Apprentissage Automatique

Régularisation / SVM

S. Herbin, A. Chan Hon Tong

Rappel des cours précédents

Généralités

- Programmation orientée données
- Démarche globale: base de données, analyse préliminaire, sélection de l'approche, optimisation, évaluation

Apprentissage supervisé

- Plusieurs approches classiques
- « Deep Learning »

Apprentissage non supervisé

Aujourd'hui

- Approfondissement:
 - Régularisation
 - Un algorithme efficace: Support Vector Machines (SVM)
- TD:
 - SVM: influences des paramètres
 - Multi classe

Aujourd'hui (reprise du schéma classique)

Apprentissage supervisé

On veut construire une fonction de décision D à partir d'exemples

• On dispose d'un **ensemble d'apprentissage** \mathcal{L} sous la forme de paires $\{x_i, y_i\}$ où x_i est la donnée à classer et y_i est la classe vraie:

$$\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$$

 L'apprentissage consiste à identifier cette fonction de classification dans un certain espace paramétrique W optimisant un certain critère L:

$$\mathbf{W} = \arg\max_{\mathbf{W}'} L(\mathcal{D}, \mathbf{W}')$$

On l'applique ensuite à de nouvelles données.

$$y = F(\mathbf{x}; \mathbf{W})$$

Retour sur le sur-apprentissage

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Coefficients des polynômes

Très grandes valeurs!

Moindre carrés régularisés

Idée: on rajoute une pénalisation des grandes valeurs des paramètres à la fonction de coût:

$$L(\mathbf{W}) = \sum_{i=1}^{N} (F(\mathbf{x}_i, \mathbf{W}) - y_i)^2 + \lambda \|\mathbf{W}\|^2$$

Coût d'attache aux données

Dont l'optimum exact est alors:

Paramètre de régularisation

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Si on pénalise les grandes valeurs des coefficients du polynôme, on obtient une fonction moins « zigzagante »

Effet de la régularisation

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\bar{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$w_9^{\check{\star}}$	125201.43	72.68	0.01

Régularisation: \mathcal{E}_{RMS} vs. $ln(\lambda)$

$$\mathcal{E}_{\text{RMS}}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (D(\mathbf{x}_i, \mathbf{w}) - t_i)^2$$

Régularisation: \mathcal{E}_{RMS} vs. M

$$\mathcal{E}_{\text{RMS}}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (D(\mathbf{x}_i, \mathbf{w}) - t_i)^2$$

Influence de la quantité de données

Polynôme d'ordre 9

Compromis Biais-Variance (rappel)

On peut montrer:

 $E(erreur prédiction) = bruit^2 + biais^2 + variance$

Erreur incompressible due à la nature du problème

Erreur due aux mauvaises hypothèses sur les données

Erreur due à la variabilité des données d'apprentissage

L'erreur de généralisation est un compromis entre bonnes hypothèses sur les données et qualité des données d'apprentissage

Erreur de généralisation

- Structure
 - Biais: écart entre hypothèse de modèle et « vraie » distribution des données
 - Variance: écarts générés par différents jeux d'apprentissage.
- Deux phénomènes à contrôler
 - Simplisme: modélisation trop grossière pour rendre compte de la variété des données
 - Biais++, Var –
 - Erreur d'apprentissage et de test grandes
 - Sur-apprentissage (« Overfitting »): modèle trop complexe se spécialisant sur les données d'apprentissage
 - Biais--, Var++
 - Ecart entre erreur d'apprentissage et erreur de test

Classification et Régression

Classification et Régression

Trois critères à ne pas confondre

Risque ou erreur empirique

$$\mathcal{E}_{\text{train}}(\mathbf{w}, \mathcal{L}) = \frac{1}{N} \sum_{i=1}^{N} \{ D(\mathbf{x}_i, \mathbf{w}) \neq y_i \}$$

