Escola Nacional de Ciências Estatísticas (ENCE) Instituto Brasileiro de Geografia e Estatística (IBGE)

Programa de Pós-Graduação Mestrado em Estudos Populacionais e Pesquisas Sociais

EXAME FINAL

Disciplina: Amostragem

Professor: Pedro Luis do Nascimento Silva

Aluno: Leandro Lins Marino (leandromarino@leandromarino.com.br)

Introdução 1

O presente trabalho visa comparar os diferentes planos amostrais sob alguns parâmetros

populacionais de forma a definir qual o melhor entre eles. A unidade de investigação é o município

(5565 municípios) e é fornecida uma base cadastral contendo todas as informações necessárias para

as comparações.

Cabe salientar que devido à problemas no cadastro, foram retirados os municípios que se

recusaram ou a informação foi ignorada para quaisquer uma das variáveis em estudo. Os

municípios retirados foram: Palmas (TO), Campina Grande (PB), Mirandiba (PE), Abaré (BA) e

Macaé (RJ). Todos os municípios retirados não apresentam informação para o total de funcionários

da administração direta e apenas Abaré (BA) se recusou a prestar informações sobre existência de

maternidade e de unidade de emergência no município. A população desses municípios se

aproxima de 900 mil habitantes e representa 0,45% da população brasileira. Em termos regionais

esta ausência de informações representa, 1,46% da população da região Norte, 0,78% da região

Nordeste e 0,26% da região Sudeste.

Sejam as variáveis de pesquisa definidas a seguir

• Y₁ – Total de funcionários ativos da administração direta;

• Y₂ – Existe Maternidade no município?

Y₃ – Existe Unidade de emergência no município?

A presente pesquisa pretende obter estimativas para os seguintes parâmetros populacionais:

1) Total de funcionários ativos da administração direta;

2) Razão da população por funcionário ativo da administração direta;

3) Proporção de municípios com maternidade;

4) Proporção de municípios com maternidade e emergência.

Este trabalho pretende avaliar a influência da determinação de alguns planos amostrais

considerando as variáveis de pesquisa e os parâmetros populacionais desejados. A seguir são

1 | Página

apresentados os planos amostrais considerados bem como suas estimativas para os parâmetros, a variância teórica e a variância estimada.

2 Planos amostrais

2.1 Plano 1

Este plano consiste em selecionar uma amostra aleatória simples dos municípios brasileiros.

2.1.1 Total de funcionários ativos da administração direta

Desta forma, define-se:

$$\hat{Y}_1 = \frac{N}{n} \sum_{i \in S} y_{1i}; \quad Var(\hat{Y}_1) = N^2 \left(\frac{1}{n} - \frac{1}{N}\right) S_{Y_1}^2, \quad onde \quad S_{Y_1}^2 = \frac{1}{N-1} \sum_{i \in U} (y_{1i} - \bar{Y})^2$$

e sua estimativa

$$\widehat{Var}(\widehat{Y}_1) = N^2 \left(\frac{1}{n} - \frac{1}{N}\right) s_{Y_1}^2, \quad onde \quad s_{Y_1}^2 = \frac{1}{n-1} \sum_{i \in S} (y_{1i} - \overline{y})^2$$

onde N é o total de municípios na população e n é o número de municípios na amostra.

2.1.2 Razão da população por funcionário ativo da administração direta;

$$\hat{R} = \frac{\sum_{i \in S} y_{4i}}{\sum_{i \in S} y_{1i}}; \quad Var(\hat{R}) = \left(\frac{1-f}{n*\bar{Y_4}^2}\right) \left(\frac{1}{N-1}\right) \sum_{i \in U} (y_{4i} - Ry_{1i})^2, onde \ f = \frac{n}{N}.$$

Y₄ é o total da população. E,

$$\widehat{Var}(\widehat{R}) = \left(\frac{1-f}{n*\overline{Y_4}^2}\right) \left(\frac{1}{N-1}\right) \sum_{i \in S} (y_{4i} - \widehat{R}y_{1i})^2$$

2.1.3 Proporção de municípios com maternidade (j=1) e com maternidade e emergência (j=2);

$$\hat{Y}_j = \hat{p}_j = \sum_{i \in \mathcal{D}} \frac{y_{ji}}{n}; \quad Var(\hat{Y}_j) = \left(\frac{N-n}{N-1}\right) \frac{P_j(1-P_j)}{n}; \forall j \in \{2,3\}$$

$$\widehat{Var}(\widehat{Y}_j) = \left(\frac{N-n}{N-1}\right) \frac{\widehat{p}_j(1-\widehat{p}_j)}{n}$$

2.2 Planos 2 e 3

No plano 2 sorteia-se os municípios através de uma amostragem estratificada simples utilizando a região aonde o município se localiza como variável de estratificação e alocação igual, ou seja, todos os estratos terão 40 municípios selecionados.

