Hausaufgaben 3

(1) P Lineare Gleichungen

Löse folgende vier *unterschidliche* Gleichungen (das bedeutet, finde x und ggf. y in \mathbb{Q} - \mathbb{Q} ist hier die Menge aller Brüche, siehe Glossar unten - so, dass die jeweiligen Gleichungen erfüllt sind.

- (a) 2x = 4;
- (b) 2x = 7;
- (c) 2x + y = 3, y = 5;
- (d) 2x + 7y = 13, 2x + 14y = 2;

(2) (B) Spaziergang im Park

Als Sophie und Martha gemeinsam durch den Park spazieren, fällt ihnen auf, dass in der gleichen Zeit, in der Martha 4 Schritte macht, Sophie 5 Schritte macht - wobei sie natürlich denselben Weg zurücklegen, denn sie plaudern ja miteinander. Martha schätzt ihre Schrittlänge auf 80cm.

- Wie groß ungefähr ist Sophies durchschnittliche Schrittlänge?
- Mal angenommen, die beiden beginnen ihre Spaziergang gleichzeitig mit dem rechten Fuß. Nach wie vielen Schritten treten beide erstmalig gleichzeitig mit dem linken Fuß auf?

(3) (B) Zweiter Versuch

Benutze lineare Gleichungen, um Aufgabe 5 im ersten Zettel zu lösen.

Hinweis: Sei
$$\alpha = \angle MOJ$$
, $\beta = \angle OMJ$, $\gamma = \angle KOL$, dann beweise, dass: $60^{\circ} + 2\gamma + \alpha = 360^{\circ}$, $\alpha = 180^{\circ} - 2\beta$, $60^{\circ} + \beta = 180^{\circ} - (\beta + \gamma)$

und löse die Gleichungen (also finde die Werte von α, β, γ).

(4) Mähle mit Bedacht

Wir wählen zufällig 11 Zahlen aus der Menge {1, 2, ..., 20}. Zeige, dass es darunter immer zwei Zahlen gibt, sodass die eine in Vielfaches der anderen ist.

Hinweis: Zeige erst, dass manche - kleine - Zahlen sicherlich nicht in einer Menge liegen können, die die angegebene Bedingung nicht erfüllt.

(5) **A Potenzen von Binomen**

Leite folgende Formeln her (das bedeutet, beweise für **alle** $a, b \in \mathbb{Q}$, dass die folgenden Gleichungen gelten):

$$(a+b)^{2} = a^{2} + b^{2} + 2ab,$$

$$(a+b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2},$$

$$(a+b)(a-b) = a^{2} - b^{2}$$

Hinweis: schreibe $(a+b)^2 = (a+b)(a+b)$ und benutze, dass die distributive Regel gilt, für jede Zahl \clubsuit , und a,b wie oben:

$$A(a+b) = Aa + Ab$$

 $dann\ ersetze\ zum\ Beispiel\ \clubsuit\ mit\ a+b\ oder\ a-b.$

Glossar. Die logischen Zeichen die wir benutzen lesen sich wie folgt:

$$a \in A$$
, "a Element von A", kurz "a in A" $\forall \dots$ "Für alle …" $a \mid b$, "a teilt b", wobei $a, b \in \mathbb{N}$ sind.

Zum Beispiel liest sich:

$$\forall n \in \mathbb{N}, n \ge 1$$
 gilt es, dass $1 \mid n$

"Für alle n in \mathbb{N} , mit $n \ge 1$ (also für alle natürlichen Zahlen die nicht Null sind) gilt es, dass n durch 1 geteilt wird."

Mit N bezeichnen wir die natürlichen Zahlen, also:

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

während man mit Z die ganzen Zahlen bezeichnet:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}.$$

Mit \mathbb{Q} hingegen, bezeichnen wir die Menge aller Brueche:

$$\mathbb{Q} = \left\{0, 1, -1, 2, -2, \frac{1}{2}, -\frac{1}{2}, \frac{6}{7}, -\frac{6}{7}, \ldots\right\}.$$