Erreur de généralisation (ou de test, ou idéale…)

$$\mathcal{E}_{\text{test}}(\mathbf{w}) = E_{\mathbf{X},Y}[\{D(\mathbf{x},\mathbf{w}) \neq y\}]$$

• Critère à optimiser (forme assez générique)

$$loss(\mathbf{w}, \mathcal{L}) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} l(D(\mathbf{x}_i, \mathbf{w}), y_i) + r(\mathbf{w})}_{loss(\mathbf{w}, \mathcal{L})}$$

Adéquation aux données

Régularisation

Validation croisée

- Permet d'estimer l'erreur de généralisation à partir des données d'apprentissage (« astuce »)
- Principe:
 - Division des données en k sous ensembles (« fold »)
 - Choix d'une partie comme ensemble de validation fictif, les autres comme train
 - Apprentissage sur l'ensemble train
 - Estimation des erreurs sur validation
 - On fait tourner l'ensemble de validation sur chacune des parties
 - L'erreur de généralisation estimée est la moyenne des erreurs sur chaque ensemble de validation

Stratégies de partitionnement

k-fold

Leave-one-out

« Support Vector Machines »

Deux types d'approches: génératives vs. discriminatives

Support Vector Machines

- Historique
- Principe: maximiser la marge de séparation d'un hyperplan
- Le cas séparable
- Le cas non séparable: les fonctions de perte (« hinge loss »)
- L'extension au cas non linéaire: les noyaux
- Parcimonie
- Les paramètres de contrôle

Historique du Machine Learning

Modèles linéaires de décision

Hypothèse = les données sont *linéairement séparables*.

- En 2D, par une droite
- En ND, par un hyperplan.

$$0 = b + \sum_{j=1}^m w_j x^j$$

$$0 < b + \sum_{j=1}^m w_j x^j$$

$$0 > b + \sum_{j=1}^m w_j x^j$$

$$0 > 0 > b + \sum_{j=1}^m w_j x^j$$

$$0 > 0 > 0 > 0$$
Apprentissage Automatique – SVM – 23

Classifieur linéaire

Equation de l'hyperplan séparateur

$$b + \mathbf{w} \cdot \mathbf{x} = 0$$

• Expression du classifieur linéaire (pour y_i valant -1 et 1)

$$F(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(b + \mathbf{w}.\mathbf{x})$$

Erreur

$$\mathcal{E}_{test}(\mathbf{w}, \mathcal{L}) = \frac{1}{N} \sum_{i=1}^{N} \left\{ y_i. sign(b + \mathbf{w}. \mathbf{x}_i) < 0 \right\}$$

Quel hyperplan choisir?

Classifieur « Large margin »

Choisir l'hyperplan qui maximise la distance aux points les plus proches

Support Vector Machines

On cherche l'hyperplan qui maximise la <u>marge</u>.

$$\mathbf{x}_i$$
 positif $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 négatif $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

Pour les vecteurs de $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ support,

Distance entre point et $|\mathbf{x}_i \cdot \mathbf{w} + b|$ hyperplan: $|\mathbf{w}|$

Pour les « support vectors »:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Principe du SVM (Large Margin)

 Maximiser la marge = distance des vecteurs à l'hyperplan séparateur des vecteurs de supports

$$\max \frac{1}{\|\mathbf{w}\|^2}$$

Sous contraintes

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$

• Les vecteurs de support vérifiant:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

Le 1 est conventionnel.

N'importe quelle
constante >0 est valable.

Formulation du SVM

$$\min_{w,b} \|w\|^2$$

Tel que:

$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

Si les données sont séparables Problème d'optimisation quadratique Avec contraintes linéaires

Problème d'optimisation quadratique classique

Mais avec beaucoup de contraintes! (autant que d'exemples d'apprentissage)

Classification « Soft Margin »

Comment traiter le cas non linéairement séparable?

Classification « Soft Margin »

$$\min_{w,b} \|w\|^2$$
Tel que: $y_i(w \cdot x_i + b) \ge 1 \ \forall i$

On aimerait obtenir une séparation robuste à quelques données non séparées

Idée: « Slack variables »

$$\min_{w,b} \|w\|^2$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_i$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$
$$\varsigma_i \ge 0$$

Permet de relacher la contrainte de séparabilité pour chaque exemple.

slack variables (une par exemple)

« Slack variables »

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_i$$

Tel que:

$$y_i(w \cdot x_i + b) + \varsigma_i \ge 1 \quad \forall i$$
$$\varsigma_i \ge 0$$

Relâchement de la contrainte

Utilisation des « Slack variables »

Valeur du relâchement de la contrainte

tq

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$
$$\varsigma_i \ge 0$$

Contrainte autorisée à être relachée

Soft margin SVM

$$\min_{w,b} \|w\|^2 + C \sum_i \varsigma_i$$

Tel que

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$

$$\varsigma_i \ge 0$$

On garde un problème quadratique!

Mais avec un très grand nombre de variables+contraintes

Autre formulation

$$\min_{w,b} \|w\|^2 + C \sum_i \varsigma_i$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$
$$\varsigma_i \ge 0$$

$$\varsigma_i = \max(0, 1 - y_i(w \cdot x_i + b))$$

$$\min_{w,b} \|w\|^2 + C \sum_{i} \max(0,1-y_i(w \cdot x_i + b))$$

Problème d'optimisation non contraint

→ Autres méthodes d'optimisation (descente de gradient)

Interprétation du « Soft Margin SVM »

$$\min_{w,b} \|w\|^2 + C \sum_i \max(0,1-y_i(w \cdot x_i + b))$$

On retrouve la formulation:

Loss
$$(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} l(F(\mathbf{x}_i, \mathbf{w}), y_i) + r(\mathbf{w})$$

Avec

$$r(\mathbf{w}) = \frac{1}{C} \|\mathbf{w}\|^2$$

$$l(F(\mathbf{x}_i, \mathbf{w}), y_i) = \max(0, 1 - y_i(\mathbf{w}.\mathbf{x}_i + b))$$

Le SVM est un cas particulier du formalisme: « erreur empirique + régularisation »

Autres Fonctions de coût

0/1 loss:

$$l(y, y') = 1[yy' \le 0]$$

Hinge:
$$l(y, y') = \max(0, 1 - yy')$$

Squared loss:

$$l(y, y') = (y - y')^2$$

Exponential:
$$l(y, y') = \exp(-yy')$$

Surrogate loss functions

Forme duale du SVM

Problème d'optimisation sous contrainte

Pour simplifier l'expression des calculs

Primal
$$\underset{\mathbf{w}}{\operatorname{argmin}_{\mathbf{w}}} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_{i}$$
 Multiplicateurs de Lagrange $s.\ t.\ \forall i, y_i(\mathbf{w}.\ x_i + b) \geq 1 - \xi_i$ α_i al (Lagrangien)

Dual (Lagrangien)

$$L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= \frac{\|\boldsymbol{w}\|^2}{2} + \sum_{i} (C\xi_i - \alpha_i(y_i(\boldsymbol{w}, \boldsymbol{x}_i + b) - 1 + \xi_i) - \beta_i \xi_i)$$

$$s. t. \ \forall i, \alpha_i \ge 0, \beta_i \ge 0$$

Forme duale du SVM

Lagrangien

Dual des contraintes « slack »

Solution optimale (conditions de Kuhn-Tucker): $\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$

Interprétation: $\alpha_i = 0$ si la contrainte est satisfaite (bonne classification)

 $\alpha_i > 0$ si la contrainte n'est pas satisfaite (mauvaise classification)

Parcimonie du SVM

 Seuls certains α sont non nuls = autre manière de définir les vecteurs de support.

