

(19)



Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)



EP 0 981 801 B1

(12)

## EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention  
of the grant of the patent:

18.09.2002 Bulletin 2002/38

(51) Int Cl.7: G06K 9/20, A61B 5/117

(21) Application number: 98920296.5

(86) International application number:  
PCT/US98/09245

(22) Date of filing: 06.05.1998

(87) International publication number:  
WO 98/052147 (19.11.1998 Gazette 1998/46)

### (54) ELECTRIC FIELD FINGERPRINT SENSOR HAVING ENHANCED FEATURES AND RELATED METHODS

FINGERABDRUCKSENSOR MIT ELEKTRISCHEM FELD MIT VERBESSERTEN MERKMALEN  
UND ZUGEHÖRIGE VERFAHREN

CAPTEUR DACTYLOSCOPIQUE DE CHAMP ELECTRIQUE POSSESSANT DES  
CARACTERISTIQUES AMELIOREES ET PROCEDES CORRESPONDANTS

(84) Designated Contracting States:  
DE FR GB IT

• VAN VONNO, Nicolaas, W.  
Palm Bay, FL 32907 (US)

(30) Priority: 16.05.1997 US 858144

• LOWTHER, Rex  
Palm Bay, FL 32907 (US)

(43) Date of publication of application:  
01.03.2000 Bulletin 2000/09

• GEBAUER, Dave  
West Melbourne, FL 32904 (US)

(73) Proprietor: Authentec, Inc.  
Melbourne, FL 32902-2719 (US)

(74) Representative: Johnstone, Douglas Ian et al  
Baron & Warren,  
18 South End  
Kensington, London W8 5BU (GB)

(72) Inventors:  
• SETLAK, Dale, R.  
Melbourne, FL 32934 (US)

(56) References cited:  
EP-A- 0 786 745                    US-A- 3 781 855

EP 0 981 801 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

**Description**

[0001] The present invention relates to the field of personal identification and verification, and, more particularly, to the field of fingerprint sensing.

[0002] Fingerprint sensing and matching is a reliable and widely used technique for personal identification or verification. In particular, a common approach to fingerprint identification involves scanning a sample fingerprint or an image thereof and storing the image and/or unique characteristics of the fingerprint image. The characteristics of a sample fingerprint may be compared to information for reference fingerprints already in a database to determine proper identification of a person, such as for verification purposes.

[0003] A typical electronic fingerprint sensor is based upon illuminating the finger surface using visible light, infrared light, or ultrasonic radiation. The reflected energy is captured with some form of camera, for example, and the resulting image is framed, digitized and stored as a static digital image. The specification of U.S. Patent No. 4,210,899 discloses an optical scanning fingerprint reader cooperating with a central processing station for a secure access application, such as admitting a person to a location or providing access to a computer terminal. The specification of U.S. Patent No. 4,525,859 discloses a video camera for capturing a fingerprint image and uses the minutiae of the fingerprints, that is, the branches and endings of the fingerprint ridges, to determine a match with a database of reference fingerprints.

[0004] Unfortunately, optical sensing may be affected by stained fingers or an optical sensor may be deceived by presentation of a photograph or printed image of a fingerprint rather than a true live fingerprint.

[0005] The specification of U.S. Patent No. 4,353,056 discloses another approach to sensing a live fingerprint. In particular, it discloses an array of extremely small capacitors located in a plane parallel to the sensing surface of the device. When a finger touches the sensing surface and deforms the surface, a voltage distribution in a series connection of the capacitors may change. The voltages on each of the capacitors is determined by multiplexor techniques.

[0006] The specification of U.S. Patent No. 5,325,442 discloses a fingerprint sensor including a plurality of sensing electrodes. Active addressing of the sensing electrodes is made possible by the provision of a switching device associated with each sensing electrode. A capacitor is effectively formed by each sensing electrode in combination with the respective overlying portion of the finger surface which, in turn, is at ground potential. The sensor may be fabricated using semiconductor wafer and integrated circuit technology. The dielectric material upon which the finger is placed may be provided by silicon nitride or a polyimide which may be provided as a continuous layer over an array of sensing electrodes.

[0007] The specification of U.S. Patent No. 4,811,414

discloses methods for noise averaging, illumination equalizing, directional filtering, curvature correcting, and scale correcting for an optically generated fingerprint image.

5 [0008] An object of the present invention is to provide a fingerprint sensor and associated methods which are relatively inexpensive, and robust.

[0009] According to one aspect, the present invention includes a fingerprint sensor comprising:

10 a substrate;  
a plurality of semiconductor devices adjacent said substrate and defining active circuit portions;  
a first metal layer interconnecting predetermined ones of said plurality of semiconductor devices;  
15 a first dielectric layer adjacent said first metal layer;  
a second metal layer adjacent said first dielectric layer defining a ground plane;  
a second dielectric layer adjacent said second metal layer; and  
20 a third metal layer adjacent said second dielectric layer and comprising an array of electric field sensing electrodes connected to active circuit portions for generating signals related to a sensed fingerprint;  
25 a package surrounding said substrate;  
a first electrode carried by said package for contact by a finger; and  
excitation drive means connected between the ground plane and said first external electrode for generating electric fields between the electric field sensing electrode and adjacent finger portions.

[0010] According to another aspect, the present invention includes a fingerprint sensor comprising a substrate, a plurality of semiconductor devices adjacent said substrate and defining active circuit portions for generating an output related to a sensed fingerprint, a package surrounding said substrate, a first external

35 electrode carried by said package for contact by a finger, and power control means for controlling operation of active circuit portions based upon sensing finger contact with said first external electrode, and at least one conductive layer comprising an array of electrode field sensing electrodes connected to active circuit portions, and excitation drive means connected to said first external electrode for generating electric fields between the electric field sensing electrodes and adjacent finger portions.

40 [0011] According to yet another aspect, the present invention includes a fingerprint sensor comprising a substrate, a plurality of semiconductor devices adjacent said substrate and defining active circuit portions for generating an output related to a sensed fingerprint, a package surrounding said substrate and finger charge bleed means for bleeding a charge from a finger upon contact therewith to protect the active circuit portions, in

45 which said finger charge bleed means comprises a sec-

ond external electrode carried by said package for contact by a finger, and a charge bleed resistor connected between said second external electrode and an earth ground, and said second external electrode comprises an electrically conductive movable cover for said package, at least one conductive layer comprising an array of electric field sensing electrodes connected to the active circuit portions, and a first external electrode carried by said package, and excitation drive means connected to said first external electrode for generating electrode fields between the electric field sensing electrodes and adjacent finger portions.

[0012] According to yet another aspect, the present invention includes a fingerprint sensor comprising a substrate, a plurality of semiconductor devices adjacent said substrate and defining active circuit portions for generating an output related to a sensed fingerprint, a package surrounding said substrate, and finger charge bleed means for bleeding a charge from a finger upon contact therewith to protect the active circuit portions, in which said finger charge bleed means comprises, a second external electrode carried by said package for contact by a finger, and a charge bleed resistor connected between said second external electrode and an earth ground, and said second external electrode comprises an electrically conductive movable cover for said package.

[0013] According to yet another aspect, the invention also includes a method for making a fingerprint sensor comprising the steps of:

- forming a plurality of semiconductor devices adjacent a substrate and defining active circuit portions;
- forming a first metal layer interconnecting predetermined ones of the plurality of semiconductor devices;
- forming a first dielectric layer adjacent the first metal layer;
- forming a second metal layer adjacent the first dielectric layer defining a ground plane;
- forming a second dielectric layer adjacent the second metal layer; and
- forming a third metal layer adjacent the second dielectric layer and comprising an array of electric field sensing electrodes connected to active circuit portions for generating signals related to a sensed fingerprint;
- forming a package surrounding the substrate; and
- forming means for generating electric fields between the electric field sensing electrodes and adjacent finger portions.

[0014] According to yet another aspect, the present invention includes a method for controlling operation of a fingerprint sensor of a type comprising a plurality of semiconductor devices adjacent a substrate and defining active circuit portions for generating an output related to a sensed fingerprint, a package surrounding the

substrate, at least one conductive layer comprising an array of electric field sensing electrodes, and a first external electrode carried by the package for contact by a finger, the method comprising the steps of:

5 generating electric fields between the electric field sensing electrodes and adjacent finger portions; only powering active circuit portions upon sensing finger contact with the first external electrode to thereby conserve power; and

10 grounding active circuit portions upon not sensing finger contact with the first external electrode including the step of bleeding a charge from the finger upon initial contact of the finger with the fingerprint package and before switching from grounding of the active circuit portions to powering same.

[0015] According to yet another aspect, the present invention includes a method of increasing noise rejection in a fingerprint sensor of a type comprising a substrate and at least one electrically conductive layer adjacent said substrate and comprising portions defining an array of electric field sensing electrodes, the method comprising the steps of:

25 forming a shield electrode for each respective electric field sensing electrode;

30 forming a respective amplifier connected between each pair of electric field sensing electrodes and associated shield electrodes;

35 forming a package surrounding the substrate; generating electric fields between the electric field sensing electrodes and adjacent finger portions; and

40 operating each amplifier at an amplification gain greater than about one to thereby increase noise rejection.

