

Métodos Numéricos I Sesión 1

Dr. Osiel González Dávila

osiel.gonzalez@ucags.edu.mx

Plan de la Sesión

- O. Bienvenidos al curso Métodos Numéricos I
- 1. ¿Cómo me pueden contactar?
- 2. Objetivo del curso.
- 3. Estructura del curso.
- 4. Libros de texto.
- 5. Evaluación.
- 6. Comenzamos con la Unidad 1.

0. Bienvenidos al curso

- Breve presentación
- ¿Por qué estudian la maestría en Ciencia de Datos?
- ¿Qué estudiaron y a qué se dedican?

UC 1. ¿Cómo me pueden contactar?

• El principal medio de comunicación con ustedes es a través de la plataforma del curso en Moodle y a través de mi cuenta de correo electrónico:

osiel.gonzalez@ucags.edu.mx

Información general

- Horario: Sábados de 7:00 am a 9:50 am. Haremos un break de 10 minutos a las 8:50 am
- Lugar: Auditorio de la Universidad.
- Pase de lista al inicio de la clase.

UC 2. Objetivo del curso

 Comprender y aplicar los conceptos de álgebra lineal, cálculo multivariable y probabilidad de uso extendido en la ciencia de datos, de manera reflexiva, porque se requiere de una secuencia de operaciones algebraicas y lógicas para producir una aproximación al problema matemático.

3. Estructura del curso

- El curso se divide en 3 unidades que serán cubiertas en 16 semanas:
- 1. Álgebra Lineal.
- 2. Métodos de Solución para Matrices Cuadradas.
- 3. Cálculo.

UC 1. Álgebra Lineal

- 1.1 Operaciones en vectores y matrices.
- 1.2 Sistemas e independencia lineales.
- 1.3 Autovectores y análisis de componentes principales.

2. Métodos de solución para matrices cuadradas.

- 2.1. Eliminación Gaussiana y pivoteo.
- 2.2. Solución para matrices tridiagonales.
- 2.3. Aplicaciones
- 2.3.1. Cálculo del determinante de una matriz.
- 2.3.2. Inversa de una matriz.

3. Cálculo

- 3.1. Introducción al cálculo multivariable.
- 3.2. Funciones multivariable.
- 3.3. Derivadas parciales.
- 3.4. Integrales de superficie.

Modalidades tecnológicas e informáticas

Las modalidades y herramientas tecnológicas que se usarán en el curso son:

- Comunicación digital colaborativa estudiante-docente a través de Plataforma Moodle.
- Gestión de actividades académicas mediante el uso de la Plataforma Moodle.
- Uso de recursos para el aprendizaje como documentos, enlaces web, videos.

- Desarrollo de proyectos de investigación y procesamiento de información a través de Internet
- Uso de correo electrónico institucional.
- Uso de software estadístico.

Actividades de aprendizaje

UC Ejercicios prácticos

• Los estudiantes, bajo conducción y supervisión del docente, realizarán ejercicios prácticos para fortalecer y lograr un mejor dominio de los conocimientos que se buscan aprender en este curso.

UC Análisis de casos

• El docente proporcionará a los estudiantes casos de estudio, los cuales permitirán que los alumnos analicen situaciones reales respecto al cálculo matricial.

Asesorías sobre temas planteados

• El estudiante, con el apoyo y seguimiento del docente, realizará análisis de ejercicios planteados en clase, con el objetivo de formar un criterio al momento de resolver problemas vinculados con el álgebra lineal y cálculo.

4. Libros de Texto

 Boyd Stephen & Vandenberghe Lieven (2018) Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares. Cambridge University Press

 Edward Dowling (2011) Schaum's Outline of Introduction to Mathematical Economics, 3rd Edition (Schaum's Outlines) [Edición Kindle]

5. Evaluación

• La calificación final estará compuesta de tres exámenes y actividades y tareas:

 Parcial 1 (11 de marzo) 	25%
• Parcial 2 (27 de mayo)	25%
 Examen final (1 de julio) 	25%
 Actividades y tareas CF 	_25%
• Total	100%

- (Debido a mi experiencia...) No hay sorpresas.
- Solamente se evaluará lo que se discuta en clase.

ilmportante!

