More linear classification

DSE 220

The decision boundary

Decision boundary in \mathbb{R}^p is a **hyperplane**.

- How is this boundary parametrized?
- · How can we learn a hyperplane from training data?

Hyperplanes

Hyperplane $\{x : w \cdot x = b\}$

- orientation $w \in \mathbb{R}^p$
- offset $b \in \mathbb{R}$

Hyperplanes

Hyperplane $\{x : w \cdot x = b\}$

- orientation $w \in \mathbb{R}^p$
- offset $b \in \mathbb{R}$

Can always normalize w to unit length:

$$(w,b) \longleftrightarrow \left(\widehat{w} = \frac{w}{\|w\|}, \frac{b}{\|w\|}\right)$$
 $w \cdot x = b \longleftrightarrow \widehat{w} \cdot x = \frac{b}{\|w\|}$

Hyperplanes

Hyperplane $\{x : w \cdot x = b\}$

- orientation $w \in \mathbb{R}^p$
- offset $b \in \mathbb{R}$

Can always normalize w to unit length:

$$(w,b) \longleftrightarrow \left(\widehat{w} = \frac{w}{\|w\|}, \frac{b}{\|w\|}\right)$$
 $w \cdot x = b \longleftrightarrow \widehat{w} \cdot x = \frac{b}{\|w\|}$

Equivalently: all points whose projection onto \widehat{w} is b/||w||.

Homogeneous linear separators

Hyperplanes that pass through the origin have no offset, b = 0.

Homogeneous linear separators

Hyperplanes that pass through the origin have no offset, b = 0.

Reduce to this case by adding an extra feature to x:

$$\widetilde{x} = (x, 1) \in \mathbb{R}^{p+1}$$

Then $\{x: w \cdot x = b\} \equiv \{x: \widetilde{w} \cdot \widetilde{x} = 0\}$ where $\widetilde{w} = (w, -b)$.

Homogeneous linear separators

Hyperplanes that pass through the origin have no offset, b = 0.

Reduce to this case by adding an extra feature to x:

$$\widetilde{x} = (x, 1) \in \mathbb{R}^{p+1}$$

Then $\{x: w \cdot x = b\} \equiv \{x: \widetilde{w} \cdot \widetilde{x} = 0\}$ where $\widetilde{w} = (w, -b)$.

The learning problem: separable case

Input: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$

Output: linear classifier $w \in \mathbb{R}^p$ such that

$$y^{(i)}(w \cdot x^{(i)}) > 0$$
 for $i = 1, 2, ..., n$

The learning problem: separable case

Input: training data
$$(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$$

Output: linear classifier $w \in \mathbb{R}^p$ such that

$$y^{(i)}(w \cdot x^{(i)}) > 0$$
 for $i = 1, 2, ..., n$

This is linear programming:

- Each data point is a linear constraint on w
- Want to find w that satisfies all these constraints

But we won't use generic linear programming methods, such as simplex.

The learning problem: separable case

Input: training data
$$(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$$

Output: linear classifier $w \in \mathbb{R}^p$ such that

$$y^{(i)}(w \cdot x^{(i)}) > 0$$
 for $i = 1, 2, ..., n$

This is linear programming:

- Each data point is a linear constraint on w
- Want to find w that satisfies all these constraints

But we won't use generic linear programming methods, such as simplex.

A simple alternative: Perceptron algorithm (Rosenblatt, 1958)

- w = 0
- while some (x, y) is misclassified:
 - w = w + yx

Perceptron: example

- w = 0
- while some (x, y) is misclassified:

•
$$w = w + yx$$

Separator: w = 0

Perceptron: example

- w = 0
- while some (x, y) is misclassified:

•
$$w = w + yx$$

Separator: $w = -x^{(1)}$

Perceptron: example

- w = 0
- while some (x, y) is misclassified:

•
$$w = w + yx$$

Separator: $w = -x^{(1)} + x^{(6)}$

Perceptron: convergence

Theorem: Let $R=\max\|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma>0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges after at most R^2/γ^2 updates.

