

Modulhandbuch

für den Masterstudiengang

Umwelt- und Ressourcentechnologie

an der Universität Bayreuth

Basierend auf der Prüfungs- und Studienordnung für den Masterstudiengang Umwelt- und Ressourcentechnologie an der Universität Bayreuth vom 15.05.2023

Dieses Modulhandbuch wurde mit größter Sorgfalt erstellt. Aufgrund der Fülle des Materials können jedoch immer Fehler auftreten. Daher kann für die Richtigkeit der Angaben keine Gewähr übernommen werden. Bindend ist die amtliche Prüfungs- und Studienordnung in ihrer jeweils gültigen Fassung.

Inhaltsverzeichnis

Hinweise zum Modul	lhandbuch	1
Übersicht 2		
Allgemeine Erläute	erungen	2
Verweise auf ande	re Modulhandbücher	2
Modulare Struktur.		3
Zusatzstudium Um	nweltrecht	3
	sformen	
•	J	
5 5	haftl. Pflichtbereich des Masterstudiengangs URT	
Modul URT1		
Modul URT2	-	
Modul TL:	Toxikologie & Labortechnik	
Modul MT:	Masterarbeit (30 LP)	9
_	haftliche Vertiefung (Wahlpflichtmodule; mindestens 38 LP aus mindes	_
Bereich I: The	ermische und chemische Energietechnik	10
Bereich II: Ele	ktrochemische Systeme u. elektrische Energietechnik	11
Modul EVT:	Elektrokatalyse u. elektrochemische Verfahrenstechnik	13
Bereich III: Che	emische Verfahrenstechnik und Trenntechnik	14
Modul PCV:	Laborpraktikum Chemische Verfahrenstechnik	
Modul CBP:	Chemische und biotechnologische Prozesskunde	16
Modul RK:	Reaktionstechnik und Katalyse	17
Modul WM:	Wasseraufbereitung & Membrantechnologie	18
Bereich IV: Biot	technologie und Biomaterialien	19
Modul WBT:	Weiße Biotechnologie und erneuerbare Rohstoffe	20
	Projektierungskurs "Technische Mikrobiologie"	
	Bioreaktionstechnik	
Modul BWB:	Biogene Werkstoffe und Biomaterialien	
Modul BCS:	Bio- und Chemosensorik	23
	dellbildung, Messtechnik und Datenanalyse	
Modul MCR:	: Modellierung chemischer Reaktoren	
Modul IE:	Industrial Ecology	
Modul CE:	Carbon Management & Erneuerbare Energien	
Modul WL:	Wellen	29
Geowissenschaftl.	Vertiefung (Wahlpflichtmodule, mindestens 20 LP)	30
Modul ÜKE: Überfa	achliche Kompetenzerweiterung ¹	31

Hinweise zum Modulhandbuch

Übersicht

Der Masterstudiengang Umwelt- und Ressourcentechnologie (URT) ist die Weiterqualifizierung des seit dem WS 2018/19 an der Universität Bayreuth (UBT) angebotenen gleichnamigen Bachelorstudiengangs. Der Masterstudiengang URT bietet den Absolventinnen und Absolventen des Bachelors URT ab dem WS 2021/22 die Möglichkeit, ihre im Bachelorstudium erworbenen Fachkenntnisse und außerfachliche Kompetenzen zu erweitern und zu vertiefen. Wie schon der Bachelor URT hat auch der Master URT einen klaren ingenieurwissenschaftlichen Schwerpunkt, enthält aber auch geowissenschaftliche Fächer. Das Lehrangebot wird daher von der Fakultät für Ingenieurwissenschaften und von der Fakultät für Biologie, Chemie und Geowissenschaften der UBT bereitgestellt.

Die Studierenden des Masters URT bekommen nicht nur (weitere) Einblicke in die wissenschaftliche und gleichzeitig praxisnahe Entwicklung von innovativen technischen Lösungen im Bereich des Umweltschutzes und der Rohstoffsicherung, sondern werden auch befähigt, diese im ökologischen und gesellschaftlichen Kontext kritisch zu bewerten. Der Master wird daher in einem begrenzten Umfang auch ergänzt durch kultur- und gesellschaftswissenschaftliche sowie ökonomische Wahlfächer; außerdem wird das Zusatzstudium Umweltrecht angeboten.

Allgemeine Erläuterungen

Verschiebungen der angegebenen Veranstaltungen innerhalb der Semester sind möglich. Des Weiteren sind Veränderungen der Stundenzuordnung für die einzelnen Veranstaltungen möglich (insbesondere die Umwandlung von Vorlesungsstunden in Übungs- oder Praktikumsstunden und umgekehrt). Entsprechende Änderungen müssen durch den Prüfungsausschuss genehmigt werden. Die Kataloge der Wahlpflichtveranstaltungen können und sollen durch Beschluss des Prüfungsausschusses verändert werden.

Verweise auf andere Modulhandbücher

Der Masterstudiengang URT basiert vornehmlich auf Lehrveranstaltungen, die auch Bestandteile anderer Studiengänge sind. Insbesondere werden Lehrinhalte der Masterstudiengänge Energietechnik, Biologische und chemische Verfahrenstechnik, Maschinenbau, Automotive und Mechatronik und Geoökologie importiert. Daher wird dann auf die Modulhandbücher dieser Studiengänge verwiesen. Dabei gelten die referenzierten Modulhandbücher in ihrer jeweils aktuellsten Fassung als Bestandteil dieses Modulhandbuchs. Änderungen im Modulhandbuch eines originären Studiengangs werden somit - sofern die entsprechende Passage per Verweis Bestandteil des vorliegenden Modulhandbuchs ist - automatisch für den Masterstudiengang URT gültig. Dies bedeutet, dass eine einen originären Studiengang tragende Fakultät über die Lehrveranstaltungen dieses Studiengangs autark entscheiden kann. Hinsichtlich des Masterstudiengangs URT stimmt die jeweils andere Fakultät entsprechenden Änderungen per Vorratsbeschluss automatisch zu. Anpassungen am Studienkonzept insgesamt bedürfen der Zustimmung beider Fakultäten.

Modulare Struktur

Die Regelstudienzeit des Studiengangs beträgt vier Semester. Das Studium soll zum Wintersemester aufgenommen werden. Das Studium ist in Modulbereiche gegliedert, die jeweils aus mehreren Modulen (= Lehreinheiten) bestehen, die ihrerseits wiederum eine oder mehrere Lehrveranstaltungen umfassen. Die modularisierte Form der Studienorganisation erleichtert in Kombination mit der Vergabe von Leistungspunkten (LP) nach dem *European Credit Transfer System* (ECTS) die Vergleichbarkeit und Übertragbarkeit von Studienleistungen im europäischen Rahmen. Insgesamt umfasst das Studium 120 LP, wobei ein Leistungspunkt einem durchschnittlichen studentischen Arbeitsaufwand von 30 Arbeitsstunden entspricht.

Zusatzstudium Umweltrecht

Durch die Wahl des Zusatzstudiums Umweltrecht (Umfang 30 LPs) besteht auch die Möglichkeit, umweltrelevante rechtswissenschaftliche Qualifikationen zu erwerben. Ziel des Zusatzstudiums ist es, die Fähigkeit zu vermitteln, über umweltrechtliche Fragen mit Juristen aus Verwaltung, Gericht und Wissenschaft kommunizieren zu können. Es werden rechtswissenschaftliche Konzepte und deren praktische Anwendung vermittelt sowie rechtswissenschaftliche Falllösungsmethoden eingeübt. Die Studierenden sollen befähigt werden, bei der Behandlung von Umweltproblemen, insbesondere in den Bereichen Naturschutz, Bodenschutz, Immissionsschutz, Klimaschutz, Gewässerschutz sowie erneuerbare Energien, auch rechtliche Fragestellungen zu berücksichtigen und damit bei ganzheitlichen Lösungsvorschlägen mitzuwirken.

Das Zusatzstudium kann studienbegleitend zum Master URT absolviert werden. Wird der Master URT ohne Abschluss des Zusatzstudiums beendet, kann es mit Aufnahme eines Masterstudiums an der UBT erneut aufgenommen werden.

Lehrveranstaltungsformen

Die Wissensvermittlung erfolgt durch Vorlesungen (V), Übungen (Ü), Tutorien (T), Seminare (S), Praktika (P), Exkursionen (E), das Berufspraktikum (BP) und auch durch das Selbststudium:

- Vorlesungen (Abkürzung: V) behandeln in zusammenhängender Darstellung ausgewählte Themen des jeweiligen Fachgebietes. Sie vermitteln methodische Kenntnisse sowie Grundlagen- und Spezialwissen.
- Übungen (Abkürzung: Ü) und Tutorien (Abkürzung: T) finden in der Regel vorlesungsbegleitend statt und dienen der Analyse der Problemstellungen und der Ergänzung und Vertiefung einzelner in der zugehörigen Vorlesung behandelter Themen.
- Seminare (Abkürzung: S) behandeln Probleme der Forschung an ausgewählten Einzelfragen. Sie dienen der Schwerpunktbildung im jeweiligen Vertiefungsbereich und der Vorbereitung auf die Masterarbeit.
- Praktika (Abkürzung: P) und Exkursionen (Abkürzung E) vermitteln Anwendungswissen und bieten einen Rahmen dieses anhand konkreter Aufgabenstellungen einzuüben.
- Selbststudium: Zum Erlernen des selbständigen wissenschaftlichen Arbeitens ist neben dem Besuch der genannten Lehreinheiten auch das Selbststudium notwendig. Hierzu gehören vor allem die Vor- und Nachbereitung der Präsenzstunden, die eigenständige Anfertigung bzw. Bearbeitung von Hausarbeiten und Übungen sowie das selbständige Literaturstudium. Das Selbststudium wird bei Bedarf durch E-Learning-Elemente unterstützt.

