Wireless Communication IC

Homework #4

(Due on 05/25)

Total points: 100 points

1. Let

$$\mathbf{H} = \frac{1}{\sqrt{L}} \sum_{l=1}^{L} \alpha_l \, \boldsymbol{a}^{ULA,r}(\boldsymbol{\theta}_l^r) \boldsymbol{a}^{ULA,t}(\boldsymbol{\theta}_l^t)^H$$

and

$$\mathbf{a}^{ULA}(\theta) = \begin{bmatrix} 1 & e^{jkdsin(\theta)} & \dots & e^{j(N-1)kdsin(\theta)} \end{bmatrix}^T$$

Assume $kd = \pi$.

- (a) Assume there are one transmit antenna and 16 receive antenna elements in the uniform receive antenna array. Given L=1 and $\alpha_1=1$, please generate your own θ_1^r and θ_1^t such that $-\pi/2 \le \theta_1^r \le \pi/2$. Write them down. Please generate your channel matrix $\mathbf{H_1}$, which is a matrix of dimension 128×1 . Note that $\mathbf{a}^{ULA,r}(\theta_l^r)$ is an 128×1 vector and $\mathbf{a}^{ULA,t}(\theta_l^t)^H$ is a 1×1 vector.
- (b) Now Let's check the effect of a beamforming receiver. Given that

$$c(m) = \begin{bmatrix} 1 & e^{j2\pi m/N} & \dots & e^{j2\pi(N-1)m/N} \end{bmatrix}^T$$

is used as the phase shift for combiner at the receiver and m = -64, -63, ..., 63, please check the magnitude of the combination result, $|c(m)^H H_1|$ versus m and see if the best result will generate when $\varphi = sin^{-1}(2m/N) \cong \theta_l^r$. (10%)

- (c) Given L=2 and $\alpha_1=0.8$, $\alpha_2=0.2$, $\theta_2^r=\theta_1^r+0.25$ (radian), $\theta_2^t=\theta_1^t$. Please generate your channel matrix $\mathbf{H_2}$ Repeats Step (b) for $\mathbf{H_2}c(\varphi)^H$. (10%)
- (d) Please comment for the results in (b) and (c). (5%)

Fig. 2 QPSK Costas loop

2. Consider the QPSK Costas loop as in the following figure. The received signal is denoted as $A\cos(2\pi f_c t + \theta_k + \varphi)$,

where θ_k is the k-th QPSK symbol from $\{\pi/4, 3\pi/4, -3\pi/4, -\pi/4\}$ and φ is the phase offset. Assume

the sinusoidal waves from VCO are given by $\cos(2\pi f_c t)$, $\cos(2\pi f_c t + \frac{\pi}{4})$, $\cos(2\pi f_c t + \frac{\pi}{4})$, $\cos(2\pi f_c t + \frac{\pi}{4})$. Please calculate error signal θ_e after the multiplier and before the loop filter F(s). (Note that you can assume the data filter keeps only the frequency component below f_c .) (15%)

3. Please download "hw4.mat" from the LMS system. Use "load hw4.mat" to retrieve the original data. It contains one variable "OFDMTx", which are the complex time-domain discrete signals generated by OFDM baseband transmitter. There are 32 samples in cyclic prefix ($N_g = 32$) and the FFT size is 128 (N = 128). The first OFDM symbol is a preamble which has identical four repetitions as show in Fig. 3, and then three normal OFDM symbols follows the preamble.

	Normal OFDM symbols				
CP N/4 N/4 N/4 N/4	СР	СР	ı	СР	

(a) Please draw magnitude of the delay and correlate result $\Phi_{DC}(m)$ by setting R=32 and L=128 where

$$\Phi_{DC}(m) = |\sum_{r=0}^{R-1} z_{m-r} z_{m-r-L}^*|. (10\%)$$

(Mark the X and Y value of the peak in the figure.)

- (b) If a decision is made according to $\widehat{m}_{DC} = \arg \max \Phi_{DC}(m)$, what's the result? (5%)
- (c) Repeat (a) for R = 96, L = 32. (10%) (Mark the X and Y value of the peak in the figure.)
- (d) Following (c), if a decision is made according to $\widehat{m}_{DC} = \arg \max \Phi_{DC}(m)$, what's the result? (5%)
- (e) From above questions, what's the effect of R and L? If you can select R and L by your own to determine symbol boundary for the first symbol, what's your choice? Why? (10%)
- (g) Neglect the waveform segment generated from the first symbol. So, there are only 480 samples now. Please draw the result $\Phi_{NM}(m)$ and $\Phi_{DC}(m)$ by setting R=32 and L=128. If a decision is made according to $\widehat{m}_{DC}=\arg\max\Phi_{DC}(m)$ and $\widehat{m}_{NM}=\arg\max\Phi_{NM}(m)$, what's the result? (20%)

$$\Phi_{NM}(m) = \frac{|\sum_{r=0}^{R-1} z_{m-r} z_{m-r-L}^*|^2}{(\sum_{r=0}^{R-1} |z_{m-r}|^2)^2}$$