Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр.

задано 2013.09.25

Упражнение 1

1. Докажем, что алгоритм конечен. Q можно разделить не больше, чем на |Q| подмножеств, на каждом шаге происходит некоторое разделение.

Действительно, на каждом шаге и на каждом символе количество подмножеств не уменьшается, так как $Q_{k,l}$ различно при разных k (значит, элементы из разных «старых» подмножеств попадут в разные «новые» подмножества).

А если количество подмножеств не увеличилось после $|\Sigma|$ разбиений, алгоритм завершается (по построению).

2. Докажем, что все состояния из одного подмножества эквивалентны. Предположим противное. Тогда

$$\exists q_1, q_2 \in Q_i \colon q_1 \not\sim_L q_2 \Rightarrow \forall x_1, x_2 \colon q_0 \xrightarrow{x_1} q_1, q_0 \xrightarrow{x_2} q_2 \hookrightarrow x_1 \not\sim_L x_2 \Rightarrow \exists w \in \Sigma^* \colon x_1 w \in L, x_2 w \notin L.$$

Фиксируем x_1, x_2, w . Тогда $\delta(q_1, w) \in F, \delta(q_2, w) \notin F$. Пусть |w| = n.

Если |w|=n=0, то получаем, что q_1 — принимающее, а q_2 — нет. Это противоречие, так как $q_1,q_2\in Q_i$, на первом шаге принимающие и не принимающие были разделены, и (как было доказано выше), состояния, лежащие в различных подмножествах в процессе выполнения алгоритма не могут оказаться в одном.

Пусть |w|=n>0. $w=w_1...w_n$. Тогда $(q_1,w)\vdash (q_1^1,w_2...w_n)\vdash ...\vdash (q_1^n,\varepsilon), q_1^n\in F$. Аналогично $(q_2,w)\vdash (q_2^1,w_2...w_n)\vdash ...\vdash (q_2^n,\varepsilon), q_2^n\notin F$. Поскольку $q_1,q_2\in Q_i,\,\delta(q_1,w_1)$ и $\delta(q_2,w_1)\in Q_j$ по условию окончания алгоритма. Значит, q_1^1 и q_2^1 лежат в одном подмножестве. Повторяя рассуждение, получаем, что q_1^n и q_2^n лежат в одном подмножестве, что невозможно (доказано выше), так как $q_1^n \in F, q_2^n \notin F$.

- 2.1. Получаем, что были склеены только эквивалентные состояния. Значит, язык, распознаваемый автоматом, не изменился.
 - 3. Докажем, что если некоторые два состояния q_1, q_2 исходного автомата были эквивалентны, они будут в одном подмножестве Q_i . Пусть иначе: они были разделены на некотором шаге.

Это не мог быть второй шаг, так как принимающее и не принимающее состояние не эквивалентны. Докажем это: пусть $F\ni q_1\sim_L q_2\notin F\Rightarrow \exists x_1\sim_L x_2\colon \delta(q_0,x_1)=q_1\in F, \delta(q_0,x_2)=q_2\notin F\Rightarrow x_1\in L, x_2\notin L.\ x_1\sim_L x_2\Rightarrow \forall w\in \Sigma^*\hookrightarrow x_1w\in L\Leftrightarrow x_1^*\hookrightarrow x_1^*$ $x_2w\in L$. Выберем w=arepsilon. Тогда $x_1\in L\Leftrightarrow x_2\in L$ — противоречие.

Значит, они были разделены на некотором последующем шаге. Найдем первый такой шаг, на котором некоторые эквивалентные состояния q_1,q_2 были разделены. Пусть при этом рассматривался символ σ : $q_1 \stackrel{\sigma}{\longrightarrow} q_a \in Q_a, q_2 \stackrel{\sigma}{\longrightarrow} q_b \in Q_a$ $Q_b, Q_a \neq Q_b$. Поскольку до этого эквивалентные состояния оставались в одном подмножестве, получаем, что q_a и q_b не эквивалентны (если это не так, то этот шаг не первый из таких, на котором эквивалентные состояния были разделены противоречие). Значит (доказано ранее), $\exists w \colon \delta(q_a, w) \in F, \delta(q_b, w) \notin F$. Тогда $\delta(q_1, \sigma w) \in F, \delta(q_2, \sigma w) \notin F \Rightarrow$ (доказано ранее) состояния q_1, q_2 не эквивалентны — противоречие.

