Σημειώσεις Διαφορικές Εξισώσεις

Καναβούρας Κωνσταντίνος http://users.auth.gr/konkanant

2016, Εαρινό εξάμηνο

Μέρος Ι

Σεβαστιάδης

Χρήστος Σεβαστιάδης

Κεφάλαιο 1

Ορισμός: Διαφορική εξίσωση

Μια εξίσωση που αποτελείται από μια συνάςτηση και τις παραγώγους της

Langrange's $x', x'', x''', x^{(4)}, \dots$

Newton's $\dot{x}, \ddot{x}, \ddot{x}$

Leibniz' $\frac{dx}{dt}$, $\frac{d^2x}{dt^2}$, $\frac{d^3x}{dt^3}$

π.χ.

$$x(t)\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t)\sin(t)$$

Ορισμός 1.1: Τάξη

Τάξη ονομάζεται ο μεγαλύτερος βαθμός παραγώγου που εμφανίζεται στην εξίσωση

Ορισμός 1.2: Βαθμός

Βαθμός ονομάζεται η μεγαλύτερη δύναμη παραγώγου που εμφανίζεται στην εξίσωση

Κεφάλαιο 2 Διαφορική εξίσωση 1ης τάξης

Ορισμός

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

2.1 Χωριζόμενες διαφορικές εξισώσεις

Τυπική μορφή:

$$f(t,x) = \frac{-M(t,x)}{N(t,x)} = \frac{\mathrm{d}x}{\mathrm{d}t} \implies \underbrace{N(t,x)}_{N(x)} \mathrm{d}x + \underbrace{M(t,x)}_{M(t)} \mathrm{d}t = 0$$

Αν δηλαδή τα N(t,x), M(t,x) εξαρτώνται μόνο από τα x και t αντίστοιχα, η εξίσωση ονομάζεται χωριζόμενη, και το αποτέλεσμά της μπορεί να βρεθεί με ολοκληρώματα:

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

1

$$x \, \mathrm{d}x - t^2 \, \mathrm{d}t = 0$$

$$N(x) = x$$
, $M(t) = -t^2$

$$\int x \, dx + \int (-t^2) \, dt = c \implies$$

$$\frac{1}{2}x^2 - \frac{1}{3}t^3 = c \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + 2c} \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + \kappa}$$

$$με κ = 2c$$

Άσκηση: 2.2

$$x' = x^2 t^3$$

$$\Rightarrow \frac{dx}{dt} = x^{2}t^{3}$$

$$\Rightarrow \frac{1}{x^{2}} dx - t^{3} dt = 0$$

$$\Rightarrow \int \frac{1}{x^{2}} dx + \int (-t^{3}) dt = c$$

$$\Rightarrow -\frac{1}{x} - \frac{t^{4}}{4} = c$$

$$\Rightarrow -\frac{1}{x} = c + \frac{t^{4}}{4}$$

$$\Rightarrow -\frac{4}{x} = 4c + t^{4}$$

$$\Rightarrow x = \frac{-4}{t^{4} + \kappa}, \quad \text{ue } \kappa = 2c$$

Άσκηση: 2.3

$$x' = \frac{t+1}{x^4+1}$$

$$\Rightarrow \frac{dx}{dt} = \frac{t+1}{x^4+1}$$

$$\Rightarrow (x^4+1) dx + (-t-1) dt = 0$$

$$\Rightarrow \int (x^4+1) dx + \int (-t-1) dt = c$$

$$\Rightarrow \frac{x^5}{5} + x - \frac{t^2}{2} - t = c$$

Παρατηρούμε ότι, χωρίς αρχική συνθήκη, βρίσκουμε γενικές λύσεις ως αποτέλεσμα. Με τη χρήση μιας αρχικής συνθήκης, μπορούμε να βρούμε και την ειδική λύση της εξίσωσης.

$$e^t dt - x dx = 0;$$
 $x(0) = 1 \leftarrow$ αρχική συνθήκη

$$\implies \int x \, dx + \int (-e^t) \, dt = c$$

$$\implies \frac{x^2}{2} - e^t = c$$

$$\implies x^2 = 2e^t + 2c$$

$$\implies x^2 = 2e^t + \kappa, \quad \text{ue } \kappa = 2c$$

Όμως x(0) = 1, άρα:

$$\begin{cases} x^2 = 2e^t + \kappa \\ x(0) = 1 \end{cases} \implies x(0)^2 = 2e^0 + \kappa \implies \boxed{\kappa = -1}$$

Επομένως τελικά:

$$x^2 = 2e^t - 1 \implies x = \pm \sqrt{2e^t - 1} \implies \boxed{x = \sqrt{2e^t - 1}}$$

Η αρχική συνθήκη πράγματι επαληθεύει το αποτέλεσμα x. Πρέπει όμως και $x \in \mathbb{R}, \ 2e^t - 1 \ge 0$.

Από τη διαφορική εξίσωση έχουμε $x' = \frac{e^t}{x}$, άρα πρέπει $2e^t - 1 > 0 \implies t > \ln \frac{1}{2}$

$$\int_{x_0}^x N(x) \, \mathrm{d}x + \int_{t_0}^t M(t) \, \mathrm{d}t = 0, \quad x(t_0) = x_0$$

Άσκηση: 2.5

$$x \cos x \, dx + (1 - 6t^5) \, dt = 0; \quad t(\pi) = 0$$

$$x_0 = \pi$$
, $t_0 = 0$

$$\implies \int_{\pi}^{x} x \cos x \, dx + \int_{0}^{t} (1 - 6t^{5}) \, dt = 0$$

$$\implies x \sin x \Big|_{\pi}^{x} + \cos x \Big|_{\pi}^{x} + (t - t^{6}) \Big|_{0}^{t} = 0$$

$$\implies x \sin x + \cos x + 1 + t - t^{6}$$

$$\implies \left[x \sin x + \cos x + 1 = t - t^{6} \right]$$

2.2 Ομοιογενείς

$$f(t,x) = \frac{-M(t,x)}{N(t,x)}$$

Ορισμός 2.1

An $\forall a \in \mathbb{R} : f(at, ax) = f(t, x)$, léme óti n exíswsn eínsi omoiogenás.

Θεώοημα

Αν μια εξίσωση είναι ομοιογενής, μπορούμε να την λύσουμε μειώνοντάς/μετατρέποντάς την σε χωριζόμενη, εφαρμόζοντας το μαθηματικό κόλπο που ονομάζεται "αντικατάσταση μεταβλητής", δηλαδή, όπου u συνάρτηση:

$$x = ut \implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}u}{\mathrm{d}t}t + u$$

Аσкпоп: 2.6

$$x' = \frac{x+t}{t}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x+t}{t}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}$$
, $f(at,ax) = \frac{ax+at}{at} = \frac{x+t}{t}$ ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα
 η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{ut + t}{t}$$

$$\Rightarrow \frac{du}{dt}t + u = u + 1$$

$$\Rightarrow t \frac{du}{dt} = 1$$

$$\Rightarrow \frac{1}{t}dt - du = 0 \text{ councy of the norm}$$

$$\Rightarrow \int \frac{1}{t}dt + \int (-1) du = c$$

$$\Rightarrow \ln|t| - u = c$$

$$\Rightarrow u = \ln|t| - c \text{ the } c = -\ln|\kappa|$$

$$\Rightarrow u = \ln|\kappa t|$$

$$\Rightarrow \frac{x}{t} = \ln|\kappa t| \Rightarrow x = t \ln|\kappa t|$$

$$x' = \frac{2x^4 + t^4}{tx^3}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2x^4 + t^4}{tx^3}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{2(ax)^4 + (at)^4}{(at)(ax)^3} = \frac{a^42x^4 + a^4t^4}{a^4tx^3} = \frac{2x^4 + t^4}{tx^3} \text{ omogenés}$$

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{2(ut)^4 + t^4}{t(ut)^3}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4t^4 + t^4}{u^3t^4}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4 + 1}{u^3}$$

$$\Rightarrow \frac{du}{dt}t = \frac{2u^4 + 1}{u^3} - u = \frac{u^4 + 1}{u^3}$$

$$\Rightarrow \frac{u^3}{u^4 + 1} du - \frac{1}{t} dt = 0 \text{ gargisomen}$$

$$\Rightarrow \int \frac{u^3}{u^4 + 1} du + \int \frac{-1}{t} dt = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|$$

$$x' = \frac{t^2 + x^2}{tx}$$
; $x(1) = -2$

 $\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t^2 + x^2}{tx}$, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{(at)^2 + (ax)^2}{(at)(ax)} = \frac{a^2t^2 + a^2x^2}{a^2tx} = \frac{t^2 + x^2}{tx}$$
 ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{t^2 + (ut)^2}{t(ut)}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{t^2 + t^2u^2}{t^2u}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{1 + u^2}{u}$$

$$\Rightarrow \frac{du}{dt}t = \frac{1 + u^2 - u^2}{u} = \frac{1}{u}$$

$$\Rightarrow u \, du - \frac{1}{t} \, dt = 0 \, \text{constant}$$

$$\Rightarrow \int u \, du + \int \frac{-1}{t} \, dt = c$$

$$\Rightarrow \frac{u^2}{2} - \ln|t| = c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = \ln t^2 + \kappa \text{ we } \kappa = 2c$$

$$x = ut \implies u = \frac{x}{t} \implies \frac{x^2}{t^2} = \ln t^2 + \kappa$$

$$\Rightarrow x^2 = t^2 \ln t^2 + \kappa t^2$$

Επειδή x(1) = 2, έχουμε:

$$(-2)^2 = 1^2 \ln 1^2 + \kappa 1^2 \implies 4 = 0 + \kappa \implies \kappa = 4$$

Επομένως τελικά:

$$x^2 = t^2 \ln t^2 + 4t^2 \implies \boxed{x = -\sqrt{t^2 \ln t^2 + 4t^2}}$$

2.3 Ακριβείς

Ορισμός

Όταν:

$$\frac{\partial M(t,x)}{\partial x} = \frac{\partial N(t,x)}{\partial t}$$

τότε η εξίσωση λέγεται ακριβής η πλήρης.

Υπάρχει dF(t, x) = N(t, x) dx + M(t, x) dt με Γενική Λύση F(t, x) = c.

$$(t + \sin x) dt + (t \cos x - 2x) dx = 0$$

$$\underbrace{(t+\sin x)\,\mathrm{d}t}_{M(t,x)\,\mathrm{d}t} + \underbrace{(t\cos x - 2x)\,\mathrm{d}x}_{N(t,x)\,\mathrm{d}x} = 0$$

Δοκιμή:

$$\begin{cases} M(t,x) &= t + \sin x \\ N(t,x) &= t \cos x - 2x \end{cases} \implies \frac{\partial M(t,x)}{\partial x} = \cos x = \frac{\partial N(t,x)}{\partial t} = \cos x$$

Άρα

 ΔΕ είναι ακριβής, επομένως υπάρχει F(t,x) τέτοια ώστε:

$$dF = N(t,x) \, \mathrm{d}x + M(t,x) \, \mathrm{d}t$$

$$dF = \frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial t} \, \mathrm{d}t \quad \leftarrow \quad \text{ολικό διαφοφικό της } F$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) \xrightarrow{\text{olokliqwan ws pags } t} F(t,x)$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

Έχουμε:

$$\frac{\partial F(t,x)}{\partial x} = t \cos x + h'(x)$$

$$\implies t \cos x - 2x = t \cos x + h'(x)$$

$$\implies h'(x) = -2x$$

$$\implies \int h'(x) \, dx = \int (-2x) \, dx$$

$$\implies h(x) = -x^2 + c_1$$

Επομένως:

$$F(t,x) = \frac{1}{2}t^2 + t\sin x - x^2 + c_1 = c \xrightarrow{c_2 = c - c_1}$$

$$\implies \boxed{\frac{1}{2}t^2 + t\sin x - x^2 = c_2}$$
 Γενική λύση

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}} \xrightarrow{\text{διαφορική μορφή}} \underbrace{(2 + xe^{tx})}_{M(t,x) = 2 + xe^{tx}} \mathrm{d}t + \underbrace{(te^{tx} - 2x)}_{N(t,x) = te^{tx} - 2x} \mathrm{d}x = 0$$

Δοκιμή:

$$\frac{\partial M(t,x)}{\partial x} = e^{tx} + xte^{tx} = \frac{\partial N(t,x)}{\partial t} = xte^{tx} + e^{tx}$$

συνεπώς είναι ακριβής, οπότε υπάρχει F(t,x), με $dF=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$, με λύση F(t,x)=c.

Ολικό διαφοφικό
$$\rightarrow dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$$

Άρα:

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2 + xe^{tx} \xrightarrow{\text{ολοκλήρωση ως προς } t}$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t = \int \left(2 + xe^{tx}\right) \mathrm{d}t \implies$$

$$\implies F(t,x) = 2t + e^{tx} + h(x)$$

Παραγώγιση ως προς
$$x \to \frac{\partial F(t,x)}{\partial x} = te^{tx} + h'(x) \implies te^{tx} + h'(x) = te^{tx} - 2x \implies$$

$$\implies h'(x) = -2x \implies$$

$$\implies h(x) = \int (-2x) \, \mathrm{d}x \implies$$

$$\implies h(x) = -x^2 + c_1$$

Άρα τελικά:

$$F(t,x) = 2t + e^{tx} - x^2 + c_1$$

$$\implies 2t + e^{tx} - x^2 + c_1 = c$$

$$\implies 2t + e^{tx} - x^2 = c_2, \qquad c_2 = c - c_1$$

$$(2x^2t - 2x^3) dt + (4x^3 - 6x^2t + 2xt^2) dx = 0$$

$$\underbrace{\left(2x^2t - 2x^3\right)}_{M(t,x) = 2x^2t - 2x^3} dt + \underbrace{\left(4x^3 - 6x^2t + 2xt^2\right)}_{N(t,x) = 4x^3 - 6x^2t + 2xt^2} dx = 0$$

 $\frac{\partial M(t,x)}{\partial x}=4xt-6x^2=\frac{\partial N(t,x)}{\partial t}=0-6x^2+4xt$, ΔΕ ακριβής, οπότε υπάρχει F(t,x) με $\mathrm{d}F(t,x)=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$ με λύση F(t,x)=c.

$$dF(t,x) = \frac{\partial F(t,x)}{\partial t} dt + \frac{\partial F(t,x)}{\partial x} dx$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2x^2t - 2x^3 \qquad \Longrightarrow$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2x^2t - 2x^3) dt \qquad \Longrightarrow$$

$$\implies F(t,x) = x^2t^2 - 2x^3t + h(x)$$

$$\frac{\partial F(t,x)}{\partial x} = 2xt^2 - 6x^2t + h'(x) \implies$$

$$\implies 2xt^2 - 6x^2t + h'(x) = 4x^3 - 6x^2t + 2x + 2 \implies$$

$$\implies h'(x) = 4x^3 \xrightarrow{\text{олокл.}} h(x) = x^4 + c_1$$

Άρα:

$$F(t,x) = x^{2}t^{2} - 2x^{3}t + x^{4} + c_{1} \implies$$

$$\implies x^{2}t^{2} - 2^{3}t + x^{4} + c_{1} = c \implies$$

$$\implies x^{2}t^{2} - 2x^{3}t + x^{4} = c - c_{1} \implies$$

$$\implies \begin{cases} (x^{2} - xt)^{2} &= c_{2} \\ c_{2} &= c - c_{1} \end{cases}$$

$$\stackrel{c_{3}=\pm\sqrt{c_{2}}}{\longrightarrow} x^{2} - xt = c_{3} \xrightarrow{\frac{ax^{2} + bx + c = 0}{2a}}$$

$$\implies x = \frac{t \pm \sqrt{t^2 + 4c_3}}{2}, \qquad c_3 = \pm \sqrt{c_2}$$

$$2tx dt + (1 + t^2) dx = 0; \quad x(2) = -5$$

$$\underbrace{2tx}_{M(t,x)} dt + \underbrace{(1+t^2)}_{N(t,x)} dx = 0; \quad x(2) = -5$$

$$M(t, x) = 2tx, \quad N(t, x) = 1 + t^2$$
 (1)

F(t, x), $\mu \varepsilon dF(t, x) = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$. dF(t, x) = N(t, x) dx + M(t, x) dt

$$\frac{\partial F(t,x)}{\partial x} = N(t,x) \tag{2}$$

$$\frac{\partial F(t,x)}{\partial t} = M(t,x) = 2tx \implies$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2tx) dt \implies$$

$$\implies F(t,x) = t^2 x + h(x)$$
(3)

$$\begin{cases} \frac{\partial F(t,x)}{\partial x} = t^2 + h'(x) \\ (2), (1) \end{cases} \implies t^2 + h'(x) = 1 + t^2 \implies h'(x) = 1 \implies \begin{cases} h(x) = x + c_1 \\ (3) \end{cases} \implies \begin{cases} F(t,x) = t^2 x \\ (4) \end{cases} \implies t^2 + x + c_1 \end{cases} \implies t^2 + x + c_1$$

$$\implies t^2 x + x = c_2(c_2 = c - c_1) \implies x = \frac{c_2}{t^2 + 1} \implies (x(2) = 5)5 = \frac{c_2}{2^2 + 1} \implies x = \frac{-25}{t^2 + 1}$$

$$\implies F(t,x) = t^2x + x + c_1 \tag{4}$$

Κεφάλαιο 3 Overview

3.1 Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ - Ordinary Differential Equations)

Ορισμός 3.1

Εμπλέκουν:

- μία ανεξάρτητη μεταβλητή (π.χ. t, x)
- μια εξαρτημένη και τις παραγώγους της (π.χ. i, y, u)

$$F(t, x, x', \dots, x^{(n)}) = 0$$

Μη συνήθεις είναι οι Μερικές Διαφορικές Εξισσώεις (Partial Differential Equations - PDE) που εμπλέκουν:

• πολλές ανεξάρτητες μεταβλητές (π.χ. x, y, z)

• μία εξαρτημένη μεταβλητή και τις μερικές παραγώγους της

1^{nς} τάξης ΔΕ

Ορισμός 3.2

όταν

$$x' = \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

Ορισμός 3.3: Τυπικής μορφής

$$f(t,x) = \frac{-M(t,x)}{N(t,x)}$$

Διαφορική μορφή

$$N(t, x) dx + M(t, x) dt = 0$$

Ορισμός 3.4: Χωριζόμενη

όταν

$$\begin{cases} N(t, x) &= N(x) \\ M(t, x) &= M(t) \end{cases}$$

τότε

$$N(x) dx + M(t) dt = 0$$

με λύση

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

ń

$$\int_{x_0}^{x} N(x) \, \mathrm{d}x + \int_{t_0}^{t} M(t) \, \mathrm{d} = 0$$

Ορισμός 3.5: Ομογενής - Ομοιογενής

όταν ∀a ∈ ℝ

$$F(at, ax) = f(t, x)$$

τότε θέτω x = ut, άρα $\frac{dx}{dt} = \frac{du}{dt}t + u$

Κεφάλαιο 4

Το τοστ είναι η καλύτερη τροφή

4.1 ΔΕ 1^{nς} τάξης

ΤΜ (Τυπική μορφή):
$$x' = \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x)$$

