Review 5 A- Nomenclature and chemical formula

Ionic

electrons transferred

(metal) (nonmetal)

nagnetic attraction

☆ strongest type of bond

cross charges

cation anion first second -ide ending

always use empirical formulas

Transition Metals

use Roman Numerals Sn & Pb

Polyatomic Ions

use parentheses if cross charge to outside NEVER use prefixes

Covalent

electrons shared

CI :CI : nonmetal & nonmetal

☆ physically joined

always use prefixes

-ide ending on 2nd element

NEVER cross anything!

- 1. mono Cnever on 1st element
- 2. di
- 3. tri
- 4. tetra
- 5. penta
- 6. hexa
- 7. hepta
- 8. octa
- 9. nona
- 10. deca

NEVER use empirical formulas unless asked to

Crossover rule for ionic compounds

$$Al_{3+}O_{2-}=Al_{2}O_{3}$$

#12 Write formulas for compounds formed from these pairs of ions.

a.
$$NH_4^{+1}$$
 and SO_3^{-2}

Always use parenthesis when you have more than one polyatomic ion (positive or negative) to avoid interpreting it as 42.

b. calcium ion and phosphate ion

$$Ca_3(PO4)_2$$

Cations of metals from groups 1A, 2A, and 3A have constant charges and do NOT get Roman Numerals in their names

a.	Barium nitride	Ba ⁺²	N^{-3}	Ba_3N_2
b.	Indium Fluoride	In^{+3}	F ⁻¹	${\rm In} F_3$
c.	Calcium oxide	Ca ⁺²	O ⁻²	CaO
d.	Sodium nitride	Na ⁺¹	N^{-3}	Na_3N
e.	Magnesium chloride	Mg^{+2}	Cl ⁻¹	MgCl ₂
f.	Potassium oxide	K^{+1}	O ⁻²	K_2O
g.	Magnesium oxide	Mg^{+2}	O ⁻²	MgO
h.	Potassium sulfide	K^{+1}	5 ⁻²	K_2S
i.	Lithium nitride	Li*	N^{-3}	Li ₃ N
j.	Strontium fluoride	Sr ⁺²	F-1	SrF ₂
k.	Aluminum sulfide	Al ⁺³	5 ⁻²	Al_2S_3

Cations of Transition metals and metals from group 4A (Pb and Sn) and metals from group 5A (Bi) get Roman Numerals in their names

a.	SnO_2	oxide = O^{-2}	Tin (IV) oxide
b.	Mn_2O_7	oxide = O^{-2}	Manganese (VII) oxide
c.	FeN	nitride = N ⁻³	Iron (III) nitride
d.	Cu ₃ N ₂	nitride = N ⁻³	Copper (II) nitride
e.	TiF ₃	fluoride = F ⁻¹	Titanium (III) fluoride
f.	Cu ₂ S	sulfide = 5 ⁻²	Copper (I) sulfide
g.	Fe ₂ S ₃	sulfide = 5 ⁻²	Iron (III) sulfide
h.	CuBr	bromide = Br ⁻¹	Copper (I) bromide
i.	Co_3N_2	nitride = N ⁻³	Cobalt (II) nitride
j.	CoF ₂	fluoride = F ⁻¹	Cobalt (II) fluoride

Nomenclature of multivalent cations Systematic (new) common (old)

Symbol	Stock name	Classical name
Cu+	Copper(I) ion	Cuprous ion
Cu ²⁺	Copper(II) ion	Cupric ion
Fe ²⁺	Iron(II) ion	Ferrous ion
Fe ³⁺	Iron(III) ion	Ferric ion
*Hg ₂ ²⁺	Mercury(I) ion	Mercurous ion
Hg ²⁺	Mercury(II) ion	Mercuric ion
Pb ²⁺	Lead(II) ion	Plumbous ion
Pb ⁴⁺	Lead(IV) ion	Plumbic ion
Sn ²⁺	Tin(II) ion	Stannous ion
Sn ⁴⁺	Tin(IV) ion	Stannic ion
Cr ²⁺	Chromium(II) ion	Chromous ion
Cr3+	Chromium(III) ion	Chromic ion
Mn ²⁺	Manganese(II) ion	Manganous ion
Mn ³⁺	Manganese(III) ion	Manganic ion
Co ²⁺	Cobalt(II) ion	Cobaltous ion
Co ₃₊	Cobalt(III) ion	Cobaltic ion

Ire 4.10
oxidation numbers of elements in their compounds. The more common oxidation numbers are in color.

Ionic Compounds with Polyatomic Ions

a. Co(NO₃)₂ Cobalt (II) nitrate

b. NaNO₂ Sodium nitrite

c. Cu₃(PO₃)₂ Copper (II) phosphite

d. Ba(CN)₂ Barium cyanide

e. Al₂(5O₄)₃ Aluminum sulfate

f. KClO₃ Potassium chlorate

2.73 Fill the blanks in the following table.

Cation	Anion	Formula	Name
Ž			Magnesium bicarbonate
2		SrCl ₂	
Fe ³⁺	NO ₂		
			Manganese(II) chlorate
	8	SnBr ₄	
Co ²⁺	PO ₄ ³⁻		
Hg ₂ ²⁺	I ⁻		
9		Cu ₂ CO ₃	
0			Lithium nitride
A13+	S ²⁻		

Binary Covalent Compounds

a. CO Carbon monoxide

b. CO₂ Carbon dioxide

c. NO Nitrogen monoxide

d. NO₂ Nitrogen dioxide

e. SF₆ Sulfur hexafluoride

f. SiF₄ Silicon tetrafluoride

Note

- HCl Hydrogen chloride
- SiC Silicon carbide
- HBr Hydrogen bromide

Determine whether the compound is ionic or covalent and give the name:

	Ionic/Covalent/Acid?	Name
1)Na ₂ CO ₃	Ionic	Sodium carbonate
2) NaOH	Ionic	Sodium hydroxide
3) MgBr ₂	Ionic	Magnesium bromide
4)P ₄ S ₅	Covalent	Tetraphosphorus pentasulfide
6) O ₂	Covalent	Oxygen
7)FeCl ₂	Ionic	Iron (II) chloride
8) FeCl ₃	Ionic	Iron (III) chloride
9)SeF ₆	Covalent	Selenium hexafluoride
B ₂ Si	Covalent	Diboron silicide
Al ₂ S ₃	lonic	Aluminum sulfide
NCl ₃	Covalent	Nitrogen trichloride
PbO	Ionic	Lead (II) oxide

Ionic bonding: Lattice energy

Compound	Lattice Energy (kJ mol ⁻¹)	Compound	Lattice Energy (kJ mol ⁻¹)
NaF	910	MgCl ₂	2326
NaCl	787	SrCl ₂	2127
NaBr	732		
Nal	682	MgO	3795

Some Bond Enthalpies of Diatomic Molecules

Bond	Bond Enthalpy (kJ/mol)
H - F	568.2
H — C1	431.9
H-Br	366.1
H-I	298.3
C1—C1	242.7
Br - Br	192.5

• B

• A

I-I	151.0
	100.1

C

H-H	436.4
o = o	498.7
N = N	941.4

To be continued