Constructions of Triangles

Let's study.

To construct a triangle, if following information is given.

- Base, an angle adjacent to the base and sum of lengths of two remaining sides.
- Base, an angle adjacent to the base and difference of lengths of remaining two sides.
- Perimeter and angles adjacent to the base.

In previous standard we have learnt the following triangle constructions.

- * To construct a triangle when its three sides are given.
- * To construct a triangle when its base and two adjacent angles are given.
- * To construct a triangle when two sides and the included angle are given.
- * To construct a right angled triangle when its hypotenuse and one side is given.

Perpendicular bisector Theorem

- Every point on the perpendicular bisector of a segment is equidistant from its end points.
- Every point equidistant from the end points of a segment is on the perpendicular bisector of the segment.

Constructions of triangles

To construct a triangle, three conditions are required. Out of three sides and three angles of a triangle two parts and some additional information about them is given, then we can construct a triangle using them.

We frequently use the following property in constructions.

If a point is on two different lines then it is the intersecrtion of the two lines.

Construction I

To construct a triangle when its base, an angle adjacent to the base and the sum of the lengths of remaining sides is given.

Ex. Construct \triangle ABC in which BC = 6.3 cm, \angle B = 75° and AB + AC = 9 cm. **Solution :** Let us first draw a rough figure of expected triangle.

Explanation: As shown in the rough figure, first we draw seg BC = 6.3 cm of length. On the ray making an angle of 75° with seg BC, mark point D such that

$$BD = AB + AC = 9 \text{ cm}$$

Now we have to locate point A on ray BD.

$$BA + AD = BA + AC = 9$$

$$\therefore$$
 AD = AC

- : point A is on the perpendicular bisector of seg CD.
- : the point of intersection of ray BD and the perpendicular bisector of seg CD is point A.

Rough figure 4.3

Steps of construction

- (1) Draw seg BC of length 6.3 cm.
- (2) Draw ray BP such that $m \angle PBC = 75^{\circ}$.
- (3) Mark point D on ray BP such that d(B,D) = 9 cm
- (4) Draw seg DC.
- (5) Construct the perpendicular bisector of seg DC.
- (6) Name the point of intersection of ray BP and the perpendicular bisector of CD as A.
- (7) Draw seg AC.

 Δ ABC is the required triangle.

Fair fig. 4.4

Practice set 4.1

- 1. Construct \triangle PQR, in which QR = 4.2 cm, m \angle Q = 40° and PQ + PR = 8.5 cm
- 2. Construct \triangle XYZ, in which YZ = 6 cm, XY + XZ = 9 cm. \angle XYZ = 50°
- 3. Construct \triangle ABC, in which BC = 6.2 cm, \angle ACB = 50°, AB + AC = 9.8 cm
- **4.** Construct \triangle ABC, in which BC = 3.2 cm, \angle ACB = 45° and perimeter of \triangle ABC is 10 cm

Construction II

To construct a triangle when its base, angle adjacent to the base and difference between the remaining sides is given.

Ex (1) Construct \triangle ABC, such that BC = 7.5 cm, \angle ABC = 40°, AB – AC = 3 cm. Solution: Let us draw a rough figure.

Explanation: AB - AC = 3 cm \therefore AB > ACDraw seg BC. We can draw the ray BL such that $\angle LBC = 40^{\circ}$. We have to locate point A on ray BL. Take point D on ray BL such that BD = 3 cm.

> Now, B-D-A and BD = AB - AD = 3. It is given that AB - AC = 3

$$\therefore$$
 AD = AC

- ... point A is on the perpendicular bisector of seg DC.
- ... point A is the intersection of ray BL and the perpendicular bisector of seg DC.

Steps of construction

- (1) Draw seg BC of length7.5 cm.
- (2) Draw ray BL such that $\angle LBC = 40^{\circ}$
- (3) Take point D on ray BL such that BD = 3 cm.
- (4) Construct the perpendicular bisector of seg CD.
- (5) Name the point of intersection of ray BL and the perpendicular bisector of seg CD as A.
- (6) Draw seg AC.Δ ABC is required triangle.

Ex. 2 Construct \triangle ABC, in which side BC = 7 cm, \angle B = 40° and AC – AB = 3 cm. **Solution :** Let us draw a rough figure.

$$seg BC = 7 cm. AC > AB.$$

We can draw ray BT such that

$$\angle$$
 TBC = 40°

Point A is on ray BT. Take point D on opposite ray of ray BT such that

$$BD = 3 \text{ cm}.$$

Now
$$AD = AB + BD = AB + 3 = AC$$

(: $AC - AB = 3$ cm.)

