Homework 1

Problem 1. Let z, w be complex numbers such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{z-w}{1-\overline{z}w}\right|<1\ if\ |z|<1\ and\ |w|<1,$$

$$\left|\frac{z-w}{1-\overline{z}w}\right|=1 \ if \, |z|=1 \ or \, |w|=1.$$

Proof. Let $z = r_1 e^{i\theta_1}$ and $w = r_2 e^{i\theta_2}$. Then

$$\begin{aligned} |z-w| &= |r_1(\cos(\theta_1) + i\sin(\theta_1)) - r_2(\cos(\theta_2) + i\sin(\theta_2))| \\ &= |(r_1\cos(\theta_1) - r_2\cos(\theta_2)) + i(r_1\sin(\theta_1) - r_2\sin(\theta_2))| \\ &= (r_1^2\cos^2(\theta_1) + r_2^2\cos^2(\theta_2) - 2r_1r_2\cos(\theta_1)\cos(\theta_2)) + (r_1^2\sin^2(\theta_1) + r_2^2\sin^2(\theta_2) - 2r_1r_2\sin(\theta_1)\sin(\theta_2)) \\ &= 1 - 2r_1r_2\cos(\theta_1 - \theta_2) \end{aligned}$$

and

$$|1 - \overline{z}w| = |1 - r_1 r_2 \cos(\theta_2 - \theta_1) + i r_1 r_2 \sin(\theta_2 - \theta_1)$$

= $1 + r_1^2 r_2^2 \cos^2(\theta_2 - \theta_1) - 2 r_1 r_2 \cos(\theta_2 - \theta_1) + r_1^2 r_2^2 \sin^2(\theta_2 - \theta_1)$
= $2 - 2 r_1 r_2 \cos(\theta_2 - \theta_1)$.

Then

$$\left| \frac{z - w}{1 - \overline{z}w} \right| = \frac{1 - 2r_1r_2\cos(\theta_1 - \theta_2)}{2 - 2r_1r_2\cos(\theta_2 - \theta_1)}.$$

Thus if we replace θ_1 by 0 and θ_2 by $\theta_2 - \theta_1$, the norm doesn't change. Therefore we may assume that z has $\theta_1 = 0$, i.e. z is real.

Now, since |z| < 1 and |w| < 1 we have

$$z^{2} - 1 < |w|^{2}(z^{2} - 1)$$

$$z^{2} + |w|^{2} < 1 + z^{2}|w|^{2}$$

$$z^{2} + |w|^{2} - zw - z\overline{w} < 1 + z^{2}|w|^{2} - zw - z\overline{w}$$

$$(z - w)(z - \overline{w}) < (1 - zw)(1 - z\overline{w})$$

$$|z - w| < |1 - zw|$$

$$\left|\frac{z - w}{1 - \overline{z}w}\right| < 1.$$

On the other hand, if |z| = 1 or |w| = 1 then we can start from the second inequality $z^2 + |w|^2 = 1 + z^2|w|^2$ and proceed replacing < with =. We arrive at the desired result.

Problem 2. Let $f(z) = e^{2\pi i z}$. Describe the image under f of the set consisting of those points x + iy with $-\frac{1}{2} \le x \le \frac{1}{2}$ and $y \ge B \ge 0$.

Proof. We have

$$f(x+iy) = e^{2\pi i(x+iy)} = e^{2\pi ix - 2\pi y} = e^{-2\pi y}e^{2\pi ix}$$

Note that the real part of f gets mapped to $e^{-2\pi y}$ and the complex part gets mapped to $e^{2\pi x}$. Thus the real part is in the set $(0, e^{2\pi B}]$ with angle $[-\pi, \pi]$. The image is thus the disk centered at 0 with radius $e^{2\pi B}$, but without the point 0. We can write this as

Im
$$f = \{ re^{i\theta} \mid 0 < r \le e^{2\pi B}, -\pi \le \theta \le \pi \}.$$

Problem 3. Consider the function $f(z) = \frac{z+z^{-1}}{2}$. What is the image of the set |z| > 1? The set |z| < 1? The set |z| = 1? Show that the image of any circle centered at the origin with radius $r \neq 1$ is an ellipse with focal points 1 and -1.

Proof. We have

$$f(z) = f(x+iy) = \frac{(x+iy) + \frac{(x-iy)}{(x^2+y^2)}}{2} = \frac{x(x^2+y^2+1)}{2(x^2+y^2)} + i\frac{y(x^2+y^2-1)}{2(x^2+y^2)}.$$

If |z| is close to 1 then the coefficient of the real part evaluates close to 1. As |z| increases the coefficient gets closer to 1/2. On the other hand, the coefficient is unbounded as |z| approaches 0.

Likewise, if |z| is close to 1 then the coefficient for the imaginary part evaluates close to 0. As |z| increases the coefficient gets closer to 1/2. As |z| approaches 0, the coefficient is unbounded in the negative direction.