Teilnahmevoraussetzung für alle Module ist die Immatrikulation als Studierender der Universität Bayreuth und die Erfüllung der Eignungsvoraussetzungen des Studiengangs. Details sind in der Prüfungs- und Studienordnung geregelt.

Studiengangsaufbau

Der Aufbau und die Qualifikationsziele des Studiengangs können wie folgt charakterisiert werden (vgl. Tab. 1):

- <u>Alle</u> Studenten erhalten in einem ingenieurwissenschaftlichen Pflichtbereich (22 ECTS) vertiefte Kenntnisse der Umwelt- und Ressourcentechnologie und der Toxikologie.
- Die Studierenden erweitern und vertiefen in einem ingenieurwissenschaftlichen Wahlbereich (weitere) technische Aspekte der Umwelt- und Ressourcentechnologie. Dabei wählen sie Fächer (38 ECTS) aus mindestens drei von fünf Bereiche aus (vgl. Tab. 1).
- Zur Umwelt- und Ressourcentechnologie gehört aber neben diesen technischen Qualifikationen etwa zur Vermeidung und Verminderung von Emissionen auch die Kenntnis der Auswirkungen technischen bzw. menschlichen Handelns auf die verschiedenen Umweltkompartimente (Hydrosphäre, Atmosphäre, Boden, Biosphäre). Dies schließt geoökologische Methoden zum Umgang mit bzw. zur Vermeidung von Umweltschäden und zum Erreichen einer möglichst nachhaltigen Nutzung von Ressourcen mit ein. Daher werden diese Aspekte im geowissenschaftlichen Wahlbereich (20 ECTS) vermittelt.
- Darüber hinaus sollen kulturwissenschaftliche, gesellschaftswissenschaftliche und (weitere) naturwissenschaftliche Kenntnisse nach freier Wahl aus einer regelmäßig aktualisierten Gesamtliste "Überfachliche Kompetenzerweiterung (extrafakultärer Teil)", die für alle ingenieurwissenschaftlichen Masterstudiengänge an der Fakultät für Ingenieurwissenschaften der Universität Bayreuth gilt, im Umfang von 10 ECTS erworben werden.
- Durch die Wahl des an der UBT etablierten Zusatzstudiums Umweltrecht (30 ECTS) besteht optional auch die Möglichkeit, umweltrelevante rechtswissenschaftliche Qualifikationen zu erwerben.
- Die am Ende des Studiums zu erarbeitende **Masterarbeit** rundet die Ausbildung ab.

Tabelle 1: Struktur des Masterstudiengangs Umwelt- und Ressourcentechnologie

Modul/Lehrveranstaltung	ECTS
Ingenieurwissenschaftliche Pflichtmodule Umwelt- und Ressourcentechnologie 1 und 2, Toxikologie	22
Ingenieurwissenschaftliche Vertiefung (Wahlpflicht) aus mindestens drei von fünf Bereichen Thermische und chemische Energietechnik, Elektrochemische Systeme und elektrische Energietechnik, Chemische Verfahrenstechnik und Trenntechnik, Biotechnologie und Biomaterialien, Modellbildung, Messtechnik und Datenanalyse	38
Geowissenschaftliche Vertiefung (Wahlpflicht) z.B. Soil Physics, Climatology, Meteorologische Grundlagen erneuerbarer Energien, Biogeochemische Stoffkreisläufe, Transformation zur Nachhaltigkeit, Natural Risks and Hazards	20
Überfachliche Kompetenzerweiterung (kulturwissenschaftliche, gesellschaftswissenschaftliche und naturwissenschaftliche Wahlmodule) ¹	10
Ingenieurwissenschaftliche <u>oder</u> geowissenschaftliches Masterarbeit ²	30
Summe	120

¹ freie Wahl aus Fächer-/Modulkatalog.

Ingenieurwissenschaftl. Pflichtbereich des Masterstudiengangs URT

Modul	Bezeichnung	SWS	LP	Modulprüfung	verantwortlich	Modul- beschreibung
URT1	Umwelt- und Ressourcentechnologie I Globale Energieflüsse und Stoffkreisläufe Verfahrenstechnische Prozesse der Ressourcentechnologie	2V 2V	6 (3) (3)	schriftliche Prüfung 45 min schriftliche Prüfung 45 min	LS CVT	siehe unten
URT2	Umwelt- und Ressourcentechnologie II ¹ Mineralische Ressourcen und deren Nutzung Sekundärrohstoffe und Recycling Stoffkreisläufe und Ökobilanzen	2V 2V 1V+1Ü	8 (3) (3) (2)	Portfolioprüfung: schriftliche Prüfung URT2a (Gewichtung 37,5 %) und schriftliche Prüfung URT2b/c (Gewichtung 62,5 %)	Keylab Glas LS ÖRT	siehe unten
TL	Toxikologie & Labortechnik Einführung in die Toxikologie Trenn- und Formulierungstechnik	2V+1Ü 2V+1Ü	8 (4) (4)	schriftliche Prüfung (fakultativ in 2 Teilen ablegbar, jeweils 60 min, Gewichtung jeweils 50 %)	LS CVT Keylab Glas	siehe unten

Die Fakultät ING beabsichtigt die Einrichtung des Lehrstuhls Ökologische Ressourcentechnologie (ÖRT). Nach der Besetzung dieses Lehrstuhls soll in der Fakultät ING diskutiert werden, wie sich dieser LS in die Lehre des Masters URT einbringen soll. Nach der derzeitigen Planung soll zumindest die Lehrveranstaltung "Stoffkreisläufe und Ökobilanzen" von diesem LS übernommen werden.

Modul URT1: Umwelt- und Ressourcentechnologie I

Verantwortliche Einheit	LS Chemische Verfahrenstechnik
Lernziele	URT1a: Globale Energieflüsse und Stoffkreisläufe
	Kenntnisse von globalen Stoff- und Energieströmen und deren Vernetzung. Fähigkeit zum selbständigen Arbeiten, Problemlösungsfähigkeit, analytische Fähigkeiten, kritische Betrachtung von Sachverhalten und Lösungsansätzen.
	URT1b: Verfahrenstechnische Prozesse der Ressourcentechnologie
	Kenntnisse über etablierte und aufkommende Verfahren zur nachhaltigen Nutzung und/oder Ersetzung bestehender Ressourcen. Fähigkeit zum selbständigen Arbeiten, Problemlösungsfähigkeit, analytische Fähigkeiten, kritische Betrachtung von Sachverhalten und Lösungsansätzen.
Lerninhalte	URT1a: Globale Energieflüsse und Stoffkreisläufe
	 Globale Stoffströme, anthropogene Material- und Energieflüsse. Reserven und Ressourcen fossiler Energieträger und anderer Mineralien. Technische, soziale und ökologische Aspekte des Energieverbrauchs, des Wasserbedarfs und der Wasserressourcen.
	URT1b: Verfahrenstechnische Prozesse der Ressourcentechnologie
	 Ausgewählte Verfahren zur Aufbereitung und nachhaltigen Verwendung von Ressourcen wie beispielsweise die (regenerative) Erzeugung von H2 und von synthetischen Kohlenwasserstoffen als Energieträger bzw. –speicher. Verfahren zur stofflichen Nutzung von CO₂ und zur Aufbereitung von Wasser/Abwässern.
Form der	URT1a: Vorlesung "Globale Energieflüsse und Stoffkreisläufe" (2 SWS 3 LP)
Wissensvermittlung	URT1b: Vorlesung "Verfahrenstechnische Prozesse der Ressourcentechnologie" (2 SWS 3 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit und einem universitären BSc entsprechende physikalische, chemische, thermodynamische sowie mathematische Grundlagen, Grundlagen der chemischen Verfahrenstechnik und Prozesskunde.
Teilnahmevoraussetzung	keine
Leistungsnachweise	zwei schriftliche Prüfungen, je 45 min (Gewichtung jeweils 50 %)
zeitlicher Aufwand	wöchentlich je Veranstaltung: 2 h Vorlesung $+$ 2 h Vor-/Nachbereitung (2 x 60 h =): 120 h; Vorbereitung auf die Klausuren: 60 h; Summe 180 h
ECTS-Leistungspunkte	6 (3 + 3)
Angebotshäufigkeit	jährlich

