Topic Modelling and Latent Dirichlet Allocation

Stephen Clark (with thanks to Mark Gales for some of the slides)

Lent 2013

Machine Learning for Language Processing: Lecture 7

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Introduction to Probabilistic Topic Models

- We want to find *themes* (or *topics*) in documents
 - useful for e.g. search or browsing
- We don't want to do supervised topic classification
 - rather not fix topics in advance nor do manual annotation
- Need an approach which automatically teases out the topics
- This is essentially a *clustering* problem can think of both words and documents as being clustered

Key Assumptions behind the LDA Topic Model

- Documents exhibit multiple topics (but typically not many)
- LDA is a probabilistic model with a corresponding *generative process*
 - each document is assumed to be generated by this (simple) process
- A topic is a distribution over a fixed vocabulary
 - these topics are assumed to be generated first, before the documents
- Only the number of topics is specified in advance

The Generative Process

To generate a document:

- 1. Randomly choose a distribution over topics
- 2. For each word in the document
 - a. randomly choose a topic from the distribution over topics
 - b. randomly choose a word from the corresponding topic (distribution over the vocabulary)
- Note that we need a distribution over a distribution (for step 1)
- Note that words are generated independently of other words (unigram bag-of-words model)

The Generative Process more Formally

- Some notation:
 - $\beta_{1:K}$ are the topics where each β_k is a distribution over the vocabulary
 - θ_d are the topic proportions for document d
 - $\theta_{d,k}$ is the topic proportion for topic k in document d
 - z_d are the topic assignments for document d
 - $z_{d,n}$ is the topic assignment for word n in document d
 - w_d are the observed words for document d
- The joint distribution (of the hidden and observed variables):

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D}) = \prod_{i=1}^{K} p(\beta_i) \prod_{d=1}^{D} p(\theta_d) \prod_{n=1}^{N} p(z_{d,n} | \theta_d) p(w_{d,n} | \beta_{1:K}, z_{d,n})$$

Plate Diagram of the Graphical Model

- Note that only the words are observed (shaded)
- α and η are the parameters of the respective dirichlet distributions (more later)
- Note that the topics are generated (not shown in earlier pseudo code)
- Plates indicate repetition

Picture from Blei 2012

Multinomial Distribution

• Multinomial distribution: $x_i \in \{0, \dots, n\}$

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{n!}{\prod_{i=1}^{d} x_i!} \prod_{i=1}^{d} \theta_i^{x_i}, \qquad n = \sum_{i=1}^{d} x_i, \quad \sum_{i=1}^{d} \theta_i = 1, \quad \theta_i \ge 0$$

• When n=1 the multinomial distribution simplifies to

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i}, \quad \sum_{i=1}^{d} \theta_i = 1, \quad \theta_i \ge 0$$

- a unigram language model with 1-of-V coding (d = V the vocabulary size)
- x_i indicates word i of the vocabulary observed, $x_i = \begin{cases} 1, & \text{word } i \text{ observed} \\ 0, & \text{otherwise} \end{cases}$
- $\theta_i = P(w_i)$ the probability that word i is seen

The Dirichlet Distribution

ullet Dirichlet (continuous) distribution with parameters lpha

$$p(\boldsymbol{x}|\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{d} \alpha_i)}{\prod_{i=1}^{d} \Gamma(\alpha_i)} \prod_{i=1}^{d} x_i^{\alpha_i - 1}; \quad \text{for "observations"} : \sum_{i=1}^{d} x_i = 1, \quad x_i \ge 0$$

- \bullet $\Gamma()$ is the Gamma distribution
- Conjugate prior to the multinomial distribution (form of posterior $p(\theta|\mathcal{D},\mathcal{M})$ is the same as the prior $p(\theta|\mathcal{M})$)

Dirichlet Distribution Example

• Parameters: $(\alpha_1, \alpha_2, \alpha_3)$

Parameter Estimation

- Main variables of interest:
 - β_k : distribution over vocabulary for topic k
 - $\theta_{d,k}$: topic proportion for topic k in document d
- Could try and get these directly, eg using EM (Hoffmann, 1999), but this approach not very successful
- One common technique is to estimate the posterior of the word-topic assignments, given the observed words, directly (whilst marginalizing out β and θ)

Gibbs Sampling

- Gibbs sampling is an example of a Markov Chain Monte Carlo (MCMC) technique
- Markov chain in this instance means that we sample from each variable one at a time, keeping the current values of the other variables fixed

Posterior Estimate

- The Gibbs sampler produces the following estimate, where, following Steyvers and Griffiths:
 - $-z_i$ is the topic assigned to the ith token in the whole collection;
 - d_i is the document containing the *i*th token;
 - $-w_i$ is the word type of the *i*th token;
 - $-\mathbf{z}_{-i}$ is the set of topic assignments of all other tokens;
 - \cdot is any remaining information such as the α and η hyperparameters:

$$P(z_i = j | \mathbf{z}_{-i}, w_i, d_i, \cdot) \propto \frac{C_{w_i j}^{WT} + \eta}{\sum_{w=1}^{W} C_{w j}^{WT} + W \eta} \frac{C_{d_i j}^{DT} + \alpha}{\sum_{t=1}^{T} C_{d_i t}^{DT} + T \alpha}$$

where \mathbf{C}^{WT} and \mathbf{C}^{DT} are matrices of counts (word-topic and document-topic)

Posterior Estimates of β and θ

$$\beta_{ij} = \frac{C_{ij}^{WT} + \eta}{\sum_{k=1}^{W} C_{kj}^{WT} + W\eta} \quad \theta_{dj} = \frac{C_{dj}^{DT} + \alpha}{\sum_{k=1}^{T} C_{dk}^{DT} + T\alpha}$$

• Using the count matrices as before, where β_{ij} is the probability of word type i for topic j, and θ_{dj} is the proportion of topic j in document d

References

- David Blei's webpage is a good place to start
- A good introductory paper: D. Blei. Probabilistic topic models. Communications of the ACM, 55(4):7784, 2012.
- Introduction to Gibbs sampling for LDA: Steyvers, M., Griffiths, T. Probabilistic topic models. Latent Semantic Analysis: A Road to Meaning. T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, eds. Lawrence Erlbaum, 2006.