Western Mathematics Exams

2018 TRIAL HSC EXAMINATION

Mathematics Extension 1

SOLUTIONS

	Multiple Choice Worked Solutions					
No	Working	Answer				
1	$\cos 3\alpha \sin 3\alpha \cos 3\alpha \cos \alpha + \sin 3\alpha \sin \alpha$	D				
	sinα cosα sinα cosα					
	$=\frac{\cos(3\alpha-\alpha)}{1}$					
	= 1					
	$= \frac{1}{2}\sin 2\alpha$					
	_					
	$=\frac{2\cos 2\alpha}{\cos 2\alpha}$					
	$\sin 2\alpha$					
	$= 2\cot 2\alpha$					
	11!	A				
2	Number of arrangements = ——	A				
	2!2!2!2!					
3	$= 2494800$ $t = 2x y = \frac{4 \times (2x)^2}{3}$ $y = \frac{16x^2}{3}$ $x^2 = \frac{3y}{16}$ $x = 4\sin^2 t - 1$	D				
3	$t = 2x$ $v = \frac{4 \times (2x)^{-1}}{2}$	ע				
	3					
	$16x^2$					
	$y = \frac{1}{3}$					
	$\frac{3}{2}$					
	$x^2 = \frac{3y}{16}$					
4	$x = 4\sin^2 t - 1$	С				
	$=1-2\cos 2t$					
	\therefore Centre of motion is $x = 1$					
5	У	В				
	y = x+3 $y = x-3 $ $x < 0$					
	x < 0					

6		A
	$V = \frac{4}{3} \times \pi \times r^3$	
	dV 3	
	$\frac{1}{dt} = 4\pi r^2$	
	$\frac{dV}{dt} = \frac{dV}{dt} \times \frac{dr}{dt}$	
	dt dr dt	
	$\frac{dV}{dt} = 4\pi r^{2}$ $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ $2 = 4\pi r^{2} \times \frac{dr}{dt}$	
	$\frac{dr}{dr} = \frac{2}{r}$	
	$\frac{dr}{dt} = \frac{2}{\frac{4\pi r^2}{1}}$	
	$=\frac{1}{2\pi r^2}$	
7	e^x	A
	$f(x) = \frac{e^x}{4 + e^x}$	
	$u = e^x \qquad v = 4 + e^x$	
	$du = e^x dv = e^x$	
	$e^{(x)} = \frac{(4+e^x) \times e^x - e^x \times e^x}{(4+e^x)^2}$	
	$f'(x) = \frac{(4 + e^x) \times e^x - e^x \times e^x}{(4 + e^x)^2}$	
	$4e^{x} + e^{2x} - e^{2x}$	
	$=\frac{4e^x + e^{2x} - e^{2x}}{(4 + e^x)^2}$	
	$=\frac{4e^x}{\left(4+e^x\right)^2}$	
	$f''(x) > 0$ for all values of x since $e^x > 0$	
	f''(x) has no stat pts	

Trial HSC Examination 2018 Mathematics Extension 1 Course

		Na	ame				_ Т	eacher					
				Sect	tion I	– Mul	ltiple	Choice A	Answe	r Sheet			
				ites for t A, B, C or			nswer	s the quest	tion. Fil	l in the r	esponse	oval com	pletely.
Sam	ple:		2 +	4 =	(A A	A) 2		(B) 6 B ●		(C) 8		(D) 9 D O	
If you answ	_	you	have	made a n	nistake	e, put a	cross t	through the	e incorr	ect answ	er and fi	ll in the r	new
					A			В 👅		c O		D O	
-	_	-						at you cons orrect and	l drawin				n
					A			B Corre	СТ	c O		D O	
	1.	A	\circ	В	с С		•						
	2.	Α		В	c <) D	\circ						
	3.	Α	\bigcirc	В	c <								
	4.	Α	\bigcirc	В	C		\bigcirc						
	5.	Α	\bigcirc	В	c <) D	\bigcirc						
	6.	Α	\bigcirc	$B \bigcirc$	C		\bigcirc						
	7.	Α		$B \bigcirc$	c <		\circ						

C

c \bigcirc

 $B \bigcirc C \bigcirc$

 $D \bigcirc$

D

 $D \bigcirc$

 $B \bigcirc$

В

8.

