1 Mathematics

1.1 Useful Data

n	Primes less than n	Maximal Prime Gap	$\max_{0 < i < n} (d(i))$
1e2	25	8	12
1e3	168	20	32
1e4	1229	36	64
1e5	9592	72	128
1e6	78.498	114	240
1e7	664.579	154	448
1e8	5.761.455	220	768
1e9	50.487.534	282	1344

1.2 Modular Arithmetic

1.2.1 Chinese Remainder Theorem

```
ll inline mod(ll x, ll m) { return ((x %= m) < 0) ? x + m : x; }
   | 11 inline mul(11 x, 11 y, 11 m) { return (x * y) % m; }
   ll inline add(ll x, ll y, ll m) { return (x + y) % m; }
    // extended euclidean algorithm
    // finds g, x, y such that
    // a * x + b * y = g = GCD(a,b)
    ll gcdext(ll a, ll b, ll &x, ll &y)
10
        11 r2, x2, y2, r1, x1, y1, r0, x0, y0, q;
11
        r2 = a, x2 = 1, y2 = 0;
12
        r1 = b, x1 = 0, y1 = 1;
13
        while (r1)
14
15
            q = r2 / r1;
16
            r0 = r2 \% r1;
17
            x0 = x2 - q * x1;
18
            y0 = y2 - q * y1;
19
            r2 = r1, x2 = x1, y2 = y1;
20
            r1 = r0, x1 = x0, y1 = y0;
21
22
23
       11 g = r2;
24
        x = x2, y = y2;
25
        if (g < 0)
            g = -g, x = -x, y = -y; // make sure g > 0
26
27
        // for debugging (in case you think you might have bugs)
        // assert (g == a * x + b * y);
28
        // assert (g == __gcd(abs(a),abs(b)));
29
31
32
    // CRT for a system of 2 modular linear equations
```

```
// We want to find X such that:
37 // 1) x = r1 \pmod{m1}
  // 2) x = r2 (mod m2)
39 // The solution is given by:
40 // sol = r1 + m1 * (r2-r1)/g * x' (mod LCM(m1,m2))
41 // where x' comes from
42 // m1 * x' + m2 * y' = g = GCD(m1, m2)
43 // where x' and y' are the values found by extended euclidean
        algorithm (gcdext)
44 // Useful references:
45 // https://codeforces.com/blog/entry/61290
46 // https://forthright48.com/chinese-remainder-theorem-part-1-coprime-
47 // https://forthright48.com/chinese-remainder-theorem-part-2-non-
         coprime-moduli
   // ** Note: this solution works if lcm(m1,m2) fits in a long long (64
   pair<11, 11> CRT(11 r1, 11 m1, 11 r2, 11 m2)
   | {
50
51
       11 g, x, y;
       g = gcdext(m1, m2, x, y);
52
       if ((r1 - r2) % g != 0)
53
           return {-1, -1}; // no solution
54
       11 z = m2 / g;
55
       11 \ lcm = m1 * z:
56
       ll sol = add(mod(r1, lcm), m1 * mul(mod(x, z), mod((r2 - r1) / g, z)
57
       // for debugging (in case you think you might have bugs)
      // assert (0 <= sol and sol < lcm);</pre>
       // assert (sol % m1 == r1 % m1);
       // assert (sol % m2 == r2 % m2);
61
       return {sol, lcm}; // solution + lcm(m1,m2)
62
63
   | }
64
    // CRT for a system of N modular linear equations
    // Args:
68
           r = array of remainders
           m = array of modules
70
           n = length of both arrays
   // Output:
   //
           a pair {X, lcm} where X is the solution of the sytemm
73
            X = r[i] \pmod{m[i]} \text{ for } i = 0 \dots n-1
74
           and lcm = LCM(m[0], m[1], ..., m[n-1])
           if there is no solution, the output is \{-1, -1\}
   // ** Note: this solution works if LCM(m[0],...,m[n-1]) fits in a long
         long (64 bits)
   pair<11, 11> CRT(11 *r, 11 *m, int n)
79
       11 r1 = r[0], m1 = m[0];
80
       repx(i, 1, n)
81
82
           11 r2 = r[i], m2 = m[i]:
83
```

```
11 g, x, y;
84
            g = gcdext(m1, m2, x, y);
85
            if ((r1 - r2) % g != 0)
86
                return {-1, -1}; // no solution
87
            11 z = m2 / g;
88
            11 lcm = m1 * z;
89
            ll sol = add(mod(r1, lcm), m1 * mul(mod(x, z), mod((r2 - r1) / g
                  , z), z), lcm);
91
            r1 = sol;
            m1 = 1cm;
92
93
        // for debugging (in case you think you might have bugs)
94
        // assert (0 <= r1 and r1 < m1);</pre>
95
        // rep(i, n) assert (r1 % m[i] == r[i]);
96
        return {r1, m1};
97
98
```

