A desigualdade isoperimétrica optimal em variedades de Cartan-Hadamard e a conjectura de Aubin

Marcos Agnoletto Forte

2021

Universidade Federal do ABC Centro de Matemática, Computação e Cognição

Marcos Agnoletto Forte

A desigualdade isoperimétrica optimal em variedades de Cartan-Hadamard e a conjectura de Aubin

Orientador: Porf. Dr. Stefano Nardulli

Coorientador: Prof. Dr. Márcio Fabiano da Silva

Uma *variedade de Cartan-Hadamard* é uma variedade Riemanniana completa, simplesmente conexa e com curvatura seccional não-positiva em todo ponto.

A desigualdade isoperimétrica em \mathbb{R}^2 :

$$L^2 \geq 4\pi A$$

Conjectura de Cartan-Hadamard

Para M uma variedade de Cartan-Hadamard n-dimensional e $\Omega \subset M$ um conjunto limitado, vale a seguinte desigualdade isoperimétrica

$$per(\Omega)^n \ge \frac{per(\mathbb{B}^n)^n}{vol(\mathbb{B}^n)^{n-1}} vol(\Omega)^{n-1},$$
 (1)

onde \mathbb{B}^n é uma bola unitária em \mathbb{R}^n e per é o perímetro, com igualdade somente se Ω é uma bola em \mathbb{R}^n ?

Andre Weil (1927) [Ber02]

Em 1927 Andre Weil, que era estudante de Hadamard nesta época, provou que a desigualdade isoperimétrica vale para variedades de Cartan-Hadamard de dimensão n=2.

Thierry Aubin (1976) [Aub76]

Mikhail Gromov (1981) [Mik81]

Yuri Burago (1988) [BV88]

Viktor Zalgaller (1988) [BV88]

Nos anos 70 e 80 Aubin, Gromov, Burago e Zalgaller conjecturaram que a desigualdade isoperimétrica (1) poderia valer para variedades de Cartan-Hadamard de dimensão $n \ge 2$.

Christopher B. Croke (1984) [Cro84]

O caso n = 4 foi provado por Christopher Croke em 1984.

Bruce Kleiner (1992) [Kle92]

O caso n=3 foi provado por Bruce Kleiner em 1992. A conjectura é um problema em aberto para dimensões $n\geq 5$.

Desigualdade para curvatura total

Para M uma variedade de Cartan-Hadamard n-dimensional e $\Gamma \subset M$ uma hipersuperfície convexa de classe $\mathcal{C}^{1,1}$, vale a seguinte desigualdade

$$\mathcal{G}(\Gamma) \ge vol(\mathbb{S}^{n-1}),$$
 (2)

onde \mathbb{S}^{n-1} denota a esfera unitária em \mathbb{R}^n e *vol* é o volume?

No artigo [Kle92] Kleiner prova que a desigualdade para a curvatura total implica a conjectura de Cartan-Hadamard no caso de dimensão n=3 e então ele prova a desigualdade para a curvatura total no caso de dimensão n=3.

O caso de dimensão 3:

$$\int_{\Gamma} K_{\Gamma} d\sigma = 4\pi$$

(Teorema de Gauss-Bonnet)

$$GK = K_{\Gamma}(E_1, E_2) - K_{M}(E_1, E_2)$$
 (Equação de Gauss)

$$\mathcal{G}(\Gamma) = \int_{\Gamma} \mathsf{G} \mathsf{K} \mathsf{d} \sigma = \int_{\Gamma} \mathsf{K}_{\Gamma} \mathsf{d} \sigma - \int_{\Gamma} \mathsf{K}_{M} \mathsf{d} \sigma = 4\pi - \int_{\Gamma} \mathsf{K}_{M} \mathsf{d} \sigma \geq 4\pi = \mathsf{vol}(\mathbb{S}^{2})$$

(Desigualdade para curvatura total 3-dimensional)

O caso de dimensão 2:

$$\int_{\Gamma} extstyle{\mathsf{K}}_{\Gamma} extstyle{\mathsf{d}} s \geq 2\pi.$$
 (Teorema de Fenchel ($M=\mathbb{R}^2$))

$$\int_{\Gamma} K_{\Gamma} ds \geq 2\pi - \int_{T} K_{M} dA$$
 (Teorema de Fenchel estendido)

 \Downarrow

$$\mathcal{G}(\Gamma) = \int_{\Gamma} K_{\Gamma} ds \geq 2\pi - \int_{T} K_{M} dA \geq 2\pi = vol(\mathbb{S}^{1}).$$

(Desigualdade para curvatura total 2-dimensional)

Mohammad Ghomi [GS21]

Joel Spruck [GS21]

Desenvolveram avanços na demonstração da conjectura de Cartan-Hadamard, os quais apresentaremos a seguir.