[0016] Advantageously, the fingerprint sensor includes the provision of power control means for controlling operation of active circuit portions which is based upon sensing finger contact with the first external electrode. The power control means may include wake-up means for only powering active circuit portions upon sensing finger contact with the first external electrode to thereby conserve power. Alternately, the power control means may further comprise protection means for grounding active circuit portions upon not sensing finger contact with the first external electrode.

[0017] Intervening first and second dielectric layers may be positioned between the first and second, and second and third metal layers, respectively. A third dielectric layer may also be provided adjacent the third metal layer.

[0018] The package surrounding the substrate may have an opening aligned with the array of electric field sensing electrodes.

[0019] In addition, the finger charge bleed means and

power control means may be such that the active portions remain grounded until the charge bleed means can remove the charge on the finger before powering the active circuit portions. Accordingly, power may be conserved in the sensor and ESD protection provided by the sensor so that the sensor is relatively inexpensive, yet robust and conserves power.

[0020] To provide additional noise rejection, the sensor may include pairs of electric field sensing electrodes and associated shield electrodes. In addition, an amplifier may be connected between each pair. Moreover, each amplifier may be operated at an amplification gain of greater than about one to thereby provide additional noise rejection.

[0021] The method may further include the step of bleeding a charge from the finger upon initial contact of the finger with the fingerprint package and before switching from grounding of the active circuit portions to powering same.

[0022] The invention will now be described by way of example, with reference to the accompanying drawings in which;

FIG. 1 is a top plan view of a fingerprint sensor;  
 FIG. 2 is a schematic view of a circuit portion of the fingerprint sensor as shown in FIG 1;  
 FIG. 3 is a greatly enlarged top plan view of the sensing portion of the fingerprint sensor as shown in FIG. 1;  
 FIG. 4 is a schematic diagram of another circuit portion of the fingerprint sensor as shown in FIG.1;  
 FIG. 5 is a greatly enlarged side cross-sectional view of a portion of the fingerprint sensor as shown in FIG.1;  
 FIG. 6 is a greatly enlarged side cross-sectional view of a portion of an alternate embodiment of the fingerprint sensor;  
 FIG. 7 is a greatly enlarged side cross-sectional view of another portion of the fingerprint sensor as shown in FIG. 1;  
 FIG. 8 is a schematic block diagram of yet another circuit portion of the fingerprint sensor as shown in FIG. 1;  
 FIG. 9 is a schematic circuit diagram of a portion of the circuit as shown in FIG. 8;  
 FIG. 10 is a schematic block diagram of still another circuit portion of the fingerprint sensor as shown in FIG. 1;  
 FIG. 11 is a schematic block diagram of an alternate embodiment of the circuit portion shown in FIG. 10;  
 FIG. 12 is a schematic block diagram of an additional circuit portion of the fingerprint sensor as shown in FIG. 1;  
 FIG. 13 is a schematic block diagram of an alternate embodiment of the circuit portion shown in FIG. 12;

[0023] FIGS. 1-3 illustrate a fingerprint sensor 30 which includes a housing or package 51, a dielectric lay-

er 52 exposed on an upper surface of the package which provides a placement surface for the finger, and a plurality of output pins, not shown. A first conductive strip or external electrode 54 around the periphery of the dielectric layer 52, and a second external electrode 53 provide contact electrodes for the finger 79. The sensor 30 may provide output signals in a range of sophistication levels depending on the level of processing.

[0024] The sensor 30 includes a plurality of individual pixels or sensing elements 30a arranged in array pattern as perhaps best shown in FIG. 3. These sensing elements are relatively small so as to be capable of sensing the ridges 59 and intervening valleys 60 of a typical fingerprint. Live fingerprint readings as from the electric field sensor 30 may be more reliable than optical sensing, because the impedance of the skin of a finger in a pattern of ridges and valleys is extremely difficult to simulate. In contrast, an optical sensor may be deceived by a readily deceived by a photograph or other similar image of a fingerprint, for example.

[0025] The sensor 30 includes a substrate 65, and one or more active semiconductor devices formed thereon, such as the schematically illustrated amplifier 73. A first metal layer 66 interconnects the active semiconductor devices. A second or ground plane electrode layer 68 is above the first metal layer 66 and separated therefrom by an insulating layer 67. A third metal layer 71 is positioned over another dielectric layer 70. In the illustrated embodiment, the first external electrode 54 is connected to an excitation drive amplifier 74 which, in turn, drives the finger 79 with a signal may be typically in the range of about 1 KHz to 1 MHz. Accordingly, the drive or excitation electronics are thus relatively uncomplicated and the overall cost of the sensor 30 may be relatively low, while the reliability is great.

[0026] An illustratively circularly shaped electric field sensing electrode 78 is on the insulating layer 70. The sensing electrode 78 may be connected to sensing integrated electronics, such as amplifier 73 formed adjacent the substrate 65 as schematically illustrated.

[0027] An annularly shaped shield electrode 80 surrounds the sensing electrode 78 in spaced relation therefrom. As would be readily appreciated by those skilled in the art, the sensing electrode 78 and its surrounding shield electrode 80 may have other shapes, such as hexagonal, for example, to facilitate a close packed arrangement or array of pixels or sensing elements 30a. The shield electrode 80 is an active shield which is driven by a portion of the output of the amplifier 73 to help focus the electric field energy and, moreover, to thereby reduce the need to drive adjacent electric field sensing electrodes 78.

[0028] The sensor 30 includes only three metal or electrically conductive layers 66, 68 and 71. The sensor 30 can be made without requiring additional metal layers which would otherwise increase the manufacturing cost, and, perhaps, reduce yields. Accordingly, the sensor 30 is less expensive and may be more rugged and reliable

than a sensor including four or more metal layers.

[0029] The amplifier 73 may be operated at a gain of greater than about one to drive the shield electrode 80. Stability problems do not adversely affect the operation of the amplifier 73. Moreover, the common mode and general noise rejection are greatly enhanced according to this feature of the invention. In addition, the gain greater than one tends to focus the electric field with respect to the sensing electrode 78 as will be readily appreciated by those skilled in the art.

[0030] The sensing elements 30a operate at very low currents and at very high impedances. For example, the output signal from each sensing electrode 78 is desirably about 5 to 10 millivolts to reduce the effects of noise and permit further processing of the signals. The approximate diameter of each sensing element 30a, as defined by the outer dimensions of the shield electrode 80, may be about 0.002 to 0.005 inches in diameter. The ground plane electrode 68 protects the active electronic devices from unwanted excitation. The various signal feedthrough conductors for the electrodes 78, 80 to the active electronic circuitry may be readily formed.

[0031] The overall contact or sensing surface for the sensor 30 may desirably be about 0.5 by 0.5 inches — a size which may be readily manufactured and still provide a sufficiently large surface for accurate fingerprint sensing and identification. The sensor 30 in accordance with the invention is also fairly tolerant of dead pixels or sensing elements 30a. A typical sensor 30 includes an array of about 256 by 256 pixels or sensor elements, although other array sizes are also contemplated by the present invention. The sensor 30 may also be fabricated at one time using primarily conventional semiconductor manufacturing techniques to thereby significantly reduce the manufacturing costs.

[0032] Turning now additionally to FIG. 4, another aspect of the sensor 30 of the invention is described. The sensor may include power control means for controlling operation of active circuit portions 100 based upon sensing finger contact with the first external electrode 54 as determined by the illustrated finger sense block or circuit 101. For example, the finger sense circuit 101 may operate based upon a change in impedance to an oscillator to thereby determine finger contact. Of course, other approaches for sensing contact with the finger are also contemplated by the invention. The power control means may include wake-up means for only powering active circuit portions upon sensing finger contact with the first external electrode to thereby conserve power. Alternately or additionally, the power control means may further comprise protection means for grounding active circuit portions upon not sensing finger contact with the first external electrode. In the illustrated embodiment, a combination of wake-up and protection controller circuits 101 are illustrated.

[0033] The fingerprint sensor 30 further comprise finger charge bleed means for bleeding a charge from a finger or other object upon contact therewith. The finger

charge bleed means may be provided by the second external electrode 53 carried by the package 51 for contact by a finger, and a charge bleed resistor 104 connected between the second external electrode and an earth ground.

5 As schematically illustrated in the upper right hand portion of FIG. 4, the second electrode may alternately be provided by a movable electrically conductive cover 53' slidably connected to the package 51 for covering the opening to the exposed upper dielectric layer

10 52. A pivotally connected cover is also contemplated by the present invention. Accordingly, under normal conditions, the charge would be bled from the finger as the cover 53' is moved to expose the sensing portion of the sensor 30.

15 [0034] The finger charge bleed means and power control means are such that the active portions remain grounded until the charge bleed means can remove the charge on the finger before powering the active circuit portions, such as by providing a brief delay during wake-

20 up sufficient to permit the charge to be discharged through the resistor 104 as would be readily understood by those skilled in the art. Accordingly, power may be conserved in the sensor 30 and ESD protection provided by the sensor so that the sensor is relatively inexpensive, yet robust and conserves power.

