Deloitte.

GenAl, Agents, and Industry Applications

2025 Al Winter School Brown Unviersity

Today's Presenters

Michael Luk

Managing Director (Partner), Deloitte Consulting, miluk@deloitte.com

CTO and co-founder, SFL Scientific

PhD, Experimental Particle Physics, Brown University

Michael leads a world-class team of data scientists, engineers, and managers, in providing clients with innovative, practical, bespoke solutions.

Alexis Johnson

Consultant -- ML Engineer alexijohnson@deloitte.com

PhD, Math, Rice University (2019)

Alexis is a consultant at SFL Scientific, a Deloitte business, where she develops machine learning and generated Al solutions.

She is an expert in machine learning, deep learning, and GenAl with extensive experience building and integrating enterprise models at large scale and providing demonstrable ROI with these technologies.

Agenda

- **1** GenAl: Production lifecycle
- 2 Industry Examples
- Large Language Models (LLMs)
- Retrieval Augmented Generation (RAG)
- 5 Notebook content
- 6 ReAct Framework
- Notebook content

Al/GenAl dimensions

There are multiple considerations and dependencies when initializing AI/GenAI Opportunities

Strategy

Define the organizational GenAl vision & guiding principles in line with broader business strategy and activate the capabilities to realize this vision

Technology

Enable the technology stack with next-gen architecture design and ensure quality data is available for GenAl to work

TODAY'S FOCUS

Delivery

End-to-end GenAl solution and capability delivery in alignment with GenAl vision and business value realization

Talent, Organization, and Culture

Create channels for efficient training and comms. Along with an operating model to ensure rapid propagation of GenAl across the enterprise

Governance

Define the guardrails and controls to mitigate against GenAl risks and define decision rights for the organization to enable stakeholders to deliver capabilities against defined standards

Al/GenAl dimensions

There are multiple considerations and dependencies when initializing AI/GenAI Opportunities

Strategy

Define the organizational GenAl vision & guiding principles in line with broader business strategy and activate the capabilities to realize this vision

Technology

Enable the technology stack with next-gen architecture design and ensure quality data is available for GenAl to work

Delivery

End-to-end GenAl solution and capability delivery in alignment with GenAl vision and business value realization

Talent, Organization, and Culture

Create channels for efficient training and comms. Along with an operating model to ensure rapid propagation of GenAl across the enterprise

Governance

Define the guardrails and controls to mitigate against GenAl risks and define decision rights for the organization to enable stakeholders to deliver capabilities against defined standards

Delivery: Al program lifecycle

To scale AI, organizations have started to establish a GenAI governance model that deters, detects and monitors AI specific risks as AI solutions are designed and implemented

Deliverables & Outcomes

- Use Case Inventory and Roadmap
- Tech Capability Assessment
- High Level Op Model & Governance Framework
- Center of Excellence (CoE) Setup Roadmap

- Business Case Evaluation Framework
- Physical Architecture and Vendor Assessment
- Target GenAl Operating Model
- Communications and Change Management Plan

- Pre-Defined Value
 Measurement Framework
- Monthly Model Performance Evaluation
- Quarterly Model Fine Tuning

Phase 1 Advise: Desirability, viability, feasibility

Use cases must be evaluated across three dimensions – desirability, viability, and feasibility – to validate the strategies and establish roadmaps

What is the business value?

Is the use case aligned to enterprise strategic priorities?

2 VIABILITY & FEASIBILITY

What is the business case?

What is the return on investment?

What is the ease of implementation?

Does the talent exist to enable implementation?

Data/Tech Availability?

Does the data and technical solution exist?

VIABILITY
How does this use case fit into our financial goals?

BIG POTENTIAL

- High business impact on objectives and prioritie
- High ROI, lower time to value, and ethical implications
- High technology / delivery complexity and technology to implement is evolving
- Low business capability to support delivery and maximize value

CLEAR WINNERS

- High business impact on objectives and priorities
- High ROI, lower time to value, and low ethical concerns
- Low technology / delivery complexity and technology to implement is mature
- High business capability to support delivery and maximize value

NOT A FOCUS NOW

- Low business impact on objectives and priorities
- Low ROI, higher time to value, and ethical implications
- High technology / delivery complexity and technology to implement does not exist
- Low business capability to support delivery and maximize value

QUICK HITS

- Moderate business impact on objectives and priorities
- Moderate ROI, higher time to value, and some ethical concerns
- Low technology / delivery complexity and technology to implement exists
- High business capability to support delivery

Low

Low

FEASIBILITY

What is the likelihood of a successful implementation by technical complexity and functional alignment?

