

Bäume

Manfred Hauswirth | Open Distributed Systems | Einführung in die Programmierung, WS 23/24

Rückblick

- VL 0 "Organisation und Inhalt": Ablauf der Vorlesung, Termine
- VL 1 "Algorithmen, Pseudocode, Sortieren I": Insertion Sort
- VL 2 "Algorithmen, Pseudocode, Sortieren II": Selection Sort, Bubble Sort, Count Sort
- VL 3 "Laufzeit und Speicherplatz": Laufzeitanalyse der vorgestellten Sortierverfahren
- VL 4 "Einfache Datenstrukturen": Arrays, verkettete Listen, Structs in C, Stack, Queue
- VL 5 "Bäume": Binärbäume, Baumtraversierung, Laufzeitanalyse Baumoperationen
- VL 6 "Dateien in C": Dateien, Dateisysteme, Verzeichnisse, Dateiverwaltung mit C
- VL 7 "Teile und Herrsche I": Einführung der algorithmischen Methode, Merge Sort
- VL 8 "Korrektheitsbeweise": Rechnermodel, Beispielbeweise
- VL 9 "Prioritätenschlangen/Halden/Heaps": Heap Sort, Binärer Heap, Heap Operationen
- VL 10 "Fortgeschrittene Sortierverfahren": Quick Sort, Radix Sort
- VL 11 "AVL Bäume": Definition, Baumoperationen, Traversierung
- VL 12 "Teile und Herrsche II": Generalisierung des algorithmischen Prinzips, Mastertheorem
- VL 13 "Q & A": Offene Vorlesung/Wiederholung

Bäume

Ein grundlegendes Problem

- Speicherung von Datensätzen
- Listen oft nicht ausreichend, da O(n) zu langsam ist (suchen, einfügen, löschen, etc.).

Beispiele

- Stammbaum
- Dateisysteme
- Entscheidungsbäume
- Suchbäume, z.B. für Lexikon, Daten
- Rekursionsbäume

Anforderungen

- Schneller Zugriff, d.h. schneller als O(n)
- Schnelles Einfügen neuer Datensätze
- Schnelles Löschen bestehender Datensätze

Zugriff auf Daten

Zugriff auf Daten

- Jedes Datum (Objekt) hat einen Schlüssel
- Eingabe des Schlüssels liefert Datensatz
- Schlüssel sind vergleichbar (es gibt eine totale Ordnung auf den Schlüsseln)

Beispiel

- Lexika (Begriff, Erläuterung)
- Schlüssel: Begriff
- Totale Ordnung: Lexikographische Ordnung

Datenzugriff

Problem:

 Gegeben seien n Objekte O₁, ..., O_n mit zugehörigen Schlüsseln s(O_i)

Operationen:

- Suche(x): Ausgabe O mit Schlüssel s(O) = x, sonst
 nil (NULL), falls kein Objekt mit Schlüssel x in der Datenmenge vorhanden ist
- Einfügen(O): Einfügen von Objekt O in die Datenmenge
- Löschen(O): Löschen von Objekt O aus der Datenmenge

Datenstrukturen

- Bisher kennen wir folgende grundlegenden Datenstrukturen
 - Felder (Arrays)
 - Sortierte Arrays
 - Dynamische Arrays
 - Einfach/doppelt verkettete Listen

Diskussion

- Alle Datenstrukturen haben Nachteile
- Listen helfen beim Speichermanagement
- Sortierung hilft bei Suche ist aber teurer, aufrecht zu erhalten

Definition (Binärbaum)

- Ein Binärbaum T ist eine Struktur, die auf einer endlichen Menge definiert ist. Diese Menge nennt man auch die Knotenmenge des Binärbaums.
- Die leere Menge ist ein Binärbaum. Dieser wird auch als leerer Baum bezeichnet.
- Ein Binärbaum ist ein Tripel (v, T_1 , T_2), wobei T_1 und T_2 Binärbäume mit disjunkten Knotenmengen V_1 und V_2 sind und $v \notin V_1 \cup V_2$ Wurzelknoten heißt. Die Knotenmenge des Baums ist dann $\{v\} \cup V_1 \cup V_2$.
 - T1 heißt linker Unterbaum von v und T₂ heißt rechter Unterbaum von v.

