Fine-tuning RocksDB for NVMe SSD

Praveen Krishnamoorthy (p.krishna@samsung.com)
Changho Choi (changho.c@samsung.com)

Memory Solutions Lab @ Samsung

Motivation & Goals

What is our motivation?

- Implement features like multi-stream for RocksDB
- Characterize the performance & lifetime improvement with multi-stream
- Deliver highest ops/sec using Samsung PM1725 NVMe SSD

What we observed?

- Numerous parameters/knobs (~120)
- Default values non-optimal for High Performance SSD
- Good starting points from RocksDB developer forums and benchmarking articles

What we wanted to achieve?

• Arrive at a methodology (using greedy algorithmic approach) to identify optimal values for RocksDB configuration parameters that deliver higher performance for specific workloads in our usage scenario

System, Dataset & Workload Details

Processor/Memory Details	Operating System	SSD Details
Processor: - 2 x Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz. Total Physical CPU: 16 Total Logical CPU (HT): 32 Total Memory: 64 GB	Distro: Ubuntu 14.04.1 LTS Kernel: 3.19.0-11-generic Arch: x86_64	SSD: 1 x Samsung NVMe PM1725 400GB Samsung SSD activated

- Filesystem Used: XFS Filesystem mounted with discard (FS Block Size
 : 4K)
- Benchmark Tool : DB_bench

- Dataset: 253GB (240 [uncompressed] /400 million [snappy] records)
 - Dataset size is kept greater than main memory size. ie, 1:4 ratio
 - Fills 68% of disk capacity
- Key_size : 16 Bytes
- Value size: 800 Bytes
- Total Operation Count : 500 Million
- Number of DB_bench Threads: 16
- Compression : None/Snappy
- Workloads
 - 80% Read 20% Write
 - 50% Read 50% Write

Optimization

1.Parameter Assessment

- Identified \sim 25 rocksdb configuration parameters eg, block_size, write_buffer_size, etc
- Identified 4 or 5 possible values for each parameter eg, block_size (2K, 4K, 8K, 16K, 32K)

2.Parameter Isolation

• Selected one parameter to study for different values

3.Benchmarking

• Performed the benchmark with different values for that isolated parameter

4.Post-Processing

- Selected the value that gave highest ops/sec & use it
- Repeated the process from #2 until all parameters are covered

Optimal Value Selection

Parameter	Value1	Value2	Value3	Value4	Value5
Block_size	2K	4K	8K	16K	32K
Write_buffer_size	128	256	512	1024	2048
Max_write_buffer_number	4	8	16	32	64
Min_write_buffer_number_to_merge	1	2	4	-	-
Max_bytes_for_level_base	256	512	1024	2048	4096
Max_bytes_for_level_multiplier	5	10	20	-	-
Target_file_size_base	32	64	128	256	-
Target_file_size_multiplier	1	2	5	10	-
Max_background_flushes	1	2	4	-	-
Max_background_compactions	16	32	48	64	128
LevelO_file_num_compaction_trigger	1	2	4	8	16
LevelO_slowdown_writes_trigger	16	24	32	40	48
Level0_stop_writes_trigger	48	56	64	-	-

Optimal Values for Different Workloads - 1/2

Parameter	Baseline	80/20 snappy	80/20 uncompressed	50/50 snappy	50/50 uncompressed
Block_size	4K	8K	4K	8K	16K
Cache_size	1GB	4GB	0GB	2GB	OGB
Write_buffer_size	256 MB	512 MB	1024 MB	512 MB	512 MB
Max_write_buffer_number	8	8	4	16	16
Min_write_buffer_number_to_merge	1	4	3	4	1
Max_bytes_for_level_base	512 MB	2048 MB	4096 MB	2048 MB	512 MB
Max_bytes_for_level_multiplier	10	5	5	10	10
Target_file_size_base	64 MB	128 MB	64 MB	256 MB	128 MB
Target_file_size_multiplier	1	1	1	1	1
Max_background_flushes	2	2	1	2	1
Max_background_compactions	32	32	16	48	32
LevelO_file_num_compaction_trigger	1	2	2	1	8
Level0_slowdown_writes_trigger	32	24	16	48	40
Level0_stop_writes_trigger	46	56	56	56	46

Optimal Values for Different Workloads - 2/2

Parameter	Baseline Value	80/20 snappy	80/20 uncompressed	50/50 snappy	50/50 uncompressed
Cache_numshardbits	Not Defined – use default (4)	6	-	4	-
Table_cache_numshardbits	Not Defined – use default (4)	4	-	6	-
Mmap_read	Not Defined – use default (0)	1	1	1	1
Mmap_write	Not Defined – use default (0)	0	0	0	1
Use_fsync	Not Defined – use default (0)	0	0	0	1
Use_adaptive_mutex	Not Defined – use default (0)	0	0	0	1
Wal_dir	Not Defined – use default	Default	WAL on different SSD	WAL on different SSD	WAL on different SSD
Bytes_per_sync	Not Defined – use default	2048 KB	512 KB	512 KB	1024 KB
Source_compaction_factor	1.	1	1	2	2
Max_grandparent_overlap_factor	10	5	10	10	5

Performance Comparison

Workload	Baseline (Ops/Sec)	Optimized (Ops/Sec)	Percentage Increase
80% Read/20% Write (Snappy compression)	179 K	316 K	76.79%
80% Read/20% Write (Uncompressed)	174 K	301 K	72.79%
50% Read/50% Write (Snappy compression)	79 K	132 K	66.25%
50% Read/50% Write (Uncompressed)	88 K	129 K	46.72%

Ops/sec vs 99th Percentile Latency

- Pareto front provides the most optimal selection
- Start point (140 K Ops/Sec & 340 µs 99th percentile)
- End Point (316 K Ops/Sec &128 µs 99th percentile)
- Ability to select points based on performance SLA

CPU Usage Percentage vs Ops/Sec

- Pareto start point (42.7 %
 CPU usage & 184 K Ops/sec)
- End Point (50.5 % CPU usage & 319 K Ops/sec)
- Points to the right of pareto end point doesn't result in higher Ops/sec (with higher CPU usage)

10

Conclusion

- Take-Away:
 - ~77% increased performance seen with this fine-tuning model
 - Can be replicated for the desired workload/environment
 - Used as a good start-off point and later tuned based on consistent performance monitoring
- Summary:
 - Top 6 contributors for increased performance (80/20 Snappy)
 - max_bytes_for_level_base (11.2%)
 - block_size (10.2%)
 - max_bytes_for_level_multiplier (8.8%)
 - cache_size (8.8%)
 - target_file_size_base (7.8%)
 - write_buffer_size (6.2%)

11

Questions?

Praveen Krishnamoorthy (p.krishna@samsung.com)
Changho Choi (changho.c@samsung.com)

Memory Solutions Lab @ Samsung

