Package 'Cascade'

November 28, 2022

```
Type Package
Title Selection, Reverse-Engineering and Prediction in Cascade
      Networks
Version 2.1
Date 2022-11-28
Depends R (>= 3.5.0)
biocViews
Imports abind, animation, cluster, grid, igraph, lars, lattice, limma,
      magic, methods, nnls, splines, stats4, survival, tnet, VGAM
Suggests R.rsp, CascadeData, knitr
Author Frederic Bertrand [cre, aut] (<a href="https://orcid.org/0000-0002-0837-8281">https://orcid.org/0000-0002-0837-8281</a>),
      Myriam Maumy-Bertrand [aut] (<a href="https://orcid.org/0000-0002-4615-1512">https://orcid.org/0000-0002-4615-1512</a>),
      Laurent Vallat [ctb],
      Nicolas Jung [ctb]
Maintainer Frederic Bertrand <frederic.bertrand@utt.fr>
Description A modeling tool allowing gene selection, reverse engineering, and prediction in cas-
      cade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-
      Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
License GPL (>= 2)
Encoding UTF-8
Collate Cascade-package.R global.R micro_array.R network.R
      micro_array-network.R micropredict.R datasets.R
Classification/MSC 62J05, 62J07, 62J99, 92C42
VignetteBuilder R.rsp
RoxygenNote 7.2.1
URL https://fbertran.github.io/Cascade/,
      https://github.com/fbertran/Cascade/
BugReports https://github.com/fbertran/Cascade/issues/
NeedsCompilation no
```

2 Cascade-package

Repository CRAN

Date/Publication 2022-11-28 12:30:06 UTC

R topics documented:

Casca		The Cascade in Cascade N	_	lecti	ion, I	Reve	rse-	Engi	neer	ing	and	Pred	dicti	ion
Index														29
	unionMicro-methods			 										. 2
	summary-methods													
	print-methods													
	predict,micro_array-n													
	position-methods													
	plot-methods													
	Net_inf													
	network_random													
	network-class													
	network													
	Net			 										. 19
	micro_array-class			 										. 19
	micropredict-class			 										. 1
	М			 										. 1
	inference,micro_array	-method .		 										. 10
	head,micro_array-met	thod		 										. 10
	gene_expr_simulation													
	geneSelection													
	geneNeighborhood,ne													
	evolution,network-me													
	dim													
	cutoff,network-metho													
	compare-methods													
	as.micro_array													
	Cascade-package analyze_network,netw													

Description

A modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.

Author(s)

This package has been written by Frédéric Bertrand, Myriam Maumy-Bertrand and Nicolas Jung with biological insights from Laurent Vallat. Maintainer: Frédéric Bertrand <frederic.bertrand@math.unistra.fr>

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

```
analyze\_network, network-method\\ Analysing \ the \ network
```

Description

Calculates some indicators for each node in the network.

Usage

```
## S4 method for signature 'network'
analyze_network(Omega, nv, label_v = NULL)
```

Arguments

Omega a network object

nv the level of cutoff at which the analysis should be done

label_v (optionnal) the name of the genes

Value

A matrix containing, for each node, its betweenness, its degree, its output, its closeness.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

as.micro_array

Examples

```
data(network)
analyze_network(network,nv=0)
```

as.micro_array

Coerce a matrix into a micro_array object.

Description

Coerce a matrix into a micro_array object.

Usage

```
as.micro_array(M, time, subject)
```

Arguments

M A matrix. Contains the microarray measurements. Should of size N * K, with

N the number of genes and K=T*P with T the number of time points, and P the number of individuals. This matrix should be created using cbind(M1,M2,...) with M1 a N*T matrix with the measurements for individual 1, M2 a N*T matrix

with the measurements for individual 2.

time A vector. The time points measurements.

subject The number of subjects.

Value

A micro_array object.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

compare-methods 5

Examples

```
if(require(CascadeData)){
data(micro_US)
micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6)
}</pre>
```

compare-methods Some basic criteria of comparison between actual and inferred network.

Description

Allows comparison between actual and inferred network.

Usage

```
## S4 method for signature 'network,network,numeric'
compare(Net, Net_inf, nv = 1)
```

Arguments

Net A network object containing the actual network.

Net_inf A network object containing the inferred network.

nv A number that indicates at which level of cutoff the comparison should be done.

