平成26年度 日本留学試験(第1回)

試験問題

The Examination

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にある「解答科目」の「化学」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、探点されません。

計算には次の数値を用いること。また、体積の単位リットル(liter)はLで表す。

標準状態 (standard state): 0° C, 1.0×10^{5} Pa (= 1.0 atm)

標準状態における理想気体 (ideal gas) のモル体積 (molar volume): 22.4 L/mol

気体定数 (gas constant): $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数 (Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数 (Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 N:14 O:16 F:19 S:32

C1:35 Br:80

問 1	原子	(atom)	および	イオンの電子	己置(el	ectron conf	figuration)	と構造	に関する
	次の記述	<u>t</u> ①∼6	のうち,	下線部が正し	くないも	もの を一つ	選びなさい	0	1

- ① Al³⁺ と Cl⁻ の電子配置は、同じである。
- ② ¹²C と ¹³C の電子配置は、同じである。
- ③ F の価電子 (valence electron) の数は, 7 である。
- ④ K の最外殻 (outermost shell) は、N殻 (N shell) である。
- ⑤ ²³Na の中性子 (neutron) の数は, ²⁴Mg の中性子の数と同じである。
- ⑥ S の陽子 (proton) の数は, 16 である。
- 問2 次の化合物(\mathbf{a}) \sim (\mathbf{e})のうち、原子(atom)が単結合(single bond)だけでつながっているものが二つある。それらの組み合わせとして正しいものを、下の① \sim 8の中から一つ選びなさい。
 - (a) 酢酸 (acetic acid)
 - (b) アンモニア (ammonia)
 - (c) 二酸化炭素 (carbon dioxide)
 - (d) エチレン (エテン) (ethylene (ethene))
 - (e) メタノール (methanol)
 - ① a, b ② a, d ③ a, e ④ b, c
 - ⑤ b, d ⑥ b, e ⑦ c, d ⑧ d, e

問 3	次の分子(a)~(d)のうち、分子を構成するすべての原子 (atom) がー	つの平面 (plane) 内に
	あるものが二つある。それらの組み合わせとして正しいものを,	下の①~⑥の中から
	一つ選びなさい。	3

- (a) CH_4 (b) C_2H_4 (c) C_2H_6 (d) C_6H_6
- ① a, b ② a, c ③ a, d ④ b, c ⑤ b, d ⑥ c, d
- 問 4 次の化学反応式(reaction formula)における係数(coefficient)x の値として正しいものを,下の①~⑥の中から一つ選びなさい。

$$C_3H_8 + x O_2 \longrightarrow y CO_2 + z H_2O$$

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5 ⑥ 6
- 問 5 0 \mathbb{C} , 1 atm での気体 H_2 , CH_4 , O_2 の密度 (density) の比 (ratio) として正しい ものを、次の①~⑤の中から一つ選びなさい。
 - ① 1:1:1 ② 1:2:4 ③ 1:4:8
 - 4 1:8:16
 5 1:16:16

問 6 300 K, 1.0 atm で 3.0 L を占めるアルゴン (argon) の温度を 360 K に上げ, 体積を 7.2 L に増やした。このとき、圧力は何 atm になるか。最も近い値を、次の①~⑥の中から一つ選びなさい。

- ① 0.30
- ② 0.50
- 3 1.0
- 4 2.0
- **⑤** 2.4
- 6 3.0

問7 濃度 0.1 mol/kg のグルコース (glucose) の水溶液を冷却した。冷却時間 (cooling time) と水溶液の温度の関係を表したグラフとして最も適当なものを,次の①~⑤の中から一つ選びなさい。

問 8	化学反応	(chemical reaction)	に関する記述と	して <u>誤・</u>	っているもの を,	次の①~⑤
	の中からー	つ選びなさい。				8

