

Europäisches Patentamt **European Patent Office** Office européen des brevets

① Veröffentlichungsnummer: 0 482 349 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 91115834.3
- 2 Anmeldetag: 18.09.91

(5) Int. Cl.5: **C07D 231/14**, C07D 231/16, C07D 231/56, C07D 233/90, C07D 263/34, C07D 277/34, C07D 307/68, C07D 333/38, C07D 409/12, A01N 43/50, A01N 43/76

- (30) Priorität: 20.09.90 DE 4029753
- 43 Veröffentlichungstag der Anmeldung: 29.04.92 Patentblatt 92/18
- Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL
- (71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)
- (72) Erfinder: Heistracher, Elisabeth, Dr. Lenbachstrasse 10 W-6700 Ludwigshafen(DE) Erfinder: Fischer, Klaus, Dr. Gabelsbergerstrasse 7 W-6720 Speyer(DE) Erfinder: Mayer, Horst, Dr. Faselwiese 19

W-6700 Ludwigshafen(DE) Erfinder: Saupe, Thomas, Dr. Kressenwiesenweg 13 W-6902 Sandhausen(DE)

Erfinder: Hamprecht, Gerhard, Dr. Rote-Turm-Strasse 28

W-6940 Weinheim(DE) Erfinder: Ditrich, Klaus, Dr. Paray-le-Monial-Strasse 12 W-6702 Bad Duerkheim(DE)

Erfinder: Kuekenhoehner, Thomas, Dr.

Forststrasse 104

W-6737 Boehl-Iggelheim(DE) Erfinder: Gerber, Matthias, Dr.

Ritterstrasse 3

W-6704 Mutterstadt(DE) Erfinder: Walter, Helmut, Dr. **Gruenstadter Strasse 82** W-6719 Obrigheim(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 W-6720 Speyer(DE)

- Sulfonamide.
- (57) Sulfonamide der Formel I

I,

in der die Substituenten folgende Bedeutung haben:

- ein gegebenenfalls substituierter aromatischer oder heteroaromatischer Rest;
- Sauerstoff oder Schwefel; W
- ein gegebenenfalls substituierter Furyl-, Thienyl-, Pyrrolyl-, Oxazolyl-, Isothiazolyl-, Imidazolyl-,

482 349 A2

Pyrazolyl-, Thiadiazolyl-, Oxadiazolyl- oder Triazolylrest sowie deren umweltverträglichen Salze; Verfahren zu ihrer Herstellung sowie ihre herbizide Verwendung.

Die vorliegende Erfindung betrifft Sulfonamide der allgemeinen Formel I

in der die Substituenten folgende Bedeutung haben:

10 A

W

Sauerstoff, Schwefel;

В

2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;

2-, 3-, 4- oder 5-Pyrrolyl, wobei diese Reste drei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;

2-, 4- oder 5-Oxazolyl. 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R8;

2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;

1,3,4-Thiadiazol-2-yl, -5-yl, 1,3.4-Oxadiazol-2-yl, -5-yl,

1,2,4-Thiadiazol-3-yl, -5-yl, 1,2.4-Oxadiazol-3-yl, -5-yl,

1,2,3-Thiadiazol-4-yl, -5-yl, 1,2,3-Oxadiazol-4-yl, -5-yl,

50 1,2,5-Thiadiazol-3-yl, -4-yl, 1,2.5-Oxadiazol-3-yl, -4-yl,

wobei diese Reste einen Rest R⁸ tragen;

1,2,4-Triazol-3-yl, substituiert durch einen C-gebundenen Rest R¹⁰ und einen N-1 gebundenen Rest R¹¹;

1,2,4-Triazol-5-yl, 1,2,3-Triazol-4-yl, -5-yl, jeweils substituiert durch einen C-gebundenen Rest R⁸ und einen N-1 gebundenen Rest R⁹;

5 X

Sauerstoff, Schwefel, NR1;

R١

Wasserstoff;

 C_1 - C_6 -Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatome und/oder Phenyl; C_2 - C_4 -Alkenyl;

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Nitro, Cyano;

 \mathbb{R}^2

Halogen:

Cyano; Thiocyano;

C₁-C₆-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl, Phenoxy oder Phenylthio, wobei die Phenylreste jeweils durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkylthio;

C₃-C₆-Cycloalkyl, C₃-C₈-Cycloalkoxy, C₃-C₆-Cycloalkylthio, C₅-C₆-Cycloalkenyl, C₅-C₈-Cycloalkenyloxy, C ₅-C₈-Cycloalkenylthio, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, welcher gegebenenfalls bis zu zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkythio;

5 C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio,

C2-C6-Alkenyl oder C2-C6-Alkenyloxy oder C2-C5-Alkenylthio,

C2-C6-Alkinyl, C2-C6-Alkinyloxy oder C2-C5-Alkinylthio,

wobei die genannten Alkoxy-, Alkylthio-, Alkenyl-, Alkinyl-, Alkenyloxy(thio)-, Alkinyloxy(thio)reste durch ein bis fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C·-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio:

 $\mathsf{COR^{12}};\ \mathsf{COQR^{13}};\ \mathsf{SO_2NR^{15}R^{16}};\ \mathsf{SO_2OR^{17}};\ \mathsf{OSO_2R^{18}};\ \mathsf{S(O)_nR^{19}};$

 \mathbb{R}^3

einen der Reste R⁶; COQR'³; SO₂NR¹⁵R¹⁶; SO₂OR¹⁷; OSO₂R¹⁸; S(O)_nR¹⁹;

35 R

Wasserstoff; Halogen; Cyano;

 C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkyl substituiert durch ein bis fünf Halogenatome; C_1 - C_4 -Alkoxy; C_1 - C_4 -Halogenalkoxy; C_1 - C_4 -Alkylthio; C_1 - C_4 -Halogenalkylthio; C_1 - C_4 -Halogenalkylthio; C_1 - C_4 -Alkylthio; C_1 - C_4 -Halogenalkylthio;

40 Wasserstoff: Nitro oder einen der Reste R2;

₽e.

Wasserstoff: Halogen: Cvano:

 C_1-C_4 -Alkyl, C_1-C_4 -Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio, OH, SH, Cyano;

45 C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylthio, wobei die genannten Alkoxy-(thio)- bzw. Halogenalkoxy(thio)reste durch folgende Gruppen substituiert sein k\u00f6nnen: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;
R⁷

Nitro; oder einen der Reste R2;

50 R

Wasserstoff; Nitro; einen der Reste R², oder zwei vicinale Reste R² bilden gemeinsam eine C₃-Kette oder eine C₃-C₆-Kette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₆-Alkyliminoeinheit ersetzt sein kann;

R9

Wasserstoff; C₁-C₆-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenoxy, Phenylthio-, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,

C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio; C₃-C₆-Cycloalkyl, C₅-C₆-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substiutiert sein können: C1-C2-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio; Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein kann: Cyano, Nitro, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio; C2-C6-Alkenyl, C2-C6-Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C1-C2-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio; COR21; R10 Phenyl, Benzyl, Phenoxy, Benzyloxy, Phenylthio, Benzylthio, wobei die genannten Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C1-C4-Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio; RII Wasserstoff; Phenyl, Benzyl, wobei die genannten aromatischen Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄- $Halogenalkyl,\ C_1-C_2-Alkoxy,\ C_1-C_4-Halogenalkoxy,\ C_1-C_4-Alkylthio,\ C_1-C_4-Halogenalkylthio;$ R12 C1-C4-Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy; C3-C5-Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor; C3-C4-Alkenyl; Q Sauerstoff oder NR14; R13 Wasserstoff; C1-C6-Alkyl, C1-C6-Alkyl, substituiert durch ein bis drei der folgenden Reste: Halogen, C1-C4-Alkoxy, C1-C4- $Alkylthio,\ C_1-C_4-Halogenalkoxy,\ C\cdot-C_4-Alkoxy-C_1-C_2-alkoxy,\ C_3-C_5-Cycloalkyl\ und/oder\ Phenyl;$ C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl, substituiert durch ein bis drei C₁-C₄-Alkylgruppen; C3-C6-Alkenyl; C3-C6-Alkinyl; Phenyl; Phenyl substituiert durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen: Cyano, Nitro, C1-C4-Alkył, C1-C4-Halogenalkył, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkyłthio, C1-C4-Halogenalkylthio; R14 OR20; ein Rest R13 oder gemeinsam mit einem weiteren Rest R13 eine C4-C6-Alkylenkette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminogruppe ersetzt sein kann; R^{15} $C_1-C_4-Alkyl;\ C_3-C_4-Alkenyl;\ C_3-C_4-Alkinyl;\ Cyclopropylmethyl;\ C_3-C_4-Cycloalkyl;$ Wasserstoff; C1-C4-Alkyl; C3-C4-Alkenyl; oder gemeinsam mit R15 eine C4-C6-Alkylenkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann; R17 C1-C4-Alkyl; C1-C4-Halogenalkyl; R18 C1-C4-Alkyl; N,N-Dimethylamino; C1-C4-Alkyl; C1-C4-Halogenalkyl; C2-C4-Alkoxyalkyl; C3-C4-Alkenyl; C₃-C₄-Alkinyl; C₃-C₄-Halogenalkenyl; Phenyl, substituiert durch Fluor, Chlor, Brom, Methyl oder Methoxy: n. 1 oder 2; R²⁰

ein Rest R¹²; Phenyl, Benzyl, wobei diese aromatischen Gruppen durch ein bis fünf Halogenatome und/oder

Wasserstoff oder C1-C4-Alkyl;

45

ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl, C₁-C₄-Alkylthio; C₁-C₄-Alkylthio; C₁-C₄-Halogenalkylthio; sowie deren umweltverträglichen Salze.

Weiterhin betrifft die Erfindung Verfahren zur Herstellung der neuen Sulfonamide sowie herbizide und bioregulatorisch wirksame Mittel, enthaltend die Verbindungen I und deren Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

Es ist bekannt, daß bestimmte sulfonylierte 1-Carbamoyl-2-pyrazoline herbizide und/oder wachstumsregulatorische Eigenschaften besitzen (EP-A-269 141). Desweiteren zeigen einige sulfonylierte bi- oder tricyclische Carbonsäureamide herbizide und wachstumsregulatorische Aktivitäten (EP-A-244 166).

Der Erfindung lag die Aufgabe zugrunde, Sulfonamide mit guten herbiziden und/oder bioregulatorisch wirksamen Eigenschaften zu finden.

Entsprechend dieser Aufgabe wurden die eingangs definierten Sulfonamide I und Verfahren zu deren Herstellung gefunden. Weiterhin betrifft die Erfindung Herbizide und Mittel zur Bekämpfung des Pflanzenwuchses, die die neuen Verbindungen I enthalten, sowie ein Verfahren zur Beeinflussung und Bekämpfung von Pflanzenwuchs mit diesen Verbindungen.

Die Verbindungen der Formel I können ein oder mehrere Chiralitätszentren enthalten und liegen dann als Diastereomerengemische vor. Die Erfindung umfaßt sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

Die Verbindungen der Formel I können Salze bilden, bei denen der Wasserstoff der -SO₂-NH-Gruppe durch ein, für die Landwirtschaft, geeignetes Kation ersetzt wird. Diese Salze sind im allgemeinen Metall-, insbesondere Alkali-, Erdalkali-, gegebenenfalls alkylierte Ammonium- oder organische Aminsalze. Sie werden vorzugsweise in inerten Lösungsmitteln, wie z.B. Wasser, Methanol oder Aceton bei Temperaturen von 0-100°C hergestellt. Geeignete Basen zur Herstellung der erfindungsgemäßen Salze sind beispielsweise Alkalicarbonate, wie Kaliumcarbonat, Alkali- und Erdalkalihydroxide, Alkali- und Erdalkalialkoholate, Ammoniak oder Ethanolamin.

In den oben genannten Definitionen bedeutet der Ausdruck "Alkyl" jeweils geradkettiges oder verzweigtes Alkyl.

Ebenso bedeuten "Alkenyl" bzw. "Alkinyl" gerad- oder verzweigtkettiges Alkenyl bzw. Alkinyl.

Der Ausdruck "Halogen" bedeutet Fluor, Chlor, Brom oder Jod.

Bevorzugt von den Verbindungen der allgemeinen Formel I sind solche, worin

Α

30

ein Rest der Formel (A1), (A2), (A7), (A8), (A9)

W

Sauerstoff

35 X

Schwefel

В

- 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, wobei diese genannten Reste zwei Reste R⁸ tragen;
- 40 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R³ und einen N-gebundenen Rest R³ tragen;

R⁴

Wasserstoff bedeutet, sowie deren umweltverträgliche Salze.

Besonders bevorzugt von der Verbindungen der allgemeinen Formel I sind solche, worin

45 Å

50

einen Rest der Formel (A1)

R

3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen; bedeutet, sowie deren umweltverträglichen Salze.

Die Verbindungen der Formel I sind auf vielfältige Weise analog zu bekannten Umsetzungsmethoden erhältlich. Exemplarisch seien sieben Verfahren (A bis G) im folgenden erläutert.

Verfahren A

Man erhält Verbindungen der Formel I mit W = 0, in an sich bekannter Art und Weise (M.L. Crossley, E.H. Northey, M.E. Hultquist, J. Am. Chem. Soc. 61, 2950-2955, (1939)) durch Umsetzung eines entsprechenden Sulfonamids II in einem inerten organischen Lösungsmittel in Gegenwart einer Base mit einem Säurehalogenid der Formel III gemäß dem nachfolgenden Schema:

$$A-SO_2-NH_2$$
 + $Hal B$ Base $A-SO_2-N B$ (II) (III)

Hal in Formel III bedeutet dabei Chlor oder Brom.

Zweckmäßigerweise verwendet man für diese Umsetzungen Lösungsmittel, wie Halogenkohlenwasserstoffe, z.B. Tetrachlormethan, Chloroform, Methylenchlorid, Dichlorethan, Chlorobenzol, 1,2-Dichlorbenzol; Ether z.B. Diethylether, Methyl-tert.-butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan; Ketone z.B. Aceton, Ethylmethylketon, Cyclohexanon; dipolare aprotische Lösungsmittel z.B. Acetonitril, N-Methylpyrrolidon; Aromaten z.B. Benzol, Toluol, Xylol, Pyridin, Chinolin oder entsprechende Gemische.

Die Umsetzung kann bei Temperaturen von 0°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Als Basen dienen dabei aromatische Stickstoffbasen, wie Pyridin, 4-Dimethylaminopyridin, Chinolin; tertiäre aliphatische Amine, wie Triethylamin, N-Ethyl-N,N-diisopropylamin und N-Methylmorpholin; bi- und tricyclische Amine, wie z.B. Diazabicycloundecen (DBU) oder Diazabicyclooctan (DABCO) sowie Hydroxide, Hydride, Alkoxide, Carbonate und Hydrogencarbonate von Alkalimetall- und Erdalkalimetallkationen, insbesondere Natriumhydroxid, Kaliumhydroxid, Natriumhydrid, Kaliumhydrid, Calciumhydrid, Lithiumhydrid, Natriummethanolat, Natriumethanolat, Kalium-tert.-butylat, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Kaliumhydrogencarbonat, Kaliumhydrogencarbonat, Kaliumhydrogencarbonat, Kaliumhydrogencarbonat, Variumethanolat, Variumethanolat, Variumethanolat, Variumhydrogencarbonat, Variumhydrogencarbonat,

Üblicherweise setzt man die Ausgangsstoffe II und III im stöchiometrischen Verhältnis ein, jedoch kann ein Überschuß der einen oder anderen Komponente vorteilhaft sein.

Das molare Verhältnis von Sulfonamid II zu Base beträgt im allgemeinen 1:1 bis 1:3.

Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Besonders bevorzugt verwendet man inerte aprotische Solventien wie Methylenchlorid, Aceton, Toluol unter Verwendung von Natriumhydrid, Natriumcarbonat, Kaliumcarbonat als Basen.

Verfahren B

5

Man erhält Verbindungen der Formel I, mit W = O, in an sich bekannter Weise (J.T. Drummond, G. Johnson, Tetrahedron Lett. 29, 1653-1656 (1988)) durch Umsetzung einer Verbindung der Formel IV in Gegenwart von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumiodid, Dicyclohexylcarbodiimid oder 1,1-Carbonyldiimidazol, und gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel II.

$$A-SO_2-NH_2 + HO B \xrightarrow{\text{"aktivierende}} A-SO_2-N-CO-B$$
(II) (IV) (I)

Zweckmäßigerweise wird die "aktivierte" Carbonsäure direkt ohne Zwischenisolierung gegebenenfalls in Gegenwart einer Base mit der Komponente II umgesetzt.

Die Reaktionen werden zweckmäßigerweise in Lösungsmitteln, wie Halogenkohlenwasserstoffe z.B. Chloroform, Methylenchlorid, Dichlorethan, Chlorbenzol, 1,2-Dichlorbenzol; Ether, z.B. Diethylether, Methyltert.-butylether, Dimethoxyethan, Diethylenglykoldimethylether, Tetrahydrofuran, Dioxan; dipolaren aprotischen Lösungsmitteln z.B. Acetonitril; Aromaten, z.B. Benzol, Toluol, Xylol oder entsprechenden Gemischen durchgeführt.