Para o plano 3 também é feita uma amostragem estratificada simples de municípios, entretanto, a variável de estratificação é definida de tal forma que a população seja dividida em 5 classes tais que a soma da raiz quadrada da população dos municípios em cada classe seja aproximadamente igual. A alocação, similarmente ao plano 2 será igual em todos os estratos.

Sendo assim, para os planos 2 e 3 os estimadores definidos são os mesmos com a modificação apenas da variável de estratificação.

2.2.1 Total de Funcionários da administração direta

$$\hat{Y}_1 = \sum_{i \in S} \sum_{h=1}^{H} \frac{N_h y_{1hi}}{n_h}; \quad Var(\hat{Y}_1) = N^2 \sum_{h=1}^{H} W_h^2 \left(\frac{1}{n_h} - \frac{1}{N_h}\right) S_{hY_1}^2, \quad onde$$

$$S_{hY_1}^2 = \frac{1}{N_h - 1} \sum_{i \in U} (y_{1hi} - \overline{Y_{1h}})^2 \ e \ h \in \{1, ..., H\} \ \acute{e} \ o \ n\'umero \ de \ estratos.$$

2.2.2 Razão da população por funcionário ativo da administração direta;

Para este estimador considerando a amostra estratificada simples poderíamos adotar duas abordagens uma considerando o estimador da razão separada, onde são calculadas razões para cada um dos estratos que, posteriormente, compõem uma única estimativa ou o estimador da razão combinada aonde ocorre uma estimativa para o total do denominador e para o total do numerador e a seguir é feita a razão destes totais. Neste estudo iremos apenas considerar o estimador da razão combinada.

$$\widehat{R} = \frac{\sum_{h=1}^{H} \overline{y}_{4h}}{\sum_{h=1}^{H} \overline{y}_{1h}}; \quad Var(\widehat{R}) = \sum_{h=1}^{H} \frac{N_h^2 (1 - f_h)}{n_h} \left(S_{y_{4h}}^2 + R^2 S_{y_{1h}}^2 - 2R \rho_h S_{y_{4h}} S_{y_{1h}} \right), onde \ f_h = \frac{n_h}{N_h}.$$

$$S_{y_{4h}}^2 = \frac{1}{N_h - 1} \sum_{i \in U_h} (y_{4hi} - \overline{Y_{4h}})^2, \quad S_{y_{1h}}^2 = \frac{1}{N_h - 1} \sum_{i \in U_h} (y_{1hi} - \overline{Y_{1h}})^2$$

 ρ_h é a correlação dentro de cada estrato $h,h\in\{1,\dots,H\}.$

$$\begin{split} \rho_h &= \; \rho_h(Y_1,Y_4) = \frac{\sum_{i \in U_h} (y_{1ih} - \overline{y}_{1h}) (y_{4ih} - \overline{y}_{4h})}{(N-1)S_{y_{1h}}S_{y_{4h}}} \\ \widehat{Var}(\widehat{R}) &= \sum_{h=1}^H \frac{N_h^2 (1-f_h)}{n_h} \Big(s_{y_{4h}}^2 + \widehat{R}^2 S_{y_{1h}}^2 - 2\widehat{R}\widehat{\rho}_h s_{y_{4h}} s_{y_{1h}} \Big) \text{, onde } f_h = \frac{n_h}{N_h}. \\ s_{y_{4h}}^2 &= \frac{1}{n_h - 1} \sum_{i \in s_h} (y_{4hi} - \overline{y_{4h}})^2 \text{, } s_{y_{1h}}^2 = \frac{1}{n_h - 1} \sum_{i \in s_h} (y_{1hi} - \overline{y_{1h}})^2 \end{split}$$

$$\hat{\rho}_h = \hat{\rho}_h(y_1, y_4) = \frac{\sum_{i \in S_h} (y_{1ih} - \bar{y}_{1h})(y_{4ih} - \bar{y}_{4h})}{(n-1)s_{y_{1h}}s_{y_{4h}}}$$

2.2.3 Proporção de municípios com maternidade (j=1) e com maternidade e emergência (j=2);

Como a proporção é uma média da variável indicadora que define a existência ou não do evento, podemos considerar praticamente os mesmos estimadores apresentados na seção 2.2.1 (Total de funcionários da administração direta) uma vez que a média é o total dividido pelo número de indivíduos.

$$\bar{Y}_j = \sum_{i \in S} \sum_{h=1}^H \frac{y_{jhi}}{n_h}; \quad Var(\hat{Y}_1) = \sum_{h=1}^H W_h^2 \left(\frac{1}{n_h} - \frac{1}{N_h}\right) S_{hY_1}^2, \quad onde$$

$$S_{hY_1}^2 = \frac{1}{N_h - 1} \sum_{i \in I} \left(y_{jhi} - \overline{Y_{jh}} \right)^2 \ e \ h \in \{1, \dots, H\} \ \acute{e} \ o \ n\'{u}mero \ de \ estratos.$$

$$\widehat{Var}(\widehat{Y}_1) = \sum_{h=1}^{H} W_h^2 \left(\frac{1}{n_h} - \frac{1}{N_h}\right) s_{hY_1}^2$$
, onde

$$S_{hY_1}^2 = \frac{1}{n_h - 1} \sum_{i \in h} (y_{jhi} - \overline{y_{jh}})^2 \ e \ h \in \{1, \dots, H\} \ \acute{e} \ o \ n\'umero \ de \ estratos.$$

2.3 Plano 4

O plano 4 consiste em uma amostra estratificada em dois estratos sendo um deles formado pelas capitais e municípios com mais de 500 mil habitantes sempre presentes na amostra. O estrato certo conta com 44 municípios brasileiros desta forma, 156 outros municípios serão selecionados via amostra aleatória simples.

