

Studio di fattibilità

 $Gruppo\ LaTeXeBiscotti\ -\ Progetto\ UMAP$

Informazioni sul documento

Versione	1.0.2
Redazione	Filippo Todescato
Verifica	
Approvazione	
$\mathbf{U}\mathbf{so}$	Esterno
Distribuzione	Prof. Tullio Vardanega
	Prof. Riccardo Cardin
	Gruppo LaTeXeBiscotti

Descrizione

Questo documento descrive lo Studio di Fattibilità del gruppo La TeXeB iscotti relativo al progetto UMAP.

Diario delle Modifiche

Versione	Data	Persone	Descrizione
		coinvolte	
1.0.4	2015-12-30	Marco Baggio	Stesura punti positivi valutazione
		(Analista)	finale
1.0.3	2015-12-30	Filippo Todescato	Stesura altri capitolati.
		(Analista)	
1.0.2	2015-12-29	Filippo Todescato	Stesura studio di dominio.
		(Analista)	
1.0.1	2015-12-29	Marco Baggio	Stesura valutazione costi e benefici.
		(Analista)	
1.0.0	2015-12-29	Filippo Todescato	Stesura indice delle sezioni e inizio
		(Analista)	introduzione.

Indice

1	Inti	roduzione
	1.1	Scopo del documento
	1.2	Capitolato scelto
	1.3	Scopo del Prodotto
	1.4	Glossario
	1.5	Riferimenti
		1.5.1 Normativi
		1.5.2 Informativi
2	Cap	pitolato C3
	2.1^{-}	Descrizione
	2.2	Studio del dominio
		2.2.1 Dominio applicativo
		2.2.2 Dominio tecnologico
	2.3	Valutazione costi e benefici
	2.4	Valutazione finale
3	Alt	ri capitolati
		C1 - Actorbase: a NoSQL DB based on the Actor model
		3.1.1 Valutazione generale
	3.2	C2 - CLIPS: Communication & Localisation with Indoor Positioning System
		3.2.1 Valutazione generale
	3.3	C4- MaaS: MongoDB as an admin Service
		3.3.1 Valutazione generale
	3.4	C5 - Quizzipedia: software per la gestione di questionari
	J. 1	3.4.1 Valutazione generale
	3.5	C6 - SiVoDiM: Sintesi Vocale per Dispositivi Mobili
	5.0	3.5.1 Valutagiona ganarala

1 Introduzione

1.1 Scopo del documento

Questo documento descrive valutazioni e motivazioni che hanno portato, da parte del gruppo LaTeXeBiscotti, la decisone di realizzare il progetto UMAP. Vengono pertanto elencati pregi e criticità del capitolato scelto, illustrando poi, gli aspetti decisivi che ci hanno portato ad escludere le restanti proposte.

1.2 Capitolato scelto

Capitolato: C3 - UMAP: un motore per l'analisi predittiva in ambiente Internet of Things

Proponente: Zero12

Committente: Prof. Tullio Vardanega

Prof. Riccardo Cardin

1.3 Scopo del Prodotto

Lo scopo del progetto è la realizzazione di un $algoritmo\ predittivo_G$ in ambiente $Internet\ of\ Things_G$ in grado di analizzare i dati provenienti da "oggetti", inseriti in diversi contesti, e fornire delle previsioni su possibili guasti, interazioni con nuovi utenti ed identificare dei pattern di comportamento degli utenti per prevedere le azioni degli stessi su altri oggetti o altri contesti.

1.4 Glossario

Per evitare tutte le possibili ambiguità sul linguaggio utilizzato e per massimizzare la comprensione da parte di tutti dei documenti, della terminologia specifica e di quella di dominio, degli acronimi e di tutte quelle parole che necessitano chiarimento (contraddistinte da una G pedice), viene redatto un *Glossario*, consultabile nel documento *Glossario* v1.0.2.

1.5 Riferimenti

1.5.1 Normativi

- Norme di Progetto v1.0.9;
- Capitolato d'appalto C3: UMAP: un motore per l'analisi predittiva in ambiente *Internet of Things_G*: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/C3.pdf;
- Vincoli sull'organigramma del gruppo e sull'offerta tecnico-economica: http://www.math.unipd.it/~tullio/IS-1/2015/Progetto/PD01b.html.

1.5.2 Informativi

- Slide dell'insegnamento Ingegneria del Software modulo A:
 - Ciclo di vita del Software;
 - Gestione di Progetto.

http://www.math.unipd.it/~tullio/IS-1/2015/

- Software Engineering Ian Sommerville 9th Edition (2011):
 - Part 4: Software Management.

