teaching sciences

Proposition de corrigé

Concours: Concours Commun INP

Année: 2021

Filière: PSI

Épreuve : Sciences Industrielles pour l'Ingénieur

Ceci est une proposition de corrigé des concours de CPGE, réalisée bénévolement par des enseignants de Sciences Industrielles de l'Ingénieur et d'Informatique, membres de l'<u>UPSTI</u> (Union des Professeurs de Sciences et Techniques Industrielles).

La distribution et la publication de ce document sont strictement interdites!

Conditions de diffusion

Ce document n'a pas vocation a être diffusé, et sa consultation est exclusivement réservée aux adhérents de l'UPSTI.

Les adhérents peuvent en revanche s'en inspirer librement pour toute utilisation pédagogique.

Si vous constatez que ce document est disponible en téléchargement sur un site tiers, veuillez s'il vous plaît nous en informer <u>à cette adresse</u>, afin que nous puissions protéger efficacement le travail de nos adhérents.

Licence et Copyright

Toute représentation ou reproduction (même partielle) de ce document faite sans l'accord de l'UPSTI est **interdite**. Seuls le téléchargement et la copie privée à usage personnel sont autorisés (protection au titre des <u>droits d'auteur</u>).

L'équipe UPSTI

Etude du robot TROOPER

Corrigé UPSTI

PARTIE II - CAHIER DES CHARGES

Question 1 Déterminer la vitesse V, supposée constante, à laquelle doit se déplacer le robot en ligne droite pour réaliser la tâche au maximum en T_m secondes en fonction de L, ℓ , T_m et T_p . Faire l'application numérique pour une durée T_m de 320 secondes.

Pour déplacer les 4 rangées, il faut 4 déplacements de la zone 1 vers la zone 2 (distance L=10m) et 3 déplacements de la zone 2 vers la zone 1 (distance $L+\ell=10,5$ m)

La durée
$$T_m$$
 correspond donc à $T_m = 8T_p + \frac{7L+3\ell}{V}$ soit $V = \frac{7L+3\ell}{T_m-8T_p}$ AN: $V = 0.89 \ m.\ s^{-1}$

Question 2 À l'aide des informations ci-dessus, compléter les chaînes d'énergie et d'information pour le déplacement du robot.

PARTIE III - DEPLACEMENT DU ROBOT

II.1 - Nécessité d'un asservissement en vitesse

Question 3 Vérifier que les éléments choisis permettent de respecter le critère de vitesse maximale défini dans le diagramme des exigences.

On veut vérifier que la vitesse maximale de 1,1 m.s⁻¹ puisse être atteinte :

$$V_{max} = \omega_m. k_r. r = 3000. \frac{2\pi}{60}. \frac{1}{40}. 0,15 = 1,18 \ m. \ s^{-1}$$

L'exigence 1.5.2 est donc vérifiée avec ce moteur

Question 4 Déterminer l'expression du temps δt pour respecter le déplacement souhaité en fonction de D, T et V_{max} . Faire l'application numérique.

La distance parcourue D correspond à l'aire sous la courbe, soit :

$$D = \frac{V_{max} \cdot \delta t}{2} + V_{max} \cdot (T - 2\delta t) + \frac{V_{max} \cdot \delta t}{2} = V_{max} \cdot (T - \delta t)$$

D'où
$$\delta t = -\frac{D}{V_{max}} + T$$

$$AN: \delta t = 0.91s$$

Question 5 Déterminer l'équation différentielle vérifiée par v(t) avec $u_m(t)$ comme entrée. Vérifier que $v(t) = \alpha_0(t - \tau_m + \tau_m e^{-t/\tau_m})$ est solution de l'équation différentielle pour une consigne de tension $u_m(t) = \frac{u_0}{\delta t} t. \, u(t)$ où u(t) est un échelon unitaire. On suppose que v(0) = 0. On donnera l'expression de α_0 et τ_m en fonction de u_0 , δt et des constantes intervenant dans les équations du moteur.

