AML Neural Networks

Sushma

2024-07-07

```
# Load Keras, Tensorflow, ggplot for deep Learning, Machine learning computation and Data visualization
library(keras)
library(tensorflow)
library(ggplot2)
# Load the IMDb dataset with a vocabulary size limited to 10,000 words.
imdb_data <- dataset_imdb(num_words = 10000)</pre>
# Extract training data and labels from the IMDb dataset.
train_data <- imdb_data$train$x</pre>
train_labels <- imdb_data$train$y</pre>
# Extract test data and labels from the IMDb dataset.
test_data <- imdb_data$test$x</pre>
test_labels <- imdb_data$test$y</pre>
# Prepare the data
vectorize_sequences <- function(sequences, dimension = 10000) {</pre>
  results <- matrix(0, nrow = length(sequences), ncol = dimension)
  for (i in seq_along(sequences)) {
    results[i, sequences[[i]]] <- 1</pre>
 }
 results
# Vectorize the training and test data sequences
x_train <- vectorize_sequences(train_data)</pre>
x_test <- vectorize_sequences(test_data)</pre>
# Convert train and test labels to matrix format
y_train <- as.matrix(train_labels)</pre>
y_test <- as.matrix(test_labels)</pre>
# 1. Number of Hidden Layers
# One hidden layer model
model_one_hidden <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = 'relu', input_shape = c(10000)) %% # First hidden layer with 1
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# Three hidden layers model
model_three_hidden <- keras_model_sequential() %>%
 layer_dense(units = 16, activation = 'relu', input_shape = c(10000)) %% # First hidden layer with 1
```

```
layer_dense(units = 16, activation = 'relu') %% # Second hidden layer with 16 units and Relu activa
  layer_dense(units = 16, activation = 'relu') %>% # Third hidden layer with 16 units and Relu activat
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# 2. Number of Hidden Units
# Model with 32 hidden units
model_32_units <- keras_model_sequential() %>%
  layer_dense(units = 32, activation = 'relu', input_shape = c(10000)) %>% # Hidden layer with 32 unit
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# Model with 64 hidden units
model_64_units <- keras_model_sequential() %>%
  layer_dense(units = 64, activation = 'relu', input_shape = c(10000)) %>% # Hidden layer with 64 unit
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# 3. Loss Function
# Mean Squared Error (MSE) loss function
# Define a sequential Keras model
model_mse_loss <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = 'relu', input_shape = c(10000)) %>% # Hidden layer with 16 unit
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# Compile the model
model_mse_loss %>% compile(optimizer = 'rmsprop', # RMSprop optimizer
                           loss = 'mse',
                                                    # Mean Squared Error (MSE) loss function
                           metrics = c('accuracy')) # Accuracy metric for evaluation
# 4. Activation Function
# tanh activation function
# Define a sequential Keras model with tanh activation
model_tanh_activation <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = 'tanh', input_shape = c(10000)) %% # Hidden layer with 16 unit
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# 5. Regularization and Dropout
# L2 Regularization
# Load the Keras library for deep learning
library(keras)
# Regularization with L2 (ridge) penalty
model_12_regularization <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = 'relu', input_shape = c(10000), kernel_regularizer = regularizer
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# Dropout regularization
model_dropout <- keras_model_sequential() %>%
  layer_dense(units = 16, activation = 'relu', input_shape = c(10000)) %>% # Hidden layer with 16 unit
  layer_dropout(rate = 0.5) %>% # Dropout layer with dropout rate of 0.5
  layer_dense(units = 1, activation = 'sigmoid') # Output layer with 1 unit (binary classification) an
# Function to create, compile, and fit the model# Function to compile and fit a Keras model
compile_and_fit_model <- function(model, x_train, y_train, x_val, y_val, epochs = 20, batch_size = 512)
  # Compile the model with optimizer, loss function, and metrics
  model %>% compile(optimizer = 'rmsprop',
                                                           # Optimizer: RMSprop
```

```
loss = 'binary_crossentropy',
                                                      # Loss function: Binary cross-entropy
                    metrics = c('accuracy'))
                                                            # Metrics for evaluation: Accuracy
  # Fit the model on training data, validating on validation data
  history <- model %>% fit(x_train, y_train,
                                                         # Training data and labels
                           epochs = epochs,
                                                           # Number of epochs
                                                      # Batch size
                           batch_size = batch_size,
                           validation_data = list(x_val, y_val), # Validation data and labels
                           verbose = 0)
                                                           # Verbosity level (0: silent, 1: progress ba
  # Return training history
 history
}
# Function to plot the training and validation accuracy
# Function to plot training and validation accuracy from model history
plot_history <- function(history, label) {</pre>
  # Extract training and validation accuracy from history object
  acc <- history$metrics$accuracy</pre>
  val_acc <- history$metrics$val_accuracy</pre>
  # Create sequence of epochs for x-axis
  epochs <- seq_along(acc)
  # Plot training accuracy in blue
  plot(epochs, acc, type = 'l', col = 'blue', xlab = 'Epochs', ylab = 'Accuracy',
       main = paste('Training and Validation Accuracy (', label, ')'))
  # Add validation accuracy to the plot in red
  lines(epochs, val_acc, type = 'l', col = 'red')
  # Add legend to differentiate between training and validation accuracy
  legend('topright',
         legend = c(paste('Training Accuracy (', label, ')'), paste('Validation Accuracy (', label, ')'
         col = c('blue', 'red'),
         lty = 1:1)
}
# Create a list of models
models_list <- list(model_one_hidden, model_three_hidden, model_32_units, model_64_units, model_mse_los</pre>
# Loop through each model, print summary, compile, fit, and plot
for (i in seq_along(models_list)) {
 label <- paste('Model', i)</pre>
  # Print model summary
  cat('\n\n', label, 'Summary:')
  summary(models list[[i]])
  # Compile and fit the model
 history <- compile_and_fit_model(models_list[[i]], x_train, y_train, x_test, y_test)
  # Plot the training and validation accuracy
 plot_history(history, label)
```

```
# Clear session to release memory
}
##
  Model 1 Summary: Model: "sequential"
##
## Layer (type)
                       Output Shape
(None, 16)
  dense 1 (Dense)
                                               160016
##
  dense (Dense)
                          (None, 1)
                                               17
## Total params: 160033 (625.13 KB)
## Trainable params: 160033 (625.13 KB)
## Non-trainable params: 0 (0.00 Byte)
```

