Q. Form the differential eq. n from y = ax3+bx2 by eliminating arbritrary constants.

Ans:- Given
$$y = ax^3 + bx^2 - x$$
 $y' = 3ax^2 + 2xb - 0$
 $y'' = bax + 2b - 2$
 $ax(0-ax(2) \Rightarrow ay' - ay'' = 2xb$
 $ax(1-ay'') = b = 2y' - ay''$

$$(D) \Rightarrow y' = 3\alpha x^2 + 2y' - xy''$$

$$\Rightarrow \alpha = y + xy''$$

$$\frac{3x^2}{3x^2}$$

$$(x) = y = ax^{3} + bx^{2}$$

$$= x^{3} \left(\frac{xy^{11} - y^{1}}{3x^{2}} \right) + \left(\frac{2y^{1} - xy^{1}}{2x} \right)^{2}$$

$$= x^{3} \left(\frac{xy^{11} - y^{1}}{3x^{2}} \right) + \left(\frac{2y^{1} - xy^{1}}{2x} \right)^{2}$$

$$\Rightarrow y = \frac{\chi(\chi y'' - y')}{\lambda(\lambda y'' - \chi y'')} + \frac{\chi(\lambda y' - \chi y'')}{\lambda(\lambda y'' - \chi y'' + by = 0)}$$

Solution of differential Equations

- 1. Solution of differential equations
- 1.1. Variable separable form

Consider
$$\frac{dy}{dx} = f(x,y) - x$$

as
$$\frac{dy}{dx} = \phi(x)\psi(y)$$
 or $\frac{1}{\psi(y)}$ $dy = \phi(x)dx$.

Integrate both sides we get,

$$\frac{1}{\Psi(y)} dy = \int b(x) dx + C$$

after simplification
$$y = h(x) + C$$
. we get,

$$y = h(x) + c$$

Problem 1.1. Solve the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$

Ans: (*) - 1 dy = 1 dx, 1+x2 dx, Variable sep form

 $\Rightarrow \int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2} + K$

 \Rightarrow tan(y) = tan(x) + K

Problem 1.2. Solve the differential equation $\sec^2 x \tan y dy + \sec^2 y \tan x dx = 0$

Ans: Given, secx tany $dx + sec^2y$ tanx dy = 0 $dx + sec^2y$ tanx dy = 0 $dx + sec^2y$ tanx dy = 0 $dx + sec^2y$ tanx dy = 0 dy = 0

Problem 1.3. Solve the differential equation
$$\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$$

Ans: (Siny + y(osy) dy = (2x logx + x) dx,

Var. Sep. form

$$\Rightarrow \int Siny dy + \int y(osy) dy = \int 2x logx dx + \int x dx$$

$$+ C$$

$$\Rightarrow - losy + \left(y \sin y + losy \right) = a logx \left(\frac{x^2}{2} \right)$$

$$-2 \left(\frac{1}{x} \left(\frac{x^3}{2} \right) dx + \frac{x}{2} \right)$$

$$+ C$$

$$\Rightarrow y \sin y = x^2 logx + C$$

Problem 1.4. Solve the differential equation $e^x(y-1)dx + 2(e^x+4)dy = 0$ Solution:

Ans: $(e^{\chi}+4)(y-1)^2 = C$

Problem 1.5. Solve $\frac{dy}{dx} = xe^{y-x^2}$ given that y(0) = 0.

Solution:

Solution:

$$\frac{dy}{dx} = xe^{y-x^2}$$

$$\Rightarrow \frac{dy}{dx} = x \cdot e^{y} \cdot e^{x^{2}}$$

$$\Rightarrow \frac{dy}{dy} = xe^{x^2}dx$$
, uau. Sep form

$$\Rightarrow e^{y} dy = e^{3} \chi dx$$

$$\Rightarrow \int e^{y} dy = -\frac{1}{2} \int e^{x^{2}} (-2x) dx + C$$

$$\int_{C} e^{f(x)} \cdot f'(x) dx = e^{f(x)} + C$$

$$puf - \chi^2 = t$$

$$\Rightarrow -2\chi d\chi = dt$$

$$\int e^{-x^2} x dx = \int e^t dt = e^t$$

$$\Rightarrow -e^{y} = -1 e^{\chi^{2}} + c$$

Given, when
$$x=0$$
, $y=0$ $\Rightarrow -e=-1e+c$
 $\therefore Sol^n is, -e^y = -\frac{1}{2}e^{x^2} - \frac{1}{2} \Rightarrow 2e=e+1 \Rightarrow c=-\frac{1}{2}$

put ax+by+c=t

> dt = a + b dy

 $\Rightarrow \frac{dy}{dx} = \frac{1}{b} \left(\frac{dt}{dx} - a \right)$

= dy = 1 (dt - a)

