习题讨论课07答案:泰勒公式应用、函数凹凸性、曲线的渐近线

★号(越)多表示题目(越)难

一、Taylor 展开式

利用 Peano 余项 Taylor 公式加速计算,用 Lagrange 余项的 Taylor 公式进行估值。

例 1. 阿基米德提出用圆内接正多边形周长逼近圆的周长,从而计算圆周率的近似值。他计算了正 96 边形,得到 $\frac{223}{71} < \pi < \frac{22}{7}$ 。后来不断有人尝试计算更多边的正多边形,其中著名的有荷兰的 Ludolph van Ceulen(公元 1540-1610),他用了一生的时间计算了 2^{62} 边形,得到圆周率 35 位小数。中国古代南北朝时期的数学家和天文学家祖冲之 (公元 428-500) 曾经用刘徽的割圆术得到了圆周率7 位小数,这个记录保持了 1000 多年。由初等的平面几何知识可得半径为 1 的圆的正 $3 \cdot 2^n$ 边形的边长 a_n 和周长 L_n 满足递推关系:

$$a_{n+1} = \sqrt{2 - 2\sqrt{1 - \left(\frac{a_n}{2}\right)^2}}$$

$$= a_n \sqrt{\frac{1}{2 + \sqrt{4 - a_n^2}}},$$

$$(**)$$

$$L_{n+1} = 3 \cdot 2^{n+1} a_{n+1} = 3 \cdot 2^{n+1} a_n \sqrt{\frac{1}{2 + \sqrt{4 - a_n^2}}} = L_n \sqrt{\frac{2}{1 + \sqrt{1 - \left(\frac{L_n}{3 \cdot 2^n}\right)^2}},$$

但这个收敛是很慢的,所以难怪 Ludolph van Ceulen 倾其一生用于 π 的计算。 我们用 Taylor 展开对上述迭代进行修正,可以得到更快收敛的数列。

解.

$$L_n = 3 \cdot 2^{n+1} \sin \frac{2\pi}{3 \cdot 2^{n+1}}$$

$$= 3 \cdot 2^{n+1} \left[\frac{2\pi}{3 \cdot 2^{n+1}} - \frac{1}{6} \left(\frac{2\pi}{3 \cdot 2^{n+1}} \right)^3 + O\left(\frac{1}{2^{5n}} \right) \right]$$

$$= 2\pi - \frac{\pi^3}{27 \cdot 2^{2n}} + O\left(\frac{1}{2^{4n}} \right),$$

于是,

$$L_n = 2\pi - \frac{\pi^3}{27 \cdot 2^{2n}} + O\left(\frac{1}{2^{4n}}\right)$$

$$L_{n+1} = 2\pi - \frac{\pi^3}{27 \cdot 2^{2n+2}} + O\left(\frac{1}{2^{4n}}\right).$$

$$(1 - \lambda)L_n + \lambda L_{n+1} = 2\pi - \frac{\pi^3}{27 \cdot 2^{2n+2}}(4 - 3\lambda) + O\left(\frac{1}{2^{4n}}\right).$$

边数	周长 L_n	圆周率近似值 $L_n/2$	外推修正近似值 $\tilde{L}_n/2$
6	6	3	3
12	6.211657082	3.105828541	3.141104722
24	6.265257227	3.132628613	3.141561971
48	6.278700406	3.139350203	3.141590733
96	6.282063902	3.141031951	3.141592534
192	6.282904945	3.141452472	3.141592646
384	6.283115216	3.141557608	3.141592653
768	6.283167784	3.141583892	3.141592654
1536	6.283180926	3.141590463	3.141592654
3072	6.283184212	3.141592106	3.141592654
6144	6.283185033	3.141592517	3.141592654
12288	6.283185239	3.141592619	3.141592654
24576	6.28318529	3.141592645	3.141592654
49152	6.283185303	3.141592651	3.141592654
98304	6.283185306	3.141592653	3.141592654
196608	6.283185307	3.141592653	3.141592654
393216	6.283185307	3.141592654	3.141592654

