GRAFOVI: Zadaci sa rješenjima za vježbu

1. Zadana je reducirana matrica incidencija grafa u obliku:

$$\mathbf{A} = \left[\mathbf{A}_t \ \mathbf{A}_s \right]$$

$$\mathbf{A} = (1) \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ -1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

pri čemu je A_t incidentna stablu, a A_s sponama. Odrediti temeljnu spojnu matricu S i temeljnu rastavnu matricu Q, ovog grafa. Nacrtati graf. Kojeg je ranga graf?

Rješenje:

Temeljna spojna matrica S:

$$\mathbf{S} = II \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1III & -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Temeljna rastavna matrica **Q**:

$$\mathbf{Q} = r_1 \begin{bmatrix} 1 & 0 & -1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Rang grafa $R = N_{ST} = 2$

Nulitet grafa $0 = N_{SP} = 4$

2. Zadana je reducirana matrica incidencija grafa u obliku:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_t & \mathbf{A}_s \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ -1 & 1 & 0 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 & 0 & 0 \end{bmatrix},$$

$$(2) \begin{bmatrix} 0 & -1 & 1 & 1 & 0 & 0 \end{bmatrix},$$

pri čemu je \mathbf{A}_t incidentna stablu, a \mathbf{A}_s sponama. Odrediti temeljnu spojnu matricu \mathbf{S} i temeljnu rastavnu matricu \mathbf{Q} , ovog grafa. Nacrtati graf. Kojeg je ranga graf?

2

Rješenje:

Graf:

Temeljna spojna matrica S:

$$\mathbf{S} = II \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ -1 & -1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Temeljna rastavna matrica Q:

$$\mathbf{Q} = r_1 \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 1 & -1 & -1 & -1 \\ r_2 & 0 & 1 & 1 & -1 & 0 & 0 \end{bmatrix}$$

Rang grafa
$$R = N_{ST} = 2$$

Nulitet grafa $0 = N_{SP} = 4$

3. Nacrtati orjentirani graf i električnu mrežu koja zadovoljava slijedeće matrice:

$$\mathbf{Z}_{b} = \begin{bmatrix} sL_{1} & 0 & 0 \\ 0 & sL_{2} & 0 \\ gRsL_{1} & 0 & R \end{bmatrix}, \quad \mathbf{U}_{0b} = \begin{bmatrix} I_{g}sL_{1} + L_{1}i_{L}(0) \\ 0 \\ gRI_{g}sL_{1} + gRL_{1}i_{L}(0) \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Napisati temeljni sustav jednadžbi petlji u matričnom obliku za dobivenu mrežu.

Rješenje:

orjentirani graf:

električna mreža

temeljni sustav jednadžbi petlji: $\mathbf{Z}_p \cdot \mathbf{I}_p = \mathbf{U}_{0p}$

$$\mathbf{Z}_{p} = \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \left[sL_{1} + gRsL_{1} + sL_{2} + R \right]$$

$$\mathbf{U}_{0p} = -\mathbf{S} \cdot \mathbf{U}_{0b} = -\left[I_{g}sL_{1} + L_{1} \cdot i_{L}(0) + gRsL_{1}I_{g} + gRL_{1} \cdot i_{L}(0) \right]$$

4. Zadana je mreža prema slici. Odrediti pripadni orijentirani graf, matricu incidencije i temeljni sustav jednadžbi petlji. (Odrediti matrice \mathbb{Z}_p i \mathbb{U}_{0p} preko regularne matrice \mathbb{Z}_b).

Rješenje:

temeljni sustav jednadžbi petlji: $\mathbf{Z}_p \cdot \mathbf{I}_p = \mathbf{U}_{0p}$

$$\mathbf{Z}_{p} = \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \left[sL_{1} \cdot (1 - g \cdot R) + R + sL_{2} \right]$$

$$\mathbf{U}_{0p} = -\mathbf{S} \cdot \mathbf{U}_{0b} = \left[-I_{0} \cdot sL_{2} - L_{2} \cdot i_{L2}(0) \right]$$

5. Za mrežu prikazanu slikom odrediti graf i matricu incidencija i napisati temeljni sustav jednadžbi petlji u matričnom obliku (matrice \mathbf{Z}_p i \mathbf{U}_{0p} preko matrica \mathbf{Z}_b i \mathbf{U}_{0b}). Matrica \mathbf{Z}_b mora biti regularna.

