Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Übungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 4

$L\"{o}sungshinweise$

Aufgabe 1 (3 + (3 + 4)) Punkte:

(a) Rechnen Sie nach, dass

$$\{x \in \mathbb{R} \mid 7 - 2|x - 6| \le 2x - 1\} = \mathbb{R}.$$

(b) Bestimmen Sie für die folgenden beiden Ungleichungen jeweils die Lösungsmenge:

$$|7-2|x-6| \le 2x-1$$
 und $|x^2-9|-1| < 2$.

Lösung:

(a) Zunächst formen wir die Ungleichung $7-2|x-6| \le 2x-1$ wie folgt um

$$7 - 2|x - 6| \le 2x - 1 \quad \Longleftrightarrow \quad 8 - 2|x - 6| \le 2x$$
$$\iff \quad 4 - |x - 6| \le x.$$

Nun betrachten wir die Zerlegung $\mathbb{R} = (-\infty, 6] \cup (6, \infty)$ und bestätigen auf jedem dieser Teilintervalle die Gültigkeit der obigen Ungleichung:

- Für $x \in (-\infty, 6]$ ist die Ungleichung $4-|x-6| \le x$ äquivalent zu $4+(x-6) \le x$, was wiederum äquivalent ist zu der wahren Aussage $-2 \le 0$. Somit ist jedes $x \in (-\infty, 6]$ eine Lösung der Ungleichung $7-2|x-6| \le 2x-1$.
- Für $x \in (6, \infty)$ ist die Ungleichung $4 |x 6| \le x$ äquivalent zu $4 (x 6) \le x$; dies wiederum ist äquivalent zu $5 \le x$, was wegen $x \in (6, \infty)$ ebenfalls eine wahre Aussage darstellt. Somit ist jedes $x \in (6, \infty)$ eine Lösung der Ungleichung $7 2|x 6| \le 2x 1$.

Zusammenfassend stellen wir also fest, dass jedes $x \in \mathbb{R}$ die Ungleichung $7-2|x-6| \le 2x-1$ löst, d. h. für die Lösungsmenge gilt wie behauptet

$${x \in \mathbb{R} \mid 7 - 2|x - 6| \le 2x - 1} = \mathbb{R}.$$

(b) Für $a, b \in \mathbb{R}$ gilt $|a| \le b$ genau dann, wenn $a \le b$ und $-a \le b$. Weil nun $7-2|x-6| \le 2x-1$ nach Aufgabenteil (a) für alle $x \in \mathbb{R}$ gilt, stimmt die Lösungsmenge \mathbb{L}_1 der Ungleichung $|7-2|x-6| \le 2x-1$ mit der Lösungsmenge der Ungleichung $-7+2|x-6| \le 2x-1$ überein.

Um diese zu bestimmen, betrachten wir erneut die Zerlegung $\mathbb{R} = (-\infty, 6] \cup (6, \infty)$.

- Für $x \in (-\infty, 6]$ ist die Ungleichung $-7 + 2|x 6| \le 2x 1$ äquivalent zu $-7 2(x 6) \le 2x 1$, was wir äquivalent umformen können zu $\frac{3}{2} \le x$; somit haben wir $\mathbb{L}_1 \cap (-\infty, 6] = [\frac{3}{2}, 6]$.
- Für $x \in (6, \infty)$ ist die Ungleichung $-7 + 2|x 6| \le 2x 1$ äquivalent zu $-7 + 2(x 6) \le 2x 1$, was sich (nach Subtraktion von 2x auf beiden Seiten) als äquivalent zu der wahren Aussage $-19 \le -1$ herausstellt; somit gilt $\mathbb{L}_1 \cap (6, \infty) = (6, \infty)$.

Zusammenfassend erhalten wir schließlich

$$\mathbb{L}_1 = \left(\mathbb{L}_1 \cap (-\infty, 6]\right) \cup \left(\mathbb{L}_1 \cap (6, \infty)\right) = \left[\frac{3}{2}, 6\right] \cup (6, \infty) = \left[\frac{3}{2}, \infty\right).$$

