Convolutional neural network (CNN)

HESAM HOSSEINI

SUMMER 2024

How computer sees images

Input Image

Input Image + values

157	153	174	168	150	152	129	161	172	161	165	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	4	10	33	44	106	159	181
206	109		124	131	111	120	204	166	16	56	180
194	68	197	261	237	239	239	229	227	87	71	201
172	105	207	233	233	214	220	239	228	240	74	204
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	179	143	182	106	36	190
206	174	155	252	236	231	149	179	228	43	95	234
190	276	116	149	236	187	86	150	79	34	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	109	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0		217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	94	218

What the computer "cooc"

Pixel intensity values ("pix-el"=picture-element)

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

How computer sees color

How can we feed images into neural network

A Problem

•Can a MLP identify two same types of flowers in these images?

A Problem

We need a network that will activate, regardless of the exact location of the desired object?

We need shift invariance.

Solution - Scanner

The entire operation can be viewed as a single giant network

- Composed of many "subnets" (one per window)
- With one key feature: all subnets are identical
- These are shared parameter networks

Limitations of FNN

- •For complex problems, we need multiple hidden layers in our FNN
 - Compunds the problem of having many weights
- Having too many weights
 - Makes learning more difficult as dimension of search space is increased
 - Makes training more time/resource consuming
 - Increases the likelihood of overfitting
- Problem is further compunded for color images
 - Each pixel in color image represented by 3 values (RGB color mode)
 - Since each pixel represented by 3 values, we say channel size is 3
 - Image represented by $64 \times 64 \times 3 = 12,288$ values (rows x columns x channels)
 - Number of weights is now 12,288 x 500 = 6,144,000

Limitations of FNN

- Clear that FNN cannot scale to larger images (Too many weights)
- Another problem with FNN
 - 2D image represented as 1D vector in input layer
 - Any spatial relationship in the data is ignored

From FCN to CNN

Sparse Connection/interaction

How to reduce number of parameters?

Parameter Sharing (plus Stride):

Convolution/Correlation

Linear Convolution (Linear Shift Invariant Systems)

$$y[n] = \sum_{m} x[m] h[n-m] = \sum_{k} h[k] x[n-k]$$

•Correlation:

$$y[n] = \sum_{m} x[m] h[n+m] = \sum_{k} h[k] x[n+k]$$

Convolution

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

0	0	0	0	0	0	•
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	٠
		7				

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	
	7222					

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

Kernel Channel #3

Kernel Channel #1

Convolution shrinks

padding

Padding

Padding

- a) Constant
- b) Replicate (nearest)
- c) Symmetric (mirror)
- d) Circular

Stride

Stride and padding

$$M = \frac{N + 2P - f}{stride} + 1$$

$$Input = N \times N$$

$$Padded\ Input = (N+2P) \times (N+2P)$$

$$Filter = f \times f$$

$$Output = M \times M$$

Convolution Effect!

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolution Effect!

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Convolution Effect!

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

A Typical CNN

The Neuroscientific Basis

- •In 1959 Hubel & Wiesel did an experiment to understand how visual cortex of brain processes visual info
 - Recorded activity of neurons in visual cortex of a cat
 - While moving a bright line in front of the cat
- Some cells fired when bright line is shown at a particular angle/location
 - Called these *simple* cells
- Other cells fired when bright line was shown regardless of angle/location
 - Seemed to detect movement.
 - Called these complex cells
- •Seemed complex cells receive inputs from multiple simple cells
 - Have an hierarchical structurea
- Hubel and Wiesel won Noble prize in 1981

The Neuroscientific Basis

Primary Visual Cortex, Theory: from 1959-1985

V1: Edge detection, etc.

V2: Extract simple visual properties (orientation, spatial frequency, color, etc)

V4: Detect object feature of intermediate complexity

TI: Object recognition

CNN Visualization

Filter or weights

Baseball—or stripes? mixed4a, Unit 6

Animal faces—or snouts? mixed4a, Unit 240

Buildings—or sky? mixed4a, Unit 492

Pooling

Modify and Subsample output of detector (ReLu):

Using neighbors

- Max/min pooling
- Means pooling
- Median pooling
- •Make Invariant to small variation (like shift)
- •Reduce number of parameters
- Regularization

Max Pooling vs Mean (Average) Pooling:

A Challenging Problem: IMAGENET!

Image Net

≥1000 Classes

Train: 1.2 M

>test: 100 K

performance on Image net

AlexNet(2012)

In Brief:

- •ReLU (x6 faster than tanh)
- •Regularization: 50% Dropout (x2 training time)
- ■5 CL (Convolution Layer), 11×11, 5×5, 3×3
- **-**3 FC (Fully Connected), 4096-4096-1000
- MaxPool Layer: 3×3
- ReLu after all CL and FC
- Image Size: 256x256
- •input Size: 227x227x3

Details:

- First use of ReLU
- Normalize ReLu Output
- Several Data Augmentation
- •Dropout: 0.5
- Batch Size: 128
- SGD Momentum: 0.9
- Learning rate 10−2
- •60M parameters

AlexNet

Original (paper) Figure:

AlexNet

VGGnet

VGG: Visual Geometry Group

Idea: Smaller filter but deeper!

- ■8 Layers in Alexnet → (16-19) ConvLayers
- ConvLayer (16/19): Only 3×3, Stride: 1, Padding: 1
 - More Non-linearity
- MaxPooling (5): 2×2, Stride: 2
- ■138M Parameters

VGGnet

Inception Module

Idea and Motivation:

- •Multiresolution Analysis (avoid cascade only convolution)
- •Global Average Pooling before FC (dimension reduction)
- Bottleneck Layer (one dimension reduction)
- •Auxiliary Classifier (shallow/weak output)

Idea#1: Why Resolution reduction in successive Layer?

Idea#2: Global Average Pooling Before FC

Idea #3: Auxiliary Classifier

Too Deep (22 Layers) → Gradient flow problem!

Consider Shallow Outputs!

ResNet - Deep Residual Learning for Image Recognition (Microsoft)

Problems with Deeper Networks:

- Performance degradation, Not due to overfitting
- Gradient vanishing/exploding

Idea: New Block (Shortcut Connection/Skip Connections)

A Identity map is hard to capture by highly nonlinear map.

In Residual Learning:

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \mathbf{W}) + \mathbf{x}$$

H(x) = F(x) + x, the F(x) may learn to be zero!

- No Extra Parameter! 😊
- No Computational Complexity! ©
- Problem of dimension F and X
 - Solution:

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \mathbf{W}) + \mathbf{W}_{S}\mathbf{x}$$

ResNet Benefits:

- Vanishing and exploding gradients
- May increase # of layer

Specification:

- Batch Normalization after each ConvLayer
- SGD + momentum (0.9)
- Minibatch Size: 256
- No Dropout

DensNet

Transfer Learning

VS

Traditional ML

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Transfer Learning

New dataset is small and similar to original dataset:

Use final feature layer and train a linear or simple classifier

New dataset is large and similar to the original dataset:

Fine-tune the full network

New dataset is small but very different from the original dataset:

• Train a SVM classifier from activations (middle layer, not final) in the network

New dataset is large and very different from the original dataset:

Train from scratch (Initialize with weights from a pre-trained model)

Transfer Learning

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

3. Bigger dataset

