6 Irreduzibele topologische Räume

Die folgenden topologische Begriffe sind nur interessant, da $\mathbb{A}^n(k)$ (n > 0) kein Hausdorff'scher Raum ist.

Definition 12. Ein topologischer Raum X heißt **irreduzibel**, wenn $X \neq \emptyset$ und X sich *nicht* als Vereinigung zweier echter abgeschlossenen Teilmengen darstellen lässt, d.h

$$X = A_1 \cup A_2$$
, A_i abg. \Rightarrow $A_1 = X$ oder $A_2 = X$.

 $Z \subset X$ heißt irreduzibel, falls Z mit der induzierten Topologie irreduzibel ist.

Satz 13. Für einen topologischen Raum X sind äquivalent:

- (i) X ist irreduzibel.
- (ii) Je zwei nichtleere offenen Teilmengen von X haben nicht-leeren Durchschnitt.
- (iii) Jede nichtleere offene Teilmenge $U \subset X$ ist dicht in X.
- (iv) Jede nichtleere offene Teilmenge $U \subset X$ ist zusammenhängend.
- (v) Jede nichtleere offene Teilmenge $U \subset X$ ist irreduzibel.

Beweis.

- $(i) \Leftrightarrow (ii)$ Komplementsmengen.
- $\bullet \ (ii) \Leftrightarrow (iii)$

Es ist: $U \subset X$ dicht $\Leftrightarrow U \cap O \neq \emptyset$ für jedes offene $\emptyset \neq O \subset X$.

• $(iii) \Rightarrow (iv)$

Klar.

• $(iv) \Rightarrow (iii)$

Sei $\emptyset \neq U$ offen und zusammenhängend. Es folgt:

$$U = U_1 \sqcup U_2, \qquad \emptyset \neq U_i \subset U \subset X$$

Damit ist $U_1 \cap U_2 = \emptyset$, ein Widerspruch zu (iii).

 $\bullet \ (v) \Rightarrow (i)$

Klar. (U = X)

• $(iii) \Rightarrow (v)$

Sei $\emptyset \neq U \subset X$. Ist $\emptyset \neq V \subset U$, so ist $V \subseteq X$. Es folgt: V ist dicht in X und irreduzibel in U. Mit $(iii) \Rightarrow (i)$ folgt, dass U irreduzibel ist.

Lemma 14. Eine Teilmenge Y ist genau dann irreduzibel, wenn ihr Abschluss \overline{Y} dies ist.

Beweis. Y irreduzibel.

$$\Leftrightarrow \forall U, V \subset X \text{ offen mit } U \cap Y \neq \emptyset \neq V \cap Y, \text{ gilt } Y \cap (U \cap V) \neq \emptyset.$$

$$\Leftrightarrow \overline{Y} \text{ irreduzibel.}$$

Definition 15. Eine maximale irreduzibele Teilmenge eines topologischen Raumes X heißt irreduzibele Komponente von X.

Bemerkung 16.

- (i) Jede irreduzibele Komponente ist abgeschlossen nach Lemma 14.
- (ii) X ist Vereinigung seiner irreduzibelen Komponenten, denn:

die Menge der irreduzibelen Teilmengen von X ist **induktiv geordnet**: für jede aufsteigende Kette irreduzibeler Teilmengen ist die Vereinigung wieder irreduzibel. (Satz 13 (ii)). Mit dem **Lemma von Zorn** folgt: Jede irreduzibele Teilmenge ist in einer irreduzibelen Komponente enthalten. Damit ist jeder Punkt in einer irreduzibelen Komponente enthalten.