Project2 FirstDraft

May 31, 2022

Introduction (20 points) - 5 points for specific, measurable, and clear scientific question - 5 points for background on the protein/gene/species of interest and where the data is sourced from - 5 points for clear, specific, and measurable scientific hypothesis that is in the form of an if-then statement - 5 points for description of what analyses were done and how the data was downloaded for the project

Scientific question: WISP-1 is a protein from the CCN protein family which is known to act as an oncogene in most type of cancers to promote cancer cell proliferation, progression, metastasis, and invasion. What might be the structural basis of WISP-1-induced tumor growth?

Background WNT1 inducible signaling pathway protein 1 (WISP1), a member 4 protein from the CCN family (CCN4), is a secreted matricellular protein found in the extracellular matrix (ECM) and affects different cell responses like other ECM proteins. It plays a part in cellular functions such as differentiation, proliferation, migration, and survival. and was demonstrated to its overexpression has oncogenic properties in most cancers. An in vitro study found that recombinant WISP-1 treatment increased cell proliferation in a breast cancer context (1). Since WISP-1 interacts with other proteins in the ECM to signal downstream pathways, inhibiting the interactions might limit cellular pathway signaling for cellular responses like cell proliferation and halt its oncogenic functions, making it a potential target of cancer therapeutic. Another study regarding downstream target of WISP-1 found that disrupting WISP-1 reduces the activating phosphorylation of Akt (pAkt-Ser473), indicating that WISP-1 might be regulating Akt activity, specifically phosphorylation, in glioma stem cells (GSC). It was also found that WISP-1 trigger its downstream signaling and enhances Akt phosphorylation by binding to integrin 6 1 for its autocrine function (2). The PI3K/Akt/mTOR pathway is often over-activated in cancer different signaling pathway, among which is the induction carcinogenesis and progression by inhibiting tumor suppressor that suppressors cancer cell growth and proliferation (3). The interface of WISP-1 and integrin 6 1 does warrant study in order to determine competent inhibitors for the interaction. Since no experimental structure of WISP-1 exists, homology modeling might be able to construct a useful model for further analysis in molecular interaction and docking between WISP-1 and integrin 61.

Sources: 1. https://www.nature.com/articles/srep08686 2. https://www.nature.com/articles/s41467-020-16827-z 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC839408

Where the data is sourced from (input)

Scientific hypothesis If WISP-1 can bind a series of protein partners which includes different integrin subunits to modulate specific cell functions such as tumor cell proliferation, then there are

structural domains on WISP-1 that engage in specific interactions with its downstream interacting protein integrin 6 1 to promote tumorigenesis potentially via activation of the AKT pathway.

Description of analysis (input)

How the data was downloaded

- Search CCN family member 4 in NBCI within the protein category, select CCN family member 4 isoform 1 precursor [Homo sapiens]. The page should be https://www.ncbi.nlm.nih.gov/protein/NP 003873.1
- select "Send to" on the upper right corner, choose FASTA format, and click create file. Upload the "sequence.fasta" file downloaded to the same directory as the Jupyter notebook.

Loading in Packages (15 points) - 10 points for definition of each of the packages loaded - 5 points for correctly loading all of the packages needed and stating anything that needs to be done to load the packages (downloading the packages)

Packages loaded Biopython: - https://github.com/biopython/biopython - Biopython is a package for computational molecular biology with Python tools, for example, it contains code for dealing with BLAST programs and output.

Numpy - https://numpy.org/doc/stable/ - NumPy is the fundamental package for scientific computing in Python

Modeller - https://salilab.org/modeller/ - Modeller is a package used for homology modeling of protein 3D structure - Installation & activation: need to go to home page -> registration -> sign the agreement to obtain a license key from the website and input the license in the correct document file following the error message upon initial attempt of activation

Ngl viewer - http://nglviewer.org/nglview/release/v0.5.1/ - NGL Viewer is a collection of tools for web-based molecular graphics such as displaying protein structures

Prody - http://prody.csb.pitt.edu/index.html - Prody is a package for protein structural dynamics analysis and contains functions like flexible PDB parsers

[12]: !pip install -U ProDy

```
Requirement already satisfied: ProDy in
/Users/yingyinli/opt/anaconda3/lib/python3.9/site-packages (2.2.0)
Requirement already satisfied: biopython<=1.76 in
/Users/yingyinli/opt/anaconda3/lib/python3.9/site-packages (from ProDy) (1.76)
Requirement already satisfied: pyparsing in
/Users/yingyinli/opt/anaconda3/lib/python3.9/site-packages (from ProDy) (3.0.4)
Requirement already satisfied: numpy>=1.10 in
/Users/yingyinli/opt/anaconda3/lib/python3.9/site-packages (from ProDy) (1.20.3)
Requirement already satisfied: scipy in
/Users/yingyinli/opt/anaconda3/lib/python3.9/site-packages (from ProDy) (1.7.1)
```

[6]: conda install modeller

```
Collecting package metadata (current_repodata.json): done
     Solving environment: \
     The environment is inconsistent, please check the package plan carefully
     The following packages are causing the inconsistency:
       - bjornfjohansson/noarch::cai==1.0.3=py_0
     done
     ## Package Plan ##
       environment location: /Users/yingyinli/opt/anaconda3
      added / updated specs:
        - modeller
     The following packages will be downloaded:
                                  1
        package
        -----|-----
                                                    2.6 MB conda-forge
                           | py39h89e85a6_1
        biopython-1.79
                                             Total:
                                                         2.6 MB
     The following NEW packages will be INSTALLED:
                       conda-forge/osx-64::biopython-1.79-py39h89e85a6_1
      biopython
     Downloading and Extracting Packages
     biopython-1.79
                   | 2.6 MB | ############################### | 100%
     Preparing transaction: done
     Verifying transaction: done
     Executing transaction: done
     Note: you may need to restart the kernel to use updated packages.
[13]: from prody import *
[3]: from Bio import SeqIO
     import numpy as np
     from Bio.Blast import NCBIWWW
     from Bio.Blast import NCBIXML
     from modeller import *
     from Bio.PDB import *
```

```
import nglview as ngv
env = environ()
```

environ____W> The class 'environ' is deprecated; use 'Environ' instead

Performing Bioinformatics Analysis (20 points) - 5 points for a description each of the bioinformatics method that includes data types read in and how the method works. - 5 points for code working correctly - 5 points for adequate commenting in the code and code checks - 5 points for a function written that performs some part of the bioinformatics analyses

0.0.1 1. Blast

```
[4]: #!update_blastdb.pl --decompress pdbaa #to download the pdbaa database locally
!psiblast -db pdbaa -query "protein.faa" -inclusion_ethresh 1e-3 -evalue 1e-3
→-num_iterations 0

#could not for the life of me get anything to run after couple hours of failed
→attempts
#leaving this line here to mourn for my sanity
#did another BLAST method using the protein sequence
```

/bin/bash: psiblast: command not found

```
[4]: WISP1_protein = SeqIO.read('sequence.fasta', 'fasta')
#code check
#print(WISP1_gene)
#print(len(WISP1_gene))
```

```
[5]: #extract the string for using blastpdb function to cross check if potential

→blast template has an existing pdb structure on file

WISP1_protein_seq = WISP1_protein.seq

#code check

#str(WISP1_protein_seq)
```

Blast code source: http://prody.csb.pitt.edu/tutorials/structure_analysis/blastpdb.html

```
[17]: #blast search
blast_record = blastPDB(str(WISP1_protein_seq))
```

- @> Blast searching NCBI PDB database for "MRWFL..."
- @> Blast search completed in 63.2s.

```
[18]: #save this record on disk, as NCBI may not respond to repeated searches for the

→same sequence

import pickle

pickle.dump(blast_record, open('WISP1_blast_record.pkl', 'wb'))

blast_record = pickle.load(open('WISP1_blast_record.pkl', 'rb'))
```

```
[21]: #template selection
    best = blast_record.getBest()
    best['pdb_id']

[21]: '5nb8'

[27]: best['percent_identity']

[27]: 53.521126760563384

[30]: best['evalue']
[30]: 2.45677e-19
```

Template selected being '5nb8' with a 53.52% sequence identity and an e-value of 2.45677e-19.

0.0.2 2. Target-Template Alignment

Code Source: https://salilab.org/modeller/tutorial/basic.html

```
[61]: #alignment
#PAP easier to visualize
#PIR is what modeller works with
from modeller import *

env = Environ()
aln = Alignment(env)
mdl = Model(env, file='5nb8', model_segment=('FIRST:A','LAST:A'))
aln.append_model(mdl, align_codes='5nb8', atom_files='5nb8.pdb')
aln.append(file='WISP1.ali', align_codes='WISP1')
aln.align2d(max_gap_length=50)
aln.write(file='WISP1-5nb8.ali', alignment_format='PIR')
aln.write(file='WISP1-5nb8.pap', alignment_format='PAP')
```

mkapsa__637W> No residue topology library is in memory.

Better radii would be used if topology.read() is called first.
iup2crm_280W> No topology library in memory or assigning a BLK residue.

Default CHARMM atom type assigned: N --> N

This message is written only for the first such atom.

Pairwise dynamic programming alignment (ALIGN2D):

Residue-residue metric : \$(LIB)/as1.sim.mat
Diagonal : 100
Overhang : 0
Maximal gap length : 50
Local alignment : F
MATRIX_OFFSET (local aln): 0.0000

```
N_SUBOPT
                                       0
                                   0.0000
      SUBOPT_OFFSET
      Alignment block
      Gap introduction penalty:
                                -100.0000
      Gap extension penalty :
                                   0.0000
      Gap diagonal penalty
                                   0.0000
      Structure gap penalties :
                                3.500
                                       3.500
                                              3.500
                                                     0.200
                                                            4.000
                                                                   6.500
    2.000
          0.000
      Break-break bonus
                               10000.0000
                            :
      Length of alignment
                                      367
      Score
                               48435.6133
[62]:
     #Observe the alignment of the template 5nb8 and the target WISP1.
     !cat WISP1-5nb8.pap
                    10
                             20
                                      30
                                              40
                                                       50
                                                                60
     _aln.pos
             M-----E-----E
    5nb8
    WISP1
             MRWFLPWTLAAVTAAAASTVLATALSPAPTTMDFTPAPLEDTSSRPQFCKWPCECPPSPPRCPLGVSL
     consrvd *
     _aln.p
             70
                      80
                               90
                                      100
                                               110
                                                        120
                                                                 130
    5nb8
             -----GDNC-----
                                               ----VFDGVIYRNGEKF
    WTSP1
             ITDGCECCKMCAQQLGDNCTEAAICDPHRGLYCDYSGDRPRYAIGVCAQVVGVGCVLDGVRYNNGQSF
     consrvd
                          ***
                       150
                               160
                                        170
                                                 180
                                                          190
                                                                   200
     _aln.pos 140
             EPNCQYHCTCRDGQIGCVPRCQ-----DVLLPG-----P-----P-----
    5nb8
    WISP1
             QPNCKYNCTCIDGAVGCTPLCLRVRPPRLWCPHPRRVSIPGHCCEQWVCEDDAKRPRKTAPRDTGAFD
     _consrvd *** * *** ** * *
                                 230
                        220
                                          240
                                                            260
                                                   250
                                                                    270
     _aln.pos
                  ------РАРКК
    5nb8
    WISP1
             AVGEVEAWHRNCIAYTSPWSPCSTSCGLGVSTRISNVNAQCWPEQESRLCNLRPCDVDIHTLIKAGKK
     consrvd
     _aln.pos
                          290
                                   300
                                            310
                                                     320
                                                             330
                                                                      340
                 280
             -VAV--P-----G--------ECC------EKWTCG------
    5nb8
    WTSP1
             CLAVYQPEASMNFTLAGCISTRSYQPKYCGVCMDNRCCIPYKSKTIDVSFQCPDGLGFSRQVLWINAC
                                             **
     _consrvd
     _aln.pos
                   350
                            360
    5nb8
    WISP1
             FCNLSCRNPNDIFADLESYPDFSEIAN
     consrvd
```

0.0 -1.0

-2.0

-3.0

FIX OFFSETS

```
[82]: #import 5nb8 structure & put in the same directory as notebook
      import Bio
      from Bio.PDB import PDBList
      pdbl=PDBList()
      pdbl.retrieve_pdb_file('5nb8',file_format='pdb',pdir='/Users/yingyinli//BIMM143/

→5 28 2C¹)

     Downloading PDB structure '5nb8'...
[82]: '/Users/yingyinli//BIMM143/5_28 2C/pdb5nb8.ent'
[83]: #rename downloaded pdb to run the next function takes takes in argument in
      ⇒specific naming format
      !mv pdb5nb8.ent 5nb8.pdb
[86]: #model construction based on modeller
      from modeller import *
      from modeller.automodel import *
      from modeller import soap_protein_od
      env = Environ()
      a = AutoModel(env, alnfile='WISP1-5nb8.ali',
                    knowns='5nb8', sequence='WISP1',
                    assess_methods=(assess.DOPE,
                                    soap_protein_od.Scorer(),
                                    assess.GA341))
      a.starting_model = 1
      a.ending_model = 5
      a.make()
     check_ali___> Checking the sequence-structure alignment.
     Implied intrachain target CA(i)-CA(i+1) distances longer than 8.0 angstroms:
     ALN_POS TMPL RID1 RID2 NAM1 NAM2
     END OF TABLE
     read_to_681_> topology.submodel read from topology file:
                                                                      3
     patch_s_522_> Number of disulfides patched in MODEL:
     mdtrsr__446W> A potential that relies on one protein is used, yet you have at
                   least one known structure available. MDT, not library, potential
     is used.
     O atoms in HETATM/BLK residues constrained
     to protein atoms within 2.30 angstroms
     and protein CA atoms within 10.00 angstroms
```

O atoms in residues without defined topology constrained to be rigid bodies

condens_443_> Restraints marked for deletion were removed.

Total number of restraints before, now: 16583 13904

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

>> Model assessment by DOPE potential

iatmcls_286W> MODEL atom not classified: ASN:OXT ASN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 Number of all static, selected restraints 13904 13904 COVALENT_CYS F NONBONDED_SEL_ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 350313

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC): 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 1
 9999

 NLOGN_USE
 : 15

 CONTACT_SHELL
 : 15.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: T F F

F I

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -19561.4375

<< end of ENERGY.

DOPE score : -19561.437500

>> Model assessment by SOAP-Protein-OD score

preppdf_455W> None of the non-bonded terms selected.

pair2___701W> Insufficient system memory to allocate storage for cell-based (NlogN) nonbond list algorithm; falling back to N*N method.

Warning 1 of 10; further warnings will be suppressed.

>> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 0 Number of all static, selected restraints 13904 13904 COVALENT CYS F 1 NONBONDED_SEL_ATOMS Number of non-bonded pairs (excluding 1-2,1-3,1-4): 0 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 6.500 LENNARD_JONES_SWITCH 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN_USE 15 CONTACT_SHELL 0.000 DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: Т F F F SPHERE STDV 0.050 RADII FACTOR 0.820 Current energy 0.0000

<< end of ENERGY.

SOAP-Protein-OD score : 0.000000

>> Model assessment by GA341 potential

Surface library :

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/surf5.de

Pair library :

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier :

% sequence identity 62.856998 Sequence length 367 : Compactness 0.012427 Native energy (pair) 74.187079 Native energy (surface) : 41.164093 Native energy (combined) : 8.783159 Z score (pair) -3.828903 Z score (surface) -1.095584Z score (combined) -3.287000 GA341 score 0.973716 >> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 0 Number of all static, selected restraints 13904 13904 COVALENT CYS F NONBONDED SEL ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 4418 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 7.500 6.500 RESIDUE_SPAN_RANGE 99999 0 NLOGN_USE 15 CONTACT_SHELL 4.000 DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER : Τ Т F F SPHERE_STDV 0.050 RADII FACTOR 0.820 Current energy 2115.5510

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL ... relative difference from the best value.

NUMVP ... number of restraints with -Ln(pdf) > VIOL_REPORT_CUT2[i].

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

#	RESTRAIN	NT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2	
MOL.PDF S	_i							
								_
1 Bond lengt	h potential	:	2881	0	0	0.003	0.003	
8.0481	1.000							
2 Bond angle	potential	:	3935	0	1	1.786	1.786	
236.08	1.000							
3 Stereochem	ical cosine torsio	on poten:	1962	0	81	50.259	50.259	
768.76	1.000							
4 Stereochem	ical improper tors	sion pot:	1155	0	0	0.938	0.938	
21.032	1.000							

5 Soft-sphere overlap restraints : 3.5749 1.000	4418	0	0	0.003	0.003
6 Lennard-Jones 6-12 potential :	0	0	0	0.000	0.000
0.0000 1.000 7 Coulomb point-point electrostatic p:	0	0	0	0.000	0.000
0.0000 1.000	0	0	0	0.000	0 000
8 H-bonding potential : 0.0000 1.000	0	0	0	0.000	0.000
9 Distance restraints 1 (CA-CA) :	765	0	4	1.295	1.295
108.48 1.000					
10 Distance restraints 2 (N-0) : 178.00 1.000	973	0	11	1.669	1.669
178.00 1.000 11 Mainchain Phi dihedral restraints :	0	0	0	0.000	0.000
0.0000 1.000	ŭ	Ū	Ū	0.000	0.000
12 Mainchain Psi dihedral restraints :	0	0	0	0.000	0.000
0.0000 1.000					
13 Mainchain Omega dihedral restraints:	366	0	0	3.338	3.338
48.102 1.000	215	0	0	0/ 67/	04 674
14 Sidechain Chi_1 dihedral restraints: 97.588 1.000	315	0	2	84.674	84.674
15 Sidechain Chi_2 dihedral restraints:	209	0	1	76.192	76.192
86.232 1.000					
16 Sidechain Chi_3 dihedral restraints:	98	0	0	80.861	80.861
52.483 1.000			_		
17 Sidechain Chi_4 dihedral restraints: 23.723 1.000	34	0	0	105.462	105.462
18 Disulfide distance restraints :	5	0	0	0.007	0.007
0.39089E-01 1.000					
19 Disulfide angle restraints :	10	0	0	1.873	1.873
0.77495 1.000	_		_		
20 Disulfide dihedral angle restraints: 2.0034 1.000	5	0	0	20.174	20.174
2.0034 1.000 21 Lower bound distance restraints :	0	0	0	0.000	0.000
0.0000 1.000	O .	· ·	Ū	0.000	0.000
22 Upper bound distance restraints :	0	0	0	0.000	0.000
0.0000 1.000					
23 Distance restraints 3 (SDCH-MNCH) :	643	0	0	0.630	0.630
31.940 1.000	•	•	0	0.000	0 000
24 Sidechain Chi_5 dihedral restraints: 0.0000 1.000	0	0	0	0.000	0.000
25 Phi/Psi pair of dihedral restraints:	365	205	54	37 936	134.248
416.39 1.000	000	200	01	01.000	101.210
26 Distance restraints 4 (SDCH-SDCH) :	183	0	2	2.228	2.228
32.307 1.000					
27 Distance restraints 5 (X-Y) :	0	0	0	0.000	0.000
0.0000 1.000	-	-	-	0.000	0 055
28 NMR distance restraints 6 (X-Y) :	0	0	0	0.000	0.000
0.0000 1.000					

29 NMR dista	nce restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000	1.000						
30 Minimal d	istance restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
31 Non-bonde	d restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
32 Atomic ac	cessibility restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
33 Atomic de	nsity restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
34 Absolute	position restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
35 Dihedral	angle difference restrai	nt:	0	0	0	0.000	0.000
0.0000	1.000						
36 GBSA impl	icit solvent potential	:	0	0	0	0.000	0.000
0.0000	1.000						
37 EM densit	y fitting potential	:	0	0	0	0.000	0.000
0.0000	1.000						
38 SAXS rest	raints	:	0	0	0	0.000	0.000
0.0000	1.000						
39 Symmetry	restraints	:	0	0	0	0.000	0.000
0.0000	1.000						

- # Heavy relative violation of each residue is written to: WISP1.V99990001
- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 61820.8125

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

 ${\tt ICSR}$ $\,$... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR \dots the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 25 $$\rm : Phi/Psi \ pair \ of \ dihedral \ restraints$ List of the RVIOL violations larger than $\rm : 6.5000$

#	ICSR	RESNO:	1/2	ATM1	1/2	INDAT	M1/2	FEAT	restr	viol	rviol
RESTR	VIOL	RVI	OL								
1	9954	1M	2R	C	N	7	9	-142.52	-125.20	17.41	0.65
-63.00	-166.38	31	.59								
1		2R	2R	N	CA	9	10	142.36	140.60		
-41.10											
2	9955	2R	ЗW	C	N	18	20	-119.80	-124.90	15.85	0.64
-63.00	-178.30	20	.20								
2		ЗW	ЗW	N	CA	20	21	128.39	143.40		
-44.20											
3	9956	ЗW	4F	C	N	32	34	-111.47	-124.20	34.32	1.25
-63.20	163.04	19	.70								
3		4F	4F	N	CA	34	35	111.43	143.30		
-44.30											
4	9957	4F	5L	С	N	43	45	-132.67	-108.50	29.60	1.63
-63.50	171.21	21	.05								
4		5L	5L	N	CA	45	46	115.41	132.50		
-41.20											
5	9959	6P	7W	С	N	58	60	-165.89	-124.90	47.36	1.55
-63.00	-179.19	29	.48								
5		7W	7W	N	CA	60	61	167.12	143.40		
-44.20											
6	9960	7W	8T	С	N	72	74	-117.76	-124.80	10.73	0.64
-63.20	175.03	26	.07								
6		8T	8T	N	CA	74	75	151.59	143.50		
-42.10											
7	9961	8T	9L	С	N	79	81	-99.78	-108.50	18.22	0.87
-63.50	161.82	20	.68								
7		9L	9L	N	CA	81	82	116.50	132.50		
-41.20											
8	9962	9L :	10A	С	N	87	89	-161.24	-134.00	32.32	0.78
-62.50	-176.45	35	.32								
8		10A	10A	N	CA	89	90	164.38	147.00		
-40.90											
9	9963	10A	11A	С	N	92	94	81.03	-134.00	153.31	3.60
-62.50	-171.47										
9		11A		N	CA	94	95	-163.14	147.00		
-40.90											
10	9965	12V	13T	С	N	104	106	-74.75	-78.10	33.06	1.31
	159.43										
10		13T			CA	106	107	116.91	149.80		

-42.10								
				111	113 -148.95	-134.00	15.13	0.42
-62.50	-169.47	35.85						
11	14A	14A N	CA	113	114 149.32	2 147.00		
-40.90								
	9967 14A		N	116	118 -82.34	-68.20	15.81	1.09
	167.91							
12	15A	15A N	CA	118	119 152.37	145.30		
-40.90								
	9968 15A		N	121	123 -82.79	-68.20	29.58	1.92
	149.46							
13	16A	16A N	CA	123	124 171.03	3 145.30		
-40.90								
	9969 16A		N	126	128 -58.95	-68.20	22.85	1.53
	165.35							
14	17A	17A N	CA	128	129 124.41	145.30		
-40.90	0070 474	400.0		404	100 171 00	100.00	E0 E4	4 00
	9970 17A		N	131	133 -171.02	2 -136.60	56.54	1.96
	167.51			400	104 100 05			
15	18S	18S N	CA	133	134 -163.95	151.20		
-35.00	0071 100	10T 0	. at	107	120 60 20	70 10	17 04	4 44
	9971 18S		N	137	139 -60.30	78.10	17.84	1.11
	166.87			120	140 151 05	140.00		
16	19T	191 N	CA	139	140 151.05	149.80		
-42.10	0070 100	2017	ı at	111	146 FO 94	60 40	7 11	0.70
	9972 19T		N	144	146 -59.84	-62.40	7.11	0.79
-125.40 17	-179.98 20V		CA	116	147 -49.04	40 40		
143.30	201	20 V IV	CA	140	147 -49.04	-42.40		
	9973 20V	211 (N	151	153 -72.30	-70 70	F 17	0.45
	178.11		. 11	101	100 72.00	70.70	0.17	0.40
18			СА	153	154 136.69	141 60		
-41.20	211	2111 1	On	100	101 100.00	111.00		
	9974 211.	22A C	! N	159	161 -119.23	3 -134 00	20 46	0.60
	-177.23			100	101 110.20	101.00	20.10	0.00
19	22A		CA	161	162 132.85	147.00		
-40.90	22	2211 11	011	101	102 102.00	111.00		
20	9975 22A	23T C	N	164	166 -99.76	-78.10	61.33	2.06
	116.60				200 001.0		02.00	
20		23T N	CA	166	167 -152.82	149.80		
-42.10								
21	9976 23T	24A C	N	171	173 -63.21	-68.20	5.64	0.39
	176.43							
21	24A		CA	173	174 142.67	145.30		
-40.90								
22	9978 25L	26S C	N	184	186 -118.70	-136.60	31.99	1.16
-64.10	168.76	10.39						
22	26S	26S N	CA	186	187 124.68	151.20		

25 00						
-35.00 23	0000 070 000	л с м	107	199 -121.37 -134.00	12 71	0 10
	157.47 23.73		191	199 -121.37 -134.00	43.71	2.12
	28A 28A		199	200 105.15 147.00		
-40.90	20A 20I	A IN CA	199	200 105.15 147.00		
24	9983 30T 317	гс м	216	218 -98.76 -78.10	60 31	2 03
	116.98 17.36		210	210 90.70 70.10	00.51	2.00
	31T 317		218	219 -153.54 149.80		
-42.10	011 011	, 01	. 210	210 100.01 110.00		
	9984 31T 32N	M C N	223	225 -66.03 -73.00	18.75	1.39
	159.11 23.96		220	220 00.00 10.00	10.10	1.00
	32M 32N		225	226 160.41 143.00		
-40.50	02 02.					
26	9991 38P 39I	L C N	276	278 -44.82 -70.70	26.25	2.51
	173.81 23.13					
			278	279 146.00 141.60		
-41.20						
27	9993 40E 41I	O C N	293	295 -131.30 -96.50	34.82	1.42
-63.30	167.63 17.86	3				
27	41D 41I	O N CA	295	296 113.22 114.20		
-40.00						
28	9995 42T 438	S C N	308	310 -74.82 -72.40	3.22	0.26
-64.10	175.05 13.39	5				
28	435 439	S N CA	310	311 150.28 152.40		
-35.00						
29	9996 43S 44S	S C N	314	316 -110.91 -136.60	35.68	1.98
-64.10	156.21 14.58	3				
29	44S 44S	S N CA	316	317 175.97 151.20		
-35.00						
30	9997 44S 45I		320	322 -99.22 -125.20	27.88	1.37
	172.06 25.75					
	45R 45I	R N CA	322	323 150.70 140.60		
-41.10						
			338	340 -79.28 -73.00	30.72	2.14
	151.72 21.52					
31	47Q 470	Q N CA	1 340	341 110.63 140.70		
-40.30	40000 470 400		0.45	040 400 07 404 00	05.00	0.70
	10000 47Q 48I		347	349 -139.67 -124.20	25.02	0.72
	170.80 28.63		0.40	050 460 07 440 00		
32	48F 48I	· N CA	1 349	350 162.97 143.30		
-44.30	40000 400 501	, a w	0.04	000 00 07 440 00	04 07	0.05
	10002 49C 50F		364	366 -98.67 -118.00	24.97	0.85
-62.90 33	167.95 20.13		266	267 102 00 120 10		
	50K 50F	Y IV CA	300	367 123.29 139.10		
-40.80	10003 50K 51V	J C N	272	375 -128.29 -124.90	10 21	1 01
	-179.21 19.9 ⁴		313	515 120.23 -124.90	13.31	1.01
34	51W 51V		375	376 124.39 143.40		
J 4	OIM OIM	v IV OF	. 313	010 124.00 140.40		

-44.20				_						
	10004 51		C N	1	387	389	-51.58	-58.70	12.28	0.75
	172.78									
35	52	P 52P	N C	CA	389	390	-40.50	-30.50		
147.20		~ -4-	~ .	-	400	400	00 54	4.47 00	40.40	
36			C N	J	400	402	-98.51	-117.80	19.49	0.79
	-176.74				400	400	100.00	400.00		
36	54	E 54E	N C	CA	402	403	139.60	136.80		
-40.30			~ .	-	400	404	25 22	70 40	00.45	
	10010 57		C V	l	429	431	-65.23	-72.40	23.45	1.16
	165.08				404	400	400 00	450 40		
37		S 58S	N C	CA	431	432	130.07	152.40		
-35.00			~ .	-	4.40			50 F0	4 00	0.00
	10012 59		C N	J	442	444	-62.98	-58.70	4.88	0.69
	179.97					4.45		00 50		
38		P 60P	N C	CA	444	445	-32.83	-30.50		
147.20			a 1		4.40	4 = 4	FF 0F	70.40	101 15	40.70
	10013 60		C N	l	449	451	55.35	-72.10	131.45	10.70
	-172.94			. .	454	450	474.05	4.4.4.00		
39	61	R 61R	N C	JA .	451	452	174.05	141.90		
-41.10	10015 60	a con	a 1	,	100	460	C4 47	FO 70	0 44	0 50
	10015 62		C N	1	466	468	-64.47	-58.70	8.41	0.58
	171.58		N .	٠.	460	460	04.00	20 50		
40	63	P 63P	N C	CA	468	469	-24.38	-30.50		
147.20	10016 60	D 641	a 1	,	470	475	77 40	70 70	44 05	0.74
	10016 63			1	4/3	4/5	-77.10	-70.70	11.95	0.74
	167.66			۹.۸	475	170	151 60	111 00		
41	64.	L 64L	N C	CA	4/5	4/6	151.69	141.60		
-41.20			<i>a</i> 1	,	404	400	4.40 .40	4.07.00	FO 00	4 00
	10017 64		C N	1	481	483	140.48	-167.20	52.33	1.02
	175.08		NT C	۹.۸	400	404	170 50	174 60		
42	65	G 65G	N C	Ä	483	484	173.59	174.60		
8.50	10010 66	u 670	a N	т	400	404	100 15	100 00	22 20	1 00
	10019 66		C N	ı	492	494	-163.15	-136.60	33.39	1.03
	-177.28		NI C	۹,۸	101	40E	171 /5	151 00		
43	67	5 675	N C	Ä	494	495	171.45	151.20		
-35.00		g cor	C 1	т	400	E00	105 70	100 FO	17 57	0 00
	10020 67			ı	498	500	-105.73	-108.50	17.57	0.98
	174.14			۹,۸	F00	E01	140 05	120 FO		
44 -41.20		L 68L	N C	A	500	501	149.85	132.50		
		T 70T	C N	т	E 1 /	E16	OF 17	70 10	10 10	0 61
	10022 69			1	514	210	-85.17	-78.10	18.42	0.61
	152.68			۹,۸	E16	E 1 7	166 00	140.00		
	70'	1 /01	IN C	CA	210	211	166.80	149.00		
-42.10	10000 70	T 71D	C 1	т	E01	EOS	_100_02	_06 E0	01 /11	2 40
46				1	0ZI	ე∠პ	-100.83	-90.50	81.41	3.42
	82.00		NT C	٠,٨	EOO	E04	20 04	11/ 00		
46	(1)	עוו ע	11 C	A	ე23	524	32.91	114.20		

-40.00	10024	71D	720	C	M	E20	E21	75 47	78.70	12 //0	0 E1
	172.45			C	14	323	551	13.41	10.10	13.40	0.51
47	172.10			N	CA	531	532	-179.18	-166.10		
8.50		. 20	. 20		011	001	002	110.10	100.10		
48	10026	73C	74E	С	N	539	541	-125.03	-117.80	7.23	0.26
-63.60	-172.42										
48				N	CA	541	542	136.93	136.80		
-40.30											
49	10029	76C	77K	C	N	560	562	47.65	-70.20	127.89	10.34
-62.90	170.00) 2	0.18								
49		77K	77K	N	CA	562	563	-169.95	140.40		
-40.80											
50	10030	77K	78M	C	N	569	571	-77.14	-73.00	15.36	0.98
-63.40	162.29	9 2	5.32								
50		78M	78M	N	CA	571	572	157.79	143.00		
-40.50											
51	10032	79C	80A	C	N	583	585	-77.78	-68.20	45.26	3.31
-62.50	130.47										
51		80A	80A	N	CA	585	586	-170.46	145.30		
-40.90											
52	10033		-	C	N	588	590	-49.15	-73.00	23.88	1.68
	-179.63										
52		81Q	81Q	N	CA	590	591	139.47	140.70		
-40.30											
	10034	-	-	С	N	597	599	-63.79	-73.00	11.13	0.87
	172.74										
53		82Q	82Q	N	CA	599	600	146.96	140.70		
-40.30				_							
	10035	-		С	N	606	608	-80.74	-70.70	24.15	1.52
	156.18				~.	200		400 55			
54		83L	83L	N	CA	608	609	163.57	141.60		
-41.20		080		~		0.10		400 70	404.00	7 40	
	10040			С	N	640	642	-128.78	-124.80	7.40	0.23
	-179.5			NT.	a.	C40	C 4 O	440.75	440 50		
55		88T	881	N	CA	642	643	149.75	143.50		
-42.10	10041	ООТ	OOE	a	NT.	647	640	106 77	117 00	04 11	0.72
56				C	IN	047	649	-136.77	-117.80	24.11	0.73
-63.60 56	-176.73	89E		ΝT	CA	640	650	151.67	126 90		
-40.30		OSE	OSE	1//	CA	049	030	151.07	130.00		
	10042	80E	001	C	N	656	658	-63 60	-68.20	10 00	0.73
	176.22			C	14	030	030	-03.00	-00.20	10.33	0.73
57		2 2 90A		M	CA	658	650	135.32	1/15 30		
-40.90		JUR	JUA	TA	OA	000	009	100.02	140.00		
58	10043	904	914	С	N	661	663	173 98	-134.00	53 97	2 35
	-146.99			J		001	000	1,0.00	101.00	00.01	2.00
58		91A		N	CA	663	664	132.64	147.00		
		J 111	O 111		J	550	001	102.01	1100		

