A 01 N 47/42

DEUTSCHES PATENTAMT

21) Aktenzeichen: 22) Anmeldetag:

P 36 18 004.1 28. 5.86

43) Offenlegungstag:

3. 12. 87

(71) Anmelder:

Bayer AG, 5090 Leverkusen, DE

(72) Erfinder:

Pfister, Theodor, Dr., 4019 Monheim, DE; Feucht, Dieter, Dipl.-agr.-Ing. Dr., 5090 Leverkusen, DE; Schmidt, Robert R., Dr., 5060 Bergisch Gladbach, DE

Werwendung von Amiden zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)-harnstoff-Derivaten

Die Erfindung betrifft die Verwendung von bekannten Amiden der allgemeinen Formel (I)

$$\begin{array}{c|c}
0 & \mathbb{R}^1 \\
\mathbb{R} - \mathbb{C} - \mathbb{N} & \mathbb{R}^2
\end{array}$$

(worin die Reste R, R¹ und R² die in der Beschreibung angegebenen Bedeutungen haben) als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der allgemeinen Formel (II)

$$R^3-SO_2-N$$
 $N-R^4$
 C
 X
 R^5

(worin R³, R⁴, R⁵, X und M die in der Beschreibung angegebenen Bedeutungen haben) und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

Patentansprüche

1. Verwendung von Amiden der Formel (I)

R - C - N R^{2} (I)

in welcher

5

10

15

20

25

30

35

40

45

50

55

60

R für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Bicycloalkyl, Bicycloalkenyl, Tricycloalkyl, Aryl, Heteroaryl, Alkoxy, Alkenyloxy, Alkinyloxy, Aryloxy, Carbamoyl, Alkoxycarbonyl oder Dithiolanyl steht und

R¹ und R² unabhängig voneinander jeweils für Wasserstoff, für Formyl, für Chlorsulfonyl oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkoxy, Alkylthio, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenoxy, Phenylsulfonyl oder Heterocyclyl stehen, ferner für Amino, für Alkylidenimino oder für gegebenenfalls substituiertes Alkylcarbonylamino oder Di(alkylcarbonyl)-amino stehen, oder

R¹ und R² gemeinsam mit dem Stickstoffatom an welches sie gebunden sind, für jeweils gegebenenfalls substituiertes Alkylidenimino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridinyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro-, Tetrahydro- oder Perhydrochinolyl- bzw.-isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen,

als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso-(thio)harnstoff-Derivaten der Formel (II).

$$R^{3}-SO_{2}-N$$

$$N-R^{4}$$

$$X$$

$$R^{5}$$
(II)

in welcher

R³ für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Aralkyl, Aryl und Heteroaryl steht,

R⁴ für einen gegebenenfalls substituierten und/oder gegebenenfalls anellierten sechsgliedrigen aromatischen Heterocyclus, welcher wenigstens ein Stickstoffatom enthält, steht,

R⁵ für einen gegebenenfalls substituierten aliphatischen, araliphatischen, aromatischen oder heteroaromatischen Rest steht,

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff oder ein Metalläquivalent steht,

und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

2. Verfahren zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso-(thio)harnstoff-Derivaten der Formel (II) gemäß Anspruch 1, dadurch gekennzeichnet, daß man Amide der Formel (I) gemäß Anspruch 1 zusammen mit den Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) auf die Kulturpflanzen und/oder deren Lebensraum einwirken läßt.

3. Mittel zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, gekennzeichnet durch einen Gehalt an einer Wirkstoffkombination bestehend aus

- einem Amid der Formel (I) gemäß Anspruch 1 und

— mindestens einem herbiziden Sulfonyliso(thio)-harnstoff-Derivat der Formel (II) gemäß Anspruch 1.

4. Verfahren zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man eine Wirkstoffkombination gemäß Anspruch 3 auf die Unkräuter oder ihren Lebensraum einwirken laßt

5. Verwendung einer Wirkstoffkombination gemäß Anspruch 3 zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen.

6. Verfahren zur Herstellung von Mitteln zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen, dadurch gekennzeichnet, daß man Wirkstoffkombinationen gemäß Anspruch 3 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

Beschreibung

Die Erfindung betrifft die Verwendung von bekannten Amiden als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von bestimmten herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten.

Ferner betrifft die Erfindung neue Wirkstoffkombinationen, die aus bekannten Amiden und bekannten herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten bestehen und besonders gute selektiv-herbizide Eigenschaften besitzen.

Unter "Gegenmitteln" ("Safener", "Antidots") sind im vorliegenden Zusammenhang Stoffe zu verstehen, welche befähigt sind, schädigende Wirkungen von Herbiziden auf Kulturpflanzen spezifisch zu antagonisieren, d. h. die Kulturpflanzen zu schützen, ohne dabei die Herbizid-Wirkung auf die zu bekämpfenden Unkräuter merklich zu beeinflussen.

Es ist bekannt, daß zahlreiche herbizid wirksame Sulfonyliso(thio)harnstoff-Derivate beim Einsatz zur Unkrautbekämpfung in Mais und anderen Kulturen mehr oder weniger starke Schäden an den Kulturpflanzen hervorrufen.

Weiterhin ist bekannt, daß zahlreiche Amide geeignet sind, Schädigungen an Kulturpflanzen, die durch herbizide Wirkstoffe, insbesondere Thiolcarbamate und Acetanilide, verursacht werden können, zu vermindern (vergl. z. B. DE-OS 22 18 097, DE-OS 28 28 265, US-PS 40 21 224, US-PS 41 24 376, US-PS 41 37 070).

Die Anwendbarkeit dieser Stoffe als Gegenmittel ist jedoch in hohem Maße abhängig von dem jeweiligen herbiziden Wirkstoff.

15

20

25

30

35

55

60

65

Es wurde nun gefunden, daß die bekannten Amide der Formel (I)

$$\begin{array}{c|c}
O & R^1 \\
R - C - N & R^2
\end{array}$$
(1)

in welcher

R für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Bicycloalkenyl, Tricycloalkyl, Aryl, Heteroaryl, Alkoxy, Alkenyloxy, Alkinyloxy, Aryloxy, Carbamoyl, Alkoxycarbonyl oder Dithiolanyl steht und

R¹ und R² unabhängig voneinander jeweils für Wasserstoff, für Formyl, für Chlorsulfonyl oder für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkoxy, Alkylthio, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenoxy, Phenylsulfonyl oder Heterocyclyl steht, ferner für Amino, für Alkylidenimino oder für gegebenenfalls substituiertes Alkylcarbonylamino oder Di(alkylcarbonyl)-amino stehen, oder

R¹ und R² gemeinsam mit dem Stickstoffatom an welches sie gebunden sind, für jeweils gegebenenfalls substituiertes Alkylidenimino, Pyrrolidinyl, Piperidinyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridinyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro- oder Perhydrochinolyl bzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen,

hervorragend geeignet sind als Gegenmittel zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der allgemeinen Formel (II)

$$R^3$$
— SO_2 — N
 N — R^4
 (II)
 X
 R^5

in welcher

R³ für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Aralkyl, Aryl und Heteroaryl steht,

R⁴ für einen gegebenenfalls substituierten und/oder gegebenenfalls anellierten sechsgliedrigen aromatischen Heterocyclus, welcher wenigstens ein Stickstoffatom enthält, steht,

R⁵ für einen gegebenenfalls substituierten aliphatischen, araliphatischen, aromatischen oder heteroaromatischen Rest steht,

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff oder ein Metalläquivalent steht,

und von Addukten aus Verbindungen der Formel (II) und starken Säuren.

Weiterhin wurde gefunden, daß die neuen Wirkstoffkombinationen bestehend aus

- einem Amid der Formel (I) und

- mindestens einem herbiziden Sulfonyliso(thio)harnstoff-Derivat der Formel (II)

hervorragend geeignet sind zur selektiven Unkrautbekämpfung in Nutzpflanzenkulturen.

Überraschenderweise wird die Kulturpflanzenverträglichkeit von herbiziden Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) durch Mitverwendung von Amiden der Formel (I) entscheidend verbessert. Unerwartet ist ferner, daß die erfindungsgemäßen Wirkstoffkombinationen aus einem Amid der Formel (I) und einem herbiziden Sulfonyliso(thio)harnstoff-Derivat der Formel (II) bessere selektive Eigenschaften besitzen als die betreffenden Wirkstoffe allein.

Die erfindungsgemäß verwendbaren Amide sind durch die Formel (I) allgemein definiert. Bevorzugt sind Amide der Formel (I), bei welchen R

- für Wasserstoff, Fluor, Chlor, Brom steht; außerdem

- für den Rest

steht, wobei

R⁶ und R⁷ gleich oder verschieden sind und jeweils für Wasserstoff sowie für jeweils geradkettiges oder verzweigtes Alkyl, Alkenyl, Alkinyl oder Cyanalkyl mit jeweils bis zu 8 Kohlenstoffatomen stehen; ferner R

- für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 20 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Halogen, insbesondere Fluor, Chlor, Brom, Iod, Cyano, Cyanato, Thiocyanato; jeweils geradkettiges oder verzweigtes Alkoxy, Alkylthio, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Halogenalkoxy, Halogenalkoxy, Halogenalkoxy, Halogenalkoxy, Halogenalkoxy, Halogenalkylcarbonyloxy und Halogenalkenylcarbonyloxy mit jeweils bis zu 6 Kohlenstoffatomen und gegebenenfalls bis zu 9 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; außerdem jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, niederes Alkyl und/oder niederes Alkoxy substituiertes Phenyl, Phenoxy, Phenylthio oder Thienyl; ferner Cycloalkyl mit 3 bis 7 Kohlenstoffatomen sowie die Reste

wobei R⁶ und R⁷ jeweils die oben angegebenen Bedeutungen haben; außerdem R

— für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkenyl mit 2 bis 8 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Halogen, insbesondere Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkoxycarbonyl mit bis zu 6 Kohlenstoffatomen, sowie jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder niederes Alkoxy substituiertes Phenyl oder Phenoxy; ferner R

- für geradkettiges oder verzweigtes Alkinyl mit 2 bis 8 Kohlenstoffatomen steht; außerdem R

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Cycloalkyl, Cycloalkenyl, Bicycloalkyl, Bicycloalkenyl oder Tricycloalkyl mit jeweils bis zu 12 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl sowie der Rest

$$-c-N$$
 R^6
 R^7

wobei R⁶ und R⁷ die oben angegebene Bedeutung haben; ferner R

— für gegebenenfalls einfach oder mehrfach gleich oder verschieden substituiertes Aryl mit 6 bis 10 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, Iod, Nitro, Carboxy — auch in Form des Carboxylatanions —, jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Halogenalkyl, Alkylcarbonyl, Halogenalkylcarbonyl und Halogenalkylcarbonylamino mit jeweils bis zu 4 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom, sowie der Rest

55

60

wobei R⁶ und R⁷ die oben angegebene Bedeutung haben, außerdem R

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Furyl, Thienyl, Pyridyl oder Dithiolanyl steht, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen, sowie der Rest

wobei R6 und R7 die oben angegebene Bedeutung haben, und schließlich R

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Phenyl oder Halogen, insbesondere Fluor, Chlor, Brom substituiertes, jeweils geradkettiges oder verzweigtes Alkoxy, Alkoxy,

5

10

15

20

25

30

35

45

50

55

R1 und R2, welche gleich oder verschieden sind, unabhängig voneinander

- für Wasserstoff, Formyl, Chlorsulfonyl oder für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom oder niederes Alkyl substituiertes Phenyl, Phenoxy oder Phenylsulfonyl stehen, ferner

— für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 12 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Hydroxy, Mercapto, Cyano, Halogen, insbesondere Fluor, Chlor, Brom, Iod; jeweils geradkettiges oder verzweigtes Alkoxy, Alkyl, alkyl,

zweigtes Alkoxy, Alkoximino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkoxycarbonyloxy, Alkylthiocarbonyloxy, Halogenalkylcarbonyloxy und Alkylsulfonyloxy mit jeweils bis zu 6 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; außerdem Alkylaminocarbonyloxy, Dialkylaminocarbonyloxy, Alkenylaminocarbonyloxy und Dialkenylaminocarbonyloxy mit jeweils bis zu 6 Kohlenstoffatomen in den einzelnen geradkettigen oder verzweigten Alkyl- bzw. Alkenylteilen: ferner Cycloalkylaminocarbonyloxy mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil, gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Phenylaminocarbonyloxy, außerdem gegebenenfalls einfach oder mehrfach gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Cycloalkyl mit 3 bis 7 Kohlenstoffatomen, gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Nitro, Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder Dioxyalkylen substituiertes Phenyl, jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom oder niederes Alkyl substituiertes Furyl, Tetrahydrofuryl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiadiazolyl, Oxadiazolyl, Oxadiazolyl, Pyridyl oder Pyrimidinyl sowie gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch jeweils niederes Alkyl, Halogenalkylcarbonyl, Halogenphenoxyalkylcarbonyl und Halogenalkylcarbonylaminoalkyl substituiertes Amino; außerdem R1 und R2

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkenyl, Alkadienyl, oder Alkinyl mit jeweils 3 bis 8 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, Cyano sowie jeweils geradkettiges oder verzweigtes Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen; ferner R¹ und R²

- für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, oder niederes Alkyl substituiertes Cycloalkyl oder Cycloalkenyl mit jeweils 3 bis 8 Kohlenstoffatomen stehen; außerdem
- für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes und/oder benzannelliertes Piperidyl, Pyridyl, Thienyl, Oxazolyl, Isoxazolyl, Thiazolyl, Oxadiazolyl, Thiadiazolyl, Fluorenyl, Phthalimidoyl oder Dioxanyl stehen, wobei als Substituenten infrage kommen:

Halogen, insbesondere Fluor, Chlor, Brom, Cyano sowie jeweils geradkettiges oder verzweigtes Alkyl oder Alkandiyl mit jeweils 1 bis 4 Kohlenstoffatomen;

ferner R1 und R2

- für jeweils geradkettiges oder verzweigtes Alkoxy, Alkylthio, Alkylcarbonyl, Alkoxycarbonyl, Halogenalkylcarbonyl oder Halogenalkoxycarbonyl stehen mit jeweils bis zu 6 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; und außerdem R¹ und R²
- für gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Amino oder Alkylidenimino stehen, wobei als Substituenten infrage kommen:

jeweils geradkettiges oder verzweigtes Alkyl, Alkenyl, Alkinyl, Alkylcarbonyl oder Halogenalkylcarbonyl mit jeweils bis zu 8 Kohlenstoffatomen und gegebenenfalls bis zu 5 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom; oder aber

R1 und R2 gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind,

— für jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden substituiertes Alkylidenamino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro-, Tetrahydro- oder Perhydrochinolyl bzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen, wobei als Substituenten infrage kommen:

Hydroxy, Halogen (insbesondere Fluor, Chlor, Brom), Cyano, Formyl; jeweils geradkettiges oder verzweigtes, gegebenenfalls zweifach verknüpftes Alkyl, Alkandiyl, Alkoxy, Dioxyalkylen, Alkylcarbonyl, Alkoxycarbonyl und Halogenalkylcarbonyl mit jeweils bis zu 8 Kohlenstoffatomen, jeweils geradkettiges oder verzweigtes Alkylamino oder Dialkylamino mit jeweils bis zu 4 Kohlenstoffatomen in den einzelnen Alkylteilen, jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, Nitro oder jeweils niederes Alkyl, Halogenalkyl, Alkoxy, Alkylcarbonyl oder Alkoxycarbonyl substituiertes Phenyl, Naphthyl, Pyridyl oder Piperidinyl oder jeweils gegebenenfalls einfach oder mehrfach, gleich oder

verschieden durch Halogen, insbesondere Fluor, Chlor, Brom, niederes Alkyl oder Halogenalkylcarbonyl substituiertes geradkettiges oder verzweigtes Cyclopropylalkyl, Cyclohexylalkyl, Piperidinylalkyl, Phenylalkyl oder Phenylalkenyl mit bis zu 4 Kohlenstoffatomen in den jeweiligen Alkyl- bzw. Alkenylteilen.