1.2. Reducible to variable separable form

Type 1: If
$$\frac{dy}{dx} = f(ax + by + c)$$
 then,
$$\therefore (0) \Rightarrow \frac{1}{b} \left(\frac{dt}{dx} - a \right) = f(t)$$

$$\Rightarrow \frac{dt}{dx} - a = bf(t)$$

$$\Rightarrow \frac{dt}{dn} = bf(t) + a$$

$$\Rightarrow \frac{dt}{bf(t)+a} = dx, Vax. Sep form$$

$$bf(t)+a$$

$$Type: If \frac{dy}{dx} = \frac{(ax+by)+c}{k(ax+by)+c_1} then, put ant by = t$$

$$\Rightarrow \int \frac{dt}{dx} - a = \frac{t+c}{kt+c}$$

$$\Rightarrow \frac{dt}{dx} - a = \left(\frac{t+c}{k++c}\right)$$

$$\frac{dt}{dx} - a = \left(\frac{t+c}{kt+c_1}\right)b \Rightarrow \frac{dh}{dx} = \left(\frac{t+c}{kt+c_1}\right)b+a$$

Convert it into var. sep. form and proceed for the som

Problem 1.6. Solve the differential equation
$$\frac{dy}{dx} = (9x + y + 1)^2$$

Solution: Given
$$\frac{dy}{dx} = (9x+y+1)^2$$

Put $9x+y+1 = t$ then $\frac{dt}{dx} = 9+dy$
 $\frac{dy}{dx} = \frac{dt}{dx} = 9$

$$\Rightarrow \int \frac{dt}{t^2+9} = \int dx + C$$

$$\Rightarrow \int \frac{dt}{t^2+9} = x + C$$

$$\Rightarrow \tan^{1}(t_{3}) = x + C$$

$$\Rightarrow \tan^{1}(9x+y+1) = 3x + C^{1}$$

Problem 1.7. Solve the differential equation
$$\frac{dy}{dx} = \cos(x+y+1)$$

Solution:

put
$$x+y+1=t=\frac{dx}{dx}=1+\frac{dy}{dx}$$

$$\Rightarrow \int \frac{dt}{1+ \cos t} = \int dx + C$$

$$\Rightarrow \int \frac{dt}{2\cos^2(t/2)} = x + C$$

$$= \int Se^2(t/2) dt = x + C$$

$$\Rightarrow$$
 $\int Sec^2(u) du = x + C$

$$\Rightarrow$$
 tan $(t/2) = x + c \Rightarrow tan(x+y+1) = x+c$

Put t/=4

 $\Rightarrow du = dt$

1.3. Practice problems

Solve the following differential equation

1.
$$(xy+x)dx + (x^2y^2 + x^2 + y^2 + 1)dy = 0$$

2.
$$\frac{y}{x}\frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2y^2}$$

$$3. \ y - x \frac{dy}{dx} = y^2 + \frac{dy}{dx}$$

3.
$$y - x \frac{dy}{dx} = y^2 + \frac{dy}{dx}$$
4.
$$\tan y \frac{dy}{dx} = \cos(x+y) + \cos(x-y)$$

5.
$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$$

6.
$$(x+y+1)^2 \frac{dy}{dx} = 1$$

2. Homogeneous differential equation

Let
$$u = f(x,y)$$
 be a function of x and y then y is said to be a homogeneous function in $x \in y$ of degree y if $y = x^{1/2} + y^{1/2}$

Here $f(x,y) = x^{1/2} + y^{1/2}$

Here $f(x,y) = x^{1/2} + y^{1/2}$
 $f(x,y) = y^{1/2} + y^{1/2}$

Note:
Replace x by 2x and y by 2y in f(x,y) then; if $f(2x,2y) = 2^n f(x,y)$ we say

that f(x,y) is a homo funct in xty of Solution of differential Equations deg.n. A d.e. of the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ 2.2. Homogeneous differential equation where $g(x,y) \neq 0$, $f(x,y) \notin g(x,y)$ are homogenous functions of same degree, such des ave called homogenous d.e. Soll of homo. d.e. put y=vx ⇒ ⇒ dy = v+xdv

Substitute it in the given eqⁿ and reduce the diff eqⁿ to var sep form and integrate it for the regld solⁿ.

