GPS 응용

2025. 3.27.

설 윤 환

학습 목표

- GIM을 이용한 전리층 지연 보정
 - 1. IONEX format
 - 2. ReadGIM.p 함수를 사용하여 MATLAB에 불러오기
 - 3. IPP 산출
 - 4. 시간 및 공간 보간(GetVTECgim.p, spline.p)
 - 5. VTEC -> STEC
- GPT/GMF를 이용한 대류권 지연 보정
 - 1. gpt_v1.m 함수를 사용하여 특정 지점, 시점에서의 대기압(hpa) 산출
 - 2. 대기압을 이용하여 ZHD 산출
 - 3. gmf_f_hu.m 함수를 사용하여 ZHD -> SHD

IONEX

- GIM: Global Ionosphere Map
 - IONEX: **Ion**osphere **ex**change format
 - https://cddis.nasa.gov/archive/gnss/products/ionex/2024/001

The ionospheric products since GPS week 2238 (November 26, 2022), are in transition to the <u>IGS long product filename convention</u>. The available products are listed in the table below together with their previous short names and new long names.

(reference) https://igs.org/products/#ionosphere

File type	Old short name	New long name
Final combined IONEX	igsg ddd 0. yy i.Z	IGS00PSFIN_ yyyyddd 0000_01D_02H_GIM.INX.gz
Rapid combined IONEX	igrg ddd 0. yy i.Z	IGS00PSRAP_ yyyyddd 0000_01D_02H_GIM.INX.gz
		AC

- **ddd**: day of year [001–366]
- yy: 2-digit year
- yyyy: 4-digit year

IONEX

- Epoch of Current Map
 - Y/M/D/h/m/s
- LAT/LON1/LON2/DLON/H
 - LAT
 - LON1~LON2까지 DLON 간격
 - Ionosphere height (km) = **450**
- VTEC
 - Vertical Total Electron Content
 - 단위: 10 TECU
- Time Interval
 - $0\sim24h$, 2h interval \rightarrow 13 Epochs (case by case)

2015		2	1	0	0	0					E	POCH	OF CU	RRENT	MAP↓
87.5-180.0 180.0				5.0	5.0 450.0			LAT/LON1/LON2/DLON/H							ON/H
137	138	140	141	143	145	146	146	147	148	148	148	148	148	147	146↓
145	144	142	140	138	135	133	131	128	126	123	120	117	115	112	ل 109
107	105	103	101	100	98	97	96	96	95	95	95	95	95	96	96↓
97	98	99	100	101	102	104	105	107	109	110	112	114	115	117	119↓
121	123	125	128	129	131	133	135	137	J						
85	85.0-180.0 180.0				5.0 450.0						LAT/LON1/LON2/DLON/H				
150	154	157	160	164	167	169	172	174	176	178	179	179	178	178	177↓
175	173	170	166	162	158	153	148	142	137	131	125	119	114	109	104↓
100	96	93	90	88	86	85	84	84	83	84	85	85	86	87	₽8 ↓
89	91	92	94	95	98	99	101	104	106	108	111	113	116	119	122↓
125	128	131	134	137	140	144	147	150₊	J						
82	82.5-180.0 180.0 5.0 4				450.	0					I	AT/LO	N1/LO	N2/DI	on/H↓
158	163	168	173	179	184	190	194	198	201	204	206	206	207	206	205↓
202	199	195	191	185	179	173	166	158	150	142	134	125	118	110	104
98	93	89	86	84	83	83	84	85	86	87	89	91	92	93	95↓
96	97	98	99	101	102	103	105	107	109	111	113	116	118	121	124
127	130	133	137	141	145	149	154	158₊	J						
80	.0-18	0.0 1	80.0	5.0	450.	0					I	AT/LO	N1/LO	N2/DI	on/H↓
163	169	177	184	193	200	208	214	221	225	228	229	229	228	226	224
221	217	212	208	202	196	190	182	174	164	155	144	135	125	116	108
101	95	91	89	89	90	92	94	97	100	103	106	109	110	111	112 🎝
113	113	113	113	112	112	112	112	113	114	115	116	118	120	123	125
128	131	134	138	142	146	152	157	163.	J						

IONEX

- [Lat, Lon, TEC] = ReadGIM(filename)
 - Example:

[Lat,Lon,TEC]=ReadGIM('JPL00PSFIN_20240010000_01D_02H_GIM.INX');

input: Filename of IONEX

output

• Lat: TEC 값이 제공된 위도 List

• Lon: TEC 값이 제공된 경도 List

• TEC: 시간/위도/경도 별 TEC List

H Lat

IPP(Ionospheric Pierce Point)

- How to get IPP
 - 1) z' 계산: sin 법칙

•
$$\frac{\sin(180-Z)}{R_E+h} = \frac{\sin(Z')}{R_E} \rightarrow \frac{\sin(Z)}{R_E+h} = \frac{\sin(Z')}{R_E}$$

