Otimização irrestrita

Contents

1	Objetivos	1
2	Ótimo global e local	2
3	Recordando conceitos de Cálculo Multivariado	5
4	Soluções locais: condições de primeira ordem	7
5	Soluções locais: condições de segunda ordem	8
6	Existência de pontos ótimos	10
7	Condições para soluções globais	13
8	Funções quadráticas	14
9	Exercícios	14
10	Apêndice	15
	10.1 Prova do Teorema 4	
	10.2 Prova do Teorema 5	
	10.3 Prova do Teorema 6	
	10.4 Prova do Teorema 8	17
	10.5 Prova do Lemma 2	17

1 Objetivos

Definições de minimização, pontos de ótimo local e global. Revisão de diferenciabilidade, gradiente e Hessiana. Minimização irrestrita: condições necessárias de primeira e segunda ordem, condições suficientes de segunda ordem, ponto de sela. Revisão de matrizes positiva (semi)definidas. Existência de pontos ótimos: Teorema de Weierstrass e coercividade. Condições suficientes para pontos ótimos globais. Funções quadráticas: pontos estacionários, ótimos e coercividade.

Otimização irrestrita Page 2 of 17

2 Ótimo global e local

Neste curso, iremos estudar problemas de minimização da forma

$$\min_{x \in C} f(x)$$

onde $C \subset \mathbb{R}^n$ é um conjunto e $f: C \to \mathbb{R}$ é uma função. Frequentemente, dizemos que C é o *conjunto viável* e f é a *função objetivo*.

Definition 1 (Pontos de mínimo). Seja $f: C \to \mathbb{R}$ uma função definida num conjunto $C \subset \mathbb{R}^n$.

• Dizemos que $x^* \in C$ é um ponto de mínimo (global) de f sobre C sse

$$\forall x \in C$$
, $f(x^*) \leq f(x)$.

Neste caso, $f^* := f(x^*)$ é chamado <u>valor mínimo</u> (ou valor ótimo).

• Dizemos que $x^* \in C$ é um ponto de mínimo (global) estrito de f sobre C sse

$$\forall x \in C$$
, $f(x^*) < f(x)$.

• Dizemos que $x^* \in C$ é um ponto de mínimo local de f sobre C sse existe r > 0 tal que¹

$$\forall x \in C \cap B(x^*, r), \quad f(x^*) \leq f(x).$$

• Dizemos que $x^* \in C$ é um ponto de mínimo local estrito de f sobre C sse existe r > 0 tal que

$$\forall x \in C \cap B(x^*, r) \setminus \{x^*\}, \quad f(x^*) < f(x).$$

Remark 1 (Pontos de máximo). As definições àcima possuem equivalentes ao problema de maximização da forma

$$\max_{x \in C} f(x)$$
.

Pontos de máximo (globais, locais e estritos) e valor máximo são definidos analogamente observando que maximizar f é equivalente à minimizar -f.

$$B(x^*, r) = \{x \in \mathbb{R}^n : ||x - x^*|| \le r\}$$

denota a bola de centro x^* e raio r. Agui, $\|\cdot\|$ denota a norma Euclidiana.

¹Recorde que

Otimização irrestrita Page 3 of 17

Example 1. Considere o caso em que

$$f(x,y) = -(x+y),$$

е

$$C = \{(x, y) : x^2 + y^2 \le 1\}$$

é a bola unitária. Por Cauchy-Schwarz, temos que

$$-(x+y) = -\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ge -\sqrt{x^2 + y^2} \sqrt{1^2 + 1^2} \ge -\sqrt{2}.$$

É possível checar que $f\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)=-\sqrt{2}$. Portanto, $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ é um ponto de mínimo global de f em C. Um raciocínio análogo mostra que $\left(\frac{-1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$ é um ponto de máximo global com valor máximo $\sqrt{2}$

Example 2. Considere a função

$$f(x,y) = \frac{x+y}{x^2 + y^2 + 1}$$

definida em todo o espaço bi-dimensional $C=\mathbb{R}^2$. As curvas de contorno e gráfico da função são mostrados abaixo.

Figure 1

Figure 2.1. Contour and surface plots of $f(x,y) = \frac{x+y}{x^2+y^2+1}$.

Otimização irrestrita Page 4 of 17

Mostraremos mais tarde que essa função possui dois pontos ótimos: um maximizador global em $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ e um minimizador global em $\left(\frac{-1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$. O valor máximo é

$$\frac{\frac{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + 1} = \frac{1}{\sqrt{2}},$$

e valor mínimo $\frac{-1}{\sqrt{2}}$.

Example 3. Considere a seguinte função de uma variável definida no intervalo [-1, 8]:

$$f(x) = \begin{cases} (x-1)^2 + 2, & -1 \le x \le 1, \\ 2, & 1 \le x \le 2, \\ -(x-2)^2 + 2, & 2 \le x \le 2.5, \\ (x-3)^2 + 1.5, & 2.5 \le x \le 4, \\ -(x-5)^2 + 3.5, & 4 \le x \le 6, \\ -2x + 14.5, & 6 \le x \le 6.5, \\ 2x - 11.5, & 6.5 \le x \le 8. \end{cases}$$

Seu gráfico é plotado a seguir:

Figure 2

Figure 2.2. Local and global optimum points of a one-dimensional function.