2 Capitolato C3

2.1 Descrizione

Il capitolato proposto da Zero12, prevede la definizione di un algoritmo predittivo in grado d'interagire con una moltitudine d'oggetti eterogenei, facenti parte dell' IoT_G , e capace di prevedere guasti o malfunzionamenti futuri degli stessi. L'applicativo software inoltre sarà composto da tre parti:

- Console Web di amministrativa per la definizione di regole di apprendimento a seconda del contesto e tipo di dati;
- Console Web di amministrativa per le singole aziende;
- Servizi Web Restful $JSON_c$ interrogabili.

La comunicazione prevista dalla per piattaforma sarà realizzata attraverso l'utilizzo di protocolli $HTTP/HTTPS_G$ standard e del protocollo $MQTT_G$, mentre il dataset sui cui sviluppare gli algoritmi sopracitati verranno forniti direttamente dal team Zero12.

2.2 Studio del dominio

2.2.1 Dominio applicativo

Ciò che si prefissa questo progetto è di ottenere un algoritmo predittivo che opera nell'ambiente dell' IoT_G legato alla nuova ondata delle $Machine\ learning_G$, in particolare si pensa che questo software possa essere utilizzato per confrontare ed analizzare dati provenienti da macchine industriali, distribuite in diverse zone del globo e funzionanti in ambienti e circostanze eterogene, ma che nonostante ciò riesca ad avvisare in maniera proattiva la casa produttrice la necessità di manutenzioni, decisive a ridurre i fermi macchina ottenendo ricavi e diminuendo le perdite di produttività. Si capisce pertanto come gli utenti interessati all'utilizzo di questo dominio applicativo siano principalmente aziende operanti nel settore industriale, ma che non escludono, vista la generalità dell'algoritmo e l'interesse del mondo tecnologico ed informatico sull' IoT_G , piccole-medio imprese ed anche il singolo utente che può usufruirne i vantaggi anche i otterrà avendo una casa che si appresta ad essere sempre più connessa alla rete.

2.2.2 Dominio tecnologico

L'azienda Zero12 che ci ha esposto il capitolato UMAP è solita lavorare utilizzando lo stack tecnologico dell'infrastruttura $Amazon\ web\ service_{_G}$, per tanto anche noi come gruppo abbiamo deciso di usufruirne. Inoltre dovendo interrogare database $NoSQL_{_G}$, abbiamo stabilito, come suggeritoci dalla stessa Zero12, di utilizzare $MongoDB_{_G}$. Per quanto riguarda il linguaggio di programmazione impiegato nello sviluppo del progetto, avendo avuto la possibilità di scegliere tra $Java_{_G}$ e $Scala_{_G}$, abbiamo scelto di adottare quest'ultimo, utilizzando $Play\ Framework_{_G}$ come $framework_{_G}$ di sviluppo. Dovendo anche operare nella costruzione di un'interfaccia web sono inoltre utilizzate le seguenti tecnologie:

- *HTML5*_c;
- $CSS3_{G}$;
- Javascript ...

Studio di fattibilità Pagina 4 di 7

Integrate poi utilizzando il $framework\ responsive_G$: $Twitter\ Bootstrap_G$. Viene poi previsto l'utilizzo di $Node.js_G$ per quanto riguarda la comunicazione con i vari oggetti, che comunicano tramite $MQTT_G$, con l'applicativo.

2.3 Valutazione costi e benefici

Il capitolato volge la sua attenzione alla creazione di un software generico per un'analisi di grandi quantità di dati provenienti da macchinari non precedentemente definiti. Questo software deve essere in grado di individuare i dati sensibili dalla base dati prodotta dal sistema cui verrà applicato, riportarli all'utente attraverso un front-end applicativo e mantenere un'attività di apprendimento di quelli che potrebbero essere cambi o aggiunte di nuovi dati rilevanti. Il software che si andrebbe a creare avrebbe un ottimo inserimento all'interno del mercato attuale vista la crescente espansione del campo delle IoT_G . Ciò che lo rende veramente competitivo è il fatto di non essere specializzato per un singolo macchinario, quindi creato ad hoc, ma applicabile in potenza a qualsiasi ambiente che richieda analisi reattiva di dati ricevuti da macchine collegate ad una rete.

2.4 Valutazione finale

Il gruppo si é dimostrato interessato al capitolato proposto da Zero12 per i seguenti motivi:

- innovazione nel sistema di gestione delle basi di dati, soprattutto dal punto di vista della sua virtualitá,
- studio all'interno dell'ambiente IoT_G in grande via di espansione in questo periodo,
- interesse verso il campo legato al Machine learning_G;

Sono state anche riscontate le seguenti criticitá che sono state ritenute non trascurabili per le conoscenze del gruppo:

3 Altri capitolati

3.1 C1 - Actorbase: a NoSQL DB based on the Actor model

3.1.1 Valutazione generale

Analizzando questo capitolato, il gruppo ha gradito la proposta del committente, in quanto prende in esame due aspetti molto interessati:

- Database $NoSQL_G$: attualmente infatti si scelgono sempre più questi tipi di database, andando a sostituire i più ormai obsoleti e inadeguati database relazionali, nel caso in cui lo scopo dell'applicativo sia un'interazione con una grande mole di dati. A questo proposito la proposta del committente rappresentava un'ottima possibilità, nello studio di questi nuovi modelli di database;
- $Actor\ Model_G$: questo modello già implementato da nella libreria $Akka_G$, rappresenta sicuramente un ottimo modello di studio nella programmazione concorrente.

