Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An electrode level difference absorbing print paste, including comprising ceramic powder, a binder resin, a plasticizer and a solvent, wherein:

said binder resin contains comprises a polyvinyl butyral resin or a polyacetal resin,

a polymerization degree of the resin is 1400 or more,

a butyralation degree of the resin is 64 to 74 mol%,

and an acetalization degree of the resin is 66 to 74 mol%

a content of the binder resin is 3 parts by weight or more and 9 parts by weight or less with respect to 100 parts by weight of said ceramic powder;

said solvent comprises at least one of terpineol, dihydroterpineol, terpinyl acetate, dihydroterpinyl acetate and 4-(1'-acetoxy-1'-)cyclohexanol acetate,

a content of the solvent is 20 to 80 parts by weight with respect to 100 parts by weight of the paste, and

a content of the ceramic powder is 30 to 55 wt% with respect to a total weight of the paste.

- 2-4. (Canceled)
- 5. (Previously Presented) The electrode level difference absorbing print paste as set forth in claim 1, wherein viscosity of said electrode level difference absorbing print paste when giving rotation of obtaining a shear rate of 8[1/s] is 4 to 30 Pa·s.
 - 6. (Canceled)

- 7. (Currently Amended) The electrode level difference absorbing print paste as set forth in claim 1, containing comprising at least one of phthalate ester [dibutyl phthalate (DBP), diotycl phthalate (DOP), benzylbutyl phthalate (BBP), butyl butylene glycol (BPBG)], adipic acid ester [diotycle adipic acid (DOA)], sebacic acid ester and sebacic dibutyl as said plasticizer.
- 8. (Currently Amended) The electrode level difference absorbing print paste as set forth in claim 1, wherein a content of said plasticizer is contained by 20 to 200 parts by weight with respect to 100 parts by weight of thea binder resin.
- 9. (Currently Amended) The electrode level difference absorbing print paste as set forth in claim 1, containing further comprising at least one of a hygroscopic polymer, cation based surfactant (amine based surfactant) and amphoteric surfactant as an antistatic agent.
- 10. (Withdrawn-Currently Amended) A production method of an electronic device, comprising: the steps of:

forming a stacked body by stacking green sheets and electrode layers having a predetermined pattern; and

firing said stacked body;

wherein:

before forming said stacked body, a blank pattern layer having a substantially the a same thickness as that of said electrode layer is formed on a space portion of said electrode layer having a predetermined pattern is formed; and

the electrode level difference absorbing print paste as set forth in claim

1 is used as an electrode level difference absorbing print paste for forming said blank pattern
layer.

- 11. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein ceramic powder included in said electrode level difference absorbing print paste is the same as ceramic powder included in slurry for forming said green sheet.
- 12. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein a polymerization degree of a binder resin included in said electrode level difference absorbing print paste is 1400 or more.
- 13. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein a binder resin included in said electrode level difference absorbing print paste is the same as a binder resin included in slurry for forming said green sheet.
- 14. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein said binder resin is polyvinyl butyral and/or polyvinyl acetal.
- 15. (Withdrawn) The production method of an electronic device as set forth in claim 14, wherein when said binder resin is polyvinyl butyral, a butyralation degree of said polyvinyl butyral is in a range of 64 to 74 mol%.
- 16. (Withdrawn) The production method of an electronic device as set forth in claim 15, wherein when said binder resin is polyvinyl acetal, an acetalization degree of said polyvinyl acetal is in a range of 66 to 74 mol%.
- 17. (Withdrawn-Currently Amended) The production method of an electronic device as set forth in claim 10, wherein a content of ceramic powder in said electrode level difference absorbing print paste iscontains ceramic powder at a rate of 30 to 50 wt% with respect to a total weight of the entire paste.
- 18. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein viscosity of said electrode level difference absorbing print paste when giving rotation of obtaining a shear rate of 8[1/s] is 4 to 30 Pa·s.

- 19. (Withdrawn) The production method of an electronic device as set forth in claim 10, wherein said binder resin included in slurry for forming said green sheet includes polyvinyl butyral resin, a polymerization degree of the polyvinyl butyral resin is 1000 or more and 3300 or less, a butyralation degree of the resin is more than 64% and less than 78%, and a residual acetyl group amount is less than 6%.
- 20. (Withdrawn-Currently Amended) A production method of an electronic device, comprising: the steps of:

forming a stacked body by stacking green sheets and electrode layers having a predetermined pattern; and

firing said stacked body;

wherein:

before forming said stacked body, a blank pattern layer having a substantially athe same thickness as that of said electrode layer is formed on a space portion of said electrode layer having a predetermined pattern;

the electrode level difference absorbing print paste as set forth in claim

1 is used as an electrode level difference absorbing print paste for forming said blank pattern

layer; includes at least ceramic powder and a binder resin; and

a polymerization degree of the binder resin included in said electrode level difference absorbing print paste is equal to or higher than that of a binder resin included in slurry for forming said green sheet.

21. (New) The electrode level difference absorbing print paste as set forth in claim 7, wherein:

the phthalate ester is selected from the group consisting of dibutyl phthalate (DBP), diotycl phthalate (DOP), benzylbutyl phthalate (BBP), butyl butylene glycol (BPBG), and

the adipic acid ester is diotycle adipic acid (DOA).

22. (New) The electrode level difference absorbing print paste as set forth in claim 9, wherein said cation based surfactant is an amine based surfactant.