

Privacy-Preserving Gradient Boosting Decision Trees

Kobe University Engineering ES5
M2 201T264T
Fuki Yamamoto

Background

- ✓ Recently, privacy concerns are growing
 (e.g., inference of original data from statistics, leakage of sensitive info etc.)
 - → Related legislation (e.g. General Data Protection Regulation (GDPR))
 - → Balancing privacy protection and data utilization is required
 - → Privacy-Preserving Data Mining
- ✓ Differential privacy (DP) provides privacy-preserving statistics (Other privacy-preserving techniques protect only the computational process)

Background

✓ Previous DP algorithms in GBDT suffer from serious accuracy loss (GBDT is a ML model used in various domain)

✓ In this study, the accuracy loss is improved by focusing on **bounding of sensitivity** and **privacy budget allocation**

Figure 1: The two-level boosting design of DPBoost

Gradient Boosting Decision Trees (GBDT)

- ✓ Ensemble model with decision tree as the base model
- ✓ Training by gradient boosting, which improves the cost function by sequentially building the base model
- ✓ High efficiency and predictive performance, useful in various fields

Red: $0.3 + 0.4 = 0.7 > 0 \implies$ **Yes**

Purple: $0.1 - 0.2 = -0.1 < 0 \implies No$

GBDT: Training

Cost function (for *t*-th tree)

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} \left(g_i f_t(x_i) + \frac{1}{2} f_t^2(x_i) \right) + \Omega(f_t)$$

Leaf Weight

$$V(I) = -\frac{\sum_{i \in I} g_i}{|I| + \lambda}$$

Splitting

$$G(I_L, I_R) = \frac{\left(\sum_{i \in I_L} g_i\right)^2}{\left|I_L\right| + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\left|I_R\right| + \lambda}$$

 I_L, I_R : instance sets of left and right nodes $I: I_L \cup I_R$

 $g_i: \partial_{\hat{y}} l(y_i, \hat{y})$

l: loss function (square error)

 \hat{y} : prediction by previous trees

 $f_t(\cdot)$: output of *t*-th tree

 $\Omega(\,\cdot\,)$: regularization term

 λ : regularization parameter

Differential Privacy (DP)

- ✓ Powerful and quantitative privacy-preserving technology
- ✓ An attacker with arbitrary background knowledge
 - (i.e., information about all the data contained in the dataset) is assumed
- ✓ Random noise is added to the statistics to obscure individual data

DP: Formula

- ✓ Adding random noise (F) makes it difficult to discriminate between neighboring datasets $(D_1, D_2 \in D)$
- ✓ The smaller ϵ is, the stronger the privacy is protected
- \checkmark Effective also against an attacker with information on D

 ϵ -Differential Privacy For $D_1, D_2 \in D$,

$$\Pr[F(D_1) \in O] \le e^{\epsilon} \cdot \Pr[F(D_2) \in O]$$

F: randomized function, ϵ : privacy budget,

O: any output of f, D: entire dataset,

 D_1, D_2 : datasets that differ in a single record $(D_1, D_2 \in D)$

DP: Sensitivity

- \checkmark Dataset dependency of the output defined for each f
- ✓ The lower sensitivity, the smaller the required noise for DP

$$\Delta f = \max_{D_1, D_2 \in D} \| f(D_1) - f(D_2) \|_{1}$$

 Δf : sensitivity for f, f: original function, D: entire dataset, D_1, D_2 : datasets that differ in a single record $(D_1, D_2 \in D)$

DP: Mechanisms

Laplace Mechanism: (for a query of **continuous** values) Add a random number generated from the Laplace distribution $F(D) = f(D) + Lap(0, \frac{\Delta f}{\epsilon})$

Exponential Mechanism: (for a query of **discrete** values) Convert to a probabilistic algorithm based on a gain function $F(D, u) = \text{choose } r \in R \text{ with probability } \propto \exp(\frac{\epsilon u(D, r)}{2\Delta u})$

F: mechanisms, f: original function, ϵ : privacy budget, Lap: Laplace distribution, u: gain function $(D \times R) \to \mathbb{R}$

DP: Composition

Sequential Composition

(A series of functions $f = \{f_1, ..., f_m\}$ is executed on the **same dataset**) If f_i provides ϵ_i -DP, then f provides $\sum_{i=1}^m f_i$ -DP

Parallel Composition

(A series of functions $f = \{f_1, ..., f_m\}$ is performed on **disjoint datasets**) If f_i provides e_i -DP, then f provides $\max(e_1, ..., e_m)$ -DP