Função distância

Sejam (M,g) uma variedade Riemanniana e $\Gamma\subset M$ uma hipersuperfície mergulhada em M tal que Γ limita um domínio Ω . Definimos o *cut locus* de Γ como o fecho do conjunto de pontos que possuem múltiplos pés da perpendicular.

Definimos a *distância com sinal* $d_{\Gamma}^*:M\to\mathbb{R}$ de Γ (com relação a Ω) por

$$d_{\Gamma}^*(\cdot) = d_{\Omega}(\cdot) - d_{M \setminus \Omega}(\cdot).$$

E definimos o reach de Γ por

$$reach(\Gamma) = d(\Gamma, cut(\Gamma)).$$

Função distância

Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é de *classe* $\mathcal{C}^{1,1}$ se f é de classe \mathcal{C}^1 e sua diferencial é Lipschitz. Seja $\Omega \subset \mathbb{R}^n$ um domínio e $\Gamma = \partial \Omega$. Dizemos que Ω e Γ são de classe $\mathcal{C}^{1,1}$ se cada ponto de Γ tem uma vizinhança U de modo que $\Gamma \cap U$ é o gráfico de uma função de classe $\mathcal{C}^{1,1}$.

Função distância

Lema

Seja (M,g) uma variedade Riemanniana e $\Gamma \subset M$ uma hipersuperfície mergulhada em M tal que Γ limita um domínio Ω , isto é, $\partial \Omega = \Gamma$. As seguintes condições são equivalentes:

- reach(Γ) > 0.
- \circ Γ $\in \mathcal{C}^{1,1}$.
- **3** d_{Γ}^* é $\mathcal{C}^{1,1}$ próximo a Γ.

Proposição

Seja (M,g) uma variedade Riemanniana e $\Gamma \subset M$ uma hipersuperfície mergulhada em M tal que Γ limita um domínio Ω , isto é, $\partial \Omega = \Gamma$. Então d_{Γ}^* é localmente $\mathcal{C}^{1,1}$ em $M \setminus \operatorname{cut}(\Gamma)$. Em particular se Γ é $\mathcal{C}^{1,1}$, então d_{Γ}^* é localmente $\mathcal{C}^{1,1}$ em $U_r(\Gamma)$ para $r = \operatorname{reach}(\Gamma)$.

Sejam (M,g) uma variedade Riemanniana e $X \subset M$ um subconjunto de M convexo, compacto e com interior não vazio. Chamamos de *hipersuperfície convexa* a fronteira ∂X de X. Dizemos que ∂X é **d-convexa** se $d_{\partial X}^*$ é convexa em X.

Dizemos que ∂X é *h-convexa* se para cada ponto de ∂X passa uma horoesfera que contém

 ∂X , isto é, X está contido na respectiva horobola.

Lema

Seja (M,g) uma variedade de Cartan-Hadamard e $X\subset M$ um subconjunto convexo de M. Então d_X é convexa.

Em uma variedade de Cartan-Hadamard as esferas geodésicas são hipersuperfícies convexas.

Seja (M,g) uma variedade Riemanniana e $X \subset M$ um subconjunto de M convexo, limitado e com interior não vazio.

- Se M é uma variedade Riemanniana com curvatura em X é não negativa (≥ 0) então $d_{\partial X}^*$ é convexa em X.
- Se M é uma variedade Riemanniana com curvatura em X estritamente negativa (< 0) então $d_{\partial X}^*$ pode não ser convexa em X; como ilustra a Figura 1.

Figura: X não é d-convexo.

Lema

Sejam (M,g) uma variedade de Cartan-Hadamard e $\Gamma \subset M$ uma hipersuperfície mergulhada em M tal que Γ limita um domínio Ω . Se Γ é h-convexa e $\mathcal{C}^{1,1}$ então Γ é h-convexa.

 $\{\text{hs. h} - \text{convexas}\} \varsubsetneq \{\text{hs. d} - \text{convexas}\} \varsubsetneq \{\text{hs. convexas}\},$

onde hs. é uma abreviação para hipersuperfície.

Figura: X é d-convexo mas não é h-convexo.

Figura: X é convexo mas não é d-convexo.