Avec $C_r(t)=0$, les équations (2) et (3) donnent : $i_m(t)=\frac{C_m(t)}{k_m}=\frac{1}{2k_m}$. $J.\frac{d\omega_m(t)}{dt}$

L'équation (4) devient, après dérivation par rapport au temps : $\frac{dv(t)}{dt} = k_t \cdot \frac{d\omega_m(t)}{dt}$

L'équation (1) s'écrit alors : $u_m(t) = R_m \cdot \frac{1}{2k_m} \cdot J \cdot \frac{1}{k_t} \cdot \frac{dv(t)}{dt} + \frac{k_m}{k_t} \cdot v(t)$

$$\frac{R_{m}J}{2k_{m}k_{r}}\cdot\frac{dv(t)}{dt} + \frac{k_{m}}{k_{r}}\cdot v(t) = u_{m}(t) \tag{*}$$

Pour la vérification de la solution, je pose $\frac{R_m J}{2k_m k_t} = a$; $\frac{k_m}{k_t} = b$; $\frac{u_0}{\delta t} = c$:

L'équation (*) devient $a.\frac{dv(t)}{dt} + b.v(t) = ct$

On donne
$$v(t) = \alpha_0(t - \tau_m + \tau_m e^{-t/\tau_m})$$
 donc $\frac{dv(t)}{dt} = \alpha_0(1 - e^{-t/\tau_m})$

Soit en injectant dans la relation précédente : $a.\alpha_0(1-e^{-t/\tau_m})+b.\alpha_0(t-\tau_m+\tau_m e^{-t/\tau_m})=\mathrm{ct}$

Par identification, on trouve alors : $\alpha_0 = \frac{c}{b} = \frac{u_0.k_t}{\delta t.k_m}$ et $\tau_m = \frac{a}{b} = \frac{R_m.J}{2k_m^2}$

Question 6 En s'aidant de l'expression de la vitesse donnée précédemment, estimer la valeur de τ_m à partir de la courbe de vitesse réelle. Faire apparaître le tracé sur la figure du **Document Réponse**.

En régime permanent, v(t) tend vers une droite d'équation $v(t) = \alpha_0(t - \tau_m)$

On lit alors sur le graphique $au_m=$ 0,1 s

Question 7 À partir des équations (1), (2) et (3), déterminer la relation $\Omega_m(p) = H_m(p)$. $U_m(p) + H_r(p)$. $C_r(p)$ où l'on précisera l'expression de $H_m(p)$ et $H_r(p)$ sous forme canonique.

On écrit les relations dans le domaine de Laplace, avec conditions initiales nulles :

$$U_m(p) = R_m \cdot I_m(p) + k_m \cdot \Omega_m(p)$$

$$2C_m(p) - C_r(p) = J.p.\Omega_m(p)$$

$$C_m(p) = k_m . I_m(p)$$

En combinant les relations sans faire intervenir Im(p), on obtient facilement :

$$\Omega_{m}(p) = \frac{2k_{m}}{R_{m}Jp + 2k_{m}^{2}}U_{m}(p) - \frac{R_{m}}{R_{m}Jp + 2k_{m}^{2}}C_{r}(p)$$

$$\Omega_m(p) = \frac{2k_m}{R_m \cdot Jp + 2k_m^2} U_m(p) - \frac{R_m}{R_m \cdot Jp + 2k_m^2} C_r(p)$$
 Sous forme canonique, on a alors :
$$H_m(p) = \frac{\frac{1}{k_m}}{\frac{R_m \cdot J}{2k_m^2}p + 1} \quad \text{et} \qquad H_r(p) = -\frac{\frac{R_m}{2k_m^2}}{\frac{R_m \cdot J}{2k_m^2}p + 1}$$

Question 8 Compléter le schéma-bloc de l'asservissement de vitesse linéaire du robot en utilisant les indications précédentes. Préciser la valeur numérique de K_c en inc/rad. Donner l'expression de K_a permettant d'assurer un asservissement correct.

$$K_c = 628 \, inc/tr = \frac{628}{2\pi} \, inc/rad$$
 soit $K_c \approx 100 \, inc/rad$

Pour un asservissement correct, il faut que l'écart en sortie du comparateur soit nul lorsque $v(t) = v_c(t)$, ce qui impose $K_a = \frac{K_c}{k_t}$

Question 9 Nommer le correcteur et justifier le choix de ce correcteur.

 $C(p) = K_p \frac{1+\tau_i p}{\tau_i p}$ est un correcteur proportionnel – intégral, qui permettra d'augmenter la classe de la FTBO de 0 à 1, rendant alors précise la réponse à un échelon.

