Bayesian NLP in R on Clinical Text: Predictions from Electronic Health Records

Edward P Flinchem DaVita Medical Group

Cascadia R Conference June 8, 2019

edflinchem@gmail.com Edward.Flinchem@healthcarepartners.com linkedin.com/in/epf00 425-876-8872

What is the DaVita Medical Group?

Employees	8-9 Thousand
Patients	1.5 Million
Office Visits	Millions/year

Primary Care

Specialty Care

Ambulatory Surgery

Healthcare is consolidating

- DaVita Kidney Care
 - DaVita Medical Group
- Everett Clinic
 - 600 clinicians, 95yo
- NW Physicians Network
 - 1000 clinicians
 - Pierce County
- United Health (Optum)
- Seattle Polyclinic
 - 210 clinicians, 101yo

What? / Why? / How?

- Apply machine learning to predict mortality 90 days in the future
 - In the US, 60% of deaths occur in hospitals
 - But, 70-80% of Americans would prefer to die at home
 - Also, less than 50% of patients needing palliative care receive it
- Synthesize structured and unstructured patient data into a score
 - ~ mortality risk in 90 days
 - Naïve Bayes approach

The reveal

- Healthcare is a domain where text > numeric data by volume
- Clinical text contains strong signals
 - Ex: 90 day mortality is highly predictable
 - Models outperform humans (by a wide margin)
- R is a great tool to work with text
- Naïve Bayes is highly interpretable w.r.t. text
- Naïve Bayes is on par w/deep learning for some health problems

Machine Learning Sequence

- SQL query/join tables from a data warehouse
- Wrangle/restructure data (base R)
- Train the model
- Visualize (ggplot + ggrepel)
 - Entire model
 - Populations of patients
 - Single patient, point in time
 - Single patient, change in time

What is a visit/encounter?

A patient

• Age, Sex

A practitioner

Specialty

- Office
- Hospital
- Nursing facility
- Patient's home

1..N diagnoses

- ICD-9
- ICD-10

0..N procedures

CPT codes

Structured

Unstructured

ICD-What???

- 1. "International Classification of Diseases"
- 2. Project of the W.H.O., the World Health Organization
- 3. ICD-9 was in use 1979-2015 (in the US), ICD-10 thereafter
- 4. ICD-9 ~ 14,000 diagnostic codes. ICD-10 ~ 70,000

Ex: ICD-9: 488.82 = "Influenza due to identified novel influenza A virus with other respiratory manifestations"

Note: 17 different ICD-9 codes mention "influenza"

All visits in an 8 day window -- Why 8 days?

Naïve Bayesian NLP

Word Frequency Analysis + Information Theory

Word Counts w/Binary Outcome (T vs F)

- 1. Data are labeled: True/False (e.g., Mortality in 90 days or not)
- 2. Find top 100 words *regardless* of outcome (T or F)
- 3. Recount those words by outcome: pT[word], pF[word]
- 4. Visualize
 - a. Vertical = Log(probability overall)
 - b. Horizontal = Log(probability ratio: pT/pF)
 - c. So, Left vs Right dispersion \rightarrow information in the words

Relative Frequency Ratio

R rocks text! (5 useful patterns)

- 1. Combining
- 2. Splitting
- 3. Cleaning
- 4. Counting
- 5. Operating on sets

Combining -- via "aggregate()"

Encounter_id	ICD
96894926	UNSPECIFIED ATRIAL FIBRILLATION
96894926	LONG TERM (CURRENT) USE OF ANTICOAGULANTS
96895042	ENCNTR FOR GENERAL ADULT MEDICAL EXAM W/O ABNORMAL FINDINGS
96895044	ACTINIC KERATOSIS.
96895044	DISORDER OF THE SKIN AND SUBCUTANEOUS TISSUE, UNSPECIFIED

Splitting (aka, "tokenize") -- via "strsplit()"

Cleaning -- via "gsub()"

gsub is short for "global substitute"

```
> s <- "ACTINIC KERATOSIS. DISORDER OF THE SKIN AND SUBCUTANEOUS TISSUE, UNSPECIFIED"
> gsub("[^a-z]", " ", tolower(s)) # restrict character set to a..z
[1] "actinic keratosis disorder of the skin and subcutaneous tissue unspecified"
```

