Tema 2. Análisis léxico

- 1. Introducción
- 2. Especificación de un analizador léxico
 - 2.1. Expresiones regulares
 - 2.2. Autómatas finitos
- 3. Implementación de un analizador léxico
 - 3.1. De una E.R. a un AF mínimo
 - 3.2. Problemas prácticos
- 4. Generadores de analizadores léxicos

1. Introducción

Funciones del analizador léxico

- Lee secuencia de caracteres y devuelve secuencia de símbolos:
 - Manejo de fichero de entrada
 - Salta del código fuente comentarios, espacios en blanco, tabuladores,...
 - Hace corresponder los mensajes de error con la línea de código donde se produce.
 - A veces realiza labores de preprocesador

No tiene porqué ser una fase individual.

Definiciones

• Token:

grupo o clase de caracteres con un significado colectivo.

Lexema:

Instancia particular de un token: Secuencia de caracteres en el programa fuente que se corresponden con un patrón.

• Patrón:

Regla que describe cómo se forma un token.

¿Cómo se especifican los tokens (patrones)? Mediante expresiones regulares

2. Especificación de un A.L.

2.1. Expresiones regulares

Repaso: algunas definiciones

Alfabeto: Conjunto finito de símbolos. Ej. {a, b, c}

Cadena sobre un alfabeto: Secuencia finita y ordenada de símbolos de un alfabeto (también llamada sentencia o palabra).

Lenguaje: Conjunto de cadenas sobre un alfabeto.

```
Operaciones sobre lenguajes (conjuntos):

unión de L y M, L U M = {s | s está en L o s está en M}

concatenación de L y M

LM = {st | s está en L y t está en M}

Clausura de Kleene de L, L* = L° U L¹ U L²+....

L° = {E}, L¹ = L, L² = L L, L³ = L² L

Clausura positiva de L, L+ = L¹ U L² U ....
```

Ejemplo:

 $L=\{aa, bb, cc\}, M=\{abc\}$

Expresión regular (ER)

- Dado un alfabeto S, una expresión regular (ER) sobre S se define como:
 - Ø es una ER que denota al conjunto Ø.
 - ε es una ER que denota al conjunto {ε}.
 - a ∈ S es una ER que denota al conjunto { a }.
 - Si r y s son ER denotando a los lenguajes L_r y L_s entonces:
 - r | s es una ER que denota $L_r \cup L_s$
 - $r \cdot s$ es una ER que denota $L_r \cdot L_s$
 - r* es una ER que denota L_r*

Definición regular

 Podemos dar nombres a las ER para construir ER más complejas

$$-d_{1} - r_{1}$$
 $r_{1} \in ER \text{ sobre } \Sigma^{*}$
 $-d_{2} - r_{2}$ $r_{2} \in ER \text{ sobre } \Sigma^{*} \cup \{d_{1}\}$
 $-...$
 $-d_{n} - r$ $r_{n} \in ER \text{ sobre } \Sigma^{*} \cup \{d_{1}, ..., d_{n-1}\}$

• Ejemplo:

```
letra -> A | B | C | .... | Z | a | b | ..... | z digito -> o | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 identificador -> letra (letra | digito) *
```

```
letra \rightarrow a | ... | z | A | ... | Z
dígito \rightarrow 0 | ... | 9
identificador → letra (letra | dígito)*
constante_numérica → constante_entera | constante_real
constante_entera \rightarrow dígito (dígito)*
constante_real \rightarrow constante_entera . (dígito)*
símbolo_especial → asignación | operador_relacional
                      | subrango | operador_aritmético
                      | separador | palabra_reservada
símbolos → identificador | constante_numérica
               | símbolo_especial
```

2.2. Autómatas finitos

Reconocedores: AFN

- Un *reconocedor* es un programa que toma una cadena x como entrada y responde "si" si es una sentencia del lenguaje, o "no" en otro caso.
- Una ER puede ser convertida en un reconocedor construyendo un autómata finito, que podrá ser determinista o no-determinista.
- Un autómata finito no-determinista (AFN) es un modelo matemático que consiste en: (una 5-tupla)

NFA =
$$(Q, \Sigma, \delta, q_o, F)$$

$$F \subseteq Q$$
; $q_o \in Q$; $\delta: Q \times (\Sigma \cup \{\mathcal{E}\}) \to \mathsf{P}(Q)$

- Un conjunto de estados Q
- Un conjunto de símbolos de entrada
- Una función de transición.
- Un estado q_o que se distingue como estado inicial
- Un conjunto de estados F que se distinguen como estados finales.

AFN

- Un AFN es no-determinista si:
 - Un mismo símbolo puede etiquetar dos o más transiciones que salen del mismo estado
 - La cadena vacía etiqueta alguna transición.
- Un AFN acepta una cadena de entrada x si y solo si hay algún camino en el grafo de transición etiquetado con los símbolos de la cadena desde el estado inicial a algún estado de aceptación.
- Ejemplo:
 - ¿Qué lenguaje reconoce el AFN?

AFD

- Se puede mejorar la complejidad temporal usando autómatas finitos deterministas en lugar de AFN.
- Un AF es determinista (AFD) si
 - No hay transiciones vacías
 - No hay ningún estado con más de un arco de salida etiquetado con el mismo símbolo

AFD = (Q,
$$\Sigma$$
, δ , q₀, F)

•
$$F \subseteq Q$$
; $q_0 \in Q$; $\delta : Q \times \Sigma \longrightarrow Q$

Ejemplo

3. Implementación de un A.L.

3.1. De una ER a un AF mínimo

Equivalencias

E.R. \leftrightarrow AFND con ϵ -trans \leftrightarrow AFND \leftrightarrow AFD

- Construir un AFN para reconocer la unión de todos los patrones
- Convertir el AFN en un AFN sin E-trans
- Convertir el AFN en un AFD.
- Minimizar el AFD.
- Implementar el AFD

3.2. Problemas prácticos

Problemas prácticos

- Las palabras clave pueden:
 - Escribirse como expresiones regulares y ser incluidas en el AFD. Esto incrementará el tamaño del AFD
 - Tratarlas como excepciones de los identificadores
 (buscándolas en una tabla de palabras reservadas)
- El analizador sintáctico **llama** al léxico y éste último lo devuelve un token.
- Cuando el analizador léxico encuentra "==" ¿Qué token o tokens reconoce?
 - Reconoce siempre el token más largo
 - Usa varios caracteres de anticipación

Problemas prácticos

