Permit Nos. 7369 and PSD-TX-120M3

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emissic</u>	on Rates *
Point No. (1	L)	Name (2)		Name
(3)	lb/hr	TPY		
KS-1	Dry/Wet Kiln Exhaust (5)(7)(8) PM (total)	193.53
		PM_{10} (total)	164.20	719.34
		NO _x	950.00	4161.00
		SO ₂	2400.00	6299.42
		H_2SO_4	222.00	533.82
		CO	702.50	3076.55
		VOC	277.55	395.58
		HC1	4.64	20.50
KS-1a	Dry Kiln Exhaust Baghouse 63.24	Duct PM (filte	rable)	14.44
	(5)(6)(7)(8)	PM ₁₀ (filtera	ble)12.13	53.12
		PM (total)	25.44	111.42
		PM_{10} (total)	21.37	93.59
		NO_x	350.00	1971.00
		SO_2	1200.00	366.58
		H_2SO_4	120.00	47.64
		CO	522.50	2288.55
		VOC	97.55	320.44
		HC1	2.74	12.00
9a	Alkali Bypass Baghouse Stack (6)	PM (filterab PM ₁₀ (filtera PM (total) PM ₁₀ (total) NO _x		13.41 11.27 23.63 19.85 219.00 676.84
		SO_2	300.00	0/0.84

Emission	Source	Air Contaminant	<u>Emissi</u>	on Rates *
Point No. (Name (2)		Name
<u>(3)</u>	lb/hr	<u>TPY</u>		
		H₂SO₄ CO VOC	18.00 100.00 2.87	33.84 438.00 9.44
KS-1b	Wet Kiln Exhaust ESP(5)	PM (total) PM ₁₀ (total) NO _x SO ₂ H ₂ SO ₄ CO VOC HCl	162.70 138.30 450.00 1200.00 111.00 80.00 15.00 1.90	712.80 605.90 1971.00 5256.00 486.18 350.00 65.70 8.50
4	Solid Fuel Feed Bins Bagho Stack	use PM ₁₀	0.09	0.38
7	Blend Silo Roof Baghouse Stack	PM ₁₀	0.69	3.00
8	Dry Process Blend Tanks Bo 0.48 Baghouse Stack	ttom	PM ₁₀	0.11
9b	Alkali Bypass Bin Baghouse Stack	PM ₁₀	0.21	0.90
10	Coal/Coke Bins Baghouse Stack	PM ₁₀	0.09	0.34
11	Dry System Clinker Cooler Baghouse Stack	PM ₁₀	12.25	53.66
14	Underground Clinker Tunnel	PM ₁₀	0.28	1.22

Emission *	Source	Air Contaminant	<u>Emission</u>	Rates
– <u>Point No. (</u>	1)	Name (2)		
		1b/hr	TPY	
	Baghouse Stack			
25	Cement Silo No. 12 Baghouse	e PM ₁₀	0.69	3.00
26	Cement Silo No. 14 Baghouse	e PM ₁₀	0.34	1.50
31	Mill Baghouses Stack	PM_{10}	0.26	1.01
32	Fuel Bin Baghouse Stack	PM ₁₀	0.59	2.33
33	Solid Fuel Fines Bin Baghou Stack	use PM ₁₀	0.06	0.03
38	Fringe Material Baghouse Stack	PM ₁₀	0.15	0.68
39	Turn Head Material Diverte Baghouse Stack	r PM ₁₀	0.26	1.01
40	Feed Tank Baghouse Stack	PM ₁₀	0.15	0.68
41a	Separator Baghouse Stack (4	4) PM ₁₀	2.98	13.06
41b	Mill Baghouse Stack (4)	PM_{10}	1.20	5.26
F-B-1	Solid Fuel Drop to Bin	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-2	Solid Fuel Bin Drop to Conv	veyor	PM	<0.01
	0.01	PM_{10}	<0.01	<0.01

Emission *	Source	Air Contaminant	Emission	Rates
Point No. (1	1)	Name (2)		
		1b/hr	<u>TPY</u>	
F-B-3	Solid Fuel Conveyor Drop t 0.01	o Bins	PM	<0.01
	0.01	PM_{10}	<0.01	<0.01
F-B-4	Feed Tank Drop to Drag Cha	in PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-5	Drag Chain Drop to Belt	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-6	Belt Transfer Drop	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-7	Belt Transfer Drop	PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-B-8	Solid Fuel Drop to Mill Ch	ute PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-C-1	Clinker Drop to Shuttle Be	lt PM PM ₁₀	0.30 0.14	1.30 0.61
F-C-2	Shuttle Belt Drop to Clink 1.30	er Barn	PM	0.30
	1.30	PM_{10}	0.14	0.61
F-H-2	Solid Fuel Drop to Conveyo	r PM PM ₁₀	<0.01 <0.01	0.01 <0.01
F-L-1	Unpaved Roads	PM PM ₁₀		25.34 11.40

