Lezioni su AMPL & CPLEX

Corso di Ricerca Operativa · Prof. Gianpaolo Oriolo

Gianmaria Leo

Università di Roma "Tor Vergata"

31 Ottobre 2014

Concludere l'esercitazione del 24 Ottobre... (1/2)

Per rispondere all'ultima domanda dell'esercitazione 24/10 (parte 2):

- introdurre una variabile dello stesso tipo (q.tà dolcificante artificiale)
- modificare il vincolo di miscelazione
- aggiungere il vincolo di qualità

Possibili azioni:

- aggiornare l'insieme delle materie prime
- aggiornare l'insieme dei fornitori (miscele)
- aggiornare la matrice di miscelazione
- aggiornare i vincoli della formulazione

Concludere l'esercitazione del 24 Ottobre... (2/2)

- Modifiche al file .mod:
 - nuovo insieme per il dolcificante artificiale
 - nuovo insieme per le materie prime (unione di insiemi)
 - ridefinire il parametro di miscelazione (insieme materie prime)
 - nuovo parametro per la qualità e la quantià di prodotto richiesto
 - aggiornare il controllo sul parametro di miscelazione
 - modificare il vincolo di miscelazione
 - aggiungere il vincolo di qualità
- Modifiche al file .dat:
 - ridefinire l'insieme dei fornitori (miscele)
 - ridefinire i parametri interessati dall'insieme dei fornitori
 - definire i parametri di qualità e quantità totale
- Usare il file .run che risponde alla prima domanda dell'esercizio

AMPL: introduzione all'uso avanzato

Insiemi

2 Espressioni

Tipi di insiemi

- Gli insiemi definiscono gli elementi in base ai quali si indicizzano variabili, parametri e vincoli del modello.
- AMPL permette di definire diversi tipi di insiemi:
 - 1 insieme non ordinato:

```
set <setName>;
```

insieme numerico:

```
set <setName> := <startVal> .. <endVal> by <interval>;
```

insieme ordinato:

```
set <setName> ordered;
```

insieme ordinato e ciclico:

```
set <setName> circular;
```

N.B.: gli insiemi numerici non hanno bisogno di un'assegnazione

G. Leo (UniRoma2) AMPL & CPLEX 31/10/14 5 / 12

Operatori e funzioni su insiemi generici

Operatore/Funzione	risultato
A union B	unione tra A e B
A inter B	intersezione tra A e B
A diff B	differenza di A rispetto a B
A symdiff B	differenza simmetrica tra A e B
A cross B	prodotto cartesiano di A con B
card(A)	cardinalità di <i>A</i>

Funzioni su insiemi ordinati

Funzione	risultato
first(A) last(A) next(a,A) next(a,A,k) prev(a,A) prev(a,A,k)	primo elemento di A ultimo elemento di A primo elemento che segue $a \in A$ k -esimo elemento che segue $a \in A$ primo elemento che precede $a \in A$ k -esimo elemento che precede $a \in A$
ord(a,A) ord0(a,A) member(k,A)	posizione di $a \in A$ (ord(a,A) ≥ 1) restituisce 0 se $a \notin A$ elemento in k -esima posizione

Insiemi impliciti

Le espressioni di indicizzazione permettono di definire insieme impliciti, evitando la loro definizione.

- coppie ordinate di elementi, presi rispettivamente da A e da B
 {i in A, j in B}
- coppie ordinate di elementi, entrambi presi da A
 {i in A, j in A}
- elementi di A che soddisfano un'espressione

esempio:

```
{i in A: costi[i] >= 10}
```

Insiemi multidimensionali

• Ogni elemento dell'insieme è caratterizzato da d attributi

```
dichiarazione (file .mod): set INS dimen d;
assegnazione (file .dat): set INS:= (a1,a2, <...> ad) <...>;
```

• In alternativa (file .mod):

```
set INS1; set INS2; <...>; set INSd;
set INS:= INS1 cross INS2 cross <...> INSd;
set INS:= {INS1,INS2, <...>,INSd};
```

L'operatore setof effettua l'operazione inversa di cross (file .mod):

```
set INS dimen 3;
set INS1 := setof{(i,j,k) in INS} i ;
set INS2 := setof{(i,j,k) in INS} j ;
set INS3 := setof{(i,j,k) in INS} k ;
```

9 / 12

Espressioni: operandi

 Le espressioni sono fondamentali nella costruzione di funzione obiettivo, vincoli e condizioni (aggiuntive) su parametri e variabili.

Simbolo	Tipo operando	Tipo risultato
+ - * / div ^ mod	numerico	numerico
< <= == != > >=	numerico	logico
if-then-else	logico	numerico
or and not	logico	logico

Espressioni: funzioni matematiche

Funzione	Risultato
abs(x) floor(x) ceil(x) sqrt(x) log(x) exp(x) sin(x) cos(x) tan(x)	valore assoluto di x approssimazione intera per difetto di x approssimazione intera per eccesso di x radice quadrata x logaritmo naturale di x esponenziale di x seno di x coseno di x tangente di x

Espressioni: funzioni indicizzate

Funzione	Risultato
<pre>sum{a in A} <> prod{a in A} <> min{a in A} <> max{a in A} <></pre>	somma estesa ai soli elementi in A produttoria estesa ai soli elementi in A minimo esteso ai soli elementi in A massimo esteso ai soli elementi in A