Q1. [3 points] Build a decision tree or segmentation model predicting partisanship.

- a. Describe which of the party dependent variable you will be using and why.
- b. Describe which indicators you will suppress from the model and why.

a. party dependent variables being used

	Voted in the general election 11/2014. Yif they voted. Nif they were
	registered but did not vote. Blank if not registered as of 11/14. Note -
	this dv field is in Y/N format. VG_14 in the indicators is 0/1 and should be
VG_14_DV	suppressed when modeling VG_14_DV
	Democrat 2-way. Yif voter is a Democrat, Nif Republican, blankif
D2	independent or minor party
	Republican 2-way. Y if voter is a Republican, N if Democrat, blank if
R2	independent or minor party
	Democrat 3-way. Y if voter is a Democrat, N if Republican, independent
D3	or minor party
	Republican 3-way. Y if voter is a Republican, N if Democrat, independent
R3	or minor party
	Independent 3-way. Yif voter is an independent or minor party member.
13	N if Democrat or Republican

b.

indicators you will suppress

NH_WHITE
NH_AA
NH_NATAM
NH_ASIAN
NH_HPI
NH_OTHER
NH_MULT
HISP
COMM_LT10
COMM_609P
MED_HH_INC
COMM_CAR
COMM_CP
COMM_PT

COMM_WALK

KIDS KIDS_MC M_NEV_MAR M_MAR M_MAR_SP M_MAR_SNP F_NEV_MAR F_MAR F_MAR_SP F_MAR_SNP ED_ASSOC ED_BACH ED_MD ED_PROF ED_DOC ED_4COL GENDER_F GENDER_M H_AFDLN3P H_AFSSLN3P H_F1 H_FFDLN2 H_FFSLN2 H_M1 H_MFDLN2 H_MFDLN3P H_MFSLN2 H_MFSLN3P H_MFSSLN3P H_MMDLN2 H_MMSLN2 PARTY_D PARTY_I PARTY_R HHP_D HHP_DD HHP_DI HHP_DR

HHP_II

HHP_R

HHP_RI

HHP_RR

VPP_12

VPP_16

VPR_12

VPR_14

VPR_16

VG_08

VG_10

VG_12

VG_14

VG_16

PP_PELIG

PR_PELIG

AP_PELIG

G_PELIG

E_PELIG

NL5G

NL3PR

NL5AP

NL2PP

REG_DAYS

UpscaleBuy

UpscaleMal

UpscaleFem

BookBuyerI

FamilyMaga

FemaleOrie

ReligiousM

GardeningM

CulinaryIn

HealthFitn

DoltYourse

FinancialM

ReligiousC

PoliticalC

MedianEduc

PRS16_PD

PRS16_PR

Submit: Along with answers to (a) and (b), also submit

a. a model definition that can be implemented using the voterfile indicator data.

Model definition: Decision Tree Classifier

Input data:-

OPP_SEX AGE HH_ND HH_NR HH_NI MED_AGE MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	
HH_ND HH_NR HH_NI MED_AGE MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	OPP_SEX
HH_NR HH_NI MED_AGE MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	AGE
HH_NI MED_AGE MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	HH_ND
MED_AGE MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	HH_NR
MED_AGE_M MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	HH_NI
MED_AGE_F NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	MED_AGE
NH_WHITE NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	MED_AGE_M
NH_AA NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	MED_AGE_F
NH_NATAM NH_ASIAN NH_HPI NH_OTHER NH_MULT	NH_WHITE
NH_ASIAN NH_HPI NH_OTHER NH_MULT	NH_AA
NH_HPI NH_OTHER NH_MULT	NH_NATAM
NH_OTHER NH_MULT	NH_ASIAN
NH_MULT	NH_HPI
	NH_OTHER
LUCD	NH_MULT
пізе	HISP

