

Focus for this lecture

MomentumVanishing Gradients

Back Propagation

Training Neural Networks

Blank Slide: Recap of Gradient Descent

Blank Slide: Recap of Gradient Descent

Plan for the Lecture

- Introduce the "Classical" Back propagation algorithm
 - ``Error'' back propagation
 - The same algorithm for all "deep" networks
 - Many practical refinements/tricks in implementation (later lecture)

Back Propagation
Loss and Objective

Loss/Objective, Error and Learning

Neuron, Perceptron and MLP

E.g. Sigmoid Activation Function

Perceptron

Input Layer Hidden Layers

Output Layer

Multi Layer Perceptron

Loss or Objective

Objective: Find out the best parameters which will minimize the loss.

$$W^* = arg \min_{W} \sum_{i=1}^{N} L(x_i^n, y_i; W)$$
 Weight vector
$$z_i = \frac{1}{2} \parallel x_i^n - y_i \parallel_2^2$$
 E.g. Squared Loss

Back Propagation

Solution: Iteratively update W along the direction where loss decreases.

Each layer's weights are updated based on the derivative of its output w.r.t. input and weights

Calculate error

• Determine updates for weights going to outputs.

• Calculate error for hidden units

 Determine updates for weights to hidden units using hidden-unit errors.

BLANK SLIDE

Neural Network Training

- Step 1: Compute loss on mini-batch [F-Pass]
- Step 2: Compute gradients w.r.t parameters[B-Pass]

Chain Rule

Chain Rule

Given
$$y(x)$$
 and $\frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
What is $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}$?

Chain Rule

Given
$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$
 and $\frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
$$\frac{\partial \mathbf{L}}{\partial \mathbf{x}} = \frac{\partial \mathbf{L}}{\partial \mathbf{v}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

What is $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}$?

For each block/parameters, we only need to find $\frac{\partial y}{\partial x}$

Key Computation: Forward-Propagation

W is the parameter, say the weights within the box.

Key Computation: Backward-Propagation

BLANK SLIDE

BLANK SLIDE

Summary

• Step 0:

Initialize the Network (MLP), weights

• Step 1:

- Do forward pass for a batch of randomly selected samples.
- Predict outputs with the existing weights.

• Step 2:

Compute Loss for the set of samples.

Summary

- Step 3:
 - Update all the weights using gradient descent.

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial \mathbf{L}}{\partial \mathbf{W}}$$

- Step 4:
 - Repeat all steps till the Loss is less than a threshold.

BLANK SLIDE

Back Propagation for MLP

Two computational blocks/steps

$$y = Wx$$
$$y = \phi(x) = \frac{1}{1 + e^{-x}}$$

• In either case we can compute $\frac{\partial y}{\partial x}$ easily.

Multiplication

(often non learnable)

Back Propagation (X,Y): Propagation

Back Propagation (X,Y): Also Learning

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_1} \cdot \frac{\partial Y_1}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_2} \cdot \frac{\partial Y_3}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial W} \qquad \qquad \frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial W} \qquad W^{n+1} = W^n - \eta \frac{dL}{dW}$$

BLANK SLIDE

Back Propagation

$$(1) \to \frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x} \quad (2) \to \frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial W} \quad (3) \to W^{n+1} = W^n \eta \frac{\partial L}{\partial W}$$

- Let there be N stages. For a computational block ℓ,
 - Compute $\frac{\partial L}{\partial x}$ using equation 1
 - If the block as a learnable parameters W then,
 - Compute $\frac{\partial L}{\partial W}$ using equation 2
 - Update the parameters using equation 3
 - Set the $\frac{\partial L}{\partial x}$ of stage ℓ as $\frac{\partial L}{\partial y}$ of stage ℓ 1, and repeat the steps 1-3, until we reach the first block.

Summary

• Step 0:

Initialize the Network (MLP), weights

• Step 1:

- Do forward pass for a batch of randomly selected samples.
- Predict outputs with the existing weights.

• Step 2:

Compute Loss for the set of samples.

Summary

- Step 3:
 - Update all the weights using gradient descent.

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial \mathbf{L}}{\partial \mathbf{W}}$$

- Step 4:
 - Repeat all steps till the Loss is less than a threshold.

Questions?

Comments on BP

- A Non-Convex Optimization
 - Worry of getting trapped in Local Minima
- Why limit to simple gradient methods?
 - Why not second order methods?
- How to make the solution reliable?
 - Repeatable?
- Many refinements
 - Eg. Momentum
- More Later

Many Practical Challenges

- Vanishing Gradients in Deep Networks
- Slow Convergence
- Bad ``Local Minimas"
- How to initialize the network?
 - Random or "smart" initializations
- Better update rule
 - Faster and reliable convergence
- Termination Criteria
 - When do we stop?

BLANK SLIDE

Summary

Thanks!!

Questions?