國立清華大學 超大型積體電路設計 VLSI Design

Homework 2

學號:111063548

姓名:蕭方凱

目錄

1.	Run th	ie HSPICE simulation to answer the following question, use \emph{VDD} = 1.5 \emph{V} 3					
	(a)	Please design five INVERTER gates (one for each corner) with $(W/L)n =$					
	1μm/0	$0.2 \mu \mathrm{m}$ while (W/L) p is your design. Run the transfer curve (like Fig.1), the					
	transit	tion point should be $VOUT$ = 0.5 VDD @ Vin = 0.5 VDD in 5 process					
	corner	rs (TT, SS, FF, SF, FS). Please comment on the differences					
	(b)	Using the transfer curve you simulated in (a), calculate the value of					
	VIL,V	IH, VOL, VOH and NMH and NML in 5 process corners (TT, SS, FF, SF, FS).					
	Please	comment on the differences6					
	(c)	Using the INVERTER designed in (a) with VDD = 1.5 V . Input signal = 0 V -					
	1.5V @	92MHz with rising time / falling time = 0.1ns and loading capacitor $Cload$					
	= 800)	F at output9					
2.	Run th	ie HSPICE simulation to answer the following question, use \emph{VDD} = 1.5 \emph{V} .12					
	(a)	Please design five 2-input NAND gates (one for each corner) with $(W/L)n$					
	= 3µm	/0.2μm while (W/L) p is your design. (BOTH PMOS sizes should be same.)					
	Conne	ct the two input together to run the transfer curve (like Fig.1), the					
	transit	ion point should be $VOUT$ = 0.5 VDD @ Vin = 0.5 VDD in 5 process					
	corner	rs. (TT, SS, FF, SF, FS)					
	(b)	Using the transfer curve you simulated in (a), calculate the value of					
	VIL,V	IH, VOL , VOH and NMH and NML in 5 process corners. (TT, SS, FF, SF, FS).					
		14					
	(c)	What are the differences in $(W/L)p/(W/L)n$ between Q1(a) and Q2(a)?					
	Please comment on the difference						
	(d)	Using the 2-input NAND designed in (a) with VDD = 1.5 V . Input signal (A					
	or B) =	OV-1.5V@2MHz with rising time / falling time = 0.1ns and loading					
	capaci	tor ${\it Cload}$ = 800 fF at output16					
3.	Comp	ete the layout and post-sim of Inverter in Q1 @ TT corner and 2-input					
NAN	ND in Q	2 @ TT corner19					
	(a)	Finish DRC and LVS verification. Paste the pictures of layout, DRC result					
	and LVS result in your report						
	(b)	Run the post-layout simulation (post-sim) for Q1(c) and Q2(d) compare					
	them	with pre-layout simulation (pre-sim). Please comment on the differences.					
		21					

1. Run the HSPICE simulation to answer the following question, use VDD = 1.5V.

(a) Please design five INVERTER gates (one for each corner) with (W/L)n = $1\mu m/0.2\mu m$ while (W/L)p is your design. Run the transfer curve (like Fig.1), the transition point should be VOUT = 0.5VDD @ Vin = 0.5VDD in 5 process corners (TT, SS, FF, SF, FS). Please comment on the differences.

圖 1 TT Corner W=4.15u,L=0.2u

圖 2 SS corner W=3.65u,L=0.2u

圖 3 FF Corner

W=4.11u,L=0.2u

圖 4 SF Corner

W=0.914u,L=0.2u

圖 5 FS Corner

W=4.16u,L=0.2u

上面五張圖依序為 TT、SS、FF、SF、FS,從圖形上可看出每個圖形的變化趨勢都有細微的差別。

TT: 圖形對稱, VIL和 VIH處的二次曲線變化速度接近。

SS: 圖形對稱, VIL和 VIII 處的二次曲線變化速度接近。但變化速度都比 TT corner 快,故中間 sat 處直線較為陡峭。

FF: 圖形對稱, VIL和 VIH 處的二次曲線變化速度接近。但變化速度比 TT corner 慢,故中間 sat 處直線較為平坦。

SF: 圖形較不對稱,在VIL處的曲線變化速度較VIH處大。

FS: 圖形較不對稱,在VIL處的曲線變化速度較VIH處小。

斜線較為陡峭之 corner,雖可以更快速切換高低狀態,但若要調到 VOUT = 0.5VDD @ Vin = 0.5VDD,較為困難,斜率與敏感度呈正相 關。而斜率較為平坦之 corner 則相反,各有優缺。TT 為最平衡的 corner。

