Assignment -2

Python Programming

Assignment Date	26 September 2022
Student Name	BALA SUBRAMANIYAN
Student Roll Number	913319104010
Maximum Marks	2 Marks

Question-1:

DOWNLOAD THE DATA SET

The given data set

Question-2:

LOAD THE DATA SET

Solution:

import numpy as np import pandas as pd

kd=pd.read_csv("/content/Churn_Modelling.csv")

kd.head()

		- 15	·u	•	1
٠	111-1	-	١.	,	

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

Question-3:

Perform below visualization

- Univariate analysis
- Bivariate analysis
- Multivariate analysis

Solution:

UNIVARIATE ANALYSIS

#Calculate Summary Statistics

import numpy as np
import pandas as pd
kd=pd.read_csv("/content/Churn_Modelling.csv")
print("mean",kd ['EstimatedSalary'].mean())
print("median",kd ['EstimatedSalary'].median())
print("mode",kd ['EstimatedSalary'].mode())

```
#Calculate Summary Statistics
print("mean",df['EstimatedSalary'].mean())
print("median",df['EstimatedSalary'].median())
print("mode",df['EstimatedSalary'].mode())
mean 100090.239881
median 100193.915
mode 0
          24924.92
dtype: float64
  #frequency
  kd['Age'].value_counts()
       #frequency
       kd['Age'].value_counts()
       37
             478
       38
             477
       35
             474
       36
             456
       34
             447
       92
               2
       82
       88
                1
       85
       83
       Name: Age, Length: 70, dtype: int64
  #create charts
  kd.hist(column='EstimatedSalary', grid=False, edgecolor='black')
  array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f271186fed0>]],
  dtype=object)
      #create charts
      kd.hist(column='EstimatedSalary', grid=False, edgecolor='black')
      array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f6b11167f90>]],
             dtype=object)
                             EstimatedSalary
       1000
        800
        600
        400
```

25000 50000 75000 100000 125000 150000 175000 200000

BIVARIATE ANALYSIS

200

0

import matplotlib.pyplot as plt
dataset=pd.read_csv("/content/Churn_Modelling.csv")
plt.scatter(kd.EstimatedSalary, kd.CreditScore)
plt.title('EstimatedSalary based on credit score')

plt.xlabel('EstimatedSalary ')
plt.ylabel('CreditScore')

Corelation coeficient

kd.corr()

kd.corr()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067
Customerid	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084
Estimated Salary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797

#Simple linear regression

x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
print(model.summary())

EstimatedSalary R-squared: Dep. Variable: 0.000 OLS Adj. R-squared: Model: -0.000 _→ Method: Least Squares F-statistic: 0.01916 Date: Sat, 08 Oct 2022 Prob (F-statistic): 0.890 09:22:48 Log-Likelihood: Time: -1.2379e+05 No. Observations: 10000 AIC: 2.476e+05 Df Residuals: 9998 BIC: 2.476e+05

Df Model: 1

Covariance Type: nonrobust

______ t P>|t| [0.025 coef std err -----const 1.006e+05 3913.640 25.712 0.000 9.3e+04 1.08e+05 CreditScore -0.8237 5.951 -0.138 0.890 -12.488 10.841 _____ 7392.705 Durbin-Watson: 581.607 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 0.002 Prob(JB): 5.08e-127 Kurtosis: 1.819 Cond. No. 4.48e+03 ______

MULTIVARIATE ANALYSIS

ax = kd.plot(figsize=(20,15)) ax.legend(loc='center
left', bbox to anchor=(1, 0.5));

Question-4:

Perform descriptive statistics on the dataset

Solution

kd.describe()

df.desc	ribe()										
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	1000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	
max	10000 00000	1 581569e+07	850 000000	92 000000	10 000000	250898 090000	4 000000	1 00000	1 000000	199992 480000	

kd.describe(include=['object'])

	Surname	Geography	Gender	0
cou	nt 10000	10000	10000	
uniq	ue 2932	3	2	
top	Smith	France	Male	
fre	g 32	5014	5457	

Question-5:

Handle the missing values

Solution

kd.info()

missing_values=kd.isnull().sum()
print(missing_values[missing_values>0]/len(kd)*100)
missing_values

Question-6

Find out the outliers

Solution

AGE OUTLIER

import seaborn as sns
sns.boxplot(kd['Age'])

```
import seaborn as sns
sns.boxplot(kd['Age'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the continuous futureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6b035efb90>

NUMOFPRODUCTS OUTLIER

sns.boxplot(kd['NumOfProducts'])

sns.boxplot(kd['NumOfProducts'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6b035679d0>

EXITED OUTLIER

sns.boxplot(kd['Exited'])

sns.boxplot(kd['Exited'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6b03553310>

DETECTION OF FHE OUTLIER

a=np.where(kd['Age']>60)

print("OUTLIERS OF Age\n",a)

