

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
Springfield, Va. 22151

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) AFIT-EN Wright-Patterson AFB, Ohio	2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	
2b. GROUP		
3. REPORT TITLE LOW MACH NUMBER WIND-TUNNEL STUDY OF AN ADVANCED MANNED INTERCEPTOR		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report		
5. AUTHOR(S) (First name, middle initial, last name) Robert M. Foley CAPT USAF		
6. REPORT DATE 13 Mar 1972	7a. TOTAL NO. OF PAGES 98	7b. NO. OF REFS 6
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) GAM/AE/72-4	
b. PROJECT NO.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
c.		
d.		

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

Approved for public release; IAW AFR 190- <i>Stephen B. Ingram</i> Stephen B. Ingram, Captain, USAF Director of Information	11 SPONSORING MILITARY ACTIVITY AFIT-EN Wright-Patterson AFB, Ohio
--	---

13. ABSTRACT

This project involved the testing of a model of a projected Advanced Manned Interceptor in the AFIT 5 Foot Wind-Tunnel at Wright-Patterson AFB, Ohio. The model was constructed by the McDonnell-Douglas Company and was a blended-body shape designed for Mach 4 cruising flight. The initial testing on the model in the supersonic range had been conducted by AEDC and low subsonic Mach number testing was required to complete the flight envelope.

The test program was conducted at a Mach number of .19 at a Reynolds number of 3.6×10^6 . Basic performance parameters were recorded on IBM cards and the data was reduced with the FDL-8 data reduction program from the Air Force Flight Dynamics Laboratory. The reduced data supplied the parameters to determine basic lift, drag, and pitching moment characteristics of the model as well as thirteen of the static stability derivatives. This project gave an insight into the low Mach number characteristics of a blended-body shape designed for Mach 4 cruising flight.

[PII Redacted]

14

KEY WORDS

- Blended-body
- Wind-tunnel testing
- Low Mach number performance
- Low Mach number stability
- Roll, Pitch, Yaw coupling

LOW MACH NUMBER WIND-TUNNEL STUDY
OF AN
ADVANCED MANNED INTERCEPTOR
THESIS

GAM/AE/72-4 Robert M. Foley
CAPT USAF

D D C
REF ID: A65120
MAY 16 1972
R E G I S T R Y
C

**LOW MACH NUMBER WIND-TUNNEL STUDY
OF AN
ADVANCED MANNED INTERCEPTOR
THESIS**

**Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science**

by

Robert M. Foley, B.S.

Captain USAF

**Graduate Aerospace-Mechanical Engineering
March 1972**

Approved for public release; distribution unlimited.

Preface

The rapid advances in aeronautics during the past 50 years have often obscured the history of this development and produced a tendency to dwell only on the here and now rather than how we arrived where we are. This thesis offered a unique opportunity to experience some of the history of aeronautical development while working with practicing engineers and technicians in the testing of a design for an Advanced Manned Interceptor. I am indebted to Mr. Ron Gord of the Flight Dynamics Laboratory for his interest and professional advice on this project. Mr. Park Doing, also of the Flight Dynamics Laboratory, provided valuable assistance in calibrating the model balance and the tunnel instrumentation. I offer my special thanks to the technicians of the AFIT 5 Foot Wind-Tunnel for their professional approach to every task and for their cheerful answers to my many questions. Finally, I must express my appreciation to Professor Harold C. Larsen for his professional advice on this project and particularly for his thought provoking presentations in the classroom. His vast experience in the field of aviation has enabled him to speak with authority on theory and practice. My association with him has given me an appreciation for the history of aeronautical development and the respective parts played by the theoreticians and engineers as well as the aircrews.

Robert K. Foley

Contents

	Page
Preface	ii
List of Figures	iv
List of Tables	v
List of Symbols	vi
Abstract	ix
I. Introduction	1
Background	1
Model Description	3
Balance Description	5
Tunnel Description	6
Data Reduction	7
Constraints	8
II. Basic Parameters	9
III. The Stability Derivatives	12
Longitudinal Derivatives	12
Lateral Derivatives	19
Stability Derivative Summary	29
IV. Conclusions and Recommendations	30
Bibliography	32
Appendix A: Aerodynamic Parameters	33
Appendix B: Model Configurations	45
Appendix C: Data Sheets	46
Vita	98

List of Figures

Figure	Page
1 Blended-Body Model Basic Dimensions	2
2 Effect of Elevator Deflection on Lift	16
3 Effect of Elevator Deflection on Pitching Moment..	18
4 Effect of Yaw Angle on Side Force	20
5 Dihedral Effect	22
6 Weathercock Stability Derivative	23
7 Rolling Moment due to Aileron Deflection	25
8 Yawing Moment due to Aileron Deflection	26
9 Lift Curve for Zero Control Deflection	34
10 Drag Curve for Zero Control Deflection	35
11 Pitching Moment for Zero Control Deflection	36
12 Change in the Lift Curve with Elevator Deflection.	37
13 Change in the Pitching Moment with Elevator Deflection	38
14 Change in the Side Force Coefficient with Yaw Angle	39
15 Effect of Yaw Angle on Rolling Moment	40
16 Effect of Yaw Angle on Yawing Moment	41
17 Effect of Aileron Deflection on Rolling Moment ..	42
18 Effect of Aileron Deflection of Yawing Moment ...	43
19 Parasite Drag Determination	44

List of Tables

Table	Page
I Stability Derivative Summary	29
II Model Configurations	45

List of Symbols

A aspect ratio
C_D drag coefficient
$C_{D0\min}$ minimum drag coefficient
C_{Dpe} effective parasite drag coefficient
C_1 rolling moment coefficient
$C_{1\beta}$ derivative of rolling moment coefficient with respect to β
$C_{1\xi}$ derivative of rolling moment coefficient with respect to ξ
C_L lift coefficient
$C_{L\max}$ maximum lift coefficient
C_{L0} lift coefficient at zero angle of attack
$C_{L\alpha}$ slope of the lift curve
$C_{L\delta_e}$ derivative of lift coefficient with respect to elevator deflection
C_m pitching moment coefficient
C_{m_u} derivative of pitching moment coefficient with velocity
$C_{m\alpha}$ derivative of pitching moment coefficient with angle of attack

C_{m_n}	derivative of pitching moment coefficient with control deflection
C_n	yawing moment coefficient
C_{n_β}	derivative of yawing moment coefficient with β
C_{n_ξ}	derivative of yawing moment coefficient with ξ
C_x	axial force coefficient
C_{x_u}	derivative of axial force coefficient with u
C_{x_α}	derivative of axial force coefficient with α
C_y	side force coefficient
C_{y_β}	derivative of side force coefficient with β
C_z	coefficient of normal force
C_{z_u}	derivative of normal force with respect to u
C_{z_α}	derivative of normal force with respect to α
C_{z_n}	derivative of normal force with respect to n
e	airplane efficiency factor
L	rolling moment
M	pitching moment
N	yawing moment
q	dynamic pressure (lb/ft^2)

u axial velocity perturbation
x axial force
y side force
z normal force
α angle of attack
 α_{ZL} zero lift angle of attack
β yaw angle
 δ_a aileron deflection
 δ_e elevator deflection
η general control deflection
ψ Euler angle indicating heading change

Abstract

This project involved the testing of a model of a projected Advance Manned Interceptor in the AFIT 5 Foot Wind-Tunnel at Wright-Patterson AFB, Ohio. The model was constructed by the McDonnell-Douglas Company and was a blended-body shape designed for Mach 4 cruising flight. The initial testing on the model in the supersonic range had been conducted by AEDC and low subsonic Mach number testing was required to complete the flight envelope.

The test program was conducted at a Mach number of .19 at a Reynolds number of 3.6×10^6 . Basic performance parameters were recorded on IBM cards and the data was reduced with the FDL-8 data reduction program from the Air Force Flight Dynamics Laboratory. The reduced data supplied the parameters to determine basic lift, drag, and pitching moment characteristics of the model as well as thirteen of the static stability derivatives. This project gave an insight into the low Mach number characteristics of a blended-body shape designed for Mach 4 cruising flight.

I. Introduction

Background

The basis for this thesis is a letter from Mr. Melvin L. Buck of the Air Force Flight Dynamics Laboratory to Professor Harold C. Larsen of the Air Force Institute of Technology. In this letter, Mr. Buck described the requirement for low subsonic Mach number testing of two candidate configurations for an Advanced Manned Interceptor (Ref: 6). Models of both of these configurations had been constructed by McDonnell Aircraft and consisted of force and pressure models of each design. Although both of the configurations were designed for a similar mission profile and flight envelope, they differed markedly in appearance. The blended-body shape was chosen as the subject of this thesis.

Prior to arriving at Wright-Patterson Air Force Base, Ohio, the model had undergone extensive testing in the transonic and hypersonic tunnels of the Arnold Engineering Development Center. These tests adequately explored the high Mach number portion of the flight envelope but additional testing was required in the low Mach number region. The size of the model required a tunnel with a relatively large test section to allow an adequate range of motion in yaw and angle of attack. The AFIT 5 Foot wind-tunnel offered the

Fig. 1. Blended-Body Model Basic Dimensions (Ref 4)

size, Mach number range, and an adequate Reynolds number range to meet the test objectives.

The test objectives were primarily stimulated by the requirements of the Flight Dynamics Laboratory for a mass of data at the earliest possible date. The test schedule was established to provide data to support FDL and the requirements for this report. A series of 78 runs were agreed upon with only the first 28 directly related to the objectives of this report and the remainder devoted to the objectives of FDL. As suggested by Pope (Ref 3), sufficient data was obtained to determine $C_{L\alpha}$, $C_{L\max}$, α_{ZL} , and e . Additional data was required to make some basic determinations of the static stability characteristics of the model.

A data collection configuration developed by FDL was used and a data reduction program written by FDL for previous test work on the FDL-8 hypersonic cruise vehicle was adequate for this project.

Model Description

The force model selected for this test program was the blended-body configuration. It has a double delta planform with an airfoil shaped fuselage section (Fig 1). The model is 36 inches long and has a span of 14.22 inches. The aspect ratio of the aft delta is 0.034. The low aspect ratio, low thickness to chord ratio, and high sweep angle of this model indicated possible instabilities at low Mach numbers and offered a unique opportunity to observe the effects of these parameters in the low Mach number range where they are apt to

prove most troublesome for the designer to predict and for the pilot to overcome with the flight controls.

To accomplish the full range of test objectives the model exterior was constructed of a high temperature epoxy resin (Epoxylite 6107) used as a binder for thin (.004 inch) fiberglass laminates. This material system provided a high strength retention for the anticipated temperatures encountered during the supersonic Mach number testing phase (Ref 5:5-2).

The strongback of the model was designed to accommodate the balance. Metal extensions of the strongback are used to attach the vertical fins and the outer wing panel control surfaces. These attachment points and the nose tip are the only exposed metal in the fuselage of the model. The engine duct inlets and exits are also exposed metal.

To accommodate the model strongback and sting cavity, the engine ducts were modified from a full circular duct at the aft end of the model. The duct cross-sectional area continues to expand in the flow direction to preclude choking at the higher mass flow rates and Mach numbers (Ref 5:5-25).

Each vertical fin is attached to the metal strongback of the model with four screws. Two metal plates are partially buried in the fin for added strength at these points. These plates are also used as alignment points for the outboard control surfaces (Ref 5:5-25). The alignment points provide for control surface deflections of 0, ± 5 , or ± 10

degrees. These control surface deflections may be applied differentially much like the conventional elevon on many of the common delta-winged aircraft. That is, the surface acts both as an aileron to induce roll and as an elevator to produce changes in pitch. In this particular installation, the surface may also function as a flap type high lift device.

In order to scale the model properly in terms of Reynolds number, boundary layer trippers were placed just aft of the nose cap and along the upper leading edges of both delta surfaces. These trippers consisted of coarse grit particles glued directly to the model surface.

Balance Description

The model was instrumented with the Task MK XXVII internal strain gauge balance. This is a 3/4 inch balance which has been used by the Douglas Aircraft Company of the McDonnell Corporation and by AEDC in tests conducted for the Spartan project. This particular balance was selected because its small diameter minimized the amount of modification required on the model (Ref 5:5-5). The balance is pinned in place with locking screws through the top and bottom of the model. When the model and balance are attached to the tunnel sting the airloads acting on the model are transmitted to the strain gauges in the balance where they appear as electrical voltages. After calibration, these voltages provide the input parameters for the data reduction program.

Tunnel Description

The AFIT 5 Foot wind-tunnel is a venerable but very functional testing system. The system consists of an open-circuit wind-tunnel with two Liberty Engine dynamometers driving two fans, servos and their connections and controls for positioning the test subject in the test section, and a set of digital voltmeters for data collection. These voltmeters are connected to an IBM 0-26 card punch and the raw data is automatically transcribed on a standard IBM card for each test point in the test program.

The test section of the tunnel is circular with a diameter of 5 feet and is easily accessible through large doors located on the sides of the tunnel. Also several large plexiglass viewing ports offer excellent visibility of the test subject and are adequately lighted for test photography.

For this project the first priority was the calibration of the model balance and the tunnel voltmeters. The results of the calibration were expressed as a matrix of digits for entry into the data reduction program.

Following the completion of balance calibration the first four data runs were completed to determine an optimum tunnel speed based on Reynolds number and dynamic pressure. Although Run 4 produced the highest Reynolds number (5.2×10^6) and dynamic pressure ($100 \text{ lb}/\text{ft}^2$), it was concluded that the Reynolds number (3.7×10^6) and dynamic pressure ($50 \text{ lb}/\text{ft}^2$) obtained during Run 2 offered the advantage of satisfying the test objectives for the remainder of the data runs while

placing a minimum strain on the tunnel fans. The remainder of the data runs involved changes in model configuration and rotations of the model about the Z-axis to induce the effects of yaw into the data. These configurations and rotations are described in Table 2 in Appendix B. During each run the angle of attack of the model was rotated through ten points ranging from -4.0 degrees to +24.0 degrees. This upper limit of 24 degrees was determined by the length of the model and the requirement to maintain separation between the model nose cap and the upper wall of the tunnel and to avoid erroneous wall flow effects.

Data Reduction

The data reduction program for this project was selected to provide adequate information to determine the model performance characteristics and static stability parameters. The FDL-8 program which was written for the AFIT 5 Foot tunnel and was converted for use with the CDC 6600 computer proved adequate in both of these areas. Difficulty was anticipated in integrating the card symbology of the IBM 0-26 with the language symbology of the FORTRAN used by the CDC 6600. However, once all positive values were expressed without a plus sign and all negative values were expressed with a minus sign, the symbologies proved completely compatible.

Appendix C contains the reduced data and list of data symbols.

Constraints

Since both the model and balance were on loan from McDonnel-Douglas for a specified period of time certain compromises in data gathering were required to meet the test objectives of this project and those of FDL.

Only three data points were available to reflect changes in yaw angle, elevator deflection, and aileron deflection. Realizing that a minimum of five points are necessary to uniquely describe a second order conic section, the fact that only three were available degrades the validity of the stability derivatives which depend on these parameters. The time available for the model and balance forced approximation techniques.

Also, the relatively low Reynolds number and dynamic pressures of the test runs tend to exaggerate the effects of flow separations and the roll, pitch, and yaw couplings discussed in Chapter 3. Testing at higher Reynolds numbers and dynamic pressures would simulate a full scale model of this design more accurately.

II. Basic Parameters

An analysis of the figures in Appendix A gives many of the aerodynamic characteristics of the model. It should be remembered that these figures were derived from data relating to the whole model and not just the wings.

Figure 9 in Appendix A provides the information needed to determine $dC_L/d\alpha$. An analysis of the curve in the linear range from zero to eight degrees reveals that $dC_L/d\alpha$ is equal to 0.025/°.

Normally, C_{Lmax} would be a basic determination in a wind-tunnel test of this type but with such a small aspect ratio and a limit of 24 degrees angle of attack to avoid tunnel wall effect uncertainties, this model does not achieve C_{Lmax} during this test. An analysis of Fig 9 in Appendix A reveals a very linear curve to 16 degrees angle of attack with a slight bending at the higher angles. However, the normal lift curve with a peaking at C_{Lmax} is certainly not present. Testing at higher angles of attack in a larger tunnel will be required to determine this parameter.

The angle of attack for zero lift (α_{ZL}) is readily apparent from Fig 9 in Appendix A. Since this model has the lift curve of a symmetrical airfoil section the α_{ZL} occurs where C_L is equal to zero which gives $\alpha_{ZL} = 0$.

Figure 10 in Appendix A provides the information to determine $C_{D0\min}$. At zero angle of attack $C_{D0\min} = 0.0312$.

The airplane efficiency factor (e) can be found from an analysis of Fig 19 in Appendix A. The Oswald Parabolic Drag Coefficient assumption is

$$C_D = C_{Dpe} + \frac{C_L^2}{\pi e A} \quad (1)$$

but Fig 19 reveals

$$C_{Dpe} = C_{D0\min} = 0.0312$$

This fact plus the linearity of the curve in Fig 19 validates the Oswald Parabolic Drag Coefficient assumption and yields

$$e = \frac{1}{\pi A \left(\frac{\Delta C_D}{\Delta C_L^2} \right)}$$

From Fig 19

$$\frac{\Delta C_D}{\Delta C_L^2} = \frac{.089 - .031}{0.10} = \frac{.058}{.1} = .58$$

and $A = 1.03$

Therefore $e = \frac{1}{\pi(1.03)(.58)} = .532$

This very low airplane efficiency factor can be primarily attributed to the delta planform and very large sweep angle of the model which tend to produce a non-elliptical lift distribution. However, it should be remembered that this is an airplane efficiency factor and not a wing efficiency factor alone.

III. The Stability Derivatives

A major effort in this project was the determination of the static stability derivatives described in this chapter. Only static stability derivatives are discussed since the AFIT 5 Foot tunnel does not have a provision for measuring rates of change for any of the measured parameters.

The discussion is divided into two sections relating the derivatives to the longitudinal or lateral equations of motion as developed by Etkin (Ref 2) in Chapter 4. Etkin's development of the individual derivatives has also been followed in this chapter. Each of the derivatives has been evaluated at the reference flight condition of 6 degrees angle of attack.

Longitudinal Derivatives

To express the longitudinal derivatives it is first necessary to develop expressions for C_x and C_z . Since a wind-tunnel model and not a powered aircraft is involved, the effect of thrust is eliminated. This fact coupled with the assumption of small angles of attack yields

$$C_x = C_{L_\alpha} - C_{D_\alpha}$$

$$C_z = - (C_L + C_{D_\alpha}) \quad (2)$$

The Derivative C_{x_α} . By definition, $C_{x_\alpha} = (\partial C_x / \partial \alpha)_0$, where the subscript zero indicates that the derivative is evaluated when the disturbance quantities are zero (Ref 2:146). From Eq (2)

$$\frac{\partial C_x}{\partial \alpha} = C_L + \frac{\partial C_L}{\partial \alpha} - \frac{\partial C_D}{\partial \alpha}$$

With the subscript zero again indicating the reference flight condition with $\alpha=6^\circ$, we have

$$C_{x_\alpha} = \left(\frac{\partial C_x}{\partial \alpha} \right)_0 = C_{L_0} - \left(\frac{\partial C_D}{\partial \alpha} \right)_0 \quad (3)$$

However, when the drag is expressed by a parabolic polar in the form

$$C_D = C_{D_{\min}} + C_L^2 / \pi e A$$

we have $C_{x_\alpha} = C_{L_0} - \frac{2C_L}{\pi e A} C_{L_\alpha} \quad (4)$

Figure 9 in Appendix A indicates that C_{L_0} is equal to .148 at 6 degrees angle of attack. Using this angle of attack as the reference speed condition yields

$$C_{x_\alpha} = .148 - \frac{(2)(.148)(1.431)}{\pi (1.03)(.532)}$$

$$C_{x_\alpha} = 0.017$$

The Derivative C_{z_α} . By definition,

$$C_{z_\alpha} = \left(\frac{\partial C_z}{\partial \alpha} \right)_0$$

with the derivative again evaluated when the disturbance quantity is zero (Ref 2:147). From Eq (2) we have

$$\frac{\partial C_z}{\partial \alpha} = - (C_{L_\alpha} + C_D + \alpha \frac{\partial C_D}{\partial \alpha})$$

Therefore $C_{z_\alpha} = - (C_{L_\alpha} + C_{D_0})$ (5)

Reference to Figs 9 and 10 in Appendix A indicates that

$$C_{D_0} \ll C_{L_\alpha}$$

at 6 degrees angle of attack. Therefore, as in Etkin,

$$C_{z_\alpha} \doteq - C_{L_\alpha} = - 1.431$$

The Derivative C_{m_α} . By definition

$$C_{m_\alpha} = \frac{\partial C_m}{\partial \alpha}$$

In the linear range of Fig 11 in Appendix A, C_{m_α} may be approximated by the relationship $\frac{\Delta C_m}{\Delta \alpha}$. Therefore

$$C_{m_\alpha} = \frac{\Delta C_m}{\Delta \alpha} = \frac{-0.0095}{5.0^\circ}$$

and

$$C_{m_\alpha} = -0.1089$$

The u Derivatives. Since the tunnel runs of this project were all conducted in the low subsonic Mach number range, the u derivatives will all be approximately equal to zero. We have

$$C_{x_u} = - M \frac{\partial C_D}{\partial M} \quad (6)$$

$$C_{z_u} = - M \frac{\partial C_L}{\partial M} \quad (7)$$

and $C_{m_u} = M \frac{\partial C_m}{\partial M} + \rho u_o^2 \frac{\partial C_m}{\partial pd}$ (8)

In the low subsonic Mach number range,

$$\frac{\partial C_D}{\partial M} = \frac{\partial C_L}{\partial M} = \frac{\partial C_m}{\partial M} = 0$$

and, as is characteristic of an aircraft with high sweepback and a low aspect ratio operating at a low subsonic Mach number, $\partial C_m / \partial pd \approx 0$ (Ref 2:152).

