Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №4 ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «СЛЕЖЕНИЕ И КОМПЕНСАЦИЯ: ВИРТУАЛЬНЫЙ ВЫХОД»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

1	Задание 1. Компенсирующий регулятор по состоянию		2
	1.1	Характер внешнего возмущения	2
	1.2	Схема моделирования системы, замкнутой компенсирующим регулято-	
		ром	2
	1.3	Исследование системы перед синтезом регулятора	3
	1.4	Синтез компоненты обратной связи компенсирующего регулятора	3
	1.5	Синтез компоненты прямой связи компенсирующего регулятора	3
	1.6	Компьютерное моделирование	3
	1.7	Вывод	6
2	Задание 2. Следящий регулятор по состоянию		7
	2.1	Характер внешнего возмущения	7
	2.2	Схема моделирования системы, замкнутой следящим регулятором	7
	2.3	Исследование системы перед синтезом регулятора	7
	2.4	Синтез компоненты обратной связи следящего регулятора	8
	2.5	Синтез компоненты прямой связи следящего регулятора	8
	2.6	Компьютерное моделирование	8
	2.7	Вывод	10
3	Задание 3. Слежение и компенсация по выходу		11
	3.1	Характер внешнего возмущения	11
	3.2	Возможность осуществления слежения и компенсации по выходу	11
	3.3	Уравнение регулятора в форме Вход-Состояние-Выход	12
	3.4	Схема моделирования системы для слежения и компенсации по выходу	13
	3.5	Синтез компоненты обратной связи	13
	3.6	Синтез матрицы коррекции наблюдателя	13
	3.7	Синтез компоненты прямой связи следящего регулятора	13
	3.8	Принцип внутренней модели	13
	3.9	Компьютерное моделирование	13
	3.10	Вывод	13
4	Обп	ций вывод по работе	13
5	Приложения		14
	5.1	Приложение 1	14
	5.2	Приложение 2	15
	5.3	Приложение 3	15

Задание 1. Компенсирующий регулятор по состоянию

Рассмотрим систему

$$\dot{x} = Ax + Bu + B_f w_f,$$

$$A = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, B_f = \begin{bmatrix} -4 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}, x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

генератор внешнего возмущения

$$\dot{w}_f = \Gamma w_f, \ \Gamma = \begin{bmatrix} 25 & 6 & -20 & 11 \\ 14 & 3 & -10 & 4 \\ 40 & 11 & -31 & 17 \\ 6 & 4 & -4 & 3 \end{bmatrix}, \ w_f(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

и виртуальный выход вида

$$z = C_Z x$$
, $C_Z = \begin{bmatrix} -2 & 1 & -1 \end{bmatrix}$;

Характер внешнего возмущения

Для определения характера внешнего возмущения найдем собственные числа матрицы Г. Программа в MATLAB находится на листинге 1 в приложении 1

$$\sigma\left(\Gamma\right) = \{\pm i, \pm 3i\}$$

Так как спектр состоит только из мнимых собственных чисел, то характер возмущения – гармоники без затухания и роста амплитуды с течением времени.

Схема моделирования системы, замкнутой компенсирующим регулятором

Построим схему моделирования системы, замкнутой компенсирующим регулятором

$$u = K_1 x + K_2 w_f,$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

при внешнем воздействии, задаваемом генератором. Снимаем осциллограммы u(t), $w_f(t),\,x(t),\,z(t)$

Рис. 1: Схема моделирования системы, замкнутой компенсирующим регулятором

Исследование системы перед синтезом регулятора

Определим управляемость и стабилизируемость системы. Найдем собственные числа матрицы A

$$\sigma(A) = \{-2, 2 \pm i\}$$

Собственное число $\lambda_1 = -2$ асимптотически устойчивое, остальные неустойчивые. Выполним жорданово разложение матрицы A в вещественной форме. Найдем вектор B в базисе собственных векторов матрицы A. Получаем

$$A_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_{re}} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Собственное число $\lambda_1 = -2$ неуправляемое, остальные управляемые. Система не полностью управляема, стабилизируема. Максимальная степень устойчивости $\alpha = |\min(\operatorname{Re}(\tilde{\sigma}(A):\lambda_i\in\mathbb{C}_-))|=2.$

Синтез компоненты обратной связи компенсирующего регулятора

Синтезируем K_1 с помощью матричного уравнения типа Риккати. Зададим $Q=0,\ \nu=2,\ R=1.$ Решаем при $\alpha=2.$ Получаем матрицу регулятора

$$K_1 = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}$$

Проверим собственные числа замкнутой системы $A+BK_1$

$$\sigma(A + BK_1) = \{-2, -2.0000 \pm 4.1231i\}$$

Желаемая степень устойчивости достигнута, регулятор синтезирован корректно.

