Classification

Classification Models

- Assign labels to objects
- Two-Stage Process
 - Given a data set of labeled examples, use a classification method to train a classification model, known as classifier

Given a trained classifier, classify a data record with unknown class to one of the pre-defined classes

Classification Examples

- Spam Email Filter (binary classifier): classify emails labeled as spam or not spam by learning patterns in the content, sender information, and other features
- Sentiment Analysis (multi-class classifier): classify media posts or product reviews as positive, negative, or neutral sentiments expressed by the author
- Medical Diagnosis (binary): a model trained on patient symptoms and medical history can classify whether a patient is likely to have a certain disease
- Credit Risk Assessment (multi-class): classify loan applicants as low, medium, or high risk based on factors such as credit score, income, and debt-to-income ratio
- Image Recognition (multi-class): a model can classify images of animals into different categories such as cats, dogs, or birds

Decision Trees & Random Forest

Decision Trees:

- A tree-like model where each internal node represents a "test" on an attribute
- It splits the data into different branches based on the attribute values
- Decision trees are interpretable and can handle both numerical and categorical data

Random Forest:

- A collection of decision trees where each tree is built using a random subset of features and a random subset of the training data
- It reduces overfitting and improves generalization compared to individual decision trees
- Random forests are robust and perform well on a variety of datasets

Logistic Regression

- A linear model used for binary classification problems
- It models the probability that a given input belongs to a certain class using the logistic function
- It's simple, interpretable, and efficient for linearly separable data

Support Vector Machine (SVM)

- A model that finds the optimal hyperplane separating different classes in the feature space
 - Classify the data based on the position in relation to the hyperplane between positive class and negative class
- SVM aims to maximize the margin between classes, thus enhancing generalization
- It can handle both linear and nonlinear classification tasks using different kernel functions

K-Nearest Neighbors (KNN)

- Each data point is represented in a n dimensional space, which is defined by n features
 - And it calculates the distance between one point to another, then assign the label of unobserved data based on the labels of nearest observed data points
 - The classification of a data point is determined by the majority class among its k nearest neighbors in the feature space
- KNN is simple to understand and implement, especially for small datasets
- It does not learn explicit models and can be sensitive to the choice of k

Naive Bayes

- A probabilistic classifier based on Bayes' theorem with an assumption of independence between features
- It calculates the probability of each class given a set of features and selects the class with the highest probability
- Naive Bayes is efficient, especially for text classification and other highdimensional datasets

Influential Factors for a Good Model

Accuracy

Estimated accuracy during development stage vs. actual accuracy during practical use

Performance

- Time taken for model construction (training time)
- Time taken for the model to infer

Interpretability

- Ease of interpreting decisions by the model
- Understanding and insight provided by the model

Robustness:

- Handling noise and missing values
- Scalability:
 - Ability to handle large datasets
- Other measures, e.g., decision tree size or compactness of rules

Decision Tree

Example of Visual Structure

Decision Tree - Use Cases

- When a series of questions (yes/no) are answered to arrive at a classification decision
 - Ex.:
 - Checklist of symptoms during a doctor's evaluation of a patient

- When "if-then" conditions are preferred to mathematical models
 - Ex.:
 - Financial decisions such as loan approval or fraud detection

Example of a Decision Tree

12

Apply Model to Test Data

Another Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Trees Induction

- Input variables can be continuous or discrete
- Output:
 - A tree that describes the decision flow.
 - Leaf nodes return return class labels and, in some implementations, they also return the probability scores.
 - Trees can be converted to a set of "decision rules"
 - "IF Refund=Yes AND Marital_Status=No THEN Cheat=No with 75% probability"

Decision Tree Induction

• Algorithms:

- CART
- ID3, C4.5, C5
- CHAID
- C-SEP
- G-statistics
- SLIQ
- SPRINT
- ...others

Decision Tree Induction

Principle of Tree Construction

- If all examples are of the same class, create a leaf node labelled by the class
- 2. If examples in the training set are of different classes, determine which attribute should be *selected* as the root of the current tree
- Partition the input examples into subsets according to the values of the selected root attribute
- 4. Construct a decision tree recursively for each subset
- 5. Connect the roots for the subtrees to the root of the whole tree via labelled links

Example

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example

Input Training Examples

Decision Tree Induction

What could random selection of attributes produce?

