PRANVEER SINGH INSTITUTE OF TECHNOLOGY, KANPUR

Odd Semester

Session 2022-23

CT - []

B. Tech. III Semester

Discrete Structures & Theory of Logic (KCS-303)

CO	Course Outcome (Please include all COs of your Course here)		
Number			
CO1	Define[1.Remember] various discrete structures, basic properties of lattices, modern algebra graphs & trees, can count using advanced counting computing techniques like generating functions and recurrence relation so that they can study the problems		
CO2	Discuss [2.Understand] the basic concepts of sets, various relations & functions, modern algebra and express the arrangements of basic elements of circuits using Boolean algebra.		
CO3	Employ [3.Apply] their logical ability such as reasoning, logical deduction and examine the correctness of algorithms, setup mathematical model real life problem by applying advanced counting/computing techniques like generating functions and recurrence relations which in turn will increase their problem solving approach as well as their programming skills.		

Time: 1.5 Hrs.

M. M. 15

	Section A	(1X3 = 3 Marks)
Q1. At	tempt all questions:	(1A3 = 3 Marks) CO1
a)	Define domain and co-domain with example.	CO1
b)	Define modular lattice with example.	
c)	Write short note on growth of functions.	

Section B

(2X4 = 8 Marks)

Q2. Attempt all questions:

a i) Prove that $n^3 + 2n$ is divisible by 3 using principle of mathematical induction, where n is CO2

natural number.

Or

Define a Boolean function of degree n. Simplify the following Boolean expression using CO2

Karnaugh maps xyz + xy'z + x'yz + x'yz + x'yz'.

The following relation on $A = \{1, 2, 3, 4\}$. Determine whether the following:

a. $R = \{(1, 3), (3, 1), (1, 1), (1, 2), (3, 3), (4, 4)\}$ b. $R = A \times A$ Is a Partial Order Relation or not?

Or

ii) Calculate the complement of 'e' and prove that the given lattice is bounded complemented CO2 lattice.

and
$$(g \circ f)^{-1} = (f)^{-1}o(g)^{-1}$$
.

Or

Discuss that in any lattice the following distributive inequality holds

a. $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$
b. $a \vee (b \wedge c) \leq (a \vee b) \wedge (a \vee c)$

For any positive integer D_{36} , then examine whether $(D_{36}, \ ')$ is lattice or not?

Or

CO3

Or

Prove that $\forall a, b \in B$

a. $(a + b)(a + b)' = a' \cdot b'$

b. $(a \cdot b)' = a' + b'$

CO3

Q3

i) Determine whether each of these functions is a bijective from R to R.

a. $f(x) = x^2 + 9$

b. $f(x) = (x^2 + 1)/(x^2 + 2)$

If $f: A \rightarrow B$, $g: B \rightarrow C$ are invertible functions, then show that $g \circ f: A \rightarrow C$ is invertible

ci)

a. $f(x) = x^2 + 9$ b. $f(x) = (x^2 + 1)/(x^2 + 2)$ Or

Construct the Hasse diagram of [P (a, b, c), \supset] (Note: ' \supset ' stands for super set). Find greatest CO3 element, least element, minimal element and maximal element.