Programming Languages: Imperative Program Construction Practicals 1: Non-Looping Constructs and Weakest Precondition

Shin-Cheng Mu

Autumn Term, 2021

- 1. Determine the weakest *P* that satisfies
 - (a) $\{P\} x := x + 1; x := x + 1 \{x \ge 0\}.$
 - (b) $\{P\} x := x + y; y := 2 \times x \{y \ge 0\}.$
 - (c) $\{P\} x := y; y := x \{x = A \land y = B\}.$
 - (d) $\{P\} x := E; x := E \{x = E\}.$
- 2. Assuming that x, y, and z are integers, prove the following
 - (a) $\{True\}\$ **if** $x \ge 1 \to x := x + 1 \mid x \le 1 \to x := x 1$ **fi** $\{x \ne 1\}$.
 - (b) $\{True\}$ if $x \ge y \rightarrow skip \mid y \le x \rightarrow x, y := y, x$ fi $\{x \ge y\}$.
 - (c) $\{x = 0\}$ if $True \rightarrow x := 1 \mid True \rightarrow x := -1 \{x = 1 \lor x = -1\}.$
 - (d) $\{A = x \times y + z\}$ if even $x \to x, y := x / 2, y \times 2 \mid True \to y, z := y 1, z + y \{A = x \times y + z\}$.
 - (e) $\{x \times y = 0 \land y \leq x\}$ if $y < 0 \rightarrow y := -y \mid y = 0 \rightarrow x := -1 \{x < y\}$.
- 3. What is the weakest *P* such that the following holds?

var
$$x : Int$$

 $\{P\}$
 $x := x + 1$
if $x > 0 \rightarrow x := x + 1$
 $| x < 0 \rightarrow x := x + 2$
 $| x = 1 \rightarrow skip$
fi
 $\{x \ge 1\}$.

4. Two programs S_0 and S_1 are equivalent if, for all Q, $wp S_0 Q = wp S_1 Q$. Show that the two following programs are equivalent.

if
$$B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$$
 fi; S if $B_0 \rightarrow S_0$; $S \mid B_1 \rightarrow S_1$; S fi

5. Consider the two programs:

$$\begin{array}{l} \mathsf{IF}_0 = \textbf{if} \ B_0 \to S_0 \ | \ B_1 \to S_1 \ \textbf{fi} \ , \\ \mathsf{IF}_1 = \textbf{if} \ B_0 \to S_0 \ | \ B_1 \wedge \neg \ B_0 \to S_1 \ \textbf{fi} \ . \end{array}$$

Show that for all Q, $wp \ \mathsf{IF}_0 \ Q \Rightarrow wp \ \mathsf{IF}_1 \ Q$.