Output (dependent variables):-

VG_14_DV

D2

R2

D3

R3

13

b. a tab delimited, excel or other common format file listing the voter_ID and model score for each voter. The model score should be in the range 0 to 100.

```
Here is the predicted score for first 100 voters,
      # Predict for multiple observations,
      Output variable, y = FX_indicators_2020_df_new['D2_Y']
        prob = clf.predict_proba(X_test[0:100])
array([[0., 1.],
        [1., 0.],
        [1., 0.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [1., 0.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [0., 1.],
        [1., 0.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [0., 1.],
        [1., 0.],
```

[0., 1.], [0., 1.], [0., 1.], [0., 1.],

```
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
```

```
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
```

c. R or Python code you used. (See attached file)

Q1 [3 points] Build a decision tree predicting partisanship.

Q2. [3 points] Build a logistic regression predicting partisanship.

a. Describe which party dependent variable you will be using and why .

Same as Q1

b. Describe which indicators you will suppress from the model and why.

Same as Q1

Submit: Along with answers to (a) and (b), also submit

a model definition that can be implemented using the voterfile indicator data.

Model definition:- Logistic regression

Input data:-

OPP_SEX			
AGE			
HH_ND			
HH_NR			
HH_NI			
MED_AGE			
MED_AGE_M			
MED_AGE_F			
NH_WHITE			
NH_AA			
NH_NATAM			
NH_ASIAN			
NH_HPI			
NH_OTHER			
NH_MULT			
HISP			

Output (dependent variables) :-

```
VG_14_DV
D2
R2
D3
R3
```

b. a tab delimited, excel or other common format file listing the voter_ID and model score for each voter. The model score should be in the range 0 to 100.

```
Here is the predicted score for first 100 voters,
      Predict for multiple observations,
      Output variable, y = FX_indicators_2020_df_new['D2_Y']
        prob = logreg.predict_proba(X_test[0:100])
array([[0.36649819, 0.63350181],
       [0.35557967, 0.64442033],
       [0.38286689, 0.61713311],
       [0.38448646, 0.61551354],
       [0.35201947, 0.64798053],
       [0.38005647, 0.61994353],
       [0.34797492, 0.65202508],
       [0.36088116, 0.63911884],
       [0.36173476, 0.63826524],
       [0.37803327, 0.62196673],
       [0.37626537, 0.62373463],
       [0.34665739, 0.65334261],
       [0.37895216, 0.62104784],
       [0.35365187, 0.64634813],
       [0.36658645, 0.63341355],
       [0.36881575, 0.63118425],
       [0.3998148, 0.6001852],
       [0.40381716, 0.59618284],
       [0.37148861, 0.62851139],
       [0.38129579, 0.61870421],
       [0.37637112, 0.62362888],
       [0.38620881, 0.61379119],
```

```
[0.39100798, 0.60899202],
[0.376874 , 0.623126 ],
[0.38785209, 0.61214791],
[0.34246204, 0.65753796],
[0.36667952, 0.63332048],
[0.37492729, 0.62507271],
[0.38327612, 0.61672388],
[0.37804038, 0.62195962],
[0.36663227, 0.63336773],
[0.3794972 , 0.6205028 ],
[0.36928639, 0.63071361],
[0.39505837, 0.60494163],
[0.36221214, 0.63778786],
[0.40968086, 0.59031914],
[0.36338309, 0.63661691],
[0.37766958, 0.62233042],
[0.41286603, 0.58713397],
[0.35998714, 0.64001286],
[0.38254325, 0.61745675],
[0.38488398, 0.61511602],
[0.35075816, 0.64924184],
[0.3508171 , 0.6491829 ],
[0.41069812, 0.58930188],
[0.40444855, 0.59555145],
[0.35359856, 0.64640144],
[0.38750034, 0.61249966],
[0.35857808, 0.64142192],
[0.40801714, 0.59198286],
[0.37687341, 0.62312659],
[0.36173019, 0.63826981],
[0.36035987, 0.63964013],
[0.35633788, 0.64366212],
[0.37941422, 0.62058578],
[0.37990665, 0.62009335],
[0.40567422, 0.59432578],
[0.3688912, 0.6311088],
[0.35412268, 0.64587732],
[0.35321153, 0.64678847],
[0.39058938, 0.60941062],
[0.39647648, 0.60352352],
[0.34685538, 0.65314462],
[0.36025635, 0.63974365],
[0.36505831, 0.63494169],
[0.37777163, 0.62222837],
[0.37075151, 0.62924849],
[0.35481505, 0.64518495],
[0.37626983, 0.62373017],
[0.41413124, 0.58586876],
[0.38724111, 0.61275889],
[0.36837809, 0.63162191],
[0.38124817, 0.61875183],
```

```
[0.37496948, 0.62503052],
[0.37548551, 0.62451449],
[0.40629296, 0.59370704],
[0.39770152, 0.60229848],
[0.34762547, 0.65237453],
[0.39671686, 0.60328314],
[0.39272698, 0.60727302],
[0.3937235, 0.6062765],
[0.3963592, 0.6036408],
[0.38861034, 0.61138966],
[0.37030513, 0.62969487],
[0.36091096, 0.63908904],
[0.37994463, 0.62005537],
[0.35186324, 0.64813676],
[0.40244798, 0.59755202],
[0.36805501, 0.63194499],
[0.35172708, 0.64827292],
[0.38779475, 0.61220525],
[0.37224029, 0.62775971],
[0.39365134, 0.60634866],
[0.38236211, 0.61763789],
[0.37938696, 0.62061304],
[0.37151693, 0.62848307],
[0.36795888, 0.63204112],
[0.39566584, 0.60433416],
[0.38328899, 0.61671101],
[0.38793247, 0.61206753]])
```