Optimalité =
$$\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$$

Direction de l'hyperplan séparateur $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$

Données non linéairement séparables

• Transformation non linéaire $\phi(x)$ pour séparer linéairement les données d'origine

 $\phi(x)$ = Transformation polynomiale

Données non linéairement séparables

• Transformation non linéaire $\phi(x)$ pour séparer linéairement les données d'origine

 $\phi(x)$ = Transformation polaire

Retour sur la formulation duale du SVM

Lagrangien

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\mathsf{tq} \ \forall i, 0 \leq \alpha_{i} \leq C$$
Produit scalaire uniquement

« Kernel trick »

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$

$$\text{tq } \forall i, 0 \leq \alpha_{i} \leq C$$
Noyau

Le noyau *K* est un produit scalaire dans l'espace transformé:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Il est uniquement nécessaire de connaître la similarité entre données pour introduire la non linéarité dans le problème (avec des conditions...)

Utilisation de noyaux dans les SVM

- Permet d'introduire des mesures de similarités propres au domaine étudié et sans avoir à gérer la complexité de la transformation
- Permet de séparer modélisation = noyau de la classification et SVM (optimisation)
- Définit la fonction de classification à partir de noyaux « centrés » sur les vecteurs de support

$$F(\mathbf{x}, \mathbf{w}) = b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x})$$

Noyaux courants

Polynômes de degrés supérieurs à d

$$K(x,y) = (x.y+1)^{d}$$

Noyau gaussien

$$K(x, y) = \exp\left(-\frac{(x - y)^T(x - y)}{2\sigma^2}\right)$$

Paramètres à définir = degré de liberté supplémentaire

Intersection d'histogrammes

$$K(\mathbf{x}, \mathbf{y}) = \sum_{i} \min(x^{i}, y^{i})$$

Résumé sur SVM

- Une formulation optimale <u>quadratique</u> du problème de classification binaire:
 - Primal: optimisation d'un critère empirique + régularisation
 - Dual: permet d'introduire parcimonie et « kernel trick »
 - → plusieurs manières d'optimiser
- Les solutions s'expriment comme des combinaisons linéaires éparses de noyaux:

$$F(\mathbf{x}) = b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x})$$

où α_i >0 seulement pour les vecteurs de support, 0 sinon.

- En pratique, ce qu'il faut régler:
 - Le coefficient de régularisation: C
 - Le type de noyau et ses caractéristiques
 - Les paramètres de l'optimiseur

Différents types de classification

Binaire

 $\mathcal{A} = \{-1,1\}$

Multi classe

 $\mathcal{A} = \{1, 2...L\}$

• Détection (quoi et où)

$$\mathcal{A} = \{1, 2...L\} \times R^4$$

- Caractérisation des données:
 - Rejet
 - Anomalie

$$\mathcal{A} = \{1, 2...L, \text{ambigu,inconnu}\}$$

Multiclasse

- Comment passer d'une classification binaire à N classes?
- Plusieurs techniques:
 - One vs Rest
 - One vs One (ou All vs All)
- OVO:
 - On apprend autant de classifieurs que de paires de classes (N(N-1)/2)
 - Classification = choix de la classe ayant le plus de votes
 - Pb: peut être indécidable dans certains cas
- OVR:
 - On apprend un classifieur par classe
 - Classification = choix de la classe ayant le meilleur score
 - Pb: déséquilibre des données entre classe cible et « reste »

Evaluation du multi-classe

• Erreur globale:

$$Err = \frac{\text{nombre d'échantillons mal classés}}{\text{nombre d'échantillons testés}}$$

Matrice de confusion:

conf(i, j)=nombre d'échantillons classés comme i | vraie classe est j

Le TD

- Partie 1: Paramétrage du SVM
 - 4 activités sur données 2D
 - Tester et fournir des éléments de codes, illustrations et commentaires
 - Utilisation de la bibliothèque scikit-learn

- Partie 2: Classification de chiffres manuscrits
 - Passage au multi-classe
 - Optimisation globale (caractéristique, noyau, régularisation…)

