

Politecnico di Bari CUC Ingegneria dell'Informazione CdL Ingegneria Informatica e Automazione AA 2009-2010

Corso di Complementi di Analisi Matematica - Tracce di esame Docente: Dott. E. Caponio

1) Studiare la convergenza puntuale in [0,1] della successione di funzioni

$$f_n(x) = \frac{2nx}{3 + x^2n}.$$

Stabilire poi che la convergenza non è uniforme in [0,1] e che lo è in ogni intervallo [a,1], con a>0.

2) Determinare il raggio di convergenza della seguente serie di potenze in \mathbb{C} :

$$\sum_{n=1}^{\infty} \frac{2n-1}{n^2 3^n} z^n.$$

Stabilire poi il carattere negli estremi dell'intervallo di convergenza della stessa serie in \mathbb{R} .

3) Richiamando i risultati teorici necessari e spiegando perché si possono usare, calcolare l'integrale

$$\int_{\mathcal{C}} \frac{\cos^2 z}{z(z+\pi)^2} \mathrm{d}z,$$

dove \mathcal{C} è la circonferenza di centro il punto -3 e raggio 1 percorsa in senso antiorario.

- 1) Dare la definizione di raggio di convergenza per una serie di potenze. Data poi la serie di potenze $\sum_{n=0}^{+\infty} a_n (z-z_0)^n \text{ in } \mathbb{C}, \text{ si supponga che } \lim_n \frac{|a_{n+1}|}{|a_n|} = l \in (0,+\infty); \text{ dimostrare che il suo raggio di convergenza è uguale a } 1/l.$
- 2) Richiamando i risultati teorici necessari e spiegando perché si possono usare, calcolare

$$\int_{\gamma} \frac{\cosh z}{z^2 + \pi^2} \mathrm{d}z,$$

dove γ è la curva orientata rappresentata in figura.

- 3) Sia $\alpha \in \mathbb{R}$, dare la definizione di determinazione α del logaritmo. Calcolare poi $\operatorname{Log}_{2\pi}i \operatorname{Log}_{\pi}i$.
- 4) Dare la definizione di residuo in un punto $z_0 \in \mathbb{C}$. Determinare poi i residui nelle singolarità al finito della funzione

$$f(z) = \frac{\sin^2 z}{(z+1)(z-2i)^2}.$$

5) Calcolare, usando il metodo dei residui,

$$\int_0^{+\infty} \frac{2x^2}{1+x^4} \mathrm{d}x.$$

6) Scrivere la serie di Fourier della funzione f(t) = t, $t \in [0,1)$ estesa per periodicità su \mathbb{R} con periodo T = 1. Studiare poi la convergenza puntuale e uniforme di tale serie.

- Ricordare la definizione di distanza. Considerato poi l'insieme C([a,b]) delle funzioni continue sull'intervallo $[a,b] \subset \mathbb{R}$ e la funzione $d \colon C([a,b]) \times C([a,b]) \to \mathbb{R}, \ d(f,g) = \int_a^b |f(x) g(x)| dx$, dimostrare che d definisce una distanza su C([a,b]).
- 2) Calcolare per serie l'integrale $\int_0^\pi \sin(x^2) dx$, richiamando i risultati teorici che consentono tale calcolo.
- 3) Dire, motivando la risposta, se può esistere una funzione intera f, non identicamente nulla, tale che f(1/n) = 0, per ogni $n \in \mathbb{N} \setminus \{0\}$.
- 4) Calcolare, usando il I e il II teorema dei residui,

$$\int_{\partial^+ T} \frac{1}{z^2} e^{\frac{1}{z-1}} \mathrm{d}z,$$

dove T è il quadrato avente per vertici i punti 2+2i, -2+2i, -2-2i, 2-2i.

