Al Agents That Matter

Kapoor et. al.

Princeton University

arXiv, 2024.07

2024.08.20

Presenter: Hawon Jeong

Introduction

Agent evaluation differs from language model evaluation in fundamental ways 🖮

- Al agent evaluations must be cost-controlled
- Jointly optimizing accuracy and cost can yield better agent design
- Model developers and downstream developers have distinct benchmarking needs
- Agent benchmarks enable shortcuts
- Agent evaluation lack standardization and reproducibility

Introduction

— What is an Al agent?

"Agentic"

- More complex environment and goals
- User interface and supervision
 - Instructed in natural language and act on the users' behalf
 - Less user supervision
- System design
 - Design patterns such as tool use or planning

1. Al agent evaluation must be cost-controlled

- Maximizing accuracy can lead to unbounded cost
 - Agent developers can keep sampling from a model until the solution passes the test cases
- Visualizing the accuracy-cost tradeoff using a Pareto curve
 - Agents: LDB, LATS, and Reflexion (from the HumanEval leaderboard)
 - Models: GPT-3.5, GPT-4
 - Approach:
 - Retry
 - Warming
 - Escalation: Llama-3 8B → GPT 3.5 → Llama-3 70B → GPT-4

1. Al agent evaluation must be cost-controlled

- Two-dimensional evaluation yields surprising insights
 - "State-of-the-art" agent architectures for HumanEval do not outperform simple baselines
 - Agents differ drastically in terms of cost
 - Lack of evidence that System 2 approaches are responsible for performance gains

2. Jointly optimizing cost and accuracy can yield better agent designs

- HotPotQA evaluation setup
 - Model: Llama-3-70B and GPT-3.5
 - Data: 100 samples for training, 200 samples for evaluation
 - Agent architectures:
 - Uncompiled: question, context, reasoning
 - Formatting instructions only
 - Few-shot: example selection using DSPy
 - Random Search: using DSPy's random search optimizer
 - Joint optimization: Search temperature, # of few-shot example, selection of examples, formatting instruction using DSPy(Optuna)

2. Jointly optimizing cost and accuracy can yield better agent designs

HotPotQA results

- DSPy offers accuracy improvements over uncompiled
- Joint optimization models are cheaper than the default DSPy implementation
- Joint optimization allows for efficient agent design

3. Model and downstream developers have distinct benchmarking needs

- The difference between model evaluation and downstream evaluation is underappreciated
 - Model evaluation: scientific question of interest to researchers
 - **Downstream evaluation**: engineering question; cost is the actual construct of interest
- Proxies for cost are misleading for downstream evaluation
 - Mixtral 8x7B actually costs twice as much as Llama-2-13B
 - # parameter in API... 🤥
- Addressing challenges to cost evaluation
 - Making evaluation results customizable to adjust the cost of running models

3. Model and downstream developers have distinct benchmarking needs

- Implications for benchmark design using a case study of NovelQA
 - Actual users would ask questions about novels individually in practice
 - Table shows the misleading for downstream evaluation
 - Downstream evaluation benchmarks must be separate from model evaluation benchmarks

	RAG	Long-Context	
Total Cost	\$52.80	\$99.80	
Accuracy	67.89	67.81	
RAG Specific:			
Cost of embedding 88 novels	\$2.512	-	
Cost of embedding one novel	\$0.0285	-	
Cost per Question	\$0.0222	-	
Cost per QA for a new novel	\$0.051	-	
Long-Context Specific:			
Mean prompt tokens per novel		690.807	
Total tokens of questions and options		110,094	
Total tokens (prompt + questions + options)		170885.016	
Total long-context question cost		\$1.709	
Long-context novel cost		\$98.09	
Long-context cost per novel (single question)		\$1.115	
Comparison:			
Cost Ratio (Long-Context/RAG)	≈ 21.86		

4. Agent benchmarks allow shortcuts

- Many agent benchmarks do not include held-out test sets
- Four levels of generality:
 - 1) Distribution-specific benchmarks
 - 2) Task-specific benchmarks
 - 3) Domain-general benchmarks
 - 4) General-purpose benchmarks

Level of generality	What should be held out	Num. benchmarks with appropriate holdouts	
Distribution-specific	In-distribution samples	1/1	
Task-specific	Out-of-distribution samples	3/6	
Domain-general	Tasks	1 / 8	
Fully general	Domains	0 / 2	

Table 1: Appropriate holdouts based on level of generality. See Appendix for full details.

Analysis of 17 agent benchmarks into the four levels of generality

Benchmark	Domain	$B_{GR_{\ell}}$	Leve	H_{Ol_Q}	W_{ha}	Ho_{l_G}	Byar,
MLAgentBench[19]	Programming	Measures the accuracy of agents specifically on machine learning experimentation.	Task-specific		N/A	Lacks a test set and doesn't indicate plans to make one.	Research tasks in languages other than Python.
SWE-Bench[59]	Programming	Measures the accuracy of agents specifically on solving software engineering problems. Authors intend to include repositories in the benchmark beyond the 12 initially sampled.	Task-specific	0	In distribution samples	The held-out set currently contains repositories not seen during training but are otherwise of a similar distribution as training. Authors mention plans to collect repositories in different programming languages, though not exclusively for the held-out set.	Repositories in languages other than Python.
WebArena[66]	Web task automation	Measures the accuracy of agents on many different web tasks.	Domain-general		N/A	Lacks a holdout set and doesn't indicate plans to make one.	New websites & tasks not seen dur- ing training, such as making plane or train travel bookings.

4. Agent benchmarks allow shortcuts

- Case study of the STeP agent on WebArena
 - WebArena's core selling point: "Realism"
 - Top agent: STeP, 35.8% acc., 10% more than the next-best agent
- How does STeP achieve this high accuracy?
 - STeP hardcodes policies to solve the specific tasks included in WebArena

→ Is it useful agent to solve real-word tasks?

4. Agent benchmarks allow shortcuts

- Agent benchmarks don't account for humans in the loop
 - Current evaluation focus on two extremes
 - Evaluating the capacity of chatbots to answer questions correctly (e.g., MMLU)
 - Whether agents can perform a task without supervision (e.g., agent benchmarks)
 - Human supervision, feedback, and intervention can be seen as a **spectrum**
 - The lack of human-in-the-loop evaluation of agents might lead underestimation of their usefulness

5. Inadequate benchmark standardization leads to irreproducible agent evaluations

5 root causes

- 1. Evaluation scripts make assumptions about agent design that aren't satisfied by all agents
- 2. Repurposing LLM evaluation benchmarks for agent evaluation introduces inconsistencies
- 3. The high cost of evaluating agents makes it is hard to estimate confidence intervals
- 4. Agent evaluation relies on external factors such as interacting with an environment which can lead to subtle errors
- 5. The lack of standardized evaluation leads to subtle bugs in agent evaluation and development

→ The need for a standardized evaluation framework!

Conclusion

- Al agent benchmarking is new and best practice haven't yet been established
- Agents are sufficiently different from model
- Cost control, separating model and downstream evaluation, appropriate hold-outs, and standardization should be considered