Darstellung von Binärbäumen

Darstellung von Binärbäumen

 Häufig lässt man die leeren Bäume in der Darstellung eines Binärbaums weg

Binärbaum Begriffe

Begriff	Erläuterung	Beispiel
Vorgänger (predecessor)	-	A ist Vorgänger von B
Nachfolger (successor)	-	B ist Nachfolger von A
Wurzel (root)	kein Vorgänger	A
Blatt (leaf)	kein Nachfolger	D, H, I, J, K
interner Knoten (inner node)	alle Nachfolger besetzt	A, B, C, G
Randknoten (boundary node)	nicht alle Nachfolger besetzt	D, E, F, H, I, J, K
Pfad (path)	Knotenfolge von einem Anfangs- bis zum Endknoten	Pfad von der Wurzel nach F: A,C,F
Pfadlänge (path length)	Anzahl der Kanten des Pfads	Pfadlänge von A nach F: 2
Tiefe eines Knotens (depth)	Pfadlänge zur Wurzel	Tiefe von F: 2
Höhe eines Baumes (height)	Größte Tiefe	3
Höhe eines Knotens v	Höhe des Teilbaums von v	Höhe von F: 1

- Binärbäume (Darstellung im Rechner)
 - Schlüssel key und ggf. weitere Daten
 - Zeiger lc(v) bzw. rc(v) auf linkes bzw. rechtes Kind von v
 - Elternzeiger p(v) auf Vater/Mutter von v (blau)

Binäre Suchbäume

Binäre Suchbäume

- Verwende Binärbaum
- Speichere Schlüssel "geordnet"

Binäre Suchbaumeigenschaft:

- Sei x ein Knoten im binären Suchbaum
- Ist y ein Knoten im linken Unterbaum von x, dann gilt key(y) ≤ key(x)
- Ist y ein Knoten im rechten Unterbaum von x, dann gilt key(y) > key(x)

Binäre Suchbäume

- Unterschiedliche Suchbäume
 - Schlüsselmenge 3,4,6,7,7,9
 - Wir erlauben mehrfache Vorkommen desselben Schlüssels

- Ausgabe aller Schlüssel
 - Gegeben binärer Suchbaum
 - Wie kann man alle Schlüssel aufsteigend sortiert in O(n) Zeit ausgeben?

Inorder-Tree-Walk(x) Aufruf über if $x \neq nil$ then Inorder-Tree-Walk(root(T)) Inorder-Tree-Walk(Ic(x)) Ausgabe key(x) Inorder-Tree-Walk(rc(x)) 6 4

- 1. if $x \neq nil$ then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. if $x \neq nil$ then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. if $x \neq nil$ then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. if $x \neq nil$ then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. if $x \neq nil$ then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. if $x \neq nil$ then
- 2. Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

- 1. If $x \neq nil$ then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x) Ausgabe: if $x \neq nil$ then Inorder-Tree-Walk(Ic(x)) Ausgabe key(x) Inorder-Tree-Walk(rc(x)) 6 Kein rechtes Kind vorhanden, d.h. rc(x)=nil

Inorder-Tree-Walk(x) Ausgabe: if $x \neq nil$ then Inorder-Tree-Walk(Ic(x)) Ausgabe key(x) Inorder-Tree-Walk(rc(x)) 6 Kein rechtes Kind vorhanden, d.h. rc(x)=nil

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

1. if $x \neq nil$ then

- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)

Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

3, 4, 6

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)

Inorder-Tree-Walk(rc(x))

Ausgabe:

Inorder-Tree-Walk(x)

- if $x \neq nil$ then
- Inorder-Tree-Walk(Ic(x))
- Ausgabe key(x)
- Inorder-Tree-Walk(rc(x))

Ausgabe:

Binäre Suchbäume Durchlaufen – Laufzeit

- Ausgabe aller Schlüssel
 - Gegeben binärer Suchbaum
 - Wie kann man alle Schlüssel aufsteigend sortiert in O(n) Zeit ausgeben?

