2. 암호의 개념과 대칭키 암호 시스템

담당교수: 차 영욱

ywcha@andong.ac.kr

목 차

- □ 보안 공격 및 보안 서비스
- □ 암호의 개념 및 역사
- □ 수동 암호
- □ 기계 암호
- □ 현대 암호의 기술
- □ 데이터 암호화 표준(DES: DATA Encryption Standard)
- □ 진보된 암호화 표준(AES: Advanced Encryption Standard)
- □ 삼중 데이터 암호화 표준

보안 공격

□ 수동적 공격: 훔쳐보기, 인터넷 전화의 도청

□ 능동적 공격: 변조, 삽입, 삭제

보안 서비스

- □ 안전한 통신을 위한 요구사항
 - 기밀성: 정당한 사용자 만이 데이터의 내용을 파악할 수 있게 함
 - 무결성: 수신된 메시지에 불법적인 삽입이나 변조가 있는지 확인할 수 있게 함

□ 암호기술의 도입

보안 서비스의 응용

암호의 개념

- □ 암호화: 암호 알고리즘과 암호 키를 이용하여 평문을 암호문으로 변환
- □ 복호화: 복호 알고리즘과 복호 키를 이용하여 암호문을 평문으로 변환
- □ 암호해독: 제 3자가 암호문에서 평문을 추정
- □ 암호학: 암호와 암호 해독을 연구하는 학문

통계적 암호해독

- □ 통계적 암호해독(statistical cryptanalysis): 통계정보를 이용
- □ 영어의 각 문자가 문장 중에서 발생할 확률
 - E: 문서에서 나올 확률(0.12)이 가장 높다.
 - D와 L: 0.04의 확률
 - A, H, I, N, O, R, S, T: 0.06~0.09의 확률
 - B, C, F, G, M, P, U, W, Y: 0.015~0.028의 확률
 - J, K, Q, V, 그리고 Z: 0.01보다 약간 작은 확률
 - 이중 문자열이나 삼중 문자열의(각각 2개나 3개 문자로 구성된 문자열) 빈도 → [참조: Stinson, "Cryptography Theory and Practice," CRC Press LLC, 1995].

암호의 역사

- □ 수동암호 시대: 고대 ~ 1920
 - 치환 암호, 전치 암호
- □ 기계암호 시대: 1920 ~1950
 - 복잡한 기계 사용

- 근대 암호의 개척자
 - Friedman: 독일군이 사용하던 ENIGMA 암호와 일본군이 사용하던 무라사끼 암호 해독
 - Claude Shannon: 현대 암호학의 아버지로 암호 시스템의 기본 개념인 확산 (diffusion)과 혼동(confusion)의 개념 도입(1949년)
 - 확산: 암호문의 통계적 특성이 평문의 통계적 특성과 무관하게 하는 기법
 - 혼동: 암호문의 통계적 특성과 암호키 값과의 관계를 가능한 복잡하게 하는 기법
- 세계 대전 후 전자 계산기의 출현으로 암호의 실용화 연구 활발
- 미국과 소련의 냉전 시대에 암호 기술의 연구 가속화

수동 암호-치환 암호[1/2]

- □ 치환 암호: 단일문자 치환, 다중문자 치환
- □ 단일문자 치환: 각 문자를 일정한 길이 만큼 이동
 - 줄리어스 시저의 암호: 문자를 3 만큼 이동하는 치환암호
 - 암호키를 찾기 위한 방법: 읽을 수 있는 평문을 얻을 때까지 모든 가능한 키의 값을 사용하여 복호화

수동 암호-치환 암호[2/2]

□ 다중문자 치환: 문장 내에서 문자의 위치 만큼 각 문자를 이동

수동 암호-전치 암호

□ 전치암호: 전치 테이블을 이용하여 문장 내의 문자 위치를 재배열

기계 암호

- □ Enigma 암호
 - 제 2차 세계대전 시 독일군이 사용
 - 자판에 평문을 입력하면 각 회전자 에 의하여 변환된 암호문이 나오도 록 설계

□ Hagelin 암호

- 제 2차 세계대전시 연합군이 사용
- 1950년 한국 전쟁 때 미군 사용

현대 암호의 기술[1/2]

- □ 대칭키(관용키) 암호 시스템
 - 암호화와 복호화에 동일한 키 사용

현대 암호의 기술[2/2]