-40.90	10045 007 020	a N	67.4	676	C4 F0	C2 00	10 40	1 60
	10045 92I 93C 0 173.84 7.50		0/4	010	-64.59	-63.00	12.43	1.63
	93C 93C		676	677	-53.43	-41.10		
141.10								
60	10046 93C 94D	C N	680	682	-172.16	-96.50	77.59	3.19
-63.30	-156.96 21.63							
60	94D 94D	N CA	682	683	131.39	114.20		
-40.00								
	10049 96H 97R	C N	705	707	-179.65	-125.20	61.50	1.86
	-170.22 33.21	N	707	700	4.00 .00	440.00		
61	97R 97R	N CA	107	708	169.20	140.60		
-41.10 62	10050 97R 98G	C M	716	710	125 7/	-167.20	E7 27	1 0/
	168.82 10.74	C N	/10	110	135.74	-107.20	51.51	1.24
62.20	98G 98G	N CA	718	719	168.61	174 60		
8.50	300 300	N OF	710	113	100.01	174.00		
63	10051 98G 99L	C N	720	722	-132.19	-108.50	34.94	1.59
	174.69 28.51							
63	99L 99L	N CA	722	723	158.18	132.50		
-41.20								
64	10052 99L 100Y	C N	728	730	-105.70	-98.40	7.80	0.43
-63.50	179.57 26.46							
64	100Y 100Y	N CA	730	731	131.14	128.40		
-43.40								
65		C N	746	748	-94.63	-96.50	2.07	0.08
	158.22 17.86							
65	102D 102D	N CA	748	749	115.09	114.20		
-40.00	10055 1005 1007	G 17	754	750	400.05	101 00	05.70	4 05
66	10055 102D 103Y	C N	754	756	-133.05	-124.30	25.72	1.05
-63.50 66	171.72 30.69 103Y 103Y	N CA	756	757	159.59	125 //		
-43.40	1031 1031	IN CA	1 730	131	109.09	133.40		
	10056 103Y 104S	C N	766	768	-72 91	-72 40	18 24	1 06
	154.62 11.75	0 11	100	100	12.01	12.10	10.21	1.00
67	104S 104S	N CA	768	769	170.63	152.40		
-35.00								
68	10058 105G 106D	C N	776	778	-66.38	-70.90	9.70	0.70
-63.30	161.15 20.08							
68	106D 106D	N CA	778	779	158.89	150.30		
-40.00								
69	10059 106D 107R	C N	784	786	-69.54	-72.10	3.68	0.24
	179.76 24.72							
69	107R 107R	N CA	786	787	139.26	141.90		
-41.10		a		00.	00.0=	TC 1-	05.00	
70	10061 108P 109R	C N	802	804	-89.93	-72.10	25.60	1.66
	160.90 23.59	NT CA	004	٥٥٢	160 07	1/1/00		
70	109R 109R	IN CA	804	805	100.27	141.90		

-41.10	a	0.4.0	0.45	24.00	00.40	04.07	4 64
71 10062 109R 110Y	C N	813	815	-64.38	-98.40	34.07	1.31
-63.50 173.80 27.53 71 110Y 110Y	N CA	015	016	120 40	100 40		
-43.40	N CA	015	010	130.40	120.40		
72 10063 110Y 111A	C N	825	827	-110 95	-134.00	27 60	0.67
-62.50 179.38 27.46	0 11	020	021	110.55	104.00	21.00	0.07
72 111A 111A	N CA	827	828	131.81	147.00		
-40.90		021	020	101.01	111.00		
73 10065 112I 113G	C N	838	840	-67.71	-80.20	53.97	1.54
82.20 -172.21 6.94							
73 113G 113G	N CA	840	841	121.60	174.10		
8.50							
74 10067 114V 115C	C N	849	851	-58.21	-63.00	13.35	1.39
-117.90 175.79 7.63							
74 115C 115C	N CA	851	852	-53.56	-41.10		
141.10							
75 10068 115C 116A	C N	855	857	-142.31	-134.00	12.47	0.74
-62.50 -164.39 29.39							
75 116A 116A	N CA	857	858	137.70	147.00		
-40.90							
76 10069 116A 117Q	C N	860	862	-102.58	-121.10	18.53	0.68
-63.80 -176.48 25.11							
76 117Q 117Q	N CA	862	863	139.08	139.70		
-40.30							
77 10072 119V 120G	C N	883	885	-94.16	-80.20	38.25	0.93
82.20 -122.69 18.35							
77 120G 120G	N CA	885	886	-150.29	174.10		
8.50							
78 10078 125L 126D	C N	919	921	46.98	-70.90	127.57	10.67
54.50 158.36 11.05							
78 126D 126D	N CA	921	922	-160.92	150.30		
40.90	a 17	007	000	27 02	20 40	2 00	4 00
79 10079 126D 127G	C N	927	929	-67.96	-62.40	6.98	1.02
82.20 156.90 11.83	NI CIA	000	000	26.00	44 00		
79 127G 127G 8.50	N CA	929	930	-30.98	-41.20		
80 10111 158L 159R	C M	1162	1165	_1/5 02	_105_00	20 26	0.05
-63.00 175.89 29.33		1103	1105	-140.23	-125.20	30.30	0.95
80 159R 159R		1165	1166	163 /11	1/0 60		
-41.10	N OA	1100	1100	100.41	140.00		
81 10113 160V 161R	C N	1181	1183	113 99	-125 20	131 96	4 09
-63.00 -143.19 27.50		1101	1100	110.00	120.20	101.00	1.00
81 161R 161R		1183	1184	-166.32	140.60		
-41.10							
82 10118 165L 166W	C N	1225	1227	-59.92	-71.30	37.98	2.56
-63.00 146.99 18.56							
82 166W 166W		1227	1228	102.76	139.00		

-44.20								
	10122 169H 170P	C N	1262	1264	-70.41	-58.70	25.28	1.48
	155.40 11.91	N G	1001	1005	0.00	20 50		
147.20	170P 170P	N C	A 1264	1265	-8.09	-30.50		
	10123 170P 171R	C M	1260	1971	- 70 21	- 72 10	E0 30	3 01
	126.92 17.63	C N	1209	12/1	-10.21	-12.10	50.52	3.91
	171R 171R	N C	Δ 1271	1272	-167 82	141 90		
-41.10		0		12.2	101102	111.00		
	10130 177G 178H	C N	1323	1325	-132.72	-125.60	28.46	0.94
-63.20	166.55 25.35							
	178H 178H	N C	A 1325	1326	166.36	138.80		
-42.30								
86	10133 180C 181E	C N	1345	1347	-70.97	-69.30	14.15	1.02
-63.60	163.31 22.18							
86	181E 181E	N C	A 1347	1348	156.56	142.50		
-40.30								
	10134 181E 182Q		1354	1356	-61.48	-73.00	18.62	1.07
	166.39 24.59							
	182Q 182Q	N C	A 1356	1357	126.07	140.70		
-40.30								
	10135 182Q 183W		1363	1365	-151.21	-124.90	50.45	1.78
	156.57 25.48			1000	470 50	110 10		
	183W 183W	N C	A 1365	1366	-173.56	143.40		
-44.20	10120 10EG 10CE	G N	1200	1200	70.04	CO 20	10 10	4 47
	10138 185C 186E 160.65 22.23	C N	1390	1392	-78.24	-69.30	19.40	1.17
	186E 186E	M C	۸ 1302	1303	150 72	1/12 50		
-40.30		IV C	H 1332	1333	159.12	142.50		
	10140 187D 188D	C N	1407	1409	-122 47	-96 50	26 00	1 06
	166.15 17.85	0 11	1107	1100	122.11	30.00	20.00	1.00
	188D 188D	N C	A 1409	1410	115.26	114.20		
91	10141 188D 189A	C N	1415	1417	-166.61	-134.00	32.93	1.27
	-154.90 39.16							
91	189A 189A	N C	A 1417	1418	142.39	147.00		
-40.90								
92	10142 189A 190K	C N	1420	1422	177.09	-118.00	65.89	2.69
-62.90	-153.07 24.07							
92	190K 190K	N C	A 1422	1423	127.77	139.10		
-40.80								
	10143 190K 191R		1429	1431	-139.91	-125.20	25.67	1.42
	178.12 20.30							
	191R 191R	N C	A 1431	1432	119.56	140.60		
-41.10	10115 1005 1005	a		4 4 4 5	0 5 05	70 10	0.05	0.04
	10145 192P 193R		1447	1449	-67.05	-72.10	9.35	0.81
	169.18 23.13		A 4440	1 4 5 2	140 77	1/11 00		
94	193R 193R	N C	а 1449	1450	149.77	141.90		

-41.10	C N	1/50 1/60	60 04 70 00	10 57	1 21
95 10146 193R 194K -62.90 162.79 20.82		1450 1460	-60.04 -70.20	10.57	1.31
95 194K 194K		1460 1461	121.88 140.40		
-40.80					
96 10148 195T 196A	C N	1474 1476	-80.70 -68.20	20.15	1.27
-62.50 159.04 26.99					
96 196A 196A	N CA	1476 1477	161.11 145.30		
-40.90					
97 10149 196A 197P	C N	1479 1481	-67.43 -58.70	13.81	0.89
-64.50 167.03 12.62					
97 197P 197P	N CA	1481 1482	-19.80 -30.50		
147.20	~			47.00	
98 10150 197P 198R	C N	1486 1488	-107.33 -125.20	17.92	0.69
-63.00 -175.12 28.04	N CA	1400 1400	120 40 140 60		
98 198R 198R -41.10	N CA	1400 1409	139.42 140.60		
99 10152 199D 200T	C N	1505 1507	' -158 25 -12 <i>1</i> 80	3/1 82	1 57
-63.20 -169.82 30.48		1303 1307	100.20 124.00	04.02	1.07
99 200T 200T		1507 1508	153.18 143.50		
-42.10	IV OII	1001 1000	100:10 110:00		
100 10153 200T 201G	C N	1512 1514	162.75 -167.20	30.07	0.55
82.20 -174.49 12.69					
100 201G 201G	N CA	1514 1515	175.61 174.60		
8.50					
101 10154 201G 202A	C N	1516 1518	-164.33 -134.00	43.76	1.35
-62.50 173.57 33.81					
	N CA	1518 1519	178.54 147.00		
-40.90					
102 10155 202A 203F	C N	1521 1523	-91.16 -71.40	29.07	2.56
-63.20 166.05 21.25	N	1500 1501	110 00 110 70		
102 203F 203F	N CA	1523 1524	119.38 140.70		
-44.30	C N	1520 1524	100 22 06 50	12 66	1 0/
103 10156 203F 204D -63.30 178.57 25.73	C N	1552 1554	= -120.33 -90.50	43.00	1.04
103 204D 204D	N CA	1534 1535	150.78 114.20		
-40.00	N OA	1004 1000	100.70 114.20		
104 10157 204D 205A	C N	1540 1542	-123.05 -134.00	13.43	0.74
-62.50 175.13 31.94					
		1542 1543	154.78 147.00		
-40.90					
105 10159 206V 207G	C N	1552 1554	-123.29 -80.20	43.67	2.67
82.20 -128.29 17.57					
105 207G 207G	N CA	1554 1555	-178.82 174.10		
8.50					
106 10160 207G 208E	C N	1556 1558	-68.85 -69.30	1.14	0.10
-63.60 176.23 23.79					
106 208E 208E	N CA	1558 1559	143.55 142.50		

-40.30	a 17	1570 1574 107 10 00 00	00.50	40.00
107 10162 209V 210E (C N	1572 1574 -127.13 -63.60	96.56	16.20
-63.60 96.56 16.20 107 210E 210E I	NT CA	1574 1575 -113.02 -40.30		
-40.30	N CA	1374 1373 -113.02 -40.30		
108 10163 210E 211A (C N	1581 1583 -58.06 -68.20	10 37	0.95
-62.50 171.67 27.92	0 1	1001 1000 00.00 00.20	10.01	0.50
108 211A 211A I	N CA	1583 1584 147.49 145.30		
-40.90				
109 10164 211A 212W (C N	1586 1588 -65.87 -71.30	26.58	1.86
-63.00 157.21 19.48				
109 212W 212W I	N CA	1588 1589 112.98 139.00		
-44.20				
110 10165 212W 213H (C N	1600 1602 166.71 -125.60	70.65	2.05
-63.20 -154.79 33.76				
110 213H 213H I	N CA	1602 1603 159.00 138.80		
-42.30				
111 10166 213H 214R (C N	1610 1612 -158.17 -125.20	49.58	1.55
-63.00 170.34 29.31				
111 214R 214R I	N CA	1612 1613 177.63 140.60		
-41.10				
112 10168 215N 216C (1629 1631 -65.90 -63.00	7.86	1.18
-117.90 178.24 7.66		1001 1000 10 10 11 10		
112 216C 216C I	N CA	1631 1632 -48.40 -41.10		
141.10	C N	1643 1645 -78.60 -68.20	46.00	2 40
113 10170 217I 218A (-62.50 129.05 21.98	C IV	1043 1045 -76.00 -06.20	40.92	3.42
113 218A 218A I	N CA	1645 1646 -168.94 145.30		
-40.90	N OA	1040 1040 100.94 140.00		
114 10171 218A 219Y (C N	1648 1650 -27.18 -98.40	72.87	3.03
-63.50 176.55 26.25		1010 1000 21.10 00.10	12.01	0.00
114 2197 2197 1	N CA	1650 1651 143.82 128.40		
-43.40				
115 10172 219Y 220T (C N	1660 1662 -54.36 -78.10	24.85	1.30
-63.20 175.64 21.95				
115 220T 220T I	N CA	1662 1663 142.48 149.80		
-42.10				
116 10173 220T 221S (C N	1667 1669 -162.43 -136.60	44.48	1.58
-64.10 169.11 19.35				
116 221S 221S I	N CA	1669 1670 -172.59 151.20		
-35.00				
117 10175 222P 223W (C N	1680 1682 -109.22 -124.90	17.13	0.59
-63.00 -174.83 26.20				
117 223W 223W I	N CA	1682 1683 136.49 143.40		
-44.20	a	1004 1000 147 10 100 0	40 ==	4 00
118 10176 223W 224S (C N	1694 1696 -147.48 -136.60	18.77	1.06
-64.10 -169.84 12.06	NT 04	1000 1007 105 00 151 00		
118 224S 224S I	N CA	1696 1697 135.90 151.20		

-35.00											
	10180			С	N	1719	1721	-149.00	-124.80	26.39	1.09
-63.20					~ 1	1701	4700	454.00	110 50		
		228T	228T	N	CA	1721	1722	154.03	143.50		
-42.10	10101	0000	0000	a	3.7	4706	4700	400 04	100.00	2.00	0.04
	10181			C	N	1726	1728	-139.94	-136.60	3.92	0.21
-64.10				NT	CA.	1700	1700	140 16	151 00		
120 -35.00		2295	2295	IV	CA	1728	1729	149.16	151.20		
	10183	220C	221 C	C	M	1720	17/10	_1/6 06	_167_20	23.33	0 20
82.20 -				C	IN	1730	1740	-140.00	-107.20	23.33	0.30
121				M	C۸	17/10	17/1	163.17	17/1 60		
8.50		2010	2010	14	OA	1740	1141	100.17	174.00		
	10184	231G	2321.	C	N	1742	1744	-114 02	-108 50	8.16	0 46
-63.50				O	14	1112	1111	111.02	100.00	0.10	0.10
122				N	CA	1744	1745	126.49	132.50		
-41.20					011		11.10	120.10	102.00		
	10185	232L	233G	С	N	1750	1752	133.87	-167.20	58.95	1.16
82.20	172.29	10	.83								
123		233G	233G	N	CA	1752	1753	172.86	174.60		
8.50											
124	10187	234V	235S	C	N	1761	1763	-164.99	-136.60	28.49	1.07
-64.10	-161.0	5 2	21.68								
124		235S	235S	N	CA	1763	1764	153.53	151.20		
-35.00											
125	10188	235S	236T	C	N	1767	1769	-121.47	-124.80	36.02	1.45
-63.20	160.6	8 1	7.48								
125		236T	236T	N	CA	1769	1770	107.64	143.50		
-42.10											
	10189			C	N	1774	1776	-134.58	-125.20	9.41	0.36
-63.00											
		237R	237R	N	CA	1776	1777	141.41	140.60		
-41.10											
				С	N	1793	1795	-109.30	-136.60	50.82	1.87
-64.10					~.	4505	4500	400.00	454 00		
127		2398	239S	N	CA	1795	1796	108.33	151.20		
-35.00	10100	0000	0.403	a	3.7	4700	1001	440.05	440.00	0.05	0.40
	10192			C	N	1799	1801	-119.65	-119.90	2.85	0.12
-63.20 128				ΝT	CA	1001	1000	19/ 17	127 00		
-41.10		2 4 0N	240N	11/	CA	1001	1002	134.17	137.00		
	10194	2/1W	NCNC	C	N	121/	1216	-71 <i>/</i> /	-71 20	6.96	0 44
-63.20				C	11	1014	1010	11.44	11.20	0.30	0.44
	103.0			N	CA	1816	1817	149.76	142 80		
-41.10		LIV	∸ 1 ←1V	14	011	1010	1011	110.10	112.00		
	10195	242N	243A	С	N	1822	1824	-63.93	-68.20	30.54	2.31
-62.50				-	-		- -	23.00			
130				N	CA	1824	1825	115.06	145.30		

-40.90	NT	1007 10	00 175 00	101 10	74 20	0.20
131 10196 243A 244Q C -63.80 171.28 30.57	IN	1827 18	29 -175.80	-121.10	74.39	2.38
131 244Q 244Q N	CA	1820 18	30 -160 80	130 70		
-40.30	OA	1029 10	30 109.09	109.70		
132 10197 244Q 245C C	N	1836 18	38 -58.54	-63 00	20 48	2 24
-117.90 168.60 7.34	14	1000 10	00.01	00.00	20.10	2.21
132 245C 245C N	CA	1838 18	39 -61.09	-41.10		
141.10	· · ·	1000 10	02.00			
133 10198 245C 246W C	N	1842 18	44 -167.47	-124.90	43.04	2.05
-63.00 -152.94 32.91						
133 246W 246W N	CA	1844 18	45 137.02	143.40		
-44.20						
134 10200 247P 248E C	N	1863 18	65 -81.88	-69.30	16.42	1.51
-63.60 173.21 22.14						
134 248E 248E N	CA	1865 18	66 131.94	142.50		
-40.30						
135 10201 248E 249Q C	N	1872 18	74 -85.88	-73.00	13.93	0.89
-63.80 175.10 26.92						
135 249Q 249Q N	CA	1874 18	75 146.00	140.70		
-40.30						
136 10202 249Q 250E C	N	1881 18	83 -119.63	-117.80	14.64	0.76
-63.60 171.96 20.42						
136 250E 250E N	CA	1883 18	84 122.28	136.80		
-40.30						
137 10203 250E 251S C	N	1890 18	92 63.13	-72.40	135.62	9.83
-64.10 -149.64 15.19						
137 251S 251S N	CA	1892 18	93 157.47	152.40		
-35.00						
138 10204 251S 252R C	N	1896 18	98 -111.77	-125.20	83.32	3.71
-63.00 110.78 12.61	a 4	1000 10	00 50 07	4.40		
138 252R 252R N	CA	1898 18	99 58.37	140.60		
-41.10	3.7	1007 10	00 405 70	400 50	20 44	4 77
139 10205 252R 253L C	IN	1907 19	09 -135.79	-108.50	32.41	1.//
-63.50 172.13 21.13 139 253L 253L N	CA	1000 10	10 115 00	120 E0		
139 253L 253L N -41.20	CA	1909 19	10 115.02	132.50		
140 10207 254C 255N C	M	1021 10	23 -100.34	-110 00	22 N8	1.14
-63.20 175.64 24.07	14	1321 13	20 100.04	113.30	22.00	1.14
140 255N 255N N	CA	1923 19	24 147.24	137.00		
-41.10	011	1020 10		101.00		
141 10209 256L 257R C	N	1937 19	39 138.70	-125.20	98.95	3.39
-63.00 -138.67 39.69						
141 257R 257R N	CA	1939 19	40 164.21	140.60		
-41.10						
142 10211 258P 259C C	N	1955 19	57 -66.93	-63.00	4.42	0.79
-117.90 -176.99 7.84						
142 259C 259C N	CA	1957 19	58 -43.13	-41.10		

141.10	10010 0500 0600	a	NT.	1001	1000	67.00	70.00	F 26	0.10
143 -63 30	10212 259C 260D 174.22 21.79	C .	N	1961	1963	-67.92	-70.90	5.36	0.18
143		N	CA	1963	1964	145.85	150.30		
-40.00	2002 2002						200.00		
144	10214 261V 262D	C	N	1976	1978	-96.42	-70.90	46.96	1.60
-63.30	134.42 18.72								
144	262D 262D	N	CA	1978	1979	-170.28	150.30		
-40.00									
145	10216 263I 264H	C	N	1992	1994	59.75	56.30	5.95	0.48
-63.20	145.73 25.01								
145	264H 264H	N	CA	1994	1995	35.95	40.80		
-42.30									
146	10217 264H 265T	C	N	2002	2004	-107.87	-124.80	16.96	0.92
	178.99 25.93								
146	265T 265T	N	CA	2004	2005	144.58	143.50		
-42.10	10010 OCET OCCI	a	3. T	0000	0044	405 74	400 50	47 44	0.05
147		C .	N	2009	2011	-105.71	-108.50	17.11	0.95
	174.59 26.83	NT .	C A	0011	2012	140 20	120 50		
147 -41.20	266L 266L	IV	CA	2011	2012	149.38	132.50		
148	10222 269A 270G	C .	N	2030	20/11	137 80	78.70	67 56	3 70
	151.26 8.02		14	2039	2041	137.09	10.10	07.50	3.19
148		N	CA	2041	2042	-133.53	-166 10		
174.10	2100 2100		011	2011	2012	100.00	100.10		
149	10229 276V 277Y	C	N	2087	2089	168.78	-124.30	66.99	5.13
-63.50	-142.73 29.97								
149	277Y 277Y	N	CA	2089	2090	132.36	135.40		
-43.40									
150	10230 277Y 278Q	C	N	2099	2101	-72.74	-73.00	9.47	0.61
-63.80	171.77 24.80								
150	278Q 278Q	N	CA	2101	2102	131.24	140.70		
-40.30									
151	10232 279P 280E	C	N	2115	2117	-99.49	-117.80	25.55	1.36
	168.94 24.55								
	280E 280E	N	CA	2117	2118	154.62	136.80		
-40.30		-							
	10233 280E 281A		N	2124	2126	-62.10	-68.20	10.32	0.65
-62.50 152	177.88 29.17 281A 281A		C A	2126	0107	126 00	1/E 20		
-40.90		IV	CA	2120	2121	130.98	145.30		
	10234 281A 282S	C	N	2120	0121	_126 91	-136.60	22 76	0.06
	176.10 10.87		14	2123	2131	-120.01	-130.00	23.70	0.90
	282S 282S		CA	2131	2132	129.55	151 20		
-35.00	2020 2020	14	011	2101	2102	120.00	101.20		
	10236 283M 284N	C	N	2143	2145	-76.27	-71.20	9.93	0.77
	175.85 21.29					, = , = ,	. = - = •		
154			CA	2145	2146	134.26	142.80		

-41.10	222 00 <i>0</i> T 007I	<i>a</i> ,	Λ Τ	04.60	0474	100 50	100 50	7	0 11
	239 286T 287L 75.66 28.36		N	2169	21/1	-108.56	-108.50	7.55	0.41
			~ A	0171	0170	140 05	120 FA		
155 -41.20	287L 287L	N C	JA	21/1	21/2	140.05	132.50		
	040 0071 000A	C 1	۸T	0177	0170	101 06	124 00	1/ E2	0 22
	240 287L 288A 71.93 33.94		.V	2111	2179	-121.06	-134.00	14.53	0.33
	71.93 33.94 288A 288A		٦,	2170	2100	140.38	1/7 00		
-40.90	200H 200H	IN C	JA	2119	2100	140.30	147.00		
	244 291I 292S	C N	ΛŢ	2200	2202	-76 00	-72.40	Q 12	0.37
	36.33 12.86		.V	2200	2202	-70.90	-12.40	0.13	0.37
	292S 292S		٦,	2202	2203	150 16	152 /0		
-35.00	2320 2320	10 (JA	2202	2200	109.10	102.40		
	245 292S 293T	C N	VI	2206	2208	-130 19	-124.80	27 91	1 04
	31.56 25.10		.v	2200	2200	100.13	124.00	21.31	1.04
	293T 293T		. Δ	2208	2209	170.88	143 50		
-42.10	2001 2001		J11	2200	2200	110.00	110.00		
	246 293T 294R	C N	N	2213	2215	-109.76	-125.20	18.58	0.55
	77.63 21.26							20100	0.00
	294R 294R		CA	2215	2216	130.27	140.60		
-41.10									
	247 294R 295S	C I	N	2224	2226	-145.36	-136.60	14.47	0.82
-64.10 -16	67.34 12.12								
160	295S 295S	N (CA	2226	2227	139.68	151.20		
-35.00									
161 102	248 295S 296Y	C I	N	2230	2232	-121.01	-124.30	13.24	0.57
-63.50 17	75.66 25.24								
161	296Y 296Y	N C	CA	2232	2233	122.57	135.40		
-43.40									
162 102	249 296Y 297Q	C I	N	2242	2244	-146.68	-121.10	32.18	1.00
-63.80 -17	79.38 30.86								
162	297Q 297Q	N C	CA	2244	2245	159.22	139.70		
-40.30									
163 102	251 298P 299K	C 1	V	2258	2260	73.10	56.60	128.53	10.46
-62.90 -19	55.19 24.44								
163	299K 299K	N (CA	2260	2261	166.07	38.60		
-40.80									
	252 299K 300Y		N	2267	2269	-105.47	-98.40	13.58	1.23
	35.62 24.28								
164	300Y 300Y	N C	CA	2269	2270	116.81	128.40		
-43.40			_						
	254 301C 302G	C I	N	2285	2287	-155.42	-167.20	17.05	0.39
	3.48 14.68		~ .	0000		4.00 .00	454 00		
165	302G 302G	N (CA	2287	2288	162.28	1/4.60		
8.50	257 2044 2053	α ,	\T	0000	0004	70 00	70 00	44 70	0.04
	257 304C 305M		N	2302	2304	-73.63	-73.00	41.78	2.81
	35.11 20.98		~ A	0204	020E	175 00	1/12 00		
166	305M 305M	IA (JA	2304	2305	-175.22	143.00		

-40.50									
	10258 305M 306I		N	2310	2312	-76.42	-96.50	61.47	2.59
	97.00 11.24		a.	0010	0010	FC 11	114 00		
167 -40.00) N	CA	2312	2313	56.11	114.20		
-40.00 168		NT C	ΝT	2210	2220	_117 00	-119.90	1 00	0.26
	-174.25 26.34		IN	2310	2320	-117.00	-119.90	4.02	0.20
	307N 307I		CA	2320	2321	141.38	137 00		
-41.10			On	2020	2021	111.00	107.00		
169		P C	N	2357	2359	-59.09	-58.70	2.24	0.22
	179.99 13.19								
169			CA	2359	2360	-32.71	-30.50		
147.20									
170	10266 313Y 314F	K C	N	2376	2378	-74.82	-70.20	8.35	0.51
-62.90	172.26 23.04	4							
170	314K 314F	K N	CA	2378	2379	147.35	140.40		
-40.80									
171	10268 315S 316F	K C	N	2391	2393	-80.99	-70.20	11.68	0.94
-62.90	177.66 22.14	4							
171	316K 316F	K N	CA	2393	2394	135.93	140.40		
-40.80									
	10269 316K 317		N	2400	2402	-125.08	-124.80	31.59	1.36
	165.98 18.00								
172		I' N	CA	2402	2403	111.91	143.50		
-42.10		T 0	3.7	0407	0400	60.04	60.40	E 44	4 00
	10270 317T 318		N	2407	2409	-68.01	-63.40	5.41	1.02
173	0 -175.61 8.6 318I 318		CA	2400	2/10	-46.43	_12 60		
130.30		T IN	OA	2403	2410	-40.45	-45.00		
	10271 318I 319I	n C	N	2415	2417	160 90	-96.50	119 88	4 98
	-162.21 32.73		14	2110	2111	100.50	50.00	110.00	1.00
	319D 319I		CA	2417	2418	176.20	114.20		
-40.00						_,,,,			
	10272 319D 320V	V C	N	2423	2425	-61.42	-62.40	8.47	1.02
	170.41 14.73								
175	320V 320V	V N	CA	2425	2426	-50.81	-42.40		
139.20									
176	10278 325P 326I	D C	N	2469	2471	-169.04	-70.90	130.12	5.64
-63.30	135.21 22.86	6							
176	326D 326I	D N	CA	2471	2472	-124.27	150.30		
-40.00									
177	10280 327G 328I	L C	N	2481	2483	-61.72	-70.70	20.39	1.28
-63.50	164.51 22.94	4							
	328L 328I	L N	CA	2483	2484	123.30	141.60		
-41.20									
	10282 329G 330I		N	2493	2495	-139.95	-124.20	18.92	0.49
	179.19 29.84		~.	040-	0455	456 5-	446.55		
178	330F 330I	F N	CA	2495	2496	153.78	143.30		

-44.30		a	0504	0500		400.00	05.04	
	10283 330F 331S	C N	2504	2506	-111.05	-136.60	25.64	0.96
	-177.83 16.43	N GA	0506	0507	140.00	151 00		
	331S 331S	N CA	. 2506	2507	148.98	151.20		
-35.00	10004 2210 2200	G N	0510	0540	70.00	70.40	4 44	0 00
180	10284 331S 332R	C N	2510	2512	-73.20	-72.10	1.11	0.09
	177.42 24.66	N CA	0510	0512	1/1 77	1.11 00		
180 -41.10	332R 332R	N CA	. 2512	2513	141.77	141.90		
	10005 2200 2220	C N	0501	OE O 2	104 62	101 10	17 06	0.70
	10285 332R 333Q 173.41 28.72	C N	2521	2525	-124.03	-121.10	17.96	0.79
181		N CA	2522	2524	157 21	120 70		
-40.30	•	N CA	. 2525	2524	157.51	139.70		
	10287 334V 335L	C M	2527	2520	_100 12	_100 E0	2.25	Λ 11
	-178.31 23.04	C N	2551	2009	-109.13	-100.50	2.20	0.11
	335L 335L	N CA	2530	25/10	134.67	132 50		
-41.20	330L 330L	IV CA	. 2009	2540	134.07	132.50		
	10288 335L 336W	C N	25/15	25/17	-1/12 02	-12/ 90	22.05	0.70
	177.11 27.46	0 11	2040	2011	142.02	124.50	22.00	0.70
183		N CA	2547	2548	157.29	143 40		
-44.20	330W 330W	IV OA	. 2041	2040	101.23	140.40		
	10290 337I 338N	C N	2567	2569	-121 33	-119 90	7.56	0.37
	-179.70 19.94	0 1	2001	2000	121.00	110.00	7.00	0.01
	338N 338N	N CA	2569	2570	129.57	137 00		
-41.10	00011 00011	. 0		2010	120.01	101.00		
	10291 338N 339A	C N	2575	2577	-145.27	-134.00	11.63	0.29
	-171.61 35.31	0	2010	2011	110.2	101.00	11.00	0.20
185	339A 339A	N CA	2577	2578	149.87	147.00		
-40.90								
	10293 340C 341F	C N	2586	2588	-137.35	-124.20	13.41	0.60
	-169.93 31.23							
186	341F 341F	N CA	2588	2589	140.69	143.30		
-44.30								
187	10295 342C 343N	C N	2603	2605	-138.03	-119.90	19.48	0.63
-63.20	-169.85 28.01							
187	343N 343N	N CA	2605	2606	144.10	137.00		
-41.10								
188	10296 343N 344L	C N	2611	2613	-125.03	-108.50	18.58	0.99
-63.50	176.31 21.85							
188	344L 344L	N CA	2613	2614	124.03	132.50		
-41.20								
189	10297 344L 345S	C N	2619	2621	-132.88	-136.60	10.32	0.43
-64.10	-170.50 11.71							
189	345S 345S	N CA	2621	2622	141.58	151.20		
-35.00								
190	10299 346C 347R	C N	2631	2633	-138.62	-125.20	16.11	0.48
-63.00	-174.50 30.23							
190	347R 347R	N CA	2633	2634	149.51	140.60		

-41.10	10000 0470 0400	G 17	0040	0011	444 07	440.00	44.00	0 47
	10300 347R 348N	C N	2642	2644	-111.97	-119.90	14.69	0.47
-63.20 191	172.76 19.33	N CA	2644	264E	104 64	127 00		
-41.10		N CA	2644	2045	124.04	137.00		
192		C N	2657	2650	-116 73	-110 00	21.37	0 8 N
	165.84 18.34	O IV	2001	2003	110.75	119.90	21.01	0.03
192		N CΔ	2659	2660	115 87	137 00		
-41.10		N OA	2000	2000	110.07	107.00		
193		C N	2665	2667	-134 81	-96 50	38.37	1 56
	168.21 17.88	0 11	2000	2001	101.01	00.00	00.01	1.00
193		N CA	2667	2668	112.25	114.20		
-40.00			2001	2000	112.20	111.20		
	10305 352I 353F	C N	2681	2683	-113.65	-124.20	24.95	0.87
	172.54 20.88							
194		N CA	2683	2684	120.69	143.30		
-44.30								
195	10306 353F 354A	C N	2692	2694	-169.18	-134.00	36.73	0.89
-62.50	-166.39 37.38							
195	354A 354A	N CA	2694	2695	157.54	147.00		
-40.90								
196	10307 354A 355D	C N	2697	2699	-124.81	-96.50	43.61	1.79
-63.30	135.76 14.41							
196	355D 355D	N CA	2699	2700	81.03	114.20		
-40.00								
	10308 355D 356L	C N	2705	2707	-111.58	-108.50	5.86	0.33
-63.50	175.43 22.11							
197	356L 356L	N CA	2707	2708	127.51	132.50		
-41.20								
198		C N	2713	2715	-109.27	-117.80	11.51	0.36
	175.42 21.22							
198		N CA	2715	2716	129.07	136.80		
-40.30		a	0700	0704	-	50 40	5 40	0 10
	10310 357E 358S		2722	2724	-75.74	-72.40	5.48	0.43
	177.33 13.57		0704	0705	440.05	450 40		
199		N CA	2724	2725	148.05	152.40		
-35.00		C M	0700	2720	100 00	104 20	11 10	0.45
	10311 358S 359Y 177.76 25.60	C IV	2120	2130	-120.00	-124.30	11.12	0.45
200		N CA	2730	2721	125 1/	135 //		
-43.40		N OA	2100	2101	120.14	100.40		
	10313 360P 361D	C N	2747	2749	-104 13	-96 50	22.81	0 95
	138.84 15.15		2, 1,	2. 10	101.10	00.00	22.01	0.00
	361D 361D		2749	2750	92.71	114.20		
-40.00		-1-			· -			
	10314 361D 362F	C N	2755	2757	-126.98	-124.20	3.14	0.08
	-177.55 29.54							
202	362F 362F	N CA	2757	2758	144.76	143.30		

-44.30203 10315 362F 363S C 2766 2768 -142.15 -136.60 7.28 0.23 N -64.10 -173.76 19.07 203 363S 363S N CA 2768 2769 155.90 151.20 -35.00 204 10316 363S 364E C 2772 2774 -80.97 -69.30 16.65 0.93 -63.60 166.23 23.13 204 364E 364E N CA 2774 2775 154.38 142.50 -40.30 205 10318 365I 366A C 2789 2791 -126.48 -134.00 10.69 0.63 -62.50 176.50 32.35 366A 366A N 205 CA 2791 2792 154.60 147.00 -40.90

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20

3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30

3.40 3.50

FREQUENCY: 0 0 0 0 18 31 140 171 197 220 240 267

290 328

<< end of ENERGY.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

>> Model assessment by DOPE potential

iatmcls_286W> MODEL atom not classified: ASN:OXT ASN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 350489

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 1
 9999

NLOGN_USE : 15

CONTACT_SHELL : 15.000

DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -19009.3887

<< end of ENERGY.

