UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Örjan Stenflo Linjär algebra och geometri I, 1MA025 HT 2015

Linjär algebra och geometri I, 1MA025

Tenta 151020 med lösningar

(Skall ej lösas om man är godkänd på duggan.)
 Lös det linjära ekvationssystemet

$$\begin{cases} 2x_1 + 6x_2 - 3x_3 - x_4 = 3\\ x_1 - 4x_2 + 2x_3 + 3x_4 = c - 1\\ -x_1 - 4x_2 + 2x_3 + x_4 = -1 \end{cases}$$

för alla värden på $c \in \mathbb{R}$ där ekvationssystemet har lösningar.

Lösning: Vi börjar med att förenkla ekvationssystemet genom att Gauss-eliminera ekvationssystemets totalmatris:

$$\begin{pmatrix} 2 & 6 & -3 & -1 & 3 \\ 1 & -4 & 2 & 3 & c-1 \\ -1 & -4 & 2 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & -4 & 2 & 1 & -1 \\ 1 & -4 & 2 & 3 & c-1 \\ 2 & 6 & -3 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -4 & 2 & 1 & -1 \\ 0 & -8 & 4 & 4 & c-2 \\ 0 & -2 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} -1 & -4 & 2 & 1 & -1 \\ 0 & -2 & 1 & 1 & 1 \\ 0 & -8 & 4 & 4 & c-2 \end{pmatrix} \sim \begin{pmatrix} -1 & -4 & 2 & 1 & -1 \\ 0 & -2 & 1 & 1 & 1 \\ 0 & -8 & 4 & 4 & c-2 \end{pmatrix} \sim \begin{pmatrix} -1 & -4 & 2 & 1 & -1 \\ 0 & -2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & c-6 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & -2 & -1 & 1 \\ 0 & 1 & -1/2 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & c-6 \end{pmatrix}.$$

Den sista totalmatrisen är på trappstegsform och motsvarar det förenklade (ekvivalenta) ekvationssystemet

$$\begin{cases} x_1 + 4x_2 - 2x_3 - x_4 = 1 \\ x_2 - x_3/2 - x_4/2 = -1/2 \\ 0 = c - 6, \end{cases}$$

som vi ser saknar lösningar om $c \neq 6$.

Om c=6 har vi ett linjärt ekvationssystem med två ekvationer och fyra obekanta så lösningsmängden innehåller två parametrar. De oändligt många lösningarna ges då av $x_4 = s$, $x_3 = t$,

$$x_2 = -1/2 + x_4/2 + x_3/2 = -1/2 + s/2 + t/2$$

och

$$x_1 = 1 + x_4 + 2x_3 - 4x_2 = 1 + s + 2t - 4(-1/2 + s/2 + t/2) = 3 - s, \ s, t \in \mathbb{R},$$

alltså

$$(x_1, x_2, x_3, x_4) = (3 - s, -1/2 + s/2 + t/2, t, s), s, t \in \mathbb{R}.$$

Kontroll:

$$2x_1 + 6x_2 - 3x_3 - x_4 = 2(3-s) + 6(-1/2 + s/2 + t/2) - 3t - s$$

= $6 - 3 - 2s + 3s - s + 3t - 3t = 3$ (stämmer)

$$x_1 - 4x_2 + 2x_3 + 3x_4 = (3-s) - 4(-1/2 + s/2 + t/2) + 2t + 3s$$

= $3 + 2 - s - 2s + 3s - 2t + 2t = 5 = c - 1$ (stämmer om $c = 6$)

$$-x_1 - 4x_2 + 2x_3 + x_4 = -(3-s) - 4(-1/2 + s/2 + t/2) + 2t + s$$

= -3 + 2 + s - 2s + s - 2t + 2t = -1 (stämmer)

2. Låt

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{och} \quad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}.$$

Lös matrisekvationen

$$XA + B = XC$$
.