Синтез компоненты прямой связи компенсирующего регулятора

Чтобы синтезировать K_2 , нужно найти K_1 (уже нашли), найти P,Y как решение системы уравнений

$$\begin{cases} P\Gamma - AP = BY + B_f \\ C_Z P + D = 0 \end{cases}$$

и вычислить K_2 по формуле

$$K_2 = Y - K_1 P$$

Предоставим вычисления пакету сух в МАТLAB. Получаем

$$K_2 = \begin{bmatrix} -48.3631 & -13.0092 & 35.7538 & -23.4769 \end{bmatrix}$$

Компьютерное моделирование

Выполним компьютерное моделирование разомкнутой системы (u=0); системы, замкнутой регулятором только с K_1 компонентой; системы, замкнутой компенсирующим регулятором. Построим графики вектора состояния генератора внешнего возмущения $w_f(t)$, формируемого регулятором управления u(t), вектора состояния объекта управления x(t) и виртуального выхода z(t). Результаты представлены на рис. 2–9

Рис. 2: График возмущений $w_f(t)$

Рис. 3: График управления u(t)=0

Рис. 4: График сравнения управлений $u(t)=K_1x$ и $u(t)=K_1x+K_2w_f$

Рис. 5: График поведения системы x(t) при u(t)=0

Рис. 6: График поведения системы x(t) при $u(t) = K_1 x$

Рис. 7: График поведения системы x(t) при $u(t) = K_1 x + K_2 w_f$

Рис. 8: График виртуального выхода z(t) при u(t)=0

Рис. 9: График сравн. виртуальных выходов z(t) при $u(t) = K_1 x$ и $u(t) = K_1 x + K_2 w_f$

Траектория z(t) при компенсирующем регуляторе стремится к нулю – регулятор выполнил свою задачу. При отсутствии K_2 компоненты z(t) не стабилизируется, но и не расходится (см. рис. 9). При разомкнутой системе виртуальный выход расходится (см. рис. 8). При отсутствии управления вектор состояния объекта управления расходится, при наличии – нет, но и не стабилизируется (см. рис. 5, 6, 7). При наличии K_2 компоненты регулятор сразу начинает действовать на объект управления, при наличии только K_1 компоненты регулятор постепенно управляет системой (см. рис. 4).

Вывод

В данном задании был исследован компенсирующий регулятор по состоянию. Был синтезирован компенсирующий регулятор. Было проведено компьютерное моделирование при различных конфигурациях регулятора. Результаты были сравнены. Компенсирующий регулятор был синтезирован корректно.

Задание 2. Следящий регулятор по состоянию

Рассмотрим систему (матрицы A, B, C_Z, Γ такие же, как в задании 1)

$$\dot{x} = Ax + Bu, \ x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T,$$

генератор задающего сигнала

$$\dot{w}_g = \Gamma w_g, \ w_g(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$

и виртуальный выход вида

$$z = C_Z x + D_Z w_g, D_Z = \begin{bmatrix} -20 & -6 & 16 & -9 \end{bmatrix};$$

Характер внешнего возмущения

Матрица Γ такая же, как в первом задании. Ее спектр имеет вид

$$\sigma\left(\Gamma\right) = \{\pm i, \pm 3i\}$$

Характер возмущений – гармоники без затухания и роста амплитуды с течением времени.

Схема моделирования системы, замкнутой следящим регулятором

Построим схему моделирования системы, замкнутой следящим регулятором

$$u = K_1 x + K_2 w_a,$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

при внешнем воздействии, задаваемом генератором. Снимаем осциллограммы u(t), $w_g(t),\, z(t)$

Рис. 10: Схема моделирования системы, замкнутой следящим регулятором

Исследование системы перед синтезом регулятора

Матрицы A, B такие же, как в первом задании. Имеем

$$\sigma\left(A\right) = \left\{-2, 2 \pm i\right\}, \ A_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}, \ B_{J_{re}} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix};$$

Система не полностью управляема, стабилизируема. Максимальная степень устойчивости $\alpha=2$.