Wir betrachten nun die Ungleichung $||x^2 - 9| - 1| < 2$ und bezeichnen mit \mathbb{L}_2 ihre Lösungsmenge. Für $x \in \mathbb{R}$ gilt

$$\begin{aligned} \left| |x^2 - 9| - 1 \right| < 2 &\iff \left(- (|x^2 - 9| - 1) < 2 \right) \wedge \left(|x^2 - 9| - 1 < 2 \right) \\ &\iff \left(|x^2 - 9| > -1 \right) \wedge \left(|x^2 - 9| < 3 \right) \\ &\iff \left| x^2 - 9 \right| < 3 \\ &\iff \left(- (x^2 - 9) < 3 \right) \wedge \left(x^2 - 9 < 3 \right) \\ &\iff \left(x^2 > 6 \right) \wedge \left(x^2 < 12 \right) \\ &\iff \left(|x| > \sqrt{6} \right) \wedge \left(|x| < 2\sqrt{3} \right) \\ &\iff x \in \left(-2\sqrt{3}, -\sqrt{6} \right) \cup \left(\sqrt{6}, 2\sqrt{3} \right), \end{aligned}$$

sodass wir $\mathbb{L}_2 = (-2\sqrt{3}, -\sqrt{6}) \cup (\sqrt{6}, 2\sqrt{3})$ erhalten.

Aufgabe 2 (5×2 Punkte): Sind die folgenden Mengen nach oben beschränkt, nach unten beschränkt, beschränkt? Falls ja, bestimmen Sie das Supremum und das Infimum sowie, falls existent, das Maximum und das Minimum der Mengen.

$$M_{1} = (a, b) \cup (b, c] \qquad \text{für } a, b, c \in \mathbb{R} \text{ mit } a < b < c$$

$$M_{2} = \left\{ (-1)^{n} \frac{1}{n^{2}} + n \mid n \in \mathbb{N} \right\}$$

$$M_{3} = \left\{ x \in \mathbb{R} \setminus \{0\} \mid \frac{1}{x} > \frac{1}{x^{4}} \right\}$$

$$M_{4} = \left\{ x \in \mathbb{R} \setminus \{0\} \mid \frac{1}{x} \le \frac{1}{x^{4}} \right\}$$

$$M_{5} = \left\{ x \in \mathbb{R} \mid |x + 3| > |x - 2| \right\}$$

Lösung:

• Die Menge M_1 ist als Vereinigung beschränkter Intervalle nach oben und nach unten beschränkt, also beschränkt. Es gilt

$$\inf M_1 = a, \quad \sup M_1 = \max M_1 = c,$$

ein Minimum von M_1 existiert nicht (das Infimum a ist nicht Element von M_1).

 \bullet Die Menge M_2 ist nicht nach oben beschränkt, also auch nicht beschränkt, da die unbeschränkte Menge

$$\left\{ \frac{1}{4m^2} + 2m \mid m \in \mathbb{N} \right\}$$

eine Teilmenge von M_2 ist. Außerdem gilt für alle $n \in \mathbb{N}$

$$(-1)^n \frac{1}{n^2} + n \ge -\frac{1}{n^2} + n \ge n - 1 \ge 0,$$

sodass M_2 nach unten beschränkt ist durch 0. Weil ferner $(-1)^{1}\frac{1}{1^2}+1=0$ gilt, erhalten wir

$$\inf M_2 = \min M_2 = 0.$$

- Weil $x^4 > 0$ für alle $x \in \mathbb{R} \setminus \{0\}$, ist $\frac{1}{x} > \frac{1}{x^4}$ äquivalent zu $x^3 > 1$ (Multiplikation bzw. Division mit x^4 erhält die Ungleichung!) und dies wiederum zu x > 1, sodass $M_3 = (1, \infty)$. Also ist M_3 nicht nach oben beschränkt, also auch nicht beschränkt, aber nach unten beschränkt mit inf $M_3 = 1$. Das Infimum 1 ist jedoch kein Element von M_3 , sodass kein Minimum existiert.
- Es ist $M_4 = (\mathbb{R} \setminus \{0\}) \setminus M_3 = (-\infty, 0) \cup (0, 1]$. Damit ist M_4 nicht nach unten beschränkt, also auch nicht beschränkt, aber nach oben beschränkt mit

$$\sup M_4 = \max M_4 = 1.$$

 \bullet Die Menge M_5 ist die Lösungsmenge der Ungleichung

$$|x+3| > |x-2|$$
.

Wir betrachten die Zerlegung $\mathbb{R} = (-\infty, -3) \cup [-3, 2) \cup [2, \infty)$:

- Für $x \in (-\infty, -3)$ ist die Ungleichung äquivalent zu -(x + 3) > -(x 2), was sich (nach Addition von x auf beiden Seiten) als falsche Aussage -3 > 2 herausstellt; somit ist $M_5 \cap (-\infty, -3) = \emptyset$.
- Für $x \in [-3,2)$ ist die Ungleichung äquivalent zu x+3 > -(x-2), was wiederum zu $x > -\frac{1}{2}$ äquivalent ist; somit haben wir $M_5 \cap [-3,2) = (-\frac{1}{2},2)$.
- Schließlich, für $x \in [2, \infty)$, stellt sich die Ungleichung als äquivalent zu x+3 > x-2 heraus, was (nach Subtraktion von x auf beiden Seiten) die wahre Aussage 3 > -2 ergibt; somit haben wir $M_5 \cap [2, \infty) = [2, \infty)$.

