

Arquitecturas de hardware

David López

ENIAC: PRIMERA computadora digital (1946)

Introducción al hardware

- Todo sistema de computación hoy en día está compuesto por:
 - Hardware: la parte física
 - Ejemplo: cables, procesador (CPU), periféricos.
 - Software: los programas

Sistema de computación

• Hardware

• Software

Hardware y software

Hardware

 Equipo físico empleado para las actividades de alimentación, procesamiento y salida en un sistema de información

Software

 Instrucciones detalladas, previamente programadas que controlan y coordinan los componentes del hardware

Arquitectura de Von Neumann

- Modelo propuesto por John Von Neumann en 1945
- Posee una única RAM para almacenar tanto los datos como el código ejecutable
- El procesador se comunica con la RAM y los periféricos mediante un "bus".

Arquitectura de Von Neumann

 Bus: conexión común entre varios dispositivos (con arbitraje)

Arquitectura de Von Neumann

También llamada arquitectura de 3 buses

Buses

- Bus de datos: transmite los datos
- Bus de direcciones: transmite las direcciones
- Bus de control: señales de control
 - Clock
 - Petición de interrupción
 - Lectura/escritura de memoria (r/w)
 - Petición/cesión de bus
 - ACKs
 - Etc.

Señal de clock (reloj)

 Onda cuadrada que permite que todos los componentes estén sincronizados

Si T es el período entonces la frecuencia f es

$$f=\frac{1}{T}$$

Señal de clock (reloj)

- El período es el tiempo que tarda en repetirse un ciclo de la señal. Se mide en segundos [s], [ms], [μs], [ns], etc.
- La frecuencia es la inversa del período y se mide en Hertz [kHz], [MHz], [GHz], etc.

Si T es el período entonces la frecuencia f es

$$f=\frac{1}{T}$$

Ejemplo: para un período de 1µs la frecuencia f es:

$$f = \frac{1}{1 \mu s} = \frac{1}{1 \cdot 10^{-6} s} = 10^{6} \frac{1}{s} = 1 \text{MHz}$$

Unidad Central de Procesamiento

(intel)

Unidad Central de Procesamiento (CPU)

Unidad Central de Procesamiento (CPU)

Registros

- Internos: PC, IR, Status, etc.
- Uso gral: ej. A, B, etc. en una PC.

Unidad aritméticológica (ALU)

- Realiza operaciones digitales:
 - Aritméticas: +,-,*, /, %, etc.
 - Lógicas: &&, ||, !, ==,!=, etc.

Unidad de control (CU)

Controla las otras partes del sistema

Unidad de Control (CU)

- Se encarga de hacer fetch, decoding, execution y write-back
- Envía señales para conectar/activar unidades

Memoria principal

- También conocida como almacenamiento primario o Memoria RAM
 - Almacena temporalmente
 - Las instrucciones del programa
 - Los datos que se utilizan en las instrucciones
 - Se borra al apagar/reiniciar el equipo

Módulo de memoria RAM - DIMM

PC de escritorio

Notebook

Placa base (motherboard) de PC

Velocidad de procesamiento

- Factores principales en el desempeño
 - Tamaño de palabra (16 / 32 / 64 bits, etc.)
 - Frecuencia de reloj (clock) [MHz / GHz]
 - Cantidad de procesadores (CPUs)
 - Cantidad de núcleos (cores)
 - Tamaño de memoria RAM
 - Velocidad de memoria RAM (DDR2/DDR3/DDR4, etc.)
 - Tamaño de cache

Interrupciones

- Mecanismo que permiten a la CPU hacer otras tareas mientras espera por E/S.
- Hay prioridades que permiten interrumpir en cascada.
- Al interrumpir se guarda el estado en una pila y se ejecuta una rutina (función). Al finalizar ésta, continúa por donde había dejado al interrumpir.

E/S mediante ports en Linux

- Los ports son una forma de comunicarse con los periféricos mediante direcciones "similares a las de memoria". Se hace de a 1 byte a través del uso de bibliotecas de Linux.
- Estas direcciones están conectadas a periféricos en lugar de memoria RAM.
- Bibliotecas: unistd.h, sys/io.h
- Funciones: ioperm(), inb(), outb()

E/S mediante ports en Linux

