

ACCIDENT DETECTION USING DEEP NETWORKS

Saideep Arikontham
Pattern Recognition and Computer Vision - CS 5330
Data Science Graduate Student
Roux Institute Portland Maine

INTRODUCTION

This project develops and evaluates deep learning models (CNNs and ResNet) for live accident detection in CCTV footage. The goal is to create a system that accurately identifies accidents to improve surveillance, enable rapid response, and potentially save lives. The project focuses on optimizing model performance through various configurations and training/fine-tuning techniques, ultimately selecting the best model for live CCTV accident detection.

METHODOLOGY

METHODOLOGY

FINE-TUNING RESULTS

BEST CNN CONFIGURATION

```
Val Loss: 0.6132
          Epoch 1/16 | Train Loss: 0.6718
Trial 23
                                           Val Loss: 0.5735 |
Trial 23
          Epoch 2/16
                       Train Loss: 0.6052
                                                              Val Acc: 0.6735
                                                             Val Acc: 0.7551
                       Train Loss: 0.5648
                                           Val Loss: 0.5273
          Epoch 4/16
                       Train Loss: 0.5200
                                           Val Loss: 0.4652
                                                              Val Acc: 0.7551
                       Train Loss: 0.4614
          Epoch 5/16
                                           Val Loss: 0.4849
                                                              Val Acc: 0.7755
                       Train Loss: 0.4336
                                           Val Loss: 0.3699 |
                                                              Val Acc: 0.8367
          Epoch 6/16
                       Train Loss: 0.3529
                                           Val Loss: 0.3036 |
                                                              Val Acc: 0.9082
          Epoch 7/16
                       Train Loss: 0.2894
                                           Val Loss: 0.2478 |
                                           Val Loss: 0.3175 | Val Acc: 0.8776
                       Train Loss: 0.2410
          Epoch 10/16 | Train Loss: 0.3064 | Val Loss: 0.2570
                       Train Loss: 0.2210
                                            Val Loss: 0.2056
Trial 23
          Epoch 11/16
                       Train Loss: 0.1812
                                            Val Loss: 0.2159
                                                               Val Acc: 0.9184
Trial 23
          Epoch 12/16
                                            Val Loss: 0.2631
Trial 23
                        Train Loss: 0.1510
                                                               Val Acc: 0.9082
                                            Val Loss: 0.3579
                       Train Loss: 0.1807
                                                              Val Acc: 0.8673
          Epoch 15/16 | Train Loss: 0.1765 | Val Loss: 0.1781 | Val Acc: 0.9286
Trial 23
Trial 23 | Epoch 16/16 | Train Loss: 0.1422 | Val Loss: 0.1514 | Val Acc: 0.9592
[I 2025-04-23 09:28:47,896] Trial 23 finished with value: 0.9591836734693877 and parameters: {'conv layers': 3, 'linear layers': 2, 'dropout rate': 0.20137
028821881847, 'hidden units': 512, 'batch size': 64, 'learning rate': 8.084076498691669e-05, 'epochs': 16}. Best is trial 23 with value: 0.9591836734693877
```

BEST RESNET CONFIGURATION

```
Trial 6 | Epoch 1/6 | Train Loss: 0.6113 | Val Loss: 0.4201 | Val Acc: 0.8163

Trial 6 | Epoch 2/6 | Train Loss: 0.4462 | Val Loss: 0.3134 | Val Acc: 0.8673

Trial 6 | Epoch 3/6 | Train Loss: 0.3158 | Val Loss: 0.2378 | Val Acc: 0.9388

Trial 6 | Epoch 4/6 | Train Loss: 0.2418 | Val Loss: 0.1845 | Val Acc: 0.9694

Trial 6 | Epoch 5/6 | Train Loss: 0.1937 | Val Loss: 0.1740 | Val Acc: 0.9490

Trial 6 | Epoch 6/6 | Train Loss: 0.1375 | Val Loss: 0.1509 | Val Acc: 0.9490

[I 2025-04-23 16:29:12,459] Trial 6 finished with value: 0.9489795918367347 and parameters: {'dropout_rate': 0.44745999926969554, 'freeze_layers': 5, 'lear ning rate': 1.7448710041468407e-05, 'batch size': 16, 'epochs': 6}. Best is trial 6 with value: 0.9489795918367347.
```

RESULTS

- The fine-tuned ResNet18 model was selected and used on real-world CCTV accident videos. Each video frame was processed and classified with a threshold of 0.5.
- In successful scenarios, the model accurately detected accidents in daylight and clear conditions.
 The predicted labels were consistent and stable across frames.
- However, the model faced challenges in night-time or low-light conditions, where several accidents were missed due to poor visibility.
- Overall, ResNet18 proved reliable for live accident detection in normal lighting conditions.
 Performance can be improved with better nighttime data or enhanced preprocessing techniques.

CONCLUSION

- This project demonstrated the effectiveness of deep learning models—particularly ResNet18—for real-time accident detection from CCTV footage. After extensive experimentation, ResNet18 was identified as the most suitable architecture, offering a strong balance between accuracy and efficiency.
- The system successfully classified accident scenes from live video with high reliability under normal lighting conditions. Although performance in low-light environments remains a limitation, this highlights a valuable direction for future improvement.
- Overall, the project lays a solid foundation for deploying automated accident detection systems that can support faster emergency response and enhance public safety through intelligent video surveillance.

