Image Matching Challenge

Longbin Jin

Schedule of Lectures

	Mon	Wen	offline	online
12주	Image matching	Hands-on CNN		
13주	CNN	CNN		
14주	CNN architecture	Semantic segmentation		
15주	Object Detection	Image matching Challenge (40%)		
16주	Final exam (50%) 6.17			

Recap: Image Matching System

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

Feature extraction

- Color
 - Color histogram
- Texture
 - LBP
 - **GLCM**
 - Law's texture
- Shape
 - Harris corner
 - SIFT
 - HoG
- Deep Learning

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN
 - SVM
- Deep Learning

Image Matching System Challenge 1 & 2

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

Feature extraction

- CHALLENGE 1
- Low/mid-level
 - Color
 - Texture
 - Shape
- CHALLENGE 2
- High-level
 - CNNs

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN

CHALLENGE 2

- Convolutional Neural Networks (CNNs)
 - will be covered in next class
- Extract CNN output feature vectors

Pytorch-based CNN practice in 5.20~6.2 (online)

- Banning the use of transformers!
 - ViT, Swin, CLIP, ...

VGG16

DB Images (train image)

- link
 - git clone https://github.com/folfcoder/recaptcha-dataset.git
- Classes (without mountain)

Bicycle (800)

Bridge (553)

Bus (1229)

Car (3578)

Chimney (56)

Crosswalk (1260)

Hydrant (972)

Motorcycle (101)

Palm (932)

Traffic Light (811)

Representing DB images by feature vectors

Explore and save the best feature sets using cross-validation in DB image

Representing DB images by feature vectors

You can save up to three feature sets for each CHALLENGE

Query Images (test image)

- Total 100 images
 - 10 images for each class
- Query Images will be available on 12 June (Wen)
 - We provide query images in class, without label

Query folder structure

```
query
|----query001.png
|----query002.png
|----...
|----query100.png
```


During the Challenge 12 Jun.

Step 1. representing query images by your own feature sets

Cosine Similarity During the Challenge Manhattan distance (L1 norm) Euclidean distance (L2 norm) 12 Jun. Mahalanobis Distance Pairs of features and labels **Features from Query Image CHALLENGE 1 CHALLENGE 1** Low-level Similarity Low-level Features 1 **DB** Images Features 1 Query Images (100) **CHALLENGE 2 CHALLENGE 2** Similarity High-level High-level Features 1 Features 1

Step2. Calculate the similarity between features of all DB Images and given query Image

Tasks for the CHALLENGE

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012.

During the Challenge 12 Jun.

Step3. Classification Result (Task 1): Classify and tag the label for every query image Step4. Retrieval Result (Task 2): Retrieve top ranked 10 images for every query image

Classification Result (Task 1)

- Outputs
 - 100 dimension array
 - Save the results as csv file for each attempt

```
1 predict_labels = classifier.predict(test_features)
2 print(predict_labels)
['Hydrant' 'Crosswalk' 'Bus' 'Motorcycle' 'Bicycle' 'Bicycle' 'Chimney'
 'Bicycle' 'Car' 'Bridge' 'Chimney' 'Chimney' 'Bicycle'
'Hydrant' 'Bridge' 'Chimney' 'Hydrant' 'Bridge' 'Bus'
 'Bus' 'Bridge' 'Chimney' 'Bridge' 'Bus' 'Bus' 'Bridge'
'Motorcycle' 'Chimney' 'Bridge' 'Bus' 'Bicycle' 'Crosswalk' 'Hydrant
'Car' 'Chimney' 'Hydrant' 'Bus' 'Hydrant' 'Crosswalk' 'Car' 'Car
 'Bridge' 'Chimney' 'Hydrant' 'Crosswalk' 'Bus' 'Bridge' 'Hydrant' 'Car
'Car' 'Hydrant' 'Car' 'Car' 'Bicycle' 'Hydrant' 'Chimney' 'Car
'Crosswalk' 'Car' 'Bus' 'Car' 'Bicycle' 'Car' 'Bicycle' 'Car' 'Chimney
 'Bicycle' 'Chimney' 'Motorcycle' 'Chimney' 'Bus' 'Bus'
"Bicycle" 'Bridge" 'Bridge" 'Bus" 'Car" 'Hydrant' 'Car' 'Bicycle'
 'Hydrant' 'Bridge' 'Bicycle' 'Bus' 'Car' 'Crosswalk' 'Chimney' 'Bus'
 'Bus' 'Motorcycle' 'Motorcycle'l
1 import csv
 3 with open('c1_t1_a1.csv','w') as file:
      write = csv.writer(file)
      for i, predict_label in enumerate(predict_labels):
          write.writerow([f'query{i+1:03}.png', predict label])
```

c1 t1 a1.csv query001.; Hydrant query002. Crosswalk query003.; Bus query004.r Motorcycle query005.; Bicycle query006.; Bicycle query007. Chimney query008.; Bicycle query009.; Car 10 query010. Bridge 11 query011. Chimney 12 query012. Chimney 96 query096. Chimney 97 query097.; Bus 98 query098.; Bus 99 query099. Motorcycle 100 query100. Motorcycle

