Clase 1 - Macroeconomía

Jorge Sarcos González

22 de agosto de 2024

```
# Otra opción es utilizar solamente setwd y asignar el nombre de la carpeta donde están los d
# setwd("C:/Users/pvillacampa/Desktop/RStudio/Datos") #no olvidar las comillas y el cambio d
el slash.
#Paquete para importar archivos Excel
#istall.packages("readxl") #leerá archivos excel
library(readx1)
### II. LEEMOS LAS SERIES DE TIEMPO
# Leemos la serie de tiempo, desde un archivo csv - Leemos el archivo PBI
library(readr)
pbi <- read_csv("C:/Users/Home/Downloads/pbi.csv")</pre>
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
##
   dat <- vroom(...)</pre>
##
     problems(dat)
## Rows: 228 Columns: 1
## — Column specification
## Delimiter: ","
## num (1): PBI
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(pbi)
dim(pbi)
## [1] 228
summary(pbi)
##
         PBI
## Min. : 87.0
## 1st Qu.: 994.2
## Median :1202.5
## Mean
          :1196.2
## 3rd Ou.:1439.5
           :2087.0
## Max.
# Leemos ahora la serie de tiempo desde un archivo xlsx
library(readx1)
base01 <- read_excel("C:/Users/Home/Downloads/Libro1 (2).xlsx",</pre>
    sheet = "datos")
View(base01)
```

summary(base01)

```
##
       s_priv
                      i_priv
                                      tot
                                                     ipm
## Min. : 5.351
                  Min. : 8.736
                                        :3.971
                                                       :4.109
                                  Min.
                                                Min.
   1st Qu.:12.339
##
                  1st Qu.:13.802
                                  1st Qu.:4.075
                                                1st Qu.:4.216
## Median :14.318
                  Median :16.550
                                  Median :4.375
                                                Median :4.520
                  Mean
##
   Mean
        :13.615
                        :16.190
                                  Mean
                                       :4.337
                                                Mean
                                                       :4.497
##
   3rd Qu.:15.661
                   3rd Qu.:18.616
                                  3rd Qu.:4.573
                                                3rd Ou.:4.763
##
   Max.
         :19.382
                  Max.
                        :25.675
                                  Max.
                                        :4.739
                                                Max.
                                                       :4.867
##
        ipx
                                                     i_pub
                      cca
                                     s_pub
## Min.
         :3.485
                        :-9.125 Min.
                                       :-0.1753 Min.
                                                        :2.653
                Min.
## 1st Qu.:3.678 1st Qu.:-5.129 1st Qu.: 2.3540 1st Qu.:3.527
   Median :4.364
##
                Median :-2.775
                                 Median : 3.4349
                                                 Median :4.552
## Mean :4.229 Mean :-3.035
                                 Mean : 3.9653 Mean :4.440
##
   3rd Qu.:4.739
                 3rd Qu.:-1.260
                                 3rd Qu.: 6.0050
                                                 3rd Qu.:5.106
## Max. :4.998
                 Max. : 5.163
                                 Max. : 9.0197
                                                 Max. :6.297
```

```
# Creacion de una serie de tiempo para el PBI
pbi.ts<-ts(pbi, start=c(2001,1), end=c(2019,12), frequency = 12)

pbi_2.ts<-ts(pbi, start=c(2001,1), frequency = 12)

# Creacion de una serie de tiempo para las variables del archivo base01
attach(base01)
s_priv.ts=ts(s_priv, start = c(1993,1), end = c(2019,4), frequency = 4)
i_priv.ts=ts(i_priv, start = c(1993,1), end = c(2019,4), frequency = 4)
i_pub.ts=ts(i_pub, start = c(1993,1), end = c(2019,4), frequency = 4)
tot.ts=ts(tot, start = c(1993,1), end = c(2019,4), frequency = 4)
ipm.ts=ts(ipm, start = c(1993,1), end = c(2019,4), frequency = 4)
detach(base01)

# Borrador ante consulta en clase.
s_priv_02.ts=ts(s_priv.ts, start = c(1993,1), frequency = 12)</pre>
```

```
options(bitmapType = "cairo")
```

```
# Graficamos la serie de tiempo
plot(s_priv.ts, main="PERU - AHORRO PRIVADO 1993 - 2019")
```

PERU - AHORRO PRIVADO 1993 - 2019

plot(pbi.ts, main = "PBI 2001 - 2020")