Rješenje:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Graf (čvor 3 je referentan):

temeljni sustav jednadžbi petlji: $\mathbf{Z}_p \cdot \mathbf{I}_p = \mathbf{U}_{0p}$

$$\begin{split} \mathbf{Z}_{p} &= \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \left[sL_{1} + gR \cdot sL_{1} + sL_{2} + R \right] \\ \mathbf{U}_{0p} &= -\mathbf{S} \cdot \mathbf{U}_{0b} = - \left[I_{g} sL_{1} + L_{1} \cdot i_{L}(0) + gR \cdot sL_{1} \cdot I_{g} + gRL_{1} \cdot i_{L}(0) \right] \end{split}$$

6. Mreži prikazanoj slikom pridružiti graf koji ima 2 stablene grane. Odrediti temeljni sustav jednadžbi petlji (matrice \mathbb{Z}_p i \mathbb{U}_{0p} preko matrica impedancija grana \mathbb{Z}_b i nezavisnih izvora grana U_{0b}). Matrica Z_b mora biti regularna.

Rješenje:

Orjentirani graf:

stablene grane: 1, 2 (punom linijom) spone: 3, 4, 5 (crtkano)

Spojna matrica:

$$\mathbf{S} = 4 \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 5 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
iedinicna matric

Naponsko – strujne relacije grana:

Grana 1:
$$U_1 = I_1 \cdot sL + I_2 \cdot sM$$

(0) L \bullet I_1 (1)

 U_1

Grana 2: $U_2 = I_2 \cdot sL + I_1 \cdot sM$

$$\begin{array}{cccc}
(0) & & L & & I_2 & (2) \\
& & & & \downarrow & & \downarrow \\
& & & & \downarrow & & \downarrow \\
& & & & & \downarrow & & \downarrow \\
& & & & & & \downarrow & & \downarrow \\
& & & & & & & \downarrow & & \downarrow \\
& & & & & & & \downarrow & & \downarrow \\
& & & & & & & \downarrow & & \downarrow \\
& & & & & & & \downarrow & & \downarrow \\
& & & & & & & \downarrow & & \downarrow \\
& & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & \downarrow \\
& & & & & & \downarrow \\
& & & & &$$

Grana 3:
$$U_3 = I_3 \frac{1}{sC} - \mu \cdot U_R - \frac{u_C(0)}{s}$$
, $U_R = -U_4$

Grana 4: $U_4 = I_4 \cdot R - I_0 \cdot R$

Grana 5: $U_5 = I_5 \cdot sL - \mu \cdot U_R + L \cdot i_L(0)$, $U_R = -U_4$

$$(0) \quad I_5 \qquad \qquad L \qquad (2)$$

$$\downarrow^+ \qquad \qquad \downarrow^- \qquad \qquad \downarrow^-$$

$$\mathbf{U}_b = \mathbf{Z}_b \cdot \mathbf{I}_b + \mathbf{U}_{0b}$$

$$\begin{split} &U_{1} = I_{1} \cdot sL + I_{2} \cdot sM \\ &U_{2} = I_{1} \cdot sM + I_{2} \cdot sL \\ &U_{3} = I_{3} \cdot \frac{1}{sC} + \mu U_{4} - \frac{u_{C}(0)}{s} = I_{3} \cdot \frac{1}{sC} + \mu \cdot R \cdot I_{4} - \mu \cdot R \cdot I_{0} - \frac{u_{C}(0)}{s} \\ &U_{4} = I_{4} \cdot R - I_{0} \cdot R \end{split}$$

