Homework 6

October 6, 2022

Weekly homework assignments are posted approximately one week prior to the due date. Collaborations are encouraged and students must report all collaborators in writing on each assignment. All external sources (websites, books) must be properly cited. Additional problems are listed at the end of each assignment. This week's assignment is due *Friday*, Oct 14th at 11:59pm.

1) The combustion of gasoline produces carbon dioxide and water. Assume gasoline to be pure octane (C_8H_{18}) and calculate the mass (in kg) of carbon dioxide that is added to the atmosphere per 1.0 kg of octane burned. Report to (Hint: Begin by writing a balanced equation for the combustion reaction.) (2 pts)

2) A mixture of C_3H_8 and C_2H_2 has a mass of 2.0 g. It is burned in excess O_2 to form a mixture of water and carbon dioxide that contains 1.5 times as many moles of CO_2 as of water. Find the mass of C_2H_2 in the original mixture. (2 pts)

3) The reaction of NH_3 and O_2 forms NO and H_2O . The NO can be used to convert P_4 to P_4O_6 , forming N_2 in the process. The P_4O_6 can be treated with water to form H_3PO_3 , which forms PH_3 and H_3PO_4 when heated. Write all chemical equations including states. Find the mass of PH_3 that forms from the reaction of 1.50 g NH3. Report to 3 significant figures. (3 pts)

4) Metallic aluminum reacts with $\rm MnO_2$ at elevated temperatures to form manganese metal and aluminum oxide. A mixture of the two reactants is 47.2% mass percent Al. Determine the theoretical yield (in grams) of manganese from the reaction of 250g of this mixture. Report to 3 significant figures. (3 pts)