Package 'HiTMaP'

March 17, 2021

```
Type Package
Title A collection of tools for imaging MS data processing
Version 1.0.0
Date
Depends R (>= 4.0.2)
Author George GUO [aut, cre]
Maintainer George GUO < George . GUO@auckland.ac.nz>
Description
License GPL-3
LazyLoad yes
NeedsCompilation no
Encoding UTF-8
BugReports
Imports pryr, colortools, pacman, purrr, lattice, pls,
      RColorBrewer, magick, ggplot2, reticulate,
      dplyr,stringr,data.table,doParallel,
      iterators, for each, prot Viz, cleaver,
      MALDIquant, Biostrings, XVector, IRanges, Cardinal,
      ProtGenerics, S4 Vectors, stats 4, egg,
      EBImage,BiocParallel,BiocGenerics,parallel,
      stats, graphics, grDevices, utils,
      datasets, methods, Rdisop, Rcpp,
      pacman, devtools, fs, processx, S4 Vectors,
      spdep,zoo,KEGGREST,OrgMassSpecR,
      enviPat,rgl,multtest,XML,
      BiocManager, shiny Files, shiny,
      rcdk,colorspace,OneR,
      gridExtra,grid,gtable,ChemmineR
VignetteBuilder knitr
Suggests knitr,
      rmarkdown,
      devtools,
      plotly,
      UniProt.ws,
      bitops
```

2 Cleavage_rules_fun

RoxygenNote 7.1.1

biocViews Software, Infrastructure, Proteomics, Lipidomics,
 MassSpectrometry, ImagingMassSpectrometry, ImmunoOncology,
 Normalization, Clustering, Classification, Regression

R topics documented:

	Cleavage_rules_fun	2
	cluster_image_grid	3
	get_atoms	
	grid.ftable	4
	HiTMaP_GUI	4
	imaging_identification	5
	imaging_Spatial_Quant	
	merge_atoms	
	Meta_feature_list_fun	
	Peptide_modification	13
	Protein_feature_list_fun	
Index		15
Cleav	vage_rules_fun	

Description

This is a function will return a list of pre-defined enzyme digestion specificity.

Usage

```
Cleavage_rules_fun()
```

Value

a table of Cleavage rules

```
Cleavage_rules_fun()
```

cluster_image_grid 3

```
cluster_image_grid cluster_image_grid
```

Description

This function renders the clustered images for maldi imaging data set

Usage

```
cluster_image_grid(
  clusterID,
  SMPLIST,
  imdata,
  ClusterID_colname = "Protein",
  componentID_colname = "Peptide",
  Component_plot_threshold = 2,
  Component_plot_coloure = c("mono", "as.cluster"),
  smooth.image = "gaussian",
  contrast.enhance = "suppression",
  colorpallet = "Set1",
  plot_layout = c("line", "grid"),
  export_Header_table = F,
  export_footer_table = F,
  plot_style = c("fleximaging", "ClusterOnly", "rainbow"),
  protein_coverage = F,
  footer_style = "Length",
  output_png_width_limit = 1980,
  attach_summary_cluster = T,
  cluster_color_scale = c("blackwhite", "fleximaging"),
  remove_cluster_from_grid = T,
  img_brightness = 100,
  ppm = 20,
  list_of_protein_sequence,
  workdir = getwd(),
  pixel_size_um = 50,
  Score_thres = NULL
)
```

 ${\tt get_atoms}$

 get_atoms

Description

This is a function that prepare the atoms list for candidate molecules.

```
get_atoms(Symbol)
```

4 HiTMaP_GUI

Arguments

Symbol

the Symbol of the molecule

Value

a atoms list

Examples

```
get_atoms(Symbol="C7H1308P")
```

grid.ftable

grid.ftable

Description

This is a function will plot table.

