ARISTOTLE UNIVERSITY OF THESSALONIKI

SLAM for Autonomous Planetary Exploration using Global Map Matching

Author: Supervisor: Dimitrios GEROMICHALOS Assoc. Prof. Loukas PETROU

A thesis submitted to the Faculty of Engineering in partial fulfillment of the requirements for the degree of

Diploma in Electrical and Computer Engineering

February 3, 2018 Thessaloniki, Greece

Abstract

Write abstract here.....

Contents

A۱	bstrac	ct		iii
Co	onten	its		v
Li	st of	Figures	3	vii
Li	st of	Tables		ix
1	Intr	oductio	on	1
	1.1	Motiv	vation	1
	1.2	Proble	em Statement	1
		1.2.1	Presumptions	1
	1.3	Litera	ture Review	1
		1.3.1	Planetary Absolute Localization	1
		1.3.2	SLAM	
	1.4	Thesis	s Objectives and Organization	1
		1.4.1	Research Objectives	
		1.4.2	Organization	1
2	Alg	orithm	Design	3
	2.1		rithm Overview	3
	2.2	_	Registration	
		2.2.1	Point Cloud Processing	
		2.2.2	Map Prediction and Update	
	2.3	Data I	Fusion	
		2.3.1	Sensor Fusion	
		2.3.2	Neighborhood Fusion	3
	2.4	Pose I	Estimation	
		2.4.1	Initialization	
		2.4.2	Prediction	
		2.4.3	Update	3
		2.4.4	Resampling	3
		2.4.5	Estimation	3
	2.5	Pose (Correction	
		2.5.1	Global to Local Map Matching	
		252	Criteria Checking	3

			Elevation Features Checking	 		 . 3
			Traversed Distance Checking	 		 3
3	Syst	tem Imp	plementation			5
	3.1	Librar	ry	 		 . 5
		3.1.1	Concurrency	 		 . 5
		3.1.2	Robotic Software Framework	 		 . 5
		3.1.3	Orbiter Data Preprocessing	 		 . 5
	3.2	System	m Architecture	 		 . 5
	3.3	Planet	tary Rover Testbed	 		 . 5
4	Exp	eriment	tal Validation			7
	4.1	Scope	of Experiments	 		 7
		4.1.1	Environment	 		 7
		4.1.2	Metrics	 		 7
	4.2	Experi	iments on Pose Estimation	 		 7
		4.2.1	Relative Localization Results	 		 . 7
	4.3	Experi	riments on Global Map Matching	 		 . 7
		4.3.1	Absolute Localization Results	 		 7
		4.3.2	Map Resolution Viability	 	•	 7
5	Con	clusion	n			9
	5.1	Thesis	s Summary	 		 9
	5.2	Contri	ibutions	 		 9
	5.3	Directi	tions for Future Extensions	 		 9
	5.4	Applic	cations	 		 . 9

List of Figures

List of Tables

Introduction

- 1.1 Motivation
- 1.2 Problem Statement
- 1.2.1 Presumptions
- 1.3 Literature Review
- 1.3.1 Planetary Absolute Localization
- 1.3.2 SLAM
- 1.4 Thesis Objectives and Organization
- 1.4.1 Research Objectives
- 1.4.2 Organization

Algorithm Design

- 2.1 Algorithm Overview
- 2.2 Data Registration
- 2.2.1 Point Cloud Processing
- 2.2.2 Map Prediction and Update
- 2.3 Data Fusion
- 2.3.1 Sensor Fusion
- 2.3.2 Neighborhood Fusion
- 2.4 Pose Estimation
- 2.4.1 Initialization
- 2.4.2 Prediction
- 2.4.3 Update
- 2.4.4 Resampling
- 2.4.5 Estimation
- 2.5 Pose Correction
- 2.5.1 Global to Local Map Matching
- 2.5.2 Criteria Checking

Elevation Features Checking

Traversed Distance Checking

System Implementation

- 3.1 Library
- 3.1.1 Concurrency
- 3.1.2 Robotic Software Framework
- 3.1.3 Orbiter Data Preprocessing
- 3.2 System Architecture
- 3.3 Planetary Rover Testbed

Experimental Validation

- 4.1 Scope of Experiments
- 4.1.1 Environment
- 4.1.2 Metrics
- 4.2 Experiments on Pose Estimation
- 4.2.1 Relative Localization Results
- 4.3 Experiments on Global Map Matching
- 4.3.1 Absolute Localization Results
- 4.3.2 Map Resolution Viability

Conclusion

- 5.1 Thesis Summary
- 5.2 Contributions
- **5.3** Directions for Future Extensions
- 5.4 Applications