Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе № 1 по дисциплине: Математическая статика.

Выполнила студентка: Заболотских Екатерина Дмитриевна группа: 3630102/70301

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Оглавление

Постановка задачи	2
Теория	3
1. Распределения	
2. Гистограмма	
Реализация	
Результаты	6
Заключение	9
Список литературы	10
Список иллюстраций	
Рис. 1: Нормальное распределение	6
Рис. 2: Распределение Коши	6
Рис. 3: Распределение Лапласа	7
Рис. 4: Распределение Пуассона	7
Рис. 5: Равномерное распределение	8

Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального $\mathcal{N}(x,0,1)$
- 2. Коши C(x, 0, 1)
- 3. Лапласа $\mathcal{L}(x, 0, \frac{1}{\sqrt{2}})$
- 4. Пуассона \mathcal{P} (k, 10)
- 5. Равномерного $\mathcal{U}\left(x,-\sqrt{3},\sqrt{3}\right)$

Сгенерировать выборки размеров: 10, 50, 1000; и построить графики плотности распределения вероятности и гистограмму на одном рисунке.

Теория

1. Распределения

Пусть задано вероятностное пространство (Ω, \mathcal{F}, P) , на котором определена случайная величина $\xi: \Omega \to \mathbb{R}$.

Функция $F_{\xi}(x) = P_{\xi}(-\infty, x] x \in \mathbb{R}$ называется функцией распределения случайной величины ξ .

В данной лабораторной работе рассматриваются следующие распределения:

1. Нормальное (абсолютно непрерывное)

Распределение вероятностей, которое в одномерном случае задается функцией плотности вероятности, совпадающей с функцией Гаусса:

$$f(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$
rae

 μ — математическое ожидание

 σ — среднеквадратическое отклонение (σ^2 —дисперсия)

2. Коши (абсолютно непрерывное)

Задается плотностью вероятности:

$$f(x,x_0,\gamma) = \frac{1}{\pi} \frac{\gamma}{(x-x_0)^2 + \gamma^2}$$
, где

 x_0 — параметр сдвига

у — параметр масштаба

3. Дапласа (абсолютно непрерывное)

Задается плотностью вероятности:

$$f(x,\beta,\alpha) = \frac{\alpha}{2}e^{-\alpha|x-\beta|}$$
, fac

 α — параметр масштаба

 β — параметр сдвига

4. Пуассона (дискретное)

Задается функцией вероятности:

$$P(k) \equiv \mathbb{P}(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
, fac

 λ — математическое ожидание случайной величины (среднее количество событий за фиксированный промежуток времени)

3

5. Равномерное (абсолютно непрерывное)

Задается плотностью вероятности:

$$f(x,a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$

2. Гистограмма

<u>Гистограмма</u> – функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.

Построение гистограммы основывается на выделении интервалов и выстраивании пропорциональных прямоугольников. Множество значений, которые может принимать элемент выборки, разбивается на интервалы. Для каждого интервала на горизонтальной оси строится прямоугольник, его высота пропорциональна числу элементов выборки, попавших в этот интервал. (при разных интервалах: площадь прямоугольника пропорциональна числу элементов выборки в интервале). Также существует правило нормировки – общая площадь всех прямоугольников равна единице.

Реализация

Код программы, реализующий данную задачу, был написан на языке Python в интегрированной среде разработке PyCharm.

Были использованы библиотеки:

- Numpy библиотека для работы с данными.
- **Matplotlib** комплексная библиотека для создания статических, анимированных и интерактивных визуализаций в Python.
- **Seaborn** библиотека визуализации данных Python, основанная на matplotlib. Она обеспечивает высокоуровневый интерфейс для рисования привлекательной и информативной статистической графики.

Результаты

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

Заключение

Из полученных графиков можем подтвердить факт: если число интервалов гистограммы k(n) устремить в бесконечности, таким образом, что $\lim_{n\to\infty}\frac{k(n)}{n}=0$, то имеет место сходимость по вероятности гистограммы к плотности.

Список литературы

- 1. Конспекты лекции
- 2. А. Н. Ширяев, Вероятность-1. Изд. МЦНМО, Москва, 2017.
- 3. Википедия: https://ru.wikipedia.org/wiki

Ссылка на github: https://github.com/KateZabolotskih/MathStatLabs