

IEL – protokol k projektu

Evgeny Torbin xtorbi00

20. prosince 2020

Obsah

1	Příklad 1	2
2	Příklad 2	6
3	Příklad 3	9
4	Shrnutí výsledků	12

Příklad 1

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Řešení metodou postupného zjednodušování

Obrázek 1: Zjednodušení ${\cal R}_3$ a ${\cal R}_4$ (paralelní zapojení)

$$R_{34} = \frac{R_3 \times R_4}{R_3 + R_4} = \frac{550 \times 250}{550 + 250} = 171,875 \,\Omega$$

Obrázek 2: Zjednodušení R_2 a R_{34} (sériové zapojení)

$$R_{234} = R_2 + R_{34} = 500 + 171,875 = 671,875 \Omega$$

Obrázek 3: Trojúhelník -> hvězda

$$R_A = \frac{R_1 \times R_{234}}{R_1 + R_{234} + R_5} = \frac{550 \times 671,875}{510 + 671,875 + 300} = 231,2315 \,\Omega$$

$$R_B = \frac{R_1 \times R_5}{R_1 + R_{234} + R_5} = \frac{550 \times 300}{510 + 671,875 + 300} = 103,2476 \,\Omega$$

$$R_C = \frac{R_{234} \times R_5}{R_1 + R_{234} + R_5} = \frac{671,875 \times 300}{510 + 671,875 + 300} = 136,0186 \,\Omega$$

Obrázek 4: Zjednodušení ${\cal R}_B$ a ${\cal R}_7,\,{\cal R}_C$ a ${\cal R}_6$ (sériové zapojení)

$$R_{B7} = R_B + R_7 = 103,2476 + 330 = 433,2476 \Omega$$

 $R_{C6} = R_C + R_6 = 136,0186 + 800 = 936,0186 \Omega$

Obrázek 5: Zjednodušení R_{B7} a R_{C6} (paralelní zapojení)

$$R_{B7C6} = \frac{R_{B7} \times R_{C6}}{R_{B7} + R_{C6}} = \frac{433,2476 \times 936,0186}{433,2476 + 936,0186} = 296,1643 \,\Omega$$

Obrázek 6: Zjednodušení $R_A,\,R_{B7C6},\,R_8$ a $U_1,\,U_2$ (sériové zapojení)

$$R_{EKV} = R_A + R_{B7C6} + R_8 = 231, 2315 + 296, 1643 + 250 = 777, 3958 \Omega$$

 $U = U_1 + U_2 = 125 + 65 = 190 V$

• Spočítáme proud I (Ohmův zákon)

$$I = \frac{U}{R_{EKV}} = \frac{190}{777,3958} = 0,2444 A$$

 \bullet Spočítáme $U_{R_8},\,U_{R_A}$ (Ohmův zákon) a $U_{R_{B7C6}}$ (sériové zapojení)

$$U_{R_8} = I*R_8 = 0,2444 \times 250 = 61,1 V$$

$$U_{R_A} = I*R_A = 0,2444 \times 231,2315 = 56,513V$$

$$U_{R_{B7C6}} = U - U_{R_8} - U_{R_A} = 190 - 61,1 - 56,513 = 72,387 V$$

 $\bullet~I_{R_{C6}}$ se rovná I_{R_6} (sériové zapojení), tedy můžeme spočítat I_{R_6} a U_{R_6} (Ohmův zákon)

$$I_{R_{C6}} = I_{R_6} = \frac{U_{R_{C6}}}{R_{C_6}} = \frac{72,387}{936,0186} = 0,0773 A$$

$$U_{R_6} = I_{R_6} \times R_6 = \frac{72,387}{936,0186} \times 800 = 61,868 V$$

Příklad 2

Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
С	200	70	220	630	240	450	300

Řešení metodou Théveninovy věty

 $\bullet\,$ Zjednodušíme $R_4,\,R_5$ (sériové zapojení) a odstraníme odpor $R_3,$ zdroj napětí U

Obrázek 1: Upravený obvod

$$R_{45} = R_4 + R_5 = 240 + 450 = 690 \,\Omega$$

 $\bullet\,$ Najdeme R_{145} a R_{26} (paralelní zapojení), pak spočítamé R_i (sériové zapojení)

Obrázek 2: Výpočet ${\cal R}_i$

$$R_{145} = \frac{R_1 \times R_{45}}{R_1 + R_{45}} = \frac{70 \times 690}{70 + 690} = 63,5526 \,\Omega$$

$$R_{26} = \frac{R_2 \times R_6}{R_1 + R_{45}} = \frac{220 \times 300}{220 + 300} = 126,9231 \,\Omega$$

$$R_i = R_{145} + R_{26} = 63,5526 + 126,9231 = 190,4847\,\Omega$$

 $\bullet\,$ Spočítáme $U_{R_1},\,U_{R_2}$ při pomoci napěťového děliče a určíme U_i

Obrázek 3: Výpočet U_i

$$\begin{split} &U_{R_1} = U \times \frac{R_1}{R_1 + R_{45}} = 200 \times \frac{70}{70 + 690} = 18,4211 \, V \\ &U_{R_2} = U \times \frac{R_2}{R_2 + R_6} = 200 \times \frac{220}{220 + 300} = 84,6154 \, V \\ &U_i = U_{R_2} - U_{R_1} = 84,6154 - 18,4211 = 66,1943 \, V \end{split}$$

