Вопрос по выбору

Фильтр Лио

ВПВ подготовил Матренин Василий Б01-008

Содержание:

T	Фил	пьтр Вуда	2
	1.1	Интерференционно-поляризационный фильр Вуда	2
	1.2	Температурная зависимость длины волны максимума пропускания	4
	1.3	Теромооптически компенсированный фильр Вуда	4
	1.4	Апертура фильтра и требуемая точность обработки поверхностей	5
2 Ф	Фил	пьтр Лио	6
	2.1	Интерференционно-поляризационный фильтр Лио	6
	2.2	Изменение длины волны пропускания	6
	2.3	Области применения	7
			7
	2.2	Изменение длины волны пропускания	

1 Фильтр Вуда

1.1 Интерференционно-поляризационный фильр Вуда

Интерференционно-поляризационный фильр Вуда состоит из пластинки одноосного кристалла C, вырезанной параллельно оптической оси, помещенной между двумя поляризаторами A и B. Схема представлена на Рисунке 1. Оси поляризаторов обычно устанавливают параллельно, а ось кристаллической пластинки составляет c ними угол в 45°

Puc 1. Интерференционно-поляризационный фильр Вуда

Поляризованный пучок света в пластинке С расщепляется на два одинаково направленных, равных по интенсивности и поляризованных во взаимно перпендикулярных направлениях пучка света. Эти пучки распространяются в кристалле с разными скоростями: $v_o = \frac{c}{n_o}$ и $v_e = \frac{c}{n_e}$, где n_o и n_e – показатели преломления для обыкновенного и необыкновенного лучей. Результат интерференции этих лучей при выходе из пластинки определяется приобретенной ими разностью хода – см. Рисунок 2. Если разность хода $\Delta = l \left(n_e - n_o \right)$ равна целому числу длин волн, то на выходе получается плоско поляризованный свет с первоначальной ориентацией плоскости поляризации. Такой свет беспрепятственно проходит через второй поляризатор. Если разность хода равна нечетному числу длин полуволн, то плоскость колебаний развернется на 90° . В этом случае свет будет полностью задержан вторым поляризатором.

 $Puc\ 2.\ Поляризация\ после\ прохождения\ пластинки\ C$

Таким образом, нетрудно показать, что пропускание системы будет зависеть от длины волны следующим образом:

$$T = \cos^2 \pi \frac{(n_e - n_o) l}{\lambda} \tag{1}$$

Разумеется, данная формула не учитывает потерь на отражение и поглощение света элементами фильтра, а так же потерь в первом поляризаторе. Однако, данная формула позволяет понять, что пропускание интерференционно-поляризационного фильтра имеет ряд максимумов (T=1) для длин волн:

$$\lambda_{max} = \frac{1}{k}l\left(n_e - n_o\right) \tag{2}$$

И минимумов:

$$\lambda_{min} = \frac{2}{2k+1}l\left(n_e - n_o\right) \tag{3}$$

Поэтому такой фильтр может служить лишь для гашения отдельных спектральных линий и пропускания других. Обычно его используют для выделения одной из двух близко расположенных линий.

Спектральный интервал между соседними максимумом и минимумом пропускания фильтра, определяющий полуширину полосы пропускания легко найти из формул (2) и (3):

$$\Delta \lambda = \lambda_{max} - \lambda min = \frac{\lambda_{max}}{2k+1} \tag{4}$$

Пренебрегая единицей в сравнении с 2k, получаем формулу:

$$\Delta \lambda \approx \frac{\lambda^2}{2\left(n_e - n_o\right)l} \tag{5}$$

Пользуясь формулой (5) можно рассчитать толщину фильтра, необходимого для подавления одной из двух близких линий, разделенных интервалом $\Delta \lambda$.

1.2 Температурная зависимость длины волны максимума пропускания

Формула (2) позволяет определить температурный сдвиг максимума пропускания фильтра. Для этого необходимо найти полную производную по T от этого выражения, учитывая, что и толщина пластинки l, и коэф-т двойного лучепреломления $\mu = n_e - n_o$ зависят от температуры, а μ есть так же функция λ . Дифференцируя, имеем:

$$\frac{d\lambda}{dT} = \frac{\frac{1}{\mu} \frac{\partial \mu}{\partial T} + \frac{1}{l} \frac{dl}{dT}}{\frac{1}{\lambda} - \frac{1}{\mu} \frac{\partial \mu}{\partial \lambda}} \tag{6}$$

Нетрудно видеть, что температурное смещение длинны волны не зависит от толщины пластинки и определяется только свойствами материала, из которого она сделана ($\frac{1}{l} \frac{dl}{dT}$ – коэф-т линейного расширения).

1.3 Теромооптически компенсированный фильр Вуда

Из эксперементальных данных следует, что для всех, используемых в подобных фильтрах материалов, при повышении температуры λ_{max} смещается в синюю сторону. Данное обстоятельство усложняет термооптическую компенсацию данного фильтра. Однако, чтобы компенсировать температурные смещения, достаточно составить пластинку из слоев двух материалов, ориентированных "на вычитание", т.е. так, чтобы обыкновенный луч в первом слое становился необыкновенным во втором. Для этого нужно, чтоыб оптические оси слоев были перпендикулярны – см. Рисунок 3.