- 3.1. Получаем, что эквивалентные состояния, и только они, будут склеены. Также количество состояний ДКА не может быть меньше, чем количество классов эквивалентности по \sim_L (доказано в условии). Больше оно тоже быть не может, так как тогда бы в автомате были два эквивалентных состояния, что невозможно (они все были склеены). Значит, количество состояний построенного ДКА будет равно количеству классов эквивалентности по \sim_L .
 - 4. (Далее считаем Q_i за состояния). Установим биекцию между классами эквивалентности и состояниями минимального ДКА, которая сохраняет функцию переходов, т.е. построим изоморфизм $\varphi \colon \{Q_i\} \leftrightarrow \{C_i\}$. На классах эквивалентности функцию переходов определим так: $x_i \in C_i \Rightarrow \delta(C_i, \sigma) = C(x_i \sigma)$ (эта же функция является функцией переходов ДКА из доказательства теоремы 1 третьего задания). Выполним обход графа минимального ДКА и найдем слова x_i , по которым можно попасть в Q_i : $\delta(Q_0, x_i) = Q_i$. Определим $\varphi(Q_i) = C(x_i)$. Поскольку состояния Q_i попарно неэквивалентны (иначе бы они были склеены), слова x_i попарно не эквивалентны. Значит, $C(x_i)$ попарно различны, и φ инъективно. Но поскольку $|\{Q_i\}| = |\{C_i\}|$, оно биективно. Обозначим $C_i = C(x_i) = \varphi(Q_i)$. Докажем сохранение функции переходов:

Пусть $\delta(Q_i,\sigma)=Q_j$. Тогда $\delta(Q_0,x_j)=\delta(Q_0,x_i\sigma)=Q_j$. Поэтому $\forall w\in\Sigma^*\hookrightarrow L\ni x_jw\Leftrightarrow \delta(Q_0,x_jw)\equiv\delta(Q_j,w)\equiv\delta(Q_i,\sigma w)\equiv\delta(Q_i,\sigma w)\equiv\delta(Q_0,x_i\sigma w)\in F\Leftrightarrow x_i\sigma w\in L$. Значит, $x_j\sim_L x_i\sigma\Rightarrow C_j=C(x_j)=C(x_i\sigma)=\delta(C_i,\sigma)$. Обратно: $\delta(C_i,\sigma)=C_j\Rightarrow x_i\sigma\sim_L x_j\Rightarrow$ состояния $\delta(Q_0,x_i\sigma)$ и $\delta(Q_0,x_j)$ эквивалентны, а значит, что они совпадают (доказано ранее). Но $Q_j=\delta(Q_0,x_j)=\delta(Q_0,x_i\sigma)=\delta(\delta(Q_0,x_i),\sigma)=\delta(Q_0,x_i)$.

4.1. Таким образом доказано, что любой минимальный ДКА изоморфен в смысле сохранения функции переходов классам эквивалентности. Значит, любые два минимальные ДКА А, В для данного языка изоморфны между собой (можно построить изоморфизм $\varphi_{A,B}: Q^A \leftrightarrow Q^B$ как композицию изоморфизмов $Q^A \leftrightarrow \{C_i\}, \{C_i\} \leftrightarrow Q^B$).

Задача 1

 $L \subset \Sigma^* \in \mathsf{REG}, \Sigma^* / \sim_L = \{C_i\} \equiv \{C_0, ..., C_n\}$ (*n* неизвестно, C_i попарно различны).

 $f \colon \Sigma^* \times \Sigma^* \longrightarrow \{0,1\}$ — задана, $f(x,y) = 1 \Leftrightarrow x \sim_L y.$ $g \colon \Sigma^* \longrightarrow \{0,1\}$ — задана, $g(w) = 1 \Leftrightarrow w \in L.$

Построим ДКА $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$: $L(\mathcal{A}) = L$, изоморфный минимальному ДКА (определение изоморфизма в упражнении). $Q = \{q_i\}$ — множество состояний.

