Replacement Analysis

- Asset (fixed) -

Capital Cost - Purchasing cost . so

Resale value - Scrap value - Book on value

Running Cost Maintenance cost Operating cost

- Carpital cost Purchasing cost One time payment at the start.
 - Resale value At The end of the period.
 - Running Operating | Maint Spread over the life of an asset
- Maint. cost increases with the life of an assel-
- Resale value decreases with the life of an asset.

It is assumed that

- (i) Maint cost incurs at the start of the year Period and
- (ii) Resole value recei will be at the end of the year.

Ex: - A car e= 12 lakh. S= 2 lakhs. life= 10 year

(Sold)

 $AAe = \frac{12-2}{10} = \frac{10}{10} = 1 lakh$

Why replacement ? Tech. Dev. 1 Replacement of ceisting assels Retrofilling

Let

C = Capital Cost Purchasing cost Case 1st

S = Salvage value

Replacement of items

f(t) = Maint cost

which detorialEs with

n = Number of years

time

AAC = Average annual Cost

Total cost = C-S+ Ef(+)

$$AAC = \frac{1}{n} \left[C-S + \Xi f(t) \right]$$

Ex 1

The Cost of a machine is Rs 6100 and ils surap value is only Rs 100. The maintenance costs are found from experience to be

Year	1	2	3	4	5	6	7	8
Maintenance (011-	100	250	400	600	900	1250	1600	2000.

When should machine be replaced ?

year (n)	Maint cost f(t)	Total Maint E fct)	(e-s)	Total Cost	AAC
(1)	(2)	(3)	(4)	5=(3+4)	
1	100	100	6000	6,100	6100
2	450	350	6000	6350	3175
3	400	750	6000	6,750	2250
4	600	1350	6000	7,350	1837
S	900	2250	6000	8,250	1650
6	1250	3500	6000	9,500	[1583]
7	1600	5100	6000	11,100	1586
8	2000	7100	6000	13,100	1638

As it is observed that Average Annual cost is the least at the end of sixth year, hence replace the machine at the end of the sixth year.

Example 2

A machine owner finds from his past records that the costs per year of maintaining a machine whose purchase price is Rs 6000 are as given below.

Détermine the age at which the machine is due for. replacement.

Year (n)	1	2	3	4	5	6	7	8
Maint Cost (Rs)	1000	1200	1400	1800	2300	2800	3400	4000
Resale price	3000	1500	750	375	200	200	200	200

Year (n)	Maint cost	Resale Price (8)	(c-s)	Petal Maint Cour Efter	Potal (cur (6 = 4+5)	Average annual Cost (AAe) $7 = \frac{1}{2} [c-s+Efc]$
1	1000	3000	3000	1000	4000	4000
2	1200	1500	4500	2200	6400	9,350
3	1400	750	5250	3600	0288	2,950
4	1800	375	5625	5400	11,025	2,756-25
5	2300	200	5800	7700	13,500	2700
6	2800	200	5800	10,500	16,800	2716-67
7	3400	200	5860	13,900	19,700	2814.28
8	4000	200.	2800	17,900	23,700	2962.5

As the AAC is the least during 5th year, replace the machine at the end of the fifth year.

Case 2nd

Replacement of Plens which detoriales with time and money value changes with time.

At the end of n year - (1+i)"

(1th) - Present worth factor (pwf) or present value.

(Hi) - Compound amount factor

V - Discount rate / depreciation value.

We Know That

Assuming f(t) - at the begining of the possed & Resale at the end.

Fear, find out the replacement age considering the following data of running cost-

Tegr (n)	1	2	3	4	5	6	7	8	و	10
Cest-	800	800	800	800	8000	1000	1200	1400	1600	1800

$$i = \frac{1}{1+0} = \frac{1}{1+0-10} = \frac{1}{1-1} = 0.9096$$

(n) ₀	f(t)	rn-1 (3)			C+= f(t)-11-1	2yn-1	8=6=7
			(5)	0			
1	800	1-0000	800	800	5800	1.000	5800
2	800	0-9091	727	1527	652)	1-9091	3419
_ 3	800	0-8264	661	2188	7188	2-7355	2628
4	800	0,7513	601	2789	7789	3.4868	2234
2	800	0-6830	546	3 335	8 335	4-1698	1999
6	1000	0-6209	621	3956	8,956	4.7907	1896
7	1200	0.5645	677	4633	9633	5.3552	1799
8	1400	0-5132	718	5351	10,351	5.8684	1764
9	16W	0.4665	746	6097	11,097	6.3349	1752
10	1800	0-4241	763	6860	11,860.	6.7590	1755

Replace at the end of 9th year.

Ee

A truck swiner extimates that running cost and salvage value of truck for various years, as tabulated below. If the purhous price of truck is Rs 80,000, estimate the optimal replacement age of the truck assuming i= 15%.

