Отчет о выполненой лабораторной работе 2.1.1

Котляров Михаил, Б01-402

1 Введение

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

Оборудование: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

2 Теоретические сведения

Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой $dm=q\,dt$, где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q=c\,dm\Delta T$, где $\Delta T=T_2-T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $p_1\approx p_2=p_0$, где p_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_p . Таким образом, получаем

Нагрев газа при течении по трубе

3 Экспериментальная установка

Напряжение на нагревателе U и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра,

Схема экспериментальной установки

а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta = 40.7$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объёмный расход равен $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0=\frac{\mu p_0}{RT_0}$, где p_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0/$ — средняя молярная масса (сухого) воздуха. Можно предположить, что при небольшом нагреве ($\Delta T\ll T_0$) мощность потерь тепла N прямо пропорциональна разности температур:

$$N_{\text{пот}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_n q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q = const) подводимая мощность и разность температур связаны прямой пропорциональностью ($\Delta T(N)$ – линейная функция).

4 Приборы и данные

- ullet вольтметр, измеряющий напряжение на термопаре, погрешность 0.0035%
- вольтметр, погрешность 0.5%
- Два мультиметра, погрешность измерения постоянного напряжения 0.03%, погрешность мзмерения постоянного тока 0.2%
- Термогигрометр с функцией отображения давления, погрешность измерения температуры $\sigma_T = \pm 0, 4^{\circ}C,$ давления $\sigma_p = \pm 300\Pi a$
- Газосчетчик, класс точности 1,0

5 Выполнение

- 1. Подготовим к работе газовый счетчик: проверим, заполнен ли он водой, установим счетчик по уровню. Убедимся, что при постоянном расходе его стрелка вращается равномерно.
- 2. Включим вольтметр и проверим, что напряжение на термопаре равно нулю.

- 3. Температура в комнате $T=296,4\pm0,4K$, давление $p=101050\pm300\Pi$ а, влажность 29.5%
- 4. Определим плотность воздуха в помещении

$$\rho = \frac{p\mu}{RT} \approx 1,1897 \pm 0,0038 \frac{\Gamma}{\Pi}$$

Массовый расход q

$$q_1 = \rho \frac{\Delta V}{\Delta t} = \frac{\mu p}{RT} \frac{\Delta V}{\Delta t_1} \approx 0,1879 \pm 0,0003 \frac{\Gamma}{\mathrm{c}}$$

Считая воздух идеальным двухатомным газом, определим теоретическое значение удельной теплоемкости при постоянном давлении

$$c_p = \frac{3.5R}{\mu} \approx 1,003 \frac{\text{Дж}}{\text{г} \cdot K}$$

Оценим величину тока нагревателя, требуемого для нагрева воздуха на $\Delta T=1^{\circ}C$

$$N pprox c_p q \Delta T pprox 0,189 \mathrm{Bt}$$

Сопротивление проволоки нагревателя R=37 Ом, искомый ток $I=\sqrt{\frac{N}{R}}\approx 71,47$ мА

5. Проведем измерение зависимости разности температур от мощности нагревателя $\Delta T(N)$ при расходе $q_1 = 0,1879 \pm 0,0006 \frac{r}{c} (\varepsilon = 0,33\%)$.

Измерение $\Delta T(N)$ $q_1 = 0,1879 \pm 0,0006 \frac{\Gamma}{c}$

No	U, B	ε , м B	I, мА	ΔT ,° C	N, B_{T}
1	2,55	0,039	71,47	0,96	0,182
2	3,62	0,076	101,14	1,87	0,366
3	5,05	0,143	141,31	3,51	0,714
4	6,27	0,217	175,36	5,33	1,100
5	6,95	0,283	199,9	6,95	1,389
6	7,78	0,35	223,3	8,60	1,737

График №1

Коэффициент наклона графика №1 $k_1=4,950\pm0,024(\varepsilon=0,49\%)$

- 6. Завершив первую серию измерений, охладим калориметр до комнатной температуры, достигнув нулевого напряжения на термопаре.
- 7. Повторим измерения для другого расхода. $q_2 \approx 0,1054 \pm 0,0003 \frac{\Gamma}{c} (\varepsilon = 0,33\%)$

