CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Outline for today

SGD (Stochastic Gradient Descent)

Handout 6 (SGD solution example)

Analytic vs. SGD (pros and cons)

(if time) Polynomial regression

Outline for today

SGD (Stochastic Gradient Descent)

Handout 6 (SGD solution example)

Analytic vs. SGD (pros and cons)

(if time) Polynomial regression

Stochastic gradient descent example

Goal: minimize the function $f(w) = w^2 - 6w + 11$

$$w \leftarrow w - \alpha f'(w)$$
step size

Stochastic gradient descent example

Goal: minimize the function $f(w) = w^2 - 6w + 11$

Stochastic gradient descent example

Goal: minimize the function $f(w) = w^2 - 6w + 11$

Stochastic Gradient Descent for Linear Regression

Key Idea: take the derivative of one datapoint at a time and use that to update w

$$J(\vec{x}) = \frac{1}{2} \sum_{i=1}^{n} (\vec{x} \cdot \vec{x}_i - y_i)^2$$

$$gradient$$
with vespect to one destripoint: (i.e. \vec{x}_i)
$$\nabla J_{\vec{x}_i} = \frac{\partial J(\vec{x})_{\vec{x}_i}}{\partial \vec{x}} = (\vec{x} \cdot \vec{x}_i - y_i) \vec{x}_i$$

Stochastic Gradient Descent for Linear Regression

For iteration
$$t$$
:

for $i=1,2,3...n$: $\frac{1}{2}$ usually shaffle

 $\vec{\omega} \leftarrow \vec{\omega} - \gamma (\vec{\omega} \cdot \vec{x}; -\gamma;)\vec{x};$

the deformal is $\frac{1}{2}(\vec{\omega}t) - \frac{1}{2}(\vec{\omega}t^{-1}) \leq 2$

Linear Model and Cost Function J

Linear Model and Cost Function J

Linear Model and Cost Function J

Gradient Descent: walking toward the minimum

Cost Function (extra practice)

Choosing the step size alpha

 $\begin{array}{c|c} \alpha \text{ too small} \\ \\ \text{slow convergence} \end{array}$

- may overshoot minimum
- may fail to converge (may even diverge)

SGD with our small dataset from the handouts

iteration: 1, cost: 0.410000

iteration: 2, cost: 0.350001

iteration: 12, cost: 0.138047

iteration: 40, cost: 0.014064

iteration: 100, cost: 0.000105

Outline for today

SGD (Stochastic Gradient Descent)

Handout 6 (SGD solution example)

Analytic vs. SGD (pros and cons)

(if time) Polynomial regression

Linear Regression: SGD solution

(find and work with a partner)

In linear regression, we seek to minimize the sum of squared errors between the actual response and our prediction. We often call this RSS (residual sum of squares) or SSE (sum of squared errors). As an objective function, we often call it J and include a $\frac{1}{2}$ in front to make the derivatives work out nicely.

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} (h_{\boldsymbol{w}}(\boldsymbol{x_i}) - y_i)^2$$

For linear regression in general, one iteration of stochastic gradient descent includes the following updates (usually with the data points shuffled):

for i = 1,2,...,n:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha(\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)\boldsymbol{x}_i$$

We will begin with our same data from the previous two handouts: $(x_1, y_1) = (0, 1)$ and $(x_2, y_2) = (1, 0)$, except we will reverse the order of the points to make the progress of gradient descent a bit clearer. So in this case our matrix/vector formulation is:

$$m{X} = egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}, \qquad m{y} = egin{bmatrix} 1 \ 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1. Assuming $\alpha = 0.1$ and our initial values are $w_0 = 0$ and w_1

1. Assuming $\alpha = 0.1$ and our initial values are $w_0 = 0$ and $w_1 = 0$, what are w_0 and w_1 after the just the first data point is used to update the gradient?

and me after the second data

$$oldsymbol{X} = oldsymbol{1} oldsymbol{0}, oldsymbol{y} = egin{bmatrix} 1 \ 0 \end{bmatrix}$$

1. Assuming $\alpha = 0.1$ and our initial values are $w_0 = 0$ and $w_1 = 0$, what are w_0 and w_1 after the just the first data point is used to update the gradient?

2. What are w_0 and w_1 after the second data point is used? Since we only have two examples here, your result would be the weight vector after the first iteration of SGD.

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

1. Assuming $\alpha = 0.1$ and our initial values are $w_0 = 0$ and $w_1 = 0$, what are w_0 and w_1 after the just the first data point is used to update the gradient?

2. What are w_0 and w_1 after the second data point is used? Since we only have two examples here, your result would be the weight vector after the first iteration of SGD.

3. What is the value of the objective function (cost) after this initial iteration?

$$\hat{y} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0.09 \\ -0.01 \end{bmatrix} = \begin{bmatrix} 0.09 \\ 0.08 \end{bmatrix}$$

$$\dot{\vec{y}} - \dot{\hat{y}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0.09 \\ 0.08 \end{bmatrix} = \begin{bmatrix} 0.91 \\ -0.08 \end{bmatrix}$$

$$J(\vec{w}) = \frac{1}{2} \begin{bmatrix} 0.91 \\ -0.08 \end{bmatrix} - \begin{bmatrix} 0.91 \\ -0.08 \end{bmatrix}$$

Handout 6 (#4)

Outline for today

SGD (Stochastic Gradient Descent)

Handout 6 (SGD solution example)

Analytic vs. SGD (pros and cons)

(if time) Polynomial regression

Pros and Cons

Gradient Descent

- requires multiple iterations
- need to choose α
- works well when p is large
- can support online learning

(Analytic Solution)

Normal Equations

- non-iterative
- no need for α
- slow if p is large
 - matrix inversion is $O(p^3)$

Linear Regression Runtime

- T = # iterations of SGD
- n = # examples
- p = # features

- 1) What is the runtime of SGD?
- 2) What is the runtime of the analytic solution?

Outline for today

SGD (Stochastic Gradient Descent)

Handout 6 (SGD solution example)

Analytic vs. SGD (pros and cons)

• (if time) Polynomial regression

Polynomial Regression

 Can be thought of as regular linear regression with a change of basis

Polynomial Regression

$$\boldsymbol{X} = \begin{bmatrix} x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^d \\ \\ \vdots & & \vdots & & \\ x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^d \end{bmatrix}$$