```
import numpy as np
import pandas as pd
import scipy.stats
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from scipy.stats import chi2 contingency
import statsmodels.formula.api as smf
     /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
       import pandas.util.testing as tm
from google.colab import files
uploaded = files.upload()
      Choose Files No file chosen
                                       Upload widget is only available when the cell has been
     executed in the current browser session. Please rerun this cell to enable.
                                                 Traceback (most recent call last)
     TypeError
     <ipython-input-2-21dc3c638f66> in <module>()
           1 from google.colab import files
     ----> 2 uploaded = files.upload()
     /usr/local/lib/python3.7/dist-packages/google/colab/files.py in upload()
          67
               local_filenames = dict()
          68
               while result['action'] != 'complete':
     ---> 69
          70
                 result = _output.eval_js(
                      'google.colab._files._uploadFilesContinue("{output_id}")'.format(
          71
     TypeError: 'NoneType' object is not subscriptable
      SEARCH STACK OVERFLOW
df= pd.read csv("EDA RedWine.csv")
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1599 entries, 0 to 1598
     Data columns (total 13 columns):
      #
          Column
                                 Non-Null Count
                                                 Dtype
         -----
      0
          Unnamed: 0
                                 1599 non-null
                                                 int64
         fixed acidity
                                 1599 non-null
                                                 float64
      1
      2
          volatile_acidity
                                 1599 non-null
                                                 float64
      3
                                 1599 non-null
                                                 float64
          citric_acid
      4
          residual_sugar
                                 1599 non-null
                                                 float64
          chlorides
                                 1599 non-null
                                                 float64
```

```
free_sulfur_dioxide
                         1599 non-null
                                          float64
6
7
   total_sulfur_dioxide 1599 non-null
                                          float64
                          1599 non-null
                                          float64
8
    density
9
    рΗ
                          1599 non-null
                                          float64
10 sulphates
                          1599 non-null
                                          float64
                                          float64
11 alcohol
                          1599 non-null
12 quality
                          1599 non-null
                                          int64
```

dtypes: float64(11), int64(2)

memory usage: 162.5 KB

df= df.drop(['Unnamed: 0'], axis=1)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	<pre>fixed_acidity</pre>	1599 non-null	float64
1	volatile_acidity	1599 non-null	float64
2	citric_acid	1599 non-null	float64
3	residual_sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	<pre>free_sulfur_dioxide</pre>	1599 non-null	float64
6	<pre>total_sulfur_dioxide</pre>	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

df.isna().sum()

fixed acidity volatile acidity 0 citric_acid residual_sugar chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 0 рΗ 0 sulphates alcohol 0 quality dtype: int64

df.describe()

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	fre
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	
mean	8.290901	0.526429	0.270922	2.322358	0.081194	
std	1.655860	0.174045	0.194614	0.609493	0.017822	
min	4.600000	0.120000	0.000000	0.900000	0.040000	
25%	7.100000	0.390000	0.090000	1.900000	0.070000	
50%	7.900000	0.520000	0.260000	2.200000	0.079000	
75%	9.200000	0.640000	0.420000	2.600000	0.090000	
df.shape						
(1599,	12)					
<pre>X = df.loc[:, df.columns != 'quality'] y = df.loc[:, df.columns == 'quality'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test= train_test_split(X,y, test_size=0.3, random_state= 14) #Logistic Regression from sklearn.linear model import LogisticRegression</pre>						
<pre>from sklearn.model_selection import train_test_split """#Logistic Regression</pre>						
#### Log_r						
Log_r= LogisticRegression(max_iter= 1000000000000000000000000000000000000						
<pre>Log_r = Log_r.fit(X_train, y_train)</pre>						
<pre>/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversion y = column_or_1d(y, warn=True)</pre>						
4						
<pre>y_pred_train = Log_r.predict(X_train) y_pred_train</pre>						

```
array([4, 4, 4, ..., 4, 3, 4])
y_pred_test = Log_r.predict(X_test)
```

y_pred_test

```
array([3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 5, 3, 3, 4, 3, 3, 4, 4, 3,
            4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 3, 4, 4, 3, 3, 4,
            3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3,
            3, 4, 4, 3, 5, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
            3, 3, 4, 4, 3, 3, 5, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4,
            3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 5, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4,
            3, 4, 4, 3, 4, 5, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3,
            3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3,
            4, 4, 4, 3, 3, 3, 5, 5, 4, 4, 3, 3, 5, 4, 4, 3, 4, 4, 3, 5, 4,
            3, 4, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
            4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4,
            4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 3])
from sklearn import metrics
from sklearn.metrics import accuracy_score
print(metrics.accuracy_score(y_pred_train,y_train))
     0.610366398570152
print(metrics.accuracy_score(y_pred_test,y_test))
     0.5541666666666667
"""#### Log r1"""
#Multiclass = ovr
Log_r1 = LogisticRegression(multi_class='ovr')
Log r1 = Log r1.fit(X train, y train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversion
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: Convers
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
```

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

 $\verb|extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG|,$

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Converg STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,


```
3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4,
            3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4,
            3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3,
            3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3,
            4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4,
            3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
           4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3])
print(metrics.accuracy_score(y_pred_train1,y_train))
     0.5960679177837355
print(metrics.accuracy_score(y_pred_test1,y_test))
     0.541666666666666
"""#### Log r2"""
#_____multiclass= multinomial, solver = newton_cg
Log_r2 = LogisticRegression(multi_class='multinomial',solver='newton-cg')
Log_r2 = Log_r2.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column or 1d(y, warn=True)
y_pred_train2 = Log_r2.predict(X_train)
y_pred_train2
     array([4, 4, 4, ..., 4, 3, 4])
y_pred_test2 = Log_r2.predict(X_test)
y_pred_test2
     array([3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 5, 3, 3, 4, 3, 3, 4, 4, 3,
            4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 3, 4, 4, 3, 3, 4,
```

```
3, 4, 4, 3, 5, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
            3, 3, 4, 4, 3, 3, 5, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4,
            3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 5, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4,
            3, 4, 4, 3, 4, 5, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3,
            3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 3,
            4, 4, 4, 3, 3, 3, 5, 5, 4, 4, 3, 3, 5, 4, 4, 3, 4, 4, 3, 5, 4,
            3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
            4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
            4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 3, 3])
print(metrics.accuracy_score(y_pred_train2,y_train))
     0.610366398570152
print(metrics.accuracy_score(y_pred_test2,y_test))
     0.5541666666666667
"""#### Log_r3"""
#____multiclass= multinomial, solver = lbfgs
Log r3 = LogisticRegression(multi class='multinomial',solver='lbfgs')
Log_r3 = Log_r3.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Conver&
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
y_pred_train3 = Log_r3.predict(X_train)
```

y_pred_train3

```
Red Wine Quality Model Building - Colaboratory
     array([4, 4, 4, ..., 4, 3, 3])
y_pred_test3 = Log_r3.predict(X_test)
y_pred_test3
     array([4, 3, 4, 3, 4, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3,
            4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4,
            3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3,
            3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3,
            3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 5, 3, 3, 4, 3, 3, 3, 4,
            3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4,
            3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 3, 4, 4, 3,
            4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3,
            4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 3, 5, 4,
            3, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3,
            3, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 5,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 3, 3])
print(metrics.accuracy_score(y_pred_train3,y_train))
     0.6014298480786416
print(metrics.accuracy score(y pred test3,y test))
     0.5375
"""#### Log r4"""
       multiclass= multinomial, solver = sag
Log r4 = LogisticRegression(multi class='multinomial',solver='sag')
Log_r4 = Log_r4.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: Convergence
       ConvergenceWarning,
```

```
y_pred_train4 = Log_r4.predict(X_train)
y pred train4
     array([4, 4, 4, ..., 4, 3, 3])
y_pred_test4 = Log_r4.predict(X_test)
y_pred_test4
     array([4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3,
            4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4,
            3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3,
            3, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3,
            3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 3, 4, 4, 3,
            4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 4,
            3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3,
            4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 4, 4, 3, 3,
            4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4,
           3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3,
            3, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3])
print(metrics.accuracy_score(y_pred_train4,y_train))
     0.5978552278820375
print(metrics.accuracy_score(y_pred_test4,y_test))
     0.50625
"""#### Log 5"""
        _multiclass= multinomial, solver = saga
Log_r5 = LogisticRegression(multi_class='multinomial',solver='saga')
Log_r5 = Log_r5.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: Convergence
       ConvergenceWarning,
```

```
y pred train5 = Log r5.predict(X train)
y pred train5
    array([3, 4, 4, ..., 4, 3, 3])
y_pred_test5 = Log_r5.predict(X_test)
y_pred_test5
     array([4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3,
           4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4,
           3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 4, 4, 4, 3, 4, 3, 4, 4,
           3, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3,
           3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4,
           4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 3, 4, 3,
           4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4,
           3, 4, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3,
           4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 4,
           3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
           4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
           3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4,
           3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4,
           4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3,
           4, 3, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
           3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 4, 4, 3, 3,
           4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4,
           3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,
           4, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3,
           4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
           4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3])
print(metrics.accuracy score(y pred train5,y train))
    0.5630026809651475
print(metrics.accuracy score(y pred test5,y test))
    0.5020833333333333
#From the above experiment, We got the best accuracy from ----
# ----> Log r2, i.e
# (multi_class='multinomial',solver='newton-cg')
#So let's find best parameters using Grid Search & CV
"""#### Grid Search (Log_r)"""
       gridsearch (Log R)
from sklearn.model selection import GridSearchCV
```

```
penalty = ['11','12']
max_iter=[80, 100, 140]
C = np.linspace(0.1, 1.0, num=5)
```

param_grid = dict(max_iter=max_iter, C=C, penalty=penalty)

X_train.head()

