$12a_{0517} (K12a_{0517})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{72} - u^{71} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 72 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{72} - u^{71} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} + 2u^{7} + u^{5} - 2u^{3} - u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{14} - 3u^{12} - 4u^{10} - u^{8} + 1 \\ -u^{16} - 4u^{14} - 8u^{12} - 8u^{10} - 4u^{8} + 2u^{6} + 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{28} + 7u^{26} + \dots + u^{2} + 1 \\ u^{30} + 8u^{28} + \dots + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{23} - 6u^{21} - 16u^{19} - 20u^{17} - 4u^{15} + 22u^{13} + 26u^{11} + 6u^{9} - 9u^{7} - 6u^{5} \\ u^{23} + 7u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{62} + 17u^{60} + \dots - 6u^{6} + 1 \\ -u^{62} - 18u^{60} + \dots + 8u^{4} + 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{70} 4u^{69} + \cdots + 8u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{72} + 41u^{71} + \dots - 10u^2 + 1$
c_2, c_7	$u^{72} + u^{71} + \dots - 2u - 1$
c_3, c_4, c_8	$u^{72} - u^{71} + \dots + 42u - 17$
c_5,c_{11}	$u^{72} - u^{71} + \dots + 2u^3 - 1$
c_6, c_{12}	$u^{72} - 3u^{71} + \dots - 18u + 3$
<i>c</i> ₉	$u^{72} - 11u^{71} + \dots - 18764u + 1889$
c_{10}	$u^{72} + 39u^{71} + \dots - 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{72} - 19y^{71} + \dots - 20y + 1$
c_2, c_7	$y^{72} + 41y^{71} + \dots - 10y^2 + 1$
c_3, c_4, c_8	$y^{72} - 79y^{71} + \dots - 10740y + 289$
c_5,c_{11}	$y^{72} - 39y^{71} + \dots - 2y^2 + 1$
c_6, c_{12}	$y^{72} + 61y^{71} + \dots - 624y + 9$
c_9	$y^{72} - 31y^{71} + \dots - 2222228y + 3568321$
c_{10}	$y^{72} - 11y^{71} + \dots - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.439849 + 0.927313I	0.59296 - 2.15388I	0. + 3.34635I
u = -0.439849 - 0.927313I	0.59296 + 2.15388I	0 3.34635I
u = 0.127748 + 0.947194I	-2.02452 - 1.35976I	-10.77685 + 3.46053I
u = 0.127748 - 0.947194I	-2.02452 + 1.35976I	-10.77685 - 3.46053I
u = -0.351185 + 0.866043I	-0.38120 - 1.62589I	-2.66925 + 4.11942I
u = -0.351185 - 0.866043I	-0.38120 + 1.62589I	-2.66925 - 4.11942I
u = 0.461087 + 0.962460I	0.08467 + 6.28501I	0
u = 0.461087 - 0.962460I	0.08467 - 6.28501I	0
u = 0.344819 + 1.019280I	-3.62015 + 2.92141I	0
u = 0.344819 - 1.019280I	-3.62015 - 2.92141I	0
u = 0.206282 + 1.082360I	-4.82312 - 0.17742I	0
u = 0.206282 - 1.082360I	-4.82312 + 0.17742I	0
u = 0.456210 + 0.765907I	-3.17229 - 2.09595I	-5.70344 - 0.42832I
u = 0.456210 - 0.765907I	-3.17229 + 2.09595I	-5.70344 + 0.42832I
u = -0.189472 + 1.099100I	-8.15714 + 4.74025I	0
u = -0.189472 - 1.099100I	-8.15714 - 4.74025I	0
u = 0.882022 + 0.044279I	-11.98020 - 0.80891I	-10.79930 - 0.35413I
u = 0.882022 - 0.044279I	-11.98020 + 0.80891I	-10.79930 + 0.35413I
u = 0.879727 + 0.056445I	-11.1703 - 9.8634I	-9.53343 + 5.93137I
u = 0.879727 - 0.056445I	-11.1703 + 9.8634I	-9.53343 - 5.93137I
u = -0.875707 + 0.050791I	-7.91972 + 4.99528I	-6.55693 - 2.82964I
u = -0.875707 - 0.050791I	-7.91972 - 4.99528I	-6.55693 + 2.82964I
u = -0.225561 + 1.101690I	-8.49214 - 4.06217I	0
u = -0.225561 - 1.101690I	-8.49214 + 4.06217I	0
u = 0.474807 + 1.020050I	-2.88869 + 6.40679I	0
u = 0.474807 - 1.020050I	-2.88869 - 6.40679I	0
u = -0.489288 + 1.023920I	-5.98929 - 11.10170I	0
