Name: Yashesh Kumar Tiwari¶

Group No: 316

Dataset: heart-disease-uci

```
In [38]: #import libraries
         import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
         import matplotlib.pyplot as plt
         import seaborn as sns
         #import pandas profiling as pp
         from sklearn.model selection import train test split
         from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, classific
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.pipeline import make pipeline
         from sklearn.preprocessing import RobustScaler
         from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC
         import plotly.express as px
         sns.set theme(style='darkgrid')
 In [2]: | df = pd.read csv("heart.csv")
 In [3]:
                 Print at least 5 rows for sanity check to identify all the features prese
         df.head()
 Out[3]:
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

```
In [4]:
         # b.
                  Print the description
         df.describe
Out[4]: <bound method NDFrame.describe of
                                                                      trestbps
                                                                                  chol
                                                                                         fbs
                                                       age
                                                            sex
                                                                  ср
                                                                                               reste
              thalach
                        exang
                                oldpeak
         cg
         0
                63
                       1
                            3
                                     145
                                            233
                                                    1
                                                               0
                                                                       150
                                                                                 0
                                                                                         2.3
                37
                            2
         1
                       1
                                     130
                                            250
                                                    0
                                                               1
                                                                       187
                                                                                 0
                                                                                         3.5
         2
                41
                       0
                            1
                                     130
                                            204
                                                               0
                                                                       172
                                                                                 0
                                                                                         1.4
                                                    0
         3
                56
                       1
                            1
                                            236
                                                               1
                                                                       178
                                                                                 0
                                                                                         0.8
                                     120
                                                    0
         4
                57
                       0
                            0
                                     120
                                            354
                                                    0
                                                               1
                                                                       163
                                                                                 1
                                                                                         0.6
                                     . . .
                                                                                         . . .
         298
                57
                       0
                            0
                                     140
                                            241
                                                                       123
                                                                                 1
                                                                                         0.2
                                                    0
                                                               1
         299
                45
                       1
                            3
                                     110
                                            264
                                                    0
                                                               1
                                                                       132
                                                                                 0
                                                                                         1.2
         300
                68
                       1
                            0
                                            193
                                                               1
                                                                                 0
                                                                                         3.4
                                     144
                                                    1
                                                                       141
                                                                                         1.2
         301
                57
                       1
                            0
                                     130
                                            131
                                                    0
                                                               1
                                                                       115
                                                                                 1
         302
                57
                       0
                            1
                                     130
                                            236
                                                    0
                                                               0
                                                                       174
                                                                                         0.0
                                                                                 0
               slope
                            thal
                                   target
                       ca
         0
                    0
                        0
                               1
                                         1
                               2
         1
                    0
                        0
                                         1
                    2
                               2
         2
                        0
                                         1
         3
                    2
                               2
                        0
                                         1
         4
                    2
                               2
                        0
                                         1
         298
                    1
                        0
                               3
                                         0
         299
                    1
                        0
                               3
                                         0
                        2
         300
                               3
                    1
                                         0
         301
                    1
                        1
                               3
                                         0
         302
                    1
                        1
                               2
                                         0
         [303 rows x 14 columns]>
         #b. Print the shape of the dataset
```

```
In [5]: #b. Print the shape of the dataset df.shape
```

Out[5]: (303, 14)

Data Visualization

Out[7]: <AxesSubplot:>


```
In [9]: #Correlation

def find_correlational_map(data):
    plt.figure(figsize=(16,12))
    sns.heatmap(data.corr(), annot=True, cmap='OrRd')
    plt.title('Correlational Map', weight='bold')
    print('---'*50)
    print(data.corr().target.sort_values(ascending = False))
    plt.tight_layout()

find_correlational_map(df)
```

```
target
            1.000000
            0.433798
ср
           0.421741
thalach
slope
           0.345877
           0.137230
restecg
fbs
           -0.028046
chol
           -0.085239
trestbps
           -0.144931
age
           -0.225439
           -0.280937
sex
thal
           -0.344029
           -0.391724
ca
oldpeak
           -0.430696
exang
           -0.436757
Name: target, dtype: float64
```


1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

--0.4

