

IT.2407 - IoT and Cellular Network

TD La chaîne de transmission numérique

GUO Xiaofan

Contents

Problem 1: Single carrier modulation			. 2
-	1.	Demodulation the signal to find back	. 2
2	2.	The processing of the received signal	. 3
ć	3.	Indicate the duration of the symbols	. 4
2	4.	Name of the song	. 5
4. Name of the song		. 5	
-	1.	Find the spacing.	. 5
4	2.	Find the data rate	. 6
ć	3.	Find the 16QAM symbols transmitted	. 6
2	4.	Name of the song	. 7

Problem 1: Single carrier modulation

1. Demodulation the signal to find back.

1) The form of the modulated signal is:

$$y(t) = \sqrt{SNR}[A_k \cos(2\pi f_0 t) - B_k \sin(2\pi f_0 t)] + Noise$$

$$A_k = A\cos(\varphi), the \ inphase \ component$$

$$B_k = A\sin(\varphi), the \ quadrature \ component$$

A - Amplitude

φ – the phase determined by the 16QAM constellation diagram

2)

$$A_k: y(t) * 2\cos(2\pi f_0 t)$$

$$ightharpoonup \cos(2\pi f_0 t) * \cos(2\pi f_0 t) = \frac{1}{2} [\cos 0 + \cos(4\pi f_0 t)] = \frac{1}{2} [1 + \cos(4\pi f_0 t)]$$

$$ightharpoonup \sin(2\pi f_0 t) * \cos(2\pi f_0 t) = \frac{1}{2} [\sin(4\pi f_0 t)]$$

Then,

$$y(t) * 2\cos(2\pi f_0 t) = \sqrt{SNR} \{A_k [1 + \cos(4\pi f_0 t)] - B_k \sin(4\pi f_0 t)\} + N$$

Remove high-frequency $(\cos(4\pi f_0 t), \sin(4\pi f_0 t))$ components with a low-pass filter (with a frequency $\frac{1}{duration\ of\ a\ symbol}$), to get $\sqrt{SNR}*A_k$.

3)

$$B_k$$
: $y(t) * [-2\sin(2\pi f_0 t)]$

$$ightharpoonup \cos(2\pi f_0 t) * \sin(2\pi f_0 t) = \frac{1}{2} [\sin(4\pi f_0 t)]$$

$$ightharpoonup \sin(2\pi f_0 t) * \sin(2\pi f_0 t) = \frac{1}{2} [1 - \cos(4\pi f_0 t)]$$
 Then,

 $y(t)*[-2\sin(2\pi f_0t)] = \sqrt{SNR} \left\{ -A_k \sin(4\pi f_0t) + B_k \left[1 - \cos(4\pi f_0t) \right] \right\} + N$ Remove high-frequency $(\cos(4\pi f_0t), \sin(4\pi f_0t))$ components with a low-pass filter (with a frequency $\frac{1}{duration\ of\ a\ symbol}$), to get $\sqrt{SNR}*B_k$.

- 4) Based on $A_k = Acos(\varphi)$, $B_k = Asin(\varphi)$, can get A and φ .
- 2. The processing of the received signal.

In-phase Component Processing Flow

- Receiving the Signal: receive the signal transmitted at a carrier frequency of 800 MHz.
- 2) Spectrum Analysis: Perform spectrum analysis on the received signal, finding that the signal has energy distributed around 0 GHz and 1.6 GHz (2 * 800 MHz).
- 3) Multiplying the Signal by $2\cos(2\pi f_0 t)$: To extract the in-phase component A_k , multiply the signal by $2\cos(2\pi f_0 t)$. This generates a new signal containing components of the original signal and a high-frequency component.
- 4) Low-pass Filtering: Pass the product signal through a low-pass filter to remove high-frequency components around 1.6 GHz, retaining only the baseband signal. After filtering, the time-domain signal becomes clearer, mainly containing low-frequency oscillations representing different binary symbols and a small amount of noise.
- 5) Reading A_k : In the time-domain signal, read the in-phase component A_k .

These values correspond to the in-phase component of the original 16QAM modulated signal.

Quadrature Component Processing Flow

- 1) Multiplying the Signal by $-2\sin(2\pi f_0t)$: To extract the quadrature component B_k , multiply the signal by $-2\sin(2\pi f_0t)$. This generates a new signal containing components of the original signal and a high-frequency component.
- 2) Low-pass Filtering: Pass the product signal through a low-pass filter to remove high-frequency components around 1.6 GHz, retaining only the baseband signal. After filtering, the time-domain signal becomes clearer, mainly containing low-frequency oscillations representing different binary symbols and a small amount of noise.
- 3) Reading B_k : In the time-domain signal, read the quadrature component B_k . These values correspond to the quadrature component of the original 16QAM modulated signal.
- 3. Indicate the duration of the symbols.

(-1, 3) -> 0100

 $(1, 1) \rightarrow 1101$

(-1, -1) -> 0111

(3, 1) -> 1001

(-3, -3) -> 0010

```
(-3, 3) -> 0000
```

$$(-1, -1) -> 0111$$

$$(-1, -1) -> 0111$$

$$(-1, -3) -> 0110$$

$$(-3, 1) -> 0001$$

$$(-1, -1) -> 0111$$

$$(3, 1) -> 1001$$

4. Name of the song.

Problem 2: OFDM signal

1. Find the spacing.

Between two neighbours' subcarriers:

- $ightharpoonup \Delta f = \frac{1}{T}$, T is the duration of an OFDM symbol transmitted.
- \triangleright N = 128, the number of the subcarriers.

$$ightharpoonup T = \frac{N}{FS}$$

$$ightharpoonup \Delta f = \frac{1}{T} = \frac{Fs}{N} = \frac{1.92 \times 10^6}{128} = 15 kHz$$

2. Find the data rate.

1) For using 32AQM, and the message occupies only 20 subcarriers:

$$f_s = \frac{1}{T_s} = 15k \ Baud$$

- 2) Information bits per symbol = $20 * 5 * \frac{4}{5} = 80 \ bits/symbol$
- 3) $R_{data} = f_s * information bits per symbol = 15000 * 80 = 1.2 Mb/s$
- 3. Find the 16QAM symbols transmitted.
 - (-1, -3) > 01010
 - (-3, -1) -> 01111
 - (-3, 3) -> 01100
 - (-1, -5) -> 00011
 - (-3, 3) > 01100
 - $(1, 3) \rightarrow 11000$
 - (-3, 3) -> 01100
 - (5, -1) -> 10111
 - (-5, 1) -> 00101
 - (-3, 5) -> 00000
 - (-1, 1) -> 01001
 - (-1, -5) -> 00011
 - (-3, 3) -> 01100
 - $(1, 3) \rightarrow 11000$
 - (-3, 3) -> 01100
 - (3, -3) -> 11110
 - (-3, 3) ->01100

```
(3, 1) -> 11101
```

(-3, 3) ->01100

(-1, -3) -> 01010

4. Name of the song.

