10/10/2025

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom :	

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z=-2\pm\sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2 \operatorname{sqrt} \{3\} + 2i$$

$$\setminus sqrt{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{qrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.

10/10/2025

U	U	U	U	
1	1	1	1	
2	2	2	2	
3	3	3	3	
4	4	4	4	
5	5	5	5	

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom	:

Cours 1 - 3

6

7

8

9

6 6

9 9

7

8

7

6

7

8

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z=-2\pm\sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2\sqrt{3} + 2i$$

$$\setminus sqrt{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{qrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.

10/10/2025

Ü	Ü	Ü	Ü
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom :	

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z=-2\pm\sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2\sqrt{3} + 2i$$

$$\setminus \operatorname{sqrt}{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{sqrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.

10/10/2025

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom :	

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z=-2\pm\sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2 \operatorname{sqrt} \{3\} + 2i$$

$$\setminus \operatorname{sqrt}{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{qrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.

10/10/2025

U	U	U	U	
1	1	1	1	
2	2	2	2	
3	3	3	3	
4	4	4	4	
5	5	5	5	
6	6	6	6	

\leftarrow	Codez	votre num	iéro d'	étudia	nt
ci-cor	ntre et	inscrive z	votre	nom	et
préno	om ci-d	essous.			

Nom et prénom	:

Cours 1 - 3

7

8

9

7

7

8

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z=-2\pm\sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2 \operatorname{sqrt} \{3\} + 2i$$

$$\setminus \operatorname{sqrt}{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{qrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.

10/10/2025

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom :	

Cours 1 - 3

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

5 - 5i

5 + 5i

1 - 5i

-5 - 5i

$$|z| = 2$$
 et $\arg(z) = \frac{2\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

$$|z| = 2$$
 et $\arg(z) = -\frac{\pi}{3}$

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$z = -2 \pm 3i$$

$$z = 2 \pm 3i$$

$$z = -4 \pm \sqrt{13}$$

$$z = -2 \pm \sqrt{13}$$

Question 4 Soit $z = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$. Écrire z sous forme algébrique a + ib.

$$2 \operatorname{sqrt} \{3\} + 2i$$

$$\setminus sqrt{3} + 4i$$

$$2 + 2 \operatorname{sqrt}{3}i$$

$$4 \operatorname{qrt} \{3\} + i$$

Question 5 Soit $f: \mathbb{C} \to \mathbb{C}$, f(z) = (1+i)z. Quelle est l'interprétation géométrique de f?

Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$

Une translation de vecteur 1+i

Une symétrie par rapport à l'axe réel

Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle

2 Algèbre linéaire

Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f?

0 1 2 3

Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie?

Selon **b**, il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.

Il y a toujours une unique solution pour tout **b**.

Il y a toujours une infinité de solutions pour tout b.

Elle est libre et forme une base de \mathbb{R}^3 .

Elle est liée et de rang 2.

Elle est liée et de rang 1.

Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

$$2, 3, -1$$

$$2, -3, 1$$

$$-2, -3, 1$$

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

Le déterminant est multiplié par 2.

Le déterminant change de signe.

Le déterminant est inchangé.