Triangles in the Plane

Felix Christian Clemen (IBS ECOPRO)

Graph Theory Seminar at Shanghai Center for Mathematical Science

This is partially joint work with József Balogh and Adrian Dumitrescu.

October 22th, 2024

ex(n, H) = The maximum number of edges in an*n*-vertex*k*-graph*G*which does not contain*H*as a copy.

The Turán density of H:

$$\pi(H) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{k}}$$

ex(n, H) = The maximum number of edges in an*n*-vertex*k*-graph*G*which does not contain*H*as a copy.

The Turán density of H:

$$\pi(H) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{k}}$$

$$ex(n, H_1) = 0$$

 $\pi(H_1) = 0$

ex(n, H) = The maximum number of edges in an*n*-vertex*k*-graph*G*which does not contain*H*as a copy.

The Turán density of H:

$$\pi(H) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{k}}$$

$$ex(n, H_1) = 0$$
$$\pi(H_1) = 0$$

$$ex(n, K_4^3) = ?$$

 $\frac{5}{9} \le \pi(K_4^3) \le 0.5615$

Turán's Tetrahedron Conjecture (1961): $\pi(K_4^3) = \frac{5}{9}$ (500\$)

4

Some questions one might ask:

- Given a k-graph H, determine $\pi(H)$.
- What can be said about $\{\pi(H) : H \text{ is finite } k\text{-graph}\}$?

Some questions one might ask:

- Given a k-graph H, determine $\pi(H)$.
- What can be said about $\{\pi(H) : H \text{ is finite } k\text{-graph}\}$?

Let \mathcal{H} be a family of k-graphs.

 $ex(n, \mathcal{H})$ = The maximum number of edges in an n-vertex k-graph G which does not contain any $H \in \mathcal{H}$ as a copy.

The Turán density of
$$\mathcal{H}$$
: $\pi(\mathcal{H}) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathcal{H})}{\binom{n}{k}}$

6

n points in \mathbb{R}^2

Question (Erdős, 1946)

What is the maximum number of times that the unit distance can occur among n points in the plane?

$$u(n) := \max_{P \subset \mathbb{R}^2, \ |P| = n} \left| \left\{ \left\{ u, v \right\} \subset P : |u - v| = 1 \right\} \right|.$$

3

- Erdős (1946): $n^{1+c_1/\log\log n} \le u(n) \le O(n^{3/2})$
- Józsa and Szemerédi (1975): $u(n) = o(n^{3/2})$
- Beck and Spencer (1984): $u(n) = O(n^{13/9})$
- Spencer, Szemerédi, Trotter (1984): $u(n) = O(n^{4/3})$

- Erdős (1946): $n^{1+c_1/\log\log n} \le u(n) \le O(n^{3/2})$
- Józsa and Szemerédi (1975): $u(n) = o(n^{3/2})$
- Beck and Spencer (1984): $u(n) = O(n^{13/9})$
- Spencer, Szemerédi, Trotter (1984): $u(n) = O(n^{4/3})$

500\$ for
$$u(n) = O(n^{1+\varepsilon})$$
 for every $\varepsilon > 0$.

- Erdős (1946): $n^{1+c_1/\log\log n} \le u(n) \le O(n^{3/2})$
- Józsa and Szemerédi (1975): $u(n) = o(n^{3/2})$
- Beck and Spencer (1984): $u(n) = O(n^{13/9})$
- Spencer, Szemerédi, Trotter (1984): $u(n) = O(n^{4/3})$

500\$ for $u(n) = O(n^{1+\varepsilon})$ for every $\varepsilon > 0$.

Erdős' proof of $u(n) = O(n^{3/2})$: Let G = (V, E) be the graph with V = P and edges $e = xy \in E(G)$ iff |x - y| = 1. The graph G is $K_{3,2}$ -free.

$$u(n) \le ex(n, K_{3,2}) \le O(n^{3/2}).$$

Up to $\binom{n}{3}$ triangles.

Question (Erdős, Purdy, 1975)

What is the maximum number of triangles almost congruent to the unit triangle?

1

Question (Erdős, Purdy, 1975)

What is the maximum number of triangles almost congruent to the unit triangle?

arepsilon-unit triangle

Question (Erdős, Purdy, 1975)

What is the maximum number of triangles almost congruent to the unit triangle?

unit triangle

Definition

 $g(n,\varepsilon)$ = The maximum number of ε -unit triangles in a point set $P \subseteq \mathbb{R}^2$ of size n.

$$g(n) = \min_{\varepsilon > 0} g(n, \varepsilon).$$

Theorem (Balogh, C., Dumitrescu, 2023+)

For every positive integer n, we have

$$g(n) = \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor.$$

.

We say a 3-graph G is *cancellative*, if there do not exist 3 edges A, B, C with $A \triangle B \subset C$.

We say a 3-graph G is *cancellative*, if there do not exist 3 edges A, B, C with $A \triangle B \subset C$. Equivalently, G is cancellative iff G if $\{K_4^{3-}, F_5\}$ -free.

K_4^{3-}	123, 124, 134	• •
F ₅	123, 124, 345	• • • • · · · · · · · · · · · · · · · ·

Theorem (Bollobás, 1974)

The maximum number of edges in a cancellative 3-graph on n vertices is

$$\left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor$$
.

Theorem (Bollobás, 1974)

$$\operatorname{ex}(n,\{K_4^{3-},F_5\}) = \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor.$$

Observation

Let P be a set of 4 points in the plane where the minimum pairwise distance is at least 1. Then diam $(P) \ge \sqrt{2}$.

convex 4-gon

convex 3-gon

Observation

Let P be a set of 4 points in the plane where the minimum pairwise distance is at least 1. Then diam $(P) \ge \sqrt{2}$.

convex 4-gon

convex 3-gon

Observation

Let P be a set of 4 points in the plane where the minimum pairwise distance is at least 1. Then diam $(P) \ge \sqrt{2}$.

convex 4-gon

convex 3-gon

Observation

Let P be a set of 4 points in the plane where the minimum pairwise distance is at least 1. Then diam $(P) \ge \sqrt{2}$.

convex 4-gon

convex 3-gon

Observation

Let a be a positive real number and P be a set of 4 points in the plane where the minimum pairwise distance is at least a. Then $diam(P) \ge \sqrt{2}a$.

convex 4-gon

convex 3-gon

Proof of UB on g(n):

• Let $\varepsilon > 0$ sufficiently small and P a planar point set of size n.

- Let $\varepsilon > 0$ sufficiently small and P a planar point set of size n.
- Construct an auxiliary 3-graph $H(P,\varepsilon)$ with vertex set P and edges triples corresponding to ε -unit triangles.

- Let $\varepsilon > 0$ sufficiently small and P a planar point set of size n.
- Construct an auxiliary 3-graph $H(P,\varepsilon)$ with vertex set P and edges triples corresponding to ε -unit triangles.
- The shadowgraph of $H(P,\varepsilon)$ does not contain a copy of K_4 , otherwise there were 4 points with pairwise distance in $(1-\varepsilon,1+\varepsilon)$.

- Let $\varepsilon > 0$ sufficiently small and P a planar point set of size n.
- Construct an auxiliary 3-graph $H(P,\varepsilon)$ with vertex set P and edges triples corresponding to ε -unit triangles.
- The shadowgraph of $H(P,\varepsilon)$ does not contain a copy of K_4 , otherwise there were 4 points with pairwise distance in $(1-\varepsilon,1+\varepsilon)$.
- $H(P,\varepsilon)$ is K_4^{3-} and F_5 -free, because they both contain a K_4 in the shadowgraph.

- Let $\varepsilon > 0$ sufficiently small and P a planar point set of size n.
- Construct an auxiliary 3-graph $H(P,\varepsilon)$ with vertex set P and edges triples corresponding to ε -unit triangles.
- The shadowgraph of $H(P,\varepsilon)$ does not contain a copy of K_4 , otherwise there were 4 points with pairwise distance in $(1-\varepsilon,1+\varepsilon)$.
- $H(P,\varepsilon)$ is K_4^{3-} and F_5 -free, because they both contain a K_4 in the shadowgraph.

$$g(n) \leq \operatorname{ex}(n, \{K_4^{3-}, F_5\}) = \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor.$$

Application 3: Almost congruent general triangles

Definition

 $h_c(n, T, \varepsilon)$ = The maximum number of triangles ε -congruent to T in a point set $P \subseteq \mathbb{R}^2$ of size n.

$$h_c(n, T) = \min_{\varepsilon > 0} h_c(n, T, \varepsilon).$$

Observation

If two triangles T, T' are similar to each other, then $h_c(n, T) = h_c(n, T')$

Theorem (Balogh, C., Dumitrescu, 2023+)

Let T be a triangle and n be a positive integer.

(a) Let T be a right triangle. Then, $h_c(n,T) \leq \frac{n^3}{16}$, and if additionally n is divisible by 4, then $h_c(n,T) = \frac{n^3}{16}$.

Theorem (Balogh, C., Dumitrescu, 2023+)

Let T be a triangle and n be a positive integer.

- (a) Let T be a right triangle. Then, $h_c(n, T) \leq \frac{n^3}{16}$, and if additionally n is divisible by 4, then $h_c(n, T) = \frac{n^3}{16}$.
- (b) Let T be of type $(120^{\circ}, 30^{\circ}, 30^{\circ})$. Then, $h_c(n, T) \leq \frac{4}{81}n^3$, and if additionally n is divisible by 9, then $h_c(n, T) = \frac{4}{81}n^3$.
- (c) Let T be of type $\left(\frac{4\cdot180}{7}^{\circ}, \frac{2\cdot180}{7}^{\circ}, \frac{180}{7}^{\circ}\right)$. Then, $h_c(n, T) \leq \frac{2}{49}n^3$, and if additionally n is divisible by 7, then $h_c(n, T) = \frac{2}{49}n^3$.
- (d) Let T be of type (108°, 36°, 36°) or (72°, 72°, 36°). Then, $h_c(n, T) \leq \frac{n^3}{25}$, and if additionally n is divisible by 5, then $h_c(n, T) = \frac{n^3}{25}$.
- (e) Let T be not of type (a)-(d). Then, $h_c(n, T) \leq \frac{n^3}{27}$, and if additionally n is divisible by 3, then $h_c(n, T) = \frac{n^3}{27}$.

right triangle

$$(120^{\circ}, 30^{\circ}, 30^{\circ})$$

$$\left(\frac{4\cdot180}{7}^{\circ}, \frac{2\cdot180}{7}^{\circ}, \frac{180}{7}^{\circ}\right)$$

$$(108^\circ, 36^\circ, 36^\circ)$$
 or $(72^\circ, 72^\circ, 36^\circ)$

arbitrary T

Definition

 $H(P, T, \varepsilon)$:= The 3-graph with vertex set P and edges the triples corresponding to triangles ε -congruent to T.

Theorem (Balogh, C., Dumitrescu)

(a) Let T be a right triangle. Then, $h_c(n, T) \leq \frac{n^3}{16}$.

If T is not $(90^\circ, 60^\circ, 30^\circ)$, then

$$h_c(n, T) \le ex(n, \{F_{3,2}, J_4\}) = \frac{n^3}{16}(1 + o(1)),$$

by Falgas-Ravry and Vaughan.

Theorem (Balogh, C., Dumitrescu)

(c) Let
$$T$$
 be of type $\left(\frac{4\cdot 180}{7}^{\circ}, \frac{2\cdot 180}{7}^{\circ}, \frac{180}{7}^{\circ}\right)$. Then, $h_c(n, T) \leq \frac{2}{49}n^3$.

F _{3,2}	123, 145, 245, 345	• • • •
K ₄ ³⁻	123, 124, 134	• • • • = = = =
C ₅ ³	123, 234, 345, 145, 125	• • • • •

$$h_c(n,T) \le \exp(n, \{K_4^{3-}, F_{3,2}, C_5^3\}) = \frac{2}{40}n^3(1+o(1)),$$

by Falgas-Ravry and Vaughan.

Application 3: A new strategy

Application 3: A new strategy

Application 3: Hypergraph Lagrangians

Let H be an n-vertex 3-graph. The Lagrangian polynomial of H is

$$\lambda_H(x_1,\ldots,x_n):=\sum_{ijk\in H}x_ix_jx_k,$$

and the Lagrangian of H is

$$\lambda(H) := \max\{\lambda_H(x_1,\ldots,x_n): (x_1,x_2,\ldots,x_n) \in \Delta_n\},\$$

where
$$\Delta_n = \{(x_1, x_2, \dots, x_n) \in [0, 1]^n : x_1 + x_2 + \dots + x_n = 1\}.$$

Application 3: Hypergraph Lagrangians

Let H be an n-vertex 3-graph. The Lagrangian polynomial of H is

$$\lambda_H(x_1,\ldots,x_n):=\sum_{ijk\in H}x_ix_jx_k,$$

and the Lagrangian of H is

$$\lambda(H) := \max\{\lambda_H(x_1,\ldots,x_n): (x_1,x_2,\ldots,x_n) \in \Delta_n\},\$$

where
$$\Delta_n = \{(x_1, x_2, \dots, x_n) \in [0, 1]^n : x_1 + x_2 + \dots + x_n = 1\}.$$

