Programa de maximo (primal) tiene asociado un programa de mínimo (dual)

En forma canónica:

$$Max \quad z = c^t x$$
 $Min \quad w = b^t y$
 $s. a. \quad Ax \le b$ \rightarrow $s. a. \quad A^t y \ge c$
 $x \ge 0$ $y \ge 0$

$$Max \quad 2x_1 \quad + \quad x_2 \quad - \quad 3x_3$$

$$x_1 \ge 0$$
 $x_2 \le 0$

$$Max \quad 2x_1 \quad + \quad x_2 \quad - \quad 3x_3$$

$$x_1 \ge 0$$
 $x_2 \le 0$

Movemos los coeficientes de la función a los términos independientes de las restricciones

Primal

Dual

 $Max \quad 2x_1 \quad + \quad x_2 \quad - \quad 3x_3$

 $x_1 \ge 0$ $x_2 \le 0$

Min

_

1 -3 Movemos los términos independientes de las restricciones a los coeficientes de la función

Primal

Dual

$$Max \quad 2x_1 \quad + \quad x_2 \quad - \quad 3x_3$$

$$x_1 \ge 0$$
 $x_2 \le 0$

 $Min 10x_1 + 4x_2 + 6x_3$

1 -3

Transponemos la matriz de los coeficientes de las restricciones

Primal

 $x_2 \leq 0$

 $x_1 \ge 0$

Dual

$$Max = 2x_1 + x_2 - 3x_3$$

$$Min \ 10x_1 + 4x_2 + 6x_3$$

Las restricciones serán de igualdad o desigualdad dependiendo de las variables

Signo: $\begin{cases} De \ variable \ a \ restricci\'on \rightarrow Mantenemos \ el \ signo \\ De \ restricci\'on \ a \ variable \rightarrow Cambiamos \ el \ signo \\ Al \ pasar \ de \ M\'aximo \ a \ M\'inimo. \end{cases}$

El signo de las variables dependerá de las restricciones

Signo: $\begin{cases} De \ variable \ a \ restricci\'on \rightarrow Mantenemos \ el \ signo \\ De \ restricci\'on \ a \ variable \rightarrow Cambiamos \ el \ signo \\ Al \ pasar \ de \ M\'aximo \ a \ M\'inimo. \end{cases}$

 $4x_2$

+

 $x_3 \ge 0$ $x_2 \le 0$

 $2x_3$

Movemos los coeficientes de la función a los términos independientes de las restricciones

Primal

Dual

$$Max x_1 - 4x_2 - 2x_3$$

$$x_2 \le 0$$
 $x_3 \ge 0$

Min

	_	
		1
		-4
		-2

Movemos los términos independientes de las restricciones a los coeficientes de la función

Primal

Dual

$$Max \quad x_1 \quad - \quad 4x_2 \quad - \quad 2x_3$$

$$x_2 \le 0$$
 $x_3 \ge 0$

 $2x_3$ $8x_1$ Min x_2

Transponemos la matriz de los coeficientes de las restricciones

Primal

 $x_2 \le 0$

Dual

 $x_3 \ge 0$

Las restricciones serán de igualdad o desigualdad dependiendo de las variables

Primal Dual $2x_3$ $4x_2$ Max $8x_1$ $2x_3$ Min x_2 $5x_3$ $2x_1$ $3x_3$ $2x_3$ $x_2 \leq 0$ $x_3 \ge 0$

Signo: $\begin{cases} De \ variable \ a \ restricci\'on \rightarrow Mantenemos \ el \ signo \\ De \ restricci\'on \ a \ variable \rightarrow Cambiamos \ el \ signo \\ Al \ pasar \ de \ M\'aximo \ a \ M\'inimo. \end{cases}$

El signo de las variables dependerá de las restricciones

Primal Dual $2x_3$ $4x_2$ Max $8x_1$ $2x_3$ Min χ_2 $5x_3$ $2x_1$ $2x_3$ $x_2 \le 0$ $x_3 \ge 0$ $x_2 \le 0$ $x_3 \ge 0$

Signo: $\begin{cases} De \ variable \ a \ restricci\'on \rightarrow Mantenemos \ el \ signo \\ De \ restricci\'on \ a \ variable \rightarrow Cambiamos \ el \ signo \\ Al \ pasar \ de \ M\'aximo \ a \ M\'inimo. \end{cases}$

Maximizar x_3

$$s.a: \begin{cases} x_1 + x_2 \le 3 \\ x_1 - x_2 - x_3 = 0 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

Si hacemos el programa de optimización en un Simplex obtenemos la solución del Primal y el Dual Ejemplo:

1º Tabla: Nos fijamos en las variables con las que iniciamos el simplex: x_4 y x_5

			0	0	1	0	-M	← C
			x_1	x_2	x_3	x_4	x_5	
0	x_4	3	1	1	0	1	0	
-M	x_5	0	1	-1	-1	0	1	
		0	-M	М	М	0	-M	← Z
			-M	М	M-1	0	0	← Z - C