```
In [12]: fig = plt.figure(figsize=(50,24))
         gs = fig.add_gridspec(4,3)
         ax00 = fig.add subplot(gs[0,0])
         ax01 = fig.add_subplot(gs[0,1])
         ax02 = fig.add subplot(gs[0, 2])
         ax10 = fig.add subplot(gs[1,0])
         ax11 = fig.add subplot(gs[1,1])
         ax12 = fig.add_subplot(gs[1,2])
         ax20 = fig.add subplot(gs[2,0])
         ax21 = fig.add_subplot(gs[2,1])
         ax22 = fig.add_subplot(gs[2,2])
         ax30 = fig.add_subplot(gs[3,0])
         ax00.set_title('age', fontsize=20)
         ax01.set_title('sex', fontsize=20)
         ax02.set_title('chest pain', fontsize=20)
         ax10.set title('blood pressure', fontsize=20)
         ax11.set_title('cholestoral', fontsize=20)
         ax12.set_title('fasting blood sugar', fontsize=20)
         ax20.set title('resting electrocardiographic', fontsize=20)
         ax21.set title('maximum heart rate', fontsize=20)
         ax22.set title('exercise induced angina', fontsize=20)
         ax30.set title('old peak', fontsize=20)
         ax00.tick params(labelsize=12)
         ax01.tick params(labelsize=12)
         ax02.tick_params(labelsize=12)
         ax10.tick params(labelsize=12)
         ax11.tick params(labelsize=12)
         ax12.tick params(labelsize=12)
         ax20.tick_params(labelsize=12)
         ax21.tick params(labelsize=12)
         ax22.tick_params(labelsize=12)
         ax30.tick params(labelsize=12)
         sns.histplot(data = df,x="target", kde=False, ax =ax00, hue="age", palette="Set3"
         sns.histplot(data = df,x="target", kde=False, ax =ax01, hue="sex", palette="Set3"
         sns.histplot(data = df,x="target", kde=False, ax =ax02, hue="cp", palette="Set3"
         sns.histplot(data = df,x="target", kde=False, ax =ax10, hue="trestbps", palette="
         sns.histplot(data = df,x="target", kde=False, ax =ax11, hue="chol", palette="Set
         sns.histplot(data = df,x="target", kde=False, ax =ax12, hue="fbs", palette="Set3"
         sns.histplot(data = df,x="target", kde=False, ax =ax20, hue="restecg", palette="5
         sns.histplot(data = df,x="target", kde=False, ax =ax21, hue="thalach", palette="5")
         sns.histplot(data = df,x="target", kde=False, ax =ax22, hue="exang", palette="Set
         sns.histplot(data = df,x="target", kde=False, ax =ax30, hue="oldpeak", palette="5
         fig.subplots adjust(top=0.92)
         fig.suptitle('Features vs Target', fontsize="28");
```


EDA (Exploratory Data Analysis)

```
In [14]: # check for how many womens are prone to heart-attack
         women_stroke = df.loc[df.sex == 0]['target']
         women_stroke_percentage = sum(women_stroke)/len(women_stroke)
         print('The % of womens prone to heart-attack: {}%'.format(women_stroke_percentage)
         The % of womens prone to heart-attack: 75.0%
In [15]: women = df[df['sex']==0]
         men = df[df['sex']==1]
```

Check for the following relationship;

ср

trtbps

chol

restecg

thalachh

oldpeak

