Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Outline

► Context-Free Grammars (CFGs)

Context-Free Grammars (CFGs)

- A notation able to specify more general languages than the regular languages
 - ► Used for programming languages and compilers (since the 60's)
 - And in many text processing systems, e.g., see the use of DTDs (Document Type Definition) in XML
- Example: palindrome
 - ► L={w | w=w^R and w ∈ $\{0,1\}^*$ }
 - Examples of strings in L: 0110, 11011, ε
 - ► It is not a regular language
 - Pumping Lemma
 - ► Selected n, be w=0ⁿ10ⁿ=xyz
 - Let y equal to one or more zeros of the first part of w, xz is also recognized by the automaton, but as x has less 0s than z it is not a palindrome and contradicts the hypothesis to be an automaton of the language

Context-Free Grammars (CFGs)

- L={w | w=w^R and w \in {0,1}*} is not a regular language
- ► Other languages of palindromes:
 - ► L={w | w=w^R and w ∈ $\{0\}^*$ }
 - ► Is a regular language?
 - L={0ⁿ0ⁿ | n≥0} a regular language?
 - ► Is a regular language?

Example of the Palindrome

L={w | w=w^R and w \in {0,1}*}

- ► Inductive (recursive) definition
 - ▶ Basis: 0, 1 and ε are palindromes
 - ► Induction: if w is a palindrome, 0w0 and 1w1 are also palindromes; nothing more is a palindrome
- ► Supposing a variable P:
 - ▶ Basis: $P = \{0, 1, \epsilon\}$
 - ► Induction: P= 0P0 OR 1P1

Example of the Palindrome

L={w | w=w^R and w \in {0,1}*}

- ► Inductive (recursive) definition
 - ▶ Basis: 0, 1 and ε are palindromes
 - ► Induction: if w is a palindrome, 0w0 and 1w1 are also palindromes; nothing more is a palindrome
- ► Alternative notation:
 - productions for P, variable that represents the language of the palindromes
 - 1. $P \rightarrow \varepsilon$
 - 2. $P \rightarrow 0$
 - 3. $P \rightarrow 1$
 - 4. $P \rightarrow 0P0$
 - 5. $P \rightarrow 1P1$

- $P \rightarrow \varepsilon \mid 0 \mid 1$
 - $P \rightarrow 0P0 \mid 1P1$
- ▶ Productions 1,2,3 constitute the basis; 4,5 are recursive
 - ► Interpretation of rule 4: if w is in P then 0w0 is also in P

Regular Expressions (REs) are not enough!

- Example of parenthesis: If for a given program, we remove every symbol that is not parenthesis, we obtain strings like (()())(). For example, we never obtain, (() or ())(, because the parenthesis must be paired
 - a) Show that the language of these strings is not regular
 - b) Show a CFG for the language

Answer:

- a) The language with strings (((...()...))) of length 2n is homomorphic of the language 0ⁿ1ⁿ (already proved as non-regular)
- b) B \rightarrow BB | (B) | ϵ
 - BB: the concatenation of two paired strings is paired
 - (B): parenthesis embracing a paired string form strings that belong to the language
 - ε Is the basis case

Definition of CFG

- ► CFG G=(V, T, P, S)
 - Tare the terminals, symbols used in the strings of the language
 - ▶ V are the variables (of the language), the non-terminals or syntactic categories
 - S is a start symbol, the variable of the defined language (the other variables are auxiliary variables)
 - ▶ P is a finite set of productions or rules of the form
 - \rightarrow H \rightarrow B₁B₂...B_n
 - ▶ Partial definition of H, the head, being B₁B₂...B_n, the body, a sequence of terminals and non-terminals
 - ► The strings of the language are the ones we obtain substituting the non-terminals B_i by strings that we now belong to the language B_i

Definition of CFG

► CFG Example:

- 1. $P \rightarrow \epsilon$
- 2. $P \rightarrow 0$
- 3. $P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- 5. $P \rightarrow 1P1$

Formal definition:

- ► G = ({P}, {0,1}, A, P), where A represents the 5 productions of P ► A = {P $\rightarrow \epsilon$, P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1}
- ▶I.e.:
 - ► G = ({P}, {0,1}, {P \rightarrow ϵ , P \rightarrow 0, P \rightarrow 1, P \rightarrow 0P0, P \rightarrow 1P1}

Example of Expressions

- Represent the arithmetic expressions with +, ×, parenthesis and identifiers
 - Alphabet of identifiers: 'a', 'b', '0', '1'
 - ▶ Identifiers: begin with a letter followed by any number of letters and digits
 - ▶ Other terminals: '(', ')', '+', '×'
 - ► RE for the identifiers: (a+b)(a+b+0+1)*
- Use of a variable E for the expressions and of a variable I for the identifiers
 - 1. $E \rightarrow I$

- 5. $I \rightarrow a$
- 2. $E \rightarrow E+E$ 6. $I \rightarrow b$
- 3. $E \rightarrow E \times E$
- 7. $I \rightarrow Ia$

4. $E \rightarrow (E)$

- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

More compact form:

$$E \rightarrow I \mid E+E \mid E\times E \mid (E)$$

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Inference

- ► Recursive Inference
 - ► From the basis up: from the bodies to the headers of the rules
 - Start with the known rules for the symbols in the input string and then apply rules; in the end we reach all using a horizontal search
 - ightharpoonup Example: $a \times (a+b00)$

1.	$E \rightarrow I$
2.	$E \rightarrow E+$
3.	$E \rightarrow E$
4.	$E \rightarrow (E$
5.	ı → a
6.	$I \rightarrow b$
7.	I → Ia
8.	$I \rightarrow Ib$
9.	$1 \rightarrow 10$
10.	$I \rightarrow I1$

	String	From	Used production	Used chains
i	a	I	5	
ii	b	I	6	
iii	b0	I	9	ii
iv	b00	I	9	iii
v	a	Е	1	i
vi	b00	Е	1	iv
vii	a+b00	Е	2	v, vi
viii	(a+b00)	Е	4	vii
ix	a×(a+b00)	Е	3	v, viii

Derivation

- From top to bottom; from the headers to the bodies of the rules
- Start with the goal, the target string, and apply the rules, substituting the variables by the respective bodies until we only have a chain of terminals; reach all using a vertical search

 F \rightarrow I
- ▶ Derivation step: ⇒
 - ► CFG G=(V,T,P,S) $\alpha, \beta \in (V \cup T)^*$ $A \in V$ $A \rightarrow \gamma \in P$
 - $\triangleright \alpha A\beta \Rightarrow_{G} \alpha \gamma \beta$
 - ▶⇒* means derivation in 0 or more steps
- \triangleright E \Rightarrow E×E \Rightarrow I×E \Rightarrow a×E \Rightarrow

$$a\times(E) \Rightarrow a\times(E+E) \Rightarrow a\times(I+E) \Rightarrow a\times(a+E) \Rightarrow$$

$$\Rightarrow$$
 a×(a+I) \Rightarrow a×(a+I0) \Rightarrow a×(a+I00) \Rightarrow a×(a+b00)

 $F \rightarrow F+F$

 $F \rightarrow F \times F$

 $E \rightarrow (E)$

l → a l → b

 $1 \rightarrow 1a$

 $I \rightarrow Ib$

 $1 \rightarrow 10$ $1 \rightarrow 11$

Derivation

- In the previous example we selected in each step the leftmost variable:
- ► Rightmost derivation ⇒
- Example:

$$E \underset{rm}{\longrightarrow} E \times E \underset{rm}{\longrightarrow} E \times (E) \underset{rm}{\longrightarrow} E \times (E+E) \underset{rm}{\longrightarrow} E \times (E+E) \underset{rm}{\longrightarrow} E \times (E+I0) \underset{rm}{\longrightarrow} E \times (E+I00) \underset{rm}{\longrightarrow} E \times (E+b00) \underset{rm}{\longrightarrow} I \xrightarrow{} b \\ I \xrightarrow{} b \\ I \xrightarrow{} b \\ I \xrightarrow{} la \\ E \times (I+b00) \underset{rm}{\longrightarrow} E \times (a+b00) \underset{rm}{\longrightarrow} I \times (a+b00) \underset{rm}{\longrightarrow} a \times (a+b00) \\ I \xrightarrow{} lb \\ I \xrightarrow{} l0 \\ I \xrightarrow{} l1$$

 $F \rightarrow I$

 $F \rightarrow F+F$

 $F \rightarrow F \times F$

Language of a Grammar

► The language of a CFG G=(V,T,P,S) is the set of strings (chains of terminal symbols) which have derivation from the start variable S:

$$L(G) = \{ w \in T^* \mid S \xrightarrow{G} w \}$$

Language of a Grammar

w is palindrome \rightarrow w $\in \{0,1\}^*$ is in $L(G_{pal})$

```
► Theorem: L(G_{pal}) is the set of palindromes over \{0,1\}
                                                                                                 G<sub>pal</sub>:
     ▶ Proof: w \in \{0,1\}^* is in L(G_{pal}) if and only if (iff) w is
       palindrome, i.e., w=w<sup>R</sup>
                                                                                                3 \leftarrow 9
     ▶ [if] hypothesis: w is palindrome; induction in |w|
                                                                                                 P \rightarrow 0
           ▶ Basis: |w| = 0 or |w| = 1, i.e., w = \varepsilon, w = 0, w = 1
                                                                                                 P \rightarrow 1
             as there exist the productions (and P \rightarrow \varepsilon, P \rightarrow 0, P \rightarrow 1 then
                                                                                                 P \rightarrow 0P0
                                                                                                 P \rightarrow 1P1
                                     P \longrightarrow w
           ▶ Induction: suppose |w| \ge 2, as w = w^R, w must begin and end with
             the same symbol, w=0x0 or w=1x1. In addition, x=x^{R}. By
```

hypothesis, $P \longrightarrow 0P0 \longrightarrow 0x0 = w$ Then $P \stackrel{*}{\longrightarrow} x$ And similarly for 1x1. w is in L(G_{pal}). qed (if)

Proof (cont.)

 $w \in \{0,1\}^*$ is in $L(G_{pal})$ \rightarrow w is

palindrome

- ▶ [and only if] hypothesis: w is in G_{pal} , $P \xrightarrow{w} w$ induction in the number of steps of a derivation of w from P
 - ▶ **Basis:** derivation with a single step: use non-recursive rules. We obtain ε , 0, 1 which are all palindromes
 - ► Induction: suppose that the derivation has n+1 steps and the statement is true for all the derivations with n steps, $P \xrightarrow{*} x$ then x is palindrome x=x^R
 - ▶ A derivation with n+1 steps can only be

$$P \Longrightarrow 0P0 \Longrightarrow 0x0 = w$$
 or $P \Longrightarrow 1P1 \Longrightarrow 1x1 = w$

As $w^R = (0x0)^R = 0x^R0 = 0x0 = w$ then w is a palindrome. Qed (and only if)

qed (iff)

 G_{pal} : $P \rightarrow \epsilon$ $P \rightarrow 0$ $P \rightarrow 1$ $P \rightarrow 0P0$ $P \rightarrow 1P1$

Sentential Forms

- Sentential forms are derivations from the start symbol
 - ► CFG G=(V,T,P,S)
 - $ho \alpha \in (V \cup T)^*$ is a sentential form if $S \underset{G}{\Longrightarrow} \alpha$
- ► Left (right) sentential form
 - ► Leftmost (rightmost) derivation
- ►L(G) consists of the sentential forms that belong to T* (i.e., only have terminals)

Exercise 1

- ▶ Define context-free grammars (CFGs) for the following non-regular languages
- i) The set $\{0^n1^n \mid n \ge 1\}$
- ii) The set $\{a^ib^jc^k \mid i\neq j \text{ or } j\neq k, i,j\geq 0\}$
- Answer

Exercise 1

- ▶ Define context-free grammars (CFGs) for the following non-regular languages
- i) The set $\{0^n1^n \mid n \ge 1\}$
- ii) The set $\{a^ib^jc^k \mid i\neq j \text{ or } j\neq k, i,j\geq 0\}$
- ► Answer

```
ii) S \rightarrow AB \mid CD

A \rightarrow aA \mid \varepsilon

B \rightarrow bBc \mid E \mid cD

C \rightarrow aCb \mid E \mid aA

D \rightarrow cD \mid \varepsilon

E \rightarrow bE \mid b
```

Syntax Trees (or Analysis Trees)

- Data structure most used to represent the input program in a compiler
 - ► Helps compiler analysis and code generation
- Consider G=(V,T,P,S); a syntax tree for G is a tree in which
 - ▶ The label of each internal node is a grammar variable
 - The label of each leaf node is a grammar variable, a terminal or ϵ (in this case unique child)
 - ▶ If an internal node has a label A and children labeled X_1 ... X_k then A \rightarrow X_1 ... X_k is a production in P

Examples of Syntax Trees

- ► A syntax tree represents a derivation
- ▶ Derivation $P \Longrightarrow 0110$

- A derivation can be partial $E \Longrightarrow I + E$ Derivation $E \longleftrightarrow E + E$ |
- Each internal node in the tree corresponds to the application of a production

Yield of a Syntax Tree

- ► The yield of a tree is the concatenation of the symbols in the leaves (left-to-right)
- ► All the yields of the trees with the start variable of G as root are sentential forms of G
- The yields of these trees that are terminals (leaves with terminals or ϵ) are strings of the language

A Syntax Tree for a×(a+b00)

Grammar G: E → I | E+E | E×E | (E) I → a | b | Ia | Ib | I0 | I1

$$E \Rightarrow E \times E \Rightarrow I \times E \Rightarrow a \times E \Rightarrow a \times (E) \Rightarrow a \times (E+E)$$
$$\Rightarrow a \times (I+E) \Rightarrow a \times (a+E) \Rightarrow a \times (a+I) \Rightarrow$$
$$a \times (a+I0) \Rightarrow a \times (a+I00) \Rightarrow a \times (a+b00)$$

Equivalences

- ► Given a grammar G=(V,T,P,S), the following are equivalent:
 - ► The recursive inference procedure determines that the terminal string w is in the language of variable A
 - $A \xrightarrow{*} W$
 - $A \Longrightarrow_{lm} W$
 - $A \Longrightarrow W$
 - ▶ There is a syntax tree with root A and yield w
- ► The equivalences are true even if w contains variables

Parsers

- ► Formal grammars proposed by Noam Chomsky
 - Limited to describe natural languages
 - Very useful to describe artificial languages
- ▶ Programming Languages
 - Some aspects can be defined by regular expressions
 - ▶ But the pairing of parenthesis and if-else structures is not a regular language they need CFGs
- ► There exist programs (e.g., Lex and Yacc, Flex and Bison, JavaCC, Antlr) that from an input CFG for a given language L, automatically generate a parser (i.e., a program able to implement the CFG)
 - Useful for language processors (in compilers, interpreters, translators)

Use of CFGs

Syntax Trees Meanings

- Example of the if-else:
 - In a programming language, the construction *if* can be isolated or paired with *else*. Examples: *i, ie, ieie, iiee*. And not: *ei, iee*
 - ▶ a) define a CFG for this language
 - b) show all the syntax trees of iie; which one is the correct in C?
- Answer:
 - ▶a) S \rightarrow ϵ | SS | iS | iSeS
 - **b**)

