1 Expression

Soit Σ, Q des ensembles finies. On notera, E_{Σ} l'ensemble des d'expression régulière sur Σ

Sera noté $E_{(Q,\mathbb{N})}$, l'ensemble des expressions régulières de E_Q auquelle on aura associé à chaque charactère son indice d'apparition dans l'ordre de l'écture gauche-droite en commensant à un de l'expression.

Soit R un ensemble finie et $e \in E_R$,

$$linearisation(e) :: E_R \to E_{(R,\mathbb{N})}$$

 $alphabet(e) :: E_R \to V$, avec $V \subset Q$

La fonction alphabet renvoie le sous ensemble de R correspondant à tous les symboles apparaissant au moins une fois dans e.

$$first(e) :: E_Q \to F$$
, tel que $F \subset Q$
 $last(e) :: E_Q \to F$, tel que $F \subset Q$
 $follow(e) :: E_{(Q,\mathbb{N})} \to \mathbb{N} \to S$

avec S représentant l'ensemble des symboles qui peuvent suivre le symbole d'indice donner.

La fonction qui permet de récuprer la lettre associé a son indice pour une expression indicé est définie de la façon suivante :

$$indexE :: E_{(Q,\mathbb{N})} \to \mathbb{N} \to Q$$

Nous représenterons un automate de la façon suivante : $M=(\Sigma,Q,P,F,\delta)$ avec Σ , l'ensemble d'éléments pouvant être labelle d'une transition ; Q l'ensemble des états de l'automate ; P l'ensemble des états initiaux de l'automate tel que $P\subset Q$; F l'ensemble des états finaux de l'automate tel que $F\subset Q$; G0; G1, G2, G3, G4, G5, G5, G6, G7, G8, G9, G9,

$$delta :: Q \to \Sigma \to Q$$

De cette définition viens la fonction :

$$glushkov :: E_{\Sigma} \to M \text{ avec}, M = (\Sigma, Q, P, F, \delta)$$

qui permet la transformation d'une expression rationnelle en automate de glushkov.

2 Automate

À un automate quelquonc M, on peut appliquer les opérations d'ajout (resp. supression) de tansition et d'état. On définit un orbite noté \mathcal{O} , comme étant un sous-ensemble de Q tel que pour $(x,x') \in Q^2$, il existe une suite de transition partant de x vers x'.

Un orbit est dit maximal si et seulement si, pour tout $x \in \mathcal{O}$ et $x' \notin \mathcal{O}$, il n'existe qu'une suite de transition de x vers x' ou de x' vers x.

On définit l'automate d'un orbite noté $M_{\mathcal{O}}$, tel que $M_{\mathcal{O}}=(\Sigma,Q\cap\mathcal{O},P\cap\mathcal{O},F\cap\mathcal{O},\delta')$ avec $s\in Q,t\in\Sigma$:

$$\delta'(s,t) = \begin{cases} delta(s,t) \cap \mathcal{O}, \text{ si } s \in Q \\ \emptyset, \text{ sinon} \end{cases}$$

Soit $x\in Q,$ on note $Q^+(x)$ (respectivement $Q^-(x)$) les succéseurs (resp. prédécésseur) directe de l'état x.