

K nearest neighbor

Jony Sugianto jony@evolvemachinelearners.com 0812-13086659 github.com/jonysugianto

Simple Analogy...

 Tell me about your friends(who your neighbors are) and I will tell you who you are.

Instance-based Learning

KNN - Different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Lazy Learning

What is KNN?

- A powerful classification algorithm used in pattern recognition
- K nearest neighbors stores all available cases and classifies new cased based on a similarity measure (e.g. distance function)
- One of the top data mining algorithms used today
- A non parametric lazy learning algorithm(an instance based learning method)

KNN: Classification Approach

- An object (a new instance) is classified by a majority votes for its neighbor classes.
- The object is assigned to the most common class amongst its K nearest neighbors.(measured by a distance function)

Distance Measure

Distance measure for Continuous EVOLV **Variables**

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_{k} - y_{i})^{2}}$$

When is the difference?

Manhattan

$$\sum_{i=1}^{k} |x_i - y_i|$$

Minkowski
$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$$

Distance Between Neighbors

- Calculate the distance between new example
 (E) and all examples in the training set.
- Euclidean distance between two examples.

$$-X = [X_1, X_2, X_3, ..., X_n]$$

$$-Y = [y_1, y_2, y_3, ..., y_n]$$

– The Euclidean distance between X and Y is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Non Numeric Data

- Feature values are not always numbers
- Example
 - Boolean values: Yes or no, presence or absence of an attribute
 - Categories: Colors, educational attainment, gender
- How do these values factor into the computation of distance?

Dealing with non numerical data

- Boolean values => convert to 0 or 1
 - Applies to yes-no/presence-absence attributes
- Non-binary characterizations
 - Use natural progression when applicable; e.g., educational attainment: GS, HS, College, MS, PHD => 1,2,3,4,5
 - Assign arbitrary numbers but be careful about distances;
 e.g., color: red, yellow, blue => 1,2,3
- How about unavailable data?
 (0 value not always the answer)

Nominal/Categorical Data

Distance works naturally with numerical attributes.

Binary value categorical data attributes can be

regarded as 1 or 0.

ma	mming Dis	tance
D_{H}	$=\sum_{l=1}^{k} x_{l} $	$ y_i - y_i $
x =	$y \Rightarrow L$	0 = 0
$x \neq$	$y \Rightarrow L$	0 = 1
x ≠		Distance
х		

Distance Between Neighbors

- Calculate the distance between new example
 (E) and all examples in the training set.
- Euclidean distance between two examples.

$$-X = [X_1, X_2, X_3, ..., X_n]$$

$$-Y = [y_1, y_2, y_3, ..., y_n]$$

– The Euclidean distance between X and Y is defined as:

$$D(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

K-Nearest Neighbor Algorithm

- All the instances correspond to points in an n-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each of the training data consists of a set of vectors and a class label associated with each vector.
- Classification is done by comparing feature vectors of different K nearest points.
- Select the K-nearest examples to E in the training set.
- Assign E to the most common class among its K-nearest neighbors.

Customer	Age	Income	e No. credit	Class	Distance from John
	25	2514	cards		Sqrt((35-37)**2+(35-50)**2+(3-2)**2)=15.16
George	35	35K	3	No Var	Sqrt((22-37)**2+(50-50)**2+(2-2)**2)=15
Rachel	22	50K	2	Yes	152.23
Steve	63	200K	1	No	122
Tom	59	170K	1	No	15.74
Anne	25	40K	4	Yes	15.74
John	37	50K	2	?	Yes

How to choose K?

- If K is too small it is sensitive to noise points.
- Larger K works well. But too large K may include majority points from other classes.

Rule of thumb is K < sqrt(n), n is number of examples.

every example in the blue shaded area will be classified correctly as the red class

K-nearest neighbors of a record x are data points that have the k smallest distance to x

 Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_{k} (a_{k} - b_{k})^{2}}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights wk using cross-validation (to be covered later)

 Distance between neighbors could be dominated by some attributes with relatively large numbers. e.g., income of customers in our previous example.

$$a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$$

- Arises when two features are in different scales.
- Important to normalize those features.
 - Mapping values to numbers between 0 1.

KNN Classification

KNN Classification – Distance

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ ←	8000
		Ţ	
48	\$142,000	?	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
Euclidean Distance

KNN Classification – Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N ←	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	ذ 🦰	

$$X_{s} = \frac{X - Min}{Max - Min}$$

Strengths of KNN

- Very simple and intuitive.
- Can be applied to the data from any distribution.
- Good classification if the number of samples is large enough.

Weaknesses of KNN

- Takes more time to classify a new example.
 - need to calculate and compare distance from new example to all other examples.
- Choosing k may be tricky.
- Need large number of samples for accuracy.

Iris Flower Dataset

IRIS dataset

Iris Versicolor

Iris Virginica

Iris Setosa

Iris Flower Dataset

Fisher's Iris Data

Sepal length +	Sepal width +	Petal length +	Petal width +	Species +
5.1	3,5	1.4	0.2	I. setosa
4.9 Sort ascending	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa
5.4	3.7	1.5	0.2	I. setosa
4.8	3.4	1.6	0.2	I. setosa
4.8	3.0	1.4	0.1	I. setosa

Mnist Dataset

MNIST dataset (1997)

70,000 digits
60,000 train 10,000 test
10 classes
28x28 grayscaled

