H6: unitary similarity and unitary equivalence 6.1 unitary and orthogonal groups		
	$U^HU \; = \; I_n \; = \; UU^H$	
	> subgroup of $GL(n,\mathbb{C})$ and $ \det(U) = 1$	
def: special unitary group S $\mathcal{U}(n)$	= unitary group for which every U \in S $\mathcal{U}(n)$ det(U) = +1	
	$>$ subgroup of SL(n, \mathbb{C})	
$\mathcal{U}(n)$ a compact set	finite-dimensional unitary matrices form a compact set	
def: orthogonal group O(n)	= the restriction of the unitary group to real numbers	
def: special orth. group SO(n)	= orthogonal group of matrices with det(O) = +1	
	6.2 elementary unitary transformations	
6.2.1 permutation matrices		
def: permutation matrix	For a permutation $\sigma \in S_n$	
	> the associated permutation matrix $P(\sigma) \in \mathbb{R}^{n \times n}$ is an orthogonal matrix with nonzero entries given by: $P^i_{j}(\sigma) = \delta^i_{\sigma(j)}$.	
6.2.2 Givens transformations		
def: Givens transformation	= unitary matrix G∈F ^{nxn} specified by two parameters c,s∈F satisfying c ²+ s ² = 1 and two integers 1≤i≤j≤n such that the nonzero entries of G are given by:	
	$G_k^k = 1 \text{ for } k \neq i, k \neq j,$ $G_i^i = G_j^j = c,$ $G_i^j = \overline{s},$ $G_j^i = -s.$	
6.2.3 Householder transformation	on	
def: Householder transformation	In an inner product space V, this corresponds to a unitary self-adjoint operator which maps for ${\bf u}$ a given unit vector: ${\bf w} o {\bf w} - 2 \langle {\bf u}, {\bf w} \rangle {\bf u}$,	
	In standard space \mathbb{F}^n this corresponds to $H(\mathbf{v})$:	
	$H = I - rac{2}{v^H v} v v^H$	
6.2.4 Discrete Fourier transform	ation	
def: discrete Fourier transform	for a function $f:\{0,\ldots,n-1\}\to\mathbb{C}:j\to f_j$ is given by	
	$F_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} f_j \exp\left(-i\frac{2\pi}{n}jk\right), \forall k = 0, \dots, n-1.$	
prop: inverse of discr. Ft	the inverse of the discrete Fourier transform is given by:	
	$f_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} F_k \exp\left(+i\frac{2\pi}{n}jk\right)$	
def: circulant	= a matrix A $\in \mathbb{C}^{n \times n}$ with entries: $A^i_{\ j} = f_{(j-i) \bmod n}$	
prop: circulant and DFT	A circulant matrix $A \in \mathbb{F}^{n \times n}$ is diagonalised by the Fourier transform matrix $U \in \mathbb{F}^{n \times n}$, i.e. $AU = U\Lambda$ with $\Lambda = diag(\lambda_0, \lambda_1, \dots, \lambda_{n-1})$, where the eigenvalues are given by	
	$\lambda_k = \sum_{j=0}^{n-1} f_j \omega^{kj} = \sum_{j=0}^{n-1} f_j e^{-i\frac{2\pi}{n}kj}.$ (6.11)	

6.3 QR decomposition revisited		
QR-decomp. via Householder reflections	A first Householder reflection H_1 is applied based on the first column ie: use $w=(A^i{}_1)_{i=1,\dots,m}$ in order to cancel the elements in rows i=2,,m in 1st column	
	> now construct a second Hh refection H_2 acting on the second column ie: use $w = ((H_1^H A)^i_2)_{i=2,\dots,m}$, to zero out elements in rows i=3,,m in the in 2nd column > this transformation doesn't effect the first column	
	>> do this for every column > find a sequence of Hh reflections that eliminate the entries at rows i=k+1,m: H ₁ , H ₂ ,, H _n , where H _k acts on rows k,,m	
	We can then obtain:	
	$H_{n-1}^H \dots H_2^H H_1^H A = \tilde{R} \implies A = \underbrace{H_1 H_2 \dots H_{n-1}}_{\tilde{Q}} \tilde{R}.$	
	Q	
	6.4 Schur decomposition and power iteration	
6.4.1 Schur decomposition		
th: Schur triangulation	Any matrix $A \in \mathbb{F}^{n \times n}$ admits a Schur decomposition which takes the form: $A = Z T Z^H$	
	where $Z \in U(n)$ and $T \in \mathbb{F}^{n \times n}$ is upper triangular. ⁶	
	> this isn't unique for a certain matrix A ie: you can fiend multiple Schur decompositions	
6.4.2 normal matrices revisited		
prop: schur decomp. on a normal	For A a normal matrix	
matrix	> its Schur decompositions, the upper triangular matrix T is diagonal	
	ie: A is diagonalised by a unitary matrix and the Schur and eigenvalue decomp. coincide	
6.4.3 power method and subspace	e iteration	
def: power iteration	For a square matrix A	
	> start from a given vector $v_0 = v$ and iterate over following steps for k=0,1,2,	
	1. $q_k = v_k / \ v_k\ $ (normalisation);	
	$\mathbf{z}. \ v_{k+1} = Aq_k;$	
	3. $\mu_k = \langle \boldsymbol{q}_k, \boldsymbol{v}_{k+1} \rangle = \boldsymbol{q}_k^{H} A \boldsymbol{q}_k$.	
