BÀI TẬP MÔN TOÁN RỜI RẠC

Phần 1. Logic mệnh đề và logic vị từ

Bài 1.1: Chứng minh các biểu thức sau là hằng đúng bằng hai cách (lập bảng chân trị và dùng luật logic):

a)
$$((P \to Q) \land P) \to Q$$

b)
$$P \wedge Q \rightarrow P$$

c)
$$\neg (P \land Q) \land P \rightarrow \neg Q$$

d)
$$(P \to (Q \land R)) \to ((P \to Q) \land (P \to R))$$

e)
$$((P \land Q) \leftrightarrow P) \rightarrow (P \rightarrow Q)$$

Cách 1: Dùng bảng chân trị

a)
$$((P \rightarrow Q) \land P) \rightarrow Q$$

P	Q	$P \to Q$	$(P \to Q) \wedge P$	Toàn biểu thức
T	Τ	Τ	${ m T}$	T
T	F	F	F	T
F	Т	${ m T}$	F	T
F	F	Τ	\mathbf{F}	T

⇒ Biểu thức luôn đúng.

b)
$$P \wedge Q \rightarrow P$$

Р	Q	$P \wedge Q$	Toàn biểu thức
Т	Т	Т	Τ
Т	F	\mathbf{F}	${ m T}$
F	Т	\mathbf{F}	${ m T}$
F	F	\mathbf{F}	${ m T}$

 \Rightarrow Biểu thức luôn đúng.

c)
$$\neg (P \land Q) \land P \rightarrow \neg Q$$

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg (P \land Q) \land P$	Toàn biểu thức
Т	Т	Т	F	F	Т
T	F	F	${ m T}$	${ m T}$	${ m T}$
F	Т	F	${ m T}$	\mathbf{F}	T
F	F	F	${ m T}$	\mathbf{F}	T

 \Rightarrow Biểu thức luôn đúng.

d)
$$(P \rightarrow (Q \land R)) \rightarrow ((P \rightarrow Q) \land (P \rightarrow R))$$

Р	Q	R	$Q \wedge R$	$P \to (Q \land R)$	$(P \rightarrow Q)$	$(P \rightarrow R)$
Т	Т	Т	Т	T	${ m T}$	T
T	Τ	F	F	F	T	F
T	F	Т	F	F	F	T
T	F	F	F	F	F	F
F	Τ	Т	Т	m T	${ m T}$	T
F	Τ	F	F	m T	${ m T}$	T
F	F	Т	F	${ m T}$	${ m T}$	T
F	F	F	F	T	Τ	Т

 \Rightarrow Biểu thức luôn đúng.

e)
$$((P \land Q) \leftrightarrow P) \rightarrow (P \rightarrow Q)$$

P	Q	$P \wedge Q$	$(P \land Q) \leftrightarrow P$	$P \rightarrow Q$	Toàn biểu thức
T	Т	Т	T	Т	T
T	F	F	F	F	T
F	Т	F	T	T	${ m T}$
F	F	F	${ m T}$	T	T

⇒ Biểu thức luôn đúng.

Cách 2: Dùng luật logic

a)

$$((P \to Q) \land P) \to Q$$
 áp dụng Modus Ponens

b)

$$P \wedge Q \to P \quad \mbox{(luật loại bỏ hội - conjunction elimination)}$$

c)

$$\begin{split} \neg(P \wedge Q) \wedge P &\equiv P \wedge (\neg P \vee \neg Q) \\ &\equiv (P \wedge \neg P) \vee (P \wedge \neg Q) \\ \Rightarrow \text{Biểu thức đúng } \Rightarrow \neg Q \end{split}$$

d)

$$\begin{split} P \rightarrow (Q \wedge R) &\equiv \neg P \vee (Q \wedge R) \\ \Rightarrow (\neg P \vee Q) \wedge (\neg P \vee R) \\ &\equiv (P \rightarrow Q) \wedge (P \rightarrow R) \end{split}$$

$$(P \land Q) \leftrightarrow P \Rightarrow$$
 chỉ đúng khi $P \to Q$ và $Q \to P$
$$\Rightarrow \text{Khi biểu thức đúng, thì } P \to Q$$