□ 비대칭키 암호 시스템

- 송신자는 수신자의 공개키로 평문을 암호화
- 수신자는 자신의 개인키로 암호문을 복호화
- 공개키 암호 시스템

Feistel 암호

- □ IBM의 Horst Feistel: Shannon의 개념을 채용한 최초의 암호 시스템 개발 (1973년)
- □ Feistel 암호의 다음 특성은 대부분의 대칭키 암호 시스템에 적용
 - 2번 이상의 기본대치 및 순열치환(permutation)을 연속적으로 수행
 - 보통 암호 알고리즘에서 Feistel 연산은 짝수 라운드(DES에서는 16라운드) 적용
 - 키를 각 라운드에서 사용되는 서브키로 변환하는 키 스케줄 알고리즘 활용
 - 라운드 함수에 관계없이 역변환이 가능(암/복호화 과정이 같음)
 - H/W 및 S/W로 구현이 용이하며, 알고리즘의 수행 속도가 빠름

데이터암호화 표준과 기본 연산

- □ 1973년: 현재 NIST로 알려진 미국의 국가표준국(NBS)에서 암호 알고리즘의 표준화 요구사항 제시
- □ 1976년: Horst Feistel의 이끄는 IBM의 연구팀에서 개발된 암호 시스템을 미국의 데이터암호화 표준(DES: Data Encryption Standard)으로 승인
 - 56 비트의 키를 이용하는 대칭키 암호 시스템
 - 데이터를 64비트 단위의 블록으로 분할 후, 순열, 배탁적 OR, 회전 등으로 변경
 - 1983년, 1988년, 그리고 1993년에 다시 국가 표준으로 재확인
- □ 배탁적 OR(XOR): 2 비트의 입력이 다르면 출력이 1

INP	UT	OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

DES의 기본 연산

- □ 순환: 비트를 왼쪽이나 오른쪽으로 회전
 - 좌순환: 가장 왼쪽의 비트는 가장 오른 쪽으로 이동하며, 나머지 비트들은 왼 쪽으로 한 비트씩 이동

1000001110000101 1000001110000101

□ 순열: 비트 레벨의 치환

DES-암호화

□ 암호화

- 단계 1: 64비트 평문에 있는 각 비트의 위치를 바꿈(초기 치환)
- 단계 2-17: 동일한 절차를 수행하나 서로 다른 서브키 사용
- 단계 18: 64비트 입력을 32비트로 나누어서 위치를 교체
- 단계 19: 단계 18의 출력인 64비트의 각 비트 위치를 바꿈(역초기 치환)

DES-초기 및 역초기 치환

□ 1단계: X₁ = IP(P)

- P: 64비트 블록 평문
- X₁: 초기 치환함수(IP)의 64비트 출력

□ 19단계: C = IP-1(X₁₉)

- X₁g: 19 단계의 64비트 출력
- C: 역초기 치환함수(IP-1)의 출력인 64비트 암호문

 $IP(b_2) = b_8$

 $= IP^{-1}(b_8) = b_2$

$$IP(b_1) = b_{40}$$

= $IP^{-1}(b_{40}) = b_1$

						a) 초	71 3	열()F)							
출력 비트	- 0	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
입력 비트	58	50	42	34	28	18	10	2	60	52	44	36	28	20	12	4
출력 비트	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
입력 비트	62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
출력 비트	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
입력 비트	57	49	41	33	25	17	9	Ġ	59	51	43	35	27	19	11	3
출력 비트	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
입력 비트	61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

						(b)	역조	기술	열(IF	el)							
출력	비트	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
입력	비트	40	8	48	16	56	24	64	32	39	7	47	15	55	23	63	31
聲	川三	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
일력	비트	38	6	46	14	54	22	62	30	37	5	45	13	53	21	61	29
출력	HΞ	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
입력	비트	36	4	44	12	52	20	60	28	35	3	43	T.	51	19	59	27

DES-서브키 생성

- ① 56 비트 키를 치환 테이블 1(PC-1)을 이용하여 지환 후 28 비트로 분할
- ② 분할된 28비트 각각을 좌순환 테이블의 각 라운 드의 횟수에 해당하는 만큼 좌순환
- ③ 위의 결과를 결합하여 56 비트를 만들고 치환 테이블 2(PC-2)를 이용하여 압축 순열을 수행하 여 48비트의 서브케 생성
- ④ 위 과정을 16번째까지 반복하며, 각 단계에서 생성된 서브키가 각 단계의 컴플렉스에 서브키로 사용

