

Análisis de Señales

Espacios Vectoriales

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Definición (corta)

Un <u>espacio vectorial</u> o lineal es una colección de objetos, denominados vectores, que pueden ser **sumados** y **escalados**.

Grupos

Un grupo (G,*) es un conjunto G junto a una operación binaria * que cumplen

- i. Clausura: Si $a,b \in G \implies a*b \in G$
 - "G es cerrado bajo *".
- ii. Asociatividad: $\forall a,b,c \in G \implies a*(b*c)=(a*b)*c$
- iii. Identidad: $\forall a \in G \ (a * e = e * a = a)$ "e: identidad"
- iv. Inversa: $\forall a \in G \ \exists a' \in G \ / \ a*a' = a'*a = e$

Si además $\forall a,b \in G$ (a*b=b*a) entonces el grupo (G,*) es **abeliano** (conmutativo).

Ejemplo.

(Z,+) y (R,+) son grupos abelianos con identidad 0.

 $(\mathbf{R}^{\star}, \times)$ es un grupo abeliano con identidad 1.

 (\mathbf{Z},\times) no es un grupo pues existen elementos sin inversa.

 (\mathbf{R},\times) no es un grupo pues el elemento 0 no tiene inversa.

El par (\mathbf{R}, \times) se conoce como *monoide*.

Definición. (G,*) es un **monoide** si cumple las propiedades de clausura, asociatividad e identidad.

Anillos

Un anillo $(R,+,\times)$ es un conjunto R junto a la adición + y a la multiplicación \times , que cumplen

- i. (R,+) es un grupo abeliano con identidad 0.
- ii. (R,\times) es un monoide con identidad 1.
- iii. La multiplicación distribuye la adición

$$\forall a,b,c \in R \quad a \times (b+c) = a \times b + a \times c$$
.

Campos

Un campo $(F,+,\times)$ es un conjunto F junto a la adición + y a la multiplicación \times , que cumplen

- i. (F,+) es un grupo abeliano con identidad 0.
- ii. (F^{\star}, \times) es un grupo abeliano con identidad 1.
- iii. La multiplicación distribuye a la adición

$$\forall a,b,c \in R \quad a \times (b+c) = a \times b + a \times c$$
.

Los elementos de un campo se conocen como escalares.

Ejemplo. (R,+,×) y (C,+,×) son anillos y campos.

Los reales y complejos son escalares!

Definición de espacio vectorial

Un conjunto V es un espacio vectorial sobre un campo $(F,+,\times)$ si

i. (V,+) es un grupo abeliano con identidad 0.

ii.
$$\forall a \in F \ y \ \forall \ \mathbf{v}, \mathbf{w} \in V$$
: $a \times (\mathbf{v} + \mathbf{w}) = a \times \mathbf{v} + a \times \mathbf{w}$

$$\dot{\mathbf{v}}$$
. $\forall a, b \in F \ \mathbf{y} \ \forall \ \mathbf{v} \in V$: $(a \times b) \times \mathbf{v} = a \times (b \times \mathbf{v})$

$$v. \quad \forall \ \mathbf{v} \in V$$
: $1 \times \mathbf{v} = \mathbf{v}$ "1 es la identidad multiplicativa de F "

$$vi. \ \forall a \in F \ y \ \forall \ \mathbf{v} \in V : \qquad a \ \mathbf{v} \in V$$

Los elementos de un espacio vectorial se conocen como **vectores**.

Ejemplo. Pruebe que $V = \mathbb{R}^n$ con $F = \mathbb{R}$ es un espacio vectorial. Verifique que los elementos pueden ser escalados y sumados.

Si
$$x \in \mathbb{R}^n$$
 entonces $x = (x_1, x_2, ..., x_n)$ con $x_1, x_2, ..., x_n \in \mathbb{R}^n$.

Escalados. Si
$$a \in \mathbb{R}$$
 y $x \in \mathbb{R}^n$ entonces $ax = (ax_1, ax_2, ..., ax_n) \in \mathbb{R}^n$.

Sumados. Si
$$x, y \in \mathbb{R}^n$$
 entonces $x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in \mathbb{R}^n$.

