Лабораторная работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках

Матвей Галицын Б01-411

April 5, 2025

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теория

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta}$$

где v – скорость потока, r – радиус трубки, ρ – плотность движущейся среды, η – её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8\Delta l \eta} (P_1 - P_2) \tag{1}$$

В этой формуле P_1-P_2 — разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно Δl . Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе

формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2 rRe$$
 (2)

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

3 Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушка-

ми на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Рис. 2: Экспериментальная установка

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Рис. 3: Экспериментальная установка

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 3, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство. Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Микроманометр. В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма этилового спирта. Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения — (0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

4 Результаты измерений и обработка данных

Эксперимент проводился при комнатной температуре $T_{\rm KOMH}=296,2K,$ при атмофсерном давлении $P_{\rm ATM}=101.99~{\rm k\Pi a}.$

Давление, измеряемое микроманометром, определяется по формуле:

$$P = 9,81 \cdot K \cdot l$$

где l — показание макроманометра, K — коэффициент наклона, P — Давление в паскалях.

4.1 Зависимость разности давлений от расхода

Первый эксперимент проводился на трубке с диаметром $d_1=3.95~\pm~0,05$ мм. Данные изменрений приведены в табилце $N\!\!_{2}$ 1.

Второй эксперимент проводился на трубке с диаметром $d_2=5.30\pm0,05$ мм. Данные изменрений приведены в табилце $N\!\!^{}_{2}$ 2.

С помощью метода наименьших квадратов можно найти коэффициент наклона $Q(\Delta P)$

$$k = \frac{\langle Q \cdot \Delta P \rangle}{\langle \Delta P^2 \rangle}$$

$$\Delta k = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle Q^2 \rangle}{\langle \Delta P^2 \rangle} - k^2}$$

$$\varepsilon_k = \frac{\Delta k}{k}$$

Тогда коэффициент вязкости воздуха определяется следующим образом:

$$\eta = \frac{\pi \cdot r^4}{8 \cdot \Delta l \cdot k}$$

Первый эксперимент:

$$k_1 = \frac{5800}{2979} \approx 1.94 \frac{^{\text{MJI}}}{\Pi \text{a} \cdot c} = 1.94 \cdot 10^{-6} \frac{^{\text{M}}^3}{\Pi \text{a} \cdot c}$$

$$\Delta k_1 = \frac{1}{\sqrt{9}} \sqrt{\frac{11300}{2979} - 1.94^2} \approx 0.06 \frac{^{\text{M}}^3}{\Pi \text{a} \cdot c}$$

Аналогично для 2 случая. Соответствующий графиик $Q(\Delta P)$:

Рис. 4: $Q(\Delta P)$ (здесь отображены только точки ламинарного течения)

Итоговые результаты коэффициента вязкости приведены в таблице № 3.

4.2 Зависимость разности давлений от длины участка

Nº	Δx , cm	ΔP , Πa				
d_1	$d_1 = 3.95 \text{ мм}, Q = 113.4$ мл/с					
1	50	58.86				
2	40	51.01				
3	30	37.28				
4	11.2	29.43				
d_2	$d_2 = 5.3 \; \mathrm{mm}, Q = 287.45 \mathrm{mj/c}$					
1	50	49.05				
2	40	41.2				
3	30	35.32				
4	11.2	49.95				

Таблица 1: Результаты измерений разности давлений от длин участков

Соответствующий графиик $\Delta P(\Delta x)$:

Рис. 5: $\Delta P(\Delta x)$

Исходя из графиков, можно получить критичекую длину трубки $l\approx 30$ см, то есть значительно меньше длины трубки. Оценочное число рейнольдса в таком случае $Re\approx 2750$

4.3 Зависимость расхода от диаметра трубы

Nº	$Q, 10^{-6}$ л/с	$r, 10^{-3} \text{ M}$	ln(Q)	ln(r)
	Ламинарное т			
1	95.09	3.95		
2	287.45	5.3		
	Турбулентное			
1	349.87	3.95		
2	741.35	5.3		

Таблица 2: Результаты измерений разности давлений от длин участков

Тогда коэффициент пропорциональности

$$\beta = \frac{\ln\left(\frac{Q_1}{Q_2}\right)}{\ln\left(\frac{R_1}{R_2}\right)}$$