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_
318	9.8	0.660	0.39	3.2	0.083	
1364	7.2	0.605	0.02	1.9	0.096	
1007	9.1	0.300	0.34	2.0	0.064	
248	7.7	0.530	0.06	1.7	0.074	
782	9.0	0.820	0.05	2.4	0.081	

```
Log_r_gs = LogisticRegression(multi_class='multinomial',solver='newton-cg')
g_search = GridSearchCV(estimator = Log_r_gs, param_grid = param_grid, cv = 5)
g mod = g search.fit(X train, y train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv 🔼
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column or 1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
       y = column or 1d(y, warn=True)
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column or 1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column or 1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConv
```

y_pred_test_gs = g_mod.predict(X_test)
y_pred_test_gs

```
array([3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 5, 3, 3, 3, 4, 3, 3, 4, 4, 3,
      4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 3, 4, 4, 3, 3, 4,
      3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
      3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3,
      3, 4, 4, 3, 5, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
      3, 3, 4, 4, 3, 3, 5, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4,
      4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
      4, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4,
      3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 5, 3, 3,
      4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4,
      3, 4, 4, 3, 4, 5, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
      4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3,
      3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
      3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4,
      4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3,
      3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
      3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3,
      4, 4, 4, 3, 3, 3, 5, 5, 4, 4, 3, 3, 5, 4, 4, 3, 4, 4, 3, 5, 4,
      3, 4, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
      4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
      4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
      4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 3])
```

```
print("Best accuracy : %f using %s" % (g_mod.best_score_, g_mod.best_params_))
     Best accuracy: 0.606750 using {'C': 0.775, 'max iter': 80, 'penalty': '12'}
Log_r_best = LogisticRegression(multi_class='multinomial',solver='newton-cg',
                               C= 0.775, max_iter= 80, penalty= '12')
Log_r_best = Log_r_best.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column or 1d(y, warn=True)
y_pred_train_best = Log_r_best.predict(X_train)
y pred train best
     array([4, 4, 4, ..., 4, 3, 4])
y_pred_test_best = Log_r_best.predict(X_test)
y_pred_test_best
     array([3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 5, 3, 3, 3, 4, 3, 3, 4, 4, 3,
            4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 4, 4, 3, 4, 4, 3, 3, 4,
            3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3,
            3, 4, 4, 3, 5, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
            3, 3, 4, 4, 3, 3, 5, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4,
            4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4,
            3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 5, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4,
            3, 4, 4, 3, 4, 5, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
            3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4,
            4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3,
            3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3,
            4, 4, 4, 3, 3, 3, 5, 5, 4, 4, 3, 3, 3, 5, 4, 4, 3, 4, 4, 3, 5, 4,
            3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
            4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4,
            4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 3])
print(metrics.accuracy_score(y_pred_train_best,y_train))
     0.612153708668454
print(metrics.accuracy_score(y_pred_test_best,y_test))
```