 $X\colon Q\longrightarrow \Sigma^*$ — представители классов, соответствующих состояниям. Для краткости будем писать $x_i\equiv X(q_i)$.

B алгоритме для состояний из Q всегда известен представитель соответствующего класса (по построению, добавляются состояния только с известными представителями).

1. $\Sigma^* \ni \varepsilon$ принадлежит какому-то классу. Без ограничения общности $\varepsilon \in C_0$. Добавим состояние q_0 , соответствующее $C(\varepsilon)$. Определим его как начальное.

Рассмотрим все $\sigma_k \in \Sigma$.

- 1. Если класс $C(\varepsilon\sigma_k)$ еще не встречался (не соответствует ни одному состоянию), то есть, $\forall q_i \in Q \hookrightarrow f(x_i, \varepsilon\sigma_k) = 0$, то добавим в Q новое состояние q, которое будет соответствовать классу $C(\varepsilon\sigma_k)$. Для него известен представитель соответствующего класса σ_k . Поскольку $\delta(C_0, \sigma_k) = C(\varepsilon\sigma_k)$ (см. упражнение), для установления изоморфизма необходимо направить переход из q_0 в q: $\delta(q_0, \sigma_k) = q$.
- 2. Иначе $\exists q_i \in Q : f(x_i, \varepsilon \sigma_k) = 1 \Rightarrow x_i \sim_L \varepsilon \sigma_k$, то есть, $\delta(C_0, \sigma_k) = C(x_i)$. Поэтому необходимо направить переход из q_0 в $q_i : \delta(q_0, \sigma_k) = q_i$.

Заметим, что определены все переходы из q_0 , и, возможно, добавлены новые состояния. Повторим алгоритм для них:

- 2. (цикл) Если имеется состояние q_i , которому соответствует класс эквивалентности C_i с найденным представителем x_i , и для q_i не определен переход по σ_k , то рассмотрим два варианта. Иначе выход.
 - 1. Класс $C(x_i\sigma_k)$ не встречался $\Leftrightarrow \forall q_j \in Q \hookrightarrow f(x_j,x_i\sigma_k) = 0$. Тогда добавим новое состояние q (представитель $x_i\sigma_k$ известен) и определим переход из q_i по σ_k : $\delta(q_i,\sigma_k) = q$.
 - 2. Иначе $\exists q_j \in Q \colon f(x_j, x_i \sigma) = 1$. Определим переход: $\delta(q_i, \sigma_k) = q_j$.

Переходов в автомате не больше, чем $|Q||\Sigma|$. Поскольку строится изоморфизм между Q и $\{C\}$, то $|Q| \leqslant |\{C\}| \Rightarrow$ количество переходов конечно \Rightarrow цикл (2) будет конечным \Rightarrow алгоритм завершится. По построению $\forall q \in Q \hookrightarrow \delta(q_i,\sigma) = q_j$, где q_j соответствует $C(x_i\sigma)$. Также автомат полный. Из этих двух свойств заключаем («все переходы есть, и они такие, какими должны быть»), что множества состояний Q и минимального ДКА изоморфны. Осталось определить принимающие состояния:

- 1. Выполним обход графа автомата, найдем кратчайшие пути y_i (слова) до каждого состояния q_i .
- 2. Для каждого состояния выясним, должно быть оно принимающим или нет: $g(y_i) \stackrel{?}{=} 1 \Leftrightarrow y_i \in L \Leftrightarrow \delta(q_0, y_i) = q_i \in F$.

Задача 2

Идея обсуждалась вместе с Владом Гончаренко.

