PhD Thesis Defense

Some Hyperbolic $Out(F_N)$ -Graphs and Non-Unique Ergodicity of Very Small F_N -trees

Brian Mann

University of Utah

February 26, 2014

Sections

- Preliminaries
- 2 A sketch of the proof of the first main theorem
- More cyclic splitting complex
- 4 More results

You can get all these slides on http://www.github.com/brianmannmath/thesis_defense

Goal

Fix $N \ge 3$. Let F_N be the free group of rank N. We are trying to study $Out(F_N) = Aut(F_N)/Inn(F_N)$ by finding well-behaved actions on interesting spaces.

Goal

Fix $N \ge 3$. Let F_N be the free group of rank N. We are trying to study $Out(F_N) = Aut(F_N)/Inn(F_N)$ by finding well-behaved actions on interesting spaces.

Today, an *interesting space* is a *hyperbolic metric space* and *well-behaved* means something like *nontrivial*, *isometric*.

Goal

Fix $N \ge 3$. Let F_N be the free group of rank N. We are trying to study $Out(F_N) = Aut(F_N)/Inn(F_N)$ by finding well-behaved actions on interesting spaces.

Today, an *interesting space* is a *hyperbolic metric space* and *well-behaved* means something like *nontrivial*, *isometric*.

Motivated by results of Masur and Minksy (the curve complex is hyperbolic [8]), Bestvina and Feighn (the free factor complex is hyperbolic [1]), and Handel and Mosher (the free splitting graph is hyperbolic [4]) as well as many others.

The Cyclic Splitting Graph

What's an example of such a space? Consider the simplicial graph FZ_N defined as follows:

The Cyclic Splitting Graph

What's an example of such a space? Consider the simplicial graph FZ_N defined as follows:

• The vertices of FZ_N are one-edge splittings of F_N (up to conjugacy) with \mathbb{Z} or trivial edge group.

The Cyclic Splitting Graph

What's an example of such a space? Consider the simplicial graph FZ_N defined as follows:

- The vertices of FZ_N are one-edge splittings of F_N (up to conjugacy) with \mathbb{Z} or trivial edge group.
- There is an edge between splittings T and S if there exists a two-edge splitting R refining both T and S.

 FZ_N is the cyclic splitting graph. It has a natural $Out(F_N)$ -action.

Example

The splittings of F_5

Example

The splittings of F_5

and

$$\langle a, b, c \rangle$$
 $\langle d, e \rangle$

Example

The splittings of F_5

and

$$\langle a, b, c \rangle$$
 $\langle d, e \rangle$

are commonly refined by

First Main Result

Theorem (M [6])

The cyclic splitting graph with the simplicial metric (every edge is length 1) is δ -hyperbolic.

Sections

- Preliminaries
- 2 A sketch of the proof of the first main theorem
- More cyclic splitting complex
- More results

The main tool

Kapovich and Rafi proved the following, using Bowditch's [3] *thin-triangles* condition for hyperbolicity.

The main tool

Kapovich and Rafi proved the following, using Bowditch's [3] *thin-triangles* condition for hyperbolicity.

Theorem (Kapovich-Rafi [5])

Suppose X and Y are connected graphs, X is hyperbolic, and $f: X \to Y$ is Lipschitz. Suppose there is $S \subseteq V(X)$ such that

- ② S is D-dense in V(X) for some $D \ge 0$.
- There is an M > 0 such that if $x, y \in S$ with $d(f(x), f(y)) \le 1$ then $diam(f[x, y]) \le M$.

Then Y is hyperbolic.

How do we use it?

By Handel-Mosher [4] we know that the free splitting graph FS_N is hyperbolic.

How do we use it?

By Handel-Mosher [4] we know that the free splitting graph FS_N is hyperbolic.

We use a quasi-isometric model of FZ_N and a natural, $Out(F_N)$ -equivariant map $FS_N \to FZ_N$ which clearly satisfies the first two conditions of the above theorem.

What about the third condition?

Essentially, it boils down to proving the following claim:

What about the third condition?

