ModeNet: Mode Selection Network for Learned Video Coding

Paper ID: 25

Théo LADUNE^{1,2}, Pierrick PHILIPPE¹, Wassim HAMIDOUCHE², Lu ZHANG², Olivier DÉFORGES²

Orange Labs, France — ²INSA Rennes, France theo.ladune@orange.com

IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Sept. 2020

Introduction

Video signals exhibit many temporal redundancies

Three consecutive frames of a video

• Video codecs leverage them with inter-frame coding *i.e.* using information from already received frames $\hat{\mathbf{x}}_{< t} = \{\hat{\mathbf{x}}_{t-1}, \ \hat{\mathbf{x}}_{t-2} \ldots \}$ to lower the amount of data needed to transmit \mathbf{x}_t

Ladune et al.

Introduction - Problem statement

- Recent learning-based codecs^{1,2,3} implement inter-frame coding by
 - 1. Computing $\tilde{\mathbf{x}}_t$ a prediction of \mathbf{x}_t
 - 2. Residual (i.e. prediction error $\mathbf{r} = \tilde{\mathbf{x}}_t \mathbf{x}_t$) coding with an Auto-Encoder

• Improve 2: Given a prediction $\tilde{\mathbf{x}}_t$, what is the best way of sending \mathbf{x}_t ?

¹Lu et al., DVC: an end-to-end deep video compression framework, CVPR 19

²Djelouah et al., Neural inter-frame compression for video coding, ICCV 19

³Liu et al., Learned video compression via joint spatial-temporal correlation exploration

Introduction – Contributions

- We argue that residual coding of the entire frame is not ideal
- ModeNet (coding mode selection network) is proposed
 - Learn and convey a pixel-wise partitioning of \mathbf{x}_t
 - Allow pixel-wise coding mode competition
- Conditional Coding is introduced
 - Novel Auto-Encoder architecture
 - ullet Perform a more complex mixture of $oldsymbol{x}_t$ and $oldsymbol{ ilde{x}}_t$ than residual coding
- ModeNet & Conditional Coding achieve a 40% rate reduction compared to residual coding on a P-frame coding task

Ladune et al.

Introduction

- 2 Proposed system
- 3 Implementation

Experimental results

Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0$$

Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0 \; ; \; J_{AE,\lambda}(i) = d(\hat{\mathbf{x}}_t, \mathbf{x}_t; i) + \lambda r(\mathbf{x}_t, \tilde{\mathbf{x}}_t; i)$$

Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0 \; ; \; J_{AE,\lambda}(i) = d(\hat{\mathbf{x}}_t, \mathbf{x}_t; i) + \lambda r(\mathbf{x}_t, \tilde{\mathbf{x}}_t; i)$$

• Let us define S, the set pixels of \mathbf{x}_t verifying

$$S = \{x_{t,i} \mid x_{t,i} \in \mathbf{x}_t, \ J_{copy,\lambda}(i) < J_{AE,\lambda}(i)\}$$

• Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0 \; ; \; J_{AE,\lambda}(i) = d(\hat{\mathbf{x}}_t, \mathbf{x}_t; i) + \lambda r(\mathbf{x}_t, \tilde{\mathbf{x}}_t; i)$$

• Let us define S, the set pixels of \mathbf{x}_t verifying

$$S = \{x_{t,i} \mid x_{t,i} \in \mathbf{x}_t, \ J_{copy,\lambda}(i) < J_{AE,\lambda}(i)\}$$

- ullet S allows to partition \mathbf{x}_t into two coding modes
 - Skip (prediction copy) for pixels in ${\cal S}$
 - ullet Transmission with an Auto-Encoder for pixels in $ar{\mathcal{S}}$

Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0 ; J_{AE,\lambda}(i) = d(\hat{\mathbf{x}}_t, \mathbf{x}_t; i) + \lambda r(\mathbf{x}_t, \tilde{\mathbf{x}}_t; i)$$

• Let us define S, the set pixels of \mathbf{x}_t verifying

$$S = \{x_{t,i} \mid x_{t,i} \in \mathbf{x}_t, \ J_{copy,\lambda}(i) < J_{AE,\lambda}(i)\}$$

- ullet S allows to partition \mathbf{x}_t into two coding modes
 - Skip (prediction copy) for pixels in ${\cal S}$
 - ullet Transmission with an Auto-Encoder for pixels in $ar{\mathcal{S}}$
- ullet Handcrafting ${\cal S}$ is **not trivial** as it depends on past & future pixels