			PC-1						P	7-2		
57	49	41	33	25	17	9	14	17	11	24	1	5
1	58	50	42	34	26	18	3	28	15	6	21	10
10	2	59	51	43	35	27	23	19	12	4	26	8
19	11	3	60	52	44	36	16	7	27	20	13	2
63	55	47	39	31	23	15	4	52	31	37	47	55
7	63	54	46	38	30	22	30	40	51	45	33	48
14	6	61	53	45	37	29	44	49	39	56	34	53
21	13	5	28	20	12	4	46	42	50	36	29	32

검플렉스																
좌순환	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

DES-컴플렉스

□ 16 번의 동일한 컴플렉스 수행

- 각 라운드에서 서로 다른 서브키 K_i(48 비트) 사용
- \bullet $L_i = R_{i-1}$
- $\bullet R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- \Box f(R_{i-1}, K_i)

DES 컴플렉스의 f(R_{i-1}, K_i)

□ 치환 테이블

	E Bit	Selec	ction	Table				P	
32	1	2	3	4	5	16	7	20	21
4	5	6	7	8	9	29	12	28	17
8	9	10	11	12	13	1	15	23	26
12	13	14	15	16	17	5	18	31	10
16	17	18	19	20	21	2	8	24	14
20	21	22	23	24	25	32	27	3	9
24	25	26	27	28	29	19	13	30	6
28	29	30	31	32	1	22	11	4	25

□ S-박스 테이블의 대체(6비트 입력 → 4비트 출력)

14		13	•	0	15	11		2	10	c	10		0	0	7
1.4	**	10	1	-	10	11	0	0	10	U	14		J	U	40
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	14 8	2	4	9	1	7	5	11	3	14	10	0	6	13

								8							
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	4 14	7	4	10	8	13	15	12	9	0	3	5	6	11

- □ 입력(101011) S₁-박스 대체→ 출력(9)
 - 11: 3 행
 - 0101: 5 열
- □ 입력(110010) S₈-박스 대체→ 출력(6)
 - 10: 2 행
 - 1001: 9 열

DES의 8개 S-박스[1/2]

							S	1							
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1,	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	C
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	18
							s	2							
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	Ē
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	Š
						a void	. 5	3							72.7
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	13
							s	4							700 V
7	13	14	3	0	6	9	10	1	2	8	5	11	12	14	13
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	- 53
IO				10	1	13	8	9	4	5	11	12	7	2	1

DES의 8개 S-박스(2/2)

							5	5				104 BY			
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	S
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	. (
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	1
					0	State of the	s	i _e							
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	1
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	33
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	1
					0.21		£	i,					1		
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	
13	0	11	7	4	9	1	10	14	3	5	12	2	1,5	8	10
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	1
							٤	; ₈							
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	1

DES의 혼동/확산

- □ S-박스의 대체: 체계적으로 어떤 비트들의 유형을 다른 비트들로 전환 함으로써 혼동 성질을 제공
 - 암호문의 통계적 특성과 암호 키 값과의 관계를 가능한 복잡하게 하는 혼동 기법
- □ 치환 테이블: 비트들의 순서를 치환(재배열)함으로 확산의 효과 제공
 - 암호문의 통계적 특성이 평문의 통계적 특성과 무관하도록 하는 확산 기법

DES-복호화

- □ 복호화: 암호화와 동일한 치환 테이블 적용
 - 단계 1: 64비트 암호문의 초기 치환
 - 단계 2-17: 서브키의 생성 절차는 암호화와 동일하나 암호화의 역순으로 서브키를 적용
 - 단계 18: 64비트 입력을 32비트로 나누어서 위치를 교체
 - 단계 19: 단계 18의 출력인 64비트의 역초기 치환

DES-복호화와 암호화의 비교

□ 암호화와 다른 부분

- 입력으로 암호문이 주어지며 출력으로 평문이 출력된다.
- 보조키 적용 순서는 암호화 과정의 역순으로 적용 → 라운드 1(K16), 라운드 2(K15), ··· 라운드 16(K1)