Usage

```
grid.ftable(d, padding = unit(4, "mm"), ...)
```

Value

a table image

Examples

```
grid.ftable()
```

HiTMaP_GUI

HiTMaP shiny-based graphical user interface (GUI)

Description

HiTMaP shiny-based graphical user interface (GUI)

Usage

```
HiTMaP_GUI(wd = "", port = 3838)
```

```
## Start the GUI
## Not run:
HiTMaP_GUI()
## End(Not run)
```

imaging_identification

5

imaging_identification

imaging_identification

Description

This is a peptide mass fingerprint search function for maldi imaging data analysis

```
imaging_identification(
 datafile,
 projectfolder = NULL,
  threshold = 0.005,
 ppm = 5,
 mode = c("Proteomics", "Metabolomics"),
 Digestion_site = "trypsin",
 missedCleavages = 0:1,
 Fastadatabase = "uniprot-bovin.fasta",
  adducts = c("M+H"),
 Modifications = list(fixed = NULL, fixmod_position = NULL, variable = NULL,
    varmod_position = NULL),
  Substitute_AA = NULL,
 Decoy_search = TRUE,
 Decoy_adducts = c("M+ACN+H", "M+IsoProp+H", "M+DMSO+H", "M+Co", "M+Ag", "M+Cu",
    "M+He", "M+Ne", "M+Ar", "M+Kr", "M+Xe", "M+Rn"),
 Decoy_mode = "isotope",
 mzrange = "auto-detect",
 Database_stats = F,
  adjust_score = FALSE,
  IMS_analysis = TRUE,
  PMFsearch = IMS_analysis,
 Load_candidatelist = IMS_analysis || plot_cluster_image_grid,
 Bypass_generate_spectrum = FALSE,
  peptide_ID_filter = 2,
 Protein_feature_summary = TRUE,
 Peptide_feature_summary = TRUE,
 plot_ion_image = FALSE,
  parallel = detectCores(),
  spectra_segments_per_file = 4,
 Segmentation = c("spatialKMeans", "spatialShrunkenCentroids", "Virtual_segmentation",
    "none", "def_file"),
  Segmentation_def = "Segmentation_def.csv",
  Segmentation_ncomp = "auto-detect",
  Segmentation_variance_coverage = 0.8,
 preprocess = list(force_preprocess = FALSE, use_preprocessRDS = TRUE, smoothSignal =
   list(method = "disable"), reduceBaseline = list(method = "locmin"), peakPick =
   list(method = "adaptive"), peakAlign = list(tolerance = ppm, units = "ppm"),
    normalize = list(method = c("rms", "tic", "reference")[1], mz = 1)),
  Smooth_range = 1,
  Virtual_segmentation_rankfile = NULL,
```

imaging_identification

```
Rotate_IMG = NULL,
 Region_feature_summary = FALSE,
 Spectrum_validate = TRUE,
 output_candidatelist = TRUE,
 use_previous_candidates = FALSE,
 score_method = "SQRTP",
 plot_cluster_image_grid = FALSE,
 plot_cluster_image_maxretry = 2,
 plot_cluster_image_overwrite = F,
  smooth.image = "gaussian",
 componentID_colname = "Peptide",
 ClusterID_colname = "Protein",
 Protein_desc_of_interest = ".",
 Protein_desc_of_exclusion = NULL,
 plot_unique_component = TRUE,
 FDR_cutoff = 0.05,
 use_top_rank = NULL,
 plot_matching_score = F,
 Component_plot_coloure = "mono",
 cluster_color_scale = "blackwhite",
 plot_layout = "line",
 export_Header_table = T,
 export_footer_table = T,
 attach_summary_cluster = T,
 remove_cluster_from_grid = attach_summary_cluster,
 pixel_size_um = 50,
  img_brightness = 100,
 Thread = NULL,
 cluster_rds_path = NULL,
 remove_score_outlier = F,
 Plot_score_IQR_cutoff = 0.75,
 Plot_score_abs_cutoff = -0.1,
)
```

Arguments

6

datafile the data files' path for the analysis, leave it as blank to enable a graphical user

interface to select the data

projectfolder optional, if NULL script will extract the path from datafile(s), and use the first

workdir as project folder

threshold specify the intensities threshold (0 to 1 in percentage) to report a identified molecule

ppm the mz tolerance (in ppm) for peak integration

Digestion_site Set the enzyme digestion specificity by one or more regex expressions or the

name of a enzyme

 ${\tt missedCleavages}$

miss cleavage number allowed in this PMF search

Fastadatabase the fasta database used in this pmf search, the file should be placed in the same

folder with data files

adducts the adducts list to be used for generating the PMF search candidates

Modifications set the modifications

Substitute_AA set the amino acid Substitutions

Decoy_search enable (default) or disable the decoy search

Decoy_adducts define the adduct list for decoy search. the decoy adducts could be "M+ACN+H", "M+IsoProp+H", "M

or"M+Rn".