- La evaluación más importante no es dentro del aula.
- Lo importante es desarrollar su capacidad de utilizar la teoría aprendida y las habilidades desarrolladas durante su formación profesional en la **resolución de los problemas** que afectan a su comunidad (y los grandes problemas de la humanidad).

Mi deber como docente

- Es proporcionarles las herramientas intelectuales para:
- Analizar de manera crítica la realidad
- Que les permitan tomar las mejores decisiones
- De manera ética
- Para transformar su entorno

UC Un poco acerca de mi trabajo

- Mis principales líneas de investigación se centran en temas de economía, desarrollo y medio ambiente.
- Investigo desde una perspectiva económica problemas de agua, alimentos, energía y salud (water, food, energy and health nexus).

https://sites.google.com/site/osielgd/home

Proyectos de Investigación

Figure 1: Example of multi-use management of a wind farm. The wind turbine density is artificially high to facilitate the presentation of the concept. Activities: A) diving, B) scientific studies, C) aquaculture and D) fishing and tourism. © Denis Lacroix, Ifremer and Malo Lacroix (Source: Lacroix and Pioch, 2011, p.133).

3 platform configurations combining the TEAL Components (Conceptual Designs)

Estudio Longitudinal del Desarrollo de los Niños y las Niñas de Aguascalientes

UC Pregunta

- ¿Cómo se sienten en...
 - 1. Aritmética?
 - 2. Álgebra?

1. Introducción a lo modelos matemáticos

En este curso vamos a utilizar

• Modelos matemáticos para analizar fenómenos de nuestro interés.

¿Qué es un modelo?

Un modelo es una representación simplificada de la realidad...

Un modelo nos ayuda a explicar cómo funciona el universo

¿Esto es un modelo?

¿Esto es un modelo?

Modelo del sistema solar

Los modelos cambian a través del tiempo

Paradigma Geocéntrico del Universo

Aristóteles-Ptolomeo

Paradigma Heliocéntrico del Universo

Copérnico

Primera Ley de Kepler

I. The orbits of the planets are ellipses, with the Sun at one focus of the ellipse. Sun **Planet** focus

Plutón por ejemplo...

Modelo del sistema solar

1.2 Tipos de modelos

- Vamos a diferenciar entre 3 tipos de modelos:
- 1. Modelos físicos.
- 2. Modelos análogos.
- 3. Modelos simbólicos.

UC 1. Modelos físicos

• Cuando la realidad se representa físicamente utilizando materiales, de tal manera que es posible observarla sin necesidad de recurrir al objeto real.

UC Por ejemplo la maqueta de un edificio...

que sin ser el edificio lo representa y da una idea de cómo se verá cuando esté construido, así mismo, se pueden hacer correcciones sobre el modelo antes de llevar a cabo la obra.

UC 2. Modelos análogos.

• Cuando la realidad se representa en un medio diferente a través de las relaciones entre sus componentes, de tal manera que es posible entenderla sin necesidad de tenerla presente.

Por ejemplo el mapa de la ruta entre dos ciudades...

que sin ser el terreno real lo representa y permite verificar el relieve y las distancias, así mismo, se pueden hacer cálculos de tiempo de recorrido y planear un viaje, antes de iniciar la marcha.

UC 3. Modelos simbólicos

- cuando la realidad es abstracta y se representa a través de variables que se relacionan matemáticamente, de tal manera que se pueden cuantificar los resultados de esas relaciones.
- Por ejemplo el balance general de una compañía, que sin ser la empresa la representa y permite llegar a conclusiones sobre su situación actual y perspectivas, así mismo se pueden hacer simulaciones de los resultados antes de tomar una decisión.

Para hacer modelos matemáticos

• Se utilizan variables, constantes y parámetros.

- Son datos cuya magnitud puede cambiar y tomar valores diferentes.
- Por ejemplo: precios, beneficios, ingresos, costos, etc.
- Se pueden representar de manera algebraica: P, π , I, C
- Más ejemplos: Temperatura, tiempo, precipitación pluvial, etc.