As estimativas para razão, total e proporção são as mesmas definidas na seção 2.2 (plano 3) . Como há um estrato cujos elementos sempre pertencem à amostra não há estimativa de variância e no caso a variância dos estimadores será a mesma definida pela amostra aleatória simples (considerando uma amostra de 156 entre os 5516 municípios restantes).

2.4 Plano 5

Neste plano os municípios serão selecionados via amostragem aleatória simples e será feita o uso do estimador do tipo razão (com variável auxiliar o total populacional dos municípios) para a

¹ A capital Palmas (TO) não participa da amostra por não haver informação cadastral para alguma das variáveis da pesquisa.

obtenção das estimativas. Neste plano não está definido variância para a razão entre a população e o número de funcionários ativos da administração direta.

2.4.1 Total de Funcionários da administração direta

$$\widehat{Y}_1 = \frac{\overline{y_1}}{\overline{x}} X$$
, onde X é o total populacional

$$Var(\widehat{Y}_{1}) = \frac{N^{2}(1-f)}{n} \left[\sum_{i \in U} \frac{(y_{1i} - Rx_{i})^{2}}{N-1} \right] e \widehat{Var}(\widehat{Y}_{1}) = \frac{N^{2}(1-f)}{n} \left[\sum_{i \in S} \frac{(y_{1i} - \widehat{R}x_{i})^{2}}{n-1} \right]$$

2.4.2 Proporção de municípios com maternidade (j=1) e com maternidade e emergência (j=2);

$$\widehat{Y}_{\!\!J} = rac{\overline{y_{\!\!J}}}{\overline{x}} \; \overline{X}$$
 , onde \overline{X} é o média populacional

$$Var(\widehat{Y}_{j}) = \frac{(1-f)}{n} \left[\sum_{i \in U} \frac{(y_{ji} - Rx_{i})^{2}}{N-1} \right] e \widehat{Var}(\widehat{Y}_{j}) = \frac{(1-f)}{n} \left[\sum_{i \in s} \frac{(y_{ji} - \widehat{R}x_{i})^{2}}{n-1} \right]$$

3 Metodologia para comparação dos planos amostrais

A comparação entre os planos amostrais dar-se-á através dos coeficientes de variação e dos efeitos do plano amostral (EPA). O coeficiente de variação (CV) é definido por:

$$CV(Y) = \frac{\sqrt{Var(Y)}}{Y}$$

e, para garantir uma melhor comparação entre os planos amostrais, consideraremos o EPA como sendo $EPA_k(Y) = \frac{CV_k(Y)}{CV_{AAS}(Y)}$, onde k é o plano amostral considerado. A Tabela 2 apresenta os coeficientes de variação teóricos para as variáveis consideradas no estudo.

TABELA 2 – COEFICIENTES DE VARIAÇÃO PARA OS PARÂMETROS DE INTERESSE SEGUNDO O PLANO AMOSTRAL ADOTADO

Parâmetro de interesse	Coeficientes de Variação				
	Plano 1	Plano 2	Plano 3	Plano 4	Plano 5
Total de funcionários da administração Direta	22.3727	24.8264	9.7403	8.7065	22.0536
Razão entre população e funcionários ativos da administração direta	22.0536	24.1192	8.0646	4.8384	
Proporção de municípios com maternidade	8.4436	9.5289	8.2343	9.5877	41.2896
Proporção de municípios com maternidade e unidade de emergência	9.5375	10.7467	8.9325	10.8195	41.3184

Em uma breve análise da Tabela 2 pode-se notar que o plano 3 apresenta reduções para todas as variáveis de interesse. A Tabela 3 apresenta o efeito do plano amostral para os diversos planos amostrais. Nota-se claramente que o Plano 3 (amostragem estratificada simples usando a raiz quadrada da população como variável de estratificação) apresentou um melhor desempenho que a amostra aleatória simples em todos os parâmetros de interesse, e, por isto o consideraremos como o melhor dentre os planos testados. Este melhor desempenho se dá em consequência da grande correlação existente entre as variáveis estudadas com a variável auxiliar para a estratificação.