8

High

Phase 2 Implement: Delivering from idea to production

Exploration and application can be advanced rapidly in companies with a clear agenda and purpose

Well-defined strategy and approach w/ technology partners

Technology & data maturity, availability & quality

Innovation mindset, and willingness experiment and learn

Talent Development (Data Science, LLMs)

Phase 3 Operate: Application integrity and maintenance

MLOps and DevOps ensures models are effectively developed, deployed, maintained, and benchmarked

What is MLOps and DevOps?

It is a combination of a robust architecture, set of tools and workflows to ensure that models are tracked through cycles of experiments, tuning and retraining jobs in development and then maintained and benchmarked as they are rolled out to production.

What value does it provide me?

Implementing MLOps and DevOps systems for selecting high-value data for low-resource languages, retraining models based on specific conditions, and tracking model and dataset lineage will reduce workload and maintenance requirements. These systems enhance efficiency and ensure models remain accurate and up-to-date.

Al/GenAl dimensions

There are multiple considerations and dependencies when initializing AI/GenAI Opportunities

Strategy

Define the organizational GenAl vision & guiding principles in line with broader business strategy and activate the capabilities to realize this vision

Technology

Enable the technology stack with next-gen architecture design and ensure quality data is available for GenAl to work

Delivery

End-to-end GenAl solution and capability delivery in alignment with GenAl vision and business value realization

Talent, Organization, and Culture

Create channels for efficient training and comms. Along with an operating model to ensure rapid propagation of GenAl across the enterprise

Governance

Define the guardrails and controls to mitigate against GenAl risks and define decision rights for the organization to enable stakeholders to deliver capabilities against defined standards

Talent: Different projects require different team compositions

Roles and Responsibilities

Exploring the critical roles for project success

Persona	Communication	Domain Knowledge	Machine Learning	Software Engineering	Compute Infrastructure
AI PM					
DS					
DE					
ML Eng					
ML Ops					
SE					
SME					
	COMMITMENT PER	ROLE:	.ow M	ledium Fu	ıll time

1. Al Project Manager

Technical resource ensuring project delivery and hitting business goals.

Requirements: Business appreciation, technical communication, and deep AI understanding. Ideally, former DS/MLE background.

2. Data Scientist

Core development of models, validation, and experiments. Requirements: Analytical background with core skills in ML. Typically MS/PhD in STEM.

3. Data Engineer

Design, architect, and create data pipelines for solutions. Requirements: Cloud and on-prem hardware expertise.

4. ML Engineer

Train, deploy, optimize, and maintain large-scale models in production. Requirements: Mix of SE, ML, and DE. Typically, SE and/or STEM backgrounds.

5. MLOps Engineer

Build infrastructure to make models easier to deploy, more scalable, and maintainable.

Requirements: Mix of DE/DevOps/MLE backgrounds.

6. Software Engineer

A traditional software developer that hardens products and deliverables.

Requirements: Standard software development skills. Typically, CS background.

7. SME

Business domain expert that understands the capabilities of ML broadly.

Requirements: Deep understanding of the industry, domain, problem statement, and ROI.

8. Prompt Engineer*

Engineer that injects intent into models. This may be a part-time role but will require understanding models and how they are trained.

Requirements: ML and model-specific knowledge and experience.

Industry Applications

Generative AI Projects Over The Years

Pattern Configuration Generation for Nuclear Reactor

Configuration in nuclear power rods dictate the reactor efficiency and operational expenses. Building configurations that meet specifications is a costly manual process.

Generative Al techniques were utilized to refine nuclear reactor load patterns to prioritize and augment neurotronic efficiency over conventional approaches.

Broader Applications

Al-driven configuration optimization is widely applicable to many domains. Pattern generation to fit certain constraints is useful from everything from warehouse optimization to kitchen modelling.

- + Reduce human burden to manually calculate load configuration patterns and increasing workflow efficiency
- + Optimize sensitive load patterns by 1-2% in the effect of \$1.3m+ annually

2

3D Model Generation for Tele-dentistry

Telehealth is driving the digital transformation of onceexclusive in-person services. Teledentistry, for example, often relies on physical mapping of patients' teeth, which can be inaccessible.