Espacio vectorial L_1

$$L_{1} = \left\{ f : \mathbf{R} \to \mathbf{C} : \int_{-\infty}^{\infty} |f| < \infty \right\}$$

Está formado por todas las señales integrables en magnitud.

Ejemplo. L_1 es un espacio vectorial con campo los complejos.

Si
$$x(t) \in L_1$$
 entonces $\int_{-\infty}^{\infty} |x(t)| dt < \infty$.

Escalados. Si
$$a \in \mathbb{C}$$
 y $x(t) \in L_1$ entonces $\int_{-\infty}^{\infty} |ax(t)| dt = |a| \int_{-\infty}^{\infty} |x(t)| dt < \infty$.

Sumados. Si $x(t), y(t) \in L_1$ entonces

$$\int_{-\infty}^{\infty} |x(t) + y(t)| dt \le \int_{-\infty}^{\infty} |x(t)| dt + \int_{-\infty}^{\infty} |y(t)| dt < \infty.$$

Norma de un espacio vectorial

Una norma $\|\cdot\|$ es una "medida", que se le asigna a cada elemento (vector) de un espacio vectorial V, que debe cumplir

i.
$$\forall \mathbf{v} \in V$$
: $\|\mathbf{v}\| \ge 0 \quad \mathbf{y} \quad \|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$
ii. $\forall a \in F \quad \mathbf{y} \quad \forall \mathbf{v} \in V$: $\|a\mathbf{v}\| = |a| \|\mathbf{v}\|$
iii. $\forall \mathbf{v}, \mathbf{w} \in V$: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$

Por tal motivo, una norma es una función del espacio vectorial a los números reales mayores iguales a cero, es decir,

$$\|\cdot\|:V\to [0,\infty)$$

Un *espacio normado* es un espacio vectorial dotado con norma.

Ejemplo. \mathbb{R}^n y L_1 son espacios vectoriales normados.

• Si
$$\mathbf{x} \in \mathbf{R}^n$$
 entonces $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

• Si
$$x(t) \in L_1$$
 entonces $||x(t)||_1 = \int_{-\infty}^{\infty} |x(t)| dt$ (Norma L_1)

Ejemplo. Encuentre la norma L_1 de las siguientes señales y determine si pertenecen a L_1 .

•
$$x(t) = t[u(t+3) - u(t-3)]$$

Esta señal pertenece a L_1 , pues su norma L_1 es finita.

$$x(t) = \frac{1}{t}u(t-1)$$

$$||x(t)||_1 = \int_{-\infty}^{\infty} |x(t)| dt = \int_{1}^{\infty} |1/t| dt$$

$$||x(t)||_1 = \int_1^\infty 1/t \ dt = \ln(\infty) - \ln(1) = \infty$$

La señal no pertenece a $L_{\rm l}$.

$$\bullet \quad x(t) = \frac{1}{t^2} u(t-1)$$

$$||x(t)||_1 = \int_{-\infty}^{\infty} |x(t)| dt = \int_{1}^{\infty} |1/t^2| dt$$

$$||x(t)||_1 = \int_1^\infty 1/t^2$$
 $dt = -1/t|_1^\infty = 1$

La señal pertenece a L_1 .

Métrica

Una métrica ho es una "medida de distancia", entre dos vectores de un espacio vectorial, que debe cumplir

i.
$$\forall \mathbf{v}, \mathbf{w} \in V$$
: $\rho(\mathbf{v}, \mathbf{w}) \ge 0 \quad \forall \quad \rho(\mathbf{v}, \mathbf{w}) = 0 \iff \mathbf{v} = \mathbf{w}$

ii.
$$\forall \mathbf{v}, \mathbf{w} \in V$$
: $\rho(\mathbf{v}, \mathbf{w}) = \rho(\mathbf{w}, \mathbf{v})$

iii.
$$\forall \mathbf{v}, \mathbf{w}, \mathbf{z} \in V$$
: $\rho(\mathbf{v}, \mathbf{z}) \leq \rho(\mathbf{v}, \mathbf{w}) + \rho(\mathbf{w}, \mathbf{z})$

Una métrica es una función que toma dos elementos del espacio vectorial y asigna un número real mayor igual a cero, es decir,

$$\rho: V \times V \rightarrow [0, \infty)$$

Un espacio métrico es un espacio vectorial dotado con métrica.

