10. Modelarea și eliminarea zgomotelor din imaginile digitale

10.1. Introducere

Zgomotul este o informație nedorită care deteriorează calitatea unei imagini. El se definește ca orice proces (n) care afectează imaginea achiziționată în memorie (f) și nu face parte din scenă (semnalul inițial - s). În conformitate cu modelul de zgomot aditiv, acest proces se poate scrie:

$$f(i,j) = s(i,j) + n(i,j)$$
 (10.1)

Zgomotul din imaginile digitale poate proveni dintr-o mulţime de surse. Procesul de achiziţie al imaginii digitale, care converteşte un semnal optic într-un semnal electric şi apoi într-unul digital este un proces prin care zgomotele apar în imagini digitale. La fiecare pas din acest proces există fluctuaţii cauzate de fenomene naturale şi acestea adaugă o valoare aleatoare la extragerea fiecărei valori a luminozităţii pentru un pixel dat.

10.2. Modelarea zgomotelor

Zgomotul (n) poate fi modelat fie printr-o histogramă sau o funcție a densității de probabilitate care se suprapune peste cea a imaginii originale (s). În continuare se vor prezenta modele pentru cele mai des întâlnite tipuri de zgomote: zgomotul de tip sare-şi-piper (salt&pepper) și zgomotul de tip gaussian. În literatură mai există și alte modele cum ar fi modelul exponențial negativ, modelul gamma/Erlang, modelul Ralyeigh (vezi note de curs!).

10.2.1. Zgomotul sare-şi-piper (salt&pepper)

În modelul de zgomot de tip *salt&pepper* există doar două valori posibile, *a* și *b*, și probabilitatea de apariție a fiecăruia este mai mică de 0.1 (la valori mai mari, zgomotul va domina imaginea). Pentru o imagine cu 8 biți/pixel, valoarea de intensitate tipică pentru *zgomotul pepper* este apropiată de 0 și pentru *zgomotul salt* este apropiată de 255.

Fig. 10.1 Funcția densității de probabilitate a modelului de zgomot salt&pepper.

$$FDP_{sare\&\ piper} = \begin{cases} A & pentru\ g = a\ ("\ piper") \\ B & pentru\ g = b\ ("\ sare") \end{cases}$$
(10.2)

Zgomotul salt&pepper este în general cauzat de funcționarea proastă a celulelor din senzorii camerelor sau de greșeli ale locațiilor de memorie sau de erori de sincronizare în procesul de digitizare sau de erori de transmisie.

10.2.2. Zgomotul gaussian

Este un zgomot al cărui funcție a densității de probabilitate are o formă gaussiană:

Fig. 10.2 Funcția densității de probabilitate a modelului de zgomot gaussian.

$$FDP_{Gaussian} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(g-\mu)^2}{2\sigma^2}}$$
 (10.3)

unde:

g = nivel de gri;

 $\mu = media;$

 σ = deviaţia standard;

Aproximativ 70% din valori sunt încadrate între $\mu \pm \sigma$ iar 90% dintre valori sunt cuprinse între $\mu \pm 2\sigma$. Deși, din punct de vedere teoretic, ecuația definește valori cuprinse între $-\infty$ și $+\infty$, valorile FDP gaussiene se pot considera nule dincolo de intervalul $\mu \pm 3\sigma$.

Zgomotul gaussian este folosit pentru modelarea proceselor naturale care introduc zgomote (ex: zgomotul datorat naturii discrete a radiației și procesului de conversie al semnalului optic în semnal electric – detector/shot noise, zgomotul electric din timpul procesului de achiziție – amplificarea semnalului electric generat de senzori, etc.).

10.3. Eliminarea zgomotelor cu ajutorul filtrelor spațiale

10.3.1. Filtre ordonate (neliniare)

Filtrele ordonate sunt bazate pe un tip specific de statistică a imaginilor numită **statistică ordonată**. Ele se numesc neliniare pentru că nu se pot aplica printr-un operator liniar (așa cum este cazul operatorului de convoluție). Aceste filtre operează tot pe *ferestre* mici, și înlocuiesc valoarea pixelului central (similar cu procesul de convoluție). Statistica ordonată este o tehnică care aranjează toți pixelii într-o ordine secvențială, bazată pe valoarea nivelurilor de gri. Poziția unui element în cadrul acestei mulțimi ordonate va fi caracterizată de un *rang*. Dându-se o fereastră W de NxN pixeli, valorile pixelilor pot fi ordonate crescător după cum urmează:

$$I_1 \le I_2 \le I_3 \le \dots \le I_{N^2}$$
 (10.4)

Unde:

 $\{I_1, I_2, I_3, \dots, I_{N^2}\}$ reprezintă valorilor intensităților corespunzătoare sub-setului de pixeli din imagine, care sunt în fereastra W de NxN pixeli.

Exemplu: Dându-se o fereastră de dimensiune 3x3:

rezultatul aplicării statisticii ordonate va fi:

Filtrul median: selectează valoarea de mijloc a unui pixel dintr-o mulțime ordonată și îl înlocuiește în poziția corespunzătoare din imaginea destinație. În exemplul de mai sus valoarea selectată ar fi 104. Filtrul median permite eliminarea *zgomotului de tip salt&pepper*.