PBI 2001 - 2020

plot(s_priv.ts, main="PERU - AHORRO PRIVADO 1993 - 2019")

PERU - AHORRO PRIVADO 1993 - 2019

plot(i_priv.ts, main="PERU - INVERSIÓN PRIVADO 1993 - 2019")

PERU - INVERSIÓN PRIVADO 1993 - 2019

plot(tot.ts, main="PERU - TÉRMINOS DE INTERCAMBIO 1993 - 2019")

PERU - TÉRMINOS DE INTERCAMBIO 1993 - 2019


```
par(mfrow=c(1,1))
```

```
### III. ANÁLISIS INICIAL DE LAS SERIES TEMPORALES
# Descomponemos de manera inicial la serie: comando decompose
pbi.ts.desc=decompose(pbi.ts,type = c("additive"))
plot(pbi.ts.desc)
```

Decomposition of additive time series


```
par(mfrow=c(1,2))
plot(tot.ts, main="PERU - TÉRMINOS DE INTERCAMBIO 1993 - 2019")
plot(pbi.ts, main="PBI 2001 - 2020")
```

U - TÉRMINOS DE INTERCAMBIO 199

PBI 2001 - 2020

par(mfrow=c(1,1))

s_priv.ts.desc=decompose(s_priv.ts)
plot(s_priv.ts.desc)

Decomposition of additive time series

tot.ts.desc=decompose(tot.ts)
plot(tot.ts.desc)

Decomposition of additive time series

#Realizamos un gráfico de caja y usamos el comando ciclo para ver la estacionalidad y su influencia mensual.

boxplot((pbi.ts~cycle(pbi.ts)))

#Realizamos un resumen estadístico de las cajas

summary<-boxplot(pbi.ts~cycle(pbi.ts))\$stats</pre>

colnames(summary)<-c("Enero", "Febrero", "MArzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Se
tiembre", "Octubre", "Noviembre", "Diciembre")</pre>

rownames(summary)<-c("Min","First Quartile","Median","Third Quartile ","Max")
summary</pre>

```
##
                     Enero Febrero MArzo Abril
                                                  Mayo
                                                         Junio
                                                                Julio Agosto
                                                                          791
## Min
                     809.0
                             824.0
                                      821
                                            123
                                                 878.0
                                                         879.0
                                                                835.0
                                      949
## First Quartile
                     900.5
                             980.0
                                            860 1212.0
                                                         995.5 1058.5
                                                                         1096
                    1149.0
## Median
                            1148.0
                                    1168
                                           1185 1361.0 1238.0 1214.0
                                                                         1196
## Third Quartile
                    1347.0
                            1355.5
                                    1381
                                           1496 1594.5 1442.5 1473.5
                                                                         1410
                                    1908
                                           2015 2087.0 2029.0 1989.0
## Max
                    1881.0
                            1832.0
                                                                         1732
##
                    Setiembre Octubre Noviembre Diciembre
## Min
                          783
                                   842
                                             813
                                                      831.0
## First Quartile
                         1004
                                 1025
                                             924
                                                     1086.5
## Median
                         1158
                                 1193
                                            1194
                                                     1247.0
## Third Quartile
                         1317
                                 1356
                                            1365
                                                     1424.5
## Max
                         1716
                                 1804
                                            1979
                                                     1879.0
```

```
#Histograma
hist(pbi.ts)
```

Histogram of pbi.ts

hist(i_priv.ts)

Histogram of i_priv.ts

hist(i_pub.ts)

Histogram of i_pub.ts

Convertimos la serie a logaritmos
log_pbi.ts<-log(pbi.ts)
plot(log_pbi.ts)</pre>

log_s_priv.ts<-log(s_priv.ts) # Conversión a logaritmos del ahorro privado
plot(log_s_priv.ts)</pre>


```
# Diferenciamos la serie: Eliminación de la tendencia
dif_pbi.ts=diff(pbi.ts)
plot(dif_pbi.ts)
```



```
dif_tot.ts=diff(tot.ts)
par(mfrow=c(1,2))
plot(dif_tot.ts)
plot(tot.ts)
```


par(mfrow=c(1,2))
plot(dif_pbi.ts)
plot(pbi.ts)

par(mfrow=c(1,1))