Variable Independiente

• En una ecuación algebraica, una variable que no es afectada por la acción de otra variable.

Variable Dependiente

• En álgebra, una variable cuyo valor está determinado por otra variable o conjunto de variables

• Dato que no cambia de magnitud, por ejemplo:

0.7 P ó 0.5 C

• Un parámetro puede asumir diferentes valores y en ciertos casos determina el tipo de relación que existe entre una variable dependiente y una variable independiente.

UC Ecuaciones e identidades

• La ecuación de definición establece una identidad entre dos expresiones alternativas que tienen el mismo significado.

Por ejemplo:

$$\pi \equiv R - C \quad (1)$$

Donde:

π Beneficio de la empresa

R Ingreso

C Costos

Ecuación de comportamiento

• Especifica que una variable se comporta en respuesta a cambios en otras variables.

Por ejemplo:

$$C = 75 + PQ$$
 (2)

Donde:

C es el costo de producción de una empresa Q es la cantidad de insumos utilizados en la producción P es el precio de los insumos.

La función de promedio condicional

• Se escribe

$$E(Y_i | X_i) = \beta_0 + \beta_1 X_i + u_i$$
 (3)

- β_0 y β_1 son los parámetros o coeficientes de la ecuación y corresponden a la intersección y a la pendiente de la línea de regresión.
- u_i es el vector de errores de la regresión.

1.3 Taxonomía de los números reales

Números naturales

• números que se utilizan para contar:

Algunas preguntas

- ¿Qué es un número?
- ¿Por qué contamos?
- ¿Las matemáticas son creadas o descubiertas?

Números cardinales

 Son los mismos números naturales a los cuales se les ha añadido el número cero:

Números enteros

 Son todos los números cardinales a los cuales se les ha añadido el reflejo de los números naturales en la parte izquierda de la recta numérica, o sea, los opuestos de los números naturales.

$$\{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

Números racionales

- Son los números que se pueden escribir como una fracción, en la cual el numerador y denominador son enteros, excepto el denominador que no puede ser cero.
- Ejemplos: Números cardinales, enteros, naturales, fracciones y decimales

Números irracionales

- Son los números que no son racionales, i.e. aquellos que no se pueden escribir como fracción, como por ejemplo:
- Raíces cuadradas que no son exactas (inexactas), e.g.

$$\sqrt{2} = 1.4142 \dots$$

Decimales infinitos que no son periódicos, e.g. π

UC Números reales

• Es la unión del conjunto de los números racionales con el conjunto de los números irracionales.

Pregunta interesante

• ¿Recuerdan las leyes de los signos?

Pregunta interesante

• ¿Recuerdan las leyes de los signos?

• ¿Existe un número que multiplicado por sí mismo de un número negativo?

Los números imaginarios

• La letra *i*, representa a la raíz cuadrada de menos uno:

$$i = \sqrt{-1}$$

UC Dada esta igualdad

• Es correcto afirmar que:

$$i^2 = (i) \cdot (i) = -1$$

• ¿Por qué?

Dada esta igualdad

• Es correcto afirmar que:

$$i^2 = (i) \cdot (i) = -1$$

• Puesto que:

$$i^2 = \left(\sqrt{-1}\right) \cdot \left(\sqrt{-1}\right)$$

Dada esta igualdad

• Es correcto afirmar que:

$$i^2 = (i) \cdot (i) = -1$$

• Puesto que:

$$i^2 = \left(\sqrt{-1}\right) \cdot \left(\sqrt{-1}\right)$$

$$i^2 = \left(\sqrt{-1}\right)^2$$

Dada esta igualdad

• Es correcto afirmar que:

$$i^2 = (i) \cdot (i) = -1$$

• Puesto que:

$$i^2 = \left(\sqrt{-1}\right) \cdot \left(\sqrt{-1}\right)$$

$$i^2 = \left(\sqrt{-1}\right)^2$$

$$i^2 = (-1)^{\frac{2}{2}} = -1$$

Los números imaginarios

- Resultan de multiplicar un número real por i.
- Por ejemplo: 2*i*

Los números complejos

- Los números complejos tienen una parte real y una parte imaginaria.
- Por ejemplo:

Les sugiero ver la siguiente serie:

https://www.youtube.com/watch?v=T647CGsuOVU

Modelos usando álgebra lineal

¿Qué es un vector?