Example:
$$V(K_4^{3-}) = \{1, 2, 3, 4\}, E(K_4^{3-}) = \{123, 124, 134\}$$

$$\lambda(K_4^{3-}) = \max_{x_i \ge 0, \ x_1 + x_2 + x_3 + x_4 = 1} x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4$$
$$= \max_{0 \le x \le 1} 3x \left(\frac{1-x}{3}\right)^2 = \frac{4}{81}$$

Application 3: The key lemma

H(P, T) := The 3-graph with vertex set P and edges the triples corresponding to triangles congruent to T.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Sketch of proof:

$$\frac{h_c(n,T)}{n^3}=\frac{e(H(P,T,\varepsilon))}{n^3}=\lambda_{H(P,T,\varepsilon)}(\frac{1}{n},\ldots,\frac{1}{n})\leq\lambda(H(P,T,\varepsilon)).$$

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Sketch of proof:

$$\frac{h_c(n,T)}{n^3}=\frac{e(H(P,T,\varepsilon))}{n^3}=\lambda_{H(P,T,\varepsilon)}(\frac{1}{n},\ldots,\frac{1}{n})\leq\lambda(H(P,T,\varepsilon)).$$

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Sketch of proof:

$$\frac{h_c(n,T)}{n^3}=\frac{e(H(P,T,\varepsilon))}{n^3}=\lambda_{H(P,T,\varepsilon)}(\frac{1}{n},\ldots,\frac{1}{n})\leq\lambda(H(P,T,\varepsilon)).$$

• Let $\mathbf{x} \in \Delta_n$ be such that $\lambda(H(P, T, \varepsilon)) = \lambda_{H(P, T, \varepsilon)}(\mathbf{x})$ with the fewest non-zero entries.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Sketch of proof:

$$\frac{h_c(n,T)}{n^3}=\frac{e(H(P,T,\varepsilon))}{n^3}=\lambda_{H(P,T,\varepsilon)}(\frac{1}{n},\ldots,\frac{1}{n})\leq\lambda(H(P,T,\varepsilon)).$$

- Let $\mathbf{x} \in \Delta_n$ be such that $\lambda(H(P, T, \varepsilon)) = \lambda_{H(P, T, \varepsilon)}(\mathbf{x})$ with the fewest non-zero entries.
- If there are two vertices, not contained in an edge, with positive weights, we can move weights from one to the other.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Sketch of proof:

$$\frac{h_c(n,T)}{n^3}=\frac{e(H(P,T,\varepsilon))}{n^3}=\lambda_{H(P,T,\varepsilon)}(\frac{1}{n},\ldots,\frac{1}{n})\leq\lambda(H(P,T,\varepsilon)).$$

- Let $\mathbf{x} \in \Delta_n$ be such that $\lambda(H(P, T, \varepsilon)) = \lambda_{H(P, T, \varepsilon)}(\mathbf{x})$ with the fewest non-zero entries.
- If there are two vertices, not contained in an edge, with positive weights, we can move weights from one to the other.
- Compactness argument; the points with positive weight form a 3-distance set. Shinohara: At most 7 points have positive weight. □

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

Theorem (Balogh, C., Dumitrescu)

(d) Let T be $(108^\circ, 36^\circ, 36^\circ)$ or $(72^\circ, 72^\circ, 36^\circ)$. Then, $h_c(n, T) \leq \frac{n^3}{25}$.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

- (d) Let T be $(108^\circ, 36^\circ, 36^\circ)$ or $(72^\circ, 72^\circ, 36^\circ)$. Then, $h_c(n, T) \leq \frac{n^3}{25}$.
 - Q is a 2-distance set $\rightarrow |Q| \leq 5$.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

- (d) Let T be $(108^\circ, 36^\circ, 36^\circ)$ or $(72^\circ, 72^\circ, 36^\circ)$. Then, $h_c(n, T) \leq \frac{n^3}{25}$.
 - Q is a 2-distance set $\rightarrow |Q| \leq 5$.
 - If |Q|=5, then because Q is a 2-distance set, Q is a regular pentagon. Then $H(Q,T)\cong C_5^3$ and $\lambda(C_5^3)=\frac{1}{25}$.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $\frac{1}{C}(n,T) \le n^3 \lambda(H(Q,T))$.

- (d) Let T be $(108^\circ, 36^\circ, 36^\circ)$ or $(72^\circ, 72^\circ, 36^\circ)$. Then, $h_c(n, T) \leq \frac{n^3}{25}$.
 - Q is a 2-distance set $\rightarrow |Q| \leq 5$.
 - If |Q|=5, then because Q is a 2-distance set, Q is a regular pentagon. Then $H(Q,T)\cong C_5^3$ and $\lambda(C_5^3)=\frac{1}{25}$.
 - |Q| = 4 is not possible, because there is no K_4^{3-} -free 3-graph on 4 vertices with complete shadow-graph.