□ 암호화와 같은 부분

- 서브키 생성 부분
- 각 라운드의 F 함수 적용과 위치변환
- 초기 치환과 역초기 치환의 적용 순서

DES의 취약성

- □ 1976년: 56 비트 키를 사용하는 DES를 미국의 암호 표준으로 승인
- □ 컴퓨터 속도의 비약적 발전으로 DES의 56 비트 키에 대한 안전성 문제 제기
 - 1997년 1월: RSA는 DES 키를 찾는데 \$10,000 달러의 포상금 공모(DES Challenge)
 - 1997년 6월: Roche Verse는 인터넷에 연결된 70,000 대 이상의 컴퓨터를 이용하여 전사공격(brute force) 프로그램으로 96일 만에 DES 키를 찾음
 - 1998년: \$250,000 달러의 비용으로 EFF(Electronic Frontier Foundation)가 설계한 크래커(Deep Crack)가 전사공격을 이용하여 56시간 만에 키를 깨뜨림
 - 1999년 1월: EFF의 Deep Crack와 distributed.net이 공동으로 22시간 15분만에 키를 깨뜨림
- □ EFF의 Deep Crack: 6개의 캐비닛, 29개의 보드, 각 보드에 64개의 키 검색 전용 마이 크로 칩 탑재

출처: http://www.eff.org/descracker.html

진보된암호화표준

- □ NIST는 DES의 취약성을 극복하기 위하여 진보된암호화표준(AES: Advanced Encryption Standard)의 개발 계획을 1997년 발표
- □ 1999년 10월: 과도기에 대비하여 DES의 안전한 변형인 삼중 DES를 미국의 국가 표준으로 채택
- □ AES 요구사항
 - 형태: 강력한 대칭키 블록 암호 알고리즘으로 정부 및 상업 부분에서 사용 가능
 - 효율성: 삼중 DES 보다 좋을 것
 - 비용: 알고리즘 공개 및 로열티 없이 무료로 이용
 - 안전성:
 - 블록: 적어도 128 비트의 크기
 - 키 범위: 128, 192, 그리고 256 비트
- □ 2000년 10월: 15개의 제안 중에서 벨기에 출신의 J. Daemen과 V. Rijmen의 제안한 Rijndael 알고리즘을 최종 선정

삼중 데이터암호화표준[1/2]

- □ DES의 안전한 변형 알고리즘으로 널리 사용되고 있는 64비트 블록 단위의 대칭키 암호방식 중 가장 안전
- □ NIST는 2005년 DES를 공식적으로 퇴출하였으며, 2030년까지 3 중 DES 의 사용을 승인
- 암호화: 64비트 평문에서 64비트 암호문 생성
 - K₁, K₂, K₃는 56비트의 DES 키
 - 1단계: 평문을 키 K₁로 암호화
 - 2단계: 1 단계의 결과를 키 K₂로 복호화
 - 3단계: 2 단계의 결과를 키 K₃으로 암호화

삼중 데이터암호화표준[2/2]

- □ 복호화: 64비트 암호문에서 64비트 평문 유도
 - 1단계: 암호문을 키 K₃으로 복호화
 - 2단계: 1 단계의 결과를 키 K₂로 암호화
 - 3단계: 2 단계의 결과를 키 K₁로 복호화

- \square 높은 보안을 요구하는 경우: K_1 , K_2 , K_3 은 서로 다른 키 사용
 - 56*3 즉, 168비트 길이의 키로 암호화하는 것과 동일한 안전성
- □ 일반적인 보안을 요구하는 경우: K₁과 K₃은 동일한 키 사용

SEED

- □ 2000년까지 미국 정부는 미국 내에서 사용되는 웹브라우저는 128 비트 수준의 보안접속을 허용했으나, 미국 외로 수출되는 Microsoft Internet Explorer, Netscape 웹브라우저는 40 비트 이상의 보안접속을 하지 못하도록 금지해 왔다.
 - 40 비트 수준의 암호화는 1997년 경의 연산능력으로도 3.5 시간 만에 매짐
- □ 국내 보안업체들은 128 비트 보안접속을 위한 별도의 알고리즘 개발을 위하여 노력했으며, SEED는 1999년 한국정보보호진흥원의 기술진이 개발한 블록 암호 알고리즘이다.
 - 개발된 SEED는 웹브라우저의 플러그인으로 배포되어 국내 인터넷 뱅킹에 사용
 - 16-라운드 Feistel 네트워크
 - 128 비트 블록 및 128 비트 키