Diferenciamos la serie: Eliminación de estacionalidad
dif_12_pbi.ts<-diff(dif_pbi.ts, lags=12)
plot(dif_12_pbi.ts)</pre>

Filtro de Hodrick Prescott

library(mFilter)

lambda=14400
pbi.hp<-hpfilter(log_pbi.ts, type="lambda")
plot(pbi.hp)</pre>

Hodrick-Prescott Filter of log_pbi.ts

Cyclical component (deviations from trend)

print(pbi.hp)

```
##
## Title:
##
  Hodrick-Prescott Filter
##
## Call:
   hpfilter(x = log_pbi.ts, type = "lambda")
##
##
## Method:
   hpfilter
##
##
## Filter Type:
##
   lambda
##
## Series:
## log_pbi.ts
##
##
           log_pbi.ts Trend
                               Cycle
## Jan 2001
              6.696 6.573 0.12293
## Feb 2001
                6.714 6.577 0.13739
## Mar 2001
                6.711 6.581 0.12983
## Apr 2001
               6.741 6.585 0.15592
## May 2001
               6.816 6.589 0.22711
## Jun 2001
               6.800 6.592 0.20771
## Jul 2001
               4.554 6.596 -2.04253
## Aug 2001
              6.713 6.600 0.11258
## Sep 2001
               6.692 6.604 0.08772
## Oct 2001
                6.762 6.608 0.15322
## Nov 2001
                6.701 6.612 0.08838
              6.723 6.616 0.10628
## Dec 2001
## Jan 2002
               6.763 6.620 0.14240
## Feb 2002
                6.763 6.624 0.13843
## Mar 2002
                6.766 6.628 0.13794
## Apr 2002
                6.720 6.632 0.08803
## May 2002
                6.778 6.636 0.14153
## Jun 2002
                6.779 6.640 0.13877
## Jul 2002
                6.727 6.644 0.08353
## Aug 2002
                6.673 6.648 0.02552
## Sep 2002
                6.663 6.652 0.01150
## Oct 2002
                6.736 6.655 0.08030
## Nov 2002
                6.720 6.659 0.06090
## Dec 2002
                6.789 6.663 0.12581
## Jan 2003
                6.704 6.667 0.03741
## Feb 2003
                6.765 6.671 0.09419
## Mar 2003
                6.804 6.675 0.12879
## Apr 2003
                6.773 6.679 0.09449
## May 2003
                6.812 6.682 0.12985
## Jun 2003
                6.862 6.686 0.17528
## Jul 2003
                6.807 6.690 0.11642
                 6.795 6.694 0.10014
## Aug 2003
## Sep 2003
                4.466 6.699 -2.23263
## Oct 2003
                6.763 6.703 0.06002
## Nov 2003
                4.466 6.707 -2.24104
## Dec 2003
                 6.817 6.711 0.10548
## Jan 2004
                 6.842 6.716 0.12601
```

6.837 6.720 0.11736

Feb 2004

## Ma	ar 2004	6.905	6.724	0.18041
## Aı	or 2004	6.905	6.729	0.17606
	ay 2004		6.733	
	un 2004	6.943	6.737	
	ul 2004	6.903		0.16128
	ug 2004		6.746	0.15315
	ep 2004		6.750	
	ct 2004		6.753	
	ov 2004	6.927	6.757	0.16928
	ec 2004	6.976	6.761	0.16928
			6.765	
	eb 2005		6.768	
	ar 2005	6.979		
	or 2005		6.774	
	ay 2005	7.093		0.31530
	un 2005		6.780	
	ul 2005		6.783	
	ug 2005		6.785	
	ep 2005		6.788	
	ct 2005		6.790	
	ov 2005	6.971		
	ec 2005	7.005		
	an 2006		6.796	
## F	eb 2006	6.963	6.798	
## Ma	ar 2006	6.987	6.800	
	pr 2006	7.015	6.802	0.21307
## Ma	ay 2006	7.107	6.803	0.30403
## J	un 2006	7.055	6.805	0.25035
## Jı	ul 2006	7.058	6.806	0.25144
## A	ug 2006	7.000	6.808	0.19246
## S	ep 2006	6.958	6.809	0.14922
## 0	ct 2006	6.993	6.811	0.18248
## No	ov 2006	4.700	6.812	-2.11130
## D	ec 2006	7.063	6.813	0.25004
## Ja	an 2007	7.047	6.814	0.23246
## F	eb 2007	7.016	6.815	0.20039
## Ma	ar 2007	7.015	6.816	0.19839
## A	pr 2007	7.128	6.817	0.31102
## Ma	ay 2007	7.165	6.818	0.34700
## Jı	un 2007	7.121	6.819	0.30178
## Jı	ul 2007	7.095	6.820	0.27464
## A	ug 2007	7.060	6.821	0.23825
## S	ep 2007	7.059	6.822	0.23646
## 0	ct 2007	7.083	6.823	0.25932
## No	ov 2007	7.048	6.824	0.22419
## D	ec 2007	7.128	6.825	0.30330
## Ja	an 2008	7.033	6.826	0.20637
## F	eb 2008	7.046	6.827	0.21838
## Ma	ar 2008	4.771	6.829	-2.05796
## A _l	or 2008	4.812	6.830	-2.01783
## Ma	ay 2008	7.120	6.832	0.28891
## J	un 2008	7.112	6.833	0.27834
## Jı	ul 2008	7.094	6.835	0.25929
## A	ug 2008	7.068	6.837	0.23134
## S	ep 2008	7.051	6.839	0.21214
## 0	ct 2008	7.043	6.841	0.20217

