Aula 5 - Pandas II

5.1 Agregação

5.1.1. Groupby

Muitas vezes queremos agregar determinados dados de um DataFrame. Considere a imagem abaixo:

Neste caso, poderiamos querer somar todos os valores referentes a letra A, a letra B, e assim por diante. Para isso usamos o método groupby(), que toma como argumento a coluna que desejamos agrupar, e em seguida aplicamos o operador

desejado nos valores agrupados, por exemplo .sum().

Considere o conjunto de dados business.retailsales.csv, com a relação de produtos vendidos em um pequeno negócio.

In [1]: import pandas as pd
 dt = pd.read_csv("../Datasets/business.retailsales.csv", sep = ",")
 dt

Out[1]:		Product Type	Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
	0	Art & Sculpture	34	14935.0	-594.00	-1609.00	12732.00
	1	Basket	13	3744.0	-316.80	0.00	3427.20
	2	Basket	12	3825.0	-201.60	-288.00	3335.40
	3	Basket	17	3035.0	-63.25	0.00	2971.75
	4	Art & Sculpture	47	2696.8	-44.16	0.00	2652.64
	•••						
	1770	Kitchen	0	28.0	-2.81	-25.19	0.00
	1771	Jewelry	0	28.0	0.00	-28.00	0.00
	1772	Basket	0	116.0	-23.20	-92.80	0.00
	1773	Kitchen	0	16.5	0.00	-16.50	0.00
	1774	Kitchen	-1	0.0	0.00	-106.25	-106.25

1775 rows × 6 columns

Na coluna Product Type temos o tipo de produto e na Gross Sales as vendas. Poderiamos usar o groupby para analisar as vendas somadas de todos os produtos (veja que existem muitas linhas com a venda de um mesmo produto). A função groupby retorna um novo dataframe.

Out[2]:

	Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
Product Type					
Accessories	84	3892.40	-107.02	0.00	3785.38
Art & Sculpture	1427	90316.60	-2955.82	-2879.93	84480.85
Basket	1461	143815.50	-4584.42	-4439.69	134791.39
Christmas	575	15476.00	-345.19	-670.00	14460.81
Easter	1	38.00	-3.80	0.00	34.20
Fair Trade Gifts	110	2258.00	-53.33	0.00	2204.67
Furniture	27	2034.00	-169.04	0.00	1864.96
Gift Baskets	1	19.50	0.00	0.00	19.50
Home Decor	404	27114.55	-991.21	-423.35	25699.99
Jewelry	991	31048.00	-965.85	-509.20	29572.95
Kids	140	3838.00	-116.66	0.00	3721.34
Kitchen	809	16096.00	-431.11	-328.07	15336.82
Music	98	2643.50	-82.19	-142.41	2418.90
One-of-a-Kind	12	2180.00	-71.99	0.00	2108.01
Recycled Art	99	3792.80	-88.64	0.00	3704.16
Skin Care	101	2609.50	-37.70	0.00	2571.80
Soapstone	199	4795.50	-96.91	-69.50	4629.09
Textiles	43	1889.00	-112.90	-97.00	1679.10

Dessa forma fica rápido analisar qual produto teve mais vendas no período. Se alterarmos .sum() por .mean() obtemos não a soma, mas sim a média dos valores:

_		
\cap	131	0
Ou t	1 2 1	

	Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
Product Type					
Accessories	2.153846	99.805128	-2.744103	0.000000	97.061026
Art & Sculpture	4.234421	268.001780	-8.770979	-8.545786	250.685015
Basket	2.651543	261.008167	-8.320181	-8.057514	244.630472
Christmas	7.876712	212.000000	-4.728630	-9.178082	198.093288
Easter	1.000000	38.000000	-3.800000	0.000000	34.200000
Fair Trade Gifts	3.928571	80.642857	-1.904643	0.000000	78.738214
Furniture	1.687500	127.125000	-10.565000	0.000000	116.560000
Gift Baskets	1.000000	19.500000	0.000000	0.000000	19.500000
Home Decor	3.083969	206.981298	-7.566489	-3.231679	196.183130
Jewelry	4.719048	147.847619	-4.599286	-2.424762	140.823571
Kids	2.222222	60.920635	-1.851746	0.000000	59.068889
Kitchen	5.024845	99.975155	-2.677702	-2.037702	95.259752
Music	3.379310	91.155172	-2.834138	-4.910690	83.410345
One-of-a-Kind	1.000000	181.666667	-5.999167	0.000000	175.667500
Recycled Art	4.304348	164.904348	-3.853913	0.000000	161.050435
Skin Care	9.181818	237.227273	-3.427273	0.000000	233.800000
Soapstone	2.970149	71.574627	-1.446418	-1.037313	69.090896
Textiles	3.071429	134.928571	-8.064286	-6.928571	119.935714