```
In [26]: def cp_density(women, men):
             plt.figure(figsize=(16,6))
             sns.kdeplot(women['cp'], label = 'Women cp values', shade = True, color='red'
             sns.kdeplot(men['cp'], label = 'men cp values', shade = True, color = 'blue')
             plt.legend()
             plt.title('Cp values comparision', weight='bold')
             plt.xlabel('Cp values')
         def resting blood pressure comparision(women, men):
             plt.figure(figsize=(16,6))
             sns.kdeplot(women['trestbps'], label = 'Women rbp values', shade = True, cold
             sns.kdeplot(men['trestbps'], label = 'men rbp values', shade = True, color =
             plt.title('Resting blood pressure values comparision', weight='bold')
             plt.legend()
             plt.xlabel('trestbps values')
         def cholestarol(women, men):
             plt.figure(figsize=(16,6))
             sns.kdeplot(women['chol'], label = 'Women cholestoral values', shade = True,
             sns.kdeplot(men['chol'], label = 'men cholestoral values', shade = True, cold
             plt.title('Cholestarol values comparision', weight='bold')
             plt.legend()
             plt.xlabel('Cholestral values')
         def resting electrocardiographic(women, men):
             plt.figure(figsize=(16,6))
             sns.kdeplot(women['restecg'], label = 'Women resting electrocardiographic val
             sns.kdeplot(men['restecg'], label = 'men resting electrocardiographic values
             plt.title('resting electrocardiographic values comparision', weight='bold')
             plt.legend()
             plt.xlabel('resting electrocardiographic values')
         def maximum heartrate achieved(women, men):
             plt.figure(figsize=(16,6))
             sns.kdeplot(women['thalach'], label = 'Women cp values', shade = True, color=
             sns.kdeplot(men['thalach'], label = 'men cp values', shade = True, color = ')
             plt.title('Maximum heart-rate achieved values comparision', weight='bold')
             plt.legend()
             plt.xlabel('Maximum heart-rate achieved values')
```

In [20]: cp_density(women, men)

- This shows that most of the men's are free from heart-attacks.
- Both the genders show's spike for non-anginal pain. Women has the great tendency for non-anginal chest pain.

- Men's Resting blood pressure values has the probable density of 120.
- Women's Resting blood pressure values has the probable density of 135.

In [22]: cholestarol(women, men)

- As we can see here that, cholestoral values of range 200 270 falls majorly under womens category.
- It's interesting that only the men's are showing values above 350.

In [24]: resting_electrocardiographic(women, men)

• Predominently women shows probable or definite left ventricular hypertrophy by Estes.

In [27]: maximum_heartrate_achieved(women, men)

There are lot of women's who have achived maximum heart-rate than men.

In [28]: plt.figure(figsize=(10,10))
sns.pairplot(df, hue='target')

Out[28]: <seaborn.axisgrid.PairGrid at 0x1b8fd5ba670>

<Figure size 720x720 with 0 Axes>


```
In [30]: def eda_for_several_attributes(data):
               features = ['slope','thalach','age','ca']
               for var in features:
                    plt.figure(figsize=(16,6))
                    g = sns.scatterplot(data = data, x = 'oldpeak', y = data[var], hue = 'tar
                    plt.title(var, weight='bold')
                    plt.grid(linestyle = '--', axis = 'y')
                    plt.show()
          eda_for_several_attributes(df)
                                                         slope
            2.00
            1.75
            1.50
            1.25
           1.00
            0.50
            0.25
            0.00
                                                         oldpeak
                                                         thalach
             200
             180
             120
             80
                                                         oldpeak
           96
50
                                                        3
oldpeak
```


- The less maximum heart-rate achieved the less chances of heart-attack.
- The slp value of 1 shows feable chances of heart-attack.

There is a spike in for heart-attack at the age of 41, 44, 51, 52,54.

Data Preprocessing

```
In [33]: df.isnull().sum()
Out[33]: age
                      0
          sex
          ср
                      0
          trestbps
                      0
          chol
          fbs
                      0
          restecg
                      0
          thalach
          exang
          oldpeak
          slope
                      0
          ca
          thal
          target
          dtype: int64
```

- · No null or missing value.
- No outlier.
- · Feature Engineering is not reugire on this dataset.
- No feature transformation required.

4. Data Preparation

Data Splitting

Model Building

