# **Project: Creditworthiness**

# **Business and Data Understanding**

- What decisions needs to be made?
   Identify the best classification models to figure out the best model and provide a list of creditworthy customers to the manager.
- What data is needed to inform those decisions?
   We have many data of customers we could use to build our classification models to reach these decisions. These data relate with customers worthiness as the current length of employment, income, credit score, if the customer carries a credit balance from month to month, age, and customer's current savings.
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?
   Since we must determine creditworthiness of customers or not, we should use binary model.

# **Building the Training Set**

In this set there is no high correlation between numeric fields, the highest correlation is 0.57 between Credit.Amount and Duration.of.Credit.Month.



Figure 1: Correlation Matrix with ScatterPlot

In the clean-up process, there are many fields need to be removed. Because it has huge of missing data or will skew the analysis results. I removed <u>Duration In Current Address</u> because of 69% of data are missed. <u>Telephone</u> field should also be removed due to its relevance to the customer creditworthy. In addition, <u>Guarantors, Foreign Worker</u> and <u>No of Dependents, Concurrent Credits</u> and <u>Occupation</u> show low variability where data skewed towards one data.

Age Years has 2% missing data, the missing data imputed with the median number of age. Median age was used because it is much more representative for the data sample.



Figure 2: Fields Summery of the data

# Train your Classification Models

# 1. Logistic Regression:

Credit Application Result used as the target variables, Account Balance, Purpose, Credit Amount, credit amount, instalment per cent, are the most significant variables with p-value of less than 0.05.

### **Report for Logistic Regression Model Stepwise**

Basic Summary

Call:

glm(formula = Credit.Application.Result ~ Account.Balance +
Payment.Status.of.Previous.Credit + Purpose + Credit.Amount +
Length.of.current.employment + Instalment.per.cent +

Most.valuable.available.asset, family = binomial(logit), data = the.data)

### Deviance Residuals:

| Min    | 1Q     | Median | 3Q    | Max   |
|--------|--------|--------|-------|-------|
| -2.289 | -0.713 | -0.448 | 0.722 | 2.454 |

### Coefficients:

|                                                   | Estimate   | Std.<br>Error | z<br>value | Pr(> z ) |     |
|---------------------------------------------------|------------|---------------|------------|----------|-----|
| (Intercept)                                       | -2.9621914 | 6.837e-<br>01 | -4.3326    | 1e-05    | *** |
| Account.BalanceSome Balance                       | -1.6053228 | 3.067e-<br>01 |            | 1.65e-07 | *** |
| Payment.Status.of.Previous.CreditPaid Up          | 0.2360857  | 2.977e-<br>01 | 0.7930     | 0.42775  |     |
| Payment.Status.of.Previous.CreditSome<br>Problems | 1.2154514  | 5.151e-<br>01 | 2.3595     | 0.0183   | *   |
| PurposeNew car                                    | -1.6993164 | 6.142e-<br>01 | -2.7668    | 0.00566  | **  |
| PurposeOther                                      | -0.3257637 | 8.179e-<br>01 | -0.3983    | 0.69042  |     |
| PurposeUsed car                                   | -0.7645820 | 4.004e-<br>01 | -1.9096    | 0.05618  |     |
| Credit.Amount                                     | 0.0001704  | 5.733e-<br>05 | 2.9716     | 0.00296  | **  |
| Length.of.current.employment4-7 yrs               | 0.3127022  | 4.587e-<br>01 | 0.6817     | 0.49545  |     |
| Length.of.current.employment< 1yr                 | 0.8125785  | 3.874e-<br>01 | 2.0973     | 0.03596  | *   |
| Instalment.per.cent                               | 0.3016731  | 1.350e-<br>01 | 2.2340     | 0.02549  | *   |
| Most.valuable.available.asset                     | 0.2650267  | 1.425e-<br>01 | 1.8599     | 0.06289  |     |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Figure 3:Report for Logistic Regression Model Stepwise

The accuracy of logistic regression model stepwise is 76.0%. accuracy for creditworthy is 80.0% higher than non-creditworthy at 62.9%. The model is biased towards predicting customers as non-creditworthy.

### **Model Comparison Report** Fit and error measures F1 AUC Accuracy\_Creditworthy Accuracy\_Non-Model Accuracy Creditworthy 0.7600 0.8364 0.7306 0.8000 0.6286 Stepwise Confusion matrix of Stepwise Actual Creditworthy Actual\_Non-Creditworthy Predicted\_Creditworthy 92 23 Predicted\_Non-Creditworthy 13 22

Figure 4:Logistic Regression Comparison Report

### 2. Decision Tree:

Credit Application Result used as the target variables. Account Balance, Duration of Credit Month, and Credit Amount are the most significant variables.



Figure 5:Report for Decision Tree

The accuracy of Decision Tree model is 67.3%. accuracy for creditworthy is 75.5% higher than non-creditworthy at 45.0%. The model is biased towards predicting customers as non-creditworthy.



Figure 6: Decision Tree Model Comparison Report

### 3. Forest Model:

Credit Application Result used as the target variables. Credit Amount, Age Years, Duration of Credit Month, Account Balance are the most significant variables.