 ΔΜ (Διαφορική μορφή): $N(t,x)\,\mathrm{d}x + M(t,x)\,\mathrm{d}t = 0$

Ακριβής:
$$\frac{\partial M(t,x)}{\partial x} = \frac{\partial N(t,x)}{\partial t} \rightarrow dF(t,x)$$

$$dF(t, x) = N(t, x) dx + M(t, x) dt$$
$$F(t, x) = c$$

$$G(t,x)\cdot (N(t,x)\,\mathrm{d} x + M(t,x)\,\mathrm{d} t) = 0$$

Μπορεί να υπάρχει τέτοια συνάρτηση

Άσκηση: 2.23 Ολοκληρωτικός παράγοντας, επίλυση μέσω ελέγχου

$$x\,\mathrm{d}t-t\,\mathrm{d}x=0$$

$$M(t,x)=x,\ N(t,x)=t$$

$$\frac{\partial M(t,x)}{\partial x}=1,\ \frac{\mathrm{d}N(t,x)}{\mathrm{d}t}=-1\ \mathrm{den}\ \mathrm{exna}\ \mathrm{ex$$

Με διαφορά μερικών παραγώγων:

Av
$$\frac{1}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial t} \right) = h(x) \implies G = e^{\int g(t) \, dx}$$

Άσκηση: 2.25

$$x^{2} dt + tx dx = 0$$
, $M(t, x) = x^{2}$, $N(t, x) = tx$

$$\begin{split} &\frac{\partial M(t,x)}{\partial x} = 2x \neq \frac{\partial N(t,x)}{\partial t} = x \text{ όχι ακριβής} \\ &\frac{1}{M} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial t} \right) = \frac{1}{x^2} (2x - x) = \frac{1}{x} = h(x) \\ &G(t,x) = e^{-\int h(x) \, \mathrm{d}x} = e^{-\int \frac{1}{x} \, \mathrm{d}x} = e^{-\ln x} = \frac{1}{x} \end{split}$$

$$\frac{1}{x}(x^2 dt + tx dx) = 0 \implies x dt + t dx = 0$$

$$\frac{\partial M}{\partial x} = 1 = \frac{\partial N}{\partial t} = 1 \text{ ακριβής}$$

Μορφή των όρων N,M αν M = xf(tx) και N = tg(tx), τότε:

$$G(t,x) = \frac{1}{tM - xN}$$

$$x' = \frac{tx^2 - x}{t}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{tx^2 - x}{t} \implies t \, \mathrm{d}x - (tx^2 - x) \, \mathrm{d}t = 0 \implies x(1 - tx) \, \mathrm{d}t) + t \, \mathrm{d}x = 0$$

$$M(t, x) = x \cdot (1 - tx) \implies \frac{\partial M(t, x)}{\partial x} = 1 - 2tx \neq \frac{\partial N(t, x)}{\partial t} = 1 \text{ όχι ακριβής}$$

αλλά:M = xf(t) και N = tg(tx).

Επομένως:

$$G(t,x) = \frac{1}{tM - xN} = \frac{1}{tx(1 - tx) - xt} = \frac{1}{-t^2x^2} = -\frac{1}{(tx)^2}$$

Είναι:

$$-\frac{1}{(tx)^2} \left(x(1-tx) dt + t dx \right) = 0 \implies$$

$$\frac{tx-1}{t^2x} dt - \frac{1}{tx^2} dx = 0$$

και συνεχίζω με τη μέθοδο της ακριβούς.

Κεφάλαιο 5 Θεωρία των Λύσεων

Μορφή ΔΕ ηης τάξης:

$$b_n(t) \cdot x^{(n)} + b_{n-1}(t) \cdot x^{(n-1)} + \dots + b_2(t)x'' + b_1(t)x' + b_0(t)x = g(t)$$

όπου: $g(t), b_j(t)$ (j = 1, 2, ..., n) εξαρτώνται αποκλειστικά από το t.

Aν $g(t) \equiv 0$, τότε η ΔΕ είναι ομογενής (OM - homogenous).

Aν $g(t) \neq 0$, τότε η ΔΕ είναι μη ομογενής (MO - non-homogenous.

Όταν όλοι οι συντελεστές $b_j(t)$ είναι σταθερές, τότε $\Delta \text{E}\Sigma\Sigma$ (σταθερών συντελεστών).

Όταν ένας τουλάχιστον $b_i(t)$ δεν είναι σταθερά, $\Delta \text{EM}\Sigma$ (μεταβλητών συντελεστών).

Θεώρημα 5.1

ΔΕ η τάξης με η ΑΣ (αρχικές συνθήκες):

$$x(t_0) = c_0, x'(t_0) = c_1, x''(t_0) = c_2, \dots, x^{(n-1)}(t_0) = c_{n-1}$$

 $\Delta E \ b_n(t)x^{(n)} + b_{n-1}(t)x^{(n-1)} + \dots + b_2(t)x'' + b_1(t)x' + b_0(t)x = g(t)$

Αν g(t) και b_i συνεχείς σε διάστημα ϕ που περιλαμβάνει το t_0 και $b_n(t) \neq 0$ στο ϕ , τότε το πρόβλημα εχει μία μοναδική λύση (ορισμένη στο ϕ).

Διαιρώ με $b_n(t)$ και έχω:

$$x^{(n)} + a_{n-1}(t) \cdot x^{(n-1)} + \dots + a_2(t)x'' + a_1(t)x' + a_0(t)x = \phi(t)$$

$$a'_{j}(t) = \frac{b_{j}(t)}{b_{n}(t)} \quad (j = 1, 2, \dots, n - 1)$$
$$\phi(t) = \frac{g(t)}{b_{n}(t)}$$

Διαφορικός τελεστής L(x)

$$L(x) \equiv x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_2(t) \cdot x'' + a_1(t) \cdot x' + a_0(t) \cdot x$$

 $L(x) = \phi(t)$ ΜΟ ΓΡ ΔΕ $n^{n\varsigma}$ τάξης

$$\mathbf{L}(x) = 0$$
 OM

Ορισμός 5.1

Το σύνολο $\{x_1(t), x_2(t), \dots, x_n(t)\}$ είναι ΓΕ (γραμμικά εξαρτημένο) για ένα διάστημα Δ ότανν υπάρχουν συντελεστές όχι όλοι μηδενικοί τέτοιοι ώστε:

$$c_1x_1(t) + c_2x_2(t) + \cdots + c_nx_n(t) \equiv 0$$
 Δ

Θεώρημα 5.2

Έστω η ομογενής n-οστής τάξης γραμμική διαφορική εξίσωση $\mathbf{L}(x)=0$.

Αν $x_1(t)$, $x_2(t)$,..., $x_n(t)$ είναι λύσεις, τότε και ο γραμμικός τους συνδυασμός είναι γενική λύση της ομογενούς:

$$x(t) = c_1x_1(t) + c_2x_2(t) + \cdots + c_nx_n(t)$$
 ΓΛ (Γενική Λύση)

Θεώρημα 5.3: Βροσκιανή

Ορίζουσα
$$W(x_1, x_2, \ldots, x_n)$$

 $\begin{cases} W \neq 0 \text{ έστω σε ένα σημείο } \in \Delta & \to \Gamma A \text{ (Γραμμικά Ανεξάρτητες)} \\ W \equiv 0 \text{ και κάθε συνάρτηση είναι λύση της ίδιας } \Delta E & \to \Gamma E \text{ (Γραμμικά Εξαρτημένες)} \end{cases}$

Θεώρημα 5.4

Ομογενής
$$\Delta E$$

$$\widetilde{\mathbf{L}(x)} = \phi(t)$$

Έστω $\begin{cases} x_n(t) & \Gamma \Lambda \text{ ths OM (Ομογενούς)} \\ x_p(t) & E \Lambda \text{ ths MO (Mn ομογενούς)} \end{cases}.$

Τότε είναι ΓΛ ΜΟ (Γενική Λύση Μη Ομογενούς) η:

$$x(t) = x_n(t) + x_p(t)$$

Άσκηση: 3.2

$$\{1-t, 1+t, 1-3t\}$$

$$W(1-t, 1+t, 1-3t) = \begin{vmatrix} 1-t & 1+t & 1-3t \\ \frac{d(1-t)}{dt} & \frac{d(1+t)}{dt} & \frac{d(1-3t)}{dt} \\ \frac{d^2(1-t)}{dt^2} & \frac{d^2(1+t)}{dt^2} & \frac{d^2(1-3t)}{dt^2} \end{vmatrix}$$
$$= \begin{vmatrix} 1-t & 1+t & 1-3t \\ -1 & 1 & -3 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

(β)

$$\underbrace{(c_1(1-t) + c_2(1+t) + c_3(1-3t) = 0}_{0} \underbrace{(c_1 + c_2 - 3c_3)}_{0} t + \underbrace{(c_1 + c_2 + c_3)}_{0} \equiv 0$$

$$\begin{cases} -c_1+c_2-3c_3 &= 0 \\ c_1+c_2+c_3 &= 0 \end{cases} \Longrightarrow \begin{cases} c_1 &= -2c_3c_2 \\ c_2 &= c_3 \\ c_3 &\text{aubaigeth stabegá} \end{cases} \Longrightarrow \begin{cases} c_3 &= 1 \\ c_1 &= -2 \implies \Gamma E \\ c_2 &= 1 \end{cases}$$

Аσкпσп: 3.3

Βρείτε την Βροσκιανή:

$$\left\{t, t^2, t^3\right\}$$

$$W(t, t^{2}, t^{3}) = \begin{vmatrix} t & t^{2} & t^{3} \\ \frac{d(t)}{dt} & \frac{d(t^{2})}{dt} & \frac{d(t^{3})}{dt} \\ \frac{d^{2}(t)}{dt^{2}} & \frac{d^{2}(t^{2})}{dt^{2}} & \frac{d^{2}(t^{3})}{dt^{2}} \end{vmatrix}$$
$$= \begin{vmatrix} t & t^{2} & t^{3} \\ 1 & 2t & 3t^{2} \\ 0 & 2 & 6t \end{vmatrix} = 2t^{3}$$

 $(-\infty, \infty)$, t = 3, $W = 54 \neq 0 \implies \Gamma$ A, θαυμάσια!

Άσκηση: 3.4

Аσкпσп: 3.5

$$x'' - 2x' + x = 0$$

$$e^t \cdot te^t \Lambda \dot{v} \sigma \varepsilon \iota \varsigma$$

Ο γραμμικός συνδυασμός $X = c_1 e^t + c_2 t e^t$ είναι λύση της εξίσωσης;

$$W(e^t, te^t) = \begin{vmatrix} e^t & te^t \\ e^t & e^t + te^t \end{vmatrix} = e^{2t} \not\equiv 0$$

Άρα οι εξισώσεις είναι γραμμικά ανεξάρτητες, άρα, επειδή είναι λύσεις της διαφορικής, ο γραμμικός συνδυασμός τους είναι γενική λύση.

 M
n ομογενής: $x''-2x'+x=e^{3t}$ Ειδική λύση: $\frac{1}{4}e^{3t} \to x_p=\frac{1}{4}e^{3t}$

Είδικη λύση μη ομογενούς: $x(t) = x_h(t) + x_p(t)$ ΜΟ ΟΜ ΜΟ

Άρα:

$$x(t) = c_1 e^t + c_2 t e^t + \frac{1}{4} e^{3t}$$

Κεφάλαιο 6

6.1 $\Gamma P/\Delta E/1^{n\varsigma}$

•
$$\frac{dx}{dt} + p(t)x = q(t)$$

$$n \underbrace{f(t, x)}_{f(t, x) = \frac{dx}{dt}} = q(t) - p(t)x$$

Τότε ΟΠ (Ολοκληφωτικός Παράγοντας) $G(t)=e^{\int p(t)\,\mathrm{d}x}$. Πολλαπλασιάζοντας με τον ολοκληφωτικό

παράγωντα παίρνουμε:

$$G(t)\frac{\mathrm{d}x}{\mathrm{d}t} + G(t)p(t)x = G(t)q(t)$$

ń

$$\frac{\mathrm{d}(Gt)}{\mathrm{d}t} = Gq(t)$$

που είναι μια ακριβής διαφορική εξίσωση.

Λύση:

$$x(t) = e^{-\int p(t) dt} \left(\int e^{\int p(t) dt} q(t) dt + c \right)$$

Aν τα p(t) = a και q(t) = b είναι σταθερά:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b, \ x(t) = e^{-at} \left(\frac{b}{a} e^{at} + c \right) = \frac{b}{a} + ce^{-at}$$

6.1.1 Bernoulli

$$\frac{\mathrm{d}x}{\mathrm{d}t} + p(t)x = q(t)x^n, \quad \text{if } n \neq 1, 0$$

Αντικατάσταση μεταβλητών: $u = x^{1-n} \rightarrow x, x'$

Άσκηση: 4.1

 $\Gamma P/\Delta E/1^{n\varsigma}$

$$x' - 3x = 6$$

$$\frac{dx}{dt} + ax = b$$

$$a = -3, b = 6$$

$$x(t) = \frac{b}{a} + ce^{-at} = \frac{6}{-3} + ce^{3t} \implies x(t) = ce^{3t} - 2$$

Άσκηση: 4.2

 $\Gamma P/\Delta E/1^{n\varsigma}$

$$\frac{\mathrm{d}x}{\mathrm{d}t} - 2tx = t$$

$$\frac{\mathrm{d}x}{\mathrm{d}} + p(t)x = q(t) \implies \begin{cases} p(t) &= -2t \\ q(t) = t \end{cases}$$

$$O\Pi \ G(t) = e^{\int p(t) \, \mathrm{d}t} = e^{\int (-2t) \, \mathrm{d}t}$$

$$\int (-2t) \, \mathrm{d}t = -t^2 \, \text{ága} \ G(t) = e^{-t^2}$$

$$e^{-t^2} \frac{\mathrm{d}x}{\mathrm{d}t} - 2te^{-t^2}x = te^{-t^2} \implies \frac{\mathrm{d}}{\mathrm{d}t} \left(xe^{-t^2} \right) = te^{-t^2} \implies \int \frac{\mathrm{d}}{\mathrm{d}t} \left(xe^{-t^2} \right) \mathrm{d}t = \int te^{-t^2} \, \mathrm{d}t \implies$$

$$\implies xe^{-t^2} = -\frac{1}{2}e^{-t^2} + c \implies \boxed{x = ce^{t^2} - \frac{1}{2}}$$

Άσκηση: 4.3

$$x' + \left(\frac{4}{t}\right) = t^4$$

$$x' + p(t)x = t^{4} \qquad p(t) = \frac{4}{t}, \ q(t) = t^{4}$$

$$G(t) = e^{\int p(t) dt} = e^{\int \frac{4}{t} dt} = e^{4\ln|t|} = e^{\ln t^{4}} = t^{4}$$

$$t^{4} \frac{dx}{dt} + t^{4} \left(\frac{4}{t}\right) x = t^{4} \cdot t^{4} \implies \frac{dx}{dt} \left(t^{4} x\right) = t^{8} \implies$$

$$\implies \int \frac{d}{dt} \left(t^{4} x\right) dt = \int t^{8} dt \implies t^{4} x = \frac{1}{9} t^{9} + c \implies \boxed{x = \frac{1}{9} t^{5} + \frac{c}{t^{4}}}$$

Άσκηση: 4.4

$$x' + x = \sin t$$
$$x(\pi) = 1$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + p(t)x = q(t) \qquad p(t) = 1, \ q(t) = \sin t$$

$$G(t) = e^{\int p(t) dt} = e^{\int 1 dt} = e^t$$

$$e^{t}(x'+x) = e^{t} \sin t \implies$$

$$\implies \int \frac{d}{dt}(e^{t}x) = \int e^{t} \sin t \, dt \implies$$

$$\implies e^{t}x = \frac{e^{t}}{2}(\sin t - \cos t) + c \implies$$

$$\implies x(t) = ce^{-t} + \frac{1}{2}\sin t - \frac{1}{2}\cos t$$

$$1 = ce^{-\pi} + \frac{1}{2}\sin \pi - \frac{1}{2}\cos \pi \implies c = e^{\pi}$$

$$E\Lambda \quad x(t) = \frac{1}{2}e^{\pi}e^{-t} + \frac{1}{2}\sin t - \frac{1}{2}\cos t \implies$$

$$\implies x(t) = \frac{1}{2}(e^{\pi-t} + \sin t - \cos t)$$

Άσκηση: 4.6

$$\frac{\mathrm{d}z}{\mathrm{d}x} - xz = -x; \quad z(0) = 4$$

$$p(x) = -x, \ q(x) = -x$$

$$G(x) = e^{\int p(x) dx} = e^{\int (-x) dx} = e^{-\frac{x^2}{2}}$$

$$e^{-\frac{x^2}{2}} \left(\frac{\mathrm{d}z}{\mathrm{d}x} - xz \right) = e^{-\frac{x^2}{2}} (-x) \implies$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(e^{-\frac{x^2}{2}} z \right) = e^{-\frac{x^2}{2}} z \implies$$

$$\int \frac{\mathrm{d}}{\mathrm{d}x} \left(e^{-\frac{x^2}{2}} z \right) \mathrm{d}x = \int \left(e^{-\frac{x^2}{2}} x \right) \mathrm{d}x \implies$$

$$e^{-\frac{x^2}{2}} z = e^{-\frac{x^2}{2}} + c \implies$$

$$z = ce^{\frac{x^2}{2} + 1} \Gamma \Lambda$$

$$-4 = ce^{\frac{0^2}{2}} + 1 \implies c = -5 \implies z(x) = -5e^{\frac{x^2}{2}} + 1 \implies E \Lambda$$

Аσкпоп: 4.7

$$z'-\frac{2}{x}z=\frac{2}{3}x^4$$

$$p(x) = -\frac{2}{x}$$

$$G(x) = e^{\int \left(\frac{-2}{x}\right)} = e^{-2\ln|x|} = e^{\ln x^{-2}}$$

$$G(x) = x^{-2}$$

$$x^{-2}(z' - \frac{2}{x}z) = \frac{2}{3}x^4x^{-2} \implies \dots \implies z(x) = cx^2 + g^2x^5$$

