Arquitetura de Sistemas Operacionais

Sistema de Arquivos

Sumário

- Introdução
- Arquivos
 - Organização de Arquivos
 - Métodos de Acesso
 - Operações de Entrada/Saída
- Atributos
- Diretórios
- Gerência de Espaço Livre em Disco
- Gerência de Alocação de Espaço em Disco
- Proteção de Acesso
- Implementação de Caches

Introdução

- O armazenamento e a recuperação de informações são atividades essenciais para qualquer tipo de aplicação.
- Um processo deve ser capaz de ler e gravar grande volume de dados em dispositivos como fitas e discos de forma permanente, além de poder compartilhá-los com outros processos.
- A manipulação de arquivos é uma atividade frequentemente realizada pelos usuários, devendo sempre ocorrer de maneira uniforme, independente dos diferentes dispositivos de armazenamento.

Introdução

 A maneira pela qual o sistema operacional estrutura e organiza estas informações é através da implementação de arquivos.

Arquivos

- É constituído por informações logicamente relacionadas. Estas informações podem representar instruções ou dados.
- Arquivo executável -> contém instruções compreendidas pelo processador.
- Arquivo de dados → pode ser estruturado livremente como um arquivo-texto ou de forma mais rígida, como em um banco de dados relacional.
- Um arquivo é um conjunto de registros definidos pelo sistema de arquivos, tornando seu conceito abstrato e generalista.

Arquivos

- Os arquivos são armazenados pelo sistema operacional em diferentes dispositivos físicos, como fitas magnéticas, discos magnéticos e discos ópticos.
- Um arquivo é identificado por um nome, composto por uma sequência de caracteres.
- Em alguns SOs, a identificação de um arquivo é composta por duas partes separadas com um ponto. A parte após o ponto é denominada extensão do arquivo e tem como finalidade identificar o conteúdo do arquivo.

Arquivos

• Extensão de arquivos

Extensão	Descrição
ARQUIVO.BAS	Arquivo-fonte em BASIC
ARQUIVO.COB	Arquivo-fonte em COBOL
ARQUIVO.EXE	Arquivo executável
ARQUIVO.OBJ	Arquivo-objeto
ARQUIVO.PAS	Arquivo-fonte em Pascal
ARQUIVO.TXT	Arquivo-texto

- A organização de arquivos consiste em como os seus dados estão internamente armazenados.
- A estrutura dos dados pode variar em função do tipo de informação contida no arquivo.
- No momento da criação de um arquivo, seu criador pode definir qual a organização adotada.
- Esta organização pode ser uma estrutura suportada pelo sistema operacional ou definida pela própria aplicação.

- Organização não estruturada:
 - O sistema de arquivos não impõe nenhuma estrutura lógica para os dados.
 - A aplicação deve definir toda a organização, estando livre para estabelecer seus próprios critérios.
 - Vantagem: flexibilidade para criar diferentes estruturas de dados.
 - o controle de acesso ao arquivo é de inteira responsabilidade da aplicação.

- As organizações mais conhecidas e implementadas são a sequencial, a relativa e a indexada.
- Podemos visualizar um arquivo como um conjunto de registros.
- Os registros podem ser classificados em registros de tamanho fixo, quando possuírem sempre o mesmo tamanho, ou registros de tamanho variável.

Métodos de Acesso

- Em função de como o arquivo está organizado, o sistema de arquivos pode recuperar registros de diferentes maneiras.
- Os primeiros SOs armazenavam arquivos em fitas magnéticas.
- O acesso era restrito à leitura dos registros na ordem em que eram gravados, e a gravação de novos registros só era possível no final do arquivo.
- Este tipo de acesso, chamado de acesso sequencial.