- 1. В одну сторону утверждение из условия очевидно: если $L(\mathcal{A}) = L(\mathcal{B})$, то $\forall w \hookrightarrow w \in L(\mathcal{A}) \Leftrightarrow w \in L(\mathcal{B})$, в том числе и для тех, о которых говорится в условии.
- 2. Докажем в другую сторону. $M = \{w | |w| \leq |Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}| \}$. Если входные автоматы не полные, пополним их.
 - 1. Утверждение: дан ДКА \mathcal{A} , |Q|=n, Состояние $q_i\in Q$ достижимо. Тогда кратчайший путь (слово) из q_0 в q_i не длиннее n. Действительно, пусть иначе (кратчайший путь w имеет большую длину). Значит (принцип Дирихле), автомат в какой-то вершине q_1 побывал дважды: w=xyz, $(q_0,w)\equiv (q_0,xyz)\vdash^* (q_1,yz)\vdash^* (q_1,z)\vdash^* (q_i,\varepsilon)$, |y|>0. Удалив y, получим w'=xz, также попадем в q_i : $(q_0,w')\equiv^* (q_0,xz)\vdash^* (q_1,z)\vdash^* (q_i,\varepsilon)$, но путь стал короче противоречие (xyz-самый короткий).
 - 2. Рассмотрим автомат \mathcal{C} , имитирующий работу двух входный автоматов \mathcal{A} и \mathcal{B} (такой построен в задаче 4.4). В нем $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$ состояний. Кратчайшие пути до достижимых состояний не длиннее $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$ (п. 1), поэтому, перебрав все $w \in M$ (то есть, слова, которые не длиннее $|Q^{\mathcal{A}}| \cdot |Q^{\mathcal{B}}|$, в том числе и те, которые могут быть кратчайшими путями), автомат \mathcal{C} побывает в каждом достижимом состоянии. Значит, пара $(q_i^{\mathcal{A}}, q_j^{\mathcal{B}})$ из конечных состояний входных автоматов после прочтения слов $w \in M$ достигнет всех своих возможных значений. То есть,

$$\forall q_i^i$$
 — достижимое $\hookrightarrow \exists m \in M \colon q_0^0 \xrightarrow{m} q_i^i$.

3. Рассмотрим произвольное $w \in \Sigma^*$. Пусть $q_0^0 \stackrel{\longrightarrow}{\longrightarrow} q_j^i$ (здесь используется полнота автоматов). Значит, q_j^i — достижимое. Тогда (п.2) для него существует $m_0 \in M$: $q_0^0 \stackrel{m_0}{\longrightarrow} q_j^i$, иными словами, $q_0^A \stackrel{m_0}{\longrightarrow} q_i^A$, $q_0^B \stackrel{m_0}{\longrightarrow} q_j^B$. Из условия имеем $\forall m \in M \hookrightarrow m \in L(\mathcal{A}) \Leftrightarrow m \in L(\mathcal{B})$. В том числе это выполнено и для $m_0 : m_0 \in L(\mathcal{A}) \Leftrightarrow m_0 \in L(\mathcal{B})$. Значит, $q_i^A \in F^A \Leftrightarrow q_j^B \in F^B$. А это означает, что $w \in L(\mathcal{A}) \Leftrightarrow w \in L(\mathcal{B})$

Задача 3

Пусть x, y — РВ. Ответим на вопрос $L(x) \stackrel{?}{=} L(y)$.

- 1. Построим по x, y НКА A, B.
- 2. Построим по $A, B \ ДКА \ A', B'$
- 3. Построим по A', B' минимальные ДКА $\mathcal{A}'', \mathcal{B}''$.
- 4.1 В случае, если $L(\mathcal{A}'') = L(\mathcal{B}'')$, они будут изоморфны (в смысле сохранения функции перехода, доказано в упражнении), что можно проверить одновременным обходом их графов.
- 4.2 Иначе тот же обход графов покажет, что автоматы различны.

Данный алгоритм не является эффективным, так как количество состояний построенного в (2) ДКА может экспоненциально зависеть от количества состояний НКА, и каждое состояние нужно как минимум создать за O(1), а количество состояний НКА не меньше, чем длина PB. То есть, $T = \Omega(2^{|Q^A|} + 2^{|Q^B|}) = \Omega(2^{|x|} + 2^{|y|})$ — не полином.

