KidIQ: kidiq.csv

Widen the notebook.

```
html"""

<style>
    main {
        margin: 0 auto;
        max-width: 2000px;
        padding-left: max(160px, 10%);
        padding-right: max(160px, 10%);
    }

</style>
"""
```

```
\circ using Pkg \checkmark , DrWatson \checkmark
```

kidiq =

	kid_score	mom_hs	mom_iq	mom_work
1	65	1	121.118	4
2	98	1	89.3619	4
3	85	1	115.443	4
4	83	1	99.4496	3
5	115	1	92.7457	4
6	98	0	107.902	1
7	69	1	138.893	4
8	106	1	125.145	3
9	102	1	81.6195	1
10	95	1	95.0731	1
: more				
434	70	1	91.2533	2

⁻ kidiq = CSV.read(ros_datadir("KidIQ",
 "kidiq.csv"), DataFrame)

```
| 150 | KidlQ data: kid_score ~ mom_hs | 150 | KidlQ data: kid_score ~ mom_iq | 150 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
```

```
• let
      f = Figure()
     ax = Axis(f[1, 1]; title="KidIQ data:
      kid_score ~ mom_hs")
      scatter!(kidiq[kidiq.mom_hs .== 0,
      :mom_hs], kidiq[kidiq.mom_hs .== 0,
      :kid_score]; color=:red, markersize = 3)
      scatter!(kidiq[kidiq.mom_hs .== 1,
      :mom_hs], kidiq[kidiq.mom_hs .== 1,
      :kid_score]; color=:blue, markersize =
      3)
      ax = Axis(f[1, 2]; title="KidIQ data:
      kid_score ~ mom_iq")
      scatter!(kidiq[kidiq.mom_hs .== 0,
      :mom_iq], kidiq[kidiq.mom_hs .== 0,
      :kid_score]; color=:red, markersize = 3)
      scatter!(kidiq[kidiq.mom_hs .== 1,
      :mom_iq], kidiq[kidiq.mom_hs .== 1,
      :kid_score]; color=:blue, markersize =
      3)
      current_figure()
 end
```

```
• stan10_1 = "
data {
      int N;
      vector[N] mom_hs;
      vector[N] kid_score;
parameters {
      real a;
      real b;
      real sigma;
• }
model {
      vector[N] mu;
      a ~ normal(100, 10);
      b \sim normal(5, 10);
      mu = a + b * mom_hs;
      kid_score ~ normal(mu, sigma);
· ";
```

```
    @model function ppl10_1(x, y)
    a ~ Normal(100, 10)
    b ~ Normal(5, 10)
    σ ~ Exponential(1)
    μ = a .+ b .* x
```

ppl10_1 (generic function with 2 methods)

```
for i in eachindex(y)
y[i] ~ Normal(μ[i], σ)
end
end
```

```
▶ [
      parameters
                              std
                    mean
                                     naive_se
                  92.1898
                            1.4186
                                     0.02243
   1
     :a
   2
      :b
                  9.97788
                            1.58614 0.025079
   3
                  14.2134
                            0.47018 0.0074342
      : O
 begin
      m10_1t = ppl10_1(kidiq.mom_hs,
       kidiq.mom_iq)
       chns10_1t = sample(m10_1t, NUTS(),
```

MCMCThreads(), 1000, 4)
describe(chns10_1t)