DOPE score : -19009.388672

>> Model assessment by SOAP-Protein-OD score

preppdf_455W> None of the non-bonded terms selected.

pair2___701W> Insufficient system memory to allocate storage for cell-based

(NlogN) nonbond list algorithm; falling back to N*N method.

Warning 2 of 10; further warnings will be suppressed.

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 0

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 0
 99999

NLOGN_USE : 15 CONTACT SHELL : 0.000

DYNAMIC PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: T F F

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 0.0000

<< end of ENERGY.

SOAP-Protein-OD score : 0.000000

>> Model assessment by GA341 potential

Surface library :

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/surf5.de

Pair library :

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier :

% sequence identity 62.856998 Sequence length : Compactness 0.011921 Native energy (pair) : 92.750579 Native energy (surface) : 58.330122 Native energy (combined) : 11.881281 Z score (pair) -4.129315Z score (surface) 0.984446 Z score (combined) -2.122395GA341 score 0.678443

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 4697

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 0
 99999

 NLOGN_USE
 : 15

CONTACT_SHELL : 15

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: T T F

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 2058.1731

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL $\,$... relative difference from the best value.

NUMVP ... number of restraints with $-Ln(pdf) > VIOL_REPORT_CUT2[i]$.

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

 ${\tt MOL.PDF}$ … scaled contribution to ${\tt -Ln(Molecular\ pdf)}$.

#	RESTRAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF S_i						
1 Bond length potenti	al :	2881	0	0	0.003	0.003
7.2587 1.000						
2 Bond angle potentia	:	3935	0	1	1.705	1.705
214.41 1.000						
3 Stereochemical cosi	ne torsion poten:	1962	0	92	51.760	51.760
803.93 1.000						
4 Stereochemical impr	oper torsion pot:	1155	0	0	0.939	0.939
20.541 1.000						
5 Soft-sphere overlap	restraints :	4697	0	0	0.003	0.003
5.1733 1.000	<u>-</u>	_				
6 Lennard-Jones 6-12	potential :	0	0	0	0.000	0.000
0.0000 1.000		0	0	0	0 000	0.000
7 Coulomb point-point 0.0000 1.000	electrostatic p:	0	0	0	0.000	0.000
		0	0	0	0.000	0.000
8 H-bonding potential 0.0000 1.000	:	U	U	U	0.000	0.000
9 Distance restraints	1 (CA_CA)	765	0	8	1.447	1.447
113.62 1.000	o I (OR-OR) .	705	U	0	1,447	1.441
10 Distance restraints	2 (N-O) :	973	0	12	1.596	1.596
151.96 1.000		010	Ū	12	1.000	1.000
11 Mainchain Phi dihed	ral restraints :	0	0	0	0.000	0.000
0.0000 1.000		-	•	-		
12 Mainchain Psi dihed	ral restraints :	0	0	0	0.000	0.000
0.0000 1.000						
13 Mainchain Omega dih	edral restraints:	366	0	0	2.853	2.853
35.120 1.000						
14 Sidechain Chi_1 dih	edral restraints:	315	0	0	84.607	84.607
92.544 1.000						
15 Sidechain Chi_2 dih	edral restraints:	209	0	1	74.590	74.590
83.937 1.000						
16 Sidechain Chi_3 dih	edral restraints:	98	0	0	81.062	81.062
51.484 1.000						
17 Sidechain Chi_4 dih	edral restraints:	34	0	0	105.174	105.174
22.703 1.000						
18 Disulfide distance	restraints :	5	0	0	0.004	0.004
0.13046E-01 1.000						
19 Disulfide angle res	traints :	10	0	0	2.119	2.119
0.99125 1.000	_	_	-	-	04 : 55	04 : 55
20 Disulfide dihedral	angle restraints:	5	0	0	24.182	24.182

2.9986 1.000						
21 Lower bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000 22 Upper bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000	•	O	O	O	0.000	0.000
23 Distance restraints 3 (SDCH-MNCH)	:	643	0	2	0.632	0.632
28.250 1.000 24 Sidechain Chi_5 dihedral restrain	ts:	0	0	0	0.000	0.000
0.0000 1.000						
25 Phi/Psi pair of dihedral restrain	ts:	365	209	47	36.563	135.382
386.62 1.000						
26 Distance restraints 4 (SDCH-SDCH) 36.618 1.000	:	183	0	0	2.147	2.147
27 Distance restraints 5 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
28 NMR distance restraints 6 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
29 NMR distance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
30 Minimal distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
31 Non-bonded restraints	:	0	0	0	0.000	0.000
0.0000 1.000		0	0	0	0 000	0 000
32 Atomic accessibility restraints 0.0000 1.000	:	0	0	0	0.000	0.000
33 Atomic density restraints		0	0	0	0.000	0.000
0.0000 1.000	•	O	O	O	0.000	0.000
34 Absolute position restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
35 Dihedral angle difference restrain	nt:	0	0	0	0.000	0.000
0.0000 1.000		0	0	0	0 000	0 000
36 GBSA implicit solvent potential 0.0000 1.000	:	0	0	0	0.000	0.000
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

[#] Heavy relative violation of each residue is written to: WISP1.V99990002

 $[\]mbox{\tt\#}$ The profile is NOT normalized by the number of restraints.

[#] The profiles are smoothed over a window of residues: 1

[#] The sum of all numbers in the file: 62327.9180

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR \dots the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 25 $$\rm : Phi/Psi \ pair \ of \ dihedral \ restraints$ List of the RVIOL violations larger than $$\rm : \ 6.5000$

#	ICSR 1	RESNO	1/2	ATM	1/2	INDATM	1/2	FEAT	restr	viol	rviol
RESTR	VIOL	RVI	OL								
1	9954	1M	2R	С	N	7	9	-161.17	-125.20	41.80	1.24
	-174.85										
				N	CA	9	10	161.91	140.60		
-41.10					011	· ·					
	9955	O.B.	314	C	M	12	20	-72 20	-71.30	10 30	0 91
				C	14	10	20	12.23	71.50	12.02	0.31
	164.79										
2		3W	3W	N	CA	20	21	151.28	139.00		
-44.20											
3	9956	ЗW	4F	C	N	32	34	-83.34	-71.40	30.97	2.73
-63.20	157.71	20	.58								
3		4F	4F	N	CA	34	35	112.12	140.70		
-44.30											
4	9957	1 ₽	Бī	C	M	/13	15	_120 00	-108.50	/13 10	2.06
-				C	14	40	40	123.33	100.50	40.12	2.00
	163.08										
4		5L	5L	N	CA	45	46	169.89	132.50		
-41.20											
5	9959	6P	7W	C	N	58	60	-89.94	-71.30	48.33	4.06
-63.00	141.20	16	.26								
5		7W	7W	N	CA	60	61	94.41	139.00		
-44.20											
	9960	71.	ΩТ	C	M	72	7/	-153 61	-124.80	30 55	1.33
				J	14	1 4	17	100.01	124.00	50.55	1.55
-63.20	-172.52	29	.87								

6	8T	8T	N (CA	74	75	153.66	143.50		
-42.10 7	9961 8T	9L	C I	J	79	81	-118.64	-108.50	12.77	0.71
	174.86			7.4	0.1	00	104 74	120 50		
7 -41.20		9L	N (JA	81	82	124.74	132.50		
	9962 9L	10A	C I	1	87	89	-140.81	-134.00	8.06	0.19
-62.50	-174.83	34.54								
8	10A	10A	N (CA	89	90	151.31	147.00		
-40.90				_						
	9963 10A			V	92	94	-115.71	-134.00	20.78	0.48
-62.50 9	-174.18 :			٦,	QΛ	٥F	127 1/	1/7 00		
-40.90		IIA	11 (JΑ	94	95	137.14	147.00		
	9965 12V	1.3T	C 1	J	104	106	-60 86	-78 10	34.21	1 12
	162.37			•	101	100	00.00	10.10	01.21	1.12
	13T			CA	106	107	120.25	149.80		
-42.10										
11	9966 13T	14A	C 1	1	111	113	-170.99	-134.00	49.29	1.38
-62.50	176.74	34.64								
11	14A	14A	N (CA	113	114	179.58	147.00		
-40.90										
12	9967 14A	15A	C 1	1	116	118	-65.29	-68.20	5.02	0.49
-62.50	169.73	27.95								
	15A	15A	N (CA	118	119	149.39	145.30		
-40.90										
	9968 15A			1	121	123	-64.14	-68.20	7.01	0.68
	168.09			~ .	400	404	454 00	4.45 0.0		
	16A	16A	N (JA	123	124	151.02	145.30		
-40.90		171	C 1	.T	106	100	EO 20	69 00	00 44	1 51
	9969 16A 165.67		C I	V	120	120	-59.20	-00.20	22.44	1.51
	103.07 17A		N (٦Δ	128	120	194 74	145 30		
-40.90	171	III	11)II	120	120	121.11	110.00		
	9970 17A	18S	C 1	J	131	133	165.98	-136.60	66.12	2.02
	-168.26									
15	185	18S	N (CA	133	134	-176.02	151.20		
-35.00										
16	9971 18S	19T	C 1	V	137	139	-81.39	-78.10	56.54	2.53
-63.20	136.67	16.39								
16	19T	19T	N (CA	139	140	93.35	149.80		
-42.10										
	9973 20V			1	151	153	-63.64	-70.70	21.60	1.40
	162.39			~ .		4				
	21L	21L	N (JA.	153	154	121.19	141.60		
-41.20	0074 041	004	<i>C</i> 3	.T	150	161	160 70	124 00	27 00	0 00
	9974 21L		C I	V	199	101	-109.79	-134.00	37.29	0.90
-02.50	-165.98	J1.40								

18	224	22A	N	CA	161	162	157.44	147.00		
-40.90	0076 027	. 044	a	NT.	171	170	125 07	124 00	0.40	0 42
	9976 23T 179.50			N	1/1	1/3	-135.87	-134.00	8.49	0.43
-62.50 19				CA	173	17/	155.28	1/17 00		
-40.90	241	1 ZTA	14	OA	175	114	100.20	147.00		
	9977 24 <i>A</i>	251.	С	N	176	178	-118.57	-108.50	11.79	0.52
	-171.92		Ŭ		1.0	1.0	110.01	100.00	11.10	0.02
20	25I		N	CA	178	179	138.64	132.50		
-41.20										
21	9978 251	_ 26S	С	N	184	186	-122.03	-136.60	16.18	0.50
	-171.72									
21	268	26S	N	CA	186	187	144.15	151.20		
-35.00										
22	9982 29F	30T	C	N	209	211	-125.95	-124.80	4.35	0.22
-63.20	-170.70	28.43								
22	T08	TOE	N	CA	211	212	139.30	143.50		
-42.10										
23	9983 301	31T	C	N	216	218	-123.95	-124.80	17.13	0.76
-63.20	168.62	25.63								
23	317	31T	N	CA	218	219	160.60	143.50		
-42.10										
	9985 32M			N	231	233	-57.13	-70.90	16.20	1.36
	161.28									
24	331) 33D	N	CA	233	234	158.84	150.30		
-40.00										
	9986 331		С	N	239	241	-70.76	-71.40	50.11	4.02
	135.11									
	34F	· 34F	N	CA	241	242	90.60	140.70		
-44.30			a		057	050	07.11	F0 70	00.04	4 40
	9988 351			N	257	259	-67.11	-58.70	23.61	1.42
	155.66			G A	050	000	0.44	20 50		
	36F	2 36P	IV	CA	259	260	-8.44	-30.50		
147.20	9993 40E	. 410	C	NT.	202	205	170 07	06 50	00.26	2 72
	-152.42			IN	293	295	179.87	-96.50	90.36	3.73
-63.30 27	-152.42 41D			CA	205	206	148.42	11/1 20		
-40.00	411) 4 1D	14	CH	290	290	140.42	114.20		
28	9994 410) 49Т	C	N	301	303	-137 33	-124 80	18.34	0.58
	177.26		O	14	501	505	107.00	124.00	10.04	0.00
28	427		N	CA	303	304	156.89	143.50		
-42.10						001	200,00			
29	9995 421	438	С	N	308	310	-85.07	-72.40	17.75	0.84
	161.53					•			=	- ,
29				CA	310	311	164.83	152.40		
-35.00										
30	9996 438	3 44S	C	N	314	316	-149.75	-136.60	23.69	0.86
-64.10	176.29	18.94								

20	110	110	λī	C A	216	217	170 01	151 00		
30	448	445	IN	CA	310	317	170.91	151.20		
-35.00	0007 449	/ /ED	C	M	200	200	00 00	105 00	26.80	0 07
31	9997 448		C	N	320	322	-99.90	-125.20	20.00	0.07
	176.76		NT.	CA.	200	202	101 77	140 60		
31		45R	IV	CA	322	323	131.77	140.60		
-41.10		470	a	NT	200	040	450.50	404 40	24 00	4 00
32	9999 46P	-	C	N	338	340	-152.50	-121.10	34.88	1.08
	-172.84			~.	0.4.0	044	454.00	400 70		
	47Q	47Q	N	CA	340	341	154.89	139.70		
-40.30										
	10000 470		С	N	347	349	-100.73	-124.20	38.35	1.12
	161.70									
	48F	' 48F	N	CA	349	350	112.98	143.30		
-44.30										
	10002 490		С	N	364	366	-147.52	-118.00	29.66	1.17
-62.90	-163.79									
34	50K	50K	N	CA	366	367	136.23	139.10		
-40.80										
35	10003 50K	51W	C	N	373	375	-152.14	-124.90	33.25	1.06
-63.00	177.35	28.17								
35	51W	51W	N	CA	375	376	162.48	143.40		
-44.20										
36	10004 51W	52P	C	N	387	389	-66.63	-58.70	9.28	0.83
-64.50	172.90	13.01								
36	52P	52P	N	CA	389	390	-25.69	-30.50		
147.20										
37	10006 530	54E	С	N	400	402	-110.65	-117.80	8.70	0.44
-63.60	-175.95	27.20								
37	54E	54E	N	CA	402	403	141.76	136.80		
-40.30										
38	10010 57P	585	С	N	429	431	-144.40	-136.60	13.22	0.47
	-178.19									
38	588	58S	N	CA	431	432	161.88	151.20		
-35.00										
	10013 60P	61R	С	N	449	451	-152.33	-125.20	37.73	1.14
	176.38									
	61R			CA	451	452	166.82	140.60		
-41.10	0 = 1	. 0 = 10		011			200102			
	10016 63P	641.	С	N	473	475	-70.76	-70.70	3.12	0.24
	179.83		Ū		110	110	10110	10110	0.12	0.21
	64L		N	CA	475	476	138 48	141 60		
-41.20		011		011	110	110	100.10	111.00		
	10017 64L	650	C	N	<u> 4</u> 21	483	60 34	78 70	37.16	0 56
	143.97		J	14	TOI	±00	00.04	10.10	01.10	0.50
41	65G		M	СА	483	12 1	-133 70	-166 10		
8.50	000	000	IA	OA	1 00	1 04	100.19	100.10		
	10019 66V	679	C	M	/Q2	101	-60 96	-72 40	1/1 02	0 07
	157.99		J	ΤΛ	732	ュッサ	09.00	12.40	14.30	0.31
-04.10	101.99	11.00								

42	6	57S	67S	N	CA	494	495	167.11	152.40		
-35.00	10020 6	370	691	C	M	108	500	-64 47	-70 70	11.43	0 71
	173.22			C	IN	490	300	-04.47	-10.10	11.43	0.71
43	170.22			N	CA	500	501	132.02	141.60		
-41.20											
44	10022 6	39I	70T	С	N	514	516	-85.99	-78.10	8.50	0.56
-63.20	172.76	2	3.67								
44	7	OT	70T	N	CA	516	517	146.65	149.80		
-42.10											
	10023 7			С	N	521	523	-89.21	-70.90	45.11	1.53
	131.07										
45	7	71D	71D	N	CA	523	524	-168.48	150.30		
-40.00		7.4 D	700	a	3.7	F00	E04	400.00	70 70	40.70	0.70
	10024 7			C	N	529	531	102.63	78.70	48.70	0.73
46	144.43 7			M	CA	E21	E30	151.48	_166 10		
8.50	,	2 G	1 Z G	14	CA	551	JJ2	131.40	-100.10		
47	10026 7	73C	74F.	С	N	539	541	-103 36	-117 80	14.52	0 49
	179.97			Ü	14	000	011	100.00	117.00	11.02	0.10
47	7			N	CA	541	542	135.22	136.80		
-40.30											
48	10029 7	76C	77K	С	N	560	562	-111.67	-118.00	6.41	0.23
-62.90	-174.58	2	1.91								
48	7	77K	77K	N	CA	562	563	138.09	139.10		
-40.80											
	10030 7			С	N	569	571	-134.47	-125.60	21.67	0.82
	174.37										
	7	′8M	78M	N	CA	571	572	160.27	140.50		
-40.50		700	004	α.	N	F02	- 0-	147 01	104 00	05 70	1 00
	10032 7 172.03			C	IV	583	585	-147.01	-134.00	25.79	1.03
	172.03			M	CA	585	586	160 26	1/7 00		
-40.90		OA	OUA	1/	OA	505	300	103.20	147.00		
	10033 8	ROA	810	С	N	588	590	-71.40	-73.00	17.85	1.20
	161.39		-	Ŭ		000		, 1, 10	10.00	11.00	1.20
	8			N	CA	590	591	158.48	140.70		
-40.30		-									
52	10034 8	31Q	82Q	C	N	597	599	-96.33	-73.00	34.15	1.97
-63.80	157.46	2	4.89								
52	8	32Q	82Q	N	CA	599	600	165.64	140.70		
-40.30											
	10035 8	-		С	N	606	608	-88.17	-70.70	59.90	3.94
	122.42				~.	005	000				
	8	3L	83L	N	CA	608	609	-161.11	141.60		
-41.20		70	оот	C	M	640	640	_06 F1	_70 10	26 10	1 01
	10040 8 134.71			C	IN	040	042	-80.51	-18.10	36.40	1.31
-03.20	134./1	1	0.03								

54	88T	88T	N	CA	642	643	-174.78	149.80		
-42.10										
	10041 88T		С	N	647	649	47.11	-69.30	120.75	7.99
	-172.99									
55	89E	89E	N	CA	649	650	110.41	142.50		
-40.30		004	a	N	CEC	CEO	170 01	124 00	69.40	4 45
	10042 89E		C	N	000	658	170.04	-134.00	63.19	1.45
-62.50 56	-168.63 90A		M	CA	658	650	176.35	1/7 00		
-40.90	90A	90A	11/	CA	030	009	170.33	147.00		
	10043 90A	914	C	N	661	663	-109 59	-134 00	28.04	0 65
	-179.64		O	14	001	000	103.03	104.00	20.04	0.00
57	91A		N	CA	663	664	133.20	147.00		
-40.90		0111		011	000	001	100.20	111.00		
	10046 930	94D	С	N	680	682	-140.92	-96.50	51.40	2.13
-63.30	-164.03	29.21								
58	94D	94D	N	CA	682	683	140.06	114.20		
-40.00										
59	10048 95P	96H	C	N	695	697	-63.99	-67.60	8.69	0.56
-63.20	174.39	21.75								
59	96H	96H	N	CA	697	698	132.09	140.00		
-42.30										
60	10049 96H	97R	C	N	705	707	-139.12	-125.20	27.78	0.98
	172.02									
	97R	97R	N	CA	707	708	164.64	140.60		
-41.10			_							
	10050 97R		С	N	716	718	-63.79	-62.40	9.43	1.35
	151.47 1				740	740	04 07	44 00		
61	98G	98G	N	CA	718	719	-31.87	-41.20		
8.50 62	10051 000	001	C	NT	700	700	E2 16	70 70	17 06	1 5/
	10051 98G 178.41		C	N	120	122	-55.46	-70.70	17.26	1.54
	99L		M	CA	722	723	140 67	141 60		
-41.20	991	991	14	OH	122	120	140.07	141.00		
	10052 99L	100Y	C	N	728	730	-126 23	-124 30	12.87	0 60
	179.77			11	120	100	120.20	121.00	12.01	0.00
		100Y	N	CA	730	731	148.13	135.40		
-43.40										
64	10054 1010	102D	С	N	746	748	-81.14	-70.90	31.59	1.12
-63.30	140.95	18.52								
64	102D	102D	N	CA	748	749	-179.82	150.30		
-40.00										
65	10055 102D	103Y	C	N	754	756	-61.50	-98.40	37.07	1.51
-63.50	168.34	26.81								
65	103Y	103Y	N	CA	756	757	124.92	128.40		
-43.40										
	10056 103Y		C	N	766	768	-150.61	-136.60	14.62	0.48
-64.10	-169.61	20.00								

66 104S	104S	N (CA	768	769	155.39	151.20		
-35.00	107D	C 1	NT.	701	706	02 46	70 10	14 02	1 02
67 10059 106D -63.00 175.63		C 1	LV	104	100	-03.40	-72.10	14.23	1.23
67 107R		N (CA	786	787	133.33	141.90		
-41.10									
68 10061 108P	109R	C I	N	802	804	-72.94	-72.10	3.79	0.31
-63.00 179.57	23.60								
68 109R	109R	N (CA	804	805	138.20	141.90		
-41.10									
69 10062 109R		C 1	N	813	815	-132.79	-124.30	22.39	0.90
-63.50 174.80									
69 110Y	110Y	N (CA	815	816	156.12	135.40		
-43.40		a 1	N.T.	005	007	00.00	60.00	0.40	0.45
70 10063 110Y -62.50 175.76			N	825	827	-66.69	-68.20	2.43	0.15
70 111A			~ A	927	റോറ	1/12 20	1/15 20		
-40.90	IIIA	11 (OH	021	020	140.09	140.00		
71 10065 112I	113G	C 1	N	838	840	-96 15	-80 20	36.37	0.85
82.20 -119.26 1			.,	000	010	00.10	00.20	00.01	0.00
71 1130		N (CA	840	841	-153.21	174.10		
8.50									
72 10068 1150	116A	C I	N	855	857	-68.88	-68.20	2.89	0.26
-62.50 176.73	29.28								
72 116A	116A	N (CA	857	858	142.49	145.30		
-40.90									
73 10072 119V		C 1	N	883	885	-110.33	-80.20	38.51	2.79
82.20 -140.69 1									
73 1200	120G	N (CA	885	886	150.11	174.10		
8.50		~ .		004	000	400.04	00.00	50.00	
74 10074 121V		C I	N	894	896	-103.31	-80.20	56.80	3.36
82.20 -151.73 1		NT /	C A	906	907	100 00	17/ 10		
74 1220 8.50	1 122G	IN (CA	090	091	122.22	174.10		
75 10111 158L	150R	C 1	NT .	1163	1165	-150 74	-125 20	28 86	0.87
-63.00 -173.23		0 1	LV	1100	1100	100.74	120.20	20.00	0.07
75 159R		N (CA	1165	1166	154.03	140.60		
-41.10									
76 10113 160V	161R	C 1	N :	1181	1183	178.36	-125.20	79.86	2.44
-63.00 170.03	30.38								
76 161R	161R	N (CA	1183	1184	-162.89	140.60		
-41.10									
77 10116 163P		C 1	N :	1206	1208	-162.11	-125.20	78.46	2.84
-63.00 147.37									
	164R	N (CA	1208	1209	-150.16	140.60		
-41.10	10017	α ,	AT .	1005	1007	107.00	104 00	00 07	1 00
78 10118 165L		C I	IN .	1225	1227	-107.80	-124.90	29.27	1.68
-63.00 155.25	ZZ.38								

=-	4.0.01			~.	4000		405 40			
	166V	V 166W	N	CA	1227	1228	167.16	143.40		
-44.20										
	10121 168F			N	1252	1254	-53.02	-67.60	16.25	1.41
	170.82									
	169F	H 169H	N	CA	1254	1255	147.18	140.00		
-42.30										
	10122 169F		С	N	1262	1264	-60.00	-58.70	6.82	0.47
	171.06									
80	170F	P 170P	N	CA	1264	1265	-23.80	-30.50		
147.20										
81	10123 170F	171R	С	N	1269	1271	-102.65	-125.20	95.62	4.07
-63.00	97.23	11.13								
81	171F	R 171R	N	CA	1271	1272	47.67	140.60		
-41.10										
82	10124 171F	R 172R	С	N	1280	1282	-105.01	-125.20	95.82	4.15
-72.10	100.51	8.38								
82	172F	R 172R	N	CA	1282	1283	46.93	140.60		
141.90										
83	10130 1770	3 178H	С	N	1323	1325	-58.76	-67.60	13.05	0.78
	172.76									
	178F		N	CA	1325	1326	130.40	140.00		
-42.30										
	10133 1800	C 181E	С	N	1345	1347	-128.65	-117.80	21.15	0.80
	177.12				-00		120.00			
	181			CA	1347	1348	154 95	136 80		
-40.30		1011		011	1011	1010	101.00	100.00		
	10134 181E	7 1820	C	M	1354	1356	-95 10	-73 00	36 19	2 77
	155.52	-		14	1001	1000	30.10	75.00	30.13	2.11
	1820			C۸	1356	1357	112 0/	1/10 70		
-40.30		ų 102ų	14	OA	1550	1001	112.04	140.70		
	10135 1820	1,1001.1	C	M	1262	1265	_151 10	_124_00	20 66	1 20
	167.75	•	C	IN	1303	1303	-131.16	-124.90	39.00	1.29
			ΝT	CA	1265	1266	172 10	1/2 /0		
	1831	V 103W	IN	CA	1305	1300	173.10	143.40		
-44.20	40406 400	. 4041	a	3.7	4077	4070	64 06	60.40	0.44	0.05
	10136 183			N	13//	1379	-61.26	-62.40	3.14	0.35
	0 -177.02			~ 1	4070	4000	45.00	40.40		
	184\	/ 184V	N	CA	1379	1380	-45.32	-42.40		
143.30	10100 1051		~			4000	04.00		45 40	4 00
	10138 1850		C	N	1390	1392	-84.36	-69.30	17.49	1.02
	169.60									
		± 186E	N	CA	1392	1393	151.38	142.50		
-40.30										
	10139 186E		C	N	1399	1401	-72.52	-70.90	17.54	0.95
-63.30	173.08									
		187D	N	CA	1401	1402	132.84	150.30		
-40.00										
	10141 1881		C	N	1415	1417	-57.66	-68.20	20.09	1.29
-62.50	169.17	27.96								

90	189A 189A	A N	CA	1417	1418	128.20	145.30		
-40.90	10143 190K 191F	o C	M	1/120	1/121	_102 22	_105_00	20 50	1 02
	169.03 26.99		IN	1429	1431	-123.33	-125.20	20.50	1.03
	191R 191F		CA	1431	1432	161.01	140.60		
-41.10									
92	10144 191R 192F	C	N	1440	1442	-53.39	-64.50	19.06	1.12
-58.70	162.30 13.84	ŀ							
92	192P 192F	N	CA	1442	1443	131.71	147.20		
-30.50									
	10145 192P 193F		N	1447	1449	-137.51	-125.20	15.92	0.47
	-176.04 29.95								
93	193R 193F	R N	CA	1449	1450	150.70	140.60		
-41.10		, a	NT.	1.450	1.1.00	140.00	110 00	110 00	4 05
	10146 193R 194F 112.67 19.42		N	1458	1460	-149.39	-118.00	112.36	4.95
	194K 194F		СА	1460	1461	-113 ∩1	130 10		
-40.80		7 IA	On	1400	1401	110.01	100.10		
	10147 194K 1957	ГС	N	1467	1469	-80.73	-78.10	43.04	1.75
	126.36 17.37							10 1 0 1	
95	195T 1957	ΓN	CA	1469	1470	-167.24	149.80		
-42.10									
96	10148 195T 196 <i>I</i>	A C	N	1474	1476	-60.09	-68.20	17.91	1.18
-62.50	170.25 28.02	2							
96	196A 196 <i>B</i>	A N	CA	1476	1477	129.34	145.30		
-40.90									
	10150 197P 198F		N	1486	1488	-120.77	-125.20	18.96	0.81
	173.18 20.22		7.	4.400	4.400	100 10	110 00		
97 -41.10	198R 198F	l N	CA	1488	1489	122.16	140.60		
	10152 199D 2007	r C	M	1505	1507	_151 00	_12/ 80	33 NE	1 16
	177.95 28.47		11/	1303	1307	-151.20	124.00	33.05	1.10
	200T 200T		CA	1507	1508	163.28	143.50		
-42.10									
	10153 200T 2010	G C	N	1512	1514	-135.42	-167.20	48.25	1.16
82.20	-167.35 14.89								
99	201G 2010	N	CA	1514	1515	138.28	174.60		
8.50									
	10154 201G 202 <i>I</i>		N	1516	1518	-119.58	-134.00	18.63	0.50
	-174.89 28.15								
100	202A 202A	A N	CA	1518	1519	135.20	147.00		
-40.90			3.7	4504	4500	440.00	101 00	40.00	0.70
	10155 202A 203F		N	1521	1523	-143.93	-124.20	19.80	0.72
	-171.18 31.44 203F 203F		СА	1522	1524	145 01	143 30		
-44.30		14	On	1020	1024	140.01	1-10.00		
	10156 203F 204I	C	N	1532	1534	-112.14	-96.50	15.69	0.64
	162.85 17.74					-			-

102	204D	204D	N	CA	1534	1535	115.36	114.20		
-40.00	10157 204D	2054	C	M	1540	1549	-128 95	-134.00	12 08	0.53
	-171.01		O	14	1040	1042	120.50	104.00	12.00	0.00
103	205A		N	CA	1542	1543	136.03	147.00		
-40.90										
104	10162 209V	210E	C	N	1572	1574	-107.71	-117.80	13.21	0.41
-63.60	174.26	21.13								
104	210E	210E	N	CA	1574	1575	128.28	136.80		
-40.30										
	10163 210E		С	N	1581	1583	-68.09	-68.20	5.01	0.41
	168.88			a 4	4500	4504	450.00	445.00		
	211A	211A	N	CA	1583	1584	150.32	145.30		
-40.90	10164 211A	2127	C	N	1596	1500	-63 37	-71.30	26 12	1 76
	158.31		C	1/	1300	1300	-03.37	-71.30	20.12	1.70
	212W		N	CA	1588	1589	114.11	139.00		
-44.20				011	1000	1000		100.00		
	10165 212W	213H	С	N	1600	1602	-146.61	-125.60	22.78	0.96
	-168.58									
107	213H	213H	N	CA	1602	1603	129.99	138.80		
-42.30										
108	10166 213H	214R	C	N	1610	1612	-159.02	-125.20	56.69	1.86
-63.00	163.88	28.44								
	214R	214R	N	CA	1612	1613	-173.90	140.60		
-41.10			_							
	10167 214R		С	N	1621	1623	-60.83	-71.20	10.55	0.81
	174.19		NT	CA	1602	1604	1// 70	1/10 00		
-41.10	215N	215N	IV	CA	1023	1024	144.72	142.80		
	10168 215N	2160	C	N	1629	1631	-62 61	-63.00	2 01	0.22
	0 -175.69			14	1020	1001	02.01	00.00	2.01	0.22
	216C			CA	1631	1632	-43.07	-41.10		
141.10										
111	10170 217I	218A	С	N	1643	1645	160.94	-134.00	66.55	1.73
-62.50	-151.08	41.30								
111	218A	218A	N	CA	1645	1646	160.99	147.00		
-40.90										
	10171 218A		С	N	1648	1650	-118.54	-124.30	23.43	1.02
	165.51			~.	4050		440.00	405 40		
		219Y	N	CA	1650	1651	112.69	135.40		
-43.40		ОООТ	a	NT.	1660	1660	157 10	62.00	107 75	10 FC
	10172 219Y 107.75		C	N	ΤρρΩ	1002	-157.18	-63.20	101.15	18.56
		220T	N	СА	1662	1663	-94.80	-42 10		
-42.10		2201	14	ЭH	1002	1000	J 1.00	12.10		
	10173 220T	221S	С	N	1667	1669	-59.16	-72.40	13.47	0.88
	175.15							_	,	- -

114	221S	221S	N	CA	1669	1670	149.92	152.40		
-35.00	10175 222P	JJ2CC	C	M	1600	1600	EO 10	_71 20	131.69	9 70
	-158.39		C	IN	1000	1002	50.49	-71.30	131.09	0.19
	223W		N	CA	1682	1683	116.69	139.00		
-44.20		22011	••	011	1002	1000	110.00	100.00		
116	10176 223W	224S	С	N	1694	1696	-169.56	-136.60	44.83	1.42
-64.10	178.01	20.51								
116	224S	224S	N	CA	1696	1697	-178.41	151.20		
-35.00										
	10179 226C		C	N	1713	1715	-166.14	-136.60	31.09	1.01
	-166.75									
	227S	227S	N	CA	1715	1716	160.88	151.20		
-35.00		000	a	3.7	4740	4704	407.00	104.00	45 47	0 54
	10180 227S		C	N	1/19	1/21	-137.03	-124.80	15.17	0.54
	-178.85 228T		M	CA	1701	1722	152.47	1/12 50		
-42.10	2201	2201	11/	CA	1121	1122	152.47	143.30		
	10181 228T	2298	C	N	1726	1728	-137.72	-136.60	7.44	0.40
	-166.59		Ü		1,20	1120	101112	100.00	,,,,	0.10
	229S		N	CA	1728	1729	143.85	151.20		
-35.00										
120	10183 230C	231G	C	N	1738	1740	-139.53	-167.20	47.58	1.27
82.20 -	172.00 1	4.51								
120	231G	231G	N	CA	1740	1741	135.89	174.60		
8.50										
	10184 231G		С	N	1742	1744	-133.49	-108.50	53.59	2.58
	155.52									
	232L	232L	N	CA	1744	1745	179.91	132.50		
-41.20	10185 232L	กรรด	C	M	1750	1750	67 11	90 00	01 12	0 56
	10105 232L 149.00		C	IN	1750	1752	-67.44	-00.20	21.13	0.56
	233G		N	CA	1752	1753	157.26	174.10		
8.50	2004	2004	••	011	1102	1.00	101120	1, 1, 10		
	10187 234V	235S	С	N	1761	1763	-130.16	-136.60	12.17	0.69
-64.10	176.31	17.46								
123	235S	235S	N	CA	1763	1764	161.53	151.20		
-35.00										
124	10188 235S	236T	C	N	1767	1769	-103.03	-124.80	55.32	1.81
	140.51									
	236T	236T	N	CA	1769	1770	92.65	143.50		
-42.10	10100 000	0070	a		4 2 2 4	4770	470.00	105.00	47 OF	0.00
	10189 236T		C	N	1//4	1/76	176.99	-125.20	67.35	2.00
	-172.75 237R		M	C۸	1776	1777	175 16	1/10 60		
-41.10	231 R	201K	IA	OH	1110	T111	110.10	140.00		
	10191 238I	2398	С	N	1793	1795	-90,68	-72.40	39.37	1.82
	140.27		-			_, 50	30.00	. 2. 10		02
	•									

