Problem Statement: Given a set of attributes for an Individual, determine if a credit line should be extended to them. If so, what should the repayment terms be in business recommendations?

# Importing libraries / Read data¶ ¶

```
In [235]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [236]:
import re
In [237]:
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
In [238]:
import warnings
warnings.filterwarnings('ignore')
In [239]:
df = pd.read_csv('LoanTap.csv')
In [240]:
df1 = df.copy()
In [241]:
pd.set_option('display.max_rows', 500)
pd.set option('display.max columns', 500)
pd.set_option('display.width', 1000)
```

# 1. Exploratory Data Analysis

# Shape of the data

```
In [242]:
df.shape
Out[242]:
(396030, 27)
```

# Number and data types of variables

## In [243]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 396030 entries, 0 to 396029
Data columns (total 27 columns):

| #                             | Column                          | Non-Null Count  | Dtype     |  |  |  |
|-------------------------------|---------------------------------|-----------------|-----------|--|--|--|
| 0                             | loan amnt                       | 396030 non-null | l float64 |  |  |  |
| 1                             | term                            | 396030 non-null |           |  |  |  |
| 2                             | int_rate                        | 396030 non-null | _         |  |  |  |
| 3                             | installment                     | 396030 non-null |           |  |  |  |
| 4                             | grade                           | 396030 non-null |           |  |  |  |
| 5                             | sub grade                       | 396030 non-null | 3         |  |  |  |
| 6                             | emp_title                       | 373103 non-null | _         |  |  |  |
| 7                             | emp_length                      | 377729 non-null | _         |  |  |  |
| 8                             | home_ownership                  | 396030 non-null | _         |  |  |  |
| 9                             | annual_inc                      | 396030 non-null | 3         |  |  |  |
| 10                            | verification_status             | 396030 non-null |           |  |  |  |
| 11                            | issue_d                         | 396030 non-null | 3         |  |  |  |
| 12                            | loan_status                     | 396030 non-null | _         |  |  |  |
| 13                            | _<br>purpose                    | 396030 non-null | _         |  |  |  |
| 14                            | title                           | 394275 non-null | _         |  |  |  |
| 15                            | dti                             | 396030 non-null | _         |  |  |  |
| 16                            | earliest_cr_line                | 396030 non-null | l object  |  |  |  |
| 17                            | open acc                        | 396030 non-null | l float64 |  |  |  |
| 18                            | pub_rec                         | 396030 non-null |           |  |  |  |
| 19                            | revol_bal                       | 396030 non-null | l float64 |  |  |  |
| 20                            | revol_util                      | 395754 non-null | l float64 |  |  |  |
| 21                            | total_acc                       | 396030 non-null | l float64 |  |  |  |
| 22                            | initial_list_status             | 396030 non-null | l object  |  |  |  |
| 23                            | application_type                | 396030 non-null | l object  |  |  |  |
| 24                            | mort_acc                        | 358235 non-null | l float64 |  |  |  |
| 25                            | <pre>pub_rec_bankruptcies</pre> | 395495 non-null | l float64 |  |  |  |
| 26                            | address                         | 396030 non-null | l object  |  |  |  |
| Hypes: float64(12) object(15) |                                 |                 |           |  |  |  |

dtypes: float64(12), object(15)

memory usage: 81.6+ MB

#### In [244]:

df.head()

#### Out[244]:

|   | loan_amnt | term         | int_rate | installment | grade | sub_grade | emp_title                     | emp_length | hom |
|---|-----------|--------------|----------|-------------|-------|-----------|-------------------------------|------------|-----|
| 0 | 10000.0   | 36<br>months | 11.44    | 329.48      | В     | В4        | Marketing                     | 10+ years  |     |
| 1 | 8000.0    | 36<br>months | 11.99    | 265.68      | В     | B5        | Credit<br>analyst             | 4 years    |     |
| 2 | 15600.0   | 36<br>months | 10.49    | 506.97      | В     | ВЗ        | Statistician                  | < 1 year   |     |
| 3 | 7200.0    | 36<br>months | 6.49     | 220.65      | Α     | A2        | Client<br>Advocate            | 6 years    |     |
| 4 | 24375.0   | 60<br>months | 17.27    | 609.33      | С     | C5        | Destiny<br>Management<br>Inc. | 9 years    |     |
| 4 |           |              |          |             |       |           |                               |            | •   |

### In [245]:

df['loan\_status'].value\_counts()

## Out[245]:

Fully Paid 318357 Charged Off 77673

Name: loan\_status, dtype: int64

# **Five point summary (Statistical summary)**

### In [246]:

#Categorical variables and numerical variables
numeric\_df = df.select\_dtypes(include=[np.number])
categorical\_df = df.select\_dtypes(exclude=[np.number])

# In [247]:

numeric\_df.describe()

