# (EEAP) BOILER AND CHILLER STUDY

# FORT SAM HOUSTON

SAN ANTONIO, TEXAS

# FINAL REPORT



US Army Corps of Engineers

Fort Worth Division



CONDUCTED BY

# HUITT-ZOLLARS, INC.

CONSULTING ENGINEERS
FORT WORTH, TEXAS



9/18/95

19971016 233

# DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld,

Librarian Engineering

# TABLE OF CONTENTS

| ABBREVI  | ATIONS                                                          | i |
|----------|-----------------------------------------------------------------|---|
| I. EXECU | TIVE SUMMARY                                                    | Į |
| A.       | Introduction                                                    | ĺ |
| B.       | Buildings Studied                                               | l |
| C.       | Present Energy Consumption                                      | 2 |
|          | Base Year Energy Consumption                                    | 2 |
|          | Boiler & Chiller Systems Energy Consumption                     | 2 |
| D.       | Energy Conservation Opportunity (ECO) Analysis                  | 3 |
|          | ECOs Rejected                                                   |   |
|          | ECOs Recommended                                                |   |
|          | ECOs Not Recommended                                            | 3 |
|          | ECIP Projects Developed                                         |   |
|          | Non-ECIP Projects Developed                                     |   |
|          | Recommended Maintenance & Operations Practices                  |   |
| E        | Energy And Cost Savings                                         |   |
| D.       | Total Potential Energy and Cost Savings                         |   |
|          | Energy Use and Costs Before and After                           |   |
|          | Percentage Saved                                                |   |
|          | refeelinge Saved                                                | , |
| TABLE 1. | ECOs Recommended                                                | 6 |
| TABLE 2. | ECOs Not Recommended                                            | 6 |
| II NIADD | ATIVE REPORT                                                    | 7 |
|          | Entry Interview                                                 |   |
| A        |                                                                 |   |
|          | Work Plan                                                       |   |
|          | Data List                                                       |   |
| _        | ECO List                                                        |   |
| В.       | Data Collection                                                 |   |
|          | Building Data                                                   |   |
|          | Central Plant & HVAC Systems Data                               |   |
|          | Maintenance Data                                                |   |
|          | Utility Data                                                    |   |
|          | Replacement Boiler Selection                                    |   |
|          | Replacement Chiller Selection                                   |   |
| C        | Plan To Implement Projects:                                     | 5 |
|          | Funding                                                         | 5 |
|          | Programming                                                     | 5 |
|          | Construction                                                    | 6 |
|          | Project DD-1391 Forms & Life Cycle Cost Analysis Summary Sheets | 7 |
| APPENDI  | CES                                                             |   |
|          |                                                                 |   |
| A<br>B   | Sy                                                              |   |
|          |                                                                 |   |
| C        |                                                                 |   |
| D        |                                                                 |   |
| E        |                                                                 |   |
| F        | · / 1                                                           |   |
| G        | Sample Products                                                 |   |

#### I. EXECUTIVE SUMMARY

# A. Introduction

This energy conservation study was performed by Huitt-Zollars Inc, for the U.S. Army Engineer District (USAED), Fort Worth, under contract number DACAC63-94-D-0015. The study was conducted at Fort Sam Houston (FSH) in San Antonio, Texas, between November 28, 1994 and June 15, 1995. The site survey, data collection and analysis was performed by John Carter, E.I.T, Tom Holthaus, P.E., Walter H. Williams III, P.E., and C.A. Pieper, P.E..

The purpose of the study was to perform a limited site survey of specific buildings at the facility, identify specific Energy Conservation Opportunities (ECOs) that exist, and then evaluate these ECOs for technical and economic feasibility. These ECOs were limited to central boiler and chiller plant systems serving specific building groups at FSH.

This survey was conducted with the assistance of many individuals at the FSH facility. Special thanks are extended to all of them, including the following individuals:

Gerardo De La Pena, Energy Coordinator Frank Carbonell, Engineering Service Gene Rodriguez, Engineering Service Ray Mendoza, Engineering Service Mike Brynes, Operations and Maintenance Henry Guerra, Operations and Maintenance Al Mote, Energy Program Specialist

Other individuals who assisted in this study by providing equipment and cost data are listed as follows:

Tom McGreal, York International, Dallas, TX
John Neal, Sr., Neal and Associates, Dallas, TX
Joe Scolaro and Brian Mitchell, Mitchell Technical Sales, Dallas, TX
Preston Dickson, Timberlake and Woffard, Inc., Dallas, TX
Larry Carpenter, The Trane Company, Fort Worth, TX
David Recca, DynaService, Fort Worth, TX

Any questions concerning this report should be directed to the Project Manager at Huitt-Zollars Inc., 512 Main Street, Suite 1500, Fort Worth, Texas 76102. Phone 817-335-3000.

# B. Buildings Studied

This study was performed on five separate groups of buildings at the Fort Sam Houston installation in San Antonio, Tx. These groups were identified as areas 100, 900, 1300, 2200 and Quadrangle. Buildings in each of these areas are briefly described as follows:

Area 100: These twenty buildings are currently used as office buildings, barracks, and other

miscellaneous things such as a band rehearsal hall.

Area 900: These buildings consisted of sixteen barracks, four smaller support buildings and one

large administrative building, all occupied by army personnel.

Area 1300: The buildings in this group consisted of six barracks, one dining hall and one

administrative office building.

Area 2200: The four buildings in this group consisted of three barracks and one administrative

office building, which were all approximately 25 years old.

Quadrangle: The four buildings in this group are all administrative offices, one of which serves as

the headquarters of the 5th Army.

# C. Present Energy Consumption

Base Year Energy Consumption: The total metered electrical and gas consumptions for 12 consecutive months, prior to this study, were obtained from the facility and are referred to as the 'base year'. These data are shown on page 12 and are summarized as follows:

Figure 1. Base Year Energy Usage By Source

| ENERGY<br>SOURCE | ANNU        | COST<br>\$    |           |
|------------------|-------------|---------------|-----------|
| Electricity      | 153,580 MWH | 524,169 MMBTU | 6,567,101 |
| Natural Gas      | 51,415 MCF  | 51,415 MMBTU  | 192,985   |
| Total            |             | 575,584 MMBTU | 6,760,086 |

Boiler & Chiller Systems Energy Consumption: The annual energy consumption for the boiler & chiller systems studied was calculated in Appendix B, using the Trace 600 computer program to model the buildings and HVAC systems. This consumption amounted to a total of 11.1% of the base year energy usage and 7.4% of the energy costs. These system energy consumptions are given as follows:

Figure 2. Annual Boiler & Chiller Systems Energy Consumption

| AREA      | COOLING<br>SYSTEM<br>DEMAND<br>\$/YR | COOLING<br>SYSTEM<br>ELECT.<br>KWH/YR | COOLING<br>SYSTEM<br>ELECT.<br>\$/YR | HEATING<br>SYSTEM<br>DEMAND<br>\$/YR | HEATING<br>SYSTEM<br>ELECT.<br>KWH/YR | HEATING<br>SYSTEM<br>ELECT.<br>\$/YR | HEATING<br>SYSTEM<br>GAS<br>MCF/YR | HEATING<br>SYSTEM<br>GAS<br>\$/YR |
|-----------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|
| 100       | 46,621                               | 1,687,278                             | 35,433                               | 1,269                                | 89,804                                | 1,886                                | 1,927                              | 5,126                             |
| 900       | 13,242                               | 621,339                               | 13,048                               | 1,000                                | 88,213                                | 1,852                                | 7,809                              | 20,771                            |
| 1300      | 67,861                               | 3,019,253                             | 63,404                               | 2,687                                | 259,249                               | 5,444                                | 18,751                             | 49,878                            |
| 2200      | 36,390                               | 1,609,767                             | 33,805                               | 797                                  | 51,536                                | 1,082                                | 4,949                              | 13,163                            |
| QUAD      | 51,292                               | 1,633,303                             | 34,299                               | 221                                  | 6,096                                 | 128                                  | 1,210                              | 3,220                             |
| SUBTOTALS | 215,405                              | 8,570,940                             | 179,990                              | 5,973                                | 494,898                               | 10,393                               | 34,646                             | 92,158                            |
|           |                                      |                                       |                                      |                                      |                                       |                                      |                                    |                                   |

ANNUAL BOILER & CHILLER SYSTEM ENERGY

63,898 MMBTU/YR

ANNUAL BOILER & CHILLER SYSTEM COST, \$/YR

503,919 \$/YR

# D. Energy Conservation Opportunity (ECO) Analysis

ECOs Rejected: After reviewing the data collected at the facility and considering all of the practical limitations involved, there were no potential ECOs which were rejected prior to performing calculations. Therefore, energy savings calculations were performed for all ECOs identified in the scope of work.

ECOs Recommended: Certain ECOs which were identified during the building survey have been evaluated for technical and economic feasibility and are recommended for implementation. Complete documentation of all calculations as well as information required for implementation is included in Appendix D. These recommended ECOs are summarized in order of descending Savings to Investment Ratio (SIR) in Table 1 on page 6.

ECOs Not Recommended: Certain ECOs which were identified during the building survey have been evaluated for technical and economic feasibility but are not recommended for implementation. Complete documentation of all calculations are included in Appendix E. These non-recommended ECOs are summarized in order of order of descending SIR in Table 2 on page 6.

ECIP Projects Developed: The facility will submit three projects for ECIP funding, from the recommended ECOs shown in Table 1. The DD-1391 forms needed to request ECIP funding for each project are included in this report. These projects are listed below in order of descending SIR.

| ECIP<br>Project | Description                                                        | Cost<br>\$ | Payback<br>yrs | SIR  |
|-----------------|--------------------------------------------------------------------|------------|----------------|------|
| 1               | Chiller Retrofits, Areas 2200 & 900,<br>Boiler Retrofit, Area 1300 | 558,058    | 7.7            | 2.27 |
| 2               | Chiller Retrofit, Area 1300                                        | 479,191    | 8.4            | 1.98 |
| 3               | New Central Chiller Plant, Area 100                                | 556,559    | 8.6            | 1.73 |

Non-ECIP Projects Developed: The facility will also submit all ECOs indivudually as projects for non-ECIP funding. The DD-1391 forms needed to request non-ECIP funding for each project are included in this report. These projects are listed below in order of descending SIR.

| Non-ECIP<br>Project | Description                         | Cost<br>\$ | Payback<br>yrs | SIR  |
|---------------------|-------------------------------------|------------|----------------|------|
| 1                   | Chiller Retrofit, Area 2200         | 237,078    | 6.3            | 2.73 |
| 2                   | Chiller Retrofit, Area 900          | 157,256    | 8.9            | 2.08 |
| 3                   | Chiller Retrofit, Area 1300         | 479,191    | 8.4            | 1.98 |
| 4                   | Boiler Retrofit, Area 1300          | 163,724    | 9.6            | 1.79 |
| 5                   | New Central Chiller Plant, Area 100 | 556,559    | 8.6            | 1.73 |

Recommended Maintenance & Operations Practices: The following maintenance and operations (M&O) practices are recommended to help conserve boiler and chiller plant energy at FSH.

- 1. The Energy Coordinator and the FSH Director of Public Works should develop a master plan specification for all future central boiler and chiller plant maintenance and renovation projects. All facility project managers, as well as any central plant maintenance contractors should be required to follow this specification. The energy coordinator should review all new central boiler and chiller plant designs to check for compliance with the specifications.
- 2. The energy coordinator should attend training seminars for building energy.
- The installation should increase the size of their current maintenance staff by adding trained HVAC technicians.
- 4. The installation should provide technical training for it's current HVAC staff, especially in the area of HVAC controls.
- 5. Revise the current HVAC preventative maintenance program as needed to improve the overall condition of the existing systems and equipment. The Energy Manager should be involved in this process to ensure that energy conservation concerns are addressed.
- 6. Add status, alarm, start and stop capabilities for all central boiler and chiller systems and auxiliaries to the post's existing building automation system. This will allow the maintenance staff to have better monitoring and control capabilities than they currently have.
- 7. Repair or replace all building HVAC control systems to improve space temperature control and conserve heating and cooling system energy.

# E. Energy And Cost Savings

Total Potential Energy and Cost Savings. The energy and cost savings from the implementation of all ECIP projects was calculated as follows:

| Electrical Energy Savings | 8,690     | MMBTU/yr |
|---------------------------|-----------|----------|
| Electrical Demand Savings | 49,884    | \$/yr    |
| Gas Energy Savings        | 4,020     | MMBTU/yr |
| Total Energy Savings      | 12,710    | MMBTU/yr |
| Total Cost Savings        | 193,496   | \$/yr    |
| Total Investment          | 1,593,808 | \$       |
| Simple Payback            | 8.2       | yrs      |

Energy Use and Costs Before and After. Based on the base year electrical and gas energy consumptions and costs shown on page 12, and the calculated total potential savings above, the FSH energy and usage and costs before and after implementation of the 3 Non-ECIP projects is as follows:

|            | <u>Before</u> | <u>After</u> |
|------------|---------------|--------------|
| Electrical | 153,580 MWH   | 151,033 MWH  |
| Gas        | 51,415 MCF    | 47,395 MCF   |
| Total Cost | 6,760,086\$   | 6,566,590 \$ |

Percentage Saved. Based on the base year electrical and gas energy consumptions and costs, the percentage of savings from the 3 projects is as follows:

Electrical Energy Saved = 
$$\left[\frac{2,546 \text{ MWH}}{153,580 \text{ MWH}}\right]$$
 = 1.6%  
Gas Energy Savings =  $\left[\frac{4,020 \text{ MCF}}{51,415 \text{ MCF}}\right]$  = 7.8%

Energy Cost Savings = 
$$\left[\frac{193,496 \$}{6,760,086 \$}\right] = 2.8\%$$

|                                                               | SIR                                         | 2.73                                                            | 2.08     |           | 1.98                                                          | 1.79                                                 |          | 1.73                                                   |           |
|---------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|----------|-----------|---------------------------------------------------------------|------------------------------------------------------|----------|--------------------------------------------------------|-----------|
| NDED                                                          | Simple<br>Payback<br>Yrs                    | 6.3                                                             | 8.9      |           | 4.8                                                           | 9.6                                                  |          | 8.6                                                    | 8.2       |
| OMME                                                          | Total<br>Investment<br>\$                   | 237,078                                                         | 157 256  |           | 479,191                                                       | 163,724                                              |          | 556,559                                                | 1,593,808 |
| )s) REC                                                       | Total<br>Cost<br>Savings<br>\$/yr           | 37,433                                                          | 17.650   |           | 56,936                                                        | 17,012                                               |          | 64,465                                                 | 193,496   |
| ES (ECC                                                       | Total<br>Energy<br>Savings<br>MMBTU/yr      | 1,304                                                           | 434      |           | 3,424                                                         | 4,732                                                |          | 2,816                                                  | 12,710    |
| TUNITIE                                                       | Gas<br>Energy<br>Savings<br>MMBTU/yr        | 0                                                               | C        |           | 0                                                             | 4,020                                                |          | 0                                                      | 4,020     |
| OPPOR                                                         | Electrical<br>Demand<br>Savings<br>\$/yr    | 11,822                                                          | 2 520    |           | 13,914                                                        | 1,847                                                |          | 19,781                                                 | 49,884    |
| ATION                                                         | Electrical<br>Energy<br>Savings<br>MMBTU/yr | 1,304                                                           | 757      |           | 3,424                                                         | 712                                                  |          | 2,816                                                  | 8,690     |
| TABLE 1. ENERGY CONSERVATION OPPORTUNITIES (ECOs) RECOMMENDED | Description                                 | AREA 2200 Replace Existing Chiller With New Centrifugal Chiller | AREA 900 | AREA 1300 | Replace Existing Chillers With Centrifugal Chillers AREA 1300 | Replace Existing Boilers With High % Modular Boilers | AREA 100 | Replace Individual Chillers With Central Chiller Plant | Totals    |
|                                                               | ECO                                         | ш                                                               | 1        |           | O                                                             | ۵                                                    |          | _                                                      |           |

| $\sim$                                                            | SIR                                         | 5     | ij                                                   |                 | 0.71                                                 |           | 0.69                                                 |          | 99.0                                               |                 | 0.20                                               |           |
|-------------------------------------------------------------------|---------------------------------------------|-------|------------------------------------------------------|-----------------|------------------------------------------------------|-----------|------------------------------------------------------|----------|----------------------------------------------------|-----------------|----------------------------------------------------|-----------|
| Ħ.                                                                |                                             |       | <u>.</u>                                             |                 |                                                      |           |                                                      |          |                                                    |                 |                                                    | 2         |
| MEN                                                               | Simple<br>Payback<br>Yrs                    | ţ     | 2                                                    |                 | 20.9                                                 |           | 25.8                                                 |          | 23.8                                               |                 | 71.2                                               | 11.2      |
| ECOM                                                              | Total<br>Investment<br>\$                   | 01    | 180,00                                               |                 | 824,178                                              |           | 78,553                                               |          | 273,951                                            |                 | 394,910                                            | 4,415,465 |
| NOTR                                                              | Total<br>Cost<br>Savings<br>\$/yr           | 000   | 2,203                                                |                 | 39,257                                               |           | 3,037                                                |          | 11,483                                             |                 | 5,542                                              | 394,513   |
| (ECOs)                                                            | Total<br>Energy<br>Savings<br>MMBTU/yr      |       | 007'1                                                | 0               | 2,212                                                | 0         | 948                                                  | 0        | 998                                                |                 | 446                                                | 28,497    |
| NITIES                                                            | Gas<br>Energy<br>Savings<br>MMBTU/yr        | J ( ) | 1,233                                                |                 | 0                                                    |           | 910                                                  |          | 089                                                |                 | 434                                                | 10,431    |
| PORTU                                                             | Electrical<br>Demand<br>Savings<br>\$/yr    |       | ٥                                                    |                 | 14,116                                               |           | 378                                                  |          | 680                                                |                 | 122                                                | 100,722   |
| ION OP                                                            | Electrical<br>Energy<br>Savings<br>MMBTU/yr | ·     | D                                                    |                 | 2,212                                                |           | 38                                                   |          | 186                                                |                 | -12                                                | 18,066    |
| TABLE 2. ENERGY CONSERVATION OPPORTUNITIES (ECOS) NOT RECOMMENDED | Description                                 |       | Replace Existing Boilers With High % Modular Bollers | QUADRANGLE AREA | Replace Existing Chillers With Central Chiller Plant | AREA 2200 | Replace Existing Boilers With High % Modular Boilers | AREA 100 | Replace Existing Boilers With Central Boiler Plant | QUADRANGLE AREA | Replace Existing Boilers With Central Boiler Plant | Totals    |
| 1                                                                 | ECO                                         | -     | В                                                    |                 | O                                                    |           | L.                                                   |          | 7                                                  |                 | r                                                  |           |

#### II. NARRATIVE REPORT

# A. Entry Interview

Work Plan: An entry interview meeting was conducted at the Fort Sam Houston (FSH) facility on October 27, 1994. Present at the meeting were representatives of Huitt Zollars Inc. (HZ), Tom Holthaus, P.E., Project Manager, and Walter H. Williams III, P.E., Mechanical Engineer, as well as representatives from FSH, Gerardo De La Pena, Energy Coordinator and others. At that time, a description of the work plan for this study was presented. The work plan was a summary of the individual tasks to be performed to complete the boiler & chiller study and the approximate date that each task was to begin. Each step of the work plan

Figure 3. Work Plan

|          | S722462.465278                        |
|----------|---------------------------------------|
| 10/3/94  | Entry Interview                       |
| 10/3/94  | Building & Systems Data Collection    |
| 10/10/95 | Formulate ECOs & Perform Calculations |
| 6/15/95  | Interim Findings Submittal            |
| 9/18/95  | Pre-Final Report Submittal            |
| 10/30/95 | Final Report Submittal                |
|          |                                       |

was described in detail to the FSH staff. The work plan is shown in Figure 3.

Data List: After discussing the work plan, the FSH staff was presented a list of data items to be collected by the study team, shown in Figure 4. This list was a summary of the information required by the surveyors. The study team and FSH staff discussed the methods by which all of the data on the list were to be obtained. The data concerning the existing boiler and chiller systems were to be collected from the buildings and recorded onto preprinted data forms. Building mechanical drawings were to be collected, information extracted and included on individual building data forms. All data forms are included in Appendix C. The FSH personnel provided direction as to where to obtain information on the list. They also provided useful information on past energy conservation efforts,

# Figure 4. Data Acquisition List

- 1. Existing central boiler and chiller systems.
- 2. Existing auxiliary systems in central plants.
- 3. Building HVAC system types and operational hours.
- 4. Building size, age and remaining useful life.
- 5. Existing building operational schedules and area usage.
- 6. Facility electricity, gas, other utility rates
- 7. Facility electricity, gas, other utility consumptions.
- 8. Utility company rebate programs.
- 9. Past boiler and chiller energy conservation projects.
- 10. Proposed boiler and chiller energy conservation projects.
- 11. Typical boiler and chiller maintenance procedures and costs.
- 12. Typical boiler and chiller retrofit procedures.

as well as any ongoing or future planned energy conservation measures. One such project underway is the installation of a base wide building automation system, to control primary and secondary HVAC equipment in many buildings on the post.

ECO List: Following the discussion on the data list, the FSH personnel were presented a list of specific Energy Conservation Opportunities (ECOs) that were identified for evaluation in the Detailed Scope of Work (see pages F-11 through F-15). This list is shown in Figure 5. The first ECO specified was the upgrade or replacement of existing central chillers with more efficient systems. The scope specifically called for the evaluation of electric centrifugal chillers, electric centrifugals with variable frequency drives, electric screw chillers and gas driven centrifugal chillers. All of these types were evaluated as a means of saving energy and maintenance costs in the existing central chiller plants of areas 900, 1300 and 2200. The second ECO specified was the upgrade or replacement of existing central boilers with

more efficient systems. Since no specific types were identified, the most efficient alternatives were selected and evaluated as a means of saving energy and maintenance costs in the existing central boiler plants of areas 900, 1300 and 2200. The third ECO specified was the installation of new central chiller plants to replace the existing individual building chillers in areas 100 and the Quadrangle. These new central plant evaluations were similar to a 1986 central plant design for area 100 which was never implemented. The fourth

Figure 5. Specific ECOs List

- 1. Chiller replacement or retrofit.
- 2. Boiler upgrade or replacement.
- 3. Install central chiller plants.
- 4. Install central boiler plants.

ECO specified was the installation of new central boiler plants to replace the existing individual building boilers in areas 100 and the Quadrangle. In all ECOs, the annual energy consumption of the boilers, chillers and auxiliary equipment were calculated by computer simulations using the Trane Trace 600 program. Building data were used to accurately model each building such that a realistic load profile was created for simulating boiler and chiller operational patterns. In all ECO calculations, the required capacity of the existing central heating and cooling equipment was evaluated from the computer simulations and recommendations for proper sizing were made.

#### B. Data Collection

Following the entry interview, the study team began the task of collecting the required data. First, building mechanical plans were studied and data was extracted. Then field surveys were made on all of the buildings in the study to verify and supplement data collected from the drawings. All of the data obtained from drawings and field survey were put onto data sheets and included in Appendix C. The following summarizes the data collection phase of this study.

Building Data: This study was performed on five separate groups of buildings and required two separate site visits to collect data. These groups were identified as areas 100, 900, 1300, 2200 and Quadrangle. Buildings in each of these areas are described as follows:

- 1. Area 900 This area included buildings 902, 904, 905, 906, 907, 908, 915, 916, 917, 919, 920, 921, 922, 924, 925, 926, 928, 929, 930, 931 and 932. A map of this area is included in Appendix C along with the data sheets for these buildings. The buildings in this group were constructed approximately 21 years ago and are mainly steel and concrete structures with brick veneer exteriors and flat built-up roofs. These buildings consisted of 16 barracks, four smaller support buildings and one large administrative building, all occupied by army personnel. All of the barracks were three story structures while the others were single story structures.
- 2. Area 1300 This area included buildings 1350, 1374, 1375, 1377, 1379, 1380, 1382 and 1385. A map of this area is included in Appendix C along with the data sheets for these buildings. The buildings in this group consisted of six barracks, one dining hall and one administrative office building. All buildings are approximately 24 years old except for 1350, which is only 12 years old. These buildings were all occupied by army personnel. All of these buildings are mainly steel and concrete structures with brick veneer exteriors and flat built-up roofs. All of the barracks were multi-story structures while the others were single story structures.
- 3. Area 2200 This area included buildings 2263, 2264, 2265 and 2266. A map of this area is included in Appendix C along with the data sheets for these buildings. The buildings in this group consisted of three barracks and one administrative office building, which were all approximately 25 years old. These buildings were all occupied by regular army personnel. All of these buildings are mainly masonry structures with stucco exteriors and pitched red clay tile roofs. All of the buildings were three story structures with both attic and basement spaces. One

of the barracks buildings has a dining hall, while another has a museum.

- 4. Quadrangle This area included buildings 16, 44, 56 and 4015. A map of this area is included in Appendix C along with the data sheets for these buildings. The four buildings in this group are all administrative offices, one of which serves as the headquarters of the 5th Army. All but one are multi-story, with construction ranging from wood frame and siding with pitched shingle roofs to masonry structure, limestone exterior and pitched metal roof on the Headquarters building. These buildings are between 40 and 45 years old, and are considered historically significant.
- <u>Area 100</u> This area included buildings 122, 124, 125, 127, 128, 132, 133, 134, 135, 142, 143, 144, 145, 146, 147, 149, 197, 198, 199 and 250. A map of this area is included in Appendix C along with the data sheets for these buildings. The buildings in this group were constructed approximately 50 to 55 years ago and are mainly wood framed structures with brick veneer exteriors and pitched shingle roofs. Most all of these buildings were two story structures that had basement and attic spaces. These buildings are currently used as office buildings, barracks, and other miscellaneous things such as a band rehearsal hall. These buildings are occupied by both army and civilian personnel.

# Central Plant & HVAC Systems Data:

1. Area 900 - The buildings in this area are served by a central plant in building 902. The primary cooling system consists of a single 300 ton, centrifugal, water cooled chiller which is ten years old and uses R-11 refrigerant. A sixteen year old packaged, single cell crossflow cooling tower serves the chiller. Both the chiller and cooling tower appear to be in fair condition with many years of useful life remaining. The computer simulations of this area verified that the installed tonnage was both adequate and required to meet the building cooling loads.

Primary heating systems consist of three gas fired, water tube, HW boilers. The combined output capacity of these sixteen year old boilers is approximately 4,995 MBH, and they appeared to be in fair condition with a few years of useful life remaining. The computer simulations of this area identified that the installed capacity was approximately 2 ½ times what is required to adequately meet the building heating loads.

The individual chilled water (CHW) and condenser water (CND) pumps and multiple heating water (HW) pumps are located within the plant. These primary systems distribute thermal energy to the buildings through a four-pipe distribution loop. The domestic hot water (DHW) for the area is generated in the buildings through individual shell and tube heat exchangers in mechanical rooms, using HW from the boilers. A single DHW circulation pump for buildings distributes the DHW to the plumbing fixtures. This design requires a boiler to operate year round to produce DHW. The other buildings have individual gas fired water heaters.

Secondary HVAC systems in these buildings consist of two pipe fan coil units (FCUs) in the barracks, while multizone (MZ) and single zone (SZ) air handling units are located within the support and administrative buildings. Each pair of barracks buildings has a secondary pump to circulate HW or CHW from the central loop to all the FCUs. Overall HVAC system performance in this area is poor due in part to faulty or inadequate system controls, making space temperatures difficult to maintain. Also, the two-pipe distribution loops in the buildings and the four-pipe distribution loop from the central plant to the buildings are in poor condition with corrosion, leaks and missing or unserviceable insulation.

2. Area 1300 - The buildings in this area are served by a central plant in the dining hall building 1377. The primary cooling systems consist of two centrifugal water cooled chillers, rated at a combined 1200 tons, which are 23 years old and use R-11 refrigerant. These two chillers are piped in series and serve all of the buildings except for 1350. This newer building is served by a single 438 ton, water cooled centrifugal chiller that is 12 years old and uses R-11 refrigerant. A twelve year old, single cell cooling tower serves this chiller while a 23 year old, two cell tower serves the other two chillers. The older chillers and tower appeared to be in poor condition and nearing the end of useful life. The newer chiller and tower were in fair condition with some years of useful life remaining. The computer simulations of this area identified that the installed capacity of 1,424 tons was around 14% higher than what is required to meet the building cooling loads.

The primary heating systems consisted of two firetube, HW boilers which are 23 years old and have a combined output capacity of 11,824 MBH. These two boilers serve all of the buildings except for 1350. This building is served by two watertube, HW boilers which are 12 years old and have a combined output capacity of 9,653 MBH. The older boilers appeared to be in poor condition and are near the end of their useful life. The newest boiler was in fair condition with some years of useful life remaining. The computer simulations of this area identified that the installed capacity of 21,477 MBH was approximately 3 times what is required to adequately meet the building heating loads.

The three CHW pumps, three CND pumps and three HW pumps are located within the plant in building 1377. These primary systems distribute thermal energy to the buildings through two four-pipe distribution loops, which appeared to be in good condition. One loop is for building 1350 and the other is for all other buildings in the area. DHW is generated by individual gas fired water heaters in each building.

Secondary HVAC systems in these buildings consist of some two pipe FCUs and SZ air handlers, and many four pipe MZ air handling units located within the buildings. Each building has secondary CHW and HW pumps to circulate water from the central loops to all the FCUs and air handlers. Overall HVAC system performance in this area is poor due in part to faulty or inadequate controls, making space temperatures difficult to maintain.

3. Area 2200 - The buildings in this area are served by a central CHW plant in the basement of building 2265. The primary cooling system consists of a single 650 ton centrifugal, water cooled chiller, which is 22 years old and uses R-11 refrigerant. A 23 year old, single cell, built-up cooling tower is outside to serve the chiller. The chiller and tower appear to be in poor condition and nearing the end of useful service. The computer simulations of this area identified that the installed capacity was around 18% higher than what is required to meet the building cooling loads.

The primary heating systems consist of three watertube, HW boilers which are seven years old and have a combined rated capacity of 6,720 MBH. These boilers are all located in a separate mechanical building behind 2265 and appeared to be in good condition with many years of useful life remaining. The computer simulations of this area identified that the installed capacity was approximately 2 ½ times what is required to adequately meet the building heating loads.

A single CHW pump, CND pump and three HW pumps are located within the plants. These primary systems distribute thermal energy to the 2200 area buildings through a four-pipe distribution loop which appears to be in good condition. DHW is generated by individual gas fired water heaters in each building.

Secondary HVAC systems in these buildings consist of SZ and MZ air handlers located within the buildings. Each building has secondary CHW and HW pumps to circulate water from the central loop to all the FCUs and air handlers. Overall HVAC system performance in this area is poor due in part to faulty or inadequate controls, making space temperatures difficult to maintain.

4. Quadrangle - The buildings in this area have no central boiler or chiller plant. All buildings have stand alone primary heating and cooling systems. The primary cooling systems consisted of one 12 year old, air cooled, reciprocating chiller, rated at 50 tons and serving building 4015. This chiller appears to be in fair condition with at least 10 years of useful life remaining. Another two year old, air cooled, reciprocating chiller, rated at 30 tons serves building 56. This chiller appears to be in good condition with many years of useful life remaining. Building 16 is served by two air cooled, reciprocating chillers. One is only a year old and is rated at 120 tons. The other is eight years old and is rated at 110 tons. Both of these chillers appeared to be in good condition with many years of useful life remaining. Finally, building 44 is served by three chillers which are 10 years old and rated at a combined 225 tons. All three of these chillers appeared to be in good condition with many years of useful life remaining. All of these chillers operate on the R-22 refrigerant. The computer simulations of this area verified that the installed capacity of 565 tons was both adequate and required to meet the building cooling loads. However in some areas, especially in building 44, temperature control problems are apparent.

The primary heating systems consist of an eight year old, firetube HW boiler, with an output rating of 741 MBH, serving building 4015. This boiler appeared to be in good condition with many years of useful life remaining. Building 16 has two watertube, steam boilers which are 16 years old. One is rated at 1,614 MBH output and serves approximately half of the building. The other is rated at 3,587 MBH output and serves the other half of building 16 as well as all of building 56. These two boilers appeared to be in fair condition with some useful life remaining. Building 44 has 12 modular steam boilers which are 25 years old and have a combined output of 3,028 MBH. These boilers appeared to be in poor condition and are at the end of their useful life. The computer simulations of this area identified that the installed capacity was approximately 2 ½ times what is required to adequately meet the building heating loads.

The CHW pumps for all the chillers in the Quadrangle area are located within the buildings they serve. A single HW pump is located within building 4015 to circulate water through the buildings secondary systems. All other buildings have steam and condensate return piping from the boilers to all secondary systems. DHW is generated by individual gas fired water heaters in each building.

Secondary HVAC systems in the Quadrangle area buildings consist of dual duct, MZ and SZ air handling units as well as FCUs located in some areas of the buildings. These units all have steam coils for heat, except for those in building 4015, which have hot water coils. Some areas of building 16 and building 44 are cooled by direct expansion (DX) terminal units, with small cooling towers outside for condensers. Overall HVAC system performance in this area is poor due in part to faulty or inadequate controls, making space temperatures difficult to maintain. Because of the historical significance of this area, there is little space for a central plant. However, one could be located nearby with a historically correct wall built around it to hide the equipment.

5. <u>Area 100</u> - The buildings in this area have no central boiler or chiller plant. All buildings have stand alone primary heating and cooling systems. The primary cooling systems consist of 14

air cooled, reciprocating chillers, which are all ten years old and have a combined capacity of 540 tons. All chillers appeared to be in good condition with many years of useful life remaining. The computer simulations of this area identified that the installed capacity of 540 tons was around 28% higher than what is required to meet the building cooling loads.

The primary heating systems consisted of 14 watertube, HW boilers, which are all ten years old and have a combined capacity of 8,829 MBH. All boilers appeared to be in good condition with many years of useful life remaining. The computer simulations of this area identified that the installed capacity was approximately 4 ½ times what is required to adequately meet the building heating loads.

CHW and HW pumps are generally located within the buildings that they serve. DHW is generated by individual gas fired water heaters in each basement.

Secondary HVAC systems in these buildings consist of MZ and SZ air handling units located within the buildings. However, one building has window A/C units, a gas fired warm air furnace, and no boiler or chiller. Overall HVAC system performance in this area is poor due in part to faulty or inadequate controls, making space temperatures difficult to maintain.

Maintenance Data: Most HVAC system maintenance is performed by post civil service personnel, who maintain the central plants as well as building systems. In general, post maintenance is inadequate due to cutbacks in manpower, in conjunction with the addition of new buildings to maintain. For instance, some HVAC air filters appeared to be excessively dirty, and leaks were found in the HW coil of one air handler during data collection. Also, HVAC system controls appeared to be inoperable or missing, adding to the inability of the systems to maintain temperatures within the building spaces. Repair or replacement of these controls could save heating and cooling energy, but is beyond the scope of this study. In some buildings the outside air intakes to air handlers were blocked off with sheet metal. The existing preventative maintenance program is less effective than could be desired.

Utility Data: A 12 month utility billing history was obtained from the energy coordinator which covered the period from August, 1993 through July, 1994. This history included all of the metered electric consumption for the installation and gas consumption for only the FSH areas included in this study. This history is shown in Figure 6. The total cost of electricity for the base year was \$6.5 million and the total cost for gas was \$0.19 million.

Figure 6. 1993-94 Base Year Utility Data

| Billing |         | Electrical  | Natura    | l Gas       |          |
|---------|---------|-------------|-----------|-------------|----------|
| Period  | Demand  | Consumption | Cost      | Consumption | Cost     |
|         | KW      | MWH         | \$\$      | MCF         | \$       |
| AUG     | 30,576  | 16,464      | 785,463   | 1,826.4     | 7,880.0  |
| SEPT    | 31,024  | 16,856      | 795,130   | 1,750.2     | 7,161.0  |
| ост     | 30,240  | 14,084      | 706,204   | 1,679.9     | 6,508.0  |
| NOV     | 27,496  | 9,548       | 464,806   | 6,988.7     | 23,429.0 |
| DEC     | 24,819  | 10,136      | 464,187   | 5,423.0     | 20,105.0 |
| JAN     | 24,819  | 9,044       | 379,870   | 10,451.3    | 37,106.0 |
| FEB     | 24,819  | 9,268       | 391,687   | 9,341.3     | 33,138.0 |
| MAR     | 24,819  | 9,968       | 459,976   | 6,816.0     | 26,047.0 |
| APR     | 24,819  | 10,416      | 376,714   | 2,177.0     | 9,736.0  |
| MAY     | 27,160  | 13,216      | 447,478   | 1,750.6     | 7,774.0  |
| JUN     | 31,752  | 16,716      | 620,912   | 1,519.0     | 6,600.0  |
| JUL     | 32,872  | 17,864      | 674,674   | 1,691.1     | 7,501.0  |
| Total   | 335,215 | 153,580     | 6,567,101 | 51,414.5    | 192,985  |

Charts of the base year energy usages were plotted and are shown in Figures 7 and 8. These charts give a visual representation of the installation's energy usage patterns for the year. Looking at Figure 7, it can be seen that the electrical usage never falls below 9,000 MWH per month. This is considered a 'baseline' of electrical energy use. It can be assumed that all energy usage above this baseline is consumed by cooling systems, based on the peaks and the months in which they occur.





Simular observations can be made about gas energy usage, shown in Figure 8. The baseline usage here is around 1,800 MCF of gas per month. Since gas is the primary source of heating at FSH, the obvious peak during the winter months can be considered heating energy. Therefore, all gas energy usage below the baseline is used for DHW and cooking equipment. This is a large amount of energy usage and should be considered a large target for potential energy savings.

Figure 8. Base Year Gas Usage Profile



Based on the current gas and electric utility rates from the City Public Service (CPS) of San Antonio, the current avoided costs for electrical savings are \$0.021 per KWH, and \$7.50 to \$10.00 per KW demand savings, depending upon the time of year. For natural gas savings in area 100 only, the avoided cost is \$4.39 per MCF. For all other areas, the avoided cost of gas savings is \$2.66 per MCF. There are currently no rebates available from the CPS for boiler or chiller energy conservation projects.

Replacement Boiler Selection: Data on available replacement boilers were obtained from typical manufacturers in order to select representative boilers for ECO evaluations. This data included performance characteristics, physical dimensions and cost figures. The criteria for selecting new boiler systems for the ECOs are described below.

- 1. <u>Efficiency</u>. Replacement boilers that had the highest overall efficiency over the operating range were selected in each area. In most cases, this criteria was met by the high-efficiency modular boilers which were modeled in the ECOs. These are fully condensing, forced draft firetube units that have efficiencies in the 90s over the entire range of operation. No other boiler type was found to match this performance.
- 2. <u>Turn-down ratio</u>. In order to limit the thermal shock and efficiency losses associated with cycling, replacement boilers for the ECOs needed to have a high turn-down ratio. The 14:1 ratio associated with the modular boilers used in most ECOs was as good or better than other available boilers with lower efficiencies. And the modular concept of using multiple boilers to match the heating loads, combined with this high turn-down ratio, minimizes the negative impacts of cycling.
- 3. <u>Controls.</u> In order to closely match the heating load requirements at any given time, all new boilers were selected with fully modulating controls. Two-position or multi-stage controls would increase the possibility of boiler cycling, as well as reduce the part load efficiency.
- 4. <u>Physical size</u>. In order to fit the new boilers into the buildings without modifying the existing boiler room openings, the small footprint and overall size of the modular boilers was the best choice for the ECOs. Other types of boilers were larger and would require more effort and cost to install in the buildings. This criteria was not a factor in areas 100 and the Quadrangle, where completely new central boiler plants were being considered.
- 5. <u>First cost</u>. The first cost of the modular boilers was greater than other types available. However, the efficiency improvements of these units justified the higher initial first costs in the Life Cycle Cost Analysis. In areas 100 and the Quadrangle, the first cost of the boilers selected was equivalent to or lower than most of the other boiler types available for the ECOs.
- 6. <u>Maintenance requirements and costs.</u> All types of replacement boilers would require annual cleaning of the heat exchanger surfaces, as well as optimization of the combustion systems. The boilers used in the ECOs appeared to be as good or better than all other boiler types in ease of maintenance. This is due to their small physical size and construction features. Maintenance cost estimates obtained from the local contractor were independent of boiler type. Therefore, all new boiler types available were assumed to be approximately equal in the area of maintenance costs.

Replacement Chiller Selection: Data on available replacement chillers were obtained from typical manufacturers in order to select representative chillers for ECO evaluations. This data included performance characteristics, physical dimensions and cost figures. The criteria for selecting new chiller systems for the ECOs are described below.

1. <u>Manufacturer</u>. The facility maintenance personnel requested that York chillers be used in this study as they preferred them to other manufacturer's products. Therefore, most new chillers used for analysis in the ECOs were made by York. In areas 100 and the Quadrangle, McQuay chillers were selected for reasons mentioned in the following text.

- 2. Machine Type. The scope of work generally identified the specific types of chillers to be compared in each area. These were the centrifugal, centrifugal with variable speed drive, screw and gas-engine driven centrifugal. Therefore, all four of these chiller types were compared in each ECO to determine the most economically beneficial retrofit for each area. In areas 100 and the Quadrangle, where new central plants were under consideration, only packaged air-cooled type chillers were considered. This was done to minimize the implementation costs in these areas.
- <u>Drive configuration</u>. The new machines selected for ECO analysis all had open drives on the compressors. This increases the first cost somewhat, but decreases the long term maintenance costs.
- 4. <u>Refrigerant</u>. Replacement chillers were to all use either R-123 or R-134 refrigerant, as per the scope of work. This requirement was met in the study.
- 5. <u>Efficiency</u>. The full and part load efficiencies for all machines selected for evaluation were used in the ECOs. The relative effects of these efficiency differences are illustrated in the Life Cycle Cost Analysis of each machine. In areas 100 and the Quadrangle, the most efficient type of air cooled packaged chiller found was the single-screw unit from McQuay. Therefore, this machine was used in the ECO evaluations.
- First cost. The first cost data for all machines selected for evaluation were used in the ECOs.
   The relative effects of these cost differences are illustrated in the Life Cycle Cost Analysis of each machine.
- Maintenance requirements and costs. All types of replacement chillers would require periodic cleaning of the heat exchanger surfaces, as well as optimization of the compressor systems and controls. Maintenance cost estimates obtained from the local contractor were independent of chiller type. Therefore, all new chiller types available were assumed to be approximately equal in the area of maintenance costs.

# C. Plan To Implement Projects:

The analysis of all potential boiler & chiller ECOs at the facility has been completed and the grouping of individual ECOs into projects has been determined. These were detailed previously in the Executive Summary. Below is an abbreviated plan for implementation of the recommended projects.

Funding: The forms DD-1391 and life cycle cost analysis summary sheets for all three ECIP projects are provided on pages 17 to 27. These are to be submitted for project funding, along with the savings calculations and cost estimates in Appendix D. Check for the latest ECIP project documentation requirements prior to submitting these forms. The forms DD-1391 and life cycle cost analysis summary sheets for all five Non-ECIP projects are provided on pages 28 to 42. These are to be submitted for project funding, along with the savings calculations and cost estimates in Appendix D if required. Check for the particular project documentation requirements prior to submitting these forms.

Programming: An engineering design firm should be selected to produce construction contract drawings and specifications for all of the projects which are funded either through ECIP or by other means. All of the savings calculations and cost estimates for the recommended ECOs in Appendix D should be supplied to the designers in order to inform them of the intent and projected budget of each ECO. The designers should use the equipment sizing described in the ECOs as a guide only, and perform all calculations necessary to properly size all new equipment. These calculations should take into consideration all existing field conditions in the areas effected by the ECOs. It is recommended that

existing auxiliary equipment be reused wherever possible to reduce the first cost of each project. The designer should field verify the condition of all existing equipment before specifying it's disposition. In the case of boiler retrofits, the designer should consider keeping some of the existing boilers in place to be as backups. Where equipment is to be removed, the specifications should include some provisions dealing with the possible salvage value of this equipment. The facility's project manager should ensure that all new central plant designs produced by the design firm do conform with the intent of each ECO, in order to realize the estimated savings. All construction drawings and specifications should be compared to the original ECOs to ensure compliance, prior to releasing for bids.

Construction: Once the plans and specifications have been reviewed and approved, the facility's project manager should release them for bids, using their normal construction procurement proceedings. Care should be taken to schedule all work at a time which would minimize the negative impact of projects on the buildings served by the central plant equipment. Prior to construction, the facility should review all shop drawings and Submittals to once again ensure compliance with the original intent of each ECO.

| 1. COMPONENT<br>ARMY                                   |                          |                |         |          |            |                       |                                    |  |
|--------------------------------------------------------|--------------------------|----------------|---------|----------|------------|-----------------------|------------------------------------|--|
| 3. INSTALLATION AND LOCATION<br>FORT SAM HOL           | N<br>ISTON, SAN ANTONIO  | , TX.          | 4. PRO  | UECT TIT |            | CIP                   |                                    |  |
| 5. PROGRAM ELEMENT                                     | 6. CATAGORY CODE         | 7. PROJEC      | Т НИМВІ | ER       | 8. PROJECT | cost (\$000)<br>558.0 |                                    |  |
|                                                        |                          | 9. COST ESTIMA | TES     |          |            |                       |                                    |  |
|                                                        | ITEM                     |                |         | U/M      | QUANTITY   | UNIT COST             | COST (\$000)                       |  |
| Replace existing chille<br>building 2265.              | r with new centrifugal   | chiller in     |         | EΑ       | 1          | 237.0                 | 237.0                              |  |
| Replace existing chille<br>902.                        | er with new screw chille | er in building |         | EA       | 1          | 157.0                 | 157.0                              |  |
| Replace existing boile<br>boilers in Area buildin      | -                        | ency modula    | r       | EA       | 1          | 164.0                 | 164.0                              |  |
| ESTIMATED CONTRA<br>CONTINGENCY (0%)<br>SIOH<br>DESIGN | CT COST                  |                |         |          |            |                       | 500.501<br>0.0<br>27.527<br>30.030 |  |
| TOTAL REQUEST                                          |                          |                |         |          |            |                       | 558.058                            |  |
| TOTAL REQUEST (RC                                      | OUNDED)                  |                |         |          |            |                       | 558.000                            |  |

#### 10. DESCRIPTION OF PROPOSED CONSTRUCTION

# AREA 2200:

Remove the existing 675 ton, R-11 centrifugal chiller in building 2265 and replace it with a 555 ton, R-134a centrifugal chiller. The existing 100 HP chilled water (CHW) pump, 50 HP condenser water (CND) pump and 40 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

#### AREA 900:

Remove the existing 300 ton, R-11 centrifugal chiller in building 902 and replace it with a 300 ton, R-134a screw chiller. The existing 25 HP chilled water (CHW) pump, 15 HP condenser water (CND) pump and 15 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCTION    | ON PROJECT DATA  | 2. DATE<br>8/24/95 |
|-----------------------------------------|----------------------------------|------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX. |                  |                    |
| 4. PROJECT TITLE<br>ECIP                |                                  | 5. PROJECT NUMBE | R                  |

the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

#### AREA 1300:

Remove the two existing watertube boilers and single 40 HP heating water (HW) distribution pump in building 1377, which are serving building 1350. Also remove the two existing firetube boilers and the two 15 HP distribution pumps in building 1377 which serve buildings 1374, 1375, 1379, 1380, 1382, 1377 and 1385. Connect the two separate distribution loops together in building 1377 with new HW supply and return headers to make a single HW distribution system. Install four new modular high efficiency boilers, rated at 1,830 MBH output each and four new 7 ½ HP distribution pumps to serve this single system. The existing electrical service and controls should be reused as much as possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. The boilers and pumps should be sequenced to operate only as needed to maintain the supply water temperature setpoint of approximately 180 F. This project will require engineering drawings and specifications, demolition and removal of the existing boilers and pumps, and installation of the new boilers, pumps, associated wiring and controls.

#### **ENERGY SAVINGS**

This project is required to reduce the cooling energy consumption in the 2200 and 900 area central plants, and the heating energy consumption in the 1300 area central plant. The project provides new, more efficient primary cooling and heating systems, which will save cooling and heating energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this new primary equipment will result in the following:

| Electrical Energy Savings | 2,450   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 16,189  | \$/yr    |
| Gas Energy Savings        | 4,020   | MMBTU/yr |
| Total Energy Savings      | 6,470   | MMBTU/yr |
| Total Cost Savings        | 72,094  | \$/yr    |
| Total Investment          | 558,058 | \$       |
| Simple Payback            | 7.7     | yrs      |
| SIR                       | 2.27    |          |

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCT       | ION PROJECT DATA | 2. DATE<br>8/24/95 |
|-----------------------------------------|----------------------------------|------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX. |                  |                    |
| 4. PROJECT TITLE ECIP                   |                                  | 5. PROJECT NUME  | BER                |

#### **CURRENT SITUATION:**

#### AREA 2200:

The existing water cooled, centrifugal chiller was installed in 1973 and serves as the primary cooling system for the four large buildings in the 2200 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the machine is already 22 years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that an electric centrifugal chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 657 tons is more than what is required to adequately cool the buildings. Therefore, the new chiller should only be sized for 555 tons to more closely match the cooling load of the four buildings.

#### AREA 900:

The existing water cooled, centrifugal chiller was installed in 1985 and serves as the primary cooling system for the 21 buildings in the 900 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the machine is already ten years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that a dual screw chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 300 tons is required to adequately cool the buildings. Therefore, no increase or decrease in the current chiller capacity is recommended at this time.

#### AREA 1300:

The two existing watertube boilers serving building 1350 were installed in 1983 and are rated at 5,317 MBH and 4,336 MBH output capacity. The single 40 HP pump circulates HW from these boilers through building 1350. The two existing firetube boilers serving the other buildings in the 1300 area were installed in 1972 and are rated at 5,912 MBH output capacity each. Two 15 HP pumps circulate HW from these boilers to the seven other buildings listed above. All these boilers appear to be in fair condition. Computer simulations of the eight buildings served by these boilers determined that the current combined capacity of 21,477 MBH is about three times the amount required to adequately heat the buildings. The existing boilers are therefore

DD 1 DEC 76 1391

PAGE NO. 3 OF 4

| 1. COMPONENT<br>ARMY                                            | FY 1997 MILITARY CONSTRUCTION PROJEC | 7 DATA 2. DATE 8/24/95 |  |  |  |
|-----------------------------------------------------------------|--------------------------------------|------------------------|--|--|--|
| 3. INSTALLATION AND LOCATION FORT SAM HOUSTON, SAN ANTONIO, TX. |                                      |                        |  |  |  |
| 4. PROJECT TITLE<br>ECIP                                        |                                      | 5. PROJECT NUMBER      |  |  |  |

operating at an inefficient, low load condition most of the time. Also, because of the constant flow rate requirements of the large boilers, excessive pumping energy is expended. By combining the two distribution systems together and staging four new high efficiency modular boilers to operate only as needed, a substantial energy savings can be realized. Also, a decrease in the combined boiler output capacity to 7,320 MBH is recommended to more closely match the heating load in the eight buildings and reduce the associated pumping energy consumption.

# IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling and heating energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECIP-3 08-24-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 500501. \$ B. SIOH 27527. C. DESIGN COST 30030. D. TOTAL COST (1A+1B+1C) \$ 558058. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D - 1E - 1F) 558058. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) FUEL MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT \$ 6.28 2450. 15386. 15.08 232021. B. DIST \$ .00 0. 18.57 0. 0. .00 C. RESID \$ 0. 0. 21.02 0. 0. 10693. 4020. 0. 0. 18.58 D. NAT G \$ 2.66 198680. E. COAL .00 0. 16.83 0. F. PPG \$ .00 17.38 0. \$ 16189. M. DEMAND SAVINGS 240892. 14.88 6470. \$ 42268. N. TOTAL 671593. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED TTEM COST(-) OC FACTR SAVINGS(+)/ (2) (1) (3) COST(-)(4)1. REFRIG. UPGRADE \$ 596520. 0 596520. 1.00 d. TOTAL \$ 596520. 596520. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 596520. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 72094. 7.74 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 1268113. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =2.27 (IF < 1 PROJECT DOES NOT QUALIFY)

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

7.32 %

| 1. COMPONENT           |                                            |                        |               |         |         |            |          | 2. D | ATE          |
|------------------------|--------------------------------------------|------------------------|---------------|---------|---------|------------|----------|------|--------------|
| ARMY                   | FY 1997 MILITARY CONSTRUCTION PROJECT DATA |                        |               |         |         | 8/24/95    |          |      |              |
|                        |                                            |                        |               | T       |         |            |          |      |              |
| 3. INSTALLATION AND LO |                                            | TON CAN ANTONIO        | 77/           | 4. PR(  | DECT TI |            | מור      |      |              |
| FURI SAM               | HUUS                                       | TON, SAN ANTONIO       | , IX.         |         |         | EC         | CIP      |      |              |
| 5. PROGRAM ELEMENT     |                                            | 6. CATAGORY CODE       | 7. PROJE      | CT NUMB | ER      | 8. PROJECT | COST (\$ | 000) |              |
|                        |                                            |                        |               |         |         |            | 4        | 79.C | )            |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        | 9. COST ESTIM | ATES    |         |            | ,        |      |              |
|                        |                                            | ІТЕМ                   |               |         | U/M     | QUANTITY   | UNIT CO  | OST  | COST (\$000) |
| Replace two (2) e      | xistiną                                    | g chillers in building | 1377 with o   | ne      | EA      | 1          | 479      | .0   | 479.0        |
| (1) new chiller.       |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            | 1        |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |
| ESTIMATED CON          | TRACT                                      | COST                   |               |         |         |            |          |      | 429.768      |
| CONTINGENCY (C         |                                            |                        |               |         |         |            |          |      | 0.0          |
| SIOH                   | , 10)                                      |                        |               |         |         |            |          |      | 23.673       |
| DESIGN                 |                                            |                        |               |         |         |            |          |      |              |
| DESIGN                 |                                            |                        |               |         |         |            |          |      | 25.786       |
| TOTAL PROUEST          |                                            |                        |               |         |         |            |          |      | 470 404      |
| TOTAL REQUEST          |                                            |                        |               |         |         |            |          |      | 479.191      |
| TOTAL REQUEST          | (ROLL                                      | NDED)                  |               |         |         |            |          |      | 479.000      |
| IOTAL KLOULST          | וטטאן                                      | NULUJ                  |               |         |         |            |          |      | 473.000      |
|                        |                                            |                        |               |         |         |            |          |      |              |
|                        |                                            |                        |               |         |         |            |          |      |              |

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the two 600 ton, R-11 centrifugal chillers in building 1377 which were installed in 1972, and replace them with one R-134 centrifugal chiller, rated at 827 tons. The two existing chilled water pumps and condenser water pumps serving the existing chillers should be removed. Install a new chilled water pump and a new condenser water pump, each rated at 75 HP, to serve the new chiller. The new chiller should be connected into the distribution piping at the existing location. New chilled water supply and return headers should be installed to join together the existing distribution systems serving building 1350 and the other seven buildings in the 1300 area. This will create a single chilled water distribution system to be served by the new chiller and the existing 438 ton chiller which was installed in 1983 to serve building 1350. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chillers and pumps, and installation of the new chillers, pumps, associated wiring and controls.

DD FORM 1391

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCTION P  | PROJECT DATA      | 2. DATE<br>8/24/95 |
|-----------------------------------------|----------------------------------|-------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX. |                   |                    |
| 4. PROJECT TITLE ECIP                   |                                  | 5. PROJECT NUMBER | र                  |

This project is required to reduce the cooling energy consumption in the 1300 Area central plant, building 1377. The project provides a new, more efficient primary cooling system, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savinge | 3,424   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 13,914  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 3,424   | MMBTU/yr |
| Total Cost Savings        | 56,936  | \$/yr    |
| Total Investment          | 479,191 | \$       |
| Simple Payback            | 8.4     | yrs      |
| SIR                       | 1.98    |          |

#### **CURRENT SITUATION:**

There are currently two independent chilled water distribution systems serving the 1300 area, one for building 1350 and the other for seven other buildings. These two systems should be combined into one system to conserve energy in the central plant. This can be accomplished by installing common CHW supply and return headers in the central plant. The existing centrifugal chiller serving building 1350 was installed in 1983, is rated at 438 tons and appears to be in good condition. The two existing centrifugal chillers serving the other seven buildings were installed in 1972, are rated at 600 tons each, and appear to be near the end of their useful life. Also, all three chillers use the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of these machines, they should either be retrofitted to use an approved refrigerant or replaced with new machines that operate on one. The existing centrifugal machines can be retrofitted with no loss of capacity by replacing the impellers with new ones designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the older machines are already over twenty years old, it is recommended that the facility replace them instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that a single electric centrifugal chiller using R-134 would be the most economical choice over the life of the machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 1,638 tons is more than what is required to adequately cool the buildings. Therefore, the new combined capacity is recommended to be 1,265 tons to more nearly match the building cooling load.

#### IMPACT IF NOT PROVIDED

DD

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

FORM 1391 PAGE NO. 2 of 2

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY REGION NOS. 6 CENSUS: 3 FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C1 ANALYSIS DATE: 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT 1. INVESTMENT
A. CONSTRUCTION COST \$ 429768.
B. SIOH \$ 23637.
C. DESIGN COST \$ 25786. D. TOTAL COST (1A+1B+1C) \$ 479191. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D - 1E - 1F) 479191. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) FUEL A. ELECT \$ 6.28 3424. \$ 21503. 15.08
B. DIST \$ .00 0. \$ 0. 18.57
C. RESID \$ .00 0. \$ 0. 21.02
D. NAT G \$ 2.66 0. \$ 0. 18.58
E. COAL \$ .00 0. \$ 0. 16.83
F. PPG \$ .00 0. \$ 0. 17.38
M. DEMAND SAVINGS \$ 13914. 14.88
N. TOTAL 3424. \$ 35417. 324261. 0. 0. 0. 0. \$ 207040. 531301. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 14.88 \$ 33852. 2275. (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR COST(-) OC DISCNT DISCOUNTED FACTR (3) 1.00 SAVINGS(+)/ COST(-)(4) ITEM (1) (2) 1. REFRIG UPGRADE \$ 384882. 0 384882. d. TOTAL \$ 384882. 384882. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 56936. 5. SIMPLE PAYBACK PERIOD (1G/4) 8.42 YEARS \$ 950035. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 1.98 (IF < 1 PROJECT DOES NOT QUALIFY) 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 6.59 %

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

| 1. COMPONENT                                          |                            |               |         |          |            | 2.          | DATE                     |
|-------------------------------------------------------|----------------------------|---------------|---------|----------|------------|-------------|--------------------------|
| ARMY                                                  | FY 1997 MILITARY           | CONSTRU       | CTION   | PRO.     | IECT DATA  |             | 8/24/95                  |
| 3. INSTALLATION AND LOCATE                            | ION                        |               | 4. PRO  | JECT TIT | LE         |             |                          |
| FORT SAM HO                                           | DUSTON, SAN ANTONIO,       | , TX.         |         |          | E          | CIP         |                          |
| 5. PROGRAM ELEMENT                                    | 6. CATAGORY CODE           | 7. PROJEC     | CT NUMB | ER       | 8. PROJECT | COST (\$000 | P)                       |
|                                                       |                            |               |         |          |            | 557.        | 0                        |
|                                                       |                            | 9. COST ESTIM | ATES    |          |            |             |                          |
|                                                       | ПЕМ                        |               |         | U/M      | QUANTITY   | UNIT COST   | COST (\$000)             |
| Replace individual bu<br>in Area 100.                 | uilding chillers with cent | ral chiller p | lant    | EΑ       | 1          | 557.0       | 557.0                    |
|                                                       |                            |               |         |          |            |             | 3                        |
| ESTIMATED CONTR<br>CONTINGENCY (0%)<br>SIOH<br>DESIGN |                            |               |         |          |            |             | 499.156<br>0.0<br>27.454 |
| TOTAL REQUEST                                         |                            |               |         |          |            |             | 29.949                   |
| TOTAL REQUEST (R                                      | (OUNDED)                   |               |         |          |            |             | 556.559                  |
| ,                                                     | ,                          |               |         |          |            |             | 557.000                  |
| l e e e e e e e e e e e e e e e e e e e               |                            |               |         | 1        | 1          |             |                          |

# 10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the 14 existing air cooled, reciprocating chillers serving buildings 122, 124, 125, 128, 133, 134, 135, 142, 143, 144, 146, 147, 149, 197, 198, 199 and 250. Install 6" chilled water supply and return piping loop between the buildings in this area and terminate loop behind building 250, near the existing air cooled chiller installation. Install two new 210 ton, air cooled screw chillers behind building 250. Install two new 30 HP chilled water distribution pumps to circulate water from new chillers through new distribution loop. The existing chilled water pumps that serve buildings where chillers were removed will be reused to circulate chilled water from the new loop through the buildings. These existing pumps should be connected into the new distribution piping at the existing chiller locations. All new controls and electrical services should be installed at building 250 to serve the new chillers and pumps. All54ER specific requirements should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

DD 1 DEC 76 1391

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCT       | 2. DATE<br>8/24/95 |   |
|-----------------------------------------|----------------------------------|--------------------|---|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX. |                    |   |
| 4. PROJECT TITLE ECIP                   |                                  | 5. PROJECT NUMBE   | R |

This project is required to reduce the cooling energy consumption in the 100 Area buildings. The project provides new, more efficient primary cooling systems, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 2,816   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savinge | 19,781  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 2,816   | MMBTU/yr |
| Total Cost Savings        | 64,465  | \$/yr    |
| Total Investment          | 556,559 | \$       |
| Simple Payback            | 8.6     | yrs      |
| SIR                       | 1.73    |          |

#### CURRENT SITUATION:

The 14 existing air cooled, reciprocating chillers in the 100 area were installed in 1985 and serve as the primary cooling systems for 17 buildings. They generally appear to be in fair condition at this time. However, the cost of maintaining so many chillers is excessive and difficult for the maintenance staff. It is recommended that a central chiller plant, consisting of two air cooled screw machines be installed to serve all these buildings. This will not only save energy but will also greatly reduce the maintenance costs to the installation. Computer simulations of the buildings in this area determined that the current installed capacity of 540 tons is more than is required to adequately cool the buildings. Therefore, it is recommended that the two new chillers be rated at a combined 420 tons to more closely match the cooling load of the buildings.

#### IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID ILLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-I ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST \$ 499156. B. SIOH B. SIOH
C. DESIGN COST 27454. 29949. D. TOTAL COST (1A+1B+1C) \$ 556559. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE \$ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 556559. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL MBTU/YR(2) SAVINGS(3) FACTOR(4) \$/MBTU(1) SAVINGS(5) 2816. 0. 0. 0. A. ELECT \$ 6.28 17684. 15.08 266682. .00 B. DIST \$ 0. 18.57 0. C. RESID \$ .00 0. 0. 0. 0. 21.02 0. D. NAT G \$ 2.66 18.58 \$ 16.83 \$ 0. .00 \$ E. COAL \$ 0. F. PPG \$ .00 0. 17.38 \$ \$ 19781. M. DEMAND SAVINGS 14.88 294341. 2816. \$ N. TOTAL 37465. 561023. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 27000. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ 401760. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED
COST(-) OC FACTR SAVINGS(+)/
(1) (2) (3) COST(-)(4) DISCOUNTED ITEM SAVINGS(+)/ d. TOTAL 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 401760. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 64465. 5. SIMPLE PAYBACK PERIOD (1G/4) 8.63 YEAF 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 962783. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.73 (IF < 1 PROJECT DOES NOT QUALIFY)

| 1. COMPONENT                |                         |               |          |          |            | 2. [         | PATE         |
|-----------------------------|-------------------------|---------------|----------|----------|------------|--------------|--------------|
| ARMY                        | FY 1997 MILITARY        | CONSTRU       | CTION    | PROL     | IECT DATA  |              | 8/24/95      |
|                             |                         |               |          |          |            |              |              |
| 3. INSTALLATION AND LOCATIO |                         |               | 4. PRO   | JECT TIT | LE         |              |              |
| FORT SAM HOL                | USTON, SAN ANTONIO      | <b>,</b> TX.  |          |          |            |              |              |
| 5. PROGRAM ELEMENT          | 6. CATAGORY CODE        | 7. PROJEC     | T MILLIE | ED       | a ppo IECT | COST (\$000) |              |
| 5. PROGRAM ELEMENT          | O. CATAGORT CODE        | 7. PROJEC     | JI NUMDI | EK       | o. rkweci  | 237.0        |              |
|                             |                         |               |          |          |            | 201.0        |              |
|                             |                         | 9. COST ESTIM | ATES     |          |            |              |              |
|                             | ITEM                    |               |          | и/м      | QUANTITY   | UNIT COST    | COST (\$000) |
|                             | IIEM                    |               |          | U/M      | COANTITI   | UNIT COST    | (\$000)      |
| Replace existing chille     | er with new centrifugal | chiller in    |          | EA       | 1          | 237.0        | 237.0        |
| building 2265.              | or with how comprising  |               |          |          | •          | 207.0        | 20710        |
| bullating 2200.             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              |              |
| ESTIMATED CONTRA            | ACT COST                |               |          |          |            |              |              |
| CONTINGENCY (0%)            |                         |               |          |          |            | ļ            | 212.626      |
| SIOH                        |                         |               |          |          |            | 1            | 0.0          |
| DESIGN                      |                         |               |          |          |            |              | 11.694       |
| DESIGN                      |                         |               |          | •        |            |              | 12.758       |
| TOTAL PROUPOT               |                         |               |          |          |            |              | 12.750       |
| TOTAL REQUEST               |                         |               |          |          |            |              |              |
|                             | 1                       |               |          |          |            |              | 237.078      |
| TOTAL REQUEST (RO           | DUNDED)                 |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              | 237.000      |
|                             |                         |               |          |          |            |              |              |
|                             |                         |               |          |          |            |              | 1            |

#### 10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the existing 675 ton, R-11 centrifugal chiller in building 2265 and replace it with a 555 ton, R-134a centrifugal chiller. The existing 100 HP chilled water (CHW) pump, 50 HP condenser water (CND) pump and 40 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

DD 1 DEC 76 1391

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCTION PROJEC | CT DATA           | 2. DATE<br>8/24/95 |
|-----------------------------------------|--------------------------------------|-------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX.     |                   |                    |
| 4. PROJECT TITLE                        |                                      | 5. PROJECT NUMBER |                    |

This project is required to reduce the cooling energy consumption in the 2200 Area central plant. The project provides new, more efficient primary cooling systems, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 1,304   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 11,822  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 1,304   | MMBTU/yr |
| Total Cost Savings        | 37,433  | \$/yr    |
| Total Investment          | 237,078 | \$       |
| Simple Payback            | 6.3     | yrs      |
| SIR                       | 2.73    |          |

#### CURRENT SITUATION:

The existing water cooled, centrifugal chiller was installed in 1973 and serves as the primary cooling system for the four large buildings in the 2200 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the machine is already 22 years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that an electric centrifugal chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 657 tons is more than what is required to adequately cool the buildings. Therefore, the new chiller should only be sized for 555 tons to more closely match the cooling load of the four buildings.

# IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

DD 1 DEC 76 1391

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92)
ALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH
PROJECT NO. & TITLE: 03018504 EF EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-E1 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST \$ 212626. B. SIOH 11694. C. DESIGN COST 12758. D. TOTAL COST (1A+1B+1C) \$ 237078. 0. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 237078. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) FUEL 6.28 1304. \$ 8189. .00 0. \$ 0. .00 0. \$ 0. 2.66 0. \$ 0. .00 0. \$ 0. .00 0. \$ 0. SAVINGS \$ 11822. 1304. \$ 20011. A. ELECT \$ 15.08 123492. B. DIST \$ .00 18.57 0. C. RESID S 21.02 0. D. NAT G \$ 2.66 18.58 0. E. COAL \$ 10.02 17.38 16.83 0. F. PPG \$ 0. 14.88 M. DEMAND SAVINGS \$ 175911. N. TOTAL \$ 299403. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT COST(-) OC FACTR DISCOUNTED SAVINGS(+)/ ITEM (1) (2) (3) COST(-)(4)1. REFRIG UPGRADE \$ 348435. 0 1.00 348435. d. TOTAL \$ 348435. 348435. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 348435. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 37433. 5. SIMPLE PAYBACK PERIOD (1G/4) 6.33 YEAR 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 647838. 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 2.73 (IF < 1 PROJECT DOES NOT QUALIFY)

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

| 1. COMPONENT                                                |                                                    |               |         |          |            | 2. 1         | DATE         |
|-------------------------------------------------------------|----------------------------------------------------|---------------|---------|----------|------------|--------------|--------------|
| ARMY                                                        | FY 1997 MILITARY CONSTRUCTION PROJECT DATA 8/24/95 |               |         |          |            | 8/24/95      |              |
| 3. INSTALLATION AND LOCATION                                |                                                    |               | 4. PRO  | UECT TIT | LE         |              |              |
| FORT SAM HOU                                                | STON, SAN ANTONIO,                                 | TX.           | 5       |          |            |              |              |
| 5. PROGRAM ELEMENT                                          | 6. CATAGORY CODE                                   | 7. PROJEC     | CT NUMB | ER       | 8. PROJECT | COST (\$000) |              |
|                                                             |                                                    |               |         |          |            | 157.0        | )            |
|                                                             |                                                    | 9. COST ESTIM | ATES    |          |            |              |              |
|                                                             | ІТЕМ                                               |               |         | U/M      | QUANTITY   | UNIT COST    | COST (\$000) |
| Replace existing chiller with new screw chiller in building |                                                    | 3             | EA      | 1        | 157.0      | 157.0        |              |
| 902.                                                        |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          | ii         |              |              |
| ESTIMATED CONTRAC                                           | CT COST                                            |               |         |          |            |              |              |
| CONTINGENCY (0%)                                            |                                                    |               |         |          |            |              | 141.037      |
| SIOH                                                        |                                                    |               |         |          |            |              | 0.0          |
| DESIGN                                                      |                                                    |               |         |          |            |              | 7.757        |
|                                                             |                                                    |               |         |          |            |              | 8.462        |
| TOTAL REQUEST                                               |                                                    |               |         |          |            |              | 157.056      |
| TOTAL REQUEST (RO                                           | INDED)                                             |               |         |          |            |              | 157.256      |
| I TOTAL REGULOT (NO                                         | ONULUJ                                             |               |         |          |            |              | 157.000      |
|                                                             |                                                    |               |         |          |            |              |              |
|                                                             |                                                    |               |         |          |            | 1            |              |

#### 10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the existing 300 ton, R-11 centrifugal chiller in building 902 and replace it with a 300 ton, R-134a screw chiller. The existing 25 HP chilled water (CHW) pump, 15 HP condenser water (CND) pump and 15 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

DD 1 DEC 76 1391

| 1. COMPONENT<br>ARMY                                            | FY 1997 MILITARY CONSTRUCTION PROJECT DATA | 2. DATE<br>8/24/95 |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------|--------------------|--|--|--|
| 3. INSTALLATION AND LOCATION FORT SAM HOUSTON, SAN ANTONIO, TX. |                                            |                    |  |  |  |
| 4. PROJECT TITLE                                                | 5. PROJECT NU                              | MBER               |  |  |  |

This project is required to reduce the cooling energy consumption in the 900 Area central plant. The project provides new, more efficient primary cooling systems, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 434     | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 2,520   | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 434     | MMBTU/yr |
| Total Cost Savings        | 17,650  | \$/yr    |
| Total Investment          | 157,256 | \$       |
| Simple Payback            | 8.9     | yrs      |
| SIR                       | 2.08    |          |
|                           |         |          |

#### **CURRENT SITUATION:**

The existing water cooled, centrifugal chiller was installed in 1985 and serves as the primary cooling system for the 21 buildings in the 900 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the machine is already ten years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that a dual screw chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 300 tons is required to adequately cool the buildings. Therefore, no increase or decrease in the current chiller capacity is recommended at this time.

#### IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

```
LIFE CYCLE COST ANALYSIS SUMMARY
                                                        STUDY: FSH
       ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)
                                                       LCCID FY95 (92)
  INSTALLATION & LOCATION: FSH
                                        REGION NOS. 6 CENSUS: 3
  PROJECT NO. & TITLE: 03018504
                                    EEAP BOILER CHILLER STUDY
                   DISCRETE PORTION NAME: ECO-A3
  FISCAL YEAR 96
  ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER
  1. INVESTMENT
  A. CONSTRUCTION COST
                               141037.
  B. SIOH
                                 7757.
  C. DESIGN COST
                                 8462.
  D. TOTAL COST (1A+1B+1C) $
                               157256.
  E. SALVAGE VALUE OF EXISTING EQUIPMENT $
  F. PUBLIC UTILITY COMPANY REBATE
                                                0.
  G. TOTAL INVESTMENT (1D - 1E - 1F)
                                                         157256.
  2. ENERGY SAVINGS (+) / COST (-)
  DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994
               UNIT COST SAVINGS
                                                    DISCOUNT
                                       ANNUAL $
                                                               DISCOUNTED
      FUEL
               $/MBTU(1)
                          MBTU/YR(2)
                                       SAVINGS(3)
                                                    FACTOR(4)
                                                               SAVINGS (5)
      A. ELECT $
                  6.28
                             434.
                                            2726.
                                                       15.08
                                                                    41101.
      B. DIST $
                  .00
                                              0.
                               0.
                                                       18.57
                                                                      0.
                  .00
      C. RESID $
                              0.
                                              0.
                                                       21.02
                                                                       0.
      D. NAT G S
                  2.66
                              0.
                                              0.
                                                       18.58
                                                                       0.
                              0.
      E. COAL
                  .00
               Ŝ
                                              Ο.
                                                       16.83
                                                                       0.
      F. PPG $
                  .00
                              0.
                                              0.
                                                       17.38
                                                                       0.
      M. DEMAND SAVINGS
                                       $ 2520.
                                                       14.88
                                                                    37498.
      N. TOTAL
                             434.
                                           5246.
                                                                    78598.
  3. NON ENERGY SAVINGS(+) / COST(-)
     A. ANNUAL RECURRING (+/-)
                                                                       0.
         (1) DISCOUNT FACTOR (TABLE A)
                                                       14.88
         (2) DISCOUNTED SAVING/COST (3A X 3A1)
                                                                       0.
     B. NON RECURRING SAVINGS(+) / COSTS(-)
                              SAVINGS(+)
                                          YR
                                               DISCNT
                                                          DISCOUNTED
                               COST(-)
                                         OC
                                               FACTR
                                                          SAVINGS(+)/
                                   (1)
                                         (2)
                                                (3)
                                                          COST(-)(4)
      1. REFRIG UPGRADE
                              $ 248085.
                                         0
                                                1.00
                                                            248085.
      d. TOTAL
                              $ 248085.
                                                           248085.
     C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ 248085.
  4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 17650.
  5. SIMPLE PAYBACK PERIOD (1G/4)
                                                                  8.91 YEARS
  6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
                                                                 326683.
  7. SAVINGS TO INVESTMENT RATIO
                                        (SIR) = (6 / 1G) =
                                                                  2.08
      (IF < 1 PROJECT DOES NOT QUALIFY)
*** Project does not qualify for ECIP funding; 4,5,6 for information only.
```

p.

| 1. COMPONENT                                    |                             |                |          |          |            | 2. 0                  | PATE                               |
|-------------------------------------------------|-----------------------------|----------------|----------|----------|------------|-----------------------|------------------------------------|
| ARMY                                            | FY 1997 MILITA              | RY CONSTRU     | CTION    | PROJ     | ECT DATA   |                       | 8/24/95                            |
| 3. INSTALLATION AND LO                          | CATION                      |                | 4. PRO   | JECT TIT | LE         |                       |                                    |
| FORT SAM                                        | HOUSTON, SAN ANTON          | NO, TX.        |          |          |            |                       |                                    |
| 5. PROGRAM ELEMENT                              | 6. CATAGORY CODE            | 7. PROJEC      | CT NUMBI | ER       | 8. PROJECT | соэт (\$000)<br>479.( |                                    |
|                                                 |                             |                |          |          |            |                       |                                    |
|                                                 |                             | 9. COST ESTIM  | ATES     |          |            |                       |                                    |
|                                                 | ITEM                        |                |          | U/M      | QUANTITY   | UNIT COST             | COST (\$000)                       |
| Replace two (2) e<br>(1) new chiller.           | xisting chillers in buildir | 1g 1377 with o | ne ,     | EA       | 1          | 479.0                 | 479.0                              |
| ESTIMATED CON' CONTINGENCY (C<br>SIOH<br>DESIGN |                             |                |          |          |            |                       | 429.768<br>0.0<br>23.673<br>25.786 |
| TOTAL REQUEST                                   |                             |                |          |          |            |                       | 479.191                            |
| TOTAL REQUEST                                   | (ROUNDED)                   |                |          |          |            |                       | 479.000                            |

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the two 600 ton, R-11 centrifugal chillers in building 1377 which were installed in 1972, and replace them with one R-134 centrifugal chiller, rated at 827 tons. The two existing chilled water pumps and condenser water pumps serving the existing chillers should be removed. Install a new chilled water pump and a new condenser water pump, each rated at 75 HP, to serve the new chiller. The new chiller should be connected into the distribution piping at the existing location. New chilled water supply and return headers should be installed to join together the existing distribution systems serving building 1350 and the other seven buildings in the 1300 area. This will create a single chilled water distribution system to be served by the new chiller and the existing 438 ton chiller which was installed in 1983 to serve building 1350. All existing controls and electrical services should be reconnected where possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chillers and pumps, and installation of the new chillers, pumps, associated wiring and controls.

| 1. COMPONENT<br>ARMY | FY 1997 MILITARY CONSTRUCTION PROJECT DATA | 2. DATE<br>8/24/95 |  |  |  |  |  |
|----------------------|--------------------------------------------|--------------------|--|--|--|--|--|
|                      | ORT SAM HOUSTON, SAN ANTONIO, TX.          |                    |  |  |  |  |  |
| 4. PROJECT TITLE     | 5. PROJECT NUMBER                          | 3                  |  |  |  |  |  |

#### 11. REQUIREMENT

This project is required to reduce the cooling energy consumption in the 1300 Area central plant, building 1377. The project provides a new, more efficient primary cooling system, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 3,424   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 13,914  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 3,424   | MMBTU/yr |
| Total Cost Savings        | 56,936  | \$/yr    |
| Total Investment          | 479,191 | \$       |
| Simple Payback            | 8.4     | yrs      |
| SIR                       | 1.98    |          |
|                           |         |          |

## **CURRENT SITUATION:**

There are currently two independent chilled water distribution systems serving the 1300 area, one for building 1350 and the other for seven other buildings. These two systems should be combined into one system to conserve energy in the central plant. This can be accomplished by installing common CHW supply and return headers in the central plant. The existing centrifugal chiller serving building 1350 was installed in 1983, is rated at 438 tons and appears to be in good condition. The two existing centrifugal chillers serving the other seven buildings were installed in 1972, are rated at 600 tons each, and appear to be near the end of their useful life. Also, all three chillers use the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996. To avoid the anticipated increasing operational costs over the life of these machines, they should either be retrofitted to use an approved refrigerant or replaced with new machines that operate on one. The existing centrifugal machines can be retrofitted with no loss of capacity by replacing the impellers with new ones designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates. However, since the older machines are already over twenty years old, it is recommended that the facility replace them instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that a single electric centrifugal chiller using R-134 would be the most economical choice over the life of the machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 1,638 tons is more than what is required to adequately cool the buildings. Therefore, the new combined capacity is recommended to be 1,265 tons to more nearly match the building cooling load.

# IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

DD 1 DEC 76 1391

PAGE NO. 2 of 2

LIFE CYCLE COST ANALYSIS SUMMARY

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LCCID FY95 (92)

LLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C1 ANALYSIS DATE: 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST \$ 429768. B. SIOH \$ 23637. C. DESIGN COST \$ 25786. D. TOTAL COST (1A+1B+1C) \$ 479191. 23637. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 479191. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) FUEL SAVINGS(5) 

 3424.
 \$ 21503.

 0.
 \$ 0.

 0.
 \$ 0.

 0.
 \$ 0.

 0.
 \$ 0.

 0.
 \$ 0.

 \$ 13914.

 3424.
 \$ 35417.