TABELA 3 – EFEITO DO PLANO AMOSTRAL PARA OS PARÂMETROS DE INTERESSE SEGUNDO O PLANO AMOSTRAL ADOTADO

Parâmetro de interesse	Efeito do Plano Amostral (referência AAS – Plano 1)			
	Plano 2	Plano 3	Plano 4	Plano 5
Total de funcionários da administração Direta	1.1097	0.4354	0.3891	0.9857
Razão entre população e funcionários ativos da administração direta	1.0937	0.3657	0.2194	
Proporção de municípios com maternidade	1.1285	0.9752	1.1355	4.8901
Proporção de municípios com maternidade e unidade de emergência	1.1268	0.9366	1.1344	4.3322

Após a comparação dos planos amostrais procedeu-se com a obtenção de uma amostra estratificada simples de tamanho n=200. A Tabela 3 apresenta as estimativas, erro padrão e coeficiente de variação para os parâmetros de interesse. Os coeficientes de variação estimados são próximos aos coeficientes de variação teóricos para o plano amostral adotado.

TABELA 3 – ESTIMATIVAS, ERRO PADRÃO E COEFICIENTE DE VARIAÇÃO PARA AS VARIÁVEIS DE INTERESSE NA AMOSTRA SELECIONADA

Parâmetros de Interesse	Parâmetro	Estatísticas			
	Populacional	Estimativa Pontual	Erro Padrão	Coeficiente de Variação	
Total de funcionários da administração Direta	5,637,624	6,610,939	976,886	14.7768	
Razão entre população e funcionários ativos da administração direta	33.9704	48.4500	4.7229	9.7481	
Proporção de municípios com maternidade	0.4038	0.3190	0.0311	9.7388	
Proporção de municípios com maternidade e unidade de emergência	0.3492	0.2925	0.0293	10.0082	

Por fim, nota-se que, considerando um intervalo de confiança de 95% para as estimativas pontuais, apenas a razão entre a população e funcionários ativos da administração direta não contém o valor real da população.

4 Considerações finais

Considerando a grande correlação ($\rho = 0.9288$) existente entre as o total de funcionários da administração direta e a população dos municípios, talvez um plano amostral que incorporasse probabilidades diferentes de seleção em função do tamanho populacional dos mesmos fornecesse uma estimativa com menor coeficiente de variação.

5 Referências Bibliográficas

COCHRAN, W.G. Sampling Techniques, 3^a ed. Nova Iorque, EUA: John Wiley & Sons, 1977.

Anexo A - Código Reproduzível em R

O arquivo contendo este código encontra-se disponível em:

https://raw.github.com/leandromarino/TBAmoMunic/master/TbAmo.r

```
#####
####
       IDENTIFICACAO
#####
                                                                   #####
#####========================#####
### DEFINICAO DO TRABALHO E DE VARIAVEIS DE AMBIENTE
options(width=180,scipen=50,repos = 'http://cran-r.c3sl.ufpr.br/')
#instalar pacote a partir de zip local
#dirpacote<-'C:\\Users\\leandromarino\\Documents\\Projetos\\TBAmoMunic\\trunk\\'
#install.packages(paste(dirpacote, 'RCurl 1.95-3.zip'))
### CARREGANDO OS PACOTES NECESSARIOS
library(xlsReadWrite)
library(SOAR)
library(survey)
library(stratification)
library(sampling)
require(RCurl)
require(foreign)
### LEITURA DOS DADOS
## Inicialmente o arquivo estava em formato .xlsx e foi convertido no Excel 2010
## para o .xls
url <- 'https://raw.github.com/leandromarino/TBAmoMunic/master/Munic.dat'</pre>
url <- getURL(url,ssl.verifypeer = FALSE)</pre>
munic <- read.table(textConnection(url), colClasses='character', header=T, quote='',</pre>
       sep='\t')
str(munic)
pla.cv <- plb.cv <- plc.cv <- pld.cv <-
p2a.cv <- p2b.cv <- p2c.cv <- p2d.cv <-
p3a.cv <- p3b.cv <- p3c.cv <- p3d.cv <-
p4a.cv <- p4b.cv <- p4c.cv <- p4d.cv <-
p5a.cv <- p5b.cv <- p5c.cv <- p5d.cv <- NA
#Y1 = FuncADMD - Total de funcionario ativos da administracao direta;
#Y2 = Maternidade - Existe Maternidade no municipio?
#Y3 = Emergencia - Existe Unidade de emergencia no municipio?
munic <- transform(munic,</pre>
          Populacao=as.integer(Populacao),
          FuncADMD=as.integer(FuncADMD),
          Regiao=substr(CodMunic,1,1))
munic <- transform(munic,</pre>
          mater = ifelse(Maternidade=="Sim",1,ifelse(Maternidade=='Não',0,NA)),
          emerg = ifelse(Emergencia=="Sim",1,ifelse(Emergencia=='Não',0,NA)))
munic <- transform(munic,</pre>
          materemerg = ifelse(rowSums(cbind(mater,emerg)) == 2,1,0))
munic.exc <- munic[rowSums(is.na(munic))!=0,]</pre>
munic <- munic[rowSums(is.na(munic))==0,]</pre>
dim(munic)
munic[1:10,]
for( i in 1:5) {
```

```
print( sum(munic.exc[munic.exc$Regiao==i,'Populacao']) /
      (sum (munic.exc[munic.exc$Regiao==i, 'Populacao']) +
       sum(munic[munic$Regiao==i, 'Populacao'])) *100)
}
#####------#####
### ITEM 1 - Use os valores populacionais das variaveis de interesse para
### determinar o CV esperado para os estimadores dos parametros de interesse.
### PLANO 1 - AAS
### PLANO 2 - AES de Munic por Reg com Aloc igual
### PLANO 3 - AES de Munic por Pop talque sqrt(Estrado i) == sqrt(Estrato j)
           \forall i,j \in 1:5
### PLANO 4 - AES por 'corte' pi = 1 se pop >= 500.000 e cap, aas nos demais
### PLANO 5 - AAS com uso do estimador de razao usando var aux o tot da pop
   Considere de interesse estimar os seguintes parâmetros populacionais:
   a) Total de funcionários ativos da administração direta;
   b) Razão da população por funcionário ativo da administração direta;
   c) Proporção de municípios com maternidade;
   d) Proporção de municípios com maternidade e emergência.
  Considere a idéia de selecionar uma amostra de n=200 municípios para uma
# pesquisa por amostragem junto à população de municípios, com um dos planos
# amostrais abaixo indicados.
N <- nrow(munic)
n <- 200
(f < - n/N)
##########################
## Plano 1
###################
# a) Total de funcionários ativos da administração direta
(pla.var \leftarrow N^2 * (1/n - 1/N) * var(munic$FuncADMD))
(pla.tot <- sum(munic$FuncADMD))</pre>
(pla.cv <- sqrt(pla.var)/pla.tot)</pre>
  b) Razão da população por funcionário ativo da administração direta;
med = mean(munic$FuncADMD)
(plb.raz <- sum (munic$Populacao) / sum (munic$FuncADMD) )</pre>
(p1b.var <- (1-f)/(n*med^2)*1/(N-1)*sum((munic$Populacao-p1b.raz*munic$FuncADMD)^2))
(plb.cv <- sqrt(plb.var)/plb.raz)</pre>
  c) Proporção de municípios com maternidade;
(p1c.prop <- mean(munic$mater))</pre>
(plc.var \leftarrow ((N-n)/(N-1)) * plc.prop * (1-plc.prop)*(1/n))
(plc.cv <- sqrt(plc.var)/plc.prop)</pre>
  d) Proporção de municípios com maternidade e emergência.
(pld.prop <- mean (munic$materemerg))</pre>