- \therefore AD = AC
- : point A is on the perpendicular bisector of seg CD.

Rough figure 4.8

Rough figure 4.9

Steps of construction

- (1) Draw BC of length 7 cm.
- (2) Draw ray BT such that \angle TBC = 40°
- (3) Take point D on the opposite ray BS of ray BT such that BD = 3 cm.
- (4) Construct perpendicular bisector of seg DC.
- (5) Name the point of intersection of ray BT and the perpendicular bisector of DC as A.
- (6) Draw seg AC.Δ ABC is the required triangle.

Practice set 4.2

- 1. Construct \triangle XYZ, such that YZ = 7.4 cm, \angle XYZ = 45° and XY XZ = 2.7 cm.
- 2. Construct \triangle PQR, such that QR = 6.5 cm, \angle PQR = 40° and PQ PR = 2.5 cm.
- 3. Construct \triangle ABC, such that BC = 6 cm, \angle ABC = 100° and AC AB = 2.5 cm.

Construction III

To construct a triangle, if its perimeter, base and the angles which include the base are given.

Ex. Construct \triangle ABC such that AB + BC + CA = 11.3 cm, \angle B = 70°, \angle C = 60°.

Solution: Let us draw a rough figure.

Rough Fig. 4.11

Explanation: As shown in the figure, points P and Q are taken on line BC such that,

$$PB = AB$$
, $CQ = AC$

$$\therefore$$
 PQ = PB + BC + CQ = AB + BC +AC = 11.3 cm.

Now in $\triangle PBA$, PB = BA

$$\therefore$$
 $\angle APB = \angle PAB$ and $\angle APB + \angle PAB =$ extieror angle $ABC = 70^{\circ}$

.....theorem of remote interior angles

$$\therefore$$
 $\angle APB = \angle PAB = 35^{\circ}$ Similarly, $\angle CQA = \angle CAQ = 30^{\circ}$

Now we can draw Δ PAQ, as its two angles and the included side is known.

Since BA = BP, point B lies on the perpendicular bisector of seg AP.

Similarly, CA = CQ, therefore point C lies on the perpendicular bisector of seg AQ

... by constructing the perpendicular bisectors of seg AP and AQ we can get points B and C, where the perpendicular bisectors intersect line PQ.

Steps of construction

- (1) Draw seg PQ of 11.3 cm length.
- (2) Draw a ray making angle of 35° at point P.
- (3) Draw another ray making an angle of 30° at point Q.
- (4) Name the point of intersection of the two rays as A.
- (5) Draw the perpendicular bisector of seg AP and seg AQ. Name the points as B and C respectively where the perpendicular bisectors intersect line PQ.
- (6) Draw seg AB and seg AC.

 Δ ABC is the required triangle.

Final Fig. 4.12

Practice set 4.3

- 1. Construct \triangle PQR, in which \angle Q = 70°, \angle R = 80° and PQ + QR + PR = 9.5 cm.
- 2. Construct \triangle XYZ, in which \angle Y = 58°, \angle X = 46° and perimeter of triangle is 10.5 cm.
- 3. Construct \triangle LMN, in which \angle M = 60°, \angle N = 80° and LM + MN + NL = 11 cm.

◇◇◇◇◇◇◇◇◇◇◇◇◇ Problem set 4 **◇◇◇◇◇◇◇◇◇◇◇◇**

- 1. Construct \triangle XYZ, such that XY + XZ = 10.3 cm, YZ = 4.9 cm, \angle XYZ = 45°.
- 2. Construct \triangle ABC, in which \angle B = 70°, \angle C = 60°, AB + BC + AC = 11.2 cm.
- **3.** The perimeter of a triangle is 14.4 cm and the ratio of lengths of its side is 2 : 3 : 4. Construct the triangle.
- 4. Construct \triangle PQR, in which PQ PR = 2.4 cm, QR = 6.4 cm and \angle PQR = 55°.

ICT Tools or Links

Do constructions of above types on the software Geogebra and enjoy the constructions. The third type of construction given above is shown on Geogebra by a different method. Study that method also.

 $\circ \diamond \diamond \diamond \circ \diamond \diamond \diamond \circ \circ \diamond \circ \circ$