Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 8

Aufgabe 8.1 (3+2 Punkte)

Ein ungerichteter Graph $G_n = (\mathbb{G}_n, E), n \geq 5$, heißt ein Skorpion, falls er den folgenden Bedingungen genügt:

- Er hat einen Stachel, dies ist ein Knoten vom Grad 1.
- Er hat einen Körper, dies ist ein Knoten vom Grad n-2.
- Er hat einen Hinterleib, dies ist ein Knoten vom Grad 2, welcher mit dem Stachel und mit dem Körper direkt verbunden ist.
- a) Zeichnen Sie einen möglichen Graphen G_7
- b) Wie lässt sich anhand der Adjazenzmatrix erkennen, ob ein gegebener Graph ein Skorpion ist?

Lösung 8.1

b) In der Adjazenzmatrix A existiert eine Zeile i, die genau eine 1 bei Eintrag $A_{i,j}$ besitzt. Eine weitere Zeile j hat genau zwei Einsen (an den Einträgen $A_{j,i}$ und $A_{j,k}$).

Eine andere Zeile k hat entweder Eintrag $A_{k,k}=0=A_{k,i}$ und eine Kante zu allen anderen Knoten, oder aber $A_{k,k}=1=A_{k,j}, A_{k,i}=0$ und n-5 Kanten zu den übrigen Knoten.

Hinweis: Schlingen sind in den gegebenen Bedingungen (außer am Stachel und Hinterleib) nicht ausgeschlossen.

Aufgabe 8.2 (3+2+3 Punkte)

Gegeben sei der Graph $G = (\mathbb{G}_6, E)$ mit folgender Adjazenzmatrix A.

$$A = \left(\begin{array}{ccccc} 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{array}\right)$$

- a) Zeichnen Sie den Graphen G.
- b) Berechnen Sie A^2 .
- c) Welcher der folgenden drei Graphen ist ein Teilgraph von G? Begründen Sie Ihre Antwort

Lösung 8.2

b)

$$A^{2} = \begin{pmatrix} 3 & 0 & 3 & 0 & 2 & 0 \\ 0 & 3 & 0 & 3 & 0 & 2 \\ 3 & 0 & 3 & 0 & 2 & 0 \\ 0 & 3 & 0 & 3 & 0 & 2 \\ 2 & 0 & 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 & 0 & 2 \end{pmatrix}$$

c) Der erste Graph ist Teilgraph, z.B. mit folgender Knotenbeschriftung:

Die anderen beiden Graphen sind keine Teilgraphen, da hier Kreise der Länge 3 existieren, dies in G aber nicht möglich ist.

Aufgabe 8.3 (2+4 Punkte)

Gegeben sei folgender Graph $G = (\mathbb{G}_4, E)$:

- a) Geben Sie die Adjazenzmatrix A zu G an.
- b) Wenden Sie den Warshall-Algorithmus an, um die Wegematrix zu bestimmen. Geben Sie dabei die Matrix W an, die sich nach Abschluss der Initialisierung ergeben hat, sowie die Matrizen W_0 , W_1 , W_2 , W_3 die sich jeweils nach dem ersten, zweiten, dritten und vierten Durchlauf der äußeren Schleife beim zweiten Teil des Algorithmus ergeben.

Lösung 8.3

a)
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

b)
$$W = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} W_0 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} W_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$W_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$W_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$W_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} W_3 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Hinweis: Folgefehler werden nicht bestraft.