

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

Inteligência Artificial

Resolução de Problemas Por Meio de Busca Busca Informada Parte 2/2

Docentes: Eng Roxan Cadir

Eng Ruben Manhiça

Maputo, 7 de outubro de 2024

Conteúdo da Aula

- 1. Resolução de Problemas Por meio de Buscas
- 2. Algoritmos de busca Informada

Busca com informação e exploração

Capítulo 4 – Russell & Norvig Secção 4.2 e 4.3

Revisão da aula passada: Busca A*

- Ideia: evitar expandir caminhos que já são caros
- Função de avaliação f(n) = g(n) + h(n)
 - -g(n) = custo até o momento para alcançar n
 - -h(n) = custo estimado de n até o objetivo
 - -f(n) = custo total estimado do caminho através de n até o objetivo.

Revisão da aula passada: Heurística Admissível

- Uma heurística h(n) é admissível se para cada nó n, $h(n) \le h^*(n)$, onde $h^*(n)$ é o custo verdadeiro de alcançar o estado objetivo a partir de n.
- Uma heurística admissível nunca superestima o custo de alcançar o objetivo, isto é, ela é optimista.
- Exemplo: $h_{DLR}(n)$ (distância em linha reta nunca é maior que distância pela estrada).
- Teorema: Se h(n) é admissível, A* usando algoritmo BUSCA-EM-ARVORE é óptima.

Exemplo: Heurísticas Admissíveis

- Para o quebra-cabeça de 8 peças:
 - $-h_1(n)$ = número de peças fora da posição
 - $-h_2(n)$ = distância "Manhattan" total (para cada peça calcular a distância em "quadras" até a sua posição) TPC: Investigar sobre Distancia de Manhattan

Start State

Goal State

- h₁(S) = ? 8
- $h_2(S) = ?$ 3+1+2+2+2+3+3+2 = 18

Medindo a qualidade de uma heurística

- Fator de ramificação efetiva
 - A* gera N nós
 - Profundidade da solução é d
 - Supondo uma árvore uniforme, podemos calcular o fator de ramificação efetiva b* a partir de

$$N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$$

Exemplo

Se A* encontra a solução optima na profundidade 5, usando 52 nós, qual é o valor do factor de ramificação efectivo?

Exemplo: Quebra-cabeça de 8 peças

	Custo da busca			Fator de ramificação efetiva		
ď	BAI	$A^*(h_1)$	$A^*(h_2)$	BAI	$A^{\star}(h_1)$	$A^*(h_2)$
2	10	6	6	2,45	1,79	1,79
4	112	13	12	2,87	1,48	1,45
6	680	20	18	2,73	1,34	1,30
8	6384	39	25	2,80	1,33	1,24
	47127	93	39	2,79	1,38	1,22
10 12	3644035	227	73	2,78	1,42	1,24
	3044033	539	113	_	1,44	1,23
14	_	1301	211	-	1,45	1,25
16		3056	363	_	1,46	1,26
18	-	7276	676	_	1,47	1,27
20	-		1219	_	1,48	1,28
22 24	-	18094 39135	1641		1,48	1,26

Como criar heurísticas admissíveis?

- A solução de uma simplificação de um problema (problema relaxado) é uma heurística para o problema original.
 - Admissível: a solução do problema relaxado não vai superestimar a do problema original.
 - É consistente para o problema original se for consistente para o relaxado.

Exemplo: Quebra-cabeça de 8 peças

- h₁ daria a solução óptima para um problema "relaxado" em que as peças pudessem se deslocar para qualquer lugar.
- h_2 daria a solução óptima para um problema "relaxado" em que as peças pudessem se mover um quadrado por vez em qualquer direção.

Como criar heurísticas admissíveis?

2. Usar o custo da solução de um subproblema do problema original.

Calcular o custo da solução exacta sem se preocupar com os * Limite inferior do custo do problema completo

Como criar heurísticas admissíveis?

3. Base de dados de padrões:

- Armazenar o custo exacto das soluções de muitos subproblemas.
- Para um determinado estado procurar o subproblema referentes àquele estado.
- Exemplo: todas as configurações das 4 peças na figura anterior.

Algoritmos de Busca Local

- Em muitos problemas de optimização o caminho para o objetivo é irrelevante.
 - Queremos apenas encontrar o estado objetivo, não importando a sequência de acções.
 - Espaço de estados = conjunto de configurações completas.
 - Queremos encontrar a melhor configuração.
 - Neste caso podemos usar algoritmos de busca local.
 - Mantêm apenas o estado actual, sem a necessidade de manter a árvore de busca.

