

Renderscript

Sylvain Galand

OPEN WORLD FORUM

Renderscript?

Rendu?

Scripts?

Ni l'un, ni l'autre!

JECTOMYCIBE be mobile Let IT

Embellir Android!

Animations, fonds d'écran animés, animation de démarrage...

Un outil contre la "diversification"

- "Write once, run anywhere"
- Tous les GPUs (extensions OpenGL)
- Introduction en interne dans Android 2.x

Evolution vers les calculs

- Exécution optimale partout.
- Publique avec Android 3.x

Dépréciation de la partie rendu graphique

Annoncée avec Jelly Bean (Android 4.1)

Une note dans la documentation

Deprecation Notice: Earlier versions of Renderscript included an experimental graphics engine component. This component is now deprecated as of Android 4.1 [...] If you have apps that render graphics with Renderscript, we highly recommend you convert your code to another Android graphics rendering option.

Pourquoi ce changement?

- Les développeurs préfèrent OpenGL
- OpenGL plus utilisé en interne aussi.

Let IT be mobile

Un outil pour les calculs

- Ne remplace ni le SDK, ni le NDK.
- Répond à des problématiques spécifiques

Portabilité

Android 3.0 +

Performance

- CPU (architecture, coeurs, instructions)
- GPU, bientôt... (ARM Mali-T604 GPU)

Simplicité d'utilisation

Génération de code

Au coeur de RS

Let IT be mobile

Code: script.rs

- Langage C99
- API pour le calculs

Compilations via LLVM

- Compilation en bytecode
- Compilation (JIT) sur le client

Execution partout

- Runtime Renderscript
- Coeurs CPU + GPU

Intégration

Génération de "glue code"

Щ	
H	bile
0	be mo
Ę	1
ב	Let

Renderscript	Java	
my_script.rs	ScriptC_my_script.java /res/raw/my_script.bc	
typedef struct My_Struct	ScriptField_My_Struct.java	
My_Struct_t* my_struct;	.bind_my_struct();	
int entier;	.set_entier(int i) .get_entier();	
void my_function();	.invoke_my_function();	

Utilisation

JECTOMPLIES be mobile

Par exemple, un exemple

- Application de filtres sur des photos/images
- Traitement du signal, calcul matriciel
- (Rappel : Cette application vaut dans les 1 milliards)

Un peu de code

Améliorons les temps de calcul grâce à Renderscript!

Code: filter.rs

```
#pragma version(1)
#pragma rs java package name(com.genymobile.owf)
rs_matrix3x3 filter;
void init() { {
   rsMatrixLoadIdentity(&filter);
void root(const uchar4 *in, uchar4 *out) {
   float3 pixel = convert float4(in[0]).rgb;
   pixel = rsMatrixMultiply(&filter, pixel);
   pixel = clamp(pixel, 0.f, 255.f);
   out->a = in->a;
   out->rgb = convert uchar3(pixel);
```

Code: Filter.java

```
// Création du script
mRS = RenderScript.create(mContext);
mScript = new ScriptC filter(mRS, mContext.getResources(), R.raw.
filter);
// Allocation de la mémoire contenant le bitmap
mInAllocation = Allocation.createFromBitmap( mRS,
    inputBitmap,
    Allocation.MipmapControl.MIPMAP NONE,
    Allocation. USAGE SCRIPT);
// Allocation de la mémoire pour récupérer l'image générée
mOutAllocation = Allocation.createTyped(mRS, mInAllocation.
getType());
// Mise en place des paramètres
Matrix3f sepiaMatrix = new Matrix3f(mMatrix);
mScript.set filter(sepiaMatrix);
// Appel du script (rsForEach)
mScript.forEach_root(mInAllocation, mOutAllocation);
// Copie du résultat dans le bitmap de sortie
mOutAllocation.copyTo(outputBitmap);
```


Résultats 1/2

be mobile JOH-L

OPEN WORLD FORUM

Résultats 2/2

	Appareil (matériel)	Java	RS	Gain
	Nexus S (Exynos 1 GHz Cortex A8)	960 ms	280 ms	x 3.4
	Galaxy Nexus (OMAP 4460 1,2 GHz dual-core)	360 ms	80 ms	x 4.5
	Samsung Galaxy S2 (1.2 GHz dual-core ARM Cortex-A9)	340 ms	48 ms	x 7.0
	Samsung Galaxy S3 (1.4 GHz quad-core ARM Cortex-A9)	325 ms	49 ms	x 6.6
,	Motorola Xoom (Tegra 2: 1GHz dual-core)	210 ms	26 ms	x 8.0
	Nexus 7 (Tegra 3: 1.3 GHz quad-core)	180 ms	22 ms	x 8.2
	Intel AZ210 - Intel Orange San Diego (Intel Atom 1.6 Ghz Z2460 with HT - x86)	293 ms	59 ms	x 4.9

Android 4.0.3+

Conclusion

En bref

- La solution pour les problèmes de performance sur les calculs
- Intégration simplifiée

Pour la suite

- Calculs dans le GPU ?
- Meilleurs outils ?
- Maintenance par Google ?

Let IT be mobile

Merci!

- twitter : @sylvaingaland
- google plus : http://slvn.fr/+
- Code dispo sur : http://github.com/sgaland

Questions?

@sylvaingaland

http://slvn.fr/+