

SESA2024 Astronautics

Chapter 10: Thermal Control

Contents

Thermal Control

Material Properties and Radiation

Spacecraft Thermal Balance

Thermal Control (Passive)

Impacts on the Spacecraft

Function

Equipment reliability

Reliable, long-term performance of most spacecraft components require them to operate within thermal tolerances

Approximate operating thermal environment	
Batteries	$0^{\circ} \text{ C} \rightarrow +25^{\circ} \text{ C}$
Fuel (e.g. hydrazine)	$+10^{\circ} \text{ C} \rightarrow +50^{\circ} \text{ C}$
Microprocessors	$-5^{\circ} \text{ C} \rightarrow +40^{\circ} \text{ C}$
Mechanical bearings (e.g.	
reaction wheels)	$0^{\circ} \text{C} \rightarrow +45^{\circ} \text{C}$
Solar arrays	-150° C → +50°C

Payload Requirements

- Radiation of dissipated power
- Sensor cooling (e.g. an IR observatory)
- Very small thermal gradients / thermal shock (e.g. extreme pointing requirement of the Hubble Space telescope)

Heat Transfer Mechanisms

- Conduction: molecular excitation without appreciable displacement
- **Convection:** heat transport by fluid mixing (needs to be 'forced' in a µg environment)
- **Radiation:** electromagnetic wave (IR) emission arising from body temperature (requires no medium)

In LEO mean free path λ_p of particles is large in comparison with spacecraft dimensions:

e.g.
$$\lambda_p \sim 250 \text{ m for } h = 200 \text{ km}$$

~ 15 km for h = 400 km (depending on solar activity)

Heat Transfer Mechanisms

Conduction and convection are ineffective

(which is just as well, as kinetic temperature of upper atmosphere ~1000 K)

Thermal Radiation Environment

 Radiation serves as the dominant heat transfer mechanism between the spacecraft and its environment

Thermal Radiation Environment

Heat inputs:

Thermal Radiation Environment

Heat outputs:

- Thermal radiation emission (IR) from spacecraft surfaces

Thermal balance:

 Environmental inputs + internally dissipated heat must balance radiation loss from spacecraft surfaces

Spacecraft equilibrium temperature

Absorption of radiation

• Consider incident radiation at a wavelength λ (μ m) with intensity $q_i(\lambda)$ (W m⁻² μ m⁻¹) $q_a(\lambda) + q_r(\lambda) + q_t(\lambda) = q_i(\lambda)$

Definitions:

Spectral absorptance

$$\alpha_{\lambda} \equiv q_a(\lambda)/q_i(\lambda)$$

Spectral reflectance

$$\rho_{\lambda} \equiv q_r(\lambda)/q_i(\lambda)$$

Spectral transmittance

$$\tau_{\lambda} \equiv q_t(\lambda)/q_i(\lambda)$$

Dr. H. M. Sykulska-Lawrence

Absorption of radiation

$$\alpha_{\lambda} + \rho_{\lambda} + \tau_{\lambda} = 1$$

Generally (for wavelengths of interest) spacecraft surfaces are opaque, so that

$$\alpha_{\lambda} + \rho_{\lambda} = 1$$
 $\tau_{\lambda} = 0$

$$\tau_{\lambda} = 0$$

Definition:

- A Blackbody (BB) is
 - One that absorbs all radiation incident upon it
 - One that emits at any particular temperature the maximum possible amount of thermal radiation

(a useful theoretical concept)

Absorption of radiation

• **Therefore** for a BB, $\rho_{\lambda} = 0$

$$\Rightarrow \alpha_{\lambda} = 1$$
, for all λ

• For real materials α_{λ} and ρ_{λ} are dependent upon λ – hence the colour of materials:

Absorption of radiation

Total absorption:

The total absorption of radiation by the material is

$$\overline{Q}_a = \int_0^\infty q_i(\lambda)\alpha_\lambda(\lambda)d\lambda \qquad \text{(W m}^{-2}\text{)}$$

Hence we define the absorptance α of the material, with respect to a specific radiation source, as

$$\alpha = \frac{\int_0^\infty q_i(\lambda)\alpha_\lambda(\lambda)d\lambda}{\int_0^\infty q_i(\lambda)d\lambda}$$
(10.2)

Absorption of radiation

- **Note that:** the value of α depends on both the material and the source of radiation (e.g. the response of white paint varies with respect to the radiation source)
- Hence, under solar illumination $q_s(\lambda)$ (W m⁻² μ m⁻¹), the solar absorptance is

$$\alpha_{S} = \frac{\int_{0}^{\infty} q_{S}(\lambda) \alpha_{\lambda}(\lambda) d\lambda}{\int_{0}^{\infty} q_{S}(\lambda) d\lambda}$$
(10.3)

• But to a good degree of approximation, we can write ...