25 [0035] Referring now additionally to FIG. 5 yet another significant feature of the sensor 30 is described. The dielectric covering 52 may preferably comprise a z-axis anisotropic dielectric layer 110 for focussing an electric

30 field, shown by the illustrated field lines, at each of the electric field sensing electrodes 78. In other words, the dielectric layer 110 may be relatively thick, but not result in defocussing of the electric fields propagating therethrough because of the z-axis anisotropy of the material.

35 Typically there would be a trade-off between field focus and mechanical protection. Unfortunately, a thin film which is desirable for focussing, may permit the underlying circuit to be more easily subject to damage.

[0036] The z-axis anisotropic dielectric layer 110 of 40 the present invention, for example, may have a thickness in range of about 0.0001 to 0.004 inches. Of course, the z-axis anisotropic dielectric layer 110 is also preferably chemically resistant and mechanically strong to withstand contact with fingers, and to permit periodic cleanings with solvents. The z-axis anisotropic dielectric layer 110 may preferably define an outermost protective surface for the integrated circuit die 120. Accordingly, the overall dielectric covering 52 may further include at least one relatively thin oxide, nitride, carbide, or diamond layer 111 on the integrated circuit die 120 and beneath the z-axis anisotropic dielectric layer 110. The thin layer 111 will typically be relatively hard, and the z-axis anisotropic dielectric layer 110 is desirably softer to thereby absorb more mechanical activity.

55 [0037] The z-axis anisotropic dielectric layer 110 may be provided by a plurality of oriented dielectric particles in a cured matrix. For example, the z-axis anisotropic dielectric layer 110 may comprise barium titanate in a

polyimide matrix. For example, certain ceramics exhibit dielectric anisotropy.

[0038] Turning to FIG. 6, another variation of a z-axis dielectric covering 52' is schematically shown by a plurality of high dielectric portions 112 aligned with corresponding electric field sensing electrodes 78, and a surrounding matrix of lower dielectric portions 113. This embodiment of the dielectric covering 52' may be formed in a number of ways, such as by forming a layer of either the high dielectric or low dielectric portions, selectively etching same, and filling the openings with the opposite material. Another approach may be to use polarizable microcapsules and subjecting same to an electric field during curing of a matrix material. A material may be compressed to cause the z-axis anisotropy. Laser and other selective processing techniques may also be used as would be readily understood by those skilled in the art.

[0039] Another aspect of the invention relates to being able to completely cover and protect the entire upper surface of the integrated circuit die 120, and still permit connection and communication with the external devices and circuits as now further explained with reference to FIG. 7. The third metal layer 71 (FIG. 2) preferably further includes a plurality of capacitive coupling pads 116a-118a for permitting capacitive coupling of the integrated circuit die 120. Accordingly, the dielectric covering 52 is preferably continuous over the capacitive coupling pads 116a-118a and the array of electric field sensing electrodes 78 of the pixels 30a (FIG. 1). In sharp contrast to this feature of the present invention, it is conventional to create openings through an outer coating to electrically connect to the bond pads. Unfortunately, these openings would provide pathways for water and/or other contaminants to come in contact with and damage the die.

[0040] A portion of the package 51 includes a printed circuit board 122 which carries corresponding pads 115b-118b. A power modulation circuit 124 is coupled to pads 115b-116b, while a signal modulation circuit 126 is illustratively coupled to pads 117b-118b. As would be readily understood by those skilled in the art, both power and signals may be readily coupled between the printed circuit board 122 and the integrated circuit die 120, further using the illustrated power demodulation/regulator circuit 127, and the signal demodulation circuit 128. The z-axis anisotropic dielectric layer 110 also advantageously reduces cross-talk between adjacent capacitive coupling pads. This embodiment of the invention 30 presents no penetrations through the dielectric covering 52 for moisture to enter and damage the integrated circuit die 120. In addition, another level of insulation is provided between the integrated circuit and the external environment.

[0041] For the illustrated fingerprint sensor 30, the package 51 preferably has an opening aligned with the array of electric field sensing electrodes 78 (FIGS. 1-3). The capacitive coupling and z-axis anisotropic layer 110

may be advantageously used in a number of applications in addition to the illustrated fingerprint sensor 30, and particularly where it is desired to have a continuous film covering the upper surface of the integrated circuit die 120 and pads 116a-118a.

[0042] Referring additionally to FIGS. 8 and 9, impedance matrix filtering aspects of the invention are now described. As shown in FIG. 8, the fingerprint sensor 30 may be considered as comprising an array of fingerprint sensing elements 130 and associated active circuits 131 for generating signals relating to the fingerprint image. The illustrated sensor 30 also includes an impedance matrix 135 connected to the active circuits for filtering the signals therefrom.

[0043] As shown in FIG. 9, the impedance matrix 135 includes a plurality of impedance elements 136 with a respective impedance element connectable between each active circuit of a respective fingerprint sensing element as indicated by the central node 138, and the other active circuits (outer nodes 140). The impedance matrix 135 also includes a plurality of switches 137 with a respective switch connected in series with each impedance element 136. An input signal may be supplied to the central node 138 via the illustrated switch 142 and its associated impedance element 143. The impedance element may one or more of a resistor as illustrated, and a capacitor 134.

[0044] Filter control means may operate the switches 137 to perform processing of the signals generated by the active circuits 131. In one embodiment, the fingerprint sensing elements 130 may be electric field sensing electrodes 78, and the active circuits 131 may be amplifiers 73 (FIG. 2). Of course other sensing elements and active circuits may also benefit from the impedance matrix filtering of the present invention as would be readily understood by those skilled in the art.

[0045] Ridge flow determining means 145 may be provided for selectively operating the switches 137 of the matrix 135 to determine ridge flow directions of the fingerprint image. More particularly, the ridge flow determining means 145 may selectively operate the switches 137 for determining signal strength vectors relating to ridge flow directions of the fingerprint image. The ridge flow directions may be determined based upon well known rotating slit principles.

[0046] The sensor 30 may include core location determining means 146 cooperating with the ridge flow determining means 145 for determining a core location of the fingerprint image. The position of the core is helpful, for example, in extracting and processing minutiae from the fingerprint image as would also be readily understood by those skilled in the art.

[0047] As also schematically illustrated in FIG. 8, a binarizing filter 150 may be provided for selectively operating the switches 137 to convert a gray scale fingerprint image to a binarized fingerprint image. Considered another way, the impedance matrix 135 may be used to provide dynamic image contrast enhancement. In addi-

tion, an edge smoothing filter 155 may be readily implemented to improve the image. As also schematically illustrated other spatial filters 152 may also be implemented using the impedance matrix 135 for selectively operating the switches 137 to spatially filter the fingerprint image as would be readily appreciated by those of skill in the art. Accordingly, processing of the fingerprint image may be carried out at the sensor 30 and thereby reduce additional downstream computational requirements.

[0048] FIG. 9 illustrates the impedance matrix 135 may comprise a plurality of impedance elements with a respective impedance element 136 connectable between each active circuit for a given fingerprint sensing element 130 and eight other active circuits for respective adjacent fingerprint sensing elements.

[0049] Another aspect of the invention is the control means 153 for sequentially powering sets of active circuits 131 to thereby conserve power. The respective impedance elements 136 are desirably also sequentially connected to perform the filtering function. The powered active circuits 131 may be considered as defining a cloud or kernel as would be readily appreciated by those skilled in the art. The power control means 153 may be operated in an adaptive fashion whereby the size of the area used for filtering is dynamically changed for preferred image characteristics as would also be readily understood by those skilled in the art. In addition, the power control means 153 may also power only certain ones of the active circuits corresponding to a predetermined area of the array of sensing elements 130. For example, every other active circuit 131 could be powered to thereby provide a larger area, but reduced power consumption.

[0050] Reader control means 154 may be provided to read only predetermined subsets of each set of active circuits 131 so that a contribution from adjacent active circuits is used for filtering. In other words, only a subset of active circuits 131 are typically simultaneously read although adjacent active circuits 131 and associated impedance elements 136 are also powered and connected, respectively. For example, 16 impedance elements 136 could define a subset and be readily simultaneously read. The subset size could be optimized for different sized features to be determined.

[0051] Accordingly, the array of sense elements 130 can be quickly read, and power consumption substantially reduced since all of the active circuits 131 need not be powered for reading a given set of active circuits. For a typical sensor, the combination of the power control and impedance matrix features described herein may permit power savings by a factor of about 10 as compared to powering the full array.

[0052] The fingerprint sensor 30 is to guard against spoofing or deception of the sensor into incorrectly treating a simulated image as a live fingerprint image. For example, optical sensors may be deceived or spoofed by using a paper with a fingerprint image thereon. The

unique electric field sensing of the fingerprint sensor 30 of the present invention provides an effective approach to avoiding spoofing based upon the complex impedance of a finger.