c. R or Python code you used. (See attached file)

Q2 [3 points] Build a logistic regression predicting partisanship.

Q3. [3 points] Build a model predicting turnout.

a. In the simulation, the upcoming election is 11/14. The models will be built to predict turnout in the 11/10 election for use in predicting turnout in the upcoming 11/14 election. Explain why we would want to predict turnout in 11/10 rather than the more recent 11/12 election.

We would want to predict turnout in 11/10 rather than the more recent 11/12 election because it is general presidential election upcoming in 11/14 and need turnout data for 11/10 presidential election to compare with.

b. Describe which indicators you will suppress from the model and why?

indicators you will suppress

NH_WHITE

NH_AA

NH NATAM

NH_ASIAN

NH_HPI

NH_OTHER

NH_MULT

HISP

COMM_LT10

COMM_609P

MED_HH_INC

COMM_CAR

COMM_CP

COMM_PT

COMM_WALK

KIDS

KIDS_MC

M_NEV_MAR

 M_MAR

 M_MAR_SP

M_MAR_SNP

F_NEV_MAR

 F_MAR

F_MAR_SP

F_MAR_SNP ED_ASSOC ED_BACH ED_MD ED_PROF ED_DOC ED_4COL GENDER_F GENDER_M H_AFDLN3P H_AFSSLN3P H_F1 H_FFDLN2 H_FFSLN2 H_M1 H_MFDLN2 H_MFDLN3P H_MFSLN2 H_MFSLN3P H_MFSSLN3P H_MMDLN2 H_MMSLN2 PARTY_D PARTY_I PARTY_R HHP_D HHP_DD HHP_DI HHP_DR HHP_I HHP_II HHP_R

HHP_RI HHP_RR VG_10 PP_PELIG PR_PELIG AP_PELIG G_PELIG E_PELIG

NL5G NL3PR

NL5AP

NL2PP

REG_DAYS

UpscaleBuy

UpscaleMal

UpscaleFem

BookBuyerI

FamilyMaga

FemaleOrie

ReligiousM

GardeningM

CulinaryIn

HealthFitn

DoltYourse

FinancialM

ReligiousC

PoliticalC

MedianEduc

PRS16_PD

PRS16_PR

Submit: Along with answers to (a) and (b), also submit

1. a model definition that can be implemented using the voterfile indicator data.