Puc 3. Теромооптически компенсированный интерференционно-поляризационный фильр Вуда

Тогда условие максимума пропускания будет иметь вид:

$$k\lambda = l_1\mu_1 - l_2\mu_2 \tag{7}$$

Тогда, дифференцируя данное выражение получаем условие, про котором $\frac{d\lambda}{dT}=0$:

$$\frac{l_1}{l_2} = \frac{\frac{\partial \mu_2}{\partial T} + \frac{\mu_2}{l_2} \frac{dl_2}{dT}}{\frac{\partial \mu_1}{\partial T} + \frac{\mu_1}{l_1} \frac{dl_1}{dT}} \tag{8}$$

Полностью компенсируя тепловые сдвиги, тонкая пластинка ADP (Двуводородный фосфат аммония) лишь незначительно (на 6%) уменьшает волновую разность хода.

1.4 Апертура фильтра и требуемая точность обработки поверхностей

Обычно можно считать приемлемыми смещения $\delta\lambda$, меньшие, чем $\frac{1}{5}$ полуширина полосы пропускания фильтра $\Delta\lambda$. Тогда:

$$\delta l \le \frac{l}{\lambda} \frac{\Delta \lambda}{5} = \frac{\lambda}{10\mu} \tag{9}$$

Требуемая тончость обработки оказывается, таким образом, независимой от толщины пластинки. Для кальцита ($\mu=0,17$) она равна 0,3 мкм. Для кварца ($\mu=0,01$) ≈ 6 мкм (для средней части спектра).

Для наклонных лучей света изменяется не только толщина слоя, но и его двойное лучепреломление, причем по-разному, в зависимости от ориентации плоскости, в которой лежит наклонный луч света. Кривые равной разности хода (изохроматы) предствляют собой гиперболы – см. Рисунок 4. Наибольший допустимый раствор светового пучка должен соответствовать центральной части этой картины. Обычно он составляет угол, не превышающий 1°.

Рис 4. Изохромы

2 Фильтр Лио

2.1 Интерференционно-поляризационный фильтр Лио

Интерференционно-поляризационный фильтр Вуда имеет спектр пропускания в виде узких полос, разделенных промежутками такой же ширины.

Лио предложил монохроматический фильтр, состоящий из стопы фильтров Вуда, с толщинами пластинок, увеличивающимися в геометрической прогрессии с показателем 2. При этом выходной поляризатор первого фильтра служит входным поляризатором второго и т. д. См. Рисунок 5.

Рис 5. Интерференционно-поляризационный фильтр Лио

Ширина полосы пропускания фильтра Лио определяется толщиной наиболее толстой пластинки (формула (5)). Расстояние между полосами пропускания можно определить по той же формуле, по толщине l самой тонкой пластинки.

Пропускание фильтра Лио можно вычислить как произведение пропусканий соответствующих фильтров Вуда (формула (1)):

$$T = \prod_{k=1}^{n} \cos^2 \frac{2^{k-1}\pi\mu l}{\lambda} \tag{10}$$

Здесть n — число элементов, а l — толщина наиболее тонкой пластинки. При этом нежелательные полосы пропускания могут быть отфильтрованы с помощью абсорбционных или интерференционных фильтров.

Интегральное пропускание фона у фильтра Лио составляет $\approx 11\%$ от пропускания в пределах полосы. Практически паразитный фон достигает 13-14%.

2.2 Изменение длины волны пропускания

Универсальность фильтра можно значительно повысить, если иметь возможность менять длинну волны полосы пропускания.

В пределах 10-20 Å это можно делать изменением температуры фильтра. Более радикальным решением задачи является ряд приемов, делающих фильтр управляемым в широких пределах. Элементы фильтра делаются составными из двух клиньев, при смещении одного из них толщина пластинки плавно меняется – см. Рисунок 6. Есть и другие способы сделать фильтр управляемым в более широких пределах – можно использовать электрооптические кристаллы, способные менять коэф-т двойного лучепреломления под действием приложенного поля.

Puc 6. Элементы фильтра Лио с пластинками, состоящими из двух клиньев

На рисунке 7 представлен внешний вид интерференционно-поляризационного фильтра Лио с терморегулятором и его кривая пропускания. Фильтр имеет полуширину полосы пропускания 0,3~Å и угловое поле 3° .

Рис 7. Пример интерференционно-поляризационного фильтра Лио

2.3 Области применения

Фильтры Лио используются в астрономии и для настройки лазеров.

2.4 Современные версии и аналоги

Многие современные перестраиваемые жидкокристаллические фильтры построены на оригинальной конструкции Лио с использованием электрически настраиваемых двулучепреломляющих элементов. Однако, встречаются и другие конструкции.