Value

A vector containing: sensibility, predictive positive value, and the F-score

Methods

```
list("signature(Net = \"network\", Net_inf = \"network\", nv = \"numeric\")")
```

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

6 cutoff,network-method

Examples

```
data(Net)
data(Net_inf)

#Comparing true and inferred networks
F_score=NULL

#Here are the cutoff level tested
test.seq<-seq(0,max(abs(Net_inf@network*0.9)),length.out=200)
for(u in test.seq){
F_score<-rbind(F_score,Cascade::compare(Net,Net_inf,u))
}
matplot(test.seq,F_score,type="1",ylab="criterion value",xlab="cutoff level",lwd=2)</pre>
```

cutoff, network-method Choose the best cutoff

Description

Allows estimating the best cutoff, in function of the scale-freeness of the network. For a sequence of cutoff, the corresponding p-value is then calculated.

Usage

```
## S4 method for signature 'network'
cutoff(Omega, sequence = NULL, x_min = 0)
```

Arguments

Omega a network object

sequence (optional) a vector corresponding to the sequence of cutoffs that will be tested.

x_min (optional) an integer; only values over x_min are further retained for performing

the test.

Value

A list containing two objects:

p.value the p values corresponding to the sequence of cutoff p.value.inter the smoothed p value vector, using the loess function

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

dim 7

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

Examples

```
data(network)
cutoff(network)
#See vignette for more details
```

dim

Dimension of the data

Description

Dimension of the data

Usage

```
## S4 method for signature 'micro_array'
dim(x)
```

Arguments

Х

an object of class "micro-array

Methods

 $list("signature(x = \'micro_array\'')")$ Gives the dimension of the matrix of measurements.

```
if(require(CascadeData)){
data(micro_US)
micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6)
dim(micro_US)
}</pre>
```

```
evolution, network-method
```

See the evolution of the network with change of cutoff

Description

See the evolution of the network with change of cutoff. This function may be usefull to see if the global topology is changed while increasing the cutoff.

Usage

```
## S4 method for signature 'network'
evolution(
   net,
   list_nv,
   gr = NULL,
   color.vertex = NULL,
   fix = TRUE,
   gif = TRUE,
   taille = c(2000, 1000),
   label_v = 1:dim(net@network)[1],
   legend.position = "topleft",
   frame.color = "black",
   label.hub = FALSE
)
```

Arguments

net	a network object				
list_nv	a vector of cutoff at which the network should be shown				
gr	a vector giving the group of each gene				
color.vertex	a vector giving the color of each node				
fix	logical, should the position of the node in the network be calculated once at the beginning? Defaults to TRUE.				
gif	logical, TRUE				
taille	vector giving the size of the plot. Default to c(2000,1000)				
label_v	(optional) the name of the genes				
legend.position					
	(optional) the position of the legend, defaults to "topleft"				
frame.color	(optional) the color of the frame, defaults to "black"				
label.hub	(optional) boolean, defaults to FALSE				

Value

A HTML page with the evolution of the network.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

Examples

```
data(network)
sequence<-seq(0,0.2,length.out=20)
#setwd("inst/animation")
#evolution(network,sequence)</pre>
```

geneNeighborhood, network-method

Find the neighborhood of a set of nodes.

Description

Find the neighborhood of a set of nodes.

Usage

```
## S4 method for signature 'network'
geneNeighborhood(
   net,
   targets,
   nv = 0,
   order = length(net@time_pt) - 1,
   label_v = NULL,
   ini = NULL,
   frame.color = "white",
   label.hub = FALSE,
   graph = TRUE,
   names = FALSE
)
```

Arguments

net a network object

targets a vector containing the set of nodes nv the level of cutoff. Defaut to 0.

order of the neighborhood. Defaut to 'length(net@time_pt)-1'.

label_v vector defining the vertex labels.

ini using the "position" function, you can fix the position of the nodes.

frame.color color of the frames.

label.hub logical; if TRUE only the hubs are labeled.
graph plot graph of the network. Defaults to 'TRUE'.

names return names of the neighbors. Defaults to 'FALSE'.

Value

The neighborhood of the targeted genes.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

```
data(Selection)
data(network)
#A nv value can chosen using the cutoff function
nv=.11
EGR1<-which(match(Selection@name, "EGR1")==1)
P<-position(network,nv=nv)
geneNeighborhood(network,targets=EGR1,nv=nv,ini=P,label_v=network@name)</pre>
```

geneSelection 11

geneSelection

Methods for selecting genes

Description

Selection of differentially expressed genes.