# Out[247]:

|       | loan_amnt     | int_rate      | installment   | annual_inc   | dti           | open_              |
|-------|---------------|---------------|---------------|--------------|---------------|--------------------|
| count | 396030.000000 | 396030.000000 | 396030.000000 | 3.960300e+05 | 396030.000000 | 396030.000         |
| mean  | 14113.888089  | 13.639400     | 431.849698    | 7.420318e+04 | 17.379514     | 11.31 <sup>-</sup> |
| std   | 8357.441341   | 4.472157      | 250.727790    | 6.163762e+04 | 18.019092     | 5.137              |
| min   | 500.000000    | 5.320000      | 16.080000     | 0.000000e+00 | 0.000000      | 0.000              |
| 25%   | 8000.000000   | 10.490000     | 250.330000    | 4.500000e+04 | 11.280000     | 8.000              |
| 50%   | 12000.000000  | 13.330000     | 375.430000    | 6.400000e+04 | 16.910000     | 10.000             |
| 75%   | 20000.000000  | 16.490000     | 567.300000    | 9.000000e+04 | 22.980000     | 14.000             |
| max   | 40000.000000  | 30.990000     | 1533.810000   | 8.706582e+06 | 9999.000000   | 90.000             |
| 4     |               |               |               |              |               | <b>•</b>           |

# In [248]:

categorical\_df.describe()

# Out[248]:

|        | term         | grade  | sub_grade | emp_title | emp_length | home_ownership | verification_stat |
|--------|--------------|--------|-----------|-----------|------------|----------------|-------------------|
| count  | 396030       | 396030 | 396030    | 373103    | 377729     | 396030         | 3960              |
| unique | 2            | 7      | 35        | 173105    | 11         | 6              |                   |
| top    | 36<br>months | В      | ВЗ        | Teacher   | 10+ years  | MORTGAGE       | Verifi            |
| freq   | 302005       | 116018 | 26655     | 4389      | 126041     | 198348         | 1395              |
| 4      |              |        |           |           |            |                | <b>&gt;</b>       |

# Missing values

#### In [249]:

df.isnull().sum()

### Out[249]:

| loan_amnt                       | 0     |
|---------------------------------|-------|
| term                            | 0     |
| int_rate                        | 0     |
| installment                     | 0     |
| grade                           | 0     |
| sub_grade                       | 0     |
| emp_title                       | 22927 |
| emp_length                      | 18301 |
| home_ownership                  | 0     |
| annual_inc                      | 0     |
| verification_status             | 0     |
| issue_d                         | 0     |
| loan_status                     | 0     |
| purpose                         | 0     |
| title                           | 1755  |
| dti                             | 0     |
| earliest_cr_line                | 0     |
| open_acc                        | 0     |
| pub_rec                         | 0     |
| revol_bal                       | 0     |
| revol_util                      | 276   |
| total_acc                       | 0     |
| initial_list_status             | 0     |
| application_type                | 0     |
| mort_acc                        | 37795 |
| <pre>pub_rec_bankruptcies</pre> | 535   |
| address                         | 0     |
| dtype: int64                    |       |

# **Observations**

- There are 396030 records with 27 features.
- 12 features are of type float, 15 features are of type object
- · There are null values in the dataset

Following columns have the missing values:

- emp\_title
- · emp\_length
- title
- · revol\_util
- mort\_acc
- pub\_rec\_bankruptcies
- Mean and Standard deviation varies for almost all numerical variables, may be due to the presence of outliers in it
- Fully paid customers are more compared to Charged off in loan\_status feature (target)

# Non-Graphical Analysis: Value counts and unique attributes

#### In [250]:

```
# number of unique values for categorcal vairbales
for col in categorical_df:
    print(f"{col:20}: {categorical_df[col].nunique()}")
```

term : 2 grade : 7 : 35 sub\_grade : 173105 emp\_title emp\_length emp\_length : 11
home\_ownership : 6 verification\_status : 3 issue\_d : 115
loan\_status : 2
purpose : 14
title title : 48817 earliest\_cr\_line : 684 initial\_list\_status : 2 application\_type : 3 : 393700 address

### In [251]:

```
cat_unwanted = ('emp_title', 'issue_d', 'title', 'earliest_cr_line', 'address')
for column in categorical_df:
    if column not in cat_unwanted:
        print(categorical_df[column].value_counts().sort_values(ascending = False))
        print('\n')
```

```
36 months
              302005
             94025
 60 months
Name: term, dtype: int64
В
     116018
C
     105987
Α
      64187
D
      63524
Ε
      31488
F
      11772
G
       3054
Name: grade, dtype: int64
В3
      26655
В4
      25601
C1
      23662
C2
      22580
      22495
В2
В5
      22085
C3
      21221
C4
      20280
В1
      19182
Α5
      18526
C5
      18244
D1
      15993
Α4
      15789
D2
      13951
D3
      12223
D4
      11657
Α3
      10576
Α1
       9729
D5
       9700
Α2
       9567
       7917
E1
E2
       7431
E3
       6207
E4
       5361
E5
       4572
F1
       3536
F2
       2766
F3
       2286
F4
       1787
F5
       1397
G1
       1058
        754
G2
G3
        552
G4
        374
        316
G5
Name: sub_grade, dtype: int64
10+ years
             126041
2 years
              35827
< 1 year
              31725
3 years
              31665
5 years
              26495
1 year
              25882
```