Получаем:

 $\beta_{\text{ламинарное}} \approx 3.76$

 $\beta_{\text{турбулентное}} \approx 2.55,$

что не плохо согласуется с теорией, согласно которой $\beta_{\Pi}^{true}=4,\ \beta_{\Pi}^{true}=2.5.$

5 Обсуждение результатов

- В ходе исследования анализировалась зависимость свойств течения газа в тонких трубках при различных значениях числа Рейнольдса.
- С использованием закона Пуазейля был вычислен коэффициент вязкости воздуха для заданных условий.

- Из-за значительных погрешностей полученное значение коэффициента вязкости отклоняется от табличного.
- Экспериментально установлено, что при турбулентном течении расход пропорционален $\mathbb{R}^{2,5}$ с высокой точностью
- Для ламинарного течения зависимость расхода оказалась менее точной.

6 Приложение

№	<i>h</i> , мм	ΔV , л	Δt , c	ΔP , Πa	<i>Q</i> , мл/с	$\Delta P^2, \Pi a^2$	Q, (мл/с) ²	$\Delta P \cdot Q, \frac{\text{MJI} \cdot \prod \mathbf{a}}{C}$
1	5	$\frac{\Delta v, \pi}{1.07}$	$\frac{\Delta t, c}{60.40}$	9.81	17.72	96.24	313.9	173.8
2	10	2.55	72.51	19.61	35.17	384.16	1236.9	689.68
3	15	3.51	62.20	29.43	56.37	866.12	3177.6	1658.9
4	20	4.52	60.64	39.24	74.54	1539.78	5556.2	2924.94
5	25	5.92	62.26	49.05	95.09	2405.90	9042.1	4664.16
6	30	6.88	60.67	58.86	113.40	3464.50	12859	6674.7
7	35	8.01	60.62	68.67	131.99	4715.57	17421	9057.6
8	40	9.13	60.41	74.48	151.13	5547.27	22840	11256.2
9	45	10.33	60.40	88.29	171.03	7795.12	29251	15100.2
Среднее знач.						2979	11300	5800
3330131			Lентност:	Ь				
10	55	12.59	60.63	107.91	207.65			
11	65	14.91	60.57	127.53	246.36			
12	75	19.11	68.03	147.15	280.91			
13	85	8.9	29.91	166.77	297.56			
14	140	10.28	30.15	274.68	340.96			
15	150	10.65	30.44	294.3	349.87			
16	180	11.49	30.55	353.16	376.11			

Таблица 3: Результаты измерений разности давлений от расхода

$N_{\overline{0}}$	h, mm	ΔV , л	Δt , c	$\Delta P, \Pi a$	Q, мл/с			
1	5	1.01	20.45	9.81	49.39			
2	10	2.18	21.32	19.61	102.25			
3	15	3.48	20.70	29.43	168.12			
4	18	4.09	19.72	35.32	207.4			
5	20	4.82	21.03	39.24	229.2			
6	25	5.91	20.56	49.05	287.45			
7	30	7.11	20.36	58.86	349.21			
	Турбулентность							
8	35	8.16	20.46	68.67	398.83			
9	75	10.27	20.49	147.15	501.22			
10	95	11.75	20.56	186.39	571.5			
11	115	13.02	20.66	225.63	630.2			
12	135	16.94	24.56	264.87	689.74			
13	155	15.22	20.53	304.11	741.35			
14	175	20.06	25.23	343.35	795.09			

Таблица 4: Результаты измерений разности давлений от расхода

	$k, 10^{-6} \frac{\text{M}^3}{\text{c} \cdot \Pi \text{a}}$	$\Delta k, \frac{\text{M}^3}{\text{c} \cdot \Pi \text{a}}$	$\varepsilon_k,\%$	$\eta, \Pi \mathbf{a} \cdot \mathbf{c}$	$\Delta \eta, \Pi a \cdot c$
Первый экспер.	1.94	0.06	3.1	19.91	0.57
Второй экспер.	5.84	0.12	3.1	18.98	0.57

Таблица 5: Результаты вязкостей воздуха в случаях d_1 и d_2