prop: convergence of pow. it.	For $A \in \mathbb{F}^{n \times n}$ For λ_1 the eigenvalue for A for which: $- \lambda_1 = \rho_A$ ie: λ_1 is the largest eigenvalue $-\lambda$ is simple or semisimple (1)	
	For P_1 a projector onto the eigenspace $V_{\lambda 1}$ along the direct sum of all eigenspaces and	
	generalised eigenspaces For any vector V for which $P_1v \neq 0$	
	> the power method will converge with:	
	$\mu_{\infty} = \lim_{k \to \infty} \mu_k = \lambda_1$ and $\mathbf{q}_{\infty} = \lim_{k \to \infty} \mathbf{q}_k$ a normalised eigenvector in V_{λ_1} .	
	(1) its geometric and algebraic multiplicity coincide and there are no non-trivial Jordan blocks associated with λ_1	

def: subspace iteration	For a matrix $A \in \mathbb{F}^{n \times n}$
	> this starts from m≤n vectors that are collected as the columns of a matrix V ₀ ∈ F ^{nxm} and iterates over the following steps over k=0,1,2,
	1. $Q_k R_k = V_k$ (QR decomposition);
	$2. V_{k+1} = AQ_k;$
	3. $T_k = Q_k^H V_{k+1} = Q_k^H A Q_k.$
	If the subspace iteration method converges, so that each of the sequences Q_k , V_k , R_k and T_k reach a fixed point which we denote as Q_∞ , V_∞ , R_∞ and T_∞ respectively, we find
	$V_{\infty} = AQ_{\infty} = Q_{\infty}R_{\infty}$ and $T_{\infty} = R_{\infty}$. (6.17)
def: QR algorithm	For a matrix $A \in \mathbb{F}^{n \times n}$
	> this starts from $T_0 = A$ and $Z_0=I$ and iterates:
	1. $Q_k R_k = T_{k-1}$;
	$z. \ Z_k = Z_{k-1} Q_k;$
	3. $T_k = R_k Q_k$.
	It can easily be seen that for any iteration, we have
	$A = T_0 = Q_1 R_1 = Q_1 T_1 Q_1^H = \ldots = (Q_1 Q_2 \cdots Q_k) T_k (Q_1 Q_2 \cdots Q_k)^H = Z_k T_k Z_k^H$
	6.5 bilinear and quadratic forms revisited
matrix congruence ~C	like linear matrices with similarity transforms aka \tilde{A} = TAT ⁻¹ , a bilinear matrix C can be transformed to $^{\sim}$ C via:
	$\tilde{C} = T^{-H}CT^{-1}$
unitary similarity transform Ã	\tilde{A} = UAU ^H lies in the intersection of similarity and congruence > because U ⁻¹ = U ^H
6.5.1 signature and Sylvester's la	w .
prop: general canonical form	The matrix representation B of a symmetric bilinear form B is congruent with a canonical form given by:
	$V^{T}BV = \mathrm{diag}(\underbrace{+1,\ldots,+1}_{n_{+} \ times},\underbrace{-1,\ldots,-1}_{n_{-} \ times},\underbrace{0,\ldots,0}_{n_{0} \ times}). \tag{6.19}$
	The three numbers (n_+, n, n_0) are sometimes referred to as the inertia or signature of the symmetric matrix B.
