Distance measures

Reproduced from Jeffrey D. Ullman at Stanford

Axioms of a Distance Measure

- d is a *distance measure* if it is a function from pairs of points to real numbers such that:
 - 1. $d(x,y) \ge 0$.
 - 2. d(x,y) = 0 iff x = y.
 - 3. d(x,y) = d(y,x).
 - In fact, there are some asymmetric distance measures, so this constraint is not always required
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Euclidean Distance

- \bullet d(x,y) = square root of the sum of the squares of the differences between x and y in each dimension.
 - The most common notion of "distance."
- ◆A.k.a., *L*₂ norm

Manhattan Distance 源自城市地區

- d(x,y) = sum of the differences in each dimension.
 - Distance if you had to travel along coordinates only.
- \bullet A.k.a., L_1 norm

Examples of Euclidean Distance and Manhattan Distance

Other norms

- L_{∞} norm: d(x,y) =the maximum of the differences between x and y in any dimension.
- Note: the maximum is the limit as n goes to ∞ of the L_n norm: what you get by taking the nth power of the differences, summing and taking the nth root. +

Mahalanobis distance

- A lot of times, data points do not form a circle shape
- We probably need to consider the variability of each dimension

Mahalanobis distance

Take into account the variation of each dimension

Euclidean vs Mahalanobis distance

Source: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets

Jaccard Distance for Sets (Bit-Vectors) {a,c,d,e} {a,d,e}

- **Example:** $p_1 = 10111$; $p_2 = 10011$.
- \bullet Size of intersection = 3; size of union \neq 4, Jaccard similarity (not distance) = 3/4.
- \diamond d(x,y) = 1 (Jaccard similarity) = 1/4.

Why J.D. Is a Distance Measure

- \diamond d(x,x) = 0 because x \cap x = x \cup x.
- \diamond d(x,y) = d(y,x) because union and intersection are symmetric.
- \diamond d(x,y) \geq 0 because $|x \cap y| \leq |x \cup y|$.
- ◆d(x,y) \le d(x,z) + d(z,y) trickier ignore the proof here

Cosine Distance

- ◆Think of a point as a vector from the origin (0,0,...,0) to its location.
- ◆Two points' vectors make an angle, whose cosine is the normalized dotproduct of the vectors: p₁.p₂/|p₂||p₁|.
 - **Example:** $p_1 = 00111$; $p_2 = 10011$.
 - $p_1.p_2 = 2$; $|p_1| = |p_2| = \sqrt{3}$.
 - $\cos(\theta) = 2/3; \theta$ is about 48 degrees.

$$d(p_1, p_2) = \theta = \arccos(p_1.p_2/|p_2||p_1|)$$

Why C.D. Is a Distance Measure

- \diamond d(x,x) = 0 because arccos(1) = 0.
- \diamond d(x,y) = d(y,x) by symmetry.
- \bullet d(x,y) \geq 0 because angles are chosen to be in the range 0 to 180 degrees.
- ◆Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can't rotate less than from x to y.

Edit Distance

- ◆The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:
- \bullet d(x,y) = |x| + |y| 2|LCS(x,y)|.
 - LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

Example: LCS

- $\bullet x = abcde$; y = bcduve.
- ◆Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- \bullet Or, LCS(x,y) = *bcde*.
- Note: |x| + |y| 2|LCS(x,y)| = 5 + 6 2*4 = 3 = edit distance.

Why Edit Distance Is a Distance Measure

- \diamond d(x,x) = 0 because 0 edits suffice.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- \diamond d(x,y) \geq 0: no notion of negative edits.
- ◆Triangle inequality: changing *x* to *z* and then to *y* is one way to change *x* to *y*.

Variant Edit Distances

- ◆Allow insert, delete, and *mutate*.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Ditto for any set of operations on strings.
 - Example: substring reversal OK for DNA sequences

Hamming Distance

- ◆ Hamming distance is the number of positions in which bit-vectors differ.
- **Example:** $p_1 = 10101$; $p_2 = 10011$.
- $d(p_1, p_2) = 2$ because the bit-vectors differ in the 3^{rd} and 4^{th} positions.

Why Hamming Distance Is a Distance Measure

- \diamond d(x,x) = 0 since no positions differ.
- d(x,y) = d(y,x) by symmetry of "different from."
- \diamond d(x,y) \geq 0 since strings cannot differ in a negative number of positions.
- ◆Triangle inequality: changing x to z and then to y is one way to change x to y.

Other distance measures

- Distance between two distributions
 - KL-divergence (a well-known asymmetric distance measure)
- Number of steps to move a king (in a chess game) from (x1, y1) to (x2, y2),
 - A king can move to any of it's neighboring square
 - A.k.a., infinity norm, or Chebyshev distance
 - Distance = max(|x1-x2|, |y1-y2|)

- ◆ Given an example in which Euclidean distance may be inapplicable or inappropriate
- How to define the distance between two sets (e.g., A=[1,2,3], B=[2,3,4], C=[5,6,7], S(A,B)=? S(A,C)=?) [[]
- Doc1 has 100 word "w1" and 300 word "w2"; doc2 has 10 word "w1" and 30 word "w2", doc3 has 101 word "w1" and 200 word "w2"
 - Which doc is similar to doc1?

NO mean of smilar answer 23

* Kl-distergence exifind distribution Avietch

Social discourse = 0

but in

doc3 > doc1 and dis (d1,3) >(d1,2)

todocr >

Ik Hung Potter & depends on seen