Emission *	Source	Air Contaminant	Emission	Rates
Point No. (1	1)	Name (2)		
	Name (3)	1b/hr	TPY	
F-L-2	Solid Fuel Drop to Hopper	PM PM ₁₀	0.01 0.01	0.05 0.02
F-P-1	Solid Fuel Storage Drop to 0.05) Pile	PM	0.01
	0.03	PM ₁₀	0.01	0.02
F-P-2	Wind Pile Erosion	PM PM ₁₀	0.10 0.05	0.42 0.20
F-P-7	Kiln Dust Drop to Piles	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
F-P-12 CKD Dry Kiln Pug Mill to T <0.01		ruck	РМ	<0.01
		PM ₁₀	<0.01	<0.01
F-Q-4	Quarry Loader Drop to Truc	ck PM PM ₁₀	0.11 0.05	0.29 0.14
F-Q-6	Primary Crusher	PM PM ₁₀	<0.01 <0.01	<0.01 <0.01
F-R-2	Belt Transfer Drop	PM PM ₁₀	0.02 0.01	0.06 0.03
F-R-3	Belt Drop to Tabernacle Tr	ransfer	PM	0.11
	0.29	PM_{10}	0.05	0.14
F-R-6	Feed Belt Drop to RMS Shut	tle Belt	РМ	0.02
	0.04	PM_{10}	0.01	0.02

Emission *	Source	Air Contaminant	<u>Emission</u>	Rates
Point No. (1	L)	Name (2)		
		lb/hr	<u>TPY</u>	
F-R-7	RMS Shuttle Belt Drop to P	ile PM	0.02	0.04
		PM_{10}	0.01	0.02
F-R-8	RMS Feeder Drop to Belt	PM	0.01	0.04
	·	PM_{10}	0.01	0.02
F-R-9	RMS Belt Drop to Cross Plan	nt Belt	PM	0.01
	0.04	PM_{10}	0.01	0.02
F-R-10	Cross Plant Belt Drop to Shut 0.04	nuttle Belt	PM	0.01
		PM ₁₀	0.01	0.02
F-R-11	Shuttle Belt Drop to Dry Feed 0.04	eed Bins	PM	0.01
		PM_{10}	0.01	0.02
F-R-12	Feed Bins Drop to Roller Mill 0.04	ill Belt	PM	0.01
		PM ₁₀	0.01	0.02
F-TR-1	Paved Roads	PM PM ₁₀		10.37 0.86
F-TR-2	Solid Fuel Truck Unloading 0.04	Drop	PM	0.02
	0.04	PM_{10}	0.01	0.02

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

⁽²⁾ Specific point source name. For fugitive sources use area name or

Emission *	Source	Air Contaminant	Emission Rates
Point No. (1)	Name (2)	
TOTTIC NOT	Name (3)	lb/hr	TPY
(3) PM - PM ₁₀ . PM ₁₀ - diam part NO _x - SO ₂ - H ₂ SO ₄ - CO - VOC - HCl - (4) EPNs 41a (5) EPN KS- emission compliam (6) The PM train of 7,08 rate of (8) Until Jurate of	e source name. particulate matter susponenticulate matter equaleter. Where PM is not iculate matter greater that total oxides of nitrogen sulfur dioxide sulfuric acid carbon monoxide volatile organic compound hydrogen chloride a and 41b will never exhaus 1 is the sum total of EP n allowables for each nce purposes. and PM10 filterable rates	ended in the atmost than the stand is the shall be noted in 10 microns is emits and KS-1a and KS-1b. The stand are based on fronted a maximum annual llowed a maximum annual owed a maximum annual owed a maximum annual an	sphere, including 10 microns in assumed that no ted. simultaneously. The individual KS-1b are for half of sampling SO ₂ emission rate nual SO ₂ emission al H ₂ SO ₄ emission
	rates are based on and ng maximum operating sched		e limited by the
1011001	ng maximum operating sched	uie.	
Hrs/day_ <u>8,760</u>	24 Days/week7_	Weeks/year <u>52</u>	or Hrs/year

Emission	Source	Air Contaminant	<u>Emission Rates</u>
<u>*</u>			
Point No.	(1)	Name (2)	
	Name (3)	lb/hr	TPY

ח	ate	Ч	
ν	ate	u	