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Continuous Attributes

- Different ways of handling
 - Let attribute A be a continuous-valued attribute
 - Discretization to form an ordinal categorical attribute
 - ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - $(a_i + a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - Binary split: (A < v) or $(A \ge v)$, OR A in a range
 - Consider all possible splits and finds the best cut
 - Multi-way split: A in one of the ranges
- Can be compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0,

10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Misclassification Error
- Gini Index (CART, SLIQ, SPRINT)
- Information Gain (ID3), Information Gain Ratio (C4.5 and C5)
- Chi-square Statistic (CHAID)

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes
 - Minimum (0.0) when all records belong to one class

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	High	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	Normal	FALSE	Р
Rain	Cool	Normal	TRUE	N
Overcast	Cool	Normal	TRUE	Р
Sunny	Mild	High	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	Normal	FALSE	Р
Sunny	Mild	Normal	TRUE	Р
Overcast	Mild	High	TRUE	Р
Overcast	Hot	Normal	FALSE	Р
Rain	mild	high	TRUE	N

	Parent				
Р	9				
N	N 5				
Error= 5/14					

Weighted Average Error for the Outlook Split

$$Error(Outlook) = \frac{5}{14} \times \frac{2}{5} + \frac{5}{14} \times \frac{2}{5} + \frac{4}{14} \times 0 = \frac{2}{14} + \frac{2}{14} = \frac{4}{14}$$

Weighted Average Error for the Temperature Split

Error(Temperature) =
$$\frac{4}{14} \times \frac{2}{4} + \frac{6}{14} \times \frac{2}{6} + \frac{4}{14} \times \frac{1}{4} = \frac{2}{14} + \frac{2}{14} + \frac{1}{14} = \frac{5}{14}$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	High	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	Normal	FALSE	Р
Rain	Cool	Normal	TRUE	N
Overcast	Cool	Normal	TRUE	Р
Sunny	Mild	High	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	Normal	FALSE	Р
Sunny	Mild	Normal	TRUE	Р
Overcast	Mild	High	TRUE	Р
Overcast	Hot	Normal	FALSE	Р
Rain	mild	high	TRUE	N

	Parent		
Р	9		
N	5		
Error= 5/14			

Weighted Average Error for the Humidity Split

$$Error(Outlook) = \frac{7}{14} \times \frac{3}{7} + \frac{7}{14} \times \frac{1}{7} = \frac{3}{14} + \frac{1}{14} = \frac{4}{14}$$

Weighted Average Error for the Windy Split

Error(Temperature) =
$$\frac{8}{14} \times \frac{2}{8} + \frac{6}{14} \times \frac{3}{6} = \frac{2}{14} + \frac{3}{14} = \frac{5}{14}$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	high	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	normal	FALSE	Р
Rain	Cool	normal	TRUE	N
Overcast	Cool	normal	TRUE	Р
Sunny	Mild	high	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	normal	FALSE	Р
Sunny	Mild	normal	TRUE	Р
Overcast	Mild	high	TRUE	Р
Overcast	Hot	normal	FALSE	Р
Rain	mild	high	TRUE	N

Next: Split each smaller data

Decision Tree Induction Algorithms

Overview

- CART Algorithm
 - Produce binary decision tree
 - Use Gini Index of Impurity as attribute selection measure
- ID3 Family: C4.5 and C5 (See5)
 - Similar to ID3
 - Uses Information Gain Ratio
- CHAID Algorithm
 - Use Chi-square test (χ^2) as attribute selection measure
 - C-SEP: performs better than info. gain and gini index in certain cases
 - G-statistics: has a close approximation to $\chi 2$ distribution
 - ... others
- The algorithms mainly differ in adopted attribute selection measures
- Studies show that there are only marginal differences among the attribute selection measures w.r.t. model accuracy

Tree Construction Algorithm

```
Algorithm TreeConstruct (C: Training Set): Decision Tree
begin
     Tree := \emptyset;
     if C is not empty then
           if all examples in C are of one class then
               Tree := a leaf node labelled by the class tag
           else begin
               <u>select attribute T according to an attribute selection measure as the root;</u>
               partition C into C_1, C_2, ..., C_w by values of T;
               for each C_i (1 \le i \le w) do
                      t_i \leftarrow \text{TreeConstruct } (C_i);
               Tree := a tree T as root and t_1, t_2, ..., t_w as subtrees
               label the links from T to the subtrees with values of T
         end;
      return(Tree);
end;
```

