006-CLASE 6 - PARTE 3 -INECUACIONES DE SEGUNDO GRADO

Prof. Javier Pereyra

1. Inecuaciones de segundo grado

Una inecuación cuadrática tiene la forma general:

$$ax^2 + bx + c < 0, > 0, \le 0, \ge 0$$

Según la forma en la que se presente, hay varios tipos que veremos con un ejemplo representativo de cada uno.

2. Tipo 1: $x^2 \le a$

Ejemplo: $x^2 \leq 9$

$$x^2 \le 9 \iff -3 \le x \le 3$$

La solución es:

3. Tipo 2: $x^2 - a \ge b$

Ejemplo: $x^2 - 16 \ge 9$

$$x^{2} - 16 \ge 9$$

$$x^{2} \ge 25$$

$$\Rightarrow x \le -5 \quad \text{o} \quad x \ge 5$$

La solución es:

$$S = (-\infty, -5] \cup [5, +\infty)$$
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

4. Tipo 3: $(x-a)^2 < b$

Ejemplo: $(x-2)^2 < 16$

$$(x-2)^2 < 16$$

 $-4 < x - 2 < 4$
 $-2 < x < 6$

La solución es:

5. Tipo 4: $(x-a)^2 + b > c$

Ejemplo: $(x-1)^2 + 4 > 13$

$$(x-1)^2 + 4 > 13$$

 $(x-1)^2 > 9$
 $\Rightarrow x - 1 < -3 \text{ o } x - 1 > 3$
 $\Rightarrow x < -2 \text{ o } x > 4$

La solución es:

$$S = (-\infty, -2) \cup (4, +\infty)$$
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

6. Tipo 5: Expresiones factorizadas $x(x-a) \leq 0$

Ejemplo: $x(x-4) \leq 0$

Raíces: x = 0 y x = 4

• El producto es menor o igual que cero entre las raíces (signos opuestos o cero).

$$S = [0, 4]$$

$$\leftarrow -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

7. Tipo 6: Expresiones factorizadas $a(x-r_1)(x-r_2) > 0$

Ejemplo: (x+2)(x-3) > 0

Raíces: x = -2 y x = 3

• El producto es positivo cuando los factores tienen el mismo signo: x<-2 o x>3

8. Ejercicios

Resuelve y representa gráficamente las siguientes inecuaciones:

1.
$$x^2 \le 144$$

$$S = [-12, 12]$$

$$2. \ x^2 + 36 \ge 100$$

$$S = (-\infty, -8] \cup [8, +\infty)$$

3.
$$(x-3)^2 < 25$$

$$S = (-2, 8)$$

4.
$$(x-1)^2 + 3 > 52$$

$$S = (-\infty, -6) \cup (8, +\infty)$$

5.
$$x(x-5) < 0$$

$$S = [0, 5]$$

6.
$$2x(x+6) > 0$$

$$S = (-\infty, -6) \cup (0, +\infty)$$

7.
$$(x-2)(x+5) > 0$$

$$S = (-\infty, -5] \cup [2, +\infty)$$

8.
$$(x+10)(x-6) < 0$$

$$S = (-10, 6)$$

9.
$$x^2 - 2x - 24 > 0$$

$$S = (-\infty, -4) \cup (6, +\infty)$$

10.
$$x^2 - 8x + 7 \le 0$$

$$S = [1, 7]$$