Задача 4

1. $\Sigma = \{0,1\}$. Докажем, что L(A) = L, $L_1 \equiv L = \{w \mid |w|_1 = 2t, t \in \mathbb{Z}\}$, ДКА A:

Докажем утверждение $P(n) = [\forall w \in \Sigma^* \colon |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)].$

- (a) Докажем P(0). Поскольку $|w|=0 \Rightarrow w=\varepsilon$, $P(0)=\left[q_0 \stackrel{\varepsilon}{\longrightarrow} q_i \Rightarrow i=|\varepsilon|_1 \mod 2\right]$. Поскольку $\delta(q_0,\varepsilon)=q_{\underline{0}}$, и $\underline{0}=|\varepsilon|_1$, получаем P(0)
- (b) Пусть доказано P(n), докажем P(n+1). $P(n) = [\forall w \in \Sigma^* : |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)]$. Фиксируем $w \in \Sigma^*, |w| = n+1, w = w_0 \sigma, |w_0| = n, |\sigma| = 1$. \mathcal{A} полный $\Rightarrow (q_0, w) \equiv (q_0, w_0 \sigma) \vdash^* (q_i, \sigma) \vdash (q_j, \varepsilon)$. $|w_0| = n \overset{P(n)}{\Rightarrow} i = |w_0|_1 \mod 2$. $i \in \{0, 1\}, \sigma \in \{0, 1\} \Rightarrow$ рассмотрим четыре случая:
 - a. $(i = 0, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_0, 0) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 0 + 0 = 0$ $0 \Rightarrow 0 = j = |w|_1 \mod 2 = 0$.
 - b. $(i = 0, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_0, 1) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = 0 + 1 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - c. $(i = 1, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_1, 0) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 1 + 0 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - d. $(i = 1, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_1, 1) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = (1 + 1) \mod 2 = 0$.

Таким образом, $\forall n \in \mathbb{N} \cup \{0\} \hookrightarrow P(n) \Rightarrow \forall n \in \mathbb{N} \cup \{0\} \hookrightarrow \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2\right)\right] \Rightarrow \forall w \in \Sigma^* \hookrightarrow q_0 \xrightarrow{w} q_{|w|_1 \mod 2}.$ Пусть $w \in L \Leftrightarrow |w|_1 \mod 2 = 0 \Leftrightarrow q_0 \xrightarrow{w} q_0 \Leftrightarrow w \in L(\mathcal{A})$

2. $\Sigma = \{0,1\}$. $L_2 = \{w \mid |w|_0 = 2t+1, t \in \mathbb{Z}\}$. Воспользуемся результатом (4.1) и построим ДКА \mathcal{B} :

Поменяем в автомате из (4.1) нули и единицы местами. Получим \mathcal{A}' . Очевидно, \mathcal{A}' будет распознавать все слова, в которых четное количество нулей. A' — полный, и все состояния достижимы из q_0 .

Поэтому, переопределив $F'' = Q'' \setminus F$, получим $\mathcal{A}'' \equiv \mathcal{B}$, который распознает все слова, в которых нечетное количество нулей.

3. Поскольку $L_3 = \{$ слова из 0 и 1, в которых четное число единиц и нечетное число нулей $\} = \{$ слова из 0 и 1, в которых четное число единиц $\} \cap \{$ слова из 0 и 1, в которых нечетное число нулей $\} \equiv L_1 \cap L_2$, построим $\mathcal{C} \colon L(\mathcal{C}) = L_3$ по алгоритму, который докажем далее, в (4.4):

4. Дано: Σ — алфавит, $\mathcal{A} = (Q^{\mathcal{A}}, \Sigma, q_0^{\mathcal{A}}, \delta^{\mathcal{A}}, F^{\mathcal{A}})$, $\mathcal{B} = (Q^{\mathcal{B}}, \Sigma, q_0^{\mathcal{B}}, \delta^{\mathcal{B}}, F^{\mathcal{B}})$ — полные ДКА, в которых все состояния достижимы из начальных. $\Sigma^* \supset L^{\mathcal{A}} = L(\mathcal{A}), \Sigma^* \supset L^{\mathcal{B}} = L(\mathcal{B})$. Задача: построить ДКА $\mathcal{C} = (Q^{\mathcal{C}}, \Sigma, q_0^{\mathcal{C}}, \delta^{\mathcal{C}}, F^{\mathcal{C}})$: $L(\mathcal{C}) = L^{\mathcal{A}} \cap L^{\mathcal{B}}$.