Usage

```
## S4 method for signature 'micro_array,micro_array,numeric'
geneSelection(
 Х,
 у,
  tot.number,
  data_log = TRUE,
 wanted.patterns = NULL,
  forbidden.patterns = NULL,
  peak = NULL,
  alpha = 0.05,
 Design = NULL,
  1fc = 0
)
## S4 method for signature 'list,list,numeric'
geneSelection(
 Х,
 у,
  tot.number,
  data_log = TRUE,
  alpha = 0.05,
  cont = FALSE,
 1fc = 0,
  f.asso = NULL
)
## S4 method for signature 'micro_array,numeric'
genePeakSelection(
  Х,
  peak,
  y = NULL,
  data_log = TRUE,
  durPeak = c(1, 1),
  abs_val = TRUE,
  alpha_diff = 0.05
)
```

12 geneSelection

Arguments

x either a micro_array object or a list of micro_array objects. In the first case, the

micro_array object represents the stimulated measurements. In the second case, the control unstimulated data (if present) should be the first element of the list.

y either a micro_array object or a list of strings. In the first case, the micro_array object represents the stimulated measurements. In the second case, the list is the

way to specify the contrast:

To a large the contrast.

First element: condition, condition&time or pattern. The condition specification is used when the overall is to compare two conditions. The condition&time specification is used when comparing two conditions at two precise time points. The pattern specification allows to decide which time point should be differentially expressed.

Second element: a vector of length 2. The two conditions which should be compared. If a condition is used as control, it should be the first element of the vector. However, if this control is not measured throught time, the option cont=TRUE should be used.

Third element: depends on the first element. It is no needed if condition has been specified. If condition&time has been specified, then this is a vector containing the time point at which the comparison should be done. If pattern has been specified, then this is a vector of 0 and 1 of length T, where T is the number of time points. The time points with desired differential expression are provided with 1.

tot.number

an integer. The number of selected genes. If tot.number <0 all differentially genes are selected. If tot.number > 1, tot.number is the maximum of diffenrtially genes that will be selected. If 0<tot.number<1, tot.number represents the proportion of diffenrentially genes that are selected.

data_log logical (default to TRUE); should data be logged?

wanted.patterns

a matrix with wanted patterns [only for geneSelection].

forbidden.patterns

a matrix with forbidden patterns [only for geneSelection].

peak interger. At which time points measurements should the genes be selected [op-

tionnal for geneSelection].

alpha float; the risk level. Default to 'alpha=0.05'

Design the design matrix of the experiment. Defaults to 'NULL'.

lfc log fold change value used in limma's 'topTable'. Defaults to 0.

cont use contrasts. Defaults to 'FALSE'.

f.asso function used to assess the association between the genes. The default value

'NULL' implies the use of the usual 'mean' function.

durPeak vector of size 2 (default to c(1,1)); the first elements gives the length of the peak

at the left, the second at the right. [only for genePeakSelection]

abs_val logical (default to TRUE); should genes be selected on the basis of their absolute

value expression? [only for genePeakSelection]