Therefore,

$$C_{x_u} = 0.0$$

$$C_{z_u} = 0.0$$

$$C_{m_u} \approx 0.0$$

The u Derivatives. Since the tunnel runs of this project were all conducted in the low subsonic Mach number range, the u derivatives will all be approximately equal to zero. We have

$$C_{x_u} = - M \frac{\partial C_D}{\partial M} \quad (6)$$

$$C_{z_u} = - M \frac{\partial C_L}{\partial M} \quad (7)$$

and $C_{m_u} = M \frac{\partial C_m}{\partial M} + \rho u_o^2 \frac{\partial C_m}{\partial pd}$ (8)

In the low subsonic Mach number range,

$$\frac{\partial C_D}{\partial M} = \frac{\partial C_L}{\partial M} = \frac{\partial C_m}{\partial M} = 0$$

and, as is characteristic of an aircraft with high sweepback and a low aspect ratio operating at a low subsonic Mach number, $\partial C_m / \partial pd \approx 0$ (Ref 2:152).

Therefore,

$$C_{x_u} = 0.0$$

$$C_{z_u} = 0.0$$

$$C_{m_u} \approx 0.0$$

The Derivative C_{z_n} . By definition, C_{z_n} is the change in C_z due to elevator deflections. Although no true elevator exists on this model, the moveable control surfaces on each wing tip function both as ailerons and elevators. Therefore, when they are simultaneously deflected in the same magnitude and direction, they are considered as elevators. We have

$$C_{z_n} = \left(\frac{\partial C_z}{\partial n} \right)_0 = - \left(\frac{\partial C_L}{\partial n} \right)_0$$

but $\partial C_L / \partial n$ is identical with the control parameter $C_{L_{\delta_E}}$ (Ref 2:166). Therefore

$$C_{z_n} = - C_{L_{\delta_E}} \quad (9)$$

Fig. 2. Effect of Elevator Deflection On Lift

From Fig 12 in Appendix A with the small angle of attack approximation and the assumption of linearity at $\alpha = 6^\circ$ we obtain Fig 2 above. Therefore, $C_{z_n} = -0.458$.

Figure 9 indicates that C_{L_α} is linear to 12 degrees angle of attack and only slightly curved between 12 and 24 degrees. Figure 12 indicates that elevator deflection influences the lift coefficient at a particular angle of attack but does not affect C_{L_α} and in fact shows that C_{L_α} is constant in the linear range. Beyond 16 degrees angle of attack the effect of elevator deflection is obscured by flow separations and tip stalling.

The Derivative C_{m_n} . An analysis similar to that of C_{z_n} yields

$$C_{m_n} = C_{m_E} \delta_E \quad (10)$$

From Fig 13 in Appendix A with the small angle of attack approximation and the assumption of linearity at $\alpha = 6^\circ$ we obtain Fig 3 below. If we attribute the slight bow in the curve to the errors of engineering accuracy and the influences of higher order terms we may approximate the data between elevator deflections of -5° and $+10^\circ$ by a straight line. This approximation yields

$$C_{m_n} = \left(\frac{\partial C_m}{\partial \delta} \right)_0 = \frac{\Delta C_m}{\Delta \delta_E}$$

$$C_{m_n} = \frac{-0.0057}{5.0} = -0.0687$$

Fig. 3. Effect of Elevator Deflection On Pitching Moment.

The pitching moment depicted in Fig 11 of Appendix A is a very important characteristic of this model. With zero control deflection it is important to note that C_{m0} is positive while $C_{m\alpha}$ is negative indicating that the model is stable in pitch to approximately 16 degrees angle of attack. Beyond 16 degrees angle of attack the slope of the pitching moment coefficient is positive indicating a tendency for the model to "pitch-up" point lowers to approximately 12 degrees angle of attack with 10 degrees of positive elevator deflection. This fact would certainly limit the performance of an actual aircraft to angles of attack below these "pitch-up" points and would confine the aircraft to an angle of attack region of very low lift coefficients.

The Lateral Derivatives

Although theoretical and emperical techniques are available to determine the lateral stability derivatives, experimental techniques are generally far more practical. Since this model has a very small aspect ratio and highly swept wings to achieve good performance in the Mach 4 range, we can expect its low Mach number stability to be degraded since these characteristics tend to be destabilizing at the low Mach numbers and high angles of attack encountered in this project.

The lateral derivatives in this chapter are again confined to static stability derivatives since the tunnel does not have rate measuring devices. Graphical means were used extensively in these determinations.

The Derivative $C_{y\beta}$. This is the side-force derivative which describes the force that acts in the y direction (right) when the aircraft has a positive β (sideslip to the right). $C_{y\beta}$ is usually negative, and frequently small enough to be neglected entirely. The main contributions are those of the body and vertical tail (Ref 2:167). As in the longitudinal derivatives, Fig 4 below was obtained by determining values of C_y with changes in β at a constant angle of attack of 6° . These changes are illustrated in Fig 14 of Appendix A.

Fig. 4. Effect of Yaw Angle on Side Force.

If the slight curve in the figure above is again assumed to be due to engineering inaccuracies and the influence of higher order terms, we may approximate the curve by a straight line and obtain

$$C_{y\beta} = \left(\frac{\partial C_y}{\partial \beta} \right)_0 = \frac{\Delta C_y}{\Delta \beta}$$

$$C_{y\beta} = \frac{-0.047}{6.0} = -0.446 \quad (11)$$

Figure 14 of Appendix A indicates that the side force coefficient is a function of angle of attack as well as yaw angle particularly in the non-linear range above 12 degrees angle of attack.

The Derivative $C_{1\beta}$. The tendency of an aircraft to maintain a zero bank angle is related to the derivative $C_{1\beta}$ which is known as the dihedral effect. Figure 5 below describes the influence of yaw angle on the rolling moment for this aircraft. Again, the change in rolling moment with the change in yaw angle was computed at 6 degrees angle of attack. The resulting straight line allows computation of the derivative from the following

$$C_{1\beta} = \frac{\Delta C_1}{\Delta \beta}$$

$$C_{1\beta} = -0.03495 \quad (12)$$

Fig. 5. Dihedral Effect.

Figure 15 indicates that the rolling moment is also a function of angle of attack as well as yaw angle. At minus 2.8 degrees angle of attack a reversal in the influence of yaw angle occurs. The steep slopes of these curves indicate a strong pitch and roll coupling in this model particularly at angles of attack above 12 degrees.

The Derivative $C_{n\beta}$. $C_{n\beta}$ is known as the weathercock stability derivative. It describes the tendency of an aircraft to maintain its directional attitude. The main contributions to this derivative are from the fuselage and the vertical tail. Figure 6 below was obtained from Fig 16 in

Appendix A by observing the changes in C_n with changes in β while angle of attack was held constant at 6 degrees. The resulting straight line allows the following computation

$$C_{n\beta} = \frac{\Delta C_n}{\Delta \beta}$$

$$C_{n\beta} = 0.03205 \quad (13)$$

Fig. 6. Weathercock Stability Derivative

Figure 16 of Appendix A indicates strong pitch and yaw coupling. Above 10 degrees angle of attack the slope of the curve becomes positive indicating that the restoring moment is weakening. When the model is rotated in angle of attack

to the point where the yawing moment becomes positive while the yaw angle is negative a horizontal analogy to the "pitch-up" problem discussed earlier is produced. That is, the model tends to increase its yaw displacement.

The Derivative C_1 . The rolling moment due to the deflection of ailerons was obtained by deflecting the model control surfaces an equal amount in opposite directions. In this respect the control surfaces functioned as ailerons rather than elevators as in earlier discussions. Figure 7 below was obtained from Fig 17 in Appendix A by holding the angle of attack fixed at 6 degrees while varying the aileron deflections. Allowing for engineering accuracy and approximating the higher order curve with a straight line gives the following approximation for this derivative

$$C_{1\xi} = \frac{\Delta C_1}{\Delta \xi} = -0.409 \quad (14)$$

Figure 17 of Appendix A indicates that the rolling moment is a function of angle of attack as well as aileron deflection. Beyond 12 degrees angle of attack the slopes of the rolling moment coefficient versus angle of attack curves become positive indicating a weakening in aileron effectiveness in this region. Again roll and pitch coupling is indicated particularly at angles of attack above 12 degrees.

Fig. 7. Rolling Moment Due to Aileron

The Derivative C_{n_ξ} . The yawing moment due to aileron deflection was obtained by holding the angle of attack constant at 6 degrees while varying the aileron deflection angle as described by Fig 18 in Appendix A. The resulting curve depicted in Fig 8 below proved to be the least linear of any of the derivatives in this project. However, a linear estimation of the derivative between aileron deflections of zero to ten degrees reveals the following

$$C_{n_\zeta} = \frac{\Delta C_D}{\Delta \zeta} \quad (15)$$

$$C_{n_\zeta} = -0.01089 \quad (0 < \zeta < +5^\circ)$$

$$C_{n_\zeta} = -0.001144 \quad (+5 < \zeta < +10^\circ)$$

Fig. 8. Yawing Moment Due to Aileron.

Figure 18 of Appendix A indicates a definite adverse yaw characteristic at the higher angles of attack. Above 12 degrees angle of attack the yawing moment is positive while the rolling moment is negative. That is, the nose of the model tends to yaw right while the model tends to roll left. This phenomenon is aggravated at higher angles of attack.

An estimation of the curves in Fig 18 of Appendix A serves as an example for estimating any of the curves in

Appendix A. At $\beta = -3^\circ$

$$C_y = .024 + \frac{(.031 - .024)}{16} \alpha$$

but $C_L = .025 \alpha$

$$\text{and } \alpha = \frac{C_L}{.025}$$

$$\text{Therefore } C_y = .024 + \frac{.009}{16} \left(\frac{C_L}{.025} \right) = .024 + .0225 C_L$$

At $\beta = -6^\circ$

$$C_y = .041 + .03625 C_L$$

And at $\beta = 0^\circ$

$$C_y = 0.0 + .00833 C_L$$

One can now fit a curve through the constants as

$$C_y = a(\beta) + b(\beta) C_L \quad (16)$$

$$\text{with } a(\beta) = c\beta + d\beta^2$$

Substitution yields

$$.024 = 3c + 9d$$

$$.041 = 6c + 36d$$

Therefore

$$c = \frac{\begin{vmatrix} .024 & 9 \\ .041 & 36 \end{vmatrix}}{\begin{vmatrix} 3 & 9 \\ 6 & 36 \end{vmatrix}} = .00917$$

$$d = \frac{\begin{vmatrix} 3 & .024 \\ 6 & .041 \end{vmatrix}}{\begin{vmatrix} 3 & 9 \\ 6 & 36 \end{vmatrix}} = -.000389$$

and $a(\beta) = .00917\beta - .000389\beta^2$ (17)

$$b(\beta) = .00833 + 1\beta + \beta^2$$

Expressions for r and s are found from

$$.01467 = 3r + 9s$$

$$.02792 = 6r + 36s$$

Therefore

$$r = \frac{.01467}{.02792} - \frac{9}{36} = \frac{.01467}{.02792} - \frac{9}{54} = .0056$$

$$s = \frac{3}{.02792} - \frac{.01467}{.02792} = \frac{3}{.02792} - \frac{.01467}{.02792} = -.00089$$

and $b(\beta) = .00833 + .0056\beta - .00089\beta^2$ (18)

Substituting the values for the constants in Eqs 17 and 18 in Eq 16 yields

$$C_{y_\beta} = .00917\beta - .000389\beta^2 + (.00833 + .0056\beta - .00089\beta^2)C_L \quad (19)$$

Equation 19 is a curve fit to the data expressed in Fig 18 of Appendix A for $C_L \leq 3$. For $\beta = -3$ and $C_L = 0.3$

$$C_{y_\beta} = .0315$$

which compares with the value

$$C_{y_\beta} = .03$$

obtained from the appropriate curve in Fig 18.

This curve fitting technique can be applied to the other curves in this chapter and to those presented in Appendix A to estimate their values.

Table I
Stability Derivative Summary
(Computed at 6° Angle of Attack)

Longitudinal Derivatives

$$C_{x_\alpha} = 0.017$$

$$C_{z_\alpha} = -1.431$$

$$C_{m_\alpha} = -0.1089$$

$$C_{x_u} = 0.0$$

$$C_{z_u} = 0.0$$

$$C_{m_u} = 0.0$$

$$C_{x_\eta} = -0.458$$

$$C_{z_\eta} = -0.0687$$

Lateral Derivatives

$$C_{y_\beta} = -0.446$$

$$C_{l_\beta} = -0.03495$$

$$C_{n_\beta} = 0.03205$$

$$C_{l_\xi} = -0.409$$

$$C_{n_\xi} = -0.01089 \quad (0 < \xi < +5) \\ C_{n_\xi} = -0.001144 \quad (5 < \xi < +10)$$

IV. Conclusions and Recommendations

Based on the information presented in Chapters 2 and 3 the following conclusions are warrented:

1. The model will "pitch-up" at an angle of attack below the stalling angle of attack. Therefore, $C_{m\alpha}$ is the limiting characteristic in pitch rather than C_{Lmax} .
2. The drag characteristics of the model conform to the Oswald Parabolic Drag Polar approximation.
3. The delta planform and large sweep angle of the model contribute to a low airplane efficiency factor (e) of 0.532.
4. Linear approximations are valid for the longitudinal derivatives to angles of attack of 12 degrees.
5. The model exhibits roll, pitch, and yaw coupling at angles of attack above 12 degrees.
6. Above 10 degrees angle of attack the model tends to increase yaw displacement due to the reduction of restoring moment as angle of attack increases.
7. Above 12 degrees angle of attack the model exhibits a strong "adverse" yaw characteristic.

The constraints of time and model configuration discussed in the introduction and the conclusions presented above lead to the following recommendations:

1. The testing envelope should be expanded to Reynolds numbers of 50×10^6 and dynamic pressures and Mach numbers approaching the transonic region by using a variable density tunnel.
2. The angle of attack region above 24 degrees should be investigated to determine $C_{L\max}$.
3. A larger range of yaw displacement should be investigated to include both positive and negative displacements. This would lead to a more accurate estimation of the β derivatives.
4. A model of this configuration with a wider range and smaller increment control deflection should be built and tested to more accurately estimate the control deflection derivatives.
5. Oil flow studies should be made to determine the cause of the "pitch-up" condition at 16 degrees angle of attack.
6. Model configurations with high lift devices to improve the lift coefficient and delay the "pitch-up" tendency should be investigated.
7. Methods of reducing the pitch, roll, and yaw coupling of the model should be investigated.

Bibliography

1. Corning, Gerald. Supersonic and Subsonic Airplane Design (Third Edition). Ann Arbor, Michigan: Braun-Brumfield, Inc., 1960.
2. Etkin, Bernard. Dynamics of Flight. New York: John Wiley and Sons, Inc., 1959.
3. Pope, Alan. Wind-Tunnel Testing (Second Edition). New York: John Wiley and Sons, Inc., 1954.
4. AEDC-TR-71-112. Tennessee: Arnold Engineering Development Center, 1971.
5. MDC A0396. St. Louis, Missouri: McDonnell-Douglas Company, 15 July 1970.
6. Buck, Melvin L. Projected AFIT 5 Foot Tunnel Tests. AFFDL/FXG, Wright-Patterson AFB, Ohio. 6 Jan 1971.

Appendix A

The figures contained in this appendix were obtained from the data sheets in Appendix C. They are the basis for the performance and static stability analyses of Chapters two and three.

Fig. 9. Lift Curve for Zero Control Deflection (Run 2).

Fig. 10. Drag Curve for Zero Control Deflection (Run 2).

Fig. 11. Pitching Moment for Zero Control Deflection (Run 2).

Fig. 12. Change in the Lift Curve with Elevator Deflection

Fig. 13. Change in the pitching moment with Elevator Deflection

Fig. 14. Change in the Side Force Coefficient with Yaw Angle

Fig. 15. Effect of Yaw Angle on Rolling Moment

Fig. 16. Effect of Yaw Angle on Yawing Moment

Fig. 17. Effect of Aileron Deflection on Rolling Moment

FIG. 18. Effect of Aileron Deflection on Yawing Moment

Fig. 19. Parasite Drag Determination (Run 2)

Appendix B

Model Configurations

Table II

RUN	ψ	δL	δR	q
1	0	0	0	25
2	0	0	0	50
3	0	0	0	75
4	0	0	0	100
5	6	0	0	50
6	3	0	0	50
7	6	10	10	50
8	3	10	10	50
9	0	10	10	50
10	0	-10	-10	50
11	3	-10	-10	50
12	6	-10	-10	50
13	0	-10	10	50
14	3	-10	10	50
15	6	-10	10	50
17	-3	-10	10	50
18	-6	-10	10	50
19	0	-5	-5	50
22	-6	-5	-5	50
23	-6	-5	-5	50
24	6	-5	5	50
25	3	-5	5	50
26	0	-5	5	50
27	-3	-5	5	50
28	-6	-5	5	50

Appendix C

The following pages contain the data used in this project. The configurations for each run can be found in Appendix B. Note that each run is broken into two sections, the first containing the parameters relating to the body axis and the second containing those relating to the wind axis. The following is a list of the terms used in the data sheets.

List of TermsBody Axis

RUN	Index number for a cycle of tunnel operation.
TPN	Index number for a particular test point.
ALPHA	Angle of attack.
YAW	Euler angle*
C.P.	Center of pressure location in % of reference length.
CN	Normal force coefficient.
CY	Side force coefficient.
CA	Axial force coefficient.
CM	Pitching moment coefficient.
CZ	Yawing moment coefficient.
CX	Rolling moment coefficient.
CBP	Base pressure coefficient.

Wind Axis

FL/FD Lift over drag ratio (L/D).

CL Lift coefficient.

CD Drag coefficient.

BODY AXIS

MACH NUMBER = .13

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CW	CZ	CX	CP3
1	15	-.62	0.00	79.95	-.0201	.0056	.0311	.0029	-.0008	.0007	-1.1014
1	16	-.63	0.00	77.65	-.0293	.0156	.0318	.0035	-.0008	.0006	-1.1022
1	17	-.64	.74	0.00	73.59	-.1282	.0051	.0279	.0113	.0006	-1.1022
1	18	-.65	0.00	73.48	-.1415	.0051	.0281	.0112	-.0005	.0007	-1.1023
1	19	-.66	0.00	74.33	-.0823	.0012	.0305	.0072	-.0003	.0006	-1.1021
1	20	-.69	0.00	74.33	-.0822	.0112	.0305	.0172	-.0003	.0007	-1.1021
1	21	-.63	0.00	77.26	-.0310	.0014	.0318	.0036	-.0005	.0006	-1.1016
1	22	-.63	0.00	77.27	-.1310	.0014	.0318	.0036	-.0005	.0006	-1.1018
1	23	1.44	0.00	67.57	.0297	.0221	.0307	.0046	-.0005	.0007	-1.1010
1	24	1.44	0.00	67.90	.0319	.0021	.0307	.0007	-.0005	.0007	-1.1011
1	25	3.50	0.00	71.13	.0823	.0028	.0292	.0046	-.0006	.0007	-1.0998
1	26	3.51	0.00	71.13	.823	.0128	.0292	.0046	-.0005	.0007	-1.0998
1	27	7.63	0.00	72.05	.2003	.0004	.0269	.0170	-.0002	.0007	-1.0987
1	28	7.63	0.00	72.04	.1937	.0005	.0270	.0125	-.0002	.0006	-1.0985
1	29	11.79	0.00	71.66	.3256	.0009	.0202	.0198	-.0001	.0007	-1.0961
1	30	11.79	0.00	71.66	.3256	.0009	.0202	.0198	-.0001	.0007	-1.0959
1	31	15.64	0.00	70.87	.4432	.0044	.0129	.0235	.0006	.0004	-1.0931
1	32	20.10	0.00	69.31	.5631	.0063	.0075	.0210	.0014	-.0005	-1.0904
1	33	20.11	0.00	69.32	.5653	.0063	.0075	.0212	.0014	-.0005	-1.0909
1	34	24.29	0.00	67.74	.6820	.0024	.0148	.015	-.0006	.0006	-1.0886
1	35	24.23	0.00	67.73	.6844	.0124	.0024	.0148	.0015	-.0005	-1.0890
1	36	20.12	0.00	69.67	.5826	.0092	.0067	.0259	-.0015	-.0008	
1	37	20.12	0.00	59.66	.5804	.0093	.0067	.0238	-.0012	-.0016	-1.0914
1	38	-.36	0.00	71.83	.2053	.0065	.1256	.0128	-.0005	.0007	-1.1012
1	39	-.36	0.00	71.82	.2071	.0166	.1257	.0127	-.0005	.0007	-1.1002
1	40	-.63	0.00	76.42	-.0254	.0056	.0317	.0028	-.0008	.0006	-1.1004

WIND AXIS

MACH NUMBER = .13

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
1 15	- .62	0.00	79.95	-0.6326	-0.0198	0.0056	0.0313	
1 16	- .63	0.00	77.65	-0.6922	-0.0286	0.0056	0.0321	
1 17	-4.74	0.00	73.59	-3.2669	-1.254	0.0051	0.0384	
1 18	-4.76	0.00	73.48	-3.4881	-1.386	0.0051	0.0397	
1 19	-2.69	0.00	74.33	-2.3535	-0.0807	0.012	0.0343	
1 20	-2.69	0.10	74.33	-2.3527	-0.0817	0.12	0.343	
1 21	- .63	0.00	77.26	-0.9538	-0.0387	0.014	0.0322	
1 22	- .63	0.00	77.27	-0.9536	-0.0307	0.014	0.0322	
1 23	1.44	0.00	67.57	0.0209	0.0290	0.021	0.0315	
1 24	1.44	0.00	67.91	0.8896	0.0311	0.21	0.315	
1 25	3.50	0.00	71.13	2.3525	0.0804	0.028	0.0342	
1 26	3.51	0.00	71.13	2.3526	0.0804	0.028	0.0342	
1 27	7.63	0.00	72.05	3.6578	0.1949	0.004	0.0533	
1 28	7.63	0.00	72.04	3.5905	0.1884	0.0005	0.0525	
1 29	11.79	0.00	71.66	3.6471	0.3146	0.009	0.0863	
1 30	11.79	0.00	71.66	3.6471	0.3146	0.009	0.0863	
1 31	15.94	0.00	70.87	3.1518	0.4226	0.044	0.1241	
1 32	20.10	0.00	69.31	2.6237	0.5232	0.000	0.0863	
1 33	20.11	0.00	69.22	2.6239	0.5283	0.0053	0.2006	
1 34	24.28	0.00	67.74	2.1962	0.6207	0.024	0.2856	
1	35	24.28	0.00	67.73	2.1960	0.6229	0.0124	0.2057
1	36	20.12	0.00	69.67	2.6352	0.5447	0.0992	0.2059
1	37	20.12	0.00	69.66	2.6351	0.5427	0.093	0.2059
1	38	-2.56	0.00	71.83	1.6576	0.2161	0.66	0.1243
1	39	-36	0.00	71.82	1.6394	0.2039	0.96	0.1244
1	40	-63	0.00	76.42	-0.7818	-0.0250	0.0056	0.0320