properties of n	n_0 = nullity of B = v(B) n_+ + n = rank of B = ρ (B)
	> thus $n_0 + n_+ + n = n = dim(B)$
positive (semi)definite-ness via inertia	Bilinear form is: - positive semidefinite if $n_{-} = 0$ - positive definite if $n_{+} = n$
principle axis	= the basisvectors $\mathbf{u}_k \sim \mathbf{v}_k$ which diagonalise the quadratic form > eigenvalues \mathbf{d}_k have meaning dependent on the chosen basis
th: Sylvester's law	Two symmetric matrices B, \sim B $\in \mathbb{R}^{nxn}$ have the same number of n_+ , n and n_0
6.7	if and only if
	they are congruent ie: there is some $T \in GL(n,\mathbb{R})$ such that $B = T^T \tilde{B}T$.

6.5.2 Cholesky decomposition an	6.5.2 Cholesky decomposition and Lagrange reduction		
Cholesky decomposition	For a real symmetric matrix B > the LDU decomp. reduces B = LDL ^T > in LDU all the diagonal elements of L are 1		
	Modify this, such that D only contains the sign of the diagonal elements and absolute value of nonzero diagonal elements is absorbed > by rescaling the columns of L and with a square root of this absolute value		
	For the associated quadratic form:		
	$q(x) = x^{T} B x = \sum_{i,j=1}^{n} B_{ij} x^{i} x^{j} = B_{11}(x^{1})^{2} + 2B_{12}x^{1}x^{2} + \dots,$		
	this procedure is equivalent to that of <i>Lagrange reduction</i> , whereby one sequentially completes the squares. One combines the term $B_{11}(x^1)^2$ with all the terms $2B_{1k}x^1x^k$ for $k = 2,, n$ into a square		
	$sgn(B_{11})(\sqrt{ B_{11} }x^1 + \sum_{k=2}^n B_{1k}/\sqrt{ B_{11} }x^k)^2,$		
	Thereby subtracting the additional terms that were needed for this square > variable x ¹ has now been completely eliminated > repeat this process for x ² ,x ³ , > until the quadratic form is rewritten as pure squares of ne variables:		
	$y^j = \sum_{k=j}^n (L^T)^j_{\ k} x^k.$		
	>> if B is positive definite, ie: $n_+ = n$, its canonical form corresponds to I_n > thus B = LL^T		
	6.6 singular value and polar decomposition		
6.6.1 unitary equivalence			
unitarily equivalent	= matrices related via $\tilde{A} = U^H A V$ with unitary U and V > is equivalence relation		
6.6.2 singular value decomposition	n		
prop: singular value decomp.	For a matrix $A \in \mathbb{F}^{mxn}$		
	> there exist unitary matrices U \in U(m) and V \in U(n) such that: $A = USV^H$		
	with SEF ^{mxn} has only nonzero elements on the diagonal > can be made positive and ordered such that: $S_1^1 = \sigma_1 \geq S_2^2 = \sigma_2 \geq \ldots \geq S_p^p = \sigma_p > 0 \text{ for some } p \leq \min(m,n)$		
	these $(\sigma_1,,\sigma_p)$ are known as the <i>singular values</i> of A		
properties of singular values	- singular values of a matrix A are unique - matrices U and V which decompose A aren't		
singular value decomp. of a real matrix A	The singular value decomp. of a real matrix A decomposes it into the following steps: • A rotation to a new set of orthonormal basis vectors (V)		
	A rescaling of the basis vectors / coordinates (S)		
	• Another rotation, possibly with reflection, to the final basis (U).		
