	1-27-15
	Alternative Rejection Sampling Approach to simulate a standard normal realization.
	to simulate a standard normal realization.
	-X ² / ₂
	Target density: 1 e x2/2 for XEIR
	Van XEIK
	-V2/ 0
	Temporary target density 2 ex/2 for x > 0
	4271
	exp.
	Exponential proposal density
	g(x) = ex for x>8
	s.t.
	Exponential proposal density $g(x) = e^{x} \text{for } x > 0$ $\text{find } A \ni Ag(x) = (f(x)) \forall x$
	Using random # to calculate Probabilities
	- Color X Allec
	Let X have a density +(x). We wish to find to
	Let X have a density f(x). We wish to find, nox justing for some interval A, P(X \in A) = \infty f(x) dx. (\infty null)
	(4,60
	· Le now many #s + trom realization are in A
	· what proportion are in interval
	To approximate this probability, (integral), we can
4	do the following:
	D'use Monte carlo integration
	OF Generate a large # of r.v. values; observe the interval A. This proportion is vot
	There was the interval A. I'ms proportion is age

15 of time reject

CPMA 573 — Homework #3

Exercise 1: Beta probabilities. Recall the beta density function $f(x|\alpha,\beta)$ given by

$$f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1},$$

for $x \in (0,1)$ and positive α and β . Let $X \sim \text{beta}(2,5)$. Find $P(X > \frac{1}{2})$ by:

- a. Monte Carlo (MC) integration.
- b. Simulating 25,000 beta(2,5) realizations. Use rejection sampling and uniform proposal density q(x).
- c. Using the pbeta function in R.

Exercise 2: Standard normal probabilities. Let $X \sim N(0,1)$. Find P(-1.96 < X < 1.96) by:

- a. MC integration.
- b. Simulating 25,000 N(0,1) realizations. Use rejection sampling and exponential reference density q(x).
- c. Using the pnorm function in R.

Exercise 3: Bivariate normal probabilities (polar method). Let X and Y be independent standard normal random variables. Use the polar method to simulate 25,000 pairs (x,y) of independent, standard normal realizations. Then, use these realizations to find the value of k that satisfies $P(\sqrt{X^2 + Y^2} < k) = \frac{1}{2}$.