A Hyperparameter Analysis of η

To determine the similarity threshold η to establish the links between comments, we first calculate the sentence vector cosine similarity between each pairs of comments in a session. The similarity values are statistically analyzed, which are divided into four intervals as shown in Table 6. We then tune η in [0.5,0.9] with step 0.1, and the results are shown in 7. We can observe that 0.6 is the best setting.

Table 6: Distribution of similarities between comments

	[0,0.4]	[0.4,0.6]	[0.6,0.8]	[0.8,1]
Vine	0.035	0.3	0.185	0.48
Ins	0.099	0.375	0.164	0.362

Table 7: Influence of different thresholds on experimental results when establishing edges

Datasets	Metrics	0.5	0.6	0.7	0.8	0.9
Vine	Acc.	79.41	80.41	80	79.18	75.26
	F1.	75.67	76.36	75.59	74.2	70.62
Ins	Acc.	88.32	88.74	86.94	86.31	85.77
	F1.	85.05	86.07	84.37	83.06	82.8

B Hyperparameter Analysis of λ

We adjust the loss weight of the two tasks in Eq. 15 by setting different λ values from 0 to 1 with step 0.2. Five experiments are preformed on Vine and Ins, respectively. Fig. 5 shows the Accuracy scores and F1-macro scores with different λ values on two datasets. The results of vine are shown in blue lines, and the results of Ins are shown in red lines. $\lambda=0.2$ achieves the best performance for both datasets.

Figure 5: Loss weight analysis on two datasets