

Dispositivos de E/S

- Tipos:
 - Comprensibles para el Usuario.
 - Comprensibles para el Sistema.
 - De Comunicación.

Dispositivos de E/S

- Diferencias:
 - Velocidad de Transferencia.
 - Uso.
 - Complejidad.
 - Unidad de Transferencia.
 - Condiciones de error.

Entrada/Salida

Entrada/Salida

Dispositivos de E/S

- Diferencias:
 - Acceso Aleatorio o secuencial
 - Compartible o dedicado
 - Lectura, escritura o lectura/escritura.

Estructura de E/S

Entrada/Salida

Organización del Sistema del E/S: Técnicas

E/S Programada

E/S → CPU

CPU ejecuta las instrucciones de E/S para controlar la operación:

- Activación.
- Tarea a realizar.
- Comprobación de estado.

E/S → CPU

• Transferencia.

CPU→ MEM

Entrada/Salida

- Organización del Sistema del E/S: Técnicas
 - E/S por Interrupciones

E/S→ CPU

CPU ejecuta las instrucciones y es avisado cuando finaliza:

- · Activación.
- Tarea a realizar.
- Comprobación de estado. E/S → CPU
- Transferencia.

CPU→ MEM

Entrada/Salida

- Organización del Sistema del E/S: Técnicas
 - Acceso Directo a Memoria (DMA)

Acceso Directo a Memoria (DMA)

CPU→DMA

CPU delega la operación de E/S.

CPU Indica al módulo DMA:

DMA → CPU

- 1. Tipo de operación (Lectura o Escritura).
- 2. Dirección del dispositivo dónde leer (o escribir).
- 3. Cantidad de bytes a leer (o escribir).
- 4. La ubicación de la memoria donde debe escribir (o leer).

Mandar orden de lectura de bloque al módulo DMA

hacer otra cosa

Leer el estado del módulo DMA interrupción

Entrada/Salida

Organización del Sistema del E/S: Técnicas

	Sin Interrupciones	Con Interrupciones
Transferencia de E/S a Memoria a través de la CPU	E/S Programada	E/S por Interrupciones
Transferencia directa de E/S a Memoria (mínima intervención del CPU)		DMA

Buffering

```
fread (msg, length, ..., archivo);
...
send (sockfd, msg, length, ...);
memcpy (msg, "¿Rompiendo el mensaje?");
```

Entrada/Salida

Buffering

Entrada/Salida

Buffering

- Definición: área de memoria que almacena datos mientras se transfieren entre dispositivos o entre un dispositivo y una aplicación.
- Adapta diferencias de velocidades.
- Adapta unidades de transferencia.

Buffering de páginas

Cuando se reemplaza una página, ésta se guarda en el espacio de memoria del SO.

Entrada/Salida

Buffering de páginas

Ventajas:

- Una página reemplazada, puede estar disponible en memoria.
- Páginas modificadas se escriben en grupos.
- Evita el uso del bit de bloqueo de páginas.

Entrada/Salida

Planificación de Disco

- Principal almacenamiento secundario.
- Memoria virtual.

Planificación de Disco: Estructura Interna de un Disco

Cara de un plato de un disco

Planificación de Disco: Estructura Interna de un Disco

Planificación de Disco: Estructura Lógica de un Disco

(Cilindro, Cabeza, Sector)

Sector Lógico

Planificación de Disco: Tiempo de Acceso a un Sector

Es la suma de:

- Tiempo de Búsqueda: Tiempo para posicionar el brazo en la pista deseada.
- Latencia Rotacional: Tiempo en que tarda el sector en posicionarse debajo de la cabeza.
- Tiempo de Transferencia.

Planificación de Disco: Tiempo de Acceso a un Sector

TA = TB + LR + TT

Planificación de Disco: Tiempo de Acceso a un Sector

Ejemplo:

Tiempo promedio de búsqueda: 4ms Latencia Rotacional promedio: 4ms

Posicionarse en Sector 151 y 152 aprox 8ms.

