NLCEQ: Nonlinear Certainty Equivalent Approximation Method

Kenneth Judd Hoover Institution

April 7, 2020

Deterministic DP model

Infinite or finite horizon deterministic dynamic programming problem:

$$V_{0}(x_{0}) = \max_{a_{t} \in \mathcal{D}(x_{t})} \sum_{t=0}^{T-1} \beta^{t} u_{t}(x_{t}, a_{t}) + \beta^{T} V_{T}(x_{T}),$$
s.t. $x_{t+1} = g_{t}(x_{t}, a_{t}),$ (1)

- Standard method to compute value/policy function: value function iteration or time iteration
 - how to choose appropriate approximation domains
 - the stability problem
- New method: NLCEQ (Nonlinear Certainty Equivalent Approximation method)
 - Cai, Y., K.L. Judd, and J. Steinbuks. A nonlinear certainty equivalent approximation method for dynamic stochastic problems. Quantitative Economics.

Basic NLCEQ

Basic NLCEQ

- ► Choose approximation method and a corresponding set of approximation nodes $\{x_0^i\}$
 - Smolyak approximation
 - ► Complete polynomials with nodes from monomial rules
 - Sparse grids, fixed or adaptive
 - ► Epsilon-distinguishable sets with L1 approximation methods
- Data collection step
 - For each node x_0^i , solve the large-scale optimal control problem to find $v_i = V_0(x_0^i)$ and action a_0^i
 - Economies of scale
 - Determine sparsity and use it repeatedly
 - Compute efficient differentiation code, and use it repeatedly
 - Collect nodes into clusters, create sequences that warm and hot starts
- Fitting Step.
 - Fit $\{(x_0^i, v_i) : 1 \le i \le N\}$ to get value function approximation $\hat{V}(x_0; \mathbf{b}_v)$
 - Fit $\{(x_0^i, a_0^i) : 1 \le i \le N\}$ for action a_0 to get policy function approximation $\hat{P}(x_0; \mathbf{b}_a)$
- ► Natural Parallelism everywhere

Infinite-Horizon Deterministic DP

► Infinite-horizon deterministic DP problem:

$$V_0(x_0) = \max_{a_t \in \mathcal{D}(x_t)} \sum_{t=0}^{\infty} \beta^t u_t(x_t, a_t),$$

s.t. $x_{t+1} = g_t(x_t, a_t),$

- ▶ Basic NLCEQ method for infinite-horizon problems
 - Transform it to a finite-horizon problem
 - ▶ choose a terminal value function which assumes that $x_{t+1} = x_t$ with t > T
 - ▶ Apply the basic NLCEQ method for the finite-horizon problem

A simple example

► Solve optimal growth problem:

$$V_0(k_0) = \max_{c} \sum_{t=0}^{\infty} \beta^t u(c_t),$$

s.t. $k_{t+1} = (1 - \delta)k_t + Ak_t^{\alpha} - c_t,$

▶ Use the basic NLCEQ method: see growth_NJLCEQ.gms

NLCEQ Method

Stochastic DP problem:

$$V_{0}(x_{0}) = \max_{a_{t} \in \mathcal{D}(x_{t})} \mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^{t} u_{t}(x_{t}, a_{t}) + \beta^{T} V_{T}(x_{T}) \right\},$$

s.t. $x_{t+1} = g_{t}(x_{t}, a_{t}, \varepsilon_{t}),$

- ► NLCEQ method:
 - Transformation Step: transform stochastic problems to deterministic (and finite-horizon) problems:

$$\widetilde{V}_{0}\left(x_{0}\right) = \max_{a_{t} \in \mathcal{D}\left(x_{t}\right)} \sum_{t=0}^{T-1} \beta^{t} u_{t}\left(x_{t}, a_{t}\right) + \beta^{T} \widetilde{V}_{T}\left(x_{T}\right),$$
s.t.
$$x_{t+1} = g_{t}\left(x_{t}, a_{t}\right)$$

Apply the basic NLCEQ method for the finite-horizon deterministic problem

Comparison with Other Methods

- Perturbation methods
 - only valid for non-evolving infinite-horizon models
 - local approximation
 - does not work for problems with occasionally binding inequality constraints
- Projection methods
 - only valid for non-evolving infinite-horizon models
 - Challenging for high-dimensional problems
 - Challenging for problems with occasionally binding inequality constraints
- Value function iteration and/or time iteration
 - Challenging for high-dimensional problems
 - Challenging for problems with occasionally binding inequality constraints
 - iteration may be unstable (approximation domains, shape-preservation)
 - accumulated errors from numerical approximation, integration and optimization could be large