 A. ELECT \$ 6.28 3424. 15.08 324261. B. DIST \$ .00 0. C. RESID \$ .00 0. D. NAT G \$ 2.66 0. 18.57 0. 21.02 0. 18.58 16.83 0. E. COAL \$ .00 0. \$ .00 F. PPG 17.38 14.88 M. DEMAND SAVINGS 207040. N. TOTAL 531301. 3. NON ENERGY SAVINGS(+) / COST(-) \$ 2275. A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) 14.88 \$ 33852. (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS(+) / COSTS(-) DISCOUNTED SAVINGS (+) / SAVINGS(+) YR DISCNT COST(-) OC FACTR ITEM COST(-) OC (1) (2)

1. REFRIG UPGRADE \$ 384882. 0 (2) (3) COST(-)(4)1.00 384882. d. TOTAL \$ 384882. 384882. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 56936. 8.42 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) \$ 950035. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 1.98 (IF < 1 PROJECT DOES NOT QUALIFY) 6.59 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

| 1. COMPONENT               |                             |            |         |          |            | 2. [      | DATE         |
|----------------------------|-----------------------------|------------|---------|----------|------------|-----------|--------------|
|                            |                             |            |         |          |            |           | 8/24/95      |
| 3. INSTALLATION AND LOCAT  | ION                         |            | 4. PRO  | DJECT TI | <b>TLE</b> |           |              |
| FORT SAM HO                | DUSTON, SAN ANTONIO,        | TX.        |         |          |            |           |              |
| 5. PROGRAM ELEMENT         | 6. CATAGORY CODE            | 7. PROJEC  | CT NUMB | ER       | 8. PROJECT |           |              |
|                            |                             |            |         |          |            | 164.0     | )            |
| 9. COST ESTIMATES          |                             |            |         |          |            |           |              |
| ITEM U/M QUANTITY UNIT COS |                             |            |         |          |            | UNIT COST | COST (\$000) |
| Replace existing boil      | lers with new high efficier | ncy modula | ar      | EA       | 1          | 164.0     | 164.0        |
| boilers in building 13     |                             |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           |              |
| 1                          |                             |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           |              |
| ESTIMATED CONTR            | ACT COST                    |            |         |          |            |           |              |
| CONTINGENCY (0%            |                             |            |         |          |            |           | 146.838      |
| SIOH                       | )                           |            |         |          |            |           | 0.0          |
| DESIGN                     |                             |            |         |          | 1          |           | 8.076        |
|                            |                             |            |         |          |            |           | 8.810        |
| TOTAL REQUEST              |                             |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           | 163.724      |
| TOTAL REQUEST (R           | OUNDED)                     |            |         |          |            |           |              |
|                            |                             |            |         |          |            |           | 164.000      |
|                            |                             |            |         |          |            |           |              |
| I                          |                             |            |         | 1        | 1          |           | 3            |

# 10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the two existing watertube boilers and single 40 HP heating water (HW) distribution pump in building 1377, which are serving building 1350. Also remove the two existing firetube boilers and the two 15 HP distribution pumps in building 1377 which serve buildings 1374, 1375, 1379, 1380, 1382, 1377 and 1385. Connect the two separate distribution loops together in building 1377 with new HW supply and return headers to make a single HW distribution system. Install four new modular high efficiency boilers, rated at 1,830 MBH output each and four new 7 ½ HP distribution pumps to serve this single system. The existing electrical service and controls should be reused as much as possible. Specific requirements in all areas should be determined by the design engineer responsible for this project. The boilers and pumps should be sequenced to operate only as needed to maintain the supply water temperature setpoint of approximately 180 F. This project will require engineering drawings and specifications, demolition and removal of the existing boilers and pumps, and installation of the new boilers, pumps, associated wiring and controls.

DD 1 DEC 76 1391

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCTION PROJEC | CT DATA           | 2. DATE<br>8/24/95 |
|-----------------------------------------|--------------------------------------|-------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX.     |                   |                    |
| 4. PROJECT TITLE                        |                                      | 5. PROJECT NUMBER | 3                  |

## 11. REQUIREMENT

This project is required to reduce the heating energy consumption in the 1300 Area central plant. The project provides new, more efficient primary heating systems, which will save heating energy and cost. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 712     | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 1,847   | \$/yr    |
| Gas Energy Savings        | 4,020   | MMBTU/yr |
| Total Energy Savings      | 4,732   | MMBTU/yr |
| Total Cost Savings        | 17,012  | \$/yr    |
| Total investment          | 163,724 | \$       |
| Simple Payback            | 9.6     | yrs      |
| SIR                       | 1.79    |          |

### CURRENT SITUATION:

The two existing watertube boilers serving building 1350 were installed in 1983 and are rated at 5,317 MBH and 4,336 MBH output capacity. The single 40 HP pump circulates HW from these boilers through building 1350. The two existing firetube boilers serving the other buildings in the 1300 area were installed in 1972 and are rated at 5,912 MBH output capacity each. Two 15 HP pumps circulate HW from these boilers to the seven other buildings listed above. All these boilers appear to be in fair condition. Computer simulations of the eight buildings served by these boilers determined that the current combined capacity of 21,477 MBH is about three times the amount required to adequately heat the buildings. The existing boilers are therefore operating at an inefficient, low load condition most of the time. Also, because of the constant flow rate requirements of the large boilers, excessive pumping energy is expended. By combining the two distribution systems together and staging four new high efficiency modular boilers to operate only as needed, a substantial energy savings can be realized. Also, a decrease in the combined boiler output capacity to 7,320 MBH is recommended to more closely match the heating load in the eight buildings and reduce the associated pumping energy consumption.

# IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in heating energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

STUDY: FSH LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-D ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 146838. B. SIOH 8076. C. DESIGN COST 8810. D. TOTAL COST (1A+1B+1C) \$ 163724. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 163724. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELECT \$ 6.28 712. 4471. 15.08 67428. 0. \$ 0. 0. \$ 0. 0. \$ 10693. 0. \$ 0. 0. \$ 0. B. DIST \$ .00 18.57 0. .00 4020. C. RESID \$ 21.02 0. D. NAT G \$ 2.66 18.58 198680. .00 E. COAL \$ 16.83 0. .00 F. PPG \$ 17.38 0. \$ 1847. 4732. \$ 17012. M. DEMAND SAVINGS 14.88 27483. N. TOTAL 293591. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4)d. TOTAL 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 17012. 5. SIMPLE PAYBACK PERIOD (1G/4) 9.62 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 293591. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.79 (IF < 1 PROJECT DOES NOT QUALIFY)

|                              | (O)                     |               |        |           |            |       |              |
|------------------------------|-------------------------|---------------|--------|-----------|------------|-------|--------------|
| 1. COMPONENT                 |                         | -0            |        |           |            | 2. 0  |              |
| ARMY                         | FY 1997 MILITARY        | CONSTRU       | CTION  | PRO.      | JECT DATA  |       | 8/24/95      |
| 3. INSTALLATION AND LOCATION |                         |               | 4. PRO | DJECT TIT | LE         |       |              |
| FORT SAM HOUS                | STON, SAN ANTONIO,      | TX.           |        |           |            |       |              |
| 5. PROGRAM ELEMENT           | 6. CATAGORY CODE        | 7. PROJEC     | T NUMB | ER        | 8. PROJECT | •     |              |
|                              |                         |               |        |           |            | 557.0 | )            |
|                              | ;                       | 9. COST ESTIM | ATES   |           |            |       |              |
| ITEM U/M QUANTITY UNIT COST  |                         |               |        |           |            |       | COST (\$000) |
| Replace individual build     | ling chillers with cent | ral chiller p | lant   | EA        | 1          | 557.0 | 557.0        |
| in Area 100.                 |                         |               |        |           |            |       |              |
|                              |                         |               |        |           |            |       |              |
|                              |                         |               |        |           |            |       |              |
|                              |                         |               |        |           |            |       |              |
|                              |                         |               |        |           |            |       |              |
|                              | T 000T                  |               |        |           |            |       |              |
| ESTIMATED CONTRAC            | 1 (051                  |               |        |           |            |       | 499.156      |
| CONTINGENCY (0%)             |                         |               |        |           |            |       | 0.0          |
| DESIGN                       |                         |               |        |           |            |       | 27.454       |
|                              |                         |               |        |           |            |       | 29.949       |
| TOTAL REQUEST                |                         |               |        |           |            |       |              |
|                              |                         |               |        |           |            |       | 556.559      |
| TOTAL REQUEST (ROL           | JNDED)                  |               |        |           |            |       | 557,000      |
|                              |                         |               |        |           |            |       | 557.000      |
|                              |                         |               |        |           |            |       | 1            |

# 10. DESCRIPTION OF PROPOSED CONSTRUCTION

Remove the 14 existing air cooled, reciprocating chillers serving buildings 122, 124, 125, 128, 133, 134, 135, 142, 143, 144, 146, 147, 149, 197, 198, 199 and 250. Install 6" chilled water supply and return piping loop between the buildings in this area and terminate loop behind building 250, near the existing air cooled chiller installation. Install two new 210 ton, air cooled screw chillers behind building 250. Install two new 30 HP chilled water distribution pumps to circulate water from new chillers through new distribution loop. The existing chilled water pumps that serve buildings where chillers were removed will be reused to circulate chilled water from the new loop through the buildings. These existing pumps should be connected into the new distribution piping at the existing chiller locations. All new controls and electrical services should be installed at building 250 to serve the new chillers and pumps. All54ER specific requirements should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

DD 1 DEC 76 1391

| 1. COMPONENT<br>ARMY                    | FY 1997 MILITARY CONSTRUCTION PROJECT DATA | 2. DATE<br>8/24/95 |
|-----------------------------------------|--------------------------------------------|--------------------|
| 3. INSTALLATION AND LO<br>FORT SAM HOUS | CATION<br>STON, SAN ANTONIO, TX.           |                    |
| 4. PROJECT TITLE                        | 5. PROJEC                                  | CT NUMBER          |

#### 11. REQUIREMENT

This project is required to reduce the cooling energy consumption in the 100 Area buildings. The project provides new, more efficient primary cooling systems, which will save cooling energy and cost. Additionally, this project will help protect the environment by replacing equipment which uses an ozone depleting refrigerant. All buildings included in this project will be active throughout the payback period. Installation of this cooling equipment will result in the following:

| Electrical Energy Savings | 2,816   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 19,781  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 2,816   | MMBTU/yr |
| Total Cost Savings        | 64,465  | \$/yr    |
| Total Investment          | 556,559 | \$       |
| Simple Payback            | 8.6     | yrs      |
| SIR                       | 1.73    |          |

# **CURRENT SITUATION:**

The 14 existing air cooled, reciprocating chillers in the 100 area were installed in 1985 and serve as the primary cooling systems for 17 buildings. They generally appear to be in fair condition at this time. However, the cost of maintaining so many chillers is excessive and difficult for the maintenance staff. It is recommended that a central chiller plant, consisting of two air cooled screw machines be installed to serve all these buildings. This will not only save energy but will also greatly reduce the maintenance costs to the installation. Computer simulations of the buildings in this area determined that the current installed capacity of 540 tons is more than is required to adequately cool the buildings. Therefore, it is recommended that the two new chillers be rated at a combined 420 tons to more closely match the cooling load of the buildings.

## IMPACT IF NOT PROVIDED

If this project is not provided, the above mentioned savings in cooling energy and cost will continue to be wasted. There will be no contribution to the energy reduction goals established at the facility.

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-I ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 499156. B. SIOH \$ 27454. C. DESIGN COST 29949. D. TOTAL COST (1A+1B+1C) \$ 556559. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 556559. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT \$ 6.28 17684. 266682. 2816. 15.08 .00 B. DIST \$ 0. \$ 0. 18.57 0. \$ C. RESID \$ .00 0. 0. 21.02 0. D. NAT G \$ 2.66 0. 0. 18.58 0. \$ E. COAL \$ .00 Ο. 16.83 0. 0. F. PPG \$ \$ .00 0. 17.38 0. 0. 2816. \$ M. DEMAND SAVINGS 19781. 14.88 294341. N. TOTAL 37465. 561023. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) \$ 27000. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 401760. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) OC FACTR SAVINGS(+)/ (1)(2) (3) COST(-)(4)d. TOTAL 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 401760. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 64465. 5. SIMPLE PAYBACK PERIOD (1G/4) 8.63 YEAF 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 962783. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = 1.73

(IF < 1 PROJECT DOES NOT QUALIFY)

APPENDIX A
ENERGY COST ANALYSIS

# APPENDIX A ENERGY COST ANALYSIS

# TABLE OF CONTENTS

| Α. | Electrical Energy Cost Analysis  | A-1 |
|----|----------------------------------|-----|
|    | Electrical Rate Schedule         | A-1 |
|    | Avoided Costs                    | A-1 |
| B. | Natural Gas Energy Cost Analysis |     |
|    | Gas Rate Schedules               |     |
|    | Avoided Cost                     | A-3 |

# APPENDIX A ENERGY COST ANALYSIS

# A. Electrical Energy Cost Analysis

Electrical Rate Schedule: The post purchases it's electrical power from the City Public Service (CPS) of San Antonio, and is billed under the Super Large Power (SLP) rate. Service is provided through a single substation on the post, owned by the Army. The SLP rate has been in effect since January of 1994, and was created by the utility company to lower military base charges, thereby helping to avoid base closures. This rate has resulted in substantial cost decreases, even though the electrical usage on the post has increased. The monthly SLP billing rate components are as follows:

Service Availability Charge: \$1,000

Energy Charge: \$0.024/KWH

Demand Charge: \$10.00/KW billing demand (June through September)

\$7.50/KW billing demand (October through May)

where: billing demand is the highest 15 minute metered KW

demand during the month, or 5000 KW, or 80% of highest billing demand from previous June through September (applicable only from October through May),

whichever is greatest

Fuel Cost Adjustment: calculated monthly, difference between actual fuel cost

and \$0.016/KWH (average variance from base year data

is -\$0.002566/KWH)

Avoided Costs: In order to convert electric demand and energy savings into dollar savings, the avoided costs of demand and energy are determined. These are the marginal cost savings to be realized by the post, per unit of demand or energy saved. Using the above billing components, the Avoided Cost of Demand ( $C_{SD} \& C_{WD}$ ) and the Avoided Cost of Energy ( $C_{E}$ ) are determined as follows:

$$C_{SD} = \frac{\$10.00}{KW}$$
 (June through September)

$$C_{WD} = \frac{\$7.50}{KW}$$
 (October through May)

$$C_E = (E + F) x \frac{KWH}{3413 BTU} x \frac{1,000,000 BTU}{MMBTU} \frac{\$}{MMBTU}$$

$$C_E = (0.024 - 0.002566) \times \frac{1,000,000}{3413} = \frac{\$6.28}{MMBTU}$$

Rebate Program: The City Public Service of San Antonio currently offers no cash incentives for energy conservation retrofits.

# B. Natural Gas Energy Cost Analysis

Gas Rate Schedules: FSH is currently supplied natural gas by CPS through many meters distributed throughout the post. However, the meters serving areas 900, 1300, 2200 and the quadrangle are all billed under the Large Volume Gas (LVG) rate. The monthly LVG billing rate components are as follows:

Service Availability Charge:

\$325

Energy Charge:

\$2.65/MCF

Fuel Adjustment:

calculated monthly, difference between actual gas cost and

\$2,20/MCF (average variance from base year data is

\$0.0142/MCF)

Demand Charge:

\$0.080/(MCF/day)

(December through March)

\$0.064/(MCF/day)

(April through November)

where:

billing demand is the monthly gas consumption (MCF) divided by the number of days in the month, or 60 MCF/day, or the maximum billing demand established during the period of December through March (applicable only during

April through November), whichever is greatest

The buildings in the area 100 have individual gas meters and are billed under the Residential Gas (RG) rate #4. The monthly RG billing rate components are as follows:

Service Availability Charge:

\$3.85

**Energy Charge:** 

\$4.38/MCF

Fuel Adjustment:

calculated monthly, difference between actual gas cost and

\$2.20/MCF (average variance from base year data is

\$0.0142/MCF)

Avoided Costs: In order to convert gas energy savings or penalties into cost savings or penalties, the Avoided Cost of Gas  $(C_G)$  is determined for each rate schedule described above as follows:

Areas 900, 1300, 2200 and Quadrangle,

$$C_G = (E + F) \times \frac{1 MCF}{MMBTU}$$
  $\frac{\$}{MMBTU}$ 

where,

E = energy charge = \$2.65 per MCF

F = fuel adjustment = \$0.0142 per MCF (average from base year data)

$$C_G$$
 = ( 2.65 + 0.0142 ) = 2.66  $\frac{\$}{MMBTU}$ 

Area 100,

$$C_G = (E + F) \times \frac{1 MCF}{MMBTU}$$
  $\frac{\$}{MMBTU}$ 

where,

E = energy charge = \$4.38 per MCF

F = fuel adjustment = \$0.0142 per MCF (average from base year data)

$$C_G$$
 = (4.38 + 0.0142) = 4.39  $\frac{\$}{MMBTU}$ 

# APPENDIX B COMPUTER MODELING OF BOILER & CHILLER SYSTEMS

# APPENDIX B COMPUTER MODELING OF BOILER & CHILLER SYSTEMS

# TABLE OF CONTENTS

| A.     | General Parameters                                                        | B-1   |
|--------|---------------------------------------------------------------------------|-------|
| B.     | People, Lights and Miscellaneous Equipment Schedules                      | B-2   |
| C.     | HVAC Equipment Schedules                                                  | B-2   |
| D.     | Building HVAC Systems                                                     | В-3   |
| E.     | Boiler & Chiller Systems                                                  | В-3   |
| Area 9 | 00 - Trace 600 Input Data                                                 | B-5   |
| Area 9 | 00 - Trace 600 Model Header & System Load Profile                         | B-23  |
| Area 9 | 00 - Trace 600 Existing Equipment Energy Consumption Output Sheets        | B-25  |
| Area 9 | 00 - Trace 600 Proposed Equipment Energy Consumption Output Sheets        | B-27  |
| Area 1 | 300 - Trace 600 Input Data                                                | B-37  |
| Area 1 | 300 - Trace 600 Model Header & System Load Profile                        | B-55  |
| Area 1 | 300 - Trace 600 Existing Equipment Energy Consumption Output Sheets       | B-57  |
| Area 1 | 300 - Trace 600 Proposed Equipment Energy Consumption Output Sheets       | B-60  |
| Area 2 | 200 - Trace 600 Input Data                                                | B-70  |
| Area 2 | 200 - Trace 600 Model Header & System Load Profile                        | B-84  |
| Area 2 | 200 - Trace 600 Existing Equipment Energy Consumption Output Sheets       | B-86  |
| Area 2 | 200 - Trace 600 Proposed Equipment Energy Consumption Output Sheets       | B-89  |
| Quadra | angle Area - Trace 600 Input Data                                         | B-99  |
| Quadra | angle Area- Trace 600 Model Header & System Load Profile                  | B-109 |
| Quadra | angle Area- Trace 600 Existing Equipment Energy Consumption Output Sheets | B-111 |
| Quadra | angle Area- Trace 600 Proposed Equipment Energy Consumption Output Sheets | B-118 |
| Area 1 | 00 - Trace 600 Input Data                                                 | B-121 |
| Area 1 | 00 - Trace 600 Model Header & System Load Profile                         | B-139 |
| Area 1 | 00 - Trace 600 Existing Equipment Energy Consumption Output Sheets        | B-141 |
| Area 1 | 00 - Trace 600 Proposed Equipment Energy Consumption Output Sheets        | B-155 |

# APPENDIX B COMPUTER MODELING OF BOILER & CHILLER SYSTEMS

- A. General Parameters. The following assumptions and estimates were used in the modeling of the existing buildings which are served by the boilers and chillers included in this study.
  - 1. The Trace 600 weather data for San Antonio, Texas was used in all of the computer simulations.
  - 2. The Trace 600 computer simulations were performed for the months of January through December to determine annual HVAC equipment energy consumptions.
  - 3. A special holiday schedule was created to incorporate the additional holidays that military personnel living in the area 900 and 1300 barracks buildings receive. This schedule includes the seven standard holidays plus the period from December 17 through 31. The standard seven day holiday schedule was used for all other areas.
  - 4. All building dimensions and construction data were determined from as-built drawings when available, or from field measurements taken during the site visit.
  - 5. Design room temperatures (thermostat setpoints) were obtained from CEMP-E (9 December 1991) Chapter 13, Section 3. These temperatures were 78°F for cooling and 70°F for heating. No cooling or heating temperature setback control was included in the simulations.
  - 6. The shading coefficient for all windows with interior blinds was estimated at 0.67 per ASHRAE data.
  - 7. The number of people in each building or room was estimated from interviews with post personnel. The sensible and latent heat gain rates used for the people in each room were taken from ASHRAE data.
  - 8. Building and room lighting loads were obtained from as-built drawings when available, or from field notes taken during the site visit.
  - 9. Building and room miscellaneous equipment loads were estimated from field notes taken during the site visit. These loads represent the internal heat gains generated from equipment in the rooms, such as computers, televisions, cooking equipment, etc. Heat gain data for the various types of internal loads was taken from ASHRAE.
  - 10. For all building areas with forced ventilation, the rates were taken from ASHRAE Standard 62-1989 or from schedule data on the existing air handlers, whichever was greater.
  - 11. For all barracks buildings with operable windows and no forced ventilation, infiltration rates were assumed to be equal to building or room exhaust rates.
  - 12. Building and room exhaust rates were taken from as-built drawings.

- B. People, Lights and Miscellaneous Equipment Schedules. The following assumptions and estimates were used in the modeling of the existing buildings which are served by the boilers and chillers included in this study.
  - 1. Offices and Classrooms: During the weekdays, all people, lights and miscellaneous equipment were scheduled at 100% from 8 am until 12 pm, and from 1 pm until 5 pm. During the lunch hour, from 12 pm until 1 pm, all internal loads were scheduled at 10%. On the weekends and holidays, all loads were scheduled at 0%.

# Barracks:

- a. People During the weekdays, all people were scheduled at 5% between 8 am and 5 pm. Between 5 pm and 10 pm, they were scheduled at 80%, and between 10 pm and 8 am, they were scheduled at 100%. During the weekends and holidays, the people were scheduled at 50% all day long.
- b. Lights and Miscellaneous Equipment During the weekdays, the lights and miscellaneous equipment (TVs, radios, etc.) were scheduled at 5% between 8 am and 5 pm. Between 5 pm and 10 pm, they were scheduled at 80%, and between 10 pm and 8 am, they were scheduled at 5%. During the weekends and holidays, the lights and miscellaneous equipment were scheduled at 50% from 8 am until 10 pm, and 5% from 10 pm until 8 am.

# 3. Dining Areas:

- a. People During the weekdays, weekends and holidays, all people were scheduled at 100% between 6 am and 9 am, between 11 am and 2 pm, and between 5 pm and 7 pm. They were scheduled at 0% at all other times.
- b. Lights and Miscellaneous Equipment During the weekdays, weekends and holidays, all lights and miscellaneous equipment were scheduled at 100% between 5 am and 7 pm. They were scheduled at 0% at all other times.
- 4. Kitchen Areas: During the weekdays, weekends and holidays, all people, lights and miscellaneous equipment were scheduled at 100% from 4 am until 9 pm. They were scheduled at 0% at all other times.
- C. HVAC Equipment Schedules. The following assumptions and estimates were used in the modeling of the existing buildings which are served by the boilers and chillers included in this study.
  - 1. All fan coil and air handler fans were scheduled to operate 100% of the day, 12 months of the year, as required by room thermostats to maintain building setpoint temperatures.
  - 2. All fan coil and air handler cooling coils were scheduled to operate 100% of the day, from May through October, as required by room thermostats to maintain building setpoint temperatures.
  - 3. All fan coil and air handler heating coils were scheduled to operate 100% of the day, from November through April, as required by room thermostats to maintain building setpoint temperatures.
  - 4. All building infiltration and ventilation air is scheduled to be introduced into the buildings at a fixed rate 100% of the day, 12 months per year.

- 5. All building and room thermostats were scheduled to maintain the design setpoints 24 hours per day, 12 months per year with no setback periods.
- D. Building HVAC Systems. The following assumptions and estimates were used in the modeling of the existing buildings which are served by the boilers and chillers included in this study.
  - 1. HVAC air system types were taken from building as-built drawings when available, or from field notes taken during the site visit.
  - 2. In order to simplify the calculations, most buildings were modeled as a single 'zone' served by a single HVAC air system. Other buildings with more diverse occupancies were zoned as shown on as-built drawings and served by individual HVAC air systems in order to generate a more realistic load profile for the boilers and chillers.
  - Each building HVAC air system was assumed to have a chilled water coil for cooling and a
    heating water coil for heating. These coils were assumed to be served by two-pipe distribution
    systems within the buildings.
- E. Boiler & Chiller Systems. The following assumptions and estimates were used in the modeling of the boiler and chiller systems included in this study.
  - Existing boiler and chiller systems types were identified during the field inspection and used in the computer simulations. They're full load capacity and energy consumption rates were input to match the existing systems. The Trace 600 models were used for part load performance of the existing boilers and chillers.
  - 2. It was assumed that all existing chillers had a full load KW/ton increase of 1% over their original rating for each year of service up to ten years. For all service over ten years, 0.25% per year was added to the full load KW/ton rating. This was done to account for natural efficiency losses due to tube fouling and compressor wear.
  - 3. It was assumed that all existing boilers had a full load efficiency decrease of 1% under their original rating for each year of service up to ten years. For all service over ten years, 0.25% per year was deducted from the full load efficiency rating. This was done to account for natural efficiency losses due to tube fouling and burner wear.
  - 4. The existing pumping horsepower for all associated pumps was also input to simulate the existing systems.
  - 5. In area 900, a base load of 565 MBH per hour was imposed on the existing and proposed boilers to account for the generation of domestic hot water in the barracks buildings. This base load increases the required boiler capacity and shows up as 'base utility' in the equipment energy consumption output sheets.
  - 6. Proposed boiler and chiller alternatives were selected for comparison in the computer simulations. Full load capacity and energy consumption rates were obtained from manufacturer's data and input into the computer simulations. When available, part load energy consumption data from the manufactures was used in the simulations.
  - 7. All new chillers were selected from the top 25% of their class in terms of efficiency (KW/ton), and also were at least 10% more efficient than current design standards.

- 8. New pumping horsepower for all associated pumps was estimated for all proposed boilers and chillers and input to simulate the new systems.
- 9. Existing cooling tower systems were identified during the field inspection and used in the computer simulations. They're existing fan horsepower was also input to simulate the existing towers.
- 10. In all areas, a base load was added to the chillers and boilers to account for heat loss or gain from circulating pumps and piping insulation. These base loads increased the required capacity of the boilers and chillers and show up as 'base utility' in the equipment energy consumption output sheets.

01 Card - Job Information

Project: 030185.04 EEAP BOILER-CHILLER STUDY Location: FT. SAM HOUSTON - SAN ANTONIO, TX. Client: CORPS. OF ENGINEERS - FORT WORTH, TX.

Program User: HUITT-ZOLLARS INC.

Comments: AREA 900

----- Load Section Alternative #1 -----

Card 19- Load Alternative Number Description
1 EXISTING BUILDINGS

Card 20------ General Room Parameters ------Zone Acoustic Floor to Duplicate Duplicate Perimeter Room Reference Room Floor Floor Const Plenum Ceiling Floor Floors Rooms per Depth Number Number Descrip Length Width Type Height Resistance Height Multiplier Zone 5 5 BLDG 904 103 103 3 0 2.54 9.5 BLDG 907 10 10 103 103 3 0 2.54 9.5 15 15 BLDG 920 103 103 3 0 2.54 9.5 20 20 BLDG 926 103 103 3 9.5 3 103 103 25 25 BLDG 915 n 2.54 9.5 30 30 BLDG 921 103 103 0 2.54 9.5 2.54 103 103 3 0 35 35 BLDG 929 9.5 40 40 BLDG 932 103 103 3 0 2.54 9.5 45 45 BLDG 905 103 103 3 0 2.54 9.5

|        | Zone      |            |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
|--------|-----------|------------|--------|-------|-------|--------|------------|----------|------------|-----------|-----------|
| Room   | Reference | Room       | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number | Number    | Descrip    | Length | Width | Type  | Height | Resistance | Height   | Multiplier | Zone      |           |
| 50     | 50        | BLDG 906   | 103    | 103   | 3     | C      | 2.54       | 9.5      |            |           |           |
| 55     | 55        | BLDG 924   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 50     | 60        | BLDG 925   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 55     | 65        | BLDG 916   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 70     | 70        | BLDG 917   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 75     | 75        | BLDG 930   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 30     | 80        | BLDG 931   | 103    | 103   | 3     | 0      | 2.54       | 9.5      |            |           |           |
| 35     | 85        | BLDG 908   | 46     | 46    | 3     | 1.5    | 2.54       | 10       |            |           |           |
| 90     | 90        | BLDG 919 . | 46     | 46    | 3     | 1.5    | 2.54       | 10       |            |           |           |
| 75     | 95        | BLDG 922   | 46     | 46    | 3     | 1.5    | 2.54       | 10       |            |           |           |
| 00     | 100       | BLDG 928   | 46     | 46    | 3     | 1.5    | 2.54       | 10       |            |           |           |
| 105    | 105       | BLDG 902   | 136    | 137   | 3     | 4      | 2.54       | 13       |            |           |           |

| Card 21 |           |        | • • • • • • • • • • • • • • • • • • • • | Therm    | ostat Param | eters      |          |          |         |        |
|---------|-----------|--------|-----------------------------------------|----------|-------------|------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling                                 | Cooling  | Heating     | Heating    | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat                                  | T'stat   | Room        | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint                              | Schedule | Design DB   | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5       | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 10      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 15      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 20      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 25      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 30      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 35      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 40      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 45      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 50      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 55      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 60      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 65      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 70      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 75      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 80      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 85      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 90      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 95      | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 100     | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
| 105     | 78        | 50     | 78                                      |          | 70          | 70         |          | ROOM     | LIGHT30 | NO     |
|         |           |        |                                         |          |             |            |          |          |         |        |

| Card 22 |        |          |        | Roof Par | ameters |       |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 5       | 1 19   |          | 59     | 60       | .08     | 26    | 0         | 90   | .74   |

YES

YES

YES

Card 22----- Roof Parameters ------Roof Room Roof Equal to Roof Roof Roof Const Roof Roof Roof Number Number Floor? Length Width U-Value Type Direction Tilt Alpha .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 .74 .08 .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 .08 .74 YES .07 .9 YES .07 .9

.07

.07

.07

.9

.9

.9

| Card 24 | ,      |        | •••••  | Wall P  | arameters |           |      |       |             |
|---------|--------|--------|--------|---------|-----------|-----------|------|-------|-------------|
|         |        |        |        |         | Wall      |           |      |       | Ground      |
| Room    | Wall   | Wall   | Wall   | Wall    | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number  | Number | Length | Height | U-Value | Type      | Direction | Tilt | Alpha | Multiplier  |
| 5       | 1      | 275    | 9.5    | .11     | 58        | 0         |      | .74   |             |
| 5       | 2      | 108    | 9.5    | .11     | 58        | 90        |      | .74   |             |
| 5       | 3      | 275    | 9.5    | .11     | 58        | 180       |      | .74   |             |
| 5       | 4      | 108    | 9.5    | .11     | 58        | 270       |      | .74   |             |
| 10      | 1      | 275    | 9.5    | .11     | 58        | 0         |      | .74   |             |
| 10      | 2      | 108    | 9.5    | .11     | 58        | 90        |      | .74   |             |
| 10      | 3      | 275    | 9.5    | .11     | 58        | 180       |      | .74   |             |
| 10      | 4      | 108    | 9.5    | .11     | 58        | 270       |      | .74   |             |
| 15      | 1      | 275    | 9.5    | .11     | 58        | 0         |      | .74   |             |
| 15      | 2      | 108    | 9.5    | .11     | 58        | 90        |      | .74   |             |
| 15      | 3      | 275    | 9.5    | .11     | 58        | 180       |      | .74   |             |
| 15      | 4      | 108    | 9.5    | .11     | 58        | 270       |      | .74   |             |
| 20      | 1      | 275    | 9.5    | .11     | 58        | 0         |      | .74   |             |
| 20      | 2      | 108    | 9.5    | .11     | 58        | 90        |      | .74   |             |
| 20      | 3      | 275    | 9.5    | .11     | 58        | 180       |      | .74   |             |
| 20      | 4      | 108    | 9.5    | .11     | 58        | 270       |      | .74   |             |
| 25      | 1      | 275    | 9.5    | .11     | 58        | 0         |      | .74   |             |
| 25      | 2      | 108    | 9.5    | -11     | 58        | 90        |      | .74   |             |
| 25      | 3      | 275    | 9.5    | .11     | 58        | 180       |      | .74   |             |

|          |                |            |                |                 | Wall       |          |      |            |                          |
|----------|----------------|------------|----------------|-----------------|------------|----------|------|------------|--------------------------|
| Room     | Wall<br>Number | Wall       | Wall<br>Height | Wall<br>U-Value | Constuc    |          | Wall |            | Reflectanc<br>Multiplier |
| lumber   | Number<br>4    | Length     | 9.5            | .11             | Type<br>58 | 270      | 1111 | •          | Multiplier               |
| 25       | 1              | 108<br>275 | 9.5            | .11             |            | 0        |      | .74<br>.74 |                          |
| 50       | 2              | 108        | 9.5            | .11             | 58         | 90       |      |            |                          |
| 50       | 3              |            |                | .11             | 58         |          |      | .74        |                          |
| 30<br>30 | 4              | 275<br>108 | 9.5            |                 | 58         | 180      |      | .74        |                          |
| 35       | 1              |            | 9.5            | .11             | 58         | 270<br>0 |      | .74        |                          |
|          | 2              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 35<br>35 |                | 108        | 9.5            | .11             | 58         |          |      | .74        |                          |
|          | 3              | 275        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 35       | 4              | 108        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 10       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 40       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 40       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 40       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 45       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 45       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 45       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 45       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 50       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 50       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 50       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 50       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 55       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | -74        |                          |
| 55       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 55       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 55       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 60       | 1              | 275        | 9.5            | -11             | 58         | 90       |      | .74        |                          |
| 60       | 2              | 108        | 9.5            | -11             | 58         | 180      |      | .74        |                          |
| 60       | 3              | 275        | 9.5            | -11             | 58         | 270      |      | .74        |                          |
| 60       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 65       | 1              | 275        | 9.5            | -11             | 58         | 90       |      | .74        |                          |
| 65       | 2              | 108        | 9.5            | -11             | 58         | 180      |      | .74        |                          |
| 65       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 65       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 70       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 70       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 70       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 70       | 4              | 108        | 9.5            | •11             | 58         | 0        |      | .74        |                          |
| 75       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 75       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 75       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 75       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 80       | 1              | 275        | 9.5            | .11             | 58         | 90       |      | .74        |                          |
| 80       | 2              | 108        | 9.5            | .11             | 58         | 180      |      | .74        |                          |
| 80       | 3              | 275        | 9.5            | .11             | 58         | 270      |      | .74        |                          |
| 80       | 4              | 108        | 9.5            | .11             | 58         | 0        |      | .74        |                          |
| 85       | 1              | 46         | 10             | .10             | 58         | 0        |      | .74        |                          |
| 85       | 2              | 46         | 10             | .10             | 58         | 90       |      | .74        |                          |

|        |        |        |        |         | Wall    |           |      |       | Ground      |
|--------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 85     | 3      | 46     | 10     | .10     | 58      | 180       |      | .74   |             |
| 85     | 4      | 46     | 10     | .10     | 58      | 270       |      | .74   |             |
| 90     | 1      | 46     | 10     | .10     | 58      | 0         |      | .74   |             |
| 90     | 2      | 46     | 10     | .10     | 58      | 90        |      | .74   |             |
| 90     | 3      | 46     | 10     | .10     | 58      | 180       |      | .74   |             |
| 90     | 4      | 46     | 10     | .10     | 58      | 270       |      | .74   |             |
| 95     | 1      | 46     | 10     | .10     | 58      | 0         |      | .74   |             |
| 95     | 2      | 46     | 10     | .10     | 58      | 90        |      | .74   |             |
| 95     | 3      | 46     | 10     | .10     | 58      | 180       |      | .74   |             |
| 95     | 4      | 46     | 10     | .10     | 58      | 270       |      | .74   |             |
| 100    | 1      | 46     | 10     | .10     | 58      | 0         |      | .74   |             |
| 100    | 2      | 46     | 10     | .10     | 58      | 90        |      | .74   |             |
| 100    | 3      | 46     | 10     | .10     | 58      | 180       |      | .74   |             |
| 100    | 4      | 46     | 10     | .10     | 58      | 270       |      | .74   |             |
| 105    | 1      | 188    | 13     | .21     | 52      | 0         |      | .9    |             |
| 105    | 2      | 188    | 13     | .21     | 52      | 180       |      | .9    |             |
| 105    | 3      | 125    | 13     | .21     | 52      | 270       |      | .9    |             |

|        |        |        |       | Pct Glass |         |             | External | Internal | Percent  |               | Inside      |
|--------|--------|--------|-------|-----------|---------|-------------|----------|----------|----------|---------------|-------------|
| Room   | Wall   | Glass  | Glass | or No. of | Glass   | Shading     | Shading  | Shading  | Solar to | Visible       | Visible     |
| Number | Number | Length | Width | Windows   | U-Value | Coefficient | Type     | Type     | Ret. Air | Transmittance | Reflectance |
| 10     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 10     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 15     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 15     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 20     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 20     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 25     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 25     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 30     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 35     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 40     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 45     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 50     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 50     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 55     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 55     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 60     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 60     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 65     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 65     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 70     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 70     | 3      | 4      | 2     | 54        | 1.1     | .67         |          |          |          |               |             |
| 75     | 1      | 4      | 2     | 54        | 1.1     | .67         |          |          |          | •             |             |

| Percent   Percent   Inside   Percent   Percen |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Number         Humber         Length         Width         Uindows         U-Value         Coefficient         Type         Type         Ret. Air         Transmittance         Reflectance           75         3         4         2         54         1.1         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .85         2         8         4         2         1.1         .67         3         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67         .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 80       1       4       2       54       1.1       .67         80       3       4       2       54       1.1       .67         85       1       8       10       1       1.1       .67         85       2       8       4       2       1.1       .67       3         85       4       8       4       2       1.1       .67       3         90       1       8       10       1       1.1       .67       3         90       2       8       4       2       1.1       .67       3         90       4       8       4       2       1.1       .67       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :e |
| 80     3     4     2     54     1.1     .67       85     1     8     10     1     1.1     .67       85     2     8     4     2     1.1     .67     3       85     4     8     4     2     1.1     .67     3       90     1     8     10     1     1.1     .67     3       90     2     8     4     2     1.1     .67     3       90     4     8     4     2     1.1     .67     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 85 1 8 10 1 1.1 .67<br>85 2 8 4 2 1.1 .67 3<br>85 4 8 4 2 1.1 .67 3<br>90 1 8 10 1 1.1 .67 3<br>90 2 8 4 2 1.1 .67 3<br>90 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 90 1 8 10 1 1.1 .67 3<br>90 2 8 4 2 1.1 .67 3<br>90 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 90 2 8 4 2 1.1 .67 3<br>90 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 90 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 05 1 R 10 1 11 47 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 20 10 10 1 1.1 .07 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 95 2 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 95 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 100 1 8 10 1 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 100 2 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 100 4 8 4 2 1.1 .67 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 105 1 2 4 7 1.1 .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 105 2 2 4 7 1.1 .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 105 3 2 4 2 1.1 .67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

| Room   |          |                 |             |              | Reheat  | Cooling | Heating | Auxiliary | Room    | Daylighting |
|--------|----------|-----------------|-------------|--------------|---------|---------|---------|-----------|---------|-------------|
| Number | People   | Lights          | Ventilation | Infiltration | Minimum | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5      | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 10     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 15     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 20     | FSHBARRP | <b>FSHBARRL</b> |             |              |         |         |         |           |         |             |
| 25     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 30     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 35     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 40     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 45     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 50     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 55     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 60     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 65     | FSHBARRP | <b>FSHBARRL</b> |             |              |         |         |         |           |         |             |
| 70     | FSHBARRP | <b>FSHBARRL</b> |             |              |         |         |         |           |         |             |
| 75     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 80     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 85     | FSHOFFIC | FSHOFFIC        |             |              |         |         |         |           |         |             |
| 90     | FSHOFFIC | FSHOFFIC        |             |              |         |         |         |           |         |             |
| 95     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 100    | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |
| 105    | FSHOFFIC | FSHOFF1C        |             |              |         |         |         |           |         |             |

|        |        |        |          |        |          |          | Lighting       |         | Percent   | Daylig    | hting     |
|--------|--------|--------|----------|--------|----------|----------|----------------|---------|-----------|-----------|-----------|
| Room   | People | People | People   | People | Lighting | Lighting | Fixture        | Ballast | Lights to | Reference | Reference |
| Number | Value  | Units  | Sensible | Latent | Value    | Units    | Туре           | Factor  | Ret. Air  | Point 1   | Point 2   |
| 5      | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 10     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 15     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 20     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 25     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 30     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 35     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 40     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 45     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 50     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 55     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 60     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 65     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 70     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 75     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 80     | 53     | PEOPLE | 250      | 200    | 1        | WATT-SF  | INCAND         |         |           |           |           |
| 85     | 10     | PEOPLE | 250      | 200    | 2.5      | WATT-SF  | ASHRAE2        |         |           |           |           |
| 90     | 10     | PEOPLE | 250      | 200    | 2.5      | WATT-SF  | <b>ASHRAE2</b> |         |           |           |           |
| 95     | 10     | PEOPLE | 250      | 200    | 2.5      | WATT-SF  | ASHRAE2        |         |           |           |           |
| 100    | 10     | PEOPLE | 250      | 200    | 2.5      | WATT-SF  | ASHRAE2        |         |           |           |           |
| 105    | 96     | PEOPLE | 250      | 200    | 2.75     | WATT-SF  | ASHRAE2        |         |           |           |           |
|        |        |        |          |        |          |          |                |         |           |           |           |

|        | Misc      |           | Energy  | Energy  |                 | Energy | Percent  | Percent    | Percent     |          |          |
|--------|-----------|-----------|---------|---------|-----------------|--------|----------|------------|-------------|----------|----------|
| Room   | Equipment | Equipment | Consump | Consump | Schedule        | Meter  | of Load  | Misc. Load |             | Radiant  | Optional |
| Number | Number    | Descrip   | Value   | Units   | Code            | Code   |          |            |             |          | •        |
| 5      | 1         | BARREQ    |         |         |                 | rode   | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 10     | :         |           | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
|        | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 15     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 20     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 25     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 30     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 35     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 40     | 1         | BARREQ    | .75     | WATT-SF | <b>FSHBARRL</b> |        |          |            |             |          |          |
| 45     | 1         | BARREQ    | .75     | WATT-SF | <b>FSHBARRL</b> |        |          |            |             |          |          |
| 50     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 55     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 60     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 65     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 70     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 75     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 80     | 1         | BARREQ    | .75     | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 85     | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC        |        |          |            |             |          |          |
| 90     | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC        |        |          |            |             |          |          |
| 95     | 1         | COMPUTER  | 1       | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 100    | 1 9       | COMPUTER  | 1       | WATT-SF | FSHBARRL        |        |          |            |             |          |          |
| 105    | 1. 9      | COMPUTER  | 1       | WATT-SF | FSHOFFIC        |        | •        |            |             |          |          |

|      | )     | Vanti | lation | ••••• |      |     |       |       |        |       |
|------|-------|-------|--------|-------|------|-----|-------|-------|--------|-------|
| Room |       |       |        |       |      |     |       |       | Reheat |       |
|      | Value |       | Value  |       |      |     |       |       |        |       |
| 5    | value | units | value  | Units |      |     | Value | Units | Value  | Units |
|      |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 10   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 15   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 20   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 25   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 30   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 35   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 40   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 45   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 50   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 55   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 60   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 65   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 70   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 75   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 80   |       |       |        |       | 1440 | CFM | 1440  | CFM   |        |       |
| 85   | 340   | CFM   | 340    | CFM   |      |     |       |       |        |       |
| 90   | 340   | CFM   | 340    | CFM   |      |     |       |       |        |       |
| 95   | 340   | CFM   | 340    | CFM   |      |     |       |       |        |       |
| 100  | 340   | CFM   | 340    | CFM   |      |     |       |       |        |       |
| 105  | 3580  | CFM   | 3580   | CFM   |      |     |       |       |        |       |

|        | ••••  | Ha    | in    |       |       | Auxi  | liary |       |        |         |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------|
| Room   | Coo   | ling  | Hea   | ting  | Coo   | ling  | Hea   | ting  | Room E | xhaust- |
| Number | Value | Units | Value | Units | Value | Units | Value | Units | Value  | Units   |
| 5      |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 10     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 15     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 20     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 25     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 30     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 35     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 40     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 45     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 50     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 55     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 60     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 65     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 70     |       |       |       |       |       |       |       |       | 1440   | CFH     |
| 75     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 80     |       |       |       |       |       |       |       |       | 1440   | CFM     |
| 85     |       |       |       |       |       |       |       |       | 325    | CFM     |
| 90     |       |       |       |       |       |       |       |       | 325    | CFM     |
| 95     |       |       |       |       |       | •     |       |       | 325    | CFM     |

| Card 30           |               |                         |           |           |           |           |              |       |            |              |         |
|-------------------|---------------|-------------------------|-----------|-----------|-----------|-----------|--------------|-------|------------|--------------|---------|
|                   |               | Main-                   |           |           |           | Auxili    | ary          |       |            |              |         |
| Room              | Cooli         | -                       | Heating   |           | Coolir    | ng        | Heating-     |       | -Room I    | Exhaust      |         |
| Number<br>100     | Value         | Units V                 | 'alue Ui  | nits V    | alue      | Units     | Value Uni    | 32    | alue<br>25 | Units<br>CFM |         |
| 105               |               |                         |           |           |           |           |              | 85    | 50         | CFM          |         |
| Card 31           |               |                         | Da        | ctition D | aramatara |           | •••••        |       |            |              |         |
| Room              |               |                         | Partition |           |           |           |              |       |            |              |         |
| Number            | Number        | Length                  | Height    | U-Valu    |           | -         | Temp         | Temp  | Room       |              |         |
| 105               | 1             | 125                     | 13        | .09       | 101       |           | •            |       |            |              |         |
| caad 37           |               |                         |           | <b>5</b>  | 1         |           |              |       |            |              |         |
| .aru 33           |               |                         |           |           |           |           | FINS         |       |            |              |         |
|                   |               | Height                  |           |           |           | Left      | 1149         | Right |            | Adjacent     |         |
| Shading           |               | -                       | jection G | lass Pro  | jection   |           | n Projection |       |            |              |         |
| Type              | <b>Height</b> |                         |           | idth Lef  |           | Out       | Right        | Out   |            | Flag         |         |
| 3                 | 8             | 1 7                     | 4         | .5        |           | 7         | .5           | 7     |            | •            |         |
| Card 39<br>Number |               | lternative<br>scription |           |           |           |           |              |       |            |              |         |
| 1                 | EX            | ISTING BUIL             | DINGS     |           |           |           |              |       |            |              |         |
| Card 40           |               |                         | System    | Туре      |           |           | •••••        |       |            |              |         |
|                   |               |                         | OPTIONAL  | VENTILAT  | ION SYSTE | M         | ••••         |       |            |              |         |
| System            |               | Ventil                  |           |           |           |           | Fan          |       |            |              |         |
| Set               | System        |                         | Cooling H | _         | _         | Heating   |              |       |            |              |         |
| Number<br>1       | FC FC         | Location                | SADBVh S  | ADBVN S   | ichedul e | Schedule  | Pressure     |       |            |              |         |
|                   |               |                         |           |           | - Zone As | ssignment | •••••        |       | •••••      |              |         |
| System            |               |                         |           |           |           |           |              |       |            |              |         |
| Set               |               | f #1                    | Ref #     |           | Ref 1     |           | Ref #4       |       | Ref        |              | Ref #6  |
| Number<br>1       | Begin<br>5    | End<br>105              | Begin     | End       | Begin     | End       | Begin En     | d B   | egin       | End          | Begin E |

| et                                                                       | _                           |                                         |                                                         | Mn Exh                                  |                   | Rm Exh                                                           |                                       |                                                                        |                                                       | Suppl            | y Return              | 1                  |                              |                                 |                                       |
|--------------------------------------------------------------------------|-----------------------------|-----------------------------------------|---------------------------------------------------------|-----------------------------------------|-------------------|------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|------------------|-----------------------|--------------------|------------------------------|---------------------------------|---------------------------------------|
|                                                                          | Fan                         |                                         | Fan                                                     | Fan                                     | Fan               | Fan                                                              | Fan Mtr                               |                                                                        |                                                       | Duct             | Air                   |                    |                              |                                 |                                       |
| mber                                                                     |                             | SP                                      | SP                                                      | SP                                      | SP                | SP                                                               | Loc                                   | Loc                                                                    | Ht Gn                                                 | Loc              | Path                  |                    |                              |                                 |                                       |
|                                                                          | .75                         | .75                                     |                                                         |                                         |                   |                                                                  |                                       |                                                                        |                                                       |                  |                       |                    |                              |                                 |                                       |
| rd /5                                                                    |                             |                                         |                                                         |                                         |                   | ca                                                               | uipment Sch                           | مماريات                                                                |                                                       |                  |                       |                    |                              |                                 |                                       |
|                                                                          | Main                        |                                         |                                                         | Direct                                  |                   |                                                                  | Auxiliary                             |                                                                        |                                                       |                  |                       |                    |                              | liary                           |                                       |
| t                                                                        | Cooli                       | ng                                      |                                                         | Evap                                    |                   | Evap                                                             | Cooling                               | Heating                                                                |                                                       |                  | Reheat                | Mech.              | Heat                         |                                 |                                       |
| mber                                                                     | Coil                        | E                                       | conomize                                                | r Coil                                  |                   | Coil                                                             | Coil                                  | Coil                                                                   | Coil                                                  |                  | Coil                  | Humidity           |                              | -                               |                                       |
|                                                                          | FTSAM                       | CLG                                     |                                                         |                                         |                   |                                                                  |                                       | FTSAMH                                                                 | G FTSA                                                | MHTG             | FTSAMHTG              | ·                  |                              |                                 |                                       |
|                                                                          |                             |                                         | Equip                                                   | ment Sect                               | ion               | Alternat                                                         | tive #1                               |                                                                        |                                                       |                  |                       |                    |                              |                                 |                                       |
| rd 59                                                                    |                             | • • • • • • • • • • • • • • • • • • • • |                                                         | • • • • • • • • • • • • • • • • • • • • | · Equ             | ipment De                                                        | escription                            | / T00 Sci                                                              | nedules                                               |                  |                       |                    |                              |                                 |                                       |
|                                                                          |                             |                                         | •                                                       | Elec Dema                               |                   |                                                                  |                                       |                                                                        |                                                       |                  |                       | Dema               |                              |                                 |                                       |
|                                                                          |                             |                                         |                                                         | Time of D                               | -                 |                                                                  |                                       |                                                                        |                                                       |                  |                       |                    | •                            | ratur                           | е                                     |
| mber                                                                     |                             | Schedu                                  | le                                                      | Schedule                                | 1                 |                                                                  | Alternative<br>BASE CASE              | Descrip                                                                | ion                                                   |                  |                       | Schedule           | Dr                           | ift                             |                                       |
|                                                                          |                             |                                         |                                                         |                                         |                   |                                                                  | MUL CAUE                              |                                                                        |                                                       |                  |                       |                    |                              |                                 |                                       |
| ad A                                                                     | ll Coi                      | l Coo                                   | ling                                                    |                                         |                   |                                                                  | Cooling<br>-Group 3-                  |                                                                        |                                                       |                  |                       |                    |                              |                                 |                                       |
| oad A<br>sgn L                                                           | ll Coi<br>oads To<br>ool Re | l Coo<br>Equ<br>FSiz                    | ling<br>ipment<br>ing                                   | -Group 1-                               | · -G              | iroup 2-                                                         | Cooling<br>-Group 3-<br>Begin End     | -Group                                                                 | Gro                                                   | oup 5-           | -Group                | 5Group             | 7                            | Group                           | 8Gro                                  |
| oad A<br>sgn Le<br>ef C                                                  | ll Coi<br>oads To<br>ool Re | l Coo<br>Equ<br>f Siz<br>BLK            | ling<br>ipment<br>ing<br>PLANT                          | -Group 1-<br>Begin End<br>1 1           | · -G              | iroup 2-<br>gin End                                              | -Group 3-<br>Begin End                | -Group 4<br>Begin E                                                    | i- •Gro<br>nd Begi                                    | oup 5-<br>in End | -Group (<br>Begin E   | 6Group<br>nd Begin | o 7<br>End 8                 | Group<br>Begin                  | 8Grod<br>End Begin                    |
| ed A<br>egn Lef C<br>1                                                   | ll Coi<br>oads To<br>ool Re | l Cool<br>o Equi<br>f Sîz<br>BLKI       | ling<br>ipment<br>ing<br>PLANT                          | -Group 1-<br>Begin End<br>1 1           | G                 | iroup 2-                                                         | -Group 3-<br>Begin End<br>Ling Equipm | -Group A<br>Begin E                                                    | iGro<br>nd Begi                                       | oup 5-<br>in End | -Group (              | 6Group<br>nd Begin | 7<br>End 8                   | Group<br>Begin                  | 8Gro                                  |
| ad A<br>gn L<br>f C<br>1                                                 | ll Coi<br>oads To<br>ool Re | l Coo<br>Equ<br>f Siz<br>BLK            | ling<br>ipment<br>ing<br>PLANT                          | -Group 1-<br>Begin End<br>1 1           | G<br>d Be         | iroup 2-                                                         | -Group 3-<br>Begin End<br>Ling Equipm | -Group A<br>Begin E                                                    | Gro<br>nd Begi<br>neters -                            | oup 5-<br>in End | -Group (              | 6Group<br>nd Begin | Find B                       | Group<br>Jegin                  | 8Gro                                  |
| ad A<br>gn L<br>f C<br>1<br>rd 62<br>ol Eq<br>f Co                       | II Coi<br>oads To<br>ool Re | L Coo<br>D Equ<br>f Siz<br>BLKI         | ling<br>ipment<br>ing<br>PLANT                          | -Group 1- Begin End 1 1                 | G<br>d Be         | gin End  Cool                                                    | -Group 3-<br>Begin End<br>Ling Equipm | -Group a Begin Ea                                                      | oGrand Begind Beginder                                | oup 5-<br>in End | -Group (              | 6Group<br>nd Begin | o 7<br>End B                 | Group<br>Begin                  | 8Gro<br>End Begi<br>Demand<br>Limit   |
| ed A<br>gn L<br>ef C<br>nrd 62<br>sol Eq<br>ef Co<br>m Na                | II Coi<br>oads To<br>ool Re | l Cool D Equ F Siz BLKI Num Of Unit:    | ling<br>ipment<br>ing<br>PLANT                          | -Group 1- Begin End 1 1                 | -G<br>d Be        | gin End  Cool                                                    | -Group 3-<br>Begin End<br>Ling Equipm | -Group a Begin Ea                                                      | oGrand Begind Beginder                                | oup 5-<br>in End | -Group 6 Begin E      | 6Group<br>nd Begin | o 7<br>End B                 | Group<br>Begin                  | 8Gro                                  |
| and A gn Li ef Co ind 62 kol Equel ef Co m Na EQ                         | Il Coi<br>oads To<br>col Re | Num<br>Of<br>Unit:                      | ling<br>ipment<br>ing<br>PLANT<br>Cap<br>s Value<br>304 | -Group 1- Begin End 1 1                 | G Be              | iroup 2- igin End Cool ig Value 225                              | -Group 3- Begin End Ling Equipm       | -Group A Begin Ei ment ParaiCapac Value I                              | dGro<br>nd Begi<br>meters -<br>HEAT F<br>ity<br>Jnits | eECOVER          | -Group of<br>Begin En | 6Group<br>nd Begin | o 7<br>End 8<br>Seq<br>Order | Group<br>Begin                  | 8Gro<br>End Begin                     |
| and A gn L f C f 1 f Co f Co m Na EQ                                     | Il Coi<br>oads To<br>ool Re | Num Of Unit:                            | ling<br>ipment<br>ing<br>PLANT<br>Cap<br>s Value<br>304 | -Group 1- Begin End 1 1                 | GODENSE           | iroup 2- igin End Cool IG Value 225                              | -Group 3- Begin End Ling Equipm       | -Group A Begin Ei Bent Para                                            | Growd Beginneters                                     | ecover<br>Val    | -Group of<br>Begin En | 6Group<br>dd Begin | o 7<br>End B                 | Group<br>Begin                  | 8Gro<br>End Begin                     |
| ad A gn L f C 1  rd 62 ol Eq f Co m Nai EQ                               | Il Coi<br>oads To<br>ool Re | Num Of Unit: 1                          | ling ipment ing PLANT Cap s Value 304                   | -Group 1- Begin End 1 1                 | GO<br>DOLIN       | roup 2- gin End Cool G Value 225                                 | -Group 3- Begin End Ling Equipm       | -Group A Begin Ei enent ParaiCapac Value II                            | netersHEAT Rity Units Swit                            | vup 5-<br>in End | -Group of Begin En    | 6Group<br>nd Begin | End B                        | Group<br>Begin  <br>Seq<br>Type | 8Gro<br>End Begin                     |
| ad A gn L if C 1 ind 62 ol Eq ol Eq if Co m Nai EQ ind 63 ol if Fu va va | Il Coi<br>oads To<br>ool Re | Num Of Unit: 1  ED WATE Uni             | ling ipment ing PLANT Cap s Value 304                   | -Group 1- Begin End 1 1CO               | GO<br>DENSE<br>Un | iroup 2- igin End  Cool IG Value 225  colling Pur IR Il Load     | -Group 3- Begin End Ling Equipm       | -Group A Begin Ei Bent Para                                            | netersHEAT Rity Units Swit                            | vup 5-<br>in End | -Group of Begin En    | 6Group<br>nd Begin | o 7<br>End B                 | Group<br>Begin  <br>Seq<br>Type | 8Groo<br>End Begin<br>Demand<br>Limit |
| ad A A A A A A A A A A A A A A A A A A A                                 | Il Coi<br>oads To<br>ool Re | Num Of Unit: 1                          | ling ipment ing PLANT Cap s Value 304                   | -Group 1- Begin End 1 1                 | GO<br>DOLIN       | iroup 2- igin End  Cool IG Value 225  colling Pur IR Il Load     | -Group 3- Begin End Ling Equipm       | -Group A Begin Ei enent ParaiCapac Value II                            | netersHEAT Rity Units Swit                            | vup 5-<br>in End | -Group of Begin En    | 6Group<br>nd Begin | End B                        | Group<br>Begin  <br>Seq<br>Type | 8Gro<br>End Begin                     |
| ad A gn L f C 1 rd 62 ol Eq f Co m Na EQ rd 63 ol f Fu m Va 18           | uip<br>de<br>me<br>1001s    | L Coop Equipole of First Burn Of Unit:  | ling ipment ing PLANT Cap s Value 304                   | -Group 1- Begin Enc 1 1                 | GOLIN             | croup 2- egin End  Cool IG Value 225  poling Pur IR IL Load nits | -Group 3- Begin End Ling Equipm       | -Group A Begin E Capac Value I Capac Value I Capac Units               | metersHEAT R ity Units Swit ad over                   | Val              | -Group of Begin En    | 6Group<br>nd Begin | End B                        | Group<br>Begin  <br>Seq<br>Type | 8Groo<br>End Begin<br>Demand<br>Limit |
| ad A gn L f C 1 rd 62 ol Eq f Co m Na EQ rd 63 ol f Fu m Va 18           | uip de me 1001S             | L Coop Equipole of First Burn Of Unit:  | ling ipment ing PLANT Cap s Value 304                   | -Group 1- Begin Enc 1 1                 | GOLIN             | croup 2- egin End  Cool IG Value 225  poling Pur IR IL Load nits | -Group 3- Begin End Ling Equipm       | -Group A Begin E Capac Value I Capac Value I Capac Value I Capac Units | metersHEAT R ity Units Swit ad over                   | Val              | -Group of Begin En    | 6Group<br>nd Begin | End B                        | Group<br>Begin  <br>Seq<br>Type | 8Gro<br>End Begi<br>Demand<br>Limit   |

| Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equip                                                                   | Number                                                              |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | ng Equipme<br>E                                                  | nergy                                 | _             | Seq                     | Switch                                         |                  |                                            |               | Deman |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|---------------|-------------------------|------------------------------------------------|------------------|--------------------------------------------|---------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code                                                                    | Of                                                                  | Full Ld                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cap'y                                                                                  |                                                                  | late                                  |               | Order                   | over                                           | Hot              | Misc.                                      |               | Limit |
| umber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Name                                                                    | Units                                                               | Value                                                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value Ur                                                                               |                                                                  |                                       | Inits         |                         | Control                                        |                  |                                            | Cogen         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900HEX15                                                                | : 1                                                                 | 3.73                                                      | KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1665 ME                                                                                | вн а                                                             | 250                                   | вн            | 1                       |                                                |                  | 1                                          |               |       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900HEX15                                                                | : 1                                                                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1665 ME                                                                                | BH 2                                                             | 250                                   | <b>4</b> BH   | 2                       |                                                |                  |                                            |               |       |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900HEXIS                                                                | : 1                                                                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1665 ME                                                                                | вн 2                                                             | 250                                   | вн            | 3                       |                                                |                  |                                            |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                  |                                       |               |                         |                                                |                  |                                            |               |       |
| ard 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                       |                                                                     | •••••                                                     | Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se Utility                                                                             | y Paramete                                                       | ers                                   |               |                         |                                                |                  | •••                                        |               |       |
| ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Base                                                                    |                                                                     | Hourl                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                  | Equi                                  |               | emand                   |                                                |                  |                                            |               |       |
| tilit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y Utility                                                               | ,                                                                   | Demar                                                     | nd Deman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Schedul                                                                              | le Energy                                                        | / Refe                                | erence L      | imiting                 | Entering                                       | Leav             | ing                                        |               |       |
| lumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Descrip                                                                 | •                                                                   | Value                                                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Code                                                                                   | Type                                                             | Numb                                  | er N          | lumber                  | Тетр                                           | Тетр             | •                                          |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | -LINE LOS                                                           |                                                           | MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVAIL                                                                                  | HOT-LO                                                           | 1                                     |               |                         |                                                |                  |                                            |               |       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HT-PUMP                                                                 | LOSS CHL                                                            | 33.4                                                      | TONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FTSAMC                                                                                 | LG CHILL-                                                        | LD 1                                  |               |                         |                                                |                  |                                            |               |       |
| ard 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                       |                                                                     | •••••                                                     | Condens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er / Cooli                                                                             | ina Tower                                                        | Paramete                              | .re           |                         |                                                |                  |                                            |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooling                                                                 |                                                                     |                                                           | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy                                                                                 |                                                                  |                                       |               | r Percer                |                                                |                  |                                            |               |       |
| ower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tower                                                                   | Capacity                                                            | Capacit                                                   | y Consump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        | p Fluid                                                          | Tower                                 |               |                         | w Energ                                        | •                | nergy                                      |               |       |
| ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Code                                                                    | Value                                                               | Units                                                     | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                  | Type                                                             | Туре                                  | Cells         |                         | xd Value                                       | •                | nits                                       |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EQ5100                                                                  |                                                                     |                                                           | 11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KW                                                                                     | .,,                                                              | .,,,                                  | 1             |                         |                                                | •                |                                            |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                       |                                                                     | •••••                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | laneous Ad                                                       | cessory                               |               |                         |                                                |                  |                                            |               |       |
| ard /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                  |                                       |               |                         |                                                |                  |                                            |               |       |
| . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1                                                                      |                                                                     | _                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥2                                                                                     |                                                                  |                                       |               | #3                      |                                                |                  |                                            |               |       |
| isc i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #1<br>Equip                                                             | Energy                                                              | Energy                                                    | Sched I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equip                                                                                  | Energy                                                           | Energy                                |               | Equip                   | Ener                                           | -                | Energy                                     |               |       |
| isc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1<br>Equip<br>Code                                                     | Energy<br>Value                                                     | Units                                                     | Sched (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equip<br>Code                                                                          | Value                                                            | Units                                 | Sched<br>Code | Equip<br>Code           | Valu                                           | e                | Units                                      | Sched<br>Code |       |
| isc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1<br>Equip<br>Code                                                     | Energy                                                              |                                                           | Sched (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equip                                                                                  |                                                                  |                                       |               | Equip                   | Valu                                           | e                |                                            |               |       |
| isc  <br>ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>Equip<br>Code<br>E95013                                           | Energy<br>Value<br>3.73                                             | Units<br>KW                                               | Sched (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equip<br>Code<br>EQ5013                                                                | Value<br>1.49                                                    | Units<br>KW                           | Code          | Equip<br>Code           | Valu                                           | e                | Units                                      |               |       |
| isc  <br>ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>Equip<br>Code<br>E95013                                           | Energy<br>Value<br>3.73                                             | Units<br>KW                                               | Sched (<br>Code (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equip<br>Code<br>EQ5013                                                                | Value<br>1.49                                                    | Units<br>KW                           | Code          | Equip<br>Code           | Valu                                           | e                | Units                                      |               |       |
| lisc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #1 Equip Code Eq5013                                                    | Energy<br>Value<br>3.73                                             | Units<br>KW<br>ipment Se                                  | Sched   Code   C | Equip<br>Code<br>EQ5013<br>ernative #                                                  | Value<br>1.49<br>#2                                              | Units<br>KW                           | Code          | Equip<br>Code<br>EQ5013 | Valu<br>3 1.12                                 | e                | Units<br>KW                                | Code          |       |
| lisc  <br>lef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1 Equip Code Eq5013                                                    | Energy Value 3.73 Equ                                               | Units<br>KW<br>ipment Se                                  | Sched   Code   C | Equip<br>Code<br>EQ5013<br>ernative #<br>nt Descrip                                    | Value<br>1.49<br>#2                                              | Units<br>KW                           | Code          | Equip<br>Code<br>EQ5013 | Valu<br>3 1.12                                 | e                | Units<br>KW<br>Limit -                     | Code          |       |
| lisc  <br>lef  <br>lard 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #1 Equip Code Eq5013  9Ele ative Tim                                    | Energy Value 3.73 Equ c Consump ne of Day                           | Units<br>KW<br>ipment Se<br>Elec De<br>Time of            | Sched   Code   C | Equip<br>Code<br>Eq5013<br>ernative #<br>ant Descrip<br>nd<br>t                        | Value<br>1.49<br>#2                                              | Units<br>KW                           | Code          | Equip<br>Code<br>EQ5013 | Valu<br>3 1.12                                 | e<br>emand<br>Te | Units<br>KW<br>Limit -                     | Code          |       |
| lisc  <br>lef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1 Equip Code Eq5013  9Ele ative Tim                                    | Energy Value 3.73 Equ                                               | Units<br>KW<br>ipment Se                                  | Sched   Code   C | Equip<br>Code<br>EQ5013<br>ernative #<br>Int Descrip<br>Ind<br>t<br>KW Alterr          | Value 1.49 #2 ption / To                                         | Units<br>KW                           | Code          | Equip<br>Code<br>Eq5013 | Valu<br>5 1.12<br>D<br>Schedu                  | e<br>emand<br>Te | Units<br>KW<br>Limit -                     | Code          |       |
| lisc  <br>lef  <br>lard 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #1 Equip Code Eq5013  9Ele ative Tim                                    | Energy Value 3.73 Equ c Consump ne of Day                           | Units<br>KW<br>ipment Se<br>Elec De<br>Time of            | Sched   Code   C | Equip<br>Code<br>EQ5013<br>ernative #<br>Int Descrip<br>Ind<br>t<br>KW Alterr          | Value<br>1.49<br>#2                                              | Units<br>KW                           | Code          | Equip<br>Code<br>Eq5013 | Valu<br>5 1.12<br>D<br>Schedu                  | e<br>emand<br>Te | Units<br>KW<br>Limit -                     | Code          |       |
| ilisc  <br>lef  <br>lard 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #1 Equip Code EQ5013  9Ele ative Tim                                    | Energy Value 3.73 Equ cc Consump we of Day wedule                   | Units<br>KW<br>ipment Se<br>Elec De<br>Time of<br>Schedul | Sched   Code   C | Equip<br>Code<br>EG5013<br>ernative #<br>nt Descrip<br>nd<br>t<br>KW Altern<br>GAS EN  | Value 1.49 #2 potion / TO mative Des                             | Units<br>KW<br>20 Schedu<br>scription | Code          | Equip<br>Code<br>E05013 | Valu<br>5 1.12<br>D<br>Schedu                  | emand<br>Te      | Units<br>KW<br>Limit -<br>mperatu<br>Drift | Code          |       |
| ilisc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #1 Equip Code EQ5013  9Ele ative Tim                                    | Energy Value 3.73 Equ cc Consump se of Day sedule                   | Units<br>KW<br>ipment Se<br>Elec De<br>Time of<br>Schedul | Sched   Code   C | Equip<br>Code<br>EG5013<br>ernative #<br>nt Descrip<br>nd<br>t<br>KW Altern<br>GAS EN  | Value 1.49 #2 potion / TO mative Des                             | Units<br>KW<br>20 Schedu<br>scription | Code          | Equip<br>Code<br>E05013 | Valu<br>5 1.12<br>D<br>Schedu                  | emand<br>Te      | Units<br>KW<br>Limit -<br>mperatu<br>Drift | Code          |       |
| ilisc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #1 Equip Code Eq5013  9 Ele ative Tim Sch                               | Energy Value 3.73 Equ c Consump e of Day edule Cooling              | Units<br>KW<br>ipment Se<br>Elec De<br>Time of<br>Schedul | Sched   Code   C | Equip<br>Code<br>E05013<br>ernative #<br>ant Descrip<br>nd<br>t<br>KW Alterr<br>GAS EN | Value 1.49  #2 potion / TO mative Des                            | Units KW  DO Schedu                   | Code          | Equip<br>Code<br>E05013 | Valu<br>5 1.12<br>D<br>Schedu                  | emand<br>Te      | Units<br>KW<br>Limit -<br>mperatu<br>Drift | Code          |       |
| isc issing in the second of th | #1 Equip Code Eq5013  9 Ele ative Tim Sch                               | Energy Value 3.73 Equ cc Consump ne of Day redule Cooling Equipment | Units<br>KW<br>ipment Se<br>Elec De<br>Time of<br>Schedul | Sched   Code   C | Equip Code E05013  ernative #  nt Descrip nd t  KW Alterr GAS EN                       | Value 1.49  #2  potion / TO  mative Des  NGINE DRIV  poling Loac | Units KW  DO Schedu                   | ites ER, EXIS | Equip<br>Code<br>E05013 | Valu (5 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.1 | emand Te         | Units KW  Limit - mperatu Drift            | Code          | Group |
| ard 50 ltern. ard 60 oed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #1 Equip Code Eq5013  9 Ele ative Tim Sch  O All Coil Loads To Cool Ref | Energy Value 3.73 Equ cc Consump ne of Day redule Cooling Equipment | Units<br>KW<br>ipment Se<br>Elec De<br>Time of<br>Schedul | Sched   Code   C | Equip Code E05013  ernative #  nt Descrip nd t  KW Alterr GAS EN                       | Value 1.49  #2  potion / TO  mative Des  NGINE DRIV  poling Loac | Units KW  DO Schedu                   | ites ER, EXIS | Equip<br>Code<br>E05013 | Valu (5 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.1 | emand Te         | Units KW  Limit - mperatu Drift            | Code          | Group |

|                                      |                                                 |                                                           |                                                            |                                                                                         |                                                              |                                                | rameters                                     |                  |                                 |                                      |                                      |                                    |         |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------------|------------------|---------------------------------|--------------------------------------|--------------------------------------|------------------------------------|---------|
| ool E                                | quip                                            | Num                                                       | co                                                         | LING                                                                                    | • • • • • • • • • • • • • • • • • • • •                      |                                                | HEAT                                         | RECOVER          | Υ                               | •••                                  | Seq                                  |                                    | Demand  |
| tef C                                | ode                                             | OfCa                                                      | apacity                                                    | Ene                                                                                     | rgy                                                          | Cap                                            | acity                                        | • • •            | -Energy-                        |                                      | Order                                | Seq                                | Limit   |
| lum N<br>Y                           | ame<br>ENGDRIV                                  | Units Valu                                                | e Units                                                    | Value<br>1980                                                                           | Units<br>MBH                                                 | Value                                          | Units                                        | Val              | ue Ur                           | nits                                 | Num                                  | Type                               | Number  |
| ool-<br>ef F<br>um V                 | CHILLE                                          | D WATER<br>Full Load<br>Units<br>KW                       | COND                                                       | NSER                                                                                    | HT RI                                                        | EC or AUX                                      | Swi<br>Load ove                              | tch-<br>r C      |                                 | Cooling                              |                                      | •                                  |         |
| ard 7                                | 71                                              |                                                           |                                                            | ···- Base                                                                               | Utility Pa                                                   | arameters                                      |                                              |                  |                                 |                                      |                                      |                                    |         |
| ase                                  | Base                                            |                                                           | Hourly                                                     | Hourly                                                                                  |                                                              |                                                | Equip                                        | Den              | and                             |                                      |                                      |                                    |         |
|                                      | y Utili                                         | •                                                         | Demand                                                     |                                                                                         | Schedule                                                     |                                                |                                              |                  | •                               | intering                             |                                      | 9                                  |         |
| umber                                |                                                 | •                                                         | Value                                                      |                                                                                         | Code                                                         | Type                                           | Number                                       | Nun              | ber 1                           | l'emp                                | Temp                                 |                                    |         |
|                                      | H1-PU                                           | MP LOSS CHL                                               | 33.4                                                       | TONS                                                                                    | FTSANCLG                                                     | CHIEL-LD                                       | 1                                            |                  |                                 |                                      |                                      |                                    |         |
|                                      | Cooling                                         |                                                           |                                                            | Energy                                                                                  | Energy                                                       |                                                |                                              | Number           | Doccon                          |                                      | بيماهاس                              | Smd                                |         |
| ef                                   | Tower<br>Code<br>EQ5100                         |                                                           | Capacity<br>Units                                          | Consump<br>Value                                                                        | Consump                                                      | Fluid<br>Type                                  |                                              | Of               | Airflo                          | t Low Sp<br>w Energy<br>d Value      | Ene                                  | rgy                                |         |
| ef                                   | Tower<br>Code<br>EQ5100                         | Capacity                                                  | Units                                                      | Consump<br>Value<br>11.19                                                               | Consump<br>Units<br>KW                                       | Туре                                           | Туре                                         | Of<br>Cells<br>1 | Airflo                          | Energy                               | Ene                                  | rgy                                |         |
| ef                                   | Tower<br>Code<br>EQ5100                         | Capacity<br>Value                                         | Units<br>ipment Sect                                       | Consump<br>Value<br>11.19<br>ion Altern                                                 | Consump<br>Units<br>KW<br>mative #3                          | Туре                                           | Type                                         | Of<br>Cells<br>1 | Airflon<br>Low Spo              | M Energy<br>d Value                  | Ene<br>Uni                           | rgy                                |         |
| ef                                   | Tower Code EQ5100                               | Capacity Value Equ lec Consump                            | Units ipment Sect Elec Dema Time of D                      | Consump Value 11.19 ion Altern Equipment nd Demand                                      | Consump<br>Units<br>KW<br>mative #3                          | Туре                                           | Type                                         | Of<br>Cells<br>1 | Airflon<br>Low Spo              | w Energy<br>d Value                  | Ene<br>Uni                           | rgy                                | •       |
| ef<br>Card 5                         | Tower Code EQ5100                               | Capacity<br>Value<br>Equ<br>lec Consump                   | Units<br>ipment Sect<br>Elec Dema                          | Consump Value 11.19 ion Altern Equipment nd Demand ay Limit                             | Consump<br>Units<br>Ku<br>mative #3<br>Descripti             | Type  on / TOD                                 | Type  Schedules                              | Of<br>Cells<br>1 | Airflo<br>Low Sp                | Value  Value                         | Ene<br>Uni<br>mand Li<br>Temp        | rgy<br>ts                          | •       |
| ard 5                                | Tower Code EQ5100                               | Capacity Value Equ lec Consump                            | Units ipment Sect Elec Dema                                | Consump Value 11.19 ion Altern Equipment nd Demand ay Limit                             | Consump<br>Units<br>Ku<br>mative #3<br>Descripti             | Type                                           | Type  Schedules                              | Of<br>Cells<br>1 | Airflo<br>Low Sp                | Value  Value                         | Ene<br>Uni<br>mand Li<br>Temp        | rgy<br>ts<br>mit                   | •       |
| ef  Litern  Lumber                   | Tower Code EQ5100                               | Capacity Value Equ lec Consump ime of Day chedule         | Units ipment Sect Elec Dema Time of D Schedule             | Consump Value 11.19  ion Altern Equipment nd Demand ay Limit Max KW                     | Consump<br>Units<br>KW<br>mative #3<br>Descripti<br>Alternat | on / TOO<br>ive Descr                          | Type  Schedules  iption W CHILLES            | Of<br>Cells<br>1 | Airflon<br>Low Spx              | d Energy<br>1 Value<br>De<br>Schedul | Ene<br>Uni<br>mand Li<br>Temp<br>e D | rgy<br>ts<br>mit<br>eratur<br>rift | -<br>re |
| ef  and 5  litern  umber  and 6  oad | Tower Code EQ5100  Eq5100  Factive T S All Coil | Capacity Value Equ lec Consump ime of Day chedule Cooling | Units<br>ipment Sect<br>Elec Dema<br>Time of D<br>Schedule | Consump<br>Value<br>11.19<br>ion Altern<br>Equipment<br>nd Demand<br>ay Limit<br>Max KW | Consump Units KW Descripti Alternat WATER CO                 | on / TOD ive Descr OLED SCRE                   | Type  Schedules  iption W CHILLES  ssignment | Of<br>Cells<br>1 | Airflon<br>Low Spx              | d Value  Value  De Schedul           | mand Li<br>Temp                      | rgy<br>ts<br>mit<br>eratur<br>rift | e       |
| ef  Literriumber  Lard 6  Load       | Tower Code EQ5100  Eq5100  Enative T S All Coil | Capacity Value Equ lec Consump ime of Day chedule Cooling | Units  ipment Sect  Elec Dema Time of D Schedule           | Consump Value 11.19 ion Altern Equipment nd Demand ay Limit Max KW                      | Consump Units KU Descripti Alternat WATER CO Cooli -Group    | on / TOO ive Descr OLED SCRE  ng Load A 3 Grou | Type  Schedules  iption W CHILLES  ssignment | Of<br>Cells<br>1 | Airflon Low Spx  BOILER  -Group | Value  Value  De  Schedul            | mand Li<br>Temp<br>e D               | rgy<br>ts<br>mit<br>eratur<br>rift | -<br>re |

|          | Equip                                                  |                 | CO                                                                            |                                                                                         |                                                             |                                                            | HEAT                                    |                         |                            |                                 | Seq          |                                    | Demand          |
|----------|--------------------------------------------------------|-----------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------|---------------------------------|--------------|------------------------------------|-----------------|
|          | Code                                                   |                 | Capacity                                                                      |                                                                                         | rgy                                                         |                                                            | acity                                   |                         | -Energy                    |                                 |              | Seq                                | Limit           |
|          | Name<br>YSCRW22                                        | 1               | /alue Units                                                                   | Value<br>186                                                                            | Units<br>KW                                                 | Value                                                      | Units                                   | Val                     | ue U                       | nits                            | Num          | Туре                               | Number          |
|          |                                                        |                 |                                                                               |                                                                                         |                                                             |                                                            |                                         |                         |                            |                                 |              |                                    |                 |
|          |                                                        |                 | CONDI                                                                         |                                                                                         |                                                             |                                                            |                                         |                         |                            | ••••••                          |              |                                    |                 |
|          |                                                        |                 | oad Full Load                                                                 |                                                                                         |                                                             |                                                            |                                         |                         | old                        | Cooling                         | Misc.        |                                    |                 |
| m        | Value                                                  | Units           | Value                                                                         | Units                                                                                   | Value                                                       | Units                                                      | Co                                      | ntrol S                 | Storage                    | Tower                           | Access.      |                                    |                 |
|          | 18.65                                                  | KW              | 11.19                                                                         | KW                                                                                      |                                                             |                                                            |                                         |                         |                            | 1                               |              |                                    |                 |
|          |                                                        |                 |                                                                               |                                                                                         |                                                             |                                                            |                                         |                         |                            |                                 |              |                                    |                 |
| ·d       | 71<br>Base                                             |                 | Hourly                                                                        | Hourly                                                                                  | Utility P                                                   | arameters                                                  | Equip                                   |                         | nand                       | •••••                           |              | •                                  |                 |
| ili      | ty Utili                                               | ty              | Demand                                                                        | •                                                                                       | Schedul e                                                   | Energy                                                     |                                         |                         |                            | Entering                        | Leaving      |                                    |                 |
| mbe      | r Descr                                                | ip              | Value                                                                         |                                                                                         | Code                                                        | Туре                                                       | Number                                  |                         |                            | Temp                            | Temp         |                                    |                 |
|          | HT-PU                                                  | MP LOSS (       | CHL 33.4                                                                      | TONS                                                                                    | FTSAMCLG                                                    |                                                            | 1                                       |                         |                            | •                               | -            |                                    |                 |
|          | 74<br>Cooling                                          |                 |                                                                               | Energy                                                                                  | Energy                                                      |                                                            |                                         | Number                  | Percen                     | t Low So                        | d low        | Spd                                |                 |
| Her      |                                                        |                 | ity Capacity                                                                  | Consump<br>Value                                                                        | Energy<br>Consump<br>Units<br>KW                            |                                                            | Tower<br>Type                           | Of                      | Airflo                     | t Low Sp<br>w Energy<br>d Value |              | gy                                 |                 |
| ier<br>f | Cooling<br>Tower<br>Code<br>EQ5100                     | Capaci<br>Value | ity Capacity                                                                  | Consump<br>Value<br>11.19                                                               | Consump<br>Units<br>KW                                      | Fluid<br>Type                                              | Туре                                    | Of<br>Cells<br>1        | Airflo                     | w Energy                        | Ener         | gy                                 |                 |
| ver      | Cooling<br>Tower<br>Code<br>EQ5100                     | Capaci<br>Value | ity Capacity<br>Units<br>Equipment Sect                                       | Consump<br>Value<br>11.19<br>ion Altern<br>Equipment                                    | Consump<br>Units<br>KW<br>mative #4                         | Fluid<br>Type                                              | Type                                    | Of<br>Cells<br>1        | Airflo<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | rgy<br>ts                          |                 |
| er<br>f  | Cooling<br>Tower<br>Code<br>EQ5100                     | Capaci<br>Value | Units Units Equipment Sect                                                    | Consump Value 11.19 ion Alterr  Equipment nd Demand                                     | Consump<br>Units<br>KW<br>mative #4                         | Fluid<br>Type                                              | Type                                    | Of<br>Cells<br>1        | Airflo<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | rgy<br>ts                          | -               |
| er<br>f  | Cooling<br>Tower<br>Code<br>Eq5100                     | Capaci<br>Value | Units  Equipment Sect  ump Elec Deman                                         | Consump Value 11.19 ion Alterr  Equipment nd Demand ay Limit                            | Consump<br>Units<br>KW<br>mative #4                         | Fluid<br>Type                                              | Type  Schedule                          | Of<br>Cells<br>1        | Airflo<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | rgy<br>ts<br>nit                   | -               |
| wer<br>f | Cooling<br>Tower<br>Code<br>Eq5100                     | Capaci<br>Value | Units  Equipment Sect  ump Elec Demanay Time of D                             | Consump Value 11.19 ion Alterr  Equipment nd Demand ay Limit                            | Consump<br>Units<br>KW<br>mative #4<br>Descripti            | Fluid<br>Type                                              | Type  Schedule                          | Of<br>Cells<br>1        | Airfla<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | rgy<br>ts                          | -               |
| wer<br>f | Cooling Tower Code Ea5100                              | Capaci<br>Value | Units  Equipment Sect  ump Elec Demain Schedule                               | Consump Value 11.19 ion Altern Equipment nd Demand ay Limit Max KW                      | Consump<br>Units<br>KW<br>Descripti<br>Alternat<br>W. C. R- | Fluid<br>Type<br>on / TOD :<br>ive Descr<br>123 CENTR      | Type  Schedule  iption . CHILLE         | Of<br>Cells<br>1        | Airflo<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | rgy<br>ts<br>nît<br>eratur<br>rîft | -               |
| d er     | Cooling Tower Code Eq5100  59 Inative T Color All Coil | Capaci<br>Value | Units Units Equipment Sect ump Elec Demanay Time of D. Schedule               | Consump<br>Value<br>11.19<br>ion Alterr<br>Equipment<br>nd Demand<br>ay Limit<br>Max KW | Consump Units KW Descripti Alternat W. C. R-                | Fluid Type  on / TOD: ive Descr 123 CENTR                  | Type  Schedule  iption . CHILLE         | of<br>Cells<br>1        | Airflo<br>Low Sp           | w Energy<br>d Value             | Ener<br>Unit | mit eratur                         | -<br>e          |
| d er     | Cooling Tower Code Eq5100  59 Enative T r Si           | Capaci<br>Value | Units  Equipment Sect  ump Elec Demainary Time of D. Schedule  gent -Group 1- | Consump<br>Value<br>11.19<br>ion Alterr<br>Equipment<br>nd Demand<br>ay Limit<br>Max KW | Consump Units KW Descripti Alternat W. C. R Cooli           | Fluid Type  on / ToD: ive Descr 123 CENTR  ng Load A 3Grou | Type  Schedule  iption CHILLE  ssignmen | Of Cells  1  S  R, EXIS | Airflo<br>Low Sp<br>BOILER | w Energy<br>d Value             | Ener<br>Unit | mit<br>eratur<br>rift              | -<br>е<br>8Grou |

