Espaces préhilbertiens réels

Produit scalaire, inégalité de Cauchy-Schwarz

QCOP EPR.1

Soit $\left(E,\langle\cdot\,|\,\cdot\rangle\right)$ un espace préhilbertien réel. Soient $x,y\in E.$ Soit $\lambda\in\mathbb{R}.$

? (a) Exprimer, à l'aide des propriétés de $\langle \cdot | \cdot \rangle$, la quantité

$$\|\lambda x + y\|^2$$
.

(b) Déterminer, lorsque $x \neq 0_E$, le discriminant de la fonction polynomiale

$$t \longmapsto ||tx + y||^2$$
.

Montrer l'inégalité de Cauchy-Schwarz :

$$|\langle x | y \rangle| \leq ||x|| ||y||.$$

Montrer que

$$|\langle x | y \rangle| = ||x|| ||y|| \iff x \text{ et } y \text{ sont liés.}$$

QCOP EPR.2

Soit $n \in \mathbb{N}^*$.

- \blacksquare Quel est le produit scalaire usuel (canonique) $\langle \cdot | \cdot \rangle$ sur \mathbb{R}^n ?
- \blacksquare Écrire l'inégalité de Cauchy-Schwarz dans $(\mathbb{R}^n, \langle \cdot | \cdot \rangle)$.
- **%** Montrer que

$$\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \ \left(\sum_{k=1}^n x_k\right)^2 \leqslant n \sum_{k=1}^n x_k^2,$$

et préciser les cas d'égalité.

QCOP EPR.3

Soit $n \in \mathbb{N}$. On considère

$$\langle \cdot | \cdot \rangle : \left| \begin{array}{ccc} \mathsf{M}_n(\mathbb{R})^2 & \longrightarrow & \mathbb{R} \\ (A, B) & \longmapsto & \mathsf{Tr}(A^\top B). \end{array} \right.$$

- Montrer que $\langle \cdot | \cdot \rangle$ définit un produit scalaire sur $M_n(\mathbb{R})$.
- Écrire l'inégalité de Cauchy-Schwarz dans cet espace préhilbertien.
- **%** Montrer que

$$\forall M \in \mathsf{M}_n(\mathbb{R}), \ \mathsf{Tr}(M^2) \leqslant \mathsf{Tr}(M^\top M).$$

QCOP EPR.4

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel.

- \blacksquare Donner la définition de « $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E ».
- **Soient** $x, y \in E$. Montrer la formule de polarisation :

$$\langle x | y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}.$$

% Soit $u \in L(E)$. Soit $\lambda \in \mathbb{R}_+$ tel que

$$\forall x \in E, \quad ||u(x)|| = \lambda ||x||.$$

Montrer que

$$\forall x, y \in E, \quad \langle u(x) | u(y) \rangle = \lambda \langle x | y \rangle.$$

Orthogonalité, projection orthogonale

QCOP EPR.5

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N}^*$. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E. Soient $x, y \in E$.

- \nearrow (a) Exprimer les coordonnées de x dans \mathcal{B} .
 - (b) Même question si \mathcal{B} est supposée seulement orthogonale.
- **%** Exprimer $\langle x | y \rangle$ et ||x|| en fonction des $\langle x | e_i \rangle$ et $\langle y | e_i \rangle$ pour $i \in [1, n]$.

QCOP EPR.6

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel. Soit $k \in \mathbb{N}^*$. Soit $\mathcal{F} = (v_1, \dots, v_k) \in E^k$.

Montrer que

 \mathcal{F} est orthogonale $\implies \mathcal{F}$ est libre.

- Montrer que la réciproque est fausse.
- On suppose que

$$\begin{cases} k > \dim(E) \\ \forall i \in [1, k], \ v_i \neq 0_E. \end{cases}$$

La famille ${\mathcal F}$ peut-elle être orthogonale?

QCOP EPR.7

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel.

- Énoncer et démontrer le théorème de Pythagore.
- Dans le cas d'une famille de deux vecteurs, le théorème admet-il une réciproque?
- Soit F un sous-espace vectoriel de E de dimension finie. On note p_F la projection orthogonale sur F.

Soit $x \in E$.

- (a) Exprimer, en fonction de ||x|| et de $||p_F(x)||$, la distance de x à F.
- **(b)** Montrer que $\|\mathbf{p}_F(x)\| \leqslant \|x\|$.

QCOP EPR.8

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel.

Soit $x \in E$. Soit $a \in E \setminus \{0_E\}$.

On note p la projection orthogonale sur le sous-espace Vect(a).

■ Compléter :

$$p(x) \in \dots$$
 et $x - p(x) \in \dots$

🎤 À l'aide des caractérisations précédentes, et sans l'aide d'une formule générale, établir que

$$p(x) = \frac{\langle x \mid a \rangle}{\|a\|^2} a.$$

 \mathbf{z} Déterminer $d(x, Vect(a)^{\perp})$.

QCOP EPR.9

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel.

Soit F un sous-espace vectoriel de dimension finie $n \in \mathbb{N}^*$ de E.

On note p_F la projection orthogonale sur F.

- \blacksquare Définir l'application p_F.
- Soit $x \in E$. Soit (f_1, \dots, f_n) une base orthogonale de F.
 - (a) Exprimer $p_F(x)$ dans cette base.
 - (b) Même question lorsque la base est supposée orthonormée.
- \nearrow Soit $x \in E$.
 - (a) Définir la distance de x à F, notée d(x, F).
 - **(b)** Montrer que $d(x, F) = ||x p_F(x)||$.
- **Expliquer** le principe de l'algorithme de Gram-Schmidt.

On donnera en particulier la formule à retenir, que l'on expliquera à l'aide de la notion de projection orthogonale.