Multi-country optimal growth problem

► N-country optimal growth problem

$$\max_{c,\ell,I} \mathbb{E}\left(\sum_{t=0}^{\infty} \beta^t U(c_t,\ell_t)\right)$$

subject to

$$\begin{aligned} K_{t+1,j} &= (1-\delta)K_{t,j} + I_{t,j} \\ &\ln(\theta_{t+1,j}) = \rho \ln(\theta_{t,j}) + \sigma(\epsilon_{t+1,j} + \epsilon_{t+1}) \\ &\sum_{i=1}^{N} \left(c_{t,j} + I_{t,j} - \delta K_{t,j}\right) = \sum_{i=1}^{N} \left(\theta_{t,j} f(K_{t,j}, \ell_{t,j}) - \Gamma_{t,j}\right) \end{aligned}$$

with

$$f(K_{t,j}, \ell_{t,j}) = A(K_{t,j})^{\alpha} (\ell_{t,j})^{1-\alpha}$$

$$\Gamma_{t,j} \equiv \frac{\phi}{2} K_{t,j} \left(\frac{I_{t,j}}{K_{t,j}} - \delta \right)^2$$

$$U(c_t, \ell_t) = \sum_{j=1}^{N} \tau_j u_j (c_{t,j}, \ell_{t,j})$$

$$u_j(c_{t,j}, \ell_{t,j}) = \frac{(c_{t,j})^{1-\frac{1}{\gamma_j}}}{1-\frac{1}{\gamma_j}} - B_j \frac{(\ell_{t,j})^{1+\frac{1}{\gamma_j}}}{1+\frac{1}{\gamma_j}}$$

Errors

► Euler Errors (unit-free):

$$E_{1}(K,\theta) = \max_{1 < j < N} \left| \mathbb{E} \left\{ F_{j} \left(K, \theta, \theta^{+} \right) \right\} - 1 \right|$$

with

$$F_{j}\left(K,\theta,\theta^{+}\right) \equiv \frac{\beta \frac{\partial u_{j}}{\partial c}\left(c_{j}^{+},\ell_{j}^{+}\right)}{\frac{\partial u_{j}}{\partial c}\left(c_{j},\ell_{j}\right)\omega_{j}}\left[\pi_{j}^{+} + \theta_{j}^{+}\frac{\partial f}{\partial K}\left(K_{j}^{+},\ell_{j}^{+}\right)\right]$$

► Other Errors:

$$E_{2}(K,\theta) = \max_{2 \leq j \leq N} \left| \frac{\frac{\partial U_{j}}{\partial c} \left(c_{j}, \ell_{j} \right) \tau_{j}}{\frac{\partial U_{1}}{\partial c} \left(c_{1}, \ell_{1} \right) \tau_{1}} - 1 \right|$$

$$E_{3}(K,\theta) = \max_{1 \leq j \leq N} \left| \frac{\frac{\partial U_{j}}{\partial c} \left(c_{j}, \ell_{j} \right) \theta_{j} \frac{\partial f}{\partial \ell} \left(K_{j}, \ell_{j} \right)}{\frac{\partial U_{j}}{\partial \ell} \left(c_{j}, \ell_{j} \right)} + 1 \right|$$

$$E_{4}(K,\theta) = \left| \frac{\sum_{j=1}^{N} \left(c_{j} + I_{j} - \delta K_{j} + \Gamma_{j} \right)}{\sum_{j=1}^{N} \left(\theta_{j} f(K_{j}, \ell_{j}) \right)} - 1 \right|$$

Results for Low-Dimensional Problems

- ► Results of NLCEQ for 2-country problems
- ▶ Use degree-*n* complete Chebyshev polynomials for approximation
- ► See growth4D_NLCEQ.gms
- Use true solutions from value function iteration to estimate the errors

			Global Error ${\mathcal E}$						
β	γ	η	degree-D	Chebyshev	level-/ Smolyak				
			D=2	D=4	l = 1	<i>l</i> = 2			
0.99	0.25	0.1	2.4(-2)	1.7(-3)	5.3(-2)	6.7(-3)			
		0.5	2.1(-2)	2.0(-3)	6.5(-2)	1.0(-2)			
	0.5	0.1	2.0(-2)	1.3(-3)	6.1(-2)	5.3(-3)			
		0.5	2.1(-2)	1.1(-3)	6.5(-2)	6.1(-3)			
0.95	0.25	0.1	2.8(-2)	2.6(-3)	5.1(-2)	9.3(-3)			
		0.5	1.8(-2)	3.7(-3)	7.0(-2)	1.3(-2)			
	0.5	0.1	2.0(-2)	1.5(-3)	5.7(-2)	5.6(-3)			
		0.5	1.5(-2)	1.7(-3)	6.2(-2)	8.7(-3)			

