Dependencies Assignment

1. Considering the following relation, which of the following functional dependencies may hold? If the functional dependency cannot hold, explain what tuples cause the violation.

Α	В	С
10	b1	c1
10	b2	c2
11	b4	c1
12	b3	c4
13	b1	c1

a. $A \rightarrow B$

No, <10, b1>, <10, b2> violates the functional dependency.

b. $B \rightarrow C$

Yes the functional dependency holds for all tuples.

c. $C \rightarrow B$

No, <c1, b1>, <c1, b4> violates the functional dependency.

 $d. \ B \to A$

No, <b1, 10>, <b1, 13> violates the functional dependency.

e. $C \rightarrow A$

No, <c1, 10>, <c1, 11>, <c1, 13> violates the functional dependency.

2. Given a 1NF relation FIRST with attributes {A, B, C, D, E, F, G, H, I, J} and the functional dependencies as well as the dependency diagram as follows: Functional Dependencies: {AB \rightarrow C, A \rightarrow DE, B \rightarrow F, E \rightarrow D, F \rightarrow GH, D \rightarrow IJ}

Dependency Diagram:

a. What is the key for FIRST?AB

b. Normalize FIRST into 2NF

c. Normalize 2NF result form Part b) into 3NF

- 3. Repeat Question 2 for the following different set of functional dependencies. Functional Dependencies: $\{AB \rightarrow C, BD \rightarrow EF, AD \rightarrow GH, A \rightarrow I, H \rightarrow J\}$
 - a. What is the key of the relation?ABD
 - b. Normalize the relation into 2NF

c. Normalize the 2NF from Part b) into 3NF

4. Given a 1NF relation SECOND with attributes {A, B, C, D, E} and the functional and multivalued dependencies as well as the dependency diagram as follows:

Functional Dependencies: $\{AB \to C, C \to B\}$ Multivalued Dependencies: $\{C \to D, C \to E\}$

Dependency Diagram:

- a. What is the key for SECOND?
 ACDE or ABDE
- b. What is the highest normal form this relation is in?3NF
- c. Normalize the relation into BCNF

d. Normalize the result from Part c) into 4NF

- 5. Prove or disprove the following inference rules for functional/multivalued dependencies using the following interference rules:
 - (R0) $X \rightarrow XX$
 - (R1) if $Y \subseteq X$, then $X \to Y$
 - (R2) $X \rightarrow Y = XZ \rightarrow YZ$
 - $(R3) X \rightarrow Y, Y \rightarrow Z = X \rightarrow Z$
 - a. $X \rightarrow Y$ and $Z \subseteq Y$ and $W \subseteq Z = X \rightarrow W$ $Y \rightarrow Z$ (R1)

$$X \rightarrow Z$$
 (R3)

$$Z \rightarrow W$$
 (R1)

$$X \rightarrow W$$
 (R3)

b.
$$X \rightarrow Y$$
, $Z \rightarrow Y = X \rightarrow Z$

Disproof:

X	Y	Z
x1	y1	z1
x1	y1	z2

Relation satisfies $X \to Y$, but not $X \to Z$ because of $\langle x1, z1 \rangle$ and $\langle x1, z2 \rangle$.

c.
$$X \rightarrow Y$$
, $XY \rightarrow Z = X \rightarrow Z$

$$XX \rightarrow XY$$
 (R2)

$$XY \rightarrow Z$$

$$XX \rightarrow Z$$
 (R3)

$$X \rightarrow XX$$
 (R0)

$$X \rightarrow Z$$
 (R3)

d.
$$X \rightarrow \rightarrow Y = X \rightarrow Y$$

Disproof:

X	Υ
x1	y1
x2	y2

Relation satisfies $X \rightarrow Y$, but not $X \rightarrow Y$ because of x=1, y=1 and x=1, y=1.

e.
$$X \rightarrow Y$$
, $Z \rightarrow W = XZ \rightarrow YW$

$$XZ \rightarrow YZ$$
 (R2)

$$ZY \rightarrow WY$$
 (R2)

$$ZX \rightarrow WY$$
 (R3)

$$\mathsf{XZ} \to \mathsf{YW}$$