Определим $Q^{\mathcal{C}} = Q^{\mathcal{A}} \times Q^{\mathcal{B}}$ — множество всех пар состояних исходных автоматов.

Для краткости будем обозначать $Q^{\mathcal{C}}\ni (q_i^{\mathcal{A}},q_j^{\mathcal{B}})\stackrel{\scriptscriptstyle\mathrm{def}}{\equiv} q_j^i$

Определим $q_0^{\mathcal{C}} \stackrel{\text{\tiny def}}{=} q_0^0$, $F^{\mathcal{C}} = \{q_i^i | q_i^{\mathcal{A}} \in F^{\mathcal{A}} \land q_i^{\mathcal{B}} \in F^{\mathcal{B}}\}$

Определим $\delta^{\mathcal{C}}(q_i^i, \sigma) = \left(\delta^{\mathcal{A}}(q_i^{\mathcal{A}}, \sigma), \delta^{\mathcal{B}}(q_i^{\mathcal{B}}, \sigma)\right)$

Докажем утверждение

 $P(n) = \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow q_0^0 \xrightarrow{w} \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w), \, \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w) \right) \right]$

- а. (n=0) $\Sigma^* \ni w, |w| = 0 \Rightarrow w = \varepsilon$. Тогда $\delta^{\mathcal{C}}(q_0^0, \varepsilon) \stackrel{\text{no-onp.}}{=} (\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, \varepsilon), \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, \varepsilon))$, как и требовалось.
- b. (n=1) $\Sigma^* \ni w, |w|=1 \Rightarrow w=\sigma \in \Sigma$. Тогда $\delta^{\mathcal{C}}(q_0^0,w)=\delta^{\mathcal{C}}(q_0^0,\sigma) \stackrel{\text{по опр.}}{=} \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},\sigma),\delta^{\mathcal{B}}(q_0^{\mathcal{B}},\sigma)\right)$, как и требовалось.
- с. (n+1). Пусть P(n). Докажем P(n+1). Фиксируем $\Sigma^*\ni w\colon |w|=n+1$. Тогда $w\equiv w_0\sigma,\, |w_0|=n\,\sigma\in\Sigma.\,\,\delta^{\mathcal{C}}(q_0^0,w)=\delta^{\mathcal{C}}(q_0^0,w_0\sigma)\equiv\delta^{\mathcal{C}}(\delta^{\mathcal{C}}(q_0^0,w_0),\sigma)\stackrel{P(n)}{=}\delta^{\mathcal{C}}(\left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},w_0),\delta^{\mathcal{B}}(q_0^{\mathcal{B}},w_0)\right),\sigma)\stackrel{\text{по опр.}}{=}\left(\delta^{\mathcal{A}}(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},w_0),\sigma),\delta^{\mathcal{B}}(\delta^{\mathcal{B}}(q_0^{\mathcal{B}},w_0),\sigma)\right)\stackrel{\text{св-во опр.}}{=}\left(\delta^{\mathcal{A}}(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},w_0),\sigma),\delta^{\mathcal{B}}(\delta^{\mathcal{B}}(q_0^{\mathcal{B}},w_0),\sigma)\right)\stackrel{\text{св-во опр.}}{=}\left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}},w),\delta^{\mathcal{B}}(q_0^{\mathcal{B}},w)\right)\Rightarrow P(n+1).$

Получаем
$$w \in L^{\mathcal{A}} \cap L^{\mathcal{B}} \Leftrightarrow w \in L(\mathcal{A}) \cap L(\mathcal{B}) \Leftrightarrow \begin{cases} w \in L(\mathcal{A}) \\ w \in L(\mathcal{B}) \end{cases} \Leftrightarrow \begin{cases} \delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w) \in F^{\mathcal{A}} \\ \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w) \in F^{\mathcal{B}} \end{cases} \Leftrightarrow \left(\delta^{\mathcal{A}}(q_0^{\mathcal{A}}, w), \delta^{\mathcal{B}}(q_0^{\mathcal{B}}, w)\right) \in F^{\mathcal{C}} \Leftrightarrow \delta^{\mathcal{C}}(q_0^{\mathcal{A}}, w) \in F^{\mathcal{B}} \end{cases}$$