Perceptron: convergence

Theorem: Let $R=\max\|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma>0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges after at most R^2/γ^2 updates.

Proof idea. Let w_t be the classifier after t updates.

Track angle between w_t and w^* :

$$\cos(\angle(w_t, w^*)) = \frac{w_t \cdot w^*}{\|w\|}.$$

Perceptron: convergence

Theorem: Let $R=\max\|x^{(i)}\|$. Suppose there is a unit vector w^* and some (margin) $\gamma>0$ such that

$$y^{(i)}(w^* \cdot x^{(i)}) \ge \gamma$$
 for all i .

Then the Perceptron algorithm converges after at most R^2/γ^2 updates.

Proof idea. Let w_t be the classifier after t updates.

Track angle between w_t and w^* :

$$\cos(\angle(w_t, w^*)) = \frac{w_t \cdot w^*}{\|w\|}.$$

On each mistake, when w_t is updated to w_{t+1} ,

- $w_t \cdot w^*$ grows significantly.
- $||w_t||$ does not grow much.

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

1 Initial vector $w_0 = 0$.

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

- 1 Initial vector $w_0 = 0$.
- **2** When updating w_t to w_{t+1} :

$$w_{t+1} \cdot w^* = (w_t + yx) \cdot w^* = w_t \cdot w^* + y(w^* \cdot x) \ge w_t \cdot w^* + \gamma$$

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

- 1 Initial vector $w_0 = 0$.
- **2** When updating w_t to w_{t+1} :

$$w_{t+1} \cdot w^* = (w_t + yx) \cdot w^* = w_t \cdot w^* + y(w^* \cdot x) \ge w_t \cdot w^* + \gamma$$
$$\|w_{t+1}\|^2 = \|w_t + yx\|^2 = \|w_t\|^2 + \|x\|^2 + 2y(w_t \cdot x) \le \|w_t\|^2 + R^2$$

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

- 1 Initial vector $w_0 = 0$.
- **2** When updating w_t to w_{t+1} :

$$w_{t+1} \cdot w^* = (w_t + yx) \cdot w^* = w_t \cdot w^* + y(w^* \cdot x) \ge w_t \cdot w^* + \gamma$$
$$\|w_{t+1}\|^2 = \|w_t + yx\|^2 = \|w_t\|^2 + \|x\|^2 + 2y(w_t \cdot x) \le \|w_t\|^2 + R^2$$

3 After T updates, we have

$$||w_T \cdot w^*| \ge T\gamma$$
$$||w_T||^2 \le TR^2$$

Perceptron update: if $y(w_t \cdot x) < 0$ (misclassified) then $w_{t+1} = w_t + yx$. Target vector w^* has unit length, and margin condition $y(w^* \cdot x) \ge \gamma$.

- 1 Initial vector $w_0 = 0$.
- **2** When updating w_t to w_{t+1} :

$$w_{t+1} \cdot w^* = (w_t + yx) \cdot w^* = w_t \cdot w^* + y(w^* \cdot x) \ge w_t \cdot w^* + \gamma$$
$$\|w_{t+1}\|^2 = \|w_t + yx\|^2 = \|w_t\|^2 + \|x\|^2 + 2y(w_t \cdot x) \le \|w_t\|^2 + R^2$$

 \odot After T updates, we have

$$w_T \cdot w^* \ge T\gamma$$
$$\|w_T\|^2 \le TR^2$$

4 The angle between w_T and w^* is given by

$$\cos(\angle(w_T, w^*)) = \frac{w_T \cdot w^*}{\|w\|} \ge \frac{T\gamma}{R\sqrt{T}}.$$

This is at most 1, so $T \leq R^2/\gamma^2$.

A better separator?

For a linearly separable data set, there are in general many possible separating hyperplanes, and Perceptron is guaranteed to find one of them.

