Fundamentos de Organización de Datos

Hashing

- ✓ Técnica para generar una dirección base única para una clave dada.
- Convierte la clave en un número aleatorio, que luego sirve para determinar dónde se almacena la clave.
- ✓ Utiliza una función de dispersión para mapear cada clave con una dirección física de almacenamiento.
- ✓ Utilizada cuando se requiere acceso rápido por clave.

Tipos de Dispersión

Direccionamiento estático

El espacio disponible para dispersar los registros del archivo está fijado previamente.

Direccionamiento dinámico

El espacio disponible para dispersar los registros del archivo aumenta o disminuye en función de las necesidades.

Parámetros a considerar

Parámetros que influyen sobre el desempeño del ambiente de dispersión:

- ✓ Capacidad de almacenamiento de cada dirección
- ✓ Densidad de empaquetamiento
- √ Función de hash
- ✓ Método de tratamiento de desbordes

Función de dispersión

Caja negra que a partir de una clave genera la dirección física donde debe almacenarse el registro.

Colisión

Situación en la que un registro es asignado, por función de dispersión, a una dirección que ya posee uno o más registros.

Desborde

Situación en la cual una clave carece de lugar en la dirección asignada por la función de dispersión.

Densidad de empaquetamiento

Relación entre el espacio disponible para el archivo de datos y la cantidad de registros que integran el mismo.

DE = número de registros / espacio Total

Aunque la función de dispersión sea eficiente y la densidad de empaquetamiento sea baja, es probable que ocurran desbordes.

Métodos aplicables para resolver colisiones con desborde en dispersión estática:

- ✓ Saturación progresiva
- √ Saturación progresiva encadenada
- ✓ Saturación progresiva con área de desborde por separado
- √ Dispersión doble

No vemos ejercicios prácticos de hashing estático

Técnica de resoluciones: Hashing Extensible

Ejemplo:

- Función de dispersión: Retorna 32 bits.
- Capacidad para 2 registros por dirección.
- Se van a dispersar 10 claves en total.

Hashing Extensible

Clave	f(clave)
Alfa	001001
Beta	000100
Gamma	000010
Delta	001111
Epsilon	000000
Rho	001011
Pi	000110
Tau	001101
Psi	000001
Omega	000111

Hashing Extensible

Estado inicial del archivo:

El número cero sobre la tabla indica que no es necesario ningún bit de la secuencia obtenida por la función de dispersión.

Inserción de claves

Clave	f(clave)
Alfa	001001
Beta	000100

Inserción de claves - Desborde

Clave	f(clave)
Gamma	000010

La inserción de Gamma produce desborde.

- 1) Se incrementa en uno el valor asociado a la cubeta saturada.
- 2) Se genera una nueva cubeta con el mismo valor asociado a la cubeta saturada.

Inserción de Gamma

Clave	f(clave)
Gamma	000010

Se compara el valor de la cubeta con el valor asociado a la tabla -> El primero es mayor que el segundo.

La tabla **no** dispone de entradas suficientes para direccionar a la nueva cubeta.

La tabla tiene una celda única, y como se dispone ahora de dos nodos, hace falta generar más direcciones.

La cantidad de celdas de la tabla se duplica y el valor asociado a la tabla se incrementa en uno.

El valor asociado a la tabla indica la cantidad de bits que es necesario tomar de la función de hash.

La primera celda de la tabla direcciona a la cubeta saturada, y la nueva celda apunta a la nueva cubeta generada.

Se redispersan las claves involucradas:

Inserción de Epsilon

Clave	f(clave)
Epsilon	000000

Epsilon debe ser almacenado en la cubeta asociada a la celda 0 de la tabla. La misma se encuentra completa lo que genera un nuevo **desborde**.

Inserción de Epsilon

Clave	f(clave)
Epsilon	000000

Al no disponer de celdas suficientes en la tabla en memoria principal, se **duplica** el espacio disponible, que a partir de este momento necesita <u>2 bits</u> de la función de hash para poder direccionar un registro.

La celda de referencia 00 contiene la dirección de la cubeta saturada, mientras que la celda de referencia 10 contiene la dirección de la nueva cubeta.

Se redispersan
solamente las claves
de las cubetas
involucradas:

Clave	f(clave)
Beta	000100
Gamma	000010
Epsilon	000000

Estado final luego de insertar Epsilon

Clave	f(clave)
Rho	001011

Inserción de Rho

Se genera desborde y se crea una nueva cubeta.

El valor asociado a ambas cubetas <u>coincide</u> con el valor asociado a la tabla en memoria. Por lo tanto:

La tabla posee direcciones suficientes para direccionar a la nueva cubeta y la cantidad de celdas NO debe ser duplicada!

Inserción de Rho

Clave	f(clave)
Alfa	001001
Delta	001111
Rho	001011

Inserción de Pi y Tau

Clave	f(clave)
Pi	000110
Tau	001101

Inserción de Psi

Clave	f(clave)
Psi	000001

Pasos:

- Incrementar en uno el valor asociado al nodo con saturación.
- 2. Crear una nueva cubeta
- 3. Como el valor de la cubeta es **mayor** al valor de la tabla, se debe **duplicar** la tabla e incrementar su valor.

Estado final luego de insertar Psi

Inserción de Omega

Estado final

Clave	f(clave)
Rho	001011
Delta	001111
Omega	000111