Измерение $\Delta T(N)$ $q_2 = 0,1054 \pm 0,0003 \frac{\Gamma}{c}$

No	U, B	ε , м B	I, м A	ΔT ,° C	N, Br
1	1,9	0,036	53,13	0,88	0,101
2	2,98	0,082	83,15	2,01	0,248
3	4,2	0,163	117,64	4,00	0,494
4	5,15	0,241	143,97	5,92	0,741
5	5,95	0,325	166,18	7,99	0,989
6	6,66	0,405	186,12	9,95	1,240

График N 2

Коэффициент наклона графика №1 $k_2 = 8,044 \pm 0,022 (\varepsilon = 0,27\%)$

8. Найдем c_p и α , используя формулу (7).

$$c_p = \frac{\frac{1}{k_1} - \frac{1}{k_2}}{q_1 - q_2} = 0,942 \pm 0,013 \frac{\text{Дж}}{\cdot K} (\varepsilon = 1,38\%)$$

$$\alpha = \frac{\frac{q_1}{k_2} - \frac{q_2}{k_1}}{q_1 - q_2} = 0,0249 \pm 0,0037 \frac{\text{Bt}}{K} (\varepsilon = 14,79\%)$$

9. По формуле (6) определим долю тепловых потерь $\frac{N_{\text{пот}}}{N}$ в опыте

Доля тепловых потерь $\frac{N_{\text{пот}}}{N}$ в 1 серии

N, Bt	$N_{ ext{not}}, \operatorname{Bt}$	$\Delta N_{ ext{not}}, ext{Bt}$	$\frac{N_{\text{not}}}{N},\%$	$\Delta \frac{N_{\text{not}}}{N}$	$\varepsilon_{\frac{N_{\text{not}}}{N}}, \%$
0,182	0,0239	0,0035	13,1	0,038	29,3
0,366	0,0466	0,0069	12,7	0,032	25,0
0,714	0,0876	0,0130	12,3	0,027	22,1
1,100	0,1329	0,0197	12,1	0,025	20,7
1,389	0,1734	0,0257	12,5	0,025	20,1
1,737	0,2144	0,0317	12,3	0,024	19,5

Доля тепловых потерь $\frac{N_{\text{пот}}}{N}$ во 2 серии

N, B_{T}	$N_{ ext{not}}, \operatorname{Bt}$	$\Delta N_{ ext{not}}, ext{Bt}$	$\frac{N_{\text{not}}}{N},\%$	$\Delta \frac{N_{\text{not}}}{N}$	$\varepsilon_{\frac{N_{\text{not}}}{N}}, \%$
0,101	0,0221	0,0033	21,8	0,075	34,4
0,248	0,0502	0,0074	20,3	0,055	27,3
0,494	0,0999	0,0148	20,2	0,048	23,6
0,741	0,1476	0,0218	19,9	0,044	22,0
0,989	0,1991	0,0295	20,1	0,042	21,0
1,240	0,2481	0,0367	20,0	0,041	20,4

6 Итог

Сравним полученное значение удельной теплоемкости воздуха с табличными значениями (сравниваем с сухим воздухом)

Сравнение

	$c_p, \frac{Дж}{\cdot K}$	$\Delta c_p, \frac{\mathcal{L}_{\mathbf{K}}}{K}$	$\varepsilon_{c_p}, \%$
эксперементальное	0,942	0,013	1,38
теоретическое	1,002	0,059	5,97
табличное	0,992	0,049	5,03

7 Выводы

Используя оборудование экспериментальной установки и законы термодинамики, мы получили значение удельной теплоемкости воздуха при постоянном давлении. Оно равно $c_p=0,942\pm0,013\frac{J_\infty}{K}(\varepsilon=1,38\%)$. С табличным и теоретическим значениями оно расходится не более чем на 6%. Могу предположить, что погрешность обусловлена погрешностью оборудования, а также теоретическими апроксимациями: мы считали, что воздух - идеальный двухатомный газ. Для установления идеального равновесия требуется много времени, из-за чего результаты напряжения на термопаре не идеально точные. Также из-за влажности воздуха теоретическая удельная теплоемкость должна быть больше, что говорит о большем потенциальном расхождении. Были получены примерные тепловые потери для каждой серии измерений. В первой потери составляют 12,5 % в среднем (максимальная погрешность 29,3 %), во второй 20,4% (34,4%). Как мы видим, потери увеличиваются с увеличением расхода воздуха. Высокая погрешность обусловлена неравновесностью системы, а также апроксимацией формулы для потерь.