פתרון תרגיל מספר *5 -* אינפי 2

שם: מיכאל גרינבאום, **ת.ז:** 211747639

2018 בנובמבר 2018

1. **צ"ל:** קבעו האם האינטגרלים הבאים מתכנסים

$$\int_0^1 \frac{\sin^2(x)}{x^2} dx$$
 (א) צ"ל:

מתכנס! נסמן $f\left(x
ight)=rac{\sin^{2}(x)}{x^{2}}$ נסמן $f\left(x
ight)=\left(rac{\sin(x)}{x}
ight)^{2}$ וגם

$$\lim_{x\to 0}\frac{\sin^2\left(x\right)}{x^2}=\lim_{x\to 0}f\left(x\right)=\lim_{x\to 0}\left(\frac{\sin\left(x\right)}{x}\right)^2=1^2=1$$

נגדיר $\mathbb{R}\setminus\{0\}$ בגלל ארתמטיקה של רציפות וגם, $g\left(x
ight)=egin{cases}1&x=0\\f\left(x
ight)&x
eq0 \end{cases}$ נגדיר

$$\lim_{x \to 0} f\left(x\right) = 1 = g\left(0\right)$$

ולכן g רציפה ב \mathbb{R} , ולכן g רציפה ב[0,1], רציפה בקטע קולכן [a,b] אינטגרבילית בו מתקיים כי $\int_0^1 g\left(x\right)dx$ מתכנס, נשים לב שמשאלה 4 בתרגיל 4 מתקיים כי

$$\int_{0}^{1}g\left(x\right)dx=\lim_{\varepsilon\to0^{+}}\int_{\varepsilon}^{1}g\left(x\right)dx=\lim_{\varepsilon\to0^{+}}\int_{\varepsilon}^{1}f\left(x\right)dx=\lim_{\varepsilon\to0^{+}}\int_{0}^{1}\frac{\sin^{2}\left(x\right)}{x^{2}}dx\stackrel{\mathrm{def}}{=}\int_{0}^{1}\frac{\sin^{2}\left(x\right)}{x^{2}}dx$$

!כלומר $\int_0^1 \frac{\sin^2(x)}{x^2} dx$ מתכנס

מ.ש.ל.א.©

$$\int_{1}^{2} \frac{1}{\ln(x)} dx$$
 (ב) צ"ל:

לא מתכנס! נשים לב כי

$$\int_{1}^{2} \frac{1}{\ln(x)} dx = \int_{0+1}^{1+1} \frac{1}{\ln(x)} dx = \int_{0}^{1} \frac{1}{\ln(x+1)} dx$$

נשים לב כי
$$\forall x>0$$
 , $\frac{1}{x}, \frac{1}{\ln(x+1)}\geq 0$ וגם

$$\lim_{x \to 0^+} \frac{\frac{1}{\ln(x+1)}}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{x}{\ln(x+1)} \stackrel{L^{\frac{0}{0}}}{=} \lim_{x \to 0^+} \frac{1}{\frac{1}{x+1}} = \frac{1}{\frac{1}{1+0}} = 1$$

ולכן

$$\frac{1}{\ln(x+1)} \sim \frac{1}{x}; x \to 0^+$$

ראינו בכיתה כי $\int_0^1 \frac{1}{x} \cdot dx$ לא מתכנס, $\int_0^1 \frac{1}{x} \cdot dx$ כי בכיתה ממשפט 11.3 מתקיים כי לוח מתקיים כי 11.3 מ.ש.ל.ב.0

 $\int_{1}^{\infty} e^{-\sqrt{x}} dx$ (ג) צ"ל: הוכחה: מתכנס!

