

SGD with Variance Reduction beyond Empirical Risk Minimization

MCM 2017

Massil Achab

S. Gaiffas, E. Bacry, A. Guilloux

4th July 2017

CMAP, Ecole Polytechnique

Outline

- 1. Introduction
- 2. SGD and Variance Reduction
- 3. Beyond Empirical Risk Minimization
- 4. HSVRG: Hybrid SVRG
- 5. Theoretical Guarantees
- 6. Numerical Experiments

Most machine learning problems can be expressed as a convex optimization problem

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^d} \left(\frac{1}{n} \sum_{i=1}^n f_i(\theta) + g(\theta) \right),$$

- Usually, $f = \frac{1}{n} \sum_{i=1}^{n} f_i$ is a convex data fitting term (usually smooth), and g is a convex penalty on the predictor (smooth or not).
- Example (Lasso): $f_i(\theta) = (y_i \theta^\top x_i)^2$ and $g(\theta) = ||\theta||_1$.

Usual supervised machine learning framework

- **Data:** *n* observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., n$
- **Prediction function:** $h(x,\theta) \in \mathbb{R}$ parametrized by $\theta \in \mathbb{R}^d$
- Empirical Risk Minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) + g(\theta), \quad \text{with} \quad f_i(\theta) = \ell(y_i, h(x_i, \theta))$$

• **Examples:** linear regression, logistic regression, support vector machines, neural networks, . . .

Cox partial likelihood

- Goal: relate covariates of a patient to its survival time
- Cox regression model: regression that can extract information from patients whose failure time is not observed
- Semi-parametric model on the hazard function of a patient

$$\lim_{h\to 0} \frac{\mathbb{P}(t\leq T\leq t+h|t\leq T)}{h} = \lambda_0(t)\exp(\theta^\top x)$$

ullet Estimation of heta through maximization of the partial log-likelihood

$$\ell(\theta) = -\frac{1}{|D|} \sum_{i \in D} \left[-\theta^\top x_i + \log \left(\sum_{j \in R_i} \exp(\theta^\top x_j) \right) \right]$$

Vanilla algorithm to find $\hat{ heta}$

Proximal operator

The proximal operator of h is defined by

$$\mathrm{prox}_h(y) = \arg\min_{x \in \mathbb{R}^d} \{h(x) + 1/2 ||y - x||_2^2\},$$

where $||\cdot||_2$ is the usual Euclidean norm.

Proximal Gradient Descent

- ullet Given a starting point $heta_0$ and η small enough
- Until convergence, do

$$\theta^{t+1} \leftarrow \mathsf{prox}_{\eta \mathsf{g}} \left[\theta^t - \eta \nabla f(\theta^t) \right]$$

SGD and Variance Reduction

Context

- Large-scale and high-dimensional machine learning: both d, dimension of each observation, and n, number of observations, are large
- Consequence: computation of $\nabla f(\theta^t) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\theta^t)$ is time-consuming.
- Idea behind **Stochastic Gradient Descent**: replace $\nabla f(\theta^t)$ with a descent direction d^t , faster to compute

$$d^t = \nabla f(\theta^t) + \epsilon^t$$
 with $\mathbb{E}[\epsilon^t] = 0$.

Vanilla SGD

• The usual version of SGD from Robbins and Monro (1951) writes

$$egin{align} i_t &\sim \mathcal{U}[n] \ d^t &=
abla f(heta^t) + \left(
abla f_{i_t}(heta^t) - rac{1}{n} \sum_{j=1}^n f_j(heta^t)
ight) \ &=
abla f_{i_t}(heta^t) \end{split}$$

• **ERM** framework with linear prediction $h(x, \theta) = \theta^{\top} \Phi(x)$,

$$\nabla f_i(\theta) = \partial_2 \ell(y_i, \theta^\top \Phi(x_i)) \Phi(x_i),$$

then computing d^t is **n times faster** than computing $\nabla f(\theta)$.

SGD's high variance

Figure 1: Picture borrowed from Francis Bach's presentations.

SGD's high variance

Assumptions

We assume f is L-smooth i.e.

$$\forall x, y : ||\nabla f(x) - \nabla f(y)||_2 \le L||x - y||_2,$$

and f μ -strongly convex i.e.

$$\forall x, y : f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

Convergence rates

$$\mathbb{E}\left(f(\theta^t) - f(\theta^*)\right) = O(1/t) \text{ for Stochastic Gradient Descent}$$
$$= O(\rho^t) \text{ with } \rho < 1 \text{ for Gradient Descent}$$

The latter rate is called *linear convergence rate*.

Variance Reduction approach

Variance Reduction approach

- We want to compute $\mathbb{E}[X]$, and we can easily compute $\mathbb{E}[Y]$, where Y is highly correlated to X.
- We design the estimator $Z_{\alpha} = \alpha(X Y) + \mathbb{E}[Y]$. Then,

$$Var(Z_{\alpha}) = \alpha^{2}[Var(X) + Var(Y) - 2Cov(X, Y)].$$

- When Cov(X, Y) is high enough, $Var(Z_{\alpha}) \leq Var(X)$, giving the method its name.
- The standard approach uses $\alpha=1$, leading to an unbiased estimate $\mathbb{E}[Z_{\alpha}]=\mathbb{E}[X].$

SGD with Variance Reduction

- Surprisingly enough, recent findings (M. Schmidt, N. Le Roux & F. Bach, 2012), (R. Johnson & T. Zhang, 2013), (A. Defazio, F. Bach & S. Lacoste-Julien, 2014) proved that reducing the variance in SGD enables reaching a linear convergence rate.
- Descent directions of these algorithms

(SAG)
$$\theta \leftarrow \theta - \eta \left(\frac{\nabla f_i(\theta) - y_i}{n} + \frac{1}{n} \sum_{j=1}^n y_j \right),$$
(SAGA)
$$\theta \leftarrow \theta - \eta \left(\nabla f_i(\theta) - y_i + \frac{1}{n} \sum_{j=1}^n y_j \right),$$
(SVRG)
$$\theta \leftarrow \theta - \eta \left(\nabla f_i(\theta) - \nabla f_i(\tilde{\theta}) + \frac{1}{n} \sum_{j=1}^n \nabla f_j(\tilde{\theta}) \right).$$

• SAG's descent direction is biased ($\alpha=1/n$), while SAGA's and SVRG's are unbiased ($\alpha=1$)

Beyond Empirical Risk Minimiza-

tion

Beyond Empirical Risk Minimization

Remarks

- These methods work well for problems where computing $\nabla f_i(\theta)$ is n times faster than computing $\nabla f(\theta)$.
- True for Generalized Linear Models since $\nabla f_i(\theta)$ is colinear to x_i .
- In more complex problems, computing $\nabla f_i(\theta)$ can be long as computing $\nabla f(\theta)$.

How to adapt the previous algorithms to this new case ?

Cox model

• The negative Cox partial log-likelihood takes the form

$$-\ell(\theta) = \frac{1}{|D|} \sum_{i \in D} \left[-\theta^\top x_i + \log \left(\sum_{j \in R_i} \exp(\theta^\top x_j) \right) \right]$$

Likelihood and gradient

$$\begin{split} f_i(\theta) &= -\theta^\top x_i + \log \left(\sum_{j \in R_i} \exp(\theta^\top x_j) \right) \\ \nabla f_i(\theta) &= -x_i + \sum_{j \in R_i} \pi_\theta^i(j) x_j, \qquad \text{with} \qquad \pi_\theta^i(j) = \frac{\exp(\theta^\top x_j)}{\sum_{k \in R_i} \exp(\theta^\top x_k)} \end{split}$$

Gradient of a subfunction as expectation

- Each subfunction's gradient ∇f_i can be expressed as the expectation of a random variable.
- Computing the exact expectation is expensive due to the summation over all possible configurations k ∈ R_i.
- Our approach: consider $\nabla f_i(\theta)$ the expectation of a random variable, and approximate it using MCMC:

replace
$$\nabla f_i(\theta) = \mathbb{E}[G_i(\theta)]$$
 with $\widehat{\nabla} f_i(\theta) = \widehat{G}_i(\theta)$

HSVRG: Hybrid SVRG

Algorithm

Algorithm 1 Hybrid SVRG

```
1: for k = 1 to K do
  2:
             for t=0 to m-1 do
  3:
                  Pick i \sim \mathcal{U}[n]
                  \widehat{\nabla} f_i(\theta^t) \leftarrow \text{APPROXMCMC}(\theta^t, i, N_k).
  4:
                  d^t = \widehat{\nabla} f_i(\theta^t) - \nabla f_i(\widetilde{\theta}) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\widetilde{\theta})
  5:
                  \omega^{t+1} \leftarrow \theta^t - \gamma d^t
  6:
                  \theta^{t+1} \leftarrow \mathsf{prox}_{\alpha}(\omega^{t+1})
  7:
  8:
             end for
             Update \tilde{\theta} \leftarrow \frac{1}{m} \sum_{t=1}^{m} \theta^{t}, \theta^{0} \leftarrow \tilde{\theta}
  9:
             Compute \nabla f_i(\tilde{\theta}) for i = 1, \ldots, n
10:
11: end for
```

ApproxMCMC

APPROXMCMC(θ^t , i, N_k) outputs an approximation of $\nabla f_i(\theta^t)$ using N_k iterations of a MCMC. We focused on two implementations:

- Independent Metropolis-Hastings¹ (IMH)
- Adaptative Importance Sampling (AIS)

 $^{^{1}}$ with uniform proposal

Theoretical Guarantees

Assumptions

Assumption

We assume that the bias and the expected squared error of the Monte Carlo error $\eta = \widehat{G}_i(\theta) - \mathbb{E}[G_i(\theta)]$ can be bounded this way

$$||\mathbb{E}_t[\eta]|| \leq \frac{C_1}{N_k} \text{ and } \mathbb{E}_t[||\eta||^2] \leq \frac{C_2}{N_k},$$

where N_k is the length of the Markov chain.

Proposition

Suppose that there exists M>0 such that the proposal Q and the stationary distribution π satisfy $\pi(x)\leq MQ(x)$, for all x in the support of π . Then, the error η^t obtained by Algorithm IMH satisfies the previous assumption.

Remark: We can compute C_1 and C_2 from special cases (for Cox model, for instance).

Theorem

Theorem

Suppose that F=f+g is μ -strongly convex. Consider Algorithm **HSVRG**, with a phase length m and a step-size $\gamma \in (0, \frac{1}{16L})$ satisfying

$$\rho = \frac{1}{m\gamma\mu(1 - 8L\gamma)} + \frac{8L\gamma(1 + 1/m)}{1 - 8L\gamma} < 1. \tag{1}$$

Assuming there exists B>0 such that $\sup_{t>0}||\theta^t-\theta^*||_2\leq B$, we have:

$$\mathbb{E}[F(\tilde{\theta}^K)] - F(\theta^*) \le C\rho^K + D\sum_{k=1}^K \rho^{K-k} \frac{1}{N_k},\tag{2}$$

where
$$C = F(\theta^0) - F(\theta^*)$$
, and $D = \frac{3\gamma C_2 + BC_1}{1 - 8L\gamma}$.

Corollary

Corollary

In the previous theorem, the choice $N_k = k^{\alpha} \rho^{-k}$ with $\alpha > 1$ gives

$$\mathbb{E}[F(\tilde{\theta}^K)] - F(\theta^*) \le D'\rho^K,$$

where
$$D' = F(\theta^0) - F(\theta^*) + D \sum_{k>1} k^{-\alpha}$$
.

This entails that **HSVRG** achieves a **linear rate** under strong convexity.

Numerical Experiments

Experiments

We ran experiments on the Cox model with IMH with (uniform and adaptative proposal) and AIS (adaptative proposal).

Outlook: Conditional Random Fields

• CRFs model the conditional probability of a structured output $y \in \mathcal{Y}$ (such as a sequence of labels) given an input $x \in \mathcal{X}$ (such as a sequence of words) based on features F(x,y) and parameter θ using

$$\mathbb{P}(y|x,\theta) = \frac{\exp(\theta^{\top} F(x,y))}{\sum_{y'} \exp(\theta^{\top} F(x,y'))}.$$

Likelihood and gradient,

$$f_i(\theta) = -\log \mathbb{P}(y_i|x_i, \theta)$$

$$\nabla f_i(\theta) = -F(x_i, y_i) + \sum_{y' \in \mathcal{Y}} \mathbb{P}(y'|x_i, \theta)F(x_i, y')$$

Adaptative Importance Sampling

- IMH with uniform proposal outputs an estimate with high variance.
- Use Normalized Importance Sampling in APPROXMCMC.

$$I = \mathbb{E}_{p}[f(X)] = \mathbb{E}_{q}\left[f(X)\frac{p(X)}{q(X)}\right]$$

$$\widehat{J}_{n} = \frac{1}{n}\sum_{k=1}^{n}f(X^{(k)})\frac{p(X^{(k)})}{q(X^{(k)})}, \text{ with } X^{(k)} \sim q$$

$$\widehat{J}_{n} = \sum_{k=1}^{n}f(X^{(k)})\frac{p(X^{(k)})}{q(X^{(k)})} / \sum_{k=1}^{n}\frac{p(X^{(k)})}{q(X^{(k)})}, \text{ with } X^{(k)} \sim q$$

 \bullet Use $\pi_{\tilde{\theta}}$ as adaptative proposal, where $\tilde{\theta}$ is updated every phase.

Details for CRFs

• Apply this new $APPROXMCMC(\theta, i, N)$ to CRF outputs

$$\widehat{J}_{n} = -F(x_{i}, y_{i}) + \sum_{k=1}^{N} \frac{\exp((\theta - \widetilde{\theta})^{\top} F(x_{i}, y^{(k)}))}{\sum_{j=1}^{N} \exp((\theta - \widetilde{\theta})^{\top} F(x_{i}, y^{(j)}))} F(x_{i}, y^{(k)})$$

- The sequence $(y^{(k)})$ is sampled from $\mathbb{P}(\bullet|x_i,\tilde{\theta})$.
- We remind the true subgradient is

$$\nabla f_i(\theta) = -F(x_i, y_i) + \sum_{y \in \mathcal{Y}} \frac{\exp((\theta - \theta)^\top F(x_i, y))}{\sum_{y'} \exp((\theta - \tilde{\theta})^\top F(x_i, y'))} F(x_i, y)$$