On L-curve computation

Quanjun Lang, Fei Lu

October-December 2022

Abstract

L-curve method by Hansen computes the optimal hyper-parameter for regularization. Here we review the method and its use in the data-adaptive RKHS Tikhonov regularization (DARTR).

Hansen's L-curve method [Han00] selects the optimal hyper-parameter for Tikhonov regularization. The optimal parameter maximizes the curvature of the curve the norm of the regularized solution versus the residual norm. The advantages of the L-curve criterion are robustness and ability to treat perturbations consisting of correlated noise. The disadvantages are over-smoothing (the smoother the solution, the worse the optimal λ by the L-curve) and inconsistency when dimension increases. The analysis of L-curve regularization is complicated because it depends on the linear system and the way "Every practical method has its advantages and disadvantages."

1 L-curve for LS with 12 norm

Consider first the simplest 12 regularization for least squares (LS), for which we minimize the following loss,

$$L_{\lambda}(x) = ||Ax - b||^2 + \lambda ||x||^2.$$

Here the LSE is $x_{reg} = (A^{\top}A + \lambda I)^{-1}A^{\top}b$. We consider the SVD of A such that $A = USV^{\top}$ with $U^{\top}U = I$ and $V^{\top}V = I$. Then

$$x_{reg} = V(S^2 + \lambda I)^{-1}V^{\top} (VSU^{\top}b) = V [(S^2 + \lambda I)^{-1}S] U^{\top}b$$

For given value of λ , the loss/residual of the LSE becomes

$$E(\lambda) = ||Ax_{reg} - b|| = ||U[(S^2 + \lambda I)^{-1}S^2]U^{\top}b - UU^{\top}b|| = ||[(S^2 + \lambda I)^{-1}\lambda I]U^{\top}b||$$

and the norm of the regularized solution is

$$R(\lambda) = \|x_{reg}\| = \left\| \left[(S^2 + \lambda I)^{-1} S \right] U^\top b \right\|.$$

The L-curve is a log-log plot of the curve

L-curve :
$$l(\lambda) = (y(\lambda), x(\lambda)) := (\log R(\lambda), \log E(\lambda)).$$

The L-curve method maximize the curvature of the L-curve to reach a balance between minimization of the residual and control of the regularization norm.

$$\lambda_0 = \operatorname{argmax}_{\lambda_{\min} \leq \lambda \leq \lambda_{\max}} \kappa(l(\lambda)) = \operatorname{argmax}_{\lambda_{\min} \leq \lambda \leq \lambda_{\max}} \frac{x'y'' - x'y''}{(x'^2 + y'^2)^{3/2}},$$

where λ_{min} and λ_{max} are pre-assigned or computed from the smallest and the largest generalized eigenvalues of A.

Hansen's function lcfun computes the curvature explicitly using the parameters

$$\{\lambda_n\}_{n=1}^N, \ \beta = U^{\top}b, \ \xi = S^{-1}\beta, \ s = diag(S).$$
 (1.1)

eq:para_lcfun

Notice that U and S are from the SVD of A, and the output is the curvature of the L-curve at $\{\lambda_n\}_{n=1}^N$.

Note that we used λ instead of using λ^2 . But this will not change the position of the maximal curvature of the L-curve in the (E,R) coordinate since the curvature does not depend on the parametrization.

1.1 Quadratic form

In applications, we often have a loss function in a quadratic form:

$$L = c^{\top} \overline{A} c - 2c^{\top} \overline{b} + \overline{b}^{\top} \overline{A}^{-1} \overline{b} + \lambda c^{\top} c.$$

We need to transfer the quadratic form into Hansen's setting so that we can use the explicit computation of the curvature. Taking

$$A = \overline{A}^{1/2}, \ b = \overline{A}^{-1/2}\overline{b},$$

(or equivalently, $\overline{A} = A^{\top}A$, $\overline{b} = A^{\top}b$), we have

$$L = c^{\top} \overline{A} c - 2 c^{\top} \overline{b} + \overline{b}^{\top} \overline{A}^{-1} \overline{b} + \lambda c^{\top} c = \left\| Ax - b \right\|^2 + \lambda \left\| c \right\|^2.$$

To supply the inputs of the function **lcfun** in (1.1), we need to find the SVD of $A = \overline{A}^{1/2}$. Since \overline{A} is symmetric, we have the SVD of \overline{A} as $\overline{A} = USU^{\top}$, hence $A = US^{1/2}U^{\top}$ and $\overline{A}^{-1/2} = US^{-1/2}U^{\top}$. Then, the inputs of **lcfun** are

$$\beta = U^{\top} b = S^{-1/2} U^{\top} \overline{b}, \quad \xi = S^{-1} U^{\top} \overline{b}, \quad s = \text{diag}(S^{1/2})$$
 (1.2)

eq:lcfun_qf

and $\{\lambda_n\}_{n=1}^N$ are taken to be the square root.

Then Hansen used optimization to find the minimal curvature around the argmin in the λ -grid. The above part is contained in the code **L_curve_standard_form**.

