Robotic Computer Vision

Midterm Progress Update

Sean Morton

Project Purpose

Guiding questions:

- How does a robot interact with its environment?
- How do we, as engineers, get a robot to act more human?
- How do we make robots easier to interact with for ordinary people?

Our goal is to make a robot that can see and interact with its environment using computer vision.

SCARA Robot Overview

Acronym: Selective Compliance Articulated Robot Arm.

Used in assembly lines; 3 joints + z-axis + gripper

Goals of project: to create a robot for low cost that can move over a table, survey the objects above table, and grab them.

As of Oct 2021: New J2 coupler designed to reduce droop; new E-box designed

Next steps: consult Nick Marchuk @MechLab for stepper motor debug

Object Detection Overview

What is Object Detection (and why is it data science)?

A subset of computer vision: <u>what</u> objects can a neural network can find in an image, and <u>where</u> they are.

How do you run it?

Most O.D. neural networks are designed to work with OpenCV.

net = cv2.dnn_DetectionModel(pathA, pathB)

The fastest Object Detection model yet is MobileNet SSD — the one used in this project.

MDS Principles and Framework

Data generation/collection:

Data comes in the form of photo input collected from 1-3 cameras

Mechanistic features:

Classifications, confidence levels, and bounding boxes of objects

Dimensional reduction:

of classifications reduced by Non-Max Suppression (NMS)

Pre-NMS overlap of detection

Flowchart of Detection

Streamlit App Functionality

Streamlit Demo

- 1. Start the server on SPM Laptop
 - 2. Presenter can navigate to http://10.105.177.187:8501
- 3. Users can use their phones to carry out object detection!