Question 10 Déterminer la valeur de K_p pour que le temps de réponse à 5 % en boucle fermée soit égal à 0,3s.

$$\frac{V(p)}{V_c(p)} = \frac{K_p \frac{1 + \tau_m p}{\tau_m p} \cdot \frac{K_m K_c}{1 + \tau_m p}}{1 + K_p \frac{1 + \tau_m p}{\tau_m p} \cdot \frac{K_m K_c}{1 + \tau_m p}} = \frac{1}{1 + \frac{\tau_m}{K_p K_m K_c} p}$$

On souhaite $tr_{5\%}=0.3~s$, soit $\frac{3.\tau_m}{K_nK_mK_c}=0.3$

On en déduit $K_p = \frac{10.\tau_m}{K_m K_c} = 0.002$

Question 11 Entourer sur la courbe la zone qui montre que la perturbation a été prise en compte. Préciser quelle non-linéarité (à choisir parmi saturation, seuil, hystérésis) a été retenue. Conclure sur la pertinence de l'asservissement de vitesse mis en place vis-à-vis des performances attendues.

La zone entourée montre que la perturbation a été prise en compte.

De type frottement sec, elle a été modélisée par un seuil

II.2 - Comportement en pente

Question 12 Montrer, en appliquant le théorème de l'énergie cinétique au robot en mouvement, que l'équation qui décrit le mouvement du robot en pente est la suivante : $M_{eq} \frac{dv(t)}{dt} = \frac{1}{r_{eq}} C_m(t) - F_{r,eq}$ où l'on précisera les expressions des grandeurs équivalentes M_{eq} , r_{eq} et $F_{r,eq}$ en fonction des données.

On isole $\Sigma = \{ robot + pots \}$

Les liaisons étant supposées parfaites ou sans glissement, les puissances des inter-efforts de liaisons ont nulles, de même que la puissance des actions de contact du sol sur le robot.

Il reste les puissances extérieures suivantes :

$$P_{pesanteur \to \Sigma/R_q} = -(M + 6m)g.v(t).sin\alpha$$

$$P_{moteurs \to \Sigma/R_g} = 2C_m(t).\omega_m(t)$$
 avec $v(t) = k_t.\omega_m(t)$

L'énergie cinétique de Σ dans son mouvement de translation par rapport au sol est : $Ec_{\Sigma/R_a} = \frac{1}{2}(M+6m)v(t)^2$

Le théorème de l'énergie cinétique appliqué au robot donne alors :

$$(M+6m)v(t).\frac{dv(t)}{dt} = 2C_m(t).\omega_m(t) - (M+6m)g.v(t).\sin\alpha \qquad \text{avec } v(t) = k_t.\omega_m(t)$$

$$(M+6m)\frac{dv(t)}{dt} = \frac{2}{k_t}C_m(t) - (M+6m)g.\sin\alpha$$

On peut alors identifier

$$M_{eq} = M + 6m$$

$$r_{eq} = \frac{k_t}{2}$$

$$M_{eq} = M + 6m$$
 $r_{eq} = \frac{k_t}{2}$ $F_{r,eq} = (M + 6m)g. \sin\alpha$

Rq: Avant la question 12, il est écrit « on négligera l'inertie des réducteurs », je pense qu'il faut comprendre « l'inertie des motoréducteurs », soit Jm

Question 13 Tracer l'évolution de $C_m(t)$ au cours du temps compte tenu de l'évolution souhaitée de v(t). Préciser les valeurs caractéristiques sous forme littérale, puis numérique.

Pour
$$0 < t < \delta t$$
 $\frac{dv(t)}{dt} = \frac{V_{max}}{\delta t}$ donc:

$$C_m = r_{eq} \left(M_{eq} \frac{V_{max}}{\delta t} + F_{r,eq} \right) = 0,66 Nm$$

Pour
$$\delta t < t < T - \delta t$$
 $v(t) = V_{max}$ donc:

$$C_m = C_0 = r_{eq}.F_{r,eq} = 0.4 Nm$$

Pour
$$T - \delta t < t < T$$
 $\frac{dv(t)}{dt} = -\frac{V_{max}}{\delta t}$ donc:

$$C_m = r_{eq} \left(-M_{eq} \frac{v_{max}}{\delta t} + F_{r,eq} \right) = 0.136 Nm$$

Question 14 À l'aide des équations du moteur, déterminer le couple maximal développé par un moteur lorsqu'il est alimenté sous 100 V. Vérifier alors que la motorisation est adaptée à une montée en pente du robot.

