ENGR 2910-101: Circuit Analysis

Homework 11: 12/01/21 Due: 12/06/21

Question 1 [1]

If the voltage (v) and current (i) through a circuit element are given by:

$$v(t) = e^{-t/2}$$

$$i(t) = e^{-t/2},$$

what is the total energy delivered to the element?

- (a) 0 J
- (b) 1 J
- (c) $\frac{1}{4}$ J
- (d) ∞

Question 2 [1]

Compute the power delivered to the circuit shown below.

- (a) 48 W
- (b) 12 W
- (c) 288 W
- (d) 6 W

${\bf Question} \ {\bf 3} \ [1]$

Find the equivalent resistance for the circuit shown below.

- (a) 6Ω
- (b) 18 Ω
- (c) 24 Ω
- (d) 44 Ω

Instructor: Leo Silbert

Question 4 [1]

For the following circuit find the sum of the voltages v1 and v2.

- (a) 10 V
- (b) 9 V
- (c) 20 V
- (d) 5 V

Question 5 [1]

What is the value of i_3 in the circuit shown below?

- (a) 10 A
- (b) 4 A
- (c) 14 A
- (d) 6 A

Question 6 [1]

For t > 0, the current source generates a current, $i = 10te^{-5t}$ A, in the circuit shown below.

What does the corresponding graph show?

- (a) Power
- (b) Energy
- (c) Current
- (d) Voltage

Question 7 [1]

What is the value of the time constant for the RL circuit shown below?

- (a) 0.590 s
- (b) 3.125 s
- (c) 0.500 s
- (d) 0.333 s

Question 8 [1]

Consider a parallel RLC circuit. If, $R = 150\Omega$, L = 50 mH, and $C = 0.2\mu$ F, is the circuit:

- (a) Critically Damped
- (b) Overdamped
- (c) Underdamped

Question 9 [1]

Consider a parallel RLC circuit. If, $R = 250\Omega$, L = 50 mH, and $C = 0.2\mu$ F, is the circuit:

- (a) Critically Damped
- (b) Overdamped
- (c) Underdamped

Question 10 [1]

Consider a parallel RLC circuit. If, $R=350\Omega,\,L=50$ mH, and $C=0.2\mu\mathrm{F},$ is the circuit:

- (a) Critically Damped
- (b) Overdamped
- (c) Underdamped

