Part III - Algebraic Geometry Lectured by Dhruv Ranganathan

Artur Avameri

Contents

0	Intr	roduction	2
1	Beyond algebraic varieties		2
	1.1	Summary of classical algebraic geometry	2
	1.2	Limitations of classical algebraic geometry	4
	1.3	The spectrum of a ring	4
	1.4	A topology on Spec A	5
	1.5	Functions on opens	5

0 Introduction

6 Oct 2022,

Lecture 1

The course consists of four parts.

- (1) Basics of sheaves on topological spaces.
- (2) Definition of schemes and morphisms.
- (3) Properties of schemes (e.g. the algebraic geometry notion of compactness and other properties).
- (4) A rapid introduction to the cohomology of schemes.

The main reference for the course is Hartshorne's Algebraic Geometry.

1 Beyond algebraic varieties

08 Oct 2022, Lecture 2

1.1 Summary of classical algebraic geometry

We let $k = \overline{k}$ be a algebraically closed field and consider $\mathbb{A}^n_k = \mathbb{A}^n = k^n$ as a set.

Definition 1.1. An **affine variety** is a subset $V \subset \mathbb{A}^n$ of the form $\mathbb{V}(S)$ with $S \subset k[x_1, \ldots, x_n]$, where \mathbb{V} is the common vanishing locus.

Note that $\mathbb{V}(S) = \mathbb{V}(I(S))$ (the ideal generated by S). By Hilbert Basis Theorem (since $k[x_1, \ldots, x_n]$ is noetherian), $\mathbb{V}(I(S)) = \mathbb{V}(S')$ for some finite set $S \subset k[x_1, \ldots, x_n]$.

In fact, $\mathbb{V}(I) = \mathbb{V}(\sqrt{I})$, where

$$\sqrt{I} = \{ f \in k[x_1, \dots, x_n] \mid f^m \in I \text{ for some } m \ge 0 \}$$

is the **radical** of I. For example, in k[x], if $I=(x^2)$, then $\sqrt{I}=(x)$.

Definition 1.2. Given varieties $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$, a **morphism** is a (settheoretic) map $\phi: V \to W \subset \mathbb{A}^m_k$ such that if $\phi = (f_1, \dots, f_m)$, then each f_i is the restriction of a polynomial in $\{x_1, \dots, x_n\}$.

An **isomorphism** is a morphism with a two–sided inverse.

Our basic correspondence is

{Affine varieties over k}/up to isomorphism

 \leftrightarrow

 $\{\text{finitely generated } k\text{--algebras } A \text{ without nilpotent elements}\}$

A finitely generated k-algebra is just a quotient of a polynomial ring in finitely many variables. A nilpotent element is such that some power of it is zero. For example, in $k[x]/(x^2)$, the element x is nilpotent.

How does this correspondence work? Given a variety V (representing an isomorphism class), we write $V = \mathbb{V}(I)$ for $I \subset k[x_1, \ldots, x_n]$ a radical ideal¹, and map $V \mapsto k[x_1, \ldots, x_n]/I$.

For the reverse, if A is a finitely generated nilpotent free algebra, then $A \cong k[y_1, \ldots, y_m]/J$ where we can choose J to be radical (exercise: why?).

We have to check that this is independent of our choice on both sides (exercise: think through this, it should be clear).

Definition 1.3. The algebra associated to V is classically denoted k[V] and called the **coordinate ring of** V.

We have the compatibility of morphisms with our basic correspondence: there is a bijection between

$$Morphisms(V, W) \leftrightarrow Ring homomorphisms_k(k[W], k[V])$$

(here $\operatorname{RingHom}_k$ means that our homomorphisms preserve k).

We can now make our set into a topological space:

Definition 1.4. Let $V = \mathbb{V}(I) \subset \mathbb{A}^n$ be a variety with coordinate ring k[V]. The **Zariski topology** on V is defined such that the closed sets are $\mathbb{V}(S)$, where $S \subset k[V]$.

If $V \cong W$, then the Zariski topological spaces are homeomorphic as varieties (exercise).