Άσκηση: 4.10

$$y' + xy = xy^2$$

Bernoulli

$$u = y^{1-n} = y^{1-2} = y^{-1} \Longrightarrow$$

$$u = \frac{1}{y} \Longrightarrow y = \frac{1}{u} \operatorname{kou} y' = -\frac{1}{u^2} \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{u^2} u'$$

$$-\frac{1}{u^2} \frac{\mathrm{d}u}{\mathrm{d}x} + x \frac{1}{u} = x \left(\frac{1}{u}\right)^2 \Longrightarrow u' - xu = -x$$

$$G(x) = e^{\int (-x) \, \mathrm{d}x} = e^{-\frac{x^2}{2}}, \ e^{-\frac{x^2}{2}} u' - e^{-\frac{x^2}{2}} xu = e^{-\frac{x^2}{2}} x \Longrightarrow$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(u e^{-\frac{x^2}{2}} \right) = -x e^{-\frac{x^2}{2}}$$

$$\int \frac{\mathrm{d}}{\mathrm{d}x} \left(u e^{-\frac{x^2}{2}} \right) \mathrm{d}x = \int \left(-x e^{-\frac{x^2}{2}} \right) \mathrm{d}x \Longrightarrow$$

$$u e^{-\frac{x^2}{2}} + c \Longrightarrow u = c e^{\frac{x^2}{2}} + 1 \Longrightarrow y(x) = \frac{1}{c e^{\frac{x^2}{2}} + 1}$$

$$y' - \frac{3}{r}y = x^4 y^{\frac{1}{3}}$$

$$n = \frac{1}{3}, \ u = y^{1-n} = y^{1-\frac{1}{3}} = y^{\frac{2}{3}} \implies y = u^{\frac{3}{2}}$$
$$\implies y' = \frac{3}{2}u^{\frac{1}{2}}u'$$

Άρα η διαφορική εξίσωση γίνεται

$$\frac{3}{2}u^{\frac{1}{2}}u' - \frac{3}{x}u^{\frac{3}{2}} = x^{4}\left(u^{\frac{3}{2}}\right)^{\frac{1}{3}} \implies$$

$$\frac{3}{2}u'u - \frac{3}{x}u^{2} = x^{4}u \implies$$

$$\frac{3}{2}u' - \frac{3}{x}u = x^{4} \implies$$

$$u' - \frac{2}{x}u = \frac{2}{3}x^{4}$$

$$\frac{du}{dt} + p(t)u = q(t)$$

$$G(x) = e^{\int \left(-\frac{2}{x}\right)dx} = e^{-2\ln|x|} = -\frac{1}{x^{2}}$$

$$\left(\frac{1}{x^{2}}\right)u' + \left(\frac{1}{x^{2}}\right)\left(-\frac{2}{x}\right)u = \frac{1}{x^{2}}\frac{2}{3}x^{4} \implies$$

$$\frac{d}{dx}(x^{-2}u) = \frac{2}{3}x^{2} \xrightarrow{\text{Olokil.}}$$

$$\int \frac{d}{dx}(x^{-2}u) dx = \int \frac{2}{3}x^{2} dx \implies x^{-2}u = \frac{2}{9}x^{3} + c \implies$$

$$u(x) = cx^{2} + \frac{2}{9}x^{5} \implies$$

$$y^{\frac{2}{3}} = cx^{2} + \frac{2}{9}x^{5} \implies$$

$$y = \pm \left(cx^{2} + \frac{2}{9}x^{5}\right)^{\frac{3}{2}}$$

6.2 OM/ Γ P/ Δ E/2, $n^{n\varsigma}$ / Σ Σ

Ομογενείς Γραμμικές Διαφορικές Εξισώσεις $2^{n\varsigma}$ και $n^{n\varsigma}$ τάξης με Σταθερούς Συντελεστές

6.2.1 2^{nς} τάξης

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = 0$$

Χαρακτηριστική εξίσωση ΧΕ

$$λ^2 + a_1λ + a_0 = 0 \xrightarrow{\text{παραγοντοποιείται}} (λ - λ_1)(λ - λ_2) = 0$$

(1)
$$\lambda_1 \neq \lambda_2$$

$$\Gamma \Lambda \quad x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

(2)
$$\lambda_1 = a + ib$$
 kai $\lambda_2 = a - ib$

$$\begin{split} \Gamma \Lambda \quad x(t) &= c_1 e^{(a+ib)t} + c_2 e^{(a-ib)t} \\ \hline x(t) &= \kappa_1 e^{at} \cos bt + \kappa_2 e^{at} \sin bt \\ \\ \kappa_1 \quad &= c_1 + c_2 \\ \kappa_2 \quad &= i(c_1 - c_2) \end{split} \left[\begin{array}{c} \text{lnder} \quad \text{disciss sto} \; \mathbb{R} \\ k_1, k_2 \in \mathbb{R} \\ c_1, c_2 \to \text{sukunse} \end{array} \right]$$

(3)
$$\lambda_1 = \lambda_2 \delta i \pi \lambda \hat{\mathbf{n}}$$

$$\Gamma\Lambda \quad x(t) = c_1 e^{\lambda_1 t} + c_2 t e^{\lambda_1 t}$$

6.2.2 ηης τάξης

$$\frac{d^{n}x}{dt^{n}} + a_{n-1}\frac{d^{n-1}x}{dt^{n-1}} + \dots + a_{1}\frac{dx}{dt} + a_{0}x = 0$$

Χαρακτηριστική εξίσωση

$$\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$$

με λύσεις $\lambda_1, \lambda_2, \ldots, \lambda_n$

(1) Lúseis $\in \mathbb{R}$ diakrités

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_n e^{\lambda_n t}$$

- (2) Meqikés $\mathbb R$ diakqités, meqikés $\mathbb C$ suzuyeís Omoíws.
- (3) λ_{κ} πολλαπλότητας p Δηλαδή $(\lambda \lambda_{\kappa})^p$ παράγοντας της ΧΕ αλλά όχι $n(\lambda \lambda_{\kappa})^{p+1}$. p ΓΑ λύσεις

$$e^{\lambda_{\kappa}t}$$
, $te^{\lambda_{\kappa}t}$, $t^2e^{\lambda_{\kappa}t}$, ..., $t^{p-1}e^{\lambda_{\kappa}t}$

Άσκηση: 5.1

$$y^{\prime\prime} - y^{\prime} - 2y = 0$$

$$\lambda^2 - \lambda - 2 = 0 \implies (\lambda + 1)(\lambda - 2) = 0 \implies \lambda_1 = -1, \ \lambda_2 = 2$$

Άρα:

$$y(t) = c_1 e^{-t} + c_2 e^{2t}$$

Άσκηση: 5.4

$$\ddot{y} + 10\dot{y} + 21y = 0$$

XE
$$\lambda^2 + 10\lambda + 21 = 0 \implies (\lambda + 3)(\lambda + 7) \implies \boxed{c_1 e^{-3t} + c_2 e^{-7t}}$$

$$y'' - 8y' + 16y = 0$$

XE
$$\lambda^2 - 8\lambda + 16 = 0 \implies (\lambda - 4)^2 = 0 \implies \lambda_{\kappa} = 4$$
 διπλή

$$y(x) = c_1 e^{4x} + c_2 x e^{4x}$$

RLC, σειρά,
$$R = 10\Omega$$
, $C = 10^{-2}$ F, $L = \frac{1}{2}H$, $v = 12V$

Αρχικά κανένα φεύμα, κανένα φορτίο, τάση εφαρμόζεται για t=0. Να βρεθεί i για t μετά το 0.

$$\begin{cases} Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{C}q - v = 0 \\ i = \frac{\mathrm{d}q}{\mathrm{d}t} \end{cases} \xrightarrow{\mathrm{Exap.}} R\frac{\mathrm{d}i}{\mathrm{d}t} + L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{1}{C}i = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$\Longrightarrow \frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{R}{L}\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{LC}i = \frac{1}{L}\frac{\mathrm{d}u}{\mathrm{d}t}$$

$$\Longrightarrow \frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{10}{1/2}\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{1/2}\left(10^{-2}\right)i = \frac{1}{1/2}\frac{\mathrm{d}}{\mathrm{d}t}$$

$$\Longrightarrow \frac{\mathrm{d}^2i}{\mathrm{d}t^2} + 20\frac{\mathrm{d}i}{\mathrm{d}t} + 200i = 0$$

$$XE \implies \lambda^2 + 20\lambda + 200 = 0 \quad \lambda_{1,2} = \frac{-20 \pm \sqrt{20^2 - 4(200)}}{2}$$

$$\Longrightarrow \lambda_1 = -10 + 10j, \quad \lambda_2 = -10 - 10j$$

$$\Gamma\Lambda \implies i(t) = c_1e^{(-10+10j)t} + c_2e^{(-10-10j)t}$$

$$\Longrightarrow i(t) = e^{-10t} \left(\kappa_1 \cos 10t + \kappa_2 \sin 10t\right)$$

AΣ i(0) = 0, q(0) = 0. Ψάχνω $\frac{di}{dt}\Big|_{t=0}$.

$$Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{C}q - v = 0$$

$$R(0) + L\frac{\mathrm{d}i}{\mathrm{d}t}\Big|_{t=0} + \frac{1}{C}(0) - 12 = 0 \Longrightarrow$$

$$\frac{\mathrm{d}i}{\mathrm{d}t}\Big|_{t=0} = \frac{1}{L}v - \frac{1}{LC}\oint_{t=0}^{0} - \frac{R}{L}\oint_{t=0}^{0} = 24$$

$$= \frac{1}{1/2}12 = 24 \Longrightarrow \left[\frac{\mathrm{d}i}{\mathrm{d}t}\Big|_{t=0} = 24\right]$$

$$\frac{di(t)}{dt} = -10e^{-10t} \left(\kappa_1 \cos 10t + \kappa_2 \sin 10t \right) + e^{-10t} \left(-10\kappa_1 \sin 10t + 10\kappa_2 \cos 10t \right)$$

$$i(\theta)^{-0} = e^{-10(\theta)^{-10t}} \left(\kappa_1 \cos 10(\theta)^{-1} + \kappa_2 \sin 10(\theta)^{-1} \right) \implies \kappa_1 = 0$$

$$\frac{d}{dt} = -10e^{-10(\theta)} \left((0) \cos 10(\theta) + \kappa_2 \sin 10(\theta) \right) + e^{-10(\theta)} \left(-10(\theta) \cos 10(\theta) + 10\kappa_2 \cos 10(\theta) \right) \implies \kappa_2 = \frac{12}{5}$$

Άρα:

$$E\Lambda \qquad i(t) = e^{-10t} \frac{12}{5} \sin 10t$$
$$t > 0$$

$$y''' - 6y'' + 11y' = 0$$

$$y(\pi), \ y'(\pi) = 0, \ y''(\pi) = 1$$

$$XE \lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$$

$$\lambda^{3} - 6\lambda^{2} + 11\lambda - 6 = (\lambda - 1)(\lambda^{2} - 5\lambda + 6)$$

Ara
$$\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3.$$

ΓΛ:
$$c_1 e^t + c_2 e^{2t} + c_3 e^{3t}$$
ΕΛ:
$$y'_n = c_1 e^t + 2c_2 e^{2t} + 3c_3 e^{3t}, \ y''_n = c_1 e^t + 4c_2 e^{2t} + 9c_3 e^{3t}$$

$$y_n(\pi)^{-0} = c_1 e^{\pi} + c_2 e^{2\pi} + c_3 e^{3\pi}$$

$$y'_n(\pi)^{-0} = c_1 e^{\pi} + 2c_2 e^{2\pi} + 3c_3 e^{3\pi}$$

$$y''_n(\pi)^{-1} = c_1 e^{\pi} + c_2 e^{2\pi} + 9c_3 e^{3\pi}$$

$$c_1 = \frac{1}{2} e^{-\pi}$$

$$c_2 = -e^{-2\pi}$$

$$c_3 = \frac{1}{2} e^{-3\pi}$$

EA:
$$y_p = \frac{1}{2}e^{-\pi}e^t - e^{-2\pi}e^{2t} + \frac{1}{2}e^{-3\pi}e^{3t}$$

$$y''' - 6y'' + 2y' + 36y = 0$$

XE:
$$\lambda^3 - 6\lambda^2 + 2\lambda + 36 = 0$$

 $\lambda_1 = -2$

$$\begin{array}{l} (\lambda+2)(\lambda^2-8\lambda+18)=0 \implies \lambda_1=-2, \ \lambda_2=4+i\sqrt{2}, \ \lambda_3=4-i\sqrt{2} \\ \Gamma\Lambda\colon c_1e^{-2t}+c_2e^{(4+i\sqrt{2})t}+c_3e^{(4-i\sqrt{2})t} \end{array}$$

$$y^{(4)} + 8y''' + 24y'' + 32y' + 16y = 0$$

XE:
$$\lambda^4 + 8\lambda^3 + 24\lambda^2 + 32\lambda + 16 = 0$$

 $\lambda_1 = -2$

$$(\lambda + 2)(\lambda^3 + 6\lambda^2 + 12\lambda + 8) = 0$$

Άρα $(\lambda + 2)^2(\lambda^2 + 4\lambda + 4) = (\lambda + 2)^2(\lambda + 2)^2 = (\lambda + 2)^4$. Άρα ρίζες: $\lambda = -2$ τετραπλή.

$$y_h = c_1 e^{-2t} + c_2 t e^{-2t} + c_3 t^2 e^{-2t} + c_4 t^3 e^{-2t}$$

$$\frac{\mathrm{d}^{5}P}{\mathrm{d}t^{2^{5}}} - \frac{\mathrm{d}^{4}P}{\mathrm{d}t^{4}} - 2\frac{\mathrm{d}^{3}P}{\mathrm{d}t^{3}} + 2\frac{\mathrm{d}^{2}P}{\mathrm{d}t^{2}} + \frac{\mathrm{d}P}{\mathrm{d}t} - P = 0$$

$$XE \lambda^5 - \lambda^4 - 2\lambda^3 + 2\lambda^2 + \lambda - 1 = 0$$

Τριπλή
$$\lambda_{1,2,3} = 1$$
, διπλή $\lambda_{4,5} = -1$

$$\Gamma \Lambda P_h = c_1 e^t + c_2 t e^t + c_3 t^2 e^t + c_4 e^{-t} + c_5 t e^{-t}$$

Μάζα 2 kg ανάφτηση ελατήφιο στ. ελαστικότητας $10~\mathrm{N/m}$ ηφεμία. Μετά κίνηση αρχ. ταχύτητα $150~\mathrm{km/s}$.

- 1. Έκφραση της κίνησης της μάζας, χωρίς απώλειες
- 2. κυκλική συχνότητα, φυσική συχνότητα, περίοδος

(a)

$$m\ddot{x} = -\kappa x - a\dot{x} + F(t)$$

ń

$$\ddot{x} + \frac{a}{m}\dot{x} + \frac{\kappa}{m} = \frac{F(t)}{m}$$

ΑΣ

$$\dot{x}(0) = 150^{\text{ cm}}/_{\text{s}}$$
$$x(0) = 0$$
$$\ddot{x} + 5x = 0$$

 $\Gamma P/OM/\Delta E/2\tau/\Sigma\Sigma$

$$\lambda^{2} + 5 = 0 \implies \lambda_{1,2} = \pm i\sqrt{5}$$

$$\boxed{\Gamma\Lambda \quad x(t) = c_{1}\cos\sqrt{5}t + c_{2}\sin\sqrt{5}t}$$

$$x'(t) = -c_{1}\sqrt{5}\sin\sqrt{5}t + c_{2}\sqrt{5}\cos\sqrt{5}t$$

$$x(0) = 0 \implies 0 = c_{1}\cos\sqrt{5} \stackrel{1}{\longrightarrow} (0) + c_{2}\sin\sqrt{5}(0) \stackrel{0}{\longrightarrow} 0 = c_{1}$$

$$\dot{x}(0) = 1.5 \implies 1.5 = -c_{1}\sqrt{5}\sin\sqrt{5}(0) + c_{2}\sqrt{5}\cos\sqrt{5}(0) \implies c_{2} = \frac{1.5}{\sqrt{5}}$$

(β)

$$\omega = \sqrt{5} \text{ rad/s}$$

$$f = \frac{\omega}{-2\pi} = \frac{\sqrt{5}}{2\pi} \text{ Hz}$$

$$T = \frac{1}{s}$$

6.3 ΓΛ ΜΟ/ΔΕ

$$x = \underbrace{x_n}_{\text{FA OM}} + \underbrace{x_p}^{???}$$

$$\mathbf{L}(x) = \phi(t)$$

Μέθοδος απροσδιόριστων τελεστών

 $\phi(t)$ και όλες οι παράγωγοί της $\{x_1, x_2, \dots, x_n\}$

Αρχικοποίηση

$$x_p(t) = \underbrace{A_1 x_1(t) + A_2 x_2(t) + \dots + A_n x_n(t)}_{\text{αυθαίζετοι}}$$

Περίπτωση 1

$$\phi(t) = p_n(t)$$

$$\tilde{x}_p = A_n t^n + A_{n-1} t^{n-1} + \dots + A_1 t + A_0 \quad A_j(j = 0, \dots, n)$$

Περίπτωση 2

$$\phi(t) = \kappa e^{at}$$
$$\tilde{x}_p = A e^{at}$$

Περίπτωση 3

$$\phi(t) = \kappa_1 \sin \beta t + \kappa_2 \cos \beta t$$
$$\tilde{\chi}_p = A \sin \beta t + B \cos \beta t$$

Γενίκευση $\begin{array}{ll} \phi(t) \text{συνδυασμός περιπτώσεων.} \\ \to \tilde{x}_p \text{ αντίστοιχος συνδυασμός} \end{array}$

Τροποποίηση Όταν η \widetilde{x} έχει κοινό όρο με τη x_h , τότε πολλαπλασιάζουμε με t^m την $\widetilde{x_p}$ ώστε να μην υπάρχει κοινός όρος.

