Boosting Performance of Code Completion Algorithms with Abstract Syntax Trees and Convolutional Graph Autoencoders

CS5814 Final project

Sam Donald

Problem Statement

 Standard code completion models rely solely on preceding code. Yet additional (free) information is available in the form of Abstract Syntax Trees.

• How can this free information be integrated into code completion models?

Abstract Syntax Trees (ASTs)

- ASTs provide a graph representation of the syntactic structure of code
- Typically used by compilers
- Can only be generated from complete and valid functions

```
def ensure_directory(directory):
# Create the directories along the provided directory path that do not exist.
directory = os.path.expanduser(directory)
try:
    os.makedirs(directory)
except OSError as e:
    if e.errno != errno.EEXIST:
        raise e
```


Input function

Data Description

- The python portion of the CodeSearchNet dataset is used for code prediction and AST generation
- The following information is provided for ~457,000 functions sourced from GitHub
 - Repository name
 - Function path in repository
 - Function name
 - Entire function string
 - Language
 - Function code URL
 - Function documentation string
 - Function documentation tokens
 - <u>Function code string</u> used to generate ASTs
 - <u>Function code tokens</u> used as inputs for code prediction

Function token count distribution for CodeSearchNet test set

Data Preprocessing (AST)

- A generated AST graph is walked to extract all edges and node names
- 10,000 most frequent names are one hot encoded

Constant

AST graph

Remainder are grouped to a shared encoding

Function code

Feature matrix X

0

0

node2 ···· nodeN

node2 ···· nodeN

0

0

encoded

node N

0

0

node1

0

node1

node2

nodeN

Data Preprocessing (Tokens)

- Function tokens are extracted from the CodeSearchNet data and passed to a CodeGPT tokenizer
- The tokenizer is pretrained based on a python dataset
- Comments are removed prior to encoding via the GPT tokenizer

GAE Model

- A Graph Autoencoder (GAE) is used to encode the AST graph structure into then latent variable Z
- The latent variable is then decoded to reconstruct the feature matrix A
- The encoder portion of the GAE consists of 2 Graph Convolutional (GCNConv) layers
- The latent variable **Z** is then fed to the token prediction model

Token prediction model

- An LSTM based encoder-decoder model is used for next token predictions
- The variable sized latent variable **Z** from the GAE is transformed via a LSTM (yellow) into a constant sized hidden variable
- This hidden variable is used to initialize the encoder-decoder LSTM (orange)
- The encoder-decoder layers can be linked, such that their weights are shared and easier to learn during training.

Results

Graph Autoencoder

Training loss

Normalized confusion matrix for reconstructed graph edges

Code Prediction

Training loss (with encoded AST)

	Accuracy
No encoded AST	34.87%
Encoded AST	35.62%

Test accuracy

Conclusions

- While the Graph Autoencoder was able to capture a portion of the AST structure, it performed poorly overall as evident by the large false positive rate
 - This is likely due to the sparsity of the node adjacency matrix A.
 - Preprocessing steps such as graph pruning would reduce sparsity and likely improve the ability for the GAE to encode the AST.
- The inclusion of the encoded AST information boosted token prediction accuracy by 0.75%
 - However, as these ASTs are generated from the entire function, it is possible the model is using this information to "look into the future" and access future tokens.
 - Further work is needed to validate these results, by constructing partial ASTs based only on code preceding the token of interest.

Lessons Learned

- Graph Autoencoders are difficult to train with sparse data.
- Developing a unique neural network architecture is also difficult, and more time should be allocated for its implementation and debugging.
- When results are poor, attention should be placed into understanding the underling reasons, instead of trying in vain to improve results.
- Working by yourself on large projects, without regular feedback from others, can result in the exploring of unnecessary rabbit holes without a clear direction.
- The space of potential neural network models is huge and very exciting!