0.5541666666666667

Decision Tree Model

```
#Importing algorithm
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

dt_clf = DecisionTreeClassifier()

#Fit this classifier model on train data set
dt_clf.fit(X_train, y_train)

DecisionTreeClassifier()

y_pred_train_dt = dt_clf.predict(X_train)

y_pred_test_dt = dt_clf.predict(X_test)

# see the tree
from sklearn import tree
tree.plot_tree(dt_clf.fit(X_train, y_train))
```

```
[Text(148.51032490632974, 212.498181818182, 'X[10] <= 10.25\ngini = 0.636\nsamples
    Text(43.0692626953125, 202.6145454545454546, 'X[1] <= 0.317 \setminus gini = 0.504 
    Text(10.818367346938777, 192.73090909090908, 'X[6] \leftarrow 79.0 \cdot gini = 0.55 \cdot gini = 0.5
    Text(9.679591836734694, 182.8472727272727, 'X[4] <= 0.104\ngini = 0.489\nsamples =
     Text(6.832653061224491, 172.96363636363637, 'X[0] <= 11.7\ngini = 0.42\nsamples = 35
    Text(3.4163265306122454, 153.19636363636363, 'gini = 0.0\nsamples = 1\nvalue = [0, {
    Text(5.6938775510204085, 153.19636363636363, 'X[7] <= 1.0 \cdot ngini = 0.204 \cdot nsamples = 2.204 \cdot nsamples = 
    Text(1.1387755102040817, 123.54545454545455, 'gini = 0.0\nsamples = 18\nvalue = [0,
    Text(3.4163265306122454, 123.5454545454555, 'X[5] <= 5.0 \setminus \text{ngini} = 0.375 \setminus \text{nsamples} = 2.2775510204081635, 113.6618181818189, '\text{gini} = 0.0 \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nsamples} = 3 \setminus \text{nvalue} = [0, (0.375) \setminus \text{nvalue} = [0.375) \setminus \text{nvalue} = [0.375] 
     Text(4.555102040816327, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
    Text(7.971428571428572, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
    \label{text} Text(6.832653061224491, 143.31272727272727, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, Text(9.110204081632654, 163.079999999998, 'X[1] <= 0.265 \ngini = 0.594 \nsamples = 1 \nvalue = [0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nvalue = [0, 0, 0, 0, 0, 0] \nsamples = 1 \nsam
     Text(7.971428571428572, 153.19636363636363, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
    Text(10.248979591836736, 153.19636363636363, |X[9]| <= 0.81 | gini = 0.56 | nsamples = 5
    Text(9.110204081632654, 143.312727272727, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
    Text(10.248979591836736, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
    Text(12.5265306122449, 133.4290909090909, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, 0]
    Text(12.5265306122449, 172.96363636363637, 'X[9] <= 0.815 \setminus gini = 0.444 \setminus gini
    Text(11.387755102040817, 163.079999999999, 'gini = 0.0\nsamples = 2\nvalue = [0, {
    Text(13.665306122448982, 163.07999999999998, 'gini = 0.0\nsamples = 1\nvalue = [0, {
Text(11.957142857142859, 182.847272727272, 'gini = 0.0\nsamples = 4\nvalue = [0, {
     Text(75.32015804368623, 192.73090909090908, 'X[9] <= 0.535\ngini = 0.475\nsamples =
     Text(30.284311224489798, 182.8472727272727, 'X[10] <= 9.55\ngini = 0.325\nsamples =
    Text(21.636734693877553, 172.96363636363637, 'X[10] <= 9.15\ngini = 0.167\nsamples =
    Text(17.081632653061227, \ 163.07999999999998, \ 'X[9] <= 0.485 \\ line = 0.593 
    Text(14.804081632653062, 153.19636363636363, 'X[9] <= 0.45\ngini = 0.444\nsamples = Text(13.665306122448982, 143.3127272727272, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
     Text(15.942857142857145, 143.312727272727, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
    Text(19.35918367346939, 153.19636363636363, 'X[3] <= 3.125\ngini = 0.278\nsamples =
    Text(18.220408163265308, 143.312727272727, 'gini = 0.0\nsamples = 5\nvalue = [0, 6]
    Text(20.497959183673473, 143.312727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
    Text(25.0530612244898, 143.312727272727, 'gini = 0.0\nsamples = 4\nvalue = [0, 0,
    Text(28.469387755102044, 153.19636363636363, 'X[10] <= 9.35\ngini = 0.061\nsamples =
     Text(27.330612244897964, 143.31272727272727, 'X[7] <= 0.998\ngini = 0.208\nsamples =
    \label{text} Text(26.19183673469388, \ 133.42909090909092, \ 'gini = 0.0 \\ nsamples = 12 \\ nvalue = [0, (28.469387755102044, \ 133.4290909090909, \ 'X[8] <= 3.225 \\ ngini = 0.48 \\ nsamples = 12 \\ nsamples
     Text(27.330612244897964, 123.54545454545455, 'gini = 0.0\nsamples = 3\nvalue = [0, (
    \label{text} Text(29.608163265306125, \ 123.545454545454555, \ 'gini = 0.0 \ nsamples = 2 \ nvalue = [0, 2] \ Text(29.608163265306125, \ 143.31272727272727, \ 'gini = 0.0 \ nsamples = 47 \ nvalue = [0, 2] \ n
     Text(38.931887755102046, 172.96363636363637, 'X[1] <= 0.465 \ngini = 0.474 \nsamples = 0.474 \nsampl
    \label{text} Text(35.58673469387755, 163.0799999999998, 'X[2] <= 0.245 \\ ngini = 0.444 \\ nsamples = Text(34.447959183673476, 153.19636363636363, 'gini = 0.0 \\ nsamples = 4 \\ nvalue = [0, (6.5)] \\ nsamples = 10.0 \\ nsamples = 1
    Text(36.72551020408164, 153.19636363636363, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0]
    Text(42.27704081632653, 163.0799999999998, 'X[10] <= 9.85\ngini = 0.438\nsamples =
     Text(39.0030612244898, 153.19636363636363, 'X[6] <= 88.5 \setminus gini = 0.579 \setminus gini = 31
    Text(35.871428571428574, \ 143.31272727272727, \ 'X[8] <= 3.265 \\ line = 0.496 
     Text(31.88571428571429, 123.54545454545455, 'X[7] <= 0.996\ngini = 0.375\nsamples =
    Text(30.746938775510205, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
```

```
Text(33.02448979591837, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 Text(34.163265306122454, 123.54545454545455, 'gini = 0.0\nsamples = 9\nvalue = [0, (
 Text(38.71836734693878, 133.429090909090909, 'X[2] <= 0.055 \ngini = 0.681 \nsamples =
  Text(36.440816326530616, 123.54545454545455, 'X[7] <= 0.995 \setminus gini = 0.375 \setminus gi
 Text(35.30204081632653, 113.66181818181819, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0, 1]
 Text(37.5795918367347, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, 3,
  Text(40.995918367346945, 123.545454545454545, 'X[3] <= 1.75\ngini = 0.531\nsamples =
 Text(39.85714285714286, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 Text(42.13469387755102, 113.66181818181819, 'X[8] <= 3.275\ngini = 0.449\nsamples =
 Text(40.995918367346945, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
 Text(43.27346938775511, 103.77818181818182, 'X[2] <= 0.265 \\ ngini = 0.278 \\ nsamples =
 Text(42.13469387755102, 93.89454545454547, 'gini = 0.0\nsamples = 4\nvalue = [0, 0, 0]
  Text(44.41224489795919, 93.89454545454547, 'X[2] <= 0.275\ngini = 0.5\nsamples = 2\r
 Text(43.27346938775511, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
 Text(45.55102040816327, 84.01090909090911, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, 0]
  Text(42.13469387755102, 143.3127272727277, 'X[0] <= 6.9 \cdot gini = 0.278 \cdot gi
  Text(40.995918367346945, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, (
 Text(43.27346938775511, 133.42909090909090, 'gini = 0.0\nsamples = 5\nvalue = [0, 0]
 Text(45.55102040816327, 153.19636363636363, 'X[1] <= 0.51\ngini = 0.199\nsamples = 2
  Text(44.41224489795919, 143.312727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
 Text(46.68979591836735, 143.3127272727277, 'X[3] <= 1.4\ngini = 0.14\nsamples = 27\
  Text(45.55102040816327, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 Text(47.828571428571436, 133.429090909090909, 'X[3] <= 3.475 \ngini = 0.074 \nsamples = 3.475 \ngini = 
 Text(46.68979591836735, 123.54545454545455, 'gini = 0.0\nsamples = 23\nvalue = [0, (
 Text(48.96734693877551, 123.54545454545455, 'X[0] <= 7.7 \setminus gini = 0.444 \setminus gini = 3 \setminus gini = 3
  Text(47.828571428571436, 113.66181818181819, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
 Text(50.1061224489796, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 Text(120.35600486288267, 182.8472727272727, 'X[0] \le 9.95 \cdot min = 0.507 \cdot msamples = 0.5
 Text(102.06609135841838, \ 172.96363636363637, \ 'X[6] <= 91.5 \\ line = 0.468 \\
 Text(61.31594387755103, 143.312727272727, 'X[10] <= 9.5\ngini = 0.716\nsamples = 9
  Text(57.89961734693878, 123.54545454545455, 'gini = 0.0\nsamples = 4\nvalue = [0, 0,
 Text(60.177168367346944, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, {
 Text(63.59349489795919, \ 133.42909090909092, \ 'X[3] <= 2.05 \\ line = 0.625 \\ line = 2.05 \\ line = 0.625 \\ line = 2.05 \\ line = 0.625 \\ line = 2.05 \\ lin
 Text(62.454719387755105, 123.54545454545455, 'X[5] <= 15.5 \ngini = 0.5 \nsamples = 2
  Text(61.31594387755103, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
 Text(63.59349489795919, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
 Text(64.73227040816327, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
 Text(70.42614795918368, 143.312727272727, 'X[6] <= 82.5\ngini = 0.403\nsamples = 1
 Text(68.14859693877551, \ 133.42909090909092, \ 'X[4] <= 0.069 \\ line = 0.18 \\ line = 1.18 \\ line 
 Text(67.00982142857144, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
  Text(69.2873724489796, 123.54545454545455, 'gini = 0.0\nsamples = 9\nvalue = [0, 0,
 Text(72.70369897959185, 133.4290909090909, 'X[2] <= 0.51\ngini = 0.5\nsamples = 2\r
 Text(71.56492346938776, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
  Text(73.84247448979592, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
  Text(102.11168686224491, 153.19636363636363, 'X[4] <= 0.098 \setminus ini = 0.473 \setminus ini = 0.
 Text(91.48459821428573, 143.312727272727, 'X[4] <= 0.091\ngini = 0.499\nsamples =
  Text(66.2625, 113.66181818181819, 'X[2] \le 0.16 \cdot i = 0.473 \cdot s = 153 \cdot i =
 Text(58.5045918367347, 103.77818181818182, 'X[1] <= 0.97 \setminus gini = 0.4 \setminus gini = 95 \setminus gini = 0.4 \setminus gini = 0.4
 Text(46.68979591836735, \ 74.1272727272727373, \ 'X[0] <= 6.55 \\ line = 0.566 \\ line = 25 \\ line = 2
Text(45.55102040816327, 64.24363636363637, 'gini = 0.0\nsamples = 5\nvalue = [0, 0, Text(47.828571428571436, 64.24363636363637, 'X[8] <= 3.475\ngini = 0.585\nsamples = Text(46.68979591836735, 54.36000000000014, 'X[7] <= 0.996\ngini = 0.561\nsamples =
 Text(44.41224489795919, 44.47636363636366, 'X[0] <= 6.65 \setminus gini = 0.32 \setminus gini = 5 \setminus gini = 0.32 \setminus
```

```
Text(43.27346938775511, 34.5927272727274, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(45.55102040816327, 34.5927272727274, 'gini = 0.0\nsamples = 4\nvalue = [0, 0,
 Text(48.96734693877551, 44.4763636363636, 'X[10] <= 9.3 \cdot min = 0.417 \cdot msamples = 12
Text(47.828571428571436, 34.5927272727274, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
 Text(50.1061224489796, 34.5927272727274, 'X[1] <= 0.67 \setminus \text{ngini} = 0.314 \setminus \text{nsamples} = 11
 Text(47.828571428571436, 24.709090909090918, 'X[9] <= 0.605\ngini = 0.198\nsamples =
Text(46.68979591836735, 14.825454545454562, 'X[3] <= 2.05\ngini = 0.5\nsamples = 2\r
Text(45.55102040816327, 4.941818181818206, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
 Text(47.828571428571436, 4.941818181818206, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(48.96734693877551, 14.825454545454562, 'gini = 0.0\nsamples = 7\nvalue = [0, 0,
Text(52.38367346938776, 24.709090909090918, 'X[10] <= 10.0 \ngini = 0.5 \nsamples = 2
Text(51.24489795918368, 14.825454545454562, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(53.52244897959184, 14.825454545454562, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(48.96734693877551, 54.360000000000014, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
 Text(48.96734693877551, 74.1272727272737, 'gini = 0.0\nsamples = 6\nvalue = [0, 0,
Text(59.78571428571429, 84.01090909090911, 'X[7] <= 0.995\ngini = 0.238\nsamples = 6
Text(58.64693877551021, 74.127272727273, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
Text(60.924489795918376, 74.12727272727373, 'X[0] <= 7.65\ngini = 0.213\nsamples = 5
Text(54.66122448979593, 44.47636363636366, 'gini = 0.0\nsamples = 35\nvalue = [0, 0]
Text(56.93877551020409, 44.47636363636366, 'X[9] <= 0.64\ngini = 0.32\nsamples = 5\r
Text(55.80000000000004, 34.5927272727274, 'X[4] <= 0.081 \\ ngini = 0.5 \\ nsamples = 2 \\ ngini = 0.5 \\ nsamples = 2 \\ ngini = 0.5 \\ nsamples = 2 \\ ngini = 0.5 \\ ngi = 0.5 \\ ngi = 0.5 \\ ngi = 0.5 \\ ngi = 0.5 \\ ng
 Text(54.66122448979593, 24.709090909090918, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