$$\mathbf{Z}_{b} = \begin{bmatrix} sL & sM & 0 & 0 & 0 \\ sM & sL & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{sC} & \mu R & 0 \\ 0 & 0 & 0 & R & 0 \\ 0 & 0 & 0 & \mu R & sL \end{bmatrix}, \quad \mathbf{U}_{0b} = \begin{bmatrix} 0 \\ 0 \\ -\mu \cdot R \cdot I_{0} - \frac{u_{C}(0)}{s} \\ -I_{0} \cdot R \\ -\mu \cdot R \cdot I_{0} + L \cdot i_{I}(0) \end{bmatrix}$$

$$\mathbf{Z}_{p} = \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} sL & sM & 0 & 0 & 0 \\ sM & sL & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{sC} & \mu R & 0 \\ 0 & 0 & 0 & R & 0 \\ 0 & 0 & 0 & \mu R & sL \end{bmatrix} \cdot \mathbf{S}^{T} = \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \mathbf{S} \cdot \mathbf{S}^{T} = \mathbf{S}^{T} = \mathbf{S} \cdot \mathbf{S}^{T} = \mathbf{S}^{T} = \mathbf{S}^{T} = \mathbf{S} \cdot \mathbf{S}^{T} = \mathbf{S}^{T} =$$

$$= \begin{bmatrix} sL & sM & \frac{1}{sC} & \mu R & 0 \\ sM & sL & 0 & R & 0 \\ sM & sL & 0 & \mu R & sL \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} sL + \frac{1}{sC} & sM + \mu R & sM \\ sM & sL + R & sL \\ sM & sL + \mu R & 2sL \end{bmatrix}$$

$$\mathbf{U}_{0p} = -\mathbf{S} \cdot \mathbf{U}_{0b} = -\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ -\mu \cdot R \cdot I_0 - \frac{u_C(0)}{s} \\ -I_0 \cdot R \\ -\mu \cdot R \cdot I_0 + L \cdot i_L(0) \end{bmatrix} = \begin{bmatrix} \mu \cdot R \cdot I_0 + \frac{u_C(0)}{s} \\ I_0 \cdot R \\ \mu \cdot R \cdot I_0 - L \cdot i_L(0) \end{bmatrix}$$

$$\mathbf{I}_{p} = \begin{bmatrix} I_{I} \\ I_{II} \\ I_{III} \end{bmatrix}, \text{ temeljni sustav jednadžbi petlji: } \mathbf{Z}_{p} \cdot \mathbf{I}_{p} = \mathbf{U}_{0p}$$

7. Poštujući oznake čvorova i grana za mrežu prikazanu slikom odrediti temeljni sustav jednadžbi petlji u matričnoj formi (matrice \mathbf{Z}_p i \mathbf{U}_{0p} preko matrica impedancija grana \mathbf{Z}_b i nezavisnih izvora grana \mathbf{U}_{0b}). Matrica \mathbf{Z}_b mora biti regularna.

Rješenje:

$$\mathbf{S}$$
 – temeljna spojna matrica: $\mathbf{S} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

temeljni sustav jednadžbi petlji: $\mathbf{Z}_p \cdot \mathbf{I}_p = \mathbf{U}_{0p}$

$$\mathbf{Z}_p = \mathbf{S} \cdot \mathbf{Z}_b(s) \cdot \mathbf{S}^T$$

$$\mathbf{U}_{0p} = -\mathbf{S} \cdot \mathbf{U}_{0b}(s),$$

gdje su : $\mathbf{Z}_b(s)$ - matrica impedancija grana

 $\mathbf{U}_{0b}(s)$ - vektor ekvivalentnih izvora grana

Primjena Laplaceove transformacije:

Naponsko – strujne relacije grana:

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} (sL_1 + R) & 0 & (-\alpha sL_1 + sM) \\ 0 & \frac{1}{sC} & 0 \\ sM & 0 & (sL_2 - \alpha sM) \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} + \begin{bmatrix} M \cdot i_{L2}(0) \\ -U_0 \\ L_2 \cdot i_{L2}(0) \end{bmatrix}$$

temeljni sustav jednadžbi petlji: $\mathbf{Z}_p \cdot \mathbf{I}_p = \mathbf{U}_{0p}$

$$\mathbf{Z}_{p} = \mathbf{S} \cdot \mathbf{Z}_{b} \cdot \mathbf{S}^{T} = \begin{bmatrix} sL_{1} + R + \frac{1}{sC} & -(1-\alpha) \cdot sL_{1} - R - sM \\ -sL_{1} - R - sM & (1-\alpha) \cdot sL_{1} + R + (2-\alpha) \cdot sM + sL_{2} \end{bmatrix}$$

$$\mathbf{U}_{0p} = -\mathbf{S} \cdot \mathbf{U}_{0b} = \begin{bmatrix} M \cdot i_{L2}(0) + U_{0} \\ -M \cdot i_{L2}(0) - L_{2} \cdot i_{L2}(0) \end{bmatrix}$$

8. Za mrežu prikazanu slikom, poštujući oznake čvorova i grana, odrediti graf, matricu incidencija i napisati sustav jednadžbi čvorova u matričnom obliku preko matrice admitancija grana \mathbf{Y}_b i vektora ekvivalentnih izvora grana \mathbf{U}_{0b} . Matrica \mathbf{Y}_b mora biti regularna (<u>uputa</u>: \mathbf{Y}_b treba napisati direktno iz naponsko-strujnih jednadžbi grana).

Rješenje:

sustav jednadžbi čvorova: $\mathbf{Y}_{v} \cdot \mathbf{U}_{v} = \mathbf{I}_{v}$

9. Za prikazanu mrežu nacrtati orijentirani graf, odrediti matricu incidencija i napisati sustav jednadžbi čvorova u matričnom obliku (matrice \mathbf{Y}_{v} i \mathbf{I}_{v} pomoću matrica \mathbf{Y}_{b} = \mathbf{Z}_{b}^{-1} i \mathbf{U}_{0b}). Matrica \mathbf{Y}_{b} mora biti regularna.

<u>Rješenje:</u> Primjena Laplaceove transformacije i posmicanje izvora :

graf:

matrica incidencija (reducirana)

$$1)\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 \\ (2) \\ -1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{bmatrix} = \begin{bmatrix} R_1 & \alpha R_1 & 0 & 0 \\ 0 & R_2 & 0 & 0 \\ 0 & \frac{\alpha}{sC} & \frac{1}{sC} & 0 \\ 0 & 0 & 0 & sL \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} + \begin{bmatrix} 0 \\ U_0 \\ \underline{u_C(0)} \\ s \\ -L \cdot i_L(0) + U_0 \end{bmatrix}$$

Kako naći $\mathbf{Z}_b^{-1}(s) = \mathbf{Y}_b(s)$? Najjednostavniji način je napisati ponovo strujno-naponske relacije grana tako da su s lijeve strane izražene struje grana.

(2)
$$\Rightarrow I_2 \cdot R_2 = U_2 - U_0 / : R_2$$

$$I_2 = \frac{1}{R_2} \cdot U_2 - \frac{U_0}{R_2}$$

$$(4) \Rightarrow U_4 + L \cdot i_L(0) - U_0 = I_4 \cdot sL/: sL$$

$$I_4 = \frac{1}{sL} \cdot U_4 + \frac{i_L(0)}{s} - \frac{U_0}{sL}$$

$$(1) \Rightarrow U_1 = I_1 \cdot R_1 + \alpha R_1 \cdot I_2 = I_1 \cdot R_1 + \alpha R_1 \left(\frac{1}{R_2} \cdot U_2 - \frac{U_0}{R_2} \right)$$

$$I_1 \cdot R_1 = U_1 - \alpha \frac{R_1}{R_2} \cdot U_2 + \alpha \frac{R_1}{R_2} \cdot U_0 / R_1$$