O ponto x=-1 é um ponto de máximo global estrito. O ponto x=1 é um ponto de mínimo local não-estrito. Os pontos no intervalo (1,2) são pontos de mínimo e máximo locais não-estritos. O ponto x=2 é um ponto de máximo local não-estrito. O ponto x=3 é um ponto de mínimo local estrito e um ponto de mínimo global não-estrito. O ponto x=5 é um ponto de mínimo global não-estrito. O ponto x=6.5 é um ponto de mínimo local estrito e um ponto de mínimo global não-estrito. O ponto x=8 é um ponto de máximo local estrito.

Otimização irrestrita Page 5 of 17

3 Recordando conceitos de Cálculo Multivariado

Recordemos o conceito de gradiente de uma função de várias variáveis. Relembramos que iremos usar a convenção $\mathbb{R}^n = \mathbb{R}^{n \times 1}$.

Definition 2 (Derivada direcional). Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função e $0 \neq d \in \mathbb{R}^n$. Se o limite

$$\lim_{t\to 0^+} \frac{f(x+td)-f(x)}{t}$$

existe, então ele é chamado de derivada direcional de f ao longo da direção d, e denotada por f'(x;d).

Quando existente, para cada $i \in [n]$, a i-ézima derivada parcial de f no ponto $x \in \mathbb{R}^n$ é o limite

$$\frac{\partial f}{\partial x_i}(x) := f'(x; e_i) = \lim_{t \to 0^+} \frac{f(x + te_i) - f(x)}{t}.$$

Definition 3 (Gradiente). Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função e suponha que existam todas as derivadas parciais no ponto $x \in \mathbb{R}^n$. O gradiente de f em x é o vetor coluna $\nabla f(x) \in \mathbb{R}^{n \times 1}$ com i-ézima coordenada $\frac{\partial f}{\partial x_i}(x)$. Isto é:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}.$$

Remark 2 (Funções continuamente diferenciáveis). Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é dita *continuamente diferenciável* se existem todas derivadas parciais $\frac{\partial f}{\partial x_i}(x)$ em todo ponto $x \in \mathbb{R}^n$ e, além disso, as funções $\frac{\partial f}{\partial x_i}: \mathbb{R}^n \to \mathbb{R}$ são contínuas.

Podemos também expressar uma definição similar para uma função $f:C\to\mathbb{R}$ definida num conjunto $C\subset\mathbb{R}^n$. Dizemos que $f:C\to\mathbb{R}$ é continuamente diferenciável em C se existem $U\supset C$ conjunto aberto² tal que todas derivadas parciais $\frac{\partial f}{\partial x_i}(x)$ em todo ponto $x\in U$ e, além disso, as funções $\frac{\partial f}{\partial x_i}:U\to\mathbb{R}$ são contínuas.

Remark 3 (Aproximação de primeira ordem). Suponha que $f:U\to\mathbb{R}$ é uma função continuamente diferenciável no conjunto $U\subset\mathbb{R}^n$ aberto e seja $x\in U$. Uma propriedade importante vista em Cálculo é de que

$$\forall d \in \mathbb{R}^n, \quad f'(x; d) = \nabla f(x)^\top d.$$

Esta fórmula é de grande utilidade computacional: conseguimos exprimir um limite f'(x;d) em termos de uma fórmula algébrica que pode ser implementada num programa de computador.

²Informalmente, um conjunto aberto é um conjunto "sem fronteiras". Este detalhe técnico é preciso porque para derivadas serem definidads eu preciso de uma vizinhança em que o limite quociente faça sentido. Não exploraremos este tipo de detalhe neste curso.

Otimização irrestrita Page 6 of 17

Uma segunda propriedade relacionada àcima, também vista em Cálculo, permite aproximar, para qualquer y numa vizinhança próxima de x, o valor funcional f(y) pela função afim

$$y \mapsto f(x) + \nabla f(x)^{\top} (y - x).$$

Note que a função f pode ser complexa, mas a função afim aproximada é simples de computar. Rigorosamente, para qualquer $y \in \mathbb{R}^n$,

$$\lim_{y \to x} \frac{f(y) - \left[f(x) + \nabla f(x)^{\top} (y - x)\right]}{\|y - x\|} = 0.$$

Frequentemente, em Análise Numérica e Computação reescrevemos o limite àcima usando a seguinte notação: $o(\cdot): \mathbb{R}_+ \to \mathbb{R}$ denota uma funcão uni-dimensional satisfazendo a propriedade: $\lim_{t\to 0^+} \frac{o(t)}{t} = 0$. Assim, podemos escrever

$$f(y) - [f(x) + \nabla f(x)^{\mathsf{T}} (y - x)] = o(\|y - x\|), \tag{1}$$

e dizemos que o 'resto' da aproximação é da ordem de o(||y - x||).

Veremos que esta idéia 'simples' está por trás de vários métodos de otimização que usam 'informação de primeira ordem'. O algoritmo representativo é o *método do gradiente*.