On reprend les équations (1) et (3): $u_m(t) = R_m \cdot i_m(t) + k_m \cdot \omega_m(t)$ et $C_m(t) = k_m \cdot i_m(t)$

Soit
$$C_m(t) = \frac{k_m}{R_m} u_m(t) - \frac{k_m^2}{R_m} \omega_m(t)$$

Le couple moteur est maximal au démarrage, il vaut $C_{max} = \frac{k_m}{R_m} u_m$

Sous 100V, on trouve $C_{max}=20\ Nm$ ce qui est très largement supérieur au couple nécessaire de 0,66 Nm trouvé en Q13

II.3 - Pilotage du robot

Question 15 Déterminer la vitesse $\vec{V}(A' \in g/0)$ en fonction de $V, \omega_g, \dot{\theta}, e$ et r. De même, sans détailler les calculs, donner l'expression de $\vec{V}(B' \in g/0)$ en fonction de $V, \omega_d, \dot{\theta}, e$ et r.

$$\vec{V}(\mathsf{A}'\epsilon\,\mathsf{g}/0) = \vec{V}(0\epsilon\,\mathsf{g}/0) + \overrightarrow{\mathsf{A}'0} \wedge \vec{\Omega}(\mathsf{g}/0) = \vec{V}(0\epsilon\,\mathsf{1}/0) + \overrightarrow{\mathsf{A}'0} \wedge (\vec{\Omega}(\mathsf{g}/1) + (\vec{\Omega}(\mathsf{1}/0)))$$

$$\vec{V}(A'\epsilon g/0) = V \overrightarrow{y_1} + (r\vec{z} + e \overrightarrow{x_1}) \wedge (\omega_g \overrightarrow{x_1} + \dot{\theta} \vec{z})$$

$$\vec{V}(A' \in g/0) = (V + r\omega_g - e\dot{\theta}) \vec{y_1}$$

De même $\vec{V}(B' \in d/0) = (V + r\omega_d + e\dot{\theta}) \vec{y_1}$

Question 16 En utilisant l'hypothèse de roulement sans glissement en A' et en B', montrer que $\dot{\theta} = \mathcal{C}_1(\omega_g - \omega_d)$ et $V = \mathcal{C}_2(\omega_d + \omega_g)$ où \mathcal{C}_1 et \mathcal{C}_2 sont des constantes positives à exprimer en fonction des données.

Le roulement sans glissement en A' et en B' implique que $\vec{V}(A' \in g/0) = \vec{0}$ et $\vec{V}(B' \in d/0) = \vec{0}$

On a alors
$$\begin{cases} V + r\omega_g - e\dot{\theta} = 0 & (a) \\ V + r\omega_d + e\dot{\theta} = 0 & (b) \end{cases}$$

(a)+(b)
$$\rightarrow$$
 V = $-\frac{r}{2}(\omega_g + \omega_d)$ soit $C_2 = -\frac{r}{2}$

(a)-(b)
$$\rightarrow \dot{\theta} = \frac{r}{2e}(\omega_g + \omega_d)$$
 soit $C_1 = \frac{r}{2e}$

Question 17 Indiquer les consignes qu'il faut imposer à chaque roue pour obtenir les quatre déplacements souhaités en fonction de C_1 , C_2 , V_c et ω_c .

Mouvement	V	Θ	ω_g	ω_d
Avant	V_c	0	$-\frac{V_c}{2C_2}$	$-\frac{V_c}{2C_2}$
Arrière	$-V_c$	0	$\frac{V_c}{2C_2}$	$\frac{V_c}{2C_2}$
Gauche	0	ω_c	$-\frac{2\omega_c}{C_1}$	$\frac{2\omega_c}{C_1}$
Droite	0	$-\omega_c$	$\frac{2\omega_c}{C_1}$	$-\frac{2\omega_c}{C_1}$

Question 18 Compléter les info-bulles du diagramme d'état qui décrit le comportement du robot avec les valeurs de ω_d et ω_g , ainsi que les deux transitions manquantes.

PARTIE IV - PRISE DES POTS

III.1 - Solution brevetée

Question 19 Proposer une solution mécanique (uniquement le nom de la solution) permettant de réaliser 1/6^e de tour sans avoir besoin d'asservir le moteur.

On aurait pu utiliser un mécanisme à Croix de Malte à 6 branches, ou un moteur pas à pas

Question 20 Indiquer quel moteur entraîne le rapprochement des bras $(M_1 \text{ ou } M_2)$ et celui qui permet de soulever le pot. Justifier pourquoi les " mains " se déplacent toujours parallèlement au sol et ce que cela implique sur les pots.

Le moteur M₁ permet le rapprochement des mains (il agit sur l'engrenage pignon-crémaillère)

Le moteur M₂ permet le levage des pots

Il semble (dimensions non-précisées dans le sujet) que le mouvement des mains par rapport au châssis soit assuré par un mécanisme à 4 barres formant un parallélogramme déformable : on a alors un mouvement de translation circulaire

Question 21 Déterminer le degré d'hyperstatisme (modèle spatial) associé à cet ensemble de liaisons (**figure** 12) et indiquer la conséquence d'une telle solution.