Синтез компоненты обратной связи следящего регулятора

Синтезируем K_1 так же, как в задании 1 – с помощью матричного уравнения Риккати. Матрицы, участвующие в расчетах, не изменились. Таким образом, имеем

$$K_1 = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}, \ \sigma(A + BK_1) = \{-2, -2.0000 \pm 4.1231i\};$$

В первом задании уже выяснили, что регулятор синтезирован корректно.

Синтез компоненты прямой связи следящего регулятора

Синтезируем K_2 аналогично заданию 1. Из системы уравнений пропадет B_f , взамен появится D_Z . Программа представлена на листинге 2 в приложении 2. Получаем

$$K_2 = \begin{bmatrix} 7.2 & 3.2 & -8.0 & 4.0 \end{bmatrix}$$

Компьютерное моделирование

Выполним компьютерное моделирование систем аналогично заданию 1

Рис. 11: График возмущений $w_g(t)$

Рис. 12: График сравнения управлений $u(t) = K_1 x$ и $u(t) = K_1 x + K_2 w_q$

Рис. 13: График поведения системы x(t) при u(t)=0

Рис. 14: График поведения системы x(t) при $u(t) = K_1 x$

Рис. 15: График поведения системы x(t) при $u(t) = K_1 x + K_2 w_g$

Рис. 16: График виртуального выхода z(t) при u(t)=0

Рис. 17: График сравн. виртуальных выходов z(t) при $u(t) = K_1 x$ и $u(t) = K_1 x + K_2 w_q$

Следящий регулятор выполнил свою задачу — на рис. 17 z(t) стремится к нулю с увеличением времени. Виртуальный выход для регулятора только с компонентой K_1 не расходится, но и не стабилизируется. При отсутствии управления z(t) расходится (см. рис. 16). Вектор состояния объекта управления под действием регулятора только с K_1 компонентой стабилизируется к нулю, но виртуальный выход продолжает движение под действием внешних возмущений ($C_Z x \to 0$, $D_Z w_g \to 0$). При наличии компонент K_1 , K_2 график x(t) не стабилизируется к нулю, но и не расходится (см. рис. 15), при этом z(t) достигает целевого состояния. Без управления x(t) расходится (см. рис. 13). При наличии только компоненты K_1 управление со временем стабилизируется к нулю, при наличии обеих компонент — нет (см. рис. 12).

Вывод

В данном задании был исследован следящий регулятор по состоянию. Его синтез был проведен аналогично синтезу компенсирующего регулятора в задании 1. Было выполнено компьютерное моделирование систем со сравнением результатов.

Задание 3. Слежение и компенсация по выходу

Рассмотрим систему (матрицы A, B, B_f, C_Z, D_Z такие же, как в предыдущих заданиях)

$$\begin{cases} \dot{x} = Ax + Bu + B_f w, \\ y = Cx + Dw, \end{cases} \quad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$

и генератор внешнего воздействия

$$\dot{w} = \Gamma w, \ w(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$

при

$$C = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix}, D = \begin{bmatrix} 8 & 2 & -6 & 4 \end{bmatrix};$$

Характер внешнего возмущения

Матрица Г такая же, как в предыдущих заданиях. Ранее мы выяснили, что характер возмущений – гармоники без затухания и роста амплитуды с течением времени.

Возможность осуществления слежения и компенсации по выходу

Проверим пару

$$\left(\begin{bmatrix} C & D \end{bmatrix}, \begin{bmatrix} A & B_f \\ 0 & \Gamma \end{bmatrix} \right)$$

на обнаруживаемость. Обозначим

$$C = \begin{bmatrix} C & D \end{bmatrix}, \ A = \begin{bmatrix} A & B_f \\ \mathbf{0_{4\times3}} & \Gamma \end{bmatrix};$$