$$y^{\prime\prime} - y^{\prime} - 2y = 4x^2$$

βλ. 5.1

$$y_h = c_1 e^{-x} + c_2 e^{2x}$$

$$\phi(x) = 4x^{2}$$

$$y_{p} = A_{2}x^{2} + A_{1}x + A_{0}$$

$$y'_{p} = 2A_{2}x + 1_{1}$$

$$y''_{p} = 2A_{2}$$

Αντικαθιστώντας στη διαφορική μας εξίσωση έχουμε:

$$2A_{2} - (2A_{2}x + A_{1}) - 2(A_{2}x^{2} + A_{1}x + A_{0}) = 4x^{2} \Longrightarrow$$

$$(-2A_{2})x^{2} + (-2A_{2} - 2A_{1})x + (2A_{2} - A_{1} - 2A_{0}) = 4x^{2} + (0)x + 0 \Longrightarrow$$

$$\begin{cases}
-2A_{2} & = 4 \\
-2A_{2} - 2A_{1} & = 0 \Longrightarrow \\
2A_{2} - A_{1} - 2A_{0} & = 0
\end{cases} \begin{cases}
A_{2} & = -2 \\
A_{1} & = 2 \Longrightarrow \\
A_{0} & = -3
\end{cases}$$

$$y_{p} = -2x^{2} + 2x - 3$$

$$\Gamma \Lambda \text{ MO} \quad y = y_{h} + y_{p} = c_{1}e^{-x} + c_{2}e^{2x} - 2x^{2} + 2x - 3$$

$$y^{\prime\prime} - y^{\prime} - 2y = e^{3x}$$

$$y_h = c_1 e^{-x} + c_2 e^{2x}$$

$$\phi(x) = e^{3x}$$
, $v_n(x) = Ae^{3x}$

$$\phi(x) = e^{3x}, \quad y_p(x) = Ae^{3x}$$

 $y'_p = 3Ae^{3x}, \quad y''_p = 9Ae^{3x}$

$$9Ae^{3x} - 3Ae^{3x} - 2Ae^{3x} = e^{3x} \implies 4Ae^{3x} = e^{3x} \implies 4A = 1 \implies A = \frac{1}{4}$$

EA MO
$$y_p = \frac{1}{4}e^{3x}$$

$$\Gamma\Lambda \text{ MO } y(x) = c_1 e^{-x} + c_2 e^{2x} + \frac{1}{4} e^{3x}$$

$$y'' - y' - 2y = \sin 2x$$

5.1 OM
$$y_h = c_1 e^{-x} + c_2 e^{2x}$$

$$\phi(x) = \sin 2x$$

$$y_p = A \sin 2x + B \cos 2x$$

$$y_n' = 2A\cos 2x - 2B\sin 2x$$

$$y'_p = 2A\cos 2x - 2B\sin 2x$$

$$y''_p = -4A\sin 2x - 4B\cos 2x$$

$$(-4A\sin 2x - 4B\cos 2x) - (2A\cos 2x - 2B\sin 2x) - 2(A\sin 2x + B\cos 2x) = \sin 2x \implies$$

$$(-6A + 2B)\sin 2x + (-6B - 2A)\cos 2x = (1)\sin 2x + (0)\cos 2x \implies$$

$$\begin{cases} -6A - 2B &= 1 \\ -2A - 6B &= 0 \end{cases} \implies \begin{cases} A &= -\frac{3}{20} \\ B &= \frac{1}{20} \end{cases} \implies \text{EA MO} \boxed{y_p = -\frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x}$$

$$\Gamma\Lambda \text{ MO}$$
 $y = c_1 e^{-x} + c_2 e^2 - \frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x$

$$y''' - 6y'' + 11 - 6y = 2xe^{-x}$$

5.16 OM
$$y_h = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

$$\phi(x) = 2xe^{-x}$$
 $\phi(x) = e^{ax}p_n(x)$, $a = -1$, $p_n(x) = 2x$

$$y_p = e^{-x}(A_1x + A_0) \implies y_p = A_1xe^{-x} + A_0e^{-x}$$

$$v'_{x} = -A_1 x e^{-x} + A_1 e^{-x} - A_0 e^{-x}$$

$$y_n'' = A_1 x e^{-x} - 2A_1 e^{-x} + A_0 e^{-x}$$

$$y'_{p} = -A_{1}xe^{-x} + A_{1}e^{-x} - A_{0}e^{-x}$$

$$y''_{p} = A_{1}xe^{-x} - 2A_{1}e^{-x} + A_{0}e^{-x}$$

$$y'''_{p} = -A_{1}xe^{x} + 3A_{1}e^{-x} - A_{0}e^{-x}$$

$$-24A_1xe^{-x} + (26A_1 - 24A_0)e^{-x} = 2xe^{-x} + (0)e^{-x} \implies$$

$$\begin{cases} -24A_1 &= 2 \\ 26A_1 - 24A_0 &= 0 \end{cases} \implies \begin{cases} A_1 &= -\frac{1}{12} \\ A_0 &= -\frac{13}{144} \end{cases} \text{EA MO } y_p = -\frac{1}{12}xe^-x - \frac{13}{144}e^{-x}$$

$$\Gamma\Lambda \text{ MO}$$
 $y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} - \frac{1}{12} x e^{-x} - \frac{13}{144} e^{-x}$

$$y'' = 9x^2 + 2x - 1$$

OM
$$\Delta E \ y'' = 0, \ y_n = c_1 x + c_0$$

$$\phi(x) = 9x^2 + 2x - 1 \qquad y_p = A_2 x^2 + A_1 x + A_0$$

Τοοποποίηση
$$y_p = A_2 x^4 + A_1 x^3 + A_0 x^2$$
 $y_p' = \dots, y_p'' = \dots$

$$12A_2x^2 + 6A_1x + 2A_0 = 9x^2 + 2x - 1 \stackrel{\dots}{\Rightarrow} \begin{cases} A_2 &= \frac{3}{4} \\ A_1 &= \frac{1}{3} \\ A_0 &= -\frac{1}{2} \end{cases} \implies \frac{3}{4}x^4 + \frac{1}{3}x^3 - \frac{1}{2}x^2$$

$$\Gamma\Lambda \ \mathrm{MO} \ y = c_1 x + c_0 + \frac{3}{4} x^4 + \frac{1}{3} x^3 - \frac{1}{2} x^2$$

RLC κύκλωμα σε σειρά, $R=180~\Omega,~C=\frac{1}{280}~\mathrm{F},~L=20~\mathrm{H}$

Εφαρμόζεται τάση $v(t) = 10 \sin t$, καμία αρχική φόρτιση και αρχικό ρεύμα 1 Α για t = 0, οπότε εφαρμόζεται η τάση.

Να βρεθεί το φορτίο στον πυκνωτή.

$$Ri + \frac{1}{C}q + L\frac{di}{dt} - v = 0$$

$$i = \frac{dq}{dt} = q \implies \frac{di}{dt} = \frac{d^2q}{dt^2} = \ddot{q}$$

$$\implies R\dot{q} + \frac{1}{C}q + L\ddot{q} = v$$

$$\implies \frac{\ddot{q} + \frac{R}{L}\dot{q} + \frac{1}{LC}q = \frac{1}{L}v}{1} \quad MO/\Gamma P/\Delta E/2 - \tau/\Sigma \Sigma$$

$$q(0) = 0, i(0) = 1 \implies \dot{q}(0) = 1$$

$$\ddot{q} + \frac{180}{20}\dot{q} + \frac{1}{20(1/180)}q = \frac{10}{20}\sin t \implies$$

$$\ddot{q} + 9\dot{q} + 14q = \frac{1}{2}\sin t \quad \Delta E$$

$$\Gamma \Lambda \quad OM \quad \ddot{q} + 9\dot{q} + 14q = 0$$

$$XE \quad \lambda^2 + 9\lambda + 14 = 0$$

$$\lambda_1 = -2, \lambda_2 = -7$$

$$\Gamma \Lambda \quad OM \quad \boxed{q_h = c_1e^{-2t} + c_2e^{-7t}}$$

$$\Gamma \Lambda \quad MO \quad q = q_h + q + p$$

$$\phi(t) = \frac{1}{2}\sin t$$

$$q_p = A\sin t + B\cos t$$

$$\dot{q}_p = A\cos t - B\sin t$$

$$\ddot{q}_p = A\sin t + B\cos t$$

$$\dot{q}_p = A\sin t + B\cos t$$

$$-A\sin t - B\cos t + 9A\cos t - 9B\sin t + 14A\sin t + 14B\cos t = \frac{1}{2}\sin t$$

$$\implies (-A - 9B + 14A)\sin t + (-B + 9A + 14B)\cos t = \left(\frac{1}{2}\right)\sin t + (0)\cos t$$

$$\begin{cases} 13A - 9B & = \frac{1}{2} \\ 9A + 13B & = 0 \end{cases} \qquad \begin{cases} A = \frac{13}{500} \\ B = -\frac{9}{500} \\ BA + 13B & = 0 \end{cases}$$

$$E\Lambda \quad MO \quad q = \frac{13}{500}\sin t - \frac{9}{500}\cos t$$

$$\Gamma \Lambda \quad MO \quad q = c_1e^{-2t} + c_2e^{-7t} + \frac{13}{500}\sin t - \frac{9}{500}\cos t$$

$$\therefore \implies \begin{cases} c_1 = \frac{100}{500} \\ c_2 = -\frac{101}{500} \end{cases} \xrightarrow{E \wedge MO} q = \frac{1}{500}(110e^{-2t} - 101e^{-7t} + 13\sin t - 9\cos t)$$

6.4 ΓΡ/ΔΕ/ΜΣ: Μέθοδος μεταβολής των παραμέτρων

$$\begin{array}{ll} \text{MO} \\ \Delta \text{E} \end{array} P_0(x)y^{\prime\prime} + P_1(x)y^{\prime} + P_2(x)y = F(X) \end{array}$$

OM

$$\Delta E$$
 $P_0(x)y'' + P_1(x)y' + P_2(x)y = 0$

Σύνολο λύσεων ΟΜ/ΔΕ $\{y_1, y_2\}$

ΓΛ MO
$$y = y_p + c_1y_1 + c_2y_2 = y_p + y_h$$

 y_p ΕΛ MO ΔΕ

 P_0, P_1, P_2, F συνεχείς (a, b) P_0 χωρίς μηδενικά

- a) $y_p = u_1 y_1 + u_2 y_2$
- **b)** $\begin{cases} u_1' y_1 + u_2' y_2 &= 0 \\ u_1' y_1' + u_2' y_2' &= \frac{F}{P_0} \end{cases}$
- c) u'_1, u'_2
- **d)** υπολογίζουμε u_1, u_2 , με ολοκλήρωση (ολ. σταθ \rightarrow 0)
- e) αντικατάσταση u_1, u_2 στην y_p

Άσκηση: 6.1

$$x^2y'' - 2xy' - 2y = x^{\frac{9}{2}}$$

 $y_h = c_1 x + c_2 x^2 = c_1 y_1 + c_2 y_2 \ \Gamma \Lambda \ \text{OM}$

ΕΛ

a)

$$y_p = u_1 y_1 + u_2 y_2$$
$$= u_1 x + u_2 x^2$$

b)

$$\begin{cases} u_1'x + u_2'x^2 &= 0 \\ u_1' + 2u_2'x &= \frac{x^{(9/2)}}{x^2} \end{cases} \iff \begin{cases} u_1'y_1 + u_2'y_2 &= 0 \\ u_1'y_1' + u_2'y_2' &= \frac{F}{P_1} \end{cases}$$

c)

$$u'_1 = -u'_2 x$$

 $u'_2 x = x^{5/2} \implies u'_2 = x^{3/2}, u'_1 = -x^{5/2}$

d) ολοκλήρωση

$$u_1 = -\frac{2}{7}x^{7/2}, \ u_2 = \frac{2}{5}x^{5/2}$$

e)

$$y_p = -\frac{2}{7}x^{7/2}x + \frac{2}{5}x^{5/2}x^2 = \frac{4}{35}x^{9/2}$$

$$y'' - 3y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 5$

$$\mathcal{L}\left\{y^{\prime\prime}\right\} - 3\mathcal{L}\left\{y^{\prime}\right\} + 4\mathcal{L}\left\{y\right\} = \mathcal{L}\left\{0\right\}$$

$$[s^{2}Y(s) - y - 5] - 3[sY(s) - 1] + 4Y(s) = 0$$

$$\implies Y(s) = \frac{s+2}{s^{2}-3s+4}$$

Παρονομαστής
$$s^2 - 3s + 4 = (s^2 - 3s) + 4 = \left[s^2 - 3s + \left(\frac{-3}{2}\right)^2\right] + \left[4 - \left(\frac{-3}{2}\right)^2\right] = \left(s - \frac{3}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2$$

Αριθμητής: $s + 2 = \left(s - \frac{3}{2}\right) + \frac{7}{2} = \left(s - \frac{3}{2}\right) + \sqrt{7} \frac{\sqrt{7}}{2}$

$$Y(s) = \frac{(s - \frac{3}{2}) + \sqrt{7} \frac{\sqrt{7}}{2}}{(s - \frac{3}{2})^{2} + (\frac{\sqrt{7}}{2})^{2}}$$

$$= \frac{s - \frac{3}{2}}{(s - \frac{3}{2})^{2} + (\frac{\sqrt{7}}{2})} + \sqrt{7} \frac{\frac{\sqrt{7}}{2}}{(s - \frac{3}{2})^{2} + (\frac{\sqrt{7}}{2})}$$

$$\implies y(x) = \mathcal{L}^{-1} \{Y(s)\} =$$

$$= \mathcal{L}^{-1} \left\{ \frac{s - \frac{3}{2}}{(s - \frac{3}{2})^{2} + (\frac{\sqrt{7}}{2})} \right\} + \sqrt{7} \mathcal{L}^{-1} \left\{ \frac{\frac{\sqrt{7}}{2}}{(s - \frac{3}{2})^{2} + (\frac{\sqrt{7}}{2})} \right\}$$

$$\implies y(x) = e^{\frac{3}{2}x} \cos(\frac{\sqrt{7}}{2}x) + \sqrt{7} e^{\frac{3}{2}x} \sin(\frac{\sqrt{7}}{2}x)$$

Άσκηση: 12.5

$$y'' - 4y = 2e^{3t}$$
, $y(0) = 1$, $y'(0) = -1$

$$\begin{split} \mathcal{L}\left\{y'\right\} - 4\mathcal{L}\left\{y\right\} &= 2\mathcal{L}\left\{e^{3t}\right\} \implies \\ &\Longrightarrow \left[s^2Y(s) - s + 1\right] + \left[-4Y(s)\right] = \frac{2}{s - 3} \implies \end{split}$$

$$(s^{2} - 4)Y(s) = \frac{2}{s-3} + s - 1 = \frac{2 + (s-1)(s-3)}{s-3} \xrightarrow{s^{2} - 4 = (s-2)(s+2)} \Longrightarrow Y(s) = \frac{2 + (s-1)(s-3)}{(s-2)(s+2)(s-3)}$$

$$(s-a)^m \to \frac{A_1}{(s-a)} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_m}{(s-a)^m}$$

$$(s^2 + bs + c)^p \to \frac{B_1s + C_1}{s^2 + bs + c} + \frac{B_2s + C_2}{(s^2 + bs + c)^2} + \dots + \frac{B_ps + C_p}{(s^2 + bs + c)^p}$$

$$\implies Y(s) = \frac{A}{s-2} + \frac{B}{s+2} + \frac{c}{s-3} \implies$$

$$\implies \frac{s^2 - 4s + 5}{(s - 2)(s + 2)(s - 3)} = \frac{A(s + 2)(s + 3) + B(s - 2)(s - 3) + C(s - 2)(s + 2)}{(s - 2)(s + 2)(s - 3)} \implies$$

$$s^{2} - 4s + 5 = (A + B + C)s^{2} - (-A - 5B)s + (-6A + 6B - 4C) \implies \begin{cases} A + B + C & = 1 \\ -A - 5B & = 4 \stackrel{...}{\Rightarrow} \\ -6A + 6B - 4C & = 5 \end{cases} \begin{cases} A = -\frac{1}{4} \\ B = \frac{17}{30} \\ C = \frac{3}{5} \end{cases}$$

$$Y(s) = -\frac{1}{4} \frac{1}{s-2} + \frac{17}{20} \frac{1}{s+2} + \frac{2}{5} \frac{1}{s-3}$$

$$\implies y(x) = -\frac{1}{4}e^{2x} + \frac{17}{20}e^{-2x} + \frac{2}{5}e^{3x}$$

Άσκηση: 12.6

$$y'' + 3y' + 2y = 6e^t$$
, $y(0) = 1$, $y'(0) = -1$

$$\begin{aligned} & \left[s^2 Y(s) - s + 1 \right] + 3 \left[s Y(s) - 1 \right] + 2 Y(s) = 6 \frac{1}{s - 1} \Longrightarrow \\ & \left(s^2 + 3s + 2 \right) Y(s) = \frac{6}{s - 1} + (s - 1) + 3 = \frac{6 + (s - 1)(s + 2)}{s - 1} \\ & \text{E}\phi \acute{\sigma}\sigma ov \ s^2 + 3s + 2 = (s + 1)(s + 2) \\ & \Longrightarrow \ Y(s) = \frac{6 + (s - 1)(s + 2)}{(s - 1)(s + 2)(s + 1)} = \frac{1}{s - 1} + \frac{2}{s + 2} - \frac{2}{s + 1} \Longrightarrow \boxed{y(t) = e^t + 2e^{-2t} - e^{-t}} \end{aligned}$$

Προσοχή

Σημαντικός ο ύπνος για τις εξετάσεις

Άσκηση

$$y'' - 2y' - 3y = 10\cos t$$

όπου
$$(A(s+1) - B(s-3))(s^2 + 1) + (Cs + D)(s-3)(s+1) = 10s$$

$$s = 3 \rightarrow (A(3+1)+0)(3^2+1) + (-)(0)(-) = 10 \cdot 3 \implies 40A = 30$$

$$s = 1 \rightarrow -8B = -10$$

$$s = 0 \rightarrow A - 3B - 3D = 0$$

$$εξ. συντ \rightarrow A + B + C = 0$$

$$(A(s+1) - B(s-3)(s+1) = 10s$$

$$\Rightarrow \begin{cases} A = \frac{3}{4} \\ B = \frac{5}{4} \end{cases}$$

$$C = -2$$

$$D = -1$$

$$\frac{10s}{(s-3)(s+1)(s^2+1)} = \frac{3}{4} \frac{1}{s-3} + \frac{5}{4} \frac{1}{s+1} - \frac{2s+1}{s^2+1}$$

$$\stackrel{\mathcal{L}^{-1}}{\Longleftrightarrow} \frac{3}{4} e^{3t} + \frac{5}{4} e^{-t} - 2\cos t - \sin t$$

$$\Longrightarrow y(t) = -\sin t - 2\cos t + 3e^{3t} + e^{-t}$$

$$e^{ax}\cos bx \leftrightarrow \frac{s-a}{(s-a)^2+b^2}$$

$$e^{ax}\sin bx \leftrightarrow \frac{b}{(s-a)^2 + b^2}$$

Άσκηση: 12.8

$$y'' + 4y = 8\sin 2t + 9\cos t$$
, $y(0) = 1$, $y'(0) = 0$

$$\left[s^{2}Y(s) - 1s - 0\right] + 4Y(s) = \frac{16}{s^{2} + 4} + \frac{9s}{s^{2} + 1} \implies Y(s) = \frac{16}{(s^{2} + 4)^{2}} + \frac{9s}{(s^{2} + 1)(s^{2} + 4)} + \frac{s}{s^{2} + 4}$$