5 [0053] As shown in FIG. 10, the fingerprint sensor 30 may be considered as including an array of impedance sensing elements 160 for generating signals related to a finger 79 or other object positioned adjacent thereto. In the embodiment described herein, the impedance sensing elements 160 are provided by electric field sensing electrodes 78 and amplifiers 73 (FIG. 2) associated therewith. In addition, a guard shield 80 may be associated with each electric field sensing electrode 78 and connected to a respective amplifier 73. Spoof reducing means 161 is provided for determining whether or not an impedance of the object positioned adjacent the array of impedance sensing elements 160 corresponds to a live finger 79 to thereby reduce spoofing of the fingerprint sensor by an object other than a live finger. A spoofing may be indicated, such as by the schematically illustrated lamp 163 and/or used to block further processing. Alternately, a live fingerprint determination may also be indicated by a lamp 164 and/or used to permit further processing of the fingerprint image as will be readily appreciated by those skilled in the art. Many other options for indicating a live fingerprint or an attempted spoofing will be readily appreciated by those skilled in the art.

10 [0054] In one embodiment, the spoof reducing means 161 may include impedance determining means 165 to detect a complex impedance having a phase angle in a range of about 10 to 60 degrees corresponding to a live finger 79. Alternately, the spoof reducing means 161 may detect an impedance having a phase angle of about 0 degrees corresponding to some objects other than a live finger, such as a sheet of paper having an image thereon, for example. In addition, the spoof reducing means 161 may detect an impedance of 90 degrees corresponding to other objects.

15 [0055] Turning now to FIG. 11, another embodiment of spoof reducing means is explained. The fingerprint sensor 30 may preferably includes drive means for driving the array of impedance sensing elements 160, such as the illustrated excitation amplifier 74 (FIG. 2). The sensor also includes synchronous demodulator means 170 for synchronously demodulating signals from the array of impedance sensing elements 160. Accordingly, in one particularly advantageous embodiment of the invention, the spoof reducing means comprises means for operating the synchronous demodulator means 170 at at least one predetermined phase rotation angle. For example, the synchronous demodulator means 170 could be operated in a range of about 10 to 60 degrees, and the magnitude compared to a predetermined threshold indicative of a live fingerprint. A live fingerprint typically has a complex impedance within the range of 10 to 60 degrees.

20 [0056] Alternately, ratio generating and comparing

means 172 may be provided for cooperating with the synchronous demodulator means 170 for synchronously demodulating signals at first and second phase angles  $\theta_1$ ,  $\theta_2$ , generating an amplitude ratio thereof, and comparing the amplitude ratio to a predetermined threshold to determine whether the object is a live fingerprint or other object. Accordingly, the synchronous demodulator 170 may be readily used to generate the impedance information desired for reducing spoofing of the sensor 30 by an object other than a live finger. The first angle  $\theta_1$  and the second  $\theta_2$  may have a difference in a range of about 45 to 90 degrees, for example. Other angles are also contemplated by the invention as would be readily appreciated by those skilled in the art.

[0057] The fingerprint sensor 30 also includes an automatic gain control feature to account for a difference in intensity of the image signals generated by different fingers or under different conditions, and also to account for differences in sensor caused by process variations. It is important for accurately producing a fingerprint image, that the sensor can discriminate between the ridges and valleys of the fingerprint. Accordingly, the sensor 30 includes a gain control feature, a first embodiment of which is understood with reference to FIG. 12.

[0058] As shown in FIG. 12, the illustrated portion of the fingerprint sensor 30 includes an array of fingerprint sensing elements in the form of the electric field sensing electrodes 78 and surrounding shield electrodes 80 connected to the amplifiers 73. Other fingerprint sensing elements may also benefit from the following automatic gain control implementations as will be appreciated by those skilled in the art.

[0059] The signal processing circuitry of the sensor 30 includes a plurality of analog-to-digital (A/D) converters 180 as illustrated. Moreover, each of these A/D converters 180 may have a controllable scale. Scanning means 182 sequentially connects different elements to the bank of A/D converters 180. The illustrated gain processor 185 provides range determining and setting means for controlling the range of the A/D converters 180 based upon prior A/D conversions to thereby provide enhanced conversion resolution. The A/D converters 180 may comprise the illustrated reference voltage input  $V_{ref}$  and offset voltage input  $V_{offset}$  for permitting setting of the range as would be readily appreciated by those skilled in the art. Accordingly, the range determining and setting means may also comprise a first digital-to-analog D/A converter 186 connected between the gain processor 185 and the reference voltage  $V_{ref}$  inputs of the A/D converters 180 as would also be readily understood by those skilled in the art. In addition, a second D/A converter 189 is also illustratively connected to the offset voltage inputs  $V_{offset}$  from the gain processor 185.

[0060] The gain processor 185 may comprise histogram generating means for generating a histogram, as described above, and based upon prior A/D conversions. The graph adjacent the gain processor 185 in FIG. 12 illustrates a typical histogram plot 191. The his-

togram plot 191 includes two peaks corresponding to the sensed ridges and valleys of the fingerprint. By setting the range for the A/D converters 180, the peaks can be readily positioned as desired to thereby account for the variations discussed above and use the full resolution of the A/D converters 180.

[0061] Turning additionally to FIG. 13, the A/D converters 180 may include an associated input amplifier for permitting setting of the range. In this variation, the range determining and setting means may also comprise the illustrated gain processor 185, and wherein the amplifier is a programmable gain amplifier (PGA) 187 connected to the processor. A digital word output from the gain processor 185 sets the gain of the PGA 187 so that full use of the resolution of the A/D converters 180 is obtained for best accuracy. A second digital word output from the gain processor 185 and coupled to the amplifier 187 through the illustrated D/A converter 192 may also control the offset of the amplifier as would also be readily appreciated by those skilled in the art.

[0062] The range determining and setting means of the gain processor 185 may comprise default setting means for setting a default range for initial ones of the fingerprint sensing elements. The automatic gain control feature of the present invention allows the D/A converters 180 to operate over their full resolution range to thereby increase the accuracy of the image signal processing. A fingerprint sensor includes a plurality of semiconductor devices adjacent a substrate having only three metal layers. The sensor includes a first metal layer interconnecting predetermined ones of the plurality of semiconductor devices; a second metal layer defining a ground plane; and a third metal layer comprising an array of electric field sensing electrodes connected to active circuit portions for generating an output related to a sensed fingerprint. The fingerprint sensor also includes a package surrounding the substrate and having an opening aligned with the sensing electrodes. A first external electrode may be carried by the package for contact by a finger. The sensor also includes an excitation drive circuit connected between the ground plane and the first external electrode for generating electric fields between the electric field sensing electrodes and adjacent finger portions. A power control circuit is for controlling operation of active circuit portions based upon sensing finger contact with the first external electrode so that the active circuit portions are powered upon sensing finger contact with the first external electrode and otherwise grounded. A second external electrode may be connected to a bleed resistor to bleed charge from the finger prior to switching from the grounded to the powered state. An amplifier connected between each electric field sensing electrode and associated shield electrode may be operated at a gain of greater than one for additional noise rejection.

## Claims

1. A fingerprint sensor (30) comprising:

a substrate (65);  
 a plurality of semiconductor devices (73) adjacent said substrate and defining active circuit portions;  
 a first metal layer (66) interconnecting predetermined ones of said plurality of semiconductor devices (73);  
 a first dielectric layer (67) adjacent said first metal layer (66);  
 a second metal layer (68) adjacent said first dielectric layer (67) defining a ground plane; a second dielectric layer (70) adjacent said second metal layer (68);  
 a third metal layer (71) adjacent said second dielectric layer (70) and comprising an array of electric field sensing electrodes (78) connected to active circuit portions for generating signals related to a sensed fingerprint;  
 a package (51) surrounding said substrate (65); a first electrode (54) carried by said package for contact by a finger; and excitation drive means connected between the ground plane and said first external electrode (54) for generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions.

2. A fingerprint sensor (30) as claimed in claim 1 including a third dielectric layer (52) adjacent said third metal layer (71), and said package (51) having an opening aligned with the array of electric field sensing electrodes.

3. A fingerprint sensor (30) as claimed in any one of claims 1 to 2 including power control means (153) for controlling operation of active circuit portions (100) based upon sensing finger contact with said first external electrode (54), said power control means comprises wake-up means (102) for only powering active circuit portions (100) upon sensing finger contact with said first external electrode (54) to thereby conserve power, said power control means further comprises protection means for grounding active circuit portions (100) upon not sensing finger contact with said first external electrode (54).

4. A fingerprint sensor (30) as claimed in any one of claims 1 to 3 including finger charge bleed means for bleeding a charge from a finger (79) upon contact therewith, in which a said finger charge bleed means comprises a second external electrode (53, 53') carried by said package (51) for contact by the finger, a charge bleed resistor (104) connected be-

tween said second external electrode (53, 53') and an earth ground.

5. A fingerprint sensor (30) as claimed in any one of claims 1 to 4 including a shield electrode (80) adjacent each electric field sensing electrode (78), and an amplifier (73) having an input connected to each electric field sensing electrode (78), and having an output connected to each respective shield electrode (80), said amplifier (73) having an amplification gain greater than about one to thereby increase noise rejection.