##	Nov	2008	7.046	6.843	0.20251
##	Dec	2008	7.092	6.846	0.24607
##	Jan				0.17019
##	Feb			6.851	
##		2009	-		0.20930
##	Apr	2009			0.22076
##	May				0.29395
##	•	2009			-2.03485
	Jul	2009		6.867	
##			7.102		
	Aug				
##		2009		6.874	
##		2009		6.878	
##	Nov				0.21869
		2009			0.26469
##		2010		6.889	
##	Feb			6.893	
##		2010		6.897	
##	Apr	2010		6.901	
##	May				0.31858
##		2010			0.27352
##	Jul	2010		6.914	
##	Aug			6.918	
##	Sep	2010		6.922	
##	0ct	2010	7.084	6.926	0.15813
##	Nov	2010	7.085	6.930	0.15493
##	Dec	2010	7.104	6.934	0.17001
##	Jan	2011	7.053	6.938	0.11466
##	Feb	2011	7.034	6.942	0.09247
##	Mar	2011	7.093	6.946	0.14686
##	Apr	2011	7.144	6.949	0.19498
##	May	2011	7.216	6.953	0.26292
##	Jun	2011	7.152	6.957	0.19567
##	Jul	2011	7.153	6.960	0.19299
##	Aug	2011	7.105	6.963	0.14152
##	Sep	2011	7.055	6.967	0.08857
##	0ct	2011	7.124	6.970	0.15452
##	Nov	2011	7.102	6.973	0.12856
##	Dec	2011	7.137	6.976	0.16108
##	Jan	2012	7.104	6.979	0.12492
##	Feb	2012	7.064	6.982	0.08171
##	Mar	2012	7.116	6.985	0.13126
##	Apr	2012	7.225	6.988	0.23745
##	May	2012	7.273	6.991	0.28219
##	Jun	2012	7.192	6.994	0.19841
##	Jul	2012	4.890	6.997	-2.10629
##	Aug	2012	7.138	7.000	0.13854
##	Sep	2012	7.129	7.002	0.12685
##	-	2012			0.15392
##		2012			0.15174
##					0.18762
##		2013			0.14574
		2013			0.10871
##					0.16112
##					0.24042
##	•	2013			0.27433
##	-	2013			0.23254
	Juli	_0_0	200		J. 2J2J4