Year	1	2	3	4	5	6	7	0
Running Cast							/	0
Running Cost-	6	7-5	9	12	15	20	25	30
Resule value	100							
('000)	60	40	35	30	25	20	20	20
90					15		20	20

Salmye rallie Sh	Salrye Running rally (Cent	Tay	Discounted R. Call- f(t) 1"-1		5f(t).rn-1 C+2f(t)yn-1	5	5.4	CTEACT) - SAVI SY	25	ARE
ø	n	4	523×4	9	1	Ó	6	10:7-9	1	12= 10:11
9	9	1.0000	6. 0000	6.0000	8 6. vaar	5698-0	52.17	53.00	O.8695	38.9074
40	7.5	9.8695	6-5212	12.5212	92-5212	0.7560	30.24	62-2812	1.62255	38.3151
35	9	0,7560	6.804	19-3252	99-3252	0.6575	23.01	76.3152	2.283	33.4275
30	12	0-6575	7-884	27-2092	107.2092	2172-0	17-145	90.0642	2-8545	31.5516
200	12	6.5715	6.5715 8.5725	35.7817 115.7817	115.7817	696449	12.42	103.3617	3.3514	30.8413
98	50	6964-0	9-938	45.7197 125.7197	125.7197	0.4321	8.642	117.0777	3.7835	30.9442
20	35	B. 4321	10-8825	10-8425 56.5222	136.5222	0.3757	7.514	129.0082	4.1592	31.0175
8	30	0.3757	11.2710	0.3757 11.2710 67.7932 147.7932	Maria de la compansión de	0.3269	6.538	141.2552	4.486]	31.4873

Replace at the end of shrear.

Group Replacement

following data is observed for a certain type of light bulbs.

End of week	1	2	3	4	S	6
Probability of solute to date	0-09	0.25	0,49	28.0	0.97	1.00

Total number of bulbs are 1000, and if the bulb fails in.

Service, it costs Rs 3 to replace but if all bulbs are replaced at time it can be done Re 0.70 for a bulb. It is proposed to replace all the bulbs at fixed interval whether or not they have burnt out.

- 1. What is the best- interval between group replacement?
- 2. At what group replacement <u>price</u> per bulb would a policy of strictly individual replacement become preferable to the endopted policy.

Solution

Total number of bulbs in the system = No = 1000 Let be be the probability that a new light bould fails. during it week of its life.

Since the sum of all probabilities is unify all probabilities higher than be must be zero. i.e. by = po=po=elt=0. Thus all light bulbs are sure to burn out by 6th week. Further we assume

- 1. That light bulb which fail during a week are replaced just before the end of that week.
- 2. The actual % age of failures during a week for a subpopulation of bulbs with some age is the same as the
 expected % age of failure during the week for that sub-population.

 Let Ni= No- of replacements made at the end of ith week.

No = No

N4 = No-p1 = 90

= 1000x0-09

N2= No-p2+N,p,

 $= 1000 \times 0.16 + 90 \times 0.09$

= 160 +8-1

N3 = No. 3 + N1. p2 + N2-p1

= (1500x0-24)+(90x0-16)+ (168x0-09)

= 240+144+ 15.12

N4 = No. \$4+ N1. \$3 + N2 \$2 + N3- \$1

 $= (1600 \times 0.36) + (90 + 0.24) + (168 \times 0.16) + (269 \times 0.89) = 432$ = 360 + 21.6 + 26.88 + 24.21

N 5 = No. P 5+ N1. P4+ N2. P3+ N3. p2+N4P1

 $= (1000 \times 0.12) + (90 \times 0.36) + (168 \times 0.124) + (269 \times 0.16)$ $+ (432 \times 0.09)$

NG= No p6 +N1. P5+ N2 p4+ N3 p3+ N4. p2 + N5. p1 = (1000×0.03)+(90×0.12)+(168×0.36)+(269×0.24) +(432×0.16)+(274×0.09)

= 30+10.8+60.48+64.58+69.12+24-66

= 260

N7 = 0 + N1 p6+ N2p5+ N3. P4+N4P3+N5. P2+N6P1 = 291

Thus we find that the number of bulbs failing each week increases till the 4th week, then decreases and again increases from 7th week. Thus Ni will continue to osaillate till the system attains a steady system.

Average (expected) life of light bulbs = 5 ibi

 $= (1 \times 0.09) + (2 \times 0.16) + (3 \times 0.24) + (4 \times 0.36) + (3 \times 0.12)$ $+ (6 \times 0.03) = 3.35$

:. A vg. no. of failures week = 1000 = 299

cost of individual replacement of bulbs = Rs. (3x299) = Rs 897

Since the replacement of all 1000 bulbs in operation.

Cost Re. 0.70 per bulb and replacement of individual.

bulb Costs Rs 3 the total cost of replacement is.

End of Week	Total cour of group replacement.	Avg Coss
1	1000 x 0. 70 + 90 x 3 = 970	970
2	1000x0,7073 (901168) =1474	737.00
3	100000.70 +3 (90+168+263) = 2281	760.33

As the average minimum cout is in the 2nd week it is optimal to have a group septement after every two weeks.

Let R_{x} sæ be the group replacement price for bulbs. $899 < \frac{1000 \times 2 + 3(90 + 168)}{2}$ 271-02