Roll No. Name Section National University of Computer and Emerging Sciences, Lahore Campus

Course: Data Warehousing & Data Mining

Program: BS(Computer Science)

Duration: 60 Minutes
Paper Date: 18-Sep-17
Section: CS

Exam: Midterm-I

Course Code: CS409 Semester: Fall 2017

Total Marks: 25 Weight 12.5% Page(s): 5

Instruction/Notes:

Scratch sheet can be used for rough work however, all the questions and steps are to be shown on question paper. No extra/rough sheets should be submitted with question paper.

You will not get any credit if you do not show proper working, reasoning and steps as asked in question statements.

Q1. *(3 points)* Consider the following normalized data structure:

SALES(saleId, storeId, saleDate, ...)

SALES_DETAIL(transactionId, saleId, itemId, itemQty, ...)

Assume there are 2 million sales and 20 million sales details. Record length of both tables is same i.e. 100 bytes and each column of both tables including PK/FK column is of same size i.e. 10 bytes.

Query: SELECT * FROM sales S JOIN sales_detail D ON S.saleId = D.saleId

You are required to improve the performance of the above query using pre-join de-normalization technique. Show your denormalized data structure and evaluate increase in additional storage cost (in %age) for the de-normalized data structure.

Normalizes Structure: Sales: 2m * 100 = 200m

Sales detail: 20m * 100 = 2000m

Total cost: 2200m Denormalized Structure: 20m * 190 = 3800m

Increase in additional storage cost: (3800 - 2200)/2200*100 = 73%

R	oll No.	Name	Section
Q 2) Give the appropriate answers of the following questions ve nt by conforming the dimension? Why is this important in a	
b.		l-down, drill-through, drill-across and slice-and-dice are extr nultidimensional analysis. Briefly discuss drill-across and slic	b b
c.	What is the o	concept of virtual cube? When will you consider to forming v	virtual cube?
d.	What is the c	concept of factless fact table? Give an example.	
······			

Roll No.	Name	Section

Consider the following description for next questions:

Suppose there are 10,000 products sold by the store, 200 sub-categories, 10 categories, there are 100 store locations, 10 cities, 2 countries, there are 2 years sales, also assume fact table row represents exactly one sale per product per store per day.

Q3. (2 points) What is the potential cardinality (max rows) of above base fact table? 730,000,000.

Q4. (4 points) Estimate the number of rows of fact table retrieved and summarized for following types of queries:

	Product	Store	Time	# of Rows retrieved
Query 1:	5 product	3 store	1 month	5*3*30= 450
Query 2:	1 sub-category	1 store	1 month	50*1*30= 1500
Query 3:	1 category	1 city	1 month	(50*20)*10*30= 300,000
Query 4:	1 category	1 country	1 year	(50*20)*(5*10)*365= 18,250,000

Q5. (3 points) Suppose you created an aggregate fact table for the above Query2 only ... Then how many rows you need to retrieve for Queries 2, 3 and 4 from this aggregate fact table?

	Product	Store	Time	# of Rows retrieved
Query 2:	1 sub-category	1 store	1 month	1
Query 3:	1 category	1 city	1 month	20*10*1= 200
Query 4:	1 category	1 country	1 year	20*(5*10)*12= 12000

Roll No	Name	Section
tables for Query2 &	4 in Question#4. Take appropriat	t includes base fact table and aggregate fact te assumption for dimensions and fact tables all the relationships between the dimensions and
self		

Roll No.	Name	Section