Measure of Impurity: Gini (CHAD Algorithm)

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying most impure set
- Minimum (0.0) when all records belong to one class, implying least impure set

C1	0	
C2	6	
Gini=0.000		

Gini=	0 ₋ 278
C2	5
C1	1

C1	2	
C2	4	
Gini=0.444		

C1	3	
C2	3	
Gini=0.500		

Examples for computing Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

P(C1) = 1/6 P(C2) = 5/6

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on Gini

• When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of weighing partitions:
 - Larger and purer partitions are sought for.

$$Gini(N1) = 1 - (6/7)^2 - (1/7)^2 = 0.245$$

Gini(N2) =
$$1 - (0/5)^2 - (5/5)^2 = 0$$

Gini(Children) =
$$7/12 * 0.245 + 5/12 * 0 = 0.1429$$

Gini(N1) =
$$1 - (4/6)^2 - (2/6)^2 = 0.2222$$

Gini(N2) =
$$1 - (2/6)^2 - (4/6)^2 = 0.2222$$

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	high	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	normal	FALSE	Р
Rain	Cool	normal	TRUE	N
Overcast	Cool	normal	TRUE	Р
Sunny	Mild	high	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	normal	FALSE	Р
Sunny	Mild	normal	TRUE	Р
Overcast	Mild	high	TRUE	Р
Overcast	Hot	normal	FALSE	Р
Rain	mild	high	TRUE	N

	Parent	
Р	9	
N	5	
Gini Index = 1 -(25/196 + 81/196) = 90/196 = 0.4592		

Temperature?

hot mild cool

P 2 P 4 P 3

N 2 N 2

Gini Index = 1-(8/16) = 8/16

Gini Index = 1-(20/36) = 16/36

Gini Index = 1-(10/16) = 6/16

Weighted Average Gini Index for the Outlook Split

$$Gini(Outlook) = \frac{5}{14} \times \frac{12}{25} + \frac{5}{14} \times \frac{12}{25} + \frac{4}{14} \times 0 = \frac{6}{35} + \frac{6}{35} = \frac{12}{35} = 0.3429$$

Weighted Average Gini Index for the Temperature Split

Gini(Temperature) =
$$\frac{4}{14} \times \frac{8}{16} + \frac{6}{14} \times \frac{16}{36} + \frac{4}{14} \times \frac{6}{16}$$

Gini(Temperature) = $\frac{2}{14} + \frac{4}{21} + \frac{3}{28} = \frac{4}{21} + \frac{7}{28} = 0.4405$ 43

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	high	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	normal	FALSE	Р
Rain	Cool	normal	TRUE	N
Overcast	Cool	normal	TRUE	Р
Sunny	Mild	high	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	normal	FALSE	Р
Sunny	Mild	normal	TRUE	Р
Overcast	Mild	high	TRUE	Р
Overcast	Hot	normal	FALSE	Р
Rain	mild	high	TRUE	N

	Parent	
Р	9	
N	5	
Gini Index = 1 –(25/196 + 81/196) = 90/196 = 0.4592		

Weighted Average Gini Index for the Humidity Split

$$Error(Outlook) = \frac{7}{14} \times \frac{24}{49} + \frac{7}{14} \times \frac{12}{49} = \frac{12}{49} + \frac{6}{49} = \frac{18}{49} = 0.3673$$

Weighted Average Gini Index for the Windy Split

Error(Temperature) =
$$\frac{8}{14} \times \frac{24}{64} + \frac{6}{14} \times \frac{18}{36} = \frac{3}{14} + \frac{3}{14} = \frac{6}{14} = 0.4286$$

Outlook	Temperature	Humidity	Windy	Class
sunny	Hot	high	FALSE	N
sunny	Hot	high	TRUE	N
Overcast	Hot	high	FALSE	Р
Rain	Mild	high	FALSE	Р
Rain	Cool	normal	FALSE	Р
Rain	Cool	normal	TRUE	N
Overcast	Cool	normal	TRUE	Р
Sunny	Mild	high	FALSE	N
Sunny	Cool	normal	FALSE	Р
Rain	Mild	normal	FALSE	Р
Sunny	Mild	normal	TRUE	Р
Overcast	Mild	high	TRUE	Р
Overcast	Hot	normal	FALSE	Р
Rain	mild	high	TRUE	N
Sunny Rain Sunny Overcast Overcast	Cool Mild Mild Mild Hot	normal normal normal high normal	FALSE FALSE TRUE TRUE FALSE	P P P P

