## 第三章总复习题

- 1. 选择题
  - (1) 下列命题中正确的是(

    - B. 若  $f'(x_0) = 0$ ,则 $x_0$ 必为f(x)的极值点
    - C. 若 f(x) 在 (a,b) 内存在极大值,也存在极小值,则极大值必定大于极小值
  - (2) 曲线  $v = 6x 24x^2 + x^4$  的凸区间是(
    - A. (-2,2)

- B.  $(-\infty,0)$  C.  $(0,+\infty)$  D.  $(2,+\infty)$
- (3) 设偶函数 f(x)在  $(-\infty, +\infty)$  内二阶可导,且在  $(-\infty, 0)$  内 f'(x) > 0 , f''(x) < 0 , 则 f(x) 在  $(0,+\infty)$  内有 ( )
  - A. f'(x) > 0, f''(x) < 0 B. f'(x) > 0, f''(x) > 0
  - C. f'(x) < 0, f''(x) < 0 D. f'(x) < 0, f''(x) > 0
  - (4) 已知(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点,则a,b值应为(
- A.  $a = \frac{9}{2}, b = -\frac{3}{2}$  B.  $a = -\frac{3}{2}, b = \frac{9}{2}$  C. a = -3, b = 6 D. a = 2, b = 1
- (5) 若 f(x) 在至少二阶可导,且  $\lim_{x \to x_0} \frac{f(x) f(x_0)}{(x x_0)^2} = -1$ ,则函数 f(x) 在  $x = x_0$  处

( )

- A. 取得极大值

- B. 取得极小值 C. 无极值 D. 不一定有极值
- (6) 设函数 f(x) 在[0,1]上二阶导数大于 0, 则下列关系式成立的是(B)

  - A. f'(1) > f'(0) > f(1) f(0) B. f'(1) > f(1) f(0) > f'(0)

  - C. f(1) f(0) > f'(1) > f'(0) D. f'(1) > f(0) f(1) > f'(0)
- (7) 设f(x)在 $(-\infty,+\infty)$ 内有二阶导数, $f'(x_0)=0$ ,问f(x)满足以下哪个条件时  $f(x_0)$  必是 f(x) 的最大值。(
  - A.  $x = x_0$  是 f(x) 的唯一驻点 B.  $x = x_0$  是 f(x) 的极大值点

- C. f''(x) 在  $(-\infty, +\infty)$  内恒为负
- D. f''(x)在 $(-\infty,+\infty)$ 内恒为正

班级

(8) 若 f(x) 在  $[a, +\infty)$  上连续,并在  $(a, +\infty)$  上二阶可导,且 f(a) = A > 0, f'(x) < 0,

f''(x) < 0(x > a),则方程 f(x) = 0在  $(a, +\infty)$  内 (

- A. 没有实根
- B. 至少有两个实根
- C. 有无穷多个实根
- D. 有且仅有一个实根

## 2. 填空题

(1) 设f(x)有二阶连续导数,且 $\lim_{x\to +\infty} f''(x) = 2$ ,则对任意常数a,

 $\lim_{x \to 0} \left[ f'(x+a) - f'(x) \right] = \underline{\hspace{1cm}}$ 

- (2) 设 y = y(x) 是由方程  $2y^3 2y^2 + 2xy x^2 = 1$  确定的,则 y = y(x) 的极值点是\_\_\_\_\_\_.
- (3) 设f(x)在[0,a]二阶可导,f(0)=0,f''(x)<0,则 $\frac{f(x)}{x}$ 在[0,a]上的单调性为\_\_\_\_\_\_.
  - (4) 方程 $x^3 3x + q = 0$ 有三个实根,则q的取值范围是\_\_\_\_\_\_
  - (5) 曲线  $y = xe^{-x}$  的凹区间是\_\_\_\_\_
  - (6) 曲线  $y = x \ln \left( e + \frac{1}{x} \right) (x > 0)$  的渐近线方程是\_\_\_\_\_
- 3. 计算题

(1) 
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$$

$$(2) \lim_{x \to 1} x^{\frac{1}{1-x}}$$



(4) 
$$\lim_{x \to +\infty} x(\frac{\pi}{2} - \arctan x)$$







(6) 
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(\pi - 2x)^3}$$



4. 证明下列不等式

(1) 
$$\pm 0 < a < b$$
  $\forall$ ,  $\frac{b-a}{1+b^2} < \arctan b - \arctan a < \frac{b-a}{1+a^2}$ 



(2) 
$$\pm x > 0$$
 时, $1 + \frac{1}{2}x > \sqrt{1+x}$ 







5. 设 f(x) 在[0,1]上可导,且 f(1)=0. 证明:存在  $\xi\in(0,1)$ ,使  $f'(\xi)\xi+f(\xi)=0$  成立.



6. 设 $\varphi(x)$ 在[0,1]上可导, $f(x) = (x-1)\varphi(x)$ ,求证: 存在 $x_0 \in (0,1)$ ,使 $f'(x_0) = \varphi(0)$ .



7. 求以下函数的单调区间、极值、凹凸区间及拐点。

(1) 
$$f(x) = x^3 - 5x^2 + x - 2$$



(2)  $f(x) = x + 2\cos x$  在[0,2 $\pi$ ]





8. 设 f(x) 有 三 阶 导 数 ,且  $\lim_{x\to 0} \frac{f(x)}{x^2} = 0$  ,证 明 在 (0,1) 内 存 在 一 点 ,使

 $f'''(\xi)=0.$ 

9. 绘制以下函数图形  $y = (x+2)e^{\frac{1}{x}}$ 







