

```
(2
```

(3) Lek D = (Q, Z, S, go, F) be a DFA with L(D)=L. Define DFA D' = (Q, \(\Sigma, \(\Sigma, \quad \text{90} \) where $F' = \{ q \in Q \mid S(q, a) \in F \}$. We will show that L(D') = L': for all $\mu \in \Sigma^*$ we derive ue L(D')

al
{ definition L(D')} ∃q [qeF': (qo, W) - * (q, E)] { deg. F'; - D' = - D' since - D' = - D} $\exists q [\delta(q, a) \in F : (q_0, u) \vdash_{\mathcal{D}}^* (q, \epsilon)]$ 79.8 [geF: (go, na) - * (g, a) 1 8(g, a)=8] = { def. > D} $\exists q, g [g \in F : (g_0, ua) \vdash p(g,a) \land (g,a) \vdash p(g, \epsilon)]$ - { def + } 78 [geF: (go, na) - * (g, E)] { deg. L(D)} ua e L (D) na e L mal { def. L 1 } u e L'

Since D'is a DFA and $\mathcal{L}(D') = L'$, it follows that L'is regular.

interpretation: (90, w, E) +* (9, E, x)

		The second second	4
state q	inpuk w	Hach x	constraints
90	ah	1 %	h > 0
91	ahbl	R-l	0 ≤ l ≤ h
92	ah blc2m	, &- (l+m)	0 < l+m < h
93	ah bl 2m+1	Se-(1+m)	0 < l+m < &
94	an le cem	3	h = l + m
Ta			

L = { ah & P c l | h > p 1 l > p } is not context-free

. Let m>0.

. Choose w = am bm cm, then we L and |w|=3m>m.

· Lek yox, y, z be strings such that w = uvxyz, vy # E, and |vxy| & m.

Case diskindion:

- vy contains only a's: hvoxyoz = am-lvylbmcm&L since luy/>0.

- uy contains only c's: huoxyoz = am &mcm-luy/&L since luy/>0

- vy contains b's and noc's:

#&(uo2 x y22) > m = #e(uo2 x y2 z)

10 hv2xy22 €L

- vy contains b's and no a's:

#6(hv2xy2z) > m = #a(hv2xy2z)

10 nv2xy2 ₹ € L

Moing (the contraposition of) the Pumping Lemma it follows that I is not context-free.

