

#### Schematic of Exothermic and Endothermic Processes

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Nhiệt hóa học)

NHIÊT

# **Thermochemistry**

Tất cả quá trình biến đổi qua nhiệt

(Study of heat change in chemical or physical changes)



#### **Energy** is the capacity to do work.

- Radiant energy comes from the sun and is earth's primary energy source Năng lượng bức xạ
- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom
- Potential energy is the energy available by virtue of an object's position Thé năng

# **Energy Changes in Chemical Reactions**

*Heat* is the transfer of **thermal energy** between two bodies that are at different temperatures.

**Temperature** (macroscopic manifestation) is a measure of the **thermal energy**.



**Thermochemistry** is the study of heat change in chemical or physical changes.

#### System, surrounding, and universe

**Universe = System + Surrounding** 





Energy flowing from one place to another during chemical or physical changes

**Thermochemistry** is the study of heat change in chemical reactions.

The **system** is the specific part of the universe that is of interest in the study.



Exchange: mass & energy

energy nothing

**Exothermic process** is any process that gives off heat — transfers thermal energy from the system to the surroundings.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(f) + energy$$
  
 $H_2O(g) \longrightarrow H_2O(f) + energy$ 



Quá trình thu nhiệt

**Endothermic process** is any process in which heat has to be supplied to the system from the surroundings.

SURROUNDINGS

energy + 2HgO (s) 
$$\longrightarrow$$
 2Hg ( $l$ ) + O<sub>2</sub> ( $g$ )

energy + 
$$H_2O(s) \longrightarrow H_2O(l)$$



#### Schematic of Exothermic and Endothermic Processes



A state function is a property of a system that depends only on its present state, which is determined by variables such as temperature and pressure, and is independent of any previous history of the system.

For X to be a state function,  $\Delta X$  is the same independent of how the system is changed from the initial state to the final state

$$\Delta A = A_f - A_i$$

N, T, P, V, E: State functions

The **altitude** of a campsite is a state function. It is independent of the path taken to reach it.



First law of thermodynamics – energy can be converted from one form to another, but cannot be created or destroyed.



$$\Delta E_{system} + \Delta E_{surroundings} = 0$$
or
$$\Delta E_{system} = -\Delta E_{surroundings}$$

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

**Exothermic** chemical reaction!

Chemical energy **lost** by combustion = Energy **gained** by the surroundings system

# Another form of the *first law* for $\Delta E_{system}$

$$\Delta E = q + w$$

 $\Delta E$  is the change in internal energy of a system

q is the heat exchange between the system and the surroundings

w is the work done on (or by) the system

 $w = -P\Delta V$  when a gas expands against a constant external pressure

| TABLE 6.1                                                               | Sign Conventions for Work and Heat |      |
|-------------------------------------------------------------------------|------------------------------------|------|
| Process                                                                 |                                    | Sign |
| Work done by the system on the surroundings                             |                                    | _    |
| Work done on the system by the surroundings                             |                                    | +    |
| Heat absorbed by the system from the surroundings (endothermic process) |                                    | +    |
| Heat absorbed by the surroundings from the system (exothermic process)  |                                    | _    |

### Work Done On the System

$$W = F \times d$$

$$W = -P \Delta V$$

$$P \times V = \frac{F}{d^2} \times d^3 = F \times d = W$$

$$\Delta V > 0$$
$$-P\Delta V < 0$$
$$W_{sys} < 0$$

Work is not a state function.

$$\Delta W \times W_{final}$$
 -  $W_{initial}$ 





initial

final

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm?

$$W = -P \Delta V$$

(a) 
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
  $P = 0 \text{ atm}$   $W = -0 \text{ atm } \times 3.8 \text{ L} = 0 \text{ L*atm} = 0 \text{ joules}$ 

(b) 
$$\Delta V = 5.4 \text{ L} - 1.6 \text{ L} = 3.8 \text{ L}$$
  $P = 3.7 \text{ atm}$   $W = -3.7 \text{ atm x } 3.8 \text{ L} = -14.1 \text{ L} \cdot \text{atm}$   $W = -14.1 \text{ L} \cdot \text{atm x } \frac{101.3 \text{ J}}{1 \text{L} \cdot \text{atm}} = -1430 \text{ J}$ 

