Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №3

по дисциплине «Схемотехника операционных устройств» **Триггеры**

> Работу выполнил: Ильин В.П. Группа: 35300901/10005 Преподаватель: Киселев И.О.

Санкт-Петербург 2023

1. Цели работы

- Закрепление знания характеристик и режимов работы триггеров основных типов:
- получение практических навыков тестирования и управления триггерами;
- получение навыков ввода проекта в графическом редакторе пакета QP, тестирования и отладки проекта и анализа временных характеристик триггеров;
- получение навыков отладки цифровых устройств данного класса на физической модели; конфигурирование ПЛИС и экспериментальная проверка работы типовых устройств с триггерами при использовании лабораторной платы DiLaB.

2. Исходные данные

Вариант	Длительность импульса	Фронт/спад	Частота
8	8 нс	Спад	1.5 Гц

3. Ход работы

3.1. Асинхронный RS-триггер

Рис. 3.1: Разработанная схема триггера

Рис. 3.2: Схема в Technology Map Viewer

Дискретное	Вход	ные переменные	Состояния		Режим работы
время t	S(t)	R(t)	Q(t)	nQ(t)	тежим рассты
0	0	1	1	0	Установка 1
1	1	1	1	0	Хранение 1
2	1	0	0	1	Установка 0
3	1	1	0	1	Хранение 0
4	0	0	1	1	Особое состояние

Таблица 3.1: Таблица переходов триггера

Рис. 3.3: Временная диаграмма

Рис. 3.4: Временная диаграмма с импульсами

По результатам моделирования видно, что минимальная длительность сигнала, переключающего триггер составляет 3.6 нс.

3.2. RS-триггер синхронизируемый уровнем

Рис. 3.5: Разработанная схема триггера

Дискретное	Вході	ные пе	ременные	Состояния		Downers
время t	C(t)	S(t)	R(t)	Q(t)	Q(t+1)	Режим работы
0	0	Н	Н	0	0	Хранение
1	0	Н	Н	1	1	Аранение
2	1	0	0	0	0	Хранение
3	1	0	0	1	1	Аранение
4	1	1	0	0	1	Запись 1
5	1	1	0	1	1	
6	1	0	1	0	0	Запись 0
7	1	0	1	1	0	эанись 0
8	1	1	1	0	Н	Особое состояние
9	1	1	1	1	Н	Осообе состояние

Таблица 3.2: Таблица переходов триггера

Рис. 3.6: Временная диаграмма

Из результатов моделирования видно, что триггер синхронизируется уровнем, а не перепадом. При переходе триггера из особого состояния в состояние хранения на его выходе сохраняется *1».

3.3. Использование примитива DFFE

Рис. 3.7: Разработанная схема триггера

Рис. 3.8: Временная диаграмма

При одновременной подаче активного уровня на входы PRN и CLRN триггер устанавливается в 0.

3.4. Использование примитива JKFFE

Рис. 3.9: Разработанная схема триггера

Рис. 3.10: Временная диаграмма

При одновременной подаче активного уровня на входы PRN и CLRN триггер устанавливается в 0.

3.5. Генератор коротких импульсов

Рис. 3.11: Разработанная схема триггера

Устанавливая элементы LCELL, получаем длительность формируемого импульса в 8 нс. Всего потребовалось 15 элементов. Разница в примерно 8 нс можно увидеть в значении графы «Master Time Bar» на рисунках ниже.

Рис. 3.12: Временная диаграмма

Рис. 3.13: Временная диаграмма

Используя Chip Planner, посмотрим на расположение данной схемы на кристалле и функциональным преобразователем.

Рис. 3.14: Размещение на кристалле

Рис. 3.15: Функциональный преобразователь

3.6. Устройство удвоения частоты

Для создания подобного устройства объединим 2 схемы из предыдущего пункта хода работы. Один триггер будет формировать единичный импульс при фронте C, а другой при спаде.

Рис. 3.16: Разработанная схема устройства

На временной диаграмме видим формирование импульсов как на фронте, так и на спаде.

Рис. 3.17: Временная диаграмма

3.7. Устройство выявления спада

Для выявления спада сигнала необходимо смотреть на результат логической функции $\overline{D}\cdot Q.$

Рис. 3.18: Разработанная схема устройства

Рис. 3.19: Временная диаграмма

4. Вывод

В ходе выполнения работы были закреплены знания характеристик и режимов работы триггеров основных типов. Были получены практические навыки тестирования и управления триггерами. Была проведена экспериментальная проверка работы типовых устройств с триггерами.