WHAT IS CLAIMED IS:

1	1. A temperature-compensated, micromechanical resonator
2	device comprising:
3	a substrate;
4	a flexural-mode resonator having first and second ends; and
5	a temperature-compensating support structure separate from the
6	resonator and anchored to the substrate to support the resonator at the first and
7	second ends above the substrate wherein both the resonator and a support structure
8	are dimensioned and positioned relative to one another so that the resonator has
9	enhanced thermal stability.
1	2. The device as claimed in claim 1 further comprising a drive
2	electrode structure formed on the substrate at a position to allow electrostatic
3	excitation of the resonator wherein the resonator and the drive electrode structure
4	define a first gap therebetween.
1	3. The device as claimed in claim 2 wherein the first gap is a
2	submicron lateral capacitive gap.
1	4. The device as claimed in claim 2 further comprising a sense
2	electrode structure formed on the substrate at a position to sense output current
3	based on motion of the resonator wherein the resonator and the sense electrode
4	define a second gap therebetween.
1	5. The device as claimed in claim 4 wherein the second gap is
2	a submicron lateral capacitive gap.
1	6. The device as claimed in claim 1 wherein the resonator is a
2	single resonator beam.
1	7. The device as claimed in claim 1 wherein the support
2	structure includes an anchor for rigidly anchoring the first end of the resonator to

- 3 the substrate and a folding truss support structure for substantially decoupling the
- 4 second end of the resonator from the substrate.
- 1 8. The device as claimed in claim 1 wherein the resonator is a
- 2 lateral resonator and wherein the support structure includes a pair of stress
- 3 generating support members dimensioned relative to the resonator so that the
- 4 resonator has enhanced thermal stability.
- 1 9. The device as claimed in claim 1 wherein the resonator is a
- 2 polysilicon resonator.
- 1 10. The device as claimed in claim 9 wherein the resonator is a
- 2 polysilicon resonator beam.
- 1 The device as claimed in claim 4 wherein the electrode
- 2 structures are metal.
- 1 12. The device as claimed in claim 11 wherein the electrode
- 2 structures include plated metal electrodes.
- 1 The device as claimed in claim 1 wherein the substrate is a
- 2 semiconductor substrate.
- 1 14. The device as claimed in claim 14 wherein the semiconductor
- 2 substrate is a silicon substrate.
- 1 15. The device as claimed in claim 1 wherein the support
- 2 structure does not substantially vibrate during vibration of the resonator.
- 1 16. The device as claimed in claim 1 wherein energy losses to the
- substrate are substantially reduced to allow higher resonator device O.

1	1	1. The device as claimed in claim 8 wherein the support	
2	members are rig	gid against lateral motions.	
1	1	8. The device as claimed in claim 7 wherein the anchor is an off-	
2	axis anchor.		
1	1	9. The device as claimed in claim 1 wherein the device is a	
2	temperature sen	sor.	
1	2	0. A micromechanical resonator device having a frequency	
2	versus temperat	ure curve, the device comprising:	
3	a	substrate;	
4	a	flexural-mode resonator having first and second ends; and	
5	a	support structure separate from the resonator and anchored to the	
6	substrate to sup	port the resonator at the first and second ends above the substrate	
7	wherein both the	e resonator and a support structure are dimensioned and positioned	
8	relative to one an	nother so that the frequency versus temperature curve is specifically	
9	tailored.		
1	2	1. The device as claimed in claim 20 wherein the frequency	
2	versus temperat	ure curve is designed to increase temperature dependance of the	
3	resonator.		
1		2. The device as claimed in claim 20 wherein the frequency	
2	-	ture curve is designed to have peaks and valleys in predefined	
3	locations.		
1	2	3. A micromechanical resonator device comprising:	
2		substrate;	
3		•	
		flexural-mode resonator having first and second ends; and	
4		support structure separate from the resonator and anchored to the	
5		port the resonator at the first and second ends above the substrate	
6	wherein both the resonator and a support structure are dimensioned and positioned		

- 7 relative to one another so that the device has a substantially zero temperature
- 8 coefficient temperature at which the device may be biased.