COMP 9602: Convex Optimization

Duality (II)

Dr. C. Wu

Department of Computer Science The University of Hong Kong

Next

- Interpretations of duality
 - Geometric interpretation
 - Sensitivity interpretation
 - Saddle-point interpretation
 - Game interpretation
- Examples
 - usage of duality
 - non-convex problem with strong duality

Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

interpretation of dual function:

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}}(t+\lambda u), \qquad \text{where} \quad \mathcal{G} = \{(f_1(x),f_0(x)) \mid x\in\mathcal{D}\}$$

$$u = f_1(x), t = f_0(x)$$

• $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to ${\cal G}$ which intersects t-axis at $t = g(\lambda)$

Geometric interpretation (cont'd)

epigraph variation: same interpretation if \mathcal{G} is replaced with

$$\mathcal{A} = \{(u, t) \mid f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$$

strong duality

- ullet holds if there is a non-vertical supporting hyperplane to ${\mathcal A}$ at $(0,p^\star)$
- for convex problem, $\mathcal A$ is convex, hence has supp. hyperplane at $(0,p^\star)$ P(u) is convex
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

Sensitivity interpretation

(unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$ subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ subject to $\lambda \succeq 0$ $h_i(x) = 0, \quad i=1,\ldots,p$

perturbed problem and its dual

min.
$$f_0(x)$$
 max. $g(\lambda, \nu) - u^T \lambda - v^T \nu$ s.t. $f_i(x) \leq u_i, \quad i = 1, \ldots, m$ s.t. $\lambda \succeq 0$ $h_i(x) = v_i, \quad i = 1, \ldots, p$

- $p^*(u,v)$ is optimal value as a function of u, v
- Local sensitivity: if strong duality holds and p*(u,v) is differentiable at (0,0)

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

Saddle-point interpretation

☐ Assume no equality constraints (results can be easily extended)

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda) \qquad \qquad d^* = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda)$$

- Weak duality: $\sup_{\lambda\succeq 0}\inf_x L(x,\lambda) \leq \inf_x \sup_{\lambda\succ 0} L(x,\lambda)$
- Strong duality: $\sup_{\lambda\succeq 0}\inf_x L(x,\lambda)=\inf_x\sup_{\lambda\succeq 0}L(x,\lambda)$
- ☐ Max-min inequality generally holds:

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \le \inf_{w \in W} \sup_{z \in Z} f(w, z) \qquad \text{for any } f, W, Z$$

Strong max-min property (or saddle-point property) holds if

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) = \inf_{w \in W} \sup_{z \in Z} f(w, z)$$

Saddle-point interpretation (cont'd)

lacksquare Saddle-point for f: a pair $ilde{w} \in W, ilde{z} \in Z$ that satisfy

$$f(\tilde{w}, z) \le f(\tilde{w}, \tilde{z}) \le f(w, \tilde{z}), \forall w \in W, z \in Z$$

$$f(\tilde{w}, \tilde{z}) = \inf_{w \in W} f(w, \tilde{z}) \qquad f(\tilde{w}, \tilde{z}) = \sup_{z \in Z} f(\tilde{w}, z)$$

<=> strong max-min property holds

 x^*, λ^* are primal and dual optimal points and strong duality holds (x^*, λ^*) form a saddle-point for the Lagrangian

Game interpretation

- ☐ Player x chooses strategy from 1, 2, ..., n
- □ Player y chooses strategy from 1, 2, ..., m
- \square Pij is the amount x pays to y (payoff) when x plays strategy i, y plays strategy j

- mixed strategy:
 - ui: prob(player x chooses strategy i)
 - vj: prob(player y chooses strategy j)
- lacktriangledown expected payoff: $u^T P v$

two-player zero-sum game

Suppose x fixes strategy u, then y plays (decides v) to maximize expected payoff:

s.t.
$$\sum_{i=1}^m v_i = 1$$
 $v \succeq 0$

=> optimal value:
$$\max_{i=1,...,m} (P^T u)_i$$
 ith row

=> optimal point:
$$v_j = 1, j = \operatorname{argmax}_i(P^T u)_i$$
 $v_i = 0, \forall i \neq j$

lacksquare So x must choose u to minimize $\max_{i=1,...,m}(P^Tu)_i$:

s.t.
$$\min_{u} \max_{i=1,...,m} (P^T u)_i$$

$$\sum_{i=1}^n u_i = 1 \qquad \Longrightarrow \qquad \text{s.t}$$

$$u \succeq 0$$

$$\min t$$

s.t.
$$P^T u \preceq t \mathbf{1}$$
 $u^T \mathbf{1} = 1$ $u \succeq 0$

LP (1) with Optimal value: p_1^*

 \square Suppose y plays first (v given), then x chooses u to minimize expected payoff:

$$\min u^T P v$$

$$\text{s.t.} \quad \sum_{i=1}^n u_i = 1$$

$$\Rightarrow \text{optimal value: } \min_{i=1,\dots,n} (P v)_i$$

$$\Rightarrow \text{optimal point: } u_j = 1, j = \operatorname{argmin}_i (P v)_i$$

$$u_i = 0, \forall i \neq j$$

 \square So y chooses v to maximize $\min_{i=1,\ldots,n}(Pv)_i$:

$$\max_{v} \min_{i=1,\dots,n} (Pv)_i \qquad \max t$$
 s.t.
$$\sum_{i=1}^m v_i = 1 \qquad \Longrightarrow \qquad v^T \mathbf{1} = 1$$

$$v \succeq 0$$

LP (2) with Optimal value: p_2^*

LP (1) and LP (2) are duals of each other and thus have the same optimal values: $p_1^{st}=p_2^{st}$

Therefore, there is no advantage to play second, i.e., $p_1^* \not \geq p_2^*$

- Consider payoff function $f(u,v)=u^TPv$, the optimum u* for LP (1) and the optimum v* for LP (2) form a saddle-point for f(u,v)
 - $f(u^*,v) \le f(u^*,v^*) \le f(u,v^*)$

$$f(u^*, v^*) = \inf_{u} f(u, v^*)$$
 $f(u^*, v^*) = \sup_{v} f(u^*, v)$

□ Nash equilibrium of the game: (u*,v*) such that

u* is the best response of player x with respect to v*v* is the best response of player y with respect to u*

Usage example of duality

- Duality gives a way to analytically solve an optimization problem
 - example:

$$\min \|x\|_2^2$$

s.t.
$$Ax = b$$

Non-convex problem with strong duality

- Strong duality >> convex problem
 - example non-convex problem with strong duality:

$$\min x^T A x$$

$$A \in S^{\eta}$$
 s.t.
$$x^T x = 1$$

- Reference
 - Chapter 5.3 5.4, 5.6, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto