Definition of matrix calculus

Suppose X and Y is matrix, with arbitrary dimensions. As $X \in \mathcal{R}^{n_1 \times \cdots \times n_k}$ and $Y \in \mathcal{R}^{m_1 \times \cdots \times m_l}$. Define the matrix calculus as follows

$$\frac{\partial X}{\partial Y} \in \mathcal{R}^{n_1 \times \cdots \times n_k \times m_1 \times \cdots \times m_l}, \left(\frac{\partial X}{\partial Y}\right)_{i_1 \cdots i_k j_1 \cdots j_k} = \frac{\partial X_{i_1 \cdots i_k}}{\partial Y_{i_1 \cdots i_k}}$$

So, the following criterions for matrix calculus hold

- (1) When the column of matrix is seen as **first dimension**, matrix calculus follows

 Jacobian or numerator formulation
- (2) When the row of matrix is seen as first dimension, matrix calculus follows

 Hessian or denominator formulation

The two tips are illustrated in the table below

		Result of differ	entiating v	arious kinds of aggre	gates with	other kinds of aggreg	ates		
	Column is first dimension		Scalar y		Column vector y (size m×1)		Matrix Y (size m×n)		
			Notation	Туре	Notation	Туре	Notation	Туре	
dime	Scalar x of matrix is first	Numerator	∂y	Scalar	$\partial \mathbf{y}$	Size-m column vector	$\partial \mathbf{Y}$	<i>m</i> × <i>n</i> matrix	
		Denominator	$\overline{\partial x}$		$\overline{\partial x}$	Size-m row vector	$\overline{\partial x}$		
	ension Column vector x	Numerator	∂y	Size-n row vector	$\partial \mathbf{y}$	<i>m</i> × <i>n</i> matrix	$\partial \mathbf{Y}$		
	(size <i>n</i> ×1)	Denominator	$\overline{\partial \mathbf{x}}$	Size-n column vector	$\overline{\partial \mathbf{x}}$	n×m matrix	$\overline{\partial \mathbf{x}}$		
	Matrix X	Numerator	∂y	<i>q</i> × <i>p</i> matrix	$\partial \mathbf{y}$		$\partial \mathbf{Y}$	$p \times q \times m \times$	\overline{n} mat
	(size <i>p</i> × <i>q</i>)	Denominator	$\overline{\partial \mathbf{X}}$	<i>p</i> × <i>q</i> matrix	$\overline{\partial \mathbf{X}}$		$\overline{\partial \mathbf{X}}$	$q \times p \times n \times n$	m mat

Figure 1 Illustration of matrix calculus.