

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Unidade Leopoldina Engenharia da Computação

Trabalho Classificação de Cogumelos

Redes Neurais Artificiais

GABRIEL RIBEIRO PASSOS VICTOR DE SOUZA VILELA DA SILVA

> Leopoldina, MG, Brasil Outubro de 2023

Como lidar com atributos ausentes (sem valor)

No código implementado, os atributos ausentes são tratados da seguinte forma:

- O atributo stalk-root é removido do conjunto de dados, pois ele tem muitos valores ausentes e não é considerado uma característica importante para a classificação de cogumelos.
- Todos os outros atributos categóricos são convertidos em variáveis numéricas usando codificação one-hot. Isso significa que cada categoria é representada por um novo atributo binário, que indica se a instância pertence ou não àquela categoria.

Abordagem usada para converter categorias

A codificação one-hot é uma abordagem comum para converter atributos categóricos em variáveis numéricas. Ela funciona criando um novo atributo binário para cada categoria. O valor de cada atributo binário é 1 se a instância pertence àquela categoria e 0 se não pertence.

Por exemplo, o atributo cap-shape tem 6 categorias possíveis: bell, conical, convex, flat, knobbed, e sunken. Após a codificação one-hot, haverá 6 novos atributos binários: cap-shape_bell, cap-shape_conical, cap-shape_convex, cap-shape_flat, cap-shape_knobbed, e cap-shape_sunken. O valor de cada atributo binário indicará se a instância pertence ou não àquela categoria.

Divisão do dataset em grupos de treinamento, teste e validação

O dataset é dividido em grupos de treinamento, teste e validação usando a função train_test_split() da biblioteca scikit-learn. Esta função divide o dataset em dois subconjuntos aleatoriamente: um conjunto de treinamento e um conjunto de teste. O conjunto de treinamento é usado para treinar o modelo e o conjunto de teste é usado para avaliar o desempenho do modelo em dados que ele nunca viu antes.

No código fornecido, o dataset é dividido em um conjunto de treinamento de 75% e um conjunto de teste de 25%. Além disso, uma amostra de 2031 instâncias do conjunto de treinamento é selecionada para formar um conjunto de validação. O conjunto de validação é usado para avaliar o desempenho do modelo em dados que ele nunca viu antes, mas que são semelhantes aos dados que ele será usado para prever.

Qual a precisão máxima obtida?

A precisão máxima obtida foi de 100%, para o modelo com duas camadas

escondidas com 5 neurônios cada. Este modelo foi treinado três vezes e obteve a mesma precisão em todos os três experimentos.

Há problemas de convergência?

Não foram observados problemas de convergência em nenhum dos modelos. Todos os modelos atingiram uma precisão máxima em um número finito de épocas.

Foram necessárias quantas épocas para treinar?

O número de épocas necessário para treinar os modelos variou de 52 a 410, dependendo da arquitetura do modelo e dos hiperparâmetros utilizados. Em geral, os modelos com mais camadas escondidas e mais neurônios por camada exigiram mais épocas para treinar.

Análise dos resultados

Os resultados obtidos sugerem que o modelo com duas camadas escondidas com 5 neurônios cada é a melhor escolha para classificar cogumelos. Este modelo é relativamente simples e fácil de implementar, mas apresenta uma acurácia muito alta.

No entanto, é importante ressaltar que esses resultados são baseados em um único conjunto de dados. Para obter conclusões mais confiáveis, seria necessário realizar experimentos com outros conjuntos de dados.

Além disso, é importante considerar outros fatores, como o tamanho do conjunto de dados e a complexidade do problema, ao escolher um modelo de aprendizado de máquina.