```
C. OUTLIERS OF AGE
                   44, 58, 85, 104, 158, 181, 230, 234, 243, 252,
     (array([ 42,
            276, 310, 364, 371, 385, 387, 399, 416, 484, 538, 559,
            561, 567, 602, 612, 617, 630, 658, 678, 696, 736, 766,
            769, 807, 811, 823, 859, 884, 888, 921, 928, 948, 952,
                963, 969, 997, 1009, 1039, 1040, 1055, 1114, 1118, 1192,
           957.
           1205, 1234, 1235, 1246, 1252, 1278, 1285, 1328, 1342, 1387, 1407,
           1410, 1433, 1439, 1457, 1519, 1543, 1588, 1607, 1614, 1642, 1790,
           1810, 1858, 1866, 1901, 1904, 1907, 1933, 1981, 1996, 2002, 2012,
           2039, 2053, 2078, 2094, 2103, 2108, 2154, 2159, 2164, 2244, 2261,
           2274, 2298, 2301, 2433, 2438, 2458, 2459, 2519, 2520, 2533, 2541,
           2553, 2599, 2615, 2659, 2670, 2713, 2717, 2760, 2772, 2777, 2778,
           2781, 2791, 2855, 2877, 2901, 2908, 2925, 2926, 3008, 3033, 3054,
           3110, 3142, 3166, 3192, 3203, 3229, 3305, 3308, 3311, 3314, 3317,
           3346, 3366, 3368, 3378, 3382, 3384, 3387, 3396, 3403, 3434, 3462,
           3497, 3499, 3527, 3531, 3541, 3549, 3559, 3563, 3573, 3575, 3593,
           3602, 3641, 3646, 3647, 3651, 3690, 3691, 3702, 3719, 3728, 3733,
           3761, 3774, 3813, 3826, 3880, 3881, 3888, 3909, 3910, 3927, 3940,
           3947, 3980, 3994, 4010, 4025, 4048, 4051, 4095, 4142, 4147, 4157,
          4162, 4170, 4241, 4244, 4256, 4273, 4280, 4297, 4313, 4318, 4335,
          4360, 4366, 4378, 4387, 4396, 4435, 4438, 4463, 4490, 4491, 4501,
          4506, 4559, 4563, 4590, 4595, 4644, 4678, 4698, 4747, 4751, 4801,
          4815, 4832, 4849, 4931, 4947, 4966, 4992, 5000, 5020, 5033, 5038,
           5068, 5132, 5136, 5148, 5159, 5197, 5223, 5225, 5235, 5255, 5299,
           5313, 5368, 5377, 5405, 5439, 5457, 5490, 5508, 5514, 5520, 5576,
           5577, 5581, 5639, 5651, 5655, 5660, 5664, 5671, 5683, 5698, 5742,
                5783, 5817, 5825, 5840, 5867, 5907, 5957, 5996, 6046, 6116,
           6152, 6166, 6167, 6171, 6173, 6212, 6230, 6278, 6289, 6315, 6357,
           6366, 6373, 6375, 6410, 6443, 6515, 6530, 6532, 6581, 6612, 6626,
           6706, 6709, 6715, 6721, 6759, 6763, 6812, 6899, 6970, 6997, 7008,
```

DETECTION OF NUMOFPRODUCTS OUTLIER

b=np.where(kd['NumOfProducts']>3) print("OUTLIERS OF NUMOFPRODUCTS\n",b)

```
C. OUTLIERS OF NUMOFPRODUCTS

(array([ 7, 70, 1254, 1469, 1488, 1701, 1876, 2124, 2196, 2285, 2462, 2499, 2509, 2541, 2614, 2617, 2872, 3152, 3365, 3841, 4013, 4014, 4166, 4260, 4403, 4511, 4516, 4606, 4654, 4748, 4822, 5010, 5137, 5235, 5386, 5700, 5904, 6150, 6172, 6279, 6750, 6875, 7257, 7457, 7567, 7698, 7724, 7729, 8041, 8590, 8683, 8850, 8923, 9215, 9255, 9323, 9370, 9411, 9540, 9565]),)
```

DETECTION OF EXITED OUTLIER

```
c=np.where(FH['Exited']>0)
print("OUTLIERS OF Exited\n",c)
```

```
c=np.where(kd['Exited']>0)
print("OUTLIERS OF Exited\n",c)

