EE-556 Homework 1

Edoardo Debenedetti

October 30, 2019

Problem 1 - Geometric properties of the objective function \boldsymbol{f}

Assuming $\mu = 0$, the smooth Hinge loss function f becomes:

$$f(x) = \ell_{sh}(\mathbf{x}) + \frac{\lambda}{2} ||\mathbf{x}||^2 \tag{1}$$

where

$$\ell_{sh} = \frac{1}{n} \sum_{i=1}^{n} g_i(\mathbf{x}) \tag{2}$$

and

$$g_i(\mathbf{x}) = \begin{cases} \frac{1}{2} - b_i(\mathbf{a}_i^T \mathbf{x}) & b_i(\mathbf{a}_i^T \mathbf{x}) < 0\\ \frac{1}{2} (1 - b_i(\mathbf{a}_i^T \mathbf{x}))^2 & 0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1\\ 0 & 1 \le b_i(\mathbf{a}_i^T \mathbf{x}) \end{cases}$$
(3)

(a) Gradient of f

Computation of the gradient

Proof. Since the gradient is a linear operator:

$$\nabla f(\mathbf{x}) = \nabla \ell_{sh} + \nabla \frac{\lambda}{2} ||\mathbf{x}||^2$$
(4)

We can first compute $\nabla \frac{\lambda}{2} \|\mathbf{x}\|$:

$$\nabla \frac{\lambda}{2} \|\mathbf{x}\|^2 = \frac{\lambda}{2} \nabla \|\mathbf{x}\|^2 = \frac{\lambda}{2} \nabla \sum_{i=1}^n |x_i|^2 = \frac{\lambda}{2} \sum_{i=1}^n \nabla x_i^2 =$$
$$= \frac{\lambda}{2} 2\mathbf{x} = \lambda \mathbf{x}$$
(5)

Now, let us compute $\nabla \ell_{sh}$:

$$\nabla \ell_{sh} = \nabla \frac{1}{n} \sum_{i=1}^{n} g_i(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla g_i(\mathbf{x})$$
 (6)

Where $\nabla g_i(\mathbf{x})$ is the gradient of (3)

$$\nabla g_i(\mathbf{x}) = \begin{cases} \nabla \left[\frac{1}{2} - b_i(\mathbf{a}_i^T \mathbf{x}) \right] & b_i(\mathbf{a}_i^T \mathbf{x}) < 0 \\ \nabla \left[\frac{1}{2} (1 - b_i(\mathbf{a}_i^T \mathbf{x}))^2 \right] & 0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1 \\ \nabla 0 & 1 \le b_i(\mathbf{a}_i^T \mathbf{x}) \end{cases}$$
(7)

The case where $1 \leq b_i(\mathbf{a}_i^T \mathbf{x})$ is trivial, since

$$\nabla 0 = 0 \tag{8}$$

In the case where $b_i(\mathbf{a}_i^T\mathbf{x}) < 0$:

$$\nabla \left[\frac{1}{2} - b_i(\mathbf{a}_i^T \mathbf{x}) \right] = \nabla (-b_i(\mathbf{a}_i^T \mathbf{x})) = -b_i \mathbf{a}_i$$
(9)

Next, in the case where $0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1$:

$$\nabla \left[\frac{1}{2} (1 - b_i(\mathbf{a}_i^T \mathbf{x}))^2 \right] = -\frac{1}{2} 2b_i \mathbf{a}_i (1 - b_i(\mathbf{a}_i^T \mathbf{x})) =$$

$$-b_i \mathbf{a}_i (1 - b_i(\mathbf{a}_i^T \mathbf{x})) = b_i \mathbf{a}_i (b_i(\mathbf{a}_i^T \mathbf{x}) - 1)$$
(10)

Finally, combining (8), (9) and (10), we get:

$$\nabla g_i(\mathbf{x}) = \begin{cases} -b_i \mathbf{a}_i & b_i(\mathbf{a}_i^T \mathbf{x}) < 0 \\ b_i \mathbf{a}_i(b_i(\mathbf{a}_i^T \mathbf{x}) - 1) & 0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1 \\ 0 & 1 \le b_i(\mathbf{a}_i^T \mathbf{x}) \end{cases}$$
(11)

Now, let us define, as in the problem statement, $\tilde{\mathbf{A}} := [b_1 \mathbf{a}_1, ..., b_n \mathbf{a}_n]^T$, and $\mathbf{I}_L, \mathbf{I}_Q$ as the diagonal $n \times n$ matrices such that $\mathbf{I}_L(i, i) = 1$ if $b_i(\mathbf{a}_i^T \mathbf{x}) < 0$ and $\mathbf{I}_Q(i, i) = 1$ if $0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1$, and 0 otherwise.

We can observe that $\tilde{\mathbf{A}}^T \mathbf{I}$ is the matrix whose *i*-th column is $b_i \mathbf{a}_i$. Instead, $\tilde{\mathbf{A}}^T \mathbf{I}_L$'s *i*-th columns will be non-zero only in the case where $b_i(\mathbf{a}_i^T \mathbf{x}) < 0$. Then it is possible to represent this case of $\nabla g_i(\mathbf{x})$ where $b_i(\mathbf{a}_i^T \mathbf{x}) < 0$ as

$$-\frac{1}{n}\tilde{\mathbf{A}}^T\mathbf{I}_L\mathbf{1} \tag{12}$$

since multiplying $\tilde{\mathbf{A}}^T \mathbf{I}_L$ by 1 will give as result the vector containing the sum of the elements of each column, which means the element-wise sum of the different j-th components of the i-th gradients relative to each $g_i(\mathbf{x})$. Each j-th component can be written as

$$\sum_{i \in \{i \mid b_i(\mathbf{a}_i^T\mathbf{x}) < 0\}}^n a_{i,j}b_j$$

In a similar fashion, $\tilde{\mathbf{A}}^T \mathbf{I}_Q$ is the matrix whose *i*-th column is $\mathbf{a}_i b_i$ only if *i* is such that $0 \leq b_i(\mathbf{a}_i^T \mathbf{x}) \leq 1$. Moreover, $\tilde{\mathbf{A}} \mathbf{x}$ is the vector such that $[\tilde{\mathbf{A}} \mathbf{x}]_n = \sum_{i=1}^n b_i \mathbf{a}_i \mathbf{x}$. Consequently, $\tilde{\mathbf{A}} \mathbf{I}_Q[\tilde{\mathbf{A}} \mathbf{x} - \mathbf{1}]$ is the vector whose *j*-th component is

$$[\tilde{\mathbf{A}}^T \mathbf{I}_Q [\tilde{\mathbf{A}} \mathbf{x} - \mathbf{1}]]_j = \sum_{i \in \{i \mid 0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1\}}^n b_j a_{i,j} (b_j(\mathbf{a}_i^T \mathbf{x}) - 1)$$

if $0 \le b_i(\mathbf{a}_i^T \mathbf{x}) \le 1$. Then, with

$$\frac{1}{n}\tilde{\mathbf{A}}^T\mathbf{I}_Q[\tilde{\mathbf{A}}\mathbf{x} - \mathbf{1}] \tag{13}$$

we can represent the components of $\nabla g_i(\mathbf{x})$ in the aforementioned case.

Combining (12) and (13), it is proven that

$$\nabla \ell_{sh} = \frac{1}{n} (\tilde{\mathbf{A}}^T \mathbf{I}_Q [\tilde{\mathbf{A}} \mathbf{x} - \mathbf{1}] - \tilde{\mathbf{A}}^T \mathbf{I}_L \mathbf{1})$$
(14)

Finally, combining (5) and (14) we get the final result

$$\nabla f(\mathbf{x}) = \lambda \mathbf{x} + \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q [\tilde{\mathbf{A}} \mathbf{x} - \mathbf{1}] - \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_L \mathbf{1}$$
(15)

L-Lipschitz continuity of the gradient

Proof. By definition, a function f has L-Lipschitz continuous gradient if $\exists L < \infty$ such that:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\| \tag{16}$$

So, let us compute the left term of the inequality for our objective function f:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| = \left\| \lambda \mathbf{x} + \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q [\tilde{\mathbf{A}} \mathbf{x} - \mathbf{1}] - \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_L \mathbf{1} - \left(\lambda \mathbf{y} + \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q [\tilde{\mathbf{A}} \mathbf{y} - \mathbf{1}] - \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_L \mathbf{1} \right) \right\|$$
(17)

We can then observe that the linear parts cancel, that we can take out lambda and expand the expressions in the quadratic region. Eq. 17 becomes:

$$\left\| \lambda(\mathbf{x} - \mathbf{y}) + \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q \tilde{\mathbf{A}} \mathbf{x} - \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q \tilde{\mathbf{A}} \mathbf{y} - \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q + \frac{1}{n} \tilde{\mathbf{A}}^T \mathbf{I}_Q \right\|$$
(18)

Again, we can cancel the last two factors, and take out the factor $\frac{1}{n}\tilde{\mathbf{A}}^T\mathbf{I}_Q\tilde{\mathbf{A}}$. We can also note that since we are now dealing only with elements in the quadratic region and there is no contribution from elements in the linear region, we can consider \mathbf{I}_Q as \mathbb{I} and then we can cancel it. As a consequence, eq. 18 becomes:

$$\left\| \lambda(\mathbf{x} - \mathbf{y}) + \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}} (\mathbf{x} - \mathbf{y}) \right\| = \left\| \left(\lambda + \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}} \right) (\mathbf{x} - \mathbf{y}) \right\|$$
(19)