取 $\lambda = \frac{4}{3}$, 得到

$$\tilde{L}_n = -\frac{1}{3}L_n + \frac{4}{3}L_{n+1} = 2\pi + O\left(\frac{1}{2^{4n}}\right)$$

修正后的数列具有更小的误差和更快的收敛速度。原本算到40万边形得到的结果只需计算到约800边形就得到了。

例 2. (1) 证明:对任意 $-1 \le x \le 1$,

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$$

(2) 利用 $\arctan \frac{1}{2} + \arctan \frac{1}{3} = \frac{\pi}{4}$, 求 π 的近似值。

解. (1) 因为

$$(\arctan)'(x) = \frac{1}{1+x^2} = \frac{1}{2i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right),$$

所以

$$(\arctan)^{(n+1)}(x) = \left(\frac{1}{2i}\left(\frac{1}{x-i} - \frac{1}{x+i}\right)\right)^{(n)} = \frac{1}{2i}\left[\frac{n!(-1)^n}{(x-i)^{n+1}} - \frac{n!(-1)^n}{(x+i)^{n+1}}\right],$$

因此

$$\left| \frac{(\arctan)^{(n+1)}(x)}{(n+1)!} \right| \leq \frac{2}{2(n+1)} \max \left\{ \frac{1}{|x \pm \mathrm{i}|^{n+1}} \right\} \leq \frac{1}{n+1}, \quad \forall -1 \leq x \leq 1.$$

另外

$$(\arctan)'(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots + (-1)^n x^{2n} + o(x^{2n}),$$

所以

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \frac{\arctan^{(2n+2)}(\xi)}{(2n+2)!} x^{2n+2}.$$

因此

$$\left| \arctan x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} \right) \right|$$

$$= \left| \frac{\arctan^{(2n+2)}(\xi)}{(2n+2)!} x^{2n+2} \right| \le \frac{1}{2n+2}, \quad \forall -1 \le x \le 1.$$

所以

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots, \quad \forall -1 \le x \le 1.$$

取 x = 1,得到

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^n}{2n+1} + \dots$$

这个等式以苏格兰数学家 James Gregory (公元1638-1675) 的名字命名。因此

$$1 - \frac{1}{3} + \frac{1}{5} - \dots - \frac{1}{4n+3} < \frac{\pi}{4} < 1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{1}{4n+1}$$

误差不超过 $\frac{1}{4n+3}$, 但这收敛得很慢。

(2) 因为

$$\tan\left(\arctan\frac{1}{2}+\arctan\frac{1}{3}\right)=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}}=1,$$

而且

$$0 < \arctan \frac{1}{3} + \arctan \frac{1}{2} < 2 \arctan 1 = \frac{\pi}{2},$$

所以 $\arctan \frac{1}{2} + \arctan \frac{1}{3} = \arctan 1 = \frac{\pi}{4}$. 于是

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \left(\frac{1}{2^{2n-1}} + \frac{1}{3^{2n-1}} \right).$$

当 0 < x < 1 时,

$$\frac{x^{2n+1}}{2n+1} > \frac{x^{2n+3}}{2n+3}, \quad \forall n \ge 0,$$

所以

$$x - \frac{x^3}{3} + \dots + \frac{x^{2n+1}}{4n+1} - \frac{x^{4n+3}}{4n+3} < \arctan x < x - \frac{x^3}{3} + \dots + \frac{x^{2n+1}}{4n+1}$$

左右两端作为 $\arctan x$ 的不足近似值和过剩近似值,其误差小于 $\frac{x^{4n+3}}{4n+3}$. 由这个误差估计以及

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \left(\frac{1}{2^{2n-1}} + \frac{1}{3^{2n-1}} \right)$$

知,利用其前22项的和就能得到 π 的近似值为 3.141592653589790,它的前14位 小数是精确的。

二、函数的凹凸性

【函数凹凸性定义以及性质】

1. f 在区间 I 上是凸函数:

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y), \quad \forall x, y \in I, \forall t \in [0,1].$$

严格凸: 上述不等式中的等号仅在平凡情形成立 $(x = y \text{ of } t \in \{0,1\})$.