נשים לב כי

$$\lim_{x \to \infty} \frac{x^2}{e^{\sqrt{x}}} \stackrel{t = \sqrt{x}}{=} \lim_{t \to \infty} \frac{t^4}{e^t} \stackrel{L^{\infty}}{=} \lim_{t \to \infty} \frac{4 \cdot t^3}{e^t} \stackrel{L^{\infty}}{=} \lim_{t \to \infty} \frac{4 \cdot 3 \cdot t^2}{e^t}$$

$$\stackrel{L^{\infty}}{=} \lim_{t \to \infty} \frac{4 \cdot 3 \cdot 2 \cdot t}{e^t} \stackrel{L^{\infty}}{=} \lim_{t \to \infty} \frac{4 \cdot 3 \cdot 2 \cdot 1}{e^t} = 0$$

לכן $x \geq x_0$, א $x \in \mathbb{R}$ כך ש $\exists x_0 \in \mathbb{R}$ לכן

$$e^{\sqrt{x}} \ge x^2 \Rightarrow e^{-\sqrt{x}} \le \frac{1}{x^2}$$

וגם $\int_{x_0}^\infty \frac{1}{x^2} dx$ מתכנס, $0 \le e^{-\sqrt{x}} \le \frac{1}{x^2}$ מתכנס, ולכן מתקיים $\int_{x_0}^\infty e^{-\sqrt{x}} dx$ מתכנס ונסמן $\int_{x_0}^\infty e^{-\sqrt{x}} dx$ מתפנס ההשוואה מתקיים $\int_{x_0}^\infty e^{-\sqrt{x}} dx$ מתכנס ונסמן $\int_1^{x_0} e^{-\sqrt{x}} dx = c_1 \in \mathbb{R}$ מתכנס ונסמן $\int_1^{x_0} e^{-\sqrt{x}} dx = c_1 \in \mathbb{R}$ ולכן לכנ

$$\int_{1}^{\infty} e^{-\sqrt{x}} dx = \int_{1}^{x_0} e^{-\sqrt{x}} dx + \int_{x_0}^{\infty} e^{-\sqrt{x}} dx = c_0 + c_1 \in \mathbb{R}$$

כלומר $\int_1^\infty e^{-\sqrt{x}}dx$ מתכנס, כנדרש

מ.ש.ל.ג.©

 $\int_{e^2}^{\infty} rac{\sin(x)}{\ln(\ln(x))} dx$ נד) צ"ל:

ויובוווי:

מתכנס!

 $f(x) = \sin(x)$ נסמן

, $\forall t \in \mathbb{R}$, $-2 \le F(t) \le 2$ לכן $F(t) = \int_a^t \sin(t) \, dt = -\cos(x) \mid_a^t = \cos(a) - \cos(t)$ לכן לכן F(t) חסומה.

כלומר $F\left(t
ight)$ חסומה, כלומר ב $rac{1}{\ln(\ln(x))}$, נשים לב כי

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{1}{\ln(\ln(x))} \stackrel{\frac{1}{\cong}}{=} 0$$

 $\forall x \in [e^2,\infty)$ וגם מונוטונית מונוטונית (הרכבה של מונוטניות והרכבה של מונוטונית יורדת (הרכבה של מונוטניות אולות

$$g'(x) = \left(\frac{1}{\ln(\ln(x))}\right)' = \frac{1}{x} \cdot \frac{1}{\ln(x)} \cdot \left(-\frac{1}{\left(\ln(\ln(x))\right)^2}\right)$$

מתכנס מתכנס להתכנסות אינטגרלים מתקיים אינטגרלים התכנסות להתכנסות לכן מתנאי דיריכלה לכן מתנאי

$$\int_{e^{2}}^{\infty} \frac{\sin\left(x\right)}{\ln\left(\ln\left(x\right)\right)} dx = \int_{e^{2}}^{\infty} \sin\left(x\right) \cdot \frac{1}{\ln\left(\ln\left(x\right)\right)} dx = \int_{e^{2}}^{\infty} f\left(x\right) g\left(x\right) dx$$

כלומר, $\int_{e^2}^{\infty} \frac{\sin(x)}{\ln(\ln(x))} dx$ מתכנס, כנדרש

מ.ש.ל.ד.☺

 $\int_0^\infty \frac{|\sin(x)|}{x^{\frac{3}{2}}} dx$ (ה) א"ל: מוכחה:

מחכוסי

$$\lim_{x \to 0^+} \frac{\frac{|\sin(x)|}{\frac{x^{\frac{3}{2}}}{1}}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\frac{\sin(x)}{x^{\frac{3}{2}}}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sin(x)}{x} = 1$$