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPR
2	42	-64	0.00	76.30	-.0255	.0005	.0314	.0033	-.0003	.0005	-5443
2	43	-64	0.00	77.95	-.0257	.0005	.0314	.0032	-.0003	.005	-5448
2	44	-4.83	0.00	73.21	-.1304	.0010	.0285	.0099	-.0003	.0007	-5452
2	45	-4.83	0.00	73.15	-.1291	.0019	.0285	.0098	-.0004	.0008	-5458
2	46	-2.72	0.00	74.20	-.0715	.0024	.0303	.0052	-.0004	.0006	-5453
2	47	-2.73	0.00	74.08	-.0716	.0013	.0303	.0061	-.0003	.0006	-5454
2	48	-6.3	0.00	79.41	-.1192	.0115	.0310	.0125	-.04	.016	-5449
2	49	-6.3	0.00	79.41	-.0192	.0015	.0313	.0127	-.0104	.0005	-5451
2	50	1.45	0.00	67.41	.0265	.0024	.0312	.0005	-.0005	.0005	-5447
2	51	1.45	0.00	67.42	.0265	.0021	.0312	.0005	-.0004	.0005	-5447
2	52	3.56	0.00	71.15	.0333	.0016	.0296	.0146	-.0004	.0007	-5441
2	53	3.56	0.00	71.15	.0833	.0017	.0296	.0046	-.0004	.0006	-5443
2	54	7.77	0.00	71.96	.1968	.0012	.0271	.0127	-.0002	.0008	-5433
2	55	7.77	0.00	72.65	.2659	.0112	.0271	.1129	-.0012	.0077	-5435
2	56	12.01	0.00	71.49	.3225	.0025	.0219	.0191	-.0002	.0003	-5422
2	57	12.01	0.00	71.52	.3235	.0037	.0219	.0192	-.0002	.0008	-5423
2	58	16.29	0.00	70.87	.4634	.0065	.0143	.0246	-.0006	.0002	-5412
2	59	16.29	0.00	70.87	.4634	.0076	.0143	.0246	-.0004	.001	-5412
2	60	21.57	0.00	69.22	.5838	.0134	.0071	.0213	-.0009	-.0005	-5401
2	61	20.53	0.00	69.22	.5861	.0135	.0170	.0214	-.0009	-.0005	-5403
2	62	24.87	0.00	67.50	.7025	.0229	.0025	.0136	-.0028	-.0013	-5405
2	63	24.85	0.00	67.53	.7010	.0237	.0025	.0137	-.0027	-.0012	-5408
2	64	21.59	0.00	69.23	.5872	.0145	.0168	.0215	-.0014	-.0006	-5410
2	65	20.58	0.00	69.22	.5884	.0105	.0070	.0215	-.0013	.0005	-5420
2	66	7.73	0.00	71.97	.2074	.0045	.0273	.0133	-.0005	.0007	-5449
2	67	7.79	0.00	71.97	.2085	.0045	.0273	.0133	-.0005	.0007	-5451
2	68	-6.3	0.00	78.69	-.3216	.0167	.0313	.0028	-.0008	.0006	-5465

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
2	42	-64	0.00	78.30	-7951	-0.0252	.0005	.0317
2	43	-64	0.00	77.95	-7991	-0.0253	.0005	.0317
2	44	-4.83	0.00	73.21	-3.2283	-0.1272	.0110	.0394
2	45	-4.83	0.00	73.15	-3.2122	-0.1262	.0019	.0393
2	46	-2.72	0.00	74.20	-2.0791	-0.0700	.0024	.0337
2	47	-2.73	0.00	74.08	-2.0812	-0.0701	.0013	.0337
2	48	-63	0.00	79.43	-6.1225	-0.188	.0115	.0312
2	49	-63	0.00	79.41	-6.0977	-0.188	.0015	.0315
2	50	1.45	0.00	67.41	* 80.60	* 0.257	* 0.021	* 0.0319
2	51	1.45	0.00	67.42	* 80.63	* 0.257	* 0.021	* 0.0319
2	52	3.56	0.00	71.15	2.3457	0.0813	.0016	.0347
2	53	3.56	0.00	71.15	2.3455	0.0813	.0017	.0347
2	54	7.77	0.00	71.06	3.5997	0.1934	.0012	.0537
2	55	7.77	0.00	72.00	3.6197	0.1954	.0012	.0540
2	56	12.01	0.00	71.49	3.5107	0.3110	.0026	.0886
2	57	12.01	0.00	71.52	3.5134	0.3119	.0027	.0888
2	58	16.29	0.00	70.87	3.0679	0.4408	.0065	.1437
2	59	16.29	0.00	70.87	3.0580	0.4408	.0076	.1437
2	60	20.57	0.00	69.22	2.5698	* 5441	* 0.134	* 2117
2	61	20.58	0.00	69.22	2.5696	* 5452	* 0.135	* 2126
2	62	24.87	0.00	67.50	2.1376	* 6363	.0229	.2977
2	63	24.86	0.00	67.53	2.1379	* 6350	.0237	.2970
2	64	20.53	0.00	69.23	2.5732	* 5474	* 0.105	* 2127
2	65	20.59	0.00	69.22	2.5695	* 5484	* 0.105	* 2134
2	66	7.79	0.00	71.97	3.6612	* 2018	* 0.045	* 0551
2	67	7.79	0.00	71.97	3.6712	* 2029	* 0.045	* 0553
2	68	-63	0.00	78.69	-6.727	-0.0212	* 0.057	* 0.0316

BODY AXIS

MATCH NUMBER= •23

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CP9
3	70	- .67	0.00	77.70	- .0293	- .0014	.0319	.0036	- .0004	.0005	- .3636
3	71	- .66	1.00	77.84	- .0286	- .0113	.0319	.0035	- .0004	.0005	- .3636
3	72	- 4.94	0.00	73.17	- .1378	- .0111	.0295	.0105	- .0092	.0007	- .3641
3	73	- 4.93	0.00	73.22	- .1377	- .0011	.0296	.0105	- .0002	.0007	- .3643
3	74	- 2.79	0.00	74.20	- .0777	- .0008	.0308	.0067	- .0003	.0006	- .3638
3	75	- .65	0.00	78.34	- .244	- .0113	.0318	.0031	- .0003	.0005	- .3638
3	76	- .65	0.00	78.52	- .0236	- .0013	.0318	.0031	- .0003	.0005	- .3640
3	77	1.47	0.90	67.43	.0265	- .0029	.0313	- .0005	- .0002	.0005	- .3637
3	78	1.47	0.00	67.43	.0255	- .0029	.0313	- .0005	- .0002	.0006	- .3639
3	79	3.61	0.00	70.35	.0812	- .0016	.0305	- .0043	- .0033	.0007	- .3635
3	80	3.61	0.00	71.6	.0310	- .0016	.0305	- .0044	- .0003	.0006	- .3636
3	81	7.91	0.00	71.94	.2029	- .0026	.0279	- .0129	- .0001	.0006	- .3630
3	82	7.92	0.00	71.94	.2044	- .0026	.0278	- .0130	- .0000	.0007	- .3630
3	83	12.26	0.00	71.45	.3313	- .0014	.0225	- .0195	* .0001	* .0006	- .3620
3	84	12.26	0.00	71.45	.3313	- .0014	.1225	- .1195	* .0001	* .0005	- .3621
3	85	16.65	0.00	70.73	.4721	- .0014	.0142	.0244	- .0010	- .0009	- .3614
3	86	16.65	0.00	70.74	.4742	- .0014	.0142	.0245	* .0010	* .0000	- .3615
3	87	21.06	0.00	69.04	.5998	* .0049	.0075	.0208	* .0018	* .0006	- .3610
3	88	21.06	0.00	69.03	.5992	* .0056	.0173	.0217	* .0017	* .0007	- .3613
3	89	25.43	0.00	67.26	.7173	* .0182	.0027	.0121	* .0040	* .0016	- .3626
3	90	25.48	0.00	67.26	.7189	* .0175	.0027	.0121	* .0040	* .0015	- .3629
3	91	21.06	0.00	58.99	.5972	* .0056	.0073	* .0204	* .0017	* .0007	- .3632
3	92	21.05	0.00	59.01	.5985	* .0056	.0073	* .0216	* .0017	* .0007	- .3634
3	93	7.92	0.00	71.97	.2049	- .0018	.0280	- .0131	- .0001	* .0006	- .3643
3	94	7.92	0.00	71.97	.2049	- .0018	.0278	- .0131	- .0001	* .0006	- .3644

WIND AXIS

MACH NUMBER = .23

RUN	TPN	ALPHA	YAW	C.O.P.	FL/FD	CL	CC	CD
3	71	-67	.00	77.70	-8982	-0.0289	-0.0014	.0322
3	71	-65	0.00	77.84	-8766	-0.0282	-0.0013	.0322
3	72	-4.94	0.00	73.17	-3.2562	-0.1347	-0.0011	.0414
3	73	-4.93	0.00	73.22	-3.2545	-0.1346	-0.0011	.0414
3	74	-2.79	0.00	74.21	-2.257	-0.751	-0.0018	.345
3	75	-65	0.00	78.34	-7475	-0.0240	-0.0013	.0321
3	76	-65	0.00	78.52	-7250	-0.0233	-0.0013	.0321
3	77	1.47	0.00	67.43	8025	0.0257	-0.0029	.0320
3	78	1.47	0.00	67.43	8.27	0.257	-0.0020	.0320
3	79	3.61	0.00	70.85	2.2285	0.0792	-0.0016	.0355
3	80	5.61	0.00	74.06	2.2232	0.0739	-0.0016	.0355
3	81	7.91	0.00	71.94	3.5499	0.1971	-0.0026	.0575
3	82	7.92	0.00	71.94	3.5620	0.1986	-0.0026	.0557
3	83	12.26	0.00	71.45	3.4563	0.3189	-0.0014	.0923
3	84	12.26	0.00	71.45	3.4569	0.3189	-0.0014	.0923
3	85	16.65	0.00	70.73	3.0118	0.4482	-0.0014	.1438
3	86	16.65	0.00	70.74	3.0124	0.4503	-0.0014	.1495
3	87	21.6	0.00	69.4	2.5034	0.5571	-0.0049	.2225
3	88	21.05	0.00	69.03	2.5057	0.5565	-0.0056	.2221
3	89	25.43	0.00	67.26	2.0780	0.6464	-0.0182	.3111
3	90	25.48	0.00	67.26	2.0776	0.6478	-0.0175	.3118
3	91	21.05	0.00	68.99	2.557	0.5547	-0.0056	.2214
3	92	21.05	0.00	69.01	2.5056	0.5560	-0.0056	.2219
3	93	7.92	0.00	71.97	3.5563	0.1991	-0.0018	.0550
3	94	7.92	0.00	71.97	3.5637	0.1992	-0.0018	.0558

BODY AXIS

MACH NUMBER = .27

RUN	TPN	ALPHA	YAW	C-P.	CN	CY	CA	CM	CZ	CX	CPB
4	97	- .68	0.00	77.94	- .0273	.0004	.0317	.0034	- .0005	.005	- .2753
4	98	- .68	0.00	78.10	- .0273	.0005	.0317	.0034	- .0005	.005	- .2756
4	99	- .68	0.00	73.28	- .1431	.0129	.0292	.0110	- .0005	.007	- .2754
4	100	- .68	0.00	73.22	- .1419	.0210	.0292	.0109	- .0004	.007	- .2756
4	101	- .84	0.00	74.51	- .0793	.0012	.0307	.0071	- .0005	.007	- .2756
4	102	- .84	0.00	74.32	- .0789	.0007	.0307	.0059	- .0005	.006	- .2757
4	105	- .65	0.00	79.45	- .0228	.0015	.0318	.0132	- .0005	.016	- .2760
4	106	- .65	0.00	79.04	- .0229	.0019	.0318	.0031	- .0006	.006	- .2760
4	107	1.49	0.00	66.46	.0262	.0015	.0313	.0002	- .0005	.006	- .2762
4	108	1.49	0.00	66.46	.0262	.0015	.0313	.0002	- .0006	.006	- .2753
4	109	3.67	0.00	70.75	.0835	.0011	.0312	.0043	- .0005	.007	- .2764
4	110	3.67	0.00	70.84	.0834	.0010	.0302	.0044	- .0005	.007	- .2764
4	111	8.07	0.00	71.85	.2163	.0018	.0275	.0132	- .0004	.007	- .2757
4	112	8.07	0.00	71.83	.2103	.0012	.0275	.0132	- .0003	.007	- .2758
4	113	12.52	0.00	71.35	.3435	.0016	.0221	.0199	- .0001	.007	- .2742
4	114	12.52	0.00	71.35	.3441	.0019	.0221	.0199	- .0001	.007	- .2742
4	115	17.04	0.00	70.68	.4897	.0056	.0138	.0250	- .0007	.010	- .2744
4	116	17.04	0.00	70.68	.4909	.0051	.0138	.0251	- .0008	.000	- .2745
4	117	21.58	0.00	68.89	.6203	.0090	.0069	.0206	- .0019	.011	- .2759
4	118	21.58	0.00	68.91	.6218	.0089	.0168	.0218	- .0119	.010	- .0017
4	119	26.16	0.00	66.97	.7466	.0243	.0222	.0114	- .0047	.015	- .011
4	120	26.16	0.00	66.94	.7451	.0249	.0223	.0102	- .0046	.014	- .0011
4	121	21.59	0.00	68.85	.6218	.0085	.0065	.0204	- .0019	.010	- .0007
4	122	21.59	0.00	68.88	.6221	.0081	.0165	.0216	- .0119	.011	- .017
4	123	8.08	0.00	71.86	.2125	.0008	.0279	.0134	- .0003	.007	- .2757
4	124	8.08	0.00	71.84	.2120	.0003	.0278	.0133	- .0002	.007	- .2757

WIND AXIS

MACH NUMBER = .27

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
4	97	-.68	.00	77.94	-.8428	-.0270	.0004	.0320
4	98	-.68	0.00	78.10	-.8420	-.0269	.0005	.0320
4	99	-.504	0.00	73.26	-3.3607	-.1398	.0020	.0416
4	100	-.5.03	0.00	73.22	-3.3452	-.1388	.0010	.0415
4	101	-.2.84	.00	74.51	-2.2567	-.782	.0112	.1346
4	102	-.2.84	0.00	74.32	-2.2357	-.0773	.0007	.0346
4	105	-.66	0.00	79.45	-.7008	-.0225	.0015	.0320
4	106	-.66	0.00	79.04	-.7043	-.0225	.0019	.0320
4	107	1.49	0.00	66.46	.7941	.254	.0115	.0320
4	108	1.49	0.00	66.46	.7941	.0254	.0015	.0320
4	109	2.67	0.00	70.75	2.2951	.0514	.0010	.0375
4	110	3.57	0.00	70.84	2.2924	.0813	.0010	.0355
4	111	8.07	0.00	71.85	3.5999	.2043	.0018	.0568
4	112	8.07	0.00	71.83	3.612	.2044	.0012	.0568
4	113	12.52	0.00	71.35	3.4423	.3306	.0118	.0950
4	114	12.52	0.00	71.35	3.4439	.3311	.0019	.0951
4	115	17.04	0.00	70.68	2.9525	.4642	.0056	.1557
4	116	17.04	0.00	70.68	2.9626	.4653	.0051	.1571
4	117	21.59	0.00	68.89	2.4481	.5743	.0091	.2346
4	118	21.58	0.00	68.91	2.4493	.5757	.0089	.2351
4	119	26.16	0.00	66.97	2.0212	.6591	.0243	.3311
4	120	26.16	0.00	66.94	2.0215	.6678	.0249	.3315
4	121	21.59	0.00	68.85	2.4521	.5758	.0085	.2348
4	122	21.58	0.00	68.88	2.4524	.5761	.0080	.2349
4	123	8.09	0.00	71.86	3.5905	.2065	.0008	.0575
4	124	8.09	0.00	71.84	3.5954	.2161	.0013	.0573

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPA
5	160	-63	6.00	75.52	-0.0162	0.0423	0.0314	0.0156	-0.0019	0.0115	0.0000
5	161	-63	6.00	74.98	-0.163	0.0423	0.0314	0.0155	-0.0019	0.0115	0.0000
5	162	-4.83	6.00	72.85	-1313	0.0489	0.0285	0.0196	-0.0030	0.0000	-0.5461
5	163	-4.83	6.00	72.79	-1292	0.0488	0.0286	0.0093	-0.0030	0.0000	-0.5473
5	164	-2.73	6.00	73.45	-0.0727	0.0431	0.0299	0.0057	-0.0020	0.0007	0.0044
5	165	-2.73	6.00	73.55	-0.717	0.0451	0.0299	0.0056	-0.0023	0.0008	0.45
5	166	-63	6.00	75.56	-0.0183	0.0413	0.0305	0.0118	-0.0018	0.0114	0.046
5	167	-63	6.00	75.56	-0.183	0.0413	0.0305	0.0118	-0.0018	0.0114	0.0023
5	168	1.45	6.00	70.94	0.0332	0.0417	0.0310	-0.0018	-0.0019	0.0024	0.0000
5	169	1.45	6.00	73.98	0.043	0.0418	0.0310	-0.019	-0.019	0.023	0.55
5	170	7.56	6.11	72.06	0.0883	0.0444	0.0295	-0.0057	-0.0026	0.033	-0.5419
5	171	3.56	6.00	72.16	0.0892	0.0445	0.0295	-0.0059	-0.0026	0.032	-0.5426
5	173	7.78	6.00	72.18	0.0805	0.0498	0.0262	-0.0138	-0.0041	0.052	0.0000
5	174	12.03	6.00	71.49	0.3334	0.0526	0.0205	-0.0197	-0.0044	0.065	0.54
5	175	12.03	6.00	71.49	0.3545	0.0525	0.0205	-0.0198	-0.0044	0.065	0.0029
5	176	16.30	6.00	70.76	0.4626	0.0552	0.0148	-0.0226	-0.0129	0.067	-0.5241
5	177	16.31	6.00	71.46	0.4647	0.0563	0.0148	-0.0227	-0.0030	0.067	-0.5268
5	178	20.53	6.00	69.35	0.5905	0.0646	0.0076	-0.0223	0.0092	0.055	-0.5211
5	179	20.53	6.00	69.35	0.5905	0.0645	0.0074	-0.0223	0.0002	0.055	-0.5221
5	180	24.89	6.00	67.56	0.7161	0.0814	0.0052	-0.0142	0.0009	0.074	0.0028
5	181	24.91	6.00	67.62	0.721	0.0814	0.0052	-0.0148	0.0011	0.074	0.0027
5	182	20.59	6.00	69.52	0.5928	0.0669	0.0074	-0.0222	0.0002	0.054	0.0025
5	183	20.59	6.00	69.32	0.5929	0.0658	0.0076	-0.0222	0.0002	0.055	0.0027
5	184	7.80	6.00	72.26	0.2146	0.0519	0.0264	-0.0143	-0.0042	0.052	-0.5439
5	185	7.79	6.00	72.22	0.2126	0.0519	0.0261	-0.0141	-0.0042	0.052	-0.5445
5	186	-63	6.00	76.11	-0.0183	0.0464	0.0309	0.019	-0.0122	0.0115	-0.5488

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
5	160	-• 63	6• 00	75• 52	-• 441.9	-• 0158	• 0387	• 0358
5	161	-• 63	6• 00	74• 98	-• 4457	-• 0160	• 387	• 359
5	162	-4• 83	6• 00	72• 85	-2• 8872	-• 1284	• 444	• 445
5	163	-4• 83	6• 00	72• 79	-2• 8543	-• 1253	• 444	• 443
5	164	-2• 73	6• 00	73• 45	-1• 8923	-• 0712	• 393	• 376
5	165	-2• 73	6• 00	73• 35	-1• 8598	-• 0702	• 413	• 378
5	166	-• 63	6• 00	75• 56	-• 5132	-• 0179	• 378	• 349
5	167	-• 63	6• 00	75• 56	-• 5132	-• 0179	• 378	• 349
5	168	1• 46	6• 00	70• 94	• 8979	• 0324	• 382	• 361
5	169	1• 45	6• 00	70• 98	• 9268	• 0335	• 383	• 361
5	170	3• 56	6• 00	72• 06	2• 1919	• 0863	• 405	• 394
5	171	3• 56	6• 00	72• 16	2• 2124	• 0872	• 406	• 394
5	173	7• 78	6• 00	72• 18	3• 4768	• 2030	• 438	• 521
5	174	12• 03	6• 00	71• 49	3• 4033	• 3219	• 430	• 646
5	175	12• 03	6• 00	71• 49	3• 3958	• 3229	• 429	• 651
5	176	16• 39	6• 00	7• 46	2• 9524	• 4398	• 399	• 142
5	177	16• 30	6• 00	70• 46	2• 9517	• 4419	• 408	• 1497
5	178	2• 58	6• 00	69• 35	2• 4971	• 5501	• 618	• 2203
5	179	20• 58	6• 00	69• 35	2• 5006	• 5502	• 418	• 2200
5	180	24• 69	6• 00	67• 56	2• 0788	• 6474	• 490	• 3138
5	181	24• 91	6• 00	67• 62	2• 0716	• 6512	• 478	• 3143
5	182	20• 59	6• 00	69• 32	2• 4978	• 5524	• 440	• 2212
5	183	20• 59	6• 00	69• 32	2• 4957	• 5524	• 429	• 2213
5	184	7• 80	6• 00	72• 26	3• 4613	• 2090	• 459	• 064
5	185	7• 79	6• 00	72• 22	3• 46• 3	• 2171	• 459	• 0598
5	186	-• 63	6• 00	76• 11	-• 5032	-• 6186	• 429	• 358