To overcome this, a deep learning model was developed that reconstructs 3D representations of oral cavities using stock images of upper and lower jaws.

Broader Applications

Generating 3D representations using images taken from phones and applications paves the way for intelligent design of products and spaces.

- + Decreased operational costs by eliminating the need for physical presence and associated materials, as well as related overhead expenses
- + Expanding customer reach to increase product treatment accessibility

Sales Account Generative AI Sales Assistant

Businesses depend on comprehensive access to and understanding of their data to effectively manage diverse products and brands.

Generative AI can empower sales teams to extract insights, trends, and observations from data more efficiently by utilizing a LLM chatbot with a RAG-pattern architecture, expediting tasks such as document analysis and sales data calculation.

Broader Applications

General chat bots that can aggregate information, generate information, perform baseline analytics can be used in a multitude of different business units from costumer chatbots, support, sales assistants or internally to improve productivity and effectiveness.

- + Increased sales revenue through targeted product recommendations generated by Al-driven insights
- + Reduced document analysis allowing sales team to focus more on strategic initiatives and client relationships

Use Cases | What made these good AI use cases

SFL Scientific worked with a various clients to improve operations and deliver value using GenAl

	A Well-Defined Problem Statement	Too Complex for By-Hand Coding	>>> Had High Quality, Representative Data	Have the best Return on Investment
Good Use Cases	 Optimize novel configurations to maximize yield Build 3D molds from photos that fit space Answer user queries through chatbots 	 Novel configurations are found by trial and error and more of an art by humans 3D molds have huge variability that cannot be directly codified Many possible Q&A responses 	 Historic configurations & their associated yields 2D images and actual 3D molds for comparison Questions and ideal answers that are hand annotated for training/validation & data for context about sales 	 Hours and days of domain SME engineers saved with higher yield Impossible to perform otherwise, opening entire tele-market Reduces human review and analysis by 20%
Bad Use Cases	1. Improve reactor efficiency 2. Increase 3D denture sales 3. Engage customers	 If there was a smaller set of configurations No variability in molds (e.g. gum shields) Limited set of questions / responses 	 No recorded yield data Only 2D images without 3D mold data No access to SME for validation or no domain specific datasheets / tables 	If the use case was a simpler problem traditional AI (known configuration yield estimation), programming (only 3 size molds), or human review would have been more cost effective (limited number of complex questions per day) to implement than GenAI solutions.