Besonders bevorzugt sind Amide der Formel (I), bei welchen R

- für Wasserstoff oder Chlor steht; ferner R
- für den Rest

15

40

45

50

steht, wobei R6 und R7, gleich oder verschieden sind und unabhängig voneinander jeweils für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; ferner R

- für geradkettiges oder verzweigtes Alkyl mit bis zu 15 Kohlenstoffatomen steht; außerdem R

- für geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, insbesondere Fluor, Chlor, Brom und Iod, steht; außerdem R

- für ein- bis dreifach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen steht, wobei als Substituenten infrage kommen:

Hydroxy, Fluor, Chlor, Brom, Cyano, Cyanato, Thiocyanato, Methoxy, Ethoxy, Methylthio, Ethylthio, Acetyl. Propionyl, Acetoxy, Propionyloxy, Methoxycarbonyl, Ethoxycarbonyl, 1,1,3,3-Tetrachlor-2-hydroxyprop-2-yloxy, 1,1,1,3,3-Pentachlor-2-hydroxyprop-2-yloxy, Chloracetyl, Dichloracetyl, Chloracetoxy, Dichloracetoxy, Pentachlorbutadien-1-ylcarbonyloxy, jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Chlor, Methyl oder Methoxy substituiertes Phenyl, Phenoxy, Phenylthio oder Thienyl; ferner Cyclopropyl, Cyclopentyl, Cyclohexyl; sowie die Reste

wobei R⁶ und R⁷ gleich oder verschieden sind und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methyl-but-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; außerdem R - für ein- bis dreifach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes Alkenyl mit 2 bis 5

Kohlenstoffatomen steht, wobei als Substituenten infrage kommen: Hydroxy, Fluor, Chlor, Brom, Methoxycarbonyl, Ethoxycarbonyl sowie jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden, durch Fluor, Chlor, Methyl oder Methoxy substituiertes Phenyl oder Phenoxy; ferner R

- für geradkettiges oder verzweigtes Alkinyl mit 2 bis 5 Kohlenstoffatomen; außerdem R

- für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclohexenyl, Bicycloheptenyl, Bicyclooctyl, Bicyclononyl und Tricyclodecyl steht, wobei als Substituenten infrage kommen: Methyl, Ethyl, Phenyl sowie der Rest

$$-co-N$$
 R^6

wobei R6 und R7 gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen, außerdem R

- für gegebenenfalls ein- bis dreifach, gleich oder verschieden substituierten Phenyl steht, wobei als Substituenten infrage kommen:

Fluor, Chlor, Brom, Iod, Nitro, Methyl, Ethyl, Methoxy, Ethoxy, Carboxy - auch in Form des Carboxylatanions -, Trifluormethyl, Chloracetamido, Dichloracetamido sowie der Rest

wobei R⁶ und R⁷ gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; ferner R — für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden substituiertes Furyl, Thienyl, Pyridyl oder Dithiolanyl steht, wobei als Substituenten infrage kommen:

Chlor, Methyl, Ethyl sowie der Rest

$$-co-N$$

wobei R^6 und R^7 gleich oder verschieden sind, und jeweils unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Allyl, Propargyl, But-1-in-3-yl, 3-Methylbut-1-in-3-yl oder 2-Cyanoprop-2-yl stehen; und schließlich R

- für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder Phenyl substituiertes Methoxy, Ethoxy, Allyloxy, Propargyloxy, Butinyloxy, Methoxycarbonyl, Ethoxycarbonyl oder Phenyl steht, und

R1 und R2, welche gleich oder verschieden sind, unabhängig voneinander

für Wasserstoff, Formyl, Chlorsulfonyl oder für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom oder Methyl substituiertes Phenyl, Phenoxy oder Phenylsulfonyl stehen; ferner
 für gegebenenfalls ein- bis dreifach, gleich oder verschieden substituiertes, geradkettiges oder verzweigtes
 Alkyl mit 1 bis 8 Kohlenstoffatomen stehen, wobei als Substituenten infrage kommen:

Hydroxy, Mercapto, Cyano, Fluor, Chlor, Brom, Methoxy, Ethoxy, Propoxy, Butoxy, Methoximino, Ethoxyimino, Acetyl, Propionyl, Acetoxy, Propionyloxy, Methoxycarbonyl, Ethoxycarbonyl, Methoxycarbonyloxy, Ethoxycarbonyloxy, Methylthiocarbonyloxy, Ethylthiocarbonyloxy, Chloracetoxy, Dichloracetoxy, Methylsulfonyloxy, Ethylsulfonyloxy, Diethylaminocarbonyloxy, Diethylaminocarbonyloxy, Propylaminocarbonyloxy, Butylaminocarbonyloxy, Allylaminocarbonyloxy, Diallylaminocarbonyloxy, Cyclohexylaminocarbonyloxy sowie gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Chlor oder Methyl substituiertes Phenylaminocarbonyloxy; ferner jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden durch Chlor oder Methyl substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl; gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Nitro, Fluor, Chlor, Brom, Methyl oder Dioxymethylen substituiertes Phenyl, jeweils gegebenenfalls ein- bis zweifach, gleich oder verschieden durch Methyl, Ethyl, Propyl oder Chlor substituiertes Furyl, Tetrahydrofuryl, Pyrazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Thiadiazolyl, Oxadiazolyl, Pyridyl oder Pyrimidinyl; sowie gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Methyl, Ethyl, Chloracetyl, Dichloracetyl, Chlorphenoxyacetyl, Dichloracetamidomethyl oder Dichloracetamidoethyl substituiertes Amino; außerdem R¹ und R²

— für jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Chlor, Methoxy, Ethoxy, Acetyl, Methoxycarbonyl, Ethoxycarbonyl oder Cyano substituiertes geradkettiges oder verzweigtes Alkenyl, Alkadienyl oder Alkinyl mit jeweils 3 bis 5 Kohlenstoffatomen stehen; ferner R¹ und R²

— für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden durch Chlor oder Methyl substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclohexenyl oder Cyclooctyl stehen; außerdem R¹ und R²

— für jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, Propyl, Propandiyl oder Butandiyl substituiertes und/oder benzannelliertes Piperidyl, Pyridyl, Thienyl, Oxazolyl, Isoxazolyl, Thiadiazolyl, Fluorenyl, Phthalimidoyl oder Dioxanyl stehen; außerdem R¹ und R²

— für Methoxy, Ethoxy, Propoxy, Butoxy, Methylthio, Ethylthio, Propylthio, Butylthio, Acetyl, Chloracetyl, Dichloracetyl, Methoxycarbonyl, Ethoxycarbonyl, Chlorethyloxycarbonyl oder Bromethyloxycarbonyl stehen und auβerdem R¹ und R²

— für gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Methyl, Ethyl, Allyl, Propargyl, Acetyl, Chloracetyl oder Dichloracetyl substituiertes Amino oder Propylidenimino stehen, oder aber R¹ und R² gemeinsam mit dem Stickstoffatom, an welches sie gebunden sind,

— für jeweils gegebenenfalls ein- bis fünffach, gleich oder verschieden substituiertes Methylidenimino, Ethylidenimino, Propylidenimino, Pyrrolidinyl, Piperidinyl, Piperidonyl, Perhydroazepinyl, Perhydroazocinyl, Dihydropyrazolyl, Dihydro- oder Tetrahydropyridyl, Azabicyclononyl, Morpholinyl, Perhydro-1,3-oxazinyl, 1,3-Oxazolidinyl, 1,4-Piperazinyl, Perhydro-1,4-diazepinyl, Dihydro- oder Perhydroindolyl bzw. -isochinolyl, Indolyl, Dihydro- oder Perhydroindolyl stehen, wobei als Substituenten infrage kommen:

Hydroxy, Fluor, Chlor, Brom, Cyano, Formyl, Methyl, Ethyl, Propyl, Butyl, Ethandiyl, Propandiyl, Methoxy, Ethoxy, Propoxy, Butoxy, Dioxyethylen, Dioxypropylen, Dioxybutylen, Acetyl, Propionyl, Chloracetyl, Dichloracetyl, α-Chlorpropionyl, Methoxycarbonyl, Ethoxycarbonyl, Methylamino, Dimethylamino, Diethylamino, jeweils gegebenenfalls ein- bis dreifach, gleich oder verschieden durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Methoxy, Ethoxy, Trifluormethyl, Acetyl, Propionyl, Methoxycarbonyl oder Ethoxycarbonyl substituiertes Phenyl, Naphthyl oder Piperidinyl oder jeweils gegebenenfalls ein- bis dreifach gleich oder verschieden durch Chlor, Methyl, Chloracetyl oder Dichloracetyl substituiertes Cyclopropylmethyl, Cyclohexylmethyl, Piperidinylethyl, Piperidinylpropyl, Benzyl, Phenylethyl oder Phenylpropenyl.

Die Ausdrücke "niederes Alkyl", "niederes Alkoxy" etc. bezeichnen im Rahmen dieser Erfindung entsprechende Reste mit 1-4 C-Atomen. Im einzelnen seien die folgenden Verbindungen der allgemeinen Formel (I) genannt:

5

10

15

20

35

40

45

50

36 18 004

Tabelle 1

$$R-CO-N$$

$$R^{1}$$

$$R^{2}$$
(I)

Bsp. Nr.	R	R ¹	R ²
			C ₂ H ₅
I-1	Н	н	
I-2	Cl	$-CH_2-CH=CH_2$	•
I-3	СН₃	Н	CH ₃ -C-C≡CH CH ₃
I-4	СН3	Н	CF₃
I-5	СН₃	$-CH_2-CH=CH_2$	CF_3 $-CH_2$ $-CH=CH_2$
I- 6	CH₃	$\overline{}$	$-so_2$
I- 7	n-C ₃ H ₇	Н	CH ₃ CC≡CH CH ₃ CH ₃
I-8	n-C ₃ H ₇	СН₃	 -CH-C≡CH
I-9	n-C ₃ H ₇	$-CH_2-CH=CH_2$	
I-10	i-C ₃ H ₇	CH ₃	CH₃ CHC≡-CH CH₃
I-11	n-C ₄ H ₉	Н	-CH-C≡CH
I-12	(CH ₃) ₃ C—CH ₂ —	н	CH ₃ —C—CN CH ₃
I-13	(CH ₃) ₃ C—CH ₂ —	CH ₃	CH ₃ -C-C≡CH CH ₃

Bsp. Nr.	R		R ¹	R ²
		СН₃		CH₃
I-14	CH ₃ —(CH ₂) ₂ —	СН—	Н	-C-C≡CH
				ĊH₃
		CH₃		CH₃
I- 15	CH ₃ —(CH ₂) ₂ —	CH—	CH ₃	-CH-C≡CH
		CH₃		
I- 16	CH ₃ —(CH ₂) ₂ —	CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
				CH₃
I-17	n-C ₆ H ₁₃		Н	-С-С≡СН
				 CH₃
				ÇH₃
т1 Q	n-C ₆ H ₁₃		СН₃	_CH—C≡CH
	n-C ₆ H ₁₃			$-CH_2-CH=CH_2$
•		ÇH₃		
I-20	CH ₃ —(CH ₂) ₂ —	C—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
120		Ŭ CH₃	<u> </u>	
		CH ₃		CH₃
r O 1	(CH) C CH =		U	
[-21	(CH3)3C - CH2-	–Сн—Сп₂—	n	-C-C≡CH
				CH₃ CH₃
I-22	n-C ₉ H ₁₉		Н	-C-C≡CH
				ĊH₃
I-23	n-C ₉ H ₁₉		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
				CH₃
I-24	$n-C_{11}H_{23}$		Н	-C-C≡CH
				CH₃
I-2 5	$n-C_{11}H_{23}$		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	$n-C_{13}H_{27}$			$-CH_2-CH=CH_2$
	C1—CH2—	***	H	— CH ₂ — CH(CH ₃) ₂
1-28	C1—CH ₂ —		Н	— C(CH ₃) ₃ CH ₃
	-			
I-29	$Cl-CH_2-$		Н	$-\dot{C}$ $-C_2H_5$
				ĊH₃

36 18 004

Bsp. R Nr.	R^1	R ²
		СН₃
I-30 C1—CH ₂ —	Н	CHCH ₂ CH(CH ₃) ₂
I-31 C1—CH ₂ —	н	$-CH_2-C=CH_2$
		 CH₃
		CH ₃
I-32 C1—CH₂—	Н	
3. 3. 3. 3. 3. 3. 3. 3.	***	—C—C≡CH
		CH ₃
		CH₃
(-33 C1—CH ₂ —	H	— <u>'</u> — C ₂ H ₅
		CN
		Ç₂H₅
-34 C1—CH ₂ —	Н	 C C ₂ H ₅
		$-C-C_2H_5$
-35 C1—CH ₂ —	п	CN
-36 C1—CH ₂ —	H H	-CH ₂ CH ₂ -Br
-37 Cl—CH ₂ —	Н	-CH ₂ CH ₂ -OCH ₃
0112	11	—СH ₂ —СH(ОСН ₃) ₂
-38 C1—CH ₂ —	H	$-cH_2$
		CĮ
39 C1—CH ₂ —	Н	-CH ₂ -NH-CO-CH ₂ O-Cl
	-	CI—()
		Ci V
		CI
40 C1—CH ₂ —	Н	—ĊH—NH—CO—CH₂Cl
41 Cl—CH ₂ —	Н	-CH ₃
		$ m CH_3$
42 C1—CH ₂ —	H	$\overline{}$
		N,
	•	C₂H₅
43 C1—CH ₂ —	CH₃	— CH(CH ₃) ₂
44 C1—CH ₂ —	CH₃	—(CH ₂) ₃ —CH ₃

			R^2
I-45	C1—CH ₂ —	СН3	CH C₂H₅ CH₃
I-46	C1—CH ₂ —	CH₃	CH ₃ —CH—CH(CH ₃) ₂ CH ₃
I-47	C1—CH ₂ —	СН₃	$-CH_3$ $-CH_2$ $-C \equiv CH$ $-CH_3$
I-48	Cl—CH ₂ —	$\mathrm{CH_3}$	_CH—C≡CH
I-49	CI—CH ₂ —	CH ₃	$-CH_2CH_2-CN$
I-50	C1—CH ₂ —	CH ₃	$-CH_2$
I-51	Cl—CH ₂ —	CH ₃	$-CH_2$ $-CI$
I-52	C1—CH ₂ —	CH ₃	$-CH_2$
I-53	C1—CH ₂	C ₂ H ₅	`CH₃ —CH—C₂H₅ CH₃ Cl
I-54	C1—CH ₂ —	C_2H_5	$-CH_2$
I-55	C1—CH ₂ —	C_2H_5	$-CH_2$ $-CH_3$
I-56	C1—CH ₂ —	$\mathrm{C_2H_5}$	$-CH_2$ $-CH_3$ $-CH_3$
I-57	C1—CH ₂ —	$\mathrm{C_2H_5}$	$-CH_2$ CH_3
I-58	C1—CH ₂ —	C ₂ H ₅	$\overline{}$
I-59	C1—CH ₂ —	C_2H_5	——CH₃
	C1—CH ₂ — C1—CH ₂ —	— CH ₂ CH ₂ CH ₃ — CH ₂ CH ₂ CH ₃	— CH ₂ — CH(CH ₃) ₂ — C(CH ₃) ₃

Bsp. Nr.	R	R ¹	R ²
I-62	Cl—CH ₂ —	—CH₂CH₂CH₃	
I-63	C1—CH2—	—CH₂CH₂CH₃	$-CH_2$
I-64	C1—CH ₂ —	—CH₂CH₂CH₃	—CH ₂ ————————————————————————————————————
I-65	C1—CH ₂ —	—CH ₂ CH ₂ CH ₃	$-CH_2$ Cl
I-66	C1—CH ₂ —	—CH₂CH₂CH₃	$-CH_2$ CI
			Ci
I-67	C1—CH ₂ —	-CH ₂ CH ₂ CH ₃	$-CH_2$
I-68	C1—CH2—	CH ₂ CH ₂ CH ₃	
I-69	C1—CH2—	—CH ₂ CH ₂ CH ₃	
I-70	C1—CH ₂ —	—CH(CH ₃) ₂	—CH₂CH₂CH₂CH₃ ÇH₃
I-71	C1—CH ₂ —	—СH(СН ₃) ₂	$-C_2H_5$
I-72	C1—CH2—	—CH(CH ₃) ₂	
I-73	C1—CH ₂ —	—CH(CH ₃) ₂	—(CH ₂) ₄ —CH ₃
I- 74	Cl—CH ₂ —	—СH(СH ₃) ₂	$-CH_2$
I-75	C1—CH2—	—CH ₂ CH ₂ CH ₂ CH ₃	—CH ₂ CH ₂ CH ₂ CH ₃
	C1—CH2—	—CH ₂ CH ₂ CH ₂ CH ₃	—CH ₂ —CH(CH ₃) ₂
	C1—CH2—	-CH ₂ CH ₂ CH ₂ CH ₃	$-CH = CH_2$
	C1—CH2—	$-CH-C_2H_5$	-CH ₂ -CH(CH ₃) ₂
		. CH₃	
I-79	C1—CH2—		—(CH ₂) ₅ —CH ₃
I-80	C1—CH2—	$-CH_2-CH=CH_2$	

Bsp. Nr.	R	$\mathbf{R}^{\mathbf{I}}$	R^2 bzw. $-N$ R^2
 I-81	C1—CH2—	-CH ₂ CH ₂ -OH	-CH ₂ CH ₂ -OH
		-CH ₂ CH ₂ OCH ₃	-CH ₂ CH ₂ OCH ₃
		-CH2CH2OC2H5	-CH ₂ CH ₂ OC ₂ H ₅
		$-CH_2CH_2O-CO-NH-CH_3$	-CH2CH2O-CO-NH-CH3
		$-CH_2CH_2O-CO-NH-CH_2$	-CH2CH2O-CO-NH-CH2
1-63	CI—CH ₂	CH=CH	
			H
I-86	C1—CH ₂ —	$-CH_2CH_2O-CO-NH$	$-CH_2CH_2O-CO-NH$
I-87	Cl—CH ₂ —	-CH ₂ CH ₂ O-CO-NH	CH ₂ CH ₂ O CONH
		CI	CI
I-88	C1—CH ₂ —	- C1 -	-N
			CH₃ H₃C
I-89	C1—CH ₂ —		−N CH₃
			H_5C_2
I-90	C1—CH ₂		$-\mathbf{N}$
I-91	C1—CH ₂ —		C_2H_5 $-N$
I-92	C1—CH ₂ —		$-N = C$ $N(CH_3)_2$ $N(CH_3)_2$
I-93	I—CH₂—	H	CH_3 $-C - C = CH$ CH_3

36 18 004

5	Bsp. R Nr.	R^1	R^2 bzw. $-N$ R^2
10	I-94 I—CH ₂ —	CH₃ —CH₂—CH=CH₂	CH₃ —CH—C≡CH
	I-95 I—CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$