Zusammenfassend ergibt sich also $M_5 = \emptyset \cup (-\frac{1}{2}, 2) \cup [2, \infty) = (-\frac{1}{2}, \infty).$

Also ist M_5 nicht nach oben beschränkt, also auch nicht beschränkt, aber nach unten beschränkt mit inf $M_5 = -\frac{1}{2}$. Das Infimum $-\frac{1}{2}$ liegt jedoch nicht in M_5 , sodass kein Minimum existiert.

Aufgabe 3 (6 + 4 Punkte):

(a) Beweisen Sie mittels vollständiger Induktion die Bernoullische Ungleichung: Für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ mit $x \ge -1$ gilt

$$(1+x)^n \ge 1 + nx.$$

(b) Geben Sie für $x \in \mathbb{R}$ mit $x \ge 0$ einen direkten Beweis der Bernoullischen Ungleichung mithilfe des binomischen Lehrsatzes.

Lösung:

(a) Für $n \in \mathbb{N}$ sei A(n) die folgende Aussage:

$$\forall x \in \mathbb{R}: \quad x > -1 \implies (1+x)^n > 1 + nx.$$

Der *Induktionsanfang* A(1) ist klar, da $(1+x)^1 = 1+x = 1+1 \cdot x$ für alle $x \in \mathbb{R}$ mit $x \ge -1$ gilt.

Für den Induktionsschritt $A(n) \Rightarrow A(n+1)$ machen wir die Induktionsannahme, dass A(n) für ein $n \in \mathbb{N}$ bereits bewiesen ist, und verifizieren damit die Induktionsbehauptung A(n+1). Hierzu überlegen wir uns, dass für alle reellen Zahlen $x \geq -1$

$$(1+x)^{n+1} = \underbrace{(1+x)(1+x)^n}_{\geq 0}$$

$$\geq (1+x)(1+nx) \quad \text{wegen } A(n)$$

$$= 1 + (n+1)x + \underbrace{nx^2}_{\geq 0}$$

$$\geq 1 + (n+1)x$$

gilt, womit die Gültigkeit von A(n+1) bewiesen ist.

Nach dem Prinzip der vollständigen Induktion ist die Aussage A(n) damit für alle $n \in \mathbb{N}$ wahr.

(b) Für $x \in \mathbb{R}$ mit $x \geq 0$ erhalten wir mithilfe des binomischen Lehrsatzes

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = \binom{n}{0} + \binom{n}{1} x + \underbrace{\binom{n}{2} x^2 + \dots + \binom{n}{n} x^n}_{>0} \ge 1 + nx,$$

wobei wir verwendet haben, dass $\binom{n}{0} = \frac{n!}{n!} = 1$ und $\binom{n}{1} = \frac{n!}{(n-1)!} = n$.

Aufgabe 4 (2 + 3 + 5 Punkte): Wir betrachten die Potenzmenge $\mathcal{P}(\mathbb{N})$ der Menge der natürlichen Zahlen \mathbb{N} , d. h. $\mathcal{P}(\mathbb{N}) := \{A \mid A \subseteq \mathbb{N}\}$. In dieser Aufgabe wollen wir zeigen, dass $\mathcal{P}(\mathbb{N})$ überabzählbar ist (d. h. $\mathcal{P}(\mathbb{N})$) ist nicht höchstens abzählbar unendlich). In der Vorlesung wurde bereits gezeigt, dass die Menge \mathbb{R} der reellen Zahlen überabzählbar ist. Diesen Beweis wollen wir imitieren. Gehen Sie hierzu wie folgt vor:

- (a) Begründen Sie, warum $\mathcal{P}(\mathbb{N})$ keine endliche Menge sein kann.
- (b) Zu jedem $A \in \mathcal{P}(\mathbb{N})$ assoziieren wir eine Funktion $f_A : \mathbb{N} \to \{0,1\}$ durch die Vorschrift

$$f_A(n) := \begin{cases} 1, & \text{falls } n \in A \\ 0, & \text{falls } n \notin A \end{cases}$$

Erstellen Sie für jede der beiden Mengen $A = \{1, 5, 6\}$ und $A = \{n \mid n \text{ gerade}\}$ eine (aussagekräftige) Wertetabelle für die jeweilige Funktion f_A . Überlegen Sie sich anschließend, dass es umgekehrt zu jeder Funktion $f : \mathbb{N} \to \{0, 1\}$ eine Menge $A \in \mathcal{P}(\mathbb{N})$ gibt, sodass $f = f_A$.