Modul URT2: Umwelt- und Ressourcentechnologie II

Verantwortliche Einheit	Keylab Glastechnologie, LS Ökolog. Ressourcentechnologie
Lernziele	URT2a: Mineralische Ressourcen und deren Nutzung Der Studierende kennt die wichtigsten Explorations- und Extraktionsmethoden für mineralischer Rohstoffe, Umweltauswirkungen bei der Gewinnung von abiotischen Rohstoffen und den Stellenwert primärer und sekundärer Rohstoffe für die Rohstoffversorgung sowie die Qualitätsansprüche. Er kann für wichtige Technologier qualitativ Auswirkungen für die Rohstoffversorgung abschätzen. URT2b: Sekundärrohstoffe und Recycling: Befähigung zur Bewertung von Werkstoffkreisläufen in Hinblick auf technischen Nutzen und Nachhaltigkeit vor dem Hintergrund zunehmender Knappheit von abiotischen Ressourcen. URT2c: Stoffkreisläufe und Ökobilanzen: Auf Basis von nationalen und internationalen Normen- und Regelwerken, sollen die Studierenden befähigt werden, ökobilanzielle Kenngrößen zu ermitteln und zu bewerten.
Lerninhalte	 URT2a: Mineralische Ressourcen und deren Nutzung Ressourcen und Reserven mineralischer Rohstoffe, Vulnerabilität, Versorgungsrisiko, Kritikalität, Lieferketten Exploration und Extraktion mineralischer Rohstoffe Umweltauswirkungen von Bergbau und deren Management URT2b: Sekundärrohstoffe und Recycling Sekundäre Rohstoffe (Verfügbarkeit, Qualitätssicherung, Schließen von Wertstoffkreisläufen, (Grenzen des) "Urban Mining" Substitution kritischer Rohstoffe URT2c: Stoffkreisläufe und Ökobilanzen Ökologische Schutzziele, Ökobilanzen / Life Cycle Analysis LCA, Stoffstromanalyst und Energiebilanzen (V) Erstellung und vergleichende Bewertung eigener z.B. mit SimaPro erstellte Ökobilanzen (Ü).
Form der Wissensvermittlung	Vorlesung "Mineralische Ressourcen und deren Nutzung" (2 SWS, 3 LP) Vorlesung "Sekundärrohstoffe und Recycling" (2 SWS, 3 LP) und Vorlesung/Übung "Stoffkreisläufe und Ökobilanzen" (1 SWS V, 1 SWS Ü, 2 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit und einem universitären BSc entsprechende physikalische, chemische, thermodynamische sowie mathematische Grundlagen, Grundlagen der chemischen Verfahrenstechnik und Prozesskunde.
Teilnahmevoraussetzung	keine
Leistungsnachweise	Portfolioprüfung: schriftliche Prüfung URT2a (Gewichtung 37,5 %) und schriftliche Prüfung (URT2b/c (Gewichtung 62,5 %)
zeitlicher Aufwand	Wöchentlich je Veranstaltung: 2 h Vorlesung/Übung + 2 h Vor-/Nachbereitung (3 x 60 h=): 180 h; Vorbereitung auf die Klausur: 60 h; Summe 240 h
ECTS-Leistungspunkte	8 (3 + 3 + 2)
Angebotshäufigkeit	jährlich
, ingebots italing kere	jannien.

Modul TL: Toxikologie & Labortechnik

Verantwortliche Einheit	Lehrstuhl für Chemische Verfahrenstechnik
Lernziele	Kenntnisse im korrekten Einsatz und der Handhabung von Gefahrstoffen und toxischen Substanzen (Aspekte der Prozess- und Verfahrenstechnik, Gute Laborpraxis (GLP), GMP). Grundkenntnisse in der chemischen und biologischen Toxikologie (Abschätzung von Gefahrstoffpotentialen) sowie im korrekten Umgang mit Chemikalien und genetisch modifizierten Organismen.
Lerninhalte	Toxikologie (TL1) Einführung in die Grundlagen der Toxikologie; Dosis-Wirkungs-Beziehung, Lehrsatz von Paracelsus, Bedeutung und Ermittlung von Schwellen- & Auslösewerten; Ermittlung und Erkennen der Gefahren, die von Chemikalien oder Keimen ausgehen können; Aufnahmewege von Chemikalien oder Keimen in den Körper; Wirkort und Wirkung von toxischen Chemikalien im Körper an verschiedenen Beispielen wie der Vergiftung durch Schwermetalle, Verätzungen durch Säuren oder Laugen etc.; Konzept der persönlichen Schutzausrüstung; Ursachen von Unfällen in der chemischen Industrie sowie in Laboratorien; Lehren, die aus Unfällen in der Industrie und im Laboratorium gezogen wurden. Labortechnik (TL2)
	Verfahrenstechnische, physikalische und physikochemische Methoden zur gezielten Einstellung und Analyse von Produkteigenschaften für Anwendungen in der Medizin, für industrielle Prozesse sowie für den Einsatz als Lebensmittel oder kosmetisches Produkt. Behandelt werden Lösungen, Colloide, Suspensionen, Emulsionen, redispergierbare Trockenprodukte, drug-release Systeme, Pigmente und oberflächenaktive Stoffe; Voraussetzungen des sicheren und regelgerechten Arbeitens in Forschungslaboratorien und Industrieanlagen; Kenntnisse über Ursachen von Unfällen in der petrochemischen Industrie und Lehren, die daraus gezogen wurden.
Form der Wissensvermittlung	TL1: Vorlesung "Einführung in die Toxikologie" (2 SWS V, 1 SWS Ü, 4 LP) TL2: Vorlesung "Trenn- und Formulierungstechnik" (2 SWS V, 1 SWS Ü, 4 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit erworben in einem natur- oder ingenieurwissenschaftlichen Bachelor-Studiengang.
Teilnahmevoraussetzung	keine
Leistungsnachweise	schriftliche Prüfung (fakultativ in 2 Teilen ablegbar, jeweils 60 min, Gewichtung jeweils 50%)
zeitlicher Aufwand	TL1: Wöchentlich 2 h Vorlesung plus 2 h Vor- und Nachbereitung = 60 h; 1 h Übung plus 1 h Vor- und Nachbereitung = 30 h TL2: Wöchentlich 2 h Vorlesung plus 2 h Vor- und Nachbereitung = 60 h; 1 h Übung plus 1 h Vor- und Nachbereitung = 30 h Prüfungsvorbereitung: 60 h; Summe 240 h
ECTS-Leistungspunkte	8 (4 + 4)
Angebotshäufigkeit	jährlich

Modul MT: Masterarbeit (30 LP)

Modul	Bezeichnung	SWS	LP	Modulprüfung	verantwortlich	Modul- beschreibung
MT	Ingenieur- oder geowissenschaftliches Masterarbeit		30	Masterarbeit und mündliche Präsentation (Gewichtung gemäß § 12 Abs. 8 PSO)	Lehrstühle der ING oder der Geowissenschaften	siehe unten

Verantwortliche Einheit	Alle Lehrstühle bzw. Professoren (einschließlich Juniorprofessorinnen und - professoren) der Fakultät Ingenieurwissenschaften und der Fachgruppe Geowissenschaften
Lernziele	Durch die Abfassung der Masterarbeit erschließen sich die Studierenden am Ende ihres Studiums exemplarisch einen zusammenhängenden Forschungsinhalt zu einem aktuellen umwelt- bzw. ressourcenrelevanten Thema. Sie sollen dadurch in die Lage versetzt werden, eine Forschungsfrage in ihren empirischen wie theoretischen Implikationen zu erfassen, zu operationalisieren und auszuarbeiten. Ergebnis dieses Lernprozesses ist die Masterarbeit.
Lerninhalte	Schriftliche Ausarbeitung zu einem aktuellen umwelt- bzw. ressourcen- relevanten Thema, dass von einer Professorin oder einem Professor der Fakultät Ingenieurwissenschaften und der Fachgruppe Geowissenschaften gestellt wird.
Form der Wissensvermittlung	Selbststudium
Vorkenntnisse	Die Masterarbeit muss an einem Lehrstuhl angefertigt werden, der an einem Pflichtmodul bzw. einem der gewählten Wahlmodule beteiligt ist
Teilnahmevoraussetzung	Prüfungsleistungen im Umfang von 55 Leistungspunkten
Leistungsnachweise	Masterarbeit und benoteter mündlicher Vortrag. Für die Note der Masterarbeit werden die Noten der beiden Prüfer gemittelt. Dabei gehen die beiden Noten für die schriftliche Arbeit mit dreifacher Gewichtung und die beiden Noten für den mündlichen Vortrag mit einfacher Gewichtung in die Gesamtnote ein.
zeitlicher Aufwand	sechs Monate Bearbeitungszeit / 900 Arbeitsstunden
ECTS-Leistungspunkte	30
Angebotshäufigkeit	regelmäßig, auf Anfrage bei den Lehrstühlen

Ingenieurwissenschaftliche Vertiefung (Wahlpflichtmodule; mindestens 38 LP aus mindestens drei von insgesamt fünf Bereichen)

Bereich I: Thermische und chemische Energietechnik

Modul	Bezeichnung	SWS	LP	Modulprüfung	verantwortlich	Modul- beschreibung
ENS	Thermische Energiespeicher Thermische Energiespeicher Praktikum Therm. Energiespeicher	2V 2P	5 (3) (2)	eine schriftliche Prüfung	LS TTT	Master Energietechnik
ATE	Aktuelle Themen der Energietechnik und Energiewirtschaft	3 P	5	benotete schriftliche Ausarbeitung (Gewichtung 75 %) mit benoteter mündlicher Darstellung (25 %)	LS TTT	Master Energietechnik
BEU	Bewertung von Energieumwandlungsverfahren	2V 2Ü	5	eine schriftliche Prüfung	LS TIT	Master Energietechnik
KE	Kraftstoffe und Emissionen Chemie und Technik fossiler und nachwachsender Rohstoffe Abgasnachbehandlungstechnologie	2V 2V+1P	6 (3) (3)	Portfolioprüfung: schriftliche Prüfung (Gewichtung 100%) und Teilnahmebe- scheinigung für das Praktikum	LS CVT LS FUMA	Master BCV
EFP	Energietechnik in Forschung und Praxis Energietechnisches Seminar Energietechnische Exkursion	2P 2P	5 (3) (2)	je ein schriftlicher Bericht zu EFP1und EFP2; unbenotet	LS TTT	Master Energietechnik