\label{text} Text(56.93877551020409, 24.709090909090918, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.077551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.5927272727274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727272727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727272727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727272727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727272727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727272727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.592727474, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.5927274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.5927274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.5927274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.07551020408166, 34.5927274, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 0] \\ Text(58.0755102040816, 34.5927274, 
 Text(60.355102040816334, 54.360000000000014, 'X[9] \le 0.565  | mgini = 0.5 | nsamples = 2
Text(63.77142857142858, 64.24363636363637, X[8] \le 3.3 \text{ ngini} = 0.415 \text{ nsamples} = 17
Text(62.632653061224495, 54.360000000000014, 'gini = 0.0\nsamples = 10\nvalue = [0,
Text(64.91020408163266, 54.3600000000000014, 'X[5] <= 13.5 \ngini = 0.408 \nsamples = 7
Text(63.77142857142858, 44.47636363636366, 'X[7] \le 0.997 \cdot min = 0.444 \cdot msamples = 3
 Text(62.632653061224495, 34.5927272727274, 'gini = 0.0\nsamples = 1\nvalue = [0, @
Text(64.91020408163266, 34.5927272727274, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(66.04897959183674, \ 44.476363636363636, \ 'gini = 0.0 \setminus samples = 4 \setminus value = [0, 0, 0]
 Text(63.20204081632654, 93.89454545454547, 'X[8] <= 3.335 \setminus gini = 0.375 \setminus gini = 4.375 \setminus gini
Text(62.06326530612245, 84.01090909090911, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 0]
 Text(64.34081632653061, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
 Text(74.02040816326532, 103.77818181818182, 'X[10] <= 9.45\ngini = 0.515\nsamples =
Text(68.89591836734695, 93.89454545454547, 'X[6] <= 37.5\ngini = 0.397\nsamples = 22
Text(66.61836734693878, 84.01090909090911, 'X[5] \le 5.5 \cdot mgini = 0.444 \cdot msamples = 6 \cdot mgini = 0.444 \cdot msamples = 0.444 \cdot ms
Text(71.1734693877551, 84.01090909090911, 'X[6] <= 85.5 \setminus injury = 0.219 \setminus injury = 16
 Text(70.03469387755102, 74.12727272727273, X[9] <= 0.545 \mid i = 0.124 \mid i = 1
 Text(68.89591836734695, 64.24363636363637, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(71.1734693877551, 64.24363636363637, 'gini = 0.0\nsamples = 14\nvalue = [0, 0, 0]
 Text(72.31224489795919, 74.1272727272737, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(74.58979591836736, 74.12727272727273, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
Text(78.0061224489796, 64.24363636363637, 'X[7] <= 0.997 \setminus gini = 0.64 \setminus gini = 5 \setminus gini = 0.64 \setminus 
\label{text} Text(76.86734693877551, 54.360000000000014, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0, Text(79.14489795918368, 54.36000000000014, 'X[6] <= 56.0 \ngini = 0.444 \nsamples = 3.0 \ngini = 0.0 \ngini = 0.0 \ngini = 0.444 \nsamples = 3.0 \ngini = 0.0 \ngi = 0.0 \ngi
Text(78.0061224489796, 44.47636363636366, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 6]
Text(80.28367346938776, 44.47636363636366, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, Text(82.56122448979593, 84.01090909090911, 'X[0] <= 6.45\ngini = 0.363\nsamples = 21
```

```
lext(81.4224489/959185, /4.12/2/2/2/2/3, gin1 = 0.0\nsamples = 2\nvalue = [0, 0,
Text(83.7, 74.127272727273, 'X[3] \leftarrow 2.15  ngini = 0.266 \ nsamples = 19 \ nvalue = [0]
Text(82.56122448979593, 64.24363636363637, 'gini = 0.0\nsamples = 12\nvalue = [0, 0,
Text(84.83877551020409, 64.24363636363637, 'X[2] <= 0.215 \setminus gini = 0.49 \setminus gini = 7
Text(83.7, 54.36000000000014, 'X[9] <= 0.595\ngini = 0.375\nsamples = 4\nvalue = [6]
Text(82.56122448979593, 44.47636363636366, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
Text(84.83877551020409, 44.476363636363636, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
Text(84.83877551020409, 103.77818181818182, 'X[8] <= 3.64 \setminus gini = 0.142 \setminus gini = 1
Text(83.7, 93.89454545454547, 'gini = 0.0\nsamples = 11\nvalue = [0, 0, 0, 11, 0, 0]
Text(85.97755102040817, 93.89454545454547, 'X[7] <= 0.999 \setminus gini = 0.5 \setminus gini = 2 \setminus gini = 0.5 \setminus gini = 0.5
Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} = 1 \times 10^{-1} Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} = 1 \times 10^{-1} Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} Text(84.83877551020409, 84.010909090911, 'gini = 0.0 \times 10^{-1} Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} Text(84.83877551020409, 84.01090909090911, 'gini = 0.0 \times 10^{-1} Text(84.83877551020409, 84.010909090911, 'gini = 0.0 \times 10^{-1} Text(84.8387755102040, 84.010909090911, 'gini = 0.0 \times 10^{-1} Text(84.8387755102040, 84.0109090911, 'gini = 0.0 \times 10^{-1} Text(84.838775100, 84.0109090911, 'gini = 0.0 \times 10^{-1} Text(84.83877510, 84.0109091, 'gini = 0.0 \times 10^{-1} Text(84.83877510, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.01090, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84.0100, 84
\label{text} Text(87.11632653061226, 84.01090909090911, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, Text(87.11632653061226, 103.77818181818182, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0, 0, 0, 0] \\
Text(89.39387755102042, 123.54545454545455, 'X[5] <= 4.5\ngini = 0.14\nsamples = 27\
Text(88.25510204081634, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
Text(90.5326530612245, \ 113.66181818181819, \ 'X[9] <= 0.71 \\ line = 0.074 \\ line = 26 
Text(89.39387755102042, 103.77818181818182, 'gini = 0.0\nsamples = 25\nvalue = [0, 6]
Text(97.36530612244898, 123.5454545454545455, 'X[8] <= 3.405 \ngini = 0.41 \nsamples = 1
Text(95.08775510204083, 113.66181818181819, 'X[7] <= 1.0 \setminus gini = 0.24 \setminus gini = 1.0 \setminus gini = 0.24 \setminus gini = 1.0 \setminus gini = 0.24 \setminus gini = 1.0 \setminus gi
Text(93.94897959183675, 103.77818181818182, 'X[2] <= 0.3 \neq 0.133 = 0.133 = 14
Text(92.81020408163266, 93.89454545454547, 'gini = 0.0 \\ les = 13 \\ les = [0, 0] \\ les = 13 \\ les = [0, 0] \\ les = 13 \\ les = [0, 0] \\ les 
Text(95.08775510204083, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
Text(96.2265306122449, 103.77818181818182, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0, Text(99.64285714285715, 113.66181818181819, 'X[2] <= 0.18 \ngini = 0.375 \nsamples = 4
Text(98.50408163265307, 103.77818181818182, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
Text(100.78163265306124, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(103.05918367346939, 123.54545454545455, 'X[9] <= 0.615\ngini = 0.54\nsamples =
Text(101.92040816326532, 113.66181818181819, 'gini = 0.0\nsamples = 5\nvalue = [0, (
Text(101.92040816326532, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(104.19795918367348, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 1,
Text(105.33673469387756, 103.778181818182, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
Text(112.73877551020409, 143.31272727272727, 'X[5] <= 7.5 \setminus gini = 0.292 \setminus gini = 5.292 \setminus gini
\label{text} Text(109.89183673469388, \ 133.429090909090909, \ 'X[7] <= 0.997 \\ line = 0.595 \\ line = 0.245 \\
Text(106.47551020408164, 113.66181818181819, 'gini = 0.0\nsamples = 6\nvalue = [0, 6]
Text(108.75306122448981, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(112.16938775510205, 123.545454545455, 'X[8] <= 3.345\ngini = 0.375\nsamples =
Text(111.03061224489797, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
Text(113.30816326530613, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, (
\label{text} Text(115.5857142857143, \ 133.42909090909090, \ 'X[8] <= 2.962 \\ line = 0.172 \\ l
Text(114.44693877551022, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(116.72448979591837, 123.54545454545455, 'X[7] <= 0.996\ngini = 0.136\nsamples =
Text(115.5857142857143, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(117.86326530612246, 113.66181818181819, 'X[6] <= 46.5\ngini = 0.095\nsamples =
Text(116.72448979591837, 103.77818181818182, 'X[6] <= 45.5 \ngini = 0.245 \nsamples = 0.245 \nsample
\label{eq:total_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_cont
Text(113.30816326530613, 74.12727272727273, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 \begin{tabular}{ll} Text(115.5857142857143, & 74.12727272727273, & gini = 0.0 \\ Text(116.72448979591837, & 84.010909090911, & gini = 0.0 \\ Text(116.72448979591837, & 94.010909090911, & gini = 0.0 \\ Text(116.72448979591837, & 94.0109090911, & gini = 0.0 \\ Text(116.72448979591837, & 94.01090911, & gini = 0.0 \\ Text(116.7244897, & 94.010911, & 94.010911, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091, & 94.01091,
Text(117.86326530612246, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(119.00204081632654, 103.77818181818182, 'gini = 0.0 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.079999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.0799999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.07999999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.079999999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.0799999999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.0799999999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nvalue = [0, Text(120.14081632653063, 163.07999999999999999, 'X[8] <= 3.005 \ngini = 0.235 \nsamples = 26 \nsamples
Text(117.86326530612246, 153.19636363636363, 'X[2] <= 0.285\ngini = 0.375\nsamples =
Text(116.72448979591837. 143.312727272727. 'gini = 0.0 \nsamples = 3 \nvalue = [0.6]
```

```
.c.c(1101/21702/2222/) 1721/212/2/2/2/2/2/
                                                                                                                                                                                                                                                                                                                                                                                                                                      0.0 (1130mp±c3
 Text(122.4183673469388, \ 153.1963636363636363, \ 'X[3] <= 1.6 \\ nsamples = 56 \\ nsamples = 
Text(121.27959183673471, 143.31272727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, 1 Text(123.55714285714286, 143.31272727272727, 'X[4] <= 0.067\ngini = 0.135\nsamples =
  Text(122.4183673469388, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
  Text(124.69591836734695, 133.42909090909090, 'X[4] <= 0.076\ngini = 0.105\nsamples =
 Text(121.27959183673471, \ 123.5454545454545455, \ 'X[9] <= 0.555 \\ line = 0.408 \\ line = 0.40
  Text(120.14081632653063, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
 Text(121.27959183673471, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
  Text(123.55714285714286, 103.77818181818182, 'gini = 0.0\nsamples = 5\nvalue = [0, (
  Text(128.1122448979592, 123.54545454545455, 'X[6] \le 98.5 \ngini = 0.042\nsamples = 4
 Text(126.97346938775512, 113.66181818181819, |X[6]| \le 97.0 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 = 0.198 =
  Text(125.83469387755103, 103.77818181818182, 'gini = 0.0 \nsamples = 7 \nvalue = [0, (
 \label{text} Text(128.1122448979592, \ 103.77818181818182, \ 'X[0] <= 8.25 \\ line = 0.5 \\ line = 2 \\ line = 1 \\ line = 
 Text(129.25102040816327, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
 \label{text} Text(129.25102040816327, \ 113.66181818181819, \ 'gini = 0.0 \ nsamples = 38 \ nvalue = [0, \ Text(138.64591836734695, \ 172.96363636363637, \ 'X[2] <= 0.485 \ ngini = 0.622 \ nsamples = 10.622 \ nsamples = 10.6
 Text(134.9448979591837, 163.079999999999, 'X[1] <= 0.615\ngini = 0.482\nsamples =
 Text(132.66734693877552, 153.19636363636363, 'X[9] <= 0.835\ngini = 0.426\nsamples =
 Text(131.52857142857144, 143.312727272727, 'X[9] <= 0.555\ngini = 0.381\nsamples =
 Text(130.38979591836735, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
  Text(132.66734693877552, 133.429090909090909, 'X[4] <= 0.062 \\ ini = 0.344 \\ insamples = 0.062 \\ ini = 0.062 \\ i
 Text(131.52857142857144, 123.545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
 Text(133.8061224489796, 123.54545454545455, 'X[3] \le 2.25 \cdot mgini = 0.299 \cdot msamples = 2.25 \cdot msamples = 
 Text(132.66734693877552, 113.66181818181819, 'gini = 0.0\nsamples = 10\nvalue = [0,
 Text(134.9448979591837, \ 113.66181818181819, \ 'X[7] <= 0.999 \\ lini = 0.462 \\
 Text(132.66734693877552, \ 103.77818181818182, \ 'X[7] <= 0.998 \\ line = 0.444 
  Text(131.52857142857144, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
  Text(133.8061224489796, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
 Text(137.22244897959186, 103.77818181818182, 'X[0] <= 10.55 \ngini = 0.18 \nsamples = 0.1
  Text(136.08367346938778, 93.89454545454547, 'gini = 0.0\nsamples = 8\nvalue = [0, 0]
 Text(138.36122448979594, 93.89454545454547, 'X[1] <= 0.545 \\ lngini = 0.5 \\ lnsamples = 2 \\ 
 Text(137.22244897959186, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
 Text(139.5, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0, 1, 0, 0]
 Text(137.22244897959186, 153.19636363636363, 'X[4] <= 0.078 \setminus i = 0.375 \setminus i 
  Text(136.08367346938778, 143.31272727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, (
  Text(138.36122448979594, 143.312727272727, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
 Text(142.3469387755102, 163.079999999999998, 'X[3] <= 1.7 \setminus gini = 0.669 \setminus gini = 360 \setminus gini =
 Text(141.20816326530613, 153.19636363636363, 'gini = 0.0\nsamples = 2\nvalue = [0, (
  Text(143.4857142857143, 153.19636363636363, 'X[8] <= 3.035\ngini = 0.635\nsamples =
 Text(142.3469387755102, 143.312727272727, 'gini = 0.0\nsamples = 5\nvalue = [0, 0,
 Text(144.62448979591838, 143.312727272727, 'X[0] <= 12.125\ngini = 0.677\nsamples
  Text(141.77755102040817, 133.4290909090909, 'X[1] <= 0.577\ngini = 0.602\nsamples =
 Text(139.5, 123.54545454545455, 'X[5] <= 18.5\ngini = 0.32\nsamples = 10\nvalue = [6]
 Text(138.36122448979594, 113.66181818181819, 'gini = 0.0\nsamples = 7\nvalue = [0, (
  Text(140.63877551020408, 113.66181818181819, 'X[10] <= 9.55\ngini = 0.444\nsamples =
 Text(139.5, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 1, 0, 0]
 Text(141.77755102040817, 103.77818181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, (
 Text(144.05510204081634, 123.5454545454545455, 'X[10] <= 9.25 \\ line = 0.722 \\ 
 Text(142.91632653061225, 113.66181818181819, 'gini = 0.0\nsamples = 2\nvalue = [2, 6]
 Text(145.19387755102042, 113.66181818181819, 'X[9] <= 0.595\ngini = 0.625\nsamples =
 Text(144.05510204081634, 103.77818181818182, 'X[1] <= 0.585 \setminus gini = 0.5 \setminus gini = 2.5 \setminus gini =
 Text(142.91632653061225, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
 Text(145.19387755102042, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
  Text(146.3326530612245, 103.77818181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
 Text(147.4714285714286, 133.42909090909090, 'X[3] <= 3.425\ngini = 0.408\nsamples =
 Text(146.3326530612245, 123.54545454545455, 'gini = 0.0\nsamples = 5\nvalue = [0, 0,
```

```
Text(148.61020408163267, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, (
Text(253.95138711734697, 202.61454545454546, 'X[10] <= 11.45\ngini = 0.65\nsamples =
Text(207.94218750000002, 192.73090909090908, 'X[6] <= 97.0\ngini = 0.637\nsamples =
Text(206.80341198979593, 182.8472727272727, 'X[9] <= 0.645\ngini = 0.633\nsamples =
Text(169.4106505102041, \ 172.9636363636363637, \ 'X[8] <= 3.165 \\ line = 0.63 \\ line = 1.165 \\ l
Text(153.16530612244898, 163.07999999999999, 'X[9] <= 0.5 \ngini = 0.32 \nsamples = 16
Text(152.02653061224493, 153.19636363636363, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(154.30408163265307, 153.19636363636363, 'X[2] <= 0.67\ngini = 0.24\nsamples = 1
Text(153.16530612244898, 143.31272727272727, 'X[4] <= 0.073 \ngini = 0.133 \nsamples =
Text(152.02653061224493, 133.4290909090909, 'X[9] <= 0.585 \\ ngini = 0.5 \\ nsamples = 2 \\ ngini = 0.5 \\ ngi = 0.5 \\ ngi = 0.5 \\ ngini = 0.5 
Text(150.88775510204084, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(153.16530612244898, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
Text(154.30408163265307, 133.4290909090909, 'gini = 0.0\nsamples = 12\nvalue = [0,
Text(155.44285714285715, 143.312727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(185.6559948979592, 163.07999999999998, 'X[5] <= 12.5 \ngini = 0.63 \nsamples = 14
Text(168.32525510204084, 153.19636363636363, 'X[3] <= 1.85\ngini = 0.703\nsamples =
\label{text} Text(158.8591836734694, \ 143.31272727272727, \ 'X[8] <= 3.37 \\ \ nsini = 0.475 \\ \ nsamples = 1 \\ \ Text(156.58163265306123, \ 133.4290909090992, \ 'X[2] <= 0.405 \\ \ nsini = 0.469 \\ \ nsamples = 1 \\ \ nsamples 
Text(155.44285714285715, 123.54545454545455, 'gini = 0.0\nsamples = 5\nvalue = [0, (
\label{text} Text(157.72040816326532, \ 123.545454545454545455, \ 'gini = 0.0 \\ less = 3 \\ less = [0, \ell] \\ Text(161.13673469387757, \ 133.4290909090992, \ 'X[5] <= 8.5 \\ less = 0.18 \\ less = 16 \\ 
Text(159.9979591836735, 123.54545454545455, 'gini = 0.0\nsamples = 9\nvalue = [0, 0,
Text(162.27551020408166, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(177.79132653061225, 143.312727272727, 'X[1] <= 0.655\ngini = 0.699\nsamples =
Text(168.82346938775513, 133.42909090909090, 'X[0] <= 7.2 \cdot min = 0.611 \cdot ms = 3
Text(164.55306122448982, 123.54545454545455, 'X[4] <= 0.061\ngini = 0.716\nsamples =
Text(163.41428571428574, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
Text(164.55306122448982, 103.77818181818182, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
Text(166.83061224489796, 103.77818181818182, 'X[3] <= 2.3 \cdot min = 0.444 \cdot msamples = 3.444 \cdot msamples 
Text(165.69183673469388, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 2,
Text(167.96938775510205, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(173.09387755102043, 123.54545454545455, 'X[7] <= 0.996\ngini = 0.48\nsamples =
Text(170.24693877551022, 113.66181818181819, 'X[7] <= 0.994\ngini = 0.153\nsamples =
Text(171.3857142857143, 103.77818181818182, 'gini = 0.0\nsamples = 11\nvalue = [0, 6
Text(175.94081632653064, 113.66181818181819, 'X[4] <= 0.09\ngini = 0.549\nsamples =
Text(173.66326530612247, 103.77818181818182, 'X[3] <= 3.3 \\ ngini = 0.346 \\ nsamples = 9.346 \\ nsamples = 
Text(172.52448979591838, 93.89454545454547, 'gini = 0.0 \nsamples = 6 \nvalue = [0, 0] \\ Text(174.80204081632655, 93.89454545454547, 'X[7] <= 0.998 \ngini = 0.444 \nsamples = 0.444 \nsamples
Text(173.66326530612247, 84.01090909090911, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(177.07959183673472, 93.89454545454547, 'gini = 0.0\nsamples = 5\nvalue = [0, 0,
Text(179.35714285714286, 93.894545454547, 'X[0] <= 10.65\ngini = 0.625\nsamples =
Text(178.2183673469388, 84.01090909090911, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, 0]
Text(180.49591836734695, 84.01090909090911, 'X[6] <= 23.5 \setminus gini = 0.5 \setminus gini = 2 \setminus gi
Text(186.7591836734694, 133.4290909090909, 'X[10] <= 10.85\ngini = 0.688\nsamples =
Text(183.9122448979592, 123.5454545454545455, 'X[1] <= 0.89 \\ ngini = 0.531 \\ nsamples = {}
Text(181.63469387755103, 113.66181818181819, 'X[7] <= 0.998 \setminus gini = 0.278 \setminus gi
Text(180.49591836734695, 103.77818181818182, 'gini = 0.0\nsamples = 5\nvalue = [0, (
Text(182.7734693877551, \ 103.77818181818182, \ 'gini = 0.0 \ nsamples = 1 \ nvalue = [0, 0, 1] \ Text(186.18979591836737, \ 113.66181818181819, \ 'X[7] <= 0.996 \ ngini = 0.5 \ nsamples = 2 \ number = 2 \ numbe
Text(185.05102040816328, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, {
Text(187.32857142857145, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [1, @
Text(189.60612244897962, 123.54545454545455, 'X[2] <= 0.005\ngini = 0.406\nsamples =
Text(188.46734693877553, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(190.7448979591837, 113.661818181819, 'X[9] \le 0.52 \cdot min = 0.245 \cdot msamples = 7
```

```
Text(189.60612244897962, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [1, (
Text(191.8836734693878, 103.77818181818182, 'gini = 0.0\nsamples = 6\nvalue = [0, 6,
Text(202.98673469387757, 153.19636363636363, 'X[6] <= 43.5 \ngini = 0.484 \nsamples = 0.484 \nsample
Text(195.3, 143.312727272727, 'X[9] <= 0.5\ngini = 0.329\nsamples = 36\nvalue = [6]
Text(193.02244897959184, 133.4290909090909, 'X[4] <= 0.066  ngini = 0.375  nsamples = 0.375  nsample
Text(191.8836734693878, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0] Text(194.16122448979593, 123.545454545455, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
Text(197.57755102040818, 133.4290909090909, 'X[10] <= 10.35 \ngini = 0.227 \nsamples
Text(196.4387755102041, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(198.71632653061226, 123.5454545454555, 'X[4] <= 0.069\ngini = 0.179\nsamples =
Text(197.57755102040818, 113.66181818181819, 'X[6] <= 26.0 \ngini = 0.611 \nsamples = 0.611 \nsample
\label{text} Text(196.4387755102041, \ 103.77818181818182, \ 'gini = 0.0 \\ les = 3 \\ les = [0, 0, 0] \\ les = [0, 0] \\ les = 
Text(197.57755102040818, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 2,
Text(199.85510204081635, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(199.85510204081635, 113.661818181819, 'gini = 0.0\nsamples = 25\nvalue = [0,
Text(210.67346938775512, 143.312727272727, 'X[6] <= 62.0\ngini = 0.529\nsamples =
Text(206.68775510204082, 133.42909090909092, 'X[5] <= 32.5 \ngini = 0.42 \nsamples = 2.5 \ns
Text(202.13265306122452, 113.661818181819, 'X[5] <= 27.5 \setminus gini = 0.153 \setminus gini=
Text(200.99387755102043, 103.77818181818182, 'gini = 0.0\nsamples = 9\nvalue = [0, 6
Text(203.2714285714286, 103.77818181818182, 'X[5] <= 28.5 \setminus gini = 0.444 \setminus gini = 3.444 \setminus gini
Text(202.13265306122452, 93.89454545454547, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0]
Text(204.41020408163268, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(206.68775510204082, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(208.965306122449, 93.89454545454547, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 6]
Text(210.10408163265308, 103.77818181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
Text(207.8265306122449, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
\label{text} Text(214.6591836734694, \ 133.42909090909092, \ 'X[3] <= 1.7 \\ ngini = 0.403 \\ nsamples = 12 \\ Text(212.38163265306125, \ 123.54545454545455, \ 'X[6] <= 76.0 \\ ngini = 0.5 \\ nsamples = 2 \\ nsamples = 2
Text(211.24285714285716, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(213.52040816326533, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
Text(216.93673469387758, 123.5454545454555, 'X[1] <= 0.792\ngini = 0.18\nsamples =
Text(215.7979591836735, 113.66181818181819, 'gini = 0.0\nsamples = 9\nvalue = [0, 0,
Text(218.07551020408167, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, {
Text(244.1961734693878, \ 172.96363636363637, \ 'X[1] <= 0.375 \\ line = 0.585 \\
Text(228.89387755102044, \ 163.07999999999998, \ 'X[4] <= 0.061 \\ line = 0.621 
Text(220.3530612244898, 153.19636363636363, X[0] \le 8.05 \cdot 10 = 0.379 \cdot 10 = 10
Text(219.21428571428572, 143.31272727272727, 'X[7] <= 0.996\ngini = 0.625\nsamples =
Text(220.3530612244898, 133.4290909090909, 'X[9] <= 0.845 \mid = 0.5 \mid = 2 \mid
Text(219.21428571428572, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(221.4918367346939, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(221.4918367346939, 143.312727272727, 'gini = 0.0\nsamples = 9\nvalue = [0, 0,
Text(237.43469387755104, 153.19636363636363, 'X[0] <= 10.45\ngini = 0.615\nsamples =
Text(230.60204081632656, 143.31272727272727, 'X[0] <= 8.1 \cdot gini = 0.576 \cdot gini
Text(226.04693877551023, 133.429090909090909, 'X[1] <= 0.355 \ngini = 0.667 \nsamples = 0.667 \nsamp
Text(221.4918367346939, 103.77818181818182, 'gini = 0.0\nsamples = 4\nvalue = [0, 0,
Text(223.76938775510206, 103.77818181818182, 'X[6] <= 35.0\ngini = 0.444\nsamples =
Text(222.63061224489797, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(224.90816326530614, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(224.90816326530614, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
Text(228.3244897959184, 123.54545454545455, 'X[4] <= 0.08\ngini = 0.32\nsamples = 5\
Text(227.1857142857143, 113.66181818181819, 'gini = 0.0\nsamples = 4\nvalue = [0, 0,
Text(229.46326530612248, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
```

```
Text(231.74081632653065, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(234.0183673469388, 113.66181818181819, 'X[5] <= 41.5\ngini = 0.208\nsamples = 1
Text(232.8795918367347, 103.77818181818182, 'X[0] <= 9.7 \setminus gini = 0.117 \setminus gini = 16
Text(231.74081632653065, 93.89454545454547, 'gini = 0.0 \nsamples = 13 \nvalue = [0, (6.8)]
Text(234.0183673469388, 93.89454545454547, 'X[2] <= 0.415\ngini = 0.444\nsamples = 3
Text(232.8795918367347, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
