

Learning from Shear and Extensional Rheology of a few Extrusion Coating Polyethylenes

CLOEREN

Introduction

- This presentation is the start of on-going work to determine the relationship between polymer molecular structure & polydispersity / rheology / process-ability / final properties
- Rheometry is a powerful tool to investigate the macromolecular structure of polymer melts and recent tools have been used to characterize a few extrusion coating grade resins
- Ultimate goal: to be able to model or predict through correlations between rheology and processing data:
 - Neck-in
 - Process Stability

Rotational Rheometer

Dynamic strain is imposed:

$$\gamma^* = \gamma_0 \exp(i\omega t)$$

Delayed Shear stress response:

$$\tau^* = \tau_0 \exp i(\omega t + \delta)$$

Frequency sweep in linear viscoelastic region (LVR)

Low frequency: G">G'
(viscous dominant)

page 000375 PLACE 2016

High frequency: G'>G" (elastic dominant)

Elongational Viscosity – Neck in behavior

Shear flow

Extensional flow

page 000377 PLACE 2016

Elongational Viscosity measurement

Sentmanat Extensional Rheometer (SER)

Elongational Viscosity measurement

Sentmanat Extensional Rheometer (SER)

Polymers

■ Tested materials:

Name	Commercial name	Туре	Density (g/cm³)	MFI (g/10 min)	Comment
LD1	Chevron Phillips Marflex 1017	Autocla ve LDPE	0.917	7.0	Reference material
LD2	Westlake Chemical EC808AA	Autocla ve LDPE	0.917	7.0	Similar to reference
m-PE	ExxonMobil Exceed 0019XC	m-PE	0.918	19	Molecular structure and molecular weight
LD3	Chevron Phillips Marflex 1019	Autocla ve LDPE	0.917	16	Similar molecular weight as 0019XC?

Molecular structure

Extrusion Coating resins tested:

LDPE:

- Broad molecular weight distribution
- Long and short chain present
- High degree of long chain branching (LCB)
- Branch spacing is irregular
- Some short chain branching

m-PE:

- narrow molecular weight distribution
- Chain branching could be anything – but usually short chain branching from comonomer butane, hexane, octane -LLDPE structure
- Branch spacing is very regular

1

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min

Complex viscosity at several different temperatures: excellent data

Difficult measurements at temperatures > 240°C at low frequencies due to degradation (despite N₂ atmosphere) resulting in increase of viscosity at low frequency

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min

Viscosity master curve at 280°C

- time-temperature superposition (TTS): excellent superposition quality
- Zero-shear viscosity is not fully determined (Newtonian Plateau not reached)
 - \Rightarrow LCB
 - ⇒ Broad molecular weight distribution
- Strong shear thinning
 - Large entanglement density

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min

G' and G" master curves at 280°C, after applying timetemperature superposition: excellent superposition quality

The melt a truly a viscoelastic material

G">G' on majority of the frequency range: at this temperature the melt is viscous dominant

Cross over point at about 1,000 rad/s

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min
 - Thermal stability under N₂ atmosphere

Measurement repeats at 260°C

Time sweep at 1 rad/s and 280°C

Over time: increase of complex viscosity and melt elasticity near processing

page 000385 temperature

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min

Relaxation time distribution:

- melt rheology equivalent of the molecular weight distribution.
- Calculated from the G' and G" master curves with the socalled Regularization method
- very broad distribution with asymmetrical shape biased towards longer relaxation times.
- The calculation does not directly show the high molecular weight shoulder seen with GPC

- Reference: LD1
 - Autoclave LDPE density= 0.917 g/cm³, MFI = 7 g/10 min

Transient elongational viscosity measurements at 140°C with the SER-3

- LVE = $3 \times \eta^*$ (Carreau-Yasuda model)
- Strong strain hardening (deviation from LVE) characteristic of high density of long chain branching LCB

Comparisons

- Comparison of G'/G"
- Comparison of complex viscosity master curves
- Comparison of relaxation time distributions
- Comparison of transient extensional viscosity

Comparison – G' and G"

Comparison – G' and G"

Comparison – G' and G"

Comparison – Complex viscosity

Comparison relaxation time

Comparison relaxation time

Comparison relaxation time

Comparison – Elongational Viscosity

Comparison – Elongational Viscosity

Comparison – Elongational Viscosity

Key Rheological parameters

Material	Zero shear viscosity η ₀ at 280°C†	Pseudoplastic (shear thinning) index† [-]	Storage modulus G' at G" = 500 Pa at 180°C‡ [Pa]	Peak relaxation time at 280°C [s]	Width half maximum of relaxation time [decades]
LD1	471.92	0.3389	129.4	0.159	≈ 2.19
LD2	602.06	0.2735	150.8	0.544	≈ 2.65
LD3	223.34	0.2948	130.3	0.259	≈ 2.14
m-PE	110.50	0.3404	4.8	9.37 10 ⁻⁴	≈ 1.55
Physical meaning	Molecular weight	De- entanglement rate to recoil rate	Melt elasticity	Melt elasticity	Polydispersity

[†] Carreau-Yasuda curve fit ‡P.A. Clevenhag, C. Oveby – TAPPI PLACE 2004

Key Rheological parameters

Material	Ultimate Trouton Ratio at 25 s-1	Ultimate Trouton Ratio at 1 s-1	
LD1	27.2	36.1	
LD2	29.4	45.9	
LD3	31.3	53.2	
m-PE	1.3 for $\dot{\varepsilon} = 10 \text{ s}^{-1}$	1.8	
Physical meaning	Melt strength at high stretch rate	Melt strength at medium stretch rate	

Conclusions

- Melt rheology is a powerful tool for the investigation of the molecular structure and the polydispersity of a given polymer
- Looking at shear rheology only is too limited when comparing the behavior of different polymer families related to extrusion coating process
- Elongational viscosity provides valuable information regarding melt strength
- Future work will be carried on:
 - With more polymers to be investigated within the LDPE (Autoclave and Tubular), m-PE, PP, EVA, PLA, biopolymers, PET etc...
 - Processing evaluation work will be carried out (measurement of edge bead profile, neck-in, determination of stable process window etc)
 - A correlation between processing characteristics and shear and elongational viscosity will be evaluated
 - Possibly, a process model will be built using a viscoelastic constitutive equation which takes into account the elongational and shear viscosity data

Thank you

Olivier Catherine
Title
Cloeren Incorporated
ocatherine@cloeren.com