 $h=m-Nc+6\mu$ avec m = 1 (1 mobilité utile, la translation sur \vec{x} , et aucune mobilité interne) Nc = 8 (4 pivots glissants) $\mu=3$ (4 liaisons – 2 solides +1)

D'où h = 11 très hyperstatique, ce qui apporte de la rigidité au mécanisme

Question 22 Proposer une modélisation isostatique sans changer le nombre de liaisons du modèle de la **figure** 13. Faire le calcul du degré d'hyperstatisme de la solution proposée en précisant bien les mobilités, en considérant le modèle spatial. Réaliser un schéma cinématique dans le plan $(\vec{y}, 0, \vec{z})$ de la solution isostatique.

Le solide S_1 pourrait être relié à S_0 et S_3 par des liaisons shériques.

On a alors 1 mobilité utile + 1 mobilité interne, et 8 inconnues cinématiques (2 pivots + 2 sphériques)

Soit $h = m - Nc + 6\mu = 2 - 8 + 6 \times 1 = 0$ isostatique

Question 23 En isolant le pot, déterminer les composantes normales minimales N_1 et N_2 à appliquer de chaque côté du pot.

On isole le pot, soumis aux actions mécaniques suivantes :

Action de pesanteur $P = -mg\vec{z}$

$$\left\{T_{main1\rightarrow pot}\right\} = \left\{\begin{matrix} N_1\vec{x} + T_1\vec{z} \\ \vec{0} \end{matrix}\right\}_{I_1} \qquad \left\{T_{main2\rightarrow pot}\right\} = \left\{\begin{matrix} -N_2\vec{x} + T_2\vec{z} \\ \vec{0} \end{matrix}\right\}_{I_2}$$

$$\left\{T_{main2\to pot}\right\} = \left\{\begin{matrix} -N_2\vec{x} + T_2\vec{z} \\ \vec{0} \end{matrix}\right\}_{L}$$

On applique alors le théorème de la résultante statique au pot en équilibre, en projection sur \vec{x} et \vec{z} :

$$\begin{cases} N_1 - N_2 = 0 \\ T_1 + T_2 - mg = 0 \end{cases}$$

On se place à la limite du glissement : $T_1 = f_p N_1$ et $T_2 = f_p N_2$

On obtient alors $N_1 = N_1 = \frac{mg}{2f_n}$

Question 24 Préciser la démarche de résolution permettant de déterminer le couple exercé par le motoréducteur pour maintenir à l'équilibre le pot (isolements et théorèmes). En déduire que le couple minimal vaut $C_0 = r_0 mg$ en donnant l'expression de r_0 en fonction de r_p et f_p . Sachant que r_0 = 106mm, vérifier si le motoréducteur retenu est satisfaisant.

On isole le pignon, soumis au couple C_0 , et à l'action des 2 crémaillères en $I_{c1}(-F_{c1}\vec{x})$ et $I_{c2}(F_{c2}\vec{x} = F_{c1}\vec{x})$

Le théorème du moment statique appliqué au pignon en son centre, en projection sur \vec{y} donne $C_0 = 2r_p F_{c1}$

On isole ensuite l'ensemble Σ_1 = {crémaillère 1 + biellette 1 + noyau cannelé 1 + main 1}, soumis aux actions mécaniques extérieures suivantes : action du pignon sur la crémaillère $F_{c1}\vec{x}$, l'action du pot sur la main en I_1 , et les actions du châssis aux différentes liaisons (aucune action sur \vec{x})

Le théorème de la résultante statique en projection sur \vec{x} donne alors $F_{c1}-N_1=0$

On en déduit
$$C_0 = 2r_p F_{c1} = 2r_p N_1$$
 soit $C_0 = r_p \frac{mg}{f_p}$

On identifie alors $r_0 = \frac{r_p}{f}$

 $AN : C_0 = 10,6 \text{ Nm}$ < 12Nm le moteur retenu est donc satisfaisant

III.2 - Basculement

Question 25 Décrire la situation la plus défavorable en fonction de la position des bras et du nombre de pots sur le robot.

La situation la plus défavorable est celle de la figure 14 (bras à l'horizontale chargé) avec 1 pot sur le plateau, à l'avant.