\label{text} Text(235.15714285714287,\ 84.01090909090911,\ 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.7781818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.77818181818182,\ 'gini = 0.0 \nsamples = 1 \nvalue = [0, 0] \\ Text(235.15714285714287,\ 103.7781818181818182,\ 'gini = 0.0 \nsamples = 1 \ns
Text(237.43469387755104, 123.54545454545455, 'X[8] <= 3.225\ngini = 0.48\nsamples =
Text(236.29591836734696, 113.66181818181819, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
Text(238.57346938775513, 113.66181818181819, 'gini = 0.0\nsamples = 3\nvalue = [0, (
Text(244.26734693877555, 143.3127272727277, 'X[1] <= 0.335\ngini = 0.486\nsamples =
Text(243.12857142857146, 133.4290909090909, 'X[6] <= 21.5 \mid 0.34 \mid 0.3
Text(241.98979591836738, 123.54545454545455, 'X[8] <= 3.28\ngini = 0.5\nsamples = 2\
Text(240.8510204081633, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(243.12857142857146, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, {
Text(244.26734693877555, 123.545454545455, 'gini = 0.0\nsamples = 8\nvalue = [0, 6]
Text(245.4061224489796, 133.4290909090909, 'gini = 0.0 \times 10^{-2} = 0.0 \times 10^{-2} = 0.0 \times 10^{-2} Text(245.4061224489796, 133.4290909090909, 'gini = 0.0 \times 10^{-2} = 
Text(253.6622448979592, \ 153.1963636363636363, \ 'X[7] <= 0.996 \\ logini = 0.415 \\ login
Text(248.82244897959185, 143.312727272727, 'X[4] <= 0.119\ngini = 0.263\nsamples =
Text(247.68367346938777, 133.4290909090909, 'X[2] <= 0.16\ngini = 0.222\nsamples =
\label{text} Text(246.5448979591837, \ 123.5454545454545455, \ 'gini = 0.0 \\ nsamples = 21 \\ nvalue = [0, (248.82244897959185, 123.54545454545455, \ 'X[9] <= 0.815 \\ ngini = 0.514 \\ nsamples = 0.815 \\ ngini = 0.815 \\ ngi
Text(247.68367346938777, 113.66181818181819, 'X[10] <= 11.15\ngini = 0.72\nsamples =
\label{text} Text(245.4061224489796, \ 103.77818181818182, \ 'X[4] <= 0.077 \\ \ ngini = 0.444 \\ \ nsamples = Text(244.26734693877555, \ 93.89454545454547, \ 'gini = 0.0 \\ \ nsamples = 2 \\ \ nvalue = [0, 0, 0] \\ \ nsamples = 2 \\ \ nvalue = [0, 0, 0] \\ \ nsamples = 2 \\ \ nsampl
Text(246.5448979591837, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
Text(249.96122448979594, 103.77818181818182, 'X[6] <= 28.5 \ngini = 0.5 \nsamples = 2
Text(248.82244897959185, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(251.1000000000002, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(249.96122448979594, 113.66181818181819, 'gini = 0.0\nsamples = 7\nvalue = [0, 6]
Text(249.96122448979594, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 6
Text(258.50204081632654, 143.3127272727277, 'X[8] <= 3.46\ngini = 0.495\nsamples =
Text(256.2244897959184, 133.42909090909092, 'X[3] <= 1.55 \ngini = 0.46 \nsamples = 46
Text(255.08571428571432, 123.545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(257.36326530612246, 123.54545454545455, 'X[7] <= 0.997\ngini = 0.437\nsamples =
Text(252.2387755102041, 103.778181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(253.3775510204082, 93.89454545454547, 'X[9] <= 0.695 \setminus ini = 0.32 \setminus ini = 5
Text(252.2387755102041, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(255.65510204081636, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(261.3489795918368, 113.66181818181819, 'X[9] <= 0.865\ngini = 0.331\nsamples =
Text(259.0714285714286, 103.77818181818182, 'X[6] <= 71.0 \cdot ngini = 0.261 \cdot nsamples = 2
Text(257.9326530612245, 93.89454545454547, 'X[4] <= 0.089 \\ lini = 0.21 \\ linsamples = 26 \\ line \\
Text(256.79387755102044, 84.01090909090911, 'gini = 0.0\nsamples = 17\nvalue = [0, 6
Text(259.0714285714286, 84.01090909090911, 'X[2] <= 0.395 \setminus gini = 0.494 \setminus gini = 9.494 \setminus gini
Text(257.9326530612245, 74.12727272727373, 'X[4] \le 0.095  ngini = 0.625 \ nsamples = ^{\prime}
Text(257.9326530612245, 54.360000000000014, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(259.0714285714286, 64.24363636363637, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(260.2102040816327, 74.127272727273, 'gini = 0.0\nsamples = 5\nvalue = [0, 0,
Text(260.2102040816327, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
Text(263.62653061224495, 103.77818181818182, 'X[7] <= 1.0 \cdot gini = 0.444 \cdot nsamples = 3.444 \cdot nsamples = 3
Text(262.48775510204086, 93.89454545454547, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(264.76530612244903, 93.89454545454547, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(260.7795918367347. 133.4290909090909. 'X[4] \leftarrow 0.076 \cdot ngini = 0.375 \cdot nsamnles = 0
```

```
Text(259.6408163265306, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(261.9183673469388, 123.54545454545455, 'gini = 0.0\nsamples = 3\nvalue = [0, 0,
Text(266.47346938775513, 143.312727272727, 'X[9] <= 0.735\ngini = 0.531\nsamples =
Text(265.33469387755105, 133.42909090909090, 'X[4] <= 0.103\ngini = 0.444\nsamples =
Text(264.19591836734696, 123.545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
Text(266.47346938775513, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
Text(299.9605867346939, 192.73090909090908, X[0] \le 7.85 \cdot ini = 0.614 \cdot insamples = 1
Text(280.20994897959184, 182.8472727272727, 'X[2] <= 0.355\ngini = 0.549\nsamples =
Text(279.07117346938776, 172.963636363637, 'X[9] <= 0.86\ngini = 0.605\nsamples =
Text(277.9323979591837, 163.07999999999998, 'X[6] <= 15.0 \\ line = 0.589 \\ line = 7.0 \\ line = 15.0 \\ line = 15.
Text(271.02857142857147, 143.31272727272727, 'X[7] <= 0.996 \\ ngini = 0.37 \\ nsamples = 0.37 \\ nsamp
Text(268.7510204081633, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(271.02857142857147, 123.54545454545455, 'gini = 0.0\nsamples = 7\nvalue = [0, (
Text(272.16734693877555, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(285.975, 153.19636363636363, 'X[6] <= 78.5\ngini = 0.545\nsamples = 62\nvalue =
Text(279.28469387755104, 143.31272727272727, X[6] <= 27.5 \le 0.442 \le 
Text(274.4448979591837, 133.429090909090909, 'X[0] <= 6.35 \ngini = 0.551 \nsamples = 1
Text(273.30612244897964, 123.54545454545455, 'gini = 0.0\nsamples = 4\nvalue = [0, {
Text(275.5836734693878, 123.5454545454545455, 'X[3] <= 3.325 \ngini = 0.43 \nsamples = 1
Text(273.30612244897964, 113.66181818181819, X[3] <= 1.775 = 0.198 = 0.198
Text(272.16734693877555, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(274.4448979591837, 103.77818181818182, 'gini = 0.0\nsamples = 8\nvalue = [0, 0,
Text(277.861224489796, 113.66181818181819, 'X[8] <= 3.44 \setminus gini = 0.5 \setminus gini = 2 \setminus gini = 0.5 
Text(276.7224489795919, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(279.0, 103.778181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0, 0, 0]
Text(284.1244897959184, 133.42909090909092, 'X[0] <= 4.95 \ngini = 0.323 \nsamples = 3 \nsamples =
Text(280.1387755102041, 113.66181818181819, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1, 1]
Text(282.41632653061225, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(283.55510204081634, \ 103.77818181818182, \ 'gini = 0.0 \setminus samples = 1 \setminus value = [0, \ \ell]
Text(282.41632653061225, 84.01090909090911, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(284.6938775510204, 84.01090909090911, 'gini = 0.0\nsamples = 1\nvalue = [0, 0,
Text(288.1102040816327, 93.89454545454547, 'X[6] <= 30.0\ngini = 0.069\nsamples = 28
Text(286.9714285714286, 84.01090909090911, 'X[10] <= 11.9 \\ ini = 0.32 \\ insamples = 5
Text(285.8326530612245, 74.127272727273, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, Text(288.1102040816327, 74.127272727273, 'gini = 0.0\nsamples = 4\nvalue = [0, 0, 0, Text(288.1102040816327, 74.127272727273, 'gini = 0.0\nsamples = 4\nvalue = [0, 0, 0, 0]
Text(289.24897959183676, 84.01090909090911, 'gini = 0.0\nsamples = 23\nvalue = [0, (
Text(289.24897959183676, 113.66181818181819, 'X[2] <= 0.05\ngini = 0.444\nsamples =
Text(288.1102040816327, 103.77818181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(290.38775510204084, 103.77818181818182, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(292.665306122449, 143.31272727272727, 'X[2] <= 0.07 \setminus gini = 0.78 \setminus gini = 10
Text(290.38775510204084, 133.4290909090909, 'X[1] \le 0.485  ngini = 0.5 \nsamples = 4
Text(289.24897959183676, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 6]
Text(291.5265306122449, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, Text(294.9428571428572, 133.42909090909092, 'X[9] <= 0.61\ngini = 0.611\nsamples = (Text(293.8040816326531, 123.5454545454555, 'X[6] <= 109.5\ngini = 0.444\nsamples =
Text(292.665306122449, 113.66181818181819, 'gini = 0.0\nsamples = 2\nvalue = [0, 0, 0]
Text(294.9428571428572, 113.66181818181819, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, Text(296.08163265306126, 123.545454545455, 'gini = 0.0\nsamples = 3\nvalue = [0, 6]
```

```
Text(280.20994897959184, 163.0799999999999, 'gini = 0.0\nsamples = 3\nvalue = [0, (
Text(281.3487244897959, 172.96363636363637, 'gini = 0.0\nsamples = 13\nvalue = [0, 6]
Text(319.71122448979594, 182.8472727272727, 'X[0] <= 9.95\ngini = 0.613\nsamples =
Text(309.7469387755102, \ 172.9636363636363637, \ 'X[5] <= 13.5 \\ line = 0.583 
Text(302.3448979591837, 163.0799999999998, 'X[1] <= 0.415 \\ lngini = 0.539 \\ lnsamples = 0.415 \\ lngini = 0.415 \\ lngini = 0.539 \\ lnsamples = 0.415 \\ lngini = 0.539 \\ lnsamples = 0.415 \\ lngini = 0.415 \\ lngi = 0.415 \\ lngi = 0.415 \\ lngi = 0.415 \\ ln
Text(298.35918367346943, 143.31272727272727, X[6] <= 7.5  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25  | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 
Text(297.22040816326535, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 6]
Text(299.4979591836735, 133.42909090909092, 'X[4] \le 0.051  | mgini = 0.196 | nsamples =
Text(298.35918367346943, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 1
Text(298.35918367346943, 103.77818181818182, 'gini = 0.0 \nsamples = 22 \nvalue = [0, 1]
Text(301.7755102040817, 93.89454545454547, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 0]
Text(305.1918367346939, 153.19636363636363, 'X[9] <= 0.635\ngini = 0.694\nsamples =
Text(302.91428571428577, 143.31272727272727, 'X[4] \leftarrow 0.095 = 0.5 = 0.095
Text(301.7755102040817, 133.4290909090909, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(304.05306122448985, 133.4290909090909, 'gini = 0.0\nsamples = 2\nvalue = [0, (
Text(306.33061224489796, 133.429090909092, 'X[5] <= 10.0\ngini = 0.444\nsamples =
Text(305.1918367346939, 123.54545454545455, 'gini = 0.0\nsamples = 2\nvalue = [0, 0]
Text(307.46938775510205, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(308.60816326530613, 133.4290909090909, 'gini = 0.0\nsamples = 4\nvalue = [0, 6
Text(317.1489795918368, 163.0799999999999, 'X[3] <= 3.15 \ngini = 0.518 \nsamples = 2.518 \nsamples 
Text(314.30204081632655, 153.19636363636363, 'X[4] <= 0.073 \\ ngini = 0.375 \\ nsamples 
Text(312.0244897959184, \ 143.31272727272727, \ 'X[4] <= 0.048 \\ logini = 0.142 \\ losamples = 0.048 \\ logini = 0.142 \\ logi
Text(310.8857142857143, 133.4290909090909, 'gini = 0.0\nsamples = 1\nvalue = [0, 0]
Text(313.16326530612247, 133.4290909090909, 'gini = 0.0\nsamples = 12\nvalue = [0,
Text(316.5795918367347, 143.31272727272727, 'X[3] <= 2.7 \setminus gini = 0.49 \setminus gini = 7 \setminus gini = 0.49 \setminus 
Text(315.44081632653064,\ 133.42909090909092,\ 'gini = 0.0 \ nsamples = 4 \ nvalue = [0,6]{
Text(317.7183673469388, 133.4290909090909, 'gini = 0.0\nsamples = 3\nvalue = [0, 0]
Text(321.13469387755106, 143.31272727272727, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(329.67551020408166, 172.96363636363637, 'X[2] \le 0.7 \cdot gini = 0.596 \cdot gini = 2.596 \cdot gini=
Text(324.5510204081633, 153.19636363636363, 'X[10] <= 12.05\ngini = 0.592\nsamples =
Text(319.995918367347, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 0]
Text(322.27346938775514, 123.54545454545455, 'gini = 0.0\nsamples = 1\nvalue = [0, (
Text(325.6897959183674, 133.42909090909092, 'X[3] <= 2.3\ngini = 0.485\nsamples = 26
Text(324.5510204081633, 123.54545454545455, 'gini = 0.0\nsamples = 6\nvalue = [0, 0,
Text(324.5510204081633, 113.66181818181819, 'X[1] <= 0.39 \setminus 1 = 0.408 \setminus 1 = 7
Text(323.4122448979592, 103.77818181818182, 'gini = 0.0\nsamples = 2\nvalue = [0, 0,
Text(325.6897959183674, 103.77818181818182, 'gini = 0.0\nsamples = 5\nvalue = [0, 0,
Text(329.10612244897965, 113.66181818181819, 'X[6] <= 13.5\ngini = 0.449\nsamples = Text(327 96734693877556 103 778181818182 'gini = 0.0\nsamples = 1\nvalue = [0.6]
```

