

ICLR, 2024

Miao's Group - Paper Reading

向乾龙

时间:2024.4.9

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \boldsymbol{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\widetilde{\boldsymbol{\beta}}_t\boldsymbol{I})$$

$$\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right) \qquad \qquad \widetilde{\boldsymbol{\beta}}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$lpha_t = 1 - eta_t$$
 , $ar{lpha}_t = \prod_{i=1}^t lpha_i$

$$\begin{aligned} \mathbf{x}_t &= \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1} \\ &= \sqrt{\alpha_t} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_t} \alpha_{t-1} \overline{\boldsymbol{\epsilon}}_{t-2} \\ &= \cdots \\ &= \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon} \\ q(\mathbf{x}_t | \mathbf{x}_0) &= \mathcal{N}(\mathbf{x}_t; \sqrt{\overline{\alpha}_t} \mathbf{x}_0, (1 - \overline{\alpha}_t) \boldsymbol{I}) \end{aligned}$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2}$$

6: **until** converged

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$\widetilde{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$

$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$$

Algorithm 2 Sampling

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

2: for t = T, ..., 1 do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$

5: end for

6: return x_0

- What is Exposure Bias?
 - Example: Train a Language Model

Exposure Bias in Diffusion Models

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: **until** converged

Algorithm 2 Sampling

2: **for**
$$t = T, \dots, 1$$
 do

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for** $t = T, \dots, 1$ **do**
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

5: end for

6: return x_0

Teacher Forcing

Exposure Bias Accumulative Error

• Exposure Bias in Diffusion Models

Sampling Distribution

Training Distribution

$$q(\hat{\mathbf{x}}_t | \mathbf{x}_{t+1}, \mathbf{x}_{\theta}^{t+1})$$

$$q(\mathbf{x}_t|\mathbf{x}_0)$$

采样阶段看到的 $\hat{\mathbf{x}}_t$

训练时在时间步 t 看到的 \mathbf{x}_t

接下来看 $\hat{\mathbf{x}}_t$ 和 \mathbf{x}_t 的区别

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \boldsymbol{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\widetilde{\boldsymbol{\beta}}_t\boldsymbol{I})$$

$$\widetilde{\boldsymbol{\mu}}(\mathbf{x}_{t}, \mathbf{x}_{0}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}} \mathbf{x}_{0} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{t} \right)$$

$$\widetilde{\boldsymbol{\beta}}_{t} = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t}} \cdot \beta_{t}$$

 \mathbf{X}_{0}^{t}

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\widetilde{\boldsymbol{\beta}}_t\boldsymbol{I})$$

$$\widetilde{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$

 $\mathbf{x}_{ heta}^t$

Sampling: $\mathbf{x}_{\theta}^{t} - \mathbf{x}_{0} \neq 0$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\widetilde{\boldsymbol{\beta}}_t\boldsymbol{I})$$

$$\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1}) = \sqrt{\bar{\alpha}_{t-1}}\beta_t = 1 \quad (1-\alpha_t)$$

$$\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \qquad \qquad \boldsymbol{\mathbf{x}}_{\theta}^{t}$$

$$p_{\theta}(\mathbf{x}_0|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{\theta}^t; \mathbf{x}_0, e_t^2 \mathbf{I}), \qquad \mathbf{x}_{\theta}^t = \mathbf{x}_0 + e_t \epsilon_0 \left(\epsilon_0 \sim \mathcal{N}(0, I)\right)$$

$$\hat{\mathbf{x}}_{t} = \frac{\sqrt{\bar{\alpha}_{t}}\beta_{t+1}}{1 - \bar{\alpha}_{t+1}}\mathbf{x}_{\theta}^{t+1} + \frac{\sqrt{\bar{\alpha}_{t+1}}(1 - \bar{\alpha}_{t})}{\underline{1} - \bar{\alpha}_{t+1}}\mathbf{x}_{t+1} + \sqrt{\tilde{\beta}_{t+1}}\epsilon_{1}$$

$$\hat{\mathbf{x}}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t + \left(\frac{\sqrt{\bar{\alpha}_t} \beta_{t+1}}{1 - \bar{\alpha}_{t+1}} e_{t+1}\right)^2} \epsilon_3$$

