

ENGINEERING MATHEMATICS-I MATLAB

Department of Science and Humanities

Data Types

> Data types are those which define the type of data that we are using.

- > Some common data types are:
- Integers
- Floating point numbers
- ❖ Scalar
- Character
- **Strings**
- Arrays

Integers

- > An integer is a whole number (not a fraction) that can be positive, negative, or zero.
- > Integers are a commonly used data type in computer programming.
- For example, the numbers 10, 0, and -25 are integers.
- > When two integers are added, subtracted, or multiplied, the result is also an integer.

Integers, Continued...

For Example:

5

-1

Integers, Continued...

ans =

16

Note that when one integer is divided by another integer, the result may be an integer or a fraction.

For example:

ans =

3/2

Integers, Continued...

ans =

Floating Point Numbers

- ➤ As the name indicates, floating point numbers are numbers that contain floating decimal points.
- For example, the numbers 5.5, 0.001, and -2,345.6789 are floating point numbers.
- ➤ When a calculation includes a floating point number, it is called a "floating point calculation."

Scalar

- > Any number which is used to represent a quantity.
- > This includes integers, complex numbers, floating point numbers.
- Examples of scalar data types are: 3, 4+6i, -20.45.

Character

- Example, 'B' and '6'.
- ➤ 6 and '6' are different. Here, 6 is a character constant and '6' is a character constant.

Strings

- > Any two or more alphanumeric symbols enclosed in a single quote.
- > Example, 'INDIA'=['I', 'N', 'D', 'I', 'A']

Arrays

- > List of similar data in a single row or a column.
- > Elements can be numerical or character or strings.
- > Examples, [1 2 3 4]; [a b c d].

Special Types of Arrays

- > The four types of arrays are:
- zeros() function
- eye() function
- ones() function
- rand() function

PES UNIVERSITY

- Zeros() Function : It creates an array of all zeros.
- For example: >> zeros(5)
- > MATLAB will execute the above statement and return the result:

```
ans =

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
```


- > eye() function: It creates an identity matrix.
- ➤ For example: >> eye(4)
- > MATLAB will execute the above statement and return the result:

```
ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
```

- > ones() function: It creates an array of all ones.
- \triangleright For example: >> ones(4,3)
- > MATLAB will execute the above statement and return the result:

- PESUNIVERSITY
- rand() function: It creates an array of uniformly distributed random numbers on (0,1).
- \triangleright For example: >> rand(3, 5)
- > MATLAB will execute the above statement and return the result

```
ans =
```

```
      0.8147
      0.9134
      0.2785
      0.9649
      0.9572

      0.9058
      0.6324
      0.5469
      0.1576
      0.4854

      0.1270
      0.0975
      0.9575
      0.9706
      0.8003
```

Relational Operators:

PESUNIVERSITY

➤ Relational operators compare the elements in two arrays and return logical true or false values to indicate where the relation holds.

.

==	Determine the equality
>=	Determine greater than or equal to
>	Determine greater than
<=	Determine less than or equal to
<	Determine less than
~=	Determine inequality

Relational Operators continu...

> For example:

Relational Operators continu...

> For example:

Relational Operators continu...

> For example:

a=15; b=20; a~=b & a=115; b=115; a~=b

ans = ans =

Logical Logical

. 0

Logical Operators:

- The logical data type represents true or false states using the numbers 1 and 0, respectively.
- > The three logical operators are &; |; and ~
- > The meaning of & operator is AND
- > The meaning of | operator is OR
- The meaning of ~ operator is NOT

Logical Operator & truth table:

operand	operand	AND operand
1	1	1
1	0	0
0	1	0
0	0	0

Logical Operator &, Continued...

```
For example, >> a=[1 1 1 0 0 0];

>> b=[0 0 0 1 1 1];

>> a&b

ans =

1×6 logical array

0 0 0 0 0 0
```


Logical Operator &, Continued...

Consider,

logical

Logical Operator &, Continued...

Consider, >> a=0; b=1;

>> a&b

ans =

logical.

Logical Operator |, truth table:

➤ If the two operands evaluate to true (1) or false (0), then the operator OR has the following effect.

operand	operand	operand OR operand
1	1	1
1	0	1
0	1	1
0	0	0

Logical Operator |, Continued...

```
Consider, >>a=[1 1 1 0 0 0]; b=[0 0 0 1 1 1];
>>a|b
ans =

1×6 logical array
1 1 1 1 1 1 1
```


Logical Operator ~ truth table:

operand	NOT operand
1	0
0	1

Logical Operator ~, Continued...


```
➤ For example, >>a=10;
```

0

THANK YOU