- ① 温度を変えると、反応速度 (rate of reaction) が変化する。
- ② 気体どうしの反応では、それぞれの分圧(partial pressure)を変えると、反応 速度が変化する。
- ③ 触媒 (catalyst) の量を変えても, 反応速度は変化しない。
- ④ 触媒の量を変えても、反応の平衡定数 (equilibrium constant) は変化しない。
- ⑤ 触媒の量を変えても、反応熱 (heat of reaction) は変化しない。
- 問9 ある濃度の硫酸 (sulfuric acid) 10 mL を中和 (neutralization) するのに, 0.20 mol/L の水酸化ナトリウム水溶液 NaOH aq 40 mL を要した。硫酸の濃度 [mol/L] として最も近い値を, 次の①~⑤の中から一つ選びなさい。
 - ① 0.10 ② 0.20 ③ 0.40 ④ 0.80 ⑤ 1.0
- 問 10 白金電極 (platinum electrode) を用いて、塩化ナトリウム水溶液 NaCl aq の電気分解 (electrolysis) を行った。2.00 A の電流 (electric current) を一定時間流したところ、 陰極 (cathode) で水素 H₂ が標準状態で 224 mL 発生した。電気分解に要した時間 は何秒か。最も近い値を、次の①~⑥の中から一つ選びなさい。
 - (1) 4.83×10 (2) 9.65×10 (3) 4.83×10^{2}
 - (4) 9.65×10^2 (5) 4.83×10^3 (6) 9.65×10^3

理科-28

- 問 11 ある無色の水溶液の溶質(solute)が何であるかを調べるため実験を行い、次の結果(\mathbf{a}) \sim (\mathbf{c})を得た。この水溶液の溶質として最も適当なものを、下の① \sim ⑤の中から一つ選びなさい。
 - (a) 白金線 (platinum wire) につけて炎の中に入れると、炎は黄色を示した。
 - (b) 塩化カルシウム水溶液 CaCl₂ aq を加えると, 白色の沈殿 (precipitate) が生じた。
 - (c) 白金電極 (platinum electrode) を用いて電気分解 (electrolysis) すると, 陰極 (cathode) から水素 H₂, 陽極 (anode) から酸素 O₂ がそれぞれ発生した。
 - ① $AgNO_3$ ② HCl ③ H_2SO_4 ④ NaCl ⑤ Na_2SO_4
- 問 12 硝酸銀水溶液 AgNO₃ aq の反応に関する記述として**誤っているもの**を,次の①~⑤ の中から一つ選びなさい。
 - ① 塩化カリウム水溶液 KCl ag を加えると、白色の沈殿 (precipitate) が生じる。
 - ② 銅板 (copper plate) を入れると、表面に銀 Ag が生じる。
 - ③ 硫化水素 H₂S を通じると、黒色の沈殿が生じる。
 - ④ 水酸化ナトリウム水溶液 NaOHaq を加えると、白色の沈殿が生じる。
 - ⑤ アンモニア水 NH₃ aq を過剰 (excess) に加えると、一度生じた沈殿が溶ける。

- 問13 次の水溶液 \mathbb{O} ~ \mathbb{S} のいくつかは,アンモニア水 NH_3 aq を加えると沈殿が生じる。 そのうち,過剰に(in excess)アンモニア水 NH_3 aq を加えても沈殿(precipitate)が 溶けずに残っているものはどれか。次の \mathbb{O} ~ \mathbb{S} の中から一つ選びなさい。
 - ① ミョウバン水溶液 AIK(SO₄), aq
 - ② 塩化カルシウム水溶液 CaCl- aq
 - ③ 硫酸銅(II)水溶液 CuSO, aq
 - ④ 塩化ナトリウム水溶液 NaClaq
 - ⑤ 塩化亜鉛水溶液 ZnCl- aq
- 問 14 0.10 mol/L の硝酸銀水溶液 AgNO₃ aq 10 mL と 0.20 mol/L の塩化亜鉛水溶液 ZnCl₂ aq 10 mL を混合したところ、水溶液中に白色の沈殿 (precipitate) が生じた。この水溶液中の塩化物イオン Cl⁻ の濃度 [mol/L] として最も近い値を、次の①~⑤の中から一つ選びなさい。
 - ① 0.10 ② 0.15 ③ 0.20 ④ 0.25 ⑤ 0.30