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C•P•	CN	CY	CA	CM	C7	CX	CPB
6	2 4	-• 63	3.00	79.26	-• 175	• 0221	• 0322	• 0024	-• 0009	• 0010	-• 0115
6	206	-4• 83	3.00	73.11	-• 1297	• 0256	• 0295	• 0098	-• 0015	• 0003	-• 0103
6	208	-2• 72	3.00	74.23	-• 0719	• 0245	• 0311	• 0052	-• 0011	• 0006	.5341
6	210	-• 63	3.00	78.47	-• 0197	• 0221	• 0320	• 0025	-• 0009	• 0009	.5338
6	212	1• 47	3.00	69.26	• 0348	• 0242	• 0325	-• 0013	-• 0011	• 0014	.5334
6	214	3.57	3.00	71.52	• 19.8	• 152	• 1307	-• 0054	-• 0016	• 0020	-• 0123
6	216	7.79	3.00	72.07	• 2092	• 0276	• 0281	-• 0136	-• 0024	• 0029	.2460
6	218	12.04	3.00	71.56	• 3386	• 0295	• 0235	-• 0203	-• 0022	• 0035	.2195
6	220	16.32	3.00	70.83	• 4760	• 0317	• 0153	-• 0250	-• 0011	• 0037	.2392
6	222	20.50	3.00	69.56	• 619	• 418	• 184	-• 240	-• 16	• 18	.2399
6	224	24.88	3.00	67.65	• 7144	• 0517	• 0047	-• 149	• 0013	• 033	-• 0126
6	226	27.60	3.00	69.51	• 6002	• 0408	• 0081	-• 0237	• 0007	• 018	.2385
6	228	7.80	3.00	72.12	• 2156	• 0276	• 0284	-• 0141	-• 0024	• 0030	.2403

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
6	204	-63	3.00	79.26	-5099	.0171	.0204	.0335
6	206	-4.83	3.00	73.11	-3.0473	-1268	.0234	.0416
6	218	-2.72	3.00	74.23	-1.9681	-774	.0226	.0358
6	210	-63	3.00	78.47	-5863	.0193	.0204	.0333
6	212	1.47	3.00	69.26	.9821	.0339	.0224	.0346
6	214	3.57	3.00	71.52	2.3630	.0897	.0233	.0375
5	216	7.79	3.00	72.87	3.5334	.2134	.0246	.0576
6	218	12.04	3.00	71.56	3.4332	.3262	.0245	.0950
6	220	16.32	3.00	70.83	3.0191	.4525	.0239	.1499
5	222	20.60	3.00	69.56	2.5310	.5596	.0303	.2211
6	224	24.88	3.00	67.65	2.1036	.6461	.0357	.3171
6	226	29.63	3.00	69.51	2.5349	.5590	.0293	.2205
6	228	7.80	3.00	72.12	3.5726	.2097	.0246	.0587

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C•P•	CN	CY	CA	CM	CZ	CX	CPB
7	242	-57	6.00	92.54	• 0319	• 0419	• 0359	• 0096	• 0025	• 0014	• 5459
7	243	-57	6.60	91.54	• 0341	• 0409	• 0359	• 0088	• 0024	• 0014	• 5497
7	244	-4.76	6.00	64.26	• 0760	• 0474	• 0344	• 0010	• 0036	• 0002	• 5482
7	245	-4.76	6.00	64.26	• 0760	• 0483	• 0344	• 0010	• 0037	• 0002	• 5523
7	246	-2.65	6.00	47.02	• 0227	• 0437	• 0336	• 0042	• 0028	• 0006	• 0024
7	247	-2.65	6.00	45.73	• 0216	• 0437	• 0359	• 0043	• 0128	• 0116	• 025
7	248	-55	6.00	90.37	• 0362	• 0419	• 0361	• 0090	• 0025	• 0014	• 5459
7	249	-56	6.00	50.94	• 0351	• 0419	• 0362	• 0029	• 0025	• 0014	• 5459
60	250	1.54	6.00	80.46	• 0930	• 0402	• 0381	• 0138	• 0024	• 0021	• 5454
7	251	1.54	6.00	80.46	• 0939	• 0412	• 0381	• 0140	• 0125	• 0022	• 5455
7	252	3.65	6.00	77.92	• 1552	• 0429	• 0395	• 0192	• 0030	• 0030	• 5451
7	253	3.65	6.00	77.92	• 1552	• 0428	• 0395	• 0192	• 0030	• 0030	• 5499
7	254	7.87	6.00	75.61	• 2806	• 0453	• 0412	• 0282	• 0037	• 0047	• 5442
7	255	7.88	6.00	75.60	• 2817	• 0454	• 0412	• 0282	• 0037	• 0047	• 5442
7	256	12.11	6.00	73.58	• 3971	• 5116	• 4135	• 3118	• 0043	• 0049	• 5433
7	257	12.11	6.00	73.60	• 3969	• 5116	• 4126	• 3119	• 0043	• 0049	• 5433
7	258	15.32	6.10	7.76	• 4756	• 6484	• 1358	• 1247	• 0112	• 0336	• 5438
7	259	16.32	6.00	70.77	• 4778	• 0494	• 0358	• 0248	• 0004	• 0031	• 5441
7	260	20.55	6.00	68.91	• 5735	• 0528	• 0327	• 0191	• 0004	• 0066	• 5441
7	261	20.55	6.00	58.87	• 5728	• 0517	• 0324	• 0189	• 0004	• 0067	• 5411
7	262	24.87	6.00	67.84	• 7144	• 0791	• 1314	• 1162	• 0111	• 0091	• 0111
7	263	24.87	6.00	67.84	• 7155	• 0789	• 0301	• 0163	• 0010	• 0092	• 0047
7	264	20.55	6.00	68.89	• 5763	• 6448	• 0321	• 0139	• 0001	• 0065	• 0316
7	265	20.55	6.00	68.87	• 5716	• 0648	• 0322	• 0188	• 0002	• 0056	• 0257
7	266	7.87	6.00	75.62	• 2795	• 0464	• 0418	• 0281	• 0038	• 047	• 5442
7	267	7.87	6.00	75.61	• 2815	• 464	• 0417	• 0282	• 0038	• 0047	• 5442
7	268	-57	6.00	64.46	• 0294	• 441	• 0365	• 0085	• 0027	• 0014	• 5459

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CW	CZ	CX	CPB
8	281	-56	3.00	88.92	.0377	.0185	.0375	-0.0098	-0.0010	.0010	.00029
8	282	-56	3.00	88.71	.0387	.0185	.0377	-0.0089	-0.0010	.0010	.0002
3	283	-4.76	3.00	64.22	-0.0734	.0211	.0326	-0.0010	-0.0017	.0001	-5483
8	284	-4.75	3.00	64.00	-0.0725	.0221	.0328	-0.0011	-0.0018	.0001	-5448
8	285	-2.65	3.00	47.66	-0.1222	.0210	.0349	-0.0040	-0.013	.0005	-5089
3	286	-2.65	3.00	46.15	-0.0212	.0209	.0351	-0.0041	-0.013	.0006	-5091
8	287	-56	3.00	90.53	.0343	.0175	.0375	-0.0086	-0.0009	.0009	0.0000
8	288	-56	3.00	69.65	.0356	.0175	.0375	-0.0086	-0.0009	.0009	0.0000
8	289	1.54	3.00	80.03	.033	.182	.0396	-0.135	-0.1	.14	0.0000
3	290	1.54	3.00	80.03	.0933	.0183	.0395	-0.0135	-0.010	.013	0.0000
8	291	3.65	3.00	77.69	1573	.0185	.0413	-0.0191	-0.011	.018	0.0000
8	292	3.65	3.00	77.70	1573	.0185	.0410	-0.0191	-0.011	.017	0.0000
8	293	7.89	3.00	75.53	.2914	.0220	.0437	-0.0290	-0.016	.128	0.0000
8	294	7.89	3.00	75.50	.2916	.0219	.0440	-0.0290	-0.016	.029	0.0000
8	295	12.13	3.00	73.77	.4035	.0253	.0425	-0.0335	-0.017	.021	0.0000
8	296	12.13	3.00	73.74	.4095	.0254	.0425	-0.0335	-0.017	.020	0.0000
8	297	16.33	3.00	70.63	.4824	.0276	.0374	-0.0244	.0010	-0.002	0.0000
8	298	16.33	3.00	74.63	.4824	.0285	.0371	-0.0244	.010	-0.002	0.0000
8	299	20.57	3.00	68.63	.5786	.0370	.0334	-0.177	.018	.034	0.0000
8	300	20.57	3.00	68.64	.5898	.0360	.0334	-0.178	.0019	.034	0.0000
8	301	24.83	3.00	67.67	.7146	.0493	.0291	-0.150	-0.001	.0052	0.0000
8	302	24.83	3.00	67.69	.7167	.0493	.0291	-0.152	-0.001	.0052	0.0000
8	303	24.53	3.00	68.61	.5809	.0372	.0331	-0.177	.0019	.034	0.0000
8	304	25.57	3.00	58.63	.5763	.0370	.0328	-0.176	.0018	.033	0.0000
8	305	7.89	3.00	75.53	.2894	.0220	.0437	-0.0288	-0.016	.0028	0.0000
8	306	7.89	3.00	75.54	.2903	.0220	.0437	-0.190	-0.16	.28	0.0000

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPH _A	YAW	C.P.	FL/Fl	CL	CC	CD
8	281	-56	3.00	88.92	1.0013	0.0381	• 0166	• 0380
8	282	-56	3.00	88.71	1.0199	0.0390	• 0165	• 0393
8	283	-4.76	3.00	64.22	-1.7692	-0.1714	• 0191	• 0398
8	284	-4.75	3.00	64.00	-1.7474	-0.0695	• 0201	• 0398
8	285	-2.66	3.00	47.66	-55.69	-0.0205	• 0190	• 0359
8	286	-2.66	3.00	46.15	-52.70	-0.0196	• 0190	• 0371
8	287	-56	3.00	9.53	91.32	• 1347	• 0156	• 0331
8	288	-56	3.00	89.65	94.72	• 0360	• 0156	• 0380
8	289	1.54	3.00	86.03	2.1470	• 0922	• 0160	• 0429
8	290	1.54	3.00	80.03	2.1469	• 0922	• 0160	• 0429
8	291	3.65	3.00	77.69	2.9627	• 1544	• 0158	• 0521
8	292	3.65	3.00	77.70	2.9787	• 1543	• 0158	• 0518
8	293	7.89	3.00	75.53	3.3506	• 2826	• 0176	• 0844
8	294	7.89	3.00	75.50	3.3402	• 2828	• 0175	• 0847
8	295	12.13	3.00	73.77	3.0379	• 3904	• 0186	• 1285
8	296	12.13	3.00	73.74	3.0417	• 3916	• 1.87	• 1238
8	297	16.33	3.00	70.63	2.6199	• 4525	• 0185	• 1727
8	298	16.33	3.00	70.63	2.6235	• 4525	• 0195	• 1725
8	299	20.57	3.00	58.63	2.2443	• 5300	• 0247	• 2361
8	300	20.57	3.00	68.64	2.2459	• 5320	• 0236	• 2369
8	301	24.88	3.00	67.67	1.9325	• 6360	• 0321	• 3291
8	302	24.88	3.00	67.69	1.9329	• 6380	• 0321	• 331
8	303	2.58	3.00	68.61	2.2481	• 5322	• 0248	• 2358
8	304	2.57	3.00	68.63	2.2491	• 5280	• 0248	• 2348
8	305	7.69	3.00	75.53	3.3380	• 2806	• 0176	• 0841
8	306	7.69	3.00	75.54	3.3439	• 2816	• 0176	• 0842

BODY AXIS

MACH NUMBER= .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPB
9	320	-•.56	0.00	88.68	•0352	•0011	•0365	-•0031	-•0003	•0006	.0906
9	321	-•.56	0.00	88.47	•0362	•0101	•0365	-•0083	-•0003	•0006	.0903
9	322	-4.76	0.00	64.43	-•0731	-•0011	•0314	-•0008	-•0000	•0004	.0894
9	323	-4.75	0.00	64.31	-•0720	-•0011	•0314	-•0009	-•0000	•0004	.0889
9	324	-2.65	0.00	45.38	-•0194	-•0000	•0338	-•0039	-•0002	•0006	.0912
9	325	-2.65	0.00	45.39	-•194	-•0000	•0341	-•0039	-•0002	•0006	.0918
9	326	-•.56	0.00	88.01	•0373	•0001	•0362	-•0084	-•0003	•0005	.0927
9	327	-•.56	0.00	87.82	•0382	•0001	•0365	-•0025	-•0003	•0005	.0924
9	328	1.54	0.00	79.66	•0047	-•0018	•0381	-•0133	-•0000	•0005	.0938
9	329	1.54	0.00	79.56	•0947	-•0018	•0381	-•0133	-•0000	•0006	.0934
9	330	3.65	0.00	77.56	•1593	-•0000	•0402	-•0190	-•0002	•0006	.0935
9	331	3.65	0.00	77.52	•1594	-•0001	•0405	-•0190	-•0002	•0006	.0931
9	332	7.89	0.00	75.54	•2008	-•0014	•0428	-•0290	-•0000	•0006	.0887
9	333	7.89	0.00	75.54	•2908	-•0014	•0428	-•0290	-•0000	•0006	.0885
9	334	12.13	0.00	73.84	•4115	-•0116	•0426	-•343	-•0001	-•0008	.0839
9	335	12.13	0.00	73.86	•4115	•0015	•0426	-•0341	•0001	-•0007	.0833
9	336	16.33	0.00	70.90	•4861	•0041	•0382	-•0259	•0008	-•0001	.0876
9	337	16.33	0.00	70.90	•4861	•0142	•0382	-•1259	•0008	-•0002	.0871
9	338	20.56	0.00	68.70	•5764	•0079	•0328	-•0190	•0012	-•0005	.0920
9	339	20.57	0.00	68.69	•5776	•0080	•0330	-•0180	•0012	-•0006	.0922
9	340	24.87	0.00	67.78	•7075	•0162	•0283	-•0128	•0037	-•0013	.0969
9	341	24.87	0.00	67.38	•7077	•0151	•0286	-•0128	•0138	-•0112	.1986
9	342	24.56	0.00	68.67	•5743	•0080	•0322	-•0178	•0012	-•0006	.0918
9	343	20.56	0.00	69.70	•5753	•0079	•0322	-•0160	•0012	-•0005	.0912
9	344	7.89	0.00	75.54	•2877	•0005	•0431	-•0287	-•0004	•0005	.0882
9	345	7.89	0.00	75.54	•2877	•0005	•0431	-•0287	-•0004	•0116	.0881

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
9	320	-• 56	0•00	88•68	• 9818	• 0355	• 0011	• 0362
9	321	-• 56	0•00	88•47	1• 0097	• 0365	• 0001	• 0362
9	322	-4• 76	0•00	64•43	-1• 3781	-• 0742	-• 0011	• 0374
9	323	-4• 75	0•00	64•31	-1• 6544	-• 0691	-• 0011	• 0373
9	324	-2• 65	0•00	45•38	-• 5135	-• 0178	-• 0000	• 0347
9	325	-2• 66	0•00	45•39	-• 5089	-• 0178	-• 0000	• 0350
9	326	-• 56	1•00	88•01	1• 488	• 0376	• 001	• 0359
9	327	-• 56	0•00	87•82	1• 0560	• 0385	• 0001	• 0361
9	328	1• 54	0•00	79•66	2• 3035	• 0936	-• 0018	• 0405
9	329	1• 54	0•00	79•66	2• 3034	• 0936	-• 0018	• 0406
9	330	3• 65	0•00	77•56	3• 0950	• 1554	-• 001	• 0542
9	331	3• 65	0•00	77•52	3• 0953	• 1565	-• 0001	• 0506
9	332	7• 89	0•00	75•54	3• 4266	• 2821	-• 0014	• 0823
9	333	7• 89	0•00	75•54	3• 4260	• 2821	-• 0014	• 0824
9	334	12• 13	0•00	75•84	3• 0676	• 3924	• 0016	• 1279
9	335	12• 13	0•00	73•86	3• 1699	• 3934	• 015	• 1291
9	336	16• 33	0•00	70•90	2• 6301	• 4557	• 041	• 1733
9	337	16• 33	0•00	70•90	2• 6301	• 4557	• 042	• 1733
9	338	20• 56	0•00	68•70	2• 2657	• 5282	• 0079	• 2331
9	339	20• 57	0•00	68•69	2• 2632	• 5292	• 0185	• 2338
9	340	24• 87	0•00	67•38	1• 9489	• 6301	• 0162	• 3233
9	341	24• 87	0•00	67•33	1• 9471	• 6300	• 0151	• 3236
9	342	20• 56	0•00	68•67	2• 2707	• 5264	• 0080	• 2318
9	343	20• 55	0•00	68•70	2• 2712	• 5273	• 0079	• 2322
9	344	7• 89	0•00	75•54	3• 3947	• 2790	• 0005	• 0822
9	345	7• 89	0•00	75•54	3• 3943	• 2790	• 0005	• 0822

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	TN	CY	CA	CM	CZ	CX	CP3
1	363	-.69	0.00	85.48	-.0745	.0019	.0386	.0148	-.0004	.0007	.0687
10	364	-.69	0.00	85.40	-.0736	.0019	.0386	.0146	-.0004	.0007	.0678
10	365	-.4.91	0.00	78.00	-.2003	.0013	.0419	.0249	-.0004	.0007	.0715
10	366	-.4.92	0.00	77.99	-.2024	.0014	.0422	.0251	-.0004	.0007	.0760
10	367	-.2.81	0.00	81.29	-.1350	.0025	.0406	.0199	-.0005	.0007	.0641
10	368	-.2.80	0.00	80.29	-.1350	.0025	.0406	.0199	-.0005	.0007	.0641
10	369	-.71	0.00	85.21	-.0743	.0039	.0389	.0147	-.0006	.0008	.0542
10	370	-.70	0.00	85.21	-.0747	.0029	.0389	.0147	-.0004	.0008	.0509
10	371	1.41	0.00	124.59	-.0163	.0034	.0354	.0095	-.0005	.0007	.0361
10	372	1.41	0.00	127.35	-.0153	.0034	.0354	.0095	-.0005	.0006	.0304
10	373	3.51	0.00	53.63	.0409	.0021	.0326	.0049	-.0005	.0006	.0358
10	374	7.51	0.00	54.13	.0421	.0021	.0326	.0048	-.0005	.0006	.0657
10	375	7.72	0.00	66.53	.1531	.0022	.0280	.0015	-.0013	.0005	.0558
1	376	7.72	0.00	65.53	.1531	.0021	.0283	.0015	-.0003	.0006	.1258
10	377	11.94	0.00	67.53	.2595	.0027	.0189	.0051	-.0000	.0006	.0361
10	378	11.94	0.00	67.58	.2605	.0037	.0188	.0052	-.0001	.0006	.1256
10	379	16.20	0.00	67.57	.2849	.0089	.0058	.0077	-.0002	.0000	.0990
10	380	16.21	0.00	67.58	.3859	.0189	.0168	.0078	-.0003	.0001	.0954
10	381	20.50	0.00	67.16	.5194	.0107	.0067	.0063	-.0006	.0003	.0658
10	382	20.50	0.00	67.14	.5195	.0117	.0057	.0082	-.0005	.0003	.0706
10	383	24.84	0.00	65.29	.5678	.0269	.0156	.0148	-.0112	-.0111	.1196
10	384	24.83	0.00	66.27	.6645	.0258	.0156	.0045	-.0013	-.0010	-.0135
10	385	20.50	0.00	67.19	.5240	.0096	.0067	.0095	-.0005	-.0003	.0552
10	386	20.51	0.00	67.20	.5250	.0118	-.0065	.0085	-.0004	-.0003	.0557
10	387	7.72	0.00	66.59	.1518	.0041	.0280	.0115	-.0006	-.0006	.1639
10	388	7.72	0.00	65.54	.1519	.0041	.0280	-.0015	-.0006	-.0006	.0654
10	389	-.63	0.00	85.26	-.0738	.0039	.0386	.0145	-.0006	-.0008	.0259

WIND AXIS

MACH NUMBER = • 19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CG	CD
10	363	-•69	0.00	85•48	-•8747	-•0740	•0019	•1395
1	364	-•69	0.00	85•41	-•8540	-•0731	•0019	•0395
10	365	-4•91	0.00	78•10	-3•3289	-•1959	•0013	•0589
10	366	-4•92	0.00	77•99	-3•3349	-•1980	•0014	•0594
10	367	-2•80	0.00	80•29	-2•8155	-•1329	•0025	•0472
1	368	-2•81	0.00	81•29	-2•8156	-•1329	•125	•1472
10	369	-70	0.00	85•21	-1•8680	-•0743	•039	•0398
10	370	-70	0.00	85•21	-1•8675	-•0743	•029	•0398
10	371	1•41	0.00	124•59	-•4862	-•0172	•034	•0353
10	372	1•41	0.00	127•35	-•4619	-•162	•34	•350
1	373	3•51	0.00	53•63	1•1079	•0389	•0021	•0351
10	374	3•51	0.00	54•43	1•1376	•0400	•0021	•0351
10	375	7.72	0.00	65•53	3•0510	•1479	•0022	•0483
10	376	7.72	0.00	66•53	3•0426	•1479	•0021	•0486
1	377	11.94	0.00	67•53	3•4663	•2501	•0027	•0721
10	378	11.94	0.00	67•58	3•4693	•2510	•0037	•0723
10	379	15.20	0.00	67.57	3•2274	•3677	•0089	•1139
10	380	16.20	0.00	67.58	3•2273	•3687	•0089	•1142
1	381	20.50	0.00	67•16	2•7845	•4389	•117	•1756
10	382	20.50	0.00	67•14	2•7843	•4390	•117	•1756
10	383	24.84	0.00	66•29	2•2997	•6125	•0269	•2664
10	384	24.83	0.00	66•27	2•3011	•6096	•0258	•2649
10	385	20.50	0.00	67•19	2•7826	•4931	•1196	•1772
10	386	20.51	0.00	67•20	2•7775	•4940	•0118	•1778
10	387	7.72	0.00	66•59	3•0452	•1466	•0041	•0464
10	388	7.72	0.00	66•54	3•0464	•1467	•0041	•0482
10	389	-•69	0.00	85•26	-1•8582	-•0733	•039	•0395

