Práctica 2

Sergio Guachalla

Método congruencial linear

Ejercicio 1: Se pide generar números aleatorios

Datos:

$$c = 89; x_0 = 5; m = 10^2; a = 81$$

La formula para el método congruencial linear es:

$$x_{i+1} = (ax_i + c) \mod m$$

Para n números aleatorios:

n	X_n
0	5
1	$(81{ imes}5+89)mod100=94$
2	$(81{ imes}94+89) mod 100=3$
3	$(81{ imes}3+89)mod100=32$
4	$(81{ imes}32+89) mod 100=81$
5	$(81{ imes}81+89) mod 100=50$

Método congruencial multiplicativo

Ejercicio 1:

Datos:

$$c=16; x_0=13; m=10^8; a=211$$

$$X_{n+1}=(8x_n+16) mod 10^8; x_0=13$$

 $|1n|X_n|$

|--|----|

|0|13|

 $|1|(211{\times}13{\times}16) mod 10^8 = 0, 13|$

 $|\mathbf{2}|(211{\times}13{\times}16) mod 10^8 = 0,438|$

 $|3|(211\times43\times16) mod 10^8 = 0,48|$

 $|4|(211\times48\times16)mod10^8 = 0,80|$

 $|5|(211\times80\times16)mod10^8 = 0.35|$

Algoritmo de cuadrados medios

Datos iniciales:

• Semilla: $X_0 = 9803$

• Constante: a = 6965

• Dígitos a considerar: D=4

Cantidad de números a generar: 5

Cálculo de los números:

Paso 1:

$$Y_0 = a imes X_0 = 6965 imes 9803 = 68261895$$

Tomamos los 4 dígitos centrales: 6189

Por lo tanto, $X_1=6189$ y $R_1=0.6189$

Paso 2:

$$Y_1 = a \times X_1 = 6965 \times 6189 = 43138785$$

Tomamos los 4 dígitos centrales: 1387

Por lo tanto, $X_2=1387~\mathrm{y}~R_2=0.1387$

Paso 3:

$$Y_2 = a imes X_2 = 6965 imes 1387 = 9662355$$

Tomamos los 4 dígitos centrales: 6235

Por lo tanto, $X_3=6235$ y $R_3=0.6235$

Paso 4:

$$Y_3 = a \times X_3 = 6965 \times 6235 = 43432175$$

Tomamos los 4 dígitos centrales: 4321

Por lo tanto, $X_4=4321$ y $R_4=0.4321$

Paso 5:

$$Y_4 = a \times X_4 = 6965 \times 4321 = 30094765$$

Tomamos los 4 dígitos centrales: **0947** Por lo tanto, $X_5=0947$ y $R_5=0.0947$

Resultado Final:

Los 5 números generados son:

$$R_1=0.6189, \quad R_2=0.1387, \quad R_3=0.6235, \quad R_4=0.4321, \quad R_5=0.0947$$