- 問 15 各種気体の生成方法に関する次の記述(\mathbf{a}) \sim (\mathbf{f})のうち、酸化還元反応 (oxidation-reduction reaction) がおこるものが二つある。それらの組み合わせとして正しいものを、下の $\mathbb{D}\sim$ 8の中から一つ選びなさい。
 - (a) 塩化アンモニウム NH₄CI と水酸化カルシウム Ca(OH)₂ を混合して加熱する。
 - (b) 硫化鉄(Ⅱ) FeS に希硫酸 dil. H₂SO₄ を加える。
 - (c) 酸化マンガン(IV) MnO₂ に濃塩酸 conc. HCI を加えて加熱する。
 - (d) 塩化ナトリウム NaCl に濃硫酸 conc. H₂SO₄ を加える。
 - (e) 希硝酸 dil. HNO3 に銅 Cu を加える。
 - (f) 炭酸水素ナトリウム NaHCO₃ に酢酸 CH₃COOH を加える。
 - ① a, b ② a, c ③ a, f ④ b, d
 - ⑤ b, e ⑥ c, d ⑦ c, e ⑧ e, f
- 問 16 次の構造式 (structural formula) で表される炭化水素 (hydrocarbon) の名称として 最も適当なものを、下の①~⑤の中から一つ選びなさい。

$$C_{2}H_{5}$$
 $H_{3}C-C-C_{2}H_{5}$
 H

- ① 1,1-ジエチルエタン (1,1-diethylethane)
- ② ジエチルメチルメタン (diethylmethylmethane)
- ③ 2-エチルブタン (2-ethylbutane)
- ④ 3-メチルペンタン (3-methylpentane)
- ⑤ 1-エチル-1-メチルプロパン (1-ethyl-1-methylpropane)

問 17 触媒 (catalyst) 存在下で水素 H2 を付加 (addition) させたとき, 不斉炭素原子 (asymmetric carbon atom)をもつ化合物を生じるものを、次の①~⑤の中から一つ 選びなさい。

$$\begin{array}{c} \text{(3)} \quad \text{H} \quad \text{CH}_3 \\ \text{C} = \text{C} \\ \text{H} \quad \text{C}_2 \text{H}_3 \end{array}$$

$$H_{3}C = C CH_{3}$$

- 問 18 ある量のエチレン (エテン) (ethylene (ethene)) に臭素 Br2 が完全に付加 (addition) したときに得られた生成物 (product) は,同量のエチレンに塩素 Cl₂ が 完全に付加したときに得られた生成物より 45 g 重かった。反応に使用したエチレン は何 mol か。最も近い値を、次の①~⑥の中から一つ選びなさい。
 - ① 0.10
- ② 0.30
- ③ 0.50
- **4** 0.60 **5** 0.80
- 6 1.0

問 19 次表の A 欄に示す有機化合物(organic compound)を B 欄に示す操作で反応させたとき、主に生成する有機化合物が C 欄に示してある。 C 欄の有機化合物が正しいものを、次の①~⑤の中から一つ選びなさい。

	Α	В	С
①	ОН	炭酸水素ナトリウム水溶液 NaHCO3 aq を加える	ONa
2	CH₂OH	過マンガン酸カリウム水溶液 KMnO4 aq を加える	СООН
3		塩素 Cl ₂ を加えて,紫外線 (UV) を当てる	CI
4		アセトン CH₃COCH₃ を加える	CH(CH ₃) ₂
(5)	CH ₂ OH	水酸化ナトリウム水溶液 NaOH aq を加える	CH ₂ ONa

問 20 カルボキシ基 (carboxy group) を一つもつ不飽和カルボン酸 (unsaturated carboxylic acid) 1.0 mol を完全燃焼 (complete combustion) させると, 18 mol の二酸化炭素 CO₂ と 16 mol の水 H₂O が生じた。この不飽和カルボン酸 1.0 mol を飽和カルボン酸 (saturated carboxylic acid) にするために必要な水素 H₂ は何 mol か。最も近い値を,次の①~⑤の中から一つ選びなさい。

① 1.0 ② 2.0 ③ 3.0 ④ 4.0 ⑤ 5.0

化学の問題はこれで終わりです。解答欄の $21 \sim 75$ はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。