1.2.2 Binomial Coefficients mod m

```
1 #include "../CRT/CRT.cpp"
   #include "../primalityChecks/millerRabin/millerRabin.cpp"
   #include "../primalityChecks/sieveEratosthenes/sieve.cpp"
    // Modular computation of nCr using lucas theorem, granville theorem and
   11 num:
                                  //Set num to the corresponding mod for the
          nCr calculations
                                  //MOD[P]=V_p(mod)
   umap<11, int> MOD;
    umap<11, vector<11>> FMOD;
                                 //n! mod p if MOD[p]=1 else the product of
          all i mod P^MOD[P], where 1<=i<=n and (i,p)=1
   umap<11, vector<11>> invFMOD; //the inverse of FMOD[n] in the
         corresponding MOD
11
    void preCompute()
12
13
       // Factor mod->MOD
14
       vi primes = sieve(num);
15
       11 m = num;
16
       for (auto p : primes)
17
18
           if (p * p > m)
19
                break;
20
            while (m \% p == 0)
21
22
23
                MOD[p]++;
                if ((m /= p) == 1)
24
25
                    goto next;
           }
26
       }
27
       if (m > 1)
            MOD[m] = 1;
29
30
        // Compute FMOD and invFMOD
31
       for (auto p : MOD)
32
```

```
33
            int m = pow(p.first, p.second); //p^V_p(n)
34
            FMOD[p.first].assign(m, 1);
35
            invFMOD[p.first].assign(m, 1);
36
            repx(i, 2, FMOD[p.first].size())
37
38
                if (i % p.first == 0 and p.second > 1)
39
                    FMOD[p.first][i] = FMOD[p.first][i - 1];
40
41
                    FMOD[p.first][i] = mul(FMOD[p.first][i - 1], i, FMOD[p.
42
                         first].size());
43
                //Compute using Euler's theorem i.e. a^phi(m)=1 mod m with (
44
                invFMOD[p.first][i] = fastPow(FMOD[p.first][i], m / p.first
45
                     * (p.first - 1) - 1, m);
46
47
48
   }
49
    // Compute nCr using Granville's theorem (prime powers)
50
    // Auxiliary functions
52
    // V_p(n!) using Legendre's theorem
    int V(ll n, int p)
54
55
   {
        int e = 0;
56
        while ((n \neq p) > 0)
57
            e += n;
58
59
        return e;
   }
60
61
62
   ll f(ll n, ll p)
   {
64
        11 m = pow(p, MOD[p]);
65
        int e = n / m:
        return mul(fastPow(FMOD[p][m - 1], e, m), FMOD[p][n % m], m);
67
68
   11 F(11 n, 11 p)
69
   {
70
       11 m = pow(p, MOD[p]);
71
        11 \text{ ans} = 1;
72
73
74
75
            ans = mul(ans, f(n, p), m);
        } while ((n /= p) > 0);
76
        return ans;
77
   1 }
78
    // Granville theorem
79
   ll granville(ll n, ll r, int p)
81
        int e = V(n, p) - V(n - r, p) - V(r, p);
82
        11 m = pow(p, MOD[p]);
83
        if (e \ge MOD[p])
84
```

```
85
             return 0;
         11 ans = fastPow(p, e, m);
 86
         ans = mul(ans, F(n, p), m);
 87
         ans = mul(ans, fastPow(F(r, p), pow(p, MOD[p] - 1) * (p - 1) - 1, m)
         ans = mul(ans, fastPow(F(n - r, p), pow(p, MOD[p] - 1) * (p - 1) -
 89
              1, m), m);
         return ans:
 90
 91
 92
     // Compute nCr using Lucas theorem (primes)
     11 lucas(ll n, ll r, int p)
 95
         // Trivial cases
 96
         if (r > n \text{ or } r < 0)
 97
             return 0:
 98
         if (r == 0 \text{ or } n == r)
 99
             return 1:
100
         if (r == 1 \text{ or } r == n - 1)
101
             return n % p;
102
         // Base case
103
         if (n 
104
105
             ll ans = mul(invFMOD[p][r], invFMOD[p][n - r], p); // 1/(r!(n-r))
106
                  !) mod p
             ans = mul(ans, FMOD[p][n], p);
                                                                   // n!/(r!(n-r
107
                  !)) mod p
             return ans;
108
         }
109
         ll ans = lucas(n / p, r / p, p);
110
         ans = mul(ans, lucas(n % p, r % p, p), p); //False recursion
111
112
         return ans;
113
114
     // Given the prime decomposition of mod;
115
     11 nCr(11 n, 11 r)
116
117
         // Trivial cases
118
         if (n < r \text{ or } r < 0)
119
             return 0;
120
         if (r == 0 \text{ or } r == n)
121
             return 1:
122
         if (r == 1 \text{ or } r == n - 1)
123
124
             return (n % num):
         // Non-trivial cases
125
         11 \text{ ans} = 0;
126
         11 \mod = 1;
127
         for (auto p : MOD)
128
129
             11 temp = pow(p.first, p.second);
130
             if (p.second > 1)
131
132
                 ans = CRT(ans, mod, granville(n, r, p.first), temp).first;
133
134
             else
135
```