• 2) IPP까지 거리 계산: cos 법칙

$$c^2 = a^2 + b^2 - 2ab\cos C$$

- 2) 수신기 → IPP 벡터 계산
 - IPP까지 거리 $\times (\frac{\vec{\rho}}{|\rho|})$
- 3) IPP: 수신기 벡터(vec_site) + 수신기 → IPP 벡터

Sapatial Interpolation

- VTEC 공간 보간
 - 1) 인접한 4개의 격자 선정 및 VTEC 추출
 - 2) 공간 보간
 - Linear, Spline, Lagrange, ...

$$E(\lambda_0 + p \Delta \lambda, \beta_0 + q \Delta \beta) = (1 - p)(1 - q)E_{0,0} + p(1 - q)E_{1,0} + q(1 - p)E_{0,1} + pqE_{1,1},$$

where $0 \le p < 1$ and $0 \le q < 1$. $\Delta \lambda$ and $\Delta \beta$ denote the grid widths in longitude and latitude.

Figure 1: Bivariate interpolation using the nearest 4 TEC values $E_{i,j}$

Time Interpolation

- VTEC 시간 보간
 - VTEC은 2시간 간격 제공 → 시간 보간 필요
 - Linear, Spline, Lagrange, ...

• Simply take the nearest TEC map $E_i = E(T_i)$ at epoch T_i :

$$E(\beta, \lambda, t) = E_i(\beta, \lambda), \tag{1}$$

where $|t - T_i| = \min$.

• Interpolate between consecutive TEC maps $E_i = E(T_i)$ and $E_{i+1} = E(T_{i+1})$:

$$E(\beta, \lambda, t) = \frac{T_{i+1} - t}{T_{i+1} - T_i} E_i(\beta, \lambda) + \frac{t - T_i}{T_{i+1} - T_i} E_{i+1}(\beta, \lambda),$$
(2)

where $T_i \leq t < T_{i+1}$.

• Interpolate between consecutive rotated TEC maps:

$$E(\beta, \lambda, t) = \frac{T_{i+1} - t}{T_{i+1} - T_i} E_i(\beta, \lambda_i') + \frac{t - T_i}{T_{i+1} - T_i} E_{i+1}(\beta, \lambda_{i+1}'), \tag{3}$$

VTECgim = GetVTECgim(Lat,Lon,TEC,lat_ipp,lon_ipp,tt);

VTEC → STEC

OF(Obliquity Factor)

•
$$OF = \frac{1}{\cos(z')}$$

• STEC =
$$OF * VTEC = \frac{VTEC}{\cos(z')}$$

- Ionosphere delay = STEC * 0.162372m (GPS L1)
 - L1: 1575.42 MHz = 1575.42 * 10⁶ Hz
 - 1 STEC → 0.16m Error (L1)
 - 1 TECU = 10^{16} electrons / m^2

$$\delta I_{g} = \frac{40.3}{f^{2}} TEC \qquad \delta I_{\phi} = -\frac{40.3}{f^{2}} TEC$$

IonoGIM.m

[dlono,lat_ipp,lon_ipp] = lonoGIM(Lat,Lon,TEC,vec_sat,vec_site,tt)

[DO]

- 1. IPP 산출
- 2. 시간 및 공간 보간(GetVTECgim.p, spline.p)
- 3. VTEC -> STEC
- 4. STEC -> 총 지연량(meters)

[RETURN]

- 1. dlono : 전리층 지연량
- 2. lat_ipp:ipp의 위도
- 3. lon_ipp:ipp의 경도

Global Pressure Temperature -> ZHD

• 사용법

[pres,temp,undu] = gpt_v1 (dmjd,dlat,dlon,dhgt)

• 입력

dmjd: modified julian date

dlat: latitude in radians

dlon: longitude in radians

dhgt: ellipsoidal height in m

• 반환

pres: pressure in hPa

temp: temperature in Celsius

undu: Geoid undulation in m (from a 9x9 EGM based model)

$$ZHD = rac{0.0022767 \cdot p}{1 - 0.00266 \cdot cos2 \varphi - 0.00028 \cdot h}$$

- φ : Ellipsoidal latitude
- h: Surface height above the ellipsoid in [km]
- p: Total Surface pressure in [hPa]

Global Mapping function

```
SPD\left(\epsilon\right) = m_{h}\left(\epsilon\right) \cdot ZHD + m_{W}\left(\epsilon\right) \cdot ZWD \tag{1}
```

- ullet SPD $(\epsilon)=$ slant path delay [m] along elevation angle ϵ
- ZHD = zenith hydrostatic delay [m]
- ZWD = zenith wet delay [m]
- $ullet m_h\left(\epsilon
 ight), m_W\left(\epsilon
 ight)$ are the mapping functions of the hydrostatic and wet path delay along elevation angle arepsilon

[gmfh,~] = gmf_f_hu(mJD,dlat,dlon,dhgt,zd);

Input:

dmjd: modified julian date

dlat: latitude in radians

dlon: longitude in radians

dhgt: height in m

zd: zenith degree in radians

Output:

gmfh: hydrostatic mapping function

gmfw: wet mapping function

