Basic Bag-of-Words and Measuring Document Similarity

FEATURE SELECTION AND EXTRACTION

Feature Selection & Extraction

Feature: Any property in your data you think is useful for making predictions or explaining some relationship.

Possible useful features in NLP

Word count

Document age

Author ID

Feature selection

Feature extraction

Combining features or reducing the number of features through dimensionality reduction.

What we want to end up with is a matrix

Selecting good features is critical in classic ML

- Domain knowledge is an advantage. Good features with an ordinary algorithm can beat mediocre features with an advanced algorithm.
- Data cleaning and feature engineering is the majority of the work.

Bag-of-Words

Describing documents by word occurrences (multiple approaches).

Primary Idea

Meaning and similarity are encoded in vocabulary.

The more two documents share the same vocabulary, the more likely they belong to the same class.

Called a "bag" because we throw out word order.

Bag-of-Words

Describing documents by word occurrences (multiple approaches).

Each row represents one document. A document could be a sentence, tweet, or entire book.

Binary BOW

Each column (feature) represents a word in the vocabulary.

The number of rows is equal to the number of documents in the corpus.

The number of columns is equal to the size of the vocabulary.

- "1" means a token occurs in a document.
- "0" means it does not.

Binary BOW Example

d₁: ['Red', 'Bull', 'drops', 'hint', 'on', 'F1', 'engine']

d2: ['Honda', 'exits', 'F1', 'leaving', 'F1', 'partner', 'Red', 'Bull']

d3: ['Hamilton', 'eyes', 'record', 'eighth', 'F1', 'title']

d₄: ['Aston', 'Martin', 'announces', 'sponsor']

Let's say we have four documents...

['Aston', 'Bull', 'F1', 'Hamilton', 'Honda', 'Martin', 'Red', 'announces', 'drops', 'eighth', 'engine', 'exits', 'eyes', 'hint', 'leaving', 'on', 'partner', 'record', 'sponsor', 'title']

Our resulting 20word vocabulary (sorted)

Binary BOW Example

```
'Aston':
             0,
'Bull':
'F1':
'Hamilton':
'Honda':
'Martin':
             5.
'Red':
'announces':
'drops':
             8,
'eighth':
'engine':
             10,
'exits':
             11,
'eyes':
             12,
'hint':
             13,
'leaving':
             14,
'on':
             15,
'partner':
             16,
'record':
             17,
'sponsor':
             18,
'title':
             19
```

```
    d<sub>1</sub>: ['Red', 'Bull', 'drops', 'hint', 'on', 'F1', 'engine']
    d<sub>2</sub>: ['Honda', 'exits', 'F1', 'leaving', 'F1', 'partner', 'Red', 'Bull']
    d<sub>3</sub>: ['Hamilton', 'eyes', 'record', 'eighth', 'F1', 'title']
    d<sub>4</sub>: ['Aston', 'Martin', 'announces', 'sponsor']
```

Resulting binary BOW encoding

```
D<sub>1</sub>: [0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0]

D<sub>2</sub>: [0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]

D<sub>3</sub>: [0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1]

D<sub>4</sub>: [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
```

We have shifted our thinking about text...

From a sequence of symbols...

With BOW, we assume meaning is encoded in the presence of certain words.

to points in a multidimensional space that

encodes some meaning of the text.

We have shifted our thinking about text...

Vector Space Model (VSM)

*The number of dimensions is equal to the number of features (i.e. size of vocabulary).

Vector Space Model

What we can now do

Two documents which have similar vocabulary should be closer together in this space. This allows us to start measuring document similarity which is useful for:

- Relevance ranking
- Plagiarism detection
- Document classification

And other applications...

How do we measure similarity?

The basis for most vector similarity metrics

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Two vectors of equal length (a, b)

Multiply their corresponding values and add the products together.

$$\mathbf{a} = \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}$$

 $\mathbf{b} = \begin{bmatrix} 4, & 5, & 6 \end{bmatrix}$ $\mathbf{a} \cdot \mathbf{b} = (1x4) + (2x5) + (3x6) = 32$

The basis for most vector similarity metrics

Dot product will be high when two vectors share a similar or same direction, and with large magnitudes.

$$(6 \times 4) + (4 \times 2) = 30$$

The basis for most vector similarity metrics

Conversely, the dot product will be low or 0 (orthogonal vectors) if they are dissimilar.

$$(6 \times -1) + (6 \times 1) = 0$$

The basis for most vector similarity metrics

But high frequency words will lead to larger dot products...

So we normalize by vector length:

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^{n} v_i^2}$$
 Which leads to $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \cos \theta$

Also known as the L^2 norm or Euclidean norm.

The same as the cosine of the angle between two vectors

Cosine Similarity

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

The value of $\cos \theta$ ranges from 0 to 1.*

- 1 when the vectors point in the same direction.
- 0 when the vectors are orthogonal (dissimilar).

*won't be lower than zero because we won't have negative frequencies.

Cosine Similarity Example

- d₁: ['Red', 'Bull', 'drops', 'hint', 'on', 'F1', 'engine']
 [0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]
- **d**₂: ['Honda', 'exits', 'F1', 'leaving', 'F1', 'partner', 'Red', 'Bull'] [0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]
- **d**₃: ['Hamilton', 'eyes', 'record', 'eighth', 'F1', 'title'] [0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1]
- **d**₄: ['Aston', 'Martin', 'announces', 'sponsor']
 [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

$$\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{\|\mathbf{d}_1\| \|\mathbf{d}_2\|} = 0.43$$

$$\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_3}{\|\mathbf{d}_1\| \|\mathbf{d}_3\|} = 0.15$$

$$\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_4}{\|\mathbf{d}_1\| \|\mathbf{d}_4\|} = 0.0$$

The threshold you select for "similar" will depend on your data.

Binary or raw frequency BOW can be a good start but...

Drawbacks

- Doesn't capture similarity between synonyms.
- No way to handle Out-of-Vocabulary (OOV) words.
- Creates sparse vectors which can be inefficient.
- Word order information is lost. "Chelsea beats Barcelona" is different from "Barcelona beats Chelsea".

N-grams

Chunks of continuous tokens

- 2-gram or bigram has two tokens per chunk
- 3-gram or trigram has three tokens per chunk

.

.

.

"Chelsea beats Barcelona"

Tokenize into bigrams

["Chelsea beats", "beats Barcelona"]

"Barcelona beats Chelsea"

["Barcelona beats", "beats Chelsea"]

Helps capture some context our previous approach didn't.

The vocabulary is the collection of bigrams across the corpus.

Code implementation of Basic Bag of word

→ Basic Bag-of-Words (BOW)

```
from scipy import spatial
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
```


The fit_transform method does two things:

- It learns a vocabulary dictionary from the corpus.
- 2. It returns a matrix where each row represents a document and each column represents a token (i.e. term).

https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer.fit transform

```
bow = vectorizer.fit_transform(corpus)
```

We can take a look at the features and vocabulary dictionary. Notice the **CountVectorizer** took care of tokenization for us. It also removed punctuation and lower-cased everything.

Thank you