

${ m BUM}-11$ ZKOUŠKA RÁZEM V OHYBU

Jméno:

St. skupina:

Autor cvičení: Ing. Libor Válka, CSc., Ing. Josef Zapletal, Ph.D., ÚMVI FSI VUT v Brně

NEZBYTNÉ ZNALOSTI, PŘÍPRAVA NA "testík"

Definice pojmů houževnatý materiál, křehký materiál, štěpný lom, tvárný lom, tranzitní lomové chování. U kterých kovů se projevuje změna charakteru porušení v závislosti na teplotě a proč? Uveďte základní faktory ovlivňující tranzitní chování. Nejčastěji používané tranzitní (přechodové) teploty určované na základě teplotní závislosti nárazové práce, příp. podílu tvárného lomu na lomové ploše. Zkouška rázem v ohybu.

Základní pojmy z oblasti lomové mechaniky – módy zatěžování, faktor intenzity napětí, lomová houževnatost, kritická délka trhliny, lomové chování křehkých materiálů.

Úkoly k řešení

- 1. Popište princip zkoušky rázem v ohybu (ZRO). Nakreslete (narýsujte) a okótujte standardní zkušební těleso pro ZRO a) s V-vrubem, b) s U-vrubem.
- 2. Odvoďte rovnici pro hodnotu nárazové práce při ZRO na Charpyho kladivu. Definujte její fyzi-kální význam. Pomocí odvozené rovnice vypočtěte a) nominální energii standardního rázového kladiva, b) výchozí úhel kladiva pro případ, kdy požadovaná nominální energie kladiva je 150 J.
- 3. Nakreslete schematicky teplotní závislost nárazové práce K a teplotní závislost vzhledu lomu (podíl tvárného lomu na lomové ploše). Vyznačte charakteristické oblasti tranzitní křivky a popište je. Do grafu zakreslete nejčastěji používané tranzitní teploty a uveďte, jak jsou definovány.
- 4. Experimentálně zjištěnými hodnotami nárazové práce KV a podílu tvárného lomu $P_{\rm L}$ na lomové ploše byly proloženy křivky $KV=\exp(A+Bt)$, resp. $P_{\rm L}=\exp(C+Dt)$, viz obr. 1.
 - a) Dosazením příslušných hodnot do regresních funkcí vypočtěte tranzitní teploty $t_{27\mathrm{J}}$, $t_{50\%}$ materiálů Mat. 1, Mat. 2 a Mat. 3. Při určování tranzitní teploty $t_{0,5}$ použijte pro výpočet hodnoty $KV_{\mathrm{stř}}$ rovnici $KV_{\mathrm{stř}} = KV_{\mathrm{max}}/2$. Výsledky seřaďte do tabulky (viz Tab. 1), tranzitní teploty zakreslete do grafů na obr. 1.
 - b) Vyjádřete se k vhodnosti použití jednotlivých materiálů při nízkých teplotách (jejich náchylnosti ke vzniku křehkého lomu).

Literatura

- 1. ANDERSON, T. Fracture mechanics: fundamentals and applications. 3rd ed. Boca Raton: Taylor & Francis, 2005, 621 s. ISBN 0-8493-1656-1.
- 2. VELES, Pavol. Mechanické vlastnosti a skúšanie kovov. 1. vyd. Bratislava: Alfa, 1985, 401 s.
- 3. PTÁČEK, L. a kol.: Nauka o materiálu I, CERM, 2003.
- 4. ČSN ISO 148–1 Kovové materiály Zkouška rázem v ohybu metodou Charpy. Část 1: Zkušební metoda.

ad 4. Experimentálně zjištěnými hodnotami nárazové práce KV a podílu tvárného lomu $P_{\rm L}$ na lomové ploše byly proloženy křivky $KV=\exp(A+Bt)$, resp. $P_{\rm L}=\exp(C+Dt)$, viz obr. 1.

- a) Dosazením příslušných hodnot do regresních funkcí vypočtěte tranzitní teploty $t_{27\mathrm{J}}$, $t_{50\%}$ materiálů Mat. 1, Mat. 2 a Mat. 3. Při určování tranzitní teploty $t_{0,5}$ použijte pro výpočet hodnoty $KV_{\mathrm{stř}}$ rovnici $KV_{\mathrm{stř}} = KV_{\mathrm{max}}/2$. Výsledky seřadte do tabulky (viz Tab. 1), tranzitní teploty zakreslete do grafů na obr. 1.
- b) Vyjádřete se k vhodnosti použití jednotlivých materiálů při nízkých teplotách (jejich náchylnosti ke vzniku křehkého lomu).

Regresní parametry, vstupní hodnoty pro výpočet

Mat. 1 — ocel 12013, nízkouhlíková ocel
$$KV = \exp(A+Bt); A=2.287, B=0,03277$$
 $P_{\rm L} = \exp(C+Dt); C=2.936, D=0.02170$ $KV_{\rm max} = 228.0~{\rm J}$

Mat. 2 — ocel 15320, Cr-Mo-V ocel, zušlechtěna na nízkou pevnost $KV = \exp(A+Bt); A=1.785, B=0.02069$ $P_{\rm L}=\exp(C+Dt); C=1.612, D=0.02080$ $KV_{\rm max}=127.0~{\rm J}$

Mat. 3 — ocel 15320, Cr-Mo-V ocel $KV = \exp(A + Bt); A = 2.869, B = 0.02476$ $P_{\rm L} = \exp(C + Dt); C = 2.677, D = 0.02404$ $KV_{\rm max} = 167.0 \; {\rm J}$

Tabulka 1: Tranzitní teploty – výsledky

Materiál	$t_{ m 27J}$ [°C]	$t_{50\%}$ [°C]	$t_{0,5}$ [°C]
Mat. 1			
Mat. 2			
Mat. 3			

Obrázek 1: Teplotní závislosti nárazové práce KVa podílu tvárného lomu $P_{\rm L}$