4 years

6 years

23952 20841 7 years 20819 8 years 19168 9 years 15314

Name: emp\_length, dtype: int64

MORTGAGE 198348
RENT 159790
OWN 37746
OTHER 112
NONE 31
ANY 3

Name: home\_ownership, dtype: int64

Verified 139563 Source Verified 131385 Not Verified 125082

Name: verification\_status, dtype: int64

Fully Paid 318357 Charged Off 77673

Name: loan\_status, dtype: int64

debt\_consolidation 234507 credit\_card 83019 home\_improvement 24030 other 21185 major\_purchase 8790 small\_business 5701 car 4697 4196 medical 2854 moving vacation 2452 house 2201 wedding 1812 renewable\_energy 329 educational Name: purpose, dtype: int64

f 238066 w 157964

Name: initial\_list\_status, dtype: int64

INDIVIDUAL 395319 JOINT 425 DIRECT\_PAY 286

Name: application\_type, dtype: int64

# **Univariate analysis**

# For continuous variable(s): Boxplot, Distplot for univariate analysis

In [252]:

#numeric\_df.columns

#### In [253]:

```
fig, axs = plt.subplots(6, 2, figsize=(10, 10))

sns.boxplot(data=numeric_df, x="loan_amnt", color="skyblue", ax=axs[0, 0])
sns.boxplot(data=numeric_df, x="int_rate", color="olive", ax=axs[0, 1])
sns.boxplot(data=numeric_df, x="installment", color="gold", ax=axs[1, 0])
sns.boxplot(data=numeric_df, x="annual_inc", color="teal", ax=axs[1, 1])
sns.boxplot(data=numeric_df, x="dti", color="red", ax=axs[2, 0])
sns.boxplot(data=numeric_df, x="open_acc", color="green", ax=axs[2, 1])

sns.boxplot(data=numeric_df, x="revol_bal", color="olive", ax=axs[3, 1])
sns.boxplot(data=numeric_df, x="revol_util", color="gold", ax=axs[4, 0])
sns.boxplot(data=numeric_df, x="total_acc", color="teal", ax=axs[4, 1])
sns.boxplot(data=numeric_df, x="mort_acc", color="red", ax=axs[5, 0])
sns.boxplot(data=numeric_df, x="mort_acc", color="red", ax=axs[5, 0])
sns.boxplot(data=numeric_df, x="pub_rec_bankruptcies", color="green", ax=axs[5, 1])
```

#### Out[253]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1a810fece50>



# Histogram with distribution curve

#### In [254]:

```
fig, axs = plt.subplots(6, 2, figsize=(10, 10))

sns.histplot(data=numeric_df, x="loan_amnt", color="skyblue", ax=axs[0, 0])
sns.histplot(data=numeric_df, x="int_rate", color="olive", ax=axs[0, 1])
sns.histplot(data=numeric_df, x="installment", color="gold", ax=axs[1, 0])
sns.histplot(data=numeric_df, x="annual_inc", color="teal", ax=axs[1, 1])
sns.histplot(data=numeric_df, x="dti", color="red", ax=axs[2, 0])
sns.histplot(data=numeric_df, x="open_acc", color="green", ax=axs[2, 1])

sns.histplot(data=numeric_df, x="pub_rec", color="skyblue", ax=axs[3, 0])
sns.histplot(data=numeric_df, x="revol_bal", color="olive", ax=axs[3, 1])
sns.histplot(data=numeric_df, x="revol_util", color="gold", ax=axs[4, 0])
sns.histplot(data=numeric_df, x="total_acc", color="teal", ax=axs[4, 1])
sns.histplot(data=numeric_df, x="mort_acc", color="red", ax=axs[5, 0])
sns.histplot(data=numeric_df, x="pub_rec_bankruptcies", color="green", ax=axs[5, 1])
```

#### Out[254]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1a81151b5e0>



# For categorical variable(s): countplot

### In [255]:

```
cat_unwanted = ('emp_title', 'issue_d', 'title', 'earliest_cr_line', 'address')
for col in categorical_df:
    if col not in cat_unwanted:
        plt.figure(figsize=(14,4))
        sns.countplot(data=categorical_df, x=col)
        plt.show()
```





# **Bivariate Analysis**

#### In [ ]:

```
# Continuos vs Continuous - Scatter plot/Heatmaps
```

#### In [256]:

```
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(method='spearman'), annot=True, cmap='viridis')
plt.show()
```



#### In [ ]:

# Categorical attributes Bivariate analysis with target variable

### In [257]:

```
cat_unwanted = ('emp_title', 'issue_d', 'title', 'earliest_cr_line', 'address')
for column in categorical_df:
    if column not in cat_unwanted:
        sns.countplot(data=categorical_df, x=column, hue='loan_status')
        plt.show()
```





















