Plan for this Afternoon

Character state-dependent diversification

* Theory: Speciation, extinction, and trait transitions

* Practical: Using BiSSE

Break

Biogeography

- * Theory: Modeling range shifts and geographic mode of speciation
- * Practical
 - Using DEC
 - Using ClaSSE

Outline

Character State-Dependent Diversification

Motivating Biological Questions Methods History How BiSSE Works Current State of Methods

Biogeography

Motivating Biological Questions

Macroevolutionary processes

- * Traits that affect speciation or extinction
 - o Is this trait a key innovation?
 - o Does species-level selection act on this trait?
- * Trait evolution
 - o How quickly does this trait evolve?
 - o Is evolution of this trait irreversible?

Central point: Questions of trait evolution and diversification are intrinsically linked. . .

Methods History

Some methods consider these processes separately

- * Lineage diversification: sister clades (Mitter et al. 1988)
- * Trait evolution: models like sequence evol. (Pagel 1999; Lewis 2001)

Methods History

Some methods consider these processes separately

- * Lineage diversification: sister clades (Mitter et al. 1988)
- * Trait evolution: models like sequence evol. (Pagel 1999; Lewis 2001)

But asymmetry in one process can mislead inference of other

- * Simulation demonstration (Maddison 2006)
- * BiSSE model developed as a solution (Maddison et al. 2007) "Binary State Speciation and Extinction"

Input data

- * "Known" tree
- * Observed tip states

Goal

* Likelihood of data under 6-parameter model

Input data

- * "Known" tree
- * Observed tip states

Goal

* Likelihood of data under 6-parameter model

Approach

- * Evolve two probability vectors down the tree
 - \circ Clade probabilities, $D_{Ni}(t)$
 - \circ Extinction probabilities, $E_i(t)$

Within branches

[board: walk down from tips]

Within branches

At nodes

$$D_{A0}(t_A) = D_{N0}(t_A)D_{M0}(t_A)\lambda_0$$

$$D_{A1}(t_A) = D_{N1}(t_A)D_{M1}(t_A)\lambda_1$$

[board: walk through node]

At the root

- * Have $D_{R0}(t_R)$ and $D_{R1}(t_R)$
- * Combine them to get the overall likelihood of the data

The result

- * Likelihood of the data given the model
 - Data = tree shape and tip states
 - Model = BiSSE with 6 parameter values

Then Bayesian inference, etc...

[board: root weightings]

Current State of Methods

BiSSE is a smart approach

- * Processes suited to biological questions
- * Correct algorithm and implementations

Caution 1: Correlation, not causation

* Could be other, related trait (Maddison et al. 2007)

Current State of Methods

BiSSE is a smart approach

- * Processes suited to biological questions
- * Correct algorithm and implementations

Caution 1: Correlation, not causation

* Could be other, related trait (Maddison et al. 2007)

Caution 2: Correlations reported when not appropriate

- * Phylogenetic pseudoreplication
- Other diversification rate heterogeneity
 (Maddison & FitzJohn 2015; Rabosky & Goldberg 2015)

Current State of Methods

Caution 2: Correlations often reported when not appropriate

What do we do?

- Less-model-based approaches
 (Rabosky & Huang 2016; Rabosky & Goldberg 2017)
- * Add other processes to BiSSE e.g., hidden state (Beaulieu & O'Meara 2016)
- * Ongoing research on other approaches...

Outline

Character State-Dependent Diversification

Biogeography

Trait Coding
Range Shifts
Geographic Mode of Speciation
Methods

Biogeography

Why is "biogeography" a topic this week?

- * Geographic range trait applies to all organisms
- * Modeling it raises interesting methodological considerations
 - How to code the trait
 - Anagenetic and cladogenetic trait change
 - Geology informs time-stratified rate matrices

Trait Coding

Usual traits: discrete values, maybe some uncertainty **Geographic range:** often multiple values simultaneously **Approach:** model states are all combinations of areas

[board: triminoes]

Trait Coding

For 3 areas...

... these states are possible:

АВ	С
absent:	
present:	

picture	bits	index
	0 0 0	0
	001	1
	0 1 0	2
	0 1 1	3
	100	4
	101	5
	110	6
	1 1 1	7

Range Shifts

Range expansion or contraction

- * State transition for one species

 Anagenetic change
- * Dispersal: range expansion

* Extirpation (a.k.a. local extinction): range contraction

[board: more examples]

Range Shifts

Which transitions to allow is your design decision. For example:

	to:							
from:								
	_	0	0	0	0	0	0	0
	e	_	0	d	0	d	0	0
	e	0	_	d	0	0	d	0
	0	e	e	_	0	0	0	2 d
	e	0	0	0	_	d	d	0
	0	e	0	0	e	_	0	2 d
	0	0	e	0	e	0	_	2 d
	0	0	0	e	0	e	e	_

Geographic Mode of Speciation

Range changes "during" speciation

- * State change as one species splits into two Cladogenetic change
 - Speciation within one region
 - Speciation between regions
 - Speciation with dispersal

Many possibilities. Which ones to allow is your design decision.

[board: more examples]

Methods

DEC

- Dispersal-Extinction-Cladogenesis
 (Ree et al. 2005; Ree & Smith 2008; Landis et al. 2013; Matzke 2014)
- * Range evolution on a fixed tree

ClaSSE (GeoSSE)

- * Cladogenetic (Geographic) State Speciation and Extinction (Goldberg et al. 2011; Goldberg & Igić 2012)
- * Range evolution during a birth-death process

Methods: DEC

Anagenetic range change

- * Along branches
- * Rates of dispersal and local extinction

Cladogenetic range change

- * At nodes
- * Probabilities of the various modes
- * A logical problem: nodes "hidden" by extinction

Methods: ClaSSE

Anagenetic range change

- * Along branches
- * Rates of dispersal and local extinction

Cladogenetic range change

- * At all speciation events
- * Rates of speciation, via the various modes

Global extinction

- * Branches pruned from the tree
- * Allows for hidden nodes

Methods: BiSSE (MuSSE)

Within branches

At nodes

$$D_{Ai}(t_A) = \lambda_i D_{Ni}(t_A) D_{Mi}(t_A)$$

[board: N, M reminder]

Methods: ClaSSE

Within branches

At nodes

$$D_{Ai}(t_A) = rac{1}{2} \sum_{j,k} \lambda_{ijk} \left[D_{Nj}(t_A) D_{Mk}(t_A) + D_{Nk}(t_A) D_{Mj}(t_A) \right]$$

Methods: ClaSSE

One example of parameterizing ClaSSE for biogeography:

Two areas:

Three states:

Dispersal:

$$q_{13}=d_B$$

$$q_{23}=d_A$$

Local extinction:

$$q_{31}=e_A$$

$$q_{32}=e_B$$

Global extinction:

$$\mu_1 = e_B$$

$$\mu_2 = e_A$$

Speciation:

$$\lambda_{111} = s_B$$

$$\lambda_{222} = s_A$$

$$\lambda_{312} = \lambda_{321}$$

$$\lambda_{313} = \lambda_{331} = s_B$$
 $\lambda_{323} = \lambda_{332} = s_A$

$$\lambda_{323}=\lambda_{332}=s_A$$

$$= s_{AB}$$

(all other rates are 0)