2022/1/24 CMDS Seminar 10

Related Works

Liu et al.'s method

Simply apply sequential composition

→ Scale of noise increases in proportion to the number of trees

Zhao et al's method

Simply apply parallel composition

→ Data samples for each tree decrease in proportion to the number of trees

11

Abstract

Title: Privacy-Preserving Gradient Boosting Decision Trees proposed **DPBoost**, a DP framework that improves the accuracy loss in GBDT

Contributions:

- **✓** Sensitivity Bounds
 - More tightly and accurately bounded sensitivity
 - Gradient-based Data Filtering (GDF)
 - Geometric Leaf Clipping (GLC)

✓ Privacy Budget Allocations

• Ensemble of Ensembles (EoE)

Tighter Sensitivity Bounds

Conventionally,

sensitivity was bounded by estimating the output range of the function

$$\Delta G \le 2 \max \left| \frac{\left(\sum_{i \in I_L} g_i\right)^2}{\left|I_L\right| + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\left|I_R\right| + \lambda} \right|, \Delta V \le 2 \max \left|\frac{\sum_{i \in I} g_i}{\left|I\right| + \lambda}\right|$$

→ **Proportional** to the number of data samples

DPBoost

bound sensitivity more accurately based on definition

$$\Delta f = \max_{D_1, D_2 \in D} \| f(D_1) - f(D_2) \|$$

$$\Longrightarrow \Delta G \le \frac{3\lambda + 2}{(\lambda + 1)(\lambda + 2)} g^{*2}, \Delta V \le \frac{g^*}{1 + \lambda} \quad (g^* = \max_{i \in D} \left| g_i \right|)$$

→ **Not proportional** to the number of data samples 2022/1/24 CMDS Seminar

Gradient-based Data Filtering (GDF)

✓ Sensitivity can be bounded more tightly by filtering out data with large g_i → Filter out data with gradients larger than g_i^*

$$g_l^* = \max_{y_p \in [-1, 1]} \left\| \frac{\partial l(y_p, y)}{\partial y} \right|_{y=0} \Longrightarrow \Delta G \le \frac{3\lambda + 2}{(\lambda + 1)(\lambda + 2)} g_l^{*2}, \ \Delta V \le \frac{g_l^*}{1 + \lambda}$$

- ✓ g_l^* depends only on the loss function l, and $g_l^* = 1$ when l = MSE
- ✓ Table 3 shows that GDF filters only a small number of data

Table 3: The number of training instances with/without gradient-based data filtering

	w/ GDF	w/o GDF	filtered ratio
abalone	3340	3292	1.44%
YearPredictionMSD	370902	340989	8.06%
sklearn_reg	800000	799999	0

Geometric Leaf Clipping (GLC)

- ✓ Sensitivity can be bounded more tightly by clipping leaf weight V(I)
 - → However, simple clipping causes a severe accuracy loss
 - → Clipping according to gradient decay in GBDT learning
 - → However, deriving the exact decay pattern is difficult
- ✓ When only one data corresponds to each leaf,

$$|V_t| \le g_l^* (1 - \eta)^{t-1} \Longrightarrow \Delta V \le \min(\frac{g_l^*}{1 + \lambda}, 2g_l^* (1 - \eta)^{t-1})$$

✓ The following figure shows that GLC leads to improved accuracy

(a) abalone

(b) YearPrediction

(c) synthetic_reg

2022/1/24

CMDS Seminar

Privacy Budget Allocations for A Single Tree

- ✓ Introducing methods similar to those used in previous studies
- ✓ Applying exponential mechanism for splitting,
 - Laplace mechanism for leaf weight
- ✓ Allocating $\varepsilon/2$ to splitting and $\varepsilon/2$ to leaf weights

Privacy Budget Allocations Across Trees

✓ Applying parallel composition prevents the reduction of noise

CMDS Seminar 2022/1/24 17

Privacy Budget Allocations Across Trees

- ✓ Applying parallel composition prevents the reduction of noise
- ✓ Ensemble of ensembles (EoE) reduces the accuracy loss caused by parallel composition

Figure 1: The two-level boosting design of DPBoost

Experimental Setups

- ✓ Use following public datasets
- ✓ Compare DPBoost with the following three methods:
 - PARA (Zhao et al.'s approach, 2018)
 - SEQ (Liu et al.'s approach, 2018)
 - **NP** (Train GBDTs without privacy concerns)
- ✓ Tighter sensitivity (proposed in this study) is applied to all methods Table 1: Datasets used in the experiments.

datasets	#data	#features	task
adult	32,561	123	
real-sim	72,309	20,958	
covtype	581,012	54	
susy	5,000,000	18	classification
cod-rna	59,535	8	
webdata	49,749	300	
synthetic_cls	1,000,000	400	
abalone	4,177	8	
YearPredictionMSD	463,715	90	regression
synthetic_reg	1,000,000	400	

Experiments: Accuracy for different ϵ

- ✓ Set N_e to 1 in DPBoost and T to 50 for all approaches
 - → Validation of **effects of GDF, GLC**
- ✓ DPBoost always outperformed the previous studies in small ϵ

 N_e : Number of ensembles,

T: Total number of trees

Figure 2: Comparison of the test errors/RMSE given different total privacy budgets. The number of trees is set to 50.