# **Data Preprocessing**

# **Duplicate value check**

```
In [258]:
df.duplicated().sum()
Out[258]:
0
In [ ]:
# There are no duplicate rows present in the dataset.
```

# Simple Feature Engineering

```
In [259]:
```

```
df['pub_rec'] = [1 if x > 1.0 else 0 for x in df['pub_rec']]
df['mort acc'] = [1 if x > 1.0 else 0 for x in df['mort acc']]
df['pub_rec_bankruptcies'] = [1 if x > 1.0 else 0 for x in df['pub_rec_bankruptcies']]
```

## Missing value treatment

```
In [260]:
```

```
df.isnull().sum()
Out[260]:
loan_amnt
                             0
                             0
term
int_rate
                             0
                             0
installment
                             0
grade
                             0
sub_grade
                         22927
emp_title
emp_length
                         18301
home_ownership
                             0
annual inc
                             0
verification_status
                             0
issue d
                             0
loan_status
                             0
purpose
                             0
title
                          1755
dti
                             0
earliest_cr_line
                             0
open_acc
                             0
                             0
pub_rec
revol_bal
                             0
revol_util
                           276
total acc
                             0
initial list status
                             0
application_type
                             0
mort_acc
                             0
                             0
pub_rec_bankruptcies
address
                             0
dtype: int64
In [261]:
df['emp_title'] = df['emp_title'].fillna("unknown_emp_title")
```

```
df['emp_length'] = df['emp_length'].fillna("unknown_emp_length")
df['title'] = df['mort_acc'].fillna("unknown_title")
df['revol_util'] = df['revol_util'].fillna(0.0)
```

```
In [262]:
```

```
df.shape
Out[262]:
(396030, 27)
```

### **Outlier treatment**

```
In [263]:
```

```
#df[df['annual_inc'] >= 30000]
```

Annual income shouldn't be less than 30,000. So let's remove all the rows where income < 30,000. Outliers are removed using iqr method.

```
In [264]:
```

```
print(f"Shape before: {df.shape}")
df = df[df['annual_inc'] >= 30000]
print(f"Shape after: {df.shape}")

Shape before: (396030, 27)
Shape after: (373057, 27)

In [265]:
#df.skew()
```

#### In [266]:

```
def check_outliers(num_columns, df):
    # check for outliers
    for col in num_columns:
        q1 = np.percentile(df[col], 25)
        q3 = np.percentile(df[col], 75)
        iqr = q3-q1
        outliers = len(df) - len(df[(df[col]>=(q1-1.5*iqr)) & (df[col]<=(q3+1.5*iqr))])
        print(f"{col:20}: {round(outliers*100/len(df), 6)}")</pre>
check_outliers(numeric_df.columns, df)
```

loan\_amnt : 0.051199 int rate : 0.392969 installment : 2.76124 annual\_inc : 4.876199 dti : 0.061653 open\_acc : 2.728001 pub rec : 2.046604 revol\_bal : 5.245579 revol\_util : 0.003217 : 1.559279 total\_acc mort acc : 0.0 pub\_rec\_bankruptcies: 0.589722

#### In [267]:

```
# remove outliers using IQR method
print(f"Shape before: {df.shape}")
for col in numeric_df.columns:
    q1 = np.percentile(df[col], 25)
    q3 = np.percentile(df[col], 75)
    iqr = q3-q1
    df = df[(df[col] >= (q1-1.5*iqr)) & (df[col] <= (q3+1.5*iqr))]
print(f"Shape after: {df.shape}")</pre>
```

Shape before: (373057, 27) Shape after: (309469, 27)

## Feature engineering

#### In [268]:

```
def get_term_month(text):
    """extract the month from term"""
    nums = re.findall("[0-9]+", text)
    if len(nums)>0:
        return nums[0]
    return 0
def pre_emp_title(text):
    """Pre-process emp_title"""
    text = str(text).lower()
    text = re.sub("[^a-z ]", " ", text)
    text = re.sub(" +", " ", text)
    return text.strip()
```

#### In [269]:

```
df['term'] = df['term'].apply(get term month)
df['emp_title'] = df['emp_title'].apply(pre_emp_title)
df['home_ownership'] = df['home_ownership'].apply(pre_emp_title)
```

#### In [270]:

```
# get PIN and city code from the address
def get_pin(text):
    text = str(text).split(",")[-1]
    pin = re.findall("[0-9]+", text)
    if len(pin)>0:
        return pin[0]
    return 0
def get_city_code(text):
    text = str(text).split(",")[-1]
    res = re.findall("[a-z]+", text)
    if len(res)>0:
        return res[0]
    return "unk"
```

#### In [271]:

```
df['address_pincode'] = df['address'].apply(get_pin)
df['address_city_code'] = df['address'].apply(get_city_code)
```

