(recall from last class) D_i denotes the subgraph D of Step i of Prim's Algorithm.

Claim For each $i \ge 1$ there exists a Minimum Spanning Tree of G_x that contains D_i .

Proof By induction on i.

Base Case i = 1 $D_1 = \{x\}$. Then every spanning tree of G_x contains D_1 , so in particular every Minimum Spanning Tree contains D_i .

Inductive Hypothesis Assume $i \geq 2$ and there exists a Minimum Spanning Tree T that contains D_{i-1} .

Consider D_i .

Let e be the edge we add to D_{i-1} in the algorithm to get D_i .

Cases:

- 1. T contains e. Then T is a Minimum Spanning Tree of G_x that contains D_i as required.
- 2. T does not contain e. By our earlier lemma, T + e contains exactly one cycle C which contains e. Then C must contain another edge $e' \neq e$ that is also in the cut of G_x induced by $V(D_{i-1})$.

But e is an edge of this cut of minimum weight, so $w(e) \le w(e')$.

By our (other) spanning tree lemma, we know T' = T + e - e' is also a spanning tree of G_x .

But
$$w(T') = w(T) + w(e) - w(e') \le w(T)$$
.

Hence, because T is a Minimum Spanning Tree of G_x , we find T' is also a Minimum Spanning Tree (and w(e) = w(e')). Thus T' contains D_i as required.

Hence by the induction the claim is true, which proves that Prim's ALgorithm finds a MST. \Box

Figure 1: Planar drawing of 3-cube

Planar Graphs

Definition A graph G is said to be *planar* if it has a drawing in the plane (i.e. \mathbb{R}^2) so that:

- no two edges intersect (except at their common end vertices, if any)
- no two vertices coincide

Note A drawing that verifies G is planar is called a planar drawing or a planar embedding of G.

Furthermore, a graph is planar if and only if all its components are planar. So often we will consider only *connected* planar graphs.

Figure 2: Planar drawing of k_4

Example 1

The 3-cube can be drawn in a planar way. (See Figure 1)

Example 2

The k_4 can be drawn in a planar way. (See Figure 2)

Definition Let \tilde{G} be a planar drawing of a connected planar graph G. Then \tilde{G} partitions the plane into connected regions of the plane, these are called the *faces* of G.

Definition: The *outer face* is a *face* that is unbounded and exists for every planar drawing.

See Figure 3 for a visulization of faces.

Figure 3: Example of faces