Next: Split each smaller data

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType		
	Family	Sports	Luxury
C 1	1	2	1
C2	4	1	1
Gini		0.393	

Two-way split (find best partition of values)

	CarType	
	{Sports, Luxury} {Family}	
C1	3	1
C2	2	4
Gini	0.400	

	CarType	
	{Sports}	{Family, Luxury}
C1	2	2
C2	1	5
Gini	0.419	

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v
 and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No)	N	0	Ye	s	Ye	s	Υe	es	N	0	N	0	N	lo		No	
											Ta	xabl	e In	com	е								
Sorted Values	→		60		70		7	5	85	;	90)	9	5	10	00	12	20	12	25		220	
Split Positions	3 →	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	0
		<=	>	<=	>	"	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	75	0.3	343	0.4	17	0.4	100	<u>0.3</u>	<u>800</u>	0.3	343	0.3	75	0.4	00	0.4	20

Decision Tree for the Iris dataset: using two attributes

```
In [19]:
                                                                                                         htree clf.predict([[3, 2.5]])
In [15]:  iris = load iris(as frame=True)
             columns to use = ["petal length (cm)", "petal width (cm)"]
                                                                                                  Out[19]: array([2])
             X iris = iris.data[columns to use].values
             v iris = iris.target
                                                                                                         tree_clf.predict([[5, 1.5]])
                                                                                               In [16]:
             tree clf = DecisionTreeClassifier(max depth=2, random state=42)
             tree_clf = tree_clf.fit(X_iris, y_iris)
                                                                                                  Out[16]: array([1])
      In [18]: M plt.figure(figsize=(10,8))
                                                                                               In [17]:

★ tree_clf.predict([[.5, 1.5]])

              plot tree(tree clf, filled=True)
              plt.title("Decision tree trained on two attributes")
              plt.show()
                                                                                                  Out[17]: array([0])
                               Decision tree trained on two attributes
                                X[0] \le 2.45
                                aini = 0.667
                              samples = 150
                            value = [50, 50, 50]
                                                                           In [20]:
                                                                                      r = export text(tree clf, feature names=columns to use)
                                                                                        print(r)
                                                                                          --- petal length (cm) <= 2.45
                                           X[1] \le 1.75
                                                                                             |--- class: 0
                      gini = 0.0
                                             aini = 0.5
                                                                                          --- petal length (cm) > 2.45
                   samples = 50
                                          samples = 100
                                                                                             --- petal width (cm) <= 1.75
                 value = [50, 0, 0]
                                         value = [0, 50, 50]
                                                                                                 --- class: 1
                                                                                              --- petal width (cm) > 1.75
                                                                                                  --- class: 2
                                gini = 0.168
                                                        qini = 0.043
                               samples = 54
                                                       samples = 46
                             value = [0, 49, 5]
                                                     value = [0, 1, 45]
```

Decision Tree for the Iris dataset: using all the four attributes

```
X_iris = iris.data.values
y_iris = iris.target
tree_clf = DecisionTreeClassifier(max_depth=4, random_state=42)
tree_clf = tree_clf.fit(X_iris, y_iris)

tree_clf.fit(X_iris, y_iris)
plt.figure(figsize=(10,8))
plot_tree(tree_clf, filled=True)
plt.title("Decision tree trained on all attributes")
plt.show()
```

Decision tree trained on all attributes

[2] [1]

[0]

Information Gain (ID3 Algorithm)

- An information system:
 - A set of n possible events E₁, E₂,..., E_n;
 - Each event may occur with a probability $p(E_k)$ ($1 \le k \le n$)
 - $p(E_1) + p(E_2) + ... + p(E_n) = 1.$
- Given a training set, each attribute can be considered as such an information system (e.g. Outlook).
- Classification involves two information systems:
 - Attribute A (e.g. Outlook): events: sunny, overcast and rain; event probabilities: p(sunny) = 5/14, p(overcast) = 4/14, p(rain) = 5/14
 - Class attribute: events: P and N;
 event probabilities: p(P) = 9/14, p(N) = 5/14