Lösning:

$$XA + B = XC \Leftrightarrow B = X(C - A) \Leftrightarrow X = B(C - A)^{-1}.$$

Den sista ekvivalensen gäller ty

$$C - A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

är en matris med $det(C-A)=2\neq 0$, så dess invers existerar och ges av

$$(C-A)^{-1} = \frac{1}{\det(C-A)} \operatorname{adj}(C-A)$$

$$= \frac{1}{2} \begin{bmatrix} \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ -1 & 0 \end{vmatrix} \\ -\begin{vmatrix} 0 & 0 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} -2 & 0 \\ 3 & 1 \end{vmatrix} & -\begin{vmatrix} -2 & 0 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} 0 & -1 \\ 3 & 0 \end{vmatrix} & -\begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} -2 & 1 \\ 0 & -1 \end{vmatrix} \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -1 & -1 & 0 \\ 0 & -2 & 0 \\ 3 & 3 & 2 \end{bmatrix},$$

så

$$X = B(C-A)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & 0 \\ 0 & -2 & 0 \\ 3 & 3 & 2 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 1 & 3 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. För vilka värden på konstanten $c \in \mathbb{R}$ har det linjära ekvationssystemet

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1\\ cx_1 + cx_2 + c^2x_3 + (c+1)x_4 = 2\\ cx_1 + 2cx_2 + c^3x_3 + (c+2)x_4 = 3\\ cx_1 + 3cx_2 + c^4x_3 + (c+3)x_4 = 4 \end{cases}$$

en unik lösning?

Lösning: Ekvationssystemet har en unik lösning för de värden på c som gör att ekvationssystemets koefficientmatris är inverterbar. Då detta är ekvivalent med att dess determinant är nollskild söker vi alltså de värden på c som gör att

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ c & c & c^2 & c+1 \\ c & 2c & c^3 & c+2 \\ c & 3c & c^4 & c+3 \end{vmatrix} \neq 0.$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ c & c & c^2 & c+1 \\ c & 2c & c^3 & c+2 \\ c & 3c & c^4 & c+3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & c^2-c & 1 \\ 0 & c & c^3-c & 2 \\ 0 & 2c & c^4-c & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & c & c^3-c & 2 \\ 0 & 0 & c^2-c & 1 \\ 0 & 2c & c^4-c & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & c & c^3-c & 2 \\ 0 & 0 & c^2-c & 1 \\ 0 & 0 & c^4+c-2c^3 & -1 \end{vmatrix}$$
 kofaktorutv. längs 1:a kol.
$$= - \begin{vmatrix} c & c^3-c & 2 \\ 0 & c^2-c & 1 \\ 0 & c^4+c-2c^3 & -1 \end{vmatrix}$$
 kofaktoutv. längs 1:a kol.
$$= -c \begin{vmatrix} c & c^3-c & 2 \\ 0 & c^2-c & 1 \\ 0 & c^4+c-2c^3 & -1 \end{vmatrix}$$

$$= c(c^4+c-2c^3+c^2-c) = c(c^4-2c^3+c^2)$$

$$= c^3(c^2-2c+1) = c^3(c-1)^2,$$

ser vi att ekvationssystemet har en unik lösning om och endast om $c \notin \{0,1\}$.

4. Bestäm den punkt på skärningslinjen mellan de två planen $\pi_1 = x - 2y + z = 1$ och $\pi_2 : x + 2y - z = -1$ som ligger närmast punkten P : (4, -5, 1).

Lösning: Skärningslinjen mellan de två planen π_1 och π_2 ges av lösningen till ekvationssystemet

$$\begin{cases} x - 2y + z = 1 \\ x + 2y - z = -1 \end{cases}$$

Detta ekvationssystem har lösning $x=0,\ z=t,\ y=(t-1)/2,\ t\in\mathbb{R},$ så skärningslinjen ges på vektorekvationsform som $(x,y,z)=(0,-1/2,0)+t(0,1/2,1),\ t\in\mathbb{R}.$

Den punkt Q på linjen som ligger närmast punkten P uppfyller att $\overrightarrow{QP}=(4,-5,1)-(0,(t-1)/2,t)=(4,(-9-t)/2,1-t)$ är ortogonal mot lösningslinjens riktningsvektor, alltså

$$(4,(-9-t)/2,1-t)\cdot(0,1/2,1)=\frac{1}{4}(-9-t+4-4t)=\frac{1}{4}(-5-5t)=0,$$
alltså $t=-1,$ vilket ger $Q:(0,-1,-1).$

- 5. Betrakta de fyra vektorerna $\vec{v}_1 = (0, 1, a, -1), \vec{v}_2 = (0, 0, 0, a), \vec{v}_3 = (1, a, 2, 1)$ och $\vec{v}_4 = (0, 2, -1, a)$ i \mathbb{R}^4 , för varje fixt $a \in \mathbb{R}$.
 - (a) Avgör för vilka värden på konstanten $a \in \mathbb{R}$ som de fyra vektorerna bildar en bas för \mathbb{R}^4 .
 - (b) Avgör för vilka värden på konstanten $a \in \mathbb{R}$ som vektorn $\vec{w} = (0, 2, -1, -2)$ kan skrivas som en linjärkombination av de fyra vektorerna.

