DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ESAME 30 GENNAIO / QUIZ STUDENTI 22-23 TURNO 1

Iniziato	lunedì, 30 gennaio 2023, 09:42
Stato	Completato
Terminato	lunedì, 30 gennaio 2023, 10:17
Tempo impiegato	35 min. 3 secondi
Punteggio	19,00/23,00
Valutazione	8,26 su un massimo di 10,00 (83 %)
Domanda 1	
Risposta corretta	
Punteggio ottenuto 1,00	su 1,00

Se A è una matrice $n \times n$, quale delle seguenti affermazioni è corretta?

- \bigcirc a. $K(A) \geq 0$.
- \bigcirc b. K(A) ≥ 1.
- \bigcirc c. $K(A) = min\{||A||, ||A^{-1}||\}.$

La risposta corretta è: $K(A) \ge 1$.

Domanda **2**Risposta corretta
Punteggio ottenuto 1,00 su 1,00

Un problema definito dalla matrice A è **mal condizionato** se:

- \bigcirc a. K(A) è nullo.
- \bigcirc b. K(A) è negativo.
- \odot c. K(A) è grande.

La risposta corretta è: K(A) è grande.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il mal condizionamento di un sistema lineare è dovuto a:

- a. Errore algoritmico.
- b. Errore inerente.
- o. Nessuna delle precedenti.

La risposta corretta è: Errore inerente.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se il vettore $v=(10^6,5)^T$ è approssimato dal vettore $\tilde{v}=(999998,2)^T$, allora in $||\cdot||_{\infty}$ l'errore relativo tra v e \tilde{v} è:

- \circ a. $2 \cdot 10^{-6}$.
- b. Nessuna delle precedenti.
- \circ c. $3 \cdot 10^{-6}$.

La risposta corretta è: $3 \cdot 10^{-6}$.

Domanda **5**Risposta errata
Punteggio ottenuto 0,00 su 1,00

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione nella forma di Lagrange ha coefficienti:

- a. Nessuna delle precedenti.
- \odot b. Uguali ai quadrati x_i .

 \bigcirc c. Uguali ai quadrati y_i .

La risposta corretta è: Nessuna delle precedenti.

Domanda 6

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione nella forma di Lagrange ha coefficienti:

- a. Che si calcolano risolvendo un sistema lineare.
- b. Nessuna delle precedenti.

 \circ c. Uguali ai valori y_i .

La risposta corretta è: Uguali ai valori y_i .

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

$\mathsf{Sia}\, f:\mathbb{R}^n\to\mathbb{R}$ funzione differenziabile strettamente convessa . Vale:

- a. Se $\nabla f(x^*) = 0$ allora x^* è un punto di minimo globale.
- \bigcirc b. Se $\nabla f(x^*) = 0$ allora x^* è un punto di massimo globale.
- \bigcirc c. Se $\nabla f(x^*) = 0$ allora x^* è un punto di minimo o massimo globale.

La risposta corretta è: Se $\nabla f(x^*) = 0$ allora x^* è un punto di minimo globale.

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

$\operatorname{Sia} f: \mathbb{R}^n \to \mathbb{R}$ differenziabile. Vale:

- a. Nessuna delle precedenti.
- \bigcirc b. Se $\nabla f(x^*) = 0$ allora x^* è un punto di massimo o minimo locale.
- \bigcirc c. Se $\nabla f(x^*) = 0$ allora x^* è un punto di massimo o minimo globale.

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 3 \end{bmatrix}$$

Allora:

- \bigcirc a. A è simmetrica e definita positiva.
- \bigcirc b. A è simmetrica ma non definita positiva.
- \odot c. A è non simmetrica e definita positiva.

La risposta corretta è: A è non simmetrica e definita positiva.

Domanda 10

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Data la matrice U:

$$U = \begin{bmatrix} 3 & -1/3 & 0 \\ 2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allora:

- lacksquare a. U è ortogonale.
- lacksquare b. U è definita positiva.
- o. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data la matrice:

$$A = \begin{bmatrix} -2 & 5 \\ 0 & 3 \end{bmatrix}$$

calcolare $||A||_{\infty}$ e $||A||_{1}$.