equations with singular values	Remark 6.38. If we denote the <i>i</i> th column of U and V as $u_i \in \mathbb{F}^m$ and $v_i \in \mathbb{F}^n$ respectively for $i = 1,, p$, then we can write		
	$Av_i = \sigma_i u_i, \qquad A^{H} u_i = \sigma_i v_i. \tag{6.22}$		

singular value decomp. of square matrices	For $A \in \mathbb{F}^{n \times n}$ a square matrix of size n
matrices	> we can relate the singular value decomp. of A to the eigenvalue decomp. of a Hermitian
	matrix of size 2nx2n: [O A] (1 [U U]) (1 [U U]) [S O]
	$\begin{bmatrix} O & A \\ A^{H} & O \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} U & U \\ V & -V \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} U & U \\ V & -V \end{bmatrix} \end{pmatrix} \begin{bmatrix} S & O \\ O & -S \end{bmatrix}$
	>> can be used for singular value decomp
singular value decomp for non-square matrices	first compute a QR-decomp of A and then use the previous for the singular value decomp > we obtain: $A = QR = QU_RS_RV_R^H = U_AS_AV_{A'}^H$
	and thus: $U_A = QU_R, S_A = S_R \mbox{ and } V_A = V_R. \label{eq:VA}$
def: thin singular value decomp	if m \neq n, a different yet equivalent decomp of A is given by: $A = U_k S_k V_k^H \text{ with } k = \min(m, n)$
def: compact singular value decomposition	if only p <min(m,n) <math="" are="" non-zero,="" singular="" then:="" values="">A = U_p S_p V_p^H</min(m,n)>
def: rank r truncated singular value decomposition	if we reduce k to some value r no longer an equality, but consider as an approximation of A: $U_r S_r V_r^H$,
6.6.3 rank, norm, condition numb	er
prop: link between decomp and rank, norm, image	1: The singular value decomposition exposes the rank of the matrix: > ρ(A) = p, the number of singular values
	2: U _p , the column of U corresponding to the non-zero singular values: > constitute an orthonormal basis for im(A)
	3: the columns k=p+1,,n of V provide an orthonormal basis for ker(A)
def: full rank	= matrix $A \in \mathbb{F}^{mxn}$ for which the rank has its maximal value $p=\rho(A)=min(m,n)$
	> all other matrices are rank deficient
prop: norm and σ_1	For $A \in \mathbb{F}^{mxn}$ a linear map between \mathbb{F}^n and \mathbb{F}^m with Euclidean norm $\ .\ _2$
	> now it holds: $\left\ A \right\ _2 = \sigma_1$,
prop: Frobenius norm and σ	The Frobenius norm of $A \in \mathbb{F}^{m \times n}$ is given by $\ A\ _F = \sqrt{\sum_{i=1}^p \sigma_i^2}$.
prop: condition number and σ	The condition number of an invertible matrix $A \in \mathbb{F}^{n \times n}$ is given by $\kappa(A) = \sigma_1 / \sigma_n$.
6.6.4 least squares and pseudo-in-	verses
def: minimum norm least squares	For a general matrix $A \in \mathbb{F}^{m \times n}$
solution	For L: $L = \{x \in \mathbb{F}^n \ Ax - y\ _2 = \min_{x' \in \mathbb{F}^n} \ Ax' - y\ _2 \}$
	denote the set of all solutions that minimise the norm of the residual
	> then: $x^* = \arg\min_{x \in L} \ x\ $
	is known as the minimum norm least squares solution
prop: solution of min. norm least squares solution	For a general matrix $A \in \mathbb{F}^{mxn}$
	> the min. norm least squares solution for $Ax = y$ is uniquely given by:
	$oldsymbol{x}^* = oldsymbol{V}_p oldsymbol{S}_p^{-1} oldsymbol{U}_p^{H} oldsymbol{y},$
def: Moore-Penrose	For a general matrix A∈F ^{mxn} this is:
pseudoinverse	$A^{+} = V_{p}S_{p}^{-1}U_{p}^{H} \tag{6.25}$
	in terms of the compact singular value decomposition $A = U_p S_p V_p^H$, where $p = \rho(A)$.
L	1

6.6.5 low rank approximations	
th: Eckart-Young-Mirsky theorem	For $A \in \mathbb{F}^{mxn}$
	> the rank r matrix B that minimises $\ A-B\ _2$ for 2-norm is given by: $B = U_r S_r V_r^{H}$
th: Eckart-Young-Mirsky theorem for Frobenius norm	For A∈F ^{mxn}
	> the rank r matrix B that minimises $\ A-B\ _2$ for F-norm is given by: $B = U_r S_r V_r^{H}$
6.6.6 polar decomposition	
prop: polar decomposition	For A∈F ^{mxn} with m≥n
	> it can be decomposed as:
	$A = UP \tag{6.26}$
	where $U \in \mathbb{F}^{m \times n}$ is isometric ($U^H U = I_n$) and $P \in \mathbb{F}^{n \times n}$ is Hermitian and positive semidefinite.
	>> generalised: $z={ m e}^{{ m i}{ m arg}(z)} z $
prop: isometric factor	Given $A \in \mathbb{F}^{m \times n}$ with $m \geq n$, the isometric matrix B that minimises $\ A - B\ _F$ is given by the isometric factor in the polar decomposition of A.