Machine Learning: Lesson 5

Overfitting, Underfitting and Model Selection

Benoît Frénay - Faculty of Computer Science

Outline of this Lesson

- overfitting/underfitting
- definition of model selection
- validation-based model selection
- practical case of model selection
- advanced techniques and model testing

Overfitting/Underfitting

Notion of Model Complexity

Meta-parameters vs. parameters

model	meta-parameters	parameters
kNN classifier	number <i>k</i> of neighbours	-
decision tree	depth / number of nodes	nodes (decisions)
polynomial	order (largest exponent)	coefficients
neural network	number of neurons	synaptic weights
clustering	number of clusters	center/size of clusters

Model complexity

complexity = capacity of the class of function which can be approximated

- meta-parameters: determine the complexity/capacity/architecture of the model (what kind of function can be approximated)
- parameters: determines the particular function which is modelled

Notion of Model Complexity

all possible decision trees

decision tree for dengue fever diagnosis inferred from 1200 cases

not too complex (leaf with high PC and low LC could probably be split)

decision tree for dengue fever diagnosis inferred from 4 cases

model the training set perfectly, but poor generalisation on ur and ata

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 2$ $(n = 9)$

$$f(x) \approx 0.47 + 0.13x^1 + 0.96x^2$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 3$ $(n = 9)$

$$f(x) \approx 0.42 + 0.61x^1 + 0.99x^2 - 0.09x^3$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 4$ $(n = 9)$

$$f(x) \approx 0.47 + 0.57x^{1} + 0.91x^{2} - 0.08x^{3} + 0.01x^{4}$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 5$ $(n = 9)$

$$f(x) \approx 0.25 + 1.55x^{1} + 1.04x^{2} - 0.54x^{3} - 0.00x^{4} + 0.05x^{5}$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 6$ $(n = 9)$

$$f(x) \approx 0.32 + 1.58x^{1} + 0.57x^{2} - 0.58x^{3} + 0.18x^{4} + 0.05x^{5} - 0.02x^{6}$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 7$ $(n = 9)$

$$f(x) \approx 0.30 + 2.87x^{1} - 0.51x^{2} - 2.32x^{3} + 0.57x^{4} + 0.57x^{5} - 0.05x^{6} - 0.04x^{7}$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 8$ $(n = 9)$

$$f(x) \approx -4 - 127x^{1} + 202x^{2} + 124x^{3} - 130x^{4} - 34x^{5} + 28x^{6} + 3x^{7} - 2x^{8}$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order $p = 9$ $(n = 9)$

$$f(x) \approx -0 - 21x^{1} - 8x^{2} + 86x^{3} + 19x^{4} - 48x^{5} - 6x^{6} + 9x^{7} + 1x^{3} - 1x^{9}$$

About Elephants and Complex Models

John von Neumann (attributed by Enrico Fermi): "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk".

source: "Drawing an elephant with four complex parameters" by Jurgen Mayer, Khaled Khairy, and Jonathon Howard, Am. J. Phys. 78, 648 (2010), DOI:10.1119/1.3254017. see also http://www.johndcook.com/blog/2011/06/21/how-to-fit-an-elephant/

decision tree for dengue fever diagnosis inferred from 1200 cases

unable to model the training set and poor generalisation on unseen data

$$f(x) = x(x-1)(x+2)(x-2) + \epsilon \Rightarrow \text{polynomial of order } p = 0 \ (n = 100)$$

$$f(x) \approx 5.41$$

$$f(x) = x(x-1)(x+2)(x-2) + \epsilon \Rightarrow \text{polynomial of order } p = 1 \ (n = 100)$$

$$f(x) \approx 5.37 - 1.56x^{1}$$

$$f(x) = x(x-1)(x+2)(x-2) + \epsilon \Rightarrow \text{polynomial of order } p = 2 \ (n = 100)$$

$$f(x) \approx -7.19 - 1.97x^{1} + 3.89x^{2}$$

$$f(x) = x(x-1)(x+2)(x-2) + \epsilon \Rightarrow \text{polynomial of order } p = 3 \ (n = 100)$$

$$f(x) \approx -6.16 + 5.26x^{1} + 3.72x^{2} - 1.24x^{3}$$

$$f(x) = x(x-1)(x+2)(x-2) + \epsilon \Rightarrow \text{polynomial of order } p = 4 \ (n = 100)$$

$$f(x) \approx -0.11 + 4.14x^{1} - 3.89x^{2} - 1.03x^{3} + 0.99x^{4}$$

Motivation for Model Selection

Overfitting vs. underfitting

- \bullet overfitting: too complex \Rightarrow learn data "by heart" \Rightarrow "stupid" model
- underfitting: not complex enough ⇒ unable to model dataset
- in both cases: poor generalisation performance (too simple/complex)
- cause: choice of meta-parameters (complexity/capacity/architecture)

Meta-parameters vs. parameters

- meta-parameters: chosen before learning (model selection)
- parameters: obtained after learning (influenced by meta-parameters)

Choice of the meta-parameter

- question: how to select the right complexity?
- answer depends on the dataset (number of instances, quality)

Definition of Model Selection

Experimental settings

• process generating data: $f(x) = x^2 + \epsilon$ with $\epsilon \sim \mathcal{N}(0, 0.5)$

- only n = 9 training instances are available
- polynomials of order $p = 0, \dots, 9$ are considered

Question: what is the right model complexity?