Die Umsetzungen können bei Temperaturen von -30°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Als Basen werden beispielsweise organische Stickstoffbasen, wie Pyridin, 4-Dimethylaminopyridin, Chinolin, Triethylamin, N-Ethyl-N,N-diisopropylamin, Diazabicycloundecen (DBU) etc. sowie Hydroxide, Hydride, Alkoxide, Carbonate und Hydrogencarbonate von Alkali-und Erdalkalimetallkationen, insbesondere

40

Natriumhydroxid, Kaliumhydroxid, Natriumhydrid, Kaliumhydrid, Calciumhydrid, Natriummethanolat, Natriummethanolat, Kalium-tert.-butylat, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kaliumhydrogencarbonat verwendet. Mitunter ist es von Vorteil Kombinationen der oben aufgeführten Basen zu verwenden.

Üblicherweise werden die Ausgangsstoffe II und IV, sowie das Aktivierungsreagenz im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein Überschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren C

10

5

Verbindungen der Formel I, mit W = O, können in an sich bekannter Weise M. Seefelder, Chem. Ber. 96, 3243-3253 (1963)) durch Umsetzung einer Verbindung der Formel V mit einer Verbindung der Formel VI erhalten werden.

$$A-SO_2-N=C=0 \qquad M-B \qquad \longrightarrow \qquad A-SO_2-NH-CO-B$$

$$(V) \qquad (VI) \qquad (I)$$

20

30

35

40

15

M in Formel VI bedeutet dabei Wasserstoff oder Lithium.

Zweckmäßigerweise werden inerte Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Chloroform, Methylenchlorid, Dichlorethan, Chlorbenzol, 1,2-Dichlorbenzol; Ether z.B. Tetrahydrofuran, Dioxan, Dimethoxyethan, Diethylenglycoldimethylether; Aromaten z.B. Benzol, Toluol, Xylol, Nitrobenzol oder entsprechende Gemische verwendet.

Die Umsetzungen können bei Temperaturen von -78°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Üblicherweise werden die Edukte V und VI im stöchiometrischen Verhältnis eingesetzt, jedoch kann in Einzelfällen ein Überschuß der einen oder anderen Komponente vorteilhaft sein.

Verfahren D

Man erhält Verbindungen der Formel I, mit W=O, in an sich bekannter Weise (GB 2092 136) durch Umsetzung einer Verbindung der Formel VII mit einer Verbindung der Formel VIII in Gegenwart einer starken Base.

Zweckmäßigerweise werden polare, aprotische Lösungsmittel, z.B. Acetonitril, Nitromethan, Nitrobenzol, Pyridin, Benzonitril, N,N-Dimethylformamid, N,N-Diethylformamid, N.N-Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, Dioxan, Tetrahydrofuran, Dimethoxyethan, Diethylenglykoldimethylether oder entsprechende Gemische verwendet.

Die Umsetzungen werden gewöhnlich in einem Temperaturbereich von -20°C bis Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt.

Als Basen werden üblicherweise anorganische Basen, wie Oxide, Hydroxide, Hydride, Carbonate und Hydrogencarbonate sowie Alkalimetallalkoxide eingesetzt, insbesondere Natriumoxid, Lithiumoxid, Kaliumoxid, Natriumhydroxid, Natriumhydroxid, Kaliumhydroxid, Kaliumhydrid, Calciumhydrid, Natriumethanolat, Natriumethanolat, Kaliumtertiärbutylat, Soda, Pottasche, Natriumhydrogencarbonat, Kaliumhydrogencarbonat. Mitunter kann es von Vorteil sein, Kombinationen der oben angeführten Basen zu verwenden.

In der Regel werden die Ausgangsstoffe VII und VIII, sowie die Base im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein über- oder Unterschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren E

Man erhält Verbindungen der Formel I mit W = O, in an sich bekannter Art und Weise (M.M. Kremlev, V.G. Dolyuk, J. Org. Chem. (USSR) 10, 671-672 (1974)) durch Umsetzung einer Verbindung der Formel IX und einer Verbindung der Formel X mit einer Verbindung der Formel XI,

$$A-SO_2-NHT + A-SO_2-NHal_2 + B-CHO \longrightarrow A-SO_2-N \longrightarrow B$$

(IX) (X) (XI) (I)

wobei T ein Alkalimetall und Hal Chlor oder Brom bedeutet.

Zweckmäßigerweise werden inerte Lösungsmittel wie Halogenkohlenwasserstoffe, z.B. Chloroform, Methylenchlorid, Dichlorethan, Tetrachlorkohlenstoff, Chlorbenzol, 1,2-Dichlorbenzol; Aromaten, z.B. Benzol, Toluol, Xylol, Nitrobenzol oder entsprechende Gemische verwendet. Die Umsetzungen können bei Temperaturen von 0°C bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Üblicherweise werden die Edukte im stöchiometrischen Verhältnis eingesetzt, jedoch kann in Einzelfällen ein Überschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren F

Man erhält Verbindungen der Formel I mit W=S in Analogie zu literaturbekannten Verfahren (S. Scheibye, B.S. Pederson, S.O. Lawesson, Bull. Soc. Chim. Belg. 87, 229-238 (1978)) durch Umsetzung einer nach Verfahren A bis E erhaltenen Verbindung der Formel I mit der Verbindung der Formel XII in einem inerten aprotischen

$$A-SO_2-N B + H_3CO \longrightarrow P S U S OCH_3 \longrightarrow A-SO_2-N B OCH_3$$

$$(1) (XII) (I)$$

Lösungsmittel, wie z.B. Benzol, Toluol, Xylol, HMPA, Dimethoxyethan, Diethylenglykoldimethylether bzw. entsprechenden Gemischen.

Die Umsetzung kann im Temperaturbereich von etwa 0°C bis Rückflußtemperatur des jeweiligen Lösungsmittels bzw. gemisches durchgeführt werden.

Üblicherweise setzt man die Ausgangsstoffe I (W = 0) und XII im stöchiometrischen Verhältnis ein, jedoch kann ein Überschuß der einen oder anderen Komponente von Vorteil sein.

Verfahren G

Man erhält Verbindungen der Formel I nach literaturbekannten bzw. in Analogie zu literaturbekannten Verfahren (T.L. Gilchrist, "Heterocyclic Chemistry", Pitman Publisher, London (1985)) durch Umsetzung einer nach Verfahren A bis E erhaltenen Verbindung der Formel XIII, die dadurch gekennzeichnet ist, daß der Heterocyclus B' einen C-gebundenen Substituenten, der als Abgangsgruppe fungiert, trägt, mit einem Nucleophil.

Hierbei wird die Abgangssgruppe, wie z.B. Phenolat, Chlorid, Bromid, Nitro etc. durch die "Nucleophileinheit" ersetzt.

Als Nucleophile können unter anderem Alkoholate, Thiolate, Hydride, Alkalimetallalkyle verwendet werden.

Zweckmäßigerweise werden in Anpassung an das jeweilige Nucleophil polare aprotische Lösungsmittel wie Dimethylsulfoxid (DMSO), Dimethylformamid (DMF), polare Lösungsmittel wie Alkohole, Wasser etc., inerte Lösungsmittel wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran (THF), Dioxan, Dimethoxyethan, Diethylenglykoldimethylether oder entsprechende Gemische verwendet.

Die Umsetzungen werden gewöhnlich in einem Temperaturbereich von -78°C bis Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt.

In der Regel werden die Ausgangsstoffe im stöchiometrischen Verhältnis eingesetzt, jedoch kann ein Über- oder Unterschuß der einen oder anderen Komponente von Vorteil sein.

Die bei Verfahren A und B eingesetzten Sulfonamide der Formel II sind in vielen Fällen handelsüblich. Neue Sulfonamide der Formel II lassen sich nach allgemein bekannten Methoden darstellen (S. Pawlenko, in "Methoden der organischen Chemie", Houben-Weyl, Bd. E 11/II, S. 1098 ff., 4. Auflage, Thieme Verlag, Stuttgart 1985).

Die im Verfahren A verwendeten Säurehalogenide der Formel III lassen sich in bekannter Weise (M.F. Ansell, in "The Chemistry of acyl halides" (ed. S. Patai), S. 35ff, 1. Auflage, Interscience Publishers, London (1972)) aus den entsprechenden Carbonsäuren (IV)

B OH (IV)

oder deren Salzen mit organischen Säurehalogeniden, wie z.B. Oxalylchlorid, Phosgen, Benzoylchlorid oder mit anorganischen Säurehalogeniden, wie z.B. POHal₃, PHal₅, SOCl₂, P(C₆H₅)₃Hal₂ etc. oder binären Systemen wie z.B. P(C₆H₅)₃/CCl₄ usw. darstellen.

In manchen Fällen kann der Zusatz einer geeigneten Base, insbesondere organische Stickstoffbasen, wie z.B. Pyridin, 2,6-Lutidin oder Triethylamin oder eines geeigneten Katalysators, wie z.B. Dimethylformamid oder 4-Dimethylaminopyridin zweckmäßig sein.

Die Carbonsäuren der Formel IV sind literaturbekannt oder können in Analogie zu literaturbekannten Methoden hergestellt werden (R. Sustmann, H.-G. Korth, in "Methoden der organischen Chemie", Houben-Weyl, Bd. E5/I, S. 193 ff, 4. Auflage, Thieme Verlag, Stuttgart 1985).

Die Herstellung der Sulfonylisocyanate der Formel V erfolgt nach für den Fachmann bekannten Standardverfahren ("Newer Methods of Preparative Organic Chemistry", Bd. VI, S. 223 ff, Academic Press, New York).

Die bei Verfahren C benötigten Verbindungen der Formel VI können ebenfalls nach Standardverfahren dargestellt werden.

Die bei Verfahren D eingesetzten Sulfochloride der Formel VII sind in vielen Fällen handelsüblich. Neue Sulfochloride der Formel VII lassen sich nach für den Fachmann bekannten Verfahren darstellen (S. Pawlenko, in "Methoden der organischen Chemie". Houben-Weyl, Bd. E 11/II, S. 1067 ff., 4. Auflage, Thieme Verlag, Stuttgart 1985).

Verbindungen der Formel VIII sind literaturbekannt oder können nach bekannten Methoden hergestellt werden (D. Döpp, H. Döpp, in "Methoden der organischen Chemie", Houben-Weyl, Bd. E5/II, S. 934 ff., 4. Auflage, Thieme Verlag, Stuttgart 1985).

Die Darstellung der Salze der Formel IX erfolgt nach bekannten Standardverfahren (F. Muth, in "Methoden der organischen Chemie", Houben-Weyl, Bd. 9, S. 629 ff., 4. Auflage, Thieme Verlag, Stuttgart 1955).

Ebenso sind die Sulfonsäurehalogenamide der Formel X literaturbekannt oder können auf an sich bekannter Art und Weise dargestellt werden (F. Mulh, in "Methoden der organischen Chemie", Houben-Weyl, Bd. 9, S. 641 ff., 4. Auflage, Thieme Verlag, Stuttgart 1955).

Die Aldehyde der Formel XI können nach bekannten Verfahren synthetisiert werden (O. Bayer, in "Methoden der organischen Chemie" (Houben-Weyl) Bd. 7/1, 4. Auflage, Thieme Verlag, Stuttgart 1954; Bd. E3, 4. Auflage, Thieme Verlag, Stuttgart 1983).

5

20

25

Im Hinblick auf die bestimmungsgemäße Verwendung sind Verbindungen der Formel I bevorzugt, in denen die Substituenten folgende Bedeutung haben:

Sauerstoff, Schwefel, NR¹,

R1

Wasserstoff;

C₁-C₆-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, gegebenenfalls substituiert durch 1 bis 5, insbesondere 1 bis 3 Halogenatome wie Fluor, Chlor oder Brom und/oder durch Phenyl,

70 C₂-C₄-Alkenyl, wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-2-propenyl, 1-Methyl-2-propenyl, 2-Methyl-1-propenyl, Phenyl substituiert durch 1 bis 5 Halogenatome wie Fluor, Chlor oder Brom und/oder ein bis drei der eingangs genannten Substituenten.

R²

Halogen wie Fluor, Chlor, Brom oder Iod, insbesondere Fluor, Chlor, Brom, Cyano, Thiocyano; C_1-C_6 -Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, welches durch 1 bis 5 Halogenatome, insbesondere Fluor, Chlor oder Brom substituiert ist und/oder einen der folgenden Substituenten tragen kann: C_1-C_4 -Alkoyt, C_1-C_4 -Alkylthio wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy bzw. die entsprechenden Alkylthioreste, wobei diese Reste durch Halogen, insbesondere Fluor, Chlor, Brom substituiert sein können, Phenyl, Phenoxy, Phenylthio, gegebenenfalls substituiert durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor, Brom und/oder ein bis drei C_1-C_4 -Alkyl- oder C_1-C_4 -Alkoxyreste;

C₃-C₆-Cycloalkyl und C₃-C₆-Cycloalkylthio wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, welches ein bis fünf Halogenatome, insbesondere Fluor, Chlor und Brom, und/oder ein bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₂-Halogenalkylthio, insbesondere Methyl, sowie die entsprechenden über Schwefel gebundenen Cycloalkylthioreste;

 C_3-C_8 -Cycloalkoxy wie Cyclopropoxy, Cyclobutoxy, Cyclopentoxy, Cyclohexoxy, Cy

 C_5 - C_6 -Cycloalkenyl wie 1-Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, 1-Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder ein bis drei der folgenden Reste substituiert sein kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 - C_4 -Alkyl, C_1 - C_4 -C

C₅-C₈-Cycloalkenyloxy oder C₅-C₃-Cycloalkenylthio wie 1-Cyclopentenyloxy, 2-Cyclopentenyloxy, 3-Cyclopentenyloxy, 1-Cyclohexenyloxy, 2-Cyclohexenyloxy, 3-Cyclohexenyloxy, 1-Cyclohexenyloxy, 2-Cyclohexenyloxy, 2-Cyclohexenyloxy, 3-Cyclohexenyloxy, 3-Cyclooctenyloxy, 3-Cyclooctenyloxy, 3-Cyclooctenyloxy, 3-Cyclooctenyloxy, 3-Cyclooctenyloxy, 4-Cyclooctenyloxy, welches ein bis fünf der folgenden Reste tragen kann: Fluor, Chlor, Brom oder lod, insbesondere Fluor, Chlor oder Brom und/oder ein bis drei der folgenden Reste: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₂-Alkylthio, C₁-C₄-Halogenalkylthio, insbesondere Methyl:

Phenyl, Phenoxy, Benzyloxy, Benzylthio wobel die aromatischen Gruppen substituiert sein können durch 1 bis 5 Halogenatome, insbesondere Fluor, Chlor oder Brom und/oder ein bis drei der folgenden Reste: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkylthio;

gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, z.B. Thiophen, Furan, Isoxazol, Pyrazol, Thiazol, Oxazol, Oxadiazol, Thiadiazol, Tetrahydrofuran, Tetrahydropyran, wobei die heterocyclischen bzw. heteroaromatischen Reste 1 oder 2 der folgenden Substituenten tragen können: Halogen, wie Fluor, Chlor, Brom, Iod, insbesondere Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor, Brom substituiert sein kann, sowie die entsprechenden

über Sauerstoff oder Schwefel gebundenen Alkoxy- bzw. Alkylthioreste;

C₁-C₄-Alkoxy oder Alkylthio wie Methoxy, Ethoxy, Propyloxy, 1-Methylethoxy, Butyloxy, 1-Methylpropyloxy, 2-Methylpropyloxy oder 1,1-Dimethylethoxy, welche durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder durch eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio bzw. die entsprechenden Alkylthioreste; C₂-C₆-Alkenyl, Alkenyloxy oder Alkenylthio wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methyl-1-propenyl, 1-Butenyl, 1-Bute

2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Di-methyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-1-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, welche durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder durch eine der folgenden Gruppen substituiert sein können: C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio sowie die entsprechend über Sauerstoff oder Schwefel gebundenen Alkenyloxy- bzw. Alkenylthioreste;

C₂-C₆-Alkinyl, Alkinyloxy oder Alkinylthio wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, welche durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder durch eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio sowie die entsprechenden über Sauerstoff bzw. Schwefel gebundenen Alkinyloxy- bzw. Alkinylthioreste:

5 COR¹², wie Alkylcarbonyl mit C₁-C₄-Alkyl wie unter R¹² genannt, wie Cycloalkylcarbonyl mit C₃-C₅-Cycloalkyl wie unter R¹² genannt, wie Alkenylcarbonyl mit C₃-C₄-Alkenyl wie unter R¹² genannt, insbesondere Methylcarbonyl, Ethylcarbonyl, Cyclopropylcarbonyl;

