Model-Free Control

Model-Free RL

- Model-free prediction: how good is a specific policy?
 - Given no access to the decision process model parameters
 - Instead have to estimate from data/experience
- Model-free control: how can we learn a good policy?

Target Policy vs Behavior Policy

- All learning control methods face a dilemma: They learn action values for optimal behavior, but need to behave non-optimally to explore new actions.
- A more straightforward approach is to use two policies: The policy being learned about is called the target policy, and the policy used to generate behavior is called the behavior policy.
 - Target policy: It is the policy that an agent is trying to evaluate or improve.
 i.e agent is learning value function for this policy.
 - Behavior policy: It is the policy that is being used by an agent for action select. i.e agent follows this policy to interact with the environment.
- The target policy is typically the deterministic greedy policy with respect to the current estimate of the action-value function.
- The behavior policy remains stochastic and more exploratory, for example, an ε-greedy policy.

3

On-Policy vs Off-Policy

- How to learn about the optimal policy while behaving according to an exploratory policy?
- On-policy
 - target policy = behavior policy
 - learn to estimate and evaluate a policy from experience obtained from following that policy
 - learns action values not for the optimal policy, but for a near-optimal policy that still explores.
 - generally simpler and are considered first
 - e.g. Sarsa

On-Policy vs Off-Policy

- Off-policy
 - target policy ≠ behavior policy
 - learn to estimate and evaluate a policy using experience gathered from following a different policy
 - more powerful and general
 - can be applied to learn from data generated by a conventional non-learning controller, or from a human expert.
 - re-use experience generated from old policies $(\pi_0, \pi_1, ...)$.
 - are often of greater variance and are slower to converge
 - e.g. Q learning

Recap: Generalized Policy Iteration

- Policy evaluation Estimate V_{π}
 - e.g. Iterative policy evaluation
- Policy improvement Generate $\pi' \geq \pi$
 - e.g. Greedy policy improvement

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2018

Generalized Policy Iteration With Monte-Carlo Evaluation

- We already learned model-free policy evaluation method(e.g. MC)
- Also learned greedy policy improvement
- Therefore, how about this GPI?
 - Policy evaluation: Monte-Carlo policy evaluation, $V = v_{\pi}$?
 - Policy improvement: Greedy policy improvement?

Model-Free Policy Iteration Using Action-Value Function

Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = argmax_{a \in A} R_s^a + P_{ss'}^a V(s')$$

- Greedy policy improvement over Q(s,a) is model-free
 - We **do not** know $P_{ss'}^a$ (assuming stochastic) and R_s^a
 - We need action-value function for model-free control

$$\pi'(s) = argmax_{a \in A} Q(s, a)$$

Generalized Policy Iteration With Monte-Carlo Evaluation

- Now use Q instead of V
- Policy evaluation: Monte-Carlo policy evaluation, $Q = q_{\pi}$?
- Policy improvement: Greedy policy improvement?
- Does it work now?

Problem of Greedy Policy Improvement

- Initialize policy π
- Repeat:
 - Policy evaluation: compute $Q_{\pi_i}(s, a) \ \forall s, a$
 - Policy improvement: greedy update π given Q_{π_i}

$$\pi'(s) = argmax_{a \in A} Q(s, a)$$

- Greedy method for policy improvement -> deterministic policy
- If π is deterministic, can't compute Q(s,a) for any $a \neq \pi(s)$
 - May need to modify policy evaluation
 - Policy improvement is using an estimated Q
- How to interleave policy evaluation and improvement?

Example of Greedy Action Selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

https://www.davidsilver.uk/teaching/

- There are two doors in front of you.
- You open the left door and get reward 0
 V(left) = 0
- You open the right door and get reward +1
 V(right) = +1
- You open the right door and get reward +3
 V(right) = +2
- You open the right door and get reward +2
 V(right) = +2

. . .

Are you sure you've chosen the best door?

