Representação Gráfica (Graph Drawing)

Teoria dos Grafos,

Profa Patrícia D. L. Machado, UASC/UFCG

Representação Gráfica

- Um grafo pode ser representado de diferentes maneiras, desde que estas representações retratem fielmente sua definição formal.
- No entanto, o arranjo de vértices e arestas em uma representação afeta a compreensão, usabilidade, construção e estética.
- Representação gráfica de grafos (*Graph drawing*) combina métodos de teoria dos grafos e visualização de informações para derivar descrições em duas dimensões de grafos que representam aplicações tais como análise de redes sociais, cartografia, linguística, bioinformática, etc.

Conteúdo desta Aula

- Métricas
- Layouts

Métricas de Qualidade

- Medidas objetivas usadas para avaliar a estética e a usabilidade de uma representação.
- Métodos de layout tentam otimizar medidas específicas.

Crossing Number

 O crossing number cr(G) de um grafo G é o menor número de cruzamento de arestas possível em uma representação de G no plano.

• Estudos mostram que representações com poucos cruzamentos são

melhor compreendidas.

Área

A área de uma representação é o tamanho de sua menor caixa delimitadora (bounding box), em relação à menor distância entre quaisquer 2 vértices.

Representações com área menor são geralmente preferíveis àquelas com área maior, porque permitem que as características do desenho sejam mostradas de forma mais legível.

Grupos de Simetria (Symmetry Groups)

Simetria entre grupos de vértices de um grafo deve ser representada tanto quanto possível.

Image from: http://www.it.usyd.edu.au/~shhong/img/2d14.png

Número de dobras (bends) e Tamanho de Aresta

A complexidade da representação de uma aresta pode ser medida pelo seu número de dobras (bends).

Minimizar o número de dobras totais na representação tem como objetivo deixar uma aresta tão simples quanto possível de ser entendida.

Também é importante ter tamanhos uniformes.

Número de Inclinação (*Slope Number*)

Número mínimo de inclinações distintas de arestas que são necessárias em uma representação com linhas retas, permitindo cruzamentos.

Métricas podem ser conflitantes

Métodos de Layout

Visam produzir um arranjo de vértices e arestas em uma representação que facilite a compreensão, usabilidade, construção e estética do grafo.

Métodos de Layout: Force-based

Modifica o arranjo original com base em um sistema de forças, tipicamente forças atrativas entre vértices adjacentes e repulsivas entre todos os pares de vértices.

Busca um arranjo onde os tamanhos das arestas são menores e vértices são adequadamente separados.

Force-based (Organic)

Baseado em força. Grafos não direcionados. Bioinformática, Representação de Conhecimento, etc.

Hierárquico

Identifica relação de precedência em grafos direcionados.

Aplicações:

- Workflows
- Engenharia de Software
- Modelo de dados

Orthogonal

Grafos de tamanho médio. Evita sobreposição de vértices, e minimiza cruzamentos e curvaturas. Utiliza apenas linhas horizontais e verticais. Engenharia de Software.

Circular

Enfatiza grupos (particionamento) e árvores (estrutura radial) dentro de uma rede. Arranja grupos em círculos separados, com topologia estrela. Redes Sociais e de Computadores.

Métodos de Layout: Radial

Vértices são organizados em círculos virtuais em torno de um centro comum. Segue uma medida de Centralidade. Ex. Mínima quantidade de círculos.

JGraphX

É uma biblioteca Java Swing que provê visualização e interação com grafos direcionados.

Dá suporte a diferentes algoritmos de layout.

Class JGraphXAdapter

Adaptador para desenhar um grafo gerado usando a biblioteca JGraphT.

Construtor:

JGraphXAdapter(ListenableGraph < V,E > graph)

JGraphXAdapter é um adaptador para desenho de grafos da biblioteca JGraphT com a biblioteca JGraphX.

Método para criar visualição em DrawUtil

```
public class DrawUtil {
23
       public enum layout type {CIRCLE,ORGANIC,HIERARCHICAL,ORTHOGONAL};
24
25
26
       // Graphic view for directed graphs
       public static <V,E> void createAndShowGui(Graph <V,E> graph, String frameLabel,
27⊝
                                                   boolean directed.
28
                                                   boolean danglingEdges,
29
                                                   boolean labelsVisible,
30
                                                   boolean labelsClipped,
31
                                                   layout_type layoutType
33
                ) {
```


Referências

```
yEd (<a href="https://www.yworks.com/products/yed">https://www.yworks.com/products/yed</a>)
```

Graph Drawing (https://en.wikipedia.org/wiki/Graph_drawing)

JGraphT (JGraphXAdapter)

(http://jgrapht.org/javadoc/)

Referências Adicionais:

JGraphX (https://github.com/jgraph/jgraphx)

(https://jgraph.github.io/mxgraph/java/docs/manual_javavis.html)
(https://jgraph.github.io/mxgraph/java/docs/index.html)