Digital IC Design

Exercise 5 Clock gating

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Sequential circuits

- Implement a 3x3 convolution kernel without clock gating. [20%]
 - lacktriangle Area \leq **5,100** μm^2
 - ♦ Clock period \leq 1 ns
- Use the .tcl file provided by TA to synthesis your designs.
 - ◆ You can only modify the search path & clock period
- Verify the design in gate level simulation using the pattern provided by TA.

Power Analysis of sequential circuits

- Use the pattern provided by TA to generate the waveform under gate-level simulation, and measure the power consumption of 3x3 convolution kernel using PrimePower [20%]
 - **♦** Power reduction using a data-driven clock gating technique [40%]
 - ➤ Based on the gating cell: ICGx3_ASAP7_75t_R
 - \triangleright Power \leq **150** μW
 - Pattern CANNOT be modified
- Compare and analyze the area and critical path[20%]
 - ♦ w/o and w/ clock gating
 - ◆ The synthesis clock periods should be 1 ns

Introduction of 3x3 Convolution

*

IFM

Give in cycle 1 I₁₄ I₁₀ I₁₁ I₁₇ 23 24

Give in cycle 25

Weight

OFM

The 25th output

$$O_1 = I_1 \times W_1 + I_2 \times W_2 + I_3 \times W_3 + I_4 \times W_4 + I_5 \times W_5 + I_6 \times W_6 + I_7 \times W_7 + I_8 \times W_8 + I_9 \times W_9$$

$$O_{25} = I_{33} \times W_1 + I_{34} \times W_2 + I_{35} \times W_3 + I_{40} \times W_4 + I_{41} \times W_5 + I_{42} \times W_6 + I_{47} \times W_7 + I_{48} \times W_8 + I_{49} \times W_9$$

Clock gating

Example

- \bullet In_IFM = 0 \rightarrow SE = 0
- \bullet In_IFM != 0 \rightarrow SE = 1

Specifications for 3x3 convolution kernel

Signals:

Input signals	Bit width	Description
clk	1	Positive edge trigger clock
rst_n	1	Asynchronous active-low reset.
in_valid	1	When High, In_IFMs are valid
Weight_valid	1	When High, In_Weights are valid
In_IFM_1-9	8	Input feature map (9 signals), give in 25 cycles
In_Weight_1-9	8	Weights (9 signals), give in one cycle
Output signals	Bit width	Description
Out_valid	1	High when out is valid, then Patten will check Out_OFM. (It should maintain 25 cycles)
Out_OFM	21	The answers of the 3x3 convolution. (It should maintain 25 cycles)

Settings:

- **♦** In_IFMs & In_Weights should be received by registers.
- **♦** The output ports should be set as registers.

Submission of Exerice-5

- Please upload the following files
 - ◆ Due day: PM 11:55 on 12/25
 - ◆ Naming rule:
 - Ex_5_student_ID.tar(.rar / .zip)
 - 3x3_Convolution.v
 - 3x3_Convolution_clock_gating.v
 - Report.pdf