(c) Nehmen Sie an, dass $\mathcal{P}(\mathbb{N})$ abzählbar ist, d. h. es gibt eine Bijektion $\varphi : \mathbb{N} \to \mathcal{P}(\mathbb{N})$. Konstruieren Sie mithilfe von Aufgabenteil (b) ein "Diagonalelement" $A \in \mathcal{P}(\mathbb{N})$, welches garantiert nicht im Bild von φ auftaucht.

Lösung:

- (a) Für jedes $n \in \mathbb{N}$ gehört die Menge $\{1, 2, ..., n\}$ zu $\mathcal{P}(\mathbb{N})$. Somit enthält $\mathcal{P}(\mathbb{N})$ eine nicht-endliche Teilmenge, kann also selbst nicht endlich sein.
- (b) Wir erstellen die Wertetabellen für $n \in \{1, 2, ..., 10\}$. Für $A = \{1, 5, 6\}$ haben wir

und für $A = \{n \mid n \text{ gerade}\}\ \text{ergibt sich}$

Für eine beliebige Funktion $f: \mathbb{N} \to \{0,1\}$ betrachten wir das Urbild $A:=f^{-1}(\{1\})\subseteq \mathbb{N}$. Also haben wir f(n)=1 für alle $n\in A$ und ferner, weil f sonst nur den Wert 0 annehmen kann, auch f(n)=0 für alle $n\in \mathbb{N}\setminus A$. Deshalb gilt

$$f(n) = \begin{cases} 1, & \text{falls } n \in A \\ 0, & \text{falls } n \notin A \end{cases}$$
$$= f_A(n)$$

für alle $n \in \mathbb{N}$, also $f = f_A$. Wir sehen damit, dass Elemente von $\mathcal{P}(\mathbb{N})$ in Bijektion zu der Menge $\{f \mid f : \mathbb{N} \to \{0,1\}\}$ stehen:

$$\psi: \ \mathcal{P}(\mathbb{N}) \longrightarrow \left\{ f \mid f : \mathbb{N} \to \{0, 1\} \right\}$$
$$A \longmapsto f_A$$
$$f^{-1}(A) \longleftarrow f$$

- (c) Es sei $\varphi : \mathbb{N} \to \mathcal{P}(\mathbb{N})$ eine Bijektion. Wir setzen $A_n := \varphi(n)$ für alle $n \in \mathbb{N}$ und betrachten die zugehörigen Funktionen $f_{A_n} : \mathbb{N} \to \{0,1\}$. Wir imitieren nun das Diagonalargument aus dem Beweis der Überabzählbarkeit von \mathbb{R} . Hierzu definieren wir eine Funktion $f : \mathbb{N} \to \{0,1\}$ durch die Vorschrift
 - f(n) := 1, falls $f_{A_n}(n) = 0$ und
 - f(n) := 0, falls $f_{A_n}(n) = 1$

für jedes $n \in \mathbb{N}$. Die so konstruierte Funktion kann mit keiner der Funktionen f_{A_n} , $n \in \mathbb{N}$ übereinstimmen, weil f mindestens an der Stelle n einen anderen Wert als f_{A_n} annimmt. Somit taucht f nicht in der Liste $\{f_{A_n} \mid n \in \mathbb{N}\}$ auf.

Setzen wir $A := f^{-1}(\{1\})$, so ist $f = f_A$ nach (b), und weil f nicht in der Liste $\{f_{A_n} \mid n \in \mathbb{N}\}$ auftaucht, kann auch A nicht in der Liste $\{A_n \mid n \in \mathbb{N}\}$ auftauchen. Somit ist $A \in \mathcal{P}(\mathbb{N})$ nicht im Bild von φ enthalten, was einen Widerspruch zur Bijektivität von φ darstellt. Demnach kann $\mathcal{P}(\mathbb{N})$ nicht abzählbar und nach (a) auch nicht endlich sein, ist also überabzählbar.

Bemerkung: Man beachte, dass A nach obiger Konstruktion gegeben ist durch $A = \{n \in \mathbb{N} \mid n \notin A_n\}$. Diese Menge kann man direkt (d. h. ohne den Weg über die assoziierten Funktionen f_{A_n}) aus den gegebenen Mengen A_n definieren und dann nachweisen, dass A nicht in der Liste $\{A_n \mid n \in \mathbb{N}\}$ auftaucht. Auf diese Weise übersieht man jedoch die Analogie zum Beweis der Überabzählbarkeit von \mathbb{R} .