alpha_diff float; the risk level

geneSelection 13

Value

A micro_array object.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

```
if(require(CascadeData)){
data(micro_US)
micro_US<-as.micro_array(micro_US, time=c(60,90,210,390), subject=6)
data(micro_S)
micro_S<-as.micro_array(micro_S, time=c(60,90,210,390), subject=6)</pre>
 #Basically, to find the 50 more significant expressed genes you will use:
 Selection_1<-geneSelection(x=micro_S,y=micro_US,</pre>
 tot.number=50,data_log=TRUE)
 summary(Selection_1)
 #If we want to select genes that are differentially
 #at time t60 or t90 :
 Selection_2<-geneSelection(x=micro_S, y=micro_US, tot.number=30,
 wanted.patterns=
 rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))
 summary(Selection_2)
 #To select genes that have a differential maximum of expression at a specific time point.
 Selection_3<-genePeakSelection(x=micro_S,y=micro_US,peak=1,</pre>
 abs_val=FALSE,alpha_diff=0.01)
 summary(Selection_3)
if(require(CascadeData)){
data(micro_US)
micro_US<-as.micro_array(micro_US, time=c(60,90,210,390), subject=6)
data(micro_S)
micro_S<-as.micro_array(micro_S, time=c(60,90,210,390), subject=6)</pre>
#Genes with differential expression at t1
```

```
Selection1<-geneSelection(x=micro_S, y=micro_US, 20, wanted.patterns= rbind(c(1,0,0,0)))
#Genes with differential expression at t2
Selection 2 < -geneSelection (x=micro\_S, y=micro\_US, 20, wanted.patterns= rbind (c(0,1,0,0)))
#Genes with differential expression at t3
Selection3<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,1,0)))
#Genes with differential expression at t4
Selection4<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,0,1)))
#Genes with global differential expression
Selection5<-geneSelection(x=micro_S,y=micro_US,20)</pre>
#We then merge these selections:
Selection<-unionMicro(list(Selection1, Selection2, Selection3, Selection4, Selection5))
print(Selection)
#Prints the correlation graphics Figure 4:
summary(Selection,3)
##Uncomment this code to retrieve geneids.
#library(org.Hs.eg.db)
#ff<-function(x){substr(x, 1, nchar(x)-3)}</pre>
#ff<-Vectorize(ff)
##Here is the function to transform the probeset names to gene ID.
#library("hgu133plus2.db")
#probe_to_id<-function(n){</pre>
#x <- hgu133plus2SYMBOL</pre>
#mp<-mappedkeys(x)</pre>
#xx <- unlist(as.list(x[mp]))</pre>
\#genes\_all = xx[(n)]
#genes_all[is.na(genes_all)]<-"unknown"</pre>
#return(genes_all)
#}
#Selection@name<-probe_to_id(Selection@name)</pre>
```

gene_expr_simulation,network-method

Simulates microarray data based on a given network.

Description

Simulates microarray data based on a given network.

Usage

```
## S4 method for signature 'network'
gene_expr_simulation(network, time_label = 1:4, subject = 5, level_peak = 100)
```

Arguments

network A network object.

time_label a vector containing the time labels.

subject the number of subjects level_peak the mean level of peaks.

Value

A micro_array object.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

```
data(Net)
set.seed(1)

#We simulate gene expression according to the network Net
Msim<-gene_expr_simulation(
network=Net,
time_label=rep(1:4,each=25),
subject=5,
level_peak=200)
head(Msim)</pre>
```

head, micro_array-method

Overview of a micro_array object

Description

Overview of a micro_array object.

Usage

```
## S4 method for signature 'micro_array' head(x, \ldots)
```

Arguments

```
x an object of class 'micro_array'.
... additional parameters
```

```
list("signature(x = \"ANY\")") Gives an overview.
list("signature(x = \"micro_array\")") Gives an overview.
```

Examples

Methods

```
if(require(CascadeData)){
data(micro_US)
micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6)
head(micro_US)
}</pre>
```

inference,micro_array-method

Reverse-engineer the network

Description

Reverse-engineer the network.

Usage

```
## S4 method for signature 'micro_array'
inference(
    M,
    tour.max = 30,
    g = function(x) {
        1/x
    },
    conv = 0.001,
    cv.subjects = TRUE,
    nb.folds = NULL,
    eps = 10^-5,
    type.inf = "iterative"
)
```

Arguments

М	a micro_array object.
tour.max	maximal number of steps. Defaults to 'tour.max=30'
g	the new solution is choosen as (the old solution $+ g(x) *$ the new solution)/(1+g(x)) where x is the number of steps. Defaults to 'g=function(x) 1/x'
conv	convergence criterion. Defaults to 'conv=10e-3'
cv.subjects	should the cross validation be done removing the subject one by one? Defaults to 'cv.subjects=TRUE'.
nb.folds	Relevant only if cv.subjects is FALSE. The number of folds in cross validation. Defaults to 'NULL'.
eps	machine zero. Defaults to '10e-5'.
type.inf	"iterative" or "noniterative" : should the algorithm be computed iteratively. Defaults to '"iterative".

Value

A network object.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

18 micropredict-class

Examples

```
#With simulated data
data(M)
infM <- inference(M)
str(infM)

#With selection of genes from GSE39411
data(Selection)
infSel <- inference(Selection)
str(infSel)</pre>
```

М

Simulated M data for examples.

Description

Simulated M microarray.

