# Lexique et morphologie

### **25 novembre 2019**

-Kata Gábor

kata.gabor@inalco.fr-

# Langue formelle:

une langue L

sur un alphabet/vocabulaire V,

est un ensemble de chaînes de symboles produit par concaténation des symboles dans V.

L est ainsi un sous-ensemble de toutes les chaînes que l'on peut produire par concaténation des éléments de V.

#### Grammaire d'une langue formelle :

un modèle capable de reconnaître / générer toutes les chaînes de caractères qui appartiennent à cette langue.

Les automates à états finis et les expressions régulières reconnaissent les mêmes langues : les langues régulières.

# Langue régulière :

L est une langue régulière sur l'alphabet V :

- ∅ (l'ensemble vide/langage vide) est une langue régulière;
- $\forall a \in V, \{a\}$  (l'ensemble composé d'un élément du vocabulaire) est une langue régulière;
- Si  $L_1$  et  $L_2$  sont des langues régulières,
  - $L_1 \cup L_2$ , **l'union** de  $L_1$  et  $L_2$ ,
  - $L_1 \cdot L_2$ , la **concaténation** de  $L_1$  et  $L_2$ , c'est-á-dire  $\{xy \mid x \in L_1, y \in L_2\}$
  - $L_1^*$ , la **fermeture de Kleene** de  $L_1$ , c'est-á-dire la langue obtenue en prenant un nombre quelconque (y compris 0) de chaînes de  $L_1$  et en les concaténant.

Les langues régulières sont fermées pour les opérations de

- complémentation
- inversion des chaînes
- intersection
- différence

Reconnaitre des formes complexes par automates à états finis

Approche "item and arrangement":

- définir les radicaux
- définir des classes flexionnels de radicaux
- définir les catégories flexionnelles

- définir les formes d'affixes pour chaque catégorie et chaque classe flexionnelle
- définir l'ordre de concaténation
- 1. créer des automates pour les (classes de) radicaux
- 2. créer des automates pour les affixes
- 3. concaténation des automates de radicaux avec les automates d'affixes



FIGURE 1 – Pluriel régulier et irrégulier des noms

# Automates et expressions régulières

| Signification            | Expression                               |
|--------------------------|------------------------------------------|
| séquences de caractères  | /chien/, /loup/, /François Hollande/     |
| disjonction              | /[aA]/, /[2-5]/, /[a-z]/, / a   b/       |
| négation                 | /[^a]/                                   |
| quantification           | /a?/, /b*/, /c+/ <sup>1</sup> , /e{3,5}/ |
| parenthèses              | /a(ab)+/, /ceci n'(estlétait) pas/       |
| n'importe quel caractère | 1./                                      |
| repères                  | /abcdef\$/                               |
| alias                    | /\d/, /\s/                               |
| caractères spéciaux      | /\n/, /\t/                               |

| opérations sur des automates | notation             |
|------------------------------|----------------------|
| concaténation                | A B                  |
| optionnalité                 | A? = ( A)            |
| fermeture Kleene             | $A^* = ( A AA AAA )$ |
| disjonction                  | AIB                  |
| conjonction                  | A & B                |
| complément                   | !A                   |

*Exercise*: Donnez les automates correspondant aux opérations de concaténation, optionnalité, fermeture Kleene, disjonction.

#### Exercices

- Ecrivez des expressions régulières pour les langues suivantes : (par mot nous entendons des chaînes de caractères séparés par des espaces ou de la ponctuation)
  - l'ensemble de tous les string alphabétiques,
  - l'ensemble de tous les strings alphabétiques en minuscules finissant par b,
  - tous les strings alphabétiques (en 1) directement précédés et suivis par un b,
  - tous les strings alphabétiques en minuscules finissant par b (en 2), directement précédés et suivis par un b (supplémentaire),
  - tous les strings qui commence en début de ligne par une chiffre (p.ex. 1, 2, 222, ...) et qui termine en fin de ligne par un mot.
- 2. Considérez le tableau de conjugaison allemande du verbe 'singen' (*chanter*) avec les formes en indicatif présent, passé et subjonctif présent.
  - (a) Construisez un automate *minimal* qui reconnaît toutes ces formes.
  - (b) Pour chaque temps et mode verbal listés, construisez un transducteur individuel qui reconnaît les formes et associe à chaque forme l(es) analyse(s) correspondantes(s).

| Personne   | Indicatif présent (IPR) | Indicatif passé (IPS) | Subjonctif présent (SP) |
|------------|-------------------------|-----------------------|-------------------------|
|            |                         |                       |                         |
| <b>S</b> 1 | singe                   | sang                  | sänge                   |
| S2         | singst                  | sangst                | sängest                 |
| <b>S</b> 3 | singt                   | sang                  | sänge                   |
| PL1        | singen                  | sangen                | sängen                  |
| PL2        | singt                   | sangt                 | sänget                  |
| PL3        | singen                  | sangen                | sängen                  |
|            |                         |                       |                         |

- 3. Considérez le tableau de déclinaison de l'adjectif hongrois nagy (grand).
  - (a) Construisez un automate *minimal* qui reconnaît toutes les formes.
  - (b) Construisez un transducteur *minimal* qui reconnaît les formes et associe à chaque forme l(es) analyse(s) correspondantes(s).

| Cas       | Base Singulier | Base Pluriel | Comparatif Singulier | Comparatif Pluriel |
|-----------|----------------|--------------|----------------------|--------------------|
| Nominatif | nagy           | nagyok       | nagyobb              | nagyobbak          |
| Accusatif | nagyot         | nagyokat     | nagyobbat            | nagyobbakat        |
| Datif     | nagynak        | nagyoknak    | nagyobbnak           | nagyobbaknak       |
| Ablatif   | nagytól        | nagyoktól    | nagyobbtól           | nagyobbaktól       |

- 4. Construisez un modèle morphologique : lexique et automates qui reconnaissent
  - la conjugaison des verbes français en -er : à l'indicatif présent, imparfait, futur
  - les déclinaisons latines suivantes :

| Cas       | Singulier | Pluriel |
|-----------|-----------|---------|
| Nominatif | Rosa      | Rosae   |
| Accusatif | Rosam     | Rosas   |
| Génitif   | Rosae     | Rosarum |
| Datif     | Rosae     | Rosis   |
| Ablatif   | Rosa      | Rosis   |
|           |           |         |

| Cas       | Singulier | Pluriel |
|-----------|-----------|---------|
| Nominatif | Murus     | Muri    |
| Accusatif | Murum     | Muros   |
| Génitif   | Muri      | Murorum |
| Datif     | Muro      | Muris   |
| Ablatif   | Muro      | Muris   |
|           |           |         |

<sup>—</sup> Transformez les automates en transducteurs capables d'associer une analyse aux formes reconnues.