Statistiques

Décembre 2021, 1h25

Préambule : Le sujet est composé de cinq exercices indépendants. La qualité de la rédaction sera prise en compte. Toutes les réponses seront données sur la copie (ne pas rendre le sujet).

Exercice 1

- 1. Donner la définition de la convergence en probabilité et de la convergence en loi.
- 2. Enoncer la loi forte des grands nombres (hypothèses et résultats).
- 3. Enoncer le théorème central limite (hypothèses et résultats).
- 4. Soit $(X_n)_n$ une suite de variables aléatoires telle que X_n suit une loi uniforme sur [-1/n, 1/n].
 - (a) Ecrire la densité de X_n .
 - (b) Calculer les probabilités suivantes :

$$P(X_n = 0), P(X_n \le 0), P(X_n < 0), P(X_n > 1/(2n)), P(X_n = 1/n).$$

- (c) Est-ce que $(X_n)_n$ converge en probabilité vers 0? Justifier.
- (d) Est-ce que $(X_n)_n$ converge en loi vers 0? Justifier.

Exercice 2

Soit X_1, \ldots, X_n n variables aléatoires indépendantes de loi $\mathcal{N}(\mu, \sigma^2)$.

- 1. Enoncer le théorème de Cochran.
- 2. En déduire un intervalle de confiance de niveau 95% pour μ .
- 3. Même question pour un intervalle de confiance de niveau 90% pour σ^2 .

Exercice 3

Soit X une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda > 0$. On rappelle que la fonction caractéristique de la loi de Poisson est donnée par

$$\varphi(t) = \exp(\lambda(\exp(it) - 1)).$$

On rappelle également que, avec les notations du cours, la fonction caractéristique vérifie

$$\varphi_{aX+b}(t) = \exp(ibt)\varphi_X(at), \quad a \in \mathbb{R}, b \in \mathbb{R}.$$

1. En utilisant les fonctions caractéristiques, montrer que

$$\frac{X - \mathbf{E}[X]}{\sqrt{\mathbf{V}(X)}}$$

converge en loi vers une variable aléatoire à préciser lorsque $\lambda \to \infty$.

2. On suppose ici que $\lambda \in \mathbb{N}^*$. Retrouver le résultat de la question précédente en utilisant le théorème central limite.

Exercice 4

On considère X_1, \ldots, X_n n variables aléatoires réelles i.i.d dont la loi admet pour densité

$$f_{\theta}(x) = (1 - \theta)\mathbf{1}_{[-1/2,0]}(x) + (1 + \theta)\mathbf{1}_{]0,1/2]}(x),$$

1

où θ est un paramètre inconnu à estimer vérifiant $|\theta| < 1$.

1. Soit x_1, \ldots, x_n tels que $x_i \in [-1/2, 1/2], i = 1, \ldots, n$. Ecrire la vraisemblance du modèle $L(x_1, \ldots, x_n; \theta)$ en fonction de

$$u_n = \sum_{i=1}^n \mathbf{1}_{]-\infty,0]}(x_i)$$
 et $v_n = \sum_{i=1}^n \mathbf{1}_{]0,+\infty[}(x_i).$

- 2. Que vaut $u_n + v_n$? Justifier brièvement.
- 3. En déduire l'estimateur du maximum de vraisemblance de θ .
- 4. Calculer l'information de Fisher et en déduire la borne de Cramer Rao..

Exercice 5

On considère x_1, \ldots, x_n n nombres réels fixés entre 0 et 1. Soit Y_1, \ldots, Y_n n variables aléatoires indépendantes telles que Y_i suit une loi $\mathcal{N}(\beta x_i, 1)$ où $\beta \in \mathbb{R}$ désigne le paramètre inconnu du modèle.

- 1. Soit y_1, \ldots, y_n des réels. Calculer la vraisemblance $L(y_1, \ldots, y_n; \beta)$ du modèle.
- 2. En déduire que l'estimateur du maximum de vraisemblance est donné par

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$$

- 3. Calculer le biais et la variance de $\widehat{\beta}$.
- 4. On suppose dans cette question que $x_i = i/n, i = 1, ..., n$.
 - (a) Est-ce que l'estimateur du maximum de vraisemblance converge en moyenne quadratique vers β ?
 - (b) Est-ce que l'estimateur du maximum de vraisemblance converge en probabilité vers β ? Pour ces deux dernières questions, on pourra utiliser que

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$