Machine Learning

Identifying Giants and Dwarfs through Machine Learning

Dataset Features

Vmag Visual Apparent Magnitude of the Star

Plx Distance between the Star and the Earth

e_Plx Standard error of Plx

B-V Color Index

SpType Spectral Type

Amag Absolute Magnitude of the Star

Outlier Identification and Dataset Visualization

Feature Clipping

Removed samples that are 1.5 times greater than the standard deviation of "e_Plx", according to its values in that column

Feature Normalization

Using the Min-Max Normalization formula:

$$x' = rac{x - min(x)}{max(x) - min(x)}$$

3-way-split: Creation of Train, Dev and Test Sets

```
from sklearn.model selection import train test split
x train, x cv, y train , y cv =
train test split(x data, y data, test size = 0.20)
x train, x test, y train , y test =
train test split(x train, y train, test size = 0.20)
```

Logistic Regression

Cost Function and Gradient Descend with Ridge Regression

Accuracy, Confusion Matrix and F1-Score as performance mechanism evaluators

Logistic Regression (Running Example)

```
Best Lambda: 0.5
Accuracy of Train Data: 90.0 %
Accuracy of Cross Validation: 90.433 %
Accuracy of Test Data: 87.585 %
F1-Score of Train Data: 88.632 %
F1-Score of Cross Validation Data: 88.3 %
F1-Score of Test Data: 84.68
```

Logistic Regression (Confusion Matrix)

Neural Networks

NN Cost Function with BackPropagation

Gradient Descent with Adaptative Learning Rate and Momentum


```
Lambda= 0.5
alpha= 2.1
momentum = 0.01

Lambda_alt = 0.5
alpha_alt = 1.2
momentum_alt = 0.5

Train Set Accuracy: 90.113 %
Test Set Accuracy: 88.262 %
```

SVM

Training examples to points in space

Divides area in two spaces, when something is to be classified, appears in the area representing the classification

Best results:

KFold

Used on SVM Cross Validation

5 splits

Average Balanced Accuracy

Average F1 Score

Conclusions

Logistic Regression, Neural Networks and SVM all have around 90% accuracy

Regarding this project, and considering the resources necessary to implement all the methods, the best option is the Logistic Regression, as it provides almost the same results consuming the least resources.

Authors

José Moreira Nº79671

Bruno Aguiar Nº80177