Sistema de umidade de Solo pela Web

Pedro Rodrigues Santos Valle - 01810422

Introdução

- Sistema e monitoramento de umidade de solo baseado em uma rede de sensores que se comunicam através da Internet.
- Irrigação localizada é um método mais inteligente, pois permite que a água seja depositada diretamente na raiz da planta, de modo a evitar desperdícios e perda de produtividade.
- Utilização de uma rede de sensores de umidade do solo é possível identificar o nível de necessidade de cada tipo de cultura, de modo a possibilitar o mapeamento de calor e entendimento da necessidade de irrigação em regiões específicas
- Além disso, ainda segundo a Embrapa, mesmo no período chuvoso, a irrigação pode evitar a falta de água, provocada por possíveis estiagem (veranicos), e assim aumentar a produtividade.

Objetivos

Um sistema de irrigação automatizado para plantas caseiras que faz uso de sensores para identificar as necessidades de cada planta e assim determinar os momentos em que a irrigação é realmente necessária, otimizando então o consumo de água.

Materiais Utilizados

- Módulo de Relé 5V
- Módulo Detector de Umidade do Solo Higrômetro
- Mini Bomba de água
- Suporte de Pilhas 4x 1.5 V AA
- ESP32

ESP32

- Módulo controlador
- Micro Processador dual core
- Suporte à rede Wi-Fi (WPA/ WPA2/ WPA2-Enterprise/ WPS)
- Bluetooth v4.2 BR / EDR e BLE;
- Possui 38 GPIOs (Entradas/Saídas), com função PWM, I2C, SPI. Também 18 ADC (conversor analógico digital) com resolução de 12 bits e 2 DAC (conversor digital analógico);

Módulo microcontrolador genérico Wi-Fi, Bluetooth e Bluetooth LE, garantindo uma ampla variedade de aplicativos.

- Um baixo custo;
- Baixo custo de energia;
- Desempenho para integração eletrônica;
- Alto poder de processamento.

Sensor de umidade do solo Higrômetro

 Possui um potenciômetro onde se pode ajustar a sua sensibilidade, através de uma sonda que entra em contato com o solo.

Módulo Relé

- O módulo Relé é um interruptor eletromecânico que quando requer pouca energia para executar o circuito de cargas elevadas.
- Podemos operar eletricamente em uma aplicação de uma tensão baixa na bobine, abrindo e fechando o circuito.
- Como podemos perceber que ao pegar o sensor e colocar em um sólido molhado, vimos que o relé desliga e quando tira o sensor ele ativa o relé e liga a bomba novamente.

Bomba Submersa

 Produz uma intensa movimentação de água e com baixo consumo de energia elétrica, apesar de suas pequenas dimensões.

Metodologia

- Sistema de umidade de solo é baseado em uma rede de sensores que se comunicam através da Internet.
- Sensor de umidade de solo conectado a um módulo capaz de realizar a comunicação. Esse módulo envia os dados obtidos pelo sensor via HTTP para o servidor de aplicação.
- Seguindo o tráfego da informação, o Servidor é o responsável por definir o intervalo de tempo entre uma coleta e a próxima, armazenar os dados coletados, interpretá-los a fim de definir se é necessário tomar uma ação ou não e hospedar e servir como servidor de acesso para a aplicação web.

DIAGRAMA DE CASO DE USO

DIAGRAMA DE CLASSE

sensorData

+id_sensorData INT(11)

+ Porcentagem : VARCHAR(45)

+ umidade: VARCHAR(45)

Desenvolvimento do Software

A programação do Esp32 foi realizada na IDE do Arduino ,que além da sua programação usual , utilizei a biblioteca Wi-fi para que possa ter acesso à rede de internet do próprio Esp32 .No código abaixo demonstra o início do código da parte web, feita na linguagem de programação HTML e PHp , onde as informações serão inseridas quando o sensor vê a porcentagem do solo e sua umidade e em tempo real e salvas as porcentagens que o ESP32 enviou e mostra na Web.

Teste de irrigação

O experimento foi realizado em ambiente interno.

O importante ressaltar que nesse experimento todos os dispositivos presentes no projeto de irrigação fizeram parte do teste e foram utilizados e além disso foi feita uma nova calibragem, mas nesse experimento foi diretamente em solo seco e úmido e os resultados da calibragem em solo foram muito próximos dos realizados em água

Web enviar informações

```
<?php
$servername = "localhost";
// REPLACE with your Database name
$dbname = "id19099351 projeto";
// REPLACE with Database user
$username = "id19099351 pedro";
// REPLACE with Database user password
$password = "ZEJ=v8R5/H?ua]/w";
// Keep this API Key value to be compatible with the ESP32 code provided in the project page.
// If you change this value, the ESP32 sketch needs to match
$api key value = "tPmAT5Ab3j7F9";
$api key= $porcentagem = $umidade = $value1 = $value2 = "";
if ($ SERVER["REQUEST METHOD"] == "POST") {
    $api key = test input($ POST["api key"]);
   if($api key == $api key value) {
        $porcentagem = test input($ POST["porcentagem"]);
       $umidade = test_input($_POST["umidade"]);
       $value1 = test input($ POST["value1"]);
       $value2 = test input($ POST["value2"]);
       // Create connection
       $conn = new mysqli($servername, $username, $password, $dbname);
       if ($conn->connect error) {
           die("Connection failed: " . $conn->connect error);
       $sql = "INSERT INTO SensorData (porcentagem, umidade,value1, value2)
       VALUES ('" . $porcentagem . "', '" . $umidade . "', '" . $value1 . "', '" . $value2 . "')";
        if ($conn->query($sql) === TRUE) {
           echo "New record created successfully";
```

```
else {
           echo "Error: " . $sql . "<br>" . $conn->error;
      $conn->close();
    else {
       echo "Wrong API Key provided.";
else {
   echo "No data posted with HTTP POST.";
function test_input($data) {
   $data = trim($data);
   $data = stripslashes($data);
   $data = htmlspecialchars($data);
   return $data;
```

Resultados Finais

←	\rightarrow G	https://pro	jirrigacao.0	000webhostapp.com	
Projeto	Irrigação				
ID	porcentagem	umidade	value1	Value 2	
3860	49	Molhado			
3859	49	Molhado			
3858	47	Molhado			
3857	45	Molhado			
3856	45	Molhado			
3855	44	Molhado			
3854	43	Molhado			
3853	43	Molhado			
3852	44	Molhado			
3851	35	Úmido			
3850	33	Úmido			
3849	0	Seco			
3848	10	Seco			
3847	0	Seco			
3846	18	Úmido			
3845	1	Seco			
3844	0	Seco			

 Obtendo informações do monitoramento do solo através do sensor para a Base de dados

https://projirrigacao.000webhostapp.com

Conclusão

Com protótipo de automação da irrigação, conclui-se que o mesmo correspondeu aos requisitos e necessidades do solo quanto ao consumo de água, enviando os resultados da umidade do solo para uma interface web em que o usuário possibilitou acompanhar e parametrizar os dados em tempo real.

Referências

SANTOS, Bruno *et al.* **Internet das Coisas: da Teoria à Prática**. homepages. 2011. Disponível em: https://homepages.dcc.ufmg.br/~mmvieira/cc/papers/internet-das-coisas.pdf. Acesso em: 14 jun. 2022.

PEREIRA, Humberto; OLIVEIRA, Rodolfo. **Sistema de monitoramento de umidade de solo via web**. hto.ifsp.edu.br. 2018. Disponível em:

https://hto.ifsp.edu.br/portal/images/thumbnails/images/IFSP/Cursos/Coord_ADS/Arquivos/TCCs/2018/TCC_HumbertoAntoni oFerrisPereira_HT1320203.pdf. Acesso em: 13 jun. 2022.

CATULÉ, Pedro; MARTINS, Iago. **SISTEMA DE IRRIGAÇÃO AUTOMATIZADA E LOCALIZADA USANDO HARDWARE LIVRE ESP32 EM PEQUENAS PLANTAÇÕES**. hto.ifsp.edu.br. 2018. Disponível em:

https://ri.unipac.br/repositorio/wp-content/uploads/2019/02/SISTEMAS-DE-INFORMA%C3%87%C3%83O-Pedro-Afonso-Loio la-Catul%C3%A9-e-Igor-Marllen-Froeder-Martins.pdf. Acesso em: 14 jun. 2022.