CS1010 Tutorial 1

Admin Matters

Welcome to CS1010 ©

Ground Rules

- Tutorial Attendance is compulsory
 - For me

• (Try to) come on time for class

- Ask me questions during class
 - After class, post questions on Piazza

Weightage of Individual Components

Component	Weightage
Post-Lecture Diagnostic Quizzes	10%
Assignments (1-9)	30%
Midterm	10%
PE1	10%
PE2	15%
Finals	25%
Total	100%

General Sensing...

- Prior experience of programming in general?
 - Leetcode, kattis, Euler Project, etc
 - Learnt via internet
- Prior knowledge of **C**?

- For non-CS/CEG/IS/BA/etc students
 - Wants to take more computing modules?

(Hopefully) What will happen today

- 1400 1410
 - Attendance taking
- 1410 1420
 - Admin slides
- 1420 1445
 - Problem set 1
- 1445 end
 - Practical

Problem Set 1

• Given a bunch of flowcharts for the FindMax algorithm that are slightly different from the (correct) lecture version

- Must determine correctness
 - No formal proofs, just intuition is fine

- If the algorithm is buggy i.e does not output a correct value for a given input
 - Give a counter-example where the output is incorrect
 - Give an input where the output is still correct

Problem 1(a) – is the algorithm correct?

Answer: YES

- At the start of the algorithm, $i \leq k$.
- i is always only incremented by 1 for every iteration of the loop
- i will never be greater than k since the loop always terminates at i = k

Problem 1(b) – is the algorithm correct?

- Consider the two YES cases at the second diamond
 - Case 1: $l_i > m$
 - Then m is successfully replaced with the larger value, l_i
 - Case 2: $l_i = m$
 - Then m is assigned l_i result is still correct

Problem 1(c) – is the algorithm correct?

Answer: YES

- Only adds a new (pointless) iteration to the beginning of the loop
- Trace the flowchart:
 - i = k? **No,** since k > 0, i will never be equal to k on the first iteration
 - $l_i > m$? No, $m = l_0$
 - Increment i.
 - Now i = 1, and the algorithm given in the lecture (which is correct) starts

Problem 1(d) – is the algorithm correct?

- Consider an input k = 1 and $l = \{1\}$
 - On the first iteration, at the second diamond, i = 1
 - What is l_1 ? Remember that here, the list is "zero-indexed", so the first element is at l_0
 - This bug exists for any list of size *k*
- What can be done to make this algorithm correct?

Problem 1(e) – is the algorithm correct?

Answer: YES

- In algorithmic terms, $m=-\infty$ means that for any value n,n>m
- Trace the flowchart for one iteration, now $m=l_0$ and i=1
- Now we have the same algorithm as the one given in the lecture.
- This algorithm works for k=0

What about this one?

- Change the algorithm to find the minimum value
- Constraints: k > 0, and L is finite

- Change the algorithm to find the minimum value
- Constraints: k > 0, and L is finite

- Given k>0, and list L that has k elements, draw a flowchart that computes the **sum** of all integers
 - What variables do you need?

Practical Part

Agenda

- Brief introduction to the Command Line Interface (CLI)
- Logging into PE
- Exercise 1
 - Get exercise 1
 - Write some code, compile, test, etc
 - Submit exercise 1

Command Line Interface

 Before Graphic User Interfaces (GUI), the way to interact with a computer was with a Command Line Interface (CLI)

 An interface where you can write text and commands for the computer to interpret and run

- Benefits
 - no need for UI, everything can be done with keyboard
- Disadvantage
 - big learning curve for newcomers who are used to GUI

Unix CLI

- CS1010 (and further CS classes) heavily uses the Unix CLI
 - Very heavily
 - So very heavily
- Even if you're not interested, please learn it for your Practical Exam

• If you plan to take more Computing modules, you will need the CLI!!!

• Don't worry, the basics aren't too difficult

Programming Environments (PEs)

• Exercises and Assignments are released in the PE nodes

• It doesn't matter which PE node (peXXX) you go into, they're all "the same"

More Sensing

Set up their SOC Unit Account?

Read through the Unix CLI tutorial?

Already managed to log into the PE nodes?

What needs to be done

- 1. ssh into **PE** node
- 2. Go through the Unix tutorial
 - You must know cd ls cp mv rm mkdir rmdir
- 3. Copy .vimrc from ~cs1010 using cp ~cs1010/.vimrc.
- 4. Create .backup directory in Home folder using mkdir mkdir
- 5. Read through Exercise 1 [This is the main goal for today]
 - 1. https://nus-cs1010-2021-s2.github.io/website/ex00.html
 - Edit your ~/.gitconfig
 - 3. Retrieve ex0
 - 4. Write, save, compile some C code
 - 5. Submit ex0