- 2. f 在区间 I 上是凹(严格凹)函数: 如果 -f 区间 I 上是凸(严格凸)函数。
- 3. **Jensen不等式**: f 在区间 I 上是凸函数当且仅当 $\forall x_1, x_2, ..., x_n \in I$, $\forall t_1, t_2, ..., t_n \in [0, 1] : t_1 + t_2 + \cdots + t_n = 1$,

$$f(t_1x_1 + t_2x_2 + \dots + t_nx_n) \le t_1f(x_1) + t_2f(x_2) + \dots + t_nf(x_n).$$

- 4. 凸函数的意义:
 - 加权平均: 自变量的平均值的函数值不超过相应函数值的平均值。
 - 几何意义: 弦位于弧的上方; 内接三角形斜率有固定的大小顺序。

【凸函数的分析性质】

- 1. 凸函数是连续函数,在区间内到处都有单侧导数,几乎处处可导。
- 2. 可微函数 f 是凸(严格凸)函数当且仅当 f' 单调不减(严格增)。
- 3. 二阶可微函数 f 是凸函数当且仅当 $f'' \ge 0$ 。

- 4. 若 f'' > 0,则 f 是严格凸函数。
- 5. 可微的凸函数 f 的驻点必是最小值点, 严格凸函数有唯一最小值点。
- **例 3.** 证明对于任意正数 x_1, x_2, \ldots, x_n , 都有

$$x_1^{x_1} x_2^{x_2} \cdots x_n^{x_n} \ge \left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^{x_1 + x_2 + \cdots + x_n}.$$

证明. 对 $f(x) = x \ln x$, $f''(x) = \frac{1}{x} > 0 \ (\forall x > 0)$. 因此 f 严格凸。从而

$$f\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \le \frac{f(x_1)+f(x_2)+\cdots+f(x_n)}{n},$$

即

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ln \left(\frac{x_1 + x_2 + \dots + x_n}{n} \right)$$

$$\leq \frac{x_1 \ln x_1 + x_2 \ln x_2 + \dots + x_n \ln x_n}{n}.$$

由它即得要证明的不等式。

三、曲线的弯曲性质与渐近线

- 1. 凸函数的图像 y = f(x) 是下凸曲线, 曲线位于切线上方。
- 2. 凹函数的图像是上凸曲线, 曲线位于切线下方。
- 3. 对参数曲线 (x(t), y(t)),

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}}{(x'(t))^3}, \qquad \frac{\mathrm{d}^2 x}{\mathrm{d} y^2} = -\frac{\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}}{(y'(t))^3}$$

若 x'(t) 与行列式 $\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}$ 同号,则平面曲线 (x(t),y(t)) 下(向 y 减小的方向)凸;

若 x'(t) 与行列式 $\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}$ 异号,则平面曲线 (x(t), y(t)) 上(向 y 增大的方向)凸;

若 y'(t) 与行列式 $\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}$ 同号,则平面曲线 (x(t),y(t)) 向右(x 增大的方向)凸;

若 y'(t) 与行列式 $\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix}$ 异号,则平面曲线 (x(t), y(t)) 向右 (x 减小的方向) 凸。

图 1: 曲线与加速度向量 (x''(t), y''(t)) 位于切线的同一侧

- 4. 曲线凹凸性改变的地方称为曲线的拐点。在拐点处,曲线位于切线的两侧。
- 5. 函数图像 y = f(x) 的拐点即导函数 f' 单调性发生变化的地方。 对二阶可微函数,若 $(x_0, f(x_0))$ 是函数图像的拐点,则必有 $f''(x_0) = 0$,但这仅仅是必要条件。
- 6. 对平面参数曲线 (x(t), y(t)), 拐点处必然有 行列式 $\begin{vmatrix} x'(t) & x''(t) \\ y'(t) & y''(t) \end{vmatrix} = 0$.
- 7. 凸函数的图像位于其斜或水平渐近线的上方,凹函数图像位于其斜或水平 渐近线的下方。