Problem 2.1. Solve the differential equation $(x^2 - y^2) dx = xy dy$

Ans:-
$$\frac{dy}{dx} = \frac{x^2 - y^2}{xy}$$
 homo $\frac{d \cdot e}{dx}$

put $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$

(i) $\Rightarrow v + x \frac{dv}{dx} = \frac{1 - v^2}{v}$
 $\Rightarrow x \frac{dv}{dx} = \frac{1 - 2v^2}{v}$
 $\Rightarrow \left(\frac{v}{1 - 2v^2}\right) dv = \frac{dx}{x}$, $van \cdot sepfon$
 $\Rightarrow \left(\frac{v}{1 - 2v^2}\right) dv = \frac{dx}{x} + \log k$
 $\Rightarrow \frac{-1}{4} \left(\frac{-4v}{1 - 2v^2}\right) = \log(xk)$

Solution:

$$\Rightarrow -\log(1-2y^2) = 4\log(xK)$$

$$\Rightarrow$$
 -log($\frac{\chi^2 - 2y^2}{\chi^2}$) = log(χK)⁴

$$\Rightarrow \log \left(\frac{\chi^2}{\chi^2 - \lambda y^2}\right) = \log (\chi K)^4$$

$$\Rightarrow \frac{\chi^2}{\chi^2 - \lambda y^2} = (\chi k)^4$$

$$\Rightarrow \frac{\chi^2}{\chi^2 - \omega y^2} = C\chi^4 \left(\frac{\text{where}}{c_{=K}^4} \right)$$

$$\Rightarrow \chi^2(\chi^2 - \partial y^2) = \frac{1}{C} = C', \text{reg}(d)$$

Problem 2.2. Solve the differential equation x^2y , $dx - (x^3 + y^3) dy = 0$

 $\frac{\chi^2 y}{\chi^3 + y^3}$. hom. d.e

Problem 2.3. Solve the differential equation $\frac{dy}{dx} = \frac{\cancel{s} \cancel{y}}{x - \sqrt{xy}}$

<u> Ans: -</u>

Soln: - 2/2/y + logy = K

2.3. Practice problems

Solve the following differential equation

1.
$$(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$$

$$2. \ y - x \frac{dy}{dx} = x + y \frac{dy}{dx}$$

3.
$$xdy - ydx = \sqrt{x^2 + y^2}dx$$

1.
$$(y^3 - 3x^2y)dx - (x^3 - 3xy^2)dy = 0$$

2. $y - x\frac{dy}{dx} = x + y\frac{dy}{dx}$
3. $xdy - ydx = \sqrt{x^2 + y^2}dx$
4. $y dy + \sin^2\left(\frac{x}{y}\right)[x dy - y dx] = 0$

3. Reducible to homogeneous differential equation (Non-homogeneous differential equations)

Consider the d.e.
$$\frac{dy}{dx} = \frac{ax+by+c}{a_1x+b_1y+c_1}$$

Case(i): when $\frac{a}{a_1} \neq \frac{b}{b_1}$

put $x = x+h$ and $y = y+k$

then $(*) \Rightarrow \frac{dy}{dx} = \frac{a(x+h)+b(y+k)+c}{a_1(x+h)+b_1(y+k)+c_1}$
 $\Rightarrow \frac{dy}{dx} = \frac{ax+by+(a_1h+b_1k+c_1)}{a_1x+b_1y+(a_1h+b_1k+c_1)}$

Take $ah+bk+c=0$ $h=2$ $k=2$

4 $a_1h+b_1k+c_1=0$ $h=2$ $h=$

Problem 3.1. Solve the differential equation $\frac{dy}{dx} = \frac{y+x-2}{y-x-2}$, Non – hom $o \cdot d \cdot \varrho$.

put x = X+h and y= Y+k > dx=dx
dy=dy Solution:

:X=> dY = Y+X+(h+k-2) ___ dx Y-x+(h+k-2)

Take $h+k-2=0 \Rightarrow 2k=4=)k=2$ -h+k-2=0 : h=0

 $\therefore (1) \Rightarrow \frac{dY}{dx} = \frac{Y+X}{Y-X}, \text{ is a homog. d.e.}$

put $Y = V X \Rightarrow \frac{dY}{dx} = V + X \frac{dV}{dx}$

 $\frac{1}{2} \Rightarrow V + X \frac{dv}{dx} = \frac{V+1}{V-1}$

 $\Rightarrow \frac{dv}{dx} = \frac{V+1-V^2+V}{V-1}$ $\Rightarrow \frac{V-1}{1+2V-V^2} dV = \frac{dx}{x}, Vav. Sep form$

 $\Rightarrow \int \frac{V-1}{1+2V-V^2} dV = \int \frac{dx}{x} + \log C$

Solution:

$$\Rightarrow \frac{-1}{2} \int \frac{2-2V}{1+2V-V^2} dV = \int \frac{dx}{X} + \log C$$

$$\Rightarrow \log (1+2V-V^2) = -2\log X + \log C$$

$$\Rightarrow \log (1+2V-V^2) + \log X^2 = \log C$$

$$\Rightarrow \log ((X+2YX-Y^2) + X^2) = \log C$$

$$\Rightarrow \log ((X+2YX-Y^2) + X^2) = \log C$$

$$\Rightarrow X^2 + 2XY - Y^2 = C$$

$$\Rightarrow X^2 + 2X(Y-Y^2) - (Y-2)^2 = C$$

$$\therefore \text{Regid Solh is}$$

$$x^2 + 2X(Y-Y^2) - (Y-2)^2 = C$$