# **Enthalpy** and the First Law of Thermodynamics

$$\Delta E = q + w$$

#### At constant pressure:

$$q = \Delta H$$
 and  $w = -P\Delta V$ 

$$\Delta E = \Delta H - P \Delta V$$

$$\Delta H = \Delta E + P \Delta V$$



**Enthalpy** (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

$$\Delta H = H \text{ (products)} - H \text{ (reactants)}$$

 $\Delta H$  = heat given off or absorbed during a reaction at constant pressure



 $\Lambda H < 0$ 



6.01 kJ are absorbed for every 1 mole of ice that melts at 0°C and 1 atm.

$$H_2O(s) \longrightarrow H_2O(l)$$
  $\Delta H = 6.01 \text{ kJ/mol}$ 



Is  $\Delta H$  negative or positive?

System gives off heat

Exothermic

 $\Delta H < 0$ 

890.4 kJ are released for every 1 mole of methane that is combusted at 25 °C and 1 atm.

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(f) \triangle H = -890.4 \text{ kJ/mol}$$

 The stoichiometric coefficients always refer to the number of moles of a substance

$$H_2O(s) \longrightarrow H_2O(l)$$
  $\Delta H = 6.01 \text{ kJ/mol}$ 

• If you reverse a reaction, the sign of  $\Delta H$  changes

$$H_2O(h) \longrightarrow H_2O(s)$$
  $\Delta H = -6.01 \text{ kJ/mol}$ 

 If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$2H_2O(s) \longrightarrow 2H_2O(l)$$
  $\Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$ 

 The physical states of all reactants and products must be specified in thermochemical equations.

$$H_2O(s) \longrightarrow H_2O(h)$$
  $\Delta H = 6.01 \text{ kJ/mol}$   
 $H_2O(h) \longrightarrow H_2O(g)$   $\Delta H = 44.0 \text{ kJ/mol}$ 

How much heat is evolved when 266 g of white phosphorus (P<sub>4</sub>) burn in air?

$$P_4(s) + 5O_2(g) \longrightarrow P_4O_{10}(s) \Delta H = -3013 \text{ kJ/mol}$$

266 g 
$$P_4$$
 X  $\frac{1 \text{ mol } P_4}{123.9 \text{ g } P_4}$  X  $\frac{3013 \text{ kJ}}{1 \text{ mol } P_4} = 6470 \text{ kJ}$ 

#### A Comparison of $\Delta H$ and $\Delta E$

2Na (s) + 2H<sub>2</sub>O (
$$l$$
)  $\longrightarrow$  2NaOH ( $aq$ ) + H<sub>2</sub> ( $g$ )  $\Delta$ H = -367.5 kJ/mol

$$\Delta E = \Delta H - P\Delta V$$
 At 25 °C, 1 mole H<sub>2</sub> = 24.5 L at 1 atm

$$P \triangle V = 1$$
 atm x 24.5 L = 2.5 kJ

$$\Delta E = -367.5 \text{ kJ/mol} - 2.5 \text{ kJ/mol} = -370.0 \text{ kJ/mol}$$







The **specific heat** (s) of a substance is the **amount of heat** (q) required to raise the temperature of **one gram** of the substance by **one degree** Celsius.

The **heat capacity** (**C**) of a substance is the amount of heat (q) required to raise the temperature of **a given quantity** (m) of the substance by **one degree** Celsius.