Найдем собственные числа матрицы \mathcal{A} . Программа в MATLAB представлена на листинге 3 в приложении 3

$$\sigma\left(\mathcal{A}\right) = \left\{-2, 2 \pm i, \pm i, \pm 3i\right\}$$

Собственное число $\lambda_1 = -2$ асимптотически устойчивое, может быть ненаблюдаемым. Комплексные пары $\lambda_{4,5} = \pm i, \lambda_{6,7} = \pm 3i$ устойчивые, но не асимптотически. Комплексная пара $\lambda_{2,3} = 2 \pm i$ неустойчивая, нужна наблюдаемость. Найдем вещественное жорданово разложение матрицы \mathcal{A} , а матрицу \mathcal{C} переведем в базис собственных векторов матрицы \mathcal{A} . Получаем

$$\mathcal{A}_{J_{re}} = \begin{bmatrix} -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & -3 & 0 \end{bmatrix}, \ \mathcal{C}_{J_{re}} = \begin{bmatrix} 1.0000 \\ 1.0000 \\ 0.0000 \\ 0.9500 \\ 2.1500 \\ -1.2192 \\ 0.5038 \end{bmatrix};$$

Все жордановы клетки относятся к различным собственным числам. Для комплексной пары $\lambda_{2,3}=2\pm i$ в $\mathcal{C}_{J_{re}}$ один из двух соответствующих ей столбцов ненулевой, следовательно $\lambda_{2,3}$ наблюдаемы. Остальные собственные числа наблюдаемы. Таким образом, система полностью наблюдаема и обнаруживаема. Слежение и компенсация по выходу осуществимы.

Уравнение регулятора в форме Вход-Состояние-Выход

Найдем матрицу \overline{A} , которая будет нужна в дальнейшем для построения схемы и проведения вычислений, через запись уравнения регулятора в форме B-C-B, где вход это y(t), а выход u(t). Расширенный объект имеет вид

$$\begin{cases} \dot{x} = Ax + Bu + B_f w, \\ \dot{w} = \Gamma w, \\ y = Cx + Dw, \\ z = C_Z x + D_Z w; \end{cases}$$
(1)

Для него можно записать регулятор по выходу

$$\begin{cases}
\dot{\hat{x}} = A\hat{x} + Bu + B_f\hat{w} + L_1(\hat{y} - y), \\
\dot{\hat{w}} = \Gamma\hat{w} + L_2(\hat{y} - y), \\
\hat{y} = C\hat{x} + D\hat{w}, \\
u = K_1\hat{x} + K_2\hat{w};
\end{cases} \tag{2}$$

Выполним подстановку \hat{y} , u в $\dot{\hat{x}}$ и выразим \hat{x} , \hat{w} , чтобы позже вынести эти компоненты как вектор, на который умножается матрица \bar{A} . Аналогично с y. Имеем

$$\dot{\hat{x}} = A\hat{x} + Bu + B_f\hat{w} + L_1(\hat{y} - y),
\dot{\hat{x}} = A\hat{x} + B(K_1\hat{x} + K_2\hat{w}) + B_f\hat{w} + L_1(C\hat{x} + D\hat{w} - y),
\dot{\hat{x}} = A\hat{x} + BK_1\hat{x} + BK_2\hat{w} + B_f\hat{w} + L_1C\hat{x} + L_1D\hat{w} - L_1y,
\dot{\hat{x}} = (A + BK_1 + L_1C)\hat{x} + (BK_2 + B_f + L_1D)\hat{w} - L_1y;$$
(3)

Проведем аналогичные действия для $\dot{\hat{w}}$

$$\dot{\hat{w}} = \Gamma \hat{w} + L_2 (\hat{y} - y),
\dot{\hat{w}} = \Gamma \hat{w} + L_2 (C \hat{x} + D \hat{w} - y),
\dot{\hat{w}} = \Gamma \hat{w} + L_2 C \hat{x} + L_2 D \hat{w} - L_2 y,
\dot{\hat{w}} = (L_2 C) \hat{x} + (\Gamma + L_2 D) \hat{w} - L_2 y;$$
(4)

Запишем регулятор по выходу (2) с учетом подстановок (3), (4)

$$\begin{cases}
\dot{\hat{x}} = (A + BK_1 + L_1C)\,\hat{x} + (BK_2 + B_f + L_1D)\,\hat{w} - (L_1)\,y, \\
\dot{\hat{w}} = (L_2C)\,\hat{x} + (\Gamma + L_2D)\,\hat{w} - (L_2)\,y, \\
u = (K_1)\,\hat{x} + (K_2)\,\hat{w};
\end{cases} \tag{5}$$

Вынесем компоненты за скобками в соответствующие векторы

$$\begin{cases}
\begin{bmatrix} \dot{\hat{x}} \\ \dot{\hat{w}} \end{bmatrix} = \begin{bmatrix} A + BK_1 + L_1C & BK_2 + B_f + L_1D \\ L_2C & \Gamma + L_2D \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} - \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} y, \\
u = \begin{bmatrix} K_1 & 0 \\ 0 & K_2 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix};
\end{cases} (6)$$

