#### **Module # 1.4**

# INTRODUCTION SISO Control Algorithms

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

## **SISO Feedback Control Algorithms**

- Feedback Control Algorithm
  - Quantitative relationship between MV and CV
  - $u_t = f(y_t)$
- Simple Control Algorithms
  - On Off Control
  - Proportional Control
  - Integral Control
  - Proportional Integral Control
  - Proportional Integral Derivative Control



## **On-Off Control**

$$Q_{htr(t)} = \begin{cases} Q_{htr}^{MAX} & \text{if } T \leqslant T^{SP} - \Delta \\ Q_{htr(t^{-})} & \text{if } T^{SP} - \Delta < T < T^{SP} + \Delta \\ 0 & \text{if } T \geqslant T^{SP} + \Delta \end{cases}$$



## **Proportional Control**

$$Q_{htr(t)} = K_C \left( T^{SP} - T_{(t)} \right) + b$$

$$\frac{dQ_{htr}}{dt} = -K_C \frac{dT}{dt}$$

$$\left. \frac{dQ_{htr}}{dt} \right|_{t=\infty} = -K_C \frac{dT}{dt} \bigg|_{t=\infty} = 0$$



**Expect Offset** 

### **How to Remove Offset?**

#### At FSS

$$dQ_{htr}/dt|_{t=\infty} = 0$$



$$\frac{dQ_{htr}}{dt} = \frac{K_C}{\tau_I} \left( T^{SP} - T_{(t)} \right)$$

#### Want

$$T^{SP} - T_{(\infty)} = 0$$

$$Q_{htr(t)} = \frac{K_C}{\tau_I} \int_0^t \left( T^{SP} - T_{(t)} \right) dt + b$$

**Integral Controller** 

Integral control gives ZERO OFFSET for constant setpoint

## **Proportional Integral Control**

Combine both proportional and integral modes

$$Q_{htr(t)} = K_C \left[ \left( T^{SP} - T_{(t)} \right) + \frac{1}{\tau_I} \int_0^t \left( T^{SP} - T_{(t)} \right) dt \right] + b$$

Zero offset due to integral mode

## The Derivative Mode

To act when error is small but PV rate of change is large

$$Q_{htr(t)} = K_C \left( T^{SP} - T_{(t)} \right) + \frac{K_C}{\tau_I} \int_0^t \left( T^{SP} - T_{(t)} \right) dt - K_C \tau_D \frac{dT_{(t)}}{dt} + b$$

$$Q_{htr(t)} = K_C \left[ \left( T^{SP} - T_{(t)} \right) + \frac{1}{\tau_I} \int_0^t \left( T^{SP} - T_{(t)} \right) dt + \tau_D \frac{d \left( T^{SP} - T_{(t)} \right)}{dt} \right] + b$$

#### PID

$$u_{(t)} = K_C \left( e_{(t)} + \frac{1}{\tau_I} \int_0^t e_{(t)} dt + \tau_D \frac{de_{(t)}}{dt} \right) + b$$

$$e_{(t)} = y_{(t)}^{SP} - y_{(t)}$$

## **Room SISO Temperature Control**



# T Setpoint Change Response



## **More Complex Control Algorithms**

#### Feedforward Ideas

- Counter effect of a measured disturbance by adjusting MV
- Requires MV-CV and disturbance-CV dynamic models
- Major correction via feedforward. Minor correction via feedback

#### Model based control

- Major correction via model
- Minor correction via feedback
- Model based control + feedback

#### Complexity vs Simplicity

- Simple and robust but loose PV control
- Complex and tight PV control but fragile

#### **Balancing a Bike**



#### **Wading Through Traffic**





#### **Driving on a Highway**



**Near Exact Grocery Weighing** 



#### **Fine Tuning Guitar Strings**



#### **Balancing a Stick**



## **Summary**

- PV feedback based adjustment of MV a powerful means for control
- Common SISO feedback control algorithms
  - On-off
  - PID
    - Most commonly employed industrial algorithm (>90%)
    - Integral mode gives off-set free control
    - Derivative mode allows accelerated MV adjustment
- More complex algorithms possible
  - Feedforward + feedback
  - Model + feedback
- Prefer simplicity over complexity