Assignment Date:	05-10-2022
Team ID:	PNT2022TMID32788
Team Members:	Roshana V S
	Sneka M S
	Sneha K
	Sravani Sowmya Shri J

1 . Importing Required Package

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

2.Loading the Dataset

df = pd.read_csv("abalone.csv")df

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	- 7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	255	55442		(100)	1227			***	- 42
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3. Visualizations

Univariate Analysis

sns.displot(df.Sex)

Bi- Variate Analysis

df.plot.line()

Result:

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c81d866d0>

Multi - Variate Analysis

sns.lmplot("Diameter","Length",df,hue="Length", fit_reg=False);

Result:

4.Perform descriptive statistics on the dataset.

df.describe()

Result:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
```

Result:

```
False
1
       False
       False
2
       False
      False
      ...
False
4172
4173
       False
4174
       False
4175
      False
4176 False
Name: Sex, Length: 4177, dtype: bool
```

6. Find the outliers and replace the outliers.

```
\label{eq:dfcond} \begin{split} df["Rings"] &= np.where(df["Rings"] > &10, \; np.median, df["Rings"]) \\ df["Rings"] \end{split}
```

Result:

7. Check for Categorical columns and perform encoding.

```
pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]).head()
```

Result:

Di	lameter	Height	wnoie weight	Snucked weight	viscera weight	weight	Rings	Length_F	Length_I	Length_M		Sex_0.745	Sex_0.75	Sex_0.755	Sex_0.76	Sex_0.765	Sex_0.77	Sex_0.775	Sex_0.78	Sex_0.8
0	0.365	0.095	0.5140	0.2245	0.1010	0.150	<function at<br="" median="">0x7f6c9fd64cb0></function>	0	C	1		. 0	0	0	0	0	0	0	0	0
1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0		£ £1	8 811	. 0	0	0	0	0	0	0	0	0
2	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	C	0	(. 0	0	0	0	0	0	0	0	0
3	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	C	1	1	. 0	0	0	0	0	0	0	0	0
4	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	1	0		. 0	0	0	0	0	0	0	0	0
5 rows	× 144 col	lumns																		

8. Split the data into dependent and independent variables Split the data into Independent variables.

```
X = df.iloc[:, :-2].values print(X)
```

```
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
...
['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
['F' 0.625 0.485 ... 1.0945 0.531 0.261]
['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

Split the data into Dependent variables.

```
Y = df.iloc[:, -1].values print(Y)
```

Result:

```
[<function median at 0x7f6c9fd64cb0> 7 9 ... 9 10 
<function median at 0x7f6c9fd64cb0>]
```

9. Scale the independent variables.

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]]) print(df)
```

Result:

	Sex	Length	Diameter	Height	Whole we	eight :	Shucked	weight	N
0	M	0.513514	0.365	0.095	0.	5140		0.2245	
1	M	0.371622	0.265	0.090	0.	.2255		0.0995	
2	F	0.614865	0.420	0.135	0.	6770		0.2565	
3	M	0.493243	0.365	0.125	0.	5160		0.2155	
4	I	0.344595	0.255	0.080	0.	2050		0.0895	
4172	F	0.662162	0.450	0.165	0.	.8870		0.3700	
4173	M	0.695946	0.440	0.135	0.	9660		0.4390	
4174	M	0.709459	0.475	0.205	1.	1760		0.5255	
4175	F	0.743243	0.485	0.150	1.	0945		0.5310	
4176	M	0.858108	0.555	0.195	1.	9485		0.9455	
	Vis	cera weigh	t Shell	weight				R	ings
0		0.101	9	0.1500	<function< td=""><td>median</td><td>at 0x7</td><td></td><td></td></function<>	median	at 0x7		
1		0.048	5	0.0700					7
2		0.141	5	0.2100					9
3		0.1144	9	0.1550					10
4		0.039	5	0.0550					7
			•						
4172		0.239	9	0.2490	<function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>cb0></td></function<>	median	at 0x7	f6c9fd64	cb0>
4173		0.214	5	0.2605					10
4174		0.287	5	0.3080					9
4175		0.261	9	0.2960					10
4176		0.376	5	0.4950	<function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>cb0></td></function<>	median	at 0x7	f6c9fd64	cb0>

[4177 rows x 9 columns]

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
  train_size=0.8
  X = df.drop(columns = ['Sex']).copy()y
  = df['Sex']
  X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
  test\_size = 0.5
  X_{valid}, X_{test}, y_{valid}, y_{test} = train_test_split(X_{rem}, y_{rem}, test_size=0.5)print(X_{train}.shape),
  print(y_train.shape)
  print(X_valid.shape), print(y_valid.shape)
  print(X_test.shape), print(y_test.shape)
Result: (3341, 8)
  (3341,)
  (418, 8)
  (418,)
  (418, 8)
  (418,)
  (None, None)
```

11.Build the Model

```
test_size = 0.33
seed = 7
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed)
```

12. Train the model

X_train

Result:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>
		97779	150		1 1000	W	***	
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	¹ 6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7

0.

y_train

Result:

```
4131 I
3204 F
2622 F
2114 I
1422 M
...
1372 F
919 I
2550 I
537 M
1220 I
Name: Sex, Length: 2798, dtype: object
```

13.Test the model

X_test

Result:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	6
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9	
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10	
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7	
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9	
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
	5.4	(445)		222	50.0	244	e in	2.2	
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10	
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9	
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8	
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9	
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f6c9fd64cb0="" at="" median=""></function>	

1379 rows x 8 columns

y_test

```
1157
1125 M
      M
F
2053
3591
455
      M
3150
3037
      M
2050
      M
1690
      M
253
Name: Sex, Length: 1379, dtype: object
```

14.Measure the performance using Metrics