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPR
.11	4.2	-7.1	3.00	84.56	-0.0753	• 0180	• 0393	• 0143	-0.0005	• 0013	-4.910
.11	4.3	-7.9	3.00	84.56	-0.0753	• 0180	• 0395	• 0143	-0.0004	• 0013	-4.873
.11	4.4	-4.92	3.00	77.76	-0.2045	• 0209	• 0429	• 0249	-0.0009	• 0002	-4.664
.11	4.5	-4.92	3.00	77.77	-0.2024	• 0219	• 0425	• 0247	-0.0009	• 0003	-4.682
.11	4.6	-2.81	3.00	79.73	-0.1383	• 0183	• 0141	• 0196	-0.0004	• 0008	-4.725
.11	4.07	-2.80	3.00	79.80	-0.1371	• 0192	• 0410	• 0195	-0.0005	• 0009	-4.767
.11	4.08	1.30	3.00	84.23	-0.0756	• 0210	• 0273	• 0143	-0.0006	• 0.13	-4.887
.11	4.11	1.40	3.00	113.03	-0.0191	• 0209	• 0364	• 0092	-0.0009	• 0018	-4.967
.11	412	1.40	3.00	117.16	-0.0179	• 0211	• 0364	• 0092	-0.0010	• 0017	-4.970
.11	413	3.50	3.00	52.60	• 0377	• 0243	• 0336	• 0049	-0.0017	• 0021	-5.111
.11	414	3.50	3.00	53.16	• 0388	• 0242	• 0339	• 0048	-0.0017	• 0022	-5.65
.11	415	7.71	3.00	66.44	• 1471	• 0269	• 0284	• 0013	-0.0025	• 0030	-4.724
.11	416	7.71	3.00	66.45	• 1471	• 0269	• 0281	• 0013	-0.0025	• 0030	-4.704
.11	417	11.94	3.00	67.52	• 2585	• 0277	• 0195	• 0050	-0.0024	• 0038	-4.372
.11	418	11.94	3.00	67.52	• 2586	• 0195	• 0050	-0.0024	• 0039	-4.336	
.11	419	16.21	3.00	67.79	• 3614	• 3552	• 0167	• 0069	-0.0022	• 0041	-4.993
.11	420	16.20	3.00	67.39	• 3814	• 3552	• 0067	• 0069	-0.0022	• 0041	-5.028
.11	421	20.49	3.00	67.02	• 5155	• 0450	-0.0062	• 0075	-0.0010	• 0039	-5.096
.11	422	20.49	3.00	67.02	• 5136	• 0449	-0.0062	• 0075	-0.0010	• 0040	-5.114
.11	423	24.62	3.00	66.73	• 6614	• 0523	-0.143	-0.050	-0.0014	• 0053	1.000
.11	424	24.82	3.00	66.35	• 6624	• 0523	-0.0145	-0.0051	-0.0001	• 0054	0.000
.11	425	20.49	3.00	67.02	• 5135	• 0460	-0.0062	-0.0075	-0.0010	• 0060	-5.384
.11	426	20.69	3.00	67.02	• 5135	• 0460	-0.0062	-0.0074	-0.0010	• 0040	-5.352
.11	427	7.71	3.00	66.50	• 1483	• 0259	• 0278	-0.0014	-0.125	• 029	-4.813
.11	428	7.71	3.00	66.50	• 1483	• 0258	• 0278	-0.0014	-0.0025	• 0030	-4.796

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
11	402	-7.70	3.00	84.56	-1.8224	-0.0748	0.159	0.0411
11	403	-7.70	3.00	84.56	-1.81.1	-0.748	0.158	0.0413
11	404	-4.92	3.00	77.76	-3.2559	-0.2000	0.177	0.0612
11	405	-4.92	3.00	77.77	-3.2563	-0.1980	0.187	0.0608
11	406	-2.81	3.00	79.73	-2.7960	-0.1361	0.157	0.0487
11	407	-2.80	3.00	79.60	-2.7745	-0.1350	0.167	0.0486
11	408	1.31	3.00	84.23	-2.9069	-0.0772	0.187	0.0256
11	411	1.40	3.00	113.03	-0.5400	-0.0200	0.190	0.0370
11	412	1.40	3.00	117.16	-0.5076	-0.0188	0.192	0.0370
11	413	3.50	3.00	52.60	0.9586	0.0355	0.224	0.0371
11	414	3.50	3.00	53.16	0.9794	0.366	0.223	0.0374
11	415	7.71	3.00	66.44	2.3937	0.1420	0.244	0.0492
11	416	7.71	3.00	66.45	2.9011	0.1420	0.243	0.0490
11	417	11.94	3.00	67.52	3.3686	0.2489	0.238	0.0739
11	418	11.94	3.00	67.52	3.3660	0.2489	0.248	0.0740
11	419	16.20	3.00	67.39	3.1833	0.3644	0.292	0.1145
11	421	16.20	3.10	67.39	3.1833	0.3644	0.293	0.1145
11	421	25.49	3.00	67.52	2.7455	0.4832	0.359	0.1760
11	422	20.49	3.00	67.02	2.7455	0.4833	0.358	0.1760
11	423	24.82	3.00	66.83	2.2702	0.6063	0.384	0.2671
11	424	24.82	3.00	66.35	2.2725	0.6073	0.383	0.2672
11	425	20.49	3.00	67.02	2.7446	0.4932	0.368	0.1761
11	426	20.49	3.00	67.02	2.7446	0.4832	0.368	0.1760
11	427	7.71	3.00	66.50	2.9368	0.1432	0.234	0.0488
11	428	7.71	3.00	66.50	2.9372	0.1432	0.233	0.0488

10
MACH NUMBER -
SODY AXIS

RUN	TEN	ALPHA	YAH	C-P.	CN	CY	CA	CW	CZ	CX	CPB
12	443	-0.76	6.00	84.11	-0.7440	0.443	0.396	0.137	-0.0018	-0.0019	-0.5489
12	444	-0.7	6..	84.1	-0.74..	0.44..	0.39..	0.13..	-0.0018	-0.0019	-0.5185
12	445	-4.01	6.00	77.68	-1.957	0.430	0.435	0.238	-0.0025	-0.0026	-0.6923
12	446	-4.01	6.00	77.64	-1.969	0.490	0.430	0.236	-0.0027	-0.0028	-0.4859
12	447	-2.80	6.00	76.76	-1.324	0.429	0.412	0.138	-0.0017	-0.0017	-0.5022
12	448	-2.80	6.00	79.77	-1.735	0.415	0.41..	0.13..	-0.0017	-0.0017	-0.5219
12	449	-0.63	6.10	84.43	-0.717	0.422	0.395	0.136	-0.0017	-0.0017	-0.5219
12	450	1.04	6.00	123.62	-0.150	0.419	0.366	0.097	-0.0018	-0.0018	-0.5345
12	451	1.04	6.00	131.09	-0.129	0.458	0.356	0.035	-0.0027	-0.0027	-0.5345
12	452	1.04	6.00	131.09	-0.129	0.458	0.356	0.035	-0.0027	-0.0027	-0.5345
12	453	3.51	6..	55.88	0.429	0.47	0.337	0.042	-0.0028	-0.0028	-0.0557
12	454	3.51	6.00	55.88	0.429	0.455	0.337	0.042	-0.0028	-0.0028	-0.0557
12	455	7.72	6.00	55.00	0.1570	0.492	0.260	-0.0020	-0.0041	-0.0041	-0.5206
12	456	7.72	6.00	65.00	0.1570	0.492	0.260	-0.0020	-0.0041	-0.0041	-0.5206
12	457	11.94	6..	67.66	0.116	0.549	0.199	-0.0055	-0.0060	-0.0060	-0.5329
12	458	11.94	6.00	67.68	0.1627	0.559	0.199	-0.0055	-0.0060	-0.0060	-0.5329
12	459	15.20	6..	67.34	0.221	0.541	0.075	-0.0055	-0.0060	-0.0060	-0.5329
12	460	15.20	6.00	57.34	0.230	0.542	0.075	-0.0058	-0.0063	-0.0063	-0.5275
12	461	20.50	6.00	67.4	0.181	0.742	0.61	-0.176	-0.31	-0.31	-0.82
12	462	20.50	6.00	67.06	0.203	0.752	0.061	-0.007	-0.032	-0.032	-0.0042
12	463	24.85	6.00	66.49	0.753	0.869	0.143	-0.002	-0.034	-0.034	-0.0042
12	464	24.85	6.00	66.49	0.753	0.859	0.143	-0.002	-0.034	-0.034	-0.0042
12	465	7.72	6.00	66.57	0.501	0.504	0.277	-0.0015	-0.0041	-0.0041	-0.5238
12	466	7.72	6.00	65.57	0.500	0.514	0.277	-0.0015	-0.0041	-0.0041	-0.5238

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
12	443	-70	6.65	84.41	-1.6367	-0.6735	0.398	0.449
12	444	-70	5.00	84.11	-1.6327	-0.6735	0.398	0.449
12	445	-4.91	6.00	77.68	-2.9856	-1.923	0.415	0.644
12	446	-4.91	6.00	77.54	-2.9825	-1.925	0.425	0.645
12	447	-2.80	6.00	70.76	-2.514	-1.353	1.377	0.519
12	448	-2.89	5.00	79.77	-2.109	-1.213	0.387	0.523
12	449	-6.9	5.00	84.52	-1.882	-0.702	0.358	0.442
12	450	-6.9	6.00	84.48	-1.556	-0.712	0.378	0.466
12	451	1.41	5.00	123.62	-3.91	-0.015	0.378	0.464
12	452	1.44	6.00	131.19	-3.299	-0.038	0.788	0.405
12	453	5.51	5.00	55.89	9055	0.402	0.426	0.409
12	454	3.51	5.00	55.86	9057	0.403	0.426	0.409
12	455	7.72	5.00	65.90	2.7914	0.1474	0.439	0.572
12	456	7.72	6.00	65.95	2.7974	0.1479	0.439	0.579
12	457	11.94	6.00	57.65	2.3245	0.2521	0.670	0.779
12	458	11.94	6.00	67.68	3.2247	0.2531	0.480	0.783
12	459	15.9	5.00	67.31	5.242	0.2545	0.481	0.786
12	460	6.0	5.00	57.74	3.6413	0.3657	0.519	0.722
12	461	20.50	6.00	67.16	2.714	0.6975	0.545	0.817
12	462	20.50	6.00	67.06	2.6995	0.4805	0.554	0.814
12	463	24.85	6.00	65.48	2.245	0.6184	0.561	0.772
12	464	24.85	6.00	65.49	2.227	0.6184	0.571	0.773
12	465	7.72	6.00	65.57	2.7575	0.1450	0.452	0.526
12	466	7.72	6.00	66.57	2.7683	0.1450	0.461	0.527

P01Y AXIS

MACH NUMBER= .19

RUN	T9N	ALPHA	YAN	C.P.	CN	CY	CA	CM	CC	CX	CPA
17	4.87	-54	0.00	70.73	-0.0237	-0.0018	0.0374	-0.0073	-0.0024	-0.0055	.055
13	4.84	-53	0.00	80.92	-0.0194	-0.0008	0.0373	-0.0030	-0.0012	-0.0055	.58
12	4.85	-4.74	0.00	74.8	-0.1295	-1	0.0362	-0.0119	-0.0021	-0.0062	.076
13	4.86	-4.93	0.00	74.14	-0.1351	-0.0752	0.0362	-0.0116	-0.0020	-0.0052	.76
17	4.87	-2.71	0.00	75.11	-0.0579	0.001	0.0371	-0.0072	-0.0016	-0.0055	.0451
13	4.88	-2.71	0.00	75.10	-0.0579	0.001	0.0368	-0.0072	-0.0016	-0.0055	.0451
12	4.89	-0.74	0.00	70.6	-0.225	-0.149	0.0371	-0.0112	-0.0012	-0.0055	.076
12	4.90	-0.53	0.00	80.44	-0.0204	-0.0069	0.0371	-0.0075	-0.0012	-0.0055	.51
12	4.91	1.47	0.00	79.91	-0.0755	-0.0602	0.0359	-0.0019	-0.0014	-0.0055	.041
17	4.92	1.43	0.00	71.04	-0.0455	-0.0000	0.0365	-0.0025	-0.0010	-0.0055	.041
17	4.93	1.53	0.00	72.62	-0.1035	-0.057	0.0357	-0.0112	-0.0012	-0.0055	.56
15	4.94	1.59	0.00	72.52	-0.1075	-0.008	0.0357	-0.0073	-0.0012	-0.0055	.51
12	4.95	7.31	0.00	72.47	-0.2237	-0.049	0.0346	-0.0154	-0.0110	-0.0466	.87
13	4.96	7.81	0.00	72.47	-0.2355	-0.019	0.0349	-0.0174	-0.0010	-0.0056	.0782
13	4.97	12.83	0.00	71.57	-0.1757	-0.009	0.0360	-0.0204	-0.0007	-0.0056	.17
12	4.98	12.4	0.00	71.54	-0.1779	-0.009	0.0363	-0.0205	-0.0007	-0.0056	.17
12	5.00	15.23	0.00	69.72	-0.4505	-0.25	0.0235	-0.197	-0.0115	-0.0226	.54
17	5.01	15.23	0.00	69.72	-0.4672	-0.214	0.0230	-0.195	-0.0115	-0.0226	.54
13	5.02	20.52	0.00	87.94	-0.5435	-0.028	0.0140	-0.0129	-0.0011	-0.012	.0444
13	5.03	20.52	0.00	67.94	-0.5436	-0.028	0.0140	-0.0129	-0.0011	-0.012	.0444
12	5.05	24.86	0.00	55.88	-0.619	-0.024	0.0091	-0.0091	-0.0052	-0.012	.0444
13	5.6	24.65	0.00	65.89	-0.6229	-0.074	0.0081	-0.0031	-0.0031	-0.0112	.4127
13	5.07	20.53	0.00	67.97	-0.5493	-0.000	0.0137	-0.0132	-0.0013	-0.0117	.0444
13	5.08	20.54	0.00	69.01	-0.5547	-0.001	0.0176	-0.0175	-0.0017	-0.0117	.41
12	5.9	7.81	0.00	72.48	-0.2171	-0.007	0.0355	-0.0170	-0.0009	-0.0070	.0764
12	5.10	7.81	0.00	72.51	-0.2214	-0.004	0.0352	-0.0114	-0.0009	-0.0059	.0716

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
1.3	4P3	-64	0	79.73	-0.6173	-0.0232	-0.0018	0.377
1.3	4P4	-63	0.00	80.93	-0.5047	-0.0195	-0.0008	0.375
1.3	4P5	-62.84	0.00	76.08	-2.8403	-0.1753	0.0001	0.479
1.3	4P6	-46.83	0.00	74.14	-2.7752	-0.1316	0.0002	0.474
1.3	4P7	-2.71	0	76.11	-1.6419	-0.561	0.11	0.3
1.3	4P8	-2.71	0.00	76.10	-1.6579	-0.6654	0.071	0.4
1.2	4P9	-64	0.00	72.66	-0.5641	-0.0222	-0.0019	0.373
1.2	4P0	-63	0.00	80.44	-0.5359	-0.0200	-0.0009	0.373
1.2	4P1	1.47	0.00	70.91	0.477	-0.247	-0.12	0.378
1.2	4P2	1.43	0.00	71.04	1.1941	0.6446	-0.0000	0.376
1.2	4P3	2.53	0.00	72.62	2.7454	0.1010	0.0003	0.431
1.2	4P4	2.59	0.00	72.62	2.3164	0.1010	0.0001	0.431
1.2	4P5	7.81	0.00	72.43	3.3571	0.2153	0.0019	0.650
1.2	4P6	7.81	0	72.47	3.7759	0.2167	0.0018	0.650
1.2	4P7	12.03	0	71.63	3.7416	0.2221	0.0009	0.574
1.2	4P8	12.04	0.00	71.64	3.2384	0.2641	0.0009	0.591
1.2	4P9	15.29	0.00	69.72	2.8695	0.420	0.0025	0.464
1.2	5P1	15.23	0	69.72	2.8658	0.4228	0.14	0.475
1.2	5P2	29.52	0.00	67.94	2.4757	0.4742	0.128	0.217
1.2	5P3	29.52	0.00	57.94	2.4755	0.5142	0.0829	0.2037
1.2	5P5	24.85	0.00	65.98	2.0934	0.4243	0.024	0.2992
1.2	5P6	26.85	0.00	66.89	2.0973	0.4253	0.14	0.2017
1.2	5P7	20.53	0.00	67.67	2.4904	0.5095	-0.0000	0.2054
1.2	5P8	26.54	0.00	68.51	2.4912	0.5146	-0.0001	0.2074
1.2	5P9	7.30	0.00	72.48	3.2515	0.2103	-0.0003	0.647
1.2	5P0	7.31	0.00	72.51	3.322	0.2145	-0.4	0.65

X00Y AXIS

HARD NUMBER= •19

PIN	TPN	ALPPA	YAY	C.P.	CN	CY	CA	CM	CZ	CX	CPW
14	576	-0.63	3.00	75.48	-0.0158	•0178	•0372	•0116	-0.16	-0.5	-0.6661
14	577	-0.63	3.00	75.48	-0.0158	•0177	•0372	•0116	-0.0118	-0.050	-0.4591
14	578	-4.94	3.00	77.64	-0.1363	•0217	•0364	•0110	-0.0132	-0.0155	-0.677
14	579	-4.84	3.00	73.58	-0.1353	•0227	•0364	•0108	-0.0033	-0.0066	-0.676
14	580	-2.77	3.00	74.34	-0.0773	•0191	•0353	•0058	-0.0022	-0.0056	-0.676
14	581	-2.77	3.00	74.36	-0.0774	•191	•0369	•0058	-0.0023	-0.0055	-0.6977
14	582	-0.63	3.00	76.29	-0.0195	•0157	•0367	•0126	-0.17	-0.51	-0.5
14	583	-0.53	3.00	75.30	-0.0185	•0157	•0370	•0020	-0.0017	-0.0050	-0.693
14	584	1.45	3.00	73.42	•0354	•0157	•0355	•0029	-0.0015	-0.0465	-0.505
14	585	1.47	3.00	73.49	•374	•177	•366	•129	-0.19	-0.46	-0.596
14	586	1.53	3.00	73.55	•0988	•0203	•0265	•0179	-0.0121	-0.045	-0.516
14	587	1.53	7.7C	73.55	•0293	•0203	•0355	•0079	-0.0021	-0.045	-0.516
14	588	7.87	3.00	72.45	•2191	•0230	•0338	•0159	-0.0025	-0.0045	-0.341
14	589	7.80	3.00	72.35	•2191	•0250	•338	•159	-0.25	-0.44	-0.74
14	594	12.4	3.00	71.39	•3793	•0249	•0296	•0214	-0.0017	-0.0045	-0.304
14	594	12.4	3.00	71.36	•3704	•248	•294	•123	-0.0117	-0.0115	-0.307
14	595	15.29	3.00	69.95	•4658	•0275	•0215	•0196	-0.003	-0.020	-0.170
14	593	15.28	3.00	69.94	•4659	•0285	•0215	•0195	-0.003	-0.021	-0.371
14	594	2.53	3.00	67.03	•5451	•375	•129	•0132	-0.0113	-0.010	-0.792
14	595	20.53	3.00	68.01	•5492	•276	•131	•124	-0.13	-0.29	-0.74
14	596	24.85	3.00	67.15	•5032	•0793	•0655	•9110	-0.0126	-0.014	-0.674
14	597	24.85	3.00	67.14	•6934	•0323	•0066	•0109	-0.0027	-0.0055	-0.677
14	598	26.54	3.00	67.09	•5552	•0778	•128	•6134	-0.14	-0.30	-0.418
14	599	26.55	3.00	68.01	•5784	•0349	•0128	•0136	-0.0113	-0.0136	-0.619
14	600	7.81	3.00	72.76	•2949	•031	•0340	•0152	-0.0023	-0.0045	-0.35
14	551	7.82	3.00	72.73	•2313	•211	•134	•0167	-0.0023	-0.0045	-0.352
14	552	-0.63	3.00	76.57	-0.155	•157	•0370	•317	-0.0117	-0.0117	-0.701

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	G.P.	FL/FO	CL	CC	CD
14	526	-63	3.00	75.48	-0.4017	-0.0154	.0158	.397
14	527	-63	3.00	75.48	-0.4016	-0.0154	.0158	.0383
14	528	-4.84	3.00	73.64	-2.7157	-0.1527	.0192	.6499
14	529	-4.84	3.00	73.58	-2.6088	-0.1717	.0201	.0498
14	530	-2.73	3.00	74.34	-1.8493	-0.0755	.0160	.0408
14	531	-2.73	3.00	74.36	-1.8221	-0.755	.169	.0415
14	532	-63	3.00	76.29	-4.833	-0.01P2	.137	.377
14	533	-63	3.00	76.30	-4.703	-0.482	.0137	.0730
14	534	1.65	3.00	73.42	0.9232	0.354	.0147	.0384
14	535	1.47	3.00	73.39	0.9499	1.555	.157	.314
14	536	2.59	3.00	73.55	2.2115	0.953	.0190	.0435
14	537	3.53	3.00	73.55	2.2116	0.953	.0190	.0435
14	538	7.80	3.00	72.85	3.3023	2.125	.0197	.0643
14	539	7.80	3.00	72.85	3.3024	2.125	.0196	.0643
14	54	12.14	3.00	71.88	3.2274	3.257	.0195	.1009
14	541	12.94	3.00	71.86	3.2370	3.259	.0195	.1547
14	542	15.25	3.00	69.95	2.8741	4.229	.0198	.1671
14	543	15.28	3.00	68.04	2.8729	4.220	.0209	.1472
14	544	2.53	3.00	67.64	2.4725	5.69	.228	.257
14	545	20.53	3.00	68.01	2.4693	5.87	.1228	.2050
14	546	24.85	3.00	67.15	2.0971	5.252	.0157	.2095
14	547	24.85	3.00	57.14	2.0971	6.254	.0166	.2097
14	548	20.54	3.00	67.69	2.4735	5.154	.229	.2116
14	549	20.55	3.00	68.01	2.4734	5.184	.239	.2036
14	550	7.81	3.00	72.76	3.3415	2.191	.0177	.0623
14	551	7.92	3.00	72.78	3.3939	2.245	.0177	.0551
14	552	63	3.00	76.57	-3.971	-0.15	.178	.379