Essentially, it boils down to proving the following claim:

If R and R' are marked roses (free splittings of F_N with 1 vertex and N edges) whose images in FZ_N are close, then the Handel-Mosher folding path from R to R' stays uniformly bounded in FZ_N .

Sections

- Preliminaries
- 2 A sketch of the proof of the first main theorem
- More cyclic splitting complex
- More results

It really is something new!

Ok, the title is a little bold, but...

It really is something new!

Ok, the title is a little bold, but...

Proposition

 FS_N and FZ_N are not $Out(F_N)$ -equivariantly quasi-isometric.

It really is something new!

Ok, the title is a little bold, but...

Proposition

 FS_N and FZ_N are not $Out(F_N)$ -equivariantly quasi-isometric.

Proof.

(Don't worry, I'll explain on the board.)

Sections

- Preliminaries
- 2 A sketch of the proof of the first main theorem
- More cyclic splitting complex
- 4 More results

Define a graph I_N whose vertices are one-edge very small F_N -trees, and where two trees T and T' are connect by and edge if there exists a measured current μ such that $\langle T, \mu \rangle = 0 = \langle T', \mu \rangle$.

Define a graph I_N whose vertices are one-edge very small F_N -trees, and where two trees T and T' are connect by and edge if there exists a measured current μ such that $\langle T, \mu \rangle = 0 = \langle T', \mu \rangle$.

Theorem (M 2014)

 I_N is hyperbolic, and furthermore the action of $Out(F_N)$ on I_N satisfies Bestvina and Fujiwara's Weak Proper Discontinuity condition [2].

Nonuniquely ergodic F_N -trees

An arational F_N -tree T in ∂CV_N is nonuniquely ergodic if there exist distinct non-homothetic length measures on T.

Nonuniquely ergodic F_N -trees

An arational F_N -tree T in ∂CV_N is nonuniquely ergodic if there exist distinct non-homothetic length measures on T.

Theorem (M-Reynolds [7] 2013)

Given two curves (a certain type of one-edge very small \mathbb{Z} -splitting of F_N) with neighborhoods U and U' in ∂CV_N , there is a 1-simplex of nonuniquely ergodic, arational, nongeometric trees with one endpoint in each of U, U'.

Acknowledgements

I'd like to thank

- Mladen for agreeing to be my advisor, answering my dumb questions, being exceptionally patient, and not being too annoyed when I forgot to double check when we were supposed to meet.
- Patrick for putting up with the questions I thought were too dumb to ask to Mladen, for teaching me about being a co-author, and for introducing me to the Marseille $Out(F_N)$ people.
- Ric for talking with me about math in pubs, giving me places to stay in and showing me around the UK, and not getting too annoyed when I was trying to avoid working out details.
- Ken Bromberg, Ilya Kapovich, Kasra Rafi, Juan Souto, and Kevin Wortman for talking with me about math (and being a mathematician) during my undergrad and graduate careers.
- All my fellow grad students who made my time here a lot of fun.

- Mladen Bestvina and Mark Feighn.
 - Hyperbolicity of the complex of free factors (preprint). *arXiv:1107.3308.* 2011.
- Mladen Bestvina and Koji Fujiwara.

 Bounded cohomology of subgroups of mapping class groups.

 Geometry and Topology, 6:69–89, 2002.
 - B Bowditch. Intersection numbers and the hyperbolicity of the curve complex. *J. Reine Angew. Math.*, 598:105–129, 2006.
 - Michael Handel and Lee Mosher.

 The free splitting complex of a free group I: Hyperbolicity. arXiv:1111.1994, 2011.
 - Ilya Kapovich and Kasra Rafi. Hyperbolicity of the free factor complex. arXiv:1206.3626, 2012.
- Brian Mann.

Hyperbolicity of the cyclic splitting graph. *Geometriae Dedicata*, pages 1–10, 2013.

Brian Mann and Patrick Reynolds.
Constructing non-uniquely ergodic very small trees.
In preparation, 2013.

Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves I: Hyperbolicity. *Inventiones Mathematicae*, 138:103–149, 1999.