end

	parameters	median	mad_sd	mean	st
1	"a"	92.181	1.414	92.19	1.41
2	"b"	9.995	1.578	9.978	1.58
3	"σ"	14.201	0.471	14.213	0.47

```
begin
post10_1t = DataFrame(chns10_1t)[:, 3:5]
ms10_1t = model_summary(post10_1t, [:a,
:b, :σ])
end
```



```
f = Figure()
ax = Axis(f[1, 1]; title="KidIQ data:
kid_score ~ mom_hs")
scatter!(kidiq[kidiq.mom_hs .== 0,
:mom_hs], kidiq[kidiq.mom_hs .== 0,
:kid_score]; color=:red, markersize = 3)
scatter!(kidiq[kidiq.mom_hs .== 1,
:mom_hs], kidiq[kidiq.mom_hs .== 1,
:mom_hs], kidiq[kidiq.mom_hs .== 1,
:kid_score]; color=:blue, markersize =
3)
lines!([0.0, 1.0], [ms10_1t[:a,
:median], ms10_1t[:a, :median] +
    ms10_1t[:b, :median]])
current_figure()
end
```

```
ppl10_2 (generic function with 2 methods)

• @model function ppl10_2(x, y)

• a ~ Normal(25, 3)

• b ~ Normal(1, 2)

• σ ~ Exponential(1)

• μ = a .+ b .* x

• for i in eachindex(y)

• y[i] ~ Normal(μ[i], σ)

• end

• end
```

```
▶ [
      parameters
                     mean
                                 std
                                           naive_
   1
                   25.1545
                              2.69175
                                         0.042560
      :a
   2
                                         0.000437
      :b
                   0.616314 0.0276462
   3
                   17.9251
                              0.59097
                                         0.009344
       : o
 begin
       m10_2t = ppl10_2(kidiq.mom_iq,
       kidiq.kid_score)
       chns10_2t = sample(m10_2t, NUTS(),
       MCMCThreads(), 1000, 4)
       describe(chns10_2t)
   end
```

```
parameters median mad_sd
                                   mean
                                              st
   "a"
                25.221
                         2.642
                                  25.154
                                           2.69
1
   "b"
                0.616
                         0.028
                                  0.616
                                           0.02
2
begin
      post10_2t = DataFrame(chns10_2t)[:, 3:5]
      ms10_2t = model_summary(post10_2t, [:a,
      :b, :sigma])
  end
```

```
KidIQ data: kid_score ~ mom_id
150
100
50
                     100
• let
      f = Figure()
      ax = Axis(f[1, 1]; title="KidIQ data:
      kid_score ~ mom_iq")
      scatter!(kidiq[kidiq.mom_hs .== 0,
       :mom_iq], kidiq[kidiq.mom_hs .== 0,
       :kid_score]; color=:red, markersize = 3)
      scatter!(kidiq[kidiq.mom_hs .== 1,
       :mom_iq], kidiq[kidiq.mom_hs .== 1,
       :kid_score]; color=:blue, markersize =
      3)
      x = LinRange(70.0, 140.0, 100)
      lines!(x, ms10_2t[:a, :median] .+
      ms10_2t[:b, :median] .* x)
      current_figure()
  end
```

ppl10_3 (generic function with 2 methods)

```
@model function ppl10_3(x, y, z)
a ~ Normal(25, 2)
b ~ Normal(5, 2)
c ~ Normal(1, 2)
σ ~ Exponential(1)
μ = a .+ b .* x .+ c .* y
for i in eachindex(y)
z[i] ~ Normal(μ[i], σ)
end
end
```

```
▶ [
      parameters
                     mean
                                 std
                                           naive_
                   25.0229
   1
      :a
                              1.8917
                                          0.029910
   2
      :b
                   5.46953
                              1.49
                                          0.023559
   3
      : C
                   0.574588
                              0.0239202
                                         0.000378
                   17.7902
   4
                              0.592148
                                          0.009362
       : O
 begin
       m10_3t = ppl10_3(kidiq.mom_hs,
```

```
m10_3t = ppl10_3(kidiq.mom_hs,
kidiq.mom_iq, kidiq.kid_score)
chns10_3t = sample(m10_3t, NUTS(),
MCMCThreads(), 1000, 4)
describe(chns10_3t)
end
```

	parameters	median	mad_sd	mean	st
1	"a"	25.004	1.909	25.023	1.89
2	"b"	5.458	1.5	5.47	1.49
3	"c"	0.575	0.023	0.575	0.02
4	"o"	17.781	0.599	17.79	0.59

```
begin
post10_3t = DataFrame(chns10_3t)[:, 3:6]
ms10_3t = model_summary(post10_3t, [:a,
:b, :c, :o])
end
```

```
• let
     momnohs(x) = x == 0
     nohs = findall(momnohs, kidiq.mom_hs)
     momhs(x) = x == 1
     hs = findall(momhs, kidiq.mom_hs)
     f = Figure()
      ax = Axis(f[1, 1]; title="KidIQ data:
      kid_score ~ mom_hs + mom_iq")
      sca1 = scatter!(kidiq[kidiq.mom_hs .==
      0, :mom_iq], kidiq[kidiq.mom_hs .== 0,
      :kid_score]; color=:red, markersize = 3)
      sca2 = scatter!(kidiq[kidiq.mom_hs .==
      1, :mom_iq], kidiq[kidiq.mom_hs .== 1,
      :kid_score]; color=:blue, markersize =
      3)
      x = sort(kidiq.mom_iq[nohs])
     lin1 =lines!(x, ms10_3t[:a, :median] .+
      ms10_3t[:b, :median] .*
      kidiq.mom_hs[nohs] .+ ms10_3t[:c,
      :median] .* x;
          color=:darkred)
      x = sort(kidiq.mom_iq[hs])
      lin2 =lines!(x, ms10_3t[:a, :median] .+
      ms10_3t[:b, :median] .*
      kidiq.mom_hs[hs] .+ ms10_3t[:c,
      :median] .* x;
          color=:darkblue)
     Legend(f[1, 2],
          [sca1, sca2, lin1, lin2],
          ["No high school", "High school",
  "No high school", "High School"])
      current_figure()
  end
```