Ambiguity of a CFG

- Example of the if-else: analysis of the string *iie*
 - 3 syntax trees with different meaning
- Example of arithmetic expressions: analysis of a+b
 - ▶ Derivation 1: $E \Rightarrow E+E \Rightarrow I+E \Rightarrow a+E \Rightarrow a+I \Rightarrow a+b$
 - ▶ Derivation 2: $E \Rightarrow E+E \Rightarrow E+I \Rightarrow I+I \Rightarrow I+b \Rightarrow a+b$
 - Derivations are different but syntax tree is the same: same meaning
- ► A CFG G=(V,T,P,S) is **ambiguous** if
 - There exists a string w in T* to which there exist two different syntax trees with root S and leaves (yield) w
- ► If there is not none of those strings the CFG is **not ambiguous**

Priorities of Operators

- ► String a + a × a has 2 syntax trees ambiguous grammar
 - ► To eliminate the ambiguity we can use **rules of priority**
 - * has priority over +, applied before + left or right (1st tree respects the rule, the 2nd not)
 - ightharpoonupa + a × a = a + (a × a) \neq (a + a) × a

Associativity

- ► String a + a + a has 2 syntax trees ambiguous grammar
 - ► To eliminate the ambiguity we can use the associativity rule
 - Sequences of operators with the same priority are left associative (2nd tree does not respect this rule, the 1st tree respects)
 - \triangleright a + a + a = (a + a) + a
 - As the addition is associative, the results is the same in both analysis
 - And if it is the division? Ex: 8 / 4 / 2

Eliminating the Ambiguity in the CFG

► The ambiguity can be eliminated adding new variables, to distinguish levels of priority and association rules

Concepts:

- ► Factor: expression that cannot be split by adjacent operators (+ or ×) identifiers and expressions between parenthesis
- ► Term: expression that cannot be split by +
- ► Expression: other expressions an expression is thus a sum of one or more terms

Non-Ambiguous Grammar

- Original grammar (ambiguous):
 - \triangleright E \rightarrow I | E+E | E×E | (E)
 - ▶ I → a | b | Ia | Ib | I0 | I1
- ► Modified grammar:
 - ► E → I | E+I | E×I | (E)
 - ▶ I → a | b | Ia | Ib | IO | I1

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E)$

- ► Modified grammar (respecting the priority of the operators):
 - \triangleright E \rightarrow T|T+E
 - ightharpoonup F | F×T
 - \triangleright F \rightarrow I | (E)
 - ▶ I → a | b | Ia | Ib | I0 | I1
- Exercise: show the syntax tree for a+a×a

Does not respect the priority of the operators and...

Ambiguity and Derivations

- ► Theorem: for each grammar and each string w of terminals, there are two different syntax trees **iff** there are two different leftmost (and consequently two different rightmost) derivations of w (starting in S, the start variable of the grammar)
- Example: leftmost derivations of a+a×a

Ambiguity in a Language (homework)

- A context-free language L is **ambiguous** if all the grammars for L are ambiguous
- Example: L= $\{a^nb^nc^md^m \mid n\geq 1, m\geq 1\} \cup \{a^nb^mc^md^n \mid n\geq 1, m\geq 1\}$
- Exercise:
 - a) Define a CFG
 - b) Show 2 syntax tree for w=aabbccdd

Examples of CFGs and Parsers

Markup Languages: HTML

► The strings of these languages contains marks to structure the text and to control its presentation

```
<P>The evaluation of <B>CLF</B> includes: <OL><LI>Midterm Exam <LI>Final Exam <LI>Exercises </OL>
```

```
Char → a | A | ... Element → Text |

Texto → \varepsilon | Char Text < P> Doc |

Doc → \varepsilon | Element Doc <B> Doc </B> |

COL> List 
List → \varepsilon | ItemList List
ItemList → <LI> Doc
```

XML (eXtensible Markup Language)

- ► Some aspects of HTML do not need the power of CFGs
 - ▶ The 1st and 2nd lines define that Text can be represented by the regular language (a+A+...)*
 - ▶ The elements and require a CFG
- In HTML, the grammar is predefined
 - ▶ Browsers include an HTML parser to analyze the input documents, to produce a tree and show results
- > XML allows users to define their own grammar in a DTD (Document Type Definition)
 - Documents explicit the DTD which specifies the structure
 - ▶ Browsers need to have the capacity to process the grammar to validate the input documents