A better separator?

For a linearly separable data set, there are in general many possible separating hyperplanes, and Perceptron is guaranteed to find one of them.

But is there a better, more systematic choice of separator? The one with the most buffer around it, for instance?

Given training data $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$, find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

Given training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$, find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equally ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Given training data $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$, find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equally ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Given training data $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$, find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equally ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Maximize the margin γ .

Close-up of a point z on the positive boundary.

Close-up of a point z on the positive boundary.

Let \widehat{w} be the unit vector in the direction of w, i.e. $\widehat{w} = w/\|w\|$.

Close-up of a point z on the positive boundary.

Let \widehat{w} be the unit vector in the direction of w, i.e. $\widehat{w}=w/\|w\|$. Then $z-\gamma\widehat{w}$ is on the separator, so

$$w \cdot (z - \gamma \widehat{w}) + b = 0 \Rightarrow \gamma w \cdot \widehat{w} = w \cdot z + b = 1 \Rightarrow \gamma = 1/\|w\|$$

Close-up of a point z on the positive boundary.

Let \widehat{w} be the unit vector in the direction of w, i.e. $\widehat{w}=w/\|w\|$. Then $z-\gamma\widehat{w}$ is on the separator, so

$$w \cdot (z - \gamma \widehat{w}) + b = 0 \Rightarrow \gamma w \cdot \widehat{w} = w \cdot z + b = 1 \Rightarrow \gamma = 1/\|w\|$$

In short: to maximize the margin, minimize ||w||.

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}.$

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}.$

$$\begin{array}{ll} \text{(PRIMAL)} & \min_{w \in \mathbb{R}^p, b \in \mathbb{R}} & \frac{1}{2} \|w\|^2 \\ \text{s.t.:} & y^{(i)} (w \cdot x^{(i)} + b) \geq 1 \quad \text{for all } i = 1, 2, \dots, n \end{array}$$

- This is a convex optimization problem:
 - Convex objective function
 - Linear constraints

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}.$

$$\begin{array}{ll} \text{(PRIMAL)} & \min_{w \in \mathbb{R}^p, b \in \mathbb{R}} & \frac{1}{2} \|w\|^2 \\ \text{s.t.:} & y^{(i)} (w \cdot x^{(i)} + b) \geq 1 \quad \text{for all } i = 1, 2, \dots, n \end{array}$$

- This is a convex optimization problem:
 - · Convex objective function
 - Linear constraints
- It has a dual maximization problem with the same optimum value.

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\alpha \ge 0$$

Complementary slackness

$$\begin{array}{ll} \text{(PRIMAL)} & \min_{w \in \mathbb{R}^p, b \in \mathbb{R}} & \frac{1}{2} \|w\|^2 \\ \text{s.t.:} & y^{(i)} (w \cdot x^{(i)} + b) \geq 1 \quad \text{for all } i = 1, 2, \dots, n \end{array}$$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\alpha \ge 0$$

At optimality, $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ and moreover

$$\alpha_i > 0 \Rightarrow y^{(i)}(w \cdot x^{(i)} + b) = 1$$

Points $x^{(i)}$ with $\alpha_i > 0$ are called **support vectors**.

Support vectors

Linear classifier $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Small example: Iris data set

Small example: Iris data set

The non-separable case

Idea: allow each data point $x^{(i)}$ some slack ξ_i .

(PRIMAL)
$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$
 $\xi \ge 0$

Dual for general case

$$(PRIMAL) \min_{w \in \mathbb{R}^p, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$

$$\xi \ge 0$$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

At optimality,
$$w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)}$$
, with
$$0 < \alpha_{i} < C \implies y^{(i)} (w \cdot x^{(i)} + b) = 1$$

$$\alpha_i = C \Rightarrow y^{(i)}(w \cdot x^{(i)} + b) = 1 - \xi_i$$

Wine data set

Here C = 1.0

Wine data set

Here C = 1.0

$$C = 10$$

$$C = 10$$

$$C = 3$$

$$C = 2$$

$$C = 1$$

$$C = 0.5$$

$$C = 0.1$$

$$C = 0.01$$

Convex surrogates for 0-1 loss

Want a separator w that misclassifies as few training points as possible.

