AMUSE kickoff meeting – MODEST 9d Science with AMUSE

Inti Pelupessy Arjen van Elteren Simon Portegies Zwart Marcell Marosvolgi Diederik Kruijssen Jan-Pieter Paardekooper

Outline

- Introduction
- experience with (A)MUSE
- Scientific validation: Signpost applications
- First Science:
 Clusters evolution in realistic galaxy environments
 Radiation hydrodynamics with AMUSE
- Conclusion

Introduction

- AMUSE: package to do multiphysics/ multiscale simulations using legacy codes
- successor to/derived from MUSE
- development started May 2009, so early phases

use for research from the beginning:

- what is needed to make AMUSE an effective tool?
- what are the lessons for the design of AMUSE?
- what are the problems AMUSE is most suited for?

Introduction: modules as classes

- modules provide classes different ways of extending:
- functional
- derived classes (new modules)

Coupling codes

ways of coupling codes:

- data passing: end point as start
- returning state info: particle queries
- expose state(e.g. gravity): interface?
- functional (callbacks)
- make solvers available

import code experience:

- interactive code testing with python is useful!
- some coding will normally be necessary: helper functions, unimplemented interface functions, bookkeeping, handling parameters, initialization
- f2py+SWIG benefits: memory access, callbacks
- f2py+SWIG drawbacks: tricky implementation, global data collisions (problem for instances)
- MPI benefits: parallel ready, independent instances
- import of MPI codes not a problem
- GPU issues (reinitialize every step to be safe)

Introduction: codes to be included

Gravitational Dynamics Hydrodynamics*

phiGRAPE fISM-stars

octgrav VINE

BHtree Athena3D

Pencil

Stellar Evolution Radiative Transfer*

EZ/EZier MOCASIN

SSE Simplex

TYCHO* RADMC3D

STARS SPHray

^{*} under consideration/ pending evaluation

Scientific validation

How do we demonstrate the utility of AMUSE?

- > we will develop "Signpost" applications:
- tests that go beyond unittests
- reproduce results in the literature
- multiple physical modules
- well defined, small (now at least!), problems
- quantitative and qualitative comparison

so lets go through our current wishlist....

Hierarchical Cluster formation

Bonnell et al 2003.

hierarchical collapse of a molecular cloud and formation of cluster

uses

- Gravitational dynamics
- Hydrodynamics
- simple binaries/ collisions

compare

- stellar mass function
- densities

Cluster Ecology

Portegies Zwart et al. 1997,1999

evolution a cluster with realistic stellar evolution

- Gravitational dynamics
- Stellar evolution
- Binaries
- Stellar collisions

compare: merger histories, binary energy, cluster structure

Bridge N-body integrator

Fujii et al. 2007

Combine two N-body integrators - implementation in AMUSE:

- interface function for gravity function
- kicks in python
- combine treecode and direct hermite integrator

Runaway Collisions in dense stellar clusters

Glebbeek et al. 2009

- Gravitational dynamics
- Stellar Collisions
- Stellar evolution

compare: evolution of merger remnants

Cluster Formation with Photo-Ionization Feedback

Dale et al. 2005

- Gravitational dynamics
- Hydrodynamics
- Radiative transfer

compare: ionization fraction, Jeans mass

Collapse of an unstable proto-Planetary Disk

Mayer et al. 2002

- Gravitational dynamics
- Hydrodynamics
- Simplified thermodynamic description

compare: overdensities properties of proto-planets

Radiative Transfer Comparison tests

- Radiative transfer relatively immature
- tests in Iliev et al. 2006,2009
- continuum transfer
- simple chemical model: H,He

Cloud-shock interaction

Agertz et al. 2007

- pure hydrodynamic test
- sensitive test of Kelvin-Helmholtz instabilities
- comparison of particle/ grid methods

Disc-Planet Interaction

De Val-Borro et al. 2006

- Gravitational dynamics
- Hydrodynamics
- 2D/3D?
- more challenging than unstable collapse test

compare:

- density contrast
- planetary torques

Overview of Signpost applications:

	grav. dyn.	stellar evolution single binary		hydro- dynamics coll. gas/ISM		radiative transfer	
Cluster formation	X			X	X		Bonnel et al. 2003
Cluster ecology	X	X	X	X			Portegies Zwart et 1999
Galaxy+cluster	tree/direc	et					Fujii et al. 2007
Runaway Collisions	X	X		X			Glebbeek et al. 2009
Cluster formation and radiative feedback	X				X	X	Dale et al. 2005
Protoplanetary disks	X				X		Mayer et al. 2002
Comparison tests					X	X	Iliev et al 2006/2009
Cloud/shock interact.					X		Agertz et al. 2007,
							Mellema et al. 2002
Disc-planet interact.	X				X		De Val-Borro et al. 2006

- Not all combinations of modules (need to be) present
- Suggestions?

Science with AMUSE: Cluster dissolution in realistic galaxy environments

problem: theoretical disruption timescales are longer than the observed disruption timescales of clusters

Environmental effects have been studied extensively: (e.g. Spitzer 1958, Ostriker et al. 1972, Baumgardt & Makino 2003 Gieles et al. 2006,2007)

- Galaxy potential
- Disk crossing shocks
- Spiral arms
- Giant Molecular Clouds

increased detail = shorter disruption timescales

are the analytic estimates that form the basis of these studies reliable?

our current approach:

- 1 run full N-body/hydrodynamic models of galaxies
- 2 determine local tidal field tensor
- 3 use this as input to (semi) analytic cluster models

- takes the guess work out of modeling collision rates, tidal interaction strength
- realistic potentials instead of semi-analytic approximations
- exploration of more complicated configurations: galaxy interactions, mergers

(However: still limited by cluster evolution model)

Merger runs

- Nbody/SPH code
- ISM model, Star Formation, Feedback
- code coupled (outside AMUSE) to star cluster dissolution model (Kruijssen et al 2008, 2009)
- *semi-analytic* prescription includes stellar evolution, remnants and formula for effects of two-body relaxation, tidal shocks

Evidence for mass dependency: formation of heavy mass cluster population?

Can we move beyond analytic estimates? difficult: difference in scales between galaxy and star clusters

> ideal application for AMUSE

1

- extract tidal history for star particles from the simulation
- subject N-body clusters to this (time dependent) tidal tensor

2 run cluster simulations embedded in full galaxy model (bridge scheme)

work in progress.....

Tidal tensor (eigenvalues) of merger sim.

(blue, green, red: smallest to largest eigenvalues)

Science with AMUSE: Radiation Hydrodynamics with AMUSE & Simplex

Biggest challenge: incorporating radiative transfer

- different radiative transfer: line transfer, continuum
- Solving for the chemistry or detailed line transfer (for virtual observations)
- post-processing vs dynamic coupling
- easy coupling to hydrodynamic codes?

code for radiative transfer:

- Paardekooper et al. 2009
- Delaunay tesselation/ Voronoi cell based
- High dynamic range, adaptive grid
- Computationally efficient: independent of number of sources
- diffuse recombination radiation included

Incorporating Simplex into AMUSE

- mature&tested code
- need to define interface (work in progress)
- based on "vertices" (particles)
- (almost) immediate coupling with particle hydro codes?
- C++: one main simulation class -> interface based on a derived class

0.05 Myr 0.2 Myr 0.4 Myr

Summary

- we are developing AMUSE and applying it in our research at the same time
- validation of the project using "Signpost" applications
- AMUSE applied to environmental effects in cluster evolution
- first attempt at radiative transfer started
- Doing science with AMUSE is fun!