Получили уравнение регулятора в форме Вход-Состояние-Выход. Матрица \bar{A} имеет вид

$$\bar{A} = \begin{bmatrix} A + BK_1 + L_1C & BK_2 + B_f + L_1D \\ L_2C & \Gamma + L_2D \end{bmatrix}$$
 (7)

Схема моделирования системы для слежения и компенсации по выходу

Построим схему моделирования системы, замкнутой регулятором, состоящим из расширенного наблюдателя

$$\begin{bmatrix} \dot{\hat{x}} \\ \dot{\hat{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \hat{x} \\ \hat{w} \end{bmatrix} - Ly$$

и закона управления

$$u = K_1 \hat{x} + K_2 \hat{w},$$

обеспечивающего выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

при внешнем воздействии, задаваемом генератором. Снимаем осциллограммы u(t), $\begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$, $\begin{bmatrix} \hat{x}(t) \\ \hat{w}(t) \end{bmatrix}$, e(t), y(t), z(t)

Синтез компоненты обратной связи

Аналогично заданию 1 синтезируем K_1 при помощи матричного уравнения типа Риккати. Матрицы, участвующие в расчетах, не изменились. Тогда, получаем

$$K_1 = \begin{bmatrix} 1.6000 & -11.2000 & 1.6000 \end{bmatrix}, \ \sigma(A + BK_1) = \{-2, -2.0000 \pm 4.1231i\};$$

В первом задании уже выяснили, что регулятор синтезирован корректно.

Синтез матрицы коррекции наблюдателя

...

Синтез компоненты прямой связи следящего регулятора

. . .

Принцип внутренней модели

. . .

Компьютерное моделирование

• • •

Вывод

• • •

Общий вывод по работе

• • •

Приложения

Приложение 1

```
% plant parameters
A = [5 \ 2 \ 7;
     2 1 2;
    -2 -3 -4];
B = [3; 1; -1];
Bf = [-4 \ 0 \ 0 \ -1;
      0 0 0 0;
      4 0 0 0];
G = [25 6 -20 11;
     14 3 -10 4;
     40 11 -31 17;
     6 4 -4 3];
Cz = [-2 \ 1 \ -1];
D = 0;
% G eigenvalues
G_{eig} = eig(G)
% A eigenvalues
A_{eig} = eig(A)
% Jordan matrix
[Aj, J] = jordan(A);
Pjre(:,1) = Aj(:,1);
Pjre(:,2) = imag(Aj(:,2));
Pjre(:,3) = real(Aj(:,3))
Pjre_inv = Pjre^-1
Aj_re = Pjre_inv * A * Pjre
B_jre = Pjre_inv * B
% solving Riccati
Q = 0;
v = 2;
R = 1;
a = 2;
Aa = A + eye(3) * a;
[Pk,K,e]=icare(Aa, sqrt(2)*B,Q,R);
K1 = -inv(R)*B*Pk
eK1 = eig(A+B*K1)
% K2 regulator synthesis
cvx_begin sdp
variable P(3,4)
variable Y(1,4)
P*G-A*P == B*Y+Bf;
Cz*P + D == 0;
cvx_end
K2 = Y - K1 * P
```

Листинг 1: Программа для задания 1

Приложение 2

```
\% plant parameters
A = [5 \ 2 \ 7;
     2 1 2;
    -2 -3 -4];
B = [3; 1; -1];
Bg = 0;
G = [25 6 -20 11;
     14 3 -10 4;
     40 11 -31 17;
     6 4 -4 3];
Cz = [-2 \ 1 \ -1];
Dz = [-20 -6 16 -9];
% solving Riccati
Q = 0;
v = 2;
R = 1;
a = 2;
Aa = A + eye(3) * a;
[Pk,K,e]=icare(Aa, sqrt(2)*B,Q,R);
K1 = -inv(R)*B*Pk
eK1 = eig(A+B*K1)
% K2 regulator synthesis
cvx_begin sdp
variable P(3,4)
variable Y(1,4)
P * G - A * P == B * Y + B g;
Cz*P + Dz == 0;
cvx_end
K2 = Y - K1 * P
```

Листинг 2: Программа для задания 2

Приложение 3

tbd

Листинг 3: Программа для задания 3