Inorder-Tree-Walk(x)

- 1. if $x \neq nil$ then
- Inorder-Tree-Walk(lc(x))
- 3. Ausgabe key(x)
- 4. Inorder-Tree-Walk(rc(x))

Anzahl der Elemente: n

- n + 2 * # Blätter
- < n
- n
- < n
- => Laufzeit $\Theta(n)$

- Suchen in Binärbäumen
 - Gegeben ist Schlüssel k
 - Gesucht ist ein Knoten mit Schlüssel k

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k < key(x) then return Baumsuche(lc(x),k)
- 3. **else return** Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)
- 3. else return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. **else return** Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)
- 3. else return Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. **else return** Baumsuche(rc(x),k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)
- 3. else return Baumsuche(rc(x),k)

Binäre Suchbäume Suchen – Laufzeit?

Baumsuche(x,k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

// Entweder links
// oder rechts

Binäre Suchbäume Suchen – Laufzeit?

Baumsuche(x,k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

// Entweder links

// oder rechts

Binäre Suchbäume Suchen – Laufzeit?

Baumsuche(x,k)

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)

3. else return Baumsuche(rc(x),k)

// Entweder links // oder rechts

Höhe eines Baumes

Definition

 Die Höhe eines Binärbaumes mit Wurzel v ist die Länge (Anzahl der Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiele

Baum der Höhe 0

Baum der Höhe 1

Höhe eines Baumes

Definition

 Die Höhe eines Binärbaumes mit Wurzel v ist die Länge (Anzahl der Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.

Beispiel

- Ein Baum mit einem Knoten hat Höhe 0
- Damit gilt:
 Höhe eines Baumes mit Wurzel v und
 Teilbäumen A und B ist
 1 + max(Höhe(A), Höhe(B))

Höhe eines Baumes

- Definition
 - Die Höhe eines Binärbaumes mit Wurzel v ist die Länge (Anzahl der Kanten) des längsten einfachen Weges (keine mehrfach vorkommenden Knoten) von der Wurzel zu einem Blatt.
- Beispiel
 - Baum der Höhe 3

- 1. if x=nil or k=key(x) then return x
- 2. if k<key(x) then return Baumsuche(lc(x),k)</p>
- 3. else return Baumsuche(rc(x),k)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$
- 4. return x

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

4. return x

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

IterativeBaumsuche(root(T),5)

IterativeBaumsuche(x,k)

- 1. while $x \neq nil$ and $k \neq key(x)$ do
- 2. if k < key(x) then $x \leftarrow lc(x)$
- 3. else $x \leftarrow rc(x)$

4. return x

Funktionsweise wie (rekursive)
Baumsuche. Laufzeit: O(h)

- Minimum- und Maximumsuche
 - Suchbaumeigenschaft:
 Alle Knoten im rechten Unterbaum eines Knotens x sind > key(x)
 - Alle Knoten im linken Unterbaum von x sind ≤ key(x)

MinimumSuche(x)

Aufruf mit Wurzelknoten

1. while $lc(x) \neq nil do x \leftarrow lc(x)$

MinimumSuche(x)

Aufruf mit Wurzelknoten

1. while $lc(x) \neq nil do x \leftarrow lc(x)$

2. return x

Laufzeit: O(h)

MaximumSuche(x) Aufruf mit Wurzelknoten

1. while $rc(x) \neq nil do x \leftarrow rc(x)$

2. return x

Laufzeit: O(h)

- Nachfolgersuche
 - Nachfolger bzgl. Inorder-Tree-Walk
 - Wenn alle Schlüssel unterschiedlich, dann ist das der nächstgrößere Schlüssel

- Nachfolgersuche
 - Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

- Nachfolgersuche
 - Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

- Nachfolgersuche
 - Fall 1 (rechter Unterbaum von x nicht leer):
 Dann ist der linkeste Knoten im rechten Unterbaum der Nachfolger von x

- Nachfolgersuche
 - Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

- Nachfolgersuche
 - Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

- Nachfolgersuche
 - Fall 2 (rechter Unterbaum von x leer und x hat Nachfolger y):
 Dann ist y der erste Knoten auf dem Pfad zur Wurzel, der größer als x ist

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$
- 3. while $y \neq nil$ and x=rc(y) do
- $4. \quad x \leftarrow y$
- 5. $y \leftarrow p(y)$
- 6. return y

