Introdução ao teste de hipóteses

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Conceito iniciais

Objetivo

- Decidir entre H₀ e H₁ usando as evidências presentes na amostra (tomando a melhor decisão possível ou decisão ótima usando as informações presentes na amostra);
- \blacktriangleright H_0 e H_1 são hipóteses complementares, ou seja, a negação da hipótese H_0 é H_1 ;
- H₀ e H₁ são declarações sobre um parâmetro (ou vários parâmetros) de uma populações (ou duas ou mais populações);
- ► H₀ é chamada de hipótese nula;
- ► H₁é chamada de hipótese alternativa.

Observe que podemos tomar duas decisões erradas:

- i. **Erro tipo I:** Aceitar H_1 quando H_0 é verdadeira, ou seja, rejeitar H_0 quando H_0 é verdadeira;
- ii. Erro tipo II: Aceitar H_0 quando H_1 é verdadeira, ou seja, não rejeitar H_0 quando H_1 é verdadeira;

Tabela 1: Erro tipo I e II.

	Situação na população			
	H ₀	H ₁ (Negação de H ₀)		
Decisão H ₀ H ₁ (Negação de H ₀)	Sem erro (verdadeiro negativo) Erro tipo I (Falso positivo)	Erro tipo II (Falso negativo) Sem erro (Verdadeiro positivo)		

Conceitos iniciais

Uso mais comuns

- Verificar se o parâmetro mudou de valor em um novo cenário;
- Validar uma teoria ou modelo;
- Checar especificações (valor padrão estabelecido do mercado ou valor estabelecido por um regulador);

Roteiro para especificar as hipóteses

- Coloque em H₀ o valor padrão ou o valor padrão de mercado ou valor especificado por órgão regulador;
- Coloque em H₁ sua hipótese de pesquisa;
- Dica: Na dúvida, pense que a igualdade sempre vai na hipótese nula por construção da regra decisão entre H₀ e H₁.

Notação

O erro com a consequência mais grave geralmente indica quem será o H_1 (falso positivo é mais grave), pois controlamos $P(\text{Decidir por } H_1 \mid H_0 \text{ é verdadeira}).$

Exemplo: Em um julgamento, temos as seguintes hipóteses,

- H₀: réu é inocente. (Se n\u00e3o tem certeza da culpa, declare inoc\u00e9ncia);
 - H₁: réu é culpada. (Precisa ser uma decisão com muita certeza).

Em um julgamento, o juiz decidi por H_1 se tivermos provas robustas e convincentes. Se não existir provas, o juiz não pode decidir por H_1 e ele conclui por H_0 por falta de evidência mas o réu pode ser culpado, você apenas não conseguiu provas e decisão por H_0 é "mais fraca". Neste contexto, usamos a seguinte notação:

- "Decisão por H₀": não rejeitamos H₀ Não rejeitamos a inocência do réu;
- ▶ "Decisão por H₁": rejeitamos H₀ Rejeitamos a inocência do réu. (Rejeitamos H₀ apenas se tivermos forte evidência).

Exemplo de motivação. (Procedimento de Neyman-Pearson)

Imagine que no ano de 2017, 10.000 alunos das universidades federais cursaram "Estatística Básica". No ano de 2016, a nota final média dos alunos foi 5 e queremos decidir entre duas hipóteses

 H_0 : A nota final em 2017 permaneceu a mesma de 2016($\mu = 5$);

 H_1 : A nota final em 2017 foi diferente de 2016($\mu \neq 5$).

Descobrir a nota de 10.000 alunos pode ser difícil, então podemos escolher aleatoriamente 1.000 alunos e precisamos decidir entre H_0 e H_1 .

Imagine três amostras distintas:

Amostra A: nota média na amostra A é 2,5;

Amostra B: nota média na amostra A é 5;

Amostra C: nota média na amostra A é 7,5;

Exemplo de motivação (Procedimento de Neyman-Pearson)

Exemplo de motivação (Procedimento de Neyman-Pearson)

- Amostra A: A média da amostra A é menor que 5, então decidimos que a média população é menor que 5, ou seja, decidimos por H_1 ;
- Amostra B: A média da amostra B é maior que 5, então decidimos que a média da população é maior que 5, ou seja, decidimos por H_1 ;
- Amostra C: A média da amostra C é igual a 5, então decidimos que a média da população é igual a 5, ou seja, decidimos por H_0 .

Problema

Quão longe a média da amostra precisa estar de 5 para rejeitar $H_0: \mu = 5$?

Solução

Usamos estatística para determinar quão longe a média da amostra precisa estar de 5 para rejeitar $H_0: \mu=5$.

A probabilidade do erro tipo I e II são denotadas por

$$\alpha = P(\text{Erro tipo I}) = P(H_1 \mid H_0),$$

 $\beta = P(\text{Erro tipo II}) = P(H_0 \mid H_1).$

Ideia: Tomar uma decisão que minimize simultaneamente α e β .

Problema: Não é possível tomar uma decisão que minimize simultaneamente α e β , conforme ilustrado na figua.

Figura 1: trade-off entre α e β .

Solução: fixar a probabilidade do erro tipo I e encontrar a decisão que minimize β .

Notações:

- $ightharpoonup \alpha$: nível de significância, erro α ou tamanho do teste. Geralmente, usamos $\alpha = 0,05$;
- \triangleright β : erro β ;
- ▶ 1 $-\beta$; poder do teste de hipóteses.

Tamanho de amostra e o erro β e erro α .

Quando aumentamos o tamanho da amostra, o erro β diminui. Abaixo usamos a seguinte regra de decisão:

- ► Se 4, 80 $\leq \bar{x} \leq$ 5, 20, então decidimos por H_0 ;
- ► Se 4, 80 < \bar{x} ou \bar{x} > 5, 20, então decidimos por H_1 .

Na tabela 2, note que ao aumentarmos o tamanho da amostra, as probabilidades dos erros tipo I e II diminuem.

Tabela 2: Erro α e β ao aumentarmos o tamanho da amostra.

α	$\beta(\mu=4,3)$	$\beta(\mu=5,3)$
0,42371	0,02259	0,32183
		0,28346 0.24395
0.10960	0.00003	0,24393
0,01141	0,00000	0,10295
	0,00000	0,03682
0,00001	0,00000	0,01423 0,00571
	0,42371 0,25790 0,16586 0,10960 0,01141 0,00035 0,00001	0,42371 0,02259 0,25790 0,00234 0,16586 0,00027 0,10960 0,00003 0,01141 0,00000 0,00035 0,00000 0,00001 0,00000

Para calcular os erros α e β , assumimos que a variável $X \sim N(\mu, 1, 25^2)$ (X = nota). Ou seja, $\alpha = P(\bar{X} \le 4, 80 \mid \mu = 5) + P(\bar{X} \ge 5, 20 \mid \mu = 5)$ e $\beta = P\left(4, 80 \le \bar{X} \le 5, 20 \mid \mu\right), \mu \in \{4, 3; 5, 3\}.$

Valor-p

Definição

- Vamos chamar a possibilidade ou plausibilidade ou indicação da hipótese alternativa (H₁) de estatística do teste;
- O valor-p ou nível crítico é a probabilidade de coletar uma amostra com estatística do teste igual ou mais extrema do que a amostra observada quando H₀ é verdadeira. Lembre que consideramos o erro tipo I (falso positivo) tem graves consequências e as nossas decisões focam em controlar este erro;
- Rejeitamos H₀ quando o valor-p é pequeno, e usamos como valor de referência o nível de significância α. Ilustramos essa ideia na Figura 2.

