Predicting Student Success with Machine Learning

CSCA 5622: Intro to Machine Learning Supervised Learning

PHPO 4876: Philipp Adrian Pohlmann

The Problem: Early Identification of At-Risk Students

The Challenge:

- Universities have limited resources to support struggling students
- Need to identify students before it's too late
- Traditional methods rely on intuition, not data

Research Approach:

- Predict exam scores using behavioral and demographic factors
- Compare multiple ML approaches
- Identify highest impact intervention points

The Dataset: Student Performance Factors

Student Performance Factors

Behavioral:

 Hours studied, Attendance (%), Sleep hours, Tutoring sessions

Demographic:

Family income, Parental education,
 Distance from home, Gender

School-Related:

Teacher quality, Access to resources,
 School type, Peer influence

Target: Exam Score (range: 55-101 points)

Dataset loaded successfully Shape: 6,607 rows × 20 columns

	Hours_Studied	Attendance	Parental_Involvement	Access_to_Resources
0	23	84	Low	High
1	19	64	Low	Medium
2	24	98	Medium	Medium
3	29	89	Low	Medium
4	19	92	Medium	Medium

Machine Learning Models

Data Preprocessing

- ✓ Missing values: <2% (filled)
 </p>
- ✓ Categorical encoding: 13 text variables
- ✓ Feature scaling: Standard Scaler normalization
- ✓ 80/20 train / test split

Models Tested (Simple → Complex):

- Linear Regression (baseline)
- Decision Tree & Random Forest
- Gradient Boosting
- Support Vector Regression (SVR)
- Polynomial Regression (2nd degree)

```
# Define models to compare
models = {
    "Linear Regression": LinearRegression(),
    "Decision Tree": DecisionTreeRegressor(random state=42),
    "Random Forest": RandomForestRegressor(n estimators=100, random state
    "Gradient Boosting": GradientBoostingRegressor(random state=42),
    "SVR": SVR(kernel='rbf')
results = \{ \}
# Train and evaluate models
for name, model in models.items():
    model.fit(X_train_scaled, y_train)
    y pred = model.predict(X test scaled)
    rmse = np.sgrt(mean squared error(y test, y pred))
    r2 = r2_score(y_test, y_pred)
    mae = mean absolute error(y test, y pred)
    results[name] = {"RMSE": rmse, "r2": r2, "MAE": mae}
    print(f"{name} -> RMSE: {rmse:.3f}, r2: {r2:.3f}, MAE: {mae:.3f}")
# Convert results
results df = pd.DataFrame(results).T
results df
```

Model Results: Why simple models win

Performance Comparison

Winner:

Linear Regression: R² = 0.77 | RMSE = 1.80 | MAE = 0.45

Close seconds:

• SVR: R² = 0.76

Polynomial Regression: R² = 0.75

Underperformers:

Random Forest: R² = 0.65

Decision Tree: R² = 0.00 (failed to generalize)

Key Finding: Simplest model outperformed complex ensembles

	Model	RMSE	r2	MAE
0	Linear regression	1.80	0.77	0.45
1	SVR	1.84	0.76	0.51
2	Polynomial regression	1.89	0.75	0.64
3	Gradient boosting	1.90	0.74	0.69
4	Tuned random forest	2.18	0.67	1.14
5	Random forest	2.23	0.65	1.18
6	Decision tree	3.77	0.00	1.89

What Drives Student Success?

Top Predictors of Student Success

#1: Attendance (~40% of model importance) Showing up is the single biggest factor

#2: Hours Studied (~30% importance) Consistent study time drives results

#3: Previous Scores (~10% importance) Prior achievement remains predictive

Surprisingly Low Impact:

- Family income, Access to resources, Teacher quality
 - Note: These factors likely affect behavior (attendance, study habits) but aren't direct predictors once you control for behavior

Model Validation: Does The Model Work?

How can we know this works?

- ✓ Predictions track actual scores closely (see plot)
- ✓ Residuals normally distributed around zero
- ✓ Test R^2 (0.77) > Training R^2 (0.72), i.e. no overfitting, model generalizes well

Avg. prediction error: ±1.8 points which is Accurate enough for early intervention decisions

Prediction Quality in Practice

Real-World Application

- Model identifies students likely to score <65
- Flag for early intervention

Offers: tutoring, study skills workshops, attendance monitoring

Example Predictions:

Student A: Predicted 68 → Actual 67 ✓

Student B: Predicted 73 → Actual 75 ✓

Student C: Predicted 59 → Actual 61 / (flagged

correctly)

Student ID	Predicted	Actual	Error	Flag?
mjk2847	68	67	+1	No
tes5392	73	75	-2	No
rcb1039	59	61	-2	Yes
daf4158	62	64	-2	Yes
lmw8914	81	79	+2	No
jsk2763	56	58	-2	Yes

Accuracy enables proactive support, not just reactive

Hyperparameter Tuning

Could tuning improve Random Forest?

- Grid Search: Tested 120 parameter combinations
- Best configuration: max_depth=20, n_estimators=200
 w/ cross-validation

Result:

• Tuned RF: R² = 0.67 wich was much worse than Linear Regression

Takeaway: Data structure is inherently linear and adding complexity doesn't capture additional signal

```
# Evaluate tuned model
best_rf = grid_search.best_estimator_
y_test_pred_tuned = best_rf.predict(X_test_scaled)

rmse_tuned = np.sqrt(mean_squared_error(y_test, y_test_pred_tuned))
r2_tuned = r2_score(y_test, y_test_pred_tuned)
mae_tuned = mean_absolute_error(y_test, y_test_pred_tuned)

print("Tuned Random Forest performance:")
print(f"Test RMSE: {rmse_tuned:.3f}")
print(f"Test MAE: {mae_tuned:.3f}")

Tuned Random Forest performance:
Test RMSE: 2.175
Test r2: 0.665
```

Test MAE: 1.137

Looking Forward: Al Assisted Learning

Beyond Traditional Factors

Current model explains 77% of variance but learning is evolving rapidly

Exploratory Dataset:

- ChatGPT Usage in Education: 23,218 students in 109 countries
- Survey on AI tooling usage and learning perceptions

Future Predictors:

 Al usage frequency for problem-solving, perceived learning efficiency with Al tooling, or confidence in Al-assisted work

Challenge: Different student populations and would require data from the same cohort

Key Takeaways

#1 Simple models can outperform complex ones

- Linear Regression (R²=0.77) beat all ensemble methods
- Always start with an interpretable baseline
- Add complexity only if it adds value

#2 Behavior matters most for student success

- Attendance and study hours are highest-leverage factors
- Focus interventions here for maximum impact

#3 Traditional factors explain 77%, but learning is evolving

- Al-assisted learning may add new predictive signals
- Future models should integrate both traditional + emerging behaviors

Thank You!

