Decision Tree Analysis Based on Entropy Values

Minimum 5 sample leaf nodes

15 samples leaf node

25 sample leaf node

Min 40 sample leaf node:

Min 50 sample leaf node

Conclusion:

Among the 5 decision trees, I would pick the decision tree with the min 15 samples in the leaf node. As we increase min sample value in leaf node the decision tree shallower, However, if we check the impurity value entropy values are higher in the shallow trees. This shows that we can't achieve our goal maximizing the information gain. Although the tree with min 5 sample in leaf node gives the good information gain, It is not very shallow and simple. I don't see huge information gain difference between 5 sample leaf and 15 sample leaf. As considering Occam's Razor, simpler model rule. I chose the tree with min 15 samples in its leaf nodes.

Accuracy and Precision Values

Minimum 5 sample leaf nodes

pı	recisio	n rec	all f1-so	core su	ipport
0	0.88	0.82	2 0.8	5 55	5
1	0.66	0.76	5 0.7	0 25	5
			0.00	<u>,</u> 00	
accurac	ΣY		0.80	<mark>)</mark> 80	
macro a	vg	0.77	0.79	0.78	80
weighted	avg	0.81	0.80	0.80	80

Minimum 15 sample leaf nodes

	precis	ion re	call f1-s	score s	upport
0	0.8	7 0.8	4 0.8	5 5	5
1	0.6	7 0.7	2 0.6	9 2	5
<mark>accur</mark>	асу		0.80	<mark>)</mark> 80)
macro	avg	0.77	0.78	0.77	80
weighte	ed avg	0.81	0.80	0.80	80

Minimum 25 sample leaf nodes

	pre	ecisio	n	reca	ll f1-	score	sup	port
	0	0.86	; (0.78	0.	82	55	
	1	0.60) (0.72	0.	65	25	
acc	<mark>uracy</mark>	/			0.7	<mark>'6</mark>	80	
mac	ro av	g	0.7	3	0.75	0.7	74	80
weigh	ited a	avg	0.	78	0.76	5 0	.77	80

Minimum 40 sample leaf nodes

р	recision	recall	f1-sco	re support	
0 (0.86	.78 ().82	55	
1 (0.60 0	.72 ().65	25	
<u>accuracy</u>		0	<mark>.76</mark>	80	
macro avg	0.73	0.75	0.74	4 80	
weighted av	/g 0.7	8 0.7	76 0.	77 80	

Minimum 50 sample leaf nodes

	precis	ion re	call f1-	score	support
0	0.86	5 0.78	3 0.82	2 5	5
1	0.60	0.72	2 0.65	5 2	5
accura	CV		0.76	80	1
<mark>accura</mark>	СУ		0.70	O	J
macro	avg	0.73	0.75	0.74	80
weighted	l avg	0.78	0.76	0.77	80

5 and 15 sample leaf node models have the same accuracy rate 80% while others show the 76 % of accuracy. Moreover, 5 and 15 sample leaf node models are higher precision and recall values that give us better exactness and relevancy.

Repeating Analysis with Having Three Different Class Labels

Min 5 sample leaf node

Min 15 samples leaf node

Min 25 samples leaf node

Min 40 samples leaf node

Min 50 samples leaf node

Conclusion:

Min 5 sample decision tree is shallower in this decision tree. I think, adding one more class helps for classifying better in this data set. On the other hand, in each every decision trees' leaf node, entrophy is very high for the class 0. So we don't have information gain for class 0. In every decision tree, class 2 is easily splitted. Also, compared to the decision tree in the previous example, I would still select the decision tree with min 15 sample leaf node because of the precision recall accuracy and weighted average values. I was leaning towards to select 25 samples one however its weighted average value and accuracy is very low.

Accuracy and Precision Values for 3 different class labels scenario

Min 5 samples leaf node

	pre	cisic	n	reca	all	f1-	sco	ore	su	pport	
C)	0.50)	0.47	7	0.	48		15		
1	L	0.68	3	0.68	3	0.	68		25		
2	2	0.93	}	0.95	5	0.	94		40		
accu	racy	,				0.7	78		80		
macr	o av	g	0.7	70	0	.70		0.7	0	80	
weight	ed a	ıvg	C	.77		0.78	3	0.	77	80)