- 5) Enunciare e dimostrare la regola del parallelogramma.
- 6) Scrivere la serie di Fourier della funzione $f(t) = t^2$, $t \in [-\pi, \pi]$, estesa per periodicità su \mathbb{R} con periodo $T = 2\pi$. Studiare poi la convergenza puntuale e uniforme di tale serie, ricavare la serie numerica a cui essa si riduce nel punto $t = 2\pi$ e il valore della sua somma nello stesso punto.

- 1) Sia $A \subset \mathbb{R}$ e si consideri l'insieme $C_b^0(A)$ delle funzioni $f: A \to \mathbb{R}$ continue e limitate su A. Sia $\{f_n\}_{n\in\mathbb{N}} \subset C_b^0(A)$ tale che $f_n \to f$ uniformemente su A. Dimostrare che $f \in C_b^0(A)$.
- 2) Calcolare per serie l'integrale $\int_{1/2}^1 e^{-x^2} dx$, richiamando i risultati teorici che consentono tale calcolo.
- 3) Ricordare la definizione di funzione olomorfa in un punto. Dimostrare poi che la funzione $f(z) = |z|^2, z \in \mathbb{C}$ è olomorfa solo in 0.
- 4) Sviluppare in serie di Laurent centrata in 0 la funzione $f(z) = z^2 \sin(1/z^2)$. Che tipo di singolarità ha f in 0? Motivare la risposta.
- 5) Calcolare il residuo all'infinito della funzione $f(z) = 1 \frac{1}{z}\cos\frac{1}{z}$.
- 6) Sia $f \in L^2([-\pi, \pi])$. È noto che in $L^2([-\pi, \pi])$, f è la somma della sua serie di Fourier:

$$\sum_{n=-\infty}^{+\infty} c_n e^{inx},$$

con $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$. Tale serie si può anche scrivere così:

$$a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + \sum_{n=1}^{+\infty} b_n \sin(nx).$$

Dedurre le relazioni che legano i coefficienti c_n con a_n e b_n .

- 1) Si consideri una successione di funzioni $f_n: (a,b) \to \mathbb{R}$ limitate e si consideri la loro serie $\sum_{n=0}^{+\infty} f_n(x)$. Dopo aver ricordato la definizione di convergenza totale, dimostrare che se tale serie converge totalmente su (a,b) allora essa converge uniformente su (a,b).
- 2) Fornire un esempio di una funzione $f \in C^{\infty}(\mathbb{R})$ che non sia la somma della sua serie di MacLaurin. Motivare la risposta.
- 3) Calcolare il seguente integrale

$$\int_{\partial^{-}B(i,2)} \frac{z \sin(\pi z^{2})}{[(z-i)(z+2i)]^{2}} dz,$$

dove $\partial^- B(i,2)$ è la frontiera della palla di centro i e raggio 2 percorsa in senso orario.

4) Dimostrare che se $\lim_{|z|\to+\infty} zf(z) = 2$ allora

$$\lim_{R\to +\infty} \int_{+\Gamma_R} f(z) \mathrm{d}z = 2\pi i,$$

dove ${}^+\Gamma_R$ è la semicirconferenza $\{z\in\mathbb{C}\colon |z|=R,\ 0\leq \mathrm{Arg}z\leq\pi\}$ orientata nel verso antiorario.

- 5) Stabilire la natura delle singolarità in $\mathbb{C} \cup \{\infty\}$ della funzione $f(z) = \frac{e^{z-1}}{z^3}$ e calcolare i relativi residui.
- 6) Si consideri la funzione $f(x) = x^3$, $x \in (-1,1)$. Calcolare la serie di Fourier di f, estesa per periodicità su \mathbb{R} con periodo 2. Usare quanto ottenuto per calcolare la somma della seguente serie numerica:

$$\sum_{h=0}^{+\infty} (-1)^{h+1} \frac{2}{(2h+1)\pi} \left(\frac{6}{[(2h+1)\pi]^2} - 1 \right).$$

