Prova di Analisi Matematica II - 9 Aprile 2018 Ing. Informatica Prof.ssa V. DE CICCO

1)	2)	3)	4)	5)	VOTO:

N.B. La parte sovrastante è riservata al docente.

(Cognome	Nome

ESERCIZIO 1. Per ciascuna delle seguenti questioni, si indichi la (sola) risposta corretta. Ogni risposta esatta vale 2 punti, ogni risposta errata -1 punto ed ogni risposta non data 0 punti. (10 pt.)

- 1) L'antitrasformata di Laplace della funzione $F(s) = \frac{1}{(s-1)^2-1}$ è
 - (a) $f(t) = \sinh(t)$
 - (b) $f(t) = \cosh t$
 - (c) $f(t) = e^t \cosh t$
 - (d) $f(t) = e^t \sinh t$.
- 2) Sia γ la frontiera del dominio $\{z=(x,y)\in\mathbb{C}:x^2+y^2\leq 2\}$. Si indichi l'unico integrale non nullo tra i seguenti:
 - (a) $\int_{\gamma} \frac{1}{z-1} dz$
 - (b) $\int_{\gamma} \frac{1}{(z-1)^2} dz$
 - (c) $\int_{\gamma} \frac{1}{(z-1)^3} dz$
 - (d) $\int_{\gamma} \frac{1}{(z-1)^4} dz$.

- 3) La funzione $f(z) = \sin(iz), \ z \in \mathbb{C}$ è
 - (a) intera
 - (b) a valori immaginari
 - (c) a valori reali
 - (d) limitata.
- 4) La serie

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x-3)^n$$

è lo sviluppo di Taylor in x=3 della funzione

- (a) e^x
- (b) e^{x^2}
- (c) $e^{(x-3)^2}$
- (d) e^{3-x} .
- 5) L'insieme di definizione della funzione

$$f(z) = \text{Log}(|z^2 + 1|), \quad z \in \mathbb{C}$$

è

- (a) $\mathbb{C} \setminus \{-1\}$
- (b) $\mathbb{C} \setminus \{-i, i\}$
- (c) $\mathbb{C} \setminus \{-1, 1, -i, i\}$
- (d) $\mathbb{C} \setminus \{-1, 1\}$.

ESERCIZIO 2. Si studi la convergenza puntuale ed uniforme della seguente successione di funzioni:

$$f_n(x) = (\log (x+1))^n, \quad x > -1.$$

ESERCIZIO 3.

- (i) Si dia la definizione di Logz per $z\in\mathbb{C},\,z\neq0,$ e si discuta la sua continuità e la sua olomorfia.
- (ii) Si studi la continuità e l'olomorfia della funzione

$$f(z) = z^{\sqrt{3}}.$$

ESERCIZIO 4.

- (i) Sia dia la definizione di convergenza puntuale per una serie di funzioni.
- (ii) Sia assegnata la seguente serie in campo complesso:

$$\sum_{n=0}^{+\infty} \frac{1}{n!(z+i)^n}.$$

- (iii) Se ne determini l'insieme di convergenza E.
- (iv) Se ne calcoli la somma $\forall z \in E$.

ESERCIZIO 5.

(i) Si scriva la serie di Fourier della funzione periodica di periodo 2π che nell'intervallo $[-\pi,\pi]$ vale

$$f(x) = \begin{cases} 2 & \text{se } |x| < \frac{\pi}{2} \\ 0 & \text{altrove,} \end{cases}$$

calcolandone esplicitamente i coefficienti.

(ii) Sia poi S(x) la funzione somma della serie di Fourier di f(x). Si tracci il grafico di S(x) nell'intervallo $[-\pi,\pi]$ precisandone il valore nei punti di salto.