Bài 1.2a

Chứng minh mệnh đề sau là hằng đúng:

$$((X_1 \to X_2) \land (\neg X_3 \lor X_4) \land (X_1 \lor X_3)) \to (\neg X_2 \to X_4)$$

Giả sử:

- $(1) \quad X_1 \to X_2$
- (2) $\neg X_3 \lor X_4$
- (3) $X_1 \vee X_3$

Ta xét 2 trường hợp:

TH1: X_1 đúng. Từ (1) suy ra X_2 đúng. Vậy $\neg X_2$ sai \Rightarrow mệnh đề $\neg X_2 \to X_4$ đúng (do tiền đề sai).

TH2: X_1 sai. Từ (3) suy ra X_3 đúng. Khi đó (2) suy ra X_4 đúng. Do đó, $\neg X_2 \to X_4$ vẫn đúng.

Kết luận: Mệnh đề luôn đúng trong mọi trường hợp \Rightarrow là hằng đúng.

Bài 1.2b

Gọi:

- $\bullet~P$: An được thưởng cuối năm
- Q: An đi Đà Lạt
- \bullet R: An thăm Thiền Viện

Mệnh đề tương đương:

- (1) $P \rightarrow Q$
- (2) $Q \rightarrow R$
- $(3) \neg R$

Kết luân: $\therefore \neg P$

Lập luận:

- Từ (2) và (3): Modus Tollens $\Rightarrow \neg Q$
- Từ (1) và $\neg Q$: Modus Tollens $\Rightarrow \neg P$

Kết luận: Suy luận là hợp lệ.

Bài 1.3 – Dịch các câu thành biểu thức logic vị từ

- Gọi:
 - R(x): x là chim ruồi (hummingbird)
 - B(x): x là chim lớn (big bird)
 - C(x): x có màu sắc sặc sỡ (is colorful)
 - M(x): x sống bằng mật ong (lives on nectar)
 - G(x): x có màu xám (is gray)
 - S(x): x là chim nhỏ (is small)
 - a) Tất cả chim ruồi đều có màu sắc sặc sỡ: $\forall x \, (R(x) \to C(x))$
 - b) Không có con chim lớn nào sống bằng mật ong: $\forall x \, (B(x) \to \neg M(x))$
 - c) Các chim lớn không sống bằng mật ong đều có màu xám: $\forall x (B(x) \land \neg M(x) \to G(x))$
 - d) Chim ru
ồi đều nhỏ: $\forall x \, (R(x) \to S(x))$

Bài 1.4 – Dịch các câu thành biểu thức logic

Goi:

- L(x,y): x yêu y
- \bullet $Mai,\,Nam,\,Tun$: các hằng số đại diện cho người cụ thể
- a) Mọi người đều yêu Mai: $\forall x L(x, Mai)$
- b) Mọi người đều yêu một ai đó: $\forall x \, \exists y \, L(x,y)$
- c) Có một người mà tất cả mọi người đều yêu: $\exists y \, \forall x \, L(x,y)$
- d) Không có ai yêu tất cả mọi người: $\neg \exists x \, \forall y \, L(x,y)$ hoặc tương đương: $\forall x \, \exists y \, \neg L(x,y)$
- e) Có một người ế (họ không yêu ai hoặc không ai yêu họ): $\exists x \ [(\forall y \ \neg L(x,y)) \lor (\forall y \ \neg L(y,x))]$