Exemplo: *n*-rainhas

• Colocar *n* rainhas em um tabuleiro *nxn*, sendo que cada linha coluna ou diagonal pode ter apenas uma rainha.

Busca de Subida de Encosta (Hill-Climbing)

• "É como subir o Everest em meio a um nevoeiro durante uma crise de amnésia"

```
função SUBIDA-DE-ENCOSTA(problema) retorna um estado que é um máximo local
entradas: problema, um problema
variáveis locais: corrente, um nó
vizinho, um nó

corrente ← CRIAR-NÓ(ESTADO-INICIAL[problema])
repita
vizinho ← um sucessor de corrente com valor mais alto
se VALOR[vizinho] ≤ VALOR[corrente] então retornar ESTADO[corrente]
corrente ← vizinho
```


Busca de Subida de Encosta

- Elevação é a função objetivo: queremos encontrar o máximo global.
- Elevação é o custo: queremos encontrar o mínimo global.
- O algoritmo consiste em uma repetição que percorre o espaço de estados no sentido do valor crescente (ou decrescente).
- Termina quando encontra um pico (ou vale) em que nenhuma vizinho tem valor mais alto.

Busca de Subida de Encosta

- Não mantém uma árvore, o nó atual só registra o estado actual e o valor da função objetivo.
- Não examina antecipadamente valores de estados além dos valores dos vizinhos imediatos do estado actual.

Busca de Subida de Encosta

 Problema: dependendo do estado inicial pode ficar presa em máximos (ou mínimos) locais.

Busca de Subida de Encosta: Problema das 8rainhas

- h = número de pares de rainhas que estão "se atacando", direta ou indiretamente
- h = 17 para o estado acima
- Em cada quadrado, valor de h para cada sucessor possível obtido pela movimentação de uma rainha dentro de sua coluna

Busca de Subida de Encosta: Problema das 8rainhas

Um mínimo local com h = 1.

Busca de têmpera simulada (simulated annealing)

- Combina o Hill-Climbing com um percurso aleatório resultando em eficiência e completeza.
- Subida de encosta dando uma "chacoalhada" nos estados sucessores.
 - Estados com avaliação pior podem ser escolhidos com uma certa probabilidade.
 - Esta probabilidade diminui com o tempo.

Busca de têmpera simulada

• Escapa de máximos locais permitindo alguns passos "maus" mas gradualmente decresce a sua frequência.

```
função TÊMPERA-SIMULADA(problema, escalonamento) retorna um estado solução
  entradas: problema, um problema
            escalonamento, um mapeamento de tempo para "temperatura"
 variáveis locais: corrente, um nó
                  próximo, um nó
                  T, uma "temperatura" que controla a probabilidade de passos descendentes
 corrente ← CRIAR-NÓ(ESTADO-INICIAL[problema])
 para t \leftarrow 1 até \infty faça
     T \leftarrow escalonamento[t]:
     se T = 0 então retornar corrente
     próximo ← um sucessor de corrente selecionado ao acaso.
      ΔE ← VALOR[próximo] - VALOR[corrente]
     se ∆E > 0 então corrente ← próximo
     senão corrente \leftarrow próximo somente com probabilidade e^{\Delta E/T}
```


Propriedades da busca de têmpera simulada

- Pode-se provar que se T decresce devagar o suficiente, a busca pode achar uma solução óptima global com probabilidade tendendo a 1.
- Muito usada em projetos de circuitos integrados, layout de instalações industriais, optimização de redes de telecomunicações, etc.

Busca em feixe local

- Manter k estados ao invés de um.
- Começa com k estados gerados aleatoriamente.
- A cada iteração, todos os sucessores dos k estados são gerados.
- Se qualquer um deles for o estado objetivo, a busca para; senão seleciona-se os k melhores estados da lista pra continuar.

Algoritmos genéticos

- Um estado sucessor é gerado através da combinação de dois estados pais.
- Começa com k estados gerados aleatoriamente (população).
- Um estado é representado por uma string de um alfabeto finito (normalmente strings de 0s e 1s).
- Função de avaliação (função de fitness). Valores mais altos pra estados melhores.
- Produz a próxima geração de estados por seleção, mutação e crossover. (TPC – ler capitulo 4.3)

TPC

- Ler os capítulos 4.2 e 4.3
- Ler os capítulos 4.4 e 4.5
- Resolver os exercícios: 4.1; 4.2; 4.3;4.5; 4.11!

FIM!!!

Duvidas e Questões?

