n + j], p), p);
```

Subtraction

```
int sub(int a, int b, int p) {
   int r = a - b;
   return r < 0 ? r + p : r;
}</pre>
```

```
int mult(int a, int b, int p) {
   long long r = (long long)a * b;
   return r % p;
}
```


Multiplication

```
int mult(int a, int b, int p) {
   long long r = (long long)a * b;
   return r % p;
}
```

There is no modulus operation in AVX2!!

Solution: compute the remainder of the division by p.

$$h = ab = cp + e$$

$$d = \frac{h}{p}$$

$$c = \lfloor d \rfloor$$

$$e = h - cp$$

```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```



```
__m256d h = _mm256_mul_pd(a, b);
__m256d d = _mm256_mul_pd(h, u);
__m256d c = _mm256_floor_pd(d);
__m256d e = _mm256_fnmadd_pd(c, p, h);
```


Multiplication

The Product exceeds the 52-bit length allocated for the mantissa in double floating-point representation. This can lead to a loss of precision in the final result!!

```
m256d h = mm256 mul pd(a, b);
 _{m256d l = _{mm256_fmsub_pd(x, y, h);}
 _{m256d} d = _{mm256} mul_pd(h, u);
 m256d c = mm256 floor pd(d);
 m256d b = mm256 fnmadd pd(c, p, h);
 _{m256d} = _{mm256} add_{pd(b, 1);}
 m256d t = mm256 sub pd(e, p);
  e = mm256 blendv pd(t, e, t);
 t = mm256 add pd(e, p);
 return _mm256_blendv_pd(e, t, e);
```

SIMD IMPLEMENTATION OF PLUQ

```
rows_elimination_avx2(int *A_data,int n, int matrixRank, int c,int p ,
__m256d vp, __m256d vu ,__m128i vp_128, int k) {
   _{m256d} vc = _{mm256} set1_pd(c);
    m256d tmp;
   int i;
    for (i = matrixRank + 1; i + 3 < n; i += 4) {
       _{m128i} v1 = _{mm_loadu_si128((__m128i *)&A_data[matrixRank*n+i]);
       m128i v2 = mm loadu si128(( m128i *)&A data[k*n+i]);
       m256d vDouble = mm256_cvtepi32_pd(v1);
       tmp = mul_mod_p(vc, vDouble, vu, vp);
       m128i resultInt = _mm256_cvttpd_epi32(tmp);
       m128i result = sub_avx2(v2, resultInt, vp_128);
       mm storeu si128(( m128i *)&A data[k * n + i], result);
  loop handles elements that don't fit into chunks of 4
```

RESULTS

AVX2 vs Basic PLUQ

Sizes	100	300	500	1000	1200
Basic (ms)	0.69	18.70	86.57	694.06	1199.92
AVX2 (ms)	0.15	3.90	17.80	139.98	242.56
Speedup	4.60	4.79	4.86	4.95	4.95

PLUQ Speedups using AVX2 and 12 Bits Length Prime

RESULTS

AVX2 vs FLINT

CROUT METHOD

Key Operation

• Computes uij and lij using the multiplication equation A=LU and the previously computed values of L and U.

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} = P \cdot \begin{pmatrix} 1 & 0 & 0 \\ l_{10} & 1 & 0 \\ l_{20} & l_{20} & 1 \end{pmatrix} \cdot \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ 0 & u_{11} & u_{12} \\ 0 & 0 & u_{22} \end{pmatrix} \cdot Q$$

CROUT METHOD

$$A = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10} & a_{11} & a_{12} \\ l_{20} & a_{21} & a_{22} \end{pmatrix} A = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10} & u_{11} & u_{12} \\ l_{20} & a_{21} & a_{22} \end{pmatrix} A = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10} & u_{11} & u_{12} \\ l_{20} & a_{21} & a_{22} \end{pmatrix}$$

$$A = \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ l_{10} & u_{11} & u_{12} \\ l_{20} & l_{21} & u_{22} \end{pmatrix}$$

$$u_{ij} = a_{ij} - \sum_{k=0}^{j-1} l_{ij} \cdot u_{ji} \qquad l_{ij} = (a_{ij} - \sum_{k=0}^{i-1} l_{ik} \cdot u_{kj}) \cdot u_{jj}^{-1}$$

SIMD SCALAR PRODUCT

Scalar Product

```
int sum = 0;
for (int i = 0; i < length; i++) {
    sum += a[i] * b[i];
}
return sum % p;</pre>
```

Independence of Iterations

- Each iteration of the loop computes a[i] * b[i] and adds it to sum.
- The computation of a[i] * b[i] is independent of the previous iterations.

SIMD SCALAR PRODUCT

Scalar Product

$$result = (sum_1 + sum_2 + sum_3 + sum_4) \mod p$$

RESULTS

AVX2 vs Basic Crout PLUQ

Sizes	100	300	500	1000	1200
Basic (ms)	0.71	19.00	87.40	697.97	1204.63
AVX2 (ms)	0.11	2.37	12.97	135.07	246.83
Speedup	6.45	8.01	6.73	5.16	4.86

Crout PLUQ Speedups using AVX2 and 12 Bits Length Prime

RESULTS

AVX2 vs FLINT

Thank You

Questions?