#### In [272]:

```
# get year and month from the following columns
# - issue d
# - earliest cr line
df['issue_d_year'] = pd.to_datetime(df['issue_d']).dt.year
df['issue_d_month'] = pd.to_datetime(df['issue_d']).dt.month
df['earliest_cr_line_year'] = pd.to_datetime(df['earliest_cr_line']).dt.year
df['earliest_cr_line_month'] = pd.to_datetime(df['earliest_cr_line']).dt.month
```

```
In [273]:
```

```
# drop the following columns
# address, issue_d, earliest_cr_line
cols_to_drop = ['address', 'issue_d', 'earliest_cr_line']
df.drop(columns=cols_to_drop, axis=1, inplace=True)
```

## Data preparation for modeling

scaler = StandardScaler()

X1\_scaled = scaler.fit\_transform(X1)

```
In [274]:
one_hot_cols = ['term', 'grade', 'sub_grade', 'emp_length', 'home_ownership', 'verifica
tion_status',
                 'purpose', 'initial_list_status', 'application_type']
target_encoding_cols = ['emp_title', 'address_pincode', 'address_city_code']
In [275]:
# one hot encoding
newdf = pd.get_dummies(df[one_hot_cols], drop_first=True)
In [276]:
df = pd.concat([newdf, df], axis=1)
df.drop(columns=one_hot_cols, axis=1, inplace=True)
In [277]:
df['loan_status'] = df['loan_status'].replace({'Fully Paid': 1, 'Charged Off': 0})
In [278]:
# target encoding
df['emp_title'] = df['emp_title'].map(df.groupby('emp_title')['loan_status'].mean())
df['address_pincode'] = df['address_pincode'].map(df.groupby('address_pincode')['loan_s
tatus'].mean())
df['address_city_code'] = df['address_city_code'].map(df.groupby('address_city_code')
['loan_status'].mean())
In [279]:
X=df.drop('loan status',axis=1)
y=df['loan_status']
In [280]:
X1 = X.copy()
y1 = y.copy()
In [281]:
from sklearn.preprocessing import StandardScaler
```

```
In [282]:
```

```
features = X.columns.tolist()
```

#### In [283]:

```
# standardize the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
```

#### In [284]:

```
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.30,stratify=y,random
state=42)
```

## In [285]:

```
X1_train, X1_test, y1_train, y1_test =train_test_split(X1,y1,test_size=0.30,stratify=y
1, random state=42)
```

#### In [286]:

```
print(X_train.shape)
print(X_test.shape)
```

(216628, 95)(92841, 95)

#### In [287]:

```
print(y_train.shape)
print(y_test.shape)
```

(216628,)(92841,)

# Model building

#### In [288]:

```
logreg=LogisticRegression()
logreg.fit(X_train,y_train)
```

#### Out[288]:

```
LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=Tru
e,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='12',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=
0,
                   warm start=False)
```

### In [289]:

```
y_pred = logreg.predict(X_test)
print('Accuracy of Logistic Regression Classifier on test set: {:.3f}'.format(logreg.sc
ore(X_test, y_test)))
```

Accuracy of Logistic Regression Classifier on test set: 0.929

# Display model coefficients

## In [290]:

```
coefs = logreg.coef_.tolist()[0]
feature_coef_df = pd.DataFrame({'Variable': features, 'Coeficient': coefs})
feature_coef_df.sort_values(by=['Coeficient'], ascending=False)
```

# Out[290]:

|    | Variable                     | Coeficient |
|----|------------------------------|------------|
| 89 | address_pincode              | 2.909302   |
| 78 | emp_title                    | 2.063341   |
| 76 | int_rate                     | 0.411406   |
| 90 | address_city_code            | 0.117730   |
| 75 | loan_amnt                    | 0.099506   |
| 86 | total_acc                    | 0.084778   |
| 84 | revol_bal                    | 0.068441   |
| 52 | home_ownership_mortgage      | 0.065932   |
| 72 | initial_list_status_w        | 0.044239   |
| 92 | issue_d_month                | 0.039160   |
| 79 | annual_inc                   | 0.037552   |
| 41 | emp_length_10+ years         | 0.027016   |
| 54 | home_ownership_other         | 0.026939   |
| 80 | title                        | 0.017373   |
| 87 | mort_acc                     | 0.017373   |
| 44 | emp_length_4 years           | 0.016128   |
| 48 | emp_length_8 years           | 0.014812   |
| 71 | purpose_wedding              | 0.013978   |
| 45 | emp_length_5 years           | 0.009450   |
| 93 | earliest_cr_line_year        | 0.009071   |
| 55 | home_ownership_own           | 0.003363   |
| 49 | emp_length_9 years           | 0.002017   |
| 46 | emp_length_6 years           | 0.002014   |
| 43 | emp_length_3 years           | 0.000951   |
| 83 | pub_rec                      | 0.000000   |
| 88 | pub_rec_bankruptcies         | 0.000000   |
| 42 | emp_length_2 years           | -0.000564  |
| 47 | emp_length_7 years           | -0.002410  |
| 63 | purpose_house                |            |
| 94 | earliest_cr_line_month       |            |
| 53 | home_ownership_none          | -0.012512  |
| 61 | purpose_educational          | -0.012530  |
| 39 | sub_grade_G4                 |            |
| 40 | sub_grade_G5                 |            |
| 50 | emp_length_< 1 year          |            |
| 68 | purpose_renewable_energy<br> |            |
| 70 | purpose_vacation             | -0.030556  |