GenAl use cases across industries

Understanding the needs of the consumer will help drive use case strategy

Officersto	ariding the fields	of the consumer	will fielp drive d	se case strategy		
Industry Modalities	Energy, Resources, and Industrials	Financial Services and Insurance	Government and Public Services	Tech, Media, and Telecom	Life Sciences and Healthcare	Consumer
Audio	Field Virtual Assistant Enable field agents to access best practices and repair information using natural language while hands-free	Retail Banking Transaction Support Provide human-like support for complex retail transactions including customer applications, questions, negotiations, and more	Intelligent Agents / Student Office Hours Provide natural language support for government services and on-demand access to information for students	Translations, Subtitles, and Descriptions Translate audio into multiple languages (e.g., subtitle generation) and provide descriptions to visual media content	Automated Follow-Ups Ingest clinical notes to identify patients that will need follow-up and create audio messages that can be sent to schedule follow-ups and encourage healthy habits	Conversational Retail Provide detailed product support and guidance using human-like chatbots in retail stores focused on specific brands and/or categories
Code	No-Code Physics-Based Environments Allow researchers to create highly computational and accurate physics- based models of weather, fluid dynamics, and environments	Database Search Query massive financial transaction databases to find specific items and insights using natural language instead of database languages such as SQL	Knowledge Management Allow government workers to cluster, search, and filter large amounts of unstructured data from images, video, and text files through natural language	Original Games Creation Ideate and code novel computer and video games and accelerate the game testing process	Clinical Trial Data Processing Allow researchers to clean up data and generate graphs and insights for clinical trials and approvals processes using natural language	Marketing Speed Help marketers build websites and external collateral at the speed of natural language to go-to-market faster with new products and services
lmage	New Product Development Create detailed schematic drawings of industrial products and parts to aid in new product development and repairs	Fraud Detection Generate customer signatures to enhance internal fraud models in areas such as credit card authorization, and summarize potential fraud hotspots	Infrastructure Mapping Enhance infrastructure mapping and planning processes by generating detailed plans and iterating using natural language	Semicon ductor Chip Design Iterate and enhance designs based on performance parameters and reduce the development life cycle time	Improved Medical Imaging Generate large sets of synthetic medical images to train imaging algorithms to better identify abnormalities as well as train clinicians to better identify issues	Product Photography and Details Generate details and ultra-realistic photographs of new and existing products in different environments
Text	Technical Document Summarization Extract information from detailed documentation and synthesize field-reports in specific formats	Customer Due Diligence Reporting Generate reports on new customers such as KYC processes and summarize them for employees to action and make decisions for customer onboarding	Intelligent Case Management Parse complex government case files for actionable details which are then summarized for rapid comprehension and used to generate reports	Cybersecurity Threat Detection Summarize areas of high-risk, answer questions, and generate executive reports for malware, anomalies, and potential threats	Medical History Summary Summarize patient de mographics, medical history, allergies, medications, and other relevant details from EHR clinical notes to aid hospital intake	Personalized Supermarket Create custom meal plans and shopping lists fine-tuned for each buyer/family specific to the store and what's available
Video (Early Stages)	Event Identification Absorb live video feeds of the end-to- end production chain and answer specific questions about processes and events	Claims Footage Review video footage of claims (e.g., car crashes) to pull out summaries and eventually generate new video of potential crash scenarios	Citizen Support Provide hyper-realistic, life-like personal assistants in places such as the airport, DMV, border patrol and immigration, to support citizen needs	Virtual Anchors Create virtual on-air anchors for high- demand events (e.g., live sports) where there are not enough people to support across languages/borders	Digital Therapy AR/VR content generation for assets required in digital therapy or virtual environments	Commercial Brainstorming Rapidly brainstorm with generated video and video storyboards for pieces such as television/online commercials
3D Models & Data	Geological Assessments Assess both real and synthetic data for oil exploration and the likelihood of finding resources	Financial Model Enhancement Generate synthetic data to improve and enhance financial models and pressure test an institution's liquidity and processes	Disaster Recovery and Planning Support urban planners and disaster recovery teams with synthetic data (e.g., traffic, population, 'what-if scenarios') to aid in planning and preparation	Telecom Network Maintenance Train digital twins on synthetic data to help identify network faults and provide remediations for on-field technicians	New Drug Discovery Generate the structure and function of proteins and biomolecules, accelerating the creation of new drug candidates	Rapid Product Design / Consumer Preferences Accelerate product prototyping lifecycle through creation of unique and high- fidelity product mock-ups, and create synthetic be hayioral data of buyers

Pace of Advancement

November 2022

May 2023

Feb 2024

Testing the prompt: "An otter on an airplane using Wi-Fi"

Testing the prompt: "Labrador Hacker"

Stanford University has identified that AI is moving faster than Moore's Law, doubling in power every 3 months.

Pace of Advancement

1950 Alan Turing tests for machine intelligence

1964 Chatbot FLIZA is

invented

1997 Al wins against top human in chess

2011 iPhone prompts

daily use of AI

2014 Alexa becomes a home-based virtual assistant

creativity,

AlphaGo, is

introduced

2016 Artificial

2022 Lensa creates mass social media adoption of GAI

awareness

2023 Bing begins large-scale integration of GAI into everyday tech

Al spending will exceed **\$154B in 2023** and **will double** by 2026 with Microsoft, Google, and AWS leading the way

LLM Evolution Tree

Vectorization-- Bag of Words

Common Approaches:

- Count-vectorization
- TFIDF (Term Frequency-Inverse Document Frequency)

	she	loves	physics	is	coolest	a	good	person	math	are	the	best	second
She loves math, math is the coolest.	1	1	0	1	1	0	0	0	2	0	1	0	0
She loves physics, physics is the second best.	1	1	2	1	0	0	0	0	0	0	1	1	1
She is a good person.	1	0	0	1	0	1	1	1	0	0	0	0	0

Vectorization - Dense representations

State-of-the-art (self)-supervised algorithm to create dense embeddings of semantically similar words

Common Methods:

- CBOW
- Skip-gram

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Abstract

We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

Source: https://medium.com/@dube.aditya8/word2vec-skip-gram-cbow-b5e802b00390

What is ChatGPT?