• 0-1 loss: charge $1(y(w \cdot x) < 0)$ for each (x, y)

Problem: this is NP-hard.

Convex surrogates for 0-1 loss

Want a separator w that misclassifies as few training points as possible.

• 0-1 loss: charge $1(y(w \cdot x) < 0)$ for each (x, y)

Problem: this is NP-hard.

Instead, use convex loss functions.

- Hinge loss (SVM): charge $(1 y(w \cdot x))_+$
- Logistic loss: charge $ln(1 + e^{-y(w \cdot x)})$

Convex surrogates for 0-1 loss

Want a separator w that misclassifies as few training points as possible.

• 0-1 loss: charge $1(y(w \cdot x) < 0)$ for each (x, y)

Problem: this is NP-hard.

Instead, use **convex** loss functions.

- Hinge loss (SVM): charge $(1 y(w \cdot x))_+$
- Logistic loss: charge $ln(1 + e^{-y(w \cdot x)})$

A high-level view of optimization

Unconstrained optimization

Logistic regression: find the vector $w \in \mathbb{R}^p$ that minimizes

$$L(w) = \sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}(w \cdot x^{(i)})).$$

We know how to check such problems for convexity and how to solve using gradient descent or Newton methods.

A high-level view of optimization

Unconstrained optimization

Logistic regression: find the vector $w \in \mathbb{R}^p$ that minimizes

$$L(w) = \sum_{i=1}^{n} \ln(1 + \exp(-y^{(i)}(w \cdot x^{(i)})).$$

We know how to check such problems for convexity and how to solve using gradient descent or Newton methods.

Constrained optimization

Support vector machine: find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ that minimize

$$L(w) = \|w\|^2$$

subject to the constraints

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$

What problems of this kind are easy to solve?

Constrained optimization

Write the optimization problem in a standardized form:

$$\min f_o(z)$$

$$f_i(z) \le 0 \text{ for } i = 1,..,m$$

$$h_i(z) = 0 \text{ for } i = 1,..,n$$

Special cases that can be solved (relatively) easily:

- Linear programs. f_o, f_i, h_i are all linear functions.
- Convex programs. f_o, f_i are convex functions. The h_i are linear functions.

Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \mathbb{R}$, find $w \in \mathbb{R}^p$ minimizing

$$L(w) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)})|.$$

Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \mathbb{R}$, find $w \in \mathbb{R}^p$ minimizing

$$L(w) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)})|.$$

Equivalently: let X be the $n \times p$ matrix with rows $x^{(i)}$, and $y = (y^{(1)}, \dots, y^{(n)})$. Then $L(w) = ||Xw - y||_1$.

Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \mathbb{R}$, find $w \in \mathbb{R}^p$ minimizing

$$L(w) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)})|.$$

Equivalently: let X be the $n \times p$ matrix with rows $x^{(i)}$, and $y = (y^{(1)}, \dots, y^{(n)})$. Then $L(w) = ||Xw - y||_1$.

Optimization problem in p+n variables, $w \in \mathbb{R}^p$ and $z \in \mathbb{R}^n$:

$$\min \sum_{i=1}^{n} z_{i}$$

$$y^{(i)} - w \cdot x^{(i)} \le z_{i}, \quad i = 1, 2, \dots, n$$

$$w \cdot x^{(i)} - y^{(i)} \le z_{i}, \quad i = 1, 2, \dots, n$$

Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \mathbb{R}$, find $w \in \mathbb{R}^p$ minimizing

$$L(w) = \sum_{i=1}^{n} |y^{(i)} - (w \cdot x^{(i)})|.$$

Equivalently: let X be the $n \times p$ matrix with rows $x^{(i)}$, and $y = (y^{(1)}, \dots, y^{(n)})$. Then $L(w) = ||Xw - y||_1$.

