Relatividade Geral I: PPGFis & PPGCosmo. 2024/1

Prof. Davi C. Rodrigues

A prova tem 11,5 pontos. A nota máxima é 10,0.

Primeira Prova:

Revisão de tensores, relatividade especial, eletrodunâmica e introdução à Equação de Einstein.

- 1. (1.5 pontos) Calcule as componentes do tensor de Ricci associadas a um espaço euclidiano tridimensional em coordenadas esféricas. Dica: pode ser respondido em menos de 2 minutos, mas precisa apresentar justificativa.
- 2. (1.5 pontos) Considere a equação de Einstein com constante cosmológica e sem matéria. Calcule o escalar e o tensor de Ricci.
- 3. (1.5 pontos) Considere a métrica $(g_{\mu\nu}) = \text{diag}(-1 + 1 + 1 + 1)$. Sejam $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu}(x) \partial_{\nu}A_{\mu}(x)$ e $\tilde{F}^{\mu\nu} \equiv \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}F_{\lambda\rho}$, com $\mu, \nu = 0, 1, 2, 3$. Mostre que $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$. Seja $B^{i} \equiv \frac{1}{2}\epsilon^{ijk}F_{jk}$, com i, j, k = 1, 2, 3. Mostre que $\vec{\nabla} \cdot \vec{B} = 0$.
- **4.** (2.0 pontos) Mostre que $\Gamma^{\mu}_{\mu\nu} = \partial_{\nu} \ln \sqrt{g}$.
- 5. (1.5 pontos) Mostre que todo tensor de posto 2 pode ser decomposto num tensor antisimétrico mais um simétrico.
- **6.** (1.5 pontos) Seja $g_{\mu\nu}$ a métrica de um espaço Riemanniano. Seja $B_{\mu\nu}$ um tensor arbitrário nesse espaço. Mostre que i) $g^{\mu\nu} = g^{\nu\mu}$ e ii) $g^{\mu\nu}B_{\mu\nu} = g^{\mu\nu}B_{(\mu\nu)}$, em que $B_{(\mu\nu)} = \frac{1}{2}B_{\mu\nu} + B_{\nu\mu}$.
- 7. (2.0 pontos) O tensor energia-momento de um fluido de poeira é dado por $T^{\mu\nu}=\rho U^{\mu}U^{\nu}$, em que ρ é a densidade de energia e U^{μ} é a quadrivelocidade do fluido. Mostre que $\nabla_{\mu}T^{\mu\nu}=0$ implica que ρ satisfaz uma equação da continuidade. Para demonstrar, deixe claro a definição da quadri-corrente J^{μ} .