Test di Permutazione

Aldo Solari

Scuola di Alta Formazione Statistica Inferenza Statistica in Biologia e Scienze Umane Asti, 8 Luglio 2016

Test di permutazione

- Introdotti da R. A. Fisher nel 1935
- Noti come permutation tests o randomization tests
- Molti dei test non parametrici classici sono casi particolari di test di permutazione (e.g. Wilcoxon-Mann-Whitney, Ranghi con segno di Wilcoxon, Esatto di Fisher, McNemar, etc.)
- Utilizzo limitato nel passato perchè sono computazionalmente intensivi

Due punti di vista

Disegno randomizzato

Gli individui disponibili vengono assegnati casualmente ai trattamenti X e Y

Campionamento casuale

Gli individui vengono pescati a caso da due popolazioni X e Y

Disegno randomizzato

Ipotesi nulla

 H_0 : il livello del colesterolo è indipendente dalla dieta

Controfattuale

Un certo individuo che è stato assegnato dalla randomizzazione alla "dieta a base di pesce", ha un livello di colesterolo pari a 7.11.

Supponiamo che H_0 sia vera.

Allora, se l'esito della randomizzazione fosse stato "dieta a base di carne", il livello di colesterolo misurato sarebbe stato lo stesso.

Randomizzazioni potenziali

		Osservata	Potenziale 1	Potenziale 2	
1	7.11	fish	meat	fish	
2	6.16	fish	fish	meat	
3	7	fish	fish	fish	
4	6.8	fish	fish	meat	
5	6.51	meat	meat	meat	
6	5.86	fish	meat	meat	
7	7.84	meat	fish	fish	
8	6.55	fish	fish	fish	
9	7.56	meat	meat	meat	
10	7.61	meat	meat	fish	
11	11.5	meat	fish	fish	
12	5.42	fish	fish	fish	

Statistica *t* 2.3451 0.6353 -1.1132

Distribuzione di permutazione

- Randomizzazioni possibili: $\binom{n_x + n_y}{n_x} = \binom{7+5}{5} = 792$
- Le randomizzazioni sono equiprobabili
- Ogni randomizzazione fornisce un dataset generato sotto l'ipotesi nulla
- Possiamo ottenere la "distribuzione di permutazione" calcolando il valore della statistica test t_r per l'r-sima randomizzazione, $r=1,\ldots,\binom{n_x+n_y}{n_x}$

• p-value =
$$\frac{\sum_{r=1}^{\binom{n_x + n_y}{n_x}} I\{t_r \ge t_{oss}\}}{\binom{n_x + n_y}{n_x}} = \frac{6}{792} = 0.0076$$

Distribuzione di permutatione della statistica t di Student

¹fonte: Livio Finos

³fonte: Livio Finos

$$T=\overline{y}(Treated)-\overline{y}(Control)$$

⁴fonte: Livio Finos

⁵fonte: Livio Finos

$$T=-0.43$$

⁹fonte: Livio Finos

$$T=-0.54$$

¹¹fonte: Livio Finos

$$T=\overline{y}(Treated)-\overline{y}(Control)$$

$$T=-0.3$$

¹²fonte: Livio Finos

$$T=-1.04$$

$$T=\overline{y}(Treated)-\overline{y}(Control)$$

$$T=-0.32$$

$$T=-0.6$$

¹⁷fonte: Livio Finos

$$T=-1.35$$

$$T=-2.18$$

²⁰fonte: Livio Finos

Campionamento casuale

- X_1, \ldots, X_{n_x} i.i.d. X con f.d.r. \mathcal{F}_X
- Y_1, \ldots, Y_{n_v} i.i.d. Y con f.d.r. \mathcal{F}_y
- $Z_1, \ldots, Z_{n_x+n_y} = X_1, \ldots, X_{n_x}, Y_1, \ldots, Y_{n_y}$ campione pooled
- Se è vera $H_0: \mathcal{F}_{x} = \mathcal{F}_{y}$, allora $Z_1, \ldots, Z_{n_x + n_y}$ i.i.d. $Z \Rightarrow$

$$(Z_1,\ldots,Z_{n_x+n_y})\stackrel{d}{=} (Z_{\pi(1)},\ldots,Z_{\pi(n_x+n_y)})$$

dove $\{\pi(1), \ldots, \pi(n_x + n_y)\}$ è una permutazione di $\{1, \ldots, n_x + n_y\}$

• Si possono calcolare $(n_x + n_y)!$ datasets equiprobabili

Test di Wilcoxon-Mann-Whitney

	Z_i	R_i	OSS.	π_1	π_2	
1	7.11	8	fish	meat	fish	
2	6.16	3	fish	fish	meat	
3	7	7	fish	fish	fish	
4	6.8	6	fish	fish	meat	
5	6.51	4	meat	meat	meat	
6	5.86	2	fish	meat	meat	
7	7.84	11	meat	fish	fish	
8	6.55	5	fish	fish	fish	
9	7.56	9	meat	meat	meat	
10	7.61	10	meat	meat	fish	
11	11.5	12	meat	fish	fish	
12	5.42	1	fish	fish	fish	
Statistica W			46	33	24	

Distribuzione di permutazione della statistica W di Wilcoxon

Distribuzione di permutazione della statistica *KS* di Kolmogorov Smirnov

Dati appaiati

			osservato			potenziale 1			
1	0.72	0.82	SO2	Air	-0.10	Air	SO2	0.10	
2	1.05	0.86	SO2	Air	0.19	SO2	Air	0.19	
3	1.40	1.86	SO2	Air	-0.46	SO2	Air	-0.46	
4	2.30	1.64	SO2	Air	0.66	Air	SO2	-0.66	
5	13.49	12.57	SO2	Air	0.92	SO2	Air	0.92	
t				2.07			-0.10		

Distribuzione di permutazione della statistica t di Student per dati appaiati

Distribuzione di permutazione della statistica W dei ranghi con segno