Figura 2: Uso do valor-p.

P-valor como variável aleatória

Exemplo

Imagine que temos um amostra com quatro valores de uma variável aleatória contínua com distribuição normal com desvio padrão $\sigma^2=1$ e considere as hipóteses $H_0: \mu=0$ e $H_1: \mu\neq 0$. Usamos a seguinte ideia para decidir: Se a média da amostra \bar{x} estiver longe de $\mu=0$ rejeitamos H_0 , ou seja, rejeitamos H_0 se $\left|\frac{(\bar{x}-0)\sqrt{n}}{\sigma}\right|$ for grande. A estatística de teste neste caso é $\left|\frac{(\bar{x}-0)\sqrt{n}}{\sigma}\right|$.

- ▶ O valor-p é calculado usando $P\left(\left|\frac{(\bar{X}-0)\sqrt{n}}{\sigma}\right| > \left|\frac{(\bar{x}-0)\sqrt{n}}{\sigma}\right| \mid H_0: \mu = 0\right)$.
- Ao mudarmos a amostra, também mudamos o valor-p. Como ilustrado na Tabela 3.

	Valor 1	Valor 2	Valor 3	Valor 4	Estatística do teste	P-valor	Decisão
Amostra 1		1,965	0,762	2,997	3,101	0,002	Rejeitamos H ₀
Amostra 2	-1,125	0,335	-3,063	-2,394	-3,123	0,002	Rejeitamos H ₀
Amostra 3	0,412	-1,294	0,220	0,751	0,045	0,964	Não rejeitamos Ho
Amostra 4	0,448	-1,183	0,299	0,329	-0,054	0,957	Não rejeitamos H ₀

Tabela 3: Valor-p calculado para várias amostras de tamanho n=4 de uma variável aleatória aleatória com distribuição normal com variância $\sigma^2=1$, quando $H_0: \mu=0$ é verdadeira.

Valor-p

Valor-p, de forma similar a média \bar{x} , tem um valor diferente para cada amostra, e, então, podemos interpretar o valor-p como uma observação de uma variável aleatória. Como ilustração, as Figura 3a, Figura 3b e Figura 3c mostram histogramas para 10.000 valores-p provenientes de 10.000 amostras de tamanho amostral n=4 de uma variável aleatória contínua com distribuição normal com desvio padrão $\sigma=1$.

Figura 3: Histograma de valores-p para 10.000 amostras quando (a) $H_0: \mu=0$ é verdadeira, (b) $H_1: \mu\neq 0$ é verdadeira e $\mu=-1$, e (c) $H_1: \mu\neq 0$ é verdadeira e $\mu=1$.

Testes de hipóteses

Nesse curso, vamos determinar a regra de decisão, chamada de "Teste de Hipóteses" para os seguintes problemas:

- 1. Uma variável ou população:
 - a. Teste para média μ , para distribuição normal com σ^2 conhecido (teste Z);
 - b. Teste para média μ , para distribuição com σ^2 desconhecido (teste t);
 - c. Teste para σ^2 (teste qui-quadrado para variância);
 - d. Teste para proporção p, para distribuição Bernoulli quando n > 40.

Passos para testar H_0 e H_1 .

Etapas para construir um teste.

Procedimento de Neyman-Pearson

Usando o procedimento de Neymann-Pearson:

- 1) Estabelecer as hipóteses H_0 e H_1 ;
- 2) Estabelecer o nível de significância α ;
- Identificar a "ideia" da decisão (estatística do teste);
- Encontrar o(s) valor(es) crítico(s);
- Tomar a decisão.

valor-p

Usando o valor-p

- 1) Estabelecer as hipóteses H_0 e H_1 ;
- 2) Estabelecer o nível de significância α ;
- 3) Encontrar o valor-p;
- 4) Decidir usando o valor-p e o nível de significância.

Observação:

Alguns livros chamam o "Procedimento de Neyman-Pearson" de "Procedimento Geral de Testes de hipóteses."

Sejam

- $ightharpoonup x_1, \ldots, x_n$ valores amostrados de $N(\mu, \sigma^2)$;
- $ightharpoonup \sigma^2$ conhecido;
- $\sim \alpha$ é o nível de significância (estabelecido pelo pesquisador e geralmente $\alpha = 5\%$).

Queremos testar as seguintes hipóteses:

- ► Teste bilateral: $H_0: \mu = \mu_0$ e $H_1: \mu \neq \mu_0$;
- ► Teste unilateral: $H_0: \mu \leq \mu_0$ e $H_1: \mu > \mu_0$;
- ► Teste unilateral: $H_0: \mu \ge \mu_0$ e $H_1: \mu < \mu_0$.

Ideia: Primeiro calculamos a distância padronizada de \bar{x} e μ_0 : $Z_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma}$. Então,

- ▶ Teste bilateral: Rejeitamos $H_0: \mu \mu_0 = 0$ se $|Z_0|$ for grande;
- ▶ Teste unilateral: Rejeitamos H_0 : $\mu \mu_0 \le 0$ se Z_0 for grande;
- ▶ Teste unilateral: Rejeitamos $H_0: \mu \mu_0 \ge 0$ se Z_0 for pequeno.

Figura 4: Região crítica para o teste Z.

- Na Figura 4a, testamos $H_0: \mu=\mu_0$ versus $H_1: \mu\neq\mu_0$. Rejeitamos H_0 se $z_0=\frac{(\overline{x}-\mu_0)\sqrt{n}}{\sigma}\in RC=\{z_0\mid z_0< z_{\frac{\alpha}{2}}\text{ ou }z_0>z_{1-\frac{\alpha}{2}}\}, \text{ em que }\Phi\left(z_{\frac{\alpha}{2}}\right)=\frac{\alpha}{2}\text{ e}$ $\Phi\left(z_{1-\frac{\alpha}{2}}\right)=1-\frac{\alpha}{2};$
- Na Figura 4b, testamos $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$. Rejeitamos H_0 se $z_0 = \frac{(\bar{x} \mu_0)\sqrt{n}}{\sigma} \in RC = \{z_0 \mid z_0 > z_{1-\alpha}\}, \text{ em que } \Phi\left(z_{1-\alpha}\right) = 1 \alpha;$
- Na Figura 4c, testamos $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$. Rejeitamos H_0 se $z_0 = \frac{(\bar{x} \mu_0)\sqrt{n}}{\sigma} \in RC = \{z_0 \mid z_0 < z_\alpha\}, \text{ em que } \Phi(z_\alpha) = \alpha.$

Chamamos z_{α} , $z_{1-\alpha}$, $z_{\frac{\alpha}{2}}$ e $z_{1-\frac{\alpha}{2}}$ são chamados de valores críticos.

Exemplo

Um pesquisador deseja estudar o efeito de certa substância no tempo de reação de seres vivos a um certo tipo de estímulo. Um experimento é desenvolvido com cobaias que são inoculadas com a substância e submetidas a um estímulo elétrico, com seu tempo de reação (em segundos) anotados. Os seguintes valores foram obtidos: 9,1; 7,2; 13,3; 10,9; 7,2; 9,9; 8,0; 8,6; 8,0; 7,1. Admite-se que o tempo de reação tem desvio padrão de 2 segundos. Além disso, da literatura médica, o pesquisador sabe que o tempo de reação ao estímulo é, em média, 8 segundos. O pesquisador desconfia que o tempo médio sofre alteração por influência da substância. Usando um nível de significância 5%, o pesquisador está correto?