|    | Variable                            | Coeficient |
|----|-------------------------------------|------------|
| 66 | purpose_moving                      | -0.031613  |
| 67 | purpose_other                       | -0.039781  |
| 65 | purpose_medical                     | -0.039870  |
| 64 | purpose_major_purchase              | -0.056974  |
| 38 | sub_grade_G3                        | -0.057862  |
| 58 | verification_status_Verified        | -0.058600  |
| 69 | purpose_small_business              | -0.059030  |
| 11 | sub_grade_B1                        | -0.065803  |
| 62 | purpose_home_improvement            | -0.066156  |
| 91 | issue_d_year                        | -0.070155  |
| 7  | sub_grade_A2                        | -0.073106  |
| 74 | application_type_JOINT              | -0.076032  |
| 56 | home_ownership_rent                 | -0.078599  |
| 37 | sub_grade_G2                        | -0.079304  |
| 36 | sub_grade_G1                        | -0.083471  |
| 57 | verification_status_Source Verified | -0.085865  |
| 59 | purpose_credit_card                 | -0.097011  |
| 8  | sub_grade_A3                        | -0.098203  |
| 51 | emp_length_unknown_emp_length       | -0.099208  |
| 73 | application_type_INDIVIDUAL         | -0.105318  |
| 12 | sub_grade_B2                        | -0.107733  |
| 35 | sub_grade_F5                        | -0.115380  |
| 6  | grade_G                             | -0.130554  |
| 60 | purpose_debt_consolidation          | -0.131878  |
| 34 | sub_grade_F4                        | -0.138847  |
| 85 | revol_util                          | -0.142730  |
| 33 | sub_grade_F3                        | -0.150487  |
| 32 | sub_grade_F2                        | -0.153015  |
| 82 | open_acc                            | -0.156747  |
| 31 | sub_grade_F1                        | -0.161449  |
| 9  | sub_grade_A4                        | -0.167805  |
| 81 | dti                                 | -0.181134  |
| 16 | sub_grade_C1                        | -0.181491  |
| 13 | sub_grade_B3                        | -0.183059  |
| 30 | sub_grade_E5                        | -0.192947  |
| 26 | sub_grade_E1                        | -0.194945  |
| 77 | installment                         | -0.195795  |
| 29 | sub_grade_E4                        | -0.202549  |
| 28 | sub_grade_E3                        | -0.204297  |

|    | Variable     | Coeficient |
|----|--------------|------------|
| 17 | sub_grade_C2 | -0.206004  |
| 14 | sub_grade_B4 | -0.217889  |
| 27 | sub_grade_E2 | -0.226320  |
| 15 | sub_grade_B5 | -0.227920  |
| 25 | sub_grade_D5 | -0.228312  |
| 10 | sub_grade_A5 | -0.236445  |
| 24 | sub_grade_D4 | -0.236499  |
| 23 | sub_grade_D3 | -0.237891  |
| 18 | sub_grade_C3 | -0.242607  |
| 22 | sub_grade_D2 | -0.244108  |
| 21 | sub_grade_D1 | -0.244891  |
| 19 | sub_grade_C4 | -0.266034  |
| 20 | sub_grade_C5 | -0.267627  |
| 0  | term_60      | -0.270710  |
| 5  | grade_F      | -0.326504  |
| 1  | grade_B      | -0.421427  |
| 4  | grade_E      | -0.470403  |
| 3  | grade_D      | -0.569594  |
| 2  | grade_C      | -0.587094  |

# **Model Evaluation**

## **ROC AUC Curve**

## In [291]:

from sklearn.metrics import roc\_auc\_score,roc\_curve,precision\_recall\_curve,confusion\_ma trix,classification\_report,auc

#### In [292]:

```
logit_roc_auc=roc_auc_score(y_test,logreg.predict(X_test))
fpr,tpr,thresholds=roc_curve(y_test,logreg.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr,tpr,label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0,1],[0,1],'r--')
plt.xlim([0.0,1.0])
plt.ylim([0.0,1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
```



#### In [293]:

```
y_preds_prob = logreg.predict_proba(X_test)[:, -1]

fpr, tpr, threshold = roc_curve(y_test, y_preds_prob)
score = roc_auc_score(y_test, y_preds_prob)

print(f"ROC AUC Score: {score}")

#plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(fpr, tpr, marker='.', label='Fully Paid')
# axis labels
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
# show the Legend
plt.legend()
plt.title("ROC AUC Curve")
# show the plot
plt.show()
```

