Support Vector machine

Professor Abdellatif El Afia

Motivation:

Soft margin SVC(C - SVC $) (w, b, \xi)$

$$C - SVC \begin{cases} Optimize & f(w,\xi) = (f_1(w), f_2(\xi)) \\ s.t & y_i(w^Tx_i + b) \ge 1 - \xi_i, i = 1,..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

LS - \varepsilon - \text{band} - SVR:
$$\begin{cases} Optimize & f(w, \xi) = (f_1(w), f_2(\xi^1), f_3(\xi^2)) \\ y_i - (w^T x_i - b) \le \varepsilon + \xi_i^1, & i = 1, ..., n \\ s. \grave{a} & w^T x_i + b - y_i \le \varepsilon + \xi_i^2, & i = 1, ..., n \\ \xi_i^1 \ge 0, \xi_i^2 \ge 0, (w, b) \in \mathbb{R}^d \times \mathbb{R} \end{cases}$$

Motivation:

Soft margin SVC(C - SVC): Two Objectives Programming Problem

To optimize $f(w, \xi) = (f_1(w), f_2(\xi))$ we have to Minimize $f_1(w)$ and $f_2(\xi)$, where

•
$$f_1(w) = \frac{1}{Margin}$$

• $f_2(\xi)$ is a noise

Linear Soft ε **-band SVR:** Three Objectives Programming Problem

To optimize $f(w,\xi)=\left(f_1(w),f_2(\xi^1),f_3(\xi^2)\right)$ we have to Minimize $f_1(w)$ $f_1(w),f_2(\xi^1)$, and $f_3(\xi^2)$ where

•
$$f_1(w) = \frac{1}{Margin}$$

• $f_2(\xi^1)$, and $f_3(\xi^2)$ are noises

Motivation

It's Multi Objective Programming Problem

- How to make it easy to solve?
 - it has several variance
- Under what conditions on its to ansure the solution?
 - Convex Programming Problem
 - Convex Quadratic Programming Problem
- How to fix the Big Data problem?
 - Dual programming problem
- How to solve the NonLinearity problem?
 - kernel function
- What are methods kind used for their solution?
- How to slove them if their constraints are satified with a probability?
- How to slove them if their Labels are Random Variables?

Motivation: NonLinearity problem

Soft margin SVC(C - SVC)

$$C - SVC \begin{cases} Optimize & f(w,\xi) = (f_1(w), f_2(\xi)) \\ s.t & y_i(w^T \varphi(x_i) + b) \ge 1 - \xi_i, i = 1,..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

LS -
$$\varepsilon$$
-band - SVR :
$$\begin{cases} Optimize & f(w,\xi) = (f_1(w), f_2(\xi^1), f_3(\xi^2)) \\ y_i - (w^T \varphi(x_i) - b) \le \varepsilon + \xi_i^1, & i = 1, ..., n \\ s. \grave{a} & w^T \varphi(x_i) + b - y_i \le \varepsilon + \xi_i^2, & i = 1, ..., n \\ \xi_i^1 \ge 0, \xi_i^2 \ge 0, (w, b) \in \mathbb{R}^d \times \mathbb{R} \end{cases}$$

Motivation: Probabilistic Approach

Soft margin SVC(C - SVC)

$$C - SVC \begin{cases} Min & f(w, \xi) = (f_1(w), f_2(\xi)) \\ s.t & P(y_i(w^Tx_i + b) \ge 1 - \xi_i,) \ge p_i, \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases} \quad i = 1, ..., n$$
Motivation:

LS -
$$\varepsilon$$
-band - SVR :
$$\begin{cases} & min \quad f(w,\xi) = (f_1(w), f_2(\xi^1), f_3(\xi^2)) \\ & P(y_i - (w^T x_i - b) \le \varepsilon + \xi_i^1) \ge p_i^1, & i = 1, ..., n \\ s.\grave{a} & P(w^T x_i + b - y_i \le \varepsilon + \xi_i^2) \ge p_i^2, & i = 1, ..., n \\ & \xi_i^1 \ge 0, \xi_i^2 \ge 0, (w,b) \in \mathbb{R}^d \times \mathbb{R} \end{cases}$$

Motivation: Random Variable $Y_i \sim D_i$

Soft margin SVC(C - SVC)

$$C - SVC \begin{cases} Min & f(w, \xi) = (f_1(w), f_2(\xi)) \\ s.t & Y_i(w^T x_i + b) \ge 1 - \xi_i, i = 1,..., n \\ \xi_i \ge 0, w \in \mathbb{R}^d, b \in \mathbb{R} \end{cases}$$

LS -
$$\varepsilon$$
-band - SVR :
$$\begin{cases} & min \quad f(w,\xi) = (f_1(w), f_2(\xi^1), f_3(\xi^2)) \\ & Y_i - (w^T x_i - b) \le \varepsilon + \xi_i^1, & i = 1, ..., n \\ s. \grave{a} & w^T x_i + b - Y_i \le \varepsilon + \xi_i^2, & i = 1, ..., n \\ & \xi_i^1 \ge 0, \xi_i^2 \ge 0, (w,b) \in \mathbb{R}^d \times \mathbb{R} \end{cases}$$

Plan

- Part I: Support Vector machine(50%)
 - Duality Theory in the Convex Programming Problem
 - Linear Classification
 - Linear Regression
 - Theory of kernel function
 - NonLinear Classification
 - NonLinear Regression
 - Résolution Method
- Part II: Support Vector machine with Random variables (50%)
 - Robust Support Vector Classification
 - Robust Support Vector Regression
 - Probabilistic Constraints Support Vector Classification
 - Least Squares Probabilistic Support Vector Classification
 - Probabilistic Constraints Support Vector Regression