|       | quip                       | Num    | co                                    | OLING                     | •••••             |                                 | HEAT R                      | ECOVERY- | • • • • • • • |         | Seq            |         | Demar |
|-------|----------------------------|--------|---------------------------------------|---------------------------|-------------------|---------------------------------|-----------------------------|----------|---------------|---------|----------------|---------|-------|
| tef C |                            |        | Capacity                              |                           | • • •             | Capa                            | city                        | E        | nergy         |         | Order          | Seq     | Limi  |
| ium M | ame<br>CENT123             |        | Value Units                           | Value<br>177              | Units<br>KW       | Value                           | Units                       | Value    | Uni           | ts      | Num            | Туре    | Numbe |
|       |                            |        | COND                                  | _                         | •                 |                                 |                             |          | •••••         |         |                |         |       |
| ef F  | ull Load                   | Full L | oad Full Load                         | Full Los                  | d Full Lo         | oad Full L                      | oad over                    | Col      | d C           | ooling  | Misc.          |         |       |
| lum V |                            | Units  | Value                                 | Units                     | Value             | Units                           | Cont                        | rol Sto  | rage T        | ower    | Access         |         |       |
| 1     | 8.65                       | KW     | 11.19                                 | KW                        |                   |                                 |                             |          | 1             |         |                |         |       |
| lase  | Base<br>y Utilit<br>Descri | y<br>P | Hourly<br>Demand<br>Value<br>CHL 33.4 | Hourly<br>Demand<br>Units | Schedul e<br>Code | Parameters Energy Type CHILL-LD | Equip<br>Referenc<br>Number | Deman    | d<br>ing En   | itering | Leavir<br>Temp | -<br>ng |       |

| et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | Reat<br>Fan                                          | Return<br>Fan                                              | Mn Exh<br>Fan                                                | Aux<br>Fan |                                                                         | Cool<br>Fan Mtr                                                      | Return<br>Fan Mtr                                                |                                                 | Suppl<br>Duct                         | y Return<br>Air                                | 1                 |                                      |                                |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------|-------------------|--------------------------------------|--------------------------------|-------------------------------------|
| mber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SP<br>.75                                                                 | SP<br>.75                                            | SP                                                         | SP                                                           | SP         | SP                                                                      | Loc                                                                  | Loc                                                              | Ht Gn                                           | Loc                                   | Path                                           |                   |                                      |                                |                                     |
| nd /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                                      |                                                            |                                                              |            | Fau                                                                     | ipment Sch                                                           | - مارامو                                                         |                                                 |                                       |                                                |                   |                                      |                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Main                                                                      |                                                      |                                                            | Direc                                                        |            |                                                                         | Auxiliary                                                            |                                                                  | Mai                                             |                                       |                                                |                   |                                      | liary                          |                                     |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cooli                                                                     |                                                      |                                                            | Evap                                                         |            | Evap                                                                    | Cooling                                                              | Heating                                                          | Pre                                             | heat                                  | Reheat                                         | Mech.             | Heat                                 | ing                            |                                     |
| mber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coil                                                                      | E                                                    | conomize                                                   | er Coil                                                      |            | Coil                                                                    | Coil                                                                 | Coil                                                             | Coi                                             | i                                     | Coil                                           | Humidity          | / Coil                               |                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FTSAM                                                                     | CLG                                                  |                                                            |                                                              |            |                                                                         |                                                                      | FTSAMH'                                                          | rg FTS                                          | AMHTG                                 | FTSAMHTG                                       |                   |                                      |                                |                                     |
| ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                      | Equi;                                                      | oment Sec                                                    | tion       | Alternat                                                                | ive #1                                                               | •                                                                | •••••                                           | •••                                   |                                                |                   |                                      |                                |                                     |
| rd 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |                                                      |                                                            |                                                              |            | •                                                                       | escription                                                           | / T00 Sc                                                         | nedules                                         |                                       |                                                |                   |                                      |                                |                                     |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                      | •                                                          | Elec Der<br>Time of                                          |            |                                                                         |                                                                      |                                                                  |                                                 |                                       |                                                | Dem               |                                      | eratur                         |                                     |
| mber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                      | ule                                                        | Schedul                                                      |            |                                                                         | lternative                                                           | e Descrip                                                        | tion                                            |                                       |                                                | Schedule          | •                                    | ift                            | •                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                      |                                                            |                                                              | •          |                                                                         | ASE CASE                                                             | , , , , , , , , , , , , , , , , , , ,                            | • • • • • • • • • • • • • • • • • • • •         |                                       |                                                |                   | -                                    |                                |                                     |
| oad /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All Coi                                                                   | l Co                                                 | oling                                                      |                                                              |            |                                                                         | Cooling                                                              |                                                                  |                                                 |                                       |                                                |                   |                                      |                                |                                     |
| oad /<br>sgn l<br>ef (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Coi<br>Loads T                                                        | l Co<br>o Eq<br>f Si                                 | oling                                                      | -Group<br>Begin E                                            | 1<br>nd B  | Group 2-                                                                | Cooling<br>-Group 3-<br>Begin End                                    | -Group                                                           | 4GF                                             | oup 5-                                | -Group                                         | 6Grou             | p 7-                                 | -Group                         | 8Gro                                |
| oad /<br>sgn I<br>ef (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Coi<br>Loads T<br>Cool Re<br>1                                        | t Coo<br>o Equ<br>of Si<br>BL                        | oling<br>uipment<br>zing<br>KPLANT                         | -Group<br>Begin E<br>1 1                                     | 1          | Group 2-<br>legin End                                                   | -Group 3-<br>Begin End                                               | -Group<br>Begin E                                                | 4Gr<br>nd Beg<br>meters                         | oup 5-                                | -Group<br>Begin E                              | 6Grou<br>nd Begin | p 7-<br>End                          | -Group<br>Begin                | 8Gro<br>End Begi                    |
| oad /<br>sgn I<br>ef (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Coi<br>Loads T<br>Cool Re<br>1                                        | t Coo                                                | oling<br>uipment<br>zing<br>KPLANT                         | -Group<br>Begin E<br>1 1                                     | 1          | Group 2-<br>legin End                                                   | -Group 3-<br>Begin End<br>Ling Equip                                 | -Group<br>Begin E                                                | 4Gr<br>nd Beg<br>meters<br>HEAT                 | oup 5-                                | -Group<br>Begin E                              | 6Grou<br>nd Begin | p 7-<br>End                          | -Group<br>Begin                | 8Gro<br>End Begi                    |
| oad /<br>sgn l<br>ef (<br>ard 6<br>ool E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All Coi<br>Loads T<br>Cool Re<br>1                                        | t Cod<br>o Equ<br>f Si<br>BL                         | oling<br>uipment<br>zing<br>KPLANT                         | -Group<br>Begin E<br>1 1                                     | 1 nd B     | Group 2- legin End Coo                                                  | -Group 3-<br>Begin End<br>ling Equip                                 | -Group<br>Begin E<br>ment Pare<br>                               | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity          | oup 5-                                | -Group<br>Begin E                              | 6Grou             | p 7-<br>End  <br>Seq<br>Order        | -Group<br>Begin<br>Seq         | 8Gro<br>End Begi<br>Demand          |
| card 6.<br>Card 6.<br>Cool Etef C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All Coi<br>Loads T<br>Cool Re<br>1                                        | t Cod<br>o Eq<br>of Si<br>BL<br>Num<br>Of<br>Uni     | oling<br>uipment<br>zing<br>KPLANT<br>Ca                   | -Group<br>Begin E<br>1 1                                     | 1 nd B     | Group 2-<br>legin End                                                   | -Group 3-<br>Begin End<br>Ling Equip                                 | -Group<br>Begin E                                                | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity          | oup 5-                                | -Group<br>Begin E                              | 6Grou             | p 7-<br>End                          | -Group<br>Begin<br>Seq         | 8Gro<br>End Begi                    |
| oad /<br>sgn  <br>lef  <br>card 60<br>cool E<br>tef C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All Coi<br>Loads T<br>Cool Re<br>1                                        | t Co<br>o Equ<br>of Si<br>BL                         | oling<br>uipment<br>zing<br>KPLANT<br>Ca<br>ts Valu<br>304 | -Group Begin E 1 1  pacity e Units TONS                      | 1 nd B     | Group 2- legin End  Coo NG Value 225                                    | -Group 3- Begin End Ling Equip Units KW                              | -Group<br>Begin E<br>ment Pare<br>Capac<br>Value                 | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5-<br>in End<br>RECOVE           | -Group<br>Begin E<br>RY<br>RYEnergy-<br>lue Un | 6Ground Begin     | p 7-<br>End  <br>Seq<br>Order<br>Num | -Group<br>Begin<br>Seq         | 8Gro<br>End Begi<br>Demand<br>Limit |
| oad / ssgn   l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All Coi<br>Loads T<br>Cool Re<br>1<br>2<br>quip<br>code<br>ame<br>91001s  | L Coo<br>o Equif Si:<br>BL:<br>Num<br>Of<br>Uni<br>1 | oling<br>uipment<br>zing<br>KPLANT<br>Ca<br>ts Valu<br>304 | -Group Begin E 1 1  pacity e Units TONS                      | 1 CCOOLI   | Group 2- legin End  Coo NGEner Value 225  Cooling Pu                    | -Group 3- Begin End Ling Equip Units KW  mps and ReHT REC            | -Group  Begin E  ment Para Capac  Value                          | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5-<br>in End<br>RECOVE<br><br>Va | -Group<br>Begin E<br>RY<br>RYEnergy-<br>lue Un | 6Ground Begin     | p 7-<br>End  <br>Seq<br>Order<br>Num | -Group<br>Begin<br>Seq         | 8Gro<br>End Begi<br>Demand          |
| oad / Sagn   Gard 6   | All Coi<br>Loads T<br>Cool Re<br>1<br>2<br>quip<br>code<br>lame<br>91001s | l Coo<br>o Equif Si<br>BLI<br>Num<br>Of<br>Uni<br>1  | oling uipment zing KPLANT Ca ts Valu 304                   | -Group Begin E 1 1                                           | 11 COOLI   | Group 2- legin End  NG Value 225  Cooling Pu SER Full Load              | -Group 3- Begin End  ling Equip Units KW  mps and ReHT REC Full Load | -Group  Begin E  ment PareCapac  Value  ferences or AUX  Full Lo | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5- in End  RECOVE Va             | -Group<br>Begin E<br>RYEnergy-<br>lue Un       | 6Ground Begin     | p 7-<br>End  <br>Seq<br>Order<br>Num | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand          |
| oad / Sagn   Sag | All Coi<br>Loads T<br>Cool Re<br>1<br>2<br>quip<br>code<br>lame<br>91001s | l Coo<br>o Equif Si<br>BLI<br>Num<br>Of<br>Uni<br>1  | oling uipment zing KPLANT Ca ts Valu 304                   | -Group Begin E 1 1  pacity e Units TONS                      | 11 COOLI   | Group 2- legin End  Coo NGEner Value 225  Cooling Pu                    | -Group 3- Begin End Ling Equip Units KW  mps and ReHT REC            | -Group  Begin E  ment Para Capac  Value                          | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5- in End  RECOVE Va             | -Group<br>Begin E<br>RY<br>RYEnergy-<br>lue Un | 6Ground Begin     | p 7-<br>End  <br>Seq<br>Order<br>Num | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand          |
| oad / Sand 6 Cool - Elum N Cool - Elum N Cool - Elum N Cool - Elum N Cool - Elum V Coo | All Coi<br>Loads T<br>Cool Re<br>1<br>2<br>quip<br>code<br>lame<br>91001s | t Cooker Sir BLI                                     | oling uipment zing KPLANT Ca ts Valu 304                   | -Group Begin E 1 1                                           | 11 COOLI   | Group 2- legin End  WG Value 225  Cooling Pu SER Full Load Jnits        | -Group 3- Begin End  ling Equip Units KW  mps and ReHT REC Full Load | -Group  Begin E  ment PareCapac  Value  ferences or AUX  Full Lo | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5- in End  RECOVE Va             | -Group<br>Begin E<br>RYEnergy-<br>lue Un       | 6Ground Begin     | p 7- End   Seq Order Num             | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand<br>Limit |
| oad / Sand 6 Cool - Elum N Cool - Elum N Cool - Elum N Cool - Elum N Cool - Elum V Coo | All Coi<br>Loads T<br>Cool Re<br>1<br>2<br>quip<br>code<br>lame<br>91001s | t Cooker Sir BLI                                     | oling uipment zing KPLANT Ca ts Valu 304                   | -Group Begin E 1 1                                           | 11 COOLI   | Group 2- legin End  WG Value 225  Cooling Pu SER Full Load Jnits        | -Group 3- Begin End  ling Equip Units KW  mps and ReHT REC Full Load | -Group  Begin E  ment PareCapac  Value  ferences or AUX  Full Lo | 4Gr<br>nd Beg<br>meters<br>HEAT<br>ity<br>Units | roup 5- in End  RECOVE Va             | -Group<br>Begin E<br>RYEnergy-<br>lue Un       | 6Ground Begin     | p 7- End   Seq Order Num             | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand<br>Limit |
| oad / ssgn   ssg | All Coi<br>Loads T<br>Cool Re<br>1<br>2                                   | L Co- to Equif Si: BLi  Num Of Uni 1                 | oling<br>uipment<br>zing<br>KPLANT<br>Ca<br>ts Valu<br>304 | -Group Begin E 1 1  pacity e Units TOWS  Full Le Value 11.19 | CCOOLI     | Group 2- legin End  Coo NG Value 225  Cooling Pu SER Full Load Jnits KW | -Group 3- Begin End  ling Equip gy Units KW  mps and Re              | -Group  Begin E  ment Pare                                       | wetersHEAT ity UnitsSwind                       | RECOVE                                | -Group<br>Begin E<br>RY                        | 6Ground Begin     | p 7- End   Seq Order Num             | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand<br>Limit |
| cood / sign   si | All Coi<br>Loads T<br>Cool Re<br>1<br>2                                   | L Co- to Equif Si: BLi  Num Of Uni 1                 | oling<br>uipment<br>zing<br>KPLANT<br>Ca<br>ts Valu<br>304 | -Group Begin E 1 1  pacity e Units TOWS  Full Le Value 11.19 | CCOOLI     | Group 2- legin End  Coo NG Value 225  Cooling Pu SER Full Load Jnits KW | -Group 3- Begin End  ling Equip Units KW  mps and ReHT REC Full Load | -Group  Begin E  ment Pare                                       | wetersHEAT ity UnitsSwind                       | RECOVE                                | -Group<br>Begin E<br>RY                        | 6Ground Begin     | p 7- End   Seq Order Num             | -Group<br>Begin<br>Seq<br>Type | 8Gro<br>End Begi<br>Demand<br>Limit |

|                                                                 | Equip                                      |                                                            | HW Pmp                                              |                                                                     |                                                    |                                                                 | Energy                                      | ,                    |                       | •                             | itch                   |             |                                                       |               | Demar  |
|-----------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|----------------------|-----------------------|-------------------------------|------------------------|-------------|-------------------------------------------------------|---------------|--------|
| ef .                                                            | Code                                       | Of                                                         | Full Ld                                             |                                                                     | Cap'y                                              |                                                                 | Rate                                        |                      |                       |                               |                        |             | Misc.                                                 |               | Limi   |
| umber                                                           |                                            |                                                            | Value                                               |                                                                     |                                                    | Units                                                           | Value                                       | Unit                 |                       | umber Co                      | ntrol :                | Strg        |                                                       | Cogen         | Numb   |
|                                                                 | 900HEXIS                                   |                                                            | 3.73                                                | KM                                                                  | 1665                                               | MBH                                                             | 2250                                        | MBH                  | 1                     |                               |                        |             | 1                                                     |               |        |
|                                                                 | 900HEXIS                                   |                                                            |                                                     |                                                                     | 1665                                               | MBH                                                             | 2250                                        | MBH                  | 2                     |                               |                        |             |                                                       |               |        |
|                                                                 | 900HEXIS                                   | 1                                                          |                                                     |                                                                     | 1665                                               | MBH                                                             | 2250                                        | MBH                  | 3                     | •                             |                        |             |                                                       |               |        |
| ard 7                                                           | 1<br>Base                                  |                                                            | Hourl                                               | ·····Bas                                                            |                                                    | ity Para                                                        |                                             | <br>Quip             |                       | and                           |                        |             | •••                                                   |               |        |
|                                                                 | y Utility                                  |                                                            | Deman                                               |                                                                     |                                                    | dule En                                                         |                                             |                      |                       | niting En                     | tering                 | Leav        | ina                                                   |               |        |
| umber                                                           |                                            |                                                            | Value                                               |                                                                     | Code                                               |                                                                 |                                             | lumber               |                       |                               | emp                    | Temp        | -                                                     |               |        |
|                                                                 |                                            | -LINE LOS                                                  |                                                     |                                                                     | AVAI                                               | -                                                               | •                                           | 1                    |                       |                               | •                      |             |                                                       |               |        |
| !                                                               |                                            | LOSS CHL                                                   |                                                     |                                                                     |                                                    |                                                                 | ILL-LD                                      |                      |                       |                               |                        |             |                                                       |               |        |
| ower<br>ef                                                      | Cooling<br>Tower<br>Code                   |                                                            |                                                     | Condenso<br>Energy<br>y Consump<br>Value                            | Ener<br>Cons<br>Unit                               | gy<br>sump Flu                                                  | ıid T                                       | ype<br>ype           | Number<br>Of<br>Cells | Percent<br>Airflow<br>Low Spd | Low Sp<br>Energy       | d L         |                                                       |               |        |
|                                                                 | EQ5100                                     |                                                            |                                                     | 11.19                                                               | KW                                                 |                                                                 |                                             |                      | 1                     |                               |                        |             |                                                       |               |        |
| ard 7                                                           | "5                                         |                                                            |                                                     |                                                                     | MISC                                               | cellaneou                                                       | us access                                   | огу                  |                       |                               |                        |             |                                                       |               |        |
| lisc                                                            |                                            | Energy                                                     | Energy                                              | Sched                                                               | #2<br>Equip                                        | Energ                                                           | y Ene                                       | rgy Sc               |                       | #3<br>Equip                   | Energ                  |             | Energy                                                |               |        |
| isc<br>ef                                                       | #1<br>Equip<br>Code                        | Energy<br>Value                                            | Energy<br>Units                                     | Sched<br>Code                                                       | #2<br>Equip<br>Code                                | Energ<br>Value                                                  | gy Ene<br>e Uni                             | rgy Sc               |                       | #3<br>Equip<br>Code           | Energ<br>Value         | y           | Energy<br>Units                                       | Sched         |        |
| lisc<br>Ref                                                     | #1<br>Equip<br>Code                        | Energy                                                     | Energy                                              | Sched<br>Code                                                       | #2<br>Equip                                        | Energ<br>Value                                                  | gy Ene<br>e Uni                             | rgy Sc               | hed                   | #3<br>Equip                   | Energ                  | y           | Energy                                                | Sched         |        |
| isc<br>ef                                                       | #1<br>Equip<br>Code<br>Eq5013              | Energy<br>Value<br>3.73                                    | Energy<br>Units<br>KW                               | Sched Code ection Alt                                               | #2 Equip Code EQ5013 ernativ                       | Energ<br>Value<br>1.49<br>ve #2                                 | gy Ene<br>Uni<br>KW                         | rgy Sa<br>ts Ca      | thed ode              | #3<br>Equip<br>Code<br>E05013 | Energ<br>Value<br>1.12 | <b>y</b>    | Energy<br>Units<br>KW                                 | Sched<br>Code |        |
| lisc<br>ef                                                      | #1 Equip Code Eq5013                       | Energy Value 3.73 Equ                                      | Energy<br>Units<br>KW<br>iipment Se                 | Sched Code ection Alt Equipme                                       | #2 Equip Code EQ5013 ernativ                       | Energ<br>Value<br>1.49<br>ve #2                                 | gy Ene<br>Uni<br>KW                         | rgy Sa<br>ts Ca      | thed ode              | #3<br>Equip<br>Code<br>E05013 | Energ<br>Value<br>1.12 | emand       | Energy<br>Units<br>KW                                 | Sched<br>Code |        |
| lisc<br>lef<br>ard !                                            | #1 Equip Code EQ5013                       | Energy Value 3.73 Equ ec Consump ne of Day                 | Energy Units KW sipment So Elec Do Time o           | Sched Code ection Alt Equipme emand Dema f Day Limi                 | #2 Equip Code EQ5013 ernativ nt Desc               | Energy Value 1.49                                               | gy Enee Uni<br>KW                           | rgy So               | thed ode              | #3<br>Equip<br>Code<br>E05013 | Energ<br>Value<br>1.12 | emand<br>Te | Energy<br>Units<br>KW<br>Limit                        | Sched<br>Code |        |
| lisc<br>Ref                                                     | #1 Equip Code EQ5013                       | Energy Value 3.73 Equ                                      | Energy<br>Units<br>KW<br>iipment Se                 | Sched Code ection Alt Equipme emand Dema f Day Limi                 | #2 Equip Code EQ5013 ernativ nt Desc nd t KW Al    | Energy Value 1.49  ve #2 cription                               | gy Ene<br>Uni<br>KW                         | rgy Sots Co          | ched<br>ode           | #3<br>Equip<br>Code<br>E05013 | Energ<br>Value<br>1.12 | emand<br>Te | Energy<br>Units<br>KW                                 | Sched<br>Code |        |
| isc<br>def<br>Card !<br>Uter<br>dumber<br>2<br>Card d<br>Assign | #1 Equip Code Eq5013  Fla mative Tin r Sch | Energy Value 3.73 Equ  consump ne of Day nedule Coil ds To | Energy Units KW  iipment So  Elec Do Time or Schedu | Sched Code  ection Alt Equipme emand Dema f Day Limi le Max Group 2 | #2 Equip Code EQ5013 ernativ nt Desc nd t KW At EX | Energy Value 1.49  ve #2 cription ternative IST CHILL eating Le | y Enee Uni KW  / TOO Sc e Descrip LER, FORC | hedules tion E DRAFT | r HIGH                | #3 Equip Code E05013  BOILER  | Energ<br>Value<br>1.12 | remand Te   | Energy<br>Units<br>KW<br>Limit -<br>Emperato<br>Drift | Sched<br>Code | roup ( |
| isc ef  ard ! lumbel !                                          | #1 Equip Code Eq5013  Fla mative Tin r Sch | Energy Value 3.73 Equ  consump ne of Day nedule Coil ds To | Energy Units KW  iipment So  Elec Do Time or Schedu | Sched Code  ection Alt Equipme emand Dema f Day Limi le Max         | #2 Equip Code EQ5013 ernativ nt Desc nd t KW At EX | Energy Value 1.49  ve #2 cription ternative IST CHILL eating Le | y Enee Uni KW  / TOO Sc e Descrip LER, FORC | hedules tion E DRAFT | r HIGH                | #3 Equip Code E05013  BOILER  | Energ<br>Value<br>1.12 | remand Te   | Energy<br>Units<br>KW<br>Limit -                      | Sched<br>Code | roup ( |

| Base Utility Parameters  Base Base Hourly Hourly Equip Demand  Base Base Hourly Demand Schedule Energy Reference Limiting Entering Leaving  Number Descrip Value Units Code Type Number Number Temp Temp  How USE-LINE LOS 608.2 MBH AVAIL HOT-LD 1  Card 75                                                                                                                                                                                                                                                                           | leat<br>Ref                                          | Equip<br>Code                                                             | Number<br>Of                                                                  | HW Pmp<br>Full Ld                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Caj                                  | p'y                       |                                                                                                | nergy<br>ate                                                       |                                        | Seq<br>Order | Switch<br>over                       | Hot                                   | Misc.                               |                       | Deman<br>Limit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------|--------------------------------------|---------------------------------------|-------------------------------------|-----------------------|----------------|
| and 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .mber                                                | Name                                                                      | Units                                                                         | Value                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Va                                   | lue U                     | nits V                                                                                         | alue L                                                             | Ini ts                                 | Number       | Control                              | Strg                                  | Acc.                                | Cogen                 | Numbe          |
| Hourly Hourly Equip Demand  Base Base Hourly Hourly Equip Demand  Benand Schedule Energy Reference Limiting Entering Leaving  mber Descrip Value Units Code Type Number Number Temp Temp  DHW USE-LINE LOS 608.2 MBH AVAIL HOT-LD 1   MI WI                                                                                                                                                                                                                                                                                                                                                                          |                                                      | BOILHEFT                                                                  | 1                                                                             | 3.73                                                | KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 173                                  | 58 M                      | вн 2                                                                                           | 000                                                                | 18H                                    |              |                                      |                                       | 1                                   |                       |                |
| mber Descrip Value Units Code Type Number Number Temp Temp  DHW USE-LINE LOS 608.2 MBH AVAIL HOT-LD 1  and 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ard 7                                                | 1                                                                         |                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Base (                             | Utilit                    | y Paramete                                                                                     | rs                                                                 |                                        |              |                                      | •••••                                 | •••                                 |                       |                |
| mber Descrip Value Units Code Type Number Number Temp Temp DNW USE-LINE LOS 608.2 MBH AVAIL HOT-LD 1  ard 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                                                                           |                                                                               | Hourt                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                    |                           |                                                                                                | •                                                                  | ip                                     | Demand       |                                      |                                       |                                     |                       |                |
| DNW USE-LINE LOS 608.2 MBH AVAIL NOT-LD 1  and 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                                           |                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                           |                                                                                                |                                                                    |                                        |              |                                      | g Leav                                | ring                                |                       |                |
| ard 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                                           |                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                           |                                                                                                |                                                                    | ber                                    | Number       | Тетр                                 | Temp                                  | •                                   |                       |                |
| #1 #2 #3  isc Equip Energy Energy Sched Equipment Sched Units Code Code Value Units Code Equipment Equipment Description / 1.12 KW  Equipment Section Alternative #3 |                                                      |                                                                           |                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                           |                                                                                                |                                                                    |                                        |              |                                      |                                       |                                     |                       |                |
| ef Code Value Units Code Code Value Units Code Code Value Units Code E05013 3.73 KW E05013 1.49 KW E05013 1.12 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |                                                                           | ••••••                                                                        | •••••                                               | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | Miscel                    | laneous Ac                                                                                     | cessory                                                            |                                        |              | •••••                                | •••••                                 |                                     |                       |                |
| Equipment Section Alternative #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | isc                                                  | Equip                                                                     | Energy                                                                        | Energy                                              | Sched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Equ                                  | ıip                       | Energy                                                                                         | Energy                                                             | Sched                                  | Equip        | Ene                                  | rgy                                   | Energy                              | Sched                 |                |
| ard 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ef                                                   | Code                                                                      | Value                                                                         | Units                                               | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cod                                  | le                        | Value                                                                                          | Units                                                              | Code                                   | Code         | Val                                  | ue                                    | Units                               | Code                  |                |
| ard 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                    | EQ5013                                                                    | 3.73                                                                          | KW                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EQ5                                  | 013                       | 1.49                                                                                           | KW                                                                 |                                        | E9501        | 3 1.1                                | 2                                     | KW                                  |                       |                |
| Atternative Time of Day Time of Day Limit Temperature  Lumber Schedule Schedule Max KW Alternative Description Schedule Drift  W. C. V.F.D. CENTR. CHILLER, EXIST BOILR  and 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                           | Eq                                                                            | uipment Se                                          | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Altern                               | native                    | #3                                                                                             | •                                                                  | •••••                                  |              |                                      |                                       |                                     |                       |                |
| umber Schedule Schedule Max KW Alternative Description Schedule Drift W. C. V.F.D. CENTR. CHILLER, EXIST BOILR  ard 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                                           |                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                           |                                                                                                |                                                                    |                                        |              |                                      |                                       | ••••                                | •••                   |                |
| W. C. V.F.D. CENTR. CHILLER, EXIST BOILR  Lard 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ard 5                                                | 9<br>El                                                                   | ec Consum                                                                     | o Elec De                                           | Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipment<br>Demand                     |                           |                                                                                                |                                                                    |                                        |              |                                      | Demand                                | Limit ·                             |                       |                |
| Load All Coil Cooling  All Coil Cooling  Algon Loads To Equipment -Group 1Group 2Group 3Group 4Group 5Group 6Group 7Group 8-  Ref Cool Ref Sizing Begin End  BLKPLANT 1 1  Card 62                                                                                                                                                                                                                                                                                                                                                                                                           | ard 5                                                | 9<br>El<br>sative Ti                                                      | ec Consum<br>me of Day                                                        | o Elec Do                                           | Equ<br>emand (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ipment<br>Demand<br>Limit            | Descri                    | iption / TC                                                                                    | 00 Sched                                                           | ules ••                                |              | ••••                                 | Demand<br>T                           | Limit ·                             | ure                   |                |
| sign Loads To Equipment -Group 1Group 2Group 3Group 4Group 5Group 6Group 7Group 8- sef Cool Ref Sizing Begin End  1 BLKPLANT 1 1  card 62                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ard 5<br>ltern<br>umber                              | 9<br>El<br>sative Ti                                                      | ec Consum<br>me of Day                                                        | o Elec Do                                           | Equ<br>emand (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ipment<br>Demand<br>Limit            | Descri<br>Alte            | iption / TO                                                                                    | 00 Sched                                                           | ules                                   |              | Sched                                | Demand<br>T                           | Limit ·                             | ure                   |                |
| ef Cool Ref Sizing Begin End  1 BLKPLANT 1 1  ard 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ard 5<br>ltern<br>umber<br>ard 6                     | 9<br>El<br>Mative Ti<br>Sc                                                | ec Consum<br>me of Day<br>hedule                                              | o Elec Do<br>Time o<br>Schedu                       | Equ<br>emand (<br>f Day (<br>le (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ipment<br>Demand<br>Limit<br>Max KW  | Descri<br>Alter<br>W. C.  | iption / TO<br>rnative Des<br>. V.F.D. CE                                                      | 00 Sched                                                           | ules<br>n<br>ILLER,                    | EXIST BOII   | Sched                                | Demand<br>T                           | Limit<br>emperatu<br>Drift          | ure                   |                |
| 1 BLKPLANT 1 1  Sard 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ard 5<br>ltern<br>umber<br>ard 6<br>oad              | 9<br>El<br>wative Ti<br>Sc<br>Sc                                          | ec Consum<br>me of Day<br>hedule                                              | Elec Di<br>Time o<br>Schedu                         | Equ<br>emand (<br>f Day (<br>le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iipment<br>Demand<br>Limit<br>Max KW | Alter<br>W. C.            | iption / TO<br>rnative Des<br>. V.F.D. CE<br>coling Load                                       | DO Sched<br>scriptio<br>ENTR. CH                                   | n<br>ILLER,                            | EXIST BOII   | Sched                                | Demand<br>T.                          | Limit emperato                      | ure                   | -Grown         |
| ool Equip Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ard 5<br>ltern<br>umber<br>ard 6<br>oad<br>sgn       | 9<br>El<br>Mative Ti<br>Sc<br>Sc<br><br>All Coil<br>Loads To              | ec Consum<br>me of Day<br>hedule<br>Cooling<br>Equipmen                       | Elec D<br>Time o<br>Schedu                          | Equ<br>emand (<br>f Day (<br>le (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ipment<br>Demand<br>Limit<br>Max KW  | Alter W. C.               | iption / TO<br>rnative Des<br>. V.F.D. CE<br>cooling Load                                      | DO Sched<br>scriptio<br>ENTR. CH<br>d Assign                       | n<br>ILLER,<br>ment                    | EXIST BOII   | Sched<br>R<br>up 6(                  | Demand<br>T<br>dule                   | Limit emperator Drift               | ure<br>               |                |
| cool Equip Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ard 5<br>ltern<br>umber<br>ard 6<br>oad<br>sgn       | 9                                                                         | ec Consum<br>me of Day<br>hedule<br>Cooling<br>Equipmen<br>Sizing             | o Elec D<br>Time o<br>Schedu<br>t -Group<br>Begin   | Equ<br>emand (<br>f Day (<br>le (<br>1G<br>End Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ipment<br>Demand<br>Limit<br>Max KW  | Alter W. C.               | iption / TO<br>rnative Des<br>. V.F.D. CE<br>cooling Load                                      | DO Sched<br>scriptio<br>ENTR. CH<br>d Assign                       | n<br>ILLER,<br>ment                    | EXIST BOII   | Sched<br>R<br>up 6(                  | Demand<br>T<br>dule                   | Limit emperator Drift               | ure<br>               | •              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ard 5<br>ltern<br>umber<br>ard 6<br>oad<br>sgn<br>ef | 9<br>El<br>Mative Ti<br>Sc<br>O<br>All Coil<br>Loads To<br>Cool Ref<br>1  | ec Consum<br>me of Day<br>hedule<br>Cooling<br>Equipmen<br>Sizing<br>BLKPLANT | DELec Do<br>Time o<br>Schedu                        | Equipment of Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ipment<br>Demand<br>Limit<br>Max KW  | Alter                     | iption / TO<br>rnative Des<br>. V.F.D. CE<br>coling Load<br>oup 3G<br>in End Beq               | DO Sched<br>scriptio<br>ENTR. CH<br>d Assign<br>roup 4-<br>gin End | n<br>ILLER,<br>ment<br>-Group<br>Begin | EXIST BOII   | Schec<br>R<br>P<br>up 6(<br>n End Be | Demand<br>Thule                       | Limit - emperatu Drift Ground Begin | ure<br>up 8-<br>n End | Begin          |
| hm Name Unite Value Unite Value Unite Value Unite Value Unite Unite Unite Unite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ard 6<br>oad<br>sgn<br>ef                            | 9<br>El<br>Mative Ti<br>Sc<br>i0<br>All Coil<br>Loads To<br>Cool Ref<br>1 | ec Consum<br>me of Day<br>hedule<br>Cooling<br>Equipmen<br>Sizing<br>BLKPLANT | Delec Do<br>Time o<br>Schedu<br>t -Group<br>Begin 1 | Equipment of Day   Items   Items | Demand<br>Limit<br>Max KW            | Alter W. C Gr Gr Gr Gr Gr | iption / TO<br>rnative Des<br>. V.F.D. CE<br>coling Load<br>oup 3GI<br>in End Beq<br>Equipment | DO Sched<br>scriptio<br>ENTR. CH<br>d Assign<br>roup 4-<br>gin End | n<br>ILLER,<br>ment<br>-Group<br>Begin | EXIST BOII   | Schec<br>R<br>Lup 6(<br>n End Be     | Demand<br>T.<br>Jule                  | Limit - emperatu Drift Ground Begin | ure<br>up 8-<br>n End | Begin          |
| lum Name Units Value Units Value Units Value Units Value Units Num Type N<br>I YCENVFD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ard 5 ltern umber ard 6 oad sign ef                  | 9                                                                         | ec Consum<br>me of Day<br>hedule<br>Cooling<br>Equipmen<br>Sizing<br>BLKPLANT | b Elec D<br>Time o<br>Schedu<br>t -Group<br>Begin   | Equipment of Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Demand<br>Limit<br>Max KW            | Alter                     | iption / TO rnative Des . V.F.D. CE cooling Loac oup 3 Gi in End Beq Equipment                 | DO Sched scriptio ENTR. CH d Assign roup 4- gin End Paramet        | n ILLER, mentGroup Begin ers           | EXIST BOIL   | Scheck<br>R                          | Demand<br>Thule<br>Group 7<br>Egin En | Limit emperatu Drift  Grood Begin   | up 8-<br>n End        | Begin          |

|              |            | D WATER            |        | -                  |           |           |          |       | ••••• |                  |                  |
|--------------|------------|--------------------|--------|--------------------|-----------|-----------|----------|-------|-------|------------------|------------------|
| Ref<br>Num   |            | Full Load<br>Units |        | Full Load<br>Units | full Lo   | ad Full t | vo beo.  | er    |       | Cooling<br>Tower | Misc.<br>Access. |
| Card<br>Base | 71<br>Base |                    | Hourly |                    | Utility P |           | Equip    |       | emand |                  |                  |
| Jtili        | ty Utili   | •                  | Demand |                    | Schedule  | Energy    | Refere   |       | -     | Entering         | Leaving          |
| Numbe        | r Descr    | ip                 | Value  | Units              | Code      | Type      | Number   | · N   | umber | Temp             | Temp             |
| 1            | HT-PU      | MP LOSS CHL        | 33.4   | TONS               | FTSAMCLG  | CHILL-LD  | 1        |       |       |                  |                  |
| Card         | 74         |                    |        | Condenser          | / Cooling | Touer Pa  | rameters |       |       |                  |                  |
|              | Cooling    |                    |        | Energy             | Energy    |           |          |       |       | nt Low Sp        |                  |
| Tower        | Tower      | Capacity           |        | Consump            | Consump   | Fluid     | Tower    |       |       | ow Energy        |                  |
| Ref          | Code       | Value              | Units  | Value              | Units     | Type      | Type     | Cells | LOW S | pd Value         | Units            |
| 1            | EQ5100     |                    |        | 11.19              | KW        |           |          | 1     |       |                  |                  |

...... \*\* TRACE 600 ANALYSIS \*\* \*\* by HUITT & ZOLLARS

> 030185.04 EEAP BOILER-CHILLER STUDY FT. SAM HOUSTON - SAN ANTONIO, TX. CORPS. OF ENGINEERS - FORT WORTH, TX. HUITT-ZOLLARS INC.

## AREA 900

Weather File Code:

Barometric Pressure:

Winter Ground Relectance:

| Location: | SAN ANTONIO, TEXAS |
|-----------|--------------------|
| Latitude: | 29.0 (deg)         |
| Longitude | 98.0 (den)         |

98.0 (deg) Time Zone: 6 792 (ft) Elevation:

29.0 (in. Hg)

Summer Clearness Number: 0.90 Winter Clearness Number: 0.90 Summer Design Dry Bulb: 97 (F) 76 (F) Summer Design Wet Bulb: Winter Design Dry Bulb: 30 (F) Summer Ground Relectance: 0.20

Air Density: 0.0738 (Lbm/cuft) Air Specific Heat: 0.2444 (Btu/lbm/F) Density-Specific Heat Prod: 1.0818 (Btu-min./hr/cuft/F) 4,761.9 (Btu-min./hr/cuft) Latent Heat Factor: Enthalpy Factor: 4.4255 (Lb-min./hr/cuft)

0.20

Design Simulation Period: June To November System Simulation Period: January To December Cooling Load Methodology: TETD/Time Averaging

14:25:17 5/31/95 Time/Date Program was Run: Dataset Name: FSH900 .TM

STEM TOTALS LOAD PROFILE - ALTERNATIVE 1

SYSTEM LOAD PROFILE -----

## System Totals

| Percent   | Cooli | ing Loa | d     | Heatir     | g Load |       |
|-----------|-------|---------|-------|------------|--------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours  | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)    |       |
|           |       |         |       |            |        |       |
| 0 - 5     | 15.5  | 7       | 276   | -127,751   | 41     | 728   |
| 5 - 10    | 31.0  | 8       | 317   | -255,502   | 24     | 432   |
| 10 - 15   | 46.5  | 8       | 313   | -383,253   | 11     | 199   |
| 15 - 20   | 62.0  | 7       | 288   | -511,003   | 8      | 146   |
| 20 - 25   | 77.5  | 8       | 307   | -638,754   | 5      | 89    |
| 25 - 30   | 93.0  | 9       | 353   | -766,505   | 4      | 79    |
| 30 - 35   | 108.5 | 6       | 257   | -894,256   | 4      | 76    |
| 35 - 40   | 124.0 | 4       | 168   | -1,022,007 | 1      | 16    |
| 40 - 45   | 139.5 | 5       | 202   | -1,149,758 | 1      | 16    |
| 45 - 50   | 155.0 | 4       | 173   | -1,277,509 | 0      | 0     |
| 50 - 55   | 170.5 | 5       | 207   | -1,405,259 | 0      | 0     |
| 55 - 60   | 186.0 | 6       | 235   | -1,533,010 | 0      | 0     |
| 60 - 65   | 201.5 | 5       | 188   | -1,660,761 | 0      | 0     |
| 45 - 70   | 217.0 | 4       | 143   | -1,788,512 | 0      | 0     |
| - 75      | 232.5 | 3       | 124   | -1,916,263 | 0      | 0     |
| 75 - 80   | 247.9 | 4       | 147   | -2,044,014 | 0      | 0     |
| 80 - 85   | 263.4 | 8       | 332   | -2,171,765 | 0      | 0     |
| 85 - 90   | 278.9 | 0       | 0     | -2,299,516 | 0      | 0     |
| 90 - 95   | 294.4 | 0       | 0     | -2,427,266 | 0      | 0     |
| 95 - 100  | 309.9 | 0       | 0     | -2,555,017 | 0      | 0     |
| Hours Off | 0.0   | 0       | 4,730 | 0          | 0      | 6,979 |

JIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

| Ť | Equip    | •     |       |           |       | Mon   | thly cons | sumption |        |       |       |       |       |        |
|---|----------|-------|-------|-----------|-------|-------|-----------|----------|--------|-------|-------|-------|-------|--------|
| m | Code     | Jan   | Feb   | Mar       | Apr   | May   | June      | July     | Aug    | Sep   | Oct   | Nov   | Dec   | Tota   |
| 0 | LIGHTS   |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | ELEC     | 42784 | 38686 | 42866     | 41391 | 42825 | 41473     | 42743    | 42866  | 41391 | 42825 | 41473 | 42375 | 503,69 |
|   | PK       | 152.0 | 152.0 | 152.0     | 152.0 | 152.0 | 152.0     | 152.0    | 152.0  | 152.0 | 152.0 | 152.0 | 152.0 | 152    |
| 1 | MISC LD  |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   | MISC LD  |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | GAS      | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   | MISC LD  |       |       |           |       |       |           |          |        |       | •     |       |       |        |
|   | OIL      | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | (      |
|   | MISC LD  |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | P STEAM  | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | (      |
|   | MISC LD  |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | P HOTH20 | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | (      |
|   | MISC LD  |       |       |           |       |       |           |          |        |       |       |       |       |        |
|   | P CHILL  | 0     | 0     | 0         | 0     | 0     | 0         | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | (      |
|   |          |       |       | EUTILITY  |       |       |           |          |        |       |       |       |       |        |
|   | HOTLD    | 4525  | 4087  | 4525      | 4379  | 4525  | 4379      | 4525     | 4525   | 4379  | 4525  | 4379  | 4525  | 53,2   |
|   | PK       | 6.1   | 6.1   | 6.1       | 6.1   | 6.1   | 6.1       | 6.1      | 6.1    | 6.1   | 6.1   | 6.1   | 6.1   |        |
|   |          |       |       | UTILITY   |       |       |           |          |        |       |       |       |       |        |
|   | CHILLD   | 0     | 0     | 0         | 0     | 24850 | 24048     | 24850    | 24850  | 24048 | 24850 | 0     | 0     | 147,4  |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 33.4  | 33.4      | 33.4     | 33.4   | 33.4  | 33.4  | 0.0   | 0.0   | 33     |
|   | EQ1001S  |       |       |           |       |       | <550 TON: | s        |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0     | 62585 | 78816     | 95844    | 100025 | 69899 | 36888 | 0     | 0     | 444,0  |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 202.4 | 202.7     | 223.5    | 225.8  | 208.0 | 115.8 | 0.0   | 0.0   | 225    |
|   | EQ5100   |       |       | LING TOWE |       |       |           |          |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0     | 8325  | 8057      | 8325     | 8325   | 8057  | 4420  | 0     | 0     | 45,5   |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 11.2  | 11.2      | 11.2     | 11.2   | 11.2  | 11.2  | 0.0   | 0.0   | 1      |

IIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

SE CASE

| ••• |        |      | ••••• | E Q       | UIPI    | MENT     | ENEI      | RGY      | ONSU  | JMPT  | I O N |      |      |        |
|-----|--------|------|-------|-----------|---------|----------|-----------|----------|-------|-------|-------|------|------|--------|
| tef | Equip  |      |       |           |         | Mon      | thly Con: | sumption |       |       |       |      |      |        |
|     | Code   | Jan  | Feb   | Mar       | Apr     | May      | June      | July     | Aug   | Sep   | Oct   | Nov  | Dec  | Total  |
| 1   | EQ5100 |      | COOL  | ING TOWE  | R FANS  |          |           |          |       |       |       |      |      |        |
|     | WATER  | 0    | 0     | 0         | 0       | 337      | 432       | 526      | 544   | 381   | 183   | 0    | 0    | 2,403  |
|     | PK     | 0.0  | 0.0   | 0.0       | 0.0     | 1.2      | 1.1       | 1.2      | 1.2   | 1.1   | 0.7   | 0.0  | 0.0  | 1.2    |
| 1   | EQ5001 |      | CHIL  | LED WATE  | R PUMP  | - CONST  | ANT VOLU  | ME       |       |       |       |      |      |        |
|     | ELEC   | 0    | 0     | 0         | 0       | 13876    | 13428     | 13876    | 13876 | 13428 | 13876 | 0    | 0    | 82,358 |
|     | PK     | 0.0  | 0.0   | 0.0       | 0.0     | 18.6     | 18.6      | 18.6     | 18.6  | 18.6  | 18.6  | 0.0  | 0.0  | 18.6   |
| 1   | EQ5010 |      | COND  | ENSER WA  | TER PUM | P-CV(HIG | H EFFIC.  | )        |       |       |       |      |      |        |
|     | ELEC   | 0    | 0     | 0         | 0       | 8325     | 8057      | 8325     | 8325  | 8057  | 8325  | 0    | 0    | 49,415 |
|     | PK     | 0.0  | 0.0   | 0.0       | 0.0     | 11.2     | 11.2      | 11.2     | 11.2  | 11.2  | 11.2  | 0.0  | 0.0  | 11.2   |
| 1   | EQ5300 |      | CONT  | ROL PANE  | L & INT | ERLOCKS  |           |          |       |       | *     |      |      |        |
|     | ELEC   | 0    | 0     | 0         | 0       | 744      | 720       | 744      | 744   | 720   | 744   | 0    | O    | 4,416  |
|     | PK     | 0.0  | 0.0   | 0.0       | 0.0     | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0  | 0.0  | 1.0    |
| 1   |        |      | NATU  | JRAL DRAF | T, WATE | R TUBE B | OILER     |          |       |       |       |      |      |        |
|     | GAS    | 7875 | 7951  | 6205      | 5921    | 6115     | 5918      | 6115     | 6115  | 5918  | 6115  | 6024 | 7815 | 78,086 |
|     | PK     | 19.1 | 22.5  | 10.2      | 8.8     | 8.2      | 8.2       | 8.2      | 8.2   | 8.2   | 8.2   | 10.1 | 19.7 | 22.5   |
| 1   | EQ5013 |      | WATE  | R CIRCUL  | ATING P | UMP - CO | NSTANT V  | OLUME    |       |       |       |      |      |        |
|     | ELEC   | 2775 | 2507  | 2775      | 2686    | 2775     | 2686      | 2775     | 2775  | 2686  | 2775  | 2686 | 2775 | 32,675 |
|     | PK     | 3.7  | 3.7   | 3.7       | 3.7     | 3.7      | 3.7       | 3.7      | 3.7   | 3.7   | 3.7   | 3.7  | 3.7  | 3.7    |
| 1   | EQ5311 |      | BOIL  | LER CONTR | OLS     |          |           |          |       |       |       |      |      |        |
|     | ELEC   | 93   | 84    | 93        | 90      | 93       | 90        | 93       | 93    | 90    | 93    | 90   | 93   | 1,095  |
|     | PK     | 0.1  | 0.1   | 0.1       | 0.1     | 0.1      | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.1  | 0.1  | 0.1    |
| 1   | EQ5013 |      | WATE  | ER CIRCUL | ATING P | UMP - CO | NSTANT V  | OLUME    |       |       |       |      |      |        |
|     | ELEC   | 2775 | 2507  | 2775      | 2686    | 2775     | 2686      | 2775     | 2775  | 2686  | 2775  | 2686 | 2775 | 32,675 |
|     | PK     | 3.7  | 3.7   | 3.7       | 3.7     | 3.7      | 3.7       | 3.7      | 3.7   | 3.7   | 3.7   | 3.7  | 3.7  | 3.7    |
| 1   | EQ5013 |      | WATE  | ER CIRCUL | ATING P | UMP - CO | NSTANT V  | OLUME    |       |       |       |      |      |        |
|     | ELEC   | 1109 | 1001  | 1109      | 1073    | 1109     | 1073      | 1109     | 1109  | 1073  | 1109  | 1073 | 1109 | 13,052 |
|     | PK     | 1.5  | 1.5   | 1.5       | 1.5     | 1.5      | 1.5       | 1.5      | 1.5   | 1.5   | 1.5   | 1.5  | 1.5  | 1.5    |
| 1   | EQ5013 |      | WATI  | ER CIRCUL | ATING P | UMP - CO | NSTANT V  | OLUME    |       |       |       |      |      |        |
|     | ELEC   | 833  | 753   | 833       | 806     | 833      | 806       | 833      | 833   | 806   | 833   | 806  | 833  | 9,811  |
|     | PK     | 1.1  | 1.1   | 1.1       | 1.1     | 1.1      | 1.1       | 1.1      | 1.1   | 1.1   | 1.1   | 1.1  | 1.1  | 1.1    |
| 2   |        |      | NATI  | URAL DRAF | T, WATE | R TUBE B | OILER     |          |       |       |       |      |      |        |
|     | GAS    | 0    | 0     | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0    | 0    | 0      |
|     | PK     | 0.0  | 0.0   | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0    |

| ef | Equip    | • • • • • • • • • • | • • • • • • • • |          |       | Mon   | thly Cons | sumption |       | ******* |       |       |       |          |
|----|----------|---------------------|-----------------|----------|-------|-------|-----------|----------|-------|---------|-------|-------|-------|----------|
| um | Code     | Jan                 | Feb             | Mar      | Apr   | May   | June      | July     | Aug   | Sep     | Oct   | Nov   | Dec   | Total    |
| 0  | LIGHTS   |                     |                 |          |       |       |           |          |       |         | •     |       |       |          |
|    | ELEC     | 42784               | 38686           | 42866    | 41391 | 42825 | 41473     | 42743    | 42866 | 41391   | 42825 | 41473 | 42375 | 503,698  |
|    | PK       | 152.0               | 152.0           | 152.0    | 152.0 | 152.0 | 152.0     | 152.0    | 152.0 | 152.0   | 152.0 | 152.0 | 152.0 | 152.0    |
| 1  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       |       |       |          |
|    | ELEC     | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | 0     | 0       | 0     | 0     | 0     | (        |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.0      |
| 2  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       |       |       |          |
|    | GAS      | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | 0     | 0       | 0     | 0     | 0     |          |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.       |
| 3  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       | •     |       |          |
|    | OIL      | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | o     | 0       | 0     | 0     | 0     |          |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.       |
| 4  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       |       |       |          |
|    | P STEAM  | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | 0     | 0       | 0     | 0     | 0     |          |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.       |
| 5  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       |       |       |          |
|    | P HOTH20 | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | 0     | 0       | 0     | 0     | 0     |          |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.       |
| 6  | MISC LD  |                     |                 |          |       |       |           |          |       |         |       |       |       |          |
|    | P CHILL  | 0                   | 0               | 0        | 0     | 0     | 0         | 0        | 0     | 0       | 0     | 0     | 0     |          |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0     | 0.0   | 0.0   | 0.0   | 0.       |
| 1  |          |                     |                 | E UTILIT |       |       |           |          |       |         |       |       |       |          |
|    | CHILLD   | 0                   | 0               | 0        | 0     | 24850 | 24048     | 24850    | 24850 | 24048   | 24850 | 0     | 0     | 147,49   |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 33.4  | 33.4      | 33.4     | 33.4  | 33.4    | 33.4  | 0.0   | 0.0   | 33.      |
| 1  |          |                     |                 | K ENGINE |       |       |           |          |       |         |       |       |       | <b>,</b> |
|    | GAS      | 0                   | 0               | 0        | 0     | 4756  | 5968      | 7287     | 7671  | 5326    | 2853  | 0     | 0     | 33,86    |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 16.1  | 15.6      | 18.7     | 19.6  | 16.0    | 8.1   | 0.0   | 0.0   | 19.      |
| 1  | EQ5100   | -                   |                 | LING TOW |       |       |           |          |       |         |       |       |       |          |
|    | ELEC     | 0                   | 0               | 0        | 0     | 8325  | 8057      | 8325     | 8325  | 8057    | 4262  | 0     | 0     | 45,35    |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 11.2  | 11.2      | 11.2     | 11.2  | 11.2    | 11.2  | 0.0   | 0.0   | 11       |
| 1  | EQ5100   | _                   |                 | LING TOW |       |       |           |          |       |         |       |       |       |          |
|    | WATER    | 0                   | 0               | 0        | 0     | 365   | 467       | 569      | 591   | 412     | 200   | 0     | 0     | 2,60     |
|    | PK       | 0.0                 | 0.0             | 0.0      | 0.0   | 1.3   | 1.2       | 1.4      | 1.4   | 1.2     | 0.8   | 0.0   | 0.0   | 1.       |

'HPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 3 ENGINE DRIVEN CHILLER, EXIST. BOILER

| Ref | Equip  |     | • • • • • • • • • • • • • • • • • • • • |          | • • • • • • • | Mon     | thly Cons | sumption |       |       |       |     |     |        |
|-----|--------|-----|-----------------------------------------|----------|---------------|---------|-----------|----------|-------|-------|-------|-----|-----|--------|
| Num | Code   | Jan | Feb                                     | Har      | Apr           | May     | June      | July     | Aug   | \$ep  | 0ct   | Nov | Dec | Total  |
| 1   | EQ5001 |     | CHIL                                    | LED WATE | R PUMP -      | CONST   | ANT VOLUM | ME       |       |       |       |     |     |        |
|     | ELEC   | 0   | 0                                       | 0        | C             | 13876   | 13428     | 13876    | 13876 | 13428 | 13876 | 0   | 0   | 82,358 |
|     | PK     | 0.0 | 0.0                                     | 0.0      | 0.0           | 18.6    | 18.6      | 18.6     | 18.6  | 18.6  | 18.6  | 0.0 | 0.0 | 18.6   |
| 1   | EQ5011 |     | COND                                    | ENSER WA | TER PUMP      | -CV(MED | IUM EFFI  | C.)      |       |       |       |     |     |        |
|     | ELEC   | 0   | 0                                       | 0        | 0             | 8325    | 8057      | 8325     | 8325  | 8057  | 8325  | 0   | 0   | 49,415 |
|     | PK     | 0.0 | 0.0                                     | 0.0      | 0.0           | 11.2    | 11.2      | 11.2     | 11.2  | 11.2  | 11.2  | 0.0 | 0.0 | 11.2   |
| 1   | E05300 |     | CONT                                    | ROL PANE | L & INTE      | RLOCKS  |           |          |       |       |       |     |     |        |
|     | ELEC   | 0   | 0                                       | 0        | 0             | 744     | 720       | 744      | 744   | 720   | 744   | 0   | 0   | 4,416  |
|     | PK     | 0.0 | 0.0                                     | 0.0      | 0.0           | 1.0     | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0    |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

"JIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
"ER COOLED SCREW CHILLER, EXIST BOILER

| ••••• |       | •••••• | O N   | MPTI  | ONSU          | G Y C   | ENER     | ENT   | UIPH     | E Q      | ••••• |       |          |     |
|-------|-------|--------|-------|-------|---------------|---------|----------|-------|----------|----------|-------|-------|----------|-----|
|       |       |        | ••••• |       | • • • • • • • | umption | hly Cons | Mont  | •••••    | •••••    |       |       | Equip -  | Ref |
| Tot   | Dec   | Nov    | Oct   | Sep   | Aug           | July    | June     | May   | Apr      | Mar      | Feb   | Jan   | Code     | Num |
|       |       |        |       |       |               |         |          |       |          |          |       |       | LIGHTS   | 0   |
| 503,6 | 42375 | 41473  | 42825 | 41391 | 42866         | 42743   | 41473    | 42825 | 41391    | 42866    | 38686 | 42784 | ELEC     |     |
| 152   | 152.0 | 152.0  | 152.0 | 152.0 | 152.0         | 152.0   | 152.0    | 152.0 | 152.0    | 152.0    | 152.0 | 152.0 | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 1   |
|       | 0     | 0      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | ELEC     |     |
| 0     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 2   |
|       | 0     | 0      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | GAS      |     |
| 0     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 3   |
|       | 0     | O      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | 011      |     |
| 0     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 4   |
|       | 0     | 0      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | P STEAM  |     |
| C     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 5   |
|       | 0     | 0      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | P HOTH20 |     |
| (     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          |          |       |       | MISC LD  | 6   |
|       | 0     | 0      | 0     | 0     | 0             | 0       | 0        | 0     | 0        | 0        | 0     | 0     | P CHILL  |     |
| (     | 0.0   | 0.0    | 0.0   | 0.0   | 0.0           | 0.0     | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       | 4        | UTILIT   | BASE  |       |          | 1   |
| 147,4 | 0     | 0      | 24850 | 24048 | 24850         | 24850   | 24048    | 24850 | 0        | 0        | 0     | G     | CHILLD   |     |
| 33    | 0.0   | 0.0    | 33.4  | 33.4  | 33.4          | 33.4    | 33.4     | 33.4  | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          | LL.   | CREW CHI | k w.c. s | YOR   |       | YSCRW22  | 1   |
| 317,  | 0     | 0      | 28993 | 48770 | 70890         | 67754   | 56032    | 44600 | 0        | 0        | 0     | 0     | ELEC     |     |
| 184   | 0.0   | 0.0    | 76.2  | 154.6 | 184.9         | 176.9   | 150.3    | 163.7 | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          | LING TOW |       |       | EQ5100   | 1   |
| 45,   | 0     | 0      | 4354  | 8057  | 8325          | 8325    | 8057     | 8325  | 0        | 0        | 0     | 0     | ELEC     |     |
| 1     | 0.0   | 0.0    | 11.2  | 11.2  | 11.2          | 11.2    | 11.2     | 11.2  | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |
|       |       |        |       |       |               |         |          |       |          | LING TOW |       |       | EQ5100   | 1   |
| 2,    | 0     | 0      | 175   | 361   | 518           | 501     | 411      | 320   | 0        | 0        | 0     | 0     | WATER    |     |
|       | 0.0   | 0.0    | 0.7   | 1.1   | 1.2           | 1.2     | 1.1      | 1.2   | 0.0      | 0.0      | 0.0   | 0.0   | PK       |     |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

TOUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 /ER COOLED SCREW CHILLER, EXIST BOILER

|     |        |     |      | E Q       | UIPN     | LENT     | ENE       | RGY      | соиси | JMPT  | I O N |     |           |                                 |
|-----|--------|-----|------|-----------|----------|----------|-----------|----------|-------|-------|-------|-----|-----------|---------------------------------|
| Ref | Equip  |     |      |           |          | Mon      | thly Cons | sumption |       |       |       |     | • • • • • |                                 |
| Num | Code   | Jan | Feb  | Mar       | Apr      | May      | June      | July     | Aug   | Sep   | Oct   | Nov | Dec       | Total                           |
| 1   | EQ5001 |     | CHIL | LED WATER | R PUMP - | CONST    | ANT VOLU  | 4E       |       |       |       |     |           | gr. segarrizati <del>name</del> |
|     | ELEC   | 0   | 0    | 0         | 0        | 13876    | 13428     | 13876    | 13876 | 13428 | 13876 | 0   | 0         | 82,358                          |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 18.6     | 18.6      | 18.6     | 18.6  | 18.6  | 18.6  | 0.0 | 0.0       | 18.6                            |
| 1   | EQ5011 |     | COND | ENSER WA  | TER PUMP | P-CV(MED | IUM EFFI  | C.)      |       |       |       |     |           |                                 |
|     | ELEC   | 0   | 0    | 0         | 0        | 8325     | 8057      | 8325     | 8325  | 8057  | 8325  | 0   | 0         | 49,415                          |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 11.2     | 11.2      | 11.2     | 11.2  | 11.2  | 11.2  | 0.0 | 0.0       | 11.2                            |
| 1   | EQ5300 |     | CONT | ROL PANE  | L & INTE | ERLOCKS  |           |          |       |       |       |     |           |                                 |
|     | ELEC   | 0   | 0    | 0         | 0        | 744      | 720       | 744      | 744   | 720   | 744   | Ō   | 0         | 4,416                           |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0       | 1.0                             |

TIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4
. C. R-123 CENTR. CHILLER, EXIST BOILER

| ef | Equip    |       | • • • • • • • • • |          |       | Mon1  | thly Cons | sumption |       |       |       |       |       |        |
|----|----------|-------|-------------------|----------|-------|-------|-----------|----------|-------|-------|-------|-------|-------|--------|
| um | Code     | Jan   | Feb               | Mar      | Apr   | May   | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Tota   |
| 0  | LIGHTS   |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | ELEC     | 42784 | 38686             | 42866    | 41391 | 42825 | 41473     | 42743    | 42866 | 41391 | 42825 | 41473 | 42375 | 503,69 |
|    | PK       | 152.0 | 152.0             | 152.0    | 152.0 | 152.0 | 152.0     | 152.0    | 152.0 | 152.0 | 152.0 | 152.0 | 152.0 | 152.   |
| 1  | MISC LD  |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | ELEC     | 0     | 0                 | 0        | 0     | 0     | 0         | 0        | Ö     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
| 2  | MISC LD  |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | GAS      | 0     | 0                 | 0        | 0     | 0     | O         | 0        | 0     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
| 3  | MISC LD  |       |                   |          |       |       |           |          |       |       | ,     |       |       |        |
|    | OIL      | 0     | 0                 | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
| 4  | MISC LD  |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | P STEAM  | 0     | 0                 | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
| 5  | MISC LD  |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | P HOTH20 | 0     | 0                 | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | C      |
| 6  | MISC LD  |       |                   |          |       |       |           |          |       |       |       |       |       |        |
|    | P CHILL  | 0     | 0                 | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     |        |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
| 1  |          |       | BAS               | E UTILIT | Y     |       |           |          |       |       |       |       |       |        |
|    | CHILLD   | 0     | 0                 | 0        | 0     | 24850 | 24048     | 24850    | 24850 | 24048 | 24850 | 0     | 0     | 147,49 |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 33.4  | 33.4      | 33.4     | 33.4  | 33.4  | 33.4  | 0.0   | 0.0   | 33     |
| 1  |          |       |                   | K CENT.  |       |       |           |          |       |       |       |       |       |        |
|    | ELEC     | 0     | 0                 | 0        | 0     | 45712 | 56332     | 67955    | 70957 | 50302 | 28814 | 0     | 0     | 320,0  |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 155.7 | 143.0     | 168.4    | 175.9 | 147.1 | 80.7  | 0.0   | 0.0   | 175    |
| 1  | EQ5100   |       |                   | LING TOW |       |       |           |          |       |       |       |       |       |        |
|    | ELEC     | 0     | 0                 | 0        | 0     | 8325  | 8057      | 8325     | 8325  | 8057  | 4351  | 0     | 0     | 45,4   |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 11.2  | 11.2      | 11.2     | 11.2  | 11.2  | 11.2  | 0.0   | 0.0   | 11     |
| ì  | EQ5100   |       |                   | LING TOW |       |       |           |          |       |       |       |       | •     |        |
|    | WATER    | 0     | 0                 | 0        | 0     | 321   | 411       | 501      | 518   | 363   | 175   | 0     | 0     | 2,2    |
|    | PK       | 0.0   | 0.0               | 0.0      | 0.0   | 1.2   | 1.1       | 1.2      | 1.2   | 1.1   | 0.7   | 0.0   | 0.0   | 1      |

C. R-123 CENTR. CHILLER, EXIST BOILER

|     |        |     | ••••• | E Q       | UIP      | ENT     | ENE       | RGY      | соиѕі | JMPT  | ON    | • • • • • • • • • • • • • • • • • • • • | •••••• |        |
|-----|--------|-----|-------|-----------|----------|---------|-----------|----------|-------|-------|-------|-----------------------------------------|--------|--------|
| Ref | Equip  |     |       |           |          | Mon     | thly Cons | sumption |       |       |       |                                         |        |        |
| Num | Code   | Jan | Feb   | Mar       | Apr      | May     | June      | July     | Aug   | Sep   | Oct   | Nov                                     | Dec    | Total  |
| 1   | EQ5001 |     | CHIL  | LED WATER | R PUMP - | CONST   | ANT VOLU  | ME       |       |       |       |                                         |        |        |
|     | ELEC   | 0   | 0     | 0         | 0        | 13876   | 13428     | 13876    | 13876 | 13428 | 13876 | 0                                       | 0      | 82,358 |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 18.6    | 18.6      | 18.6     | 18.6  | 18.6  | 18.6  | 0.0                                     | 0.0    | 18.6   |
| 1   | EQ5011 |     | COND  | ENSER WA  | TER PUM  | -CV(MED | IUM EFFI  | c.)      |       |       |       |                                         |        |        |
|     | ELEC   | 0   | 0     | 0         | 0        | 8325    | 8057      | 8325     | .8325 | 8057  | 8325  | 0                                       | 0      | 49,415 |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 11.2    | 11.2      | 11.2     | 11.2  | 11.2  | 11.2  | 0.0                                     | 0.0    | 11.2   |
| 1   | EQ5300 |     | CONT  | ROL PANE  | L & INTE | ERLOCKS |           |          |       |       |       |                                         |        |        |
|     | ELEC   | 0   | 0     | 0         | 0        | 744     | 720       | 744      | 744   | 720   | 744   | 0                                       | 0      | 4,416  |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0     | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0                                     | 0.0    | 1.0    |

TIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
. C. V.F.D. CENTR. CHILLER, EXIST BOILR

------ EQUIPMENT ENERGY CONSUMPTION ------Ref Equip ------ Monthly Consumption -----Mar Aug Sep Num Code Jan Feb Apr May June July Oct Nov Total O LIGHTS ELEC 42784 38686 42866 41391 42825 41473 42743 42866 41391 42825 41473 42375 503.698 PK 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 1 MISC LD ELEC 0 0 0 0 n n n n n n ٥ n O PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 MISC LD GAS n 0 n n 0 0 O 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 MISC LD OIL 0 Ö 0 0 Ō 0 0 PΚ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 MISC LD P STEAM 0 0 0 0 0 0 0 n 0 n n n 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 MISC LD P HOTHZO n 0 0 n 0 Ō 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 MISC LD P CHILL 0 ۵ 0 0 0 0 0 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 BASE UTILITY CHILLD 0 0 0 0 24850 24048 24850 24850 24048 24850 n n 147,494 PK 0.0 0.0 0.0 0.0 33.4 33.4 33.4 33.4 33.4 33.4 0.0 0.0 33.4 1 YCENVFD YORK TURBO MODULATOR VAR. FREQ. DRIVE ELEC 0 O 0 0 40210 51150 45212 23500 289,309 62895 66342 0 0 PK 0.0 0.0 0.0 0.0 144.1 138.0 166.7 175.3 69.5 141.8 0.0 0.0 175.3 1 EQ5100 COOLING TOWER FANS ELEC D n 0 0 8325 8057 8325 8325 8057 4311 0 0 45,401 PK 0.0 0.0 0.0 0.0 11.2 11.2 11.2 11.2 11.2 11.2 0.0 0.0 11.2 1 EQ5100 COOLING TOWER FANS WATER 0 0 0 0 316 407 496 514 358 170 0 0 2,262 PK 0.0 0.0 0.0 0.0 1.2 1.0 1.2 1.2 1.1 0.7 0.0 0.0 1.2

TIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3

. C. V.F.D. CENTR. CHILLER, EXIST BOILR

|     |        |                                        |       | E Q       | UIPN                                    | ENT   | ENE      | R G Y (  | CONSI | JMPT  | I O N |     |       | • • • • • • • • • • • • • • • • • • • • |
|-----|--------|----------------------------------------|-------|-----------|-----------------------------------------|-------|----------|----------|-------|-------|-------|-----|-------|-----------------------------------------|
| Ref | Equip  |                                        | ••••• |           | • • • • • • • • • • • • • • • • • • • • | Mon   | thly Con | sumption |       |       |       |     | ••••• |                                         |
| Num | Code   | Jan                                    | Feb   | Mar       | Apr                                     | May   | June     | July     | Aug   | Sep   | Oct   | Nov | Dec   | Total                                   |
| 1   | E95001 |                                        | CHIL  | LED WATER | R PUMP -                                | CONST | ANT VOLU | ME       |       |       |       |     |       |                                         |
|     | ELEC   | 0                                      | 0     | 0         | 0                                       | 13876 | 13428    | 13876    | 13876 | 13428 | 13876 | 0   | 0     | 82,358                                  |
|     | PK     | 0.0                                    | 0.0   | 0.0       | 0.0                                     | 18.6  | 18.6     | 18.6     | 18.6  | 18.6  | 18.6  | 0.0 | 0.0   | 18.6                                    |
| 1   | EQ5011 | CONDENSER WATER PUMP-CV(MEDIUM EFFIC.) |       |           |                                         |       |          |          |       |       |       |     |       |                                         |
|     | ELEC   | 0                                      | 0     | 0         | 0                                       | 8325  | 8057     | 8325     | 8325  | 8057  | 8325  | 0   | 0     | 49,415                                  |
|     | PK     | 0.0                                    | 0.0   | 0.0       | 0.0                                     | 11.2  | 11.2     | 11.2     | 11.2  | 11.2  | 11.2  | 0.0 | 0.0   | 11.2                                    |
| 1   | EQ5300 | CONTROL PANEL & INTERLOCKS             |       |           |                                         |       |          |          |       |       |       |     |       |                                         |
|     | ELEC   | 0                                      | 0     | 0         | 0                                       | 744   | 720      | 744      | 744   | 720   | 744   | 0   | 0     | 4,416                                   |
|     | PK     | 0.0                                    | 0.0   | 0.0       | 0.0                                     | 1.0   | 1.0      | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0   | 1.0                                     |

IPMENT ENERGY CONSUMPTION - ALTERNATIVE 2

| ef | Equip    |       |       |          |       | Mon   | thly Con: | sumption |       |       |       |       |       |         |
|----|----------|-------|-------|----------|-------|-------|-----------|----------|-------|-------|-------|-------|-------|---------|
| um | Code     | Jan   | Feb   | Mar      | Apr   | May   | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Total   |
| 0  | LIGHTS   | •     |       |          |       |       |           |          |       |       |       |       |       |         |
|    | ELEC     | 42784 | 38686 | 42866    | 41391 | 42825 | 41473     | 42743    | 42866 | 41391 | 42825 | 41473 | 42375 | 503,698 |
|    | PK       | 152.0 | 152.0 | 152.0    | 152.0 | 152.0 | 152.0     | 152.0    | 152.0 | 152.0 | 152.0 | 152.0 | 152.0 | 152.0   |
| 1  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | ELEC     | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     | (       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 2  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | GAS      | 0     | 0     | 0        | 0     | 0     | O         | 0        | 0     | 0     | 0     | 0     | 0     | (       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 3  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | OIL      | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     | (       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| 4  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | P STEAM  | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 5  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | P HOTH20 | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0     | Ō     | 0     | 0     | 0     | 1       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 6  | MISC LD  |       |       |          |       |       |           |          |       |       |       |       |       |         |
|    | P CHILL  | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0     | 0     | 0     | 0     | 0     | ,       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 1  |          |       |       | UTILIT   |       |       |           |          |       |       |       |       |       |         |
|    | HOTLD    | 4525  | 4087  | 4525     | 4379  | 4525  | 4379      | 4525     | 4525  | 4379  | 4525  | 4379  | 4525  | 53,27   |
|    | PK       | 6.1   | 6.1   | 6.1      | 6.1   | 6.1   | 6.1       | 6.1      | 6.1   | 6.1   | 6.1   | 6.1   | 6.1   | 6.      |
| 1  |          |       |       |          |       |       | ETUBE BO  |          |       |       |       |       |       |         |
|    | GAS      | 6629  | 6694  | 5224     | 4985  | 5148  | 4982      | 5148     | 5148  | 4982  | 5148  | 5071  | 6579  | 65,73   |
|    | PK       | 16.1  | 19.2  | 8.6      | 7.4   | 6.9   | 6.9       | 6.9      | 6.9   | 6.9   | 6.9   | 8.5   | 16.6  | 19.     |
| 1  | EQ5020   |       |       | TING WAT |       |       |           |          |       |       |       |       |       |         |
|    | ELEC     | 2775  | 2507  | 2775     | 2686  | 2775  | 2686      | 2775     | 2775  | 2686  | 2775  | 2686  | 2775  | 32,67   |
|    | PK       | 3.7   | 3.7   | 3.7      | 3.7   | 3.7   | 3.7       | 3.7      | 3.7   | 3.7   | 3.7   | 3.7   | 3.7   | 3.      |
| 1  | EQ5311   |       |       | LER CONT |       |       |           |          |       |       |       |       |       |         |
|    | ELEC     | 93    | 84    | 93       | 90    | 93    | 90        | 93       | 93    | 90    | 93    | 90    | 93    | 1,09    |
|    | PK       | 0.1   | 0.1   | 0.1      | 0.1   | 0.1   | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.      |

\*IPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 ....IST CHILLER, FORCE DRAFT HIGH % BOILER

|     |        |                                          |                                          | E Q      | UIPM     | ENT       | ENER      | GY C    | ONSU | MPTI | O N  |      |      | •••••  |  |
|-----|--------|------------------------------------------|------------------------------------------|----------|----------|-----------|-----------|---------|------|------|------|------|------|--------|--|
| Ref | Equip  |                                          |                                          |          |          | Mont      | hly Cons  | umption |      |      |      |      |      |        |  |
| Num | Code   | Jan                                      | Feb                                      | Mar      | Apr      | May       | June      | July    | Aug  | Sep  | Oct  | Nov  | Dec  | Total  |  |
| 1   | EQ5013 |                                          | WATE                                     | R CIRCUL | ATING PL | IMP - CON | ISTANT VO | LUME    |      |      |      |      |      |        |  |
|     | ELEC   | 2775                                     | 2507                                     | 2775     | 2686     | 2775      | 2686      | 2775    | 2775 | 2686 | 2775 | 2686 | 2775 | 32,675 |  |
|     | PK     | 3.7                                      | 3.7                                      | 3.7      | 3.7      | 3.7       | 3.7       | 3.7     | 3.7  | 3.7  | 3.7  | 3.7  | 3.7  | 3.7    |  |
| 1   | EQ5013 | WATER CIRCULATING PUMP - CONSTANT VOLUME |                                          |          |          |           |           |         |      |      |      |      |      |        |  |
|     | ELEC   | 1109                                     | 1001                                     | 1109     | 1073     | 1109      | 1073      | 1109    | 1109 | 1073 | 1109 | 1073 | 1109 | 13,052 |  |
|     | PK     | 1.5                                      | 1.5                                      | 1.5      | 1.5      | 1.5       | 1.5       | 1.5     | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  | 1.5    |  |
| 1   | EQ5013 |                                          | WATER CIRCULATING PUMP - CONSTANT VOLUME |          |          |           |           |         |      |      |      |      |      |        |  |
|     | ELEC   | 833                                      | 753                                      | 833      | 806      | 833       | 806       | 833     | 833  | 806  | 833  | 806  | 833  | 9,811  |  |
|     | PK     | 1.1                                      | 1.1                                      | 1.1      | 1.1      | 1.1       | 1.1       | 1.1     | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 1.1    |  |

01 Card - Job Information

Project: 03018504 BOILER-CHILLER STUDY Location: FT. SAM HOUSTON - SAN ANTONIO, TX. Client: CORPS OF ENGINEERS - FT. WORTH, TEXAS

Program User: HUITT - ZOLLARS INC. Comments: AREA 1300

Card 08------ Climatic Information ------Summer Winter Summer Winter Summer Winter Weather Clearness Clearness Design Design Building Ground Ground Code Number Number Dry Bulb Wet Bulb Dry Bulb Orientation Reflect Reflect SANANTON

Card 11----- Energy Simulation Parameters -----1st Month Last Month Level Building Energy Energy Of Holiday Calendar Floor Simulation Simulation Calculation Code Code Area ARHY 1994