2 General regularization norms

The L-curve method applies to general regularization norms in the form $||c||_{\Sigma}^2 = c^{\top} \Sigma^{-1} c$. The corresponding loss function is

$$Loss = c^{\top} \overline{A} c - 2c^{\top} \overline{b} + \overline{b}^{\top} \overline{A}^{-1} \overline{b} + \lambda (c - x)^{\top} \Sigma^{-1} (c - x).$$

Here Σ^{-1} is the basis matrix of the basis functions in the Hilbert space defined by the norm. When $\Sigma^{-1} = Id$, we get the l2 regularization in the previous section. We use Σ^{-1} in the regularization norm since it corresponds to the covariance matrix of a Bayesian Gaussian prior. Suppose $L = \sqrt{\Sigma}$ is the square root of Σ computed from the SVD of Σ . Take $y = L^{-1}(c-x)$ and c = Ly + x, we have

$$Loss = c^{\top} \overline{A} c - 2c^{\top} \overline{b} + \overline{b}^{\top} \overline{A}^{-1} \overline{b} + \lambda (c - x)^{\top} \Sigma^{-1} (c - x).$$

$$(2.1)$$

$$= (y^{\top}L^{\top} + x^{\top})\overline{A}(Ly + x) - 2\overline{b}^{\top}(Ly + x) + \overline{b}^{\top}\overline{A}^{-1}\overline{b} + \lambda y^{\top}y$$
 (2.2)

$$= y^{\top} (L^{\top} \overline{A} L) y - 2 y^{\top} (L^{\top} \overline{b} - L^{\top} \overline{A} x) + \lambda y^{\top} y + Const.$$
 (2.3)

The problem can be reduced to the standard form using $\tilde{A} = L^{\top} \overline{A} L$ and $\tilde{b} = L^{\top} \overline{b} - L^{\top} \overline{A} x$. But the result is for y. Then use c = Ly + x to get the estimation.

In short, the computation procedure is as follows. Given $\overline{A}, \overline{b}, \Sigma, x$:

- 1. SVD for Σ , $\Sigma = U_0 S_0 U_0^{\top}$ and set $L = U_0 S_0^{1/2} U_0^{\top}$.
- 2. SVD for $\tilde{A} = L^{\top} \overline{A} L = USV$, and compute $\tilde{b} = L^{\top} (\overline{b} \overline{A} x)$.
- 3. Get λ_{opt} by using **lcfun** with inputs $\{\lambda_n\}$, $\beta = S^{-1/2}U^{\top}\tilde{b}$, $\xi = S^{-1}U^{\top}\tilde{b}$, $s = \text{diag}(S^{1/2})$.
- 4. Get estimator $c = Ly_* + x$ where $y_* = (\tilde{A} + \lambda_{opt}I)\tilde{b}$.

2.1 DARTR

In DARTR, $\Sigma = B^{-1}\overline{A}B^{-1}$ with B being the basis matrix in $L^2(\rho)$, x = 0 and $L = B^{-1/2}\overline{A}^{1/2}B^{-1/2}$. Hence In particular, when B = I, we have $L = \overline{A}^{1/2}$, and $\tilde{A} = \overline{A}^2$ and $\tilde{b} = \overline{A}^{-1/2}\overline{b}$. The computation procedure is as follows. Given $\overline{A}, \overline{b}, B, x$:

- 1. SVD for $\Sigma = B^{-1}\overline{A}B^{-1}$, $\Sigma = U_0 S_0 U_0^{\top}$ and set $L = U_0 S_0^{1/2} U_0^{\top}$.
- 2. SVD for $\tilde{A} = L^{\top} \overline{A} L = USV$, and compute $\tilde{b} = L^{\top} (\overline{b} \overline{A}x)$.
- 3. Get λ_{opt} by using **lcfun** with inputs $\{\lambda_n\}$, $\beta = S^{-1/2}U^{\top}\tilde{b}$, $\xi = S^{-1}U^{\top}\tilde{b}$, $s = \operatorname{diag}(S^{1/2})$.
- 4. Get estimator $c = Ly_*$ where $y_* = (\tilde{A} + \lambda_{opt}I)^{-1}\tilde{b}$.

Remark1: a major issue is inversion of ill-conditioned matrix. SVD is in general better than $A \setminus b$, pinv or least squares. Thus, we compute the inversion B^{-1} by SVD to reduce numerical errors when B is ill-conditioned. A numerical stable way to implement Step 1 is: first, compute $L_0 = \operatorname{chol}(B)$ and do SVD for $L_0^{-1}\overline{A}L_0^{-1} = U_0S_0U_0^{\top}$. Then, get $\Sigma = B^{-1}\overline{A}B^{-1} = L_0^{-1}U_0SU_0^{\top}L_0^{-\top}$.

Remark2: Our goal is solve $(\overline{A} + \lambda B \overline{A}^{-1} B)^{-1} \overline{b}$ with an optimal λ . Let $D = B^{-1} \overline{A}^{1/2}$. Then, $B \overline{A}^{-1} B = D^{-\top} D^{-1}$ and $(\overline{A} + \lambda B \overline{A}^{-1} B) = D^{-\top} (D^{\top} \overline{A} D + \lambda I) D^{-1}$. Here D is the same as the L in step 1.

References

sen_LcurveIts_a

[Han00] Per Christian Hansen. The L-curve and its use in the numerical treatment of inverse problems. In in Computational Inverse Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, pages 119–142. WIT Press, 2000.