$$I_1 = \frac{1}{R_1} \cdot U_1 - \frac{\alpha}{R_2} \cdot U_2 + \frac{\alpha}{R_2} \cdot U_0$$

$$(3) \Rightarrow U_3 = \frac{1}{sC} \cdot I_3 + \frac{\alpha}{sC} \cdot I_2 + \frac{u_C(0)}{s} / sC$$

$$sC \cdot U_3 = I_3 + \alpha \cdot \left(\frac{U_2}{R_2} - \frac{U_0}{R_2}\right) + C \cdot u_C(0)$$

$$I_3 = sC \cdot U_3 - \frac{\alpha}{R_2} \cdot U_2 + \frac{\alpha}{R_2} \cdot U_0 - C \cdot u_C(0)$$

što se konačno može napisati i u matričnom obliku:

$$\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
I_4
\end{bmatrix} = \begin{bmatrix}
\frac{1}{R_1} & -\frac{\alpha}{R_2} & 0 & 0 \\
0 & \frac{1}{R_2} & 0 & 0 \\
0 & -\frac{\alpha}{R_2} & sC & 0 \\
0 & 0 & 0 & \frac{1}{sL}
\end{bmatrix} \cdot \begin{bmatrix}
U_1 \\
U_2 \\
U_3 \\
U_4
\end{bmatrix} + \begin{bmatrix}
\frac{\alpha U_0}{R_2} \\
-\frac{U_0}{R_2} \\
\frac{\alpha U_0}{R_2} - C \cdot u_C(0) \\
\frac{i_L(0)}{s} - \frac{U_0}{sL}
\end{bmatrix}$$

$$\mathbf{Y}_b(s) \qquad \mathbf{I}_{0b}(s)$$

pa je sustav jednadžbi čvorova: $\mathbf{Y}_{v}\cdot\mathbf{U}_{v}=\mathbf{I}_{v}$, gdje su:

$$\mathbf{Y}_{v} = \mathbf{A} \cdot \mathbf{Y}_{b} \cdot \mathbf{A}^{T} = \begin{bmatrix} \frac{1}{R_{1}} + \frac{1}{sL} & -\left(\frac{1}{R_{1}} + \frac{\alpha}{R_{2}}\right) \\ -\frac{1}{R_{1}} & \frac{1}{R_{1}} + \frac{1}{R_{2}} + sC \end{bmatrix} \quad \mathbf{I}_{v} = \mathbf{A} \cdot \mathbf{Y}_{b} \cdot \mathbf{U}_{0b} = \begin{bmatrix} -\frac{\alpha U_{0}}{R_{2}} - \frac{i_{L}(0)}{s} + \frac{U_{0}}{sL} \\ \frac{U_{0}}{R_{2}} + C \cdot u_{C}(0) \end{bmatrix}$$

10. Zadana je mreža prema slici. Odrediti graf, matricu incidencija i sustav jednadžbi čvorova. (Odrediti matrice \mathbf{Y}_{ν} i \mathbf{I}_{ν} preko regularne matrice \mathbf{Y}_{b}).

Rješenje:

Transformacija (posmicanje) izvora:

Orijentirani graf:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix}, \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \end{bmatrix} = \begin{bmatrix} R_1 & 0 & 0 & 0 & 0 \\ r & R_3 & 0 & 0 & 0 \\ 0 & 0 & R_2 & 0 & 0 \\ 0 & 0 & 0 & sL & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{sC} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} + \begin{bmatrix} -I_0 \cdot R_1 \\ -I_0(R_3 + r) \\ 0 \\ -L \cdot i_L(0) \\ \frac{u_C(0)}{s} \end{bmatrix}$$