126		239S	N	CA	1795	1796	-172.73	152.40		
-35.00 127	10192 239S	240N	С	N	1799	1801	-60.92	-71.20	10.55	0.81
-63.20	173.76	21.60								
127	240N	240N	N	CA	1801	1802	145.16	142.80		
-41.10										
128	10195 242N	243A	C	N	1822	1824	-59.76	-68.20	12.75	0.80
	176.66									
	243A	243A	N	CA	1824	1825	135.74	145.30		
-40.90			_							
	10196 243A	-		N	1827	1829	-157.69	-121.10	44.21	1.37
	-178.62			a.	4000	4000	404 54	400.70		
129	•	244 Q	N	CA	1829	1830	164.51	139.70		
-40.30	10198 245C	2461	C	M	10/10	10//	_65_05	_71 20	6.07	0 50
	173.96		C	11/	1042	1044	-00.90	-71.30	0.07	0.50
	173.90 246W		M	СΔ	1844	1845	141.87	139 00		
-44.20		210W	14	On	1011	1010	111.01	100.00		
	10200 247P	248F	С	N	1863	1865	-125.75	-117.80	8.17	0.35
	-174.07		Ū						372.	0.00
131	248E		N	CA	1865	1866	134.93	136.80		
-40.30										
132	10201 248E	249Q	C	N	1872	1874	-132.31	-121.10	33.86	1.75
-63.80	163.13	21.17								
132	249Q	249Q	N	CA	1874	1875	107.75	139.70		
-40.30										
133	10203 250E	251S	C	N	1890	1892	-124.91	-136.60	31.13	1.75
-64.10	157.19	15.71								
	251S	251S	N	CA	1892	1893	-179.96	151.20		
-35.00										
	10204 251S		C	N	1896	1898	-62.84	-72.10	11.90	1.03
	169.52									
	252R	252R	N	CA	1898	1899	149.38	141.90		
-41.10		0501	a		4007	1000	404 44	100 50	00.40	4 50
	10205 252R			N	1907	1909	-101.44	-108.50	28.10	1.58
	163.56			CA.	1000	1010	150.70	120 FA		
-41.20	253L	253L	IV	CA	1909	1910	159.70	132.50		
	10207 254C	255N	C	M	1001	1023	-80 53	-71 2 0	31.89	2 50
	159.98		C	14	1321	1920	09.00	71.20	31.09	2.50
	255N		N	CA	1923	1924	116 70	142 80		
-41.10		20011	11	011	1020	1021	110.10	112.00		
	10208 255N	2561.	С	N	1929	1931	-137.68	-108.50	31.83	1.41
	-171.25		-	•-	- -					
	256L		N	CA	1931	1932	145.24	132.50		
-41.20										
138	10209 256L	257R	C	N	1937	1939	-74.44	-72.10	4.00	0.35
-63.00	-179.88	23.58								

	7R 257R N	CA	1939	1940	138.66	141.90		
-41.10	000D 0	M	1061	1062	110 05	06 50	24 05	1 40
139 10212 259 -63.30 140.23		IN	1961	1963	-119.85	-96.50	34.85	1.43
		СΔ	1963	1964	88.33	114 20		
-40.00	OD ZOOD N	On	1000	1001	00.00	111.20		
140 10213 260	OD 261V C	N	1969	1971	-63.74	-62.40	10.96	1.47
-125.40 174.67								
140 26:		CA	1971	1972	-53.28	-42.40		
143.30								
141 10214 26:	1V 262D C	N	1976	1978	-118.78	-96.50	37.47	1.57
-63.30 -175.78	26.32							
141 262	2D 262D N	CA	1978	1979	144.33	114.20		
-40.00								
142 10216 263	3I 264H C	N	1992	1994	-121.70	-125.60	19.48	0.66
-63.20 172.25	18.69							
142 264	4H 264H N	CA	1994	1995	119.71	138.80		
-42.30								
143 10217 264		N	2002	2004	-104.89	-124.80	38.67	1.20
-63.20 158.05								
143 269	5T 265T N	CA	2004	2005	110.35	143.50		
-42.10	-m 0001 0		0000	0011	404 00	100 50	05 50	4 00
144 10218 269		IN	2009	2011	-134.00	-108.50	25.53	1.20
-63.50 -171.38 144 266		CA	2011	2012	133.75	120 E0		
-41.20	OL ZOOL N	CA	2011	2012	133.75	132.50		
145 10225 272	OK 273C C	M	2061	2063	65 23	57.40	16 35	0.56
-117.90 -146.56		14	2001	2005	00.20	37.40	10.55	0.50
145 273		CA	2063	2064	21.64	36.00		
141.10	30 2100 H	011	2000	2001	21.01	00.00		
146 10229 276	SV 277Y C	N	2087	2089	-101.04	-98.40	34.26	3.62
-63.50 142.67	20.86							
146 27	7Y 277Y N	CA	2089	2090	94.24	128.40		
-43.40								
147 10230 27	7Y 278Q C	N	2099	2101	-79.53	-73.00	31.82	1.95
-63.80 148.69	22.70							
147 278	3Q 278Q N	CA	2101	2102	171.84	140.70		
-40.30								
148 10232 279	9P 280E C	N	2115	2117	-120.31	-117.80	7.08	0.30
-63.60 -174.82								
	DE 280E N	CA	2117	2118	143.42	136.80		
-40.30								
149 10233 280		N	2124	2126	-122.21	-134.00	12.55	0.58
-62.50 178.09		٠.	0.00	040=	. 			
149 28:	1A 281A N	CA	2126	2127	151.32	147.00		
-40.90	14 0000 0	3.7	04.00	0404	70 11	100.00	145 05	F 0F
150 10234 28:		N	2129	2131	79.14	-136.60	145.87	5.25
-64.10 -150.98	16.49							

150	2828	282S	N	CA	2131	2132	172.78	151.20		
-35.00 151	10235 282S	283M	С	N	2135	2137	-110.20	-125.60	23.34	0.74
	170.04									
151	283M	283M	N	CA	2137	2138	122.96	140.50		
-40.50										
152	10236 283M	284N	C	N	2143	2145	-123.29	-119.90	7.58	0.26
	-174.85									
	284N	284N	N	CA	2145	2146	143.78	137.00		
-41.10	40000 000		~		0.4.00	0.454	04 00	400 50	450.00	- 00
	10239 286T			N	2169	2171	91.89	-108.50	159.62	7.62
-63.50 153	-127.95			C A	0171	0170	191 19	120 E0		
-41.20	287L	. 201L	IN	CA	21/1	2112	131.13	132.50		
	10240 287L	. 2884	C	N	2177	2179	-123 56	-134.00	10 69	0.28
	-175.19				2111	2110	120.00	101.00	10.00	0.20
	288A		N	CA	2179	2180	144.68	147.00		
-40.90										
155	10241 288A	289G	C	N	2182	2184	-64.29	-62.40	4.62	0.79
82.20	156.10 1	1.93								
155	289G	289G	N	CA	2184	2185	-45.42	-41.20		
8.50										
	10244 291I		C	N	2200	2202	-80.85	-72.40	8.80	0.68
	175.84									
	292S	292S	N	CA	2202	2203	149.96	152.40		
-35.00	10045 0000		a	NT.	0006	0000	111 00	104.00	70 11	0.00
	10245 292S 124.18		C	N	2206	2208	-114.06	-124.80	73.11	2.82
	124.16 293T		M	CA	2208	2209	71.18	143 50		
-42.10		2501	14	OA	2200	2200	71.10	140.00		
	10246 293T	' 294R	С	N	2213	2215	-163.69	-125.20	42.76	1.31
	-171.23									
158	294R	294R	N	CA	2215	2216	159.22	140.60		
-41.10										
159	10247 294R	295S	C	N	2224	2226	-79.25	-72.40	9.88	0.47
	166.18									
	295S	295S	N	CA	2226	2227	159.52	152.40		
-35.00		00037	a	3.7	0000	0000	440.07	404.00	44.40	0 50
	10248 295S 174.47		C	N	2230	2232	-118.67	-124.30	14.43	0.58
	296Y		M	CA	2232	2233	199 11	135 40		
-43.40		2501	14	OA	2202	2200	122.11	100.40		
	10249 296Y	່ 297ດ	С	N	2242	2244	-120.51	-121.10	9.05	0.42
	-179.87	-	-				, .			-
	2970		N	CA	2244	2245	130.67	139.70		
-40.30										
162	10251 298P	299K	C	N	2258	2260	-141.65	-118.00	38.31	1.42
-62.90	169.37	26.70								

162 299K 299K -40.80	N	CA	2260	2261	169.25	139.10		
163 10252 299K 300Y		N	2267	2269	-106.90	-98.40	9.15	0.46
-63.50 173.93 25.52 163 300Y 300Y		CA	2269	2270	125.03	128.40		
-43.40 164 10254 301C 302G	C	N	2285	2287	-71.24	-80.20	28.78	0.74
82.20 -153.47 6.86 164 302G 302G	N	CA	2287	2288	146.75	174.10		
8.50 165 10257 304C 305M	C	N	2302	2304	-73.84	-73.00	38.68	2.60
-63.40 138.22 21.46 165 305M 305M		CA	2304	2305	-178.33	143.00		
-40.50 166 10258 305M 306D							10.49	0.86
-63.30 167.07 20.47		11	2010	2012	00.75	70.30	10.49	0.00
166 306D 306D -40.00	N	CA	2312	2313	152.95	150.30		
167 10259 306D 307N -63.20 159.71 23.47		N	2318	2320	-125.03	-119.90	35.03	1.47
167 307N 307N		CA	2320	2321	171.65	137.00		
-41.10 168 10260 307N 308R		N	2326	2328	-115.83	-125.20	155.09	7.69
-125.20 155.09 7.6 168 308R 308R		CA	2328	2329	-64.60	140.60		
140.60 169 10265 312P 313Y	C	N	2364	2366	-111.13	-98.40	12.74	0.50
-63.50 178.77 26.11		~ .		0007	400.04	100 10		
169 313Y 313Y -43.40	N	CA	2366	2367	128.91	128.40		
170 10266 313Y 314K		N	2376	2378	-81.46	-70.20	13.93	0.84
-62.90 171.60 23.34 170 314K 314K		CA	2378	2379	148.61	140.40		
-40.80								
171 10267 314K 315S		N	2385	2387	-66.91	-72.40	49.79	2.74
-64.10 137.95 9.83 171 315S 315S		CA	2327	J 388	102.92	152 /0		
-35.00) IN	CH	2301	2300	102.92	132.40		
172 10268 315S 316K	C	N	2391	2393	179.92	-118.00	71.51	2.37
-62.90 -173.87 31.01								
172 316K 316K	N	CA	2393	2394	174.59	139.10		
-40.80								
173 10269 316K 317T	. C	N	2400	2402	-87.44	-78.10	95.29	4.39
-63.20 100.05 11.40)							
173 317T 317T	' N	CA	2402	2403	54.97	149.80		
-42.10								
174 10270 317T 318I		N	2407	2409	-65.89	-63.40	3.92	0.73
-120.60 -174.80 8.5	8							

174 318I 318I	I N	CA	2409	2410	-46.63	-43.60		
130.30	. a	NT	0/15	0/17	F7 00	E4 E0	12.00	0.70
175 10271 318I 319I -63.30 138.67 23.68		IN	2415	2417	57.90	54.50	13.92	0.78
175 319D 319I		CA	2/17	2/12	27 /0	40 90		
-40.00	J 11	CA	2 4 11	2410	21.40	40.90		
176 10272 319D 320V	J C	N	2423	2425	173 95	-125 40	83.07	2 28
-73.50 127.95 8.68		14	2120	2120	110.50	120.10	00.01	2.20
176 320V 320V		CA	2425	2426	-159.94	143.30		
139.20	-							
177 10278 325P 326I	ОС	N	2469	2471	-67.58	-96.50	30.23	1.24
-63.30 145.48 17.70								
177 326D 326I	O N	CA	2471	2472	105.41	114.20		
-40.00								
178 10279 326D 3270	G C	N	2477	2479	-130.68	-167.20	37.22	0.57
82.20 -143.45 16.48								
178 327G 327G	G N	CA	2479	2480	167.41	174.60		
8.50								
179 10280 327G 328I		N	2481	2483	-102.09	-108.50	19.62	1.11
-63.50 172.14 26.26								
179 328L 328I	L N	CA	2483	2484	151.04	132.50		
-41.20								
180 10281 328L 3290		N	2489	2491	-73.84	-80.20	16.96	0.41
82.20 -143.64 6.92		G A	0404	0.400	450.00	474 40		
180 329G 329G	i Ν	CA	2491	2492	158.38	174.10		
8.50	7 C	NT	0402	0405	110 76	104.00	10 74	0.65
181 10282 329G 330F -63.20 173.98 27.47		IN	2493	2495	-112.76	-124.20	12.74	0.65
181 330F 330F		CA	2/105	2/106	148.92	1/13 30		
-44.30	. 11	OA	2430	2430	140.32	140.00		
182 10283 330F 331S	s c	N	2504	2506	-117.85	-136.60	18.75	0.76
-64.10 -178.53 16.89			2001	2000	111.00	100.00	10.70	00
182 331S 331S		CA	2506	2507	151.67	151.20		
-35.00								
183 10284 331S 332F	R C	N	2510	2512	-121.64	-125.20	5.00	0.27
-63.00 -175.63 28.95	5							
183 332R 332F	R N	CA	2512	2513	144.10	140.60		
-41.10								
184 10285 332R 3330	Q C	N	2521	2523	-106.76	-121.10	15.55	0.71
-63.80 179.19 28.64	4							
184 333Q 3330	N Ç	CA	2523	2524	145.73	139.70		
-40.30								
185 10287 334V 335I	L C	N	2537	2539	-140.09	-108.50	44.08	2.47
-63.50 162.19 19.87								
185 335L 335I	L N	CA	2539	2540	101.76	132.50		
-41.20								
186 10288 335L 336V		N	2545	2547	-142.44	-124.90	23.83	1.36
-63.00 -171.02 20.75	5							

186	336W	336W	N	CA	2547	2548	127.27	143.40		
-44.20 187	10290 3371	338N	С	N	2567	2569	-123.97	-119.90	22.61	1.11
	167.29									
187	338N	338N	N	CA	2569	2570	114.76	137.00		
-41.10										
	10291 338N		C	N	2575	2577	-176.08	-134.00	42.18	1.29
	-156.16									
	339A	. 339A	N	CA	2577	2578	149.85	147.00		
-40.90	10002 2400	9/1E	C	M	2506	0500	106 21	104 00	8.56	0.45
	10293 3400 -169.91		C	IN	2500	2500	-120.31	-124.20	0.50	0.45
189	341F		N	CA	2588	2589	135.01	143.30		
-44.30		0 111	••	011	2000	2000	100.01	110.00		
	10295 3420	343N	С	N	2603	2605	-113.17	-119.90	24.91	0.96
-63.20	162.02	17.99								
190	343N	343N	N	CA	2605	2606	113.02	137.00		
-41.10										
	10296 343N		C	N	2611	2613	-129.99	-108.50	23.91	1.27
	176.24									
	344L	. 344L	N	CA	2613	2614	122.01	132.50		
-41.20	10297 344L	2/150	C	M	2610	2621	_127 10	_126_60	10.42	0 54
	-169.58		C	IN	2019	2021	-137.20	-130.00	10.42	0.54
	3458		N	CA	2621	2622	140.80	151.20		
-35.00	0100	0100	••	011	2021	2022	110.00	101.20		
	10299 3460	347R	С	N	2631	2633	-132.20	-125.20	9.09	0.49
-63.00	-170.99	21.85								
193	347R	347R	N	CA	2633	2634	134.79	140.60		
-41.10										
	10300 347R		С	N	2642	2644	-115.35	-119.90	27.15	1.12
	160.07			a 4	0011	0045	440.04	407.00		
	348N	348N	N	CA	2644	2645	110.24	137.00		
-41.10	10302 349P	3EUM	C	M	2657	2650	_123 00	_110_00	15 10	0.75
	173.84		C	11/	2001	2009	-123.00	-119.90	15.15	0.75
			N	CA	2659	2660	122.13	137.00		
-41.10										
196	10303 350N	351D	C	N	2665	2667	-122.72	-96.50	28.31	1.15
-63.30	155.33	16.60								
196	351D	351D	N	CA	2667	2668	103.52	114.20		
-40.00										
	10305 352I		C	N	2681	2683	-133.66	-124.20	9.46	0.37
	-173.85		3.7		0000	0001	440 46	440.00		
	353F	353F	N	CA	2683	2684	143.40	143.30		
-44.30	10306 353F	35/1	C	M	2602	2604	-1/12 62	-13/ 00	15 75	0 36
	-172.72		U	IA	2032	∠UJ4	140.03	104.00	10.70	0.30
02.00	114.14	50.50								

198 -40.90	354A 354A	N C	A 2694	2695	152.81	147.00		
199	10307 354A 355D	C N	2697	2699	-97.30	-96.50	5.03	0.21
	153.06 17.11							
199	355D 355D	N C	A 2699	2700	109.24	114.20		
-40.00 200		C N	2705	2707	_100 20	-108.50	1 6/	0 00
	-178.99 22.94	C N	2105	2101	-109.30	-100.50	1.04	0.00
200	356L 356L	N C	A 2707	2708	133.89	132.50		
-41.20	3332 3332				200.00	102,00		
201	10309 356L 357E	C N	2713	2715	-118.82	-117.80	3.43	0.15
-63.60	-172.08 28.18							
201	357E 357E	N C	A 2715	2716	140.07	136.80		
-40.30								
202	10310 357E 358S	C N	2722	2724	-128.67	-136.60	9.60	0.51
-64.10	-179.65 17.63							
	358S 358S	N C	A 2724	2725	156.60	151.20		
-35.00								
	10311 358S 359Y	C N	2728	2730	-119.72	-124.30	7.99	0.32
	-178.81 26.15			0704	100.05	405 40		
203	359Y 359Y	N C	A 2730	2731	128.85	135.40		
-43.40	10312 359Y 360P	C N	0740	0740	E2 00	EQ 70	6 50	0 56
	179.01 13.96	C N	2740	2142	-55.20	-58.70	0.55	0.56
	360P 360P	N C	N 2742	2743	-34.15	-30 50		
147.20		10 01	1 2/12	2110	01.10	00.00		
	10313 360P 361D	C N	2747	2749	53.04	54.50	2.30	0.13
	142.72 24.25	-	_, _,					
205	361D 361D	N C	A 2749	2750	42.68	40.90		
-40.00								
206	10314 361D 362F	C N	2755	2757	-109.16	-124.20	17.31	0.46
-63.20	-175.17 22.79							
206	362F 362F	N C	A 2757	2758	134.73	143.30		
-44.30								
	10315 362F 363S	C N	2766	2768	-136.27	-136.60	6.97	0.36
	-178.22 18.31			0700	450 40	454.00		
	363S 363S	N C	A 2768	2769	158.16	151.20		
-35.00	10016 0600 064E	C N	0770	0774	72 60	60.30	F 40	0.21
	10316 363S 364E 174.18 23.78	C N	2112	2114	-73.00	-69.30	5.49	0.31
	364E 364E	N C	M 2774	2775	145.81	142 50		
-40.30		., 01	. 2114	2110	140.01	142.00		
	10318 365I 366A	C N	2789	2791	-121.64	-134.00	12.36	0.42
	-178.39 32.92	1	2.00					J. 12
	366A 366A	N C	A 2791	2792	147.39	147.00		
-40.90								

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20

3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30

3.40 3.50

FREQUENCY: 0 0 0 0 0 23 36 156 179 237 229 268 272

327 335

<< end of ENERGY.</pre>

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

>> Model assessment by DOPE potential

iatmcls_286W> MODEL atom not classified: ASN:OXT ASN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1

Number of non-bonded pairs (excluding 1-2,1-3,1-4): 324540

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC): 0.390

LENNARD_JONES_SWITCH : 6.500 7.500
COULOMB_JONES_SWITCH : 6.500 7.500
RESIDUE_SPAN_RANGE : 1 9999

NLOGN_USE : 15 CONTACT SHELL : 15.000

DYNAMIC PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -17263.9219

<< end of ENERGY.

DOPE score : -17263.921875

>> Model assessment by SOAP-Protein-OD score

preppdf_455W> None of the non-bonded terms selected.

pair2___701W> Insufficient system memory to allocate storage for cell-based (NlogN) nonbond list algorithm; falling back to N*N method.

Warning 3 of 10; further warnings will be suppressed.

>> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 Number of all static, selected restraints 13904 13904 COVALENT_CYS F NONBONDED_SEL_ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 0 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN_USE 15 0.000 CONTACT SHELL DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: Τ F F F SPHERE STDV 0.050 RADII_FACTOR 0.820

0.0000

<< end of ENERGY.

Current energy

SOAP-Protein-OD score : 0.000000

>> Model assessment by GA341 potential

Surface library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/surf5.de

Pair library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier : _

% sequence identity 62.856998 Sequence length 367 : Compactness 0.011363 Native energy (pair) : 175.468621 Native energy (surface) : 50.866196 Native energy (combined) : 13.135105 Z score (pair) -1.120854Z score (surface) -0.510135 Z score (combined) : -1.080186 GA341 score 0.329538 >> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 0 Number of all static, selected restraints 13904 13904 COVALENT CYS F 1 NONBONDED_SEL_ATOMS Number of non-bonded pairs (excluding 1-2,1-3,1-4): 4720 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN_USE 15 CONTACT_SHELL 4.000 DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: Т Τ F SPHERE STDV 0.050 RADII FACTOR 0.820 Current energy 2089.6370

Summary of the restraint violations:

NUM

RMS 1 ... RMS(feature, minimally violated basis restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

... number of restraints.

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

:	#	RESTRAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2	
M	OL.PDF S_i							
-								-
_		· -						
	1 Bond length potent	ial :	2881	0	0	0.003	0.003	
6	.9683 1.000							
	2 Bond angle potenti	al :	3935	0	1	1.692	1.692	
2	14.67 1.000							
	3 Stereochemical cos	ine torsion poten:	1962	0	80	51.281	51.281	
7	85.63 1.000	_						

4 Stereochemical improper torsion pot:	1155	0	0	0.935	0.935
21.334 1.000 5 Soft-sphere overlap restraints :	4720	0	0	0.003	0.003
5.7840 1.000	0	0	0	0.000	0 000
6 Lennard-Jones 6-12 potential : 0.0000 1.000	U	U	U	0.000	0.000
7 Coulomb point-point electrostatic p:	0	0	0	0.000	0.000
0.0000 1.000					
8 H-bonding potential :	0	0	0	0.000	0.000
0.0000 1.000					
9 Distance restraints 1 (CA-CA) :	765	0	8	1.243	1.243
116.63 1.000					
10 Distance restraints 2 (N-0) :	973	2	11	1.519	1.519
164.76 1.000		_			
11 Mainchain Phi dihedral restraints :	0	0	0	0.000	0.000
0.0000 1.000	0	0	0	0 000	0 000
12 Mainchain Psi dihedral restraints : 0.0000 1.000	0	0	0	0.000	0.000
	366	0	2	3.165	3.165
13 Mainchain Omega dihedral restraints: 43.231 1.000	300	U	2	3.105	3.105
14 Sidechain Chi_1 dihedral restraints:	315	0	3	86.654	86.654
106.32 1.000	313	O	5	00.004	00.004
15 Sidechain Chi_2 dihedral restraints:	209	0	0	77.151	77.151
80.077 1.000		•			
16 Sidechain Chi_3 dihedral restraints:	98	0	0	94.302	94.302
53.264 1.000					
17 Sidechain Chi_4 dihedral restraints:	34	0	0	82.369	82.369
19.650 1.000					
18 Disulfide distance restraints :	5	0	0	0.003	0.003
0.99187E-02 1.000					
19 Disulfide angle restraints :	10	0	0	1.264	1.264
0.35293 1.000					
20 Disulfide dihedral angle restraints:	5	0	0	34.888	34.888
4.9679 1.000					
21 Lower bound distance restraints :	0	0	0	0.000	0.000
0.0000 1.000		_			
22 Upper bound distance restraints :	0	0	0	0.000	0.000
0.0000 1.000	C40	0	0	0 (00	0 (00
23 Distance restraints 3 (SDCH-MNCH) :	643	0	0	0.633	0.633
21.258 1.000 24 Sidechain Chi_5 dihedral restraints:	0	0	0	0.000	0.000
0.0000 1.000	O	O	O	0.000	0.000
25 Phi/Psi pair of dihedral restraints:	365	216	48	37 732	135.937
417.98 1.000	000	210	10	01.102	100.001
26 Distance restraints 4 (SDCH-SDCH) :	183	0	4	1.640	1.640
26.748 1.000		•	-		
27 Distance restraints 5 (X-Y) :	0	0	0	0.000	0.000
0.0000 1.000					

28 NMR distance restraints 6 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
29 NMR distance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
30 Minimal distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
31 Non-bonded restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
32 Atomic accessibility restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
33 Atomic density restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
34 Absolute position restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
35 Dihedral angle difference restra	int:	0	0	0	0.000	0.000
0.0000 1.000						
36 GBSA implicit solvent potential	:	0	0	0	0.000	0.000
0.0000 1.000						
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

- # Heavy relative violation of each residue is written to: WISP1.V99990003
- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 64216.6016

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO \dots residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

 ${\tt FEAT}$ $\,$... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR \dots the best value (global minimum).

VIOL ... difference from the best value.

 $\ensuremath{\mathsf{RVIOL}}$... relative difference from the best value.

Feature 10 : Distance restraints 2 (N-0)

List of the RVIOL violations larger than $\,:\,$ 4.5000

#	ICSR	RESN	01/2	ATM1/	'2 INDA	TM1/2	FEAT	restr	viol	rviol
RESTR	VIOL	. RV	IOL							
1	12119	40E	148D	N C	286	1102	8.49	5.54	2.95	4.52
5.54	2.95	4.	52							
2	12251	130Y	87C	N C	951	641	4.77	2.66	2.11	4.62
2.66	2.11	4.	62							

Feature 25 $$\rm : Phi/Psi \ pair \ of \ dihedral \ restraints$ List of the RVIOL violations larger than $\rm : 6.5000$

#	ICSR	RESNO	1/2	ATM	1/2	INDATM	1/2	FEAT	restr	viol	rviol
RESTR	VIOL	RVI	OL								
1	9954	1M	2R	C	N	7	9	-129.55	-125.20	8.83	0.49
-63.00	-173.69	21	.60								
1		2R	2R	N	CA	9	10	132.92	140.60		
-41.10											
2	9955	2R	ЗW	C	N	18	20	-140.40	-124.90	19.23	0.61
-63.00	178.65	27	.54								
2		ЗW	ЗW	N	CA	20	21	154.79	143.40		
-44.20											
3	9956	ЗW	4F	C	N	32	34	-133.88	-124.20	11.21	0.58
-63.20	-168.44	31	. 24								
3		4F	4F	N	CA	34	35	137.65	143.30		
-44.30											
4	9957	4F	5L	C	N	43	45	-142.28	-108.50	36.99	1.64
-63.50	-171.53	31	.05								
4		5L	5L	N	CA	45	46	147.58	132.50		
-41.20											
5	9959	6P	7W	С	N	58	60	-130.37	-124.90	10.11	0.35
	177.21	26	.68								
5		7W	7W	N	CA	60	61	151.90	143.40		
-44.20											
6	9960	7W	8T	C	N	72	74	-119.26	-124.80	5.55	0.29
-63.20	-176.73	27	. 23								
6		8T	8T	N	CA	74	75	143.41	143.50		
-42.10											

7 9961			N	79	81 -107.31 -108.	50 1.95	0.11
			CA	81	82 134.05 132.	50	
	9L 1		N	87	89 -119.39 -134.	00 14.78	0.41
-62.50 -176.6 8	4 33. 10A 1		CA	89	90 144.79 147.	00	
-40.90 9 9963	10A 1	1A C	N	92	94 -113.24 -134.	00 23.68	0.55
-62.50 -176.3 9			CA	94	95 135.60 147.	00	
-40.90 10 9965	12V 1	3T C	N	104	106 -111.61 -124.	80 23.80	0.74
-63.20 172.7	1 19.	36					
10 -42.10	13T 1	3.L. N	CA	106	107 123.69 143.	50	
11 9966			N	111	113 -141.74 -134.	00 8.07	0.20
-62.50 -172.5 11	7 34. 14A 1		CA	113	114 149.25 147.	00	
-40.90							
12 9967	14A 1	5A C	N	116	118 -129.41 -134.	00 6.36	0.19
-62.50 -171.2	3 34.	51					
	15A 1	5A N	CA	118	119 142.59 147.	00	
-40.90				404	400 405 50 404		
13 9968 -62.50 -174.1			N	121	123 -135.76 -134.	00 2.18	0.06
	ა ა4. 16A 1		CA	102	124 148.28 147.	20	
-40.90	IOA I	OA N	CH	123	124 140.20 147.	30	
14 9969	16A 1	7A C	N	126	128 -117.19 -134.	00 20.97	0.54
-62.50 -176.3	1 27.	98					
	17A 1		CA	128	129 134.46 147.	00	
-40.90							
15 9970	17A 1	8S C	N	131	133 46.97 -72.	40 123.30	7.81
-64.10 -168.0	5 21.	93					
15	18S 1	8S N	CA	133	134 121.54 152.	40	
-35.00							
16 9971			N	137	139 -121.12 -124.	30 4.64	0.16
-63.20 -173.5							
16	19T 1	9T N	CA	139	140 140.67 143.	50	
-42.10							
17 9972			N	144	146 -62.19 -62.	40 5.97	0.74
-125.40 179.			~ •	440	447 40 00 40	4.0	
17	200 2	OV N	CA	146	147 -48.36 -42.	40	
143.30	2017	1T C	ħΤ	4 🗆 4	152 140 04 400	EO 20 70	1 10
18 9973 -63.50 -166.0			N	151	153 -140.24 -108.	32.76	1.48
	0 31. 21L 2		C۸	152	154 140.62 132.	50	
-41.20	211 2	TT IN	OH	103	104 140.02 132.	J U	
1 1.20							

	9974 21L 2		N	159	161	-63.01	-68.20	5.74	0.40
-62.50 19	176.25 28. 22A 2		CA	161	162	142.85	145.30		
-40.90									
	9976 23T 2		N	171	173	-153.74	-134.00	22.26	0.51
	-174.21 35.								
20	24A 2	4A N	CA	173	174	157.27	147.00		
-40.90	0077 044 0	a	3.7	470	470	77 07	70 70	00.40	4 00
	9977 24A 2		N	176	178	-//.2/	-70.70	20.10	1.30
	158.80 22.		CA.	170	170	160 50	141 60		
21	25L 2	SL N	CA	1/8	179	160.59	141.60		
-41.20	9978 25L 2	60 C	N	10/	106	60 1E	70 40	10 16	0.70
	162.96 12.		IN	104	100	-09.45	-72.40	10.16	0.70
22	26S 2		CA	186	127	162.13	152 /0		
-35.00	205 2	N GO	OA	100	107	102.10	102.40		
	9980 27P 2	84 C	N	197	199	-120 21	-134 00	13.87	0 52
	-179.92 32.		14	101	100	120.21	101.00	10.01	0.02
23	28A 2		CA	199	200	148.53	147 00		
-40.90	2011 2	011 11	On	100	200	110.00	111.00		
	9982 29P 3	от с	N	209	211	-91.87	-78.10	22.32	0.76
	153.24 21.					02.0.			0110
24	30T 3		CA	211	212	167.37	149.80		
-42.10									
25	9984 31T 3	2M C	N	223	225	-71.79	-73.00	2.91	0.22
-63.40	174.06 26.	65							
25	32M 3	2M N	CA	225	226	145.64	143.00		
-40.50									
26	9985 32M 3	3D C	N	231	233	-99.25	-96.50	52.79	2.22
-63.30	107.66 11.	62							
26	33D 3	3D N	CA	233	234	61.48	114.20		
-40.00									
27	9986 33D 3	4F C	N	239	241	-138.39	-124.20	20.17	0.54
-63.20	175.04 29.	16							
27	34F 3	4F N	CA	241	242	157.63	143.30		
-44.30									
	9987 34F 3		N	250	252	-79.43	-78.10	2.33	0.14
	170.79 22.								
28	35T 3	5T N	CA	252	253	147.88	149.80		
-42.10									
	9989 36P 3		N	264	266	-96.43	-68.20	32.89	3.21
	172.70 26.		<i></i>	0.5.5	0.5-	400 15			
29	37A 3	/A N	CA	266	267	128.43	145.30		
-40.90	0004 000 0	OT 2	3.7	076	070	70.00	60 50	111 70	06.00
30			N	2/6	2/8	76.60	-63.50	144.79	26.28
	144.79 26.		CA.	070	070	1 67	41 00		
30 -41 20	39L 3	ST IN	CA	210	219	-4.07	-41.20		
-41.20									

31	9992 391	L 40E	C	N	284	286	-61.89	-63.60	17.40	2.23
	160.05									
31	401	E 40E	N	CA	286	287	-57.62	-40.30		
142.50			_							
32	9993 401		С	N	293	295	-103.77	-70.90	50.94	1.89
	136.90			~.	005	000	450 50	450.00		
32	411) 41D	N	CA	295	296	-170.78	150.30		
-40.00	0004 441	. 40Ш	a	3.7	004	200	70.00	70.40	0.00	0.47
33	9994 411		C	N	301	303	-76.63	-78.10	2.83	0.17
	166.22		NT.	a.	000	201	450.00	4.40.00		
33	427	1 421	N	CA	303	304	152.22	149.80		
-42.10	0005 405	T 420	a	NT.	200	210	co oo	70 40	10 10	1 00
34	9995 427		C	N	308	310	-69.92	-72.40	18.48	1.00
	169.19		NT	C A	210	211	124 00	150 40		
34 -35.00	439	5 435	IV	CA	310	311	134.09	152.40		
	0006 429	2 442	C	NT.	21/	216	160 71	126 60	24 40	1 15
	9996 438 -164.53			IN	314	310	-169.71	-136.60	34.40	1.15
				C A	216	217	160 FO	151 00		
35	449	5 445	N	CA	310	317	160.52	151.20		
-35.00	9997 449	2 4ED	C	NT.	200	200	EO 10	E7 20	15 61	0.77
36				N	320	322	50.10	57.30	15.64	0.77
-63.00 36	146.41			C A	200	202	E1 00	20 00		
	451	K 45K	IV	CA	322	323	51.00	38.00		
-41.10	9999 461	0 470	C	N	220	240	_100 1E	_101_10	12.81	0.40
	-178.86	-		14	330	340	-109.15	-121.10	12.01	0.40
37				CA	240	2/1	125 07	139.70		
-40.30	470	ب 4 /لر	IV	CA	340	341	135.07	139.70		
	10000 470	1 /QE	C	M	2/17	3/10	_13/ 70	_12/ 20	16.02	0.45
	175.61	-		1/	341	349	-134.70	124.20	10.02	0.40
38	481		M	CA	3/10	320	155 3/	1/12 20		
-44.30	401	. 401	11/	CA	343	330	100.04	143.30		
	10002 490	7 50K	C	N	36/	366	_132 12	-118 00	20. 25	0.74
	-166.36			14	304	300	130.10	110.00	20.25	0.14
39	50I		M	CA	366	367	1/0 70	139.10		
-40.80	301	N JON	11/	CA	300	301	140.73	139.10		
	10003 501	Z 51W	C	N	373	375	-125 62	-12/ 90	2.38	0 10
	-178.71			14	313	313	120.02	124.50	2.50	0.10
40		W 51W		CA	375	376	145 67	143.40		
-44.20	011	W OIW	14	OH	010	010	140.07	140.40		
	10006 530	7 54E	C	N	400	402	-74 05	-69 30	6.07	0.34
	173.73			14	100	102	71.00	03.00	0.07	0.01
41	54I			CA	402	403	146 29	142.50		
-40.30	011	_ 016	14	J11	102	100	110.20	112.00		
	10010 571	P 589	С	N	429	431	-138 02	-136 60	9.41	0.45
	-179.65			••	120	101	100.02	100.00	0.11	0.40
42				CA	431	432	160 49	151.20		
-35.00	001	. 505	14	J11	101	102	100.40	101.20		
00.00										

43				С	N	449	451	-119.29	-125.20	11.95	0.66
-63.00 43	177.10			N	CA	/ 51	150	150.98	1/0 60		
-41.10	C	7116	OII	11	OR	401	402	150.90	140.00		
44	10015 6	32C	63P	С	N	466	468	-67.05	-58.70	10.39	0.85
-64.50	171.54	12	2.94								
44	6	3P	63P	N	CA	468	469	-24.32	-30.50		
147.20											
45	10016 6	3P	64L	C	N	473	475	-76.40	-70.70	7.51	0.49
-63.50	172.79	24	1.75								
45	6	34L	64L	N	CA	475	476	146.49	141.60		
-41.20											
	10017 6			C	N	481	483	152.35	-167.20	41.52	1.03
	171.73										
46	6	55G	65G	N	CA	483	484	165.26	174.60		
8.50											
	10019 6			С	N	492	494	-134.42	-136.60	7.42	0.41
	-179.06										
47	6	57S	67S	N	CA	494	495	158.29	151.20		
-35.00				_							
	10020 6			С	N	498	500	-97.94	-108.50	16.01	0.73
	165.30				~.		504	400 40	400 50		
48	6	38L	68L	N	CA	500	501	120.48	132.50		
-41.20	10000	т	700	~	37	- 44	540	70 45	70.40	0.40	0 57
	10022 6			C	N	514	516	-72.45	-78.10	9.12	0.57
	161.20					540	F47	450.00	4.40.00		
49	7	01	70T	N	CA	516	517	156.96	149.80		
-42.10	40000 7	7.O.T.	740	a	3.7	F04	F00	C4 47	70.00	00.60	0.00
50				C	N	521	523	-64.47	-70.90	23.68	0.88
	167.51			NT.	CIA.	F02	F04	107 51	150 00		
50	7	ענ	ענו	IN	CA	523	524	127.51	150.30		
-40.00	10004 7	71 D	700	C	NT	E20	E 2 1	60 05	70 70	20 16	0 50
				C	IN	529	531	02.25	18.10	20.16	0.59
51	164.17			M	CA	E 9 1	E20	15/ /5	166 10		
8.50	,	2 G	1 2 G	IN	CA	551	552	-154.45	-100.10		
52	10026 7	720	7/5	C	M	E20	E/11	_05 1/	-60.20	42.59	2 72
	144.88				IV	559	541	-05.14	-09.30	42.09	3.13
52					CA	E/11	E/10	102.96	1/12 50		
-40.30	,	46	/4E	IN	CA	541	542	102.90	142.50		
	10029 7	76C	77 <i>V</i>	C	M	560	562	_113 30	-118 00	11.71	0.49
	176.51			C	14	300	JU2	110.03	110.00	11.71	0.43
53	770.51			M	CA	562	563	128.33	130 10		
-40.80	,	1 17	1 1 12	14	On	JUZ	505	120.00	100.10		
	10030 7	7K	78M	C	N	569	571	-138 67	-125 60	20.67	0.66
	179.52			J		500	0,1	100.01	120.00	20.01	0.00
54				N	CA	571	572	156.52	140.50		
-40.50	•		. 011				- 1 2		_ 10.00		
-5.00											

				С	N	583	585	-68.53	-68.20	3.16	0.27
55	177.0			N	CA	585	586	142.16	145.30		
	10033		-	С	N	588	590	-126.12	-121.10	25.55	1.12
56	167.0			N	CA	590	591	164.75	139.70		
	10034	•	•	С	N	597	599	-83.95	-73.00	51.48	3.59
	132.2			N	CA	599	600	90.40	140.70		
-40.30 58	10035	82Q	83L	С	N	606	608	-143.02	-108.50	44.27	1.97
-63.50 58	177.4			N	CA	608	609	160.22	132.50		
-41.20											
	10040 122.1			С	N	640	642	3.37	-78.10	121.01	4.30
59				N	CA	642	643	60.32	149.80		
-42.10											
	10041			C	N	647	649	-129.58	-117.80	16.50	0.88
	178.2										
60		89E	89E	N	CA	649	650	125.25	136.80		
-40.30	10040	90E	004	C	M	GE G	GE O	105 27	124 00	20 60	1 00
	10042 155.9			C	IN	000	000	-125.37	-134.00	30.69	1.88
61				N	СА	658	659	176.45	147 00		
-40.90		JOH	JOH	14	On	000	000	110.10	117.00		
	10043	90A	91A	С	N	661	663	-130.78	-134.00	12.04	0.73
	174.4										
62				N	CA	663	664	158.59	147.00		
-40.90											
63	10045	92I	93C	C	N	674	676	-65.28	-63.00	2.35	0.36
-117.9	0 -174.	00	7.98	3							
63		93C	93C	N	CA	676	677	-40.49	-41.10		
141.10											
64					N	680	682	-64.12	-70.90	23.36	0.86
	167.9										
64		94D	94D	N	CA	682	683	127.94	150.30		
-40.00				~		205	207	00.40	27 22	00.00	4 00
65				C	N	695	697	-83.43	-67.60	20.80	1.23
	165.4			NT.	CI A	607	600	150 50	140.00		
65 -42.30		96Н	96H	N	CA	697	698	153.50	140.00		
	10040	OGU	07P	C	N	705	707	_127 10	-125 20	20 E1	1 17
66 -63 00	10049 167.5			C	TA	105	101	-131.12	-123.20	30.51	1.17
66				N	CA	707	708	168.68	140 60		
-41.10		0116	J116	14	JA	101	, 50	100.00	1 10.00		
11.10											

	N	716	718 -58.64 -62.40	16.32 2.28
82.20 155.36 12.03 67 98G 98G N	CA	718	719 -57.08 -41.20	
8.50 68 10051 98G 99L C	N	720	722 -164.52 -108.50	56.43 2.77
-63.50 -164.87 23.94 68 99L 99L N	CA	722	723 125.74 132.50	
-41.20 69 10054 101C 102D C	N	746	748 59.06 54.50	18.21 1.01
-63.30 137.75 23.52 69 102D 102D N	CA	748	749 23.26 40.90	
-40.00				05 00 4 04
70 10055 102D 103Y C -63.50 164.48 25.55	N	754	756 -74.36 -98.40	25.23 1.31
70 103Y 103Y N	CA	756	757 120.72 128.40	
-43.40 71 10056 103Y 104S C	N	766	768 -110.67 -136.60	53.75 2.06
-64.10 146.70 9.04			100 110.01 100.00	2.00
71 104S 104S N	CA	768	769 104.11 151.20	
-35.00 72 10057 104S 105G C	N	772	774 -103 77 -80 20	29 35 2 14
82.20 -131.48 17.73	1,	112	771 100.77 00.20	20.00 2.11
72 105G 105G N	CA	774	775 156.61 174.10	
8.50				
73 10058 105G 106D C	N	776	778 -85.03 -70.90	62.70 2.44
-63.30 110.77 15.06	CIA.	770	770 140 60 150 20	
73 106D 106D N -40.00	CA	118	779 -148.62 150.30	
74 10059 106D 107R C	N	784	786 -53.40 -72.10	25.40 2.21
-63.00 160.09 21.00				
74 107R 107R N	CA	786	787 159.10 141.90	
-41.10				
75 10061 108P 109R C	N	802	804 -121.64 -125.20	4.95 0.15
-63.00 -172.34 22.06				
	CA	804	805 137.16 140.60	
-41.10	3.7	040	045 404 96 00 40	26.04
76 10062 109R 110Y C -63.50 141.38 20.52	N	813	815 -104.36 -98.40	36.94 3.86
	CA	Q1 E	816 91.95 128.40	
-43.40	OA	010	010 91.93 120.40	
77 10063 110Y 111A C	N	825	827 164.74 -134.00	116.96 4.56
-62.50 151.25 30.76		0_0	02. 201 101.00	
	CA	827	828 -113.37 147.00	
-40.90				
78 10064 111A 112I C	N	830	832 32.69 -97.30	130.80 5.80
-120.60 154.30 10.12				
	CA	832	833 112.68 127.20	
130.30				

	10065 112I 1130 126.73 9.40	C	N	838	840	158.82	-167.20	73.48	2.99
	113G 113G	N	CA	840	841	109.45	174.60		
80	10068 115C 116A		N	855	857	-73.55	-68.20	13.70	0.92
80	161.57 27.03 116A 116A		CA	857	858	157.91	145.30		
	10069 116A 117G		N	860	862	-70.24	-73.00	10.90	0.77
	168.57 25.13 117Q 117Q		CA	862	863	151.25	140.70		
82	10072 119V 1200 161.36 15.38	C	N	883	885	-128.82	-167.20	51.75	1.09
	120G 120G	N	CA	885	886	139.88	174.60		
83	10074 121V 1220 176.96 8.51	C	N	894	896	80.56	78.70	8.65	0.17
	122G 122G	N	CA	896	897	-174.55	-166.10		
84	10077 124V 125L -167.73 10.9		N	911	913	173.78	-108.50	-167.73	10.93
	125L 125L		CA	913	914	-43.36	132.50		
85	10111 158L 159F 154.01 25.28		N	1163	1165	-128.60	-125.20	39.11	1.81
	159R 159R		CA	1165	1166	179.56	140.60		
86	10113 160V 161F		N	1181	1183	-173.09	-125.20	66.87	2.03
	161R 161F		CA	1183	1184	-172.73	140.60		
87	10116 163P 164F -165.23 33.87		N	1206	1208	-178.61	-125.20	57.60	1.81
	164R 164F		CA	1208	1209	162.15	140.60		
88	10118 165L 166W		N	1225	1227	-124.21	-124.90	40.62	1.99
	166W 166W		CA	1227	1228	-175.99	143.40		
89	10121 168P 169E		N	1252	1254	-167.60	-125.60	57.28	1.41
89 -42.30	169H 169H		CA	1254	1255	177.74	138.80		
90	10122 169H 170F 160.53 12.07		N	1262	1264	-66.30	-58.70	18.78	1.10
90	170P 170F		CA	1264	1265	-13.33	-30.50		

	10123 170P 171R		N	1269	1271	-67.83	-72.10	34.77	2.77
91	142.58 19.59 171R 171R		CA	1271	1272	176.41	141.90		
	10130 177G 178H		N	1323	1325	-90.70	-67.60	27.88	1.68
92			CA	1325	1326	155.61	140.00		
-42.30 93	10132 179C 180C	C C	N	1339	1341	-63.87	-63.00	3.70	0.52
	0 -177.61 7.8 180C 180C		CA	1341	1342	-44.69	-41.10		
141.10									
	10133 180C 181E -179.21 22.17		N	1345	1347	-103.05	-117.80	14.77	0.52
94	181E 181E	N	CA	1347	1348	136.13	136.80		
-40.30 95	10134 181E 182Q	C	N	1354	1356	-97.24	-121.10	25.09	0.81
-63.80	175.47 24.17	•							
95 -40.30	182Q 182Q	N	CA	1356	1357	131.95	139.70		
96	10135 182Q 183W		N	1363	1365	-130.74	-124.90	13.14	0.49
-63.00 96	174.33 26.35 183W 183W		CA	1365	1366	155.17	143.40		
-44.20									
	10138 185C 186E 141.77 17.53		N	1390	1392	-91.18	-117.80	46.43	1.67
97			CA	1392	1393	98.76	136.80		
-40.30			M	1200	1.401	100.00	70.00	02.06	0.00
	10139 186E 187D 112.72 17.89		IN	1399	1401	-126.06	-70.90	93.96	3.30
98	187D 187D		CA	1401	1402	-133.63	150.30		
-40.00	10140 187D 188D	\ C	M	1/107	1/100	-56 20	-70 90	21 02	0.83
	175.32 22.07		14	1407	1403	00.23	10.50	21.02	0.00
99	188D 188D	N	CA	1409	1410	135.18	150.30		
-40.00		a	NT.	4445	4 4 4 17	70.47	60.00	40 50	4 40
	10141 188D 189A 159.22 26.91		N	1415	1417	-78.47	-68.20	18.50	1.18
100			CA	1417	1418	160.68	145.30		
-40.90									
101	10142 189A 190K	C	N	1420	1422	-64.32	-70.20	6.99	0.43
-62.90	177.43 22.96	;							
101	190K 190K	N	CA	1422	1423	136.63	140.40		
-40.80									
	10143 190K 191R		N	1429	1431	-116.43	-125.20	14.04	0.78
	175.67 27.42		C A	1 101	1.400	454 52	140 00		
102		LN	CA	1431	1432	151.56	140.60		
-41.10									

	10144 191R 1		N	1440	1442	-50.24	-64.50	25.85	1.51
103	156.36 13 192P 1		CA	1442	1443	125.63	147.20		
-30.50 104	10145 192P 1	93R C	N	1447	1449	-130.56	-125.20	43.67	2.22
-63.00 104	153.97 17 193R 1		CA	1449	1450	97.26	140.60		
-41.10 105	10146 193R 1	94K C	N	1458	1460	168.06	-118.00	80.81	2.68
	-164.02 32								
105 -40.80	194K 1	94K N	CA	1460	1461	171.70	139.10		
106	10147 194K 1		N	1467	1469	-93.50	-124.80	94.99	3.22
-63.20 106	100.59 11 195T 1		CA	1469	1470	53.82	143.50		
-42.10									
	10148 195T 1 -166.68 36		N	1474	1476	-158.18	-134.00	24.53	0.67
	196A 1		CA	1476	1477	151.12	147.00		
-40.90									
	10150 197P 1		N	1486	1488	-137.26	-125.20	93.60	4.76
-63.00 108	115.82 13 198R 1		CA	1/100	1/190	17 79	140 60		
-41.10	1901 I	JOIL IN	CH	1400	1403	41.10	140.00		
	10152 199D 2	00T C	N	1505	1507	-155.55	-124.80	52.23	1.62
-63.20	161.25 26	.46							
109		OOT N	CA	1507	1508	-174.28	143.50		
-42.10									
	10153 200T 2		N	1512	1514	-123.98	-80.20	67.13	4.62
	-168.13 14.		C/A	1511	1515	100.00	174 10		
8.50	201G 2	OIG N	CA	1514	1515	123.20	174.10		
	10154 201G 2	02A C	N	1516	1518	-79.65	-68.20	11.95	0.89
	171.22 28								
111	202A 2	02A N	CA	1518	1519	148.75	145.30		
-40.90									
112	10155 202A 2	03F C	N	1521	1523	-142.24	-124.20	24.62	0.65
	174.56 29								
	203F 2	03F N	CA	1523	1524	160.06	143.30		
-44.30									
	10156 203F 2		N	1532	1534	-86.96	-96.50	34.27	1.44
	123.57 13		~.	4504	4505	04 00			
113		U4D N	CA	1534	1535	81.29	114.20		
-40.00		070 0	M	1650	1654	64 04	00 00	0E 06	0 67
	10159 206V 2 -153.10 6.		IN	1552	1554	-04.84	-80.20	25.26	0.67
114			CA	1554	1555	154 05	174 10		
8.50	2010 2	OIG IV	On	1004	1000	101.00	11-1.10		

	10160 207G 208E		N	1556	1558	-77.03	-69.30	13.83	0.80
115	166.28 22.92 208E 208E		CA	1558	1559	153.96	142.50		
-40.30 116	10162 209V 210E	C	M	1570	157/	_EO 10	-69.30	22 27	1 26
	162.90 22.02		1/	1572	1374	-30.10	-09.30	22.01	1.50
116			CA	1574	1575	122.51	142.50		
-40.30									
117	10163 210E 211A	C	N	1581	1583	67.20	-68.20	136.22	12.03
-62.50	-154.95 31.13								
117	211A 211A	N	CA	1583	1584	160.28	145.30		
-40.90									
118			N	1586	1588	-68.66	-71.30	4.23	0.25
	179.98 22.17		G A	4500	4.500	405.00	400.00		
118	212W 212W	N	CA	1588	1589	135.69	139.00		
-44.20 119	10165 212W 213H		M	1600	1600	-65 40	-67.60	2 75	0.33
	179.22 22.27		1//	1000	1002	-05.45	-07.00	3.75	0.25
119			CA	1602	1603	136.90	140 00		
-42.30	21011 21011	. 14	011	1002	1000	100.00	110.00		
	10166 213H 214R	. C	N	1610	1612	-119.47	-125.20	5.87	0.20
	-171.72 29.34								
120	214R 214R	. N	CA	1612	1613	139.29	140.60		
-41.10									
121	10167 214R 215N	C	N	1621	1623	-106.37	-119.90	15.45	0.47
-63.20	176.01 19.93								
121	215N 215N	N	CA	1623	1624	129.53	137.00		
-41.10									
	10169 216C 217I		N	1635	1637	-60.70	-63.40	3.53	0.55
	0 -173.92 8.4								
122	217I 217I	N	CA	1637	1638	-45.87	-43.60		
130.30	10170 0171 0101	a	3.7	4040	4045	70 45	60.00		0.05
	10170 217I 218A		N	1643	1645	-72.45	-68.20	5.55	0.35
	170.52 28.44		CA	16/5	16/16	1/10 07	1/15 20		
123 -40.90		. IV	CA	1045	1040	140.07	145.30		
	10172 219Y 220T	· C	N	1660	1662	-148 45	-124 80	27 44	1 04
	-178.28 28.81		14	1000	1002	110.10	121.00	21.11	1.01
124	220T 220T		CA	1662	1663	157.42	143.50		
-42.10									
125	10173 220T 221S	C	N	1667	1669	-86.63	-72.40	29.91	1.38
-64.10	148.02 12.21								
125	221S 221S	N	CA	1669	1670	178.71	152.40		
-35.00									
	10175 222P 223W		N	1680	1682	-161.83	-124.90	91.54	3.50
	132.76 22.93								
126	223W 223W	N	CA	1682	1683	-132.84	143.40		
-44.20									

127 10176 223W 224S		1694	1696	-52.92	-72.40	19.53	1.44
-64.10 171.43 11.80 127 224S 224S		A 1696	1697	153.93	152.40		
-35.00 128 10180 227S 228T	C N	1719	1721	-43 55	-78.10	47 85	1 78
-63.20 160.01 21.83		1110	1121	10.00	70.10	17.00	1.10
128 228T 228T	N C	A 1721	1722	116.69	149.80		
-42.10							
129 10184 231G 232L -63.50 169.71 26.89		1742	1744	-117.35	-108.50	26.86	1.34
129 232L 232L		Δ 1744	1745	157 86	132 50		
-41.20	IV C.	n 1/44	1140	137.00	132.50		
130 10185 232L 233G	C N	1750	1752	-149.27	-167.20	29.64	0.77
82.20 -168.11 14.56							
130 233G 233G	N C	A 1752	1753	151.00	174.60		
8.50							
131 10187 234V 235S		1761	1763	-145.30	-136.60	14.64	0.83
-64.10 -167.60 12.11		A 1760	1761	120 40	151 00		
131 235S 235S -35.00	N C.	A 1763	1764	139.42	151.20		
132 10188 235S 236T	C N	1767	1769	-123.38	-124.80	1.75	0.11
-63.20 -176.47 27.53		1101	1100	120.00	121.00	1110	0.11
132 236T 236T		A 1769	1770	144.51	143.50		
-42.10							
133 10189 236T 237R	C N	1774	1776	-140.45	-125.20	16.29	0.52
-63.00 -170.85 30.85							
133 237R 237R	N C.	A 1776	1777	146.34	140.60		
-41.10	a n	1700	1705	100.00	126.60	15 05	0 50
134 10191 238I 239S -64.10 -171.19 11.63		1793	1795	-122.03	-136.60	15.95	0.50
134 239S 239S		Δ 1795	1796	144 70	151 20		
-35.00	1, 0.	1100	1100	111.70	101.20		
135 10192 239S 240N	C N	1799	1801	-134.71	-119.90	20.67	0.60
-63.20 -177.88 26.82							
135 240N 240N	N C	A 1801	1802	151.41	137.00		
-41.10							
136 10194 241V 242N		1814	1816	-132.18	-119.90	22.22	0.70
-63.20 177.35 26.08		A 1016	1017	155 51	127 00		
136 242N 242N -41.10	N C.	A 1010	1017	155.51	137.00		
137 10195 242N 243A	C N	1822	1824	-96.23	-68.20	34 . 15	3.36
-62.50 170.07 26.43		1022	1021	00.20	00.20	01.10	0.00
137 243A 243A		A 1824	1825	125.79	145.30		
-40.90							
138 10196 243A 244Q	C N	1827	1829	-151.00	-121.10	42.42	1.38
-63.80 173.42 29.97							
138 244Q 244Q	N C.	A 1829	1830	169.79	139.70		
-40.30							

139 10197 244Q 245C -117.90 177.54 7.68		1836 1838 -60.51 -63.00 10.10	1.09
139 245C 245C		1838 1839 -50.89 -41.10	
141.10 140 10198 245C 246W	C N	1842 1844 -132.11 -124.90 13.01	0.74
	N CA	1844 1845 132.57 143.40	
-44.20 141 10200 247P 248E	C N	1863 1865 -128.81 -117.80 11.86	0.35
	N CA	1865 1866 141.23 136.80	
	C N	1872 1874 -129.21 -121.10 12.29	0.41
	N CA	1874 1875 148.93 139.70	
-40.30 143 10202 249Q 250E	C N	1881 1883 -118.43 -117.80 4.58	0.22
	N CA	1883 1884 141.34 136.80	
	C N	1890 1892 -131.01 -136.60 6.53	0.20
	N CA	1892 1893 147.82 151.20	
-35.00 145 10204 251S 252R	C N	1896 1898 -84.94 -72.10 14.87	0.99
	N CA	1898 1899 149.40 141.90	
	C N	1907 1909 -99.41 -108.50 20.38	0.99
-63.50 159.56 20.39 146 253L 253L	N CA	1909 1910 114.27 132.50	
-41.20 147 10207 254C 255N	C N	1921 1923 -86.39 -71.20 43.12	3.18
-63.20 145.40 17.00 147 255N 255N	N CA	1923 1924 102.44 142.80	
-41.10 148 10208 255N 256L	C N	1929 1931 -110.73 -108.50 11.10	0.62
-63.50 169.54 21.34 148 256L 256L		1931 1932 121.63 132.50	
-41.20 149 10209 256L 257R	C N	1937 1939 -116.30 -125.20 22.85	0.88
-63.00 169.27 19.88 149 257R 257R	N CA	1939 1940 119.56 140.60	
-41.10 150 10212 259C 260D			1.84
-63.30 124.60 17.43		1963 1964 -160.46 150.30	
-40.00	011		

	10216 263I 264H		1992	1994	-70.74	-67.60	10.42	0.71
151	167.94 21.47 264H 264H		1994	1995	149.93	140.00		
	10218 265T 266L		2009	2011	-79.69	-70.70	44.32	3.71
152	140.34 18.62 266L 266L		2011	2012	98.20	141.60		
	10219 266L 267I		2017	2019	-67.28	-63.40	4.23	0.69
153	0 -179.72 8.39 267I 267I		2019	2020	-41.91	-43.60		
	10229 276V 277Y	C N	2087	2089	-113.48	-124.30	17.77	1.38
154	174.42 30.21 277Y 277Y	N CA	2089	2090	149.50	135.40		
	10230 277Y 278Q	C N	2099	2101	45.01	-73.00	127.58	8.12
155	171.47 30.50 278Q 278Q	N CA	2101	2102	92.22	140.70		
-40.30 156	10232 279P 280E	C N	2115	2117	-57.54	-69.30	28.83	1.78
	156.59 21.21 280E 280E		2117	2118	116.17	142.50		
-40.30 157	10233 280E 281A	C N	2124	2126	-90.34	-68.20	29.41	1.87
	156.93 27.17 281A 281A		2126	2127	164.66	145.30		
-40.90 158	10234 281A 282S	C N	2129	2131	-70.01	-72.40	15.77	1.01
	157.12 11.74 282S 282S		2131	2132	167.99	152.40		
-35.00 159	10235 282S 283M	C N	2135	2137	-74.86	-73.00	59.28	4.04
-63.40 159	124.77 17.77 283M 283M		2137	2138	83.75	143.00		
-40.50 160	10236 283M 284N	C N	2143	2145	-163.32	-119.90	50.48	1.51
	-174.50 28.72 284N 284N		2145	2146	162.75	137.00		
-41.10 161	10237 284N 285F	C N	2151	2153	-93.81	-71.40	45.02	4.00
-63.20 161	149.13 18.75 285F 285F		2153	2154	101.65	140.70		
-44.30						-124.80	50.26	1.56
	162.43 26.58							
-42.10								

	10239 286T 287L	C N	2169	2171	-69.56	-70.70	4.37	0.38
163	173.09 24.38 287L 287L	N C	A 2171	2172	145.82	141.60		
	10240 287L 288A	C N	2177	2179	-66.85	-68.20	8.83	0.66
164		N C	A 2179	2180	136.58	145.30		
	10244 291I 292S -172.81 19.85	C N	2200	2202	-151.58	-136.60	17.13	0.52
165	292S 292S	N C	A 2202	2203	159.51	151.20		
	10245 292S 293T 175.68 26.93	C N	2206	2208	-130.06	-124.80	13.05	0.42
166 -42.10	293T 293T	N C	A 2208	2209	155.44	143.50		
167	10246 293T 294R -179.78 21.32	C N	2213	2215	-115.93	-125.20	13.22	0.40
	294R 294R	N C	A 2215	2216	131.17	140.60		
168	10247 294R 295S	C N	2224	2226	-86.41	-72.40	18.06	0.90
168	162.73 13.25 295S 295S	N C	A 2226	2227	163.80	152.40		
	10248 295S 296Y	C N	2230	2232	-116.39	-124.30	19.94	0.80
169		N C	A 2232	2233	117.10	135.40		
	10249 296Y 297Q	C N	2242	2244	-148.80	-121.10	30.05	1.38
170	-171.43 24.36 297Q 297Q	N C	A 2244	2245	128.03	139.70		
	10251 298P 299K		2258	2260	154.62	-118.00	88.96	3.11
171	-143.22 36.40 299K 299K		A 2260	2261	155.82	139.10		
	10252 299K 300Y		2267	2269	-105.86	-98.40	23.95	2.40
172			A 2269	2270	105.64	128.40		
	10254 301C 302G	C N	2285	2287	-170.04	-167.20	26.71	1.07
173	176.30 13.11 302G 302G	N C	A 2287	2288	148.04	174.60		
	10257 304C 305M		2302	2304	-102.67	-125.60	22.99	0.95
174			A 2304	2305	142.25	140.50		
-40.50								

175 10258 305M 306D		N	2310	2312	-67.85	-70.90	28.31	1.25
-63.30 162.22 19.75 175 306D 306D		CA	2312	2313	122.15	150.30		
-40.00								
176 10259 306D 307N		N	2318	2320	-135.86	-119.90	24.42	0.73
-63.20 178.85 26.47		G A	0000	0004	455 40	407.00		
176 307N 307N -41.10	N	CA	2320	2321	155.48	137.00		
177 10265 312P 313Y	С	N	2364	2366	-133.01	-124.30	52.40	2.42
-63.50 146.99 26.69			2001	2000	100.01	121.00	02.10	2.12
177 313Y 313Y		CA	2366	2367	-172.93	135.40		
-43.40								
178 10267 314K 315S	C	N	2385	2387	-93.62	-72.40	25.59	1.33
-64.10 161.03 13.64								
178 315S 315S	N	CA	2387	2388	166.70	152.40		
-35.00								
179 10268 315S 316K		N	2391	2393	-82.88	-70.20	15.98	0.96
-62.90 170.26 23.25		G A	0000	0004	450 44	4.40 .40		
179 316K 316K	N	CA	2393	2394	150.11	140.40		
-40.80 180 10269 316K 317T	C	M	2400	2402	_110 0/	_12/ 80	6 20	V 38
-63.20 179.75 26.82		11/	2400	2402	119.94	124.00	0.20	0.30
180 317T 317T		CA	2402	2403	147.34	143.50		
-42.10	11	011	2102	2100	117.01	110.00		
181 10270 317T 318I	С	N	2407	2409	-64.76	-63.40	4.24	0.74
-120.60 -173.53 8.6	2							
181 318I 318I	N	CA	2409	2410	-47.61	-43.60		
130.30								
182 10271 318I 319D	C	N	2415	2417	-91.02	-70.90	46.44	1.56
-63.30 130.82 17.92								
182 319D 319D	N	CA	2417	2418	-167.85	150.30		
-40.00	~		0.400	0405	00 70	20.10	5 50	
183 10272 319D 320V		N	2423	2425	-60.73	-62.40	7.50	0.87
-73.50 171.56 14.82		CA	2425	2/26	_40 71	_42_40		
183 320V 320V 139.20	IN	CA	2425	2420	-49.71	-42.40		
184 10277 324C 325P	C	N	2462	2464	-49 15	-58 70	31.32	1 94
-64.50 153.25 12.26			2102	2101	10.10	00.10	01.02	1.01
184 325P 325P		CA	2464	2465	-60.32	-30.50		
147.20								
185 10278 325P 326D		N	2469	2471	178.23	-96.50	96.54	4.00
	C							
-63.30 -160.49 32.08								
-63.30 -160.49 32.08 185 326D 326D			2471	2472	159.48	114.20		
185 326D 326D -40.00	N	CA						
185 326D 326D -40.00 186 10279 326D 327G	N	CA					22.54	0.44
185 326D 326D -40.00 186 10279 326D 327G 82.20 -161.17 14.96	N C	CA N	2477	2479	-149.62	-167.20	22.54	0.44
185 326D 326D -40.00 186 10279 326D 327G	N C	CA N	2477	2479	-149.62	-167.20	22.54	0.44

	10280 327G 328L 179.41 22.81	C 1	V	2481	2483	-106.87	-108.50	1.68	0.08
	328L 328L	N C	CA	2483	2484	132.89	132.50		
188	10281 328L 329G 171.13 13.16	C N	1	2489	2491	-155.02	-167.20	48.44	1.71
188 8.50	329G 329G	N C	CA	2491	2492	127.71	174.60		
189	10282 329G 330F -174.88 31.06	C I	1	2493	2495	-146.70	-124.20	23.61	0.72
189 -44.30	330F 330F	N C	CA	2495	2496	150.48	143.30		
	10283 330F 331S -177.85 11.23		V	2504	2506	-126.82	-136.60	18.07	0.66
190 -35.00						136.01			
-63.00	10284 331S 332R -172.58 29.84						-125.20	4.45	0.13
191 -41.10									
-63.80	10285 332R 333Q 169.80 22.94							21.25	0.71
-40.30							-108.50	10 57	0.70
	10287 334V 335L 171.44 21.45 335L 335L							12.57	0.72
-41.20							-124.90	6 78	0.38
-63.00	-170.92 28.13 336W 336W							0.70	0.00
-44.20								8.92	0.47
-63.20 195	-179.95 19.85 338N 338N		CA	2569	2570	128.69	137.00		
-41.10 196	10291 338N 339A	C N	1	2575	2577	-170.16	-134.00	37.87	0.91
-62.50 196	-166.44 37.42 339A 339A		CA	2577	2578	158.25	147.00		
-40.90 197	10293 340C 341F	C N	V	2586	2588	-115.35	-124.20	19.39	0.66
197			CA	2588	2589	126.05	143.30		
	10295 342C 343N		1	2603	2605	-123.08	-119.90	10.31	0.53
-63.20 198 -41.10			CA	2605	2606	127.20	137.00		

	10296 343N 344L	С	N	2611	2613	-117.92	-108.50	14.19	0.80
	171.93 21.45 344L 344L	N	CA	2613	2614	121.89	132.50		
200	10297 344L 345S -166.70 19.40	С	N	2619	2621	-140.03	-136.60	5.24	0.29
200 -35.00	345S 345S	N	CA	2621	2622	147.24	151.20		
201	10300 347R 348N 150.35 24.28	С	N	2642	2644	42.51	55.90	29.52	1.41
	348N 348N	N	CA	2644	2645	65.81	39.50		
	10302 349P 350N 162.92 18.53	С	N	2657	2659	-101.21	-119.90	27.14	0.80
202 -41.10	350N 350N	N	CA	2659	2660	117.32	137.00		
	10303 350N 351D 172.17 18.45	С	N	2665	2667	-126.84	-96.50	30.89	1.27
203 -40.00	351D 351D	N	CA	2667	2668	120.02	114.20		
	10305 352I 353F -177.80 30.10	С	N	2681	2683	-137.04	-124.20	14.10	0.39
204 -44.30	353F 353F	N	CA	2683	2684	149.13	143.30		
	10306 353F 354A -175.70 34.44		N	2692	2694	-141.56	-134.00	9.43	0.24
205 -40.90	354A 354A								
	10307 354A 355D 138.63 15.46	С	N	2697	2699	-95.07	-96.50	19.31	0.81
206 -40.00	355D 355D	N	CA	2699	2700	94.95	114.20		
	10308 355D 356L -178.70 22.91							3.15	0.14
207 -41.20									
-63.60	10309 356L 357E 176.22 21.26						-117.80	10.06	0.33
208 -40.30									
-64.10	10310 357E 358S -175.01 18.74						-136.60	5.29	0.21
209 -35.00						155.87			
-63.50	10311 358S 359Y -179.13 26.13						-124.30	8.56	0.36
210 -43.40	359Y 359Y	N	CA	2730	2731	128.78	135.40		

211	10312 359Y 360P	C	N	2740	2742	-53.51	-58.70	6.80	0.52
-64.50	178.24 13.89								
211	360P 360P	N	CA	2742	2743	-34.90	-30.50		
147.20									
212	10313 360P 361D	C	N	2747	2749	-80.08	-70.90	19.57	0.65
-63.30	153.35 19.98								
212	361D 361D	N	CA	2749	2750	167.58	150.30		
-40.00									
213	10314 361D 362F	C	N	2755	2757	-111.67	-124.20	18.57	1.03
-63.20	165.93 26.27								
213	362F 362F	N	CA	2757	2758	157.01	143.30		
-44.30									
214	10315 362F 363S	C	N	2766	2768	-66.27	-72.40	6.16	0.42
-64.10	173.15 12.67								
214	363S 363S	N	CA	2768	2769	151.86	152.40		
-35.00									
215	10316 363S 364E	C	N	2772	2774	-74.13	-69.30	7.02	0.39
-63.60	172.42 23.57								
215	364E 364E	N	CA	2774	2775	147.60	142.50		
-40.30									
216	10318 365I 366A	C	N	2789	2791	-104.06	-134.00	30.33	0.83
-62.50	-178.18 31.99								
216	366A 366A	N	CA	2791	2792	142.10	147.00		
-40.90									

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50

FREQUENCY: 0 0 0 0 25 42 190 183 231 254 243 280 299 342

<< end of ENERGY.