X00Y AXIS
WACH NUMBER = •19

PN	TPH	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CP3
15	568	-•62	6.00	70.98	-•0116	•0452	•0370	•0006	-•0037	-•0044	•2.8
15	569	-•62	6.00	71.7	-•94	•472	•37	•0005	-•0038	-•0044	•0202
15	570	-4.83	6.00	72.84	-•1292	•0537	•0367	-•0037	-•5757	-•165	•7712
15	571	-4.82	6.00	72.85	-•1269	•0537	•0366	•0092	-•0037	-•005	•685
15	572	-2.72	6.00	73.37	-•0578	•0453	•0354	•0053	-•0042	-•0052	•632
15	573	-2.72	6.00	73.37	-•673	•468	•364	•57	-•42	-•52	•416
15	574	-•52	6.00	70.14	-•0407	•0481	•0367	•005	-•0729	-•0043	•264
15	575	-•62	6.00	70.13	-•0197	•0482	•0357	•0005	-•0039	-•0043	•265
15	576	1.68	6.00	75.12	•0455	•0458	•0362	-•0043	-•0036	-•0036	•267
15	577	1.43	6.00	75.11	•0455	•0458	•0362	-•0043	-•0036	-•0036	•267
15	578	2.59	6.00	74.11	•1051	•0500	•0356	-•0041	-•0040	-•0031	•267
15	579	2.53	6.00	74.11	•1653	•0513	•0256	-•0024	-•0041	-•0034	•267
15	580	7.81	6.00	72.91	•2229	•0537	•0321	-•0154	-•0048	-•0023	•265
15	581	7.81	6.00	72.94	•2239	•0537	•0324	-•0155	-•0047	-•0022	•267
15	582	12.4	6.00	71.73	•7441	•583	•2910	-•0051	-•0009	-•0009	•265
15	583	12.04	6.00	71.73	•3422	•1799	•268	-•1211	-•152	-•152	•265
15	584	16.28	6.00	59.84	•4673	•0593	•0198	-•0191	-•0025	•0017	•261
15	585	18.23	6.00	69.84	•4473	•0595	•0198	-•0191	-•0025	•CU17	•263
15	586	20.55	6.00	68.21	•5584	•684	•145	-•147	-•9	•67	•260
15	587	20.54	6.00	68.19	•5562	•0593	•0116	-•0145	-•0110	•1669	•261
15	588	24.89	6.00	67.32	•7037	•0597	•0124	-•0124	-•0078	•0104	•259
15	589	24.89	6.00	67.33	•7085	•0597	•0125	-•0125	-•0038	•0101	•258
15	590	20.55	6.00	68.18	•5585	•0704	•2119	-•145	-•1	•68	•251
15	591	2.54	6.00	68.17	•5539	•0714	•0116	-•0144	-•0011	•0057	•251
15	594	7.81	6.00	72.86	•2229	•0579	•6373	-•2162	-•0050	-•0022	•259
15	595	7.81	6.00	72.86	•2229	•0578	•0330	-•0162	-•0050	-•0022	•269

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CG
15	568	-62	6.00	70.98	-2676	-0.0112	0.0118
15	569	-F2	6.00	70.70	-2153	-0.0090	0.0110
15	570	-4.83	6.00	72.84	-2.3667	-0.1247	0.0527
15	571	-4.82	6.	72.85	-2.3847	-0.1225	0.055
15	572	-2.72	6.00	73.77	-1.4910	-0.0560	0.0162
15	573	-2.72	6.00	73.37	-1.4910	-0.050	0.0162
15	574	-F2	6.00	70.14	-2469	-0.0107	0.0440
15	575	-62	6.00	70.13	-2459	-0.0103	0.0447
15	576	1.43	6.	75.12	1.0507	0.0445	0.0426
15	577	1.43	6.00	75.11	1.0689	0.0446	0.0426
15	578	3.59	6.00	74.11	2.1951	0.0435	0.0422
15	579	3.59	6.00	74.11	2.1902	0.0435	0.0473
15	580	7.81	6.	72.01	3.2147	0.2155	0.0674
15	581	7.81	6.00	72.04	3.2085	0.2174	0.0666
15	582	12.84	6.00	71.73	3.1957	0.2350	0.0643
15	583	12.04	6.00	71.73	3.1853	0.2301	0.0693
15	584	15.29	6.	69.84	2.8284	0.4278	0.1442
15	585	15.29	6.00	60.94	2.9295	0.4238	0.1442
15	586	21.55	6.00	69.71	2.477	0.193	0.2178
15	587	20.54	6.00	68.19	2.473	0.1928	0.2174
15	588	24.89	6.00	67.32	2.0725	0.3435	0.2776
15	589	24.83	6.00	67.33	2.0725	0.3436	0.2776
15	590	21.55	6.00	53.48	2.4516	0.5189	0.3434
15	591	21.54	6.00	69.17	2.6329	0.5146	0.4936
15	594	7.81	6.00	72.96	3.1579	0.2162	0.0516
15	595	7.81	6.00	72.85	3.1514	0.2163	0.0509

BODY AXIS

MACH NUMBER = .19

PUN	TFN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CF	CG
17	655	-63	-3.00	83.46	-0.8221	-0.135	0.2762	0.6140	-0.0111	0.0000
17	656	-63	-3.00	83.47	-0.8221	-0.135	0.2763	0.6140	-0.0111	0.0000
17	657	-4.84	-3.00	74.69	-0.1390	-0.227	0.356	0.127	-0.0094	-0.057
17	658	-4.84	-3.00	74.69	-0.1390	-0.225	0.356	0.127	-0.0094	-0.057
17	659	-2.74	-3.00	75.35	-0.0919	-0.224	0.356	0.118	-0.0094	-0.057
17	660	-2.74	-3.00	76.55	-0.0819	-0.216	0.357	0.016	-0.0094	-0.057
17	661	-0.53	-3.00	83.75	-0.0231	-0.148	0.353	0.041	-0.0094	-0.057
17	662	-0.53	-3.00	85.74	-0.0232	-0.147	0.352	0.041	-0.0094	-0.057
17	663	1.47	-3.00	68.35	0.0750	-0.105	0.353	0.010	-0.0094	-0.057
17	664	1.47	-3.00	68.35	0.0750	-0.104	0.363	0.010	-0.0094	-0.057
17	665	3.57	-3.00	71.83	0.0921	-0.219	0.355	0.065	-0.0094	-0.057
17	666	3.57	-3.00	71.83	0.0921	-0.219	0.355	0.065	-0.0094	-0.057
17	667	7.73	-3.00	71.83	0.2113	-0.233	0.346	-0.142	-0.0113	-0.057
17	668	7.73	-3.00	71.83	0.2113	-0.233	0.346	-0.142	-0.0113	-0.057
17	669	12.02	-3.00	70.82	0.7250	-0.274	0.302	-0.174	-0.0376	-0.057
17	670	12.02	-3.00	70.79	0.7241	-0.274	0.302	-0.174	-0.0376	-0.057
17	671	17.61	-3.00	7.8	1.4152	-0.159	0.214	-0.0530	-0.057	-0.057
17	672	17.61	-3.00	70.85	1.6729	-0.160	0.214	-0.0530	-0.057	-0.057
17	673	20.53	-3.00	67.59	0.5644	-0.162	0.176	-0.115	-0.025	-0.057
17	674	20.53	-3.00	67.67	0.5645	-0.162	0.176	-0.115	-0.025	-0.057
17	675	24.85	-3.00	66.89	0.6833	-0.165	0.176	-0.115	-0.025	-0.057
17	677	24.85	-3.00	66.89	0.6833	-0.165	0.176	-0.115	-0.025	-0.057
17	678	25.53	-3.00	67.75	0.5443	-0.123	0.176	-0.115	-0.025	-0.057
17	679	20.53	-3.00	67.71	0.5441	-0.123	0.176	-0.115	-0.025	-0.057
17	680	7.80	-3.00	71.92	0.2142	-0.232	0.346	-0.176	-0.115	-0.057
17	681	7.80	-3.00	71.96	0.2152	-0.222	0.346	-0.176	-0.115	-0.057

SIXTY-ONEN

MACH NUMBER = .19

RUN	TPN	ALPH1	YAH	C.P.	FL/FD	FL	CC	CD	S378	
									-0.0169	-0.0217
17	655	-0.63	-3.00	83.46	-0.5800	-0.5800	-0.5800	-0.5800	-0.5800	-0.5800
17	F56	-0.67	-3.00	83.47	-0.5800	-0.5800	-0.5800	-0.5800	-0.5800	-0.5800
17	657	-0.84	-2.00	74.69	-0.4024	-0.4024	-0.4024	-0.4024	-0.4024	-0.4024
17	658	-0.84	-5.03	74.69	-0.2026	-0.2026	-0.2026	-0.2026	-0.2026	-0.2026
17	659	-2.74	-3.00	76.35	-1.9522	-0.9522	-0.9522	-0.9522	-0.9522	-0.9522
17	660	-2.74	-3.00	76.35	-1.9599	-0.9599	-0.9599	-0.9599	-0.9599	-0.9599
17	661	-0.63	-7.07	83.75	-0.0404	-0.0404	-0.0404	-0.0404	-0.0404	-0.0404
17	662	-0.62	-3.00	83.74	-0.6700	-0.6700	-0.6700	-0.6700	-0.6700	-0.6700
17	663	1.47	-3.00	68.35	0.8624	0.6140	0.4175	0.2175	0.0175	-0.175
17	664	1.47	-3.00	68.35	0.8612	0.6140	0.4175	0.2175	0.0175	-0.175
17	665	3.57	-2.07	71.63	2.1252	0.7167	0.3167	0.1167	0.0167	-0.167
17	666	3.57	-3.00	71.63	2.1252	0.7167	0.3167	0.1167	0.0167	-0.167
17	667	7.79	-7.00	71.93	3.1950	2.065	0.865	0.265	-0.265	-0.265
17	668	7.79	-3.00	71.83	3.1031	2.0646	0.8646	0.2646	-0.2646	-0.2646
17	669	12.02	-3.00	73.82	3.1589	2.0738	1.0172	0.0172	-0.0172	-0.0172
17	670	12.02	-3.00	70.79	3.1589	2.0738	1.0172	0.0172	-0.0172	-0.0172
17	671	17.44	-3.00	70.85	2.9738	1.0172	0.0172	-0.0172	-0.0172	-0.0172
17	672	17.44	-3.00	70.85	2.9738	1.0172	0.0172	-0.0172	-0.0172	-0.0172
17	673	2.53	-3.00	57.69	2.6238	0.6238	0.6238	0.6238	0.6238	0.6238
17	674	20.53	-3.00	67.67	2.4626	0.6238	0.6238	0.6238	0.6238	0.6238
17	675	17.19	-3.00	73.58	2.5944	1.0172	0.0172	-0.0172	-0.0172	-0.0172
17	676	24.85	-3.00	66.89	2.714	0.6238	0.6238	0.6238	0.6238	0.6238
17	677	24.85	-3.00	55.89	2.0738	1.0172	0.0172	-0.0172	-0.0172	-0.0172
17	678	2.53	-3.00	67.76	2.4626	0.6238	0.6238	0.6238	0.6238	0.6238
17	679	20.53	-3.00	57.71	2.4527	0.6238	0.6238	0.6238	0.6238	0.6238
17	680	7.80	-3.00	71.92	3.2247	0.6238	0.6238	0.6238	0.6238	0.6238
17	681	7.80	-3.00	71.96	3.2317	0.6238	0.6238	0.6238	0.6238	0.6238

MARCH NUMBER = • 19

RUN	TPN	ALPHA	YAW	G.P.	CN	CY	CA	CM	CZ	CX	CPN	
											CY	CA
19	697	-0.63	-5.5	83.96	-0.0223	-0.0446	0.0372	0.0412	-0.0066	-0.0002	-0.0006	-0.0002
19	698	-0.63	-6.06	83.99	-0.0218	-0.0446	0.0372	0.0412	-0.0066	-0.0006	-0.0006	-0.0006
19	709	-6.84	-5.00	74.91	-0.1384	-0.0455	0.0360	0.0419	-0.0054	-0.0007	-0.0007	-0.0007
18	700	-4.84	-5.00	74.31	-0.1593	-0.0455	0.0358	0.0419	-0.0054	-0.0008	-0.0008	-0.0008
13	71	-2.74	-5.0	76.54	-0.823	-0.457	0.761	0.001	0.0004	0.0059	0.0059	0.0059
18	702	-2.74	-5.00	75.59	-0.213	-0.466	0.361	0.556	-0.50	-0.555	-0.555	-0.555
18	703	-0.64	-5.00	87.32	-0.0239	-0.0415	0.0372	0.0412	-0.0066	-0.0002	-0.0002	-0.0002
18	704	-0.63	-5.00	87.87	-0.0228	-0.0446	0.0375	0.0412	-0.0066	-0.0003	-0.0003	-0.0003
18	705	1.47	-5	67.28	0.735	-0.449	0.356	0.5	-0.5	-0.1	-0.1	-0.0002
18	705	1.47	-5.00	67.28	-0.0385	-0.0419	0.0366	0.0412	-0.0066	-0.0002	-0.0002	-0.0002
13	707	5.57	-5.00	71.09	-0.0295	-0.0455	0.0357	0.0419	-0.0066	-0.0002	-0.0002	-0.0002
13	712	3.57	-5.00	71.10	-0.0295	-0.0455	0.0355	0.0419	-0.0066	-0.0002	-0.0002	-0.0002
18	719	7.79	-6.00	71.54	-0.2098	-0.0477	0.0348	0.0412	-0.0066	-0.0002	-0.0002	-0.0002
18	710	7.79	-6.00	71.54	-0.239	-0.0477	0.0348	0.0412	-0.0066	-0.0002	-0.0002	-0.0002
18	711	12.02	-6.00	70.27	-0.7190	-0.0540	0.0307	0.0412	-0.0056	-0.0002	-0.0002	-0.0002
18	712	12.02	-6.0	70.43	-0.179	-0.0551	0.0307	0.0412	-0.0056	-0.0002	-0.0002	-0.0002
18	713	4.529	-6.00	68.45	0.7329	-0.0549	0.0271	0.0417	-0.0065	-0.0002	-0.0002	-0.0002
18	714	16.27	-6.00	68.37	0.7289	-0.0556	0.0272	0.0417	-0.0065	-0.0002	-0.0002	-0.0002
18	715	2.51	-6.0	57.47	0.5752	-0.0666	0.0162	0.0102	-0.0072	-0.0001	-0.0001	-0.0001
18	716	20.51	-6.042	67.48	-0.8651	-0.0656	0.0166	0.131	-0.131	-0.0001	-0.0001	-0.0001
18	717	24.84	-6.00	65.75	0.800	-0.0777	0.0121	0.0090	-0.0058	-0.0003	-0.0003	-0.0003
18	718	24.84	-6.00	65.78	0.8330	-0.0757	0.0121	0.0092	-0.0058	-0.0003	-0.0003	-0.0003
18	719	2.57	-6.0	67.76	0.5615	-0.575	0.164	-0.1	-0.0069	-0.0001	-0.0001	-0.0001
18	720	20.57	-6.00	67.40	0.5635	-0.5778	0.1597	-0.13	-0.0073	-0.0001	-0.0001	-0.0001
18	721	7.79	-6.00	71.45	0.2079	-0.0477	0.0351	0.0122	-0.0072	-0.0002	-0.0002	-0.0002
19	722	-	7.79	-6.00	71.42	0.2680	-0.0495	0.0351	-0.0122	-0.0002	-0.0002	-0.0002

WIND AXIS

MACH NUMBER = .19

RUN	T.PN	ALPHA	YAW	C.P.	F/L/FD	CL	CC	CD
1 8	697	-63	-6.00	83.86	-0.5339	-0.0224	-0.0426	-0.0419
1 9	698	-63	-6.00	83.99	-0.5109	-0.0214	-0.0404	-0.0419
1 A	699	-4.84	-6.00	74.91	-2.5741	-0.1348	-0.0432	-0.0571
1 B	700	-4.94	-6.00	74.01	-2.5825	-0.1348	-0.0447	-0.0572
1 C	701	-2.74	-6.00	75.64	-1.8176	-0.1115	-0.0412	-0.0445
1 D	702	-2.74	-6.00	76.50	-1.7841	-0.0905	-0.0422	-0.0446
1 E	703	-64	-6.00	83.32	-0.5507	-0.0235	-0.0404	-0.0419
1 F	704	-63	-6.00	83.87	-0.5122	-0.0224	-0.0404	-0.0422
1 G	705	1.47	-6.00	57.28	0.7770	0.325	-0.47	-0.419
1 H	716	1.47	-6.00	67.28	0.7770	0.325	-0.407	-0.419
1 I	707	3.57	-6.00	71.09	1.8992	0.971	-0.470	-0.459
1 J	708	2.57	-6.00	71.10	1.9114	0.972	-0.42	-0.456
1 K	709	7.73	-6.00	71.54	2.0185	0.972	-0.409	-0.673
1 L	710	7.73	-6.00	71.54	3.1155	0.671	-0.479	-0.676
1 M	711	12.02	-6.00	76.37	3.0064	0.3046	-0.436	-0.103
1 N	712	12.02	-6.00	70.40	3.0071	0.3046	-0.446	-0.104
1 O	713	-16.29	-6.00	63.45	2.7460	0.457	-0.294	-0.505
1 P	714	16.27	-6.00	63.37	2.7460	0.457	-0.294	-0.474
1 Q	715	20.51	-6.00	57.47	2.3710	0.425	-0.450	-0.200
1 R	716	20.51	-6.00	67.41	0.7795	0.4055	-0.451	-0.097
1 S	717	24.84	-6.00	66.75	2.77	0.6129	-0.442	-0.3
1 T	718	24.84	-6.00	66.78	2.0209	0.5147	-0.441	-0.342
1 U	719	2.57	-6.00	67.76	2.3557	0.5103	-0.450	-0.229
1 V	720	20.57	-6.00	67.40	2.7574	0.5110	-0.446	-0.214
1 W	721	7.79	-6.00	71.45	2.9753	1.212	-0.48	-0.675
1 X	722	7.79	-6.00	71.42	2.0715	0.2113	-0.416	-0.677

BODY AXES

NACH_NUHNF? = .19

RUN	TPN	ALPHA	YAW	G.P.	CN	CY	CA	C:	C7	CX	C9
1 2	740	-65	• 65	63 • 95	-0 0413	-0 073	0 0329	0 0075	0 0001	0 0004	0 5469
1 9	750	-65	7 • 66	87 • 64	-0 0413	-0 083	0 0723	0 0176	0 0001	0 0004	0 6669
1 9	751	-6 • 85	0 • 00	76 • 09	-0 1578	-0 0077	0 0325	0 0175	0 0001	0 0004	0 6669
1 9	752	-4 • 95	0 • 00	76 • 09	-0 1557	-0 0078	0 0326	0 0154	0 0001	0 0002	0 6669
1 9	753	-2 • 75	• 75	79 • 01	-0 0058	-0 0075	0 0326	0 0119	0 0001	0 0002	0 6669
1 9	754	-2 • 75	4 • 6	79 • 01	-0 0058	-0 0075	0 0326	0 0119	0 0001	0 0002	0 6669
1 9	755	-0 • 75	0 • 00	86 • 25	-0 0402	-0 0054	0 0326	0 0075	-0 0001	0 0002	0 6669
1 9	756	-0 • 75	0 • 00	84 • 34	-0 0392	-0 0063	0 0326	0 0074	-0 0001	0 0002	0 6669
1 9	757	4 • 64	• 64	37 • 53	• 125	• 65	• 748	• 9075	• 0002	• 0002	• 6669
1 9	758	4 • 64	0 • 00	37 • 54	• 127	• 66	• 6312	• 75	• 0002	• 0002	• 6669
1 9	759	2 • 54	0 • 00	55 • 76	• 015	• 6079	• 0302	• 9071	• 0001	• 0002	• 6669
1 0	760	3 • 54	0 • 00	65 • 78	• 0655	• 0098	• 0302	• 0001	• 0001	• 0002	• 6669
1 9	761	7 • 75	• 75	59 • 45	• 1915	• 101	• 264	• 7	• 0002	• 0002	• 6669
1 9	762	7 • 75	0 • 00	69 • 45	• 1815	• 0022	• 0251	• 0075	• 0001	• 0002	• 6669
1 9	763	11 • 03	6 • 10	60 • 63	• 2054	• 0021	• 0194	• 0170	• 0001	• 0002	• 6669
1 9	764	11 • 09	0 • 00	69 • 86	• 2014	• 0024	• 0193	• 0121	• 0001	• 0002	• 6669
1 9	765	14 • 25	6 • 00	60 • 57	• 4979	• 0022	• 17	• 158	• 0001	• 0002	• 6669
1 9	756	16 • 25	• 75	59 • 50	• 4979	• 0023	• 0035	• 0150	• 0010	• 0001	• 6669
1 9	767	20 • 56	0 • 00	59 • 49	• 5671	• 0022	• 0224	• 1655	• 0014	• 0001	• 6669
1 9	768	20 • 55	0 • 00	58 • 51	• 5681	• 0009	• 0024	• 0157	• 0013	• 0001	• 6669
1 9	769	24 • 89	0 • 00	67 • 62	• 7004	• 0115	• 0065	• 0151	• 0016	• 0001	• 6669
1 9	770	24 • 83	• 75	67 • 59	• 774	• 17	• 09	• 0129	• 0030	• 0001	• 6669
1 9	771	20 • 55	0 • 00	68 • 48	• 5637	• 15	• 27	• 0154	• 17	• 15	• 6669
1 9	772	20 • 55	0 • 00	58 • 50	• 5647	• 0117	• 0027	• 0155	• 0012	• 0001	• 6669
1 9	773	7 • 75	0 • 00	69 • 35	• 1307	• 0032	• 0254	• 3256	• 0001	• 0002	• 6669
1 9	774	7 • 75	• 75	69 • 39	• 195	• 81	• 261	• 59	• 0002	• 0002	• 6669