#### ROC AUC Score: 0.9662402886311695



### **Precision Recall Curve**

### In [294]:

```
def precission_recall_curve_plot(y_test,pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test,pred_proba_c1)
    threshold_boundary = thresholds.shape[0]
    #plot precision
    plt.plot(thresholds,precisions[0:threshold_boundary],linestyle='--',label='precisio
n')
    #plot recall
    plt.plot(thresholds,recalls[0:threshold_boundary],label='recalls')
    start,end=plt.xlim()
    plt.xticks(np.round(np.arange(start,end,0.1),2))
    plt.xlabel('Threshold Value')
    plt.ylabel('Precision and Recall Value')
    plt.legend()
    plt.grid()
    plt.show()
precission_recall_curve_plot(y_test,logreg.predict_proba(X_test)[:,1])
```



#### In [295]:

```
precision, recall, threshold = precision_recall_curve(y_test, y_preds_prob)
score = auc(recall, precision)

print(f"AUC Score: {score}")

#plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(recall, precision, marker='.', label='Fully Paid')
# axis labels
plt.xlabel('Recall')
plt.ylabel('Precision')
# show the Legend
plt.legend()
# show the plot
plt.show()
```

#### AUC Score: 0.991369938170823



# **Classification Report**

#### In [296]:

| print(classif |           |        |          |         |
|---------------|-----------|--------|----------|---------|
|               | precision | recall | f1-score | support |
| 0             | 0.91      | 0.70   | 0.79     | 17862   |
| 1             | 0.93      | 0.98   | 0.96     | 74979   |
| accuracy      |           |        | 0.93     | 92841   |
| macro avg     | 0.92      | 0.84   | 0.87     | 92841   |
| weighted avg  | 0.93      | 0.93   | 0.93     | 92841   |

#### **Confusion Matrix**

```
In [297]:
```

```
confusion_matrix=confusion_matrix(y_test,y_pred)
print(confusion_matrix)
```

```
[[12482 5380]
[ 1184 73795]]
```

## Questionnaire

1. What percentage of customers have fully paid their Loan Amount?

#### In [298]:

```
df1['loan_status'].value_counts(normalize = True)
```

#### Out[298]:

```
Fully Paid 0.803871
Charged Off 0.196129
Name: loan_status, dtype: float64
```

Around 80.38% of customers have fully paid their Loan Amount.

1. Comment about the correlation between Loan Amount and Installment features.

#### In [299]:

```
df1['loan_amnt'].corr(df1['installment'], method='spearman')
Out[299]:
```

#### 0.9683337077962306

The correlation between loan\_amnt and installment features is very high i.e., 0.96. This is very much expected since as the loan amount value increases installment value will be higher.

1. The majority of people have home ownership as \_\_\_\_\_

#### In [300]:

```
df1.columns
```

## Out[300]:

```
Index(['loan_amnt', 'term', 'int_rate', 'installment', 'grade', 'sub_grad
e', 'emp_title', 'emp_length', 'home_ownership', 'annual_inc', 'verificati
on_status', 'issue_d', 'loan_status', 'purpose', 'title', 'dti', 'earliest
_cr_line', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util', 'total_acc',
'initial_list_status', 'application_type', 'mort_acc', 'pub_rec_bankruptci
es', 'address'], dtype='object')
```

#### In [301]:

```
df1['home_ownership'].value_counts(normalize = True)
```

#### Out[301]:

0.500841 MORTGAGE RENT 0.403480 OWN 0.095311 OTHER 0.000283 NONE 0.000078 ANY 0.000008

Name: home\_ownership, dtype: float64

The majority of people have home ownership as Mortgage (50%)

1. People with grades 'A' are more likely to fully pay their loan. (T/F)

#### In [303]:

```
df1[df1['grade']== 'A']['loan_status'].value_counts()
```

#### Out[303]:

Fully Paid 60151 Charged Off 4036

Name: loan\_status, dtype: int64

True. People with grade A are more likely to fully pay their loan.

1. Name the top 2 afforded job titles.

#### In [304]:

```
df1[['emp_title','loan_status']].value_counts()
```

#### Out[304]:

| emp_title                                        | loan_status |      |
|--------------------------------------------------|-------------|------|
| Teacher                                          | Fully Paid  | 3532 |
| Manager                                          | Fully Paid  | 3321 |
| Registered Nurse                                 | Fully Paid  | 1476 |
| RN                                               | Fully Paid  | 1467 |
| Supervisor                                       | Fully Paid  | 1425 |
|                                                  |             |      |
| Hunter Truck Sales                               | Fully Paid  | 1    |
| Hunterdon County Educational Services Commission | Fully Paid  | 1    |
| Hunterdon Developmental Center                   | Fully Paid  | 1    |
| Hunterdon Healthcare supportive Services         | Fully Paid  | 1    |
| License Compliance Investigator                  | Fully Paid  | 1    |
| Length: 185292, dtype: int64                     |             |      |

Teacher and Manager are the top 2 afforded job titles

1. Thinking from a bank's perspective, which metric should our primary focus be on..

ROC AUC Precision Recall F1 Score

The best metric to consider is F1 score We need to give importance to both precision and recall as we don't want to miss potential customers and at the same time we also don't want to give loan to defaulters

