Using Machine Learning to Create Heatmaps on Valorant

App Physics 157 TX-1 Lance Clemente

Significance

Heatmaps.

- Shows trends, habits, common positions.
- Useful for all kinds of players
- Ease to access
 Information
- Data required for these
 - Heatmaps are easily accessible in Counter Strike, but not in Valorant (secure).

Background

Valorant VODs and Heatmaps

Workaround: VODs, and getting analytics from them instead

Can work with videos, livestreams, still images, all you need is the MINIMAP.

Material: Machine learning for object detection

YOLOv9

YOLOv9 is an object detection model architecture released on February 21st, 2024.

Dataset from:

Method: Inputting custom data

Positions of all players at round start: Estudyante Esports, OBE (atk) vs MKL(def), Lotus

Method: Machine learning for object detection

4	А	В	С
1	locX	locY	
2	51.50	128.50	
3	103.50	191.00	
4	141.00	189.50	
5	188.50	167.50	
6	216.50	74.50	
7	6.50	129.00	
8	141.00	178.00	
9	180.00	174.50	
10	51.50	128.50	
11	114.00	121.00	
12	138.00	196.50	
13	216.00	89.50	
14	101.50	192.00	
15	11.50	127.00	
16	179.00	169.50	
17	132.00	92.50	
18	173.50	188.50	
19	168.00	207.00	
20	141.00	198.50	

https://universe.roboflow.com/gente Imatesheatmap/valorant-heat-map

Result

-inaccurate

Comparing it to the actual data,

Some areas highlighted in the heatmap were not utilized in the actual data.

Limitation:

Non-uniform image sizes

Conclusion

-Machine Learning allows for the formation of valorant heatmaps from the source of a minimap. This allows of a wide range of analytics. (ex. Spike plant, optimal positions, Most common and uncommon played spots, etc.)

Recommendations:

- -More Accurate Predictions (Bigger Dataset)
- -More data not just showing positions at round start, can show during events in round(frags, deaths, etc.), Allows for more data analytics.
- -Uniform Minimap Orientation and size

References

https://universe.roboflow.com/gentelmatesheatmap/valorant-heat-map/dataset/2

https://github.com/igoyalsamarth/val-data-stuff/tree/main/Radar%20Heatmap

https://docs.ultralytics.com/models/yolov9/

Using Image Processing to on Mousepad Weaving

App Physics 157 TX-1 Lance Clemente

Background

Cloth mousepad

- Used and Dirty
- Has a woven cloth pattern
- Similar to our Module B2 Lab Assignment
- Observe the mousepad with the woven pattern filtered out

Method: Fourier transform pattern filtering

- 1. Greyscale & mean value
- 2. FFT
- Identifying and
 Masking symmetric
 Peaks on FFTed RGB
 Channels of original image
- 4. Inverse FFT and observe
 The mousepad without the cloth weave.

Results: Pattern filtered out

Light shine on cloth pad was also filtered out.

Combined Filtered RGB Image

Limitations: Photo taken from afar, cloth pattern cannot be seen.

Limitations: Photo taken from afar, cloth pattern cannot be

Seen. Combined Filtered RGB Image

Recommendations

- can be used to see unusual objects on plain cloths

16

Thank You!