Jose Luis Galiano Gómez SP(2) C(1)

MACHINE LEARNING

Software Project 2, Component 1

Jose Luis Galiano Gómez

Jose Luis Galiano Gómez SP(2) C(1)

PROBLEM DEFINITION

The task to solve in this second software project will be a simple supervised binary classification problem. Specifically, the task at hand will be to determine whether a given banknote is authentic given a number of measures taken from a photograph.

PROBLEM SPECIFICATION

Input data and preconditions

The input data we will use is a labeled dataset provided by the UC Irvine Machine Learning Repository at https://archive.ics.uci.edu/dataset/267/banknote+authentication. It consists of 1372 instances with 4 input features each, and a fifth class feature that can either be 0 (authentic banknote) or 1 (unauthentic). The dataset is simple, with a low number of features for each data instance, but sizable enough so that it can be used. Furthermore, there are no missing values.

Output and postconditions

The output will be a trained model which will then be used on a test dataset (cross-validation). The model will output a classification for each of the instances within said dataset, either 0 or 1.

SPECIFICATION OF THE LEARNING TASK

Task: To categorize each banknote, represented by 4 input features each, into either authentic or unauthentic.

Performance measure: Percentage of correctly classified instances within the tested dataset.

Experience: Training via gradient descent given a labeled dataset.

Jose Luis Galiano Gómez SP(2) C(1)

ML TECHNIQUE: PERCEPTRON

The perceptron is a simple supervised machine learning algorithm and one of the earliest neural network architectures, introduced by Frank Rosenblatt in the late 1950s. A perceptron maps a set of training examples (of d-dimensional input vectors) onto binary output values using a d - 1 dimensional hyperplane.

The perceptron is a very simple neural network. Given a dataset $\{(x_1,y_1), ..., (x_n,y_n)\}$ where x_i is a *d*-dimensional input vector $(x_{i1},...,x_{id})$ of feature values for that data instance and y_i the binary target variable, the perceptron has a real-valued weight vector $\mathbf{w} = (w_1,...,w_d)$ and a real-valued bias \mathbf{b} .

The gradient descent algorithm used for training consists of the following steps:

- 1. Firstly, the weight vector and bias are initialized to all zeros.
- 2. A linear combination of the input features and weights is computed using a matrix X of (number of instances, number of features) proportions that holds all training examples through the following operation: $a = X \cdot w + b$.
- 3. The Heaviside activation function is applied to the resulting vector from the previous step to convert the real values into binary values: $y_i = 1$ if $a_i >= 0$, else $y_i = 0$.
- 4. The weights and bias updates are computed as follows: $\Delta w = \eta X^T \cdot (\bar{y} y)$,
- $\Delta b = \eta(y-y)$, where η is the learning rate, a scalar value that determines the magnitude of the update to the weights in each iteration.
- 5. The weights and biases are updated: $w = w + \Delta w$, $b = b + \Delta b$.