

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/42

Paper 4 A Level Structured Questions

May/June 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
1 (a) (i)	dative (covalent) or coordinate	2
	Hydrogen/H (boding)	
(ii)	octahedral	1
(iii)	$Mg(NO_3)_2.6H_2O \rightarrow Mg(NO_3)_2 + 6H_2O$ $Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$	4
	any three of (solid) dissolves/turns to liquid condensation on tube white solid (forms/remains) brown fumes (evolved) gas formed that relights a glowing splint	
(iv)	$M_{\rm r}$ values: Mg(NO ₃) ₂ .6H ₂ O = 256.3 MgO = 40.3 or (loss in molar mass = 256.3 – 40.3 =) 216 percentage loss = $100 \times 216/256.3 = 84.3/84.4\%$	2
(b)	(cat)-ionic radius/ion size increases (down the group)	2
	less polarisation/distortion of nitrate ion/NO ₃ ⁻	
(c)	$2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$	1
		[Total: 12]
2 (a) (i)	(an acid that is) partially/incompletely ionised/dissociated	1
(b) (i)	$pK_a = -\log K_a$ or $K_a = 10^{-pKa}$	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
(ii)	ethanoic acid (1) is more acidic than propanoic acid (2) due to smaller electron-donating (R/alkyl) group/less electron-donating (R/alkyl) group(s)	3
	2-chloropropanoic acid (3) is more acidic than propanoic acid (2) due to electron-withdrawing/electronegative (C <i>l</i> /chlorine) atom	
	2-chloropropanoic acid (3) is more acidic than 3¬-chloropropanoic acid (4) since the C1/chlorine/electronegative atom is closer to the CO ₂ ¬/acid	
(c) (i)	H ₂ (g) Pt Cu Cu H ⁺ (aq) M1: voltmeter/V and salt bridge labelled M2: Cu and Cu ²⁺ /CuSO ₄ (any soluble Cu(II) salt) M3: H ₂ (arrow in) and H ⁺ /HC1/H ₂ SO ₄ /any mineral acid M4 Pt and one solution at 1 M/1 mol dm ⁻³ OR H ₂ at 1 atm	4
(ii)	$E_{\text{cell}}^{\text{e}} = 0.34 \text{ (V)}$ and $(Cu^{2+})/Cu$ is the positive electrode	1
d (i)	$K_{\rm a} = 1.23 \times 10^{-5}$ $[{\rm H^+}] = \sqrt{({\rm K_a.c})} = \sqrt{(1.23 \times 10^{-5} \times 0.1)} = 1.11 \times 10^{-3} {\rm mol dm^{-3}}$	2
	pH = 3.0 (2.96) ecf from [H ⁺]	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Que	estion	Answer	Marks
	(ii)	$E = 0.0 + 0.059\log(1.11 \times 10^{-3}) \text{ OR } = -0.17(4)\text{V}$	2
		so new $E_{cell} = 0.34 + 0.17 = 0.51V$ ecf from (d)(i)	
			[Total: 14]
3 (a	a) (i)	(CH ₃) ₂ CHCN	1
	(ii)	reaction 1: NH ₃ (in ethanol) under pressure (+ heat) or heat NH ₃ in a sealed tube	3
		reaction 2: KCN/NaCN and heat/reflux (in ethanol)	
		reaction 3: H ₂ + Ni <i>or</i> LiA <i>l</i> H ₄	
(k	b) (i)	$CH_3CH_2NH_2 + H_2O \rightarrow CH_3CH_2NH_3^+ (+) OH^-$	1
	(ii)	ethylamine is more basic than ammonia because of electron-donating (alkyl/ethyl/R) group (in ethylamine)	2
		which makes the lone pair (on N) more available for donation	
		or the lone pair (on N) more available for a proton/H ⁺	
(0	c) (i)	A solution which resists/minimises/roughly maintains changes in <u>pH</u> when (small amounts of) H ⁺ or OH ⁻ are added	1
	(ii)	$CH_3NH_2 + H^+ \rightarrow CH_3NH_3^+$	2
		$CH_3NH_3Cl + OH \rightarrow CH_3NH_2 + H_2O + Cl$	
			[Total: 10]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
4 (a) (i)	CI/// _{I/I} CI// _{I/I} CI// _{I/I} CI// _{I/I} NH ₃	2
	NH ₃ NH ₃ CI	
	(cis) (trans)	
(ii)	$m{cis}$ is (more) polar due to both $\mathrm{Cl}^{(\delta-)}$ on same side $m{or}$	1
	cis is (more) polar as dipoles do not cancel/unsymmetrical	
	or trans is non-polar as it is bond dipoles cancel	
(iii)	(This can only be <i>cis</i>) its mirror image is the same/superimposable	1