15 6. A fingerprint sensor (30) comprising a substrate (65), a plurality of semiconductor devices (73) adjacent said substrate (65) and defining active circuit portions for generating an output related to a sensed fingerprint, a package (51) surrounding said substrate (65), a first external electrode (54) carried by said package (51) for contact by a finger (79), and power control means for controlling operation of active circuit portions (100) based upon sensing finger contact with said first external electrode (54), and at least one conductive layer comprising an array of electric field sensing electrodes (78) connected to active circuit portions, and excitation drive means (74) connected to said first external electrode (54) for generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions.

25 7. A fingerprint sensor (30) as claimed in claim 6, wherein said power control means comprises wake-up means (102) for only powering active circuit portions (100) upon sensing finger contact with said first external electrode (54) to thereby conserve power, in which said power control means further comprises protection means for grounding active circuit portions (100) upon not sensing finger contact with said first external electrode (54).

35 8. A fingerprint sensor (30) as claimed in claims 6 or 7 including finger charge bleed means for bleeding a charge from a finger (79) upon contact therewith, and wherein said finger charge bleed means and said protection means cooperate so that the active circuit portions remain grounded until said bleed means bleeds the charge from the finger (79), in which said finger charge bleed means comprises a second external electrode (53, 53') carried by said package (51) for contact by the finger (79), and a charge bleed resistor (104) connected between said second external electrode (53, 53') and an earth ground, and preferably said second external electrode (53, 53') comprises an electrically conductive movable cover for said package (51), and preferably at least one conductive layer comprises a ground plane layer connected to said charge

bleed resistor (104).

9. A fingerprint sensor (30) comprising a substrate (65), a plurality of semiconductor devices (73) adjacent said substrate (65) and defining active circuit portions (100) for generating an output related to a sensed fingerprint, a package (51) surrounding said substrate (65), and finger charge bleed means for bleeding a charge from a finger (79) upon contact therewith to protect the active circuit portions (100), in which said finger charge bleed means comprises a second external electrode (53, 53') carried by said package (51) for contact by the finger (79), and a charge bleed resistor (104) connected between said second external electrode (53, 53') and an earth ground, and said second external electrode (53, 53') comprises an electrically conductive movable cover for said package (51), at least one conductive layer comprising an array of electric field sensing electrodes (78) connected to the active circuit portions (100), and a first external electrode (54) carried by said package (51), and excitation drive means (74) connected to said first external electrode (54) for generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions.

10. A fingerprint sensor (30) comprising a substrate (65), a plurality of semiconductor devices (73) adjacent said substrate (65) and defining active circuit portions (100) for generating an output related to a sensed fingerprint, a package (51) surrounding said substrate (65), and finger charge bleed means for bleeding a charge from a finger upon contact therewith to protect the active circuit portions, in which said finger charge bleed means comprises, a second external electrode (53, 53') carried by said package for contact by a finger (79), and a charge bleed resistor (104) connected between said second external electrode (53, 53') and an earth ground, and said second external electrode (53, 53') comprises an electrically conductive movable cover for said package.

11. A method for making a fingerprint sensor comprising the steps of:

forming a plurality of semiconductor devices (73) adjacent a substrate (65) and defining active circuit portions;

forming a first metal layer (66) interconnecting predetermined ones of the plurality of semiconductor devices (73);

forming a first dielectric layer (67) adjacent the first metal layer (66);

forming a second metal layer (68) adjacent the first dielectric layer (67) defining a ground plane;

5 forming a second dielectric layer (70) adjacent the second metal layer (68);

5 forming a third metal layer (71) adjacent the second dielectric layer (70) and comprising an array of electric field sensing electrodes (78) connected to active circuit portions (100) for generating signals related to a sensed fingerprint;

10 forming a package (51) surrounding the substrate (65); and

15 forming means for generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions.

12. A method as claimed in claim 11 including the step of forming a third dielectric layer (52) adjacent the third metal layer (71), with the step of forming the package (51) surrounding the substrate (65) includes forming an opening aligned with the array of electric field sensing electrodes (78), further comprising the step of forming a first external electrode (54) carried by the package (61) for contact by a finger (79), and forming a second external electrode (53) carried by the package (51) for contact by the finger (79), and connecting a charge bleed resistor (104) between the second external electrode (53) and an earth ground.

13. A method for controlling operation of a fingerprint sensor (30) of a type comprising a plurality of semiconductor devices (73) adjacent a substrate (65) and defining active circuit portions for generating an output related to a sensed fingerprint, a package (51) surrounding the substrate (65), at least one conductive layer comprising an array of electric field sensing electrodes (78), and a first external electrode (54) carried by the package (51) for contact by a finger (79), the method comprising the steps of:

30 generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions;

35 only powering active circuit portions (100) upon sensing finger contact with the first external electrode (54) to thereby conserve power; and

40 grounding active circuit portions (100) upon not sensing finger contact with the first external electrode (54), including the step of bleeding a charge from the finger (79) upon initial contact of the finger (79) with the fingerprint package (51) and before switching from grounding of the active circuit portions (100) to powering same.

14. A method of increasing noise rejection in a fingerprint sensor (30) of a type comprising a substrate (65), and at least one electrically conductive layer adjacent said substrate and comprising portions defining an array of electric field sensing electrodes

(78), the method comprising the steps of:

forming an shield electrode (80) for each respective electric field sensing electrode (78);  
 forming a respective amplifier (73) connected between each pair of electric field sensing electrodes (78) and associated shield electrodes (80);  
 forming a package (51) surrounding the substrate (65);  
 generating electric fields between the electric field sensing electrodes (78) and adjacent finger portions; and  
 operating each amplifier (73) at an amplification gain greater than one to thereby increase noise rejection.

#### Patentansprüche

1. Ein Fingerabdrucksensor (30), beinhaltend:

ein Substrat (65);

eine Vielzahl von Halbleiterbausteinen (73), welche zum Substrat benachbart sind und aktive Schaltkreisteile definieren;

eine erste Metallschicht (66), welche vorbestimmte Bausteine der Vielzahl der Halbleiterbausteine (73) untereinander verbindet;

eine erste dielektrische Schicht (67), welche zur ersten Metallschicht (66) benachbart ist;

eine zweite Metallschicht (68), welche zur ersten dielektrischen Schicht (67) benachbart ist und eine Grundfläche definiert;

eine zweite dielektrische Schicht (70), welche zur zweiten Metallschicht (68) benachbart ist;

eine dritte Metallschicht (71), welche zur zweiten dielektrischen Schicht (70) benachbart ist und welche eine Anordnung/Matrix von Feld-Sensorelektroden (78) für ein elektrisches Feld beinhaltet, welche mit aktiven Schaltungsteilen verbunden sind zur Erzeugung von Signalen, die auf einen abgetasteten Fingerabdruck bezogen sind;

ein Bausteinpaket (51), welches das Substrat (65) umgibt;

eine erste Elektrode (54), welche durch das Bausteinpaket (51) getragen wird, für den Kontakt mit einem Finger; und Antriebsmittel zur Erregung/Anregung, welche zwischen der

Grundfläche und der ersten externen Elektrode (54) verbunden ist zur Erzeugung elektrischer Felder zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen.

- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55

2. Ein Fingerabdrucksensor (30) wie in Anspruch 1 beansprucht, beinhaltend eine dritte dielektrische Schicht (52), welche zu der dritten Metallschicht (71) benachbart ist und das Bausteinpaket (51) eine Öffnung hat, die mit der Anordnung/Matrix der Feld-Sensorelektroden fluchtet.

3. Ein Fingerabdrucksensor (30) wie in einem der Ansprüche 1 oder 2 beansprucht, beinhaltend Energiesteuermittel (153) zur Steuerung/Regelung des Betriebs aktiver Schaltungsteile (100), basierend auf der Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54), wobei die Energiesteuermittel Aufwachmittel (102) zur Speisung lediglich aktiver Schaltungsteile (100) mit Energie beinhalten, auf Grund der Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54), um hierbei Energie einzusparen, wobei die Energiesteuermittel weiterhin Schutzmittel zum Erden aktiver Schaltungsteile (100) beinhalten, auf Grund keiner Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54).

4. Ein Fingerabdrucksensor (30) wie in einem der Ansprüche 1 bis 3 beansprucht, beinhaltend Fingerladungsableitmittel zur Ableitung/Entladung einer Ladung von einem Finger (79), auf Grund eines Kontaktes damit, in welchem Fingerabdrucksensor das Fingerladungsableitmittel eine zweite externe Elektrode (53, 53') beinhaltet, welche durch das Bausteinpaket (51) für den Kontakt mit dem Finger getragen wird, und einen Ladungsableitwiderstand (104) beinhaltet, welcher zwischen der zweiten externen Elektrode (53, 53') und einer Erdung verbunden ist.