WIND AXIS

MACH NUMBER = .10

RUN	TPN	ALPHA	YAW	C.P.	FLF	CL	CC	CD
19	74.9	-6.65	0.00	83.95	-1.2278	-0.0409	-0.0073	-0.313
19	75.0	-6.66	0.00	83.94	-1.2481	-0.0409	-0.0073	-0.313
19	75.1	-4.66	0.00	76.00	-3.3743	-0.1545	-0.0077	-0.628
19	75.2	-4.65	0.00	76.00	-5.7235	-0.1524	-0.0078	-0.628
19	75.3	-2.75	0.00	78.01	-2.5195	-0.0941	-0.0075	-0.373
19	75.4	-2.75	0.00	73.01	-2.5199	-0.0941	-0.0075	-0.373
19	75.5	-6.65	0.00	84.06	-1.2551	-0.0645	-0.0064	-0.310
19	75.6	-6.65	0.00	84.04	-1.1777	-0.0795	-0.0064	-0.310
19	75.7	1.44	0.00	37.53	3.533	0.0118	-0.0065	-0.321
19	75.8	1.44	0.00	37.54	3.5394	0.0118	-0.0065	-0.321
19	75.9	3.54	0.00	65.78	1.9951	0.545	-0.76	-2.22
19	76.0	3.54	0.00	65.78	1.9949	0.545	-0.76	-2.22
19	76.1	7.75	0.00	69.45	5.5025	0.1772	-0.0003	0.607
19	76.2	7.75	0.00	69.45	5.5025	0.1772	-0.0003	0.607
19	76.3	11.03	0.00	69.63	3.5502	0.295	-0.0003	0.603
19	76.4	11.03	0.00	69.66	3.5572	0.2856	-0.0005	0.603
19	76.5	16.25	0.00	69.27	3.0956	0.4076	-0.0022	1.275
19	76.6	16.25	0.00	59.30	3.1970	0.4065	-0.0023	1.276
19	76.7	20.55	0.00	68.49	2.6076	0.5714	-0.0002	1.971
19	76.8	2.56	0.00	68.51	2.6075	0.5715	-0.0003	1.975
19	76.9	24.83	0.00	67.42	2.2347	0.6475	-0.0003	2.273
19	77.0	24.83	0.00	67.59	2.2375	0.6459	-0.0003	2.273
19	77.1	20.55	0.00	68.43	2.7057	0.5298	-0.0006	1.954
19	77.2	2.55	0.00	69.52	2.765	0.5327	-0.0007	1.957
19	77.3	7.75	0.00	69.35	3.4939	0.1755	-0.0012	3.512
19	77.4	7.75	0.00	69.39	3.4928	0.1754	-0.0001	0.612

BODY AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPB
22	877	-65	-6.00	85.42	-0.359	-0.026	-0.071	-0.013	-0.008	-0.033	
22	878	-65	-6.00	85.05	-0.369	-0.027	-0.072	-0.013	-0.007	-0.035	
22	879	-4.86	-6.00	76.08	-0.1543	-0.0439	-0.319	-0.0152	-0.012	-0.585	
22	880	-4.85	-6.00	76.15	-0.1532	-0.0449	-0.319	-0.0161	-0.011	-0.559	
22	881	-2.75	-6.00	73.03	-0.0955	-0.0429	-0.318	-0.0119	-0.015	-0.003	-0.304
22	882	-2.75	-6.00	78.00	-0.0946	-0.0429	-0.318	-0.0118	-0.015	-0.002	-0.297
22	883	-6.5	-6.00	86.14	-0.0345	-0.0407	-0.317	-0.0071	-0.010	-0.006	-0.033
22	884	-6.5	-6.00	85.42	-0.358	-0.0417	-0.314	-0.011	-0.017	-0.49	
22	885	1.44	-6.00	42.69	-0.0150	-0.0421	-0.308	-0.0034	-0.012	-0.015	-0.0160
22	886	1.44	-6.00	45.06	-0.1159	-0.0422	-0.305	-0.0033	-0.012	-0.015	-0.0144
22	887	3.55	-5.00	66.05	-0.0707	-0.0410	-0.285	-0.0003	-0.016	-0.0024	-0.0156
22	888	3.55	-6.00	66.05	-0.0707	-0.0410	-0.285	-0.0003	-0.016	-0.0024	-0.0156
22	889	7.76	-6.00	69.14	-0.1825	-0.0465	-0.237	-0.0055	-0.033	-0.0043	-0.0053
22	890	7.76	-6.00	69.19	-0.1825	-0.0466	-0.234	-0.0056	-0.033	-0.0041	-0.0050
22	891	11.99	-6.00	69.37	-0.2976	-0.0509	-0.150	-0.0113	-0.051	-0.0060	-0.009
22	892	11.99	-6.00	69.37	-0.2976	-0.0509	-0.150	-0.0113	-0.051	-0.0060	-0.009
22	893	16.26	-6.00	68.94	-0.4247	-0.1520	-0.53	-0.0143	-0.041	-0.0067	-0.0332
22	894	16.25	-6.00	58.95	-0.4236	-0.0531	-0.53	-0.0143	-0.042	-0.0067	-0.0345
22	895	20.54	-6.00	68.25	-0.5585	-0.0584	-0.047	-0.0150	-0.025	-0.0055	-0.0192
22	896	20.55	-6.00	68.25	-0.5595	-0.0563	-0.047	-0.0150	-0.024	-0.0063	-0.0225
22	897	24.89	-6.00	67.21	-0.7056	-0.0524	-0.092	-0.0116	-0.23	-1.2	-0.694
22	898	24.88	-6.00	67.21	-0.7056	-0.0524	-0.092	-0.0116	-0.20	-0.100	-0.678
22	899	20.55	-6.00	68.33	-0.5637	-0.0595	-0.050	-0.0155	-0.026	-0.0082	-0.0221
22	900	20.55	-6.00	68.35	-0.5647	-0.0585	-0.051	-0.0157	-0.025	-0.0082	-0.0228
22	901	7.76	-6.00	69.14	-0.1826	-0.0465	-0.240	-0.0065	-0.32	-0.042	-0.004
22	902	7.76	-6.00	69.21	-0.1837	-0.0486	-0.237	-0.0067	-0.34	-0.043	-0.010

MATCH NUMBER = 19
WIND AXES

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
22	877	-0.95	-6.00	85.42	-0.9760	-0.0355	-0.0398	-0.0364
22	878	-0.65	-6.00	85.05	-0.9619	-0.039	-0.039	-0.0357
22	879	-0.85	-5.00	75.08	-0.0718	-1.51	-0.0290	-0.0402
22	880	-0.86	-6.00	76.10	-0.4498	-1.51	-0.0290	-0.0408
22	881	-2.75	-6.00	78.03	-0.3107	-0.0339	-0.0338	-0.0338
22	882	-2.75	-5.00	78.00	-0.2905	-0.0296	-0.0273	-0.0259
22	883	-0.65	-5.00	85.04	-0.9614	-0.0343	-0.0372	-0.0341
22	884	-0.65	-6.00	85.02	-0.9619	-0.0355	-0.0382	-0.0370
22	885	1.64	-6.00	62.69	-0.4004	0.0142	-0.0386	-0.0356
22	886	1.64	-5.00	65.00	-0.4215	0.0152	-0.0397	-0.0352
22	887	0.55	-6.00	69.57	0.5259	0.2020	0.0220	0.0220
22	888	0.55	-6.00	69.57	0.5259	0.2020	0.0220	0.0220
22	889	20.54	-6.00	63.96	0.6888	0.1777	-0.0399	-0.1296
22	890	7.76	-6.00	69.19	0.5155	0.152	-0.0224	-0.0238
22	891	11.09	-6.00	69.57	0.5259	0.2020	-0.0220	0.0225
22	892	21.99	-6.00	69.57	0.5259	0.2020	-0.0220	0.0225
22	893	1.64	-6.00	69.57	0.5259	0.2020	-0.0220	0.0225
22	894	1.64	-5.00	65.00	0.4215	0.0152	-0.0397	-0.0352
22	895	20.54	-6.00	63.96	0.6888	0.1777	-0.0399	-0.1296
22	896	20.54	-6.00	63.96	0.6888	0.1777	-0.0399	-0.1296
22	897	24.089	-6.00	67.20	0.2121	0.472	-0.0224	-0.0238
22	898	24.089	-6.00	67.21	0.2121	0.472	-0.0224	-0.0238
22	899	20.54	-6.00	68.33	0.2879	0.373	-0.0391	-0.1294
22	900	20.54	-6.00	68.33	0.2879	0.373	-0.0391	-0.1294
22	901	7.76	-6.00	69.47	0.5255	0.2020	-0.0220	0.0225
22	902	9.02	-6.00	69.47	0.5255	0.2020	-0.0220	0.0225

90DY AXIS

MACH NUMBER= .19

RUN	TAN	ALPHA	YAW	C-P	CN	CY	CA	CM	CZ	CX	CP6
23	918	- .65	6.00	82.27	- .0416	.0445	.0313	.0070	- .0023	.0018	- .0059
23	919	- .65	6.00	82.28	- .0417	.0456	.0316	.0070	- .0023	.0018	- .0068
23	920	- .65	6.00	75.51	- .1559	.1513	.0318	.0135	- .0035	.0001	.0439
23	921	- .65	5.00	75.51	- .1559	.0513	.0318	.0155	- .0135	.0011	.0436
23	922	- .275	6.00	77.15	- .0923	.0464	.0317	.0107	- .0026	.0010	.0169
23	923	- .275	6.00	77.22	- .0915	.0474	.0317	.0107	- .0027	.0010	.0182
23	924	- .65	6.00	82.12	- .0379	.0445	.0313	.0154	- .0122	.0117	- .0047
23	925	- .65	6.00	82.40	- .0379	.0475	.0313	.0154	- .0022	.0017	- .0152
23	926	1.45	6.00	53.47	* .0499	.0454	.0304	.0023	- .0027	.0025	- .0271
23	927	1.45	6.00	53.48	* .0139	.0464	.0304	.0023	- .0027	.0025	- .0241
23	928	3.55	6.00	66.9	* .0702	.0481	.0292	- .11	- .32	.74	- .77
23	929	3.55	6.00	67.20	* .0712	.0471	.0288	- .0112	- .0031	.0034	- .0339
23	930	7.75	6.00	69.76	* .1786	.0515	.0236	- .674	- .0045	.0052	- .0054
23	931	7.75	5.00	69.76	* .1785	.0514	.0239	- .0074	- .0045	.0072	- .0037
23	932	11.99	6.00	69.74	* .2013	.0562	.0157	- .0175	- .0054	.0053	- .12
23	933	12.00	6.00	69.75	* .2024	.0561	.016	- .0126	- .0055	.0069	- .0119
23	934	15.27	6.00	69.22	* .4737	.0644	.0160	- .158	- .1542	.176	- .0457
23	935	16.23	6.00	69.19	* .4505	.0642	.0060	- .0156	- .0044	.0077	- .0474
23	936	20.57	6.00	69.51	* .5713	.0754	- .0052	- .0158	- .0018	.0075	- .0535
23	937	20.56	6.00	68.51	* .563	.0753	- .152	- .167	- .13	.75	- .538
23	938	24.90	6.00	67.43	* .7167	.0325	- .0094	- .133	.03	.102	- .773
23	939	24.93	6.00	67.45	* .7177	.0336	- .0037	- .0135	.0003	.0101	- .0723
23	940	20.55	6.00	68.47	* .5636	.0744	- .0055	- .0154	- .0017	.0074	- .0490
23	941	20.55	6.00	68.50	* .5647	.0743	- .55	- .165	- .13	.74	- .522
23	942	7.76	6.00	69.65	* .1920	.0537	.0235	- .0074	- .0045	.0052	* .0065
23	943	7.75	6.00	69.65	* .1920	.0537	.0236	- .0074	- .0045	.0052	* .0058

WIND AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
23	91.8	-0.66	6.00	82.27	-1.1377	-0.0413	.0409	.0353
23	91.9	-0.66	6.00	82.28	-1.1274	-0.0414	.0420	.0367
23	92.0	-0.65	6.00	75.51	-3.0552	-0.1527	.0463	.0500
23	92.1	-0.65	6.00	75.51	-3.0552	-0.1527	.0463	.0500
23	92.2	-2.75	6.00	77.16	-2.2351	-0.0911	.0423	.0408
23	92.3	-2.75	6.00	77.22	-2.2116	-0.0999	.0433	.0408
23	92.4	-0.65	6.00	82.42	-1.0535	-0.0385	.0410	.0362
23	92.5	-0.65	6.00	82.40	-1.0344	-0.0374	.0410	.0362
23	92.6	1.45	6.00	53.47	* 5.591	* 1.81	* 4.29	* 3.56
23	92.7	1.45	6.00	53.48	* 5.094	* 0.81	* 0.29	* 0.56
23	92.8	3.55	6.00	66.99	1.7825	* 0.532	* 0.444	* 0.393
23	92.9	3.55	6.00	67.20	1.8259	* 0.593	* 0.434	* 0.379
23	93.0	7.75	6.00	69.70	3.3019	* 17.38	* 0.462	* 1.526
23	93.1	7.75	6.00	69.71	3.2839	* 17.38	* 0.462	* 0.529
23	93.2	11.99	6.00	69.74	3.4800	* 20.15	* 0.507	* 0.838
23	93.3	12.00	6.00	69.75	3.4669	* 29.25	* 0.515	* 0.844
23	93.4	16.27	6.00	69.22	3.1120	* 4.47	* 0.508	* 1.333
23	93.5	13.26	6.00	69.19	3.4168	* 4.17	* 0.507	* 1.323
23	93.6	20.57	6.00	68.51	2.6471	* 5.57	* 0.555	* 2.027
23	93.7	20.56	6.00	68.50	2.6492	* 5.36	* 0.546	* 2.014
23	93.8	24.91	6.00	67.43	2.1791	* 6.54	* 0.524	* 3.003
23	93.9	24.90	6.00	67.45	2.1801	* 6.55	* 0.525	* 3.015
23	94.0	20.55	6.00	68.47	2.4532	* 5.297	* 0.536	* 1.995
23	94.1	20.55	6.00	68.50	2.6552	* 5.06	* 0.537	* 1.996
23	94.2	7.76	6.00	69.65	3.2216	* 17.71	* 14.94	* 5.33
23	94.3	7.75	6.00	69.65	3.3221	* 17.71	* 0.484	* 5.33

BODY AXIS

MACH NUMBER= .19

RUN	T _{9N}	ALPHA	YAW	C.P.	CN	CV	CA	CM	CZ	CX	CPB
24	959	-62	6	75.14	-0.120	0.470	0.300	0.012	-0.034	-0.011	-0.076
24	959	-62	6.00	74.63	-0.111	0.470	0.309	0.010	-0.034	-0.011	-0.057
24	959	-62	6.00	72.56	-0.123	0.535	0.298	0.085	-0.050	-0.032	-0.021
24	962	-4.81	6.00	72.64	-0.1200	0.536	0.297	0.095	-0.050	-0.033	-0.022
24	963	-2.72	6.00	73.42	-0.161	0.498	0.208	0.050	-0.040	-0.022	-0.093
24	954	-2.72	6.00	73.42	-0.161	0.472	0.208	0.050	-0.040	-0.022	-0.093
24	955	-52	6.00	74.32	-0.133	0.470	0.315	0.012	-0.034	-0.011	-0.061
24	955	-52	6.00	73.77	-0.123	0.470	0.312	0.010	-0.034	-0.011	-0.059
24	957	1.47	6.00	73.22	-0.144	0.477	0.318	0.021	-0.035	-0.011	-0.071
24	958	1.47	6.00	73.22	-0.144	0.477	0.318	0.021	-0.035	-0.011	-0.071
24	959	7.59	6.00	72.82	0.174	0.498	0.300	-0.0071	-0.039	-0.011	-0.067
24	970	3.53	6.00	72.83	0.0974	0.498	0.300	-0.0071	-0.039	-0.011	-0.067
24	971	7.80	6.00	72.51	0.182	0.539	0.263	-0.151	-0.049	-0.014	-0.067
24	971	7.81	6.00	72.51	0.182	0.539	0.263	-0.151	-0.049	-0.014	-0.067
24	972	12.54	5.00	71.61	0.246	0.559	0.236	-0.262	-0.025	-0.014	-0.071
24	973	12.05	5.00	71.93	0.237	0.558	0.208	-0.208	-0.051	-0.026	-0.060
24	974	15.30	6.00	70.33	0.4535	0.1569	0.147	-0.021	-0.026	-0.046	-0.521
24	975	15.3	6.00	71.33	0.4635	0.144	0.21	-0.026	-0.026	-0.046	-0.517
24	976	20.59	6.00	66.05	0.561	0.653	0.175	-0.25	-0.360	-0.069	-0.581
24	977	20.59	6.00	59.05	0.5901	0.659	0.073	-0.205	-0.000	-0.055	-0.572
24	978	24.89	6.00	57.48	0.7155	0.704	0.043	-0.136	-0.022	-0.118	-0.936
24	979	24.89	6.00	67.5	0.7176	0.714	0.143	-0.150	-0.22	-0.119	-0.617
24	980	20.59	6.00	69.01	0.5875	0.649	0.073	-0.121	-0.022	-0.119	-0.617
24	981	20.53	6.00	69.01	0.5859	0.649	0.073	-0.121	-0.022	-0.119	-0.617
24	982	7.80	6.00	72.44	0.2163	0.519	0.263	-0.048	-0.013	-0.056	-0.598
24	983	7.80	6.00	72.44	0.2174	0.519	0.263	-0.048	-0.013	-0.056	-0.598

MINI-AXIS

MACH NUMBER = .19

RUN	TPN	ALPHA	YAH	C.P.	FL/FD	CL	CC	CD
24	959	-62	6.00	75.14	-0.3254	-0.0117	0.0435	0.358
24	960	-62	6.00	74.63	-0.2997	-0.0107	0.0435	0.358
24	961	-4.82	6.00	72.56	-0.6348	-0.1194	0.0490	0.453
24	962	-4.81	6.00	72.64	-0.5964	-0.1171	0.0491	0.451
24	963	-2.72	6.00	73.12	-0.5597	-0.0545	0.0369	0.369
24	964	-2.72	6.00	73.12	-1.6597	-0.0645	0.0450	0.369
24	965	-62	6.00	74.32	-0.3557	-0.1229	0.0454	0.354
24	966	-62	6.00	73.77	-0.3314	-0.1220	0.0424	0.354
24	967	1.47	6.00	73.22	1.0907	0.0365	0.0441	0.354
24	968	1.47	6.00	73.21	1.0678	0.0393	0.0452	0.370
24	969	3.58	6.00	72.82	2.3512	0.054	0.047	0.361
24	970	5.53	6.00	72.82	2.3511	0.0954	0.0443	0.409
24	971	7.81	6.00	72.51	3.487	0.2125	0.0478	0.310
24	972	12.84	6.00	71.61	3.4050	0.3298	0.0461	0.957
24	973	12.15	6.00	71.62	3.447	0.3318	0.0450	0.974
24	974	15.26	6.00	76.56	2.9510	0.448	0.0416	1.444
24	975	15.30	6.00	70.33	2.5569	0.6106	0.0416	2.011
24	976	20.59	6.00	59.05	2.4985	0.6473	0.0432	2.011
24	977	2.59	6.00	72.51	3.8637	0.2125	0.0478	0.610
24	978	24.89	6.00	69.05	2.4695	0.5499	0.0452	2.211
24	979	24.89	6.00	67.48	2.0223	0.581	0.0473	2.168
24	980	20.53	6.00	69.01	2.4990	0.5438	0.0424	2.176
24	981	20.56	6.00	69.1	2.4979	0.5459	0.0424	2.185
24	982	7.90	6.00	72.44	3.4806	0.2107	0.0458	0.606
24	983	7.90	6.00	72.64	3.4000	0.2118	0.0458	0.607

BODY AXIS

MATH NUMBER= 19

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CP9
25	999	-61	3.00	81.74	-0.0990	0.0207	0.314	0.0015	-0.0014	-0.0016	-0.0144
25	0	-61	3.00	80.70	-0.0101	0.0207	0.314	0.0015	-0.0014	-0.0117	-0.126
25	1	-4.81	3.00	73.2	-12.14	0.0245	0.295	0.0091	-0.0028	-0.0032	-0.0519
25	2	-4.81	3.00	73.03	-12.14	0.0245	0.295	0.0091	-0.0028	-0.0032	-0.0513
25	3	-2.72	3.00	73.77	-0.75	0.0233	0.306	0.0055	-0.0020	-0.0025	-0.0322
25	4	-2.72	3.00	73.77	-0.75	0.0233	0.306	0.0055	-0.0020	-0.0025	-0.0330
25	5	-62	3.00	77.4	-12.16	0.197	0.211	0.14	-0.17	-0.013	-0.147
25	6	-62	3.00	77.44	-0.16	0.197	0.211	0.14	-0.17	-0.013	-0.147
25	7	4.69	3.00	71.25	0.407	0.0203	0.310	-0.0017	-0.0017	-0.0013	-0.0006
25	8	4.69	3.00	71.25	0.407	0.0203	0.310	-0.0017	-0.0017	-0.0013	-0.0006
25	9	3.58	3.00	72.29	0.584	0.244	0.39	0.56	-0.23	-0.13	-0.179
25	10	3.58	3.00	72.29	0.584	0.244	0.39	0.56	-0.23	-0.13	-0.179
25	11	7.81	3.00	72.36	0.246	0.0244	0.306	-0.0036	-0.0123	-0.0021	-0.0142
25	12	7.80	3.00	72.36	0.247	0.0247	0.306	-0.0036	-0.0123	-0.0021	-0.0142
25	13	12.05	3.00	71.72	3.434	0.271	0.227	-0.211	-0.215	-0.215	-0.2138
25	14	12.05	3.00	71.72	3.434	0.271	0.227	-0.211	-0.215	-0.215	-0.2138
25	15	15.52	3.00	71.46	4.71	0.313	0.146	-0.120	-0.153	-0.003	-0.048
25	16	15.32	3.00	70.65	6.704	0.244	0.0244	-0.024	-0.099	-0.021	-0.0386
25	17	20.59	3.00	69.06	5.025	0.0210	0.143	-0.004	-0.004	-0.003	-0.0429
25	18	2.59	3.00	69.06	5.025	0.0210	0.143	-0.004	-0.004	-0.003	-0.0429
25	19	24.60	3.00	67.45	7.177	0.227	0.227	-0.211	-0.215	-0.215	-0.2138
25	20	24.60	3.00	67.45	7.177	0.227	0.227	-0.211	-0.215	-0.215	-0.2138
25	21	20.59	3.00	69.11	5.632	0.0402	0.068	-0.0210	-0.013	-0.002	-0.048
25	22	20.59	3.00	69.13	5.632	0.0402	0.068	-0.0210	-0.013	-0.002	-0.048
25	23	7.80	3.00	72.28	2.177	0.246	0.274	-0.211	-0.215	-0.215	-0.2138
25	24	7.80	3.00	72.32	2.187	0.246	0.274	-0.211	-0.215	-0.215	-0.2138

WIND AXIS
MACH NUMBER = .19

Reproduced from
best available copy.