Solução

Passo 1) Temos duas hipóteses: $H_0: \mu = \mu_0$ e $H_1: \mu \neq \mu_0$, em que $\mu_0 = 8$.

Passo 2) $\alpha = 0,05$.

Passo 3) Rejeitamos H_0 se $|z_0| = \left| \frac{(\bar{x} - \mu_0)\sigma}{\sqrt{n}} \right|$ for grande. Ou seja,

$$RC = \{z_0 \mid z_0 < z_{\frac{\alpha}{2}} \text{ ou } z_0 > z_{1-\frac{\alpha}{2}}\}.$$

Passo 4) Vamos encontrar os valores críticos da região crítica:

$$\Phi\left(z_{1-\frac{0.05}{2}}\right) = \Phi\left(z_{0.975}\right) = z_{1-\frac{0.05}{2}} = z_{0.975} = 0,975, \text{ então } z_{0.975} = 1,96.$$

Passo 5) Como
$$\bar{x} = \frac{9,1+7,2+13,3+10,9+7,2+9,9+8+8,6+8+7,1}{10} = 8,93,$$

$$z_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma} = \frac{(8.93 - 8)\sqrt{10}}{2} = 1,47 \text{ e } |1,47| = 1,47.$$
 Então, $z_0 \not\in RC$ e não rejeitamos H_0 .

Ou seja, ao nível de significância $\alpha = 5\%$, a substância não altera o tempo de reação.

Solução (valor-p)

O valor-p é calculado através da equação

$$p = P\left(\left|\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma}\right| > \left|\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma}\right| \mid H_0\right) = 2\left[1 - \Phi\left(\frac{|\bar{X} - \mu_0|\sqrt{n}}{\sigma}\right)\right].$$

Como $\mu_0=$ 8, n= 10, $\bar{x}=$ 8, 93 e $\sigma=$ 8, temos que

$$\rho = 2 \left[1 - \Phi \left(\frac{|8,93 - 8|\sqrt{10}}{2} \right) \right]$$

$$= 2 \left[1 - \Phi(1,47) \right]$$

$$= 2[1 - 0,9292]$$

$$= 0,1416.$$

Como p=0, 1416 $\geq \alpha=0$, 05, não rejeitamos H_0 ao nível de significância $\alpha=0$, 05. Em outras palavras, ao nível de significância $\alpha=5\%$, não temos evidência estatística que a substância altera o tempo de reação das cobaias.

Exemplo

Devido ao surgimento de um novo vírus, uma empresa começou a fabricar em gel anti-séptico para as mãos. Uma máquina controla a quantidade do produto nos frascos com desvio padrão 10ml. Um órgão de defesa do consumidor desconfia que os frascos tem menos de 60ml. Para checar as hipóteses, coletou-se 16 frascos com os seguintes valores: 57, 31; 78, 97; 75, 27; 56, 21; 68, 74; 65, 30; 53, 50; 66, 87; 67, 35; 54, 05; 70, 82; 71, 00; 48, 52; 62, 22; 70, 32; 68, 67. Ao nível de significância <math>5%, o órgão de defesa do consumidor está correto?

Solução

Passo 1) Temos as seguintes hipóteses: $H_0: \mu \ge \mu_0$ e $H_1: \mu < \mu_0$, em que $\mu_0 = 60$;

Passo 2) $\alpha = 0,05$

Passo 3) Rejeitamos H_0 se $z_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma}$ for pequeno. Ou seja, $RC = \{z_0 \mid z_0 < z_\alpha\};$

Passo 4) Neste contexto, o valor crítico z_{α} é calculado por

•
$$\Phi(z_{\alpha}) = \Phi(z_{0,05}) = \alpha = 0,05$$
, então $z_{0,05} = -1,65$.

Passo 5) Note que $\bar{x} = 64,71$, $z_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma} = \frac{(64,71 - 60)\sqrt{16}}{10} = 1,884$ e $z_0 = 1,884 \ge -1,65$, então não rejeitamos H_0 .

Ao nível de significância $\alpha=5\%$, o órgão de defesa do consumidor não tem evidência estatística para afirmar que os frascos têm, em média, menos de $60\,ml$.

Solução (valor-p)

Neste contexto, o p-valor é dado pela equação

$$p = P\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} < \frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} \mid H_0\right) = \Phi\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma}\right).$$

Como $\bar{x}=64,71,\,n=16$ e $\sigma=10,\,{\rm ent\tilde{a}o}$

$$p = \Phi\left(\frac{(64,71-60)\sqrt{16}}{10}\right),$$

$$= \Phi(1,88),$$

$$= 0.9699.$$

Como $p=0,9699>0,05=\alpha$, ao nível de significância 5% não rejeitamos H_0 . Ou seja, ao nível de significância 5%, podemos afirmar que os frascos têm, em média, pelo menos 60ml.

Exemplo

Imagine que um pesquisador tem uma amostra com 16 observações de uma variável aleatória com distribuição normal com desvio padrão dado por $\sigma=10$. Na Tabela 4, apresentamos algumas informações para testar as hipóteses $H_0: \mu \leq 8$ e $H_1: \mu > 8$. Complete a Tabela 4. Ao nível de significância $\alpha=5\%$, você rejeitaria H_0 ?

tamanho da amostra	Média	Desvio padrão populacional	$\frac{\sigma}{\sqrt{n}}$	$ Z_0 $	valor-p
16	14,37	10			

Tabela 4: Algumas informações do experimento.

Solução (valor-p)

Passo 1) Pelo enunciado do exemplo, temos as seguintes hipóteses:

 $H_0: \mu \leq \mu_0 \text{ e } H_1: \mu > \mu_0, \text{ em que } \mu_0 = 8;$

Passo 2) $\alpha = 5\%$.

Passo 3) Rejeitamos H_0 se $z_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma}$ for grande. Ou seja, $RC = \{z_0 \mid z_0 > z_{1-\alpha}\}.$

Passo 4) Vamos encontrar o valor crítico:

$$lack \Phi(z_{1-\alpha}) = \Phi(z_{0.95}) = 1 - \alpha = 0,95$$
, então $z_{0.95} = 1,65$.

Passo 5) Note que $\bar{x} = 14,37$, $z_0 = \frac{(14,37-8)\sqrt{16}}{10} = 2,548$ e $z_0 = 2,548 > 1,65$, então rejeitamos H_0 . Ao nível de significância de 5%, rejeitamos H_0 .

Solução:valor -p (teste Z unilateral)

Solução (valor-p)

Neste contexto, o valor p é dador pela equação

$$p = P\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} > \frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma} \mid H_0\right) = 1 - \Phi\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{\sigma}\right).$$

Como x = 14,37, n = 16 e $\sigma = 10$, então

$$p = 1 - \Phi\left(\frac{(14, 37 - 8)\sqrt{16}}{10}\right),$$

$$= 1 - \Phi(2, 55),$$

$$= 1 - 0,9946$$

$$= 0.0054.$$

Como $p = 0,0054 < \alpha = 0,05$, ao nível de significância $\alpha = 5\%$, rejeitamos H_0 .

Sejam

- $ightharpoonup x_1, \ldots, x_n$ valores amostrados de $N(\mu, \sigma^2)$;
- $ightharpoonup \sigma^2$ desconhecido;
- α é o nível de significância (geralmente $\alpha=5\%$).