(pld.var <- ((N-n)/(N-1)) * pld.prop * (1-pld.prop)*(1/n))
(pld.cv <- sqrt(pld.var)/pld.prop)</pre>
########################
## Plano 2
##########################
estrato <- munic$Regiao
(Nest <- matrix(table(estrato),ncol=5))</pre>
(nest <- rep(200/5,5))
(fest <- nest/Nest)</pre>
(Wh <- Nest/N)
est.munic <- split(munic, factor(estrato))</pre>
  a) Total de funcionários ativos da administração direta
```

```
func <- split(munic$FuncADMD, estrato)</pre>
(tot.est <- do.call(c,lapply(func,sum)))</pre>
(p2a.tot <- sum(tot.est))</pre>
(var.intra <- do.call(c,lapply(func,var)))</pre>
(p2a.var <- N^2 * sum(Wh^2 * (1/nest - 1/Nest)*var.intra))</pre>
(p2a.cv <- sqrt(p2a.var)/p2a.tot)</pre>
   b) Razão da população por funcionário ativo da administração direta;
func <- split(munic$FuncADMD, estrato)</pre>
pop <- split(munic$Populacao,estrato)</pre>
(p2b.raz <- sum(munic$Populacao)/sum(munic$FuncADMD))</pre>
(raz.est <- p2b.raz)</pre>
(medest <- do.call(c,lapply(func,mean)))</pre>
(X <- sum(munic$FuncADMD))</pre>
(var.intraX <- do.call(c,lapply(func,var)))</pre>
(var.intraY <- do.call(c,lapply(pop,var)))</pre>
(sd.intraX <- sqrt(var.intraX))</pre>
(sd.intraY <- sqrt(var.intraY))</pre>
cor.XY <- list()</pre>
for(i in 1:5) cor.XY[[i]] <- cor(func[[i]],pop[[i]])</pre>
(cor.XY <- do.call(c,cor.XY))</pre>
(p2b.var < - (1/X^2) * sum(Nest^2 * (1- fest)/nest * (var.intray +
          raz.est^2*var.intraX - 2 * raz.est * sd.intraY * sd.intraX * cor.XY)))
(p2b.cv <- sqrt(p2b.var)/p2b.raz)</pre>
   c) Proporção de municípios com maternidade;
mater <- split(munic$mater,estrato)</pre>
(prop.est <- do.call(c,lapply(mater,mean)))</pre>
(p2c.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(mater,var)))</pre>
(p2c.var <- sum(Wh^2 * (1/nest - 1/Nest) *var.intra))</pre>
(p2c.cv <- sqrt(p2c.var)/p2c.prop)</pre>
  d) Proporção de municípios com maternidade e emergência.
materemerg <- split(munic$materemerg,estrato)</pre>
(prop.est <- do.call(c,lapply(materemerg,mean)))</pre>
(p2d.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(materemerg,var)))</pre>
(p2d.var <- sum(Wh^2 * (1/nest - 1/Nest) * var.intra))</pre>
(p2d.cv <- sqrt(p2d.var)/p2d.prop)</pre>
######################
## Plano 3
##########################
sum (munic$Populacao) /5
munic <- transform(munic, sqrtPop = sqrt(Populacao))</pre>
munic <- munic[order(munic$sqrtPop),]</pre>
sum (munic$sqrtPop) /5
aux <- matrix(NA, nrow=nrow(munic), ncol=5)</pre>
for(i in 1:5){
aux[,i] <- cumsum(munic$sqrtPop) <= (sum(munic$sqrtPop)/5)*i</pre>
estrato <- 6-rowSums(aux)</pre>
table(estrato)
for(i in 1:5) print(sum(munic$sqrtPop[estrato==i]))
(Nest <- matrix(table(estrato),ncol=5))</pre>
(nest < - rep(200/5, 5))
(Wh <- Nest/N)
est.munic <- split(munic, factor(estrato))</pre>
   a) Total de funcionários ativos da administração direta
func <- split(munic$FuncADMD, estrato)</pre>
```

```
(tot.est <- do.call(c,lapply(func,sum)))</pre>
(p3a.tot <- sum(tot.est))</pre>
(var.intra <- do.call(c,lapply(func,var)))</pre>
(p3a.var <- N^2 * sum(Wh^2 * (1/nest - 1/Nest)*var.intra))</pre>
(p3a.cv <- sqrt(p3a.var)/p3a.tot)</pre>
   b) Razão da população por funcionário ativo da administração direta;
func <- split(munic$FuncADMD, estrato)</pre>
pop <- split(munic$Populacao,estrato)</pre>
(p3b.raz <- sum(munic$Populacao)/sum(munic$FuncADMD))</pre>
(raz.est <- p3b.raz)</pre>
(medest <- do.call(c,lapply(func,mean)))</pre>
(X <- sum (munic$FuncADMD))</pre>
(var.intraX <- do.call(c,lapply(func,var)))</pre>
(var.intraY <- do.call(c,lapply(pop,var)))</pre>
(sd.intraX <- sqrt(var.intraX))</pre>
(sd.intraY <- sqrt(var.intraY))</pre>
cor.XY <- list()</pre>
for(i in 1:5) cor.XY[[i]] <- cor(func[[i]],pop[[i]])</pre>
(cor.XY <- do.call(c,cor.XY))</pre>
(p3b.var \leftarrow (1/X^2) * sum(Nest^2 * (1- fest)/nest * (var.intraY +
          raz.est^2*var.intraX - 2 * raz.est * sd.intraY * sd.intraX * cor.XY)))
(p3b.cv <- sqrt(p3b.var)/p3b.raz)</pre>
   c) Proporção de municípios com maternidade;
mater <- split(munic$mater,estrato)</pre>
(prop.est <- do.call(c,lapply(mater,mean)))</pre>