- meta-parameter = order p of the polynomial
- goal: choose model complexity for best generalisation
- issue: in practice, the process generating data is unknown
- ullet common trick: generalisation error pprox error on independent sample
- 10⁶ instances are used here to estimate the generalisation error

Error criterion: mean square error (MSE)

$$E = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - t_i)^2$$

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 0 $(n = 20)$

		_ ^
p	E_{trai}	$\hat{E}_{ m ger} = 0$
ightarrow 0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
,		

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 1 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
ightarrow 1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
	'	ļi

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 2 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
ightarrow 2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
	•	1

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 3 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
$\rightarrow \textbf{3}$	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
	'	!

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 4 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
ightarrow 4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 5 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
ightarrow 5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
		•

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 6 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
ightarrow 6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 7 $(n = 20)$

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
ightarrow 7	0.151	3.243
8	0.070	211.622
9	0.046	791.109

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 8 $(n = 20)$

p	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
ightarrow 8	0.070	211.622
9	0.046	791.109

Model Selection for Polynomial Fitting

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ polynomial of order 9 $(n = 20)$

p	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
ightarrow 9	0.046	791.109

Model Selection for Polynomial Fitting

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ best order $p = 2$ ($E_{\text{gen}} \approx 0.5^2 = .25$)

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
* 2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109

Model Selection for Polynomial Fitting

$$f(x) = x^2 + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, 0.5) \Rightarrow$ best order $p = 2$ ($E_{\text{gen}} \approx 0.5^2 = .25$)

р	E_{train}	\hat{E}_{gen}
0	7.291	7.927
1	6.288	10.013
* 2	0.272	0.275
3	0.223	0.351
4	0.217	0.374
5	0.205	0.484
6	0.151	2.511
7	0.151	3.243
8	0.070	211.622
9	0.046	791.109
	•	

Model Selection: from Theory to Practice

Definition

Model selection consists in choosing the best meta-parameters for a model.

In practice

- model selection is performed before the parameter optimisation
- meta-parameters should not/cannot be chosen by hand (intractable)
- meta-parameters depend on dataset characteristics (size, quality, etc.)

Generalisation error minimisation

- the generalisation error is unknown and has to be estimated
- the training error cannot be used (biased, overoptimistic estimator)
- efficient use of the limited amount of data (we cheated in the example)

Model Selection: from Theory to Practice

Definition

Model selection consists in choosing the best meta-parameters for a model.

In practice

- model selection is performed before the parameter optimisation
- meta-parameters should not/cannot be chosen by hand (intractable)
- meta-parameters depend on dataset characteristics (size, quality, etc.)

Generalisation error minimisation

- the generalisation error is unknown and has to be estimated
- the training error cannot be used (biased, overoptimistic estimator)
- efficient use of the limited amount of data (we cheated in the example)

Model Selection: Common Error Criteria and Estimators

Generalisation in regression

in regression, the average square error for model f is used since

$$\mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{t|\mathbf{x}}\left[(f(\mathbf{x})-t)^{2}\right]\right] = \mathbb{E}_{\mathbf{x},t}\left[(f(\mathbf{x})-t)^{2}\right] \approx \frac{1}{n}\sum_{i=1}^{n}(f(\mathbf{x}_{i})-t_{i})^{2}$$

Generalisation in classification

in classification, the misclassification rate for model f is used since

$$\mathbb{E}\left[\mathbb{E}\left[\mathbb{I}\left[f(\mathsf{x})\neq t\right]\right]\right] = \mathbb{E}\left[\mathbb{I}\left[f(\mathsf{x})\neq t\right]\right] \approx \frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\left[f(\mathsf{x}_{i})\neq t_{i}\right]$$

both estimators converge to the true generalisation error when $n \to \infty$, but in practice the size of the validation set n is finite \Rightarrow we must be careful!

Validation-Based

Model Selection

Simple Validation

Procedure

- split data into a training set and a validation set
- training set is used to train the model with meta-parameters
- validation set is used to estimate the generalisation error

Pros and cons

- \checkmark easy and fast, intuitive, converge when $n o \infty$ (unbiased estimator)
- imes unreliable: only one repetition, what if we are (un)lucky ?