označimo submatricu (2x2) unutar matrice \mathbb{Z}_b sa

$$\mathbf{Z'}_b = \begin{bmatrix} R_1 & 0 \\ r & R_3 \end{bmatrix}$$

sada invertirajmo sumatricu $\mathbf{Z'}_b$

$$\mathbf{Z'}_{b}^{-1} = \begin{bmatrix} R_{1} & 0 \\ r & R_{3} \end{bmatrix}^{-1} = \frac{1}{R_{1}R_{3}} \begin{bmatrix} R_{3} & -r \\ 0 & R_{1} \end{bmatrix}^{T} = \frac{1}{R_{1}R_{3}} \begin{bmatrix} R_{3} & 0 \\ -r & R_{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{R_{1}} & 0 \\ -\frac{r}{R_{1}R_{3}} & \frac{1}{R_{3}} \end{bmatrix},$$

i vratimo je na svoje mjesto unutar matrice \mathbb{Z}_b^{-1} . Nadalje, ako invertiramo ostale elemente na dijagonali, konačno dobivamo:

$$\mathbf{Z}_{b}^{-1} = \mathbf{Y}_{b} = \begin{bmatrix} \frac{1}{R_{1}} & 0 & 0 & 0 & 0 \\ -\frac{r}{R_{1}R_{3}} & \frac{1}{R_{3}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{R_{2}} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{sL} & 0 \\ 0 & 0 & 0 & 0 & sC \end{bmatrix}$$

$$\mathbf{Y}_{v} = \mathbf{A} \cdot \mathbf{Z}_{b}^{-1} \cdot \mathbf{A}^{T} = \begin{bmatrix} \left(\frac{1}{R_{1}} + sC\right) & -\frac{1}{R_{1}} & -sC \\ \left(-\frac{1}{R_{1}} - \frac{r}{R_{1}R_{3}}\right) & \left(\frac{1}{R_{1}} + \frac{r}{R_{1}R_{3}} + \frac{1}{R_{3}} + \frac{1}{sL}\right) & -\frac{1}{sL} \\ -sC & -\frac{1}{sL} & \left(\frac{1}{R_{2}} + \frac{1}{sL} + sC\right) \end{bmatrix}$$

$$\mathbf{I}_{v} = \mathbf{A} \cdot \mathbf{Z}_{b}^{-1} \cdot \mathbf{U}_{0b} = \begin{bmatrix} -I_{0} + C \cdot u_{C}(0) \\ I_{0}R_{1} \left(\frac{1}{R_{1}} + \frac{r}{R_{1}R_{3}} \right) - I_{0} \frac{R_{3} + r}{R_{3}} - \frac{i_{L}(0)}{s} \\ \frac{i_{L}(0)}{s} - C \cdot u_{C}(0) \end{bmatrix}$$

sustav jednadžbi čvorova: $\mathbf{Y}_{v} \cdot \mathbf{U}_{v} = \mathbf{I}_{v}$

11. Za prikazanu mrežu nacrtati orijentirani graf, odrediti matricu incidencija i napisati sustav jednadžbi čvorova u matričnom obliku (matrice \mathbf{Y}_{v} i \mathbf{I}_{v} pomoću matrica $\mathbf{Y}_{b}=\mathbf{Z}_{b}^{-1}$ i \mathbf{U}_{0b}). Matrica \mathbf{Z}_{b} mora biti regularna.

Rješenje:

Posmicanje izvora; prvo strujnog pa onda naponskog:

matrica incidencija:

$$\mathbf{A} = \begin{pmatrix} 1 \\ (1) \\ (3) \end{pmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
čvorovi

$$\mathbf{Y}_{v} = \mathbf{A} \cdot \mathbf{Z}_{b}^{-1} \cdot \mathbf{A}^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{R_{1}} & 0 & 0 & 0 \\ -\frac{\alpha}{R_{1}} & \frac{1}{R_{2}} & 0 & 0 \\ \frac{\alpha}{R_{1}} & 0 & sC & 0 \\ 0 & 0 & 0 & \frac{1}{sL} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{1}{R_1} & \frac{1}{R_2} & sC & 0 \\ -\frac{\alpha}{R_1} & 0 & -sC & \frac{1}{sL} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_2} + sC & -sC \\ -sC - \frac{\alpha}{R_1} & \frac{1}{sL} + sC \end{bmatrix}$$