Métodos de Acesso

- Com o advento dos discos magnéticos → métodos de acesso mais eficientes.
- Acesso direto: permite a leitura/gravação de um registro diretamente na sua posição.
- Não existe restrição à ordem em que os registros são lidos ou gravados, sendo sempre necessária a especificação do número do registro.
- O acesso direto somente é possível quando o arquivo é definido com registros de tamanho fixo

Métodos de Acesso

Acesso direto

Operações de Entrada/Saída

- O sistema de arquivos disponibiliza um conjunto de rotinas que permite às aplicações realizarem operações de E/S.
- Tais como, tradução de nomes em endereços, leitura e gravação de dados e criação/eliminação de arquivos.
- As rotinas de E/S têm como função disponibilizar uma interface simples e uniforme entre a aplicação e os diversos dispositivos.

Operações de Entrada/Saída

• Operações de Entrada/Saída

Operações de Entrada/Saída

• Rotinas de E/S

Rotina	Descrição
CREATE	Criação de arquivos.
OPEN	Abertura de um arquivo.
READ	Leitura de um arquivo.
WRITE	Gravação em um arquivo.
CLOSE	Fechamento de um aruivo.
DELETE	Eliminação de um arquivo.

Atributos

 Cada arquivo possui informações de controle denominadas atributos.

Atributos

Tamanho Proteção

Dono

Criação

Backup

Organização

Senha

Descrição

Especifica o tamanho do arquivo.

Código de proteção de acesso.

Identifica o criador do arquivo.

Data e hora de criação do arquivo.

Data e hora do último backup realizado.

Indica a organização lógica dos registros.

Senha necessária para acessar o arquivo.

- A estrutura de diretórios é como o sistema organiza logicamente os diversos arquivos contidos em um disco.
- O diretório é uma estrutura de dados que contém entradas associadas aos arquivos.
- Cada entrada armazena informações como localização física, nome, organização e demais atributos.
- Quando um arquivo é aberto → SO → entrada na estrutura de diretórios → Armazena as informações → tabela mantida na memória principal.

- Esta tabela contém todos os arquivos abertos, sendo fundamental para aumentar o desempenho das operações com arquivos.
- É importante que ao término do uso de arquivos estes sejam fechados, ou seja, que se libere o espaço na tabela de arquivos abertos.
- A implementação mais simples de uma estrutura de diretórios é chamada de nível único (single-level directory).
- Nesta estrutura, existe um único diretório contendo todos os arquivos do disco.

• Estrutura de diretórios de nível único

Diretórios Arquivos

- Uma evolução do modelo foi a implementação de uma estrutura em que para cada usuário existiria um diretório particular denominado *User File Directory* (UFD).
- Cada usuário passa a poder criar arquivos com qualquer nome, sem a preocupação de conhecer os demais arquivos do disco.
- É necessário um nível de diretório adicional para controlar os diretórios individuais dos usuários e permitir ao sistema localizar os arquivos.
- Este nível, denominado Master File Directory (MFD), é indexado pelo nome do usuário, e nele cada entrada aponta para o diretório pessoal.

• Estrutura de diretórios com dois níveis

- Esta estrutura com dois níveis é análoga a uma estrutura de dados em árvore, em que o MFD é a raiz, os galhos são os UFD e os arquivos são as folhas.
- Quando se referencia um arquivo é necessário especificar, além do seu nome, o diretório onde ele se localiza.
- Esta referência é chamada de path (caminho).
- A extensão do modelo de dois níveis para um de múltiplos níveis permitiu que os arquivos fossem logicamente mais bem organizados.

• Estrutura de diretórios em árvore

25

- Na estrutura em árvore, cada usuário pode criar diversos níveis de diretórios, também chamados subdiretórios.
- Cada diretório pode conter arquivos ou outros diretórios.
- O número de níveis de uma estrutura em árvore é dependente do sistema de arquivos de cada sistema operacional.

- Um arquivo pode ser especificado unicamente por meio de um path absoluto, descrevendo todos os diretórios percorridos a partir da raiz (MFD) até o diretório no qual o arquivo está ligado.
- Na maioria dos sistemas, os diretórios também são tratados como arquivos, possuindo identificação e atributos, como proteção, identificador do criador e data de criação.