9.

10.

 $A \bigcirc$

 $A \bigcirc$

 $A \bigcirc$

	Question 11 Solutions	Marks	Allocation of marks
(a)	$y = 2\cos^{-1} x - 1$ $\frac{y+1}{2} = \cos^{-1} x$	2	2 marks for correct domain and range
	$\cos\left(\frac{y+1}{2}\right) = x$ $\therefore \text{ Domain : } -1 \le x \le 1$ $\therefore \text{ Range : } 0 \le \frac{y+1}{2} \le \pi$		1 mark for working which includes correct domain or range
	$0 \le y + 1 \le 2\pi$ $-1 \le y \le 2\pi - 1$		
(b)	$\sin x = \frac{2\sqrt{6}}{7}$	1	1 for correct answer
	(ii) $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 x}$ $= \frac{2 \times \frac{\sin x}{\cos x}}{1 - \left(\frac{\sin x}{\cos x}\right)^2}$ $= \frac{-2 \times \frac{2\sqrt{6}}{7} \times -\frac{7}{5}}{1 - \left(\frac{-2\sqrt{6}}{5}\right)^2}$ $= \frac{-4\sqrt{6}}{5} \times \frac{25}{1}$ $= -20\sqrt{6}$	2	2 marks for correct value 1 mark for working which includes correct substitution in expression for $\tan 2\alpha$ with subsequent error or other working of similar merit

	Question 11 Solutions	Marks	Allocation of marks
(c)	$\frac{4x-1}{x+2} \ge 1$	2	2 marks for correct solution with correct inequality signs
	$x \neq -2$ $(x+2)(4x-1) \ge (x+2)^2$ $4x^2 - x + 8x - 2 \ge x^2 + 4x + 4$		
	$4x^{2} - x + 8x - 2 \ge x^{2} + 4x + 4$ $3x^{2} + 3x - 6 \ge 0$ $3(x^{2} + x - 2) \ge 0$ $3(x + 2)(x - 1) \ge 0$		1 mark for working which includes correct solution with error in signs or other working of similar merit
(4)	$\therefore x < -2 \text{ and } x \ge 1$ $y = 3x + 2y - 6$	2	2 montre for comment andle
(d)	$y = 3x + 2y - 6$ $m_1 = -3$	2	2 marks for correct angle
	2y = x + 4		
	$2y = x + 4$ $m_2 = \frac{1}{2}$		1 mark for working which includes correct substitution
	$\tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_1} \right $		in expression for tan 2θ with subsequent error or other working of similar
	$-3 - \frac{1}{2}$		merit
	$\tan\theta = \left \frac{m_1 - m_2}{1 + m_1 m_1} \right $ $\tan\theta = \left \frac{-3 - \frac{1}{2}}{1 + \left(-3 \times \frac{1}{2}\right)} \right $		
	$\tan\theta = \begin{bmatrix} -3\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$		
	$\tan\theta = 7$		
	$\theta = 81^{\circ} 52'$		
	So obtuse angle 180° – 81° 52' = 98° 8'		
(e)	Let the ratio be 8 : -3	2	2 marks for correct point
	$x = \frac{mx_2 + nx_1}{m+n}$ $y = \frac{my_2 + ny_1}{m+n}$		
	$P(10,13) A(x_1, y_1) B(7,7)$		1 mark for working which includes correct substitution
	$10 = \frac{8 \times 7 + -3 \times x}{8 + -3} \qquad 13 = \frac{8 \times 7 + -3 \times y}{8 + -3}$		in equation for ratio with subsequent error or other
	$10 = \frac{56 - 3x}{5}$ $13 = \frac{56 - 3y}{5}$		working of similar merit
	$50 = 56 - 3x$ $13 = 56 - \frac{3y}{5}$		
	3x = 6 $x = 2$ $3y = -9$ $y = -3$		
	$x = 2$ $\therefore A(2, -3)$ $y = -3$		

	Question 11 Solutions	Marks	Allocation of marks
(f)		2	2 marks for correct value
	When $u = 2x^3 - 4x^2 + 5$		
	$\frac{du}{dx} = 6x^2 - 8x$ $du = 2(3x^2 - 4) dx$ $\int (3x^2 - 4)(2x^3 - 4x^2 + 5) dx = \frac{1}{2} \int 2(2x^3 - 4x^2 + 5)^4 (3x^2 - 4) dx$		1 mark for working which includes correct substitution in expression with subsequent error or other working of similar merit
	$=rac{1}{2}\int u^4 du$		
	$=\frac{1}{2}\left[\frac{u^5}{5}\right]$		
	$=\frac{(2x^3-4x^2+5)^5}{10}+C$		
(g)	10	2	2 marks for correct factors
	$2x - 1$ is a factor if $P\left(\frac{1}{2}\right) = 0$		in any form
	$2\left(\frac{1}{2}\right)^{4} + \left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right) - 1 = 2 \times \frac{1}{16} + \frac{1}{8} + \frac{1}{4} + \frac{1}{2} - 1$ $= \frac{1}{8} + \frac{1}{8} + \frac{1}{4} + \frac{1}{2} - 1$ $= 0$		1 mark for working which includes showing $2x - 1$ is a factor or which finds at least one other factor or working of equal merit.
	$2x - 1 \text{ is a factor of } P(x)$ Test for other factors $P(-1) = 2 \times 1 - 1 + 1 - 1 - 1$		
	= 0		
	So $(2x-1)(x+1) = 2x^2 + x - 1$ is a factor		
	$2x^{2} + x - 1 \frac{x^{2} + 1}{2x^{4} + x^{3} + x^{2} + x - 1}$ $2x^{4} + x^{3} - x^{2}$ $2x^{2} + x - 1$ $2x^{2} + x - 1$		
	0		
	$x^2 + 1$ cannot be factorised further over the reals $(\Delta = 0^2 - 4 \times 1 \times 1 = -4)$ So factorisation is		
	$2x^{4} + x^{3} + x^{2} + x - 1 = (2x - 1)(x + 1)(x^{2} + 1)$		

Question 12 2018

Question 12 Solutions	Marks	Allocation of marks
(a)	1	
i) $x^2 = 4ay$ $y = \frac{x^2}{4a}$ $\frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a}$		1 mark: Finds the equation of the tangent at $P(2ap, ap^2)$.
At $P(2ap, ap^2)$ $\frac{dy}{dx} = \frac{2ap}{2a} = p$		
Equation of the tangent at $P(2ap, ap^2)$ $y - ap^2 = p(x - 2ap)$ $y - ap^2 = px - 2ap^2$ $\therefore px - y - ap^2 = 0$		
ii) Similarly, at Q the equation of the tangent is $qx - y - aq^2 = 0$	2	2 marks: Correct answer.
Solving simultaneously to find the co-ordinates of T $px - y - ap^2 = 0 \text{ (1)}$ $qx - y - aq^2 = 0 \text{ (2)}$		1 mark: Finds one of the coordinates or shows some understanding.
Equation (1) – equation (2)		
$px - qx - ap^{2} + aq^{2} = 0$ $(p - q)x = a(p + q)(p - q)$ $x = a(p + q)$		
Substituting $a(p+q)$ for x into equation (1) $pa(p+q) - y - ap^2 = 0$ $y = ap^2 + apq - ap^2$		
$= apq$ $\therefore \text{Coordinates of } T \text{ are } (a(p+q), apq)$		
iii)	1	1 mark: Correct answer.
$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ $\tan \theta = \frac{p - q}{1 + pq}$ $1 = \frac{p - q}{1 + pq}$ $\therefore p - q = 1 + pq$		
iv) Evaluating the expression $x^2 = 4ay$ at T	2	2 marks: Correct answer.
$x^{2} - 4ay = [a(p+q)]^{2} - 4a(apq)$ $= a^{2}(p+q)^{2} - 4a^{2}pq$ $= a^{2}(p+q)^{2} - 4pq$ $= a^{2}(p^{2} - 2pq + q^{2})$ $= a^{2}(p-q)^{2}$		1 mark: Makes some progress towards the solution.
Now using the result in part (iii)		
$x^{2} - 4ay = a^{2}(1 + pq)^{2}$ $= a^{2}(1 + 2pq + p^{2}q^{2})$ $= a^{2} + 2a(apq) + (apq)^{2}$ $= a^{2} + 2ay + y^{2}$		
$x^2 - y^2 = a^2 + 6ay$ $\therefore \text{Locus of } T \text{ is } x^2 - y^2 = a^2 + 6ay.$		

