Previsão dinâmica de desvios

Previsão de desvios: ideia-base

• Previsão:

- Uma <u>hipótese</u> (que se espera ser correta)
- Antecipa busca de instruções na direção prevista
- Objetivo:
 - Não-degradação do desempenho
 - » Quando previsão correta
- Garantia de correção:
 - Código executado corretamente
 - » Quando previsão incorreta

Previsão de desvios: mecanismo

- Resultado do teste
 - Previsão correta:
 - » Instrução certa foi buscada, evitando a parada
 - Previsão incorreta:
 - » Instrução errada foi buscada: nova busca
 - » Penalidade
- Impacto no desempenho
 - Depende da precisão
 - » Frequência de previsões corretas
 - Depende da penalidade de má previsão
 - » Ciclos perdidos nas instruções mal previstas

Mecanismo sob hipótese incorreta

- Garantia de correção do código executado
 - Sequência de instruções buscadas é anulada
 » Flushing
 - Sequência apropriada de instruções é buscada
 » (Re)Fetching
- Melhoria de futuras previsões
 - Como?

Previsão de desvios: abordagens

- Previsão estática
 - Assume-se direção preferencial para o desvio
 - » Por exemplo: desvio não-tomado (NT)
 - Direção fixa
 - » "Hardwired" no projeto do controlador
- Previsão dinâmica
 - Captura comportamento dinâmico dos desvios
 - » Em tempo de execução → HW
 - Direção da previsão é alterável
 - » De acordo com a história recente dos desvios

Mecanismo sob hipótese incorreta

- Garantia de correção do código executado
 - Sequência de instruções buscadas é anulada
 » Flushing
 - Sequência apropriada de instruções é buscada
 » (Re)Fetching
- Melhoria de futuras previsões
 - Hipótese de previsão é invertida

Tabela de Histórico de Desvios

- "Branch History Table" (BHT)
 - LSB's do PC endereçam BHT
 - Cada elemento da tabela contém 1 bit
 - » Desvio foi tomado (T) ou não (NT) na última vez
 - Se previsão incorreta
 - » Inverte bit e re-armazena

BHT: exemplo de limitação

Laço

```
Loop: ...
```

bne \$s1, \$s2, Loop

- Suposição:
 - Laço executa 10 iterações
 - » Desvio tomado 9 vezes seguidas
 - » Não tomado ao final da décima iteração

BHT: exemplo de limitação

- Previsões incorretas
 - Última iteração
 - » Fim do laço
 - Primeira iteração
 - » Na próxima execução do código do laço
 - Frequência do desvio: 90%
 - Precisão: 80%
- Taxa de previsões incorretas em laços
 - 2 vezes (em média por execução)
 - Mesmo que desvio quase sempre tomado

BHT: relaxando a limitação

- Inversão da hipótese de previsão
 - Dois cenários de previsão
 - 1 bit por entrada da BHT

Predict Taken

Predict Not Taken

NT

- Aumento para 4 cenários de previsão
 - Altere direção só depois de 2 previsões incorretas
 - 2 bits por entrada da BHT

BHT com 2 bits

Altere direção só depois de 2 previsões incorretas

BHT: implementação

- Alternativa 1: BHT em cache dedicada
 - Indexada pelos LSBs do endereço do desvio
 - Acesso no estágio IF
- Alternativa 2: BHT embutido na I-cache
 - Par de bits extras nela armazenados

BHT: causas de previsão incorreta

- Direção errada para um dado desvio
- Obteve-se a história do desvio errado
 - Quando se indexou a tabela
 - Pois índice contém só os LSBs do endereço

BHT em pipelines curtos

- Pequeno impacto
 - BHT é eficiente quando:
 - » Endereço-alvo pré-calculado e ...
 - » Resultado do teste é antecipado pelo BHT
 - Mas eventos são (quase) simultâneos
 - » Endereço-alvo (ID é o estágio o mais cedo possível);
 - » Teste (ID ou EX)
 - Exemplos: beqz ou ble
- Previsão estática suficiente para 5 estágios
 - Previsão de desvio não-tomado
 - "Flushing" do pipeline se previsão incorreta

BHT em pipelines longos

Crucial

- Distância entre estágios envolvidos aumenta
- Penalidade de má previsão aumenta
 - » Mais instruções foram buscadas indevidamente
 - » Até o teste se resolver
- Várias instruções anuladas
 - » Degradação do CPI

Conclusão e perspectivas

- Previsores dinâmicos
 - Reduzem degradação do CPI
 - » Devida a "hazards" de controle
 - Prevêm o resultado do teste
 - » BHT
 - » Previsores correlatados (estudados em INE 5436)
- Previsores de endereço-alvo
 - Branch target buffers (estudados em INE 5436)
 - Armazenam o endereço-alvo dos últimos desvios previstos
 - » Para evitar seu cálculo e antecipar a busca