Model definition:- Logistic Regression

Input data:-

```
H_F1
H_FFDLN2
H FFSLN2
H_M1
H_MFDLN2
H_MFDLN3P
H_MFSLN2
H MFSLN3P
H_MFSSLN3P
H_MMDLN2
H_MMSLN2
PARTY_D
PARTY_I
PARTY_R
HHP D
HHP_DD
 VG_10
```

Output (dependent variables):-

```
VG 14 DV
```

2. a tab delimited, excel or other common format file listing the voter_ID and model score for each voter. The model score should be in the range 0 to 100.

```
[0.42193183, 0.57806817],
[0.36156994, 0.63843006],
[0.41022164, 0.58977836],
[0.46166972, 0.53833028],
[0.42799743, 0.57200257],
[0.47989737, 0.52010263],
[0.49978097, 0.50021903],
[0.42009635, 0.57990365],
[0.42952228, 0.57047772],
[0.43665795, 0.56334205],
[0.45723728, 0.54276272],
[0.49895898, 0.50104102],
[0.49797114, 0.50202886],
[0.41053118, 0.58946882],
[0.38936271, 0.61063729],
[0.48470134, 0.51529866],
[0.40513993, 0.59486007],
[0.4346949 , 0.5653051 ],
[0.41561879, 0.58438121],
[0.41026864, 0.58973136],
[0.36220669, 0.63779331],
[0.42084104, 0.57915896],
[0.48994987, 0.51005013],
[0.4633573, 0.5366427],
[0.44633286, 0.55366714],
[0.43667058, 0.56332942],
[0.48130692, 0.51869308],
[0.45876911, 0.54123089],
[0.4987457, 0.5012543],
[0.44557911, 0.55442089],
[0.41499552, 0.58500448],
[0.35832738, 0.64167262],
[0.45938694, 0.54061306],
[0.4597174, 0.5402826],
[0.44648278, 0.55351722],
[0.44323869, 0.55676131],
[0.46080008, 0.53919992],
[0.37664521, 0.62335479],
[0.36951713, 0.63048287],
[0.41917619, 0.58082381],
[0.49203875, 0.50796125],
[0.40626808, 0.59373192],
[0.36309564, 0.63690436],
[0.42913387, 0.57086613],
[0.45340178, 0.54659822],
[0.48613928, 0.51386072],
[0.43341922, 0.56658078],
[0.37057838, 0.62942162],
[0.39167138, 0.60832862],
[0.4882744 , 0.5117256 ],
[0.37846818, 0.62153182],
```

```
[0.4768054, 0.5231946],
[0.41363442, 0.58636558],
[0.41047508, 0.58952492],
[0.38736752, 0.61263248],
[0.44965637, 0.55034363],
[0.39554292, 0.60445708],
[0.43223459, 0.56776541],
[0.40488355, 0.59511645],
[0.46376725, 0.53623275],
[0.4502964, 0.5497036],
[0.4281639, 0.5718361],
[0.4594279, 0.5405721],
[0.39775966, 0.60224034],
[0.46941786, 0.53058214],
[0.3614075, 0.6385925],
[0.39093387, 0.60906613],
[0.36010785, 0.63989215],
[0.47422446, 0.52577554],
[0.45574036, 0.54425964],
[0.46123681, 0.53876319],
[0.45883623, 0.54116377],
[0.38681161, 0.61318839],
[0.36214022, 0.63785978],
[0.48458782, 0.51541218],
[0.39665493, 0.60334507],
[0.45594857, 0.54405143],
[0.36208222, 0.63791778],
[0.41931186, 0.58068814],
[0.39931089, 0.60068911],
[0.43145396, 0.56854604],
[0.36873204, 0.63126796],
[0.46943019, 0.53056981],
[0.43997932, 0.56002068],
[0.40006593, 0.59993407],
[0.40953939, 0.59046061],
[0.38133715, 0.61866285],
[0.45687139, 0.54312861],
[0.42099516, 0.57900484],
[0.40389077, 0.59610923],
[0.4581496, 0.5418504],
[0.48432622, 0.51567378],
[0.40334594, 0.59665406],
[0.40003139, 0.59996861],
[0.41020834, 0.58979166],
[0.41008973, 0.58991027],
[0.45994911, 0.54005089]])
```