(b) Using the transfer curve you simulated in (a), calculate the value of *VIL*, *VIH*, *VOL*, *VOH* and *NMH* and *NML* in 5 process corners (TT, SS, FF, SF, FS). Please comment on the differences.

VIL=653mv;VIH=845mv;VOL=0V;VOH=1.5V NMH=VOH-VIH=655mv;NML=VIL-VOL=653mv

VIL=679mv;VIH=824mv;VOL=0V;VOH=1.5V NMH=VOH-VIH=676mv;NML=VIL-VOL=679mv

圖 8 FF Corner

VIL=640mv;VIH=857mv;VOL=0V;VOH=1.5V NMH=VOH-VIH=643mv;NML=VIL-VOL=640mv

圖 9 SF Corner

VIL=650mv;VIH=832mv;VOL=0V;VOH=1.5V NMH=VOH-VIH=668mv;NML=VIL-VOL=650mv

圖 10 FS Corner

VIL=657mv;VIH=844mv;VOL=0V;VOH=1.5V NMH=VOH-VIH=656mv;NML=VIL-VOL=657mv

圖 11 Inverter schematic

因 S 代表飽和電流小、閥值大;F 代表飽和電流大、閥值小。 可從上面 5 張圖觀察出相較 TT corner,SS corner 擁有更好的 Noise Margin,VIL 更大、VIH 更小,換句話說 SS Corner 可以擁有 更多輸入電壓的選擇,input voltage forbidden zone 也更小。 而 FF Corner 則相反,forbidden zone 較 TT 大,故在選擇輸入訊 號時條件更為嚴苛,但相對擁有更大的飽和電流。

SF Corner 的情況也符合理論,其 VIL 及 VIH 都比 TT corner 小,造成其 NML 比較差但 NMH 比較好;而 FS corner 的 VIL 要比 TT corner 來的大,波形結果也是符合的。

(c) Using the INVERTER designed in (a) with VDD = 1.5V. Input signal = 0V-1.5V @2MHz with rising time / falling time = 0.1ns and loading capacitor Cload = 800fF at output.

圖 13 SS Corner .tran simulation

圖 14 FF Corner .tran simulation

圖 15 SF Corner .tran simulation

圖 16 FS Corner .tran simulation

INVERTER						
Input	CLK@2MHZ					
Corner	TT	SS	FF	SF	FS	
t _{PHL}	2ns	3ns	1ns	3ns	2ns	
t _{PLH}	1ns	3ns	1ns	4ns	1ns	
tr	1ns	3ns	1ns	6ns	1ns	
t _f	2ns	4ns	1ns	4ns	2ns	

在分析 TT Corner 和 SS Corner 結果時,因本題 nMOS size 為題目給定,我推測是因 pMOS 的 Width 設計稍大,導致 pull-up 電流較大,使得 rising time 比 falling time 小。

而 SF Corner 理應是 slow NMOS, fast PMOS, 若兩個 MOS symmetric, 結果應該為 rising time<falling time, 但實際結果 卻相反,推測是在設計 PMOS size 時,設計較小導致其 pull-up 電流不夠強。

在 tphL和 tphH部分可看到 FF Corner 的 delay 是最小的。這與理想符合,而 FS 和 SF Corner 都沒有比 TT Corner 延遲表現出色。

- 2. Run the HSPICE simulation to answer the following question, use VDD = 1.5V.
- (a) Please design five 2-input NAND gates (one for each corner) with $(W/L)n = 3\mu m/0.2\mu m$ while (W/L)p is your design. (BOTH PMOS sizes should be same.) Connect the two input together to run the transfer curve (like Fig.1), the transition point should be VOUT = 0.5VDD @ Vin = 0.5VDD in 5 process corners. (TT, SS, FF, SF, FS).

