Truss problems

Dr. Sarat Singamneni

For the plane truss shown below, determine the horizontal and vertical displacements of node 1 and the stresses in each element. All elements have E = 210 GPa and $A = 4.0 \times 10^{-4} \text{ m}^2$. The internal force in each element can be calculated using the following expression:

$$F_R = E A \frac{dL}{L} = \frac{E A}{L} \{ (u_2 - u_1) \cos \alpha + (v_2 - v_1) \sin \alpha \}$$

u1 V1 U2 V2

V2

u2

u1	V1	u2	V2	u 3	v 3	u 4	V 4	
								uı
								V1
								u2
								V2
								u3
								v3
								u4
								V4

K1 =

uı	V1	и3	v3	
				u1
				V1
				и3
				v 3

1/	\mathbf{C}		
K	/	=	

uı	V1	u2	V2	u3	v 3	u 4	v 4	
								u1
								V1
								u2
								V2
								и3
								v 3
								u 4
								V4

$$[K_3^{e]} =$$

uı	V1	u4	V 4	
				u1
				V1
				u4
				V4

	_	
$\boldsymbol{\nu}$	2	
\mathbf{r}	`	_

uı	V1	u2	V2	u3	v 3	u 4	v 4	
								u1
								V1
								u2
								V2
								и3
								v 3
								u 4
								V4

u1	V1	u2	V2	u 3	v 3	u 4	V 4	
								u1
								V1
								u2
								V2
								u3
								v 3
								u4
								V4

For the truss shown below, calculate the nodal displacements, forces and the average stresses in each member. All members are made up of the same material, with a modulus of elasticity of $E = 1.90X106 \text{ N/cm}^2$ and each has a cross sectional area of 8 cm².

Element No	Node 1	Node 2	α
1	1	2	О
2	2	3	135
3	3	4	О
4	2	4	90
5	2	5	45
6	4	5	О

$$k = \frac{AE}{L} = \frac{(8)\left(1.90 \times 10^6\right)}{36} = 4.22 \times 10^5$$

The stiffness constant for elements (2) and (5) is

$$k = \frac{AE}{L} = \frac{(8)\left(1.90 \times 10^6\right)}{50.9} = 2.98 \times 10^5$$

$$[\mathbf{K}]^{(e)} = k \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta & -\cos^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta & -\sin \theta \cos \theta & -\sin^2 \theta \\ -\cos^2 \theta & -\sin \theta \cos \theta & \cos^2 \theta & \sin \theta \cos \theta \\ -\sin \theta \cos \theta & -\sin^2 \theta & \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

$$|\mathbf{K}|^{(1)} = 4.22 \times 10^5 \begin{bmatrix} \cos^2(0) & \sin(0)\cos(0) & -\cos^2(0) & -\sin(0)\cos(0) \\ \sin(0)\cos(0) & \sin^2(0) & -\sin(0)\cos(0) & -\sin^2(0) \\ -\cos^2(0) & -\sin(0)\cos(0) & \cos^2(0) & \sin(0)\cos(0) \\ -\sin(0)\cos(0) & -\sin^2(0) & \sin(0)\cos(0) & \sin^2(0) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} U_{1X}$$

$$U_{1Y}$$

$$U_{2X}$$

$$U_{2Y}$$

and the position of element (1)'s stiffness matrix in the global matrix is

$$[\mathbf{K}]^{(3)} = 4.22 \times 10^{5} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{matrix} U_{3X} \\ U_{3Y} \\ U_{4X} \\ U_{4Y} \end{matrix}$$

and its position in the global matrix is

The stiffness matrix for element (6) is

$$[\mathbf{K}]^{(6)} = 4.22 \times 10^{5} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{4X} \\ U_{4Y} \\ U_{5X} \\ U_{5Y} \end{bmatrix}$$

$$| \mathbf{X} |^{(4)} = 4.22 \times 10^5 \begin{bmatrix} \cos^2(90) & \sin(90)\cos(90) & -\cos^2(90) & -\sin(90)\cos(90) \\ \sin(90)\cos(90) & \sin^2(90) & -\sin(90)\cos(90) & -\sin^2(90) \\ -\cos^2(90) & -\sin(90)\cos(90) & \cos^2(90) & \sin(90)\cos(90) \\ -\sin(90)\cos(90) & -\sin^2(90) & \sin(90)\cos(90) & \sin^2(90) \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} U_{2X} \\ U_{2Y} \\ U_{4X} \\ U_{4X} \end{bmatrix}$$

$$[\mathbf{K}]^{(2)} = 2.98 \times 10^{5} \begin{bmatrix} \cos^{2}(135) & \sin(135)\cos(135) \\ \sin(135)\cos(135) & \sin^{2}(135) \\ -\cos^{2}(135) & -\sin(135)\cos(135) \\ -\sin(135)\cos(135) & -\sin^{2}(135) \end{bmatrix}$$

$$\frac{-\cos^{2}(135) & -\sin(135)\cos(135) \\ -\sin(135)\cos(135) & -\sin^{2}(135) \\ \cos^{2}(135) & \sin(135)\cos(135) \\ \sin(135)\cos(135) & \sin^{2}(135) \end{bmatrix}$$

$$[\mathbf{K}]^{(2)} = 2.98 \times 10^{5} \begin{bmatrix} .5 & -.5 & -.5 & .5 \\ -.5 & .5 & .5 & -.5 \\ -.5 & .5 & .5 & -.5 \\ .5 & -.5 & -.5 & .5 \end{bmatrix} \begin{bmatrix} U_{2X} \\ U_{2Y} \\ U_{3X} \\ U_{3Y} \end{bmatrix}$$

