

目錄

流程圖4	3
	_

- 數據探索-----4
- 數據前處理-----7
- 建立CNN模型-----10
- 資訊增益-----13
- 訓練模型-----15
- 測試集的評估指標---19
- 工作內容與心得-----20
- 參考資料------21

流程圖

數據探索

資料清理(圖片說明)

正常

不正常

65632 844

圖片總數

```
['./train BW/53416 敦.jpg',
'./train BW/34686 禮.jpg',
'./train BW/52090 穎.jpg',
'./train BW/36582 邦.jpg',
'./train BW/43382 晉.jpg',
'./train BW/33120 邸.jpg',
'./train BW/13512 行.jpg',
'./train BW/17651 亞.jpg',
'./train BW/2514 廈.jpg',
'./train BW/31292 屬.jpg',
'./train BW/34593 孫.jpg',
'./train BW/18715 芳.jpg',
'./train BW/57755 佳.jpg',
'./train BW/10681 泓.jpg',
'./train BW/27551 網.jpg',
'./train BW/13813 古.jpg',
'./train BW/23821 旭.jpg',
'./train BW/17009 承.jpg',
'./train BW/10270 鄭.jpg',
```

文字(不重複)

數據前處理

圖片處理

原版

原版銳利化

先轉黑白在銳利化

讀熱編

碼

原版

```
x_train_name = x_train_filter
mean = np.mean(x_train_name,axis=(0,1,2,3))
std = np.std(x_train_name,axis=(0,1,2,3))
x_train_name = (x_train_name-mean)/(std+le-7)
#one hot encoding
y_train_1 = to_categorical(image_label)
(y_train_1[0], image_label[0])
```

特徵壓縮

```
先轉黑白
再銳利化
```

```
x_train_name = x_train_1
x_train_name = x_train_name/255.0

#one hot encoding
y_train_1 = to_categorical(image_label)
(y_train_1[0], image_label[0])
```

建立CNN模型

卷積層

卷積層

池化層

卷積層

卷積層

池化層

卷積層

卷積層

池化層

dropout

```
num classes = len(chinese word 2)
#add(filter, kernal)
weight decay = 1e-4
model = Sequential()
model.add(Conv2D(64.(3.3).strides=(1,1).padding='same',kernel regularizer=regularizers.l2(weight decay),
                 input shape=(x train name.shape[1:])))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(80,(3,3),strides=(1,1),padding='same',kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Conv2D(80,(3,3),strides=(1,1),padding='same',kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(32,(3,3),strides=(1,1),padding='same',kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Conv2D(32,(3,3),strides=(1,1),padding='same',kernel regularizer=regularizers.l2(weight decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool size=(2.2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(num classes, activation='softmax'))
model.summary()
```

Batch Normalization

資訊增益

width_shift_range & height_shift_range:水平、上下平移

Shear_range:

讓所有點的x坐標(或者y坐標)保持不變,而對應的y坐標(或者x坐標)則按比例發生平移

數據拆分

訓練模型

Batch_size = 16 Epochs = 200

```
def lr_schedule(epoch):
    lrate = 0.001
    if epoch > 49:
        lrate = 0.0005
    if epoch > 99:
        lrate = 0.0003
    return lrate
```


train test

測試集的評估指標

原版

原版銳利化

黑白銳利化

	precision	recall	f1-score	support
accuracy macro avg weighted avg	0.86 0.88	0.85 0.86	0.86 0.84 0.86	6564 6564
accuracy macro avg weighted avg	0.83 0.85	0.82 0.84	0.84 0.82 0.84	6564 6564
accuracy macro avg weighted avg	0.73 0.75	0.71 0.72	0.72 0.70 0.72	6710 6710 6710

工作內容與心得

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

參考資料:

https://ithelp.ithome.com.tw/articles/10204032

https://www.youtube.com/watch?v=BZh1ltr5Rkg

https://zhuanlan.zhihu.com/p/30197320