Min 15 samples leaf node

1	0.73	0.64	0.68	25
2	0.93	0.95	0.94	40

accuracy		0.80	80	
macro avg	0.75	0.75	0.75	80
weighted avg	0.80	0.80	0.80	80

Min 25 samples leaf node

k	recision	recall	f1-score	support
0	0.08	0.27	0.12	15
1	0.60	0.72	0.65	25
2	0.00	0.00	0.00	40
cura	CV		0.28	80

accuracy 0.28 80 macro avg 0.23 0.33 0.26 80 weighted avg 0.20 0.28 0.23 80

Min 40 samples leaf node

	pre	cisio	n	reca	all	f1-	scc	ore	su	oport	;
C)	0.33		0.20)	0.	25		15		
1	L	0.60)	0.72	<u> </u>	0.	65		25		
2	<u> </u>	0.93		0.95	5	0.	94		40		
						٥-			00		
accu	racy					0.7	4		80		
macro	o av	g	0.6	52	0.	62		0.6	1	80	
weight	ed a	vg	0	.71	(0.74	1	0.	72	8	0

Min 50 samples leaf node

	pre	cisio	n rec	all f	1-sc	ore	sup	port
C)	0.33	0.20)	0.25	,	15	
1		0.60	0.72	2	0.65	,	25	
2	2	0.93	0.95	5	0.94	Ļ	40	
accu	racy			().74		80	
macro	o avg	3	0.62	0.6	2	0.62	L	80
weight	ed a	٧g	0.71	0.	74	0.7	72	80

Eliminating one of the variable that has high correlation with another independent variable and repeating decision tree analysis

Index	pelvic_incidence	pelvic_tilt numeric	nbar_lordosis_ang	sacral_slope	pelvic_radius	ree_spondylolisth	diagnosed
pelvic_incide	1.000	0.629	0.717	0.815	-0.247	0.639	0.353
pelvic_tilt numeric	0.629	1.000	0.433	0.062	0.033	0.398	0.326
lumbar_lordos	0.717	0.433	1.000	0.598	-0.080	0.534	0.312
sacral_slope	0.815	0.062	0.598	1.000	-0.342	0.524	0.211
pelvic_radius	-0.247	0.033	-0.080	-0.342	1.000	-0.026	-0.310
degree_spondy	0.639	0.398	0.534	0.524	-0.026	1.000	0.444
diagnosed	0.353	0.326	0.312	0.211	-0.310	0.444	1.000

I eliminated the variable sacral slope since it has high correaltion with pelvis incidence.

Min 5 samples leaf node

Min 15 samples leaf node

Min 25 samples leaf node

Min 40 samples leaf node

Min 50 samples leaf node

Accuracy and Precision Values

Min 5 samples leaf node

0	0.74	0.69	0.71	29
1	0.83	0.86	0.85	51

accuracy		0.80	80	
macro avg	0.79	0.78	0.78	80
weighted avg	0.80	0.80	0.80	80

Min 15 samples leaf node

	precision		n	recall f1-sco		ore	support		
C)	0.75		0.62)	0.6	R	29	
	,	0.75				0.0			
1		0.80)	98.0	3	0.8	4	51	
accu	racy	,				0.79)	80	
macro avg 0.		0.7	8	0.	.75	0.7	6	80	
weighted avg (0.	78	(0.79	0.	78	80	

Min 25 samples leaf node

on reca	recall f1-score		support	
0.69	0.70) 29		
3 0.84	1 0.83	3 51		
	0.79	80		
0.77	0.77	0.77	80	
0.79	0.79	0.79	80	
	0.69 0.84 0.77	0.69 0.70 0.84 0.83 0.79 0.77 0.77	0.79 80 0.77 0.77 0.77	

Min 50 samples leaf node

	precision		recall f1-score		support			
0	0.73	3 0.38	8 0.50) 29				
1	0.72	0.92	2 0.82	1 51				
accuracy 0.73 80								
	o avg	0.73	0.65	0.66	80			
	ed avg			0.70	80			
precision recall f1-score support								
0	0.69	0.62	2 0.65	5 29				
1	0.80	0.84	4 0.82	2 51				
accuracy 0.76 80								
	o avg	0.74	0.73	0.74	80			
weight	ed avg	0.76	0.76	0.76	80			

Conclusion:

When I left the variable sacral_slope, accuracy increased for decision tree with 25 min sample leaf and above others. Also, the decision tree depth for 5 min sample became little shallower. Comparatively, entropy values are in leaves are smaller than before we eliminated the correlated value. Since our sample size is not large, the change in the accuracy is not very big but we can still observe it.