Γνωρίζουμε ότι $t\cos(at) \leftrightarrow \frac{s^2-a^2}{(s^2+a^2)^2} \implies t\cos 2t \leftrightarrow \frac{s^2-4}{(s^2+4)^2} = \frac{s^2+4}{(s^2+4)^2} - \frac{8}{(s^2+4)^2} = \frac{1}{s^2+4} - \frac{8}{(s^2+4)^2}$

Άρα $\frac{8}{(s^2+4)^2} = \frac{1}{s^2+4} - \mathcal{L}\{t\cos 2t\} \implies \frac{16}{(s^2+4)^2} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} \sin 2t - 2t\cos 2t$ Αντικαθιστώντας $x = s^2$ στον $\frac{9}{(x+4)(x+1)} = \frac{3}{x+1} - \frac{3}{x+4}$ και πολλαπλασιάζοντας με s, μάς δίνει

$$\frac{9s}{(s^2+4)(s^2+1)} = \frac{3s}{s^2+1} - \frac{3s}{s^2+4} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} 3\cos t - 3\cos 2t.$$

$$\frac{s}{s^2+4} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} \cos 2t$$

$$y(t) = -(2t + 2)\cos 2t + \sin 2t + 3\cos tp$$

Άσκηση: 12.9

$$y'' - 2y' + 2y = 2t$$
, $y(0) = 2$, $y'(0) = -7$

$$\left[s^{2}Y(s) - 2s + 7\right] + 2\left[sY(s) - 2\right] + 2Y(s) = \frac{2}{s^{2}} \implies (s^{2} + 2s + 2)Y(s) = \frac{2}{s^{2}} + (2s - 7) + 4 = \frac{2}{s^{2}} + 2s - 3$$

Eφ΄ όσον
$$s^2 + 2s + 2 = (s+1)^2 + 1 \implies Y(s) = \frac{2}{s^2((s+1)^2+1)} + \frac{2s-3}{(s+1)^2+1}$$

$$\frac{2s-3}{(s+1)^2+1} = \frac{2(s+1)-5}{(s+1)^2+1} = 2\frac{s+1}{(s+1)^2+1} - 5\frac{1}{(s+1)^2+1} \stackrel{\mathscr{L}^{-1}}{\longleftrightarrow} 2e^{-t}\cos t - 5e^{-t}\sin t$$

$$\frac{2}{s^2((s+1)^2+1)} = \frac{A}{s} + \frac{B}{s^2} + \frac{Cs+D}{(s+1)^2+1}$$

όπου
$$(As + B)((s + 1)^2 + 1) + s^2(C(s + 1) + D) = 2$$

$$\implies (A+C)s^3 + (2A+B+C+D)s^2 + 2(A+B)s + 2B = 2$$

$$\implies \begin{cases} 2B & = 2 \quad s = 0 \\ -A + B + D & = 2 \quad s = -1 \\ A + C & = 0 \quad \text{ex. sunt. } s^3 \\ 2A + B + C + D & = 0 \quad \text{ex. sunt. } s^2 \end{cases}$$

Λύνοντας
$$\begin{cases} A &= -1 \\ B &= 1 \\ C &= 1 \end{cases} \cdot \text{Sunephás} \frac{2}{s^2((s+1)^2+1)} = \frac{1}{s} + \frac{1}{s^2} + \frac{s}{(s+1)^2+1}$$

$$D &= 0$$

Μέρος ΙΙ

Κεχαγιάς: Ολοκληρωτικοί μετασχηματισμοί

(Fourier, Laplace) Τετάρτη 17:00-18:30

Κεφάλαιο 7 Κεφάλαιο 7: Εισαγωγή στην ανάλυση του Φουριερ

Η συμπεριφορά του κυκλώματος μπορεί να περιγραφεί με μια διαφορική εξίσωση. Q(t): Το φορτίο του πυκνωτή σε χρονική στιγμή t

$$v_1 = R \cdot i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$v_2 = \frac{Q(t)}{C}$$

$$v_1 + v_2 = V(t) \implies \frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{Q(t)}{RC} = \frac{1}{R}V(t), \quad \text{με αρχική συνθήκη } Q(0) = 0$$

Θα προσπαθήσω να λύσω την εξίσωση για τρεις περιπτώσεις:

7.0.1
$$V(t) = V_0$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b$$

Θα εξετάσω τη γενική λύση $x_0(t)$ της ομογενούς ΔΕ, και θα ψάξω μία ειδική λύση της μη ομογενούς ΔΕ.

Omogenic:
$$b = 0 \implies \frac{dx}{dt} = -ax \implies x(t) = ce^{-at}$$
. $x(0) = 0 \implies c = 0 \implies x_0(t) = 0$.

Mn ομογενής: $\frac{dx}{dt} + ax = b$.

$$x(t) = k \implies \frac{\mathrm{d}x}{\mathrm{d}t} + ak = b \implies k = \frac{b}{a} \implies x(t) = k = \frac{b}{a}$$

Θεώοημα

Η γενική λύση της μη ομογενούς είναι:

$$x(t) = x_h(t) + x_i(t)$$

Άρα

$$\begin{cases} x(t) = ce^{-at} - \frac{b}{a} \\ x(0) = 0 \end{cases} \implies 0 = x(0) = c + \frac{b}{a} \implies x(t) = \frac{b}{a} - \frac{b}{a}e^{-at} \text{ if } \ker x(t) = \frac{b}{a}(1 - e^{-at})$$

$$a = \frac{1}{RC}, \quad b = \frac{V_0}{R}$$

7.0.2 $V(t) = V_0 \sin(nt)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b\sin(nt)$$

Eívou $x_h(t) = ce^{-at}$.

Υποθέτω $x(t) = c_2 \sin(nt) + c_3 \cos(nt)$. Τότε $\frac{dx}{dt} = nc_2 \cos(nt) - nc_3 \sin(nt)$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = (ac_2 - nc_3)\sin(nt) + (ac_3 + nc_2)\cos(nt) = b\sin(nt) \implies$$

$$\Longrightarrow \begin{cases} ac_2 - nc_3 &= b \\ nc_2 + ac_3 &= 0 \end{cases} \Longrightarrow \cdots \Longrightarrow \begin{cases} c_2 &= \frac{ab}{a^2 + n^2} \\ c_3 &= -\frac{bn}{a^2 + n^2} \end{cases}$$

Θυμάμαι ότι $x(t) = x_h(t) + x_i(t) = c_1 e^{-at} + \frac{ab}{a^2 + n^2} \sin(nt) - \frac{bn}{a^2 + n^2} \cos(nt)$ και από το x(0) = 0 βρίσκω $c_1 = \frac{bn}{a^2 + n^2}$ Aga:

$$x(t) = \frac{bn}{a^2 + n^2} + \frac{ab}{a^2 + n^2}\sin(nt) - \frac{bn}{a^2 + n^2}\cos(nt)$$

Για το RC κύκλωμα, $a=\frac{1}{RC}$ \leftarrow χρονική σταθερά κυκλώματος, $b=\frac{V_0}{R}$, άρα:

$$Q(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{-\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

$$p\cos(\omega t) + q\sin(\omega t) =$$

$$\sqrt{p^2 + q^2} \left(\frac{p}{\sqrt{p^2 + q^2}} \cos \omega t + \frac{q}{\sqrt{p^2 + q^2}} \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \left(\sin \phi \cos \omega + \cos \phi \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \sin(\omega t + \phi), \quad \phi = \arctan \frac{p}{q}$$

Παρατηρούμε ότι ο πυκνωτής φορτίζει περισσότερο αν είναι μικρότερη η συχνότητα του εναλλασσόμενου ρεύματος.

7.0.3 V(t) = square(t)

$$V(t) = \sum_{n=(1,3,5,\dots)} \frac{4}{n\pi} \sin(nt) = \frac{4}{\pi} \sin(nt) + \frac{4}{3\pi} \sin(3t) + \frac{4}{5\pi} \sin(5t) \frac{4}{7\pi} \sin(7t) + \dots$$

Έτσι γίνεται η ανάλυση Fourier, και αυτό θα το δούμε την επόμενη Τετάρτη, που θα πάμε στο Κεφάλαιο 8, που λέει σειρές Fourier.

$$V_N(t) = \sum_{n=(1,3,5,...)}^{N} \frac{4}{n\pi} \sin(nt)$$

$$V(t) = \sum_{n=(1,3,5,...)}^{\infty} \frac{4}{n\pi} \sin(nt) = \lim_{t \to \infty} V_N(t)$$

Άρα:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{V_0 \sin(nt)}{R} \implies Q_n(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

Οπότε αν:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{\pi} \frac{\sin(nt)}{R} \implies Q_1(t) = \frac{4}{\pi} \left(\frac{C^2R}{C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{3\pi} \frac{\sin(3t)}{R} \implies Q_3(t) = \frac{4}{3\pi} \left(\frac{3C^2R}{9C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{5\pi} \frac{\sin(5t)}{R} \implies Q_5(t) = \cdots$$

Άρα:

$$Q(t) = \sum_{n \in \{1,3,5,\dots\}} Q_n(t)$$

Γιατί όμως, αν $V_1(t) \rightarrow Q_1(t)$, $V_2(t) \rightarrow Q_2(t)$, τότε $k_1V_1 + k_2V_2 = k_1Q_1 + k_2Q_2$ σε αυτό το κύκλωμα (αρχή επαλληλίας/γραμμικότητα);

Κεφάλαιο 8 Κεφάλαιο 8: Σειρές Φουριερ

Ορισμός

Μία συνάρτηση f(t) λέγεται τμηματικά συνεχής στο $[t_1, t_2]$ ανν μπορώ να διαμερίσω:

$$[t_1, t_2] = [\tau_0, \tau_1] \cup [\tau_1, \tau_2] \cup \cdots \cup [\tau_{n-1}, \tau_n]$$

όπου $\tau_0=t_1$, $\tau_n=t_2$, τέτοια ώστε f(t) συνεχής στο κάθε (τ_{i-1},τ_i) , και υπάρχουν $\lim_{t\to \tau_i^+} f(t)$, $\lim_{t\to \tau_i^+} f(t) \forall i$

π.χ

Η f(t) είναι τμηματικά συνεχής στο $[-\pi, 3\pi]$, επειδή, για $t_1 = -\pi, t_2 = 3\pi$:

$$[-\pi, 3\pi] = [-\pi, 0] \cup [0, \pi] \cup [\pi, 2\pi] \cup [2\pi, 3\pi]$$

Στα $(-\pi,0)$, $(0,\pi)$, $(\pi,2\pi)$, $(2\pi,3\pi)$ n f είναι συνεχής, και υπάρχουν τα αντίστοιχα πλευρικά όρια, άρα n f είναι τμηματικά συνεχής.

8.0.4 Συνθήκες του Dirichlet

- 1. Η f(t) είναι ορισμένη στο (-L, L)
- 2. Η f(t) είναι τμηματικά συνεχής στο (-L, L)
- 3. Η f(t) είναι περιοδική με περίοδο 2L.

Θεώρημα

Έστω f(t) η οποία ικανοποιεί τις συνθήκες Dirichlet στο (-L, L). Τότε:

1. Για κάθε σημείο συνέχειας της f(t):

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

όπου:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} dt$$

2. Σε κάθε σημείο ασυνέχειας τ:

$$\frac{1}{2} \left(\lim_{t \to \tau^{-}} f(t) + \lim_{t \to \tau^{+}} f(t) \right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

Παρ. f(t) = τετραγωνικός παλμός

Λύση Η f(t) ικανοποιεί τις Σ.D με $L = \pi$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{0} (-1) dt + \frac{1}{\pi} \int_{-\pi}^{0} 1 dt = -1 + 1 = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin \frac{n\pi t}{\pi} dt = \frac{2}{\pi} \int_{0}^{\pi} 1 \sin(nt) dt$$

$$= \frac{2}{\pi} \cdot \left(\frac{-\cos nt}{n}\right)_{t=0}^{\pi} = \frac{2}{\pi} \cdot \left(\frac{1 - \cos n\pi}{\pi}\right) = \frac{2}{\pi} \left(\frac{1 - (-1)^n}{n}\right) = \frac{2}{n\pi} \text{ yia áqtia } n$$

Άρα:

$$a_0 = a_1 = a_2 = \dots = 0$$

 $b_1 = \frac{4}{\pi}, \quad b_3 = \frac{4}{3\pi}$
 $b_2 = 0, \quad b_4 = 0, \dots$

Απόδειξη (Μερική)

Θα δεχτούμε ότι n f(t) γράφεται στη μορφή $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$, και θα δείξουμε τους τύπους $a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} \, \mathrm{d}t$, $b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} \, \mathrm{d}t$ Έστω $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$. Τότε:

$$\int_{-L}^{L} f(t) dt = \int_{-L}^{L} f(t) \cdots t = \int_{-L}^{L} \frac{a_0}{2} dt + \int_{-L}^{L} a_1 \cos \frac{\pi t}{L} dt + \int_{-L}^{L} a_2 \cos \frac{2\pi t}{L} + \cdots = a_0 \cdot L + 0 + 0 + \dots$$

Άρα:

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(t) \, \mathrm{d}t$$

Συνέχεια απόδειξης Υποθέτω ότι υπάρχει κάποια σειρά της μορφής *, θα δείξω ότι οι συντελεστές δίνονται από τους τύπους **. ί
ό Παρνω τυχόν $m \in \mathbb{N}$ και εξετάζω το

$$\int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} dt =$$

$$= \int_{-L}^{L} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} \right) \cos \frac{m\pi t}{L} dt$$

$$= \underbrace{\int_{-L}^{L} \frac{a_0}{2} \cos \frac{m\pi t}{L} dt}_{=0 \text{ ολοκλαιφώνω trάνω se m tequiddoug}} + \sum_{n=1}^{\infty} \int_{-L}^{L} a_n \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} dt + \sum_{n=1}^{\infty} \int_{-L}^{L} b_n \sin \frac{n\pi t}{L} \cos \frac{m\pi t}{L} dt$$

$$= \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} dt$$

$$= \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} dt$$

$$\cos a \cdot \cos \beta = \frac{\cos(a+\beta) + \cos(a-\beta)}{2} \sum_{n=1}^{\infty} \frac{a_n}{2} \int_{-L}^{L} \left(\cos \frac{(n+m)\pi t}{L} + \cos \frac{(n-m)\pi t}{L} \right) dt$$

$$= \sum_{n=1}^{\infty} \begin{cases} 0, & n \neq m \\ a_n L, & n = m \end{cases}$$

Επομένως:

$$a_m = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

Αντιστοίχως αποδεικνύεται και η σχέση για το b_m .

Να σημειωθεί ότι οι συνθήκες του Dirichlet είναι ικανές, αλλά όχι αναγκαίες.

8.0.5

$$f(t) = \sum_{-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$
$$c_n = \frac{1}{2L} \int_{-L}^{L} e^{-in\pi t} L \, dt$$

Απόδειξη

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} = \frac{a_0}{2} +$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \cdots e^{\frac{in\pi t}{L}} + \sum_{n=1}^{\infty} \frac{a_n - ib_n}{2} e^{\frac{in\pi t}{L}} + + \sum_{n=-1}^{-\infty} \frac{a_{-n} + ib_{-n}}{2} e^{\frac{in\pi t}{L}}$$

Άρα

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

όπου:

$$c_n = \begin{cases} \frac{a_n - ib_n}{2}, & n \in \mathbb{Z}^+ \\ \frac{a_{-n} + ib_{-n}}{2}, & n \in \mathbb{Z}^- \\ \frac{a_0 + ib_0}{2}, & n = 0 \end{cases}$$

Αφήνεται ως άσκηση για τον αναγνώστη να αποδειχθεί ότι:

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(t) e^{\frac{-in\pi t}{L}} dt$$

8.1 Παράδειγμα

V(t) τετραγωνική συνάρτηση

Θα βρω την εκθετική σειρά της f(t).

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} (-1) \cdot e^{-int} dt + \int_{0}^{0} (\pi)1 \cdot e^{-int} dt$$

$$= \frac{1}{2\pi} \left(-\int_{-\pi}^{0} e^{-int} dt + \int_{0}^{\pi} e^{-int} dt \right)$$

$$= \frac{1}{2\pi} \left(\frac{e^{-int}}{in} \Big|_{-\pi}^{0} + \frac{e^{-int}}{in} \Big|_{0}^{\pi} \right)$$

$$= \frac{1}{2\pi} \left(\frac{1}{in} - \frac{e^{-in\pi}}{in} - \frac{e^{-in\pi}}{in} + \frac{1}{in} \right)$$

$$= \frac{1}{2\pi} \left(\frac{2}{in} - \frac{2\cos(n\pi)}{in} \right)$$

$$c_{n} = \frac{i}{n\pi} \cdot (1 - \cos n\pi)$$

$$\begin{array}{c|cc}
n & c_n \\
-2 & 0 \\
-1 & \frac{2i}{\pi} \\
0 & 0 \\
1 & \frac{-2}{\pi} \\
2 & 0 \\
3 & \frac{-2i}{2\pi} \\
\end{array}$$

Άρα:

$$f(t) = \cdots + \frac{2i}{3\pi}e^{i3t} + \frac{2i}{\pi}e^{-it} - \frac{2i}{\pi}e^{it} - \frac{2i}{3\pi}e^{i3t} + \cdots$$

Ερωτήματα για τον αναγνώστη:

- 1. Πότε έχει η τριγωνομετρική σειρά μόνο ημίτονα/μόνο συνημίτονα;
- 2. Πότε έχει η εκθετική σειρά μόνο πραγματικούς/μόνο εκθετικούς όρους;

8.2

Ορισμός

Συμβολίζω με \mathfrak{F}_L το σύνολο των συναφτήσεων που ικανοποιούν τις συνθήκες Dirichlet (με ημιπερίοδο L)

Θεώρημα

Το \mathfrak{F}_L είναι διανυσματικός χώρος.

Απόδειξη Έστω $f, g \in \mathfrak{F}_L$ και $\kappa, \lambda \in \mathbb{C}$. Θα δείξω ότι $\kappa f + \lambda g \in \mathfrak{F}_L$.

Πράγματι

1. An oi f,g eínai origiénes sto [-L,L] tóte kai n $\kappa f + \lambda g$ eínai origién sto [-L,L].

2.

$$(\kappa f + \lambda g)(t + 2L) = \kappa f(t + 2L) + \lambda g(t + 2L)$$
$$= \kappa f(t) + \lambda g(t)$$
$$= (\kappa f + \lambda g)(t)$$

Άρα η $\kappa f + \lambda g$ έχει περίοδο 2L.