圖 18 SS Corner

W=2.99u,L=0.2u

圖 19 FF Corner

W=2.79u,L=0.2u

圖 20 SF Corner

W=0.7u,L=0.2u

圖 21 FS Corner

W=2.95u,L=0.2u

(b) Using the transfer curve you simulated in (a), calculate the value of *VIL,VIH*, *VOL,VOH* and *NMH* and *NML* in 5 process corners. (TT, SS, FF, SF, FS).

(c) What are the differences in (W/L)p/(W/L)n between Q1(a) and Q2(a)? Please comment on the difference.

為使 pull-up network and pull-down network symmetric, 在設計 inverter 電路時的 MOS size 與 2 input NAND 會不同,從上圖大概計算一下 path effort,得:

Inverter:F=GH=1

2 input NAND:F=GH=(4/3)*2=8/3

故理論上 2 input NAND delay 會更嚴重。

(d) Using the 2-input NAND designed in (a) with VDD = 1.5V. Input signal (A or B) = 0V-1.5V@2MHz with rising time / falling time = 0.1ns and loading capacitor Cload = 800fF at output.

CASE1(A:0-1.5@2MHZ,B:1.5)

CASE2(A:1.5,B:0-1.5@2MHZ)

CASE1(A:0-1.5@2MHZ,B:1.5)

CASE2(A:1.5,B:0-1.5@2MHZ)

NAND2	NAND2 Case1					Case2				
Input A	Input A CLK@2MHZ				1.5V					
Input B	1.5V			CLK@2MHZ						
Corner	TT	SS	FF	SF	FS	TT	SS	FF	SF	FS
t _{PHL}	1ns	2ns	1ns	2ns	1ns	1ns	2ns	1ns	2ns	1ns
t _{PLH}	2ns	3ns	2ns	2ns	2ns	2ns	3ns	2ns	5ns	2ns
Tr	2ns	4ns	2ns	3ns	2ns	2ns	4ns	2ns	8ns	2ns
Tf	2ns	2ns	1ns	2ns	2ns	1ns	2ns	1ns	2ns	2ns

表格數據最大差異是 SF Corner, Case 2 的 rising time 較長,推測是因為在畫 transient schematic 時, INPUT B 因是時脈訊號, INPUT A 是直流訊號(不存在延遲)而 INPUT B 是畫在下方的 NMOS, 距離輸出較遠,導致延遲較明顯。

好比有一台A車與B車要同時到達終點,而B較A慢,那當然是讓B靠近終點一點再一起出發會比較容易使得兩車同時抵達終點,而不是A車先抵達後還要等B車。

INPUT B在下方時,若為時脈訊號,將造成延遲

- 3. Complete the layout and post-sim of Inverter in Q1 @ TT corner and 2-input NAND in Q2 @ TT corner.
- (a) Finish DRC and LVS verification. Paste the pictures of layout,
 DRC result and LVS result in your report.

INVERTER:

圖 37 Layout

圖 38 DRC result

圖 39 LVS result

2 INPUT NAND:

圖 40 Layout

圖 41 DRC result

圖 42 LVS result

(b) Run the post-layout simulation (post-sim) for Q1(c) and Q2(d) compare them with pre-layout simulation (pre-sim). Please comment on the differences.

	Presim	Postsim			
INVERTER	30 30 30 30 30 30 30 30 30 30 30 30 30 3				
2-INPUT NAND(CASE1)	Annual An				
2-INPUT NAND(CASE2)	MARKANINE MARKAN	TOTAL PROPERTY OF THE PROPERTY			

COMMENT:

上圖對比可發現 POSTSIM 的輸出波型相較 PRESIM 往左移,推測是因 POSTSIM 加入了寄生參數,與實際工作情況更為貼近,但不論是 inverter 還是 2 -input NAND, 波形都與 PRESIM 時沒太大差異,仍是具有反向器功能的電路設計。