(p3c.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(mater,var)))</pre>
(p3c.var <- sum(Wh^2 * (1/nest - 1/Nest) *var.intra))</pre>
(p3c.cv <- sqrt(p3c.var)/p3c.prop)</pre>
    d) Proporção de municípios com maternidade e emergência.
materemerg <- split(munic$materemerg,estrato)</pre>
(prop.est <- do.call(c,lapply(materemerg,mean)))</pre>
(p3d.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(materemerg,var)))</pre>
(p3d.var \leftarrow sum(Wh^2 * (1/nest - 1/Nest) * var.intra))
(p3d.cv <- sqrt(p3d.var)/p3d.prop)</pre>
##########################
## Plano 4
##########################
munic <- munic[order(munic$CodMunic),]</pre>
capitais <- c('1100205','1200401','1302603','1400100','1501402','1600303',
                 1721000','2111300','2211001','2304400','2408102','2507507',
                '2611606','2704302','2800308','2927408','3106200','3205309',
'3304557','3550308','4106902','4205407','4314902','5002704',
                '5103403','5208707','5300108')
estratocerto <- rep(FALSE, nrow(munic))</pre>
estratocerto[is.element(munic$CodMunic,substr(capitais,1,6))] <- TRUE</pre>
estratocerto[munic$Populacao >= 500000] <- TRUE
table (estratocerto)
estrato <- rep(0,nrow(munic))</pre>
estrato[ estratocerto] <- 1
estrato[!estratocerto] <- 2
aux <- rep(FALSE, nrow(munic))</pre>
aux[estrato==2] <- TRUE</pre>
(Nest <- table(estrato)[2])</pre>
(nest < -200-44)
est.munic <- split(munic, factor(estrato))</pre>
```

```
N <- Nest
n <- nest
(f < - n/N)
   a) Total de funcionários ativos da administração direta
(p4a.var \leftarrow N^2 * (1/n - 1/N) * var(munic$FuncADMD[aux]))
(p4a.tot <- sum(munic$FuncADMD))</pre>
(p4a.cv <- sqrt(p4a.var)/p4a.tot)
# b) Razão da população por funcionário ativo da administração direta;
med = mean(munic$FuncADMD)
(p4b.raz <- sum (munic$Populacao) / sum (munic$FuncADMD) )</pre>
(razao.est <- sum(munic$Populacao[aux])/sum(munic$FuncADMD[aux]))</pre>
(p4b.var <- (1-f)/(n*med^2)*1/(N-1)*
         sum((munic$Populacao[aux]-razao.est*munic$FuncADMD[aux])^2))
(p4b.cv <- sqrt(p4b.var)/p4b.raz)</pre>
   c) Proporção de municípios com maternidade;
(p4c.prop <- mean(munic$mater))</pre>
(prop.est <- mean(munic$mater[aux]))</pre>
(p4c.var <- ((N-n)/(N-1)) * prop.est * (1-prop.est)*(1/n))
(p4c.cv <- sqrt(p4c.var)/p4c.prop)</pre>
    d) Proporção de municípios com maternidade e emergência.
(p4d.prop <- mean(munic$materemerg))</pre>
(prop.est <- mean(munic$materemerg[aux]))</pre>
(p4d.var <- ((N-n)/(N-1)) * prop.est * (1-prop.est) * (1/n))
(p4d.cv <- sqrt(p4d.var)/p4d.prop)</pre>
########################
## Plano 5
#########################
N <- nrow(munic)
n <- 200
(f <- n/N)
(medX <- mean(munic$Populacao))</pre>
X <- munic$Populacao
Y <- munic$FuncADMD
(R <- sum(Y)/sum(X))
   a) Total de funcionários ativos da administração direta
(p5a.var <- N^2 * ((1-f)/n) * sum((Y - R*X)^2)*1/(N-1))
(p5a.tot <- sum(munic$FuncADMD))</pre>
(p5a.cv <- sqrt(p5a.var)/p5a.tot)</pre>
  b) Razão da população por funcionário ativo da administração direta;
#Este cálculo não faz sentido.
# c) Proporção de municípios com maternidade;
Y <- munic$mater
(R <- sum(Y)/sum(X))
(p5c.var <- ((1-f)/n) * sum((Y - R*X)^2)*1/(N-1))
(p5c.tot <- mean(munic$mater))</pre>
(p5c.cv <- sqrt(p5c.var)/p5c.tot)</pre>
   d) Proporção de municípios com maternidade e emergência.
Y <- munic$materemerg
(R <- sum(Y)/sum(X))
(p5d.var <- ((1-f)/n) * sum((Y - R*X)^2)*1/(N-1))
(p5d.tot <- mean(munic$materemerg))</pre>
(p5d.cv <- sqrt(p5d.var)/p5d.tot)</pre>
```

```
resumo <- data.frame(plano = paste('Plano',1:5),
                    parametro_a=c(pla.cv,p2a.cv,p3a.cv,p4a.cv,p5a.cv)*100,
                    parametro b=c (p1b.cv,p2b.cv,p3b.cv,p4b.cv,p5b.cv) *100,
                     parametro_c=c(p1c.cv,p2c.cv,p3c.cv,p4c.cv,p5c.cv)*100,
                    parametro d=c(p1d.cv,p2d.cv,p3d.cv,p4d.cv,p5d.cv)*100)
resumo
epas <- resumo[-1,]
for(i in 1:4){
epas[i,2:5] \leftarrow resumo[i+1,2:5] / resumo[1,2:5]
epas
#write.xls(resumo,'c:/Projetos/TbAmoMunic/trunk/cvs.xls')
#write.xls(epas,'c:/Projetos/TbAmoMunic/trunk/epas.xls')