Training and Validation Accuracy (Model 1)

Model 2 Summary:Model: "sequential_1" ## ## Layer (type) Output Shape ______ dense_5 (Dense) (None, 16) 160016 ## dense_4 (Dense) (None, 16) 272 dense 3 (Dense) 272 (None, 16) dense_2 (Dense) (None, 1) 17

```
## Total params: 160577 (627.25 KB)
## Trainable params: 160577 (627.25 KB)
## Non-trainable params: 0 (0.00 Byte)
```

Training and Validation Accuracy (Model 2)

## ## ## ##	Model 3 Summary: Model: "sequential	_2"		
	Layer (type)	Output	-	Param #
##		======		
##	dense_7 (Dense)	(None,	32)	320032
##	dense_6 (Dense)	(None,	1)	33
##		======		========
##	Total params: 320065 (1.22 MB)			
##	Trainable params: 320065 (1.22 MB)			
##	Non-trainable params: 0 (0.00 Byte)			
##				

Training and Validation Accuracy (Model 3)

# Model 4 Summary:Model: "se # # Layer (type)	equential_3" Output Shape	 Param #
+ Layer (type) # ============	1 1	ralam #
# dense_9 (Dense)	(None, 64)	640064
# dense_8 (Dense)	(None, 1)	65
t ====================================		===========
# Total params: 640129 (2.44	MB)	
t Trainable params: 640129 (2	2.44 MB)	
* Non-trainable params: 0 (0.	.00 Byte)	
<u>-</u>		

Training and Validation Accuracy (Model 4)

##				
## ##	Model 5 Summary: Model: "sequential	_4"		
	Layer (type)	Output Shape	 Param #	
##	<pre>dense_11 (Dense) dense_10 (Dense)</pre>	(None, 16) (None, 1)	160016 17	
##	Total params: 160033 (625.13 KB) Trainable params: 160033 (625.13 KB) Non-trainable params: 0 (0.00 Byte)		 ======	==
пπ			 	

Training and Validation Accuracy (Model 5)

<pre>## ## ## Model 6 Summary:Model: "sequ</pre>	ential_5"	
## ## Layer (type) ## =========	Output Shape	Param #
## dense_13 (Dense) ## dense_12 (Dense) ## ===================================	(None, 16) (None, 1)	160016 17
## Total params: 160033 (625.13 ## Trainable params: 160033 (625 ## Non-trainable params: 0 (0.00	.13 KB)	

Training and Validation Accuracy (Model 6)

<pre>## ## ## Model 7 Summary:Model: "sequ ##</pre>	nential_6"	
## Layer (type)	Output Shape	Param #
## ===================================	(None, 16) (None, 1)	160016 17
## Total params: 160033 (625.13 ## Trainable params: 160033 (625 ## Non-trainable params: 0 (0.00	5.13 KB)	

Training and Validation Accuracy (Model 7)

Layer (type)	Output Shape	Param #
dense_17 (Dense)	(None, 16)	160016
dropout (Dropout)	(None, 16)	0
dense_16 (Dense)	(None, 1)	17

Training and Validation Accuracy (Model 8)

