Performance of kinematic fitting for Λ selection.

Adam Strach

Jagiellonian University

Adam.strach@student.uj.edu.pl

September 20, 2022

Adam Strach (UJ) HADES September 20, 2022 1/18

Introduction.

I used a Kinematic Refit prepared by Jenny Regina, Jana Rieger and Waleed Esmail, to try to select Λ particle. I was using simluated files prepared for HADES.

Kinematic Refit basis.

Kinematic fitting for HADES minimizes χ^2 by applying Lagrange's multiplayer method with chosen constraint.

I have used only vertex constraint.

2/18

Adam Strach (UJ) HADES September 20, 2022

Kinematic refit mathematics.

Kinematic refit uses three sets of variables:

- \vec{x} -vector of measured quantities.
- $\vec{\xi}$ -vector of unmeasured quantities.
- \vec{y} -vector of estimated quantities.

However for calculation of χ^2 we need covariance matrix V of variables.

 χ^2 is calculated as:

$$\chi^{2}(\vec{x}) = (\vec{y} - \vec{x})^{T} V^{-1}(\vec{y} - \vec{x})$$
 (1)

Constraint equations uses measured and unmeasured variables.

$$\vec{g}\left(\vec{x},\vec{\xi}\right) = 0 \tag{2}$$

3/18

Kinematic refit mathematics.

After applying Lagrange's multipliers method to equation 1 with constraint 2:

$$\chi^{2}\left(\vec{x}, \vec{\xi}, \vec{\lambda}\right) = \left(\vec{y} - \vec{x}\right)^{T} V^{-1} \left(\vec{y} - \vec{x}\right) + 2\vec{\lambda}^{T} \vec{g} \left(\vec{x}, \vec{\xi}\right) = \min$$
 (3)

Equation 3 gives equations for iterative change in parameters:

$$\xi^{\nu+1} = \xi^{\nu} - \left(G_{\xi}^{T} S^{-1} G_{\xi}\right)^{-1} G_{\xi}^{T} S^{-1} r,$$

$$\lambda^{\nu+1} = S^{-1} \left(r + G_{\xi} \left(\xi^{\nu+1} - \xi^{\nu}\right)\right),$$

$$x^{\nu+1} = y - V G_{x}^{T} \lambda^{\nu+1}.$$
(4)

Where r and S are given by:

$$r = g^{v} + G_{x}^{v}(y - x^{v}),$$

$$S = G_{y}^{v}V(G_{y}^{v})^{T}.$$
(5)

Adam Strach (UJ) HADES September 20, 2022 4 / 18

Track Representation.

$$\left(\frac{1}{p}, \theta, \phi, R, Z\right)$$
 (6)

- p-particle momentum.
- \bullet θ -polar angle.
- ullet ϕ -azimuthal angle.
- R-closest distnace to a beam line
- Z-closest point along beamline

Vertex constraint.

Distance d between tracks is calculated as:

$$d = \left(\vec{d_1} \times \vec{d_2}\right) \cdot \left(\vec{b_1} - \vec{b_2}\right) \tag{7}$$

where \vec{d} is a direction vector of particle track and \vec{b} is its base vector.

$$d_{x} = \sin(\theta)\cos(\phi), b_{x} = R\cos\left(\phi + \frac{\pi}{2}\right),$$

$$d_{y} = \sin(\theta)\sin(\phi), b_{y} = R\sin\left(\phi + \frac{\pi}{2}\right),$$

$$d_{z} = \cos(\theta), b_{z} = Z.$$
(8)

Studied interaction.

Figure: Studied interaction.

Analysis procedure.

- Obtain variances of track parameters
 - Plot differences of reconstructed and simulated parameters.
 - Fit Gauss function to obtained histograms, or calculate FWHM to obtain varainces of prameters.
- Particle selection
 - Discard particles with zero momentum P().
 - Use getGeantParentPID to find "real" particles that took part in interaction. Store their indices.
 - Find protons and pions using momentum and charge cuts (838.27 $MeV < p_p < 1038.27MeV$, 39.57 $< p_{\pi}MeV < 239.57MeV$).
- Analysis
 - Check if enough particles have been detected.
 - **2** Separately reconstruct primary, K_S^0 , Λ vertex, using all possible combination of particles.
 - 3 Find best combination of all three fits.
 - Oheck convergence, probability cuts and fill data.

Momentum distributions.

Figure: Momentum distribution.

Proton track parameters resolution.

Figure: Proton resolution.

Pion track parameters resolution.

Figure: Pion resolution.

Λ and K_s^0 refit results for simulations.

Figure: reconstructed mass.

Probability and iterations.

Figure: Probability and iterations distributions.

λ particles angular distributions.

Figure: Lambda particles angular distributions.

K_S^0 particles angular distributions.

Figure: K_S^0 particles angular distributions.

Λ selection.

Figure: Reconstructed Λ mass with Λ probability cut.

Λ selection.

Figure: Reconstructed Λ mass with whole interaction probability cut.

Selection efficiency.

All events	5000100
events with all particles detected	2630
events with all particles matched	99
events with Λ particles detected	11521
events with Λ particles matched	3424
events with k_s^0 particles detected	11149
events with k_s^0 particles matched	3212
events with primary particles detected	10445
events with primary particles matched	3166
Λ particles selection efficiency	29.7%
K_s^0 particles selection efficiency	28.8%
Primary particles selection efficiency	30.3%
Whole interaction selection efficiency	3.76%

Outlook

- Performance of Λ selection with other constraints can be tested.
- Systematically quantify the performance of the fitter by varying the probability and iteration cut.
- Instead of reconstructing all three vertices, one can check performance of Λ selection when looking only at Λ vertex reconstruction (inclusive analysis).
- Selection efficiency need to be tested with presence of forward protons.
- It was suggested that, change of track parametrization in forward detector can enhance Z resolution.