Practical 4

Alex Carriero (9028757)

1. Create a linear model object called lm_ses using the formula medv $\scriptstyle\sim$ lstat and the Boston dataset.

```
# Libraries
library(ISLR)
library(MASS)
library(tidyverse)

lm_ses <- lm(medv ~ lstat, data = Boston)</pre>
```

2. Use the function coef() to extract the intercept and slope from the lm_ses object. Interpret the slope coefficient.

```
coef(lm_ses)

## (Intercept) lstat
## 34.5538409 -0.9500494

# b0: socio-economic status is zero, the median house value is 35.553
# b1: each one unit increase in lstat is associated with a 0.95 unit drop in median house value.
```

3. Use summary() to get a summary of the lm_ses object. What do you see? You can use the help file ?summary.lm.

```
summary(lm_ses)
##
## lm(formula = medv ~ lstat, data = Boston)
##
## Residuals:
      Min
               1Q Median
                              3Q
                                      Max
## -15.168 -3.990 -1.318
                            2.034 24.500
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.55384
                        0.56263
                                    61.41
                                            <2e-16 ***
```

```
## lstat     -0.95005     0.03873     -24.53     <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16</pre>
```

4. Save the predicted y values to a variable called y_pred

```
y_pred <- predict(lm_ses)</pre>
```

5. Create a scatter plot with y_pred mapped to the x position and the true y value (Boston\$medv) mapped to the y value. What do you see? What would this plot look like if the fit were perfect?

```
tibble(pred = y_pred,
   obs = Boston$medv) %>%
   ggplot(aes( x = pred, y = obs)) +
   geom_point( color = "skyblue2")+
   theme_minimal() +
   geom_abline(slope = 1)
```


the predicted values mapped exactly to the observed values, I would expect to see most of the points fall

```
along the like y = x.
```

6.Use the seq() function to generate a sequence of 1000 equally spaced values from 0 to 40. Store this vector in a data frame with (data.frame() or tibble()) as its column name lstat. Name the data frame pred_dat.

```
pred_dat <- tibble(lstat = seq(0,40, length.out = 1000))</pre>
```

7. Use the newly created data frame as the newdata argument to a predict() call for lm_ses. Store it in a variable named y_pred_new.

```
y_pred_new <- predict(lm_ses, newdata=pred_dat)</pre>
```

8. Create a scatter plot from the Boston dataset with lstat mapped to the x position and medv mapped to the y position. Store the plot in an object called p_scatter.

9. Add the vector y_pred_new to the pred_dat data frame with the name medv.

10. Add a geom_line() to p_scatter, with pred_dat as the data argument. What does this line represent?

This line represents predicted values of medv for the values of lstat

11. The interval argument can be used to generate confidence or prediction intervals. Create a new object called y_pred_95 using predict() (again with the pred_dat data) with the interval argument set to "confidence". What is in this object?

```
y_pred_95 <- predict(lm_ses, newdata = pred_dat, interval = "confidence")
head(y_pred_95)</pre>
```

```
## fit lwr upr
## 1 34.55384 33.44846 35.65922
```

```
## 2 34.51580 33.41307 35.61853

## 3 34.47776 33.37768 35.57784

## 4 34.43972 33.34229 35.53715

## 5 34.40168 33.30690 35.49646

## 6 34.36364 33.27150 35.45578

# it's a matrix with an estimate and a lower and an upper confidence interval.
```

12. Create a data frame with 4 columns: medv, lstat, lower, and upper.

```
## # A tibble: 1,000 x 4
##
      1stat medv lower upper
      <dbl> <dbl> <dbl> <dbl> <
##
             34.6 33.4 35.7
##
  1 0
## 2 0.0400 34.5 33.4 35.6
## 3 0.0801 34.5 33.4 35.6
## 4 0.120
             34.4 33.3 35.5
## 5 0.160
           34.4 33.3 35.5
## 6 0.200
            34.4 33.3 35.5
## 7 0.240
             34.3 33.2 35.4
## 8 0.280
            34.3 33.2 35.4
## 9 0.320
             34.2 33.2 35.3
## 10 0.360
             34.2 33.1 35.3
## # ... with 990 more rows
```

13. Add a geom_ribbon() to the plot with the data frame you just made. The ribbon geom requires three aesthetics: x (lstat, already mapped), ymin (lower), and ymax (upper). Add the ribbon below the geom_line() and the geom_points() of before to make sure those remain visible. Give it a nice colour and clean up the plot, too!