Задача 5

Исходный автомат \mathcal{A} :

Пополним автомат \mathcal{A} до \mathcal{A}' и удалим недостижимые из q_0 состояния: добавим $q_4 \in Q', q_4 \notin F'$, в него направим недостающие переходы:

 $L(\mathcal{A}') = L(\mathcal{A})$, так как $x \in L(\mathcal{A}) \Rightarrow x \in L(\mathcal{A}')$, потому что $Q \subset Q'$, F = F', $\delta \subset \delta'$. $x \notin L(\mathcal{A}) \Rightarrow$ либо $q_0 \xrightarrow{x} q \notin F$, но тогда $q_0 \xrightarrow{x} q \notin F' \Rightarrow x \notin L(\mathcal{A}')$, либо $\delta(q_0, x) = \emptyset$, тогда $\delta'(q_0, x) = q_4$, потому что был выполнен переход в q_4 , которого не было в \mathcal{A} (по построению, добавлены переходы только в q_4), и при обработке последующих символов \mathcal{A}' остается в q_4 . То есть, в этом случае также $x \notin L(\mathcal{A}')$.

Построим A'': $L(\mathcal{A}'') = \overline{L(\mathcal{A}')} \equiv \overline{L(\mathcal{A})}$ по полному автомату \mathcal{A}' , определив $F'' \stackrel{\text{def}}{=} Q' \setminus F'$:

Далее построим по \mathcal{A}'' минимальный \mathcal{A}''' по алгоритму: 1. $\{q_0,q_2,q_4\}\in F'',\{q_1,q_3\}\notin F''\Rightarrow$ они должны быть в разных подмножествах:

Задача 6

(Хопкрофт, 4.2.2: Обращение)

 Σ — алфавит. REG $\ni X, Y, Z \subset \Sigma^*, R_3(X)$ — из моего решения задания 3, задачи 1. Индукцией по $R_3(X)$ докажем

$$P(n) = \left[\forall \Sigma^* \supset Z \in \mathsf{REG} \colon R_3(Z) \leqslant n \hookrightarrow Z^R \in \mathsf{REG} \right]$$

b

 q_3

b

- 1. $R_3(Z) = 0 \Rightarrow$ рассмотрим два варианта:
 - (a) $Z = \varepsilon$. Тогда $Z^R = \{\varepsilon\}^R = \{\varepsilon\} \in \mathsf{REG}$.
 - (b) $Z = \{\sigma\}$, Тогда $Z^R = \{\sigma\}^R = \{\sigma\} \in \mathsf{REG}$.
- 2. Пусть P(n). Докажем P(n+1). Фиксируем $Z \in \mathsf{REG} \colon R_3(Z) = n+1 \Rightarrow$
 - (a) $Z = X|Y,X,Y \in \mathsf{REG}$. Тогда (см. задание 3, задачу 1) $R_3(X),R_3(Y) \leqslant n \overset{P(n)}{\Rightarrow} X^R,Y^R \in \mathsf{REG}$. $Z^R \equiv (X|Y)^R = \{z^R \big| z \in X \lor z \in Y\} = \{x^R \big| x \in X\} \cup \{y^R \big| y \in Y\} = X^R |Y^R \in \mathsf{REG}\ (X^R,Y^R \in \mathsf{REG})$.
 - (b) $Z = XY, X, Y \in \mathsf{REG}$. Тогда (аналогично) $R_3(X), R_3(Y) \leqslant n \overset{P(n)}{\Rightarrow} X^R, Y^R \in \mathsf{REG}$. $Z^R \equiv (XY)^R = \{(xy)^R \big| x \in X \land y \in Y\} = \{y^R x^R \big| x \in X \land y \in Y\} = \{y^R \big| x \in X\} = Y^R \cdot X^R \in \mathsf{REG} \ (X^R, Y^R \in \mathsf{REG})$.
 - (c) $Z=X^*,X\in\mathsf{REG}.$ Тогда $R_3(X)\leqslant n\overset{P(n)}{\Rightarrow}X^R\in\mathsf{REG}.$ $Z^R=\left(\bigcup_{i\in\mathbb{N}\cup\{0\}}X^i\right)^n=\bigcup_{i\in\mathbb{N}\cup\{0\}}(X^R)^i=(X^R)^*\in\mathsf{REG}.$ $(X^R \in \mathsf{REG}).$

