600-1-200

(Sheet 1 of 15)

								TGC Cys			48
										CTG Leu	96
								AGA Arg			144
								ATC Ile			192
								TCA Ser			240
								GCT Ala			288
								GTG Val 110			336
								AAC Asn			384
								TAT Tyr			432
_	_		_	_			_	GAC Asp		_	480
			Val		Val			AGC Ser			528
					_	_	_	AAG Lys 190			576
								GGT Gly			624
								TCC Ser			672
							_	GCT Ala	_		720

Figure 1

GTT CGA GAT ATA GAT TGA GCCCCAGTTT TTGGAGTGTT ATGTATTTCC Val Arg Asp Ile Asp * 245	768
TGGATGTTTG GAAACATTTT TTAAAACAAG CCAAGAAAGA TGTATATAGG TGTGTGAGAC	828
TACTAAGAGG CATGGCCCAA CGGTACACGA CTCAGTATCC ATGCTCTTGA CCTTGTAGAG	888
AACACGCGTA TTTACAGCCA GTGGGAGATG TTAGACTCAT GGTGTGTTAC ACAATGGTTT	948
TTAAATTTTG TAATGAATTC CTAGAATTAA ACCAGATTGG AGCAATTACG GGTTGACCTT	1008
ATGAGAAACT GCATGTGGGC TATGGGAGGG GTTGGTCCCT GGTCATGTGC CCCTTCGCAG	1068
CTGAAGTGGA GAGGGTGTCA TCTAGCGCAA TTGAAGGATC ATCTGAAGGG GCAAATTCTT	1128
TTGAATTGTT ACATCATGCT GGAACCTGCA AAAAATACTT TTTCTAATGA GGAGAGAAAA	1188
TATATGTATT TTTATATAAT ATCTAAAGTT ATATTTCAGA TGTAATGTTT TCTTTGCAAA	1248
GTATTGTAAA TTATATTTGT GCTATAGTAT TTGATTCAAA ATATTTAAAA ATGTCTTGCT	1308
GTTGACATAT TTAATGTTTT AAATGTACAG ACATATTTAA CTGGTGCACT TTGTAAATTC	1368
CCTGGGGAAA ACTTGCAGCT AAGGAGGGGA AAAAATGTTG TTTCCTAATA TCAAATGCAG	1428
TATATTTCTT CGTTCTTTTT AAGTTAATAG ATTTTTTCAG ACTTGTCAAG CCTGTGCAAA	1488
AAAATTAAAA TGGATGCCTT GAATAATAAG CAGGATGTTG GCCACCAGGT GCCTTTCAAA	1548
TTTAGAAACT AATTGACTTT AGAAAGCTGA CATTGCCAAA AAGGATACAT AATGGGCCAC	1608
TGAAATCTGT CAAGAGTAGT TATATAATTG TTGAACAGGT GTTTTTCCAC AAGTGCCGCA	1668
AATTGTACCT TTTTTGTTT TTTTCAAAAT AGAAAAGTTA TTAGTGGTTT ATCAGCAAAA	1728
AAGTCCAATT TTAATTTAGT AAATGTTATC TTATACTGTA CAATAAAAAC ATTGCCTTTG	1788
AATGTTAATT TTTTGGTACA AAAGTCGACG GCCGC	1823

Figure 1 (continued)

Gln 1	Met	Asp	Pro	Asn 5	Arg	Ile	Ser	Glu	Asp 10		Thr	His	Cys	Ile 15	Tyr
Arg	Ile	Leu	Arg 20	Leu	His	Glu	Asn	Ala 25	Asp	Phe	Gln	Asp	Thr 30	Thr	Leu
Glu	Ser	Gln 35	Asp	Thr	Lys	Leu	Ile 40	Pro	Asp	Ser	Cys	Arg 45	Arg	Ile	Lys
Gln	Ala 50	Phe	Gln	Gly	Ala	Val 55	Gln	Lys	Glu	Leu	Gln 60	His	Ile	Val	Gly
Ser 65	Gln	His	Ile	Arg	Ala 70	Glu	Lys	Ala	Met	Val 75	Asp	Gly	Ser	Trp	Leu 80
Asp	Leu	Ala	Lys	Arg 85	Ser	Lys	Leu	Glu	Ala 90	Gln	Pro	Phe	Ala	His 95	Leu
Thr	Ile	Asn	Ala 100	Thr	Asp	Ile	Pro	Ser 105	Gly	Ser	His	Lys	Val 110	Ser	Leu
Ser	Ser	Trp 115	Tyr	His	Asp	Arg	Gly 120	Trp	Gly	Lys	Ile	Ser 125	Asn	Met	Thr
Phe	Ser 130	Asn	Gly	Lys	Leu	Ile 135	Val	Asn	Gln	Asp	Gly 140	Phe	Tyr	Tyr	Leu
Tyr 145	Ala	Asn	Ile	Cys	Phe 150	Arg	His	His	Glu	Thr 155	Ser	Gly	Asp	Leu	Ala 160
Thr	Glu	Tyr	Leu	Gln 165	Leu	Met	Val	Tyr	Val 170	Thr	Lys	Thr	Ser	Ile 175	Lys
Ile	Pro	Ser	Ser 180	His	Thr	Leu	Met	Lys 185	Gly	Gly	Ser	Thr	Lys 190	Tyr	Trp
Ser	Gly	Asn 195	Ser	Glu	Phe	His	Phe 200	Tyr	Ser	Ile	Asn	Val 205	Gly	Gly	Phe
Phe	Lys 210	Leu	Arg	Ser		Glu 215	Glu	Ile	Ser	Ile	Glu 220	Val	Ser	Asn	Pro
Ser 225	Leu	Leu	Asp		Asp 230	Gln	Asp	Ala	Thr	Tyr 235	Phe	Gly	Ala	Phe	Lys 240
Val	Arg	Asp		Asp 245	*										

Figure 2

600-1-2	00	(Sheet 4	of 15)
CCCACGTCCC GGGGAGCC	CAC TGCCAGGACC TT	IGTGAACC GGTCGGGGG (GGGCCGTGG 60
CGGAGTCTGC TCGGCGG	rgg gtggcccgag aa	GGGAGAGA ACGATCGCGG 1	AGCAGGGCGC 120
CCGAACTCCG GGCGCCGC		GCC AGC CGA GAC TAC Ala Ser Arg Asp Tyr 250	
		AGC GGC CCC GGC GTC Ser Gly Pro Gly Val 270	
		GCA CCG GCT CCG GCG Ala Pro Ala Pro Ala 285	
		GCC CTC CTG GGG CTG Ala Leu Leu Gly Leu 300	
		TTC CTG TAC TTT CGA Phe Leu Tyr Phe Arg 315	
	Ile Ser Glu Asp	AGC ACT CAC TGC TTT Ser Thr His Cys Phe 330	
		TTG CAG GAC TCG ACT Leu Gln Asp Ser Thr 350	
		AGG AGG ATG AAA CAA Arg Arg Met Lys Gln 365	
		CAC ATT GTG GGG CCA His Ile Val Gly Pro 380	
		GGC TCA TGG TTG GAT Gly Ser Trp Leu Asp 395	
	Glu Ala Gln Pro	TTT GCA CAC CTC ACC Phe Ala His Leu Thr 410	
		AAA GTC ACT CTG TCC Lys Val Thr Leu Ser 430	
		TCT AAC ATG ACG TTA . Ser Asn Met Thr Leu 445	
		Phe Tyr Tyr Leu Tyr . 460	
		GGA AGC GTA CCT ACA G Gly Ser Val Pro Thr 2 475	

Leu Gln Leu Met Val Tyr Val Val Lys Thr Ser Ile Lys Ile Pro Ser 485 490 495	89:
TCT CAT AAC CTG ATG AAA GGA GGG AGC ACG AAA AAC TGG TCG GGC AAT Ser His Asn Leu Met Lys Gly Gly Ser Thr Lys Asn Trp Ser Gly Asn 500 505 510	939
TCT GAA TTC CAC TTT TAT TCC ATA AAT GTT GGG GGA TTT TTC AAG CTC Ser Glu Phe His Phe Tyr Ser Ile Asn Val Gly Gly Phe Phe Lys Leu 515 520 525	987
CGA GCT GGT GAA GAA ATT AGC ATT CAG GTG TCC AAC CCT TCC CTG CTG Arg Ala Gly Glu Glu Ile Ser Ile Gln Val Ser Asn Pro Ser Leu Leu 530 535 540	1035
GAT CCG GAT CAA GAT GCG ACG TAC TTT GGG GCT TTC AAA GTT CAG GAC Asp Pro Asp Gln Asp Ala Thr Tyr Phe Gly Ala Phe Lys Val Gln Asp 545 550 560	1083
ATA GAC TGA GACTCATTTC GTGGAACATT AGCATGGATG TCCTAGATGT Ile Asp *	1132
TTGGAAACTT CTTAAAAAAT GGATGATGTC TATACATGTG TAAGACTACT AAGAGACATG	1192
GCCCACGGTG TATGAAACTC ACAGCCCTCT CTCTTGAGCC CTGTACAGGT TGTGTATATG	1252
TAAAGTCCAT AGGTGATGTT AGATTCATGG TGATTACACA ACGGTTTTAC AATTTTGTAA	1312
TGATTTCCTA GAATTGAACC AGATTGGGAG AGGTATTCCG ATGCTTATGA AAAACTTACA	1372
CGTGAGCTAT GGAAGGGGGT CACAGTCTCT GGTCTAACCC CTGGACATGT GCCACTGAGA	1432
ACCTTGAAAT TAAGAGGATG CCATGTCATT GCATAGAAAT GATAGTGTGA AGGGTTAAGT	1492
TCTTTTGAAT TGTTACATTG CGCTGGGACC TGCAAATAAG TTCTTTTTTT CTAATGAGGA	1552
GAAAAATATA TGTATTTTTA TATAATGTCT AAAGTTATAT TTCAGGTGTA ATGTTTTCTG	1612
TGCAAAGTTT TGTAAATTAT ATTTGTGCTA TAGTATTTGA TTCAAAATAT TTAAAAATGT	1672
CTCACTGTTG ACATATTTAA TGTTTTAAAT GTACAGATGT ATTTAACTGG TGCACTTTGT	1732
AATTCCCCTG AAGGTACTCG TAGCTAAGGG GGCAGAATAC TGTTTCTGGT GACCACATGT	1792
AGTITATTTC TTTATTCTTT TTAACTTAAT AGAGTCTTCA GACTTGTCAA AACTATGCAA	1852
GCAAAATAAA TAAATAAAA TAAAATGAAT ACCTTGAATA ATAAGTAGGA TGTTGGTCAC	1912
CAGGTGCCTT TCAAATTTAG AAGCTAATTG ACTTTAGGAG CTGACATAGC CAAAAAGGAA	1972
CATAATAGGC TACTGAAATC TGTCAGGAGT ATTTATGCAA TTATTGAACA GGTGTCTTTT	2032
TTTACAAGAG CTACAAATTG TAAATTTTGG TTTCTTTTTT TTCCCATAGA AAATGTACTA	2092
TAGTTTATCA GCCAAAAAAC AATCCACTTT TTAATTTAGT GAAAGTTATT TTATTATACT	2152
GTACAATAAA AGCATTGTCT CTGAATGTTA ATTTTTTGGT ACAAAAAATA AATTTGTACG	2212
AAAAAAAAA AAAAAAAA AAAAA	2237

Figure 3 (continued)

600-1-200

(Sheet 6 of 15)

Me	t Ar 1	g A	rg	Ala	Se:	r Ar	g As	р Ту	r Gl	y Ly 1	_	r Le	u Ar	g Se	r Se	
Gl	u Me	t G	ly	Ser 20		y Pro	o Gl	y Va	1 Pr 2		s Gl	u Gl	y Pr	o Le		s Pr
Ala	a Pr		er 35	Ala	Pro	Ala	a Pr	o Al 4		o Pro	o Pro	o Ala	a Ala 4	a Sei 5	r Arg	g Se
Me	Ph 5		eu	Ala	Leu	ı Leı	u Gl; 5		u Gly	y Let	ı Gl	Glr 60		l Val	l Cys	s Se:
Ile 65		a Le	eu	Phe	Leu	70 70		e Ar	g Ala	a Glr	n Met		Pro	o Asr	a Arg	y Ile 80
Ser	Gl	ı As	q	Ser	Thr 85		Cys	s Phe	е Туг	90		e Leu	Arg	g Leu	His 95	
Asr	ı Ala	a G	Y	Leu 100	Gln	. Asp	Ser	Thi	105		ı Ser	Glu	As <u>r</u>	7hr 110		ı Pro
Asp	Sei	с Су 11		Arg	Arg	Met	Lys	120		Phe	Glr	Gly	Ala 125	ı Val	. Gln	Lys
Glu	130		n	His	Ile	Val	Gly 135		Gln	ı Arg	Phe	Ser 140		/ Ala	Pro	Ala
Met 145		: G1	u	Gly	Ser	Trp 150	Leu	Asp	Val	Ala	Gln 155		Gly	' Lys	Pro	Glu 160
Ala	Glr	Pr	ο :	Phe	Ala 165	His	Leu	Thr	`Ile	Asn 170		Ala	Ser	Ile	Pro 175	
				180					185				•	Arg 190		
		19	5					200					205			
	210						215					220		Arg		
225						230					235			Met		240
					245					250				Leu	255	
			2	60					265					His 270		
Ser	Ile	Asr 275		al (Gly	Gly	Phe	Phe 280	Lys	Leu	Arg	Ala	Gly 285	Glu	Glu	Ile
Ser	Ile 290	Glr	ιV	al S	Ser.		Pro 295	Ser	Leu	Leu	Asp	Pro 300	Asp	Gln	Asp	Ala
Thr	Tyr	Phe	G	1y <i>1</i>	Ala :	Phe	Lys	Val	Gln	Asp	Ile	Asp	*			

Figure 4

305

Figure 7

Figure 8

Figure 9

Figure 10

Figure 13