ε-greedy Exploration

- If π is a deterministic policy, then in following π one will observe returns only for one of the actions from each state
 - many state—action pairs may never be visited.
- Need to try all (s, a) pairs but then follow π
- Want to ensure resulting estimate Q_{π} is good enough so that policy improvement is a monotonic operator
- ε-greedy exploration: Simple idea to balance exploration and exploitation
- All m actions are tried with non-zero probability
 - With probability $1-\epsilon$, choose the greedy action
 - With probability ϵ , choose an action at random

$$\pi(a|s) = \begin{cases} \frac{\epsilon}{m} + 1 - \epsilon, & \text{if } a^* = \operatorname{argmax}_{a \in A} Q(s, a) \\ \frac{\epsilon}{m}, & \text{otherwise} \end{cases}$$

ε-greedy Policy Improvement

Theorem: For any ϵ -greedy policy π , the ϵ -greedy policy π ' with respect to q_{π} is an improvement, $v_{\pi'}(s) \ge v_{\pi}(s)$

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a|s) \, q_{\pi}(s, a) = \frac{\epsilon}{m} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a) \frac{1 - \epsilon}{1 - \epsilon}$$

Since

$$\sum_{a} (\pi(a|s) - \epsilon/m) = \sum_{a \neq a_*} (\pi(a|s) - \epsilon/m) + \sum_{a = a_*} (\pi(a|s) - \epsilon/m) = (0) + (1 - \epsilon + \frac{\epsilon}{m} - \frac{\epsilon}{m}) = 1 - \epsilon$$

Therefore,

$$q_{\pi}(s, \pi'(s)) = \frac{\epsilon}{m} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a) \frac{\sum_{a} (\pi(a|s) - \epsilon/m)}{1 - \epsilon}$$

$$\geq \frac{\epsilon}{m} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, a)$$

$$= \sum_{a} \pi(a|s) q_{\pi}(s, a) = v_{\pi}(s)$$

• Since $v_{\pi'}(s) \ge q_{\pi}(s, \pi'(s)), v_{\pi'}(s) \ge v_{\pi}(s)$

Monte-Carlo Policy Iteration

- Now use ϵ -greedy policy improvement instead of greedy improvement
 - Policy evaluation: Monte-Carlo policy evaluation, $Q = q_{\pi}$
 - (Compute q values until it converge)
 - Policy improvement: *ϵ*-greedy policy improvement
- This works.

Monte-Carlo Control

- We can do better (more efficiently).
- For every episode:
 - Policy evaluation: Monte-Carlo policy evaluation, $Q \approx q_{\pi}$
 - No need to compute entire q values
 - Policy improvement: ϵ -greedy policy improvement

Greedy in the Limit with Infinite Exploration (GLIE)

- Greedy in the limit with infinite exploration (GLIE)
- A learning policy π is called GLIE if it satisfies the following two properties:
 - All state-action pairs are explored infinitely many times

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy

$$\lim_{k \to \infty} \pi_k(a|s) = 1(a = \operatorname{argmax}_{a'} Q_k(s, a'))$$

■ For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

16

GLIE Monte Carlo Control

- Sample kth episode using π : { S_1 , A_1 , R_2 , ... S_T } ~ π
- For each state S_t and action A_t in the episode,

$$N(S_{t}, A_{t}) \leftarrow N(S_{t}, A_{t}) + 1$$

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \frac{1}{N(S_{t}, A_{t})} (G_{t} - Q(S_{t}, A_{t}))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$

 $\pi \leftarrow \epsilon$ -greedy(Q)

Theorem: GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s, a) \rightarrow Q_*(s, a)$

MC vs. TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Incomplete sequences
 - Online
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S,A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

18

Model-Free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q_{π} using temporal difference(TD)
 - Policy improvement: set π to ϵ -greedy (Q_{π}) (same as Monte Carlo policy improvement)
- First consider SARSA, which is an on-policy algorithm.

