MATH4828B Machine Learning for Natural Language Processing

$egin{array}{c} ext{Project 3} - ext{Language Model} \ ext{Report} \end{array}$

Name: TSE, Ho Nam

Student ID: 20423612 **Dev Set Score:** 1.3916

Contents

1	Architectures	1
	1.1 LSTM	1
	1.2 TCN	2
2	Experiments	3
	2.1 Training with Provided Code	3
	2.2 Training with Altered Code	5
3	Implementations	8

1 Architectures

There are two main types of architecture that I tried, and they are (i) LSTM and (ii) TCN.

1.1 LSTM

Long Short Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) that aims to solve the problem of gradient explosion and diminishing problems in simple RNN. Comparing with simple RNN, LSTM can be trained using a longer sequence and usually performs better. In a LSTM cell (Figure 1), there are four gates i, f, o, g and two hidden states c_t, h_t . The equations for forward pass is as follows, with \odot being the elementwise multiplication, σ being the sigmoid activation and tanh being the tanh activation.

$$\begin{bmatrix} i \\ f \\ o \\ g \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ tanh \end{bmatrix} \mathbf{W} \begin{bmatrix} \mathbf{h}_{t-1} \\ \mathbf{x}_t \end{bmatrix}, \qquad c_t = f \odot c_{t-1} + i \odot g, \qquad h_t = o \odot \tanh(c_t)$$

The intuitive idea behind these equations is that, i governs how much information of x_t should be written to c_t and f governs how much information of c_{t-1} should be forgotten.

g governs how much x_t is reach revealed to c_t and o governs how much c_t is written to h_t . This new model works better than simple RNN because of the gradient highway along the c_t line which help solves the problem of gradient issues.

Figure 1: A LSTM cell.¹

Even LSTM is a better choice than simple RNN, it has a lot more parameters than simple RNN and generally it takes longer to train these models. Therefore, another alternative is explored for this project.

1.2 TCN

Temporal Convolutional Network (TCN) is a novel Convolutional Neural Network (CNN) modified to work on temporal domain introduced in early 2018. It uses a sequence of dilated convolutional layers, normalization layers, dropout layers and ReLU activations. From the authors² of TCN, their experimental results show TCN outperforms simple RNN, LSTM and GRU in different sequence modelling tasks significantly. It can also exhibit a longer memory, and has stable gradients.

Figure 2: TCN strcuture.³

¹From Stanford cs231n lecture notes.

²Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271 (2018).

³From https://github.com/philipperemy/keras-tcn.

2 Experiments

There were two phases of experiments. During the first phase, I used the provided sample code for generating training and validation data; while in the second phase, I reprogrammed these parts. There were in total around 200 sets of training records.

2.1 Training with Provided Code

There were multiple types of architectures attempted during this phase. They are constructed by LSTM, and/or TCN layers mentioned in the previous section. All models have a Embedding layer with various intermediate layer(s), then is finally fed into a Dense layer with softmax activation. The models include:

Model Type	Architecture
lstm	Embedding \rightarrow LSTM1 \rightarrow Dense
lstm2	$\text{Embedding} \rightarrow \text{LSTM1} \rightarrow \text{LSTM2} \rightarrow \text{Dense}$
lstm3	$\text{Embedding} \rightarrow \text{LSTM1} \rightarrow \text{LSTM2} \rightarrow \text{LSTM3} \rightarrow \text{Dense}$
lstm_embed	$\begin{array}{c} \text{Embedding} \rightarrow \text{LSTM1} \\ \text{LSTM1} + \text{Embedding} \rightarrow \text{Dense} \end{array}$
tcn	Embedding \rightarrow TCN1 \rightarrow Dense
tcn_embed	$\begin{array}{c} \text{Embedding} \rightarrow \text{TCN1} \\ \text{TCN1} + \text{Embedding} \rightarrow \text{Dense} \end{array}$
tcn_lstm	$\begin{array}{c} \text{Embedding} \rightarrow \text{LSTM1} \\ \text{Embedding} \rightarrow \text{TCN1} \\ \text{TCN1} + \text{LSTM1} \rightarrow \text{Dense} \end{array}$
tcn_lstm_embed	$\begin{array}{c} \operatorname{Embedding} \to \operatorname{LSTM1} \\ \operatorname{Embedding} \to \operatorname{TCN1} \\ \operatorname{TCN1} + \operatorname{LSTM1} + \operatorname{Embedding} \to \operatorname{Dense} \end{array}$
tcn_lstm12_embed	$\begin{array}{c} \operatorname{Embedding} \to \operatorname{LSTM1} \to \operatorname{LSTM2} \\ \operatorname{Embedding} \to \operatorname{TCN1} \\ \operatorname{TCN1} + \operatorname{LSTM1} + \operatorname{LSTM2} + \operatorname{Embedding} \to \operatorname{Dense} \end{array}$
tcn_lstm2_embed	$\begin{array}{c} \text{Embedding} \rightarrow \text{LSTM1} \rightarrow \text{LSTM2} \\ \text{Embedding} \rightarrow \text{TCN1} \\ \text{TCN1} + \text{LSTM2} + \text{Embedding} \rightarrow \text{Dense} \end{array}$
tcn12_1stm12_embed	$\begin{array}{c} \operatorname{Embedding} \to \operatorname{LSTM1} \to \operatorname{LSTM2} \\ \operatorname{Embedding} \to \operatorname{TCN1} \to \operatorname{TCN2} \\ \operatorname{TCN1} + \operatorname{TCN2} + \operatorname{LSTM1} + \operatorname{LSTM2} + \operatorname{Embedding} \to \\ \operatorname{Dense} \end{array}$