COQR¹³, wie Carboxyl, wie Alkoxycarbonyl mit C¹-C₆-Alkyl wie unter R¹³ genannt, Cycloalkoxycarbonyl mit C₃-C₆-Cycloalkyl wie unter R¹³ genannt, wie Alkenyloxycarbonyl mit C₃-C₆-Alkenyl wie unter R¹³ genannt, wie Alkinyloxycarbonyl mit C₃-C₆-Alkinyl wie unter R¹³ genannt, wie Phenoxycarbonyl mit Phenyl wie unter R¹³ genannt, wie Phenoxycarbonyl mit Phenyl wie unter R¹³ genannt, wie Phenoxycarbonyl mit Phenyl wie unter R¹³ genannt, wie N-Alkylaminocarbonyl mit C₃-C₆-Alkenyl wie unter R¹³ genannt, wie N-Alkenylaminocarbonyl mit C₃-C₆-Alkenyl wie unter R¹³ genannt, wie N-Alkinylaminocarbonyl mit C₃-C₆-Alkinyl wie unter R¹³ genannt, wie N-Phenylaminocarbonyl mit Phenyl wie unter R¹³ genannt, wie N,N-Dialkylaminocarbonyl mit C₃-C₆-Alkyl wie unter R¹³ aufgeführt und C₃-C₆-Cycloalkyl wie unter R¹³ genannt, wie N-Alkyl-N-Phenylaminocarbonyl mit C₁-C₆-Alkyl wie unter R¹³ genannt und Phenyl wie unter R¹³ genannt, wie N-Alkyl-N-Phenylaminocarbonyl mit C₁-C₆-Alkyl wie unter R¹⁴ beschrieben, wie 1-Azacycloalkylcarbonyl mit 1-Azacycloalkyl wie unter R¹⁴ beschrieben, insbesondere Methoxycarbonyl, Ethoxycarbonyl, Isopropoxycarbonyl, N-Methylaminocarbonyl, N,N-Dimethylaminocarbonyl

 $SO_2NR^{15}R^{16}$, wie N-Alkylaminosulfonyl mit C_1 - C_4 -Alkyl wie unter R^{15} beschrieben, wie N-Alkenylaminosulfonyl mit C_3 - C_4 -Alkenyl wie unter R^{15} beschrieben, wie N-Cycloalkylaminosulfonyl mit C_3 - C_4 -Alkinyl wie unter R^{15} beschrieben, wie N-Cycloalkylaminosulfonyl mit C_3 - C_4 -Cycloalkyl wie unter R^{15} beschrieben, wie N,N-Dialkylaminosulfonyl mit C_1 - C_4 -Alkyl wie unter R^{15} beschrieben und mit C_1 - C_4 -Alkyl wie unter R^{15} beschrieben, wie N-Alkyl-N-alkenylaminosulfonyl mit C_1 - C_4 -Alkyl wie unter R^{15} beschrieben, wie N-Alkyl-N-alkinylaminosulfonyl mit C_1 - C_4 -Alkyl wie unter R^{16} beschrieben und R^{16} beschrieben, wie N-Alkyl-N-alkinylaminosulfonyl mit R^{15} 0-C4-Alkyl wie unter R^{15} 0-C4-Alkyl wie unter

 C_1 - C_4 -Alkyl wie unter R^{15} aufgeführt und C_3 - C_4 -Cycloalkyl wie unter R^{15} beschrieben, wie 1-Azacycloalkyl-sulfonyl mit 1-Azacycloalkyl wie unter R^{16} beschrieben, insbesondere N,N-Dimethylaminosulfonyl, N,N-Diethylaminosulfonyl;

SO₂OR¹⁷, wie Alkoxysulfonyl mit C₁-C₄-Alkyl wie unter R¹⁷ beschrieben, wie Halogenalkoxysulfonyl mit C₁-C₄-Halogenalkyl wie unter R¹⁷ beschrieben, insbesondere Methoxysulfonyl, Ethoxysulfonyl, Isopropoxysulfonyl:

 OSO_2R^{18} , wie Alkylsulfonyloxy mit C_1 - C_4 -Alkyl wie unter R^{18} beschrieben, wie N,N-Dimethylsulfonyloxy, insbesondere Methylsulfonyloxy, Ethylsulfonyloxy;

 $S(O)_nR^{19}$, wie Alkylsulfonyl mit C_1 - C_4 -Alkyl wie unter R^{19} beschrieben, wie Halogenalkylsulfonyl mit C_1 - C_4 -Halogenalkyl wie unter R^{19} beschrieben, Alkoxyalkylsulfonyl mit C_2 - C_4 -Alkoxyalkyl wie unter R^{19} beschrieben, wie Alkenylsulfonyl mit C_3 - C_4 -Alkenyl wie unter R^{19} aufgeführt, wie Alkinylsulfonyl mit C_3 - C_4 -Alkinyl wie unter R^{19} beschrieben, wie C_3 - C_4 -Halogenalkenylsulfonyl mit C_3 - C_4 -Halogenalkenyl wie unter R^{19} beschrieben, wie Phenylsulfonyl mit Phenyl wie unter R^{19} beschrieben, wie Alkylsulfinyl mit C_1 - C_4 -Alkyl wie unter R^{19} aufgeführt, wie Halogenalkylsulfinyl mit C_1 - C_4 -Halogenalkyl wie unter R^{19} beschrieben, wie Phenylsulfonyl mit Phenyl wie unter R^{19} beschrieben, insbesondere Methylsulfonyl, Ethylsulfonyl, Isopropylsulfonyl, Propylsulfonyl, Methylsulfinyl, Ethylsulfinyl

R

einen der Reste R^s, insbesondere Methyl, Ethyl, Trifluormethyl, Chlormethyl, Methoxymethyl, Methylthio-methyl, Methoxy, Ethoxy, Isopropyloxy, Trifluormethoxy, Difluormethoxy, Chlordifluormethoxy, 2,2,2-Trifluorethoxy, 2-Chlorethoxy, 2-Methoxyethoxy, Methylthio, Ethylthio;

COQR¹³, wie Carboxyl, wie Alkoxycarbonyl mit C_1 - C_6 -Alkyl wie unter R¹³ genannt, Cycloalkoxycarbonyl mit C_3 - C_6 -Cycloalkyl wie unter R¹³ genannt, wie Alkenyloxycarbonyl mit C_3 - C_6 -Alkenyl wie unter R¹³ genannt, wie Alkinyloxycarbonyl mit C_3 - C_6 -Alkinyl wie unter R¹³ genannt, wie Phenoxycarbonyl mit Phenyl wie unter R¹³ aufgeführt, wie Carboxamid, wie N-Alkylaminocarbonyl mit C_1 - C_6 -Alkyl wie unter R¹³ genannt, wie N-Cycloalkylaminocarbonyl mit C_3 - C_6 -Cycloalkyl wie unter R¹³ genannt, wie N-Alkenylaminocarbonyl mit C_3 - C_6 -Alkenyl wie unter R¹³ genannt, wie N-Alkinylaminocarbonyl mit C_3 - C_6 -Alkinyl wie unter R¹³ genannt, wie N-Phenylaminocarbonyl mit Phenyl wie unter R¹³ genannt, wie N,N-Dialkylaminocarbonyl mit C_3 - C_6 -Alkyl wie unter R¹³ aufgeführt und C_3 - C_6 -Cycloalkyl wie unter R¹³ genannt, wie N-Alkyl-N-Phenylaminocarbonyl mit C_1 - C_6 -Alkyl wie unter R¹³ genannt und Phenyl wie unter R¹³ genannt, wie N-Alkoxyaminocarbonyl mit Alkoxy wie unter R¹³ beschrieben, wie 1-Azacycloalkylcarbonyl mit 1-Azacycloalkyl wie unter R¹⁴ beschrieben, insbesondere Methoxycarbonyl, Ethoxycarbonyl, Isopropoxycarbonyl, N-Methylaminocarbonyl, N,N-Dimethylaminocarbonyl nvl:

SO₂NR¹⁵R¹⁶, wie N-Alkylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben, wie N-Alkenylaminosulfonyl mit C₃-C₄-Alkenyl wie unter R¹⁵ beschrieben, wie N-Alkinylaminosulfonyl mit C₃-C₄-Alkinyl wie unter R¹⁵ beschrieben, wie N-Cycloal-kyl wie unter R¹⁵ beschrieben, wie N,N-Dialkylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben und mit C₁-C₄-Alkyl wie unter R¹⁶ beschrieben, wie N-Alkyl-N-alkenylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben und C₃-C₄-Alkyl wie unter R¹⁶ beschrieben, wie N-Alkyl-N-alkinylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁶ beschrieben und C₃-C₄-Alkinyl wie unter R¹⁵ aufgeführt, wie N-Alkyl-N-cyclopropyl-methylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben wie N-Alkyl-N-cycloalkylaminosulfonyl mit C₁-C₄-Alkyl wie unter R¹⁵ beschrieben, wie 1-Azacycloalkyl-sulfonyl mit 1-Azacycloalkyl wie unter R¹⁶ beschrieben, insbesondere N,N-Dimethylaminosulfonyl, N,N-Diethylaminosulfonyl;

 SO_2OR^{17} , wie Alkoxysulfonyl mit C_1 - C_4 -Alkyl wie unter R^{17} beschrieben, wie Halogenalkoxysulfonyl mit C_1 - C_4 -Halogenalkyl wie unter R^{17} beschrieben, insbesondere Methoxysulfonyl, Ethoxysulfonyl, Isopropoxysulfonyl:

 OSO_2R^{18} , wie Alkylsulfonyloxy mit $C_1 \cdot C_4$ -Alkyl wie unter R^{18} beschrieben, wie N,N-Dimethylsulfonyloxy, insbesondere Methylsulfonyloxy, Ethylsulfonyloxy;

 $S(0)_n R^{19}$, wie Alkylsulfonyl mit C_1 - C_4 -Alkyl wie unter R^{19} beschrieben, wie Halogenalkylsulfonyl mit C_1 - C_4 -Halogenalkyl wie unter R^{19} beschrieben, Alkoxyalkylsulfonyl mit C_2 - C_4 -Alkoxyalkyl wie unter R^{19} beschrieben, wie Alkenylsulfonyl mit C_3 - C_4 -Alkenyl wie unter R^{19} aufgeführt, wie Alkinylsulfonyl mit C_3 - C_4 -Alkinyl wie unter R^{19} beschrieben, wie C_3 - C_4 -Halogenalkenylsulfonyl mit C_3 - C_4 -Halogenalkenyl wie unter R^{19} beschrieben, wie Alkylsulfinyl mit C_1 - C_4 -Alkyl wie unter R^{19} aufgeführt, wie Halogenalkylsulfinyl mit C_1 - C_4 -Halogenalkyl wie unter R^{19} beschrieben, wie Phenylsulfonyl wie unter R^{19} beschrieben, insbesondere Methylsulfonyl, Ethylsulfonyl, Isopropylsulfonyl, Propylsulfonyl, Methylsulfinyl, Ethylsulfinyl;

R⁴

Wasserstoff,

Halogen, insbesondere Fluor, Chlor, Brom, Cyano,

C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, substituiert sein kann, sowie die entsprechend über Sauerstoff und Schwefel gebundenen Alkoxy bzw. Alkylthioreste, insbesondere Methyl, Ethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Pentafluorethyl, Methoxy, Ethoxy, Chlormethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Chlordifluormethoxy, 7-Fluorethoxy, 2,2-Difluorethoxy, 2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2-fluorethoxy, 2,2-Trichlorethoxy, Pentafluorethoxy, 2-Chlorethoxy; R⁵

Wasserstoff; Nitro oder einen der Reste R², insbesondere Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxy, Ethoxy, 2-Chlorethoxy, 2-Methoxyethoxy, Trifluormethoxy, Methoxycarbonyl, Ethoxycarbonyl, N,N-Dimethylaminocarbonyl, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, N-Isopropylaminosulfonyl, N,N-Dimethylaminosulfonyl; R⁶

Wasserstoff;

Halogen, wie Fluor, Chlor, Brom, Iod, insbesondere Fluor, Chlor, Brom;

Cyano;

C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom, und/oder einen der folgenden Reste substituiert sein kann: Hydroxy, Mercapto, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio wie Methoxy, Ethoxy, Propoxy, Butoxy, 1-Methylethoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor, Brom substituiert sein kann, sowie die entsprechenden über Schwefel gebundenen Alkylthioreste, insbesondere Methyl, Ethyl, Trifluormethyl, Chlormethyl, Methoxymethyl, Methylthiomethyl;

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, wie Methoxy, Ethoxy, Propoxy, Butoxy, 1-Methylethoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, welches durch ein bis fünf Halogenatome, insbesondere Fluor, Chlor oder Brom und/oder durch nachfolgende Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, wie Methoxy, Ethoxy, Propoxy, Butoxy, 1-Methylethoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, welches durch Halogene, insbesondere Fluor, Chlor, Brom substituiert sein kann, sowie die entsprechenden über Schwefel gebundenen Alkylthioreste, insbesondere Methoxy, Ethoxy, Isopropyloxy, Trifluormethoxy, 2,2,2-Trifluorethoxy, Difluormethoxy, 2-Chlorethoxy, 2-Methoxyethoxy, Methylthio, Ethylthio;

35 R

Nitro oder einen der Reste R², insbesondere Fluor, Chlor, Brom, Methyl, Ethyl, Chlormethyl, Fluormethyl, Difluormethyl, Chlordifluormethyl, Trifluormethyl, Dichlorfluormethyl, Methoxycarbonyl, N,N-Dimethylaminocarbonyl, Ethoxycarbonyl; R⁸

Wasserstoff, Nitro oder einen der Reste R2, insbesondere Fluor, Chlor, Brom, Iod, Cyano, Nitro, Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Fluormethyl, Chlormethyl, Brommethyl, Difluormethyl, Trifluormethyl, Trichlormethyl, 2-Fluorethyl, 2-Chlorethyl, 2,2-Difluorethyl vi. 2,2,2-Trifluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, Methoxymethyl, 2-Methoxyethyl, 1-Methoxyethyl, 2-Methoxy-1-methylethyl, Ethoxymethyl, Benzyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 2-Trifluormethylphenyl, 3-Trifluormethylphenyl, 4-Trifluormethylphenyl, nyl, 2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 2-Nitrophenyl, 3-Nitrophenyl, 4-Nitrophenyl, 2-Methoxyphenyl, 3-Methoxyphenyl, 4-Methoxyphenyl, 2-Tetrahydropyranyl, 3-Tetrahydropyranyl, 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Thienyl, 3-Thienyl, 2-Furanyl, 3-Furanyl, 3-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 3-Thienyl, 3-Thienyl, 3-Thienyl, 3-Furanyl, nyi, 1-Methyl-3-pyrazolyl, 1-Ethyl-4-pyrazolyl, 1-Ethyl-3-pyrazolyl, 1-Ethyl-4-pyrazolyl, 1-E lyl, 1-Ethyl-5-pyrazolyl, Methoxy, Ethoxy, Isopropoxy, 2-Chlorethoxy, 2-Methoxyethoxy, Trifluormethoxy, Difluormethoxy, Chlordifluormethoxy, 2,2,2-Trifluorethoxy, Phenoxy, Benzyloxy, Methylthio, Ethylthio, Phenylthio, Benzylthio, 2-Propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Butenyl, 2-Propinyl, 1-Methyl-2-propinyl, 2-Butinyl, Methylcarbonyl, Ethylcarbonyl, Cyclopropylcarbonyl, Chlormethylcarbonyl, Brommethylcarbonyl, Fluormethylcarbonyl, Trifluormethylcarbonyl, Methoxymethylcarbonyl, Carboxyl, Methoxycarbonyl, Ethoxycarbonyl, Isopropoxycarbonyl, 2,2,2-Trifluorethoxycarbonyl, 2-Methoxyethoxycarbonyl, Benzyloxycarbonyl, Aminocarbonyl, N-Methylaminocarbonyl, N,N-Dimethylaminocarbonyl, N-Ethylaminocarbonyl, N,N-Diethylaminocarbonyl, N-Isopropylaminocarbonyl, N-Benzylaminocarbonyl, N-Phenylaminocarbonyl, N-

N,N-Dimethylaminosulfonyl,

N-Methyl-N-

N-Ethoxyaminocarbonyl,

Methoxyaminocarbonyl,

ethylaminosulfonyl, N,N-Diethylaminosulfonyl, N-Methylaminosulfonyl, N-Ethylaminosulfonyl, Methoxysulfonyl, Ethoxysulfonyl, Isopropoxysulfonyl, 2-Chlorethoxysulfonyl, 2,2,2-Triflucrethoxysulfonyl, Methylsulfonyloxy, Ethylsulfonyloxy, Isopropylsulfonyloxy, N,N-Dimethylaminosulfonyloxy, Methylsulfinyl, Ethylsulfinyl, Isopropylsulfinyl, Phenylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Isopropylsulfonyl, Propylsulfonyl;

oder 2 vicinale Reste R² bilden gemeinsam eine C₃-Kette wie Propylen oder eine C₄-C₆-Kette, in der eine Methylengruppe durch Sauerstoff oder eine C₁-C₄-Alkyliminoeinheit wie Methyl-, Ethyl-, Propyl- oder Butylimino ersetzt sein kann;

Wasserstoff;

gegebenenfalls substituiertes C₁-C₆-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, wobei als Substituenten insbesondere folgende Reste in Betracht kommen: Fluor, Chlor, Brom, C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy, Phenyl;

C₃-C₆-Cycloalkyl oder Cycloalkenyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopent-1enyl, Cyclopent-2-enyl, Cyclopent-3-enyl, Cyclohex-1-enyl, Cyclohex-2-enyl, Cyclohex-3-enyl, wobei die cyclischen Reste weiter substituiert sein k\u00f6nnen, vorzugsweise durch Methyl, Ethyl, Fluor, Chlor, Trifluormethyl:

gegebenenfalls substituiertes Phenyl;

C₂-C₅-Alkenyl oder C₂-C₅-Alkinyl wie unter R² aufgeführt, insbesondere Vinyl, 2-Propenyl, 2-Propinyl; COR²³, insbesondere Methylcarbonyl, Ethylcarbonyl, Phenylcarbonyl;

R10

gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio, wobei als Substituenten vorzugsweise Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxy, Ethoxy in Betracht kommen;

