

Un'ottimizzazione ricorrente

- Consideriamo due «mintermini» (addendi di una SP, moltiplic di una PS) che condividono TUTTE LE VARIABILI ECCETTO UNA
 - es

```
A B / C + A / B / C (condividono A e / C, ma non B)
```

Allora, ottimizzazione:

$$A B / C + A / B / C = A / C (B + / B) = A / C 1 = A / C$$

- ▶ (1° mettiamo in evidenza i termini in comune, 2° il resto si annulla!)
- Generalizzando:

$$F(X1, X2, ..., Xn) Y + F(X1, X2, ..., Xn) / Y =$$

 $F(X1, X2, ..., Xn) (Y + / Y) = F(X1, X2, ..., Xn)$

- Chiamiamo tali min-termini «adiacenti»
 - (il termine che non condividono, necessiamente, appare in uno naturale, e nell'altro negato)

Architettura degli elaboratori

- 49 -

Funzioni e circuiti combinatori

Un'ottimizzazione ricorrente

- Va ancora meglio quando QUATTRO min-termini diversi condividono TUTTE LE VARIABILI ECCETTO DUE!
 - es

```
A/BC+A/B/C+A/BC+A/BC+A/B/C (/B condiviso, ma non A e C)
```

Allora, ottimizzazione:

```
A /B C + A /B /C + /A /B C + /A /B /C =

/B (A C + A /C + /A C + /A /C ) =

=
...

Fa 1! (sempre vero)

Sono tutte le quattro combinazione possibili
di A e C: esattamente una è sempre verificata.

Dim:

A C + A /C + /A C + /A /C =
= A (/C + C) + /A (C + /C)
= A 1 + /A 1
= A + /A = 1
```

Architettura degli elaboratori

- 50 -

Generalizzando

- In una funzione booleana a k variabili...
- Quando 2ⁿ min-termini condividono tutte le variabili eccetto n:
 - \triangleright 1) si mettono in evidenza le k-n variabili condivise
 - ▶ 2) il resto diventa una costante e scompare
 - \triangleright 3) rimane un solo min-termine con le k-n variabili condivise
- Es: con una funzione a k = 4 variabili
 - ▶ 2 min-termini condividono 3 variabili (tutto eccetto 1 var)
 → diventano un solo mintermine a 3 variabili
 - 4 min-termini condividono 2 variabili (tutto eccetto 2 vars)
 → diventano un solo mintermine a 2 variabili
 - 8 min-termini condividono 1 variabile (tutto eccetto 3 vars)
 → diventano un solo min-termine a 1 variabile
- Più sono, più si semplifica!!!

Architettura degli elaboratori

- 51 -

Nota:

- L'adiacenza fisica non è rispettata se scriviamo le tabelle nel modo banale...
 - ▶ cioè come abbiamo fatto fin'ora →
 - Ogni riga riguarda una configurazione di bit anche molto diversa dalla riga precedente
 - Qui: in rosso i bit di input che cambiano valore rispetto alla riga precedente

а	b	С	F(a,b,c)		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Architettura degli elaboratori

- 56 -

Funzioni e circuiti combinatori

Mappe di Karnaugh per due variabili

Tab di veritá			Mappa di Karnaugh			
а	b	F(a,b)		а	b	F(a,b)
0	0	0		0	0	0
0	1	0		0	1	0
1	0	0	<u></u>	1	1	1
1	1	1		1	0	0

Sambio due righe!

- In rosso i bit che cambiano rispetto alla riga precedente
- NB: la prima riga è preceduta dall'ultima. La mappa «gira»

Architettura degli elaboratori

- 57 -

Limiti del metodo di Karnaugh

- I risultati dell'applicazione del metodo di Karnaugh sono normalmente meglio della semplice derivazione dell'espressione in prima forma normale, ma non sono necessariamente ottimi.
 - ▶ Sono sempre e comunque somme di prodotti (o prodotti di somme)
 - ▶ E' un vantaggio (semplicitá e velocità della rete risultante)
 - ▶ E' uno svantaggio (escludo altre ottimizzazioni logiche)
- Ad es. con Karnough posso dedurre che F = AB+BC
 - ▶ F richiede tre porte
- Ma noi sappiamo che F = AB+BC = B (A+C)
 - ▶ che richiede due porte

Architettura degli elaboratori

- 83 -