3.16 Basic properties of Boolean algebra

Some first properties

The benefit of building circuits from logic gates, rather than directly from transistors, becomes clear after learning some ba Boolean algebra.

Table 3.16.1: A few basic properties of Boolean algebra.

Property	Name	Description
a(b+c) = ab + ac	Distributive (for AND)	Same as multiplication in regular algebra
a + a' = 1	Complement	Clearly one of a, a' must be 1 1 + 0 = 1 0 + 1 = 1
a·1=a	Identity	Result of a · 1 is always a's value $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

PARTICIPATION ACTIVITY

3.16.1: The properties of Boolean algebra are useful to simplify an equation, yielding a simpler circuit: Out-of-bed alarm system.

Start

2x speed

s = un + un'

1

n s nurse

S

Inputs: u: person up from bed,

n: nurse call button pressed

Outputs: s: sound alarm

Goal behavior: Sound alarm if person up and button pressed, or person up and button not pressed.

$$s = un + un'$$

u

s = u(n + n') Distributive (in reverse)

s = u(1) Complement

s = u Identity

Applying Boolean algebra properties led to a simpler expression and thus a simpler circuit. Simplifying expressions is a cor Boolean algebra.

PARTICIPATION ACTIVITY

3.16.2: Simplifying an expression using Boolean algebra.

Original expression: (d')(e + f)(d + d')

$$(d')(e+f)$$
 $(d')(e+f)(d+d')$ $d'e+d'f$ $(d')(e+f)(1)$

Original expression

Complement

Identity

Distributive

Reset

PARTICIPATION ACTIVITY

3.16.3: Simplify the equation using Boolean algebra properties.

Video: How to use this activity

Start

Select next term

Apply

Undo

More properties

Below are more properties of Boolean algebra.

Table 3.16.2: More properties.

Property	Name	Description
ab = ba	Commutative (for AND)	Same as multiplication for regular algebra
a+b=b+a	Commutative (for OR)	Same as addition for regular algebra

a + 1 = 1	Null elements	OR only needs one 1 to evaluate to 1 a = 0 $0 + 1 = 1a = 1$ $1 + 1 = 1$
a + a = a aa = a	Idempotent	0+0=0 $1+1=10\cdot 0=0 1\cdot 1=1$

PARTICIPATION ACTIVITY

3.16.4: Simplifying an expression using more Boolean algebra properties.

Original expression: (e + 1)(e'f + fe' + d')

$$e'f + d'$$
 (1)($e'f + fe' + d'$) $e'f + e'f + d'$ ($e + 1$)($e'f + fe' + d'$)

Original expression

Null elements

Identity

Commutative (for AND)

Idempotent

Reset

Example: Motion-sensing light equation

A designer may initially write an equation that matches his/her natural thinking of desired behavior, as below. The designer Boolean algebra properties to obtain a simpler equation (and thus a simpler eventual circuit).

PARTICIPATION ACTIVITY

3.16.6: Motion-sensing light example.

Consider the above motion-sensing light example.

1) The designer captured the desired behavior little-by-little as an equation, resulting in terms on the right side.	•
O 1	
O 2	
O 3	
2) The first modification (commutative) just literals within terms.O rearranged	_
O eliminated	
O eliminated	
3) The next modification (idempotent) the number of terms.	•
O decreased	
O did not change	
O increased	
 Subsequent modifications resulted in a final equation having terms on the right side. 	•
O 2	
O 3	

Summary of common Boolean algebra properties

The following table summarizes commonly-used basic properties of Boolean algebra.

Table 3.16.3: Commonly-used basic properties of Boolean algebra.

Property	Name	Description
a(b + c) = ab + ac a + (bc) = (a + b)(a + c)	Distributive (AND) Distributive (OR)	(AND) Same as multiplication in regular algebra (OR) Not at all like regular algebra
ab = ba a + b = b + a	Commutative	Variable order does not matter. Good practice is to sort variables alphabetically.
(ab)c = a(bc) (a + b) + c = a + (b + c)	Associative	Same as regular algebra
aa' = 0 a + a' = 1	Complement (AND) Complement (OR)	(AND) Clearly one of a, a' must be 0 1 · 0 = 0 · 1 = 0 (OR) Clearly one of a, a' must be 1 1 + 0 = 0 + 1 = 1
a · 1 = a a + 0 = a	Identity (AND) Identity (OR)	(AND) Result of a · 1 is always a's value $0 \cdot 1$ = $0 \cdot 1 \cdot 1 = 1$ (OR) Result of a + 0 is always a's value $0 + 0 = 0 \cdot 1 + 0 = 1$
a · 0 = 0 a + 1 = 1	Null elements	Result doesn't depend on the value of a.
a · a = a a + a = a	Idempotent	Duplicate values can be removed.
(a')' = a	Involution	(0')' = (1)' = 0 (1')' = (0)' = 1
(ab)' = a' + b' (a + b)' = a'b'	DeMorgan's Law	Discussed in another section

PARTICIPATION ACTIVITY	3.16.7: Basic properties of Boolean algebra.	_
1) Which prop zxy into xy	perty allows one to change z?	_
O Asso	ociative	
O Com	nmutative	
O Iden	tity	
2) Which prop	perty allows one to change a st a?	•
O Iden	tity	
O Idem	npotent	
O Com	plement	
3) Which prop + xy' into x	perty allows transforming xy (y + y')	•
O Com	plement	
O Distr	ributive	
4) Which prop + y') into x(perty allows transforming x(y (1)?	•
O Com	plement	
O Iden	tity	
5) Which propinto x?	perty allows transforming x(1)	•
O Com	plement	
O Iden	tity	

Provide feedback on this section