• Exposure Bias in Diffusion Models

Training Distribution

$$q(\mathbf{x}_t|\mathbf{x}_0)$$

训练时在时间步 t 看到的 x_t

Sampling Distribution

$$q(\hat{\mathbf{x}}_t|\mathbf{x}_{t+1},\mathbf{x}_{\theta}^{t+1})$$

采样阶段看到的 $\hat{\mathbf{x}}_t$

$$\mathbf{x}_{\mathsf{t}} = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}$$

$$\hat{\mathbf{x}}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t + \left(\frac{\sqrt{\bar{\alpha}_t} \beta_{t+1}}{1 - \bar{\alpha}_{t+1}} e_{t+1}\right)^2} \, \boldsymbol{\epsilon}_3$$

_	mean	$\sqrt{\overline{lpha}_t}\mathbf{x}_0$	$\sqrt{ar{lpha}_t}\mathbf{x}_0$
2	variance	$(1-ar{lpha}_t) \emph{\emph{I}}$	$\left(1 - \bar{\alpha}_t + \left(\frac{\sqrt{\bar{\alpha}_t}\beta_{t+1}}{1 - \bar{\alpha}_{t+1}}e_{t+1}\right)^2\right)I \text{ bigger!}$

• Exposure Bias in Diffusion Models

Training Distribution

$$\mathbf{x}_{\mathsf{t}} = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}$$

Sampling Distribution

bigger!

$$\hat{\mathbf{x}}_t = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t + \left(\frac{\sqrt{\overline{\alpha}_t} \beta_{t+1}}{1 - \overline{\alpha}_{t+1}} e_{t+1}\right)^2} \, \boldsymbol{\epsilon}_3$$

Figure 1: Variance error in single-step and multi-step samplings.

• Exposure Bias in Diffusion Models

Training Distribution

$$\mathbf{x}_{\mathsf{t}} = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$$

Sampling Distribution

bigger!

$$\hat{\mathbf{x}}_t = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t + \left(\frac{\sqrt{\overline{\alpha}_t} \beta_{t+1}}{1 - \overline{\alpha}_{t+1}} e_{t+1}\right)^2} \, \boldsymbol{\epsilon}_3$$

Figure 2: $\|\epsilon_{\theta}(\cdot)\|_2$ during training and sampling on CIFAR-10. We use 20-step sampling and report the L2-norm using 50k samples at each timestep.

• Exposure Bias in Diffusion Models

Training Distribution

$$\mathbf{x}_{\mathsf{t}} = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}$$

Sampling Distribution

Solution

bigger!

$$\hat{\mathbf{x}}_t = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t + \left(\frac{\sqrt{\overline{\alpha}_t} \beta_{t+1}}{1 - \overline{\alpha}_{t+1}} e_{t+1}\right)^2} \, \boldsymbol{\epsilon}_3$$

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0

• Result

T'	Model	Unconditional			Conditional	
		CIFAR-10 32×32	LSUN 64×64	FFHQ 128×128	ImageNet 64×64	ImageNet 128×128
100	ADM	3.37	3.59	14.52	2.71	3.55
	ADM-ES	2.17	2.91	6.77	2.39	3.37
50	ADM	4.43	7.28	26.15	3.75	5.15
	ADM-ES	2.49	3.68	9.50	3.07	4.33
20	ADM	10.36	23.92	59.35	10.96	12.48
	ADM-ES	5.15	8.22	26.14	7.52	9.95
	ADM-ES*	4.31	7.60	24.83	7.37	9.86

• Result

T'	Model	Unconditional		Conditional	
_		Heun	Euler	Heun	Euler
35	EDM	1.97	3.81	1.82	3.74
	EDM-ES (ours)	1.95	2.80	1.80	2.59
21	EDM	2.33	6.29	2.17	5.91
	EDM-ES	2.24	4.32	2.08	3.74
13	EDM	7.16	12.28	6.69	10.66
	EDM-ES	6.54	8.39	6.16	6.59

Reference

- What are Diffusion Models? | Lil'Log (lilianweng.github.io)
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." NIPS 2020
- Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, Itir Önal Ertugrul. "Elucidating the Exposure Bias in Diffusion Models" ICLR 2024

ICLR, 2024

Miao's Group - Paper Reading

向乾龙

时间:2024.4.9