	Question 12 Solutions	Marks	Allocation of marks
(b)	$\frac{d}{dx} x \sin^{-1} x = x \cdot \frac{d}{dx} (\sin^{-1} x) + \sin^{-1} x$	2	2 marks for correct solution
	$= x \cdot \frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x$ $= \frac{x}{\sqrt{1 - x^2}} + \sin^{-1} x$ $\frac{d}{dx} \sqrt{1 - x^2} = \frac{d}{dx} \left((1 - x^2)^{\frac{1}{2}} \right)$ $= \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} \times (-2x)$		1 mark for working which includes correct derivative for one of the terms or working with a with a minor error of equal merit.
	$= -\frac{x}{\sqrt{1-x^2}}$		
	$\frac{d}{dx} x \sin^{-1} x + \sqrt{1 - x^2} = \frac{x}{\sqrt{1 - x^2}} + \sin^{-1} x$		
	$-\frac{x}{\sqrt{1-x^2}}$ $= \sin^{-1} x$		
	(ii) $\int_{0}^{1} \sin^{-1} x \ dx$	1	1 for correct answer
	$= \left[x \sin^{-1} x + \sqrt{1 - x^2} \right]_0^1$		
	$= \left(1 \sin^{-1} 1 + \sqrt{1 - 1^2}\right) - \left(0 \sin^{-1} 0 + \sqrt{1 - 0^2}\right)$ $= \left(\frac{\pi}{2} - 1\right)$		

$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + 2\left(\frac{1}{3}\right)^{n-1} = -3\left[\left(\frac{1}{3}\right)^n - 1\right]$$

Show true for n = 1

LHS =
$$2\left(\frac{1}{3}\right)^0 = 2 \times 1 = 2$$

RHS = $-3\left[\left(\frac{1}{3}\right)^1 - 1\right]$
= $-3\left(\frac{1}{3} - 1\right)$
= $-3\left(-\frac{2}{3}\right)$
= 2
= LHS

Assume true for n = k

$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + 2\left(\frac{1}{3}\right)^{k-1} = -3\left[\left(\frac{1}{3}\right)^{k} - 1\right]$$

Prove true for n = k + 1

$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + 2\left(\frac{1}{3}\right)^{k-1} + 2\left(\frac{1}{3}\right)^{(k+1)-1} = -3\left[\left(\frac{1}{3}\right)^{k+1} - 1\right]$$

LHS

$$=2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+...+2\left(\frac{1}{3}\right)^{k-1}+2\left(\frac{1}{3}\right)^{(k+1)-1}$$

$$= -3\left[\left(\frac{1}{3}\right)^k - 1 \right] + 2\left[\left(\frac{1}{3}\right)^k \right]$$

$$=-3\left(\frac{1}{3}\right)^k + 3 + 2\left(\frac{1}{3}\right)^k$$

$$=\left(\frac{1}{3}\right)^k \left[-3+2\right]+3$$

$$=-1\left(\frac{1}{3}\right)^k+3$$

$$= -3 \left[\frac{1}{3} \times \left(\frac{1}{3} \right)^k - 1 \right]$$

$$= -3 \left[\left(\frac{1}{3} \right)^1 \times \left(\frac{1}{3} \right)^k - 1 \right]$$

$$= -3 \left[\left(\frac{1}{3} \right)^{k+1} - 1 \right]$$

= RHS

 \therefore since true for n = 1 it is also true for all $n \ge 1$

3 marks for a valid and complete proof

1 mark for prove true for n = 11 mark for assumption true for n = k.

	Question 12 Solutions		Marks	Allocation of marks
(d)			2	3 marks for correct solution
	$r = \sqrt{5^2 + 12^2} = 13$ $\alpha = tan^{-1} \left[\frac{12}{5} \right] = 1.18 (2d.p.)$ $13 \cos(\theta + 1.18) = -3$ $\theta = 0.62, 3.30$	12		1 mark for working which includes correct value of r or/and or α or other working of equal merit.

