

Network, Traffic and Quality Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- QoS Demands of IP Services
- QoS Architecture in IP Networks (DiffServ, IntServ)
- > Routing & Infrastructure of ISPs and in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Network-, Traffic- & Quality-Mgnt. for Internet Services

Persons G. Haßlinger & J. Blendin, L. Nobach, D. Hausheer

G.H. is employed @ Deutsche Telekom, H.-Hertz-Str. 3-7, 64295 Darmstadt,

Tasks: Engineering of DT's Broadband Internet Platform

& Innovation Projects <www.SSICLOPS.eu>

was @ Computer Science Dept., TU Darmstadt until 1996

E-Mail: hasslinger@informatik.tu-darmstadt.de

Tel.: DA - 16 - 25524 / DA - 581 - 2121

This course runs

2 hours on Monday 8:55; in each summer term; with small exercises part Oral exams & consultation hours: t.b.d. at flexible dates on demand

Material

Slides, several script parts, exercises with solutions are made available via TUCAN

Overview: Slide Sets ↔ Script Parts

Slide Sets:

- 1. Overview
- 2. Quality-of-Service (QoS): User Demands; IP Service Categories → Material-1-TCP-IP-QoS & Material-0-English-Collection
- 3. IP Routing Methods: OSPF, BGP, incl. Failure Resilience

 → Material-2-Routing-OSPF-BGP
- 4. QoS-Support in IP-Netzen: IntServ, DiffServ, (TCP Control)

 → Material-1-TCP-IP-QoS
- 5. Multiprotocol Label Switching (MPLS): Traffic & Network Management
 → Material-1-TCP-IP-QoS
- 6. Overlays for Content Delivery on the Internet

 → Material-3-Internet-Content-Delivery (CDN/P2P)
- 7. Measurement & Statistics for Dimensionierung, IP Topology Upgrading

 → Material-3-IP-CDN; Material-4-Network-Dimensioning-Planning

Literature

Books: currently no good fitting book is known for this course

> Links to literature on special topics are given in slides & script parts

Journals with related survey topics can be found at

- > IEEE: Tutorials & Surveys, Internet Computing,
 - Communications Magazine, Networks, etc.
- > at other publishers, e.g.
 - Computer Networks/Communications (Elsevier / Wiley etc.)
- > Home-Pages of Standardizaiton Bodies & Companies can partly help
 - → Slide on Standardization Bodies
 - in Slide Set QoS-03
 - including: Internet Engineering Task Force (IETF) <www.ietf.org>

Topics on IP & QoS Support

- ➤ IP (Internet Protocol)
 Routing & Addressing
- Routing Methods
 Global: BGP
 Lokal: OSPF, IS-IS
 Shortest Path Routing (SPF)
 Traffic Engineering (TE)
 Failure Resilience
- ➤ (TCP Transmission Control Prot. Flow and Error Control Sliding Window Mechanism Fairness, Stability)

QoS Architecture:

- ➤ Integrated Services (IntServ)
 RSVP: Resource Reservation Prot.
- ➤ Differentiated Services
 Traffic Classes; Prioritization
- - + Path Control, Monitoring, Traffic Engineering

Topics on IP Traffic & Network Management

- ➤ Overlays for Content Delivery on the Internet:
 - Content Delivery Networks
 - Peer-to-Peer Networks
 - Caching
- ➤ ISP Network Management for Breitband Internet Access:
 - Traffic Measurement, Statistics & Management
 - Variability in Traffic Profiles & Impact on QoS
 - Application Mix & QoS Support

Network-, Traffic- and Quality-Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- QoS Demands of IP Services
- QoS Architecture in IP Networks (DiffServ, IntServ)
- > Routing & Infrastructure of ISPs and in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Services in Communication Networks

since		since		since	
1847	Telegraph	1980	Internet, Ethernet	2000	Peer-to-Peer-Netw.
1877	Telephone		Kabel TV		Online Games,
1900	Wireless Voice		E-Mail		E-Busi., E-Learn
	Transmission		Telemetrie,		Social Networks
1920	Broadcasting, TV		Remote Control		
1930	Telefax, Telex		GSM Mobile Net.		UMTS, LTE,
1970	Digital Channels		Video Conf.		Mobile Ad Hoc,
	Satellite Channels				Sensor Networks
	Mobile Phones	1990	ISDN		Fixed-Mobile &
	Electronic		WWW		IP-TV-VoD
	Data Exchange,		Multimedia		Convergence
	Computer		Applications	2015	5G, Clouds, CDNs
	Networks		Intranets, VPNs		Internet of Things