u = -0.489288 - 1.023920I	-5.98929 + 11.10170I	0
u = -0.862003	-7.62273	-11.5620
u = -0.467805 + 1.041330I	-6.73822 - 2.46906I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.467805 - 1.041330I	-6.73822 + 2.46906I	0
u = -0.838828 + 0.044532I	-3.98379 + 5.00843I	-5.49188 - 6.00077I
u = -0.838828 - 0.044532I	-3.98379 - 5.00843I	-5.49188 + 6.00077I
u = 0.474990 + 0.690912I	-2.96171 + 6.03372I	-4.87395 - 7.35313I
u = 0.474990 - 0.690912I	-2.96171 - 6.03372I	-4.87395 + 7.35313I
u = 0.825126 + 0.022311I	-2.88998 - 0.66859I	-2.98851 - 0.14329I
u = 0.825126 - 0.022311I	-2.88998 + 0.66859I	-2.98851 + 0.14329I
u = -0.413409 + 0.683683I	0.00742 - 1.75216I	-1.16689 + 4.43589I
u = -0.413409 - 0.683683I	0.00742 + 1.75216I	-1.16689 - 4.43589I
u = 0.450918 + 1.227690I	-6.60070 + 3.85865I	0
u = 0.450918 - 1.227690I	-6.60070 - 3.85865I	0
u = -0.438765 + 1.234300I	-7.81587 + 0.51539I	0
u = -0.438765 - 1.234300I	-7.81587 - 0.51539I	0
u = 0.470711 + 1.225250I	-6.45782 + 5.32632I	0
u = 0.470711 - 1.225250I	-6.45782 - 5.32632I	0
u = -0.442364 + 0.520924I	1.71123 - 1.63055I	1.63060 + 4.27651I
u = -0.442364 - 0.520924I	1.71123 + 1.63055I	1.63060 - 4.27651I
u = -0.481138 + 1.227880I	-7.51183 - 9.76537I	0
u = -0.481138 - 1.227880I	-7.51183 + 9.76537I	0
u = -0.590261 + 0.336282I	-4.08423 + 6.85269I	-6.08983 - 5.98107I
u = -0.590261 - 0.336282I	-4.08423 - 6.85269I	-6.08983 + 5.98107I
u = -0.463776 + 1.244240I	-11.37070 - 4.72051I	0
u = -0.463776 - 1.244240I	-11.37070 + 4.72051I	0
u = -0.436607 + 1.257510I	-11.90830 + 0.38192I	0
u = -0.436607 - 1.257510I	-11.90830 - 0.38192I	0
u = 0.433445 + 1.260510I	-15.1956 - 5.2532I	0
u = 0.433445 - 1.260510I	-15.1956 + 5.2532I	0
u = 0.441141 + 1.260650I	-15.9636 + 3.8514I	0
u = 0.441141 - 1.260650I	-15.9636 - 3.8514I	0
u = -0.490825 + 1.242560I	-11.5116 - 9.9029I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.490825 - 1.242560I	-11.5116 + 9.9029I	0
u = 0.494249 + 1.243290I	-14.7502 + 14.8001I	0
u = 0.494249 - 1.243290I	-14.7502 - 14.8001I	0
u = 0.488923 + 1.246820I	-15.6129 + 5.7245I	0
u = 0.488923 - 1.246820I	-15.6129 - 5.7245I	0
u = 0.477316 + 0.439878I	1.50816 - 2.35510I	0.54892 + 4.70586I
u = 0.477316 - 0.439878I	1.50816 + 2.35510I	0.54892 - 4.70586I
u = -0.586128 + 0.275072I	-4.62644 - 1.65735I	-7.50243 + 0.63837I
u = -0.586128 - 0.275072I	-4.62644 + 1.65735I	-7.50243 - 0.63837I
u = 0.556736 + 0.320665I	-0.97920 - 2.29313I	-2.83779 + 3.07654I
u = 0.556736 - 0.320665I	-0.97920 + 2.29313I	-2.83779 - 3.07654I
u = 0.411425	-1.15550	-8.76440

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{72} + 41u^{71} + \dots - 10u^2 + 1$
c_{2}, c_{7}	$u^{72} + u^{71} + \dots - 2u - 1$
c_3, c_4, c_8	$u^{72} - u^{71} + \dots + 42u - 17$
c_5,c_{11}	$u^{72} - u^{71} + \dots + 2u^3 - 1$
c_6, c_{12}	$u^{72} - 3u^{71} + \dots - 18u + 3$
<i>c</i> ₉	$u^{72} - 11u^{71} + \dots - 18764u + 1889$
c_{10}	$u^{72} + 39u^{71} + \dots - 2u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{72} - 19y^{71} + \dots - 20y + 1$
c_2, c_7	$y^{72} + 41y^{71} + \dots - 10y^2 + 1$
c_3, c_4, c_8	$y^{72} - 79y^{71} + \dots - 10740y + 289$
c_5, c_{11}	$y^{72} - 39y^{71} + \dots - 2y^2 + 1$
c_6, c_{12}	$y^{72} + 61y^{71} + \dots - 624y + 9$
<i>c</i> ₉	$y^{72} - 31y^{71} + \dots - 22222228y + 3568321$
c_{10}	$y^{72} - 11y^{71} + \dots - 4y + 1$