

Big Data Visual Analytics (CS 661)

Instructor: Soumya Dutta

Department of Computer Science and Engineering Indian Institute of Technology Kanpur (IITK)

email: soumyad@cse.iitk.ac.in

Study Materials for Lecture 16

- Distribution Driven Extraction and Tracking of Features for Time-varying Data Analysis, Dutta et al., IEEE TVCG.
- CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data, Hazarika et al., IEEE TVCG.

- Vaguely define features
 - Vortex core, hurricane eye, tumor in medical data
- Traditional feature tracking algorithms
 - Assume precise feature definition
- Distribution-based Methods
 - Can extract imprecisely defined features robustly
 - Track the extracted features over time

Model target feature as a distribution

Incremental GMM Modeling for Time-varying Data

Update weights as:

$$\omega_{k,t} = (1-\alpha)\omega_{k,t} + \alpha(M_{k,t})$$
, $M_{k,t} = 1$ for matched dist., 0 for others

• Update means and covariances for the matched distribution as:

$$\mu_t = (1-\rho) \ \mu_{t-1} + \rho x_t$$

$$\sigma_t^2 = (1-\rho) \ \sigma_{t-1}^2 + \rho (x_t - \mu_t)^T (x_t - \mu_t)_{,} \quad \rho = \alpha * N(x_t | \mu_k, \sigma_k)$$

$$\Sigma_{k,t} = \sigma_k^2 \text{I, where I = Identity matrix, } \alpha = \text{learning rate}$$

Classification using Foreground Detection

- A block is classified as foreground if new data
 - do not match any existing Gaussians
 - match with a newly created Gaussian

Possibility foreground,
$$(b_{i,t}) = q_{i,t} / n_{i,t}$$

Conceptual diagram for foreground estimation

Distribution Similarity Based Classification

 Similarity of a block with the target GMM is estimated by Bhattacharya distance

$$Possibility_{similarity,t}(b_{i,t}) = 1 - \psi_{norm}(b_{i,t}, f_t)$$

$$\psi(p, p') = \sum_{i=0}^{n} \sum_{j=0}^{m} \omega_{i} \omega_{j}' \xi(p_{i}, p_{j}')$$

$$\xi(p, p') = \frac{1}{8} (\mu - \mu')^{T} \left(\frac{\Sigma + \Sigma'}{2}\right) (\mu - \mu') + \frac{1}{2} \ln\left[\frac{\left|\frac{\Sigma + \Sigma'}{2}\right|}{\sqrt{|\Sigma||\Sigma'|}}\right]$$

Final Feature-aware Classification field:

 Tracking in Classification Field: Segment the data using the threshold, apply Connected Component algorithm

Attribute based tracking:

Volume, mass, shape, CoG

Selection of the target feature in Earthquake data

Multivariate Data Models using Distributions

- Multivariate Histogram
 - Storage footprint of a multivariate histogram can increase exponentially with the number of variables and the desired level of discretization
 - Sparse representations can be used by storing only non-zero bins
- Multivariate GMM
 - Estimation of multivariate GMM using Expectation-Maximization is computationally expensive
 - Model complexity increases with the number of variables
- Multivariate KDE
 - Often computationally expensive and storage inefficient
- Important to preserve the <u>dependency/correlations between</u> variables for downstream multivariate analysis

Concept of Copula

- **Definition**: A d-dimensional Copula is a CDF with $\underline{uniform\ marginals}$. For d-uniform random variables, it can be denoted as $\pmb{C}(\pmb{u_1},\pmb{u_2},\dots,\pmb{u_d})$.
- "Every joint CDF in \mathcal{R}^d inherently embodies a copula function": Sklar (1959)
- Sklar's Theorem provides the mathematical basis for splitting the problem of joint distribution estimation into two parts (using copula functions):
 - 1. Estimating individual univariate marginal distributions.
 - 2. Estimating the dependencies between the random variables.