Lösning: (a) De fyra vektorerna bildar en bas för \mathbb{R}^4 om

$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & a & 2 \\ a & 0 & 2 & -1 \\ -1 & a & 1 & a \end{vmatrix} \neq 0.$$

Då

$$\begin{vmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & a & 2 \\ a & 0 & 2 & -1 \\ -1 & a & 1 & a \end{vmatrix} \xrightarrow{\text{kofaktorutv. 2:a kol.}} (-1)^{4+2} a \begin{vmatrix} 0 & 1 & 0 \\ 1 & a & 2 \\ a & 2 & -1 \end{vmatrix}$$

$$= (-1)^{4+2} a (-1)^{1+2} \begin{vmatrix} 1 & 2 \\ a & -1 \end{vmatrix} = a(2a+1),$$

ser vi att de fyra vektorerna bildar en bas för \mathbb{R}^4 omm $a \neq \{0, -1/2\}$.

(b) Från uppgift (a) vet vi att alla vektorer \mathbb{R}^4 kan skrivas som en linjärkombination av de givna fyra vektorerna om $a \neq \{0, -1/2\}$, så speciellt gäller det för \vec{w} . Om a = -1/2 är $(0, 2, -1, -2) = 2\vec{v_1}$. Om a = 0 kan \vec{w} inte skrivas som en linjärkombination av de 4 givna vektorerna, ty om

$$(0, 2, -1, -2) = c_1 \vec{v_1} + \ldots + c_4 \vec{v_4} = c_1(0, 1, 0, -1) + c_2(0, 0, 0, 0) + c_3(1, 0, 2, 1) + c_4(0, 2, -1, 0),$$

så uppfyller c_1, c_2, c_3, c_4 ekvationssystemet

$$\begin{cases}
c_1 & c_3 & = 0 \\
c_1 & + 2c_4 & = 2 \\
2c_3 & - c_4 & = -1 \\
-c_1 & + c_3 & = -2
\end{cases}$$

men detta ekvationssystem saknar lösningar. Vektorn $\vec{w} = (0, 2, -1, -2)$ kan därför skrivas som en linjärkombination av $\vec{v}_1, \dots, \vec{v}_4$ för alla $a \neq 0$.

6. Låt $T:\mathbb{R}^3\to\mathbb{R}^3$ vara den ortogonala projektionen på planet $\pi:x+2y+3z=0$. Bestäm standardmatrisen för T.

Lösning: Den ortogonala projektionen på planet ges av

$$T(\vec{v}) = \vec{v} - \operatorname{proj}_{\vec{n}}(\vec{v}) = \vec{v} - \frac{\vec{v} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n},$$

där $\vec{n} = (1, 2, 3)$ är en normalvektor för planet

alltså

$$T((v_1, v_2, v_3)) = (v_1, v_2, v_3) - \frac{(v_1, v_2, v_3) \cdot (1, 2, 3)}{(1, 2, 3) \cdot (1, 2, 3)} (1, 2, 3)$$

$$= (v_1, v_2, v_3) - \frac{v_1 + 2v_2 + 3v_3}{14} (1, 2, 3)$$

$$= \left(\frac{13v_1 - 2v_2 - 3v_3}{14}, \frac{-2v_1 + 10v_2 - 6v_3}{14}, \frac{-3v_1 - 6v_2 + 5v_3}{14}\right),$$

så standardmatrisen för T ges av

$$[T] = \frac{1}{14} \begin{bmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{bmatrix}.$$

7. Bestäm ekvationen för det plan i \mathbb{R}^3 som innehåller punkterna $P_1: (-1,1,1)$, $P_2: (1,2,3)$, $P_3: (3,2,3)$ och $P_4: (1,1,1)$ eller visa att inget sådant plan existerar.

Lösning: Vektorerna $\overrightarrow{P_1P_2} = \overrightarrow{P_4P_3} = (2,1,2)$, och $\overrightarrow{P_1P_4} = \overrightarrow{P_2P_3} = (2,0,0)$ är parallella med ett givet plan, π , som innehåller alla de fyra punkterna (ty P_1, P_2, P_3, P_4 bildar hörnen i ett parallellogram).

