Devoir 3

Emeric Laberge 20220275 Sara Haddad 20208373

Dans le cadre du cours IFT 1575

Département d'informatique et de recherche opérationnelle Université de Montréal Canada 27 mars 2023

Question 2

Initialisation: $EM = \{1\}$; $\delta_1 = 0$

Itération 1:

Étape 1:

Les successeurs de 1 sont 2, 3 et 4. $\lambda_{12} = 10 \quad \lambda_{13} = 25 \quad \lambda_{14} = 16 \\ \min \ \{\lambda_{12}, \lambda_{13}, \lambda_{14}\} = \min \{10, 25, 16\} = 10 \Rightarrow j_1 = 2$

Étape 2:

On détermine le chemin le plus court menant de 1 à j_1 min $\{\delta_1 + \lambda_{12}\} = \min \{0 + 10\} = 10$ marquer $j_1 = 2$ avec $\delta_2 = 10$

Étape 3:

$$EM \leftarrow EM \cup \{j_1\}$$
 avec $\delta_{21} = \delta_1 + \lambda_{12} = 10$
 $EM = \{1, 2\}$

Étape 4:

Itération 2:

$$EM = \{1, 2\}$$

Étape 1:

On identifie le sommet adjacent non marqué situé le plus près de:

1. min
$$\{\lambda_{13}, \lambda_{14}\} = \min \{25, 16\} = 16 \Rightarrow j_1 = 4$$

2.
$$\min \{\lambda_{24}, \lambda_{25}\} = \min \{5, 22\} = 5 \Rightarrow j_2 = 4$$

Étape 2:

$$\min \left\{\delta_1+\lambda_{14},\delta_2+\lambda_{24}\right\}=\min \left\{0+16,10+5\right\}=15$$
marquer le sommet $j_2=4$ avec $\delta_4=15$

Étape 3:

$$EM = \{1, 2, 4\}$$

Étape 4:

 $\overline{EM} \neq \emptyset$, alors on effectue un autre itération $\overline{EM} \neq \emptyset$, alors on effectue un autre itération

Itération 3:

$$EM = \{1, 2, 4\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- (1) min $\{\lambda_{13}\}=25 \Rightarrow j_1=3$
- (2) min $\{\lambda_{25}\}=22 \Rightarrow j_2=5$
- (4) min $\{\lambda_{43}, \lambda_{45}, \lambda_{46}, \} = \min\{7, 15, 22\} = 7 \Rightarrow j_4 = 3$

Étape 2:

$$\min~\{\delta_1+\lambda_{13}~,~\delta_4+\lambda_{43}~,~\delta_2+\lambda_{25}\}=\min~\{0+25~,~15+7~,~10+22\}=22$$
 marquer le sommet $j_4=3$ avec $\delta_3=22$

Étape 3:

$$EM = \{1, 2, 4, 3\}$$

Étape 4:

Itération 4:

$$EM = \{1, 2, 4, 3\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- (1) min $\{\} = \infty$
- (2) min $\{22\} \Rightarrow j_2 = 5$
- (4) min $\{22, 15\} \Rightarrow j_4 = 5$
- (3) min $\{2\} \Rightarrow j_3 = 6$

Étape 2:

 $\min~\{\infty~,~\delta_2+\lambda_{25}~,~\delta_4+\lambda_{45}~,~\delta_3+\lambda_{36}\}=\min~\{10+22~,~15+15~,~22+2\}=24$ marquer le sommet $j_3=6$ avec $\delta_4=24$

Étape 3:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 4:

Itération 5:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- (1) $\min \{\} = \infty$
- (2) min $\{22\} \Rightarrow j_2 = 5$
- (4) min $\{22, 15\} \Rightarrow j_4 = 5$
- (3) min $\{2\} \Rightarrow j_3 = 6$
- (6) min $\{5\} \Rightarrow j_6 = 7$

Étape 2:

 $\min \; \{\infty \; , \; \delta_2 + \lambda_{25} \; , \; \delta_4 + \lambda_{45} \; , \; \infty \; , \; \delta_6 + \lambda_{67} \} = \min \; \{\infty \; , \; 10 + 22 \; , \; 15 + 15 \; , \; \infty \; , \; 24 + 5 \} = 29 \; \text{marquer le sommet} \; j_6 = 7 \; \text{avec} \; \delta_7 = 29$

