Probability measure \mathbb{P} is a **set function**.

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Probability measure \mathbb{P} is a **set function**.

```
Axiom 1: \mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1
Axiom 2: For a set A \subseteq \Omega we have 0 \leq \mathbb{P}(A) \leq 1.
Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where A_i \subseteq \Omega)
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)
```

ightharpoonup What is in general the domain of \mathbb{P} ?

Probability measure \mathbb{P} is a **set function**.

```
Axiom 1: \mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1
Axiom 2: For a set A \subseteq \Omega we have 0 \leq \mathbb{P}(A) \leq 1.
Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where A_i \subseteq \Omega) \mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)
```

▶ What is in general the domain of \mathbb{P} ? Ω ?

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- ▶ What is in general the domain of \mathbb{P} ? Ω ?
- $\triangleright \mathcal{P}(\Omega)$?

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- ▶ What is in general the domain of \mathbb{P} ? Ω ?
- $ightharpoonup \mathcal{P}(\Omega)$? Recall $\mathcal{P}(\Omega) = \{A : A \subseteq \Omega\}$.

Probability measure \mathbb{P} is a **set function**.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- ▶ What is in general the domain of \mathbb{P} ? Ω ?
- $\mathcal{P}(\Omega)$? Recall $\mathcal{P}(\Omega) = \{A : A \subseteq \Omega\}$. Seems like a great choice!

Probability measure \mathbb{P} can be defined as a set-function

 $\mathbb{P}:\mathcal{P}(\Omega)\to [0,1]$ that satisfies the following 3 axioms.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i})$$

Probability measure \mathbb{P} can be defined as a set-function

 $\mathbb{P}:\mathcal{P}(\Omega)\to [0,1]$ that satisfies the following 3 axioms.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i})$$

Probability measure \mathbb{P} can be defined as a set-function

 $\mathbb{P}:\mathcal{P}(\Omega)\to [0,1]$ that satisfies the following 3 axioms.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

 $A_i \subseteq \Omega$)

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Is there a perceivable problem with this definition?

Probability measure \mathbb{P} can be defined as a set-function

 $\mathbb{P}:\mathcal{P}(\Omega)\to [0,1]$ that satisfies the following 3 axioms.

Axiom 1: $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1$

Axiom 2: For a set $A \subseteq \Omega$ we have $0 \leq \mathbb{P}(A) \leq 1$.

Axiom 3: For a disjoint collection of events A_1, A_2, \ldots (where

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- Is there a perceivable problem with this definition?
- The following counter-example will construct a set-function \mathbb{P} for which you cannot assign valid probabilities to every subsets in Ω without violating these axioms.

► Random exp: Pick a number uniformly from the real line.

- ► Random exp: Pick a number uniformly from the real line.
- $ightharpoonup \Omega = \mathbb{R}$

- ► Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.

- ► Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup What is $\mathcal{P}(\mathbb{R})$?

- ▶ Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$. What else ?

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ▶ What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$. What else ?
- Sets of the form [a, b], (a, b], [a, b), (a, b) for any $a \leq b$ are also part of the collection $\mathcal{P}(\mathbb{R})$.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ▶ What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$. What else ?
- Sets of the form [a, b], (a, b], [a, b), (a, b) for any $a \le b$ are also part of the collection $\mathcal{P}(\mathbb{R})$.what else?

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ▶ What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$. What else ?
- Sets of the form [a, b], (a, b], [a, b), (a, b) for any $a \le b$ are also part of the collection $\mathcal{P}(\mathbb{R})$.what else?
- Sets of the form $A_1 \cup A_2 \cup A_3 \cup \ldots$ or $A_1 \cap A_2 \cap A_3 \cap \ldots$ where A_i could be any of the sets described above.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ▶ What is $\mathcal{P}(\mathbb{R})$? Collection of subsets of \mathbb{R} .
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}_+$, finite sets like $\{\pi\}, 0, \{1, 2, 4.5, 6, 10\}$ are all included in $\mathcal{P}(\mathbb{R})$. What else ?
- Sets of the form [a, b], (a, b], [a, b), (a, b) for any $a \le b$ are also part of the collection $\mathcal{P}(\mathbb{R})$.what else?
- Sets of the form $A_1 \cup A_2 \cup A_3 \cup \ldots$ or $A_1 \cap A_2 \cap A_3 \cap \ldots$ where A_i could be any of the sets described above.
- $ightharpoonup \mathcal{P}(\mathbb{R})$ is unimaginably complex!

- ► Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o [0,1]$.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o[0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o[0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- ▶ We know that $\mathbb{R} = \bigcup_{n=-\infty}^{\infty} [n,n+1)$ where $[n,n+1) \in \mathcal{P}(\mathbb{R})$.

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o[0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- lacksquare We know that $\mathbb{R}=igcup_{n=-\infty}^{\infty}[n,n+1)$ where $[n,n+1)\in\mathcal{P}(\mathbb{R}).$
- ▶ What is $\mathbb{P}[n, n+1)$?

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o[0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- $ightharpoonup \operatorname{We}$ know that $\mathbb{R}=igcup_{n=-\infty}^{\infty}[n,n+1)$ where $[n,n+1)\in\mathcal{P}(\mathbb{R}).$
- ▶ What is $\mathbb{P}[n, n+1)$?
- ▶ If we define $\mathbb{P}[n, n+1) = x$ for all $n \in \mathbb{Z}$ then

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1$.
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o[0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- lacksquare We know that $\mathbb{R}=igcup_{n=-\infty}^{\infty}[n,n+1)$ where $[n,n+1)\in\mathcal{P}(\mathbb{R}).$
- ▶ What is $\mathbb{P}[n, n+1)$?
- ▶ If we define $\mathbb{P}[n, n+1) = x$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = \infty!$

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1.$
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o [0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- lacksquare We know that $\mathbb{R}=igcup_{n=-\infty}^{\infty}[n,n+1)$ where $[n,n+1)\in\mathcal{P}(\mathbb{R}).$
- ▶ What is $\mathbb{P}[n, n+1)$?
- ▶ If we define $\mathbb{P}[n, n+1) = x$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = \infty!$
- ▶ If we define $\mathbb{P}[n, n+1) = 0$ for all $n \in \mathbb{Z}$ then

- Random exp: Pick a number uniformly from the real line.
- ho $\Omega=\mathbb{R}$ and hence $\mathbb{P}(\mathbb{R})=1.$
- ightharpoonup We have $\mathbb{P}:\mathcal{P}(\mathbb{R}) o [0,1].$
- $ightharpoonup \mathbb{P}(A)$ denotes the probability that the randomly picked number belongs to set A and has the property that sets of equal 'size' have equal probability.
- lacksquare We know that $\mathbb{R}=igcup_{n=-\infty}^{\infty}[n,n+1)$ where $[n,n+1)\in\mathcal{P}(\mathbb{R}).$
- ▶ What is $\mathbb{P}[n, n+1)$?
- ▶ If we define $\mathbb{P}[n, n+1) = x$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = \infty!$
- ▶ If we define $\mathbb{P}[n, n+1) = 0$ for all $n \in \mathbb{Z}$ then $\mathbb{P}(\mathbb{R}) = 0$!

▶ What is the takeaway from the counterexample?

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).
- ► What is the way out?

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).
- ► What is the way out?
- Restrict your domain to only measurable sets.

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).
- ► What is the way out?
- Restrict your domain to only measurable sets.
- New domain for the counter example?

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).
- ► What is the way out?
- Restrict your domain to only measurable sets.
- New domain for the counter example?
- $ightharpoonup \mathcal{F} = \{\Phi, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$

- What is the takeaway from the counterexample?
- Not all set-functions (or measures) can be calibrated to measure every possible subset of your sample space.
- ► This is like you weighing scale at home, that is not able to weigh a piece of paper!
- There are much more complicated complications like this (see Vitali set for an example of a non-measurable set).
- ► What is the way out?
- Restrict your domain to only measurable sets.
- New domain for the counter example?
- $ightharpoonup \mathcal{F} = \{\Phi, \Omega, \mathbb{R}_-, \mathbb{R}_+\}$. This is all that this \mathbb{P} can measure!