Information Gain

Self-information of event E: the amount of information being conveyed when E occurs, defined as:

$$I(E) = \log \frac{1}{p(E)} = -\log p(E)$$

If someone says "I have something" This does not provide any information. I(E) = 0 If we know that someone has a coin, and they say "we have a coin" again, no information "I was born in a day" No information

[&]quot;I was born in January" Now this provided us with some information. I(E) = log(1/(1/12)), 1 out of twelve months "I have a number of two digits, and it is 15 .. I(E) = log(1/(1/100))

Entropy

 The average of the self-information of all events in an information system S, known as *entropy*, is defined as: The expected amount of information (entropy)

For any random variable S that follows a probability distribution P

$$H(S) = \sum_{k=1}^{N} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{N} p(E_k) \cdot \log p(E_k)$$

H(S) represents degree of uncertainty. When one event always occurs, i.e. the least uncertain, H(S) = 0. When all events have equal chance to occur, i.e. the most uncertain, $H(S) = \log N$.

C1	0				
C2	16				
Enropy H(S)=0.000					

C1	4					
C2	12					
Enropy H(S) = 0.811						

C1	6				
C2	10				
Enropy H(S) = 0.9644					

C1	8
C2	8
Enropy	H(S) = 1

- Entropy will be low if a message is highly predictable.
- On the other hand, if the message is highly unpredictable, then the entropy will be high.

Information Gain (cont'd)

 Conditional self-information of event E of system S₁ given that event F of system S₂ has occurred is defined as:

$$I(E | F) = \log \frac{1}{p(E | F)} = -\log p(E | F) = -\log \frac{p(E \cap F)}{p(F)}$$

- The *expected information* of system S_1 in the presence of system S_2 , is defined as the average of conditional self-information of all events in S_1 :

$$H(S_1 | S_2) = \sum_{i=1}^n \sum_{j=1}^m p(E_i \wedge F_j) \cdot I(E_i | F_j) = -\sum_{i=1}^n \sum_{j=1}^m p(E_i \wedge F_j) \cdot \log \frac{p(E_i \wedge F_j)}{p(F_j)}$$

Information Gain (cont'd)

- The information gain, also known as mutual information between S_1 and S_2 , is defined as

$$Gain(S_1) = H(S_1) - H(S_1 | S_2)$$

- Rationale behind information gain:
 - H(S) represents degree of uncertainty. When one event always occurs, i.e. the least uncertain, H(S) = 0. When all events have equal chance to occur, i.e. the most uncertain, H(S) = log N.
 - Gain(S₁) signifies a reduction of uncertainty in system S₁ before and after system
 S₂ is present.
 - In classification, Gain(A) represents a reduction of uncertainty over class attribute before and after attribute A is chosen as the root

Algorithm Illustration

60								
Outlook	Temperature	Humidity	Windy	Class				
sunny	hot	high	FALSE	N				
sunny	hot	high	TRUE	N				
overcast	hot	high	FALSE	Р				
rain	mild	high	FALSE	Р				
rain	cool	normal	FALSE	Р				
rain	cool	normal	TRUE	N				
overcast	cool	normal	TRUE	Р				
sunny	mild	high	FALSE	N				
sunny	cool	normal	FALSE	Р				
rain	mild	normal	FALSE	Р				
sunny	mild	normal	TRUE	Р				
overcast	mild	high	TRUE	Р				
overcast	hot	normal	FALSE	Р				
rain	mild	high	TRUE	N				

$$H(S) = \sum_{k=1}^{n} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{n} p(E_k) \cdot \log p(E_k)$$

$$H(Class) = -\frac{9}{9+5} \cdot \log_2 \frac{9}{9+5} - \frac{5}{9+5} \cdot \log_2 \frac{5}{9+5} \approx 0.94$$

Algorithm Illustration

$$H(Class) = -\frac{9}{9+5} \cdot \log_2 \frac{9}{9+5} - \frac{5}{9+5} \cdot \log_2 \frac{5}{9+5} \approx 0.94$$

ID3 Algorithm

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	FALSE	N
sunny	hot	high	TRUE	N
overcast	hot	high	FALSE	Р
rain	mild	high	FALSE	Р
rain	cool	normal	FALSE	Р
rain	cool	normal	TRUE	N
overcast	cool	normal	TRUE	Р
sunny	mild	high	FALSE	N
sunny	cool	normal	FALSE	Р
rain	mild	normal	FALSE	Р
sunny	mild	normal	TRUE	Р
overcast	mild	high	TRUE	Р
overcast	hot	normal	FALSE	Р
rain	mild	high	TRUE	N