5 R¹¹

Wasserstoff;

gegebenenfalls substituiertes Phenyl oder Benzyl, z.B. 2-substituiertes oder 2,4-disubstituiertes oder 2,6-disubstituiertes oder 2,4-6-trisubstituiertes Phenyl oder Benzyl, wobei folgende Substituenten in Betracht kommen: Cyano, Nitro. C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, insbesondere Phenyl, 2-Chlorphenyl, 2-Fluorphenyl, 2-Methylphenyl, 2-Trifluormethylphenyl, 2-Methoxyphenyl, 2,4-Dichlorphenyl, 2,6-Dichlorphenyl, 2,6-Difluorphenyl, 2,6-Dimethylphenyl, 2-Chlor-4-trifluormethylphenyl, 2,6-Dichlor-4-trifluormethylphenyl;

C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, wobei die genannten Reste gegebenenfalls substituiert sind durch Halogen, insbesondere Fluor oder Chlor oder durch Methoxy;

C₃-C₅-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, gegebenenfalls substituiert durch Chlor oder Fluor:

C₃-C₄-Alkenyl wie 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-2-propenyl;

Q

Sauerstoff oder NR14

 R^{13}

Wasserstoff:

5 C₁-C₆-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl, substituiertes Alkyl, z.B. durch Halogen, insbesondere Fluor, Chlor, Brom, C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy;

gegebenenfalls substituiertes C₃-C₆-Cycloalkyl wie bei R⁹ genannt, gegebenenfalls durch Methyl, Ethyl substituiert:

C₃-C₆-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-4-pentenyl, 1-Dimethyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-2-butenyl, 3,3-Dimethyl-3-butenyl, 3

butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-prope-

nyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl;

C₃-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

gegebenenfalls substituiertes Phenyl, z.B. durch Halogen, insbesondere Fluor, Chlor, Brom, C₁-C₄-Alkyl, insbesondere Methyl, Ethyl, C₁-C₄-Halogenalkyl, insbesondere Trifluormethyl, Difluormethyl, Chlordifluormethyl, Trichlormethyl, C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy, C₁-C₄-Halogenalkoxy, insbesondere Trifluormethoxy, Difluormethoxy, Chlordifluormethoxy;

ein Rest OR20, insbesondere Methyl, Ethyl;

15 ein Rest R¹³,

oder gemeinsam mit R^{13} eine C_4 - C_6 -Alkylenkette wie Butylen, Pentylen, Hexylen, in der eine Methylengruppe durch Sauerstoff oder eine C_1 - C_4 -Alkyliminogruppe, z.B. Methyl- oder Ethyliminogruppe ersetzt sein kann;

20 C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl;

C₃-C₄-Alkenyl oder Alkinyl, z.B. 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Butinyl, 2-Propinyl, 3-Butinyl, Cyclopropylmethyl, Cyclopropyl oder Cyclobutyl; R¹⁶

25 Wasserstoff;

 C_1 - C_4 -Alkyl wie bei R^{15} genannt, C_3 - C_4 -Alkenyl, z.B. 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl;

eine C_4 - C_6 -Alkylenkette, in der eine Methylengruppe durch Sauerstoff ersetzt sein kann; R^{17}

30 C₁-C₄-Alkyl wie bei R¹⁵ genannt;

 C_1 - C_4 -Halogenalkyl, besonders C_1 - C_2 -Halogenalkyl wie Chlormethyl, Dichlormethyl, Trichlormethyl, Chlorfluormethyl, Eluormethyl, Difluormethyl, Trifluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2-fluorethyl, 2,2-Trichlorethyl und Pentafluorethyl;

35 R¹⁸

C₁-C₄-Alkyl wie bei R¹⁵ genannt oder N,N-Dimethylamino;

R19

C₁-C₄-Alkyl oder Halogenalkyl wie bei R¹⁷ genannt,

 C_2 - C_4 -Alkoxyalkyl wie Methoxyethyl, Ethoxyethyl;

C₃-C₄-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, gegebenenfalls mit Halogen substituiert, insbesondere Fluor oder Chlor;

C3-C4-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl;

Phenyl oder Phenyl substituiert durch ein bis drei Fluor, Chlor, Brom, Methyl oder Methoxy;

n

45 1 oder 2

R²⁰

Wasserstoff oder C₁-C₄-Alkyl wie bei R¹⁵ genannt;

Q21

ein Rest R¹², insbesondere Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl;

Phenyl, Benzyl, gegebenenfalls substituiert z.B. durch Halogen, insbesondere Fluor, Chlor, Brom, Cyano, C₁-C₄-Alkyl insbesondere Methyl, Ethyl, C₁-C₄-Alkoxy, welches gegebenenfalls durch Halogen substituiert ist, insbesondere Methoxy, Ethoxy, 2-Chlorethoxy.

Die erfindungsgemäßen herbiziden und wachstumsregulierenden Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben,

Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl-und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholgiykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 40 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- II. 20 Gewichtsteile der Verbindung Nr. 40 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 mol Ethylenoxid an 1 mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- III. 20 Gewichtsteile der Verbindung Nr. 40 Werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 mol Ethylenoxid an 1 mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile des Wirkstoffs Nr. 40 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280 °C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

40

45

50

V. 20 Gewichtsteile des Wirkstoffs Nr. 40 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigern Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

VI. 3 Gewichtsteile des Wirkstoffs Nr. 40 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VII. 30 Gewichtsteile des Wirkstoffs Nr. 40 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 40 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation der herbiziden und wachstumsregulierenden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff bei Anwendung als Herbizide betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3, vorzugsweise 0,01 bis 2 kg/ha aktive Substanz (a.S.).

Die Verbindungen der Formel I können praktisch alle Entwicklungsstadien einer Pflanze verschiedenartig beeinflussen und werden deshalb als Wachstumsregulatoren eingesetzt. Die Wirkungsvielfalt der Pflanzenwachstumsregulatoren hängt ab vor allem

- a) von der Pflanzenart und -sorte,
- b) von dem Zeitpunkt der Applikation, bezogen auf das Entwicklungsstadium der Pflanze und von der Jahreszeit,
- c) von dem Applikationsort und -verfahren z.B. Samenbeize, Bodenbehandlung, Blattapplikation oder Stamminjektion bei Bäumen
- d) von klimatischen Faktoren, z.B. Temperatur, Niederschlagsmenge, außerdem auch Tageslänge und Lichtintensität
- e) von der Bodenbeschaffenheit (einschließlich Düngung),
 - f) von der Formulierung bzw. Anwendungsform des Wirkstoffs und schließlich
 - g) von den angewendeten Konzentrationen der aktiven Substanz.

Aus der Reihe der verschiedenartigen Anwendungsmöglichkeiten der erfindungsgemäßen Pflanzenwachstumsregulatoren der Formel I im Pflanzenanbau, in der Landwirtschaft und im Gartenbau, werden einige nachstehend erwähnt.

A. Mit den erfindungsgemäß verwendbaren Verbindungen läßt sich das vegetative Wachstum der Pflanzen stark hemmen, was sich insbesondere in einer Reduzierung des Längenwachstums äußert. Die behandelten Pflanzen weisen demgemäß einen gedrungenen Wuchs auf; außerdem ist eine dunklere Blattfärbung zu beobachten.

Als vorteilhaft für die Praxis erweist eine verminderte Intensität des Wachstums von Gräsern an Straßenrändern, Hecken, Kanalböschungen und auf Rasenflächen wie Park-, Sport- und Obstanlagen, Zierrasen und Flugplätzen, so daß der Arbeits- und kostenaufwendige Rasenschnitt reduziert werden kann.

Von wirtschaftlichem Interesse ist auch die Erhöhung der Standfestigkeit von lageranfälligen Kulturen wie Getreide, Mais, Sonnenblumen und Soja. Die dabei verursachte Halmverkürzung und Halmverstärkung verringern oder beseitigen die Gefahr des "Lagerns" (des Umknickens) von Pflanzen unter ungünstigen Witterungsbedingungen vor der Ernte.

Wichtig ist auch die Anwendung von Wachstumsregulatoren zur Hemmung des Längenwachstums und zur zeitlichen Veränderung des Reifeverlaufs bei Baumwolle. Damit wird ein vollständig mechanisiertes Beernten dieser wichtigen Kulturpflanze ermöglicht.

Bei Obst- und anderen Bäumen lassen sich mit den Wachstumsregulatoren Schnittkosten einsparen. Außerdem kann die Alternanz von Obstbäumen durch Wachstumsregulatoren gebrochen werden.

10

30

35

45

50

Durch Anwendung von Wachstumsregulatoren kann auch die seitliche Verzweigung der Pflanzen vermehrt oder gehemmt werden. Daran besteht Interesse, wenn z.B. bei Tabakpflanzen die Ausbildung von Seitentrieben (Geiztrieben) zugunsten des Blattwachstums gehemmt werden soll.

Mit Wachstumsregulatoren läßt sich beispielsweise bei Winterraps auch die Frostresistenz erheblich erhöhen. Dabei werden einerseits das Längenwachstum und die Entwicklung einer zu üppigen (und dadurch besonders frostanfälligen) Blatt- bzw. Pflanzenmasse gehemmt. Andererseits werden die jungen Rapspflanzen nach der Aussaat und vor dem Einsetzen der Winterfröste trotz günstiger Wachstumsbedingungen im vegetativen Entwicklungsstadium zurückgehalten. Dadurch wird auch die Frostgefährdung solcher Pflanzen beseitigt, die zum vorzeitigen Abbau der Blühhemmung und zum Übergang in die generativen Phase neigen. Auch bei anderen Kulturen, z.B. Wintergetreide ist es vorteilhaft, wenn die Bestände durch Behandlung mit erfindungsgemäßen Verbindungen im Herbst zwar gut bestockt werden, aber nicht zu üppig in den Winter hineingehen. Dadurch kann der erhöhten Frostempfindlichkeit und wegen der relativ geringen Blatt- bzw. Pflanzenmasse - dem Befall mit verschiedenen Krankheiten (z.B. Pilzkrankheit) vorgebeugt werden. Die Hemmung des vegetativen Wachstums ermöglicht außerdem bei vielen Kulturpflanzen eine dichtere Bepflanzung des Bodens, so daß ein Mehrertrag bezogen auf die Bodenfläche erzielt werden kann.

B. Mit den Wachstumsregulatoren lassen sich Mehrerträge sowohl an Pflanzenteilen als auch an Pflanzeninhaltsstoffen erzielen. So ist es beispielsweise möglich, das Wachstum größerer Mengen an Knospen, Blüten, Blättern, Früchten, Samenkörnern, Wurzeln und Knollen zu induzieren, den Gehalt an Zucker in Zuckerrüben, Zuckerrohr sowie Zitrusfrüchten zu erhöhen, den Proteingehalt in Getreide oder Soja zu steigern oder Gummibäume zum vermehrten Latexfluß zu stimulieren.

Dabei können die Verbindungen der Formel I Ertragssteigerungen durch Eingriffe in den pflanzlichen Stoffwechsel bzw. durch Förderung oder Hemmung des vegetativen und/oder des generativen Wachstums verursachen.

C. Mit Pflanzenwachstumsregulatoren lassen sich schließlich sowohl eine Verkürzung bzw. Verlängerung der Entwicklungsstadien als auch eine Beschleunigung bzw. Verzögerung der Reife der geernteten Pflanzenteile vor oder nach der Ernte erreichen.

Von wirtschaftlichem Interesse ist beispielsweise die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- bzw. Blatt- und Sproßteil der Pflanze ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen wie beispielsweise Baumwolle wesentlich

D. Mit Wachstumsregulatoren kann weiterhin der Wasserverbrauch von Pflanzen reduziert werden. Dies ist besonders wichtig für landwirtschaftliche Nutzflächen, die unter einem hohen Kostenaufwand künstlich bewässert werden müssen, z.B. in ariden oder semiariden Gebieten. Durch den Einsatz der erfindungsgemäßen Substanzen läßt sich die Intensität der Bewässerung reduzieren und damit eine kostengünstigere Bewirtschaftung durchführen. Unter dem Einfluß von Wachstumsregulatoren kommt es zu einer besseren Ausnutzung des vorhandenen Wassers, weil u.a.

- die Öffnungsweite der Stomata reduziert wird
- eine dickere Epidermis und Cuticula ausgebildet werden
- die Durchwurzelung des Bodens verbessert wird und
- das Mikroklima im Pflanzenbestand durch einen kompakteren Wuchs günstig beeinflußt wird.

Die erfindungsgemäß zu verwendenden Wachstumsregulatoren der Formel I können den Kulturpflanzen sowohl vom Samen her (als Saatgutbeizmittel) als auch über den Boden, d.h. durch die Wurzel sowie - besonders bevorzugt - durch Spritzung über das Blatt zugeführt werden.

Infolge der hohen Pflanzenverträglichkeit kann die Aufwandmenge stark variiert werden.

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel in einer großen Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden.

55

5

10

15

20

25

30

35

Kulturenliste:

Botanischer Name	Deutscher Name
Allium cepa	Küchenzwiebel
Ananas comosus	Ananas
Arachis hypogaea	Erdnuß
Asparagus officinalis	Spargel
Beta vulgaris spp. altissima	Zuckerrübe
Beta vulgaris spp. rapa	Futterrübe
Brassica napus var. napus	Raps
Brassica napus var. napobrassica	Kohlrübe
Brassica rapa var. silvestris	Rübsen
Camellia sinensis	Teestrauch
Carthamus tinctorius	Saflor - Färberdistel
Carya illinoinensis	Pekannuβbaum
Citrus limon	Zitrone
Citrus sinensis	Apfelsine, Orange
Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee
Cucumis sativus	Gurke
Cynodon dactylon	Bermudagras
Daucus carota	Möhre
Elaeis guineensis	Ölpalme
Fragaria vesca	Erdbeere
Glycine max	Sojabohne
Gossypium hirsutum (Gossypium	Baumwolle
arboreum, Gossypium herbaceum,	
Gossypium vitifolium)	
Helianthus annuus	Sonnenblume
Hevea brasiliensis	Parakautschukbaum
Hordeum vulgare	Gerste
Humulus lupulus	Hopfen
Ipomoea batatas	Süβkartoffel
Juglans regia	₩alnuβbaum
Lens culinaris	Linse
Linum usitatissimum	Faserlein
Lycopersicon lycopersicum	Tomate
Malus spp.	Apfel
Manihot esculenta	Maniok
Medicago sativa	Luzerne
Musa spp.	Obst- und Mehlbanane
Nicotiana tabacum (N. rustica)	Takak
Olea europaea	ölbaum

	Botanischer Name	Deutscher Name
	Oryza sativa	Reis
	Phaseolus lunatus	Mondbohne
5	Phaseolus vulgaris	Buschbohne
	Picea abies	Rotfichte
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
10	Prunus avium	Süßkirsche
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
15	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
	Solanum tuberosum	Kartoffel
20	Sorghum bicolor (s. vulgare)	Mohrenhirse
	. Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
25	Triticum durum	Hartweizen
	vicia faba	Pferdebohnen
	Vitis vinifera	We i nrebe
	Zea mays	Mais

30

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die erfindungsgemäßen Verbindungen I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazin, 4H-3, 1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Sulfonylharnstoffderivate, Aryloxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs-und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Die nachstehenden Beispiele beschreiben exemplarisch die Herstellung der erfindungsgemäßen Verbindungen.

Beispiel 1

N-(2-Methoxycarbonylphenylsulfonyl)-1,5-dimethylpyrazol-3-carboxamid

50

In 200 ml absolutem Aceton werden 10,8 g 2-Methoxycarbonylphenylsulfonamid, 8,6 g 1,5-Dimethylpyrazol-3-carbonsäurechlorid und 13,8 g Kaliumcarbonat 8 h unter Rückfluß erhitzt. Nach Abdestillieren des Lösungsmittels wird der Rückstand in Wasser aufgenommen und ein pH-Wert von 2 eingestellt. Der sich bildende Niederschlag wird abgesaugt und mit H₂O neutral gewaschen. Nach Verrühren mit Ether wird der Rückstand abgesaugt und am Vakuum getrocknet. Man erhält 11,6 g N-(2-Methoxycarbonylphenylsulfonyl)-1,5-dimethylpyrazol-3-carboxamid mit einem Schmelzpunkt von 176-177°C (Wirkstoffbeispiel Nr. 40).

Beispiel 2

N-(2-Thienylsulfonyl)-1-methylpyrazol-4-carboxamid

3,8 g 1-Methylpyrazol-4-carbonsäure und 4,9 g Carbonyldiimidazol werden in 100 ml 1,2-Dichlorethan 3,5 h auf 55°C erwärmt. Nach Zugabe von 4,9 g 2-Thienylsulfonamid und 5,4 ml Triethylamin erhitzt man weitere 13 h auf 55°C. Nach Abkühlen werden 40 ml 10 %-ige wäßrige NaOH-Lösung zugegeben, anschließend die wäßrige Phase auf pH 1 gestellt. Der sich bildende Niederschlag wird abgetrennt und am Vakuum getrocknet. Man erhält 5,2 g N-(2-Thienylsulfonyl)-1-methylpyrazol-4-carboxamid mit einem Schmelzpunkt von 174-180°C (Wirkstoffbeispiel Nr. 103).

