Hail Query and Sequencing Quality Control

ATGU Welcome Workshop

Tuesday 12, 2023

Schedule

15:00-15:20 Introduction to the software, Hail's data model

15:20-16:00 Hands-on guided tutorial

16:00-16:10 Break

16:10-17:00 Resume tutorial + Questions

hai Team

Dan King Manager

Jackie Goldstein Technical Lead

Patrick Schultz

Daniel Goldstein

Chris Vittal

Iris Rademacher

Edmund Higham

- In the last 5 years, genomic data analysis has become harder
 - Size of data => time spent trying to parallelize code, waiting for results

Custom Python/R scripts

- Filter genotypes with bad allele balance
- Call de novo variants
- Compute transmission disequilibrium
- Dominance-encoded GWAS
- Gene count permutation tests

PLINK

- Detect sample duplicates or ID swaps
- Call Mendelian violations
- Relatedness
- GWAS

• ...

SNPSift

Genotype concordance

bcftools

- Split multiallelic variants
- Filter on GQ, AD, PASS

vcffilterjdk

tabix

Filter variants

Subset VCFs to

intervals

Eigenstrat

PCA

bedtools

Interval annotation

Custom Python/R scripts

- Filter genotypes with bad allele balance
- Call de novo variants
- Compute transmission disequilibrium
- Dominance-encoded GWAS
- Gene count permutation tests

Doesn't Scale

PLINK

- Detect sample duplicates or ID swaps
- Call Mendelian violations
- Relatedness
- GWAS

•

Doesn't Scale

SNPSift

Genotype concordant

Doesn't Scale

tabix

Subset VCFs to intervals

Doesn't Scale

bcftools

- Split multiallelic variants
- Filter on GQ, AD, PAS

Doesn't Scale

vcffilterjdk

Filter variants

Doesn't Scale

Eigenstrat

PCA

Doesn't Scale

bedtools

Interval annotation

Doesn't Scale

Hail is...

Scalable software for genomic analysis

• scalable: can run on a laptop, on a cluster, on the cloud

Scalability

Scalability

Scalability

- In the last 5 years, genomic data analysis has become harder
 - Size of data =>
 time spent trying to parallelize code, waiting for results
 - Complexity of data / models =>
 time spent implementing scientific questions as efficient code

Hail is...

Scalable software for genomic analysis

• scalable: can run on a laptop, on a cluster, on the cloud

A library exposed through Python, with a Spark backend

- Not scalable PLINK! Like programming in Python or R
- Can recapitulate PLINK functionality, but flexibility and modularity are main goals

Data slinging

Analytical toolbox

Read and write common formats

• Filter, group, aggregate

Annotation

Visualization

VCF

BGEN

JSON

BED

TSV

PLINK

GEN

GTF

Data slinging

- Read and write common formats
- Filter, group, aggregate
- Annotation
- Visualization

- Compute AF stratified by all combinations of (sub-)population and sex
- Counting number of loss-of-function alleles per sample per gene

Data slinging

- Read and write common formats
- Filter, group, aggregate
- Annotation
- Visualization

- Built-in wrappers for VEP, Nirvana
- Join with annotations by variant, locus, interval, gene
- ReferenceGenome is a first-class concept, for all our sanity

Data slinging

- Read and write common formats
- Filter, group, aggregate
- Annotation
- Visualization

Data slinging

- Statistical methods for genetics
- Scalable linear algebra

Data slinging

- Statistical methods for genetics
- Scalable linear algebra

- Statistical methods for genetics
- Scalable linear algebra

Scalable tools + elastic clouds

UK Biobank Rapid GWAS: 361K samples, 4200 phenotypes

- 200,000 CPU hours to run 115B regressions
- ° Research compute cluster: 6 months
- Cloud (20,000 cores): 10 hours
- Cost: \$4,000

gnomAD QC: 20K genomes, 120K exomes

- 20,000 CPU hours for one iteration
- Research compute cluster: 17 days
- ° Cloud (4000 cores): 5 hours
- Cost: \$400

Scalable tools + elastic clouds

UK Biobank Rapid GWAS: 361K samples, 4200 phenotypes

- 200,000 CPU hours to run 115B regressions
- Research compute cluster: 6 months
- Cloud (20,000 cores): 10 hours
- Gost: \$4,000

gnomAD QC: 20K genomes, 120K exomes

- 20,000 CPU hours for one iteration
- Research compute cluster: 17 days
- ° Cloud (4000 cores): 5 hours
- Cost: \$400

Research compute cluster 50 cores per user

Scalable tools + elastic clouds

UK Biobank Rapid GWAS: 361K samples, 4200 phenotypes

- 200,000 CPU hours to run 115B regressions
- Research compute cluster: 6 months
- Cloud (20,000 cores): 10 hours
- Cost: \$4,000 (\$1 per phenotype!)

gnomAD QC: 20K genomes, 120K exomes

- 20,000 CPU hours for one iteration
- Research compute cluster: 17 days
- Cloud (4000 cores): 5 hours
- Cost: \$400 (per iteration)

Research compute cluster 50 cores per user

Public clouds
Pay per CPU-hour for what you want

Who can Hail help?

Definitely:

- People working with sequencing call sets of any size
- People working with big genotyping data

Maybe:

People working with big RNA-Seq data

Not yet:

- Clinical geneticists (sequence one genome, deliver one report)
 - But Hail was critical for building gnomAD, Seqr, ...

Review of Hail Data Structures

Table

MatrixTable

ID	is_case	age	
str	bool	int32	
NA12878	True	67	

GT	AD	DP	•••
call	array <int32></int32>	int32	
0/1	8,11	19	

locus	ID	
locus <grch37></grch37>	str	
17:37282	rs12345	

Mastering Hail takes practice

- Hail is harder to learn than command-line tools
 - It's not about memorizing command-line calls!
 - It's about building a foundational understanding of how to explore any kind of data
- Prior experience with a data frame library* or SQL will help
 - *R, dplyr, pandas, etc
- Hail is about giving you the tools you need to indulge scientific curiosity on biological data, and that's not always easy.
- Feedback is **very** welcome!

Get the tutorial materials:

git clone git@github.com:hail-is/ATGU-Hail_Workshop2023.git

Thank you!