Table 1: List of attempted models.

For parameter tuning, I mainly tweak the embedding size, hidden size (size of h_t , c_t in LSTM and number of kernels used in TCN) and dropout rate. Here some selected results are shown.

Model Type	Embedding Size	Hidden Size	Dropout Rate	Log Loss	Score
lstm	100	512	0.5	1.7566	90%
lstm	100	512	0.2	1.7676	90%
lstm	100	256	0.2	1.7812	90%
lstm	100	256	0.5	1.8009	80%
lstm	100	128	0.2	1.8620	80%
lstm	100	128	0.5	1.9194	60%
$lstm_embed$	100	256	0.2	1.7413	90%
$lstm_embed$	100	128	0.2	1.7811	90%
$lstm_embed$	100	256	0.5	1.7887	80%
$lstm_embed$	100	128	0.5	1.7980	80%
lstm2	100	500	0.3	1.8401	80%
lstm2	100	500	0.4	1.8668	80%
lstm2	100	500	0.5	1.8830	80%
lstm2	100	500	0.2	1.8861	80%
lstm2	100	500	0.6	1.9672	60%
lstm3	100	500	0.3	1.8723	80%
lstm3	100	500	0.5	1.8924	80%
lstm3	100	500	0.2	1.9035	60%
lstm3	100	500	0.4	1.9099	60%
1stm3	100	500	0.6	1.9784	60%
tcn	100	512	0.5	1.8067	80%
tcn	100	128	0.2	1.8217	80%
tcn	100	512	0.2	1.8362	80%
tcn	100	256	0.2	1.8472	80%
tcn	100	256	0.5	1.8505	80%
tcn	100	128	0.5	1.9228	60%
tcn_embed	100	256	0.2	1.8105	80%
$ exttt{tcn_embed}$	100	256	0.5	1.8287	80%
$\mathtt{tcn}_{\mathtt{-}}\mathtt{embed}$	100	128	0.5	1.8428	80%
$\mathtt{tcn}_{\mathtt{embed}}$	100	128	0.2	1.8497	80%
tcn_lstm	100	512	0.5	1.7346	90%
tcn_lstm	100	256	0.2	1.7385	90%
tcn_lstm	100	256	0.5	1.7424	90%
tcn_lstm	100	512	0.2	1.7569	90%
tcn_lstm	100	128	0.2	1.7640	90%
${\tt tcn_lstm}$	100	128	0.5	1.7677	90%
tcn_lstm_embed	256	256	0.5	1.7036	100%
tcn_lstm_embed	100	256	0.5	1.7130	100%
tcn_lstm_embed	100	512	0.5	1.7365	90%
tcn_lstm_embed	128	256	0.5	1.7439	90%
tcn_lstm_embed	100	128	0.2	1.7516	90%
tcn_lstm_embed	100	256	0.2	1.7563	90%
tcn_lstm_embed	100	512	0.2	1.7861	80%