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	FALSE	N
sunny	hot	high	TRUE	N
sunny	mild	high	FALSE	N
sunny	cool	normal	FALSE	Р
sunny	mild	normal	TRUE	Р

Outlook	Temperature	Humidity	Windy	Class
overcast	hot	high	FALSE	Р
overcast	cool	normal	TRUE	Ρ
overcast	mild	high	TRUE	Ρ
overcast	hot	normal	FALSE	Ρ

Outlook	Temperature	Humidity	Windy	Class
rain	mild	high	FALSE	Р
rain	cool	normal	FALSE	Р
rain	cool	normal	TRUE	N
rain	mild	normal	FALSE	Р
rain	mild	high	TRUE	N

$$H(S) = \sum_{k=1}^{n} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{n} p(E_k) \cdot \log p(E_k)$$

$$H(Class \mid Outlook = sunny) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} \approx 0.971$$

$$H(S) = \sum_{k=1}^{n} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{n} p(E_k) \cdot \log p(E_k)$$

$$H(S) = \sum_{k=1}^{n} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{n} p(E_k) \cdot \log p(E_k)$$

$$H(Class \mid Outlook = overcast) = -\frac{4}{4}\log_2\frac{4}{4} = 0 \qquad H(Class \mid Outlook = rain) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} \approx 0.971$$

$$H(S) = \sum_{k=1}^{\infty} p(E_k) \cdot I(E_k) = -\sum_{k=1}^{\infty} p(E_k) \cdot \log p(E_k)$$

$$H(Class \mid Outlook) = \frac{5}{14}H(Class \mid Outlook = sunny) + \frac{4}{14}H(Class \mid Outlook = overcast) + \frac{5}{14}H(Class \mid Outlook = rain)$$

$$Gain(Outlook) = H(Class) - H(Class \mid Outlook) = 0.94 - 0.694 = 0.246$$

Algorithm Illustration

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	FALSE	N
sunny	hot	high	TRUE	N
overcast	hot	high	FALSE	Р
rain	mild	high	FALSE	Р
rain	cool	normal	FALSE	Р
rain	cool	normal	TRUE	N
overcast	cool	normal	TRUE	Р
sunny	mild	high	FALSE	N
sunny	cool	normal	FALSE	Р
rain	mild	normal	FALSE	Р
sunny	mild	normal	TRUE	Р
overcast	mild	high	TRUE	Р
overcast	hot	normal	FALSE	Р
rain	mild	high	TRUE	N

Gain(Outlook) = 0.246 bits

Gain(Temperature) = 0.029 bits Gain(Humidity) = 0.151 bits Gain(Windy) = 0.048 bits

... Outlook is chosen as the root.

Algorithm Illustration

Training Set(outlook=sunny)

Temperature	Humidity	Windy	Class
hot	high	FALSE	Ν
hot	high	TRUE	Ν
mild	high	FALSE	N
cool	normal	FALSE	Р
mild	normal	TRUE	Р

Gain(Temperature) = 0.571 bits

Gain(Humidity) = 0.971 bits

Gain(Windy) = 0.020 bits

∴ Humidity is chosen as the root.

Algorithm Illustration

Training Set(outlook=rain)

Temperature	Humidity	Windy	Class
mild	high	FALSE	Р
cool	normal	FALSE	Р
cool	normal	TRUE	Ν
mild	normal	FALSE	Р
mild	high	TRUE	N

Gain(Temperature) = 0.020 bits
Gain(Humidity) = 0.020 bits
Gain(Windy) = 0.971 bits
∴ Windy is chosen as the root.

Other Attribute Selection Measures

- Information Gain Ratio
 - GainRatio(A) = Gain(A)/H(A), e.g. GainRatio(Outlook) ≈ 0.156
 - Used to avoid (by normalization) bias towards attributes with many values

Gini Index of Impurity

• Use Gini impurity function: Based on the concept of reducing impurity (mixture of different classes) of data set by selecting a right attribute

- Chi-square (χ^2) Statistic

- Based on the concept of measuring the degree of dependence of class to a chosen attribute
- and others...