Proposição

Sejam (M,g) uma variedade de Cartan-Hadamard n-dimensional, $\Gamma \subset M$ uma hipersuperfície convexa \mathcal{C}^2 que limita um domínio convexo Ω e $\widetilde{\Gamma}_{\varepsilon}$ a hipersuperfície paralela de Ω em $M \times \mathbb{R}$ de distância ε . Então, quando $\varepsilon \to 0$.

$$\frac{\mathcal{G}\left(\widetilde{\Gamma}_{\varepsilon}\right)}{\operatorname{vol}\left(\mathbb{S}^{n}\right)} \to \frac{\mathcal{G}\left(\Gamma\right)}{\operatorname{vol}\left(\mathbb{S}^{n-1}\right)}.$$

Em particular, se
$$\mathcal{G}\left(\widetilde{\Gamma}_{\varepsilon}\right) \geq vol\left(\mathbb{S}^{n}\right)$$
 então $\mathcal{G}\left(\Gamma\right) \geq vol\left(\mathbb{S}^{n-1}\right)$

Pontos de $\widetilde{\Gamma}_{arepsilon}$ com $GK^{arepsilon}(q)=0$.

Pontos de $\widetilde{\Gamma}_{\varepsilon}$ com $GK^{\varepsilon}(q) \neq 0$.

$$\begin{split} \mathcal{G}(tube_{\varepsilon}^{+}(\Gamma)) &= \int_{tube_{\varepsilon}^{+}(\Gamma)} GK^{\varepsilon} d\mu_{\varepsilon} \\ &= \int_{-\pi/2}^{\pi/2} \int_{\rho \in \Gamma} GK^{\varepsilon} Jac(f^{\varepsilon})_{(\rho,\theta)} d\mu d\theta \\ &= \int_{-\pi/2}^{\pi/2} \int_{\rho \in \Gamma} \left(\frac{1}{\varepsilon} det(S_{p,\theta}) + \mathcal{O}(1) + det(S_{p,\theta}) \mathcal{O}(\varepsilon)\right) \left(\varepsilon + \mathcal{O}(\varepsilon^{2})\right) d\mu d\theta \\ &= \int_{-\pi/2}^{\pi/2} \int_{\rho \in \Gamma} det(S_{p,\theta}) + \varepsilon \mathcal{O}(1) + \varepsilon det(S_{p,\theta}) \mathcal{O}(\varepsilon) + GK^{\varepsilon} \mathcal{O}(\varepsilon^{2}) d\mu d\theta \\ &\to \int_{-\pi/2}^{\pi/2} \int_{\rho \in \Gamma} GK(\rho) cos^{n-1}(\theta) d\mu d\theta \\ &= \frac{vol\left(\mathbb{S}^{n}\right)}{vol\left(\mathbb{S}^{n-1}\right)} \mathcal{G}(\Gamma). \end{split}$$

Estudamos uma fórmula para comparar a curvatura total de conjuntos de nível de uma função de classe $\mathcal{C}^{1,1}$

$$u:M\to\mathbb{R}$$

em variedades Riemannianas. Considere Γ e γ conjuntos de níveis regulares de u, com $\Gamma=\partial\Omega$ e $\gamma=\partial D,\ D\subset\Omega$.

Como podemos comparar $\mathcal{G}(\Gamma)$ com $\mathcal{G}(\gamma)$?

Sejam $p \in M$ um ponto no qual u seja duas vezes diferenciável e E_i , i = 1, ..., n, um campo referencial ortogonal suave em uma vizinhança V de p.

Definicão

Seja (u_{ij}) dada por $u_{ij} = Hess(u)(E_i, E_j)$. Defina o **operador de cofator** associado a hessiana de u por $\mathcal{T}^u : \mathcal{T}_p M \to \mathcal{T}_p M$ dado por $(\mathcal{T}^u_{ij}) = (\overline{u}_{ij})$.

Lema

Sejam (M,g) uma variedade Riemanniana n-dimensional, $p \in M$ um ponto arbitrário e $u: M \to \mathbb{R}$ uma função de classe $\mathcal{C}^{1,1}$ em uma vizinhança de p tal que $grad(u) \neq 0$. Considere Γ o conjunto de nível regular de u próximo a p. Suponha que Γ seja duas vezes diferenciável em p. Então a curvatura de Gauss-Kronecker de Γ em p com respeito a $\frac{grad(u)}{|grad(u)|}$ é dada por

$$GK = \frac{\langle \mathcal{T}^u(grad(u)), grad(u) \rangle}{|grad(u)|^{n+1}}.$$