• Path de um arquivo

- A criação de arquivos em disco exige que o sistema operacional tenha o controle de quais áreas ou blocos no disco estão livres.
- O controle é realizado por meio de uma estrutura de dados que armazena informações que possibilitam ao sistema gerenciar o espaço livre do disco.
- Geralmente, esta estrutura é uma lista ou tabela ->
 identificar blocos livre que poderão ser alocados a um
 novo arquivo.
- Quando um arquivo é eliminado → blocos liberados → lista de espaços livres.

- A forma mais simples de implementar uma estrutura de espaços livres é através de uma tabela denominada mapa de bits (bit map).
- Cada entrada na tabela é associada a um bloco do disco representado por um bit:
 - Valor igual a 0 (indicando bloco livre).
 - Valor igual a 1 (indicando bloco alocado).
- Problema: excessivo gasto de memória, já que para cada bloco do disco deve existir uma entrada na tabela.

Alocação de espaço em disco

(a) Mapa de bits

- Outra forma de realizar este controle é com uma estrutura de lista encadeada de todos os blocos livres do disco.
- Cada bloco possui uma área reservada para armazenamento do endereço do próximo bloco.
- A partir do primeiro bloco livre é, então, possível o acesso sequencial aos demais de forma encadeada.
- Restrições: além do espaço utilizado no bloco com informação de controle, o algoritmo de busca de espaço livre sempre deve realizar uma pesquisa sequencial na lista.

Alocação de espaço em disco

- A terceira solução leva em consideração que blocos contíguos são geralmente alocados ou liberados simultaneamente.
- Desta forma, é possível enxergar o disco como um conjunto de segmentos de blocos livres.
- Há uma tabela com o endereço do primeiro bloco de cada segmento e o número de blocos livres contíguos que se seguem.
- Esta técnica de gerência de espaço livre é conhecida como tabela de blocos livres.

Alocação de espaço em disco

Boco	Contador
4	2
10	1
13	7
25	20
50	5

(a) Mapa de bits

(b) Lista encadeada

© Tabela de blocos livres

Gerência de Alocação de Espaço em Disco

- Assim como o SO gerencia os espaços livres no disco, a gerência dos espaços alocados aos arquivos também é um aspecto fundamental em um sistema de arquivos.
- A alocação contígua consiste em armazenar um arquivo em blocos sequencialmente dispostos no disco.
- O sistema localiza um arquivo através do endereço do primeiro bloco e da sua extensão em blocos.

Alocação Contígua

Arquivo	Bloco	Extensão
A. TXT	4	3
B. TXT	10	1
C. TXT	13	2

- O acesso a arquivos dispostos contiguamente no disco é bastante simples tanto para a forma sequencial quanto para a direta.
- Problema: alocação de espaço livre para novos arquivos → é necessário existir uma quantidade suficiente de blocos contíguos no disco para realizar a alocação.
- Podemos enxergar o disco como um grande vetor, onde os elementos podem ser considerados segmentos com tamanhos diferentes de blocos contíguos.

(a) Alocação contígua de espaço de disco para sete arquivos. (b) O estado do disco após os arquivos D e F terem sido removidos.

- No momento em que o SO deseja alocar espaço para armazenar um novo arquivo, pode existir mais de um segmento livre disponível com o tamanho exigido.
- É necessário utilizar uma estratégia de alocação para selecionar qual o segmento na lista de blocos livres deve ser escolhido.
- As principais estratégias de alocação são:
 - First-Fit
 - Best-Fit
 - Worst-Fit

- As principais estratégias de alocação são:
 - First-Fit: o primeiro segmento livre com tamanho suficiente para alocar o arquivo é selecionado. A busca na lista é sequencial, sendo interrompida tão logo se localize um segmento com tamanho adequado.
 - Best-Fit: Seleciona o menor segmento livre disponível com tamanho suficiente para armazenar o arquivo. A busca em toda a lista se faz necessária para a seleção do segmento, a não ser que a lista esteja ordenada por tamanho.
 - Worst-Fit: o maior segmento é alocado. Mais uma vez a busca em toda a lista se faz necessária, a menos que exista uma ordenação por tamanho.