$$\mathbf{I}_{v} = \mathbf{A} \cdot \mathbf{Z}_{b}^{-1} \cdot \mathbf{U}_{0b} = \begin{bmatrix} \frac{1}{R_{1}} & \frac{1}{R_{2}} & sC & 0 \\ -\frac{\alpha}{R_{1}} & 0 & -sC & \frac{1}{sL} \end{bmatrix} \cdot \begin{bmatrix} U_{0}(s) \\ 0 \\ u_{C}(0) \\ s \\ U_{0}(s) \end{bmatrix} = \begin{bmatrix} \frac{U_{0}}{R_{1}} + C \cdot u_{C}(0) \\ U_{0}(\frac{1}{sL} - \frac{\alpha}{R_{1}}) - C \cdot u_{C}(0) \end{bmatrix}$$

12. Zadana je mreža prema slici i njoj pripadni orijentirani graf. Odrediti matricu incidencija i sustav jednadžbi čvorova u matričnom obliku (matrice \mathbf{Y}_{ν} i \mathbf{I}_{ν} preko matrica $\mathbf{Y}_{b} = \mathbf{Z}_{b}^{-1}$ i \mathbf{U}_{0b}). Matrica \mathbf{Z}_{b} mora biti regularna.

Rješenje:

transformacija mreže:

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \end{bmatrix} = \begin{bmatrix} s(L_1 - M) & 0 & 0 & 0 & 0 \\ 0 & s(L_2 - M) & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{sC} & 0 & 0 \\ 0 & 0 & 0 & R & 0 \\ 0 & 0 & 0 & \alpha & sM \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} + \begin{bmatrix} I_0 \cdot s(L_1 - M) \\ I_0 \cdot s(L_2 - M) \\ \frac{u_C(0)}{s} \\ 0 \\ 0 \end{bmatrix}$$

označimo submatricu (2x2) u donjem desnom uglu matrice \mathbb{Z}_b sa

$$\mathbf{Z'}_b = \begin{bmatrix} R & 0 \\ \alpha & sM \end{bmatrix}$$

sada invertirajmo submatricu Z'_b

$$\mathbf{Z'}_{b}^{-1} = \frac{1}{\det \mathbf{Z'}_{b}} \cdot \widetilde{\mathbf{Z}'}_{b}; \quad \det \mathbf{Z'}_{b} = \begin{vmatrix} R & 0 \\ \alpha & sM \end{vmatrix} = R \cdot sM;$$

$$\mathbf{Z'}_{b}^{-1} = \begin{bmatrix} R & 0 \\ \alpha & sM \end{bmatrix}^{-1} = \frac{1}{R \cdot sM} \begin{bmatrix} sM & -\alpha \\ 0 & R \end{bmatrix}^{T} = \frac{1}{R \cdot sM} \begin{bmatrix} sM & 0 \\ -\alpha & R \end{bmatrix} = \begin{bmatrix} \frac{1}{R} & 0 \\ -\frac{\alpha}{RsM} & \frac{1}{sM} \end{bmatrix}$$

$$\mathbf{Y}_{b} = \mathbf{Z}_{b}^{-1} = \begin{bmatrix} \frac{1}{s(L_{1} - M)} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{s(L_{2} - M)} & 0 & 0 & 0 \\ 0 & 0 & sC & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{R} & 0 \\ 0 & 0 & 0 & -\frac{\alpha}{RsM} & \frac{1}{sM} \end{bmatrix}$$

$$\mathbf{Y}_{v} = \mathbf{A} \cdot \mathbf{Y}_{b} \cdot \mathbf{A}^{T} = \begin{bmatrix} \frac{1}{s(L_{1} - M)} + \frac{1}{R} & -\frac{1}{s(L_{1} - M)} & 0\\ -\frac{1}{s(L_{1} - M)} - \frac{\alpha}{RsM} & \frac{1}{s(L_{1} - M)} + \frac{1}{s(L_{2} - M)} + \frac{1}{sM} & -\frac{1}{s(L_{2} - M)} \\ 0 & -\frac{1}{s(L_{2} - M)} & \frac{1}{s(L_{2} - M)} + sC \end{bmatrix}$$

$$\mathbf{I}_{v} = \mathbf{A} \cdot \mathbf{Y}_{b} \cdot \mathbf{U}_{0b} = \begin{bmatrix} I_{0} \\ 0 \\ -I_{0} + C \cdot u_{C}(0) \end{bmatrix}$$