>> Model assessment by DOPE potential iatmcls_286W> MODEL atom not classified: ASN:OXT ASN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F

NONBONDED_SEL_ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 331609 Dynamic pairs routine : 1, NATM x NATM double loop Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD JONES SWITCH 6.500 7.500 COULOMB JONES SWITCH 6.500 7.500 RESIDUE SPAN RANGE 1 9999 NLOGN_USE 15 CONTACT SHELL 15.000 DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: F Т F F SPHERE_STDV 0.050 RADII_FACTOR 0.820 -18903.2168 Current energy << end of ENERGY. DOPE score : -18903.216797 >> Model assessment by SOAP-Protein-OD score preppdf 455W> None of the non-bonded terms selected. pair2___701W> Insufficient system memory to allocate storage for cell-based (NlogN) nonbond list algorithm; falling back to N*N method. Warning 4 of 10; further warnings will be suppressed. >> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 Number of all static, selected restraints 13904 13904 COVALENT_CYS F NONBONDED_SEL_ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 0 : 2, NATM x NATM cell sorting Dynamic pairs routine Atomic shift for contacts update (UPDATE DYNAMIC) : 0.390 LENNARD JONES SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 99999 RESIDUE SPAN RANGE 0 NLOGN_USE 15 CONTACT SHELL 0.000 DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: Τ F F F SPHERE_STDV 0.050 RADII FACTOR 0.820

0.0000

Current energy

```
<< end of ENERGY.
```

SOAP-Protein-OD score : 0.000000

>> Model assessment by GA341 potential

Surface library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/surf5.de

Pair library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier : _

% sequence identity 62.856998 Sequence length 367 Compactness 0.011643 Native energy (pair) 99.628431 Native energy (surface) : 50.079533 Native energy (combined): 10.995486 Z score (pair) -3.520322 Z score (surface) -0.720860Z score (combined) -2.664887 GA341 score 0.857862

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804

Number of all, selected pseudo atoms : 0 0

Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1

Number of non-bonded pairs (excluding 1-2,1-3,1-4): 4507

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

LENNARD_JONES_SWITCH : 6.500 7.500 COULOMB_JONES_SWITCH : 6.500 7.500 RESIDUE_SPAN_RANGE : 0 99999

NLOGN_USE : 15 CONTACT SHELL : 4.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: T T F

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 1996.5691

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL ... relative difference from the best value.

NUMVP ... number of restraints with -Ln(pdf) > VIOL_REPORT_CUT2[i].

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

#	RESTRAINT_GROUP)	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF S							
1 Bond lengt	h potential	: 2	2881	0	0	0.003	0.003
6.6816	1.000						
2 Bond angle	potential	: 3	3935	0	3	1.640	1.640
	1.000						
	ical cosine torsion poter	ı: 1	1962	0	88	51.526	51.526
	1.000						
	ical improper torsion pot	:: 1	L155	0	1	0.953	0.953
	1.000			_	_		
-	e overlap restraints	: 4	1507	0	0	0.003	0.003
	1.000		•	•	•	0.000	0.000
	nes 6-12 potential	:	0	0	0	0.000	0.000
	1.000		0	0	0	0.000	0 000
_	<pre>int-point electrostatic p 1.000</pre>):	0	0	0	0.000	0.000
8 H-bonding		:	0	0	0	0.000	0.000
•	1.000	•	U	U	U	0.000	0.000
	estraints 1 (CA-CA)	:	765	1	6	1.395	1.395
	1.000	•	100	_	O	1.000	1.000
	estraints 2 (N-O)	:	973	0	21	1.720	1.720
	1.000	•	010	ŭ		11,120	11120
		:	0	0	0	0.000	0.000
0.0000	1.000						
12 Mainchain	Psi dihedral restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
13 Mainchain	Omega dihedral restraints	s:	366	0	1	2.707	2.707
	1.000						
14 Sidechain	Chi_1 dihedral restraints	3:	315	0	2	87.603	87.603
92.354	1.000						
15 Sidechain	Chi_2 dihedral restraints	s:	209	0	1	71.017	71.017
	1.000						
	Chi_3 dihedral restraints	3:	98	0	0	90.528	90.528
53.214	1.000						

17 Sidechain Chi_4 dihedral restraint 21.859 1.000	s:	34	0	0	99.471	99.471
18 Disulfide distance restraints	:	5	0	0	0.008	0.008
0.51672E-01 1.000 19 Disulfide angle restraints	:	10	0	0	1.767	1.767
0.68951 1.000		_	•		00.400	00 400
20 Disulfide dihedral angle restraint 4.0229 1.000	s:	5	0	0	29.188	29.188
21 Lower bound distance restraints 0.0000 1.000	:	0	0	0	0.000	0.000
22 Upper bound distance restraints 0.0000 1.000	:	0	0	0	0.000	0.000
23 Distance restraints 3 (SDCH-MNCH)	:	643	0	0	0.585	0.585
16.124 1.000						
24 Sidechain Chi_5 dihedral restraint 0.0000 1.000	s:	0	0	0	0.000	0.000
25 Phi/Psi pair of dihedral restraint	s:	365	196	42	33.960	129.879
352.14 1.000						
26 Distance restraints 4 (SDCH-SDCH)	:	183	0	0	1.529	1.529
9.7950 1.000		0	0	0	0 000	0 000
27 Distance restraints 5 (X-Y) 0.0000 1.000	•	0	0	0	0.000	0.000
28 NMR distance restraints 6 (X-Y)		0	0	0	0.000	0.000
0.0000 1.000	•	O	O	V	0.000	0.000
29 NMR distance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
30 Minimal distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
31 Non-bonded restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
32 Atomic accessibility restraints	:	0	0	0	0.000	0.000
0.0000 1.000		_	_	_		
33 Atomic density restraints	:	0	0	0	0.000	0.000
0.0000 1.000		0	0	0	0 000	0.000
34 Absolute position restraints 0.0000 1.000	•	0	0	0	0.000	0.000
35 Dihedral angle difference restrain	+ •	0	0	0	0.000	0.000
0.0000 1.000		O	O	O	0.000	0.000
36 GBSA implicit solvent potential	:	0	0	0	0.000	0.000
0.0000 1.000						
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

- # Heavy relative violation of each residue is written to: WISP1.V99990004
- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 60087.8203

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR ... the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 25 $\,$: Phi/Psi pair of dihedral restraints List of the RVIOL violations larger than $\,$: $\,$ 6.5000

#	ICSR	RESNO	1/2	ATM	1/2	INDATM	1/2	FEAT	restr	viol	rviol
RESTR	VIOL	RVI	OL								
1	9954	1M	2R	С	N	7	9	-140.34	-125.20	17.98	0.95
-63.00	-171.43	21	.58								
1		2R	2R	N	CA	9	10	130.89	140.60		
-41.10											
2	9955	2R	ЗW	С	N	18	20	-146.45	-124.90	24.38	0.81
-63.00	-178.65	28	. 29								
2		ЗW	ЗW	N	CA	20	21	154.79	143.40		
-44.20											
3	9956	ЗW	4F	С	N	32	34	-104.48	-124.20	28.31	0.77
-63.20	172.31	21	.33								
3		4F	4F	N	CA	34	35	122.99	143.30		
-44.30											
4	9957	4F	5L	С	N	43	45	-117.30	-108.50	15.91	0.91
-63.50	169.23	21	.10								
4		5L	5L	N	CA	45	46	119.25	132.50		

-41.20							
			N	58	60 -146.12 -124.90	24.53	0.80
	-179.61 28.						
5	7W	7W N	CA	60	61 155.70 143.40)	
-44.20							
	9960 7W		N	72	74 -126.11 -124.80	8.05	0.31
	177.95 26.						
6	8T	8T N	CA	74	75 151.44 143.50)	
-42.10							
	9961 8T		N	79	81 -102.40 -108.50	8.49	0.38
	172.24 22.						
		9L N	CA	81	82 126.59 132.50)	
-41.20							
	9962 9L 1		N	87	89 -121.80 -134.00	17.10	0.51
	-174.36 28.						
8	10A 1	OA N	CA	89	90 135.02 147.00)	
-40.90							
9	9963 10A 1	1A C	N	92	94 -77.14 -68.20	9.52	0.90
-62.50	177.66 29.	86					
9	11A 1	1A N	CA	94	95 142.05 145.30)	
-40.90							
10	9965 12V 1	.3T C	N	104	106 -105.66 -124.80	71.58	2.53
-63.20	124.11 13.	59					
10	13T 1	.3T N	CA	106	107 74.52 143.50)	
-42.10							
11	9966 13T 1	4A C	N	111	113 -164.78 -134.00	31.36	0.83
-62.50	-164.92 37.	41					
11	14A 1	4A N	CA	113	114 152.98 147.00)	
-40.90							
12	9967 14A 1	5A C	N	116	118 -77.63 -68.20	11.42	0.75
-62.50	168.03 28.	30					
12	15A 1	.5A N	CA	118	119 151.75 145.30)	
-40.90							
13	9968 15A 1	6A C	N	121	123 -115.84 -134.00	18.33	0.52
-62.50	-177.40 32.	76					
13	16A 1	6A N	CA	123	124 144.47 147.00)	
-40.90							
14	9969 16A 1	7A C	N	126	128 -94.93 -68.20	35.54	3.51
-62.50	165.98 25.	81					
14	17A 1	7A N	CA	128	129 121.88 145.30)	
-40.90							
15	9970 17A 1	.8S C	N	131	133 -174.21 -136.60	44.45	1.35
	-173.83 21.						
15	18S 1		CA	133	134 174.89 151.20)	
-35.00							
16	9971 18S 1	.9T C	N	137	139 -120.87 -124.80	17.77	0.88
	167.32 25.						
16	19T 1		CA	139	140 160.83 143.50)	

-42.10	0074	24.5	004	a		450	404	400.00	404.00	0.70	0 10
	9974 2			C	N	159	161	-130.28	-134.00	3.72	0.12
-62.50 17	-174.94			M	CA	161	160	146.90	1/7 00		
-40.90	•	22 H	ZZH	1/	CA	101	102	140.90	147.00		
18	9976	ээт	244	C	N	171	173	-154 88	-134 00	23.15	0.53
	-173.41			O	14	-11	110	101.00	101.00	20.10	0.00
18	1,0,11			N	CA	173	174	156.98	147.00		
-40.90											
	9978	25L	26S	С	N	184	186	-163.32	-136.60	27.85	1.31
-64.10	-155.91	13	3.30								
19	2	26S	26S	N	CA	186	187	143.35	151.20		
-35.00											
20	9980 2	27P	28A	C	N	197	199	-70.71	-68.20	5.61	0.53
-62.50	179.01	29	9.75								
20	4	28A	28A	N	CA	199	200	140.28	145.30		
-40.90											
	9983			C	N	216	218	-118.93	-124.80	12.49	0.70
	172.62										
21	3	31T	31T	N	CA	218	219	154.52	143.50		
-42.10											
22	9984			С	N	223	225	-85.30	-73.00	18.85	1.48
	170.63				~.	005		400 50			
22	3	32M	32M	N	CA	225	226	128.72	143.00		
-40.50	0005	2014	000	a	3.7	004	000	440.40	00 50	04.04	4 00
23				C	N	231	233	-112.12	-96.50	24.91	1.02
	143.37			NT.	C A	022	024	04.00	114 00		
23 -40.00	3	עסכ	עפפ	IV	CA	233	234	94.80	114.20		
24	9989 3	36D	371	C	M	264	266	-160 04	-13/ 00	27.11	0 66
	-168.71			O	1/	204	200	100.04	134.00	27.11	0.00
24	100.71			N	CA	266	267	154.55	147 00		
-40.90	`	J 1 11	0111		OII	200	201	101.00	111.00		
	9992 3	39L	40E	С	N	284	286	-124.11	-117.80	40.71	2.14
	71.50										
25	4			N	CA	286	287	96.58	136.80		
142.50											
26	9993 4	40E	41D	С	N	293	295	-70.24	-70.90	20.52	0.98
-63.30	169.93	20	0.56								
26	4	41D	41D	N	CA	295	296	129.79	150.30		
-40.00											
27	9994 4	41D	42T	C	N	301	303	-109.56	-124.80	43.39	1.45
-63.20	152.21	10	6.90								
27	4	12T	42T	N	CA	303	304	102.87	143.50		
-42.10											
28	9997			C	N	320	322	-66.80	-72.10	11.56	0.78
	172.76										
28	4	45R	45R	N	CA	322	323	131.62	141.90		

-41.10				_							
			-		N	338	340	-155.05	-121.10	34.09	1.35
	-160.8				C A	240	2/1	126 67	120 70		
29		4/Ų	41Ų	IN	CA	340	341	136.67	139.70		
-40.30	10000	470	40E	C	M	247	240	100 20	104 00	3.89	0 12
30 -63 30	-174.4	-		C	N	341	349	-122.30	-124.20	3.09	0.13
30	-174.4			M	CA	3/10	350	139.87	1/12 20		
-44.30		401	401	1//	OH	343	330	139.01	143.30		
	10002	/10C	50k	C	M	36/	366	-76 21	-70 20	6.06	0.42
	178.4			O	1/	304	300	10.21	10.20	0.00	0.42
31	170.4			N	CA	366	367	141.22	140 40		
-40.80		OON	OON	14	Oh	500	501	141.22	140.40		
32	10003	50K	51W	С	N	373	375	-91 81	-71 30	22.65	1 38
	169.6			Ü	14	0.0	010	01.01	11.00	22.00	1.00
32				N	CA	375	376	148.61	139.00		
-44.20		0	0		V		0.0	110101	200.00		
33	10004	51W	52P	С	N	387	389	-66.06	-58.70	9.60	0.74
	171.5										
33				N	CA	389	390	-24.33	-30.50		
147.20											
34	10006	53C	54E	С	N	400	402	-96.78	-117.80	21.53	0.69
-63.60	175.6	2 2	1.76								
34		54E	54E	N	CA	402	403	132.15	136.80		
-40.30											
35	10010	57P	58S	С	N	429	431	-127.12	-136.60	9.48	0.38
-64.10	-175.3	3 1	7.81								
35		58S	58S	N	CA	431	432	151.42	151.20		
-35.00											
36	10013	60P	61R	С	N	449	451	-140.22	-125.20	21.47	0.66
-63.00	-179.6	7 2	9.63								
36		61R	61R	N	CA	451	452	155.94	140.60		
-41.10											
37	10016	63P	64L	C	N	473	475	-65.37	-70.70	9.70	0.60
-63.50	174.7	1 2	4.15								
37		64L	64L	N	CA	475	476	133.50	141.60		
-41.20											
38				С	N	481	483	84.81	78.70	29.86	0.61
	156.19										
38		65G	65G	N	CA	483	484	164.68	-166.10		
8.50											
	10018				N	485	487	-63.96	-62.40	1.78	0.30
	0 -176.										
39		66V	66V	N	CA	487	488	-43.27	-42.40		
143.30	40040	0011	070	a		400	46.4	444.05	100.00	00.00	
40				C	N	492	494	-144.65	-136.60	26.89	1.17
	168.6			NT.	GA.	404	405	170 05	151 00		
40		67S	6/5	IN	CA	494	495	176.85	151.20		

-35.00											
41	10020	67S	68L	C	N	498	500	-65.75	-70.70	5.57	0.56
-63.50	174.6										
41		68L	68L	N	CA	500	501	144.17	141.60		
-41.20											
	10022			С	N	514	516	-119.73	-124.80	8.13	0.48
-63.20	177.30										
42		70T	70T	N	CA	516	517	149.86	143.50		
-42.10											
	10023			C	N	521	523	-86.00	-96.50	62.25	2.62
-63.30	95.58										
43		71D	71D	N	CA	523	524	52.85	114.20		
-40.00											
	10024			С	N	529	531	66.31	78.70	12.64	0.57
82.20	172.83										
44		72G	72G	N	CA	531	532	-163.59	-166.10		
8.50											
45				С	N	539	541	-108.46	-117.80	20.23	0.79
	165.3										
45		74E	74E	N	CA	541	542	118.86	136.80		
-40.30											
	10029			С	N	560	562	-136.08	-118.00	24.74	1.24
	178.69										
46		77K	77K	N	CA	562	563	122.22	139.10		
-40.80											
	10030			С	N	569	571	-145.44	-125.60	22.92	0.68
	-173.4										
47		78M	78M	N	CA	571	572	151.96	140.50		
-40.50											
	10031				N	577	579	-63.74	-63.00	1.08	0.19
	0 -174.8										
			79C	N	CA	579	580	-41.89	-41.10		
				С	N	583	585	-71.44	-68.20	11.92	0.85
	162.58				~.			450 55	4.45 00		
49		80A	80A	N	CA	585	586	156.77	145.30		
-40.90		004	040	a	37	500	500	71 10	70.00	0.00	0 00
50					N	588	590	-/1.12	-73.00	8.62	0.60
	170.74				G 4	F00	E04	440.40	440.70		
50		81Q	814	IV	CA	590	591	149.12	140.70		
-40.30		040	000	a	N	F07	F00	405.04	101 10	20.07	0.00
51		-	-		N	597	599	-105.84	-121.10	38.87	2.02
	150.2				CA.	E00	600	175 15	120 70		
		ō∠Ų	ŏ∠Ų	IN	CA	599	000	175.45	139.70		
-40.30		000	0.01	a	NT	606	600	67 07	70 70	00 74	1 00
	10035				IA	dud	გეგ	-01.27	-10.70	23.71	1.93
	153.78				C A	600	600	165 06	1/1/ 00		
52		83L	83L	IN	CA	608	609	165.06	141.60		

-41.20						
53 10041 88T 89E		647	649 -156.61	-117.80	46.45	1.37
-63.60 -177.18 29.50		240	250 120 01	400.00		
53 89E 89E	N CA	649	650 162.31	136.80		
-40.30	G 17	25.0	250 120 11	404.00	00.00	0 07
54 10042 89E 90A		656	658 -160.11	-134.00	26.98	0.67
-62.50 -168.04 36.66		250	0F0 4F0 04	4.47 00		
54 90A 90A	N CA	658	659 153.81	147.00		
-40.90	O N	001	662 02 54	60.00	04 00	1 04
55 10043 90A 91A		991	663 -83.54	-68.20	21.22	1.34
-62.50 160.52 27.39		660	664 450 06	145 20		
55 91A 91A	N CA	663	664 159.96	145.30		
-40.90	C M	674	676 60 17	62.00	F 00	0.00
56 10045 92I 93C -117.90 -175.94 7.8		674	676 -68.17	-63.00	5.20	0.89
		676	677 41 60	41 10		
56 93C 93C	N CA	010	677 -41.68	-41.10		
141.10	C M	600	600 F2 67	70.00	21 61	1 00
57 10046 93C 94D		680	682 -53.67	-70.90	31.61	1.08
-63.30 164.08 20.85		600	602 402 00	150.00		
57 94D 94D	N CA	682	683 123.80	150.30		
-40.00	C M	COE	607 124 54	105 60	64 00	0.62
58 10048 95P 96H		695	697 -134.54	-125.60	64.92	2.63
-63.20 136.86 14.57		607	600 74 50	100.00		
58 96H 96H	N CA	697	698 74.50	138.80		
-42.30	о н	705	707 04 04	70.40	440 74	44 00
59 10049 96H 97R		705	707 61.01	-72.10	140.71	11.66
-63.00 -179.31 21.17		707	700 470 54	4.44 00		
59 97R 97R	N CA	707	708 -172.51	141.90		
-41.10	о н	74.0	740 64 00	00.00	44.00	4 44
60 10050 97R 98G	C N	716	718 -64.93	-80.20	44.92	1.11
82.20 -168.00 6.66	N CA	710	710 101 05	17/ 10		
60 98G 98G	N CA	718	719 131.85	174.10		
8.50	о N	700	700 405 05	60 F0	70 05	0 44
61 10051 98G 99L		720	722 -105.35	-63.50	73.85	9.11
-63.50 73.85 9.11		700	700 40 64	44 00		
61 99L 99L	N CA	722	723 19.64	-41.20		
-41.20	. a . v	700	700 50 05	00.40	456.00	0.04
62 10052 99L 100Y		728	730 58.05	-98.40	156.88	6.31
-63.50 -158.92 37.44		700	704 446 70	400 40		
	N CA	730	731 116.78	128.40		
-43.40	G 17	740	740 70 00	00 50	00.00	0.05
63 10054 101C 102D		746	748 -78.92	-96.50	20.38	0.85
-63.30 144.73 16.97		7 40	740 400 00	444 00		
63 102D 102D	N CA	748	749 103.89	114.20		
-40.00	a ::	700	700 00 00	70 40	440.05	2 24
64 10056 103Y 104S		766	768 26.22	-72.40	116.05	9.34
-64.10 143.44 10.63		5 00	700 440 65	450.46		
64 104S 104S	N CA	768	769 -146.43	152.40		

-35.00	10057 1048 1058	C N	770	774	106.07	70 70	FF 07	1 77
	10057 104S 105G 161.63 9.96	C N	112	114	120.07	18.10	55.97	1.//
65	105G 105G	N CΔ	774	775	164.07	-166 10		
8.50	1000 1000	N ON	111	110	101.01	100.10		
66	10058 105G 106D	C N	776	778	69.17	54.50	37.94	1.88
	140.20 23.76				00121	0 2 7 0 0	0, 10 1	2.00
66	106D 106D	N CA	778	779	5.90	40.90		
-40.00								
67	10059 106D 107R	C N	784	786	157.83	-125.20	85.94	4.37
-63.00	-160.14 23.51							
67	107R 107R	N CA	786	787	102.35	140.60		
-41.10								
68	10061 108P 109R	C N	802	804	-73.17	-72.10	46.88	3.63
-63.00	136.51 17.78							
68	109R 109R	N CA	804	805	95.03	141.90		
-41.10								
	10062 109R 110Y		813	815	-123.46	-124.30	4.90	0.23
	-175.99 26.45							
69	110Y 110Y	N CA	815	816	130.57	135.40		
-43.40		a 11	005	007	100.00	404.00	05.45	4 00
	10063 110Y 111A		825	827	-108.02	-134.00	35.45	1.02
-62.50 70	169.99 26.03 111A 111A		007	000	100.00	147 00		
-40.90	IIIA IIIA	IV CA	021	020	122.88	147.00		
	10068 115C 116A	C N	955	957	_115 /19	_13/ 00	18.53	0 50
	-179.35 32.42		000	001	-115.40	134.00	10.55	0.55
71	116A 116A		857	858	146.39	147.00		
-40.90		011	001	000	110.00	111.00		
	10069 116A 117Q	C N	860	862	-73.80	-73.00	7.45	0.47
	171.89 25.80							
72	117Q 117Q	N CA	862	863	148.10	140.70		
-40.30								
73	10072 119V 120G	C N	883	885	66.99	78.70	15.39	0.40
82.20	165.33 8.79							
73	120G 120G	N CA	885	886	-156.13	-166.10		
8.50								
	10074 121V 122G	C N	894	896	95.52	78.70	39.91	0.60
	149.80 7.94							
74	122G 122G	N CA	896	897	157.71	-166.10		
8.50								
	10111 158L 159R		1163	1165	-140.00	-125.20	35.73	1.35
	164.87 27.49		4405	4400	170 11	440.00		
	159R 159R	IN CA	1165	1166	173.11	140.60		
-41.10		C M	1101	1100	166 00	_10F_00	70 66	0 27
	10113 160V 161R -169.76 33.92		1101	1103	100.08	-125.20	19.00	2.31
-63.00 76	161R 161R		1100	110/	-170 10	1/10 60		
70	TOIR TOIR	14 CA	1102	1104	113.12	140.00		

-41.10								
	10116 163P 164R		1206	1208	-177.28	-125.20	54.26	1.81
	-160.88 34.42			4000	455.04	440.00		
	164R 164R	N C	A 1208	1209	155.84	140.60		
-41.10	10110 1051 1001	<i>a</i> N	1005	1007	126.00	104.00	05 45	0.00
	10118 165L 166W 167.10 25.86	C N	1225	1227	-136.82	-124.90	25.45	0.93
	166W 166W	N C	1007	1000	165.89	1/12 //0		
-44.20		IV C	1 1221	1220	105.69	143.40		
	10120 167C 168P	C N	1245	1247	-55 62	-58.70	3 08	0.40
	177.84 12.81	O N	1240	1271	00.02	50.70	3.00	0.40
	168P 168P	N C	1947	1248	-30 42	-30 50		
147.20		10 01	1 1217	1210	00.12	00.00		
	10121 168P 169H	C N	1252	1254	-66.13	-67.60	4.38	0.29
	178.20 22.10		1202	1201	00.10	01.00	1.00	0.20
80		N C	A 1254	1255	135.87	140.00		
-42.30								
81	10122 169H 170P	C N	1262	1264	-73.29	-58.70	28.40	1.67
-64.50	153.58 11.93							
81	170P 170P	N C	A 1264	1265	-6.13	-30.50		
147.20								
82	10130 177G 178H	C N	1323	1325	-78.58	-67.60	14.90	0.88
-63.20	168.34 22.03							
82	178H 178H	N C	A 1325	1326	150.07	140.00		
-42.30								
	10133 180C 181E	C N	1345	1347	-148.71	-117.80	34.97	1.02
-63.60	-172.95 29.68							
83	181E 181E	N C	A 1347	1348	153.14	136.80		
-40.30								
	10134 181E 182Q		1354	1356	-94.86	-73.00	41.73	3.15
	148.74 20.37							
	182Q 182Q	N C	A 1356	1357	105.16	140.70		
	40405 4000 4000	a	4000		450.05	404.00	40.05	
	10135 182Q 183W		1363	1365	-152.07	-124.90	43.05	1.42
	165.10 26.61		1005	1000	176 70	140 40		
-44.20	183W 183W	N C	A 1365	1300	176.79	143.40		
	10138 185C 186E	C N	1300	1300	-69 57	-69.30	1 00	0 10
	176.47 23.80		1390	1332	-00.57	-09.30	1.00	0.10
	186E 186E		1392	1393	143 30	142 50		
-40.30		11 02	1002	1000	110.00	112.00		
	10141 188D 189A	C N	1415	1417	171.82	-134.00	54.31	1.66
	-149.90 41.03					202.00	01.01	2.00
87	189A 189A		A 1417	1418	150.73	147.00		
-40.90								
88	10143 190K 191R	C N	1429	1431	-76.93	-72.10	6.42	0.42
-63.00	173.32 24.36							
88	191R 191R	N C	A 1431	1432	146.14	141.90		

-41.10								
	10144 191R 192P		1440	1442	-75.24	-64.50	10.80	1.06
	179.56 13.54					4.45.00		
	192P 192P	N CA	1442	1443	148.30	147.20		
-30.50								
	10145 192P 193R	C N	1447	1449	-127.67	-125.20	2.58	0.12
	-169.63 30.18		4.4.4.0		400.05			
	193R 193R	N CA	1449	1450	139.85	140.60		
-41.10	10110 1000 1017	a 17	4.450	4 4 0 0	450.00	440.00	F0 F0	4 05
	10146 193R 194K	C N	1458	1460	-158.20	-118.00	53.52	1.85
	173.32 28.16	N	4.400		474 40	100 10		
91		N CA	1460	1461	174.43	139.10		
-40.80		C N	1 1 7 1	1 170	105 75	124 00	20.07	0.74
	10148 195T 196A	C N	14/4	14/6	-105.75	-134.00	32.27	0.74
	177.63 27.33	N CA	1.470	1 177	101 00	1.47 00		
	196A 196A	N CA	1476	14//	131.39	147.00		
-40.90	101E0 107D 100D	C N	1.400	1 400	170 71	105.00	CF 1C	0.00
	10150 197P 198R	C N	1486	1488	1/3./1	-125.20	65.16	2.08
	-161.45 34.80	N CA	1.400	1 100	160 07	140 60		
93	198R 198R	N CA	1488	1489	163.27	140.60		
-41.10	101E0 100D 000T	C N	1505	1507	150 77	104.00	40.02	1 26
	10152 199D 200T		1505	1507	-153.77	-124.80	42.93	1.30
	169.03 27.42 200T 200T		1507	1 5 0 0	17E 10	1/2 EA		
-42.10	2001 2001	N CA	1507	1500	1/5.10	143.50		
	10153 200T 201G	C M	1510	151/	170 71	-167 20	20 42	1 19
	170.02 12.16	C N	1512	1514	170.71	-167.20	30.43	1.13
95	201G 201G	N CA	151/	1515	152 60	17/ 60		
8.50	201G 201G	IV CA	1314	1313	155.00	174.00		
	10154 201G 202A	C N	1516	1512	-151 /10	-13/ 00	10 /17	0.44
	-173.79 35.27		1310	1310	-101.43	-134.00	19.41	0.44
	202A 202A		1518	1510	155 54	147 00		
-40.90	ZOZR ZOZR	N OA	1010	1013	100.04	147.00		
	10155 202A 203F	C N	1521	1523	-132 80	-124 20	16 27	0 51
	173.19 28.58		1021	1020	102.00	121.20	10.21	0.01
97			1523	1524	157 11	143 30		
-44.30	2001 2001	N ON	1020	1021	101.11	110.00		
	10156 203F 204D	C N	1532	1534	-74 06	-70 90	9.22	0.32
	161.41 20.59		1002	1001	, 1, 00	10.00	0.22	0.02
98			1534	1535	158.96	150.30		
-40.00			1001			200.00		
	10157 204D 205A	C N	1540	1542	-72.35	-68.20	9.18	0.60
	165.90 27.68							
	205A 205A		1542	1543	153.49	145.30		
-40.90			-					
	10160 207G 208E	C N	1556	1558	-79.74	-69.30	14.87	0.83
	167.40 23.22		-					
100			1558	1559	153.08	142.50		

-40.30	10100 0100 0111	<i>a</i> 17	4504	1500	70.47	20.00	4.44 .00	10.00
	10163 210E 211A -146.07 32.49	C N	1581	1583	73.17	-68.20	141.62	12.28
101	211A 211A	M C	A 1502	150/	152 70	1/5 20		
-40.90	ZIIA ZIIA	IV C	A 1505	1304	155.70	145.30		
102	10165 212W 213H	C N	1600	1602	-109 79	-125.60	16 59	0.68
	-179.97 25.55	0 1	1000	1002	100.70	120.00	10.00	0.00
102		N C	A 1602	1603	143.80	138.80		
-42.30								
103	10166 213H 214R	C N	1610	1612	-74.09	-72.10	2.88	0.19
-63.00	175.27 24.43							
103	214R 214R	N C	A 1612	1613	143.98	141.90		
-41.10								
104	10167 214R 215N	C N	1621	1623	-99.96	-119.90	27.85	0.81
-63.20	162.86 18.57							
104	215N 215N	N C	A 1623	1624	117.56	137.00		
-41.10								
105	10170 217I 218A	C N	1643	1645	-178.92	-134.00	59.72	1.67
	176.57 34.95							
105	218A 218A	N C	A 1645	1646	-173.64	147.00		
-40.90								
106	10171 218A 219Y	C N	1648	1650	-47.63	-98.40	57.61	3.30
	161.75 24.87	N G	4.050	4.054	455 60	100 10		
106	219Y 219Y	N C	A 1650	1651	155.63	128.40		
-43.40	10170 010V 000T	C N	1660	1660	GE //1	62 00	60 10	0 00
107	10172 219Y 220T 68.18 8.89	C N	1660	1002	-65.41	-63.20	00.10	0.09
107	220T 220T	N C	۸ 1662	1663	-110.24	-//2 10		
-42.10	2201 2201	IV C.	H 1002	1003	110.24	42.10		
108	10173 220T 221S	C N	1667	1669	-98.27	-72.40	44.02	3.40
	155.58 9.78	0 11	1001	1000	00.2	12.10	11.02	0.10
108		N C	A 1669	1670	116.78	152.40		
-35.00								
109	10175 222P 223W	C N	1680	1682	-93.55	-71.30	33.60	1.98
-63.00	154.68 21.33							
109	223W 223W	N C	A 1682	1683	164.17	139.00		
-44.20								
110	10176 223W 224S	C N	1694	1696	-64.01	-72.40	9.59	0.77
-64.10	167.94 12.16							
110		N C	A 1696	1697	157.06	152.40		
-35.00								
	10179 226C 227S	C N	1713	1715	-172.42	-136.60	58.61	2.03
	167.23 19.91							
	227S 227S	N C	A 1715	1716	-162.41	151.20		
-35.00	10100 0070 000	a	4540	1701	FO 73	70 10	00.00	0.00
	10180 227S 228T	C N	1/19	1721	-58./1	-78.10	26.20	0.99
	174.33 22.65	N C	A 1701	1700	120 17	140.00		
112	228T 228T	IN C	н 1/21	1/22	132.17	149.80		

