Data Mining:

Concepts and Techniques

— Chapter 2 —

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign
Simon Fraser University
©2011 Han, Kamber, and Pei. All rights reserved.

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
- Alternate names: dimension, feature and variable
 - E.g., customer _ID, name, address
- Types:
 - Nominal
 - Binary
 - Ordinal
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types (set of possible values)

- 1. Nominal: symbols, categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes
 - Don't have any meaningful order

2. Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

3. Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Attribute Types (set of possible values)

4. Numeric Attribute:

Quantity (integer or real-valued)

Interval-scaled

- Measured on a scale of equal-sized units
- Values have order and can be +ve,0,-ve
 - E.g., temperature in C°or F°, calendar dates
- No true zero-point

Ratio-scaled

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Basic Statistical Descriptions of Data

Motivation

 To better understand the data: central tendency, variation and spread

Data dispersion characteristics

mean, median, max, min, quantiles, outliers, variance, etc.

Measuring the Central Tendency

Mean (algebraic measure):

Note: *N* is number of observations.

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

vveignteu antrimetic mean

$$\overline{X} = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i}$$

- Even a small number of extreme values can corrupt the mean.
- Trimmed mean: chopping extreme values

Q. Suppose we have the following values for *salary* (in thousands of dollars), shown in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. What is mean value?

Measuring the Central Tendency

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Q. Suppose we have the following values for salary (in thousands of dollars), shown in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. What is median value?
- Estimated by interpolation (for grouped data):

$$median = L_1 + (\frac{n/2 - (\sum freq)l}{freq_{median}}) width$$

- L1 = the lower boundary of the median interval
- n = number of vales in entire dataset
- $\sum (freq)_1 = sum \ of \ the \ frequencies \ of \ all \ of \ the \ intervals \ that \ are \ lower \ than \ the \ median \ interval$
- (freq)_{median} = frequency of the median interval

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula:

$$mean - mode = 3 \times (mean - median)$$

Midrange:

avg of largest and smallest value

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Variance – ungrouped data

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Variance of ungrouped data

- Find the variance for the following set of data representing trees heights in feet:
- **3**, 21, 98, 203, 17, 9

Variance – grouped data

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^2 = \frac{\sum_{i=1}^{n} f(m_i - \overline{x})^2}{N-1}$$

- f = frequency of the class
- $\mathbf{m} = \text{midpoint of the class}$

$$\sigma^2 = \sum f(m - \overline{x})^2 / n$$

Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

Example of Variance (Grouped data)

Range	Frequency		
1-10	2		
11-20	7		
21-30	10		
31-40	3		
41-50	1		

Example - Solution

Range	Frequency (n _i)	Midpoint (m _i)	m _i * n _i	μ	m _i - μ	(m _i - μ) ²	n _i (m _i - μ) ²
1-10	2	5.5	11	22.89	-17.39	302.41	604.82
11-20	7	15.5	108.5	22.89	-7.39	54.61	382.28
21-30	10	25.5	255	22.89	2.61	6.81	68.12
31-40	3	35.5	106.5	22.89	12.61	159.01	477.04
41-50	1	45.5	45.5	22.89	22.61	511.21	511.21

Boxplot Analysis

Lower Quartile Quartile Upper Extreme | Median | Extreme | Median | Extreme | Median | Median | Extreme | Median | Media

Lower

Upper

- **Five-number summary** of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - **Five number summary**: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR

- Q. Suppose we have the following values for salary (in thousands of dollars), shown in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110.
- What is Q1,Q3?
- What is IQR?
- What is Standard dev?

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ-σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
 - From μ –2 σ to μ +2 σ : contains about 95% of it
 - From μ –3 σ to μ +3 σ : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histograms

- Graphical method for summarizing the distribution
- If X is nominal, such as automobile_model or item type, then a pole or vertical bar is drawn for each known value of X.
- The height of the bar indicates the frequency (i.e., count) of that X value.
- The resulting graph is more commonly known as a bar chart.

Histograms - Barchart

- If X is numeric, the term histogram is preferred.
- The range of values for X is partitioned into disjoint consecutive subranges.
- The subranges, referred to as buckets or bins, are disjoint subsets of the data distribution for X.
- The range of a bucket is known as the width.
 Typically, the buckets are of equal width.
- For example, a price attribute with a value range of \$1 to \$200 (rounded up to the nearest dollar) can be partitioned into subranges 1 to 20, 21 to 40, 41 to 60, and so on

Histogram

Unit price (\$)	Count of items sold		
40	275		
43	300		
47	250		
_	_		
74	360		
75	515		
78	540		
_	_		
115	320		
117	270		
120	350		

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

Uncorrelated Data

Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
 - Basic statistical data description: central tendency, dispersion, graphical displays
 - Data visualization: map data onto graphical primitives
 - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.

References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003.
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech.
 Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press,
 2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies,
 Information Visualization, 8(1), 2009