MATH 2130 Tutorial 7

- 1. For what value, or values, of b is the function $f(x,y) = e^{bx} \cos 5y$ harmonic in the entire xy-plane? Answer: $b = \pm 5$
- **2.** If $f(x,y) = x^3 y \sin(y^2/x^2)$, find and simplify

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}.$$

Answer: $4x^3y \sin(y^2/x^2)$

3. You are told that z = f(u, v, t), u = g(x, y, t), v = h(x, y, t), and y = k(t). What is the chain rule for $\frac{\partial z}{\partial t}\Big)_x$?

Answer: $\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial z}{\partial t}$

4. Find the rate of change of the function $f(x, y, z) = \sin(xy) - z^3$ at the point (2, 0, 3) in the direction of the upward normal to the surface $xz^2 - x^2z = 6$.

Answer: $-216/\sqrt{73}$

5. Find equations for the tangent line to the curve

$$xyz + z^3 = 24, \quad x^3y^2z + y^3 = 4x - 2$$

at the point (1, -1, 3).

Answer: x = 1 + 81t, y = -1 + 133t, z = 3 - 6t

6. At the point (1, 2, -3), a vector \mathbf{v} makes an angle of $\pi/3$ radians with the gradient of the function $f(x, y, z) = x^2yz - 3xy^3$. Find the rate of change of f(x, y, z) in direction \mathbf{v} .

Answer: $\sqrt{2821}/2$

7. The equations

$$x^{2} + y + 3s^{2} + s = 2t - 1$$
, $y^{2} - x^{4} + 2st + 7 = 6s^{2}t^{2}$,

define s and t as functions of x and y. Find $\partial s/\partial x$ when s=0 and t=1. Assume that x>0.

Answer: 16