.,				
## Ju	l 2013	7.231	7.033	0.19712
## Au	g 2013	7.165	7.037	0.12782
## Sep	2013	7.159	7.040	0.11805
## Oct	t 2013	7.192	7.044	0.14802
## Nov	/ 2013	7.171	7.048	0.12287
## Ded	2013	7.219	7.052	0.16688
## Jar	n 2014	4.890	7.056	-2.16589
## Fel	2014	7.169	7.061	0.10870
## Mar	2014	4.934	7.065	-2.13081
## Apı	2014	5.004	7.070	-2.06619
•				0.26499
-	n 2014			0.20506
	l 2014		7.086	
	g 2014			0.12312
7	2014		7.097	
## Oc1			7.103	
	/ 2014 / 2014			0.15614
				0.18804
	n 2015		7.114	
	2015			
			7.126	
	2015		7.132	
•	2015		7.138	
-	/ 2015		7.144	
	n 2015	7.356		
	l 2015		7.156	
7	g 2015		7.161	
•	2015		7.167	
## Oc1	t 2015	7.301	7.173	0.12837
## Nov			7.178	
## Ded	2015			0.18954
## Jar	n 2016	7.308	7.189	0.11863
## Fel	2016	7.311	7.195	0.11664
## Mar	2016	7.385	7.200	0.18478
## Apı	2016	7.404	7.205	0.19927
## May	/ 2016	7.463	7.210	0.25325
## Jur	n 2016	5.118	7.215	-2.09715
## Ju	l 2016	7.403	7.220	0.18295
## Au	g 2016	7.388	7.225	0.16271
## Sep	2016	7.356	7.230	0.12647
## Oc1	2016	7.395	7.235	0.16059
## Nov	/ 2016	5.112	7.239	-2.12714
## Ded	2016	7.455	7.244	0.21109
## Jar	n 2017	7.402	7.248	0.15384
## Fel	2017	7.393	7.252	0.14042
## Mar	2017	7.459	7.256	0.20248
## Apı	2017	7.477	7.260	0.21688
•	/ 2017	7.562	7.264	0.29833
-	n 2017		7.267	
	l 2017		7.270	
	g 2017		7.273	
	2017		7.276	
•	2017 t 2017			0.21908
	/ 2017 / 2017		7.281	
## Dec			7.283	
	n 2018		7.284	
	2018		7.286	
## Fet	7010	1.510	7.286	0.22401

```
## Mar 2018
               7.528 7.287 0.24081
## Apr 2018
                7.608 7.288 0.32054
## May 2018
                7.639 7.288 0.35027
## Jun 2018
                7.615 7.289 0.32656
## Jul 2018
                7.595 7.289 0.30658
## Aug 2018
                7.556 7.289 0.26727
## Sep 2018
                7.560 7.288 0.27132
## Oct 2018
                5.278 7.288 -2.00952
## Nov 2018
                7.556 7.287 0.26958
## Dec 2018
                7.587 7.286 0.30144
## Jan 2019
                7.540 7.285 0.25485
## Feb 2019
                7.513 7.283 0.22978
## Mar 2019
                7.554 7.282 0.27193
## Apr 2019
                7.592 7.280 0.31163
                7.643 7.278 0.36505
## May 2019
## Jun 2019
                7.591 7.277 0.31484
## Jul 2019
                7.586 7.274 0.31180
## Aug 2019
                7.554 7.272 0.28195
## Sep 2019
                5.257 7.270 -2.01272
## Oct 2019
                7.594 7.268 0.32638
## Nov 2019
                7.590 7.266 0.32458
## Dec 2019
                5.333 7.264 -1.93080
```

```
# Realizamos el modelo MCO
modelo1<-lm(i_priv~i_pub+ipx+ipm, data = base01 )
summary(modelo1)</pre>
```

```
##
## Call:
## lm(formula = i_priv ~ i_pub + ipx + ipm, data = base01)
##
## Residuals:
               1Q Median
##
      Min
                               30
                                      Max
## -5.2207 -1.2647 -0.1623 1.3261 8.6455
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.0785 13.5947 -0.521 0.6037
## i_pub
                0.4653
                           0.2752 1.691
                                           0.0938 .
                           3.0148 0.651
## ipx
                1.9638
                                           0.5162
## ipm
                2.8683
                        5.8733 0.488 0.6263
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.37 on 104 degrees of freedom
## Multiple R-squared: 0.4312, Adjusted R-squared: 0.4148
## F-statistic: 26.28 on 3 and 104 DF, p-value: 9.84e-13
```

```
# Outliers
library(tsoutliers)
```

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
out_tot<-tso(tot.ts, types=c('AO','LS','TC'), maxit.iloop=15)
out_tot</pre>
```

```
## Series: tot.ts
## Regression with ARIMA(2,0,0) errors
##
## Coefficients:
##
                 ar2 intercept LS54
         ar1
                                          TC64
##
       1.2283 -0.2485 4.2741 0.1202 -0.1289
## s.e. 0.1039 0.1041
                          0.1261 0.0350 0.0312
##
## sigma^2 = 0.001195: log likelihood = 210.94
## AIC=-409.88 AICc=-409.05 BIC=-393.79
##
## Outliers:
## type ind time coefhat tstat
## 1 LS 54 2006:02 0.1202 3.438
## 2 TC 64 2008:04 -0.1289 -4.130
```

