Mecánica Analítica: Tareal

	1.5: Comprobar la econción 1.31 A x (B x C) = (A·O) B · (A·B) C Jesarrollando anhos componentes en componentes cartesiónos.	
	Sea $A = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$, $\bar{g} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, $\bar{c} = C_x \hat{i} + C_y \hat{j} + C_z \hat{k}$ $\Rightarrow \bar{g} \times \bar{c} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ B_x & B_y & B_z \end{bmatrix} = \begin{bmatrix} B_y C_z - B_z C_y \end{pmatrix} \hat{i} + (B_z C_x - B_x C_z) \hat{j} + (B_x C_y - B_y C_x) \hat{k}$	
	$\Rightarrow A \times (\overline{B} \times \overline{C}) = \widehat{1}$ A_{X} A_{Y} A_{Y} A_{Z} $B_{Y} C_{Z} B_{Z} C_{Y}$ $B_{Z} C_{X} - B_{X} C_{Z}$ $B_{X} C_{Y} - B_{Y} C_{X}$	
	= [Ay (Bx Cy - By Cx) - Az (Bz Cx - Bx Cz)]? + [Az (By [z - Bz Cy) - Ax (Bx Cy - By Cx)]?] + [Az (By Cz - Bz Cy) - Ax (Bx Cy - By Cx)] Îx	
	= [Ay Bx Cy - Ay By Cx - Az Bz Cx + Az Bx Cz]î + [Az By Cz - Az Bz Cy - Ax Bx Cy + Ax By Cx] ĵ + [Az By Cz - Az Bz Cy - Ax Rx Cy + Ax By Cx] k	
9.9	Por otro lado: (A. C) B - (A. B) C = (AxCx + Ay Cy + Az (z) (Bxî + By î + Bzk) - (AxBx + AyBy + AzBz) (Cxî+ Cyî+Cz k	1
	$= [A_{\times}B_{\times}C_{\times} + A_{Y}B_{\times}C_{Y} + A_{z}B_{\times}C_{z}]\hat{i} + [A_{\times}B_{Y}C_{\times} + A_{Y}B_{Y}C_{Y} + A_{z}B_{z}C_{z}]\hat{i}$ $+ [A_{\times}B_{z}C_{\times} + A_{Y}B_{z}C_{Y} + A_{z}B_{z}C_{z}]\hat{k} + [-A_{\times}B_{x}C_{X} - A_{Y}B_{Y}C_{X} - A_{z}B_{z}C_{X}]\hat{i}$	
	+ [- Ax Bx Cy - Ay By Cy - AzBz Cy]]) + [-Ax Bx Cz - Ay By Cz - Az Bz Cz] K	
	= [AyBx Cy + AzBx Cz - Ay By Cx - Az Bz Cx] î + [AxBy Cx + AzBy Cz - AxBx Cy - Az Bz Cy] ĵ	the second of the second second second second second
	+ [Ax Bz Cx + Ay Bz Cy - Ax Bx Cz - Ay By Cz] = (2)	
	Ve ms que (1) = (2) y así se compreba que $Ax(BxC) = (A \cdot C)B - (A \cdot B)C$	

hallese el triple producto de $\hat{A} = 3i + yj + 5k$, $\hat{R} = -i + yj - 2k$ Usamos la identidad probada: para escribir $A \times (8 \times \bar{c}) = (A \cdot C)B - (A \cdot R)C$ $\hat{A} \cdot \hat{C} = (3i + yj + 5k) \cdot (21 - j + k) = 3(2) + y(-) + 5(1) = 7$ $\hat{A} \cdot \hat{B} = (3i + yj + 5k) \cdot (-i + yj - 7k) = 3(-i) + y(y) + 5(-5) = 31$ $\Rightarrow (A \cdot C)B - (A \cdot B)C = 7B - 3C$ = 7(-i + yj - 2k) - 3(2i - j + k) = -13i + 3ij - 17k