Examples

data(M)
head(M)

micropredict-class

 ${\it Class}$ "micropredict"

Description

The "micropredict" class

Objects from the Class

Objects can be created by calls of the form new("micropredict", ...).

```
showClass("micropredict")
```

micro_array-class 19

micro_array-class

Class "micro_array"

Description

```
The "micro_array" class
```

Objects from the Class

Objects can be created by calls of the form new("micro_array", ...).

Examples

```
showClass("micro_array")
```

Net

Simulated network data for examples.

Description

Simulated network.

Examples

```
data(Net)
str(Net)
```

network

A network object data.

Description

A network object. It is the same as the result in the vignette for the inference of the network.

```
data(network)
plot(network)
print(network)
```

20 network_random

network-class

Class "network"

Description

The "network" class

Objects from the Class

Objects can be created by calls of the form new("network", ...).

Examples

```
showClass("network")
```

network_random

Generates a network.

Description

Generates a network.

Usage

```
network_random(
  nb,
  time_label,
  exp,
  init,
  regul,
  min_expr,
  max_expr,
  casc.level
)
```

Arguments

nb Integer. The number of genes.

time_label Vector. The time points measurements.

exp The exponential parameter, as in the barabasi.game function in igraph package.

The attractiveness of the vertices with no adjacent edges. See barabasi.game

function.

regul A vector mapping each gene with its number of regulators.

Net_inf 21

```
min_expr Minimum of strength of a non-zero link
max_expr Maximum of strength of a non-zero link
casc.level ...
```

Value

A network object.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

Vallat, L., Kemper, C. A., Jung, N., Maumy-Bertrand, M., Bertrand, F., Meyer, N., ... & Bahram, S. (2013). Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. *Proceedings of the National Academy of Sciences*, 110(2), 459-464.

Examples

```
set.seed(1)
Net<-network_random(
nb=100,
time_label=rep(1:4,each=25),
exp=1,
init=1,
regul=round(rexp(100,1))+1,
min_expr=0.1,
max_expr=2,
casc.level=0.4
)
plot(Net)</pre>
```

Net_inf

Reverse-engineered network of the simulated data.

Description

The reverse-engineered network of the simulated data (M and Net).

22 plot-methods

Examples

```
data(Net_inf)
str(Net_inf)
```

plot-methods

Plot

Description

Considering the class of the argument which is passed to plot, the graphical output differs.

Usage

```
## S4 method for signature 'micro_array,ANY'
plot(x, y, ...)
## S4 method for signature 'network, ANY'
plot(
 Х,
  choice = "network",
  nv = 0,
  gr = NULL,
  ini = NULL,
  color.vertex = NULL,
  video = TRUE,
  weight.node = NULL,
  ani = FALSE,
  taille = c(2000, 1000),
  label_v = 1:dim(x@network)[1],
  horiz = TRUE,
  legend.position = "topleft",
  frame.color = "black",
  label.hub = FALSE,
)
## S4 method for signature 'micropredict, ANY'
plot(
  Х,
  time = NULL,
  label_v = NULL,
  frame.color = "white",
  ini = NULL,
  label.hub = FALSE,
```

plot-methods 23

```
edge.arrow.size = 0.7,
edge.thickness = 1
)
```

Arguments

x a micro_array object, a network object or a micropredict object

y optional and not used if x is an appropriate structure

... additional parameters

choice what graphic should be plotted: either "F" (for a representation of the matrices

F) or "network".

nv the level of cutoff. Defaut to '0'.

gr a vector giving the group of each gene

ini using the "position" function, you can fix the position of the nodes.

color.vertex a vector defining the color of the vertex.

video if ani is TRUE and video is TRUE, the result of the animation is saved as an

animated GIF.

weight.node nodes weighting. Defaults to 'NULL'.

ani animated plot?

taille vector giving the size of the plot. Default to 'c(2000,1000)'.

label_v vector defining the vertex labels.
horiz landscape? Defaults to 'TRUE'.

legend.position

position of the legend.

frame.color color of the frames.

label.hub logical; if TRUE only the hubs are labeled.

time sets the time for plot of the prediction. Defaults to 'NULL'

edge.arrow.size

size of the arrows; default to 0.7.

edge.thickness edge thickness; default to 1.