19

On-Policy Control With Sarsa

- Instead of MC, use Sarsa & update q at every step (instead of every episode)
- For every time-step:
 - Policy evaluation: Sarsa, $Q \approx q_{\pi}$
 - Policy improvement: ϵ -greedy policy improvement

Updating Action-Value Functions with Sarsa

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

Sarsa Algorithm for On-Policy Control

- For every time-step:
 - Policy evaluation: Sarsa, $Q \approx q_{\pi}$
 - Policy improvement: ϵ -greedy policy improvement
- 1: Set initial ϵ -greedy policy π , t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop

police evaluation (Sarsa)

Convergence of Sarsa Algorithm

- Sarsa converges to the optimal action-value function, $Q(s, a) \rightarrow Q_*(s, a)$, under the following conditions:
 - 1) Policy sequence $\pi_t(a|s)$ satisfies the condition of GLIE
 - 2) The step-sizes α_t satisfy Robbines-Monro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

• For example, $\alpha_t = 1/t$ satisfies the above condition

Windy Gridworld

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2018

7000

8000

- Reward = -1 per time-step until reaching goal
- Undiscounted
- Until t=2000, it couldn't finish episodes, but after that number of finished episodes grows exponentially

Expected Sarsa

- Expected Sarsa is very similar to Sarsa.
- However, instead of state-action values sampled using our current policy, it computes the expected value over all future state-action pairs
- The update-step is now defined as:

$$q(s_t, a_t) \leftarrow q(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \underbrace{\sum_{a'} \pi(a'|s_{t+1}) \, q(s_{t+1}, a')}_{q(s_{t+1}, a')} - q(s_t, a_t) \right)$$

average q value over action a'

Expected Sarsa is an off-policy algorithm

Off-policy Learning

• Evaluate target policy $\pi(a|s)$ to compute $v_{\pi}(s)$ or $q_{\pi}(s,a)$ while following behavior policy b(a|s)

$$(S_1, A_1, R_1, \dots S_T) \sim b$$

- Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies $\pi_1, \pi_2, ... \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy

Importance Sampling

- Some off-policy methods utilize importance sampling, a general technique for estimating expected values under one distribution given samples from another
- Estimate the expectation of a different distribution

$$E_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X) = \sum_{X \sim P} Q(X) \frac{P(X)}{Q(X)} f(X) = E_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

27

Importance Sampling

• What is the probability of observing a certain trajectory on random variables $a_k, s_{k+1}, a_{k+1}, \dots, s_T$ starting in s_k while following π ?

$$P[a_k, s_{k+1}, a_{k+1}, \dots, s_T | s_k, \pi] = \prod_{k=1}^{T-1} \pi(a_k | s_k) p(s_{k+1} | s_k, a_k)$$

- Above p is the state-transition probability.
- Definition: Importance sampling ratio
 The relative probability of a trajectory under the target and behavior policy, the importance sampling ratio, from sample step k to T is:

$$\rho_{k:T} = \frac{\prod_{k=1}^{T-1} \pi(a_k|s_k) p(s_{k+1}|s_k, a_k)}{\prod_{k=1}^{T-1} b(a_k|s_k) p(s_{k+1}|s_k, a_k)} = \frac{\prod_{k=1}^{T-1} \pi(a_k|s_k)}{\prod_{k=1}^{T-1} b(a_k|s_k)}$$

Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from b (behavior policy) to evaluate π (optimal policy)
- Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{\pi/b} = \frac{\pi(a_t|s_t)\pi(a_{t+1}|s_{t+1})}{b(a_t|s_t)b(a_{t+1}|s_{t+1})} \dots \frac{\pi(a_T|s_T)}{b(a_T|s_T)} G_t$$
return value if have
$$\int_t^{\pi/b} = \frac{\pi(a_t|s_t)\pi(a_{t+1}|s_{t+1})}{b(a_t|s_t)b(a_{t+1}|s_{t+1})} \dots \frac{\pi(a_T|s_T)}{b(a_T|s_T)} G_t$$
return value if have
$$\int_t^{\pi/b} = \frac{\pi(a_t|s_t)\pi(a_{t+1}|s_{t+1})}{b(a_t|s_t)b(a_{t+1}|s_{t+1})} \dots \frac{\pi(a_T|s_T)}{b(a_T|s_T)} G_t$$
return value if have