Bsp. Nr.	R.	R^1	R^2
I-96	Cl ₂ CH—	Н	— CH ₂ —CH(CH ₃) ₂
I-97	Cl ₂ CH—	Н	—C(CH ₃) ₃
			CH₃
I-98	Cl₂ČH—	H	$-C-C_2H_5$
1,0	012011	**	
			CH₃
I-99	Cl₂CH—	H	$-CH_2-CH=CH_2$
			CH₃
I-100	Cl ₂ CH	H ~	$-CH_2-C=CH_2$
	-	•	CH₃
T-101	Cl ₂ CH—	н	-c-ç≡ch
•	0.2012		
* 10 0	C. CTT	**	CH₃
	Cl ₂ CH—		— CH ₂ CH ₂ Br
1-103	Cl ₂ CH—	н	—CH₂CH₂OH
			CH₃
I-104	Cl ₂ CH—	Н	—СH₂—ĊH—ОН
I-105	Cl ₂ CH—	Н	— ₂ CH ₂ CH ₂ CH ₂ —OH
I-106	Cl ₂ CH—	Н	CH2CH2OC2H5
I-107	Cl ₂ CH—	Н	$-CH_2CH_2CH_2-OCH(CH_3)_2$
			OC_2H_5
I -108	Cl ₂ CH—	Н	—СH₂—С́Н
		-	OC_2H_5
			CH ₃
	-		
[-109	Cl₂CH—	Н	-C-CN
			C_2H_5
			C_2H_5
[-110	Cl ₂ CH—	Н	$-\overset{ }{\text{C}}$ -CN
r 1 1 1	CLCII	***	C ₂ H ₅
	Cl ₂ CH—		CH2CH2N(CH3)2
	Cl ₂ CH—		-CH2CH2-N(C2H5)2 $-CH2CH2-NH-CO-CHCl2$
	Cl ₂ CH—		
. 117	C12C11	11	C_2H_5
	Cl ₂ CH—		$-CH_2CH_2-N-CO-CHCl_2$
-116	Cl₂CH—	H	—(CH ₂)₃—N—CO—CHCl ₂
			(CH ₂) ₃ —NH—CO—CHCl ₂

36 18 004

Bsp. Nr.	R	\mathbb{R}^1	R^2
I-117	Cl ₂ CH—	Н	—CH ₂ ——H
I -118	Cl₂CH—	Н	$-\mathrm{CH}_2$
I-119	Cl₂CH—	Н	$-CH_2$
I-120	СьСН—	Н	$-CH_2$ CI
I-121	Cl ₂ CH—	н	C1 —CH2——C1
I-122	Cl ₂ CH—	н	$-CH_2$ O
I-123	Cl₂CH—	н	-CH-CH-
I-124	Cl ₂ CH—	Н	$-CH_2CH_2$
I-125	Cl₂CH—	Н	NH—CO—CH ₂ Cl —CH—
I-126	Cl ₂ CH—	Н	NH—CO—CH ₂ C1 -CH—
I- 127	Cl ₂ CH—	Н	NO ₂ NH—CO—CHCl ₂ —CH—
I-128	Cl ₂ CH—	Н	NH—CO—CHCl ₂
I-129	Cl ₂ CH—	Н	NO ₂ CI CI CI NH—CO—CHCl ₂

Bsp. Nr.	R	R ¹	R ²
			CH₃
I-130	Cl ₂ CH—	Н	$-\overset{1}{C}$ =CH-CN CH ₃
I-131	Cl ₂ CH—	Н	$-C = CH - COOC_2H_5$
I-132	Cl ₂ CH—	Н	H
I-133	Cl ₂ CH—	Н	H
I-134	Cl ₂ CH—		H C ₂ H ₅
			$\mathrm{C_2H_5}$ $\mathrm{C_2H_5}$
I-135	Cl ₂ CH—	 H	H
I-136	Cl ₂ CH—	н	$-CO-O-C_2H_5$
I-137	Cl ₂ CH—	Н	$-CO-O-CH_2CH_2C1$
I-138	Cl_2CH —	Н .	$-NH-CO-CHCl_2$
			CH ₃
I -139	Cl ₂ CH—	Н	-N-CO-CHCl ₂
			CH_2 — CH = CH_2
[-140	Cl ₂ CH—	Н	$-N-CO-CHCl_2$
[-141	Cl ₂ CH—	Н	
			C_2H_5
-142	Cl₂CH—	Н	
			(CH₃)₃C
-143	Cl ₂ CH—	Н	
			CH ₃
-144	Cl ₂ CH—	H	
			CH₃

Bsp. Nr.	R	R ¹	R ²
			СН3
I-145	Cl ₂ CH—	Н	-CH ₃
			CH ₃
I-146	Cl ₂ CH—	Н	
			CH ₃
I-147	Cl ₂ CH—	Н	
	-		C_2H_5
			C ₂ H ₅
I-148	Cl ₂ CH—	Н	
			C ₂ H ₅ (CH ₃) ₂ CH
I-149	Cl ₂ CH—	H	
			(CH ₃) ₂ CH
			он
I-150	Cl ₂ CH—	Н	$\overline{}$
			C ₂ H ₅ O
I-151	Cl₂CH—	H .	$\overline{\hspace{1cm}}$
			CI
I-152	Cl₂CH—	Н	
X 1 50	G. G.		Cl
1-153	Cl₂CH—	н .	
			Cl CF ₃
I-154	Cl₂CH—	н	
	-		

Bsp. Nr.	R .	R^1	R ²
			$O-CO-NH-C_2H_5$
I-155	Cl ₂ CH—	Н	
		♥	O-CO-NH-CH ₂ -CH=CH ₂
I-156	Cl ₂ CH—	Н .	$\overline{\langle}$
T 1 60	C. CII	**	NH—CO—C ₂ H ₅
1-12/	Cl ₂ CH—		NH—CO—CHCl ₂
I-158	Cl ₂ CH—	Н	NII—CO—CIICi2
	-		NH—CO—CHCl ₂
I-159	Cl ₂ CH—	Н	$\overline{}$
T 160	CLCH	. **	
	Cl₂CH—		N N
I-161	Cl₂CH—	Н	→ O N
I-162	Cl ₂ CH—	н	
			CH ₃
l-163	Cl₂CH—		$\sim_{\rm S}$
I-164	Cl ₂ CH—	H	N —— CH_3
-165	Cl₂CH—	н	N-N S
. 200	0.2011		CH_3
-166	Cl₂CH—	Н	O N
-167	C1-CH	п	N O
-10/	Cl₂CH—		$\overline{}_{s}$

Bsp. Nr.	R	R^1	R ²
I-168	Cl₂CH—	Н	N Br
I-169	Cl₂CH—	н	NC S
I-170	Cl₂CH—	Н	O O
I-171	Cl ₂ CH—	Н	
I-172	Cl₂CH—	Н	NH
I-173	Cl₂CH—	CH ₃	—CH ₃
	Cl₂CH—		CH ₂ CH ₂ CH ₃
	Cl ₂ CH—		—CH(CH ₃) ₂
I-176	Cl ₂ CH—	CH ₃	-CH ₂ CH ₂ CH ₃
I-177	Cl ₂ CH—	CH ₃	-CH-CH ₂ CH ₃
			$ $ CH $_3$
I-178	Cl ₂ CH—	CH ₃	
I-179	Cl₂CH—	CH ₃	-CHCHCH₃
	-	•	
I-180	Cl ₂ CH—	CH.	ĊH ₃ ĊH ₃ CH=C=CH ₂
	Cl ₂ CH—		$-CH_2-C \equiv CH$
	Cl₂CH—		-CH-C≡CH
	-		
T_183	Cl₂CH—	CH-	CH ₃
	Cl ₂ CH—		— CH ₂ CH ₂ — OH — CH ₂ CH ₂ — CN
	Cl ₂ CH—		
		-	$-(CH_{2})_{2}-N-(CH_{2})_{2}-N-CO-CHCl_{2}$
I-186	Cl ₂ CH—	CH ₃	$-CH_2$ H

Bsp. Nr.	R	\mathbb{R}^1	R^2
I-187	Cl₂CH—	СН₃	$-CH_2$
I-188	Cl₂CH—	CH₃	CH ₃
I-189	Cl ₂ CH—	CH ₃	C1 —CH ₂ ————————————————————————————————————
I-190	Cl ₂ CH—	СН₃	$-CH_2$ $C1$
	Cl ₂ CH— Cl ₂ CH—		$-NH_2$ $-N=C(CH_3)_2$ $CO-CHCl_2$
I-193	Cl ₂ CH—	CH ₃	-N CO-CHCl ₂
I-194	Cl ₂ CH—	СН₃	H and a second
I-195	Cl ₂ CH—	CH ₃	
I-196	Cl₂CH—	СН₃	C ₂ H ₅
I-197	Cl ₂ CH—	СН₃	(CH ₃) ₂ CH
I-198	Cl ₂ CH—	CH ₃	CH ₃
			CH ₃ C ₂ H ₅
I-199	Cl ₂ CH—	СН₃	C_2H_5
	Cl ₂ CH— Cl ₂ CH—		C_2H_5 C_2H_5 C_1H_5

Bsp. Nr.	R	R ¹	R ²
I-202	Cl₂CH—	C ₂ H ₅	—CH₂CH₂CH₂CH₃
I-203	Cl₂CH—	C_2H_5	—CH—C₂H5
			CH ₃
I-204	Cl ₂ CH—	C_2H_5	— CH ₂ — CH(CH ₃) ₂
I-205	Cl ₂ CH—	C_2H_5	— C(CH ₃) ₃
I-206	Cl ₂ CH—	C ₂ H ₅	—CH—CH₂CH₂CH₃
			CH ₃
I-207	Cl ₂ CH—	C_2H_5	—(CH ₂) ₅ —CH ₃
			C ₂ H ₅
I-20 8	Cl₂CH—	C_2H_5	$-\overset{ }{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{3}$
I-209	Cl ₂ CH	C_2H_5	$-CH_2CH_2-O-CO-CHCl_2$
			C_2H_5
I-210	Cl ₂ CH—	C_2H_5	$-CH_2CH_2-N-CO-CHCl_2$
J-211	Cl ₂ CH—	C_2H_5	—CH ₂ —
I-212	Cl₂CH—	C ₂ H ₅	$-CH_2$ CH_3
			CH₃
I-2 13	Cl ₂ CH—	C₂H₅	$-CH_2$ CH_3
			CH₃
I- 214	Cl ₂ CH—	C ₂ H ₅	$-CH_2$
			CH₃
[-215	Cl₂CH—	C ₂ H ₅	$-CH_2$
			CI
[-216	Cl₂CH—	C ₂ H ₅	—(H)
			CH₃
			\rightarrow
-217	Cl₂CH—	C ₂ H ₅	H
			CH₃
-218	Cl₂CH—	C ₂ H ₅	H

Bsp. Nr.	R	R^1	R^2
I-219	.Cl ₂ CH—	C ₂ H ₅	H CH ₃
I-22 0	Cl₂CH—	C ₂ H ₅	CH ₃
[-221	Cl ₂ CH—	C ₂ H ₅	
[-222	Cl ₂ CH—	C ₂ H ₅	
-223	Cl ₂ CH—	CH₃CH₂CH₂—	C ₂ H ₅ — CH ₂ CH ₂ CH ₃
		CH ₃ CH ₂ CH ₂ —	-CH ₂ CH ₂ CH ₃
		CH ₃ CH ₂ CH ₂ —	-CH-C ₂ H ₅
-226	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	—CH ₂ —CH(CH ₃) ₂
		CH ₃ CH ₂ CH ₂ —	— C(CH ₃) ₃
-228	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	—(CH ₂) ₄ —CH ₃
-229	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	—СН—(СН ₂) ₂ —СН ₃ СН ₃
-230	Cl ₂ CH—	CH₃CH₂CH₂—	
-231	CbCH	CH₃CH₂CH₂—	—(CH ₂) ₅ —CH ₃
		CH ₃ CH ₂ CH ₂ —	$-CH_2CH=CH_2$
-233	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	$-C=CH-C_2H_5$
			CH₃
-234	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	$-CH_2$
		. ь	CH₃
-235	Cl₂CH—	CH₃CH₂CH₂—	$-CH_2$
236	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	$-CH_2$ CH_3
			СН₃
		CH₃CH₂CH₂—	$-CH_2$ CH_3

Bsp. Nr.	R	R ¹	R ²
			СН₃
I-238	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	$-CH_2$ CH_3
I-239	Cl ₂ CH—	CH₃CH₂CH₂—	−CH ₂ —
I-240	Cl₂CH—	CH₃CH₂CH₂—	C1 —CH2———————————————————————————————————
I-241	Cl₂CH—	CH ₃ CH ₂ CH ₂ —	$-CH_2$ O
I-242	Cl₂CH—	CH₃CH₂CH₂—	$C1$ CH_2 $C=CH_2$
I-243	Cl ₂ CH—	CH₃CH₂CH₂—	
I-244	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	
I-245	Cl ₂ CH—	CH ₃ CH ₂ CH ₂ —	$\overline{}$
I-246	Cl₂CH—	(CH ₃) ₂ CH—	—CH(CH ₃) ₂
I-247	Cl ₂ CH—	(CH ₃) ₂ CH—	—CH₂CH₂CH₂CH₃
I-248	Cl ₂ CH—	(CH ₃) ₂ CH—	$-CH-C_2H_5$
T 0 40	Č. CII	(011) 011	CH ₃
		(CH₃)₂CH — (CH₃)₂CH —	— CH ₂ — CH(CH ₃) ₂
		(CH ₃) ₂ CH—	—(CH ₂) ₄ —CH ₃ —CH—(CH ₂) ₂ —CH ₃
I-252	Cl ₂ CH—	(CH ₃) ₂ CH—	CH_3 $-CH_2-CH=CH_2$
I-253	Cl ₂ CH—	(CH ₃) ₂ CH—	$-CH_2$
I-254	Cl ₂ CH—	(CH ₃) ₂ CH—	$\overline{}$
I-255	Cl ₂ CH—	n-C ₄ H ₉ —	
			÷ ^~v

Bsp. Nr.	R	R ¹	R ²
I-256	Cl ₂ CH-	n-C ₄ H ₉ —	—CH ₂ —CH(CH ₃) ₂
I-257	Cl ₂ CH—	n-C ₄ H ₉	— C(CH ₃) ₃
I-258	Cl ₂ CH—	n-C ₄ H ₉	$-CH_2-CH=CH_2$
I-259	Cl_2CH —	n-C ₄ H ₉ —	$-CH=CH-C_2H_5$
I-260	Cl ₂ CH—	CH ₃	$-CH_2$
I-261	Cl ₂ CH—	n-C ₄ H ₉ —	
I-262	Cl ₂ CH—	C ₂ H ₅ —CH— CH ₃	— CH ₂ —CH(CH ₃) ₂
7.040	CI CII		
I-263	Cl₂CH—	C ₂ H ₅ —CH— CH ₃	
I-264	Cl ₂ CH—	(CH ₃) ₂ CH—CH ₂ —	$-CH_2-CH=CH_2$
I-265	Cl ₂ CH—	$(CH_3)_2CH-CH_2-$	—CO—H
I-266	Cl ₂ CH—	$(CH_3)_2CH$ — CH_2 —	—CO—CH ₃
I-267	Cl ₂ CH—	(CH ₃) ₂ CH — CH ₂ —	—CO—CHCl ₂
I-268	Cl ₂ CH—	(CH ₃) ₃ C—	$-CH=CH-C_2H_5$
I-269	Cl₂CH—	(CH ₃) ₃ C—	$-CH_2-CH_2-OH$
I-270	Cl ₂ CH—	CH ₃ —(CH ₂) ₅ —	(CH2)5CH3
I-271	Cl₂CH—	$CH_2 = CH - CH_2 -$	$-CH_2-CH=CH_2$
		$CH_2 = CH - CH_2 -$	$-CH_2-C=CH_2$
			$_{\rm CH_3}^{\mid}$
I-273	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2-CH=N-OCH_3$
			Cl Cl
I-274	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2$
I-275	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2$
		.	`o'
I-276	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2$ $\stackrel{\text{N}}{\longrightarrow}$
I-277	Cl₂CH—	$CH_2 = CH - CH_2 -$	$-CH_2 {N} CH_3$
I-278	Cl₂CH—	$CH_2 = CH - CH_2 -$	$-CH_2$ N C_2H_5

Bsp. Nr.	R	R ¹	R ²
I-279	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2$ N N
I-280	Cl₂CH—	CH_2 = CH - CH_2 -	CH ₂) ₂ —CH ₃ CH ₃
I-281	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2 \longrightarrow N$
I-282	Cl ₂ CH—	CH_2 = CH - CH_2 -	$-CH_2$ N CH_3 CH_3
I-283	Cl₂CH—	CH_2 = CH - CH_2 -	$-CH_2CH_2-N$
I-284	Cl₂CH—	CH_2 = CH - CH_2 -	CH ₃ - CH CH ₃ - N N
I-285	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$-CH_2-C=CH_2$ CI
I-286	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	\overline{H}
I-287	Cl ₂ CH—	$CH_2 = CH - CH_2 -$	$\overline{}$
I-288	Cl₂CH—	$CH_2 = CH - CH_2 -$	N——CH ₃
I-289	СІ₂СН—	CH_3 $CH_2 = C -$	CH ₃
I-290	Cl₂CH—	C_2H_5 — CH = CH —	CH ₃ -C-C≡CH CH ₃
		$H_2C = CH - CH_2 - CH_2 - CH_2 - CN$	-CH2-CH(OCH3)2 $-CH2-CN$