Methods

```
list("signature(x = \'micro_array\'', y = \''ANY\'',...)") x a micro_array object
```

list_nv a vector of cutoff at which the network should be shown

 $list("signature(x = \mbox{"network"}, y = \mbox{"ANY"},...)") x a network object$

list() Optionnal arguments:

gr a vector giving the group of each gene

choice what graphic should be plotted: either "F" (for a representation of the matrices F) or "network".

nv the level of cutoff. Defaut to 0.

ini using the "position" function, you can fix the position of the nodes

24 position-methods

```
color.vertex a vector defining the color of the vertex
ani animated plot?
size vector giving the size of the plot. Default to c(2000,1000)
video if ani is TRUE and video is TRUE, the animation result is a GIF video
label_v vector defining the vertex labels
legend.position position of the legend
frame.color color of the frames
label.hub logical; if TRUE only the hubs are labeled
edge.arrow.size size of the arrows; default to 0.7
edge.thickness edge thickness; default to 1.

list("signature(x = \"micropredict\\", y = \"ANY\\",...)") x a micropredict object
list() Optionnal arguments: see plot for network
```

Examples

```
data(Net)
plot(Net)

data(M)
plot(M)

data(Selection)
data(network)
nv<-0.11
plot(network,choice="network",gr=Selection@group,nv=nv,label_v=Selection@name,edge.arrow.size=0.9,edge.thickness=1.5)</pre>
```

position-methods

Returns the position of edges in the network

Description

Returns the position of edges in the network

Usage

```
## S4 method for signature 'network'
position(net, nv = 0)
```

Arguments

net a network object

nv the level of cutoff at which the analysis should be done

Methods

list("signature(net = \"network\")") Returns a matrix with the position of the node. This matrix can then be used as an argument in the plot function.

Examples

```
data(Net)
position(Net)
```

```
predict, micro_array-method
```

Prediction of the gene expressions after a knock-out experience predict

Description

Prediction of the gene expressions after a knock-out experience

Usage

```
## S4 method for signature 'micro_array'
predict(object, Omega, nv = 0, targets = NULL, adapt = TRUE)
```

Arguments

object a micro_array object
Omega a network object.

nv [=0] numeric; the level of the cutoff

targets [NULL] vector; which genes are knocked out?

adapt [TRUE] boolean; do not raise an error if used with vectors instead of one column

matrices.

Author(s)

Nicolas Jung, Frédéric Bertrand, Myriam Maumy-Bertrand.

References

Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014). Cascade: a R-package to study, predict and simulate the diffusion of a signal through a temporal gene network. *Bioinformatics*, btt705.

26 print-methods

Examples

```
data(Selection)
data(network)
#A nv value can chosen using the cutoff function
nv=.11
EGR1<-which(match(Selection@name,"EGR1")==1)
P<-position(network,nv=nv)

#We predict gene expression modulations within the network if EGR1 is experimentaly knocked-out.
prediction_ko5<-predict(Selection,network,nv=nv,targets=EGR1)

#Then we plot the results. Here for example we see changes at time point t2:
plot(prediction_ko5,time=2,ini=P,label_v=Selection@name)</pre>
```

print-methods

Methods for Function print

Description

Methods for function print

Usage

```
## S4 method for signature 'micro_array'
print(x, ...)
## S4 method for signature 'network'
print(x, ...)
```

Arguments

x an object of class micro-array or network... additional parameters

```
data(Net)
print(Net)

data(M)
print(M)
```

Selection 27

Selection	Selection of genes.
-----------	---------------------

Description

20 (at most) genes with differential expression at t1, 20 (at most) genes with differential expression at t2, 20 (at most) genes with differential expression at t3, 20 (at most) genes with differential expression at t4 et 20 (at most) genes with global differential expression were selected.

Examples

```
data(Selection)
head(Selection)
summary(Selection,3)
```

summary-methods

Methods for Function summary

Description

Methods for function summary

Usage

```
## S4 method for signature 'micro_array'
summary(object, nb.graph = NULL, ...)
```

Arguments

object an object of class micro-array

nb. graph (optionnal) choose the graph to plot. Displays all graphs by default.

... additional parameters.

```
data(M)
summary(M)
```

28 unionMicro-methods

unionMicro-methods

Makes the union between two micro_array objects.

Description

Makes the union between two micro_array objects.