Results for High-Dimensional Problems

- Results of NLCEQ for high-dimensional N-country problems (2N dimensional)
- ▶ Use level-n Smolyak grid and Chebyshev-Smolyak polynomial approximation (degree 2^n)
- ► Parallelization in optimization step
- Errors and running times:

N	Level /	Num of	Num of		Max Euler	Global	Time
		Points	Cores	'	Error	Error	(minutes)
50	1	201	201	20	2.3(-3)	1.8(-2)	0.8
	2	20,201	2,048	20	1.5(-3)	2.7(-3)	8.3
			20,201	50	3.5(-4)	2.6(-3)	8.6
100	1	401	401	20	1.9(-3)	1.8(-2)	2.2
200	1	801	801	20	1.6(-3)	1.8(-2)	8.0

Note: a(-n) represents $a \times 10^{-n}$.

RBC with investment constraint

▶ The RBC model

$$\max_{c} \mathbb{E} \left\{ \sum_{t=0}^{\infty} \beta^{t} U(c_{t}) \right\}$$

subject to

$$\begin{aligned} c_t + I_t &= A_t k_t^{\alpha}, \\ k_{t+1} &= (1 - \delta) k_t + I_t, \\ I_t &\geq \phi I_{ss}, \end{aligned}$$

▶ Technology A_t :

$$\ln(A_{t+1}) = \rho \ln(A_t) + \sigma \epsilon_{t+1},$$

See growth_bind_NLCEQ.gms

Results

Figure: Errors of the solutions from NLCEQ or log-linearization for the RBC model with a constraint on investment

Results

Figure: Investment policy function for the RBC model with a constraint on investment

NLCEQ with Discrete Stochastic States

- ightharpoonup Discrete stochastic state θ_t
 - ▶ an exogenous Markov chain with k possible values, $\{\vartheta_1, ..., \vartheta_k\}$
 - transition matrix P
- If the initial-time state $\theta_0 = \vartheta_i$, then unconditional probability vector at time t is: $p_{t,i} = P^t \mathbf{e}_i$
- ▶ In the transformation step of NLCEQ, replace θ_t by $\sum_{j=1}^k p_{t,i,j} \vartheta_j$ for an initial $\theta_0 = \vartheta_i$

NLCEQ Method for Competitive Equilibrium

► Equations for equilibrium (Euler equations, transition laws of states; market clearing conditions; other first-order conditions)

$$\mathbf{F}(\mathbf{x}_t, \mathbf{a}_t, \mathbf{x}_{t+1}, \mathbf{a}_{t+1}) = 0,, \quad t = 0, 1, 2, ...$$

State and control variables converge to steady values

$$\mathbf{x}_{\infty}=\mathbf{x}_{ss},\ \mathbf{a}_{\infty}=\mathbf{a}_{ss}.$$

Optimization method for competitive equilibrium:

$$\label{eq:loss_state} \begin{split} \min_{\begin{subarray}{c} \mathbf{a}_t \in \mathcal{D}(\mathbf{x}_t) \end{subarray}} & \quad \ \|\mathbf{x}_{\mathcal{T}}^{\mathrm{Endo}} - \mathbf{x}_{ss}^{\mathrm{Endo}}\| + \|\mathbf{a}_{\mathcal{T}} - \mathbf{a}_{ss}\| \\ \mathrm{s.t.} & \quad \mathbf{F}(\mathbf{x}_t, \mathbf{a}_t, \mathbf{x}_{t+1}, \mathbf{a}_{t+1}) {=} 0, \quad t = 0, 1, ..., \, \mathcal{T} - 1, \\ \mathbf{x}_0 = \mathbf{x}_0^j, \end{split}$$

New Keynesian Model with Zero Lower Bound

The New Keynesian model: a representative household, a government, a final-good firm, and intermediate firms

► The representative household

$$\max_{c_t,\ell_t,b_t} \mathbb{E}\left\{\sum_{t=0}^{\infty} \left(\prod_{i=0}^{t} \beta_i\right) U(c_t,\ell_t)\right\}$$

subject to

$$p_t c_t + \frac{b_t}{1 + r_t} = w_t \ell_t + b_{t-1} + T_t + \Pi_t$$

- \triangleright b_t : bond face value
- p_t : price of consumption c_t from the production of the final-good firm
- $ightharpoonup T_t$: lump sum transfer from the government
- ightharpoonup Π_t : profit from all firms

Specifications

▶ Stochastic discount factor β_t :

$$\ln(\beta_{t+1}) = (1 - \rho)\ln(\beta^*) + \rho\ln(\beta_t) + \sigma\epsilon_{t+1}$$

