Differential Equations on the Complex Plane

Valente Ramírez

October 30 2012

Introduction

Let us consider the following differential equation

$$\frac{dx}{dt} = Q(x, y) \quad \frac{dy}{dt} = P(x, y), \tag{1}$$

where $(x, y) \in \mathbb{R}^2$ and P, Q are real polynomials.

Introduction

For example,

$$\dot{x} = x + y - x^3 + xy^2
\dot{y} = -x + y - x^2y + y^3$$
(2)

Phase portrait of equation (2)

space \mathbb{R}^2 outside the singular locus

Introduction

It is convenient to identify ODEs with vector fields. In this way, equation (1) defines an analyitic foliation of the phase

$$\Sigma = \{ (x, y) \in \mathbb{R}^2 \mid P(x, y) = Q(x, y) = 0 \}.$$

We are interested in studying the topology of such foliations.

Topological and analytic equivalence

Definition

Two singular foliations \mathcal{F}_1 , \mathcal{F}_2 in \mathbb{R}^2 are called topologically equivalent if there exists a homeomorphism \mathcal{H} that maps the leaves of \mathcal{F}_1 onto the leaves of \mathcal{F}_2 and defines a bijection between the singular points.

If such homeomorphism is an analytic mapping we say that the above foliations are analytically equivalent.

Topological and analytic equivalence

Suppose ${\mathcal F}$ is the singular foliation induced by equation (1). A natural question arises:

Question

What happens with the topology of \mathcal{F} when we perturb the coefficients of the polynomials P and Q that define the equation?

This is a fundamental question in applied mathematics!

Answer

Generic planar systems are structurally stable.

Limit sets

Next question

What are the limit sets of equation (1)?

Poincaré-Bendixon Theorem

A compact, connected ω -limit set of a planar system can only be:

- A singular point,
- A limit cycle,
- A finite amount of singular points together with orbits connecting them.

Limit cycles

Theorem

Any planar polynomial system has only a finite amount of limit cycles.

For example, linear systems do not have any limit cycles.

Hilbert's 16th Problem

Let $n \ge 2$. Determine an upper bound for the amount of limit cycles that a planar polynomial system of degree n may have.

• We still don't even known that such a bound exists!

The Poincaré-map

Limits cycles are usually studied via the Poincaré map.

The Poincaré map

It is convenient to think of the Poincaré map as a mapping

$$P \colon \pi_1(\alpha, x_0) \longrightarrow \mathsf{Diff}(\Gamma, x_0).$$

Generic properties of polynomial foliations

In summary

The following properties are generic for polynomial foliations:

- Structural stability
- Finitely many limit cycles
- Leaves may accumulate only to singular points and limit cycles

The Petrovskii-Landis strategy

In 1957 I.G. Petrvskii and E.M. Landis claimed to have a proof of Hilbert's 16th problem.

The strategy:

Consider a planar system

$$\dot{x} = Q(x, y)$$
 $\dot{y} = P(x, y)$.

- Extend the domain of definition to $(x, y) \in \mathbb{C}^2$.
- Find a bound for the *complex limit cycles* that the equation may have on the complex plane.

There was a crucial mistake on the proof!! Even though the proof is no good, this opened a door for a fascinating new theory.

Polynomial foliations on \mathbb{C}^2

Let us now consider the same equation

$$\dot{x} = Q(x, y) \quad \dot{y} = P(x, y),$$

but this time with $(x, y) \in \mathbb{C}^2$ and $P, Q \in \mathbb{C}[x, y]$.

- The solutions to the equation are now complex curves immersed into \mathbb{C}^2 .
- This defines a holomorphic foliation of $\mathbb{C}^2 \setminus \Sigma$ by analyitic curves.
- Namely, a foliation by real surfaces of a 4-dimensional real manifold.

Polynomial foliations on \mathbb{C}^{2}

For example, a linear foliation would look something like this:

Extenssion to $\mathbb{C}P^2$

Let us compactify the plane \mathbb{C}^2 by adding a *line at infinity*. This gives us the complex projective plane.

In the new affine coordinates

$$(z,w)=(1/x,y/x)$$

the line at infinity \mathbb{I} is described by the equation z = 0.

• This coordinate change transforms (orbitally) equation (1) into

$$\dot{z} = z\widetilde{Q}(z, w)
\dot{w} = w\widetilde{Q}(z, w) - \widetilde{P}(z, w)$$
(3)

The monodromy group at infinity

A generic polynomial foliation \mathcal{F} has an invariant line at infinity. Thus $\mathcal{L}_{\mathcal{F}} = \mathbb{I} \setminus \mathsf{Sing}(\mathcal{F})$ is a leaf of the foliation.

Let us consider the complex Poincaré map associated to each loop in the infinite leaf.

This gives a map

$$\pi_1(\mathcal{L}_{\mathcal{F}}, z_0) \longrightarrow \mathsf{Diff}(\Gamma, z_0).$$

Its image, G, is the monodromy goup at infinity of foliation \mathcal{F} .

The monodromy group at infinity

Topologically equivalent foliations have conjugated monodromy groups.

Suppose $G_1 = \langle f_1, ..., f_n \rangle$ and $G_2 = \langle g_1, ..., g_n \rangle$ are the monodromy groups of two topologically conjugated foliations \mathcal{F}_1 and \mathcal{F}_2 . There exists a germ h such that for each i = 1, ..., n

$$h \circ f_i = g_i \circ h$$
,

Under some mild extra assumptions we may conclude that h is the germ of a holomorphic mapping.

Generic properties for monodromy groups

The monodromy group G of a generic foliation satisfies:

- G is topologically rigid,
- G has infinitely many elements which have different isolated fixed points,
- The orbit of every point in $\Gamma \setminus \{x_0\}$ is dense in Γ .

Generic properties for complex foliations

The previous properties imply that the foliation ${\mathcal F}$ satisfies

- F is topologically rigid,
- F has infinitely many complex limit cycles,
- Every leaf of \mathcal{F} different from the infinite line is dense in all $\mathbb{C}P^2$.

Conclusions

Some objects that have appeared in this talk:

- Real and complex differential equations
- Continuous and discrete complex dynamics
- Foliations on algebraic varieties
- Algebraic curves and Riemann surfaces
- Homeomorphisms on a punctured sphere, automorphisms of its fundamental group

There are still a lot of problems to be solved!