

ボンディングワイヤによる影響と 次段接続のための検討

明治大学 M2 大塚 雄太

ギルバートセル回路を複数並列に接続することで積和演算回路を構成する。

表1 試作した2入力積和演算回路

ギルバートセル	
V_{DD}	1 V
R	205 Ω
V _{CTR}	0.8 V
$V_{\text{ctr1}\pm}, V_{\text{ctr2}\pm}$	-0.1~0.1 V
V_{IN}	0.6 V
$v_{in1\pm}, v_{in2\pm}$	-0.1~0.1 V
V_{MUL}	0.45 V
M _{A1~4}	$\frac{W_A}{L_A} = \frac{9.6 \text{ um}}{65 \text{ nm}}$
M _{B1, 2}	$\frac{W_B}{L_B} = \frac{19.2 \text{ um}}{65 \text{ nm}}$
M _{C1}	$\frac{W_C}{L_C} = \frac{38.4 \text{ um}}{65 \text{ nm}}$

バッファ	
V_{BUFF}	0.34 V
M _{BUFF1}	$\frac{W}{L} = \frac{34.72 \text{ um}}{180 \text{ nm}}$
M _{BUFF2}	$\frac{W}{L} = \frac{70.2 \text{ um}}{180 \text{ nm}}$
M _{BUFF3}	$\frac{W}{L} = \frac{140.4 \text{ um}}{180 \text{ nm}}$

図1 積和演算回路

試作したPCB、シミュレーションを行った。

ギルバートセル	
V_{DD}	1 V
R	205 Ω
V_{CTR}	0.8 V
$V_{\text{ctr1}\pm}, V_{\text{ctr2}\pm}$	-0.1~0.1 V
V_{IN}	0.6 V
$v_{in1\pm}, v_{in2\pm}$	-0.1∼0.1 V
V_{MUL}	0.45 V
$M_{A1\sim4}$	$\frac{W_A}{L_A} = \frac{9.6 \text{ um}}{65 \text{ nm}}$
M _{B1, 2}	$\frac{W_B}{L_B} = \frac{19.2 \text{ um}}{65 \text{ nm}}$
M _{C1}	$\frac{W_C}{L_C} = \frac{38.4 \text{ um}}{65 \text{ nm}}$

試作したPCB、シミュレーションを行った。

ボンディングワイヤのインダクタンス:1 nH/mm

試作PCBのボンディングワイヤの最長:約2 mm $\rightarrow L = 0,1,2 \text{ nH}$ の3パターンでシミュレーションを行う。

- •BiasTeeを挟むことによる直流電圧の変化→動作領域に問題あり?
- ・インダクタによる波形の乱れ

図4 シミュレーション結果(BiasTee通過後)

- •BiasTeeを挟むことによる直流電圧の変化→動作領域に問題あり?
- ・インダクタによる波形の乱れ