לכן

$$\frac{|\sin(x)|}{x^{\frac{3}{2}}} \sim \frac{1}{\sqrt{x}}; x \to 0^+$$

ראינו בתירגול כי $\int_0^1 \frac{1}{\sqrt{x}} dx$ מתכנס,

 $\int_0^1 rac{|\sin(x)|}{x^{\frac32}} dx = c_1 \in \mathbb{R}$ ו מתכנס ו $\int_0^1 rac{|\sin(x)|}{x^{\frac32}} dx$ מתכנס ולכן ממשפט 11.3 מתקיים כי

$$\int_0^\infty \frac{|\sin(x)|}{x^{\frac{3}{2}}} dx = \int_0^1 \frac{|\sin(x)|}{x^{\frac{3}{2}}} dx + \int_1^\infty \frac{|\sin(x)|}{x^{\frac{3}{2}}} dx = c_0 + c_1 \in \mathbb{R}$$

מ.ש.ל.ה.©

מתכנס $\int_1^\infty \frac{\cos^2(x)}{x^\alpha} dx$ מתכנס .2

 $\alpha<1$, $\alpha=1$, $\alpha>1$ מקרים: 3 נחלק ל

- , $\alpha>1$ מתכנס עבור $\int_1^\infty \frac{1}{x^\alpha}$ וגם $\forall x\in[1,\infty)$, $0\leq \frac{\cos^2(x)}{x^\alpha}\leq \frac{1}{x^\alpha}$ מתכנס עבור $\alpha>1$ אם לכן ממשפט ההשוואה $\int_1^\infty \frac{\cos^2(x)}{x^\alpha}dx$ מתכנס כנדרש
- , $\cos\left(x\right)\geq\frac{\sqrt{2}}{2}\Leftrightarrow\cos^{2}\left(x\right)\geq\frac{1}{2}$ מתקיים ל $x\in\left[2\pi k,2\pi k+\frac{\pi}{4}\right]$, $\forall k\in\mathbb{N}$, נשים לב כי ,lpha=1 ולכן (ב) ולכן $\frac{\cos^{2}\left(x\right)}{x}$ לכן ממונוטוניות האינטגרל מתקיים כי

$$\int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{\cos^2(x)}{x} dx \ge \frac{1}{2} \int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{1}{x} dx$$

וגם מתקיים כי $\frac{1}{x}$ פונקציה מונוטונית ולכן

$$\int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{1}{x} dx \ge \frac{1}{8} \int_{2\pi k}^{2\pi (k+1)} \frac{1}{x} dx$$

בנוסף לכך $\frac{\cos^2(x)}{x}$ אי שלילית ולכן

$$\int_{2\pi k}^{2\pi(k+1)} \frac{\cos^2{(x)}}{x} dx \ge \int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{\cos^2{(x)}}{x} dx$$

ולכן

$$\int_{2\pi k}^{2\pi(k+1)} \frac{\cos^2(x)}{x} dx \ge \int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{\cos^2(x)}{x} dx \ge \frac{1}{2} \int_{2\pi k}^{2\pi k + \frac{\pi}{4}} \frac{1}{x} dx \ge \frac{1}{16} \int_{2\pi k}^{2\pi(k+1)} \frac{1}{x} dx$$

לכן מאדטיביות האינטגרל מתקיים כי לאר $k,m\in\mathbb{N}$ מתקיים

$$\int_{2\pi k}^{2\pi m} \frac{\cos^2{(x)}}{x} dx \ge \frac{1}{16} \int_{2\pi k}^{2\pi m} \frac{1}{x} dx$$

נסמן $\int_{1}^{2\pi} rac{\cos^2(x)}{x}$ (כי $\frac{\cos^2(x)}{x}$ רציפה ב $dx=c\in\mathbb{R}$) ולכן

$$\lim_{m \to \infty} \int_{2\pi}^{2\pi m} \frac{\cos^2(x)}{x} dx \ge \lim_{m \to \infty} \frac{1}{16} \int_{2\pi}^{2\pi m} \frac{1}{x} dx = \infty$$
$$\int_{1}^{\infty} \frac{\cos^2(x)}{x} dx = \int_{1}^{2\pi} \frac{\cos^2(x)}{x} dx + \int_{2\pi}^{\infty} \frac{\cos^2(x)}{x} dx = c + \infty = \infty$$