Queremos testar as seguintes hipóteses:

- ► Teste bilateral: $H_0: \mu = \mu_0$ e $H_1: \mu \neq \mu_0$;
- ► Teste unilateral: $H_0: \mu \leq \mu_0$ e $H_1: \mu > \mu_0$;
- ► Teste unilateral: $H_0: \mu \ge \mu_0$ e $H_1: \mu < \mu_0$.

Ideia: Primeiro calculamos a distância padronizada de \bar{x} e μ_0 : $T_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s}$. Então,

- ▶ Teste bilateral: Rejeitamos $H_0: \mu \mu_0 = 0$ se $|T_0|$ for grande;
- ▶ Teste unilateral: Rejeitamos $H_0: \mu \mu_0 \le 0$ se T_0 for grande;
- ▶ Teste unilateral: Rejeitamos $H_0: \mu \mu_0 \ge 0$ se T_0 for pequeno.

Figura 5: Região crítica para o teste t.

- ▶ Na Figura 5a, testamos $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. Rejeitamos H_0 se $t_0 = \frac{(\bar{x} \mu_0)\sqrt{n}}{s} \in$ $RC = \{t_0 \mid t_0 < t_{\frac{\alpha}{2}, n-1} \text{ ou } t_0 > t_{1-\frac{\alpha}{2}, n-1}\}$, em que $P\left(t_{n-1} \leq t_{\frac{\alpha}{2}, n-1}\right) = \frac{\alpha}{2} \text{ e } P\left(t_{n-1} \leq t_{1-\frac{\alpha}{2}, n-1}\right) = 1 \frac{\alpha}{2};$
- Na Figura 5c, testamos $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$. Rejeitamos H_0 se $t_0 = \frac{(\bar{x} \mu_0)\sqrt{n}}{s} \in RC = \{t_0 \mid t_0 < t_{\alpha,n-1}\}$, em que $P(t_{n-1} \leq t_{\alpha}) = \alpha$;
- ▶ Na Figura 5b, testamos $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$. Rejeitamos H_0 se $t_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s} \in RC = \{t_0 \mid t_0 < t_{1-\alpha,n-1}\}$, em que $P(t_{n-1} \leq t_{1-\alpha,n-1}) = 1 - \alpha$.

Chamamos $t_{\alpha,n-1}$; $t_{1-\alpha,n-1}$; $t_{\frac{\alpha}{2},n-1}$ e $t_{1-\frac{\alpha}{2},n-1}$ de valores críticos.

Exemplo

Deseja-se investigar se um certa moléstia, que ataca o rim, altera o consumo do oxigênio desse órgão. Para indivíduos sadios, admite-se que esse consumo tem distribuição normal com média $12cm^3/min$. Os valores medidos em cinco pacientes com a moléstia foram: 14,4; 12,9; 15,0; 13,7; e 13,5. Qual seria a conclusão, ao nível de significância de 1%?

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \mu = \mu_0$ e $H_1: \mu \neq \mu_0$, em que $\mu_0 = 12$;

Passo 2) Pelo enunciado, temos que o nível de significância é $\alpha=$ 1%.

Passo 3) Rejeitamos H_0 se $|t_0| = \left| \frac{(\bar{x} - \mu_0)\sqrt{n}}{s} \right|$ for grande. Ou seja,

$$RC = \{t_0 \mid t_0 < t_{\frac{\alpha}{2}, n-1} \text{ ou } t_0 > t_{1-\frac{\alpha}{2}, n-1}\}.$$

Passo 4) Vamos encontrar os valores críticos:

$$P\left(t_{n-1} \le t_{\frac{\alpha}{2},n-1}\right) = P\left(t_4 \le t_{0,005,4}\right) = \frac{\alpha}{2} = 0,005$$
, então $t_{0,005;4} = -4,604$;

$$P\left(t_{n-1} \le t_{1-\frac{\alpha}{2},n-1}\right) = P\left(t_4 \le t_{0,995,4}\right) = 1 - \frac{\alpha}{2} = 0,995$$
, então $t_{0,995,4} = 4,604$.

Passo 5) Note que $\bar{x}=13,9$, s=0,82 e $t_0=\frac{(13,9-12)\sqrt{5}}{0,82}=5,18$, então $t_0\in RC$ e rejeitamos H_0 . Ou seja, ao nível de significância $\alpha=1\%$, a moléstia altera o consumo de oxigênio.

Solução: p-valor (teste t bilateral)

O p-valor é calculado através da equação

$$\rho = P\left(\left|\frac{(\bar{X}-\mu_0)\sqrt{n}}{s}\right| > \left|\frac{(\bar{X}-\mu_0)\sqrt{n}}{s}\right| \mid H_0\right) = 2\left[1 - P\left(t_{n-1} \leq |t_0|\right)\right].$$

Como
$$\bar{x}=13, 9, s=0, 82, n=5$$
 e $t_0=\frac{(\bar{x}-\mu_0)\sqrt{n}}{s}=5, 18$, então

$$p = 2 [1 - P(t_{n-1} \le |t_0|)]$$

= $2 [1 - P(t_4 \le |5, 18|)]$, Aqui precisamos usar o R, Python ou MATLAB.
= $2 [1 - 0.9967]$
= $0,0066$.

Como $p=0,0066<0,01=\alpha$, ao nível de significância 1%, não rejeitamos H_0 . Ou seja, ao nível de significância 1%, podemos afirmar que a moléstia altera o consumo de oxigênio pelo rim.

Exemplo

O crescimento de bebês, durante o primeiro mês de vida, pode ser modelado pela distribuição Normal. Admita que, em média, um crescimento de 5 centímetros ou mais seja considerado satisfatório. Deseja-se verificar se o crescimento de bebês de famílias em um bairro de periferia de São Paulo acompanha o padrão esperado ao nível de significância $\alpha=1\%$. Para tanto, 10 recém-nascidos na região foram sorteados e sua altura acompanhada, fornecendo as seguintes de crescimento em centímetros: 5,03; 5,02; 4,95; 4,96; 5,01; 4,97; 4,90; 4,91; 4,90 e 4,93.

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \mu \ge \mu_0$ e $H_1: \mu < \mu_0$, em que $\mu_0 = 5$;

Passo 2) Pelo enunciado, o nível de significância é $\alpha = 1\%$.

Passo 3) Rejeitamos H_0 se $t_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s}$ for pequeno. Ou seja, rejeitamos H_0 se $t_0 < t_{\alpha,n-1}$, em que $P(t_{n-1} \le t_{\alpha,n-1}) = \alpha$. Então,

$$RC = \{t_0 \mid t_0 < t_{\alpha, n-1}\}.$$

Passo 4) Vamos encontrar o valor crítico da região crítica:

 $P(t_{n-1} \le t_{\alpha,n-1}) = P(t_9 \le t_{0,01,9}) = \alpha = 0,01$, então $t_{0,01,9} = -2,764$.

Passo 5) Note que $\bar{x} = 4,958$, s = 0,05, n - 10 e

 $t_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s} = -2,70$. Como $t_0 \notin RC$, não rejeitamos H_0 ao nível de significância $\alpha = 1\%$.

Ao nível de significância $\alpha = 1\%$, os bebês da periferia tem crescimento de, no mínimo, 5 centímetros.