OUTLIERS OF Exited
  (array([ 0,  2,  5, ..., 9991, 9997, 9998]),)
```

Question-7:

Check the categorical columns and perform encoding

Solution:

```
location=pd.get_dummies(km['Geography'])
from sklearn.preprocessing import LabelEncoder
from collections import Counter as count
le=LabelEncoder()
count(km['Geography'])
kd['Geography']=le.fit_transform(kd['Geography'])
count(dataset['Geography'])
    from sklearn.preprocessing import LabelEncoder
    from collections import Counter as count
    count(kd['Geography'])
    df['Geography']=le.fit_transform(kd['Geography'])
    count(kd['Geography'])
Counter({0: 5014, 2: 2477, 1: 2509})
```

Count(kd['Surname'])
dataset'Surname']=le.fit_transform(dataset['Surname'])
count(kd['Surname'])

```
C Counter({1115: 1,
             1177: 17,
             2040: 8,
             289: 14,
             1822: 20,
             537: 22,
             177: 4,
             2000: 2,
             1146: 18,
             1081: 19,
             195: 1,
             83: 6,
             1369: 5,
             515: 16,
             2389: 29,
             1021: 1,
             2307: 1,
             1154: 16,
             1872: 1,
             1108: 12,
             1736: 19,
             697: 13,
             991: 2,
             1862: 1,
             2880: 14,
             1642: 24,
             2897: 20,
             1908: 6,
             1772: 2,
             1609: 11,
             133: 5,
             2007: 4,
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exite
0	1	15634602	1115	619	0	1	42	2	0.00	1	1	1	101348.88	
1	2	15647311	1177	608	2	1	41	1	83807.86	1	0	1	112542.58	
2	3	15619304	2040	502	0	1	42	8	159660.80	3	1	0	113931.57	
3	4	15701354	289	699	0	1	39	1	0.00	2	0	0	93826.63	
4	5	15737888	1822	850	2	1	43	2	125510.82	1	1	1	79084.10	
	140	48	5446	(202)	223	5.0	7047	79221	9438	7.00	**-	5.12	5043	9
999	5 9996	15606229	1999	771	0	0	39	5	0.00	2	1	0	96270.64	
999	6 9997	15569892	1336	516	0	0	35	10	57369.61	1	1	1	101699.77	
999	7 9998	15584532	1570	709	0	1	36	7	0.00	1	0	1	42085.58	
999	8 9999	15682355	2345	772	1	0	42	3	75075.31	2	1	0	92888.52	
999	9 10000	15628319	2751	792	0	1	28	4	130142.79	1	1	0	38190.78	

Question-8

Split the data into dependent and independent variables

Solution:

Independent

 $FH['Gender'] = FH['Gender'].replace(['Male', 'Female'], [0,1]) \\ x = FH.iloc[:,2:] \\ print("\nindependent variable \n",x)$

	Surname	Credi	tscore	Geo	graphy	Gender	Age	Tenure	В	alance
0	1115		619		0	1	42	2		0.00
1	1177		608		2	1	41	1	838	07.86
2	2040		502		9	1	42	8	1596	60.80
3	289		699		9	1	39	1		0.00
4	1822		850		2	1	43	2	1255	10.82
	***		***		***	* * *		* * * *		
9995	1999		771		0	е	39	5		0.00
9996	1336		516		0	0	35	10	5.73	69.61
9997	1570		709		0	1	36	7		0.00
9998	2345		772		1	0	42	3	750	75.31
9999	2751		792		9	1	28	4	1301	42.79
	NumOfProd	ucts	Hascrca	rd	Isactiv	eHember	Esti	imatedSa	lary	Exit
0		1		1		1		10134	200	
0		1		0		1		11254	2.58	
2		3		1		9		11393	1.57	
3		2		8		9		9382	6.63	
4		1		1		1		7908	4.10	
9995		2		1		9		9627	0.64	
9996		1		1		1		10169	9.77	
9997		1		0		1		4208	5.58	
9998		2		1		9		9288	8.52	
9999		1		1		9		3819	0.78	

Dependent

y=kd.iloc[:,0:2] print("dependent
variables\n",y)

```
c. dependent variables
         RowNumber CustomerId
         1 15634602
2 15647311
3 15619304
   1
   2
   3
              4 15701354
5 15737888
   4
           9996 15606229
   9995
           9997 15569892
   9996
           9998 15584532
   9998
           9999 15682355
   9999 10000 15628319
   [10000 rows x 2 columns]
```