Lema

Sejam (M,g) uma variedade Riemanniana n-dimensional, $p \in M$ um ponto arbitrário e $u: M \to \mathbb{R}$ uma função três vezes diferenciável em p, $grad(u)(p) \neq 0$ e $\nabla^2(u)(p)$ não degenerada. Então

$$div_{p}\left(\mathcal{T}^{u}\left(\frac{grad(u)}{|grad(u)|^{n}}\right)\right) = \left\langle div_{p}(\mathcal{T}^{u}), \frac{grad(u)}{|grad(u)|^{n}} \right\rangle. \tag{3}$$

Lema

Sejam (M,g) uma variedade Riemanniana, $u:M\to\mathbb{R}$ uma função, $\Gamma\subset M$ um conjunto de nível regular de u que limita um domínio Ω e $\gamma\subset M$ outro conjunto de nível regular de u que limita um domínio D tal que $D\subset\Omega$. Considere que u é de classe $\mathcal{C}^{2,1}$ em $cl(\Omega)\setminus D$ e grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus correspondentes domínios. Além disso, assuma que $|\operatorname{grad}(u)|\neq 0$ e $\nabla^2(u)$ é não degenerada em quase todo ponto $p\in cl(\Omega)\setminus D$. Seja d μ a medida de volume Riemanniano n-dimensional em M e d σ a medida de volume Riemanniana (n-1)-dimensional ou a medida de área de uma hipersuperfície. Então

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = \int_{\Omega \setminus D} \left\langle \operatorname{div}(\mathcal{T}^u), \frac{\operatorname{grad}(u)}{|\operatorname{grad}(u)|^n} \right\rangle d\mu.$$

Lema

Sejam (M,g) uma variedade Riemanniana, $u:M\to\mathbb{R}$ uma função, $\Gamma\subset M$ um conjunto de nível regular de u que limita um domínio Ω . Considere que u é de classe $\mathcal{C}^{2,1}$ em Ω . Além disso, assuma que $|\operatorname{grad}(u)|\neq 0$ e $\nabla^2(u)$ é não degenerada em quase todo ponto $p\in\Omega$. Seja $p\in\Omega$ um ponto no qual u é três vezes diferenciável. Considere E_i um referencial ortogonal em $p\in\Omega$ então

$$\langle div(\mathcal{T}^u), grad(u) \rangle = rac{R(\mathcal{T}^u(grad(u)), \mathcal{T}^u(E_i), E_i, grad(u))}{det(\nabla^2(u))} = rac{R(\mathcal{T}^u(grad(u)), E_i, \mathcal{T}^u(E_i), grad(u))}{det(\nabla^2(u))}.$$

Corolário

Sejam (M,g) uma variedade Riemanniana, $u:M\to\mathbb{R}$ uma função, $\Gamma\subset M$ um conjunto de nível regular de u que limita um domínio Ω e $\gamma\subset M$ outro conjunto de nível regular de u que limita um domínio D tal que $D\subset\Omega$. Considere que u é de classe $\mathcal{C}^{2,1}$ em $cl(\Omega)\setminus D$ e grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus correspondentes domínios. Além disso, assuma que $|\operatorname{grad}(u)|\neq 0$ e $\nabla^2(u)$ é não degenerada em quase todo ponto $p\in cl(\Omega)\setminus D$. Seja d μ a medida de volume Riemanniano n-dimensional em M e d σ a medida de volume Riemanniana (n-1)-dimensional ou a medida de área de uma hipersuperfície. Considere E_i um referencial ortogonal em $p\in\Omega$ então

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = \int_{\Omega \setminus D} \frac{R(\mathcal{T}^u(grad(u)), \mathcal{T}^u(E_i), E_i, grad(u))}{|grad(u)|^n det(\nabla^2(u))} d\mu.$$

Teorema (Fórmula de comparação, primeira versão)

Sejam (M,g) uma variedade Riemanniana, $u:M\to\mathbb{R}$ uma função, $\Gamma\subset M$ um conjunto de nível regular de u que limita um domínio Ω e $\gamma\subset M$ outro conjunto de nível regular de u que limita um domínio D tal que $D\subset\Omega$. Suponha que grad(u) é o normal para fora ao longo de Γ e γ com respeito aos seus respectivos domínios. Além disso, suponha que u é de classe $\mathcal{C}^{2,1}$ em $cl(\Omega)\setminus D$ e, em quase todo ponto de $cl(\Omega)\setminus D$, grad $(u)\neq 0$ e $\nabla^2(e^u)$ é não degenerada. Seja $d\mu$ a medida de volume Riemanniano n-dimensional em M. Então,

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = -\int_{\Omega \setminus D} R_{rnrn} \frac{GK}{\kappa_r} d\mu + \int_{\Omega \setminus D} R_{rkrn} \frac{GK}{\kappa_r \kappa_k} \frac{u_{nk}}{|grad(u)|} d\mu,$$

onde todas as quantidades são calculadas com respeito ao referencial principal de u e $k \le n-1$.