Ouc	stion 13	2018						
					_			

	Question 13 Solutions	Marks	Allocation of marks
(a)	(i) $v^2 = 6 + 4x - 2x^2$	1	1 mark for correct answer
	Extreme at $v = 0$		
	$0 = 6 + 4x - 2x^2$		
	$0 = -2(-3 - 2x + x^2)$		
	0 = -2(x-3)(x+1)		
	\therefore particle oscillates between -1 and 3		
	(ii) Centre of motion	1	1 mark for correct answer
	$x = \frac{-1 + 3}{2}$		
	x - 2		
	x = 1		
	Max speed at centre of motion		
	$v^2 = 6 + 4x - 2x^2$		
	=6+4-2		
	= 8		
	$v = \pm \sqrt{8}$		
	$= \pm 2\sqrt{2} \ m \ s^{-1}$ (iii) $v^2 = 6 + 4x - 2x^2$		
	$=\pm 2\sqrt{2} m s$	2	
		_	2 marks for correct value
	$\frac{1}{2}v^2 = \frac{1}{2}(6+4x-2x^2)$		
	$\frac{1}{2}v^2 = 3 + 2x - x^2$		1 mark for working which
	$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = \frac{d}{dx}(3+2x-x^2)$		includes correct substitution in expression with subsequent error or other working of similar merit
	$\frac{d^2x}{dt^2} = 2 - 2x$		working of similar mont
	$\therefore \qquad a = 2(1-x)$		

Question 13 Solutions	Marks	Allocation of marks
From above	3	3 marks for correct solution
48° 42° 170m		2 marks for a solution which links <i>x</i> and <i>y</i> with <i>h</i> and uses cosine rule with a minor error or working with similar merit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 mark for solution which links <i>x</i> and <i>y</i> with <i>h</i> or uses cosine rule but is incomplete or has multiple errors
$x = \frac{h}{\tan 12^0} \qquad y = \frac{h}{\tan 19^0}$ $170^2 = \left[\frac{h}{\tan 12^\circ}\right]^2 + \left[\frac{h}{\tan 19^\circ}\right]^2 - 2 \times \left[\frac{h}{\tan 19^\circ}\right] \times \left[\frac{h}{\tan 12^\circ}\right] \times \cos \theta$	s 56°	
$= h^2 \left(\frac{1}{\tan^2 12^\circ} + \frac{1}{\tan^2 19^\circ} - \frac{2\cos 56^\circ}{\tan 12^\circ \tan 19^\circ} \right)$		
$=h^2(15.28717)$		
$h^2 = \frac{170^2}{15.28717}$ $h = 43.479$		
h = 43 m (nearest m) \therefore the height of the tower is 43 metres		

	Question 13 Solutions	Marks	Allocation of marks
(c)	(i) At $t = 0$ $P = 1$ $P = \frac{1200}{1 + ce^{-600t}}$ $1 = \frac{1200}{1 + ce^{0}}$ $1 + c = 1200$ $\therefore c = 1199$ $\therefore P = \frac{1200}{1 + 1199e^{-600t}}$ When $P = 600$ students $600 = \frac{1200}{1 + 1199e^{-600t}}$	Marks 2	Allocation of marks 2 marks for solution with correct number of days 1 mark for solution which correctly finds c then has error following this or if an error is made in finding c and subsequent working is correct
	$600 + 600 \times 1199e^{-600t} = 1200$ $600 \times 1199e^{-600t} = 600$ $1199e^{-600t} = 1$		
	$e^{-600t} = \frac{1}{1199}$ $\ln[e^{-600t}] = \ln\left[\frac{1}{1199}\right]$		
	$-600t = \ln\left[\frac{1}{1199}\right]$ $t = \frac{\ln\left[\left[\frac{1}{1199}\right]\right]}{-600}$ $t = 0.011815405 \text{ years}$ $t = 4.3 \text{ days}$		