Étape 3:

$$EM = \{1, 2, 4, 3, 6, 7\}$$

Étape 4:

Itération 6:

$$EM = \{1, 2, 4, 3, 6\}$$

Étape 1:

On identifie les sommets adjacents non marqués situé les plus près de:

- (1) min $\{\} = \infty$
- (2) min $\{22\} \Rightarrow j_2 = 5$
- (4) min $\{22, 15\} \Rightarrow j_4 = 5$
- (3) min $\{\} = \infty$
- (6) min $\{\} = \infty$
- (7) min $\{\} = \infty$

Étape 2:

 $\min \; \{\infty \; , \; \delta_2 + \lambda_{25} \; , \; \delta_4 + \lambda_{45} \; , \; \infty \; , \; \infty \; , \; \infty \} = \min \; \{\infty \; , \; 10 + 22 \; , \; 15 + 15 \; , \; \infty \; , \; \infty \; , \; \infty \; , \; \infty \} = 30 \; \text{marquer le sommet} \; j_4 = 5 \; \text{avec} \; \delta_5 = 30$

Étape 3:

$$EM = \{1, 2, 4, 3, 6, 7, 5\}$$

Étape 4:

 $\overline{EM} = \emptyset$, alors on arrête

Question 3

(a)

Pour trouver la matrice de coût, on utilise la formule suivante:

$$c_{ik} = \sum_{j=1,2,3,4} q_{ij} \times d$$

soit π une matrice de coût de taille 4×4 :

$$\pi = \begin{pmatrix} 10 \times 50 + 7 \times 30 + 0 \times 70 + 11 \times 100 & 10 \times 50 + 7 \times 30 + 0 \times 50 + 11 \times 60 & 10 \times 95 + 7 \times 55 + 0 \times 25 + 11 \times 55 & 1180 \\ 2 \times 50 + 30 + 8 \times 70 + 4 \times 100 & 770 & 665 & 695 \\ 4 \times 50 + 9 \times 30 + 6 \times 70 + 0 \times 100 & 770 & 1025 & 1095 \\ 3 \times 50 + 5 \times 30 + 2 \times 70 + 7 \times 100 & 820 & 995 & 745 \end{pmatrix}$$

$$\pi = \begin{pmatrix} 1810 & 1370 & 1940 & 1180 \\ 1090 & 770 & 665 & 695 \\ 890 & 770 & 1025 & 1095 \\ 1140 & 820 & 995 & 745 \end{pmatrix}$$

(b)

Étape 1:

Identifier le coût minimal de chaque ligne et le soustraire de chaque élément de la ligne. On obtient la matrice suivante:

$$\pi = \begin{pmatrix} 1810 & 1370 & 1940 & 1180 \\ 1090 & 770 & 665 & 695 \\ 890 & 770 & 1025 & 1095 \\ 1140 & 820 & 995 & 745 \end{pmatrix} \Rightarrow \begin{pmatrix} 630 & 190 & 760 & 0 \\ 425 & 105 & 0 & 30 \\ 120 & 0 & 255 & 325 \\ 395 & 75 & 250 & 0 \end{pmatrix}$$

Étape 2:

Identifier le coût minimal de chaque colonne et le soustraire de chaque élément de la colonne. On obtient la matrice suivante:

$$\pi = \begin{pmatrix} 630 & 190 & 760 & \mathbf{0} \\ 425 & 105 & \mathbf{0} & 30 \\ 120 & \mathbf{0} & 255 & 325 \\ 395 & 175 & 250 & \mathbf{0} \end{pmatrix} \Rightarrow \begin{pmatrix} 510 & 190 & 760 & 0 \\ 305 & 105 & 0 & 30 \\ 0 & 0 & 255 & 325 \\ 275 & 75 & 250 & 0 \end{pmatrix}$$

Étape 3:

Determiner si une affectation de coût 0 est possible.

$$\begin{pmatrix}
510 & 190 & 760 & 0 \\
305 & 105 & 0 & 30 \\
0 & 0 & 255 & 325 \\
275 & 75 & 250 & 0
\end{pmatrix}$$

Nous avons besoin de 3 lignes pour couvrir tout les 0 et 3 étant inférieur à 4, nous continuons car il est impossible d'obtenir une affectation de coût 0.