Em todo ponto $p \in \Omega \setminus D$ podemos tomar um referencial adaptado $E_1, \ldots, E_{n-1}, E_n$ para T_pM tal que

$$E_n = -\frac{grad(u)(p)}{|grad(u)(p)|}$$

e a Hessiana de u é dada por

$$(u_{ij}) = egin{pmatrix} |grad(u)|\kappa_1 & & & & u_{1n} \ & \ddots & & & dots \ & & & |grad(u)|\kappa_{n-1} & u_{(n-1)n} \ u_{1n} & \dots & u_{(n-1)n} & u_{nn} + h|grad(u)|^2 \end{pmatrix}$$

onde $\kappa_1,\ldots,\kappa_{n-1}$ são as curvaturas principais dos conjuntos de nível de u.

Juntando o que obtivemos até agora concluímos que

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = -\int_{\Omega \setminus D} R_{rnrn} rac{\mathsf{GK}}{\kappa_r} d\mu + \int_{\Omega \setminus D} R_{rkrn} rac{\mathsf{GK}}{\kappa_r \kappa_k} rac{u_{nk}}{|\mathsf{grad}(u)|} d\mu,$$

onde todas as quantidades são calculadas com respeito ao referencial principal de u e $k \leq n-1$.

Definição

Sejam (M,g) uma variedade Riemanniana, $A \subset M$ um subconjunto de M e $U_{\theta}(A)$ a vizinhança tubular de raio θ de A. Definimos uma **função de corte para** $U_{\theta}(A)$ como uma função contínua $\eta \geq 0$ em M a qual depende somente da distância $\delta(\cdot) = d_A(\cdot)$, é não decrescente em termos de δ , e satisfaz

$$\eta(p) = egin{cases} 0 & ext{ se } \delta(p) \leq heta, \ 1 & ext{ se } \delta(p) \geq 2 heta. \end{cases}$$

Teorema (Fórmula de comparação, versão geral)

Sejam (M,g) uma variedade Riemanniana, u, Γ , γ , Ω e D como no Teorema (Fórmula de comparação, primeira versão). Alterando-se que u é de classe $\mathcal{C}^{1,1}$ em $(\Omega \setminus D) \setminus A$, para algum conjunto fechado $A \subset \Omega \setminus D$, e u ou é convexa ou $\nabla^2 e^u$ é não degenerada em quase todo ponto de $(\Omega \setminus D) \setminus A$. Seja d μ a medida de volume Riemanniano n-dimensional em M. Então, para $\theta > 0$ e η uma função corte para $U_{\theta}(A)$,

$$egin{aligned} \mathcal{G}_{\eta}(\Gamma) - \mathcal{G}_{\eta}(\gamma) &= \int_{\Omega \setminus D} \left(\eta_k rac{\mathsf{GK}}{\kappa_k} rac{u_{nk}}{|\mathsf{grad}(u)|} - \eta_n \mathsf{GK}
ight) d\mu + \ &+ \int_{\Omega \setminus D} \eta \left(-R_{\mathit{rnrn}} rac{\mathsf{GK}}{\kappa_r} + R_{\mathit{rkrn}} rac{\mathsf{GK}}{\kappa_r \kappa_k} rac{u_{nk}}{|\mathsf{grad}(u)|}
ight) d\mu, \end{aligned}$$

onde todas as quantidades são calculadas com respeito ao referencial principal de u e $k \le n-1$.

Aplicações para a fórmula de comparação

Definição

Sejam (M,g) uma variedade Riemanniana, $u:M\to\mathbb{R}$ uma função de M e $p\in M$ um ponto de M onde u é duas vezes diferenciável. Considere o conjunto de nível regular $\Gamma=\{q\in M:u(q)=u(p)\}$ e $\kappa_1,\ldots,\kappa_{n-1}$ as curvaturas principais de Γ . Seja $\kappa=(\kappa_1,\ldots,\kappa_{n-1})$. Definimos a **r-ésima curvatura média generalizada de** Γ por

$$\sigma_r(\kappa) = \sigma_r(\kappa_1, \ldots, \kappa_{n-1}),$$

onde σ_r denota as funções simétricas elementares, isto é, $\sigma_r(x_1, \ldots, x_k) = \sum_{i_1 < \cdots < i_r} x_{i_1} \ldots x_{i_r}$.

$$\sigma_{n-1}(\kappa) = \mathsf{GK} \; \mathsf{e} \; \sigma_1(\kappa) = (n-1)\mathsf{H}$$

