"Gerrymandering in the Laboratory"

SunAh An Buddy Anderson Cary Deck

The University of Alabama

EC698 November 15, 2021

What is gerrymandering?

- ► The manipulation of the boundaries of electoral constituencies to favor one election outcome over another
- ► Etymology began in 1812 when Massachusetts Governor Elbridge Gerry, signed a bill redrawing state senate districts

Elbridge Gerry

Gerry's Salamander

Alabama Congressional Districts

Alabama is 25% African-American

Alabama Representatives

Alabama Congressional Districts

Literature Review

- Optimal Gerrymandering
 - ► Two types of voters (Owen and Grofman 1988)
 - Continuum of perfectly observable types (Gilligan and Matsusaka 1999)
 - ► Imperfectly observable types (Friedman and Holden 2008; Gul and Pseendorfer 2010; Kolotilin and Wolitzky 2020)
- ► Implications of Gerrymandering
 - ► Majority minority districts (Cameron, Epstein and O'Halloran 1996; Grigg and Katz 2005)
 - ► Participation (Hayes and McKee 2009)
 - ▶ Policy choice (Shots 20002; Besley and Preston 2007)
 - Polarization (McCarty, Pool, and Rosenthal 2009)

Our Contest Map

- ► A Map consists of 3 Districts that each contain 3 Zones
- Districts are referenced by their color: White, Light Gray, and Dark Gray
- ▶ Players A and B compete for a prize of V by choosing effort expenditures, or bids, for each District
- ► To win the contest a player must win the majority of the Districts

Theoretical Predictions

- ▶ Player *i*'s expected payoff is $E\pi_i = \rho_i V \sum_d e_{i,d|M}$ for
 - the probability ρ_i that player i wins the Map and
 - ▶ the expenditure $e_{i,d|M}$ of player i in district d on the given Map M

 $Symm_{1,1}$

- ► The winner of District W wins the contest
- ► Standard Tullock Contest for lone, unclaimed Zone in White District

$$\blacktriangleright E\pi_i = \frac{e_{i,W}}{e_{i,W} + e_{i,W}} V - e_{i,W}$$
 for $j \neq i$

•
$$e_{A,W}^* = e_{B,W}^* = \frac{V}{4}$$
 and $\rho_i = 50\%$

Theoretical Predictions

Table: Summary of theoretic predictions

Мар	District	$e_{A M}^*$	$e_{B M}^*$	ρ_A	ρ_{B}
$Symm_{1,1}$	W	$\frac{1}{4}V$	$\frac{1}{4}V$	$\frac{1}{2}$	$\frac{1}{2}$
$Symm_{1,3}$	W	$\frac{3}{8}V$	$\frac{3}{8}V$	$\frac{1}{2}$	$\frac{1}{2}$
$Symm_{3,1}$	W, L, and ${\sf G}$	$\frac{1}{8}V$	$\frac{1}{8}V$	$\frac{1}{2}$	$\frac{1}{2}$
$Gerry_A$	W	$\frac{1}{4}V$	$\frac{1}{4}V$	$\frac{3}{4}$	$\frac{1}{4}$
$Gerry_B$	W	$\frac{1}{4}V$	$\frac{1}{4}V$	$\frac{1}{4}$	<u>3</u>

Experimental Design

- 8 sessions (8 subjects per session)
- Sessions progress in 3 Stages
- Stage 1: 10 periods selecting only effort bids
- Stage 2: 3 periods selecting preferred map and effort bids
- Stage 3: 1 period selecting preferred map prior to role and effort bids assignment
 - Subjects randomly matched every period
 - One period selected at random for payment
 - Prize value V = 80
 - Exchange rate of 4 \$Lab = 1 \$US
 - Programmed in z-Tree (Fischbacher 2007)
 - Conducted at TIDE Lab with \$5 participation payment

Experimental Design

Figure: Effort selection for each Map

Bidding Behavior Relative to Theory

Table: Equilibrium vs Observed Bids

Мар	District	Equilibrium	Observed	
$Symm_{1,1}$	W	20	40.2	
$Symm_{1,3}$	W	30	43.4	
$Symm_{3,1}$	W, L, and ${\sf G}$	10	17.6	
Gerry Advantaged	W	20	39.2	
Gerry Disadvantaged	W	20	36.3	

Players A and B do not exhibit different bidding behavior We analyze the gerrymandered maps in the context of advantages and disadvantages

Stage 1 Results

Average bidding behavior over Stage 1

Stage 1 Results

Table: Effect of Map Configuration on Total Bid in Stage 1

	Effort		
Adv	-1.470 (1.207)		
Disadv	-3.656***(1.207)		
Symm_1_3	1.417 (1.207)		
Symm_3_1	7.189*** (1.207)		
Constant	47.400*** (0.853)		
Observations	3,200		
R^2	0.028		
Residual Std. Error	21.588 (df = 3195)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Thoughts on Gerrymandering?

Subjects were asked:

Do you support gerrymandering (the manipulation of the boundaries of electoral constituencies to favor one election outcome over another)?

Responses:

► Yes: 3

▶ No: 61

Stage 2: Map Selection

Politics and Gerrymandering

Subjects were also asked:

On a scale of 1 to 9, how would you describe your political views with 1 being extremely liberal (i.e. to the left of the Democratic Party), 5 being centrist (i.e. falling between the Democratic Party and the Republican Party), and 9 being extremely conservative (i.e. to the right of the Republican party).

Responses:

1	2	3	4	5	6	7	8	9
2	9	9	8	7	8	12	7	2

Politics and Gerrymandering

 χ^2 test rejects gerrymandering depends on political views (p-value = 0.3106)

Stage 3: Map Selection

People tend to pick symmetric maps when the do not know their role, but not the socially optimal map.

Summary

- Subjects bid in an intuitive manner
 - ► (largely) ignore non-competitive districts
 - (over)bid on competitive districts on average
 - ▶ evidence in *Symmetric*_{3,1} of minimal winning coalitions
 - gerrymandering leads disadvantaged people to be discouraged on average
- View on gerrymandering
 - report not liking gerrymandering, regardless of political persuasion
 - prefer to compete on inefficient but "fair" maps when they cannot be self-serving
 - overwhelmingly engage in gerrymandering when they can

Additional Slides