Utility

$$U(c,\ell) = \operatorname{In}(c) - rac{\ell^{1+\eta}}{1+\eta}$$

► Final-good firm

$$\max_{y_{i,t}} p_t y_t - \int_0^1 p_{i,t} y_{i,t} di$$

with

$$y_t = \left(\int_0^1 y_{i,t}^{\frac{\alpha-1}{\alpha}} di\right)^{\frac{\alpha}{\alpha-1}}$$

Specifications

- ▶ Intermediate firms: production $y_{i,t+j} = \ell_{i,t+j}$
 - ightharpoonup Calvo-type prices: a fraction $1-\theta$ of the firms have optimal prices and the remaining fraction θ of the firms keep the same price as in the previous period.
 - A re-optimizing intermediate firm $i \in [0, 1]$ chooses its price $p_{i,t}$ to maximize the current value of profit over the time when the optimal $p_{i,t}$ remains effective:

$$\max_{p_{i,t}} \mathbb{E}_{t} \left\{ \sum_{j=0}^{\infty} \left(\prod_{k=0}^{j} \beta_{t+k} \right) \lambda_{t+j} \theta^{j} \left(p_{i,t} y_{i,t+j} - w_{t+j} \ell_{i,t+j} \right) \right\}$$

 $ightharpoonup \lambda_t$: the Lagrange multiplier of the budget constraint

Prices, labor, and government spending

price

$$p_{t} = \left(\int_{0}^{1} p_{i,t}^{1-\alpha} di\right)^{\frac{1}{1-\alpha}}$$

$$= \left((1-\theta)(q_{t}p_{t})^{1-\alpha} + \theta \int_{0}^{1} p_{i,t-1}^{1-\alpha} di\right)^{\frac{1}{1-\alpha}}$$

$$= \left((1-\theta)(q_{t}p_{t})^{1-\alpha} + \theta p_{t-1}^{1-\alpha}\right)^{\frac{1}{1-\alpha}}$$

► labor

$$\ell_t = \int_0^1 \ell_{i,t} di,$$

▶ Government: spend $g_t = s_g y_t$; issue bonds and pay dividends; lump sum transfer

Equilibrium

► Euler equation

$$1 = \mathbb{E}_t \left\{ \beta_{t+1} \frac{1 + r_t}{\pi_{t+1}} \frac{c_t}{c_{t+1}} \right\}$$

Zero Lower Bound (ZLB) for nominal interest rates r_t

$$r_t = \max(z_t, 0)$$

with

$$z_t = (1 + r^*) \left(\frac{\pi_t}{\pi^*}\right)^{\phi_{\pi}} \left(\frac{y_t}{y^*}\right)^{\phi_y} - 1 \tag{2}$$

Other equilibrium equations

$$1 = \frac{1}{\chi_{t,1}} \left(y_t \ell_t^{\eta} + \theta \mathbb{E}_t \left\{ \beta_{t+1} \pi_{t+1}^{\alpha} \chi_{t+1,1} \right\} \right)$$

$$1 = \frac{1}{\chi_{t,2}} \left(\frac{y_t}{c_t} + \theta \mathbb{E}_t \left\{ \beta_{t+1} \pi_{t+1}^{\alpha-1} \chi_{t+1,2} \right\} \right)$$

$$q_t = \frac{\alpha \chi_{t,1}}{(\alpha - 1)\chi_{t,2}} = \left(\frac{1 - \theta \pi_t^{\alpha - 1}}{1 - \theta} \right)^{\frac{1}{1 - \alpha}}$$

$$v_{t+1} = \frac{\ell_t}{y_t} = (1 - \theta) q_t^{-\alpha} + \theta \pi_t^{\alpha} v_t$$

- ▶ State variables: β_t and v_t
- Find policy functions $(c_t, \chi_{t,1}, \chi_{t,2}, \pi_t, q_t, v_t, \ell_t, y_t, r_t, z_t)$: see newKeynesian_NLCEQ.gms

Results: Errors

Figure: Errors of the NLCEQ solution for the New Keynesian DSGE model with ZLB

Results: Impulse response to discount factor shock

Figure: Impulse responses to a shock of discount factor

Summary

- NLCEQ is a simple method
- NLCEQ is easy for coding
- ▶ NLCEQ is stable and robust even for problems with kinks
- NLCEQ is more accurate then log-linearization
- NLCEQ can deal with high-dimensional dynamic stochastic problems
 - efficient and natural parallelism
 - hundreds of dimensions (so far, thousands in the future)
 - compatible with all approximation methods
- NLCEQ can solve both social planners' problems and competitive equilibrium