

## PART THREE

计算方法实验一

#### 计算方法实验一

计算方法实验一&二

## 实验1: Lagrange插值

已知 4 对数据  $(a_1,b_1)$ , $(a_2,b_2)$ , $(a_3,b_3)$ 和  $(a_4,b_4)$ (其中  $a_i$ 和  $b_i$  由随机函数 rand 产生,  $[a_1,a_2,a_3,a_4]=1+5*rand(1,4)$  和  $[b_1,b_2,b_3,b_4]=1+5*rand(1,4)$ )。写出 这 4 个数据点的 Lagrange 插值公式,并计算出横坐标  $x_i=[x_1,x_2]$ (其中  $x_i$  由随 机函数 rand 产生, $[x_1,x_2]=2+3*rand(1,2)$ )时对应的纵坐标,并绘制该曲线。

## 计算方法实验一

计算方法实验一&二

## 实验2:观察Runge现象及分段线性插值

已知函数 
$$y = \frac{1}{1+x^2}$$
 在区间[-5,5] 上取  $n = randi([8,20],1,1)$  个节点,用 Larange

插值法进行插值计算,并绘制函数原曲线和 Larange 插值曲线,观察现象。用分段线性插值的方法解决 Runge 现象问题,绘图并分析。。

# PART FOUR

计算方法实验二

计算方法实验一&二

#### 实验1:最小二乘法拟合 (用polyfit函数)

设  $y = span\{1, x, x^2\}$  ,用最小二乘法拟合如表 1 所示的数据,并绘制拟合曲线和表中的数据点。。

表 1. 数据表。

| <b>X</b> & | $a_1$ $\circ$ | <i>a</i> <sub>2</sub> ≠ | <i>a</i> <sub>3</sub> ↔ | <i>a</i> <sub>4</sub> + | a <sub>5</sub> ∘ | a <sub>6</sub> 4 |
|------------|---------------|-------------------------|-------------------------|-------------------------|------------------|------------------|
|            |               |                         |                         |                         | 1                | b <sub>6</sub> * |

表格中, $[a_1, a_2, a_3, a_4, a_5, a_6] = 0.5 + 2.5 * rand(1,6)$  4

$$\cdots \cdots [b_1, b_2, b_3, b_4, b_5, b_6] = 1.5 + 7 * rand(1.6) \circ$$

计算方法实验一&二

#### 实验2: 最小二乘法拟合 (用矩形方法求解)

用最小二乘法求一个形如 $y = a + bx^2$ 的经验公式,使其余下表 2 所示的数据拟合。

表 2 数据表。

| <b>X</b> 4 | a <sub>1</sub> =        | <i>a</i> <sub>2</sub> ↔ | <i>a</i> <sub>3</sub> ↔ | <i>a</i> <sub>4</sub> ↔ | a <sub>5</sub> ₽ | <b>←</b> |
|------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------|----------|
| <i>y</i> . | <i>b</i> <sub>1</sub> . | b <sub>2</sub> .        | b <sub>3</sub> *        | b <sub>4</sub> *        | b <sub>5</sub> * | <b>←</b> |

表格中,
$$[a_1, a_2, a_3, a_4, a_5] = 18 * rand(1) + 15 * rand(1,5)$$

$$[b_1, b_2, b_3, b_4, b_5] = 19 * rand(1) + 80 * rand(1, 5) \circ$$

计算方法实验一&二

#### 实验3: Newton-Cotes系列数值求积公式

分别用矩形求积方法、梯形求积方法,求积分  $\int_0^{a\pi} e^{-0.5t} (t + \pi/b) dt$ , 并比较它们的精度。其中, a = randi(10,1,1), b = randi([5,15],1,1)。

计算方法实验一&二

## 实验4: Romberg求积公式

用 Romberg 求积公式计算  $\int_0^a x^b dt$  积分值。其中, a=2.5\*rand(1,1), b=3\*rand(1,1)。

计算方法实验一&二

实验5: 估计某地居民的用水速度和每天的总用水量

要求: 用最小二乘法拟合该小区这一天的用水速度和一天总用水量。

| 时间 (h) | 平均用水速度 (x10³m³/h) | 时间 (h) | 平均用水速度 (x10³m³/h) |
|--------|-------------------|--------|-------------------|
| 0.46   |                   | 13.42  |                   |
| 1.38   |                   | 14.43  |                   |
| 2.40   |                   | 15.44  |                   |
| 3.41   |                   | 16.37  |                   |
| 4.42   |                   | 17.38  |                   |
| 5.44   | 8+12*rand (22, 1) | 18.48  | 8+12*rand (22, 1) |
| 6.45   |                   | 19.50  |                   |
| 7.47   |                   | 20.40  |                   |
| 8.45   |                   | 23.42  |                   |
| 11.49  |                   | 24.43  |                   |
| 12.49  |                   | 25.45  |                   |