Beispiel 3

15

25

30

N-(2-Chlorphenylsulfonyl)-1,4-dimethylimidazol-2-carboxamid

In 200 ml Toluol werden 2,0 g 1,4-Dimethylimidazol und 4,3 g 2-Chlorphenylsulfonylisocyanat 6 h unter Rückfluß erhitzt. Nach Abkühlen wird der sich bildende Niederschlag abgesaugt und mit Aceton gewaschen. Der Rückstand wird in Acetonitril/Methanol suspendiert und 0,5 h unter Rückfluß erhitzt. Nach Abkühlen wird der Feststoff abgesaugt und am Vakuum getrocknet. Man erhält 2,3 g N-(2-Chlorphenylsulfonyl)-1,4-dimethylimidazol-2-carboxamid mit einem Schmelzpunkt von 230-231°C. (Wirkstoffbeispiel Nr. 113).

Beispiel 4

N-(2,6-DichlorphenyIsulfonyI)-2-methoxythiazol-4-carboxamid

2,3 g N-(2,6-Dichlorphenylsulfonyl)-2-bromthiazol-4-carboxamid und 1,6 g Natriummethanolat werden in 45 ml Methanol 12 h unter Rückfluß erhitzt. Nach Abkühlen saugt man den Niederschlag ab, wäscht mit Methanol und trocknet anschließend den Rückstand am Vakuum. Man erhält 1,8 g N-(2,6-Dichlorphenylsulfonyl)-2-methoxythiazol-4-carboxamid mit einem Schmelzpunkt von 162-165°C. (Wirkstoffbeispiel Nr. 34).

Entsprechend können durch Wahl der Ausgangsstoffe und entsprechende Anpassung der Verfahrensbedingungen die nachstehend in Tabelle 1 aufgelisteten Verbindungen erhalten werden, worin die folgenden Substituenten A vorliegen.

35

40

45

50

```
R^3, R^4 = H
                     R^2 = CO_2CH_3
           A1-1 :
                                                            R^3, R^4 = H
                     R^2 = CO_2CH_2CH_3
           A1-2 :
                                                            R^3, R^4 = H
           A1-3:
                     R^2 = CO_2CH(CH_3)_2
                                                            R^3 = 6-C1
           A1-4:
                     R^2 = CO_2CH_3
                                                            R^3 = 6 - OCH_3
                                                                              R^4 = H
           A1-5 :
                     R^2 = CO_2CH_3
                                                            R^3 = 6 - CH_3
                                                                              R^4 = H
                     R^2 = CO_2CH_3
           A1-6:
10
                                                            R^3 = 6 - F,
           A1-7 :
                     R^2 = CO_2CH_3
                                                            R^3 = 3-C1,
                                                                              R<sup>4</sup>
           A1-8 :
                     R^2 = CO_2CH_3
                                                            R^3 = 3-F
                                                                              R^4 = H
           A1-9:
                     R^2 = CO_2CH_3
                     R^2 = CO_2CH_3
                                                            R^3 = 4-C1,
                                                                              R^4 = H
           A1-10:
15
                                                            R^3 = 5-C1,
                                                                              R^4 = H
                     R^2 = CO_2CH_3
           A1-11:
                                                            R^3 = 5-F
                                                                              R4
                     R^2 = CO_2CH_3
           A1-12:
                                                            R^3 = 5-0CH_3
                                                                              R^4 = H
                     R^2 = CO_2CH_3
           A1-13:
                                                            R^3 = 5-OCHF_2
                                                                              R^4 = H
           A1-14:
                     R^2 = CO_2CH_3
20
                                                            R^3, R^4 = H
           A1-15:
                     R^2 = CO N(CH_3)_2
                                                            R^3 = 3-C1
                                                                              R^4 = H
                      R^2 = CO N(CH_3)_2
           A1-16:
                                                            R^3 = 3-F
                                                                              R^4 = H
           A1-17:
                      R^2 = CO N(CH_3)_2
                                                            R^3 = H
                      R^2 = CH_3
           A1-18:
                                                            R^{3}, R^{4} = H
                     R^2 = CH_2C1
           A1-19:
                                                            R^3, R^4 = H
                     R^2 = CH_2OCH_3
           A1-20:
30
                                                            R^3, R^4 = H
           A1-21:
                     R^2 = CH_2SCH_3
                                                            R^3, R^4 = H
           A1-22:
                      R^2 = CF_3
                                                            R^3 = 5-C1,
                      R^2 = CH_3
           A1-23:
                                                            R^3 = 5 - CH_3
                      R^2 = CH_3
           A1-24:
35
```

40

45

50

```
A1-25:
                        R^2 = CH_3
                                                              R^3 = 5 - OCH_3
                                                                                R^4 = H
             A1-26:
                        R^2 = F
                                                              R^{3}, R^{4} = H
5
             A1-27:
                        R^2 = F
                                                              R^3 = 6 - F
                                                                                R^4 = H
                        R^2 = C1
                                                              R^3, R^4 = H
             A1-28:
                        R^2 = C1
                                                              R^3 = 6-C1
             A1-29:
10
                      R^2 = C1
                                                              R^3 = 6 - CH_3
                                                                                R^4 = H
             A1-30:
             A1-31:
                        R^2 = C1
                                                              R^3 = 6 - OCH_3,
                                                                                R^4 = H
                        R^2 = C1
                                                              R^3 = 5 - CO_2CH_3, R^4 = H
             A1-32:
                                                                                R^4 = H
             A1-33:
                        R^2 = C1
                                                              R^3 = 5-C1,
15
                                                              R^3 = 3-C1,
                        R^2 = C1
                                                                                R^4 = H
             A1-34:
                        R^2 = C1
                                                              R^3 = 6-C1,
             A1-35:
                                                                                R^4 = 5-C1
             A1-36:
                        R^2 = C1
                                                              R^3 = 6-C1,
                                                                                R^4 = 4-C1
20
                        R^2 = Br
                                                              R^{3}, R^{4} = H
             A1-37:
             Al-38:
                        R^2 = Br
                                                              R^3 = 6-Br
                                                                                R^4 = H
                        R^2 = CN
                                                              R^{3}, R^{4} = H
             A1-39:
25
                                                              R^3, R^4 = H
             A1-40:
                        R^2 = OCH_3
             A1-41: R^2 = OCH_2CH_3
                                                              R^{3}, R^{4} = H
                                                              R^{3}, R^{4} = H
             A1-42: R^2 = OCH(CH_3)_2
30
                                                              R^{3}, R^{4} = H
             A1-43: R^2 = OCH_2CH_2C1
             A1-44:
                      R^2 = CH_2CH_2OCH_3
                                                              R^{3}, R^{4} = H
                                                              R^3, R^4 = H
             A1-45: R^2 = OCH_2CF_3
                                                              R^3, R^4 = H
             A1-46:
                       R^2 = OCF_3
35
                                                              R^3, R^4 = H
                        R^2 = OCF_2H
             A1-47:
                                                              R^3 = 5-Br,
             A1-48:
                       R^2 = OCH_3
                        R^2 = OCH_3
                                                              R^3 = 5 - 0 CH_3
                                                                                R^4 = H
             A1-49:
40
                                                              R^3 = 5 - OCH_2CF_3, R^4 = H
             A1-50:
                        R^2 = OCH_2CF_3
                                                              R^3, R^4 = H
                        R^2 = SCH_3
             A1-51:
                                                              R^3, R^4 = H
45
                        R^2 = SCH_2CH_3
             A1-52:
                                                              R^{3}, R^{4} = H
                        R^2 = SO_2CH_3
             A1-53:
                                                              R^{3}, R^{4} = H
             A1-54: R^2 = SO_2CH_2CH_3
                                                              R^3, R^4 = H
                      R^2 = SO_2CH_2CH_2CH_3
             Al-55:
50
                                                              R^3, R^4 = H
                        R^2 = SO_2CH(CH_3)_2
             A1-56:
```

5	A9 -7:	$R^5 = 8-OCH_3$ $R^5 = 8-OCH_2CH_2OCH_3$ $R^5 = 8-OCH_2CH_2C1$	R ⁴ = H R ⁴ = H R ⁴ = H
10	A10-3: A10-4:	$R^5 = H$ $R^5 = 1-C0_2CH_3$ $R^5 = 1-C1$ $R^5 = 1-OCH_2CH_2OCH_3$ $R^5 = 1-OCH_2CH_2C1$	R ⁴ = H R ⁴ = H R ⁴ = H R ⁴ = H
15			
20			

.

Tabelle 1

5

Nr.	A	8	Fp (°C)
1	A1-1	2-Furyl	
2	A1-26	2-Furyl	158-160
3	A1-29	2-Furyl	
4	A1-1	2,5-Dimethyl-3-furyl	148-150
5	A1-11	2,5-Dimethyl-3-furyl	
6	A1-1	5-Nitro-2-furyl	
7	A6-1	5-Nitro-2-furyl	
8	A1-40	5-Chlor-2-thienyl	175-177
9	A1-1	5-Chlor-2-thienyl	
10	A1-1	5-Methyl-2-thienyl	180-181
11	A1-18	5-Methyl-2-thienyl	
12	A1-1	2-Pyrrolyl	220
13	A1-29	2-Pyrrolyl	210
14	A1-1	1-Methyl-2-pyrrolyl	162-164
15	A1-28	1-Methyl-2-pyrrolyl	
16	A1-1	3-Isoxazolyl	
17	A1-26	3-Isoxazolyl	170-171
18	A1-29	5-Methyl-3-isoxazolyl	138
19	A1-1	5-Methyl-3-isoxazolyl	
20	A1-1	5-Chlormethyl-3-isoxazolyl	
21	A1-40	5-Chlormethyl-3-isoxazolyl	
22	A1-30	5-Phenyl-3-isoxazolyl	200-202
23	A1-1	3-Methyl-4-isoxazolyl	142-143
24	A1-1	3,5-Dimethyl-4-isoxazolyl	
25	A1-28	3,5-Dimethyl-4-isoxazolyl	
26	A1-1	5-Isoxazolyl	
27	A1-27	5-Isoxazolyl	
28	A1-1	3-Methyl-5-isoxazolyl	123-127
29	A1-30	3-Methyl-5-isoxazolyl	137-139
30	A1-1	2-Brom-4-thiazolyl	
31	A1-29	2-Brom-4-thiazolyl	>230
32	A1-30	2-Brom-4-thiazolyl	151
33	A1-1	2-methoxy-4-thiazolyl	
34	A1-29	2-Methoxy-4-thiazolyl	162-165
35	A1-30	2-methoxy-4-thiazolyl	138
36	A1-1	2-methyl-4-thiazolyl	

	Nr.	A	В	Fp (°C)
	37	A1-29	2-Methyl-4-thiazolyl	
	38	Al-1	4-Methyl-2-thiazolyl	
5	39	A1-30	4-Methyl-2-thiazolyl	
	40	A1-1	1,5-Dimethyl-3-pyrazolyl	176-177
	41	A1-29	1,5-Dimethyl-3-pyrazolyl	135-138
	42	A1-30	1,5-Dimethyl-3-pyrazolyl	123
10	43	A1-28	1,5-Dimethyl-3-pyrazolyl	89- 91
	44	A1-40	1,4-Dimethyl-3-pyrazolyl	123
	45	A1-18	1,5-Dimethyl-3-pyrazolyl	144-145
	46	A1-27	1,5-Dimethyl-3-pyrazolyl	145-147
15	47	A1-33	1,5-Dimethy1-3-pyrazolyl	172-178
73	48	A1-11	1,5-Dimethyl-3-pyrazolyl	172-174
	49	A1-10	1,5-Dimethyl-3-pyrazolyl	166-169
	50	A1-9	1,5-Dimethy1-3-pyrazolyl	168-169
	51	A1-2	1,5-Dimethyl-3-pyrazolyl	124-125
20	52	A1-3	l,5-Dimethyl-3-pyrazolyl	
	53	Al-15	1,5-Dimethyl-3-pyrazolyl	201-203
	54	A2-9	1,5-Dimethy1-3-pyrazoly1	185-188
	55	A7-1	1,5-Dimethyl-3-pyrazolyl	140-142
25	56	A9-1	1,5-Dimethyl-3-pyrazolyl	125-128
	57	A1-I	4-Brom-1,5-dimethyl-3-pyrazolyl	204-205
	58	A1-28	4-Brom-1,5-dimethyl-3-pyrazolyl	200-201
	59	A1-26	4-Brom-1,5-dimethyl-3-pyrazolyl	194-195
30	60	A1-30	4-Brom-1,5-dimethyl-3-pyrazolyl	205-206
30	61	A1-29	4-Brom-1,5-dimethyl-3-pyrazolyl	210
	62	A1-27	4-Brom-1,5-dimethyl-3-pyrazolyl	192-193
	63	A1-9	4-Brom-1,5-dimethyl-3-pyrazolyl	192-193
	64	A1-2	4-Brom-1,5-dimethyl-3-pyrazolyl	180-182
35	65	A1-3	4-Brom-1,5-dimethyl-3-pyrazolyl	
	66	A2-9	4-Brom-1,5-dimethyl-3-pyrazolyl	
	67	A1-1	4-Chlor-1,5-dimethyl-3-pyrazolyl	192-194
	68	A1-11	4-Chlor-1,5-dimethyl-3-pyrazolyl	196-197
40	69	A1-29	4-Chlor-1,5-dimethyl-3-pyrazolyl	210
	70	A1-30	4-Chlor-1,5-dimethyl-3-pyrazolyl	194-195
	71	A1-40	4-Chlor-1,5-dimethyl-3-pyrazolyl	201-204
	72	A1-1	1,4-Dimethyl-3-pyrazolyl	
4E	73	A1-2	1,4-Dimethyl-3-pyrazolyl	
45	74	A1-28	1,4-Dimethyl-3-pyrazolyl	
	75	A1-27	1,4-Dimethyl-3-pyrazolyl	
	76	A1-30	1,4-Dimethyl-3-pyrazolyl	
	77	A1-1	1,4,5-Trimethyl-3-pyrazolyl	184-186
50	78	A1-29	1,4,5-Trimethyl-3-pyrazolyl	145-146
	79	A1-40	1,4,5-Trimethyl-3-pyrazolyl	

	Nr.	A	В	Fp (°C)
	80	A1-1	4-Ethoxycarbonyl-1-methyl-3-pyrazolyl	162-164
	81	A1-30	4~Ethoxycarbony1-1-methyl-3-pyrazolyl	197-200
5	82	A1-1	l-Ethyl-5-methyl-3-pyrazolyl	35- 37
3	83	A1-11	l-Ethyl-5-methyl-3-pyrazolyl	62- 63
	84	A1-27	l-Ethyl-5-methyl-3-pyrazolyl	
	85	A1-43	l-Ethyl-5-methyl-3-pyrazolyl	
	86	A1-29	l-Ethyl-5-methyl-3-pyrazolyl	171-173
10	87	A1-1	l-Isopropyl-5-methyl-3-pyrazolyl	156-158
	88	A1-29	l-Isopropyl-5-methyl-3-pyrazolyl	206-208
	89	A1-40	l-Isopropyl-5-methyl-3-pyrazolyl	
	90	A1-1	<pre>l-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl</pre>	187-188
15	91	A1-28	l-Methyl-1,4,5,6-tetrahydrocyclopentapyrazol-3-yl	
	92	A1-30	<pre>1-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl</pre>	
	93	A1-40	<pre>1-Methyl-1, 4, 5, 6-tetrahydrocyclopentapyrazol-3-yl</pre>	
	94	A1-1	l-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	157-158
20	95	A1-26	l-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	134-135
	96	A1-43	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	
	97	A1-2	l-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	
	98	Al-1	l,3-Dimethyl-5-pyrazolyl	158-162
25	99	A1-30	1,3-Dimethyl-5-pyrazolyl	203
	100	A1-29	1,3-Dimethyl-5-pyrazolyl	>230
	101	A1-1	l-Methyl-4-pyrazolyl	174-178
	102	A1-30	l-Methyl-4-pyrazolyl	208
	103	A6-1	l-Methyl-4-pyrazolyl	174-180
30	104	A9-1	l-Methyl-4-pyrazolyl	220-227
	105	A1-1	5-Cyclopropyl-1-methyl-3-pyrazolyl	150-152
	106	A1-27	5-Cyclopropyl-1-methyl-3-pyrazolyl	
	107	A1-30	5-Cyclopropyl-1-methyl-3-pyrazolyl	148-150
35	108	A1-40	5-Cyclopropyl-1-methyl-3-pyrazolyl	
	109	A1-1	5-Ethyl-1-methyl-3-pyrazolyl	
	110	A1-15	5-Ethyl-1-methyl-3-pyrazolyl	
	111	A1-30	5-Ethyl-1-methyl-3-pyrazolyl	
40	112	A1-43	5-Ethyl-1-methyl-3-pyrazolyl	•
	113	A1-28	l,4-Dimethyl-2-imidazolyl	230-231
	114	A1-1	1,4-Dimethy1-2-imidazoly1	
	115	A1-28	l-Methyl-2-imidazolyl	162-165
	116	Al-1	1-Methyl-2-imidazolyl	
45	117	A1-29	l-Methyl-2-imidazolyl	
	118	A1-1	1-Methyl-5-imidazolyl	220
	119	A1-26	1-Methyl-5-imidazolyl, Na-Salz	>300
	120	A1-30	l-Methyl-5-imidazolyl	255
50	121	A1-30	1-Methyl-5-imidazolyl, Na-Salz	>300