Valutati questi come principali aspetti positivi, che rendono il capitolato un'ottimo progetto a scopo didattico, il gruppo ha però deciso di scartarlo non riuscendo ad immaginarne un'utilizzo pratico ed immediato, che veniva proposto maggiormente da altri capitolati. Inoltre si è valutato come, escluso il modello ad attori, al gruppo del tutto nuovo, e allo sviluppo di un database $NoSQL_G$, non ci fossero nuove tecnologie o modelli su cui il team di lavoro avrebbe dovuto lavorare e confrontarsi rendendo il capitolato meno appetibile.

Studio di fattibilità Pagina 5 di 7

3.2 C2 - CLIPS: Communication & Localisation with Indoor Positioning System

3.2.1 Valutazione generale

Questo capitolato affronta un tema innovativo e di grande interesse non solo per quanto riguarda in nostro gruppo di lavoro ma anche per tutto l'ambiente informatico e tecnologico, ovvero l'Internet of $things_G$. Per interagire all'interno dell' IoT_G in questo progetto sono stati presentati i $Beacons_G$, che però hanno causato all'interno del gruppo incertezza riguardante la scelta di tale capitolato. Sicuramente lo scenario si presenta innovativo riguardando lo sviluppo della tecnologia BLE_G , basata sulla versione 4.0 del $Bluetooth_G$, tuttavia come detto i $Beacons_G$, rappresentando una tecnologia giovane ha esposto ancora alcuni difetti quali:

- La frequenza per aggiornare il rilevamento di dispositivi è programmabile, ma utilizzando una frequenza media utile, a quello che è di fatto un utilizzo da parte di utenti in movimento, si va ad intaccare in modo considerevole la durata della batteria;
- La portata del segnale è legata strettamente alla potenza con cui è stato programmato il *Beacons_G* e nel caso in cui il dispositivo con cui comunica debba inviare dei dati, riferiti alla sua posizione, sono spesso non del tutto precisi e non particolarmente inviati reattivamente;
- Il posizionamento dei $Beacons_G$, deve avvenire ad un'altezza minima di 2.50 metri d'altezza per evitare la perdita di segnale dovuta all'interferenza con corpi liquidi e persone.

Questi aspetti assieme alla perplessità sull'effettiva necessità di strumenti del genere già in alcuni casi sostituiti da altre tecnologie più affidabili, precise e mature, ci ha fatto decidere di non prendere parte a questo progetto.

3.3 C4- MaaS: MongoDB as an admin Service

3.3.1 Valutazione generale

3.4 C5 - Quizzipedia: software per la gestione di questionari

3.4.1 Valutazione generale

In questo progetto le tecnologie utilizzate sono molte ed interessanti, per altro non del tutto sconosciute ad alcuni dei membri del gruppo. Tecnologie quali:

- SQL_G o $NoSQL_G$;
- Tomcat_G o Node.js_G;
- *HTML5*_c;
- CSS3_G;
- Javascrip_c.

Tuttavia nonostante queste, la richiesta di un sistema che preveda un archivio di domande e di test che interrogato tale archivio fornisca all'utente questionari specifici per l'argomento scelto, non ha raccolto nel gruppo grande interesse, escludendolo onde evitare un approccio già errato inizialmente per un progetto che richiede coinvolgimento e partecipazione a tuttotondo.

3.5 C6 - SiVoDiM: Sintesi Vocale per Dispositivi Mobili

3.5.1 Valutazione generale

Questo capitolato tratta un argomento senza dubbio che si distingue dai restanti capitolati, affrontare un tema come la sintesi vocale è infatti fonte di curiosità per alcuni membri del gruppo, ma non rappresenta un'interesse

Studio di fattibilità Pagina 6 di 7

unanime. Nonostante si tratti di utilizzare un motore di sintesi $opensource_G$, con tutti i vantaggi del genere, come "Flexible and Adaptive Text To Speech" (FA-TTS), l'applicazione richiesta che, avrebbe dovuto girare su dispositivi mobili, altro aspetto di indubbio valore, per come si presentano i mercati tecnologici odierni, tratta una tecnologia troppo di nicchia che ci ha pertanto scoraggiato nella scelta di questo capitolato.

Studio di fattibilità Pagina 7 di 7