Definition 4 (Hessiana). Seja $f: U \to \mathbb{R}$ uma função duas vezes derivável no conjunto $U \subset \mathbb{R}^n$ aberto e seja $x \in U$. A Hessiana de f em x é a matrix $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ com entradas $[\nabla^2 f(x)]_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_i}(x)$. Isto é:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \vdots \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x) \end{bmatrix}.$$

Remark 4 (Funções duas vezes continuamente diferenciáveis). Podemos também expressar uma definição similar para uma função $f:C\to\mathbb{R}$ definida num conjunto $C\subset\mathbb{R}^n$. Dizemos que $f:C\to\mathbb{R}$ é duas continuamente diferenciável em C se existem $U\supset C$ conjunto aberto tal que existem todas derivadas parciais de primeira e segunda ordem em todo ponto $x\in U$ e, além disso, as funções $\frac{\partial^2 f}{\partial x_i \partial x_i}:U\to\mathbb{R}$ são contínuas.

Um resultado fundamental do Cálculo é o Teorema de Schwarz que diz que, se f é continuamente duas vezes diferenciável em U, então, para todo $x \in U$, a Hessiana $\nabla^2 f(x)$ é simétrica:

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x), \quad \forall (i, j).$$

Remark 5 (Aproximação de segunda ordem). Seja $f: U \to \mathbb{R}$ uma função duas vezes continuamente diferenciável num conjunto aberto $U \subset \mathbb{R}^n$. Seja $x \in U$. Neste caso, existem fórmulas mais precisas

Otimização irrestrita Page 7 of 17

do que (1) para aproximar a função numa vizinhança de x. De fato, podemos aproximar, para qualquer y numa vizinhança próxima de x, o valor funcional f(y) pela função quadrática

$$y \mapsto f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x),$$

que, novamente, pode ser computada com certa facilidade num computador. Mais precisamente, pode-se mostrar que, para qualquer $y \in \mathbb{R}^n$,

$$\lim_{y \to x} \frac{f(y) - \left[f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x) \right]}{\|y - x\|^2} = 0.$$

Equivalentemente,

$$f(y) - \left[f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x) (y - x) \right] = o(\|y - x\|^2).$$

Note que o 'resto' da aproximação é da ordem de $o(\|y - x\|^2)$ e portanto significadamente menor do que no caso uma vez diferenciável. Por outro lado, calcular uma quadrática é mais dispendioso do que uma função afim quando n é muito grande.

Está idéia é o que motiva métodos de otimização que usam 'informação de segunda ordem' como o *método de Newton*.

Terminamos com uma forma alternativa de aproximação de segunda ordem.

Theorem 1. Seja $f: U \to \mathbb{R}$ uma função duas vezes continuamente diferenciável num conjunto aberto $U \subset \mathbb{R}^n$. Seja $x \in U$ e r > 0 tais que $B(x, r) \subset U$. Então para todo $y \in B(x, r)$, existe $\xi \in [x, y]$ tais que

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (y - x)^{\top} \nabla^2 f(\xi) (y - x).$$

4 Soluções locais: condições de primeira ordem

Nesta aula, focaremos em problemas de minimização irrestritos. Isto é, da forma

$$\min_{x\in\mathbb{R}^n}f(x).$$

Isto permitirá focar-nos apenas no comportamento da função objetivo. Veremos em outras aulas a influência do conjunto viável.

Um resultado bem conhecido do cálculo de uma variável é o seguinte. Seja f uma função diferenciável de uma variável definida num intervalo aberto (a, b). Se $x^* \in (a, b)$ é um ponto de máximo ou mínimo local então

$$f'(x^*)=0.$$

Iremos generalizar este resultado para o caso multivariado usando o conceito de gradiente.

Otimização irrestrita Page 8 of 17

Theorem 2 (Condições de primeira ordem). Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Se $x^* \in U$ é um ponto ótimo local e todas as derivadas parciais de f existem em x^* , então

$$\nabla f(x^*) = 0.$$

Prova. Seja $i \in [n]$ e defina a função $g(t) = f(x^* + te_i)$. Temos que g é diferenciável em 0 e $g'(0) = \frac{\partial f}{\partial x_i}(x^*)$. Sendo x^* um ponto ótimo local de f, segue que 0 é um ponto ótimo local de g; portanto $0 = g'(0) = \frac{\partial f}{\partial x_i}(x^*)$. O argumento vale para todo $i \in [n]$, implicando que $\nabla f(x^*) = 0$. \square

O teorema anterior oferece uma condição *necessária* para um ponto ser ótimo local — permitindo restringir a busca de tais pontos. Entretanto, tal condição pode não ser *suficiente*. Um exemplo é a função $f(x) = x^3$ em x = 0. Temos que f'(0) = 0 mas 0 não é um ponto ótimo local.

Definition 5. Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Suponha que $x^* \in U$ e que todas as derivadas parciais de f existem em x^* . Dizemos que x^* é um ponto estacionário de f se

$$\nabla f(x^*) = 0.$$

Concluindo, o Teorema 2 diz que pontos ótimos locais são estacionários, mas podem existir pontos estacionários que não são pontos ótimos locais.