	 or the distance between two coordinating nitrogens/oxygens is too small to bond trans or difficult for the NH₂ and O to change places (since 5-memebered rings can only bridge adjacent positions) 	
(b) (i)	It's not square planar or it's tetrahedral	1
(ii)	must be 3D structure (i.e. tetrahedral-like) R ₃ P—Ni or R ₃ P—Ni etc CI CI CI CI CI CI CI CI CI PR ₃	1
		[Total: 6]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
5 (a) (i)	$K_{\text{stab}} = \frac{[Cd(CH_3NH_2)_4^{2+}]}{[Cd^{2+}][CH_3NH_2]^4}$	2
	units: mol ⁻⁴ dm ¹²	
(ii)	$Cd^{2^{+}} + 4CH_{3}NH_{2} \rightleftharpoons [Cd(CH_{3}NH_{2})_{4}]^{2^{+}}$ at start: 1×1^{-4}	2
	and $y = \sqrt[4]{(9.99 \times 10^{-5})/(1 \times 10^{-7} \times 3.6 \times 10^{6})} = 0.129/0.13$	
(b) (i)	(each complex is formed by) making (4 ×)N-Cd bonds and breaking (6 ×) O-Cd bonds or same types of/similar bonds forming/breaking or same number of bonds forming/breaking	1
(ii)	$\Delta S = (\Delta H - \Delta G)/T = (60.7 - 56.5) \times 1000/298 = (+)14/(+)14.1$	1
(iii)	fewer moles (of solutes) are forming (one mole of) the complex (so less loss of disorder) or one <i>en</i> displaces two H ₂ O whereas one CH ₃ NH ₂ only displaces one H ₂ O	1
(iv)	The $[Cd(H_2NCH_2CH_2NH_2)_2]^{2^+}$ / equilibrium 2 complex (is more stable) because: either K_{stab} is greater or ΔG^{e} is more negative.	1
		[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
6 (a)	essential mark M1 the reactants/substrate has a shape complementary/specific to active site — can be awarded from a labelled diagram as below or diagrams showing this specificity clearly any two of M2: reactants/substrate binds to/fits into the active site of the enzyme M3: (Interaction with site) causes a specific bond to be weakened, (which breaks) or lowers activation energy M4: forms an E-S complex M5: products released from enzyme/active site labelled diagrams	3
	(products)	
(b) (i)	δ 26 is CH 3-CO δ 52 is CH 3-O δ 169 is CH3 CO δ 167 is phenyl- CO Phenyl ethanoate is B methyl benzoate is A M1 = any two correct δ linked to phenylethanoate/methyl benzoate M2 = the rest correct	2
(ii)	heat with H ₃ O ⁺ (to hydrolyse the ester)	3
	then add Br ₂ (aq)/bromine water decolourises/gives white ppt. (with phenol from B)	
		[Total: 8]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
7 (a) (i)	labelled with M1: DC power supply + and -/battery/cell/+ and - sign (on cell/electrodes) with a complete circuit	3
	M2: buffer solution / electrolyte labelled	
	M3: (amino acid) mixture/ x on (filter) paper/gel/agarose	
	electrolyte amiso acid mixture placed here filter paper soaked in buffer solution	
(ii)	direction of movement related to charge (of amino acids)	2
(b) (i)	distance travelled depends on charge / M _r (of amino acids) Asp + Val: pH 12 because Asp will be -CH ₂ COO ⁻ (R-group) moves further (to positive electrode than Val) or pH 12 Asp more negative so moves further (to positive electrode) or pH 12 because Asp has a charge of 2– but Val has a charge of 1– or best at pH 7 because Asp will be negatively charged (anionic) but Val neutral	1
(ii)	Lys + Ser: pH 2 because Lys will be (CH ₂) ₄ NH ₃ ⁺ (R-group) moves further (to negative electrode than Ser) or pH 2 Lys more positive so moves further (to negative electrode) or pH 2 because Lys has a charge of 2+ and Ser has a charge of 1+ or pH 7 because Lys is positively charged (cationic) but Ser neutral/zwitterionic	1

