SENTIMENT ANALYSIS AND EMOTION DETECTION ON CRYPTOCURRENCY RELATED TWEETS USING ENSEMBLE LSTM-GRU MODEL

Presented By: Moumita Khandaker

ID: 21266013

CSE707 Task 2

01. Introduction

- **02.** Proposed Methodology
- 03. Preprocessing
- **04**. Feature Extraction
- **05.** Proposed Ensemble Model
- **06.** Result Analysis
- **07.** Drawback
- 08. Future Work

INTRODUCTION

Cryptocurrency sentiment analysis is potentially important since it is frequently used to forecast market prices, which requires highly accurate sentiment classification. This study uses tweets about cryptocurrencies, which are commonly used to predict their market prices, to perform sentiment analysis and emotion detection. Long short term memory and gated recurrent unit, two recurrent neural network applications, are combined in the deep learning ensemble model LSTM-GRU to increase the analysis's efficacy.

PROPOSED METHODOLOGY

PROPOSED METHODOLOGY

Text	TextBlob		Text2Emotion	
Text	Polarity	Sentiment	Highest	Emotion
	score		score	
nice trad bot just sold	0.6	Positive	0.5	Happy
neo usdt profit on bi-				
nance binance fee				
striatu world first	0.2	Positive	0.5	Surprise
unreinforc print				
concrete archi				
bridge blockchain				
cryptocurrency				

Proposed Methodology

NUMBER OF SAMPLES, EACH CLASS IN THE DATASET, EMOTIONS FOUND IN THE DATASET

NUMBER OF SAMPLES FOR TRAINING AND TEST DATASETS

34,000

Training Set

6,000

Testing Set

40,000

Total Data

PREPROCESSING

- 1 Tokenization
- 2 Punctuation Removal
- 3 Number Removal
- 4 Stemming
- 5 Lemmatization
- 6 Stop Words Removal
- 7 Spell Correction

FEATURE EXTRACTION

- 1 Bag of Words
- 2 Term Frequency-Inverse
 Document Frequency
- 3 Word2Vec

EMOTION DETECTION AND SENTIMENT ANALYSIS METHODS

1 TextBlob

2 Text2Emotion

MACHINE LEARNING MODELS

Model	Hyperparameters	Tuning range
Random Forest	n_estimators= 300; max_depth=300	n_estimators= 50 to 500; max_depth=50 to 500;
Decision Tree	max_depth=300	n_estimators= 50 to 500;
K Nearest Neighbour	n_neighbors= 3; weights=uniform	n_neighbors= 1 to 5; weights= {uniform, distance}
Support Vector Machine	kernel= linear; C=3.0	kernel= {linear, poly}; C=1.0 to 5.0
Gaussian Naive Bayes	var_smoothing= 1e-9	var_smoothing= 1e-9
Logistic Regression	solver= liblinear; C=3.0	solver= {liblinear, saga, sag}; C=1.0 to 5.0

Hyper-Parameters Setting for Machine Learning Models

PROPOSED ENSEMBLE MODEL

EMOTION DETECTION RESULTS USING MACHINE LEARNING MODELS

Model	Accuracy	Precision	Recall	F1 score	G mean
SVM	0.90	0.89	0.89	0.89	0.89
LR	0.90	0.90	0.88	0.89	0.89
GNB	0.38	0.41	0.44	0.35	0.42
ETC	0.85	0.88	0.77	0.81	0.82
DT	0.84	0.83	0.79	0.80	0.82
KNN	0.69	0.81	0.56	0.63	0.67

Results Using Machine Learning Models with BoW Features

Model	Accuracy	Precision	Recall	F1 score	G mean
SVM	0.90	0.88	0.86	0.87	0.87
LR	0.90	0.90	0.84	0.87	0.87
GNB	0.37	0.40	0.44	0.35	0.42
ETC	0.84	0.89	0.75	0.80	0.82
DT	0.83	0.81	0.77	0.79	0.79
KNN	0.69	0.81	0.56	0.63	0.67

Results Using Machine Learning Models with TF-IDF Features

Results and Discussions

Results and Discussions

EMOTION DETECTION RESULTS USING MACHINE LEARNING MODELS

Model	Accuracy	Precision	Recall	F1 score	G mean
SVM	0.75	0.74	0.67	0.70	0.70
LR	0.76	0.74	0.68	0.70	0.71
GNB	0.42	0.47	0.43	0.37	0.45
ETC	0.74	0.87	0.60	0.67	0.72
DT	0.63	0.55	0.55	0.55	0.55
KNN	0.72	0.74	0.61	0.66	0.67

Results Using Machine Learning Models with Word2Vec Features

Model	BoW		TF-IDF		Word2Vec	
	CP	WP	CP	WP	CP	WP
SVM	5,417	583	5,389	611	4,514	1,486
LR	5,406	594	5,375	625	4,539	1,461
GNB	2,251	3,749	2,243	3,757	2,526	3,474
ETC	5,102	898	5,054	946	4,435	1,565
DT	5,048	952	4,964	1,036	3,784	2,216
KNN	4,117	1,883	4,117	1,883	4,315	1,685

Results Comparison Using Machine Learning Models

DRAWBACK

FUTURE WORK

When it comes to right and incorrect predictions for sentiment analysis and emotion detection, LSTM-GRU performs better than any other model. The utilisation of random undersampling for dataset balancing implies that a decrease in training data leads to a decrease in LSTM-GRU performance.

Sentiment analysis and emotion detection are applied to cryptocurrency-related tweets in this study. Cryptocurrency sentiment analysis is potentially important since it is frequently used to forecast market prices, which requires highly accurate sentiment classification.

THANK YOU!