(d'après le cycle décrit lors de la synthèse finale, le 1^{er} pot déposé sur le plateau a subit une rotation d' 1/6 de tour avant la prise du pot suivant). Par la suite, le 2eme pot équilibrera le 1^{er}, puis il y aura pour les suivants plus de pots à l'arrière qu'à l'avant)

Question 26 En précisant le système isolé et en choisissant une seule équation issue du principe fondamental de la statique, déterminer l'expression de l'effort normal sur la roue arrière N_C en fonction de g, a, b, c, M et m.

On isole l'ensemble robot + pot, soumis aux actions de pesanteur, et de contact avec le sol

Pour ne pas faire intervenir les actions en D, on applique le théorème du moment statique en D, en projection sur \vec{x} :

$$-bN_c + (b-a)\frac{Mg}{2} - c\frac{mg}{2} = 0$$
 d'où: $N_c = \frac{(b-a)Mg - cmg}{2b} = 0$

Question 27 Déterminer la masse maximale d'un pot qui entraîne le basculement du robot. Conclure vis-à-vis du diagramme des exigences.

Le basculement intervient lorsque $N_c=0$ On obtient alors $m=\frac{b-a}{c}M$

AN : m = 22,5 kg l'exigence 1.5.3 est donc validée

Question 28 Indiquer quel théorème a été utilisé pour obtenir chaque équation (nom du théorème, point, projection).

Les équations (5) et (6) correspondent à l'application du théorème de la résultante dynamique au robot en mouvement par rapport au référentiel galiléen R_0 , au point D, projeté sur \vec{y} et \vec{z} .

L'équation (7) correspond à l'application du théorème du moment dynamique au robot en mouvement par rapport au référentiel galiléen R_0 , projeté sur \vec{x} , au point D.

Question 29 Sachant que seule la roue avant est motrice (contact en D), en déduire l'expression littérale de T_D .

En isolant la roue avant et en appliquant le théorème du moment dynamique en son centre, il vient immédiatement $C_{mr}-rT_D=0$ (moment d'inertie de la roue négligée)

D'où
$$T_D = \frac{c_{mr}}{r}$$

Question 30 Déterminer numériquement T_D puis N_D pour les valeurs retenues et indiquer si la roue avant glisse ou non dans cette situation.

Seule la roue avant étant motrice, je suppose $T_C = 0$ (ce qui peut se justifier par l'application du PFD à la roue arrière (inertie négligée), en son centre)

La relation (5) donne alors $T_D = \frac{M}{2} \gamma$ AN: $T_D = 33 N$

D'autre part, les équations (6) et (7) permettent d'écrire :

$$N_C = (b-a)\frac{M}{2b}g + h\frac{M}{2b}\gamma$$
 soit $N_D = \frac{M}{2}g - (b-a)\frac{M}{2b}g - h\frac{M}{2b}\gamma = \frac{M}{2b}$. $(a.g-h.\gamma)$

 $AN : N_D = 178 N$

On calcule alors $\frac{T_D}{N_D} = 0.18$ < f il y a donc adhérence (roulement sans glissement)

Question 31 En se plaçant à la limite du glissement en *D*, donner l'expression et la valeur de l'accélération maximale qu'il est possible d'avoir pour éviter le glissement. En déduire la durée de la phase d'accélération permettant d'atteindre la vitesse maximale dans ces conditions.

A la limite du glissement, $T_D = \frac{M}{2} \gamma_{max} = f N_D$

Soit
$$\gamma_{max} = \frac{2fN_D}{M}$$
 AN: $\gamma_{max} = 2,97 \text{ m. s}^{-2}$

Dans ces conditions, la durée de la phase d'accélération pour atteindre $V_{max}=1.1~m.~s^{-1}$ (exigence 1.5.2) vaut $t_{acc}=\frac{V_{max}}{\gamma_{max}}=0.37~s$

PARTIE V - SYNTHESE

- **Question 32** En vous aidant des informations données tout au long du sujet, compléter les états à l'aide des propositions suivantes : " rapprochement des bras ", " écartement des bras ", " élévation des bras ", " abaissement des bras " et " rotation magasin de 60°".
- **Question 33** Compléter les 6 transitions en pointillées du diagramme d'état représentant l'état composite " prise d'un pot ". Vous utiliserez notamment les évènements " haut ", " bas ", " écartés ". Ne pas oublier de prendre en compte le compteur de pots *N*.
- **Question 34** Préciser dans les trois infos-bulles le numéro des parties ou sous-parties qui traitent des actions décrites dans chacun des états repérés.