- 1) Dare la definizione di norma, di spazio normato, di spazio di Banach. Si consideri poi $A \subset \mathbb{R}$ e lo spazio $C_b(A) = \{f \colon A \to \mathbb{R} \mid f \text{ limitata}\}$. Per ogni $f \in C_b(A)$, sia $||f|| = \sup_{x \in A} |f(x)|$. Dimostrare che $||\cdot||$ è una norma su $C_b(A)$ e che lo stesso spazio, munito di tale norma, è di Banach.
- 2) Ricordare la nozione di convergenza totale per una serie di funzioni continue $f_n: [a, b] \to \mathbb{R}$. Dimostrare poi che la convergenza totale implica quella uniforme.
- 3) Calcolare il seguente integrale:

$$\int_C \left(\frac{2z+i}{z-i}\right)^4 \mathrm{d}z,$$

dove C è la circonferenza di centro 2i e raggio 2 percorsa in senso antiorario.

- 4) Determinare tutte le soluzioni dell'equazione $e^z = (i-1)^2$
- 5) Si calcoli la serie di Fourier dela funzione

$$f(x) = \begin{cases} t & \text{se } x \in [0, \frac{1}{2}] \\ 1 - t & \text{se } x \in (\frac{1}{2}, 1] \end{cases},$$

estesa per periodicità ad $\mathbb R$ con periodo 1. Dire, motivando la risposta se tale serie converge uniformente a f su $\mathbb R$.

- 1) Sia $A \subset \mathbb{R}$ e sia $f_n \colon A \to \mathbb{R}$, $n \in \mathbb{N}$, una successione di funzioni limitate. Dare la definizione di convergenza uniforme e dimostrare che se $f_n \to f$ uniformemente su A allora f è limitata.
- 2) Dimostrare che se una serie di potenze in \mathbb{C} di centro z_0 ha raggio di convergenza $\rho > 0$ allora la sua somma è continua nel disco di centro z_0 e raggio ρ .
- 3) Enunciare e dimostrare il teorema fondamentale dell'algebra.
- 4) Calcolare il seguente integrale:

$$\int_C \left(\frac{z+2i}{z+i}\right)^4 \mathrm{d}z,$$

dove C è la circonferenza di centro 1-i e raggio 3 percorsa in senso antiorario.

- 5) Scrivere in forma algebrica il numero complesso $\operatorname{Log}_{\frac{\pi}{2}}(-1-i)$.
- 6) Si calcoli la serie di Fourier della funzione

$$f(x) = \begin{cases} t & \text{se } x \in [0, 1] \\ 2 - t & \text{se } x \in (1, 2] \end{cases},$$

estesa per periodicità ad $\mathbb R$ con periodo 2. Dire, motivando la risposta, se tale serie converge uniformente a f su $\mathbb R$.

1) Determinare il raggio di convergenza della serie di potenze in \mathbb{R}

$$\sum_{n=0}^{+\infty} \frac{2^n x^n}{1+n^2}.$$

Determinarne poi l'insieme di convergenza puntuale ed uniforme.

- 2) Dare la definizione di zero di ordine $m \in \mathbb{N}$ per una funzione olomorfa. Dimostrare he z_0 è uno zero di ordine m per f olomorfa se e solo se $f^{(k)}(z_0) = 0$, per ogni $k \in \{0, \dots, m-1\}$ e $f^{(m)}(z_0) \neq 0$.
- 3) Calcolare

$$\int_C \frac{z^3}{z^4 + 1} \mathrm{d}z,$$

dove C è la circonferenza di centro $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$ e raggio 1 percorsa in senso antiorario.

- 4) Enunciare e dimostrare il teorema di Hermite-Liouville.
- 5) Usando il metodo dei residui, calcolare il seguente integrale improprio

$$\int_0^{+\infty} \frac{\cos(3x)}{2+x^4} \mathrm{d}x.$$

6) Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert separabile. Dare la definizione di base numerabile ortonormale di $(H, \langle \cdot, \cdot \rangle)$, di coefficienti e di serie di Fourier di $x \in H$.