```
out_tot$time
```

```
## [1] 2006.25 2008.75
```

```
plot(out_tot)
```



```
out_pbi<-tso(log_pbi.ts, types=c('AO','LS','TC'), maxit.iloop=15)</pre>
```

```
## Warning in locate.outliers.oloop(y = y, fit = fit, types = types, cval = cval,
## : stopped when 'maxit.oloop = 4' was reached
```

out_pbi

```
## Series: log_pbi.ts
## Regression with ARIMA(3,0,1)(0,0,2)[12] errors
##
## Coefficients:
##
            ar1
                    ar2
                             ar3
                                                                          A07
                                     ma1
                                             sma1
                                                     sma2
                                                          intercept
        -0.0404 0.5427 0.3909
                                 -0.6402 0.2167 0.1496
##
                                                              6.6938 -2.1587
         0.0880 0.0526 0.0696
                                  0.0827 0.0693 0.0678
## s.e.
                                                              0.0620
                                                                      0.1037
##
           TC33
                    A035
                            LS36
                                     A061
                                               A071
                                                        TC87
                                                                LS89
                                                                         LS92
        -1.4667
                 -0.8540 0.3214 -2.3864
                                          -2.3252
                                                   -2.5458 0.9016 -0.6994
##
## s.e.
         0.0797
                  0.1185
                          0.0506
                                   0.1026
                                            0.1016
                                                     0.0735 0.0559
                                                                       0.0612
##
           A098
                   A0102
                            A0112
                                     A0139
                                              TC157
                                                       A0160
                                                               LS161
                                                                         LS165
##
         -2.4996
                 -2.3310 -2.2014 -2.2874 -1.6604 -2.1271 0.4555
                                                                       -0.2091
## s.e.
         0.1044
                 0.1075
                          0.1016
                                   0.1015
                                            0.0767
                                                      0.1071 0.0600
                                                                        0.0511
##
          A0186
                   A0191
                            A0214
                                     A0225
                                              A0228
##
        -2.2719 -2.3055 -2.2990 -2.3028 -2.2087
                  0.1012
                           0.1018
## s.e.
         0.1027
                                    0.1177
                                            0.1523
##
## sigma^2 = 0.02235: log likelihood = 123.82
## AIC=-187.64
                AICc=-178.2
                              BIC=-84.76
##
## Outliers:
##
      type ind
                 time coefhat
                                tstat
## 1
       ΑO
            7 2001:07 -2.1587 -20.808
## 2
       TC
           33 2003:09 -1.4667 -18.412
## 3
           35 2003:11 -0.8540 -7.208
       AΩ
           36 2003:12 0.3214
## 4
       LS
                               6.350
## 5
       A0
           61 2006:01 -2.3864 -23.265
## 6
       AO 71 2006:11 -2.3252 -22.882
## 7
       TC 87 2008:03 -2.5458 -34.642
## 8
       LS 89 2008:05 0.9016 16.118
## 9
           92 2008:08 -0.6994 -11.434
## 10
       AO 98 2009:02 -2.4996 -23.946
## 11
       AO 102 2009:06 -2.3310 -21.685
## 12
       AO 112 2010:04 -2.2014 -21.673
## 13
       AO 139 2012:07 -2.2874 -22.542
## 14
       TC 157 2014:01 -1.6604 -21.647
        AO 160 2014:04 -2.1271 -19.857
## 15
## 16
        LS 161 2014:05 0.4555
## 17
       LS 165 2014:09 -0.2091
## 18
       AO 186 2016:06 -2.2719 -22.116
## 19
       AO 191 2016:11 -2.3055 -22.777
## 20
       AO 214 2018:10 -2.2990 -22.588
## 21
       AO 225 2019:09 -2.3028 -19.569
## 22
       AO 228 2019:12 -2.2087 -14.498
```

out pbi\$time

```
## [1] 2001.500 2003.667 2003.833 2003.917 2006.000 2006.833 2008.167 2008.333
## [9] 2008.583 2009.083 2009.417 2010.250 2012.500 2014.000 2014.250 2014.333
## [17] 2014.667 2016.417 2016.833 2018.750 2019.667 2019.917
```

```
plot(out_pbi)
```

