

Grundzüge der Informatik 1

Vorlesung 18 - flipped classroom

Rot-Schwarz-Bäume

- Balancierter Suchbaum
- Nach Einfügen/Löschen wird die Struktur des Suchbaums so modifiziert, dass eine Höhe von O(log n) garantiert wird
- Rebalancierung nach Einfügen/Löschen wird in O(log n) Zeit möglich sein
- Damit sind Operationen Suchen, Einfügen und Löschen in O(log n) Zeit möglich

Die Rot-Schwarz-Eigenschaften

- Jeder Knoten ist rot oder schwarz
- Die Wurzel ist schwarz
- Jedes Blatt ist schwarz
- Wenn ein Knoten rot ist, dann sind seine Kinder schwarz
- Für jeden Knoten v haben alle Pfade vom Knoten zu den Blättern im Unterbaum mit Wurzel v dieselbe Anzahl schwarzer Knoten

Rotationen

Überblick: Wiederherstellen der Rot-Schwarz-Eigenschaften

- Starte mit eingefügtem Knoten z
- Stelle die Eigenschaft lokal wieder her, so dass sie nur von einem Knoten verletzt werden kann, der näher an der Wurzel ist
- Bei der Wurzel angekommen wird diese schwarz gefärbt

Fall (1) (z ist die Wurzel)

Fall (2) (Onkel von z ist rot)

Fall (3) (Onkel von z ist schwarz, z ist linkes Kind und parent(z) ist linkes Kind)

Universitä

Fall (4) (Onkel von z ist schwarz, z ist rechtes Kind und parent(z) ist linkes Kind)

Löschen in Rot-Schwarz-Bäumen

- Zunächst Löschen wie in binären Suchbäumen
- Dann Wiederherstellen der Rot-Schwarz-Eigenschaften

RS-Löschen(T,z) * Zu löschender Knoten wird übergeben

- 1. **if** left[z]=NIL[T] or right[z]=NIL[T] **then** y=z
- 2. **else** y=NachfolgerSuche(z)
- 3. **if** left[y]≠NIL[T] **then** x=left[y] **else** x=right[y]
- parent[x]=parent[y]
- 5. **if** parent[y]=NIL[T] **then** root[T]=x
- 6. **else if** y=left[parent[y]] **then** left[parent[y]]=x **else** right[parent[y]]=x
- 7. key[z]=key[y]
- 8. **if** color[y]=schwarz **then** RS-Löschen-Fix(T,x)
- 9. parent[NIL[T]]=NIL
- 10. delete y

Einfacher Fall

- Wenn der Knoten x rot ist, können wir diesen schwarz f\u00e4rben und der resultierende Baum ist ein Rot-Schwarz-Baum
- Im Folgenden gehen wir davon aus, dass x schwarz ist

Fall 1: Geschwisterknoten von x ist rot

Fall 2a: Geschwisterknoten w von x ist schwarz; parent[x] ist rot; Kinder von w sind schwarz

Fall 2b: Geschwisterknoten w von x ist schwarz; parent[x] ist schwarz; Kinder von w sind schwarz

Fall 3: Geschwisterknoten w von x ist schwarz; linkes Kind von w ist rot; rechtes Kind von w ist schwarz

Fall 4: Geschwisterknoten w von x ist schwarz; rechtes Kind von w ist rot

Aufgabe 1

- Modifizieren Sie den Rot-Schwarz-Baum so, dass an den Knoten auch das Attribut Größe (Anzahl der Knoten im Unterbaum) aus der letzten Übung aufrecht erhalten werden kann
- Identifizieren Sie dazu zunächst die Schritte, in denen der Pseudocode geändert werden muss

Aufgabe 1

- Modifizieren Sie den Rot-Schwarz-Baum so, dass an den Knoten auch das Attribut Größe (Anzahl der Knoten im Unterbaum) aus der letzten Übung aufrecht erhalten werden kann
- Identifizieren Sie dazu zunächst die Schritte, in denen der Pseudocode geändert werden muss
- (a) Rotationen
- (b) Einfügen
- (c) Löschen

Aufgabe 1

- Modifizieren Sie den Rot-Schwarz-Baum so, dass an den Knoten auch das Attribut Größe (Anzahl der Knoten im Unterbaum) aus der letzten Übung aufrecht erhalten werden kann
- Identifizieren Sie dazu zunächst die Schritte, in denen der Pseudocode geändert werden muss
- (a) Rotationen
- (b) Einfügen
- (c) Löschen
- Geben Sie die Modifikationen der Prozeduren für Rotationen und Einfügen im Pseudocode an

Aufgabe 2

 Löschen Sie die Schlüssel 8, 9 und 13 aus dem unten stehenden Rot-Schwarz-Baum

Aufgabe 3

Wenn man eine Zahl x aus einem Rot-Schwarz-Baum löscht und danach wieder einfügt, ist die Struktur des Baums identisch zur Struktur vor dem Einfügen? Begründen Sie Ihre Antwort!

Aufgabe 4

 Seien T und T' binäre Suchbäume für eine Menge von n Zahlen S. Zeigen Sie, dass man T mit Hilfe von O(n) Rotationen in T' überführen kann.

Aufgabe 5 [Josephus permutation; CLRS]

- Angenommen, wir haben n Personen, die im Kreis sitzen und eine Zahl m<n
- Beginnend bei einer als Person 1 ausgezeichneten Person, wird die m-te Person im Uhrzeigersinn aus dem Kreis entfernt. Dies wird fortgesetzt, solange noch Personen im Kreis sind
- Die Reihenfolge, in der die Personen entfernt werden, nennt man (n,m)-Josephus Permutation
- Entwickeln Sie einen Algorithmus, der für konstantes m die (n,m)-Josephus Permutation in O(n) Zeit berechnet

Aufgabe 6 [Josephus permutation; CLRS]

- Angenommen, wir haben n Personen, die im Kreis sitzen und eine Zahl m<n
- Beginnend bei einer als Person 1 ausgezeichneten Person, wird die m-te Person im Uhrzeigersinn aus dem Kreis entfernt. Dies wird fortgesetzt, solange noch Personen im Kreis sind
- Die Reihenfolge, in der die Personen entfernt werden, nennt man (n,m)-Josephus Permutation
- Skizzieren Sie einen Algorithmus, der für jedes m die (n,m)-Josephus Permutation in O(n log n) Zeit berechnet

