

Memori pada Sistem Linux

Heri Kurniawan
05-Gasal 2009/2010

Tujuan Pembelajaran

- Memahami manajemen memori sistem linux
- Memahami memori virtual linux

Manajemen memori

- Manajemen memori dilinux, dibagi dua komponen:
 - Alokasi page dan pengosongan memori fisik
 - Memori Virtual ->pemetaan virtual address
- Memori fisik dibagi dalam tiga wilayah
 - ZONE_DMA: digunakan legacy device (e.g ISA) untuk mengakses memori secara langsung (e.g: transfer data (DMA))
 - ZONE_NORMAL : digunakan DMA bila ZONE_DMA tidak ada
 - ZONE_HIGHMEM : alokasi sistem (page cache, buffer filesystem, dan lain-lain), jarang digunakan

Manajemen memori

 Kernel memiliki daftar page kosong untuk setiap zone

zone	physical memory
ZONE_DMA	< 16 MB
ZONE_NORMAL	16 896 MB
ZONE_HIGHMEM	>896 MB

Manajemen Memori

- Page allocator → memory manager dilinux. Setident zone mempunyai allocator
- Page allocator → bertugas mengalokasi dan membebaskan page pada setiap zone. Mampu mengalokasi permintaan contiguous page.
- Page allocator menggunakan buddy system untuk menjaga (keep track) ketersediaan page
- Alokasi memori kernel linux dapat terjadi secara statis maupun dinamis.
 - Statis → oleh driver yang mereserve page berurutan saat boot

Dinamis : oleh page allocator

Buddy Heap

- Beberapa Page allocator pada Memori Virtual
 - **kmalloc()**, melakukan alokasi permintaan page proses. Tidak semua page dialokasikan ke memori.
 - **slab allocator**, alokasi memori untuk struktur data kernel. Terdiri dari satu atau lebih page berurutan (*contiguous*).
 - **page cache**, cache untuk *block oriented device* dan *memory mapped files*.
 - Cache untuk blok device, content file (linux disk), network data (NFS)

Slab Allocator di Linux

- Memori Virtual
 - Maintain ruang alamat bagi setiap proses.
 - Mengatur proses loading page ke memori dan swap out page ke disk
- Dua sisi pandang
 - logical view
 - Terdiri dari kumpulan wilayah alamat logika yang tidak saling berhimpit (nonoverlapping region)
 - Setiap wilayah mempunyai alamat yang berurutan

- Alamat awal wilayah dimulai dari awal page memori virtual (page-aligned)
- Deskripsi properti untuk setiap wilayah
 ->vm_area_struct
 - berisikan : status read/write/execute
 /permission suatu proses, associated file
- Physical view
 - Menggunakan hardware page table per proses
 - Diatur oleh sejumlah routine dari *software* interrupt handler milik kernel

- Page dari setiap wilayah memory dapat disimpan dalam bentuk,
 - File
 - Nothing -> kosong (demand zero memory)
 - Page dengan isi nol
- Private atau Shared
 - private
 - Jika proses menulis pada wilayah private, perubahan berlaku hanya pada proses tersebut
 - shared
 - Jika proses menulis pada wilayah shared, perubahan berlaku pada proses lain

- Kernel membuat virtual address yang baru saat:
- 1. Sebuah proses menjalankan program baru dengan menggunakan system call exec()
 - Saat program baru dieksekusi, proses mendapatkan alamat virtual address yang baru.
 - Selanjutnya routine menempatkan alamat tersebut pada wilayah virtual memori

- 2. Saat membuat proses dengan system call fork()
 - Membuat duplikasi baru dari ruang virtual address yang sudah ada
 - Kernel menduplikasi vm_area_struct descriptor parent, kemudian membuat page table baru untuk child
 - Isi page table parent diduplikasi langsung ke page table milik child
 - Parent dan child share page yang sama pada memori fisik

- Paging melakukan relokasi dari memori fisik ke disk saat slot memori dibutuhkan oleh page lain
- Linux menggunakan mekanisme paging, tidak melakukan swapping seluruh proses
- Sistem Paging di linux dibagi menjadi dua seksi:
 - Pageout-policy algorithm, menentukan page mana yang akan ditulis ke disk dan kapan penulisan dilakukan
 - menggunakan ubahan algoritma clock (multiple-pass clock) & LFU

- Mekanisme paging yang menangani aktifitas transfer dan pengembalian page dari disk ke memori
 - support page out ke swap device (partisi swap) atau file

- Page table untuk kernel linux mempunyai label proteksi
- Tujuan : agar page tidak dapat dirubah atau dilihat saat prosesor berjalan dalam mode user.
- Memori virtual kernel terdiri dari dua wilayah:
 - statis, berisikan page table yang merujuk ke page pada memori fisik, penerjemahan dari fisik ke virtual terjadi ketika kode kernel dijalankan
 - isi : kernel utama, kumpulan page yang dialokasi oleh page allocator
 - umum (general purpose), wilayah ini dapat digunakan secara umum. entri page table dapat dimodifikasi untuk menunjuk lokasi yang berbeda dalam memori.

Eksekusi dan Loading program user

- Eksekusi program user dipicu oleh system call exec()
- Overwrite konteks eksekusi aktual dengan konteks prgram yang baru
- Cek permission proses terhadap file
- Kernel memanggil loader routine untuk menjalankan program
- Loader melakukan pemetaan program ke memori virtual
- Linux menggunakan tabel yang berisikan fungsi loader
 - alasan : perbedaan format binary pada kernel 1.0 dan 1.2

Pemetaan program ke Memori

- · Linux memasukkan file binary per page ke memori
 - menggunakan demand paging
 - tugas binary loader milik kernel
 - ELF binary file
 - header dan beberapa seksi page
 - ELF loader
 - membaca header dan memetakan seksi page kewilayah memori virtual yang berbeda
- Tugas loader: inisialisasi pemetaan memori untuk eksekusi awal program

Pemetaan program ke Memori

Static dan Dynamic linking

- Static Linking
 - library terintegrasi dalam program binary
 - Tidak efisien
- Dynamic Linking
 - library diluar program binary
 - menggunakan bantuan linker
 - berjalan pada mode user
 - link function terintegrasi dalam program

link function merujuk ke library yang berada di

wirtual memori