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

Nachfolgersuche(x)

- 1. if $rc(x) \neq nil$ then return MinimumSuche(rc(x))
- 2. $y \leftarrow p(x)$

5.
$$y \leftarrow p(y)$$

Binäre Suchbäume Vorgängersuche

Technische Universität Berlin

- Vorgängersuche
 - Analog zur Nachfolgersuche
 - Daher ebenfalls O(h) Laufzeit

Dynamische Bäume

- Ein grundlegendes Datenbank-Problem
 - Speicherung von Datensätzen
- Beispiel
 - Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen,...)
- Anforderungen
 - Schneller Zugriff
 - Schnelles Einfügen neuer Datensätze
 - Schnelles Löschen bestehender Datensätze

Dynamische Baumoperationen

- Binäre Suchbäume
 - Aufzählen der Elemente mit Inorder-Tree-Walk in O(n) Zeit
 - Suche in O(h) Zeit
 - Minimum/Maximum in O(h) Zeit
 - Vorgänger/Nachfolger in O(h) Zeit
- Dynamische Operationen?
 - Einfügen und Löschen
 - Müssen Suchbaumeigenschaft aufrecht erhalten
 - Auswirkung auf Höhe des Baums?

Einfügen

 Ähnlich wie Baumsuche: Finde Blatt, an das neuer Knoten angehängt wird

Danach wird nil-Zeiger durch neues

Element ersetzt

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) ← z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

y wird Elter des einzufügenden Elements.

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. **if** $key(z) \le key(y)$ **then** $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- $06. p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. **if** $key(z) \le key(y)$ **then** $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. **if** $key(z) \le key(y)$ **then** $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) \leftarrow z
- 08. else
- 09. **if** $key(z) \le key(y)$ **then** $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Einfügen(T,z)

- 01. $y \leftarrow nil; x \leftarrow root(T)$
- 02. while $x \neq nil$ do
- 03. $y \leftarrow x$
- 04. if $key(z) \le key(x)$ then $x \leftarrow lc(x)$
- 05. else $x \leftarrow rc(x)$
- 06. $p(z) \leftarrow y$
- 07. if y=nil then root(T) ← z
- 08. else
- 09. if $key(z) \le key(y)$ then $lc(y) \leftarrow z$
- 10. else $rc(y) \leftarrow z$

Laufzeit: O(h)

- Löschen: 3 unterschiedliche Fälle
 - a) Zu löschendes Element z hat keine Kinder
 - b) Zu löschendes Element z hat ein Kind
 - c) Zu löschendes Element z hat zwei Kinder

Fall (a): Zu löschendes Element z hat keine Kinder

- Fall (a): Zu löschendes Element z hat keine Kinder
 - Entferne Element

Fall (b): Zu löschendes Element z hat 1 Kind

- Fall (b): Zu löschendes Element z hat 1 Kind
 - Ersetze Element durch das Kind

Fall (c): Zu löschendes Element z hat 2 Kinder

- Fall (c): Zu löschendes Element z hat 2 Kinder
 - Schritt 1: Bestimme Nachfolger von z

- Fall (c): Zu löschendes Element z hat 2 Kinder
 - Schritt 1: Bestimme Nachfolger von z

Nachfolger hat nur ein Kind.

- Fall (c): Zu löschendes Element z hat 2 Kinder
 - Schritt 1: Bestimme Nachfolger von z
 - Schritt 2: Entferne Nachfolger von z

- Fall (c): Zu löschendes Element z hat 2 Kinder
 - Schritt 1: Bestimme Nachfolger von z
 - Schritt 2: Entferne Nachfolger von z
 - Schritt 3: Ersetze z durch Nachfolger

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $key(z) \leftarrow key(y)$

Binäre Suchbäum Referenz

Referenz chen

übergeben!

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $key(z) \leftarrow key(y)$

Löschen(T,z)

- 1. If $lc(z)=nil\ or\ rc(z)=nil\ then\ y\leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger.

Löschen(6)

Löschen(T,z)

- 1. If $lc(z)=nil\ or\ rc(z)=nil\ then\ y\leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Bestimme Knoten, der gelöscht werden soll. Der Knoten hat nur einen Nachfolger.

