

Statistical Thinking (ETC2420/ETC5242)

Re-sampling with regression models

Week 11

Learning Goals for Week 11

- Review hypothesis testing and Confidence intervals
- Apply randomisation techniques from earlier in the semester to regression coefficients.

Review Multiple Linear Regression

- Recall that linear regression provides us with an estimate of the average of y
 for a given value of x (or conditional upon x)
- MLR gives an **estimate** of the impact upon the average of y conditional upon x, after controlling for the other variables
- Our aim is for our regression to "explain" the variability in the dependent variable
- We know that there will be some unexplained (random) part of the dependent variable that we can't explain

Model evaluation tools

With this in mind, we looked at some ways to asses our model

Model evaluation tools

- Coefficient significance
- Sensible coefficients (sign and size)
- Assess observations:
 - ▶ Influential observations: Leverage (X only); Cook's D (Leverage and residual)
 - ► LOOCV (case-deleted residuals uses leverage and residuals as well)
 - * measure of fit by observation
- Check residuals for patterns/Normality
- Multicollinearity (VIF) is related to hypothesis testing
- We then discussed some remedies

Model selection

- Used fit statistics to select "best" or preferred model
 - ▶ Use adj R², negAIC and negBIC
 - ▶ **NEVER** use log likelihood or R²
- Remember that fit is just one assessment component
- Once we have our preferred model, we still need to use the other assessment tools to decide if it is adequate for our research purpose
- If there are issues, discuss potential remedies
- MUST remember our research purpose when deciding on penalties
- So W9, 10 and 11 lectures and tutorials all go together!

CLT-based tests and confidence intervals

 Use the Im() function in R for estimated coefficients and their (estimated) standard errors

Due to the availability of an appropriate CLT result

- **Can undertake hypothesis test** for individual regression coefficient β_k
- lacktriangle Can construct **confidence interval** for individual regression coefficient β_k
- for for any k = 0, ..., p 1.

CLT-based hypothesis tests

$$H_0: \beta_k = 0 \text{ vs } H_1: \beta_k \neq 0$$

Under H_0 , $\frac{b_k}{s(b_k)}$ has (approximately) a t_{n-p} distribution

CLT-based confidence intervals

A $(1 - \alpha) \times 100\%$ Confidence interval for β_k is given by:

$$b_k \pm t_{\alpha/2,n-p} SE(b_k)$$

Quick Hypothesis test review

- A test of significance is asking if the variable x_k helps to predict y, after controlling for the other variables in the regression
- The population coefficient of x_k (β_k) quantifies the predictive effect of x_k
- We are asking if our sample supports the null hypothesis or not
- So we are testing if the sample evidence, reflected by our estimate b_k , is likely to have come from the distribution implied by H_0

Quick Hypothesis test review

- CLT uses the t-statistic, which incorporates the sample variation in b_k using the $s.e.(b_k)$
- $lue{}$ The permutation test simulates the sampling distribution assuming that H_0 is true
- The way we sample incorporates the variation in the data
- Both methods test the same thing, but in different ways

Permutation tests for regression

We have used a **permutation test** previously to formally decide if two groups have the same proportion

- The idea was to break the connection between group and promotion outcome
- To **force null hypothesis** (H_0 : no difference between groups) **to hold**
- And generate an approximate sampling distribution of the test statistic p_2-p_1

For a **regression**, we test $H_0: \beta_k = 0$ vs $H_1: \beta_k \neq 0$

- For any k = 1, 2, ..., p 1 (note no testing for β_0)
- we need to break any existing association between regressor x_k and y in our sample
- We do this via permutations (shuffling) the values of x_k over different observations

Permutation-based hypothesis tests for regression

Procedure for coefficient β_k (k > 1) based on R permuted samples

Want to test, for some k = 1, 2, ..., p - 1 (but not for k = 0),

$$H_0: \beta_k = 0 \text{ vs } H_1: \beta_k \neq 0$$

- Create an $(R \times 1)$ **vector** to store all b_k regression coefficients from each permutation sample
- Repeat for each permutation replication sampling WITHOUT replacement
- Permute column of tibble containing regressor x_k only keep all other rows of the data frame in order
- Fit the regression model to the permuted data frame
- **Save** b_k in the i^{th} entry of the storage vector
- Plot a histogram of the permutation-generated b_k values
 - Draw a vertical red-lines corresponding to the data-based b_k and $-b_k$ value
 - Compute percentage of permutation-generated $abs(b_k)$ values exceeding data-based b_k value
 - We can do one-sided tests

Simulated data example

■ Let's use the simulated data from the tutorial to do a permutation test.

Randomised confidence interval

The $(1-\alpha) \times 100\%$ confidence interval for b_k states

We are $(1-\alpha) \times 100\%$ confident that the **TRUE** β_k lies somewhere within the interval

So we are $(1 - \alpha) \times 100\%$ confident that if x_k increased by 1 unit, y will change on average by β_k units, after controlling for the other regressors.

- Notice that we do not say estimated, as this is a statement about β_k , not b_k
- This is a general statement if the units and the other regressors are known, they should be included in the interpretation
- We must say after controlling... (unless it is a simple regression)
- It is not a probability statement

Bootstrap-based confidence intervals for regression

Bootstrap-based CI for a regression coefficient

- Create an $(R \times p)$ matrix to store all regression coefficients from each bootstrap sample
 - R rows, one for each for bootstrap sample
 - p columns for number of regression coefficients in model
- Repeat for each bootstrap replication
 - Sample rows of the data frame with replacement (use slice)
 - Fit the regression model for each bootstrap sample
 - Save all regression coefficients in a row of the storage matrix
- Compute bootstrap-based confidence interval for β_k
 - Select the $\alpha/2\%$ and $(1-\alpha/2)\%$ quantiles of the column (k+1) corresponding to β_k
 - (These are the end points of the $(1 \alpha) \times 100\%$ bootstrap-CI for β_k)

Can use for each b_k for k = 0, 1, 2, ..., p - 1

Simulated data example

■ Let's use the simulated data from the tutorial to do a bootstrap.

Next week

- Revision
 - outline of exam/formula sheet
 - General advice
 - General admin
- Answer your questions (so come prepared)

Tutorials

- Revision quiz questions
 - Use Kahoot!, so have some fun
 - You will get the questions and answers for revision