

Esercizio 2. Determinare gli eventuali estremi relativi e gli estremi assoluti della funzione definita dalla legge

$$\sqrt[3]{x^2(x-4)}$$
.

IR

$$\left((x) = \left[x^{2} (x-4) \right]^{\frac{1}{3}}$$

$$f'(x) = \frac{1}{3} \left[x^{2}(x-4) \right]^{-\frac{2}{3}} \left[2x(x-4) + x^{2} \right] =$$

$$= \frac{1}{3} \left(\frac{2 \times (x - 4) + x^{2}}{x^{2}} \right) = \frac{3 \times ^{2} - 8 \times }{3 \sqrt{(x^{2} \times - 4)^{2}}}$$

$$f(0) = x$$

$$f(x) = 400$$

$$f(\frac{8}{3}) = m$$

$$f(x) = 400$$

Estem Radiu

Esthem Assola;

Domino ×20 Esercizio 2. Determinare gli eventuali estremi relativi e gli estremi assoluti della funzione definita dalla legge]('(x) x=0 $f(x) = \frac{1}{2} \sqrt{\frac{x}{1+x^2}} \left(\frac{1+x^2}{1+x^2} - x + \frac{2x}{2} \right) = \frac{1-x^2}{2\sqrt{\frac{x}{1+x^2}}}$ (x) >0 (=> 1-x2>0 > -1<x<1 > 0 <x<1 lim (-(-)= 0 x++00 ((0) =0 (1) messimo relativo e resoluto

25/01/	222
Esercizio 2. Dare la definizione d	di punto di estremo relativo per una funzione. nti di estremo relativo per la funzione definita
nel suo campo di esistenza.	$\sqrt{\left \frac{x-1}{x+1}\right }$
101/1	
] + (x) x = 1	
$\int_{-\infty}^{\infty} (x) = \frac{1}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2012-1	
4	x-1
= \(\lambda \times \frac{\times -4}{\times + 4} \)	1 × 1 × 2 - 1
>0	50
('(x) 70 <=	$\Rightarrow \times^2 - 1 \Rightarrow \Rightarrow \times^2 \Rightarrow 1 \Rightarrow \times \leftarrow 1 \forall \times \Rightarrow 1$
	-1 +1
	-ssimo (nan oppostiere al linite)
Deriota prins	e in x=1
lm ((x) = +1	co. o Forme Indéterminate
X+1,	
11×-1	$= \frac{1}{x+1} \frac{(x+1)(x+1)}{(x+1)(x+1)} \times \leq -1 \times 2 = 1$
V X + S I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 6	2 2 ×+1+

 $\lim_{x \to x} \left(\left(x \right) \right) =$ ((x) won é dervobile in x=1 Quid lim (() = 1 x=1 -0 11 inno A50 laso Non esiste messimo occidento (-(1)-0 sup (= +00 Nm (-=0

$$\begin{cases} f'(x) \times 0 & \text{Im } f(x) = \lim_{x \to 0} \frac{x}{\sqrt{x^2 + x}} \times \frac{x}{\sqrt{x}} = \lim_{x \to 0} 2\sqrt{x} = 0 \\ \text{In } f(x) \times \lim_{x \to 0} f(x) \times$$

06/07/2022 Sourie Esercizio 2. Studiare la funzione definita dalla legge $\sqrt{|x|+x^2}$ e tracciarne un grafico qualitativo. La Currière e yvi 2×>0 DR corce Asinto Osliguo Rantous $\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \frac{1}{2} = 0$ 3F(x), x 10 (-) $2 \times 14 > 0 + 2 = -\frac{1}{2}$ F(0)=0 (privessi7 ā $\frac{3}{3}('(x) = 40x^{2} + x - (2x+1) - 0x^{2} + x$

$$\int_{-\infty}^{\infty} (x)^{2} dx = \frac{(2x+1)^{2}}{\sqrt{x^{2}+x}}$$

$$\frac{2}{\sqrt{x^{2}+x}}$$

Gnessite

$$\exists f''(x) = \frac{(2x+2)(1-x)-(x^2+2x-3)(-4)}{(4-x)^2}$$

$$f''(x) > 0 \iff 2x-2x^2+2-2x+x^2+2x-4>0$$

$$-x^2+2x+4>0$$

$$\Delta_5 4+4=8$$

$$x = \frac{-2+2\sqrt{2}}{-2}$$

$$x < 1-\sqrt{2} \quad \forall x > 1+\sqrt{2}$$

$$3x$$

Service nel quio 200: low $f(x) = 1$

esis/060 esisoti Mono one 3('(x) x £1 \× -(($\left((x) = -2 + 2 \sqrt{x-1} \right) \times -1$ -4 V |x-(1 + 50n (x-5) 2-0(x-1) (x) >0 ×>1: -40×-1 +300 -00 x-3 < \frac{1}{4} -0 x<\frac{1}{6} $\left(\begin{array}{c} (\times) > 0 \\ \end{array} \right) \times \leq 1 < \frac{12}{16}$ (-(1) = -217 (1)= 17 + 5 252 <0

Conversate
$$\frac{1}{2} \frac{1}{\sqrt{2-3}} = \frac{2}{\sqrt{2}} \frac{1}{(2\sqrt{2-3})^2} = \frac{2}{\sqrt{2}} \frac{1}{(2\sqrt{2-3})^2} = \frac{2}{\sqrt{2}} \frac{1}{(2\sqrt{2-3})^2} = \frac{2}{\sqrt{2}} \frac{1}{(2\sqrt{2-3})^2} = \frac{1}{\sqrt{2}} \frac{1}{(2\sqrt{2-3})^$$

I	Eser	3 cizio	1 / 2.				2 1 funz							ge _		上	٥() W	١٠٤	نر	>				R	-										
$f(x) = e^{-x^2} - x - 1$																															_					
e tracciarne un grafico qualitativo.																																				
lm XP+0		(×).	=	-	CC		× 2_				4	0				(/ x-e). S-	₩ 00	(<u>_</u> (;	`,)		-	+	∞										
Lin XD+OX	· —](< ×) - =	= =	×	-(<u> </u>	X	-1		- <u>-</u> <u>-</u> ×	- /	<i>)</i> - <u>:</u>	>	C	>	-	1	_	0) =	-	-1		=h	7										
KD tol	F	(x))	+x	.	ے	e ^x		- 1	_=		-1	_			-	15	iwl	0	0		O		90	صر		/	= -	×		1		A	+	00	
lin XD	co _) (x	<i>(</i>)	3	1		m																													
(m X-D-0		(×) _	· ×	=	é	× ²	- 2	2×		1		+	Ø)	X	Jo	۱ 5	(25 ₁	3	e		71.	K	o Ro		0 4	igu	Ş		L		- (X	0	
Rol					0																															
F																										2										
F'	(×))_	0	((=,	>	-	- 2	2 :	×	é	-×	2	- \$	2	,	> (0		-	- (>	•	- ,	\e	- X		>	1 2	-	ージ	• X e	- X ?	<i>2</i> <	-	1/2	
				_	_♡																															
																																		_		
																																		_		
																																		+		