Usage

```
## S4 method for signature 'micro_array,micro_array'
unionMicro(M1, M2)
```

Arguments

M1 a micro-array or a list of micro-arrays

M2 a micro-array or nothing if M1 is a list of micro-arrays

Methods

list("signature(M1 = \"micro_array\", M2 = \"micro_array\")") Returns a micro_array object which is the union of M1 and M2.

```
data(M)
#Create another microarray object with 100 genes
Mbis<-M
#Rename the 100 genes
Mbis@name<-paste(M@name,"bis")
rownames(Mbis@microarray) <- Mbis@name
#Union (merge without duplicated names) of the two microarrays.
str(unionMicro(M,Mbis))</pre>
```

Index

* classes	compare,network,network,numeric-method					
micro_array-class, 19	(compare-methods), 5					
micropredict-class, 18	compare-methods, 5					
network-class, 20	<pre>cutoff(cutoff,network-method),6</pre>					
* datasets	cutoff, network-method, 6					
M, 18	cutoff-methods (cutoff, network-method),					
Net, 19	6					
Net_inf, 21						
network, 19	dim, 7					
Selection, 27	<pre>dim,micro_array-method(dim), 7</pre>					
* methods	dim-methods (dim), 7					
<pre>analyze_network,network-method,3</pre>						
cutoff, network-method, 6	evolution(evolution, network-method), 8					
dim, 7	evolution, network-method, 8					
evolution, network-method, 8	evolution-methods					
geneNeighborhood, network-method, 9	(evolution, network-method), 8					
geneSelection, 11						
head, micro_array-method, 16	<pre>gene_expr_simulation</pre>					
inference, micro_array-method, 16	(gene_expr_simulation,network-method)					
plot-methods, 22	14					
position-methods, 24	<pre>gene_expr_simulation,network-method,</pre>					
predict, micro_array-method, 25	14					
print-methods, 26	<pre>gene_expr_simulation-methods</pre>					
summary-methods, 27	(gene_expr_simulation,network-method)					
unionMicro-methods, 28	14					
* package	geneNeighborhood					
Cascade-package, 2	(geneNeighborhood,network-method),					
analyze_network	${\tt geneNeighborhood,network-method}, 9$					
<pre>(analyze_network, network-method),</pre>	geneNeighborhood-methods					
3	(geneNeighborhood, network-method),					
analyze_network,network-method,3	9					
analyze_network-methods	<pre>genePeakSelection(geneSelection), 11</pre>					
<pre>(analyze_network, network-method),</pre>	${\tt genePeakSelection, micro_array, numeric-method}$					
3	(geneSelection), 11					
as.micro_array,4	genePeakSelection-methods					
	(geneSelection), 11					
Cascade (Cascade-package), 2	geneSelection, 11					
Cascade-package, 2	<pre>geneSelection,list,list,numeric-method</pre>					
compare (compare-methods), 5	(geneSelection), 11					

30 INDEX

geneSelection,micro_array,micro_array,numeri	
(geneSelection), 11	print,micro_array-method
geneSelection-methods (geneSelection),	(print-methods), 26
11	print, network-method (print-methods), 26
head, ANY-method	print-methods, 26
(head, micro_array-method), 16	Selection, 27
head, micro_array-method, 16	summary, ANY-method (summary-methods), 27
head-methods (head, micro_array-method),	summary, micro_array-method
16	(summary-methods), 27
	summary-methods, 27
inference	Summary metrious, 27
<pre>(inference, micro_array-method),</pre>	unionMicro (unionMicro-methods), 28
16	unionMicro,list,ANY-method
inference,micro_array-method,16	(unionMicro-methods), 28
inference-methods	unionMicro,micro_array,micro_array-method
<pre>(inference, micro_array-method),</pre>	(unionMicro-methods), 28
16	unionMicro-methods, 28
M 10	
M, 18	
methods(head,micro_array-method),16 micro_array-class,19	
micro_array-class, 19 micropredict-class, 18	
iliter opi eutet-etass, 10	
Net, 19	
Net_inf, 21	
network, 19	
network-class, 20	
network_random, 20	
3	
plot, ANY, ANY-method (plot-methods), 22	
plot,micro_array,ANY-method	
(plot-methods), 22	
plot,micropredict,ANY-method	
(plot-methods), 22	
plot, network, ANY-method (plot-methods),	
22	
plot-methods, 22	
position (position-methods), 24	
position, network-method	
(position-methods), 24	
position-methods, 24	
predict (predict, micro_array-method), 25	
predict, ANY-method	
<pre>(predict,micro_array-method), 25</pre>	
predict,micro_array-method,25	
predict-methods	
<pre>(predict,micro_array-method),</pre>	
25	