In the case that |z| = 1 we see that the real part evaluates to just x while the imaginary part drops out entirely. Therefore

$$\operatorname{Img}(f(x+iy)) = \begin{cases} \left\{ ax + iby \mid \frac{1}{2} < a < 1, 0 < b < \frac{1}{2} \right\} & |z| > 1 \\ \left\{ ax + iby \mid 1 < a, b < 0 \right\} & |z| < 1 \\ \left\{ x \right\} & |z| = 1 \end{cases}$$

This is the same as

$$\operatorname{Img}(f(x+iy)) = \begin{cases} \left\{ x + iy \mid \frac{1}{2} < x \text{ or } x < -\frac{1}{2} \right\} & |z| > 1 \\ \mathbb{C} \setminus \{0\} & |z| < 1 \\ \mathbb{R} & |z| = 1 \end{cases}$$

We can rewrite $f(z)=f(x+iy)=\frac{1}{2|z|^2}(x(|z|^2+1)+iy(|z|^2-1))$. If we keep $|z|\neq 1$ constant, i.e., the points of a circle in $\mathbb C$, then this is the equation of an ellipse in $\mathbb C$ where the foci are at 1 and -1.

Problem 4. What does the map $f(z) = \overline{z}$ do to angles at points $z \in \mathbb{C}$? How about $h(z) = (g \circ f)(z)$ if g is complex-differentiable at \overline{z} with $g'(\overline{z}) \neq 0$?

Proof. The map f has the effect of reflecting over the imaginary axis in the complex plane. Thus all angle measures remain the same, but the orientation is reversed. If we compose g with f, we effectively reverse the orientation of an angle, and then apply g to it. But g is holomorphic and holomorphic functions preserve angles. Thus, the angle measure under $g \circ f$ is preserved, but the orientation is reversed.

Problem 5. Find a holomorphic function f on \mathbb{C} such that $\operatorname{Re} f(x+iy) = xy$ and f(0) = i.

Proof. Let f(x+iy)=u(x,y)+iv(x,y). We have the restriction that u(x,y)=xy. From the Cauchy-Riemann equations we have

$$\partial u/\partial x = y = \partial v/\partial y$$

and

$$\partial u/\partial y = x = -\partial v/\partial x.$$

Integrating we get $v(x,y) = \frac{y^2 - x^2}{2} + C$. Using the initial value condition we get $v(x,y) = \frac{y^2 - x^2}{2} + 1$. Therefore

$$f(x+iy) = u(x,y) + iv(x,y) = xy + i\left(\frac{y^2 - x^2}{2} + 1\right).$$

We know that f is holomorphic because u and v are continuously differentiable and satisfy the Cauchy-Riemann equations.

Problem 6. Let $f(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{C}$ be such that $f(0) = z_1$, $f(1) = z_2$, $f(\infty) = z_3$. Find all such a, b, c, d, given $z_1, z_2, z_3 \in \mathbb{C}$. When is there no such quadruple?

Proof. We have $f(0) = \frac{b}{d} = z_1$ so $b = dz_1$. Also $f(1) = \frac{a+b}{c+d} = z_2$ so $(a+b) = (c+d)z_2$. Finally $f(\infty) = \frac{a}{c} = z_3$ so $a = cz_3$. Substituting the first and third equations into the third we see that $(cz_3 + dz_1) = (cz_2 + dz_2)$. Solving for d we have

$$d = \frac{c(z_3 - z_2)}{(z_2 - z_1)}.$$

Thus the set of all quadruples (a, b, c, d) is

$$\left\{ (a,b,c,d) = (cz_3, dz_1, c, d) \mid d = \frac{c(z_3 - z_2)}{(z_2 - z_1)} \right\}.$$

Note that we can't have $z_2 = z_1$ or $z_2 = z_3$, otherwise we loose the constraint on c and d. If we allow $z_i \in \mathbb{C}^*$ then we allow d = 0, c = 0 or c = -d.

Problem 7. Assume the function f is defined on the set |z| > M for some M and that $c = \lim_{|z| \to \infty} f(z)$ exists. If $c \in \mathbb{C}$, then f is C^* -differentiable at ∞ if and only if f(1/z) is complex-differentiable at 0. If $c = \infty$, then f is C^* -differentiable at ∞ if and only if 1/f(1/z) is complex-differentiable at 0. Show that the functions $f(z) = e^{1/z}$ and $g(z) = z^2 + 1$ are C^* -differentiable at ∞ .

Proof. We have

$$\lim_{|z| \to \infty} f(z) = \lim_{|z| \to \infty} e^{1/z} = 1.$$

Thus, f is C^* -differentiable at ∞ if $f(1/z) = e^{1/(1/z)} = e^z$ is complex-differentiable at 0. But we know that e^z is a complex-differentiable function so f is C^* -differentiable at ∞ .

Now consider

$$\lim_{|z| \to \infty} g(z) = \lim_{|z| \to \infty} z^2 + 1 = \infty.$$

Thus, g is C^* -differentiable at ∞ if $1/f(1/z) = 1/(1/z^2 + 1) = z^2/(z^2 + 1)$ is complex-differentiable at 0. But note that this is the quotient of two functions which are differentiable at 0, and the denominator is not equal to 0 at 0. Thus the derivative of the quotient exists at 0. Therefore g is C^* -differentiable at ∞ .