

GABARITO QUÍMICA

Questão 1

A série de Balmer é formada pelo conjunto de linhas no espectro dos átomos de hidrogênio com $n_1 = 2$. As linhas dessa série são observadas em 656 nm, 486 nm, 434 nm e 410 nm.

Assinale a alternativa que mais se aproxima do próximo comprimento de onda na série.

- **A**() 317 nm
- **B**() 337 nm
- C() 357 nm
- **D**() 377 nm
- $\mathbf{E}()$ 397 nm

Gabarito: E

Questão 2

O etanol é um componente renovável e de queima limpa que pode ser adicionado à gasolina. A combustão do etanol líquido libera $684\,\mathrm{kJ}$ por mol de etanol em pressão constante e $25\,\mathrm{^{\circ}C}$.

Assinale a alternativa que mais se aproxima da energia interna de combustão do etanol líquido em e 25 °C.

- $A() -684 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{B}(\)\ -679\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- $\mathbf{C}()$ $-639 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{D}(\) +679 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{E}(\) +684 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Gabarito: B

Questão 3

A cafeína, um estimulante do café e do chá, tem massa molar entre $100\,\mathrm{g\,mol}^{-1}$ e $200\,\mathrm{g\,mol}^{-1}$. A composição percentual em massa desse composto é igual a 49,48% de carbono, 5,19% de hidrogênio, 28,85% de nitrogênio e o restante de oxigênio.

Assinale a alternativa com a fórmula molecular da cafeína.

- \mathbf{A} () $C_4H_5N_2O$
- \mathbf{B} () $C_5H_7N_2O$
- \mathbf{C} () $C_8H_{12}N_3O_2$
- $D() C_8H_{10}N_4O_2$
- $\mathbf{E}(\)\ C_{10}H_{10}N_3O_2$

P

V /

Gabarito: D

Questão 4

Assinale a alternativa com o número de isômeros constitucionais com fórmula molecular C_5H_{10} .

- **A**() 8
- **B**() 9
- **C**() 10
- **D**() 11
- **E**() 12

Gabarito: C

Questão 5

Um nuclídeo tem átomos com 44 nêutrons, 42 prótons e 42 elétrons.

 $\bf Assinale$ a alternativa com a representação correta do nuclídeo.

- A() Molibdênio-44
- **B**() Molibdênio-86
- C() Rutênio-44
- $\mathbf{D}(\)$ Rutênio-86
- $\mathbf{E}(\)$ Paládio-86

Gabarito: B

Questão 6

O metal bário é produzido pela reação do metal alumínio com óxido de bário:

$$3\,BaO\left(s\right) + 2\,Al\left(s\right) \stackrel{\Delta}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} Al_2O_3(s) + 3\,Ba\left(s\right)$$

Considere as reações:

$$\begin{split} 2\,\mathrm{Ba}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g}) &\longrightarrow 2\,\mathrm{BaO}(\mathrm{s}) \quad \Delta H_\mathrm{r}^\circ = -1107\,\mathrm{kJ}\,\mathrm{mol}^{-1} \\ 2\,\mathrm{Al}(\mathrm{s}) + \frac{3}{2}\,\mathrm{O}_2(\mathrm{g}) &\longrightarrow \mathrm{Al}_2\mathrm{O}_3(\mathrm{s}) \quad \Delta H_\mathrm{r}^\circ = -1676\,\mathrm{kJ}\,\mathrm{mol}^{-1} \end{split}$$

Assinale a alternativa que mais se aproxima da entalpia de reação de produção de bário metálico com alumínio.

- \mathbf{A} () $-24 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{B}(\)\ -16\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- $C() -12 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{D}(\) +16 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{E}(\)\ +24\,\mathrm{kJ\,mol}^{-1}$

Questão 7

Gabarito: B

O "ar" na roupa espacial dos astronautas é, na verdade, oxigênio puro na pressão de 0,3 bar. Cada um dos dois tanques da roupa espacial tem o volume de $3980\,\mathrm{cm}^3$ e pressão inicial de $5860\,\mathrm{kPa}$. A temperatura do tanque é mantida em $16\,\mathrm{^{\circ}C}$.

Assinale a alternativa que mais se aproxima da massa de oxigênio contida nos tanques.

- **A**() 155 g
- **B**() 310 g
- **C**() 465 g
- **D**() 620 g
- **E**() 775 g

Gabarito: D

Questão 8

A testosterona é o principal hormônio sexual masculino e um esteroide anabolizante.

Testosterona

Assinale a alternativa com o número de átomos de hidrogênio na testosterona.

- **A**() 22
- **B**() 24
- **C**() 26
- **D**() 28
- $\mathbf{E}(\)\ 30$

Gabarito: D

Questão 9

A cada segundo, uma lâmpada emite 2.4×10^{21} fótons com comprimento de onda igual a 633 nm.

Assinale a alternativa que mais se aproxima da potência produzida pela lâmpada como radiação nesse comprimento de onda.

- **A**() 250 W
- $\mathbf{B}(\)\ 500\,\mathrm{W}$
- **C**() 750 W
- **D**() 1000 W
- **E**() 1250 W

Gabarito: C

Questão 10

Considere os dados em 25 °C.

	$C_3H_8(g)$	$\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	$-104\mathrm{kJ}\mathrm{mol}^{-1}$	$-286\mathrm{kJ}\mathrm{mol}^{-1}$	$-394\mathrm{kJ}\mathrm{mol}^{-1}$

Assinale a alternativa que mais se aproxima do volume de propano que deve ser queimado a $0\,^{\circ}\mathrm{C}$ e $1\,\mathrm{atm}$ para fornecer $350\,\mathrm{kJ}$ de calor.

- **A**() 3,1 L
- **B**() 3,5 L
- **C**() 4,1 L
- **D**() 4,5 L
- **E**() 5,1 L

Gabarito: B

Questão 11

A densidade do gás de um composto de boro e hidrogênio é $0.685\,\mathrm{g\,L^{-1}}$ em $200\,^{\circ}\mathrm{C}$, quando sua pressão é $730\,\mathrm{Torr.}$ O composto é formado por 78.1% de boro e 21.9% de hidrogênio em massa.

 $\bf Assinale$ a alternativa com a fórmula molecular do composto.

- $\mathbf{A}(\)$ BH₃
- $\mathbf{B}(\)\ \mathrm{BH}_4$
- \mathbf{C} () $\mathbf{B}_2\mathbf{H}_6$
- \mathbf{D} () B_2H_8
- $\mathbf{E}(\)\ \mathrm{B}_{2}\mathrm{H}_{10}$

Gabarito: C

Questão 12

Considere os compostos:

- 1. $CH_3CH_2CH_2OH$
- $2. \ \mathrm{CH_{3}CH_{2}CH_{2}CH_{2}COOH}$
- 3. CH₂CHCH₃
- 4. CH_3C_2Br

Assinale a alternativa com a classificação dos compostos, respectivamente.

- $\mathbf{A}\,(\)\,$ Álcool; ácido carboxílico; alceno; haleto orgânico.
- $\mathbf{B}\,(\,\,)\,$ Aldeído; ácido carboxílico; alcino; haleto orgânico.
- $\mathbf{C}\left(\ \right)$ Cetona; aldeído; alcino; haleto de arila.
- $\mathbf{D}\left(\ \right)$ Álcool; ácido carboxílico; alceno; haleto orgânico.
- E() Álcool; aldeído; alcano; peróxido orgânico.

Gabarito: A