Retrieval Result (Task 2)

- Outputs
 - 100x10 dimension array
 - Save the results as csv file for each attempt

Retrieval Result (Task 2)

- Outputs
 - 100x10 dimension array
 - Save the results as csv file for each attempt

					C1_t2_a1.C5V						
	Α	В	С	D	E	F	G	Н	I	J	K
1	query001.	Hydrant	Hydrant	Hydrant	Hydrant	Motorcycle	Motorcycle	Palm	Crosswalk	Motorcycle	Bicycle
2	query002.	Crosswalk	Car	Crosswalk	Traffic Ligl	Car	Bridge	Car	Bus	Crosswalk	Hydrant
3	query003.	Traffic Ligl	Palm	Bus	Motorcycle	Crosswalk	Bridge	Bus	Car	Crosswalk	Crosswalk
4	query004.	Motorcycle	Palm	Traffic Ligl	Bus	Bicycle	Crosswalk	Car	Motorcycle	Crosswalk	Bridge
5	query005.	Bicycle	Bicycle	Bridge	Bus	Palm	Traffic Ligl	Motorcycle	Bicycle	Bus	Bus
6	query006.	Bridge	Palm	Bicycle	Bicycle	Bus	Bus	Traffic Ligl	Bus	Car	Crosswalk
7	query007.	Chimney	Traffic Ligi	Palm	Chimney	Motorcycle	Motorcycle	Bridge	Chimney	Chimney	Bridge
8	query008.	Bus	Traffic Ligi	Bicycle	Bridge	Motorcycle	Bicycle	Hydrant	Bicycle	Palm	Palm
			,	J		,			,		J
96	query096.	Motorcycl	Palm	Chimney	Bridge	Chimney	Traffic Lig	Motorcycl	Palm	Chimney	Chimney
97	query097.	Bus	Bus	Bus	Bus	Traffic Lig	Bus	Traffic Lig	Traffic Lig	Chimney	Palm
98	query098.p	Palm	Bus	Bus	Palm	Bus	Bridge	Palm	Chimney	Bus	Traffic Light
99	query099.p	Motorcycl	Chimney	Motorcycl	Bridge	Palm	Chimney	Traffic Lig	Chimney	Chimney	Bus
100	query100.p	Motorcycl	Motorcycl	Traffic Lig	Chimney	Chimney	Chimney	Palm	Chimney	Bridge	Chimney

c1 t2 a1 csv

Ranking

- Task1: Classification
 - 1. Highest accuracy of all attempts
 - 2. Ties will be broken by F1 score
- Task2: Retrieval
 - 1. Highest (average) Top-10 accuracy of all attempts
 - 2. Ties will be broken by the ranking of correct label

	Α	В	С	D	E	F	G	Н	1	J	K
1	query001.p	Hydrant	Hydrant	Hydrant	Hydrant	Motorcycle	Motorcycle	Palm	Crosswalk	Motorcycle	Bicycle
2	query002.	Crosswalk	Car	Crosswalk	Traffic Lig	Car	Bridge	Car	Bus	Crosswalk	Hydrant
3	query003.p	Traffic Ligl	Palm	Bus	Motorcycle	Crosswalk	Bridge	Bus	Car	Crosswalk	Crosswalk
4	query004.p	Motorcycle	Palm	Traffic Ligl	Bus	Bicycle	Crosswalk	Car	Motorcycle	Crosswalk	Bridge
5	query005.p	Bicycle	Bicycle	Bridge	Bus	Palm	Traffic Lig	Motorcycl	Bicycle	Bus	Bus
6	query006.p	Bridge	Palm	Bicycle	Bicycle	Bus	Bus	Traffic Ligi	Bus	Car	Crosswalk
											_

Matching Results

- You should upload
 - Output files
 - c1_t1_a1.csv, c1_t1_a2.csv, c1_t1_a3.csv
 - c1_t2_a1.csv, c1_t2_a2.csv, c1_t2_a3.csv
 - c2_t1_a1.csv, c2_t1_a2.csv, c2_t1_a3.csv
 - c2_t2_a1.csv, c2_t2_a2.csv, c2_t2_a3.csv
 - Python code (.py or .ipynb)
 - c1_t1_a1.ipynb, c1_t1_a2.ipynb, c1_t1_a3.ipynb
 - c1_t2_a1.ipynb, c1_t2_a2.ipynb, c1_t2_a3.ipynb
 - c2_t1_a1.ipynb, c2_t1_a2.ipynb, c2_t1_a3.ipynb
 - c2_t2_a1.ipynb, c2_t2_a2.ipynb, c2_t2_a3.ipynb
 - DB features file (.npy or .pkl or others) if necessary

Tips & Tricks

- Normalize the features
 - Normalize the features to have zero mean and unit variance
 - e.g. Concatenation(Norm(GLCM), Norm(histogram))
- Consider using a dimensionality reduction technique
 - It works well on low-dimension data (compact features)
- Cross-validation
 - try different hyperparameter values and keep the values that lead to the best performance on the validation set

Tips & Tricks

- Ensemble methods
 - Majority Voting
 - Weighted Voting
 - Stable and improve accuracy
 - Pay computational cost at test time