Étape 4:

Ajouter des 0 dans la matrice des coûts :

- 1. Identifier le plus petit coût non affecté couvert par une ligne ou une colonne \Rightarrow 75
- 2. soustraire ce coût à chaque élément non couvert par une ligne ou une colonne
- 3. Ajouter ce coût à chaque élément couvert par une ligne et une colonne

$$\begin{pmatrix} 510 & 190 & 760 & 0 \\ 305 & 105 & 0 & 30 \\ 0 & 0 & 255 & 325 \\ 275 & 75 & 250 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 435 & 115 & 685 & 0 \\ 305 & 105 & 0 & 105 \\ 0 & 0 & 255 & 400 \\ 200 & 0 & 175 & 0 \end{pmatrix}$$

Étape 5:

Répéter l'étape 3 et 4 jusqu'à ce qu'une affectation de coût 0 soit possible.

$$\begin{pmatrix}
435 & 115 & 685 & 0 \\
305 & 105 & 0 & 105 \\
0 & 0 & 255 & 400 \\
200 & 0 & 175 & 0
\end{pmatrix}$$

Nous avons besoin de 4 lignes pour couvrir tout les 0 et 3 étant inférieur à 4, une affectation de coût 0 est possible.

on identifie l'affectation de coût 0:

$$\begin{pmatrix} 435 & 115 & 685 & 0 \\ 305 & 105 & 0 & 105 \\ 0 & 0 & 255 & 400 \\ 200 & 0 & 175 & 0 \end{pmatrix}$$

Ceci nous donne l'affectation suivante dans la matrice des coûts initiale:

$$\pi = \begin{pmatrix} 1810 & 1370 & 1940 & 1180 \\ 1090 & 770 & 665 & 695 \\ 890 & 770 & 1025 & 1095 \\ 1140 & 820 & 995 & 745 \end{pmatrix}$$

- Affecter la machine 1 à l'emplacement d
- $\bullet\,$ Affecter la machine 2 à l'emplacement c
- $\bullet\,$ Affecter la machine 3 à l'emplacement a
- $\bullet\,$ Affecter la machine 4 à l'emplacement b

Coût total = 1180 + 665 + 890 + 820 = 3555

Question 4

Table 1: Temps le plus tard

É	tape i	$j \in p_i$	$LT_j - t_{ij}$	LT_i
	12	-	-	92
	11	12	92-1	91
	10	11	91-1	90
	9	10	90-1	89
	8	9	89-1	88
	7	8	88-14	74
	6	9	89-1	88
	5	6	88-14	
		7	74-7	
		9	89-70	19
		10	90-1	
		11	91-7	
	4	5	19-3	16
	3	4	16-0	16
	2	3	16-14	2
	2	4	16-14	
	1	2	2-2	0

Table 2: Temps le plus tôt

Étape i	$j \in B_i$	$ET_j + t_{ji}$	ET_i
1	-	-	0
2	1	0+12	2
3	2	2+14	16
4	2	2+14	16
	3	2+0	
5	4	16+3	19
6	5	19 + 14	33
7	5	19+7	26
8	7	26 + 14	40
9	5	19 + 70	89
	6	33+1	
	8	40+1	
10	5	19+1	90
	9	89+1	
11	5	19+7	91
	10	90+1	
12	11	91 + 1	92

Table 3: Écarts

Tâches	$LT_j - (ET_i + t_{ij})$	Écart
(1,2)	2 - (0 + 2)	0
(2,3)	16 - (2 + 14)	0
(2,4)	16 - (2 + 14)	0
(3,4)	16 - (16 + 0)	0
(4,5)	19 - (16 + 3)	0
(5,6)	88 - (19 + 14)	55
(5,7)	76 - (19 + 7)	48
(5,9)	89 - (19 + 70)	0
(5,10)	90 - (19 + 1)	70
(5,11)	91 - (19 + 7)	65
(6,9)	89 - (33 + 1)	55
(7,8)	88 - (26 + 14)	48
(8,9)	89 - (40 + 1)	48
(9,10)	90 - (89 + 1)	0
(10,11)	91 - (90 + 1)	0
(11,12)	92 - (91 + 1)	0