- f) Có một người mà Nam không yêu: $\exists y \neg L(\text{Nam}, y)$
- g) Có đúng một người mà tất cả mọi người đều yêu: $\exists y \, [\forall x \, L(x,y) \land \forall z \, (\forall x \, L(x,z) \to z=y)]$
- h) Có đúng hai người mà Tuấn yêu: $\exists x\exists y \left[x\neq y \land L(\mathrm{Tuấn},x) \land L(\mathrm{Tuấn},y) \land \forall z \left(L(\mathrm{Tuấn},z) \to (z=x \lor z=y)\right)\right]$

Bài 1.5 – Kiểm tra tính hợp lệ của suy diễn

Cho các mệnh đề:

a)
$$(\forall x)(P(x) \to (Q(x) \land R(x)))$$

b)
$$\frac{(\forall x)(P(x) \land F(x))}{(\forall x)(R(x) \land F(x))}$$

Phân tích:

- Từ b): Với mọi x, ta có P(x) và F(x) đều đúng.
- Kết hợp với a): Vì $P(x) \to (Q(x) \land R(x))$, nên nếu P(x) đúng thì Q(x) và R(x) đều đúng.
- Do đó, với mọi x:

$$P(x) \wedge F(x) \Rightarrow Q(x) \wedge R(x)$$
, mà $F(x)$ đã có $\Rightarrow R(x) \wedge F(x)$

Kết luận: Suy diễn từ hai mệnh đề trên là hợp lệ. Mô hình là đúng.

Bài 1.6 – Chứng minh các cặp mệnh đề

a)
$$(P \to Q) \to R$$
 và $P \to (Q \to R)$ không tương đương

Phản ví dụ:

Xét bảng chân trị:

Р	Q	R	$(P \to Q) \to R$	$P \to (Q \to R)$
T	F	F	F	F
T	F	Т	${ m T}$	${ m T}$
T	Τ		\mathbf{F}	\mathbf{F}
F	Τ	F	${ m T}$	${ m T}$
F	Τ	\mathbf{T}	${ m T}$	${ m T}$

Dòng 4: $(P \to Q) \to R = T, P \to (Q \to R) = T$ Dòng 1: $(P \to Q) \to R = F, P \to (Q \to R) = F \to \text{C\'o}$ thể trùng nhau ở vài dòng, nhưng tổng thể **không luôn giống nhau** \Rightarrow **Không tương đương.**

b) $\neg P \leftrightarrow Q$ và $P \leftrightarrow \neg Q$ tương đương

Chứng minh: Xét lại bảng chân trị:

Р	Q	$\neg P$	$\neg P \leftrightarrow Q$	$P \leftrightarrow \neg Q$
Т	Т	F	F	F
Τ	F	F	${ m T}$	${ m T}$
F	Τ	Τ	${ m T}$	${ m T}$
F	F	${ m T}$	F	\mathbf{F}

 \Rightarrow Hai biểu thức có giá trị giống nhau ở mọi dòng \Rightarrow $\mathbf{Tương}$ đương.

_

c) $\neg (P \leftrightarrow Q)$ và $\neg P \leftrightarrow Q$ tương đương

Phân tích:

- $\neg(P\leftrightarrow Q)$: Hai mệnh đề khác nhau về giá trị chân trị. - $\neg P\leftrightarrow Q$: Tương đương logic giữa phủ định P và Q.

Xét bảng chân trị:

P	Q	$P \leftrightarrow Q$	$\neg(P \leftrightarrow Q)$	$\neg P \leftrightarrow Q$
Т	Т	Т	F	F
T	F	\mathbf{F}	${ m T}$	$^{\mathrm{T}}$
F	Т	F	${ m T}$	Γ
F	F	${ m T}$	\mathbf{F}	\mathbf{F}

 \Rightarrow Hai biểu thức **có cùng giá trị** ở mọi dòng \Rightarrow **Tương đương.**

_

d) $\neg \exists x \forall y P(x,y)$ và $\forall x \exists y \neg P(x,y)$ tương đương

Dùng luật phủ định lượng từ:

$$\neg \exists x \forall y P(x, y) \equiv \forall x \neg \forall y P(x, y) \equiv \forall x \exists y \neg P(x, y)$$

 \Rightarrow Tương đương.

e) $(\forall x P(x)) \land A$ và $\forall x (P(x) \land A)$ tương đương (A là mệnh đề không chứa lượng từ)

Giải thích:

- Vế trái: A độc lập, không phụ thuộc vào x. - Vế phải: A nằm trong phạm vi của lượng từ $\forall x$, nhưng vì A không phụ thuộc x, nên có thể đưa ra ngoài.

$$\forall x (P(x) \land A) \equiv (\forall x P(x)) \land A$$

 \Rightarrow Tương đương.

_

f) $(\exists x P(x)) \land A$ và $\exists x (P(x) \land A)$ tương đương (A là mệnh đề không chứa lượng từ)

Giải thích:

- Vế trái: P(x) đúng với một giá trị x, và A đúng. - Vế phải: Tìm được một x sao cho P(x) đúng và A cũng đúng. Vì A đúng với mọi x, điều kiện là như nhau.

$$(\exists x P(x)) \land A \equiv \exists x (P(x) \land A)$$

 \Rightarrow Tương đương.

Bài 1.7

- a) Suy luận dưới đây có đúng không?
 - Giả thuyết:
- $(1) \quad (\neg X_1 \lor X_2) \to X_3$
- $(2) \quad X_3 \to (X_4 \vee X_5)$
- (3) $\neg X_4 \wedge \neg X_6$
- $(4) \quad \neg X_6 \rightarrow \neg X_5$
- Kết luận cần chứng minh: X_1

Diễn giải suy luận:

- Từ (3): $\neg X_4$ và $\neg X_6$
- Từ (4) và $\neg X_6 \Rightarrow \neg X_5$
- Vây: $\neg X_4 \land \neg X_5 \Rightarrow \neg (X_4 \lor X_5)$
- Do đó: phủ định của hệ quả trong (2), nên $X_3 \to (X_4 \vee X_5)$ là sai nếu X_3 là đúng
- \bullet Mệnh đề kéo theo chỉ sai khi mệnh đề đầu đúng và mệnh đề sau sai $\Rightarrow X_3 = {\rm true}$
- Từ (1): để $X_3 =$ true thì $(\neg X_1 \lor X_2)$ phải là true, hoặc mệnh đề kéo theo vô điều kiện
- Nhưng nếu $(\neg X_1 \lor X_2)$ là false, thì kéo theo bị sai \Rightarrow mâu thuẫn
- Giả sử $X_2=$ false, để $(\neg X_1 \vee X_2)=$ true thì $\neg X_1=$ true $\Rightarrow X_1=$ false
- Nhưng cuối cùng cần chứng minh $X_1={\rm true}\Rightarrow {\rm mâu}\ {\rm thu} \tilde{\rm an}\Rightarrow {\bf không}$ chứng minh được

Kết luận: Suy luận **không hợp lệ** – ta không thể suy ra X_1 từ các giả thiết đã cho.

_

b) Dùng mô hình suy diễn, kiểm tra mệnh đề sau:

$$((P \to ((Q \lor R) \land S)) \land P) \to ((Q \lor R) \land S)$$

Phân tích:

- Giả sử mệnh đề bên trái là đúng:
 - $P \rightarrow ((Q \vee R) \wedge S)$ là đúng
 - -P đúng
- Khi đó, từ P và mệnh đề kéo theo, ta suy ra $((Q \vee R) \wedge S)$ là đúng.

Vì vậy, toàn bộ mệnh đề là một hệ quả lôgic đúng. Kết luận: Biểu thức là hằng đúng. Chứng minh bằng suy diễn:

- (1) $P \to ((Q \lor R) \land S)$
- (2) I
- (3) Từ (1) và (2): suy ra $((Q\vee R)\wedge S)$
- (4) Vậy toàn mệnh đề đúng.