	Nr.	Α	В	Fp (°C)
	122	A1-40	l-Methyl-5-imidazolyl	260-265
_	123	A1-29	1-Methyl-5-imidazolyl	295-300
5	124	A1-1	2-Methyl-4-oxazolyl	
	125	A1-26	2-Methyl-4-oxazolyl	
	126	A1-30	2-Methyl-4-oxazolyl	
	127	A1-44	2-Methyl-4-oxazolyl	
10	128	A 1 - 1	2-Cyclopropyl-4-oxazolyl	110-112
	129	A1-2	2-Cyclopropyl-4-oxazolyl	
	1 30	A1-27	2-Cyclopropyl-4-oxazolyl	164-166
	131	A9-1	2-Cyclopropyl-4-oxazolyl	
15	132	A1-1	1,2,3-Thiadiazoly1-4-yl	110
	133	A1-28	1,2,3-Thiadiazoly1-4-yl	173-176
	134	A1-29	l,2,3-Thiadiazoly1-4-yl	>230
	135	A1-33	1,2,3-Thiadiazoly1-4-y1	139
20	136	A1-1	4-Methyl-1, 2, 3-thiadiazolyl-5-yl	
	137	A1-28	4-Methy1-1, 2, 3-thiadiazo1-5-y1	
	1 38	A1-27	4-Chlor-1,5-dimethyl-3-pyrazolyl	198-200
	139	A1-1	5-Phenyl-3-isoxazolyl	205-206
25	140	A1-11	4-Brom-1,5-dimethyl-3-pyrazolyl	>210
	141	A1-26	1,5-Dimethyl-3-pyrazolyl	146-147
	142	A1-22	1,5-Dimethy1-3-pyrazolyl	152-153
	143	A1-28	5-methyl-3-isoxazolyl	190-191
30	144	A2-4	1,5-Dimethyl-3-pyrazolyl	191-192
30	145	A1-49	1,5-Dimethyl-3-pyrazolyl	153-155
	146	A1-1	1,5-Dimethyl-3-pyrazolyl, Na-Salz	>220
	147	A 1 - 1	1,5-Oimethyl-3-pyrazolyl, Ca-Salz	>220
	148	A1-11	1-Methyl-1,4,5,6-tetrahydrocyclopenta-	184-187
35			pyrazol-3-yl	
	149	A1-27	5-Methyl-3-isoxazolyl	160-161
	150	A1-22	5-Methyl-3-isoxazolyl	160-162
	151	A1-10	2-Cyclopropyl-4-oxazolyl	150-152
40	152	A1-30	2-Cyclopropyl-4-oxazolyl	131-132
	153	A1-22	2-Cyclopropyl-4-oxazolyl	129-131
	154	A1-44	1,5-Dimethyl-3-pyrazolyl	83- 85
	155	A6-1	l,5-Dimethyl-3-pyrazolyl	130-132
45	156	A1-9	5-Cyclopropyl-1-methyl-3-pyrazolyl	100-101
	157	A1-10	4-Chlor-1,5-dimethyl-3-pyrazolyl	210-212
	158	A1-9	4-Chlor-1,5-dimethyl-3-pyrazolyl	194-195
	159	A2-4	4-Brom-1,5-dimethyl-3-pyrazolyl	199
50	160	A1-22	4-Brom-1,5-dimethyl-3-pyrazolyl	175-177
	161	A1-18	4-Brom-1,5-dimethyl-3-pyrazolyl	155-157

	Nr.	A	8	Fp (°C)
	162	A1-1	1,4,5-Trimethyl-3-pyrazolyl, Na-Salz	>220
	163	A1-30	1,4,5-Trimethyl-3-pyrazolyl	148-150
5	164	Al-1	4,5-Diethyl-1-methyl-3-pyrazolyl	154-156
	165	A1-1	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	90- 92
	166	A1-2	4,5-Diethyl-1-methyl-3-pyrazolyl	137-139
	167	A1-2	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	157-159
10	168	A1-9	4,5-Diethyl-1-methyl-3-pyrazolyl	167-169
	169	a1-9	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	130-132
	170	A1-10	4,5-Diethyl-1-methyl-3-pyrazolyl	116-118
	171	A2-4	4,5-Diethyl-1-methyl-3-pyrazolyl	121-123
15	172	A1-29	4,5-Diethyl-1-methyl-3-pyrazolyl	128-130
	173	A1-29	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	141-143
	174	A1-27	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	>220
	175	A1-30	4,5-Diethyl-1-methyl-3-pyrazolyl	96- 98
20	176	A1-30	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	>220
	177	A1-22	4,5-Diethyl-1-methyl-3-pyrazolyl	93- 95
	178	A1-22	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	82- 84
	179	A1-28	4,5-Diethyl-1-methyl-3-pyrazolyl	150-152
25	180	A1-28	4,5-Diethyl-1-methyl-3-pyrazolyl, Na-Salz	120-122
	181	A1-9	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	177-178
	182	A1-10	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	180-181
	183	A1-29	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	210
30	184	A1-30	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	167-168
	185	A1-27	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	161-162
	186	A1-28	1-Methyl-4,5,6,7-tetrahydrobenzopyrazol-3-yl	125-126
	187	A1-1	1-Ethyl-5-methyl-3-pyrazolyl, Na-Salz	168-170
35	188	A1-2	l-Ethyl-5-methyl-3-pyrazolyl	90- 92
	189	A1-30	1-Ethyl-5-methyl-3-pyrazolyl	120-121
	190	A1-28	1-Ethyl-5-methyl-3-pyrazolyl	133-135
	191	A1-1	1-Methyl-3-phenyl-4-pyrazolyl	32- 34
40	192	A1-30	1-Methyl-5-phenyl-4-pyrazolyl	199-201

Analog können darüber hinaus weitere Verbindungen hergestellt werden mit der allgemeinen Struktur

wobei

A für einen Rest aus der Gruppe E1 bis E97

B für einen Rest aus der Gruppe G1 bis G12

X für O, S oder NR⁹

55 W für O oder S

R³ für einen Rest aus der Gruppe L1 bis L140

R⁹ für einen Rest aus der Gruppe V1 bis V35 beispielsweise stehen können und die Reste E, G, L, V, W und X beliebig kombiniert werden können.

	oder wo	bei
	Α	für einen Rest aus der Gruppe E1 bis E97
	В	für einen Rest aus der Gruppe G13 bis G14
	Х	für O oder S
5	W	für O oder S
	R ⁸	für einen Rest aus der Gruppe L1 bis L 140 beispielsweise stehen können und die Reste E, G, L, W und X beliebig kombiniert werden können,
	oder wo	-
	Α	für einen Rest aus der Gruppe E1 bis E97
10	В	für den Rest G15
	X	für N
	W	für O oder S
	R10	für einen Rest aus der Gruppe Y1 bis Y16
	R ¹¹	für einen Rest aus der Gruppe Z1 bis Z13 beispielsweise stehen können und die Reste E, G, W,
15		Y und Z beliebig kombiniert werden können.
	A, B	, R ⁸ , R ⁹ , R ¹⁰ und R ¹¹ können beispielsweise die folgenden Reste bedeuten:
20		
		·
		·
25		
30		
35		
40		
45		
50		

	Verb		Verb.	
	Nr.	А	Nr.	A
5	Εl.	2.00-040-4	E36	2,4,6-C1 ₃ -C ₆ H ₂
	£2	2-CO ₂ CH ₃ -C ₆ H ₄	E37	
	£3	2-CO ₂ CH ₂ CH ₃ -C ₆ H ₄	E38	2-Br-C ₆ H ₄ 2,6-Br ₂ -C ₆ H ₃
		2-CO ₂ CH(CH ₃) ₂ -C ₆ H ₄	E39	2-CN-C6H4
10	E4	2-CO ₂ CH ₃ -6-Cl-C ₆ H ₃	E40	
	E5	2-CO ₂ CH ₃ -6-OCH ₃ -C ₆ H ₃	E40	2-0CH3-C6H4
	E6	2-co ₂ cH ₃ -6-CH ₃ -C ₆ H ₃	E41	2-0CH ₂ CH ₃ -C ₆ H ₄
	£7	2-co ₂ cH ₃ -3-c1-c ₆ H ₃	E42 E43	2-0CH(CH ₃) ₂ -C ₆ H ₄
15	E8	2-C0 ₂ CH ₃ -3-F-C ₆ H ₃		2-0CH ₂ CH ₂ Cl-C ₆ H ₄
	E9	2-CO ₂ CH ₃ -6-F-C ₆ H ₃	E4 4 E4 5	2-0CH ₂ CH ₂ OCH ₃ -C ₆ H ₄
	E10	2-co ₂ CH ₃ -4-Cl-C ₆ H ₃	£45 £46	2-0CH ₂ CF ₃
	€11 =12	2-co ₂ ch ₃ -5-cl-c ₆ h ₃		2-0CF3
20	E12	2-CO ₂ CH ₃ -5-F-C ₆ H ₃	E47	2-0CF ₂ H-C ₆ H ₄
	E13	2-co ₂ cH ₃ -5-0CH ₃ -C ₆ H ₃	E48	2-0CH ₃ -5-Br-C ₆ H ₃
	E14	2-CO ₂ CH ₃ -5-OCHF ₂ -C ₆ H ₃	E49	2,5-(OCH ₃) ₂ -C ₆ H ₃
	E15	2-con(ch ₃) ₂ -c ₆ H ₄	E50	2,5-(OCH ₂ CF ₃) ₂ -C ₆ H ₃
	E16	2-con(ch ₃) ₂ -3-c1-c ₆ H ₃	E51	2-SCH3-C6H4
25	E17	2-CON(CH ₃) ₂ -3-F-C ₆ H ₃	E52	2-SCH ₂ CH ₃ -C ₆ H ₄
	E18	2-сн3-с6н4	E53	2-S0 ₂ CH ₃ -C ₆ H ₄
	E19	2-CH ₂ C1-C ₆ H ₄	E54	2-S0 ₂ CH ₂ CH ₃ -C ₆ H ₄
	E20	2-сн ₂ осн ₃ -с ₆ н ₄	E55	2-so ₂ CH ₂ CH ₂ CH ₃ -C ₆ H ₄
30	E21	2-CH ₂ SCH ₃ -C ₆ H ₄	E56	2-so ₂ ch(ch ₃) ₂ -c ₆ h ₄
	E22	2-CF3-C6H4	£57	2-SO ₂ N(CH ₃) ₂ -C ₆ H ₄
	E23	2-CH ₃ -5-Cl-C ₆ H ₃	E58	2-0S0 ₂ CH ₃ -C ₆ H ₄
	£24	2,5-(CH ₃) ₂ -C ₆ H ₃	E59	2-050 ₂ CH ₂ CH ₃ -C ₆ H ₄
35	£25	2-сн3-5-осн3-с6н3	E60	2-COCH3-C6H4
	£26	2-F-C6H4	E61	2-C6H5-C6H4
	E27	2,6-F ₂ -C ₆ H ₃	E62	Pyrid-2-yl
	E28	2-C1-C6H4	E63	3-CO ₂ CH ₃ -pyrid-2-yl
40	E29	2,6-Cl ₂ -C ₆ H ₃	E64	3-CO ₂ CH ₂ CH ₃ -pyrid-2-yl
	E30	2-с1-6-сн ₃ -с ₆ н ₃	E65	3-con(cH ₃) ₂ -pyrid-2-yl
	E31	2-с1-6-осн3-с6н3	E66	3-Cl-pyrid-2-yl
	E32	2-C1-5-CO ₂ CH ₃ -C ₆ H ₃	E67	3-CF ₃ -pyrid-2-yl
45	E33	2,5-Cl ₂ -C ₆ H ₃	E68	3-OCH ₂ CH ₃ -pyrid-2-yl
	E34	2,3-C1 ₂ -C ₆ H ₃	€69	3-SO ₂ CH ₃ -pyrid-2-yl
	€35	2,5,6-Cl ₃ -C ₆ H ₂	£70	3-so ₂ CH ₂ CH ₃ -pyrid-2-y1

50

	Verb.	
	Nr.	A
5	E71	3-SOCH ₃ -pyrid-2-yl
	E72	3-SOC ₂ H ₅ -pyrid-2-yl
	€73	3-SO ₂ N(CH ₃) ₂ -pyrid-2-yl
	E74	3-SO ₂ NHCH(CH ₃) ₂ -pyrid-2-y1
10	E75	Pyrid-3-yl
	E76	2-CON(CH ₃) ₂ -pyrid-3-y1
	€77	Thien-2-yl
	E78	3-Cl-thien-2-yl
15	E79	4-Cl-thien-2-yl
	E80	5-Cl-thien-2-yl
	E81	3-CO ₂ CH ₃ -thien-2-yl
	E82	2-CO ₂ CH ₃ -thien-3-yl
20	E83	2-CON(CH ₃) ₂ -thien-3-yl
	E84	4-CO ₂ CH ₃ -thien-3-yl
	E85	Naphth-1-y1
	E86	2-CO ₂ CH ₃ -naphth-1-yl
25	E87	2-Cl-naphth-1-yl
	E88	8-CO ₂ CH ₃ -naphth-1-y1
	E89	8-Cl-naphth-1-yl
	E90	8-OCH ₃ -naphth-1-yl
30	E91	8-OCH ₂ CH ₂ OCH ₃ -naphth-1-y1
	E92	8-OCH ₂ CH ₂ Cl-naphth-1-yl
	E93	Naphth-2-yl
	E94	l-CO ₂ CH ₃ -naphth-2-yl
35	E95	l-Cl-naphth-2-yl
-	E96	1-OCH ₂ CH ₂ OCH ₃ -naphth-2-y1
	E97	1-OCH ₂ CH ₂ C1-naphth-2-yl
40		
40		
45		

50

	Verb. Nr.	В	Verb. Nr.	В
5	Gl	R8 R8	G9	R8 X N
10	G2	R8 X R8	G10	R8 N
15	G 3	N R8	G11	RB XX
	G4	R8 XX R8	G1 2	N R8
20	G5	R8 XX R8		R8 X-N
25	G6	R8 X N	G14	N-X-N
<i>30</i>	G 7	R8 X N	G15	R10 X N
30	G8	R8 R8		Kıı

	Verb.		Verb.	
	Nr.	R8	Nr.	R8
_				
5	Ll	Н	L36	cyclo-C5H9
	L2	F	L37	cyclo-C ₆ H ₁₁
	L3	Cl	L38	Tetrahydropyran-2-yl
	L4	Br	L39	Tetrahydropyran-3-yl
10	L5	J	L40	Tetrahydrofuran-2-yl
	L6	CN	L41	Tetrahydrofuran-3-yl
	L7	NO ₂	L42	Thien-2-yl
	L8	СН3	L43	Thien-3-yl
15	L9	C ₂ H ₅	L44	Furan-2-yl
	L10	n-C ₃ H ₇	L45	Furan-3-y1
	LII	i-C ₃ H ₇	L46	l-Methylpyrazol-3-yl
	L12	n-C4H9	L47	l-Methylpyrazol-4-yl
20	L13	i-C4H9	L48	1-Methylpyrazol-5-yl
	L14	s-C4H9	L49	1-Ethylpyrazol-3-yl
	L15	tertC4H9	L50	l-Ethylpyrazol-4-yl
	L16	CH ₂ F	L51	1-Ethylpyrazol-5-yl
25	L17	CH ₂ Cl	L52	оснз
	L18	CH ₂ Br	L 53	OC2H5
	L19	CHF ₂	L54	осн (сн3) 2
	L20	CF3	L55	OCH2CH2C1
30	L21	CC13	L56	осн2сн2осн3
	L22	CH2-CH2F	£57	OCF3
	L23	CH2-CH2CI	L58	OCHF 2
	L24	CH2-CHF2	L59	OCH ₂ CF ₃
35	L25	CH2-CF3	L60	OC6H5
	L26	CH2-CC13	L61	OCH ₂ C ₆ H ₅
	L27	CF2-CF3	L62	scH ₃
	L28	CH2-0-CH3	L63	sch ₂ ch ₃
40	L29	CH2-CH2-OCH3	L64	SC6H5
	L30	сн (сн3)осн3	L65	SCH ₂ C ₆ H ₅
	L31	сн (сн ₃) сн ₂ осн ₃	L66	CH2-CH=CH2
	L32	CH20C2H5	L67	сн(сн ₃)-сн=сн ₂
45	L33	CH2C6H5	L68	CH2-C(CH3)=CH2
	L34	cyclo-C ₃ H ₅	L69	CH2-CH=CH-CH3
	L35	cyclo-C4H7	L70	CH2-C=CH
		· · ·		=