DODATAK: Nadomještanje međuinduktivne veze pomoću T-spoja:

$$\begin{array}{l} I_{1} \cdot sL_{1} - I_{2} \cdot sM &= -U_{0} + U_{1} \\ -I_{1} \cdot sM &+ I_{2} \cdot sL_{2} &= U_{0} - U_{2} \end{array} \Rightarrow$$

$$\begin{split} &I_1 \cdot sL_1 - I_1 \cdot sM + I_1 \cdot sM - I_2 \cdot sM = -U_0 + U_1 \\ &-I_1 \cdot sM + I_2 \cdot sM - I_2 \cdot sM + I_2 \cdot sL_2 = U_0 - U_2 \end{split}$$

treba grupirati sve što množi struje I_1 i I_2 :

$$\begin{split} I_1 \cdot s(L_1 - M) + (I_1 - I_2) \cdot sM &= -U_0 + U_1 \\ - (I_1 - I_2) \cdot sM + I_2 \cdot s(L_2 - M) &= U_0 - U_2 \end{split}$$

Konačan izgled mreže:

13. Zadana je spojna matrica temeljnoga sustava petlji grafa nekog električnog kruga. Koliko grana i koliko čvorišta ima graf? Ako su grane grafa numerirane redoslijedom kojim ulaze u matricu, koje su grane stabla, a koje spone? Obrazložite odgovor.

$$\mathbf{S} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Rješenje:

 $N_b=7$ $N_v=4$

Grane stabla: 1, 6 i 7 Spone: 2, 3, 4 i 5.

14. Zadana je rastavna matrica temeljnoga sustava petlji grafa nekog električnog kruga. Koliko grana i koliko čvorišta ima graf? Ako su grane grafa numerirane redoslijedom kojim ulaze u matricu, koje su grane stabla, a koje spone? Obrazložite odgovor.

$$\mathbf{Q} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Rješenje:

 $N_b=7$

 $N_v=5$

Grane stabla: 2, 3, 4 i 5

Spone: 1, 6 i 7.

15. Skup R_1 , C_2 , L_3 , R_4 , R_5 , L_6 i C_7 , je skup pasivnih elemenata mreže. Indeksi uz oznake elemenata označuju redni broj grane. Grane su redoslijedom numeracije incidentne sa sljedećim čvorištima: (5,1), (1,2), (2,5), (2,3), (3,4), (4,5), (1,3). U grani 1 otporu R_1 u seriju je priključen naponski izvor $u_0(t)$ s oznakom "+" prema čvoru 1, a u grani 4 paralelno otporu R_4 , naponski ovisni strujni izvor $i_{06}(t) = gu_7(t)$ usmjeren prema čvoru 3, gdje je $u_7(t)$ napon grane 7. Induktiviteti L_3 i L_6 povezani su međuinduktivitetom M_{36} (točke na čvorištima 2 i 4). Nacrtajte graf mreže i mrežu, te odredite matricu incidencija i matricu impedancija grana.

Rješenje:

$$\mathbf{A}_{a} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\mathbf{Z}_b = \begin{bmatrix} R_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{sC_2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & sL_3 & 0 & 0 & sM_{36} & 0 \\ 0 & 0 & 0 & R_4 & 0 & 0 & \frac{-gR_4}{sC_7} \\ 0 & 0 & 0 & 0 & R_5 & 0 & 0 \\ 0 & 0 & sM_{36} & 0 & 0 & sL_6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{sC_7} \end{bmatrix}$$

- THE END -