1 Ideal Fluid

The quarter model is

1.1 Velocity Potential

Assume the components of velocity $\vec{v} = u\hat{i} + v\hat{j}$ of the ideal fluid are

$$u = \frac{\partial \phi}{\partial x}, v = \frac{\partial \phi}{\partial y} \tag{1.1}$$

Due to the incompressibility and irrotationality of the ideal fluid, the governing equation is

$$\nabla^2 \phi = 0 \tag{1.2}$$

Boundary conditions are

$$q_{n} = 0$$

$$q_{n} = -1$$

$$q_{n} = 0$$

$$q_{n} = 0$$

where
$$q_n = \frac{\partial \phi}{\partial x} n_x + \frac{\partial \phi}{\partial y} n_y$$
.

Using the 4-node quadrilateral element with the size of 0.2×0.2 , the velocity potential ϕ can be obtained.

1.2 Streamline Function

Assume the components of velocity $\vec{v} = u\hat{i} + v\hat{j}$ of the ideal fluid are

$$u = \frac{\partial \psi}{\partial y}, v = -\frac{\partial \psi}{\partial x} \tag{1.3}$$

Due to the incompressibility and irrotationality of the ideal fluid, the governing equation is

$$\nabla^2 \psi = 0 \tag{1.4}$$

Boundary conditions are

where
$$q_n = \frac{\partial \phi}{\partial x} n_x + \frac{\partial \phi}{\partial y} n_y$$
.

Using the 4-node quadrilateral element with the size of 0.2×0.2 , the streamline function ψ can be obtained.

2 Torsion

2.1 St. Venant's Torsion Theory

Displacement field

$$\begin{cases} u(x, y, z) = -\alpha yz \\ v(x, y, z) = \alpha xz \\ w(x, y, z) = \alpha \phi(x, y) \end{cases}$$
 (2.1)

where $\phi(x, y)$ is the warping function of the cross section, and α is the angle of twist per unit length.

The governing equation is

$$\nabla^2 \phi = 0 \tag{2.2}$$

The boundary condition is

$$q_{n} = \frac{\partial \phi}{\partial x} n_{x} + \frac{\partial \phi}{\partial y} n_{y} = y n_{x} - x n_{y}$$
 (2.3)

In the following example, assuming the isotropic material, Young's modulus $E = 2.06 \times 10^{11}$ Pa, Poisson's ratio v = 0.3, shear modulus $G = E / 2(1+v) = 7.9231 \times 10^{10}$ Pa, and the applying torque T = 2000 N.

2.1.1 Solid cross section

The solution of warping function $\phi(x, y)$ is

2.1.2 Hollow cross section

The solution of warping function $\phi(x, y)$ is

2.2 Prandtl's Torsion Theory

Assume the shear stresses σ_{xz} and σ_{yz} can be expressed by a stress function $\psi(x,y)$

$$\begin{cases}
\sigma_{xz} = \frac{\partial \psi}{\partial y} \\
\sigma_{yz} = -\frac{\partial \psi}{\partial x}
\end{cases}$$
(2.4)

The governing equation is

$$\nabla^2 \psi = -2G\alpha \tag{2.5}$$

where G is the shear modulus and α is the angle of twist per unit length.

The boundary condition is

$$\frac{d\psi}{ds} = 0 \tag{2.6}$$

or equivalently, on each boundary (internal or external)

$$\psi = C_i, \ i = 1, 2, ..., n \tag{2.7}$$

where C_i are constants which are not necessarily equal, and n is the number of boundaries (internal and external).

In practice, for the external boundary, we can specify $\psi = 0$. To find C_i for the other n-1 internal boundaries, we use the single-valuedness condition of the warping displacement

$$\oint_{\Gamma^i} \phi ds = 0 \tag{2.8}$$

Substituting St. Venant's stresses and Eq.(2.4) into (2.8) leads to

$$\oint_{\Gamma^{i}} \sigma_{xz} dx + \sigma_{yz} dy + G\alpha \oint_{\Gamma^{i}} y dx - x dy = 0$$

$$\Rightarrow -\oint_{\Gamma^{i}} \left(\frac{\partial \psi}{\partial x} n_{x} + \frac{\partial \psi}{\partial y} n_{y} \right) ds - 2G\alpha \iint_{\Omega^{i}} dx dy = 0$$

$$\Rightarrow \oint_{\Gamma^{i}} -\left(\frac{\partial \psi}{\partial x} n_{x} + \frac{\partial \psi}{\partial y} n_{y} \right) ds = 2G\alpha A_{i}$$
(2.9)

where A_i is the area of the contour Γ^i encloses, and the path integrals are in a counterclockwise direction.

To apply this boundaries condition to the finite element model, note Eq.(2.9) also means

$$\oint_{\Gamma^i} q_n ds = 2G\alpha A_i \tag{2.10}$$

Therefore, for the internal boundary Γ^i , choose one node as the master node and the other nodes as the slave nodes, and let the value of ψ of slave nodes equal to that of the corresponding master node. And only apply a concentrated force which equals to $2G\alpha A_i$ to the master node. Then the stress function ψ of the whole cross section can be solved.

The parameters used here are the same as stated in St. Venant part.

2.2.1 Solid cross section

The solution of stress function $\psi(x, y)$ is

2.2.2 Hollow cross section

The solution of stress function $\psi(x, y)$ is

2.3 Comparison

		St Venant	Prandtl	Ansys
Solid	$J(\text{m}^4)$	220.744	213.194	216.514
	α	1.14E-10	1.18E-10	
Hollow	$J(\text{m}^4)$	103.745	90.5134	101.755
	α	2.43E-10	2.79E-10	