Let us define two local RD costs for a pixel i

$$J_{copy,\lambda}(i) = d(\tilde{\mathbf{x}}_t, \mathbf{x}_t; i) + 0 ; J_{AE,\lambda}(i) = d(\hat{\mathbf{x}}_t, \mathbf{x}_t; i) + \lambda r(\mathbf{x}_t, \tilde{\mathbf{x}}_t; i)$$

• Let us define S, the set pixels of \mathbf{x}_t verifying

$$S = \{x_{t,i} \mid x_{t,i} \in \mathbf{x}_t, \ J_{copy,\lambda}(i) < J_{AE,\lambda}(i)\}$$

- ullet S allows to partition \mathbf{x}_t into two coding modes
 - Skip (prediction copy) for pixels in ${\cal S}$
 - ullet Transmission with an Auto-Encoder for pixels in $ar{\mathcal{S}}$
- ullet Handcrafting ${\cal S}$ is **not trivial** as it depends on past & future pixels
- This work introduces a mode selection network ModeNet
 - Learn the partitioning of \mathbf{x}_t into \mathcal{S} and $\bar{\mathcal{S}}$
 - Convey it to the decoder

Ladune et al.

Proposed system

- CLIC20 P-frame test conditions⁴
 - One lossless reference frame: $\hat{\mathbf{x}}_{< t} = \hat{\mathbf{x}}_{t-1} = \mathbf{x}_{t-1}$
- CodecNet is a coding system (residual or more complex)

$$\hat{\mathbf{x}}_t = c(\mathbf{x}_t, \tilde{\mathbf{x}}_t)$$

⁴Challenge on Learned Image Compression, www.compression.cc, CVPR 20

Proposed system

- CLIC20 P-frame test conditions⁴
 - One lossless reference frame: $\hat{\mathbf{x}}_{< t} = \hat{\mathbf{x}}_{t-1} = \mathbf{x}_{t-1}$
- CodecNet is a coding system (residual or more complex)
- ModeNet is added to a Transmission-only system
 - $\alpha \in [0,1]^{H \times W}$ is a **continuous pixel-wise** weighting

$$\hat{\mathbf{x}}_t = c(\boldsymbol{\alpha} \odot \mathbf{x}_t, \boldsymbol{\alpha} \odot \tilde{\mathbf{x}}_t) + (1 - \boldsymbol{\alpha}) \odot \tilde{\mathbf{x}}_t$$

⁴Challenge on Learned Image Compression, www.compression.cc, CVPR 20

Proposed system

- CLIC20 P-frame test conditions⁴
 - One lossless reference frame: $\hat{\mathbf{x}}_{< t} = \hat{\mathbf{x}}_{t-1} = \mathbf{x}_{t-1}$
- CodecNet is a coding system (residual or more complex)
- ModeNet is added to a Transmission-only system
 - $\alpha \in [0,1]^{H \times W}$ is a **continuous pixel-wise** weighting
- Naive prediction: $\tilde{\mathbf{x}}_t = \hat{\mathbf{x}}_{t-1}$

$$\hat{\mathbf{x}}_t = c(\alpha \odot \mathbf{x}_t, \alpha \odot \tilde{\mathbf{x}}_t) + (1 - \alpha) \odot \tilde{\mathbf{x}}_t$$

⁴Challenge on Learned Image Compression, www.compression.cc, CVPR 20

- Introduction
- Proposed system
- 3 Implementation
- Experimental results

 ModeNet architecture: standard Auto-Encoder with hyperprior (AE-HP)⁵

Transform syntax is f (internal features, output features)

• Lightweight: 200 000 parameters \rightarrow 10% of CodecNet parameters

⁵Minnen et al., Joint Autoregressive and Hierarchical Priors for Learned Image Compression, NIPS 18

• 3 configurations of CodecNet are investigated

- 3 configurations of CodecNet are investigated
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$

Ladune et al.

- 3 configurations of CodecNet are investigated
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$
 - Residual coding: $c(\alpha \odot \mathbf{x}_t \alpha \odot \tilde{\mathbf{x}}_t)$

Ladune et al.

- 3 configurations of CodecNet are investigated
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$
 - Residual coding: $c(\alpha \odot \mathbf{x}_t \alpha \odot \tilde{\mathbf{x}}_t)$
 - Conditional coding: $c(\alpha \odot \mathbf{x}_t \mid \alpha \odot \tilde{\mathbf{x}}_t)$

CodecNet architecture is a standard AE-HP

- CodecNet architecture is a standard AE-HP
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$

- CodecNet architecture is a standard AE-HP
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$
 - Residual coding: $c(\alpha \odot \mathbf{x}_t \alpha \odot \tilde{\mathbf{x}}_t)$

