

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ <u>09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ</u>

ОТЧЕТ

По лабораторной работе № 3

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-42Б		Фам М.Х
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А. Ю. Попов
		(Полпись, дата)	(И.О. Фамилия)

Цель работы: изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Ттриггерах. Проверить работу счётчика

А) Проверить работу счётчика от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы

Проверить работу счётчика от одиночных импульсов от импульсов генератора.

Максимальная частота счета: fc $\mathfrak{q}=1/\mathfrak{t}_3=1/(5+\max(100,100)+\max(80,100))=1/(205\mathrm{ns})=4$ МГц Стабильная частота — \sim 0.5 от максимальной = fc \mathfrak{q} * 0.5 = 2 МГц

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Последовательность состояний счётчика для каждого варианта работы; десятичными числами обозначены номера двоичных наборов, изображающие десятичные цифры и определяющие состояние счётчика. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных *JK*-триггерах

Вариант 23 0, 1, 2, 3, 6, 7, 9, 10, 11, 14

ne = log = L = 4 -> h = maxn, ne) = 4 Taonusa nepercool						
No			5.4-		2.5	
0	Q3Q2Q1Q0	6. 6. C. C.	J3K3	Jake	3,14	Toko
1	0000	0001	02	02	000	21
2	0010	0011	02	01	×0	10
3	0011	0110	04	1d	20	21
6	0110	0 1 1 1	02	20	20	12
7	0111	1001	10	21	21	×0
9	1001	1010	×0	02	10	21
10	1010	1011	20	00	×0	12
ti	1011	1110	00	10	20	W1
14	4110	0000	21	d1	×1	0×

	Deal
0,000 00 01 11 10	@100 2 00 01 11 10
01 0 ~	11 2 2 - 0
10 0 0 12 2 t	10 × 12 1 0 1
On the second	
C100 00 01 11 10	Q100 00 01 11 10
01 0 0	11 2 1 - 2
11 (1 2 - 1)	10 000
Tz = 0,00	1c2 = @3 + @0

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

L= !	log2 10 = 4		
	log 2 9 = 4	-> n= max(n;	$(n_L)=4$
No	0,0,0,0	Q & Q & Q & Q *	73727170
0	0000	0001	0001
1	0001	0010	0011
2	0010	0011	0001
3	0011	0100	0111
4	0100	0 1 0 1	0001
-	0101	0110	0011
6	0110	0111	0061
7	0111	1000	1111
8	9000	1001	0001
9	1001	0000	1001

- 4. Исследование четырехразрядного синхронного суммирующего счетчика с параллельным переносом. Проверить работу счетчика:
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

На схеме представлен четырехразрядный десятичный счетчик. Считает от 0 до 9.

ENP, ENT – разрешающие входы.

- ~CLR вход асинхронного сброса, при подаче 0 сбрасывает выходы в 0000, независимо от текущего состояния входа CLK;
- \sim LOAD вход загрузки. При подаче 0, на следующем тактовом импульсе в счетчик будут загружены значения со входов A,B,C,D. RCO выход сигнала переноса. Используется при увеличении количества счетчиков.

5.

На схеме представлен 16-ти разрядный счетчик, состоящий из 4-х разрядных, подключенных через сигнал переноса RCO. Когда один счетчик переполняется, сигнал приходит в следующий.

Быстрый счетчик

Logic Analyzer-XLA1