5. Ein Fingerabdrucksensor (30) wie in einem der Ansprüche 1 bis 4 beansprucht, beinhaltend eine Abschirmelektrode (80), welche zu jeder der Feld-Sensorelektroden (78) benachbart ist, und beinhaltend einen Verstärker (73), mit einem Eingang, der mit jedem der Feld-Sensorelektroden (78) verbunden ist, und mit einem Ausgang, der mit jeder der entsprechenden Abschirmelektroden (80) verbunden ist, wobei der Verstärker (73) einen Verstärkungsgrad von größer als 1 besitzt, um hierbei die Rauschunterdrückung zu erhöhen.

6. Ein Fingerabdrucksensor (30) beinhaltend ein Substrat (65), eine Vielzahl von Halbleiterbausteinen (73), welche zum Substrat (65) benachbart sind und aktive Schaltkreisteile zur Erzeugung eines Ausgangssignals definieren, in Abhängigkeit eines ab-

getasteten Fingerabdrucks, ein Bausteinparket (51), um das Substrat (65) zu umgeben, eine erste externe Elektrode (54), welche durch das Bausteinparket (51) für den Kontakt mit dem Finger (79) getragen wird, und Energiesteuermittel zur Steuerung/Regelung des Betriebs aktiver Schaltungsteile (100), basierend auf der Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54), und mindestens eine elektrisch leitende Schicht, beinhaltend eine Anordnung/Matrix von Feld-Sensorelektroden (78) für ein elektrisches Feld, welche verbunden sind mit aktiven Schaltungsteilen, und Antriebsmittel zur Erregung/Anregung (74), welche mit der ersten externen Elektrode (54) verbunden sind zur Erzeugung elektrischer Felder zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen.

7. Ein Fingerabdrucksensor (30) wie in Anspruch 6 beansprucht, worin die Energiesteuermittel Aufwachmittel (102) zur Speisung lediglich aktiver Schaltungsteile (100) mit Energie beinhalten, auf Grund der Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54), um hierbei Energie einzusparen, in welchem Fingerabdrucksensor die Energiesteuermittel weiterhin Schutzmittel beinhalten zum Erden aktiver Schaltungsteile (100), auf Grund keiner Abtastung des Fingerkontaktees mit der ersten externen Elektrode (54).

8. Ein Fingerabdrucksensor (30) wie in einem der Ansprüche 6 oder 7 beansprucht, beinhaltend Fingerladungsableitmittel zur Ableitung/Entladung einer Ladung von einem Finger (79) auf Grund eines Kontaktes damit, und worin die Fingerladungsableitmittel und die Schutzmittel zusammenwirken, so dass die aktiven Schaltkreisteile geerdet bleiben, bis das Ableitmittel die Ladung des Fingers (79) ableitet, in welchem Fingerabdrucksensor das Fingerladungsableitmittel eine zweite externe Elektrode (53, 53') beinhaltet, welche durch das Bausteinparket (51) für den Kontakt mit dem Finger getragen wird, einen Ladungsableitwiderstand (104), welcher zwischen der zweiten externen Elektrode (53, 53') und einer Erdung verbunden ist, und bevorzugt die zweite externe Elektrode (53, 53') eine elektrisch leitende bewegliche Hülle für das Bausteinparket (51) beinhaltet, und bevorzugt mindestens eine elektrisch leitende Schicht eine Grundflächenschicht beinhaltet, welche mit dem Ladungsableitwiderstand (104) verbunden ist.

9. Ein Fingerabdrucksensor (30) beinhaltend ein Substrat (65), eine Vielzahl von Halbleiterbausteinen (73), welche zum Substrat (65) benachbart sind und aktive Schaltkreisteile (100) definieren zur Erzeugung eines Ausgangssignals, in Abhängigkeit eines abgetasteten Fingerabdrucks, ein Bausteinparket (51), um das Substrat (65) zu umgeben, und Fingerladungsableitmittel zur Ableitung/Entladung einer Ladung von einem Finger (79) auf Grund eines Kontaktes damit, um die aktiven Schaltungsteile (100) zu schützen, in welchem Fingerabdrucksensor das Fingerladungsableitmittel eine zweite externe Elektrode (53, 53') beinhaltet, welche durch das Bausteinparket (51) für den Kontakt mit dem Finger getragen wird, und einen Ladungsableitwiderstand (104), welcher zwischen der zweiten externen Elektrode (53, 53') und einer Erdung verbunden ist, und die zweite externe Elektrode (53, 53') eine elektrisch leitende bewegliche Hülle für das Bausteinparket (51) beinhaltet, mindestens eine elektrisch leitende Schicht, beinhaltend eine Anordnung/Matrix von Feld-Sensorelektroden (78) für ein elektrisches Feld, welche mit den aktiven Schaltkreisteilen (100) verbunden sind, und eine erste externe Elektrode (54), welche durch das Bausteinparket (51) getragen wird, und Antriebsmittel zur Erregung/Anregung (74), welche mit der ersten externen Elektrode (54) verbunden ist, zur Erzeugung elektrischer Felder zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen.

10. Ein Fingerabdrucksensor (30) beinhaltend ein Substrat (65), eine Vielzahl von Halbleiterbausteinen (73), welche zum Substrat (65) benachbart sind und aktive Schaltkreisteile (100) definieren zur Erzeugung eines Ausgangssignals, in Abhängigkeit eines abgetasteten Fingerabdrucks, ein Bausteinparket (51), um das Substrat (65) zu umgeben, und Fingerladungsableitmittel zur Ableitung/Entladung einer Ladung von einem Finger auf Grund eines Kontaktes damit, um die aktiven Schaltungsteile zu schützen, in welchem Fingerabdrucksensor das Fingerladungsableitmittel eine zweite externe Elektrode (53, 53') beinhaltet, welche durch das Bausteinparket für den Kontakt mit dem Finger (79) getragen wird, und einen Ladungsableitwiderstand (104), welcher zwischen der zweiten externen Elektrode (53, 53') und einer Erdung verbunden ist, und die zweite externe Elektrode (53, 53') eine elektrisch leitende bewegliche Hülle für das Bausteinparket beinhaltet.

11. Ein Verfahren zur Herstellung eines Fingerabdrucksensors (30), beinhaltend die Schritte:

50 Bilden einer Vielzahl von Halbleiterbausteinen (73) benachbart zu einem Substrat (65) und Definieren von aktiven Schaltkreisteilen;

55 Bilden einer ersten Metallschicht (66), welche vorbestimmte Bausteine der Vielzahl der Halbleiterbausteine (73) untereinander verbindet;

Bilden einer ersten dielektrischen Schicht (67)

benachbart zur ersten Metallschicht (66);

Bilden einer zweiten Metallschicht (68) benachbart zur ersten dielektrischen Schicht (67) und Definieren einer Grundfläche;

Bilden einer zweiten dielektrischen Schicht (70) benachbart zur zweiten Metallschicht (68);

Bilden einer dritten Metallschicht (71), benachbart zur zweiten dielektrischen Schicht (70) und welche eine Anordnung/Matrix von Sensorelektroden (78) für ein elektrisches Feld beinhaltet, welche verbunden sind mit aktiven Schaltungsteilen (100) zur Erzeugung von Signalen, die auf einen abgetasteten Fingerabdruck bezogen sind;

Bilden eines Bausteinpakets (51), welches das Substrat (65) umgibt; und

Bilden von Mitteln zur Erzeugung elektrischer Felder zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen;

12. Ein Verfahren wie in Anspruch 11 beansprucht, beinhaltend den Schritt des Bildens einer dritten dielektrischen Schicht (52), benachbart zu der dritten Metallschicht (71) mit dem Schritt des Bildens des Bausteinpakets (51), welches das Substrat (65) umgibt, beinhaltend das Bilden einer Öffnung, die mit der Anordnung/Matrix der Feld-Sensorelektroden (78) fluchtet, weiterhin beinhaltend den Schritt des Bildens einer ersten externen Elektrode (54), welche durch das Bausteinpaket (51) getragen wird, zum Kontakt durch einen Finger (79), und Bilden einer zweiten externen Elektrode (53), welche durch das Bausteinpaket (51) getragen wird, zum Kontakt durch einen Finger (79), und Verbinden eines Ladungsableitwiderstands (104) zwischen der zweiten externen Elektrode (53) und der Erdung.

13. Ein Verfahren zur Steuerung/Regelung des Betriebs eines Fingerabdrucksensors (30) eines Typs, welcher eine Vielzahl von Halbleiterbausteinen (73) beinhaltet, welche zum Substrat (65) benachbart sind und aktive Schaltungsteile definieren zur Erzeugung eines Ausgangssignals, in Abhängigkeit eines abgetasteten Fingerabdrucks, ein Bausteinpaket (51), um das Substrat (65) zu umgeben, mindestens eine elektrisch leitende Schicht beinhaltend eine Anordnung/Matrix von Feld-Sensorelektroden (78) für ein elektrisches Feld, und eine erste externe Elektrode (54), welche durch das Bausteinpaket (51) getragen wird, zum Kontakt durch einen Finger (79), wobei das Verfahren die Schritte beinhaltet:

5 5 10 15 20 25 30 35 40 45 50 55

Erzeugen elektrischer Felder zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen;

Speisen lediglich aktiver Schaltkreise (100) mit Energie auf Grund der Abtastung des Fingerkontaktes mit der ersten externen Elektrode (54), um hierbei Energie einzusparen; und

Erden aktiver Schaltungsteile (100) auf Grund keiner Abtastung des Fingerkontaktes mit der ersten externen Elektrode (54), beinhaltend den Schritt der Ableitung/Entladung einer Ladung von einem Finger (79) auf Grund eines ersten Kontaktes des Fingers (79) mit dem Fingerabdruck-Bausteinpaket (51) und zuvor Umschalten von Erdung der aktiven Schaltungsteile (100) auf Speisung mit Energie.

14. Ein Verfahren zur Erhöhung der Rauschunterdrückung in einem Fingerabdrucksensor eines Typs, der ein Substrat (65) beinhaltet und mindestens eine elektrisch leitende Schicht, welche zu dem Substrat benachbart ist und beinhaltend Teile, welche eine Anordnung/Matrix von Feld-Sensorelektroden (78) für ein elektrisches Feld definieren, wobei das Verfahren die Schritte beinhaltet:

Bilden einer Abschirmelektrode (80) für jede entsprechende Feld-Sensorelektrode (78);

Bilden eines Verstärkers (73), welcher zwischen jedem Paar von Feld-Sensorelektroden (78) und den zugehörigen Abschirmelektroden (80) verbunden ist;

Bilden eines Bausteinpakets (51), welches das Substrat (65) umgibt;

Erzeugen von elektrischen Feldern zwischen den Feld-Sensorelektroden (78) und benachbarten Fingerteilen; und

Betreiben jedes Verstärkers (73) mit einem Verstärkungsgrad von größer als 1, um hierbei die Rauschunterdrückung zu erhöhen.

Revendications

1. DéTECTEUR D'EMPREINTE DIGITALE (30) COMPRENANT :

un substrat (65) ;  
une pluralité de dispositifs semi-conducteurs (73) adjacents au dit substrat et définissant des parties de circuit actives ;  
une première couche métallique (66) interconnectant des dispositifs pré-déterminés parmi la-

dite pluralité de dispositifs semi-conducteurs (73); une première couche diélectrique (67) adjacente à ladite première couche métallique (66); une deuxième couche métallique (68) adjacente à ladite première couche diélectrique (67) définissant un plan de masse ; une deuxième couche diélectrique (70) adjacente à ladite deuxième couche métallique (68); une troisième couche métallique (71) adjacente à ladite deuxième couche diélectrique (70) et comprenant un groupement d'électrodes (78) de détection de champ électrique connectées aux parties de circuit actives pour générer des signaux en rapport avec une empreinte digitale détectée ; un emballage (51) entourant ledit substrat (65); une première électrode (54) portée par ledit emballage pour le contact avec un doigt; et un moyen de commande d'excitation connecté entre le plan de masse et ladite première électrode extérieure (54) pour générer des champs électriques entre les électrodes (78) de détection de champ électrique et les parties adjacentes du doigt.

2. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON LA REVENDICATION 1, INCLUANT UNE TROISIÈME COUCHE DIÉLECTRIQUE (52) ADJACENTE À LADITE TROISIÈME COUCHE MÉTALLIQUE (71), ET LEDIT EMBALLAGE (51) ÉTANT POURVU D'UNE OUVERTURE ALIGNÉE AVEC LE GROUPEMENT D'ÉLECTRODES DE DÉTECTION DE CHAMP ÉLECTRIQUE.

3. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON L'UNE QUELCONQUE DES REVENDICATIONS 1 À 2, INCLUANT UN MOYEN DE COMMANDE DE PISSANCE (153) SERVANT À COMMANDER LE FONCTIONNEMENT DES PARTIES DE CIRCUIT ACTIVES (100) SUR LA BASE DE LA DÉTECTION DU CONTACT D'UN DOIGT AVEC LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54), LEDIT MOYEN DE COMMANDE DE PISSANCE COMPREND UN MOYEN DE RÉVEIL (102) PERMETTANT D'ALIMENTER LES PARTIES DE CIRCUIT ACTIVES (100) UNIQUEMENT LORS DE LA DÉTECTION DU CONTACT D'UN DOIGT AVEC LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) AFIN D'ÉCONOMISER LE COURANT, LEDIT MOYEN DE COMMANDE DE PISSANCE COMPREND EN OUTRE, UN MOYEN DE PROTECTION POUR METTRE À LA MASSE LES PARTIES DE CIRCUIT ACTIVES (100) LORSQU'AUCUN CONTACT D'UN DOIGT AVEC LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) N'EST DÉTECTÉ.

4. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON L'UNE QUELCONQUE DES REVENDICATIONS 1 À 3, INCLUANT UN MOYEN STABILISATEUR DE CHARGE D'UN DOIGT SERVANT À STABILISER UNE CHARGE D'UN DOIGT (79) LORS DU CONTACT AVEC CELUI-CI, DANS LEQUEL LEDIT MOYEN STABILISATEUR DE CHARGE D'UN DOIGT COMPREND UNE SECONDE ÉLECTRODE

5. extérieure (53, 53') portée par ledit emballage (51) en vue d'un contact avec le doigt et une résistance stabilisatrice de charge (104) branchée entre ladite seconde électrode extérieure (53, 53') et une masse.

10. 5. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON L'UNE QUELCONQUE DES REVENDICATIONS 1 À 4, INCLUANT UNE ÉLECTRODE BLINDÉE (80) ADJACENTE À CHAQUE ÉLECTRODE DE DÉTECTION DE CHAMP ÉLECTRIQUE (78), ET UN AMPLIFICATEUR (73) POURVU D'UNE ENTRÉE RELIÉE À CHAQUE ÉLECTRODE DE DÉTECTION DE CHAMP ÉLECTRIQUE (78) ET POURVU D'UNE SORTIE RELIÉE À CHAQUE ÉLECTRODE BLINDÉE (80) RESPECTIVE, LEDIT AMPLIFICATEUR (73) AYANT UN GAIN D'AMPLIFICATION SUPÉRIEUR À UN ENVIRON, DE MANIÈRE À AUGMENTER LA RÉJECTION DU BRUIT.

15. 6. DéTECTEUR D'EMPREINTE DIGITALE (30) COMPRÉNANT UN SUBSTRAT (65), UNE PLURALITÉ DE DISPOSITIFS SEMI-CONDUCTEURS (73) ADJACENTS AU DIT SUBSTRAT (65) ET DÉFINISSANT DES PARTIES DE CIRCUIT ACTIVES SERVANT À GÉNÉRER UNE SORTIE EN RELATION AVEC UNE EMPIREINTE DIGITALE DÉTECTÉE, UN EMBALLAGE (51) ENTOURANT LEDIT SUBSTRAT (65), UNE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) PORTÉE PAR LEDIT EMBALLAGE (51) EN VUE DU CONTACT AVEC UN DOIGT (79), ET UN MOYEN DE COMMANDE DE PISSANCE SERVANT À COMMANDER LE FONCTIONNEMENT DES PARTIES DE CIRCUIT ACTIVES (100) SUR LA BASE DE LA DÉTECTION D'UN CONTACT ENTRE UN DOIGT ET LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54), ET AU MOINS UNE COUCHE CONDUCTRICE COMPRENANT UN GROUPEMENT D'ÉLECTRODES DE DÉTECTION DE CHAMP ÉLECTRIQUE (78) CONNECTÉES AUX PARTIES DE CIRCUIT ACTIVES, ET UN MOYEN DE COMMANDE D'EXCITATION (74) CONNECTÉ À LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) POUR GÉNÉRER DES CHAMPS ÉLECTRIQUES ENTRE LES ÉLECTRODES DE DÉTECTION DE CHAMP ÉLECTRIQUE (78) ET LES PARTIES ADJACENTES DU DOIGT.

20. 7. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON LA REVENDICATION 6, DANS LEQUEL LEDIT MOYEN DE COMMANDE DE PISSANCE COMPREND UN MOYEN DE RÉVEIL (102) PERMETTANT D'ALIMENTER LES PARTIES DE CIRCUIT ACTIVES (100) UNIQUEMENT LORS DE LA DÉTECTION D'UN CONTACT ENTRE UN DOIGT ET LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) AFIN D'ÉCONOMISER LE COURANT, DANS LEQUEL LEDIT MOYEN DE COMMANDE DE PISSANCE COMPREND, EN OUTRE, UN MOYEN DE PROTECTION POUR METTRE À LA MASSE LES PARTIES DE CIRCUIT ACTIVES (100) LORSQU'AUCUN CONTACT D'UN DOIGT AVEC LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) N'EST DÉTECTÉ.