Question 13 Solutions	Marks	Allocation of marks
(ii) $P = \frac{1200}{1 + ce^{-600t}}$	2	2 marks for correctly showing the required result
$P = 1200 (1 + ce^{-600t})^{-1}$ $\frac{dP}{dt} = -1200(1 + ce^{-600t})^{-2} (-600ce^{-600t})$ $= \frac{1200 \times 600(ce^{-600t})}{(1 + ce^{-600t})^2}$ $= \frac{600ce^{-600t}}{1 + ce^{-600t}} \times \frac{1200}{1 + ce^{-600t}}$ $= \frac{1200}{1 + ce^{-600t}} \left[\frac{600 + 600ce^{-600t} - 600}{1 + ce^{-600t}} \right]$ $= P \left[\frac{600(1 + ce^{-600t})}{1 + ce^{-600t}} - \frac{600}{1 + ce^{-600t}} \right]$ $= P \left[600 - \frac{1}{2} \times \frac{1200}{1 + ce^{-600t}} \right]$ $= P \left[600 - \frac{1}{2}P \right]$ $= P \left[600 - \frac{P}{2} \right]$		1 mark for working which includes correct derivative with other minor errors or which is incomplete or for a solution with a minor error in finding the derivative followed by correct working which may be incomplete
$ \begin{array}{c c} & 13C_65! = \frac{13!}{7!6!}5! \\ & = \frac{13!}{7!6!} \end{array} $	2	2 marks correct answer 1 mark for ¹³ C ₆ or 5!

	Question 13 Solutions	Marks	Allocation of marks
(e)	Zeronal 13 Solutions $ T = x \text{(ang in alt segment)} $ $ OP = OR \text{(equal radii)} $ $ \angle OPR = x \text{(ang in isos triangle)} $ $ \angle PRQ = \angle SPR = 90^{\circ} \text{(ang in semi circle)} $ $ \angle TPO = 90^{\circ} \text{(ang between tangent and radius)} $ $ \angle PSR = 90^{\circ} - x \text{(ang sum right triangle)} $ $ \angle TPR = \angle SPR + \angle TPS = 90^{\circ} + x \text{(adjacent angles)} $ $ \angle PTR = 180 - (90 + x) - x $ $ = 180 - 90 - x - x $ $ = 90 - 2x $ $ \angle PSR - \angle SRP = 90 - x - x $ $ = 90 - 2x $ $ \therefore \angle PTR = \angle PSR - \angle SRP $	2	2 marks for correct answer 1 mark for a well set out proof which involves some relevant and correct comparisons between angles but which is incomplete or has minor errors or missing reasons
		ĺ	

	Question 14 Solution	Marks	Allocation of marks
(a)	(i) $y = \sqrt{9 - \sqrt{x}}$	2	2 marks for correct equation
	$y = \sqrt{9 - \sqrt{x}}$ $\therefore x = \sqrt{9 - \sqrt{y}}$		1 mark for solution that involves interchanging <i>x</i>
	$x^2 = 9 - \sqrt{y}$ $\sqrt{y} = 9 - x^2$		and y but does not reach required equation
	$y = (9 - x^2)^2$		

Question 14 Solution	Marks	Allocation of marks
(ii) On $f(x)$ when $x = 0$, $y = 3$ and when $x = 81$, $y = 0$. So by symmetry on $f^{-1}(x)$ when $x = 0$, $y = 81$ and when $x = 3$, $y = 0$.	2	2 marks for correct result by any method.
81		1 mark for a solution with some merit in calculation of relevant integrals
$y = f^{-1}(x)$		
y = f(x)		
$\stackrel{3}{\longleftrightarrow}$ 3 81 \times 81		
$\int_{0}^{81} \sqrt{9 - \sqrt{x}} \ dx = \int_{0}^{3} (9 - x^{2})^{2} \ dx$		
$= \int_{0}^{3} 81 - 18x^{2} + x^{4} dx$		
$= \left[81x - 6x^3 + \frac{x^5}{5} \right]_0^3$		
$= \left(81 \times 3 - 6 \times 3^3 \times \frac{3^5}{5}\right)$		
$=129\frac{3}{5}$		

