Live Video Enhancements using Monocular Depth Estimation

1. Problem Description

In today's world, there has been a lot of work done toward facial localization and tracking of faces. As a matter of fact, this technology was available in a limited capacity in the days of digital camcorders (the late 2010s). With our rising hardware-enabled capabilities, object tracking is a problem, that can be considered "solved". Tech giants such as Apple make use of depth & infrared cameras to localize & generate a facial mapping of our faces and use that for tracking and authentication [1]. Such sensor suites are also used in a feature on Apple products, known as Center Stage, where a user is tracked in real-time using their "ultra-wide true-depth camera" [2] with the use of machine learning. Such features are made possible by the use of equally rivaling hardware.

However, when a supply chain is disrupted, as it was during the COVID-19 pandemic, the disruption in the availability of silicon chips led to a direct shortage of electronic components. This affected multiple sectors of the economy and essentially enforced a pause in multiple industries. This highlights a key flaw in the business, where a feature is made possible entirely by the use of certain hardware components.

This work attempts on alleviating the use of depth-centric cameras by the creation of a system that uses a standard RGB image camera to generate a depth map. This depth map can be utilized to isolate the focused subject from the background and perform a limited tracking operation on the subject as well.

2. Related Works

Depth estimation with depth-centric cameras is not a new technology, it had reached a level of maturity where it was being used for casual gaming with Microsoft XBOX 360 Kinect [3]. However, the usage of RGB imagery to attain depth masks is one which is catching traction as of now. Previously, pairs of RGB images (stereoscopic imagery) have been used to generate a depth map by employing the principles of binocular disparity [4]. Current works eliminate the usage of the secondary camera by utilizing a monocular approach, thus giving rise to Monocular Depth Estimation.

3. Datasets

• NYU Depth v2

It is a collection of indoor RGB images, with corresponding depth and segmentation ground truths taken at a spatial resolution of 640x480 pixels [5]. It is comprised of imagery from the Microsoft Kinect, and these were taken in multiple residential and commercial locations.

KITTI

It is a dataset of imagery taken in different outdoor scenes with the use of a LIDAR sensor [6]. The raw datasets feature imagery of 1241x376 pixels and scenes of different categories such as 'Road', 'City', 'Residential', 'Campus', and 'Person'.

4. Timeline

Timeline		Task Description
March	March 3	Project Proposal
	March 20	Review model architectures and finalize the viability of the project
	March 31	Project Progress Report
April	April 14	Finalize Depth Estimation based Backend
	April 15	Start work on the pipeline that feeds into the backend
	April 28	Polish the demo based on combined frontend and backend
May	May 5	Project Final Presentation

5. Final Deliverables

Since most teleconferencing software have customizability that allows the user to choose their input devices, the final expectation from this work is an end-to-end deployment that can be used by any end user as an augmentation for their video feed to a virtual webcam. This work would be available publicly on GitHub and made available on DockerHub for demonstration purposes.

6. References

- 1. Apple. (2022, April 27). *About Face ID advanced technology*. Apple Support. https://support.apple.com/en-us/HT208108.
- 2. Adorno, J. (2021, May 19). Roundup: Here's how the 2021 iPad Pro Center Stage feature really works. 9to5Mac.
 - $\underline{https://9to5mac.com/2021/05/19/roundup-heres-how-the-2021-ipad-pro-center-stage-feature-really-works/}$
- 3. Azure Kinect DK Develop AI Models | Microsoft Azure. (n.d.). https://azure.microsoft.com/en-us/products/kinect-dk/
- 4. Aslam, A., & Ansari, M. (2019). Depth-map generation using pixel matching in stereoscopic pair of images. arXiv preprint arXiv:1902.03471.
- 5. Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. ECCV (5), 7576, 746-760.
- 6. Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231-1237.