Analysis Qualifier Avinash Iyer

This is a notes document regarding essential problem-solving methods for the Analysis qualifier.

Real Analysis

August 2019 Qualifier

Problem 1

(a) Recall that the Cantor set \mathcal{C} is defined to consist of all $x \in [0,1]$ such that x only contains 0 and 2 in the ternary expansion of x. Writing $a \in [0,2]$ as

$$a = \sum_{k=0}^{\infty} \frac{a_k}{3^k},$$

where $a_k \in \{0,1,2\}$, we may then find a_k at each ternary expansion slot for k as follows:

- if $a_k = 0$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = c_k = 0$
- if $a_k = 2$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_k = 2$ and $c_k = 0$ or vice versa.
- if $a_k = 1$, we may find $b_k, c_k \in \mathcal{C}$ such that $b_{k+1} = c_{k+1} = 2$.

Therefore, since every digit of every ternary expansion in [0,2] can be obtained from \mathbb{C} , we see that $\mathbb{C} + \mathbb{C} = [0,2]$.

(b) We may set B to be the union of all integer translates of \mathbb{C} , and set A = \mathbb{C} . This yields closed subsets of \mathbb{R} with Lebesgue measure zero that sum to \mathbb{R} .

Problem 2

Consider the sequence of functions

$$f_n(x) = n \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]},$$

defined on [0,1]. This sequence is pointwise convergent everywhere to zero, as $f_n(0) = 0$ and the Archimedean property give that for any $x \in (0,1]$, there is some n large enough that gives $\frac{1}{n} < x$. Furthermore, we see that

$$\int f_n d\mu = n \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
$$= \frac{1}{n+1}$$
$$\to 0.$$

Finally, we see that by taking suprema, we have the integral

$$\int \Phi d\mu = \sum_{n=1}^{\infty} \frac{1}{n+1}$$

$$\to \infty.$$

Problem 4

Suppose toward contradiction that both f and 1/f are in $L_1(\mathbb{R})$. Then, from Hölder's Inequality, we have

$$\infty - \int 1 d\mu$$

Analysis Qualifier Avinash Iyer

$$\leqslant \left(\int f d\mu \right)^{1/2} \left(\int \frac{1}{f} d\mu \right)^{1/2} \\
< \infty.$$

which is a contradiction.

Problem 5

(a) Let $f \in L_2([-1,1])$. We may find $g \in C([-1,1])$ such that $\|f-g\|_{L_2} < \varepsilon/2$. Similarly, we may find a polynomial p such that $\|g-p\|_u < \varepsilon/4$, meaning that $|p(x)-g(x)| < \varepsilon/4$ for all $x \in [-1,1]$. This yields

$$\|\mathbf{p} - \mathbf{g}\|_{L_2} = \left(\int_{-1}^{1} |\mathbf{p}(\mathbf{x}) - \mathbf{g}(\mathbf{x})|^2 d\mathbf{x}\right)^{1/2}$$

$$< \left(\int_{-1}^{1} \left(\frac{\varepsilon}{4}\right)^2 d\mathbf{x}\right)^{1/2}$$

$$= \left(\frac{\varepsilon^2}{8}\right)^{1/2}$$

$$< \frac{\varepsilon}{2},$$

so $\|f - p\|_{L_2} < \varepsilon$, meaning that the closed linear span of the monomials is dense in L_2 , and the Legendre polynomials form an orthonormal system.

(b) We see that at every step in evaluating the expression

$$L_n(x) = c_n \frac{d^n}{dx^n} \left(x^2 - 1\right)^n, \tag{*}$$

the degree of the polynomial increases by 1, so each $L_n(x)$ has degree n. To verify that the polynomials generated from (*) are orthogonal to each other, we let n > m without loss of generality, and use integration by parts to obtain

$$\begin{split} \langle L_n, L_m \rangle &= \int_{-1}^1 \left(\frac{d^n}{dx^n} \Big(x^2 - 1 \Big)^n \right) \left(\frac{d^m}{dx^m} \Big(x^2 - 1 \Big)^m \right) dx \\ &= \frac{d^{n-1}}{dx^{n-1}} \Big(x^2 - 1 \Big)^n \frac{d^m}{dx^m} \Big(x^2 - 1 \Big)^m \bigg|_{-1}^1 - \int_{-1}^1 \frac{d^{n-1}}{dx^{n-1}} \Big(x^2 - 1 \Big)^n \frac{d^{m+1}}{dx^{m+1}} \Big(x^2 - 1 \Big)^m \ dx \\ &\vdots \\ &= (-1)^n \int_{-1}^1 \frac{d^{m+n}}{dx^{m+n}} \Big(x^2 - 1 \Big)^m \ dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} \Big(\frac{d^m}{dx^m} \Big(x^2 - 1 \Big)^m \Big) \ dx \\ &= (-1)^n \int_{-1}^1 \frac{d^n}{dx^n} L_m(x) \ dx \\ &= 0, \end{split}$$

seeing as we are taking n derivatives of a degree m < n polynomial.