静電界	静磁界
真空中	真空中
真空の誘電率 $\varepsilon_0 = 8.854 \times 10^{-12} [\mathrm{Fm}^{-1}]$	真空の透磁率 $\mu_0=4\pi/10^7[{ m Hm}^{-1}]$
クーロンの法則 $oldsymbol{F}=rac{1}{4\piarepsilon_0}rac{oldsymbol{r}_0-oldsymbol{r}_1}{ oldsymbol{r}_0-oldsymbol{r}_1 ^3}Q_0Q_1$	磁極のクーロンの法則 $oldsymbol{F} = rac{1}{4\pi\mu_0}rac{oldsymbol{r}_0-oldsymbol{r}_1}{\left oldsymbol{r}_0-oldsymbol{r}_1 ight ^3}q_{m0}q_{m1}$
ガウスの法則 $\operatorname{div} oldsymbol{E} = rac{ ho}{arepsilon_0} \oint_S oldsymbol{E} \cdot \mathrm{d} oldsymbol{S} = rac{Q}{arepsilon_0}$	磁極の定義より $\operatorname{div} \boldsymbol{H} = \frac{\rho_m}{\mu_0} \oint_S \boldsymbol{H} \cdot \mathrm{d} \boldsymbol{S} = \frac{q_m}{\mu_0}$
	磁束保存 $\operatorname{div} \boldsymbol{B} = 0(\operatorname{Maxwell4}) \oint_{S} \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{S} = 0$
電界保存 $\operatorname{rot} \boldsymbol{E} = 0(\boldsymbol{B} = \operatorname{const})$	真電流がないなら $\operatorname{rot} \boldsymbol{H} = 0(\boldsymbol{J} = 0, \boldsymbol{D} = \operatorname{const})$
電界 \boldsymbol{E} [NC ⁻¹ , Vm ⁻¹]	磁界の強さ $oldsymbol{H} \left[\mathrm{Am}^{-1} ight]$
電荷密度 $\rho = \lim_{\delta v \to 0} \frac{\delta Q}{\delta v} \left[\text{Cm}^{-3} \right]$	磁束密度 $\boldsymbol{B}[\mathrm{T},\mathrm{Wbm}^{-2}]$
電荷 $Q = \int_{v} \rho \mathrm{d}v [\mathrm{C}]$	ビオ・サバールの法則 $\delta m{B} = rac{\mu_0}{4\pi} rac{I \mathrm{d} m{s} imes m{r}}{r^3}$
電位 $V = -\int_{\infty}^{p} \boldsymbol{E} \cdot d\boldsymbol{S} V \boldsymbol{E} = -\operatorname{grad} V$	アンペールの法則 $\oint_C oldsymbol{B} \cdot \mathrm{d}oldsymbol{s} = \mu_0 I$ $\mathrm{rot}oldsymbol{B} = \mu_0 oldsymbol{J}$
ポアソン方程式 $ abla^2V = -rac{ ho}{arepsilon_0}$	ローレンツカ $oldsymbol{F} = q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B})$
静電容量 $C = Q/V [F, CV^{-1}]$	

分極の強さ $\mathbf{P} = \rho_0 \delta \mathbf{r} \, [\mathrm{Cm}^{-2}]$ 分極電荷の体積密度 $\rho_P = -\operatorname{div} \mathbf{P} \, [\mathrm{Cm}^{-3}]$ 分極電荷 $Q_P = \int_v \rho_P \mathrm{d}v = -\oint_S \mathbf{P} \cdot \mathrm{d}\mathbf{S} \, [\mathrm{C}, \mathrm{FV}]$

電束密度 $m{D} = arepsilon_0 m{E} + m{P} \, [\mathrm{Cm}^{-2}]$ ガウスの法則 $\mathrm{div} \, m{D} =
ho(\mathrm{Maxwell3})$ $\oint_C m{D} \cdot \mathrm{d} m{S} = Q$

等方性誘電体 $P = \chi E = \chi_S \varepsilon_0 E$ 分極率 $\chi [\mathrm{C^2N^{-1}m^{-2}}]$ 比分極率 $\chi_s [-]$ $D = \varepsilon E = \varepsilon_0 \varepsilon_s E$ 誘電体の誘電率 $\varepsilon [\mathrm{Fm^{-1}}]$ 比誘電率 $\varepsilon_s [-]$

電界のエネルギー密度 $\frac{1}{2} oldsymbol{E} \cdot oldsymbol{D}$

定常電流界

電界は保存的 (KVL) rot E=0 電流 $I=\frac{\mathrm{d}Q}{\mathrm{d}t}=\int_S \mathbf{J}\cdot\mathrm{d}\mathbf{S}\,[\mathrm{A},\mathrm{Cs}^{-1}]$ 電流連続 $\mathrm{div}\,\mathbf{J}+\frac{\partial\rho}{\partial t}=0\to\mathrm{div}\,\mathbf{J}=0 (\mathrm{KCL})$ オームの法則 V=RI $\mathbf{J}=\sigma\mathbf{E}=\frac{E}{\rho}$ 抵抗 $R=\frac{\rho l}{S}=\frac{l}{\sigma S}\,[\Omega,\mathrm{VA}^{-1}]$ 導電率 $\sigma\,[\Omega^{-1}\mathrm{m}^{-1}]$ 抵抗率 $\rho\,[\Omega\mathrm{m}]$ 起電力 (ファラデーの電磁誘導の法則) $e=\oint_C \mathbf{E}\cdot\mathrm{d}\mathbf{s}=-\frac{\partial\Phi}{\partial t}\,[\mathrm{V}]$

マックスウェル方程式

ファラデーの電磁誘導の法則 $\mathrm{rot}\, m{E} = -rac{\partial m{B}}{\partial t}$ がウスの法則 $\mathrm{div}\, m{D} =
ho$ 一様なら $m{D} = arepsilon E, \, m{B} = \mu m{H}$

アンペール+変位電流 $\operatorname{rot} m{H} = m{J} + \frac{\partial m{D}}{\partial t}$ 磁束保存 $\operatorname{div} m{B} = 0$ 一様なら $m{J} = \sigma m{E}$