5 Soluções locais: condições de segunda ordem

Um outro resultado bem conhecido é o seguinte. Seja f uma função de uma variável continuamente duas vezes derivável no intervalo aberto (a, b). Suponha que $x^* \in (a, b)$ é um ponto estacionário de f tal que

$$f''(x^*) > 0.$$

Então x^* é um ponto de mínimo local de f em (a, b). A seguir, iremos generalizar este resultado para o caso multivariado usando o conceito de Hessiana. Para tanto, precisamos definir a noção de "positividade" para matrizes simétricas.

Definition 6. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica.

• Dizemos que A é positiva semidefinida, denotando-se por $A \succeq 0$, se³

$$\forall x \in \mathbb{R}^n, \quad x^{\top} A x \ge 0.$$

• Dizemos que A é positiva definida, denotando-se por $A \succ 0$, se

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \quad x^\top Ax > 0.$$

³Recorde que A^{\top} denota a matrix transposta da matrix A. Além disso, $\langle x,y\rangle:=x^{\top}y$ define o produto interno canônico em \mathbb{R}^n .

Otimização irrestrita Page 9 of 17

• Dizemos que a matriz simétrica A é <u>negativa</u> (semi)definida, denotando-se por $A \leq 0$ (A < 0), se -A é positiva (semi)definida.

• Dizemos que a matriz simétrica A é <u>indefinida</u> se existem $x, y \in \mathbb{R}^n$ tais que $x^T A x > 0$ e $y^T A y < 0$.

Em outras palavras, A é indefinida se não é nem positiva ou negativa semidefinida. Ao nos referir a positividade ou negatividade de matrizes, assumiremos que a matriz é simétrica.

Example 4. Seja

$$A = \left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right].$$

Para todo $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\top$,

$$x^{\top}Ax = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_1^2 - 2x_1x_2 + x_2^2 = x_1^2 + (x_1 - x_2)^2 \ge 0.$$

Portanto, $A \succeq 0$. De fato, como $x_1^2 + (x_1 - x_2)^2 = 0$ sse $x_1 = x_2 = 0$ tem-se que $A \succ 0$.

Example 5. Seja

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right].$$

Para todo $x = \begin{bmatrix} 1 & -1 \end{bmatrix}^{\mathsf{T}}$,

$$x^{\top}Ax = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -2.$$

Portanto, A não é positiva definida. Como $e_1^{\top}Ae_1=A_{11}=1$, também A não é negativa definida. Portanto, A é indefinida.

Os exemplos anteriores mostram que não podemos inferir a positivade/negatividade de uma matriz apenas verificando a positividade/negatividade de seus elementos. Entretanto, como mencionado no Ex. 3, se a matriz é positiva (semi)definida então os elementos de sua diagonal são positivos (não-negativos). Além disso, se a matriz tem um elemento positivo e um elemento negativo na diagonal, então tal matriz é indefinida. Veja Ex. 4. Usando o Teorema Espectral de Álgebra Linear, a caracterização de positividade de uma matrix simétrica é equivalente à positividade de seus auto-valores, conforme enunciado no teorema à seguir.

Theorem 3. Seja matriz simétrica $A \in \mathbb{R}^{n \times n}$. Então

- (i) $A \succeq 0$ sse todos autovalores de A são não-negativos.
- (ii) $A \succ 0$ sse todos autovalores de A são positivos.

Otimização irrestrita Page 10 of 17

(iii) A é indefinida sse A possui um autovalor negativo e um auto-valor positivo.

Theorem 4 (Condições necessárias de segunda ordem). Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Suponha que f é continuamente duas vezes diferenciável sobre U e seja $x^* \in U$. Então

- (i) Se x^* é um ponto de mínimo local, então $\nabla^2 f(x^*) \succeq 0$.
- (ii) Se x^* é um ponto de máximo local, então $\nabla^2 f(x^*) \leq 0$.

Note que as condições anteriores são necessárias mas não suficientes. Por exemplo, tome a função $f(x) = x^3$. Temos f''(0) = 0, mas 0 não é nem ponto de máximo nem de mínimo.

Theorem 5 (Condições suficientes de segunda ordem). Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Suponha que f é continuamente duas vezes diferenciável sobre U e seja $x^* \in U$ um ponto estacionário de f. Então

- (i) Se $\nabla^2 f(x^*) \succ 0$, então x^* é um ponto de mínimo local estrito.
- (ii) Se $\nabla^2 f(x^*) \prec 0$, então x^* é um ponto de máximo local estrito.

Notemos que a condição suficiente do Teorema 5 refere-se a pontos ótimos estritos. Entretanto, conforme o Teorema 4, positividade *estrita* da Hessiana num ponto mínimo local não ocorre necessariamente — apenas semi-positividade é garantida. Por exemplo, a função $f(x) = x^4$ tem como 0 um ponto de mínimo estrito, mas f''(0) = 0 não é positiva.

Definition 7 (Ponto de sela). Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Suponha que f é continuamente duas vezes diferenciável sobre U. Um ponto estacionário $x^* \in U$ de f é chamado ponto de sela de f em U se não é nem um ponto de mínimo nem um ponto de máximo de f em U.

