

Projecto de Sistemas de Informação

Life Inspiration V0.3

Problema:

Procura-se encontrar um ou mais caminhos, para percorrer todas as cidades e voltar ao ponto de origem, sem nunca passar numa cidade duas vezes e obter o caminho com menos custo.

Esquema:

- Tamanho do gene igual ao número de cidades;
- As cidades são indexadas para que as suas representações sejam números inteiros;
- A ordem com que os alelos aparecem no gene é a mesma ordem pela qual passamos nas cidades.

▶ Representação de Caminhos e custos

	Α	В	С	D
Α	0	2	4	1
В	2	0	1	5
С	4	1	0	3
D	1	5	3	0

Representação de Genes

Cidade	Α	В	С	D
Índex	0	1	2	3

Ordem do caminho

- Cálculo de Fitness
 - Exemplo I:

Exemplo2:

Atenção:

São sempre o mesmo caminho, a única diferença é o ponto de partida.

Reparar o problema anterior:

 Pegar na cidade A e colocá-la como primeira cidade através de uma rotação, eliminando assim diferentes representações para o mesmo caminho.

Descrição:

Uma parte do pai é mapeada para uma porção da mãe. A partir da porção substituída, o resto dos genes são preenchidos mas omitindo os genes já presentes e respeitando a ordem com que eles se encontram.

Esquema:

Para o filho I vamos copiar o próximo gene da mãe, e para o filho 2 vamos copiar o próximo do pai.

Quando se chega ao fim do gene e ainda não colocámos todos os genes no filho, começamos no inicio do gene do pai e repetimos o processo até os filhos terem todos os genes.

São gerados dois pontos de corte aleatórios e apartir desses pontos são mapeados os genes entre os pontos de corte do pai para a mãe e vice versa.

Passo I: Gerar dois pontos aleatórios

Passo 2: Os genes do pai entre os pontos ficam no filho2 e os da mãe no filho1.

- Passo 3: Para os genes que foram trocados coloca-se o gene pelo qual foi trocado, no sitio onde ele se encontrava anteriormente.
- Exemplo para o filho l:Troca o 6 pelo 3;

Troca o 2 pelo 4;

Troca o 8 pelo 5;

Os restantes genes são iguais aos do Pai.

Para o filho2:

Operador: SUS - Minimização

▶ Problema:

O operador SUS seleciona o fitness mais alto, por isso é preciso adaptá-lo para passar a selecionar o mais baixo e poder assim utilizá-lo no caixeiro viajante.

Esquema:

População

- Max(População)=12
- Min(População)=1

Operador: SUS - Minimização

PseudoCodigo : Calcular novo fitness

```
entra(População individuos[])
maxFitness := maiorFitness(individuos[])+1
para i := 0 ate i < tamanho(individuos[])</pre>
        individuos[i].fitness := maxFitness-individuos[i].fitness
sai(População individuos[])
maiorFitness(individuos[])
        max := 0
        para i := 0 ate i < tamanho(individuos[])</pre>
                 se (max < individuos[i].fitness) entao
                         max := individuos[i].fitness
                 i := i+1
        retorna max
```


Operador: SUS - Minimização

Novos valores de fitness:

	Α	В	С	D	Ê	F	G	Н	1	J
Fitness	10	5	7	7	5	1	2	8	9	12
Novo Fitness	3	8	6	6	8	12	11	5	4	1

- Novo Fitness = (12 + 1) Fitness
- Novo Fitness A = 13 10 = 3
- Fazendo esta conversão do fitness, o fitness com valor mais alto passa a ter o valor mais baixo, o que torna possível a utilização do operador SUS.

Operador: Swap Genes - Mutação

Descrição:

Escolher dois alelos aleatórios de um indivíduo, e trocá-los de sítio.

Esquema:

Operador: Inversion - Mutação

Descrição: São gerados 2 pontos de corte aleatórios, e os genes entre os cortes são invertidos na sua ordem, e os restantes mantêm-se.

Passo I: Gerar 2 pontos aleatórios;

Operador: Inversion - Mutação

Passo 2: Os genes dentro dos pontos de corte são invertidos;

Operador: Inversion - Mutação

▶ Resultado:

