Partial exam 2 - Wednesday 2 May 2018 - Duration : 60 min

No document, no phone, no computing machine.

Name:	F	First name :	Signa	iture :
	Exercise 1 :	Exercise 2:	Grade /20:	
Suppose you hav	ian Bayes Classifie e the following trai two values <i>A</i> and <i>E</i>	ning set with one	real-valued input X	and a categorical
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	0 2 3 4 5 A A B B B	6 7 B B	
	earn the Gaussian B n this table :	ayes Classifier fron	n this data. Write the	parameters of the
	$\mu_A =$	$\sigma_A^2 =$	Pr(Y = A) =	
	$\mu_B =$	$\sigma_B^2 =$	Pr(Y = B) =	
Justify you	calculation hereaf	ter:		

2. Calculate $\alpha = f_{X Y}(X=2 Y=A)$ and $\beta = f_{X Y}(X=2 Y=B)$. Do not propose any nume	;-
rical approximation; just give a simplified closed form expression.	

3. What is the joint probability $f_{X,Y}(X=2,Y=A)$? The answer must be given in terms of α and β only.
4. What is the joint probability $f_{X,Y}(X=2,Y=B)$? The answer must be given in terms of α and β only.
5. What is $f_X(X=2)$? The answer must be given in terms of α and β only.
6. What is the conditional probability $Pr(Y = A X = 2)$?

UNS/LF 2/6 2017/2018

7. Consider the figure 1. If you trained a new Bayes classifier on this data, what class would you predicted for the query location indicated with "?"? Explain carefully your answer.

FIGURE 1 - Training data set and query location indicated with "?".

Exercise 2 (Test and p-value, \approx 12 pts)

Assume that x is a sample of a random variable X following an exponential distribution with the unknown parameter θ . The exponential probability density function with parameter θ is

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{for } x > 0, \\ 0 & \text{elsewhere.} \end{cases}$$

We want to test H_0 : $\{\theta = \theta_0\}$ versus H_1 : $\{\theta = \theta_1\}$ with $0 < \theta_1 < \theta_0$.

1. Calculate the cumulative distribution function $F_{\theta}(x)$ associated to $f_{\theta}(x)$.

3. Calculate the threshold h_{lpha} of the test. The threshold must be given in closed-form.
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{σ} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{∞} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3. Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
3 Calculate the threshold h_{α} of the test. The threshold must be given in closed-form
o. Calculate the threshold ma of the test. The threshold mast be given in closed form.

UNS/LF 4/6 2017/2018

4. Describe carefully the critical region C_{α} of the test.
5. Calculate the power of the test, i.e., the probability γ to reject H_0 when H_1 is true.
6. Show that $C_{\alpha} \subset C_{\alpha'}$ if $\alpha < \alpha'$.
7. Calculate the <i>p</i> -value $\hat{p}(x)$ of the sample <i>x</i> from the definition of the <i>p</i> -value.

UNS/LF 5/6 2017/2018

8.	Show that $\hat{p}(x)$ is uniformly distributed over [0,1] when x follows the exponential distribution with pdf $f_{\theta_0}(\cdot)$.	i-
9.	Propose a test equivalent to the Neyman-Pearson test of question 2 whose decision function is $\hat{p}(x)$. Precise clearly the threshold of the test.	3-
9.		3-
9.		2-
9.		C-
9.		C-
9.		2-
9.		C-
9.		C-
9.		2-
9.		C-

UNS/LF 6/6 2017/2018