Yushu Pan

+1-626-318-5125 | yp2602@columbia.edu | 560 Riverside Drive, APT 1S, NY, 10027 | Personal Website

RESEARCH INTEREST

My research interests lie broadly in large-scale generative AI and causal inference. I develop methods that integrate causal reasoning to enhance the controllability, reasoning capabilities, efficiency, and interpretability of generative models.

My work spans a range of domains, including multi-modal (text-to-image) generation, generative recommendation systems, and classification models, with the goal of making generative AI more robust and controllable in real-world settings.

EDUCATION

• Columbia University - Ph.D. Research Scientist in Computer Science GPA: 4.0/4.0 Advisor: Prof. Elias Bareinboim

• California Institute of Technology - MS in Electrical Engineering GPA: 4.2/4.3 Advisor: Prof. Yisong Yue

• Beijing Institute of Technology - BS in Electrical Engineering GPA: 93/100 Ranking: 1/425 Advisor: Prof. Yuantao Gu

• Peking University - Bachelor of Economics *GPA*: 3.7/4.0

Sep 2021 - Expected Dec 2026 New York, United States

> Sep 2019 - Jun 2021 Pasadena, United States

> > Sep 2015 - Jun 2019 Beijing, China

Sep 2017 - Jun 2019 Beijing, China

PUBLICATIONS

- [C1] Pan, Y. and Bareinboim, E. "Counterfactual Image Editing with Disentangled Causal Latent Space", Accepted in 39th Conference on Neural Information Processing Systems, (NeurIPS), 2025.
- [C2] Hwang, I., Pan, Y., Bareinboim, E. "From Black-box to Causal-box: Towards Building More Interpretable Models", Accepted in 39th Conference on Neural Information Processing Systems, (NeurIPS), 2025.
- [C3] Pan, Y*., Li, A*., Bareinboim, E. "Disentangled Representation Learning in Non-Markovian Causal Systems", In 38th Conference on Neural Information Processing Systems (NeurIPS), 2024. *Contributed equally, Author names in alphabetical order
- [C4] Pan, Y. and Bareinboim, E. "Counterfactual Image Editing", In Proceedings of International Conference on Machine Learning (ICML), 2024.
- [C5] Xia, K., Pan, Y., Bareinboim, E. "Neural Causal Models for Counterfactual Identification and Estimation", In International Conference on Learning Representations, (ICLR), 2023.
- [C6] Pan, Y., Jiao, Y., Li, T., Gu, Y. "An efficient algorithm for hyperspectral image clustering", IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

INDUSTRIAL EXPERIENCE

- Long-sequence Recommendation PhD Research Scientist Intern at Meta May 2025 Aug 2025 Meta Platforms, Inc.
 - Led the research and development of **Long-Short Hierarchical Sequential Transduction Units (LS-HSTU)**, a **transformer**-like generative recommender, for long user history interactions.
 - Implemented LS-HSTU in **Triton** and applied it to internal Instagram Reels data, achieving a **47.1% improvement in QPS** (efficiency) while maintaining **comparable normalization entropy** (accuracy) to the production HSTU baseline.
- Pulmonary Nodules Detection in CT Images Undergrad Intern

 Advisor: Prof. Yi Zhang, West China Hospital

 Dec 2017 Mar 2018
 - Implemented and optimized 3D-convolutional neural networks, and 3D-region proposal U-nets in PyTorch leading to 2x improved lung nodule detection with West China Hospital's CT scans.

SELECTED RESEARCH PROJECTS

• Text-to-Image Editing with Multi-Modal Large Models [C1, 4]

Mar 2023 - present

Advisor: Prof. Elias Bareinboim, Columbia University

- Developed CLS-Edit, a post-training algorithm for counterfactual image editing with text-to-image generative models. Enabled the effect from target edits to other visual features, mitigating biases from pre-trained models. Demonstrated superior performance in reasoning and debiasing compared to existing baselines.
- Proposed Augmented Neural Causal Model (ANCM), a diffusion-based framework for efficient counterfactual reasoning in image editing. Achieved high-fidelity and semantically counterfactual inference in image generation.

Causal Disentangled Representation Learning [C3]

Oct 2023 - Present

Advisor: Prof. Elias Bareinboim, Columbia University

- Proposed CRID, a graphical criterion and algorithm to determine whether learned representations are causally disentangled for downstream tasks.
- Designed a flow-based method for extracting disentangled causal representations and applying them to downstream tasks, including image generation and domain generalization in weakly supervised settings.
- Causal Neural Nets for Counterfactual Identification and Estimation [C5] Sep 2022 May 2023 Advisor: Prof. Elias Bareinboim, Columbia University
 - Proposed Neural Causal Models (NCMs) for counterfactual identification and estimation with deep networks, addressing the limitations of observationally trained models in causal inference.
 - Developed the GAN-NCM structure and showed improved efficiency and accuracy in estimating causal queries over existing baselines.

• Subspace Methods and Hyperspectral Image Clustering [C6]

Mar 2018 -Jun 2019

Advisor: Prof. Yuantao Gu, Tsinghua University

 Developed a superpixel-based spectral clustering algorithm for hyperspectral image analysis, achieving improved accuracy and efficiency over existing baselines on both medical and satellite imagery.

HONORS AND AWARDS

Greenwoods Fellowship

Oct 2021

Fu Foundation of Engineering and Applied Science at Columbia University

• Xu Te Li Scholarship (awarded to top 0.1% of undergraduates)

Beijing Institute of Technology

May 2019

• National Scholarship Chinese Ministry of Education

Dec 2017

• Grand prize in the Excellence 9 Mathematical Competition of China Excellence League

Oct 2016

TEACHING

• TA, CS 4775, Causal Inference I, Columbia University, Fall 2023-2025.

(

- TA, CS 4995, Causal Inference II, Columbia University, Spring 2023.
- TA, ACM 116, Introduction to Probability Models, Caltech, Fall 2020.

4

SKILLS

- **Programming Languages:** Python, C, Verilog, VHDL, Matlab
- Packages: Triton, Pytorch, Numpy, Pandas, SQL, Lightning, Git
- ML:Causal Inference, Diffusion Models, Transformers, LLMs, Multi-Modal Generation, Generative Recommenders