```
In [39]: # Let's create a pipline
         pipeline = make pipeline(RobustScaler()) # creating pipeline for model building
         LR = make pipeline(pipeline, LogisticRegression(random state=0)) # LogisticRegres
         DT = make pipeline(pipeline, DecisionTreeClassifier(random state=0)) # DecisionTr
         RF = make_pipeline(pipeline, RandomForestClassifier(random_state=0)) # RandomFore
         AC = make_pipeline(pipeline, AdaBoostClassifier(random_state=0)) # Adaboost Class
         NB = make pipeline(pipeline, GaussianNB()) # Naive bayes pipeline
         KN = make pipeline(pipeline, KNeighborsClassifier()) # KNeighbor pipeline
         SV = make_pipeline(pipeline, SVC(random_state=0)) # Support vector pipeline
In [40]: # creating model_dict
         model_dictionary = {
             'Logistic Regression':LR,
             'DecisionTree Classifier':DT,
             'RandomForest_classifier':RF,
             'Adaboost Classifier':AC,
             'Naivebayes Classifier':NB,
             'KNeighbors_classifier':KN,
             'Support Vector':SV
         }
         print(model dictionary)
         {'Logistic Regression': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('logisticregression', LogisticRegression(random state=0))]),
          'DecisionTree Classifier': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('decisiontreeclassifier',
                          DecisionTreeClassifier(random state=0))]), 'RandomForest class
         ifier': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('randomforestclassifier',
                          RandomForestClassifier(random state=0))]), 'Adaboost Classifie
         r': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('adaboostclassifier', AdaBoostClassifier(random state=0))]),
          'Naivebayes Classifier': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('gaussiannb', GaussianNB())]), 'KNeighbors classifier': Pipeli
         ne(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('kneighborsclassifier', KNeighborsClassifier())]), 'Support_Ve
         ctor': Pipeline(steps=[('pipeline',
                          Pipeline(steps=[('robustscaler', RobustScaler())])),
                          ('svc', SVC(random state=0))])}
```

```
In [48]: # define a function to fit the model and return it's accuracy, classification reg
def model_fitting(model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print('The accuracy score of the model is: {}%'.format(accuracy_score(y_test, print('----'*20))
    print(confusion_matrix(y_test, y_pred))
    print(classification_report(y_test, y_pred))
```

Selecting the best model