ולכן $\int_{1}^{\infty} \frac{\cos^{2}(x)}{x} dx$ לא מתכנס

(ג) אם $\int_1^\infty \frac{\cos^2(x)}{x} dx$ נשים לב כי $\frac{\cos^2(x)}{x} \geq \frac{\cos^2(x)}{x}$ וגם כי $\alpha < 1$ אם $\alpha < 1$ אם ולכן ממבחן ההשוואה $\int_1^\infty \frac{\cos^2(x)}{x^\alpha} dx$ לא מתכנס

מ.ש.ל.☺

 $\alpha+1<\beta$ מתכנס אם"ם מתכנס מת $\int_{1}^{\infty}x^{\alpha}\sin\left(x^{\beta}\right)dx$ ים מים 3. פרסבי

 $\lambda>0$ מתכנס אם"ם $\int_1^\infty rac{\sin(x)}{x^\lambda} dx$ תחילה נוכיח טענת עזר שמתקיים נחלק למקרים:

- , אם $0<\lambda$, נשים לב כי $\frac{\sin(x)}{x^\lambda}\leq \frac{1}{x^\lambda}$, נשים לב כי $\lambda>0$, נשים לב כי $\int_1^\infty \frac{\sin(x)}{x^\lambda}dx$ מתכנס לכן ממבחן ההשוואה מתקיים כי $\int_1^\infty \frac{1}{x^\lambda}dx$ מתכנס
 - (ב) אם $\lambda \leq 0$ מתכנס, $\lambda \leq 0$ מתכנס, $\lambda \leq 0$ אם $\lambda \leq 0$ אם אם $\lambda \leq 0$ בלכן מתנאי קושי $\exists x_0 \in \mathbb{R}$ מתקיים לכן מתנאי קושי

$$\left| \int_{p}^{q} \frac{\sin(x)}{x^{\lambda}} dx \right| < \frac{1}{2}$$

נשים לב כי $3k\in\mathbb{N}$ כזה מתקיים כי $2\pi k, 2\pi \left(k+\frac{1}{4}
ight)\geq x_0$ מתקיים כי מתקיים כך ש

$$\frac{1}{2} > \left| \int_{2\pi k}^{2\pi \left(k + \frac{1}{4}\right)} \frac{\sin\left(x\right)}{x^{\lambda}} dx \right| \stackrel{\lambda \le 0}{\ge} \left| \int_{2\pi k}^{2\pi \left(k + \frac{1}{4}\right)} \sin\left(x\right) dx \right| = \left| -\cos\left(x\right) \right|_{2\pi k}^{2\pi \left(k + \frac{1}{4}\right)} = 1$$

קיבלנו כי $\frac{\sin(x)}{x^\lambda}dx$ סתירה ולכן ההנחה ש $\int_1^\infty \frac{\sin(x)}{x^\lambda}dx$ מתכנס לא נכונה, כלומר סתירה ולכן ההנחה אם $\lambda>0$ מתכנס אם"ם $\lambda>0$ מתכנס אם"ם לכן מתקיים

שים לב כי:

$$\begin{split} \int_{1}^{\infty} x^{\alpha} \sin\left(x^{\beta}\right) dx &= \lim_{t \to \infty} \int_{1}^{t} x^{\alpha} \sin\left(x^{\beta}\right) dx \underset{du = \beta \cdot x^{\beta - 1} dx}{\overset{u = x^{\beta}}{=}} \lim_{t \to \infty} \int_{1}^{t} x^{\alpha} \sin\left(u\right) \frac{du}{\beta \cdot x^{\beta - 1}} \\ &= \frac{1}{\beta} \lim_{t \to \infty} \int_{1}^{t} x^{\alpha - \beta + 1} \sin\left(u\right) du = \frac{1}{\beta} \lim_{t \to \infty} \int_{1}^{t} u^{\frac{\alpha - \beta + 1}{\beta}} \sin\left(u\right) du \\ &= \frac{1}{\beta} \int_{1}^{\infty} u^{\frac{\alpha - \beta + 1}{\beta}} \sin\left(u\right) du = \frac{1}{\beta} \int_{1}^{\infty} \frac{\sin\left(u\right)}{u^{-\frac{\alpha - \beta + 1}{\beta}}} du \end{split}$$