• Se define como vector a una tupla de números reales, que llamaremos elementos del vector.

¿Qué es un vector?

• Se define como vector a una tupla de números reales, que llamaremos elementos del vector.

Pero prof... ¿qué es una tupla?

¿Qué es un vector?

• Se define como vector a una tupla de números reales, que llamaremos elementos del vector.

Pero prof... ¿qué es una tupla?

• Una tupla es una secuencia o lista ordenada y finita de objetos numéricos.

- Un vector es una lista finita y ordenada de números.
- Usualmente, los vectores se expresan como arreglos verticales u horizontales de números entre corchetes, cuadrados o curvos.
- Los números agrupados en el vector se denominan elementos del vector.

UC Ejemplo: Vector columna

$$\begin{pmatrix} 50 \\ 100 \\ 70 \end{pmatrix} \begin{bmatrix} 50 \\ 100 \\ 70 \end{bmatrix}$$

Vector fila

- En un vector fila, sus elementos se escribirán como números separados por comas y rodeados por paréntesis o corchete.
- Ejemplo:

$$(13, 14, 15)$$
 $[13, 14, 15]$

El objetivo del productor: vectores y álgebra lineal

• La siguiente ecuación representa el problema del productor haciendo uso de vectores y operaciones de álgebra lineal:

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

¡Vamos a desmenuzar la ecuación!

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

El lado izquierdo de la ecuación expresa que el productor busca maximizar (Max) los beneficios de la empresa (Π)

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

Este término representa los ingresos que obtiene el productor por la venta de su mercancía.

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

Este término representa los costos en los que incurre el productor en el proceso de producción de su mercancía.

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

Esta es la decimoctava letra del alfabeto griego, su nombre es sigma y en este caso corresponde a una letra mayúscula. En griego suena como la letra "S" en español.

UC En matemáticas

- La letra sigma mayúscula Σ es el símbolo del operador sumatoria.
- La letra sigma minúscula σ se utiliza para representar la desviación estándar poblacional en estadística.

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

 p_i vector de precios de venta

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

 p_i vector de precios de venta

 q_i vector de cantidad de productos vendidos

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

 p_i vector de precios de venta

 q_i vector de cantidad de productos vendidos

 w_i vector de precios de los insumos

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

 p_i vector de precios de venta

 q_i vector de cantidad de productos vendidos

 w_i vector de precios de los insumos

 x_i vector de cantidad de insumos usados en la producción

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

El subíndice *i* identifica cada uno de los elementos contenidos en cada vector.

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

La expresión i=1 bajo el operador sumatoria indica que empezaremos a sumar los resultados de la operación vectorial p_iq_i desde **el elemento** 1 hasta el elemento n en el caso de ingresos.

$$Max \Pi = \sum_{i=1}^{n} p_i q_i - \sum_{i=1}^{m} w_i x_i$$

La expresión i = 1 bajo el operador sumatoria indica que empezaremos a sumar los resultados de la operación vectorial $w_i x_i$ desde **el elemento 1** hasta el elemento m en el caso de costos.

UC En otras palabras...

- El empresario busca obtener el MÁXIMO nivel de PRODUCCIÓN a un costo dado.
- E incurrir en el MÍNIMO COSTO para obtener un determinado nivel de producción.

Ver ejemplo de cálculo de beneficios

Actividad en clase 1

Por equipos

- 1. Identificar un fenómeno (económico, ambiental, físico etc.). Cada equipo debe tener un fenómeno diferente.
- 2. Identificar las variables más importantes para su explicación.
- 3. Identificar la relación entre dichas variables (directa, inversa, etc.).
- 4. ¿Existe alguna teoría que explique dicha relación? Mencione autores y documentos de investigación.
- Hacer una presentación en ppt y enviarla por e-mail al profesor con referencias.

La próxima sesión

- Continuamos con la Unidad 1
- Y repasen su álgebra...