Aplicações para a fórmula de comparação

Corolário

Sejam (M,g) uma variedade Riemanniana de curvatura seccional constante igual a K_0 , u, Γ , γ , Ω e D como no Teorema (Fórmula de comparação, versão geral). Seja d μ a medida de volume Riemanniano n-dimensional em M. Então,

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = -K_0 \int_{\Omega \setminus D} \sigma_{n-2}(\kappa) d\mu. \tag{4}$$

Em particular, se Γ e γ são convexos e $K_0 \leq 0$ então $\mathcal{G}(\Gamma) \geq \mathcal{G}(\gamma)$. Além disso, se Γ é convexo e $K_0 \leq 0$ então

$$\mathcal{G}(\Gamma) \ge n\omega_n - K_0 \int_{\Omega} \sigma_{n-2}(\kappa) d\mu \ge n\omega_n. \tag{5}$$

Aplicações para a fórmula de comparação

Corolário

Sejam (M,g) uma variedade Cartan-Hadamard, $\Gamma \subset M$ uma hipersuperfície mergulhada em M convexa e de classe $\mathcal{C}^{1,1}$ tal que Γ limita um domínio Ω , isto é, $\partial \Omega = \Gamma$. Seja $u = d_{\Gamma}^*$ e $\gamma \subset M$ um conjunto de nível regular convexo de u que limita um domínio D tal que $D \subset \Omega$ e $\Omega \setminus D \subset U_r(\Gamma)$, com $r = \operatorname{reach}(\Gamma)$. Seja d μ a medida de volume Riemanniano n-dimensional em M. Então.

$$\mathcal{G}(\Gamma) - \mathcal{G}(\gamma) = -\int_{\Omega \setminus D} R_{rnrn} \frac{GK}{\kappa_r} d\mu. \tag{6}$$

Em particular, se $K_M \le -a \le 0$ então

$$\mathcal{G}(\Gamma) \ge \mathcal{G}(\gamma) + a \int_{\Omega \setminus D} \sigma_{n-2}(\kappa) d\mu.$$
 (7)

Por fim, se Γ é uma esfera geodésica e $K_M \leq 0$ então $\mathcal{G}(\Gamma) \geq n\omega_n$.

Aplicações para a fórmula de comparação

Corolário

Seja (M,g) uma variedade Riemanniana n-dimensional, B_{ρ} uma bola geodésica em M e suponha que $K_M \le -a \le 0$. Então

$$\mathcal{G}(\partial B_{\rho}) \ge n\omega_n + a \int_{B_{\rho}} \sigma_{n-2}(\kappa) d\mu \ge \mathcal{G}(\partial B_{\rho}^a),$$
 (8)

onde B^a_ρ é uma bola geodésica de raio ρ no espaço hiperbólico $\mathbb{H}^n(-a)$. Se temos a igualdade em qualquer uma das duas desigualdades de (8) então B_ρ é isométrica a B^a_ρ .

Definição

Seja (M,g) uma variedade de Cartan-Hadamard, $\Gamma\subset M$ uma hipersuperfície convexa de M e $\varepsilon>0$. Definimos a **curvatura total de** Γ por

$$\mathcal{G}(\Gamma) = \lim_{\varepsilon \to 0} \mathcal{G}(\Gamma^{\varepsilon}),\tag{9}$$

onde Γ^{ε} é uma hipersuperfície paralela exterior de Γ , isto é, $\Gamma^{\varepsilon} = (d_{\Gamma}^{*})^{-1}(\varepsilon)$.

Proposição

Sejam (M,g) uma variedade de Cartan-Hadamard e $X\subset M$ um subconjunto compacto de M. Suponha que conv(X) tem interior não vazio e existe uma vizinhança aberta U de

$$X_0 = \partial conv(X)$$
 em M tal que $X \cap U$ é uma hipersuperfície de classe $C^{1,1}$. Então

$$\mathcal{G}(X \cap X_0) = \mathcal{G}(X_0).$$

Como os segmentos de geodésica que são perpendiculares a X em pontos distintos nunca se intersectam [BO69, Lema 3.2 item 1, p. 7] temos que

$$\mathcal{G}(X_0^{\varepsilon}) = \mathcal{G}((X_0 \setminus X)^{\varepsilon}) + \mathcal{G}((X_0 \cap X)^{\varepsilon}).$$

Quando $\varepsilon \to 0$ temos que $\mathcal{G}(X_0^\varepsilon) \to \mathcal{G}(X_0)$ então precisamos mostrar que

$$\mathcal{G}((X_0\setminus X)^{arepsilon}) o 0$$
 e $\mathcal{G}((X_0\cap X)^{arepsilon}) o \mathcal{G}(X_0\cap X).$

