NAMA :Roy Wijaya

Kelas : TI-2F

No :23

Metode Iterasi Titik Tetap

1. $f(x) = x^3 - 4x + 1$

Tebakan = 1.5

Toleransi dengan Selisih = |Xn - Xn - 1| < 0.001

Excel:

tebakan	(x)	selisih	
1.5	1.0938	0.4063	
1.0938	0.5771	0.5166	
0.5771	0.2981	0.2791	
0.2981	0.2566	0.0414	
0.2566	0.2542	0.0024	
0.2542	0.2541	0.0001	
	1.5 1.0938 0.5771 0.2981 0.2566	1.5 1.0938 1.0938 0.5771 0.5771 0.2981 0.2981 0.2566 0.2566 0.2542	

Code Java:

```
public class iterasi {
    public static double g(double x) {
   public static void main(String[] args) {
       double tolerance = 0.001;
        double x1;
        int maxIterations = 100;
        System.out.printf(format:"Tebakan awal: x0 = %.4f%n", x0);
        System.out.printf(format:"Toleransi: %.4f%n", tolerance);
        System.out.println(x:"Menghitung...");
            x1 = g(x0);
            iterations++:
            System.out.printf(format:"Iterasi %d: x1 = %.4f%n", iterations, x1);
             if (Math.abs(x1 - x0) < tolerance) {
            x\theta = x1:
        } while (iterations < maxIterations);</pre>
        System.out.printf(format:"Akar yang ditemukan: %.4f%n", x1);
System.out.printf(format:"Jumlah iterasi: %d%n", iterations);
```

Hasil:

```
PS C:\xampp\htdocs\pertemuan> java iterasi.java
Tebakan awal: x0 = 1.5000
Toleransi: 0.0010
Menghitung...
Iterasi 1: x1 = 1.0938
Iterasi 2: x1 = 0.5771
Iterasi 3: x1 = 0.2981
Iterasi 4: x1 = 0.2566
Iterasi 5: x1 = 0.2542
Iterasi 6: x1 = 0.2541
Akar yang ditemukan: 0.2541
Jumlah iterasi: 6
PS C:\xampp\htdocs\pertemuan> -
```

PENJELASAN:

Kita menggunakan iterasi sampai 6, untuk rumus x iterasi pertama yaitu ((1.5 3 + 1) / 4) dan untuk selisih hasil dari x - tebakan dan memiliki hasil 0.4063, dan untuk iterasi selanjutnya rumus x mengikuti tebakan dan selisih selalu hasil dari tebakan – x

Metode Newton Raphson

2.
$$f(x) = 5x^3 + 2x^2 + 8x + 2$$

Toleransi = 0.0001

Excel:

iterasi		X	f(x)	f'(x)	x baru	error
	1	2	66	76	1.13158	0.86842
	2	1.13158	20.8583	31.7334	0.47428	0.6573
	3	0.47428	6.77754	13.2712	-0.03641	0.51069
	4	-0.03641	1.71109	7.87423	-0.25372	0.2173
	5	-0.25372	0.01734	7.95072	-0.2559	0.00218

Code Java:

Hasil:

```
PS C:\xampp\htdocs\pertemuan> java newton.java
Tebakan awal: x0 = -1.0000
Toleransi: 0.0001
Menghitung...
Iterasi 1: x1 = -0.5263, f(x1) = -2.3855
Iterasi 2: x1 = -0.2890, f(x1) = -0.2653
Iterasi 3: x1 = -0.2562, f(x1) = -0.0023
Iterasi 4: x1 = -0.2559, f(x1) = -0.0000
Iterasi 5: x1 = -0.2559, f(x1) = -0.0000
Akar yang ditemukan: -0.2559
Jumlah iterasi: 5
PS C:\xampp\htdocs\pertemuan>
```

PENJELASAN:

Kita menggunakan iterasi hingga 5 iterasi, untuk yang pertama kami menggunakan rumus $5*2^3 + 2*2^2 + 8*2 + 2$ dan untuk f(x) adalah $15*2^2 + 4*2 + 8$ dan untuk x baru 2-f(x)/f'(x) dan untuk error absolute nya |x(baru)-2| dan untuk iterasi selanjutnya mengikuti x(baru).