

14

## Waves

## **General Equation of Wave Motion**

$$\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}$$

$$y(x,t) = f\left(t \pm \frac{x}{v}\right)$$

where, y(x, t) should be finite everywhere.

$$f\left(t + \frac{x}{v}\right)$$
 represents wave travelling in –ve x-axis.

$$f\left(t - \frac{x}{v}\right)$$
 represents wave travelling in + ve x-axis.

$$y = A \sin (\omega t \pm kx + \phi)$$

# Terms Related to Wave Motion (For 1-D Progressive Sine Wave)

Wave Number (or Propagation Constant) (k)

$$k = 2\pi / \lambda = \frac{\omega}{v} \left( \text{rad m}^{-1} \right)$$

#### **Phase of Wave**

The argument of harmonic function ( $\omega t \pm kx + \phi$ ) is called phase of the wave.

Phase difference ( $\Delta \phi$ ): difference in phases of two particles at any time *t*.

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$$
 where  $\Delta x$  is path difference

Also 
$$\Delta \phi = \frac{2\pi}{T} \cdot \Delta t$$

## **Speed of Transverse Wave Along the String**

$$v = \sqrt{\frac{T}{\mu}}$$
 where  $T = Tension$ 

 $\mu$  = mass per unit length

## **Velocity of Longitudinal Waves**

- Velocity of longitudinal waves in solid,  $v = \sqrt{\frac{Y}{\rho}}$
- \* Velocity of longitudinal waves in liquid and gas,  $v = \sqrt{\frac{K}{\rho}}$  where,  $Y \to Young$ 's modulus,  $K \to Bulk$  modulus.

#### **Newton's Formula:**

Velocity of sound in gas,  $v = \sqrt{\frac{P}{\rho}}$ 

#### Laplace Formula

$${\bf v}=\sqrt{\frac{\gamma P}{\rho}}$$
 , where  $\gamma=\frac{C_P}{C_V}$  and  ${\bf P}=$  adiabatic pressure.

## **Power Transmitted Along the String**

Average Power  $\langle P \rangle = 2\pi^2 f^2 A^2 \mu v$ 

Intensity  $I = \frac{\langle P \rangle}{s} = 2\pi^2 f^2 A^2 \rho v$ 

#### **Reflection of waves**

If we have a wave

 $y_i(x, t) = a \sin(wt - kx)$  then,

(i) Equation of wave reflected at a rigid boundary  $y_r(x, t) = a \sin(kx + wt + \pi)$ or  $y_r(x, t) = a \sin(kx + wt)$ 

or  $y_r(x, t) = -a \sin(kx + wt)$ 

i.e. the reflected wave is 180° out of phase.

(ii) Equation of wave reflected at an open boundary  $y_r(x, t) = a \sin(kx + wt)$ i.e. the reflected wave is in phase with the incident wave.

## **Standing/Stationary Waves**

$$y_1 = A \sin (\omega t - kx + \theta_i)$$

$$y_2 = A \sin (\omega t - kx + \theta_2)$$

$$y_1 + y_2 = 2A\cos\left(kx + \frac{\theta_2 - \theta_1}{2}\right)\sin\left(\omega t + \frac{\theta_1 + \theta_2}{2}\right)$$

The quantity  $2A\cos\left(kx + \frac{\theta_2 - \theta_1}{2}\right)$  represents resultant

amplitude at x. At some position resultant amplitude is zero these are called **nodes**. At some positions resultant amplitude is 2A, these are called **antinodes**.

Distance between successive nodes or antinodes =  $\frac{\lambda}{\lambda}$ 

Distance between adjacent nodes and antinodes =  $\lambda/4$ .

All the particles in same segment (portion between two successive nodes) vibrate in same phase.

Since nodes are permanently at rest so energy can not be transmitted across these.

#### **Vibrations of Strings (Standing Wave)**

#### **Fixed at Both Ends**

| First harmonics<br>or<br>Fundamental frequency | $L = \frac{\lambda}{2}, f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$  |  |
|------------------------------------------------|-------------------------------------------------------------------|--|
| Second harmonics or First overtone             | $L = \frac{2\lambda}{2}, f_2 = \frac{2}{2L} \sqrt{\frac{T}{\mu}}$ |  |
| Third harmonics or<br>Second overtone          | $L = \frac{3\lambda}{2}, f_3 = \frac{3}{2L} \sqrt{\frac{T}{\mu}}$ |  |
| $n^{th}$ harmonics or $(n-1)^{th}$ overtone    | $L = \frac{n\lambda}{2}, f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$ |  |

#### String Free at One End

| First harmonics<br>or<br>Fundamental frequency              | $L = \frac{\lambda}{4}, f_1 = \frac{1}{4L} \sqrt{\frac{T}{\mu}}$                   |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Third harmonics or First overtone                           | $L = \frac{3\lambda}{4}, f = \frac{3}{4L} \sqrt{\frac{T}{\mu}}$                    |  |
| Fifth harmonics or Second overtone                          | $L = \frac{5\lambda}{4}, f_5 = \frac{5}{4L} \sqrt{\frac{T}{\mu}}$                  |  |
| (2n + 1) <sup>th</sup> harmonic or n <sup>th</sup> overtone | $L = \frac{(2n+1)\lambda}{4},$ $f_{2n+1} = \frac{(2n+1)}{4L} \sqrt{\frac{T}{\mu}}$ |  |

### **Organ Pipes**

1. In a closed organ pipe only odd harmonics are present.

$$v_1 = \frac{V}{4L}$$
 (fundamental)

 $v_2 = 3v$  (third harmonic or first overtone)

 $v_3 = 5v$ 

 $v_n = (2n-1)v$ 

2. In an open organ pipe both odd and even harmonics are present.

$$v'_1 = \frac{V}{2L} = v'$$
 (first harmonic)

 $v'_2 = 2v'$  (second harmonic or first overtone)

 $v_3 = 3v$ 

 $v'_n = (2n-1)v'$ 

 Resonance tube: If l<sub>1</sub> and l<sub>2</sub> are the first and second resonance length with a tuning fork of frequency 'v' then the speed of sound.

$$v = 4v(L_2 + 0.3D)$$

where, D = internal diameter of resonance tube  $v = 2\nu(l_2 + l_1)$ 

End correction =  $0.3D = \frac{l_2 - l_1}{2}$ 

#### **Beats Frequency**

Beat frequency = Difference in frequency of two sources
 No. of beats per second.

beat frequency =  $|v_1 - v_2|$ 

- $v_2 = v_1 \pm \text{beat}$
- ❖ Beat frequency is always a positive value. This fact can be used to decide about + or − sign in the above equation.

## **Doppler Effect in Sound**

1. If V,  $V_o$ ,  $V_s$  and  $V_m$  are the velocity of sound, observer, source and medium respectively, then the apparent frequency

$$v = \frac{V + V_m \pm V_o}{V + V_m \mp V_s} \times v$$

2. If the medium is at rest  $(v_m = 0)$ , then

$$\mathbf{v}' = \frac{V \pm V_o}{V \mp V_s} \times \mathbf{v}$$