Experiments: Accuracy for different iterations

- ✓ Set N_e to 20 in DPBoost and T to 20 ~ 1000, $\epsilon = 100$ for all approaches → Validation of **effects of EoE**
- ✓ Unlike PARA and SEQ, DPBoost's accuracy was improved by increasing T

 N_{ρ} : Number of

Figure 3: Comparison of test error convergence. The number of trees is set to 1000.

Experiments: Training Time

- ✓ Exponential mechanism (split point computation) is costly
- ✓ Time overhead increases in proportion to the size of the dataset

Table 2: Training time per tree (second) of DPBoost and NP.

datasets	DPBoost	NP
adult	0.019	0.007
real-sim	2.97	0.82
covtype	0.085	0.044
SUSY	0.38	0.32
cod-rna	0.016	0.009
webdata	0.032	0.013
synthetic_cls	1.00	0.36
abalone	2.95	2.85
YearPrediction	0.38	0.12
synthetic_reg	0.96	0.36

Conclusions

DPBoost:

- ✓ bounded sensitivity more strictly (GDF, GLC)
- ✓ allocated privacy budget more appropriately (EoE)
- ✓ achieved higher accuracy than previous studies

Figure 1: The two-level boosting design of DPBoost

Privacy Budget Allocations for A Single Tree

```
Algorithm 1: TrainSingleTree: Train a differentially pri-
  vate decision tree
   Input: I: training data, Depth_{max}: maximum depth
   Input: \varepsilon_t: privacy budget
1 \varepsilon_{leaf} \leftarrow \frac{\varepsilon_t}{2}
                                     // privacy budget for leaf nodes
2 \varepsilon_{nleaf} \leftarrow \frac{\varepsilon_t}{2Depth_{max}}
                               // privacy budget for internal nodes
 3 Perform gradient-based data filtering on dataset I.
 4 for depth = 1 to Depth_{max} do
        for each node in current depth do
             for each split value i do
                 Compute gain G_i according to Equation (3).
              P_i \leftarrow exp(\frac{\varepsilon_{nleaf}G_i}{2\Delta G})
             /* Apply exponential mechanism */
             Choose a value s with probability (P_s/\sum_i P_i).
 9
             Split current node by feature value s.
10
11 for each leaf node i do
        Compute leaf value V_i according to Equation (4).
12
        Perform geometric leaf clipping on V_i.
13
        /* Apply Laplace mechanism */
     V_i \leftarrow V_i + Lap(0, \Delta V/\varepsilon_{nleaf})
   Output: A \varepsilon_t-differentially private decision tree
```

Privacy Budget Allocations Across Trees

Algorithm 2: Train differentially private GBDTs **Input:** \mathcal{D} : Dataset, $Depth_{max}$: maximum depth **Input:** ε : privacy budget, λ : regularization parameter **Input:** T: total number of trees, l: loss function **Input:** T_e : number of trees in an ensemble 1 $N_e \leftarrow \lceil T/T_e \rceil$ // the number of ensembles 2 $\varepsilon_e \leftarrow \varepsilon/N_e$ // privacy budget for each tree 3 for t=1 to T do Update gradients of all training instances on loss l. $t_e \leftarrow t \mod T_e$ if $t_e == 1$ then $I \leftarrow \mathcal{D}$ // initialize the dataset for an ensemble Randomly pick $(\frac{|\mathcal{D}|\eta(1-\eta)^{t_e}}{1-(1-\eta)^{T_e}})$ instances from I to 8 constitute the subset I_t . $I \leftarrow I - I_t$ TrainSingleTree (dataset = I_t , 10 maximum depth = $Depth_{max}$, 11 privacy budget = ε_e , 12 $\Delta G = \frac{3\lambda + 2}{(\lambda + 1)(\lambda + 2)} g_l^{*2},$ 13 $\Delta V = \min(\frac{g_l^*}{1+\lambda}, 2g_l^*(1-\eta)^{t-1}).$ 14 **Output:** ε -differentially private GBDTs

Applications of DP and GBDT