Decoy_mode select the decoy search mode between "isotope" (default), "element" and "adduct"

mzrange define the mz range for the experiment, default is 700 to 4000 m/z.

IMS_analysis Set "true" if you want to perform data pre-processing and proteomics search,

set "false" if you want to bypass it

peptide_ID_filter

set the minimal count of peptides needed to identify a protein

Protein_feature_summary

"IMS_analysis" follow-up process that will collect all the identified peptide information and associate them with possible proteins

Peptide_feature_summary

"IMS_analysis" follow-up process that will summarize all datafiles identified peptides and generats a "peptide shortlist" in the result summary folder

 $\verb|plot_ion_image| "Peptide_feature_summarya" follow-up process that will plot every connposition of the process of the proce$

nents in the "peptide shortlist". please use the cluster image grid to output

the images.

parallel the number of threads will be used in the PMF search, this option now only

works for windows OS

spectra_segments_per_file

optimal number of distinctive regions in the tissue section, a virtual segmentation will be applied to the image files with this value. To have a better PMF result you may set a value that in the sweet point of sensitivety and false discovery rate

(FDR).

Segmentation set as "spatialKMeans" to enable a "spatialKMeans" Segmentation; set as "spa-

tialShrunkenCentroids" to enable a "spatialShrunkenCentroids" Segmentation; If a region rank file was supplied, you can set this as "Virtual_segmentation" to perform a manual segmentation; Set it as "none" to bypass the segmentation.

preprocess a list of params that define the IMS data pre-processing procedure

Smooth_range "Segmentation" pixel smooth range

Virtual_segmentation_rankfile

specify a region rank file contains region information for manualy region seg-

mentation

Rotate_IMG specify a configuration file to further change the rotation of the images

Region_feature_summary

"IMS_analysis" follow-up process that will summarize mz feature of all re-

gions of all data files into the summary folder

 ${\tt use_previous_candidates}$

set as TRUE to reload the previously generated candidate list.

score_method specify the peptide spectrum scoring method, "SQRTP" is recommended.

plot_cluster_image_grid

set as "TRUE" to enable the protein cluster image function.

plot_cluster_image_overwrite

Set as true to generate the cluster images regardless the existance of previously file(s)

8 imaging_identification

componentID_colname

Specify the component ID column in the result spreadsheet.

ClusterID_colname

Specify the cluster ID column in the result spreadsheet.

Protein_desc_of_interest

Specify a list of protein descriptions for cluster image plotting. Default setting will plot all reported proteins.

Protein_desc_of_exclusion

Specify a list of protein descriptions to be excluded from cluster image plotting. plot_unique_component

Set as "TRUE" to plot only the unique components in the cluster image plotting.

FDR_cutoff set the protein FDR cutoff threshold, default is 5 percent

plot_matching_score

enable the spectrum matching overlay plot

Component_plot_coloure

set as "mono" to use a pre-defined color scale to plot component images. Set as "as.cluster" to use the previously assigned mono color in the additive cluster binning process.

cluster_color_scale

Set as "blackwhite" to use only black and white color in the cluster image plotting. using "blackwhite" in cluster_color_scale will overwrite the components' color setting.

plot_layout

Set as "line" to plot cluster and component images for multiple data file or as "grid" to plot cluster images for single data file. In "grid" mode, Image's will be rendered into a grid with 5 columns.

export_Header_table

Set as "TRUE" to plot the header in the cluster image plotting. Header table includes the basic information of cluster and components.

export_footer_table

Set as "TRUE" to plot the footer in the cluster image plotting. Footer shows the protein coverage in the Proteomics mode.