Fig. 10.3 Aplicarea filtrului median.

Filtrul de maxim: selectează cea mai mare valoare dintr-o fereastră ordonată de valori ale pixelilor. În exemplul de mai sus valoarea selectată ar fi 114. Acest filtru poate fi folosit pentru eliminarea *zgomotului de tip pepper*, dar aplicat pentru imagini cu zgomot de tip *salt&pepper* amplifică zgomotul de tip *salt*.

Filtrul de minim: selectează cea mai mică valoare dintr-o fereastră ordonată de valori ale pixelilor. În exemplul de mai sus valoarea selectată ar fi 85. Acest filtru poate fi folosit pentru eliminarea *zgomotelor de tip salt* dar aplicat pentru imagini cu zgomot de tip *salt&pepper* amplifică zgomotul de tip *pepper*.

10.3.2. Filtre liniare

Aceste filtre se aplică prin operația de convoluție (operație liniară) cu un nucleu de convoluție/filtru de tip trece jos (vezi lucrarea 9 !). În continuare se va prezenta modul de calcul al elementelor unui nucleu de convoluție folosit la eliminarea zgomotului de tip gaussian.

10.3.3. Proiectarea unui nucleu de convoluție gaussian de dimensiune variabilă

Eliminarea zgomotului gaussian trebuie făcută cu un filtru având o formă și o dimensiune adecvată, în concordanță cu deviația standard σ a zgomotului gaussian care afectează imaginea (vezi Fig. 10.2). Dimensiunea w unui astfel de filtru se alege de obicei de 6σ (exemplu: pentru un zgomot gaussian cu σ =0.8 \Rightarrow w = 4.8 \approx 5).

Construcția elementelor unui astfel de nucleu/filtru gaussian G se va face cu formula de mai jos:

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$
(10.5)

Unde:

 (x_0, y_0) – sunt coordonatele liniei și coloanei centrale a nucleului (vezi Fig. 10.4).

Fig. 10.4 Exemplu de construire al unui nucleu/filtru gaussian G de dimensiune 5x5.

10.3.4. Filtrarea/restaurarea imaginii

Se realizează prin convoluția imaginii sursă cu nucleul/filtrul gaussian calculat anterior:

$$I_D = G * I_S \tag{10.6}$$

În cazul în care dimensiunea w a filtrului este mare, operația de convoluție poate fi costisitoare (w x w înmulțiri pentru fiecare pixel). În acest caz se poate folosi proprietatea de separabilitate a funcției gaussiene:

$$G(x, y) = G(x)G(y)$$
(10.7)

și înlocuirea convoluției cu un nucleu bidimensional (Fig. 10.5) cu 2 convoluții cu câte un nucleu unidimensional G_x și G_y :

$$I_{D} = (G_{x}G_{y}) * I_{S} = G_{x} * (G_{y} * I_{S})$$
(10.8)

unde:

 G_x şi G_y sunt vectorii liniei şi coloanei centrale a nucleului bidimensional (Fig. 10.5):

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$
 (10.9)

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

$$G(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y-y_0)^2}{2\sigma^2}}$$
(10.10)

Fig. 10.5 Ilustrarea celor două componente vectoriale G_x și G_y în care poate fi separat un nucleu gaussian bidimensional.

În acest caz numărul de înmulțiri efectuate pentru fiecare pixel este w pentru fiecare dintre cele două parcurgeri/convoluții ale imaginii.

10.4. Calcularea și afișarea timpului de procesare

```
double t = (double)getTickCount(); // Găsește timpul curent [ms]
// ... Procesarea propriu-zisă ...
// Găsește timpul current din nou și calculează timpul scurs [ms]
t = ((double)getTickCount() - t) / getTickFrequency();
// Afișarea la consolă a timpului de procesare [ms]
printf("Time = %.3f [ms]\n", t * 1000);
```

10.5. Activități practice

- 1. Se va implementa un filtru median de dimensiune w variabilă (w = 3, 5 sau 7), specificată de utilizator. Afișați timpul de procesare.
- 2. Se va implementa operația de filtrare cu un nucleu gaussian bidimensional cu dimensiunea w variabilă (w = 3, 5 sau 7), specificată de utilizator. Valorile componentelor nucleului gaussian se vor calcula automat în funcție de σ ($\sigma = w/6$), în conformitate cu (10.5). Afișați timpul de procesare. Comparați timpii de procesare obținuți pentru w variabil.
- 3. Se va implementa operația de filtrare cu un nucleu gaussian separat în cele două componente vectoriale G_x și G_y cu dimensiunea w variabilă (w = 3, 5 sau 7), specificată de utilizator. Valorile componentelor vectorilor G_x și G_y se vor calcula automat în funcție de σ ($\sigma = w/6$), în conformitate cu (10.9) și (10.10). Afișați timpul de procesare. Comparați timpii de procesare obținuți cu cele două metode de aplicare a filtrului gaussian: filtru bidimensional vs. filtru vectorial.
- 4. Salvați-vă ceea ce ați lucrat. Utilizați aceeași aplicație în laboratoarele viitoare. La sfârșitul laboratorului de procesare a imaginilor va trebui să prezentați propria aplicație cu algoritmii implementați!!!

Bibliografie

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002