Solução (p-valor)

O p-valor é calculado através da equação

$$p = P\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{s} < \frac{(\bar{X} - \mu_0)\sqrt{n}}{s} \mid H_0\right) = P\left(t_{n-1} < t_0\right).$$

Como $\bar{x}=4,958,\, s=0,05,\, n=10$ e $t_0=\frac{(\bar{x}-\mu_0)\sqrt{n}}{s}=-2,70,$ temos que

$$p = P(t_{n-1} \le t_0)$$

= $P(t_9 \le -2,70)$ Aqui precisamos usar o R, Python ou MATLAB.
= 0,01.

Como $p=0,01\geq 0,01=\alpha$, ao nível de significância $\alpha=1\%$, então não rejeitamos H_0 , ou seja, o crescimentos dos bebês na periferia é, no mínimo, 5 centímetros.

Exemplo

Imagine que um pesquisador tem uma amostra com 25 observações de uma variável aleatória com distribuição normal. Na Tabela 5, apresentamos algumas informações para testar as hipóteses $H_0: \mu \leq$ 15 e $H_1: \mu >$ 15. Complete a Tabela 5. Ao nível de significância $\alpha =$ 5%, você rejeitaria H_0 ?

tamanho da amostra		s	<i>t</i> ₀	valor-p
25	20,69	2,10		

Tabela 5: Algumas informações do experimento.

Solução (procedimento de Neymann-Pearson)

Passo 1) Pelo enunciado, temos as hipóteses: $H_0: \mu \le \mu_0$ e $H_1: \mu > \mu_0$, em que $\mu_0 = 15$;

Passo 2) Pelo enunciado, o nível de significância é $\alpha = 5\%$.

Passo 3) Rejeitamos H_0 se $t_0 = \frac{(\bar{x} - \mu_0)\sqrt{n}}{s}$ for grande. Ou seja, $RC = \{t_0 \mid t_0 > t_{1-\alpha,n-1}\}.$

Passo 4) Vamos calcular o valor crítico:

 $P(t_{n-1} < t_{1-\alpha,n-1}) = P(t_{24} < t_{0,95;24}) = 1 - \alpha = 0,95$, então $t_{0,95,24} = 1,711$.

Passo 5) Note que $\bar{x}=20,69,\,s=2,10$ e $n=25,\,$ então $t_0=\frac{(20,69-15)\sqrt{25}}{2,10}=13,55$ e $t_0\in RC$, ou seja, rejeitamos H_0 ao nível de significância 5%.

Distribuição normal com σ^2 desconhecido (Teste t).

Solução (p-valor)

O valor-p é calculado através da equação

$$p = P\left(\frac{(\bar{X} - \mu_0)\sqrt{n}}{s} > \frac{(\bar{X} - \mu_0)\sqrt{n}}{s}\right) = 1 - P\left(t_{n-1} \le \frac{(\bar{X} - \mu_0)\sqrt{n}}{s}\right) = 1 - P(t_{n-1} \le t_0).$$

Como $\bar{x} = 20, 69, s = 2, 10, n = 25$ e $t_0 = 13, 55$, temos que

$$p=1-P(t_{n-1} \le t_0)$$

= 1 - $P(t_{24} \le 13,55)$ Aqui precisamos usar o R, Python ou MATLAB.
= 1 - 1
= 0.

Como $p = 0 < 0,05 = \alpha$, ao nível de significância $\alpha = 5\%$ rejeitamos H_0 .

Sejam

- $ightharpoonup x_1, \ldots, x_n$ valores amostrados de $N(\mu, \sigma^2)$;
- ho α é o nível de significância (estabelecido pelo pesquisador e geralmente $\alpha=5\%$).

Queremos testar as seguintes hipóteses:

- ► Teste bilateral: $H_0: \sigma = \sigma_0$ e $H_1: \sigma \neq \sigma_0$;
- ► Teste unilateral: $H_0: \sigma \leq \sigma_0$ e $H_1: \sigma > \sigma_0$;
- ► Teste unilateral: $H_0: \sigma \geq \sigma_0$ e $H_1: \sigma < \sigma_0$.

Ideia: Primeiro calculamos
$$X_0^2 = \frac{s^2(n-1)}{\sigma_0^2}$$
, em que $X_0^2 = \frac{s^2(n-1)}{\sigma_0^2}$ e $s^2 = \frac{(x_1 - \bar{x})^2 + \dots + (x_1 - \bar{x})^2}{\sigma_0^2}$. Então,

- ► Teste bilateral: Rejeitamos $H_0: \frac{\sigma^2}{\sigma_0^2} = 1$ se X_0^2 for grande ou for pequeno;
- ► Teste unilateral: Rejeitamos $H_0: \frac{\sigma^2}{\sigma_0^2} \le 1$ se X_0^2 for grande;
- ► Teste unilateral: Rejeitamos $H_0: \frac{\sigma^2}{\sigma_0^2} \ge 1$ se X_0^2 for pequeno.

Figura 6: Região crítica para o teste de variância.

- ▶ Na Figura 6a, testamos $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$. Rejeitamos H_0 se $x_0^2 = \frac{(n-1)s^2}{\sigma^2} \in RC = \{x_0^2 \mid x_0^2 < \chi_{\frac{\alpha}{2};n-1}^2 \text{ ou } x_0^2 > \chi_{1-\frac{\alpha}{2};n-1}^2 \}$, em que $P\left(\chi_{n-1}^2 \leq \chi_{\frac{\alpha}{2},n-1}^2\right) = \frac{\alpha}{2} \text{ e } P\left(\chi_{n-1}^2 \leq \chi_{1-\frac{\alpha}{2};n-1}^2\right) = 1 \frac{\alpha}{2};$
- ▶ Na Figura 6b, testamos $H_0: \sigma \leq \sigma_0$ versus $H_1: \sigma > \sigma_0$. Rejeitamos H_0 se $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2} \in RC = \{x_0^2 \mid x_0^2 > \chi_{1-\alpha;n-1}^2\}$, em que $P\left(\chi_{n-1}^2 \leq \chi_{1-\alpha,n-1}\right) = 1 \alpha;$
- Na Figura 6c, testamos $H_0: \sigma \geq \sigma_0$ versus $H_1: \sigma < \sigma_0$. Rejeitamos H_0 se $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2} \in RC = \{x_0^2 \mid x_0^2 < \chi^2_{\alpha;n-1}\}, \text{ em que } P\left(\chi^2_{n-1} \leq \chi^2_{\alpha;n-1}\right) = \alpha.$

Chamamos $\chi_{\alpha;n-1}, \chi_{1-\alpha;n-1}, \chi_{\frac{\alpha}{2};n-1}$ e $\chi_{1-\frac{\alpha}{2};n-1}$ de valores críticos.

Exemplo

Uma máquina é usada para encher garrafas com álcool gel. Em uma amostra com n=20 garrafas obtemos $s^2=0,0117ml^2$. Se a variância for maior que 0,01, a proporção de garrafas fora da especificação é inaceitável (pouco ou muito álcool gel), e se a variância for menor que 0,01, o desgaste da máquina é grande e desnecessária. A máquina está regulamente corretamente ao nível de significância $\alpha=5\%$?

Solução

Passo 1) Pelo enunciado, temos que testar as hipóteses: $H_0: \sigma = \sigma_0$ e $H_1: \sigma \neq \sigma_0$, em que $\sigma_0 = 0,01$.

Passo 2) Nível de significância: $\alpha = 5\%$.

