EDCO3A ESTRUTURAS DE DADOS 1

Aula 07 - Tabelas Hash Profa Tamara Angélica Baldo

Material do Prof. Rafael G. Mantovani

Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia de Computação

Licença

Este trabalho está licenciado com uma Licença CC BY-NC-ND 4.0:

maiores informações:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt BR

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

Scope 0 float Ex: Tabela(s) de Símbolos (compilador) int int Symbol Table m int float scopes char int symbols x, y, m; p char * attributes char q, *p; Create . . . AddSymbol Scope 1 GetAttributes float float **x**, **y**; OpenScope **t; int CloseScope float Destroy . . . int ** int w, z, y, x; Scope 2 . . . int int int int

Tabela de Espalhamento

Como é feito o espalhamento?

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

		T
U	-	Tamara

1- Luiz

2 - Rafael

3 - Muriel

Tabela

0	Tamara
1	Luiz
2	Rafael
3	Muriel
4	
5	

Simples, funciona quando o universo de chaves (U) é razoavelmente pequeno.

Posição **K** aponta para o elemento com chave **K** Se o conjunto em **K** é vazio, então **T**[**K**] = NULL

Operações de modificação

· Operações de Modificação

Exercício 01

- Dado um conjunto S de itens formado por uma tabela T[0 ... M-1].
 Faça uma função em C para computar o elemento máximo de S.
- Qual o desempenho no pior caso ?

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

0	Tamara
1	Luiz
2	Rafael
3	Muriel
4	
5	

Endereçamento Aberto Problemas?

0	Tamara
1	Luiz
2	Rafael
3	Muriel
4	
5	

Endereçamento Aberto Problemas?

- se U é grande, consome muita memória

0	Tamara
1	Luiz
2	Rafael
3	Muriel
4	
5	

Endereçamento Aberto

Problemas?

- se U é grande, consome muita memória
 - chaves armazenadas < chaves totais (muitas posições nulas)

0	Tamara
1	Luiz
2	Rafael
3	Muriel
4	
5	

Endereçamento Aberto Problemas?

- se U é grande, consome muita memória
 - chaves armazenadas < chaves totais (muitas posições nulas)

Solução!

- reduzir o tamanho da tabela
- "Espalhar" as chaves

Tabela de Espalhamento

"Um elemento com a chave K **se espalha** até a posição h(K)" "h(K) é o valor hash de K

· Operações de Modificação

Tabela de Espalhamento

Colisão: duas ou mais chaves mapeadas para a mesma posição

Tabela de Espalhamento

Colisão: duas ou mais chaves mapeadas para a mesma posição

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

Resolução de Colisões

- A Endereçamento Aberto
- B Resolução por encadeamento

Resolução de Colisões

- A Endereçamento Aberto
- B Resolução por encadeamento

"Quando uma chave colide com outra, a colisão é resolvida encontrando-se uma entrada diferente, e disponível"

- Se h(k) está ocupada, verifica:

...,
$$h(k) + 1$$
, $h(k) + 2$, $h(k) + 3$, ...

- Sondagem linear

Exemplo: A2, A3, A5, B2, B5, A9, C2, B9

Tabela Hash de 10 espaços

Ex: A2, A3, A5, B2, B5, A9, C2, B9

A2
A3
A5

(a)

T

0	
1	
2	A2
3	A3
5	B2
5	A5
6	B5
7	
8	
9	A9

T

0	В9
1	
2	A2
3	A3
4	B2
5	A5
6	B5
7	C2
8	
9	A9

(b)

(c)

43

Ex: A2, A3, A5, B2, B5, A9, C2, B9

T		Desvantagen	n. GAI	ra "aarunan	nentos" dada	s não	
0		Desvanlagen	_	am espalhad		/s mac	В9
1			1			1	
2	A2		2	A2		2	A2
3	А3		3	A3		3	A3
4			4	B2		4	В2
5	A5		5	A5		5	A5
6			6	B5		6	B5
7			7			7	C2
8			8			8	
9			9	A9		9	Α9
	(a)			(b)			(c) 4

44

Alternativa: Sondagem quadrática

$$h(k) + i^2, h(k) - i^2$$
 para $i = 1, 2, ..., (M-1)/2$

Sequência de sondagens:

$$h(k)$$
, $h(k) + 1$, $h(k) - 1$, $h(k) + 4$, $h(k) - 4$, $h(k) + 9$, $h(k) - 9$, ...

Ex: A2, A3, A5, B2, B5, A9, C2, B9 \rightarrow Sondagem Quadrática

T

0	
1	
2	
3	
4	
5	
6	
7	
8	
8 9	

(a)

(b)

(c)

Resolução de Colisões

- A Endereçamento Aberto
- B Resolução por encadeamento

· Operações de Modificação

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

Funções Hash

Uma boa função deve:

- distribuir as chaves com igual probabilidade nas M posições
- na prática não se pode garantir, pois não temos ideia da distribuição de probabilidade das chaves
- usamos então heurísticas
 - A Método da divisão
 - **B** Método da multiplicação

Método da Divisão

Usa o resto da divisão de K por M:

$$h(k) = K \mod M$$

"Valores de M"

- * Evitar potência de 2
- * Preferência por **números primos**

Criar tabela Hash com M = 13, e inserir as chaves apresentadas abaixo. Use encadeamento para tratar das colisões.

$$k = 100$$

$$k = 6$$

$$k = 0$$

$$k = 17$$

$$k = 15$$

$$k = 4$$

$$k = 25$$

$$k = 63$$

$$k = 48$$

$$k = 96$$

$$k = 2$$

Método da Multiplicação

Cria a função hash em duas etapas:

1) primeiro, multiplica K por uma constante A

$$0 < A < 1 \rightarrow (K * A)$$

2) multiplica por M, e toma o piso do resultado:

$$h(K) = ground(M * ((K * A) mod 1))$$

- * Literatura sugere A = 0.618
- * Pegar a parte inteira de h(k)

Criar tabela Hash com M = 13 e A = 0.618, e inserir as chaves abaixo. Use encadeamento para tratar as colisões.

$$k = 100$$

$$k = 0$$

$$k = 4$$

$$k = 48$$

$$k = 40$$

$$k = 17$$

$$k = 25$$

$$k = 96$$

$$k = 6$$

$$k = 15$$

$$k = 63$$

$$k = 2$$

Comparar as tabelas resultantes dos exercícios 3 e 4.

Desenhe o conteúdo da tabela hash resultante da inserção de registros com as chaves: {A, G, U, D, E, S, L, I, C, H, P, R} nesta ordem, em uma tabela inicialmente vazia de tamanho 19 (dezenove), usando endereçamento aberto com hashing linear para a escolha de localizações alternativas. Use a função hash h(k) = k mod 19, para a k-ésima letra do alfabeto.

Roteiro

- 1 Introdução
- 2 Tabelas de Endereçamento Direto
- 3 Tabelas de Espalhamento
- 4 Resolução de colisões
- 5 Funções Hash
- 6 Referências

Referências sugeridas

[Cormen et al, 2018]

[Tenenbaum et al, 1995]

Referências sugeridas

[Ziviani, 2010]

[Drozdek, 2017]

Perguntas?