Seminario de tecnología

Ejes
Metodologia de evaluacion
Cronograma de clases
Temario

David Alejandro Trejo Pizzo dtrejopizzo@gmail.com

Ejes

- Prototipado
- Internet of Things (IoT)
- Analytics y Big data

Metodologia de evaluacion

- Entrega de 3 trabajos prácticos
- Entrega final

Cronograma de clases

Clase	Fecha	Temas	Lecturas	Prácticas
1	22-08-14	Introducción al prototipado	Х	
2	29-08-14	Programación en Arduino		Х
3	05-09-14	Desarrollo de prototipos		Х
4	12-09-14	Práctica evaluativa 1		X
5	19-09-14	IoT: conectividad y backend	X	
6	26-09-14	IoT: plataformas y sensores	X	
7	03-10-14	IoT: fusión de datos		X
8	10-10-14	IoT: fusión de datos		Х
9	17-10-14	Práctica evaluativa 2		Х

10	24-10-14	Análisis de clusters	Х
11	31-10-14	Normalización e inferencia	X
12	07-11-14	Práctica evaluativa 3	Х
13	14-11-14	Trabajo integrador (I)	Х
14	21-11-14	Trabajo integrador (II)	Х

Temario

- Clase 1: introducción al desarrollo de prototipos. Tecnologías disponibles en el mercado, características y diferencias (Arduino, Raspberry Pi, Beagleboard).
- Clase 2: lenguaje y estructura de un programa desarrollado para Arduino. Practica de laboratorio.
- Clase 3: herramientas para la construcción de prototipos rápidos. Utilización de Fritzing para desarrollo de placas y simulación de circuitos.
- Clase 4: práctica evaluativa de prototipos. Desarrollo de un shield para colocar diferentes sensores.
- Clase 5: conectividad de plataformas de IoT. Desarrollo de un backend para manejar grandes volumenes de informacion. Flexibilidad, escalabilidad e infraestructuras en la nube.
- Clase 6: plataformas físicas existentes para IoT, tipos de sensores, características, funcionamiento, análisis comparativo e integración con placas de desarrollo.
- Clase 7: pre-procesamiento y fusión de datos en la generación (sobre la plataforma de desarrollo).
- Clase 8: práctica evaluativa de sensores. Integración de sensores al desarrollo de la práctica 1, conexión del prototipo a través de cable de red o wifi a un backend para storage de datos.
- Clase 9: introduccion a la minería de datos. Técnicas para analizar patrones en grandes volúmenes de datos. Introducción a diferentes herramientas Open Source para análisis de datos (Octave, Google Refine).
- Clase 10: introducción al concepto de clusterización, manejo de grandes tablas relacionales y no relacionales. Ordenamiento y optimización según la técnica de análisis.
- Clase 11: concepto de normalización de tablas, inferencia estadística y análisis de tendencias. Detección de ruidos (outliers)
- Clase 12: práctica evaluativa de minería de datos. Generación de datos a partir de los sensores integrados en la práctica 2. Análisis de la información generada mediante las técnicas estudiadas en las clases 9, 10 y 11.
- Clase 13: trabajo integrador individual.
- Clase 14: trabajo integrador individual.