UNIVERSITY OF LONDON

[E1.11 2003]

B.ENG. AND M.ENG. EXAMINATIONS 2003

For Internal Students of Imperial College London

This paper is also taken for the relevant examination for the Associateship of the City & Guilds of London Institute

INFORMATION SYSTEMS ENGINEERING E1.11

MATHEMATICS

Date Wednesday 4th June 2003 10.00 am - 1.00 pm

Answer SEVEN questions

Answers to Section A questions must be written in a different answer book from answers to Section B questions.

Corrected Copy

[Before starting, please make sure that the paper is complete. There should be SIX pages, with a total of NINE questions. Ask the invigilator for a replacement if this copy is faulty.]

Copyright of the University of London 2003

(i) Express each of the following complex numbers in the form x + iy (with x and y real):

(a) $\frac{1+i}{7-i}$; (b) $(1+3i)^3$; (c) $(1-i)^{17}$.

(ii) Describe what geometrical figure in the complex plane is represented by each of the following equations:

(a) |z+1| = |z-1|; (b) $Re(z^3) = Re(z)$.

(iii) Find all complex solutions of each of the following equations:

(a) $\sinh z = 0$; (b) $\sinh z + \cosh z = 0$.

The three parts carry, respectively, 40%, 35% and 25% of the marks.

2. (i) Evaluate the following limits:

> $\lim_{x \to 2} \frac{(x+2)^{1/2} - 2}{x-2} ;$ (a)

 $\lim_{x\to 0} x \sin(\tan x) ;$ (b)

 $\lim_{x \to \infty} x^{-9} \left\{ (x+3)^{10} - (x+1)^{10} \right\} .$ (c)

(ii) Differentiate:

 $\ln\left\{x + (1+x^2)^{1/2}\right\} \; ;$ (a)

 $(\sin x)^x$. (b)

The two parts carry, respectively, 55% and 45% of the marks.

(i) Decide whether each of the following series is convergent or divergent:

(a)
$$\sum_{1}^{\infty} \frac{2^n}{n^7} ;$$

(b)
$$\sum_{1}^{\infty} \frac{n+1}{10n+1}$$

(a)
$$\sum_{1}^{\infty} \frac{2^n}{n^7}$$
; (b) $\sum_{1}^{\infty} \frac{n+1}{10n+1}$; (c) $\sum_{1}^{\infty} \frac{(-1)^n e^n}{n!}$.

(ii) Find the radius of convergence of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} n^3 x^n$$

(a)
$$\sum_{0}^{\infty} n^3 x^n$$
; (b) $\sum_{0}^{\infty} \frac{n!(n+1)!}{(2n+1)!} x^n$.

(iii) Using the Maclaurin series of $\ln(1+x)$ and $\ln(1-x)$ (or otherwise), find the Maclaurin series of the function

$$\ln\left(\sqrt{\frac{1+x}{1-x}}\right) .$$

 $\int \frac{dx}{\sin x} \; ;$

The three parts carry, respectively, 45%, 35% and 20% of the marks.

4. Evaluate the following integrals:

(ii)
$$\int \frac{x \, dx}{(1 - x^2)^{3/2}} \; ;$$

(iii)
$$\int \frac{x^2 dx}{(1-x^2)^{3/2}} \; ;$$

(iv)
$$\int \frac{2x \, dx}{(x+1)(x^2+1)} \, .$$

The four parts carry, respectively, 15%, 20%, 25% and 40% of the marks.

5. Find the general solution of each of the following differential equations:

(i)
$$\frac{dy}{dx} = (1+x^2)(1+y^2);$$

(ii)
$$\frac{dy}{dx} + \frac{y}{x} = \sin x \; ;$$

(iii)
$$y'' + 2y' - 3y = e^x.$$

(iv) Find the solution of the equation in part (iii) that satisfies the initial conditions y(0) = y'(0) = 0.

The four parts carry, respectively, 25%, 25%, 35% and 15% of the marks.

SECTION B

6. Let
$$A = \begin{pmatrix} -10 & 9 \\ -18 & 17 \end{pmatrix}$$
.

- (i) Find the eigenvalues and eigenvectors of A.
- (ii) Find an invertible 2×2 matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (iii) Find a 2×2 matrix B such that $B^3 = A$.

The three parts carry, respectively, 35%, 25% and 40% of the marks.