Bereich II: Elektrochemische Systeme u. elektrische Energietechnik

Modul	Bezeichnung	SWS	LP	Modulprüfung	Verantwortlich	Modul- beschreibung
MEU	Materialien für die Energie- und Umwelttechnik		5	Teilnahmebescheinigung für das Praktikum und eine mündliche Prüfung	LS FUMA	siehe unten
	Elektrochemische Grundlagen und Messtechniken	1V+1Ü	(2)	(30 min, Gewichtung 100 %)		
	Anwendungen und Materialien elektrochemischer Systeme	1V	(1)			
	Thermoelektrische Materialien	1V	(1)			
	Praktikum Materialien für die Energie- und Umwelttechnik	1P	(1)			
BBP	Batterien, Brennstoffzellen und photovoltaische Systeme Batterien, Brennstoffzellen und photovoltaische Systeme	2V+1P	9 (4)	Portfolioprüfung: a) benotete schriftliche Prüfung (100 %) und b) Testat und Praktikums- bericht (beides unbe-	LS EES	Master Energietechnik
	und photovoltaische Systeme Charakterisierung von Batterien und Brennstoffzellen Brennstoffzellen-Technik	1Ü 2V+1Ü	(1)	notet)		
EES	Elektrische Energiespeicher		5	eine schriftliche Prüfung (30	LS EES	Master
	Elektrische Energiespeicher	2V+1Ü	(4)	min)		Energietechnik
	Praktikum Elektr. Energiespeicher	1P	(1)			
EVT	Elektrokatalyse und Elektrochemische Verfahrenstechnik		5	eine mündliche Prüfung (20 min, Gewichtung 67 %) und ein Seminarvortrag (15 min,	LS WV	siehe unten
	Elektrochemische Verfahrenstechnik	2V	(3)	Gewichtung 33 %)		
	Elektrochemische Energietechnologien	15	(1)			
	Praktikum 3-Elektroden Aufbau	1P	(1)			

LET	Leistungselektronik in der Energietechnik		7	eine schriftliche Prüfung	LS MT	Master Energietechnik
	Leistungselektronik	2V+1Ü	(4)			
	Elektrische Energietechnik II	1V+1Ü	(3)			

Modul MEU: Materialien für die Energie- und Umwelttechnik

Verantwortliche Einheit	Lehrstuhl Funktionsmaterialien
Lernziele	Physikalisch-chemisches Verständnis elektrochemischer Energiespeicher und thermoelektrischer Energieumwandlungssysteme; Kenntnis über werkstoffbezogene Aspekte und Charakterisierungsmethoden; Fähigkeit materialbezogene Aspekte im Bereich der behandelten Energiesysteme beurteilen und einordnen zu können.
Lerninhalte	Elektrochemische Grundlagen und Messtechniken; Aufbau, Funktionsweise, verwendete Materialien und Kenngrößen von elektrochemischen Energiespeichern wie Akkus, Batterien, Superkondensatoren und Redox-Flow-Batterien; Thermoelektrische Materialien; Grundlagen, Aufbau, Funktionsweise und Anwendungen thermoelektrischer Generatoren.
Form der Wissensvermittlung	Vorlesungen/ Übung "Elektrochemische Grundlagen und Messtechniken" (1 SWS V, 1 SWS Ü, 2 LP), Vorlesung "Anwendungen und Materialien elektrochemischer Systeme" (1 SWS, 1 LP), Vorlesung "Thermoelektrische Materialien" (1 SWS, 1 LP) und Praktikum "Materialien für die Energie- und Umwelttechnik" (1 SWS, 1 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit erworben in einem natur- oder ingenieurwissenschaftlichen Bachelor Studiengang
Teilnahmevoraussetzung	keine
Leistungsnachweise	Portfolioprüfung aus a) Teilnahmebescheinigung für das Praktikum und b) einer mündlichen Prüfung (30 min, Gewichtung 100 %)
zeitlicher Aufwand	wöchentlich 2 h +1 h +1 h Vorlesung + Vor-/Nachbereitung: 90 h Praktikum 15 h + Vorbereitung/Protokolle 15 h: 30 h Vorbereitung auf die Klausur: 30 h; Summe 150 h
ECTS-Leistungspunkte	5
Angebotshäufigkeit	jährlich, verteilt auf zwei Semester

Modul EVT: Elektrokatalyse u. elektrochemische Verfahrenstechnik

Lernziele	Die Studierenden wiederholen aktiv die Elektrochemischen Grundlagen und diskutieren die Prinzipien der Elektrokatalyse im Vergleich zur Katalyse. Sie lernen den Aufbau elektrochemischer Reaktoren kennen und vertiefen ihre Kenntnisse zu Transportprozessen, insbesondere in porösen
	Schichten. Anhand aktueller Beispiele aus Brennstoffzellen, der Elektrolyse etc. werden die Studierenden befähigt, komplexe elektrochemische Systeme detailliert zu beschreiben und für eine spätere Anwendung auszulegen.
Lerninhalte	Elektrochemische Grundlagen
	Elektrochemie im Gleichgewicht: Doppelschicht und Nernst
	Elektrodenkinetik: Butler-Volmer, Koutechy-Levich
	Prinzipien der Elektrokatalyse
	Vergleichende Betrachtung zur Katalyse
	Vulkan-Kurven und Determinanten
	Aufbau elektrochemischer Reaktoren
	Transportprozesse
	Aktuelle Beispiele: Brennstoffzellen, Elektrolyse, CO2-Elektroreduktion
Form der	Vorlesung "Elektrochemische Verfahrenstechnik" (2 SWS, 3 LP)
Wissensvermittlung	Seminar "Elektrochem. Energietechnologien" (1 SWS, 1 LP)
	Praktikum "3-Elektroden-Aufbau" (1 SWS, 1 LP)
Vorkenntnisse	Grundkenntnisse Chemische Kinetik, Katalyse, chem. Verfahrenstechnik
Teilnahmevoraussetzung	keine
Leistungsnachweise	mündliche Prüfung (20 min, Gewichtung 67 %) und Seminarvortrag (15 min, Gewichtung 33 %)
zeitlicher Aufwand	wöchentlich 2 h Vorlesung + 3 h Vor-/Nachbereitung: 60 h
	Vorbereitung auf die Klausur: 30 h, auf den Vortrag: 30 h; Summe 120 h
	5 (3 + 2)
ECTS-Leistungspunkte	
Teilnahmevoraussetzung Leistungsnachweise	Praktikum "3-Elektroden-Aufbau" (1 SWS, 1 LP) Grundkenntnisse Chemische Kinetik, Katalyse, chem. Verfahrenstechnik keine mündliche Prüfung (20 min, Gewichtung 67 %) und Seminarvortrag (15 min, Gewichtung 33 %) wöchentlich 2 h Vorlesung + 3 h Vor-/Nachbereitung: 60 h Vorbereitung auf die Klausur: 30 h, auf den Vortrag: 30 h; Summe 120 h

Bereich III: Chemische Verfahrenstechnik und Trenntechnik

Modul	Bezeichnung	SWS	LP	Modulprüfung	verantwortlich	Modul- beschreibung
WM	Wasseraufbereitung & Membrantechnologie Membrantechnologie Industrielle Abwasserreinigung Praktikum Mikrofiltration & Umkehrosmose	2V 1V 1P	5 (2) (1) (2)	schriftl. Prüfung in WM1 (60 min, Gewichtung 55 %), schriftl. Prüfung in WM2 (45 min, 35 %) und benotetes Protokoll für WM3 (10 %)	Keylab Glas	siehe unten
RK	Reaktionstechnik und Katalyse Chemische Reaktionstechnik Katalyse in der Technik	2V+1P 2V	7 (3) (4)	Portfolioprüfung: schriftliche Prüfung (Gewichtung 100 %) und Teilnahmebe-scheinigung für das Praktikum (unbenotet)	LS CVT	siehe unten
СВР	Chemische und biotechnologische Prozesskunde Chemische und biotechnologische Prozesskunde Analytische Methoden in der chemischen Verfahrenstechnik	2V 1V+1P	(3)	mündl. Prüfung 60 min, Gewichtung 50 %) schriftl. Prüfung (40 min, 50 %)	LS CVT	siehe unten
PCV	Laborpraktikum Chemische Verfahrenstechnik Laborpraktikum Chemische Verfahrenstechnik I Laborpraktikum Chemische Verfahrenstechnik II	3P 3P	6 (3)	benotete Praktikumsprotokolle	LS CVT	siehe unten

Modul PCV: Laborpraktikum Chemische Verfahrenstechnik

Verantwortliche Einheit	LS Chemische Verfahrenstechnik
Lernziele	Vertiefung der Kenntnisse der chemischen Reaktionstechnik, der thermischen Verfahrenstechnik. Vertiefung der Kenntnisse chemischer Prozesse. Betrieb von chemisch-verfahrenstechnischen Laboranlagen. Methodenkompetenz (Wissenslücken erkennen und schließen, analytische Fähigkeiten). Anhand der Versuche sollen die Studierenden ihre Kenntnisse, die sie durch die Vorlesungen zur chemischen Kinetik, Katalyse, Trenntechnik und Verfahrenstechnik erworben haben, in der Praxis anwenden.
Lerninhalte	Praktikum mit (beispielsweise) folgenden Versuchen: thermogravimetrische Bestimmung der Zersetzungskinetik, Verweilzeitverhalten von Reaktoren, Wacker-Hoechst-Verfahren, Druckverluste durch Schüttungen, Messung der Reaktionsgeschwindigkeit einer Umesterung (und Bestimmung der Reaktionsordnung und Aktivierungsenergie), Rektifikation
Form der Wissensvermittlung	zwei Praktika (jeweils 3 SWS, 3 LP; insgesamt 6 LP)
Vorkenntnisse	Inhalte aus den Vorlesungen Reaktionstechnik, Reaktionskinetik und Katalyse in der Technik,
Teilnahmevoraussetzung	Einem universitären BSc entsprechende Grundlagen in thermischer und chemischer Verfahrenstechnik, Chemie, Physik, Mathematik
Leistungsnachweise	Testatbogen (benotet; Mittelwert aus den Noten für die Protokolle der einzelnen Versuche)
zeitlicher Aufwand	Studentischer Arbeitsaufwand: PCV: 2 Semester wöchentlich 3 h Praktikum plus 3 h Vor- und Nachbereitung = 180 h Modul PCV insgesamt: 180 Stunden
ECTS-Leistungspunkte	6
Angebotshäufigkeit	jährlich