50

	Verb.		Verb.	•
	Nr.	R8	Nr.	R8
_			•	
5	L71	сн(сн ₃)-с=сн	L106	CO2CH2C6H5
	L72	CH2-C=C-CH3	L107	CONH ₂
	L73	C ₆ H ₅	L108	conhch ₃
40	L74	2-CH3-C6H4	L109	con(CH ₃) ₂
10	L75	3-CH3-C6H4	L110	conhc ₂ H ₅
	L76	4-CH3-C6H4	L111	CON(C2H5)2
	L77	2-CF3-C6H4	L112	conhch(ch ₃) ₂
	L78	3-CF3-C6H4	L113	conhch ₂ c ₆ h ₅
15	L79	4-CF3-C6H4	L114	CONHC6H5
	L80	2-F-C6H4	∟115	conhoch ₃
	L81	3-F-C6H4	L116	CONHOC2H5
	L82	4-F-C6H4	L117	so ₂ n(cH ₃) ₂
20	L83	2-C1-C6H4	L118	SO2NCH3 (C2H5)
	L84	3-C1-C6H4	L119	SO2N(C2H5)2
	L85	4-C1-C6H4	L120	so ₂ nHCH ₃
	L86	2-NO2-C6H4	L121	SO2NHC2H5
25	L87	3-NO ₂ -C ₆ H ₄	L122	SO ₂ OCH ₃
	L88	4-NO2-C6H4	L123	SO ₂ OC ₂ H ₅
	L89	2-CH30-C6H4	L124	so ₂ och(ch ₃) ₂
	L90	3-CH ₃ 0-C ₆ H ₄	L125	sozochzchzc1
30	L91	4-CH30-C6H4	L126	SO ₂ OCH ₂ CF ₃
	L92	COCH ₃	L127	OSO ₂ CH ₃
	L93	COCH ₂ CH ₃	L128	0S02C2H5
	L94	CO(cycloC3H5)	L129	oso ₂ ch(ch ₃) ₂
35	L95	COCH ₂ C1	L130	0S02N(CH3)2
	L96	COCH ₂ Br	L131	sосн ₃
	L97	COCH ₂ F	L132	SOC ₂ H ₅
	L98	COCF ₃	L133	soch(ch3)2
40	L99	coch ₂ och ₃	L134	SOC ₆ H ₅
	L100	CO ₂ H	L135	SO ₂ CH ₃
	L101	со ₂ сн ₃	L136	SO ₂ CH ₂ CH ₃
	L102	CO ₂ CH ₂ CH ₃	L137	SO ₂ CH(CH ₃) ₂
45	L103	CO2CH(CH3)2	L138	SO2CH2CH2CH3
	∟104	CO2CH2CF3	L139	zwei vicinale Reste R ⁸ bilden
	L105	co ₂ ch ₂ ch ₂ och ₃		gemeinsam eine C3-Methylenkette
			L140	zwei vicinale Reste R ⁸ bilden
50				gemeinsam eine C4-Methylenkette
				-

		Verb.	
		Nr.	_R 9
5			•
5		v 1	Н
		V 2	СНЗ
		٧3	сн2сн3
		V 4	CH2CH2F
10		v 5	CH2CF3
		v6	CH2CH2C1
		v 7	CH2CH2OCH3
		v8	CH ₂ C ₆ H ₅
15		v 9	CH(CH3)2
-		V10	cyclo-C ₃ H ₅
		v 1 1	cyclo-C4H7
		V 1 2	cyclo-C5H9
20		V13	C6H5
		v14	2-CH ₃ -C ₆ H ₄
		v 1 5	2-C2H5-C6H4
		v 16	2,6-(CH ₃) ₂ -С ₆ H ₃
25		v 17	2,6-(C2H5)2-C6H3
	•	v18	2-CH3-6-C2H5-C6H3
		v 1 9	2-C1-C6H4
		v 20	2,4-C12-C6H3
30		v 2 I	2,6-С1 ₂ -С ₆ н ₃
		v 2 2	2, 4, 6-Cl3-C6H2
		v 2 3	2,6-C12-4-CF3-C6H2
		V 2 4	2-C1-4-CF3-C6H3
35		v 25	CH2-CH=CH2
		v 26	CH=CH2
		V 2 7	CH2-C≡CH
		v 28	CH2C6H5
40		V 2 9	соснз
	•	v 30	COC ₂ H ₅
		v31	сос6н5
		v32	CH ₂ F
45		v 33	CHF ₂
		v 34	CF3
		v 35	CF ₂ Cl
50			

```
Verb.
                                          R10
                                   Nr.
5
                                   Y 1
                                          C<sub>6</sub>H<sub>5</sub>
                                          2-C1-C6H4
                                   Y 2
                                   Y3
                                          2-F-C6H4
                                   γ4
                                          2-CH3-C6H3
                                          2-CF3-C6H3
                                   ٧5
10
                                   Y6
                                          2-OCH3-C6H3
                                   ¥7
                                          2,3-C12-C6H3
                                   Y8
                                          2,4-C12-C6H3
                                   ٧9
                                          2,5-C12-C6H3
15
                                   Y10
                                          2,6-Cl2-C6H3
                                   Y11
                                          2, 4, 6-Cl3-C6H2
                                   Y12
                                          CH2C6H5
                                   v13
                                          0C6H5
20
                                   Y14
                                          OCH2C6H5
                                   Y15
                                          SC<sub>6</sub>H<sub>5</sub>
                                   Y16
                                          SCH2C6H5
25
                                   Verb.
                                          R11
                                   Nr.
30
                                   Ζl
                                          н
                                   Z2
                                          C6H5
                                   Z3
                                          2-C1-C6H4
35
                                   Z4
                                          2-F-C6H4
                                   z5
                                          2-CH3-C6H4
                                   Z6
                                           2-CF3-C6H4
                                   Z7
                                           2-0CH3-C6H4
40
                                   z8
                                          2,4-C12-C6H3
                                   z9
                                          2,6-Cl2-C6H3
                                   Z10
                                          2,6-F2-C6H3
                                   Z11
                                           2,6-(CH3)2-C6H3
45
                                           2-C1-4-CF3-C6H3
                                   Z12
                                   Z13
                                           2,6-Cl2-4-CF3-C6H2
```

Anwendungsbeispiele

A Herbizide Wirkung

Die herbizide Wirkung der Sulfonylharnstoffe der Formel I ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde. Die Aufwandmengen betrugen 0,125 kg/ha a.S.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,25 kg/ha a.S..

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name
Abutilon theophr. Chenopodium album Triticum aestivum	Chinesischer Hanf Weißer Gänsefuß Sommerweizen

Mit 0,25 kg/ha a.S. im Nachauflaufverfahren eingesetzt, lassen sich mit dem Beispiel 40 breitblättrige unerwünschte Pflanzen sehr gut bekämpfen, bei gleichzeitiger Verträglichkeit an der Beispielkultur Weizen.

B Wachstumsregulierende Wirkung

Zur Bestimmung der wachstumsregulierenden Eigenschaft der Prüfsubstanzen wurden Testpflanzen auf ausreichend mit Nährstoffen versorgtem Kultursubstrat in Kunststoffgefäßen von ca. 12,5 cm Durchmesser angezogen.

Im Nachauflaufverfahren wurden die zu prüfenden Substanzen in wäßriger Aufbereitung auf die Pflanzen gesprüht. Die beobachtete wachstumsregulierende Wirkung wurde bei Versuchsende durch Wuchshöhenmessung belegt. Die so gewonnenen Meßwerte wurden zur Wuchshöhe der unbehandelten Pflanzen in Relation gesetzt. Als Vergleichssubstanz A diente 2-Chlorethyltrimethylammoniumchlorid.

Gleichlaufend zur Reduzierung des Längenwachstums stieg die Farbintensität der Blätter an. Der erhöhte Chlorophyllgehalt läßt eine ebenfalls erhöhte Photosyntheserate und damit eine erhöhte Ertragsbildung erwarten.

Die Einzeldaten sind den folgenden Tabellen B-1 und B-2 zu entnehmen.

Tabelle B-1

Sommerweizen, "Ralle"; Nachauflauf-Blattbehandlung			
Nr.d.chem. Beispiele	Konzentration mg a.S./Gefäß	Wuchshöhen rel.	
unbehandelt	•	100	
A	1,5	82,2	
40	1,5	73,1	

50

15

20

35

40

45

Tabelle B-2

Sommergerste, "Aramir"; Nachauflauf-Blattbehandlung				
Nr.d.chem. Beispiele	Konzentration mg a.S./Gefäß	Wuchshöhen rel.		
unbehandelt	•	100		
Α	1,5	90,7		
40	1,5	69,4		

Patentansprüche

1. Sulfonamide der allgemeinen Formel I

15

5

10

20

in der die Substituenten folgende Bedeutung haben:

25

30

35

(A1)

(A2)

(A3)

(A5)

(A6)

(A7)

40

45

5*0*

55

(A9)

(A10)

Sauerstoff, Schwefel;

- 2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;
- 2-, 3-, 4- oder 5-Pyrrolyl, wobei diese genannten Reste drei C-gebundene Reste R8 und einen Ngebundenen Rest R9 tragen;
- 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R8;

- 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;
- 5 1,3,4-Thiadiazol-2-yl, -5-yl, 1,3,4-Oxadiazol-2-yl, -5-yl,
 - 1,2,4-Thiadiazol-3-yl, -5-yl, 1,2,4-Oxadiazol-3-yl, -5-yl,
 - 1,2,3-Thiadiazol-4-yl, -5-yl, 1,2,3-Oxadiazol-4-yl, -5-yl,
 - 1,2,5-Thiadiazol-3-yl, -4-yl, 1,2,5-Oxadiazol-3-yl, -4-yl,

wobei diese Reste einen Rest R8 tragen;

10

- 1,2,4-Triazol-3-yl, substituiert durch einen C-gebundenen Rest R¹⁰ und einen N-1 gebundenen Rest R¹¹;
- 1,2,4-Triazol-5-yl, 1,2,3-Triazol-4-yl, -5-yl, jeweils substituiert durch einen C-gebundenen Rest R⁸ und einen N-1 gebundenen Rest R⁹;

X Sauerstoff, Schwefel, NR1;

R

20 Wasserstoff;

C₁-C₆-Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatorne und/oder Phenyl;

C2-C4-Alkenyl;

25

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, Nitro, Cyano;

30 R²

Halogen;

Cyano; Thiocyano;

- C₁-C₅-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl Phenoxy oder Phenylthio, wobei die Phenylreste jeweils durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;
- 40 C₃-C₆-Cycloalkyl, C₃-C₈-Cycloalkoxy, C₃-C₆-Cycloalkylthio, C₅-C₆-Cycloalkenyl, C₅-C₈ Cycloalkenyloxy, C₅-C₈-Cycloalkenylthio, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;
- Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;
- gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, welcher gegebenenfalls bis zu zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio;
- 55 C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio,
 - C2-C6-Alkenyl oder C2-C6-Alkenyloxy oder C2-C6-Alkenylthio,

C2-C6-Alkinyl, C2-C6-Alkinyloxy oder C2-C6-Alkinylthio,

wobei die genannten Alkoxy-, Alkylthio-, Alkenyl-, Alkinyl-, Alkenyloxy(thio)-, Alkinyloxy(thio)reste durch ein bis fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₂-Halogenalkylthio, Phenoxy, Phenylthio, Benzyloxy, Benzylthio;

COR12; COQR13; SO2 NR15 R16; SO2 OR17; OSO2 R18; S(O)0 R19;

10 R3

einen der Reste R⁶; COQR¹³; SO₂NR¹⁵R¹⁶; SO₂OR¹⁷; OSO₂R¹⁸; S(O)_nR¹⁹;

R⁴

Wasserstoff; Halogen; Cyano;

15

20

30

40

50

5

 C_1-C_4 -Alkyl oder C_1-C_4 -Alkyl substituiert durch ein bis fünf Halogenatome; C_1-C_4 -Alkoxy; C_1-C_4 -Halogenalkoxy; C_1-C_4 -Alkylthio; C_1-C_4 -Halogenalkylthio;

R5

Wasserstoff; Nitro oder einen der Reste R²;

R

Wasserstoff; Halogen; Cyano;

25 C₁-C₄-Alkyl, C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, OH, SH, Cyano;

 C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Halogenalkylthio, wobei die genannten Alkoxy(thio)- bzw. Halogenalkoxy(thio)reste durch folgende Gruppen substituiert sein können: C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio;

R7

Nitro; oder einen der Reste R2;

35 R

Wasserstoff; Nitro;

einen der Reste R², oder zwei vicinale Reste R² bilden gemeinsam eine C_3 -Kette oder eine C_4 - C_6 -Kette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C_1 - C_4 -Alkyliminoeinheit ersetzt sein kann;

R9

Wasserstoff;

C₁-C₆-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl, Phenoxy, Phenylthio-, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

C₃-C₆-Cycloalkyl, C₅-C₆-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio;

Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein kann: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkylthio;

 C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzylthio;

5 COR²¹;

10

15

20

30

40

45

R10

Phenyl, Benzyl, Phenoxy, Benzyloxy, Phenylthio, Benzylthio, wobei die genannten Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

R¹¹

Wasserstoff; Phenyl, Benzyl, wobei die genannten aromatischen Reste durch 1 bis 5 Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

 R^{12}

C₁-C₄-Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy; C₃-C₅-Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor; C₃-C₄-Alkenyl;

Q

Sauerstoff oder NR14;

25 R¹³

Wasserstoff;

 $C_1-C_6-Alkyl,\ C_1-C_6-Alkyl,\ substituiert\ durch\ cin\ bis\ drei\ der\ folgenden\ Reste:\ Halogen,\ C_1-C_4-Alkoxy,\ C_1-C_4-Alkoxy,\ C_2-C_6-Cycloalkyl\ und/oder\ Phenyl;$

Os Ob Oyoloumy

C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl, substituiert durch ein bis drei C₁-C₊-Alkylgruppen;

C3-C6-Alkenyl; C3-C6-Alkinyl;

Phenyl, Phenyl substituiert durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen: Cyano, Nitro, C--C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkylthio;

R۱٤

OR²⁰; ein Rest R¹³ oder gemeinsam mit einem weiteren Rest R¹³ eine C₄-C₆-Alkylenkette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminogruppe ersetzt sein kann;

R15

 C_1-C_4 -Alkyl; C_3-C_4 -Alkenyl; C_3-C_4 -Alkinyl; Cyclopropylmethyl; C_3-C_4 -Cycloalkyl;

H16

Wasserstoff; C_1 - C_4 -Alkyl; C_3 - C_4 -Alkenyl; oder gemeinsam mit R^{15} eine C_4 - C_6 -Alkylenkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann;

50 R¹⁷

C₁-C₄-Alkyl; C₁-C₄-Halogenalkyl;

R18

C1-C4-Alkyl; N,N-Dimethylamino;

55

 C_1-C_4 -Alkyl; C_1-C_4 -Halogenalkyl; C_2-C_4 -Alkoxyalkyl; C_3-C_4 -Alkenyl; C_3-C_4 -Alkinyl; C_3-C_4 -Halogenalkenyl; Phenyl; Phenyl, substituiert durch Fluor, Chlor, Brom, Methyl oder Methoxy;

n

1 oder 2;

R²⁰

5

10

Wasserstoff oder C1-C4-Alkyl;

 R^{21}

ein Rest R¹²; Phenyl, Benzyl, wobei diese aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio;

sowie deren umweltverträglichen Salze.

- 15 2. Verbindungen der Formel I gemäß Anspruch 1 oder deren umweltverträglichen Salze, worin
 - A einen Rest der Formel (A1), (A2), (A7), (A8), (A9),
 - W Sauerstoff
 - X Schwefel
 - B 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, wobei diese genannten Reste zwei Reste R8 tragen;
 - 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R^a und einen N-gebundenen Rest R^c tragen;
 - R4 Wasserstoff

bedeuten.

25

30

20

- 3. Verbindungen der Formel I gemäß Anspruch 2 oder deren umweltverträglichen Salze, worin
 - A einen Rest der Formel (A1) und
 - B 3-, 4- oder 5-Pyrazolyl, substituiert durch zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹, bedeuten.
- Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 dadurch gekennzeichnet, daß man eine Verbindung der Formel II
 - A-SO₂ NH₂ (II)

35

45

mit einer Verbindung der Formel III

in der Hal Chlor oder Brom bedeutet, in Gegenwart einer Base in einem inerten Lösungsmittel in an sich bekannter Weise umsetzt.

Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Carbonsäure der Formel IV

in Anwesenheit von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumiodid, Dicyclohexylcarbodiimid oder 1,1-Carbonyldiimidazol und gegebenenfalls in Gegenwart einer Base mit einer Verbindung der Formel II gemäß Anspruch 4 in an sich bekannter Weise umsetzt.

Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel V

 $A-SO_2-N=C=O \qquad (V)$

5

mit einer Verbindung der Formel VI

M-B (VI),

- 10 wobei M Wasserstoff oder Lithium bedeutet, umsetzt.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel VII

15 A-SO₂-CI (VII)

in Gegenwart einer starken Base mit einem Säureamid der Formel VIII

in an sich bekannter Weise umsetzt.

25

8. Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel IX

A-SO₂-NHT (IX),

30

worin T ein Alkalimetall bedeutet, mit einer Verbindung der Formel X

ASO₂ NHal₂ (X),

worin Hal für Chlor oder Brom steht, und einem Aldehyd der Formel XI

B-CHO (XI)

in an sich bekannter Weise umsetzt.

40

Verfahren zur Herstellung von Verbindungen der Formel I mit W=S oder deren Salze gemäß Anspruch
 dadurch gekennzeichnet, daß man eine Verbindung der Formel I mit W=O mit der Verbindung der Formel XII

45

$$H_3CO \longrightarrow P \longrightarrow P \longrightarrow OCH_3 \qquad (XII)$$

50

in an sich bekannter Weise umsetzt.

Verfahren zur Herstellung von Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel XIII

in der der Heterocyclus B' einen C-gebundenen Substituenten trägt, der als Abgangsgruppe fungiert, mit einem Nucleophil in an sich bekannter Weise umsetzt.

- 11. Herbizides Mittel, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen
 10 Salz sowie übliche inerte Zusatzstoffe.
 - 12. Mittel zur Beeinflussung des Pflanzenwuchses, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen Salz sowie übliche inerte Zusatzstoffe.
- 13. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man ein Sulfonamid der Formel I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.
- 14. Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man ein Sulfona-20 mid der Formel I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.