Model Type	Embedding Size	Hidden Size	Dropout Rate	Log Loss	Score
tcn_lstm_embed	100	128	0.5	1.7952	80%
tcn_lstm12_embed	256	256	0.2	1.6785	100%
tcn_1stm12_embed	128	256	0.5	1.6844	100%
tcn_1stm12_embed	256	128	0.5	1.7210	100%
tcn_lstm12_embed	256	256	0.5	1.7244	100%
tcn_1stm12_embed	128	128	0.2	1.7262	100%
tcn_lstm12_embed	128	128	0.5	1.7305	100%
tcn_1stm12_embed	128	256	0.2	1.7557	90%
tcn_lstm12_embed	256	128	0.2	1.7659	90%
tcn_lstm2_embed	256	256	0.5	1.7322	100%
tcn_1stm2_embed	128	256	0.5	1.7373	90%
tcn_1stm2_embed	256	128	0.5	1.7405	90%
tcn_1stm2_embed	128	128	0.2	1.7614	90%
tcn_1stm2_embed	256	128	0.2	1.7726	90%
tcn_1stm2_embed	128	256	0.2	1.7785	90%
tcn_1stm2_embed	256	256	0.2	1.7840	80%
tcn_lstm2_embed	128	128	0.5	1.7926	80%
tcn12_lstm12_embed	128	256	0.5	1.7154	100%
$tcn12_lstm12_embed$	128	256	0.2	1.7304	100%
$tcn12_lstm12_embed$	128	128	0.2	1.7561	90%
$tcn12_lstm12_embed$	256	256	0.5	1.6899	100%
$tcn12_lstm12_embed$	256	128	0.2	1.744	90%
${\tt tcn12_lstm12_embed}$	256	256	0.2	1.7633	90%
${\tt tcn12_lstm12_embed}$	256	128	0.5	1.7322	100%
tcn12_lstm12_embed	128	128	0.5	1.749	90%

Table 2: Selected results trained with skeleton code. All models listed are trained with 25 epochs (may be early stopped, usually stops within 10 epochs) and batch size 32.

Some results we can see from Table 2 are as follows.

- For all pure LSTM models, the more the layers, the worse it generally performs.
- Pure TCN models outperform most of the LSTM models (except a few lstm ones).
- Pure TCN/LSTM models with concatenating Embedding generally performs better than those without. This is similar to what we see with ResNet.
- Concatenating all TCN, LSTM and Embedding works the best among all models. tcn_lstm_embed hits 100% score constantly.

Even I have reached 100% multiple times, I still wish to achieve the bonus score for validation set. Hence, I started to modify the provided skeleton code for generating data.

2.2 Training with Altered Code

After reading through the skeleton code, I believe this is how it works for sampling training/validation data.

- 1. Converts all words into IDs.
- 2. Fixes the input temporal dimension as 10.
- 3. Concatenates next sentences to fill in the remaining space if current sentence is too short, or break the current sentence into two if it is too long.

One of the advantages of RNN and TCN is they support varying temporal dimension. With step 3 above, each input sentence is longer a complete sentence since either some of them are truncated, or some unrelated sentences are mixed in with them. This could affect the performance of the model since the models are looking for contexts through the whole sentence, which now the words can be unrelated. Hence, I modified the code and now it works as follows.

- 1. Converts all words into IDs.
- 2. Gets a batch of sentences and pad 0 to shorter sentences such that all sentences in the batch has the same temporal dimension during training.

After the modification, the performance of the models improved by a lot. This implementation is not the best though, because ID 0 is given to word L0127, meaning in the perspective of the model, those words become L0127. However, this is still acceptable because the model eventually learns to neglect this word towards the end of a sentence. From the table of selected results below, we can see an improvement in performance comparing with the previous table.

Model Type	Log Loss	Score
tcn_lstm_embed	1.6699	Bonus
tcn_embed	1.7355	90%
lstm_embed	1.7165	100%
tcn_lstm12_embed	1.6131	Bonus
tcn12_lstm12_embed	1.6053	Bonus

Table 3: Selected empirical results trained with altered code. All models listed are trained with 1 epoch, batch size 32, embedding size 128, hidden size 256 and dropout rate 0.2.

Model Type	Embedding Size	Hidden Size	Dropout Rate	Log Loss	Score
lstm_embed	256	256	0.2	1.4165	Bonus
$lstm_embed$	256	128	0.2	1.4395	Bonus
$lstm_embed$	128	128	0.2	1.4457	Bonus
$lstm_embed$	128	256	0.2	1.422	Bonus
$lstm_embed$	128	128	0.5	1.4729	Bonus
$lstm_embed$	256	128	0.5	1.4641	Bonus
$lstm_embed$	256	256	0.5	1.4173	Bonus
lstm_embed	128	256	0.5	1.4414	Bonus
tcn_embed	256	256	0.2	1.5162	Bonus

