Course Code	Corse Title	L	Т	Р	С
BCSE427L	Cognitive Robotics	2	0	0	2
Pre-requisite	NIL	Syllabus Version			
		1.0			

Course Objectives:

- 1. To understand the main types of cognitive (vision, motor control, language, social skills) robots and their driving requirements (engineering operations, navigation, cooperation)
- 2. To understand advanced methods for creating efficient and dynamic cognitive robots.
- 3. To understand the recent literature, and collectively synthesize, clearly explain and evaluate the state of the art in cognitive robotics.
- 4. To apply one or more core reasoning methods to create a simple agent that is driven by goals or rewards.

Course Outcomes:

After the completion of the course, student will be able to:

- 1. Understand how our psychology and neuroscience understanding of behavior and intelligence informs the design of robotics models and applications
- 2. Compare, select and apply different machine learning methods for intelligent behavior in robots.
- 3. Analyze the methods and software/hardware technologies for robotics research and applications.
- 4. Discuss the state of the art in cognitive and intelligent robotics models, and how this leads to the design of future robot applications.

Module:1 Introduction		2 hours		
Thinking, Cognition, and Intellig	ence, Defining Intelligence - Embodim	ent and Its		
Implications, Synthetic Methodology	/ for Intelligence.			
Module:2 Cybernetic View of F	Robot Cognition and Perception	4 hours		
Introduction to the Model of Cog	nition, Visual Perception, Visual Recognit	ion, Machine		
Learning, and Robot Cognition.				
Module:3 Intelligent System Document Control	esign, Cognition Development and	5 hours		
Properties of Complete Agents, Age	ent Design Principle, Developmental Robot [Design,		
Matching brain and Body Dynamics	, Artificial Neural Networks (ANN), Fuzzy Lo	gic, Genetic		
Algorithms and Other Nature Inspire	ed Methods, Optimal Control using ANN, Inti	roduction to		
CNN.				
Module:4 Map Building		5 hours		
Introduction, Constructing a 2D Wo	Introduction, Constructing a 2D World Map, Data Structure for Map Building, Explanation of			
the Algorithm, An Illustration of Prod	cedure Map Building.			
Module:5 Randomized Path Pl	anning	5 hours		
Introduction, Representation of the Robot's Environment, Review of configuration spaces,				
Visibility Graphs, Voronoi diagrams, Potential Fields and Cell Decomposition, Planning with				
moving obstacles, Probabilistic Roadmaps, Rapidly exploring random trees, Execution of the				
Quad tree-Based Path Planner Program.				
Module:6 Simultaneous Local	ization and Mapping (SLAM)	5 hours		
Problem Definition, Mathematical Basis, Examples: SLAM in Landmark Worlds, Taxonomy				
of the SLAM Problem, Extended Kalman filter, Graph-Based Optimization Techniques,				
	Particle Methods Relation of Paradigms.			
Module:7 Robot Programming	methods	3 hours		

Python Robot Programming Methods-: Go-to-Goal Behavior, Avoid-Obstacles Behavior, Hybrid Automata (Behavior State Machine), Follow-Wall Behavior. A Complete Program for autonomous mobile robot.						
Мо	dule:8	Contemporary issues				1 hours
			7	Total Lectu	re hours:	30 hours
Tex	kt Book(s)				
1.	Patnaik, Srikanta, "Robot Cognition and Navigation – An Experiment with Mobile Robots", Springer Verlag Berlin and Heidelberg, 2007				with Mobile	
2.	2. Howie Choset, Kevin LynchSeth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, Cambridge, 2005.					
3						
Reference Book(s)						
1.	1. HoomanSomani, "Cognitive Robotics", CRC Press, 2015					
2.	2. Jared Kroff, "Cognitive Robotics: Intelligent Robotic Systems", Wilford Press, 2016					
3.	3. https://www.toptal.com/robotics/programming-a-robot-an-introductory-tutorial					
Re	Recommended by Board of Studies 13-05-2022					
Ap	Approved by Academic Council No. 66 Date 16-06-2022					

Course Code	Course Title	L	T	Р	С
BCSE427P	Cognitive Robotics Lab	0	0	2	1
Pre-requisite	NIL	Syllabus Version			
		1.0			

Course Objectives:

- 1. To understand advanced methods for creating efficient and dynamic cognitive robots
- 2. To apply one or more core reasoning methods to create a simple agent that is driven by goals or rewards

Course Outcomes:

After the completion of the course, student will be able to:

- 1. Understand how our psychology and neuroscience understanding of behavior and intelligence informs the design of robotics models and applications
- 2. Compare, select and apply different machine learning methods for intelligent behavior in robots.
- 3. Apply the methods and software/hardware technologies for robotics research and applications.
- 4. Implement the state of the art in cognitive and intelligent robotics models, and how this leads to the design of future robot applications.

List of Challenging Experiments (Indicative)			
1	Introduction to the Python language and Python libraries, including NumPy, SciPy and NXT Python • Introduction to numerical arrays and parallel arithmetic • Introduction to numerical data plotting • • Introduction to numerical regression techniques • Installing Raspbian OS on the Raspberry Pi 3	4 hours	
2	Introduction to microcontrollers (32-bit ARM-based devices) in embedded applications used in automobiles and home appliances (such as washing machines, microwave ovens, telephones, and computer system peripherals) • Controlling GPIO pins (e.g., connected to LEDs) on the Raspberry Pi 3 using Python • Controlling motors • Collecting sensor data (such as light-color sensor, touch sensor, infrared proximity sensor and ultrasonic sensor) • Writing and uploading robotic control programs	4 hours	
3	Interfacing data acquisition system hardware with computer to measure and control the robotic system.	4 hours	
4	Robotic motion and autonomous responses • Path following, solving a Rubix cube, book scanning, and other fun problems	4 hours	
5	Machine learning algorithms for neural network pattern recognition	4 hours	
6	Extend the deep learning exercises (e.g. Multi-Layer Perceptron (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) to optimize the training for robotics (vision) applications.	6 hours	
	SLAM in ROS	4 hours	
7			

1. Learning Computing with Robots, Deepak Kumar, Institute for Personal Robots in Educaition, June 2008

Reference Books

- 1. Programming Cognitive Robots, Hector J. Levesque, 2019
- 2. Learning Robotics Using Python, Lentin Joseph, 2015
- 3. https://www.ieee-ras.org/cognitive-robotics/resources (Research Challenges)

16-06-2022

Mode of Evaluation: Continuous Assessment Test –I (CAT-I), Continuous Assessment Test				
-II (CAT-II), Digital Assignments/ Quiz / Completion of MOOC, Final Assessment Test				
(FAT).				
Recommended by Board of Studies	13-05-2022			

No. 66

Date

Approved by Academic Council