CORRECTION SÉANCE 7 (11 MARS)

Exercice 2. (\Leftarrow) Si $\beta = \lambda \alpha$, alors

$$\beta(x) = 0 \Leftrightarrow \lambda \alpha(x) = 0 \Leftrightarrow \alpha(x) = 0$$

car $\lambda \neq 0$. Donc Ker $\alpha = \text{Ker } \beta$ dans ce cas.

(⇒) Si Ker $\alpha = \text{Ker } \beta$. Soit $x \notin \text{Ker } \alpha$, on sait que Vect x est un supplémentaire de Ker $\alpha = \text{Ker } \beta$, donc tout $e \in E$ s'écrit de manière unique $e = y + \mu x$ avec $y \in \text{Ker } \alpha$ et $\mu \in \mathbb{k}$. On a alors

$$\alpha(e) = \alpha(y + \mu x) = \mu \alpha(x)$$
 et $\beta(e) = \mu \beta(x)$

En posant $\lambda = \beta(x)/\alpha(x)$, on obtient bien le résultat voulu ($\lambda \neq 0$ car $\beta(x) \neq 0$ par hypothèse).

Exercice 3. Le polynôme $(X - \alpha)^k$ est unitaire de degré k, la famille considérée est donc une famille de polynômes échelonnée de taille n, qui forme donc une base de E_n . Ensuite, on sait que

$$\left(\frac{\partial}{\partial X}\right)^{\ell} (X - \alpha)^k = \begin{cases} \frac{k!}{(k - \ell)!} (X - \alpha)^{k - \ell} & \text{si } \ell < k \\ k! & \text{si } \ell = k \\ 0 & \text{si } \ell > k \end{cases}$$

autrement dit, l'évaluation en α de ce polynôme vaut

$$\begin{cases} 0 & \text{si } \ell < k \\ k! & \text{si } \ell = k \\ 0 & \text{si } \ell > k \end{cases}$$

Ainsi, $\frac{1}{k!}ev_{\alpha} \circ \left(\frac{\partial}{\partial X}\right)^k$ est le k-ème élément de la base duale de $(X - \alpha)^k$. La caractéristique 0 était nécessaire pour toujours avoir k! inversible.

Exercice 4. (\Rightarrow) supposons que φ est surjective, et soit une combinaison linéaire

$$\sum_{i=1}^{p} \lambda_i \varphi_i = 0$$

On pose $\alpha: \sum_{i=1}^p \lambda_i e_i^* \in (\mathbb{k}^p)^*$, on a par définition, pour $x \in E$

$$0 = \sum_{i=1}^{p} \lambda_i \varphi_i(x) = 0 = \alpha(\varphi_1(x), \cdots, \varphi_p(x)) = \alpha \circ \varphi(x)$$

comme φ est surjective, cela entraîne $\alpha = 0$, mais donc $\lambda_i = 0$ pour tout i (la seule forme linéaire identiquement nulle est la forme linéaire nulle, dont les coefficients dans la base duale canonique sont 0). Donc les φ_i forment une famille libre.

(\Leftarrow) réciproquement si Im $\varphi \neq k^p$, alors Im φ est contenue dans un certain hyperplan H, noyau d'une forme linéaire α , on a donc $\alpha \circ \varphi = 0$, ce qui donne une combinaison linéaire nulle en les φ_i , et comme $\alpha \neq 0$, cette combinaison linéaire est non triviale : les φ_i ne forment pas une famille libre.

Exercice 6.

1. Comme f et φ sont des morphismes, c'est aussi le cas de $\varphi \circ f$, qui est donc bien un élément de $M^* = \operatorname{Hom}_R(M,R)$, donc tf est bien a valeur dans M^* , et linéaire par linéarité de la composition.

2.

- a) $^t(f+g)(\varphi) = \varphi \circ (f+g) = \varphi \circ f + \varphi \circ g = {}^tf(\varphi) + {}^tg(\varphi).$
- b) $t(rf)(\varphi) = \varphi \circ (rf) = r(\varphi \circ f) = r \cdot t f$
- c) ${}^{t}(f \circ g)(\varphi) = \varphi \circ f \circ g = {}^{t}g(\varphi \circ f) = ({}^{t}g \circ {}^{t}f)(\varphi)$
- d) Cela découle de la formule précédente : ${}^t(f^{-1}) \circ {}^tf = {}^t(f \circ f^{-1}) = {}^tId = Id$.
- 3. La matrice $A=(a_{i,j})_{i\in \llbracket 1,n\rrbracket,j\in \llbracket 1,m\rrbracket}$ est définie par la formule

$$f(e_j) = \sum_{i=1}^{n} a_{i,j} \varepsilon_i$$

On a par ailleurs ${}^t f(\psi_j) = \psi_j \circ f$, définie par

$$\psi_j \circ f(e_k) = \sum_{i=1}^n a_{i,k} \psi_j(\varepsilon_i) = a_{j,k}$$

donc $\psi_j \circ f = \sum_{k=1}^n a_{j,k} \varphi_k$, la matrice de f dans les bases ψ, φ est donc bien la transposée de A.

4. C'est l'application des formules de la question 2 au cas des matrices.

Exercice 10.

1. Soit $u = (u_n)_{n \in \mathbb{N}} \in F$ une suite nulle à partir d'un certain rang (notons N ce rang), on a

$$u = \sum_{i=0}^{N} u_i e^i$$

En effet cette dernière suite a pour j-ème valeur $\sum_{i=0}^{N} u_i \delta_{i,j} = u_j$ pour $j \leq N$ et 0 sinon, tout comme u. La famille (e^i) est donc génératrice, et elle est clairement libre : c'est une base de F.

Ce n'est pas une base de E, car on aurait besoin de "combinaisons linéaires infinies" pour atteindre tous les éléments de E à partir de (e^i) .

2. Comme (e^i) est une base de F, définir une forme linéaire φ sur F revient exactement à définir les valeurs $\varphi(e_i)_{i\in\mathbb{N}}$. On a donc une bijection $F^* \to E$ envoyant une forme linéaire φ sur la suite $(\varphi(e_i))_{i\in\mathbb{N}}$, il est facile de vérifier que cette bijection est un isomorphisme d'espaces vectoriels.

(Remarque, il est facile de montrer que F est en fait isomorphe à $\mathbb{k}[X]$, on vient donc de calculer le dual de $\mathbb{k}[X]$).

Exercice 12.

1. Notons $G = \text{Vect}(\varphi_{-1}, \varphi_0, \varphi_1)$, on veut montrer que cet espace est égal à F, il suffit pour cela de montrer que $G^o = \{0\}$, soit donc $P \in E$ tel que P(-1) = P(0) = P(1) = 0, P est alors un polynôme de degré 2 admettant 3 racines distinctes : c'est forcément le polynôme nul : $G^o = \{0\}$ et $G = F^*$.

Pour la base antéduale, P_{-1} est défini par les équations

$$P_{-1}(-1) = 1$$
, $P_{-1}(0) = 0$, $P_{-1}(1) = 0$

de même pour P_0 et P_1 , on trouve donc

$$P_{-1} = \frac{1}{2}X(X-1), \quad P_0 = 1 - X^2, \quad P_1 = \frac{1}{2}X(X+1)$$

2. On a

$$\phi(P_{-1}) = \frac{1}{3}, \quad \phi(P_0) = \frac{4}{3}, \quad \phi(P_1) = \frac{1}{3}$$

Donc $\phi = \frac{1}{3}\varphi_{-1} + \frac{4}{3}\varphi_0 + \frac{1}{3}\varphi_1$, ce qui est exactement la formule voulue.