Model has learnt everything that is nothing but overfitting

we need to optimize

from sklearn.metrics import accuracy score

```
Red Wine Quality Model Building - Colaboratory
print(round(accuracy score(y train, y pred train dt),2))
    1.0
print(round(accuracy_score(y_test, y_pred_test_dt),2))
     from sklearn import tree
path = dt_clf.cost_complexity_pruning_path(X_train, y_train)
alphas = path['ccp_alphas']
alphas
                     , 0.00058088, 0.00058309, 0.00074471, 0.00077179,
    array([0.
```

```
0.00080429, 0.00081918, 0.00082216, 0.00082491, 0.00082491,
0.00082491, 0.00082982, 0.0008378, 0.00085041, 0.00085216,
0.00085928, 0.00085928, 0.00087303, 0.00089366, 0.00089366,
0.00089366, 0.00089366, 0.00089366, 0.00089366, 0.00089366,
0.00089366, 0.00089366, 0.00089366, 0.00089366, 0.00089366,
0.00089366, 0.00089366, 0.00103612, 0.00110492, 0.0011543 ,
0.00116175, 0.00119154, 0.00119154, 0.00119154, 0.00119154,
0.00119154, 0.00119154, 0.00119154, 0.00119154, 0.00119154,
0.00119154, 0.00119154, 0.00119154, 0.00119154, 0.00119154,
0.00130738, 0.00132393, 0.00134048, 0.00134048, 0.00134048,
0.00134048, 0.00134048, 0.00134048, 0.00134048, 0.00134048,
0.00134048, 0.00134048, 0.00134048, 0.00134048, 0.00134048,
0.00134048, 0.00136176, 0.00136176, 0.0013811 , 0.00139634,
0.00140432, 0.00141977, 0.00142985, 0.00142985, 0.00142985,
0.00142985, 0.0014412 , 0.00145219, 0.00145219, 0.0014546 ,
0.00146017, 0.00148943, 0.00148943, 0.00148943, 0.00148943,
0.00153198, 0.00153624, 0.00154544, 0.0015639, 0.0015639,
0.00156525, 0.0015693, 0.00158424, 0.00158741, 0.00158796,
0.00158872, 0.00158872, 0.00160858, 0.00160858, 0.00160858,
0.00160858, 0.00160858, 0.00160858, 0.00161975, 0.00163018,
0.00163701, 0.00163837, 0.00163837, 0.00164982, 0.00166816,
0.00168802, 0.00168878, 0.00170167, 0.00173766, 0.00174218,
0.00174263, 0.00178731, 0.00178731, 0.0018171 , 0.0018171 ,
0.00185695, 0.00186923, 0.00190088, 0.00191774, 0.00194618,
0.00199583, 0.00207872, 0.0020852 , 0.0020852 , 0.00209512,
0.00209603, 0.0021145, 0.00214477, 0.00214649, 0.00216539,
0.00217456, 0.00221727, 0.00224277, 0.00224903, 0.00226906,
0.00229349, 0.00233281, 0.00233569, 0.00238308, 0.00239301,
0.00243904, 0.00248238, 0.00248366, 0.00249674, 0.00250223,
0.00251784, 0.00252629, 0.00259663, 0.00260649, 0.00263972,
0.00268249, 0.00269364, 0.0027095, 0.00275389, 0.00275544,
0.00281119, 0.00286376, 0.00299374, 0.00301857, 0.00306348,
0.00312779, 0.00320841, 0.00331025, 0.00338361, 0.00339294,
0.00370056, 0.00383892, 0.00385893, 0.00400584, 0.00403601,
0.0040543 , 0.00415053, 0.0041823 , 0.0044017 , 0.00500447,
0.0054185 , 0.00651323 , 0.00655364 , 0.0070582 , 0.01033366 ,
0.01251074, 0.06471415])
```

```
1/1/22, 12:06 PM
                                          Red Wine Quality Model Building - Colaboratory
   accuracy_train, accuracy_test = [],[]
   for i in alphas:
        dt_clf = DecisionTreeClassifier(ccp_alpha=i)
        dt_clf.fit(X_train, y_train)
        y_pred_train1 = dt_clf.predict(X_train)
        y_pred_test1 = dt_clf.predict(X_test)
        accuracy_train.append(accuracy_score(y_train, y_pred_train1))
        accuracy_test.append(accuracy_score(y_test,y_pred_test1))
   accuracy_train
         [1.0,
          0.9991063449508489,
          0.998212689901698,
          0.9973190348525469,
          0.9955317247542449,
          0.9946380697050938,
          0.9937444146559428,
          0.9919571045576407.
          0.9892761394101877,
          0.9892761394101877,
          0.9892761394101877,
          0.9883824843610366,
          0.9874888293118856,
          0.9857015192135835,
          0.9848078641644326,
          0.9830205540661304,
          0.9830205540661304,
          0.9821268990169795,
          0.968722073279714,
          0.968722073279714,
          0.968722073279714,
          0.9696157283288651,
          0.968722073279714,
          0.9696157283288651,
```

