Propriedade Refletora da Hipérbole

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

2 de dezembro de 2011

Vamos mostrar que um espelho hiperbólico, reflete na direção de um foco, os raios que incidem na hipérbole na direção do outro foco, seguindo os seguintes passos:

(a) Considere a hipérbole $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Usando o fato de que um ponto do ramo esquerdo da hipérbole pode ser escrito na forma $P = (-a \sec t, b \tan t)$, para $t \in (-\pi/2, \pi/2)$ e que a inclinação da reta tangente à hipérbole neste ponto é $\frac{dy}{dx} = -\frac{b}{a \sec t}$, mostre que a equação da reta tangente à hipérbole em P é

$$y = b \tan t - \frac{b}{a \sec t} (x + a \sec t)$$
, para $t \neq 0$,

e que a equação da reta que passa por F_2 e é paralela ao raio que incide na direção de F_1 e se reflete em P é

$$y = \frac{b \tan t}{c - a \sec t} (x - c).$$

(b) Mostre que a interseção da reta tangente à hipérbole que passa por P e a reta que passa por F_2 e é paralela ao raio que incide na direção de F_1 e se reflete em P é o ponto

$$P_1 = \left(\frac{a(2c\cos^2 t - a\cos t - c)}{\cos t(a\cos t - c)}, \frac{b\sin t(a\cos t + c)}{\cos t(a\cos t - c)}\right)$$

(c) Mostre que $\operatorname{dist}(P, F_2) = \operatorname{dist}(P_1, F_2) = a + c \sec t$. Logo o triângulo PF_2P_1 é isósceles e assim o ângulo de incidência do raio que incide na direção de F_1 e se reflete em P, α_1 , e o ângulo de reflexão do raio que se reflete em P na direção de F_2 , α_2 , são iguais. Portanto o raio que incide na direção de F_1 e se reflete em P necessariamente passa por F_2 (veja as Figuras 1 e 2).

Figura 1: Hipérbole refletindo, na direção de um foco, os raios que incidem na hipérbole na direção do outro foco

Figura 2: Hipérbole refletindo, na direção de um foco, os raios que incidem na hipérbole na direção do outro foco

Figura 3: Espelho maior parabólico refletindo na direção do foco, em seguida os raios são refletidos por um espelho hiperbólico na direção do outro foco da hipérbole