Löschen(6)

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow$
- else y ← NachfolgerSuche(z)
- 3. If $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $key(z) \leftarrow key(y)$

Bestimme das Kind von y, falls existent.

- 1. if lc(z)=nil or rc(z)=nil then y Aktualisiere
- else y ← NachfolgerSuche(z) Elterzeiger von x
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. If $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. **if** p(y)=**nil** then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $key(z) \leftarrow key(y)$

- else y ← NachfolgerSuche Das rechte Kind
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\ker(z) \leftarrow \ker(y)$

- 1. if lc(z)=nil or rc(z)=nil then $y \neq -z$
- else y ← NachfolgerSuche Das rechte Kind
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\ker(z) \leftarrow \ker(y)$

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $key(z) \leftarrow key(y)$

Umkopieren des Inhalts von y nach z

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Löschen(6)

Löschen(T,z)

- 1. if lc(z)=nil or rc(z)=nil then $y \leftarrow z$
- else y ← NachfolgerSuche(z)
- 3. if $lc(y) \neq nil$ then $x \leftarrow lc(y)$
- 4. else $x \leftarrow rc(y)$
- 5. if $x \neq nil$ then $p(x) \leftarrow p(y)$
- 6. if p(y)=nil then $root(T) \leftarrow x$
- 7. else if y=lc(p(y)) then $lc(p(y)) \leftarrow x$
- 8. **else** $rc(p(y)) \leftarrow x$
- 9. $\text{key}(z) \leftarrow \text{key}(y)$

Laufzeit: O(h)

Binäre Suchbäume

Binäre Suchbäume

- Ausgabe aller Elemente in O(n)
- Suche, Minimum, Maximum, Nachfolger in O(h)
- Einfügen, Löschen in O(h)

Bester Fall

- Beide Teilbäume sind vorhanden, d.h. beide Teilbäume sind gleich groß => der Baum ist vollständig balanciert
- D.h. die Höhe ist O(log n)

Schlechtester Fall

- Ein Teilbaum ist immer leer, d.h. der Baum degeneriert zu einer Liste
- D.h. die Höhe ist O(n)

Binäre Suchbäume

- Erhoffter/erwünschter Fall
 - Beide Teilbäume sind fast gleich groß => der Baum ist halbwegs balanciert
 - D.h. die Höhe ist immer noch O(log n)

Frage

- Wie kann man eine solche "kleine" Höhe unter Einfügen und Löschen garantieren?
- Dafür gibt es selbstbalancierende Suchbäume, z.B. AVL oder Rot/Schwarzbäume – dazu mehr später

Ausblick

- VL 0 "Organisation und Inhalt": Ablauf der Vorlesung, Termine
- VL 1 "Algorithmen, Pseudocode, Sortieren I": Insertion Sort
- VL 2 "Algorithmen, Pseudocode, Sortieren II": Selection Sort, Bubble Sort, Count Sort
- VL 3 "Laufzeit und Speicherplatz": Laufzeitanalyse der vorgestellten Sortierverfahren
- VL 4 "Einfache Datenstrukturen": Arrays, verkettete Listen, Structs in C, Stack, Queue
- VL 5 "Bäume": Binärbäume, Baumtraversierung, Laufzeitanalyse Baumoperationen
- VL 6 "Dateien in C": Dateien, Dateisysteme, Verzeichnisse, Dateiverwaltung mit C
- VL 7 "Teile und Herrsche I": Einführung der algorithmischen Methode, Merge Sort
- VL 8 "Korrektheitsbeweise": Rechnermodel, Beispielbeweise
- VL 9 "Prioritätenschlangen/Halden/Heaps": Heap Sort, Binärer Heap, Heap Operationen
- VL 10 "Fortgeschrittene Sortierverfahren": Quick Sort, Radix Sort
- VL 11 "AVL Bäume": Definition, Baumoperationen, Traversierung
- VL 12 "Teile und Herrsche II": Generalisierung des algorithmischen Prinzips, Mastertheorem
- VL 13 "Q & A": Offene Vorlesung/Wiederholung

