Open Diffix

Project and technical overview

Paul Francis, MPI-SWS
June 2022

Paul Francis

- Director at the Max Planck Institute for Software Systems
 - German government-funded research mpi-sws.org
- Co-founder Aircloak GmbH
 - Builds data anonymization solution aircloak.com
- Founding member Open Diffix project
 - "Open source" of Aircloak tech open-diffix.org

- Open Diffix project
 - Goals
 - History
- Current products
- Core anonymization tech overview
 - Diffix Elm
 - Evaluation of anonymization
- Demo of Diffix for Desktop and Diffix for PostgreSQL
- See open-diffix.org
- francis@mpi-sws.org

opendiffix

- Open software project for strong (GDPR-compliant) data anonymization
- Founded Jan 2021
 - Core tech from MPI-SWS and Aircloak GmbH
 - Open Diffix is simpler, easier to use
- Late 2021:
 - First product release: Diffix for Desktop
 - Partner with the German Research Institute for Public Administration (FÖV) on legal and compliance
- Mid 2022
 - Release Diffix for PostgreSQL
- Five people: myself, 3 engineers, David Wagner (FÖV)

Diffix is an anonymizing query engine

- Diffix Elm uses the same kinds of mechanisms as statistics offices
 - Aggregation
 - Generalization
 - Noise
 - Suppression
 - Swapping
- Diffix Elm effectively automates and generalizes what statistics office have successfully done for decades
- Adds additional mechanisms that defends against untrusted (malicious) analysts

Trusted and untrusted analyst modes

- Trusted analyst
 - Defends against accidental release of personal data
 - Easier to use because analyst can look at raw data
 - Analyst requires no knowledge of anonymization

- Untrusted analyst
 - Defends against intentional release of personal data
 - Analyst can be malicious

- Business Source License (BSL1.1)
 - https://github.com/diffix/desktop/blob/master/LICENSE.md
- Free for any non-resale use, including commercial use
- Not free if resold substantially as is (anonymizing query interface)

Taxi travel times to La Guardia Airport

Comparison of Diffix and Raw Data

Currently looking for lighthouse projects

Diffix Versions

Features/
Complexity

Difference between Aircloak and Open Diffix

Aircloak	Open Diffix
Proprietary (but transparent)	Source Available (BSL1.1)
SQL proxy in front of any DB	Integrated with DB (PostgreSQL or custom Desktop)
Untrusted (malicious) analyst	Two modes: trusted and untrusted analyst
Analyst can never view data	Trusted analyst can view data (ease-of-use)
Rich SQL (but complex/confusing)	Simplified (fewer features, easier to use)
High "start-up" effort	Low "start-up" effort (Diffix for Desktop)

Building trust, minimizing risk

Features

Diffix is an anonymizing query engine

- Must be tabular
 - CSV (Diffix for Desktop)
 - PostgreSQL (Diffix for PosgreSQL)
- Data types: numeric or text
 - Other data types possible, for instance date and time
- Supports time-series data as well as non-time-series

? SQL query

- Supports simple queries
 - SELECT column1, column2, count(*) FROM table
- Supports counting rows and persons
 - count(*), count(column), count(person_id)
- Supports data aggregation as numeric ranges and substrings
- Future (3rd quarter 2022):
 - Other operations (sum, average, etc.)
 - Other aggregates
 - Other SQL functions (WHERE, JOIN, etc.)

Anonymized Aggregated Counts

- Counts have noise added
 - Roughly to within plus or minus 5 persons
- Bins are **suppressed** if too few persons in the bin
 - Avoid suppression by aggregating data

- .NET library (F#)
 - Thin command-line interface wrapped around library
 - Used as reference implementation (fast prototype)
 - Supports Diffix for Desktop
- Extension for PostgreSQL (C language)
 - All benefits of PostgreSQL (but with limited SQL syntax)
 - Diffix for PostgreSQL
- Current version is Diffix Elm

Personal Data

relate 💠	gender \$	age \$	marital_status	len_mar_stat \$	children_born\$
Head/Householder	Male	66	Widowed	99	0
Spouse	Female	46	Married, spouse present	21	11
Child	Female	3	Never married/single	99	0
Spouse	Female	22	Married, spouse present	5	1

Anonymized Aggregated Counts

age Bin size: 5 marital_status Substring start: 1 Substring length:	gender	
	age	Bin size: 5
len_mar_stat	marital_status	Substring start: 1 Substring length:
	len_mar_stat	

age 💠	marital_status 💠	Count \$
20	Married, spouse abs	180
20	Widowed	92
20	Divorced	12
25	Never married/single	3277
25	Married, spouse pre	4992
25	Widowed	188
25	Married, spouse abs	246
25	Divorced	34

Diffix for Desktop

- GUI-based application to run on desktop (Windows, Mac, Linux)
- Simple point-and-click operation (no SQL per se)
 - Import CSV
 - Select columns and bin sizes, examine data quality, repeat...
 - Export anonymized CSV
- Use-case is statistical data disclosure
 - Analyst with access to raw data wishes to release aggregate statistics
- GUI component compiled with core Diffix query engine

- PostgreSQL extension
- Better scaling
- SQL API (limited SQL)

Diffix Fir and beyond

- Diffix Fir
 - JOIN
 - WHERE clauses (AND logic only)
 - New aggregates: sum(), average(), min(), max(), stddev()
- Beyond
 - More WHERE logic (OR, NOT)
 - Sub-queries
 - 333

- A set of mechanisms
- Goal is not to "follow a model", but to be strongly anonymous while giving adequate utility
- Note that all statistics offices take exactly this approach
 - UK Office for National Statistics
 - US Census Bureau
 -
- We measure anonymity using Precision Improvement for individual attacks

