LA Übungsaufgaben

Aufgabe 1

Bestimmen Sie den Lösungsraum folgendes Linearen Gleichungssystems:

$$\left[\begin{array}{cccc} 1 & 2 & -1 & -1 \\ 2 & 4 & 2 & 6 \\ 2 & 4 & 3 & 7 \end{array}\right] \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right) = \left(\begin{array}{c} -2 \\ 8 \\ 9 \end{array}\right)$$

Aufgabe 2

Sei $p,q\in\mathbb{Z}_7[t]$. Berechne: $(6t^5+5t^3+3t+2):(5t^2)$ (Achtung, wir sind im Restklassenkörper \mathbb{Z}_7 , nicht der Höchstgrad)

Aufgabe 3

Finden Sie mithilfe eines LGS ein Polynom p = $c_2t^2 + c_1t + c_0 \in \mathbb{Z}_5[t]$, dessen zugehörige Polynomfunktion folgendes erfüllt:

$$\widetilde{p}(0) = 3$$
, $\widetilde{p}(1) = 2$, $\widetilde{p}(3) = 4$

(Achtung, wir sind im Restklassenkörper \mathbb{Z}_5 , nicht der Höchstgrad)

Aufgabe 4

Gegeben sei die Punktauswertungsabbildung:

$$f: \mathbb{R}_3[t] \ni p \mapsto \left(\begin{array}{c} \widetilde{p}(-2) \\ \widetilde{p}(0) \\ \widetilde{p}(2) \end{array} \right) \in \mathbb{R}^3$$

Bezüglich der Monombasis und der Standardbasis in \mathbb{R}^3 . Geben Sie die Darstellungsmatrix an und berechnen Sie das Bild und den Kern dieser.

Weiter noch:

Berechne die Darstellungsmatrix der obigen Punkteauswertungsabbildung mit der Monombasis und der R^3 Basis: $\{(1,1,0)^T,(0,1,1)^T,(1,0,1)^T\}$.

Aufgabe 5

Zeigen Sie, dass der Restklassenring $(\mathbb{Z}_7, +_7, \cdot_7)$ ein Körper ist.

Aufgabe 6

Darstellungsmatrizen

1te Subaufgabe

Gegeben sei eine lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch f(x,y)=(2x+y,x-3y). Bestimme die Darstellungsmatrix von f bezüglich der Standardbasis in \mathbb{R}^2 .

2te Subaufgabe

Gegeben sei eine lineare Abbildung $g: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch g(x,y,z)=(x+2y-z,2x-y+z,x+y). Bestimme die Darstellungsmatrix von g bezüglich der Standardbasis in \mathbb{R}^3

3te Subaufgabe

Gegeben seien die Basen $B = \{(1,0),(1,1)\}$ und $C = \{(1,1),(1,-1)\}$ von R^2 . Bestimme die Darstellungsmatrix der Identitätsabbildung $id: R^2 \to R^2$ bezüglich der Basis B für den Definitionsbereich und der Basis C für den Zielbereich.

4te Subaufgabe

Gegeben sei eine lineare Abbildung $h: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch h(x,y)=(3x+4y,2x+3y). Bestimme die Darstellungsmatrix von h bezüglich der Basis $B = \{(1,1),(1,-1)\}$

5te Subaufgabe

Gegeben sei eine lineare Abbildung $k: R^3 \to R^3$ definiert durch k(x,y,z)=(x+y,y+z,z+x). Bestimme die Darstellungsmatrix von k bezüglich der Basis $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ für den Definitionsbereich und der Basis $C=\{(1,1,0),(0,1,1),(1,0,1)\}$ für den Zielbereich.

6te Subaufgabe

Gegeben sei das Polynom $p(x) = 2x^3 - 3x^2 + x - 1$. Bestimme die Koordinatendarstellung des Polynoms bezüglich der Basis $B = \{1, x, x^2, x^3\}$.

7te Subaufgabe

Gegeben sei das lineare Gleichungssystem (LGS)

$$x + 2y - z = 5,$$

$$2x - y + z = 1,$$

$$x + y + z = 3.$$

Schreibe dieses LGS in Matrixform Ax=b und bestimme die Lösungsmenge.

8te Subaufgabe

Gegeben sei das Polynom $r(x) = -x^3 + 2x^2 - x + 3$. Bestimme die Darstellungsmatrix des Polynoms bezüglich der neuen Basis $B = \{1, x+2, (x+2)^2, (x+2)^3\}$.

Aufgabe 7

1te Subaufgabe

Seien (\mathbb{Z} ,+) und (\mathbb{Z} ,+) die Gruppen der ganzen Zahlen mit der Addition. Die Abbildung $f:\mathbb{Z}\to\mathbb{Z}$ sei definiert durch f(x)=2x. Zeige, dass f ein Gruppenhomomorphismus ist.

2te Subaufgabe

Seien $(\mathbb{R}_{\neq 0}, \cdot)$ und $(\mathbb{R}, +)$ die Gruppen der reellen Zahlen ohne Null mit der Multiplikation bzw. der Addition. Die Abbildung $g: \mathbb{R}_{\neq 0} \to \mathbb{R}$ sei definiert durch g(x) = ln|x|. Zeige, dass g ein Gruppenhomomorphismus ist.

3te Subaufgabe

Seien $(\mathbb{Z}/6\mathbb{Z},+)$ und $(\mathbb{Z}/6\mathbb{Z},+)$ die Gruppen der ganzen Zahlen modulo 6 mit der Addition. Die Abbildung l: $(\mathbb{Z}/6\mathbb{Z},+) \to (\mathbb{Z}/6\mathbb{Z},+)$ sei definiert durch l([x])=[3x]. Zeige, dass l ein Gruppenhomomorphismus ist.

Kleine Beweiße

1te Subaufgabe

Gruppen: Zeige, dass in jeder Gruppe G das neutrale Element eindeutig ist.

2te Subaufgabe

Ringe: Sei R ein Ring und $a, b \in \mathbb{R}$. Zeige, dass $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$.

3te Subaufgabe

Körper: Sei K ein Körper und $a \in K$. Zeige, dass wenn $a \neq 0$, dann ist das multiplikative Inverse von a eindeutig

4te Subaufgabe

Vektorräume: Sei V ein Vektorraum über einem Körper K und $v \in V.$ Zeige, dass $0 \cdot v = 0.$

5te Subaufgabe

Gruppenhomomorphismen: Seien G und H Gruppen und $f:G\to H$ ein Gruppenhomomorphismus. Zeige, dass $f(e_G)=e_H$, wobei e_G und e_H die neutralen Elemente von G bzw. H sind.

Gemischt

Gegeben sei \sim eine Äquivalenz
relation auf $\mathbb Z$ mit:

 $a \sim b \Leftrightarrow (a - b) : 5 = n \ \forall n \in \mathbb{Z}$

- 1. Zeige das \sim eine Äquivalenzrelation ist.
- 2. Beschreiben Sie wie die Äguivalenzklassen von \sim ausehen.
- 3. Zeige das die Operation $+:([a]_{\sim},[b]_{\sim})\mapsto [a+b]_{\sim}$ wohldefiniert ist.
- 4. Zeige, dass $\pi:\mathbb{Z}\to\mathbb{Z}/\sim$ ein Surjektiver Homomorphismus ist.
- By Captain Joni.info