- ightharpoonup Restrict your domain of \mathbb{P} to only measurable sets.
- $\succ \mathcal{F} = \{\emptyset, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$

- ightharpoonup Restrict your domain of \mathbb{P} to only measurable sets.
- $ightharpoonup \mathcal{F} = \{\emptyset, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$
- ightharpoonup The domain $\mathcal F$ has some nice and obvious properties.

- ightharpoonup Restrict your domain of \mathbb{P} to only measurable sets.
- $\succ \mathcal{F} = \{\emptyset, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$
- \triangleright The domain $\mathcal F$ has some nice and obvious properties.
- ▶ For example, if $B \in \mathcal{F}$, then $B^c \in \mathcal{F}$. Also, \emptyset and Ω in \mathcal{F} .

- ightharpoonup Restrict your domain of \mathbb{P} to only measurable sets.
- $ightharpoonup \mathcal{F} = \{\emptyset, \Omega, \mathbb{R}_-, \mathbb{R}_+\}.$
- \triangleright The domain $\mathcal F$ has some nice and obvious properties.
- ▶ For example, if $B \in \mathcal{F}$, then $B^c \in \mathcal{F}$. Also, \emptyset and Ω in \mathcal{F} .
- A domain with such nice properties is called as a sigma-algebra.

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy
 - ullet $\emptyset \in \mathcal{F}$

- ightharpoonup Event space or $sigma-algebra \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\emptyset \in \mathcal{F}$ $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

- ightharpoonup Event space or $sigma-algebra \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\emptyset \in \mathcal{F}$ $A \in \mathcal{F} \implies A^c \in \mathcal{F}$

$$\bullet A_1, A_2, \ldots A_n, \ldots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$$

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\bullet \emptyset \in \mathcal{F} \quad \bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$ $\bullet A_1, A_2, \dots A_n, \dots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$
- The σ -algebra is said to be closed under formation of compliments and countable unions.

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\bullet \emptyset \in \mathcal{F} \quad \bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$ $\bullet A_1, A_2, \dots A_n, \dots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$
- The σ -algebra is said to be closed under formation of compliments and countable unions.
- ► Is it also closed under the formation of countable intersections?

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\bullet \emptyset \in \mathcal{F} \quad \bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$ $\bullet A_1, A_2, \dots A_n, \dots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$
- The σ -algebra is said to be closed under formation of compliments and countable unions.
- ► Is it also closed under the formation of countable intersections?
- ▶ When Ω is countable and finite, is $\mathcal{P}(\Omega)$ a sigma-algebra?

- ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy
 - $\bullet \emptyset \in \mathcal{F} \quad \bullet A \in \mathcal{F} \implies A^c \in \mathcal{F}$ $\bullet A_1, A_2, \dots A_n, \dots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$
- The σ -algebra is said to be closed under formation of compliments and countable unions.
- ► Is it also closed under the formation of countable intersections?
- ▶ When Ω is countable and finite, is $\mathcal{P}(Ω)$ a sigma-algebra? Yes.

When Ω is countable and finite, we will consider power-set $\mathcal{P}(\Omega)$ as the domain.

More on sigma algebra

▶ Intersection of σ -algebra's is a σ -algebra.

More on sigma algebra

▶ Intersection of σ -algebra's is a σ -algebra.

▶ For any set $S \subseteq \Omega$, the smallest σ -algebra containing S is $\{\emptyset, \Omega, S, S^c\}$

More on sigma algebra

▶ Intersection of σ -algebra's is a σ -algebra.

▶ For any set $S \subseteq \Omega$, the smallest σ -algebra containing S is $\{\emptyset, \Omega, S, S^c\}$

For a collection of sets $\mathcal{C} \subset 2^{\Omega}$, the σ -algebra generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$ is the smallest σ -algebra containing \mathcal{C} . Here $\sigma(\mathcal{C}) = \{ \cap \mathcal{F} : \mathcal{C} \subseteq \mathcal{F} \}$.

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

- ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- ▶ Recall that when $|\Omega| < \infty$, we consider $\mathcal{F} = 2^{\Omega}$.