-42.10	~	4500	1500 100	5 4 400 00	45.40	0.04
113 10181 228T 229S		1726	1728 -120.	74 -136.60	17.10	0.84
-64.10 176.72 16.77		A 1700	1700 157	CO 151 00		
113 229S 229S	N C	A 1728	1729 157.	60 151.20		
-35.00	о м	1720	1740 65	10 00 00	44.04	1 10
114 10183 230C 231G	C N	1738	1740 -65.	10 -80.20	44.24	1.10
82.20 -167.45 6.66 114 231G 231G	M C	1740	1741 132.	E1 17/ 10		
8.50	N C	A 1740	1741 132.	51 174.10		
115 10184 231G 232L	C M	17/19	17// _9/	69 -70.70	17 70	1 10
-63.50 167.70 24.55		1142	1744 -04.	09 -10.10	11.10	1.19
115 232L 232L		Λ 17//	17/15 150	// 1/1 60		
-41.20	IN C	N 1/44	1740 102.	44 141.00		
116 10185 232L 233G	C N	1750	1752 -72	98 -80 20	17 49	0 41
82.20 -144.40 6.88	0 11	1100	1702 72.	00.20	17.10	0.11
116 233G 233G	N C	A 1752	1753 158.	17 174.10		
8.50	0	1,02	1,00 100.	1, 1,1,10		
117 10187 234V 235S	C N	1761	1763 -112.	69 -136.60	25.41	0.82
-64.10 -175.89 11.42						
117 235S 235S	N C	A 1763	1764 142.	58 151.20		
-35.00						
118 10188 235S 236T	C N	1767	1769 -83.	75 -78.10	10.27	0.34
-63.20 160.85 21.99						
118 236T 236T	N C	A 1769	1770 158.	37 149.80		
-42.10						
119 10189 236T 237R	. C N	1774	1776 -115.	39 -125.20	20.05	1.11
-63.00 169.14 26.47						
119 237R 237R	N C	A 1776	1777 158.	08 140.60		
-41.10						
120 10191 238I 239S	C N	1793	1795 -152.	97 -136.60	23.63	0.77
-64.10 -179.80 19.45						
120 239S 239S	N C	A 1795	1796 168.	23 151.20		
-35.00						
121 10192 239S 240N	C N	1799	1801 -117.	31 -119.90	19.68	0.95
-63.20 171.17 24.48						
121 240N 240N	N C	A 1801	1802 156.	51 137.00		
-41.10						
122 10194 241V 242N		1814	1816 -138.	80 -119.90	19.88	0.67
-63.20 -168.67 28.20						
	N C	A 1816	1817 143.	14 137.00		
-41.10						
123 10195 242N 243A		1822	1824 -116.	65 -134.00	21.38	0.54
-62.50 -176.43 27.97			1005 :5:	E0 448 55		
123 243A 243A	N C	A 1824	1825 134.	50 147.00		
-40.90	a ::	1005	1000 110	00 404 40	04.05	4 00
124 10196 243A 244Q		1827	1829 -148.	20 -121.10	<i>3</i> 4.85	1.09
-63.80 179.30 30.73		A 4000	1020 101	E2 120 70		
124 244Q 244Q	N C	a 1829	1830 161.	53 139.70		

-40.30	C N	1040 1044	00 00 104 00	150 24	F 60
125 10198 245C 246W -63.00 -155.97 24.95		1842 1844	89.29 -124.90	150.34	5.69
125 246W 246W		1844 1845	5 -179 97 143 40		
-44.20	N OF	1011 1010	7 175.57 110.40		
126 10200 247P 248E	C N	1863 1865	76.86 -69.30	14.22	0.83
-63.60 165.68 22.83					
126 248E 248E	N CA	1865 1866	154.55 142.50		
-40.30					
127 10201 248E 249Q	C N	1872 1874	-67.60 -73.00	7.53	0.44
-63.80 175.80 25.65					
127 249Q 249Q	N CA	1874 1875	135.45 140.70		
-40.30					
128 10202 249Q 250E		1881 1883	3 -146.34 -117.80	47.99	1.69
-63.60 166.35 26.75					
128 250E 250E	N CA	1883 1884	175.38 136.80		
-40.30					
129 10203 250E 251S		1890 1892	2 -72.58 -72.40	21.17	1.24
-64.10 151.67 11.51		4000 4000			
	N CA	1892 1893	3 173.57 152.40		
-35.00	O N	1006 1006	75 00 70 10	CO 05	4 77
130 10204 251S 252R		1896 1898	3 -75.89 -72.10	60.95	4.77
-63.00 122.84 15.76 130 252R 252R		1000 1000	01 06 1/1 00		
-41.10 252R 252R	N CA	. 1090 1098	0 01.00 141.90		
131 10207 254C 255N	C N	1921 1923	3 -113.81 -119.90	12 79	0.68
-63.20 178.00 25.14		1321 1320	7 110.01 110.00	12.75	0.00
131 255N 255N		1923 1924	148.25 137.00		
-41.10					
132 10209 256L 257R	C N	1937 1939	-121.81 -125.20	26.90	1.37
-63.00 162.62 26.01					
132 257R 257R	N CA	1939 1940	167.28 140.60		
-41.10					
133 10211 258P 259C	C N	1955 1957	7 -61.76 -63.00	6.96	0.77
-117.90 179.93 7.7	7				
133 259C 259C	N CA	1957 1958	3 -47.95 -41.10		
141.10					
134 10212 259C 260D		1961 1963	3 -97.23 -96.50	13.38	0.56
-63.30 170.96 19.29					
134 260D 260D	N CA	1963 1964	127.56 114.20		
-40.00					
135 10214 261V 262D		1976 1978	3 -91.76 -70.90	59.77	2.09
-63.30 117.21 16.30		1070 1070	152 60 150 20		
135 262D 262D	N CA	. 19/8 19/8	9 -153.69 150.30		
-40.00 136 10216 263I 264H	C M	1002 1004	-129.10 -125.60	ΛΛΛ	0 11
-63.20 -171.91 27.83		1992 1994	123.10 -123.00	4.44	0.11
		1994 1995	5 141.53 138.80		
100 20411 20411	IV CA	1997 1990	, 141.00 100.00		

-42.30								
	10218 265T 266L	C N	2009	2011	-134.55	-108.50	27.82	1.24
	-169.70 30.82	N CA	0011	2012	140.06	120 50		
-41.20	266L 266L	N CA	2011	2012	142.20	132.50		
	10229 276V 277Y	C N	2087	2080	-13/1 60	-124.30	17 82	1 37
	178.98 25.30	C IV	2001	2003	104.00	124.50	17.02	1.57
	2777 2777	N CA	2089	2090	120.85	135.40		
-43.40	2111 2111	., 011	2000	2000	120.00	100.10		
	10230 277Y 278Q	C N	2099	2101	-140.38	-121.10	21.50	0.67
	-173.11 31.50							
139	278Q 278Q	N CA	2101	2102	149.22	139.70		
-40.30								
140	10232 279P 280E	C N	2115	2117	-161.81	-117.80	44.14	1.54
-63.60	-155.35 32.73							
140	280E 280E	N CA	2117	2118	140.15	136.80		
-40.30								
	10233 280E 281A	C N	2124	2126	-74.04	-68.20	8.22	0.81
	179.95 30.07							
	281A 281A	N CA	2126	2127	139.52	145.30		
-40.90								
	10234 281A 282S	C N	2129	2131	-163.35	-136.60	29.66	0.92
	-170.87 20.86		0.4.0.4	0.4.00	404.00	454.00		
	282S 282S	N CA	2131	2132	164.00	151.20		
-35.00	1002E 000G 002W	O N	04.05	0407	75 40	72 00	7 10	0.45
	10235 282S 283M 170.21 26.36	C N	2135	2137	-75.40	-73.00	7.13	0.45
	283M 283M	N CA	2137	013 0	1/0 71	1/13 00		
-40.50		N CA	2131	2130	149.71	143.00		
	10236 283M 284N	C N	2143	2145	-88 11	-71.20	35 76	2 73
	154.41 18.04	0 11	2110	2110	00.11	71.20	00.70	2.10
	284N 284N	N CA	2145	2146	111.29	142.80		
145	10237 284N 285F	C N	2151	2153	-144.02	-124.20	27.37	0.73
-63.20	173.49 29.25							
145	285F 285F	N CA	2153	2154	162.18	143.30		
-44.30								
146	10239 286T 287L	C N	2169	2171	-75.73	-70.70	7.22	0.46
-63.50	172.46 24.67							
146	287L 287L	N CA	2171	2172	146.77	141.60		
-41.20								
	10240 287L 288A		2177	2179	-129.64	-134.00	4.67	0.11
	-173.69 34.13							
	288A 288A	N CA	2179	2180	145.31	147.00		
-40.90	10044 0017 0007	a	0000	0000	450.45	100.00	07 5 4	0.00
	10244 291I 292S	C N	2200	2202	-156.46	-136.60	27.54	0.88
	-179.81 19.71	N GA	0000	0000	170 07	154 00		
148	292S 292S	N CA	2202	2203	1/0.27	151.20		

-35.00	1004E 000G 002T	C N	2006	0000	75 00	70 10	2 02	0.00
	10245 292S 293T 166.15 22.15	C IV	2206	2208	-75.99	-78.10	3.23	0.20
	293T 293T	N C	A 2208	2209	152.24	149.80		
-42.10		0	2200	2200	102.21	110.00		
	10246 293T 294R	C N	2213	2215	-127.13	-125.20	2.87	0.09
-63.00	-172.51 29.75							
150	294R 294R	N C	A 2215	2216	142.72	140.60		
-41.10								
151	10247 294R 295S	C N	2224	2226	-88.45	-72.40	31.75	1.46
-64.10	147.23 12.28							
151	2958 2958	N C	A 2226	2227	179.80	152.40		
-35.00								
	10248 295S 296Y	C N	2230	2232	-96.83	-98.40	2.17	0.18
	173.53 25.90							
152	296Y 296Y	N C	A 2232	2233	126.90	128.40		
-43.40	10040 0067 0070	G 17	0040	0044	400.64	101 10	04 05	0.00
	10249 296Y 297Q	C N	2242	2244	-129.64	-121.10	21.05	0.83
	173.73 29.02	N C	A 0044	0045	150 02	120 70		
-40.30	297Q 297Q	N C	A 2244	2245	158.93	139.70		
	10250 297Q 298P	C N	2251	2253	-66 97	_5 <u>2</u> 70	10.26	0 83
	171.50 12.92	C IV	2201	2200	-00.07	-30.70	10.20	0.03
154		N C	A 2253	2254	-24 29	-30 50		
147.20	2001 2001	. 0	11 2200	2201	21.20	00.00		
	10251 298P 299K	C N	2258	2260	-116.15	-118.00	21.98	1.09
	166.92 24.85							2.00
155		N C	A 2260	2261	161.00	139.10		
-40.80								
156	10252 299K 300Y	C N	2267	2269	-105.61	-98.40	27.85	2.84
-63.50	150.90 21.96							
156	300Y 300Y	N C	A 2269	2270	101.50	128.40		
-43.40								
157	10257 304C 305M	C N	2302	2304	-122.22	-125.60	28.34	1.28
-63.40	163.79 20.76							
	305M 305M	N C	A 2304	2305	112.37	140.50		
-40.50								
	10259 306D 307N	C N	2318	2320	-107.24	-119.90	19.78	1.07
	172.42 24.06	N	4 0000	0004	450.04	407.00		
158		N C	A 2320	2321	152.21	137.00		
-41.10	10264 311I 312P	C M	0257	02E0	70 00	EO 70	02 00	1 15
	158.19 12.22		2331	2339	-12.22	-50.70	23.88	1.45
	312P 312P		A 2359	2360	-10 81	-30 50		
147.20		14 0	11 2009	2000	10.01	50.50		
	10266 313Y 314K	C N	2376	2378	-100.38	-118.00	39.90	2.07
	149.08 21.57	- 11	20.0				22.00	2.01
160	314K 314K	N C	A 2378	2379	174.91	139.10		

-40.80 161 10268 315S 316K C	M	2301 2303 -	-163.38 -62.90	102 27	15 92
-62.90 102.27 15.82	IN	2391 2393 -	103.30 -02.90	102.21	10.02
	СА	2393 2394	-21.76 -40.80		
-40.80	Oh	2000 2004	21.70 40.00		
162 10270 317T 318I C	N	2407 2409	-68.31 -63.40	7 82	1 19
-120.60 175.78 8.13	14	2107 2100	00.01 00.10	7.02	1.10
162 318I 318I N	CA	2409 2410	-37.52 -43.60		
130.30	011	2100 2110	01.02 10.00		
163 10271 318I 319D C	N	2415 2417	-49.81 -70.90	21.25	1.69
-63.30 167.60 19.90		2110 2111	10.01	21.20	1.00
163 319D 319D N	CA	2417 2418	152.95 150.30		
-40.00	011	211, 2110	102.00 100.00		
164 10278 325P 326D C	N	2469 2471 -	-172.21 -96.50	78.02	3.17
-63.30 173.73 18.93					
164 326D 326D N	CA	2471 2472	95.36 114.20		
-40.00					
165 10279 326D 327G C	N	2477 2479 -	-134.39 -167.20	42.58	0.85
82.20 -160.31 15.36					
	CA	2479 2480	147.46 174.60		
8.50					
166 10280 327G 328L C	N	2481 2483 -	106.19 -108.50	6.48	0.37
-63.50 -175.24 23.57					
166 328L 328L N	CA	2483 2484	138.56 132.50		
-41.20					
167 10281 328L 329G C	N	2489 2491 -	168.48 -167.20	10.06	0.41
82.20 -169.41 13.96					
167 329G 329G N	CA	2491 2492	164.62 174.60		
8.50					
168 10282 329G 330F C	N	2493 2495 -	-130.93 -124.20	25.30	1.01
-63.20 162.77 26.99					
168 330F 330F N	CA	2495 2496	167.69 143.30		
-44.30					
169 10283 330F 331S C	N	2504 2506	-60.82 -72.40	12.58	0.73
-64.10 177.56 12.67					
169 331S 331S N	CA	2506 2507	147.47 152.40		
-35.00					
170 10284 331S 332R C	N	2510 2512 -	101.34 -125.20	29.41	0.87
-63.00 168.91 20.51					
	CA	2512 2513	123.40 140.60		
-41.10					
171 10285 332R 333Q C	N	2521 2523 -	-135.39 -121.10	14.46	0.59
-63.80 -168.33 25.10					
171 333Q 333Q N	CA	2523 2524	137.50 139.70		
-40.30					_
172 10287 334V 335L C	N	2537 2539 -	-120.25 -108.50	22.06	1.26
-63.50 165.09 20.48					
172 335L 335L N	CA	2539 2540	113.83 132.50		

-41.20 173	10000 2251 2261	C 1	\T .	05/5	25/7	_126 76	_124_00	15.09	0 0E
	10288 335L 336W -167.08 21.23	C I	.V	2545	2541	-136.76	-124.90	15.09	0.85
173	336W 336W	N (7Δ	2547	2548	134.06	143 40		
-44.20		10 \	JH .	2011	2010	101.00	110.10		
174	10290 337I 338N	C 1	N :	2567	2569	-131.83	-119.90	23.51	1.26
	172.12 18.70		.•			101.00		20.01	
174		N (CA :	2569	2570	116.74	137.00		
-41.10									
175	10291 338N 339A	C 1	N :	2575	2577	-159.81	-134.00	25.92	0.77
-62.50	-164.34 37.26								
175	339A 339A	N (CA :	2577	2578	149.36	147.00		
-40.90									
176	10293 340C 341F	C I	N :	2586	2588	-120.27	-124.20	14.88	0.59
-63.20	-177.59 21.89								
176	341F 341F	N (CA	2588	2589	128.96	143.30		
-44.30									
	10295 342C 343N	C 1	N :	2603	2605	-114.32	-119.90	9.65	0.30
	177.74 19.85								
177	343N 343N	N (CA :	2605	2606	129.13	137.00		
-41.10									
178		C I	N :	2611	2613	-107.04	-108.50	7.19	0.37
	172.26 21.83	NT /	7 A	0640	0614	105 46	120 50		
178	344L 344L	N (JA .	2613	2614	125.46	132.50		
-41.20 179	10007 2441 2450	C 1	۱۲ .	0610	2621	121 60	126 60	10 62	0 50
	10297 344L 345S -172.81 11.57	C I	.V .	2019	2021	-131.60	-136.60	12.63	0.52
179	345S 345S	M (CA :	2621	າຄາາ	139.60	151 20		
-35.00	0400 0400	11 (JA .	2021	2022	109.00	101.20		
180	10299 346C 347R	C 1	N .	2631	2633	-123.19	-125.20	5.15	0.20
	-173.09 21.90		.•		2000	120.10	120.20	0.10	0.20
180		N (CA :	2633	2634	135.86	140.60		
-41.10									
181	10300 347R 348N	C 1	N :	2642	2644	-106.62	-119.90	25.34	0.82
-63.20	162.43 18.26								
181	348N 348N	N (CA :	2644	2645	115.42	137.00		
-41.10									
182	10302 349P 350N	C I	.V	2657	2659	-104.48	-119.90	19.45	0.57
	171.30 19.43								
182		N (CA :	2659	2660	125.15	137.00		
-41.10									
	10303 350N 351D		N :	2665	2667	-109.18	-96.50	62.19	2.60
	103.99 11.04								
	351D 351D	N (JA :	2667	2668	53.32	114.20		
-40.00	10205 2507 2525	α,	Λ Τ .	0604	0600	100 17	104 00	10 40	0.00
	10305 352I 353F	C I	.N .	∠001	∠೮೮೨	-120.17	-124.20	10.42	∪.38
-63.20 184	-173.11 22.50 353F 353F	M /	٦٨.	2622	2694	122 60	1/12 20		
104	303F 303F	τν (JA .	2003	2004	100.09	140.00		

-44.30		a	0.000	2021	400.00	101 00	5 00	0.40
	10306 353F 354A	C N	2692	2694	-139.38	-134.00	5.38	0.18
	-171.51 35.01	NT CA	0604	0605	147 00	147 00		
185 -40.90	354A 354A	IN CA	2094	2095	147.00	147.00		
186	10307 354A 355D	C N	2607	2600	_10/ 52	-96.50	10 27	0 51
	150.53 16.53	C IV	2091	2099	-104.52	-90.50	12.31	0.51
186	355D 355D	N CA	2699	2700	104.78	114 20		
-40.00	000D 000D	N OF	2000	2100	104.70	114.20		
	10308 355D 356L	C N	2705	2707	-101 71	-108.50	15 56	0.76
	164.21 20.94	0 11	2.00	2.01	101111	100.00	10.00	0.10
187		N CA	2707	2708	118.51	132.50		
-41.20	0002 0002					102.00		
	10309 356L 357E	C N	2713	2715	-132.94	-117.80	15.34	0.50
	-167.47 22.67							
188	357E 357E	N CA	2715	2716	139.31	136.80		
-40.30								
189	10310 357E 358S	C N	2722	2724	-132.95	-136.60	4.92	0.16
-64.10	-169.99 18.63							
189	358S 358S	N CA	2724	2725	147.90	151.20		
-35.00								
190	10311 358S 359Y	C N	2728	2730	-118.06	-124.30	10.80	0.43
-63.50	178.52 25.79							
190	359Y 359Y	N CA	2730	2731	126.58	135.40		
-43.40								
	10312 359Y 360P	C N	2740	2742	-53.26	-58.70	7.44	0.54
	177.58 13.85							
191	360P 360P	N CA	2742	2743	-35.58	-30.50		
147.20								
	10313 360P 361D	C N	2747	2749	-98.45	-96.50	11.01	0.46
	168.74 18.97	N	0740	0750	405.04	444.00		
192	361D 361D	N CA	2/49	2750	125.04	114.20		
-40.00	1021/ 2610 2605	C M	2755	0757	110 10	104 00	17 77	0.46
	10314 361D 362F -177.17 22.46	C N	2155	2151	-110.16	-124.20	17.77	0.40
193	362F 362F	N CA	2757	2752	132.39	1/13 30		
-44.30	3021 3021	N OF	2101	2100	102.00	140.00		
	10315 362F 363S	C N	2766	2768	-138.23	-136.60	8.65	0.40
	-178.83 18.41	0 11	2.00	2.00	100.20	100.00	0.00	0.10
194	363S 363S	N CA	2768	2769	159.69	151.20		
-35.00								
195	10316 363S 364E	C N	2772	2774	-77.03	-69.30	13.77	0.79
-63.60	166.34 22.92							
195	364E 364E	N CA	2774	2775	153.90	142.50		
-40.30								
196	10318 365I 366A	C N	2789	2791	-71.81	-68.20	9.16	0.62
	165.64 27.61							
196	366A 366A	N CA	2791	2792	153.72	145.30		

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30

3.40 3.50

FREQUENCY: 0 0 0 0 1 21 51 166 161 193 215 258 264

295 322

<< end of ENERGY.

iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom.

>> Model assessment by DOPE potential

iatmcls_286W> MODEL atom not classified: ASN:OXT ASN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 367

Number of all, selected real atoms : 2804 2804

Number of all, selected pseudo atoms : 0 0

Number of all static, selected restraints : 13904 13904

COVALENT_CYS : F

NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 321041

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 1
 9999

 NLOGN USE
 : 15

CONTACT_SHELL : 15.000

DYNAMIC PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -19025.3555

<< end of ENERGY.

DOPE score : -19025.355469 >> Model assessment by SOAP-Protein-OD score >> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 Number of all static, selected restraints 13904 13904 F COVALENT_CYS 1 NONBONDED_SEL_ATOMS Number of non-bonded pairs (excluding 1-2,1-3,1-4): 0 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN USE 15 CONTACT SHELL 0.000 DYNAMIC PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: F F SPHERE_STDV 0.050

0.820

Current energy : 0.0000

<< end of ENERGY.

RADII_FACTOR

SOAP-Protein-OD score : 0.000000

>> Model assessment by GA341 potential

Surface library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/surf5.de

Pair library

/Users/yingyinli/opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier :

% sequence identity 62.856998 Sequence length 367 Compactness 0.013353 Native energy (pair) 78.545624 Native energy (surface) : 48.121285 Native energy (combined): 10.186766 Z score (pair) : -3.183653 Z score (surface) : -0.856761 Z score (combined) : -2.831354 GA341 score : 0.900786

>> ENERGY; Differences between the model's features and restraints: Number of all residues in MODEL 367 Number of all, selected real atoms 2804 2804 Number of all, selected pseudo atoms 0 Number of all static, selected restraints : 13904 13904 COVALENT_CYS F NONBONDED_SEL_ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 4280 : 2, NATM x NATM cell sorting Dynamic pairs routine Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN_USE 15 CONTACT_SHELL 4.000 DYNAMIC PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: F Τ Т SPHERE STDV 0.050 RADII_FACTOR : 0.820 1910.7992 Current energy

Summary of the restraint violations:

RVIOL ... relative difference from the best value.

NUMVP ... number of restraints with -Ln(pdf) > VIOL REPORT CUT2[i].

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS 2 ... RMS(feature, best value, NUMB).

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

# MOL.PDF S_i	RESTRAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2	
							_
1 Bond length potent	ial :	2881	0	0	0.003	0.003	
5.6976 1.000							
2 Bond angle potenti	al :	3935	0	1	1.657	1.657	
207.49 1.000							
3 Stereochemical cos	ine torsion poten:	1962	0	76	50.892	50.892	

778.76 1.000					
4 Stereochemical improper torsion pot:	1155	0	0	0.879	0.879
18.661 1.000	1100	· ·	· ·	0.010	0.010
5 Soft-sphere overlap restraints :	4280	0	0	0.003	0.003
3.2089 1.000					
6 Lennard-Jones 6-12 potential :	0	0	0	0.000	0.000
0.0000 1.000					
7 Coulomb point-point electrostatic p:	0	0	0	0.000	0.000
0.0000 1.000					
8 H-bonding potential :	0	0	0	0.000	0.000
0.0000 1.000					
9 Distance restraints 1 (CA-CA) :	765	0	7	1.210	1.210
92.864 1.000					
10 Distance restraints 2 (N-O) :	973	0	14	1.659	1.659
170.22 1.000					
11 Mainchain Phi dihedral restraints :	0	0	0	0.000	0.000
0.0000 1.000					
12 Mainchain Psi dihedral restraints :	0	0	0	0.000	0.000
0.0000 1.000					
13 Mainchain Omega dihedral restraints:	366	0	1	2.941	2.941
37.329 1.000					
14 Sidechain Chi_1 dihedral restraints:	315	0	1	82.890	82.890
77.825 1.000					
15 Sidechain Chi_2 dihedral restraints:	209	0	0	69.614	69.614
72.752 1.000					
16 Sidechain Chi_3 dihedral restraints:	98	0	0	92.088	92.088
56.170 1.000					
17 Sidechain Chi_4 dihedral restraints:	34	0	0	115.214	115.214
20.919 1.000	_				
18 Disulfide distance restraints :	5	0	0	0.007	0.007
0.38949E-01 1.000	4.0	^	^	4 004	4 004
19 Disulfide angle restraints :	10	0	0	1.934	1.934
0.82595 1.000	_	0	0	07 606	07 606
20 Disulfide dihedral angle restraints:	5	0	0	37.626	37.626
5.7777 1.000	0	0	0	0 000	0 000
21 Lower bound distance restraints : 0.0000 1.000	0	0	0	0.000	0.000
	0	0	0	0.000	0.000
22 Upper bound distance restraints : 0.0000 1.000	U	U	U	0.000	0.000
23 Distance restraints 3 (SDCH-MNCH) :	643	0	0	0.606	0.606
17.365 1.000	040	O	O	0.000	0.000
24 Sidechain Chi_5 dihedral restraints:	0	0	0	0.000	0.000
0.0000 1.000	O	V	V	0.000	0.000
25 Phi/Psi pair of dihedral restraints:	365	200	38	32.046	131.145
321.50 1.000	000	200	00	02.010	101.110
26 Distance restraints 4 (SDCH-SDCH) :	183	0	2	1.406	1.406
23.393 1.000	, -	-	_		
27 Distance restraints 5 (X-Y) :	0	0	0	0.000	0.000

0.0000	1.000						
28 NMR dista	ance restraints 6 (X-Y)	:	0	0	0	0.000	0.000
0.0000	1.000						
29 NMR dista	ance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000	1.000						
30 Minimal o	listance restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
31 Non-bonde	ed restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
32 Atomic ac	ccessibility restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
33 Atomic de	ensity restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
34 Absolute	position restraints	:	0	0	0	0.000	0.000
0.0000	1.000						
35 Dihedral	angle difference restrain	nt:	0	0	0	0.000	0.000
0.0000	1.000						
36 GBSA impl	icit solvent potential	:	0	0	0	0.000	0.000
0.0000	1.000						
37 EM densit	y fitting potential	:	0	0	0	0.000	0.000
0.0000	1.000						
38 SAXS rest	raints	:	0	0	0	0.000	0.000
0.0000	1.000						
39 Symmetry		:	0	0	0	0.000	0.000
0.0000	1.000						

- # Heavy relative violation of each residue is written to: WISP1.V99990005
- $\mbox{\tt\#}$ The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 60767.0391

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

 ${\tt ICSR}$ $\,$... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM \dots IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR ... the best value (global minimum).

 $\begin{array}{lll} {\tt VIOL} & \dots & {\tt difference} \ {\tt from} \ {\tt the} \ {\tt best} \ {\tt value}. \\ {\tt RVIOL} & \dots & {\tt relative} \ {\tt difference} \ {\tt from} \ {\tt the} \ {\tt best} \ {\tt value}. \end{array}$

Feature 25 : Phi/Psi pair of dihedral restraints List of the RVIOL violations larger than : 6.5000

List of	the RV	IOL v	riola	ations	larger	than	:	6.5000			
#	ICSR	RESNO)1/2	ATM1/2	2 INDA	ATM1/2	FEAT	restr	viol	rviol	
RESTR											
1	9955	2R	ЗW	C N	18	3 20	-63.37	-71.30	12.56	0.75	
-63.00	173.46	21	1.66								
1		ЗW	ЗW	N CA	A 20	21	129.26	139.00			
-44.20											
2	9956	ЗW	4F	C N	32	2 34	-123.32	-124.20	15.20	0.69	
-63.20	-177.39	21	L.77								
2		4F	4F	N CA	A 34	4 35	128.13	143.30			
-44.30											
3	9957	4F	5L	C N	43	3 45	-86.94	-70.70	20.54	1.38	
-63.50	166.29	24	1.50								
3		5L	5L	N CA	45	5 46	154.17	141.60			
-41.20											
4	9959	6P	7W	C N	58	8 60	-113.55	-124.90	12.14	0.43	
-63.00	-176.19	26	3.33								
4		7W	7W	N CA	A 60	0 61	139.08	143.40			
-44.20											
5	9960	7W	8T	C N	72	2 74	-91.66	-78.10	27.42	0.90	
-63.20	147.06	20	.76								
5		8T	8T	N CA	A 74	4 75	173.62	149.80			
-42.10											
6	9961	8T	9L	C N	79	9 81	-98.73	-108.50	9.81	0.46	
-63.50	176.43	22	2.72								
6		9L	9L	N CA	A 8:	1 82	131.67	132.50			
-41.20											
7	9962	9L	10A	C N	87	7 89	-135.73	-134.00	6.43	0.32	
-62.50	-178.65	33	3.64								
7		10A	10A	N CA	88 A	9 90	153.19	147.00			
-40.90											
8	9963	10A	11A	${\tt C} {\tt N}$	92	2 94	-104.32	-134.00	33.94	0.78	
-62.50	176.46	27	7.19								
8		11A	11A	N CA	A 94	4 95	130.54	147.00			
-40.90											
9	9965	12V	13T	${\tt C} {\tt N}$	104	106	-125.06	-124.80	10.35	0.45	
-63.20	-174.15	20	.42								
9		13T	13T	N CA	A 106	3 107	133.15	143.50			
-42.10											

10	9966 13T 1	4A C	N	111	113 -153.36 -13	4.00 2	21.15	0.48
-62.50	-172.86 35.							
10	14A 1	4A N	CA	113	114 155.50 14	7.00		
-40.90								
11	9967 14A 1	5A C	N	116	118 -133.15 -13	4.00	1.68	0.07
-62.50	-172.61 34.							
11	15A 1	5A N	CA	118	119 145.54 14	7.00		
-40.90								
	9968 15A 1		N	121	123 -140.67 -13	4.00 1	11.36	0.41
-62.50	-179.30 33.	80						
12	16A 1	6A N	CA	123	124 156.19 14	7.00		
-40.90								
	9969 16A 1		N	126	128 -89.46 -6	8.20 3	34.16	3.34
	161.73 25.							
	17A 1	7A N	CA	128	129 118.57 14	5.30		
-40.90								
	9970 17A 1		N	131	133 -169.78 -13	6.60 3	34.58	1.14
	-164.86 21.							
14	18S 1	8S N	CA	133	134 160.95 15	1.20		
-35.00								
	9971 18S 1		N	137	139 -103.03 -12	4.80	39.23	2.37
	126.32 13.							
	19T 1	9T N	CA	139	140 77.78 14	3.50		
-42.10								
	9974 21L 2		N	159	161 -110.28 -13	4.00 2	24.18	0.64
	-176.87 32.							
16	22A 2	2A N	CA	161	162 142.31 14	7.00		
-40.90								
	9975 22A 2		N	164	166 -69.59 -7	8.10 1	19.41	0.64
	174.58 21.							
	23T 2	3T N	CA	166	167 132.36 14	9.80		
-42.10								
			N	171	173 -73.77 -6	8.20	6.40	0.43
	171.01 28.							
	24A 2	4A N	CA	173	174 148.46 14	5.30		
-40.90								
	9978 25L 2		N	184	186 -133.83 -13	6.60	7.61	0.32
	-167.80 11.8							
19	26S 2	6S N	CA	186	187 144.11 15	1.20		
-35.00								
	9979 26S 2		N	190	192 -74.00 -5	8.70 3	31.69	1.85
	150.25 11.							
	27P 2	7P N	CA	192	193 -2.75 -3	0.50		
147.20								
21			N	216	218 -94.31 -7	8.10 3	30.16	0.99
	146.02 20.							
21	31T 3	1T N	CA	218	219 175.23 14	9.80		
-42.10								

22	9984 31T	SOM	C	M	223	225	-03 08	-73 00	27 02	2 15
	168.06 2			11/	223	220	-93.00	-73.00	21.02	2.15
22	32M			CA	225	226	124.92	143.00		
-40.50	02.1	0211		011			121.02	110.00		
	9985 32M	33D	С	N	231	233	-83.40	-70.90	18.78	0.72
	156.98 2		Ū		201	200	00.10	10.00	10.10	02
23			N	CA	233	234	164.31	150.30		
-40.00										
	9987 34F	35T	С	N	250	252	-131.76	-124.80	7.30	0.43
	-170.57 2									
24	35T	35T	N	CA	252	253	141.32	143.50		
-42.10										
25	9989 36P	37A	С	N	264	266	-131.75	-134.00	2.25	0.07
-62.50	-174.43	34.12								
25	37A	37A	N	CA	266	267	146.94	147.00		
-40.90										
26	9991 38P	39L	C	N	276	278	-78.50	-70.70	17.08	1.07
-63.50	162.69 2	23.48								
26	39L	39L	N	CA	278	279	156.80	141.60		
-41.20										
27	9992 39L	40E	C	N	284	286	-59.35	-63.60	5.86	0.70
-69.30	173.44 1	.3.58								
27	40E	40E	N	CA	286	287	-44.34	-40.30		
142.50										
28	9994 41D	42T	C	N	301	303	-79.58	-78.10	65.51	2.85
-63.20	127.46 1	5.32								
28	42T	42T	N	CA	303	304	84.31	149.80		
-42.10										
29	9997 44S	45R	С	N	320	322	-95.89	-72.10	25.51	2.13
	176.87 2									
	45R	45R	N	CA	322	323	132.69	141.90		
-41.10										
	9999 46P		С	N	338	340	-112.82	-121.10	8.99	0.41
	-176.81 2									
	47Q	47Q	N	CA	340	341	143.19	139.70		
-40.30	10000 170	40-	~		0.45	0.40		404.00	10.10	
	10000 47Q		С	N	347	349	-117.16	-124.20	13.10	0.41
	-175.37 2			~ 1	0.40	050	100.00	440.00		
31	48F	48F	IV	CA	349	350	132.26	143.30		
-44.30	40004 400	400	a	3.7	250	000	0F 7F	60.00	6.00	4 05
	10001 48F			N	358	360	-65.75	-63.00	6.90	1.05
	179.23			CA	260	264	17 10	/1 10		
	49C	490	IN	CA	300	301	-47.42	-41.10		
141.10	10000 400	EOV	C	M	361	366	_70 74	_70 00	0 50	0.70
	10002 49C -179.59 2		C	N	304	300	-13.14	-10.20	9.58	0.72
33	-179.59 Z		M	CA	366	367	139.57	140 40		
-40.80	JUN	JUN	11/	On	500	507	103.01	170.40		
- 4 0.60										