Bsp. Nr.	R	R ¹	R ²
I-293	Cl ₂ CH—	—CH₂CH₂—CN	—CH₂CH₂—CN
I-294	Cl ₂ CH	-CH ₂ CH ₂ -OH	—CH₂CH₂—OH
I-295	Cl ₂ CH—	$-CH_2CH_2-C1$	$-CH_2CH_2-CI$
I-296	Cl ₂ CH—	—CH₂CH₂OCH₃	—CH₂CH₂OCH₃
I-297	Cl ₂ CH—	-CH2CH2OC2H5	-CH2CH2OC2H5
		OH	OН
I-298	Cl ₂ CH—	$-CH_2-CH-CH_3$	-CH ₂ -CH-CH ₃
I-299	Cl ₂ CH—	-(CH2)2OCOC2H5	$-(CH_2)_2OCOC_2H_5$
I-300	Cl ₂ CH—	—(CH ₂) ₂ OCOCHCl ₂	—(CH ₂) ₂ OCOCHCl ₂
I-301	Cl ₂ CH	—(CH₂)₂OCOOCH₃	(CH ₂) ₂ OCOOCH ₃
I-302	Cl ₂ CH—	—(CH ₂) ₂ OCOSC ₂ H ₅	-(CH2)2OCOSC2H5
I-303	Cl ₂ CH—	—(CH ₂) ₂ OCONHCH ₃	—(CH ₂) ₂ OCONHCH ₃
I-304	Cl₂€H—	-(CH2)2OCON(CH3)2	-(CH2)2OCON(CH3)2
I-305	Cl ₂ CH—	$-(CH_2)_2OCONHC_2H_5$	-(CH2)2OCONHC2H5
I-306	Cl_2CH —	-(CH2)2OCONHCH(CH3)2	-(CH2)2OCONHCH(CH3)2
I-307	Cl ₂ CH—	(CH2)2OCONH(CH2)3CH3	-(CH2)2OCONH(CH2)3CH3
I-308	Cl ₂ CH—	$-\!$	$-(CH_2)_2OCONHCH_2CH=CH_2$
I-309	Cl ₂ CH—	(CH2)3OSO2CH3	(CH2)2OSO2CH3
I-310	Cl ₂ CH—	—(CH₂)₃NHCOCHCl₂	—(CH₂)₃NHCOCHCl₂
			C_2H_5
I_311	Cl-CH—	—CH₂OCH₃	
1,711	CIZCII	C1120 C113	
			C_2H_5
I-312	Cl ₂ CH—	—CH ₂ CH ₂ —SH	$-CH_2$
I-313	Cl ₂ CH—	$-CH_2CO-OC_2H_5$	
T 0 1 4	C) CII	CH ₃	CH ₃
1-314	Cl₂CH—	—ĊH—CO—OCH₃	
		СН₃	CH₃ CH₃
I-315	Cl ₂ CH—	-CH-CO-OCH ₃	
			C_2H_5

36 18 004

Bsp. Nr.	R	R ¹	\mathbb{R}^2
I-316	Cl₂CH—	CH ₃ CHCOOCH ₃	CH_3 C_2H_5
I-317	Cl₂CH—	CH ₃ CHCOOC ₂ H ₅	C_2H_5 C_2H_5
I-318	Cl ₂ CH—	$-CH_2-N$	CH_3 C_2H_5
I-319	Cl₂CH—	$-CH_2-N$	C_2H_5 C_2H_5

Tabelle 1 Fortsetzung	ortsetzung				
Bsp. Nr.	æ	RI	R ²	$bzw N R^{2}$	
I -320	Сьсн—	-CH-CH ₂ -OCH ₃	C ₂ H ₅		
F321	Cl ₂ CH—	сн _з с=снсосн _з	CH ₃	·	
F322	Cl2CH—	сн _з - с=снсосн _з	CH ₃		
I-323	Cl ₂ CH—	сн ₃ с=сн-сосн ₃	H. J.		
F324	C12CH—	сн _з с=снсосн _з	CF ₃		

Bsp. Nr.	æ	\mathbb{R}^1	$ m R^2$	bzw. — N R²
I-325	Сьсн—	сн, -с=сн—сосн,	CF ₃	
I-326	Cl ₂ CH—	сн, с=снсоос,2,	E E	
I-327	Сьсн—	O ————————————————————————————————————		
I-328	Сьсн—	—со—снсь	-сосн,	
I-329	Сьсн—			$N(CH_3)_2$ $-N = C$ $N(CH_3)_2$
L-330	Cı,CH—			
I-331	Сьсн—			

Bsp. Nr.	æ	R	$ m R^2$	bzwN
I-332	Cl ₂ CH—			N-
I-333	Сьсн—	-		
I-334	Сьсн—			
I-335	Сьсн—			$-N$ CH_3
F336	Сьсн—			\wedge
F337	C½CH—			$CH_3 \qquad CH_3 \qquad \qquad -N \qquad -CH_3 \qquad \qquad CH_3 \qquad CH_3 \qquad \qquad CH_4 \qquad \qquad CH_4 \qquad \qquad CH_4 \qquad \qquad CH_4 \qquad \qquad CH_5 \qquad CH_5 \qquad CH_5 \qquad CH_5 \qquad \qquad CH_5 $
I-338	Сьсн—		·	CH_3 CH_3 CH_3

36 18 004

No.				
$\begin{array}{c} C^{h_3} \\ C^{h_2} \\ C^{h_3} \\ C^{h_4} \\ C^{h_5} \\$	Bsp. Nr.	~		
$C_{l_2}CH - C_{l_2}CH - C_{l$	I-339	ChCH—		CH ₃
$Cl_2CH - CH_3$ $Cl_3CH - CH_4$ CH_3 CH_4 CH_5	I-340	Сьсн—		, \\ 5
$C_{12}CH-$ $C_{13}CH-$ $C_{14}CH_{3}$ $C_{15}CH-$ $C_{15}CH-$ $C_{15}CH-$	I-341	сьсн—		YY
Cl ₂ CH—	I-342	Сьсн—		
	F343	сьсн—		

Bsp. Nr.	æ	"צ		$ m R^2$	bzw. — N R ²	
F344	Cl ₂ CH—				C_2H_5	
F345	Сьсн—				$-N$ CH_3	
I-346	Cl ₂ CH—				$-N$ C_2H_5 C_4H_5	
I-347	Cl ₂ CH —				C_2H_3 C_4H_3 CH_3	
I-348	Cl2CH—		~		$-N \longrightarrow C_2H_5$ C_2H_5	
I-349	Cl ₂ CH—				$CH_3(CH_2)_2$	

Bsp. Nr.	æ	\mathbb{R}^{1}	$ m R^2$	bzw. —N
I-350	Cl2CH—			-N CH(CH ₃)h
I -351	Cl ₂ CH—			$H \longrightarrow CH_2$
I-352	СІ2СН—			
I-353	Сьсн—			0 <u>N</u>
I-354	Сьсн—			$-N \underbrace{\qquad \qquad \text{ocH}_3 \qquad \qquad }_{\text{ocH}_3}$
I-355	Сьсн—			-N OC ₂ H ₅ OC ₂ H ₅
F356	Cl ₂ CH—			
I-357	Сьсн—			

Bsp. Nr.	æ	. H	R ² ::	bzw. — N
I-358	Cl2CH—		-	CH ₃ CH ₃
I-359	ChCH—			CH ₃ CH ₃ CH ₃ CH ₃ -N
1-360	Cl2CH—			CH ₃ CH ₃ Br
I-361	ChCH—			
I-362	CbCH—			$CO-CH_3$
F-363	ChCH—			

				, R ¹
Bsp. Nr.	æ	R ¹	\mathbb{R}^2	bzw. —N R²
I-364	Сьсн—			$-N$ $(CH2)3 \sim (CHC1)2$
I-365	Сьсн—			
1-366	Сьсн—			CH_3 CH_3
I-367	ChCH—			CH ₃
F-368	Cl2CH—			
I-369	ChCH—			
F-370	ChCH—			CH ₃ CH ₃ CH ₃ CH ₃ -N -CH ₃

Bsp. Nr.	x	 	\mathbb{R}^2	bzw. —N
I-371	Сьсн—			$-N$ $N-CH_3$
I-372	Сьсн—	-		$-N$ $N-(CH_2)_2-CH_3$
I-373	${ m Cl}_2{ m CH}-$			
I-374	CLCH—			
I-375	ChCH—			$-N \qquad \parallel \qquad \qquad \parallel \\ N-C-OC_2H_5$
I-376	ChCH—			$-N$ $N-CH_2$
I-377	ChCH—			$-N$ $N-(CH_2)_2$
I-378	CbCH—			$-N \longrightarrow N - CH \longrightarrow N - CH$
I-379	CbCH—			$-N \longrightarrow N - CH_2 - CH = CH - \bigcirc$

36 18 004

Bsp. Nr.	Я	R ⁱ	R²	$bzwN $ R^{2}
F-380	Сьсн—			
I-381	ChCH—			
				CH ₃
I-382	Сьсн—			
				CH3
I-383	Сьсн—			$-N$ N CH_3
				CH ₃
I-384	Сьсн—			
				CH_3
I-385	ChCH—			$-N$ N CH_3
				, CH ₃
I-386	Сьсн—			

Bsp. Nr.	ಜ	آ¥	R ²	bzw. — N R ²
F-387	ChCH—			$-\frac{N}{N}$
F388	Сьсн—			CI N N N
I-389	Сьсн—			
l-390	Сьсн—			
F391	ChCH—			$-N \bigvee_{OM} N \xrightarrow{OM} NO_2$
I-392	C½CH—			CH3O N N N
I-393	C _L CH—			$-N \longrightarrow N \longrightarrow N$
J-394	CLCH—			-N N $OCH3$

Bsp. Nr.	, M	R ¹	\mathbb{R}^2	bzw. —N
F395	Cl ₂ CH—			$-N$ N C_2H_5O
F-396	Сьсн—			-N N CO CO
I-397	Сьсн —			$-N$ N CH_3
I-398	Сьсн—			$-N$ N $-CO$ $-CHCl_2$ CH_3
I-399	Сьсн—			$-N$ $N-CO-CHCl_2$ CH_3
1-400	C½CH—			CH ₃ -N N-CO-CHCl ₂ CH ₃

$bzw N \\ R^2$			$-N N - CH_3$	-N N-CO-CHCL		
$ m R^2$						
-W						
e z	Сьсн—	Сьсн—	Сьсн—	Сьсн—	Сьсн—	Сьсн—
Bsp. Nr.	I-401	I-402	I-403	J-404	I-405	I-406

1407 CLCH— 1408 CLCH— 1409 CLCH— 1410 CLCH—					
$C_{h}CH-$ $C_{h}CH-$ $C_{h}CH-$ $C_{h}CH-$ $C_{h}CH-$ $C_{h}CH-$ $C_{h}CH-$.c.sp.	æ	R ¹	R²	
$C_{L}C_{H}-$	-407	Сьсн—			CH ₃
$C^{hCH}-$	408	Сьсн—			E S
Ch ₅ CH—	-409	Сьсн—			CH ₃
	-410	Сьсн—			

l a	bzw. — N		CH ₃	$-\frac{1}{N}$	$-\overset{-N}{\longleftrightarrow}$		\bigcap_{CH_3}
		·					
	R ²	<u>.</u> .					
	الا الا				-		
	¤	Cl2CH—	Сьсн—	Cl2CH—	Сьсн—	Сьсн—	Сьсн—
	Bsp. Nr.	J-411	J-412	I-413	I-414	I-415	I-416

	i i	-			
					3
$bzw N R^{1}$					C_{H_3}
bzv					
	$-CH_2-CH=CH_2$ $-CH_2CH_2-B_1$ CH_3	CN C2H5	CH_{3} CH_{3} $-CH-C = CH$ CH_{4} CH_{5}	— CH ₂ CH ₂ CH ₃ — CH ₂ CH ₂ CH ₃ — CH(CH ₃) ₂ — CH ₂ CH(CH ₃) ₂ — CH ₂ CH(CH ₃) ₂	
\mathbb{R}^2	0 0 0-		CH ₃ CH ₄ CH ₅ CH ₆ CH ₇		
R	н н	Н	${ m CH}_3$	C_2H_5 $-CH_2CH_2CH_3$ $-CH(CH_3)_2$ $-CH_2CH(CH_3)_2$ $-CH_2-CH=CH_2$	
æ	Cl3C —	CI³C —	Cl³C — Cl³C —	Ci ³ C C	Cl³C —
Bsp. Zr.	I-422 I-423	I-424	I-425 I-426 I-427	1-428 1-429 1-430 1-431	I-433

Bsp.	æ	R ¹	R ²	bzw. —N
I-435	B _{ts} C —	H	сн ₃ -с-с=сн 	
I-436	B ₁₃ C—	Н	-C-CN	
I-437	В ₃ С—	Н	CH_2 $-CH$ CH_2 CH_3	
I-438 I-439	B ₃ c— B ₃ c— CH ₃	CH ₃ —CH ₂ —CH=CH ₂	 —Сн—С≡СН —Сн ₂ —Сн=Сн,	
I-440	Cl—CH— CH3	$-CH_2-CH=CH_2$	$-\mathrm{CH}_2$ $-\mathrm{CH}$	
I-441	CI—CH—	$-\mathrm{CH}_2 - \mathrm{CH} = \mathrm{CH}_2$	—СН2—СО—СН3	
I-442	CI—CH— CH ₃	$-CH_2-CH=CH_2$	$-CH_2-CH=N-OCH_3$ CH_3	
I-443	CI—CH—	$-CH_2-CH=CH_2$	$-\text{CH}_2-\text{C}=\text{N}-\text{OCH}_3$	

1	e4	R	R ²	bzw. — N	-
CH. CI—CH.— CH3	ı	$CH_2CH=-CH_2$	$-CH_2$		
СІ—СН—	ı	$-CH_2-CH=CH_2$	$-CH_2 \xrightarrow{N}$		
CH3 CI—CH—	<u> </u>	$-CH_2 - CH = CH_2$	$-CH_2 \longrightarrow N \longrightarrow N$		
Č			CH_3 $N \longrightarrow CH_3$		
CH3 CI—CH—	[—CH2—CH=CH2	=Z,\		
CH ₃ CI—CH—	_	сн ₃ —Сн—соосн ₃	CH ₃		
CH ₃	_		CH_3		

Bsp. Nr.	œ	R.	R ²	bzw. —N
	$_{-}^{\mathrm{CH}_{3}}$			CH ₃
I-450	I-450 CI—CH—			C_{H_3}
	$_{\parallel}^{\mathrm{CH}_{3}}$			CH ₃
I-451	C1—CH—			\sim
	$_{\mid}^{\mathrm{CH}_{3}}$			СН
I-452	Cl—CH—			$-N$ CH_3 CH_3
	$_{\parallel}^{\mathrm{CH}_{3}}$			CH,
I-453	CI—CH—			$-N$ CH_3
	$_{-}^{\mathrm{CH}_{3}}$			CH,
I-454	CI—CH—			$-N$ CH_3
				CH_3
	CH3			[
I-455	CI—ĊH—			-N

bzw. — N R ²	-N N-C00C2H5	$-N N - (CH_2)_2 - OH$	$-N \longrightarrow N - CH \longrightarrow O$	$-N \longrightarrow N \longrightarrow CH_3$		$-N$ N CH_3	
R²							
R R ¹	СН ₃ 	—СH—	—Сн.— Сн.	—СН— СН ₃	— СН — СН ₃	Cl—CH ₂ —	—СН—
Bsp. R Nr.	I-462 CI-	I-463 CI-	I-464 Cl-	I-465 C1—CH—	I-466 CI-	I-467 C1-	I-468 CI-

	C ₂ H ₃ O	CF_3		CH ₃ -CO—CH—Cl	CH ₃ CH ₃ (—CO—CH—C1	CH3 CO—CH—C1 I3
bzw. — N						CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
R ²						
R. ::	СН3 - СН	CH ₃		CH.	сн, Сн—	$\begin{array}{c} \mathrm{CH_3} \\ \\ \\ \mathrm{CICH} \end{array}$
Bsp. R Nr.	CH ₃ CH ₃ 1.469 CI—CH—	CH ₃ CH ₃ L470 CI—CH—	CH ₃	C I-472 C1—C	C I-473 C1—C	CI—C

Bsp. Nr.	R	R^1	R ²
			CH ₃
I-476	C1—CH ₂ CH ₂ —	Н	c-CH C≡CH
			ĊH₃ CH₃
I-477	C1—CH ₂ CH ₂ —	СН₃	—СН—С≡СН
I-478	$Cl-CH_2CH_2-$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	C1		
I-479	CH₃—Ċ— C1	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	Br		CH ₃
I-480	CH ₃ —CH—	н	—C—C≡CH
	D.		ĊH₃
T 101	Br CH ₃ —CH—	$\mathrm{CH_3}$	CH₃ CHC≡CH
1-401	Br	CH ₃	—cn—c—cn
I-482	CH ₃ —CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	F F		
I-483	$F_3C - C - C - C - C - F$ $F_5C - C - C - C - F$ $F_7C - C - C - C - C - F$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-484	F F BrCH ₂ CH ₂ CH ₂ —	H	—SO₂C1
	CH₃		CH₃
I-485	Br—C—	H	C=CH
	CH₃		$^{ m l}_{ m CH_3}$
	CH₃ 		
I-486	Br— C—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
[-4 87	ĊH ₃ Br—(CH ₂) ₅ —-	—СH ₂ —СН=СH ₂	$-CH_2-CH=CH_2$
	HO—CH ₂ —	C ₂ H ₅	C_2H_5
I- 489	NC—CH ₂ —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
[-490	$NCO-CH_2-$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	H		$_{\parallel}^{\mathrm{CH_{3}}}$
[-491		Н	-C-C≡CH CH₃
	CH ₂ —		ĊH ₃

Bsp. Nr.	R	R ¹	R ²
	H		CH ₃
I-492	CH ₂ —	CH ₃	—ĊH—C≡CH
I-493	CH_2 —	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
I-494	CH ₂ CH ₂ —	СН₃	CH₃ -CH-C≡CH
I-495	CH ₂ CH ₂ —	$-CH_2-CH=CH_2$	-CH ₂ -CH=CH ₂
I-496	CH ₂ CH ₂ —	CH ₃	CH₃ —CH—C≡CH
I-497	$\overset{\mathrm{H}}{\overbrace{\hspace{1cm}}}_{\mathrm{CH_{2}CH_{2}}}$	$-CH_2-CH=CH_2$	—СH ₂ —СН=СH ₂
I-498	CH ₃ OCH ₂ CH ₂ — CHCl ₂	$-C_2H_5$	—C ₂ H ₅
I-499	HO—C—O—CH ₂ — CHCl ₂ CCl ₃	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
	HO—C—O—CH ₂ — CHCl ₂	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-501	C ₂ H ₅ S CH— C ₂ H ₅ S	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-502		Н	CH_3 $-C-C = CH$ CH_3 CH_3
I-503	\sim CH ₂ —	CH ₃	CH-C≡CH
I-504	CH₂— CH₂—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	\mathbb{R}^1	\mathbb{R}^2
I-505	C_2H_5 $CH-$	Н	CH_3 $-C-C = CH$ CH_3
I-506	CH—	СН₃	CH ₃ —CH—C≡CH
I-507	$C1$ CH_2	Н	$CH = CH - CO - C(CH_3)_3$
I-508	OCH ₃	$-CH_2-CH=CH_2$	$_2$ —CH ₂ —CH=CH ₂
I-509	CH—	Н	$ \begin{array}{c c} CH_3 \\ -C-C \Longrightarrow CH \\ CH_3 \end{array} $
I-510	Cl CH—	CH ₃	CH ₃ —CH—C≡CH
I-511	CH—	$-CH_2-CH=CH_2$	$_2$ —CH ₂ —CH=CH ₂
I-512	CI—O CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-513	$C1$ \sim S \sim CH_2 \sim	Н	— CH ₂ — CH(CH ₃) ₂
I-514	CH ₂ —	Н	CH ₃
I-515	CH ₃ —CO—CH ₂ —	$-CH_2-CH=CH_2$	$_{2}$ —CH ₂ —CH=CH ₂
I-516	CH₃COOCH—		CH ₃ -C-C≡CH CH ₃