. ..... Load Section Alternative #1 -----

Card 19- Load Alternative -

Number Description

AREA 1300 EXISTING BUILDINGS

|        | Zone      |              |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimete |
|--------|-----------|--------------|--------|-------|-------|--------|------------|----------|------------|-----------|----------|
| Room   | Reference | Room         | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth    |
| Number | Number    | Descrip      | Length | Width | Type  | Height | Resistance | Height   | Multiplier | Zone      |          |
| 5      | 5         | ADMIN 1350   | 179    | 180   | 3     | 3      | 2.54       | 12.5     |            |           |          |
| 10     | 10        | DINING 1350  | 107    | 108   | 3     | 3      | 2.54       | 12.5     |            |           |          |
| 15     | 15        | KITCHEN 1350 | 69     | 69    | 3     | 3      | 2.54       | 12.5     |            |           |          |
| 20     | 20        | BARR 1350    | 398    | 399   | 3     | 3      | 2.54       | 12.5     |            |           |          |
| 25     | 25        | ADMIN 1374   | 100    | 100   | 3     | 4      | 2.54       | 13       |            |           |          |
| 30     | 30        | BARR 1374    | 240    | 240   | 3     | 4      | 2.54       | 13       |            |           |          |
| 35     | 35        | ADMIN 1375   | 100    | 100   | 3     | 4      | 2.54       | 13       |            |           |          |
| 40     | 40        | BARR 1375    | 240    | 240   | 3     | 4      | 2.54       | 13       |            |           |          |
| 45     | 45        | ADMIN 1379   | 100    | 100   | 3     | 4      | 2.54       | 13       |            |           |          |

| Card 20 | )         |            |        | Gener | al Room | Paramete | rs         |          |            |           |           |
|---------|-----------|------------|--------|-------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |            |        |       |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room       | Floor  | Floor | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip    | Length | Width | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 50      | 50        | BARR 1379  | 240    | 240   | 3       | 4        | 2.54       | 13       |            |           |           |
| 55      | 55        | ADMIN 1380 | 100    | 100   | 3       | 4        | 2.54       | 13       |            |           |           |
| 60      | 60        | BARR 1380  | 240    | 240   | 3       | 4        | 2.54       | 13       |            |           |           |
| 65      | 65        | BLDG. 1385 | 82     | 62    | 3       | 3.5      | 2.54       | 12       |            |           |           |
| 70      | 70        | ADMIN 1382 | 60     | 60    | 3       | 4        | 2.54       | 12       |            |           |           |
| 75      | 75        | BARR 1382  | 161    | 161   | 3       | 2        | 2.54       | 10.5     |            |           |           |
| 80      | 80        | KITCH 1377 | 100    | 100   | 3       | 3        | 2.54       | 12       |            |           |           |
| 85      | 85        | DIN 1377   | 116    | 116   | 3       | 3        | 2.54       | 12       |            |           |           |

|        | Cooling   | Room   | Cooling    | Cooling   | Heating   | Heating    | Heating  | T'stat   | Mass /  | Carpet |
|--------|-----------|--------|------------|-----------|-----------|------------|----------|----------|---------|--------|
| Room   | Room      | Design | T'stat     | T'stat    | Room      | T'stat     | T'stat   | Location | No. Hrs | On     |
| Number | Design DB | RH     | Driftpoint | Schedul e | Design DB | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5      | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | YES    |
| 10     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 15     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 20     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 25     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 30     | 78 .      | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 35     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 40     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 45     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 50     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 55     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 60     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 65     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 70     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 75     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 80     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 85     | 78        | 50     | 78         |           | 70        | 70         |          | ROOM     | LIGHT30 | NO     |

|        |        | Roof     |        |       |         |       |           |      |       |
|--------|--------|----------|--------|-------|---------|-------|-----------|------|-------|
| Room   | Roof   | Equal to | Roof   | Roof  | Roof    | Const | Roof      | Roof | Roof  |
| Number | Number | Floor?   | Length | Width | U-Value | Type  | Direction | Tilt | Alpha |
| 5      | 1      | NO       | 164    | 163   | 0.05    | 21    |           |      |       |
| 10     | 1      | YES      |        |       | 0.05    | 21    |           |      |       |
| 15     | 1      | YES      |        |       | 0.05    | 21    |           |      |       |
| 20     | 1      | NO       | 282    | 282   | 0.05    | 21    |           |      |       |
| 25     | 1      | NO       | 88     | 30    | 0.07    | 43    |           |      |       |
| 30     | 1      | NO       | 164    | 164   | 0.07    | 43    |           |      |       |
| 35     | 1      | NO       | 88     | 30    | 0.07    | 43    |           |      |       |
| 40     | 1      | NO       | 164    | 164   | 0.07    | 43    |           |      |       |

| Card 22 | 2      |          |        | Roof Par | ameters | ••••• |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 45      | 1      | NO       | 88     | 30       | .07     | 43    |           |      |       |
| 50      | 1      | NO       | 164    | 164      | 0.07    | 43    |           |      |       |
| 55      | 1      | NO       | 83     | 30       | 0.07    | 43    |           |      |       |
| 60      | 1      | NO       | 164    | 164      | 0.07    | 43    |           |      |       |
| 65      | 1      | YES      |        |          | 0.08    | 47    |           |      |       |
| 70      | 1      | YES      |        |          | 0.07    | 37    |           |      |       |
| 75      | 1      | NO       | 114    | 114      | 0.07    | 37    |           |      |       |
| 80      | 1      | YES      |        |          | 0.11    | 47    |           |      |       |
| 85      | 1      | YES      |        |          | 0.11    | 47    |           |      |       |

|        |        |        |        |         | Wall    |           |      |       | Ground      |
|--------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 5      | 1      | 128    | 12.5   | .15     | 29      | 0         |      |       |             |
| 20     | 1      | 1130   | 12.5   | .15     | 29      | 0         |      |       |             |
| 20     | 2      | 1400   | 12.5   | .15     | 29      | 90        |      |       |             |
| 20     | 3      | 1130   | 12.5   | .15     | 29      | 180       |      |       |             |
| 20     | 4      | 1400   | 12.5   | .15     | 29      | 270       |      |       |             |
| 25     | 1      | 88     | 13     | .15     | 94      | 180       |      |       |             |
| 25     | 2      | 40     | 13     | .20     | 61      | 270       |      |       |             |
| 25     | 3      | 40     | 13     | .20     | 61      | 90        |      |       |             |
| 30     | 1      | 912    | 13     | .13     | 80      | 180       |      | .74   |             |
| 30     | 2      | 768    | 13     | .13     | 80      | 270       |      | .74   |             |
| 30     | 3      | 912    | 13     | .13     | 80      | 0         |      | .74   |             |
| 30     | 4      | 768    | 13     | .13     | 80      | 90        |      | .74   |             |
| 35     | 1      | 88     | 13     | .15     | 94      | 180       |      |       |             |
| 35     | 2      | 40     | 13     | .20     | 61      | 270       |      |       |             |
| 35     | 3      | 40     | 13     | .20     | 61      | 90        |      |       |             |
| 40     | 1      | 912    | 13     | .13     | 80      | 180       |      | .74   |             |
| 40     | 2      | 768    | 13     | .13     | 80      | 270       |      | -74   |             |
| 40     | 3      | 912    | 13     | .13     | 80      | 0         |      | .74   |             |
| 40     | 4      | 768    | 13     | .13     | 80      | 90        |      | .74   |             |
| 45     | 1      | 88     | 13     | .15     | 94      | 0         |      |       |             |
| 45     | 2      | 40     | 13     | .20     | 61      | 90        |      |       |             |
| 45     | 3      | 40     | 13     | .20     | 61      | 270       |      |       |             |
| 50     | 1      | 912    | 13     | .13     | 80      | 0         |      | .74   |             |
| 50     | 2      | 768    | 13     | .13     | 80      | 90        |      | .74   |             |
| 50     | 3      | 912    | 13     | .13     | 80      | 180       |      | .74   |             |
| 50     | 4      | 768    | 13     | .13     | 80      | 270       |      | .74   |             |
| 55     | 1      | 88     | 13     | .15     | 94      | 0         |      |       |             |
| 55     | 2      | 40     | 13     | .20     | 61      | 90        |      |       |             |
| 55     | 3      | 40     | 13     | .20     | 61      | 270       |      |       |             |
| 60     | 1      | 912    | 13     | .13     | 80      | 0         |      | .74   |             |
| 60     | 2      | 768    | 13     | .13     | 80      | 90        |      | .74   |             |

Page #4

|        |        |        |        |         | Wall    |           |      |       | Ground      |
|--------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 60     | 3      | 912    | 13     | .13     | 80      | 180       |      | .74   |             |
| 60     | 4      | 768    | 13     | .13     | 80      | 270       |      | .74   |             |
| 65     | 1      | 82     | 12     | .22     | 58      | 0         |      |       |             |
| 65     | 2      | 62     | 12     | .22     | 58      | 90        |      |       |             |
| 65     | 3      | 82     | 12     | .22     | 58      | 180       |      |       |             |
| 65     | 4      | 62     | 12     | .22     | 58      | 270       |      |       |             |
| 70     | 1      | 44     | 12     | .22     | 58      | 0         |      |       |             |
| 70     | 2      | 52     | 12     | .22     | 58      | 90        |      |       |             |
| 70     | 3      | 68     | 12     | .22     | 58      | 270       |      |       |             |
| 75     | 1      | 360    | 10.5   | .22     | 58      | 0         |      |       |             |
| 75     | 2      | 312    | 10.5   | .22     | 58      | 90        |      |       |             |
| 75     | 3      | 412    | 10.5   | .22     | 58      | 180       |      |       |             |
| 75     | 4      | 312    | 10.5   | .22     | 58      | 270       |      |       |             |
| 80     | 1      | 62     | 12     | .10     | 58      | 90        |      |       |             |
| 80     | 2      | 32     | 12     | .10     | 58      | 270       |      |       |             |
| 85     | 1      | 82     | 12     | .10     | 58      | 0         |      |       |             |
| 85     | 2      | 160    | 12     | .10     | 58      | 90        |      |       |             |
| 85     | 3      | 82     | 12     | .10     | 58      | 180       |      |       |             |
| 85     | 4      | 124    | 12     | .10     | 58      | 270       |      |       |             |

|        |        |        |       | Pct Glass |         |             | External | Internal | Percent  |               | Inside      |
|--------|--------|--------|-------|-----------|---------|-------------|----------|----------|----------|---------------|-------------|
| moos   | Wall   | Glass  | Glass | or No. of | Glass   | Shading     | Shading  | Shading  | Solar to | Visible       | Visible     |
| iumber | Number | Length | Width | Windows   | U-Vatue | Coefficient | Type     | Type     | Ret. Air | Transmittance | Reflectance |
| 5      | 1      | 4      | 5.5   | 12        | .73     | 1           |          |          |          |               |             |
| 20     | 1      | 4      | 5.5   | 272       | .73     | 1           | 3        |          |          |               |             |
| 20     | 2      | 4      | 5.5   | 84        | .73     | 1           | 3        |          |          |               |             |
| 20     | 3      | 4      | 5.5   | 272       | .73     | 1           | 3        |          |          |               |             |
| 20     | 4      | 4      | 5.5   | 84        | .73     | 1           | 3        |          |          |               |             |
| 25     | 1      | 4      | 7     | 16        | 1.1     | .67         | 4        |          |          |               |             |
| 30     | 1      | 2      | 4     | 144       | 1.1     | .67         | 4        |          |          |               |             |
| 30     | 2      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 30     | 3      | 2      | 4     | 116       | 1.1     | .67         | 4        |          |          |               |             |
| 30     | 4      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 35     | 1      | 4      | 7     | 16        | 1.1     | .67         | 4        |          |          |               |             |
| 40     | 1      | 2      | 4     | 144       | 1.1     | .67         | 4        |          |          |               |             |
| 40     | 2      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 40     | 3      | 2      | 4     | 116       | 1.1     | .67         | 4        |          |          |               |             |
| 40     | 4      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 45     | 1      | 4      | 7     | 16        | 1.1     | .67         | 4        |          |          |               |             |
| 50     | 1      | 2      | 4     | 144       | 1.1     | .67         | 4        |          |          |               |             |
| 50     | 2      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 50     | 3      | 2      | 4     | 116       | 1.1     | .67         | 4        |          |          |               |             |
| 50     | 4      | 2      | 4     | 72        | 1.1     | .67         | 4        |          |          |               |             |
| 55     | 1      | 4      | 7     | 16        | 1.1     | .67         | 4        |          |          |               |             |

| Card 2 | 5      | ****** |       |           | · ¥     | lall∕Glass Par | ameters  |          |          |               | • • • • • • • • • • • • • • • • • • • • |
|--------|--------|--------|-------|-----------|---------|----------------|----------|----------|----------|---------------|-----------------------------------------|
|        |        |        |       | Pct Glass |         |                | External | Internal | Percent  |               | Inside                                  |
| Room   | Wall   | Glass  | Glass | or No. of | Glass   | Shading        | Shading  | Shading  | Solar to | Visible       | Visible                                 |
| Number | Number | Length | Width | Windows   | U-Value | Coefficient    | Type     | Type     | Ret. Air | Transmittance | Reflectance                             |
| 60     | 1      | 2      | 4     | 144       | 1.1     | .67            | 4        |          |          |               |                                         |
| 60     | 2      | 2      | 4     | 72        | 1.1     | .67            | 4        |          |          |               |                                         |
| 60     | 3      | 2      | 4     | 116       | 1.1     | .67            | 4        |          |          |               |                                         |
| 60     | 4      | 2      | 4     | 72        | 1.1     | .67            | 4        |          |          |               |                                         |
| 65     | 1      | 4      | 4     | 8         | 1.1     | 1              | 5        |          |          |               |                                         |
| 65     | 2      | 4      | 4     | 8         | 1.1     | 1              | 5        |          |          |               |                                         |
| 65     | 3      | 4      | 4     | 6         | 1.1     | 1              | 5        |          |          |               |                                         |
| 65     | 4      | 4      | 4     | 8         | 1.1     | t              | 5        |          |          |               |                                         |
| 70     | 1      | 5      | 3     | 7 ·       | 1.1     | 1              |          |          |          |               |                                         |
| 70     | 2      | 5      | 3     | 1         | 1.1     | 1              |          |          |          |               |                                         |
| 75     | 1      | 6      | 3     | 23        | 1.1     | 1              |          |          |          |               |                                         |
| 75     | 2      | 6      | 3     | 16        | 1.1     | 1              |          |          |          |               |                                         |
| 75     | 3      | 6      | 3     | 24        | 1.1     | 1              |          |          |          |               |                                         |
| 75     | 4      | 6      | 3     | 14        | 1.1     | 1              |          |          |          |               |                                         |
| 85     | 2      | 5      | 5     | 6         | 1.1     | 1              |          |          |          |               |                                         |
| 85     | 4      | 5      | 5     | 6         | 1.1     | 1              |          |          |          |               |                                         |
|        |        |        |       |           |         |                |          |          |          |               |                                         |

| Card 26    |          |          |             | S            | chedules |         | •••••   |           |         |            |
|------------|----------|----------|-------------|--------------|----------|---------|---------|-----------|---------|------------|
| Room       |          |          |             |              | Reheat   | Cooling | Heating | Auxiliary | Room    | Daylightin |
| Number     | People   | Lights   | Ventilation | Infiltration | Minimum  | Fans    | Fan     | Fan       | Exhaust | Controls   |
| 5          | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 10         | FSHDINP  | FSHDINL  |             |              |          |         |         |           |         |            |
| 15         | FSHKITCH | FSHKITCH |             |              |          |         |         |           |         |            |
| 20         | FSHBARRP | FSHBARRL |             |              |          |         |         |           |         |            |
| 25         | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 30         | FSHBARRP | FSHBARRL |             |              |          |         |         |           |         |            |
| 35         | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 40         | FSHBARRP | FSHBARRL |             |              |          |         |         |           |         |            |
| 45         | FSHOFFIC | FSHOFF1C |             |              |          |         |         |           |         |            |
| 50         | FSHBARRP | FSHBARRP |             |              |          |         |         |           |         |            |
| <b>5</b> 5 | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 60         | FSHBARRP | FSHBARRL |             |              |          |         |         |           |         |            |
| 65         | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 70         | FSHOFFIC | FSHOFFIC |             |              |          |         |         |           |         |            |
| 75         | FSHBARRP | FSHBARRL |             |              |          |         |         |           |         |            |
| 80         | FSHKITCH | FSHK1TCH |             |              |          |         |         |           |         |            |
| 85         | FSHDINP  | FSHDINL  |             |              |          |         |         |           |         |            |

| Card 27 | 7      |         |          |        | Peopl    | e and Ligh | ts       |         |           |           |           |  |
|---------|--------|---------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------|--|
|         |        |         |          |        |          |            | Lighting |         | Percent   | Daylig    | hting     |  |
| Room    | People | People  | People - | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference |  |
| Number  | Value  | Units   | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2   |  |
| 5       | 175    | SF-PERS | 250      | 200    | 2.25     | WATT-SF    | ASHRAE2  |         |           |           |           |  |

|                                                                         |                                                                              |                                                                                                                  |                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         | Light                                                                                                                                                                                                                                                                                                                          | ting                         |              | Percent            | 0:              | aytig | hting     | ••                  |                    |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------------|-----------------|-------|-----------|---------------------|--------------------|
| loom                                                                    | Peopl e                                                                      | People                                                                                                           | People -                                                                            | People                                                           | Lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lightin                                                                                                                                                                                                 | g Fixtu                                                                                                                                                                                                                                                                                                                        | ure Bal                      | last         | Lights t           | Refere          | ence  | Reference |                     |                    |
| lumber                                                                  | Value                                                                        | Units                                                                                                            | \$ensible                                                                           | Latent                                                           | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                                                                                                                                   | Type                                                                                                                                                                                                                                                                                                                           | Fac                          | tor          | Ret. Air           | Point           | 1     | Point 2   |                     |                    |
| 10                                                                      | 300                                                                          | PEOPLE                                                                                                           | 275                                                                                 | 275                                                              | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHRA                                                                                                                                                                                                                                                                                                                          | AE2                          |              |                    |                 |       |           |                     |                    |
| 15                                                                      | 20                                                                           | PEOPLE                                                                                                           | 275                                                                                 | 475                                                              | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHRA                                                                                                                                                                                                                                                                                                                          | AE2                          |              |                    |                 |       |           |                     |                    |
| 20                                                                      | 1538                                                                         | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATT-SF                                                                                                                                                                                                 | ASHRA                                                                                                                                                                                                                                                                                                                          | AE2                          |              |                    |                 |       |           |                     |                    |
| 25                                                                      | 35                                                                           | SF-PERS                                                                                                          | 250                                                                                 | 200                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHRA                                                                                                                                                                                                                                                                                                                          | AE2                          |              |                    |                 |       |           |                     |                    |
| 50                                                                      | 420                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | SUST                                                                                                                                                                                                                                                                                                                           | NCAN                         |              |                    |                 |       |           |                     |                    |
| <b>3</b> 5                                                              | 35                                                                           | SF-PERS                                                                                                          | 250                                                                                 | 200                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHRA                                                                                                                                                                                                                                                                                                                          | AE2                          |              |                    |                 |       |           |                     |                    |
| 0                                                                       | 420                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | SUSI                                                                                                                                                                                                                                                                                                                           | NCAN                         |              |                    |                 |       |           |                     |                    |
| 45                                                                      | 35                                                                           | SF-PERS                                                                                                          | 250                                                                                 | 200                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | AE2                          |              |                    |                 |       |           |                     |                    |
| 50                                                                      | 420                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | SUST                                                                                                                                                                                                                                                                                                                           | NCAN                         |              |                    |                 |       |           |                     |                    |
| 55                                                                      | 35                                                                           | SF-PERS                                                                                                          | 250                                                                                 | 200                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | AEZ                          |              |                    |                 |       |           |                     |                    |
| 60                                                                      | 420                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | SUSTI                                                                                                                                                                                                                                                                                                                          | NCAN                         |              |                    |                 |       |           |                     |                    |
| 65                                                                      | 16                                                                           | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | VE5                          |              |                    |                 |       |           |                     |                    |
| 70                                                                      | 8                                                                            | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | AE2                          |              |                    |                 |       |           |                     |                    |
| 75                                                                      | 232                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | VES.                         |              |                    |                 |       |           |                     |                    |
| 80                                                                      | 30                                                                           | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WATT-SF                                                                                                                                                                                                 | ASHR                                                                                                                                                                                                                                                                                                                           | AE2                          |              |                    |                 |       |           |                     |                    |
| 85                                                                      | 800                                                                          | PEOPLE                                                                                                           | 250                                                                                 | 200                                                              | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATT-SP                                                                                                                                                                                                 | 4000                                                                                                                                                                                                                                                                                                                           | 453                          |              |                    |                 |       |           |                     |                    |
|                                                                         | 8                                                                            |                                                                                                                  |                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Miscell                                                                                                                                                                                                 | aneous                                                                                                                                                                                                                                                                                                                         | Equipment                    |              |                    |                 |       |           |                     |                    |
| Card 2                                                                  | 8<br>Misc                                                                    |                                                                                                                  |                                                                                     | En                                                               | ergy En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Miscell<br>ergy                                                                                                                                                                                         | aneous                                                                                                                                                                                                                                                                                                                         | Equipment<br>Energy          | Perc         | ent Per            | cent            | Perc  | cent      | Badlank             | Ontion             |
| Card 2<br>Room                                                          | 8<br>Misc<br>Equipm                                                          | ent Equi                                                                                                         | pment                                                                               | En<br>Co                                                         | ergy En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Miscell<br>ergy<br>nsump Sch                                                                                                                                                                            | aneous                                                                                                                                                                                                                                                                                                                         | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   | Radiant             | •                  |
| Card 2<br>Room<br>Number                                                | 8<br>Misc<br>Equipm<br>Number                                                | ent Equi<br>Desc                                                                                                 | pment<br>rip                                                                        | En<br>Co<br>Va                                                   | ergy En<br>nsump Co<br>lue Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miscell<br>ergy<br>nsump Sch<br>its Coo                                                                                                                                                                 | aneous  <br> -<br> -<br>  nedule                                                                                                                                                                                                                                                                                               | Equipment<br>Energy          | Perc<br>of L | ent Per            | cent<br>c. Load | Perd  | c. Sens   | Radiant<br>Fraction | •                  |
| Card 2<br>Room<br>Number<br>5                                           | 8<br>Misc<br>Equipm<br>Number<br>1                                           | ent Equi<br>Desc<br>COMP                                                                                         | pment<br>rîp<br>UTER                                                                | En<br>Co<br>Va<br>1                                              | ergy En<br>nsump Co<br>lue Un<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Miscell<br>ergy<br>nsump Sch<br>its Coo<br>IT-SF FSI                                                                                                                                                    | aneous  <br>nedule  <br>de<br>doff10                                                                                                                                                                                                                                                                                           | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10                                     | 8<br>Misc<br>Equipm<br>Number<br>1                                           | ent Equi<br>Desc<br>COMP<br>DIN.                                                                                 | pment<br>rip<br>UTER<br>EQPT.                                                       | En<br>Co<br>Va<br>1                                              | ergy En<br>nsump Co<br>lue Un<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Miscell<br>ergy<br>nsump Sch<br>its Coo<br>IT-SF FSH<br>TT-SF FSH                                                                                                                                       | aneous  <br>nedule  <br>de<br>HOFFIC<br>HOINL                                                                                                                                                                                                                                                                                  | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10<br>15                               | 8<br>Misc<br>Equipm<br>Number<br>1<br>1                                      | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC                                                                         | pment<br>rip<br>UTER<br>EQPT.<br>HEN                                                | Enc<br>Co<br>Va<br>1<br>1<br>1                                   | ergy En<br>nsump Co<br>Lue Un<br>WA<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Miscellergy nsump Schits Coo<br>TT-SF FSH<br>TT-SF FSH                                                                                                                                                  | aneous   nedule   de HOFFIC HDINL                                                                                                                                                                                                                                                                                              | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10<br>15<br>20                         | 8<br>Misc<br>Equipm<br>Number<br>1<br>1                                      | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC                                                                         | pment<br>rip<br>UTER<br>EQPT.<br>HEN<br>TC.                                         | En<br>Co<br>Va<br>1<br>1<br>16                                   | ergy En<br>nsump Coo<br>Lue Un<br>WA<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miscellergy nsump Sch its Coc IT-SF FSH IT-SF FSH IT-SF FSH                                                                                                                                             | aneous inedule de HOFFIC HOINL HKITCH                                                                                                                                                                                                                                                                                          | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10<br>15<br>20<br>25                   | 8<br>Misc<br>Equipm<br>Number<br>1<br>1<br>1                                 | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E                                                                 | pment<br>rip<br>UTER<br>EQPT.<br>HEN<br>TC.                                         | En<br>Co<br>Va<br>1<br>1<br>16<br>1                              | ergy En-<br>nsump Coo<br>Lue Un<br>WA<br>WA<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Miscell ergy nsump Sch its Coc IT-SF FSH IT-SF FSH IT-SF FSH IT-SF FSH IT-SF FSH                                                                                                                        | aneous inedule de de doffic do including de de de doffic do including de                                                                                                                                                                                                                   | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | Options<br>Air Pat |
| Card 2<br>Room<br>Number<br>5<br>10<br>15<br>20<br>25<br>30             | 8                                                                            | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP                                                         | pment rip UTER EQPT. HEN TC. UTER APP.                                              | En<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1                         | ergy Ennsump Coolue Un WA WA WA WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Miscell<br>ergy<br>nsump Sch<br>its Coc<br>it-SF FSI<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI                                                                                                | aneous inedule de de do de do de do de do de do de do de                                                                                                                                                                                                                                   | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10<br>15<br>20<br>25<br>30<br>35       | 8                                                                            | ent Equi<br>Desc<br>COMP<br>BIN<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP                                          | pment rip UTER EQPT. HEN TC. UTER APP.                                              | En<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5                   | ergy Encrusump Coolue Un WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Miscell<br>ergy<br>nsump Sch<br>its Coc<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI<br>IT-SF FSI                                                                                   | nedule de                                                                                                                                                                                                                                                                                  | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2<br>Room<br>Number<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40 | 8<br>Misc<br>Equipm<br>Number<br>1<br>1<br>1<br>1<br>1<br>1                  | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP                                         | pment rip UTER EQPT. HEN TC. UTER APP. UTER                                         | En<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>1<br>.5              | ergy Ennsump Coolue Un WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miscell ergy nsump Sch its Coc its Coc it-SF FSI                                                                                            | aneous inedule de de doffic do la company de de de doffic de                                                                                                                                                                                                                               | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2 Room Number 5 10 15 20 25 30 35 40 45                            | 8                                                                            | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TY E<br>COMP<br>PERS<br>COMP                                         | pment rip UTER EQPT. HEN TC. UTER APP. UTER APP. UTER                               | En-<br>Co<br>Va<br>1<br>1<br>1<br>16<br>1<br>1<br>1<br>.5<br>1   | ergy Ennsump Coo<br>Lue Un<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miscell ergy nsump Sch its Coc its FSI IT-SF FSI                                                                                  | aneous de                                                                                                                                                                                                                                                                                  | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2  Room Number 5 10 15 20 25 30 35 40 45 50                        | Misc<br>Equipmon<br>Number<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS                                 | pment rip UTER EQPT. HEN TC. UTER APP. UTER APP. UTER                               | En<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5<br>1<br>.5        | ergy Ennsump Coo<br>Lue Un<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA<br>WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Miscellergy nsump Schits Coo IT-SF FSI                                                              | aneous de                                                                                                                                                                                                                                                                                  | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2  Room Number 5 10 15 20 25 30 35 40 45 50 55                     | Misc<br>Equipmon<br>Number<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP                         | pment rip UTER EQPT. HEN TC. UTER APP. UTER APP. UTER APP. UTER                     | Env<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5<br>1<br>.5       | ergy Environment Collue Un WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Miscellergy nsump Schits Coo IT-SF FSI                                                              | aneous inedule de de doffic do l'AKITCH de                                                                                                                                                                                                                                                 | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Card 2 Room Number 5 10 15 20 25 30 35 40 45 50 55                      | Misc Equipmon Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP                         | pment rip UTER EQPT. HEN TC. UTER APP. UTER APP. UTER APP. UTER APP.                | En<br>Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5<br>1<br>.5        | ergy Environment Colluction United Wales W | Miscellergy nsump Schits Coc IT-SF FSI                                                              | aneous  nedule  de  HOFFIC  HBARRL  HOFFIC  HBARRL  HOFFIC  HBARRL  HOFFIC  HBARRL  HOFFIC  HBARRL                                                                                                                                                                                                                             | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Room Number 5 10 15 20 25 30 35 40 45 50 55 60 65                       | 8                                                                            | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP         | pment rip UTER EQPT. HEN TC. UTER APP. UTER APP. UTER APP. UTER APP. UTER           | Env<br>Cov<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5<br>1<br>.5<br>1 | ergy Environment Collue Un WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Miscellergy nsump Schits Coc IT-SF FSI                                | aneous  dedule  doffic                                                                                 | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Room Number 5 10 15 20 25 30 35 40 45 50 65 70                          | 8                                                                            | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP<br>PERS | pment rip UTER EOPT. HEN TC. UTER APP. UTER APP. UTER APP. UTER APP. UTER           | Env Cov Va 1 1 1 1 1 5 5 1 1 5 5 1 1 1 1                         | ergy Environment Colluction University WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Miscellergy nsump Sch its Coc IT-SF FSI | aneous  dedule  doffic                                                                                                         | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |
| Room Number 5 10 15 20 25 30 35 40 45 50 55 60 65                       | 8                                                                            | ent Equi<br>Desc<br>COMP<br>DIN.<br>KITC<br>TV E<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP<br>PERS<br>COMP<br>PERS | pment rip UTER EOPT. HEN TC. UTER APP. UTER APP. UTER APP. UTER APP. UTER APP. UTER | Env Co<br>Va<br>1<br>1<br>16<br>1<br>1<br>.5<br>1<br>.5<br>1     | ergy Environment Collus Un WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Miscellergy nsump Schits Coc IT-SF FSI                                | aneous  dedule  doffic  doffic | Equipment<br>Energy<br>Meter | Perc<br>of L | ent Per<br>oad Mis | cent<br>c. Load | Perd  | c. Sens   |                     | •                  |

Card 29----- Room Airflows -----

-----Infiltration-----

CFM

Room ----Cooling----- ----Heating-----

Units Value CFM 3975

Number Value Units

3975

--Reheat Minimum--Value Units

| Card 29 | )     | • • • • • • • • • • • • • • • • • • • • |        |       | Room Air | flows |         |       | • • • • • • • • • • • • • • • • • • • • |         |
|---------|-------|-----------------------------------------|--------|-------|----------|-------|---------|-------|-----------------------------------------|---------|
|         | ••••• | Venti                                   | lation |       |          | Infil | tration |       |                                         |         |
| Room    | C00   | ling                                    | Hea    | ting  | Coo      | ling  | Неа     | ting  | Reheat                                  | Minimum |
| Number  | Value | Units                                   | Value  | Units | Value    | Units | Value   | Units | Value                                   | Units   |
| 10      | 20    | CFM-P                                   | 20     | CFM-P |          |       |         |       |                                         |         |
| 15      | 3000  | CFM                                     | 3000   | CFM   |          |       |         |       |                                         |         |
| 20      | 17385 | CFM                                     | 17385  | CFM   |          |       |         |       |                                         |         |
| 25      | 7700  | CFM                                     | 7700   | CFM   |          |       |         |       |                                         |         |
| 30      | 12000 | CFM                                     | 12000  | CFM   |          |       |         |       |                                         |         |
| 35      | 7700  | CFM                                     | 7700   | CFM   |          |       |         |       |                                         |         |
| 40      | 12000 | CFM                                     | 12000  | CFM   |          |       |         |       |                                         |         |
| 45      | 7700  | CFM                                     | 7700   | CFM   |          |       |         |       |                                         |         |
| 50      | 12000 | CFM                                     | 12000  | CFM   |          |       |         |       |                                         |         |
| 55      | 7700  | CFM                                     | 7700   | CFM   |          |       |         |       |                                         |         |
| 60      | 12000 | CFM                                     | 12000  | CFM   |          |       |         |       |                                         |         |
| 65      | 900   | CFM                                     | 900    | CFM   |          |       |         |       |                                         |         |
| 70      | 20    | CFM-P                                   | 20     | CFM-P |          |       |         |       |                                         |         |
| 75      | 20    | CFM-P                                   | 20     | CFM-P |          |       |         |       |                                         |         |
| 80      | 12700 | CFM                                     | 12700  | CFM   |          |       |         |       |                                         |         |
| 85      | 12200 | CFM                                     | 12200  | CFM   |          |       |         |       |                                         |         |
|         |       |                                         |        |       |          |       |         |       |                                         |         |

| Card 31 |           |           | Part      | ition Param | eters - |          |         |         |          |
|---------|-----------|-----------|-----------|-------------|---------|----------|---------|---------|----------|
| Room    | Partition | Partition | Partition | Partition   | Const   | Temp     | Cooling | Heating | Adjacent |
| Number  | Number    | Length    | Height    | U-Value     | Type    | Flag     | Temp    | Тетр    | Room No  |
| 5       | 1         | 264       | 12.5      | .23         | 103     | HRLYOADB |         |         |          |
| 5       | 2         | 264       | 12.5      | .23         | 103     | HRLYOADB |         |         |          |
| 5       | 3         | 680       | 12.5      | .15         | 103     | HRLYCADB |         |         |          |
| 10      | 1         | 220       | 12.5      | .44         | 107     | HRLYOADB |         |         |          |
| 25      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 30      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 35      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 40      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 45      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 50      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 55      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 60      | 1         | 244       | 13        | .20         | 107     | HRLYOADB |         |         |          |
| 80      | 1         | 30        | 12        | .10         | 107     | HRLYOADB |         |         |          |

| Card 33- |        |        |            | •••• E | xternal Shac | ling       |            |            |          |
|----------|--------|--------|------------|--------|--------------|------------|------------|------------|----------|
|          |        | OVERHA | NG         |        |              | VERTICAL F | INS        |            |          |
|          |        | Height |            |        |              | Left       |            | Right      | Adjacent |
| Shading  | Glass  | Above  | Projection | Glass  | Projection   | Projection | Projection | Projection | Building |
| Type     | Height | Glass  | Out        | Width  | Left         | Out        | Right      | Out        | Flag     |
| 3        | 5.5    | 1      | 2          |        |              |            |            |            |          |
| 4        | 4      | 1      | 5          |        |              |            |            |            |          |
| 5        | 4      | 1      | 3          |        |              |            |            |            |          |

----- System Section Alternative #1 -----Card 39- System Alternative Number Description EXISTING SYSTEM Card 40----- System Type ----------OPTIONAL VENTILATION SYSTEM-----System Ventil Cooling Heating Cooling Heating Static Set System Deck Location SADBVh SADBVh Schedule Schedule Pressure Number Type VAV M7 Card 41----- Zone Assignment -----System Ref #6 Ref #5 Ref #4 Set Ref #1 Ref #2 Ref #3 Begin End Begin End Begin End Begin End Begin End Begin End Number 5 20 1 25 85 Card 42----- Fan SP and Duct Parameters-----System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return Set Fan Fan Fan Fan Fan Fan Htr Fan Mtr Duct Duct Air SP SP SP Loc Loc Ht Gn Loc Path Number SP SP SP 1 1.5 1.5 2 1.5 1.5 Card 45----- Equipment Schedules -----System Main Direct Indirect Auxiliary Main Auxiliary Main Evap Evap Heating Preheat Reheat Mech. Heating Set Cooling Cooling Humidity Coil Coil Coil Coil Coil Number Coil Economizer Coil FTSAMCLG FTSAMHTG FTSAMHTG FTSAMHTG 1 FTSAMHTG FTSAMHTG FTSAMHTG FTSAMCLG ----- Equipment Section Alternative #1 -----

```
---- Demand Limit ---
       Elec Consump Elec Demand Demand
                                                              Temperature
Alternative Time of Day Time of Day Limit
Number Schedule Schedule Max KW Alternative Description
                                                          Schedule Drift
                               BASE CASE
1
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asan Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End Begin End
          BLKPLANT 1 1
1 1
          BLKPLANT 2
                      2
Card 62------ Cooling Equipment Parameters ------
          Num -----COOLING-----
                                      Cool Equip
         Of --Capacity-- ----Energy----
                                       --Capacity-- ----Energy----
Ref Code
                                                                 Num Type Number
                           Value Units
                                      Value Units
                                                    Value Units
Num Name
         Units Value Units
                          329
1 EQ1001S 1 438 TONS
                                 KW
2 EQ1001S 1
3 EQ1001S 1
                           517
                                 KW
                                                                      SED
              544
                   TONS
              442 TONS
                          517
                                                                      SER
                                 KW
Card 63----- Cooling Pumps and References -----
Cool --- CHILLED WATER---- ---- CONDENSER----- --- HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load over Cold
                                                            Cooling Misc.
                         Units Value Units Control Storage Tower Access.
Num Value
          Units Value
                  22.38
  29.84
          KW
                          KW
1
                                                            2
                  29.84
2
   18.65
          KW
                         KV
                                                            2
                  29.84
                         KW
3
Card 65----- Heating Load Assignment
      All Coil
Load
               -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Reference Heating Ref Begin End Begin End
        1
                     1
                 2
2
        3
                     2
Card 67----- Heating Equipment Parameters
                                                      Seq Switch
Heat Equip Number HW Pmp
                                          Energy
                                                                             Demand
                                                                              Limit
          Of
                  Full Ld
                               Cap'y
                                          Rate
                                                      Order over Hot Misc.
Ref
      Code
Number Name Units Value Units
                                          Value Units
                                                      Number Control Strg Acc. Cogen Number
                               Value Units
                               5317 MBH
                                          7500 MBH
                                                      1
1
      1350HWB1 1
                 29.84 KW
                               4336 MRH
                                          5800 MBH
                                                      2
      1350HWB2 1
2
                                               MBH ;
                               5912 MBH
                                          8369
                                                      1
      1300HWHB 1
                 11.19 KW
3
                                          8369 MBH
                                                     2
                               5912 MBH
      1300HWHB 1 11.19 KW
```

Card 59----- Equipment Description / TOD Schedules -----

| ase                                                 | Base                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hourly                                        |                                                                         |                                                                                                      |                                                                                                    |                                                                                                      |                                 | and                       |                                 |                   |                                                   |                |       |
|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|---------------------------------|-------------------|---------------------------------------------------|----------------|-------|
| tility                                              | / Utilit                                            | ;y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Demand                                        | Demand                                                                  |                                                                                                      | e Energy                                                                                           |                                                                                                      | ence Lim                        |                           |                                 |                   | ng                                                |                |       |
| umber                                               | Descri                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Value                                         | Units                                                                   | Code                                                                                                 | Type                                                                                               | Numbe                                                                                                | r Num                           | ber T                     | emp                             | Temp              |                                                   |                |       |
|                                                     |                                                     | PUMP HT LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.45                                         | TONS                                                                    |                                                                                                      | G CHILL-LE                                                                                         |                                                                                                      |                                 |                           |                                 |                   |                                                   |                |       |
|                                                     |                                                     | IT LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 482.9                                         | MBH                                                                     |                                                                                                      | G HOT-LD                                                                                           | 1                                                                                                    |                                 |                           |                                 |                   |                                                   |                |       |
|                                                     |                                                     | PUMP HT LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.56                                         | TONS                                                                    |                                                                                                      | G CHILL-LE                                                                                         |                                                                                                      |                                 |                           |                                 |                   |                                                   |                |       |
|                                                     | PIPE 1                                              | IT LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1312.5                                        | МВН                                                                     | FTSAMHT                                                                                              | G HOT-LD                                                                                           | 3                                                                                                    |                                 |                           |                                 |                   |                                                   |                |       |
| 4 7                                                 |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | Candanaa                                                                | - / Caali                                                                                            | na Touan D                                                                                         | - n-matar                                                                                            |                                 |                           |                                 |                   |                                                   |                |       |
| ard /                                               | Cooling                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | Energy                                                                  | Energy                                                                                               | ng rower r                                                                                         | ai ometer                                                                                            |                                 | Percent                   |                                 |                   | ow Spd                                            |                |       |
| OUAT                                                | Tower                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Canacity                                      | _ •                                                                     |                                                                                                      | Fluid                                                                                              | Tower                                                                                                |                                 |                           | Energy                          |                   | nergy                                             |                |       |
| ef                                                  | Code                                                | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                         | Value                                                                   | Units                                                                                                | Type                                                                                               | Type                                                                                                 |                                 | Low Spd                   |                                 |                   | nits                                              |                |       |
| ет                                                  | E95100                                              | Agroc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                                         | 14.92                                                                   | KW                                                                                                   | 175~                                                                                               | 1712                                                                                                 | 1                               | 50                        | 7.46                            | K1                |                                                   |                |       |
| !                                                   | EQ5100                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 52.22                                                                   | KW                                                                                                   |                                                                                                    |                                                                                                      | 2                               |                           |                                 |                   |                                                   |                |       |
|                                                     | 5<br>#1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                                         | - Miscell<br>2                                                                                       | laneous Acc                                                                                        | essory ·                                                                                             |                                 | #3                        | •••••                           |                   | •••••                                             |                |       |
|                                                     | Equip                                               | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Energy S                                      |                                                                         |                                                                                                      | Energy                                                                                             | Energy                                                                                               | Sched                           | Equip                     | Energ                           | У                 | Energy                                            | Sched          |       |
|                                                     | Code                                                | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                                                         |                                                                                                      |                                                                                                    | Units                                                                                                |                                 | Code                      | Value                           | . 1               | Units                                             | Code           |       |
|                                                     |                                                     | 11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KW                                            |                                                                         |                                                                                                      |                                                                                                    | KW                                                                                                   |                                 |                           |                                 |                   |                                                   |                |       |
|                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                                         |                                                                                                      |                                                                                                    |                                                                                                      |                                 |                           |                                 |                   |                                                   |                |       |
| 2                                                   | EQ5001                                              | 18.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KW                                            |                                                                         |                                                                                                      |                                                                                                    |                                                                                                      |                                 |                           |                                 |                   |                                                   |                |       |
| 3                                                   | E95240                                              | 18.65<br>7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KW<br>KW<br>ipment Sec                        | tion Alte                                                               | ernative #                                                                                           | #2                                                                                                 |                                                                                                      | ••••                            |                           |                                 |                   |                                                   |                |       |
|                                                     | EQ5240                                              | 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KW<br>ipment Sec                              |                                                                         |                                                                                                      |                                                                                                    |                                                                                                      |                                 |                           |                                 |                   |                                                   |                |       |
|                                                     | Eq5240                                              | 7.46<br>Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KW<br>ipment Sec                              | Equipmer                                                                | nt Descri                                                                                            |                                                                                                    |                                                                                                      |                                 |                           |                                 |                   | Limit -                                           |                |       |
| S<br>Card 5                                         | EQ5240                                              | 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ipment Sec                                    | Equipmer                                                                | nt Descrip                                                                                           |                                                                                                    |                                                                                                      |                                 |                           |                                 | emand             | Limit -<br>emperatu                               |                |       |
| 3<br>Card 5                                         | E05240                                              | 7.46 Equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ipment Sec                                    | Equipmer<br>mand Demar<br>Day Limit                                     | nt Descrip<br>nd<br>:<br>:W Alter                                                                    | ption / TOC<br>native Desc                                                                         | ) Schedu                                                                                             | les                             |                           |                                 | emand<br>Te       | Limit -                                           |                |       |
| Card 5                                              | E05240                                              | 7.46 Equ :lec Consump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ipment Sec                                    | Equipmer<br>mand Demar<br>Day Limit                                     | nt Descrip<br>nd<br>:<br>:W Alter                                                                    | ption / TOC                                                                                        | ) Schedu                                                                                             | les                             |                           | De                              | emand<br>Te       | Limit -<br>emperatu                               |                |       |
| Card 5<br>Altern<br>Number<br>2                     | E05240                                              | 7.46 Equ Elec Consump Time of Day Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipment Sec<br>Elec Den<br>Time of<br>Schedule | Equipmer<br>mand Demar<br>Day Limit<br>e Max M                          | nt Descrip<br>nd<br>:<br>CW Alter<br>EXIST                                                           | ption / TOC<br>native Desc                                                                         | ) Schedu<br>cription                                                                                 | les                             | BOILRS                    | Schedul                         | emand<br>Te       | Limit -<br>emperatu<br>Drift                      | ure            |       |
| Card 5 Altern Number 2 Card 6                       | E05240                                              | 7.46 Equ Elec Consump Time of Day Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipment Sec<br>Elec Den<br>Time of<br>Schedule | Equipmer<br>mand Demar<br>Day Limit<br>e Max M                          | nt Descrip<br>nd<br>:<br>:<br>CW Alter<br>EXIST                                                      | ption / TOO<br>native Desc<br>ING CHILLED                                                          | ) Schedu<br>eription<br>RS, HIGH<br>ssignmer                                                         | MODULAR                         | BOILRS                    | Schedul                         | emand<br>Te<br>le | Limit -<br>emperatu<br>Drift                      | ire            |       |
| Card 5 Altern Number 2 Card ( Load Assign           | E05240  59  native 1  f S                           | 7.46 Equ Elec Consump Time of Day Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipment Sec<br>Elec Den<br>Time of<br>Schedule | Equipmer<br>mand Demar<br>Day Limit<br>• Max M                          | nt Descrip<br>nd<br>:<br>CV Alter<br>EXIST<br>Heat                                                   | ption / TOO<br>native Desc<br>ING CHILLED<br>ing Load A:<br>33Grou                                 | ) Schedu<br>eription<br>RS, HIGH<br>essignmer                                                        | MODULAR                         | BOILRS -Group 6           | Schedul                         | emand<br>Te<br>le | Limit - emperatu Drift  -Group                    | 3Gr            | oup 9 |
| Card 5 Alterriumber 2 Card ( Load Assign            | E05240  59  native 1  S  65  All  nment Loence Ho   | 7.46  Equivalent Consump (ime of Day Schedule)  Il Coil oads To eating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elec Den<br>Time of<br>Schedule               | Equipmer<br>mand Demar<br>Day Limit<br>• Max M                          | nt Descrip<br>nd<br>:<br>CV Alter<br>EXIST<br>Heat                                                   | ption / TOO<br>native Desc<br>ING CHILLED<br>ing Load A:<br>33Grou                                 | ) Schedu<br>eription<br>RS, HIGH<br>essignmer                                                        | MODULAR                         | BOILRS -Group 6           | Schedul                         | emand<br>Te<br>le | Limit - emperatu Drift  -Group                    | 3Gr            | oup 9 |
| Card 5 Alterriumber 2 Card ( Load Assign            | E05240  59  native 1  f S                           | 7.46  Equivalent Consump (ime of Day Schedule)  Il Coil oads To eating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ipment Sec<br>Elec Den<br>Time of<br>Schedule | Equipmer<br>mand Demar<br>Day Limit<br>• Max M                          | nt Descrip<br>nd<br>:<br>CV Alter<br>EXIST<br>Heat                                                   | ption / TOO<br>native Desc<br>ING CHILLED<br>ing Load A:<br>33Grou                                 | ) Schedu<br>eription<br>RS, HIGH<br>essignmer                                                        | MODULAR                         | BOILRS -Group 6           | Schedul                         | emand<br>Te<br>le | Limit - emperatu Drift  -Group                    | 3Gr            | oup 9 |
| Card 5 Alterriumber 2 Card ( Load Assign            | E05240  59  native 1  S  65  All  nment Loence Ho   | 7.46  Equivalent Consump (ime of Day Schedule)  Il Coil oads To eating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elec Den<br>Time of<br>Schedule               | Equipmer<br>mand Demar<br>Day Limit<br>• Max M                          | nt Descrip<br>nd<br>:<br>CV Alter<br>EXIST<br>Heat                                                   | ption / TOO<br>native Desc<br>ING CHILLED<br>ing Load A:<br>33Grou                                 | ) Schedu<br>eription<br>RS, HIGH<br>essignmer                                                        | MODULAR                         | BOILRS -Group 6           | Schedul                         | emand<br>Te<br>le | Limit - emperatu Drift  -Group                    | 3Gr            | oup 9 |
| Gard 5<br>Number<br>2<br>Card (<br>Lossing<br>Refer | E05240  S9  Enative I  C S  Al  Inment L  ence H  1 | 7.46  Equiver the consumption of Day schedule the consumption | Elec Den<br>Time of<br>Schedule               | - Equipmer<br>mand Demar<br>Day Limit<br>Hax H<br>- Hax H               | nt Descrip<br>id<br>:<br>GW Altern<br>EXIST<br>Heat<br>Group<br>d Begin                              | ption / TOO<br>native Desc<br>ING CHILLED<br>ing Load A<br>3Grou<br>End Begin                      | ) Schedu<br>cription<br>RS, HIGH<br>ssignmer<br>p 4C<br>End Be                                       | HODULAR  It  Group 5-  Igin End | BOILRS  -Group 6 Begin En | Schedul Group d Begin           | emand<br>Te<br>le | Limit -<br>emperatu<br>Drift<br>-Group<br>Begin I | sGr            | in En |
| Card 5 Altern Number Card (Assign                   | Eq5240  59 Equip  67 Equip                          | 7.46  Equivalent Consump (ime of Day schedule)  Il Coil coads To ceating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Elec Den<br>Time of<br>Schedule               | - Equipmer<br>mand Demar<br>Day Limit<br>Hax H<br>- Hax H               | nt Descrip<br>id<br>:<br>CM Altern<br>EXIST<br>Heat<br>Group<br>d Begin                              | ption / TOO<br>native Desc<br>ING CHILLE<br>ing Load A<br>3Grou<br>End Begin                       | ) Schedu<br>cription<br>ts, HiGH<br>ssignmer<br>p 40<br>End Ba                                       | HODULAR  It  Group 5-  Igin End | BOILRS  -Group 6 Begin En | Schedul Group - Begin           | emand<br>Te<br>Le | Limit - emperatu Drift  -Group Begin              | 8Gr<br>End Beg | in En |
| Card 5 Altern Number 2 Card ( Assign Refer 1        | Eq5240  S9 Enative 1  All nment Loence Ho           | 7.46  Equivalent Consumption of Day Schedule  Ul Coil Coads To Coating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elec Den<br>Time of<br>Schedule               | - Equipmer<br>mand Demar<br>Day Limit<br>Hax H<br>- Group 2<br>Begin En | nt Descrip  id  c  W Alter  EXIST  Heat Group  d Begin  Heati                                        | ption / TOO<br>native Desc<br>ING CHILLEI<br>ing Load A<br>3Group<br>End Begin<br>ing Equipme<br>E | ) Schedu<br>cription<br>rts, HIGH<br>ssignmer<br>p 46<br>End Be<br>nt Param<br>nergy<br>ate          | HODULAR  iroup 5- igin End      | -Group 6 Begin En         | Schedul  Groul  d Begin  Switch | emand Te le       | Limit - emperatu Drift  -Group Begin              | 8Gr<br>End Beg | in En |
| Card 5 Altern Number 2 Card ( Assign                | Eq5240  S9                                          | 7.46  Equivalent Consumption of Day Schedule  Ul Coil coads To coating Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elec Den<br>Time of<br>Schedule               | - Equipmer<br>mand Demar<br>Day Limit<br>Hax H<br>- Hax H               | nt Descrip<br>nd<br>:<br>CW Altern<br>EXIST<br>Heat<br>Group<br>d Begin<br>Heati<br>Cap'y<br>Value L | ption / TOO native Desc ING CHILLED ing Load A 3Group End Begin ing Equipme E R Units V            | o Schedu<br>cription<br>RS, HIGH<br>ssignmer<br>p 40<br>End Be<br>nt Param<br>nergy<br>ate<br>alue U | HODULAR  It  Group 5-  Igin End | -Group 6 Begin En         | Schedul Group - Begin           | emand Te le       | Limit - emperatu Drift  -Group Begin              | 8Gr<br>End Beg | in En |

| at                                                                       | <b>= t</b>                                                                   | No4                                                             | - UII D                                                     |                                             |                                                              |                                                                    | Energy                                            |                                                                    | Seq                                                  | Switch                           |                                                 |                                         |                                   | Demai                    |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------|
|                                                                          | Equip                                                                        |                                                                 | r HW Prop                                                   |                                             | Cont                                                         |                                                                    | Rate                                              | '                                                                  | Order                                                | over                             | Hot                                             | Misc                                    |                                   | Limi                     |
| ef                                                                       | Code                                                                         | Of                                                              | Full Ld                                                     |                                             | Cap'y                                                        |                                                                    | Value                                             | Units                                                              |                                                      | Control                          |                                                 |                                         |                                   | n Numb                   |
|                                                                          | Name                                                                         | Units                                                           |                                                             | Units                                       | 1830                                                         | Units MBH                                                          | 2000                                              | MBH                                                                | 2                                                    | Control                          | 01.9                                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2030                              |                          |
|                                                                          | BOILHEFT                                                                     |                                                                 | 5.6                                                         | KW                                          |                                                              |                                                                    | 2000                                              | MBH                                                                | 3                                                    |                                  |                                                 |                                         |                                   |                          |
|                                                                          | BOILHEFT                                                                     |                                                                 | 5.6                                                         | KW                                          | 1830                                                         |                                                                    | 2000                                              | MBH                                                                | 4                                                    |                                  |                                                 |                                         |                                   |                          |
|                                                                          | BOILHEFT                                                                     | 1                                                               | 5.6                                                         | KW                                          | 1830                                                         | MBK                                                                | 2000                                              | MON                                                                | •                                                    |                                  |                                                 |                                         |                                   |                          |
| ard 7                                                                    | 1                                                                            |                                                                 |                                                             |                                             | Base Ut                                                      | ility Par                                                          | ameters -                                         |                                                                    |                                                      |                                  |                                                 |                                         |                                   |                          |
| ase                                                                      | Base                                                                         |                                                                 | Hour                                                        |                                             | urly                                                         |                                                                    |                                                   | Equip                                                              | Demand                                               |                                  |                                                 |                                         |                                   |                          |
| tilit                                                                    | y Utility                                                                    | ,                                                               | Dema                                                        | nd De                                       | mand Sci                                                     | hedule E                                                           | nergy                                             | Reference                                                          | Limiting                                             | Entering                         | Leav                                            | ring                                    |                                   |                          |
| umber                                                                    | Descrip                                                                      | •                                                               | Valu                                                        | e Un                                        | its Co                                                       | de 1                                                               | ype                                               | Number                                                             | Number                                               | Temp                             | Temp                                            | )                                       |                                   |                          |
|                                                                          | PIPE HI                                                                      | LOSS                                                            | 1795                                                        | .4 MB                                       | SH FT                                                        | SAMHTG H                                                           | IOT-LD                                            | 1                                                                  |                                                      |                                  |                                                 |                                         |                                   |                          |
| ••••                                                                     |                                                                              | 6                                                               | Equipment S                                                 | Section                                     | Alternat                                                     | ive#3                                                              |                                                   |                                                                    |                                                      |                                  |                                                 |                                         |                                   |                          |
| ard 5                                                                    |                                                                              |                                                                 | ump Elect                                                   |                                             |                                                              | scription                                                          | n / T00 Sc                                        | hedules -                                                          |                                                      |                                  |                                                 |                                         |                                   |                          |
| lterr                                                                    | ative Ti                                                                     | me of Da                                                        | ay Time o                                                   | of Day I                                    | Limit                                                        |                                                                    |                                                   |                                                                    |                                                      |                                  | T                                               | empera                                  | ature                             |                          |
| umber                                                                    | Sc.                                                                          | hedul e                                                         | Schedu                                                      | ale I                                       | Max KW A                                                     | lternati                                                           | ve Descrip                                        | otion                                                              |                                                      | Sched                            | ule                                             | Dri                                     | ft                                |                          |
| 5                                                                        |                                                                              |                                                                 |                                                             |                                             | W                                                            | ATER COO                                                           | LED CENTR.                                        | CHILLER,                                                           | EXIST BOI                                            | LR                               |                                                 |                                         |                                   |                          |
|                                                                          |                                                                              |                                                                 |                                                             |                                             |                                                              |                                                                    |                                                   |                                                                    |                                                      |                                  |                                                 |                                         |                                   |                          |
| .oad<br>Asgn                                                             | All Coil<br>Loads To                                                         | Coolin<br>Equipm                                                | ent -Grou                                                   | p 1G                                        | roup 2-                                                      | -Group 3                                                           | g Load As:<br>Group                               | signment<br>4Grou                                                  | <br>1р 5Gro                                          | up 6G                            | roup 7                                          | 'G                                      | roup 8-                           | -Grou                    |
| .oad<br>Isgn<br>Ref                                                      | All Coil                                                                     | Coolin<br>Equipm                                                | g<br>ent -Grou<br>Begin                                     | p 1G                                        | roup 2-                                                      | -Group 3                                                           | g Load As:<br>Group                               | signment<br>4Grou                                                  |                                                      | up 6G                            | roup 7                                          | 'G                                      | roup 8-                           | -Groo<br>Begii           |
| oad<br>sgn<br>ef                                                         | All Coil<br>Loads To<br>Cool Ref<br>1                                        | Coolin<br>Equipm<br>Sizing<br>BLKPLA                            | g<br>ent -Grou<br>Begin<br>NT 1                             | p 1G<br>End Be<br>2                         | roup 2-<br>gin End                                           | -Group 3<br>Begin En                                               | g Load As:<br>Group<br>d Begin                    | signment<br>4Grou<br>End Begin                                     | up 5Gro<br>n End Begi                                | up 6G<br>n End Be                | roup 7<br>gin En                                | 'G                                      | roup 8-<br>gin End                | Begi                     |
| oad<br>sgn<br>ef                                                         | All Coil<br>Loads To<br>Cool Ref<br>1                                        | Coolin<br>Equipm<br>Sizing<br>BLKPLA                            | g<br>ent -Grou<br>Begin<br>NT 1                             | p 1G<br>End Be<br>Z                         | roup 2-<br>gin End                                           | -Group 3<br>Begin En<br>Ling Equi                                  | g Load As:Group d Begin                           | signment<br>4Grot<br>End Begir<br>ametersHEAT RE                   | up 5Gra<br>n End Begi                                | nup 6 G<br>n End Be              | roup 7<br>gin En                                | 'G<br>nd Be                             | roup 8-<br>gin End                | Begia                    |
| oad<br>sgn<br>ef                                                         | All Coil<br>Loads To<br>Cool Ref<br>1<br>62<br>Equip<br>Code                 | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of               | g went -Grou Begin NT 1                                     | p 1G<br>End Be<br>2                         | roup 2- gin End Cool GEner                                   | -Group 3 Begin En ling Equi                                        | g Load As:Group d Begin                           | signment 4Grot End Begir ametersHEAT Ri                            | up 5Gro<br>n End Begi<br>ecovery                     | up 6 - G<br>n End Be             | roup 7<br>gin En<br>Sec<br>Orc                  | 'G<br>nd Be<br>nd Be                    | roup 8-<br>gin End<br>De          | Begin                    |
| oad<br>sgn<br>ef<br>Card<br>Cool<br>Ref                                  | All Coil Loads To Cool Ref 1 62 Equip Code Name                              | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units      | g went -Grou Begin NT 1 Capacity Value Uni                  | p 1G<br>End Be<br>Z<br>COOLIN               | roup 2- gin End Cool GEner Value                             | -Group 3 Begin En ling Equi gy Units                               | g Load As:Group d Begin                           | signment<br>4Grot<br>End Begir<br>ametersHEAT RE                   | up 5Gra<br>n End Begi                                | nup 6 G<br>n End Be              | roup 7<br>gin En<br>Sec<br>Orc<br>Num           | 'G<br>nd Be<br>der S<br>n T             | roup 8- gin End  Deckeq Li        | Begin                    |
| oad<br>sgn<br>ef<br>card<br>cool<br>tef                                  | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENT134                     | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units      | g  Hent -Grou  Begin  NT 1 Capacity  Value Uni  425 TON     | p 1G<br>End Be<br>2<br>COOLIN               | roup 2- gin End Cool G Value 264                             | -Group 3 Begin En ling Equi gy Units KW                            | g Load As:Group d Begin                           | signment 4Grot End Begir ametersHEAT Ri                            | up 5Gro<br>n End Begi<br>ecovery                     | up 6 - G<br>n End Be             | roup 7<br>gin En<br>Sec<br>Orc<br>Num<br>1      | 'G nd Be                                | roup 8- gin End  De seq Li ype Nu | Begin                    |
| oad<br>sgn<br>ef<br>card<br>cool<br>tef                                  | All Coil Loads To Cool Ref 1 62 Equip Code Name                              | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units      | g went -Grou Begin NT 1 Capacity Value Uni                  | p 1G<br>End Be<br>2<br>COOLIN               | roup 2- gin End Cool GEner Value                             | -Group 3 Begin En ling Equi gy Units                               | g Load As:Group d Begin                           | signment 4Grot End Begir ametersHEAT Ri                            | up 5Gro<br>n End Begi<br>ecovery                     | up 6 - G<br>n End Be             | roup 7<br>gin En<br>Sec<br>Orc<br>Num           | 'G nd Be                                | roup 8- gin End  Deckeq Li        | Begin                    |
| oad<br>sgn<br>ef<br>dard<br>cool<br>tef<br>ium                           | All Coil Loads To Cool Ref 1 62 Equip Code VCENT134 YCENT134                 | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units<br>1 | g Hent -Group Begin NT 1 Capacity Value Uni 425 TON 840 TON | p 1G<br>End Be<br>2<br>COOLIN               | roup 2-gin End Cool G Value 264 487                          | -Group 3<br>Begin En<br>Ling Equi<br><br>gy<br>Units<br>KW         | g Load As:Group d Begin  Capa Value               | 4Grot<br>4Grot<br>End Begir<br>ameters<br>HEAT Ri<br>city<br>Units | up 5Gra<br>n End Begi<br>ECOVERY<br>ECOVERY<br>Value | up 6G<br>n End Be<br>gy<br>Units | roup 7<br>gin En<br>Sec<br>Orc<br>Num<br>1<br>2 | 'G<br>nd Be<br>der S<br>n T<br>P        | roup 8- gin End  De seq Li ype Nu | Begin                    |
| coad<br>asgn<br>def<br>Card<br>Cool<br>Ref<br>alum<br>1                  | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENT134                     | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units<br>1 | g ent -Grou Begin NT 1 Capacity Value Uni 425 TON 840 TON   | p 1G<br>End Be<br>2<br>COOLIN               | roup 2- gin End Cool GEner; Value 264 487                    | -Group 3 Begin En Ling Equi                                        | g Load As: Group d Begin I  pment ParCapa Value   | 4Grot<br>4Grot<br>End Begin<br>ameters<br>HEAT RI<br>city<br>Units | up 5Gra<br>n End Begi<br>ECOVERY<br>ECOVERY<br>Value | up 6G<br>n End Be                | roup 7<br>gin En<br>Sec<br>Orc<br>Num<br>1<br>2 | 'G<br>nd Be<br>der S<br>n T<br>P        | roup 8- gin End  De seq Li ype Nu | Begin                    |
| coad<br>lasgn<br>Ref<br>l<br>Cord<br>Ref<br>Num<br>1<br>2                | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENT134 63                  | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units<br>1 | g ent -Grou Begin NT 1 Capacity Value Uni 425 TON 840 TON   | p 1G End Be 2COOLIN                         | roup 2- gin End Cool G Value 264 487                         | -Group 3 Begin En Ling Equi gy Units KW KW mps and F               | g Load As:Group d Begin                           | signment 4Grou End Begin ametersHEAT Ri city Units                 | up 5Gro<br>n End Begi<br>ECOVERY<br>ECOVERY<br>Value | up 6G<br>n End Be                | Secondaria                                      | 'G<br>kd Be<br>der S<br>P<br>P          | roup 8- gin End  De seq Li ype Nu | Begin                    |
| Card Cool Ref                                                            | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENT134 63CHILLEI Full Load | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units<br>1 | g ent -Grou Begin NT 1 Capacity Value Uni 425 TON 840 TON   | p 1G End Be 2COOLIN ts S S                  | roup 2- gin End Cool G Value 264 487 cooling Pu R ull Load   | -Group 3 Begin En Ling Equi gy Units KW KW mps and F               | g Load As:Group d Begin                           | 4Grou<br>End Begin<br>ametersHEAT Ri<br>City<br>Units              | up 5Gro<br>n End Begi<br>ECOVERY<br>Ener<br>Value    | up 6 - G<br>n End Be             | Second 1                                        | 'G<br>kd Be<br>der S<br>P<br>P          | roup 8- gin End  De seq Li ype Nu | Begir<br><br>mend<br>mit |
| Load<br>Asgn<br>Ref<br>1<br>Cool<br>Ref<br>Num<br>1<br>2<br>Card<br>Cool | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENT134 63                  | Coolin<br>Equipm<br>Sizing<br>BLKPLA<br>Num<br>Of<br>Units<br>1 | g ent -Grou Begin NT 1 Capacity Value Uni 425 TON 840 TON   | p 1G End Be 2COOLIN ts S S COMDENSE Load Ft | roup 2- gin End  Cool G Value 264 487  cooling Pu R ull Load | -Group 3 Begin En ling Equi gy Units KW KW mps and FHT Ri Full Los | g Load As:Group d Begin    Capa Value  Capa Value | 4Grou<br>End Begin<br>ametersHEAT Ri<br>City<br>Units              | up 5Gro<br>n End Begi<br>ECOVERY<br>ECOVERY<br>Value | up 6 - G<br>n End Be             | Second 1                                        | 'G Be                                   | roup 8- gin End  De seq Li ype Nu | Begi<br><br>mend<br>mit  |

```
Card 63----- Cooling Pumps and References
Cool --- CHILLED WATER---- ---- CONDENSER----- --- HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc.
                                                            Units Value Units Control Storage Tower Access.
Num Value Units Value
                                                                                                                1
                                         55.95
                                                            KI
2 55.95
                        KW
Card 71------ Base Utility Parameters -----
Base Base Hourty Hourly
Utility Utility Demand Demand Schedule Energy
Wumber Descrip Value Units Code Type
                                                                                                         Equip Demand
                                                                                                         Reference Limiting Entering Leaving
                                                                                                         Number Number Temp Temp
              PIPE-PUMP HT LOS 22
                                                           TONS FTSAMCLG CHILL-LD 1
1
              PIPE-PUMP HT LOS 43
                                                          TONS FTSAMCLG CHILL-LD 2
Card 72-- Switchover Controls ------
                                        Outside
 Control Load Load Air
                                                      Sched
 Reference Value Units DB
                                                      Code
           425 TONS
 Card 74------ Condenser / Cooling Tower Parameters -----
                                                           Energy Energy Number Percent Low Spd Low Spd
       Cooling
                                                                           Consump Fluid Tower Of Airflow Energy Energy
                           Capacity Capacity Consump
                           Value Units
                                                           Value
                                                                           Units Type Type Cells Low Spd Value
 Ref Code
                                                                                                                                                                KV
            EQ5100
                                                           14.92
                                                                           KW
                                                                                                                      1
                                                                                                                                  50 7.46
                                                                           KV
                                                                                                                      2
 2
           F05100
                                                           52.2
 ----- Equipment Section Alternative #4 ------
  Card 59----- Equipment Description / TOD Schedules -----
                                                                                                                                               ---- Demand Limit ---
                     Elec Consump Elec Demand Demand
                                                                                                                                                    Temperature
  Alternative Time of Day Time of Day Limit
                     Schedule Schedule Max KW Alternative Description
  Number
                                                                             WAT. COOLED DUAL SCREW CHILR, EXIST BLR
  4
  Card 60------ Cooling Load Assignment-----
  Load All Coil Cooling
  Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
  Ref Cool Ref Sizing Begin End Begin
```

| ef Cod           |                            | JR      | C(                        | OOLING           |                  |           | HEAT REC                     | OVERY              |                  | Seq            |                  | Deman |
|------------------|----------------------------|---------|---------------------------|------------------|------------------|-----------|------------------------------|--------------------|------------------|----------------|------------------|-------|
|                  | e 01                       | C       | apacity                   | Ene              | ergy             | Capa      | city                         | Energy             | <b>/</b>         | Order          | Seq              | Limit |
|                  | e Ur                       | its Val | ue Units                  | Value            | Units            | Value     | Units                        | Value I            | Jnits            | Num            | Type             | Numbe |
| YSC              | RW22 1                     | 425     | TONS                      | 272              | KW               |           |                              |                    |                  | 1              | PAR              |       |
| YSC              | RW22 1                     | 840     | TONS                      | 538              | KW               |           |                              |                    |                  | 2              | PAR              |       |
|                  |                            |         |                           | Cooling (        |                  |           |                              |                    |                  |                |                  |       |
|                  |                            |         |                           | DENSER           |                  |           |                              |                    |                  |                |                  |       |
| tef Ful          |                            |         |                           | d Full Load      |                  |           |                              | Cold               | Cooling          |                |                  |       |
| ium Val          |                            | Jnits   | Value                     | Units            | Value            | Units     |                              | l Storage          |                  | Access         | •                |       |
| 29.              | 84 1                       | CW      | 29.84                     | KW               |                  |           | 1                            |                    | 1                |                |                  |       |
| 2 55.            | .95                        | KW      | 55.95                     | KM               |                  |           | 1                            |                    | 2                |                |                  |       |
|                  |                            |         |                           |                  |                  |           |                              |                    |                  |                |                  |       |
| Card 71-<br>Base | Base                       | •••••   | Hourly                    | Base<br>Hourly   |                  | arameters | Equip                        | Demand             |                  |                |                  |       |
| Base             |                            |         |                           | Hourty           |                  |           | Equip                        |                    | Entering         | Leavir         | . <b>.</b><br>ng |       |
| Base<br>Utility  | Base                       |         | Hourly<br>Demand          | Hourly<br>Demand | Schedule         |           | Equip<br>Reference           | Demand             | Entering<br>Temp | Leavir<br>Temp | ng               |       |
| Base<br>Utility  | Base<br>Utility<br>Descrip |         | Hourly<br>Demand<br>Value | Hourly<br>Demand | Schedule<br>Code | Energy    | Equip<br>Reference<br>Number | Demand<br>Limiting | -                |                | ng               |       |

| Card 7 | 4       |          |          | Condenser | / Cooling | ] Tower | Parameters |        |         |         |         |
|--------|---------|----------|----------|-----------|-----------|---------|------------|--------|---------|---------|---------|
|        | Cooling |          |          | Energy    | Energy    |         |            | Number | Percent | Low Spd | Low Spd |
| Tower  | Tower   | Capacity | Capacity | Consump   | Consump   | Fluid   | Tower      | Of     | Airflow | Energy  | Energy  |
| Ref    | Code    | Value    | Units    | Value     | Units     | Type    | Type       | Cells  | Low Spd | Value   | Units   |
| 1      | EQ5100  |          |          | 14.92     | KW        |         |            | 1      | 50      | 7.46    | KW      |
| 2      | E05100  |          |          | 52.22     | KV        |         |            | 2      |         |         |         |

## Utility Description Reference Table

```
Schedules:
    FSHBARRL F.S.H. BARRACKS LIGHT/MISC. SCHEDULE
    FSHBARRP F.S.H. BARRACKS PEOPLE SCHEDULE
    FSHDINL F.S.H. DINING LIGHTING/MISC. LOAD SCHED.
    FSHDINP F.S.H. DINING PEOPLE SCHEDULE
    FSHKITCH F.S.H. KITCHEN INTERNAL LOAD SCHEDULE
     FSHOFFIC F.S.H. OFFICE INTERNAL LOAD SCHEDULE
    FTSAMCLG EEAP BOILER/CHILLER STUDY
    FTSAMHTG EEAP BOILER/CHILLER STUDY
System:
    MZ MULTIZONE
     VAV VARIABLE AIR VOLUME
Equipment:
     Cooling:
          EQ1001S 2-STG CENTRIFUGAL CHILLER <550 TONS
          YCENT134 YORK CENT. R-134A CHILL
          YSCRW22 YORK W.C. SCREW CHILL.
     Heating:
          1300HWHB EXISTING FORCE DRAFT C.B. HWH BOILER
          1350HWB1 EXISTING NAT. DRAFT RITE HWH BOILER
          1350HWB2 EXISTING NAT. DRAFT AJAX HWH BOILER
          BOILHEFT HIGH EFFICIENCY MODULAR FIRETUBE BOIL.
          Tower:
              EQ5100 COOLING TOWER FANS
        Misc:
           EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME
           EQ5020 HEATING WATER CIRCULATION PUMP
```

