Chapter 5 Some Discrete Probability Distributions

Binomial: Two possible outcomes from each trial.

Binomial Distribution: $b(x; n, p) = \binom{n}{x} p^x q^{n-x}$ x: num of successes. n: num of indep. trials. p: prob. of success. q: prob. of failure. $\mu = np$, $\sigma^2 = npq$

<u>Multinomial</u>: $f(x_1, x_2, ...x_k; p_1, p_2, ...p_k, n) = \binom{n}{x_1, x_2, ...x_k} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$. $n = \sum_{i=1}^{k} x_i$, and $\sum_{i=1}^{k} p_i = 1$ Hypergeometric: Choosing successful items.

<u>Hypergeometric Distribution:</u> $h(x; N, n, k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{x}}$. max(0, n - k)(N-k)) $\leq x \leq min(n,k)$. x: num of successes. N: num of items. n: num of selection. k: num of total successes. $\mu = \frac{nk}{N}$, $\sigma^2 = \frac{N-n}{N-1} n \frac{k}{N} (1-\frac{k}{N})$

Estimating Hypergeometric using Binomial: If n is small compared to $N: (n/N) \le 0.05.$

Chapter 6 Some Continuous Probability Distributions

Uniform Distribution: Equal Probability throughout interval.

 $\overline{f(x;A,B)} = \frac{1}{B-A} \text{ if } A \leq x \leq B, \text{ 0 otherwise. } \mu = \frac{A+B}{2}, \ \sigma^2 = \frac{(B-A)^2}{12}.$ Normal Distribution: Bell curve. $n(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}.$ x: select time. μ : mean. σ : standard deviation.

Standard Normal: A normal distribution where mean is 0 and variance is 1. $Z = \frac{X - \mu}{2}$

Estimating Binomial with Normal: For large n. $P(X \leq x) \approx P(Z \leq x)$

Gamma Function: $\Gamma(n) = (n-1)!$. $\Gamma(1) = 1$. $\Gamma(1/2) = \sqrt{\pi}$. Gamma Distribution: Wait time, reliability. $\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}}, x>0.$ or 0 otherwise. $\mu=\alpha\beta, \sigma^2=\alpha\beta^2$.

Exponential Distribution: Special case of Gamma where $\alpha = 1$.

Chapter 8 Fundamental Sampling Distributions and Data Descriptions

<u>Central Limit Theorem:</u> $Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$ as $n \to \infty$ is a standard normal distribution. \bar{X} : mean of random sample size. μ : mean of population. σ : standard deviation of population. n: sample size.

Difference of Means: Two populations, samples, means, and variances. $Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$. is approx. a standard normal variable.

 $\mu_{\bar{x}_1 - \bar{x}_2} = \mu_1 - \mu_2$. $\sigma_{\bar{x}_1 - \bar{x}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

Finding Chi-Squared from Variance: $\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(x_1-\bar{x})^2}{\sigma^2}$.

Degrees of freedom is v=n-1, n is sample size.

t-Distribution: $T=\frac{Z}{\sqrt{V/v}}$ or $T=\frac{\bar{x}-\mu}{S/\sqrt{n}}$. then $h(t)=\frac{\Gamma((v+1)/2)}{\Gamma(v/2)\sqrt{\pi v}}(1+\frac{t^2}{v})$

Chapter 9 One- and Two-Sample Estimation Problems

<u>CI on μ , σ^2 known:</u> $\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$. $100(1-\alpha)\%$ confidence interval. $z_{\alpha/2}$ is the z-value leaving the area of $\alpha/2$ to the right. $100(1-\alpha)\%$ confident that error will not exceed $z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$. Also confident error will not exceed size e as $n = (\frac{z_{\alpha/2}\sigma}{e})^2$. One sided bound? just take one side of the equation, + is upper.

