JAWABAN TUGAS KELOMPOK **R5**

MAT 1211 KALKULUS II SEMESTER GANJIL 2022/2023

Dosen:

Prof. Dr. Toni Bakhtiar S.Si., M.Sc.

KELOMPOK 05

No	Nama	NIM
1	Cahyani Dyah Rofiana	G1401211005
2	Farhan Abdillah Harahap	G1401211007
3	Syifa Khairunnisa	G1401211012
4	Akmal Basis Jatining Kusumah	G1401211036
5	Raziqizzan Putrandi	G1401211040
6	Reyzha Siva Dewi	G1401211074
7	Windi Gunawan	G1401211082
8	Hilmi Awfa Abrar	G1401211089
9	Rani Yasmin Azzahra	G1401211100

IPB UNIVERSITY

2022

Periksa kekonvergenan deret yang diberikan dan

Sebutkan jenis wi yang digunakan:

$$1) \sum_{n=1}^{\infty} \frac{3n+1}{n^2-4} \rightarrow 0n$$

Usi Banaling Limit

$$\sum_{n=1}^{\infty} \frac{3n+1}{n^2-4} \xrightarrow{n} \frac{3n}{n^2} \xrightarrow{n} \frac{3}{n} \xrightarrow{n} \frac{1}{n} \xrightarrow{n \text{ derer}} \frac{3}{n} \xrightarrow{n} \frac{1}{n} \xrightarrow{n \text{ derer}} \frac{3}{n} \xrightarrow{n} \frac{3}{$$

$$= \lim_{n \to \infty} \frac{3n^2 + n}{3n^2 - 12}$$

$$\frac{3n^{2} + \frac{n}{n^{2}}}{\frac{3n^{2}}{n^{2}} - \frac{12}{n^{2}}} = \frac{3+0}{3+0}$$

$$=\frac{3}{3}=1>0$$

. Menurut uji banding limit, an divergen

2.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n - 3}$$

Junakan Wi banding limit

$$an = \frac{n}{n^2 + 2n - 3}$$
, $bn = \frac{1}{n}$ (divergen)

$$\lim_{n\to\infty} \frac{\alpha_n}{bn} = L$$

$$\lim_{n\to\infty} \frac{n}{n^2 + 2n - 3}$$

$$\lim_{n\to\infty} \frac{n^2}{n^2 + 2n - 3} = 1 > 0$$

.. menurut uji banding limit, an divergen

$$\begin{array}{c|c}
4 & \stackrel{\longrightarrow}{>} 3^{k} + k \\
 & \stackrel{\longrightarrow}{>} 1 \\
 &$$

$$k = \lim_{k \to \infty} \frac{3^{k} \cdot 3 + k + 1}{3^{k} \cdot k + k^{2} + 3^{k} + k}$$

$$P = \lim_{k \to \infty} \frac{3^k \ln(3) \cdot 3 + 1}{3^k \cdot k + k^2 + 3^k + k}$$

$$P = \lim_{k \to \infty} \frac{3^{k} \left(\ln 13 \right) \cdot 3 + \frac{1}{3^{k}} \right)}{3^{k} \left(k + \frac{k^{2}}{3^{k}} + \frac{1}{3^{k}} + \frac{k}{3^{k}} \right)}$$

$$P = \lim_{k \to a} k \left(\frac{\ln(3) \cdot 3}{k} + \frac{1}{3k \cdot k} \right)$$

$$k \left(\frac{1 + \frac{k}{3k} + \frac{1}{k \cdot 3k} + \frac{1}{3k}}{3k} \right)$$

$$p = \frac{0}{1} = 0$$

Pertikra kekonvergenan deret yang dibertikan dan sebutkan jenis uji yang digunakan:

$$\frac{3n+1}{n^2-4} > \frac{3n}{n^2} \longrightarrow \frac{3n+1}{n^2-4} > \frac{3}{n}$$

$$\frac{3}{n} = 3\frac{9}{n} + \frac{3}{n}$$

Deret harmonik - divergen

Karena Z 3 adalah deret divergen, motea Z 3771 adalah deret divergen

CONSTRUCTION OF THE PROPERTY OF THE PERTY OF

	DATE :
6 \(\frac{7}{2}\)	1/3n+2) n
	i arat
R 2	lim (an) ¹ n h-700
7	1im (("/3n+2)") /n
	lim _n _LH lim _1 3 2 1
Me	more beorema uji akar karem (22), Maka 2 (73472)
ho	avergen /

* Uji atar Am (an) = R

lim h-x= 1/n.n = 0

 $\therefore 0 < 1$, maka $\frac{co}{2} \left(\frac{1}{\ln n}\right)^n$

tonuergen.

Tugar Kelompok: Perponn 5

 $\frac{\sum_{n=1}^{\infty} |V_n|}{n} = \frac{\sum_{n=1}^{\infty} |(-\frac{4}{3})^n|}{n} = \frac{\sum_{n=1}^{\infty} |(-1)^n (\frac{4}{3})^n|}{n}$

= 5 (4)

 $= \lim_{n \to \infty} \left(\frac{4}{3} \right)^{n/n}$

= lim 4

= 1 - R>1 - divergen

 $\frac{2}{N}$ Un = $\frac{2}{N}$ $\left(-\frac{4}{3}\right)^n = \lim_{n \to \infty} \left(-\frac{4}{3}\right)^n = \lim_{n$

7 / 4 10