Last time : BF elt for m = 1L: Y, (N) C> Y, (N) c90, k ∈ O(Y,(NI)× BF, = (*(Kp(090,2)) E HS(Y,(N), Tp(2)). Today: classes /Q(Mn).

Kato's modular curves

Idea: "Find Spec (2/4m) in a modular curve."

UCGL2(Ag)

~> Y(U) mad conve/Q

 $Y(u)(C) = Gl_2(Q) G(A_F) *H/u$

may have many components.

components def/cyclo fields.

Def' M, N $\in \mathbb{Z}_{3}$, $U(M, N) := \begin{cases} (ab) \in GL(\widehat{Z}) : \\ (cd) \in GL(\widehat{Z}) : \\ a : 1, b = 0 \mod M \end{cases}$ $c : 0, d : 1 \mod N$ $= 1 \mod \binom{M}{N} \binom{M}{N}.$

 $A \geqslant 1$ $U(M(A), N) := 1 \mod \binom{M \mod MA}{N N}.$

Cf Kato, Asterisque 295.

Y(M,N), Y(M(A), N). Always take M/N
(resp MA/N). Fact 7 map of Q-varieties S_M: Y(M, MN) >>> Y,(N) × Spec Q(Mm). Given by action of (0 M)

(T +> T/M on H). Strategy: Build elts on $Y(M,N) \times Y(M,N)$, Spec $Q(M_m)$

Lemma (MIN) (a) U(M,N) normalized by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (b) If l prime, largest subgp of U(M(1),N) norm zer by $\binom{11}{01}$ is $\mathcal{U}(M\ell, N)$.

· Let Lm, N be composite map

Y(M,N) cdiag, Y(M,N)? (1.(61)) Y(M,N).

· Let _ REism, = (LM,N)* (Kp(c90,%))

 $BF_{M,N} = (S_M \times S_M)_* (cREis_{M,MN}).$ $E H_{et}^3 (Y_i(N)_{O(M_M)}^2, Z_p(2)).$

Norm rel's Cf. \$4.2 of notes Easy norm rel': pushfud of cREismine via quotient map Y(M, NL)2 -> Y(M,N)2 is creismin if IIN. (Easy consequence of normcompat of Siegel units)

Doesn't work for quot map Y(Ml,N)2 -> Y(M,N)2 pushfud of cREisme, N is 12. CREismin (bod!) Te: Y(Me,N) -> Y(M,N) given by action of (0e).

Thm if (IM and and MIN,

(TexTe)* (cREismen)

= (Ué, Uí). REisman.

Corollary for LIM and LIN,

cores Q(Mme) (BFM,N)

= (U', U') BFM,N.

Y(Me, N) ~ LMe.N Y(Me, N)2-Y (ME, N) (M(E), N) 2 $\frac{dog}{I^{2}}$ (deg) (deg) $(io)^{2}$ $(io)^{2}$ $(M,N)^{2}$ $(M,N)^{2}$

Key Facts

i) LMMIN,N is a closed embedding.

(Part b of Lemma).

ii) \emptyset is Cortesian (both vertical maps degree ℓ^2).

Push-pull lemma: for any Cortesian diagram

$$\begin{array}{c} \times & \xrightarrow{\alpha} & \\ \end{array}$$

$$\alpha_* \cdot \beta^* = \delta^* \cdot \delta_*$$

Applied to (\lozenge) , + coh. class $K_p(90, 1) \in H^1(Y(M,N), \mathbb{Z}_p(1))$

Conclude that 2 classes in

Het (Y(M(U),N)2, 2p(2)) agree:

· pullback of REism.N . pushfud of REisme, N. Push forward along diag arrow: (TexTe)*(REis (Ui, Ui). cREism, N. \prod .

Projection to eigenforms f,g eigenforms level N (not necessarily new) [vt 2] p+ ap(f), ap(g). Assume Can construct $V_p(f)^* \otimes V_p(g)^*$ $H_{et}^{2}(Y,(N)_{\overline{Q}}^{2}, Q_{p}(2))^{g}(T_{i,1}) - a_{i}(F),$ $(T_{i,1})^{2} - a_{i}(F),$ $(1,T_{i}') - a_{i}(g),$ $\forall l \ prime \}$

Thus Har (Q(Mm), Vp(F) & Vp(g)") is a quotient of H&1 (Y,(N)2 × Q(Mm), Qp (2)) action of (Up, Up') is mult' by ap(f)ap(g). Hence we con define

Hence we can define $C_{p^{r}} = \left[c_{4}(f)a_{p}(g) \right]^{-r} \cdot \left(\begin{array}{c} BF_{p^{r},N} \\ \end{array} \right)$

norm-compatible for 1 >> 1.

+ denominators bounded as r→∞. (c→ class in H'(Q, Vp(f)* & Vp(g)* & A)

Norm rel's for m not a poner of p: involves degree 4 Euler Factor.