Si hacemos el programa de optimización en un Simplex obtenemos la solución del Primal y el Dual Ejemplo:

Última Tabla: Nos fijamos en los valores de la fila Z de esas variables: 1 y -1

			0	0	1	0	-M	← C
			x_1	x_2	x_3	x_4	x_5	
1	x_3	3	0	2	1	1	-1	
0	x_1	3	1	1	0	1	0	
		3	0	2	1	1	-1	← Z
			0	2	0	1	M-1	← Z - C

Solución del primal: $x_1 = 3$, $x_3 = 3$

Solución del dual: $x_1 = 1$, $x_2 = -1$

			0	0	1	0	-M	← C
			x_1	x_2	x_3	x_4	x_5	
1	x_3	3	0	2	1	1	-1	
0	x_1	3	1	1	0	1	0	
		3	0	2	1	1	-1	← Z
			0	2	0	1	M-1	← Z - C

Tendremos una variable Dual por cada restricción que exista en el Primal.

El valor de cada variable dual nos dice cuando aumentará la función al aumentar el término independiente de su restricción correspondiente.

$$\frac{dz}{db_i} = y_i$$

Se pueden llamar "Precios sombra": lo que estaríamos dispuestos a pagar por 1 unidad más

Maximizar $2x_1 + x_2$

$$s.a: \begin{cases} x_1 - x_2 \le 10 \\ 2x_1 - x_2 \le 40 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Dual

$$Minimizar$$
 $10y_1 + 40y_2$

$$\begin{cases}
y_1 + 2y_2 \ge 2 \\
-y_1 - y_2 \ge 1
\end{cases}$$

$$\begin{cases}
y_1 \ge 0, y_2 \ge 0
\end{cases}$$

Maximizar $2x_1 + x_2$

$$Maximizar 2x_1 + x_2$$

$$\begin{cases} x_1 - x_2 + x_3 = 10 \\ 2x_1 - x_2 + x_4 = 40 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0 \end{cases}$$

1º: Variables

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	10	1	-1	1	0
0	x_4	40	2	-1	0	1
		0	0	0	0	0
			-2	-1	0	0

Resolución del Simplex. 1º, nos fijamos en la última fila.

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	10	1	-1	1	0
0	x_4	40	2	-1	0	1
		0	0	0	0	0
			-2	-1	0	0

Metemos la variable con el menor valor en z-c que sea negativo

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	10	1	-1	1	0
0	x_4	40	2	-1	0	1
		0	0	0	0	0
			-2	-1	0	0

	2	1	0	0
	x_1	x_2	x_3	x_4
x_1				
x_4				

			2	1	0	0
			x_1	x_2	x_3	x_4
2	x_1	10	1	-1	1	0
0	x_4	20	0	1	-2	1
		20	2	-2	2	0
			0	-1	2	0

	2	1	0	0
	x_1	x_2	x_3	x_4
x_1				
x_2				

			2	1	0	0
			x_1	x_2	x_3	x_4
2	x_1	30	1	0	-1	1
1	x_2	20	0	1	-2	1
		80	2	1	-4	3
			0	0	-4	3

 $Maximizar \quad x_1 + x_2$

$$\begin{cases} x_1 - x_2 \le 4 \\ x_1 + x_2 \le 4 \end{cases}$$

$$s.a: \begin{cases} x_2 \ge 6 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Dual

Minimizar
$$4y_1 + 4y_2 + 6y_3$$

$$\begin{cases} y_1 + y_2 \ge 1 \\ -y_1 + y_2 + y_3 \ge 1 \end{cases}$$

$$\begin{cases} y_1 \ge 0, y_2 \ge 0, y_3 \le 0 \end{cases}$$

 $Maximizar x_1 + x_2$

$$\begin{cases} x_1 - x_2 + x_3 = 4 \\ x_1 + x_2 + x_4 = 4 \end{cases}$$
s. a:
$$\begin{cases} x_2 - x_5 = 6 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \end{cases}$$

	1	1	0	0	0	
	x_1	x_2	x_3	x_4	x_5	
	1	-1	1	0	0	
	1	1	0	1	0	
	0	1	0	0	-1	

			1	1	0	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
0	x_3	4	1	-1	1	0	0	0
0	x_4	4	1	1	0	1	0	0
-M	x_6	6	0	1	0	0	-1	1
		-6M	0	-M	0	0	M	-M
			-1	-M-1	0	0	M	0

			1	1	0	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
0	x_3	8	2	0	1	1	0	0
1	x_2	4	1	1	0	1	0	0
-M	x_6	2	-1	0	0	-1	-1	1

			1	1	0	0	0	-M
			x_1	x_2	x_3	x_4	x_5	x_6
0	x_3	8	2	0	1	1	0	0
1	x_2	4	1	1	0	1	0	0
-M	<i>x</i> ₆	2	-1	0	0	-1	-1	1
		-2M+4	1+M	1	0	1+M	M	-M
			M	0	0	1+M	M	0