Optimization problem in p+n variables, $w \in \mathbb{R}^p$ and $z \in \mathbb{R}^n$:

$$\min \sum_{i=1}^{n} z_{i}$$

$$y^{(i)} - w \cdot x^{(i)} \le z_{i}, \quad i = 1, 2, \dots, n$$

$$w \cdot x^{(i)} - y^{(i)} \le z_{i}, \quad i = 1, 2, \dots, n$$

A linear program.

The dual of an optimization problem

Take any optimization problem, convex or not:

$$\min f_o(z)$$

$$f_i(z) \le 0 \text{ for } i = 1,..,m$$

$$h_i(z) = 0 \text{ for } i = 1,..,n$$

Call this the *primal* problem.

The dual of an optimization problem

Take any optimization problem, convex or not:

$$\min f_o(z)$$

$$f_i(z) \le 0 \text{ for } i = 1,..., m$$

$$h_i(z) = 0 \text{ for } i = 1,..., n$$

Call this the primal problem.

There is a *dual* optimization problem over n + m variables:

- $\lambda \in \mathbb{R}^m$, one variable for each primal inequality
- $\nu \in \mathbb{R}^n$, one variable for each primal equality

It is a maximization problem:

$$\max g(\lambda, \nu)$$
$$\lambda > 0$$

The dual of an optimization problem

Take any optimization problem, convex or not:

$$\min f_o(z)$$

$$f_i(z) \le 0 \text{ for } i = 1,..,m$$

$$h_i(z) = 0 \text{ for } i = 1,..,n$$

Call this the *primal* problem.

There is a *dual* optimization problem over n + m variables:

- $\lambda \in \mathbb{R}^m$, one variable for each primal inequality
- $\nu \in \mathbb{R}^n$, one variable for each primal equality

It is a maximization problem:

$$\max g(\lambda, \nu)$$
$$\lambda > 0$$

Constructing the dual is straightforward. But interpreting it is not.

Let z^* and λ^*, ν^* be the optimal primal and dual solutions.

Let z^* and λ^*, ν^* be the optimal primal and dual solutions.

• Weak duality. Dual solution is at most the primal solution: $g(\lambda^*, \nu^*) \leq f_o(z^*)$.

Let z^* and λ^*, ν^* be the optimal primal and dual solutions.

- Weak duality. Dual solution is at most the primal solution: $g(\lambda^*, \nu^*) \leq f_o(z^*)$.
- Strong duality.
 If primal problem is convex then (almost always, with an easily checkable condition) the primal and dual solutions are equal.

Let z^* and λ^*, ν^* be the optimal primal and dual solutions.

- Weak duality. Dual solution is at most the primal solution: $g(\lambda^*, \nu^*) \leq f_o(z^*)$.
- Strong duality.
 If primal problem is convex then (almost always, with an easily checkable condition) the primal and dual solutions are equal.
- Complementary slackness. If primal and dual solutions are equal, then for any $i=1,\ldots,m$,

$$\lambda_i^* > 0 \Rightarrow f_i(z^*) = 0.$$

Let z^* and λ^*, ν^* be the optimal primal and dual solutions.

- Weak duality. Dual solution is at most the primal solution: $g(\lambda^*, \nu^*) \leq f_o(z^*)$.
- Strong duality.
 If primal problem is convex then (almost always, with an easily checkable condition) the primal and dual solutions are equal.
- Complementary slackness. If primal and dual solutions are equal, then for any $i=1,\ldots,m$,

$$\lambda_i^* > 0 \Rightarrow f_i(z^*) = 0.$$

KKT (Karush-Kuhn-Tucker) conditions.
 If the f_i and h_i are differentiable, these are first-derivative-equals-zero conditions that hold at optimality.