Prime		05 (00	il de	10	100	C1	00.	copb	nar	col	leula	ndo	el	Pro	beto	e	scalar	-	triple	3//2/	ا بد	1 Lu	الدا
a) b, = b_ =	7 - 31 -	+ 3	R		コ	Ĩ,	٠٤٦	× p ³ :		1 -3) - Ч	3 -		2(-(-	(E) (y)		= /	0	31(31)	Сор	lana	(GI)
p3 p2	= î = -3î = 2î	+ 2)-	+ 2 K + 2 K		7 6						-0.00	mention of the second							(-3)(- (2)) \$\(\pi\)	1) - 21	(2)	gplane	
A ho	ca us	Zomo Z	las	tóin b	oolas bz X	p ³	ovu =	lo 3	5	re	cipa	2005	de	? [O2	vec	tores	5	6)				
7	Ď,		b ₂ .																				
		H	30	-3 2	5	1	û 2 -1	-	30	[(t	- 3	- 101	î/(s	- ((-3)	l-1) -	1(5)	((5	ĵ +)	(-3)(-1) -	(-4)(2)	ù
- Ž	ı	b ₃ y	k b1		30	1 2		j - 1 2			T								11)ĵ]
											=	30	D	(-	5	3	+ 1	5	(x)	d			
, . .	3	5, xb.		30	1 -	١	\$ Z Z	and the same of the same of	2	=		30		z)(z) (11					(1)(2 3)) v + 2				

P

a) Una rotain es un transformación de condenados que impica un camo de base. Considerando los dos cogintos de vectores base inidad ortogonales é, êz éz y e, éz, êz es relacionados por e; = \(\bar{z} \tau \) e; de mostrar é; = \(\bar{z} \tau \); e; Como Ci, ez ez forman una base, entonces un vector E; se prede escribir como combinación lineal de esta base $\bar{e}_{j} = \sum_{i=1}^{3} a_{ij} \bar{e}_{i}' = a_{ij} \bar{e}_{i}' + a_{2j} \bar{e}_{i}' + a_{3j} \bar{e}_{3}' \dots (1)$ Ahora tomanos al producto punto de ambos lados con e: Porque {e', e', e'} Sólo sobrevive el término i-ésimo. $Q_{ij} = \bar{e}_{j} \cdot e_{i} = \bar{e}_{j} \cdot \bar{Z} + \bar{z}_{ij} \bar{e}_{j} + \bar{z}_{ij} \bar{e}_{j} + \bar{z}_{ij} \bar{e}_{j}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij} + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij} + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i}) + \bar{z}_{ij} \bar{e}_{ij} + \bar{z}_{ij} \bar{e}_{ij}$ $= \bar{e}_{j} \cdot (\bar{z}_{ii} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{i} + \bar{z}_{ij} \bar{e}_{ij} + \bar{z}_{ij} \bar{$ al tomar el producto un e: es ortonormal, sóla sobrevive el término j-ésimo. al tomor el producto con éj : a = ti Regresando a w tenemos que al sustituir a; = tij, queda i Demestre que E Lijtin = Sju por ser un conjunto ortonormal { e, e, e, e, e, ? Partimos de que Ej. ex = Sjn Usamos el moltado anterior : (Zt; e:). (Zt; ke:) = Sjk -> (t, e'+ tz) e'+ tz) e'+ tz) e'+ tzke'+ tzke' = Sjk Distributions: > $t_{ij} t_{ik} | e_i' e_i' | + t_{ij} t_{ik} | (e_i' e_i') + t_{ij} t_{ik} | e_i' e_i' | + t_{ij} t_{ik} | (e_i' e_i') + t_{ij} t_{ik} | ($ Usano ortonormalidad de { e', ez', ez' } y casi todos los productos desapareren - tij tin + tij tin + tij tin = Sjn = Z tij tik = Sjk

		ora (C =	3	Ei	-	4	t ĵ	+	(t'+	3) 6	4			-	-		200	. 10
Derivam			1		1				1					£2+	3)	k		1 ctes	205	ik sale
		=	3	î -	4 3	+	2	Ł	Ŕ,					J.		3		de	la	deri
Derivanos	de n	evo '	Para	la	aleb	ra (i	ń:	1 18			100 T	ofin			Ja	2	1			
	ā=	9 F 7 <u>2</u>	-	d dŁ	(3)	î .	+ 1	d dt	(-4)	3		dt	<i>[</i> 2	t)	k		1			
		7	0	1	+	0 3) +		2 Å		9			i	7					
			2	K			1	-												-

