Eulerjevi koti. Prejšnji teden smo definirali transformacijo $\overrightarrow{r}(x,y,z) \to \overrightarrow{r'}(x',y',z')$ s pomočjo matrike

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Takšna transformacija zasuka koordinatni sistem okoli osi z za kot φ . Matriko bomo označili kot $R_3(\varphi)$. Velja:

$$R_3^{-1}(\varphi) = R_3^T(\varphi) = R_3(-\varphi)$$

Takšni rotaciji rečemo tudi precesija, saj se spreminja le φ .

Zdaj naredimo rotacijo okoli ene od preslikanih osi (recimo x') za kot ϑ .

$$R_1(\vartheta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta & \sin \vartheta \\ 0 & -\sin \vartheta & \cos \vartheta \end{bmatrix}$$

S to transformacijo dobimo $\overrightarrow{r}''=(x'',y'',z'')$. Nazadnje zasukajmo sistem okoli osi z'' za kot Ψ .

$$R_3(\Psi) = \begin{bmatrix} \cos \Psi & \sin \Psi & 0 \\ -\sin \Psi & \cos \Psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

S tem smo preslikali $\overrightarrow{r}'' \to \overrightarrow{r}'''(x''',y''',z''')$. Zdaj vse te preslikave združimo:

$$R = R_3(\Psi)R_1(\vartheta)R_3(\varphi)$$

R je gotovo ortogonalna transformacija, saj je produkt ortogonalnih transformacij.

Eulerjev izrek. Če velja $R^{-1}=R^T$ in det R=1, je R rotacija, torej obstaja tak vektor \overrightarrow{n} , da je $R\overrightarrow{n}=\overrightarrow{n}$

Dokaz.

$$R\overrightarrow{n} = \overrightarrow{n} = I\overrightarrow{n}$$

Sledi:

$$(R-I)\overrightarrow{n}=0$$

$$\det(R - I) = 0?$$

Vemo:
$$\det(R - I) = \det(R - I)^T = \det(R^T - I) = \det(R^{-1} - R^{-1}R)$$

= $\det(I - R) = \det(I - R) = -\det(I - R)$ Sledi $\det(R - I) = -\det(I - R)$