EQ5240 BOILER FORCED DRAFT FAN

```
Card 59----- Equipment Description / TOD Schedules -----
        Elec Consump Elec Demand Demand
                                                         ---- Demand Limit ---
 Alternative Time of Day Time of Day Limit
 Number Schedule Schedule Max KW Alternative Description Schedule Drift
                                                               Temperature
                               BASE CASE
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End Begin End
           BLKPLANT 1 1
          BLKPLANT 2
2
    2
Card 62----- Cooling Equipment Parameters
          Cool Equip
Ref Code
Num Name
         Units Value Units
                          Value Units
                                     Value Units Value Units
                                                              Num Type Number
1 EQ1001S 1 438 TONS
                         329
                               KW
2 EQ1001S 1
3 EQ1001S 1
            544 TONS
                         517
                               KU
                                                                   SER
             442 TONS 517
                               KU
                                                              2
                                                                   SER
Card 63----- Cooling Pumps and References -----
Cool ---CHILLED WATER---- ----CONDENSER----- ---HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc.
Num Value Units Value Units Value Units Control Storage Tower Access.
1 29.84
          KW
                 22.38
                        KW
                                                        1
        KW
2
   18.65
                 29.84
                        KW
                                                        2
                                                              2
3
                 29.84
                        หม
                                                        2
Card 65----- Heating Load Assignment -----
Assignment Loads To Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Reference Heating Ref Begin End Begin End
       1 1 1
       3
               2
Card 67----- Heating Equipment Parameters -----
Heat Equip Number HW Pmp
                                       Energy Seq Switch
                                                                          Demand
     Code
         Of Full Ld
                            Cap'y
                                       Rate
                                                  Order over Hot Misc.
Number Name Units Value Units
                            Value Units
                                       Value Units
                                                  Number Control Strg Acc. Cogen Number
1
    1350HWB1 1
                29.84 KW
                            5317 MBH
                                       7500 MBH
                                                  1
     1350HWB2 1
2
                            4336 MBH
                                       5800 MBH
                                                  2
    1300HWHB 1
3
                11.19 KW
                            5912 MBH
                                       8369
                                                  1
     1300HWHB 1
                11.19 KW
                            5912 MBH
                                       8369
                                           MBH
                                                  2
                                                                 3
```

| Equip Referen Number 1 1 2 3 rameters Tower Type sssory     | Democe Lim Num Number Of Cells 1 | nand miting En mber Te  Percent Airflow Low Spd 50 | Low Spd<br>Energy                  | Low Spd<br>Energy<br>Units                                         |         |
|-------------------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------------------------------------|---------|
| Number 1 1 2 3 rameters Tower Type ssory nergy Scinits Cody | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| 1 1 2 3 rameters Tower Type sssory nergy Scinits Cody       | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50                | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| 1 2 3 3 Frameters Tower Type Sssory                         | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| 2 3 rameters Tower Type sssory nergy Scinits Cody           | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| Tower Type ssory                                            | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| Tower Type ssory nergy Sci                                  | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| Tower Type ssory nergy Sci                                  | Number<br>Of<br>Cells<br>1<br>2  | Percent<br>Airflow<br>Low Spd<br>50<br>#3<br>Equip | Low Spd<br>Energy<br>Value<br>7.46 | Low Spd<br>Energy<br>Units<br>KW                                   |         |
| Tower Type  ssory  nergy Scinits Cod                        | Of<br>Cells<br>1<br>2            | Airflow<br>Low Spd<br>50<br>#3<br>Equip            | Energy<br>Value<br>7.46            | Energy<br>Units<br>KW                                              |         |
| ssory nergy Scinits Cody                                    | Cells<br>1<br>2                  | Low Spd<br>50<br>#3<br>Equip                       | Value<br>7.46                      | Units<br>KW                                                        |         |
| ssory<br>nergy Sci<br>nits Cod                              | 1<br>2                           | 50<br>#3<br>Equip                                  | 7.46                               | KW                                                                 |         |
| ssory<br>nergy Sci<br>nits Co                               | 2<br>:hed                        | #3<br>Equip                                        | •••••                              |                                                                    |         |
| nergy Sci<br>nits Co<br>W                                   | hed                              | #3<br>Equip                                        |                                    | ••••••                                                             |         |
| nits Co                                                     |                                  | Equip                                              | Energy                             |                                                                    |         |
| nits Co                                                     |                                  |                                                    | Energy                             | _                                                                  |         |
| W                                                           | ALC.                             | code                                               | Value                              |                                                                    |         |
|                                                             |                                  |                                                    | Value                              | Units                                                              | Code    |
| •••••                                                       |                                  |                                                    |                                    |                                                                    |         |
| •••••                                                       |                                  |                                                    |                                    |                                                                    |         |
| Schedules                                                   |                                  |                                                    | ···· Deman                         |                                                                    |         |
|                                                             |                                  |                                                    |                                    |                                                                    |         |
| iption                                                      |                                  |                                                    | Schedule                           | Drift                                                              |         |
| NGINE CHLI                                                  | R, EXIS                          | ST BOILR                                           |                                    |                                                                    |         |
| ssignment                                                   |                                  |                                                    |                                    | •••••                                                              | •••••   |
|                                                             |                                  |                                                    |                                    |                                                                    |         |
|                                                             | oup 5-                           | -Group 6                                           | Group                              | 7Groux                                                             | p 8Gr   |
| p 4Gre                                                      |                                  | Begin En                                           | d Begin E                          | nd Begin                                                           | End Beg |
| p 4Gre<br>End Beg                                           | in End                           |                                                    |                                    | _                                                                  |         |
| NG<br>SS                                                    | INE CHL<br>ignment<br>4Gr        | INE CHLR, EXIS                                     | tion INE CHLR, EXIST BOILR Ignment | tion Schedule INE CHLR, EXIST BOILR  ignment  6Group 5Group 6Group |         |

| A - 4                                 | Equip                                                            |                                    |                                    | C                            | OOLING                                                                                            | •••••                                        |               | HEA                  | T RECOV                         | ERY                              |                                          | Seq                            |                          | D |
|---------------------------------------|------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|----------------------|---------------------------------|----------------------------------|------------------------------------------|--------------------------------|--------------------------|---|
|                                       | Code                                                             | Of                                 |                                    | acity                        | E                                                                                                 | nergy                                        |               | oacity               |                                 | Energ                            |                                          | Order                          | Seq                      | ì |
|                                       | Name                                                             |                                    |                                    | Units                        | Value                                                                                             | Units                                        | Value         | . Units              |                                 |                                  | Units                                    | Num                            | Туре                     |   |
|                                       | YENGORIV                                                         | 1                                  | 840                                | TONS                         | 5208                                                                                              | MBH                                          |               |                      |                                 |                                  |                                          | 2                              | PAR                      |   |
| ard                                   | 63                                                               | •••••                              | •••••                              |                              | Coolina                                                                                           | Pumos an                                     | d Reference   |                      |                                 |                                  |                                          |                                |                          |   |
| •••                                   | CHICLE                                                           | D MAISK                            |                                    | CONI                         | JENSER                                                                                            | HT                                           | REC or AUX    | C                    | uitch-                          |                                  | ••••••                                   |                                |                          |   |
| er                                    | Full Load                                                        | Full                               | Load                               | Full Load                    | full Lo                                                                                           | ad Full                                      | Load Full     | Load ov              | ver                             | Cold                             | Cooling                                  | Mina                           |                          |   |
| um                                    | Value                                                            | Units                              |                                    | Value                        | Units                                                                                             | Value                                        |               |                      |                                 | Storage                          |                                          | Access.                        |                          |   |
|                                       | 29.84                                                            | KW                                 |                                    | 29.84                        | KW                                                                                                |                                              |               | 1                    |                                 | o con age                        | 1                                        | Access.                        |                          |   |
|                                       | 55.95                                                            | KW                                 |                                    | 55.95                        | KW                                                                                                |                                              |               | 1                    |                                 |                                  | 2                                        |                                |                          |   |
|                                       |                                                                  | ٠                                  |                                    |                              |                                                                                                   |                                              |               |                      |                                 |                                  |                                          |                                |                          |   |
| ard<br>ase                            | 71<br>Base                                                       |                                    |                                    |                              | Base                                                                                              | Utility                                      | Parameters    |                      |                                 |                                  |                                          | •••••                          |                          |   |
|                                       | ty Utilii                                                        | tv                                 |                                    | Hourly                       | Hourly                                                                                            |                                              |               | Equip                | _                               | emand                            |                                          |                                |                          |   |
| umbe                                  |                                                                  |                                    |                                    | Demand<br>Value              |                                                                                                   |                                              | Energy        |                      |                                 | imiting                          | Entering                                 | Leaving                        |                          |   |
|                                       |                                                                  | PUMP HT                            | LOS                                | 22                           | Units<br>TONS                                                                                     | Code                                         | Туре          | Number               | · Nu                            | umber                            | Temp                                     | Temp                           |                          |   |
|                                       |                                                                  | PUMP HT                            |                                    | 43                           | TONS                                                                                              |                                              | CHILL-LD      |                      |                                 |                                  |                                          |                                |                          |   |
|                                       |                                                                  |                                    |                                    | 43                           | IONS                                                                                              | FISAMCLO                                     | CHILL-LD      | 2                    |                                 |                                  |                                          |                                |                          |   |
| ontro                                 |                                                                  | l Load                             | Out<br>I Air                       | side                         | hed                                                                                               |                                              |               |                      |                                 |                                  |                                          |                                |                          |   |
| ontro                                 |                                                                  | l Load                             | Out<br>I Air<br>s DB               | side                         | hed                                                                                               |                                              |               |                      |                                 |                                  |                                          |                                |                          |   |
| efer                                  | ol Load<br>ence Valu<br>425                                      | f Load<br>He Unit<br>TONS          | Out<br>I Air<br>s DB               | tside<br>Sc<br>Co            | hed<br>de                                                                                         | / Coolin                                     |               |                      |                                 |                                  |                                          |                                |                          |   |
| ontro                                 | ol Load<br>ence Valu<br>425                                      | f Load<br>He Unit<br>TONS          | Out<br>I Air<br>s DB               | tside<br>Sc<br>Co            | hed<br>de<br>Condenser                                                                            | / Coolin                                     | g Tower Pai   | ameters              |                                 |                                  |                                          |                                |                          |   |
| ontro<br>efero<br>ard 7               | ol Load                                                          | f Load<br>We Unit<br>TONS          | Out<br>I Air<br>is DB              | tside Sc                     | hed<br>de<br>Condenser<br>Energy                                                                  | Energy                                       |               |                      | Number                          | Percen                           | t Low Spd                                | Low S                          | pd                       |   |
| ontro<br>efero<br>and 7<br>ower       | ol Load<br>ence Valu<br>425                                      | f Load<br>We Unit<br>TONS          | Out Air s DB                       | tside<br>Sc<br>Co            | hed<br>de<br>Condenser<br>Energy                                                                  | Energy<br>Consump                            | Fluid         | Tower                | Number<br>Of                    | Percen<br>Airflo                 | t Low Spd<br>w Energy                    | Low 9                          | ipd<br>Iy                |   |
| ontro<br>efero<br>and 7<br>wer<br>ef  | ol Load<br>ence Valu<br>425<br>74<br>Cooling<br>Tower            | i Load                             | Out Air s DB                       | side Sc<br>Co                | hed<br>de<br>Condenser<br>Energy<br>Consump                                                       | Energy                                       |               |                      | Number<br>Of<br>Cells           | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| entro<br>efero<br>erd 7               | ol Load ence Valu 425  74 Cooling Tower Code                     | i Load                             | Out Air s DB                       | side Sc<br>Co                | hed<br>de<br>Condenser<br>Energy<br>Consump<br>Value                                              | Energy<br>Consump<br>Units                   | Fluid         | Tower                | Number<br>Of<br>Cells<br>1      | Percen<br>Airflo                 | t Low Spd<br>w Energy                    | Low 9                          | ipd<br>Iy                |   |
| ontro<br>efero<br>ard 7<br>ower<br>ef | Cooling Tower Code E95100                                        | i Load                             | Out Air s DB                       | side Sc<br>Co                | Condenser<br>Energy<br>Consump<br>Value<br>14.92                                                  | Energy<br>Consump<br>Units<br>KW             | Fluid         | Tower                | Number<br>Of<br>Cells           | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Cooling Tower Code Eq5100                                        | d Load<br>be Unit<br>TONS<br>Capac | Out<br>I Air<br>is DB              | side<br>Sc<br>Co<br>         | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2                                          | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Tower<br>Type        | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| ontro<br>efero<br>end 7               | Cooling Tower Code Eq5100                                        | d Load<br>be Unit<br>TONS<br>Capac | Out<br>I Air<br>is DB              | side<br>Sc<br>Co<br>         | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2                                          | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid         | Tower<br>Type        | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Cooling Tower Code Eq5100                                        | d Load<br>be Unit<br>TONS<br>Capac | Out<br>I Air<br>is DB              | side<br>Sc<br>Co<br>         | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2                                          | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Tower<br>Type        | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| ontro<br>efero<br>end 7               | Cooling Tower Code Eq5100                                        | d Load<br>be Unit<br>TONS<br>Capac | Out<br>I Air<br>is DB              | side<br>Sc<br>Co<br>         | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2                                          | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Tower<br>Type        | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp       | t Low Spd<br>w Energy<br>d Value         | Low 9<br>Energ<br>Units        | ipd<br>Iy                |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Ol Load Property Value  425  74 Cooling Tower Code Eq5100 Eq5100 | d Loace Unit TONS  Capac Value     | Out I Air IS DB It Ity C U Equipm  | side Sc Co Co sapacity nits  | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2                                          | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Томег                | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp<br>50 | t Low Spd<br>w Energy<br>d Value<br>7.46 | Energ<br>Units<br>KW           | Spd<br>3y<br>;           |   |
| ontro                                 | Cooling Tower Code Eq5100                                        | f Load<br>We Unit<br>TOWS          | Out Air S DB  iii  ii  U  EEEquipm | side Sc Co Co Sapacity Inits | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2<br>ion Altern                            | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Томег                | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp<br>50 | t Low Spd<br>w Energy<br>d Value<br>7.46 | Energ<br>Units<br>KW           | Spd<br>3y<br>;           |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Cooling Tower Code Eq5100 Eq5100                                 | Capac Value                        | Out I Air S DB  ity C U            | side Sc Co Co Capacity Inits | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2<br>ion Altern<br>Equipment<br>and Demand | Energy<br>Consump<br>Units<br>KW<br>KW       | Fluid<br>Type | Томег                | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp<br>50 | t Low Spd<br>w Energy<br>d Value<br>7.46 | Low S<br>Energ<br>Units<br>KW  | Spd<br>sy                |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Cooling Tower Code Eq5100 Eq5100                                 | Capac Value                        | Out I Air S DB  ity C U  Equipm    | ent Section                  | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2<br>ion Altern<br>Equipment<br>and Demand | Energy Consump Units KW KW mative #3         | Fluid<br>Type | Tower<br>Type        | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp<br>50 | t Low Spd<br>w Energy<br>d Value<br>7.46 | Low S<br>Energ<br>Units<br>KW  | Spd<br>sy<br>t           |   |
| ontro<br>efero<br>and 7<br>ower<br>ef | Cooling Tower Code Eq5100 Eq5100                                 | Capac Value                        | Out I Air S DB  ity C U  Equipm    | side Sc Co Co Capacity Inits | Condenser<br>Energy<br>Consump<br>Value<br>14.92<br>52.2<br>ion Altern<br>Equipment<br>and Demand | Energy Consump Units KW KW Descript Alternal | Fluid<br>Type | Tower Type  chedules | Number<br>Of<br>Cells<br>1<br>2 | Percen<br>Airflo<br>Low Sp<br>50 | t Low Spd<br>w Energy<br>d Value<br>7.46 | Low S Energ Units KW  and Limi | Spd<br>By<br>S<br>S<br>t |   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All Coil                                                                 |                                                      |                                        | -Coorn 1                                            |                                                               |                                                                                         |                                                        |                                        |                                                       | . 4              |                 |            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-------------------------------------------------------|------------------|-----------------|------------|-------------|
| nagii<br>Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cool Ref                                                                 | Sinis                                                | xiien (                                | Paris For                                           | -Group 2                                                      | - Group 3                                                                               | Group 4-                                               | -Group 5                               | Group                                                 | 6Gr              | oup 7-          | -Group     | 8Group      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                        | BLKPL                                                | -                                      | 1 2                                                 | i begin End                                                   | a Begin En                                                                              | a Begin Enc                                            | I Begin Er                             | d Begin E                                             | nd Begi          | in End          | Begin      | End Begin E |
| Cand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                                                       |                                                      |                                        |                                                     |                                                               |                                                                                         |                                                        |                                        |                                                       |                  |                 |            |             |
| Cool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Equip                                                                    | Num                                                  |                                        |                                                     | Co<br>OLING                                                   | ooling Equi                                                                             | pment Parame                                           |                                        |                                                       |                  |                 | •••••      | •••••       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code                                                                     | Of                                                   |                                        | pacity                                              |                                                               | ergy                                                                                    | Capacit                                                |                                        | ERY                                                   |                  | Seq             |            | Demand      |
| Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name                                                                     | Units                                                |                                        | e Units                                             | Value                                                         | Units                                                                                   | Value Un                                               | •                                      | Energy<br>alue Uni                                    |                  | Order           |            | Limit       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YCENVFD                                                                  | 1                                                    | 425                                    | TONS                                                | 264                                                           | KW                                                                                      | Value on                                               | its v                                  | alue Uni                                              | Its              | Num<br>1        | • •        | Number      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YCENVFD                                                                  | 1                                                    | 840                                    | TONS                                                | 487                                                           | KW                                                                                      |                                                        |                                        |                                                       |                  | 2               | PAR<br>PAR |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                      |                                        |                                                     |                                                               |                                                                                         |                                                        |                                        |                                                       |                  |                 |            |             |
| ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63                                                                       |                                                      |                                        |                                                     | - Cooling P                                                   | umps and R                                                                              | eferences                                              |                                        | •                                                     |                  |                 |            |             |
| :00 l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHILLED                                                                  | ) WATER                                              |                                        | COND                                                | ENSER                                                         | HT RE                                                                                   | C or AUX                                               | Switch-                                |                                                       |                  |                 |            |             |
| ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value                                                                    | Full                                                 | Load                                   |                                                     |                                                               |                                                                                         | d Full Load                                            | over                                   | Cold (                                                | Cooling          | Misc.           |            |             |
| ium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value<br>29.84                                                           | Units<br>KW                                          | •                                      | Value                                               | Units                                                         | Value                                                                                   | Units                                                  | Control                                | Storage T                                             | ower             | Access          |            |             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.95                                                                    |                                                      |                                        | 29.84                                               | KW                                                            |                                                                                         |                                                        | 1                                      | 1                                                     | l .              |                 |            |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.42                                                                    | KW                                                   |                                        | 55.95                                               | KW                                                            |                                                                                         |                                                        | 1                                      | 2                                                     | 2                |                 |            |             |
| ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                                                                       |                                                      |                                        | •••••                                               | Base                                                          | Utility Par                                                                             | rameters                                               | •••••                                  |                                                       |                  | •••••           |            |             |
| Base<br>Itili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71Base                                                                   | :y                                                   |                                        | Hourly<br>Demand                                    | Hourly<br>Demand                                              | Schedule E                                                                              | nergy Re                                               | uip D                                  | emand<br>imiting En                                   |                  | Leavin          |            |             |
| Base<br>Utili<br>iumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>Base<br>ty Utilit                                                  | y<br>P                                               |                                        | Hourly<br>Demand<br>Value                           | Hourly<br>Demand<br>Units                                     | Schedule E                                                                              | Eq<br>Energy Re<br>Type Nu                             | uip D<br>ference L                     | emand<br>imiting En                                   |                  | Leavinç<br>Temp |            |             |
| Base<br>Utili<br>Lumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71Base<br>ty Utiliter Descri                                             | y<br>P<br>UMP HT                                     | LOS                                    | Hourly<br>Demand<br>Value<br>22                     | Hourly<br>Demand<br>Units<br>TONS                             | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Lumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71Base<br>ty Utiliter Descri                                             | y<br>P                                               | LOS                                    | Hourly<br>Demand<br>Value                           | Hourly<br>Demand<br>Units<br>TONS                             | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu                             | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Dumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>Base<br>ty Utilit<br>P Descri<br>PIPE-P                            | Y<br>P<br>PUMP HT                                    | LOS                                    | Hourly<br>Demand<br>Value<br>22<br>43               | Hourly<br>Demand<br>Units<br>TONS<br>TONS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>Base<br>ty Utilit<br>P Descri<br>PIPE-P                            | Y<br>P<br>PUMP HT                                    | LOS<br>LOS                             | Hourly<br>Demand<br>Value<br>22                     | Hourly<br>Demand<br>Units<br>TONS<br>TONS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Numbe<br>I<br>Card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71Base ty Utilit r Descri PIPE-P PIPE-P                                  | P<br>P<br>PUMP HT<br>PUMP HT<br>Phover (             | LOS<br>LOS<br>Contro                   | Hourly Demand Value 22 43  pls utside ir Sci        | Hourly<br>Demand<br>Units<br>TONS<br>TONS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Dumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load                 | P<br>P<br>PUMP HT<br>Chover (                        | LOS LOS Contro Od Aid                  | Hourly Demand Value 22 43  pls utside ir Sci        | Hourly<br>Demand<br>Units<br>TOWS<br>TOWS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| lase<br>Itili<br>Iumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71Base ty Utilit r Descri PIPE-P PIPE-P                                  | P<br>P<br>PUMP HT<br>PUMP HT<br>Phover (             | LOS LOS Contro Od Aid                  | Hourly Demand Value 22 43  pls utside ir Sci        | Hourly<br>Demand<br>Units<br>TOWS<br>TOWS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base<br>Utili<br>Lumbe<br>B<br>Bard<br>Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load                 | P<br>P<br>PUMP HT<br>Chover (                        | LOS LOS Contro Od Aid                  | Hourly Demand Value 22 43  pls utside ir Sci        | Hourly<br>Demand<br>Units<br>TOWS<br>TOWS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 | -          |             |
| Base<br>Utili<br>Dumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load                 | P<br>P<br>PUMP HT<br>Chover (                        | LOS LOS Contro Od Aid                  | Hourly Demand Value 22 43  pls utside ir Sci        | Hourly<br>Demand<br>Units<br>TOWS<br>TOWS                     | Schedule E<br>Code 1<br>FTSAMCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip D<br>ference L                     | emand<br>imiting En                                   | itering          |                 |            |             |
| Base Utili Umbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71 Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load dence Valu 425 | P<br>PUMP HT<br>UMP HT<br>Chover (<br>Load<br>E Unit | LOS<br>LOS<br>Contro<br>Od Ai<br>ts DE | Hourly Demand Value 22 43  bls utside ir Sch        | Hourly<br>Demand<br>Units<br>TONS<br>TONS                     | Schedule E<br>Code 1<br>FTSAHCLG (                                                      | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1<br>CHILL-LD 2 | uip D<br>ference L<br>mber N           | emand<br>imiting En<br>.mber Te                       | atering<br>emp   |                 |            |             |
| dase<br>Utili<br>Lumbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71 Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load dence Valu 425 | P<br>PUMP HT<br>UMP HT<br>Chover (<br>Load<br>E Unit | LOS<br>LOS<br>Contro<br>Od Ai<br>ts DE | Hourly Demand Value 22 43  bls utside ir Sch        | Hourly Demand Units TONS TONS  TONS  Condenser                | Schedule E<br>Code 1<br>FTSAMCLG (<br>FTSAMCLG (                                        | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1               | uip Di<br>ference L<br>mber Ni         | emand<br>imiting En<br>umber Te                       | atering          | Тепр            |            |             |
| dase Itili Iumbe Itumbe | 71 Base ty Utilit r Descri PIPE-P PIPE-P 72 Switc ol Load ence Valu 425  | P<br>P<br>PUMP HT<br>Chover (<br>Loade Uni<br>TON:   | LOS LOS Contro Oc d Aits DE            | Hourly Demand Value 22 43  pols utside ir Sci 3 Coo | Hourly Demand Units TONS TONS  Condenser Energy               | Schedule E<br>Code 1<br>FTSAMCLG (<br>FTSAMCLG (                                        | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1<br>CHILL-LD 2 | uip Di<br>ference L<br>mber Ni<br>ters | emand<br>imiting En<br>umber Te                       | atering<br>emp   | Temp            | Spd .      |             |
| dase Itili Iumbe Itumbe | 71 Base ty Utilit PIPE-P PIPE-P 72 Swite ol Load ence Valu 425           | P<br>P<br>PUMP HT<br>Chover (<br>Loade Uni<br>TON:   | LOS LOS Contro Ox d Ai tts DE          | Hourly Demand Value 22 43  bls utside ir Sch        | Hourly Demand Units TONS TONS  Condenser Energy Consump       | Schedule E<br>Code 1<br>FTSAMCLG (<br>FTSAMCLG (<br>/ Cooling T<br>Energy<br>Consump Fi | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1<br>CHILL-LD 2 | ters<br>Number Of                      | emand<br>imiting En<br>umber Te<br>Percent<br>Airflow | LOW Sp<br>Energy | Temp            | Spd '9y    |             |
| dase Itili Itumbe Itumb | 71 Base ty Utilit PIPE-P PIPE-P 72 Switc ol Load ence Valu 425           | P P P P P P P P P P P P P P P P P P P                | LOS LOS Contro Ox d Ai tts DE          | Hourly Demand Value 22 43  bls utside ir Sc! 3 Coc  | Hourly Demand Units TONS TONS  Condenser Energy Consump Value | Schedule E<br>Code 1<br>FTSAMCLG (<br>FTSAMCLG (<br>/ Cooling T<br>Energy<br>Consump Fi | Eq<br>Energy Re<br>Type Nu<br>CHILL-LD 1<br>CHILL-LD 2 | ters<br>Number Of                      | emand<br>imiting En<br>umber Te<br>Percent<br>Airflow | LOW Sp<br>Energy | Temp            | Spd '9y    |             |

03018504 BOILER-CHILLER STUDY
FT. SAM HOUSTON - SAN ANTONIO, TX.
CORPS OF ENGINEERS - FT. WORTH, TEXAS
HUITT - ZOLLARS INC.
AREA 1300

Weather File Code:

 Location:
 SAN ANTONIO, TEXAS

 Latitude:
 29.0 (deg)

 Longitude:
 98.0 (deg)

 Time Zone:
 6

 Elevation:
 792 (ft)

 Barometric Pressure:
 29.0 (in. Hg)

Summer Clearness Number: 0.90
Winter Clearness Number: 0.90
Summer Design Dry Bulb: 97 (F)
Summer Design Wet Bulb: 76 (F)
Winter Design Dry Bulb: 30 (F)
Summer Ground Relectance: 0.20
Winter Ground Relectance: 0.20

Air Density: 0.0738 (Lbm/cuft)
Air Specific Heat: 0.2444 (Btu/lbm/F)
Density-Specific Heat Prod: 1.0818 (Btu-min./hr/cuft/F)
Latent Heat Factor: 4,761.9 (Btu-min./hr/cuft)
Enthalpy Factor: 4.4255 (Lb-min./hr/cuft)

Design Simulation Period: June To November
System Simulation Period: January To December
Cooling Load Methodology: TETD/Time Averaging

Time/Date Program was Run: 20: 5:15

Time/Date Program was Run: 20: 5:15 6/ 8/95 Dataset Name: FSH1300 .TM SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1 EXISTING SYSTEM

## System Totals

| Percent   | Cool    | ing Loa | d     | ··· Heati   | • • • • • • |       |
|-----------|---------|---------|-------|-------------|-------------|-------|
| Design    | Cap.    | Hours   | Hours | Capacity    | Hours       | Hours |
| Load      | (Ton)   | (%)     |       | (Btuh)      | (%)         |       |
|           |         |         |       |             |             |       |
| 0 - 5     | 69.8    | 4       | 160   | -534,786    | 18          | 516   |
| 5 - 10    | 139.5   | 5       | 206   | -1,069,572  | 20          | 576   |
| 10 - 15   | 209.3   | 5       | 198   | -1,604,358  | 9           | 270   |
| 15 - 20   | 279.1   | 8       | 316   | -2,139,144  | 9           | 247   |
| 20 - 25   | 348.8   | 9       | 362   | -2,673,930  | 10          | 274   |
| 25 - 30   | 418.6   | 6       | 269   | -3,208,716  | 6           | 173   |
| 30 - 35   | 488.4   | 9       | 396   | -3,743,502  | 10          | 295   |
| 35 - 40   | 558.2   | 6       | 263   | -4,278,288  | 14          | 398   |
| 40 - 45   | 627.9   | 6       | 234   | -4,813,074  | 4           | 109   |
| 45 - 50   | 697.7   | 6       | 265   | -5,347,860  | 0           | 0     |
| 50 - 55   | 767.5   | 5       | 226   | -5,882,647  | 0           | 0     |
| 55 - 60   | 837.2   | 8       | 321   | -6,417,432  | 0           | G     |
| 60 - 65   | 907.0   | 7       | 296   | -6,952,219  | 0           | 0     |
| 65 - 70   | 976.8   | 8       | 336   | -7,487,004  | 0           | 0     |
| 70 - 75   | 1,046.5 | 5       | 202   | -8,021,791  | 0           | 0     |
| 75 - 80   | 1,116.3 | 3       | 126   | -8,556,577  | 0           | 0     |
| 80 - 85   | 1,186.1 | 1       | 23    | -9,091,363  | 0           | 0     |
| 85 - 90   | 1,255.9 | 0       | 0     | -9,626,149  | 0           | 0     |
| 90 - 95   | 1,325.6 | 0       | 0     | -10,160,935 | 0           | 0     |
| 95 - 100  | 1,395.4 | 0       | 0     | -10,695,720 | 0           | 0     |
| Hours Off | 0.0     | 0       | 4,561 | 0           | 0           | 5,902 |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1
BASE CASE

|     | • • • • • • • • • • | ******* |      | E Q                                     | UIPI    | HENT     | ENE       | RGY      | CONS   | UMPTI  | ON    |     | • • • • • • • • • • • • • • • • • • • • |           |
|-----|---------------------|---------|------|-----------------------------------------|---------|----------|-----------|----------|--------|--------|-------|-----|-----------------------------------------|-----------|
| ef  | Equip               |         |      | • • • • • • • • • • • • • • • • • • • • |         | Mon      | thly Con  | sumption |        |        |       |     |                                         |           |
| lum | Code                | Jan     | Feb  | Mar                                     | Apr     | May      | June      | July     | Aug    | Sep    | Oct   | Nov | Dec                                     | Total     |
| 1   | EQ1001S             |         | 2-5  | TG CENTRI                               | FUGAL   | CHILLER  | <550 TON  | s        |        |        |       |     |                                         | 44        |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 89514    | 103432    | 122331   | 127030 | 103190 | 50187 | 0   | 0                                       | 595,685   |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 286.9    | 267.5     | 299.6    | 319.9  | 290.4  | 193.8 | 0.0 | 0.0                                     | 319.9     |
| 1   | EQ5100              |         | COOL | ING TOWER                               | RFANS   |          |           |          |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 11100    | 10742     | 11100    | 11100  | 10742  | 5429  | 0   | 0                                       | 60,215    |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 14.9     | 14.9      | 14.9     | 14.9   | 14.9   | 14.9  | 0.0 | 0.0                                     | 14.9      |
| 1   | EQ5100              |         | COOL | ING TOWER                               | R FANS  |          |           |          |        |        |       |     |                                         |           |
|     | WATER               | 0       | 0    | 0                                       | 0       | 483      | 569       | 673      | 694    | 561    | 270   | 0   | 0                                       | 3,251     |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 1.6      | 1.5       | 1.6      | 1.7    | 1.6    | 1.2   | 0.0 | 0.0                                     | 1.7       |
| 1   | EQ5001              |         | CHIL | LED WATE                                | R PUMP  | - CONST  | ANT VOLU  | ME       |        |        |       |     |                                         |           |
|     | ELEC                | Ō       | 0    | 0                                       | 0       | 22201    | 21485     | 22201    | 22201  | 21485  | 22201 | 0   | 0                                       | 131,773   |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 29.8     | 29.8      | 29.8     | 29.8   | 29.8   | 29.8  | 0.0 | 0.0                                     | 29.8      |
| 1   | EQ5010              |         | COND | ENSER WA                                | TER PUM | P-CV(HIG | H EFFIC.  | )        |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 16651    | 16114     | 16651    | 16651  | 16114  | 16651 | 0   | 0                                       | 98,830    |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 22.4     | 22.4      | 22.4     | 22.4   | 22.4   | 22.4  | 0.0 | 0.0                                     | 22.4      |
| 1   | EQ5300              |         | CONT | ROL PANE                                | L & INT | ERLOCKS  |           |          |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 744      | 720       | 744      | 744    | 720    | 744   | 0   | 0                                       | 4,416     |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 1.0      | 1.0       | 1.0      | 1.0    | 1.0    | 1.0   | 0.0 | 0.0                                     | 1.0       |
| 2   | EQ1001S             |         | 2-5  | TG CENTR                                | I FUGAL | CHILLER  | <550 TO   | ıs       |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 216416   | 259295    | 314252   | 325517 | 256609 | 91916 | 0   | 0                                       | 1,464,005 |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 524.9    | 541.9     | 549.8    | 556.5  | 540.7  | 371.9 | 0.0 | 0.0                                     | 556.5     |
| 2   | EQ5100              |         | COOL | ING TOWE                                | R FANS  |          |           |          |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | ō       | 38852    | 37598     | 38852    | 38852  | 37598  | 19065 | 0   | 0                                       | 210,817   |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 52.2     | 52.2      | 52.2     | 52.2   | 52.2   | 52.2  | 0.0 | 0.0                                     | 52.2      |
| 2   | EQ5100              |         | COOL | .ING TOWE                               | R FANS  |          |           |          |        |        |       |     |                                         |           |
|     | WATER               | 0       | 0    | 0                                       | Ō       | 1007     | 1274      | 1584     | 1663   | 1224   | 387   | 0   | 0                                       | 7,140     |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 3.1      | 3.3       | 3.8      | 4.0    | 3.5    | 1.9   | 0.0 | 0.0                                     | 4.0       |
| 2   | E95001              |         | CHIL | LED WATE                                | R PUMP  | - CONST  | TANT VOLI | JME      |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 13876    | 13428     | 13876    | 13876  | 13428  | 13876 | 0   | 0                                       | 82,35     |
|     | PK                  | 0.0     | 0.0  | 0.0                                     | 0.0     | 18.6     | 18.6      | 18.6     | 18.6   | 18.6   | 18.6  | 0.0 | 0.0                                     | 18.       |
| 2   | EQ5010              |         | CON  | DENSER WA                               | TER PU  | P-CV(HI  | GH EFFIC  | .)       |        |        |       |     |                                         |           |
|     | ELEC                | 0       | 0    | 0                                       | 0       | 22201    | 21485     | 22201    | 22201  | 21485  | 22201 | 0   | 0                                       | 131,77    |
|     | PK                  | 0,0     | 0.0  | 0.0                                     | 0.0     | 29.8     | 29.8      | 29.8     | 29.8   | 29.8   | 29.8  | 0.0 | 0.0                                     | 29.1      |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

BASE CASE

| ef | Equip   |       |       | • • • • • • • • |           | Mon      | thly Cons | sumption |       |       |       |       | • • • • • • |         |
|----|---------|-------|-------|-----------------|-----------|----------|-----------|----------|-------|-------|-------|-------|-------------|---------|
| um | Code    | Jan   | Feb   | Mar             | Apr       | May      | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec         | Total   |
| 2  | EQ5300  |       | CONT  | TROL PANE       | L & INTE  | RLOCKS   |           |          |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 744      | 720       | 744      | 744   | 720   | 744   | 0     | 0           | 4,416   |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0   | 0.0         | 1.0     |
| 2  | EQ5001  |       | CHIL  | LED WATE        | R PUMP    | - CONST  | ANT VOLUM | ſΕ       |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 13876    | 13428     | 13876    | 13876 | 13428 | 13876 | 0     | 0           | 82,358  |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 18.6     | 18.6      | 18.6     | 18.6  | 18.6  | 18.6  | 0.0   | 0.0         | 18.6    |
| 3  | EQ1001S |       | 2-9   | STG CENT        | RIFUGAL ( | CHILLER  | <550 TONS | 3        |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 6503     | 20559     | 38934    | 48240 | 16050 | 0     | 0     | 0           | 130,286 |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 165.4    | 210.0     | 305.1    | 347.3 | 234.0 | 0.0   | 0.0   | 0.0         | 347.3   |
| 3  | EQ5001  |       | CHI   | LLED WATE       | ER PUMP   | - CONST  | ANT VOLUM | 1E       |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0           | 0       |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0         | 0.0     |
| 3  | EQ5010  |       | CON   | DENSER W        | ATER PUM  | P-CV(HIG | H EFFIC.  | )        |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 2626     | 4715      | 9250     | 9489  | 5073  | 0     | 0     | 0           | 31,153  |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 29.8     | 29.8      | 29.8     | 29.8  | 29.8  | 0.0   | 0.0   | 0.0         | 29.8    |
| 3  | EQ5300  |       | CONT  | TROL PANE       | EL & INT  | ERLOCKS  |           |          |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 88       | 158       | 310      | 318   | 170   | 0     | 0     | 0           | 1,044   |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 0.0   | 0.0   | 0.0         | 1.0     |
| 1  |         |       | 030   | 185.04 B        | LDG 1350  | HWH BOI  | LER 1     |          |       |       |       |       |             |         |
|    | GAS     | 5565  | 5263  | 5068            | 4904      | 0        | 0         | 0        | 0     | 0     | 0     | 4904  | 5696        | 31,400  |
|    | PK      | 13.2  | 13.9  | 6.8             | 6.8       | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 6.8   | 11.4        | 13.9    |
| 1  | EQ5020  |       | HEAT  | TING WAT        | ER CIRCU  | LATION P | UMP       |          |       |       |       |       |             |         |
|    | ELEC    | 22201 | 20052 | 22201           | 21485     | 0        | 0         | 0        | 0     | 0     | 0     | 21485 | 22201       | 129,625 |
|    | PK      | 29.8  | 29.8  | 29.8            | 29.8      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 29.8  | 29.8        | 29.8    |
| 1  | EQ5311  |       | BOIL  | LER CONTI       | ROLS      |          |           |          |       |       |       |       |             |         |
|    | ELEC    | 93    | 84    | 93              | 90        | 0        | 0         | 0        | 0     | 0     | 0     | 90    | 93          | 543     |
|    | PK      | 0.1   | 0.1   | 0.1             | 0.1       | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.1   | 0.1         | 0.1     |
| 2  |         |       | 030   | 185.04 B        | LDG 1350  | HWH BOI  | LER 2     |          |       |       |       |       |             |         |
|    | GAS     | 0     | 0     | 0               | 0         | 0        | 0         | 0        | 0     | 0     | 0     | O     | 0           | (       |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0         | 0.0     |
| 2  | EQ5311  |       | BOIL  | LER CONT        | ROLS      |          |           |          |       |       |       |       |             |         |
|    | ELEC    | 0     | 0     | 0               | 0         | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0           |         |
|    | PK      | 0.0   | 0.0   | 0.0             | 0.0       | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0         | 0.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASE CASE

| ef | Equip  |       |       |           |           | Mont     | hly Cons | umption · | • • • • • • • • • • • • • • • • • • • • |     |     |       |       |        |
|----|--------|-------|-------|-----------|-----------|----------|----------|-----------|-----------------------------------------|-----|-----|-------|-------|--------|
| m  | Code   | Jan   | Feb   | Mar       | Apr       | May      | June     | July      | Aug                                     | Sep | Oct | Nov   | Dec   | Tota   |
| 3  |        |       | 030   | 185.04 AF | REA 1300  | HWH BOIL | ER(S)    |           |                                         |     |     |       |       |        |
|    | GAS    | 36755 | 35443 | 18831     | 11935     | 0        | 0        | 0         | 0                                       | 0   | 0   | 17631 | 35518 | 156,11 |
|    | PK     | 81.9  | 79.4  | 53.4      | 19.2      | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 52.2  | 76.6  | 81.    |
| 3  | EQ5020 |       | HEAT  | TING WATE | ER CIRCUL | ATION PU | MP       |           |                                         |     |     |       |       |        |
|    | ELEC   | 8325  | 7520  | 8325      | 8057      | 0        | 0        | 0         | 0                                       | 0   | 0   | 8057  | 8325  | 48,60  |
|    | PK     | 11.2  | 11.2  | 11.2      | 11.2      | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 11.2  | 11.2  | 11.    |
| 3  | EQ5311 |       | 8011  | LER CONT  | ROLS      |          |          |           |                                         |     |     |       |       |        |
|    | ELEC   | 93    | 84    | 93        | 90        | 0        | 0        | 0         | 0                                       | 0   | 0   | 90    | 93    | 54     |
|    | PK     | 0.1   | 0.1   | 0.1       | 0.1       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 0.1   | 0.1   | 0.     |
| 3  | EQ5020 |       | HEA   | TING WAT  | ER CIRCUL | ATION PL | IMP      |           |                                         |     |     |       |       |        |
|    | ELEC   | 8325  | 7520  | 8325      | 8057      | 0        | 0        | 0         | 0                                       | 0   | 0   | 8057  | 8325  | 48,60  |
|    | PK     | 11.2  | 11.2  | 11.2      | 11.2      | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 11.2  | 11.2  | 11.    |
| 3  | EQ5240 |       | BOI   | LER FORC  | ED DRAFT  | FAN      |          |           |                                         |     |     |       |       |        |
|    | ELEC   | 5550  | 5013  | 5550      | 5371      | 0        | 0        | 0         | 0                                       | 0   | 0   | 5371  | 5550  | 32,40  |
|    | PK     | 7.5   | 7.5   | 7.5       | 7.5       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 7.5   | 7.5   | 7.     |
| 4  |        |       | 030   | 185.04 A  | REA 1300  | HWH BOIL | ER(S)    |           |                                         |     |     |       |       |        |
|    | GAS    | 0     | 0     | 0         | 0         | 0        | 0        | 0         | 0                                       | 0   | 0   | 0     | 0     |        |
|    | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 0.0   | 0.0   | 0.     |
| 4  | EQ5020 |       | HEA   | TING WAT  | ER CIRCUL | ATION PL | JMP      |           |                                         |     |     |       |       |        |
|    | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0         | 0                                       | 0   | 0   | 0     | 0     |        |
|    | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 0.0   | 0.0   | 0      |
| 4  | EQ5311 |       | BOI   | LER CONT  | ROLS      |          |          |           |                                         |     |     |       |       |        |
|    | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0         | 0                                       | 0   | 0   | 0     | 0     |        |
|    | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 0.0   | 0.0   | 0      |
| 4  | EQ5240 |       | BOI   | LER FORC  | ED DRAFT  | FAN      |          |           |                                         |     |     |       |       |        |
|    | ELEC   | 0     | 0     | 0         | 0         | 0        | 0        | 0         | 0                                       | 0   | 0   | 0     | 0     |        |
|    | PK     | 0.0   | 0.0   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0                                     | 0.0 | 0.0 | 0.0   | 0.0   | 0      |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 WATER COOLED CENTR. CHILLER, EXIST BOILR

|     |          |        |        | E        | QUIP     | MENT    | ENE      | RGY      | CONS   | UMPT   | 1 O N  |        |        | ••••••    |
|-----|----------|--------|--------|----------|----------|---------|----------|----------|--------|--------|--------|--------|--------|-----------|
| Ref | Equip    |        |        |          |          | Mon     | thly Con | sumption |        |        |        |        |        |           |
| Num | Code     | Jan    | Feb    | Mar      | Apr      | May     | June     | July     | Aug    | Sep    | Oct    | Nov    | Dec    | Total     |
| 0   | LIGHTS   |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | ELEC     | 248076 | 224754 | 249404   | 239859   | 248740  | 241188   | 247411   | 249404 | 239859 | 248740 | 241187 | 241432 | 2,920,053 |
|     | PK       | 689.0  | 689.0  | 689.0    | 689.0    | 689.0   | 689.0    | 689.0    | 689.0  | 689.0  | 689.0  | 689.0  | 689.0  | 689.0     |
| 1   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | ELEC     | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 2   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | GAS      | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 3   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | OIL      | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 4   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | P STEAM  | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | Ō         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 5   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | P HOTH20 | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | ō         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 6   | MISC LD  |        |        |          |          |         |          |          |        |        |        |        |        |           |
|     | P CHILL  | 0      | 0      | 0        | 0        | 0       | 0        | 0        | 0      | Ō      | 0      | 0      | 0      | 0         |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 1   |          |        | BAS    | SE UTILI | ΓY       |         |          |          |        |        |        |        |        |           |
|     | CHILLD   | 0      | 0      | 0        | 0        | 16368   | 15840    | 16368    | 16368  | 15840  | 16368  | 0      | 0      | 97,152    |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 22.0    | 22.0     | 22.0     | 22.0   | 22.0   | 22.0   | 0.0    | 0.0    | 22.0      |
| 2   |          |        | BA     | SE UTILI | TY       |         |          |          |        |        |        |        |        |           |
|     | CHILLD   | 0      |        | 0        | 0        | 31992   | 30960    | 31992    | 31992  | 30960  | 31992  | 0      | 0      | 189,888   |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 43.0    | 43.0     | 43.0     | 43.0   | 43.0   | 43.0   | 0.0    | 0.0    | 43.0      |
| 1   | EQ1001S  |        | 2      | -STG CEN | TRIFUGAL | CHILLER | <550 TO  | ıs       |        |        |        |        |        |           |
|     | ELEC     | 0      |        | 0        | 0        | 70092   | 85728    | 108560   | 96704  | 93491  | 62989  | 0      | 0      | 517,565   |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 268.8   | 287.1    | 326.8    | 330.2  | 307.2  | 276.6  | 0.0    | 0.0    | 330.2     |
| 1   | E95100   |        | co     | OLING TO | WER FANS |         |          |          |        |        |        |        |        |           |
|     | ELEC     | 0      |        | 0        | 0        | 6863    | 6058     | 6669     | 5804   | 7311   | 4499   | 0      | 0      | 37,204    |
|     | PK       | 0.0    | 0.0    | 0.0      | 0.0      | 14.9    | 14.9     | 14.9     | 14.9   | 14.9   | 14.9   | 0.0    | 0.0    | 14.9      |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
WATER COOLED CENTR. CHILLER, EXIST BOILR

|     |        |     |       |          | 0 1 1       | n E n 1  | ENE      | KUI      | CUNS   | UMPI   | 1 O N |     |     |         |
|-----|--------|-----|-------|----------|-------------|----------|----------|----------|--------|--------|-------|-----|-----|---------|
| ₹ef | Equip  |     |       |          | • • • • • • | Mor      | thly Cor | sumption |        |        |       |     |     |         |
| Num | Code   | Jan | Feb   | Mar      | Apr         | May      | June     | July     | Aug    | Sep    | Oct   | Nov | Dec | Tota    |
| 1   | EQ5100 |     | COOL  | ING TOWE | R FANS      |          |          |          |        |        |       |     |     |         |
|     | WATER  | 0   | 0     | 0        | 0           | 397      | 484      | 600      | 528    | 527    | 354   | 0   | 0   | 2,89    |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 1.5      | 1.5      | 1.7      | 1.7    | 1.6    | 1.6   | 0.0 | 0.0 | 1.      |
| 1   | EQ5001 |     | CHIL  | LED WATE | R PUMP      | - CONST  | ANT VOLU | ME       |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 13726    | 12115    | 13338    | 11608  | 14622  | 19694 | 0   | 0   | 85,10   |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 29.8     | 29.8     | 29.8     | 29.8   | 29.8   | 29.8  | 0.0 | 0.0 | 29.8    |
| 1   | EQ5010 |     | COND  | ENSER WA | TER PUM     | P-CV(HIG | H EFFIC. | )        |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 10295    | 9086     | 10004    | 8706   | 10966  | 14771 | 0   | 0   | 63,828  |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 22.4     | 22.4     | 22.4     | 22.4   | 22.4   | 22.4  | 0.0 | 0.0 | 22.4    |
| 1   | E95300 |     | CONT  | ROL PANE | L & INT     | ERLOCKS  |          |          |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 460      | 406      | 447      | 389    | 490    | 660   | 0   | 0   | 2,85    |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 1.0      | 1.0      | 1.0      | 1.0    | 1.0    | 1.0   | 0.0 | 0.0 | 1.0     |
| 2   |        |     | YORK  | CENTRIF  | UGAL R-     | 134A CHI | LLER     |          |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 124154   | 158702   | 198246   | 223687 | 144780 | 18405 | 0   | 0   | 867,97  |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 437.4    | 453.1    | 475.2    | 479.0  | 446.8  | 373.4 | 0.0 | 0.0 | 479.1   |
| 2   | EQ5100 |     | COOL  | ING TOWE | R FANS      |          |          |          |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 19418    | 26204    | 31685    | 35131  | 24534  | 4385  | o   | 0   | 141,358 |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 52.2     | 52.2     | 52.2     | 52.2   | 52.2   | 52.2  | 0.0 | 0.0 | 52.2    |
| 2   | EQ5100 |     | COOL  | ING TOWE | R FANS      |          |          |          |        |        |       |     |     |         |
|     | WATER  | 0   | 0     | 0        | 0           | 884      | 1133     | 1401     | 1562   | 1034   | 146   | 0   | 0   | 6,160   |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 3.0      | 3.0      | 3.1      | 3.1    | 3.0    | 2.7   | 0.0 | 0.0 | 3.      |
| 2   | EQ5001 |     | CHILI | LED WATE | R PUMP      | - CONST  | ANT VOLU | ME       |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 20813    | 28087    | 33962    | 37654  | 26297  | 4700  | 0   | 0   | 151,513 |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 56.0     | 56.0     | 56.0     | 56.0   | 56.0   | 56.0  | 0.0 | 0.0 | 56.0    |
| 2   | EQ5011 |     | COND  | ENSER WA | TER PUM     | P-CV(MED | IUM EFFI | C.)      |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | Ō           | 20813    | 28087    | 33962    | 37654  | 26297  | 4700  | 0   | 0   | 151,51  |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 56.0     | 56.0     | 56.0     | 56.0   | 56.0   | 56.0  | 0.0 | 0.0 | 56.     |
| 2   | EQ5300 |     | CONT  | ROL PANE | L & INT     | ERLOCKS  |          |          |        |        |       |     |     |         |
|     | ELEC   | 0   | 0     | 0        | 0           | 372      | 502      | 607      | 673    | 470    | 84    | 0   | 0   | 2,708   |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0         | 1.0      | 1.0      | 1.0      | 1.0    | 1.0    | 1.0   | 0.0 | 0.0 | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 WAT. COOLED GAS ENGINE CHLR, EXIST BOILR

| f | Equip    |        |        |           |        | Mon    | thly Con | sumption |        |        |        |        |        |          |
|---|----------|--------|--------|-----------|--------|--------|----------|----------|--------|--------|--------|--------|--------|----------|
| m | Code     | Jan    | Feb    | Mar       | Apr    | May    | June     | July     | Aug    | Sep    | Oct    | Nov    | Dec    | Total    |
| 0 | LIGHTS   |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | ELEC     | 248076 | 224754 | 249404    | 239859 | 248740 | 241188   | 247411   | 249404 | 239859 | 248740 | 241187 | 241432 | 2,920,05 |
|   | PK       | 689.0  | 689.0  | 689.0     | 689.0  | 689.0  | 689.0    | 689.0    | 689.0  | 689.0  | 689.0  | 689.0  | 689.0  | 689.     |
| 1 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | ELEC     | 0      | 0      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.       |
| 2 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | GAS      | 0      | O      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | C      | 0      | 0      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0      |
| 3 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | OIL      | 0      | 0      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.       |
| 4 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | P STEAM  | 0      | 0      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | O      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.       |
| 5 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | P HOTH20 | 0      | 0      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.       |
| 6 | MISC LD  |        |        |           |        |        |          |          |        |        |        |        |        |          |
|   | P CHILL  | 0      | 0      | 0         | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      |          |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.       |
| 1 |          |        | BAS    | SE UTILIT | ſΥ     |        |          |          |        |        |        |        |        |          |
|   | CHILLD   | 0      | 0      | 0         | 0      | 16368  | 15840    | 16368    | 16368  | 15840  | 16368  | 0      | 0      | 97,15    |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 22.0   | 22.0     | 22.0     | 22.0   | 22.0   | 22.0   | 0.0    | 0.0    | 22.      |
| 2 |          |        | BAS    | SE UTILI  | ſΥ     |        |          |          |        |        |        |        |        |          |
|   | CHILLD   | 0      |        | 0         | 0      | 31992  | 30960    | 31992    | 31992  | 30960  | 31992  | 0      | 0      | 189,88   |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 43.0   | 43.0     | 43.0     | 43.0   | 43.0   | 43.0   | 0.0    | 0.0    | 43.      |
| 1 | EQ1001S  |        |        |           |        |        | <550 TO  |          |        |        |        |        |        |          |
|   | ELEC     | 0      |        | 0         | 0      | 70092  |          | 108560   | 96704  | 93491  | 62989  | 0      |        | 517,56   |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 268.8  | 287.1    | 326.8    | 330.2  | 307.2  | 276.6  | 0.0    | 0.0    | 330.     |
| 1 | EQ5100   |        |        | DLING TO  |        |        |          |          |        |        |        |        |        |          |
|   | ELEC     | 0      |        |           | 0      | 6863   | 6058     | 6669     | 5804   | 7311   | 4499   | 0      | 0      | 37,20    |
|   | PK       | 0.0    | 0.0    | 0.0       | 0.0    | 14.9   | 14.9     | 14.9     | 14.9   | 14.9   | 14.9   | 0.0    | 0.0    | 14.      |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 WAT. COOLED GAS ENGINE CHLR, EXIST BOILR

|     |        |     |      | E Q       | UIPN     | RENT     | ENER      | G Y C    | оиѕ   | JMPTI | O N   |     |     |         |
|-----|--------|-----|------|-----------|----------|----------|-----------|----------|-------|-------|-------|-----|-----|---------|
| Ref | Equip  |     |      |           |          | Mon      | thly Cons | sumption |       |       |       |     |     |         |
|     | Code   | Jan | Feb  | Mar       | Apr      | May      | June      | July     | Aug   | Sep   | Oct   | Nov | Dec | Total   |
| 1   | EQ5100 |     | COOL | ING TOWER | FANS     |          |           |          |       |       |       |     |     |         |
|     | WATER  | 0   | 0    | 0         | 0        | 397      | 484       | 600      | 528   | 527   | 354   | 0   | 0   | 2,891   |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.5      | 1.5       | 1.7      | 1.7   | 1.6   | 1.6   | 0.0 | 0.0 | 1.7     |
| 1   | EQ5001 |     | CHIL | LED WATER | PUMP -   | - CONST  | ANT VOLUM | 4E       |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 13726    | 12115     | 13338    | 11608 | 14622 | 19694 | 0   | 0   | 85,104  |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 29.8     | 29.8      | 29.8     | 29.8  | 29.8  | 29.8  | 0.0 | 0.0 | 29.8    |
| 1   | EQ5010 |     | COND | ENSER WAT | TER PUMP | P-CV(HIG | H EFFIC.  | )        |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 10295    | 9086      | 10004    | 8706  | 10966 | 14771 | 0   | 0   | 63,828  |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 22.4     | 22.4      | 22.4     | 22.4  | 22.4  | 22.4  | 0.0 | 0.0 | 22.4    |
| 1   | EQ5300 |     | CONT | ROL PANEI | . & INT  | ERLOCKS  |           |          |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 460      | 406       | 447      | 389   | 490   | 660   | 0   | 0   | 2,852   |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
| 2   |        |     | YORK | ENGINE I  | ORIVEN ( | CHILLER  |           |          |       |       |       |     |     |         |
|     | GAS    | 0   | 0    | 0         | 0        | 12610    | 16173     | 20369    | 23139 | 14796 | 1774  | 0   | 0   | 88,860  |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 45.0     | 47.4      | 50.6     | 51.3  | 47.0  | 36.7  | 0.0 | 0.0 | 51.3    |
| 2   | EQ5100 |     | COOL | ING TOWER | R FANS   |          |           |          |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 19418    | 26204     | 31685    | 35131 | 24534 | 4385  | 0   | 0   | 141,358 |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 52.2     | 52.2      | 52.2     | 52.2  | 52.2  | 52.2  | 0.0 | 0.0 | 52.2    |
| 2   | EQ5100 |     | COOL | ING TOWE  | R FANS   |          |           |          |       |       |       |     |     |         |
|     | WATER  | 0   | 0    | 0         | 0        | 996      | 1278      | 1584     | 1772  | 1166  | 160   | 0   | 0   | 6,957   |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 3.4      | 3.5       | 3.6      | 3.6   | 3.4   | 3.1   | 0.0 | 0.0 | 3.6     |
| 2   | EQ5001 |     |      | LED WATE  |          |          | ANT VOLU  | ME       |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 20813    | 28087     | 33962    | 37654 | 26297 | 4700  | 0   | 0   | 151,513 |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 56.0     | 56.0      | 56.0     | 56.0  | 56.0  | 56.0  | 0.0 | 0.0 | 56.0    |
| 2   | EQ5011 |     | COND | ENSER WA  | TER PUM  | P-CV(MED | IUM EFFI  | C.)      |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 20813    | 28087     | 33962    | 37654 | 26297 | 4700  | 0   | 0   | 151,513 |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 56.0     | 56.0      | 56.0     | 56.0  | 56.0  | 56.0  | 0.0 | 0.0 | 56.0    |
| 2   | EQ5300 |     | CONT | ROL PANE  | L & INT  | ERLOCKS  |           |          |       |       |       |     |     |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 372      | 502       | 607      | 673   | 470   | 84    | 0   | 0   | 2,708   |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 W.C. CENTRIFUGAL VFD CHILLER, EXIST BLR

| ef | Equip    |        |        |          |        | Mon    | thly Con | sumption |        |        |        |        |        |           |
|----|----------|--------|--------|----------|--------|--------|----------|----------|--------|--------|--------|--------|--------|-----------|
|    | Code     | Jan    | Feb    | Mar      | Apr    | May    | June     | July     | Aug    | Sep    | Oct    | Nov    | Dec    | Total     |
| 0  | LIGHTS   |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | ELEC     | 248076 | 224754 | 249404   | 239859 | 248740 | 241188   | 247411   | 249404 | 239859 | 248740 | 241187 | 241432 | 2,920,053 |
|    | PK       | 689.0  | 689.0  | 689.0    | 689.0  | 689.0  | 689.0    | 689.0    | 689.0  | 689.0  | 689.0  | 689.0  | 689.0  | 689.0     |
| 1  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | ELEC     | 0      | 0      | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 2  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | GAS      | 0      | 0      | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 3  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | OIL      | 0      | 0      | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | ō      | 0      | 0         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 4  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | P STEAM  | 0      | 0      | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      | (         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 5  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | P HOTH20 | 0      | 0      | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      | (         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 6  | MISC LD  |        |        |          |        |        |          |          |        |        |        |        |        |           |
|    | P CHILL  | 0      |        | 0        | 0      | 0      | 0        | 0        | 0      | 0      | 0      | 0      | 0      | (         |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 1  |          |        |        | SE UTILI |        |        |          |          |        |        |        |        |        |           |
|    | CHILLD   | 0      |        | 0        | 0      | 16368  | 15840    | 16368    | 16368  | 15840  | 16368  | 0      | _      | 97,152    |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 22.0   | 22.0     | 22.0     | 22.0   | 22.0   | 22.0   | 0.0    | 0.0    | 22.0      |
| 2  |          |        |        | SE UTILI |        |        |          |          |        |        |        |        |        |           |
|    | CHILLD   | 0      |        | 0        | 0      | 31992  | 30960    | 31992    | 31992  | 30960  | 31992  |        |        | 189,88    |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 43.0   | 43.0     | 43.0     | 43.0   | 43.0   | 43.0   | 0.0    | 0.0    | 43.0      |
| 1  | EQ1001S  |        |        | -STG CEN |        |        |          |          |        |        |        |        |        |           |
|    | ELEC     | 0      |        | -        | 0      | 70092  | 85728    |          | 96704  | 93491  | 62989  |        |        | 517,56    |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 268.8  | 287.1    | 326.8    | 330.2  | 307.2  | 276.6  | 0.0    | 0.0    | 330.      |
| 1  | EQ5100   |        |        | OLING TO |        |        |          |          |        |        |        |        |        |           |
|    | ELEC     | 0      |        |          | 0      | 6863   |          |          | 5804   | 7311   |        |        |        | 37,20     |
|    | PK       | 0.0    | 0.0    | 0.0      | 0.0    | 14.9   | 14.9     | 14.9     | 14.9   | 14.9   | 14.9   | 0.0    | 0.0    | 14.       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 W.C. CENTRIFUGAL VFD CHILLER, EXIST BLR

| Ref | Equip   |     |        |          |         | Mont    | hly Cons  | umption |       |       |       |     |     |                  |
|-----|---------|-----|--------|----------|---------|---------|-----------|---------|-------|-------|-------|-----|-----|------------------|
|     | Code    | Jan | Feb    | Mar      | Apr     | May     | June      | July    | Aug   | Sep   | Oct   | Nov | Dec | Total            |
| 1   | EQ5100  |     | COOL 1 | NG TOWER | FANS    |         |           |         |       |       |       |     |     |                  |
|     | WATER   | 0   | 0      | 0        | 0       | 397     | 484       | 600     | 528   | 527   | 354   | 0   | 0   | 2,891            |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 1.5     | 1.5       | 1.7     | 1.7   | 1.6   | 1.6   | 0.0 | 0.0 | 1.7              |
| 1   | EQ5001  |     | CHILL  | ED WATER | PUMP    | CONST   | ANT VOLUM | E       |       |       |       |     |     |                  |
|     | ELEC    | 0   | 0      | 0        | 0       | 13726   | 12115     | 13338   | 11608 | 14622 | 19694 | 0   | Ō   | 85,104           |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 29.8    | 29.8      | 29.8    | 29.8  | 29.8  | 29.8  | 0.0 | 0.0 | 29.8             |
| 1   | EQ5010  |     | CONDI  | ENSER WA | TER PUM | -CV(HIG | H EFFIC.  | )       |       |       |       |     |     | 1                |
|     | ELEC    | 0   | 0      | 0        | 0       | 10295   | 9086      | 10004   | 8706  | 10966 | 14771 | 0   | 0   | 63,828           |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 22.4    | 22.4      | 22.4    | 22.4  | 22.4  | 22.4  | 0.0 | 0.0 | 22.4             |
| 1   | EQ5300  |     | CONT   | ROL PANE |         |         |           |         |       |       |       |     | _   |                  |
|     | ELEC    | 0   | 0      | 0        | 0       | 460     | 406       | 447     | 389   | 490   | 660   | 0   | 0   | 2,852            |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 1.0     | 1.0       | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0              |
| 2   | YCENVFD |     | YORK   |          |         |         | REQ. DRI  |         |       |       |       |     | _   | T                |
|     | ELEC    | 0   | 0      | 0        |         |         | 147760    |         |       |       | 15891 | 0   | 0   | 811,935<br>479.1 |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 419.5   | 441.7     | 472.9   | 479.0 | 437.2 | 340.0 | 0.0 | 0.0 | 479.0            |
| 2   | EQ5100  |     | COOF   | ING TOWE | R FANS  |         |           |         |       |       |       |     | _   |                  |
|     | ELEC    | 0   | 0      | 0        | Ø       | 19426   | 26214     | 31698   | 35144 | 24543 | 4386  | 0   | 0   | 141,41           |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 52.2    | 52.2      | 52.2    | 52.2  | 52.2  | 52.2  | 0.0 | 0.0 | 52.              |
| 2   | EQ5100  |     | COOL   | ING TOWE | R FANS  |         |           |         |       |       |       |     |     |                  |
|     | WATER   | 0   | 0      | 0        | 0       | 876     | 1123      | 1390    | 1551  | 1025  | 143   | 0   | 0   | 6,10             |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 3.0     | 3.0       | 3.1     | 3.1   | 3.0   | 2.7   | 0.0 | 0.0 | 3.               |
| 2   | EQ5001  |     |        | LED WATE |         |         | TANT VOLU |         |       |       |       | _   |     |                  |
|     | ELEC    | 0   | 0      | 0        | 0       | 20813   | 28087     | 33962   | 37654 | 26297 | 4700  | 0   | 0   | 151,51           |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 56.0    | 56.0      | 56.0    | 56.0  | 56.0  | 56.0  | 0.0 | 0.0 | 56.              |
| 2   | EQ5011  |     | CON    |          |         |         | IUM EFFI  |         |       |       |       | _   | _   |                  |
|     | ELEC    | 0   | 0      | 0        | 0       | 20813   | 28087     | 33962   | 37654 | 26297 | 4700  | 0   | 0   | 151,51           |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 56.0    | 56.0      | 56.0    | 56.0  | 56.0  | 56.0  | 0.0 | 0.0 | 56.              |
| 2   | EQ5300  |     | CON    | TROL PAN |         |         |           |         |       |       |       |     | _   |                  |
|     | ELEC    | 0   | 0      | 0        | 0       |         |           | 607     |       | 470   | 84    | 0   | 0   | 2,70             |
|     | PK      | 0.0 | 0.0    | 0.0      | 0.0     | 1.0     | 1.0       | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.               |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 WAT. COOLED DUAL SCREW CHILR, EXIST BLR

| ef | Equip          |        |        |          |            | Mon     | thly Con | sumption |        |        |        |        |        |           |
|----|----------------|--------|--------|----------|------------|---------|----------|----------|--------|--------|--------|--------|--------|-----------|
|    | Code           | Jan    | Feb    | Mar      | Apr        | May     | June     | July     | Aug    | Sep    | Oct    | Nov    | Dec    | Total     |
| _  |                |        |        |          |            |         |          |          |        |        |        |        |        |           |
| 0  | LIGHTS<br>ELEC | 248076 | 224754 | 249404   | 239859     | 248740  | 241188   | 247411   | 2/0/0/ | 239859 | 2/87/0 | 241187 | 241432 | 2,920,053 |
|    | PK             | 689.0  | 689.0  | 689.0    | 689.0      | 689.0   | 689.0    | 689.0    | 689.0  | 689.0  | 689.0  | 689.0  | 689.0  | 689.0     |
|    | 1.             | 00710  | 007.10 | 007.0    | 00710      | 337.5   | 007.0    | 007.0    | 007.0  | 007.0  | 507.10 | 00710  | 00710  | 55715     |
| 1  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | ELEC           | 0      | 0      | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | O      | 0      | C         |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 2  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | GAS            | 0      | 0      | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      |           |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 3  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | OIL            | 0      | 0      | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      | 0         |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 4  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | P STEAM        | 0      | 0      | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      |           |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0       |
| 5  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | P HOTH20       | 0      |        | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      |           |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.        |
| 6  | MISC LD        |        |        |          |            |         |          |          |        |        |        |        |        |           |
|    | P CHILL        | 0      | 0      | 0        | 0          | 0       | 0        | 0        | 0      | 0      | 0      | 0      | 0      |           |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.        |
| 1  |                |        | BAS    | SE UTILI | TY         |         |          |          |        |        |        |        |        |           |
|    | CHILLD         | 0      | _      | -        | -          |         | 15840    | 16368    | 16368  | 15840  | 16368  | Ö      | 0      | 97,15     |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 22.0    | 22.0     | 22.0     | 22.0   | 22.0   | 22.0   | 0.0    | 0.0    | 22.       |
| 2  |                |        |        | SE UTILI |            |         |          |          |        |        |        |        |        |           |
|    | CHILLD         | 0      | -      | _        | -          |         | 30960    | 31992    | 31992  | 30960  | 31992  |        | _      | 189,88    |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 43.0    | 43.0     | 43.0     | 43.0   | 43.0   | 43.0   | 0.0    | 0.0    | 43.       |
| 1  | Eq1001s        |        | 2      | -STG CEN | TR I FUGAL | CHILLER | <550 TO  | 4S       |        |        |        |        |        |           |
|    | ELEC           | 0      | _      | 0        | 0          |         | 85728    |          | 96704  | 93491  | 62989  | -      |        | 517,56    |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 268.8   | 287.1    | 326.8    | 330.2  | 307.2  | 276.6  | 0.0    | 0.0    | 330.      |
| 1  | EQ5100         |        | co     | OLING TO | WER FANS   |         |          |          |        |        |        |        |        |           |
|    | ELEC           | 0      | _      | -        |            |         |          | 6669     | 5804   | 7311   | 4499   |        | _      | 37,20     |
|    | PK             | 0.0    | 0.0    | 0.0      | 0.0        | 14.9    | 14.9     | 14.9     | 14.9   | 14.9   | 14.9   | 0.0    | 0.0    | 14.       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 WAT. COOLED DUAL SCREW CHILR, EXIST BLR

----- EQUIPMENT ENERGY CONSUMPTION -----Ref Equip ----- Monthly Consumption -----Num Code Jan Mar Apr May June July Aug Sep Oct Total 1 EQ5100 COOLING TOWER FANS WATER 0 0 0 0 397 484 600 528 527 354 0 0 2,891 0.0 1.5 0.0 PK 0.0 0.0 0.0 1.5 1.7 1.7 1.6 1.6 0.0 1.7 1 EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME 0 13726 12115 13338 85,104 0 11608 14622 19694 0 FLEC 0 n Ω PK 0.0 0.0 0.0 0.0 29.8 29.8 29.8 29.8 29.8 0.0 0.0 29.8 1 EQ5010 CONDENSER WATER PUMP-CV(HIGH EFFIC.) 0 0 10295 9086 10004 8706 10966 14771 0 0 63,828 ELEC 0 PK 0.0 0.0 0.0 0.0 22.4 22.4 22.4 22.4 22.4 22.4 0.0 0.0 22.4 1 EQ5300 CONTROL PANEL & INTERLOCKS ELEC ٥ n 0 0 460 406 447 389 400 0 n 2,852 660 0.0 0.0 PK 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 2 YSCRW22 YORK W.C. SCREW CHILLER ELEC 0 0 0 131905 167567 210224 238248 150736 18266 0 0 916,945 PK 0.0 0.0 483.0 500.4 524.8 0.0 0.0 529.0 493.4 412.3 0.0 0.0 529.0 2 EQ5100 COOLING TOWER FANS 141,412 19426 26214 24543 ELEC 0 O 0 0 31698 35144 4386 0 0 PK 0.0 0.0 52.2 52.2 52.2 0.0 0.0 52.2 52.2 52.2 52.2 0.0 0.0 2 EQ5100 COOLING TOWER FANS WATER 0 0 0 0 891 1142 1412 1576 1039 145 ō 0 6,204 PK 0.0 0.0 0.0 0.0 3.0 3.1 3.1 3.1 3.0 2.8 0.0 0.0 3.1 2 EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME ELEC 0 0 0 20813 28087 33962 37654 26297 4700 0 0 151,513 PK 0.0 0.0 0.0 56.0 0.0 0.0 56.0 56.0 56.0 56.0 56.0 56.0 0.0 2 EQ5011 CONDENSER WATER PUMP-CV(MEDIUM EFFIC.) 151,513 ELEC 0 0 0 0 20813 28087 33962 37654 26297 4700 n n PK 0.0 0.0 0.0 56.0 56.0 56.0 56.0 56.0 56.0 0.0 0.0 56.0 2 EQ5300 CONTROL PANEL & INTERLOCKS ELEC Ō 0 0 0 372 502 607 673 470 84 0 0 2,708 PK 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0

PK

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 EXISTING CHILLERS, HIGH % MODULAR BOILES

------EQUIPMENT ENERGY CONSUMPTION ----------- Monthly Consumption -----Ref Equip Total June July Aug Sep Oct Nov Mar Apr May Num Code Jan Feb 0 LIGHTS 248076 224754 249404 239859 248740 241188 247411 249404 239859 248740 241187 241432 2,920,053 ELEC 689.0 689.0 689.0 689.0 689.0 689.0 689.0 689.0 PK 689.0 689.0 689.0 1 MISC LD 0 0 0 0 0 ٥ 0 ELEC 0 0 ۵ 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PK 2 MISC LD 0 0 0 0 0 0 0 0 0 0 0 0 GAS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PK 3 MISC LD 0 0 n 0 0 0 0 0 0 0 0 ٥ O OIL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PK 4 MISC LD O 0 0 0 n 0 0 0 0 0 P STEAM 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PΧ 0.0 5 MISC LD 0 0 0 0 Ď 0 0 P HOTH20 0 0 0 0 ٥ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PK 0.0 0.0 0.0 6 MISC LD 0 0 0 0 0 P CHILL 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PK 0.0 0.0 0.0 0.0 0.0 0.0 BASE UTILITY 77,992 0 O 0 12927 13358 Ō 0 0 13358 12065 13358 12927 HOTLD 18.0 18.0 18.0 0.0 0.0 18.0 18.0 18.0 18.0 0.0 0.0 0.0 0.0 PK HIGH EFFICIENCY MODULAR FIRETUBE BOIL. 86,323 0 0 0 0 14257 14880 14725 14142 0 0 14880 13440 GAS 20.0 0.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0 20.0 20.0 20.0 PΚ HEATING WATER CIRCULATION PUMP 1 EQ5020 O 0 4032 4166 24,326 n 4166 3763 4166 4032 0 O 0 ELEC 5.6 0.0 0.0 0.0 0.0 0.0 0.0 5.6 5.6 5.6 5.6 5.6 PK 5.6 1 EQ5311 BOILER CONTROLS 543 90 93 0 0 0 0 n O 93 90 93 ELEC 84 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 EXISTING CHILLERS, HIGH % MODULAR BOILES

|     |        |       |       | E Q       | UIPH      | ENT      | ENER     | G Y C     | ONSU | меті | O N |                                         |       | •••••• |
|-----|--------|-------|-------|-----------|-----------|----------|----------|-----------|------|------|-----|-----------------------------------------|-------|--------|
| Ref | Equip  |       |       |           |           | Mont     | hly Cons | umption - |      |      |     | • • • • • • • • • • • • • • • • • • • • |       |        |
| Num |        | Jan   | Feb   | Mar       | Apr       | May      | June     | July      | Aug  | Sep  | Oct | Nov                                     | Dec   | Total  |
| 2   |        | -, "  | HIGH  | EFFICIE   | NCY MODU  | LAR FIRE | TUBE BOI | ι.        |      |      |     |                                         |       |        |
|     | GAS    | 10665 | 11051 | 4016      | 9         | 0        | 0        | 0         | 0    | 0    | 0   | 3581                                    | 10438 | 39,761 |
|     | PK     | 20.0  | 20.0  | 20.0      | 0.7       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 20.0                                    | 20.0  | 20.0   |
| 2   | EQ5020 |       | HEAT  | ING WATE  | R CIRCUL  | ATION PL | IMP      |           |      |      |     |                                         |       |        |
|     | ELEC   | 4166  | 3763  | 1870      | 84        | 0        | 0        | 0         | 0    | 0    | 0   | 1691                                    | 4166  | 15,742 |
|     | PK     | 5.6   | 5.6   | 5.6       | 5.6       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 5.6                                     | 5.6   | 5.6    |
| 2   | EQ5311 |       | BOIL  | ER CONTR  | OLS       |          |          |           |      |      |     |                                         |       |        |
|     | ELEC   | 93    | 84    | 42        | 2         | 0        | 0        | 0         | 0    | 0    | 0   | 38                                      | 93    | 351    |
|     | PK     | 0.1   | 0.1   | 0.1       | 0.1       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 0.1                                     | 0.1   | 0.1    |
| 3   |        |       | HIGH  | H EFFICIE | NCY MODU  | LAR FIRE | TUBE BOI | L.        |      |      |     |                                         |       |        |
|     | GAS    | 6138  | 6228  | 383       | 0         | 0        | 0        | 0         | 0    | 0    | 0   | 234                                     | 6204  | 19,188 |
|     | PK     | 20.0  | 20.0  | 6.5       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 5.5                                     | 20.0  | 20.0   |
| 3   | EQ5020 |       | HEA   | TING WATE | R CIRCUL  | ATION P  | UMP      |           |      |      |     |                                         |       |        |
|     | ELEC   | 2195  | 2150  | 510       | 0         | 0        | 0        | 0         | 0    | 0    | 0   | 342                                     | 2307  | 7,504  |
|     | PK     | 5.6   | 5.6   | 5.6       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 5.6                                     | 5.6   | 5.6    |
| 3   | EQ5311 |       | BOI   | LER CONTR | OLS       |          |          |           |      |      |     |                                         |       |        |
|     | ELEC   | 49    | 48    | 11        | 0         | 0        | 0        | 0         | 0    | 0    | 0   | 8                                       | 52    | 167    |
|     | PK     | 0.1   | 0.1   | 0.1       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 0.1                                     | 0.1   | 0.1    |
| 4   |        |       | HIG   | H EFFICIE | ENCY MODI | JLAR FIR | ETUBE BO | IL.       |      |      |     |                                         |       |        |
|     | GAS    | 1004  | 722   | 0         | 0         | 0        | 0        | 0         | 0    | 0    | 0   | 0                                       | 313   | 2,039  |
|     | PK     | 9.9   | 6.6   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 0.0                                     | 4.4   | 9.9    |
| 4   | EQ5020 |       | HEA   | TING WATE | ER CIRCU  | LATION P | UMP      |           |      |      |     |                                         |       |        |
|     | ELEC   | 1086  | 1053  | 0         | 0         | 0        | 0        | O         | 0    | 0    | 0   | 0                                       | 818   | 2,957  |
|     | PK     | 5.6   | 5.6   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 0.0                                     | 5.6   | 5.6    |
| 4   | EQ5311 |       | 801   | LER CONTI | ROLS      |          |          |           |      |      |     |                                         |       |        |
|     | ELEC   | 24    | 23    | 0         | 0         | 0        | 0        | 0         | 0    | 0    | 0   | 0                                       | 18    | 66     |
|     | PK     | 0.1   | 0.1   | 0.0       | 0.0       | 0.0      | 0.0      | 0.0       | 0.0  | 0.0  | 0.0 | 0.0                                     | 0.1   | 0.1    |

01 Card - Job Information

Project: 03018504 EEAP BOILER-CHILLER STUDY Location: FT. SAM HOUSTON - SAN ANTONIO, TX. Client: CORPS OF ENGINEERS - FORT MORTH, TEXAS

Program User: HUITT - ZOLLARS INC.

Comments: AREA 2200

----- Load Section Alternative #1 -----

Card 19- Load Alternative -Number Description 1 AREA 2200

Card 20-----
Zone

General Room Parameters -----
Acoustic Floor to Duplicate Duplicate Perimeter

|        | Zone      |             |        |       |       |        | Acoustic   | Floor to | Duplicate  | Duplicate | Perimet |
|--------|-----------|-------------|--------|-------|-------|--------|------------|----------|------------|-----------|---------|
| Room   | Reference | Room        | Floor  | Floor | Const | Plenum | Ceiling    | Floor    | Floors     | Rooms per | Depth   |
| Number | Number    | Descrip     | Length | Width | Type  | Height | Resistance | Height   | Multiplier | Zone      |         |
| 5      | 5         | BLDG 2263   | 264    | 265   | 3     | 3      | 2.54       | 11       |            |           |         |
| 15     | 15        | DINING 2265 | 77     | 77    | 3     | 2.5    | 2.54       | 11       |            |           |         |
| 20     | 20        | BARR 2265   | 299    | 299   | 3     | 2.5    | 2.54       | 11       |            |           |         |
| 25     | 25        | ADMIN 2264  | 221    | 222   | 3     | 2.5    | 2.54       | 11       |            |           |         |
| 30     | 30        | BARR 2264   | 221    | 222   | 3     | 2.5    | 2.54       | 11       |            |           |         |
| 35     | 35        | ADMIN 2266  | 221    | 222   | 3     | 2.5    | 2.54       | 11       |            |           |         |
| 40     | 40        | BARR 2266   | 221    | 222   | 3     | 2.5    | 2.54       | 11       |            |           |         |

Card 21----- Thermostat Parameters 
 Cooling
 Room
 Cooling
 Cooling
 Heating
 Heating
 T'stat
 Hass / Carpet

 Room
 Design
 T'stat
 T'stat
 T'stat
 T'stat
 Location
 No. Hrs
 On
 T'stat Location No. Hrs On Room Room Number Design DB RH Driftpoint Schedule Design DB Driftpoint Schedule Flag Average Floor 70 70 5 78 50 78 LIGHT30 YES ROOM 15 78 50 78 70 70 ROOM LIGHT30 NO 70 20 78 50 78 70 LIGHT30 YES ROOM

| Card 21 |           |        |            | Therm    | ostat Param | eters          |          |          |         | •••••  |
|---------|-----------|--------|------------|----------|-------------|----------------|----------|----------|---------|--------|
|         | Cooling   | Room   | Cooling    | Cooling  | Heating     | <b>Heating</b> | Heating  | T'stat   | Mass /  | Carpet |
| Room    | Room      | Design | T'stat     | T'stat   | Room        | T'stat         | T'stat   | Location | No. Hrs | On     |
| Number  | Design DB | RH     | Driftpoint | Schedule | Design DB   | Driftpoint     | Schedule | Flag     | Average | Floor  |
| 25      | 78        | 50     | 78         |          | 70          | 70             |          | ROOM     | LIGHT30 | YES    |
| 30      | 78        | 50     | 78         |          | 70          | 70             |          | ROOM     | LIGHT30 | YES    |
| 35      | 78        | 50     | 78         |          | 70          | 70             |          | ROOM     | LIGHT30 | YES    |
| 40      | 78        | 50     | 78         |          | 70          | 70             |          | ROOM     | LIGHT30 | YES    |

| Card 22 |        |          |        | Roof Par | ameters |       |           | • • • • • • |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|-------------|-------|
|         |        | Roof     |        |          |         |       |           |             |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof        | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt        | Alpha |
| 5       | 1      | NO       | 164    | 164      | .09     | 37    |           | 80          |       |
| 20      | 1      | NO       | 165    | 166      | .09     | 37    |           | 80          |       |
| 30      | 1      | NO       | 165    | 166      | .09     | 37    |           | 80          |       |
| 40      | 1      | NO       | 165    | 166      | .09     | 37    |           | 80          |       |

| Card 24 | ,      |        |        | Wall P  | arameters |           | ••••• |       |             |
|---------|--------|--------|--------|---------|-----------|-----------|-------|-------|-------------|
|         |        |        |        |         | Wall      |           |       |       | Ground      |
| Room    | Wall   | Wall   | Wall   | Wall    | Constuc   | Wall      | Wall  | Wall  | Reflectance |
| Number  | Number | Length | Height | U-Value | Type      | Direction | Tilt  | Alpha | Multiplier  |
| 5       | 1      | 924    | 11     | .49     | 74        | 0         |       | .74   |             |
| 5       | 2      | 414    | 11     | .49     | 74        | 90        |       | .74   |             |
| 5       | 3      | 924    | 11     | .49     | 74        | 180       |       | .74   |             |
| 5       | 4      | 414    | 11     | .49     | 74        | 270       |       | .74   |             |
| 15      | 1      | 309    | 11     | -41     | 94        | 0         |       | .74   |             |
| 20      | 1      | 810    | 11     | .41     | 94        | 0         |       | .74   |             |
| 20      | 2      | 243    | 11     | .41     | 94        | 90        |       | .74   |             |
| 20      | 3      | 810    | 11     | .41     | 94        | 180       |       | .74   |             |
| 20      | 4      | 243    | 11     | .41     | 94        | 270       |       | .74   |             |
| 25      | 1      | 357    | 11     | .41     | 94        | 0         |       | .74   |             |
| 25      | 2      | 81     | 11     | .41     | 94        | 90        |       | .74   |             |
| 25      | 3      | 357    | 11     | .41     | 94        | 180       |       | .74   |             |
| 25      | 4      | 81     | 11     | .41     | 94        | 270       |       | .74   |             |
| 30      | 1      | 714    | 11     | -41     | 94        | 0         |       | .74   |             |
| 30      | 2      | 162    | 11     | .41     | 94        | 90        |       | .74   |             |
| 30      | 3      | 714    | 11     | .41     | 94        | 180       |       | .74   |             |
| 30      | 4      | 162    | 11     | -41     | 94        | 270       |       | .74   |             |
| 35      | 1      | 357    | 11     | .41     | 94        | 0         |       | .74   |             |
| 35      | 2      | 81     | 11     | -41     | 94        | 90        |       | .74   |             |
| 35      | 3      | 357    | 11     | .41     | 94        | 180       |       | .74   |             |
| 35      | 4      | 81     | 11     | .41     | 94        | 270       |       | .74   |             |
| 40      | 1      | 714    | 11     | .41     | 94        | 0         |       | .74   |             |
| 40      | 2      | 162    | 11     | .41     | 94        | 90        |       | .74   |             |
| 40      | 3      | 714    | 11     | .41     | 94        | 180       |       | .74   |             |
| 40      | 4      | 162    | 11     | .41     | 94        | 270       |       | .74   |             |

|        |        |        |       | Pct Glass |     |             | External | Internal | Percent |               | Inside  |
|--------|--------|--------|-------|-----------|-----|-------------|----------|----------|---------|---------------|---------|
| Room   | Wall   | Glass  | Glass | or No. of |     | Shading     |          | Shading  |         | Visible       | Visible |
| Number | Number | Length | Width | Windows   |     | Coefficient | -        | Туре     |         | Transmittance |         |
| 5      | 1      | 3      | 6     | 97        | 1.1 | .67         | •        |          |         |               |         |
| 5      | 2      |        |       | 16        | .63 | 1           |          |          |         |               |         |
| 5      | 3      |        |       | 32        | .57 | 1           |          |          |         |               |         |
| 5      | 4      |        |       | 16        | .63 | 1           |          |          |         |               |         |
| 15     | 1      | 3      | 6     | 35        | 1.1 | .67         |          |          |         |               |         |
| 20     | 1      | 3      | 6     | 82        | 1.1 | .67         |          |          |         |               |         |
| 20     | 2      | 3      | 6     | 27        | 1.1 | .67         |          |          |         |               |         |
| 20     | 3      | 3      | 6     | 96        | 1.1 | .67         | 3        |          |         |               |         |
| 20     | 4      | 3      | 6     | 27        | 1.1 | .67         |          |          |         |               |         |
| 25     | 1      | 3      | 6     | 41        | 1.1 | .67         |          |          |         |               |         |
| 25     | 2      | 3      | 6     | 9         | 1.1 | .67         |          |          |         |               |         |
| 25     | 3      | 3      | 6     | 48        | 1.1 | .67         | 3        |          |         |               |         |
| 25     | 4      | 3      | 6     | 9         | 1.1 | .67         |          |          |         |               |         |
| 30     | 1      | 3      | 6     | 82        | 1.1 | .67         |          |          |         |               |         |
| 30     | 2      | 3      | 6     | 18        | 1.1 | .67         |          |          |         |               |         |
| 30     | 3      | 3      | 6     | 96        | 1.1 | .67         | 3        |          |         |               |         |
| 30     | 4      | 3      | 6     | 18        | 1.1 | .67         |          |          |         |               |         |
| 35     | 1      | 3      | 6     | 41        | 1.1 | .67         |          |          |         |               |         |
| 35     | 2      | 3      | 6     | 9         | 1.1 | .67         |          |          |         |               |         |
| 35     | 3      | 3      | 6     | 48        | 1.1 | .67         | 3        |          |         |               |         |
| 35     | 4      | 3      | 6     | 9         | 1.1 | .67         | _        |          |         |               |         |
| 40     | 1      | 3      | 6     | 82        | 1.1 | .67         |          |          |         |               |         |
| 40     | 2      | 3      | 6     | 18        | 1.1 | ,67         |          |          |         |               |         |
| 40     | 3      | 3      | 6     | 96        | 1.1 | .67         | 3        |          |         |               |         |
| 40     | 4      | 3      | 6     | 18        | 1.1 | .67         | -        |          |         |               |         |

| Room   |          |                 |             |              | Reheat  | Cooling | Heating | Auxiliary | Room    | Daylighting |
|--------|----------|-----------------|-------------|--------------|---------|---------|---------|-----------|---------|-------------|
| Number | Peopl e  | Lights          | Ventilation | Infiltration | Minimum | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5      | FSHOFF1C | FSHOFFIC        |             |              |         |         |         |           |         |             |
| 15     | FSHDINP  | FSHDINL         |             |              |         |         |         |           |         |             |
| 20     | FSHBARRP | <b>FSHBARRL</b> |             |              |         |         |         |           |         |             |
| 25     | FSHOFFIC | FSHOFFIC        |             |              |         |         |         |           |         |             |
| 30     | FSHBARRP | <b>FSHBARRL</b> |             |              |         |         |         |           |         |             |
| 35     | FSHOFFIC | FSHOFFIC        |             |              |         |         |         |           |         |             |
| 40     | FSHBARRP | FSHBARRL        |             |              |         |         |         |           |         |             |

| Card 27 | <b>'</b> |        |          |        | Peopl    | e and Ligh | ts       |         |           |           | • • • • • • • • • • • • • • • • • • • • |
|---------|----------|--------|----------|--------|----------|------------|----------|---------|-----------|-----------|-----------------------------------------|
|         |          |        |          |        |          |            | Lighting |         | Percent   | Daylig    | hting                                   |
| Room    | Peopl e  | People | People   | People | Lighting | Lighting   | Fixture  | Ballast | Lights to | Reference | Reference                               |
| Number  | Value    | Units  | Sensible | Latent | Value    | Units      | Type     | Factor  | Ret. Air  | Point 1   | Point 2                                 |
| 5       | 250      | PEOPLE | 250      | 200    | 2.5      | WATT-SF    | ASHRAE2  |         |           |           |                                         |
| 15      | 400      | PEOPLE | 275      | 275    | 1.3      | WATT-SF    | ASHRAE2  |         |           |           |                                         |

| Number V<br>20 2<br>25 4                           | People Pe                                               |                                                               |                                                           |            |                                                       | _    | _                                       | hting        |       | Perce        |           | -             | ghting -  |          |         |
|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|------------|-------------------------------------------------------|------|-----------------------------------------|--------------|-------|--------------|-----------|---------------|-----------|----------|---------|
| 20 2<br>25 4<br>30 3                               |                                                         |                                                               | •                                                         | •          | Lighting                                              | _    | nting Fix                               |              |       | -            |           |               | Referen   |          |         |
| 25 4<br>30 3                                       |                                                         | nits                                                          | Sensible                                                  |            |                                                       | Uni  | • • • • • • • • • • • • • • • • • • • • |              | actor | Ret.         | Air Po    | oint 1        | Point 2   | 2        |         |
| 30 3                                               |                                                         |                                                               | 250                                                       | 200        | .8                                                    |      |                                         | RAEZ         |       |              |           |               |           |          |         |
|                                                    |                                                         | OPLE                                                          | 250                                                       | 200        | 2.0                                                   |      |                                         | RAE2         |       |              |           |               |           |          |         |
| J) 4                                               |                                                         | OPLE                                                          | 250                                                       | 200        | .8<br>2.0                                             |      |                                         | RAEZ         |       |              |           |               |           |          |         |
| 40 3                                               |                                                         | OPLE<br>OPLE                                                  | 250<br>250                                                | 200<br>200 | .8                                                    |      |                                         | RAE2<br>RAE2 |       |              |           |               |           |          |         |
| ,,                                                 |                                                         |                                                               | 230                                                       | 200        | .0                                                    | •••  | , or 23.                                | NA 6         |       |              |           |               |           |          |         |
|                                                    |                                                         |                                                               |                                                           |            |                                                       |      | cellaneous                              |              |       |              |           |               | •         | •••••    |         |
|                                                    | Misc                                                    |                                                               |                                                           |            | rgy Ene                                               |      |                                         | Energy       |       |              | Percent   |               | cent      |          |         |
|                                                    | Equipment                                               |                                                               |                                                           |            |                                                       |      | Schedule                                |              |       |              |           |               | c. Sens   |          | •       |
| Number N<br>5 1                                    | Number<br>1                                             | Descr'                                                        | •                                                         | Vale<br>1  |                                                       |      | Code                                    | Code         | Sens  | sible        | to Room   | to            | KET. AIF  | Fraction | Air Pat |
| 5 I<br>15 I                                        |                                                         | DIN. I                                                        |                                                           | 1          |                                                       |      | FSHOFFIC                                |              |       |              |           |               |           |          |         |
| 20 1                                               |                                                         | T.V.                                                          |                                                           | 1          |                                                       |      | FSHDINL<br>FSHBARRL                     |              |       |              |           |               |           |          |         |
|                                                    | 1                                                       | COMPU                                                         |                                                           | 1          |                                                       |      | FSHOFFIC                                |              |       |              |           |               |           |          |         |
|                                                    | 1                                                       | T.V.                                                          |                                                           | i          |                                                       |      | FSHBARRL                                |              |       |              |           |               |           |          |         |
| 35 1                                               |                                                         | COMPU'                                                        |                                                           | 1          |                                                       |      | FSHOFFIC                                |              |       |              |           |               |           |          |         |
|                                                    | 1                                                       | T.V.                                                          |                                                           | 1          |                                                       |      | FSHBARRL                                |              |       |              |           |               |           |          |         |
| Card 29                                            |                                                         |                                                               |                                                           |            |                                                       | Poom | Airfloue                                |              |       |              |           |               |           |          |         |
| -                                                  |                                                         | Ve                                                            | ntilation-                                                |            |                                                       |      |                                         | Infiltra     | tion  |              |           |               |           |          |         |
| Room -                                             | Cool                                                    | ing                                                           | ntilation-                                                | ·Heating   |                                                       |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room -<br>Number V                                 | Cool                                                    | ing<br>Unit                                                   | ntilation<br><br>s Valu                                   | Heating    | Units                                                 |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           |               | eat Minim |          |         |
| Room -<br>Number V<br>5 2                          | Cool                                                    | ing                                                           | ntilation-<br><br>s Value<br>P 20                         | Heating    |                                                       |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room -<br>Number V<br>5 2<br>15 2                  | Cool<br>Value<br>20                                     | ing<br>Unit:<br>CFM-                                          | ntilation-<br><br>s Value<br>P 20<br>P 20                 | Heating    | Units<br>CFM-P                                        |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room - Number V 5 2 15 2 20 2                      | Cool<br>Value<br>20                                     | ing<br>Unit:<br>CFM-I                                         | ntilation s Value P 20 P 20 P 20                          | Heating    | Units<br>CFM-P                                        |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room - Number V 5 2 15 2 20 2 25 2                 | Cool<br>Value<br>20<br>20                               | ing<br>Unit:<br>CFM-I<br>CFM-I                                | ntilation s Value P 20 P 20 P 20 P 20                     | Heating    | Units<br>CFM-P<br>CFM-P                               |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room - Number V 5 2 15 2 20 2 25 2 30 2            | Cool<br>Value<br>20<br>20<br>20<br>20                   | ing<br>Unit:<br>CFM-I<br>CFM-I<br>CFM-I                       | ntilation s Value P 20      | Heating    | Units<br>CFM-P<br>CFM-P<br>CFM-P                      |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room - Number V 5 2 15 2 20 2 25 2 30 2 35 2       | Cool<br>Value<br>20<br>20<br>20<br>20<br>20<br>20       | ing<br>Unit:<br>CFM-!<br>CFM-!<br>CFM-!<br>CFM-!              | ntilation s Value P 20 | Heating    | Units<br>CFM-P<br>CFM-P<br>CFM-P<br>CFM-P             |      | -Cooling                                | Infiltra<br> | tion  | eating-      |           | Rehe          | eat Minim | um       |         |
| Room - Number V 5 2 15 2 20 2 25 2 30 2 335 2 40 2 | Cool<br>Value<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | OFM-:  OFM-:  OFM-:  OFM-:  OFM-:  OFM-:  OFM-:  OFM-:  Above | ntilation s Value P 20 | Heating    | Units CFM-P CFM-P CFM-P CFM-P CFM-P CFM-P CFM-P CFM-P | Valu | -Coolinge Ur                            | Infiltra     | tion  | eating-<br>U | Addion Bu | Rehe<br>Value | eat Minim | um       |         |