Theorem 1.1 (Nullstellensatz). Fix V a variety and let k[V] be its coordinate ring. Given $p \in V$, we can produce a homomorphism $\operatorname{ev}_p : k[V] \to k$ by sending $f \mapsto f(p)$. Note that ev_p is surjective (since we have constant functions), hence $\ker(\operatorname{ev}_p) = m_p$ is a maximal ideal, giving us a map

$$\{\text{points of } V\} \to \{\text{maximal ideals in } k[V]\}.$$

Nullstellensatz says that this is actually a bijection. For the converse map, given $m \subset k[V]$, we get a quotient $k[V] \to k[V]/m = k$ (Nullstellensatz says this extension is finite, hence must be k). So using/choosing a representation for V in $k[x_1, \ldots, x_n]$ gives a surjective homomorphism onto k and specifies a bunch of points.

¹A radical ideal is an ideal equal to its radical.

1.2 Limitations of classical algebraic geometry

Question. What is an abstract variety, i.e. "some "space" X such that locally as a cover $\{U_i\}$, each U_i is an affine variety, compatible with overlaps".

Example 1.1 (non-algebraically closed fields). Take $I = (x^2 + y^2 + 1) \subset \mathbb{R}[x, y]$. Then $\mathbb{V}(I) = \emptyset \subset \mathbb{R}^2$, but I is prime, so radical, so nullstellensatz fails.

Question. On what topological space is $\mathbb{R}[x,y]/(x^2+y^2+1)$ "naturally" the set of functions? (or \mathbb{Z} , or $\mathbb{Z}[x]$).

Example 1.2 (Why restrict to radical ideals?). Take $C = \mathbb{V}(y - x^2) \subset \mathbb{A}^2_k$ and $D = \mathbb{V}(x,y)$, so $C \cap D = \mathbb{V}(y,y-x^2) = \mathbb{V}(x,y) = \{(0,0)\}$. This is a single point, but if $D_{\delta} = \mathbb{V}(y+\delta)$ for some $\delta \in k$, then $C \cap D_{\delta} = \{\pm \sqrt{\delta}\}$, which is 2 points for all $\delta \neq 0$. In other words, intersections of varieties don't want to be varieties.

1.3 The spectrum of a ring

11 Oct 2022, Lecture 3

Let A be a commutative ring with identity. We will define a topological space on which A is the ring of functions.

Definition 1.5. The **Zariski spectrum** of A is

Spec
$$A = \{ \mathfrak{p} \subset A \mid \mathfrak{p} \text{ is a prime ideal} \}.$$

A ring homomorphism $\phi: A \to B$ induces a map $\phi^{-1}: \operatorname{Spec} B \to \operatorname{Spec} A$ by $q \mapsto \phi^{-1}(q)$. In general, the preimage of a prime ideal is a prime ideal.

Warning. This would fail if we only considered maximal ideals, since the preimage of a maximal ideal need not be maximal.

Given $f \in A$ and $\mathfrak{p} \in \operatorname{Spec}(A)$, we have an induced $\overline{f} \in A/\mathfrak{p}$ obtained via a quotient. Informally, we can evaluate any $f \in A$ at points $\mathfrak{p} \in \operatorname{Spec}(A)$ with the caveat that the codomain of this evaluation depends on \mathfrak{p} .

Example 1.3. Take $A = \mathbb{Z}$. Then Spec $A = \operatorname{Spec}(\mathbb{Z}) = \{p \mid p \text{ is prime}\} \cup \{(0)\}$. Let's pick an element in \mathbb{Z} , say $132 \in \mathbb{Z}$. Given a prime p, we can look at $132 \pmod{p} \in \mathbb{Z}/p$. The takeaway here is that

Spec
$$\mathbb{Z} \to \operatorname{Space}$$

 $132 \in \mathbb{Z} \to \operatorname{a}$ function
 $132 \pmod{p} \to \operatorname{value}$ of that function at p .

Note that based on the value of p, our codomain changes from point to point.

Example 1.4. Take $A = \mathbb{R}[x]$, then Spec $\mathbb{R}[x] = \mathbb{C}$ /complex conjugation \cup $\{(0)\}$.

Exercise. Draw Spec $\mathbb{Z}[x]$ and Spec k[x] for k any field (i.e. describe all prime ideals and their containment). This is on example sheet 1.

Example 1.5. If $A = \mathbb{C}[x]$, then Spec $A = \mathbb{C} \cup \{(0)\}$, where given $a \in \mathbb{C}$, we send it to the maximal ideal $\langle z - a \rangle$.