0.968722073279714, 0.968722073279714, 0.968722073279714, 0.9696157283288651, 0.968722073279714, 0.968722073279714, 0.968722073279714, 0.967828418230563, 0.9651474530831099, 0.9651474530831099, 0.9615728328865059, 0.9606791778373548, 0.9490616621983914, 0.9490616621983914, 0.9463806970509383, 0.9463806970509383, 0.9490616621983914, 0.9454870420017873, 0.9463806970509383,

- 0.9463806970509383, 0.9463806970509383, 0.9472743521000894, 0.9481680071492404, 0.9472743521000894, 0.9472743521000894, 0.9490616621983914, 0.9436997319034852, 0.9419124218051832, 0.9302949061662198, 0.9294012511170688, 0.9294012511170688, 0.9302949061662198, 0.9302949061662198,
- accuracy_test

```
[0.60833333333333333,
0.575,
0.602083333333333333
0.58958333333333333,
0.5854166666666667,
0.5875,
0.59375,
0.5979166666666667,
0.6,
0.59375,
0.60833333333333333,
0.60208333333333333,
0.5833333333333334,
0.6,
0.5979166666666667,
0.6104166666666667,
0.59583333333333333,
0.5875,
0.58125,
0.608333333333333333333
0.58958333333333333,
0.59166666666666666667,
0.59375,
0.6125,
0.6,
0.608333333333333333333
0.5875,
0.5958333333333333,
0.5979166666666667,
0.5979166666666667,
0.59375,
0.5833333333333334,
0.5958333333333333,
```

0.6,

0.59375,

0.59583333333333333,

```
0.58125,
      0.60625,
      0.60625,
      0.58958333333333333,
      0.59375,
      0.6,
      0.59166666666666666667,
      0.59375,
      0.57083333333333333,
      0.5791666666666667,
      0.6,
      0.58125,
      0.5854166666666667,
      0.57708333333333333,
      0.579166666666666666667,
# now we have scores
# lets, plot
sns.set()
plt.figure(figsize = (16,8))
sns.lineplot(y =accuracy_train, x = alphas, label = 'TrainAccuracy')
sns.lineplot(y =accuracy_test, x = alphas, label = 'TestAccuracy')
plt.xticks(ticks=np.arange(0.00,0.15,0.01))
```

plt.xlabel('alphas')
plt.ylabel('accuracy')

plt.show()


```
# ___with ccp = 0.01
dt_clf = DecisionTreeClassifier(ccp_alpha=0.01, random_state = 14)
dt_clf.fit(X_train,y_train)
     DecisionTreeClassifier(ccp_alpha=0.01, random_state=14)
y_pred_train2 = dt_clf.predict(X_train)
y_pred_test2 = dt_clf.predict(X_test)
from sklearn.metrics import accuracy_score
print(round(accuracy_score(y_train,y_pred_train2), 2))
     0.59
print(round(accuracy_score(y_test,y_pred_test2), 2))
     0.53
#Earlier before optimization accuracys were 1 and 0.6 (train & test)
#Now after optimization accuracys are 0.59 and 0.53 (train & test)
from sklearn.metrics import confusion matrix
confusion_matrix = confusion_matrix(y_test, y_pred_test2)
print(confusion_matrix)
     ΓΓ
                 3
                     1
                             0]
             0 10
                             0]
      [
             0 129 50
         0
                             0]
      0 82 126
                             0]
         0
                 3 64
                         0
                             0]
                             0]]
from sklearn.metrics import classification report
print(classification_report(y_test, y_pred_test2))
                   precision
                                recall f1-score
                                                   support
```

0.00

0.00

0.00

0.00

4

18

0.00

0.00

1

```
3
                    0.57
                              0.72
                                         0.64
                                                     179
           4
                    0.50
                              0.61
                                         0.55
                                                     208
           5
                    0.00
                              0.00
                                         0.00
                                                      67
           6
                    0.00
                              0.00
                                         0.00
                                                       4
                                         0.53
                                                     480
    accuracy
                                                     480
   macro avg
                    0.18
                              0.22
                                         0.20
weighted avg
                    0.43
                              0.53
                                         0.47
                                                     480
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Undet _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Undel _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Under _warn_prf(average, modifier, msg_start, len(result))

#Random Forest

#import the classifier
from sklearn.ensemble import RandomForestClassifier

```
#in our previous experiment, we found ccp_alphas = 0.013 has the best accuarcy
rf_clf = RandomForestClassifier(n_estimators =100, ccp_alpha= 0.01, random_state = 14)
```

```
#fit the classifier with x and y data = train
rf_mod = rf_clf.fit(X_train, y_train)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DataConversionWarning

#Prediction

y_train_pred_rf1 = rf_mod.predict(X_train)
y_train_pred_rf1

array([4, 4, 4, ..., 4, 3, 4])

#Prediction

y_test_pred_rf1 = rf_mod.predict(X_test)
y test pred rf1

```
3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
            3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 4,
            4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3,
            4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4,
            3, 4, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3,
            4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4,
            3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3,
            4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3,
                  3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3,
            3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4,
            4, 4, 3, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3,
            3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
            3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3,
            4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4,
            4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 3,
            3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3,
            3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 4,
            4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3])
from sklearn.metrics import accuracy_score
print(round(accuracy_score(y_train,y_train_pred_rf1), 2))
     0.62
print(round(accuracy_score(y_test,y_test_pred_rf1), 2))
     0.55
### Confusion Matrix
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_test_pred_rf1)
print(confusion_matrix)
     \prod
                3
                             01
                     1
             0 13
                             0]
      0
            0 139 40
                            0]
      Γ
               85 123
                             0]
                3
                   64
                             0]
                 0
                     4
                             0]]
### Classification Report
from sklearn.metrics import classification report
print(classification report(y test, y test pred rf1))
```

```
precision
                             recall f1-score
                                                  support
            1
                    0.00
                               0.00
                                          0.00
            2
                    0.00
                               0.00
                                          0.00
                                                       18
            3
                    0.57
                               0.78
                                          0.66
                                                      179
            4
                    0.52
                               0.59
                                          0.55
                                                      208
            5
                    0.00
                               0.00
                                          0.00
                                                       67
                               0.00
            6
                    0.00
                                          0.00
                                                        4
    accuracy
                                          0.55
                                                      480
                    0.18
                               0.23
                                          0.20
                                                      480
   macro avg
weighted avg
                    0.44
                               0.55
                                          0.49
                                                      480
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Under _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Under

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1308: Under _warn_prf(average, modifier, msg_start, len(result))


```
#______ Extract Feature Importance
```

fi.head()

	feature	importance
10	alcohol	0.448663
1	volatile_acidity	0.150800
6	total_sulfur_dioxide	0.116731
9	sulphates	0.113725
7	density	0.070888

```
# Accuarcy above is 0.62 & 0.55 for Train & test (respectively)
```

#Create Classifier object

```
#in our previous experiment Decision Tree model,
#we found ccp_alphas = 0.01 has the best accuarcy
clf_rf1 = RandomForestClassifier(n_estimators =100, ccp_alpha= 0.01, random_state = 14)
```

```
# fit the classifier with x and y data=TRAIN,
#this time with Failure_Type only
X_train.info()
```

[#] This accuracy is for having all columns as features in our model

[#] Lets build a model keeping 4 best features

[#] that is keeping volatile acidity, total sulfur dioxide, sulphates, alcohol only

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1119 entries, 318 to 619
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	<pre>fixed_acidity</pre>	1119 non-null	float64
1	volatile_acidity	1119 non-null	float64
2	citric_acid	1119 non-null	float64
3	residual_sugar	1119 non-null	float64
4	chlorides	1119 non-null	float64
5	<pre>free_sulfur_dioxide</pre>	1119 non-null	float64
6	<pre>total_sulfur_dioxide</pre>	1119 non-null	float64
7	density	1119 non-null	float64
8	рН	1119 non-null	float64
9	sulphates	1119 non-null	float64
10	alcohol	1119 non-null	float64

dtypes: float64(11)
memory usage: 104.9 KB

```
X_train1 = X_train.iloc[ : ,[1,6,9,10]]
X_train1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1119 entries, 318 to 619
Data columns (total 4 columns):
```

#	Column	Non-Null Count	Dtype
0	volatile_acidity	1119 non-null	float64
1	total_sulfur_dioxide	1119 non-null	float64
2	sulphates	1119 non-null	float64
3	alcohol	1119 non-null	float64

dtypes: float64(4)
memory usage: 43.7 KB

```
rf_mod1 = clf_rf1.fit(X_train1, y_train)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DataConversionWarning """Entry point for launching an IPython kernel.

```
→
```

```
#Prediction
y_train_pred1 = rf_mod1.predict(X_train1)
y_train_pred1
```

```
array([4, 4, 4, ..., 4, 3, 3])
```

```
X_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 480 entries, 667 to 1589
Data columns (total 11 columns):
```

```
# Column Non-Null Count Dtype
--- ----
0 fixed_acidity 480 non-null float64
```

```
volatile acidity
                          480 non-null
                                          float64
1
2
   citric_acid
                          480 non-null
                                          float64
3
                          480 non-null
                                          float64
    residual sugar
4
   chlorides
                          480 non-null
                                          float64
   free_sulfur_dioxide
                          480 non-null
                                          float64
5
6
    total sulfur dioxide 480 non-null
                                          float64
7
    density
                          480 non-null
                                          float64
                          480 non-null
                                          float64
8
    Нα
                                          float64
9
    sulphates
                          480 non-null
10 alcohol
                          480 non-null
                                          float64
```

dtypes: float64(11)
memory usage: 45.0 KB

```
X_test1 = X_test.iloc[ : ,[1,6,9,10]]
X_test1.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 480 entries, 667 to 1589
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	volatile_acidity	480 non-null	float64
1	<pre>total_sulfur_dioxide</pre>	480 non-null	float64
2	sulphates	480 non-null	float64
3	alcohol	480 non-null	float64

dtypes: float64(4)
memory usage: 18.8 KB

```
#Prediction
y_test_pred1 = rf_mod1.predict(X_test1)
y test pred1
```

```
array([3, 3, 4, 3, 4, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3,
       4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 4,
       3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3,
       3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3, 3,
       3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3,
       3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4,
      4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 3,
      4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4,
       3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3,
      4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4,
       3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 3,
      4, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3,
       3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4,
       3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4,
      4, 4, 3, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3,
       3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4,
       3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 3,
      4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4,
      4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3,
       3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3,
       3, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4,
       4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 3, 3])
```

from sklearn.metrics import accuracy_score