Absorption of radiation

$$\alpha_S = \frac{\int_{0.2}^{3.0} q_S \alpha_\lambda d\lambda}{\int_{0.2}^{3.0} q_S d\lambda}$$

since ~ 97% of the total energy falls within this 'window'.

Emission of radiation

Blackbody emission

 For a perfect BB radiating surface, the rate of emission is solely dependent upon the temperature of the surface as formulated by Plank:

$$q_{\lambda} = \frac{2\pi hc^2}{\lambda^5 \left[\exp\left(\frac{ch}{k\lambda T}\right) - 1 \right]}$$
 (W m⁻² μ m⁻¹)

where

Plank's constant,
$$h = 6.625 \times 10^{-34} \text{ W s}^2$$

Boltzmann's constant, $k = 1.380 \times 10^{-23} \text{ W s K}^{-1}$
Speed of light, $c = 3 \times 10^8 \text{ m s}^{-1}$

Emission of radiation

• The IR BB emission spectra can be obtained by plotting Plank's Law:

Emission of radiation

• Wien's Displacement Law describes the relationship between temperature T and the wavelength λ_{max} corresponding to $\max q_{\lambda}$,

$$\lambda_{\text{max}} T = 2.898 \times 10^3$$
 (µm K)

e.g. Earth spectrum peaks at $\lambda \approx 10 \ \mu \text{m} \Rightarrow T_{Earth} \sim 290 \ \text{K}$

Emission of radiation

Total emission from a blackbody is given by

$$q_{BB} = \int_0^\infty q_\lambda d\lambda$$

which leads to the Stefan-Boltzmann equation:

$$q_{BB} = \sigma T^4 \quad (W \text{ m}^{-2})$$
 (10.4)

where the Stefan-Boltzmann constant is

$$\sigma = 5.669 \times 10^{-8}$$
 W m⁻² K⁻⁴

Emission of radiation

• Definition:

– The emittance ε of a real material surface is defined by

$$\varepsilon \equiv q(T)/q_{BB}(T) < 1 \tag{10.5}$$

where q(T) (W m⁻²) is the measured amount of thermal radiation from the real surface at temperature T (K), and $q_{BB}(T)$ is the corresponding amount for an otherwise identical BB surface at the same temperature.

- The combination of (10.4) and (10.5) gives the thermal emission from a real surface

$$q(T) = \varepsilon \sigma T^{4} \qquad (\text{W m}^{-2}) \qquad (10.6)$$

Recall

The environmental inputs + the spacecraft internally dissipated power must balance the radiation loss from the spacecraft surfaces

Spacecraft equilibrium temperature

Heat Inputs:

Direct solar radiation

$$Q_S = q_S \ \alpha_S \ A_S^{proj} \quad (W)$$

where

$$q_S = 1350 \text{ W/m}^2$$

$$\alpha_S$$
 = solar absorptance

$$A_S^{proj}$$
 = projected area of spacecraft relative to Sun

Earth Albedo

This is the fraction of incident solar radiation reflected from the planet's surface and atmosphere, typically about 34%

$$Q_a = a \ q_S \ \alpha_S \ A_E^{proj} \cos \phi \ \beta \ F \quad (W)$$

where

Assumption!

$$a = 0.34 = Earth albedo$$

 A_E^{proj} = projected area of spacecraft relative to Earth

 $\phi =$ geocentric angle between spacecraft and Sun

$$\beta = 1$$
 for $-90^{\circ} < \phi < 90^{\circ}$, $\beta = 0$ otherwise

$$F = (R_E/R_{orb})^2$$

Assumption!

Earth Thermal Emission

$$Q_E = q_E \ \varepsilon \ A_E^{proj} \ F \qquad (W)$$

where

$$q_E = 240 \text{ W/m}^2$$

Note: the use of ε for absorptance of IR!