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
(iii)	Tyr + Phe: pH 12 because Tyr will be C ₆ H ₅ CH ₂ O ⁻ (R-group) moves further/more/faster (to positive electrode than Phe) or pH12 because Tyr has a charge of 2– but Phe has a charge of 1–	1
(c) (i)	M1: for -CONH- as shown above M2: for rest of molecule and correct connectivity of the bonds	2
(ii)	from the IR spectrum • E is O-H or N-H (allow NH ₂) • F is C=O • G is C-O	2
		[Total: 12]
8 (a)	M1: solubility increases (down the group)	3
	M2: because lattice energy decreases faster than does $\Delta \pmb{H}_{\text{hyd}}$	
	$M3:\Delta H_{sol}$ / enthalpy of solution becomes more exothermic/less endothermic	
(b) (i)	Should be the same/similar (enthalpy change), as (both acids) are fully ionised/strong acids	1

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Ques	stion	Answer	Marks
	(ii)	Ca(s) + 2H ⁺ (aq) \longrightarrow Ca ²⁺ (aq) + H ₂ (g)	4
		gas phase ions: Ca ²⁺ (g) + 2H ⁺ (g)	
		$\mathbf{x} = \Delta H_{at}(Ca) + IE(1) + IE(2) - 2\Delta H_{hyd}(H^{+}) + \Delta H_{hyd}(Ca^{2+}) - 2IE(H) - E(H-H)$	
		x = 178 + 590 + 1150 + 2(1090) - 1576 - 2(1310) - 436	
		$x = -534 \mathrm{kJ} \mathrm{mol}^{-1}$	
(c))	CH ₃ CO ₂ H is incompletely ionised/weak acid/weaker acid	2
		enthalpy change of ionisation (of CH ₃ COOH) is +2 kJ mol ⁻¹	
		or energy needed to ionise/dissociate (CH ₃ COOH)	
			[Total: 10]
9 (a))	OH CN CO ₂ H	1

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
(b)	H is OH CO ₂ H Or J1 J2	2
(c)	step 1: $(CH_3)_2CHCH_2Cl + AlCl_3$ (+ heat) step 2: $CH_3COCl + AlCl_3$ (+ heat)	6
	step 3: HCN + NaCN <i>or</i> HCN + base <i>or</i> HCN + CN ⁻	
	(steps 4 and 5 could be reversed on J) If J1 step 4 then step 5 J2 step 5 then step 4	
	step 4: H ₃ O ⁺ + heat/aqueous HC <i>l</i> + heat	
	step 5: conc H_2SO_4 + heat/conc H_3PO_4 + heat or Al_2O_3 + heat	
	step 6: H ₂ + Ni (+ heat)	
(d)	step 1: electrophilic substitution <i>or</i> alkylation	2
	step 6: reduction/hydrogenation/addition	
		[Total: 11]

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	42

Question	Answer	Marks
10 (a) (i)	Fe is3s ² 3p ⁶ 3d ⁶ 4s ²	1
(ii)		1
(b)	E^{e} values: $\text{Sn}^{4+}/\text{Sn}^{2+} = +0.15(\text{V})$; $\text{Fe}^{3+}/\text{Fe}^{2+} = +0.77(\text{V})$ or $E^{\text{e}}_{\text{cell}} = +0.62 \text{ (V)}$	2
	$(\operatorname{Sn}^{2^+} \operatorname{will} \operatorname{reduce} \operatorname{Fe}^{3^+}) \operatorname{Sn}^{2^+} + 2\operatorname{Fe}^{3^+} o 2\operatorname{Fe}^{2^+}$	
(c) (i)	essential mark $K_{\text{stab}}/\text{stability}$: $[\text{Fe}(\text{H}_2\text{O})_5\text{F}]^{2^+} > [\text{Fe}(\text{H}_2\text{O})_5\text{SCN}]^+$ $(>[\text{Fe}(\text{H}_2\text{O})_6]^{2^+})$	4
	$ \begin{array}{l} \textit{observations} \\ \textit{(violet)} \rightarrow \textit{deep-red} \\ \textit{(deep-red)} \rightarrow \textit{colourless} \end{array} $	
	(violet) → colourless which stays colourless/does not change	
(ii)	ligand displacement/exchange/substitution	1
		[Total: 9]