- 3. R or Python code you used.
- Q3. [3 points] Build a model predicting turnout (LogisticRegression)
- Q4. [3 points] Presidential vs off-year turnout.

Even though this is a presidential election year, we are building models predicting turnout in an off-year.

How does off-year turnout differ from presidential years, and how would models predicting off-year turnout likely be different from a presidential year model?

1. Here is the predicted score for first 100 voters (predicting turnout in an off-year 2010) for 2014 presidential year

```
y = FX_indicators_2020_df_new['VG_14_DV_Y']
```

logreg.predict(X_test[0:100])

2. a presidential year model (2014) as per data file

```
y[0:100]
```

```
3 1
4 1
8 0
9 1
14 1
```

199	1
200	1
204	1
205	1
206	1

Q5. [3 points] Build a different model predicting turnout.

a. Describe how the model is different from the model built for question 3. Did you use a different algorithm? Are the indicators used different?

The model/ algorithm is different from the model built for question 3 (logistic regression) as we use now Decision Tree Classifier model.

Indicators are same.

b. Describe which indicators you will suppress from the model and why.

Same as Q3

Submit: Along with answers to (a) and (b), also submit

1. a model definition that can be implemented using the voterfile indicator data.

Model definition: - Decision Tree Classifier model.

Input data:-

```
H_F1
H_FFDLN2
H_FFSLN2
H_M1
H MFDLN2
H_MFDLN3P
H_MFSLN2
H MFSLN3P
H_MFSSLN3P
H_MMDLN2
H_MMSLN2
PARTY_D
PARTY_I
PARTY_R
HHP_D
HHP_DD
 VG_10
```

Output (dependent variables):-

```
VG_14_DV
```

2. a tab delimited, excel or other common format file listing the voter_ID and model score for each voter. The model score should be in the range 0 to 100.

```
Here is the predicted score for first 100 voters, # Predict for multiple observations,

y = FX_indicators_2020_df_new['VG_14_DV_Y']

prob = clf.predict_proba(X_test[0:100])

[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
```

```
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
```

```
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.],
[0., 1.],
[1., 0.],
[1., 0.]])
```

3. R or Python code you used.

Q4. [3 points] Build a model predicting turnout (Decision Tree Classifier model)

Q6. [5 points]

a. Build versions of the models from questions 1 and 2 using the small dataset and the full dataset.

Version 1 the small dataset: FX_indicators_2020_rand_10k (decision tree)

Version 2 the small dataset: FX_indicators_2020_rand_10k (regression model)

Version 3 the full dataset: FX_indicators_2020 (decision tree)

Version 4 the full dataset: FX_indicators_2020 (regression model)

for predicting partisanship

b. Describe the differences that you see in both the range of scores and granularity (how many distinct values there are for each score).

Please see attached Python codes for build versions of the models.

c. Which method, segmentation or logistic regression seemed to benefit the most from using the larger dataset?

logistic regression seemed to benefit the most from using the larger dataset.

Submit: Along with answers to (a) and (b), also submit

1. a tab delimited, excel or other common format file listing the voter_ID and model score for each voter. The model score should be in the range 0 to 100.

Please see attached Python codes for build versions of the models.

Here is the predicted score for first 100 voters, Predict for multiple observations, Output variable, y = FX_indicators_2020_df_new['D2_Y']

prob = logreg.predict_proba(X_test[0:100])

prob = clf.predict_proba(X_test[0:100])

2. R or Python code you used.

See attached files for python codes.