

Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY						
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)		
Channel-1		0.0185 at $V_{GS} = 10 \text{ V}$	6.8	7.8		
Channel-1	30	0.0225 at V _{GS} = 4.5 V 6.0	6.0	7.0		
Channel-2		0.0115 at V _{GS} = 10 V	11.4	11.6		
Criailfiei-2		0.016 at V _{GS} = 4.5 V	9.5	11.0		

SCHOTTKY PRODUCT SUMMARY					
V _{DS} (V)	V _{SD} (V) Diode Forward Voltage	I _F (A)			
30	0.50 V at 1.0 A	2.0			

Ordering Information: Si4816BDY-T1-E3 (Lead (Pb)-free)

Si4816BDY-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Available
- LITTLE FOOT[®] Plus Power MOSFET
- 100 % R_g Tested

ABSOLUTE MAXIMUM RATI	NGS T _A = 25	°C, unless	otherwise	noted			
			Channel-1		Channel-2		
Parameter	Symbol	10 s	Steady State	10 s	Steady State	Unit	
Drain-Source Voltage	V_{DS}		30				
Gate-Source Voltage	V_{GS}	V _{GS} 20				- V	
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 25 °C		6.8	5.8	11.4	8.2	
	T _A = 70 °C	- I _D	5.5	4.6	9.0	6.5	
Pulsed Drain Current		I _{DM}	30		40		Α
Continuous Source Current (Diode Conduction) ^a		I _S	1	0.9	2.2	1.15	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	10		20		
Avalanche Energy	L = 0.1 mm	E _{AS}		5		20	mJ
	T _A = 25 °C	В	1.4	1.0	2.4	1.25	14/
Maximum Power Dissipation ^a	T _A = 70 °C	- P _D	0.9	0.64	1.5	0.8	W
Operating Junction and Storage Temperatu	T _J , T _{stg}	- 55 to 150				°C	

THERMAL RESISTANCE RATINGS									
		Char	nel-1	Chan	nel-2	Scho	ottky		
Parameter	Symbol	Тур.	Max.	Тур.	Max.	Тур.	Max.	Unit	
Maximum Junction-to-Ambient ^a	t ≤ 10 s	R _{thJA}	72	90	43	53	48	60	
Maximum Junction-to-Ambient	Steady State	itnJA	100	125	82	100	80	100	°C/W
Maximum Junction-to-Foot (Drain) Steady State		R _{thJF}	51	63	25	30	28	35	

Notes:

a. Surface Mounted on 1" x 1" FR4 board.

Si4816BDY

Vishay Siliconix

Parameter	Symbol Test Conditions				Typ. ^a	Max.	Unit	
Static						<u> </u>		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	Ch-1	1.0		3.0	V	
g	GO(III)	20 00, 5	Ch-2	1.0		3.0	-	
Gate-Body Leakage	I_{GSS}	$v_{\text{DQ}} = 0 \text{ V}$, $v_{\text{DQ}} = 20 \text{ V}$	Ch-1			100	nA	
			Ch-2 Ch-1			100		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			100		
Zero Gate Voltage Drain Current	I _{DSS}	V 22 V V 2 V T 25 22	Ch-1			15	μΑ	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$	Ch-2			2000		
On-State Drain Current ^b	ls.	V _{DS} = 5 V, V _{GS} = 10 V	Ch-1	20			Α	
On-State Drain Current	I _{D(on)}		Ch-2	30				
		$V_{GS} = 10 \text{ V}, I_D = 6.8 \text{ A}$	Ch-1		0.0155	0.0185		
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V, I _D = 11.4 A	Ch-2		0.0093	0.0115	Ω	
Diam-Source On-State nesistance	09(011)	$V_{GS} = 4.5 \text{ V}, I_D = 6.0 \text{ A}$	Ch-1		0.0185	0.0225	32	
		$V_{GS} = 4.5 \text{ V}, I_D = 9.5 \text{ A}$	Ch-2		0.013	0.016		
Forward Transconductance ^b	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 6.8 \text{ A}$	Ch-1		30		S	
Forward fransconductance	91S	$V_{DS} = 15 \text{ V}, I_{D} = 11.4 \text{ A}$	Ch-2 Ch-1 Ch-2 Ch-1 Ch-2 Ch-1 Ch-2 Ch-1 Ch-2		31			
Diode Forward Voltage ^b	V _{SD}	$I_{S} = 1 A, V_{GS} = 0 V$	Ch-1		0.73	1.1	V	
blode Forward Voltage		I _S = 1 A, V _{GS} = 0 V	Ch-2		0.47	0.5	v 	
Dynamic ^a								
Total Gate Charge	Qg	Channal 4	Ch-1		7.8	10		
Total Gate Offarge	y	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 6.8 \text{ A}$			11.6	18		
Gate-Source Charge	Q_{qs}	l l l l l l l l l l l l l l l l l l l	Ch-1		2.9		nC	
-		Channel-2	Ch-2		4.8 2.3			
Gate-Drain Charge	Q_{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = -11.4 \text{ A}$	Ch-1 Ch-2		3.7			
			Ch-1	1.5	3.0	4.5		
Gate Resistance	R_{g}		Ch-2	0.9	1.8	2.7	Ω	
Turn On Dolou Time	+		Ch-1		11	17		
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		13	20		
Rise Time	t _r	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_g = 6 Ω	Ch-1		9	15		
The Thine	۲r		Ch-2		9	15		
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		24	40	ns	
-	t _f	$V_{DD} = 15 \text{ V}, R_L = 15 \Omega$	Ch-2		31 9	50 15		
Fall Time		$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 6 \Omega$	Ch-1 Ch-2		11	17		
	t _{rr}	I _F = 1.3 A, dI/dt = 100 A/μs	Ch-1		20	35		
Source-Drain Reverse Recovery Time		$I_F = 2.2 \text{ A}, \text{ dI/dt} = 100 \mu\text{A}/\mu\text{s}$	Ch-2		20	00	-	

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

SCHOTTKY SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Forward Voltage Drop	$V_F = I_F = 1.0 \text{ A}$ $I_F = 1.0 \text{ A}, T_J = 125$	I _F = 1.0 A		0.47	0.50	V	
Forward voltage Drop		I _F = 1.0 A, T _J = 125 °C		0.36	0.42		
	I _{rm}	V _R = 30 V		0.004	0.100		
Maximum Reverse Leakage Current		$V_R = 30 \text{ V}, T_J = 100 ^{\circ}\text{C}$		0.7	10	mA	
		V _R = - 30 V, T _J = 125 °C		3.0	20	ľ	
Junction Capacitance	C _T	V _R = 10 V		50		pF	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. Drain Current

Capacitance

Vishay Siliconix

VISHAY.

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix

VISHAY.

CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Gate Charge

On-Resistance vs. Junction Temperature

CHANNEL-2 TYPICAL CHARACTERISTICS 25 $^{\circ}$ C, unless otherwise noted

Source-Drain Diode Forward Voltage

Reverse Current vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Normalized Effective Transient Thermal Impedance

SCHOTTKY TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Forward Voltage Drop

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73026.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INCHES			
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
Е	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050) BSC		
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I. 11-Sep-06						

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.