| TABLE 6.2                                  |                                |  |  |
|--------------------------------------------|--------------------------------|--|--|
| The Specific Heats of Some Common          |                                |  |  |
| Substances                                 |                                |  |  |
| Substance                                  | Specific<br>Heat<br>(J/g · °C) |  |  |
| Al                                         | 0.900                          |  |  |
| Au                                         | 0.129                          |  |  |
| C (graphite)                               | 0.720                          |  |  |
| C (diamond)                                | 0.502                          |  |  |
| Cu                                         | 0.385                          |  |  |
| Fe                                         | 0.444                          |  |  |
| Hg                                         | 0.139                          |  |  |
| $H_2O$                                     | 4.184                          |  |  |
| C <sub>2</sub> H <sub>5</sub> OH (ethanol) | 2.46                           |  |  |

$$C = m \times s$$

#### Heat (q) absorbed or released:

$$q = m \times s \times \Delta t$$

$$q = C \times \Delta t$$

$$\Delta t = t_{\text{final}} - t_{\text{initial}}$$

# How much heat is given off when an 869 g iron bar cools from 94°C to 5°C?

s of Fe = 
$$0.444 \text{ J/g} \cdot {}^{\circ}\text{C}$$

$$\Delta t = t_{\text{final}} - t_{\text{initial}} = 5^{\circ}\text{C} - 94^{\circ}\text{C} = -89^{\circ}\text{C}$$

$$q = ms\Delta t = 869 \text{ g/x } 0.444 \text{ J/g} \cdot \text{ o/c} \text{ x } -89 \text{ o/c} = -34,000 \text{ J}$$



# **Constant-Volume Calorimetry**



No heat enters or leaves!

### **Constant-Pressure Calorimetry**



$$q_{\rm sys} = q_{\rm water} + q_{\rm cal} + q_{\rm rxn}$$
  
 $q_{\rm sys} = 0$   
 $q_{\rm rxn} = -(q_{\rm water} + q_{\rm cal})$   
 $q_{\rm water} = m \times x \times \Delta t$   
 $q_{\rm cal} = C_{cal} \times \Delta t$ 

Reaction at Constant 
$$P$$
  
 $\Delta H = q_{rxn}$ 

No heat enters or leaves!

#### TABLE 6.3 Heats of Some Typical Reactions Measured at Constant Pressure

| Type of<br>Reaction    | Example                                                 | ΔΗ<br>(kJ/mol) |
|------------------------|---------------------------------------------------------|----------------|
| Heat of neutralization | $HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$ | -56.2          |
| Heat of ionization     | $H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$            | 56.2           |
| Heat of fusion         | $H_2O(s) \longrightarrow H_2O(l)$                       | 6.01           |
| Heat of vaporization   | $H_2O(l) \longrightarrow H_2O(g)$                       | 44.0*          |
| Heat of reaction       | $MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$   | -180.2         |

<sup>\*</sup>Measured at 25°C. At 100°C, the value is 40.79 kJ.

#### **Chemistry in Action:**

#### Fuel Values of Foods and Other Substances

$$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(f)$$
  $\Delta H = -2801 \text{ kJ/mol}$ 

1 cal = 4.184 J

1 Cal = 1000 cal = 4184 J

| Substance | $\Delta H_{combustion}$ (kJ/g) |  |
|-----------|--------------------------------|--|
| Apple     | -2                             |  |
| Beef      | -8                             |  |
| Beer      | -1.5                           |  |
| Gasoline  | -34                            |  |

| Nutrition Facts Serving Size 6 cookies (28g) Servings Per Container about 11 |  |  |  |
|------------------------------------------------------------------------------|--|--|--|
| Amount Per Serving                                                           |  |  |  |
| Calories 120 Calories from Fat 30                                            |  |  |  |
| % Daily Value*                                                               |  |  |  |
| Total Fat 4g 6%                                                              |  |  |  |
| Saturated Fat 0.5g 4%                                                        |  |  |  |
| Polyunsaturated Fat 0g                                                       |  |  |  |
| Monounsaturated Fat 1g                                                       |  |  |  |
| Cholesterol 5mg 2%                                                           |  |  |  |
| Sodium 105mg 4%                                                              |  |  |  |
| Total Carbohydrate 20g 7%                                                    |  |  |  |
| Dietary Fiber Less than 1 gram 2%                                            |  |  |  |
| Sugars 7g                                                                    |  |  |  |
| Protein 2g                                                                   |  |  |  |

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the **standard enthalpy of formation** ( $\Delta H_f^0$ ) as a reference point for all enthalpy expressions.

