

V2X Motorcycle HUD Weekly Updates

•••

Ryan Hiser, Jacob Nguyen, Jorge Pacheco UCSD MAS WES 1 April 2022

V2X Motorcycle HUD

HUD DISPLAY

Directions

Fuel Warning Indicator

Speed

Range/Speed of Rider 1

Directions

Fuel Warning Indicator

Speed

Range/Speed of Rider 2

Rider 1

Motivation

- Motorcyclists often ride in groups. To effectively and safely ride it is often necessary to communicate. This takes many forms:
 - Hand gestures (hands off of handlebars)
 - High speed maneuvers
 - Intercoms (difficult with multiple riders)
 - Refuel periods (gas tanks size/consumption speed vary)
 - Modern cruise control is handled as a throttle lock
 - Riders at rear cannot easily keep consistent following distance
- A HUD system would allow for fewer distractions from the driving experience by displaying this information in a digestible format:
 - Driving Directions
 - Speed
 - Simple Messages
 - Others need to refuel
 - Following distance

Apparatus / System Diagram

Previous Quarter Accomplishments (Current Status)

- Waveform Description defined
- Simulink Model of Waveform (compatible with code generation)
- OLED and wireless link using arduino
- FMComms4 + Zedboard integration with PYNQ

Milestones (this quarter)

- TX Modulator
- RX Demodulator
- Complete Heads-up-display (HUD)
- TDMA Channel
- Two-way link
- Comms system integrated with HUD

Deliverables

- Git Repo: https://github.com/jtn017/capstone
- Final demonstration/video
 - o HUD Demonstration
 - o Data-link demonstration
- Project Report
 - Progress
 - Problems we faced
 - Solutions to problems
 - Future work

Gantt (timeline)

V₂X Motorcycle HUD Project Plan

,		,							les e		2		232170-0-17007		
Periods are 1 Week Intervals					Period Highlight:	1			Plan Duration		Actual Start		% Complete		Actual (beyond plan
ACTIVITY	PLAN START	PLAN DURATION	START	ACTUAL DURATION	COMPLETE	PERIODS 1	2	3	4	5	6	7	8	9	10
HUD	1	6	0	0	0%										
Mount OLED	1	6	0	0	0%										
Screen Interface/ICD	3	1	0	0	0%										
Integrate HUD with Zed	1	2	0	0	0%										
HUD Demo (PYNQ to HUD Data Display)	7	1	0	0	0%							DEMO 14th			
TX	1	2	0	0	0%										
Connect TX output (baseband + modulator) to DAC	1	2	0	0	0%										
Modulator DEMO	3	1	0	0	0%			DEMO 16th							
RX	1	6	0	0	0%										
AGC	1	2	0	0	0%										
Matched Filter	1	2	0	0	0%										
Coarse Frequency Correction (FLL)	1	2	0	0	0%										
Timing/Symbol Recovery	3	4	0	0	0%										
Fine Frequency Correction (Optional)	3	3	0	0	0%										
PL to PS interface	3	3	0	0	0%										
Port Baseband RX processing (simulink code) to ARM	1	2	0	0	0%										
RX Demodulator Demo	7	1	0	0	0%							DEMO 14th			
TDMA MAC Layer	5	4	0	0	0%										
Verification and Validation	7	3	0	0	0%										
TWO-WAY LINK DEMO	9	1	0	0	0%									DEMO 27th	
Audio Input/Output	7	3	0	0	0%										
Final Demonstration (COMMS with HUD Integrated)	10	1	0	0	0%										FINAL DEMO
					Start Date	4/1/2022	4/8/2022	4/15/2022	4/22/2022	4/29/2022	5/6/2022	5/13/2022	5/20/2022	5/27/2022	6/3/2022
					End Date	4/7/2022	4/14/2022	4/21/2022	4/28/2022	5/5/2022	5/12/2022	5/19/2022	5/26/2022	6/2/2022	
					CLASS DATE	4/1/2022		4/16/2022		4/29/2022		5/14/2022		5/27/2022	6/3/2022

Next Sprint

- TX
 - Generate data and send from PS to DAC
- RX
 - Modulator
 - Implement AGC (digital and/or fmcomms method)
 - Implement Matched Filter
 - Implement Coarse Frequency Correction
 - Test PL to PS using dummy data
 - o Baseband
 - Create test vectors (IO)
 - Setup Simulink model with actual data
 - Process RX Baseband data and display on HUD

- HUD
 - Integrate HUD with PYNQ
 - Start prototype mounts

Additional Slides

•••

Current state of affairs

Waveform Description

- Datalength: 7200 bits (Data + 0.01s audio).
- Minimum Required Sampling Frequency (before carrier mixer)
 - After TX processing/modulation: 67200 sym
 - \circ Min Fs = 67200 sym * (1/0.01s) * 2 = 13.44 Msps
- Max Doppler Frequency:
 - \circ Fc = 2.4 GHz (WiFi)
 - \circ Max speed (x2): 200 MPH = 89.41m/s
 - \circ Fd = 2,400,715 Hz (offset = 715 Hz)
- Max fe < 1/2T
 - \circ 1/2T = fs/2L
 - \circ fs/2L = 100 MHz/(2*64) = 781.25 KHz

Waveform Description (cont)

QPSK sim with phase + freq offset and AWGN

HUD Progress

- Encountered issues with first batch of components
 - Assembled all parts and soldered components
 - Created test programs on Arduino IDE to configure ESP8266 (WIFi) and SSD1306 (OLED)
 - Couldn't control OLED with SPI or I2C
 - Ordered a new set or parts with same controllers

HUD Progress (cont)

- Configured OLED to receive subset of data we plan to transmit
 - Created test programs to fiddle with WIFi server functionality
 - Connected WIFi module to local network and was able to toggle individual GPIO pins through a client connected to the network
- Next steps
 - Create a server to listen to our incoming traffic based on our requirements
 - Display text in real time on OLED
 - Work on enclosure

FMComms+Zed Board Integration

- Working SD Card PYNQ image
 - ADI provided base HDL project for FPGA.
 - Used Petalinux to generate boot files with desired FMComms4 device tree.
 - Integrated Petalinux and PYNQ Root Filesystem
 - Installed LibIIO library
 - Created a Transmit and Receive Demonstration.
 - Sends to $Tx DMA \rightarrow DAC$
 - Reads from Tx DMA←ADC and stores to file.
 - On our github.

```
In [25]: import numpy as np
          import matplotlib.pyplot as plt
          import os
In [38]: fid = open("./iio stream/build/fmcomms data.dat","rb")
          data = np.fromfile(fid,dtype='int16')
In [39]: inphase=data[1:40000:2]
          quadrature = data[0:40000:2]
In [40]: plt.plot(inphase)
          plt.plot(quadrature)
          plt.show()
           600
           400
           200
           -200
           -400
           -600
                   2500 5000 7500 10000 12500 15000 17500 20000
```