Cross-Validation

Procedure

- same than simple validation, except that the procedure is repeated
- dataset is shuffled before each repetition
- generalisation error estimates for each repetition are averaged

Pros and cons

- √ more reliable: unlikely to be (un)lucky if enough repetitions
- × potentially large overlapping between training and validation sets

k-Fold Cross-Validation

Procedure

- ullet dataset is split in k folds (fixed over repetitions), usually k=10
- ullet at each repetition, training =k-1 folds and validation =1 fold
- each fold is only once used as the validation set

Pros and cons

- \checkmark same advantages than cross-validation, small number k of repetitions
- \checkmark no overlapping (generalisation error estimates are \pm independent)

Grid Search for Meta-Parameter Optimisation

```
grid\_search(\mathcal{D}, k)
```

```
Input: dataset \mathcal{D} = \{(\mathbf{x}_i, t_i)\} and number of folds k Output: model with optimal meta-parameters for each possible meta-parameter values \alpha do \hat{\mathcal{E}}_{\text{gen}}(\alpha) = \text{compute\_kfcv\_error}(\mathcal{D}, \, k, \, \alpha) end for return model learnt with \mathcal{D} and meta-parameters \alpha^* = \arg\min_{\alpha} \hat{\mathcal{E}}_{\text{gen}}(\alpha)
```

compute_kfcv_error(\mathcal{D} , k, α)

```
Input: dataset \mathcal{D} = \{(\mathbf{x}_i, t_i)\}, number of folds k and meta-parameters \alpha Output: estimated generalisation error of the best model with meta-parameters \alpha \hat{\mathcal{E}}_{\text{gen}}(\alpha) = 0 for each fold do divide the k folds of \mathcal{D} in \mathcal{D}_{\text{train}} and \mathcal{D}_{\text{val}} learn model with \mathcal{D}_{\text{train}} and meta-parameters \alpha \hat{\mathcal{E}}_{\text{gen}}(\alpha) += \frac{1}{k} (prediction error of model on \mathcal{D}_{\text{val}}) end for return \hat{\mathcal{E}}_{\text{gen}}(\alpha)
```

Hypergrids for Grid Search

Hypergrids for Grid Search

Hypergrids for Grid Search

Practical Case

of Model Selection

Experimental Settings

Dataset

- artificial problem "Two Moons" (sklearn.datasets.make_moons)
- n = 30 (inc. 3 mislabelled) with non-linear support vector machine
 - meta-parameter C: regularisation constant (simple \leftrightarrow complex)
 - ullet meta-parameter γ : scale at which we "look" at data (small \leftrightarrow large)

Results with 10-fold Cross-Validation

Results with Suboptimal Meta-parameter Choices

Advanced Techniques and Model Testing

Comparison with other Techniques

Akaike/Bayesian information criterion for linear models

- AIC: $\hat{E}_{gen} = E_{train} + \frac{2}{n}dim(\theta)$ BIC: $\hat{E}_{gen} = E_{train} + \frac{\log n}{n}dim(\theta)$
- based on (strong) simplifying assumptions: lead to overfitting

Leave-one-out (LOO)

- k-fold CV with k = n (analytical expression for linear methods)
- only used in specific cases: otherwise, very costly and high variance

Bootstrap

- ullet estimates the bias of the training error $E_{
 m gen}-E_{
 m train}$ with resampling
- theoretically better than validation-based schemes (smaller variance)
- not used in practice because thousands of resampling are necessary

Comparison with other Techniques

Akaike/Bayesian information criterion for linear models

- AIC: $\hat{E}_{gen} = E_{train} + \frac{2}{n}dim(\theta)$ BIC: $\hat{E}_{gen} = E_{train} + \frac{\log n}{n}dim(\theta)$
- based on (strong) simplifying assumptions: lead to overfitting

Leave-one-out (LOO)

- k-fold CV with k = n (analytical expression for linear methods)
- only used in specific cases: otherwise, very costly and high variance

Bootstrap

- ullet estimates the bias of the training error $E_{
 m gen}-E_{
 m train}$ with resampling
- theoretically better than validation-based schemes (smaller variance)
- not used in practice because thousands of resampling are necessary

Comparison with other Techniques

Akaike/Bayesian information criterion for linear models

- AIC: $\hat{E}_{gen} = E_{train} + \frac{2}{n}dim(\theta)$ BIC: $\hat{E}_{gen} = E_{train} + \frac{\log n}{n}dim(\theta)$
- based on (strong) simplifying assumptions: lead to overfitting

Leave-one-out (LOO)

- k-fold CV with k = n (analytical expression for linear methods)
- only used in specific cases: otherwise, very costly and high variance

Bootstrap

- ullet estimates the bias of the training error $E_{
 m gen}-E_{
 m train}$ with resampling
- theoretically better than validation-based schemes (smaller variance)
- not used in practice because thousands of resampling are necessary

Why we Need Model Testing

Training and validation error cannot be used

- training error is biased since it was used to select parameters
- validation error is biased since it was used to select meta-parameters

In practice

- use another set of instances which has not been used yet
- assess the method in a real setting (where it is supposed to be used)

About model selection and testing

validation techniques are very important: training error cannot be trusted

Model Comparison in Terms of Generalisation Error

Model Comparison in Terms of Generalisation Error

Model Comparison in Terms of Generalisation Error

Outline of this Lesson

- overfitting/underfitting
- definition of model selection
- validation-based model selection
- practical case of model selection
- advanced techniques and model testing

References

