Cryptanalysis of DRegZ Scheme

Andrew Lamoureux

January 13, 2010

Abstract

In [1] Patarin builds his description of 2R schemes by first describing 1R schemes and their weaknesses. In [2], Bertoletti introduces DRegZ, a 1R scheme modified to counter these weaknesses. The modifications are an increased s-box size (from a suggested 8 bits to 16 bits) and an overlapping s-box structure where the input to an earlier s-box is also an input to every s-box that follows. This is intended to make the "separation of branches" from [1] more difficult. This document shows how it still remains possible to choose inputs that affect particular s-boxes, and how to these choices to decrypt ciphertext without the private data.

1 DRegZ

Reader is assumed to have read [1] and [2]. The entire function f() maps n bits to n' bits. Let a=L1(x), be partitioned into d groups a_1,\ldots,a_d to enter the d s-boxes S_i . Denote the input size of S_i as $|S_i|$ which matches the bit width of a_i . Let b be similarly partitioned into d groups b_1,\ldots,b_d , the outputs of the S_i . Denote the output size of S_i as $|S_i|'$ which matches $width(b_i)$. To increase the chances a solution exists, $|S_i| > |S_i|'$. $\sum |S_i| = \sum width(a_i) = n$ and $\sum |S_i|' = \sum width(b_i) = n'$.

Attacking DRegZ occurs in two phases. First, a method is developed to carefully choose x so that the resulting a = L1(x) affects only certain S_i . Second, we derive how these x are used to produce b such that y = L2(b) for chosen y.

2 Isolating Inputs to Chosen S_i

Normally with many random inputs r_i , $L1(r_i)$ produces vectors a which span the entire n-dimensional space. Let s_i be the inputs where $L1(s_i) = a = (0, a_2, \ldots, a_n)$. The $a_1 = 0$ affects the dimension of a, b, and y in a way that we will exploit.

With $width(a_1) = |S_1|$ bits held constant, a now spans a subspace only $1/2^{|S_1|}$ the size of the entire n-dimensional space. $dim(a) = n - |S_1|$. Since L1 is an invertible linear transform, there exists a counterpart subspace in x.

Now b_1 is held constant, at whatever the value S_1 is evaluated at $a_1 = 0$. With $width(b_1) = |S_1|'$ bits held constant, b now spans a subspace only $1/2^{|S_1|'}$ the size of the entire n'-dimensional space. $dim(b) = n' - |S_1|'$. Since L2 is an invertible linear transform, there exists a counterpart subspace in y.

But how do we find these s_i ? For the random inputs r_i already mentioned, likely their $a_i \neq 0$. Adding s_i , $f(r_i + s_i)$ should differ from $f(r_i)$ in $n' - |S_i|'$ dimensions. This is the differential attack given in [1]. To test if, for some trial vector t, $L1(t) = (0, a_2, \ldots, a_n)$, we do:

- 1. for each of n' random inputs r_i , collect $f(r_i) f(r_i + t)$ into a basis B.
- 2. return true if $dim(B) = n' |S_1|$, false otherwise

Now we wish to find s_i such that $f(s_i) = (0, 0, a_3, \ldots, a_n)$. Since this is a subspace of $(0, a_2, \ldots, a_n)$, we may apply the above algorithm, except the random r_i are taken from the span of $(0, a_2, \ldots, a_n)$ instead of the entire n-space. Iterating this way, we collect d bases:

$$B_1 = \{x\} | L1(x) = (a_1, a_2, \dots, a_d)$$

$$B_2 = \{x\} | L1(x) = (0, a_2, \dots, a_d)$$

$$\dots$$

$$B_d = \{x\} | L1(x) = (0, \dots, 0, a_d)$$

Now $dim(B_1) = n, dim(B_2) = n - |S_1|, \dots, dim(B_d) = n - \sum |S_{i,i < d}|$. For any $v \in span(B_i), L1(v) = (0, \dots, 0, a_i, a_{i+1}, \dots, a_n)$.