Passo 3) Rejeitamos H_0 se x_0^2 for grande ou pequeno. Ou seja, rejeitamos H_0 se $x_0^2 < \chi^2_{\frac{\alpha}{2};n-1}$ e $x_0^2 > \chi^2_{1-\frac{\alpha}{2};n-1}$. Então,

$$RC = \{x_0^2 \mid x_0^2 < \chi_{\frac{\alpha}{2}; n-1}^2 \text{ ou } x_0^2 > \chi_{1-\frac{\alpha}{2}; n-1}^2\}.$$

Passo 4) Vamos encontrar o valor crítico da região crítica:

- $P\left(\chi_{n-1}^2 \leq \chi_{\frac{\alpha}{2};n-1}^2\right) = P\left(\chi_{19}^2 \leq \chi_{0,025;19}^2\right) = \frac{\alpha}{2} = 0,025, \text{ então } \chi_{0,025;19}^2 = 8,9065165;$
- $P\left(\chi_{n-1}^2 \leq \chi_{\frac{1-\alpha}{2};n-1}^2\right) = P\left(\chi_{19}^2 \leq \chi_{0,975;19}^2\right) = 1 \frac{\alpha}{2} = 0,975, \text{ então } \chi_{0.025;19}^2 = 32,8523269.$

Passo 5) Como $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2} = \frac{0.0117 \cdot 19}{0.01} = 22,23 \notin RC$, concluímos que não podemos rejeitar H_0 .

Ou seja, ao nível de significância $\alpha=5\%$, então a variância populacional é aproximadamente $0,01ml^2$.

Solução (valor-p)

Figura 7: Valor-p depende se $P\left(\chi_{n-1}^2 < \chi_0^2\right) < 0,5$ ou se $P\left(\chi_{n-1}^2 > \chi_0^2\right) < 0,5.$

Solução (valor-p)

O valor-p é calculado através da equação:

$$\rho = 2 \cdot \min \left(P\left(\chi_{n-1}^2 < \chi_0^2\right); P\left(\chi_{n-1}^2 > \chi_0^2\right) \right).$$

Como
$$x_0^2 = \frac{s^2(n-1)}{\sigma_0} = 22,23$$
 e $x_0^2 = 22,23$. Note que

$$P\left(\chi_{n-1}^2 < x_0^2\right) = 0,7270;$$

$$P\left(\chi_{n-1}^2 > \chi_0^2\right) = 1 - P\left(\chi_{n-1}^2 < \chi_0^2\right) = 0,2730.$$

Então

$$\begin{aligned} p &= 2 \cdot \min \left(P\left(\chi_{n-1}^2 < \chi_0^2\right); P\left(\chi_{n-1}^2 > \chi_0^2\right) \right) = 2 \cdot \min \left(0, 7270; 0, 2730\right), \\ &= 2 \cdot 0, 2730 = 0, 546. \end{aligned}$$

Como $p=0,546>\alpha=0,05,$ ao nível de significância, a variância é aproximadamente 0,01.

Exemplo

Uma indústria precisa comprar uma peça em formato cilíndrico e, para cumprir as especificações do INMETRO, o desvio padrão desse diâmetro deve ser, no máximo, 0,5cm. Um fornecedor do sudeste asiático promete um preço competitivo e afirma que cumpre as especificações do INMETRO. Esta indústria coletou n=16 amostras disponíveis no mercado desta peça e obteve um desvio padrão s=0,646cm. Ao nível de significância $\alpha=5$ %, você acha que a indústria pode (ou deveria) contratar este fornecedor do sudeste asiático?

Solução

Passo 1) Queremos testar as hipóteses: $H_0: \sigma \le 0, 5$ e $H_1: \sigma > 0, 5$;

Passo 2) Nível de significância: $\alpha = 5\%$;

Passo 3) Rejeitamos H_0 se $X_0^2 = \frac{s^2(n-1)}{\sigma_0^2}$ for grande. Ou seja, a região crítica é

$$RC = \{x_0^2 \mid x_0^2 > \chi_{1-\alpha;n-1}^2\}.$$

Passo 4) O valor crítico é dado por

▶
$$P\left(\chi_{n-1}^2 \le \chi_{1\alpha;n-1}^2\right) = P\left(\chi_{15}^2 \le \chi_{0,95;15}^2\right) = 1 - \alpha = 0,95$$
, então $\chi_{0,95;15}^2 = 24,57901$.

Passo 5) Como s=0,646 e $x_0=\frac{s^2(n-1)}{\sigma_0^2}=25,04$, rejeitamos H_0 ao nível de significância $\alpha=5\%$.

Ou seja, ao nível de significância $\alpha=5\%$, o fornecedor do sudeste asiático não cumpre as especificações do INMETRO e esta indústria não deveria contratar este fornecedor.

Solução (valor-p)

O valor-p é dado por

$$p = P\left(X_0^2 \ge x_0^2 \mid H_0\right) = 1 - P\left(\chi_{n-1}^2 \le x_0^2\right).$$

Como
$$s=0,646$$
 e $x_0^2=\frac{s^2(n-1)}{\sigma_0^2}=\frac{0,0646^2\cdot 15}{0,5^2}=25,04,$ então
$$p=1-P\left(\chi_{n-1}^2\leq x_0^2\right)=1-P\left(\chi_{15}^2\leq 25,04\right)=1-0,951=0,049.$$

Então, como $p=0,049<\alpha=0,05$, ao nível de significância $\alpha=5\%$, rejeitamos H_0 e não é aconselhável contratar o fornecedor do sudeste asiático.

Exemplo

Imagine que um pesquisador coletou uma amostra com 16 observações de uma variável aleatória contínua com distribuição normal. Na Tabela 6, apresentamos algumas sobre as hipóteses $H_0: \sigma \geq 1$ e $H_1: \sigma < 1$. Você rejeitaria H_0 ao nível de significância $\alpha = 5\%$?

tamanho da amostra	s ²	x ₀ ²	valor-p	Decisão	$ \chi^2_{1-\alpha;n-1} $	α
16	1,738					5%

Tabela 6: Algumas informações do experimento.

Solução

Passo 1) Pelo enunciado, temos as seguintes hipóteses: $H_0: \sigma \geq 1$ e $H_1: \sigma < 1$.

Passo 2) Nível de significância $\alpha = 5\%$.

Passo 3) Rejeitamos H_0 se $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2}$ for grande. Ou seja, a região crítica é

$$RC = \{x_0^2 \mid x_0^2 < \chi_{\alpha;n-1}^2\}.$$

Passo 4) Vamos encontrar o valor crítico dado por

▶
$$P\left(\chi_{n-1}^2 \le \chi_{\alpha;n-1}^2\right) = P\left(\chi_{n-1}^2 \le \chi_{0,05;15}^2\right) = \alpha = 0,05$$
, então $\chi_{0,05;15}^2 = 7,2609439$.

Passo 5) Como $s^2 = 1,738$ e $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2} = 26,07$, como $x_0^2 \notin RC$ não rejeitamos H_0 .

Ou seja, ao nível de significância $\alpha = 5\%$, não rejeitamos H_0 .

Solução (valor-p)

O valor-p é dado por

$$p = P\left(X_0^2 \leq x_0^2 \mid H_0\right) = P\left(\chi_{n-1}^2 \leq x_0^2\right).$$

Como $s^2 = 1,738$ e $x_0^2 = \frac{s^2(n-1)}{\sigma_0^2} = 26,07$, então

$$p = P\left(\chi_{n-1}^2 \le 26,07\right) = 0,9627.$$

Então, como $p=0,9627>0,05=\alpha$, ao nível de significância $\alpha=5\%$, não rejeitamos H_0 .

