## Moduli of Curves - Nov 11

A few remarks about moduli spaces -

We have constructed Mg as a DM stack. We might also want a coarse moduli scheme Mg. There are two standard approaches.

1) Keel-Morithm @ GIT. - later.

Before describing them, we make a few det.

Def: X/S is separated if  $\Delta: X \to XXX$  is proper.

Rem: Recall that if we have T -> IXX by (dip) then

Found (1/B) → 2 ↓ □ ↓ △ T → 2x3€

Check: Mg is separated (using the birat geom. of surfaces).

Det: An algebraic space is as étal a sheaf in the étale topology......

with an étale atlas (ien A DM stack where the CFG is a sheaf)

egv. a DM stack where A is an embedding.

(moughly

Thm [Keel-Mori]: Every separated DM stack & has a course moduli space & X , where X is an algebraic space. (This map is initial among maps to alg spaces and big on geometric points.)

Ref: "Qualient by Groupoids. RIV -> X

Def: X/s is proper if I Z/s proper and surj Z -> X.

A valuative criterion: Suppose Its is separated and finite type.

Let R be a DVR with fr. field K.

Then, given speck  $\Rightarrow$  speck  $\xrightarrow{\sigma}$   $\Rightarrow$   $\Rightarrow$  finite separable extension K'/K s.t. speck  $\Rightarrow$   $\Rightarrow$  extends to speck  $\Rightarrow$   $\Rightarrow$   $\Rightarrow$ 

Pichare



Ex. Let G be a finite group / speek. Then BG is proper.

→ BG 🖨 G-bundle on the punct disc.

Need not extend (in fact, will not extend if it is nontrivial). But after a finite cover, it can be trivialized. => extends.

(keel-mon) & proper => X proper.

GAGA: A propor algebraic space with an ample line bundle is projective scheme.

Compact keel-Muri

moduli Stack on coarse algebraic ample scheme.

For, Ample line bundle : Kleiman's criterion:

 $L \to X$  is ample iff  $L^r \cdot L^r \cdot L$ 

| Compactification of Mg.                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|
| Let k be an algebraically closed field.                                                                                         |
| Let C/k be a curve and peCa k-point.                                                                                            |
| $P$ is a <u>node</u> if $\widehat{O}_{C,P} \cong k [xy]/xy$ $\downarrow$ "analytically."                                        |
| Def: A modal (or pre-stable) curve is a curve with C such that $\forall p \in C$ , $\Rightarrow p$ is a smooth point or a node. |
| A stable curve is a (proper) pre-stable curve with finite                                                                       |
| auto morphism group.                                                                                                            |
| EX. $2$ $2$ $2$ $3$                                                                                                             |
|                                                                                                                                 |

NOT

Prop: Let Co be the normalization of a component of C. Let P.,.., Pn & Co be the preimages of the nodes of C. Then C is stuble iff for every &, we have 展 29(で)+n-2> Q.O

(i.e. genus 2, or higher, genus I with at lest one that the pt, genus 0 with at least 3 special points)

Det: Mg: { C | T- Hat proper.

Geometric fibers are (connected) Stable curves.}

Thm: Mg is a Deligne-Mumford stack, smooth and proper over spec 71.

Key Observation: We can make the valuative criterion of propeness work.

Thm (Stable reduction): Let R be a DVR, K its fr. field.

Let  $C \rightarrow \text{spec} K$  be a stable curve. Then  $\exists$  finite separable extension K'/K s.t.  $CK' \rightarrow K'$  extends to a stable curve  $CR' \rightarrow \text{spec} R'$ .

We'll prove this in char O, where the proof is very direct and constructive. Example: Plane curves acquiring a cusp.

$$\begin{cases} \begin{cases} \begin{cases} \\ \\ \\ \end{cases} \end{cases} \end{cases} \begin{cases} C = \mathbb{P}_{\times}^{2} \Delta. \\ F+tG \end{cases}$$

where F has a single cusp and G is general.

(i.e. G does not pass through the cusp of F and interseets F transversally.).

Locally near 0:  $(y^2 x^3) + t g(x,y) \subset \Phi[x,y,t]$ .





X' smooth.

unramified outside central fiber.

$$\begin{array}{ccc}
\times'' & \times' \\
\mathbb{C}[x_1y_1t]/\longrightarrow & \mathbb{K}[x_1y_1t]/(t-x^2) \\
\uparrow & \uparrow \\
\downarrow & \uparrow \\
\downarrow & \uparrow \\
\uparrow & \uparrow \\
\downarrow & \uparrow \\$$

$$X''' = \mathbb{C}[x_iy_it]/(t+x)$$
  $\mathbb{I}$   $\mathbb{C}[x_iy_it]/(t+x)$ .



 $Obs: O(X'') \longrightarrow X'$  branched double cover

along

@ Preimage of Ez has mult. 3 - one component. E, has mult (1) <- two components.

C has mult (1)

Ez has mult (3)



Now: Base change of order 3. and normalize.

 $(X''')^{2} \rightarrow (X'')^{2}$  qythic triple cover branched along

‡mm =

$$(X_{n})_{2} =$$



contract



= Stable Reduction

The best of