### ITEM 3 - Selecione uma amostra de municípios segundo o esquema amostral que
###você escolheu em 2.
sum (munic$Populacao) /5
munic <- transform(munic, sqrtPop = sqrt(Populacao))</pre>
munic <- munic[order(munic$sqrtPop),]</pre>
sum (munic$sqrtPop) /5
aux <- matrix(NA, nrow=nrow(munic), ncol=5)</pre>
for(i in 1:5){
aux[,i] <- cumsum(munic$sqrtPop) <= (sum(munic$sqrtPop)/5)*i</pre>
estrato <- 6-rowSums(aux)</pre>
table (estrato)
munic$estrato <- estrato</pre>
munic.est <- split(munic, estrato)</pre>
munic.amo <- list()</pre>
for( i in 1:5) {
aux <- sample(1:nrow(munic.est[[i]]),40)</pre>
munic.amo[[i]] <- munic.est[[i]][aux,]</pre>
amo.munic <- do.call(rbind, munic.amo)</pre>
dim(amo.munic)
str(amo.munic)
#write.table(amo.munic,'c:/Projetos/TbAmoMunic/trunk/amo Munic.dat',sep='\t',
            quote=F,row.names=F)
url <- 'https://raw.github.com/leandromarino/TBAmoMunic/master/amo Munic.dat'</pre>
url <- getURL(url,ssl.verifypeer = FALSE)</pre>
amo.munic <- read.table(textConnection(url), colClasses='character', header=T, quote='',</pre>
        sep='\t')
str(amo.munic)
amo.munic <- transform(amo.munic,
           Populacao=as.integer(Populacao),
            FuncADMD=as.integer(FuncADMD),
           Regiao=as.integer(Regiao),
           mater = as.integer(mater),
            emerg = as.integer(emerg),
           materemerg = as.integer(materemerg),
            sqrtPop = as.numeric(sqrtPop))
amo.munic[1:10,]
str(amo.munic)
```

```
#####-----#####
### ITEM 4 - De posse da amostra de municípios selecionada, estime os parâmetros
###de interesse e seus respectivos erros padrão e coeficientes de variação
##################
(Nest <- matrix(table(estrato), ncol=5))</pre>
(N = sum(Nest))
(nest < - rep(200/5, 5))
(Wh <- Nest/N)
est.munic <- munic.amo
estrato <- amo.munic$estrato
  a) Total de funcionários ativos da administração direta
func <- split(amo.munic$FuncADMD, estrato)</pre>
(tot.est <- do.call(c,lapply(func,sum)))</pre>
(amop3a.tot <- sum(tot.est/nest*Nest))</pre>
(var.intra <- do.call(c,lapply(func,var)))</pre>
(amop3a.var <- N^2 * sum(Wh^2 * (1/nest - 1/Nest)*var.intra))
(amop3a.cv <- sqrt(amop3a.var)/amop3a.tot)</pre>
  b) Razão da população por funcionário ativo da administração direta;
func <- split(amo.munic$FuncADMD, estrato)</pre>
pop <- split(amo.munic$Populacao,estrato)</pre>
#(amop3b.raz <- sum(amo.munic$Populacao)/sum(amo.munic$FuncADMD))
(amop3b.raz <- sum(do.call(c,lapply(pop,sum))/40) /</pre>
               sum(do.call(c,lapply(func,sum))/40))
(raz.est <- amop3b.raz)</pre>
(medest <- do.call(c,lapply(func,mean)))</pre>
(X <- sum (medest*Nest))</pre>
(var.intraX <- do.call(c,lapply(func,var)))</pre>
(var.intraY <- do.call(c,lapply(pop,var)))</pre>
(sd.intraX <- sqrt(var.intraX))</pre>
(sd.intraY <- sqrt(var.intraY))</pre>
cor.XY <- list()</pre>
for(i in 1:5) cor.XY[[i]] <- cor(func[[i]],pop[[i]])</pre>
(cor.XY <- do.call(c,cor.XY))</pre>
(amop3b.var <- (1/X^2) * sum(Nest^2 * (1- fest)/nest * (var.intraY +
         raz.est^2*var.intraX - 2 * raz.est * sd.intraY * sd.intraX * cor.XY)))
(amop3b.cv <- sqrt(amop3b.var)/amop3b.raz)</pre>
  c) Proporção de amo.municípios com maternidade;
mater <- split(amo.munic$mater,estrato)</pre>
(prop.est <- do.call(c,lapply(mater,mean)))</pre>
(amop3c.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(mater,var)))</pre>
(amop3c.var \leftarrow sum(Wh^2 * (1/nest - 1/Nest)*var.intra))
(amop3c.cv <- sqrt(amop3c.var)/amop3c.prop)</pre>
   d) Proporção de amo.municípios com maternidade e emergência.
materemerg <- split(amo.munic$materemerg,estrato)</pre>
(prop.est <- do.call(c,lapply(materemerg,mean)))</pre>
(amop3d.prop <- sum(Wh*prop.est))</pre>
(var.intra <- do.call(c,lapply(materemerg,var)))</pre>
(amop3d.var <- sum(Wh^2 * (1/nest - 1/Nest) * var.intra))
(amop3d.cv <- sqrt(amop3d.var)/amop3d.prop)</pre>
resumo.amo <- rbind(
c(amop3a.tot, sqrt(amop3a.var), amop3a.cv*100),
c(amop3b.raz ,sqrt(amop3b.var),amop3b.cv*100),
c(amop3c.prop, sqrt(amop3c.var), amop3c.cv*100),
c (amop3d.prop, sqrt (amop3d.var), amop3d.cv*100))
#write.xls(resumo.amo,'c:/Projetos/TbAmoMunic/trunk/resumo_amostra.xls')
```