Hierarchical Segmentations with Graphs: Quasi-flat Zones, Minimum Spanning Trees, and Saliency Maps

Hierarquia de Partições Conectadas

Partição

A partição de um conjunto finito V é um conjunto P de subconjuntos disjuntos não vazios de V, cuja união é V, isto é:

$$\forall X, Y \in P, X \cap Y = \emptyset \text{ se } X \neq Y \text{ e } \cup \{X \in P\} = V$$

Ou seja:

$$P = \{R_1, R_2, \cdots, R_k\} \mid \; \cup_{i=1}^k R_i = V ext{ e } R_i \cap R_j = \emptyset \ orall \ i
eq j$$

Onde cada subconjunto R_i é uma **região** da partição.

- Se x é um elemento de V, existe uma única região de P que contém x, assim essa região única é denotada por $[P]_x$.
- Dada duas partições P e P' de um conjunto V, pode-se dizer que P' é um **refinamento** de P se qualquer região de P' está inclusa em P.

Hierarquia de Partição

Uma hierarquia de partições é uma sequência de partições $\mathcal{H}=(P_0,P_1,\ldots,P_\ell)$ do conjunto V tal que $[P]_{i-1}$ é um refinamento de $[P]_i$, para qualquer $i\in\{1,\cdots,\ell\}$, ou seja cada partição subsequente é **menos refinada** que a anterior.

$$P_0 < P_1 < P_2 < \cdots < P_{\ell}$$

- Se $\mathcal{H} = (P_0, P_1, \dots, P_\ell)$ é uma hierarquia, o inteiro ℓ é a **profundidade** de \mathcal{H} .
- Um hierarquia $\mathcal{H}=(P_0,P_1,\ldots,P_\ell)$ é **completa** se $P_\ell=\{V\}$ e se P_0 contém cada elemento do conjunto V, isto é: $P_0=\{\{x\}\mid x\in V\}$.

Hierarquia de Partição Conectada

É uma hierarquia de partições onde cada região em cada nível é **conexa** em relação a um grafo G=(V,E).

- Um partição é conectada (para G) se cada uma de suas regiões for conexa.
- Uma hierarquia em V é conectada (para G) se cada uma de suas partições for conexa.

Um conjunto de vértices $X \subseteq V$ é **conexo** se o subgrafo induzido por X é conexo.

Exemplo

Grafo 3x3 com vértices representando pixels de uma imagem:

- P₀: Cada pixel é uma região (partição mais refinada possível).
- P₁: Regiões agrupadas por similaridade local.
- P₂: Grandes regiões fundidas (objetos na imagem).
- $P_3 = \{V\}$: Todos os pixels fundidos (partição mais grosseira possível).

Zonas Quasi-Flat

Inicialmente:

- Uma hierarquia conectada pode ser tratada de forma equivalente por meio de um grafo ponderado por arestas.
- Os conjuntos de nível de qualquer grafo ponderado por arestas induzem uma hierarquia de zonas quase planas. Essa hierarquia é amplamente utilizada no processamento de imagens e às vezes também é chamada de árvore alfa.

Seja G=(V,E) um grafo conexo e $w:E\to\mathbb{R}^+$ uma função peso que associa um valor real e positivo a cada aresta, então o par (G,w) é chamado de **grafo ponderado por arestas**. Para qualquer aresta u de G, o valor w(u) é chamado de **peso de** u (com respeito a w).

Notações:

- 1. Assumindo que G é conexo.
- 2. O intervalo de w é o conjunto \mathbb{E} de todos os inteiros de 0 a |E|-1. $w=\{0,\cdots,|E|-1\}$
- 3. $\mathbb{E}^{\bullet} = \mathbb{E} \cup \{|E|\}.$

Seja $X \subseteq G$ e $\lambda \in \mathbb{E}^{\bullet}$. Define-se:

• O conjunto de nível λ de X (com respeito a w) como:

$$w_{\lambda}(X) = \{u \in E(X) \mid w(u) < \lambda\}$$

• O grafo de nível λ de X (com respeito a w) como:

$$w_\lambda^V(X) = (V(X), w_\lambda(X))$$

Ou seja, um subgrafo de X com os mesmos vértices, mas somente com as arestas de peso menor que λ .

• A partição de nível λ de X é a partição dos vértices de X em componentes conexos do grafo $w^V_\lambda(X)$.

Se $\lambda_1,\lambda_2\in\mathbb{E}^{ullet}\mid\lambda_1\leq\lambda_2$, então qualquer aresta presente no grafo de nível λ_1 também estará no de λ_2 . Assim, qualquer componente conexo de $w_{\lambda_1}^V(X)$ estará contido em um componente conexo de $w_{\lambda_2}^\vee(X)$. Ou seja, a partição para λ_1 é um **refinamento** da partição para λ_2 .

Portanto, a sequência:

$$\mathcal{QFZ}(X,w) = ig(C(w_\lambda^ee(X)) \mid \lambda \in E^ulletig)$$

onde C indica os componentes conexos, é uma **hierarquia** de partições. Essa hierarquia é chamada de **hierarquia de zonas quasi-flat** de X (para w).

Se *X* for conexo, essa hierarquia será **completa**.

Aplicação em Processamento de Imagens

No processamento de imagens, é comum que o peso de uma aresta $\{x,y\}$ represente a **dissimilaridade** entre os vértices. Por exemplo:

• Em imagens em tons de cinza, w(u) pode ser a **diferença absoluta de intensidade** entre os pixels x e y.

O modelo do grafo ponderado (G,w) depende do contexto da aplicação, mas o conceito de zonas quasi-flat oferece uma forma natural de gerar **hierarquias de segmentações** baseadas em conectividade e semelhança local.

Correspondência entre Hierarquias e Mapas de Saliência

Qualquer grafo ponderado por arestas induz uma hierarquia conectada de partições, chamada de hierarquia de zonas quasi-flat.

Problema

Dado: uma hierarquia conectada \mathcal{H} .

Objetivo: encontrar um mapa de pesos w (ou seja, uma função sobre as arestas E) tal que a hierarquia de zonas quasi-flat induzida por w seja exatamente \mathcal{H} .

O mapa de saliência (saliency map) fornece uma solução para esse problema.

Mapa de Saliência

Seja $\mathcal{H}=(P_0,P_1,\cdots,P_\ell)$ uma **hierarquia de partições** sobre os vértices de um grafo G=(V,E).

O mapa de saliência de $\mathcal H$ é uma função $\Phi_G(\mathcal H):E o\{0,\cdots,\ell\}$ definida por:

$$\Phi_G(\mathcal{H})(u) = \max\{\lambda \in \{0,\dots,\ell\} \mid u \in arphi_G(P_\lambda)\}$$

Onde $\varphi_G(P_\lambda)$ é o **corte** de P_λ , ou seja, o conjunto de arestas que **conectam vértices em regiões diferentes** na partição P_λ :

$$\varphi_G(P) = \{ \{x, y\} \in E \mid [P]_x \neq [P]_y \}$$

Teorema 1

O mapa Φ_G define uma **bijeção** entre hierarquias conectadas em V de profundidade |E| e mapas de saliência (com intervalo \mathbb{E}) com valores em $\{0, \ldots, |E|\}$.

O inverso de Φ_G , denotado Φ_G^{-1} , associa a cada saliency map w a sua hierarquia de zonas quasi-flat:

$$\Phi_G^{-1}(w) = \mathcal{QFZ}(G,w)$$

Portanto, temos:

$$\mathcal{QFZ}(G,\Phi_G(\mathcal{H}))=\mathcal{H}$$

Ou seja, a hierarquia original ${\cal H}$ pode ser **recuperada exatamente** a partir de seu mapa de saliência.

Nota

Um mapa de saliência w é precisamente o mapa de saliência de sua hierarquia de zonas quasi-flat. Pode-se deduzir que existem alguns mapas que ponderam as arestas de G e que não são mapas de saliência. Em geral, um mapa w não é igual ao mapa de saliência de sua hierarquia de zonas quasi-flat.

Caracterização dos Mapas de Saliência

Dada uma hierarquia \mathcal{H} , podem existir **vários mapas de pesos** w cujas hierarquias de zonas quasi-flat são iguais a \mathcal{H} .

Problema

Dado: uma hierarquia \mathcal{H} .

Objetivo: encontrar o **menor** mapa w tal que a hierarquia de zonas quasi-flat de w seja exatamente \mathcal{H} .

Teorema 2

Seja $\mathcal H$ uma hierarquia e seja $w:E\to\mathbb N$. O mapa w é o **mapa de saliência** de $\mathcal H$ se, e somente se, as duas condições seguintes forem satisfeitas:

1. A hierarquia de zonas quasi-flat de w é igual a \mathcal{H} ;

2. w é **mínimo** para essa propriedade, ou seja: para qualquer outro mapa $w' \leq w$ (comparação ponto a ponto), se a hierarquia de zonas quasi-flat de w' for \mathcal{H} , então w' = w.

// Nota

Dado um mapa qualquer w, pode-se calcular seu **mapa de saliência** associado, chamado $\Psi_G(w)$:

$$\Psi_G(w) = \Phi_G(QFZ(G,w))$$

Ou seja:

- 1. Construa a hierarquia de zonas quasi-flat a partir de w;
- 2. Em seguida, calcule o mapa de saliência dessa hierarquia.

Propriedade 3

Esse operador é um **filtro morfológico** chamado **ultrametric opening**, com as propriedades:

1. Idempotente: aplicar duas vezes não muda nada:

$$\Psi_G(\Psi_G(w)) = \Psi_G(w)$$

2. **Anti-extensivo**: o resultado nunca é maior que a entrada:

$$\Psi_G(w) \leq w$$

3. Monótono (increasing): se $w \geq w'$, então $\Psi_G(w) \geq \Psi_G(w')$

Árvores Geradora Mínima

Mapas diferentes de pesos nas arestas podem gerar a **mesma hierarquia de zonas quasi- flat**. Logo, **nem todo peso individual importa** para definir a hierarquia, há **redundância**.

Problema

Dado: um grafo ponderado (G, w).

Objetivo: encontrar o **subgrafo mínimo** $X \subseteq G$ tal que a hierarquia de zonas quasi-flat de X **seja igual** à do grafo original G.

Árvore Geradora Mínima

Seja $X \subseteq G$. O peso de X em relação a w é a soma dos pesos de todas as arestas em E(X). Um subgrafo X de G é uma **Árvore Geradora Mínima** (AGM) de (G, w) se:

- 1. X é conexo;
- 2. V(X) = V, ou seja, X inclui todos os vértices;
- 3. O peso total de X é **menor ou igual** ao peso de qualquer subgrafo Y de G.

Teorema 4

Um subgrafo X de G é uma AGM de (G, w) se, e somente se:

- 1. A hierarquia de zonas quasi-flat de X é igual à de G;
- 2. X é **mínimo** para essa propriedade, ou seja: se algum subgrafo $Y \subset X$ tiver a mesma hierarquia, então Y = X.

Assim, tem-se que:

- A primeira propriedade indica que a hierarquia de zonas quasi-flat de um grafo e de sua AGM são idênticas.
- O teorema 4 indica que não há um subgrafo apropriado de um AGM que induza a mesma hierarquia de zonas quasi-flat que o grafo ponderado inicial.
- Uma AGM do grafo inicial é uma solução para o problema, fornecendo uma representação gráfica mínima da hierarquia de zonas quase planas de (G, w).
- A correspondência entre mapas de saliência e hierarquias (Teorema 1) nos permite estender o Teorema 4 ao caso em que uma hierarquia \mathcal{H} é fornecida em vez de um mapa de pesos w. Portanto, árvores geradoras mínimas permitem caracterizar representações espacial e funcionalmente mínimas de qualquer hierarquia conectada.

Resumo Geral

Hierarquias de Partições Conectadas

- Uma partição de um conjunto finito V divide os elementos em subconjuntos disjuntos e não vazios cuja união é V.
- Uma hierarquia de partições é uma sequência ordenada $(P_0, P_1, \dots, P_\ell)$ onde cada partição é **menos refinada** que a anterior, isto é, as regiões vão se unindo progressivamente.
- A hierarquia é **completa** se começa com cada elemento em sua própria região $(P_0 = \{\{x\} \mid x \in V\})$ e termina com todos unidos em uma única região $(P_\ell = \{V\})$.
- Uma hierarquia conectada (em um grafo G) exige que todas as regiões em todos os níveis sejam conjuntos conexos no grafo.

Zonas Quasi-flat

• Uma zona quasi-flat é definida a partir de um grafo ponderado (G, w), onde o peso w(e) indica a dissimilaridade entre os vértices ligados por cada aresta.

- Para cada limiar λ , forma-se o subgrafo com as arestas cujo peso é menor que λ , e a partição resultante é obtida pelas **componentes conexas** desse subgrafo.
- A sequência dessas partições, variando λ , forma a **hierarquia de zonas quasi-flat**, uma hierarquia conectada.
- É um modelo natural para segmentação hierárquica de imagens, onde regiões são agrupadas por similaridade local.

Correspondência entre Hierarquias e Mapas de Saliência

- A relação entre hierarquias e pesos pode ser invertida:
 - Dada uma hierarquia conectada \mathcal{H} , é possível encontrar um mapa de saliência $\Phi_G(\mathcal{H})$.
- O mapa de saliência atribui a cada aresta o nível mais alto da hierarquia em que ela separa regiões distintas.
- O Teorema 1 mostra que essa função Φ_G é uma **bijeção** entre mapas de saliência e hierarquias conectadas:

$$\mathcal{QFZ}(G,\Phi_G(\mathcal{H}))=\mathcal{H}$$

Caracterização dos Mapas de Saliência

- Pode haver vários mapas de pesos que induzem a mesma hierarquia. O mapa de saliência é o único que é mínimo entre eles.
- Teorema 2: w é o mapa de saliência de uma hierarquia ${\cal H}$ se:
 - 1. $\mathcal{QFZ}(G, w) = \mathcal{H};$
 - 2. Nenhum outro mapa $w' \leq w$ satisfaz essa igualdade, a menos que w' = w.
- O operador $\Psi_G(w) = \Phi_G(\mathcal{QFZ}(G,w))$ transforma qualquer mapa em seu correspondente mapa de saliência. Ele é um **filtro morfológico** chamado **ultrametric opening**, que é:
 - Idempotente: $\Psi_G(\Psi_G(w)) = \Psi_G(w)$),
 - Anti-extensivo: $\Psi_G(w) \leq w$),
 - Monótono.

Árvores Geradoras Mínima

- AGMs reduzem a redundância: diferentes mapas de pesos podem gerar a mesma hierarquia de zonas quasi-flat.
- Problema (P3): encontrar o **subgrafo mínimo** que gera a mesma hierarquia de zonas quasi-flat que *G*.
- Teorema 4: esse subgrafo mínimo é uma **Árvore Geradora Mínima (AGM)** de (G,w), e:
 - A AGM preserva exatamente a hierarquia.
 - Não existe subgrafo estritamente menor que a AGM que mantenha a mesma hierarquia.

 Isso permite representar uma hierarquia de forma compacta e eficiente, tanto do ponto de vista computacional quanto de armazenamento.

Conclusão

- 1. **Hierarquias** ↔ **Zonas quasi-flat**: qualquer grafo ponderado gera uma hierarquia via conectividade em níveis de limiar.
- 2. **Hierarquias** ↔ **Mapas de saliência**: qualquer hierarquia pode ser representada unicamente por um mapa mínimo de saliência.
- 3. **Hierarquias** ↔ **AGMs**: qualquer hierarquia pode ser representada minimamente por uma árvore geradora mínima do grafo ponderado.