PLSC 473: American Judicial Behavior

Christopher Zorn

September 24, 2015

Measuring Association (Bivariate Plots / Statistics)

Pictures

- Boxplots & Density Plots (redux)
- Scatterplots

Numbers

- Crosstables
- t-tests
- Correlation
- Bivariate regression

Africa Data (Again)

> summary(Africa)

ccode	cabbr	cou	intry populati	ion
Min. :404	AGO : 1 An	gola	: 1 Min. :	
1st Qu.:452	BDI : 1 Be:	nin	: 1 1st Qu.:	3446000
Median :510	BEN : 1 Bo	tswana	: 1 Median :	9662000
Mean :510	BWA : 1 Bu:	rundi	: 1 Mean : 1	17388558
3rd Qu.:556	CAF : 1 Can	meroon	: 1 3rd Qu.: 1	19150000
Max. :651	CIV : 1 Ce	ntral African Republi	c: 1 Max. :11	17000000
	(Other):37 (O	ther)	:37	
		polity		tradegdp
Min. : 470	Min. :0.00	22 Min. :-9.000	Min. : 0.500	Min. : 4.03
1st Qu.: 3446		34 1st Qu.:-4.500	1st Qu.: 0.855	1st Qu.: 7.64
Median: 9662		57 Median : 0.000	Median : 1.200	Median : 13.56
		43 Mean : 0.512		Mean : 30.49
3rd Qu.: 19189		83 3rd Qu.: 5.500		•
Max. :116929	Max. :0.57	40 Max. :10.000	Max. :10.800	Max. :272.69
war	adrate	healthexp	cubcabara	n muslperc
Min. :0.000	Min. : 0.10			
1st Qu.:0.000	1st Qu.: 2.70		-Saharan :37	
	Median : 6.00	•	bunurun .or	Median : 20.0
	Mean : 9.37			Mean : 36.0
	3rd Qu.:12.90			3rd Qu.: 55.5
Max. :1.000	Max. :38.80			Max. :100.0
literacy	internalwar	intensity		
Min. :17.0	Min. :0.000	Min. :0.000		
1st Qu.:43.0	1st Qu.:0.000	1st Qu.:0.000		
Median :61.0	Median :0.000	Median :0.000		
Mean :60.1	Mean :0.302	Mean :0.581		
3rd Qu.:78.5				
Max. :89.0	Max. :1.000	Max. :3.000		

Comparing Boxplots

Comparing Boxplots (cont'd)

Comparing Density Plots

Comparing Density Plots

Scatterplots

- Plotting two continuous variables.
- Horizontal ("X") axis = "independent" variable.
- Vertical ("Y") axis = "dependent" variable.
- Illustrates degree of association between X and Y.

Scatterplots: Examples

Scatterplots: Examples

Scatterplots: Examples

Crosstables ("Contingency Tables")

- "Two-way" frequency tables
- Reports the number of observations that have a given pair of values on two variables (say X and Y).
- Can show frequencies or percentages.
- Best for discrete / categorical variables

Crosstab Example

Basic crosstab:

```
> with(Africa, xtabs(~internalwar+subsaharan))
```

subsaharan

```
internalwar Not Sub-Saharan Sub-Saharan
0 5 25
1 1 1 12
```

Cell proportions:

```
internalwar Not Sub-Saharan Sub-Saharan
0 0.11628 0.58140
1 0.02326 0.27907
```

Interpretation: "11.6 percent of all African countries were both not sub-saharan and had no internal conflict in 2001. 58.1 percent of all African countries were both sub-Saharan and had no internal conflict in 2001...." etc.

Crosstab Example (continued)

```
"Row marginals":

> with(Africa, prop.table(xtabs(~internalwar+subsaharan),1))

subsaharan
internalwar Not Sub-Saharan Sub-Saharan

0 0.16667 0.83333
1 0.07692 0.92308
```

Interpretation: "In 2001, 16.7 percent of all African countries that did not have an internal conflict were Saharan, and 83.3 percent were sub-Saharan. In contrast, only 7.7 percent of all African countries that experienced an internal conflict were Saharan, while 92.3 percent were sub-Saharan."