HTML Document HTML Browser Parser Browser HTML Doc OL **Texto**

XML Browser

Document of type "CURSO"

XML Documents

```
<GRAU>M</GRAU>
                               <CADEIRA>
<CURSO>
                                <CNOME>Matemática</CNOME>
<GRAU>L</GRAU>
                                <PROF>Francisco</PROF>
<CADEIRA>
                                <ALUNO>Zé</ALUNO>
 <CNOME>Lógica</CNOME>
                                <ALUNO>Rui</ALUNO>
 <PROF>Francisco</PROF>
                                <ASSISTENTE>Luis</ASSISTENTE>
</CADEIRA>
</CURSO>
                               </CADEIRA>
                               <CADEIRA>
                                <CNOME>Redes</CNOME>
                                <PROF>Antonio</PROF>
                               </CADEIRA>
                              </CURSO>
```

<CURSO>

Syntax of DTDs

```
<!DOCTYPE name-of-DTD [
    list of element definitions
]>
<!ELEMENT name-of-element (description)>
```

- Description is a regular expression
 - ▶ Basis: other elements or #PCDATA (text without marks)
 - ► Operators:
 - ▶"|" union
 - "," concatenation
 - ▶ "*" closure, zero or more
 - ► "+" closure, one or more
 - "?" closure, zero or one
 - ▶ Parenthesis can be used

DTD "CURSO" (course)

```
<!DOCTYPE CURSO [
<!ELEMENT CURSO (GRAU, CADEIRA+)>
<!ELEMENT CADEIRA (CNOME, PROF, ALUNO*, ASSISTENTE?)>
<!ELEMENTGRAU (L | M | D)>
<!ELEMENT CNOME (#PCDATA)>
<!ELEMENT PROF (#PCDATA)>
<!ELEMENT ALUNO (#PCDATA)>
<!ELEMENT ASSISTENTE (#PCDATA)>
]>
```

XML and CFGs

- Rewrite DTD in the notation of CFGs
 - Convert CFG with regular expressions in the body of the rules to CFG forms
- ▶ Basis: if the body is a concatenation then it is already in the CFG form
- Induction: 5 cases

XML and CFGs

```
\triangleright A \rightarrow (E_1)^*
            \triangleright A \rightarrow BA
                                                                                  (B is new)
           3 ← A ◀
           \triangleright B \rightarrow E<sub>1</sub>
\triangleright A \rightarrow (E_1)^+
            \trianglerightA \rightarrow BA
            \triangleright A \rightarrow B
           \triangleright B \rightarrow E<sub>1</sub>
\triangleright A \rightarrow (E_1)?
            3 ← A ◀
           \triangleright A \rightarrow E_1
```

Exercise: Convert the DTD "CURSO"

CURSO → GRAU, CAD <!DOCTYPE CURSO [CAD → CADEIRA <!ELEMENT CURSO (GRAU, CADEIRA+)> CAD → CADEIRA CAD <!ELEMENT CADEIRA (CNOME, PROF, ALUNO*, ASSISTENTE?)> CADEIRA → CNOME PROF AL ASS $AL \rightarrow BAL \mid \varepsilon \text{ or } AL \rightarrow ALUNO AL \mid \varepsilon$ <!ELEMENT GRAU (L | M | D)> $B \rightarrow ALUNO$ <!ELEMENT CNOME (#PCDATA)> ASS \rightarrow ASSISTENTE | ϵ $GRAU \rightarrow L \mid M \mid D$ <!ELEMENT PROF (#PCDATA)> CNOME → #PCDATA <!ELEMENT ALUNO (#PCDATA)> PROF → #PCDATA <!ELEMENT ASSISTENTE (#PCDATA)> ALUNO → #PCDATA ASSISTENTE \rightarrow #PCDATA]>