Simplifying, we get

and its position in the global matrix is

$$|\mathbf{x}|^{5} = 2.98 \times 10^{5} \begin{bmatrix} \cos^{2}(45) & \sin(45)\cos(45) & -\cos^{2}(45) & -\sin(45)\cos(45) \\ \sin(45)\cos(45) & \sin^{2}(45) & -\sin(45)\cos(45) & -\sin^{2}(45) \\ -\cos^{2}(45) & -\sin(45)\cos(45) & \cos^{2}(45) & \sin(45)\cos(45) \\ -\sin(45)\cos(45) & -\sin^{2}(45) & \sin(45)\cos(45) & \sin^{2}(45) \end{bmatrix}$$

$$\mathbf{M}^{5} = 2.98 \times 10^{5} \begin{bmatrix} .5 & .5 & -.5 & -.5 \\ .5 & .5 & -.5 & -.5 \\ -.5 & -.5 & .5 & .5 \\ -.5 & -.5 & .5 & .5 \end{bmatrix} \begin{bmatrix} U_{2X} \\ U_{2Y} \\ U_{5X} \\ U_{5Y} \end{bmatrix}$$

Simplifying, we get

Apply the boundary conditions and loads.

Because $U_{1X} = 0$, $U_{1Y} = 0$, $U_{3X} = 0$, and $U_{3Y} = 0$, we can eliminate the first, second, fifth, and sixth rows and columns from our calculation such that we need only solve a 6×6 matrix:

$$10^{5} \begin{bmatrix} 7.2 & 0 & 0 & 0 & -1.49 & -1.49 \\ 0 & 7.2 & 0 & -4.22 & -1.49 & -1.49 \\ 0 & 0 & 8.44 & 0 & -4.22 & 0 \\ 0 & -4.22 & 0 & 4.22 & 0 & 0 \\ -1.49 & -1.49 & -4.22 & 0 & 5.71 & 1.49 \\ -1.49 & -1.49 & 0 & 0 & 1.49 & 1.49 \end{bmatrix} \begin{pmatrix} U_{2X} \\ U_{2Y} \\ U_{4X} \\ U_{4Y} \\ U_{5X} \\ U_{5Y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -500 \\ 0 \\ -500 \end{pmatrix}$$

Solution Phase

$$10^{5} \begin{bmatrix} 7.2 & 0 & 0 & 0 & -1.49 & -1.49 \\ 0 & 7.2 & 0 & -4.22 & -1.49 & -1.49 \\ 0 & 0 & 8.44 & 0 & -4.22 & 0 \\ 0 & -4.22 & 0 & 4.22 & 0 & 0 \\ -1.49 & -1.49 & 0 & 0 & 1.49 & 1.49 \end{bmatrix} \begin{bmatrix} U_{2X} \\ U_{2Y} \\ U_{4X} \\ U_{4X} \\ U_{5X} \\ U_{5Y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -500 \\ 0 \\ -500 \end{bmatrix}$$

$$\begin{cases} U_{1X} \\ U_{1Y} \\ U_{2X} \\ U_{2X} \\ U_{2Y} \\ U_{3X} \\ U_{3X} \\ U_{4X} \\ U_{4X} \\ U_{4Y} \\ U_{5X} \\ U_{5Y} \\ \end{cases} = \begin{cases} 0 \\ 0 \\ -0.00355 \\ -0.01026 \\ 0 \\ 0.00118 \\ -0.0114 \\ 0.00240 \\ -0.0195 \end{cases}$$

Post-Processing Phase

The axial force within any member is

$$F_R = E A \frac{dL}{L} = \frac{E A}{L} \{ (u_2 - u_1) \cos \alpha + (v_2 - v_1) \sin \alpha \}$$

Considering for example element 5:

•
$$\Theta = 45^{\circ}$$

•
$$u_1 = -0.00355$$
, $v_1 = -0.01026$

•
$$u_2 = 0.0024$$
 and $v_2 = -0.0195$

$$F_5 = 2.98X10^5 \left((0.0024 + 0.00355) \cos 45 + (-0.0195 + 0.01026) \sin 45 \right)$$

- •The internal force in element 5 is 695 N compressive
- •The corresponding stress is 87 N/cm²