attach_summary_cluster

Set as "TRUE" to attach an enlarged cluster image to the bottom of the cluster image.

remove_cluster_from_grid

Set as "TRUE" to remove the cluster image from the cluster image grid. it is recommended to set this same as the attach_summary_cluster.

cluster_rds_path

set as NULL if there is not preprocessed.rds available for a single file, script will load the raw data file which may reduce the signal intensities. For multiple samples, scripts will try to load the RDS file from each "ID" folder and merge the mz features via instrument resolution setting and output a combined RDS file to the project folder. For multiple files cluster images rendering user should set the attach_summary_cluster as False, and set remove_cluster_from_grid as true.

Value

None

Examples

imaging_Spatial_Quant imaging_Spatial_Quant

Description

This is a spatial quantitation function for maldi imaging data set this function will read the candidate list file and generate quantification result

```
imaging_Spatial_Quant(
 datafile = tk_choose.files(filter = matrix(c("imzml file", ".imzmL", "Text", ".txt",
    "All files", "*"), 3, 2, byrow = TRUE), caption =
    "Choose single or multiple file(s) for analysis"),
  threshold = 0,
 ppm = 2.5,
 Quant_list = "Metabolites of Interest.csv",
 adducts = c("M-H", "M+Cl"),
 cal.mz = F,
 mzlist_bypass = T,
 IMS_analysis = TRUE,
 Protein_feature_summary = T,
 plot_cluster_image = T,
 plot_style = "fleximaging",
 Peptide_feature_summary = T,
 plot_ion_image = FALSE,
 parallel = detectCores()/2,
 spectra_segments_per_file = 5,
 Smooth\_range = 1,
 Segmentation = c("spatialKMeans", "spatialShrunkenCentroids", "Virtual_segmentation",
    "none"),
 Virtual_segmentation_rankfile = tk_choose.files(default =
  "Z:/George skyline results/maldiimaging/Maldi_imaging - Copy/radius_rank.csv",
   caption = "Choose Virtual segmentation rank info file"),
 Spectrum_feature_summary = T,
 Region_feature_summary = T,
 Region_feature_analysis = T,
 plot_each_metabolites = T,
 Cluster_level = "High",
 ClusterID_colname = "Name",
 Region_feature_analysis_bar_plot = T,
```

```
norm_datafiles = T,
 norm_Type = "Median"
 mzrange = "auto-detect",
 BPPARAM = bpparam(),
 Rotate_IMG = NULL,
)
```

Arguments

datafile specify the imzML data files

threshold specify the intensities threshold (0 to 1 in percentage) to report a identified molecule

ppm the mz tolerance (in ppm) for peak integration

Quant_list the quantification candidate list, spatial quantification will go through every

datafile and collect the ion intensities for each listed component

adducts the adducts list to be used for generating the PMF search candidates

cal.mz If set with "true", the function will recalculate the mz value according to the

column named "formular" in the Quant_list and the specified adducts.

mzlist_bypass Set "true" if you want to bypass the mzlist generating process

Protein_feature_summary

"IMS_analysis" follow-up process that will collect all the identified peptide

information and associate them with possible proteins

plot_cluster_image

"Protein_feature_summary" follow-up process that will plot the protein clus-

ter image

"Peptide_feature_summarya" follow-up process that will plot every connpoplot_ion_image

nents in the "peptide shortlist"

parallel the number of threads will be used in the PMF search, this option now only

works for windows OS

spectra_segments_per_file

optimal number of distinctive regions in the imaging, a virtual segmentation will be applied to the image files with this value. To have a better PMF result you may set a value that in the sweet point of sensitivety and false discovery rate

(FDR).

"Segmentation" pixel smooth range Smooth_range

Segmentation set as "spatialKMeans" to enable a "spatialKMeans" Segmentation; set as "spa-

> tialShrunkenCentroids" to enable a "spatialShrunkenCentroids" Segmentation; If a region rank file was supplied, you can set this as "Virtual_segmentation" to perform a manual segmentation; Set it as "none" to bypass the segmentation.

