[KAIST 산학협동 공개강좌]

3D 데이터 기반 딥러닝 기술 동향

2024.02.21

나니아랩스

Manager। 권용민 010.9221.6311 goya.kwon@narnia.ai

Table of Contents

3D Deep Learning 기술 동향

01	Image-based Generative Model	3
02	3D Generative Model	7
03	Implicit Neural Representation	16

코드 실습

01	2D DeepSDF	-
02	3D DeenSDF	_

GAN(Generative Adversarial Network)

Diffusion Model UNet Noise scheduler Reverse Diffusion Forward Diffusion X'

VAE(Variational Auto-Encoder)

2D Image

3D Shape

2D Image

Structured Grid

3D Shape

Unstructured Grid

Our system makes CFD real-time

Voxel

- Discretization of 3D space into grid
- Easy to process with neural network
- Memory issue

Mesh

- Discretization into vertices and faces
- Compact representation
- Leads to self-intersections

Point Cloud

- Discretization of surface into 3D points
- Doesn't model topology
- Hard to convert to mesh

Signed Distance Function(SDF)

- Implicit Representation(w/o discretization)
- Arbitrary topology & resolution
- Memory efficient

Signed Distance Function(SDF)

SDF란, 특정 공간상의 지점(point)의 좌표와 특정 표면(surface)사이 가장 가까운 거리를 반환하는 음함수로 각 지점이 형상의 내부/외부에 있는지를 부호로 표현

Signed Distance Function(SDF)

SDF란, 특정 공간상의 지점(point)의 좌표와 특정 표면(surface)사이 가장 가까운 거리를 반환하는 음함수로 각 지점이 형상의 내부/외부에 있는지를 부호로 표현

SDF

Interpolation

Detail Description

Arbitrary Topology

NN method	Data type	Memory	Resolution	Performance	Conditional Generation
Implicit	SDF, point cloud	Efficient	No limit	Good	Train is needed
Explicit	SDF(grid type), voxel, multi-view,	Inefficient	limit	Bad	w pretrained model

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park^{1,3†} Peter Florence ^{2,3†} Julian Straub³ Richard Newcombe³ Steven Lovegrove³

¹University of Washington ²Massachusetts Institute of Technology ³Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.

Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Positional Encoding

Fourier Transform

시간이나 공간에 대한 함수를 시간 또는 공간 주파수 성분으로 분해하는 변환

$$\gamma(p) = \left(\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)\right)$$

SIREN(Sinusoidal Representation Network)

Stage II: Voxelized Diffusion Models

Implicit Neural Representation

Implicit Method

Explicit Method

Stage I: SDF Autoencoding

Repositioned

DiffusionSDF, Chou et al., 2022

Diffusion-SDF, Li et al., 2023

Architecture

Pointnet

Beta-VAE

Diffusion

Decoder

Pointnet

point

ResNet

Point Cloud Features1

U-Net

Point Cloud Features2

Implicit Neural Representation Beta-VAE


```
*args,
              **kwargs) -> dict:
self.num iter += 1
recons = args[0]
data = args[1]
mu = args[2]
log_var = args[3]
kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
#print("recon, data shape: ", recons.shape, data.shape)
#recons loss = F.mse_loss(recons, data)
# kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)
if self.kl_std == 'zero_mean':
    latent = self.reparameterize(mu, log_var)
    #print("latent shape: ", latent.shape) # (B, dim)
    12_size_loss = torch.sum(torch.norm(latent, dim=-1))
    kl_loss = 12_size_loss / latent.shape[0]
else:
    std = torch.exp(0.5 * log var)
    gt_dist = torch.distributions.normal.Normal( torch.zeros_like(mu), torch.ones_like(std)*self.kl_std )
    sampled_dist = torch.distributions.normal.Normal( mu, std )
    #gt dist = normal dist.sample(log var.shape)
    #print("gt dist shape: ", gt_dist.shape)
    kl = torch.distributions.kl.kl_divergence(sampled_dist, gt_dist) # reversed KL
    kl_loss = reduce(kl, 'b ... -> b (...)', 'mean').mean()
```


KAIST S) SMAF

Implicit Neural Representation


```
def training_step(self, x, idx):
    xyz = x['xyz'].cuda() # (B, 16000, 3)
    gt = x['gt_sdf'].cuda() # (B, 16000)
    pc = x['point_cloud'].cuda() # (B, 1024, 3)

modulations = self.pointnet(pc, xyz)

pred_sdf, new_mod = self.model(xyz, modulations)

sdf_loss = F.ll_loss(pred_sdf.squeeze(), gt.squeeze(), reduction = 'none')
    sdf_loss = reduce(sdf_loss, 'b ... -> b (...)', 'mean').mean()

return sdf_loss
```


DDPM Forward Process Distribution

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Markov Chain

Figure 1. Our method generates clean meshes with diverse geometries. (**Top**) Unconditional generations from training on multiple classes. (**Bottom**) Conditional generation given various visual inputs, such as partial point clouds (same point cloud overlaid on sample), real-

Training Data	# meshes	CD of couches (\downarrow)	CD of all meshes (\downarrow)
Couch	366	1.04	-1
All classes	7148	0.87	0.92

KAIST

Multi-View

Multi-View

Code Implementation

나니아랩스는 딥러닝 기반 제너레이티브 디자인 기술을 통해 공학 설계 및 디자인 문제를 해결합니다.

다양한 산업 경험과 노하우로 다져진 나니아랩스만의 생성형 AI 기술을 만나 보세요.

감사합니다.

Narnia: goya.kwon@narnia.ai

KAIST: kymin1002@kaist.ac.kr

웹사이트 www.narnia.ai

문의 contact@narnia.ai