Modul CBP: Chemische und biotechnologische Prozesskunde

Verantwortliche Einheit	LS Chemische Verfahrenstechnik
Lernziele	Chemische und biotechnologische Prozesskunde Kenntnisse der wichtigsten biotechnischen und chemischen Produktionsverfahren, ihrer Voraussetzungen und Ziele sowie mögliche zukünftige Produktionsprozesse. Analytische Methoden in der chemischen Verfahrenstechnik Methodenkompetenz in der Anwendung moderner Analyseverfahren in der chem. Verfahrenstechnik, der Produktentwicklung und der Qualitätskontrolle; Verständnis der Anwendungsbereiche und der Aussagefähigkeit der unterschiedlichen analytischen Methoden. Einübung zentraler Aspekte der Methodenkompetenz wie: Wissenslücken erkennen und schließen, Wissen auf neue Probleme anwenden, selbständiges Arbeiten, Problemlösungsfähigkeit, analytische Fähigkeiten, kritische Auseinandersetzung mit experimentellen Daten
Lerninhalte	Stoffverbünde vom Rohstoff zum Endprodukt bei industriellen Verfahren insbesondere aus der Petrochemie und chemischen Industrie sowie der technischen Mikrobiologe, der Enzymtechnologie und der synthetischen Biologie zur Herstellung von Grund- und Feinchemikalien; Analysemethoden zur Charakterisierung von chemischen Verbindungen und in der chemischen Verfahrenstechnik häufig eingesetzter Materialien; theoretische und apparative Grundlagen; Datenauswertung, und -interpretation. Vorstellung exemplarischer Prozesse, Vergleich und Einsatzgebiete chemischer/biotechnol. Prozesse. Dynamik bzw. Weiterentwicklung der chemischen Industrie, Einfluss von Feed-Strömen auf etablierte Verfahren und auf die Entwicklung neuer Prozesse, Bedeutung der Wirtschaftlichkeit für bestehende und neue Prozesse
Form der Wissensvermittlung	CBP1: Vorl. "Chemische und biotechnologische Prozesskunde (2 SWS, 3 LP) CBP2: Vorl./Prak. "Analytische Methoden der chemischen Verfahrenstechnik) (1 SWS V, 1 SWS P, insgesamt 2 LP)
Vorkenntnisse	siehe Teilnahmevoraussetzung
Teilnahmevoraussetzung	a) allgemeiner Art: Fortgeschrittene Studierfähigkeit
	b) universitäre Veranstaltungen: Einem universitären BSc entsprechende mathematische, physikalische, chemische und biologische Grundlagen sowie Grundlagen der thermischen und mechanischen Verfahrenstechnik, der Reaktionstechnik sowie der Reaktionskinetik
Leistungsnachweise	mündliche Prüfung in CBP1 (60 min, Gewichtung 50 %), schriftliche Prüfung in CBP2(40 min, 50 %)
zeitlicher Aufwand	CBP 1: wöchentlich 2 h Vorlesung plus 2 h Nachbereitung = 60 h
	CBP 2: wöchentlich 1 h Vorlesung plus 0,5 h Nachbereitung = 22,5 h; 1 h Praktikum plus 0,5 h Vor- und Nachbereitung = 22,5 h
	Prüfungsvorbereitung: 45 h
	Modul CBP insgesamt: 150 Stunden.
ECTS-Leistungspunkte	5 (3+2)
Angebotshäufigkeit	jährlich

Modul RK: Reaktionstechnik und Katalyse

Verantwortliche Einheit	LS Chemische Verfahrenstechnik
Lernziele	Grundkenntnisse zur Konzipierung und Auslegung chemischer Produktionsprozesse und Anlagen (insbesondere von chemischen Reaktoren) durch Modellierung und Simulation anhand experimentell ermittelter Daten; Methodenkompetenz im Umgang mit Katalysatoren und katalysierten Prozessen in der Verfahrenstechnik.
Lerninhalte	Ausgewählte Prozesse der chemischen Industrie (z.B. Ammoniaksynthese, Hydrierungsprozesse zur Produktion von Fein- und Bulkchemikalien, Hydroformylierung, Herstellung organischer Nitroprodukte, industrielle Elektrolyse), Vertiefung der thermodynamischen und kinetischen Aspekte der Reaktionstechnik, Sicherheitsaspekte chemischer Reaktoren, Theorie und Praxis der technischen Katalyse; theoretische Grundlagen der heterogenen, homogenen und enzymatischen Katalyse, molekulare Basis der katalytischen Aktivität; Verständnis der im Einflussbereich des Katalysators stattfindenden chemischen und biochemischen Reaktionen; moderne Katalysatorkonzepte, die z.B. heterogene / homogene oder chemische / biologische Katalyse verbinden
Form der Wissensvermittlung	RK1: Vorl./Prak. "Chemische Reaktionstechnik (2 SWS V, 1 SWS P, 4 LP) RK2: Vorl. "Katalyse in der Technik" (2 SWS V, 3 LP)
Vorkenntnisse	siehe Teilnahmevoraussetzung
Teilnahmevoraussetzung	a) allgemeiner Art: Fortgeschrittene Studierfähigkeit
	b) universitäre Veranstaltungen: Einem universitären BSc entsprechende naturwissenschaftlich-mathematische Grundlagen, Grundlagen der chemischen Verfahrenstechnik.
Leistungsnachweise	Portfolioprüfung: schriftliche Prüfung (Gewichtung 100 %) und Teilnahmebescheinigung für das Praktikum (unbenotet)
zeitlicher Aufwand	RK1: wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h; 1 h Praktikum plus 1 h Vor- und Nachbereitung = 30 h
	RK2: wöchentlich 2 h Vorlesung plus 1 h Nachbereitung = 45 h
	Prüfungsvorbereitung: 60 h
	Modul RK insgesamt: 180 Stunden.
ECTS-Leistungspunkte	7 (4 +3)
Angebotshäufigkeit	jährlich

Modul WM: Wasseraufbereitung & Membrantechnologie

Lernziele Die Studierenden kennen die wichtigster Anwendung und Einsatzgrenzen sowie d	den Aufbau von Modulen und Anlagen
Sie haben ein Grundverständnis für die P industriellen Wasser- und Abwassertechr relevanten Behandlungsmethoden für Pr Anwendungsmöglichkeiten.	nologie. Die Studierenden kennen die
Lerninhalte Membrantechnologie	
Grundlagen der Membrantechnologie (S Transportwiderstände), Klassifizierung v Modul- und Anlagenkonstruktionen, Me Nanofiltration, Ultrafiltration und Mikrof Elektrodialyse, Pervaporation, Dampfper und Anwendung von Membranreaktore	on Membranen, Membranwerkstoffe, embranverfahren (Umkehrosmose, filtration), Membranfouling, rmeation und Gaspermeation, Aufbau
Industrielle Abwasserreinigung	
Grundlagen und Anwendungsbeispiele Biologische Verfahren, Neutralisation / F Abscheidung von Fetten und Leichtflüss Reduktionsreaktionen sowie Ionenausta	Fällung, Flockung, Sedimentation, sigkeiten, Flotation, Oxidations-und
Praktikum Mikrofiltration & Umkehrosm	nose
Aufbau, Charakterisierung und Betrieb e Ultrafiltration	einer Laboranlage zur Mikro- und
Form der WM1: Vorlesung "Membrantechnologie"	(2 SWS, 2 LP)
Wissensvermittlung WM2: Vorlesung "Industrielle Abwasserre	einigung" (1 SWS, 2 LP)
WM3: Praktikum "Mikrofiltration & Umke	hrosmose" (1 SWS, 1 LP)
Vorkenntnisse Inhalte aus der Vorlesung "Allgemeine Ve	erfahrenstechnik"
Teilnahmevoraussetzung keine	
Leistungsnachweise schriftliche Prüfung in WM1 (60 min, Gew WM2 (45 min, Gewichtung 35%) und ber	
zeitlicher Aufwand WM1: wöchentlich 2 h Vorlesung plus 1 h	h Nachbereitung = 45 h;
WM2: wöchentlich 1 h Vorlesung plus 1 h	n Nachbereitung = 30 h
WM3: Praktikum 15 h + Vorbereitung/Pro	otokolle 15 = 30 h
Prüfungsvorbereitung: 45 h	
Modul WM insgesamt: 150 Stunden.	
Modul WM insgesamt: 150 Stunden. ECTS-Leistungspunkte $5 (2 + 1 + 2)$	