Sejam

- $ightharpoonup x_1, \ldots, x_n$ valores amostrados de *Bernoulli(p)*;
- ho lpha é o nível de significância (estabelecido pelo pesquisador e geralmente lpha=5%).

Queremos testar as seguintes hipóteses:

- ► Teste bilateral: $H_0: p = p_0$ e $H_1: p \neq p_0$;
- ► Teste unilateral: $H_0: p \le p_0$ e $H_1: p > p_0$;
- ► Teste unilateral: $H_0: p \ge p_0$ e $H_1: p < p_0$.

Ideia: Primeiro calculamos a distância padronizada de $\hat{p} = \frac{x_1 + \dots + x_n}{n}$ e p_0 :

$$z_0 = \frac{(\hat{p} - p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}$$
. Então,

- ▶ Teste bilateral: Rejeitamos $H_0: p p_0 = 0$ se $|z_0|$ for grande;
- ▶ Teste unilateral: Rejeitamos $H_0: p p_0 < 0$ se z_0 for grande;
- ▶ Teste unilateral: Rejeitamos $H_0: p p_0 \ge 0$ se z_0 for pequeno.

Figura 8: Região crítica para o teste Z.

- Na Figura 8a, testamos $H_0: p=p_0$ versus $H_1: p\neq p_0$. Rejeitamos H_0 se $z_0=\frac{(\hat{p}-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}\in RC=\{z_0\mid z_0< z_{\frac{\alpha}{2}}\text{ ou }z_0>z_{1-\frac{\alpha}{2}}\}, \text{ em que }\Phi\left(z_{\frac{\alpha}{2}}\right)=\frac{\alpha}{2}\text{ e}\Phi\left(z_{1-\frac{\alpha}{2}}\right)=1-\frac{\alpha}{2};$
- Na Figura 8b, testamos $H_0: p \le p_0$ versus $H_1: p > p_0$. Rejeitamos H_0 se $z_0 = \frac{(\hat{p} p_0)\sqrt{n}}{\sqrt{p_0(1 p_0)}} \in RC = \{z_0 \mid z_0 > z_{1-\alpha}\}, \text{ em que } \Phi\left(z_{1-\alpha}\right) = 1 \alpha;$
- Na Figura 8c, testamos $H_0: p \geq p_0$ versus $H_1: p < p_0$. Rejeitamos H_0 se $z_0 = \frac{(\hat{p} p_0)\sqrt{n}}{\sqrt{p_0(1 p_0)}} \in RC = \{z_0 \mid z_0 < z_\alpha\}, \text{ em que } \Phi(z_\alpha) = \alpha.$

Chamamos z_{α} , $z_{1-\alpha}$, $z_{\frac{\alpha}{2}}$ e $z_{1-\frac{\alpha}{2}}$ são chamados de valores críticos.

Exemplo

Suponha que uma marca entrevistou 1000 consumidores, e 850 afirmaram estarem satisfeitos com a marca. Ao nível de significância $\alpha=5\%$, decida entre as hipóteses $H_0:p=0,9$ e $H_1:p\neq0,9$, em que p é a proporção populacional de consumidores satisfeitos com a marca. Calcule o valor-p.

Solução

Passo 1) Pelo enunciado, queremos testar as seguintes hipóteses: $H_0: p = 0, 9$ e $H_1: p \neq 0, 9$;

Passo 2) Nível de significância $\alpha = 5\%$;

Passo 3) Rejeitamos
$$H_0$$
 se $|z_0| = \left| \frac{(\hat{p} - p_0)\sqrt{n}}{\sqrt{p_0(1 - p_0)}} \right|$ for grande. Ou seja,

$$RC = \left\{ z_0 \mid z_{\frac{\alpha}{2}} < z_0 < z_{1-\frac{\alpha}{2}} \right\}.$$

Passo 4) Vamos encontrar os valores críticos:

$$\Phi\left(z_{\frac{\alpha}{2}}\right) = \Phi\left(z_{0,025}\right) = \frac{\alpha}{2} = 0,025$$
, então $z_{0,025} = -1,96$;

$$\Phi\left(z_{1-\frac{\alpha}{2}}\right) = \Phi\left(z_{0,975}\right) = 1 - \frac{\alpha}{2} = 0,975, \text{ então } z_{0,975} = 1,96.$$

Passo 5) Como
$$\hat{p} = \frac{850}{1000} = 0,850, p_0 = 0,9$$
 e $z_0 = \frac{(0.850 - 0.9)\sqrt{1000}}{\sqrt{0.9 \cdot 0.1}} = -5,27 \in RC$

então rejeitamos H_0 ao nível de significância $\alpha = 5\%$.

Ao nível de significância 5%, a proporção de consumidores satisfeitos com a marca não é 90%.

Solução (valor-p)

O valor-p é calculado através de

$$p = P(|Z| > |z_0| | H_0) = 2[1 - \Phi(|z_0|)],$$

em que $Z \sim N(0, 1)$.

Como $\hat{p} = 0,850$, n = 1000, $p_0 = 0,9$ e $z_0 = -5,27$, então

$$p = 2[1 - \Phi(|z_0|)]$$

= $2[1 - 1] = 0.$

Como $p=0<\alpha=5\%$, rejeitamos H_0 ao nível de significância $\alpha=5\%$, ou seja, a proporção de consumidores satisfeitos com a marca não é 90% ao nível de significância $\alpha=5\%$.

Exemplo

Um pesquisador afirma que pelo menos 10% dos capacetes usados pelos jogadores de futebol americano têm sérios problemas de fabricação que podem causar sérios danos físicos aos atletas. Uma amostra com 200 capacetes foram testados e 16 apresentaram falhas de produção. Esta amostra suporta a afirmação do pesquisador ao nível de significância $\alpha=5\%$? Calcule o valor-p.

Solução

Passo 1) Temos que decidir entre as hipóteses: $H_0: p < 0, 1 \text{ e } H_1: p > 0, 1$;

Passo 2) Nível de significância $\alpha = 5\%$;

Passo 3) Rejeitamos H_0 se z_0 for grande. Ou seja, $RC = \{z_0 \mid z_0 > z_{1-\alpha}\};$

Passo 4) O valor crítico é dado por:

•
$$\Phi(z_{1-\alpha}) = \Phi(z_{0,95}) = 1 - \alpha = 0,95$$
, então $z_{0,95} = 1,65$.

Passo 5) Como
$$p_0 = 0, 1, n = 16, \hat{p} = \frac{16}{200} = 0,08$$
 e

$$z_0 = \frac{(0.08-0.1)\sqrt{16}}{\sqrt{0.1\cdot0.9}} = -0.27 \notin RC$$
, então, ao nível de significância 5%, não rejeitamos H_0 .

Ao nível de significância 5%, o pesquisador não tem evidência estatística para afirmar que pelo menos 10% tem defeitos de fabricação.

Solução (valor-p)

O valor-p pode ser calculado por

$$p = P(Z > z_0 \mid H_0) = 1 - \Phi(z_0),$$

em que $Z \sim N(0,1)$.

Como
$$p_0=0,1,\,\hat{p}=0,08,\,n=1000$$
 e $z_0=\frac{(-\hat{p}-p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}=-0,27,$ então

$$p = 1 - \Phi(-0.27) = 1 - 0.3936 = 0.6064.$$

Como $p=0,6064>\alpha=0,05$, não rejeitamos H_0 e não temos evidência estatística para afirmar que pelo menos 10% dos capacetes usados pelos jogadores de futebol têm sérios problemas de fabricação.