Observación. Todo espacio vectorial normado es también un espacio métrico, con métrica definida como $\rho(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$.

Ejemplo. R^n y L_1 son espacios vectoriales métricos.

• Si $x, y \in \mathbb{R}^n$ entonces

$$\rho(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

• Si $x(t), y(t) \in L_1$ entonces $\rho[x(t), y(t)] = \int_{-\infty}^{\infty} |x(t) - y(t)| dt$

Espacio vectorial L2

$$L_2 = \left\{ f : \mathbf{R} \to \mathbf{C} : \int_{-\infty}^{\infty} \left| f \right|^2 < \infty \right\}$$

Está formado por todas las señales de energía. L_2 es un espacio normado, con norma definida como

$$\left\|x(t)\right\|_{2} = \sqrt{\int_{-\infty}^{\infty} \left|x(t)\right|^{2} dt} = \sqrt{E}$$

Ejemplo. Encuentre la norma L_2 de la $x(t) = \frac{1}{t}u(t-1)$ y determine si pertenecen a L_2 .

$$||x(t)||_{2} = \sqrt{\int_{-\infty}^{\infty} |x(t)|^{2}} dt = \sqrt{\int_{1}^{\infty} |1/t|^{2}} dt$$
$$||x(t)||_{2} = \sqrt{\int_{1}^{\infty} 1/t^{2}} dt = \sqrt{-1/t|_{1}^{\infty}} = 1$$

La señal pertenece a L_2 pues tiene norma L_2 finita.

Observación. Una señal en L_1 no necesariamente pertenece a L_2 , y viceversa.

Ejemplo. Si $x(t) = \frac{1}{t}u(t-1)$ entonces $x(t) \notin L_1$ pero $x(t) \in L_2$.

Producto interno

El producto interno $\langle \cdot, \cdot \rangle$ se define para dos elementos de un espacio vectorial V con campo F y debe cumplir $\forall \mathbf{v}, \mathbf{w} \in F$ y $\forall a \in F$ con

i.
$$\langle \mathbf{v}, \mathbf{v} \rangle > 0$$
 y $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Leftrightarrow \mathbf{v} = 0$
ii. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle^*$
iii. $\langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w} \rangle = \langle \mathbf{v}_1, \mathbf{w} \rangle + \langle \mathbf{v}_2, \mathbf{w} \rangle$ y $\langle \mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2 \rangle = \langle \mathbf{v}, \mathbf{w}_1 \rangle + \langle \mathbf{v}, \mathbf{w}_2 \rangle$
iv. $\langle a\mathbf{v}, \mathbf{w} \rangle = a \langle \mathbf{v}, \mathbf{w} \rangle$ y $\langle \mathbf{v}, a\mathbf{w} \rangle = a^* \langle \mathbf{v}, \mathbf{w} \rangle$

El producto interno es una función que toma dos elementos del espacio vectorial y asigna un elemento del campo, es decir,

$$\rho: V \times V \to F$$

Un **espacio vectorial euclídeo** es un espacio vectorial dotado con producto interno.

Ejemplo. \mathbb{R}^n y L_2 son espacios vectoriales euclídeos.

- Si $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ entonces $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$
- Si $x(t), y(t) \in L_2$ entonces $\langle x(t), y(t) \rangle = \int_{-\infty}^{\infty} x(t)y^{*}(t)dt$

El producto interno es una medida de similitud entre dos vectores!

Observación. Todo espacio vectorial euclídeo es también un espacio normado, con norma definida como $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

Ejemplo. L_2 es un espacio vectorial normado, con norma definida como

$$||x(t)||_2 = \sqrt{\int_{-\infty}^{\infty} x(t)x^*(t)dt} = \sqrt{\int_{-\infty}^{\infty} |x(t)|^2 dt}$$

Ejercicio. Demuestre que L_2 es un espacio vectorial.

Designaldad de Cauchy-Schwarz $||x+y||_2 \le ||x||_2 + ||y||_2$