

Modelování a simulace (IMS) Projekt 11. Model pomocí celulárního automatu Sypání písku

Aram Denk (xdenka00)

Obsah

1	Úvod
2	
	2.1 Použitá literatura a zdroje
	2.2 Obecný popis modelu
	2.3 Problém s Moorovým okolím
	2.4 Přidání náhodnosti
	2.4.1 Výběr strany sesypání
	2.4.2 Slepení zrnek
3	Ověření validity
4	Výsledky simulace
5	Použitá literatura

1 Úvod

Tato práce se zabývá problematikou simulování chování písku. Simulace byla prováděna pomocí celulárního automatu (buněčného automatu) rozšířeného o náhodnost, jedná se tedy o **stochastický celulární automat**.

2 Návrh modelu

2.1 Použitá literatura a zdroje

Chování písku je obecně známé, proto nebylo nutné o jeho chování získávat data z literatury, nebo jiných zdrojů. Základ problematiky simulace tohoto chování pomocí cellulárního automatu jsem nastudoval v knize *Cellular automata: modeling of physical systems.*[1]

2.2 Obecný popis modelu

Každá jednotlivá buňka v automatu může být v jednom z těchto 3 stavů:

- Prázdná
- Zrnko písku
- Zeď

Prázdná buňka nijak neinteraguje se zbytkem systému a může přejít do jakéhokoliv jiného stavu. Buňka ve stavu zeď je nepohyblivá a znemožňuje zrnku písku aby zabralo danou buňku. Zrnko písku se snazí posouvat níže, pokud může. Je modelována i určitá stabilita na sobě naskládaných zrnek a to následovně. Pokud není zrnko podporování 3 dalšími zrnky, sesype se v diagonálním směru. Pomocí tohoto je dosáhnuto vytváření přirozeně vypadajích kupiček písku.

Obrázek 1: Stabilní kupička písku

Obrázek 2: Nestabilní kupička s vyznačeným směrem sesypání zrnka

2.3 Problém s Moorovým okolím

Přidáním nestability kupičky a jejího sesypávání, vzniká problém s použitím běžného Moorova okolí. Může totiž nastat případ kdy vedle sebe jsou dvě nestabilní kupičky. Dvě jejich nestabilní zrnka by o sobě navzájem nevěděli a sesypali se do jedné společné buňky, tím by se jedno zrnko ztratilo.

Obrázek 3: Vznik konfliktu při použití Moorova okolí

Z tohoto důvodu je nutné použít rošířené okolí, o Čebyševově vzdálenosti 2. Před sesypáním diagonálně, se nejdříve zkontroluje, že nemůže vzniknout konflikt. Pokud by konflikt nastat mohl, dostane jedno zrnko přednost a druhé zůstane na svém místě.

2.4 Přidání náhodnosti

Přidáním náhodnosti do systému je dosaženo mnohem realističtějších výsledků. Náhodnost se projevuje ve dvou případech a to při volbě strany sesypání nestabilního zrnka písku a možnosti "slepení"zrnek písku.

2.4.1 Výběr strany sesypání

Pokud je zrnko písku nestabilní a mohlo by se sesypat doprava i doleva bez vzniku konfliktu. Je náhodně zvolena jedna ze stran. Díky tomu nejsou kupičky písku vždy stejné a uniformí.

Obrázek 4: Náhodnost při sesypávání nestabilního zrnka

2.4.2 Slepení zrnek

Pokud je zrnko písku na obou stranách obklopeno jínými zrnky písku (nebo zdmi), je pravděpodobnost, že zrnko nespadne. Toto umožní vytváření převisů nad prázdným prostorem. Hodnotu pravděpodob-

Obrázek 5: Slepení zrnek

nosti slepení (*v kódu nazvanou FRICTION*) je možné měnit při spuštění pomocí spouštěcího argumentu *f* a číselné hodnoty (v procentech). Pokud je oravděpodobnost slepení vysoká vytvoří se v proudu padajícího písku větší mezery. Na základě experimentů jsem jako výchozí hodnotu zvolil 40%. Vyšší hodnota odpovídá vlhčímu písku nižší pak písku více suchému.

Obrázek 6: Porovnání nízké a vysoké hodnoty pravděpodobnosti slepení

Obrázek 7: Pravděpodobnost slepení 100%.

3 Ověření validity

Validita modelu byla oveřena experimentováním a následným porovnáváním s realitou.

4 Výsledky simulace

Obrázek 8: Pád skupiny písku a vytvoření stabilní kupičky.

Obrázek 9: Ukázka náhodnosti modelu. Dva běhy simulace se stejnými prvotními podmínkami, zachycené ve stejném čase.

Obrázek 10: Simulace přesýpacích hodin.

5 Použitá literatura

Odkazy

[1] CHOPARD, Bastien a Michel DROZ. *Cellular automata: modeling of physical systems*. Cambridge: Cambridge University Press, 1998. ISBN 0-521-46168-5.