Theorem 6 (Condições suficiente para ponto de sela). Seja $f: U \to \mathbb{R}$ uma função definida no conjunto aberto $U \subset \mathbb{R}^n$. Suponha que f é continuamente duas vezes diferenciável sobre U e seja $x^* \in U$ um ponto estacionário de f. Se $\nabla^2 f(x^*)$ é indefinida, então x^* é um ponto de sela.

O leitor curioso pode ver as demonstrações dos teoremas no Apêndice.

6 Existência de pontos ótimos

Até agora assumimos que existem pontos de mínimos/máximos. Nessa seção apresentamos alguns critérios sobre o problema de otimização que permitem garantir a existência de pontos ótimos.

Recorde que um conjunto $C \subset \mathbb{R}^n$ é compacto se é fechado e limitado.⁴

⁴Um conjunto $C \subset \mathbb{R}^n$ é fechado seu complementar C^c é aberto. Tal conjunto C é limitado se existe r > 0 tal que $C \subset B[0, r]$.

Theorem 7 (Weierstrass). Seja uma função contínua definida sobre um conjunto compacto $C \subset \mathbb{R}^n$. Então f possui um ponto de mínimo global e um ponto de máximo global em C.

Quando o conjunto não é compacto o Teorema de Weierstrass não garante a existência de pontos ótimos. Nesse caso, a propriedade de *coercividade* da função pode ser usada. Informalmente, uma função é coerciva se seu gráfico tem a forma de um "tanque" em que podemos encher de água sem nunca transbordar.

Definition 8 (Coercividade). Seja $f : \mathbb{R}^n \to \mathbb{R}$ uma função contínua definida sobre \mathbb{R}^n . A função f é dita coerciva se⁵

$$\lim_{\|x\|\to\infty} f(x) = \infty.$$

Theorem 8 (Existência de soluções: coercividade). Seja $f : \mathbb{R}^n \to \mathbb{R}$ uma função contínua e coerciva e $C \subset \mathbb{R}^n$ um conjunto fechado não-vazio. Então f tem um mínimo global em C.

Example 6. Considere a função

$$f(x_1, x_2) = x_1^2 + x_2^2$$
,

e conjunto

$$C = \{(x_1, x_2) : x_1 + x_2 \le -1\}.$$

O conjunto C é fechado mas não-compacto, portanto, não podemos usar o Teorema de Weierstrass. Entretanto, a função f é coerciva, seguindo que existe ponto de mínimo global.

Temos duas possibilidades. Em primeiro lugar, se existe um ponto de mínimo x no interior $int(C) = \{(x_1, x_2) : x_1 + x_2 < -1\}$, então do Teorema 2 devemos ter $\nabla f(x) = 0$, implicando que x = 0. Entretanto, $0 \notin C$, sendo um absurdo.

Em segundo lugar, devemos então ter um ponto de mínimo x na fronteira $\partial C = \{(x_1, x_2) : x_1 + x_2 = -1\}$ de C. Substituindo $x_1 = -x_2 - 1$, transformamos o problema em minimizar a função unidimensional $g(x_2) = (-1 - x_2)^2 + x_2^2$ sobre \mathbb{R} . A solução de $0 = g'(x_2) \equiv 2(1 + x_2) + 2x_2$ é $x_2^* = -0.5$. Substituindo $x_1^* = -x_2^* - 1 = -0.5$, segue que $(x_1^*, x_2^*) = (-0.5, -0.5)$ é um ponto de mínimo de f sobre C.

Nos exemplos anteriores minimizamos uma função sem restrições. No exemplo anterior o conjunto de restrições impacta diretamente o conjunto de mínimos. Voltaremos neste ponto no próximos capítulos. Para o exemplo à seguir usaremos o seguinte resultado.

Proposition 1. Seja A uma matriz simétrica 2×2 . Temos que A é positiva semidefinida (definida) sse $tr(A) \ge 0$ e $det(A) \ge 0$ (tr(A) > 0 e det(A) > 0).

Example 7. Considere a função

$$f(x_1, x_2) = 2x_1^3 + 3x_2^2 + 3x_1^2x_2 - 24x_2$$

⁵Aqui denotemos a norma $||x|| = \sqrt{x^{\top}x}$.

Otimização irrestrita Page 12 of 17

sobre todo o espaço bidimensional \mathbb{R}^2 . Acharemos e classificaremos todos os pontos estacionários de de f sobre \mathbb{R}^2 . Temos

$$\nabla f(x_1, x_2) = \begin{bmatrix} 6x_1^2 + 6x_1x_2 \\ 6x_2 + 3x_1^2 - 24 \end{bmatrix}.$$

