

PROJET N°4

ANTICIPEZ LES BESOINS EN CONSOMMATION ÉLECTRIQUE DE BÂTIMENTS

Soutenance de Projet 26 aout 2021

PROGRAMME I - Rappel de la problématique II- Préparation du jeu de données III-Pistes de modélisations

IV. Présentation du modèle final

RAPPEL DE LA PROBLÉMATIQUE

LA VILLE DE SEATTLE

VILLE NEUTRE EN ÉMISSIONS DE CARBONE EN 2050

OBJECTIF

- Prédire les émissions de CO2 et la consommation totale d'énergie des bâtiments non destinés à l'habitation.
- À partir des relevés minutieux effectués en 2015 et en 2016.
- Evaluer l'intérêt de l'ENERGY STAR Score

MISSION

- Réaliser une courte analyse exploratoire.
- Tester différents modèles de prédiction afin de répondre au mieux à la problématique.

PRÉPARATION DU JEU DE DONNÉES

HOMOGÉNÉISATION DES FICHIERS

ANALYSE DES COLONNES

- 37 colonnes communes
- 10 colonnes uniquement dans les données 2015
- 9 colonnes uniquement dans les données 2016

RENOMMER LES COLONNES AVEC LA MÊME SÉMANTIQUE: EX: 'COMMENT' ET 'COMMENTS'

DÉCOMPACTAGE DES DONNÉES DE LOCALISATION DE 2015: 'LATITUDE, LONGITUDE'

- 2015: localisation
- 2016: State, City, Address, ZipCode, Longitude, Latitude

FUSION DES FICHIERS:

- Le dataFrame a 6716 lignes et 49 colonnes.
- Le taux de remplissage global du DataFrame est de : 76.67%

NETTOYAGE DES DONNÉES

Suppression des lignes correspondant à des habitations en nous basant sur la variable BuildingType- (Shape après la suppression : 3318, 49)

Fusion des lignes correspondant à des bâtiments dupliqués

Suppression des colonnes inutiles comme 'Location', 'PropertyName'

les colonnes énergétiques :

- Les colonnes avec les suffixes WN: "Weather Normalized"
- Les variables redondantes: 'Electricity(kWh)', 'NaturalGas(therms)'

Suppression des variables avec plus 90% valeurs manquantes- (Shape :1697 ,22)

LES VALEURS MANQUANTES

LargestPropertyUseType	0.707130	Suppression des lignes avec NaN 12 ligne
OtherFuelUse(kBtu)	3.182086	Remplace les valeurs manquantes par la moyenne
ENERGYSTARScore	31.997643	Imputation par KNN

TRAITEMENT DES VALEURS ABERRANTES

ETAPE 1

- Suppression des valeurs négatives:
- PropertyGFABuilding(s)
- PropertyGFAParking
- Suppression de NumberofFloors:
 - **❖**Les lignes avec 0 étage et plus de 76 étages

ETAPE 2: MODÈLE D'ISOLATION FOREST:

LES VARIABLES À ENLEVER AVANT DE FAIRE UNE ISOLATION FOREST

- OSEBuildingID, YearBuilt, Latitude, Longitude,
- NumberofFloors
- ENERGYSTARScore,
- Les variable catégorique: BuildingType, PrimaryPropertyType, LargestPropertyUseType

TRAITEMENT DES VALEURS ABERRANTES

CONSOMMATION D'ENERGY 1.0 1.0 1e-7 Distribution de : SiteEnergyUse(kBtu) Distribution 0.3 Agriculture 0.4 0.2 0.0 0.1 0.0 0.1 0.0 0.5 SiteEnergyUse(kBtu) 1e8

EMISSION CO2

TRANSFORMATION LOGARITHMIQUE

LES VARIABLES CATÉGORIQUES

• BUILDINGTYPE

PRIMARYPROPERTYTYPE

* Regroupement selon la classification de l'Agence de Protection de l'Environnement

