Mohsen Gavahi

\$ 850-345-1306

🏠 Tallahassee, FL

■ Github.com/gavahi

⊠gavahi@cs.fsu.edu

Highlights: Eight years of experience in High Performance Computing, virtualization, cloud computing, parallel programming, and computer architecture. Looking for a full-time HPC Software Developer position.

Education

•	Ph.D. Computer Science, Florida State University, Tallahassee, FL, USA (GPA: 3.72/4)	2017 to 04/2023
•	M.Sc. Computer Architecture	2010 to 2012
•	B.Sc. Computer Hardware Engineering	2004 to 2009

Professional Experience

Graduate Assistant, Optimize Performance of Secure Communication in HPC, FSU, FL

> Optimized encrypted communication over MPI, using OCB cryptographic scheme.

08/2022 to Present

03/2021 to 09/2022

- ❖ Accelerated encryption rate up to four times using Intel® AVX extension.
- Compared to GCM scheme, proposed approach more valuable for small messages (1B-1KB) due to removal of heavy operations (e.g. generating random numbers) in per communication round.
- https://github.com/gavahi/CryptMPI_OCB
- > Evaluated encryption performance of containerized HPC (DockerSwarm and Kubernetes)

Applied various CNIs (Calico, Antrea, etc.) to measure encryption rates on HPC application.

- Observations show that available container encryption mechanisms impose a non-negligible overhead (an order of magnitude in some cases) which is not acceptable for HPC applications.
- Experimental results disclosed CryptMPI can handle encrypted communication to decline its overhead up to 5% (depending on message and node factors) on a variant of virtual clusters.
- **CryptMPI**: Optimized versions of MVAPICH & MPICH with encrypted communication.

09/2017 to 10/2021

- Focused on collective operations, including Allreduce, Allgather, Alltoall, Bcast, and Scatter.
 - Designed and implemented novel collective algorithms to optimally incorporate encryption.
 - Evaluated variant of cryptographic schemes (BoringSSL, OpenSSL, Libsodium, CryptoPP) to recognize best scheme with minimum overhead for HPC environment.
 - Empirical evaluation on multiple supercomputers (e.g. PSC Bridge) revealed that the proposed algorithms archive up to 10X speedup in comparison to naïve approach.

Senior Software Developer, Parallel Processing

03/2013 to 09/2017

Implemented scientific modules using GPU and Multicore Programming by CUDA language.

Research Interests

High Performance Computing

Virtualization & Cloud Computing

Parallel Systems & Multicore Programming

Computer Architecture and Security

Technical Skills

Languages: C, C++, Python, CUDA, Shell script Parallel Prog.: MPICH, MVAPICH, OpenMP Virtualization: Docker, Singularity, Kubernetes

Selected Publications

•	Encrypted All-reduce on Multi-core Clusters (M. Gavahi et al.)	2021
	➤ 40 th IEEE International Performance Computing and Communications (IPCCC)	
•	Efficient Algorithms for Encrypted All-gather Operation (MS. Lahijani et al.)	2021
	➤ 35 th IEEE International Parallel & Distributed Processing Symposium (IPDPS)	
•	An Empirical Study of Cryptographic Libs for MPI Communications (A. Naser, M. Gavahi et al.)	2019
	➤ 21 st IEEE International Conference on Cluster Computing	
•	High performance GPU implementation of kNN based on Mahalanobis distance (M. Gavahi et al.) ➤ IEEE International Symposium on Computer Sci. and Software Eng. (CSSE)	2015

Programming Honors

	\mathcal{E}	
•	Ranked 2 nd in the 13 th Memocode Hardware/Software Co-design International Contest	2015
•	Ranked 1 st in the 12 th Memocode Hardware/Software Co-design International Contest	2014