Figure 7: Percentage Error for Different Number of Trees and Variable Importance Plot

The accuracy of Forest Model is 80.0%. accuracy for creditworthy is 79.5% less than non-creditworthy at 82.6%. The difference between those accuracies is very small, so the model is almost not biased at all



Figure 8: Forest Model Comparison Report

### 4. Boosted Model:

Credit Application Result used as the target variables. Account Balance, Credit Amount are the most significant variables.

# Account.Balance Credit.Amount Payment.Status.of.Previous.Credit Duration.of.Credit.Month Purpose age\_years Most.valuable.available.asset Value.Savings.Stocks Instalment.per.cent Length.of.current.employment Variable Importance Plot O Relative Importance Plot

Figure 9 Variable Importance Plot Of Boosted Model

The accuracy of Boosted Model is 78.7%. accuracy for creditworthy is 78.3% less than non-creditworthy at 80.9%. The difference between those accuracies is very small, so the model is almost not biased at all

# **Model Comparison Report**

| Fit and error measures |          |        |        |                       |                           |
|------------------------|----------|--------|--------|-----------------------|---------------------------|
| Model                  | Accuracy | F1     | AUC    | Accuracy_Creditworthy | Accuracy_Non-Creditworthy |
| BoostedModel           | 0.7867   | 0.8632 | 0.7524 | 0.782                 | 0.8095                    |

| Confusion matrix of BoostedModel |                     |                             |  |  |  |
|----------------------------------|---------------------|-----------------------------|--|--|--|
|                                  | Actual_Creditworthy | Actual_Non-<br>Creditworthy |  |  |  |
| Predicted_Creditworthy           | 101                 | 28                          |  |  |  |
| Predicted_Non-<br>Creditworthy   |                     | 17                          |  |  |  |

Figure 10: Boosted Model Comparison Report

# Writeup

Forest model was chosen, because it has the highest accuracy between validation set at 80%. There isn't any bias at the accuracies for creditworthy is 80.8% and non-creditworthy is 84%. Which are comparable.

|                        | Model Comparison Report |        |        |                       |                               |  |  |  |
|------------------------|-------------------------|--------|--------|-----------------------|-------------------------------|--|--|--|
| Fit and error measures |                         |        |        |                       |                               |  |  |  |
| Model                  | Accuracy                | F1     | AUC    | Accuracy_Creditworthy | Accuracy_Non-<br>Creditworthy |  |  |  |
| DecisionTree           | 0.6933                  | 0.7890 | 0.6303 | 0.7611                | 0.4865                        |  |  |  |
| Forest                 | 0.8133                  | 0.8783 | 0.7342 | 0.8080                | 0.8400                        |  |  |  |
| BoostedModel           | 0.7867                  | 0.8632 | 0.7526 | 0.7829                | 0.8095                        |  |  |  |
| Stepwise               | 0.7600                  | 0.8364 | 0.7306 | 0.8000                | 0.6286                        |  |  |  |

Figure 11:Classification models Model Comparison Report

The confusion matrix presents that Forest Model predicts best <u>creditworthy</u> and <u>Non-creditworthy</u> among all "Creditworthy" and "Non-Creditworthy" values.

| Confusion matrix of BoostedModel |                     |                         |  |  |
|----------------------------------|---------------------|-------------------------|--|--|
|                                  | Actual_Creditworthy | Actual_Non-Creditworthy |  |  |
| Predicted_Creditworthy           | 101                 | 28                      |  |  |
| Predicted_Non-Creditworthy       | 4                   | 17                      |  |  |

| Confusion matrix of DecisionTree |                     |                         |  |  |  |
|----------------------------------|---------------------|-------------------------|--|--|--|
|                                  | Actual_Creditworthy | Actual_Non-Creditworthy |  |  |  |
| Predicted_Creditworthy           | 86                  | 27                      |  |  |  |
| Predicted_Non-Creditworthy       | 19                  | 18                      |  |  |  |

| Confusion matrix of Forest |                     |                         |  |  |  |
|----------------------------|---------------------|-------------------------|--|--|--|
|                            | Actual_Creditworthy | Actual_Non-Creditworthy |  |  |  |
| Predicted_Creditworthy     | 101                 | 24                      |  |  |  |
| Predicted_Non-Creditworthy | 4                   | 21                      |  |  |  |

| Confusion matrix of Stepwise |                     |                         |  |  |  |
|------------------------------|---------------------|-------------------------|--|--|--|
|                              | Actual_Creditworthy | Actual_Non-Creditworthy |  |  |  |
| Predicted_Creditworthy       | 92                  | 23                      |  |  |  |
| Predicted_Non-Creditworthy   | 13                  | 22                      |  |  |  |

Figure 12:all classification models Model Comparison Report

ROC curve presents the forest model true positive rate against other models:



Figure 13:ROC Curve For All Classification Models

After scoring new customers, there are 409 individuals are qualifying for a loan (Creditworthy).



Figure 14: Customers To Score list - Workflow

| Record # Sum_X_Creditworthy |     | Sum_X_Non-Creditworthy |  |
|-----------------------------|-----|------------------------|--|
| 1                           | 409 | 91                     |  |

Figure 15:Sum of The Customers for each situation

## **Alteryx workflow:**



Figure 16:Alteryx workflow