블록 암호와 모드

- □ 블록암호(block cipher) 알고리즘: 특정 비트 수의 집합을 한번에 처리하는 암호 알 고리즘
 - DES, 3중 DES: 블록 길이가 64 비트
 - AES: 블록 길이가 128 비트
- □ 블록암호의 모드: 긴 평문을 암호화하기 위해서 블록 암호 알고리즘을 반복해서 사용 하는 방법
 - ECB(Electric CodeBook) 모드
 - CBC(Cipher Block Chaining) 모드
 - CFB(Cipher-FeedBack) 모드
 - OFB(Output-FeedBack) 모드
 - CTR(CounTeR) 모드
- □ 모드의 선택
 - ECB 모드는 취약성이 높으므로 사용하지 않을 것을 주장
 - CBC와 CTR 모드의 사용을 권장
 - 참고: Practical Cryptography, Schneier 2003

ECB 모드의 암호화/복호화

□ 평문 블록과 암호 블록이 일대일 관계를 유지

- 같은 값을 갖는 평문 블록이 여러 개 존재 → 모두 같은 값의 암호문으로 변환
- 암호문을 살펴보므로 평문 속에 패턴의 반복이 있음을 알게 되므로 암호 해독의 실마리가 될 수 있음.

CBC 모드의 암호화/복호화(1/2)

CBC 모드의 암호화/복호화(2/2)

- □ 한 단계 앞에서 수행된 암호문 블록과 평문 블록을 XOR한 후 암호화를 수행
 - 평문 블록 1과 2의 값이 같은 경우에도 암호문 블록 1과 2의 값이 같다고 할수 없음
 - ECB 모드의 단점이 CBC 모드에서는 나타나지 않음
- □ IPSec에서 통신의 기밀성을 위하여 CBC 모드를 사용
 - 3DES-CBC, AES-CBC

요점 정리[1/3]

- □ 안전한 통신을 위한 요구사항
 - 기밀성: 정당한 사용자 만이 데이터의 내용을 파악할 수 있게 함
 - 무결성: 수신된 메시지에 불법적인 삽입이나 변조가 있는지 확인할 수 있게 함
- □ 현대암호 기술
 - 대칭키 암호 시스템: 암호화와 복호화에 동일한 키 사용
 - 비대칭키(공개키) 암호 시스템:
 - 송신자는 수신자의 공개키로 평문을 암호화
 - 수신자는 자신의 개인키로 암호문을 복호화
- □ 대칭키 암호 시스템에 적용된 Feistel 암호의 특성
 - 2번 이상의 기본대치 및 순열치환(permutation)을 연속적으로 수행
 - 보통 암호 알고리즘에서 짝수 라운드(DES에서는 16라운드) 적용
 - 키를 각 라운드에서 사용되는 서브키로 변환하는 키 스케줄 알고리즘 활용
 - 라운드 함수에 관계없이 암/복호화 과정이 같음

요점 정리[2/3]

- □ 1976년: Horst Feistel이 이끄는 IBM의 연구팀에서 개발된 암호 시스템을 미국의 데이터암호화표준(DES)으로 승인
 - 데이터를 64비트 단위의 블록으로 분할 → 56 비트의 키 적용
- □ DES의 혼동과 확산
 - S-박스의 대체: 암호문의 통계적 특성과 암호 키 값과의 관계를 가능한 복잡하 게 하는 혼동 성질을 제공
 - 지환 테이블: 암호문의 통계적 특성이 평문의 통계적 특성과 무관하도록 하는 확산 성질 제공
- □ 과도기에 대비하여 DES의 안전한 변형인 삼중 DES를 미국의 국가 표준으로 채택(1999년 10월)

요점 정리(3/3)

□ 진보된 암호화 표준(AES)

- DES의 취약성을 극복하기 위하여 1997년 부터 개발 시작
- 15개의 제안 중에서 벨기에 출신의 J. Daemen과 V. Rijmen의 제안한 Rijndale 알고리즘 선정(2000년 10월)
- 블록: 적어도 128 비트의 크기
- 키 범위: 128, 192, 그리고 256 비트

□ SEED

- 1999년 한국정보보호진흥원의 기술진이 개발한 블록 암호 알고리즘
- 국내 인터넷 뱅킹에 사용
- 16-라운드 Feistel 네트워크, 128 비트 블록 및 128 비트 키

□ 블록암호의 모드

- ECB(Electric Code Book) 모드
- CBC(Cipher Block Chaining) 모드
- CFB(Cipher-FeedBack) 모드
- OFB(Output-FeedBack) 모드
- CTR(CounTeR) 모드