- CodecNet architecture is a standard AE-HP
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$
 - Residual coding: $c(\alpha \odot \mathbf{x}_t \alpha \odot \tilde{\mathbf{x}}_t)$
 - Conditional coding: $c(\alpha \odot \mathbf{x}_t \mid \alpha \odot \tilde{\mathbf{x}}_t)$

- CodecNet architecture is a standard AE-HP
 - Image coding: $c(\alpha \odot \mathbf{x}_t)$
 - Residual coding: $c(\alpha \odot \mathbf{x}_t \alpha \odot \tilde{\mathbf{x}}_t)$
 - Conditional coding: $c(\alpha \odot \mathbf{x}_t \mid \alpha \odot \tilde{\mathbf{x}}_t)$

Implementation – Training

ullet End-to-end training with rate distortion cost: no dedicated lpha loss

$$\mathcal{L}_{\lambda} = \mathrm{D}(\mathbf{x}_{t}, \hat{\mathbf{x}}_{t}) + \lambda \left(R_{m} + R_{c} \right)$$

CLIC20 P-frame test condition

$$D(\mathbf{x}_t, \hat{\mathbf{x}}_t) = 1 - \mathsf{MS}\text{-SSIM}(\mathbf{x}_t, \hat{\mathbf{x}}_t)$$

Implementation – Training

ullet End-to-end training with rate distortion cost: no dedicated lpha loss

$$\mathcal{L}_{\lambda} = \mathrm{D}(\mathbf{x}_{t}, \hat{\mathbf{x}}_{t}) + \lambda \left(R_{m} + R_{c} \right)$$

CLIC20 P-frame test condition

$$D(\mathbf{x}_t, \hat{\mathbf{x}}_t) = 1 - \mathsf{MS}\text{-SSIM}(\mathbf{x}_t, \hat{\mathbf{x}}_t)$$

- 2 training stages
 - 1. Warm-up: CodecNet only, $\alpha = 1$ for one half of \mathbf{x}_t , 0 for the other
 - 2. Alternate: Train ModeNet and CodecNet alternatively

- Introduction
- 2 Proposed system
- 3 Implementation
- Experimental results

Input frames $(\mathbf{x}_{t-1}, \mathbf{x}_t)$

Rate ModeNet $R_m = 0.005$ bpp

- The proposed ModeNet
 - Learns a complex partitioning, trained only with a rate distortion loss
 - Conveys the partitioning at very low rate
 - \bullet Has only 200 000 parameters \to 10% of CodecNet

Performance

- This works follow CLIC20 P-frame coding test conditions
 - Quality metric is MS-SSIM
 - Rate target is 0.075 bpp
 - CLIC20 P-frame validation set
- Two experiments carried out
 - 1. Training and test of CodecNet alone vs. HEVC
 - 2. Training and test of the complete system: CodecNet + ModeNet

Experimental results – CodecNet

- CodecNet outperforms HEVC
- Conditional coding outperforms residual (Diff.) coding

Experimental results – Complete system

- ModeNet improves image and conditional coding
- ModeNet + Conditional coding: 40% rate reduction / residual coding
- HEVC LP outperforms all systems thanks to a motion-compensated $\tilde{\mathbf{x}}_t$

Conclusion

- This paper proposes ModeNet, a coding mode selection network
 - 1. Learn complex partitioning through end-to-end training
 - 2. Convey the partitioning at very low rate
 - 3. Lightweight AE with hyperprior
 - Can be integrated seamlessly into existing learning-based coding scheme to allow coding modes competition

Conclusion

- This paper proposes ModeNet, a coding mode selection network
 - 1. Learn complex partitioning through end-to-end training
 - 2. Convey the partitioning at **very low rate**
 - 3. Lightweight AE with hyperprior
 - Can be integrated seamlessly into existing learning-based coding scheme to allow coding modes competition
- Tested on a P-frame coding task
 - Using ModeNet to select the best coding mode increases performance
 - ModeNet arbitrating between skip and conditional coding achieves a 40% rate reduction compared to residual coding

Conclusion

- This paper proposes ModeNet, a coding mode selection network
 - 1. Learn complex partitioning through end-to-end training
 - 2. Convey the partitioning at **very low rate**
 - 3. Lightweight AE with hyperprior
 - 4. Can be **integrated seamlessly** into existing learning-based coding scheme to allow **coding modes competition**
- Tested on a P-frame coding task
 - Using ModeNet to select the best coding mode increases performance
 - ModeNet arbitrating between skip and conditional coding achieves a 40% rate reduction compared to residual coding
- This work has already been extended: ModeNet also transmits motion information to improve the prediction process⁶

⁶Ladune et al., Optical Flow and Mode Selection for Learning-based Video Coding, MMSP 20