Crosstab Example (continued)

```
"Column marginals":

> with(Africa, prop.table(xtabs(~internalwar+subsaharan),2))

subsaharan
internalwar Not Sub-Saharan Sub-Saharan

0 0.8333 0.6757
1 0.1667 0.3243
```

Interpretation: "In 2001, 16.7 percent of all Saharan African countries experienced an internal conflict. By contrast, 32.4 percent of all sub-Saharan countries experienced an internal conflict. Sub-Saharan countries were therefore about twice as likely to experience an internal conflict than were Saharan countries."

Differences of Means

Suppose Y is our variable of interest, and that there are two groups, X=0 and X=1, with n_0 and n_1 observations in each group. We want to know if \bar{Y} is different for X=0 vs. X=1.

Difference of means:

$$\bar{Y}_1 - \bar{Y}_0 = \frac{1}{n_1} \sum_{i=1}^{n_1} Y_{1i} - \frac{1}{n_0} \sum_{i=1}^{n_0} Y_{0i}$$

Variation

$$s_{\bar{Y}_1 - \bar{Y}_0} = \sqrt{\frac{s_0^2}{n_0} + \frac{s_1^2}{n_1}}.$$

"T-score":

$$t=rac{(ar{Y}_1-ar{Y}_0)}{s_{ar{Y}_1-ar{Y}_0}}$$

"T-tests"

Table: Rough Values of t You'll Want To Get To Know

Absolute Value of t	P-Value
≈ 1.3	0.20
pprox 1.65	0.10
≈ 2	0.05
≈ 2.4	0.02
≈ 2.6	0.01
> 3	< 0.002
≈ 2.6	0.01

T-test: Examples

Interpretation: "The mean HIV prevalence rate in 2001 was 1.27 percent in Saharan Africa, and 10.68 percent in sub-Saharan Africa. This difference is statistically important / significant (t=-5.4)."

T-test: Examples

Interpretation: "The incidence of internal conflict in 2001 was 16.7 percent in Saharan Africa and 32.4 percent in sub-Saharan Africa. This difference is not statistically important / significant (t=-0.86)."

Continuous Variables: Correlation

Linear relationship:

$$\frac{\partial Y}{\partial X} = m;$$

"Pearson's r":

$$r = \frac{\sum_{i=1}^{N} \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)}{N - 1}$$

Pearson's r: Intuition

The Meaning of r

Table: Rough Values of r You'll Want To Get To Know

Absolute Value of t	Meaning		
r = -1.0	Perfect negative linear association		
$r \approx -0.7$	Strong negative linear association		
$r \approx -0.3$	Weak negative linear association		
$r \approx 0$	No linear association		
$r \approx 0.3$	Weak positive linear association		
$r \approx 0.7$	Strong positive linear association		
r = 1.0	Perfect positive linear association		

Correlation: Examples

```
¿ with(Africa, cor(adrate,literacy)) [1] 0.5149
¿ with(Africa, cor(adrate,muslperc)) [1] -0.5709
¿ with(Africa, cor(adrate,popden)) [1] -0.1681
```

Interpretation: "In 2001, there was a moderate, positive correlation between HIV prevalence rates and literacy rates in Africa. That same year, there was a moderate, negative correlation between HIV prevalence and the percentage of the population who self-identified as Muslim, and a small, negative correlation between HIV prevalence rates and population density."

(Bivariate) Linear Regression

- Related to correlation: *linear* association.
- "Fit" a (straight) line through the points of a scatterplot:

$$Y_i = \beta_0 + \beta_1 X_i + u_i \tag{1}$$

- $\cdot \beta_0$ is the "intercept"
- \cdot β_1 is the "slope"
- Based on principle of "least squares":

Choose β_0 and β_1 so that they make $u_i^2 = (Y_i - \beta_0 - \beta_1 X_i)^2$ as small as possible.

Linear Regression: Intuition

Linear Regression: Examples

Interpretation: "In the 2001 Africa data, the intercept is -6.9 and the slope is 0.27. This means that a one percentage point increase in literacy is associated with an increase in the HIV prevalence rate of 0.27 percentage points."

Linear Regression Illustrated