25. 8. DéTECTEUR D'EMPREINTE DIGITALE (30) SELON LA REVENDICATION 6 OU 7, INCLUANT UN MOYEN STABILISATEUR DE CHARGE D'UN DOIGT SERVANT À STABILISER UNE CHARGE D'UN DOIGT (79) LORS DU CONTACT AVEC CELUI-CI, ET DANS LEQUEL LEDIT MOYEN STABILISATEUR DE CHARGE D'UN DOIGT ET LEDIT MOYEN DE PROTECTION COOPÉRENT DE MANIÈRE

30. 35. 40. 45. 50. 55.

à ce que les parties de circuit actives restent branchées à la masse jusqu'à ce que ledit moyen stabilisateur stabilise la charge du doigt (79), dans lequel ledit moyen stabilisateur de charge d'un doigt comprend une seconde électrode extérieure (53, 53') portée par ledit emballage (51) en vue d'un contact avec le doigt (79), et une résistance stabilisatrice de charge (104) connectée entre ladite seconde électrode extérieure (53, 53') et une masse, et de préférence ladite seconde électrode extérieure (53, 53') comprend, une couverture mobile électroconductrice pour ledit emballage (51), et de préférence au moins une couche conductrice comprend une couche de plan de masse connectée à ladite résistance stabilisatrice de charge (104).

9. DéTECTEUR D'EMPREINTE DIGITALE (30) COMPRÉNANT UN SUBSTRAT (65), UNE PLURALITÉ DE DISPOSITIFS SEMI-CONDUCTEURS (73) ADJACENTS AU DIT SUBSTRAT (65) ET DÉFINISSANT DES PARTIES DE CIRCUIT ACTIVES (100) SERVANT À GÉNÉRER UNE SORTIE EN RELATION AVEC UNE EMPIREINTE DIGITALE DÉTECTÉE, UN EMBALLAGE (51) ENTOURANT LEDIT SUBSTRAT (65), ET UN MOYEN STABILISATEUR DE CHARGE D'UN DOIGT SERVANT À STABILISER UNE CHARGE D'UN DOIGT (79) LORS DU CONTACT AVEC CELUI-CI AFIN DE PROTÉGER LES PARTIES DE CIRCUIT ACTIVES (100), DANS LEQUEL LEDIT MOYEN STABILISATEUR DE CHARGE D'UN DOIGT COMPRÉND UNE DEUXIÈME ÉLECTRODE EXTÉRIEURE (53, 53') PORTÉE PAR LEDIT EMBALLAGE (51) EN VUE D'UN CONTACT AVEC LE DOIGT (79), ET UNE RÉSISTANCE STABILISATRICE DE CHARGE (104) CONNECTÉE ENTRE LADITE SECONDE ÉLECTRODE EXTÉRIEURE (53, 53') ET UNE MASSE, ET LADITE SECONDE ÉLECTRODE EXTÉRIEURE (53, 53') COMPRÉND UNE COUVERTURE MOBILE ÉLECTROCONDUCTRICE POUR LEDIT EMBALLAGE (51), AU MOINS UNE COUCHE CONDUCTRICE COMPRÉNANT UN GROUPEMENT D'ÉLECTRODES (78) DE DÉTECTION DE CHAMP CONNECTÉES AUX PARTIES DE CIRCUIT ACTIVES (100), ET UNE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) PORTÉE PAR LEDIT EMBALLAGE (51), ET UN MOYEN DE COMMANDE D'EXCITATION (74) CONNECTER À LADITE PREMIÈRE ÉLECTRODE EXTÉRIEURE (54) POUR GÉNÉRER DES CHAMPS ÉLECTRIQUES ENTRE LES ÉLECTRODES DE DÉTECTION DE CHAMP ÉLECTRIQUE (78) ET LES PARTIES ADJACENTES DU DOIGT.

10. DéTECTEUR D'EMPREINTE DIGITALE (30) COMPRÉNANT UN SUBSTRAT (65), UNE PLURALITÉ DE DISPOSITIFS SEMI-CONDUCTEURS (73) ADJACENTS AU DIT SUBSTRAT (65) ET DÉFINISSANT DES PARTIES DE CIRCUIT ACTIVES (100) SERVANT À GÉNÉRER UNE SORTIE EN RELATION AVEC UNE EMPIREINTE DIGITALE DÉTECTÉE, UN EMBALLAGE (51) ENTOURANT LEDIT SUBSTRAT (65), ET UN MOYEN STABILISATEUR DE CHARGE D'UN DOIGT SERVANT À STABILISER UNE CHARGE D'UN DOIGT LORS DU CONTACT AVEC CELUI-CI AFIN DE PROTÉGER LES PARTIES DE CIRCUIT ACTIVES, DANS LEQUEL LEDIT MOYEN STABILISATEUR DE CHARGE D'UN DOIGT COMPRÉND UNE SECONDE ÉLECTRODE EXTÉRIEURE (53, 53') PORTÉE PAR LEDIT EMBALLAGE EN VUE D'UN CONTACT AVEC UN DOIGT (79),

et une résistance stabilisatrice de charge (104) connectée entre ladite seconde électrode extérieure (53, 53') et une masse, et ladite seconde électrode extérieure (53, 53') comprend une couverture mobile électroconductrice pour ledit emballage.

11. Procédé de fabrication d'un détecteur d'empreinte digitale, comprenant les étapes qui consistent à :

former une pluralité de dispositifs semi-conducteurs (73) adjacents à un substrat (65) et définissant des parties de circuit actives ;  
 former une première couche métallique (66) interconnectant des dispositifs pré-déterminés parmi la pluralité de dispositifs semi-conducteurs (73) ;  
 former une première couche diélectrique (67) adjacente à la première couche métallique (66) ;  
 former une deuxième couche métallique (68) adjacente à la première couche diélectrique (67) définissant un plan de masse ;  
 former une deuxième couche diélectrique (70) adjacente à la deuxième couche métallique (68) ;  
 former une troisième couche métallique (71) adjacente à la deuxième couche diélectrique (70) et comprenant un groupement d'électrodes de détection de champ électrique (78) connectées aux parties de circuit actives (100) pour générer des signaux en rapport avec une empreinte digitale détectée ;  
 former un emballage (51) entourant le substrat (65) ; et  
 former un moyen de génération de champs électriques entre les électrodes (78) de détection de champ électrique et les parties adjacentes du doigt.

12. Procédé selon la revendication 11, incluant l'étape qui consiste à former une troisième couche diélectrique (52) adjacente à la troisième couche métallique (71), l'étape consistant à former l'emballage (51) qui entoure le substrat (65) incluant la formation d'une ouverture alignée avec le groupement d'électrodes de détection de champ électrique (78), comprenant, en outre, l'étape consistant à former une première électrode extérieure (54) portée par l'emballage (61) en vue du contact avec un doigt (79), et à former une seconde électrode extérieure (53) portée par l'emballage (51) en vue d'un contact avec le doigt (79), et à connecter une résistance (104) stabilisatrice de charge entre la seconde électrode extérieure (53) et une masse.

13. Procédé de commande du fonctionnement d'un détecteur (30) d'empreinte digitale du type comprenant une pluralité de dispositifs semi-conducteurs

(73) adjacents à un substrat (65) et définissant des parties de circuit actives servant à générer une sortie en relation avec une empreinte digitale détectée, un emballage (51) entourant le substrat (65), au moins une couche conductrice comprenant un groupement d'électrodes de détection de champ électrique (78), et une première électrode extérieure (54) portée par l'emballage (51) en vue du contact avec un doigt (79), le procédé comprenant les étapes consistant à :

5

10

générer des champs électriques entre les électrodes de détection de champ électrique (78) et les parties adjacentes du doigt ;  
 alimenter les parties de circuit actives (100) 15 uniquement lors de la détection du contact d'un doigt avec la première électrode extérieure (54) afin d'économiser le courant ; et mettre à la masse les parties de circuit actives (100) lorsqu'aucun contact d'un doigt avec la première électrode extérieure (54) n'est détecté, incluant l'étape consistant à stabiliser une charge du doigt (79) lors du contact initial du doigt (79) avec l'emballage pour empreinte digitale (51) 20 et avant de commuter entre l'état de mise à la masse des parties de circuit actives (100) et leur alimentation.

15

20

25

14. Procédé d'augmentation de la réjection du bruit dans un détecteur d'empreinte digitale (30) du type comprenant un substrat (65) et au moins une couche électroconductrice adjacente au dit substrat et comprenant des parties définissant un groupement d'électrodes de détection de champ électrique (78), le procédé comprenant les étapes consistant à :

30

35

former une électrode blindée (80) pour chaque électrode de détection de champ électrique (78) ;

former un amplificateur (73) connecté entre 40 chaque paire d'électrodes de détection de champ électrique (78) et les électrodes blindées (80) associées ;

former un emballage (51) entourant le substrat (65) ;

générer des champs électriques entre les électrodes de détection de champ électrique (78) et les parties adjacentes du doigt ; et

faire fonctionner chaque amplificateur (73) 45 avec un gain d'amplification supérieur à un afin d'augmenter la réjection du bruit.

40

45

50

55





FIG. 3



FIG. 4



FIG. 5



FIG. 6



FIG. 11



FIG. 7



FIG. 10



FIG. 8



FIG. 9



FIG. 12



FIG. 13