3. An n f kai n g eínai t μ . suneceís sto [-1,1], tóte kai n $\kappa f + \lambda g$ eínai t μ . suneceís.

Από τα 1,2,3, n $\kappa f + \lambda g \in \mathfrak{F}_L$.

Θεώρημα

Το σύνολο $\left\{e^{\frac{in\pi t}{L}}\right\}_{-\infty}^{\infty}$ είναι μια ορθογώνια βάση του \mathfrak{F}_L .

Δηλαδή κάθε $f(t) \in \mathfrak{F}_L$ μπορεί να γραφεί:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

Επιπλέον $\forall n, m, m \neq n \ e^{\frac{in\pi t}{L}} \perp e^{\frac{im\pi t}{L}}$

Δηλαδή:

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = 0$$

Δηλαδή:

$$\int_{-L}^{L} e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} \, \mathrm{d}t = 0$$

Για να ορίσω το εσωτερικό γινόμενο, θέλω $||\vec{x}||^2 = \vec{x} \cdot \vec{x} = \sum_n x_n \bar{x_n} = \sum (x_n)^2$

$$f \cdot g = \int_{-L}^{L} f(t) \overline{g(t)} \, \mathrm{d}t$$

Άρα

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = \int_{-L}^{L} e^{\frac{im\pi t}{L}} e^{\frac{in\pi t}{L}} dt = \int_{-L}^{L} e^{\frac{i(m-n)\pi t}{L}} dt = \begin{cases} 2L, & m=n \\ 0, & m\neq n \end{cases}$$

- \mathfrak{F}_L το σύνολο των συναφτήσεων που ικανοποιούν Dirichlet
- To \mathfrak{F}_L είναι ΔX
- To $\left\{e^{\frac{in\pi t}{L}}\right\}_{n\mathbb{Z}}$ είναι μια ορθογώνια βάση του $\mathfrak{F}_{\mathfrak{L}}$
- Το $\left\{\cos\frac{in\pi t}{L}\right\}_{n=0}^{\infty} \cup \left\{\sin\frac{in\pi t}{L}\right\}_{n=1}^{\infty}$ είναι μια ορθογώνια βάση του $\mathfrak{F}_{\mathfrak{L}}$
- $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$, we

περιοδική, με ημιπερίοδο L

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(t)e^{\frac{in\pi t}{L}} dt$$

$$\vec{x} = [x_1 x_2 x_3] = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}$$

$$= \text{Proj}(\vec{x}, \vec{e_1}) + \text{Proj}(\vec{x}, \vec{e_2}) + \text{Proj}(\vec{x}, \vec{e_3})$$

$$= \sum_{n=1}^{3} \vec{x} \cdot \vec{e_n} \cdot \frac{\vec{e_n}}{\|\vec{e_n}\|}$$

Άρα:

$$f(t) = \sum_{n = -\infty^{\infty}} c_n e^{\frac{in\pi t}{L}} = \sum_{n = -\infty^{\infty}} \text{Proj}\left(f(t), e^{\frac{in\pi t}{L}}\right)$$

όπου
$$\operatorname{Proj}\left(f(t), e^{\frac{in\pi t}{L}}\right) = f(t) \bullet e^{\frac{in\pi t}{L}} e^{\frac{in\pi t}{L}}$$

$$f(t) \bullet e^{\frac{in\pi t}{L}} = \int_{-L}^{L} f(t) \cdot e^{\frac{in\pi t}{L}} dt$$

$$\left\| e^{\frac{in\pi t}{L}} \right\| = \int_{-L}^{L} e^{\frac{in\pi t}{L}} \cdot e^{\frac{-in\pi t}{L}} dt = 2L$$

Θεώρημα 8.1: Plancherel

$$\frac{1}{2L} \int_{-L}^{L} f(t) \overline{g(t)} \, dt = \sum_{n} c_n \overline{r_n}$$

$$H \begin{cases} f(t) &= \sum_{n} c_{n} e^{\frac{in\pi t}{L}} \\ f(t) &= \sum_{n} r_{n} e^{\frac{in\pi t}{L}} \end{cases}$$

Απόδειξη

$$\frac{1}{2L} \int_{-L}^{L} f(t)\overline{g(t)} \, dt = \frac{1}{2L} \int_{-L}^{L} \left(\sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}} \right) \left[\sum_{m=-\infty}^{\infty} c_m e^{\frac{im\pi t}{L}} \right] dt$$

$$= \frac{1}{2L} \int_{-L}^{L} \left(\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}} \overline{r_m} e^{\frac{in\pi t}{L}} \right) dt$$

$$= \frac{1}{2L} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n r_m \int_{-L}^{L} e^{\frac{i(n-m)\pi t}{L}} \, dt$$

$$\begin{cases} 0 & m \neq n \\ 2L & m = n \end{cases}$$

$$= \frac{1}{2L} 2L \sum_{n=-\infty}^{\infty} c_n r_n = \frac{1}{2L} \sum$$

Γενικά:

$$f(t) \leftrightarrow \vec{c} = [\ldots c_{-1} c_0 c_1 c_2 \ldots]$$

(με την επιφύλαξη ότι σε πεπερασμένο αριθμό σημείων μπορεί να αλλάζει η τιμή της συνάρτησης) Σύμφωνα με το θεώρημα:

$$f(t) \leftrightarrow \vec{c}$$

$$g(t) \leftrightarrow \vec{r}$$

$$\frac{1}{2L} f \bullet g = \vec{c} \bullet \vec{r}$$

Θεώρημα 8.2: Πόρισμα (Parseval)

$$\frac{1}{2L} \int_{-L}^{L} |f(t)|^2 dt = \sum_{n} |c_n|^2$$

Θεώρημα 8.3

Αν $f(t) \in \mathfrak{F}_L$ και $f(t) = \sum_n c_n e^{\frac{in\pi t}{L}}$, τότε:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \sum_{n} c_{n} \frac{in\pi}{L} e^{\frac{in\pi t}{L}}$$
$$\int f(t) = \sum_{n} c_{n} \frac{L}{in\pi} e^{\frac{in\pi t}{L}}$$

Τα ίδια για ημίτονα και συνημίτονα

Παράδειγμα Δίνεται
n $f(t) = \begin{cases} |t| & t \in [-\pi,\pi] \\ \pi$ εριοδική επέκταση $t \notin [-\pi,\pi] \end{cases}$ Να β
ρεθεί η Σειρά (Fourier) της f(t).

Λύση Αφού λοιπόν $g(t) = \frac{4}{\pi} \cdot \left(\sin t + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \dots\right)$, τότε:

$$f(t) = c - \frac{4}{\pi} \left(\cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} \right)$$
$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} = c$$

Άρα τελικά:

$$f(t) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} \right)$$

Παρατηρώ ότι η f έχει ασθενέστερες υψηλές συχνότητες από τη g.

Παράδειγμα Να υπολογιστεί το:

$$S_1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \cdots$$

Είναι

$$g\left(\frac{\pi}{2}\right) = \frac{4}{\pi} \left(\sin\frac{\pi}{2} + \frac{\sin\frac{3\pi}{2}}{3} + \frac{\sin\frac{5\pi}{2}}{5} \right)$$
$$1 = g\left(\frac{\pi}{2}\right) = \frac{4}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - \dots \right) = S_1$$

Παράδειγμα Να υπολογιστεί το:

$$S_1 = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

Λύση

$$0 = f(0) = \frac{\pi}{2} - \frac{4}{\pi} \cdot \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$$
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Κεφάλαιο 9 Κεφάλαιο 9: Μετασχηματισμός Φουριερ

Θεώοημα

Έστω ότι η f(t) ικανοποιεί τα εξής:

1. Τις συνθήκες Dirichlet $\forall L \in \mathbb{R}$

2. $\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < \infty$ (δηλ. η f(t) είναι απολύτως ολοκληφώσιμη)

Τότε:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} dt$$

όπου:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

Απόδειξη Δίνεται η f(t). Διαλέγω τυχόν t και ορίζω την $f_T(t) = f(t)$ $\forall t \in \left[-\frac{T}{2}, \frac{T}{2}\right]$, που έχει σειρά Fourier:

$$f_T(t) = \sum_{n=-\infty}^{\infty} c(n)e^{\frac{in2\pi t}{T}}$$

όπου

$$c(n) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-\frac{in2\pi t}{T}} dt$$

Θέτω $\delta\omega = \frac{2\pi}{T}$, $\omega = n \cdot \delta\omega = \frac{2n\pi}{T}$

$$f_T(t) = \sum_{n = -\infty}^{\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-\frac{in2\pi t}{T}} dt \right) e^{\frac{in2\pi t}{T}}$$

$$= \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} \left(\frac{2\pi}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i\omega t} dt \right) e^{\frac{in2\pi t}{T}}$$

$$= \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i\omega t} dt \right) e^{i\omega t} \delta \omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) e^{i\omega t} dt \right) e^{i\omega t} d\omega$$

Την $F(\omega)$ την ονομάζουμε Fourier μετασχηματισμένη της f(t), και γράφουμε:

$$\mathscr{F}\bigg(f(t)\bigg) = F(\omega)$$

$$F(\omega) = \mathcal{F} f(t) \quad f(t) = \mathcal{F}^{-1} \left(F(\omega) \right)$$

Παρ.

$$f(t) = \begin{cases} 1 & |t| < a \\ 0 & |t| \ge a \end{cases}$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \int_{-a}^{a} 1e^{-i\omega t} dt = -\frac{1}{i\omega}e^{-i\omega t} dt$$
$$= \frac{2}{\omega} \left(\frac{-e^{-i\omega a}}{2i}\right)$$
$$= 2\frac{\sin(\omega a)}{\omega}$$

Παρ.

$$f(t) = e^{-|t|}$$

$$F(\omega) = \int_{-\infty}^{\infty} e^{-|t|} e^{-i\omega t} dt$$
$$= \int_{-\infty}^{0} e^{t} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-t} e^{-i\omega t} dt$$

$$\int_0^\infty e^{-t} e^{-i\omega t} dt = -\frac{1}{1+i\omega} \Big|_{t=0}^\infty$$

$$= -\frac{1}{1+i\omega} \left(e^{-(1+i\omega)\cdot\infty} - e^{-(1+i\omega)\cdot0} \right)$$

$$= -\frac{1}{1+i\omega} \left(0 - 1 \right)$$

$$= \frac{1}{1+i\omega}$$

Άρα:

$$\int_{-\infty}^{0} e^{t} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-t} e^{-i\omega t} dt = \frac{1}{1 - i\omega} + \frac{1}{1 + i\omega}$$
$$= \boxed{\frac{2}{1 + \omega^{2}} = \mathscr{F}\left(e^{-|t|}\right)}$$

Ο Μ/Σ Fourier εφαρμόζεται μόνο σε απόλυτα ολοκληρώσιμες f(t). Δηλαδή υποθέτω ότι

$$\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t = M < \infty$$

Αυτό το κάνω, διότι $\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < M < \infty$ είναι ικανή συνθήκη για να υπάρχει το $\int_{-\infty}^{\infty} f(t) e^{-i\omega t}$. Έχει μία σημαντική συνέπεια:

$$\lim_{t \to \pm \infty} f(t) = 0$$

Για παράδειγμα, οι $\mathscr{F}(e^t)$ και $\mathscr{F}(e^{-t})$ δεν υπάρχουν, ενώ ο $\mathscr{F}(e^{-|t|})$ υπάρχει διότι η $e^{-|t|}$ είναι απόλυτα ολοκληρώσιμη.

Extists $\int_{-\infty}^{\infty} |F(\omega)| d\omega = M' < \infty$

Θεώρημα 9.1

$$\mathscr{F}(\kappa f + \lambda g) = \kappa \mathscr{F}(f) + \lambda \mathscr{F}(g)$$

Παο.

$$\mathscr{F}(3 \cdot \text{square} + 5 \cdot e^{-|t|}) = 6 \frac{\sin(\omega)}{\omega} + \frac{10}{1 + \omega^2}$$

Η απόδειξη είναι εύκολη και αφήνεται για τον αναγνώστη.

Το Wolfram επιστρέφει τους M/Σ Fourier με διαφορετικό παράγοντα, για λόγους συμμετρίας! $(\frac{1}{\sqrt{2\pi}}$ έναντι $\frac{1}{2\pi}$). Στις σημειώσεις τηρείται η ιστορική σύμβαση που ακολουθείται και από προγράμματα όπως, π.χ. Matlab.

Θεώρημα 9.2

Έστω $F(\omega) = \mathscr{F}(f(t))$, τότε:

$$\mathscr{F}(F(t)) = 2\pi f(-\omega)$$

Δηλαδή:

$$\mathscr{F}\left(\mathscr{F}\left(f(t)\right)\right) = 2\pi f(-t)$$

Απόδ.

$$\mathcal{F}(f(t)) = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$\mathcal{F}^{-1}(F(\omega))) = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega$$

$$2\pi f(-t) = \int_{-\infty}^{\infty} F(\omega)e^{-i\omega t} d\omega$$

$$= \int_{-\infty}^{\infty} F(\tau)e^{-i\tau w} d\tau = 2\pi f(-w)$$

$$= \mathcal{F}(F(\tau)) = 2\pi f(-w)$$

Πας.

$$\mathscr{F}\left(\frac{1}{1+t^2}\right)$$

Λύση

$$\cdots = \int_{-\infty}^{\infty} \dots$$

ń

Παρατηρώ ότι
$$\mathscr{F}(\frac{1}{2}e^{-|t|})=\frac{1}{1+\omega^2}=F(\omega)=F(-\omega)$$
 Άρα $F(t)=\frac{1}{1+t^2}$

$$\mathscr{F}\left(\frac{1}{1+t^2}\right) = \mathscr{F}\left(F(t)\right) = 2\pi f(-\omega) = \pi e^{-|\omega|}$$

Θεώρημα 9.3

$$\mathscr{F}(f(at)) = \frac{1}{a}F\left(\frac{\omega}{a}\right)$$

Απόδ.

$$\mathscr{F}(f(at)) = \int_{-\infty}^{\infty} f(at)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(at)e^{-i\frac{\omega}{a}at} dt$$

$$= \frac{1}{a} \int_{-\infty}^{\infty} f(at)e^{-i\frac{\omega}{a}at} d(at) = \frac{1}{a} \int_{-\infty}^{\infty} f(\kappa)e^{-i\frac{\omega}{a}\kappa} d\kappa = \frac{1}{a}F\left(\frac{\omega}{a}\right)$$

Πας.

$$\mathscr{F}\left(\frac{1}{4+9t^2}\right) = \frac{1}{4}\mathscr{F}\left(\frac{1}{1+\frac{9}{4}t^2}\right) = \frac{1}{4}\mathscr{F}\left(\frac{1}{1+\left(\frac{3}{2}t\right)^2}\right)$$

 $\Gamma\iota\alpha\ f(t) = \frac{1}{1+t^2}, \quad F(\omega) = \pi e^{-|\omega|},$

$$f(\frac{3}{2}t = \frac{1}{1 + \frac{9}{4}t^2} \to \frac{1}{a}F\left(\frac{\omega}{a}\right) = \frac{2\pi}{3}e^{-\left|\frac{3\omega}{2}\right|}$$

Αρα ο ζητούμενος μετασχηματισμός είναι $\frac{1}{4}\frac{2\pi}{3}e^{-\left|\frac{3\omega}{2}\right|}$

<u>Θεώο</u>ημα

Έστω $F(\Omega) = \mathscr{F}(f(t))$. Τότε

1.
$$\mathscr{F}\left(\frac{\mathrm{d}f}{\mathrm{d}t}\right) = i\omega F(\omega)$$

2.
$$\mathscr{F}\left(\int f(t) dt\right) = \frac{1}{i\omega} F(\omega)$$

3.
$$\mathscr{F}\left(-itf(t)\right) = \frac{\mathrm{d}F}{\mathrm{d}\omega}$$

Απόδ.

$$\mathcal{F}\left(\frac{\mathrm{d}f}{\mathrm{d}t}\right) = \int_{-\infty}^{\infty} \frac{\mathrm{d}f}{\mathrm{d}t} e^{-i\omega t} \, \mathrm{d}t$$

$$= \int_{-\infty}^{\infty} e^{-i\omega t} \, \mathrm{d}t$$

$$= f(t)e^{-i\omega t}\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(t) \, \mathrm{d}(e^{-i\omega t})$$

$$= f(\infty)e^{-i\omega \infty} - f(-\infty)e^{i\omega \infty} - \int (-i\omega)f(t)e^{-i\omega t} \, \mathrm{d}t$$

$$= 0 - 0 + i\omega \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, \mathrm{d}t$$

$$= i\omega F(\omega) = \mathcal{F}\left(\frac{\mathrm{d}f}{\mathrm{d}t}\right)$$

Θέτω $g(t) = \int f(t) dt$, οπότε $\frac{dg}{dt} = f(t)$.

$$\mathscr{F}(f) = \mathscr{F}\left(\frac{\mathrm{d}g}{\mathrm{d}t}\right) = i\omega G(\omega) \implies \mathscr{F}\left(\int g(t)\,\mathrm{d}t\right) = G(\omega) = \frac{1}{i\omega}F(\omega)$$

Το (3) δείχνεται όπως το (1).

Ορισμός: Βηματική συνάρτηση του Heaviside

$$h(t) = \begin{cases} 1 & t > 0 \\ 0 & t \le 0 \end{cases}$$

$$H(\omega) = \mathscr{F}(h(t)) = \int_{-\infty}^{\infty} h(t)e^{-i\omega t} dt = \int_{0}^{\infty} e^{-i\omega t} dt = -\frac{1}{i\omega}e^{-i\omega t}\Big|_{t=0}^{\infty} = \boxed{\frac{1}{i\omega} = \mathscr{F}(h(t))}$$

Παρ.

$$\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = e^{-t}h(t)$$

Λύση

$$i\omega Y(\omega) + 2Y(\omega) = \frac{1}{i\omega}(???)$$

Eívoi $\mathscr{F}(f(t)e^{i\omega t}) = F(\omega - \omega_0.$

Θέτω $f(t)=h(t), e^{i\omega t}=e^{-t}$. Δηλαδή $\omega_0=\frac{1}{i}=i,$ οπότε $\mathscr{F}(e^{-t}h(t))=\frac{1}{1+i\omega}$ Άρα

$$\begin{split} i\omega Y(\omega) + 2Y(\omega) &= \frac{1}{i\omega + 1} \implies Y(\omega) = \frac{1}{(i\omega + 1)(i\omega + 2)} \\ &\implies Y(\omega) = \frac{1}{1 + i\omega} - \frac{1}{2 + i\omega} \\ &\implies \mathscr{F}^{-1}(Y(\omega)) = \mathscr{F}^{-1}\bigg(\frac{1}{1 + i\omega}\bigg) - \mathscr{F}^{-1}\bigg(\frac{1}{2 + i\omega}\bigg) \\ &\implies \boxed{y(t) = e^{-t}h(t) - e^{-2t}h(t)} \end{split}$$

είναι η λύση της δοθείσας εξίσωσης. Πού πήγε η σταθερά· Ποιες είναι οι αρχικές συνθήκες· Αν πήγαινα να την λύση αλλιώς:

$$\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = f(t)$$

Ομογενής $\frac{\mathrm{d}y}{\mathrm{d}t}+2y=0$, γενική λύση $y_h(t)=ce^{-2t}$. Ειδική λύση της μη ομογενούς $y_p(t)$.