Card 39- System Alternative

Description

Number

EXISTING SYSTEM Card 40----- System Type -----------OPTIONAL VENTILATION SYSTEM-----Ventil Set System Deck Cooling Heating Cooling Heating Static Number Type Location SADBVh SADBVh Schedule Schedule Pressure 1 SZ Card 41----- Zone Assignment System Ref #2 Set Ref #1 Ref #3 Ref #4 Ref #5 Ref #6 Begin End Begin End Begin End Begin End Number Begin End Begin End 1 5 40 Card 42----- Fan SP and Duct Parameters-----System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return Set Fan Fan Fan Fan Fan Fan Fan Mtr Fan Mtr Duct Duct Air Number SP SP SP SP SP Loc Loc Ht Gn Loc Path 1 2 2 Card 45----- Equipment Schedules -----System Main Direct Indirect Auxiliary Main Main Auxiliary Set Cooling Evap Evap Cooling Heating Preheat Reheat Mech. Heating Number Coil Economizer Coil Coil Coil Coil Coil Humidity Coil 1 FISAMCLG FISAMCTG FISAMCTG ----- Equipment Section Alternative #1 -----Card 59----- Equipment Description / TOD Schedules ------Elec Consump Elec Demand Demand ---- Demand Limit ---Alternative Time of Day Time of Day Limit Temperature Number Schedule Schedule Max KW Alternative Description Schedule Drift BASE CASE Card 60------ Cooling Load Assignment------Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Ref Coot Ref Sizing Begin End BLKPLANT 1 1

| ool I                                    | Equip                                                         | Num                                          |                 | (                                                                                                 | COOLING                                              | •••••                                                                                          | •••••                                                                | HEAT RECO                                                       | VERY                                                        |                                               | Seq                                     |                              | Demand | d E        |
|------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------|--------|------------|
| ef (                                     | Code                                                          | Of                                           | Cap             | oacity                                                                                            | E                                                    | nergy                                                                                          | Capacii                                                              | ty                                                              | Energy                                                      | ·                                             | Order                                   | Seq                          | Limit  |            |
| um I                                     | Name                                                          | Units                                        | Value           | Units                                                                                             | Value                                                | Units                                                                                          | Value Ur                                                             | nits                                                            | Value l                                                     | Jnits                                         | Num                                     | Type                         | Number | г          |
| '                                        | EQ1001L                                                       | 1                                            | 657             | TONS                                                                                              | 595                                                  | KW                                                                                             |                                                                      |                                                                 |                                                             |                                               |                                         |                              |        |            |
|                                          |                                                               |                                              |                 |                                                                                                   |                                                      |                                                                                                |                                                                      |                                                                 |                                                             |                                               |                                         |                              |        |            |
|                                          |                                                               |                                              |                 |                                                                                                   | _                                                    | •                                                                                              | References<br>EC or AUX                                              |                                                                 |                                                             | •••••                                         |                                         |                              |        |            |
|                                          |                                                               |                                              |                 |                                                                                                   |                                                      |                                                                                                | ed Full Load                                                         |                                                                 | Cold                                                        | Cooling                                       | Misc                                    |                              |        |            |
|                                          | Value                                                         | Units                                        |                 | Value                                                                                             | Units                                                | Value                                                                                          | Units                                                                |                                                                 | Storage                                                     | -                                             | Acces                                   |                              |        |            |
|                                          | 74.6                                                          | KW                                           |                 | 37.3                                                                                              | KW                                                   | 74,42                                                                                          |                                                                      | 55.11.1                                                         |                                                             | 1                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ••                           |        |            |
| oad<br>ssig                              | Al                                                            | l Coil<br>ads To                             | -(              | Group 1-                                                                                          | -Group 2-                                            | -Group 3-                                                                                      | Load Assign<br>-Group 4-<br>Begin End                                | -Group 5                                                        | - Group                                                     | 6Grou                                         |                                         |                              |        |            |
|                                          | 1                                                             |                                              | 1               | 1                                                                                                 |                                                      |                                                                                                |                                                                      |                                                                 |                                                             |                                               |                                         |                              |        |            |
|                                          |                                                               |                                              |                 |                                                                                                   |                                                      |                                                                                                |                                                                      |                                                                 |                                                             |                                               |                                         |                              |        |            |
| eat<br>ef                                | 67<br>Equip<br>Code<br>r Name                                 | Nui<br>Of                                    | mber 1          | HW Pmp<br>Full Ld<br>Value                                                                        | Units                                                | Heating<br>Cap'y<br>Value Unit                                                                 | Equipment Pa<br>Energy<br>Rate<br>s Value                            |                                                                 | Seq<br>Order                                                | Switch<br>over<br>Control                     | Hot                                     | Misc.                        | Cogen  | Dem<br>Lim |
| eat<br>ef<br>umbe                        | Equip<br>Code                                                 | Nui<br>Of<br>Un                              | mber 1<br>its 1 | HW Pmp<br>Full Ld                                                                                 |                                                      | Cap'y                                                                                          | Energy<br>Rate                                                       |                                                                 | Seq<br>Order                                                | Switch<br>over                                | Hot<br>Strg                             | Misc.                        |        | Lim        |
| eat<br>ef<br>umbe                        | Equip<br>Code<br>r Name                                       | Nu<br>Of<br>Un<br>ST 1                       | mber 1<br>its 1 | HW Pmp<br>Full Ld<br>Value                                                                        | Units                                                | Cap'y<br>Value Unit                                                                            | Energy<br>Rate<br>s Value                                            | Units                                                           | Seq<br>Order<br>Number                                      | Switch<br>over                                | Hot<br>Strg                             | Misc.                        |        | Lim        |
| eat<br>ef<br>umbe                        | Equip<br>Code<br>r Name<br>2200E)                             | Num<br>Of<br>Un<br>ST 1                      | mber 1          | HW Pmp<br>Full Ed<br>Value<br>11.19                                                               | Units<br>KW                                          | Cap'y<br>Value Unit<br>2240 MBH                                                                | Energy<br>Rate<br>s Value<br>3000                                    | Units<br>MBH                                                    | Seq<br>Order<br>Number<br>1                                 | Switch<br>over                                | Hot<br>Strg                             | Misc.<br>Acc.                |        | Lim        |
| eat<br>ef<br>umbe                        | Equip<br>Code<br>Name<br>2200E)<br>2200E)                     | Num<br>Of<br>Un<br>ST 1<br>ST 1              | its !           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19                                                      | Units<br>KW<br>KW<br>KW                              | Cap'y<br>Value Unit<br>2240 MBH<br>2240 MBH<br>2240 MBH                                        | Energy<br>Rate<br>S Value<br>3000<br>3000<br>3000                    | Units<br>MBH<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over                                | Hot<br>Strg                             | Misc.<br>Acc.<br>1           |        | Lim        |
| eat<br>ef<br>umbe                        | Equip<br>Code<br>Name<br>2200E)<br>2200E)                     | Num<br>Of<br>Un<br>ST 1<br>ST 1              | its !           | HW Pmp<br>Full Ed<br>Value<br>11.19<br>11.19                                                      | Units<br>KW<br>KW<br>KW                              | Cap'y<br>Value Unit<br>2240 MBH<br>2240 MBH<br>2240 MBH                                        | Energy<br>Rate<br>s Value<br>3000<br>3000<br>3000                    | Units<br>MBH<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over                                | Hot<br>Strg                             | Misc.<br>Acc.<br>1           |        | Lim        |
| eat<br>ef<br>umbe<br>ard<br>ase          | Equip<br>Code<br>r Name<br>2200EX<br>2200EX                   | Num Of Un ST 1 ST 1                          | its !           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19                                                      | Units KW KW KW Bas y Hourly                          | Cap'y<br>Value Unit<br>2240 MBH<br>2240 MBH<br>2240 MBH                                        | Energy Rate S Value 3000 3000 3000                                   | Units<br>MBH<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over<br>Control                     | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat<br>ef<br>umbe<br>ard<br>ase          | Equip<br>Code<br>r Name<br>2200E)<br>2200E)<br>2200E)<br>71   | Num<br>Of<br>Un<br>ST 1<br>ST 1<br>ST 1      | its !           | HW Pmp<br>Full Ed<br>Value<br>11.19<br>11.19<br>11.19                                             | Units KW KW KW Bas y Hourly d Demanx                 | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH                                                    | Energy Rate S Value 3000 3000 3000 arameters Energy R                | Units<br>MBH<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over<br>Control                     | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat ef umbe                              | Equip Code  Name 2200E) 2200E) 71 Base ty Utilian Description | Num<br>Of<br>Un<br>ST 1<br>ST 1<br>ST 1      | mber 1          | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourl                                    | Units KW KW KW  Bas y Hourly d Demanx Units          | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  240 MBH  Code                                     | Energy Rate S Value 3000 3000 3000 arameters Energy R                | Units<br>MBH<br>MBH<br>MBH<br>quip<br>eference<br>umber         | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over<br>Control<br>Entering         | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat ef umbe                              | Equip<br>Code<br>r Name<br>2200E)<br>2200E)<br>2200E)<br>71   | Num Of Un ST 1 ST 1 ST 1                     | its i           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourl<br>Deman<br>Value                  | Units KW KW KW  Hourly Demand Units TONS             | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  240 MBH  Code                                     | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N CHILL-LD 1 | Units<br>MBH<br>MBH<br>MBH<br>quip<br>quip<br>eference<br>umber | Seq<br>Order<br>Number<br>1<br>2<br>3                       | Switch<br>over<br>Control<br>Entering         | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat<br>ef<br>umbe<br>ase<br>tili<br>umbe | Equip<br>Code<br>Name<br>2200E)<br>2200E)<br>71               | Num Of Un ST 1 ST 1 ST 1 ty ip PUMP H HT LOS | its i           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourt<br>Deman<br>Value<br>39.1<br>612.2 | Units KW KW KW  Y Hourly d Demand Units TONS         | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  Code FTSAMCLG FTSAMHTG                            | Energy Rate 3000 3000 3000 arameters Energy Type N CHILL-LD HOT-LD 1 | Units<br>MBH<br>MBH<br>MBH<br>quip<br>eference<br>umber         | Seq<br>Order<br>Number<br>1<br>2<br>3<br>Demand<br>Limiting | Switch<br>over<br>Control<br>Entering<br>Temp | Hot<br>Strg<br>Leavi<br>Temp            | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat<br>ef<br>umbe<br>ase<br>tili<br>umbe | Equip<br>Code<br>Name<br>2200E)<br>2200E)<br>71               | Num Of Un ST 1 ST 1 ST 1 ty ip PUMP H HT LOS | its i           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourt<br>Deman<br>Value<br>39.1<br>612.2 | Units KW KW KW  Bas y Hourly d Demand Units TONS HBH | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  Code FTSAMCLG FTSAMHTG                            | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N CHILL-LD 1 | Units MBH MBH MBH quip eference umber                           | Seq<br>Order<br>Number<br>1<br>2<br>3<br>Demand<br>Limiting | Switch<br>over<br>Control<br>Entering<br>Temp | Hot<br>Strg<br>Leavi<br>Temp            | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |
| eat ef umbe ard lase tili                | Equip<br>Code<br>r Name<br>2200EX<br>2200EX<br>71             | Num Of Un ST 1 ST 1 ST 1 ty ip PUMP H HT LOS | its \           | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourl<br>Deman<br>Value<br>39.1<br>612.2 | Units KW KW KW                                       | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  Se Utility P    d Schedule Code FTSAHCLG FTSAHHTG | Energy arameters Energy Type NCHILL-LD 1 HOT-LD 1                    | Units MBH MBH MBH  quip eference umber                          | Seq Order Number 1 2 3 Demand Limiting Number               | Switch over Control  Entering Temp            | Hot<br>Strg<br>Leavi<br>Temp            | Misc. Acc. 1 2 3             |        | Lim        |
| eat ef umbe ard lase tili                | Equip<br>Code<br>Name<br>2200E)<br>2200E)<br>71               | Num Of Un ST 1 ST 1 ST 1 ty ip PUMP H HT LOS | T LOS S         | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourl<br>Deman<br>Value<br>39.1<br>612.2 | Units KW KW KW  Bas y Hourly d Demand Units TONS HBH | Cap'y Value Unit 2240 MBH 2240 MBH 2240 MBH  Se Utility P    d Schedule Code FTSAHCLG FTSAHHTG | Energy arameters Energy R Type R CHILL-LD 1 HOT-LD 1                 | Units MBH MBH MBH  quip eference umber  Num                     | Seq Order Number 1 2 3  Demand Limiting Number              | Switch<br>over<br>Control<br>Entering<br>Temp | Leavi<br>Temp                           | Misc.<br>Acc.<br>1<br>2<br>3 |        | Lim        |

| #1<br>Misc Equ                   |                |                              |                     |                 |                                          |                 | ,         |          | • • • • • • • • • • • • • • • • • • • • |                 |                   |        |
|----------------------------------|----------------|------------------------------|---------------------|-----------------|------------------------------------------|-----------------|-----------|----------|-----------------------------------------|-----------------|-------------------|--------|
| iisc Equ                         |                |                              | F                   | Cabad           | #2                                       | F               | F         | 0-1-4    | #3                                      |                 |                   | 0.1.4  |
| ef Cod                           |                | nergy<br>alue                | Energy<br>Units     |                 | Equip<br>Code                            | Energy<br>Value |           | Sched    | Equip                                   | Energy<br>Value |                   |        |
|                                  |                | 56                           | KW                  | Code            | Code                                     | value           | Units     | code     | Code                                    | value           | Units             | Code   |
|                                  |                | 56                           | KW                  |                 |                                          |                 |           |          |                                         |                 |                   |        |
|                                  |                | 56                           | KW                  |                 |                                          |                 |           |          |                                         |                 |                   |        |
|                                  |                | Equ                          | ipment S            | ection A        | Ulternative                              | #2              | •••••     |          |                                         |                 |                   |        |
|                                  | Elec           | Consump                      | Elec D              | Equipemand De   |                                          | ption / To      | 00 Schedu | ules     |                                         |                 | and Limit         |        |
| iumber<br>2                      | Sche           | dule                         | Schedu              | le Ma           | x KW Alter<br>GAS E                      | native De       |           |          |                                         | Schedule        | Drift             |        |
| Load Ali                         | Coil Cods To E | ooling<br>quipment<br>dizing | -Group<br>Begin     | 1Gro<br>End Beg | oup 2Gro<br>in End Beg                   | oup 3G          | roup 4-   | -Group   | 5Group                                  | 6Grou           | up <b>7-</b> -Gro | up 8Gr |
| Card 62<br>Cool Equi<br>Ref Code | ip Nu          |                              | apacity-<br>ue Unit | -COOL I NG      | Cooling<br>Energy<br>alue Uni<br>663 MBH | ·· ··           | н         | EAT RECO | VERY<br>Energy<br>Value l               | ,               | Seq<br>Order Seq  | Demand |

|                                                       | Cooling                                                |                                                    |                                         | Energy                                                        | Energy                              |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number                                     | Percent                        | Low Sp           | d Low!                                  | Spd         |                           |
|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|------------------|-----------------------------------------|-------------|---------------------------|
| wer                                                   | Tower                                                  | Capacit                                            | y Capacity                              | Consump                                                       | Consump                             | Fluid                                                          | Tower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Of                                         | Airflow                        | Energy           | Energ                                   | <b>9</b> У  |                           |
| ef                                                    | Code<br>E95100                                         | Value                                              | Units                                   | Value<br>29.84                                                | Units<br>KW                         | Type                                                           | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cells<br>2                                 | Low Spd                        | Value            | Unit                                    | s           |                           |
|                                                       |                                                        | Ec                                                 | puipment Sect                           | ion Alter                                                     | native #3                           | ;                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  |                                         |             |                           |
| ard                                                   |                                                        |                                                    | no Elec Demo                            |                                                               | •                                   | ion / T00                                                      | Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es                                         |                                |                  | mand Lim                                |             |                           |
| l te                                                  |                                                        |                                                    | / Time of t                             |                                                               |                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  | Tempe                                   |             |                           |
| iumbe                                                 |                                                        | hedule                                             | Schedule                                | •                                                             | / Alterna                           | tive Desc                                                      | ription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                | Schedul          |                                         | ift         |                           |
| 5                                                     |                                                        |                                                    |                                         |                                                               |                                     | UAL SCREW                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXIST                                      | BOILER                         |                  |                                         |             |                           |
|                                                       |                                                        |                                                    |                                         |                                                               |                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  |                                         |             |                           |
|                                                       |                                                        |                                                    |                                         |                                                               |                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  |                                         |             |                           |
| ard                                                   | 60                                                     |                                                    |                                         |                                                               | Cool                                | ing Load                                                       | Assignmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt                                         |                                |                  |                                         |             |                           |
|                                                       | All Coil                                               |                                                    |                                         |                                                               |                                     |                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                  |                                         |             |                           |
| lsgn                                                  | Loads To                                               | Equipmen                                           | nt -Group 1                             | - Group                                                       | 2Group                              | 3Gro                                                           | up 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Group 5-                                   | -Group                         | 6Gra             | up 7                                    | Group       | 8Gro                      |
| Ref                                                   | Cool Ref                                               | Sizing                                             | Begin En                                | d Begin E                                                     | nd Begin                            | End Begi                                                       | n End Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | egin End                                   | Begin E                        | nd Begi          | n End B                                 | egin        | End Begi                  |
| 1                                                     | 1                                                      | BLKPLAN                                            | T 1 1                                   |                                                               |                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  |                                         |             |                           |
|                                                       |                                                        |                                                    |                                         |                                                               |                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                  |                                         |             |                           |
| Cool<br>Ref                                           | 62Equip<br>Code<br>Name<br>YSCRW22                     | Num -<br>Of -<br>Units V                           | C<br>-Capacity<br>alue Units<br>55 TONS | OOLING                                                        | nergy                               | Ca                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RECOVE                                     | RY<br>Energy-<br>lue Un        | •••              | Seq<br>Order                            | Seq         | Demand<br>Limit<br>Number |
| Cool<br>Ref<br>Num<br>1                               | Equip<br>Code<br>Name<br>YSCRW22                       | Num -<br>Of -<br>Units V<br>1 5                    | C<br>C<br>-Capacity<br>alue Units       | OOLING<br>E<br>Value<br>355                                   | nergy<br>Units<br>KW                | Ca<br>Valu                                                     | HEAT<br>pacity<br>we Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F RECOVE                                   | RY<br>Energy-<br>lue Ur        | its              | Seq<br>Order<br>Num                     | Seq         | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Card                       | Equip Code Name YSCRW22 63CHILLE                       | Num - Of - Units V 1 5                             | CON                                     | OOLING Value 355 Cooling                                      | nergy<br>Units<br>KW<br>Pumps an    | Ca<br>Valu<br>d Reference<br>REC or AU                         | pacity up Units  ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T RECOVE                                   | RYRYEnergy-lue Ur              | its              | Seq<br>Order<br>Num                     | Seq         | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Card<br>Cool<br>Ref        | Equip Code Name YSCRW22 63CHILLE                       | Num - Of - Units V. 1 5:                           | CON ad Full Loa                         | OOLING Value 355 Cooling DENSER d Full Lo                     | Pumps and                           | a<br>Valu<br>d Referenc<br>REC or AU<br>Load Full              | pacity pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r RECOVE<br>Va<br>Va<br>witch-<br>ver      | RYRYEnergy-lue Ur              | its<br>Cooling   | Seq<br>Order<br>Num                     | Seq<br>Type | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Card<br>Cool<br>Ref<br>Num | Equip Code Name YSCRW22 63CHILLEI Full Load Value      | Num - Of - Units V. 1 5:  D WATER Full Lo Units    | CON ad Full Loa Value                   | OOLING Value 355 Cooling DENSER d Full Lo                     | nergy<br>Units<br>KW<br>Pumps an    | a<br>Valu<br>d Referenc<br>REC or AU<br>Load Full              | pacity pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r RECOVE<br>Va<br>Va<br>witch-<br>ver      | RYRYEnergy-lue Ur              | its  Cooling     | Seq<br>Order<br>Num                     | Seq<br>Type | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Card<br>Cool<br>Ref        | Equip Code Name YSCRW22 63CHILLE                       | Num - Of - Units V. 1 5:                           | CON ad Full Loa                         | OOLING Value 355 Cooling DENSER d Full Lo                     | Pumps and                           | a<br>Valu<br>d Referenc<br>REC or AU<br>Load Full              | pacity pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r RECOVE<br>Va<br>Va<br>witch-<br>ver      | RYRYEnergy-liue Ur             | its<br>Cooling   | Seq<br>Order<br>Num                     | Seq<br>Type | Limit                     |
| Cool<br>Ref<br>Num<br>Card<br>Cool<br>Ref<br>Num      | Equip Code Name YSCRW22 63CHILLEI Full Load Value      | Num - Of - Units V. 1 5:  D WATER Full Lo Units    | CON ad Full Loa Value                   | OOLING Value 355 Cooling DENSER d Full Lo                     | Pumps and                           | a<br>Valu<br>d Referenc<br>REC or AU<br>Load Full              | pacity pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r RECOVE<br>Va<br>Va<br>witch-<br>ver      | RYRYEnergy-liue Ur             | its  Cooling     | Seq<br>Order<br>Num                     | Seq<br>Type | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Cool<br>Ref<br>Num         | Equip Code Name YSCRW22 63CHILLEI Full Loed Value 74.6 | Num - Of - Units V 1 5:  D WATER Full Lo Units KW  |                                         | OOLING Value 355  Cooling DENSER d Full Lo Units KW           | Pumps and Pumps and Pumps and Value | <br>Ca<br>Valu<br>d Referenc<br>REC or AU<br>Load Full<br>Unit | es<br>Lapacity<br>Lapacity<br>Lapacity<br>Lapacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRECOVE  Va  Va  witch- ver ontrol         | RYEnergy- lue Ur  Cold         | Cooling<br>Tower | Seq<br>Order<br>Num<br>Hisc.<br>Access. | Seq<br>Type | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Cool<br>Ref<br>Num<br>1    | Equip Code Name YSCRW22 63CHILLEI Full Loed Value 74.6 | Num - Of - Units V 1 5:  D WATER Full Lo Units KW  |                                         | OOLING Value 355 Cooling DENSER d Full Lo Units KW            | Pumps annHT ad Full l Value         | <br>Ca<br>Valu<br>d Referenc<br>REC or AU<br>Load Full<br>Unit | pacity ue Units  ces IX Si Load o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r RECOVE<br>Va<br>Witch-<br>ver<br>ontrol  | RY                             | Cooling<br>Tower | Seq<br>Order<br>Num<br>Hisc.<br>Access. | Seq<br>Type | Limit                     |
| Cool Ref Num 1 Card Cool Ref Num 1                    | Equip Code Name YSCRW22 63CHILLEI Full Load Value 74.6 | Num - Of - Units V. 1 5:  D WATER Full Lo Units KW | CON ad Full Loa Value 37.3              | OOLING Value 355 Cooling DENSER d Full Lo Units KW            | Pumps and Pumps and Pumps and Value | <br>Ca<br>Valu<br>d Referenc<br>REC or AU<br>Load Full<br>Unit | pacity Pe Units Pes Pes Units Pes Pes Color | r RECOVE  Va  witch- ver control           | RYEnergy- lue Ur  Cold Storage | Cooling<br>Tower | Seq<br>Order<br>Num<br>Misc.<br>Access. | Seq         | Limit                     |
| Cool<br>Ref<br>Num<br>1<br>Cool<br>Ref<br>Num<br>1    | Equip Code Name YSCRW22 63CHILLEI Full Load Value 74.6 | Num - Of - Units V. 1 5:  D WATER Full Lo Units KW |                                         | OOLING Value 355 Cooling DENSER d Full Lo Units KW Bas Hourly | Pumps and Pumps and Pumps and Value | <br>Ca<br>Valu<br>d Referenc<br>REC or AU<br>Load Full<br>Unit | pacity Pe Units Pes Pes Units Pes Pes Color | r RECOVE  Va  Witch- ver ontrol  Deence Li | RYEnergy- lue Ur  Cold Storage | Cooling<br>Tower | Seq<br>Order<br>Num<br>Misc.<br>Access. | Seq         | Limit                     |

|                                                          | Cooling                                            |                                   |                                                                 | Condenser<br>Energy                                                                           | / Coolin<br>Energy                                       | g Tower Pa                                                | arameters                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Low Spd                             |        |
|----------------------------------------------------------|----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|--------|
| ower                                                     | Tower                                              | Capacity                          | Capacity                                                        |                                                                                               |                                                          | Fluid                                                     | Tower                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy                | •                                   |        |
| ef                                                       | Code<br>EQ5100                                     | Value                             | Units                                                           | Value<br>29.84                                                                                | Units<br>KW                                              | Туре                                                      | Type                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low Spd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Units                               |        |
| erd :                                                    | 59<br>El<br>native Ti                              | ec Consump                        | Elec Demar<br>Time of Da                                        | Equipment<br>nd Demand<br>ay Limit                                                            | Descript<br>Alterna                                      |                                                           | Schedule                                                | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | and Limit<br>Temperatur<br>Drift    | -      |
|                                                          |                                                    |                                   |                                                                 |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                     |        |
|                                                          | 60                                                 |                                   |                                                                 |                                                                                               | Cool                                                     | ing Load /                                                | Nssignmer                                               | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •••••                               | •••••  |
|                                                          | All Coil<br>Loads To                               |                                   | -Group 1-                                                       | -Grown 2-                                                                                     | -Grovin                                                  | 3Gra                                                      | m 41                                                    | troup 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -Group /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6Cross                | p 7Group                            | 9Cpo   |
| e f                                                      |                                                    |                                   |                                                                 |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | P /Group<br>End Begin               |        |
|                                                          |                                                    | BLKPLANT                          |                                                                 |                                                                                               |                                                          |                                                           |                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2                                   |        |
|                                                          |                                                    |                                   |                                                                 |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                     |        |
|                                                          |                                                    |                                   |                                                                 |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                     |        |
| ard                                                      | 62                                                 |                                   |                                                                 | Co                                                                                            | oling Eq                                                 | uipment Pa                                                | arameter:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •••••                               |        |
|                                                          |                                                    |                                   | co                                                              |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Seq                                 | Demand |
|                                                          |                                                    |                                   | apacity                                                         |                                                                                               | rgy                                                      | Ca                                                        | pacity                                                  | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -Energy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •••                   | Order Seq                           | Limit  |
| um                                                       | Name                                               | Units Valu                        |                                                                 | Value                                                                                         | Units                                                    | Valu                                                      | e Units                                                 | Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ue Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | its                   | Num Type                            | Number |
|                                                          | VCENT47/                                           | 4 255                             |                                                                 |                                                                                               |                                                          |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                     |        |
|                                                          | YCENT134                                           | 1 555                             | TONS                                                            | 322                                                                                           | KW                                                       |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1,,,0                               |        |
|                                                          |                                                    |                                   |                                                                 |                                                                                               |                                                          | l Deferenc                                                | DC                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                     |        |
| ard                                                      | 63                                                 |                                   |                                                                 | - Cooling F                                                                                   | tumps and                                                |                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••••                 |                                     |        |
| ard<br>ool                                               | 63                                                 | WATER                             |                                                                 | - Cooling P                                                                                   | 'umps and                                                | REC or AU                                                 | x s                                                     | vitch-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooling               | ····                                |        |
| ard<br>ool<br>ef<br>um                                   | 63<br>CKILLED<br>Full Load<br>Value                | WATER<br>Full Load<br>Units       | <b>CON</b> DI                                                   | - Cooling P                                                                                   | 'umps and                                                | REC or AU<br>oad Full                                     | X Si<br>Load or                                         | witch-<br>ver (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooling               | ····                                |        |
| ard<br>ool<br>ef                                         | 63<br>CHILLED<br>Full Load                         | WATER                             | CONDI                                                           | - Cooling F<br>ENSER<br>Full Load                                                             | oumps and                                                | REC or AU<br>oad Full                                     | X Si<br>Load or                                         | witch-<br>ver (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cold<br>Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooling               | Misc.                               |        |
| ard<br>ool<br>ef                                         | 63<br>CKILLED<br>Full Load<br>Value                | WATER<br>Full Load<br>Units       | CONDI<br>Full Load<br>Value                                     | - Cooling F<br>ENSER<br>Full Load<br>Units                                                    | oumps and                                                | REC or AU<br>oad Full                                     | X Si<br>Load or                                         | witch-<br>ver (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cold<br>Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooling<br>Tower      | Misc.                               |        |
| Card<br>Cool<br>Lef<br>Lum                               | 63<br>CHILLED<br>Full Load<br>Value<br>74.6        | WATER<br>Full Load<br>Units<br>KW | CONDI<br>Full Load<br>Value<br>37.3                             | - Cooling F<br>ENSER<br>Full Load<br>Units<br>KW                                              | Pumps and<br>HT<br>I Fult L<br>Value                     | REC or AU<br>oad Full<br>Unit                             | Constant                                                | witch-<br>ver (<br>ontrol (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cold :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cooling<br>Tower      | Misc.<br>Access.                    |        |
| Card<br>Cool<br>lef<br>lum<br>Card                       | 63FUILLED FUIL LOAD Value 74.6                     | WATER<br>Full Load<br>Units<br>KW | CONDI<br>Full Load<br>Value<br>37.3                             | - Cooling F<br>ENSER<br>Full Load<br>Units<br>KW<br>Base<br>Hourly                            | Cumps andHT Full L Value Utility                         | REC or AU<br>oad Full<br>Unit                             | Load of s C                                             | witch-<br>ver (<br>ontrol (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cold Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cooling<br>Tower<br>1 | Misc.<br>Access.                    |        |
| Card<br>Cool<br>Lef<br>Lum<br>Card<br>Card               | 63Full Load Value 74.6 71 Base                     | WATER<br>Full Load<br>Units<br>KW | Full Load<br>Value<br>37.3<br>Hourly<br>Demand                  | - Cooling F<br>EMSER<br>Full Lose<br>Units<br>KW<br>Base<br>Hourly<br>Demand                  | Cumps andHT Full L Value Utility                         | REC or AU<br>oad Full<br>Unit:<br>Parameter               | Load of S C                                             | ver ( ontrol (  Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cold<br>Storage<br>mand<br>miting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cooling<br>Tower<br>1 | Misc.<br>Access.                    |        |
| Card<br>Cool<br>Ref<br>Hum<br>I<br>Card<br>Gase<br>Utili | 63Full Load Value 74.6 71 Base ty Utility          | WATER<br>Full Load<br>Units<br>KW | Full Load<br>Value<br>37.3<br>Hourly<br>Demand<br>Value         | - Cooling F<br>EMSER<br>Full Lose<br>Units<br>KW<br>Base<br>Hourly<br>Demand                  | Pumps andHT Fult L Value Utility Schedule                | REC or AU<br>oad Full<br>Unit                             | Load of<br>s C                                          | ver ( ontrol (  Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cold<br>Storage<br>mand<br>miting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cooling<br>Tower<br>1 | Misc.<br>Access.                    |        |
| Card<br>Cool<br>Ref<br>Num<br>I<br>Card<br>Base          | 63Full Load Value 74.6 71 Base ty Utility          | WATER Full Load Units KW          | Full Load<br>Value<br>37.3<br>Hourly<br>Demand<br>Value         | - Cooling F<br>ENSER<br>Full Lose<br>Units<br>KW<br>Base<br>Hourly<br>Demand<br>Units         | Pumps andHT Fult L Value Utility Schedule                | REC or AU. oad Full Unit:  Parameter: Energy Type         | Load of<br>s C                                          | ver ( ontrol (  Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cold<br>Storage<br>mand<br>miting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cooling<br>Tower<br>1 | Misc.<br>Access.                    |        |
| Card<br>cool<br>def<br>dum<br>Card<br>case<br>Itili      | 63 Full Load Value 74.6  71 Base ty Utility PIPE-F | WATER Full Load Units KW          | Full Load<br>Value<br>37.3<br>Hourly<br>Demand<br>Value<br>39.1 | - Cooling F<br>ENSER<br>Full Lose<br>Units<br>KW<br>Base<br>Hourly<br>Demand<br>Units<br>TONS | Pumps andHT Full L Value  Utility Schedule Code FTSAMCLO | REC or AU. oad Full Unit:  Parameter: Energy Type CHILL-L | x Si<br>Load of<br>s Ci<br>S<br>Equip<br>Refer<br>Numbe | ver ( pontrol (  Derence Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Storage Storag | Cooling Tower 1       | Misc.<br>Access.<br>Leaving<br>Temp |        |
| ard<br>dool<br>ef<br>um<br>ard<br>dase<br>tili           | 63                                                 | WATER Full Load Units KW          | Full Load<br>Value<br>37.3<br>Hourly<br>Demand<br>Value         | - Cooling FENSER Full Lose Units KW Base Hourly Demand Units TONS                             | Pumps andHT Fult L Value  Utility Schedule Code FTSAMCLO | REC or AU. oad Full Unit:  Parameter: Energy Type CHILL-L | x Si<br>Load of<br>s Ci<br>S<br>Equip<br>Refer<br>Numbe | witch-<br>ver (<br>pontrol (<br>Dec<br>ence Lin<br>r Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cold<br>Storage<br>mand<br>miting E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cooling<br>Tower<br>1 | Misc.<br>Access.<br>Leaving<br>Temp |        |
| Card<br>cool<br>def<br>dum<br>Card<br>case<br>Itili      | 63                                                 | D WATER Full Load Units KW        | Full Load<br>Value<br>37.3<br>Hourly<br>Demand<br>Value<br>39.1 | - Cooling FENSER Full Lose Units KW Base Hourly Demand Units TONS Condenser                   | Pumps andHT Full L Value  Utility Schedule Code FTSAMCLO | REC or AU. oad Full Unit:  Parameter: Energy Type GHILL-L | x Si<br>Load of<br>s Ci<br>S<br>Equip<br>Refer<br>Numbe | pitch- ver ( pontrol ( pon | Cold Storage S | Cooling<br>Tower<br>1 | Misc.<br>Access.<br>Leaving<br>Temp |        |

## Utility Description Reference Table -----

#### Schedules:

FSHBARRL F.S.H. BARRACKS LIGHT/MISC. SCHEDULE FSHBARRP F.S.H. BARRACKS PEOPLE SCHEDULE FSHDINL F.S.H. DINING LIGHTING/MISC. LOAD SCHED. FSHDINP F.S.H. DINING PEOPLE SCHEDULE FSHOFFIC F.S.H. OFFICE INTERNAL LOAD SCHEDULE FTSAMCLG EEAP BOILER/CHILLER STUDY FTSAMHTG EEAP BOILER/CHILLER STUDY

### System:

SZ SINGLE ZONE

#### Equipment:

#### Cooling:

EQ1001L 2-STG CENTRIFUGAL CHILLER >550 TONS YCENT134 YORK CENT. R-134A CHILL YENGORIV YORK ENGINE DRIVEN CHILLER YSCRW22 YORK W.C. SCREW CHILL.

## Heating:

2200EXST EXISTING NAT. DRAFT AJAX HWH BOILER

Tower:

EQ5100 COOLING TOWER FANS

#### Misc:

EQ5013 WATER CIRCULATING PUMP - CONSTANT VOLUME

Card 39- System Alternative Number Description

```
EXISTING SYSTEM
Card 40----- System Type -----
                           -----OPTIONAL VENTILATION SYSTEM-----
                             Ventil
Set System Deck Cooling Heating Cooling Heating Static
Number Type Location SADBVh SADBVh Schedule Schedule Pressure
1 SZ
Card 41----- Zone Assignment ------
System
                    Ref #1
                                                Ref #2 Ref #3
Set
                                                                                                           Ref #4
                                                                                                                                         Ref #5
                                                                                                                                                                       Ref #6
Number
                   Begin End
                                                 Begin End Begin End Begin End Begin End
1
                 5 40
Card 42----- Fan SP and Duct Parameters-----
System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return
Set Fan Fan Fan Fan Fan Fan Fan Har Fan Har Duct Duct Air
Number SP SP SP SP SP SP Loc Loc Ht Gn Loc Path
1 2 2
Card 45----- Equipment Schedules -----
System Main Direct Indirect Auxiliary Main Main Auxiliary
Set Cooling Evap Evap Cooling Heating Preheat Reheat Mech. Heating
Number Coil Economizer Coil Coil Coil Coil Mumidity Coil
                                                                                                                                                                Auxiliary
1 FTSAMCLG
                                                                                                FISAMHIG FISAMHIG FISAMHIG
----- Equipment Section Alternative #1 -----
Card 59----- Equipment Description / TOD Schedules -----
              Elec Consump Elec Demand Demand
                                                                               ---- Demand Limit ---
Alternative Time of Day Time of Day Limit
                                                                                                                                                            Temperature
Number Schedule Schedule Max KW Alternative Description Schedule Drift
1
                                                                            BASE CASE
Card 60----- Cooling Load Assignment----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End Begin
```

| ool I                                           | quip                                                                                       | Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | С                                                                                                   | OOLING                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | HEAT REC                                                        | OVERY                                                                 |                                               | Seq                                     |                              | Deman   | ď                 |
|-------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------|---------|-------------------|
| ef (                                            | Code                                                                                       | Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cap                       | pacity                                                                                              | Er                                             | жгду                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capaci                                                                           | y                                                               | Energ                                                                 | y                                             | Order                                   | Seq                          | Limit   |                   |
| .m 1                                            | ame                                                                                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value                     | e Units                                                                                             | Value                                          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value Ur                                                                         | nîts                                                            | Value I                                                               | Units                                         | Num                                     | Type                         | Numbe   | r                 |
| 1                                               | Q1001L                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 657                       | TONS                                                                                                | 595                                            | KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                 |                                                                       |                                               |                                         |                              |         |                   |
|                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                 |                                                                       |                                               |                                         |                              |         |                   |
|                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | References<br>C or AUX                                                           |                                                                 |                                                                       | •••••                                         |                                         | •                            |         |                   |
|                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed Full Load                                                                     |                                                                 | Cold                                                                  | Cooling                                       | Misc.                                   | _                            |         |                   |
|                                                 | /alue                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Value                                                                                               | Units                                          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                            |                                                                 | l Storage                                                             | •                                             | Acces                                   |                              |         |                   |
|                                                 | 74.6                                                                                       | KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 37.3                                                                                                | KW                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 25                                                              |                                                                       | 1                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                              |         |                   |
| ad                                              |                                                                                            | l Coil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load Assign                                                                      |                                                                 |                                                                       |                                               |                                         |                              | <br>3Gr |                   |
| _                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Begin End                                                                        |                                                                 |                                                                       |                                               |                                         |                              |         |                   |
|                                                 | 1                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1                                                                                                   | JUJ 111 21 12                                  | ocym cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ocgiii cia                                                                       | begin ti                                                        | o begin c                                                             | begin                                         | LIKE (                                  | begint Li                    | M Deg   | ,,,,              |
|                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                 |                                                                       |                                               |                                         |                              |         |                   |
| ed :                                            | 67                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                     |                                                | Westing (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Equipment De                                                                     | namatana                                                        |                                                                       |                                               |                                         |                              |         |                   |
| at                                              | 67<br>Equip<br>Code                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mber                      | HW Pmp<br>Full Ld                                                                                   |                                                | Heating (<br>Cap'y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equipment Pa<br>Energy<br>Rate                                                   |                                                                 | Seq<br>Order                                                          | Switch<br>over                                | Hot                                     | Misc.                        |         |                   |
| eat                                             | Equip                                                                                      | Nur<br>Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mber                      | HW Pmp<br>Full Ld                                                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy<br>Rate                                                                   |                                                                 | Seq                                                                   | Switch<br>over                                | Hot                                     | Misc.                        | Cogen   | Lin               |
| eat<br>ef                                       | Equip<br>Code                                                                              | Nur<br>Of<br>Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mber<br>its               | HW Pmp<br>Full Ld<br>Value                                                                          | Units                                          | Cap'y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Energy<br>Rate                                                                   |                                                                 | Seq<br>Order                                                          | Switch<br>over                                | Hot                                     | Misc.                        |         | Den<br>Lin<br>Nun |
| eat<br>of<br>umbe                               | Equip<br>Code<br>r Name                                                                    | Nur<br>Of<br>Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mber<br>its               | HW Pmp<br>Full Ld<br>Value<br>11.19                                                                 | Units :                                        | Cap'y<br>Value Unite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Energy<br>Rate<br>Value                                                          | Units                                                           | Seq<br>Order<br>Number                                                | Switch<br>over                                | Hot                                     | Misc.                        |         | Lin               |
| eat<br>ef<br>umbe                               | Equip<br>Code<br>r Name<br>2200EX                                                          | Nur<br>Of<br>Uni<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mber<br>its               | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19                                                        | Units<br>KW                                    | Cap'y<br>Value Unit:<br>2240 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Energy<br>Rate<br>Value<br>3000                                                  | Units<br>M8H                                                    | Seq<br>Order<br>Number<br>1                                           | Switch<br>over                                | Hot                                     | Misc.<br>Acc.                |         | Lin               |
| eat<br>ef<br>ambe                               | Equip<br>Code<br>r Name<br>2200EX<br>2200EX                                                | Nur<br>Of<br>Un<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | its                       | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19                                                        | Units :                                        | Cap'y<br>Value Unit:<br>2240 MBH<br>2240 MBH<br>2240 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Energy<br>Rate<br>Value<br>3000<br>3000                                          | Units<br>MBH<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |         | Lin               |
| eat<br>ef<br>imbe                               | Equip<br>Code<br>r Name<br>2200EX<br>2200EX                                                | Nur<br>Of<br>Un<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | its                       | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19                                               | Units KW KW KW KW KW KW Bas                    | Cap'y<br>Value Unit:<br>2240 MBH<br>2240 MBH<br>2240 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Energy Rate S Value 3000 3000 3000                                               | Units<br>M8H<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Misc.<br>Acc.<br>1<br>2<br>3 |         | Lim               |
| eat<br>ef<br>ambe                               | Equip<br>Code<br>r Name<br>2200EX<br>2200EX<br>2200EX                                      | Nur<br>Of<br>Uni<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | its                       | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19                                                        | Units KW KW KW Bas                             | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Energy Rate S Value 3000 3000 3000                                               | Units<br>M8H<br>MBH<br>MBH                                      | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Hisc.<br>Acc.<br>1<br>2<br>3 |         | Lin               |
| eat<br>ef<br>umbe                               | Equip<br>Code<br>Name<br>2200EX<br>2200EX<br>2200EX<br>71<br>Base<br>ty Utili              | Nur<br>Of<br>Un<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | its                       | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourly<br>Demand                           | Units KW KW KW Bas Grand                       | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH 2240 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Energy Rate S Value 3000 3000 3000 arameters Energy R                            | Units<br>M8H<br>M8H<br>M8H<br>quip<br>quip                      | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Hisc.<br>Acc.<br>1<br>2<br>3 |         | Lin               |
| eat<br>ef<br>umbe                               | Equip<br>Code<br>r Wame<br>2200EX<br>2200EX<br>2200EX<br>71<br>Base<br>ty Utili<br>r Descr | Nur<br>Of<br>Un<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mber<br>its               | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19                                               | Units KW KW KW Bas Grand                       | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH 2240 MBH COde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N                        | Units<br>M8H<br>M8H<br>M8H<br>quip<br>quip<br>eference          | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Hisc.<br>Acc.<br>1<br>2<br>3 |         | Lin               |
| eat<br>of<br>mbe<br>ord<br>ose<br>oili          | Equip Code r Name 2200EX 2200EX 2200EX 71 Base ty Utili r Descr                            | Nur<br>Of<br>Uni<br>ST 1<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mber<br>its               | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourly<br>Demand                           | Units  KW  KW  KW  Hourly  Demand  Units  TOWS | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH 2240 MBH COde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N CHILL-LD 1             | Units<br>MBH<br>MBH<br>MBH<br>quip<br>quip<br>eference<br>umber | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Hisc.<br>Acc.<br>1<br>2<br>3 |         | Li                |
| eat<br>ef<br>umbe<br>ard<br>ase<br>tili<br>umbe | Equip Code r Name 2200EX 2200EX 2200EX 71 Base ty Utili r Descr                            | Nur<br>Of<br>Uni<br>ST 1<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mber<br>its               | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Mourly<br>Demand<br>Value<br>39.1          | Units  KW  KW  KW  Hourly  Demand  Units  TOWS | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH COMBH COM | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N CHILL-LD 1             | Units<br>MBH<br>MBH<br>MBH<br>quip<br>quip<br>eference<br>umber | Seq<br>Order<br>Number<br>1<br>2<br>3                                 | Switch<br>over<br>Control                     | Hot<br>Strg                             | Hisc.<br>Acc.<br>1<br>2<br>3 |         | Lim               |
| eat<br>ef<br>umbe<br>ase<br>tili<br>umbe        | Equip Code  r Name 2200EX 2200EX 2200EX  71 Base ty Utili r Descr PIPE- PIPE               | Nur<br>Of<br>Uni<br>ST 1<br>ST 1<br>ST 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nber<br>its<br>T LOS<br>S | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Hourly<br>Demand<br>Value<br>39.1<br>612.2 | Units KW KW KW Hourly Demand Units TOWS MBH    | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH Code FTSAMCLG FTSAMHTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Energy Rate 3000 3000 3000 3000 arameters Energy R Type N CHILL-LD 1             | Units MBH MBH MBH  quip eference umber                          | Seq<br>Order<br>Number<br>1<br>2<br>3<br>Demand<br>Limiting<br>Number | Switch<br>over<br>Control<br>Entering<br>Temp | Hot<br>Strg<br>Leav<br>Temp             | Misc. Acc. 1 2 3             |         | Lin               |
| eat<br>ef<br>umbe<br>ard<br>ase<br>tili<br>umbe | Equip Code  r Name 2200EX 2200EX 2200EX  71 Base ty Utili r Descr PIPE- PIPE  74 Cooling   | Nur Of Unit of | T LOS                     | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Mourly<br>Demand<br>Value<br>39.1<br>612.2 | Units KW KW KW Hourly Demand Units TOWS MBH    | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH Code FTSAMCLG FTSAMHTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Energy Rate S Value 3000 3000 3000 arameters Energy R Type CHILL-LD 1 HOT-LD 1   | Units MBH MBH MBH  quip eference umber  Num                     | Seq<br>Order<br>Number<br>1<br>2<br>3<br>Demand<br>Limiting<br>Number | Switch over Control  Entering Temp            | Hot<br>Strg<br>Leav<br>Temp             | Misc. Acc. 1 2 3             |         | Lim               |
| eat<br>ef<br>umbe<br>ard<br>ase<br>tili<br>umbe | Equip Code  r Name 2200EX 2200EX 2200EX  71 Base ty Utili r Descr PIPE- PIPE               | Nur Of Unit of | T LOS S                   | HW Pmp<br>Full Ld<br>Value<br>11.19<br>11.19<br>11.19<br>Mourly<br>Demand<br>Value<br>39.1<br>612.2 | Units KW KW KW Hourly Demand Units TOWS MBH    | Cap'y Value Unit: 2240 MBH 2240 MBH 2240 MBH Code FTSAMCLG FTSAMHTG  r / Cooling Energy Consump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy Rate S Value 3000 3000 3000 arameters Energy R Type N CHILL-LD 1 HOT-LD 1 | Units MBH MBH MBH  quip eference umber  Num                     | Seq Order Number 1 2 3  Demand Limiting Number                        | Switch<br>over<br>Control<br>Entering<br>Temp | Hot<br>Strg<br>Leav<br>Temp             | Misc. Acc. 1 2 3             |         | Lin               |

| Misc                                     | #1                                                                           |                                                          |                                                                 |                                         |                                                             |                                                | ,                                                                        |                                   |                                             |                                  |                                            |                |
|------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|---------------------------------------------|----------------------------------|--------------------------------------------|----------------|
|                                          | Savio                                                                        | Energy                                                   | Engage                                                          | Cabad                                   | #2<br>5===i==                                               | F                                              | <b>r</b>                                                                 | A-1-4                             | #3                                          | _                                | _                                          |                |
| Ref                                      | Code                                                                         | Energy<br>Value                                          | Energy<br>Units                                                 | Code                                    | Equip<br>Code                                               | Energy<br>Value                                | Energy                                                                   |                                   | Equip                                       | Energy                           | Energy                                     |                |
| 1                                        | E95013                                                                       | .56                                                      | KW                                                              | 2006                                    | Louie                                                       | Value                                          | Units                                                                    | Loge                              | Code                                        | Value                            | Units                                      | Code           |
| 2                                        | EQ5013                                                                       | .56                                                      | KW                                                              |                                         |                                                             |                                                |                                                                          |                                   |                                             |                                  |                                            |                |
| 3                                        | EQ5013                                                                       | .56                                                      | KW                                                              |                                         |                                                             |                                                |                                                                          |                                   |                                             |                                  |                                            |                |
| ••••                                     |                                                                              | · E                                                      | quipment S                                                      | ection A                                | lternative                                                  | #2                                             | •••••                                                                    | •••••                             |                                             |                                  |                                            |                |
|                                          | E<br>native T                                                                | lec Consu                                                | mp Elec D                                                       | emand Dec<br>f Day Lis                  | mand<br>mit<br>x KW Alte                                    | rnative De                                     | escription                                                               | 1                                 |                                             | Demar                            |                                            | ••             |
|                                          |                                                                              |                                                          |                                                                 |                                         |                                                             | CENTRESIC                                      |                                                                          | D-MED F                           | VICT DIO                                    |                                  |                                            |                |
|                                          |                                                                              |                                                          |                                                                 |                                         | w.c.                                                        | CENTRIFUG                                      | AL CHILLE                                                                | R-VFD, E                          | XIST BLR                                    |                                  |                                            |                |
|                                          |                                                                              |                                                          |                                                                 | •••••                                   |                                                             |                                                |                                                                          |                                   |                                             |                                  |                                            |                |
| Load                                     | All Coil                                                                     | Cooling                                                  |                                                                 |                                         | с                                                           | ooling Loa                                     | ad Assigna                                                               | nent                              |                                             |                                  |                                            |                |
| Load<br>Asgn                             | All Coil<br>Loads To                                                         | Cooling<br>Equipmen                                      | nt -Group                                                       | 1Gro                                    | c<br>up 2Gr                                                 | ooling Loa                                     | ed Assigna                                                               | nent                              | Group                                       | 6Group                           | 7Grou                                      | ıp8- ⋅         |
| Load<br>Asgn<br>Ref                      | All Coil<br>Loads To                                                         | Cooling                                                  | nt -Group<br>Begin                                              | 1Gro                                    | c<br>up 2Gr                                                 | ooling Loa                                     | ed Assigna                                                               | nent                              | Group                                       |                                  | 7Grou                                      | ıp8- ⋅         |
| Load<br>Asgn<br>Ref<br>1                 | All Coil<br>Loads To<br>Cool Ref<br>1                                        | Cooling<br>Equipment<br>Sizing<br>BLKPLAN                | nt -Group<br>Begin<br>T 1                                       | 1Grod<br>End Begin                      | Cup 2Gr<br>n End Beg<br>Cooling                             | ooling Loa<br>oup 3G<br>in End Be<br>Equipment | ed Assignm<br>Group 4-<br>egin End<br>t Paramete                         | ent<br>-Group 5<br>Begin En       | Group<br>d Begin E                          | 6Group<br>End Begin E            | 7Grou                                      | up 8- in End i |
| Load<br>Asgn<br>Ref<br>1                 | All Coil<br>Loads To<br>Cool Ref<br>1                                        | Cooling<br>Equipment<br>Sizing<br>BLKPLAN                | nt -Group<br>Begin<br>T 1                                       | 1 Grod<br>End Begin<br>1                | up 2Gr<br>n End Beg<br>Cooling                              | ooling Loa<br>oup 3G<br>in End Be<br>Equipment | od Assignm<br>Group 4-<br>egin End<br>: Parameto                         | -Group 5<br>Begin En              | Group<br>d Begin E                          | 6Group<br>End Begin E            | 7Grou                                      | up 8-          |
| Load<br>Asgn<br>Ref<br>1<br>Card<br>Cool | All Coil Loads To Cool Ref 1 62 Equip Code                                   | Cooling Equipment Sizing BLKPLAN  Num - Of - Units V     | nt -Group<br>Begin<br>T 1                                       | 1Grov<br>End Begin<br>1<br>-COOLINGs Va | up 2Gr<br>n End Beg<br>Cooling<br>Energy<br>lue Uni         | ooling Loa<br>oup 30<br>in End Be<br>Equipment | ed Assignm<br>Group 4-<br>egin End<br>t Paramete                         | -Group 5<br>Begin En              | Group<br>d Begin E<br>ERYEnergy-            | 6Group<br>End Begin E            | 7Grou<br>End Begin<br>eq<br>eq<br>rder Seq | up 8- in End i |
| Load<br>Asgn<br>Ref<br>J<br>Cool<br>Ref  | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENVFD                      | Cooling Equipmer Sizing BLKPLAN                          | nt -Group<br>Begin<br>T 1<br>-Capacity-<br>alue Unit<br>55 TONS | 1Grow<br>End Begin<br>1<br>             | up 2Gr<br>n End Beg<br>Cooling<br>Energy<br>lue Uni<br>2 KW | equipment                                      | od Assignm<br>Group 4-<br>egin End<br>Paramete<br>Capacity-<br>slue Unit | -Group 5<br>Begin En              | Group<br>d Begin E<br>ERYEnergy-<br>alue Ur | 6Group<br>End Begin E            | 7Grou<br>End Begin<br>eq<br>eq<br>rder Seq | up 8- in End I |
| Load Asgn Ref 1 Card Cool Ref Num 1      | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENVFD 63 CHILLEI           | Cooling Equipmer Sizing BLKPLAN  Num - Of - Units V.     | nt -Group Begin T 1                                             | 1Grow End Begin 1                       | up 2Gr n End Beg CoolingEnergy lue Uni 2 KW                 | epuipment  Equipment  ts Va                    | ernces                                                                   | -Group 5 Begin EnAT RECOV         | Group<br>d Begin E<br>ERYEnergy-<br>alue Ur | 6Group<br>End Begin E            | 7Grou<br>End Begin<br>eq<br>eq<br>rder Seq | up 8- in End I |
| Load Asgn Ref 1 Card Cool Ref Num 1      | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENVFD 63 CHILLEI Full Load | Cooling Equipmer Sizing BLKPLAN  Num - Of - Units V 1 5: | nt -Group Begin T 1  -Capacity- alue Unit 55 TONS               | 1Grow End Begin 1                       | up 2Gr<br>n End Beg<br>Cooling<br>Energy<br>lue Uni<br>2 KW | epoling Loadoup 3                              | ernces                                                                   | -Group 5 Begin En AT RECOV Switch | Group d Begin E ERYEnergy- alue Ur          | 6Group End Begin E Se On nits No | 7Grou                                      | up 8- in End I |
| Load Asgn Ref 1 Card Cool Ref Num 1      | All Coil Loads To Cool Ref 1 62 Equip Code Name YCENVFD 63 CHILLEI           | Cooling Equipmer Sizing BLKPLAN  Num - Of - Units V.     | nt -Group Begin T 1                                             | 1Grow End Begin 1                       | up 2Gr n End Beg CoolingEnergy lue Uni 2 KW                 | epoling Loadoup 3                              | ernces                                                                   | -Group 5 Begin En AT RECOV Switch | Group<br>d Begin E<br>ERYEnergy-<br>alue Ur | 6Group End Begin E Se On nits No | 7Grou                                      | up 8- in End I |

|                                                                    |                                                                   |                                 |                                                                       | 001100                                                     | 1 / 600011                                                           | g lower                                          | Parameters                                                                                                | 3                          |                                                                        |                                              |                             |                    |       |                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------|----------------------------------------------|-----------------------------|--------------------|-------|---------------------------|
|                                                                    | Cooling                                                           |                                 |                                                                       | Energy                                                     | Energy                                                               |                                                  |                                                                                                           | Number                     | Percent                                                                | Low S                                        | pd L                        | .ow Spd            |       |                           |
| Tower                                                              |                                                                   |                                 |                                                                       | Consump                                                    | •                                                                    | Fluid                                            | Tower                                                                                                     | Of                         | Airflow                                                                | Energ                                        | y E                         | nergy              |       |                           |
|                                                                    | Code                                                              | Value                           | Units                                                                 | Value                                                      | Units                                                                | Type                                             | Type                                                                                                      |                            | Low Spd                                                                | Value                                        | t                           | Inits              |       |                           |
| 1                                                                  | EQ5100                                                            |                                 |                                                                       | 29.84                                                      | KW                                                                   |                                                  |                                                                                                           | 2                          |                                                                        |                                              |                             |                    |       |                           |
| •••••                                                              | •••••                                                             | Equi                            | pment Sec                                                             | ction Alte                                                 | rnative #3                                                           |                                                  |                                                                                                           | ••••                       |                                                                        |                                              |                             |                    |       |                           |
| Card 59                                                            |                                                                   |                                 |                                                                       | Equipmen                                                   |                                                                      | ion / TO                                         | 00 Schedul                                                                                                | es •••••                   | •••••                                                                  |                                              |                             |                    |       |                           |
| 41.                                                                |                                                                   |                                 |                                                                       | nand Deman                                                 |                                                                      |                                                  |                                                                                                           |                            |                                                                        | D                                            |                             | Limit -            |       |                           |
|                                                                    |                                                                   |                                 |                                                                       | Day Limit                                                  |                                                                      |                                                  |                                                                                                           |                            |                                                                        |                                              |                             | mperatu            | ге    |                           |
| Number<br>3                                                        | Sch                                                               | edule                           | Schedule                                                              | e Max K                                                    | W Alterna<br>EXIST (                                                 |                                                  | scription<br>NATURAL D                                                                                    | RAFT HIG                   | H BLR                                                                  | Schedu                                       | le                          | Drift              |       |                           |
| -                                                                  | ment Load<br>nce Heat                                             |                                 |                                                                       | -Group 2-<br>Begin End                                     | -Group :<br>  Begin Er                                               |                                                  |                                                                                                           |                            |                                                                        |                                              |                             |                    |       |                           |
| 1                                                                  | 1<br>7<br>Equip<br>Code                                           | Number<br>Of<br>Units           |                                                                       |                                                            |                                                                      | g Equipme<br>!<br>!<br>its !                     | ent Parame<br>Energy<br>Rate                                                                              | ters<br>its<br>H           | Seq S                                                                  | witch<br>over                                | <br>Hot                     | Misc.              |       | Demand<br>Limit<br>Number |
| Card 67<br>Heat<br>Ref<br>Number<br>1<br>2<br>Card 7               | Tequip Code Name BOILHEFT BOILHEFT                                | Number<br>of<br>Units<br>1      | HW Pmp<br>Full Ld<br>Value<br>5.6                                     | Units<br>KW<br>Bas<br>y Hourly<br>d Demand<br>Units        | Cap'y Value Un 1830 MBI 915 MBI se Utility d Schedule Code           | g Equipmo                                        | ent Parame<br>Energy<br>Rate<br>Value Un<br>2000 MB<br>1000 MB<br>ers<br>Equip<br>y Refer<br>Numbe        | its<br>H<br>H<br>Deence Li | Seq S<br>Order o<br>Number C<br>1<br>2                                 | switch<br>over<br>control                    | Hot<br>Strg                 | Misc.<br>Acc.<br>1 |       | Demand<br>Limit           |
| Card 67 Ref Number 1 Card 7 Base Utility Number 1                  | Equip Code Name BOILHEFT BOILHEFT  Base y Utility Descrip PIPE HT | Number<br>Of<br>Units<br>1<br>1 | HW Pmp<br>Full Ld<br>Value<br>5.6<br>Hourl<br>Deman<br>Value<br>612.2 | Units<br>KW<br>Bas<br>y Hourly<br>d Demand<br>Units<br>MBH | Cap'y Value Un 1830 MBI 915 MBI GE Utility  d Schedul Code FTSAMHT   | g Equipmon (                                     | ent Parame<br>Energy<br>Rate<br>Value Un<br>2000 MB<br>1000 MB<br>ers<br>Equip<br>y Refer<br>Numbe        | its<br>H<br>H<br>Deence Li | Seq S<br>Order o<br>Number of<br>1<br>2<br>mand<br>miting E<br>mber 1  | switch<br>over<br>control<br>control         | Hot<br>Strg<br>Lea<br>Temp  | Misc.<br>Acc.<br>1 |       | Demand<br>Limit           |
| Card 67 Heat Ref Number 1 Card 7 Base Utility Number 1             | Equip Code Name BOILHEFT BOILHEFT  Base y Utility Descrip PIPE HT | Number<br>of<br>Units<br>1<br>1 | HW Pmp<br>Full Ld<br>Value<br>5.6<br>Hourl<br>Deman<br>Value<br>612.2 | Units KW                                                   | Cap'y Value Un 1830 MBI 915 MBI GE Utility  d Schedule Code FTSAMHTO | g Equipmon ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | ent Parame<br>Energy<br>Rate<br>Value Un<br>2000 MB<br>1000 MB<br>ers<br>Equip<br>y Refer<br>Numbe<br>D 1 | its<br>H<br>H<br>Deence Li | Seq S<br>Order of<br>Number of<br>1<br>2<br>mand<br>miting E<br>mber 1 | switch<br>over<br>control<br>intering<br>emp | Hot<br>Strg<br>Lea'<br>Temp | Misc.<br>Acc.<br>1 | Cogen | Demand<br>Limit           |
| Card 67 Heat Ref Number 1 Card 7 Base Utility Number 1 Card 7 Hisc | Equip Code Name BOILHEFT BOILHEFT  Base y Utility PIPE HT         | Number<br>Of<br>Units<br>1<br>1 | HW Pmp Full Ld Value 5.6  Hourl Deman Value 612.2                     | Units KW                                                   | Cap'y Value Un 1830 MBI 915 MBI GE Utility Code FTSAMHTG             | g Equipmon (                                     | ent Parame Energy Rate Value Un 2000 MB 1000 MB ers Equip y Refer Numbe D 1 ccessory -                    | its<br>H<br>H<br>Deence Li | Seq S<br>Order o<br>Number of<br>1<br>2<br>mand<br>miting E<br>mber 1  | switch<br>over<br>control<br>control         | Hot<br>Strg<br>Lea<br>Temp  | Misc.<br>Acc.<br>1 | Cogen | Demand<br>Limit           |

03018504 EEAP BOILER-CHILLER STUDY FT. SAM HOUSTON - SAN ANTONIO, TX. CORPS OF ENGINEERS - FORT WORTH, TEXAS HUITT - ZOLLARS INC. AREA 2200

Weather File Code:

| Location:            | SAN AN | TONIO, TE | ΧA |
|----------------------|--------|-----------|----|
| Latitude:            | 29.0   | (deg)     |    |
| Longitude:           | 98.0   | (deg)     |    |
| Time Zone:           | 6      |           |    |
| Elevation:           | 792    | (ft)      |    |
| Barometric Pressure: | 29.0   | (in. Hg)  |    |

Summer Clearness Number: 0.90
Winter Clearness Number: 0.90
Summer Design Dry Bulb: 97 (F)
Summer Design Wet Bulb: 76 (F)
Winter Design Dry Bulb: 30 (F)
Summer Ground Relectance: 0.20
Winter Ground Relectance: 0.20

Air Density: 0.0738 (Lbm/cuft)
Air Specific Heat: 0.2444 (Btu/lbm/F)
Density-Specific Heat Prod: 1.0818 (Btu-min./hr/cuft/F)
Latent Heat Factor: 4,761.9 (Btu-min./hr/cuft)
Enthalpy Factor: 4.4255 (Lb-min./hr/cuft)

Design Simulation Period: June To November
System Simulation Period: January To December
Cooling Load Methodology: TETD/Time Averaging

Time/Date Program was Run: 19: 5: 7 6/ 8/95
Dataset Name: FSH2200 .TM

EM TOTALS LOAD PROFILE - ALTERNATIVE 1

SYSTEM LOAD PROFILE -----

# System Totals

| Percent   | Cool  | ing Loa | d     | Heatir     | ng Load |       |
|-----------|-------|---------|-------|------------|---------|-------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours   | Hours |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)     |       |
|           |       |         |       |            |         |       |
| 0 - 5     | 32.2  | 7       | 279   | -213,687   | 50      | 1,134 |
| 5 - 10    | 64.4  | 5       | 211   | -427,375   | 14      | 307   |
| 10 - 15   | 96.7  | 6       | 235   | -641,062   | 4       | 82    |
| 15 - 20   | 128.9 | 9       | 367   | -854,749   | 7       | 168   |
| 20 - 25   | 161.1 | 8       | 349   | -1,068,437 | 16      | 363   |
| 25 - 30   | 193.3 | 7       | 281   | -1,282,124 | 3       | 78    |
| 30 - 35   | 225.6 | 8       | 324   | -1,495,811 | 2       | 46    |
| 35 - 40   | 257.8 | 7       | 286   | -1,709,499 | 2       | 49    |
| 40 - 45   | 290.0 | 5       | 223   | -1,923,186 | 1       | 21    |
| 45 - 50   | 322.2 | 9       | 358   | -2,136,873 | 1       | 15    |
| 50 - 55   | 354.5 | 8       | 318   | -2,350,561 | 0       | 0     |
| 55 - 60   | 386.7 | 9       | 366   | -2,564,248 | 0       | 0     |
| 60 - 65   | 418.9 | 5       | 204   | -2,777,936 | 0       | 0     |
| £" - 70   | 451.1 | 6       | 253   | -2,991,623 | 0       | 0     |
| 75        | 483.3 | 1       | 43    | -3,205,311 | 0       | 0     |
| 75 - 80   | 515.6 | 5       | 66    | -3,418,998 | 0       | 0     |
| 80 - 85   | 547.8 | 0       | 0     | -3,632,685 | 0       | 0     |
| 85 - 90   | 580.0 | 0       | 0     | -3,846,373 | ō       | 0     |
| 90 - 95   | 612.2 | 0       | 0     | -4,060,060 | 0       | 0     |
| 95 - 100  | 644.5 | 0       | 0     | -4,273,747 | 0       | 0     |
| Hours Off | 0.0   | 0       | 4,597 | 0          | 0       | 6,497 |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASE CASE

| • | Equip    |       |       |          |       | Mon     | thly Con | sumption |        |        |       |       |       |          |
|---|----------|-------|-------|----------|-------|---------|----------|----------|--------|--------|-------|-------|-------|----------|
| 1 | Code     | Jan   | Feb   | Mar      | Apr   | May     | June     | July     | Aug    | Sep    | Oct   | Nov   | Dec   | Tota     |
|   | LIGHTS   |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | ELEC     | 93324 | 84377 | 98571    | 89467 | 95947   | 94714    | 90700    | 98571  | 89467  | 95947 | 89467 | 90700 | 1,111,25 |
|   | PK       | 452.3 | 452.3 | 452.3    | 452.3 | 452.3   | 452.3    | 452.3    | 452.3  | 452.3  | 452.3 | 452.3 | 452.3 | 452      |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | ELEC     | 0     | 0     | 0        | 0     | 0       | 0        | 0        | 0      | 0      | 0     | 0     | 0     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | GAS      | 0     | 0     | 0        | 0     | 0       | 0        | 0        | 0      | 0      | 0     | 0     | 0     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | OIL      | 0     | 0     | 0        | 0     | 0       | ō        | 0        | 0      | 0      | 0     | 0     | 0     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | P STEAM  | 0     | 0     | 0        | 0     | 0       | 0        | ō        | 0      | 0      | 0     | 0     | 0     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | P HOTH20 | 0     | 0     | 0        | 0     | 0       | 0        | 0        | 0      | 0      | 0     | 0     | 0     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   | MISC LD  |       |       |          |       |         |          |          |        |        |       |       |       |          |
|   | P CHILL  | 0     | 0     | 0        | 0     | 0       | 0        | 0        | 0      | 0      | 0     | 0     | ō     |          |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0        |
|   |          |       | BASE  | UTILITY  | ,     |         |          |          |        |        |       |       |       |          |
|   | CHILLD   | 0     | 0     | 0        | 0     | 29090   | 28152    | 29090    | 29090  | 28152  | 29090 | 0     | 0     | 172,6    |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 39.1    | 39.1     | 39.1     | 39.1   | 39.1   | 39.1  | 0.0   | 0.0   | 39       |
|   |          |       |       | UTILITY  |       |         |          |          |        |        |       |       |       |          |
|   | HOTLD    | 4555  | 4114  | 4555     | 4408  | 0       | 0        | 0        | 0      | 0      | 0     | 4408  | 4555  | 26,5     |
|   | PK       | 6.1   | 6.1   | 6.1      | 6.1   | 0.0     | 0.0      | 0.0      | 0.0    | 0.0    | 0.0   | 6.1   | 6.1   | 6        |
|   | EQ1001L  |       |       |          |       | CHILLER | >550 TON | s        |        |        |       |       |       |          |
|   | ELEC     | 0     | 0     | 0        | 0     | 151580  |          |          | 211763 | 166768 | 86289 | 0     | 0     | 994,1    |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 481.0   | 522.3    | 568.8    | 596.6  | 535.0  | 368.3 | 0.0   | 0.0   | 596      |
|   | EQ5100   |       |       | ING TOWE |       |         |          |          |        |        |       |       |       |          |
|   | ELEC     | 0     | 0     | 0        | 0     | 22201   | 21485    | 22201    | 22201  | 21485  | 11898 | 0     | 0     | 121,4    |
|   | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 29.8    | 29.8     | 29.8     | 29.8   | 29.8   | 29.8  | 0.0   | 0.0   | 29       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

BASE CASE

| • • • | •••••  | ******* | ••••• | E 6      | UIP     | MENT     | ENE      | RGY      | CONS  | UMPT  | I O N | ••••• | ••••• | ••••••  |
|-------|--------|---------|-------|----------|---------|----------|----------|----------|-------|-------|-------|-------|-------|---------|
| ef    | Equip  |         |       |          |         | Mon      | thly Con | sumption |       |       |       |       |       |         |
| JM.   | Code   | Jan     | Feb   | Mar      | Apr     | May      | June     | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Total   |
| 1     | EQ5100 |         | COOL  | ING TOWE | R FANS  |          |          |          |       |       |       |       |       |         |
|       | WATER  | 0       | 0     | 0        | 0       | 699      | 804      | 952      | 980   | 757   | 378   | 0     | 0     | 4,569   |
|       | PK     | 0.0     | 0.0   | 0.0      | 0.0     | 2.3      | 2.4      | 2.6      | 2.6   | 2.5   | 1.9   | 0.0   | 0.0   | 2.6     |
| 1     | EQ5001 |         | CHIL  | LED WATE | R PUMP  | - CONST. | ANT VOLU | ME       |       |       |       |       |       |         |
|       | ELEC   | 0       | 0     | 0        | 0       | 55502    | 53712    | 55502    | 55502 | 53712 | 55502 | 0     | 0     | 329,433 |
|       | PK     | 0.0     | 0.0   | 0.0      | 0.0     | 74.6     | 74.6     | 74.6     | 74.6  | 74.6  | 74.6  | 0.0   | 0.0   | 74.6    |
| 1     | EQ5010 |         | COND  | ENSER WA | TER PUM | P-CV(HIG | H EFFIC. | )        |       |       |       |       |       |         |
|       | ELEC   | 0       | 0     | 0        | 0       | 27751    | 26856    | 27751    | 27751 | 26856 | 27751 | 0     | 0     | 164,717 |
|       | PK     | 0.0     | 0.0   | 0.0      | 0.0     | 37.3     | 37.3     | 37.3     | 37.3  | 37.3  | 37.3  | 0.0   | 0.0   | 37.3    |
| 1     | EQ5300 |         | CONT  | ROL PANE | L & INT | ERLOCKS  |          |          |       |       |       |       |       |         |
|       | ELEC   | 0       | 0     | 0        | 0       | 744      | 720      | 744      | 744   | 720   | 744   | О     | 0     | 4,416   |
|       | PK     | 0.0     | 0.0   | 0.0      | 0.0     | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0   | 0.0   | 0.0   | 1.0     |
| ı     |        |         | EXIS  | TING NAT | . DRAFT | AJAX HW  | H BOILER |          |       |       |       |       |       |         |
|       | GAS    | 10454   | 10246 | 6486     | 5991    | 0        | 0        | 0        | 0     | 0     | 0     | 6240  | 9940  | 49,358  |
|       | PK     | 30.0    | 30.0  | 10.9     | 9.3     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 10.4  | 30.0  | 30.0    |
| 1     | E95013 |         | WATE  | R CIRCUL | ATING P | UMP - CO | NSTANT V | OLUME    |       |       |       |       |       |         |
|       | ELEC   | 8325    | 7520  | 8325     | 8057    | 0        | 0        | 0        | 0     | 0     | 0     | 8057  | 8325  | 48,609  |
|       | PK     | 11.2    | 11.2  | 11.2     | 11.2    | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 11.2  | 11.2  | 11.2    |
| 1     | EQ5311 |         | BOIL  | ER CONTR | OLS     |          |          |          |       |       |       |       |       |         |
|       | ELEC   | 93      | 84    | 93       | 90      | 0        | 0        | 0        | 0     | 0     | 0     | 90    | 93    | 543     |
|       | PK     | 0.1     | 0.1   | 0.1      | 0.1     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.1   | 0.1   | 0.1     |
| ı     | EQ5013 |         | WATE  | R CIRCUL | ATING P | UMP - CO | NSTANT V | OLUME    |       |       |       |       |       |         |
|       | ELEC   | 417     | 376   | 417      | 403     | 0        | 0        | 0        | 0     | 0     | 0     | 403   | 417   | 2,433   |
|       | PK     | 0.6     | 0.6   | 0.6      | 0.6     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.6   | 0.6   | 0.6     |
| 2     |        |         | EXIS  | TING NAT | . DRAFT | AJAX HW  | H BOILER |          |       |       |       |       |       |         |
|       | GAS    | 17      | 91    | 0        | 0       | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 19    | 127     |
|       | PK     | 2.4     | 5.1   | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 3.2   | 5.1     |
| 2     | EQ5013 |         |       | R CIRCUL | ATING P | UMP - CO | NSTANT V | OLUME    |       |       |       |       |       |         |
|       | ELEC   | 134     | 269   | 0        | 0       | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 67    | 470     |
|       | PK     | 11.2    | 11.2  | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 11.2  | 11.2    |
| 2     | EQ5311 |         | BOIL  | ER CONTR | OLS     |          |          |          |       |       |       |       |       |         |
|       | ELEC   | 2       | 3     | 0        | 0       | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 1     | 5       |
|       | PK     | 0.1     | 0.1   | 0.0      | 0.0     | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 0.1     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASE CASE

| lef | Equip  |                                          |      | • • • • • • • • • • • • • • • • • • • • |          | Mont     | hly Cons | umption · |     | • • • • • • • |     |     |     |       |
|-----|--------|------------------------------------------|------|-----------------------------------------|----------|----------|----------|-----------|-----|---------------|-----|-----|-----|-------|
| lum | Code   | Jan                                      | Feb  | Mar                                     | Apr      | May      | June     | July      | Aug | Sep           | Oct | Nov | Dec | Total |
| 2   | EQ5013 | ••                                       | WATE | R CIRCUL                                | ATING PU | MP - CON | STANT VO | LUME      |     |               |     |     |     |       |
|     | ELEC   | 7                                        | 13   | 0                                       | 0        | 0        | 0        | 0         | 0   | 0             | 0   | 0   | 3   | 24    |
|     | PK     | 0.6                                      | 0.6  | 0.0                                     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0           | 0.0 | 0.0 | 0.6 | 0.6   |
| 3   |        |                                          | EXIS | TING NAT                                | . DRAFT  | AJAX HWH | BOILER   |           |     |               |     |     |     |       |
|     | GAS    | 0                                        | 0    | 0                                       | 0        | 0        | 0        | 0         | 0   | 0             | 0   | 0   | 0   | 0     |
|     | PK     | 0.0                                      | 0.0  | 0.0                                     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0           | 0.0 | 0.0 | 0.0 | 0.0   |
| 3   | EQ5013 | WATER CIRCULATING PUMP - CONSTANT VOLUME |      |                                         |          |          |          |           |     |               |     |     |     |       |
|     | ELEC   | 0                                        | 0    | 0                                       | 0        | 0        | 0        | 0         | 0   | 0             | 0   | 0   | 0   | Ĺo    |
|     | PK     | 0.0                                      | 0.0  | 0.0                                     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0           | 0.0 | 0.0 | 0.0 | 0.0   |
| 3   | EQ5311 |                                          | BOIL | ER CONTR                                | OLS      |          |          |           |     |               |     |     |     |       |
|     | ELEC   | 0                                        | 0    | 0                                       | 0        | 0        | 0        | 0         | 0   | 0             | 0   | 0   | 0   | 0     |
|     | PK     | 0.0                                      | 0.0  | 0.0                                     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0           | 0.0 | 0.0 | 0.0 | 0.0   |
| 3   | EQ5013 |                                          | WATE | R CIRCUL                                | ATING PU | MP - CON | STANT VO | LUME      |     |               |     |     |     |       |
|     | ELEC   | 0                                        | 0    | 0                                       | 0        | 0        | 0        | 0         | 0   | 0             | o   | 0   | Ō   | 0     |
|     | PK     | 0.0                                      | 0.0  | 0.0                                     | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0           | 0.0 | 0.0 | 0.0 | 0.0   |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2
GAS ENGINE DRIVEN CHILLER, EXISTING BLR

| ••• | **********      |       |       | E (      | UIPI    | KENT    | ENEI      | RGY      | ONS   | JMPTI | ON    |       |       |           |
|-----|-----------------|-------|-------|----------|---------|---------|-----------|----------|-------|-------|-------|-------|-------|-----------|
| ef  | Equip           | ••••• |       |          |         | Mont    | thly Cons | sumption |       |       |       |       |       |           |
| lum | Code            | Jan   | Feb   | Mar      | Apr     | May     | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Total     |
| 0   | LIGHTS          |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | ELEC            | 93324 | 84377 | 98571    | 89467   | 95947   | 94714     | 90700    | 98571 | 89467 | 95947 | 89467 | 90700 | 1,111,251 |
|     | PK              | 452.3 | 452.3 | 452.3    | 452.3   | 452.3   | 452.3     | 452.3    | 452.3 | 452.3 | 452.3 | 452.3 | 452.3 | 452.3     |
| 1   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | ELEC            | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | ٥     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 2   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | GAS             | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | 0     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 3   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | OIL             | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | 0     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 4   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | P STEAM         | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | 0     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 5   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | P HOTH20        | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | 0     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 6   | MISC LD         |       |       |          |         |         |           |          |       |       |       |       |       |           |
|     | P CHILL         | 0     | 0     | 0        | 0       | 0       | 0         | 0        | 0     | 0     | 0     | 0     | 0     | 0         |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 0.0     | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 1   |                 |       | BAS   | E UTILIT | Υ       |         |           |          |       |       |       |       |       |           |
|     | CHILLD          | 0     | 0     | 0        | 0       | 29090   | 28152     | 29090    | 29090 | 28152 | 29090 | 0     | 0     | 172,666   |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 39.1    | 39.1      | 39.1     | 39.1  | 39.1  | 39.1  | 0.0   | 0.0   | 39.1      |
| 1   |                 |       | YOR   | K ENGINE | DRIVEN  | CHILLER |           |          |       |       |       |       |       | -         |
|     | GAS             | 0     | 0     | 0        | 0       | 9807    | 11472     | 13818    | 14498 | 11113 | 5068  | 0     | 0     | 65,775    |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 33.9    | 34.6      | 36.2     | 36.6  | 35.3  | 24.9  | 0.0   | 0.0   | 36.6      |
| 1   | E95100          |       | coc   | LING TOW | ER FANS |         |           |          |       |       |       |       |       | -         |
|     | ELEC            | 0     | 0     | 0        | 0       | 22201   | 21485     | 22201    | 22201 | 21485 | 11600 | 0     | 0     | 121,172   |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 29.8    | 29.8      | 29.8     | 29.8  | 29.8  | 29.8  | 0.0   | 0.0   | 29.8      |
| 1   | E <b>9</b> 5100 |       | coc   | LING TO  | ER FANS |         |           |          |       |       |       |       |       |           |
|     | WATER           | 0     | 0     | 0        | 0       | 736     | 851       | 1013     | 1046  | 803   | 390   | 0     | 0     | 4,840     |
|     | PK              | 0.0   | 0.0   | 0.0      | 0.0     | 2.4     | 2.4       | 2.4      | 2.4   | 2.4   | 2.0   | 0.0   | 0.0   | 2.4       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 GAS ENGINE DRIVEN CHILLER, EXISTING BLR

|     |        |     |      | E Q       | UIP      | ENT      | ENE      | RGY (    | CONSI | UMPT  | 1 O N |     | ••••• |         |
|-----|--------|-----|------|-----------|----------|----------|----------|----------|-------|-------|-------|-----|-------|---------|
| Ref | Equip  |     |      |           |          | Mon      | thly Con | sumption |       |       |       |     |       |         |
| Num | Code   | Jan | Feb  | Mar       | Apr      | May      | June     | July     | Aug   | Sep   | Oct   | Nov | Dec   | Total   |
| 1   | E95001 |     | CHIL | LED WATER | R PUMP - | CONST    | ANT VOLU | ME       |       |       |       |     |       |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 55502    | 53712    | 55502    | 55502 | 53712 | 55502 | 0   | 0     | 329,433 |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 74.6     | 74.6     | 74.6     | 74.6  | 74.6  | 74.6  | 0.0 | 0.0   | 74.6    |
| 1   | EQ5011 |     | COND | ENSER WAT | TER PUM  | P-CV(MED | IUM EFFI | C.)      |       |       |       |     |       |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 27751    | 26856    | 27751    | 27751 | 26856 | 27751 | 0   | 0     | 164,717 |
| •   | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 37.3     | 37.3     | 37.3     | 37.3  | 37.3  | 37.3  | 0.0 | 0.0   | 37.3    |
| 1   | EQ5300 |     | CONT | ROL PANE  | L & INTE | ERLOCKS  |          |          |       |       |       |     |       |         |
|     | ELEC   | 0   | 0    | 0         | 0        | 744      | 720      | 744      | 744   | 720   | 744   | 0   | 0     | 4,416   |
|     | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0   | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
W. C. DUAL SCREW CHILLER, EXIST BOILER

| ef | Equip    |       |       |          |       | Mon   | thly Con: | sumption |        |        | • • • • • • • • |       |       |             |
|----|----------|-------|-------|----------|-------|-------|-----------|----------|--------|--------|-----------------|-------|-------|-------------|
| um | Code     | Jan   | Feb   | Mar      | Apr   | May   | June      | July     | Aug    | Sep    | Oct             | Nov   | Dec   | Tota        |
| 0  | LIGHTS   |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | ELEC     | 93324 | 84377 | 98571    | 89467 | 95947 | 94714     | 90700    | 98571  | 89467  | 95947           | 89467 | 90700 | 1,111,25    |
|    | PK       | 452.3 | 452.3 | 452.3    | 452.3 | 452.3 | 452.3     | 452.3    | 452.3  | 452.3  | 452.3           | 452.3 | 452.3 | 452.        |
| 1  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | ELEC     | 0     | 0     | 0        | O     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0.          |
| 2  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | GAS      | 0     | 0     | Đ        | 0     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0.          |
| 3  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | 01L      | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0.          |
| 4  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | P STEAM  | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0           |
| 5  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | P HOTH20 | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0           |
| 6  | MISC LD  |       |       |          |       |       |           |          |        |        |                 |       |       |             |
|    | P CHILL  | 0     | 0     | 0        | 0     | 0     | 0         | 0        | 0      | 0      | 0               | 0     | 0     |             |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0             | 0.0   | 0.0   | 0           |
| 1  |          |       |       | E UTILIT |       |       |           |          |        |        |                 |       |       |             |
|    | CHILLD   | 0     | 0     | 0        | 0     | 29090 | 28152     | 29090    | 29090  | 28152  | 29090           | 0     | 0     | 172,6       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 39.1  | 39.1      | 39.1     | 39.1   | 39.1   | 39.1            | 0.0   | 0.0   | 39          |
| 1  | YSCRW22  |       |       | K W.C. S |       |       |           |          |        |        |                 |       |       |             |
|    | ELEC     | 0     | 0     | 0        | 0     | 94351 | 109968    | 131558   | 137516 | 106569 | 51609           | 0     | 0     | 631,5       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 338.4 | 343.0     | 352.2    | 355.0  | 347.1  | 264.5           | 0.0   | 0.0   | 355         |
| 1  | E95100   |       |       | LING TOW |       |       |           |          |        |        |                 |       |       | <del></del> |
|    | ELEC     | 0     | 0     | 0        | 0     | 22201 | 21485     | 22201    | 22201  | 21485  | 12459           | 0     | 0     | 122,0       |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 29.8  | 29.8      | 29.8     | 29.8   | 29.8   | 29.8            | 0.0   | 0.0   | 29          |
| 1  | E95100   |       |       | LING TOW |       |       |           |          |        |        |                 |       |       |             |
|    | WATER    | 0     | 0     | 0        | 0     | 647   | 746       | 886      | 912    | 702    | 346             | 0     | 0     | 4,2         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0   | 2.1   | 2.1       | 2.1      | 2.1    | 2.1    | 1.8             | 0.0   | 0.0   | 2           |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 W. C. DUAL SCREW CHILLER, EXIST BOILER

| •••• |        |     |      | E Q       | UIPI    | HENT     | ENE      | RGY (    | ONS   | J H P T | O N                                   | ••••• | ••••• | ••••••  |
|------|--------|-----|------|-----------|---------|----------|----------|----------|-------|---------|---------------------------------------|-------|-------|---------|
| Ref  | Equip  |     |      |           |         | Mon      | thly Con | sumption |       |         | · · · · · · · · · · · · · · · · · · · |       | ••••• |         |
| Num  | Code   | Jan | Feb  | Mar       | Apr     | May      | June     | July     | Aug   | Sep     | Oct                                   | Nov   | Dec   | Total   |
| 1    | EQ5001 |     | CHIL | LED WATER | PUMP    | - CONST. | ANT VOLU | ME       |       |         |                                       |       |       |         |
|      | ELEC   | 0   | 0    | 0         | 0       | 55502    | 53712    | 55502    | 55502 | 53712   | 55502                                 | 0     | 0     | 329,433 |
|      | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 74.6     | 74.6     | 74.6     | 74.6  | 74.6    | 74.6                                  | 0.0   | 0.0   | 74.6    |
| 1    | EQ5011 |     | COND | ENSER WAT | TER PUM | P-CV(MED | IUM EFFI | c.)      |       |         |                                       |       |       |         |
|      | ELEC   | 0   | 0    | 0         | 0       | 27751    | 26856    | 27751    | 27751 | 26856   | 27751                                 | 0     | 0     | 164,717 |
|      | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 37.3     | 37.3     | 37.3     | 37.3  | 37.3    | 37.3                                  | 0.0   | 0.0   | 37.3    |
| 1    | E95300 |     | CONT | ROL PANEI | & INT   | ERLOCKS  |          |          |       |         |                                       |       |       |         |
|      | ELEC   | 0   | 0    | 0         | 0       | 744      | 720      | 744      | 744   | 720     | 744                                   | 0     | 0     | 4,416   |
|      | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 1.0      | 1.0      | 1.0      | 1.0   | 1.0     | 1.0                                   | 0.0   | 0.0   | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 W.C. CENTRIFUGAL CHILLER, EXISTING BOILR

| ef | Equip ·  |       | ••••• | • • • • • • • • | • • • • • • • • | ···· Mon | thly Con | sumption |        |        | • • • • • • • • • | • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |          |
|----|----------|-------|-------|-----------------|-----------------|----------|----------|----------|--------|--------|-------------------|-----------------|-----------------------------------------|----------|
| m  | Code     | Jan   | Feb   | Mar             | Apr             | May      | June     | July     | Aug    | Sep    | 0ct               | Nov             | Dec                                     | Tota     |
| 0  | LIGHTS   |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | ELEC     | 93324 | 84377 | 98571           | 89467           | 95947    | 94714    | 90700    | 98571  | 89467  | 95947             | 89467           | 90700                                   | 1,111,25 |
|    | PK       | 452.3 | 452.3 | 452.3           | 452.3           | 452.3    | 452.3    | 452.3    | 452.3  | 452.3  | 452.3             | 452.3           | 452.3                                   | 452.     |
| 1  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | ELEC     | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0.       |
| 2  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | GAS      | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0.       |
| 5  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | OIL      | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0.       |
| 4  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | P STEAM  | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0        |
| 5  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | P HOTHZO | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0.       |
| 5  | MISC LD  |       |       |                 |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | P CHILL  | 0     | 0     | 0               | 0               | 0        | 0        | 0        | 0      | 0      | 0                 | 0               | 0                                       |          |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 0.0      | 0.0      | 0.0      | 0.0    | 0.0    | 0.0               | 0.0             | 0.0                                     | 0        |
| 1  |          |       |       | E UTILIT        |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | CHILLD   | 0     | 0     | 0               | 0               | 29090    | 28152    | 29090    | 29090  | 28152  | 29090             | 0               | 0                                       | 172,60   |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 39.1     | 39.1     | 39.1     | 39.1   | 39.1   | 39.1              | 0.0             | 0.0                                     | 39       |
| ١  |          |       |       |                 | R-134A C        |          |          |          |        |        |                   |                 |                                         |          |
|    | ELEC     | 0     | 0     | 0               | 0               | 92599    | 106789   | 126901   | 132023 | 103005 | 50227             | 0               | 0                                       | 611,5    |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 306.9    | 311.1    | 319.4    | 322.0  | 314.8  | 240.0             | 0.0             | 0.0                                     | 322      |
| ١  | E95100   |       |       | LING TON        |                 |          | _,       |          |        |        |                   |                 |                                         |          |
|    | ELEC     | 0     | 0     | 0               | 0               | 22201    | 21485    | 22201    | 22201  | 21485  | 12467             | 0               | 0                                       | 122,0    |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 29.8     | 29.8     | 29.8     | 29.8   | 29.8   | 29.8              | 0.0             | 0.0                                     | 29       |
| ļ  | E95100   |       |       | LING TOW        |                 |          |          |          |        |        |                   |                 |                                         |          |
|    | WATER    | 0     | 0     | 0               | 0               | 645      | 743      | 882      | 907    | 699    | 345               | 0               | 0                                       | 4,2      |
|    | PK       | 0.0   | 0.0   | 0.0             | 0.0             | 2.1      | 2.1      | 2.1      | 2.1    | 2.1    | 1.8               | 0.0             | 0.0                                     | 2        |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 4 W.C. CENTRIFUGAL CHILLER, EXISTING BOILR

|    |        |     |      | E Q       | UIPI    | HENT     | ENE      | RGY (    | O N S 1 | инрт 1 | ON    |     |     |         |
|----|--------|-----|------|-----------|---------|----------|----------|----------|---------|--------|-------|-----|-----|---------|
| ef | Equip  |     |      |           |         | Mon      | thly Con | sumption |         |        |       |     |     |         |
| um | Code   | Jan | Feb  | Mar       | Apr     | May      | June     | July     | Aug     | Sep    | Oct   | Nov | Dec | Total   |
| 1  | EQ5001 |     | CHIL | LED WATER | R PUMP  | - CONST  | ANT VOLU | ME       |         |        |       |     |     |         |
|    | ELEC   | 0   | O    | 0         | 0       | 55502    | 53712    | 55502    | 55502   | 53712  | 55502 | 0   | 0   | 329,433 |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 74.6     | 74.6     | 74.6     | 74.6    | 74.6   | 74.6  | 0.0 | 0.0 | 74.6    |
| 1  | E95011 |     | COND | ENSER WAT | TER PUN | P-CV(MED | IUM EFFI | c.)      |         |        |       |     |     |         |
|    | ELEC   | 0   | 0    | 0         | 0       | 27751    | 26856    | 27751    | 27751   | 26856  | 27751 | 0   | 0   | 164,717 |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 37.3     | 37.3     | 37.3     | 37.3    | 37.3   | 37.3  | 0.0 | 0.0 | 37.3    |
| 1  | EQ5300 |     | CONT | ROL PANEI | L & INT | ERLOCKS  |          |          |         |        |       |     |     |         |
|    | ELEC   | ō   | 0    | 0         | 0       | 744      | 720      | 744      | 744     | 720    | 744   | 0   | 0   | 4,416   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0     | 1.0      | 1.0      | 1.0      | 1.0     | 1.0    | 1.0   | 0.0 | 0.0 | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 W.C. CENTRIFUGAL CHILLER-VFD, EXIST BLR

| ef | Equip    | *********** |       |          |       | Mont  | hly Con | sumption |        |       |       |       |       |           |
|----|----------|-------------|-------|----------|-------|-------|---------|----------|--------|-------|-------|-------|-------|-----------|
| .m | Code     | Jan         | Feb   | Mar      | Apr   | May   | June    | July     | Aug    | Sep   | Oct   | Nov   | Dec   | Total     |
| 0  | LIGHTS   |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | ELEC     | 93324       | 84377 | 98571    | 89467 | 95947 | 94714   | 90700    | 98571  | 89467 | 95947 | 89467 | 90700 | 1,111,251 |
|    | PK       | 452.3       | 452.3 | 452.3    | 452.3 | 452.3 | 452.3   | 452.3    | 452.3  | 452.3 | 452.3 | 452.3 | 452.3 | 452.      |
| 1  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | ELEC     | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     |           |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 2  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | GAS      | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     |           |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0       |
| 3  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | OIL      | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     | 1         |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.        |
| 4  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | P STEAM  | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     |           |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.        |
| 5  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | P HOTH20 | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     |           |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.        |
| 6  | MISC LD  |             |       |          |       |       |         |          |        |       |       |       |       |           |
|    | P CHILL  | 0           | 0     | 0        | 0     | 0     | 0       | 0        | 0      | 0     | 0     | 0     | 0     |           |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.        |
| 1  |          |             |       | E UTILIT |       |       |         |          |        |       |       |       |       |           |
|    | CHILLD   | 0           | 0     | 0        | 0     | 29090 | 28152   | 29090    | 29090  | 28152 | 29090 | 0     | 0     | 172,66    |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 39.1  | 39.1    | 39.1     | 39.1   | 39.1  | 39.1  | 0.0   | 0.0   | 39.       |
| 1  | YCENVFD  |             |       | K TURBO  |       |       |         |          |        |       |       |       |       | ,         |
|    | ELEC     | 0           | 0     | 0        | 0     | 82189 |         | 117375   | 123391 | 93614 | 41497 | 0     | 0     | 554,84    |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 297.8 | 304.5   | 317.9    | 322.0  | 310.5 | 216.8 | 0.0   | 0.0   | 322.      |
| ß  | E95100   |             |       | LING TOW |       |       |         |          |        |       |       |       |       |           |
|    | ELEC     | 0           | 0     | 0        | 0     | 22201 | 21485   | 22201    | 22201  | 21485 | 12289 | 0     | 0     | 121,86    |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 29.8  | 29.8    | 29.8     | 29.8   | 29.8  | 29.8  | 0.0   | 0.0   | 29.       |
| 1  | E95100   |             |       | LING TO  |       |       |         |          |        |       |       |       |       |           |
|    | WATER    | 0           | 0     | 0        | 0     | 636   | 734     | 873      | 899    | 690   | 337   | 0     | 0     | 4,10      |
|    | PK       | 0.0         | 0.0   | 0.0      | 0.0   | 2.0   | 2.1     | 2.1      | 2.1    | 2.1   | 1.8   | 0.0   | 0.0   | 2.        |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 W.C. CENTRIFUGAL CHILLER-VFD, EXIST BLR

|     |        |     |      | E Q      | UIPI          | HENT     | ENE      | RGY      | CONSI | J M P T | I O N | •••••• |     | ••••••  |
|-----|--------|-----|------|----------|---------------|----------|----------|----------|-------|---------|-------|--------|-----|---------|
| Ref | Equip  |     |      |          | • • • • • • • | Mon      | thly Con | sumption |       |         |       |        |     |         |
| Num | Code   | Jan | Feb  | Mar      | Apr           | May      | June     | July     | Aug   | Sep     | Oct   | Nov    | Dec | Total   |
| 1   | E95001 |     | CHIL | LED WATE | R PUMP        | - CONST  | ANT VOLU | ME       |       |         |       |        |     |         |
|     | ELEC   | 0   | 0    | 0        | 0             | 55502    | 53712    | 55502    | 55502 | 53712   | 55502 | 0      | 0   | 329,433 |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0           | 74.6     | 74.6     | 74.6     | 74.6  | 74.6    | 74.6  | 0.0    | 0.0 | 74.6    |
| 1   | EQ5011 |     | COND | ENSER WA | TER PUMI      | P-CV(MED | IUM EFFI | c.)      |       |         |       |        |     |         |
|     | ELEC   | 0   | 0    | 0        | 0             | 27751    | 26856    | 27751    | 27751 | 26856   | 27751 | 0      | 0   | 164,717 |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0           | 37.3     | 37.3     | 37.3     | 37.3  | 37.3    | 37.3  | 0.0    | 0.0 | 37.3    |
| 1   | EQ5300 |     | CONT | ROL PANE | L & INTI      | ERLOCKS  |          |          |       |         |       |        |     |         |
|     | ELEC   | 0   | 0    | 0        | 0             | 744      | 720      | 744      | 744   | 720     | 744   | 0      | 0   | 4,416   |
|     | PK     | 0.0 | 0.0  | 0.0      | 0.0           | 1.0      | 1.0      | 1.0      | 1.0   | 1.0     | 1.0   | 0.0    | 0.0 | 1.0     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
EXIST CHILLER, NATURAL DRAFT HIGH X BLR

| e f | Equip    |       | • • • • • • • • |           |         | Hon      | thly Cons | sumption |       |       |       |       |       |          |
|-----|----------|-------|-----------------|-----------|---------|----------|-----------|----------|-------|-------|-------|-------|-------|----------|
| m   | Code     | Jan   | Feb             | Mar       | Apr     | May      | June      | July     | Aug   | Sep   | 0ct   | Nov   | Dec   | Tota     |
| 0   | LIGHTS   |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | ELEC     | 93324 | 84377           | 98571     | 89467   | 95947    | 94714     | 90700    | 98571 | 89467 | 95947 | 89467 | 90700 | 1,111,25 |
|     | PK       | 452.3 | 452.3           | 452.3     | 452.3   | 452.3    | 452.3     | 452.3    | 452.3 | 452.3 | 452.3 | 452.3 | 452.3 | 452.     |
| 1   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | ELEC     | 0     | 0               | 0         | 0       | 0        | 0         | 0        | O     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
| 2   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | GAS      | 0     | 0               | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      |
| 3   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | OIL      | 0     | 0               | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.       |
| 4   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | P STEAM  | 0     | 0               | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.       |
| 5   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | P HOTH20 | 0     | 0               | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.       |
| 6   | MISC LD  |       |                 |           |         |          |           |          |       |       |       |       |       |          |
|     | P CHILL  | 0     | 0               | 0         | 0       | 0        | 0         | 0        | 0     | 0     | 0     | 0     | 0     |          |
|     | PK       | 0.0   | 0.0             | 0.0       | 0.0     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.       |
| 1   |          |       | BAS             | E UTILIT  | 1       |          |           |          |       |       |       |       |       |          |
|     | HOTLD    | 4555  | 4114            | 4555      | 4408    | 0        | 0         | 0        | 0     | 0     | 0     | 4408  | 4555  | 26,59    |
|     | PK       | 6.1   | 6.1             | 6.1       | 6.1     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 6.1   | 6.1   | 6.       |
| 1   |          |       |                 | H EFFICII | NCY MOD | ULAR FIR | ETUBE BO  | IL.      |       |       |       |       |       |          |
|     | GAS      | 8361  | 8169            | 5293      | 4889    | 0        | 0         | 0        | 0     | 0     | 0     | 5092  | 8030  | 39,83    |
|     | PK       | 20.0  | 20.0            | 8.9       | 7.6     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 8.5   | 20.0  | 20.      |
| 1   | E95020   |       |                 | TING WAT  |         |          |           |          |       |       |       |       |       | <b>+</b> |
|     | ELEC     | 4166  | 3763            | 4166      | 4032    | 0        | 0         | 0        | 0     | 0     | 0     | 4032  | 4166  | 24,32    |
|     | PK       | 5.6   | 5.6             | 5.6       | 5.6     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 5.6   | 5.6   | 5.       |
| 1   | EQ5311   |       |                 | LER CONT  |         |          |           |          |       |       |       |       |       |          |
|     | ELEC     | 93    | 84              | 93        | 90      | 0        | 0         | 0        | 0     | 0     | 0     | 90    | 93    | 54       |
|     | PK       | 0.1   | 0.1             | 0.1       | 0.1     | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.1   | 0.1   | 0.       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 EXIST CHILLER, NATURAL DRAFT HIGH % BLR

| f Equip  |      |      |          |          | Mont     | hly Cons | umption · |     |     | • • • • • • • • • • • • • • • • • • • • |      |      |        |
|----------|------|------|----------|----------|----------|----------|-----------|-----|-----|-----------------------------------------|------|------|--------|
| m Code   | Jan  | Feb  | Mar      | Apr      | May      | June     | July      | Aug | Sep | Oct                                     | Nov  | Dec  | Total  |
| 1 EQ5020 |      | HEAT | ING WATE | R CIRCUL | ATION PU | MP       |           |     |     |                                         |      |      |        |
| ELEC     | 2775 | 2507 | 2775     | 2686     | 0        | 0        | 0         | 0   | 0   | 0                                       | 2686 | 2775 | 16,203 |
| PK       | 3.7  | 3.7  | 3.7      | 3.7      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0                                     | 3.7  | 3.7  | 3.7    |
| 2        |      | HIGH | EFFICIE  | NCY MODU | LAR FIRE | TUBE BOI | ι.        |     |     |                                         |      |      |        |
| GAS      | 189  | 269  | 0        | 0        | 0        | 0        | 0         | 0   | 0   | 0                                       | 0    | 97   | 555    |
| PK       | 6.7  | 8.6  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0                                     | 0.0  | 7.1  | 8.6    |
| 2 Eq5020 |      | HEAT | ING WATE | R CIRCUL | ATION PU | IMP      |           |     |     |                                         |      |      |        |
| ELEC     | 1    | 1    | 0        | 0        | 0        | 0        | 0         | 0   | 0   | 0                                       | 0    | 1    | 3      |
| PK       | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0                                     | 0.0  | 0.0  | 0.0    |
| 2 EQ5311 |      | BOIL | ER CONTR | OLS      |          |          |           |     |     |                                         |      |      |        |
| ELEC     | 7    | 7    | 0        | 0        | 0        | 0        | 0         | 0   | 0   | 0                                       | 0    | 4    | 19     |
| PK       | 0.1  | 0.1  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0                                     | 0.0  | 0.1  | 0.1    |

01 Card - Job Information ......

Project: 030185.04 EEAP BOILER-CHILLER STUDY Location: FT. SAM HOUSTON - SAN ANTONIO, TX. Client: CORPS OF ENGINEERS - FORT WORTH, TEXAS

Program User: HUITT - ZOLLARS INC.

Comments: QUADANGLE AREA

Card O8----- Climatic Information -----Summer Winter Summer Summer Winter Summer Winter Design Design Building Ground Ground Weather Clearness Clearness Design Code Number Number Dry Bulb Wet Bulb Dry Bulb Orientation Reflect Reflect SANANTON

----- Load Section Alternative #1 -----

Card 19- Load Alternative -Number Description

1

20

78

QUADRANGLE LOAD DESCRIPTION

78

50

Card 20----- General Room Parameters -----Zone Acoustic Floor to Duplicate Duplicate Perimeter Reference Room Room Floor Floor Const Plenum Ceiling Floor Floors Rooms per Depth Number Number Descrip Length Width Type Height Resistance Height Multiplier Zone

181 5 5 BLDG T56 45 3 3 2.54 15

BLDG 44 309 309 3 4.5 2.54 16 15 15 BLDG 4015 121 121 1.2 12 20 20 BLDG 16 276 276 2.54 3 6 17

Card 21----- Thermostat Parameters -----Cooling Room Cooling Cooling Heating Heating Heating T'stat Mass / Carpet ROOM Poom Design T'stat T'stat Room T'stat T'stat Location No. Hrs Dn Driftpoint Schedule Design DB Driftpoint Schedule Flag Number Design DB RH Average Floor 78 5 70 70 50 78 ROOM LIGHT30 NO 10 78 50 78 70 70 ROOM LIGHT30 NO 15 78 50 78 70 70 ROOM LIGHT30 NO

70

70

ROOM

LIGHT30 NO

| Card 22 | 2      |          |        | Roof Par | ameters |       |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 5       | 1      | YES      |        |          | .10     | 47    |           | 67   | .9    |
| 10      | 1      | NO       | 221    | 221      | .09     | 23    |           | 90   | .9    |
| 15      | 1      | NO       | 245    | 39       | .22     | 47    |           | 90   | .74   |
| 20      | 1      | NO       | 1582   | 34       | .10     | 47    |           | 60   | .74   |

|        |        |        |        |         | Wall    |           |      |       | Ground      |
|--------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc | Wall      | Wall | Wall  | Reflectance |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 5      | 1      | 153    | 14     | .26     | 58      | 90        |      | .74   |             |
| 5      | 2      | 30     | 14     | .26     | 58      | 0         |      | .74   |             |
| 5      | 3      | 17     | 14     | .13     | 88      | 0         |      | .74   |             |
| 5      | 4      | 181    | 14     | .13     | 88      | 270       |      | .74   |             |
| 5      | 5      | 45     | 14     | .13     | 88      | 180       |      | .74   |             |
| 5      | 6      | 28     | 14     | .13     | 88      | 90        |      | .74   |             |
| 10 :   | 1      | 200    | 16     | .19     | 58      | 0         |      | .9    |             |
| 10     | 2      | 232    | 16     | .19     | 58      | 180       |      | .9    |             |
| 10     | 3      | 230    | 16     | .19     | 58      | 270       |      | .9    |             |
| 10     | 4      | 364    | 16     | .18     | 88      | 0         |      | .74   |             |
| 10     | 5      | 482    | 16     | .18     | 88      | 90        |      | .74   |             |
| 10     | 6      | 342    | 16     | .18     | 88      | 180       |      | .74   |             |
| 10     | 7      | 260    | 16     | .18     | 88      | 270       |      | .74   |             |
| 15     | 1      | 39     | 12     | .22     | 52      | 0         |      | .74   |             |
| 15     | 2      | 245    | 12     | .22     | 52      | 90        |      | .74   |             |
| 15     | 3      | 39     | 12     | .22     | 52      | 180       |      | .74   |             |
| 15     | 4      | 245    | 12     | .22     | 52      | 270       |      | .74   |             |
| 20     | 1      | 600    | 15.5   | .2      | 64      | 0         |      | .74   |             |
| 20     | 2      | 1016   | 15.5   | .2      | 64      | 90        |      | .74   |             |
| 20     | 3      | 600    | 15.5   | .2      | 64      | 180       |      | .74   |             |
| 20     | 4      | 1016   | 15.5   | .2      | 64      | 270       |      | .74   |             |

|       |        |        |       | Pct Glass |         |             | External | Internal | Percent  |               | Inside     |
|-------|--------|--------|-------|-----------|---------|-------------|----------|----------|----------|---------------|------------|
| loom  | Wall   | Glass  | Glass | or No. of | Glass   | Shading     | Shading  | Shading  | Solar to | Visible       | Visible    |
| umber | Number | Length | Width | Windows   | U-Value | Coefficient | Type     | Type     | Ret. Air | Transmittance | Reflectand |
|       | 1      | 3.5    | 6.5   | 16        | 1.1     | .67         |          |          |          |               |            |
|       | 2      | 3.5    | 6.5   | 1         | 1.1     | .67         |          |          |          |               |            |
|       | 4      | 2.5    | 3     | 12        | 1.1     | 1           |          |          |          |               |            |
|       | 5      | 3.5    | 6.5   | 4         | 1.1     | .67         |          |          |          |               |            |
| 0     | 1      | 5      | 8     | 17        | 1.1     | .67         |          |          |          |               |            |
| 0     | 2      | 5      | 8     | 13        | 1.1     | .67         |          |          |          |               |            |
| 0     | 3      | 5      | 8     | 17        | 1.1     | .67         |          |          |          |               |            |
| 0     | 4      | 3.5    | 8     | 29        | 1.1     | .67         |          |          |          |               |            |
| 0     | 5      | 3.5    | 8     | 51        | 1.1     | .67         |          |          |          |               |            |
| 10    | 6      | 3.5    | 8     | 57        | 1.1     | .67         |          |          |          |               |            |

|                                          |                                       |                                  |                                         | Pct Glass                     |                                           |                                                        |                                         | Internal    |           |                | Inside          |
|------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------|-----------------------------------------|-------------|-----------|----------------|-----------------|
| Room                                     | Wall                                  | Glass                            |                                         | or No. of                     |                                           | Shading                                                | Shading                                 | Shading     |           | Vicible        | Visible         |
| iumber                                   | Number                                |                                  |                                         | Windows                       | U-Value                                   | -                                                      | -                                       | -           | Solar to  | Transmittance  |                 |
| 10                                       | 7                                     | 3.5                              |                                         | 21                            | 1.1                                       | .67                                                    | Туре                                    | Type        | Ket. Air  | Transmit tance | Reflectance     |
| 15                                       | 1                                     | 3.5                              |                                         | 11                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
| 15                                       | 2                                     | 3                                |                                         | 89                            | 1.1                                       |                                                        |                                         |             |           |                |                 |
|                                          |                                       |                                  | -                                       |                               |                                           | .67                                                    |                                         |             |           |                |                 |
| 15                                       | 3                                     | 3                                |                                         | 10                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
| 15                                       | 4                                     | 3                                |                                         | 96                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
| 20                                       | 1                                     | _                                |                                         | 48                            | .56                                       | 1                                                      |                                         |             |           |                |                 |
| 20                                       | 2                                     | 3                                |                                         | 56                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
| 20                                       | 3                                     | 3                                |                                         | 84                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
| 20                                       | 4                                     | 3                                | 6                                       | 56                            | 1.1                                       | .67                                                    |                                         |             |           |                |                 |
|                                          |                                       |                                  |                                         |                               |                                           |                                                        |                                         |             |           |                |                 |
| Card 26                                  | ,                                     |                                  |                                         |                               |                                           | Schedules                                              | • • • • • • • • • • • • • • • • • • • • | •••••       |           |                | ••••            |
| Room                                     |                                       |                                  |                                         |                               |                                           | Reheat                                                 | Cooling                                 | Heating A   | uxiliary  | Room Dayligi   | hting           |
| Number                                   | People                                | Lights                           | Ventil                                  | ation In                      | filtration                                | Minimum !                                              | Fans                                    | Fan F       | an        | Exhaust Contro | ls              |
| 5                                        | FSHOFFI                               | C FSHOFE                         | 10                                      |                               |                                           |                                                        |                                         |             |           |                |                 |
| 10                                       | FSHOFFI                               | C FSHOFE                         | 10                                      |                               |                                           |                                                        |                                         |             |           |                |                 |
| 15                                       | FSHOFFI                               | C FSHOFE                         | 10                                      |                               |                                           |                                                        |                                         |             |           |                |                 |
| 20                                       | FSHOFFI                               | C FSHOFE                         | 10                                      |                               |                                           |                                                        |                                         |             |           |                |                 |
| Card 27                                  | '                                     |                                  | • • • • • • • • • • • • • • • • • • • • |                               | People                                    |                                                        | ghting                                  |             |           | Daylighting    |                 |
| Room                                     | People                                | People                           | People                                  | People                        | Lighting                                  | Lighting Fi                                            | xture Ba                                | illast Ligh | ts to Ref | erence Referen | ce              |
| Number                                   | Value                                 | Units                            | Sensible                                | Latent                        | Value                                     | Units Ty                                               | pe Fa                                   | sctor Ret.  | Air Poi   | nt 1 Point 2   |                 |
| 5                                        | 64                                    | PEOPLE                           | 250                                     | 200                           | 2                                         | WATT-SF AS                                             | HRAE2                                   |             |           |                |                 |
| 10                                       | 500                                   | PEOPLE                           | 250                                     | 200                           | 2.5                                       | WATT-SF SU                                             | SFLUOR                                  |             |           |                |                 |
| 15                                       | 110                                   | PEOPLE                           | 250                                     | 200                           | 2                                         | WATT-SF SU                                             | SFLUOR                                  |             |           |                |                 |
| 20                                       | 150                                   | SF-PERS                          | 250                                     | 200                           | 2.25                                      | WATT-SF AS                                             | HRAE2                                   |             |           |                |                 |
| Card 28                                  |                                       |                                  | •••••                                   |                               |                                           |                                                        |                                         | nt          |           |                |                 |
|                                          |                                       |                                  |                                         | Ener                          |                                           | -                                                      | Energy                                  | Percent     |           | Percent        |                 |
|                                          | Misc                                  |                                  |                                         |                               | rem Canal                                 | ump Schedule                                           | Motor                                   | of Load     | Misc. Los | ad Misc. Sens  | Radiant Option  |
|                                          | Equipme                               | nt Equi                          |                                         |                               | •                                         | •                                                      |                                         |             |           |                |                 |
| Number                                   | Equipme<br>Number                     | Desc                             | rip                                     | Valu                          | e Unit                                    | Code                                                   | Code                                    |             | to Room   | to Ret. Air    | Fraction Air Pa |
| Number<br>5                              | Equipme<br>Number<br>1                | COMP                             | rip<br>UTER                             | Valu<br>1                     | e Unit                                    | Code<br>SF FSHOFFIC                                    | Code                                    |             |           | to Ret. Air    | Fraction Air Pa |
| Number<br>5<br>10                        | Equipme<br>Number<br>1                | COMPI                            | rip<br>UTER<br>UTER                     | Valu<br>1<br>2                | Unit:<br>WATT                             | SF FSHOFFIC                                            | Code                                    |             |           | to Ret. Air    | Fraction Air Pa |
| Number<br>5<br>10                        | Equipme<br>Number<br>1                | COMP                             | rip<br>UTER<br>UTER                     | Valu<br>1                     | Unit:<br>WATT                             | Code<br>SF FSHOFFIC                                    | Code                                    |             |           | to Ret. Air    | Fraction Air Pa |
| Room<br>Number<br>5<br>10<br>15<br>20    | Equipme<br>Number<br>1                | COMPI                            | rîp<br>UTER<br>UTER<br>UTER             | Valu<br>1<br>2                | WATT                                      | SF FSHOFFIC                                            | Code                                    |             |           | to Ret. Air    | Fraction Air Pa |
| Number<br>5<br>10<br>15<br>20            | Equipme<br>Number<br>1<br>1<br>1      | Desci<br>Compi<br>Compi<br>Compi | TIP<br>UTER<br>UTER<br>UTER<br>UTER     | Valu<br>1<br>2<br>2.5<br>1.25 | WATT                                      | Code SF FSHOFFIC SF FSHOFFIC SF FSHOFFIC               | Code                                    | Sensible    | to Room   | to Ret. Air    |                 |
| Number<br>5<br>10<br>15<br>20<br>Card 29 | Equipme<br>Number<br>1<br>1<br>1<br>1 | Desci<br>COMPI<br>COMPI<br>COMPI | rip<br>UTER<br>UTER<br>UTER<br>UTER     | Valu<br>1<br>2<br>2.5<br>1.25 | Unit:<br>WATT:<br>WATT:<br>WATT:<br>WATT: | S Code SF FSHOFFIC SF FSHOFFIC SF FSHOFFIC SF FSHOFFIC | Code                                    | Sensible    | to Room   |                |                 |
| Number<br>5<br>10<br>15<br>20<br>Card 25 | Equipme<br>Number<br>1<br>1<br>1<br>1 | Desci<br>Compi<br>Compi<br>Compi | TIP UTER UTER UTER UTER UTER UTER       | Valu<br>1<br>2<br>2.5<br>1.25 | WATT                                      | Code SF FSHOFFIC SF FSHOFFIC SF FSHOFFIC SF FSHOFFIC   | Code                                    | Sensible    | to Room   | Reheat Minimu  |                 |

|                       |            | Venti      | lation    |                                         |            |            | -Infiltra | ation |       |            |           |          |
|-----------------------|------------|------------|-----------|-----------------------------------------|------------|------------|-----------|-------|-------|------------|-----------|----------|
| Room                  | Cool       | ing        | Не        | ating                                   |            | Cooling-   | ••••      | Hea   | ating | Reh        | eat Minis | num      |
| Number                | Value      | Units      | Value     | Uni                                     | ts Val     | ue U       | nits      | Value | Units | Value      | ·         | Jni ts   |
| 10                    | 20         | CFM-P      | 20        | CFM                                     | -P         |            |           |       |       |            |           |          |
| 15                    | 15         | CFM-P      | 15        | CFM                                     | -P         |            |           |       |       |            |           |          |
| 20                    | 20         | CFM-P      | 20        | CFM                                     | -р         |            |           |       |       |            |           |          |
| •••••                 |            | Syste      | m Section | Alterna                                 | tive #1    | •••••      |           | •     |       |            |           |          |
| Card 39               | - System A | lternative |           |                                         |            |            |           |       |       |            |           |          |
| Number                | De         | scription  |           |                                         |            |            |           |       |       |            |           |          |
| 1                     | EX         | ISTING SYS | TEM       |                                         |            |            |           |       |       |            |           |          |
|                       |            |            |           |                                         |            |            |           |       |       |            |           |          |
| Card 40               | )          |            | System    | туре                                    |            |            |           | -     |       |            |           |          |
|                       |            |            | OPTIONA   | L VENTIL                                | TEYE WOLTA | EH         |           |       |       |            |           |          |
| System                |            | Ventil     |           |                                         |            |            | Fan       |       |       |            |           |          |
| Set                   | System     | Deck       | Cooling   | Heating                                 | Cooling    | Heating    | Static    |       |       |            |           |          |
| Number                |            | Location   | SADBVh    | SADBVh                                  | Schedule   | Schedul e  | Pressur   | е     |       |            |           |          |
| 1                     | MZ         |            |           |                                         |            |            |           |       |       |            |           |          |
| 2                     | SZ         |            |           |                                         |            |            |           |       |       |            |           |          |
| 3                     | MZ         |            |           |                                         |            |            |           |       |       |            |           |          |
| 4                     | SZ         |            |           |                                         |            |            |           |       |       |            |           |          |
|                       |            |            |           |                                         |            |            |           |       |       |            |           |          |
|                       | 1          |            |           | • • • • • • • • • • • • • • • • • • • • | Zone /     | Nssignment |           |       |       |            |           |          |
| System<br>Set         |            | ef #1      | Ref       | #2                                      | Ref        | 47         | Ref       | 41.   | Ref # | <b>4</b> C | Ref       | 44       |
|                       |            |            | Begin     |                                         | Begin      |            | Begin     | End   | Begin | End        | Begin     | ₽O<br>En |
|                       | 5 Beg 11   | 5          | begin     | EIIG                                    | begin      | EIRI       | Begin     | EIRI  | begin | EIRI       | begin     | EII      |
| Number                |            | 10         |           |                                         |            |            |           |       |       |            |           |          |
| Number<br>1           |            |            |           |                                         |            |            |           |       |       |            |           |          |
| Number<br>1<br>2      | 10         |            |           |                                         |            |            |           |       |       |            |           |          |
| Number<br>1<br>2<br>3 | 10<br>15   | 15         |           |                                         |            |            |           |       |       |            |           |          |
| Number<br>1<br>2      | 10         |            |           |                                         |            |            |           |       |       |            |           |          |

System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return Set Fan Fan Fan Fan Fan Fan Fan Fan Mtr Fan Mtr Duct Duct Air Number SP SP SP SP SP SP Loc Loc Ht Gn Loc Path

1 2.0 2

3

1.5

1.5

```
Card 42----- Fan SP and Duct Parameters-----
System Cool Heat Return Mn Exh Aux Rm Exh Cool Return Supply Supply Return
Set Fan Fan Fan Fan Fan Fan Htr Fan Htr Duct Duct Air
Number SP SP SP
                 SP SP SP Loc Loc Ht Gn Loc Path
4 1.5
Card 45----- Equipment Schedules -----
            Direct Indirect Auxiliary Main Main
System Main
                                Auxiliary Main Main Auxiliary
Cooling Heating Preheat Reheat Mech. Heating
Set Cooling
Set Cooling Evap Evap
Number Coil Economizer Coil Coil
                        Evap
                                       Coil Coil Coil Humidity Coil
                               Coil
    FTSAMCLG
                                       FTSAMHTG
    FTSAMCL G
2
                                       FTSAMHTG
    FTSAMCLG
                                       FTSAMHTG
4
    FTSAMCLG
                                       FTSAMHTG
----- Equipment Section Alternative #1 ------
Card 59----- Equipment Description / TOD Schedules ------
      Elec Consump Elec Demand Demand
Alternative Time of Day Time of Day Limit
                                                             Temperature
Number Schedule Schedule Max KW Alternative Description
                                                        Schedule Drift
                             BASE CASE
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End Begin End
         BLKPLANT 1 1
   1
         BLKPLANT 2
                    2
3 5
         BLKPLANT 3 3
   6
         BLKPLANT 4
Card 62----- Cooling Equipment Parameters
Cool Equip Num ------COOLING-----
                                     Ref Code
         Of
             --Capacity--
                        ----Energy----
                                      --Capacity-- ---Energy----
                                                               Order Seq Limit
Num Name
         Units Value Units
                                    Value Units
                         Value Units
                                                  Value Units
                                                               Num Type Number
  QUADACRE 1 30 TONS
                       49
   QUADACRE 1
                        114
2
            65 TONS
                               KU
                                                                    PAR
            95 TONS
95 TONS
   QUADACRE 1
                         167
                               KW
                                                                    PAR
                                                               2
                         167
```

KW

KW

88.4 KW

194

QUADACRE 1 120 TONS

50 TONS

QUADACRE 1

5 QUADACRE 1

3

1

PAR

PAR

| Cool | Equip    | Num   |       | coo   | LING  |       |       | HEAT F | ECOVERY |       | \$eq  |      | Demand |
|------|----------|-------|-------|-------|-------|-------|-------|--------|---------|-------|-------|------|--------|
| Ref  | Code     | Of    | Capa  | city  | Ene   | rgy   | Capa  | city   | Ene     | rgy   | Order | Seq  | Limit  |
| Num  | Name     | Units | Value | Units | Value | Units | Value | Units  | Value   | Units | Num   | Туре | Number |
| 7    | QUADACRE | 1     | 110   | TONS  | 190   | KW    |       |        |         |       | 2     | PAR  |        |

```
Card 63----- Cooling Pumps and References -----
Cool --- CHILLED WATER---- ---- CONDENSER----- --- HT REC or AUX---- Switch-
Ref Full Load Full Load Full Load Full Load Full Load Full Load over Cold Cooling Misc.
                 Value Units Value Units Control Storage Tower Access.
Num Value
           Units
1 3.73
           KW
                                                                       3
2 14.92
           KW
3 3.73
           KV
4 3.73
5 3.73
           KW
           KW
6 5.6
           KW
                                                                       2
```

| Card 65    |             |       |       | • • • • • • • • • • • • • • • • • • • • | Heating   | Load Assign | ment      | •••••     |           |           |           |
|------------|-------------|-------|-------|-----------------------------------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|
| Load       | All Coil    |       |       |                                         |           |             |           |           |           |           |           |
| Assignment | Loads To    | -Grou | ир 1- | -Group 2-                               | -Group 3- | -Group 4-   | -Group 5- | -Group 6- | -Group 7- | -Group 8- | -Group 9- |
| Reference  | Heating Ref | Begir | End   | Begin End                               | Begin End | Begin End   | Begin End | Begin End | Begin End | Begin End | Begin End |
| 1          | 1           | 1     | 1     | 4 4                                     |           |             |           |           |           |           |           |
| 2          | 3           | 2     | 2     |                                         |           |             |           |           |           |           |           |
| 3          | 15          | 3     | 3     |                                         |           |             |           |           |           |           |           |

| Card 67 | ····     |        |         |       | Неа   | ting Equ | ipment Pa | rameters |        |         |      |       |       |        |
|---------|----------|--------|---------|-------|-------|----------|-----------|----------|--------|---------|------|-------|-------|--------|
| Heat    | Equip    | Number | HW Pmp  |       |       |          | Energy    |          | Seq    | Switch  |      |       |       | Demand |
| Ref     | Code     | Of     | Full Ld |       | Cap'y |          | Rate      |          | Order  | over    | Hot  | Misc. |       | Limit  |
| Number  | Name     | Units  | Value   | Units | Value | Units    | Value     | Units    | Number | Control | Strg | Acc.  | Cogen | Number |
| 1       | QUAEXIST | 1      |         |       | 3587  | MBH      | 5000      | MBH      | 1      |         |      |       |       |        |
| 2       | QUAEXIST | 1      |         |       | 1614  | MBH      | 2250      | MBH      | 2      |         |      |       |       |        |
| 3       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 1      |         |      |       |       |        |
| 4       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 2      |         |      |       |       |        |
| 5       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 3      |         |      |       |       |        |
| 6       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 4      |         |      |       |       |        |
| 7       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 5      |         |      |       |       |        |
| 8       | QUAEXIST | 1      |         |       | 264   | HBH      | 385       | MBH      | 6      |         |      |       |       |        |
| 9       | QUAEXIST | 1      |         |       | 264   | MBH      | 385       | MBH      | 7      |         |      |       |       |        |
| 10      | QUAEXIST | 1      |         |       | 236   | MBH      | 335       | MBH      | 8      |         |      |       |       |        |
| 11      | QUAEXIST | 1      |         |       | 236   | MBH      | 335       | MBH      | 9      |         |      |       |       |        |
| 12      | QUAEXIST | 1      |         |       | 236   | MBH      | 335       | MBH      | 10     |         |      |       |       |        |
| 13      | QUAEXIST | 1      |         |       | 236   | MBH      | 335       | MBH      | 11     |         |      |       |       |        |
| 14      | QUAEXIST | 1      |         |       | 236   | MBH      | 335       | MBH      | 12     |         |      |       |       |        |
| 15      | E92001   | 1      | 2.24    | KW    | 741   | MBH      | 1000      | MBH      |        |         |      | 1     |       |        |

| Jtility<br>Number                                                                                              |                             |                                                                           |                                       | Hour                                                | ly Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | urly                   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equi                                            | р                                         | Demand                          |               |                                                 |                               |                                          |
|----------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------|---------------|-------------------------------------------------|-------------------------------|------------------------------------------|
| lumber                                                                                                         | Utili                       | ity                                                                       |                                       | Dema                                                | nd Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nand :                 | Schedule                          | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refe                                            | rence                                     | Limiting                        | Entering      | Leaving                                         | 3                             |                                          |
|                                                                                                                | Desci                       | rip                                                                       |                                       | Valu                                                | e Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | its (                  | Code                              | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Numb                                            | er                                        | Number                          | Temp          | Temp                                            |                               |                                          |
| 1                                                                                                              | PIPE                        | PUMP HT                                                                   | LOS                                   | 1.6                                                 | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is i                   | FTSAMCLG                          | CHILL-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 1                                             |                                           |                                 |               |                                                 |                               |                                          |
| 2                                                                                                              | PIPE                        | HT LOSS                                                                   |                                       | 68.1                                                | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 1                    | FTSAMHTG                          | HOT-LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                               |                                           |                                 |               |                                                 |                               |                                          |
|                                                                                                                | PIPE                        | PUMP HT                                                                   | LOS                                   | 10.2                                                | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS :                   | FTSAMCLG                          | CHILL-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .D 2                                            |                                           |                                 |               |                                                 |                               |                                          |
|                                                                                                                | PIPE                        | HT LOSS                                                                   |                                       | 54.5                                                | MBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                      | FTSAMHTG                          | HOT-LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                               |                                           |                                 |               |                                                 |                               |                                          |
| i                                                                                                              | PIPE                        | PUMP HT                                                                   | LOS                                   | 2.5                                                 | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS I                   | FTSAMCLG                          | CHILL-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .D 5                                            |                                           |                                 |               |                                                 |                               |                                          |
| 5                                                                                                              | PIPE                        | HT LOSS                                                                   |                                       | 17.7                                                | 1 MBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                      | FTSAMHTG                          | HOT-LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                              |                                           |                                 |               |                                                 |                               |                                          |
| ,                                                                                                              | PIPE                        | PUMP HT                                                                   | LOS                                   | 5.9                                                 | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS :                   | FTSAMCLG                          | CHILL-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .D &                                            |                                           |                                 |               |                                                 |                               |                                          |
| and 75.                                                                                                        |                             |                                                                           |                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Miccel La                         | nanus Aca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                           |                                 |               |                                                 |                               |                                          |
| #1                                                                                                             |                             |                                                                           |                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #2                     | HISCELLA                          | rieous Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | essoi y                                         |                                           | #3                              |               |                                                 |                               |                                          |
| lisc Eq                                                                                                        |                             | Energ                                                                     | ,                                     | Energy                                              | Sched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Equ                    | io F                              | nergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy                                          | Sched                                     |                                 | Energ         | v Ene                                           | ergy S                        | Sched                                    |
|                                                                                                                | xde                         | Value                                                                     |                                       | Units                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cod                    | •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                           | Code                                      |                                 | Value         | •                                               |                               | Code                                     |
|                                                                                                                | 5240                        | 3.73                                                                      |                                       | KW                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50                    | •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | 2000                                      | -                               | 74140         | 5111                                            |                               |                                          |
|                                                                                                                | 5001                        | 5.6                                                                       |                                       | KW                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EQ5                    | 105 9                             | .33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KW                                              |                                           |                                 |               |                                                 |                               |                                          |
|                                                                                                                | 5001                        | 3.73                                                                      |                                       | KW                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                           |                                 |               |                                                 |                               |                                          |
|                                                                                                                |                             |                                                                           |                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                           |                                 |               |                                                 |                               |                                          |
| Card 59-                                                                                                       |                             |                                                                           |                                       |                                                     | Equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pment                  | Descript                          | ion / T00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Schedu                                        | ıles                                      |                                 |               |                                                 |                               |                                          |
| ard 59-                                                                                                        |                             |                                                                           |                                       |                                                     | Equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Descript                          | ion / T00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Schedu                                        | ıles                                      |                                 |               | mand Lin                                        |                               |                                          |
|                                                                                                                |                             | Elec Con                                                                  | sump                                  | Elec D                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emand                  | Descript                          | ion / T00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Schedu                                        | ıles                                      |                                 |               | mand Li                                         |                               | -                                        |
|                                                                                                                | tive                        | Elec Con                                                                  | sump<br>Day                           | Elec D                                              | emand D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emand<br>imit          | Alterna                           | iion / TOO<br>Itive Desc<br>REW CHILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cription                                        |                                           |                                 |               | mand Lin<br>Tempo                               | mit                           | -                                        |
| Alternat<br>Number<br>2<br>Card 60-                                                                            | tive                        | Elec Con<br>Time of<br>Schedule                                           | sump<br>Day                           | Elec D<br>Time of<br>Schedu                         | emand D<br>of Day L<br>ale M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emand<br>imit<br>ax KW | Alterna<br>A.C. SC                | itive Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cription<br>LERS                                | 1                                         |                                 | De<br>Schedul | emand Lin<br>Tempo<br>e Do                      | mit<br>eratur<br>rift         | -                                        |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al                                                                 | tive                        | Elec Con<br>Time of<br>Schedule                                           | sump<br>Day                           | Elec D<br>Time o<br>Schedu                          | emand D<br>of Day L<br>ile M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emand<br>imit<br>ax KW | Alterna<br>A.C. SC                | itive Desc<br>REW CHILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cription<br>LERS<br>Assign                      | n<br>ment                                 |                                 | De            | emand Lin<br>Tempo<br>e Di                      | mit<br>eratur<br>rift         | -<br>e                                   |
| Alternat<br>Aumber<br>2<br>Card 60-<br>Load Al                                                                 | tive                        | Elec Con<br>Time of<br>Schedule                                           | sump<br>Day<br>ng<br>ment             | Elec D<br>Time o<br>Schedu                          | pemand D  of Day L  ile M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emand<br>imit<br>ax KV | Alterna<br>A.C. SC<br>Cool        | itive Desc<br>REW CHILI<br>ing Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cription<br>LERS<br>Assigna<br>oup 4-           | nent                                      |                                 | Schedul       | emand Lin<br>Tempo<br>e Do                      | mit eratur rift               | -<br>e                                   |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al<br>Asgn Lo                                                      | ll Coi                      | Elec Con<br>Time of<br>Schedule<br>Cooli<br>O Equip                       | sump<br>Day<br>ng<br>ment             | Elec D<br>Time o<br>Schedu                          | emand D of Day L ule M of 1- Gr End Beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emand<br>imit<br>ax KV | Alterna<br>A.C. SC<br>Cool        | itive Desc<br>REW CHILI<br>ing Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cription<br>LERS<br>Assigna<br>oup 4-           | nent                                      |                                 | Schedul       | emand Lin<br>Tempo<br>e Do                      | mit eratur rift               | e<br>8Group                              |
| Alternat<br>Alumber<br>2<br>Card 60-<br>Load Al<br>Alsgn Lo                                                    | ll Coi                      | Elec Con<br>Time of<br>Schedule<br>Cooli<br>O Equip                       | sump<br>Day<br>ng<br>ment             | Elec D<br>Time o<br>Schedu<br>-Group<br>Begin       | emand D of Day L ule M of 1- Gr End Beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emand<br>imit<br>ax KV | Alterna<br>A.C. SC<br>Cool        | itive Desc<br>REW CHILI<br>ing Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cription<br>LERS<br>Assigna<br>oup 4-           | nent                                      |                                 | Schedul       | emand Lin<br>Tempo<br>e Do                      | mit eratur rift               | e<br>8Group                              |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al<br>Asgn Lo<br>Ref Cc<br>I 1                                     | ll Coi<br>pads T<br>pool Re | Elec Con<br>Time of<br>Schedule                                           | sump<br>Day<br>ng<br>ment<br>g<br>ANT | Elec D<br>Time of<br>Schedu<br>-Group<br>Begin<br>1 | emand D<br>of Day L<br>ile M<br>o 1Gr<br>End Beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emand<br>imit<br>ax KW | Alterna A.C. SC Cool -Group Begin | itive Desc<br>REW CHILI<br>ing Load<br>5 3Gr<br>End Beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cription<br>LERS<br>Assignm<br>oup 4-<br>in End | nent<br>-Group<br>Begin                   | o 5Grow<br>End Begin            | Schedul       | mand Lir<br>Tempe<br>e Di                       | mit eratur rift Group Begin   | 8Group<br>End Begin &                    |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al<br>Asgn Lo<br>Ref Co<br>1 1                                     | ll Coi<br>oeds T<br>ool Re  | Elec Con<br>Time of<br>Schedule<br>L Cooli<br>o Equip<br>f Sizin<br>BLKPL | og ment<br>g<br>ANT                   | Elec D<br>Time of<br>Schedu                         | emand D  of Day L  ile M  of 1-Gr  End Beg  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emand<br>imit<br>ax KW | Alterna A.C. SC Cool -Group Begin | itive Description of the CHILL | Assignmoup 4- in End                            | nent<br>-Group<br>Begin<br>ers            | p 5Grow<br>End Begin            | Schedul       | mand Lir<br>Tempo<br>e Di                       | mit eratur rift  -Group Begin | 8Group<br>End Begin N                    |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al<br>Asgn Lo<br>Ref Co<br>1 1                                     | ll Coi<br>pool Re           | Elec Con<br>Time of<br>Schedule<br>L Cooli<br>O Equip<br>f Sizin<br>BLKPL | ng ment g                             | Elec D<br>Time of<br>Schedu                         | emand D  of Day L  ile M  of Tay L   | emand<br>imit<br>ax KW | Alterna A.C. SC Cool -Group Begin | itive Description of the CHILLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assignmoup 4- in End  Paramete                  | nent<br>-Group<br>Begin<br>ers<br>EAT REI | p 5Groot<br>End Begin<br>COVERY | Schedul       | mand Lir<br>Tempo<br>e Di<br>Dup 7-<br>in End ! | mit eratur rift  -Group Begin | 8Group<br>End Begin I<br>Demand<br>Limit |
| Alternat<br>Number<br>2<br>Card 60-<br>Load Al<br>Asgn Lo<br>Ref Co<br>1 1<br>Card 62-<br>Cool Equ<br>Ref Cool | ll Coi<br>pool Re           | Elec Con<br>Time of<br>Schedule<br>L Cooli<br>O Equip<br>f Sizin<br>BLKPL | ng ment g                             | Elec D Time of Schedu  Group Begin 1                | emand D  of Day L  le M  of Day L  o | emand<br>imit<br>ax KW | Alterna A.C. SC Cool -Group Begin | itive Description of the CHILLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Assignmoup 4- in End                            | nent<br>-Group<br>Begin<br>ers<br>EAT REI | p 5Grow<br>End Begin            | Schedul       | mand Lir<br>Tempo<br>e Di                       | mit eratur rift  -Group Begin | 8Group<br>End Begin I<br>Demand<br>Limit |

|                                                                    | l Load<br>ue<br>38       | WATER<br>Full Load<br>Units<br>KW<br>KW                                    |                                    |                                                |                                               |                                                                | oad over                                |                              | Cooling<br>Tower<br>1  | Misc.<br>Access.                       |          |
|--------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------------------------|------------------------|----------------------------------------|----------|
| ard 71<br>lase<br>Itility<br>Iumber                                | Base<br>Utilit<br>Descri | ty                                                                         | Hourly<br>Demand<br>Value          | Hourly<br>Demand<br>Units                      | Schedule<br>Code                              | arameters<br>Energy<br>Type<br>CHILL-LD                        | Equip<br>Reference<br>Number            | Demand<br>Limiting<br>Number |                        | _                                      |          |
| C<br>Ower T<br>Ref C                                               | cooling                  |                                                                            | Capacity<br>Units                  | Energy<br>Consump                              | / Cooling<br>Energy<br>Consump<br>Units<br>KW | Fluid                                                          | Nower O                                 |                              | nt Low Sp<br>ow Energy | d Low Spd<br>Energy                    |          |
|                                                                    |                          | Equ                                                                        | ipment Sect                        | ion Alter                                      | native #3                                     |                                                                | • • • • • • • • • • • • • • • • • • • • | ••                           |                        |                                        |          |
| Card 59-<br>Alternat                                               | E<br>tive T              |                                                                            | Elec Dema                          | Equipment<br>and Demand<br>Day Limit           | Descripti<br>Alterna                          | ion / TOO S                                                    | Schedules<br>iption                     |                              | Schedu                 | emand Limit<br>Temperature<br>le Drift |          |
| Card 59-<br>Alternat<br>Number<br>3<br>Card 65-<br>Load<br>Assignm | E<br>tive T<br>S         | ilec Consump<br>ime of Day<br>ichedule<br>il Coil<br>pads To<br>eating Ref | Elec Dema<br>Time of D<br>Schedule | Equipment<br>and Demand<br>Day Limit<br>Max KW | Descripti Alterna EXIST S'                    | ion / TOO S<br>tive Descr<br>TEAM BLR W<br>g Load Ass<br>Group | iption<br>ITH NEW HU<br>ignment         | IH GENERATOR                 | Schedu                 | emand Limit<br>Temperature             | -Group 9 |

| Card 71- |              |        | Base   | Utility P | arameters |           |          |          |         |
|----------|--------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base         | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility      | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip      | Value  | Units  | Code      | Туре      | Number    | Number   | Temp     | Temp    |
| 1        | PIPE HT LOSS | 140.3  | MBH    | FTSAMHTG  | HOT-LD    | 1         |          |          |         |

| Card | 75     |        |        |       | Misc  | ellaneous 🖊 | ccessory |       |       |        |        |       |
|------|--------|--------|--------|-------|-------|-------------|----------|-------|-------|--------|--------|-------|
|      | #1     |        |        |       | #2    |             | ·        |       | #3    |        |        |       |
| Misc | Equip  | Energy | Energy | Sched | Equip | Energy      | Energy   | Sched | Equip | Energy | Energy | Sched |
| Ref  | Code   | Value  | Units  | Code  | Code  | Value       | Units    | Code  | Code  | Value  | Units  | Code  |
| 1    | EQ5020 | 2.24   | KW     |       |       |             |          |       |       |        |        |       |

## Utility Description Reference Table

•••••

#### Schedules:

FSHOFFIC F.S.H. OFFICE INTERNAL LOAD SCHEDULE

FTSAMCLG EEAP BOILER/CHILLER STUDY

FTSAMHTG EEAP BOILER/CHILLER STUDY

### System:

MZ MULTIZONE

SZ SINGLE ZONE

### Equipment:

Cooling:

EQ1510 AIR COOLED SERIES R (RTAA)

QUADACRE QUAD AIR COOLED RECIP CHILLER(S)

### Heating:

EQ2001 GAS FIRED HOT WATER BOILER

QUAEXIST QUAD AREA EXIST STEAM BOILER

Tower

EQ5200 CONDENSER FANS

#### Misc:

EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME

EQ5020 HEATING WATER CIRCULATION PUMP

EQ5105 EVAPORATIVE CONDENSER FANS

EQ5240 BOILER FORCED DRAFT FAN

030185.04 EEAP BOILER-CHILLER STUDY
FT. SAM HOUSTON - SAN ANTONIO, TX.
CORPS OF ENGINEERS - FORT WORTH, TEXAS
HUITT - ZOLLARS INC.
QUADANGLE AREA

Weather File Code:

 Location:
 SAN ANTONIO, TEXAS

 Latitude:
 29.0 (deg)

 Longitude:
 98.0 (deg)

 Time Zone:
 6

 Elevation:
 792 (ft)

 Barometric Pressure:
 29.0 (in. Hg)

 Summer Clearness Number:
 0.90

 Winter Clearness Number:
 0.90

 Summer Design Dry Bulb:
 97 (F)

 Summer Design Wet Bulb:
 76 (F)

 Winter Design Dry Bulb:
 30 (F)

 Summer Ground Relectance:
 0.20

 Winter Ground Relectance:
 0.20

Air Density: 0.0738 (Lbm/cuft)
Air Specific Heat: 0.2444 (Btu/lbm/F)
Density-Specific Heat Prod: 1.0818 (Btu-min./hr/cuft/F)
Latent Heat Factor: 4,761.9 (Btu-min./hr/cuft)
Enthalpy Factor: 4.4255 (Lb-min./hr/cuft)

Design Simulation Period: June To November
System Simulation Period: January To December
Cooling Load Methodology: TETD/Time Averaging

Time/Date Program was Run: 8:28:39 6/12/95
Dataset Name: FSH4ANGL .TM

SYSTEM LOAD PROFILE .....

# System Totals

| Percent   | Cooling L | bao     | Heatin     | g Load | ••••• |
|-----------|-----------|---------|------------|--------|-------|
| Design    | Cap. Hour | s Hours | Capacity   | Hours  | Hours |
| Load      | (Ton) (X  | )       | (8tuh)     | (%)    |       |
|           |           |         |            |        |       |
| 0 - 5     | 27.8 1    | 4 569   | -140,290   | 57     | 907   |
| 5 - 10    | 55.5      | 9 371   | -280,581   | 8      | 124   |
| 10 - 15   | 83.3 1    | 1 430   | -420,871   | 6      | 100   |
| 15 - 20   | 111.1     | 8 307   | -561,161   | 5      | 80    |
| 20 - 25   | 138.8     | 9 351   | -701,452   | 3      | 48    |
| 25 - 30   | 166.6     | 9 346   | -841,742   | 4      | 60    |
| 30 - 35   | 194.3     | 6 246   | -982,032   | 5      | 81    |
| 35 - 40   | 222.1     | 2 73    | -1,122,323 | 2      | 25    |
| 40 - 45   | 249.9     | 3 129   | -1,262,613 | 0      | 6     |
| 45 - 50   | 277.6     | 4 141   | -1,402,904 | 3      | 54    |
| 50 - 55   | 305.4     | 3 108   | -1,543,194 | 6      | 99    |
| 55 - 60   | 333.2     | 3 131   | -1,683,484 | 7 1    | 16    |
| 60 - 65   | 360.9     | 2 86    | -1,823,775 |        | 0     |
| 65 - 70   | 388.7     | 3 131   | -1,964,065 | 0      | 0     |
| 70 - 75   | 416.5     | 3 128   | -2,104,355 | 0      | 0     |
| 75 - 80   | 444.2     | 4 168   | -2,244,646 | 0      | 0     |
| 80 - 85   | 472.0     | 4 172   | -2,384,936 | 0      | 0     |
| 85 - 90   | 499.8     | 1 43    | -2,525,227 | 0      | 0     |
| 90 - 95   | 527.5     | 1 43    | -2,665,517 | 0      | 0     |
| 95 - 100  | 555.3     | 0 0     | -2,805,807 | 0      | 0     |
| Hours Off | 0.0       | 0 4,787 | 0          | 0      | 7,160 |
|           |           |         |            |        |       |

Trane Air Conditioning Economics
By: HUITT & ZOLLARS

PK

0.5

0.5

0.5

0.5

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1
BASE CASE

------ EQUIPMENT ENERGY CONSUMPTION ----------- Monthly Consumption -----Ref Equip Num Code Feb Har May June Total Jan Apr July Aug Seo Oct Nov 0 LIGHTS ELEC 77510 70128 84891 73819 81200 81200 73819 84891 73819 81200 73819 73819 930,115 455.7 PK 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 455.7 1 MISC LD ELEC 0 0 0 0 0 0 0 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 MISC LD GAS 0 ٥ 0 0 0 0 0 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 MISC LD OIL 0 0 0 0 0 0 0 0 0 0 0 0 0 DK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 MISC LD P STEAM 0 0 0 0 0 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 HISC LD P HOTH20 0 0 0 0 0 0 ٥ 0 0 0 0 0 n PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 MISC LD P CHILL Đ 0 0 0 0 0 0 0 0 0 0 0 0 PK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 BASE UTILITY CHILLD 0 0 0 0 1190 1152 1190 1190 1152 0 0 1190 7,066 PK 0.0 0.0 0.0 0.0 1.6 1.6 1.6 1.6 1.6 1.6 0.0 0.0 1.6 BASE UTILITY HOTLD 507 458 507 490 O 0 D 490 507 2,958 n 0 0 PK 0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.7 BASE UTILITY CHILLD O 0 0 45,043 0 7589 7344 7589 7589 7344 7589 0 Ō PK 0.0 0.0 0.0 0.0 10.2 10.2 10.2 10.2 10.2 10.2 0.0 0.0 10.2 BASE UTILITY HOTLD 405 366 405 392 O ō 0 0 0 0 392 405 2,367

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

BASE CASE

| ef | Equip  |     |      |           |          | Mont     | nty tons  | umption |       |       |       |     |     |          |
|----|--------|-----|------|-----------|----------|----------|-----------|---------|-------|-------|-------|-----|-----|----------|
| m  | Code   | Jan | Feb  | Mar       | Apr      | May      | June      | July    | Aug   | Sep   | 0ct   | Nov | Dec | Total    |
| 5  |        |     | BASE | UTILITY   |          |          |           |         |       |       |       |     |     |          |
|    | CHILLD | 0   | 0    | 0         | 0        | 1860     | 1800      | 1860    | 1860  | 1800  | 1860  | 0   | 0   | 11,040   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 2.5      | 2.5       | 2.5     | 2.5   | 2.5   | 2.5   | 0.0 | 0.0 | 2.5      |
| 6  |        |     | BASE | UTILITY   |          |          |           |         |       |       |       |     |     |          |
|    | HOTLD  | 132 | 119  | 132       | 128      | 0        | 0         | 0       | 0     | 0     | 0     | 128 | 132 | 769      |
|    | PK     | 0.2 | 0.2  | 0.2       | 0.2      | 0.0      | 0.0       | 0.0     | 0.0   | 0.0   | 0.0   | 0.2 | 0.2 | 0.2      |
| 7  |        |     | BASE | UTILITY   |          |          |           |         |       |       |       |     |     |          |
|    | CHILLD | 0   | 0    | 0         | 0        | 4390     | 4248      | 4390    | 4390  | 4248  | 4390  | 0   | 0   | 26,054   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 5.9      | 5.9       | 5.9     | 5.9   | 5.9   | 5.9   | 0.0 | 0.0 | 5.9      |
| 1  |        |     | QUAD | AIR COOL  | ED REC   | P CHILLE | R(S)      |         |       |       |       |     |     | -        |
|    | ELEC   | 0   | 0    | 0         | 0        | 11383    | 13937     | 16680   | 16889 | 12081 | 5786  | 0   | 0   | 76,755   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 36.9     | 40.4      | 43.9    | 44.1  | 37.5  | 27.4  | 0.0 | 0.0 | 44.1     |
| 1  | E95001 |     | CHIL | LED WATER | PUMP -   | - CONSTA | NT VOLUE  | Æ       |       |       |       |     |     | <b></b>  |
|    | ELEC   | 0   | 0    | 0         | 0        | 2775     | 2686      | 2775    | 2775  | 2686  | 2775  | 0   | 0   | 16,472   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 3.7      | 3.7       | 3.7     | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3.7      |
| 1  | EQ5300 |     | CONT | ROL PANEI | . & INTI | ERLOCKS  |           |         |       |       |       |     |     |          |
|    | ELEC   | 0   | 0    | 0         | 0        | 744      | 720       | 744     | 744   | 720   | 744   | 0   | 0   | 4,416    |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0       | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0      |
| 1  | EQ5001 |     | CHIL | LED WATER | R PUMP   | - CONST  | ANT VOLUE | 1E      |       |       |       |     |     | <u> </u> |
|    | ELEC   | 0   | 0    | 0         | 0        | 2775     | 2686      | 2775    | 2775  | 2686  | 2775  | 0   | 0   | 16,472   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 3.7      | 3.7       | 3.7     | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3.7      |
| 2  |        |     | QUAD | AIR COO   | LED REC  | IP CHILL | ER(S)     |         |       |       |       |     |     | }        |
|    | ELEC   | 0   | 0    | 0         | 0        | 46937    | 51983     | 56803   | 57761 | 50614 | 32096 | 0   | 0   | 296,194  |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 98.2     | 106.1     | 113.6   | 115.1 | 103.4 | 93.6  | 0.0 | 0.0 | 115.1    |
| 2  | E95001 |     | CHIL | LED WATE  | R PUMP   | - CONST  | ANT VOLU  | 4E      |       |       |       |     |     | -        |
|    | ELEC   | 0   | 0    | 0         | 0        | 11100    | 10742     | 11100   | 11100 | 10742 | 11100 | 0   | 0   | 65,887   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 14.9     | 14.9      | 14.9    | 14.9  | 14.9  | 14.9  | 0.0 | 0.0 | 14.9     |
| 2  | E95300 |     | CONT | ROL PANE  | L & INT  | ERLOCKS  |           |         |       |       |       |     |     |          |
|    | ELEC   | 0   | 0    | 0         | 0        | 744      | 720       | 744     | 744   | 720   | 744   | 0   | 0   | 4,416    |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 1.0      | 1.0       | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0      |
| 3  |        |     | QUAD | AIR COO   | LED REC  | IP CHILL | ER(S)     |         |       |       |       |     |     |          |
|    | ELEC   | 0   | 0    | 0         | 0        | 32997    | 43350     | 54743   | 56746 | 34944 | 20449 | 0   | 0   | 243,23   |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0      | 143.1    | 155.5     | 166.4   | 168.7 | 151.4 | 137.2 | 0.0 | 0.0 | 168.7    |

BASE CASE

| et | Equip  |     |       |           |          | Mont      | tilly cons | sumption |       |       |       |     |     |       |
|----|--------|-----|-------|-----------|----------|-----------|------------|----------|-------|-------|-------|-----|-----|-------|
| UM | Code   | Jan | Feb   | Mar       | Apr      | May       | June       | July     | Aug   | Sep   | Oct   | Nov | Dec | Tota  |
| 3  | E95001 |     | CHILL | ED WATER  | R PUMP - | CONST     | ANT VOLU   | ME       |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 1071      | 1417       | 1768     | 1790  | 1119  | 656   | 0   | 0   | 7,82  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 3.7       | 3.7        | 3.7      | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3.    |
| 3  | EQ5300 |     | CONT  | ROL PANEI | . & INTE | RLOCKS    |            |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 287       | 380        | 474      | 480   | 300   | 176   | 0   | 0   | 2,09  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0        | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.    |
| 4  |        |     | QUAD  | AIR COO   | LED RECT | IP CHILLI | ER(S)      |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 16188     | 19446      | 21238    | 24712 | 17761 | 4890  | 0   | 0   | 104,2 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 143.1     | 155.5      | 166.4    | 168.7 | 151.4 | 121.0 | 0.0 | 0.0 | 168   |
| 4  | EQ5001 |     | CHILI | LED WATE  | R PUMP   | - CONST   | ANT VOLU   | ME       |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 492       | 574        | 597      | 686   | 522   | 164   | 0   | 0   | 3,0   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 3.7       | 3.7        | 3.7      | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3     |
| 4  | EQ5300 |     | CONT  | ROL PANE  | L & INTI | ERLOCKS   |            |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 132       | 154        | 160      | 184   | 140   | 44    | 0   | 0   | 8     |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0        | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1     |
| 5  |        |     | QUAD  | AIR COO   | LED REC  | IP CHILL  | ER(S)      |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 27434     | 32405      | 38181    | 38370 | 28141 | 15749 | 0   | 0   | 180,2 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 83.1      | 86.8       | 90.0     | 89.3  | 83.4  | 76.9  | 0.0 | 0.0 | 90    |
| 5  | EQ5001 |     | CHIL  | LED WATE  | R PUMP   | - CONST   | ANT VOLU   | ME       |       |       |       |     |     | -     |
|    | ELEC   | 0   | 0     | 0         | 0        | 2775      | 2686       | 2775     | 2775  | 2686  | 2775  | 0   | 0   | 16,4  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 3.7       | 3.7        | 3.7      | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3     |
| 5  | EQ5300 |     | CONT  | ROL PANE  | L & INT  | ERLOCKS   |            |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 744       | 720        | 744      | 744   | 720   | 744   | 0   | 0   | 4,4   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0        | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1     |
| 6  |        |     | QUAD  |           |          | IP CHILL  | ER(S)      |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 56711     | 73757      | 86637    | 85892 | 62230 | 27804 | 0   | 0   | 393,0 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 159.0     | 185.9      | 188.5    | 189.2 | 166.5 | 157.2 | 0.0 | 0.0 | 189   |
| 6  | E95001 |     |       | LED WATE  |          |           | ANT VOLU   | ME       |       |       |       |     |     | -     |
|    | ELEC   | 0   | 0     | 0         | 0        | 4166      | 4032       | 4166     | 4166  | 4032  | 4166  | 0   | 0   | 24,7  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 5.6       | 5.6        | 5.6      | 5.6   | 5.6   | 5.6   | 0.0 | 0.0 | 5     |
| 6  | EQ5300 |     |       | ROL PANE  |          |           |            |          |       |       |       |     |     |       |
|    | ELEC   | 0   | 0     | 0         | 0        | 744       | 720        | 744      | 744   | 720   | 744   | 0   | 0   | 4,4   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0        | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1     |

PK

0.1 0.1

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.1

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASE CASE

| Ref | Equip  |      |      |          |          | Mon      | thly Con  | sumption |       |       |       |     |      |         |
|-----|--------|------|------|----------|----------|----------|-----------|----------|-------|-------|-------|-----|------|---------|
|     | Code   | Jan  | Feb  | Mar      | Apr      | May      | June      | July     | Aug   | Sep   | 0ct   | Nov | Dec  | Total   |
| 6   | E95001 |      | CHIL | LED WATE | R PUMP - | CONST    | ANT VOLUI | ME       |       |       |       |     |      |         |
|     | ELEC   | 0    | 0    | 0        | 0        | 4166     | 4032      | 4166     | 4166  | 4032  | 4166  | 0   | 0    | 24,730  |
|     | PK     | 0.0  | 0.0  | 0.0      | 0.0      | 5.6      | 5.6       | 5.6      | 5.6   | 5.6   | 5.6   | 0.0 | 0.0  | 5.6     |
| 6   | E95105 |      | EVAP | ORATIVE  | CONDENSE | R FANS   |           |          |       |       |       |     |      | •       |
|     | ELEC   | 0    | 0    | 0        | 0        | 6942     | 6718      | 6942     | 6942  | 6718  | 6942  | 0   | 0    | 41,201  |
|     | PK     | 0.0  | 0.0  | 0.0      | 0.0      | 9.3      | 9.3       | 9.3      | 9.3   | 9.3   | 9.3   | 0.0 | 0.0  | 9.3     |
| 7   |        |      | QUAD | AIR COO  | LED REC  | P CHILL  | ER(S)     |          |       |       |       |     |      |         |
|     | ELEC   | 0    | 0    | 0        | 0        | 19262    | 20759     | 27811    | 31913 | 18382 | 4632  | 0   | 0    | 122,759 |
|     | PK     | 0.0  | 0.0  | 0.0      | 0.0      | 155.6    | 170.6     | 184.6    | 185.3 | 160.4 | 119.9 | 0.0 | 0.0  | 185.3   |
| 7   | EQ5001 |      | CHIL | LED WATE | R PUMP   | CONST    | ANT VOLU  | ME       |       |       |       |     |      |         |
|     | ELEC   | 0    | 0    | 0        | 0        | 0        | 0         | 0        | 0     | 0     | 0     | 0   | 0    | 0       |
|     | PK     | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0 | 0.0  | 0.0     |
| 7   | E95300 |      | CONT | ROL PANE | L & INT  | RLOCKS   |           |          |       |       |       |     |      |         |
|     | ELEC   | 0    | 0    | 0        | 0        | 154      | 154       | 200      | 230   | 140   | 44    | 0   | 0    | 922     |
|     | PK     | 0.0  | 0.0  | 0.0      | 0.0      | 1.0      | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0  | 1.0     |
| 1   |        |      | QUAD | AREA EX  | IST STE  | M BOILE  | R         |          |       |       |       |     |      |         |
|     | GAS    | 2063 | 1913 | 207      | 0        | 0        | 0         | 0        | 0     | 0     | 0     | 350 | 1977 | 6,509   |
|     | PK     | 11.5 | 12.0 | 6.5      | 0.0      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 6.0 | 11.4 | 12.0    |
| 1   | E95311 |      | BOIL | ER CONTR | OLS      |          |           |          |       |       |       |     |      |         |
|     | ELEC   | 57   | 53   | 11       | 0        | 0        | 0         | 0        | 0     | 0     | 0     | 17  | 55   | 192     |
|     | PK     | 0.1  | 0.1  | 0.1      | 0.0      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.1 | 0.1  | 0.1     |
| 2   |        |      | QUAD | AREA EX  | IST STE  | AM BOILE | R         |          |       |       |       |     |      |         |
|     | GAS    | 277  | 239  | 619      | 684      | 0        | 0         | 0        | 0     | 0     | 0     | 556 | 292  | 2,665   |
|     | PK     | 1.0  | 1.0  | 1.0      | 0.9      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 1.0 | 1.0  | 1.0     |
| 2   | E95311 |      | BOIL | ER CONTR | OLS      |          |           |          |       |       |       |     |      |         |
|     | ELEC   | 36   | 31   | 81       | 90       | 0        | 0         | 0        | 0     | 0     | 0     | 73  | 38   | 351     |
|     | PK     | 0.1  | 0.1  | 0.1      | 0.1      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.1 | 0.1  | 0.1     |
| 3   |        |      | QUAD | AREA EX  | IST STE  | AM BOILE | R         |          |       |       |       |     |      |         |
|     | GAS    | 374  | 347  | 0        | 0        | 0        | 0         | 0        | 0     | 0     | 0     | 0   | 308  | 1,029   |
|     | PK     | 3.8  | 3.8  | 0.0      | 0.0      | 0.0      | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0 | 3.8  | 3.8     |
| 3   | EQ5311 |      | BOIL | ER CONTR | OLS      |          |           |          |       |       |       |     |      |         |
|     | ELEC   | 14   | 13   | 0        | 0        | 0        | 0         | 0        | 0     | 0     | 0     | 0   | 11   | 38      |
|     |        |      |      |          |          |          |           |          |       |       |       |     |      |         |

