Name, Vorname	Matrikelnummer	THOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 1 von 13
Prüfungsnummer: IT 105 20 03 / IT 105 20 13		Zeit: 90 Minuten
Dozent: Prof. Dr. Jürgen Koch		Punkte: 54

Hilfsmittel: Manuskript

Literatur

Taschenrechner Casio FX-87DE Plus / Casio FX-87DE Plus 2nd edition

Hinweise: Bearbeiten Sie die Aufgaben ausschließlich auf diesen Prüfungsblättern.

Begründen Sie alle Lösungsschritte.

Aufgabe 1 (10 Punkte) Hinweis: Alle Teilaufgaben können unabhängig voneinander bearbeitet werden.

a) Ordnen Sie den Differenzialgleichungen die Richtungsfelder zu:

$$(\mathsf{A})\ y' = \frac{x}{y}$$

(B)
$$y' = \frac{y}{x}$$

(C)
$$y' = -\frac{x}{y}$$

(D)
$$y' = -\frac{y}{x}$$

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 2 von 13

b) Bestimmen Sie die allgemeine Lösung der Differenzialgleichung

$$y'(x) = 3x^2y.$$

c) Berechnen Sie für die Lösung des Anfangswertproblems

$$y'(x) = \frac{y}{1+x^2}, \quad y(1) = 3,$$

einen Näherungswert, indem Sie einen Schritt mit dem Euler-Polygonzugverfahren mit der Schrittweite h=0.2 durchführen.

Name, Vorname	Matrikelnummer	THOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 3 von 13

d) Beurteilen Sie den folgenden Dialog mit ChatGPT 3.5. Sind die Berechnungen und die Behauptungen von ChatGPT korrekt?

You

Bitte erstelle ein Beispiel für ein lineares Differenzengleichungssystem mit zwei Unbekannten, das asymptotisch stabil ist.

ChatGPT

Betrachten wir das folgende lineare Differenzengleichungssystem mit zwei Unbekannten:

$$x_{k+1} = 0.8 x_k + 0.2 y_k$$
$$y_{k+1} = 0.4 x_k + 0.6 y_k$$

Die obigen Gleichungen können in Matrixform geschrieben werden als:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix} \begin{pmatrix} x_k \\ y_k \end{pmatrix}, \text{ mit der Matrix } \mathbf{A} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}$$

Die Matrix $\bf A$ ist die Übertragungsmatrix des Systems. Um die asymptotische Stabilität zu überprüfen, betrachten wir die Eigenwerte dieser Matrix. Die Eigenwerte λ können durch das Lösen der charakteristischen Gleichung gefunden werden:

$$\begin{vmatrix} 0.8 - \lambda & 0.2 \\ 0.4 & 0.6 - \lambda \end{vmatrix} = 0 \iff (0.8 - \lambda)(0.6 - \lambda) - 0.2 \cdot 0.4 = 0 \iff \lambda^2 - 1.4 \lambda + 0.4 = 0$$

Die Lösungen dieser quadratischen Gleichung sind $\lambda_1=1$ und $\lambda_2=0.4$. Beide Eigenwerte haben Beträge kleiner als 1, was darauf hinweist, dass das System asymptotisch stabil ist. In diesem Beispiel konvergieren die Lösungen für x_k und y_k gegen Null, was auf eine asymptotische Stabilität hinweist.

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 4 von 13

Aufgabe 2 (9 Punkte) Bestimmen Sie die allgemeine reelle Lösung der Differenzialgleichung

$$y''(x) + 4y(x) = 8\cos(2x) - 4\sin(2x).$$

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 5 von 13

Name, Vorname	Matrikelnummer	THOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 6 von 13

Aufgabe 3 (10 Punkte) Bestimmen Sie die allgemeine reelle Lösung des Differenzialgleichungssystems

$$\dot{x}_1 = -2x_1 + 3x_2 + 6e^{-2t},$$

 $\dot{x}_2 = 2x_1 + 3x_2 .$

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 7 von 13

Name, Vorname	Matrikelnummer	THOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 8 von 13

Aufgabe 4 (8 Punkte) Eine Differenzengleichung erster Ordnung ist gegeben durch

$$x_{k+1} = 1.05 x_k - 1, \quad x_0 = 10, \quad k = 0, 1, 2, 3, \dots$$

- a) Geben Sie die Zahlenwerte von x_1 und x_2 an.
- b) Bestimmen Sie die Lösung der Differenzengleichung.
- c) Für welche Indizes k ist $x_k < 0$?

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 9 von 13

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 10 von 13

Aufgabe 5 (9 Punkte) Gegeben ist die Funktion f mit

$$f(x) = e^{-x^2}.$$

- a) Entwickeln Sie die Funktion f in eine Potenzreihe um die Entwicklungsstelle $x_0 = 0$. Für welche x Werte konvergiert die Reihe?
- b) Berechnen Sie einen Näherungswert \tilde{I} für das bestimmte Integral

$$I = \int_0^1 f(x) \, \mathrm{d} \, x$$

mithilfe der Potenzreihe mit den Gliedern bis zur Ordnung 4. Schätzen Sie die maximale Abweichung $|I-\tilde{I}|$ des Näherungswertes \tilde{I} vom exakten Wert I mit dem Leibniz-Kriterium ab.

c) Geben Sie eine Formel für $f^{(n)}(0)$ an, d.h. für die n-te Ableitung der Funktion f an der Stelle x=0. Unterscheiden Sie dabei die Fälle für gerades und ungerades k.

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 11 von 13

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 12 von 13

Aufgabe 6 (8 Punkte) Gegeben ist die periodische Funktion f, mit

$$f(t) = t^2 \text{ für } t \in [-2, 2), \quad f(t+4) = f(t).$$

- a) Skizzieren Sie die Funktion f für $t \in [-2, 10]$.
- **b)** Bestimmen Sie den Mittelwert m der Funktion f.
- c) An welchen Stellen tritt bei der Funktion f das Gibbsche Phänomen auf?
- d) Im folgenden bezeichnen a_k , b_k die reellen und c_k die komplexen Fourier-Koeffizienten der Funktion f. Welche der folgenden Aussagen ist wahr und welche ist falsch?

Name, Vorname	Matrikelnummer	HOCHSCHULE ESSLINGEN
Prüfungsfach: Mathematik 2		Wintersemester 23/24
Studiengänge: SWB/TIB/IEP		Seite: 13 von 13

