If you have 50,000 students; 300 of them are 0.5 majors and 100 of them are double majors (both 0.5 (math). How many students are neither math or 0.5 majors?

MATH AND C.C = 100

Find the GCD of 270 and 192	
algorithm: > memorize the definition!	
GCD (A,B) and if A=0 then	GCPLA,B)=B
	720
270 = 1921g) + 8	200
210 Clacy	192
270 = 192017 + 78	6 10
192 = 78(q) + r	270
(804) + 1	-192
192 = 78(2) + 36	
70 964.2 4	78
78 = 36(q) + r	 า <i>ู</i>
78 = 36(2) +6	2
	156
36 = 6(9) + 7 $36 = 6(6) + 0$	8 10 (9/2
	-156
GCD (270,192) = 6	
4CV (2 10,112) Ø	36

(b) Use your answer from above to verify becouts identify for the integers 270 and 192.

Suppose that the congruence equation $4z = b \mod 8$
has a solution z=2. WOTF statements about b is true?
O It is possible that $b = -39$
1 There are no values for b that allow for the solution 2=2
1 h's possible b=5
4) It's possible b=3 S) NOTA
(S) NOTA
Use induction to prove (4^n-1) is divisible by 3. $n \in \mathbb{N}$
Base case: n=1 4"-1 = 3 = 3(1), hence 4"-1 is divisible by 3
Inductive ease:
We let A = Enen: 4 ⁿ -1 is divisible by 33
let neA, so there exists KEN such that
4n-1=3k ; 4n=3k+1
Hence (401-1) = 40.41 - 1 = 4.(3 N+1) - 1
= 1216+4-1
= 121 + 3
lians () when the state of the same
Since A is closed under multiplication laddition, LYK+1) (N) and hence 4n+1-1 is divisibly by 3!
4(nH) - 1 = 3 (4K+1)


```
Use induction to prove if 8 divides S^{2n}-1, n \in \mathbb{N}, n = 1
Base case: (n=1)
 5<sup>2(1)</sup>-1= 5<sup>2</sup>-1= 25-1= 24= 8(3)
 hence 5201-1 is divisible by 8
inductive rate (n+1)
            let A= {n & N; 8 divides S2n-13
Assume there exists a KEA such that
               52n-1=8K)~ 52n_8K+1
Hence.
52(n+1)-1 = 52n. 52-1 = 52(8K+1)-1
                        = 25 (8K+1)-1
                        = 200K + 25 - 1
                       - 200 14 24
                       = 8(25K+3)
     5^{2(n+1)}-1 = 8 (25K+3) and therefore 5^{2(n+1)}-1 is
divisible by 8.
```

Consider the recursively defined set $S = 2$ given by two rules 1 40,80 ϵ S
2 x,y es → uz+ vy es , where u, r e 2
induction. Which of the following would be recursive step
O suppose 71.4 = 2 and they are multiples of 40 and let u, vez be arbitrary. Snow that wat ry is also a multiple of 40
No structural induction
3 Suppose 2.42 and multiples of 40 and let u, ve 2 be arbitrary. Show 2+1 and y+1 are both multiples of 40.
(1) NOTA
Revise structural
induction

Suppose the following inequality.
$(n+1)^{1} > 2^{n+3}$ for an $n \ge C$
which of the following would describe the industive step.
() let Ken such that (Kt1)! > 2kt3
1 Prove for n=0
3 Suppose KEN and assume (K+1)! > 2 N+3 holds. Use this hypothesis to show ((K+1)+1)! > 20+3
^
None of the above
((KFI)+1)! > 2(K+1)+3
CERTIFIT. /2
Q#) Assume q=6 and remainder r=2. Use the division algorithm to find the value of b if b divides 16.
algorithm to find the value of b if b divides 16.
~a
Division algorithm: Memorize
A= b·Q+r
16 = b·(6) + (2)
16-2 = 6b
14 : <u>Gb</u>
b = 14 = 7
6 3

