

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=9; day=11; hr=15; min=52; sec=11; ms=41;]

=====

Application No: 10665883 Version No: 3.0

Input Set:

Output Set:

Started: 2008-08-12 19:49:28.311
Finished: 2008-08-12 19:49:29.439
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 128 ms
Total Warnings: 18
Total Errors: 0
No. of SeqIDs Defined: 18
Actual SeqID Count: 18

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)

SEQUENCE LISTING

<110> YUAN, Chong-Sheng

<120> DETERMINATION OF IONS USING ION-SENSITIVE ENZYMES

<130> 466992001100

<140> 10665883

<141> 2003-09-19

<160> 18

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Chimeric protein

<400> 1

Met Gly Gly Ser Gly Asp Asp Asp Asp Leu Ala Leu

1 5 10

<210> 2

<211> 356

<212> PRT

<213> Artificial Sequence

<220>

<223> Chimeric protein

<400> 2

Ala Leu Glu Arg Glu Leu Leu Val Ala Thr Gln Ala Val Arg Lys Ala

1 5 10 15

Ser Leu Leu Thr Lys Arg Ile Gln Ser Glu Val Ile Ser His Lys Asp

20 25 30

Ser Thr Thr Ile Thr Lys Asn Asp Asn Ser Pro Val Thr Thr Gly Asp

35 40 45

Tyr Ala Ala Gln Thr Ile Ile Asn Ala Ile Lys Ser Asn Phe Pro

50 55 60

Asp Asp Lys Val Val Gly Glu Glu Ser Ser Gly Leu Ser Asp Ala

65 70 75 80

Phe Val Ser Gly Ile Leu Asn Glu Ile Lys Ala Asn Asp Glu Val Tyr

85 90 95

Asn Lys Asn Tyr Lys Lys Asp Asp Phe Leu Phe Thr Asn Asp Gln Phe

100 105 110

Pro Leu Lys Ser Leu Glu Asp Val Arg Gln Ile Ile Asp Phe Gly Asn

115 120 125

Tyr Glu Gly Gly Arg Lys Gly Arg Phe Trp Cys Leu Asp Pro Ile Asp

130 135 140

Gly Thr Lys Gly Phe Leu Arg Gly Glu Gln Phe Ala Val Cys Leu Ala
145 150 155 160
Leu Ile Val Asp Gly Val Val Gln Leu Gly Cys Ile Gly Cys Pro Asn
165 170 175
Leu Val Leu Ser Ser Tyr Gly Ala Gln Asp Leu Lys Gly His Glu Ser
180 185 190
Phe Gly Tyr Ile Phe Arg Ala Val Arg Gly Leu Gly Ala Phe Tyr Ser
195 200 205
Pro Ser Ser Asp Ala Glu Ser Trp Thr Lys Ile His Val Arg His Leu
210 215 220
Lys Asp Thr Lys Asp Met Ile Thr Leu Glu Gly Val Glu Lys Gly His
225 230 235 240
Ser Ser His Asp Glu Gln Thr Ala Ile Lys Asn Lys Leu Asn Ile Ser
245 250 255
Lys Ser Leu His Leu Asp Ser Gln Ala Lys Tyr Cys Leu Leu Ala Leu
260 265 270
Gly Leu Ala Asp Val Tyr Leu Arg Leu Pro Ile Lys Leu Ser Tyr Gln
275 280 285
Glu Lys Ile Trp Asp His Ala Ala Gly Asn Val Ile Val His Glu Ala
290 295 300
Gly Gly Ile His Thr Asp Ala Met Glu Asp Val Pro Leu Asp Phe Gly
305 310 315 320
Asn Gly Arg Thr Leu Ala Thr Lys Gly Val Ile Ala Ser Ser Gly Pro
325 330 335
Arg Glu Leu His Asp Leu Val Val Ser Thr Ser Cys Asp Val Ile Gln
340 345 350
Ser Arg Asn Ala
355

<210> 3
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Chimeric protein

<400> 3
Lys Gly Glu Leu Glu Gly Leu Pro Ile Pro Asn Pro Leu Leu Arg Thr
1 5 10 15
Gly

<210> 4
<211> 391
<212> PRT
<213> Artificial Sequence

<220>
<223> Chimeric protein

<400> 4
Met Gly Ser Gly Asp Asp Asp Asp Leu Ala Leu Ala Leu Glu Arg
1 5 10 15
Glu Leu Leu Val Ala Thr Gln Ala Val Arg Lys Ala Ser Leu Leu Thr