例 4. 设 f 在区间 $[a, +\infty)$ 上是凸函数, y = kx + b 是 y = f(x) 在 $x \to +\infty$ 时的一条渐近线。

(1) 若 f 可微, 证明:

$$\lim_{x \to +\infty} f'(x) = k.$$

(2) 若f可微,证明:

$$f(x) \ge kx + b, \quad \forall x \ge a.$$

(3) 若 f 严格凸,证明:

$$f(x) > kx + b, \quad \forall x \ge a.$$

证明. (1) 由 f 凸知 f' 单调不减,于是有极限 $\lim_{x\to +\infty} f'(x) = A \in \mathbb{R} \cup \{+\infty\}$, $A \in \mathbb{R}$ 当且仅当 f' 有上界。

于是由 L'Hôpital 法则知

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} f'(x) = A.$$

因此 k = A.

(2) 考虑 g(x) = f(x) - (kx + b). 则 g'(x) = f'(x) - k. 由(1)知 $\lim_{x \to +\infty} g'(x) = 0$. 由 g 凸知道,g' 单调不减,从而 $g'(x) \le g'(+\infty) = 0$,因此 g 单调不减。

$$g(x) \ge \lim_{t \to +\infty} g(t) = 0, \quad \forall x \ge a.$$

(3) 考虑 g(x)=f(x)-(kx+b). 则 g 是严格凸函数, $\lim_{x\to +\infty}g(x)=0$. 我们只需证明 g(x)>0 ($\forall x\geq a$).

假设存在 x_1 使得 $g(x_1) \leq 0$.

若存在 $x_2 > x_1$ 使得 $g(x_2) > g(x_1)$,则对任意 $x > x_2$,都有

$$\frac{g(x) - g(x_2)}{x - x_2} > \frac{g(x_2) - g(x_1)}{x_2 - x_1},$$

从而

$$g(x) > g(x_2) + \frac{g(x_2) - g(x_1)}{x_2 - x_1}(x - x_2) \to +\infty, \quad x \to +\infty,$$

这与 $\lim_{x\to a} g(x) = 0$ 矛盾。所以,对任意 $x > x_1$,都有 $g(x) \le g(x_1)$.

于是 $\lim_{x\to +\infty} g(x) \leq g(x_1)$. 从而 $g(x_1) \geq 0$,因此 $g(x_1) = 0$,并且对任意 $x > x_1$, $g(x) \leq g(x_1) = 0$. 于是由上述证明知: g(x) = 0.

任取 $x_4 > x_3 > x_1$, 由于 $g(x_4) = g(x_3) = g(x_1) = 0$, 但这与 g 严格凸矛盾。

所以不存在 x_1 使得 $g(x_1) \le 0$. 因此对任意 x_1 g(x) > 0.

另外,g 是严格减的。

假设存在 $y_1 < y_2$ 使得 $g(y_1) \le g(y_2)$,则对任意 $y > y_2$,

$$g(y) \ge g(y_2) + \frac{g(y_2) - g(y_1)}{y_2 - y_1}(y - y_2) \to +\infty, \quad y \to +\infty.$$

这与 $\lim_{y \to +\infty} g(y) = 0$ 矛盾,所以 $\forall y_1, y_2, y_1 < y_2 \Rightarrow g(y_1) > g(y_2)$.

注: 对一般的曲线,y=f(x) 在 $x\to +\infty$ 时有渐近线,极限 $\lim_{x\to +\infty}f'(x)$ 未必存在。例如 $f(x)=x+\frac{1}{\sqrt{x}}\sin(x^2)$,y=x 是 y=f(x) 在 $x\to +\infty$ 时的渐近线,但是 $f'(x)=1-\frac{1}{2x}\sin(x^2)+2\sqrt{x}\cos(x^2)$ 无界。

例 5. 讨论函数 $f(x) = \frac{2x^2}{x+1}$ 的凹凸性和渐近线。

解.