				С	N	373	375	-111.51	-124.90	15.94	0.51
-63.00 34	-174.59			N	CA	375	376	134.75	143.40		
-44.20	10000	F20	-4 -	a	M	400	400	CO 40	60. 20	10.05	0 60
	10006 178.17			C	N	400	402	-60.40	-69.30	10.05	0.60
35	110.1			N	CA	402	403	137.84	142.50		
-40.30											
	10010			C	N	429	431	-76.02	-72.40	4.91	0.24
	169.69				a.	101	400	455.70	150 10		
36 -35.00		585	588	N	CA	431	432	155.72	152.40		
	10013	60P	61R	C	N	449	451	-149 62	-125 20	24.61	0 91
	-164.54			Ü	14	110	101	110.02	120.20	21.01	0.01
37				N	CA	451	452	143.68	140.60		
-41.10											
38	10016	63P	64L	C	N	473	475	-101.48	-108.50	10.80	0.61
-63.50	-177.90	2	7.60								
38		64L	64L	N	CA	475	476	140.70	132.50		
-41.20				_							
	10017			С	N	481	483	85.30	78.70	19.32	0.31
82.20 39				M	CA	102	лол	175 7/	_166_10		
8.50		oou	oou	IN	CA	403	404	175.74	-100.10		
40	10019	66V	675	C	N	492	494	-114 79	-136 60	35.83	1 25
	165.7			O	14	102	101	111.75	100.00	00.00	1.20
40	100.11			N	CA	494	495	122.76	151.20		
-35.00											
41	10020	67S	68L	C	N	498	500	-123.95	-108.50	15.65	0.78
-63.50	-178.44	1 2	2.57								
41		68L	68L	N	CA	500	501	130.00	132.50		
-41.20											
					N	514	516	-122.59	-124.80	8.03	0.41
	176.9										
42		70T	70T	N	CA	516	517	151.22	143.50		
-42.10 43		7 ∩T	71D	C	N	E01	E02	_72_01	-70 00	2.02	0 16
	170.13				IN	521	523	-12.91	-70.90	2.02	0.10
43					CA	523	524	150.14	150.30		
-40.00						0_0			200.00		
	10024	71D	72G	С	N	529	531	-171.39	-167.20	13.20	0.45
82.20	-152.09	14	.81								
44		72G	72G	N	CA	531	532	-172.88	174.60		
8.50											
	10026				N	539	541	-119.08	-117.80	10.86	0.52
	-179.17										
45		74E	74E	N	CA	541	542	147.58	136.80		
-40.30											

	0028 75C			N	554	556	-64.88	-63.00	3.17	0.52
	-176.92									
	76C	76C	N	CA	556	557	-43.66	-41.10		
141.10			_							
	0030 77K		С	N	569	571	-82.11	-73.00	13.05	1.03
	175.15									
	78M	78M	N	CA	571	572	133.65	143.00		
-40.50			_							
	0032 79C		С	N	583	585	-61.30	-68.20	7.00	0.55
	175.00									
	A08	80A	N	CA	585	586	144.11	145.30		
-40.90										
	0033 80A	-	С	N	588	590	-85.98	-73.00	13.26	0.99
	179.68									
	81Q	81Q	N	CA	590	591	138.00	140.70		
-40.30			_							
	0034 81Q	-	С	N	597	599	-132.20	-121.10	12.33	0.58
	172.45									
	82Q	82Q	N	CA	599	600	134.33	139.70		
-40.30										
	0040 87C		С	N	640	642	-135.83	-124.80	24.75	0.79
	168.68									
	88T	88T	N	CA	642	643	165.66	143.50		
-42.10			_							
	0041 88T		С	N	647	649	-166.43	-117.80	53.42	1.57
	169.14									
	89E	89E	N	CA	649	650	158.91	136.80		
-40.30										
	0042 89E		С	N	656	658	166.76	-134.00	67.00	1.54
	167.86									
	90A	90A	N	CA	658	659	178.29	147.00		
-40.90										
				N	661	663	-69.66	-68.20	6.99	0.51
	167.12									
54	91A	91A	N	CA	663	664	152.14	145.30		
-40.90										
	0046 93C			N	680	682	-119.42	-96.50	24.98	1.03
	173.47									
55	94D	94D	N	CA	682	683	124.15	114.20		
-40.00										
	0048 95P		C	N	695	697	-108.66	-125.60	46.77	1.43
	144.82									
	96H	96H	N	CA	697	698	95.20	138.80		
-42.30										
	0049 96H		C	N	705	707	-165.55	-125.20	51.33	1.52
	178.88									
57	97R	97R	N	CA	707	708	172.34	140.60		
-41.10										

58 10050 97R 98G 82.20 -161.90 15.22	C	N	716	718 -136.36 -167.20 41.25	0.86
58 98G 98G 8.50	N	CA	718	719 147.21 174.60	
59 10051 98G 99L -63.50 172.53 24.39		N	720	722 -70.92 -70.70 4.83	0.36
59 99L 99L		CA	722	723 146.43 141.60	
-41.20 60 10052 99L 100Y -63.50 165.97 25.70		N	728	730 -76.09 -98.40 23.19	1.15
60 100Y 100Y -43.40		CA	730	731 122.09 128.40	
61 10055 102D 103Y -63.50 -167.15 27.37		N	754	756 -136.49 -124.30 12.20	0.93
61 103Y 103Y -43.40		CA	756	757 135.11 135.40	
62 10056 103Y 104S -64.10 -169.81 19.59		N	766	768 -145.41 -136.60 9.00	0.31
62 104S 104S -35.00		CA	768	769 153.07 151.20	
	C	N	772	774 -173.81 -167.20 18.29	0.75
	N	CA	774	775 157.54 174.60	
64 10058 105G 106D -63.30 158.87 20.75		N	776	778 -81.57 -70.90 15.98	0.61
64 106D 106D -40.00		CA	778	779 162.19 150.30	
65 10059 106D 107R -63.00 162.83 22.83		N	784	786 -75.22 -72.10 14.96	1.08
65 107R 107R -41.10		CA	786	787 156.53 141.90	
		N	802	804 -72.74 -72.10 6.91	0.52
		CA	804	805 148.78 141.90	
67 10062 109R 110Y -63.50 171.08 26.70		N	813	815 -72.33 -98.40 26.08	1.02
		CA	815	816 127.45 128.40	
		N	825	827 -131.22 -134.00 6.83	0.42
68 111A 111A -40.90		CA	827	828 153.23 147.00	
69 10065 112I 113G 82.20 157.87 8.41	C	N	838	840 67.19 78.70 20.90	0.34
	N	CA	840	841 -148.65 -166.10	

70 10068 115C 116A		N	855	857	-73.93	-68.20	19.51	1.37
-62.50 155.57 26.07 70 116A 116A		CA	857	858	163.95	145.30		
-40.90 71 10069 116A 117Q		N	860	862	-60.53	-73.00	16.33	0.96
-63.80 170.49 25.24 71 117Q 117Q		CA	862	863	130.15	140.70		
-40.30 72 10074 121V 122G	С	N	894	896	-168.64	-167.20	11.71	0.44
82.20 -151.44 14.94 72 122G 122G	N	CA	896	897	-173.78	174.60		
8.50	.,	On	000	001	110.10	171.00		
73 10111 158L 159R		N	1163	1165	168.93	-125.20	66.30	2.47
-63.00 -146.56 37.19								
73 159R 159R	N	CA	1165	1166	148.15	140.60		
-41.10 74 10113 160V 161R	C	M	1121	1122	_178 18	-125.20	78 //2	2 11
-63.00 166.68 29.74		14	1101	1100	170.10	120.20	70.42	2.44
74 161R 161R		CA	1183	1184	-161.58	140.60		
-41.10								
75 10116 163P 164R	C	N	1206	1208	178.02	-125.20	80.48	2.46
-63.00 169.89 30.37								
75 164R 164R	N	CA	1208	1209	-162.37	140.60		
-41.10								
76 10118 165L 166W		N	1225	1227	-143.17	-124.90	29.22	0.97
-63.00 169.72 26.62		a.	1007	1000	100.00	140 40		
76 166W 166W -44.20	N	CA	1227	1228	166.20	143.40		
77 10119 166W 167C	C	M	1230	1941	-197 91	-63 00	64 55	11 06
-117.90 171.38 6.6		14	1200	1271	121.21	00.00	04.00	11.00
77 167C 167C		CA	1241	1242	-47.77	-41.10		
141.10								
78 10121 168P 169H	С	N	1252	1254	105.28	56.30	124.89	15.59
-63.20 -126.26 26.49								
78 169H 169H	N	CA	1254	1255	155.68	40.80		
-42.30								
79 10122 169H 170P		N	1262	1264	-71.42	-58.70	25.53	1.50
-64.50 155.72 11.99		~.		4005	0.00	00 50		
79 170P 170P	N	CA	1264	1265	-8.36	-30.50		
147.20 80 10123 170P 171R	C	M	1060	1071	62 02	70 10	47 00	2 70
-63.00 130.72 17.71		IN	1269	12/1	-63.63	-72.10	47.02	3.19
80 171R 171R		CA	1971	1979	_171 89	1/1 90		
-41.10	1/	OA	1411	1212	111.02	141.30		
81 10130 177G 178H	С	N	1323	1325	55.31	56.30	10.60	1.02
-63.20 138.95 23.86		-			20.01	30.00	_0.00	
81 178H 178H		CA	1325	1326	30.25	40.80		
-42.30								

	10133 180C 181E	C	N	1345	1347	-135.82	-117.80	18.23	0.74
82	-171.24 22.12 181E 181E	N	CA	1347	1348	134.09	136.80		
	10134 181E 182Q	С	N	1354	1356	-122.22	-121.10	34.72	1.67
83	156.61 20.51 182Q 182Q	N	CA	1356	1357	105.00	139.70		
	10135 182Q 183W	С	N	1363	1365	-151.73	-124.90	42.25	1.39
84	165.56 26.65 183W 183W	N	CA	1365	1366	176.03	143.40		
	10139 186E 187D	С	N	1399	1401	-91.13	-70.90	33.13	1.19
85	146.14 19.81 187D 187D	N	CA	1401	1402	176.54	150.30		
	10140 187D 188D	С	N	1407	1409	-114.54	-96.50	32.70	1.37
-63.30 86	-174.26 26.23 188D 188D	N	CA	1409	1410	141.47	114.20		
-40.00 87	10141 188D 189A	С	N	1415	1417	-87.43	-68.20	42.42	4.02
	150.46 23.56 189A 189A	N	CA	1417	1418	107.49	145.30		
-40.90 88	10142 189A 190K	С	N	1420	1422	45.94	56.60	14.40	0.97
-62.90 88	140.64 24.27 190K 190K	N	CA	1422	1423	48.27	38.60		
-40.80 89	10143 190K 191R	С	N	1429	1431	-114.84	-125.20	44.56	1.90
	147.75 17.16 191R 191R	N	CA	1431	1432	97.26	140.60		
-41.10 90	10145 192P 193R	С	N	1447	1449	71.62	57.30	33.54	1.63
-63.00 90	143.18 25.80 193R 193R		CA	1449	1450	7.67	38.00		
-41.10 91	10146 193R 194K	С	N	1458	1460	-172.05	-118.00	54.06	2.03
-62.90 91	-150.09 33.75 194K 194K		CA	1460	1461	139.90	139.10		
-40.80 92	10148 195T 196A	С	N	1474	1476	-58.35	-68.20	28.42	2.61
	147.20 23.92								
-40.90	10150 197P 198R							30 46	2 33
	177.88 22.66							00.40	2.00
-41.10	130K 130K	IA	OH	1400	1409	142.31	141.90		

	10152 199D 200T	C I	N	1505	1507	-58.23	-78.10	21.51	1.06
94	176.42 22.30 200T 200T	N	CA	1507	1508	141.55	149.80		
	10153 200T 201G	C I	N	1512	1514	-93.80	-80.20	20.97	0.60
95	-109.36 19.20 201G 201G	N (CA	1514	1515	-169.94	174.10		
8.50 96	10154 201G 202A	C	N	1516	1518	-147.27	-134.00	24.74	0.95
	173.37 32.94 202A 202A	N (CA	1518	1519	167.88	147.00		
-40.90 97	10155 202A 203F	C	N	1521	1523	-66.64	-71.40	5.59	0.47
-63.20 97	172.11 24.13 203F 203F		CA	1523	1524	143.63	140.70		
-44.30									
	10156 203F 204D 174.69 22.02		N	1532	1534	-70.69	-70.90	4.84	0.23
98 -40.00	204D 204D	N	CA	1534	1535	145.46	150.30		
	10157 204D 205A 178.98 32.13		N	1540	1542	-115.11	-134.00	18.92	0.67
	205A 205A		CA	1542	1543	148.03	147.00		
100	10159 206V 207G 174.89 8.85	C	N	1552	1554	89.36	78.70	15.08	0.34
100	207G 207G	N	CA	1554	1555	-176.76	-166.10		
8.50									
101	10160 207G 208E	C	N	1556	1558	-75.54	-69.30	12.41	0.73
	166.90 22.91								
	208E 208E	N	CA	1558	1559	153.22	142.50		
-40.30	10162 209V 210E	C	NT	1570	157/	120 00	117 00	20.00	1 05
	176.91 27.86		IN	1512	1374	-139.09	-117.00	32.09	1.05
102	210E 210E		CA	1574	1575	160.08	136.80		
-40.30									
103	10163 210E 211A	C	N	1581	1583	-65.64	-68.20	9.81	0.70
-62.50	176.76 28.81								
103	211A 211A	N	CA	1583	1584	135.83	145.30		
-40.90									
	10164 211A 212W		N	1586	1588	-152.87	-124.90	39.66	1.27
	169.99 27.29								
104		N	CA	1588	1589	171.51	143.40		
-44.20		α .	N.T.	1000	1000	C4 00	07 00	A A A	0.07
	10165 212W 213H		N	1000	1602	-64.98	-67.60	4.44	0.27
-63.20 105	178.72 22.23 213H 213H		C۸	1600	1602	126 //1	1/10 00		
-42.30		1//	OA	1002	1003	130.41	140.00		
12.00									

	10166 213H 214R	С	N	1610	1612	-118.91	-125.20	18.36	0.99
106	170.48 26.89 214R 214R	N	CA	1612	1613	157.85	140.60		
	10167 214R 215N	С	N	1621	1623	-64.57	-71.20	15.36	0.83
107	170.05 21.19 215N 215N	N	CA	1623	1624	128.94	142.80		
	10170 217I 218A	С	N	1643	1645	-113.71	-134.00	22.34	1.10
108	170.62 30.69 218A 218A	N	CA	1645	1646	156.35	147.00		
	10172 219Y 220T 168.73 18.92	С	N	1660	1662	-110.22	-124.80	27.70	0.86
109 -42.10		N	CA	1662	1663	119.94	143.50		
110	10173 220T 221S -173.29 20.07	С	N	1667	1669	-154.99	-136.60	21.27	0.65
110	221S 221S	N	CA	1669	1670	161.90	151.20		
	10175 222P 223W	C	N	1680	1682	-64.95	-71.30	6.92	0.56
111	174.07 21.88 223W 223W	N	CA	1682	1683	141.75	139.00		
	10176 223W 224S	C	N	1694	1696	-135.64	-136.60	30.12	1.55
112		N	CA	1696	1697	-178.70	151.20		
	10179 226C 227S	С	N	1713	1715	-137.15	-136.60	9.21	0.46
113	-179.92 18.25 227S 227S	N	CA	1715	1716	160.39	151.20		
	10180 227S 228T		N	1719	1721	-90.17	-78.10	20.06	0.68
114			CA	1721	1722	165.82	149.80		
	10183 230C 231G -151.94 16.15	С	N	1738	1740	-119.20	-80.20	49.78	3.61
115	231G 231G	N	CA	1740	1741	143.16	174.10		
	10184 231G 232L		N	1742	1744	-72.65	-70.70	7.45	0.50
116			CA	1744	1745	148.79	141.60		
	10185 232L 233G	С	N	1750	1752	-164.70	-167.20	36.62	1.40
117	171.97 13.00 233G 233G	N	CA	1752	1753	138.06	174.60		
8.50									

	10187 234V 235S	C	N	1761	1763	-127.32	-136.60	11.72	0.36
118	-170.13 11.70 235S 235S	N	CA	1763	1764	144.03	151.20		
	10188 235S 236T	C	N	1767	1769	-123.20	-124.80	5.00	0.17
119	-171.08 28.21 236T 236T	N	CA	1769	1770	138.76	143.50		
	10189 236T 237R	C	N	1774	1776	-111.26	-125.20	30.34	1.11
	162.10 19.15 237R 237R	N	CA	1776	1777	113.65	140.60		
-41.10 121	10191 238I 239S	C	N	1793	1795	-137.80	-136.60	1.51	0.05
-64.10 121	-172.06 18.86 239S 239S	N	CA	1795	1796	152.11	151.20		
-35.00		~		4500		407.00	440.00	45.05	
	10192 239S 240N 177.59 25.84	C	N	1799	1801	-127.28	-119.90	17.87	0.63
	240N 240N	N	CA	1801	1802	153.28	137.00		
-41.10	10194 241V 242N	C	N	1214	1816	-171 53	-110 Q∩	82.84	2 51
	159.54 25.63	· ·	1/	1014	1010	171.55	119.90	02.04	2.01
	242N 242N	N	CA	1816	1817	-158.22	137.00		
-41.10									
	10195 242N 243A	C	N	1822	1824	-63.04	-68.20	9.23	0.89
	166.14 27.25	NT.	C A	1004	1005	150.06	145 20		
-40.90	243A 243A	IV	CA	1824	1825	152.96	145.30		
	10196 243A 244Q	С	N	1827	1829	-60.95	-73.00	17.77	1.03
	167.96 24.85								
125	244Q 244Q	N	CA	1829	1830	127.64	140.70		
-40.30									
126	10198 245C 246W	C	N	1842	1844	-94.99	-71.30	40.67	3.50
	153.51 17.57								
126	246W 246W	N	CA	1844	1845	105.95	139.00		
-44.20		_							
	10200 247P 248E		N	1863	1865	-77.44	-69.30	8.18	0.59
-63.60 127	176.93 24.36 248E 248E		CA	1065	1066	1/12 21	1/10 50		
-40.30		IN	CA	1005	1000	143.31	142.50		
	10201 248E 249Q	C	N	1872	1874	-124 21	-121 10	15 93	0.70
	175.13 28.95		14	1012	10/1	121.21	121.10	10.50	0.10
128			CA	1874	1875	155.32	139.70		
-40.30						· - -			
	10202 249Q 250E	C	N	1881	1883	-67.65	-69.30	2.50	0.14
-63.60	179.12 24.10								
129	250E 250E	N	CA	1883	1884	140.62	142.50		
-40.30									

	10203 250E 253 154.49 9.5		N	1890	1892	-115.61	-136.60	45.66	1.78
	251S 253		CA	1892	1893	110.65	151.20		
131	10204 251S 252 102.50 11.9		N	1896	1898	-132.51	-63.00	102.50	11.97
131 -41.10	252R 252		CA	1898	1899	34.23	-41.10		
132	10205 252R 253		N	1907	1909	-142.35	-108.50	40.63	1.79
	253L 253		CA	1909	1910	154.97	132.50		
133	10207 254C 258		N	1921	1923	-151.89	-119.90	36.83	1.11
133 -41.10	255N 25		CA	1923	1924	155.25	137.00		
	10208 255N 256 174.18 27.9		N	1929	1931	-124.72	-108.50	28.32	1.32
134 -41.20	256L 256	SL N	CA	1931	1932	155.73	132.50		
	10209 256L 257 175.03 23.3		N	1937	1939	-67.77	-72.10	9.13	0.61
135 -41.10	257R 257	7R N	CA	1939	1940	133.86	141.90		
	10212 259C 260 175.72 21.5		N	1961	1963	-66.17	-70.90	15.34	0.55
136 -40.00		DD N	CA	1963	1964	135.70	150.30		
	10214 261V 262 170.94 21.3		N	1976	1978	-67.46	-70.90	3.64	0.23
137 -40.00	262D 262	2D N	CA	1978	1979	149.12	150.30		
	10216 263I 264 164.34 27.3		N	1992	1994	-174.23	-125.60	75.49	1.91
138 -42.30		1H N	CA	1994	1995	-163.46	138.80		
	10217 264H 265 160.84 20.5		N	2002	2004	-63.95	-78.10	34.13	1.12
139 -42.10	265T 265	5T N	CA	2004	2005	118.74	149.80		
	10218 265T 266 134.09 16.9		N	2009	2011	-98.30	-108.50	45.37	2.33
140 -41.20		SL N	CA	2011	2012	88.29	132.50		
	10225 272K 273		N	2061	2063	-61.86	-63.00	9.06	1.03
141 141.10	273C 273	BC N	CA	2063	2064	-50.09	-41.10		

	10229 276V 277Y	C N	2087	2089	-58.58	-98.40	42.30	2.03
142	173.99 27.35 277Y 277Y	N C	A 2089	2090	142.68	128.40		
-43.40 143	•	C N	2099	2101	-55.82	-73.00	36.72	2.13
143	148.76 22.29 278Q 278Q	N C	A 2101	2102	108.24	140.70		
	10232 279P 280E	C N	2115	2117	-99.88	-117.80	23.36	0.72
-63.60 144	166.14 20.38 280E 280E	N C	A 2117	2118	121.82	136.80		
	10233 280E 281A	C N	2124	2126	-126.00	-134.00	10.43	0.28
	-170.26 34.49 281A 281A	N C	A 2126	2127	140.31	147.00		
-40.90 146	10234 281A 282S	C N	2129	2131	63.36	-72.40	139.64	10.76
-64.10 146	-170.72 14.73 282S 282S	N C	A 2131	2132	-174.93	152.40		
-35.00 147	10235 282S 283M	C N	2135	2137	-69.21	-73.00	26.19	1.84
	150.70 22.95 283M 283M	N C	A 2137	2138	168.91	143.00		
-40.50 148	10236 283M 284N	C N	2143	2145	-58.86	-71.20	15.18	0.86
	175.12 22.13 284N 284N	N C	A 2145	2146	133.97	142.80		
-41.10 149	10237 284N 285F	C N	2151	2153	-127.63	-124.20	24.01	1.04
-63.20	161.99 26.69 285F 285F							
-44.30	10239 286T 287L						12 58	0 69
-63.50	179.32 27.63 287L 287L						12.00	0.00
-41.20							17 22	0.07
-62.50	170.86 31.88						17.30	0.97
151 -40.90							445.07	F 00
-64.10	10244 291I 292S -156.72 16.58						145.97	5.03
-35.00								
-63.20	10245 292S 293T 164.27 21.88						5.02	0.30
153 -42.10	293T 293T	N C	A 2208	2209	154.09	149.80		

	10246 293T 294R	C	N	2213	2215	-88.63	-72.10	21.16	1.38
154	165.77 24.16 294R 294R	N	CA	2215	2216	155.12	141.90		
-41.10 155	10247 294R 295S	С	N	2224	2226	-130.53	-136.60	9.70	0.55
-64.10 155	179.01 17.67 295S 295S	N	CA	2226	2227	158.77	151.20		
-35.00 156	10248 295S 296Y	С	N	2230	2232	-124.37	-124.30	4.40	0.23
-63.50	-173.02 32.74							2.20	0.20
156 -43.40	296Y 296Y								
	10249 296Y 297Q 171.86 23.14	С	N	2242	2244	-109.26	-121.10	18.53	0.63
157 -40.30	297Q 297Q	N	CA	2244	2245	125.44	139.70		
	10251 298P 299K 139.78 24.30	С	N	2258	2260	51.59	56.60	5.07	0.55
158	299К 299К	N	CA	2260	2261	39.38	38.60		
	10252 299K 300Y	С	N	2267	2269	-133.42	-124.30	15.11	0.62
	-176.97 32.52 300Y 300Y	N	CA	2269	2270	147.45	135.40		
-43.40 160	10257 304C 305M	С	N	2302	2304	-71.60	-73.00	17.23	1.19
-63.40 160	159.53 24.46 305M 305M	N	CA	2304	2305	160.17	143 00		
-40.50								04.00	4 00
	10258 305M 306D 157.85 19.65	C	N	2310	2312	-60.57	-70.90	34.08	1.23
161 -40.00	306D 306D	N	CA	2312	2313	117.83	150.30		
	10259 306D 307N -174.22 27.62		N	2318	2320	-140.92	-119.90	24.81	0.74
162 -41.10	307N 307N	N	CA	2320	2321	150.16	137.00		
163	10265 312P 313Y		N	2364	2366	-124.78	-124.30	31.40	1.64
163			CA	2366	2367	166.79	135.40		
-43.40 164	10268 315S 316K	С	N	2391	2393	-153.36	-118.00	42.67	1.43
	-179.50 28.83 316K 316K	N	CA	2393	2394	163.00	139.10		
-40.80								2 10	0 12
-63.20	168.64 22.75							2.10	0.12
165 -42.10	317T 317T	IN	CA	2402	2403	150.12	149.80		

166 10271 318I 319D		1	2415	2417	-92.45	-96.50	57.01	2.40
-63.30 101.61 11.11 166 319D 319D		CA	2417	2418	57.34	114.20		
-40.00 167 10272 319D 320V	ר ו	ΛĪ	2423	2425	169 48	-125 40	79.15	2 08
-73.50 126.90 8.58		N	2420	2420	103.40	120.40	73.10	2.00
167 320V 320V		CA	2425	2426	-171.71	143.30		
139.20								
168 10278 325P 326D	C 1	V	2469	2471	-114.38	-70.90	44.58	3.00
-63.30 167.85 24.02								
168 326D 326D	N (CA	2471	2472	160.11	150.30		
-40.00								
169 10279 326D 327G	C I	V	2477	2479	-74.52	-80.20	7.85	0.26
82.20 -135.90 6.93								
169 327G 327G	N (CA	2479	2480	168.69	174.10		
8.50	a ,		0.404	0.400	05 40	100 50	00.00	4 00
170 10280 327G 328L		N	2481	2483	-85.43	-108.50	29.23	1.30
-63.50 157.29 20.68		~ A	0400	0404	111 FC	120 FO		
170 328L 328L -41.20	IN (JΑ	2483	2484	114.56	132.50		
171 10281 328L 329G	C 1	ΛT	2/180	2/101	-73 61	-80 20	// QE	1.44
82.20 -162.58 7.17	C I	N	2403	2431	-73.01	-00.20	44.00	1.44
171 329G 329G	N (7.Δ	2491	2492	129 74	174 10		
8.50	14 \	JA	2101	2102	120.11	171.10		
172 10282 329G 330F	C 1	V	2493	2495	-146.36	-124.20	29.41	0.77
-63.20 174.18 29.48								
172 330F 330F	N (CA	2495	2496	162.65	143.30		
-44.30								
173 10283 330F 331S	C 1	V	2504	2506	-108.72	-136.60	40.30	1.32
-64.10 163.31 10.11								
173 331S 331S	N (CA	2506	2507	122.10	151.20		
-35.00								
174 10284 331S 332R	C I	V	2510	2512	-106.28	-125.20	38.16	1.35
-63.00 154.73 18.40								
174 332R 332R	N (CA	2512	2513	107.46	140.60		
-41.10		_						
175 10285 332R 333Q		V	2521	2523	-135.14	-121.10	17.25	0.53
-63.80 -175.65 30.86		~ ^	0500	0504	440.70	400.70		
175 333Q 333Q -40.30	N (JA	2523	2524	149.72	139.70		
	C 1	ιτ	2527	2520	_61_62	-70 70	12 67	0 06
176 10287 334V 335L -63.50 172.59 24.07		N	2001	2009	-01.03	-10.10	13.01	0.00
176 335L 335L		٦,	2530	25/10	131.37	1/1 60		
-41.20	14 (JA	2003	20 4 0	101.01	141.00		
177 10288 335L 336W	C 1	V.	2545	2547	-117.49	-124.90	12.90	0.44
-63.00 -174.74 20.68			_0 10	2011	111.12	121.00	12.00	J. 11
177 336W 336W		CA	2547	2548	132.89	143.40		
-44.20								

	10290 337I 338N	С	N	2567	2569	-79.01	-71.20	11.64	0.62
	168.21 21.91 338N 338N	N	CA	2569	2570	151.43	142.80		
-41.10		_							
179		С	N	2575	2577	-94.00	-68.20	29.41	2.86
-62.50 179	174.94 27.30 339A 339A	M	CA	2577	2578	131 18	145 30		
-40.90	000H 000H	14	On	2011	2010	101.10	110.00		
180	10293 340C 341F	C	N	2586	2588	-105.17	-124.20	21.83	0.58
-63.20	-178.18 22.60								
180	341F 341F	N	CA	2588	2589	132.61	143.30		
-44.30									
	10295 342C 343N	C	N	2603	2605	-113.67	-119.90	11.35	0.36
	176.00 19.67								
181	343N 343N	N	CA	2605	2606	127.51	137.00		
-41.10	10296 343N 344L	C	M	0611	2612	100 10	100 E0	20.17	1 00
	159.91 20.12	C	IN	2011	2013	-108.18	-108.50	20.17	1.09
182		M	СЛ	2613	2614	112 34	132 50		
-41.20	JHL JHL	14	OA	2013	2014	112.04	102.00		
	10297 344L 345S	С	N	2619	2621	-143.01	-136.60	11.66	0.66
	-166.70 12.10								
183	345S 345S	N	CA	2621	2622	141.46	151.20		
-35.00									
184	10299 346C 347R	C	N	2631	2633	-102.33	-125.20	41.24	1.40
-63.00	152.53 18.29								
184	347R 347R	N	CA	2633	2634	106.27	140.60		
-41.10									
185		С	N	2642	2644	-130.19	-119.90	22.67	1.21
	171.52 18.67		a 4	0011	0045	440.00	107.00		
	348N 348N	N	CA	2644	2645	116.80	137.00		
-41.10	10301 348N 349P	C	M	2650	2652	_55 /l2	-5 <u>9</u> 70	1/1 12	0 03
	168.78 13.08	C	14	2000	2002	-55.40	-30.70	14.13	0.95
186		N	CA	2652	2653	-44.26	-30.50		
147.20			0				00.00		
	10302 349P 350N	С	N	2657	2659	-173.05	-119.90	56.93	1.86
	-164.67 30.44								
187	350N 350N	N	CA	2659	2660	157.39	137.00		
-41.10									
188	10303 350N 351D	C	N	2665	2667	-76.96	-70.90	10.47	0.37
	161.75 20.81								
	351D 351D	N	CA	2667	2668	158.83	150.30		
-40.00		_							
	10305 352I 353F	С	N	2681	2683	-129.82	-124.20	12.79	0.70
	-171.70 22.24	NT.	C A	0600	0604	104 00	142 20		
189	353F 353F	IN	CA	∠೮೮೨	∠084	131.82	143.30		
-44.30									

	10306 353F 354A -161.77 29.74	C N	2692	2694	-147.48	-134.00	16.11	0.86
190	354A 354A	N C	A 2694	2695	138.19	147.00		
-40.90								
191	10307 354A 355D	C N	2697	2699	-131.99	-96.50	52.45	2.15
-63.30	134.45 14.29							
191	355D 355D	N C	A 2699	2700	75.59	114.20		
-40.00								
192	10308 355D 356L	C N	2705	2707	-116.32	-108.50	13.11	0.61
-63.50	-176.46 28.74							
192	356L 356L	N C	A 2707	2708	143.03	132.50		
-41.20								
193	10309 356L 357E	C N	2713	2715	-113.65	-117.80	14.86	0.66
-63.60	170.35 20.40							
193	357E 357E	N C	A 2715	2716	122.53	136.80		
-40.30								
194	10310 357E 358S	C N	2722	2724	-138.69	-136.60	10.20	0.55
-64.10	-168.64 11.90							
194	358S 358S	N C	A 2724	2725	141.22	151.20		
-35.00								
195	10311 358S 359Y	C N	2728	2730	-122.61	-124.30	16.69	0.81
-63.50	172.64 24.71							
195	359Y 359Y	N C	A 2730	2731	118.80	135.40		
-43.40								
196	10313 360P 361D	C N	2747	2749	-131.29	-96.50	44.99	1.84
-63.30	142.89 15.16							
196	361D 361D	N C	A 2749	2750	85.68	114.20		
-40.00								
197	10314 361D 362F	C N	2755	2757	-136.66	-124.20	18.55	0.51
	174.84 29.04							
	362F 362F	N C	A 2757	2758	157.04	143.30		
-44.30								
198	10315 362F 363S	C N	2766	2768	-113.34	-136.60	25.52	0.79
-64.10	-177.53 11.30							
198	363S 363S	N C	A 2768	2769	140.69	151.20		
-35.00								
199	10316 363S 364E	C N	2772	2774	-76.33	-69.30	12.14	0.69
-63.60	167.78 23.08							
199	364E 364E	N C	A 2774	2775	152.40	142.50		
-40.30								
200	10318 365I 366A	C N	2789	2791	-143.47	-134.00	23.35	1.03
-62.50	171.13 32.37							
200	366A 366A	N C	A 2791	2792	168.34	147.00		
-40.90								

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50

FREQUENCY: 0 0 0 0 16 41 139 145 183 217 249 235

295 288

<< end of ENERGY.

>> Summary of successfully	produced models:		
Filename	molpdf	DOPE score	GA341 score SOAP-
Protein-OD score			

WISP1.B99990001.pdb	2115.55103	-19561.43750	0.97372
0.00000			
WISP1.B99990002.pdb	2058.17310	-19009.38867	0.67844
0.00000			
WISP1.B99990003.pdb	2089.63696	-17263.92188	0.32954
0.00000			
WISP1.B99990004.pdb	1996.56909	-18903.21680	0.85786
0.00000			
WISP1.B99990005.pdb	1910.79919	-19025.35547	0.90079
0.00000			

```
[87]: #select model with the lowest DOPE score
#explanation for DOPE score: https://salilab.org/modeller/10.0/manual/node261.

→html; https://salilab.org/modeller/tutorial/basic.html

#model selected will be WISP1.B99990001.pdb
```

[]:

Plotting The Results (15 points) - 5 points for description of data analysis method - 5 points for the code working for data analysis method - 5 points for adequate commenting in the code for the data analysis method

0.0.3 Visualizing the structure

model - WISP1.B99990001.pdb

```
[88]: mdl_v = ngv.show_structure_file('WISP1.B99990001.pdb')
mdl_v.display()
```

NGLWidget()

```
[91]: mdl_v.render_image();
[90]: mdl_v._display_image()
[90]:
```


[92]: #model evaluation?

Analyzing the Results (15 points) - 15 points for correctly analyzing the data

Code Formatting Requirements (15 points) - 5 points for comments identifying global variables and local variables with in depth explanations of each - 5 points for use of a built-in Bioconductor or Biopython function (or some other tool that was discussed in class like NumPy or SciPy), and description of what the function reads in and what it returns. - 5 points for hard-coding/redundant code being absent.