MÉTODO DE REAMOSTRAGEM PARA DESCRIÇÃO DE POPULAÇÃO

Trabalhos em ecologia normalmente envolvem a coleta de dados de populações de diferentes organismos.

Estes dados geralmente são medidas que permitem que hipóteses sejam testadas.

Esses dados são utilizados para a descrição da população.

No entanto, apenas a disponibilização dos dados é pouco informativa.

É necessário que os dados sejam sumarizados e interpretados.

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Média Aritmética: Uma medida de posição e indica a centralidade dos dados.

Média = SOMA(DADOS) / N

Média = SOMA(Tamanho dos Espinhos) / 20

Média = 4.77 / 20 = 0.24

Média = 0.24

Existe uma
variação nestes
dados, que também
é importante para
descrever a
amostra.

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Variância: É uma medida de dispersão dos dados, ou seja, o quanto os valores medidos diferem da média da amostra.

 $Var = [SOMA(DADOi - MÉDIA)^2] / N$

DesvPad = $VAR^{1/2}$

Média = 0.24

DesvPad = 0.11

Com estes dois valores temos uma descrição da amostra.

Mas, ainda assim, é pouco intuitivo.

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Média = **0.24**

DesvPad = 0.11

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Média = 0.24

DesvPad = 0.11

A posição do boxplot está relacionada com a média em uma distribuição normal (representa a mediana).

Média = 0.24

DesvPad = 0.11

A dispersão do boxplot está relacionada com a variância (ou desvio padrão).

Média = 0.24

DesvPad = 0.11

Olhando os valores de apenas uma amostra, não fica claro a importância destes parâmetros.

Agora suponha duas amostras.

	Tamanho dos espinhos		Tamanho dos espinhos
Indivíduo	tibiais (mm)	Indivíduo	tibiais (mm)
1	0.238009043	1	0.725874
2	0.307388385	2	0.777122
3	0.201655245	3	0.45027
4	0.435468041	4	0.380424
5	0.199966751	5	0.516389
6	0.370270011	6	0.328006
7	0.239537182	7	0.526684
8	0.143176326	8	0.904632
9	0.243780367	9	0.711155
10	0.164998447	10	0.305867
11	0.409024058	11	0.485702
12	0.111908555	12	0.760165
13	0.037133026	13	0.987191
14	0.342980384	14	0.541353
15	0.231431456	15	0.335766
16	0.105267371	16	0.448942
17	0.171141635	17	0.77457
18	0.175066461	18	0.560818
19	0.352645379	19	0.77535
20	0.292715102	20	0.733352

Amostra I:

Média = 0.24

DesvPad = 0.11

Amostra II:

Média = 0.60

DesvPad = 0.25

	Tamanho dos espinhos
Indivíduo	tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

	Tamanho dos espinhos
Indivíduo	tibiais (mm)
1	0.725874
2	0.777122
3	0.45027
4	0.380424
5	0.516389
6	0.328006
7	0.526684
8	0.904632
9	0.711155
10	0.305867
11	0.485702
12	0.760165
13	0.987191
14	0.541353
15	0.335766
16	0.448942
17	0.77457
18	0.560818
19	0.77535
20	0.733352

Amostra I:

Média = 0.24

DesvPad = 0.11

Amostra II:

Média = 0.60

DesvPad = 0.25

AMOSTRA E POPULAÇÃO

A melhor forma de extrair os parâmetros descritivos de uma população, seria fazer a medição em todos os indivíduos da população.

No entanto, medir todos os indivíduos da população nem sempre é viável.

Para isso, são realizadas amostragens, que são medições em alguns indivíduos da população.

Mas, quanto que as amostragens realizadas representam a população?

AMOSTRA E POPULAÇÃO

Para aumentar a representatividade de uma amostra, pode-se recorrer ao aumento do esforço amostral.

- Amostrar muitos indivíduos;
- Retirar muitas amostras da população;
- Amostrar a população diversas vezes ao longo do tempo.

AMOSTRA E POPULAÇÃO

Para aumentar a representatividade de uma amostra, pode-se recorrer ao aumento do esforço amostral.

- Amostrar muitos indivíduos;
- Retirar muitas amostras da população;
- Amostrar a população diversas vezes ao longo do tempo.

Ou, podemos realizar reamostragens com os dados já coletados!

Vamos fazer a reamostragem para estimar a média e o desvio padrão da nossa AMOSTRA I

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Para isso, colocamos todos os dados para serem aleatorizados.

Retiramos um valor e adicionamos ao saco novamente.

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.238009043
2	0.307388385
3	0.201655245
4	0.435468041
5	0.199966751
6	0.370270011
7	0.239537182
8	0.143176326
9	0.243780367
10	0.164998447
11	0.409024058
12	0.111908555
13	0.037133026
14	0.342980384
15	0.231431456
16	0.105267371
17	0.171141635
18	0.175066461
19	0.352645379
20	0.292715102

Temos assim uma nova amostra.

Anotamos a média dela e repetimos o mesmo procedimentos.

 $Média_{(1)} = 0.25$

Indivíduo	Tamanho dos espinhos tibiais (mm)
1	0.105267
2	0.238009
3	0.34298
4	0.105267
5	0.199967
6	0.409024
7	0.105267
8	0.435468
9	0.231431
10	0.201655
11	0.24378
12	0.24378
13	0.239537
14	0.231431
15	0.201655
16	0.199967
17	0.435468
18	0.037133
19	0.307388
20	0.435468

Com isso obtemos um gráfico de frequência.

Nele é mostrado a frequência das médias do tamanho de espinho.

Notamos que a média do tamanho do espinho pode mudar entre as amostras.

Vemos que mais frequentemente as amostras possuem uma média de tamanho de espinho em torno de 0.25 mm.

Dentro dessa
população, qual
seria a
probabilidade de
termos uma
amostra com a
média do tamanho
do espinho tibial >=
0.25?

Dentro dessa
população, qual
seria a
probabilidade de
termos uma
amostra com a
média do tamanho
do espinho tibial >=
0.25?

Dentro dessa
população, qual
seria a
probabilidade de
termos uma
amostra com a
média do tamanho
do espinho tibial >=
0.3?

Quando a probabilidade de tirarmos uma amostra da população com determinada característica for menor que 0.05, dizemos que essa amostra possui características diferentes da população!

Dentro dessa
população, qual
seria a
probabilidade de
termos uma
amostra com a
média do tamanho
do espinho tibial <=
0.25?

Dentro dessa
população, qual
seria a
probabilidade de
termos uma
amostra com a
média do tamanho
do espinho tibial <=
0.12?

Com isso, podemos traçar um intervalo de confiança para a nossa população.

Se a média da amostra for menor que 0.2, ou maior que 0.3, a amostra possui características diferentes da população!

PRÁTICA

Vamos montar um gráfico de frequência para os dados utilizando o software R, e o pacote Rsampling.

Primeiro faremos isso juntos, com um conjunto de dados inventado.

Depois, cada aluno deverá montar o gráfico para os dados que foram coletados na disciplina.