Bsp. Nr.	R	R ¹	R ²
I-517	CH₃CO—CH—	Н	CH_3 $-C-CN$ CH_3
I-518	$Cl_2CH - C \\ $	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-519	C1 C1 C1 C1	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-520	CH ₃ O—CO—CH ₂ CH ₂ —	н	CH₃ -C-C≡CH
I-521	$(CH_2 = CH - CH_2)_2N$ $CH_2 -$	$-CH_2CH=CH_2$	CH ₃
I-522	CH_{2} CH_{3} $HC \equiv C - C - NH$ CH_{3} $CH_{2} - C$ $CH_{2} - C$ $CH_{2} - C$	н	CH₃ -C-C≡CH CH₃
	CH_3 CH_3 $	CH ₃	CH₃ —CH—C≡CH
I-524	CH_{2} — CH_{2} — CH_{2} = CH_{2} $C=0$ CH_{2} CH_{2} CH_{2}	−CH ₂ CH=CH ₂	$-CH_2-CH=CH_2$
	$\begin{array}{c c} CH_3 & O \\ & \parallel \\ C-CH-N-C-(CH_2)_2-\\ & \downarrow \\ CH_3 \end{array}$	—СН3	СН₃ —СН—С≡СН
I-526	$ \begin{array}{c} O \\ \parallel \\ (CH_2 = CHCH_2)_2N - C - (CH_2)_2 - \\ \end{array} $	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R^1	R ²
I-527	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	—СН ₃	CH-C≡CH
I-528	$(H_2C = CHCH_2)_2N - C - (CH_2)_3 - C$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-529	$\begin{array}{c cccc} CH_3 & O & CH_3 \\ & & \parallel & \mid \\ HC = & C - & C - & NH - & C - & C - \\ & & & & CH_3 & CH_3 \end{array}$	Н	CH ₃
I-530	$ \begin{array}{c cccc} O & CH_3 \\ \parallel & \\ & \\ C - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - C - \\ & \\ C + G - C - \\ & \\ C + $	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-531	CH ₃ O CH ₃ HC≡C−CH−N−C−C− CH ₃ CH ₃	—СН3	CH₃ —CH—C≡CH
I-532	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	—СН3	CH ₃ −CH−C≡CH
I-533	$(CH_2 = CHCH_2)_2N - C - (CH_2)_4 -$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-534	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	CH ₃ —C—C≡CH CH ₃
I-535	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	—СН ₃	CH₃ —CH—C≡CH
	$\begin{array}{c} O \\ \parallel \\ (CH_2 = CHCH_2)_2N - C - CH_2 - O - CH_2 - \\ \end{array}$		$-CH_2-CH=CH_2$
I-537	$ \begin{array}{c} O \\ \parallel \\ (CH_2 = CHCH_2)_2N - S - CH_2 - \\ \parallel \\ O \end{array} $	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	\mathbb{R}^1	R ²
I-538	CH ₂ =CH	Н	CH ₃
I-539	CH ₂ =CH-	CH ₃	CH ₃
I-540	CH ₃ —CH=CH—	Н	-C-C≡CH CH ₃
I-541	CH ₃ —CH=CH—	$-CH_2-CH=CH_2$	CH_3 $-CH_2-CH=CH_2$ CH_3
I-542	CH_3 $CH_2 = C -$	Н	_C—C≡CH
I-543	(CH ₃) ₂ C=CH-	Н	ĊH ₃ CH ₃
I-544	$(CH_3)_2C = CH -$	—СН3	—CH—C≡CH CH ₃
I-545	СН3-СН=СН-СН=СН-	Н	_C_C≡CH
I-546	CH ₃ —CH=CH—CH=CH—	$-CH_2-CH=CH_2$	$\dot{C}H_3$ $-CH_2-CH=CH_2$ CH_3
I-547	CI-CH=C-	—СН₃	—CH—C≡CH
I-548	CH ₃ HO—C=C— COOCH ₃	Н	
I-549	CH=CH-	Н	C1 —C(CH₃)₃
I-550	СН=СН-	Н	CH ₃ CCN CH ₃
I-551	CH=CH-	СН₃	CH₃ CHC≡CH

Bsp. Nr.	R	R ¹	R ²
I-552	F —СН=СН—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-553	F CH=CH-	Н	CH₃ CCN CH₃
I-554	F—CH=CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-555	F—CH=CH—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-556	<u> </u>	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-557	СН3—СН—СН—	Н	CH_3 $-C-C \equiv CH$ CH_3
I-558	CH_3 — CH = CH —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-559	CH ₃ O CH=CH— CH ₃ O	Н	CH ₃
I-560	CH = C -	H	CH ₃
I-561	CI — O—CH=CH—	Н .	CH_3 $-C-C \equiv CH$ CH_3
	$Cl_2C = C -$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-563	H	Н	CH ₃

36 18 004

Bsp. Nr.	R	R^1	R ²
I-564	H	CH ₃	CH₃ -CH-C≡CH
I-565	H	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-566	H	н	CH₃
I-567	H	н	CH ₃ -CC≡CH CH ₃
I-568	H	СН3	CH₃ CH-C≡CH
I-569	H	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-570	H	Н	CH ₃ -C-C≡CH CH ₃
I-57 1	H H	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-572	CH ₂	Н	CH ₃
I-573	CH ₂	Н	CH₃

Bsp. R Nr.	\mathbb{R}^1	R ²
$\begin{array}{c c} & CH_3 \\ & C-NHC-C \equiv CH \\ & CH_3 \end{array}$ CH_3 CH_3 CH_3 CH_3	н	CH ₃
I-575 CH_2 C	—CH₂—CH	=CH ₂ $-$ CH ₂ $-$ CH $=$ CH ₂
I-576	СН₃	CHC≡CH
I-577	— CH ₂ — CH	$I = CH_2 - CH_2 - CH = CH_2$
I-578 F	н	CH_3 $-C-C \equiv CH$ CH_3
I-579 F	CH₃	CH₃ —CH—C≡CH
I-580	—СH ₂ —СН	$I = CH_2 - CH_2 - CH = CH_2$
I-581 F—	Н	$\begin{array}{c} \mathrm{CH_3} \\ \\ -\mathrm{C} -\mathrm{CN} \\ \\ \mathrm{CH_3} \end{array}$
I-582 F—	—СH ₂ —СН	$I=CH_2$ $-CH_2-CH=CH_2$
C1 C1	$\mathrm{CH_{3}}$	CH₃ —CH—C≡CH
I-584	— CH ₂ — СН	$H=CH_2$ $-CH_2-CH=CH_2$

36 18 004

Bsp. Nr.	R	R ¹	R^2 .
I-585	CI———	Н	CH ₃ -C-C≡CH CH ₃
I-586	CI—	CH ₃	CH₃ CHC≡CH
I-587	CI—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-588	CI	Н	— C(CH ₃) ₃
I-589	Br	—СН3	CH₃ —CH—C≡CH
I-590	Br	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-591		Н	CH ₃ CC≡CH CH ₃
I-592		—CH₃	CH₃ —CH—C≡CH
I-593	CI	Н	CH ₃
I-594		—СН3	CH₃ CH-C≡CH
I-595	CI	н	CH=CH-CO-C(CH ₃) ₃

Bsp. Nr.	R	R ^I	\mathbb{R}^2
I-596	C1————	—СН3	CH₃ -CH-C≡CH
I-597	CH ₃	Н	CH₃ -C-C≡CH CH₃
I-598	CH ₃	—СН3	CH₃ —CH—C≡CH
I-599	CH ₃	—СН3	CH3 -CH-C≡CH
I-600	CH ₃	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-601	CH ₃ —	H	CH ₃
I-602	CH ₃ —	CH ₃	CH ₃ -CH-C≡CH
I-603		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-604	OCH ₃	Н	CH ₃ -C-C≡CH CH ₃
I-605	OCH ₃	—СH ₃	CH ₃ -CH-C≡CH
I-606	CH ₃ O	—СН3	CH₃ CH-C≡CH
I-607	CH ₃ O	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ¹	R ²
I-608	CH ₃ O	—СH ₃	CH₃ —CH—C≡CH
I-609	CH ₃ O CH ₃ O	— CH₃	CH₃ —CH—C≡CH
1.610	CH ₃ O	CH.	CH₃
I-610 I-611	F ₃ C	CH₃	-ĊH-C≡CH -CH ₂ -CH=CH ₂
I-612	O_2N	Н	CH ₃ CC≡-CH
I-613	O ₂ N	CH ₂ CH=- CH ₂	-CH ₂ -CH=CH ₂
I-614	O_2N	Н	CH ₃ -C-C≡CH CH ₃
I-615	O_2N	—CH ₃	CH ₃ —CH—C≡CH
I-616	O_2N	$-CH_2-CH=CH_2$	—CH ₂ —CH=CH ₂
I-617	СООН	н	CH₃ -C-C≡CH CH₃
I-618	Соон	—СH ₂ —СН=СH ₂	—СH ₂ —СН=СH ₂

Bsp. Nr.	R	R ¹	R ²
I-619	COONa	Н	CH ₃ -C-C≡CH CH ₃
I-620	Cooe	н "	CH_3 $-C-C \equiv CH$ CH_3
	CH_3 H_3N^{\oplus} $-C$ C C CH_3		-
I-621	CH_{3} $CO-NH-C-C=CH$ CH_{3} CH_{3}	H	CH ₃ -C-C≡CH CH ₃
I-622	CH—C≡CH CH ₃ CH ₃	—CH₃	CH₃ —CH—C≡CH
I-623	CO−N CH−C≡CH CH ₃	—СН₃	СН₃ —СН—С≡СН
I-624		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-625	$N(CH_2CH=CH_2)_2$ $O=C$	$-CH_2-CH=CH_2$	—CH ₂ —CH=CH ₂
I-626	C1CH ₂ —CO—NH———	H	CH ₃ -C-C≡CH CH ₃

Bsp. Nr.	R	R ¹	R ²
I-627	$(CH_2=CHCH_2)_2N-C$ $(CH_2=CHCH_2)_2N-C$ 0 0 0 0 0	$-CH_2-CH=CH_2$	—CH ₂ —CH=CH ₂
I-628	CH ₃ O	Н	CH₃
I-629	CH ₃ S H	$-CH_2-CH=CH_2$	$-CH_2-CH=-CH_2$
I-630		Н	CH₃ CC≡CH CH₃
I-631		—СН3	CH₃ —CH—C≡CH
I-632		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-633		Н	CH₃ —C—C≡CH CH₃
I-634		—СН ₃	CH₃ CH-C≡CH
I-635		$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

Bsp. Nr.	R	R ^I	R ² .
I-636	$C \equiv CH$ $CH_3 - C - CH_3$ $HN - C - N$ O	Н	CH ₃
I-637	$(CH_2=CHCH_2)_2NC$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-638	$C1$ — CH_2CH_2O —	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-639	CHCH ₂ O—	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-640	$CH_3-C\equiv C-CH_2O-$	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-641	C1————————————————————————————————————	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$
I-642	C_2H_5O — C — O	— СH ₃	CH₃ —CH—C≡CH
I-643	C_2H_5O-C-	$-CH_2-CH=CH_2$	$-CH_2-CH=CH_2$

36 18 004

Tabelle 1 Fortsetzung	ortsetzung			
Bsp. Nr.	R	R ¹ .	R ²	bzw. — N R ²
J-644	CH_3 0 CH_3 C CH_3 C CH_3 C CH_3 C CH_3 C CH_3	Н	CH ₃ C-C≡CH C-C≡CH CH ₃	
I-645	$CH_3 CH_3$ $+C = C - CH - N - C - CH - N - C - CH - N - C - CH - CH$	—СН3	сн ₃ снс≡сн	
J-646	$CH_2 = CH - CH_2)_2N - C - C - CH_2$	$-CH_2CH=CH_2$	$-CH_2-CH=CH_2$	CH3
I-647	Cl ₂ CH—			$rac{1}{2}$
I-648	Cl ₂ CH—			H ₃ C CH ₃
I-649	Cl ₂ CH—	$-CH_2-CH=CH_2$	$-CH_2-CO-NH-CH_2-CH=CH_2$	>

Die erfindungsgemäß verwendbaren Amide der Formel (I) sind bekannt (vergl. z. B. DE-OS 28 28 265, DE-OS 32 28 007, DE-OS 22 18 097, DE-OS 23 50 547, DE-OS 34 26 541, DE-OS 29 05 650 und US-PS 45 31 970).

Die erfindungsgemäß verwendbaren Amide der Formel (I) eignen sich — wie bereits erwähnt — zur Verbesserung der Kulturpflanzen-Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der Formel (II).

Die erfindungsgemäß verwendbaren herbizid wirksamen Sulfonylharnstoff-Derivate sind durch die Formel (II) allgemein definiert.

Bevorzugt verwendbar sind herbizide Sulfonyliso(thio)harnstoff-Derivate der Formel (II), bei welchen R³ für den Rest

H R⁹

steht, worin

R⁸ und R⁹ gleich oder verschieden sind und für Wasserstoff, Halogen [wie insbesondere Fluor, Chlor, Brom und/oder Iod], Cyano, Nitro, C₁—C₆-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Alkylamino-carbonyl, Di-(C₁—C₄-alkyl)-amino-carbonyl, Hydroxy, C₁—C₄-Alkoxy, Formyloxy, C₁—C₄-Alkyl-carbonyloxy, C₁—C₄-Alkoxy-carbonyloxy, C₁—C₄-Alkylsulfinyl, C₁—C₄-Alkylsulfonyl, Di-(C₁—C₄-alkyl)-aminosulfonyl, C₃—C₆-Cycloalkyl oder Phenyl substituiert ist], für C₂—C₆-Alkenyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, C₁—C₄-Alkoxycarbonyl, Carboxy oder Phenyl substituiert ist], für C₂—C₆-Alkinyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy oder Phenyl substituiert ist], für C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxyimino-C₁—C₄-Alkyl, C₁—C₄-Alkoxy-carbonyl, C₁—C₄-Alkoxy, C₁—C₄-Alkylthio, C₁—C₄-Alkylthio, C₁—C₄-Alkylsulfinyl oder C₁—C₄-Alkylsulfonyl substituiert ist], für C₁—C₄-Alkylthio [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Alkylthio, C₁—C₄-Alkylsulfinyl oder C₁—C₄-Alkylsulfonyl substituiert ist], für C₃—C₆-Alkenyloxy [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁—C₃-Alkylthio oder C₁—C₄-Alkoxycarbonyl substituiert ist], für C₃—C₆-Alkinylthio oder C₁—C₄-Alkoxycarbonyl substituiert ist], C₃—C₆-Alkinylthio oder C₁—C₄-Alkoxycarbonyl substituiert ist], C₃—C₆-Alkinyloxy, C₃—C₆-Alkinylthio oder für den Rest —S(O)_p—R¹⁰ stehen, wobei

p für die Zahlen 1 oder 2 steht und R¹0 für C_1 — C_4 -Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano oder C_1 — C_4 -Alkoxy-carbonyl substituiert ist], C_3 — C_6 -Alkenyl, C_3 — C_6 -Alkinyl, C_1 — C_4 -Alkoxy, C_1 — C_4 -Alkoxyamino, C_1 — C_4 -Alkylamino oder Di(C_1 — C_4 -Alkylamino steht, R³ und R³ weiterhin für Phenyl oder Phenoxy, für C_1 — C_4 -Alkylcarbonylamino, C_1 — C_4 -Alkoxycarbonylamino,

R⁸ und R⁹ weiterhin für Phenyl oder Phenoxy, für C₁—C₄-Alkylcarbonylamino, C₁—C₄-Alkoxycarbonylamino, C₁—C₄-Alkylamino-carbonylamino, Di-(C₁—C₄-alkyl)-amino-carbonylamino, oder für den Rest —CO—R¹¹ stehen, wobei

 R^{11} für C_1-C_6 -Alkyl, C_1-C_6 -Alkoxy, C_1-C_4 -Alkoxyimino- C_1-C_4 -alkoxy, C_3-C_6 -Cycloalkoxy, C_3-C_6 -Alkenyloxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, C_1-C_4 -Alkoxyamino, C_1-C_4 -Alkoxy- C_1-C_4 -alkyl-amino oder Di- $(C_1-C_4$ -alkyl)amino steht [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind],

R⁸ und R⁹ weiterhin für C_1 — C_4 -Alkylsulfonyl- C_1 — C_4 -Alkylsulfonyloxy, Di- $(C_1$ — C_4 -alkyl)-aminosulfonylamino oder für den Rest — $CH = N - R^{12}$ stehen, wobei

R¹² für gegebenenfalls durch Fluor, Chlor, Cyano, Carboxy, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Alkylthio, C₁—C₄-Alkylsulfinyl oder C₁—C₄-Alkylsulfonyl substituiertes C₁—C₆-Alkyl, für gegebenenfalls durch Fluor oder Chlor substituiertes Benzyl, für gegebenenfalls durch Fluor oder Chlor substituiertes C₃—C₆-Alkenyl oder C₃—C₆-Alkinyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁—C₄-Alkyl, C₁—C₄-Alkoxy, Trifluormethyl, Trifluormethoxy oder Trifluormethylthio substituiertes Phenyl, für gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁—C₆-Alkoxy, C₃—C₆-Alkenoxy, C₃—C₆-Alkinoxy oder Benzyloxy für Amino, C₁—C₄-Alkylamino, Di-(C₁—C₄-alkyl)amino, Phenylamino, C₁—C₄-Alkyl-carbonyl-amino, C₁—C₄-Alkoxycarbonylamino, C₁—C₄-Alkyl-sulfonylamino oder für gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiertes Phenylsulfonylamino steht;

worin weiter

R3 für den Rest

60 H R¹⁵

steht, worin

 R^{13} für Wasserstoff oder C_1 — C_4 -Alkyl steht,

R¹⁴ und R¹⁵ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkyl

[welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Carboxy, C1-C4-Alkoxy-carbonyl, C1-C4-Alkylsulfonyl oder Di-(C₁-C₄-alkyl)-aminosulfonyl stehen; worin weiter R³ für den Rest

5

10

15

20

25

30

35

40

45

55

60

steht, worin

R¹⁶ und R¹⁷ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C₁-C₄-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], stehen; worin weiter R3 für den Rest

steht, worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C₁—C₄-Alkoxy [welches gegebenenfalls $durch\ Fluor\ und/oder\ Chlor\ substituiert\ ist],\ f\"ur\ C_1-C_4-Alkylthio,\ C_1-C_4-Alkylsulfinyl\ oder\ C_1-C_4-Alkylsulfo-learned and the substituiert ist]$ nyl [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind], sowie für Di-(C1-C4-alkyl)-aminosulfonyl oder C1-C4-Alkoxy-carbonyl stehen; worin weiter R3 für den Rest

$$R^{20}$$
 R^{21}

R²⁰ und R²¹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C₁--C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Brom substituiert ist], C_1-C_4 -Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], für C_1-C_4 -Alkylthio, C_1-C_4 -Alkylsulfinyl oder C_1-C_4 -Alkylsulfonyl [welche gegebenenfalls durch Fluor und/oder Chlor substituiert sind], oder für Di-(C₁-C₄-alkyl)-aminosulfonyl stehen; worin weiter R3 für den Rest

steht, worin

R²² und R²³ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylsulfinyl oder $C_1 - C_4$ -Alkylsulfonyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Di-(C₁-C₄-alkyl)-amino-sulfonyl oder C₁—C₄-Alkoxy-carbonyl stehen, und

Z für Sauerstoff, Schwefel oder die Gruppierung N-Z¹ steht, wobei

Z¹ für Wasserstoff, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom oder Cyano substituiert ist], C₃-C₆-Cycloalkyl, Benzyl, Phenyl [welches gegebenenfalls durch Fluor, Chlor, Brom oder Nitro substituiert ist], $C_1 - C_4$ -Alkylcarbonyl, $C_1 - C_4$ -Alkoxy-carbonyl oder Di- $(C_1 - C_4$ -alkyl)-aminocarbonyl steht; worin weiter R3 für den Rest

$$\begin{array}{c}
R^{24} \\
\downarrow N \\
\downarrow Y \\
R^{25}
\end{array}$$

steht, worin

R²⁴ für Wasserstoff, C₁—C₅-Alkyl oder Halogen R²⁵ für Wasserstoff oder C₁-C₅-Alkyl steht und Y für Schwefel oder die Gruppierung N-R²⁶ steht, wobei R²⁶ für Wasserstoff oder C₁-C₅-Alkyl steht; worin weiter R4 für den Rest

$$R^{27}$$
 R^{28}
 R^{29}

steht, worin

R²⁷ und R²⁹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] stehen mit der Maßgabe, daß wenigstens einer der Reste R27 und R29 von Wasserstoff verschieden ist, und

R²⁸ für Wasserstoff, Fluor, Chlor, Brom, Cyano oder C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/ oder Chlor substituiert ist] steht; worin weiter R4 für den Rest

steht, worin

R³⁰ und R³¹ gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino stehen mit der Maßgabe, daß wenigstens einer der Reste R³⁰ und R³¹ von Wasserstoff verschieden ist; worin weiter

R4 für den Rest

R³² für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist] oder C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist]

R33 für Wasserstoff, Fluor, Chlor, Brom, C1-C4-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Cyano, Formyl, C₁—C₄-Alkyl-carbonyl oder C₁—C₄-Alkoxycarbonyl steht und

R³⁴ für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C₁-C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C1-C4-Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], Amino, C₁-C₄-Alkyl-amino oder Di-(C₁-C₄-alkyl)-amino steht, oder R³³ und R³⁴ gemeinsam für C₃—C₄-Alkandiyl stehen; worin weiter

R4 für den Rest

steht, worin

R³⁵ und R³⁶ gleich oder verschieden sind und für Fluor, Chlor, Brom, Hydroxy, C₁—C₄-Alkyl [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_3-C_5 -Cycloalkyl, C_1-C_4 -Alkoxy [welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist], C_1-C_4 -Alkylthio oder für C_1-C_4 -Alkyl-amino bzw. Di- $(C_1-C_4$ -alkyl)-amino stehen; worin weiter R4 für den Rest

$$\stackrel{N-N}{\underset{N}{\longleftarrow}} R^{37}$$

steht, worin

R³⁷ und R³⁸ gleich oder verschieden sind und für Wasserstoff, Methyl oder Methoxy stehen; worin weiter R⁵ für C₁-C₁₂-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C_1-C_4 -Alkylsulfinyl, C_1-C_4 -Alkylsulfonyl, C_1-C_4 -Alkyl-carbonyl, C_1-C_4 -Alkoxy-carbonyl, C_1-C_4 -Alkylaminocarbonyl oder Di- $(C_1-C_4$ -alkyl)-aminocarbonyl substituiert ist], für C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl-C₁-C₂-alkyl, Phenyl-C₁-C₂-alkyl [welches im Phenylteil gegebenenfalls durch Fluor, Chlor, Nitro, Cyano, C1-C4-Alkyl, C1-C4-Alkoxy oder C1-C4-Alkoxy-carbonyl substituiert ist] steht, worin weiter

R5 für einen Phenylrest steht, welcher gegebenenfalls substituiert ist durch einen oder mehrere Reste aus der Reihe Halogen [wie insbesondere Fluor, Chlor, Brom und Iod], Cyano, Nitro, Hydroxy, Carboxy, C1-C6-Alkyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, Hydroxy, Carboxy, C1-C4-Alkoxy-carbonyl, C₁—C₄-Alkoxy, C₁—C₄-Alkylthio oder Phenyl substituiert ist], C₃—C₆-Cycloalkyl, C₁—C₄-Alkoxy [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁—C₄-Alkoxy, C₁—C₄-Alkylthio oder C₁—C₄-Alkoxycarbonyl substituiert ist], C1-C4-Alkylthio [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C₁-C₄-Alkoxy-carbonyl substituiert ist], Amino, C₁-C₄-Alkyl-amino bzw. Di-(C₁-C₄-alkyl)-amino [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Carboxy, C_1 — C_4 -Alkoxy oder C_1 — C_4 -Alkoxy-carbonyl substituiert sind], C_1 — C_4 -Alkyl-carbonylamino, C_1 — C_4 -Alkyl-amino-carbonylamino, Formyl, C₁—C₄-Alkyl-carbonyl, Benzoyl, C₁—C₄-Alkoxy-carbonyl, Phenoxy-carbonyl, Benzyloxycarbonyl, Phenyl [welches gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy oder Methyl substituiert ist, Phenoxy, Phenylthio, Phenylsulfonyl, Phenylamino oder Phenylazo [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert sind], Pyridoxy oder Pyrimidoxy [welche gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert sind], C_1-C_4 -Alkyl-carbonyloxy, C_1-C_4 -Alkoxy-carbonyloxy, C_1-C_4 -Alkyl-amino-carbonyloxy und Di- $(C_1-C_4$ -alkyl)-amino-carbonyloxy, oder welcher gegebenenfalls durch eine Alkylenkette [welche gegebenenfalls verzweigt und/oder durch ein oder mehrere Sauerstoffatome unterbrochen ist] oder einen Benzorest [welcher gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl und/oder Trifluormethyl substituiert ist] anelliert ist; worin weiter

R⁵ für einen fünf- oder sechsgliedrigen heteroaromatischen Ring steht, welcher 1 bis 3 Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom enthält und welcher gegebenenfalls benzanelliert ist und/oder durch Fluor, Chlor, Brom, Cyano, Nitro, C1-C3-Alkyl oder C1-C3-Alkoxy [wobei letztere gegebenenfalls durch Fluor und/oder Chlor substituiert sind] substituiert ist; worin weiter

X für Sauerstoff oder Schwefel steht und

M für Wasserstoff, ein Natrium-, Kalium-, Magnesium-, Calcium-, Aluminium-, Mangan-, Eisen-, Cobalt-, oder Nickel-Äquivalent steht.

Bevorzugt verwendbar sind weiterhin die Addukte von Verbindungen der Formel (II) - wie vorausgehend definiert - mit Halogenwasserstoffsäuren, wie Hydrogenfluorid, Hydrogenchlorid, Hydrogenbromid, Hydrogeniodid, mit Schwefelsäure, mit gegebenenfalls durch Fluor und/oder Chlor substituierten Alkansulfonsäuren mit 1 bis 4 Kohlenstoffatomen oder auch Benzol- oder Naphthalinsulfonsäuren, welche gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiert sind.

Besonders bevorzugt verwendbar sind herbizide Sulfonyliso(thio)harnstoff-Derivate der Formel (II), in wel-

(A) R3 für den Rest

steht worin

R8 für Fluor, Chlor, Brom, Methyl, Trifluormethyl, Methoxy, Difluormethoxy, Trifluormethoxy, C1-C3-Al $kylthio, Difluormethylthio, C_1-C_3-Alkylsulfinyl, C_1-C_3-Alkylsulfonyl, Dimethylamino-Linear College (College College (College College (College College Co$ sulfonyl, Diethylaminosulfonyl, N-Methoxy-N-methylaminosulfonyl, Phenoxy, C1-C3-Alkoxy-carbonyl oder C₁—C₃-Alkyl-aminocarbonyl steht und

R9 für Wasserstoff steht; worin weiter

R4 für den Rest

65

5

30

45

50

55

60

steht, worin

5

10

15

20

25

30

35

 R^{32} für Wasserstoff, Fluor, Chlor, Brom, Hydroxy, $C_1 - C_3$ -Alkyl, $C_1 - C_3$ -Alkoxy oder Difluormethoxy steht, R^{33} für Wasserstoff, Chlor, Brom oder Methyl steht und

 R^{34} für C_1 — C_3 -Alkyl, Hydroxy, Fluor, Chlor, Brom oder C_1 — C_3 -Alkoxy steht; worin weiter

 R^5 für C_1-C_8 -Alkyl [welches gegebenenfalls durch Fluor, Chlor, Cyano, C_1-C_2 -Alkoxy oder C_1-C_2 -Alkoxy-carbonyl substituiert ist], für C_3-C_4 -Alkenyl, C_3-C_4 -Alkinyl oder Benzyl [welches im Phenylteil gegebenenfalls durch Fluor, Chlor, Nitro, Cyano, Methyl, Methoxy oder C_1-C_2 -Alkoxy-carbonyl substituiert ist] steht, oder

 R^5 für einen Phenylrest steht, welcher gegebenenfalls substituiert ist durch einen oder zwei Reste aus der Reihe Fluor, Chlor, Brom, Jod, Cyano, Nitro, Hydroxy, Carboxy, C_1-C_3 -Alkoxy-carbonyl, C_1-C_4 -Alkyl, Trifluormethyl, Hydroxymethyl, Methoxycarbonylmethyl, Phenyl- C_1-C_3 -alkyl, Cyclohexyl, C_1-C_3 -Alkoxy, Trifluormethoxy, C_1-C_3 -Alkylthio, Trifluormethylthio, Dimethylamino, Amino, Acetylamino, Methylaminocarbonyl, Formyl, Acetyl, Benzoyl, Phenyl, Hydroxyphenyl, Phenoxy [welches gegebenenfalls durch Chlor und/oder Trifluormethyl substituiert ist], Phenylamino, Phenylazo, Pyridoxy [welches gegebenenfalls durch Chlor und/oder Trifluormethyl substituiert ist], oder welcher gegebenenfalls benzanelliert ist; worin weiter X für Sauerstoff oder Schwefel steht und

M für Wasserstoff, ein Natrium-, Kalium-, oder Calcium-äquivalent steht; worin weiter

(B) R³, R⁵, X und M die oben unter (A) angegebene Bedeutung haben und

R4 für den Rest

$$- \bigvee_{N}^{N} - \bigvee_{R^{36}}^{R^{36}}$$

steht, worin

 R^{35} für Fluor, Chlor, Cyclopropyl, C_1-C_2 -Alkyl, C_1-C_2 -Alkoxy oder C_1-C_2 -Alkylthio steht und R^{36} für Fluor, Chlor, Cyclopropyl, C_1-C_2 -Alkyl, C_1-C_2 -Alkoxy, C_1-C_2 -Alkylamino oder Di-(C_1-C_2 -alkyl)-amino steht.

Besonders bevorzugt verwendbar sind weiterhin Addukte von Verbindungen der Formel (I) — wie vorausgehend definiert — mit Halogenwasserstoffsäuren, wie Hydrogenchlorid, Hydrogenbromid und Hydrogeniodid, mit Schwefelsäure, mit gegebenenfalls durch Fluor und/oder Chlor substituierten Alkansulfonsäuren mit 1 bis 4 Kohlenstoffatomen oder auch mit Benzol- oder Naphthalinsulfonsäuren, welche gegebenenfalls durch Fluor, Chlor, Brom oder Methyl substituiert sind.

Im einzelnen seien die folgenden Verbindungen der allgemeinen Formel (II) genannt:

65

55

60

BeispNr.	R³	R ⁴	R ⁵	. ×	M
9-II	CO—NHOCH ₃	CH ₃	—СН3	0	н
T-II	CO—NHOC ₈ H ₁₇ -n	CH_3 CH_3 CH_5	—СН3	0	Ħ
11-8	CI	CH ₃	— CH3	0	н
6-II	CI	CH_3 CH_3 CH_3	— C ₂ H ₅	0	Ħ
II-10	C C	CH_3 CH_3 CH_3	—CH2CH2CI	0	н

BeispNr.	\mathbb{R}^3	\mathbb{R}^4	R ⁵	×	M
II-11	CI	CH_3 N CH_3	— C ₃ H ₇ -i	0	H
II-12	C	CH ₃	—СН ₂ С00С2Н5	0	н
II-13	C	CH ₃	СН ₃ 	0	H
П-14	OCHF ₂	CH ₃	$-C_2H_5$	0	 #1
II-15	SO ₂ —N(CH ₃) ₂	CH_3 N CH_3	—СН3	• • • • • • • • • • • • • • • • • • •	Н

36 18 004

BeispNr.	R ³	R ⁴	R ⁵	×	M
II-16	SO ₂ —N(C ₂ H ₅) ₂	CH_3 $N \longrightarrow CH_3$ CH_3	—СН3	0	н
II-17	SO ₂ —N(C ₂ H ₅) ₂	CH ₃	— C ₂ H ₅	0	н
II-18	SO ₂ NHOCH ₃	CH ₃	— C2H5	0	H
ІІ-19	SO ₂ NHOCH ₃	CH ₃	—СН3	0	н
II-20	SO ₂ —NHOC ₂ H ₅	CH_3 CH_3 CH_3	— C ₂ H ₅	0	н

BeispNr.	R ³	R ⁴	R ⁵	X	M
II-21	SO ₂ —NHOC ₃ H ₇ -n	CH_3 N CH_3	$-C_2H_5$	- O	н
II-22	SO ₂ —NHOC ₃ H _{7-i}	CH ₃	—— C ₂ H ₅	0	 II
II-23	СООСН3	$\stackrel{\text{CH}_3}{\searrow}$	—C ₂ H ₅	0	, H
II-24	COOCH3	$\overset{\text{CH}_3}{\searrow}$	— C ₃ H ₇ -j	0	H
II-25	T	OCH ₃ N OCH ₃	—CH³	0	Ж
11-26	TJ CT	OCH ₃	— C ₂ H ₅	0	н

36 18 004

BeispNr.	R ³	R ⁴	R ⁵	×	M
II-27	C1 —CH2—	CH ₃	—CH ₃	0	н
II-28	C00CH ₃	OCH ₃	—СН3	0	н
II-29	CI	OCH ₃ N N CH ₃	—СН3	0	н
П-30	SO ₂ —NHOCH ₂ —	$N \xrightarrow{N \longrightarrow N} N \xrightarrow{N \longrightarrow N} CH_3$	—CH3	0	H
II-31	SO ₂ —NHOC ₃ H ₇ -i	$N = \begin{pmatrix} N(CH_3)_2 \\ N \\ N \\ CH_3 \end{pmatrix}$	C_2H_5	0	H

BeispNr.	R ³	R ⁴	R ⁵	X	1
II-32	SO ₂ —NHOC ₃ H ₇ -i	N(CH ₃) ₂ N N N CH ₃	—C2H5	0	<u>~</u>
II-33	B.	OCH ₃ N CH ₃	—CH3	Н	-
II-34	CF ₃	$N = \begin{pmatrix} OCH_3 \\ N \\ N \\ CH_3 \end{pmatrix}$	$-\mathrm{C}_2\mathrm{H}_5$	0	Ħ
П-35	SO ₂ —N(CH ₃) ₂	OCH ₃	—CH3	0	Ħ
П-36	SO ₂ —CH ₃	N N N N N N N N N N N N N N N N N N N	$-\!-\!\mathrm{C}_{3}\!\mathrm{H}_{7}\!\!-\!\!\mathrm{i}$	0	