Data Transfer Chain Across Telecommunication Networks & QoS Impacts

Service-, Traffic- & QoS-Classes: Categories & Demand Profiles

Service / Traffic Classes	Conversational	Streaming	Interactive	Background			
	Voice Calls,	Video/audio on	Web browsing,	File Transfers,			
Applications	Video Conferencing	demand, IP-TV	E-Commerce,	Downloads, P2P,			
	Online Gaming		E-Learning etc.	E-Mail, SMS,			
Communication-	Human-to-Human	Server → Human	Human ↔ Server	Data transfers			
Traffic Pattern	Bidirectional	>90% Downstream	Query/Response	without human			
Traffic Fattern	Partly Multicast	Uni/Multi/Broadcast	Pattern	interaction			
QoS Parameters:	< 0.1s: excellent	Time sequence of	< 0.5s: excellent	Not critical			
1. Delay	>0.25s:inappropriate	data to be preserved	>4s:inappropriate				
2. Failure Rate Tolerance up to a few % bi		w % bit/packet errors	No failures in end-to-end transfers				
3. Bandwidth	andwidth Low & high data volume demands in each class (e.g. voice ↔ video)						
Source: UMTS Standardization by ETSI/3GPP (TS 27.107 V3.9.0, 2002)							

Subjektive & Objektive Voice Quality Measurement

Subjektive Methods are based on individual user experience (MOS*-Scale)

Objektive Methods are based on automated measmt. tools

- ➤ Impairments are evaluated (Signal ÷ Noise ratio, delay, jitter)
- ➤ A User Experience Model has been standardized to evaluate voice quality depending on impariments

*MOS: Mean Opinion Score

Example: Spectrum analysis of a signal @ 700 & 1200 Hz with fading & superposed noise on the received side as part of a MOS analysis

MOVING PICTURE EXPERTS GROUP

Source Camera MPEG Codec Sender Buffer

MPEG-Video-Transfers: structured into Groups of Pictures (GoP) and Scenes

<www.mpeg.org>

Size of MPEG Frames

I B B P B B I

Receiver Buffer MPEG Decoding Dest. Screen

Extreme Demands, e.g., in Future 5G Networks

Source: Next Generation Mobile Networks NGMN White Paper (March 2015)

Table 1: User Experience Requirements

Use case category	User Experienced Data Rate	E2E Latency	Mobility
Broadband access in	DL: 300 Mbps	10 ms	On demand,
dense areas	UL: 50 Mbps		0-100 km/h
Indoor ultra-high	DL: 1 Gbps,	10 ms	Pedestrian
broadband access	UL: 500 Mbps		
Broadband access in	DL: 25 Mbps	10 ms	Pedestrian
a crowd	UL: 50 Mbps		
50+ Mbps everywhere	DL: 50 Mbps	10 ms	0-120 km/h
	UL: 25 Mbps the engine of broadband wireless innovation		
Mobile broadband in	DL: 50 Mbps	10 ms	On demand, up
vehicles (cars, trains)	UL: 25 Mbps		to 500 km/h
Airplanes connectivity	DL: 15 Mbps per user	10 ms	Up to 1000
	UL: 7.5 Mbps per user		km/h
Ultra-low latency	DL: 50 Mbps	<1 ms	Pedestrian
	UL: 25 Mbps		
Resilience and traffic	DL: 0.1-1 Mbps	Regular	0-120 km/h
surge	UL: 0.1-1 Mbps	communication: not	
		critical	
Ultra-high reliability &	DL: From 50 kbps to 10 Mbps;	1 ms	on demand: 0-
Ultra-low latency	UL: From a few bps to 10 Mbps		500 km/h

CERN: High Energy Physics Workload in Distributed Cloud

CERN: High Energy Physics Workload in Distributed Cloud home.cern, opennebula.org

Data Throughput is affected already by small delays:

CERN cloud has massive computing demands with high data volumes required per computation job

Network-, Traffic- and Quality-Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- QoS Demands of IP Services
- > QoS Architecture in IP Networks (DiffServ, IntServ)
- Routing & Infrastructure of ISPs and in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Protokol Layers in TCP/IP Networks

Application Layer

Transport Layer

Network Layer

Link Layer Physical Layer File transfer (FTP), Mail (SMTP), HTTP Downloads via Client/Server, P2P, etc.

RTP

TCP

UDP

Real Time Applications (Voice ...)

RTP

UDP

IP: Internet Protocol

MPLS: Multiprotocol Label Switching

WDM (Wavelength Division Multiplexing), IEEE 802.3 (Ethernet), SDH / SONET (Synch. Digital Hierarchy / Opt. Netw.), FDDI ...

Basic Interent Transport Protocols:

TCP: Transmission Control P. RFC 793 (1981)

UDP: User Datagram P. **RFC** 768 (1980)

RTP: Transport P. for Real-Time Applications RFC 3550 (2003)

Integrated Services with RSVP: Signalling & Resource Reservation

IP-QoS: Differentiated Services (DiffServ)

Traffic is classified at the ingress to a DiffServ domain with ToS/DS mark in the IP header

Differentiated routing behaviour per class

- Prioritization
- Packet drop
- Bandwidth per class, packet scheduling

Network-, Traffic- and Quality-Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- QoS Demands of IP Services
- QoS Architecture in IP Networks (DiffServ, IntServ)
- > Routing & Infrastructure of ISPs & in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Global IP Network Infrastructure

Content Distribution: CDN ↔ Peer-to-Peer Overlays

Development of BGP Routing Tables Since 1994

Source: bgp.potaroo.net supported by Univ. of Oregon

MPLS: Explicit paths & Network Mgnt. Support

Pure IP networks include a limited set of standard measurement Multiprotocol label switching (MPLS) provides

- □ Explicit paths for each traffic flow in a MPLS/IP platform
- ☐ Measurement, OAM and control functions for each path
- □ 5- or 15-minute measurement of mean traffic rates is usual
- □ Paths between all LER pairs are usual; even per QoS class

The IP core network of DT is based on MPLS since 2003; with extension to almost 1000 locations since 2015; The DE-CIX exchange point also uses MPLS for fast rerouting options

Example: Link ↔ Path Restoration

BackUp Paths for Multicast: "MLPS-TE Fast Reroute with P2MP Bypass Tunnels"

Example of complex failure recovery schemes avoiding doubled traffic on Point-to-Multi-Point (P2MP) backup paths (RFC 4875)

Source: Presentation of J. Le Roux @ IETF

Network-, Traffic- and Quality-Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- QoS Demands of IP Services
- QoS Architecture in IP Networks (DiffServ, IntServ)
- > Routing & Infrastructure of ISPs and in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Popular Peer-to-Peer Protocols

P2P File-Sharing: Fast distribution of large files

Example: Harry Potter III early propagation after 2 hours on May 28th 2004 (Source: www.itic.ca/DIC/News/archive.html)
Availability/replication of data as needed i.e. depends on requests

Traffic profile over 4 days dominated by P2P

- ➤ Port-based measurement on a backbone link in Germany in 2003:
- > 70% P2P traffic portion; > 60% eDonkey/eMule

Content Delivery Overlays (CDN, Akamai, Google ...)

Lower layers overlays standardized by

- > Pseudo wire emulation edge-to-edge (PWE3 working group)
- ➤ Layer-3 Virtual Private Networks (& L2-VPN, L1-VPN WG)
- > Tunnneling; Encapsulation; Network protocol X over Y; ...

Network-, Traffic- and Quality-Management for Internet Services

Overview of Organisation Aspects

Brief Introduction of Core Topics (QoS: Quality of Service)

- ➤ QoS Demands of IP Services
- QoS Architecture in IP Networks (DiffServ, IntServ)
- > Routing & Infrastructure of ISPs and in the global Internet
- Content Delivery via CDN/P2P Overlays, Clouds from Network, Service, Content Provider & User Perspective
- > IP Traffic Mix: Components, Growth, Variability
- Measurement, Monitoring & Network/Traffic Management

Statistics on Internet Traffic Growth

Bundesnetzagentur

CISCO

Bureau of

Sources: Cisco Systems, Visual Networking Index <www.cisco.com> Australian Bureau of Statistics http://abs.gov.au/ausstats/abs@.nsf/mf/8153.0 Hong Kong OFCA < www.ofca.gov.hk> Germany, Bundesnetzagentur < www.bundesnetzagentur.de>

Traffic traces in multiple (short) time scales

Evaluation of a traffic trace in $0.01s \rightarrow$, $0.1s \checkmark$ and $1s \checkmark$ intervals on broadband access platform:

Variability is decreasing on larger time scales, although long range dependency persists

Waiting time in the course of a trace of an MPLS flow Mean traffic rate: 18 Mb/s; Provided capacity: 26 Mb/s

Waiting time in the course of a trace of an MPLS flow Mean traffic rate: 18 Mb/s; Provided capacity: 24 or 26 Mb/s

Waiting time in the course of a trace of an MPLS flow Mean traffic rate: 18 Mb/s; Provided capacity: 22.5, 24, 26 Mb/s