CI on μ , σ^2 unknown: $\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$ where $t_{\alpha/2}$ is the t-value with v = n - 1 degress of freedon leaving $\alpha/2$ area to the right. Confidence limits on μ , σ^2 unknown: $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$. standard error is $\frac{\sigma}{\sqrt{n}}$

CI for $\mu_1 - \mu_2$, σ_1^2 and σ_2^2 known: $(\bar{x}_1 - \bar{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} < \mu_1 - \mu_2 < \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} < \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} < \frac{\sigma_1^2}{n_2} + \frac{\sigma_2^2}{n_2} < \frac{\sigma_2^2}{n_2} + \frac{\sigma_2^2}{n_2} < \frac{\sigma_2^2}{n_2} + \frac{\sigma_2^2}{n_2} < \frac{\sigma_2^$

<u>Multivariate:</u> $f(x_1, x_2, ...x_k; a_1, a_2, ...a_k, N, n) = \frac{\binom{a_1}{x_1}\binom{a_2}{x_2}...\binom{a_k}{x_k}}{\binom{N}{1}}.$ $n = \frac{\binom{a_1}{x_1}\binom{a_2}{x_2}...\binom{a_k}{x_k}}{\binom{N}{1}}.$ $\sum_{i=1}^{k} x_i, N = \sum_{i=1}^{k} a_i.$

Negative Binomial Distribution: Prob. the kth success will happen by the xth trial. $b^*(x;k,p) = {x-1 \choose k-1} p^k q^{x-k}$. x: trial number. k: success number. p: prob. success. q: prob. failure.

Geometric Distribution: Prob. the xth trial is the first success. $\overline{g(x;p)} = \overline{pq^{x-1}}$. x: trial number. p: prob. success. q: prob. failure. $\mu = \frac{1}{p}$. $\sigma^2 = \frac{1-p}{p^2}$.

Poisson Distribution: Prob. something happens x times in t time. $p(x; \lambda t) = \frac{e^{-\lambda t} (\lambda t)^x}{x!}$. x: num of times. λ : average number of outcomes per time period. t: time interval. newline

 $f(x;\beta) = \frac{1}{\beta}e^{-\frac{x}{\beta}}$ where x > 0. 0 elsewhere. β : mean time between failures. α : number of events. $\mu = \beta$, $\sigma^2 = \beta^2$.

Chi-Squared Distribution: Special case of Gamma where $\alpha = v/2$ and $\beta = 2$. $f(x; v) = \frac{1}{2^{v/2} \Gamma(v/2)} x^{v/2-1} e^{-x/2}, x > 0$. 0 elsewhere. v: degrees of freedom. $\mu = v$, $\sigma^2 = 2v$.

Beta Function: $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}, \ \alpha, \beta > 0.$

Beta Distribution: $f(x) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, 0 < x < 1.$ 0 else-

where. $\mu = \frac{\alpha}{\alpha+\beta}$, $\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$. Lognormal Distribution: if ln(X) is a normal distribution. $f(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-1/2\sigma^2(ln(x)-\mu)^2}$, $x \ge 0$. 0 if x < 0. mean $= e^{\mu+\sigma^2/2}$, variance $=e^{2\mu+\sigma^2}(e^{\sigma^2}-1).$

from $-\infty < t < \infty$. Z: standard normal RV. V: chi2 RV. v: degrees of

F-Distribution: $h(f) = \frac{\Gamma((v_1+v_2)/2)(v_1/v_2)^{v_1/2}}{\Gamma(v_1/2)\Gamma(v_2/2)} \cdot \frac{f^{(v_1/2)-1}}{(1+v_1f/v_2)^{(v_1+v_2)/2}}$. for f>0,0 if $f\leq 0$. $F=\frac{U/v_1}{V/v_2}$. V,U: indep. RV with chi2 distribution. v_1 , v_2 : degrees of freedom. $f_{1-\alpha}(v_1, v_2) = \frac{1}{f_{\alpha}(v_2, v_1)}$. $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2}$ Normal Q-Q Plot: Set of observations for normal distribution, will be straight if normal. 1) order data ascending. 2) split normal distribution to n+1 parts. 3) match the data to the distribution x=data, y=normal. Match smallest with smallest.

$$(\bar{x}_1 - \bar{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Pooled Estimate of Variance: $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

CI for $\mu_1 - \mu_2$, $\sigma_1^2 = \sigma_2^2$ but both unknown:

 $\overline{(\bar{x}_1 - \bar{x}_2) - t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

CI for $\mu_1 - \mu_2$, $\sigma_1^2 \neq \sigma_2^2$ and both unknown:

 $\begin{array}{l} (\bar{x}_1 - \bar{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \text{CI for } \mu_D = \mu_1 - \mu_2 \text{ for Paired Observations:} & \text{For the table, find } d_i \\ \text{which is the difference between items.} & \bar{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < \mu_D < \bar{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}} \end{array}$