36 18 004

BeispNr.	R³ 、	\mathbb{R}^4	R ⁵	×	M
П-37	SCH ₃	OCH ₃ N CH ₃	—СН3	0	н
П-38	C00CH ₃	$N = \begin{pmatrix} OC_2H_5 \\ N \\ N \\ CH_3 \end{pmatrix}$	—CH3	0	н
П-39	COOCH3	N N N N N N N N N N N N N N N N N N N	—СН3	0	н
II-40	CI	$N \stackrel{\text{OCH}_3}{\longleftarrow} N \stackrel{\text{CH}_3}{\longleftarrow} CH_3$	—C3H7-i	0	н
II-41	Æ A	$N = \begin{pmatrix} OCH_3 \\ N \\ CH_3 \end{pmatrix}$	—СН ₃	0	н

BeispNr.	R ³	\mathbb{R}^4	R ⁵	×	M
II-42	CF ₃	OCH ₃	—СН3	0	#
II-43	SCH ₃	OCH ₃	—CH ₃	0	Ħ
II-44	SO ₂ —CH ₃	OCH ₃	. — CH ₃	0	H
II-45	CF ₃	OCH ₃	$- C_3 \mathrm{H}_{7^-\mathrm{i}}$	0 -	エ
II-46	СООСН3	OCH ₃ N CH ₃	—СН2СООСН3	0	н

BeispNr.	R ³	R ⁴	R ⁵	×	M
11-47	соосн3	OCH ₃	—СН2СН=СН2	0	н
II-48	СООСН3	OCH ₃	—CH2CH2OCH3	0	ж
II-49	Ö	CH_3 N CH_3 CH_3	—СН3	w	н
II-50	D C	$\begin{array}{c} CH_3 \\ N \\ CH_3 \end{array}$	—СН ₂ СН ₂ ОН	w	斑
II-51	C	CH_3 N CH_3 CH_3	—СН2СООСН3	w	Ħ

BeispNr.	\mathbb{R}^3	$ m R^4$	R ⁵	×	M
II-52	CI	CH ₃	—CH2CH2OCH3	0	н
II-53	OCHF ₂	CH ₃	$-c_{H_2}$		ш
II-54	OCHF ₃	CH_3	$-\mathrm{CH}_2 \hspace{-1em} \longleftarrow \hspace{-1em} F$	w	#
II-55	OCF ₃	CH_3 N CH_3	— CH3	w	
II-56	SO ₂ —NHOCH ₃	CH_3 N CH_3	—CH3	ω	н

BeispNr.	R³	R ⁴	R ⁵	×	M
II-57	CI CI	CH_3 $N \longrightarrow CH_3$	—СН3	Ø	н
II-58	<u>5</u>	CH ₃	—CH3	Ø	
II-59	5	OCH ₃	—СН3	Ø	н
П-60	SO ₂ —NHOCH ₃	OCH ₃	—CH3	W	Ħ
11-61	OCF ₃	OCH ₃	— CH3	Ø	н
II-62	OCF ₃	OCH ₃	— C2Hs	∞	н

BeispNr.	R³	\mathbb{R}^4	R ⁵	X	M
II-63	SCH ₃	OCH ₃	—СН3	S2	Н
II-64	CH ₃	OCH ₃	— CH3	Ω	н
II-65	OCF3	SCH ₃ N CH ₃	—СН3		н
11-66	īD ,	OH N CH ₃	— CH3	w	н
11-67	OCF ₃	OCHF ₂ N CH ₃	—CH3	S	H

BeispNr.	R ³ .	\mathbb{R}^4	R5	×	M
II-68	OCF ₃	OCH ₃	—CH3	va .	н
69-II	C	OCH ₃	—CH3	S	н
II-70	SO ₂ —NHOCH ₃	OCH ₃	—СН3	N	н
11-71	OCF3	OCH ₃	—СН3	Ø	н
II-72	CI	CH ₃	—сн	W	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
II-73	C1	SCH ₃	—СН3	&	н
II-74	$^{\mathrm{CH}_{3}}$	CH ₃ CH ₃ CH ₃	—СН3	Ω	н
II-75		CH ₃	—СН3	Ω	# #
, II-76	OCF3	CH ₃ CH ₃ CH ₃	— CH3	- - - -	н
II-77	CH ₃	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	— CH ₃	W	Н

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
11-78		OCH ₃ N CH ₃	—СН3	N	н
II-79	OCF ₃	OCH ₃	—СН3	w	Ħ
II-80	SCH ₃	OCH ₃	—CH3	W	н
П-81	OCF ₃	$\begin{array}{c} N \\ N \\ N \\ \end{array}$	—СН3	W	#
II-82	SC_3H_{7} -i	OCH ₃	—CH3	Ø	H

Reisn -Nr	ъ3	4 c	25	,	
DelapINI.	4	W.	K*	X	M
II-83	OCF ₃	$\begin{array}{c} \text{SCH}_3 \\ \text{N} \\ \text{N} \\ \text{CH}_3 \end{array}$	—СН3	w	
II-84	OCF ₃	OC ₂ H ₅ N CH ₃	—CH3	ω	Ħ
II-85	CH ₃	$\begin{array}{c c} OC_2H_5 \\ \hline & \\ N \\ \hline & \\ CH_3 \end{array}$	— CH3	· w	H
II-86	D	OCH ₃ N C ₂ H ₅	— CH3	ω	±.
II-87	TO	OCH ₃	— CH3	∞ .	H

BeispNr.	R ³	R ⁴	R ⁵	×	M
II-88		OCH ₃ N N OCH ₃	—СН3	ω	н
II-89	CH ₃	OCH ₃	— CH3	ς.	н
II-90	CI	$N(CH_3)_2$ $N \longrightarrow N$ $N \longrightarrow N$ CH_3	—CH3	Ø	Ħ
II-91	CH ₃	$N(CH_3)_2$ $N \longrightarrow N$ $N \longrightarrow N$ CH_3	—СН3	ω.	Ħ
II-92	TO	$\begin{array}{c} C_3H_5\text{-cycl.} \\ N \longrightarrow \\ N \longrightarrow \\ C_3H_5\text{-cycl.} \end{array}$	—СН3	W	н

BeispNr.	R³	$ m R^4$	R ⁵	X	M
II-93	CI	CH_3 $N = N$ $N = N$	—CH ₃	N	H
II-94	TO CO	CH ₃	—CH3	w	H
П-95	CH ₃	CH ₃	—CH ₃	W	H
96-11	Cl CH2—	CH_3 CH_3	—СН3	w	н
76-II	Cl CH2—	CH_3 CH_3	—СН3		H
86-II	CI CH2—	CH ₃ N CH ₃	—CH ₃	ω	н

36 18 004

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
66-11	C1 CH2—	CH ₃	—СН3	S	н
11-100	$C1 \\ CH_2 - C$	$\begin{array}{c} CH_3 \\ N \\ N \\ CH_3 \end{array}$	—СН3	Ø	н
II-101	$C_1 \\ C_1 \\ C_1$	CH_3 $N \longrightarrow CH_3$	— CH3	ω	Ħ
II-102	CF ₃	OCH ₃	—СН3	ω	Ħ
II-103	C1	$N = \begin{pmatrix} OC_2H_5 \\ N \\ CH_3 \end{pmatrix}$	—C2Hs	Ø	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
11-104	B.	CH_3 $N = CH_3$ CH_3	—C2H5	S	н
II-105		CH_3 N CH_3 CH_3	—CH3	w	Ħ
II-106	CI	CH ₂ OCH ₃	—CH3	w	н
II-107	COOCH3	OCH ₃	—CH ₃	ω	Ħ
II-108	СООСН3	OCH ₃	-CH2CH=CH2	∞	н

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-109	CF_3	OCH ₃ N N CH ₃	—СН3	N	н
II-110		OCH ₃ N N OCH ₃	—C ₂ H ₅	w	н
II-111	COOCH ₃	OCH ₃	—СН3	w	#
II-112	СООСН3	OCH ₃	—CH2C00C2H5	w	н
II-113	COOCH ₃	OCH ₃ N N OCH ₃	—СН3	Ø	н

BeispNr.	R ³	\mathbb{R}^4	R ⁵	×	M
II-114	CI CI	$N = \begin{pmatrix} OCH_3 \\ N \\ N \\ CH_3 \end{pmatrix}$	—CH2CH2OCH3	S	н
II-115	C00CH3	CH_3 CH_3 CH_3		0	н
П-116	C00CH ₃	CH_3 CH_3 CH_3		0	H ₂ SO ₄
II-117	COOCH ₃	CH_3 N CH_3		0	Na+
II-118	COOCH ₃	CH_3 N CH_3		0	*

36 18 004

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-119	COOCH ₃	CH ₃		0	1/2 Ca ⁺⁺
II-120	COOCH ₃	CH ₃	CI	0	н
П-121	COOCHs	CH ₃	CI	0	Na+
П-122	СООСН	CH ₃	N(CH ₃)2	0	æ
П-123	COOCH ₃	CH ₃	N(CH ₃)2		2 CH ₃ SO ₃ H

BeispNr.	\mathbb{R}^3	\mathbb{R}^4	R ⁵	×	M
II-124	COOCH3	CH ₃	N(CH ₃)2	0	Na+
II-125	COOCH3	CH ₃	СНО	0	+ в
II-126	COOCH ₃	CH ₃	но	O	Na+
II-127	COOCH ₃	CH_3 CH_3	NO ₂	0	Na+
II-128	COOCH ₃	CH_3 CH_3 CH_3	C4H9-t.	0	н

36 18 004

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	×
И-129	СООСН3	CH_3 N CH_3 CH_3	C4H9-t.	0	Na+
II-130	СООСН3	CH ₃		0	Ħ
II-131	COOCH ₃	CH ₃ N CH ₃ CH ₃	CI	0	Na+
II-132	COOCH3	CH ₃	Pi-	0	Ħ
II-133	COOCH ₃	CH ₃		0	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
II-134	COOCH3	CH ₃		0	H
II-135	COOCH ₃	CH ₃	CH ₃	0	Z + e
II-136	COOCH,	CH ₃	OCH3	0	÷ ¥
II-137	COOCH ₃	CH ₃	SCH ₃	0	н
II-138	СООСН3	CH ₃	SCH ₃	O	Na+

BeispNr.	R³	R ⁴	R ⁵	×	×
II-139	СООСН3	CH ₃ CH ₃ CH ₃ CH ₃	NO2	0	H
II-140	COOCH ₃	CH_3 N CH_3 CH_3	NO2	0	Na+
II-141	COOCH ₃	CH_3 N CH_3	но—	0	н
II-142	COOCH ₃	CH_3 N CH_3	но	0	Na+
II-143	COOCH ₃	CH ₃		0	Ħ

BeispNr.	$ m R^3$	R ⁴	R ⁵	×	M
II-144	СООСН3	CH_3 N N N N		0	Z + *
II-145	C00CH ₃	$\begin{array}{c} CH_3 \\ CH_3 \\ \end{array}$	$CI \longrightarrow O \longrightarrow CI$	0	Na+
II-146	COOCH ₃	CH_3 CH_3 CH_3	$-0 \longrightarrow CF_3$	0	N a+
II-147	C00CH ₃	CH_3 CH_3	CH_3 CH_3 CH_3	0	Na+
II-148	COOCH3	$\begin{array}{c} CH_3 \\ N \\ \end{array}$	но —	0	+ e +

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-149	СООСН3	CH_3 N CH_3 CH_5	C00C2H5	0	Na+
II-150	СООСН3	CH_3 CH_3 CH_5		0	N + e
II-151	СООСН3	CH_3 CH_3 CH_3		0	н
II-152	СООСН3	CH_3 CH_3 CH_3	c_{H_3}	0	н
II-153	СООСН3	CH ₃	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0	Na+

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-154	СООСН3	CH ₃	SCH ₃	0.	- a + a
II-155	СООСН,	CH ₃	CH ₃	0	Na+
II-156	C00CH3	CH ₃		0	Ħ
II-157	COOCH ₃	CH ₃	CI	 O	Na +
II-158	C00CH ₃	CH_3 N CH_3	CI	0	Na +

BeispNr.	R ³	\mathbb{R}^4	R ⁵	×	M
II-159	СООСН3	CH ₃	CH ₃ Cl CH ₃	0	н
II-160	COOCH ₃	CH_3 CH_3 CH_3	CH ₃ CH ₃	0	Na+
II-161	СООСН3	CH ₃	#Z	0	Na+
II-162	COOCH3	CH_3 CH_3 CH_3 CH_3	CI	0	Na^{+}
II-163	COOCH ₃	CH ₃	z	0	Ха+

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-164	COOCH ₃	CH ₃ .	НО	0	Na+
II-165	COOC2H5	CH ₃			Ħ
II-166	COOC ₃ H ₇ -n	CH ₃		. 0	
11-167	C00 ₃ H ₇ -i	CH ₃	C4H9-t.	0	н
II-168	C00C4H9-n	CH ₃		0	Ħ

BeispNr.	R³	R ⁴	R ⁵	×	M
II-169		CH ₃	C4H9-t.	0	н
II-170	(I.	CH ₃ CH ₃ CH ₃		0	H
11-171	TO CO	CH_3 CH_3 CH_3		0	Ħ
п-172	TO	CH_3 N CH_3 CH_3		0	н
II-173	CI	CH_3 CH_3 CH_3		0	Na+

BeispNr.	R³	$ m R^4$	R ⁵	X	M
II-174	ij	CH ₃	Cl	0	Н
II-175	TO CI	CH ₃	CI	 O	Na+
11-176	CI	CH_3 CH_3 CH_3	CH ₃	0	+ B N
II-177	7 CT	CH_3 N CH_3	но	0	Na+
II-178	CI	CH_3 N CH_3	SCH ₃	0	a N

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-179	CI	CH ₃	$CI \longrightarrow O \longrightarrow CI$	0	Na +
II-180	CI	$\begin{array}{c} CH_3 \\ N \\ CH_3 \end{array}$	CF ₃	0	Na+
IF-181	CI	CH_3 N CH_3 CH_3	но		н
П-182	Br	CH_3 N CH_3		0	Ħ
IF-183	Br	CH ₃	N(CH ₃) ₂	0	Na+ N

BeispNr.	\mathbb{R}^3	\mathbb{R}^4	R ⁵	×	M
II-184	Br	CH ₃		0	H .
II-185	Br	CH ₃		0	Za+
II-186	Br	CH ₃	C4H9-t.	0	
II-187	Br.	CH ₃	C4H9-t.	0	+ ¥
II-188	Br	CH_3 CH_3 CH_3		0	+ X

BeispNr.	R³	R ⁴	R ⁵	×	M
II-189	OCF ₃	CH ₃ N CH ₃	CH ₃	0	н
II-190	OCF ₃	CH ₃		0	н
II-191	OCF ₃	CH ₃	но	0	н
II-192	OCF ₃	CH ₃	CH ₃	0	Na+
II-193	OCHF ₂	CH ₃		0	н

BeispNr.	\mathbb{R}^3	R4	R ⁵	×	M
II-194	OCHF ₂	CH ₃	CH ₃	0	н
II-195	OCHF ₂	CH_3 CH_3 CH_3	Z	0	н
11-196	CF_3	CH_3 N CH_3	$-C_4H_9$ -t.	0	Ħ
II-197	N(CH ₃),	CH ₃		0	н
П-198	N(CH ₃),	CH_3 N CH_3	N(CH ₃),	0	н

BeispNr.	R ³	R ⁴	$ m R^5$	×	M
II-199	N(CH ₃) ₂	CH ₃	CH ₃	0	н
II-200	N(CH ₃),	CH ₃	C_4H_9 -t.	0	н
II-201	N(CH ₃),	CH ₃		0	- #
II-202	N(CH ₃),	CH ₃		0	Na+
II-203	N(CH ₃) ₂	CH ₃		0	Ħ

BeispNr.	R ³	R ⁴	R ⁵	X	M
11-204	SO ₂ N(C ₂ H ₃₎₂	CH_3 N N CH_3		0	н
11-205	SO ₂ N(C ₂ H ₃₎₂	$\overset{N}{\swarrow} \overset{CH_3}{\swarrow}$	N(CH ₃) ₂	0	Ħ
II-206	$SO_2N(C_2H_5)_2$	CH_3 N CH_3 CH_3	CH ₃	. · · · · · · · · · · · · · · · · · · ·	н
11-207	SO ₂ N(C ₂ H ₅₎₂	CH ₃	$ C_4H_9$ -t.	0	н
II-208	SO ₂ N(C ₂ H ₅₎₂	$\begin{array}{c} CH_3 \\ N \\ \end{array}$		0	H

BeispNr.	\mathbb{R}^3	R ⁴	R ⁵	×	W
II-209	$SO_2N(C_2H_5)_2$	CH ₃		0	H
II-210	$SO_2N(C_2H_{5/2})$	CH_3 CH_3 CH_3		0	Н
II-211		$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CH}_3 \end{array}$		0	Ħ
П-212		CH_3 N CH_3 CH_3	C_4H_9 -t.	0	Ħ
П-213	H_3C	CH_3 N CH_3 CH_3		0	Ħ

BeispNr.	R ³	R ⁴	R5	×	×
11-214	H_3C	CH ₃		0	H
II-215	COOCH,	CH ₃		0	H
II-216			H,C	0	Ħ
II-217	COOCH,		CH ₃	0	н
II-218	COOCH,	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	C_3H_{7} -n	0	Ħ
II-219	COOCH,	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	\sim C ₄ H ₉ -t.	0	н
II-220				0	 H

36 18 004

BeispNr.	R³	R ⁴	R ⁵	×	M
II-221	СООСН3	CH ₃		0	н
II-222	соосн,	$\sum_{N}^{CH_3}$	CONH2	0	$ m Na^+$
II-223	СООСН3	$\overset{\mathrm{CH}_3}{\searrow}$	-0сн	0	Na ⁺
II-224	СООСН3	$\sum_{N=-\infty}^{N}$	СН2ОН	0	Na+
II-225	C000CH ₃	$\overset{\text{CH}_3}{\searrow}$	SCH ₃	0	$\overset{\mathbf{N}}{a_{+}}$
II-226	C00C ₃ H ₇₋₁	CH ₃		0	н
II-227	COOC3H7-1	Z CH ₃		0	Na+

