TECHNOHACKS: Data Science

Use a dataset that includes information about housing prices and featurs like squre footage,number of bedrooms etc. to train a model that can predict the price of a new house.

Author: Sujata Gaikwad


```
In [5]: data.dtypes
Out[5]: id
                              int64
         date
                             object
         price
                             float64
         bedrooms
                               int64
                            float64
         bathrooms
         sqft_living
                               int64
         sqft_lot
                               int64
                            float64
         floors
         waterfront
                               int64
         view
                               int64
         condition
                               int64
         grade
                               int64
         sqft_above
                               int64
         sqft_basement
                               int64
         yr_built
                               int64
         yr_renovated
                               int64
         zipcode
                               int64
         lat
                            float64
                            float64
         long
         sqft_living15
                               int64
         sqft_lot15
                               int64
         dtype: object
In [6]: data.describe()
Out[6]:
                                                                       sqft_living
                                                          bathrooms
                                                                                       sqft lot
                                                                                                     floors
                                                                                                               waterfront
                                                                                                                                         condition
                          id
                                     price
                                              bedrooms
                                                                                                                                 view
                                                                                                                                                          g
          count 2.161300e+04 2.161300e+04 21613.000000
                                                       21613.000000 21613.000000 2.161300e+04 21613.000000
                                                                                                            21613.000000 21613.000000 21613.000000 21613.00
                                                            2.114757
                                                                      2079.899736
                                                                                                   1.494309
                                                                                                                0.007542
                                                                                                                             0.234303
          mean 4.580302e+09 5.400881e+05
                                               3.370842
                                                                                 1.510697e+04
                                                                                                                                          3.409430
                                                                                                                                                       7.65
            std 2.876566e+09 3.671272e+05
                                              0.930062
                                                            0.770163
                                                                       918.440897 4.142051e+04
                                                                                                   0.539989
                                                                                                                0.086517
                                                                                                                             0.766318
                                                                                                                                          0.650743
                                                                                                                                                       1.17
            min 1.000102e+06 7.500000e+04
                                                            0.000000
                                                                                                                0.000000
                                                                                                                             0.000000
                                              0.000000
                                                                       290.000000 5.200000e+02
                                                                                                   1.000000
                                                                                                                                          1.000000
                                                                                                                                                       1.00
           25% 2.123049e+09 3.219500e+05
                                               3.000000
                                                            1.750000
                                                                      1427.000000 5.040000e+03
                                                                                                   1.000000
                                                                                                                0.000000
                                                                                                                             0.000000
                                                                                                                                          3.000000
                                                                                                                                                       7.00
           50% 3.904930e+09 4.500000e+05
                                               3.000000
                                                            2.250000
                                                                      1910.000000 7.618000e+03
                                                                                                   1.500000
                                                                                                                0.000000
                                                                                                                             0.000000
                                                                                                                                          3.000000
                                                                                                                                                       7.00
           75% 7.308900e+09 6.450000e+05
                                               4.000000
                                                            2.500000
                                                                      2550.000000
                                                                                 1.068800e+04
                                                                                                   2.000000
                                                                                                                0.000000
                                                                                                                             0.000000
                                                                                                                                          4.000000
                                                                                                                                                       8.00
           max 9.900000e+09 7.700000e+06
                                              33.000000
                                                            8.000000 13540.000000 1.651359e+06
                                                                                                   3.500000
                                                                                                                1.000000
                                                                                                                             4.000000
                                                                                                                                          5.000000
                                                                                                                                                      13.00
                                                                                                                                                        \triangleright
In [7]: data.isnull().sum()
Out[7]: id
                            0
         date
         price
                            0
         bedrooms
                            0
                            0
         bathrooms
         sqft_living
                            0
         sqft_lot
                            0
         floors
                            0
         waterfront
                            0
         view
         condition
                            a
         grade
                            0
         sqft_above
                            0
         sqft basement
                            0
                            0
         yr_built
         yr_renovated
                            0
         zipcode
                            0
                            0
         lat
                            0
```

long
sqft_living15

sqft_lot15

dtype: int64

a

0

Exploratory Data Analysis


```
In [9]: ## Remove outliers for price column
         ul=5000000
         data=data[data["price"]<=ul]</pre>
         ## Remove outlierd for bedroom column
         data1=data[data["bedrooms"]<=ul1]</pre>
         ## Remove outlierd for bathrooms column
         u12=6
         data2=data[(data["bathrooms"]<ul2)&data["bathrooms"]>=1]
         ## Remove outlierd for sqft_living column
         u13=8500
         data3=data[data["sqft_living"]<=ul3]</pre>
         ##Remove outlierd for sqft_lot column
         data4=data[data["sqft_lot"]<=ul4]
##Remove outlierd for sqft_above column</pre>
         u15=7000
         data5=data[data["sqft_above"]<=u15]</pre>
         ##Remove outlierd for sqft_basement column
         u15=3000
         data5=data[data["sqft_lot"]<=u15]</pre>
         data.describe().transpose()
```