**Standard** enthalpy of formation ( $\Delta H_f^0$ ) is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

$$\Delta H_f^0(O_2) = 0$$

$$\Delta H_f^0 (O_3) = 142 \text{ kJ/mol}$$

$$\Delta H_f^0$$
 (C, graphite) = 0

$$\Delta H_f^0$$
 (C, diamond) = 1.90 kJ/mol

TABLE 6.4 Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

| Substance          | $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$ | Substance     | $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ/mol})$ |
|--------------------|--------------------------------------------------|---------------|--------------------------------------------------|
| Ag(s)              | 0                                                | $H_2O_2(l)$   | -187.6                                           |
| AgCl(s)            | -127.0                                           | Hg(l)         | 0                                                |
| Al(s)              | 0                                                | $I_2(s)$      | 0                                                |
| $Al_2O_3(s)$       | -1669.8                                          | HI(g)         | 25.9                                             |
| $\mathrm{Br}_2(l)$ | 0                                                | Mg(s)         | 0                                                |
| HBr(g)             | -36.2                                            | MgO(s)        | -601.8                                           |
| C(graphite)        | 0                                                | $MgCO_3(s)$   | -1112.9                                          |
| C(diamond)         | 1.90                                             | $N_2(g)$      | 0                                                |
| CO(g)              | -110.5                                           | $NH_3(g)$     | -46.3                                            |
| $CO_2(g)$          | -393.5                                           | NO(g)         | 90.4                                             |
| Ca(s)              | 0                                                | $NO_2(g)$     | 33.85                                            |
| CaO(s)             | -635.6                                           | $N_2O(g)$     | 81.56                                            |
| $CaCO_3(s)$        | -1206.9                                          | $N_2O_4(g)$   | 9.66                                             |
| $\text{Cl}_2(g)$   | 0                                                | O(g)          | 249.4                                            |
| HCl(g)             | -92.3                                            | $O_2(g)$      | 0                                                |
| Cu(s)              | 0                                                | $O_3(g)$      | 142.2                                            |
| CuO(s)             | -155.2                                           | S(rhombic)    | 0                                                |
| $F_2(g)$           | 0                                                | S(monoclinic) | 0.30                                             |
| HF(g)              | -271.6                                           | $SO_2(g)$     | -296.1                                           |
| H(g)               | 218.2                                            | $SO_3(g)$     | -395.2                                           |
| $H_2(g)$           | 0                                                | $H_2S(g)$     | -20.15                                           |
| $H_2O(g)$          | -241.8                                           | Zn(s)         | 0                                                |
| $H_2O(l)$          | -285.8                                           | ZnO(s)        | -348.0                                           |

The **standard enthalpy of reaction** ( $\Delta H_{rxn}^0$ ) is the **enthalpy** of a reaction carried out at 1 atm.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta H_{\text{rxn}}^{0} = \left[ c \Delta H_{\text{f}}^{0} \left( C \right) + d \Delta H_{\text{f}}^{0} \left( D \right) \right] - \left[ a \Delta H_{\text{f}}^{0} \left( A \right) + b \Delta H_{\text{f}}^{0} \left( B \right) \right]$$

$$\Delta H_{rxn}^0 = \sum n \Delta H_f^0$$
 (products) -  $\sum m \Delta H_f^0$  (reactants)

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

28



C (graphite) + 
$$1/2O_2(g) \longrightarrow CO(g)$$
  
CO  $(g) + 1/2O_2(g) \longrightarrow CO_2(g)$   
C (graphite) +  $O_2(g) \longrightarrow CO_2(g)$ 

Calculate the standard enthalpy of formation of CS<sub>2</sub> (I) given that:

C(graphite) + 
$$O_2(g)$$
  $\longrightarrow$   $CO_2(g)$   $\Delta H_{rxn}^0 = -393.5 \text{ kJ/mol}$   
S(rhombic) +  $O_2(g)$   $\longrightarrow$   $SO_2(g)$   $\Delta H_{rxn}^0 = -296.1 \text{ kJ/mol}$   
 $CS_2(I) + 3O_2(g)$   $\longrightarrow$   $CO_2(g) + 2SO_2(g)$   $\Delta H_{rxn}^0 = -1072 \text{ kJ/mol}$ 