Virtual_segmentation_rankfile

specify a region rank file contains region information for manualy region segmentation

Peptide_feature_summarya

"IMS_analysis" follow-up process that will summarize all datafiles identified peptides and generats a "peptide shortlist" in the result summary folder

Value

None

merge_atoms 11

Examples

merge_atoms

merge_atoms

Description

This is a function that merge the atoms to a melecule atom list.

Usage

```
merge_atoms(
  atoms,
  addelements,
  check_merge = F,
  mode = c("add", "ded"),
  multiplier = c(1, 1)
)
```

Arguments

atoms the file name of candidate list

addelements the folder that contains candidate list

check_merge Check the final formula for any negative number of atom(s).

mode add the elements to the formula by using "add", and deduct the elements by

using "ded".

multiplier Two number to define the atom and adding elements' proportion respectively.

Value

an atom list

```
merge\_atoms(atoms=get\_atoms("C7H1308P"), addelements=list(H=1), check\_merge=T, mode="ded", multiplier=c(1,2))
```

12 Meta_feature_list_fun

Description

This is a function that prepare the candiate list for maldi imaging data qualitative or quantitative analysis. this function will read the candidate list file and generate mz for the adducts list defined in "adducts".

Usage

```
Meta_feature_list_fun(
  database,
  workdir = getwd(),
  adducts = c("M-H", "M+Cl"),
  cal.mz = TRUE,
  bypass = FALSE,
  BPPARAM = bpparam()
)
```

Arguments

database the file name of candidate list

workdir the folder that contains candidate list

adducts the adducts list to be used for generating the PMF search candidates

cal.mz If set with "TRUE", the function will recalculate the mz value according to the

column named "formula" in the database and the specified adducts.

BPPARAM parallel processing parameter for BiocParallel

mzlist_bypass Set "TRUE" if you want to bypass the mzlist generating process, the function

will keep the mz and adduct as it is for the furture analysis. Be sure that the table contains "mz", "adduct" and "moleculeNames" as they are essential for

later steps.

Value

a table of candiate list

```
Meta_feature_list_fun(database="lipid candidates.csv",adducts=c("M-H","M+Cl"))
```

Peptide_modification 13

Description

This is a function that prepare the modification list for maldi imaging data qualitative or quantitative analysis. this function will load a pre-built Unimod database (unimod.df) into global environment.

Usage

```
Peptide_modification(retrive_ID = NULL, mod_position = NULL, update_unimod = F)
```

Arguments

```
retrive_ID the file name of candidate list
mod_position the folder that contains candidate list
update_unimod the adducts list to be used for generating the PMF search candidates
```

Value

a table of modification list

Examples

```
Peptide_modification()
```

```
Protein_feature_list_fun

Protein_feature_list_fun
```

Description

This is a function that prepare the candiate list for maldi imaging data qualitative or quantitative analysis. this function will read the fasta file and generate mz for the adducts list defined in "adducts".

```
Protein_feature_list_fun(
  workdir = getwd(),
  database,
  Digestion_site = "[G]",
  missedCleavages = 0:1,
  Multiple_mode = c("sequential", "parallel"),
  adducts = c("M+H", "M+NH4", "M+Na"),
  BPPARAM = bpparam(),
  Decoy_search = T,
  Decoy_mode = c("adducts", "elements", "isotope", "sequence"),
```

Arguments

workdir the folder that contains fasta file

database the file name of fasta file

Digestion_site Digestion pattern, this is the

missedCleavages

Define a number range for misscleaved peptides to be considered

adducts the adducts list to be used for generating the PMF search candidates

BPPARAM parallel processing parameter for BiocParallel

Value

a table of peptide candiate list

Examples

Protein_feature_list_fun(database="lipid candidates.csv",adducts=c("M+H","M+NH4","M+Na"))

Index

```
Cleavage_rules_fun, 2
cluster_image_grid, 3

get_atoms, 3
grid.ftable, 4

HiTMaP_GUI, 4

imaging_identification, 5
imaging_Spatial_Quant, 9

merge_atoms, 11

Meta_feature_list_fun, 12

Peptide_modification, 13
Protein_feature_list_fun, 13
```