1.3 Primality Checks

1.3.1 Miller Rabin

```
1
   ll mulmod(ull a, ull b, ull c)
3
 4
        ull x = 0, y = a % c;
        while (b)
 5
 6
            if (b & 1)
 7
               x = (x + y) \% c;
 8
            y = (y << 1) \% c;
 9
10
            b >>= 1:
12
        return x % c:
13
   11 fastPow(11 x, 11 n, 11 MOD)
15
16
       ll ret = 1:
        while (n)
18
19
            if (n & 1)
20
21
               ret = mulmod(ret, x, MOD);
           x = mulmod(x, x, MOD);
22
23
            n >>= 1:
24
25
        return ret;
26
27
    bool isPrime(ll n)
28
29
        vi a = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\};
30
31
        if (binary_search(a.begin(), a.end(), n))
32
            return true;
33
34
        if ((n \& 1) == 0)
35
36
            return false;
37
38
        int s = 0:
        for (11 m = n - 1; !(m \& 1); ++s, m >>= 1)
40
41
42
        int d = (n - 1) / (1 << s);
43
```

```
for (int i = 0; i < 7; i++)
44
45
            11 fp = fastPow(a[i], d, n);
46
            bool comp = (fp != 1);
47
            if (comp)
48
                for (int j = 0; j < s; j++)
49
50
                    if (fp == n - 1)
51
52
                         comp = false;
53
54
                         break;
55
56
                    fp = mulmod(fp, fp, n);
57
                }
58
            if (comp)
59
60
                return false;
61
62
        return true;
63 }
```

1.3.2 Sieve of Eratosthenes

```
// O(n log log n)
   vi sieve(int n)
4
        vi primes;
        vector<bool> is_prime(n + 1, true);
        int limit = (int)floor(sqrt(n));
        repx(i, 2, limit + 1) if (is_prime[i]) for (int j = i * i; j <= n; j</pre>
            is_prime[j] = false;
10
11
        repx(i, 2, n + 1) if (is_prime[i]) primes.eb(i);
12
13
14
        return primes;
15 }
```

1.3.3 trialDivision

```
return factors;
}

factors.pb(n);

return factors;

factors.pb(n);

return factors;
}
```

