CIVIL-557

Decision-aid methodologies in transportation

Review II Branch-and-Price

Fabian Torres

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

VRP Set-partitioning formulation

Master problem (MP)

$$Minimize \sum_{r \in \Omega} c_r \lambda_r \tag{1}$$

$$s.t. \sum_{r \in \Omega} a_{ir} \lambda_r = 1 \qquad \forall i \in N,$$
 (2)

$$\lambda_r \in \{0,1\}$$
 $\forall r \in \Omega.$

Restricted Master Problem

What is the **RMP**? optimal if reduced cost are non negative

- The set Ω is too big ($\approx (|N|-1)!$).
- Lets consider a smaller set of variables, e.g., $P \subset \Omega$
- Where |P| is a small number, i.e., not exponential.
- The following model is the Restricted Master Problem (RMP):

$$(\mathsf{RMP}) \qquad \qquad \sum_{r \in P} c_r \lambda_r$$

$$s.t. \ \sum_{r \in P} a_{ir} \lambda_r = 1 \qquad \qquad \forall i \in N,$$

$$1 \geq \lambda_r \geq 0 \qquad \qquad \forall r \in P.$$

5/3/2024

Optimal solution of the MP

When does the MP = RMP?

Optimal if the reduced costs of NB varibles is non negative

- Recall that a basic solution is optimal if there are no non-basic variables (λ_{NB}) with a negative reduced cost.
- We must find non-basic variables (i.e., routes) that have a negative reduced cost to add to the set *P* and reoptimize.
- If we can proof that all non-basic variables have a non-negative reduced cost, the current basic solution of the RMP is also optimal for the MP and we do not have to search for more variables.

EFFE

Minimum reduced cost route (Pricing problem)

Elemetary Shortest Path Problem with Resource Constraints (ESPPRC)

$$\begin{aligned} &\mathit{Min} \sum_{i \in V} \sum_{j \in V} \hat{c}_{ij} x_{ij} \\ &\mathit{s.t.} \sum_{i \in N} q_i \sum_{j \in V} x_{ij} \leq Q, \\ &\sum_{j \in N} x_{0j} = 1, \\ &\sum_{i \in V} x_{i0} = 1, \\ &\sum_{i \in N} x_{ih} - \sum_{j \in N} x_{hj} = 0 & \forall h \in N, \\ &T_i + t_{ij} - M_{ij} (1 - x_{ij}) \leq T_j & \forall i, j \in V, \\ &a_i \leq T_i \leq b_i & \forall i \in N, \\ &x_{ij} \in \{0,1\} & \forall i, j \in N. \end{aligned}$$

EPFL

5/3/2024

B&P

Feasible solutions

Dummy variable

$$\begin{aligned} & \min \ M \lambda_D \\ & s.t. \ \lambda_D = 1 & \forall i \in \textit{N}, \\ & 1 \geq \lambda_D \geq 0 \end{aligned}$$

Add more variables that satisfy constraints to the model to make $\lambda_D=0$. If $\lambda_D=0$ is not possible, then, the problem is infeasible.

Branching

Branching on the variables of the master problem (λ) makes the pricing problem more difficult to solve at each branch.

$$\lambda^j = 0$$

ESPPRC and Forbidden Paths. Every time we set a variable λ to 0, we must make sure the the path is not produced by the pricing problem

$\lambda^{j}=1$

The path "i" has to be in the solution, thus, we can eliminate the customers that are visited in j and have an easier problem to solve. The ESPPRC becomes smaller since the number of customers to visit is reduced.

Branching

Unbalanced binary tree: Branching on variables makes the binary tree unbalanced since most paths are not in the optimal solution. Setting $\lambda=0$ is not significant.

Pricing problem

ESPPRC and Forbidden Paths.

$$\begin{aligned} & \textit{Min} \sum_{i \in V} \sum_{j \in V} \hat{c}_{ij} x_{ij} \\ & \textit{s.t.} \sum_{i \in N} q_i \sum_{j \in V} x_{ij} \leq Q, \\ & \sum_{j \in N} x_{0j} = 1, \\ & \sum_{i \in V} x_{i0} = 1, \\ & \sum_{i \in V} x_{ih} - \sum_{j \in N} x_{hj} = 0 & \forall h \in N, \\ & \sum_{i \in N} x_{i,j} \leq |\mathcal{P}| - 1 \leftarrow \textit{Forbiddenpath} & \forall \mathcal{P} \in \mathcal{B}, \\ & \sum_{i \in N} x_{i,j} \leq |\mathcal{P}| - 1 \leftarrow \textit{Forbiddenpath} & \forall \mathcal{P} \in \mathcal{B}, \\ & \sum_{i \in N} x_{i,j} \leq |\mathcal{P}| - 1 \leftarrow \textit{Forbiddenpath} & \forall \mathcal{P} \in \mathcal{B}, \\ & \sum_{i \in N} x_{i,j} \leq |\mathcal{P}| - 1 \leftarrow \textit{Forbiddenpath} & \forall i,j \in V, \\ & a_i \leq T_i \leq b_i & \forall i \in N, \\ & x_{ij} \in \{0,1\} & \forall i,j \in N. \end{aligned}$$

5/3/2024

Branching

Option

Branch: On x_{ij} variables instead.

- At each node of the branch-and-bound tree set the corresponding variables to 1 or 0, and solve the pricing problem.
- The pricing problem will not produce routes that contain the variables that are set to 0.

F.T. (EPFL) CIVIL-557 5/3/2024 11/11