BeispNr.	R³	R ⁴	R ⁵	×	M
II-228	OCF ₃	CH ₃	C4H9-t.	0	н
11-229	C00CH,	N= CH ₃	CH ₃	o	н
II-230		N CH ₃		0	
II-231	соосн,	OCH ₃		0	н
II-232		OCH ₃		0	н
II-233	PH.	OCH ₃ N CH ₃			н

BeispNr.	R ³	R ⁴	R ⁵	X	M
II-234	Ed.	OCH ₃	N(CH ₃) ₂	0	н
II-235	B.	OCH ₃	C4H9-t.	0	Ħ
II-236	E. P.	OCH ₃		0	Ħ
II-237	ocF ₃	OCH ₃		0	Ħ
II-238	Соосн	OCH ₃		0	Ħ

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-239	CI	OCH ₃		0	н
II-240	OCF ₃	OCH ₃		0	 H
II-241	OCF ₃	OCH ₃	CH ₃		Ħ
11-242	OCF ₃	OCH ₃	SCH3	0	
п-243	OCHF ₂	OCH ₃		0	н

BeispNr.	R³	R ⁴	R ⁵	×	M
11-244	OCHF ₂	OCH ₃	CH ₃	0	н
II-245	SO ₂ N(CH ₃) ₂	OCH ₃		0	H
II-246	SO ₂ N(CH ₃) ₂	OCH ₃	$- C_4 H_9 \text{-t.}$	0	H
II-247	SO ₂ N(CH ₃) ₂	OCH ₃		• 0	H .
II-248	SO ₂ N(CH ₃) ₂	$N = \begin{pmatrix} OCH_3 \\ N \end{pmatrix}$ OCH_3		0	Na+

BeispNr.	R³	R ⁴	RS	×	M
II-249	SO ₂ N(CH ₃),	OCH ₃	CH ₃	0	田田
II-250	SO ₂ N(CH ₃) ₂	OCH ₃		0	#
II-251	SO ₂ N(CH ₃) ₂	OCH ₃		0	н
II-252	SO ₂ N(CH ₃) _h	OCH ₃	N(CH ₃)	 O	
II-253	H_3C	OCH ₃		0	н

BeispNr.	R³	R ⁴	R ⁵	×	M
II-254	соосн,	CH ₃		Ø	Н
II-255	СООСН,	CH_3 $N = CH_3$ CH_3	CH ₃	α	н
II-256	СООСН,	CH_3 N CH_3 CH_3	но————	S	н
II-257	COOCH ₃	CH_3 CH_3 CH_3	но	S	Na+
11-258	СООСН3	CH_3 N CH_3 CH_3		w	н

BeispNr.	R ³	R ⁴	R5	×	M
II-259	C00C ₃ H ₇ -i	CH ₃ CH ₃ CH ₃	но	N	н
II-260		CH_3 N CH_3 CH_3		∞	н
II-261	CI	CH_3 N CH_3 CH_3	$H_{2}N$	∞	Н
II-262	C1	CH_3 N CH_3	CH ₃	ω	н
II-263	CI	$\begin{array}{c} CH_3 \\ N \\ \end{array}$		જ	ш

BeispNr.	R ³	\mathbb{R}^4	R ⁵	×	M
II-264	CI	CH ₃	но—	α	н
II-265	C	$\begin{array}{c} CH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	OCONHCH ₃	w	Ħ
II-266	Ä	CH_3 N CH_3 CH_3	CI	w	Ħ
II-267	OCF ₃	CH_3 CH_3 CH_3		ω	Ħ
II-268	OCF ₃	CH_3 CH_3 CH_3	но—	w	Ħ

BeispNr.	R³	\mathbb{R}^4	R ⁵	×	M
II-269	OCHF ₂	CH_3 N CH_3		v	н
II-270	SO ₂ N(C ₂ H ₃) ₂	CH_3 CH_3	но	_α	Ħ
II-271	SO ₂ NHOCH ₃	CH_3 CH_3 CH_3		Ø	Ħ
II-272	SO ₂ NHOC ₄ H ₉ -n	CH_3 N CH_3 CH_3		~	- · · 出
П-273	D	CH_3 N CH_3 CH_3		∽ ∽	H

BeispNr.	R³	R ⁴	R ⁵	×	M
	СООСН3	CH ₃			
II-274			\Diamond	Ω.	Н
	соосн	CH ₃			
II-275			CH ₃	ß	Н
	COOCH3	CH ₃			
II-276			CI	N	Н
	соосн,	СН3			
II-277		Z	но—	S	H
	C00C2H5	CH ₃)		
II-278		Z	но	w	H
	[] CI	CH ₃			
II-279				w	Na+
	OCF3	CH ₃)		
11-280				Ø	н

BeispNr.	R³	$ m R^4$	R ⁵	×	M
II-281		CH ₃		w	н
II-282	СООСН3	$N = \begin{pmatrix} OCH_3 \\ N = \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$	НО—	∞	н
11-283	OCF ₃	OCH_3 N CH_3		w	н
П-284	COOCH ₃ .	OCH ₃		w	· #
II-285	Ü	OCH ₃		w	H

BeispNr.	R³	R ⁴	R ⁵	×	M
11-286	OCF ₃	OCH ₃		∞.	н
II-287	OCHF ₂	OCH ₃		Ø	н
11-288	OCHF ₂	N N OCH ₃ OCH ₂		ω	出
II-289	H ₃ C	CH_3 N N CH_3 CH_3		W	н
II-290	СООСН3	OCH ₃	НО	Ø	н

BeispNr.	R³	R4	R5	×	M
II-291	СООСН3	OCH ₃ N CH ₃	OCONHCH ₃	N	H
II-292	. TO	OCH ₃	но —	ν	· #
II-293	C1	OCH ₃	OCONHCH ₃	W	斑
II-294	OCF ₃	OCH ₃	но	ω	Ħ
II-295	SCH ₃	OCH ₃	НО	δ	ж

BeispNr.	R³	\mathbb{R}^4	R ⁵	X	M
II-296	CI	OCH ₃	но	w	н
II-297	OCF ₃	OCH ₃	но	w	н
II-298	SO ₂ NHOCH ₃	OCH ₃	но	· w	ж
II-299	C00CH ₃	OCH ₃	но	w	H
II-300	CF ₃	OCH ₃ N OCH ₃	но	w	н

BeispNr.	R³	R ⁴	R ⁵	×	M
II-301	Pr.	$N = \begin{pmatrix} OCH_3 \\ N \\ N \\ OCH_3 \end{pmatrix}$	но—	S	н
ІІ-302	COOC ₂ H ₅	OCH ₃ N N OCH ₃	но	ω.	
II-303	CF ₃	CH ₃ N N OCH ₃	но	. v	
II-304	Pi-	CH_3 N N N OCH_3	но	, w	н
П-305	COOC ₂ H ₅	CH ₃ CH ₃ OCH ₃	НО—	N	н

Die erfindungsgemäß verwendbaren Sulfonyliso(thio)harnstoff-Derivate der Formel (II) sind bekannt und/oder können nach an sich bekannten Methoden hergestellt werden (vergl. z. B. CH-PS 6 46 957, EP-A 5 986, EP-A 24 215, EP-A 1 73 311, EP-A 1 73 316, EP-A 1 73 321 und EP-A 1 73 957).

Die erfindungsgemäß als Gegenmittel verwendbaren Amide der Formel (I) eignen sich insbesondere zur Verbesserung der Verträglichkeit von herbizid wirksamen Sulfonyliso(thio)harnstoff-Derivaten der Formel (II) bei wichtigen Kulturpflanzen wie Mais, Sojabohnen, Baumwolle, Zuckerrüben, Getreide, Reis und Zuckerrohr, insbesondere Mais.

Die erfindungsgemäßen Wirkstoffkombinationen zeigen eine sehr gute Wirkung gegen Unkräuter und Ungräser in zahlreichen Nutzpflanzenkulturen. Sie können daher zur selektiven Unkrautbekämpfung in zahlreichen Nutzpflanzenkulturen verwendet werden. Unter Unkräutern im weitesten Sinne sind hierbei alle Pflanzen zu verstehen, die an Orten wachsen, wo sie unerwünscht sind.

Die erfindungsgemäßen Wirkstoffkombinationen können beispielsweise bei den folgenden Pflanzen angewendet werden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera. Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffkombinationen ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Insbesondere eignen sich die erfindungsgemäßen Wirkstoffkombinationen zur selektiven Unkrautbekämpfung in Mais.

Die selektive herbizide Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen ist besonders ausgeprägt, wenn herbizider Wirkstoff und Gegenmittel in bestimmten Verhältnissen vorliegen. Jedoch können die Gewichtsverhältnisse von herbizidem Wirkstoff zu Gegenmittel in den erfindungsgemäßen Wirkstoffkombinationen in relativ großen Bereichen schwanken. Im allgemeinen entfallen auf 1 Gewichtsteil an herbizidem Wirkstoff der Formel (II) 0,01 bis 100 Gewichtsteile, vorzugsweise 0,1 bis 20 Gewichtsteile an einem Gegenmittel der Formel (I).

Die erfindungsgemäß verwendbaren Gegenmittel der Formel (I) bzw. die erfindungsgemäßen Wirkstoffkombinationen aus einem Gegenmittel der Formel (I) und einem herbiziden Wirkstoff der Formel (II) können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, wirkstoffimprägnierte Natur- und synthetische Stoffe wie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z. B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z. B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z. B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent an einem erfindungsge-

36 18 004

mäß verwendbaren Gegenmittel bzw. an einer erfindungsgemäßen Wirkstoffkombination aus Gegenmittel und herbizidem Wirkstoff, vorzugsweise enthalten sie zwischen 0,5 und 90 Gewichtsprozent.

Die erfindungsgemäß verwendbaren Gegenmittel bzw. die erfindungsgemäßen Wirkstoffkombinationen können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wobei Fertigformulierung oder Tankmischung möglich ist. Auch eine Mischung mit bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Wuchsstoffen, Pflanzennährstoffen und Bodenstrukturverbesserungsmitteln ist möglich.

Die erfindungsgemäß verwendbaren Gegenmittel bzw. die erfindungsgemäßen Wirkstoffkombinationen können als solche, in Form ihrer Formulierungen oder den daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Emulsionen, Pulver und Granulate angewandt werden. Die Anwendung geschieht in üblicher Weise, z. B. durch Gießen, Spritzen, Sprühen, Stäuben, Streuen, Trockenbeizen, Feuchtbeizen, Naßbeizen, Schlämmbeizen oder Inkrustieren.

Die erfindungsgemäß verwendbaren Gegenmittel können nach den für derartige Antidote üblichen Methoden ausgebracht werden. So können die erfindungsgemäß verwendbaren Gegenmittel vor oder nach dem Herbizid ausgebracht werden oder zusammen mit dem Herbizid appliziert werden. Ferner können Kulturpflanzen durch Saatgutbehandlung mit dem Gegenmittel vor der Saat (Beizung) vor Schäden geschützt werden, wenn das Herbizid vor oder nach der Saat angewendet wird. Eine weitere Einsatzmöglichkeit besteht darin, daß man das Gegenmittel bei der Aussaat in die Saatfurche ausbringt. Wenn es sich bei den Pflanzen um Stecklinge handelt, so können diese vor der Auspflanzung mit dem Gegenmittel behandelt werden.

Die Aufwandmenge an Gegenmittel ist im Prinzip unabhängig vom Herbizid und der Aufwandmenge an herbizidem Wirkstoff. Im allgemeinen liegen die Aufwandmengen an Gegenmittel bei Flächenbehandlung zwischen 0,02 und 20 kg/ha, vorzugsweise zwischen 0,05 und 5 kg/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Gegenmittel bei Flächenbehandlung zwischen 0,2 und 200 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,5 und 50 g pro Kilogramm Saatgut. Die Aufwandmengen an erfindungsgemäßen Wirkstoffkombinationen können in einem gewissen Bereich variiert werden. Im allgemeinen liegen sie zwischen 0,001 und 25 kg/ha, vorzugsweise zwischen 0,01 und 5 kg/ha.

Die Aufwandmenge an herbizidem Wirkstoff schwankt im allgemeinen zwischen 0,001 und 20 kg/ha, vorzugsweise zwischen 0,01 und 2 kg/ha.

Verwendungsbeispiele

Herstellung der benötigten Wirkstofflösungen

Aus den für den Versuch benötigten Mengen an Herbizid-Wirkstoff bzw. Antidot wurde je eine Stammlösung hergestellt. Dabei wurden technische Wirkstoffe mit wenigen Millilitern (3—5) des angegebenen Lösungsmittels angelöst, 1 Tropfen Emulgator "Tween 20" zugegeben und mit Wasser weiter verdünnt, formulierte Wirkstoffe wurden direkt in Wasser dispergiert. Aus diesen Stammlösungen wurden dann durch weiteres Verdünnen mit Wasser und gegebenenfalls durch Mischen die Wirkstoff-Lösungen für die Behandlung der Testpflanzen-Samen in den Versuchsgefäßen hergestellt, so daß in der jeweiligen Lösung die gewünschte Menge an Herbizid-Wirkstoff bzw. Antidot enthalten war. Das in den Versuchen pro Flächeneinheit applizierte Volumen an Wirkstofflösung wurde konstant gehalten.

Anwendung der Antidot- und Herbizid-Wirkstoffe:

Die Wirkstoffapplikation auf die Samen der Testpflanzen erfolgte im Tankmix-Verfahren. Dabei wurde die auszubringende Menge an Antidot in Mischung mit dem Herbizid auf die mit Erde befüllten Versuchsgefäße gegossen, worin die Samen der Testpflanzen eingesät waren; als Kontrollvariante dienten solche Gefäße, die nur mit Wasser bzw. Herbizid behandelt wurden.

Die Versuchsgefäße wurden anschließend im Gewächshaus unter kontrollierten Bedingungen (Temperaturen, Feuchte) gehalten. Nach zwei Wochen erfolgte die Auswertung der Versuche in Form einer visuellen Bonitur, wobei die Schädigung der Testpflanzen im Vergleich zu unbehandelten Kontrollpflanzen nach einer Skala von 0 (keine Schädigung, wie unbehandelte Kontrolle) bis 100 (totale Schädigung) bewertet wurde.

Die Testverbindungen, deren Aufwandmengen, die Testpflanzen und die Testergebnisse gehen aus der nachfolgenden Tabelle hervor:

Vorauflauf-Test / Gewächshaus

Testverbindungen / Tabelle 1

Bei den in den nachfolgenden Tabellen 1 und 2 beschriebenen Versuchen sind als Testverbindungen die folgenden Wirkstoffe eingesetzt worden, wobei auch die verwendeten Formulierungen angegeben sind:

65

15

20

25

30

40

50

55

Herbizide:

Herbizid (II-294)

Formulierung: Technischer Wirkstoff, Lösungsmittel Dimethylformamid Herbizid (II-79)

OCF₃

$$SO_2-N$$

$$N$$

$$N$$

$$N$$

$$N$$

$$N$$

$$C$$

$$CH_3$$

$$S-CH_3$$

Formulierung: Technischer Wirkstoff, Lösungsmittel Dimethylformamid

Antidots:

39 Antidot (I-475)

35

69

65

$$\begin{array}{c|c} CH_3 & O & O & CH_2 \\ \hline CH - C - N & N - C - CH \\ \hline CI & & CI \end{array}$$

40 Formulierung: 350 EC, d. h. Emulsionskonzentrat mit 350 g Antidot pro Liter Antidot (I-273)

O
$$CH_2-CH=CH_2$$
 \parallel
 $CH_2-CH=N-O-CH$

Formulierung: 500 EC, d. h. Emulsionskonzentrat mit 500 g Antidot pro Liter
Antidot (I-271)

$$CH_{2}-CH=CH_{2}$$

$$CH_{2}-CH=CH_{2}$$

$$CH_{2}-CH=CH_{2}$$

Formulierung: 750 EC, d. h. Emulsionskonzentrat mit 750 g Antidot pro Liter Antidot (I-369)

$$Cl_2CH - C - N O$$

$$H_3C CH_3$$

Formulierung: technischer Wirkstoff, Lösungsmittel Aceton

36 18 004

Tabelle A

Prüfung an Mais/Anwendung der Antidots im Tankmix-Verfahren

Testverbindungen	Aufwandmenge Bonitur: Schädigung in %						
Herbizid (II-79)	1000 g/ha 70%		500 g/ha 50%		250 g / ha 30%		
Herbizid (II-79) + Antidot (a), (b), (c) bzw. (d)	1000 g + /ha 1000 g	1000 g + /ha 200 g	500 g + /ha 500 g	500 g + /ha 100 g	250 g + /ha 250 g	250 g + /ha 50 g	0 g + /ha 1000 g
(a) (I-273)	10 %	30%	10%	20%	0	10%	0
(b) (I-475)	20 %	40%	10%	20%	10%	20%	0
(c) (I-271)	10 %	50%	0	20%	0	20%	0
(d) (I-369)	20%	20%	0	20%	0	0	0
		•	Fortsetzu	ıng			
Testverbindungen	Aufwandme Bonitur: Scl	enge hädigung in %	-				
Herbizid (II-294)	500 g/ha 60%		250 g/ha 40%		125 g/ha 20%		
Herbizid (II-294) + Antidot (a), (b), (c) bzw. (d)	500 g + /ha 500 g	500 g + / ha 100 g	250 g + /ha 250 g	250 g + /ha 50 g	125 g + /ha 125 g	125 g + /ha 25 g	0 g + /ha 1000 g
(a) (I-273)	20 %	30%	20%	20%	10%	20%	0
(b) (I-475)	30%	20%	20%	10%	10 %	20%	0
(c) I-271)	30%	40%	30%	30%	10 %	20%	0
(d) (I-369)	10%	10%	- 0	0	0	0	0
•							

- Leerseite -