נשים לב שגילינו כי $\int_1^\infty \frac{\sin(u)}{u^{-\frac{\alpha-\beta+1}{\beta}}}du$ מתכנס אם"ם אם $\int_1^\infty \frac{\sin(u)}{u^{-\frac{\alpha-\beta+1}{\beta}}}du$ מתכנס, ,- $\frac{\alpha-\beta+1}{\beta}>0$ מתכנס אם"ם $\int_1^\infty \frac{\sin(u)}{u^{-\frac{\alpha-\beta+1}{\beta}}}du$ מטענת העזר מתקיים כי

$$-\frac{\alpha-\beta+1}{\beta}>0 \Leftrightarrow \alpha-\beta+1<0 \Rightarrow \alpha+1<\beta$$

lpha+1<eta מתכנס אם"ם $\int_1^\infty rac{\sin(u)}{u^{-rac{lpha-eta+1}{2}}}du$ מתכנס אם מתכנס המ $\int_1^\infty x^lpha\sin\left(x^eta
ight)dx$ מתכנס אם

₪.ל.

4. פתרון:

(א) א"ל: האם $\int_1^\infty f dx$ מתכנס גורר מחסומה?

לא נכון!

(נגדיר fו מתכנס ו $f \neq f dx$ כך שf (x) כך לא חסומה,

:נגדיר f באופן הבא (משולשים)

$x\in \left[n,n+\frac{1}{2\cdot 2^n\cdot n} ight]$ כך ש $\exists n\in \mathbb{N}$ אם גדיר את להיות הנקודה המתאימה $f\left(x ight)$ להיות הנקודה המתאימה על הקו ישר הנוצר בין הנקודות $\left(n+\frac{1}{2\cdot 2^n\cdot n},n ight)$, $\left(n,0\right)$	1	
$x\in \left[n+rac{1}{2\cdot 2^n\cdot n},n+rac{1}{2^n\cdot n} ight]$ אם $\exists n\in\mathbb{N}$ כך ש $(x,f\left(x ight))$ נגדיר את $f\left(x ight)$ להיות הנקודה המתאימה $f\left(x ight)$ על הקו ישר הנוצר בין הנקודות $\left(n+rac{1}{2\cdot 2^n\cdot n},0 ight)$, ו	2	

 $\forall x \in [1,\infty)$, $f\left(x
ight) \geq 0$ נשים לב שמההגדרה של

 $f\left(x\right)=0$ אחרת נגדיר

נשים לב כי fרציפה ב
($[1,\infty)$ ב רציפה לב כי

נשים לב כי $M\in\mathbb{R}$, $f\left(\lceil M+1 \rceil+\frac{1}{2\cdot 2^{\lceil M+1 \rceil}\cdot \lceil M+1 \rceil}\right)=M+1>M$ כלומר לא חסומה, נשים לב כי $\int_1^\infty f dx$ מתכנס ונסיים, נשים לב שהשטח מתחת לכל משולש הוא

$$n \cdot \left(n + \frac{1}{2^n \cdot n} - \left(n + \frac{1}{2 \cdot 2^n \cdot n}\right)\right) \cdot \frac{1}{2} = \frac{n}{4 \cdot 2^n \cdot n} = \frac{1}{4 \cdot 2^n}$$

ולכן השטח מתחת לפונקציה הוא סכום כל המשולשים, כלומר:

$$\int_{1}^{\infty} f(x) dx = \lim_{t \to \infty} \sum_{n=1}^{t} \frac{1}{4 \cdot 2^{n}} = \frac{1}{4} \lim_{t \to \infty} \sum_{n=1}^{t} \frac{1}{2^{n}}$$

 $(q=rac{1}{2}$ ובמקרה שלנו $|q|\leq 1$ אינו כי $\lim_{t o\infty}\sum_{n=1}^trac{1}{2^n}$ ובמקרה שלנו קיים במובן הצר (ראינו בכיתה שטור המכנס אינו כי ובמקרה שלנו $\int_1^\infty f dx$ ולכן

כלומר התנאים מתקיימים אך f לא חסומה, כלומר הטענה לא נכונה

מ.ש.ל.א.©

(ב) צ"ל: האם $\int_0^1 g\left(x
ight)dx$ מתכנס גורר g חסומה?

לא נכון!

