COMP111 - Tutorial 5 Answers

Ben Weston

November 13, 2020

2. There are 7 interpretations, I, making P true and the one making P false is $I(p_1)=1,\,I(p_2)=0$ and $I(p_3)=1.$

p_1	p_2	p_3	$\neg p_2$	$(p_1 \wedge \neg p_2)$	$((p_1 \land \neg p_2) \land p_3)$	P
0	0	0	1	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	1	0	0	0	1
1	0	0	1	1	0	1
1	0	1	1	1	1	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

Table 1: Truth table of $P = (((p_1 \land \neg p_2) \land p_3) \Rightarrow p_2)$

3. (c) As $P \neq 1$ for all interpretations of p_1 this formula is not satisfiable.

p_1	$\neg p_1$	P
0	1	0
1	0	0

Table 2: Truth table of $(p_1 \Leftrightarrow \neg p_1)$