Out[9]:

	count	mean	std	min	25%	50%	75%	max
id	21606.0	4.579658e+09	2.876254e+09	1.000102e+06	2.123049e+09	3.904926e+09	7.308600e+09	9.900000e+09
price	21606.0	5.382739e+05	3.526472e+05	7.500000e+04	3.215000e+05	4.500000e+05	6.450000e+05	4.668000e+06
bedrooms	21606.0	3.370175e+00	9.294319e-01	0.000000e+00	3.000000e+00	3.000000e+00	4.000000e+00	3.300000e+01
bathrooms	21606.0	2.113487e+00	7.667170e-01	0.000000e+00	1.750000e+00	2.250000e+00	2.500000e+00	8.000000e+00
sqft_living	21606.0	2.077585e+03	9.091442e+02	2.900000e+02	1.422750e+03	1.910000e+03	2.550000e+03	1.354000e+04
sqft_lot	21606.0	1.510142e+04	4.142587e+04	5.200000e+02	5.040000e+03	7.616500e+03	1.067850e+04	1.651359e+06
floors	21606.0	1.494122e+00	5.399672e-01	1.000000e+00	1.000000e+00	1.500000e+00	2.000000e+00	3.500000e+00
waterfront	21606.0	7.405350e-03	8.573711e-02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	1.000000e+00
view	21606.0	2.334074e-01	7.643990e-01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	4.000000e+00
condition	21606.0	3.409470e+00	6.507938e-01	1.000000e+00	3.000000e+00	3.000000e+00	4.000000e+00	5.000000e+00
grade	21606.0	7.655374e+00	1.172624e+00	1.000000e+00	7.000000e+00	7.000000e+00	8.000000e+00	1.300000e+01
sqft_above	21606.0	1.786701e+03	8.225467e+02	2.900000e+02	1.190000e+03	1.560000e+03	2.210000e+03	9.410000e+03
sqft_basement	21606.0	2.908833e+02	4.410386e+02	0.000000e+00	0.000000e+00	0.000000e+00	5.600000e+02	4.820000e+03
yr_built	21606.0	1.971003e+03	2.937099e+01	1.900000e+03	1.951000e+03	1.975000e+03	1.997000e+03	2.015000e+03
yr_renovated	21606.0	8.424502e+01	4.013219e+02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	2.015000e+03
zipcode	21606.0	9.807795e+04	5.350590e+01	9.800100e+04	9.803300e+04	9.806500e+04	9.811800e+04	9.819900e+04
lat	21606.0	4.756003e+01	1.385794e-01	4.715590e+01	4.747082e+01	4.757180e+01	4.767800e+01	4.777760e+01
long	21606.0	-1.222139e+02	1.408490e-01	-1.225190e+02	-1.223280e+02	-1.222305e+02	-1.221250e+02	-1.213150e+02
sqft_living15	21606.0	1.985885e+03	6.844564e+02	3.990000e+02	1.490000e+03	1.840000e+03	2.360000e+03	6.210000e+03
sqft_lot15	21606.0	1.276452e+04	2.730722e+04	6.510000e+02	5.100000e+03	7.620000e+03	1.008000e+04	8.712000e+05

```
In [10]: ## Define the fig and suplots
fig,axes=plt.subplots(nrows=2,ncols=3,figsize=(15,10))

## Create count plots for each variable and add them to the subplots
sns.countplot(x="bedrooms",data=data,ax=axes[0,0])
sns.countplot(x="bathrooms",data=data,ax=axes[0,1])
sns.countplot(x="floors",data=data,ax=axes[0,2])
sns.countplot(x="waterfront",data=data,ax=axes[1,0])
sns.countplot(x="view",data=data,ax=axes[1,1])

# Set the title for the entire plot
fig.suptitle("Count plots for besroom,bathrooms,Floors,Waterfront,view")
plt.show()
```

Count plots for besroom,bathrooms,Floors,Waterfront,view

In [12]: data=data.drop(["zipcode","yr_built","condition"],axis=1)
data.head()

Out[12]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	grade	sqft_above	sqft_basement	yr_renovate
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	7	1180	0	
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	7	2170	400	199
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	6	770	0	
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	7	1050	910	
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	8	1680	0	

In [13]: Floor_value_counts=data["floors"].value_counts().to_frame()
 Floor_value_counts

Out[13]:

	floors
1.0	10680
2.0	8235
1.5	1910
3.0	613
2.5	160
3.5	8

```
In [14]: sns.boxplot(x="waterfront",y="price",data=data)
```

Out[14]: <AxesSubplot:xlabel='waterfront', ylabel='price'>


```
In [15]: sns.regplot(x="sqft_above",y="price",data=data)
```

Out[15]: <AxesSubplot:xlabel='sqft_above', ylabel='price'>

Model Development and Evaluation

```
In [16]: x=data[["long"]]
y=data[["price"]]

In [17]: from sklearn.linear_model import LinearRegression
l1=LinearRegression()
l1.fit(x,y)
l1.score(x,y)

Out[17]: 0.0005517180183860493
```

```
In [18]: x=data[["sqft_living"]]
                                                           y=data["price"]
                                                           12=LinearRegression()
                                                           12.fit(x,y)
                                                          11.score(x,y)
                                                            \verb| C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py: 493: Future \verb| Warning: The feature names should match those that were picture | ProgramData | ProgramDat
                                                           assed during fit. Starting version 1.2, an error will be raised.
                                                           Feature names unseen at fit time:
                                                            - sqft_living
                                                           Feature names seen at fit time, yet now missing:
                                                           - long
                                                                      warnings.warn(message, FutureWarning)
Out[18]: -157359.95819891948
In [19]: | features=data[["floors","waterfront","lat","bedrooms","sqft_basement","view","bathrooms","sqft_living15","sqft_above","grade","sqft_living15","sqft_above","grade","sqft_living15","sqft_above","grade","sqft_living15","sqft_above","grade","sqft_living15","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","sqft_above","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","grade","gr
                                                           13=LinearRegression()
                                                           13.fit(features,y)
Out[19]: LinearRegression()
In [20]: 13.score(features,y)*100
Out[20]: 66.24153459947514
```

Thank you

In []: