Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF06

Mathematical Finance: MF

Exercises (for discussion on Monday, 11.12.2023)

Exercise 1. Consider an inhomogeneous market with time horizon N. S^0 is the riskless asset given by $S_n^0 = 1 + nr$ with a constant r > 0. Let the stock S^1 be given by $S_n^1 = \prod_{i=1}^n (1 + \Delta \tilde{X}_i)$ with the $\Delta \tilde{X}_i$, i = 1, 2, ..., N being independent random variables with

$$P(\Delta \tilde{X}_i = u_i - 1) = p_i > 0,$$

 $P(\Delta \tilde{X}_i = d_i - 1) = 1 - p_i > 0,$

for real numbers $u_i > d_i > 0$. We consider the filtration is generated by $\mathcal{F}_n := \sigma(\Delta \tilde{X}_1, \dots, \Delta \tilde{X}_n)$, $\mathcal{F}_0 = \{\Omega, \emptyset\}$ and set $S_0^0 = S_0^1 = 1$. Find a condition on u_i , d_i , $i \in \{1, ..., N\}$ that holds if and only if the market is free of arbitrage.

Exercise 2. Let (S^0, S^1) be the price process in a market with end-time 1. Assume that $S_0^0 = S_0^1 = S_1^0 = 1$ and that

$$S_1^1(\omega) = \begin{cases} x_1, & \text{if } \omega = \omega_1 \\ x_2, & \text{if } \omega = \omega_2 \\ x_3, & \text{if } \omega = \omega_3 \end{cases}$$

with

$$p_1 := P(\{\omega_1\}) > 0,$$

$$p_2 := P(\{\omega_2\}) > 0,$$

$$p_3 := P(\{\omega_3\}) = 1 - p_1 - p_2 \ge 0.$$

For which x_1, x_2, x_3 and p_1, p_2, p_3 is the latter market ...

- 1. ... arbitrage-free?
- 2. ... arbitrage-free and complete?

Exercise 3. Let $S = (S^0, \dots, S^d)$ be a market with endpoint $N \in \mathbb{N}$. We additionally assume $S^0 > 0$. Show that the following statements are equivalent:

- a) There exists a one period arbitrage, meaning an arbitrage strategy φ such that $\widehat{V}_0(\varphi) = \ldots = \widehat{V}_{n-1}(\varphi) = 0$ and $\widehat{V}_n(\varphi) = \ldots = \widehat{V}_N(\varphi)$ hold for some $n \in \{1, \ldots, N\}$.
- b) There exists an arbitrage φ with non negative value process $V(\varphi)$.
- c) There exists an arbitrage.

Exercise 4. Let $(S^0, ..., S^d)$ be a market with end point $N \in \mathbb{N}$ and let $S^0 > 0$. Let Y be an adapted process such that for all $n \in \{1, ..., N\}$ holds

- 1. $Y_n > 0$,
- 2. $E(Y_n|\mathcal{F}_{n-1}) = 1$,
- 3. $E(Y_n \Delta \hat{S}_n | \mathcal{F}_{n-1}) = 0$.

Show that $\frac{dQ}{dP} := \prod_{n=1}^{N} Y_n$ defines an equivalent martingale measure Q.