Since $B_d \subset B_{d-1} \subset B_{d-2} \subset \ldots \subset B_1$, the bases can be further refined by subtracting away the subset relationships. We let B_d stand independent, now $B_{d-1} = B_{d-1} - B_d$. Next $B_{d-2} = B_{d-2} - Bd - 1$, and so on until $B_1 = B_1 - B_2$. A simple algorithm can be used to calculate the difference between two bases $B \subset A$:

- 1. $result = \{\}$
- 2. temp = B
- 3. r = random(span(A))

- 4. if $r \notin span(temp)$ $result = result \cup \{r\}$
- 5. $temp = temp \cup \{r\}$ (r possibly dependent, and not increase dim(temp))
- 6. if $(dim(A) = dim(B) \neq dim(result))$ goto step 2
- 7. return result

Now $dim(B_1) = |S_1|, \ldots, dim(B_d) = |S_d|$. It is tempting to think that B_i needs to span vectors v where L1(v) = a where $a_{j,j \neq i} = 0$, which is not true for this construction. In reality, each B_i needs only to span vectors v where L1(v) = a that meet the following requirements: Each $a_{j,j < i}$ must equal 0. Each $a_{j,j=i}$ be completely controllable by choice of v. And each $a_{j,j>i}$ can be random bits dependent on $a_{j,j \leq i}$. This is because the choice $v_1 \in span(B_1)$ can be made first, dictating the value of $b_1 = S_1(a_1)$. Yes, this sets all $a_{i,i>1}$, $S_{i,i>1}$, and $b_{i,i>1}$ randomly, but only temporarily. Next, choose a vector $v_2 \in span(B_2)$ such that $b_2 = S_2(b_2)$ is set correctly (S_1 remains correct because the a_1 resulting from $L1(v_2)$ is 0). Iterate this way until S_d is set correctly.

3 Adapting Inputs Towards a Plaintext y

The last section left with a method to set S_i to our choosing. But b still remains to travel through L2.

Recall that evaluating $f(v), v \in span(B_i)$ produces b vectors that naturally form a space. Since $f(v), v \in B_i$ produces $a = (0, \dots, 0, a_i, a_{i+1}, \dots, a_d)$, all $b_{j,j < i}$ are held constant. This means the produced vector b form a subspace of the entire n'-space. As an invertible linear transformation, the values y = L2(b) form also a subspace. For every B'_i , we want to record what subspace at y can be produced. Calculate each $B'_i = span(\{f(v)\})$ where $v \in span(B_i)$.

We now have a correspondence between vector spaces at the input (B_i) and vector spaces at the output (B_i) . Since $\sum dim(B_i) = n'$ we know that the vector spaces at output can be used together to craft any output y allowable by the S_i . Decomposing some y into components from each vector space B_i' can be done by collecting the vectors from each B_i' into a matrix, preserving their order, and solving:

$$\begin{bmatrix} v_1 \in B'_1 \\ v_2 \in B'_1 \\ \dots \\ v_{\dim(B'_1)} \in B'_1 \\ \dots \\ v_{n'-\dim(B'_d)} \in B'_d \\ v_{n'-\dim(B'_d)+1} \in B'_d \\ \dots \\ v_{n'} \in B'_d \end{bmatrix} = [y]$$

With c found, y's component from B_i is calculated as the dot product of c with the same matrix as above, except the rows pertaining to vectors from $B_{j,j\neq i}$ are set 0:

$$component_{B'_{i}} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n'} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ v_{\sum_{j=1}^{i-1} dim(B'_{j})} \in B'_{i} \\ v_{\sum_{j=1}^{i-1} dim(B'_{j})+1} \in B'_{i} \\ \vdots \\ v_{\sum_{j=1}^{i} dim(B'_{j})-1} \in B'_{i} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

We can now decompose any y into the d spaces B'_i . We have also the correspondence between these B'_i and the B_i at input. Thus we are equipped to adapt an input that solves for y with the following algorithm:

- 1. decompose y into the d components from each B'_i
- 2. find $solution_1 \in span(B_1)$ such that $component_1(f(solution_1)) = component_1(y)$
- 3. find $solution_2 \in span(B_2)$ such that $component_2(f(solution_1 + solution_2) = component_2(y)$
- 4. ...
- 5. find $solution_d \in span(B_d)$ such that $component_d(f(solution_1+, ..., +solution_d) = component_d(y))$
- 6. return $\sum solution_i$

References

- [1] Jacques Patarin, Asymmetric Cryptography with S-Boxes, pp. 1-10.
- [2] Giuliano Bertoletti, Algorithm for license codes (sci.crypt)