5.1.2 Apply

O método apply é o contraponto genérico de groupby . Vimos que o groupby funciona sempre com alguma medida que deve ser apresentada e aplicado ao conjnto agrupado, como sum() ou count() . Porém, e se quisermos aplicar alguma operação nos dados agrupados que não está disponível por padrão no dataframe? É para isso que serve o apply .

Nesse caso nós devemos definir uma função que realiza a operação que queremos aplicar aos dados agrupados, sendo que passamos essa função como argumento do apply. A função deve (necessáriamente) ter um argumento que é um DataFrame, e deve retornar o que desejamos fazer com os grupos. Considere o banco de dados de vendas, se olharmos somente o produto "Basket":

In [4]: dt[dt["Product Type"] == "Basket"]

Out[4]:		Product Type	Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
	1	Basket	13	3744.0	-316.80	0.0	3427.20
	2	Basket	12	3825.0	-201.60	-288.0	3335.40
	3	Basket	17	3035.0	-63.25	0.0	2971.75
	5	Basket	17	2695.0	-52.50	-110.0	2532.50
	6	Basket	20	2310.0	-66.00	-110.0	2134.00
	•••				•••		
	1763	Basket	0	34.0	0.00	-34.0	0.00
	1764	Basket	0	48.0	0.00	-48.0	0.00
	1766	Basket	0	195.0	0.00	-195.0	0.00
	1767	Basket	0	28.0	0.00	-28.0	0.00
	1772	Basket	0	116.0	-23.20	-92.8	0.00

 $551 \text{ rows} \times 6 \text{ columns}$

Peercebe-se que os dados da coluna Net Quantity não estão ordenados. Por alguma razão precisamos ordenar, dentro de cada grupo, os dados pelas quantidades de Net Quantity. Para isso podemos criar uma função que faz essa ordenação, e passar ela como parâmetro do apply. Isso é feito no código a seguir:

```
In [12]: # Função para ordenar os dados, df é o dataframe
         def top(df):
             return df.sort values(by="Net Quantity")
         # Usamos o groupby com o apply passando a função 'top' como argumento
         dt_apply = dt.groupby("Product Type").apply(top, include_groups = False)
         dt_apply
```

Out[12]:			Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
	Product Type						
	Accessories	1103	1	68.0	0.0	0.0	68.0
		1173	1	58.0	0.0	0.0	58.0
		1181	1	58.0	0.0	0.0	58.0
		1184	1	58.0	0.0	0.0	58.0
		1273	1	48.0	0.0	0.0	48.0
	•••	•••					
	Textiles	971	3	84.0	0.0	0.0	84.0
		978	4	88.0	-4.4	0.0	83.6
		124	5	564.0	-44.0	0.0	520.0
		256	8	342.0	-15.2	-38.0	288.8
		539	8	164.0	0.0	0.0	164.0

1767 rows × 5 columns

Vamos observar no novo DataFrame novamente como estão os dados do produto "Basket":

In [14]:	dt_apply[dt_	_apply	"Product Type	e"] == "Basket	:"]			
Out[14]:			Product Type	Net Quantity	Gross Sales	Discounts	Returns	Total Net Sales
	Product Type							
	Basket	1772	Basket	0	116.0	-23.20	-92.8	0.00
		1763	Basket	0	34.0	0.00	-34.0	0.00
		1767	Basket	0	28.0	0.00	-28.0	0.00
		1766	Basket	0	195.0	0.00	-195.0	0.00
		1764	Basket	0	48.0	0.00	-48.0	0.00
		•••					•••	
		3	Basket	17	3035.0	-63.25	0.0	2971.75
		120	Basket	19	622.0	-94.60	0.0	527.40
		16	Basket	20	1560.0	-47.80	0.0	1512.20
		6	Basket	20	2310.0	-66.00	-110.0	2134.00
		10	Basket	30	1907.0	-41.30	0.0	1865.70

Percebe-se que agora os dados estão ordenados de acordo com "Net Quantity".