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
25	999	-61	3.0	81.74	-2663	.0097	.0190	.0325
25	0	-61	3.00	83.70	-3102	.0098	.0190	.0326
25	1	-4.81	3.00	73.02	-2.9905	-1.165	.0225	.0409
25	2	-4.81	3.00	73.03	-2.9905	-1.165	.0224	.0409
25	3	-2.72	3.0	73.77	-1.869	-0.561	.215	.353
25	4	-2.72	3.00	73.77	-1.8690	-0.561	.215	.353
25	5	-6.62	3.00	77.60	-7.492	-0.0143	.0181	.0322
25	6	-6.62	3.00	77.41	-34.92	-0.0113	.0180	.0322
25	7	1.43	3.00	71.25	1.2046	.599	.191	.331
25	8	1.43	3.00	71.26	1.2045	.599	.191	.331
25	9	3.53	3.00	72.29	2.5217	.662	.224	.0322
25	10	3.53	3.00	72.29	2.5411	.0963	.0224	.0379
25	11	7.81	3.00	72.36	3.680	.2150	.0216	.0583
25	12	7.80	3.00	72.36	3.6795	.2139	.0216	.0581
25	13	12.15	3.00	71.72	3.4810	.3311	.0222	.0551
25	14	12.05	3.00	71.72	3.4811	.3311	.0221	.0551
25	15	16.32	3.00	70.46	3.0517	.4472	.0233	.1475
25	16	16.32	3.0	70.45	3.0779	.4475	.0233	.1473
25	17	20.59	3.00	69.06	2.5496	.5522	.0290	.2156
25	18	20.59	3.00	69.08	2.5652	.5520	.0290	.2158
25	19	24.90	3.00	67.45	2.1259	.6501	.0229	.3058
25	20	24.89	3.0	67.45	2.1261	.6489	.123	.3552
25	21	20.59	3.00	69.14	2.5499	.5529	.0289	.2168
25	22	21.59	3.00	69.13	2.5503	.5539	.0279	.2171
25	23	7.80	3.00	72.28	3.6625	.2120	.0216	.0579
25	24	7.61	3.0	72.32	3.676	.2129	.0216	.0581

BODY AXIS
MACH NUMBER = .19

Reproduced from
best available copy.

RUN	TPN	ALPHA	YAW	C•P•	CN	CY	CA	CM	CZ	CX	CPA
26	45	-6.3	0.15	80.25	-0.0139	0.052	0.0303	0.0028	-0.0013	-0.022	-0.0175
26	41	-6.3	0.00	80.25	-0.0189	0.052	0.0303	0.0228	-0.0013	-0.022	-0.0174
26	42	-6.3	0.00	73.37	-0.1234	0.073	0.0269	0.0100	-0.0020	-0.029	-0.0548
26	43	-4.0	0.00	73.38	-0.1285	0.083	0.0292	0.0100	-0.0020	-0.020	-0.076
26	44	-2.0	0.00	74.64	-0.741	0.32	0.131	0.057	-0.0013	-0.025	-0.339
25	45	-2.0	0.00	74.64	-0.6743	0.32	0.1301	0.057	-0.0013	-0.026	-0.344
26	46	-0.53	0.00	79.39	-0.0291	0.071	0.0309	0.0028	-0.0011	-0.022	-0.0174
26	47	-0.63	0.00	79.76	-0.0190	0.031	0.0309	0.0027	-0.0011	-0.022	-0.0182
25	48	1.46	0.00	68.63	0.297	0.27	0.33	0.1	-0.11	-0.23	-0.72
25	49	1.45	0.00	68.64	0.0297	0.28	0.303	0.009	-0.011	-0.024	-0.655
26	50	3.57	0.55	71.73	0.6893	0.043	0.0302	0.0055	-0.0013	-0.026	-0.029
26	51	3.57	0.00	71.63	0.0894	0.047	0.0302	0.0054	-0.0013	-0.026	-0.037
26	52	7.79	0.00	72.11	0.2415	0.053	0.0278	0.138	-0.11	-0.32	-0.541
26	53	7.79	0.00	72.11	0.2115	0.053	0.0278	0.138	-0.11	-0.33	-0.532
26	54	12.84	0.00	71.48	0.3766	0.057	0.221	0.199	-0.074	-0.037	-0.129
26	56	16.30	0.00	70.67	0.625	0.060	0.147	0.226	-0.012	-0.036	-0.060
26	57	16.30	0.00	70.46	0.6144	0.061	0.147	0.226	-0.012	-0.037	-0.060
26	59	2.57	0.00	68.64	0.5736	0.121	0.176	0.125	-0.010	-0.019	-0.358
26	60	20.57	0.00	68.95	0.587	0.121	0.176	0.106	-0.010	-0.019	-0.337
26	61	24.87	0.00	67.15	0.7001	0.149	0.022	-0.110	-0.038	-0.018	-0.0705
26	62	24.87	0.00	67.15	0.7011	0.150	0.022	-0.111	-0.038	-0.018	-0.0692
26	63	20.57	0.00	68.94	0.5796	0.111	0.176	0.125	-0.11	-0.10	-0.379
26	64	20.57	0.00	68.94	0.5795	0.121	0.076	-0.195	-0.039	-0.018	-0.0740
26	65	7.79	0.33	72.03	0.2106	0.073	0.0280	-0.176	-0.014	-0.032	-0.0781
26	65	7.79	0.00	72.03	0.2105	0.073	0.0280	-0.136	-0.014	-0.032	-0.0791
26	66	-0.63	0.00	61.32	-0.189	0.61	0.312	0.15	-0.15	-0.21	-0.225

WIND AXIS

MACH NUMBER = .19

Reproduced from
best available copy.

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
25	40	-6.3	0.00	80.25	-0.091	-0.0186	0.0052	0.0305
25	41	-6.3	0.00	80.25	-0.090	-0.0186	0.0052	0.0305
25	42	-4.33	0.00	73.37	-3.1713	-1.256	0.0073	0.0396
25	43	-4.33	0.00	73.38	-3.1494	-1.256	0.0083	0.0379
25	44	-2.73	0.00	74.64	-2.1515	-0.725	0.0032	0.0335
25	45	-2.73	0.00	74.64	-2.1617	-0.725	0.0032	0.0335
26	46	-6.3	0.00	79.78	-0.6378	-1.197	0.031	0.0311
25	47	-6.3	0.00	79.78	-0.5989	-0.166	0.031	0.0311
25	48	1.45	0.00	68.63	0.9288	0.289	0.027	0.0311
26	49	1.45	0.00	68.64	0.9287	0.289	0.028	0.0311
26	50	3.57	0.00	71.73	2.4910	0.972	0.148	0.357
25	51	3.57	0.00	71.63	2.4435	0.873	0.047	0.0357
25	52	7.79	7.79	72.14	7.6635	20.58	0.653	0.0562
25	53	7.79	0.00	72.11	5.6535	20.59	0.0053	0.0512
26	54	12.64	0.00	71.48	3.5355	32.46	0.057	0.0918
26	56	16.37	0.00	7.47	3.561	4.309	0.050	0.1479
26	57	15.30	0.00	71.46	3.0555	4.383	0.061	0.1476
26	59	29.57	0.00	58.94	2.5620	5.309	0.121	0.2108
26	60	20.57	0.00	58.95	2.5619	5.410	0.121	0.2112
26	61	24.87	0.00	67.15	2.1395	6.342	0.149	0.2914
26	62	24.87	0.00	57.15	2.1394	6.352	0.150	0.2959
26	63	27.57	0.00	68.94	2.5620	5.400	0.111	0.2108
26	64	20.57	0.00	63.94	2.5620	5.400	0.121	0.2108
26	65	7.79	0.00	72.03	3.0555	20.49	0.175	0.563
26	65	7.79	0.00	72.03	3.0565	20.49	0.073	0.0553
26	66	-6.3	0.00	80.32	-0.5907	-0.0185	0.060	0.0314

BODY AXIS

MACH NUMBER= .19

Reproduced from
best available copy.

RUN	TPN	ALPHA	YAW	C.P.	CN	CY	CA	CM	CZ	CX	CPB
27	81	-62	-3.00	82.12	-0.8139	-0.0211	0.023	-0.0023	-0.0004	-0.0023	.0120
27	82	-62	-3.00	82.12	-0.8139	-0.0211	0.023	-0.0023	-0.0004	-0.0026	.0107
27	83	-4.82	-3.00	73.59	-1.262	-0.0250	0.0291	-0.0101	-0.0001	-0.0025	.0539
27	84	-4.82	-3.00	73.59	-1.262	-0.0250	0.0291	-0.0101	-0.0001	-0.0025	.0541
27	85	-2.72	-3.00	74.69	-0.8593	-0.0226	0.7361	-0.0666	-0.0004	-0.0026	.0521
27	86	-2.72	-3.00	74.69	-0.8593	-0.0226	0.7361	-0.0666	-0.0004	-0.0026	.0286
27	87	-63	-3.00	81.92	-0.0159	-0.0211	0.309	-0.028	-0.0004	-0.0028	.0115
27	88	-63	-3.00	81.91	-0.0159	-0.0211	0.309	-0.028	-0.0004	-0.0028	.0115
27	89	1.47	-3.00	69.38	0.8380	-0.0228	0.313	-0.014	-0.0001	-0.0034	.0175
27	90	1.47	-3.00	69.38	0.8380	-0.0228	0.313	-0.014	-0.0001	-0.0034	.0175
27	91	3.57	-3.00	71.57	0.934	-0.0251	0.303	-0.0056	-0.0005	-0.0042	-0.0117
27	92	3.57	-3.00	71.58	0.934	-0.0251	0.303	-0.0056	-0.0005	-0.0042	-0.0117
27	93	7.81	-3.00	71.61	2.176	-0.0250	0.295	-0.0133	-0.0017	-0.0059	.0844
27	94	7.80	-3.00	71.81	2.176	-0.0250	0.295	-0.0133	-0.0017	-0.0059	.0844
27	95	12.03	-3.00	71.31	3.344	-0.0281	0.236	-0.0132	-0.0025	-0.0070	.0821
27	96	12.04	-3.00	71.32	3.355	-0.0290	0.239	-0.0193	-0.0025	-0.0071	.0845
27	97	16.71	-3.00	71.25	4.636	-0.1317	1.16	-0.217	-0.35	-0.0068	.0588
27	98	16.31	-3.00	70.25	4.659	-0.1315	0.158	-0.218	-0.36	-0.0068	.0691
27	99	20.57	-3.00	69.56	74.5	-0.290	0.063	-0.172	-0.045	-0.042	-0.187
27	100	20.57	-3.00	68.57	57.56	-0.280	0.083	-0.172	-0.045	-0.041	-0.200
27	101	24.83	-3.00	67.23	70.77	-0.157	0.151	-0.117	-0.39	-0.037	.0616
27	102	24.83	-3.00	67.22	70.78	-0.1561	0.049	-0.117	-0.39	-0.042	-0.196
27	103	24.57	-3.00	68.54	57.68	-0.287	0.083	-0.172	-0.048	-0.042	-0.200
27	104	20.57	-3.00	68.57	57.78	-0.285	0.083	-0.173	-0.048	-0.043	-0.200
27	105	7.80	-3.00	71.61	2.127	-0.0202	0.283	-0.133	-0.13	-0.158	.0842
27	106	7.80	-3.00	71.81	2.127	-0.0212	0.286	-0.133	-0.13	-0.158	.0858

* WIND AXIS
MACH NUMBER = .19

Reproduced from
best available copy.

RUN	TFN	ALPHA	XAX	C.P.	FL/FD	CL	CC	CD
27	81	-0.62	-3.00	82.12	-0.4243	-0.0136	-0.0195	0.0321
27	82	-0.62	-3.00	82.12	-0.4242	-0.136	-0.195	0.1321
27	83	-4.82	-3.00	73.59	-3.0195	-0.1234	-0.0229	0.2439
27	84	-4.82	-3.00	73.59	-3.0126	-0.1234	-0.0229	0.0409
27	85	-2.72	-3.00	74.99	-1.9751	-0.0583	-0.0208	0.0845
27	86	-2.72	-3.00	74.93	-1.9753	-0.0583	-0.218	0.345
27	87	-6.3	-3.00	81.92	-51.45	-0.0166	-0.0194	0.0322
27	88	-6.3	-3.00	81.91	-51.46	-0.1166	-0.1194	0.3322
27	89	1.47	-3.00	59.38	1.1113	0.372	-0.0211	0.0334
27	90	1.47	-3.00	69.38	1.1118	0.0172	-0.0211	0.0334
27	91	3.57	-3.00	71.57	2.4476	0.913	-0.232	0.374
27	92	3.57	-3.00	71.58	2.4478	0.913	-0.231	0.374
27	93	7.89	-3.00	71.61	3.5457	0.2078	-0.239	0.0585
27	94	7.80	-3.00	71.81	3.5632	0.2079	-0.0239	0.0593
27	95	12.03	-3.00	71.31	3.421	0.3221	-0.232	0.942
27	96	12.04	-3.00	71.32	3.4149	0.3232	-0.0241	0.0947
27	97	16.73	-3.00	70.25	2.6974	0.4405	-0.0240	0.1470
27	98	16.71	-3.00	70.25	2.6983	0.4426	-0.0239	0.1476
27	99	20.57	-3.00	66.56	2.5379	0.5350	-0.0179	0.2118
27	100	2.57	-3.00	58.57	2.5385	0.5350	-0.0170	0.2112
27	101	24.63	-3.00	67.23	2.1053	0.6399	-0.0211	0.3039
27	102	24.63	-3.00	67.22	2.1077	0.6410	-0.0202	0.3037
27	103	20.57	-3.00	68.54	2.5380	0.3371	-0.0176	0.2116
27	104	2.57	-3.00	68.57	2.5383	0.5385	-0.175	0.2120
27	105	7.90	-3.00	71.81	3.5444	0.2169	-0.272	0.3594
27	106	7.80	-3.00	71.81	3.5237	0.2059	-0.0261	0.0587

8070 XTS

MACH NUMBER = .19

Reproduced from
Best available copy.

RUN	TDX	ALPHA	YAY	C.P.	CN	CY	CA	CH	CZ	CX	CPB
28	122	-63	-6.00	82.54	-6174	-6417	0312	0031	0007	-0.033	.0014
28	123	-63	-6.00	81.31	-0198	-0428	0310	0031	0008	-0.033	.0029
28	124	-63	-6.00	73.99	-1287	-0474	0301	016	0.13	-0.123	.526
28	125	-63	-6.00	73.99	-1287	-0474	0301	0106	0013	-0.023	.0526
28	126	-2.72	-6.00	75.42	-714	-0456	0307	0070	0011	-0.028	.0278
28	127	-2.72	-6.00	75.34	-0786	-0455	0307	0059	0011	-0.028	.0286
28	128	-63	-6.00	82.00	-0157	-0473	0312	0026	0008	-0.035	-0.0001
28	129	-63	-6.00	82.12	-147	-0479	0315	0124	0009	-0.034	-0.0014
28	130	147	-6.00	68.73	0373	-0421	0269	-0812	0298	-0.043	-0.194
28	131	147	-6.00	68.83	0384	-0431	0314	-0013	0009	-0.043	-0.194
28	132	357	-6.00	70.97	0919	-0445	0303	-0050	0016	-0.056	-0.165
28	133	357	-6.00	70.97	0919	-0445	0303	-0050	0016	-0.056	-0.165
28	134	779	-6.00	71.56	2108	-0483	0276	-0126	0034	-0.081	.6557
28	135	753	-6.00	71.57	2119	-0473	0276	-0127	0033	-0.081	.0033
28	136	12.57	-6.00	70.96	7352	-0483	0223	-0179	0047	-0.01	-0.024
28	137	12.04	-6.00	70.96	7320	-0472	0223	-0179	046	-0.1	-0.23
28	138	16.3	-6.00	7	1	4576	-0724	-0155	-0.042	-0.096	-0.0336
28	139	16.31	-6.00	76.61	4576	-0524	0155	-023	0.042	-0.098	-0.0349
28	140	20.55	-6.00	68.04	5574	-0745	0090	-0136	0012	-0.065	-0.0397
28	141	20.55	-6.00	68.03	5585	-0555	0090	-0138	0012	-0.066	-0.0416
28	142	24.87	-6.00	67.16	726	-047	0112	-0036	0005	-0.0959	-0.0959
28	143	24.85	-6.00	67.18	7068	-0675	0047	-0114	037	-0.034	-0.075
28	144	20.54	-6.00	68.02	5551	-0528	0084	-0135	0008	-0.054	-0.0421
28	145	20.54	-6.00	68.06	5558	-0515	0037	-0138	0009	-0.056	-0.0417
28	146	773	-6.00	71.43	2889	-0464	0271	-0122	0.33	-0.79	.322
28	147	776	-6.00	71.44	2100	-0463	0270	-0123	0033	-0.0660	.0054

WIND-AXIS

MACH NUMBER = .19

Reproduced from
best available copy.

RUN	TPN	ALPHA	YAW	C.P.	FL/FD	CL	CC	CD
28	122	-6.3	-6.00	83.54	-0.4795	-0.0171	-0.0382	0.356
29	123	-6.3	-6.00	81.51	-0.5487	-0.195	-0.393	0.355
29	124	-4.83	-6.00	73.99	-0.7580	-0.1257	-0.429	0.456
28	125	-4.83	-5.00	73.69	-0.7591	-0.1257	-0.429	0.456
28	126	-2.72	-6.00	75.42	-1.8093	-0.0698	-0.0418	0.386
28	127	-2.72	-6.00	75.34	-1.7859	-0.089	-0.418	0.385
28	128	-5.3	-6.00	82.00	-0.4292	-0.0154	-0.0403	0.358
28	129	-6.2	-6.00	82.10	-0.3983	-0.0144	-0.0403	0.350
28	130	1.47	-6.00	56.73	1.0117	0.365	-0.0385	0.351
28	131	1.47	-6.00	68.83	1.0233	0.376	-0.0394	0.357
29	132	3.57	-6.00	71.97	2.222	0.663	-0.0405	0.404
28	133	3.57	-6.25	75.97	2.222	0.308	-0.1466	0.484
28	134	7.79	-6.00	71.56	3.3820	0.2052	-0.0422	0.607
28	135	7.79	-6.00	71.57	3.3977	0.2952	-0.0412	0.607
28	136	12.04	-6.00	70.96	3.3494	0.3201	-0.0385	0.656
29	137	12.04	-6.00	7.96	3.7551	0.521	-0.374	0.655
28	138	16.30	-6.00	70.01	2.9392	0.4349	-0.0371	1.430
28	139	16.30	-6.00	75.51	2.9392	0.4349	-0.0371	1.430
28	140	20.55	-5.00	68.01	2.4870	0.5188	-0.0330	2.036
28	141	20.55	-5.00	68.03	2.4861	0.5108	-0.0339	2.091
28	142	24.87	-6.00	67.16	2.0953	0.6354	-0.0312	3.047
28	143	24.87	-6.00	67.18	2.0965	0.6702	-0.0287	3.053
29	144	29.54	-6.00	68.02	2.4963	0.5159	-0.0313	2.070
28	145	20.54	-6.00	58.05	2.4945	0.5174	-0.0300	2.074
29	146	7.79	-6.00	71.43	3.48	0.233	-0.143	0.597
29	147	7.79	-6.00	71.44	3.4193	0.2144	-0.0403	0.598

VITA

Captain Robert M. Foley was born [REDACTED]
[REDACTED] [REDACTED] He is
[PII Redacted] the eldest of five sons and one daughter of [REDACTED]
[REDACTED] He graduated from [REDACTED]
[REDACTED] and entered the United States Air Force Academy in June of the same year. Captain Foley graduated from the Air Force Academy in 1963 with a Bachelor of Science degree in International Affairs and a commission as a Second Lieutenant in the Air Force. He attended pilot training at Williams Air Force Base, Arizona and received his pilot's wings in August 1964. He was assigned to the 3560th Pilot Training Wing at Webb Air Force Base, Texas where he served four years as an instructor pilot. In 1968 Captain Foley was assigned to the 119th Tactical Fighter Squadron at Myrtle Beach, South Carolina where he completed the F-100 gunnery school. He served in Viet Nam with the 31st Tactical Fighter Wing as a tactical fighter pilot from April 1969 to February 1970. He is a graduate of the Naval Aviation Instructor School, the Air Training Command Academic Instructor School, and the Squadron Officer School. Captain Foley entered the Air Force Institute of Technology in June 1970.

[PII Redacted]