Boston house prices

14. Explain in your own words what the ribbon represents.

```
# The ribbon represent the 95% confidence interval associated with the fit line

# Upon repeated sampling of data from the same population, at least 95% of the ribbons with contain
```

15. Do the same thing, but now with the prediction interval instead of the confidence interval.

```
# pred with pred interval
y_pred_95 <- predict(lm_ses, newdata = pred_dat, interval = "prediction")

# create the df
gg_pred <- tibble(
    lstat = pred_dat$lstat,
    medv = y_pred_95[, 1],
    l95 = y_pred_95[, 2],
    u95 = y_pred_95[, 3]
)

# Create the plot
Boston %>%
    ggplot(aes(x = lstat, y = medv)) +
    geom_ribbon(aes(ymin = 195, ymax = u95), data = gg_pred, fill = "#00008b44") +
    geom_point(colour = "wheat") +
    geom_line(data = pred_dat, colour = "#00008b", size = 1) +
```

```
theme_minimal() +
labs(x = "Proportion of low SES households",
    y = "Median house value",
    title = "Boston house prices")
```

Boston house prices

16. Write a function called mse() that takes in two vectors: true y values and predicted y values, and which outputs the mean square error.

```
mse <- function(y_true, y_pred){
  mean((y_true - y_pred)^2)
}</pre>
```

17. Make sure your mse()function works correctly by running the following code.

```
mse(1:10, 10:1)
```

[1] 33

18. Calculate the mean square error of the lm_ses model. Use the medv column as y_true and use the predict() method to generate y_pred.

```
y_true <- Boston$medv
y_pred <- predict(lm_ses)
mse(y_true, y_pred)</pre>
```

```
## [1] 38.48297
```

19. The Boston dataset has 506 observations. Use c() and rep() to create a vector with 253 times the word "train", 152 times the word "validation", and 101 times the word "test". Call this vector splits.

```
splits <- c(rep("train", 253), rep("validation", 152), rep("test", 101))
```

20. Use the function sample() to randomly order this vector and add it to the Boston dataset using mutate(). Assign the newly created dataset to a variable called boston_master.

```
boston_master <- Boston %>% mutate(splits = sample(splits))
```

21. Now use filter() to create a training, validation, and test set from the boston_master data. Call these datasets boston_train, boston_valid, and boston_test.

```
boston_train <- boston_master %>% filter(splits == "train")
boston_valid <- boston_master %>% filter(splits == "validation")
boston_test <- boston_master %>% filter(splits == "test")
```

22. Train a linear regression model called model_1 using the training dataset. Use the formula medv \sim lstat like in the first lm() exercise. Use summary() to check that this object is as you expect.

```
model_1 <- lm(medv ~ lstat, data = boston_train)
summary(model_1)</pre>
```

```
##
## Call:
## lm(formula = medv ~ lstat, data = boston_train)
##
## Residuals:
## Min    1Q Median   3Q Max
## -14.973   -3.837   -1.392   1.512   24.650
##
## Coefficients:
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.1468  0.8141  41.94  <2e-16 ***
## lstat    -0.9230  0.0568 -16.25  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.263 on 251 degrees of freedom
## Multiple R-squared: 0.5127, Adjusted R-squared: 0.5107
## F-statistic: 264.1 on 1 and 251 DF, p-value: < 2.2e-16
```

23. Calculate the MSE with this object. Save this value as model_1_mse_train.

```
model_1_mse_train <- mse(y_true = boston_train$medv, y_pred = predict(model_1))</pre>
```

24. Now calculate the MSE on the validation set and assign it to variable model_1_mse_valid. Hint: use the newdata argument in predict().

25. Create a second model model_2 for the train data which includes age and tax as predictors. Calculate the train and validation MSE.

26. Compare model 1 and model 2 in terms of their training and validation MSE. Which would you choose and why?

```
model_1_mse_train

## [1] 38.9139

model_1_mse_valid

## [1] 46.28173

model_2_mse_train
```

[1] 37.79505

```
model_2_mse_valid

## [1] 43.72235

# If you are interested in out-of-sample prediction, the
# answer may depend on the random sampling of the rows in the
# dataset splitting: everyond has a different split. However, it
# is likely that model_2 has both lower training and validation MSE.
```

27. Calculate the test MSE for the model of your choice in the previous question. What does this number tell you?

28. Create a function that performs k-fold cross-validation for linear models.

[1] 4.985098

```
# Just for reference, here is the mse() function once more
mse <- function(y_true, y_pred) mean((y_true - y_pred)^2)</pre>
cv_lm <- function(formula, dataset, k) {</pre>
  # We can do some error checking before starting the function
  stopifnot(is_formula(formula)) # formula must be a formula
  stopifnot(is.data.frame(dataset)) # dataset must be data frame
  stopifnot(is.integer(as.integer(k))) # k must be convertible to int
  # first, add a selection column to the dataset as before
  n samples <- nrow(dataset)</pre>
  select_vec <- rep(1:k, length.out = n_samples)</pre>
  data_split <- dataset %>% mutate(folds = sample(select_vec))
  \# initialise an output vector of k mse values, which we
  # will fill by using a _for loop_ going over each fold
  mses \leftarrow rep(0, k)
  # start the for loop
  for (i in 1:k) {
    # split the data in train and validation set
    data train <- data split %>% filter(folds != i)
    data_valid <- data_split %>% filter(folds == i)
```

29. Use your function to perform 9-fold cross validation with a linear model with as its formula medv \sim lstat + age + tax. Compare it to a model with as formulat medv \sim lstat + I(lstat^2) + age + tax.

```
cv_lm(formula = medv ~ lstat + age + tax, dataset = Boston, k = 9)

## [1] 38.25751

cv_lm(formula = medv ~ lstat + I(lstat^2) + age + tax, dataset = Boston, k = 9)

## [1] 28.1648
```