Language Models are

A probability distribution over sequences of words: $P(w_n \mid w_1, w_2, ..., w_{n-1})$

Given a **prompt**, a language model **predicts words** that are **likely to follow**:

I'm tired. I need some	
rest	72.48%
sleep	22.05%
coffee	2.10%
energy	0.40%

Source: Borealis Al "A High-level Overview of Large Language Models"

I have to stay up. I'm tired. I need some					
coffee	46.35%				
help	19.14%				
rest	9.98%				
energy	7.61%				

Retrieval-Augmented Generation (RAG)

What is Retrieval-Augmented Generation (RAG)?

Retrieval Augmented
Generation (RAG) is a technique
in the field of natural language
processing (NLP) that combines
retrieval-based and generationbased approaches to improve the
performance of language models,
particularly for tasks such as
question answering, information
retrieval, and text generation

Advantages of RAG

- Improved Accuracy: Provides more accurate and contextually relevant responses
- **Scalability:** Retrieval component allows the model to access a vast amount of information without needing to encode all knowledge within the generative model itself
- **Flexibility:** RAG models can be adapted to various tasks, including question answering, summarization, and conversational Al

Limitations of LLM centric applications

LLMs employ neural networks with numerous layers to process extensive textual data, learning intricate patters and relationships embedded in language.

However, there are **limitations** to what LLMs are capable of

Unable to retain information between interactions

LLMs can't update their knowledge base in real-time Often
hallucinate and
generate
responses that
are nonsensical,
illogical, or
irrelevant to the
query

Output quality is dependent upon end user Not grounded in reality, no embodied experience of actions in an environment

ReAct Framework

What is the ReAct Framework?

ReAct Framework is a framework where LLMs are used to generate both *reasoning traces* and *task-specific actions* in an interleaved manner

Key Components

- Induce
- Track processes
- Update plans
- Handle exceptions

 Interface with external sources (i.e. knowledge bases or environments)

What is Chain of Thought (CoT)?

Chain of Thought (CoT)

Prompt engineering technique that aims to improve language models' performance on tasks that require logic, calculation, and decision-making

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

What are Language Agents?

The Language Agent is in a feedback loop with its environment.

At time step t, an agent has an observation, $o_t \in \mathcal{O}$ and makes an action, $a_t \in \mathcal{A}$ based on the policy, $\pi(a_t|c_t)$ and the context, $c_t = (o_1, a_1, o_2, a_2, \dots, o_{t-1}, a_{t-1}, o_t)$

Language Agents can store information via:

- Context window
- Implicit knowledge in the LLM weights (training date, hallucinations)
- Information retrieval from a knowledge bank (RAG)

This is a <u>reactive</u> process. The agent is always moving from action to action.

Benefits of Language Agents

Operational Efficiency

- Can operate *independently* and often repetitive tasks such as scheduling meetings, sending reminders, and managing emails
- Boost time and cost savings by automating routine tasks and interactions

Improved User Experience

- **Improve** user interactions by **tailoring responses** based on individual user preferences and past behavior
- With context awareness, an agent can provide more relevant and timely responses

Continuous Improvement

- Receiving feedback on errors or unsuccessful interactions can help lead to more **accurate** and **reliable** responses
- Increased insights due to agent's ability to collect and analyze large volumes of data from user interactions

ReAct Prompting | Illustrative Example

Method that uses **few-shot learning** to teach the model how to solve problems. ReAct includes a reasoning element, but the agent is able to interact with its environment through **actions**.

^{*}Examples from "ReAct: Synergizing Reasoning and Acting in Language Models" Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao

ReAct Agents | Illustrative Example

Typical language agent: At time *t*, an agent has an observation, *o*

and makes an action, a based on the

policy, π and the context, c

 $o_t \in \mathcal{O}$

 $a_t \in \mathcal{A} \text{ using } \pi(a_t|c_t)$

 $c_t = (o_1, a_1, \dots, o_{t-1}, a_{t-1}, o_t)$

ReAct agent:

The action space expanded to include internal text generation around thoughts.

 $\mathcal{A} \rightarrow \mathcal{A} \cup \mathcal{L}$ $c_t = (o_1, th_1, a_1, \dots, o_{t-1}, th_{t-1}, a_{t-1}, o_t)$

(2) AlfWorld

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 1, a coffee machine 1, a countertop 3, a stove burner 1, and a toaster 1.

