

A full range calibration for CALIFA

Mrunmoy Jena

R3B Week 12.11.2024

Overview and structure of macro

Calibration in the gamma range

Extrapolation to proton range

TUM Members: Roman Gernhäuser,Philipp Klenze,Tobias Jenegger, Mrunmoy Jena

Introduction

²²Na source hardly useful for performing calibration in the proton range!

Introduction

Using pulsers is essential for calibration in proton range

Introduction

Calibration overview

Key advantages:

- Unpacking, writing spectra done only once!
- Calibration takes just 2 min.

Calibration overview

Calibration macro

Mrunmoy Jena

Range factor

$$R = E_{\gamma(uncalib.)}/E_{p(uncalib.)} \approx 11$$

Serves as a translation factor between gamma range and proton range

Gamma range: uncalibrated spectra

Gamma range: calibrated spectra

Applying a linear fit: $y=m_{\gamma}x+c_{\gamma}$

Software works!

Now we also have pulser peaks in keV

Proton range: uncalibrated spectra

There are (channel to channel) variations in the electronics

Calibration in proton range

Energies for first 3 pulsers obtained from gamma calibration Then doing a linear fit : $y=m_px+c_p \Rightarrow All$ pulser energies in keV

Variation in pulsers include all uncertainities (depending on L(t), R and C_{pulser})

Circuit diagram

Pulser capacitance

Variation in E/V for the pulsers again include all uncertainities (L(t), R and C_{pulser})

Pulser capacitance

Pulser capacitance (E/V) now normalized with the mean value (50)

Proton range: calibrated spectra

5187

21.34

21.5

Energy [keV]

0.009187

 $\sigma/\mu = 4/10000$

21.45

Entries

Mean Std Dev

21.4

After dividing pulser energies with the normalized capacitances, variations cancel out

QC Plots

Quality Assessment Plot

DAQ Plot (Hardware level)

Mrunmoy Jena 17

QC Plots

Thank You!

CALIFA @ Technical University of Munich Roman Gernhäuser, Philipp Klenze, Tobias Jenegger, Mrunmoy Jena

Extras: Irregular channel

Crystal ID: 5057, in CEPA

```
Crystal 5057
Source Peak 1, Bin number: 72.8852
Pulser Peak 1, Bin number: 118.622
Pulser Peak 2, Bin number: 176.335
Pulser Peak 3, Bin number: 664.026
Pulser Peak 4, Bin number: 1121.33
Pulser Peak 5, Bin number: 3402.16
Pulser Peak 6, Bin number: 14819.5
Range factor Pulser Peak 1: 15.2875
Range factor Pulser Peak 2: 57.8574
Range factor Pulser Peak 3: 25.9151
Range factor: 33.02
Pulser Offset: -2053.82
Pulser Slope: 36.794
```