1.4 Others

1.4.1 Polynomials

```
template <class T>
2
3
    class Pol
   \
4
   private:
5
        vector<T> cofs;
6
        int n;
7
8
    public:
9
        Pol(vector<T> cofs) : cofs(cofs)
10
11
12
            this->n = cofs.size() - 1;
       }
13
14
        Pol<T> operator+(const Pol<T> &o)
15
16
            vector<T> n_cofs;
17
18
            if (n > o.n)
19
                n_cofs = cofs;
20
                rep(i, o.n + 1)
21
22
                    n_cofs[i] += o.cofs[i];
23
24
            }
25
            else
26
27
                n_cofs = o.cofs;
28
                rep(i, n + 1)
29
30
                    n_cofs[i] += cofs[i];
31
32
33
            return Pol(n_cofs);
34
35
36
        Pol<T> operator-(const Pol<T> &o)
37
38
            vector<T> n_cofs;
39
            if (n > o.n)
40
            {
41
42
                n cofs = cofs:
```

```
rep(i, o.n + 1)
43
44
                    n_cofs[i] -= o.cofs[i];
45
46
47
            else
48
49
                n cofs = o.cofs:
50
                rep(i, n + 1)
51
52
                    n_{cofs[i]} *= -1;
53
                    n_cofs[i] += cofs[i];
54
                }
55
            }
56
57
            return Pol(n_cofs);
        }
58
59
        Pol<T> operator*(const Pol<T> &o) //Use Fast Fourier Transform when
60
             we implement it
        {
61
            vector<T> n_cofs(n + o.n + 1);
62
            rep(i, n + 1)
63
64
                rep(j, o.n + 1)
65
66
                    n_{cofs[i + j]} += cofs[i] * o.cofs[j];
67
68
69
            return Pol(n_cofs);
70
71
72
        Pol<T> operator*(const T &o)
73
74
            vector<T> n_cofs = cofs;
75
            for (auto &cof : n_cofs)
76
77
                cof *= o;
78
79
            return Pol(n_cofs);
80
        }
81
82
        double operator()(double x)
83
84
            double ans = 0;
85
            double temp = 1;
86
            for (auto cof : cofs)
87
88
                ans += (double)cof * temp;
89
90
                temp *= x;
91
92
            return ans;
        }
93
94
        Pol<T> integrate()
95
        {
96
```

```
vector<T> n_cofs(n + 2);
             repx(i, 1, n_cofs.size())
 98
 99
                  n_{cofs[i]} = cofs[i - 1] / T(i);
100
101
             return Pol<T>(n_cofs);
102
         }
103
104
         double integrate(T a, T b)
105
106
             Pol<T> temp = integrate();
107
             return temp(b) - temp(a);
108
         }
109
110
111
         friend ostream &operator << (ostream &str, const Pol &a);
     };
112
113
     ostream &operator<<(ostream &strm, const Pol<double> &a)
114
115
         bool flag = false;
116
         rep(i, a.n + 1)
117
118
             if (a.cofs[i] == 0)
119
                  continue:
120
121
             if (flag)
122
                  if (a.cofs[i] > 0)
123
                      strm << " + ";
124
                  else
125
                      strm << " - ";
126
              else
127
                  flag = true;
128
             if (i > 1)
129
130
                  if (abs(a.cofs[i]) != 1)
131
                      strm << abs(a.cofs[i]);</pre>
132
                  strm << "x^" << i;
133
             }
134
135
             else if (i == 1)
136
                  if (abs(a.cofs[i]) != 1)
137
138
                      strm << abs(a.cofs[i]);</pre>
                  strm << "x";
139
             }
140
141
             else
142
                  strm << a.cofs[i];
143
144
145
         return strm;
146
147 |}
```

1.4.2 Factorial Factorization

1

```
2 // O(n)
umap<11, int> factorialFactorization(int n, vi &primes)
4 {
        umap<11, int> p2e;
for (auto p : primes)
6
            if (p > n)
    break;
9
            int e = 0;
10
            11 tmp = n;
11
            while ((tmp /= p) > 0)
12
                e += tmp;
13
            if (e > 0)
14
                p2e[p] = e;
15
        }
16
17
        return p2e;
18 }
```