	Question 14 Solution	Marks	Allocation of marks
(b)	(i)	1	1 mark for correct value
	$4x^3 + 0x^2 - 6x + 10 = 0$		
	$\alpha + \beta + \gamma = -\frac{b}{a} = -\frac{0}{4} = 0$		
	$\alpha \beta + \beta \gamma + \alpha \gamma = \frac{c}{a} = -\frac{6}{4} = -\frac{3}{2}$		
	$\alpha \beta \gamma = -\frac{d}{a} = -\frac{10}{4} = -\frac{5}{2}$		
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha \beta + \beta \gamma + \alpha \gamma)$		
	$= 0^2 - 2 \times \left(-\frac{3}{2}\right)$		
	= 0 + 3 = 3		
	(ii) $a^2 + a^2 + y^2$	2	2 marks for correct answer
	$\frac{1}{\alpha^2 \beta^2} + \frac{1}{\alpha^2 \gamma^2} + \frac{1}{\beta^2 \gamma^2} = \frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha^2 \beta^2 \gamma^2}$		
	$=\frac{\alpha^2+\beta^2+\gamma^2}{\left(\alpha\beta\gamma\right)^2}$		1 mark for solution which
	$(\alpha\beta\gamma)^{-}$ 3		expresses the expression in term of sums and products
	$=\frac{3}{\left(-\frac{5}{2}\right)^2}$		but is incomplete or has a minor error
	$= 3 \times \frac{4}{25}$		
	$=\frac{12}{25}$		
	23		

	Question 14 Solution	Marks	Allocation of marks
(c)	(i) Angle = $\frac{\pi}{6}$ because $\frac{1}{2} \times \frac{\pi}{3}$ $\frac{\pi}{6}$ h $\frac{\pi}{6}$ $tan \frac{\pi}{6} = \frac{r}{h}$ $r = h tan \frac{\pi}{6}$ $\therefore r = h \times \frac{1}{\sqrt{3}}$ $r = \frac{h}{\sqrt{3}}$		1 for showing $r = \frac{h}{\sqrt{3}}$
	(ii) $V = \frac{1}{3} \pi r^2 h$ $= \frac{1}{3} \times \pi \times \left[\frac{h}{\sqrt{3}} \right]^2 \times h$ $= \frac{1}{3} \times \pi \times \frac{h^2}{3} \times h$ $V = \frac{\pi h^3}{9}$	1	1 for correct substitution

Question 14 Solution	Marks	Allocation of marks
(iii) $\frac{dV}{dt} = \frac{d}{dh} \left[\frac{\pi h^3}{9} \right] \times \frac{dh}{dt}$	2	2 marks for correct answer
$= \frac{3\pi h^2}{9} \times \frac{dh}{dt}$ $= \frac{\pi h^2}{3} \times \frac{dh}{dt}$		1 mark for relevant workin including related rates with minor errors or incomplete
But $\frac{dV}{dt} = 1.5$ $\therefore 1.5 = \frac{\pi h^2}{3} \times \frac{dh}{dt}$		
$dh/dt = 1.5 \div \frac{\pi h^2}{3}$		
$= 1.5 \times \frac{3}{\pi h^2}$ 4.5		
$= \frac{4.5}{\pi h^2}$ $\therefore \text{ When } h = 6m$		
$\frac{dh}{dt} = \frac{4.5}{\pi \times 6^2}$		
$=\frac{1}{8\pi}$ m/s		

	Question 14 Solution	Marks	Allocation of marks
(d)	(i) Given $\ddot{x} = 0$, $\ddot{y} = -10$ At $t = 0$, $y = 405$, $\dot{y} = 0$	2	2 marks for deriving the vertical motion
	Vertical Motion:		1 mark if there is a minor
	$\ddot{y} = -10$		error in working of the derivation
	$\therefore \dot{y} = \int -10 \mathrm{dt}$		
	$=-10t + C_2$		
	$At t = 0 \dot{y} = 0 : C_2 = 0$		
	$\therefore \dot{y} = -10t$		
	$y = \int -10t dt$		
	$= -10\frac{t^2}{2} + C_3$		
	At $t = 0$ $y = 405$ \therefore $C_3 = 405$		
	$\therefore y = 405 - 5t^2$		
	(ii) The life raft hits the water when $y = 0$	1	1 mark for correct answer
	$y = 405 - 5t^2$		
	$5t^2 = 405$ $t^2 = 81$		
	$t = 81$ $t = \sqrt{81} \text{ since } t > 0$		
	t = 9 seconds		
	(iii) AO is the horizontal displacement of the payload when $y = 0$. $y = 0$ when $t = 9$ $AO = x = 60t = 60 \times 9 = 540 m$	1	1 mark for correct answer
	$\tan \varphi = \frac{405}{540}$		
	$\varphi = \tan^{-1} \left(\frac{405}{540} \right)$		
	$= \tan^{-1}(0.75)$ = 36.8698976		
	$= 36^{\circ} 52'$		