נבחר $(x)=\frac{1}{\sqrt{x}}$ נבחר $(x)=\frac{1}{\sqrt{x}}$ נבחר $(x)=\frac{1}{\sqrt{x}}$ נעים לב כי $(x)=\frac{1}{\sqrt{x}}$ מתכנס, ראינו בתירגול כי $(x)=\frac{1}{\sqrt{x}}$ מתכנס, וגם $(x)=\frac{1}{\sqrt{x}}$ מתקיים $(x)=\frac{1}{\sqrt{x}}$ וגם $(x)=\frac{1}{\sqrt{x}}$ וגם $(x)=\frac{1}{\sqrt{x}}$ מתקיים $(x)=\frac{1}{\sqrt{x}}$ וגם $(x)=\frac{1}{\sqrt{x}}$ וגם $(x)=\frac{1}{\sqrt{x}}$ מתקיים $(x)=\frac{1}{\sqrt{x}}$ וגם $(x)=\frac{1}{\sqrt{x}}$ וגם

מ.ש.ל.ב.☺

5. פתרון:

(א) צ"ל: האם $\sum_{n=1}^{\infty} \frac{n+2}{2n^2-51n}$ הוא טור מתכנס?

הוכחה:

זהו טור לא מתכנס!

נשים לב כי

$$\lim_{n \to \infty} \frac{\frac{n+2}{2n^2 - 51n}}{\frac{1}{2n}} = \lim_{n \to \infty} \frac{2n^2 + 4n}{2n^2 - 51n} = 1$$

וגם $\frac{1}{2n} \leq 0$ כמעט תמיד ולכן $\frac{n+2}{2n^2-51n}$ כמעט תמיד, ולכן ממשפט התכנסות גבולי מתקיים כי $\sum_{n=1}^\infty \frac{1}{2n^2}$ מתכנס אם"ם $\sum_{n=1}^\infty \frac{1}{2n}$ מתכנס וגם התכנסות גבולי מתקיים כי $\sum_{n=1}^N \frac{1}{2n^2-51n}$ אמתכנס (ראינו בתרגול) וגם $\sum_{n=1}^N \frac{1}{2n} = \frac{1}{2} \lim_{n \to \infty} \sum_{n=1}^N \frac{1}{n}$ אינו טור מתכנס! ולכן מהיות הטורים דומים מתקיים כי $\sum_{n=1}^N \frac{1}{2n^2-51n}$ אינו טור מתכנס!

מ.ש.ל.א.©

(ב) צ"ל: האם $\sum_{n=1}^{\infty} rac{n^2}{2^n}$ הוא טור מתכנס?

הוכחה:

זהו טור מתכנס!

נשים לב כי

$$\lim_{n \to \infty} \frac{\frac{n^2}{2^n}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^4}{2^n} \stackrel{\text{heine}}{=} \lim_{x \to \infty} \frac{x^4}{2^x} \stackrel{L^{\infty}}{=} \lim_{x \to \infty} \frac{4 \cdot x^3}{2^x \cdot \ln{(2)}} \stackrel{L^{\infty}}{=} \lim_{x \to \infty} \frac{4 \cdot 3 \cdot x^2}{2^x \cdot \ln^2{(2)}} \stackrel{L^{\infty}}{=} \lim_{x \to \infty} \frac{4 \cdot 3 \cdot 2 \cdot x}{2^x \cdot \ln^3{(2)}} \stackrel{L^{\infty}}{=} \lim_{x \to \infty} \frac{4 \cdot 3 \cdot 2 \cdot x}{2^x \cdot \ln^3{(2)}} \stackrel{L^{\infty}}{=} \lim_{x \to \infty} \frac{4 \cdot 3 \cdot 2 \cdot 1}{2^x \cdot \ln^4{(2)}} = 0$$

לכן $\exists x_0 \in \mathbb{R}$ מתקיים $\exists x_0 \in \mathbb{R}$

$$0 \le \frac{n^4}{2^n} \le 1 \Rightarrow 0 \le \frac{n^2}{2^n} \le \frac{1}{n^2}$$

נבחר יורדת פונקציה מונוטונית יורדת ו $f\left(x
ight)=rac{1}{x^{2}}$

$$\int_{1}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} -\frac{1}{x} \mid_{1}^{t} = 1$$

ולכן המשפט ש $\int_{n=1}^\infty \frac{1}{n^2} = \sum_{n=1}^\infty f(n)$ מתכנס, נובע כי $\sum_{n=1}^\infty f(n)$ מתכנס מתכנס אם ולכן המשפט ש $\sum_{n=1}^\infty \frac{1}{n^2} = \sum_{n=1}^\infty \frac{1}{n^2}$ וגם $\sum_{n=1}^\infty \frac{1}{n^2}$ הוא טור מתכנס!