Exemplo

Imagine que temos uma amostra de uma variável aleatória discreta com distribuição Bernoulli com probabilidade de p. Complete as informações da Tabela 7. Ao nível de significância $\alpha=5\%$, qual a decisão para as hipóteses $H_0: p \geq 0, 4$ e $H_1: p < 0, 4$?

$\hat{p} \mid$ Tamanho da amostra	valor-p z ₀	<i>IC</i> (<i>p</i> ; 95%) α
		(0, 4907; 0, 6293) 5%

Tabela 7: Algumas informações do experimento.

Solução

Lembre das aulas de intervalo de confiança com coeficiente de confiança $\gamma=95\%$:

$$IC(p, 95\%) = \left(\frac{Z_{\frac{\alpha}{2}}}{2\sqrt{n}} + \hat{p}; \frac{Z_{1-\frac{\alpha}{2}}}{2\sqrt{n}} + \hat{p}\right)$$
$$= \left(\frac{-1, 96}{2\sqrt{n}} + \hat{p}; \frac{1, 96}{2\sqrt{n}} + \hat{p}\right) = (0, 4907; 0, 6293).$$

Então,

$$\hat{p} = \frac{0,4907 + 0,6293}{2} = 0,56$$

$$n = \left[\left[\frac{1,96}{0,6293 - 0,4907} \right]^2 \right] = 200.$$

Solução

Passo 1) Queremos ter as hipóteses: $H_0: p \ge 0, 4$ e $H_1: p < 0, 4$;

Passo 2) Nível de significância $\alpha = 5\%$;

Passo 3) Rejeitamos H_0 se $z_0 = \frac{(\hat{p} - p_0)\sqrt{n}}{\sqrt{p_0(1-p_0)}}$ for grande. Ou seja,

$$RC = \{z_0 \mid z_0 < z_{\alpha}\};$$

Passo 4) O valor crítico é dado por

$$\Phi(z_{\alpha}) = \Phi(z_{0.05}) = \alpha = 0,05$$
, então $z_{0.05} = -1,96$;

Passo 5) Como $\hat{p} = 0,56, n = 200, p_0 = 0,4$ e

$$z_0 = \frac{(\hat{\rho} - \rho_0)\sqrt{n}}{\sqrt{\rho_0(1 - \rho_0)}} = \frac{(0.56 - 0.4)\sqrt{200}}{\sqrt{0.4 \cdot 0.6}} = 4,62$$
, então $z_0 \not\in RC$ e não

rejeitamos H_0 ao nível de significância $\alpha = 5\%$.

Solução (valor-p)

O valor-p é dado por

$$p = P(Z < z_0) = \Phi(z_0),$$

em que $Z \sim N(0, 1)$.

Como $\hat{p} = 0,56$, n = 200, $p_0 = 0,4$ e $z_0 = 4,62$, então

$$p = \Phi(z_0) = \Phi(4,62) = 1.$$

Como $p=1>\alpha=0,05$, ao nível de significância $\alpha=5\%$, não rejeitamos H_0 .

Roteiro: Procedimento de Neymann-Pearson e valor-p.

distribuição	σ^2 conhecido?	H ₁	região crítica	valor-p
Normal	Sim	$\mu \neq \mu_0$	$\mathit{RC} = \left\{ z_0 \mid z_0 < z_{rac{lpha}{2}} \; ou \; z_0 > z_{1-rac{lpha}{2}} ight\}$	$2[1 - \Phi(z_0)]$
Normal	Sim	$\mu < \mu_0$	$RC = \{z_0 \mid z_0 < z_\alpha\}$	Φ (z ₀)
Normal	Sim	$\mu > \mu_0$	$RC = \{z_0 \mid z_0 > z_{1-\alpha}\}$	$1-\Phi(z_0)$
Normal	Não	$\mu \neq \mu_0$	$RC = \left\{ t_0 \mid t_0 < t_{\frac{\alpha}{2};n-1} \text{ ou } t_0 > t_{1-\frac{\alpha}{2};n-1} \right\}$	$2[1-P(t_{n-1}\leq t_0)]$
Normal	Não	$\mu < \mu_0$	$RC = \{t_0 \mid t_0 < t_{\alpha;n-1}\}$	$P(t_{n-1} \leq t_0)$
Normal	Não	$\mu > \mu_0$	$RC = \{t_0 \mid t_0 > t_{1-\alpha;n-1}\}$	$ 1-P(t_{n-1}\leq t_0)$
Normal	Não	$\sigma \neq \sigma_0$	$RC = \left\{ x_0^2 \mid x_0^2 < \chi_{\frac{\alpha}{2}; n-1}^2 \text{ ou } x_0^2 > \chi_{1-\frac{\alpha}{2}; n-1}^2 \right\}$	$ 2 \cdot \min \left(P\left(\chi_{n-1}^2 < \chi_0^2\right); P\left(\chi_{n-1}^2 > \chi_0^2\right) \right) $
Normal	Não	$\sigma < \sigma_0$	$RC = \left\{ x_0^2 \mid x_0^2 < \chi_{\alpha; n-1}^2 \right\}$	$P\left(\chi_{n-1}^2 \le \chi_0^2\right)$
Normal	Não	$\sigma > \sigma_0$	$RC = \left\{ x_0^2 \mid x_0^2 > x_{1-\alpha;n-1}^2 \right\}$	$1 - P\left(\chi_{n-1}^2 \le \chi_0^2\right)$
Bernoulli	_	$p \neq p_0$	$\mathit{RC} = \left\{ z_0 \mid z_0 < z_{rac{lpha}{2}} \; ou \; z_0 > z_{1-rac{lpha}{2}} ight\}$	$2\cdot [1-\Phi\left(z_0 \right)]$
Bernoulli	_	p < p ₀	$RC = \{z_0 \mid z_0 < z_\alpha\}$	Φ (z ₀)
Bernoulli	_	$p > p_0$	$RC = \{z_0 \mid z_0 > z_{1-\alpha}\}$	$1 - \Phi(z_0)$

Tabela 8: Região crítica do procedimento de Neymann-Pearson e valor-p.

Roteiro: Procedimento de Neymann-Pearson e valor-p.

Observação:

Na Tabela 8, temos que:

- ▶ Quando queremos testar a proporção (distribuição = Bernoulli), temos que $z_0 = \frac{(\hat{\rho} p_0)\sqrt{n}}{\sqrt{p_0 \cdot (1 p_0)}}$;
- ▶ $P\left(t_{n-1} \le t_{\frac{\alpha}{2};n-1}\right) = \frac{\alpha}{2}, P\left(t_{n-1} \le t_{1-\frac{\alpha}{2};n-1}\right) = 1 \frac{\alpha}{2}, P\left(t_{n-1} \le t_{\alpha;n-1}\right) = \alpha e$ $P\left(t_{n-1} \le t_{1-\alpha;n-1}\right) = 1 - \alpha;$
- $P\left(\chi_{n-1}^2 \leq \chi_{\frac{\alpha}{2};n-1}^2\right) = \frac{\alpha}{2}, P\left(\chi_{n-1}^2 \leq \chi_{1-\frac{\alpha}{2};n-1}^2\right) = 1 \frac{\alpha}{2}, P\left(\chi_{n-1}^2 \leq \chi_{\alpha;n-1}^2\right) = \alpha e$ $P\left(\chi_{n-1}^2 \leq \chi_{1-\alpha;n-1}^2\right) = 1 \alpha$