Distribution Transformation Property

• **Property 1:** If U is a uniform random variable (i.e., $U \sim Unif[0,1]$) and F_X is a CDF of random variable X, then its inverse function $F_X^{-1}(U)$ corresponds to the random variable X (i.e., $F_X^{-1}(U) \sim X$)

Distribution Transformation Property

• **Property 2:** If a real-valued random variable X has a continuous cumulative distribution function F_X , then $F_X(X) \sim Unif[0,1]$

Concept of Copula: Bivariate Example

• Consider a bivariate distribution of 2 random variables X and Y with a strong negative correlation coefficient of -0.9

• Let, F_X and F_Y be their respective CDFs.

• So, we have: F_X , F_Y and $\rho = -0.9$

Concept of Copula: Bivariate Example

- Step 1: Draw samples from a bivariate standard normal distribution with the desired correlation
- Step 2: Transform the Gaussian marginal distributions to Uniform distributions i.e., U_X and U_Y [Property 2]
- Step 3: Transform U_X and U_Y to the desired marginal distribution forms using the inverse function of F_X and F_Y [Property 1]

Concept of Copula: Bivariate Example

- Step 2 represents samples generated from a Gaussian Copula
- Gaussian Copula → standard normal distribution
- Final distribution → **Meta-Gaussian** distribution

What information to store in our multivariate data summaries?

- Consider multivariate system of variables v_1 , v_2 , v_3 , v_4
- Univariate distributions, $\theta_i \rightarrow$ distribution parameters for ith variable
- Dependency structure (correlation matrix for Gaussian Copula)

- Consider multivariate system of variables v_1 , v_2 , v_3 , v_4
- Univariate distributions, $\theta_i \rightarrow$ distribution parameters for ith variable
- Dependency structure (correlation matrix for Gaussian Copula)

Storage footprint = $\sum_{i=1}^{n} size(\theta_i)$ + elems from upper (or lower)triangular matrix)

• Storing only the value distribution misses the spatial context of the data

ullet Consider $oldsymbol{x}$ and $oldsymbol{y}$ distributions (uniform) along with $oldsymbol{v}$

ullet Consider $oldsymbol{x}$ and $oldsymbol{y}$ distributions (uniform) along with $oldsymbol{v}$

IITK CS661: Big Data Visual Analytics: Soumya Dutta

ullet Consider $oldsymbol{x}$ and $oldsymbol{y}$ distributions (uniform) along with $oldsymbol{v}$

Multivariate Sampling For Reconstruction

- Create statistical realizations of the scalar fields from the multivariate data summaries
- Utilize the spatial information to reconstruct the scalar field by computing local particle density estimate for the grid locations
- The sample scalar field can be generated in arbitrary user-specified grid resolution

Multivariate Sampling-based Visualization

Preserving Correlations

Probabilistic Query-driven Analysis

- Query-driven methods are a class of highly effective visualization strategies
- Analysis tasks can be targeted only for the queried regions
- Selectively sample only from distributions which satisfy the user query

Probabilistic Query-driven Analysis

- Query-driven methods are a class of highly effective visualization strategies
- Analysis tasks can be targeted only for the queried regions
- Selectively sample only from distributions which satisfy the user query

-2000 < Pressure < 500 AND 40 < Velocity < 50

P(-2000 < Pressure < 500 AND 40 < Velocity < 50)

Performance and Storage

Dataset (Resolution)	#variables	Raw Size (MB)	block size	MV Histogram		MV GMM		Hybrid + Copula	
				Size	Est.	Size	Est.	Size	Est.
				(MB)	Time (s)	(MB)	Time (s)	(MB)	Time (s)
Isabel (250x250x50)	11	137.5	5x5x5	173.1	106.1	23.7	2623.6	16.2	203.9
			7x7x7	152.5	111.5	8.13	4671.6	5.8	205.4
			10x10x10	113.7	98.2	2.95	5006.2	2.2	230.2
Combustion (480x720x120)	3	497.7	5x5x5	579.4	311.7	55.7	4077.7	39.2	573.3
			7x7x7	509.1	322.4	39.7	5150.4	14.3	561.7
			10x10x10	434.2	305.7	27.8	9708.5	5.1	583.6

- Copula-based modeling + hybrid distribution-based summarization
 - 496.8 GB raw data could be reduced down to 19.8GB distributionbased data