Counting -- via "table()"

```
> words <- strsplit("Mary had a little lamb little lamb little lamb Mary had a little lamb whose fleece was
white as snow", " ")[[1]]</pre>
> words
[1] "Mary"
            "had" "a" "little" "lamb" "little" "lamb" "little" "lamb"
                                                                                      "Marv"
                                                                                               "had"
[12] "a"
              "little" "lamb" "whose" "fleece" "was" "white" "as"
> table(words)
words
          as fleece
                              lamb little
                       had
                                          Mary
                                                           was white whose
     a
                                                   snow
                                 4
                                       4
```

Operating on sets -- via "%in%"

```
> S
                 "KERATOSIS" "DISORDER"
[1] "ACTINIC"
                                            "OF" "THE"
                                                                      "SKIN"
[7] "AND"
         "SUBCUTANEOUS" "TISSUE" "UNSPECIFIED"
> stops <- c("OF", "THE", "AND")</pre>
                             # which things on the left are members of the set on the right?
> s %in% stops
[1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
>
> s[ !(s %in% stops) ]
[1] "ACTINIC" "KERATOSIS" "DISORDER" "SKIN"
                                                       "SUBCUTANEOUS" "TISSUE"
[7] "UNSPECIFIED"
```

How to score 1 patient?

An example

Relative Frequency Ratio

'Mary' Score = -.39 DX Factors chronic kidney failure acute without female diabetes ii male neoplasm hypertension malignant complication heart disorder diabetic Absolute Frequency senior_ii pulmonary respiratory hypoxia senior current term • long midlife dependence organism atherosclerosis malaise aorta obstructive congestive secondary not malnutrition thrombophilia major proteincalorie sepsis pneumonia depressive hyperlipidemia peripheral * severe ulcer diastolic infarction hypercapnia anemia end_stage_liver dementia lung dialysis cerebral behaviortalrombocytopenia embolism urinary pressure systolic diabetes findings infection • vascular exam * general polyneuropathy region hypothyroidism drug syndrome presence abnormal side paroxysmal disturbance lobar bronchus bronchus exacerbation screening anticoagulants: exacerbation edema hemorrhage gangrene

Relative Frequency Ratio

obesity

Survived > 90 days Survived < 90 days

90 Day Survival, Coarse + Fine Models

Mortality Prediction Literature

	Reference	Target (days)	Population	Method	AUROC
1.1	Elfilky, et al., 2018	30	Chemotherapy patients	xgboost	.94
1.2		180	Chemotherapy patients	xgboost	.87
2.1	Ahmad, et al., 2018	180	All	xgboost	.79
2.2		180	All	Clinicians	.71
2.3		90	Hospital patients w/heart failure	xgboost	.766
2.4		120	Hospital patients w/heart failure	xgboost	.879
3.1	Avati, et al., 2017	90-365	All	Deep learning	.93
3.2			Hospital patients	Deep learning	.87
4	White, et al., 2016	Various	Various (a review article)	Clinicians	.7478
5	Goldstein, et al., 2016	90	Kidney Dialysis patients	Logistic regression	.72 76
6	Current work	90	All	Naïve Bayes/NLP	.925

Shifts Over Time

Of patients w/2 episodes of care:

- 1. Max increase in risk
- 2. Max decline in risk
- 3. Who joined the acute population
- 4. Who joined the "well" (lower risk) population
- 5. Who left the "well" population
- 6. Who left the acute population

Patients at Highest Final Risk

Single Patient Summaries

Relative Frequency Ratio

DX Factors

Score = 1.42

'Mary'

'Mary', Scores -.39 => 1.42

chronic

Unique Characteristics of NB/NLP

- Leverages unstructured data, the most widely available kind
- Predictive skill can compete with neural networks in some domains
- Not compute intensive → agility
- Fully "transparent" + interpretable model "reasoning"
 - 2D Word frequency visualization
 - optional before/after temporal change
- Framework for multiple use cases
 - Hospital admissions, when to discharge, future total cost of care, ...

Future directions

- Socio-demographics
 - Food security, transportation access, isolation, mobility, etc.
- Medications
- Lab results
- Radiology/imaging reports
- Pathology reports
- Medical devices and equipment orders
- Historical time-at-risk
- Optimizing the prediction window for intervention

END

Questions?

Please reach out to me at:

linkedin.com/in/epf00