Your task is to: Put some pepper shaker on a drawer.

```
Act 1: Go to drawer 1
Obs 1: The drawer 1 is closed.

Act 2: Open drawer 1
Obs 2: You open the drawer 1. The drawer 1 is open. In it, you see a dishsponge 2, and a spoon 1.

Act 3: Go to sinkbasin 1
Obs 3: On the sinkbasin 1, you see a dishsponge 3, a spatula 1, and a spoon 2.

Act 4: Take peppershaker 1 from sinkbasin 1
Obs 4: Nothing happens.

Act 5: Take peppershaker 1 from sinkbasin 1
Obs 5: Nothing happens.
```

```
(2b) ReAct (Reason + Act)
Act 1: Think [First I need to find a pepper shaker...more
likely to appear in cabinets (1-6), countertops (1-3), ...
Act 2: Go to cabinet 1
Obs 2: On the cabinet 1, you see a vase 2.
(Here the agent go to cabinet 1, then cabinet 2, 3, then countertop 1 and 2)
Act 6: Go to countertop 3
Obs 6: On the countertop 3, you see a apple 1, a bread 1,
..... a pepper shaker 1, and a vase 3.
Act 7: Take pepper shaker 1 from countertop 3
Obs 7: You pick up the pepper shaker 1 from the countertop 3.
Act 8: Think [Now I find a pepper shaker 1. Next, I need to
put it in/on drawer 1. ]
Act 9: Go to drawer 1
Obs 9: Drawer 1 is closed.
Act 10: Open drawer 1
Obs 10: You open Drawer 1 ...
Act 11: Put pepper shaker 1 in/on drawer 1
Obs 11: You put pepper shaker 1 in/on the drawer 1
```

Strengths and Weakness of ReAct

Outperforms both CoT and Actions alone on QA test sets using exact match scoring.

Output is more interpretable as it generates a readable reasoning trace.

Drompt Mothod	Test Set				
Prompt Method	HotpotQA	Fever			
Action-only	25.7	58.9			
Reason-only (CoT)	29.4	56.3			
Best ReAct Method	35.1	64.6			

**Using PaLM-540B

ReAct does not perform better than domain-specific models trained on human annotations.

Retains many of the problems associated with LLM Agents:

- Hallucinations
- Recency bias
- Over-agreeableness
- Encoded biases in parameters
- Error propagation in reasoning
- Limited context storage

Benefits of using a ReAct framework

Outperforms Imitation and Reinforcement Learning

ReAct outperforms imitation and reinforcement learning methods by a success rate of 34% and 10% respectively¹

Overcomes Issues of Hallucination

Combines reasoning traces and taskspecific actions to ensure that the Al system continuously verifies and updates its information

Dynamic Adaptation

Greater synergy between reasoning traces and task-specific actions

Interact with External Tools

ReAct Framework allows LLMs to interact with external sources (i.e. APIs) to retrieve additional information

General and Flexible

Works for diverse tasks, included but not limited to QA, fact verification, text game, and web navigation

Improved User Interaction

Ability to dynamically problem solve, which allows for more sophisticated interactions with users

Examples of ReAct agent use cases

Patient Diagnosis and Treatment

Analyze large datasets of medical records, lab results, and imaging studies

Demand Forecasting

Predictive analytics can forecast demand for products based on historical sales data, market trends, and external factors

Data Collection and Analysis

Efficiently gather, cleanse, and integrate data from multiple sources, including ERP and CRM systems, social media, and market feeds

Disease Outbreak Prediction

Can be used to monitor and analyze data from various sources (i.e. social media, health records, and environmental data)

Social Media Management

Craft social media postings by retrieving and creating material based on current trends and subjects

Personalized Shopping Experience

E-commerce site can recommend products based on a customer's browsing history and past purchases

How do all of these relate?

LLMs, Agents, and ReAct all work together

Deloitte.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. In the United States, Deloitte refers to one or more of the US member firms of DTTL, their related entities that operate using the "Deloitte" name in the United States and their respective affiliates. Certain services may not be available to attest clients under the rules and regulations of public accounting. Please see www.deloitte.com/about to learn more about our global network of member firms.

Copyright © 2025 Deloitte Development LLC. All rights reserved.