Os pontos estacionários são a solução do sistema:

$$6x_1^2 + 6x_1x_2 = 0,$$

$$6x_2 + 3x_1^2 - 24 = 0.$$

A primeira equação é equivalente a $x_1 = 0$ ou $x_1 + x_2 = 0$. Se $x_1 = 0$, da segunda equação tem-se $x_2 = 4$. Se $x_1 + x_2 = 0$, substituindo-se na segunda equação tem-se $3x_1^2 - 6x_1 - 24 = 0$. Obtemos as soluções $x_1 = 4$, -2. Em conclusão, os pontos estacionários de f são

$$(0,4), (4,-4), (-2,2).$$

A Hessiana de f é

$$\nabla^2 f(x_1, x_2) = 6 \begin{bmatrix} 2x_1 + x_2 & x_1 \\ x_1 & 1 \end{bmatrix}.$$

Para o ponto estacionário (0, 4),

$$\nabla^2 f(0,4) = 6 \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \succ 0,$$

portanto (0,4) é um ponto de mínimo local estrito. Ele não é um ponto de mínimo global já que f não é limitada por baixo:

$$f(x_1, 0) = 2x_1^3 \to -\infty$$
 quando $x_1 \to -\infty$.

Para o ponto estacionário (4, -4),

$$\nabla^2 f(4, -4) = 6 \begin{bmatrix} 4 & 4 \\ 4 & 1 \end{bmatrix}.$$

Como $\det(\nabla^2(4,-4)) = -6^2 \cdot 12 < 0$, temos que $\nabla^2(4,-4)$ não é positiva semidefinida. Também, $\nabla^2(4,-4)$ possui elemento diagonal positivo, logo não é negativa semidefinida. Segue que $\nabla^2(4,-4)$ é indefinida e (4,-4) é um ponto de sela.

Para o ponto estacionário (-2, 2),

$$\nabla^2 f(-2,2) = 6 \begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix},$$

que é indefinida já que possui elementos na diagonal positivos e negativos. Segue que (-2,2) é um ponto de sela.

Example 8. Retornemos ao Exemplo 2, obteremos os pontos estacionários da função

$$f(x,y) = \frac{x+y}{x^2 + y^2 + 1}.$$

Temos

$$\nabla f(x,y) = \frac{1}{(x^2 + y^2 + 1)^2} \begin{bmatrix} x^2 + y^2 + 1 - 2(x+y)x \\ x^2 + y^2 + 1 - 2(x+y)y \end{bmatrix}.$$

Os pontos estacionários são a solução do sistema:

$$-x^{2} - 2xy + y^{2} = -1,$$

$$x^{2} - 2xy - y^{2} = -1.$$

Adicionando as duas equações obtemos $xy=\frac{1}{2}$. Subtraindo-as, obtemos $x^2=y^2$, implicando que x=y. Portanto, $x^2=\frac{1}{2}$. Concluímos que os pontos estacionários de f são

$$(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

Para o ponto estacionário $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, note que $f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}$. Em seguida,

$$f(x,y) = \frac{x+y}{x^2+y^2+1} \le \sqrt{2} \frac{\sqrt{x^2+y^2}}{x^2+y^2+1} \le \sqrt{2} \max_{t \ge 0} \frac{t}{t^2+1},$$

onde usamos Cauchy-Schwarz. Para todo $t \ge 0$, $t^2+1 \ge 2t$, implicando que $f(x,y) \le \frac{1}{\sqrt{2}}$ para todo $(x,y) \in \mathbb{R}^2$. Segue que $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ atinge o ponto de máximo sendo portanto um ponto de máximo global.

Um argumento análogo mostra que $(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})$ é ponto de mínimo global.

7 Condições para soluções globais

As condições anteriores referem-se apenas a pontos de ótimos locais: temos informação do sinal da Hessiana na vizinhança de um ponto. Quando a Hessiana é positiva semidefinida em todo ponto, então os pontos estacionários são pontos de mínimo globais. De fato, veremos futuramente que esta propriedade implica convexidade da função.

Theorem 9. Seja $f: \mathbb{R}^n \to \mathbb{R}$ função duas vezes continuamente diferenciável. Suponha que

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathbb{R}^n.$$

Então, todo ponto estacionário $x^* \in \mathbb{R}^n$ de f é um ponto de mínimo global.

Prova. Pelo Teorema 1, para todo $x \in \mathbb{R}^n$, existe $\xi_x \in [x^*, x]$ tal que

$$f(x) - f(x^*) = \frac{1}{2}(x - x^*)\nabla^2 f(\xi_x)(x - x^*).$$

Para todo $x \in \mathbb{R}^n \ \nabla^2 f(\xi_x) \succeq 0$. Temos que

$$\forall x \in \mathbb{R}^n$$
, $f(x) \ge f(x^*)$,

e, portanto, x^* é ponto de mínimo global de f.

Otimização irrestrita Page 14 of 17

8 Funções quadráticas

Um caso clássico é quando temos uma função quadrática, isto é, da forma

$$f(x) = x^{\top} A x + 2b^{\top} x + c,$$

onde $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$. O gradiente e Hessiana podem ser expressos como (veja Ex. 5)

$$\nabla f(x) = 2Ax + 2b$$

$$\nabla^2 f(x) = 2A.$$

Usando estas fórmulas, podemos caracterizar os pontos estacionários e pontos ótimos de uma função quadrática.

