- 10. Suppose that v is a harmonic conjugate of u and that u is a harmonic conjugate of v. Show that u and v must be constant functions.
- 11. Let $f(z) = f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$ be analytic on a domain D that does not contain the origin. Use the polar form of the Cauchy-Riemann equations $u_{\theta} = -rv_{r}$, and $v_{\theta} = ru_{r}$. Differentiate them first with respect to θ and then with respect to r. Use the results to establish the polar form of Laplace's equation:

$$r^{2}u_{rr}(r,\theta) + ru_{r}(r,\theta) + u_{\theta\theta}(r,\theta) = 0.$$

- 12. Use the polar form of Laplace's equation given in Exercise 11 to show that the following functions are harmonic.
 - (a) $u(r,\theta) = (r + \frac{1}{r})\cos\theta$ and $v(r,\theta) = (r \frac{1}{r})\sin\theta$.
 - (b) $u(r,\theta) = r^n \cos n\theta$ and $v(r,\theta) = r^n \sin n\theta$.
- 13. The function $F(z) = \frac{1}{z}$ is used to determine a field known as a dipole.
 - (a) Express F(z) in the form $F(z) = \phi(x, y) + i\psi(x, y)$.
 - (b) Sketch the equipotentials $\phi = 1, \frac{1}{2}, \frac{1}{4}$ and streamlines $\psi = 1, \frac{1}{2}, \frac{1}{4}$.
- 14. Assume that $F(z) = \phi(x,y) + i\psi(x,y)$ is analytic on the domain D and that $F'(z) \neq 0$ on D. Consider the families of level curves $\{\phi(x,y) = \text{constant}\}$ and $\{\psi(x,y) = \text{constant}\}$, which are the equipotentials and streamlines for the fluid flow $\mathbf{V}(x,y) = \overline{F'(z)}$. Prove that the two families of curves are orthogonal.

Hint: Suppose that (x_0, y_0) is a point common to the two curves $\phi(x, y) = c_1$ and $\psi(x, y) = c_2$. Use the gradients of ϕ and ψ to show that the normals to the curves are perpendicular.

- 15. We introduce the logarithmic function in Chapter 5. For now, let $F(z) = \text{Log } z = \ln|z| + i \text{Arg } z$. Here we have $\phi(x,y) = \ln|z|$ and $\psi(x,y) = \text{Arg } z$. Sketch the equipotentials $\phi = 0, \ln 2, \ln 3, \ln 4$ and streamlines $\psi = \frac{k\pi}{8}$ for $k = 0, 1, \ldots, 7$.
- 16. Theorem 3.9 claims that it is possible to prove that C'(x) is a function of x alone. Prove this assertion.
- 17. Discuss and compare the statements "u(x,y) is harmonic" and "u(x,y) is the imaginary part of an analytic function."