We can now use Cauchy-Schwartz and triangle inequalities:

$$\left\| \left(\lambda + \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}} \right) (\mathbf{x} - \mathbf{y}) \right\| \le \left\| \lambda + \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}} \right\| \|\mathbf{x} - \mathbf{y}\| \le$$

$$\le \left(\|\lambda\| + \left\| \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}} \right\| \right) \|\mathbf{x} - \mathbf{y}\| =$$

$$\left(\lambda + \frac{1}{n} \|\tilde{\mathbf{A}}^T\| \|\tilde{\mathbf{A}}\| \right) \|\mathbf{x} - \mathbf{y}\|$$
(20)

Since λ is a scalar, its norm is the number itself. Moreover, since $\frac{1}{n}$ is a scalar as well, we can take it out of the norm. We can now combine equations 16, 19 and 20 and get the following result:

$$\left(\lambda + \frac{1}{n} \|\tilde{\mathbf{A}}^T\| \|\tilde{\mathbf{A}}\|\right) \|\mathbf{x} - \mathbf{y}\| \le L \|\mathbf{x} - \mathbf{y}\|$$
(21)

if $L = \lambda + \frac{1}{n} \|\tilde{\mathbf{A}}^T\| \|\tilde{\mathbf{A}}\|$. Finally, recalling that $\tilde{\mathbf{A}} := [b_1\mathbf{a}_1, ..., b_n\mathbf{a}_n]^T$ where $b_n \in \{-1, 1\}$, we can note that $\|\tilde{\mathbf{A}}\| = \|\mathbf{A}\|$, since the norm is computed taking in account the absolute value of each entry of a matrix. Hence, as a final result,

$$f(\mathbf{x}) \in \mathcal{F}_L^{1,1} \tag{22}$$

with $L = \lambda + \frac{1}{n} ||\mathbf{A}^T|| ||\mathbf{A}||$.

(b) Hessian of f

Proof. Assuming that $\mathbf{I}_L = \mathbb{I}$, we can deduce that $\mathbf{I}_L = \mathbb{O}$, since it would mean that $\forall i \in [1, n], b_i(\mathbf{a}_i^T\mathbf{x}) < 0$. Then some simple computations can show that

$$\nabla f(\mathbf{x}) = \lambda \mathbf{x} + \frac{1}{n} \tilde{\mathbf{A}}^T (\tilde{\mathbf{A}} \mathbf{x}) - \tilde{\mathbf{A}}^T$$
(23)

We can then compute the Hessian $\nabla^2 f(\mathbf{x})$ as $\nabla \cdot \nabla f(\mathbf{x})$, that is

$$\nabla^{2} f(\mathbf{x}) = \nabla \cdot \nabla f(\mathbf{x}) = \nabla \cdot \lambda \mathbf{x} + \nabla \cdot \left[\frac{1}{n} \tilde{\mathbf{A}}^{T} (\tilde{\mathbf{A}} \mathbf{x}) - \tilde{\mathbf{A}}^{T} \right] =$$

$$= \lambda \nabla \cdot \mathbf{x} + \frac{1}{n} \tilde{\mathbf{A}}^{T} (\tilde{\mathbf{A}} \nabla \cdot \mathbf{x}) =$$

$$= \lambda \mathbb{I} + \frac{1}{n} \tilde{\mathbf{A}}^{T} \tilde{\mathbf{A}}$$
(24)

Hence, $\nabla^2 f(\mathbf{x}) = \lambda \mathbb{I} + \frac{1}{n} \tilde{\mathbf{A}}^T \tilde{\mathbf{A}}$. Moreover, $f(\mathbf{x})$ is twice differentiable because $\nabla^2 f(\mathbf{x})$ is continuous over \mathbb{R}^p

(c) Strong convexity of f

Proof. First, let use recall that $f(\mathbf{x}) = \ell_{sh}(\mathbf{x}) + \frac{\lambda}{2} ||\mathbf{x}||^2$ and that a function $f(\mathbf{x})$ is μ -strongly convex iff, given $h(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} ||\mathbf{x}||^2$, $h(\mathbf{x})$ is convex. In the case of the smooth Hinge loss function,

$$h(\mathbf{x}) = \ell_{sh} + \frac{\lambda}{2} \|\mathbf{x}\|^2 - \frac{\mu}{2} \|\mathbf{x}\|^2$$
 (25)

Now, setting $\mu = \lambda$, we get that $h(\mathbf{x}) = \ell_{sh}(x)$. We know that ℓ_{sh} is convex, and then $h(\mathbf{x})$ us convex as well. Thus,

$$f(\mathbf{x}) \in \mathcal{F}_{L,\mu}^{2,1} \tag{26}$$

with $L = \lambda + \frac{1}{n} ||\mathbf{A}^T|| ||\mathbf{A}||$ and $\mu = \lambda$.

First order methods for linear SVM

Figure 1: (Accelerated) Gradient Descent

Figure 2: Line Search methods

Stochastic gradient methods for SVM

Figure 3: Accelerated GD with restart

Figure 4: Line Search AGD with restart

Figure 5: Adaptive methods

Figure 6: Stochastic Gradient methods