Update value towards corrected return

$$V(s_t) \leftarrow V(s_t) + \alpha (G_t^{\pi/b} - V(s_t))$$

- Cannot use if b is zero when π is non-zero
- Importance sampling can dramatically increase variance $(x = G_t^{\pi/b})$

$$Var[X] = E[X^2] - E[X]^2$$

Q Learning

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- Next action is chosen using behavior policy $a_t \sim b(.|s_t)$
- But we consider alternative successor action $a' \sim \pi(.|s_t)$
- And update $Q(s_t, a_t)$ towards value of alternative successor action

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

30

Off-Policy Control with Q-Learning

- We now allow both behavior and target policies to improve
- The behavior policy b is e.g. ϵ -greedy w.r.t. Q(s,a)
- The target policy π is greedy w.r.t. Q(s,a)

$$\pi(S_{t+1}) = \operatorname*{argmax}_{a'} Q(S_{t+1}, a')$$

The Q-learning target then simplifies

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a}, Q(S_{t+1}, a'))$$

= $R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$

Q-Learning Control Algorithm

Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Recall SARSA

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t))$$

■ Q-learning control converges to the optimal action-value function, $Q(s, a) \rightarrow Q_*(s, a)$

Q-Learning for Off-Policy Control

```
1: Initialize Q(s, a), \forall s \in S, a \in A, t = 0, initial state s_t = s_0
```

- 2: Set π_b to be ϵ -greedy w.r.t. Q
- 3: **loop**
- 4: Take $a_t \sim \pi_b(s_t)$ // Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop

 ϵ -greedy policy improvement

greedy policy

Q-Learning vs Sarsa

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2018

- But the reason that SARSA took safest path is because the policy of SARSA is the epsilon greedy where epsilon percent of the time the agent took random walk.
- This means it is not safe at all to walk close to the cliff
- To avoid the big punishment of agent falling off the cliff, accept the small punishment of long traveling instead.

Double Q-Learning

- Q-Learning performs poorly in some environments because of overestimation of Q values
- Overestimation caused by $\max_{a'} Q(s_{t+1}, a')$ in the following

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (R + \gamma \max_{a'} Q(s_t, a') - Q(s_t, a_t))$$

No	$\mathbf{c_1}$	c_2	$\mathbf{c_3}$	$Avg(c_i)$	$Max(c_i)$
1	-0.4	0.2	-0.2	-0.13	0.2
2	0.1	-0.3	0	-0.06	0.1

$$q(C,b) \leftarrow q(C,b) + \alpha(r + \gamma \max_{c_i} q(D,c_i) - q(C,b))$$

$$q(C,b) \leftarrow q(C,b) + (0 + \max\{-0.4, 0.2, -0.2\} - q(C,b)) = q(C,b) + (0.2 - q(C,b))$$

Double Q-Learning

- The proposed solution is to maintain two Q-value functions q_A and q_B , each one gets update from the other for the next state.
- Use q_A to find best action a_* (maximum q)

$$a_* = \operatorname*{argmax}_{a} q_A(s_{t+1}, a)$$

• Use the action value of a_* from q_B

Double Q Learning

$$q_{A}(s_{t}, a_{t}) \leftarrow q_{A}(s_{t}, a_{t}) + \alpha(r_{t+1} + \gamma q_{B}(s_{t+1}, a_{*}) - q_{A}(s_{t}, a_{t}))$$
 where $a_{*} = \underset{a}{\operatorname{argmax}} q_{A}(s_{t+1}, a)$

Double Q-Learning

Algorithm 1 Double Q-learning

```
1: Initialize Q^A, Q^B, s

2: repeat

3: Choose a, based on Q^A(s, \cdot) and Q^B(s, \cdot), observe r, s'

4: Choose (e.g. random) either UPDATE(A) or UPDATE(B)

5: if UPDATE(A) then

6: Define a^* = \arg\max_a Q^A(s', a)

7: Q^A(s, a) \leftarrow Q^A(s, a) + \alpha(s, a) \left(r + \gamma Q^B(s', a^*) - Q^A(s, a)\right)

8: else if UPDATE(B) then

9: Define b^* = \arg\max_a Q^B(s', a)

10: Q^B(s, a) \leftarrow Q^B(s, a) + \alpha(s, a)(r + \gamma Q^A(s', b^*) - Q^B(s, a))

11: end if

12: s \leftarrow s'

13: until end
```