

Reconnaissance Clavier

Soutenance Finale

Elèves: Abdelmalek BELGHOMARI - Mohamed Abderrahmane BEDDA -

Haykel SRIHA - Cedric WILLAUME - Winnie KAMTCHUENG

Encadrants: Christophe ROSENBERGER - Tanguy GERNOT

L'École des Ingénieurs Scientifiques

SOMMAIRE

- 1. Introduction
- 2. <u>Méthodologie de développement</u>
- 3. Conception
- 4. Conclusion

Introduction

Objectifs:

- Reconnaissance du contenu tapé au clavier à l'aide d'un enregistrement audio
- Identification de l'utilisateur grâce à l'analyse des émissions sonores du clavier
- Livrer une démonstration web de la reconnaissance de touches et de personnes

Contexte:

- Répond à des nécessités liées à la cybercriminalité
- Aide des services de sécurité à l'accès aux données sensibles
- Surveillance de l'activité d'utilisateurs
- Fournit une authentification biométrique
- Prévention contre de futures attaques biométriques

1. Etat de l'art

Paper	Year	Principle	Accuracy(percentage)
A Practical Deep Learning-Based Acoustic Side	2023	CoAtNet	93%
Channel attack on keyboards			
Analyse de la dynamique de frappe au clavier sonore	2022	SVM/MFCC	96%
pour l'identification, le profilage et l'extraction du			
texte saisi			
Don't skype & type	2017	MFCC	91%
Don't skype & type	2017	LF	100%
Reconnaissance de saisie sur clavier par analyse	2011	Intercorrelation/DFT	99%
acoustique			
Keyboard Acoustic Emanations Revisited	2009	MFCC/HMM	87% without any noise
Keyboard Acoustic Emanations: An Evaluation of	Unknown	Tim-Frq	82.69%
strong passwords and typing styles			

Figure 1 : Tableau de comparaison de différents modèles de reconnaissance sonore

2. Agilité du Projet : Novembre à Janvier

Figure 2: Organisation Agile du projet

3. Agilité du Projet : Février à Avril

Figure 3 : Organisation Agile du projet après Mi-Parcous

4. Outils utilisés

• Partage de code :

Canal de discussion du groupe:

• Edition & Partage de documents :

• Contact avec les tuteurs/clients:

1. Base de données

Matériels utilisés :

Micro & Clavier Huawei Matebook

Contenu de la base de données :

- 2 datasets de 50 fichiers audios de phrases
- 4 datasets audios de 30 audios de phrases
- 3 datasets audios de 27 lettres (avec espace)

Protocole suivi:

- Enregistrement sur le Matebook avec la démo web
- Touche tapée une par une, sans dactylographier : pour modèle touche
- Vitesse de tape normale pour le modèle personne.
- Sans aucun bruit ambiant

2. Chaine opérationnelle : Reconnaissance de lettres

2. Chaine opérationnelle: Reconnaissance de personnes

2.1. Echantillonnage des audios : Modèle Lettre

Objectif:

Extraction sonore touche par touche

Outils utilisés:

- Bibliothèque python: scipy.signal
- Fichiers audios de la base de données

Méthode suivie:

- Détection de pics du signal
- Extraction des données MFCC du signal

2.2. MFCC

Objectif:

 Caractériser une touche avec les coefficients MFCC

Outils utilisés:

- Base de données de segments d'audios
- librosa, numpy
- pandas, csv

Méthode suivie :

- Extraction des données MFCC du signal
- Moyenner chaque coefficient sur l'ensemble des trames

Vecteur des moyennes des MFCC : [-584.22473 100.79462 41.093117 21.085672 13.895303 11.494672 4.998594 12.012522 3.4694204 1.8981048

-5.743197 5.416192 1.2592298]

2.2. MFCC

Méthode d'extraction des MFCC pour la reconnaissance de personne :

- Segmenter un fichier audio en plusieurs parties de même taille
- Extraire un nombre fixe de MFCC pour chaque segment

=> combien de segments et de MFCC par segments faut-il pour avoir une performance optimale ?

Evaluations du modèle en fonction du nombre de segment et de MFCC extraits

ENSICAEN CAEN COLE PUBLIQUE D'INGÉNIEURS

2.3. Apprentissage

Objectif:

 Déterminer la meilleure méthode de classification

Outils utilisés:

Orange

Méthode suivie:

- Entrée de données MFCC dans le workflow via un CSV
- Calcul de la meilleure méthode d'apprentissage

Model	AUC	CA	F1	Prec	Recall	MCC
kNN	0. 934	0. 701	0. 703	0. 710	0.701	0.689
AdaBoost	0. 704	0. 431	0. 433	0. 436	0.431	0.407
Tree	0. 736	0. 410	0. 407	0. 407	0.410	0.386
SVM	0. 973	0. 707	0. 705	0. 710	0.707	0.695
Neural Network	0. 976	0. 736	0. 736	0. 737	0.736	0.726

2.4. Conception du modèle

Objectif:

- Implémentaion d'un réseau de neurones
- Affinage des prédictions avec Levenshtein

Outils Utilisés:

- MLPClassifier de scikit learn
- Joblib
- StandardScaler
- NLTK, dictionnaire français de 20,000 mots

Méthode suivie:

- Normalisation des données
- Implémentation du réseau de neurones
- Calcul de la distance de Levenshtein

3. Démo Web

Objectif:

- Tester le produit sur n'importe quel ordinateur
- Partage simple du modèle

Outils utilisés:

HTML, CSS, JavaScript, PHP

Fonctionnalité:

- Enregistrement lors de la saisie
- Traitement de l'enregistrement
- Affichage des prédictions de touches et de la personne

Conclusion

1. Travail réalisé

- Réalisation du kick-off
- Développement des modèles
- Démo web

3. Perspectives

- Meilleures bases de données
- Réduire les contraintes
- Renseignements auprès de spécialistes

2. Difficultés rencontrées

- Base de données
- Mauvaise performance du modèle lettre
- Manque de coordination entre les équipes

Rapport De Projet

MERCI!

Bibliographie

Animation de la démo web :

• https://github.com/kaizhelam/Hacking-Matrix-Rain-Effect

Documents de l'état de l'art :

- <u>Don't skype & type: Acoustic Eavesdropping in Voice-Over-IP</u>
- Keyboard Acoustic Emanations Revisited
- A Practical Deep Learning-Based Acoustic Side Channel attack on keyboards
- Analyse de la dynamique de frappe au clavier sonore pour l'identification, le profilage et l'extraction du texte saisi
- Reconnaissance de saisie sur clavier par analyse acoustique
- Keyboard Acoustic Emanations: An Evaluation of strong passwords and typing styles