Lemma 1 (Pontos estacionários e ótimos de função quadrática). *Seja uma função como àcima com A simétrica. Então*

- (i) x é ponto estacionário sse Ax = -b.
- (ii) Suponha que $A \succeq 0$. Então x é ponto de mínimo global sse Ax = -b.
- (iii) Suponha que $A \succ 0$. Então $x = -A^{-1}b$ é ponto de mínimo global estrito.
- Prova. (i) Segue imediatamente da fórmula do gradiente.
- (ii) Suponha que $A \succeq 0$. Da formula da Hessiana, segue que $\nabla^2 f(x) \succeq 0$ para todo $x \in \mathbb{R}^n$. O resultado segue então do Teorema 9 e item (i).
- (iii) Suponha que A > 0. Então $x = -A^{-1}b$ é a única solução de Ax = -b. Segue do item (ii) que $x = -A^{-1}b$ é o único ponto de mínimo global de f e, portanto, mínimo global estrito.

Concluímos com a caracterização da coercividade de funções quadráticas.

Lemma 2 (Coercividade de funções quadráticas). Seja função $f(x) = x^{T}Ax + 2b^{T}x + c$, onde $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, $b \in \mathbb{R}^{n}$ e $c \in \mathbb{R}$. Então f é coerciva sse $A \succ 0$.

9 Exercícios

Exercise 1. Considere a função

$$f(x) = 3x^4 - 20x^3 + 42x^2 - 36x.$$

Justificando, ache seus pontos de mínimo locais e globais. *Dica*: mostre que $\lim_{|x|\to\infty} f(x) = \infty$, implicando que f tem mínimo global.

Otimização irrestrita Page 15 of 17

Exercise 2. Refaça o Exemplo 8, mas desta vez achando os pontos estacionários e analizando suas matrizes hessianas.

Exercise 3. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica. Mostre que se A possui um elemento diagonal negativo entao A não é positiva definida. Analogamente, mostre que se A possui um elemento diagonal positivo entao A não é negativa definida.

Exercise 4. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica. Mostre que se A possui um elemento diagonal negativo e um elemento diagonal positivo entao A é indefinida.

Exercise 5. Verifique que o gradiente e Hessiana da função

$$f(x) = x^{\top} A x + 2b^{\top} x + c,$$

onde $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$, são expressos por:

$$\nabla f(x) = 2Ax + 2b$$
$$\nabla^2 f(x) = 2A.$$

10 Apêndice

10.1 Prova do Teorema 4

Provaremos apenas (i) já que o item (ii) segue do item (i) aplicado à função -f. Sendo x^* um ponto de mínimo local, existe bola $B(x^*, r) \subset U$ tal que

$$\forall x \in B(x^*, r), \quad f(x) \ge f(x^*).$$

Seja $0 \neq d \in \mathbb{R}^n$. Para todo $0 < \alpha < \frac{r}{\|d\|}$, $x_{\alpha}^* := x^* + \alpha d \in B(x^*, r)$ e portanto

$$f(x_{\alpha}^*) \ge f(x^*). \tag{2}$$

Pelo Teorema 1, existe $\xi_{\alpha} \in [x^*, x_{\alpha}^*]$ tal que

$$f(x_{\alpha}^*) - f(x^*) = \nabla f(x^*)^{\top} (x_{\alpha}^* - x^*) + \frac{1}{2} (x_{\alpha}^* - x^*)^{\top} \nabla^2 f(\xi_{\alpha}) (x_{\alpha}^* - x^*).$$

Sendo x^* um ponto estacionário $(\nabla f(x^*) = 0)$ segue que

$$f(x_{\alpha}^*) - f(x^*) = \frac{\alpha^2}{2} d^{\top} \nabla^2 f(\xi_{\alpha}) d. \tag{3}$$

Combinando (2)-(3) obtemos que para todo $0 < \alpha < \frac{r}{\|d\|}$,

$$d^{\top}\nabla^2 f(\xi_{\alpha})d \geq 0.$$

Usando que $z_{lpha} o x^*$ quando $lpha o 0^+$ e por continuidade da Hessiana, segue que

$$d^{\top}\nabla^2 f(x^*)d \geq 0.$$

Otimização irrestrita Page 16 of 17

10.2 Prova do Teorema 5

Provaremos apenas (i) já que o item (ii) segue do item (i) aplicado à função -f.

Seja x^* um ponto estacionário tal que $\nabla^2 f(x^*) \succ 0$. Sendo a Hessiana contínua, segue que existe bola $B(x^*,r) \subset U$ tal que $\nabla^2 f(x) \succ 0$ para todo $x \in B(x^*,r)$. Pelo Teorema 1 segue que, para todo $x \in B(x^*,r)$, existe $\xi_x \in [x^*,x] \subset B(x^*,r)$ tal que

$$f(x) - f(x^*) = \frac{1}{2}(x - x^*)^{\top} \nabla^2 f(\xi_x)(x - x^*).$$

Tem-se $\nabla^2 f(\xi_x) \succ 0$ para todo $x \in B(x^*, r)$. Segue que

$$\forall x \neq x^*, \quad f(x) > f(x^*),$$

isto é, que x^* é ponto de mínimo local.