5.2 Dados únicos

Muitas vezes temos um conjunto de dados (de uma coluna, por exemplo), contendo repetições, e queremos acessar somente dados únicos. Para isso podemos usar a função unique(). Considere o banco de dados de venda de produtos business.retailsales.csv. As linhas possuem o nome dos produtos vendidos, sendo que pode haver repetições:

```
In [15]: dt["Product Type"] # Note que existem 1775 linhas
Out[15]: 0
                  Art & Sculpture
          1
                           Basket
          2
                           Basket
          3
                           Basket
          4
                  Art & Sculpture
                       . . .
          1770
                          Kitchen
          1771
                          Jewelry
          1772
                           Basket
          1773
                          Kitchen
          1774
                          Kitchen
          Name: Product Type, Length: 1775, dtype: object
 In [8]: # Acessando somente os itens SEM REPETIÇÃO:
         dt["Product Type"].unique()
 Out[8]: array(['Art & Sculpture', 'Basket', 'Christmas', 'Home Decor',
                 'Recycled Art', 'Jewelry', 'Skin Care', 'Kitchen', 'Textiles',
                 'Accessories', 'Fair Trade Gifts', 'One-of-a-Kind', 'Soapstone',
                 'Music', 'Furniture', 'Kids', nan, 'Easter', 'Gift Baskets'],
                dtvpe=object)
```

5.3 Dados nulos

Muitas vezes um conjunto de dados possui dados faltantes (ou dados nulos). No pandas esses valores são representados como NaN (Not a Number), e podem ser facilmente detectados. Usando a função .isnull() em um DataFrame, temos um DataFrame de booleanos valores True se ali existe um NaN . Considere o conjunto de dados Titanic-train.csv . O conjunto contém informações sobre os mortos/sobreviventes do Titanic.

Out[16]:	Passengerld Survived Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked		
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	5 0 ₃ Allen, I		Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	•••												
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

A coluna cabin mostra a cabine em que o passageiro estava hospedado (pobre Jack...). Por algum motivo, nem todos os dados estão preenchidos. Podemos usar a função .isnull() para confirmar:

In [17]: dt_tit.isnull()

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	D False	False	False	False	False	False	False	False	False	False	True	False
	1 False	False	False	False	False	False	False	False	False	False	False	False
2	2 False	False	False	False	False	False	False	False	False	False	True	False
:	3 False	False	False	False	False	False	False	False	False	False	False	False
	4 False	False	False	False	False	False	False	False	False	False	True	False
•												
88	6 False	False	False	False	False	False	False	False	False	False	True	False
88	7 False	False	False	False	False	False	False	False	False	False	False	False
88	3 False	False	False	False	False	True	False	False	False	False	True	False
88	9 False	False	False	False	False	False	False	False	False	False	False	False
89	D False	False	False	False	False	False	False	False	False	False	True	False

891 rows × 12 columns

Para alguma análise, podemos estar interessados somente nos dados com todos os valores preenchidos. Para isso podemos usar a função .dropna(), que remove do conjunto de dados toda linha que contenha pelo menos um valor NaN:

Out[18]:	Passengerld Survived Pclass		Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked		
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
	11 12		1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
	•••												
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	11751	52.5542	D35	S
	872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	695	5.0000	B51 B53 B55	S
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	C50	С
887		888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С

Uma outra abordagem poderia ser substituir valores NaN por algum valor padrão. Para isso podemos usar a função fillna() com o valor a ser preenchido. Vamos substituir todos os dados faltantes por uma string "INEXISTENTE".

Out[19]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	INEXISTENTE	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	INEXISTENTE	!
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	ţ
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	INEXISTENTE	!
	•••				•••		•••						
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	INEXISTENTE	:
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
	888	889	0	3	Johnston, Miss. Catherine	female	INEXISTENTE	1	2	W./C. 6607	23.4500	INEXISTENTE	

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
				Helen "Carrie"								
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	(
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	INEXISTENTE	(

Para substituirmos dados de colunas específicas podemos passar um dicionário como parâmetro, com as chaves sendo as colunas e os valores o conteúdo para substituição. O código abaixo substitui somente os dados da coluna cabine, com uma cabine "DUMMY" chamada "Z999":

```
In [20]: dt_tit_dummy = dt_tit.fillna({"Cabin":"Z999"})
dt_tit_dummy
```

Out[20]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Z999	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Z999	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Z999	S
	•••												
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	Z999	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	Z999	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	Z999	Q