Patentansprüche für folgenden Vertragsstaat : ES

25 1. Herbizides Mittel, enthaltend neben üblichen inerten Zusatzstoffen Sulfonamide der allgemeinen Formel

in der die Substituenten folgende Bedeutung haben:

35 A

40 .

55

45

50

w

25 Sauerstoff, Schwefel;

в

35

40

50

2-, 3-, 4- oder 5-Furyl, 2-, 3-, 4- oder 5-Thienyl, jeweils substituiert durch drei Reste R8;

2-, 3-, 4- oder 5-Pyrrolyl, wobei diese genannten Reste drei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;

2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, jeweils substituiert durch zwei Reste R8:

2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹ tragen;

1,3,4-Thiadiazol-2-yl, -5-yl, 1.3,4-Oxadiazol-2-yl, -5-yl.

1,2,4-Thiadiazol-3-yl, -5-yl, 1.2,4-Oxadiazol-3-yl, -5-yl,

1,2.3-Thiadiazol-4-yl, -5-yl, 1.2.3-Oxadiazol-4-yl, -5-yl,

1,2,5-Thiadiazol-3-yl, -4-yl, 1,2,5-Oxadiazol-3-yl, -4-yl,

wobei diese Reste einen Rest R⁸ tragen;

1,2,4-Triazol-3-yl, substituiert durch einen C-gebundenen Rest R¹³ und einen N-1 gebundenen Rest R¹⁷;

1,2,4-Triazol-5-yl, 1,2,3-Triazol-4-yl, -5-yl, jeweils substituiert durch einen C-gebundenen Rest R⁸ und einen N-1 gebundenen Rest R⁹;

X Sauerstoff, Schwefel, NR1;

R

Wasserstoff;

55

C1-C6-Alkyl, gegebenenfalls substituiert durch ein bis fünf Halogenatome und/oder Phenyl;

C2-C4-Alkenyl;

Phenyl, das gegebenenfalls ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Nitro, Cyano;

R2

Halogen;

Cyano; Thiocyano;

C₁-C₆-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl, Phenoxy oder Phenylthio, wobei die Phenylreste jeweils durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkylthio;

15

5

 C_3 - C_6 -Cycloalkyl, C_3 - C_8 -Cycloalkoxy, C_3 - C_6 -Cycloalkylthio, C_5 - C_6 -Cycloalkenyl, C_5 - C_8 -Cycloalkenylthio, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substitutiert sein können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio;

20

Phenyl, Phenoxy, Benzyloxy oder Benzylthio, wobei die aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkylthio;

25

gesättigter, einfach oder zweifach ungesättigter 5-7-gliedriger Heterocyclus, enthaltend ein bis zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome, welcher gegebenenfalls bis zu zwei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylthio;

30

40

45

C1-C4-Alkoxy oder C1-C4-Alkylthio,

C2-C6-Alkenyl oder C2-C6-Alkenyloxy oder C2-C6-Alkenylthio,

 C_2 - C_6 -Alkinyl, C_2 - C_6 -Alkinyloxy oder C_2 - C_6 -Alkinylthio,

wobei die genannten Alkoxy-, Alkylthio-, Alkenyl-, Alkinyl-, Alkenyloxy(thio)-. Alkinyloxy(thio) ein bis fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzyloxy, Benzylthio;

COR12; COQR13; SO2NR15R16; SO2OR17; OSO2R18; S(O),R19;

R³

einen der Reste R⁶; COQR¹³; SO₂NR¹⁵R¹⁶; SO₂OR¹⁷; OSO₂R¹⁸; S(O)_nR¹⁹;

R

Wasserstoff; Halogen; Cyano;

 C_1-C_4 -Alkyl oder C_1-C_4 -Alkyl substituiert durch ein bis fünf Halogenatome; C_1-C_4 -Alkoxy; C_1-C_4 -Alkylthio; C_1-C_4 -Alkylthio;

R5

R6

Wasserstoff; Nitro oder einen der Reste R2;

55

Wasserstoff; Halogen; Cyano;

C₁-C₄-Alkyl, C₁-C₄-Alkyl substituiert durch ein bis fünf Halogenatome und/oder einen der folgenden Reste: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylthio, OH, SH, Cyano;

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylthio, wobei die genannten Alkoxy(thio)- bzw. Halogenalkoxy(thio)reste durch folgende Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylthio;

R7

Nitro; oder einen der Reste R2;

Wasserstoff; Nitro;

einen der Reste R², oder zwei vicinale Reste R² bilden gemeinsam eine C₃-Kette oder eine C₄-C₆-Kette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminoeinheit ersetzt sein kann;

R9

Wasserstoff;

20

25

10

15

C₁-C₆-Alkyl, welches durch ein bis fünf Halogenatome und/oder einen der folgenden Reste substituiert sein kann: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenoxy, Phenylthio-, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkylthio;

C₃-C₆-Cycloalkyl, C₅-C₆-Cycloalkenyl, wobei diese cyclischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio;

30

35

40

45

50

Phenyl, wobei dieser Rest durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein kann: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylthio;

C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, wobei die genannten Reste durch ein bis gegebenenfalls fünf Halogenatome und/oder eine der folgenden Gruppen substituiert sein können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Phenyl, Phenoxy, Phenylthio, Benzyltoxy, Benzylthio;

COR21;

R10

Phenyl, Benzyl, Phenoxy, Benzyloxy, Phenylthio, Benzylthio, wobei die genannten Reste durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio;

R1

Wasserstoff; Phenyl, Benzyl, wobei die genannten aromatischen Reste durch 1 bis 5 Halogenatome und/oder ein bis drei der folgenden Gruppen substituiert sein können: Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio;

R12

C₁-C₄-Alkyl, unsubstituiert oder substituiert durch Halogen oder Methoxy; C₃-C₅-Cycloalkyl, unsubstituiert oder substituiert durch Chlor oder Fluor; C₃-C₄-Alkenyl;

5**5**

Sauerstoff oder NR¹⁴:

Wasserstoff;

 C_1 - C_6 -Alkyl, C_1 - C_6 -Alkyl, substituiert durch ein bis drei der folgenden Reste: Halogen, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_3 - C_6 -Cycloalkyl und/oder Phenyl;

 $C_3\text{-}C_6\text{-}Cycloalkyl, \ C_3\text{-}C_6\text{-}Cycloalkyl, \ substituiert \ durch \ ein \ bis \ drei \ C_1\text{-}C_4\text{-}Alkylgruppen};$

C₃-C₆-Alkenyl; C₃-C₆-Alkinyl;

10

Phenyl, Phenyl substituiert durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Gruppen: Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio;

15 R

OR²⁰; ein Rest R¹³ oder gemeinsam mit einem weiteren Rest R¹³ eine C₄-C₆-Alkylenkette, in der eine Methyleneinheit durch einen Sauerstoff oder eine C₁-C₄-Alkyliminogruppe ersetzt sein kann;

R15

20 C₁-C₄-Alkyl; C₃-C₄-Alkenyl; C₃-C₄-Alkinyl; Cyclopropylmethyl; C₃-C₄-Cycloalkyl;

R16

Wasserstoff; $C_1 - C_4 - Alkyl$; $C_3 - C_4 - Alkenyl$; oder gemeinsam mit R^{15} eine $C_4 - C_6 - Alkyl$ enkette, in der eine Methylengruppe durch einen Sauerstoff ersetzt sein kann;

25

R¹⁷

C1-C4-Alkyl; C1-C4-Halogenalkyl;

□18

30 C₁-C₄-Alkyl; N,N-Dimethylamino;

R19

 C_1 - C_4 -Alkyl; C_1 - C_4 -Halogenalkyl; C_2 - C_4 -Alkoxyalkyl; C_3 - C_4 -Alkenyl; C_3 - C_4 -Alkinyl; C_3 - C_4 -Halogenalkenyl; Phenyl; Phenyl, substituiert durch Fluor, Chior, Brom, Methyl oder Methoxy;

35

45

55

1 oder 2;

B20

40 Wasserstoff oder C₁-C₄-Alkyl;

R²¹

ein Rest R¹²; Phenyl, Benzyl, wobei diese aromatischen Gruppen durch ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste substituiert sein können: Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio;

sowie deren umweltverträglichen Salze.

- 2. Herbizides Mittel gemäß Anspruch 1, enthaltend Sulfonamide der Formel I gemäß Anspruch 1 oder deren umweltverträglichen Salze, worin
 - A einen Rest der Formel (A1), (A2), (A7), (A8), (A9),
 - W Sauerstoff
 - X Schwefel
 - B 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, wobei diese genannten Reste zwei Reste R⁸ tragen;
 2-, 4- oder 5-Imidazolyl, 3-, 4- oder 5-Pyrazolyl, wobei diese genannten Reste zwei C-

gebundene Reste R8 und einen N-gebundenen Rest R9 tragen;

R⁴ Wasserstoff

bedeuten.

10

25

40

- 5 3. Herbizides Mittel gemäß Anspruch 1, enthaltend Sulfonamide der Formel I gemäß Anspruch 2 oder deren umweltverträglichen Salze, worin
 - A einen Rest der Formel (A1) und
 - B 3-, 4- oder 5-Pyrazolyl, substituiert durch zwei C-gebundene Reste R⁸ und einen N-gebundenen Rest R⁹, bedeuten.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel II
 - A-SO₂NH₂ (II)

mit einer Verbindung der Formel III

in der Hal Chlor oder Brom bedeutet, in Gegenwart einer Base in einem inerten Lösungsmittel in an sich bekannter Weise umsetzt.

5. Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Carbonsäure der Formel IV

- in Anwesenheit von aktivierenden Reagentien, wie 2-Chlor-1-methylpyridiniumiodid, Dicyclohexylcarbodiimid oder 1,1-Carbonyldiimidazol und gegebenenfalls in Gegenwart einer Base mit einer Verbindung der Formel II gemäß Anspruch 4 in an sich bekannter Weise umsetzt.
 - Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel V

$$A-SO_2-N=C=O \qquad (V)$$

mit einer Verbindung der Formel VI

45 M-B (VI).

wobei M Wasserstoff oder Lithium bedeutet, umsetzt.

- 7. Verfahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel VII
 - A-SO₂-CI (VII)

in Gegenwart einer starken Base mit einem Säureamid der Formel VIII

in an sich bekannter Weise umsetzt.

8. Verlahren zur Herstellung der Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel IX

A-SO₂-NHT (IX),

worin T ein Alkalimetall bedeutet, mit einer Verbindung der Formel X

ASO₂NHal₂ (X),

worin Hal für Chlor oder Brom steht, und einem Aldehyd der Formel XI

B-CHO (XI)

20

40

50

in an sich bekannter Weise umsetzt.

Verfahren zur Herstellung von Verbindungen der Formel I mit W = S oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel I mit W = O mit der Verbindung der Formel XII

$$H_{3}CO \longrightarrow P \longrightarrow P \longrightarrow OCH_{3} \qquad (XII)$$

- in an sich bekannter Weise umsetzt.
 - Verfahren zur Herstellung von Verbindungen der Formel I mit W = O oder deren Salze gemäß Anspruch
 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel XIII

- in der der Heterocyclus B' einen C-gebundenen Substituenten trägt, der als Abgangsgruppe fungiert, mit einem Nucleophil in an sich bekannter Weise umsetzt.
 - 11. Mittel zur Beeinflussung des Pflanzenwuchses, enthaltend ein Sulfonamid der Formel I gemäß den Ansprüchen 1 bis 3 oder dessen Salz sowie übliche inerte Zusatzstoffe.
 - 12. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man ein Sulfonamid der Formel I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.
- 13. Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man ein Sulfonamid der Formel I, gemäß den Ansprüchen 1 bis 3 oder dessen Salz auf die Pflanzen und/oder deren Lebensraum einwirken läßt.

Europäisches Patentamt **European Patent Office** Office europ 'en des brevets

① Veröffentlichungsnummer: 0 482 349 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91115834.3

2 Anmeldetag: 18.09.91

(a) Int. Cl.5: C07D 231/14, C07D 231/16, C07D 231/56, C07D 233/90,

C07D 263/34, C07D 277/34,

C07D 307/68, C07D 333/38,

C07D 409/12, A01N 43/50,

A01N 43/76

30) Priorität: 20.09.90 DE 4029753

(43) Veröffentlichungstag der Anmeldung: 29.04.92 Patentblatt 92/18

Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL

Veröffentlichungstag des später veröffentlichten Recherchenberichts: 06.05.92 Patentblatt 92/19

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

72 Erfinder: Heistracher, Elisabeth, Dr.

Lenbachstrasse 10

W-6700 Ludwigshafen(DE) Erfinder: Fischer, Klaus, Dr. Gabelsbergerstrasse 7 W-6720 Speyer(DE)

Erfinder: Mayer, Horst, Dr.

Faselwiese 19

W-6700 Ludwigshafen(DE)

Erfinder: Saupe, Thomas, Dr.

Kressenwiesenweg 13 W-6902 Sandhausen(DE)

Erfinder: Hamprecht, Gerhard, Dr.

Rote-Turm-Strasse 28 W-6940 Weinheim(DE)

Erfinder: Ditrich, Klaus, Dr.

Paray-le-Monial-Strasse 12 W-6702 Bad Duerkheim(DE)

Erfinder: Kuekenhoehner, Thomas, Dr.

Forststrasse 104

W-6737 Boehl-Iggelheim(DE)

Erfinder: Gerber, Matthias, Dr.

Ritterstrasse 3

W-6704 Mutterstadt(DE)

Erfinder: Walter, Helmut, Dr.

Gruenstadter Strasse 82

W-6719 Obrighelm(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58

W-6720 Speyer(DE)

Sulfonamide.

57 Die Abfassung der Ansprüche ist-nicht klar und knapp zu fassen (Art. 83-84. EPA) und enthalt eine so grosse Zahl Verbindungen dass eine vollständige Recherche auf ökonomischer Gründe nicht möglich ist (siehe Richtlinien für die Prüfung im Europäischen Patentamt, Teil B, Kapittel III, 2.(Umfang der Recherche).

Die Recherche beschränkt sich deshalb ausschliesslich auf diejenigen Endprodukte die durch physikalische oder chemische Daten charakterisiert sind d.h. die Beispielsubstanzen.

EUROPÄISCHER TEILRECHERCHENBERICHT Nummer der Anmeldung

der nach Regel 45 des Europäischen Patent-übereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt

EP 91 11 5834

	EINSCHLÄGIC	GE DOKUMEI	NTE		
Kategorie	Kennzeichnung des Dokum der maßgebli		reit erforderlich	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
Α	DE-A-1 670 945 (BA	YER AG)	-		C 07 D 231/14
A	ARZNEIMITTEL FORSCH 3a, March 1974, pag Paul-Ehrlich-Gesell Chemotherapie, Aule et al.: "Isoxazolcarboxamicharnstoffe, -semical -aminopyrimidine so Verbindungen und ih blutzuckersenkende	ges 363-374, Ischaft für endorf, DE; h doalkylbenzol arbazide und bwie damit ve are	H. PLÜMPE sulfonyl-		C 07 D 231/16 C 07 D 231/56 C 07 D 233/90 C 07 D 263/34 C 07 D 277/34 C 07 D 307/68 C 07 D 333/38 C 07 D 409/12 A 01 N 43/50 A 01 N 43/76
A	CHEMISCHE BERICHTE, April 1973, pages 1 et al.: "Hydroxylie 5-Alkyl-2-(benzolst en und strukturverw Antidiabetika"	1290-1302; G. erung von ulfonylamino)	SIEWERT		
D,A	EP-A-0 269 141 (DL RESEARCH B.V.)				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
		-	-/-		C 07 D
·					A 01 N
LINVO	OLLSTÄNDIGE RECH	IFRCHE			
dung den ist, auf de Technik e Vollständ Unvollstä Nicht rec Grund fü	Massung der Recherchenabteilung Vorschrüften des Europäischen per Grundlage einiger Patentanspt durchzuführen. dig recherchierte Patentansprüch indig recherchierte Patentansprüch indig recherchierte Patentansprüch inder Scherchierte Patentansprücher inder Recherchierte Patentansprücher inder Beschränkung der Recherch 18 Blatt -C-	patentübereinkommer rüche sinnvolle Ermit e: che:	rs so wenig, daß es ni	cht möglich	
	Recherchesori	Abschiulida	sum der Recherche	'	Prufer
DE	N HAAG	17-12	-1991	DE B	UYSER I.A.F.
X : von Y : von and A : tech O : nici	ATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben kate inologischer Hintergrund hischriftliche Offenbarung schenliteratur	itet g mil einer	E: älteres Patentdok nach dem Anmeld D: in der Anmeldung L: aus andern Gründ	ument, das jedoc edatum veröffen angeführtes Do en angeführtes l	tlicht worden ist kument

Europäisches Patentamt EUROPÄISCHER TEILRECHERCHENBERICHT

Nummer der Anmeldung

EP 91 11 5834

-	EINSCHLÄGIGE DOKUMENTE	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 5)	
Kategorie	The state of the s	Betrifft Anspruch	
D,A	EP-A-0 244 166 (E.I. DU PONT DE NEMOURS AND CO.)		
	• •		·
			RECHERCHIERTE SACHGEBIETE (Int.5CL.)
:			SACHGEBIETE (Int.5Cl.)
	·		-3
	•		
	·		
	·		