1.4 A topology on Spec A

Fix $f \in A$. Then $\mathbb{V}(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \equiv 0 \pmod{\mathfrak{p}} \} \subset \operatorname{Spec} A$. (Note that $f \equiv 0 \pmod{\mathfrak{p}}$ is the same as $f \in \mathfrak{p}$).

Similarly for $J \subset A$ an ideal, $\mathbb{V}(J) = \{ \mathfrak{p} \in \text{Spec } A \mid f \in \mathfrak{p} \ \forall f \in J \}.$

Proposition 1.2. The sets $\mathbb{V}(J) \subset \operatorname{Spec} A$ ranging over all ideals J form the closed sets of a topology on $\operatorname{Spec} A$. This topology is called the **Zariski** topology.

Proof. Easy fact: \varnothing and Spec A are closed, since we have functions 1 (vanishing nowhere) and 0 (vanishing everywhere). Since $\mathbb{V}(\sum_{\alpha} I_{\alpha}) = \bigcap_{\alpha} \mathbb{V}(I_{\alpha})$ (this is because $I_1 + I_2$ is the smallest ideal containing $I_1 \cup I_2$), arbitrary intersections are closed.

Finally, we claim $\mathbb{V}(I_1) \cup \mathbb{V}(I_2) = \mathbb{V}(I_1 \cap I_2)$. The containment \subset is clear: if a prime ideal contains I_1 or I_2 , it contains $I_1 \cap I_2$. Conversely, $I_1I_2 \subset I_1 \cap I_2$, so if $I_1I_2 \subset I_1 \cap I_2 \subset \mathfrak{p}$, then by primality $I_1 \subset \mathfrak{p}$ or $I_2 \subset \mathfrak{p}$.

Example 1.6. Let $k = \mathbb{C}$ and consider Spec $\mathbb{C}[x,y]$. We make a few observations:

- The point $(0) \in \text{Spec } \mathbb{C}[x,y]$ is dense in the Zariski topology, i.e. $\overline{\{(0)\}} = \text{Spec } \mathbb{C}[x,y]$ because every prime ideal contains (0) (because we are in an integral domain).
- Consider the prime ideal $(y^2 x^3)$ (which is prime since the quotient is an integral domain). Consider a maximal ideal $\mathfrak{m}_{a,b} = (x a, y b)$. We can ask: when is $\mathfrak{m}_{a,b} \in \overline{\{(y^2 x^3)\}}$? The answer: if and only if $b^2 = a^3$, e.g. (1,1) (see example sheet 1). The lesson here is that points are not closed in the Zariski topology.

1.5 Functions on opens

Definition 1.6. Let $f \in A$. Define the **distinguished open** corresponding to f to be

$$\mathcal{U}_f = (\operatorname{Spec}(A))/\mathbb{V}(f).$$

Example 1.7. • Let $A = \mathbb{C}[x]$, so Spec $A = \mathbb{C} \cup \{(0)\}$ (with the Zariski topology). Take f = x and consider \mathcal{U}_x . Recall the bijection Spec $\mathbb{C} \leftrightarrow \mathbb{C} \cup \{(0)\}$ by $(x - a) \leftrightarrow a \in \mathbb{C}$ and $(0) \leftrightarrow (0)$. Then $\mathbb{V}(x) = \{\mathfrak{p} \in \operatorname{Spec} A \mid x \in \mathfrak{p}\} = \{(x)\}$, so $\mathcal{U}_f = \operatorname{Spec} A \setminus \{(x)\}$.

• More generally, suppose we fix $a_1, \ldots, a_r \in \mathbb{C}$, then Spec $A \setminus \{(x-a_i)\}_{i=1}^r = \mathcal{U}$ and $\mathcal{U} = \mathcal{U}_f$, where $f = \prod_{i=1}^r (x - a_i)$.

Lemma 1.3. The distinguished opens \mathcal{U}_f taken over all $f \in A$ form a basis for the Zariski topology on Spec A.

Proof. Left as an exercise on example sheet 1.

A bit of commutative algebra:

Definition 1.7. Given $f \in A$, the **localization of** A at f is $A_f = A[x]/(xf-1)$, which we can informally think of as $A_f = A[\frac{1}{f}]$.

Lemma 1.4. The distinguished open $\mathcal{U}_f \subset \operatorname{Spec} A$ is naturally homeomorphic to $\operatorname{Spec} A_f$.