- \bigcirc a. $||A||_{\infty} = 3$ $||A||_{1} = 2$
- b. Nessuna delle precedenti.
- c. $||A||_{\infty} = 7$ $||A||_{1} = 8$

La risposta corretta è: $||A||_{\infty} = 7$ $||A||_{1} = 8$

Domanda 12

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice $n \times n$ tale che $||A||_p = 0$ allora:

- a. A = 0.
- \bigcirc b. rank(A) = 0.
- \circ c. A puo' essere uguale o meno a 0.

La risposta corretta è: A = 0.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)-fl(w), allora:

- a. $fl(z) = 0.40 \times 10^0.$
- \circ b. $fl(z) = 0.43 \times 10^{0}$.
- \circ c. $fl(z) = 0.44 \times 10^{0}$.

La risposta corretta è: $fl(z) = 0.40 \times 10^{0}$.

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

- a. Nessuna delle precedenti.
- ob. 18 numeri.
- oc. 34 numeri.

La risposta corretta è: Nessuna delle precedenti.

Domanda 15

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Nei metodi di discesa l'iterata x_{k+1} si calcola:

- a. $x_{k+1} = x_k + \alpha_k p_k \cos p_k$ direzione di discesa.
- \bigcirc b. $x_{k+1} = \alpha_k x_k + p_k \operatorname{con} p_k$ direzione di discesa.
- \circ c. $x_{k+1} = x_k + \alpha_k p_k \operatorname{con} p_k$ lunghezza del passo.

La risposta corretta è: $x_{k+1} = x_k + \alpha_k p_k \operatorname{con} p_k$ direzione di discesa.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

è sempre una direzione di discesa:

- \bigcirc a. $-\nabla f(x_k) \ (\neq 0)$
- \bigcirc b. $\nabla f(x_k) \ (\neq 0)$
- \bigcirc c. $\nabla f(x_k)^2 \ (\neq 0)$

La risposta corretta è: $-\nabla f(x_k) \ (\neq 0)$

Domanda 17

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Siano $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \geq \sigma_n$ i valori singolari di A allora :

- \bigcirc a. $||A||_F = \sigma_1$
- b. $||A||_2 = \sigma_1$
- \bigcirc c. $||A||_2 = \sigma_n$

La risposta corretta è: $||A||_2 = \sigma_1$

Domanda 18

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Un problema lineare ai minimi quadrati $min||Ax - b||_2^2$, con A matrice $m \times n$ con m > n, ha almeno una soluzione se:

- a. Entrambe le precedenti.
- \bigcirc b. rg(A) = n.
- \bigcirc c. $rg(A) \leq n$.

La risposta corretta è: Entrambe le precedenti.

Domanda 19	
Risposta corretta	
Punteggio ottenuto 1,00 su 1,00	

Quale delle seguenti affermazioni è vera:

- a. Nessuna delle precedenti.
- \odot b. La fattorizzazione di <u>Gauss</u> con pivoting (PA = LR) è stabile.
- \bigcirc c. La fattorizzazione di <u>Gauss</u> senza pivoting (PA = LR) è stabile.

La risposta corretta è: La fattorizzazione di <u>Gauss</u> con pivoting (PA = LR) è stabile.

Domanda 20

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se A è una matrice $n \times n$ simmetrica, allora:

- \bigcirc a. A non ammette la decomposizione di Cholesky.
- igcup b. A ammette sempre la decomposizione di Cholesky.
- \odot c. A ammette la decomposizione di Cholesky solo se è e definita positiva.

La risposta corretta è: A ammette la decomposizione di Cholesky solo se è e definita positiva.

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 3 & -\frac{1}{3} & 0 \\ 5 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- a. Il metodo di <u>Gauss</u>-Seidel è convergente solo per alcuni termini noti b.
- b. Il metodo di <u>Gauss</u>-Seidel è convergente per ogni termine noto b.
- oc. Il metodo di Gauss-Seidel non converge per ogni termine noto b.

×

La risposta corretta è: Il metodo di Gauss-Seidel è convergente per ogni termine noto b.

Domanda 22

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

La decomposizione SVD di una matrice puo' essere utilizzata anche per:

- a. Invertire la matrice.
- b. Comprimere la matrice.
- oc. Aumentare il rango della matrice.

La risposta corretta è: Comprimere la matrice.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $A \in \mathbb{R}^{m \times n}$, m > n, con r = rg(A), allora:

- ⓐ a. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.
- \bigcirc b. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è ortogonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali se e solo se rg(A)=n.
- oc. Nessuna delle precedenti.

La risposta corretta è: è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.

■ LAB5

Vai a...

quiz studenti 22-23 tempo 30 ▶