Posicionarse en Sector 151 y 2101 aprox 16ms.

Entrada/Salida

Planificación de Disco

- Algoritmos de planificación de disco:
 - FCFS (FIFO)
 - SSTF
 - SCAN y C-SCAN
 - LOOK y C-LOOK
 - FSCAN
 - N step SCAN
- Objetivo reducir el Tiempo de Búsqueda

Planificación de Disco: FCFS (FIFO)

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 50, 20, 30, 85, 45.
- Posición inicial: Pista 10

Tiempo Total: 175 ms

Planificación de Disco: SSTF

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 10, 50, 20, 30, 85, 45.
- Posición inicial: Pista 40

Tiempo Total: 125 ms

Planificación de Disco: SCAN

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 10, 50, 20, 30, 85, 45.
- Posición inicial: Pista 40 y cabezal ascendiendo.

Tiempo Total: 148 ms

Planificación de Disco: C-SCAN

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 10, 50, 20, 30, 85, 45.
- Posición inicial: Pista 40 y cabezal ascendiendo.

Tiempo Total: 93 ms

Planificación de Disco: LOOK

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 10, 50, 20, 30, 85, 45.
- Posición inicial: Pista 40 y cabezal ascendiendo.

Tiempo Total: 120 ms

Planificación de Disco: C-LOOK

- Cantidad de pista 100. Tiempo entre pista 1ms.
- Pedidos de pista: 10, 50, 20, 30, 85, 45.
- Posición inicial: Pista 40 y cabezal ascendiendo.

Tiempo Total: 69 ms

Entrada/Salida

Planificación de Disco: FSCAN

- Utiliza dos colas de pedidos: Activa/Pasiva.
- Se atienden los pedidos de la cola Activa utilizando el algoritmo SCAN.
- Los pedidos nuevos se agregan a la cola Pasiva.
- Cuando se atienden todos los pedidos de la cola Activa, la cola Pasiva pasa a ser Activa, y la activa pasa a ser la pasiva

Entrada/Salida

Planificación de Disco: N step SCAN

- Utiliza colas de N pedidos o menos.
- Los pedidos se acumulan en varias colas de tamaño N.
- Cada cola se atiende utilizando el algoritmo SCAN.

Entrada/Salida

FSCAN

Tiempo de Ilegada	Pedido	TIEMPO	
0 ms	10	T=0	Cola Activa =
0 ms	50		
0 ms	20	T=10	Cola Activa =
0 ms	25		Cola Pasiva =
10 ms	85	T=148	Cola Activa =
10 ms	45		Cola Pasiva =

$$T=0$$
 Cola Activa = $\{50, 25, 20, 10\}$

Entrada/Salida

N step SCAN / N = 2

TIEMPO

Tiempo de Ilegada	Pedido
0 ms	10
0 ms	50
0 ms	20
0 ms	25
10 ms	85
10 ms	45

$$T=0$$
 Cola 1 = { 50, 10 }

T=0 Cola
$$2 = \{ 20, 25 \}$$

$$T=10$$
 Cola 3 = { 45, 85 }

Planificación de Disco: Sector Lógico a CHS

```
Cant de Cabezas *
Cant Sectores por Pista

Número de Cilindro (C)

RESTO nº 1 Cant Sectores por Pista

Número de Cabeza (H)

RESTO nº 2 = Número de Sector (S)
```

RAID (Redundant Array of Independent Disks)

- Más Seguridad
- Más Rendimiento
- Existen 7 niveles (de 0 a 6) y además pueden combinarse
- Configuración por Software o por Hardware.

RAID (Redundant Array of Independent Disks)

- Más Seguridad
- Más Rendimiento
- Existen 7 niveles (de 0 a 6) y además pueden combinarse

RAID (Redundant Array of Independent Disks)

- Más Seguridad
- Más Rendimiento
- Existen 7 niveles (de 0 a 6) y además pueden combinarse