Question-9:

Scale the independent variables

Solution:

Xtrain

from sklearn.preprocessing import MinMaxScaler
nm=MinMaxScaler()
n_xtrain=nm.fit_transform(X_train)

n xtrain

```
p. array([[0.33879222, 0.974 , 1.
                                             , 0.25485714,
                                 , ..., 1.
        0.
               1,
                        , 1.
        [0.57795974, 1.
                                 , ..., 1.
                                             , 0.51955874,
        0. ],
        [0.97065848, 0.636 , 1.
                                  , ..., 0.
                                             , 0.53233635,
        1. ],
        ...,
        [0.40361651, 0.55 , 1.
                                              , 0.67404984,
                                  , ..., 1.
        0. ],
        [0.21050836, 0.324 , 0.5
                                  , ..., 0.
                                              , 0.07409993,
        0. ],
[0.5663596 , 0.356 , 0.5 , ..., 1. , 0.00475092,
        0. ]])
```

Xtest

```
n_X_test=nm.fit_transform(X_test)
n_X_test
```

```
[ array([[0.61659269, 0.352 , 0.5
                                                  , 0.66189298,
                                    , ..., 0.
         0. ],
[0.28303175, 0.496
                          , 0.
                                     , ..., 1.
                                                   , 0.37133981,
         0. ],
[0.95800615, 0.384
                          , 0.
                                      , ..., 1.
                                                   , 0.10631272,
         0.
              ],
                                                   , 0.31051302,
         [0.76681461, 0.874
                           , 0.
                                     , ..., 1.
         0. ],
                           , 1.
         [0.8477296 , 0.74
                                     , ..., 0.
                                                   , 0.68981209,
         0. ],
                          , 0.
         [0.94093547, 0.384
                                      , ..., 0.
                                                   , 0.62636535,
              11)
         0.
```

Question-10:

Split the data into training and testing

Solution:

Xtrain

```
from sklearn.model_selection import train_test_split
x=km.iloc[:,2:]
y=km.iloc[:,0:2]
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=11)
X_train
```

	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
1264	993	837	2	0	31	9	104678.62	1	0	1	50972.60	0
5376	1694	850	2	0	38	1	146343.98	1	0	1	103902.11	0
2037	2845	668	2	1	24	7	173962.32	1	0	0	106457.11	1
6485	1016	640	1	0	26	5	90402.77	1	1	1	3298.65	0
1600	1037	517	0	0	28	2	115062.61	1	1	0	179056.23	(
***	100	***	1 diam		100	46	***	-	***	***	1000	- 1
1293	1067	641	0	0	30	2	87505.47	2	0	1	7278.57	(
4023	2611	535	0	0	38	8	85982.07	1	1	0	9238.35	(
7259	1183	625	2	0	32	7	106957.28	1	1	1	134794.02	0
5200	617	512	1	0	42	9	93955.83	2	1	0	14828.54	0
3775	1660	528	1	0	22	5	93547.23	2	0	1	961.57	(

X_test

	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
3104	1808	526	1	0	31	5	145537.21	1	1	0	132404.64	0
6353	831	598	0	0	35	8	114212.60	1	1	1	74322.85	0
8689	2808	542	0	0	67	10	129431.36	1	0	1	21343.74	0
5857	909	594	0	1	56	7	0.00	1	1	0	26215.85	1
6011	2113	520	1	1	45	1	123086.39	1	1		41042.40	1
	722	122		7,22	244	0.00	-	2		144	(***	11.
8125	2496	629	1	1	38	9	123948.85	1	- 1	0	76053.07	0
8444	839	792	0	1	70	3	0.00	2	- 1	1	172240.27	0
2167	2248	787	0	0	33	1	126588.81	2	0	1	62163.53	0
8043	2485	720	2	0	31	4	141356.47	1	0	0	137985.69	0
4917	2758	542	0	0	32	7	107871.72	1	1	0	125302.64	0

v train

3000 rows × 12 columns

_•		RowNumber	CustomerId
	1264	1265	15732199
	5376	5377	15602500
	2037	2038	15678146
	6485	6486	15635197
	1600	1601	15748718
		5245	028
	1293	1294	15687752
	4023	4024	15629187
	7259	7260	15718921
	5200	5201	15641298
	3775	3776	15709004

	RowNumber	CustomerId
3104	3105	15654230
6353	6354	15676353
8689	8690	15684769
5857	5858	15813659
6011	6012	15783007
	1446	40
8125	8126	15666982
8444	8445	15793641
2167	2168	15780846
8043	8044	15616525
4917	4918	15681991