Université Hassiba Benbouali Chlef Faculté des Sciences Exactes & Informatique Département de Mathématiques Année universitaire 2021/2022 Master II : Math.Appli & Stat Module : Stat Non Parametrique

Fiche TD $N=^{\circ}$ 03_(a)_: estimation NP de la densité de probabilité

Exercice 01 : Soit $\theta > 0$ et soit X une variable aléatoire réelle de densité f_{θ} définie par

$$f_{\theta}(x) = 2\theta x \exp(-\theta x^2) \mathbf{1}_{[0,+\infty[}(x);$$

- 1. Montrer que f_{θ} est bien une densité de probabilité.
- 2. Déterminer la fonction de répartition de X.
- 3. Soit Y la variable aléatoire définie par $Y = \theta X^2$. (a) Calculer la fonction de répartition de Y . (b) En déduire la densité de Y ainsi que $\mathbb{E}[X^2]$.

Exercice 02:

Soit $\theta>0$ un nombre réel fixé et Z=(X,Y)' un vecteur aléatoire dont la densité f est définie sur ${\bf R}^2$ par

$$f(x,y) = C \exp(-\theta y) \mathbb{I}_{0 < x < y};$$

- 1. Montrer que $C = \theta^2$.
- 2. Déterminer les lois marginales de Z ainsi que $\mathbb{E}[X]$ et V[X]. Les variables aléatoires X et Y sont-elles indépendantes?
- 3. Calculer la densité conditionnelle de Y/X = x.
- 4. Calculer P(Y > 2X/X = x).

Exercice 03 : Soit X une variable aléatoire réelle de densité f_{θ} définie par

$$f_{\theta}(x) = (1 - \theta) \mathbb{I}_{[-1/2,0]}(x) + (1 + \theta) \mathbb{I}_{[0,1/2]}(x);$$

où θ est un paramètre réel tel que $|\theta| \neq 1$.

- 1. Quelles conditions doit vérifier θ pour que f_{θ} soit bien une densité de probabilité par rapport à la mesure de Lebesgue sur \mathbf{R} ?
- 2. Calculer l'espérance de *X* ?

Exercise 04:

Soit Z = (X, Y)' un couple aléatoire dont la densité est donnée par

$$f_Z(x,y) = \begin{cases} \frac{k}{\sqrt{xy}}, & \text{si } 0 < x \le y < 1; \\ 0, & \text{sinon.} \end{cases}$$

- 1. Montrer que k = 1/2.
- 2. Calculer les densités marginales. En déduire $\mathbb{E}[X]$ et $\mathbb{E}[Y]$. Les variables aléatoires X et Y sont-elles indépendantes ? Justifier.
- 3. Déterminer la densité conditionnelle de Y/X = x.
- 4. Déterminer l'espérance conditionnelle $\mathbb{E}[Y/X]$. et retrouver la valeur de $\mathbb{E}[Y]$ en utilisant la question précédente.

Exercise 05:

- 1. Decrivez la méthode d'estimation de densité par histogramme. A quoi correspond le paramètre *h* de cette méthode ?
- 2. Consider $f(x)=2x_{I_{(x\in[0,1])}}$ and histograms using binwidths $h=\frac{1}{m}$ for m=1,2,... starting at $x_0=0$. Calculate

$$MISE(\hat{f}_h) = \int_0^1 MSE\{\hat{f}_h(x)\}dx$$

and the optimal binwidth h_0 .

- 3. Soit X une variable aléatoire réelle de densité f_X . La variable aléatoire Y=2X admet pour densité :
 - (a) $\frac{1}{2}f_X(x)$ (b) $\frac{1}{2}f_X(\frac{x}{2})$ (c) $2f_X(x)$ (d) $2f_X(2x)$ (e) une autre

Exercise 06 : Compute $\|f'\|_2^2$ for $f(x)=\frac{2}{3}\left[\left(\frac{x}{2}+1\right)_{I_{x\in[-2,0)}}+(1-x)_{I_{x\in[0,1)}}\right]$ and derive the MISE and optimal binwidth.

Exercise 07:

1. Soit X une variable aleatoire, à valeurs réelles, de densité de probabilité :

$$\begin{cases} xe^{x^2/2}, & \text{si } x \ge 0. \\ 0, & \text{sinon}; \end{cases}$$

- a) Determiner le mode de X et tracer le graphe de f.
- b) Calculer l'esperance et la variance de X.
- c) Determiner la fonction de répartition de X et calculer la probabilite de l'événement $p(0 \le X < 2)$

Exercise 08 : calculate $\hat{f}_H(x) = n_j/nh$ with Histogram Data (n=68) :