MATH 524 - Lecture 26 (11/16/2023)

Today: * Horn functor

* cohomotosy groups of simplicial complexes

Cohomology

The Hom functor &4 in [M]

Def Let A, G be abelian groups. Then the set Hom (A, G) of all homomorphisms from A to G becomes an abelian group if we add two homomorphisms by adding their values in G.

add two homomorphisms by adding their values in G.

For a $\in A$, we define $(\not b + \not \psi)(a) = \not b(a) + \not \psi(a)$. The map \$14 is a homomorphism, as $(\phi_t \psi)(0) = 0$ and

 $(\phi + \psi)(a+b) = \phi(a+b) + \psi(a+b)$

 $= \phi(a) + \psi(a) + \phi(b) + \psi(b)$

 $= (\phi + \psi)(a) + (\phi + \psi)(b).$

The identity element of Hom (A, G) is the homomorphism mapping A to identity element of G.

The inverse of homomorphism $\phi: A \to G$ is the homomorphism that maps a to $-\phi(a)$ that $A \to G$.

Example $Hom(\mathbb{Z},G_1)$ is isomorphic to G_1 itself. The isomorphism assigns to the homomorphism $\phi: \mathbb{Z} \to G$ the element $\phi(1)$.

Notice that any homomorphism $\phi: \mathbb{Z} \to G$ is completely determined by $\phi(i)$.

This isomorphism assigns to any homomorphism $\phi: A \rightarrow G$ the n-tuple ($\phi(e_i),...,\phi(e_n)$).

As the name cohomology suggests, we want define objects that are dual to homology. Indeed, we define homomorphisms from (B,G_1) to (B,G_2) to (B,G_3) to (B,G_3) for given homomorphisms from $A\longrightarrow B$.

Def A homomorphism $f:A \to B$ gives rise to a dual homomorphism $Hom(A,G) \leftarrow Hom(B,G)$ going in the reverse direction. The map f assigns to the homomorphism $\phi:B \to G$, the composite $A \to B \to G$. That is, $F(\phi) = \phi \cdot f$.

 \tilde{f} is indeed a homomorphism, as $\tilde{f}(0) = 0$, and $\tilde{f}(\phi + \psi)$ $\tilde{f}(a) = (\phi + \psi)(f(a)) = \phi(f(a)) + \psi(f(a)) = \tilde{f}(\phi)$ $\tilde{f}(\phi)$ $\tilde{f}(\phi)$

For a fixed G1, the assignment $A \rightarrow Hom(A,G)$ and $f \rightarrow f$ defines a contravariant functor from the category of abelian groups and homomorphisms to itself.

Kecall: The opposite category: Co. Given Category C, we consider another category Cot with Cot = Co (same objects), but with morphisms reversed: So, if $f:X \to Y \in \mathcal{L}_m$, then $f^{op}: Y \to X \in \mathcal{L}_m^{op}$.

Composition: $f^{\circ p} g^{\circ p} = (gf)^{\circ p}$.

Then, a contravouriant functor Gr from C to D is a (covariant) functor from C°P to D, or equivalently from C to D°P.

For, if $i_A: A \rightarrow A$ is the identity homomorphism, then $i_A(\phi) = \phi \cdot i_A = \phi$. Hence i_A is the identity map of Hom(A,G).

Also, if the left diagram commutes, so does the right me.

$$A \xrightarrow{h} C$$
 $f \xrightarrow{B} g$

Hom
$$(A, G) \leftarrow \frac{2}{h}$$
 Hom (C, G)
 f Hom (B, G)

as left diagram commutes. For, $\mathring{h}(\phi) = \phi \circ h = \phi \circ (g \circ f)$, which are equal. and $f(g(\phi)) = f(\phi \circ g) = (\phi \circ g) \circ f$,

We state a few implications of this correspondence. There are many more results listed in the book. We will then use $Hom(C_p(K),G)$ to define whomology groups.

Theorem 41.1 [M] Let f be a homomorphism, and \widetilde{f} its dual homomorphism.

(a) of f is an isomorphism, so is f.

(b) If f is the zero homomorphism, so is f.

Proof (c) f is swijective. Let $\psi \in Hom(C, G)$ and suppose $\widetilde{f}(\psi) = 0 = \psi \circ f$. So $\psi(f(b)) = 0 + b \in B$. Since f is swijective, we get that $\psi(c) = 0 + c \in C$.

Simplicial Cohomology Groups

Def Let K be a simplicial complex, G be an abelian group. The group of p-dimensional cochains of K with coefficients in G is the group $C^{p}(K;G) = Hom(G(K),G)$. The coloundary operator operator S^{p} is defined as the dual of the boundary operator $O_{pH}: G_{pH}(K) \longrightarrow G_{p}(K)$. Thus

 $C^{p+1}(K;G) \leftarrow S^{\dagger} C^{p}(K;G)$.

So S raises dimension by 1. We define $Z^p(k;G) = \ker S^p$ and $B^{pH}(k;G) = \operatorname{im} S^p$, the groups of p-cocycles and (pH)-coboundaries with coefficients in G. We take $G = \mathbb{Z}$ as the default choices.

If \bar{c}_{p} is a p-chain, and ϕ^{p} is a p-cochain, $\phi^{p} \in C^{p}$, $\bar{c}_{p} \in C^{p}$ then the coehain ϕ^{p} evaluates \bar{c}_{p} by mapping it to Z. We denote this evaluation by $\phi^{p}(\bar{c}_{p}) = \langle \phi^{p}, \bar{c}_{p} \rangle = \langle h_{is} \text{ notation is preferred}$ We get $\langle S\phi^{p}, \bar{d}_{ph} \rangle = \langle \phi^{p}, \partial \bar{d}_{ph} \rangle$, or more generally, $\langle S\phi, \bar{c} \rangle = \langle \phi, \partial \bar{c} \rangle$.

Some intuition! If ϕ evaluates a single edge to 1, and all other edges to 0, then $S\phi$ evaluates all triangles that are cofaces of this edge to 1, and all other triangles to 0.

We immediately get that SS = 0, Since $\langle SS\phi, \bar{c} \rangle = \langle S\phi, \partial \bar{c} \rangle = \langle \phi, \partial \partial \bar{c} \rangle = 0$.

Similar to $H_p = Z_p/B_p$ in homology, we can define $H^p(K;G) = Z^p(K;G)/B^p(K;G)$, the p-dimensional cohomology group of K with coefficients in G.

We get a complementary pricture here to that of how $\{G_1, Z_p, B_p, H_p\}$ line up using $\{\partial_p\}$.

Recap:
$$C^{\dagger}(k';G) = Hom(G(k),G)$$

 $\phi^{\dagger}(\bar{c}_{p}) = \langle \phi^{\dagger}, \bar{c}_{p} \rangle$
 $\langle S\phi, \bar{c} \rangle = \langle \phi, \partial \bar{c} \rangle$, $SS = 0$.

Elementary cochains

We let σ_{χ}^{*} be the elementary co-chain (with $G_1=\mathbb{Z}$) whose value is 1 on basis element σ_{χ} , and 0 on all other basis elements.

If $g \in G$, we let $g \propto^*$ denote the cochain whose value is $g \propto 0$ or σ_{x} , and $\sigma_{x} \sim 0$ on all other bassis elements. We can write any ρ -cochain as $\phi^{\rho} = \sum_{i=1}^{n} g_{x} \propto^{*}$ (possibly infinite formal sum).

With this notation, we can write down the coboundary of ϕ^{p} as

$$S\phi^{\dagger} = \Xi g_{\alpha}(S\sigma_{\alpha}^{*})$$
 (*)