1. Write the enthalpy of formation reaction for CS<sub>2</sub>

$$C(graphite) + 2S(rhombic) - CS_2(I)$$

2. Add the given rxns so that the result is the desired rxn.

$$\begin{array}{c} \text{C(graphite)} + \text{O}_{2} (g) \longrightarrow \text{CQ}_{2} (g) & \Delta \text{H}_{\text{rxn}}^{0} = \text{-393.5 kJ/mol} \\ \text{2S(rhombic)} + 2\text{O}_{2} (g) \longrightarrow \text{2SQ}_{2} (g) & \Delta \text{H}_{\text{rxn}}^{0} = \text{-296.1 kJ/mol} \times 2 \\ \text{+ CO}_{2}(g) + 2\text{SQ}_{2} (g) \longrightarrow \text{CS}_{2} (f) + 3\text{O}_{2} (g) & \Delta \text{H}_{\text{rxn}}^{0} = \text{+1072 kJ/mol} \end{array}$$

C(graphite) + 2S(rhombic) 
$$\longrightarrow$$
 CS<sub>2</sub> (/)  $\Delta H_{rxn}^0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ/mol^{30}$ 

Benzene (C<sub>6</sub>H<sub>6</sub>) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol.

$$2C_{6}H_{6}(I) + 15O_{2}(g) \longrightarrow 12CO_{2}(g) + 6H_{2}O(I)$$

$$\Delta H_{rxn}^{0} = \Sigma n\Delta H_{f}^{0} \text{ (products)} - \Sigma m\Delta H_{f}^{0} \text{ (reactants)}$$

$$\Delta H_{rxn}^{0} = [12\Delta H_{f}^{0}(CO_{2}) + 6\Delta H_{f}^{0}(H_{2}O)] - [2\Delta H_{f}^{0}(C_{6}H_{6})]$$

$$\Delta H_{rxn}^{0} = [12x - 393.5 + 6x - 187.6] - [2x49.04] = -5946 \text{ kJ}$$

$$\frac{-5946 \text{ kJ}}{2 \text{ mol}} = -2973 \text{ kJ/mol } C_{6}H_{6}$$

#### **Chemistry in Action: Bombardier Beetle Defense**

$$C_6H_4(OH)_2 (aq) + H_2O_2 (aq) \longrightarrow C_6H_4O_2 (aq) + 2H_2O (l) \Delta H^0 = ?$$

$$C_6H_4(OH)_2 (aq) \longrightarrow C_6H_4O_2 (aq) + H_2 (g) \Delta H^0 = 177 \text{ kJ/mol}$$

$$H_2O_2(aq) \longrightarrow H_2O(l) + \frac{1}{2}O_2(g) \Delta H^0 = -94.6 \text{ kJ/mol}$$

$$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(I) \Delta H^0 = -286 \text{ kJ/mol}$$

$$\Delta H^0 = 177 - 94.6 - 286 = -204 \text{ kJ/mol}$$
 Exothermic!



The **enthalpy** of solution ( $\Delta H_{soln}$ ) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.

 $\Delta H_{\text{soln}} = H_{\text{soln}} - H_{\text{components}}$ 

#### TABLE 6.5

# Heats of Solution of Some Ionic Compounds

| Compound           | ΔH <sub>soln</sub><br>(kJ/mol) |
|--------------------|--------------------------------|
| LiCl               | -37.1                          |
| CaCl <sub>2</sub>  | -82.8                          |
| NaCl               | 4.0                            |
| KCl                | 17.2                           |
| NH <sub>4</sub> Cl | 15.2                           |
| $NH_4NO_3$         | 26.2                           |

Which substance(s) could be used for melting ice?

Which substance(s) could be used for a cold pack?

#### The Solution Process for NaCl



Hydrated Na<sup>+</sup> and Cl<sup>-</sup> ions

 $\Delta H_{\text{soln}} = \text{Step 1 + Step 2} = 788 - 784 = 4 \text{ kJ/mol}$