20	25	30
Lys Arg Ile Gln Ser Glu Val Ile Ser His Lys Asp Ser Thr Thr Ile		
35	40	45
Thr Lys Asn Asp Asn Ser Pro Val Thr Thr Gly Asp Tyr Ala Ala Gln		
50	55	60
Thr Ile Ile Ile Asn Ala Ile Lys Ser Asn Phe Pro Asp Asp Lys Val		
65	70	75
Val Gly Glu Glu Ser Ser Ser Gly Leu Ser Asp Ala Phe Val Ser Gly		
85	90	95
Ile Leu Asn Glu Ile Lys Ala Asn Asp Glu Val Tyr Asn Lys Asn Tyr		
100	105	110
Lys Lys Asp Asp Phe Leu Phe Thr Asn Asp Gln Phe Pro Leu Lys Ser		
115	120	125
Leu Glu Asp Val Arg Gln Ile Ile Asp Phe Gly Asn Tyr Glu Gly Gly		
130	135	140
Arg Lys Gly Arg Phe Trp Cys Leu Asp Pro Ile Asp Gly Thr Lys Gly		
145	150	155
Phe Leu Arg Gly Glu Gln Phe Ala Val Cys Leu Ala Leu Ile Val Asp		
165	170	175
Gly Val Val Gln Leu Gly Cys Ile Gly Cys Pro Asn Leu Val Leu Ser		
180	185	190
Ser Tyr Gly Ala Gln Asp Leu Lys Gly His Glu Ser Phe Gly Tyr Ile		
195	200	205
Phe Arg Ala Val Arg Gly Leu Gly Ala Phe Tyr Ser Pro Ser Ser Asp		
210	215	220
Ala Glu Ser Trp Thr Lys Ile His Val Arg His Leu Lys Asp Thr Lys		
225	230	235
Asp Met Ile Thr Leu Glu Gly Val Glu Lys Gly His Ser Ser His Asp		
245	250	255
Glu Gln Thr Ala Ile Lys Asn Lys Leu Asn Ile Ser Lys Ser Leu His		
260	265	270
Leu Asp Ser Gln Ala Lys Tyr Cys Leu Leu Ala Leu Gly Leu Ala Asp		
275	280	285
Val Tyr Leu Arg Leu Pro Ile Lys Leu Ser Tyr Gln Glu Lys Ile Trp		
290	295	300
Asp His Ala Ala Gly Asn Val Ile Val His Glu Ala Gly Gly Ile His		
305	310	315
Thr Asp Ala Met Glu Asp Val Pro Leu Asp Phe Gly Asn Gly Arg Thr		
325	330	335
Leu Ala Thr Lys Gly Val Ile Ala Ser Ser Gly Pro Arg Glu Leu His		
340	345	350
Asp Leu Val Val Ser Thr Ser Cys Asp Val Ile Gln Ser Arg Asn Ala		
355	360	365
Lys Gly Glu Leu Glu Gly Leu Pro Ile Pro Asn Pro Leu Leu Arg Thr		
370	375	380
Gly His His His His His		
385	390	

<210> 5
<211> 1176
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence encoding a chimeric protein

<400> 5
atgggcggat ccgttgcgtatcgatgacccctc gcccggcat tggaaagaga attattggtt 60
gcaactcaag ctgtacgaaa ggccgtcttta ttgactaaga gaattcaatc tgaagtgatt 120
tctcacaagg actccactac tattaccaag aatgataatt ctccagtaac cacaggtgat 180
tatgtgcac aaacgatcat cataaatgct atcaagagca atttcctga tgataaggt 240
gttggtgaag aatcctcatc aggattgagc gacgcattcg tctcaggat tttaaacgaa 300
ataaaaagcca atgacgaagt ttataacaag aattataaaa aggtatgtt tctgtttaca 360
aacgatcagt ttccgctaaa atctttggag gacgtcaggc aaatcatcgat tttcggaat 420
tacgaagggtg gtagaaaagg aagatttgg tttttggatc ctattgacgg aaccaagggg 480
tttttaagag gtgaacagtt tgcagttatgt ctggccctaa ttgtggacgg ttttgttcag 540
cttgggtgtt tttggatgccc caacttagtt ttaagttctt atggggccca agatttgaaa 600
ggccatgagt catttggta tatcttcgt gctgttagag gtttaggtgc cttctattct 660
ccatcttcag atgcagagtc atggaccacaa atccacgtt gacactaaaa agacactaaa 720
gacatgatta cttagaggg agttggaaaag ggacactcct ctcatgtga acaaactgct 780
atcaaaaaca aactaaatat atccaaatct ttgcacttgg attctcaagc caagtactgt 840
ttgttagcat tgggcttagc agacgtataat ttacgtctgc ctatcaaact ttcttaccaa 900
gaaaagatct gggaccatgc tgcaggcaac gttattgtcc atgaagctgg aggtatccat 960
acagatgccca tggaaagatgt tcctctagac ttccggtaacg gtagaacgct agctacgaaag 1020
ggagttatag cgtcaagtgg cccacgcgag ttacatgact tgggggtgtc tacatcatgc 1080
gatgtcattc agtcaagaaa cgccaaagggc gagcttgaag gttgcctat ccctaaccct 1140
ctcctccgtt ccgttcatca tcaccatcac cattga 1176

<210> 6
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 6
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 7
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 8
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 8

Cys Gln Asp Leu Pro Gly Asn Asp Asn Ser Thr
1 5 10

<210> 9
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 9
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
1 5 10

<210> 10
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 10
His His His His His
1 5

<210> 11
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 11
Asp Thr Tyr Arg Tyr Ile
1 5

<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 12
Glu Tyr Met Pro Met Glu
1 5

<210> 13

<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 13
Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg
1 5 10

<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 14
Ser Phe Pro Gln Phe Lys Pro Gln Glu Ile
1 5 10

<210> 15
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 15
Lys Gly Phe Ser Tyr Phe Gly Glu Asp Leu Met Pro
1 5 10

<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Exemplary epitope tag

<400> 16
Gln Tyr Pro Ala Leu Thr
1 5

<210> 17
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> Exemplary epitope tag

<400> 17

Gln Arg Gln Tyr Gly Asp Val Phe Lys Gly Asp
1 5 10

<210> 18

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Exemplary epitope tag

<400> 18

Glu Val His Thr Asn Gln Asp Pro Leu Asp
1 5 10