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

- ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- Identify the probability space in the coin and dice experiment.

$$ightharpoonup \Omega = [0, 1].$$

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.
- ▶ So lets include [.25, .75] in \mathcal{F} .

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.
- So lets include [.25, .75] in \mathcal{F} .
- Now we have $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$. Is \mathcal{F}^+ a sigma-algebra?

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.
- So lets include [.25, .75] in \mathcal{F} .
- Now we have $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$. Is \mathcal{F}^+ a sigma-algebra? No.

- $\Omega = [0, 1].$
- Suppose $\mathcal{F} = \{\Phi, [0, 1], [0, .5), [.5, 1]\}$. Is there a problem in using this as a sigma-algebra?
- We cannot measure probability of sets like [.25, .75] although we know P([.25, .75]) = .5.
- So lets include [.25, .75] in \mathcal{F} .
- Now we have $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$. Is \mathcal{F}^+ a sigma-algebra? No.
- Can you make it a sigma-algebra by adding missing pieces?

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- ► Can you make it a sigma-algebra by adding missing pieces?

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- Can you make it a sigma-algebra by adding missing pieces?
- Recall that sigma-algebras are closed under compliments, union and intersection.

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- Can you make it a sigma-algebra by adding missing pieces?
- Recall that sigma-algebras are closed under compliments, union and intersection.
- ▶ Intersection and union of [.25, .75] with sets in \mathcal{F}^+ gives the collection $\{[.25, .5), [.5, .75], [.25, 1], [0, 0.75]\}$.

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- Can you make it a sigma-algebra by adding missing pieces?
- Recall that sigma-algebras are closed under compliments, union and intersection.
- ▶ Intersection and union of [.25, .75] with sets in \mathcal{F}^+ gives the collection $\{[.25, .5), [.5, .75], [.25, 1], [0, 0.75]\}$.
- Adding compliments, the collection enlarges by $\{[.25,.5), [.5,.75], [.25,1], [0,0.75], [0,.25) \cup [.5,1], [0,.5) \cup (.75,1], [0,.25), (0.75,1]\}.$

- $\mathcal{F}^+ = \{\Phi, [0, 1], [0, .5), [.5, 1], [.25, .75]\}$
- Can you make it a sigma-algebra by adding missing pieces?
- Recall that sigma-algebras are closed under compliments, union and intersection.
- ▶ Intersection and union of [.25, .75] with sets in \mathcal{F}^+ gives the collection $\{[.25, .5), [.5, .75], [.25, 1], [0, 0.75]\}$.
- Adding compliments, the collection enlarges by $\{[.25,.5), [.5,.75], [.25,1], [0,0.75], [0,.25) \cup [.5,1], [0,.5) \cup (.75,1], [0,.25), (0.75,1]\}.$
- Lets call it $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$

 $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.
- ightharpoonup But \mathcal{F}^{++} is still not a sigma-algebra

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.
- ▶ But \mathcal{F}^{++} is still not a sigma-algebra as each red set will demand a furthermore sets to be added.

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.
- ▶ But \mathcal{F}^{++} is still not a sigma-algebra as each red set will demand a furthermore sets to be added.
- This operation we attempted is called generating a sigma-algebra!.

- $\mathcal{F}^{++} = \{ \Phi, [0, 1], [0, .5), [.5, 1], [.25, .75], [.25, .5), [.5, .75], [.25, 1], [0, 0.75], [0, .25) \cup [.5, 1], [0, .5) \cup (.75, 1], [0, .25), (0.75, 1] \}$
- Notice different type of sets with different brackets [), (], () that appear.
- ▶ But \mathcal{F}^{++} is still not a sigma-algebra as each red set will demand a furthermore sets to be added.
- This operation we attempted is called generating a sigma-algebra!.
- Continuing on these lines, the resulting sigma algebra is called a borel-sigma algebra $\mathcal{B}[0,1]$.

▶ Borel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$

Borel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.

Borel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.

▶ Does this set contain sets of the form (a, b) or [a, b) or (a, b]?