Model Type	Embedding Size	Hidden Size	Dropout Rate	Log Loss	Score
tcn_embed	128	256	0.2	1.5249	Bonus
$ au cn_{ ext{-embed}}$	256	128	0.2	1.5414	Bonus
$\mathtt{tcn}_{\mathtt{-embed}}$	256	128	0.5	1.5772	Bonus
$\mathtt{tcn}_{\mathtt{embed}}$	128	128	0.2	1.5507	Bonus
$\mathtt{tcn}_{\mathtt{-}}\mathtt{embed}$	128	128	0.5	1.5785	Bonus
${\tt tcn_embed}$	128	256	0.5	1.5334	Bonus
tcn_embed	256	256	0.5	1.5479	Bonus
tcn_lstm_embed	128	128	0.5	1.4297	Bonus
${\tt tcn_lstm_embed}$	128	128	0.2	1.4231	Bonus
${\tt tcn_lstm_embed}$	128	256	0.5	1.4296	Bonus
${\tt tcn_lstm_embed}$	256	128	0.2	1.426	Bonus
${\tt tcn_lstm_embed}$	256	256	0.2	1.4218	Bonus
${\tt tcn_lstm_embed}$	128	256	0.2	1.4596	Bonus
${\tt tcn_lstm_embed}$	256	128	0.5	1.4223	Bonus
tcn_lstm_embed	256	256	0.5	1.4027	Bonus
tcn_lstm12_embed	256	128	0.2	1.4032	Bonus
tcn_1stm12_embed	128	128	0.2	1.4325	Bonus
tcn_lstm12_embed	256	256	0.2	1.3916	Bonus
tcn_1stm12_embed	128	256	0.2	1.4308	Bonus
tcn_lstm12_embed	256	128	0.5	1.4152	Bonus
tcn_1stm12_embed	128	256	0.5	1.4038	Bonus
tcn_1stm12_embed	256	256	0.5	1.3968	Bonus
tcn_lstm12_embed	128	128	0.5	1.4262	Bonus
tcn12_lstm12_embed	256	128	0.2	1.4235	Bonus
${\tt tcn12_lstm12_embed}$	128	128	0.2	1.4557	Bonus
${\tt tcn12_lstm12_embed}$	128	256	0.2	1.4447	Bonus
${\tt tcn12_lstm12_embed}$	256	256	0.2	1.4123	Bonus
${\tt tcn12_lstm12_embed}$	256	128	0.5	1.431	Bonus
${\tt tcn12_lstm12_embed}$	128	256	0.5	1.4218	Bonus
${\tt tcn12_lstm12_embed}$	128	128	0.5	1.4229	Bonus
${\tt tcn12_lstm12_embed}$	256	256	0.5	1.3963	Bonus
TD 11 4 C 1 4 1	1, , 1 1,1	1, 1 1	A 11 1 1 1 1 1 1		1 11

Table 4: Selected results trained with altered code. All models listed are trained with 100 epochs (may be early stopped, usually stops within 10 epochs) and batch size 32.

From Tables 3 and 4, we may find these observations.

- All architectures performed significantly better even when trained with 1 epoch only. Some of them even got to bonus already.
- lstm_embed outperforms tcn_embed despite it is shown TCN are better. This could be because our task does not require a long memory so the advantages of TCN are somewhat lost.
- Combining LSTM and TCN together are better than pure LSTM/TCN.

• The best model seems to be tcn_lstm12_embed with embedding size 256, hidden size 256 and dropout 0.2. It would be best to check this by running the same model setups multiple times, but this is not performed due to the lack of time.

After these evaluations, tcn_lstm12_embed with embedding size 256, hidden size 256 and dropout 0.2 model setup is used for the inference of the test data.

3 Implementations

In this project, the following libraries are used.

Name	Version	Descriptions
Python	3.6.6	Language used
numpy	1.15.3	For handling data matrices
pandas	0.23.4	For handling csv files
tensorflow	1.12.0	Deep learning library
keras	2.2.4	High level API wrapper for tensorflow
keras-tcn	commit 6d71e19	keras implementation of TCN

Some notes for in the implementations are:

- keras.callbacks.EarlyStopping is used to stop training when the validation loss does not increase for 3 consecutive epochs.
- keras.callbacks.TensorBoard is used to visualize the models during implementation.
- Python generators are used so data do not need to be fetched to memory before training. This speeds up the training time. In particular, model.fit_generator is used instead of model.fit. Unfortunately, model.predict_generator does not currently support varying dimension inference so model.predict is still used.

End of Report