- Independentemente da estratégia utilizada, a alocação contígua apresenta um problema chamado fragmentação dos espaços livres.
- O problema da fragmentação pode ser contornado através de rotinas que reorganizem todos os arquivos no disco de maneira que só exista um único segmento de blocos livres.
- Este procedimento, denominado desfragmentação, geralmente utiliza uma área de trabalho no próprio disco.

Desfragmentação

- Na alocação encadeada, um arquivo pode ser organizado como um conjunto de blocos ligados logicamente no disco, independente da sua localização física.
- Cada bloco deve possuir um ponteiro para o bloco seguinte do arquivo, e assim sucessivamente.
- A fragmentação de espaços livres não ocasiona nenhum problema na alocação encadeada → blocos livres alocados não precisam estar contíguos.
- Ocorre a fragmentação de arquivos → quebra do arquivo em diversos pedaços.

Alocação Encadeada

Arquivo	Bloco
A.TXT	6

Alocação Encadeada

- A fragmentação resulta no aumento do tempo de acesso aos arquivos.
- Para otimizar o tempo das operações de E/S neste tipo de sistema, é importante que o disco seja periodicamente desfragmentado.
- A alocação encadeada só permite que se realize acesso sequencial aos blocos dos arquivos.

- A alocação indexada soluciona uma das principais limitações da alocação encadeada → impossibilidade do acesso direto aos blocos.
- O princípio desta técnica é manter os ponteiros de todos os blocos do arquivo em uma única estrutura denominada bloco de índice.
- Além de permitir o acesso direto aos blocos do arquivo, não utiliza informações de controle nos blocos de dados, como existente na alocação encadeada.

Alocação Indexada

- Os meios de armazenamento são compartilhados entre diversos usuários.
- É necessário que mecanismos de proteção sejam implementados para garantir a proteção individual de arquivos e diretórios.
- Em geral, o tipo de acesso a arquivos é implementado mediante a concessão ou não dos diferentes acessos que podem ser realizados:
 - leitura (read), gravação (write), execução (execute) e eliminação (delete).

- Controle da criação/eliminação de arquivos nos diretórios, visualização do seu conteúdo e eliminação do próprio diretório são operações que também devem ser protegidas.
- Existem diferentes mecanismos e níveis de proteção, cada qual com suas vantagens e desvantagens:
 - Senhas de Acesso
 - Grupos de usuário
 - Lista de Controle de Acesso.

- A proteção baseada em grupos de usuários é implementada por diversos sistemas operacionais.
- Os grupos de usuários são organizados logicamente com o objetivo de compartilhar arquivos e diretórios.
- Os usuários que desejam compartilhar arquivos entre si devem pertencer a um mesmo grupo.
- Esse mecanismo implementa três níveis de proteção ao arquivo: owner (dono), group (grupo) e all (todos).

Proteção por grupos de usuários

Nível de Proteção	Tipo de Acesso	
Owner	Leitura Escrita Execução Eliminação	
Group	Leitura	
All		

Em geral, somente o dono ou usuários privilegiados é que podem modificar a proteção dos arquivos.

- A Lista de Controle de Acesso (Access Control List ACL) consiste em uma lista associada a cada arquivo, onde são especificados quais os usuários e os tipos de acesso permitidos.
- Quando um usuário tenta acessar um arquivo, o sistema operacional verifica se a lista de controle autoriza a operação desejada.

Lista de Controle de Acesso

Usuário: Maia

Acesso: Leitura + Escrita + Execução

Usuário: Machado Acesso: Eliminação

Implementação de Caches

- Acesso a disco é bastante lento
- Buffer cache minimiza este problema
- Quando uma operação é realizada o sistema verifica se a informação se encontra no buffer cache
 - Em caso positivo, não é necessário o acesso ao disco
 - Caso o bloco requisitado não se encontre no cache, a operação de E/S é realizada e o cache é atualizado

Implementação de Caches

- Políticas para substituição de blocos: FIFO ou LRU (Least Recently Used)
- Aspectos de segurança
 - Atualização periódica
 - Write-through caches