Baseball Attendance Data for Time Series Analysis and Forecasting

Springboard Data Science Capstone Project Isaac Paulson

Presentation Goals

I can...

- Communicate data findings
- Understand the data science process
- Use Python for time series analysis and forecasting
- Show that I have learned something

Problem

Baseball attendance has been declining

Hypotheses

- 1. Attendance is affected by on-field measures (e.g. strikeouts, homeruns)
- Attendance is more affected by off-field measures (e.g. ticket prices, time of game)

The Data

Multivariate time series (by year)

- Attendance per game
- In-game measures (e.g. home runs, strikeouts, etc.)
- Time of game
- Cost per ticket

EDA

Attendance per game

EDA

Strikeouts and Home Runs

EDA

Saves and Strikeouts over 9 Innings

Correlations

- Saves and attendance: r = .94
- Ticket prices and attendance: r = .63
- Game time and attendance: r = .95

Persistence Model

- t 1
- RMSE = 1591.918

ARIMA Model

- Lag order: p = 0
- Degree of differencing: d = 1
- Order of moving average: q = 2
- Root mean squared error: RMSE = 1146.070

ARIMA Model

Predicted Average and Actual Data

Conclusions and Next Steps

- Changes in in-game statistics correlate to rising attendance
- Attendance is dropping (or maybe holding steady)
- Why is attendance dropping?

What I Learned

- No such thing as a crystal ball
- Working with time series is harder than it looks!