LARGESTPROPERTYUSETYPE

ENTRE LES VARIABLES

- Energy Star Score : pas de corrélation notable
- PropertyGFABuilding
- Les deux variables cibles très corrélées

Répartition de la consommation d'énergie et emissions de CO2 en fonction du type de bâtiment

PISTES DE MODÉLISATION

PRÉTRAITEMENT

- **SAUVEGARDE SÉPARÉE DU ENERGY STAR SCORE**
- ❖ SÉPARATION DES VARIABLES EXPLICATIVES (FEATURES) ET DES ÉTIQUETTES (TARGETS)

 PRÉPARATION DES JEUX D'ENTRAINEMENT ET DE TEST

X = TOUTES LES VARIABLES SAUF 'SITEENERGYUSE(KBTU)', 'TOTALGHGEMISSIONS'

Y = UNIQUEMENT 'SITEENERGYUSE(KBTU)', 'TOTALGHGEMISSIONS'

- **PRÉPARATION DES DONNÉES NUMÉRIQUES ET CATÉGORIQUES**
 - Les variables numériques:
 - **Standardisation**
 - Les variables catégoriques : PrimaryPropertyType
 One-hot-encoding (transformation en numériques)
 - Fusionner les variables numériques et catégoriques

MODÈLE BASELINE: DUMMYREGRESSOR

METTRE EN PLACE UN
MODÈLE BASELINE

POUR ÉVALUER LES
PERFORMANCES DE NOS
FUTURS MODÈLES

MAE	Modèle	R2	RMSE	time
0.9636	DummyRegressor	-0.000019	1.185507	13.136921

PRÉDICTION DE LA CONSOMMATION TOTALE D'ÉNERGIE

(siteenergyuse)

PROCESSUS

Définition de grille de paramètres

Entrainement des modèles

Comparaison des modèles

Les Métriques de l'évaluation

CONSOMMATION

MODÈLE	RMSE	MAE	R²	TIME_MS	CV_SCORE(RMSE)
XGBoost	0.119115	0.063015	0.989904	1.561197	0.274948
Random Forest Regressor	0.126818	0.072198	0.988556	5.874823	0.310197
SVR	0.259227	0.130223	0.952186	8.691777	0.395331
LinearRegression	0.672611	0.473024	0.678095	0.609981	0.691647

Emission

		MODÈLE	RMSE	MAE	R ²	TIME_MS	CV_SCORE(RMS E)
	RA	ANDOM FOREST REGRESSOR	0.093586	0.054499	0.994876	34.579260	0.127989
		XGBOOST	0.095544	0.066745	0.994659	1.638885	0.116742
)		SVR	0.309781	0.189442	0.943856	8.377229	0.342345
	LIN	EARREGRESSION	0.883711	0.649457	0.543104	0.619562	0.777396

IMPORTANCE DES VARIABLES Consommation XGBoost - Importance des 20 premières Features Electricity(kBtu) NaturalGas(kBtu) NaturalGas(kBtu) GHGEmissionsIntensity Electricity(kBtu) GHGEmissionsIntensity SiteEUI(kBtu/sf) PropertyGFATotal SteamUse(kBtu) SteamUse(kBtu) PropertyGFATotal PropertyGFABuilding(s) Latitude SiteEUI(kBtu/sf) PropertyGFABuilding(s) -SourceEUI(kBtu/sf) SourceEUI(kBtu/sf) BuildingAge Longitude Variable Longitude BuildingAge -OtherFuelUse(kBtu) PropertyGFAParking PropertyGFAParking NumberofFloors Latitude OtherFuelUse(kBtu) NumberofFloors

0.2

0.3

Coefficient

0.4

0.5

0.1

x0_Education

x0 Healthcare

x0_Office

x0 Warehouse/Storage

x0_Food Sales & Service

NumberofBuildings

Emission CO2

l'intérêt de ENERGY STAR Score