Kirchoff's Law says that $\alpha = \varepsilon$ when the absorbing body (the S/C) is at the same temperature (~ 290 K) as the radiating source (the Earth)

Internal Dissipation

$$Q_{dis} = P$$
 (W)

Heat Outputs

Spacecraft Thermal Emission

$$Q_{S/C} = \varepsilon \ \sigma \ T^4 A_{surf} \quad (W)$$

where

 A_{surf} = total S/C surface area

For equilibrium:

$$Q_S + Q_a + Q_E + Q_{dis} = Q_{S/C}$$
(10.7)
$$S/C \text{ heat inputs} \qquad S/C \text{ heat outputs}$$

Thermal Balance Equation

$$q_{S}\alpha_{S}A_{S}^{proj} + aq_{S}\alpha_{S}A_{E}^{proj}\cos\phi\beta\left(\frac{R_{E}}{R_{orb}}\right)^{2} + q_{E}\varepsilon A_{E}^{proj}\left(\frac{R_{E}}{R_{orb}}\right)^{2} + P = \varepsilon\sigma T^{4}A_{surf}$$
(10.8)

Effective values of α_S and ε

- In general α_S and ε are not uniform for each spacecraft surface wise "effective" values of α_S and ε weighted by area ...

e.g. if a surface has absorptance $\alpha_S^{(1)}$ over 90% (by area) and $\alpha_S^{(2)}$ over 10% then

$$\alpha_S^{eff} = 0.9 \ \alpha_S^{(1)} + \ 0.1 \ \alpha_S^{(2)}$$

Thermal Control by Choice of Spacecraft Surface

Rearranging the thermal balance equation, we have:

$$\sigma T^{4} = q_{S} \frac{\alpha_{S}}{\varepsilon} \left\{ \frac{A_{S}^{proj}}{A_{surf}} + a \frac{A_{E}^{proj}}{A_{surf}} \cos \phi \beta F \right\} + q_{E} \frac{A_{E}^{proj}}{A_{surf}} F + \frac{P}{\varepsilon A_{surf}}$$

Then provided that

$$q_E, P \ll q_S$$
 then

$$T = f\left(\frac{\alpha_S}{\mathcal{E}}\right)$$
 (10.9)

Thermal Control by Choice of Spacecraft Surface

- **Hence**, if we require to reduce *T* then decrease α_S / ε
 - e.g. Use white paint or SSMs (transparent plastic sheet with aluminized rear surface)
- **To increase** *T*, increase α_S / ε
 - e.g. Use copper or black nickel
- **Note that** orbital environment (UV and AO) will degrade thermal surfaces such that (generally) *T* will increase over the spacecraft's mission lifetime

Guidelines for Passive Thermal Design of Spacecraft

Lessons from nature ...

Guidelines for Passive Thermal Design of Spacecraft

- **Objective:** create a balance of heat input from environment + onboard dissipation
 - = thermal emission to the environment
- Insulate any non-radiating surfaces with multilayer insulation (MLI)
- Size radiating surfaces large enough to keep equipment within upper temperature limits during hot phases
- Size heaters large enough to maintain lower temperature limits during cold phases

Impact on Spacecraft

Principal Trade-off

Passive thermal control vs. Active thermal control

- **Passive** (e.g. surface coatings):
 - -No power requirement
 - –No moving parts (mechanisms)
 - -Simple, reliable
 - -Low cost
- Active (e.g. fluid loop):
 - -Power requirement
 - -Mechanisms (reliability)
 - -Greater mass
 - -High(er) cost

Impact on Spacecraft

 Active methods are generally more flexible and adaptive to varying thermal environments, and higher heat transfer rates

• **But** ... the industry will try to use passive methods whenever possible

 The thermal control engineer is involved in the design of nearly all other onboard systems.

Chapter 10 Summary

Thermal Control

Material Properties and Radiation

Spacecraft Thermal Balance

Thermal Control (Passive)

Impacts on the Spacecraft

Key points:

- Function and specific requirements of the subsystem
 Mechanisms of heat transfer
 Heat inputs and outputs leading to the thermal balance
- Incident radiation and what happens to the radiation when it hits a body
- Definition of a blackbody
- Definition of absorption of a body under solar illumination
 Blackbody emission
- Definition of the thermal emission of a real surface
- Numerical definition of the heat inputs and outputs of the spacecraft thermal balance equation
 • Assumptions of the equation and the use of effective values
- Modification of the thermal balance equation and the assumption that allows the spacecraft temperature to be passively controlled
- Guidelines for passive thermal design of spacecraft

• Outline of the key impacts of the thermal control subsystems on the design of the spacecraft

Astronautics - Chapter 10 - Thermal Control

Dr. H. M. Sykulska-Lawrence

Chapter 10 Summary

Read Chapter 11 of Fortescue, Stark & Swinerd