Fall Semester

Foundations of Computational Mathematics I

2022

HW₁

Due Date Sep 23rd, 2022

Points 100 pts

1. Derive the relative and absolute condition number of a function at the point x. Based on our notation from the class, note that the change of data δd is equivalent to the change in the function value, i.e f(x). In particular, let's assume we perturb x by h > 0, where $\delta d = f(x + h) - f(x)$.

(a) Show that
$$K_{rel}(x) = \left| \frac{xf'(x)}{f(x)} \right|$$

- (b) Find $K_{abs}(x)$
- (c) In particular, let's consider the function

$$f(x) = \frac{\beta + x}{\beta - x}$$

Find the relative and absolute condition number for evaluating f(x) by using (a)-(b). Then, compute the condition numbers around x=1 and x=100 when $\beta=1.01$. Discuss your results.

2. Consider the roots of the following quadratic equation with a single parameter $\beta > 1$

$$p(x) = x^2 + 2\beta x + 1 = 0$$

We can define the vector-valued function that maps β to the two roots $x_{+}(\beta)$ and $x_{-}(\beta)$

$$G: \mathbb{R} \to \mathbb{R}^2, \beta \mapsto \begin{bmatrix} x_+(\beta) \\ x_-(\beta) \end{bmatrix} = \begin{bmatrix} -\beta + \sqrt{\beta^2 - 1} \\ -\beta - \sqrt{\beta^2 - 1} \end{bmatrix}$$

- (a) What happens to the roots as $\beta \to \infty$, please describe with full details.
- (b) For $\beta > 1$, consider the derivatives with respect to β of each of the roots and derive and approximate the relative condition number for the vector of roots $G(\beta)$ when β is perturbed slightly. (Note that since G is a vector-valued function, you can use the vector standard Euclidean 2-norm such as

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \to ||v||_2 = \sqrt{v_1^2 + v_2^2}$$

to measure the size of the solution and error vectors in \mathbb{R}^2 . The absolute value can be used as the norm of the scalars β and $\delta\beta$ in \mathbb{R} .

(c) Analyze and discuss. What is the relative condition number when β is away from 1? What is the relative condition number when $\beta \to \infty$ and how does this related to (a)? What is the relative condition number if β approaches one, and why do we observe this?

3. Consider the floating point system with $\beta = 10$ and t = 3. The associated floating point arithmetic is

$$x \boxed{*} y = fl(x * y)$$

Let x and y be two floating point numbers with x < y and consider computing their average $\alpha = (x + y)/2$ by utilizing following three algorithms:

- $\alpha_1 = ((x+y)/2.0)$
- $\alpha_2 = ((x/2.0) + (y/2.0))$
- $\alpha_3 = (x + ((y x)/2.0))$

Note that the parentheses indicate the order of the floating point operations. Here, let x=5.01 and y=5.02. First evaluate α_1,α_2 , and α_3 in the specified floating point system. Then, explain and discuss the results.

4. (Preliminaries) First, prove that $\|\cdot\|_2$ is a vector norm, then show $\|x+y\|_2 \le \|x\|_2 + \|y\|_2$ for any vectors x and y