Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S == \iiint \{ \frac{1}{6} (2 \ \omega^{\alpha'}_{\alpha} (t_{1} \ \omega'_{\theta}^{\theta} - 2 t_{3} \ \omega'_{\kappa}^{k}) + 6 \ f^{\alpha\beta} \ t_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi^{-}} $ $4 t_{1} \ \omega^{\theta}_{\alpha} \partial_{i} f^{\alpha i} + 8 t_{3} \ \omega^{\kappa}_{\alpha} \beta_{i} f^{\alpha i} + 4 t_{1} \ \omega'_{i} \theta_{i} \partial^{i} f^{\alpha}_{\alpha} - 8 t_{2} \beta_{i} \beta_{i} \beta_{i} + 4 t_{3} \beta_{i} f^{k}_{\alpha} \partial^{i} f^{\alpha}_{\alpha} - 8 t_{3} \beta_{i} \beta_{i} \beta_{i} \partial^{i} \partial$

 $\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

 $f_{1^{-}}^{#2}$

 $\omega_{1^{-}}^{\#2}$

 $\omega_{1^{\bar{-}}}^{\#1}$

 $\omega_1^{\#2}{}_+^{\alpha\beta}$

 $\omega_1^{\#1}{}_+^{lphaeta}$

0

0

0

0

0

0

0

0

0

 $-\frac{t_1}{\sqrt{2}}$

 $\omega_{1}^{\#2} + ^{lpha_{i}}$

0

0

0

0

 $f_1^{\#1} \dagger^{lpha \prime}$

0

0

0

0

0

0

0

0

0

0

0

0

 $-\frac{\sqrt{2} (t_1 - 2t_3)}{3 (1 + 2 k^2) t_1 t_3}$

0

0

0

 $\sigma_{1}^{\#_{1}} \, \dagger^{\alpha}$

 $\tau_1^{\#1} + ^{\alpha\beta}$

0

0

0

0

0

 $\tau_1^{\#1} + ^{lpha}$

0

0

0

0

0

 $\sigma_{1}^{\#2} \, \dagger^{lpha}$

 $\frac{1}{3}\,\overline{i}\,\sqrt{2}\,\,k\,(t_1+t_3)$

0

 $\omega_{0}^{\#1}$ $f_{0}^{\#1}$

 $\sigma_{0}^{\#1}$ -

 $\tau_{0}^{\#1}$ -

 $i\sqrt{2}kt_3$

 $\frac{1}{(1+2k^2)^2t_3}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$

 $i k (t_1 -$

0

0

 $f_{1}^{\#1} +^{\alpha}$ $f_{1}^{\#2} +^{\alpha}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{i k t_1}{\sqrt{2}}$

0

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

0

0

 $\sigma_2^{\#1} \dagger^{\alpha\beta}$

 $f_{0+}^{#2} \omega_{0-}^{#1}$

 $\tau_{0}^{#2}$ $\sigma_{0}^{#1}$

0

0

 $-i\sqrt{2} kt_3$ 0

 $\tau_0^{\#1}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

 $2 k^2 t_3$

 $\frac{1}{3}$ $\vec{l} k (t_1 - 2 t_3)$

0

 $\frac{1}{6}(t_1+4t_3)$

0

0

0

 $\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$

0

0

0

 $\omega_{1}^{\#2} \, \dagger^{lpha}$

 $\frac{t_1-2t_3}{3\sqrt{2}}$ $\frac{t_1+t_3}{3}$

	Source co	$r_{0+}^{\#2} = 0$	$\tau_0^{\#1} - 2 i k c$	$\tau_{1}^{\#2\alpha} + 2\iota$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta}+\bar{l}$			
Μ	assi	ve a	and	ma	ssle	ess	spe	ctra	

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_1} > 0$
<	Polarisations:	5
?	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
	Parity:	Odd

าร

Jnitarity	condition

 $r_1 < 0 \&\& t_1 > 0$