```
In [49]: for name, model in model dictionary.items():
           print('---'*10)
           print(name)
           model fitting(model)
        Logistic Regression
        The accuracy score of the model is: 83.60655737704919%
        [[21 6]
         [ 4 30]]
                    precision recall f1-score
                                                support
                                 0.78
                  0
                         0.84
                                          0.81
                                                     27
                  1
                         0.83
                                 0.88
                                          0.86
                                                     34
                                          0.84
                                                     61
           accuracy
           macro avg
                         0.84
                                 0.83
                                          0.83
                                                     61
        weighted avg
                        0.84
                                 0.84
                                          0.84
                                                     61
        DecisionTree Classifier
        The accuracy score of the model is: 78.68852459016394%
        [[22 5]
         [ 8 26]]
                    precision recall f1-score
                                                support
                         0.73
                                 0.81
                                          0.77
                                                     27
                  1
                         0.84
                                 0.76
                                          0.80
                                                     34
                                          0.79
                                                     61
           accuracy
           macro avg
                        0.79
                                 0.79
                                          0.79
                                                     61
        weighted avg
                         0.79
                                 0.79
                                          0.79
                                                     61
        -----
        RandomForest_classifier
        The accuracy score of the model is: 88.52459016393442%
        [[24 3]
         [ 4 30]]
                    precision recall f1-score
                                               support
                  0
                         0.86
                                 0.89
                                          0.87
                                                     27
                  1
                         0.91
                                 0.88
                                          0.90
                                                     34
           accuracy
                                          0.89
                                                     61
           macro avg
                        0.88
                                 0.89
                                          0.88
                                                     61
        weighted avg
                        0.89
                                 0.89
                                          0.89
                                                     61
        ----
        Adaboost_Classifier
        The accuracy score of the model is: 90.1639344262295%
        ______
```

	_	7.0apo 10_110a11	. alocado adi oa	,
[[25 2]				
[4 30]]				
	precision	recall	f1-score	support
0			0.89	
1	0.94	0.88	0.91	34
accuracy				61
macro avg				
weighted avg	0.90	0.90	0.90	61
Naivebayes_C] 			05 04500	
	score of the		: 85.24590	163934425%
[[21 6] [3 31]]				
[2 21]]	precision	recall	f1-score	support
	bi ectatori	recarr	11-30016	suppor c
0	0 88	0.78	0.82	27
1			0.87	
1	0.04	0.31	0.0/	34
accuracy			a 25	61
macro avg	0.86	0 81		
weighted avg				
weighted avg	0.85	0.05	0.05	01
KNeighbors_c] The accuracy 		model is	: 85.245903	L63934425%
[[22 5]				
[4 30]]			_	
	precision	recall	f1-score	support
_	2 25	0.01	2 22	a=
0		0.81		27
1	0.86	0.88	0.87	34
			0.05	
accuracy	0.05	0.05	0.85	
macro avg				
weighted avg				
	0.85	0.85	0.85	61
Support_Vecto	0.85		0.85	61
· · · · · · · · · · · · · · · · · · ·			0.85	61
The accuracy	 or			
The accuracy	or score of the			590163934%
	or score of the		: 86.88524!	590163934%
	or score of the		: 86.88524!	590163934%
[[22 5]	or score of the		: 86.88524!	590163934%
	or score of the	e model is	: 86.88524	590163934%
[[22 5]	or score of the	e model is	: 86.88524	590163934%
[[22 5]	score of the	e model is	: 86.88524	590163934%
[[22 5] [3 31]]	score of the	model is recall	: 86.88524! f1-score	590163934% support
[[22 5] [3 31]]	score of the	model is recall	: 86.88524! f1-score 0.85	590163934% support 27
[[22 5] [3 31]]	score of the	model is recall	: 86.88524! f1-score 0.85	590163934% support 27

macro	avg	0.87	0.86	0.87	61
weighted	avg	0.87	0.87	0.87	61

As we can see:

Ada boost has got 90% accuracy with only 6 misclassified classes. It' has a precision of 0.86 for classes 0 and 0.94 for classes 1, which is better than all other algorithms. **Let's use Adaboost Model**

```
In [51]: model = AdaBoostClassifier(random_state=0)
    model.fit(X_train, y_train)
    #model.save("heart_attack.h5")

Out[51]: AdaBoostClassifier(random_state=0)

In [52]: y_pred = model.predict(X_test)
    accuracy_score(y_test, y_pred)

Out[52]: 0.9016393442622951
```

Confusion matrix

```
In [53]: def find_confusion_matrix(y_test, y_pred):
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, cmap='OrRd')
    plt.title('Confusion Matrix', weight='bold')
    print(classification_report(y_test, y_pred))
    plot_roc_curve(model, X_test, y_test)
find_confusion_matrix(y_test, y_pred)
```

	precision	recall	f1-score	support
0	0.86	0.93	0.89	27
1	0.94	0.88	0.91	34
accuracy			0.90	61
macro avg	0.90	0.90	0.90	61
weighted avg	0.90	0.90	0.90	61

Accuracy

In [54]: print('The accuracy of the model is: {}%'.format(round(accuracy_score(y_test, y_r

The accuracy of the model is: 90.16%