MA553: Spring 2016 Homework

Carlos Salinas

April 28, 2016

CHAPTER 1

Course Notes

These notes roughly correspond to the three sections (by the same name) on groups, rings and fields from Dummit and Foote's *Abstract Algebra* [?]. I also make nominal use of Herstein's *Topics in Abstract Algebra* [?]

1.1 Group Theory

1.2 Rings

1.3 Field Theory

Homework (Spring 2016)

2.1 Homework 1

Problem 2.1. Let G be a group, $a \in G$ an element of finite order m, and n a positive integer. Prove that

$$|a^n| = \frac{m}{\gcd(m,n)}.$$

Proof. Without loss of generality, we may assume n < m; otherwise, by the fundamental theorem of arithmetic, there exist q and r with r < m such that n = qm + r so $a^n = a^{qm+r} = a^{qm}a^r = a^r$.

Problem 2.2. Let *G* be a group, and let *a*, *b* be elements of finite order *m*, *n* respectively. Show that if ba = ab and $\langle a \rangle \cap \langle b \rangle = \{e\}$, then |ab| = lcm(m, n).

Proof. ■

Problem 2.3. Let *G* be a group and *H*, *K* normal subgroups with $H \cap K = \{e\}$. Show that

- (a) hk = kh for every $h \in H$, $k \in K$.
- (b) HK is a subgroup of G with $HK \simeq H \times K$.

Proof. ■

Problem 2.4. Show that A_4 has no subgroup of order 6 (although 6 | $12 = |A_4|$).

Proof. ■

2.2 Homework 2

Proof.

Problem 2.5. Let G be the group of order $2^3 \cdot 3$, $n \ge 2$. Show that G has a normal 2-subgroup $\ne \{e\}$. **Proof. Problem 2.6.** Let G be a group of order p^2q , p and q primes. Show that the Sylow p-Sylow subgroup or the q-Sylow subgroup of G is normal in G. **Proof. Problem 2.7.** Let G be a subgroup of order pqr, p < q < r primes. Show that the r-Sylow subgroup of G is normal in G. **Proof. Problem 2.8.** Let G be a group of order n and let $\varphi: G \to S_n$ be given by the action of G on G via translation.

(a) For $a \in G$ determine the number and the lengths of the disjoint cycles of the permutation $\varphi(a)$.

(b) Show that $\varphi(G) \notin A_n$ if and only if n is even and G has a cyclic 2-Sylow subgroup.

(c) If n = 2m, m odd, show that G has a subgroup of index 2. **Proof. Problem 2.9.** Show that the only simple groups $\neq \{e\}$ of order < 60 are the groups of prime order.

2.3 Homework 3

Problem 2.10. Let G be a finite group, p a prime number, N the intersection of all p-Sylow subgroups of G. Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof.

Problem 2.11. Let *G* be a group of order 231 and let *H* be an 11-Sylow subgroup of *G*. Show that $H \subset Z(G)$.

Proof. ■

Problem 2.12. Let $G = \{e, a_1, a_2, a_3\}$ be a non-cyclic group of order 4 and define $\varphi \colon S_3 \to \operatorname{Aut}(G)$ by $\varphi(\sigma)(e) = e$ and $\varphi(\sigma)(a_1) = a_{\sigma(i)}$. Show that φ is well-defined and an isomorphism of groups.

Proof. ■

Problem 2.13. Determine all groups of order 18.

Proof. ■

2.4 Homework 4

Problem 2.14 . Let p be a prime and let G be a nonAbelian group of order p^3 . Show that $G' = Z(G)$.
Proof.
Problem 2.15 . Let p be an odd prime and let G be a nonAbelian group of order p^3 having an element of order p^2 . Show that there exists an element $b \notin \langle a \rangle$ of order p .
Proof. ■
Problem 2.16. Let p be an odd prime. Determine all groups of order p^3 .
Proof.
Problem 2.17. Show that $(S_n)' = A_n$.
Proof.
Problem 2.18 . Show that every group of order < 60 is solvable.
Proof.
Problem 2.19. Show that every group of order 60 that is simple (or not solvable) is isomorphic to A_5 .
Proof.

2.5 Homework 5

Problem 2.20. Find all composition series and the composition factors of D_6 .

Proof.

Problem 2.21. Let T be the subgroup of $GL(n, \mathbb{R})$ consisting of all upper triangular invertible matrices. Show that T is solvable.

Proof.

Problem 2.22. Let $p \in \mathbb{Z}$ be a prime number. Show:

- (a) $(p-1)! \equiv -1 \mod p$.
- (b) If $p \equiv 1 \mod 4$ then $x^2 \equiv -1 \mod p$ for some $x \in \mathbb{Z}$.

Proof.

Problem 2.23. (a) Show that the following are equivalent for an odd prime number $p \in \mathbb{Z}$:

- (i) $p \equiv 1 \mod 4$.
- (ii) $p = a^2 + b^2$ for some a, b in \mathbb{Z} .
- (iii) p is not prime in $\mathbb{Z}[i]$.
- (b) Determine all prime ideals of $\mathbb{Z}[i]$.

2.6 Homework 6

Problem 2.24. Let R be a domain. Show that R is a UFD if and only if every nonzero nonunit in R is a product of irreducible elemnets and the intersection of any two principal ideals is again principal.

Problem 2.25. Let R be a PID and p a prime ideal of R[X]. Show that p is principal or p = (a, f) for some $a \in R$ and some monic $f \in R[X]$.

Proof. ■

Problem 2.26. Let k be a field and $n \ge 1$. Show that $Z^n + Y^3 + X^2 \in k(X,Y)[Z]$ is irreducible.

Proof. ■

Problem 2.27. Let k be a field of characteristic zero and $n \ge 1$, $m \ge 2$. Show that $X_1^n + \dots + X_m^n - 1 \in k[X_1, \dots, X_m]$ is irreducible.

Proof. ■

Problem 2.28. Show that $X^{3^n} + 2 \in \mathbb{Q}(i)[X]$ is irreducible.

Proof. ■

2.7 Homework 7

Problem 2.29. Let $k \in K$ and $k \in L$ be finite field extensions contained in some field. Show that:

- (a) $[KL : L] \le [K : k]$.
- (b) $[KL:k] \leq [K:k][L:k]$.
- (c) $K \cap L = k$ if equality holds in (b).

Proof.

Problem 2.30. Let k be a field of characteristic $\neq 2$ and a, b elements of k so that a, b, ab are not squares in k. Show that $[\boxtimes k(\sqrt{a}, \sqrt{b}) : k] \boxtimes = 4$.

Proof.

Problem 2.31. Let *R* be a UFD, but not a field, and write K := Quot(R). Show that $[\bar{K} : k] = \infty$.

Proof. ■

Problem 2.32. Let $k \in K$ be an algebraic field extension. Show that every k-homomorphism $\delta \colon K \to K$ is an isomorphism.

Proof.

Problem 2.33. Let *K* be the splitting field of $X^6 - 4$ over \mathbb{Q} . Determine *K* and $[K : \mathbb{Q}]$.

2.8 Homework 8

Problem 2.34. Let k be a field, $f \in k[X]$ a polynomial of degree $n \ge 1$, and K the splitting field of f over k. Show that $[K : k] \mid n!$.

Proof. ■

Problem 2.35. Let k be a field and $n \ge 0$. Define a map $\Delta_n : k[X] \to k[X]$ by $\Delta_n(\sum a_i X^i) := \sum a_i \binom{i}{n} X^{i-n}$. Show that

- (a) Δ_n is k-linear, and for $f, g \in k[X]$, $\Delta_n(fg) = \sum_{j=0}^n \Delta_j(f) \Delta_{n-j}(g)$.
- (b) $f^{(n)} = n! \Delta_n(f)$.
- (c) $f(x+a) = \sum \Delta_n(f)(a)X^n$.
- (d) $a \in k$ is a root of f of multiplicity n if and only if $\Delta_i(f)(a) = 0$ for $0 \le i \le n 1$ and $\Delta_n(f)(a) \ne 0$.

Proof. ■

Problem 2.36. Let $k \in K$ be a finite field extension. Show that k is perfect if and only if K is perfect.

Proof. ■

Problem 2.37. Let K be the splitting field of $X^p - X - 1$ over $k = \mathbb{Z}/p\mathbb{Z}$. Show that $k \in K$ is normal, separable, of degree p.

Proof. ■

Problem 2.38. Let k be a field of characteristic p > 0, and k(X, Y) the field of rational functions in two variables.

- (a) Show that $[\boxtimes k(X,Y):k(X^p,Y^p)]\boxtimes = p^2$.
- (b) Show that the extension $k(X^p, Y^p) \in k(X, Y)$ is not simple.
- (c) Find infinitely many distinct fields L with $k(X^p, Y^p) \subset L \subset k(X, Y)$.

2.9 Homework 9

Problem 2.39. Let $k \in K$ be a finite extension of fields of characteristic p > 0. Show that if $p \nmid [K : k]$, then $k \in K$ is separable.

Proof. ■

Problem 2.40. Let $k \in K$ be an algebraic extension of fields of characteristic p > 0, let L be an algebraically closed field containing K, and let $\delta \colon k \to L$ be an embedding. Show that $k \in K$ is purely inseparable if and only if there exists exactly one embedding $\tau \colon K \to L$ extending δ .

Proof. ■

Problem 2.41. Let $k \in K = k(\alpha, \beta)$ be an algebraic extension of fields of characteristic p > 0, where α is separable over k and β is purely inseparable over k. Show that $K = k(\alpha + \beta)$.

Proof. ■

Problem 2.42. Let $f(x) \in \mathbb{F}_q[X]$ be irreducible. Show that $f(X) \mid X^{q^n} - X$ if and only if deg $f(X) \mid n$.

Proof. ■

Problem 2.43. Show that $\operatorname{Aut}_{\mathbb{F}_q}(\bar{\mathbb{F}}_q)$ is an infinite Abelian group which is torsionfree (i.e., δ^n = id implies δ = id or n = 0).

Proof.

Problem 2.44. Show that in a finite field, every element can be written as a sum of two perfect squares.