$$f(x) = 2(x-1) + \frac{2}{x+1}$$
$$f''(x) = \frac{4}{(x+1)^3},$$

所以当 x < -1 时,f''(x) < 0,f 为严格凹,曲线 y = f(x) 严格上凸;当 x > -1 时,f''(x) > 0,f 为严格凸,曲线 y = f(x) 严格下凸。

$$\lim_{x \to -1} f(x) = \infty,$$

所以 x = -1 是 y = f(x) 的竖直渐近线。

$$f(x) = 2x - 2 + o(1), \quad x \to \pm \infty.$$

因此 y = 2x - 2 是 $x \to \pm \infty$ 时, y = f(x) 的渐近线。 x < -1 时,曲线 y = f(x) 位于这条渐近线的下方;当 x > -1 时,曲线 y = f(x) 位于这条渐近线的上方。

例 6. 讨论平面曲线 $x^3 + y^3 = 3xy$ 的渐近线和曲线的位置关系。

解. 引入参数 $t = \frac{y}{x}$, 得到曲线的参数方程

$$x(t) = \frac{3t}{1+t^3}, \quad y(t) = \frac{3t^2}{1+t^3}, \quad t \neq -1.$$

当 $t \to -1$ 时, $x(t) \to \infty$,

$$\frac{y(t)}{x(t)} = t \to -1, \quad y(t) - (-1)x(t) = \frac{3t^2 + 3t}{1 + t^3} = \frac{3t}{1 - t + t^2} \to -1,$$

所以y = -x - 1是曲线在无穷远处的一条渐近线。

$$y(t) + x(t) + 1 = \frac{3t^2 + 3t + 1 + t^3}{1 + t^3} = \frac{(t - 1)^2}{1 - t + t^2} > 0,$$

所以曲线在渐近线上方。

期中讲评

例 7. 极限

- $(1) \lim_{x \to +\infty} \frac{x^{\max}}{(\ln x)^x}.$
- (2) $\lim_{n \to +\infty} (n + \sqrt[3]{9n^2 n^3})$
- (3) $\lim_{x\to 0} \frac{\sin x \arctan x}{\tan x \arcsin x}$
- (4) $\lim_{n \to +\infty} \frac{8}{\ln n} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} \right)$

解. (1)

$$\frac{x^{\ln x}}{(\ln x)^x} = e^{(\ln x)^2 - x \ln \ln x} = e^{t^2 - e^t \ln t} = e^{-e^t \ln t \left(1 - \frac{t^2}{e^t \ln t}\right)} \to 0$$

 $-e^t \ln t$ 是指数部分的主项。

(2)

$$n + \sqrt[3]{9n^2 - n^3} = n\left(1 - \sqrt[3]{1 - \frac{9}{n}}\right) = n\left(\frac{9}{3n} + o\left(\frac{1}{n}\right)\right) = 3 + o(1).$$

(3)

$$\lim_{x \to 0} \frac{\sin x - \arctan x}{\tan x - \arcsin x} = \lim_{x \to 0} \frac{\cos x - \frac{1}{1+x^2}}{1 + \tan^2 x - \frac{1}{\sqrt{1-x^2}}}$$
 (L'Hôpital)
$$= \lim_{x \to 0} \frac{1 - \frac{x^2}{2} + o(x^2) - (1 - x^2 + o(x^2))}{1 + x^2 + o(x^2) - (1 + \frac{x^2}{2} + o(x^2))}$$
 (Taylor)
$$= 1.$$

(4) Stolz

$$\lim_{n \to +\infty} \frac{8}{\ln n} \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} \right)$$

$$= \lim_{n \to +\infty} \frac{\frac{8}{2n+1}}{\ln(n+1) - \ln(n)}$$

$$= \lim_{x \to 0} \frac{\frac{8n}{2n+1}}{\ln\left[\left(1 + \frac{1}{n}\right)^n\right]} = 4.$$

例 8. 在 x = 0 处Taylor展开 $\frac{1}{\cos x}$.

证明.
$$\frac{1}{\cos x} = \frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)}$$
,然后用长除法。

其他题目根据大课老师建议选择