En normalvektor för planet ges av

$$\vec{n} = \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_4} = \begin{pmatrix} \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix}, - \begin{vmatrix} 2 & 2 \\ 2 & 0 \end{vmatrix}, \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} \end{pmatrix} = (0, 4, -2)$$

$$\vec{n} = \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_4}$$

$$\overrightarrow{P_1 P_4}$$

$$\overrightarrow{P_2}$$

$$\vec{n} = \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_4}$$

Planet består av alla punkter $\mathbf{x} = (x, y, z)$ som uppfyller att vektorn $\overrightarrow{P_1}\mathbf{x}$ är ortogonal mot \vec{n} alltså de punkter (x, y, z) som uppfyller ekvationen

$$(x+1, y-1, z-1) \cdot (0, 4, -2) = 4(y-1) - 2(z-1) = 4y - 2z - 2 = 0,$$

alltså ekvationen 2y - z = 1.

(Observera att det är lätt att kontrollera att detta plan verkligen innehåller alla de fyra punkterna P_1 , P_2 , P_3 , P_4 .)

8. Den linjära avbildningen $T: \mathbb{R}^2 \to \mathbb{R}^2$ har standardmatris

$$[T] = \frac{1}{13} \left(\begin{array}{cc} -12 & 5 \\ 5 & 12 \end{array} \right).$$

- (a) Bestäm alla egenvärden och egenvektorer till T.
- (b) Visa att T är en spegling i en linje genom origo i \mathbb{R}^2 . Ange ekvationen för denna linje.

Lösning:

Lösning: Vi söker först egenvärdena till [T], d.v.s. vi söker lösningarna till den karakteristiska ekvationen $det([T] - \lambda I) = 0$. Då

$$\det([T] - \lambda I) = \begin{vmatrix} -12/13 - \lambda & 5/13 \\ 5/13 & 12/13 - \lambda \end{vmatrix} = (-12/13 - \lambda)(12/13 - \lambda) - (5/13)(5/13)$$
$$= \lambda^2 - (12/13)^2 - (5/13)^2 = \lambda^2 - 1 = (\lambda + 1)(\lambda - 1),$$

ser vi att $det([T] - \lambda I) = 0$ omm $\lambda = \pm 1$. Egenvektorn korresponderande till egenvärdet $\lambda = 1$ ges av lösningen till

$$\begin{bmatrix} -25/13 & 5/13 \\ 5/13 & -1/13 \end{bmatrix} \vec{v} = \vec{0} \qquad \Leftrightarrow \qquad \begin{bmatrix} -25/13 & 5/13 \\ 5/13 & -1/13 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Gauss-Jordanelimination på systemets totalmatris ger:

$$\begin{pmatrix} -25/13 & 5/13 & 0 \\ 5/13 & -1/13 & 0 \end{pmatrix} \xrightarrow{1/5} \sim \begin{pmatrix} -25/13 & 5/13 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{0} \sim \begin{pmatrix} 1 & -1/5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

och därför kan alla icke-triviala lösningar skrivas som

$$(v_1, v_2) = (t, 5t) = t(1, 5), t \in \mathbb{R}, t \neq 0,$$

och detta är då alla egenvektorer med egenvärdet $\lambda = 1$.

På samma sätt för $\lambda = -1$ får vi:

$$\begin{pmatrix} 1/13 & 5/13 & 0 \\ 5/13 & 25/13 & 0 \end{pmatrix} \xrightarrow{-5} \sim \begin{pmatrix} 1/13 & 5/13 & 0 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{13} \sim \begin{pmatrix} 1 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

så alla egenvektorer med egenvärdet $\lambda = -1$ ges av:

$$(v_1, v_2) = (5t, -t) = t(5, -1), t \in \mathbb{R}, t \neq 0.$$

Då egenvektorerna (1,5) och (5,-1) är ortogonala utgör de en bas för \mathbb{R}^2 , d.v.s. alla punkter i \mathbb{R}^2 kan skrivas på formen s(1,5)+t(5,-1) för ett unikt talpar (s,t). Då T(s(1,5)+t(5,-1))=s(1,5)-t(5,-1) för alla $s,t\in\mathbb{R}$ ser vi att T är en spegling i linjen $l:(x,y)=s(1,5),\,s\in\mathbb{R}$.