- Diffix Elm uses the same kinds of mechanisms as statistics offices
 - Aggregation
 - Generalization
 - Noise
 - Suppression
 - Swapping
- Diffix Elm effectively automates and generalizes what statistics office have successfully done for decades

 Output counts of things (bins), not microdata

Original Data

Generalization

- 1957-12-14 → 1957
- SW1A 2AA \rightarrow SW1
- Etc.
- Diffix Elm supports but doesn't enforce

- Distort counts
 - (Not column values)
- Sticky noise
 - "Same query same noise"
 - UK Office for National Statistics
 - Australian Bureau of Statistics
- Standard deviation = 1.5 for counting persons

	year of birth	count
7	1989	18
	1990	26

Dynamic proportional noise

- Counting rows for time-series data
- Some persons contribute more than others
- Purpose of noise is to hide presence/absence of individual persons
- Per-bin noise is proportional to heavy contributors

- Suppress bins pertaining to too few persons
 - Hides private column values
 - Tiny bins are easier to attack
- Suppression threshold itself is noisy
 - Increased uncertainty

We directly measure intuitive criteria:

- What information can an analyst learn about a singled-out individual?
 - Precision: What is the probability that the learned information is correct?
 - Recall: For what fraction of individuals can information be learned?
 - Prior knowledge: What does the analyst need to know in advance?
 - Closely related to the three EU criteria

We directly measure intuitive criteria:

- What information can an analyst learn about a singled-out individual?
 - Precision: What is the probability that the learned information is correct?
 - Recall: For what fraction of individuals can information be learned?
 - Prior knowledge: What does the analyst need to know in advance?
 - Closely related to the three EU criteria

- Design "all possible" attacks
 - Crowd-sourced: transparent publication, bounty programs
- Literally implement the attack, and measure each attack's precision and recall
- Systems where all known attacks have low precision (improvement) or very low recall can be regarded as anonymous

- Design "all possible" attacks
 - Crowd-sourced: transparent publication, bounty programs
- Literally implement the attack, and measure each attack's precision and recall
- Systems where all known attacks have low precision (improvement) or very low recall can be regarded as anonymous

Precision Improvement (not just precision)

- Any anonymized dataset has a certain expected precision
 - A prediction of gender=Male has an expected precision of 50%
 - A prediction of gender=Male given prostate cancer is near 100%
- We want to measure how much better we do than expected precision

Our measure of attack effectiveness (example using singling-out)

- Singling-out is one of three EU criteria for anonymity
- Singling-out occurs when a set of attributes can be associated with a single individual
 - "Exactly one individual is male, has bday 1957-12-14, and zip code 67663"
 - (Note not necessary to identify or "name" the individual)

PID	Zip	Birth	Gender	Lat	Lon	Time	
•••							
3X8YG82	67663	14.12.1957	M	40.1288	-73.4114	14:31:28	
2N4XP31	92601		M	41.2791	-72 6/102		
•••							

Our measure of attack effectiveness (example using singling-out)

- Singling-out is one of three EU criteria for anonymity
- Singling-out occurs when a set of attributes can be associated with a single individual
 - "Exactly one individual is male, has bday 1957-12-14, and zip code 67663"
 - (Note not necessary to identify or "name" the individual)
- Run an attack making multiple singling-out claims
- Each claim is either true or false
- The more true claims, the more effective the attack (precision improvement)

Example of Precision Improvement measure

Evaluation (untrusted analyst mode)

- We (and others) have catalogued 37 different attacks
- 20 cannot be executed because of limited syntax of Diffix Elm
- 17 can be executed but are not effective
- Complete documentation on ArXiv
 - "Diffix Elm: Simple Diffix"
 - https://arxiv.org/abs/2201.04351

Summary of executable attacks from https://arxiv.org/abs/2201.04351

		Alph	200	Condinions	,
	Attack	4	2	Con	Comments
5.3	Attribute value inspection	X			Must ensure that the issues described in Sections 6.2, 6.3, and 6.4 are addressed.
5.4	Unique Inference	VS		Com	May wish to inspect unique inference output bins with high AIDV counts that deviate from table-wide distribution (6.7).
5.5	Simple knowledge-based: Noise	W- VS	C	Com	
5.6	Simple knowledge-based: Suppression	W- VS	C	Com	May require XP or XXP level suppression
5.7	Averaging: naïve	X			
5.8	Averaging: different semantics, same result	X(T)		Com	Not an attack per se, but could partially reduce noise amount. Would not acciden- tally happen with trusted analyst.
5.9	LPR: randomness in column (UA-mode)	W-VS	В	Com	May want higher noise levels for untrusted analyst.
	(TA-mode)	X(T)	В	Com	Would not accidentally happen with trusted analyst.
5.10	LPR: aggregate combinations	VS			
5.11	Difference: positive AND, single victim	X	С	R	
5.12	Difference: positive AND, group of victims	VS	С	R	
5.13	Range creep with averaging				
	(UA-mode)	X	A	Com	
	(TA-mode)	X(T)	A	Com	Would not accidentally happen with trusted analyst.
5.14	Salt: Dictionary attack on table	X(T)	X	Com	Morally equivalent to a password dictionary attack. Would not accidentally happen with trusted analyst.
5.15	Salt: Knowledge attack	X(T)	X		Requires knowledge of the secret salt. Would not accidentally happen with trusted analyst.
5.16	Access to multiple instances			X	Requires incorrect implementation of salt.
5.17	Incremental data update: difference	VS	A	Com	
5.18	Incremental data update: averaging	VS	A	VR	Depends on poor administration of data.
5.19	Detect outlier bucket	W	С	X	Only effective if learning one of a few distinct values. Data conditions can be detected and prevented in advance.

opendiffix

open-diffix.org

francis@mpi-sws.org