Γενική λύση της μη ομογενούς: $y(t) = ce^{-2t} + y_p(t)$. Ποια είναι η τιμή της c-

Είναι c=0 διότι ζητώ λύση η οποία έχει μετασχηματισμό Φουριερ. Άρα πρέπει $\lim_{t\to -\infty} y(t)=0$ $\lim_{t\to-\infty} \left(ce^{-2t} + y_p(t)\right) = 0, \text{ ága } c = 0.$

Δηλαδή κουβόταν από την εκφώνηση του πορβλήματος ότι $\lim_{t\to\pm\infty}y(t)=0$.

Πας. Υπολογίστε $\mathscr{F}\left(\frac{t}{(t^2+1)^2}\right)$

Λύση $f(t) = \frac{1}{t^2+1}$, τότε $\frac{df}{dt} = \frac{-2t}{(t^2+1)^2}$

$$\mathscr{F}\left(\frac{t}{(t^2+1)^2}\right) = -\frac{1}{2}\mathscr{F}\left(\frac{-2t}{(t^2+1)^2}\right) = -\frac{1}{2}\mathscr{F}\left(\frac{\mathrm{d}f}{\mathrm{d}t}\right) = -\frac{1}{2}i\omega\mathscr{F}(f) = -\frac{1}{2}i\omega\pi e^{-|\omega|}$$

Παρ. Να υπολογιστεί ο $\mathscr{F}\left(\frac{t}{1+t^2}\right)$.

Λύση Θέτω $f(t) = \frac{1}{1+t^2} \Longrightarrow F(\omega) = \pi e^{-|\omega|}$. Οπότε $\mathscr{F}\left(\frac{t}{1+t^2}\right) = \frac{1}{-i}\mathscr{F}\left(-it\cdot f(t)\right) = i\frac{\mathrm{d}F}{\mathrm{d}\omega}$.

Προσοχή

$$G(\omega) = i\frac{\mathrm{d}F}{\mathrm{d}\omega} = \pi i\frac{\mathrm{d}}{\mathrm{d}\omega}(e^{-|\omega|}) = \begin{cases} \pi i e^{\omega} & \omega < 0 \\ \mathrm{KE}\Phi. \ 11 & \omega = 0 \\ -\pi i \cdot e^{-|\omega|} & \omega < 0 \end{cases}$$

Θεώοημα: Plancherel/Parseval

Plancherel

$$f \bullet g = \frac{1}{2\pi} F \bullet G$$

δηλαδή

$$\int_{-\infty}^{\infty} f(t) \overline{g(t)} \, \mathrm{d}t = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2\pi} F(\omega) \overline{G(\omega)} \, \mathrm{d}\omega$$

Parseval

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega$$

Η απόδειξη είναι εύκολη και υπάρχει στις σημειώσεις.

Συνέλιξη

Ορισμός: Σπουδαίος Ορισμός

Η συνέλιξη των f(t), g(t) συμβολίζεται f*g και ορίζεται:

$$f(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

Παράδειγμα

$$g(t) = \begin{cases} 1, & |t| < 1 \\ 0, & |t| \ge 1 \end{cases}$$

Περίπτωση t < -2 Τότε

$$(g * g)(t) = \int_{-\infty}^{\infty} g(\tau)g(t - \tau) dt$$
$$= \int_{-\infty}^{-2} g(\tau)g(t - \tau) d\tau + \int_{-2}^{-1} g(\tau)g(t - \tau) dt + \int_{-1}^{\infty} g(\tau)g(t - \tau) d\tau = 0$$

Μετά από πράξεις θα δούμε ότι

$$(g * g)(t) = \begin{cases} 0 & t < -2 \\ 2 - t & -2 < t < 0 \\ 2 + t & 0 \le t < 2 \\ 0 & 2 < t \end{cases}$$

Θεώοημα

$$\mathcal{F}(f*g) = \mathcal{F}(f)*\mathcal{F}(g)$$

Απόδειξη

$$\mathcal{F}(f * g) = \int_{-\infty}^{\infty} (f * g)(t)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau \right) e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} g(t-\tau)e^{-i\omega t} dt \right) d\tau$$

$$= \int_{-\infty}^{\infty} f(\tau) \left(\int_{-\infty}^{\infty} g(t-\tau)e^{-i\omega(t-\tau)} d(t-\tau) \right) e^{-i\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} f(t)G(\omega)e^{-i\omega\tau} d\tau$$

$$= G(\omega) \int_{-\infty}^{\infty} f(t)e^{-i\omega\tau} d\tau$$

$$= G(\omega)F(\omega)$$

Θεώρημα: Πόρισμα

$$f * g = g * f$$

 $f * (g + h) = f * g + f * h$
 $(f * g) * h = f * (g * h)$

Απόδ.

$$\mathscr{F}(f * g) = F(\omega)G(\omega) = G(\omega)F(\omega) = \mathscr{F}(g * f)$$

ομοίως και τα υπόλοιπα.

Παρ. Να βρεθεί ο $\mathcal{F}(\pi * \pi)$.

Λύση

$$\mathcal{F}(\pi(t)) = \frac{2\sin(\omega)}{\omega}$$

$$\mathcal{F}(\lambda(2t)) = \mathcal{F}(\pi(t) * \pi(t)) = \frac{2\sin(\omega)}{\omega} \frac{2\sin(\omega)}{\omega} = \frac{4\sin^2\omega}{\omega^2}$$

Τι να κάνω όταν η f(t) δεν είναι απολύτως ολοκληρώσιμη;

Θα δουλέψω με την $g(t)=e^{-\sigma t}f(t)$ και θα περιοριστώ στο $t\geq 0.$

Τότε n g(t) θα είναι (για αρκετά μεγάλο σ) απολύτως ολοκληρώσιμη, και μπορώ να πάρω $\mathscr{F}\left(g(t)\right) = \int_0^\infty e^{-\sigma t} f(t) e^{-i\omega t} \, \mathrm{d}t = \int_0^\infty e^{-i(\sigma + i\omega)} = e^{\Theta \text{έτοντας } s = \sigma + i\omega} \int_0^\infty f(t) e^{-st} \, \mathrm{d}t = \mathscr{L}\left(f(t)\right).$

Κεφάλαιο 10 Κεφαλαιο 10: Μετασχηματισμος Λαπλαςε

- Fia na uparcei $\mathscr{F}(x(t))$ prepei n x(t) na einai aponutwa orokrowsimi.
- An x(t) den einal apolitus olokliquosilin, isus einal n $y(t) = x(t)h(t)e^{-\sigma t}$.
- Opote douleuw me thin $\mathscr{F}(y(t)) = \mathscr{F}\left(x(t)h(t)e^{-\sigma t}\right) = \int_0^\infty x(t)e^{-\sigma t}e^{i\omega t}\,\mathrm{d}t$ (find $s = \sigma + i\omega$) = $\int_0^\infty x(t)e^{-st}\,\mathrm{d}t = \mathscr{L}\left(x(t)\right).$
- Κατ΄ αυτόν τον τρόπο μπορώ να διαχειριστώ x(t) που είναι χρήσιμες αλλά όχι απολ. ολοκλ. (π.χ. x(t) = 1 ή $e^t \cdots$).

• Όμως πετάω όλη την πληροφορία για t < 0.

Ορισμός

Η f(t) λέγεται τμηματικά συνεχής στο $[t_1, t_2]$ ανν:

• μπορώ να διαμερίσω το $[t_1, t_2]$:

$$[t_1, t_2] = [\tau_0, \tau_1] \cup [\tau_1, \tau_2] \cup \cdots \cup [\tau_{N-1}, \tau_N]$$

- και n f(t) συνεχής σε κάθε (τ_{n-1}, τ_n) $(n=1, \ldots, N)$
- και $\forall n: \lim_{t \to \tau_n^+} f(t)$ υπάρχουν (εκτός ίσως των ακραίων 2)

Ορισμός

Η f(t) λέγεται εκθετικής τάξης γ στο $[t_1,t_2]$ ανν $\exists M,\gamma$ τ.ώ:

$$\forall t \in [t_1, t_2] : |f(t)| < M \cdot e^{\gamma t}$$

Ορισμός

Έστω f(t) τ.ώ:

- 1. $\forall T < \infty$: n f(t) τμ. συν. στο [0, T]
- 2. Η f(t) είναι εκθ. τάξης γ στο $[0,\infty)$.

Τότε ορίζω τον M/Σ Laplace της f(t) ως εξής:

$$\mathscr{L}(f(t)) = F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

Παρ. Να βρεθεί ο $\mathcal{L}(e^t)$

Λύση

$$\int_0^\infty e^t e^{-st} dt$$

$$= \int_0^\infty e^{(-s-1)t} dt$$

$$= \frac{e^{-(s-1)t}}{s-1} \Big|_{t=0}^\infty$$

$$= -\frac{e^{-(s-1)\cdot\infty}}{s_1} + -\frac{e^{-(s-1)\cdot0}}{s_1}$$

$$= \frac{1}{s-1} = \mathcal{L}(e^t)$$

Πα**Q**.
$$\mathscr{L}(e^{at}) = \frac{1}{s-a}$$

Παρ.
$$\mathcal{L}(1) = \mathcal{L}(e^{at}) = \frac{1}{s}$$

Παρ.
$$\mathcal{L}(h(t)) = \frac{1}{s}$$

Παο.

$$\mathcal{L}(t) = \int_0^\infty t e^{-st} dt$$

$$= \int_0^\infty -\frac{1}{s} (e^{-st}) \cdot t dt$$

$$= \left(-\frac{t}{s} e^{-st} \right) \Big|_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt$$

$$= 0 + \left(-\frac{1}{s} \right) \left(-\frac{1}{s} \right) e^{-st} \Big|_0^\infty = \frac{1}{s^2} = \mathcal{L}(t)$$

Πα ϱ . $\mathscr{L}(t^n) = \frac{n!}{s^{n+1}}$

Θεώοημα

$$\mathcal{L}\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = s \cdot X(s) - X(0)$$

Απόδειξη

$$\mathcal{L}\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \int_0^\infty \frac{\mathrm{d}x}{\mathrm{d}t} e^{-st} \, \mathrm{d}t$$

$$= x(t)e^{-st}\Big|_{t=0}^\infty - \int_0^\infty x(t)(-s)e^{-st} \, \mathrm{d}t$$

$$= -x(0) + s \int_0^\infty x(t)e^{-st} \, \mathrm{d}t = -x(0) + s \cdot x(s)$$

Nα λυθεί με M/Σ Laplace

$$\frac{\mathrm{d}x}{\mathrm{d}t} + x = 1, \quad x(0) = -2$$

Λύση

$$\mathcal{L}(\cdots)$$

$$\Rightarrow x \cdot X - x(0)^{-2} + X = \frac{1}{s}$$

$$\Rightarrow sX + 2 + X = \frac{1}{s}$$

$$\Rightarrow (s+1) \cdot X = \frac{1}{s} - 2$$

$$\Rightarrow X = \frac{1-2s}{(s+1)s} = \frac{A}{s+1} + \frac{B}{s} = \frac{(A+B) \cdot S + B}{(s+1) \cdot s} \Rightarrow \begin{cases} A+B = -2 \\ B = 1 \end{cases} \Rightarrow A = -3$$

$$\Rightarrow X(s) = -\frac{3}{s+1} + \frac{1}{2}$$

$$\Rightarrow x(t) = \mathcal{L}^{-1}\left(-\frac{3}{-s+1}\right) + \mathcal{L}^{-1}\left(\frac{1}{s}\right)$$

$$= X(t) = 1 - 3e^{-t}$$

Παρ. Να λυθεί...

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 7\frac{\mathrm{d}x}{\mathrm{d}t} + 10x = 2t + 1 \quad , x(0) = 1, \ x(0) = -1$$

Λύση

$$\mathcal{L}\left(\frac{\mathrm{d}^2x}{\mathrm{d}t^2}\right) = s^2X - sx(0) - x'(0)$$

Έστω $\mathcal{L}\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = P(s), \frac{\mathrm{d}x}{\mathrm{d}t} = p(t).$

Απόδ.

$$\mathcal{L}\left(\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)\right) = \mathcal{L}\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right) = sP - p(0)$$

$$= s \cdot (sX - x(0)) - x(0)$$

$$= s^2X - sx(0) - x'(0)$$

$$s^{2}X - s \cdot 1 - (-1) + 7 \cdot (sX - 1) + 10x = \frac{2}{5^{2}} + \frac{1}{5}$$

$$\implies (s^{2} + 7s + 10) \cdot X - s + 1 - 7 = \frac{2}{s^{2}} + \frac{1}{s}$$

$$\implies (s^{2} + 7x + 10)X = \frac{2}{s^{2}} + \frac{1}{s} + s + 6$$

$$\implies \cdots = \frac{2 + s + s^{3} + 6s^{2}}{s^{2}}$$

$$\implies X = \frac{s^{3} + 6s^{2} + s + 2}{s^{2} \cdot (s^{2} + 7s + 10)} = \frac{-\frac{1}{25}}{s} + \frac{\frac{1}{5}}{s^{2}} + \underbrace{\frac{4}{3}}_{A \text{ forn Oμογενούς}}^{4/3}$$

$$\implies x(t) = -\frac{1}{25} + \frac{t}{5} + \frac{4}{3}e^{-2t} - \frac{22}{75}e^{-5t}$$

$$\mathcal{L}(\sin at) = \mathcal{L}\left(\frac{e^{iat} - e^{-iat}}{2i}\right)$$

$$= \frac{1}{2i} \cdot \left(\frac{1}{s - ia} - \frac{1}{s + ia}\right)$$

$$= \frac{a}{s^2 + a^2} = \mathcal{L}(\sin at)$$

$$\frac{s}{s^2 + a^2} = \mathcal{L}(\cos at)$$

$$\frac{s}{s^2 - a^2} = \mathcal{L}(\cosh at)$$

$$\frac{a}{s^2 - a^2} = \mathcal{L}(\sinh at)$$

Θεώοημα

$$\mathcal{L}\left(k_1x_1(t) + k_2x_2(t)\right)$$
$$=k_1X_1(s) + k_2X_2(s)$$

Aπόδ. blah blah...

Θεώρημα

$$\mathscr{L}\left(f(t)e^{at}\right) = F(s-a)$$

Απόδ.

$$\int_0^\infty f(t)e^{at}e^{-st} dt$$

$$= \int_0^\infty f(t)e^{-(s-a)t} dt$$

$$= F(s-a)$$

Θεώοημα

$$\mathcal{L}\left(f(t-t_0)h(t-t_0)\right) = e^{-st_0}F(s) \quad \forall t_0 \ge 0$$

Απόδ.

$$\mathcal{L}(f(t-t_0)h(t-t_0)) = \int_0^\infty f(t-t_0)e^{-st} dt$$

$$= \int_{t_0}^\infty f(t-t_0)e^{-st} dt$$

$$= \int_{t_0}^\infty f(t-t_0)e^{-s(t-t_0)} \cdot e^{st_0} dt$$

$$= e^{-st_0} \int_0^\infty f(\tau)e^{-s\tau} d\tau$$

$$= e^{-st_0} F(s) = \mathcal{L}(f(t))$$

$$\mathcal{L}^{-1}\left(\frac{e^{-s}}{s}\right) = h(t-1)$$

$$\mathcal{L}^{-1}\left(\frac{1}{s}\right) = h(t)$$

$$\mathcal{L}(h(t)) = \frac{1}{s} \qquad \mathcal{L}(h(t-1)) = \frac{e^{-s}}{s}$$

$$\mathcal{L}\left(\frac{1}{s^2 + 4s + 5}\right) = \mathcal{L}\left(\frac{1}{(s+2)^2 + 1}\right) = \sin t \cdot e^{-2t}$$

Θεώοημα

Όταν η f(t) είναι συνεής στο t = 0 ισχύουν:

- $\bullet \quad \lim_{s \to \infty} F(s) = 0$
- $\lim_{t\to 0} f(t) = \lim_{s\to\infty} sF(s)$
- $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

Θεώοημα

$$\mathcal{L}(tf(t)) = -\frac{\mathrm{d}F}{\mathrm{d}s}$$
$$\mathcal{L}\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(u) \,\mathrm{d}u$$

Ορισμός

Έστω f(t), g(t) με ΠΟ $[0, \infty)$. Η συνέλιξη των f, g ορίζεται:

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

Taq. $f = e^{3t}, g = e^{2t}$

$$(f * g)(t) = \int_0^t e^{3\tau} e^{2 \cdot (t - \tau)} d\tau$$
$$= e^{2t} \int_0^t e^{\tau} d\tau$$
$$= e^{2t} \cdot e^{\tau} \Big|_{\tau=0}^t$$
$$= e^{3t} - e^{2t}$$

Θεώοημα

$$\mathcal{L}(f * g) = \mathcal{L}(f) \cdot \mathcal{L}(g)$$

Απόδ. Θέτω u + v = tv = t - u

$$\mathcal{L}(f) \cdot \mathcal{L}(g) = \left(\int_0^\infty f(u)e^{-su} \, du \right) \left(\int_0^\infty g(v)e^{-sv} \, dv \right)$$

$$= \int_0^\infty \int_0^\infty f(u)g(v)e^{-s(u+v)} \, du \, dv$$

$$= \int_0^\infty \int_0^\infty f(u)g(v)e^{-st} \, du \, dv$$

$$= \int_0^\infty \int_0^t f(u)g(t-u)e^{-st} \, du \, dt$$

$$= \int_0^\infty \left(\int_0^t f(u)g(t-u) \, du \right) e^{-st} \, dt$$

$$= \int_0^\infty (f * g)(t)e^{-st} \, dt$$

$$= \mathcal{L}(f * g)$$

Παο.

$$\underbrace{h(t)}_{f(t)} * \underbrace{h(t-1)}_{g(t)} = ?$$

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g) = \frac{1}{s} \frac{e^{-st}}{s} = \frac{e^{-st}}{s^2} \implies$$

$$(f * g)(t) = \mathcal{L}^{-1} \left(\frac{e^{-st}}{s^2}\right)$$

$$= (t-1) \cdot h(t-1)$$

Παο.

$$25 = 5 \cdot 10^0 + 2 \cdot 10^1 = A(10)$$

$$36 = 6 \cdot 10^0 + 3 \cdot 10^1 = B(10)$$

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots$$
$$B(x) = b_0 + a_1 x + a_2 x^3$$
$$A(x) \cdot B(x)$$

Έστω:

$$\mathcal{K}^{-1}(A(x)) = (a_0, a_1, a_2, \dots) = \vec{a}$$

 $\mathcal{K}(\vec{a}) = a_0 + a_1 x + a_2 x^2 + \dots) = A(x)$

$$A(x) \cdot B(x) = (a_0 + a_1 x + a_2 x^2)(b_0 + b_1 x + b_2 x^2)$$

$$= a_0 b_0 x^0 + (a_0 b_1 + a_1 b_0) x^1 + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2$$

$$= \left[\sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} a_k b_{n-k} \right) x^n = A(x) B(x) \right]$$

$$\vec{a} * \vec{b} = \sum_{k=0}^{n} a_k b_{n-k}$$

$$\mathcal{K}(\vec{a}*\vec{b}) = A(x)B(x)$$

10.0.1

Γραμμικά, Χρονικά αμετάβλητα συστήματα

ΓΧΑ συστήματα (LTI system)

Περιγράφονται από _____ ΔΕ ____

Περιγράφονται από γραμμικές ΔΕ σταθερών συντελεστών

$$\frac{d^{n}x}{dt^{n}} + a_{n-1}\frac{d^{n-1}x}{dt^{n-1}} + \dots + a_{1}\frac{dx}{dt} + a_{0}x = u(t)$$

περιγράφουν φυσικά συστήματα, κυκλώματα, συστήματα μαζών/ελατηρίων, όπου u(t) είναι η είσοδος και $\underline{x}(t)$ είναι η έξοδος του συστήματος, π.χ. τάση εισόδου, φορτίο πυνκωτή.