Lemma (Balogh, C., Dumitrescu)

Let T be a triangle and n be a positive integer. Then there exists a point set Q of size $|Q| \le 7$ such that in H(Q,T) every pair of vertices is contained in an edge, and $h_c(n,T) \le n^3 \lambda(H(Q,T))$.

- (d) Let T be $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{25}$.
 - Q is a 2-distance set $\rightarrow |Q| \leq 5$.
 - If |Q|=5, then because Q is a 2-distance set, Q is a regular pentagon. Then $H(Q,T)\cong C_5^3$ and $\lambda(C_5^3)=\frac{1}{25}$.
 - |Q| = 4 is not possible, because there is no K_4^{3-} -free 3-graph on 4 vertices with complete shadow-graph.
 - If |Q| = 3, then H(Q, T) is just a single edge and

$$\lambda(H(Q,T)) = \max_{x_i \ge 0, x_1 + x_2 + x_3 = 1} x_1 x_2 x_3 = \frac{1}{27}.$$

Theorem (Balogh, C., Dumitrescu)

(e) Let T be not right angled, and not $(120^{\circ}, 30^{\circ}, 30^{\circ})$, $\left(\frac{4\cdot180^{\circ}}{7}, \frac{2\cdot180^{\circ}}{7}, \frac{180^{\circ}}{7}\right)$, $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{27}$.

- (e) Let T be not right angled, and not $(120^{\circ}, 30^{\circ}, 30^{\circ})$, $\left(\frac{4\cdot180^{\circ}}{7}, \frac{2\cdot180^{\circ}}{7}, \frac{180^{\circ}}{7}\right)$, $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{27}$.
 - Q is a 3-distance set, $|Q| \le 7$ and H(Q, T) is $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free

- (e) Let T be not right angled, and not $(120^{\circ}, 30^{\circ}, 30^{\circ})$, $\left(\frac{4\cdot180^{\circ}}{7}, \frac{2\cdot180^{\circ}}{7}, \frac{180^{\circ}}{7}\right)$, $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{27}$.
 - Q is a 3-distance set, $|Q| \le 7$ and H(Q, T) is $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free
 - If |Q| = 3, then H(Q, T) is a single edge and $\lambda(H(Q, T)) = \frac{1}{27}$.

- (e) Let T be not right angled, and not $(120^{\circ}, 30^{\circ}, 30^{\circ})$, $\left(\frac{4\cdot180^{\circ}}{7}, \frac{2\cdot180^{\circ}}{7}, \frac{180^{\circ}}{7}\right)$, $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{27}$.
 - ullet Q is a 3-distance set, $|Q| \leq 7$ and H(Q,T) is $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free
 - If |Q| = 3, then H(Q, T) is a single edge and $\lambda(H(Q, T)) = \frac{1}{27}$.
 - |Q| = 4,5 is not possible, because there is no $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free |Q|-vertex 3-graph with complete shadow graph.

- (e) Let T be not right angled, and not $(120^{\circ}, 30^{\circ}, 30^{\circ})$, $\left(\frac{4\cdot180^{\circ}}{7}, \frac{2\cdot180^{\circ}}{7}, \frac{180^{\circ}}{7}\right)$, $(108^{\circ}, 36^{\circ}, 36^{\circ})$ or $(72^{\circ}, 72^{\circ}, 36^{\circ})$. Then, $h_c(n, T) \leq \frac{n^3}{27}$.
 - ullet Q is a 3-distance set, $|Q| \leq 7$ and H(Q,T) is $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free
 - If |Q| = 3, then H(Q, T) is a single edge and $\lambda(H(Q, T)) = \frac{1}{27}$.
 - |Q| = 4,5 is not possible, because there is no $\{K_4^{3-}, C_5^3, F_{3,2}\}$ -free |Q|-vertex 3-graph with complete shadow graph.
 - If |Q| = 6,7, we use a characterization of 3-distance sets by Shinohara.

• If |Q| = 6,7, then T has 3 different sides. We use a characterization of 3-distance sets by Shinohara:

• If |Q| = 6, 7, then T has 3 different sides. We use a characterization of 3-distance sets by Shinohara:

65

Further questions

One of my favourite questions:

• Determine the maximum number of acute triangles in a planar point set of size *n*.

A Question for graduate students:

• Similar questions but $P \subseteq \mathbb{R}^d$ for $d \ge 3$.

Thank you!

Thank you for your attention!

