Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Trabajo Encargado - N° 003

Métodos de Optimización

Docente: Fred Torres Cruz

Autor: heydi pamela manasaya quispe

 ${\bf LINK~github:}~https://github.com/PamelaManasayaQ/trabajo-N005$

4 de octubre de 2024

TRABAJO ENCARGADO N005:

- 1. Pregunta: Explica el concepto de norma vectorial y proporciona un ejemplo de una norma vectorial distinta de la norma euclidiana.
- 2. Pregunta: ¿Qué es una norma matricial inducida y cómo se relaciona con una norma vectorial?
- 3. Pregunta: Define el número de condición de una matriz y explica cómo se relaciona con la estabilidad numérica de un sistema lineal. Pregunta:
- 4. Qué es un espacio vectorial y cuáles son las propiedades que debe cumplir un conjunto de vectores para ser considerado un espacio vectorial?
- 5. Pregunta: Define una matriz totalmente unimodular y explica su importancia en la programación lineal entera.

1. Norma Vectorial

Una **norma vectorial** es una función que asigna a cada vector un número real no negativo que mide su "longitud.º "tamaño". Formalmente, una norma es una función $\|\cdot\|: R^n \to R$ que cumple con las siguientes propiedades:

- 1. No negatividad: Para todo $\mathbf{v} \in \mathbb{R}^n$, se tiene que $\|\mathbf{v}\| \ge 0$ y $\|\mathbf{v}\| = 0$ si y sólo si $\mathbf{v} = \mathbf{0}$.
- 2. Homogeneidad: Para cualquier escalar $\alpha \in R$ y cualquier vector $\mathbf{v} \in R^n$, se cumple que:

$$\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|.$$

3. **Desigualdad Triangular:** Para todo $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, se cumple que:

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$$

Un ejemplo de norma vectorial diferente de la norma euclidiana es la **norma** p, que se define como:

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}.$$

Por ejemplo, la **norma infinito** es un caso particular cuando $p \to \infty$, y está dada por:

$$\|\mathbf{v}\|_{\infty} = \max_{1 \le i \le n} |v_i|.$$

2. Norma Matricial Inducida

La **norma matricial inducida** se define a partir de una norma vectorial. Para una matriz $A \in \mathbb{R}^{m \times n}$, la norma matricial inducida por una norma vectorial $\|\cdot\|$ se denota como:

$$||A|| = \sup_{\mathbf{v} \neq \mathbf{0}} \frac{||A\mathbf{v}||}{||\mathbf{v}||}.$$

Esta norma mide cómo una matriz A .estira" los vectores en el espacio cuando se aplica la transformación lineal correspondiente.

Por ejemplo, la norma matricial inducida por la norma p en el espacio vectorial se puede expresar como:

$$||A||_p = \sup_{\mathbf{v} \neq \mathbf{0}} \frac{||A\mathbf{v}||_p}{||\mathbf{v}||_p}.$$

3. Número de Condición de una Matriz

El **número de condición** de una matriz A, denotado como $\kappa(A)$, mide la sensibilidad de la solución de un sistema lineal $A\mathbf{x} = \mathbf{b}$ a perturbaciones en los datos \mathbf{b} . Se define como el producto de la norma de la matriz y la norma de su inversa (si es invertible):

$$\kappa(A) = ||A|| \cdot ||A^{-1}||.$$

Un número de condición grande indica que pequeñas perturbaciones en \mathbf{b} pueden provocar grandes cambios en \mathbf{x} , lo que implica inestabilidad numérica.

4. Espacio Vectorial

Un **espacio vectorial** (o espacio lineal) es un conjunto de vectores que cumple con las siguientes propiedades:

- 1. Cierre bajo la suma: Si \mathbf{u} , \mathbf{v} pertenecen al espacio vectorial, entonces $\mathbf{u} + \mathbf{v}$ también pertenece al espacio.
- 2. Cierre bajo la multiplicación escalar: Si v pertenece al espacio vectorial y $\alpha \in R$, entonces α v también pertenece al espacio.
- 3. Propiedades asociativas y conmutativas: La suma de vectores es asociativa y conmutativa, y existe un vector cero tal que $\mathbf{v} + \mathbf{0} = \mathbf{v}$ para todo \mathbf{v} .

5. Matriz Totalmente Unimodular

Una matriz totalmente unimodular es una matriz A que tiene todas sus entradas como 0, 1 o -1, y cualquier submatriz cuadrada tiene determinante igual a 0, 1 o -1. Matemáticamente, A es totalmente unimodular si:

$$\det(A_I) \in \{-1, 0, 1\}$$

para cualquier submatriz cuadrada A_I de A.

Las matrices totalmente unimodulares son importantes en la programación lineal entera porque, si A es totalmente unimodular y el vector \mathbf{b} es entero, entonces el problema de programación lineal:

minimizar
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 sujeto a $A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0$

tiene una solución entera.