 $\bullet\,$ Spočítáme I_{R_3} a U_{R_3} (Ohmův zákon)

Obrázek 4: Výpočet ${\cal I}_{R_3}$ a ${\cal U}_{R_3}$

$$I_{R_3} = \frac{U_i}{R_i + R_3} = \frac{66,1943}{190,4847 + 630} = 0,0807 \, A$$

$$U_{R_3} = I_{R_3} \times R_3 = \frac{66,1943}{190,4847 + 630} \times 630 = 50,8266 \, V$$

Příklad 3

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Α	120	0.9	0.7	53	49	65	39	32

Řešení metodou uzlových napětí

• Převedeme zdroj napětí na proudový zdroj a označíme uzly

Obrázek 1: Upravený obvod

$$I = \frac{U}{R_1} = \frac{120}{53} A$$

 \bullet Spočítame vodivosti $G_1,\,G_2,\,G_3,\,G_4$ a G_5

$$G_1 = \frac{1}{R_1} = \frac{1}{53} S, \ G_2 = \frac{1}{R_2} = \frac{1}{49} S, \ G_3 = \frac{1}{R_3} = \frac{1}{65} S$$

 $G_4 = \frac{1}{R_4} = \frac{1}{39} S, \ G_5 = \frac{1}{R_5} = \frac{1}{32} S$

 \bullet Sestavíme matice pro výpočet $U_A,\,U_B,\,U_C$

$$\begin{pmatrix} G_1 + G_2 + G_3 & -G_3 & 0 \\ -G_3 & G_3 + G_5 & -G_5 \\ 0 & -G_5 & G_4 + G_5 \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I \\ I_1 \\ I_2 - I_1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{53} + \frac{1}{49} + \frac{1}{65} & -\frac{1}{65} & 0 \\ -\frac{1}{65} & \frac{1}{65} + \frac{1}{32} & -\frac{1}{32} \\ 0 & -\frac{1}{32} & \frac{1}{39} + \frac{1}{32} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} \frac{120}{53} \\ \frac{9}{10} \\ U_C \end{pmatrix}$$

$$\begin{pmatrix} \frac{3185 + 3445 + 2597}{168805} & -\frac{1}{65} & 0 \\ -\frac{1}{65} & \frac{32 + 65}{2080} & -\frac{1}{32} \\ 0 & -\frac{1}{32} & \frac{32 + 39}{1248} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} \frac{120}{53} \\ \frac{9}{10} \\ U_C \end{pmatrix}$$

$$\begin{pmatrix} \frac{9227}{168805} & -\frac{1}{65} & 0 \\ -\frac{1}{65} & \frac{97}{2080} & -\frac{1}{32} \\ 0 & -\frac{1}{32} & \frac{71}{1248} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} \frac{120}{53} \\ \frac{9}{10} \\ -\frac{2}{10} \end{pmatrix}$$

 $\bullet\,$ Spočítáme U_A pomoci Cramerova pravidla

$$A = \begin{pmatrix} \frac{9227}{168805} & -\frac{1}{65} & 0\\ -\frac{1}{65} & \frac{97}{2080} & -\frac{1}{32}\\ 0 & -\frac{1}{32} & \frac{71}{1248} \end{pmatrix} A_1 = \begin{pmatrix} \frac{120}{53} & -\frac{1}{65} & 0\\ \frac{9}{10} & \frac{97}{2080} & -\frac{1}{32}\\ -\frac{2}{10} & -\frac{1}{32} & \frac{71}{1248} \end{pmatrix}$$

$$|A| = \frac{9227}{168805} \times \frac{97}{2080} \times \frac{71}{1248} - \frac{9227}{168805} \times \left(-\frac{1}{32}\right)^2 - \left(-\frac{1}{65}\right)^2 \times \frac{71}{1248} = \frac{16469}{210668640}$$

$$|A_1| = \frac{120}{53} \times \frac{97}{2080} \times \frac{71}{1248} + \left(-\frac{2}{10}\right) \times \left(-\frac{1}{65}\right) \times \left(-\frac{1}{32}\right) - \frac{1}{32} \times \left(-\frac{1}{32}\right)^2 - \frac{9}{10} \times \left(-\frac{1}{65}\right) \times \frac{71}{1248} = \frac{4947}{1102400}$$

$$U_A = \frac{|A|}{|A_1|} = \frac{\frac{4947}{1102400}}{\frac{16469}{210668640}} = \frac{4947}{1102400} \times \frac{210668640}{16469} = 57,4031 V$$

 \bullet U_A se rovná U_{R_2} (podle obrázku), tedy můžeme spočítat I_{R_2} (Ohmův zákon)

$$U_A = U_{R_2} = 57,4031 V$$

$$I_{R_2} = \frac{U_{R_2}}{R_2} = \frac{57,4031}{49} = 1,1715 V$$

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	F	$U_{R6} = 61,868 V$	$I_{R6} = 0,0773 A$		
2	С	$U_{R3} = 50,8266 V$	$I_{R3} = 0,0807 A$		
3	A	$U_{R2} = 57,4031 V$	$I_{R2} = 1,1715 A$		