Пусть ДКА $\mathcal{A}_0 = (Q_0, \Sigma, q_0, \delta_0, F_0)$: $L(\mathcal{A}) = L$. Добавим одно принимающее состояние q_f , в него направим ε -переходы из «старых» принимающих. Полученный автомат $\mathcal{A}=(Q,\Sigma,q_0,\delta,F),\ F=\{q_f\}$. Построим НКА $\mathcal{A}'=(Q,\Sigma,q_0',\delta',F')$: $L(\mathcal{A}')=(Q,\Sigma,q_0',\delta',F')$

Определим $\delta'(q_j,\sigma) = \{q_i | \delta(q_i,\sigma) = q_j\}$. Определим $F' = \{q_0\}, q_0' = q_f$. Докажем, что $L(\mathcal{A}') = L^R$, что эквивалентно $w \in L(\mathcal{A}') \Leftrightarrow w \in L^R$. Также $w \in L^R \Leftrightarrow w^R \in L \Leftrightarrow w^R \in L(\mathcal{A})$. Поэтому докажем $w \in L(\mathcal{A}') \Leftrightarrow w^R \in L(\mathcal{A})$.

1. « \Leftarrow »: $w^R \in L(\mathcal{A})$. Так как принимающее состояние у \mathcal{A} одно $-q_f$, то последней конфигурацией будет (q_f, ε) (т.к. q_f единственное принимающее, и слово было принято). Остальные состояния в цепочке обозначим как $q_1, ..., q_n$. Цепочка конфигураций:

 $(q_0, w_n ... w_1) \vdash (q_1, w_{n-1} ... w_1) \vdash ... \vdash (q_{n-1}, w_1) \vdash (q_n, \varepsilon) \vdash (q_f, \varepsilon), q_f \in F$ Тогда $\delta'(q_f,\varepsilon)\ni q_n, \delta'(q_n,w_1)\ni q_{n-1}, \delta'(q_{n-1},w_2)\ni q_{n-2},...,\delta'(q_1,w_n)\ni q_0$, поэтому для автомата \mathcal{A}' $(q_f, w_1...w_n) \vdash (q_n, w_1...w_n) \vdash (q_{n-1}, w_2...w_n) \vdash ... \vdash (q_0, \varepsilon), q_0 \in F' \Rightarrow w \in L(\mathcal{A}') \blacksquare$

2. « \Rightarrow » $w \in L(\mathcal{A}')$. Аналогично принимающее состояний у \mathcal{A}' одно $-q_0$, поэтому цепочка должна заканчиваться на (q_0, ε) . Остальне состояния в цепочке обозначим $q_n,...,q_1$. Цепочка конфигураций:

 $(q_f, w_1...w_n) \vdash (q_n, w_1...w_n) \vdash (q_{n-1}, w_2...w_n) \vdash ... \vdash (q_2, w_{n-1}w_n) \vdash (q_1, w_n) \vdash (q_0, \varepsilon), \ q_0 \in F'.$

Заметим, что $\delta'(q_i, \sigma) \ni q_i \Rightarrow \delta(q_i, \sigma) = q_i$ (из определения δ').

Из утверждения выше получаем $\delta(q_n, \varepsilon) = q_f, \delta(q_{n-1}, w_1) = q_n, ..., \delta(q_1, w_{n-1}) = q_2, \delta(q_0, w_n) = q_1.$ Поэтому $(q_0, w_n...w_1) \vdash (q_1, w_{n-1}...w_2) \vdash ... \vdash (q_n, \varepsilon) \vdash (q_f, \varepsilon), q_f \in F \Rightarrow w^R \in L(\mathcal{A}) \blacksquare$

По построенному НКА \mathcal{A}' , который распознает L^R , построим ДКА \mathcal{A}'' : $L(\mathcal{A}'') = L(\mathcal{A}') = L^R \blacksquare$.