Bereich IV: Biotechnologie und Biomaterialien

Modul	Bezeichnung	SWS	LP	Modulprüfung	verantwortlich	Modul- beschreibung
WBT	Weiße Biotechnologie und erneuerbare Rohstoffe	2 V+2S	5	eine schriftliche Prüfung und benotete Seminarbeiträge (Gewichtung Prüfung zu Seminar: 2 : 1)	LS BPT	siehe unten
PTM	Projektierungskurs "Technische Mikrobiologie"	5T	5	Präsentation des Prozesses (30 min, unbenotet) und eine mündl. Prüfung (20 min)	LS BPT	siehe unten
BP1	Bioreaktionstechnik	1V+3Ü	5	mündliche Prüfung	LS BPT	siehe unten
BCS	Bio- und Chemosensorik Biosensorik Chemische Sensoren Praktikum Bio- und Chemosensorik	2V 2V 1P	5 (2) (2) (1)	Teilnahmebescheinigung für das Praktikum und eine mündl. Prüfung (30 min, Gewichtung 100 %)	LS FUMA	siehe unten
BWB	Biogene Werkstoffe und Biomaterialien Biokomponenten und natürliche Verbundwerkstoffe Biomaterialien Analytische Methoden in den Life Sciences	1V 2V 1V+1P	7 (2) (3) (2)	Teilnahmebescheinigung für das Praktikum und eine schriftliche Prüfung (Gewichtung 100 %) oder Teilprüfungen zu BWB3 (45 min, 30 %) und BWB1/BWB2 (90 min +45 min, 70 %)	LS BioMat	siehe unten

Modul WBT: Weiße Biotechnologie und erneuerbare Rohstoffe

Verantwortliche Einheit	LS Bioprozesstechnik
Lernziele	Vorlesung:
	Fundierte Kenntnisse in den nachfolgenden Bereichen als Grundlage für ein selbstständiges Arbeiten im Bioingenieursbereich
	Beiträge der Biotechnologie zur Bioökonomie
	Biologische Prozesse und Werkzeuge in der industriellen Produktion von Waren und Dienstleistungen
	Strategien zur Verlagerung der industriellen Rohstoffbasis von den fossilen hin zu den erneuerbaren Rohstoffen
	Seminar:
	Fähigkeit sich selbstständig in ein aktuelles Thema aus dem in der Vorlesung behandelten Bereich einzuarbeiten. Dabei steht weniger der Wissenserwerb im Vordergrund als vielmehr die Fähigkeit neueste Entwicklungen in die Basiskenntnisse zu integrieren und darauf aufbauend Lösungswege für derzeitige Herausforderungen vorzuschlagen und in der Gruppe zu diskutieren.
Lerninhalte	Biologische Prozesse und Werkzeuge in der industriellen Produktion von Waren und Dienstleistungen
	Verfahren und Einsatzgebiete der technischen Mikrobiologie, der industriellen Biotechnologie und der synthetischen Biologie
	Biosynthese (aerob/anaerob, Metabolismus Design)
	Biopolymere
	Beiträge zum Mix an erneuerbaren Energien
Form der Wissensvermittlung	Vorlesung und begleitendes Seminar (2 SWS V, 2 SWS S. insgesamt 5 LP)
Vorkenntnisse	Grundlagen des Metabolismus
Teilnahmevoraussetzung	keine
Leistungsnachweise	schriftliche Prüfung und benotete Seminarbeiträge
	Gewichtung Prüfung zu Seminar: 2 : 1
zeitlicher Aufwand	wöchentl. 2 h Vorlesung + 1h Vor-/Nachbereitung: 45 h
	2 h Seminar + 2 h Vorbereitung: 60 h
	Vorbereitung auf die Klausur: 45 h; Summe: 150 h
ECTS-Leistungspunkte	5

Modul PTM: Projektierungskurs "Technische Mikrobiologie"

Verantwortliche Einheit	LS Bioprozesstechnik
Lernziele	Grundlagen der selbstständigen Projektplanung, Schulung der Fähigkeiten zur Präsentation und Diskussion wissenschaftlicher Zusammenhänge und Ergebnisse, Arbeiten im Team
Lerninhalte	Im Rahmen des Projektierungskurses planen die Studierenden in einer kleinen Gruppe (2- 4 Personen) einen industriellen mikrobiologischen Produktionsprozess. In regelmäßigen Abständen finden Tutorien mit dem modulverantwortlichen Dozenten statt, bei denen Fortschritte, Arbeitshypothesen oder Alternativen diskutiert werden.
Form der Wissensvermittlung	Tutorien und selbstständige Recherchen
Vorkenntnisse	Inhalte aus den Vorlesungen Biotechnologie, Bioverfahrenstechnik, weiße Biotechnologie
Teilnahmevoraussetzung	keine
Leistungsnachweise	Präsentation des erarbeiteten Prozesses (30 min, unbenotet) und mündliche Prüfung (20 min)
zeitlicher Aufwand	wöchentl. 1 h Tutorium + 8 h Vor-/Nachbereitung: 135 h Vorbereitung des Vortrags: 15 h; Summe 150 h
ECTS-Leistungspunkte	5
Angebotshäufigkeit	jährlich

Modul BP1: Bioreaktionstechnik

Verantwortliche Einheit	LS Bioprozesstechnik
Lernziele	Sicherer Umgang mit und zielgerichtete Anwendung von den Grundlagen der Bioreaktionstechnik (Formalkinetiken, Reaktortypen, Prozessführung) Etablierung ausreichender verfahrenstechnischer Kenntnisse zum Einsatz von Bioreaktoren und deren Charakterisierung
Lerninhalte	-Formalkinetik des Zellwachstums, des Substratverbrauchs und der Produktbildung in idealisierten Reaktoren - Betriebsweise von Bioreaktoren - Submers- und Oberflächenkulturen - Prozessführung und Reaktoren für die Biokatalyse (Enzyme) - Prozesse und Produktion im Zufütterungsbetrieb (Fed batch) - Reaktoren für anaerobe Prozesse - Messtechnik zur Reaktorcharakterisierung - Anwendung von Bilanzen zur Abschätzung der biologischen Modellparameter
Form der Wissensvermittlung	Vorlesung und begleitende Übungen (Anwesenheitspflicht, keine Benotung) (1 SWS V, 3 SWS Ü, insgesamt 5 LP)
Vorkenntnisse	Grundkenntnisse der chemischen Kinetik, der idealisierten Reaktortypen der chemischen Verfahrenstechnik, Massenbilanzen für STR, CSTR, PFR
Teilnahmevoraussetzung	keine
Leistungsnachweise	mündliche Prüfung (30 min)
zeitlicher Aufwand	wöchentl. 1 h Vorlesung + 2 h Vor-/Nachbereitung: 45 h 2 h begleitende Übung + 3 h Vorbereitung: 75 h Vorbereitung auf die Klausur: 30 h; Summe 150 h
ECTS-Leistungspunkte	5
Angebotshäufigkeit	jährlich

Modul BWB: Biogene Werkstoffe und Biomaterialien

Verantwortliche Einheit	LS Biomaterialien
Lernziele	BWB1: Vertiefung der Kenntnisse über natürliche Makromoleküle und Biopolymere und deren Assemblierung; Erwerb eines umfassenden Überblicks über Konstruktionsprinzipien der Natur als Vorlage für biomimetische technisch Anwendungen; Erwerb einer systematischen Methodenkompetenz zur Analyse und Verarbeitung sowie Kommunikation von interdisziplinären Wissenschaftsaspekten in Theorie und Praxis; Erwerb einer Entscheidungskompetenz bzgl. möglicher technischer Anwendungen. BWB2: Vertiefung der Kenntnisse über Werkstoffklassen-übergreifende Materia kunde; Kenntnisse der Eigenschaften von Biomaterialien und deren Verarbeitung; Erwerb einer Entscheidungskompetenz bzgl. möglicher technischer Anwendungen; Vertiefung von Kenntnissen aktueller Biomaterial-Forschung; Erwerb von Kompetenzen in Recherche und Bewertung von relevanter Literatur; Fähigkeit, sich in relevante Themenbereiche einzuarbeiten diese zu erfassen sowie gewonnene Erkenntnisse zu präsentieren. BWB3: Methodenkompetenz in der Anwendung moderner Analyseverfahren in den Life Sciences, der Produktentwicklung und der Qualitätskontrolle; Verständnis der Anwendungsbereiche und der Aussagefähigkeit der unterschiedlichen analytischen Methoden.
Lerninhalte	BWB1: werkstoffklassen-übergreifende Materialkunde, natürliche Makromoleküle, Biopolymere und Verbundwerkstoffe, Hybridmaterialien; Konstruktionsprinzipien der Natur als Vorlage für biomimetische technische Anwendungen. BWB2: Eigenschaften von Biomaterialien und Biomineralisationsprozessen, Korzepte für die Entwicklung neuer Biomaterialien; Anwendungen in der Pharmakologie/Medizintechnik; Einblicke in das Verhalten von Zellen auf Materialien und die Geweberegeneration; Konzepte zum Wirkstofftransport in einem
	Organismus und zur stationären Wirkstoffbehandlung; Regeneration von Gewebe und chirurgische Möglichkeiten bei der Knochen, Bänder- und Sehner Regeneration. BWB3: spektroskopische, chromatographische, mikroskopische und mechanische Methoden der Charakterisierung von Verbindungen, Materialien und Organismen; theoretische und apparative Grundlagen der Messverfahren; Daten-Erfassung, -Auswertung, -Analyse und -Interpretation.
Form der Wissensvermittlung	BWB1: Vorlesung "Biokomponenten u. natürl. Verbundwerkstoffe" (1 SWS, 2 LP BWB2: Vorlesung "Biomaterialien" (2 SWS, 3 LP) BWB3: Vorlesung und begleitendes Praktikum "Analytische Methoden in den L Sciences" und Praktikum (1 SWS V, 1 SWS P, insgesamt 2 LP)
Vorkenntnisse	universitäre Veranstaltungen: einem universitären BSc entsprechende naturwissenschaftlich-mathematische und verfahrenstechnische Grundlagen
Teilnahmevoraussetzung	fortgeschrittene Studierfähigkeit
Leistungsnachweise	Teilnahmebescheinigung (Praktikum) und schriftl. Prüfung (Gewichtung 100 % oder Teilprüfungen zu BWB3 (45 min, 30 %) und BWB1/BWB2 (90 min +45 min 70 %)
zeitlicher Aufwand	BWB1: wöchentlich 1 h Vorlesung plus 1 h Vor- und Nachbereitung = 30 h BWB2: wöchentlich 2 h Vorlesung plus 2 h Vor- und Nachbereitung = 60 h BWB3: wöchentlich 1 h Vorlesung plus 0,5 h Vor- und Nachbereitung; 1 h Praktikum plus 0,5 h Vor- und Nacharbeitung = 45 h
	Prüfungsvorbereitung: insgesamt: 45 h
ECTS-Leistungspunkte	Prüfungsvorbereitung: insgesamt: 45 h 7 (2 (BWB1) + 3 (BWB2) + 2 (BWB3))