מ.ש.ל.ב.☺

(ג) צ"ל: האם $\sum_{n=1}^{\infty} n^{-2+\frac{1}{n}}$ הוא טור מתכנס?

זהו טור מתכנס! נשים לב כי

$$\lim_{n \to \infty} \frac{n^{-2 + \frac{1}{n}}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^{2 - \frac{1}{n}}} = \lim_{n \to \infty} \frac{n^2}{n^2} \cdot \sqrt[n]{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

 $\forall n \in \mathbb{N}$, $\frac{1}{n^2}$, $n^{-2+\frac{1}{n}} \geq 0$ וגם

ולכן ממשפט התכנסות גבולי מתקיים כי $\sum_{n=1}^\infty \frac{1}{n^2}$ מתכנס אם"ם התכנסות גבולי מתקיים כי וגם $\lim_{N o \infty} \sum_{n=1}^N rac{1}{n^2}$ מתכנס (ראינו בסעיף הקודם) ולכן מהיות הטורים דומים מתקיים כי $\sum_{n=1}^{\infty} n^{-2+\frac{1}{n}}$ טור מתכנס!

מ.ש.ל.ג.©

מתכנס $\sum_{n=1}^{\infty} \frac{a_n}{a_n+1}$ סור מתכנס אם"ם מתכנס $\sum_{n=1}^{\infty} a_n$.6

מתכנס, מתכנס $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ טור מתכנס ונראה כי $\sum_{n=1}^\infty a_n$ מתכנס, בניח כי $\sum_{n=1}^\infty a_n$ טור מתכנס מתקיים כי

$$\lim_{n\to\infty} a_n = 0$$

וגם

$$\lim_{n\to\infty}\frac{\frac{a_n}{a_n+1}}{a_n}=\lim_{n\to\infty}\frac{1}{a_n+1}=\frac{1}{1+0}=1$$

מתכנס מתכנס התכנסות גבולי מתקיים כי $\sum_{n=1}^{\infty} a_n$ מתכנס אם"ם בולי מתקיים כי מתקיים כי

וגם $\sum_{i=1}^\infty a_n$ מתכנס $\sum_{i=1}^\infty a_n$ טור מתכנס! אולכן מהיות הטורים דומים מתקיים כי $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ טור מתכנס! $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ טור מתכנס ונראה כי $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ טור מתכנס מתקיים כי $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$

$$\lim_{n \to \infty} \frac{a_n}{a_n + 1} = 0 \Rightarrow \lim_{n \to \infty} a_n = 0$$

 $\lim_{k \to \infty} a_{n_k} = 0$ כי מתקיים מתקיים של סדרה מתכנסת סדרה כי לכל תת L=0 כי אם הגבול סופי ונסמנו $\lim_{k o\infty}a_{n_k}=L$ נקבל כי ו $\lim_{k o\infty}a_{n_k}=L$ כי אם הגבול סופי ונסמנו ווארה $\lim_{k o\infty}rac{a_{n_k}}{a_{n_k}+1}=1
eq 0$ ולכן ווארת $\lim_{k o\infty}a_{n_k}=\pm\infty$ חרת ולכו ממשפט הירושה נובע כי

$$\lim_{n \to \infty} a_n = 0$$

וגם

$$\lim_{n \to \infty} \frac{\frac{a_n}{a_n + 1}}{a_n} = \lim_{n \to \infty} \frac{1}{a_n + 1} = \frac{1}{1 + 0} = 1$$

מתכנס אם"ם $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ מתכנס אם"ם ביים מתכנס מתכנס מתכנס מתכנסות גבולי מתקיים כי וגם $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ מתכנס $\sum_{n=1}^\infty \frac{a_n}{a_n+1}$ טור מתכנס! ולכן מהיות הטורים דומים מתקיים כי

מ.ש.ל.ⓒ