Ex 1 Soit x > 0. Montrer que $\forall k \in \mathbb{N}^*$, $\frac{1}{(x+k)^2} < \frac{1}{x+k-1} - \frac{1}{x+k}$. En déduire une majoration de $\sum_{k=1}^n \frac{1}{(x+k)^2}$

Ex 2 Soit $n \in \mathbb{N}$. Montrer que si les réels a et b vérifient 0 < a < b, alors $n(b-a)a^{n-1} \leqslant b^n - a^n \leqslant n(b-a)b^{n-1}$.

 $\textbf{Ex 3} \text{ a)} \quad \text{Montrer que } \forall x>0, \ \ln x\leqslant x-1, \text{ et en déduire que } \forall k\geqslant 2, \ \ln \left(k+1\right)-\ln k\leqslant \frac{1}{k}\leqslant \ln \left(k\right)-\ln \left(k-1\right).$

b) On pose $u_n = \sum_{k=1}^n \frac{1}{n+k}$. Déduire du a) que $\ln \frac{2n+1}{n+1} \leqslant u_n \leqslant \ln 2$. Que vaut $\lim u_n$?

Ex 4 Pour $n \in \mathbb{N}^*$ on pose $u_n = \frac{1}{n^2} \sum_{k=1}^n \frac{k^2}{k+1}$. Montrer que $\forall n \geqslant 1, \quad \frac{1}{3} \leqslant u_n \leqslant 1$

Ex 5 a) Soit $n \geqslant 1$. Majorer $\sum_{k=n+1}^{2n} \frac{1}{k}$, puis $\sum_{k=n+1}^{2n} \frac{k}{k^2+1}$

b) Pour $n \in \mathbb{N}^*$ on pose $u_n = \sum_{k=n+1}^{2n} \frac{k \sin k}{k^2+1}$. Montrer que $(u_n)_{n \in \mathbb{N}^*}$ est bornée.

Ex 6 Soit $n \in \mathbb{N}^*$.

a) Montrer que $\forall k \in [[1,n]]$, on a $n \leqslant k (n+1-k) \leqslant \left(\frac{n+1}{2}\right)^2$

b) En déduire que $n^{n/2} \leqslant n! \leqslant \left(\frac{n+1}{2}\right)^n$

Ex 7 Soient $n \in \mathbb{N}^*$ et $u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$. Montrer que $\forall x \geqslant 0, \ x - \frac{x^2}{2} \leqslant \ln{(1+x)} \leqslant x$.

En déduire un encadrement de u_n .

Ex 8 Soient $n \ge 2$, et a_1, a_2, \ldots, a_n, n réels strictement positifs.

On définit les moyennes arithmétique, géométrique et harmonique par

$$M = \frac{1}{n} \sum_{k=1}^{n} a_k$$
 ; $m = \sqrt[n]{\prod_{k=1}^{n} a_k}$; $\frac{1}{H} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_k}$

a) Montrer que $\forall x>0,\ \ln x\leqslant x-1.$ Dans quel cas y a-t-il égalité ?

b) En appliquant cette inégalité à $\frac{a_k}{M}$, $1\leqslant k\leqslant n$, démontrer que $m\leqslant M$. Dans quel cas y a-t-il égalité ?

c) En appliquant b) à $\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}$, démontrer que $H \leqslant m$ (qui revient à $H^n \leqslant m^m$)

Ex 9 Soit (u_n) la suite définie par $u_0 = 5$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{u_n}$.

a) Exprimer $u_{n+1}^2-u_n^2$ en fonction de u_n et en déduire que $\forall n\in\mathbb{N},\ u_n\geqslant\sqrt{2n+25}.$

b) Montrer que $\forall k \in \mathbb{N}, \ \sqrt{2k+25} - \sqrt{2(k-1)+25} \geqslant \frac{1}{\sqrt{2k+25}}$.

c) En déduire que $\forall n \in \mathbb{N}, \ u_n \leqslant 5 - \sqrt{23} + \sqrt{2n+23}$

d) Encadrer u_{1000} et déterminer $\lim \frac{u_n}{\sqrt{n}}$.

PCSI 1 Thiers 2019/2020