Para mostrarmos que $\mathcal{G}((X_0 \setminus X)^{\varepsilon}) \to 0$ fixemos $\overline{\varepsilon} > 0$ e consideremos $\overline{p} = p^{\overline{\varepsilon}}$, e para todo $\varepsilon \in [0, \overline{\varepsilon}]$ seja

$$r^{\varepsilon}: X_0^{\overline{\varepsilon}} \to X_0^{\varepsilon}$$

a projeção $\overline{p}\mapsto p^{\varepsilon}$. Note que r^{ε} é uma aplicação Lipschitz, pois X_0^{ε} é um conjunto convexo para todo ε no domínio da aplicação.

Consideremos então $J(\varepsilon)=Jac_{\overline{p}}(r^{\varepsilon})$ e $GK(\varepsilon)=GK_{X_0^{\varepsilon}}(p^{\varepsilon})$. Assim

$$\mathcal{G}((X_0 \setminus X)^{\varepsilon}) = \int_{\overline{\rho} \in (X_0 \setminus X)^{\overline{\varepsilon}}} GK(\varepsilon) J(\varepsilon) d\sigma.$$

Notemos que para quase todo $\overline{p} \in (X_0 \setminus X)^{\overline{\varepsilon}}$

- $GK(\varepsilon)J(\varepsilon) \leq C$, para $0 < \varepsilon \leq \overline{\varepsilon}$, e
 - ② $GK(\varepsilon)J(\varepsilon) \rightarrow 0$, quando $\varepsilon \rightarrow 0$.

Assim, pelo Teorema da Convergência Dominada, temos que $\mathcal{G}((X_0\setminus X)^{\varepsilon}) o 0$ quando $\varepsilon o 0$.

Para mostrarmos que $\mathcal{G}((X_0 \cap X)^{\varepsilon}) \to \mathcal{G}(X_0 \cap X)$ fixemos $\overline{\varepsilon} > 0$ e consideremos \overline{p} , r^{ε} , $J(\varepsilon)$ e $GK(\varepsilon)$ como acima. Assim

$$\mathcal{G}((X_0 \cap X)^{\varepsilon}) = \int_{\overline{p} \in (X_0 \cap X)^{\overline{\varepsilon}}} GK(\varepsilon) J(\varepsilon) d\sigma.$$

Notemos que para quase todo $\overline{p} \in (X_0 \cap X)^{\overline{\varepsilon}}$

- **1** $GK(\varepsilon)J(\varepsilon) \leq C$, para $0 < \varepsilon \leq \overline{\varepsilon}$, e
- **2** $GK(\varepsilon)J(\varepsilon) \to GK(0)J(0)$, quando $\varepsilon \to 0$.

Assim, pelo Teorema da Convergência Dominada, temos que $\mathcal{G}((X_0 \cap X)^{\varepsilon}) \to \mathcal{G}(X_0 \cap X)$ quando $\varepsilon \to 0$.

Teorema

Sejam (M,g) uma variedade de Cartan-Hadamard e $\Gamma \subset M$ uma hipersuperfície mergulhada de M. Suponha que vale a desigualdade

$$\mathcal{G}(\Gamma) \ge vol(\mathbb{S}^{n-1}),$$
 (10)

onde vol é o volume e \mathbb{S}^{n-1} é a esfera unitária de \mathbb{R}^n . Então, para $\Omega \subset M$ um conjunto limitado de M, vale a desigualdade isoperimétrica

$$per(\Omega)^n \ge \frac{per(\mathbb{B}^n)^n}{vol(\mathbb{B}^n)^{n-1}} vol(\Omega)^{n-1},$$
 (11)

onde per é o perímetro e \mathbb{B}^n é a bola unitária de \mathbb{R}^n . E vale a igualdade somente para bolas euclideanas.

Definição

Sejam (M,g) uma variedade Riemanniana e $U\subset M$ um subconjunto aberto de M. Definimos o **perfil isoperimétrico de** U como a função $\mathcal{I}_U:[0,vol(U)]\to\mathbb{R}$ dada por

$$\mathcal{I}_U(v) = \inf\{per(\Omega) : \Omega \subset U, vol(\Omega) = v, diam(\Omega) < \infty\},\$$

onde diam é o diâmetro, vol a medida de Lebesgue, per o perímetro e $\mathcal{I}_U(0)=0$.