Modul BCS: Bio- und Chemosensorik

Verantwortliche Einheit	Lehrstuhl für Funktionsmaterialien
Lernziele	Kenntnisse über verschiedene (bio)-chemische Sensoren für flüssige und gasförmige Proben. Verständnis der Grundlagen und Messprinzipien dieser Sensoren; Fähigkeit, Kenngrößen von entsprechenden Sensoren einordnen und diese für vorgesehene Einsatzfelder auswählen und beurteilen zu können.
Lerninhalte	Physikalisch-chemische Grundlagen von Sensoren für (bio)-chemische Inhaltsstoffe in flüssigen und gasförmigen Proben; Aufbau, Funktions- und Messprinzipien der verwendeten Sensoren; Einsatzfelder, Kenngrößen und anwendungsbezogene Aspekte der besprochenen Sensoren.
Form der Wissensvermittlung	Vorlesung "Biosensorik" (2 SWS, 2 LP), Vorlesung "Chemische Sensoren" (2 SWS, 2 LP), Praktikum "Bio- und Chemosensorik" (1 SWS, 1 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit erworben in einem natur- oder ingenieurwissenschaftlichen Bachelor Studiengang
Teilnahmevoraussetzung	keine
Leistungsnachweise	Portfolioprüfung aus a) Teilnahmebescheinigung für das Praktikum und b) einer mündlichen Prüfung (30 min, Gewichtung 100 %)
Zeitlicher Aufwand	wöchentlich 2 h +2 h Vorlesung + Vor-/Nachbereitung: 90 h Praktikum 15 h + Vorbereitung/Protokolle 15 h: 30 h Vorbereitung auf die Klausur: 30 h; Summe 150 h
ECTS-Leistungspunkte	5
Angebotshäufigkeit	jährlich

Bereich V: Modellbildung, Messtechnik und Datenanalyse

Modul	Bezeichnung	SWS	LP	Modulprüfung	Verantwortlich	Modul- beschreibung
SD	Simulation und Datenanalyse Numerische Modellierung gekoppelter physikalischer Prozesse	1V+1Ü	5 (2)	mündliche Prüfung (30 min.)	LS FUMA	Master MatWerk
	Rechnergestützte Analyse und Auswertung wissenschaftlich- technischer Daten	1Ü	(1)			
	Einführung in die numerische Behandlung ingenieurtechnischer Anwendungen	1V+1Ü	(2)			
MCR	Modellierung chemischer Reaktoren	2V+2Ü	6	schriftliche Prüfung	LS CVT	siehe unten
IE	Industrial Ecology	2V+2S	5	Portfolioprüfung (mündliche Prüfung, Gewichtung 40%, mündlicher Vortrag, Gewichtung 20%, schriftliche Seminararbeit, Gewichtung 40%)	LS ÖRT	siehe unten
MSES	Modellbildung und Simulation elektrochemischer Speicher	2V+2P	5	wissenschaftliche Abschlussdokumentation (Gewichtung 50 %) und mündliche Prüfung (30 min, Gewichtung 50 %)	LS EES	Master MatWerk
SAP	Simulation und Analyse energietechnischer Prozesse	5P	5	Projektbericht (75%) mit mündl. Ergebnispräsentation (25%)	LS TTT	Master Energietechnik
PD	Produktion und Digitalisierung	2V+2Ü	5	schriftliche Prüfung	LS LUP	Master Maschinenbau
CE	Carbon Management & Erneuerbare Energien Carbon Management Erneuerbare Energien	2V 1VL+1Ü	5 (3) (2)	mündliche Prüfung (als kombinierte Prüfung über beide Teilbereiche, 30 min, Gewichtung 50 %)	LS PE	siehe unten
WL	Wellen	2V+2Ü	4	mündliche oder schriftliche Prüfung (die	LS TMS	siehe unten

	während der	
	Vorlesungszeit erbrachten	
	Leistunden werden bei	
	der Bildung der	
	Gesamtnote	
	mitberücksichtig)	

Modul MCR: Modellierung chemischer Reaktoren

Verantwortliche Einheit	LS Chemische Verfahrenstechnik
Lernziele	Vertiefung der Kenntnisse der Reaktionstechnik. Fähigkeit zur quantitativen Behandlung und Auslegung von Reaktoren mit numerischen Methoden. Qualifizierter Umgang mit Rechnerprogrammen zur Lösung von Differentialgleichungen. Fähigkeit zum selbständigen Arbeiten, Problemlösungsfähigkeit, analytische Fähigkeiten
Lerninhalte	Stoff- und Energiebilanzen chemischer Reaktoren; Dispersion und Vermischung; numerische Lösung der Differentialgleichungen zur Beschreibung des Reaktorverhaltens; Stabilität und Dynamik von Reaktoren; ideales und reales Reaktorverhalten; homogene und heterogene Reaktionskinetik; chemische Thermodynamik
Form der Wissensvermittlung	Vorlesung und Übung (2 SWS V, 2 SWS Ü, insgesamt 6 LP)
Vorkenntnisse	universitäre Veranstaltungen: einem universitären BSc entsprechende naturwissenschaftlich-mathematische und verfahrenstechnische Grundlagen
Teilnahmevoraussetzung	fortgeschrittene Studierfähigkeit
Leistungsnachweise	schriftliche Prüfung
zeitlicher Aufwand	wöchentl. 2 h Vorlesung + 2h Vor-/Nachbereitung: 60 h wöchentl. 2 h Übung + 2h Vor-/Nachbereitung: 60 h Vorbereitung auf die Klausur: 60 h Summe: 180 h
ECTS-Leistungspunkte	6
Angebotshäufigkeit	jährlich

Modul IE: Industrial Ecology

Verantwortliche Einheit	LS Ökologische Ressourcentechnologie
Lernziele	Kenntnisse zur systemischen Betrachtung der Material- und Energieflüsse in industriellen und gesellschaftlichen Aktivitäten. Ökologische, ökonomische und soziale Bewertung der Auswirkungen. Modellierung und Simulation der technologischen, wirtschaftlichen, regulatorischen und gesellschaftlichen Einflussmöglichkeiten
Lerninhalte	Methoden der Industrial Ecology (IE1): Aktuelle Erkenntnisse aus dem Forschungsfeld der Industrial Ecology. Fallbeispiel-basierte Modellierungen und Berechnungen zu Material- und Energieflüssen in relevanten Technologiebereichen zum Beispiel im Bergbau, bei Mobilitäts- und Energietechnologien oder Recyclingtechnologien. Die Fallbeispiele sind auf die aktive Gestaltung industrieller Aktivitäten als Ökosysteme mit möglichst geschlossenen Stoffkreisläufen ausgewählt. Angewandte Methoden umfassen unter anderem Materialflussmethoden, Ökobilanzierungen oder Rohstoffkritikalitätsbewertungen
	Seminar Industrial Ecology (IE2): Fokus auf die Modellierung, Simulation und Bewertung ausgewählter Fragestellungen aus dem Bereich Industrial Ecology, passend zu den Inhalten der Vorlesung Industrial Ecology, innerhalb von Kleingruppen von 1 bis 3 Studierenden je nach Fragestellung
Form der Wissensvermittlung	IE1: Vorlesung "Methoden der Industrial Ecology" (2 SWS V, 2 LP) IE2: Seminar "Industrial Ecology" (2 SWS S, 3 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit erworben in einem natur- oder ingenieurwissenschaftlichen Bachelor-Studiengang
Teilnahmevoraussetzung	keine
Leistungsnachweise	Portfolioprüfung (mündliche Prüfung, Gewichtung 40%, mündlicher Vortrag, Gewichtung 20%, schriftliche Ausarbeitung, Gewichtung 40%)
zeitlicher Aufwand	wöchentl. 2 h Vorlesung + 2 h Seminar + 1h Vor-/Nachbereitung: 75 h Vorbereitung auf die Klausur: 15 h Seminararbeitserstellung: 60 h Summe: 150 h
ECTS-Leistungspunkte	5 (2+3)
Angebotshäufigkeit	jährlich