10.3 Prova do Teorema 6

Seja $\nabla^2 f(x^*)$ é indefinida. Portanto, $\nabla^2 f(x^*)$ possui auto-valor positivo λ_1 associado ao auto-vetor v_1 com norma $||v_1|| = 1$. Sendo U aberto, existe r > 0 tal que $x^* + \alpha v_1 \in U$ para todo $\alpha \in (0, r)$. Pelo Teorema **??** e usando que $\nabla f(x^*) = 0$, sabemos que existe função $o : \mathbb{R}_+ \to \mathbb{R}$ satisfazendo

$$\lim_{t \to 0} \frac{o(t)}{t} = 0,\tag{4}$$

tal que para todo $\alpha \in (0, r)$,

$$f(x^* + \alpha v_1) = f(x^*) + \frac{\alpha^2}{2} v_1^{\top} \nabla^2(x^*) v_1 + o(\alpha^2 ||v_1||^2)$$

$$= f(x^*) + \frac{\lambda_1 \alpha^2}{2} ||v_1||^2 + o(\alpha^2 ||v_1||^2)$$

$$= f(x^*) + \frac{\lambda_1 \alpha^2}{2} + o(\alpha^2).$$

De (4), segue que existe $\epsilon_1 \in (0, r)$ tal que

$$\forall \alpha \in (0, \epsilon_1), \quad g(\alpha^2) > -\frac{\lambda_1 \alpha^2}{2}.$$

Portanto,

$$\forall \alpha \in (0, \epsilon_1), \quad f(x^* + \alpha v_1) > f(x^*).$$

Isto implica que x^* não pode ser um máximo local sobre U.

Um argumento análogo usando que $\nabla^2 f(x^*)$ tem auto-valor negativo $\lambda_2 < 0$ associado a um auto-vetor v_2 de norma 1, mostra que existe $\epsilon_2 \in (0, r)$ tal que

$$\forall \alpha \in (0, \epsilon_2), \quad f(x^* + \alpha v_2) < f(x^*).$$

Portanto, x^* não pode ser ponto de mínimo local sobre U.

Otimização irrestrita Page 17 of 17

10.4 Prova do Teorema 8

Seja $x_0 \in C$ um ponto arbitrário. Como f é coerciva, segue que existe M > 0 tal que

$$f(x) > f(x_0)$$
 para todo x tal que $||x|| > M$.

Temos que x^* é um ponto de mínimo global de f sobre C. Portanto $f(x^*) \ge f(x_0)$. Segue da afirmação em diplay que o conjunto de mínimos globais de f sobre C é exatamente o conjunto de mínimos globais de f sobre $C \cap B[0, M]$. O conjunto $C \cap B[0, M]$ é fechado e limitado, portanto compacto. Segue do Teorema de Weierstrass que f possui ponto de mínimo global sobre $C \cap B[0, M]$, e portanto, sobre C também.

10.5 Prova do Lemma 2

Necessitaremos do seguinte lemma, que decorre to Teorema Espectral visto em Álgebra Linear.

Lemma 3. Seja $A \in \mathbb{R}^{n \times n}$ simétrica. Então, para todo $x \neq 0$,

$$\lambda_{\min}(A) \leq \frac{x^{\top}Ax}{\|x\|^2} \leq \lambda_{\max}(A).$$

 (\Leftarrow) . Suponha que $A \succ 0$. Denote $\alpha := \lambda_{\min}(A)$. Pelo lem1a àcima e Cauchy-Schwarz, segue que, para todo $x \in \mathbb{R}^n$,

$$f(x) = x^{T} A x + 2b^{T} x + c$$

$$\geq \alpha ||x||^{2} - 2||b|| ||x|| + c.$$

Segue que $f(x) \to \infty$ quando $||x|| \to \infty$; isto é, f é coerciva.

 (\Longrightarrow) . Suponha que f é coerciva. Suponha que A tenha auto-valores negativos. Portanto, existem $v \neq 0$ e $\lambda < 0$ tais que $Av = \lambda v$. Portanto, para todo $\alpha \in \mathbb{R}$,

$$f(\alpha v) = \lambda ||v||^2 \alpha^2 + 2(b^\top v)\alpha + c \to -\infty \text{ as } \alpha \to \infty.$$

Isto contradiz a hipótese de coercividade. Portanto, A possui todos auto-valores não-negativos.

Provaremos agora que 0 não é auto-valor de A, provando que $A \succ 0$. Assuma que exista $v \neq 0$ tal que Av = 0. Então, para todo $\alpha \in \mathbb{R}$,

$$f(\alpha v) = 2(b^{\top}v)\alpha + c.$$

Temos que

$$f(\alpha v) o egin{cases} c, & ext{as } lpha o \infty ext{ se } b^{ op} v = 0, \ -\infty, & ext{as } lpha o -\infty ext{ se } b^{ op} v > 0, \ -\infty, & ext{as } lpha o \infty ext{ se } b^{ op} v < 0. \end{cases}$$

Em qualquer caso contradizemos a hipótese de que f é coerciva. Portanto, 0 não pode ser auto-valor de A.