- Borel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.
- ▶ Does this set contain sets of the form (a, b) or [a, b) or (a, b)?
- $ightharpoonup (a,b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b \frac{1}{n}].$

- Borel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.
- ▶ Does this set contain sets of the form (a, b) or [a, b) or (a, b]?
- $(a,b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b \frac{1}{n}]. (a,b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$

- Porel σ -algebra $\mathcal{B}[0,1]$: When $\Omega = [0,1]$ the $\mathcal{B}[0,1]$ is the σ -algebra generated by closed sets of the form [a,b] where $a \leq b$ and $a,b \in [0,1]$.
- ▶ Does this set contain sets of the form (a, b) or [a, b) or (a, b]?
- $| (a,b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b \frac{1}{n}]. | (a,b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$

Borel σ -algebra $\mathcal{B}[0,1]$: $\mathcal{B}[0,1]$ is the σ -algebra generated by sets of the form [a,b] or (a,b) or (a,b) or even [a,b) where $a \leq b$ and $a,b \in [0,1]$.

Porel sigma-algebra $\mathcal{B}(\mathbb{R})$: If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the sigma-algebra generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.

- Porel sigma-algebra $\mathcal{B}(\mathbb{R})$: If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the sigma-algebra generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.
- $ightharpoonup \mathcal{B}(\mathbb{R})$ contains intervals of the form

- Borel sigma-algebra $\mathcal{B}(\mathbb{R})$: If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the sigma-algebra generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.
- $ightharpoonup \mathcal{B}(\mathbb{R})$ contains intervals of the form

$$[a, b]$$

 $[a, b)$
 (a, ∞)
 $[a, \infty)$
 $(-\infty, b]$
 $(-\infty, b)$
 $\{a\}$

- Porel sigma-algebra $\mathcal{B}(\mathbb{R})$: If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the sigma-algebra generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.
- $ightharpoonup \mathcal{B}(\mathbb{R})$ contains intervals of the form

$$[a,b]$$
 $[a,b)$
 (a,∞)
 $[a,\infty)$
 $(-\infty,b]$
 $(-\infty,b)$
 $\{a\}$

► How would you define $\mathcal{B}(\mathbb{R}^2)$?

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

- ightharpoonup The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- Identified the probability space in the coin, dice and experiment.

$$P(A^c) = 1 - P(A)$$

$$ightharpoonup P(A^c) = 1 - P(A)$$

$$ightharpoonup P(A \cup B) =$$

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = p(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = p(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $ightharpoonup P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality).

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = p(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality). HW

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = p(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality). HW
- ▶ What is $P(A \cup B \cup C)$?

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = p(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality). HW
- ▶ What is $P(A \cup B \cup C)$?
- ▶ State and prove the inclusion-exclusion principle for $P(\bigcup_{i=1}^{n} A_i)$

In U[0,1] what is $P(\omega = 0.5)$?

▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- ► This implies that events of zero probability can happen and they are not impossible events.

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- ► This implies that events of zero probability can happen and they are not impossible events.
- $ightharpoonup P(\emptyset) = 0$, then is \emptyset also possible ?

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- ► This implies that events of zero probability can happen and they are not impossible events.
- $ightharpoonup P(\emptyset) = 0$, then is \emptyset also possible ?No!

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- This implies that events of zero probability can happen and they are not impossible events.
- $ho P(\emptyset) = 0$, then is \emptyset also possible ?No!
- ▶ What is $P(\omega \in [0, .25] \cap [.75, 1])$?

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- This implies that events of zero probability can happen and they are not impossible events.
- $ho P(\emptyset) = 0$, then is \emptyset also possible ?No!
- ▶ What is $P(\omega \in [0, .25] \cap [.75, 1])$?
- ▶ $P([0,.25] \cap [.75,1]) = P(\emptyset) = 0$ This event will never happen.

Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$

Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$

$$P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$$

Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$

$$P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$$

► What is the problem above ?

- Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$
- $P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$
- ► What is the problem above ?
- $ightharpoonup \Omega$ is an uncountable set and the probability set-function only has a countable additive property.

- Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$
- $P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$
- ► What is the problem above ?
- $ightharpoonup \Omega$ is an uncountable set and the probability set-function only has a countable additive property.
- $\bigcup_{\omega \in \Omega} \{\omega\} \text{ is an uncountable disjoint union!}$