2.2 c) Obtener las expresiones de las componentes polares de la rebuided y la aceleración con r(t) = a/t , d(t) = 6t Podemos pensar como que estamo en coordenadas cilíndricas con Z(t) = 0 y usar las tormadas encontradas en clase para velocidad y aceleración en cilíndicas. コマードデナイの色のナ芝家 Conde $\dot{r} = \frac{dr}{dt} = \frac{d}{dt} \left(\frac{\alpha}{t} \right) = -\frac{\alpha}{t^2}$, $\dot{o} = \frac{d\dot{\phi}}{dt} = \frac{d}{dt} \left(\frac{bt}{t} \right) = \frac{b}{t}$ $\dot{\xi} = \frac{dz}{dt} = \frac{dz}{dt} = 0$ $\bar{V} = -\frac{a}{t^2} \hat{e_r} + \left(\frac{a}{t}\right)(b) \hat{e}_0 + O\hat{k}$ $= -\frac{a}{t^2} \hat{e}_r + \frac{ab}{t} \hat{e}_{\phi}$ En clase vinos también la acderación en coodenadas cilíndicas como: $\overline{a} = (\ddot{r} - r\dot{\phi}^2) \hat{e}_r + (r\dot{\phi} + 2\dot{r}\dot{\phi}) \hat{e}_{\dot{\phi}} + \ddot{z}\hat{k}$ $doc de \dot{r} = -a/t^2 \Rightarrow \dot{r} = 2a/t^3 \qquad \dot{q} = b \Rightarrow \dot{q} = 0 \qquad \dot{z} = 0 \Rightarrow \dot{z} = 0$ y por lo tento, queda: $\bar{a} = \left(\frac{za}{4} - \left(\frac{a}{4}\right)\left(\frac{b}{b}\right)^{2}\right)\hat{e}_{r} + \left(\left(\frac{a}{4}\right)\left(0\right) + 2\left(-\frac{a}{4}\right)\left(b\right)\right)\hat{e}_{0} + 0\hat{k}$ $\frac{2a-ab}{t}$ \hat{e}_r + $\left(-\frac{2ab}{t^2}\right)$ \hat{e}_{φ}

Haller las componentes estéricas de la velocidad y adelección de una partícula con r= 6 0= 00 vs wt d= wt Usaros las expresiones para velocidad en concenadas estéricas = + êr + r 0 ê0 + r 500 \$ ê0 donde $\vec{r} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{dt} = 0$, $\vec{\theta} = \frac{d}{dt} (\theta_0 \cos \omega t) = -\omega \theta_0 \sin \omega t$, $\vec{\theta} = \frac{d\theta}{dt} = \frac{d}{dt} \omega t = \omega t$ semistifeed: = v = 0 êr + (b)(-w & senwt) eo + (b) (sen (os wswt)) (w) êp - wob b sen w t en + b w sen (o coswt) êo Y la expresión: de aceleración es: $\vec{a} = (\ddot{r} - r\ddot{\theta}^2 - r sen^2\theta \dot{\phi}^2) \hat{e}_r + (r\ddot{\theta} + 2\ddot{r}\dot{\theta} - r sen\theta \dot{\phi}^2) \hat{e}_\theta$ $+ (r sen \theta \dot{\phi} + 2\ddot{r} \dot{\phi} sen \theta + 2r \cos\theta \dot{\phi} \dot{\phi}) \hat{e}_\theta$ Once $r = b \Rightarrow \dot{r} = 0 \Rightarrow \ddot{r} = 0$ $\theta = \theta_1 \cos \omega t \Rightarrow \dot{\theta} = -\theta_0 \omega \sin t \Rightarrow \dot{\theta} = -\theta_0 \omega^2 \cos \omega t$ $\phi = \omega t \Rightarrow \dot{\phi} = \omega \Rightarrow \dot{\phi} = 0$ Sustituings: + (6 (-8 wileswt) + 2 (0) (-8, wsen wt) - 6 sen (& wswt) ws (8, wswt) (w) 2) 20 + (6 sen (80 cos cut) (0) + 2 (0) (w) sen (80 cos cut) + 26 cos (80 cos wt) | -80 cos sen wt) co a = [- b 00 42 ser (wt) - b w2 ser (00 cos (wt))] er + [- b 00 w2 ws(wt) - bw2 sen (00 cos(wt)) cos (00 cos(wt))] 60 + [- Z b w o cos (on cos (wt)) Sen (wt)] eq