Imports

```
In [58]: import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  from decimal import Decimal
  sns.set_theme()
```

Variables

Point 1.

The intensity I of light of a given wavelength λ is given by this equation:

```
I(\lambda) = e^{-\alpha(v)d}
```

where the frequency v is related to λ by $v = \frac{c}{\lambda}$. The thickness of the slab is d. The absorption coefficient \alpha(\nu) is given by the following equation:

$$\alpha(v) = \frac{e^2 f n_H}{4\pi m_e c} \frac{(1-x)g_0}{Z} \frac{\Gamma}{(v-v_0)^2 + (\Gamma/4\pi)^2}$$

In this formula is not clear if Γ is divided by 4π or by 4 and then multiplied for π . In my implementation, I consider the first option.

```
In [57]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize = (30,7))
y_limit = [(-0.05, 1.05), (-0.05,1.05), (-0.05,1.05)]
for indx, d in enumerate(d_list):
    lamb = np.linspace(1e-8, 1400 * 1e-8, num = 1000000) #linspace between
    800 and 1400
    nu = c/lamb
    alpha = (e**2 * f * n_h)/(4*pi*m_e*c) * ((1-x)*g_0)/z * eta/((nu-nu_0))
    **2 + (eta/(4*pi))**2)
    I = np.exp(-alpha * d)
    axs[indx].set_title(f"Spectrum d = {Decimal(d):.2E}")
    axs[indx].plot(lamb, I, c=np.random.rand(3,))
    axs[indx].set_xlabel("Wavelength")
    axs[indx].set_ylabel("Intensity")
    axs[indx].set_ylim(y_limit[indx])
    indx+=1
```


The difference in the thickness parameter d affects the amount of radiation absorbed. This variation results in a greater density of atoms (and consequently of electrons) which leads to greater absorption. This phenomenon is particularly evident in the last two graphs, where the absorption peaks are greater.

Point 2.

If we set v_0 = 2.46632 * 10^{15} and we generate again the spectra from question 1:

```
In [61]: nu_0 = 2.46632e+15
In [62]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize = (30,7))
         y_{limit} = [(-0.05, 1.05), (-0.05, 1.05), (-0.05, 1.05)]
         for indx, d in enumerate(d_list):
           lamb = np.linspace(1 * 1e-8, 1400 * 1e-8, num = 1000000) #linspace bet
         ween 800 and 1400
           nu = c/lamb
           alpha = (e^{**2} * f * n_h)/(4*pi*m_e*c) * ((1-x)*g_0)/z * eta/((nu-nu_0))
          **2 + (eta/(4*pi))**2)
           I = np.exp(-alpha * d)
           axs[indx].set_title(f"Spectrum d = {Decimal(d):.2E}")
           axs[indx].plot(lamb, I, c=np.random.rand(3,))
           axs[indx].set_xlabel("Wavelength")
           axs[indx].set_ylabel("Intensity")
           axs[indx].set_ylim(y_limit[indx])
           indx+=1
```


The three graphs are very similar to those seen previously. Changing the v_0 center frequency doesn't affect the final result much. This may be because the change in magnitude of v_0 is too small compared to the other parameter.