Chi-square (χ^2) statistic

- χ^2 : measure for the degree of association/dependence between two categorical variables; a given attribute and the class variable.
- Given N examples of w classes, C_1 , C_2 , ..., C_w and an attribute A of v values, a_1 , a_2 , ..., a_v , the (χ^2) function is defined as follows:

$$\chi^2 = \sum_{j=1}^{v} \sum_{i=1}^{w} \frac{(x_{ij} - E_{ij})^2}{E_{ij}}$$

where x_{ij} is the actual frequency that examples have attribute value \mathbf{a}_j and class C_i , and E_{ij} is the expected frequency.

with the assumption that the class and the attribute are not dependant on each other, $E_{ij}=\frac{n_i\times n_j}{N}$, where

 n_i is the number of records with class Ci

 n_i is the number of records with attribute A with value aj

Chi-square (χ^2) statistic

$$n_P = 9$$

of records with class P

$$\chi^2 = \sum_{i=1}^{v} \sum_{i=1}^{w} \frac{(x_{ij} - E_{ij})^2}{E_{ij}}$$

$$n_{sunny} = 5$$

of records with Attribute=sunny

$$x_{P,sunny} = 2$$

$$E_{P,sunny} = \frac{n_P \times n_{sunny}}{n} = \frac{9 \times 5}{14}$$

• $C = \{P, N\}$.. $A = \{sunny, overcast, rain\}$

•
$$\chi^{2}(Outlook) = \left(\frac{\left(\left(2-\frac{9\times5}{14}\right)^{2}\right)}{\left(\frac{9\times5}{14}\right)} + \frac{\left(\left(3-\frac{5\times5}{14}\right)^{2}\right)}{\left(\frac{5\times5}{14}\right)}\right) + \left(\frac{\left(\left(4-\frac{9\times4}{14}\right)^{2}\right)}{\left(\frac{9\times4}{14}\right)}\right) + \left(\frac{\left(\left(3-\frac{9\times5}{14}\right)^{2}\right)}{\left(\frac{9\times5}{14}\right)} + \frac{\left(\left(2-\frac{5\times5}{14}\right)^{2}\right)}{\left(\frac{5\times5}{14}\right)}\right) \approx 29.653$$

- Similarly,
 - $\chi^2(Temperature) \approx 7.985$,
 - $\chi^2(Humidity) \approx 39.2$
 - $\chi^2(Windy) \approx 13.067$
- Thus, Humidity is chosen as the root of the tree.

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	FALSE	N
sunny	hot	high	TRUE	Ν
overcast	hot	high	FALSE	Р
rain	mild	high	FALSE	Р
rain	cool	normal	FALSE	Р
rain	cool	normal	TRUE	Ν
overcast	cool	normal	TRUE	Р
sunny	mild	high	FALSE	Ν
sunny	cool	normal	FALSE	Р
rain	mild	normal	FALSE	Р
sunny	mild	normal	TRUE	Р
overcast	mild	high	TRUE	Р
overcast	hot	normal	FALSE	Р
rain	mild	high	TRUE	N
rain	mild	high	TRUE	N 63

- Ex.: classify loan applicants to:
 - → Not-/likely to repay, based on income and existing debt

Split 1

• Split 2

• Split 3

- Resulting model
 - Boundaries are "Rectilinear" = Parallel to the axes


```
In [27]: | import numpy as np
             import matplotlib.pyplot as plt
             from sklearn.datasets import load_iris
             from sklearn.tree import DecisionTreeClassifier
             from sklearn.inspection import DecisionBoundaryDisplay
             n classes = 3
             plot colors = "ryb"
             plot_step = 0.02
             pair_of_columns = [2, 3]
             # We only take the two corresponding features
             X = iris.data.values[:, pair]
            y = iris.target
             tree_clf = DecisionTreeClassifier().fit(X, y)
             plt.figure(figsize=(10,8))
             plot tree(tree clf, filled=True)
             plt.title("Decision tree trained on two attributes")
             plt.show()
```


Decision surface of decision trees trained on pairs of features

Decision Boundries (Multivariate/Multi-variable)

- A multi-variable split, in the form of a linear equation* is more general
 - Takes the form:

$$\mathbf{w}_{m}^{T}\mathbf{x} + w_{0} > 0$$

where \mathbf{w}_{m}^{T} is the vector of weights

- Requires all attributes to be numeric
- CART was the original algorithm for generating multi-variable trees
- Generating the linear equation is not cheap
- (*) Doesn't have to be linear!