Note que para provar (11) é suficiente mostrar que $\mathcal{I}_B \geq \mathcal{I}_{\mathbb{R}^n}$ para uma família de bolas geodésicas abertas $B \subset M$ cujo raio cresce arbitrariamente e eventualmente cobre um conjunto limitado $\Omega \subset M$.

Definição

Sejam (M,g) uma variedade Riemanniana e $B\subset M$ uma bola geodésica de M. Dizemos que $\Omega\subset B$ é uma **região isoperimétrica de** M se Ω tem o menor perímetro dado um volume, ou satisfaz per $(\Omega)=\mathcal{I}_B(vol(\Omega))$.

Seja $\Omega \subset B$ a região isoperimétrica de volume v. Pela Proposição 6.2 temos que $\mathcal{G}(\Gamma_0) = \mathcal{G}(\Gamma \cap \Gamma_0)$ e consequentemente $\mathcal{G}(\Gamma_0) \geq n\omega_n$. Então temos que

$$n\omega_n\leq \mathcal{G}(\Gamma_0)=\mathcal{G}(\Gamma\cap\Gamma_0)=\int_{\Gamma\cap\Gamma_0} \mathsf{G}\mathsf{K}d\sigma.$$

Então temos que

$$n\omega_{n} \leq \int_{\Gamma \cap \Gamma_{0}} GKd\sigma$$

$$\leq \int_{\Gamma \cap \Gamma_{0}} H^{n-1}d\sigma$$

$$= \int_{\Gamma \cap \Gamma_{0} \cap \partial B} H^{n-1}d\sigma + \int_{\Gamma \cap \Gamma_{0} \cap B} H^{n-1}d\sigma$$

$$= \int_{\Gamma \cap \Gamma_{0} \cap \partial B} H^{n-1}d\sigma + \int_{\Gamma \cap \Gamma_{0} \cap B} H^{n-1}_{0}d\sigma$$

(12)

$$\leq \int_{\Gamma \cap \Gamma_0 \cap \partial B} H_0^{n-1} d\sigma + \int_{\Gamma \cap \Gamma_0 \cap B} H_0^{n-1} d\sigma
\leq \int_{\Gamma \cap \partial B} H_0^{n-1} d\sigma + \int_{\Gamma \cap B} H_0^{n-1} d\sigma
= H_0^{n-1} per(\Omega).$$

Consequentemente segue-se que

$$H_0(vol(\Omega)) \geq \left(\frac{n\omega_n}{per(\Omega)}\right)^{\frac{1}{n-1}} = \overline{H}_0(per(\Omega)),$$

onde $\overline{H}_0(a)$ é a curvatura média de uma bola de perímetro a em \mathbb{R}^n .

(13)

(14)

Por [Hsi92, Lema 4, p. 170] $\mathcal{I}_B'(v) = (n-1)H_0(v)$ em todos os pontos de diferenciabilidade $v \in]0, vol(B)[$. Logo, por (14), temos, em quase todo ponto de [0, vol(B)], que

$$\mathcal{I}'_{\mathcal{B}}(v) = (n-1)H_0(v) \ge (n-1)\overline{H}_0(v) = \mathcal{I}'_{\mathbb{R}^n}(v). \tag{15}$$

Ou ainda,

$$\mathcal{I}_B(v) \geq \mathcal{I}_{\mathbb{R}^n}(v),$$

para todo $v \in [0, vol(B)[$, como desejado.

Bibliografia I

Thierry Aubin.

Problemes isoperimetriques et espaces de sobolev.

J. Differential Geometry, 11, 1976.

Marcel Berger.

A panoramic view of Riemannian geometry.

Springer, Berlin, Germany, 1 edition, 2002.

Richard L. Bishop and Barrett O'Neill.

Manifolds of negative curvature.

Trans. Amer. Math. Soc., 145, 1969.

Yu. D. Burago and V.A.Zalgaller.

Geometric inequalities.

Springer-Verlag, Berlin, Germany, 1 edition, 1988.

Bibliografia II

Christopher B. Croke.

A sharp four dimensional isoperimetric inequality.

Commentarii Mathematici Helvetici, 59, 1984.

Mohammad Ghomi and Joel Spruck.

Total curvature and the isoperimetric inequality in cartan-hadamard manifolds, 2021.

Wu-Yi Hsiang.

On soap bubbles and isoperimetric regions in noncompact symmetric spaces, i. *Tohoku Mathematical Journal*, 44, 1992.

Bruce Kleiner.

An isoperimetric comparison theorem.

Inventiones mathematicae, 108, 1992.

Bibliografia III

Gromov Mikhail.

Structures métriques pour les variétés riemanniennes.

CEDIC F. Nathan, Paris, France, 1 edition, 1981.