18.701 Comments on Problem Set 3

1. Chapter 2, Exercise M.6a,b (paths in \mathbb{R}^k)

(a) We'll check transitivity. Let a,b,c be points of S, and suppose that there is a path X(t) in S from a to b and a path Y(t) from b to c. We must show that there is a path in S, say Z(t) that connects a to c. The idea is to travel with twice the velocity from a to b and from b to c. So the path Z is defined by Z(t) = X(2t) for $0 \le t \le \frac{1}{2}$, and Z(t) = Y(2t-1) for $\frac{1}{2} \le t \le 1$. Then Z(0) = X(0) = a and Z(1) = Y(1) = c. The path lies entirely in S because X(t) and Y(t) take values in S. It is continuous at all points except possibly $t = \frac{1}{2}$, because X and Y are continuous. At $t = \frac{1}{2}$, it is continuous from the left because X is continuous from the left at t = 1, and continuous from the right for the analogous reason.

2. Chapter 2, Exercise M.7 (paths in GL_n)

- (a) If X(t) is a path in GL_n from A to B and Y(t) is a path from C to D, the required path from AC to BD is Z(t) = X(t)Y(t).
- (b) If X(t) is a path from I to A and if P is an arbitrary matrix in GL_n , then $PX(t)P^{-1}$ will be a path from I to PAP^{-1} .

3. Chapter 2, Exercise M.8 (SL_n is connected)

This follows from the fact that SL_n is generated by the elementary matrices of the first type. They are connected to the identity in an obvious way: If $A = \begin{pmatrix} 1 & a \\ & 1 \end{pmatrix}$, then $X(t) = \begin{pmatrix} 1 & at \\ & 1 \end{pmatrix}$ is a path from I to A.

4. Chapter 3, Exercise 4.4 (order of $GL_2(\mathbb{F}_p)$)

The columns of a 2×2 matrix A form a basis of V if and only if they are independent, which happens if and only if A is invertible. To determine two independent vectors v_1, v_2 , one may choose for v_1 any nonzero vector. This gives us $p^2 - 1$ choices for v_1 , Then once v_1 is chosen, we can choose for v_2 any vector that is not a multiple of v_1 . This gives us $p^2 - p$ choices fore v_1 , given v_1 . The order of $GL_2(\mathbb{F}_p)$ is therefore $(p^2 - 1)(p^2 - p)$.

5. Chapter 6, Exercise 11.6 (a homomorphism from $GL_2(\mathbb{F}_3)$ to S_4)

Let's call the four subspaces W_i :

$$W_1 = \{0, (1,0)^t, (2,0)^t\}$$

$$W_2 = \{0, (0,1)^t, (0,2)^t\}$$

$$W_3 = \{0, (1,1)^t, (2,2)^t\}$$

 $W_4 = \{0, (1, 2)^t, (2, 1)^t\},\$

Multiplication by the matrix $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ sends $(1,0)^t \mapsto (0,1)^t$, so it operates by $W_1 \mapsto W_2$. It sends $(1,2)^t \mapsto (2,1)^t$, so it sends W_2 to itself. It acts on the subspaces W_2 as the permutation (12).

Let's determine the kernel of the resulting homomorphism $GL_2 \to S_4$. Suppose that $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ sends each W_i to itself. We compute the product with a vector $X = (x, y^t)$:

$$AX = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

When $(x,y)^t = (1,0)^t$ the answer must be $(1,0)^t$ or $(2,0)^t$. Therefore c=0. Similarly, b=0. So A is a diagonal matrix. Continuing, if A sends W_3 to itself, we must have A=I or 2I=-I. The kernel is the subgroup $\{\pm I\}$. The order of GL_2 is 48, so the counting formula tells us that the image has order 24. It is S_4 .