CISCO Academy

Aluno: Matheus Willamy de Alencar Albuquerque

Packet Tracer - Criação de sub-redes no cenário

Tabela de Endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
R1	G0/0	192.168.10.1	255.255.255.224	N/A
	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Objetivos

Parte 1: Projetar um Esquema de Endereçamento IP

Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

Cenário

Nesta atividade, você recebe o endereço de rede 192.168.100.0/24 para sub-rede e fornece o endereço IP para a rede Packet Tracer. Cada rede local requer um espaço suficiente para, no mínimo, 25 endereços para dispositivos finais, o comutador e o roteador. A conexão entre R1 e R2 exigirá um endereço IP para cada extremidade do link.

Instruções

Parte 1: Projetar um Esquema de Endereçamento IP

Etapa 1: Divida a rede 192.168.100.0/24 no número apropriado de sub-redes.

a. Com base na topologia, quantas sub-redes são necessárias?

São necessárias 5 no total, uma para a rede entre os roteadores e 4 para as LANs.

- b. Quantos bits devem ser emprestados para comportar o número de sub-redes na tabela de topologia?
 Um total de 3 bits
- c. Quantas sub-redes são criadas?

São criadas 8 sub-redes.

d. Quantos hosts utilizáveis são criados por sub-rede?

São criados 30 hosts

Observação: se a resposta for menos que os 25 hosts necessários, significa que você pegou emprestado bits demais.

e. Calcule o valor binário das cinco primeiras sub-redes. As duas primeiras sub-redes foram feitas para você.

Sub-re de	Endereço de rede	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

f. Calcule o valor binário e o valor decimal da nova máscara de sub-rede.

				Bit	Bit			Bit		Bit
				de	de	Bit	Bit	de	Bit	de
			Bit de	Más						
Primeiro	Segundo	Terceiro	Máscar	cara						
Octeto	octeto	octeto	a 7	6	5	4	3	2	1	0
11111111	11111111	11111111	1	1	1	0	0	0	0	0
Primeiro octeto decimal	Segundo octeto decimal	Terceiro octeto decimal	Quarto octeto decimal							
255.	255.	255.	224							

g. Preencha a **Tabela de Sub-Redes**,listando o valor decimal de todas as sub-redes disponíveis, o primeiro e o último host utilizáveis e o endereço de broadcast. Repita até que todos os endereços estejam listados.

Observação: não é necessário usar todas as linhas.

Tabela de Sub-Redes

Número da Sub-Red	Endereço da	Primeiro Endereço de Host	Último Endereço	Endereço de
е	Sub-Rede	Utilizável	de Host Utilizável	Broadcast
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159
5	192.168.100.160	192.168.100.161	192.168.100.190	192.168.100.191
6	192.168.100.192	192.168.100.193	192.168.100.222	192.168.100.223
7	192.168.100.224	192.168.100.225	192.168.100.254	192.168.100.255
8				
9				
10				

Etapa 2: Atribua as sub-redes à rede mostrada na topologia.

- a. Atribua a sub-Rede 0 à LAN conectada à interface GigabitEthernet 0/0 de R1: 192.168.100.0 /27
- b. Atribua a Sub-Rede 1 à LAN conectada à interface GigabitEthernet 0/1 de R1: 192.168.100.32 /27
- c. Atribua a Sub-Rede 2 à LAN conectada à interface GigabitEthernet 0/0 de R2: 192.168.100.64 /27
- d. Atribua a Sub-Rede 3 à LAN conectada à interface GigabitEthernet 0/1 de R2: 192.168.100.96 /27
- e. Atribua a Sub-Rede 4 ao link WAN entre R1 e R2: 192.168.100.128 /27

0	GigabitEthernet 0/0 R1	192.168.100.0 /27
1	GigabitEthernet 0/1 R1	192.168.100.32 /27
2	GigabitEthernet 0/0 R2	192.168.100.64 /27
3	GigabitEthernet 0/1 R2	192.168.100.96 /27
4	WAN R1 e R2	192.168.100.128 /27

Etapa 3: Documente o esquema de endereçamento.

Preencha a **Addressing Table** utilizando as seguintes diretrizes:

- a. Atribua os primeiros endereços IP utilizáveis em cada sub-rede a R1 para os dois links de LAN e WAN.
- Atribua os primeiros endereços IP utilizáveis a R2 para os links LAN. Atribua o último endereço IP utilizável para o link WAN.
- c. Atribua o segundo endereço IP utilizável nas sub-redes anexadas aos comutadores.
- d. Atribua os últimos endereços IP utilizáveis aos PCs em cada sub-rede.

Parte 2: Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

A maior parte do endereçamento IP já está configurada nesta rede. Implemente as etapas a seguir para concluir a configuração do endereçamento. O roteamento dinâmico EIGRP já está configurado entre R1 e R2.

Etapa 1: Configure interfaces LAN R1.

- a. Configure as duas interfaces de rede local com os endereços da tabela de endereçamento.
- b. Configure as interfaces para que os hosts nas LANs tenham conectividade com o gateway padrão.

R1(config)#interface gigabitEthernet 0/0
R1(config-if)#ip address 192.168.100.1 255.255.255.224
R1(config-if)#no shutdown
R1(config-if)#exit

R1(config)#interface gigabitEthernet 0/1
R1(config-if)#ip address 192.168.100.33 255.255.255.224
R1(config-if)#no shutdown
R1(config-if)#exit

R1(config)#interface serial 0/0/0 R1(config-if)#ip address 192.168.100.129 255.255.255.224 R1(config-if)#no shutdown R1(config-if)#exit

Etapa 2: Configure o endereçamento IP no S3.

- a. Configure a interface VLAN1 do switch com endereçamento.
- b. Configure o switch com o endereço de gateway padrão.

```
S3(config)#interface vlan 1
S3(config-if)#ip address 192.168.100.66 255.255.255.224
S3(config-if)#no shutdown
S3(config-if)#ip default-gateway 192.168.100.65
```


Etapa 3: Configure PC4.

Configure o PC4 com endereços de host e gateway padrão .

Etapa 4: Verifique a conectividade.

Você só pode verificar a conectividade de R1, S3 e PC4. Entretanto, deve conseguir fazer ping em cada endereço IP listado na **Tabela de Endereçamento**.