Modul CE: Carbon Management & Erneuerbare Energien

Verantwortliche Einheit	LS Polymere Werkstoffe
Lernziele	Kenntnisse zur ganzheitlichen Betrachtung des Carbon Management und des Einsatzes erneuerbarer Energien. Vernetzung der industriellen Praxis mit den wissenschaftlichen Grundlagen. Materialtechnische, technologische und wirtschaftlich-gesellschaftliche Grundlagen zur Windenergie
Lerninhalte	Carbon Management (CE1): Hintergrund und Ausgangssituation, beispielsweise globale Erwärmung, auf Basis globaler natürlicher und menschlicher Einflussgrößen. Bilanzierung der Kohlenstoffhaushalts. Möglichkeiten zum Management kohlenstoffbasierter Ströme wie Vermeidung, Verringerung, veränderter Feedstock und Kompensation. Rechnerische und bilanzierungstechnische Grundlagen zur Erstellung produktbezogener Carbon Footprints mit Beispielen aus der industriellen Praxis von Kunststoffen. Auswirkung auf die Kosten und Einordnung in die industrielle Umsetzbarkeit
	Erneuerbare Energien (CE2): Fokus auf die Nutzung von Windenergie zur nachhaltigen Erzeugung von Energie. Historie und physikalische Grundlagen der Windenergie. Aerodynamik von Windenergieanlagen und daraus abgeleitete Designprinzipien. Bauweisen und Herstellprozesse von Rotorblättern. Eingesetzte Materialien für Rotorblätter (Verbundwerkstoffe, Klebstoffe, Beschichtungen). Prüfung und Zulassung von Windenergieanlagen. Installation, Betrieb und Wirtschaftlichkeit von Windenergieanlagen inkl. Vergleich zu anderen Energiegewinnungsformen
Form der Wissensvermittlung	CE1: Vorlesung "Carbon Management" (2 SWS V, 3 LP) CE2: Vorlesung 'Erneuerbare Energien' (1 SWS V, 1 SWS Ü, 2 LP)
Vorkenntnisse	Fortgeschrittene Studierfähigkeit erworben in einem natur-oder ingenieurwissenschaftlichen Bachelor-Studiengang
Teilnahmevoraussetzung	keine
Leistungsnachweise	Mündliche Prüfung (als kombinierte Prüfung über beide Teilbereiche, insgesamt 30 min, Gewichtung 50%)
zeitlicher Aufwand	wöchentl. 3 h Vorlesung + 1 h Seminar + 4h Vor-/Nachbereitung: 120 h Vorbereitung auf die Klausur: 30 h Summe: 150 h
ECTS-Leistungspunkte	5 (3 + 2)
Angebotshäufigkeit	jährlich

Modul WL: Wellen

Verantwortliche Einheit	LS Technische Mechanik und Strömungsmechanik
Lernziele	Die Studierenden verfügen über das Verständnis der prinzipiellen Grundlagen und Zusammenhänge in Schwingungen und Wellen. Sie sind in der Lage, physikalische Zusammenhänge mathematisch zu formulieren und ihre Kenntnisse bei der Lösung mathematisch physikalischer Aufgabenstellungen selbstständig anzuwenden
Lerninhalte	Grundlagen und Ausbreitung mechanischer Wellen, Seilwellen, Wasserwellen, akustische Wellen, Überlagerung und periodische Wellen, Ein- und Mehrdimensionale Probleme, Beugung und Interferenz, Nichtlineare Wellenausbreitung
Form der Wissensvermittlung	Vorlesung und Übung (2 SWS V, 2 SWS Ü, insgesamt 4 LP)
Vorkenntnisse	Mathematik und Mechanik
Teilnahmevoraussetzung	keine
Leistungsnachweise	Mündliche oder schriftliche Prüfung (die während der Vorlesungszeit erbrachten Übungsleistungen werden bei der Bildung der Gesamtnote mitberücksichtigt)
zeitlicher Aufwand	Wöchentlich 2 h Vorlesung plus 1 h Nachbereitung: 45h; wöchentlich 2 h Übung plus 1 h Vor- und Nachbereitung: 45h; Prüfungsvorbereitung: 30 h Summe 120 h
ECTS-Leistungspunkte	4
Angebotshäufigkeit	jährlich

Summe der ingenieurwissenschaftlichen Wahlmodule: 147 LP

Geowissenschaftl. Vertiefung (Wahlpflichtmodule, mindestens 20 LP)

Modul	Bezeichnung	SWS	LP	Modulprüfung	Verantwortlich	Modulbeschreibung
UPT7	Soil Physics Soil Physics Exercises in Soil Physics	2V + 2Ü	5	benotete mündliche Prüfung	Bodenphysik	Master Geoökologie
ÖLD3	Aktuelle Fragen des Globalen Wandels Aktuelle Fragen des Globalen Wandels Methods in climate data	2Ü 2Ü	5	unbenoteter Bericht benoteter Bericht	Klimatologie	Master Geoökologie
ÖLD4	analyses Ecological Climatology Seminar Ecological Climatology Übung Ecol. Climatology	2S 2Ü	5	benoteter Bericht unbenoteter Bericht	Klimatologie	Master Geoökologie
UPT1	Introduction to Micrometeorology Introduction to Micrometeorology Numerical lab to introd. to micrometeorology	2V 1S+Ü	5	benotete mündliche Prüfung	Mikrometeorologie	Master Geoökologie
UPT3	Experimental Micrometeorology field course	4E	5	benoteter Bericht	Mikrometeorologie	Master Geoökologie
WV07	Praktische Meteorologie Angewandte Meteorologie Meteorol. Grundlagen erneuerbarer Energien	1 V 2V/Ü/E	5	Klausur 60 min benoteter Bericht	Mikrometeorologie	Bachelor Geoökologie
BGCP2	Atmospheric Chemistry Fundamentals Atmospheric Chemistry I Atmospheric Chemistry II	2V 2V	5	benotete Klausur benoteter Bericht u. Präsentation	Atmosphärenchemie	Master Geoökologie
MUI3	Ecosystem Services and Biodiversity Ecosystem Services Current Research in Ecosystem Services and Biodiversity	2V 2S	5	benotete Klausur	Ecological Services	Master Geoökologie

BGCP5	Soil organic matter and greenhouse gases Soil organic matter and greenhouse gases I Soil organic matter and greenhouse gases II	2V 2V	5	benotete Klausur	Bodenökologie	Master Geoökologie
W4	Städte und Regionen in der Transformation zur Nachhaltigkeit (S) Sustainability Transition - aktuelle Aspekte der geographischen Transformationsforschung Regionale Pfade zur Nachhaltigkeit (ggf. 2 Geländetage)	2S 2Ü	5	schriftliche und mündliche Präsentation benoteter Bericht	Stadt- und Regionalentwicklung	Master Humangeographie
UPT11	Mathematische Modelle in der Hydrologie Mathematische Modelle in der Hydrologie Übung zu Mathematische Modelle in der Hydrologie	2V 2Ü	5	Übungsaufgaben und Abschlussbericht	Hydrologie	Master Geoökologie
WV06	Zeitreihenanalyse Zeitreihenanalyse (Time Series Analysis) Praktikum zur Zeitreihenanalyse (Time Series Analysis)	1V+1Ü 3P	5	benotete Präsentation und Bericht	Ökologische Modellbildung	Master Geoökologie
ÖLD7	Natural Risks and Hazards in Ecology Natural Risks and Hazards Geomorphological Hazards	1V+1Ü 1V+1S	5	benotete Präsentation benoteter Bericht	Störungsökologie	Master Geoökologie

Summe der geowissenschaftlichen Wahlmodule: 65 LP

Modul ÜKE: Überfachliche Kompetenzerweiterung¹

Verantwortliche Einheit	die jeweiligen Dozenten der Rechts- und Wirtschaftswissenschaften, der Sprach- und Literaturwissenschaften, der Kulturwissenschaften und der Naturwissenschaften
Lernziele	individuelle Horizonterweiterung, Erwerb berufsfeldrelevanter außerfachlicher Kompetenzen, die zuvor nicht in ausreichendem Maße vorhanden waren.

Lerninhalte	Die Studierenden wählen individuell Module aus einer regelmäßig aktualisierten Liste aus; die Module behandeln überfachliche Themen, etwa aus den Bereichen Betriebswirtschaftslehre, Recht, Gesellschaftswissenschaften oder Sprachen.
Form der Wissensvermittlung	siehe Einzelankündigung des jeweiligen Faches
Vorkenntnisse	siehe Einzelankündigung des jeweiligen Faches
Teilnahmevoraussetzung	siehe Einzelankündigung des jeweiligen Faches
Leistungsnachweise	siehe Einzelankündigung des jeweiligen Faches
zeitlicher Aufwand	insgesamt 30 Stunden
ECTS-Leistungspunkte	10
Angebotshäufigkeit	jährlich

Alle Fächer können einer regelmäßig aktualisierten Liste "Überfachliche Kompetenzerweiterung (extrafakultärer Teil)", die für alle ingenieurwissenschaftlichen Masterstudiengänge der Fakultät für Ingenieurwissenschaften der UBT gilt, entnommen werden. Eine Ausnahme bildet das Modul "Kultur und Technik in Afrika", das in dieser Liste aufgrund des Umfangs von 10 LP nicht enthalten ist. Es besteht aus der Vorlesung "Einführung in die Ethnologie" (2 SWS, 4 LP), dem Seminar "Kultur und Technik in Afrika" (2 SWS, 3 LP) und dem Seminar "Energiekrise/wandel in Afrika" oder "NaturenKulturen" (2 SWS, 3 LP). Nähere Informationen zu diesen Modulveranstaltungen können den entsprechenden Unterlagen zum Bachelorstudiengang "Kultur und Gesellschaft Afrikas" entnommen werden. Studierende des Masterstudiengangs URT, die studienbegleitend das Zusatzstudium Umweltrecht absolvieren, können sich im Modul ÜKE keine Fächer dieses Zusatzstudiums anrechnen lassen.