7. Let
$$f(x, y) = (x + y)(x^2 + y^2 - 2)$$
.

- (i) Find the stationary points of f(x, y) and determine their nature.
- (ii) Sketch the contour f(x, y) = 0.
- (iii) Sketch some further contours of f(x, y).

The three parts carry, respectively, 75%, 10% and 15% of the marks.

8. Define f(x) in the interval $0 < x < \pi$ by

$$f(x) = \begin{cases} \pi & \text{if } 0 < x < \frac{\pi}{2}, \\ 0 & \text{if } \frac{\pi}{2} \le x < \pi. \end{cases}$$

 Find

- (a) a Fourier cosine series for f(x);
- (b) a Fourier sine series for f(x).

Sketch the graph of f(x) in the range $-\pi < x < \pi$ in each case.

Deduce that

$$\sum_{m=0}^{\infty} \frac{(-1)^m}{2m+1} = \frac{\pi}{4} .$$

9. The Heaviside step function $H_a(t)$ is defined by

$$H_a(t) = \left\{ egin{array}{ll} 1 & \mbox{if} & t \geq a \ 0 & \mbox{if} & t < a \ . \end{array}
ight.$$

Sketch the graph of the function $H_0(t) - H_1(t)$ and find its Laplace transform.

Use the method of Laplace transforms to solve the differential equation

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = H_0(t) - H_1(t) \qquad (t \ge 0),$$

given y(0) = y'(0) = 0.

[You may use the shift rule: $L(H_a(t)f(t-a)) = e^{-as}L(f)$].

DEPARTMENT MATHEMATICS

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$a = a_1i + a_2j + a_3k = (a_1, a_2, a_3)$$

 $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$ Scalar (dot) product:

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

$$[a, b, c] = a.b \times c = b.c \times a = c.a \times b = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product:

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots$$
 (α arbitrary, $|x| < 1$)

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

cosiz = cosh z; cosh iz = cosz; sin iz = i sinh z; sinh iz = i sin z.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} D f D^{n-1}g + \ldots + \binom{n}{2} D^{r}f D^{n-r}g + \ldots + D^{n}fg.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $c_n(h) = h^{n+1} f^{(n+1)} (a + \theta h) / (n+1)!, \quad 0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,b+k) = f(a,b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(z)$$
, then $f = F(z)$, and $\frac{dF}{dz} = \frac{\partial f}{\partial z} + \frac{\partial f}{\partial y} \frac{dy}{dz}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a, b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a.b.}$ If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a maximum; If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2) = t$: $\sin \theta = 2t/(1+t^2)$, $\cos \theta = (1-t^2)/(1+t^2)$, $d\theta = 2dt/(1+t^2)$
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), \quad |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a} \right) = \ln \left\{ \frac{x}{a} + \left(1 + \frac{x^2}{a^2} \right)^{1/2} \right\}$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x) = 0 occurs near x = a, take $x_0 = a$ and $x_{n+1} = x_n - \{f(x_n)/f'(x_n)\}, n = 0, 1, 2...$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x)dx \approx (h/2)[y_0 + y_1]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_d} y(x)dx \approx (h/3) [y_0 + 4y_1 + y_2]$.
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let $I_1,\ I_2$ be two

estimates of I obtained by using Simpson's rule with intervals h and h/2

Then, provided h is small enough,

 $I_2 + (I_2 - I_1)/15$

is a better estimate of I.

7. LAPLACE TRANSFORMS

cosыt	c ^a c		$\int_0^t f(u)g(t-u)du$	$(\partial/\partial\alpha)f(t,\alpha)$	ent f(t)	df/dı	<i>f(t)</i>	Function
$s/(s^2+\omega^2), (s>0)$	1/(s-a), (s>a)	1/5	F(s)G(s)	$(\partial/\partial\alpha)F(s,\alpha)$	F(s-a)	sF(s)-f(0)	$F(s) = \int_0^\infty e^{-st} f(t) dt$	Transform
$s/(s^2 + \omega^2), (s > 0)$ $H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$	sin ωt	$t^n(n=1,2)$		J' J(1)d1	<i>t</i> (<i>t</i>)	d2 f/d12	af(t)+bg(t)	Function
e^{-sT}/s , $(s, T > 0)$	$\omega/(s^2+\omega^2)$, $(s>0)$	$n!/s^{n+1}$, $(s>0)$		F'(s)/s	-dF(s)/ds	$s^2F(s) - sf(0) - f'(0)$	aF(s) + bG(s)	Transform

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ..., and$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$