Στην ανάλυση αυτών σημαντικό ρόλο παίζει η συνέλιξη

ΓΧΑ σύστημα 1ης τάξης $\frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = u(t)$ x(0) = 0

1ος τρόπος επίλυσης (ΣΕΒ)

$$\begin{split} e^{a_0t}\frac{\mathrm{d}x}{\mathrm{d}t} + e^{a_0t}a_0x &= e^{a_0t}u(t) \implies \\ \frac{\mathrm{d}}{\mathrm{d}t}\left(e^{a_0t}x(t)\right) &= e^{a_0t}u(t) \implies \\ e^{a_0t}x(t) + c &= \int_0^t e^{a_0\tau}u(t)\,\mathrm{d}\tau \implies \\ x(t) &= e^{-a_0t}\int_0^t e^{a_0\tau}u(\tau)\,\mathrm{d}\tau \implies \\ x(t) &= \int_0^t e^{-a_0(t-\tau)}u(\tau)\,\mathrm{d}\tau \implies \\ \hline x(t) &= u(t) \underbrace{\qquad \qquad }_{t \in [a_0,b_0]} e^{-a_0t} \\ &= \int_0^t e^{-a_0t} e^{-a_0t} = e^{-a_0t} \end{split}$$

2ος τρόπος επίλυσης (KEX) Laplace

$$sX + a_0X = U \implies$$

$$(s + a_0)X = U \implies$$

$$X = U \frac{1}{s + a_0} \implies$$

$$X(s) = H(s) U(s) \implies$$
The property to great of the Transfer Function

συνάρτηση μεταφοράς (Transfer Function)

$$x(t) = h(t) * u(t) = e^{-at} * u(t)$$

$$(s^{2} + a_{1}s + a_{0})X(s) = U(s) \Longrightarrow$$

$$X(s) = \frac{1}{s^{2} + a_{1}s + a_{0}}U(s) = H(s)U(s)$$

$$x(t) = h(t) * u(t)$$

$$h(t) = \mathcal{L}^{-1}\left(\frac{1}{s^2 + a_1s + a_0}\right) = \dots$$
 εξαρτάται από τις ρίζες του $s^2 + a_1s + a_0$, δηλ. τους **πόλους** της $H(s)$

Άποψη O Laplace είναι Fourier.

Άλλη άποψη Ο Laplace είναι Taylor.

$$F(x) = \sum_{n=0}^{\infty} f(n)x^n$$
$$F(x) = \int_0^{\infty} f(n)x^n dn$$
$$F(x) = \int_0^{\infty} f(t)x^t dt$$

 $Θέτω x = e^{-s}$

$$\mathbf{F}(s) = \int_0^\infty f(t)e^{-st} \, \mathrm{d}t$$

Άλλη άποψη Υπάρχει η μισή παράγωγος:

$$\frac{\mathrm{d}^{1/2}x}{\mathrm{d}t^{1/2}} = \mathcal{L}^{-1}\left(\sqrt{s}F(s)\right)$$

Ασκηση Υπολογίστε $\frac{d^{1/2}x}{dt^{1/2}}(t)$.

Κεφάλαιο 11 Κεφάλαιο 11: Γενικευμένες Συναφτήσεις

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = u + \frac{\mathrm{d}u}{\mathrm{d}t}$$

 $Av \ u(t) = h(t)$

Τότε ποια είναι n $\frac{du}{dt}$;

$$\lim_{\varepsilon \to 0^+} \frac{h(0) - h(0 - \varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0^+} \frac{1 - 0}{\varepsilon} = 0$$

$$\lim_{\varepsilon \to 0^-} \frac{h(0) - h(0 + \varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0^-} \frac{1 - 1}{\varepsilon} = 0$$

Βλέπω ότι δύσκολα ορίζεται η $\frac{\mathrm{d}h}{\mathrm{d}t}$ Παρατηρώ ότι:

$$\mathcal{L}\left(\int f(t)\,\mathrm{d}t\right) = \frac{1}{s}F(s)$$

$$\delta(t) dt = h(t)$$

$$\iff \delta(t) = \frac{dh}{dt}$$

$$\iff \mathcal{L}(f(t)) = s \cdot H(s) - h(s)$$

$$= s \cdot \frac{1}{s} - 1 = 0$$

Ανν $\mathscr{L}(\delta(t))=1$ έχει ενδιαφέρον διότι είναι η πρώτη μετασχ. που έχει τάξη του s στον αριθμητή

Ορισμός 11.1

Λέμε ότι η $\phi(t)$ είναι μια δοκιμαστική συνάφτηση ανν:

- 1. Η φ(t) είναι άπειρα διαφορίσιμη
- 2. $\forall n : \lim_{t \to \infty} \phi^{(n)} = \lim_{t \to -\infty} \phi^{(n)}(t) = 0$

Συμβολίζω το σύνολο όλων των δοκιμαστικών συναρτήσεων με Φ.

Ορισμός 11.2

Μία κατανομή είναι μία συνά
ρτηση $T:\Phi\to\mathbb{C}$ η οποία ικανοποιεί τα εξής:

- 1. $T(\kappa_1\phi_1 + \kappa_2\phi_2) = \kappa_1 T(\phi_1) + \kappa_2 T(\phi_2)$
- 2. $\lim_{n\to\infty} \phi_n(t) = \phi(t) \implies T(\phi_n(t)) = T(\phi(t))$

Παρ. Ορίζω $T(\phi(t)) = \int_{-\infty}^{\infty} t\phi(t) dt$ π.χ.

$$\phi_1(t) = \frac{1}{t^2 + 1}, \qquad \phi_2(t) = \frac{t}{t^4 + 1}$$
$$T(\phi_1(t)) = \int_{-\infty}^{\infty} \frac{t}{t^2 + 1} dt = 44$$

επειδή $T(\kappa_1\phi_1 + \kappa_2\phi_2) = \kappa_1T(\phi_1) + \kappa_2T(\phi_2)$ και $T(\phi_n(t)) \to T(\phi)$, η T είναι μια κατανομή.

Άλλο παρ. Ορίζω $T(\phi(t)) = \phi(0)$

Αυτή είναι μια κατανομή.

$$T\left(\kappa_1\phi_1(t) + \kappa_2\phi_2(t)\right) = \kappa_1 T\left(\phi_1(t)\right) + \kappa_2 T\left(\phi_2(t)\right)$$

και
$$\phi_n(t) \rightarrow \phi(t) \implies T(\phi_n(t)) = T(\phi(t))$$

Παρ. $T_{h(t)}(\phi(t)) = \int_{-\infty}^{\infty} h(t)\phi(t) dt = \int_{0}^{\infty} \phi(t) dt$ είναι μία κατανομή.

Παρ. $T_{h(t-t_0)}\left(\phi(t)\right) = \int_{-\infty}^{\infty} h(t-t_0)\phi(t)\,\mathrm{d}t = \int_{t_0}^{\infty} \phi(t)\,\mathrm{d}t$ είναι μία κατανομή.

Ορισμός 11.3

Οι κατανομές $T_{f(t)}$ ορίζονται ως εξής:

$$T_{f(t)}(\phi(t)) = \int_{-\infty}^{\infty} f(t) dt$$

και λέγονται ομαλές κατανομές.

 $T(\phi(t)) = \phi(0)$ Αυτή δεν είναι μία ομαλή κατανομή.

Δηλ. δεν προκύπτει από κάποιο ολοκλήρωμα.

Δεν υπάρχει f(t) τ.ώ $\forall \phi(t) = \int_{-\infty}^{\infty} \phi(t) f(t) dt = \phi(0)$.

Αν υπήρχε τέτοια συνάρτηση, θα λεγόταν $\delta(t)$ η οποία υποτίθεται ικανοποιεί:

$$\int_{-\infty}^{\infty} \phi(t)\delta(t) \, \mathrm{d}t = \phi(0)$$

• Έστω η ομαλή κατανομή

$$T_{h(t)}(\phi(t)) = \int_{-\infty}^{\infty} h(t)\phi(t) dt = \int_{0}^{\infty} \phi(t) dt$$

• Έστω η μη ομαλή κατανομή

$$T_{\delta(t)}\left(\phi(t)\right) = \phi(0)$$

Ερώτημα Ισχύει με την έννοια των κατανομών ότι $T_{\delta(t)}$ είναι η παράγωγος του $T_{h(t)}$;;

Ορισμός 11.4

Για ομαλές κατανομές ορίζω την κατανεμητική παράγωγο της $T_{f(t)}$ να είναι $T_{f'(t)}$

π.χ. Αν $f(t)=t, \ T_{f(t)}(\phi)=\int_{-\infty}^{\infty}t\phi(t)\,\mathrm{d}t,$ τότε:

$$T_{f'(t)}(\phi) = \int_{-\infty}^{\infty} \phi(t) \, \mathrm{d}t$$

Θεώρημα 11.1

Αν

n $T_{f(t)}$ είναι μία ομαλή κατανομή, τότε:

$$T_{f'(t)}\left(\phi(t)\right) = -T_{f(t)}\left(\phi'(t)\right)$$

Απόδ.

$$T_{f'(t)}(\phi(t)) = \int_{-\infty}^{\infty} \phi(t)f'(t) dt$$
$$= \underbrace{\phi(t)f(t)}_{t=-\infty}^{\infty} - \int f(t)\phi'(t) dt$$
$$= -\int f(t)\phi'(t) dt$$

Ορισμός 11.5

Για μη ομαλή κατανομή Τ ορίζω την παράγωγο κατανομή Ψ ως εξής:

$$\forall \phi$$
: $\Psi(\phi) = -T(\phi')$

Θεώρημα 11.2

Η κατανεμητική παράγωγος της $T_{h(t)}$ είναι η $T_{\delta(t)}$

Απόδ. Έστω Ψ η καταν. παράγωγος της $T_{h(t)}$.

$$\forall \phi: \ \Psi(\phi) = -T_{h(t)}(\phi') = \int_{-\infty}^{\infty} h(t)\phi'(t) \, \mathrm{d}t$$

$$= -\int_{0}^{\infty} \phi'(t) \, \mathrm{d}t = -\phi(t)\Big|_{t=0}^{\infty}$$

$$= -\phi(\infty) + \phi(0) = 0 \implies$$

$$\implies \Psi(\phi) = \phi(0) = T_{\delta(t)}(\phi)$$

Παρόμοια αποδεικνύεται ότι η καταν. παρ. της $T_{h(t-t_0)}$ είναι η $\delta(t-t_0)$. Τώρα μας παίρνει να είμαστε χαλαροί και να γράφουμε $\left\lceil \frac{\mathrm{d}h}{\mathrm{d}t} = \delta(t) \right\rceil$

Ορισμός 11.6

Ο Laplace M/Σ της κατανομής T είναι:

$$\mathcal{L}(T) = T\left(H(t)e^{-st}\right)$$

Παρ.
$$\mathcal{L}\left(T_{h(t)}\right) = T_{h(t)}\left(h(t)e^{-st}\right) = \int_{-\infty}^{\infty} h(t)h(t)e^{-st} dt = \int_{0}^{\infty} e^{-st} dt = \frac{1}{s} = \mathcal{L}\left(h(t)\right)$$

 $\mathcal{L}\left(T_{\delta(t)}\right) = T_{\delta(t)}\left(h(t)e^{-st}\right) = h(0)e^{s\cdot 0} = 1 = \mathcal{L}\left(\delta(t)\right)$

$$\frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_1 \frac{d x}{dt} + a_0 = b_m \frac{d^m u}{dt^m} + \dots + b_1 \frac{u}{t} + b_0 u$$

$$\implies (s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0) X(s) = (b_m s^m + \dots + b_1 s + b_0) U(s)$$

$$\implies X(s) = \frac{b_n s^m + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$$

$$\implies \underbrace{X(s)}_{\text{Exodos}} = \underbrace{G(s)}_{\text{SUVágtnon μεταφ.}} \underbrace{U(s)}_{\text{Exodos}}$$

 $\implies x(t) = g(t) * u(t)$ όπου $g(t) = \mathcal{L}^{-1}\big(G(s)\big)$ είναι η κρουστική απόκριση του συστήματος Δηλ. G(s) = X(s) όταν U(s) = 1, δηλαδή όταν $u(t) = \delta(t)$

$$x(t) = g(t) * u(t) = \int_0^t g(t - \tau)u(\tau) d\tau$$

Κεφάλαιο 12 ΔΕ κ Laplace

Παρ. Να λυθεί η

$$\frac{d^2y}{dt^2} + 4y = \sin 2t \quad y(0) = 2, \ y'(0) = 1$$

Λύση

$$s^{2}Y - s \cdot 2 - 1 + Y = \frac{2}{s^{2} + 4}$$

$$\implies (s^{2} + 1)Y = \frac{2}{s^{2} + 4} + 2s + 1$$

$$\implies Y = \frac{2s^{3} + s^{2} + 8s + 6}{(s^{2} + 1)(s^{2} + 4)} = \frac{As + b}{s^{2} + 1} + \frac{Cs + D}{s^{2} + 4}$$

$$= \frac{(As + B)(s^{2} + 4) + (cs + D)(s^{2} + 1)}{(s^{2} + 1)(s^{2} + 4)}$$

$$= \frac{(A + C)s^{3} + (B + 1)s^{2} + (4A + C)s + (4B + D)}{(s^{2} + 1)(s^{2} + 4)}$$

$$\begin{cases} A + C &= 2 \\ B + D &= 1 \\ 4A + C &= 2 \\ 4B + D &= 6 \end{cases} \implies \begin{cases} A = 2 \\ C = 0 \\ B = \frac{5}{3} \\ D = -\frac{2}{3} \end{cases} \implies Y(s) = \frac{2s}{s^2 + 1} + \frac{\frac{5}{3}s - \frac{2}{3}}{s^2 + 4}$$
$$\implies y(t) = 2\cos t + \frac{5}{3}\sin t - \frac{1}{3}\sin 2t$$

Άσκηση: Παράδειγμα

Nα λυθεί n
$$\frac{\mathrm{d}^4[}{\mathrm{d}y^4}][t] - y = 0$$

 $y(0) = 0, \ y'(0) = 1, \ y''(0) = 0, \ y'''(0) = 0$

$$s^{4}Y - s^{3} \cdot y(0) - s^{e} \cdot y''(0) - y'''(0) - Y = 0$$

$$s^{4}Y - s^{2} - Y = 0 \implies Y = \frac{s^{2}}{s^{4} - 1}$$

$$\implies Y = \frac{A}{s^{2} - 1} + \frac{B}{s^{2} + 1} = \frac{(A + B)s^{2} + (A - B)}{(s^{2} - 1)(s^{2} + 1)}$$

$$\implies \begin{cases} A + B &= 1 \\ A - B &= 0 \end{cases} \implies Y = \frac{1}{2} \frac{1}{s^{2} - 1} + \frac{1}{2} \frac{1}{s^{2} + 1} \implies y(t) = \frac{1}{2} \sinh t + \frac{1}{2} \sin t$$

Άσκηση: Παρ

Nα λυθεί n
$$2\frac{d^2y}{dt^2} + \frac{dy}{dt} + 2y = g(t)$$

 $y(0) = y'(0) = 0$

Με τη μέθοδο της παρατήρησης προκύπτει ότι g(t) = h(t-5) - h(t-20), άρα $G(s) = \frac{e^{-5s}}{s} - \frac{e^{-20s}}{s}$

$$2s^{2}Y + sY + 2Y = \frac{e^{-5s} - e^{-20s}}{s} \implies Y = \frac{1}{\underbrace{(2s^{2} + s + 2) \cdot s}} (e^{-5s} - e^{-20s}) \implies Y = F(s)(e^{-5s} -$$

Άσκηση: Παρ.

$$\frac{d^2y}{dt^2} + 4y = g(t), \quad y(0) = y'(0) = 0$$

$$g(t) = \begin{cases} 0 & t \le 5 \\ t - 5 & 5 < t \le 6 = (t - 5)h(t - 5) - (t - 6)h(t - 6) \\ 1 & 6 \le t \end{cases}$$

$$G(s) = \frac{e^{-5s}}{s^2} - \frac{e^{-6s}}{s^2}$$

$$(s^2 + 4)Y = \frac{e^{-5s} - e^{-6s}}{s^2} \implies$$

$$Y = \frac{1}{s^2(s^2 + 4)}(e^{-5s} - e^{-6s}) \implies$$

$$F(s) = \frac{1}{s^2(s^2 + 4)} = \frac{1}{4}\left(\frac{1}{s^2} - \frac{1}{s^2 + 4}\right) \implies$$

$$f(t) = \frac{1}{4}t - \frac{1}{8}\sin(2t) \implies$$

$$y(t) = f(t - 5) - f(t - 6)$$