1. How does the gap in precision and recall affect the bank?

#### In [305]:

```
print(classification_report(y_test,y_pred))
              precision
                            recall f1-score
                                                support
                              0.70
           0
                   0.91
                                        0.79
                                                  17862
           1
                    0.93
                              0.98
                                        0.96
                                                  74979
                                        0.93
                                                  92841
    accuracy
                   0.92
                              0.84
                                        0.87
                                                  92841
   macro avg
weighted avg
                   0.93
                              0.93
                                        0.93
                                                  92841
```

- => Recall score: 0.98 and Precision score: 0.93. Which tells us that there are more false positives than the false negatives.
- => If Recall value is low (i.e. FN are high), it means Bank is loosing in opportunity cost.
- => If Precision value is low (i.e. FP are high), it means Bank's NPA (defaulters) may increase.
  - 1. Which were the features that heavily affected the outcome?

#### In [306]:

```
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier
```

#### In [307]:

```
rfe_method = RFE(
   RandomForestClassifier(n_estimators=10, random_state=10),
   n_features_to_select=10,
   step=2,
)
```

```
In [308]:
```

```
rfe_method.fit(X1_train, y1_train)
Out[308]:
RFE(estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                      class_weight=None, criterion='gini',
                                      max_depth=None, max_features='auto',
                                      max leaf nodes=None, max samples=Non
e,
                                      min_impurity_decrease=0.0,
                                      min_impurity_split=None,
                                      min_samples_leaf=1, min_samples_split
=2,
                                      min_weight_fraction_leaf=0.0,
                                      n estimators=10, n jobs=None,
                                      oob_score=False, random_state=10,
                                      verbose=0, warm_start=False),
    n_features_to_select=10, step=2, verbose=0)
In [309]:
 X1_train.columns[(rfe_method.get_support())]
```

```
Out[309]:
```

```
Index(['loan_amnt', 'int_rate', 'installment', 'emp_title', 'annual_inc',
'dti', 'revol_bal', 'revol_util', 'total_acc', 'address_pincode'], dtype
='object')
```

1. Will the results be affected by geographical location? (Yes/No)

Yes, address\_pincode feature engineered from 'address' varibale has significant impact on the outcome based on the analysis

# **Tradeoff Questions**

- 1. How can we make sure that our model can detect real defaulters and there are less false positives? This is important as we can lose out on an opportunity to finance more individuals and earn interest on it.
- To keep very less False Positives, oversampling techniques like SMOTE should be used in model creation. Also we can use more advanced algorithms like SVM, Decision-Trees, Random Forest and also we can try various hyperparameter tunning.
- As you can see from the data, the percentage of defaulters is slightly higher than Banking industry.
- 1. Since NPA (non-performing asset) is a real problem in this industry, it's important we play safe and shouldn't disburse loans to anyone

- Yes. LoanTap should not disburse loans to everyone. Company's internal policy and analysis should be
  in place to identify the correct persons. From data provided, 20% of people default on their loan, which
  inturn become NPAs for the company.
- Low False positive means we should create the model with high Precision values. This can be achieved if we are keeping high threshold value in logistic Regression model.
- But keeping too high values for threshold will increase False Negatives. This intuen may result in
  opportunity loss. In this case we will not give loans to persons which will not default but our model has
  predicted that they will default.

# **Insights and Recommendations**

Around 80% of customers have fully paid their Loan Amount. The defaulters are ~ 20%. From Personal loan business perspective this ratio is high. These 20% will contribute in NPAs of LoanTap. To reduce the risk of NPAs, LoanTap should add slightly stringent rules to bring down this ratio to 5% to 6%. LoanTap should provide loans at slightly higher rate than other Banks. This will offset the risks of defaulters and maintain the profitability of the business. Overall Statistics of the Model: Accuracy = 93% Precision = 93% Recall = 98% F1 -score = 96% Model created has high values for accuracy, precision, recall & f1-score. This means, this model is a good classifier. Overall, it has good prediction capability in identifying right customers (which can be easily converted). However this model has slightly low capability on correctly identifying defaulters. Overall data has 20% defaulters, model is able to predict 10% of them correctly. Using this model, LoanTap can easily reduce the ration of defaulters in their portfolio. Features which have significant impact on outcome are as follows: 'loan amnt', 'int rate', 'installment', 'emp title', 'annual inc', 'dti', 'revol bal', 'revol util', 'total acc', 'address pincode' Based on the analysis, following suggestions are given. LoanTap can also decide their social media based marketing based on person's job-titles. LoanTap can promote persons to apply for joint loan. Because of this, chances of default will reduce. LoanTap should stick to giving loans to conventional purposes like Marriage, car etc. LoanTap should focus more on Loans for shorter duration (i.e. 36 months). Their social media campaign and marketing strategy should be based on this consideration. Pincode based market segmentation should be included at strategic levels.