0.1

BASE CASE

| ef | Equip  |     |      |           |           |          |      | -    |     |     |     |     | _   |      |
|----|--------|-----|------|-----------|-----------|----------|------|------|-----|-----|-----|-----|-----|------|
| m  | Code   | Jan | Feb  | Mar       | Apr       | May      | June | July | Aug | Sep | Oct | Nov | Dec | Tota |
| 4  |        |     | QUAD | AREA EX   | ST STEA   | 4 BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 262 | 221  | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 180 | 66   |
|    | PK     | 3.8 | 3.8  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 3.   |
| 4  | EQ5311 |     | BOIL | ER CONTRE | DLS       |          |      |      |     |     |     |     |     |      |
|    | ELEC   | 11  | 9    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 8   | 2    |
|    | PK     | 0.1 | 0.1  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.   |
| 5  |        |     | QUAD | AREA EX   | IST STEAL | H BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 5   | 20   | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 8   | 3    |
|    | PK     | 0.3 | 0.9  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.   |
| 5  | EQ5311 |     | BOIL | ER CONTR  | OLS       |          |      |      |     |     |     |     |     |      |
|    | ELEC   | 3   | 4    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 2   |      |
|    | PK     | 0.1 | 0.1  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.   |
| 6  |        |     | QUAD | AREA EX   | IST STEA  | M BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 6  | EQ5311 |     | BOIL | ER CONTR  | OLS       |          |      |      |     |     |     |     |     |      |
|    | ELEC   | 0   | 0    | 0         | 0         | 0        | 0    | O    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 7  |        |     | QUAD | AREA EX   | IST STEA  | M BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 7  | EQ5311 |     | BOIL | ER CONTR  | OLS       |          |      |      |     |     |     |     |     |      |
|    | ELEC   | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 8  |        |     | QUAD | AREA EX   | IST STEA  | M BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 8  | EQ5311 |     | BOIL | ER CONTR  | ols       |          |      |      |     |     |     |     |     |      |
|    | ELEC   | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 9  |        |     | QUAD | AREA EX   | IST STEA  | M BOILER |      |      |     |     |     |     |     |      |
|    | GAS    | 0   | 0    | 0         | 0         | 0        | 0    | 0    | 0   | 0   | 0   | 0   | 0   |      |
|    | PK     | 0.0 | 0.0  | 0.0       | 0.0       | 0.0      | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |

BASE CASE

| T   | Equip  |     |       |           |          | HOILE    | ity cons | Calperon |     |     |     |     |     |      |
|-----|--------|-----|-------|-----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|------|
| FFI | Code   | Jan | Feb   | Mar       | Apr      | May      | June     | July     | Aug | Sep | 0ct | Nov | Dec | Tota |
| 9   | E95311 |     | BOILE | ER CONTRO | OLS      |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 0   |        |     | QUAD  | AREA EX   | IST STEA | M BOILER |          |          |     |     |     |     |     |      |
|     | GAS    | 1   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.1 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 0   | E95311 |     | BOIL  | ER CONTR  | OLS      |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 1   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.1 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 1   |        |     | QUAD  | AREA EX   | IST STEA | M BOILER |          |          |     |     |     |     |     |      |
|     | GAS    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.   |
| 1   | EQ5311 |     | BOIL  | ER CONTR  | OLS      |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| 2   |        |     |       | AREA EX   |          |          |          |          |     |     |     |     |     |      |
|     | GAS    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| 2   | EQ5311 |     |       | ER CONTR  |          |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| 5   |        |     |       | AREA EX   |          |          |          |          |     |     |     |     |     |      |
|     | GAS    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| 5   | EQ5311 |     |       | ER CONTR  |          |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| •   |        |     |       | AREA EX   |          |          |          |          |     |     |     |     |     |      |
|     | GAS    | 0   | 0     | 0         | 0        | 0        | O        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |
| ,   | EQ5311 |     |       | ER CONTR  |          |          |          |          |     |     |     |     |     |      |
|     | ELEC   | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |      |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0    |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASE CASE

| Ref | Equip  |      |      |          |          | Mont     | hly Cons | umotion |     |     |     |     |     |        |
|-----|--------|------|------|----------|----------|----------|----------|---------|-----|-----|-----|-----|-----|--------|
|     | Code   | Jan  | Feb  | Mar      | Apr      | May      | June     | July    | Aug | Sep | Oct | Nov | Dec | Total  |
| 15  | E92001 |      | GAS  | FIRED HO | T WATER  | BOILER   |          |         |     |     |     |     |     |        |
|     | GAS    | 392  | 351  | 23       | 0        | 0        | 0        | 0       | 0   | 0   | 0   | 59  | 379 | 1,204  |
|     | PK     | 2.9  | 3.0  | 1.3      | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 1.6 | 2.9 | 3.0    |
| 15  | EQ5020 |      | HEAT | ING WATE | R CIRCUL | ATION PU | MP       |         |     |     |     |     |     |        |
|     | ELEC   | 562  | 484  | 72       | 0        | 0        | 0        | 0       | 0   | 0   | 0   | 161 | 542 | 1,821  |
|     | PK     | 2.2  | 2.2  | 2.2      | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 2.2 | 2.2 | 2.2    |
| 15  | EQ5240 |      | BOIL | ER FORCE | DORAFT   | FAN      |          |         |     |     |     |     |     |        |
|     | ELEC   | 1361 | 806  | 358      | 0        | 0        | 0        | 0       | 0   | 0   | 0   | 828 | 921 | 4,275  |
|     | PK     | 3.7  | 3.7  | 3.7      | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 3.7 | 3.7 | 7,21,3 |

A.C. SCREW CHILLERS

| f | Equip    |       |       |           |          | Mor     | thly Cor | sumption |        |       |       |       |       |        |
|---|----------|-------|-------|-----------|----------|---------|----------|----------|--------|-------|-------|-------|-------|--------|
| m | Code     | Jan   | Feb   | Mar       | Apr      | Hay     | June     | July     | Aug    | Sep   | Oct   | Nov   | Dec   | Tota   |
| 0 | LIGHTS   |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | ELEC     | 77510 | 70128 | 84891     | 73819    | 81200   | 81200    | 73819    | 84891  | 73819 | 81200 | 73819 | 73819 | 930,11 |
|   | PK       | 455.7 | 455.7 | 455.7     | 455.7    | 455.7   | 455.7    | 455.7    | 455.7  | 455.7 | 455.7 | 455.7 | 455.7 | 455.   |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | GAS      | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | OIL      | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.     |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | P STEAM  | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | Ð     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | P HOTH20 | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   | MISC LD  |       |       |           |          |         |          |          |        |       |       |       |       |        |
|   | P CHILL  | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   |          |       | BASE  | EUTILITY  | r        |         |          |          |        |       |       |       |       |        |
|   | CHILLD   | 0     | 0     | 0         | 0        | 15029   | 14544    | 15029    | 15029  | 14544 | 15029 | 0     | 0     | 89,20  |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 20.2    | 20.2     | 20.2     | 20.2   | 20.2  | 20.2  | 0.0   | 0.0   | 20     |
|   | EQ1510   |       | AIR   | COOLED S  | SERIES R | (RTAA)  |          |          |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0        | 88155   | 109763   | 136458   | 139682 | 93439 | 39506 | 0     | 0     | 607,00 |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 287.6   | 328.3    | 351.0    | 351.0  | 306.5 | 271.9 | 0.0   | 0.0   | 351    |
|   | E95200   |       | CON   | DENSER FA | ANS      |         |          |          |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0        | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |        |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 0.0     | 0.0      | 0.0      | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0      |
|   | EQ5001   |       | CHI   | LLED WATE | ER PUMP  | - CONST | ANT VOLU | ME       |        |       |       |       |       |        |
|   | ELEC     | 0     | 0     | 0         | 0        | 16651   | 16114    | 16651    | 16651  | 16114 | 16651 | 0     | 0     | 98,8   |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0      | 22.4    | 22.4     | 22.4     | 22.4   | 22.4  | 22.4  | 0.0   | 0.0   | 22     |

A.C. SCREW CHILLERS

|    | Equip  |     |      |          |         |         | thly Con: | sumption |       |       |       |     |     |         |
|----|--------|-----|------|----------|---------|---------|-----------|----------|-------|-------|-------|-----|-----|---------|
| um | Code   | Jan | Feb  | Mar      | Apr     | May     | June      | July     | Aug   | Sep   | Oct   | Nov | Dec | Total   |
| 1  | EQ5302 |     | CONT | ROLS     |         |         |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0    | 0        | 0       | 74      | 72        | 74       | 74    | 72    | 74    | 0   | 0   | 442     |
|    | PK     | 0.0 | 0.0  | 0.0      | 0.0     | 0.1     | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.0 | 0.0 | 0.1     |
| 2  | EQ1510 |     | AIR  | COOLED S | ERIES R | (RTAA)  |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0    | 0        | 0       | 37029   | 47686     | 52699    | 56867 | 42171 | 17101 | 0   | 0   | 253,553 |
|    | PK     | 0.0 | 0.0  | 0.0      | 0.0     | 287.6   | 328.3     | 351.0    | 351.0 | 306.5 | 216.4 | 0.0 | 0.0 | 351.0   |
| 2  | EQ5001 |     | CHIL | LED WATE | R PUMP  | - CONST | ANT VOLU  | HE       |       |       |       |     |     |         |
|    | ELEC   | 0   | 0    | 0        | 0       | 3939    | 4924      | 4924     | 5147  | 4476  | 2350  | 0   | 0   | 25,759  |
|    | PK     | 0.0 | 0.0  | 0.0      | 0.0     | 22.4    | 22.4      | 22.4     | 22.4  | 22.4  | 22.4  | 0.0 | 0.0 | 22.4    |
| 2  | EQ5302 |     | CONT | ROLS     |         |         |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0    | 0        | 0       | 18      | 22        | 22       | 23    | 20    | 11    | 0   | 0   | 115     |
|    | PK     | 0.0 | 0.0  | 0.0      | 0.0     | 0.1     | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.0 | 0.0 | 0.1     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3 EXIST STEAM BLR WITH NEW HWH GENERATOR

| ef | Equip    |       |       |          |         | Mon       | thly Cons | sumption |       |       |       |       |       |         |
|----|----------|-------|-------|----------|---------|-----------|-----------|----------|-------|-------|-------|-------|-------|---------|
|    | Code     | Jan   | Feb   | Mar      | Apr     | May       | June      | July     | Aug   | Sep   | Oct   | Nov   | Dec   | Total   |
| 0  | LIGHTS   |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | ELEC     | 77510 | 70128 | 84891    | 73819   | 81200     | 81200     | 73819    | 84891 | 73819 | 81200 | 73819 | 73819 | 930,115 |
|    | PK       | 455.7 | 455.7 | 455.7    | 455.7   | 455.7     | 455.7     | 455.7    | 455.7 | 455.7 | 455.7 | 455.7 | 455.7 | 455.    |
| 1  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | ELEC     | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 2  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | GAS      | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 3  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | OIL      | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 4  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | P STEAM  | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 5  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | P HOTH20 | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | . 0   | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.      |
| 6  | MISC LD  |       |       |          |         |           |           |          |       |       |       |       |       |         |
|    | P CHILL  | 0     | 0     | 0        | 0       | 0         | 0         | 0        | 0     | 0     | 0     | 0     | 0     |         |
|    | PK       | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0       |
| 1  |          |       | BAS   | E UTILIT | Υ       |           |           |          |       |       |       |       |       |         |
|    | HOTLD    | 1044  | 943   | 1044     | 1010    | 0         | O         | 0        | 0     | 0     | 0     | 1010  | 1044  | 6,09    |
|    | PK       | 1.4   | 1.4   | 1.4      | 1.4     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 1.4   | 1.4   | 1.      |
| 1  |          |       | QUA   | D AREA E | XIST ST | AM BOILE  | R         |          |       |       |       |       |       |         |
|    | GAS      | 4107  | 3752  | 1598     | 1408    | 0         | 0         | 0        | 0     | 0     | 0     | 1692  | 3883  | 16,4    |
|    | PK       | 23.0  | 24.3  | 8.2      | 2.0     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 8.7   | 23.1  | 24.     |
| 1  | EQ5311   |       | 801   | LER CONT | ROLS    |           |           |          |       |       |       |       |       |         |
|    | ELEC     | 93    | 84    | 93       | 90      | 0         | 0         | 0        | 0     | 0     | 0     | 90    | 93    | 5       |
|    | PK       | 0.1   | 0.1   | 0.1      | 0.1     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 0.1   | 0.1   | 0       |
| 1  | EQ5020   |       | HEA   | TING WAT | ER CIRC | JLATION F | PUMP      |          |       |       |       |       |       |         |
|    | ELEC     | 1667  | 1505  | 1667     | 1613    | 0         | 0         | 0        | 0     | 0     | 0     | 1613  | 1667  | 9,7     |
|    | PK       | 2.2   | 2.2   | 2.2      | 2.2     | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   | 2.2   | 2.2   | 2       |

01 Card - Job Information

Project: 030185.04 EEAP BOILER-CHILLER STUDY Location: FT. SAM HOUSTON - SAN ANTONIO, TX. Client: CORPS. OF ENGINEERS - FORT WORTH, TX.

Program User: HUITT-ZOLLARS INC.

Comments: AREA 100

----- Load Section Alternative #1 -----

Card 19- Load Alternative Number Description
1 EXISTING BUILDINGS

Card 20------ General Room Parameters -----Zone Acoustic Floor to Duplicate Duplicate Perimeter Reference Room Floor Room Floor Const Plenum Ceiling Floor Floors Rooms per Depth Number Number Descrip Length Width Type Height Resistance Height Multiplier Zone 5 5 BLDG 122 113 113 3 3 2.54 11 10 10 BLDG 124 113 113 3 3 2.54 11 15 BLDG 128 15 119 119 3 8 2.54 18 20 20 BLDG 133 100 96 3 2.54 18 25 25 BLDG 134 102 102 3 3 2.54 12 122 30 30 BLDG 143 122 3 3 2.54 12 35 35 **BLDG 144** 122 122 3 3 2.54 12 40 BLDG 145 122 122 40 3 3 2.54 12 45 45 BLDG 146 122 122 3 3 2.54 12 50 50 **BLDG 147** 122 122 3 3 2.54 12 55 55 BLDG 149 122 122 3 3 2.54 12 122 60 60 BLDG 197 122 3 3 2.54 12 65 65 **BLDG 198** 68 68 3 2.54 5 14 80 70 70 BLDG 199 80 3 2.54 12 50 26 3 50 26 3 50 26 3 75 75 BLDG 125 5 2.54 15 80 80 **BLDG 127** 2.54 15 85 85 **BLDG 135** 2.54 15

| Card 20 |           |            |        | Gener | al Room | Paramete | rs         |          |            |           |           |
|---------|-----------|------------|--------|-------|---------|----------|------------|----------|------------|-----------|-----------|
|         | Zone      |            |        |       |         |          | Acoustic   | Floor to | Duplicate  | Duplicate | Perimeter |
| Room    | Reference | Room       | Floor  | Floor | Const   | Plenum   | Ceiling    | Floor    | Floors     | Rooms per | Depth     |
| Number  | Number    | Descrip    | Length | Width | Type    | Height   | Resistance | Height   | Multiplier | Zone      |           |
| 90      | 90        | BLDG 250-1 | 142    | 34    | 3       | 2        | 2.54       | 10.5     |            |           |           |
| 95      | 95        | BLDG 250-2 | 195    | 195   | 3       | 2        | 2.54       | 10.5     |            |           |           |
| 100     | 100       | BLDG. 142  | 65     | 65    | 3       | 2        | 2.54       | 10       | 1          | 1         |           |

|        | Cooling   | Room   | Cooling    | Cooling  | Heating   | Heating    | Heating  | T'stat   | Mass /  | Carpet |
|--------|-----------|--------|------------|----------|-----------|------------|----------|----------|---------|--------|
| Room   | Room      | Design | T'stat     | T'stat   | Room      | T'stat     | T'stat   | Location | No. Hrs | On     |
| lumber | Design DB | RH     | Driftpoint | Schedule | Design DB | Driftpoint | Schedule | Flag     | Average | Floor  |
| 5      | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 10     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 15     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 20     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 25     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | L1GHT30 | NO     |
| 30     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 35     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 40     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 45     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 50     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 55     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 60     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 65     | 78        | 50     | 78         |          | 70        | 70         |          | ROOH     | LIGHT30 | NO     |
| 70     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 75     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 80     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 85     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 90     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 95     | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | NO     |
| 100    | 78        | 50     | 78         |          | 70        | 70         |          | ROOM     | LIGHT30 | YES    |

| Card 22 | !      |          |        | Roof Par | ameters | • • • • • • • • |           |      | • • • • • • |
|---------|--------|----------|--------|----------|---------|-----------------|-----------|------|-------------|
|         |        | Roof     |        |          |         |                 |           |      |             |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const           | Roof      | Roof | Roof        |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type            | Direction | Tilt | Alpha       |
| 5       | 1      | NO       | 180    | 30       | .08     | 37              | 0         | 60   | .9          |
| 10      | 1      | NO       | 180    | 30       | .08     | 37              | 0         | 60   | .9          |
| 15      | 1      | YES      |        |          | .08     | 37              | 0         | 60   | .9          |
| 20      | 1      | YES      |        |          | .08     | 37              | 0         | 60   | .9          |
| 25      | 1      | NO       | 73     | 74       | .05     | 40              | 0         | 45   | .9          |
| 30      | 1      | NO       | 146    | 28       | .05     | 40              | 0         | 80   | .9          |
| 35      | 1      | NO       | 146    | 28       | .05     | 40              | 0         | 80   | .9          |
| 40      | 1      | NO       | 146    | 28       | .05     | 40              | 0         | 80   | .9          |
| 45      | 1      | NO       | 146    | 28       | .05     | 40              | 0         | 80   | .9          |
| 50      | 1      | NO       | 146    | 28       | .05     | 40              | 0         | 80   | .9          |

| Card 22 |        |          |        | Roof Par | ameters |       |           |      |       |
|---------|--------|----------|--------|----------|---------|-------|-----------|------|-------|
|         |        | Roof     |        |          |         |       |           |      |       |
| Room    | Roof   | Equal to | Roof   | Roof     | Roof    | Const | Roof      | Roof | Roof  |
| Number  | Number | Floor?   | Length | Width    | U-Value | Type  | Direction | Tilt | Alpha |
| 55      | 1      | NO       | 146    | 28       | .05     | 40    | 0         | 80   | .9    |
| 60      | 1      | NO       | 146    | 28       | .05     | 40    | 0         | 80   | .9    |
| 65      | 1      | NO       | 39     | 39       | .08     | 37    | 0         | 60   | .9    |
| 70      | 1      | NO       | 56     | 57       | .05     | 37    | 0         | 60   | .9    |
| 75      | 1      | YES      |        |          | .08     | 37    | 0         | 60   | .9    |
| 80      | 1      | YES      |        |          | .08     | 37    | 0         | 60   | .9    |
| 85      | 1      | YES      |        |          | .08     | 37    | 0         | 60   | .9    |
| 90      | 1      | YES      |        |          | .06     | 23    | Ō         | 90   | .9    |
| 95      | 1      | NO       | 113    | 113      | .06     | 23    | 0         | 90   | .9    |
| 100     | 1      | NO       | 47     | 33       | 0.05    | 40    | 0         | 80   | .9    |

|        |        |        |        |         | Wall    |           |      |       | Ground      |
|--------|--------|--------|--------|---------|---------|-----------|------|-------|-------------|
| Room   | Wall   | Wall   | Wali   | Wall    | Constuc | Wall      | Wall | Wali  | Reflectance |
| Number | Number | Length | Height | U-Value | Type    | Direction | Tilt | Alpha | Multiplier  |
| 5 .    | 1      | 360    | 11     | .17     | 58      | 330       | 0    | .74   | 1           |
| 5      | 2      | 60     | 11     | .17     | 58      | 60        | Ō    | .74   | 1           |
| 5      | 3      | 360    | 11     | .17     | 58      | 150       | 0    | .74   | 1           |
| 5      | 4      | 60     | 11     | .17     | 58      | 240       | 0    | .74   | 1           |
| 10     | 1      | 360    | 11     | .17     | 58      | 315       | 0    | .74   | 1           |
| 10     | 2      | 60     | 11     | .17     | 58      | 45        | 0    | .74   | 1           |
| 10     | 3      | 360    | 11     | .17     | 58      | 135       | 0    | .74   | 1           |
| 10     | 4      | 60     | 11     | .17     | 58      | 225       | 0    | .74   | 1           |
| 15     | 1      | 100    | 18     | .10     | 58      | 315       | 0    | .9    | 1           |
| 15     | 2      | 96     | 18     | .10     | 58      | 45        | 0    | .9    | 1           |
| 15     | 3      | 100    | 18     | .10     | 52      | 135       | 0    | .9    | 1           |
| 15     | 4      | 96     | 18     | .10     | 58      | 225       | 0    | .9    | 1           |
| 20     | 1      | 100    | 18     | .10     | 58      | 330       | Ō    | .9    | 1           |
| 20     | 2      | 96     | 18     | .10     | 58      | 60        | 0    | .9    | 1           |
| 20     | 3      | 100    | 18     | .10     | 52      | 150       | 0    | .9    | 1           |
| 20     | 4      | 96     | 18     | .10     | 58      | 240       | 0    | .9    | 1           |
| 25     | 1      | 280    | 12     | .11     | 88      | 315       | 0    | .9    | 1           |
| 25     | 2      | 60     | 12     | .11     | 88      | 45        | 0    | .9    | 1           |
| 25     | 3      | 280    | 12     | .11     | 88      | 135       | O    | .9    | 1           |
| 25     | 4      | 60     | 12     | .11     | 88      | 225       | 0    | .9    | 1           |
| 30     | 1      | 292    | 12     | .10     | 58      | 0         | 0    | .9    | 1           |
| 30     | 2      | 56     | 12     | .10     | 58      | 90        | 0    | .9    | 1           |
| 30     | 3      | 292    | 12     | .10     | 58      | 180       | 0    | .9    | 1           |
| 30     | 4      | 56     | 12     | .10     | 58      | 270       | 0    | .9    | 1           |
| 35     | 1      | 292    | 12     | .10     | 58      | 0         | 0    | .9    | 1           |
| 35     | 2      | 56     | 12     | .10     | 58      | 90        | 0    | .9    | 1           |
| 35     | 3      | 292    | 12     | .10     | 58      | 180       | 0    | .9    | 1           |
| 35     | 4      | 56     | 12     | .10     | 58      | 270       | 0    | .9    | 1           |
| 40     | 1      | 292    | 12     | .10     | 58      | 0         | 0    | .9    | 1           |
| 40     | 2      | 56     | 12     | .10     | 58      | 90        | 0    | .9    | 1           |

| Card 24 | ,      |        |        | ··· Wall P | arameters |           |      |       |             |
|---------|--------|--------|--------|------------|-----------|-----------|------|-------|-------------|
|         |        |        |        |            | Wall      |           |      |       | Ground      |
| Room    | Wall   | Wall   | Wali   | Wall       | Constuc   |           | Wall | Wall  | Reflectance |
| Number  | Number | Length | Height | U-Value    | Type      | Direction | Tilt | Alpha | Multiplier  |
| 40      | 3      | 292    | 12     | .10        | 58        | 180       | 0    | .9    | 1           |
| 40      | 4      | 56     | 12     | .10        | 58        | 270       | 0    | .9    | 1           |
| 45      | 1      | 292    | 12     | .10        | 58        | 0         | 0    | .9    | 1           |
| 45      | 2      | 56     | 12     | .10        | 58        | 90        | 0    | .9    | 1           |
| 45      | 3      | 292    | 12     | .10        | 58        | 180       | 0    | .9    | 1           |
| . 45    | 4      | 56     | 12     | .10        | 58        | 270       | 0    | .9    | 1           |
| 50      | 1      | 292    | 12     | .10        | 58        | 90        | 0    | .9    | 1           |
| 50      | 2      | 56     | 12     | .10        | 58        | 180       | 0    | .9    | 1           |
| 50      | 3      | 292    | 12     | .10        | 58        | 270       | 0    | .9    | 1           |
| 50      | 4      | 56     | 12     | .10        | 58        | 0         | 0    | .9    | 1           |
| 55      | 1      | 292    | 12     | .10        | 58        | 90        | 0    | .9    | 1           |
| 55      | 2      | 56     | 12     | .10        | 58        | 180       | 0    | .9    | 1           |
| 55      | 3      | 292    | 12     | .10        | 58        | 270       | 0    | .9    | 1           |
| 55      | 4      | 56     | 12     | .10        | 58        | 0         | 0    | .9    | 1           |
| 60      | 1      | 292    | 12     | .10        | 58        | 320       | 0    | .9    | 1           |
| 60      | 2      | 56     | 12     | .10        | 58        | 50        | 0    | .9    | 1           |
| 60      | 3      | 292    | 12     | .10        | 58        | 140       | 0    | .9    | 1           |
| 60      | 4      | 56     | 12     | .10        | 58        | 230       | 0    | .9    | 1           |
| 65      | 1      | 27.5   | 14     | .12        | 74        | 0         | 0    | .74   | 1           |
| 65      | 2      | 59     | 14     | .12        | 74        | 90        | 0    | .74   | 1           |
| 65      | 3      | 27.5   | 14     | .12        | 74        | 180       | 0    | .74   | 1           |
| 65      | 4      | 59     | 14     | .12        | 74        | 270       | 0    | .74   | 1           |
| 70      | 1      | 126    | 12     | .12        | 74        | 315       | 0    | .74   | 1           |
| 70      | 2      | 31     | 12     | .12        | 74        | 45        | 0    | .74   | 1           |
| 70      | 3      | 126    | 12     | .12        | 74        | 135       | 0    | .74   | 1           |
| 70      | 4      | 31     | 12     | .12        | 74        | 225       | 0    | .74   | 1           |
| 75      | 1      | 50     | 15     | .17        | 58        | 315       | 0    | .74   | 1           |
| 75      | 2      | 26     | 15     | .17        | 58        | 45        | 0    | .74   | 1           |
| 75      | 3      | 50     | 15     | .17        | 58        | 135       | 0    | .74   | 1           |
| 75      | 4      | 26     | 15     | .17        | 58        | 225       | 0    | .74   | 1           |
| 80      | 1      | 50     | 15     | .17        | 58        | 315       | 0    | .74   | 1           |
| 80      | 2      | 26     | 15     | .17        | 58        | 45        | 0    | .74   | 1           |
| 80      | 3      | 50     | 15     | .17        | 58        | 135       | 0    | .74   | 1           |
| 80      | 4      | 26     | 15     | .17        | 58        | 225       | 0    | .74   | 1           |
| 85      | 1      | 50     | 15     | .17        | 58        | 315       | 0    | .74   | 1           |
| 85      | 2      | 26     | 15     | .17        | 58        | 45        | 0    | .74   | 1           |
| 85      | 3      | 50     | 15     | .17        | 58        | 135       | 0    | .74   | 1           |
| 85      | 4      | 26     | 15     | .17        | 58        | 225       | 0    | .74   | 1           |
| 90      | 1      | 142    | 10.5   | .12        | 74        | 0         | 0    | .74   | 1           |
| 90      | 2      | 58     | 10.5   | .12        | 74        | 90        | 0    | .74   | 1           |
| 90      | 3      | 52     | 10.5   | .12        | 74        | 180       | 0    | .74   | 1           |
| 90      | 4      | 58     | 10.5   | .12        | 74        | 270       | 0    | .74   | 1           |
| 95      | 1      | 20     | 10.5   | .12        | 74        | 0         | 0    | .74   | 1           |
| 95      | 2      | 798    | 10.5   | .12        | 74        | 90        | 0    | .74   | 1           |
| 95      | 3      | 60     | 10.5   | .12        | 74        | 180       | 0    | .74   | 1           |
| 95      | 4      | 798    | 10.5   | .12        | 74        | 270       | 0    | .74   | 1           |
| 100     | 1      | 118    | 10     | .16        | 64        | 0         | 0    | .74   | 1           |

| Card 2 |        |        |        | Wall P  | arameters |           |      |       |             |
|--------|--------|--------|--------|---------|-----------|-----------|------|-------|-------------|
|        |        |        |        |         | Wall      |           |      |       | Ground      |
| Room   | Wall   | Wall   | Wall   | Wall    | Constuc   | Wall      | Wall | Wall  | Reflectance |
| Number | Number | Length | Height | U-Value | Type      | Direction | Tilt | Alpha | Multiplier  |
| 100    | 2      | 83     | 10     | .16     | 64        | 0         | 0    | .74   | 1           |
| 100    | 3      | 118    | 10     | .16     | 64        | 0         | 0    | .74   | 1           |
| 100    | 4      | 83     | 10     | .16     | 64        | 0         | 0    | .74   | 1           |

|       |        |        |       | Pct Glass |         |             | External | Internal | Percent  |               | Inside     |
|-------|--------|--------|-------|-----------|---------|-------------|----------|----------|----------|---------------|------------|
| com   | Wall   | Glass  | Glass | or No. of | Glass   | Shading     | Shading  | Shading  | Solar to | Visible       | Visible    |
| umber | Number | Length | Width | Windows   | U-Value | Coefficient | Type     | Type     | Ret. Air | Transmittance | Reflectanc |
|       | 1      | 5      | 3     | 34        | 1.1     | .67         |          |          |          |               |            |
|       | 2      | 5      | 3     | 6         | 1.1     | .67         |          |          |          |               |            |
| i     | 3      | 5      | 3     | 34        | 1.1     | .67         | 3        |          |          |               |            |
|       | 4      | 5      | 3     | 6         | 1.1     | <b>.</b> 67 |          |          |          |               |            |
| 0     | 1      | 5      | 3     | 34        | 1.1     | .67         |          |          |          |               |            |
| 10    | 2      | 5      | 3     | 6         | 1.1     | .67         |          |          |          |               |            |
| 10    | 3      | 5      | 3     | 34        | 1.1     | .67         | 3        |          |          |               |            |
| 10    | 4      | 5      | 3     | 6         | 1.1     | .67         |          |          |          |               |            |
| 15    | 1      | 7      | 3     | 8         | 1.1     | .67         |          |          |          |               |            |
| 15    | 2      | 7      | 3     | 7         | 1.1     | .67         |          |          |          |               |            |
| 15    | 3      | 7      | 3     | 9         | 1.1     | .67         |          |          |          |               |            |
| 15    | 4      | 7      | 3     | 7         | 1.1     | .67         |          |          |          |               |            |
| 20    | 1      | 7      | 3     | 8         | 1.1     | .67         |          |          |          |               |            |
| 20    | 2      | 7      | 3     | 7         | 1.1     | .67         |          |          |          |               |            |
| 20    | 3      | 7      | 3     | 9         | 1.1     | .67         |          |          |          |               |            |
| 20    | 4      | 7      | 3     | 7         | 1.1     | .67         |          |          |          |               |            |
| 25    | 1      | 6      | 3     | 26        | .8      | .67         |          |          |          |               |            |
| 25    | 2      | 6      | 3     | 5         | .8      | .67         |          |          |          |               |            |
| 25    | 3      |        |       | 29        | .53     | 1           |          |          |          |               |            |
| 25    | 4      | 6      | 3     | 5         | .8      | .67         |          |          |          |               |            |
| 30    | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |            |
| 30    | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 30    | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |            |
| 30    | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 35    | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |            |
| 35    | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 35    | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |            |
| 35    | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 40    | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |            |
| 40    | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 40    | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |            |
| 40    | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 45    | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |            |
| 45    | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 45    | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |            |
| 45    | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |            |
| 50    | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |            |

|        |        |        |       | Pct Glass |         |             | External | Internal | Percent  |               | Inside      |
|--------|--------|--------|-------|-----------|---------|-------------|----------|----------|----------|---------------|-------------|
| Room   | Wall   | Glass  | Glass | or No. of | Glass   | Shading     | Shading  | Shading  | Solar to | Visible       | Visible     |
| Number | Number | Length | Width | Windows   | U-Value | Coefficient | Type     | Type     | Ret. Air | Transmittance | Reflectance |
| 50     | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 50     | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |             |
| 50     | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 55     | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |             |
| 55     | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 55     | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |             |
| 55     | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 60     | 1      | 7      | 3.5   | 21        | 1.1     | .67         | 3        |          |          |               |             |
| 60     | 2      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 60     | 3      |        |       | 35        | 1.1     | .67         | 3        |          |          |               |             |
| 60     | 4      | 7      | 3.5   | 6         | 1.1     | .67         |          |          |          |               |             |
| 65     | 1      | 5      | 3     | 6         | 1.1     | .67         |          |          |          |               |             |
| 65     | 2      | 5      | 3     | 11        | 1.1     | .67         | 3        |          |          |               |             |
| 65     | 3      | 5      | 3     | 6         | 1.1     | .67         |          |          |          |               |             |
| 65     | 4      | 5      | 3     | 11        | 1.1     | .67         | 3        |          |          |               |             |
| 70     | 1      | 5      | 3     | 10        | 1.1     | .67         | 3        |          |          |               |             |
| 70     | 2      | 5      | 3     | 2         | 1.1     | .67         |          |          |          |               |             |
| 70     | 3      | 5      | 3     | 10        | 1.1     | .67         |          |          |          |               |             |
| 70     | 4      | 5      | 3     | 2         | 1.1     | .67         |          |          |          |               |             |
| 75     | 1      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 75     | 2      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 75     | 3      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 75     | 4      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 80     | 1      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 80     | 2      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 80     | 3      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 80     | 4      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 85     | 1      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 85     | 2      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 85     | 3      | 8      | 3     | 4         | .73     | .67         |          |          |          |               |             |
| 85     | 4      | 8      | 3     | 2         | .73     | .67         |          |          |          |               |             |
| 90     | 1      | 4      | 2     | 3         | 1.1     | 1           |          |          |          |               |             |
| 90     | 3      | 7      | 5     | 3         | 1.1     | 1           |          |          |          |               |             |
| 90     | 4      | 7      | 5     | 3         | 1.1     | 1           |          |          |          |               |             |
| 95     | 2      | 4      | 2     | 114       | 1.1     | .67         |          |          |          |               |             |
| 95     | 3      | 4      | 2     | 6         | 1.1     | .67         |          |          |          |               |             |
| 95     | 4      | 4      | 2     | 114       | 1.1     | .67         |          |          |          |               |             |
| 100    | 1      | 5      | 3.5   | 5         | 1.1     | 0.67        |          |          |          |               |             |
| 100    | 2      | 5      | 3.5   | 6         | 1.1     | 0.67        |          |          |          |               |             |
| 100    | 3      | 5      | 3.5   | 7         | 1.1     | 0.67        |          |          |          |               |             |
| 100    | 4      | 5      | 3.5   | 6         | 1.1     | 0.67        |          |          |          |               |             |

| Card 26 |          |          |             | \$           | chedules - |         |         |           | •••••   |             |
|---------|----------|----------|-------------|--------------|------------|---------|---------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling | Heating | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans    | Fan     | Fan       | Exhaust | Controls    |
| 5       | FSHOFFIC | FSHOFFIC |             |              |            |         |         |           |         |             |

| Card 26 |          |          |             | \$           | ichedul es | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |           | •••••   | •••••       |
|---------|----------|----------|-------------|--------------|------------|-----------------------------------------|-----------------------------------------|-----------|---------|-------------|
| Room    |          |          |             |              | Reheat     | Cooling                                 | Heating                                 | Auxiliary | Room    | Daylighting |
| Number  | People   | Lights   | Ventilation | Infiltration | Minimum    | Fans                                    | Fan                                     | Fan       | Exhaust | Controls    |
| 10      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 15      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 20      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 25      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 30      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 35      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 40      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 45      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 50      | FSHBARRP | FSHBARRL |             |              |            |                                         |                                         |           |         |             |
| 55      | FSHBARRP | FSHBARRL |             |              |            |                                         |                                         |           |         |             |
| 60      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 65      | FSHOFFIC | FSHOFF1C |             |              |            |                                         |                                         |           |         |             |
| 70      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 75      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 80      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 85      | FSHOFFIC | FSHOFF1C |             |              |            |                                         |                                         |           |         |             |
| 90      | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
| 95      | FSHBARRP | FSHBARRP |             |              |            |                                         |                                         |           |         |             |
| 100     | FSHOFFIC | FSHOFFIC |             |              |            |                                         |                                         |           |         |             |
|         |          |          |             |              |            |                                         |                                         |           |         |             |

|        |        |         |          |        |          |          | Lighting       |         | Percent   | Daylig    | ghting    |  |
|--------|--------|---------|----------|--------|----------|----------|----------------|---------|-----------|-----------|-----------|--|
| Room   | People | People  | People   | People | Lighting | Lighting | Fixture        | Ballast | Lights to | Reference | Reference |  |
| Number | Value  | Units   | Sensible | Latent | Value    | Units    | Type           | Factor  | Ret. Air  | Point 1   | Point 2   |  |
| 5      | 60     | PEOPLE  | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 10     | 60     | PEOPLE  | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 15     | 175    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 20     | 175    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 25     | 175    | SF-PERS | 250      | 200    | 2.25     | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 30     | 175    | SF-PERS | 250      | 200    | 3        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 35     | 175    | SF-PERS | 250      | 200    | 3        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 40     | 175    | SF-PERS | 250      | 200    | 3        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 45     | 175    | SF-PERS | 250      | 200    | 3        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 50     | 45     | PEOPLE  | 250      | 200    | 1.5      | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 55     | 45     | PEOPLE  | 250      | 200    | 1.5      | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 60     | 250    | SF-PERS | 250      | 200    | 3        | WATT-SF  | <b>ASHRAEZ</b> | 1       |           |           |           |  |
| 65     | 175    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 70     | 175    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 75     | 100    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 80     | 100    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |
| 85     | 100    | SF-PERS | 250      | 200    | 2        | WATT-SF  | <b>ASHRAE2</b> | 1       |           |           |           |  |
| 90     | 160    | SF-PERS | 250      | 200    | 2        | WATT-SF  | INCAND         | 1       |           |           |           |  |
| 95     | 160    | SF-PERS | 250      | 200    | 1.5      | WATT-SF  | INCAND         | 1       |           |           |           |  |
| 100    | 175    | SF-PERS | 250      | 200    | 2        | WATT-SF  | ASHRAE2        | 1       |           |           |           |  |

| Card 28 |           |           |         | Mis     | cellaneous | Equipment |          |            |             | ••••••   |          |
|---------|-----------|-----------|---------|---------|------------|-----------|----------|------------|-------------|----------|----------|
|         | Misc      |           | Energy  | Energy  |            | Energy    | Percent  | Percent    | Percent     |          |          |
| Room    | Equipment | Equipment | Consump | Consump | Schedul e  | Meter     | of Load  | Misc. Load | Misc. Sens  | Radiant  | Optional |
| Number  | Number    | Descrip   | Value   | Units   | Code       | Code      | Sensible | to Room    | to Ret. Air | Fraction | Air Path |
| 5       | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 10      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 15      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 20      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 25      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 30      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 35      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 40      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 45      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 50      | 1         | T.VETC.   | 1       | WATT-SF | FSHBARRL   | NONE      | 100      | 100        |             |          |          |
| 55      | 1         | T.VETC.   | 1       | WATT-SF | FSHBARRL   | NONE      | 100      | 100        |             |          |          |
| 60      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 65      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 70      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 75      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 80      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 85      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 90      | 1         | COMPUTER  | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |
| 95      | 1         | COMPUTER  | 1       | WATT-SF | FSHBARRL   | NONE      | 100      | 100        |             |          |          |
| 100     | 1         | COMPUTERS | 1       | WATT-SF | FSHOFFIC   | NONE      | 100      | 100        |             |          |          |

|        |         | Venti | lation  |       | • • • • • • • • • • • • • • • • • • • • | Infiltration |         |       |                 |       |  |  |  |
|--------|---------|-------|---------|-------|-----------------------------------------|--------------|---------|-------|-----------------|-------|--|--|--|
| Room   | Cooling |       | Heating |       | Cooling                                 |              | Heating |       | Reheat Minimum- |       |  |  |  |
| Number | Value   | Units | Value   | Units | Value                                   | Units        | Value   | Units | Value           | Units |  |  |  |
| 5      | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 10     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 15     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 20     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 25     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 30     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 35     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 40     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 45     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 50     | 15      | CFM-P | 15      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 55     | 15      | CFM-P | 15      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 60     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 65     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 70     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 75     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 80     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 85     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 90     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 95     | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |
| 100    | 20      | CFM-P | 20      | CFM-P |                                         |              |         |       |                 |       |  |  |  |

|        | Exposed | Slab-     |             |       |         |       | xposed Flo | юг      |         |         |
|--------|---------|-----------|-------------|-------|---------|-------|------------|---------|---------|---------|
| Room   | Floor   | Perimeter | Loss        | Floor | Floor   | Const | Temp       | Cooling | Heating | Adjacen |
| Number | Number  | Length    | Coefficient | Area  | U-Value | Type  | Flag       | Temp    | Temp    | Room No |
| 5      | 1       |           |             | 5400  | .19     | 119   | HRLYOADB   |         |         |         |
| 10     | 1       |           |             | 5400  | .19     | 119   | HRLYOADB   |         |         |         |
| 15     | 1       |           |             | 14224 | .19     | 119   | HRLYOADB   |         |         |         |
| 20     | 1       |           |             | 9600  | .19     | 119   | HRLYOADB   |         |         |         |
| 50     | 1       |           |             | 5400  | .19     | 119   | HRLYOADB   |         |         |         |
| 55     | 1       |           |             | 5400  | .19     | 119   | HRLYOADB   |         |         |         |
| 70     | 1       |           |             | 3906  | .25     | 119   | HRLYOADB   |         |         |         |

|         |        | OVERHA | NG         | • • • • • • |            | VERTICAL F | INS        |            |          |
|---------|--------|--------|------------|-------------|------------|------------|------------|------------|----------|
|         |        | Height |            |             |            | Left       |            | Right      | Adjacent |
| Shading | Glass  | Above  | Projection | Glass       | Projection | Projection | Projection | Projection | Building |
| Туре    | Height | Glass  | Out        | Width       | Left       | Out        | Right      | Out        | Flag     |
| 3       | 5      | 2      | 8          |             |            |            |            |            |          |

Card 39- System Alternative Number Description

1 AREA 100 EXISTING SYSTEMS

| Set System Deck Cooling Heating Cooling Heating Static Number Type Location SADBVh SADBVh Schedule Schedule Pressur 1 MZ 2 MZ 3 MZ 4 MZ 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ |        |        |          |         | AL VENIIL | ATION SYST | EM       |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|---------|-----------|------------|----------|----------|
| Number Type                                                                                                                                                      | System |        | Ventil   |         |           |            |          | Fan      |
| 1 MZ 2 MZ 3 MZ 4 MZ 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                             | Set    | System | Deck     | Cooling | Heating   | Cooling    | Heating  | Static   |
| 2 MZ 3 MZ 4 MZ 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                                  | Number | Type   | Location | SADBVh  | SADBVh    | Schedul e  | Schedule | Pressure |
| 3 MZ 4 MZ 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                                       | 1      | MZ     |          |         |           |            |          |          |
| 4 MZ 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                                            | 2      | MZ     |          |         |           |            |          |          |
| 5 MZ 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                                                 | 3      | MZ     |          |         |           |            |          |          |
| 6 MZ 7 MZ 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ                                                                                                                      | 4      | MZ     |          |         |           |            |          |          |
| 7 NZ 8 NZ 9 NZ 10 NZ 11 MZ 12 NZ 13 NZ 14 NZ                                                                                                                     | 5      | MZ     |          |         |           |            |          |          |
| 8 MZ 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ 14 MZ                                                                                                                          | 6      | MZ     |          |         |           |            |          |          |
| 9 MZ 10 MZ 11 MZ 12 MZ 13 MZ 14 MZ                                                                                                                               | 7      | MZ     |          |         |           |            |          |          |
| 10 MZ 11 MZ 12 MZ 13 MZ 14 MZ                                                                                                                                    | 8      | MZ     |          |         |           |            |          |          |
| 11 MZ<br>12 MZ<br>13 MZ<br>14 MZ                                                                                                                                 | 9      | MZ     |          |         |           |            |          |          |
| 12 MZ<br>13 MZ<br>14 MZ                                                                                                                                          | 10     | MZ     |          |         |           |            |          |          |
| 13 MZ<br>14 MZ                                                                                                                                                   | 11     | MZ     |          |         |           |            |          |          |
| 14 MZ                                                                                                                                                            | 12     | MZ     |          |         |           |            |          |          |
|                                                                                                                                                                  | 13     | MZ     |          |         |           |            |          |          |
| 15 MZ                                                                                                                                                            | 14     | HZ     |          |         |           |            |          |          |
|                                                                                                                                                                  | 15     | MZ     |          |         |           |            |          |          |
|                                                                                                                                                                  |        | Ť      |          |         |           |            |          |          |

----- System Section Alternative #1 ------

|        |        |          | OPTION  | AL VENTIL | ATION SYST | EM       |          |
|--------|--------|----------|---------|-----------|------------|----------|----------|
| System |        | Ventil   |         |           |            |          | Fan      |
| Set    | System | Deck     | Cooling | Heating   | Cooling    | Heating  | Static   |
| Number | Туре   | Location | SADBVh  | SADBVh    | Schedule   | Schedule | Pressure |
| 16     | MZ     |          |         |           |            |          |          |
| 17     | MZ     |          |         |           |            |          |          |
| 18     | MZ     |          |         |           |            |          |          |
| 19     | MZ     |          |         |           |            |          |          |
| 20     | SZ     |          |         |           |            |          |          |

| System<br>Set | Ref   | #1  | Ref   | #2 | Ref   | #3 | Ref | #4  | Ref | #5  | Ref   | #6  |
|---------------|-------|-----|-------|----|-------|----|-----|-----|-----|-----|-------|-----|
| Number        | Begin | End | Begin |    | Begin |    |     | End |     | End | Begin | Enc |
| 1             | 5     | 5   |       |    |       |    |     |     |     |     | •     |     |
| 2             | 10    | 10  |       |    |       |    |     |     |     |     |       |     |
| 3             | 15    | 15  |       |    |       |    |     |     |     |     |       |     |
| 4             | 20    | 20  |       |    |       |    |     |     |     |     |       |     |
| 5             | 25    | 25  |       |    |       |    |     |     |     |     |       |     |
| 6             | 30    | 30  |       |    |       |    |     |     |     |     |       |     |
| 7             | 35    | 35  |       |    |       |    |     |     |     |     |       |     |
| 8             | 40    | 40  |       |    |       |    |     |     |     |     |       |     |
| 9             | 45    | 45  |       |    |       |    |     |     |     |     |       |     |
| 10            | 50    | 50  |       |    |       |    |     |     |     |     |       |     |
| 11            | 55    | 55  |       |    |       |    |     |     |     |     |       |     |
| 12            | 60    | 60  |       |    |       |    |     |     |     |     |       |     |
| 13            | 65    | 65  |       |    |       |    |     |     |     |     |       |     |
| 14            | 70    | 70  |       |    |       |    |     |     |     |     |       |     |
| 15            | 75    | 75  |       |    |       |    |     |     |     |     |       |     |
| 16            | 80    | 80  |       |    |       |    |     |     |     |     |       |     |
| 17            | 85    | 85  |       |    |       |    |     |     |     |     |       |     |
| 18            | 90    | 90  |       |    |       |    |     |     |     |     |       |     |
| 19            | 95    | 95  |       |    |       |    |     |     |     |     |       |     |
| 20            | 100   | 100 |       |    |       |    |     |     |     |     |       |     |

| System | Cool | Heat | Return | Mn Exh | Aux | Rm Exh | Cool    | Return  | Supply | Supply | Return |
|--------|------|------|--------|--------|-----|--------|---------|---------|--------|--------|--------|
| Set    | Fan  | Fan  | Fan    | Fan    | Fan | Fan    | Fan Mtr | Fan Mtr | Duct   | Duct   | Air    |
| Number | SP   | SP   | SP     | SP     | SP  | SP     | Loc     | Loc     | Ht Gn  | Loc    | Path   |
| 1      | 1    |      |        |        |     |        |         |         |        |        |        |
| 2      | 1    |      |        |        |     |        |         |         |        |        |        |
| 3      | 2.25 |      |        |        |     |        |         |         |        |        |        |
| 4      | 2.25 |      |        |        |     |        |         |         |        |        |        |
| 5      | 1.5  |      |        |        |     |        |         |         |        |        |        |
| 6      | 1.4  |      |        |        |     |        |         |         |        |        |        |
| 7      | 1.4  |      |        |        |     |        |         |         |        |        |        |

| Card 42 |      | ••••• |        | Fan    | SP ar | nd Duct P | arameters |         |        |        |        |
|---------|------|-------|--------|--------|-------|-----------|-----------|---------|--------|--------|--------|
| System  | Cool | Heat  | Return | Mn Exh | Aux   | Rm Exh    | Cool      | Return  | Supply | Supply | Return |
| Set     | Fan  | Fan   | Fan    | Fan    | Fan   | Fan       | Fan Mtr   | Fan Mtr | Duct   | Duct   | Air    |
| Number  | SP   | SP    | SP     | SP     | SP    | SP        | Loc       | Loc     | Ht Gn  | Loc    | Path   |
| 8       | .5   |       |        |        |       |           |           |         |        |        |        |
| 9       | 1.4  |       |        |        |       |           |           |         |        |        |        |
| 10      | 1.4  |       |        |        |       |           |           |         |        |        |        |
| 11      | 1.4  |       |        |        |       |           |           |         |        |        |        |
| 12      | 1.4  |       |        |        |       |           |           |         |        |        |        |
| 13      | 1.5  |       |        |        |       |           |           |         |        |        |        |
| 14      | 1.5  |       |        |        |       |           |           |         |        |        |        |
| 15      | 1    |       |        |        |       |           |           |         |        |        |        |
| 16      | 1    |       |        |        |       |           |           |         |        |        |        |
| 17      | 1    |       |        |        |       |           |           |         |        |        |        |
| 18      | 2.5  |       |        |        |       |           |           |         |        |        |        |
| 19      | 2.5  |       |        |        |       |           |           |         |        |        |        |
| 20      | 1.0  | 1.0   |        |        |       |           |           |         |        |        |        |

| System | Main     |            | Direct | Indirect | Auxiliary | Main     | Main     |          |          | Auxiliar |
|--------|----------|------------|--------|----------|-----------|----------|----------|----------|----------|----------|
| Set    | Cooling  |            | Evap   | Evap     | Cooling   | Heating  | Preheat  | Reheat   | Mech.    | Heating  |
| Number | Coil     | Economizer | Coil   | Coil     | Coil      | Coil     | Coil     | Coil     | Humidity | Coil     |
| 1      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 2      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 3      | OFF      |            |        |          |           | OFF      | OFF      | OFF      |          |          |
| 4      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 5      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 6      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 7      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 8      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 9      | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 10     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 11     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 12     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 13     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 14     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 15     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 16     | FTSAHCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 17     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 18     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 19     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |
| 20     | FTSAMCLG |            |        |          |           | FTSAMHTG | FTSAMHTG | FTSAMHTG |          |          |

----- Equipment Section Alternative #1 -----

B-131

16 100ACREC 1

17 100ACREC 1

100 TONS

10 TONS

176

17.6 KW

```
Card 59----- Equipment Description / TOD Schedules -----
                   Elec Consump Elec Demand Demand
                                                                                                                                        ---- Demand Limit ---
Alternative Time of Day Time of Day Limit
                                                                                                                                              Temperature
                                       Schedule Max KW Alternative Description Schedule Drift
Number
                   Schedule
                                                                         BASE CASE
Card 60----- Cooling Load Assignment-----
Load All Coil Cooling
Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-
Ref Cool Ref Sizing Begin End Begin 
                        BLKPLANT 2
                                               2 15 15
                        BLKPLANT 3
3
      3
                                               3
                        BLKPLANT 4
                                                  5 17 17
5
       5
                        BLKPLANT 5
                       BLKPLANT 6
6
       6
                                                6
7
                      BLKPLANT 7
      9
                       BLKPLANT B
я
                                                  8
9
         10
                       BLKPLANT 9
10 11
                      BLKPLANT 10
                                                 11
11 12
                     BLKPLANT 12 12
12 13
                     BLKPLANT 13 13
      14
                       BLKPLANT 14
13
                                                  14
14
        15
                         BLKPLANT 16
                                                   16
                         BLKPLANT 18
15 16
                                                  19
16 17
                         BLKPLANT 20
                                                   20
Card 62----- Cooling Equipment Parameters ------
 Ref Code
                                                                                          --Capacity-- ----Energy---- Order Seq Limit
Value Units Value Units Num Type Number
                      Of --Capacity-- ----Energy----
                                                            Value Units
70.4 KW
 Num Name
                      Units Value Units
       100ACREC 1 40 TONS
       100ACREC 1
                             50 TONS
                                                        88
                                                                           KW
 3
       100ACREC 1
                             40 TONS
                                                       70.4 KU
                             25
        100ACREC 1
                                            TONS
                                                              44
                                                                           KW
                                                             52.8 KW
 5
        100ACREC 1
                                 30
                                            TONS
                              45 TONS
       100ACREC 1
                                                             79.2 KW
 6
       100ACREC 1
                             45 TONS
                                                             79.2
                                                                            KW
                                                                                                                                                                 PAR
      EQ1161 1
                             4
                                                             5.81
                                                                                                                                                                 PAR
                                             TONS
 В
                                                                           KU
        E91161
                                 46
                                             TONS
                                                              67.6
                                                                           KW
                             40
 10 100ACREC 1
                                                              70.4 KW
                                             TONS
 11 100ACREC 1
                             50
                                            TONS
                                                             88 KW
 12 100ACREC 1
                             50 TONS
                                                              88
                                                                           KW
 13 100ACREC 1
                             10
                                            TONS
                                                             17.6 KW
 14 100ACREC 1
                                 15
                                             TONS
                                                              26.4
                                                                           KW
                                                              8.48 KW
 15 Eq1161 1
                                 4.5
                                            TONS
```

| Card | 63        |           |           | Cooling Pu | mps and Ref | erences   | • • • • • • • • • • • • • • • • • • • • |         |         | • • • • • • |
|------|-----------|-----------|-----------|------------|-------------|-----------|-----------------------------------------|---------|---------|-------------|
| Cool | CHILLED   | WATER     | CONDE     | NSER       | HT REC      | or AUX    | Switch-                                 |         |         |             |
| Ref  | Full Load | Full Load | Full Load | Full Load  | Full Load   | Full Load | over                                    | Cold    | Cooling | Misc.       |
| Num  | Value     | Units     | Value     | Units      | Value       | Units     | Control                                 | Storage | Tower   | Access.     |
| 1    | 2.24      | KW        |           |            |             |           |                                         |         |         | 3           |
| 2    | 2.24      | KW        |           |            |             |           |                                         |         |         | 5           |
| 3    | 1.12      | KW        |           |            |             |           |                                         |         |         |             |
| 4    | 1.12      | KW        |           |            |             |           |                                         |         |         |             |
| 5    | .37       | KW        |           |            |             |           |                                         |         |         |             |
| 6    | 2.24      | KW        |           |            |             |           |                                         |         |         |             |
| 7    | 2.24      | KW        |           |            |             |           |                                         |         |         |             |
| 10   | 1.12      | KW        |           |            |             |           |                                         |         |         |             |
| 11   | 3.73      | KW        |           |            |             |           |                                         |         |         |             |
| 12   | 1.49      | KW        |           |            |             |           |                                         |         |         |             |
| 13   | 1.12      | KW        |           |            |             |           |                                         |         |         |             |
| 14   | 1.49      | KW        |           |            |             |           |                                         |         |         |             |
| 16   | 5.6       | KW        |           |            |             |           |                                         |         |         |             |
| 17   | .75       | KW        |           |            |             |           |                                         |         |         |             |

| Card 65    |             |       | ••••  |       |      | Heating   | Load Assign | ment      |           |           |           |           |
|------------|-------------|-------|-------|-------|------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|
| Load       | All Coil    |       |       |       |      |           |             |           |           |           |           |           |
| Assignment | Loads To    | -Grou | ap 1- | -Grou | p 2- | -Group 3- | -Group 4-   | -Group 5- | -Group 6- | -Group 7- | -Group 8- | -Group 9- |
| Reference  | Heating Ref | Begir | End   | Begir | End  | Begin End | Begin End   | Begin End | Begin End | Begin End | Begin End | Begin End |
| 1          | 1           | 1     | 1     |       |      |           |             |           |           |           |           |           |
| 2          | 2           | 2     | 2     | 15    | 15   |           |             |           |           |           |           |           |
| 3          | 3           | 3     | 3     |       |      |           |             |           |           |           |           |           |
| 4          | 4           | 4     | 4     |       |      |           |             |           |           |           |           |           |
| 5          | 5           | 5     | 5     | 17    | 17   |           |             |           |           |           |           |           |
| 6          | 6           | 6     | 6     |       |      |           |             |           |           |           |           |           |
| 7          | 7           | 7     | 7     |       |      |           |             |           |           |           |           |           |
| 8          | 8           | 8     | 8     |       |      |           |             |           |           |           |           |           |
| 9          | 9           | 9     | 9     |       |      |           |             |           |           |           |           |           |
| 10         | 10          | 10    | 10    |       |      |           |             |           |           |           |           |           |
| 11         | 11          | 11    | 11    |       |      |           |             |           |           |           |           |           |
| 12         | 12          | 12    | 12    |       |      |           |             |           |           |           |           |           |
| 13         | 13          | 13    | 13    |       |      |           |             |           |           |           |           |           |
| 14         | 14          | 14    | 14    |       |      |           |             |           |           |           |           |           |
| 15         | 15          | 16    | 16    |       |      |           |             |           |           |           |           |           |
| 16         | 16          | 18    | 19    |       |      |           |             |           |           |           |           |           |
| 17         | 18          | 20    | 20    |       |      |           |             |           |           |           |           |           |

| Card 67 | <b>7</b> |        |         |       | Hea   | iting Equi | ipment Pa | rameters · | • • • • • • • • • • • • • • • • • • • • |         |      |       |       |        |
|---------|----------|--------|---------|-------|-------|------------|-----------|------------|-----------------------------------------|---------|------|-------|-------|--------|
| Heat    | Equip    | Number | HW Pmp  |       |       |            | Energy    |            | Seq                                     | Switch  |      |       |       | Demand |
| Ref     | Code     | Of     | Full Ld |       | Cap'y |            | Rate      |            | Order                                   | over    | Hot  | Misc. |       | Limit  |
| Number  | Name     | Units  | Value   | Units | Value | Units      | Value     | Units      | Number                                  | Control | Strg | Acc.  | Cogen | Number |
| 1       | BOILERWT | 1      | 1.12    | KW    | 618   | MBH        | 850       | HBH        |                                         |         |      | 2     |       |        |
| 2       | BOILERWT | 1      | 1.12    | KW    | 618   | MBH        | 850       | MBH        |                                         |         |      | Z     |       |        |
| 3       | BOILERUT | 1      | 0.37    | KW    | 109   | MBH        | 150       | MBH        |                                         |         |      |       |       |        |
| 4       | BOILERUT | 1      | .37     | KW    | 109   | MBH        | 150       | MBH        |                                         |         |      | 1     |       |        |
| 5       | BOILERWT | 1      | .37     | KW    | 596   | MBH        | 820       | MBH        |                                         |         |      |       |       |        |

| Card 67 |          |        |         |       | Hea   | ting Equip | ment Par | ameters | • • • • • • • • • • • • • • • • • • • • |         |      |       |       |        |
|---------|----------|--------|---------|-------|-------|------------|----------|---------|-----------------------------------------|---------|------|-------|-------|--------|
| Heat    | Equip    | Number | HW Pmp  |       |       |            | Energy   |         | Seq                                     | Switch  |      |       |       | Demand |
| Ref     | Code     | Of     | Full Ld |       | Cap'y |            | Rate     |         | Order                                   | over    | Hot  | Misc. |       | Limit  |
| Number  | Name     | Units  | Value   | Units | Value | Units      | Value    | Units   | Number                                  | Control | Strg | Acc.  | Cogen | Number |
| 6       | BOILERWT | 1      | .75     | KW    | 596   | MBH        | 820      | MBH     |                                         |         |      |       |       |        |
| 7       | BOILERWT | 1      | .75     | KW    | 596   | HBH        | 820      | MBH     |                                         |         |      |       |       |        |
| 8       | E92454   | 1      |         |       | 515.2 | MBH        | 53.59    | KW      |                                         |         |      |       |       |        |
| 9       | BOILERWT | 1      | .75     | KW    | 596   | MBH        | 820      | MBH     |                                         |         |      |       |       |        |
| 10      | BOILERWT | 1      | .75     | KW    | 596   | MBH        | 820      | MBH     |                                         |         |      |       |       |        |
| 11      | BOILERWT | 1      | .75     | KW    | 596   | MBH        | 820      | MBH     |                                         |         |      |       |       |        |
| 12      | BOILERWT | 1      | .75     | KW    | 1273  | MBH        | 1750     | MBH     |                                         |         |      |       |       |        |
| 13      | BOILERWT | 1      | .56     | KW    | 327   | MBH        | 450      | MBH     |                                         |         |      |       |       |        |
| 14      | BOILERWT | 1      | 1.12    | KW    | 145   | MBH        | 200      | MBH     |                                         |         |      |       |       |        |
| 15      | EQ2454   | 1      |         |       | 33    | MBH        | 45       | MBH     |                                         |         |      |       |       |        |
| 16      | STEAMBLR | 1      |         |       | 727   | MBH        | 1000     | MBH     | 1                                       |         |      |       |       |        |
| 17      | STEAMBLR | 1      |         |       | 727   | MBH        | 1000     | MBH     | 2                                       |         |      |       |       |        |
| 18      | BOILERWT | 1      | .37     | KW    | 327   | MBH        | 450      | MBH     |                                         |         |      |       |       |        |

| Card 71- |                  |        | Base   | Utility Pa | arameters |           |          |          | •••••   |
|----------|------------------|--------|--------|------------|-----------|-----------|----------|----------|---------|
| Base     | Base             | Hourly | Hourly |            |           | Equip     | Demand   |          |         |
| Utility  | Utility          | Demand | Demand | Schedul e  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip          | Value  | Units  | Code       | Туре      | Number    | Number   | Temp     | Temp    |
| 1        | PIPE-PUMP HT LOS | 1.2    | TONS   | FTSAMCLG   | CHILL-LD  | 1         |          |          |         |
| 2        | PIPE HT LOS      | 10.98  | MBH    | FTSAMHTG   | HOT-LD    | 1         |          |          |         |
| 3        | PIPE-PUMP HT LOS | 1.32   | TONS   | FTSAMCLG   | CHILL-LD  | 2         |          |          |         |
| 4        | PIPE HT LOSS     | 12.81  | MBH    | FTSAMHTG   | HOT-LD    | 2         |          |          |         |
| 5        | PIPE-PUMP HT LOS | 1.03   | TONS   | FTSAMCLG   | CHILL-LD  | 3         |          |          |         |
| 6        | PIPE HT LOSS     | 13.64  | MBH    | FTSAMHTG   | HOT-LD    | 3         |          |          |         |
| 7        | PIPE-PUMP HT LOS | .83    | TONS   | FTSAMCLG   | CHILL-LD  | 4         |          |          |         |
| 8        | PIPE HT LOSS     | 10.14  | MBH    | FTSAMHTG   | HOT-LD    | 4         |          |          |         |
| 9        | PIPE-PUMP HT LOS | .89    | TONS   | FTSAMCLG   | CHILL-LD  | 5         |          |          |         |
| 10       | PIPE HT LOSS     | 6.67   | MBH    | FTSAMHTG   | HOT-LD    | 5         |          |          |         |
| 11       | PIPE-PUMP HT LOS | 1.4    | TONS   | FTSAMCLG   | CHILL-LD  | 6         |          |          |         |
| 12       | PIPE HT LOS      | 10.21  | MBH    | FTSAMHTG   | HOT-LD    | 6         |          |          |         |
| 13       | PIPE-PUMP HT LOS | 1.4    | TONS   | FTSAMCLG   | CHILL-LD  | 7         |          |          |         |
| 14       | PIPE HT LOSS     | 10.21  | MBH    | FTSAMHTG   | HOT-LD    | 7         |          |          |         |
| 15       | COMPR HEAT       | 1.5    | TONS   | FTSAMCLG   | CHILL-LD  | 9         |          |          |         |
| 16       | REFRIG. HT LOSS  | 10.2   | MBH    | FTSAMHTG   | HOT-LD    | 8         |          |          |         |
| 17       | PIPE-PUMP HT LOS | 1.09   | TONS   | FTSAMCLG   | CHILL-LD  | 10        |          |          |         |
| 18       | PIPE HT LOSS     | 10.21  | MBH    | FTSAMHTG   | HOT-LD    | 9         |          |          |         |
| 19       | PIPE-PUMP HT LOS | 1.98   | TONS   |            | CHILL-LD  | 11        |          |          |         |
| 20       | PIPE HT LOSS     | 10.07  | MBH    | FTSAMHTG   |           | 10        |          |          |         |
| 21       | PIPE NT LOSS     | 10.07  | МВН    | FTSAMHTG   |           | 11        |          |          |         |
| 22       | PIPE-PUMP HT LOS | 1.14   | TONS   |            | CHILL-LD  |           |          |          | ,       |
| 23       | PIPE HT LOSS     | 9.12   | МВН    | FTSAMHTG   |           | 12        |          |          |         |
| 24       | PIPE-PUMP HT LOS | .53    | TONS   |            | CHILL-LD  | 13        |          |          |         |
| 25       | PIPE HT LOSS     | 3.03   | мвн    | FTSAMHTG   |           | 13        |          |          |         |
| 26       | PIPE-PUMP HT LOS | 0.72   | TONS   |            | CHILL-LD  |           |          |          |         |
| 27       | PIPE HT LOSS     | 5.5    | MBH    | FTSAMHTG   |           | 14        |          |          |         |
|          |                  |        |        |            |           | • •       |          |          |         |

| Card 71                                                                     |                                                 |                                                                                                    |                                                          |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
|-----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------------------------|----------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------|
| Base                                                                        | Base                                            |                                                                                                    | Hou                                                      | ty Hou                                                             | ırly                                     |                                        |                                                   | Equi                                                           | р                                                | Demand                  |          |                                             |                                      |                                                           |
| <b>Jtility</b>                                                              | / Utili                                         | ty                                                                                                 | Dema                                                     | and Der                                                            | nand So                                  | chedul e                               | Energy                                            | Refe                                                           | rence                                            | Limiting                | Entering | Leav                                        | ing                                  |                                                           |
| lumber                                                                      | Descr                                           | ip                                                                                                 | Valu                                                     | ue Uni                                                             | its Co                                   | ode                                    | Type                                              | Numb                                                           | er                                               | Number                  | Temp     | Temp                                        |                                      |                                                           |
| 28                                                                          | PIPE                                            | HT LOSS                                                                                            | .11                                                      |                                                                    |                                          | TSAMCLG                                |                                                   | .D 15                                                          |                                                  |                         |          |                                             |                                      |                                                           |
| 29                                                                          | PIPE                                            | HT LOSS                                                                                            | 1.83                                                     | S MBI                                                              | f F1                                     | TSAMHTG                                | HOT-LD                                            | 15                                                             |                                                  |                         |          |                                             |                                      |                                                           |
| 30                                                                          | PIPE-                                           | PUMP HT LC                                                                                         | os 3                                                     | TO                                                                 |                                          | TSAMCLG                                |                                                   | .D 16                                                          |                                                  |                         |          |                                             |                                      |                                                           |
| 31                                                                          | PIPE                                            | HT LOSS                                                                                            | 22.8                                                     | B MBI                                                              | l F                                      | TSAMHTG                                | HOT-LD                                            | 16                                                             |                                                  |                         |          |                                             |                                      |                                                           |
| 32                                                                          |                                                 | PUMP HT LO                                                                                         |                                                          |                                                                    |                                          | TSAMCLG                                |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
| 33                                                                          | PIPE                                            | HT LOSS                                                                                            | 3.3                                                      | 2 <b>M</b> 81                                                      | ł F                                      | TSAMHTG                                | HOT-LD                                            | 18                                                             |                                                  |                         |          |                                             |                                      |                                                           |
| Card 75                                                                     | 5                                               |                                                                                                    |                                                          |                                                                    | н                                        | iscellan                               | eous Acc                                          | essory                                                         |                                                  |                         |          |                                             |                                      | ••••                                                      |
|                                                                             | #1                                              |                                                                                                    |                                                          |                                                                    | #2                                       |                                        |                                                   | •                                                              |                                                  | #3                      |          |                                             |                                      |                                                           |
| Misc E                                                                      |                                                 | Energy                                                                                             | Energy                                                   | Sched                                                              | Equi                                     | p En                                   | ergy                                              | Energy                                                         | Sched                                            |                         | Ene      | rgy                                         | Energy                               | Sched                                                     |
|                                                                             | Code                                            | Value                                                                                              | Units                                                    | Code                                                               | Code                                     | -                                      |                                                   | Units                                                          |                                                  |                         |          |                                             | Units                                |                                                           |
|                                                                             | EQ5240                                          | 3.73                                                                                               | KW                                                       |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
|                                                                             | E95020                                          | 1.12                                                                                               | KW                                                       |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
| 3 (                                                                         | EQ5001                                          | 2.24                                                                                               | KW                                                       |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
| 4 1                                                                         | EQ5020                                          | 1.12                                                                                               | KW                                                       |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
| 5 .0                                                                        | E95001                                          | 2.24                                                                                               | KW                                                       |                                                                    |                                          |                                        |                                                   |                                                                |                                                  |                         |          |                                             |                                      |                                                           |
|                                                                             |                                                 | E                                                                                                  | quipment                                                 | Section                                                            | Alterna                                  | itive #2                               | ******                                            | •••••                                                          | •••••                                            |                         |          |                                             |                                      |                                                           |
|                                                                             | 9                                               | Etec Consu                                                                                         |                                                          | Equi                                                               | pment D                                  |                                        |                                                   |                                                                |                                                  |                         |          | Demand                                      | Limit -                              |                                                           |
| Card 5                                                                      | 9                                               |                                                                                                    | mp Elec                                                  | Equi<br>Demand D<br>of Day L                                       | pment D<br>emand<br>imit                 | escripti)                              | ion / TO                                          | D Sched                                                        | ıles                                             |                         | ••••     | Demand<br>Te                                | Limit -<br>emperatu                  |                                                           |
| Card 5                                                                      | 9<br>!<br>wative 1                              | Elec Consu                                                                                         | mp Elec<br>y Time                                        | Equi<br>Demand D<br>of Day L                                       | pment D<br>emand<br>imit<br>ax KW        | escripti<br>Alternat                   | ion / TO                                          | D Sched                                                        | ules                                             |                         |          | Demand<br>Te                                | Limit -                              |                                                           |
| Card 5<br>Altern<br>Number                                                  | 9<br>!<br>wative 1                              | Elec Consu<br>Time of Da                                                                           | mp Elec<br>y Time                                        | Equi<br>Demand D<br>of Day L                                       | pment D<br>emand<br>imit<br>ax KW        | escripti)                              | ion / TO                                          | D Sched                                                        | ules                                             |                         | ••••     | Demand<br>Te                                | Limit -<br>emperatu                  |                                                           |
| Card 5<br>Altern<br>Number<br>2<br>Card 6                                   | 9<br>Enative 1                                  | Elec Consu<br>Time of Da<br>Schedule                                                               | mp Elec<br>y Time<br>Sched                               | Equi<br>Demand D<br>of Day L<br>Jule M                             | pment D<br>emand<br>imit<br>ax KW        | Descripti<br>Alternat<br>AIR COOL      | ion / TO<br>tive Des<br>LED SING                  | D Schedi<br>criptio                                            | ules<br>n<br># CHILL                             | .ERS                    | Sched    | Demand<br>Te<br>Jule                        | Limit -<br>emperatu<br>Drift         | <br>ire                                                   |
| Card 5<br>Altern<br>Number<br>2<br>Card 6<br>Load                           | 9<br>lative 1                                   | Elec Consu<br>Time of Da<br>Schedule                                                               | mp Elec<br>y Time<br>Sched                               | Equi<br>Demand D<br>of Day L<br>Jule M                             | pment D<br>emand<br>imit<br>ax KW        | Alternat<br>AIR COOL                   | ion / TO<br>tive Des<br>LED SING                  | D Schede<br>cription<br>LE SCRE                                | ules<br>n<br>d CHILL<br>ment                     | ERS                     | Sched    | Demand<br>Te<br>Jule                        | Limit -<br>emperatu<br>Drift         | ire                                                       |
| Card 5<br>Altern<br>Number<br>2<br>Card 6<br>Load<br>Asgn                   | 9<br>lative 1<br>5<br>60<br>All Coi<br>Loads To | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme                                     | mp Elec<br>y Time<br>Sched                               | Equi<br>Demand D<br>of Day L<br>Jule M                             | pment D<br>emand<br>imit<br>ax KW        | Alternat AIR COOL Cooli                | ion / TO<br>tive Des<br>LED SING<br>ing Load      | D Schedo<br>cription<br>LE SCREI<br>Assign                     | ules i CHILL ment                                | .ERS                    | Sched    | Demand<br>Te<br>ule                         | Limit -<br>emperatu<br>Drift<br>Grou | ire<br>ire<br>up 8Group                                   |
| Card 5<br>Altern<br>Number<br>2<br>Card 6<br>Load<br>Asgn<br>Ref            | 9                                               | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme<br>f Sizing                         | mp Elec<br>y Time<br>Sched                               | Equi<br>Demand D<br>of Day L<br>Jule M<br>M<br>yp 1Gr<br>n End Beg | pment D<br>emand<br>imit<br>ax KW        | Alternat AIR COOL Cooli                | ion / TO<br>tive Des<br>LED SING<br>ing Load      | D Schedo<br>cription<br>LE SCREI<br>Assign                     | ules i CHILL ment                                | .ERS                    | Sched    | Demand<br>Te<br>ule                         | Limit -<br>emperatu<br>Drift<br>Grou | ire                                                       |
| Card 5<br>Altern<br>Number<br>2<br>Card 6<br>Load<br>Asgn<br>Ref            | 9<br>lative 1<br>5<br>60<br>All Coi<br>Loads To | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme                                     | mp Elec<br>y Time<br>Sched                               | Equi<br>Demand D<br>of Day L<br>Jule M                             | pment D<br>emand<br>imit<br>ax KW        | Alternat AIR COOL Cooli                | ion / TO<br>tive Des<br>LED SING<br>ing Load      | D Schedo<br>cription<br>LE SCREI<br>Assign                     | ules i CHILL ment                                | .ERS                    | Sched    | Demand<br>Te<br>ule                         | Limit -<br>emperatu<br>Drift<br>Grou | ire<br>ire<br>up 8Group                                   |
| Card 5<br>Altern<br>Number<br>2<br>Card 6<br>Load<br>Asgn<br>Ref<br>1       | gative 1                                        | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme<br>f Sizing<br>BLKPLAN              | mp Elec<br>y Time<br>Sched                               | Demand Dof Day Lule Mule Mule Mule Mule Mule Mule Mule M           | pment D<br>emand<br>imit<br>ax KW        | Alternat AIR COOL Cooli -Group Begin E | tive Des<br>ED SING<br>ing Load<br>3Gr<br>End Beg | D Schede<br>cription<br>LE SCREI<br>Assign<br>oup 4-<br>in End | n de CHILL<br>Terres de Chille<br>Group<br>Begin | ERS<br>5Gro<br>End Begi | Sched    | Demand<br>Te<br>lule                        | Limit - emperatu Drift Groud Begin   | up 8Group<br>n End Begin (                                |
| Card 5  Altern Number 2  Card 6 Load Asgn Ref 1                             | gative 1                                        | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme<br>f Sizing<br>BLKPLAN              | mp Elec<br>y Time<br>Sched<br>ent -Grou<br>Begir<br>IT 1 | Demand D of Day L tule M op 1Gr n End Beg 20                       | pment D emand imit ax KW  roup 2- in End | Alternat AIR COOL Cooli -Group Begin E | tive Des<br>ED SING<br>ing Load<br>3Gr<br>End Beg | D Schede cription LE SCREI Assign oup 4- in End Paramet        | n de CHILL<br>ment                               | ERS  5Grown End Begin   | Sched    | Demand Telule  Group 7: egin End            | Limit - emperatu Drift Ground Begin  | up 8Group<br>n End Begin (                                |
| Card 5  Altern Number 2  Card 6 Load Asgn Ref 1  Card 6 Cool E              | gative 1                                        | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme<br>f Sizing<br>BLKPLAN              | mp Elec<br>y Time<br>Sched                               | Demand D of Day L tule M op 1Gr n End Beg 20                       | pment D emand imit ax KW  roup 2- in End | Alternat AIR COOL Cooli -Group Begin E | tive Des<br>ED SING<br>ing Load<br>3Gr<br>End Beg | D Schede cription LE SCREI Assign oup 4- in End Paramet        | TO GROUP BEGIN                                   | ERS  5 Gro End Begi     | Sched    | Demand Telule  Group 7- Segin End Seq Ord   | Limit - emperatu Drift Ground Begin  | up 8Group<br>n End Begin I                                |
| Card 5 Altern Number 2 Card 6 Load Asgn Ref 1 Card 6 Cool E Ref C Num N     | 9 Native 1                                      | Elec Consu<br>Time of Da<br>Schedule<br>L Cooling<br>O Equipme<br>f Sizing<br>BLKPLAN              | mp Elec<br>y Time<br>Sched<br>ent -Grou<br>Begin<br>IT 1 | Demand Dof Day Lule Mule Mule Mule Mule Mule Mule Mule M           | pment D emand imit ax KW  coup 2- in End | Alternat AIR COOL Cooli -Group Begin E | tive Des<br>ED SING<br>ing Load<br>3Gr<br>End Beg | D Schede cription LE SCREI Assign oup 4- in End Paramet        | TO GROUP BEGIN                                   | ERS  5Grown End Begin   | Sched    | Demand Telule  Group 7- gin End Seq Ord Num | Limit - emperatu Drift Grou d Begin  | up 8Group<br>n End Begin  <br>Demand<br>Limit<br>e Number |
| Card 5 Altern Number 2 Card 6 Load Asgn Ref 1 Card 6 Cool E Ref C Num N 1 E | gative 1                                        | Elec Consu<br>Time of Da<br>Schedule  L Cooling O Equipme f Sizing BLKPLAN  Num - Of - Units V 1 2 | mp Elec<br>y Time<br>Sched                               | Demand Dof Day Lule Mule Mule Mule Mule Mule Mule Mule M           | pment D emand imit ax KW  roup 2- in End | Alternat AIR COOL Cooli -Group Begin E | tive Des<br>ED SING<br>ing Load<br>3Gr<br>End Beg | D Schede cription LE SCREI Assign oup 4- in End Paramet        | TO GROUP BEGIN                                   | ERS  5 Gro End Begi     | Sched    | Demand Telule  Group 7- Segin End Seq Ord   | Limit - emperatu Drift Ground Begin  | up 8Group<br>n End Begin<br>Demand<br>Limit<br>e Number   |

|                                                         | l Load                     | WATER<br>Full Load                            | CONDE                              |                                               |                                   |                                                       | Swi                                                | tch-         |          |          |                |                             |                   |        |
|---------------------------------------------------------|----------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------|-----------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------|----------|----------|----------------|-----------------------------|-------------------|--------|
| um Valu<br>22.3                                         |                            | Full Load                                     |                                    |                                               |                                   |                                                       |                                                    | _            |          | A 17     |                |                             |                   |        |
| 22.3                                                    | ue                         |                                               |                                    |                                               |                                   |                                                       |                                                    |              | old      | Cooling  |                |                             |                   |        |
|                                                         |                            | Units                                         | Value                              | Units                                         | Value                             | Units                                                 | Con                                                | ntrol S      | torage   |          | Access         | S.                          |                   |        |
| 22.3                                                    |                            | KW                                            |                                    |                                               |                                   |                                                       |                                                    |              |          | 1        |                |                             |                   |        |
|                                                         | 38                         | KW                                            |                                    |                                               |                                   |                                                       |                                                    |              |          | 1        |                |                             |                   |        |
|                                                         |                            |                                               |                                    |                                               |                                   |                                                       |                                                    |              |          |          |                |                             |                   |        |
| ard 71-                                                 | Base                       | ••••••                                        | Hourly                             | Hourly                                        | Utility F                         | Parameters                                            | Equip                                              |              | nand     |          |                | •-                          |                   |        |
| tility                                                  | Utility                    | у                                             | Demand                             | Demand                                        | Schedule                          | Energy                                                | Referen                                            | nce Lin      | niting   | Entering | Leavi          | ng                          |                   |        |
| umber                                                   | Descri                     | P                                             | Value                              | Units                                         | Code                              | Type                                                  | Number                                             | Nun          | ber      | Temp     | Temp           |                             |                   |        |
|                                                         | PIPE-P                     | UMP LOSS                                      | 18.53                              | TONS                                          | FTSAMCLG                          | CHILL-LD                                              | 1                                                  |              |          |          |                |                             |                   |        |
| and 7/-                                                 |                            |                                               |                                    | Condenser                                     | / Coolin                          | n Touer Da                                            | rameters                                           |              |          |          |                |                             |                   |        |
|                                                         | cooling                    |                                               |                                    | Energy                                        | Energy                            | , 10mc, 10                                            | , and tell 3                                       |              |          | t Low Sp |                | w Spd                       |                   |        |
| ower T                                                  | -                          | Capacity                                      | Capacity                           |                                               |                                   | Fluid                                                 | Tower                                              |              |          | w Energy |                | егду                        |                   |        |
|                                                         | ode                        | Value                                         | Units                              | Value                                         | Units                             | Туре                                                  | Туре                                               |              |          | d Value  |                | its                         |                   |        |
|                                                         | 95200                      | Value                                         | Dirits                             | 0                                             | KW                                | 1750                                                  | 175~                                               |              | EUR OF   |          | J.,            | .,                          |                   |        |
|                                                         | 9200                       |                                               |                                    | •                                             | N=                                |                                                       |                                                    |              |          |          |                |                             |                   |        |
| •••••                                                   | •••••                      | Equ                                           | ipment Sect                        | ion Altern                                    | native #3                         | •••••                                                 |                                                    |              |          |          |                |                             |                   |        |
|                                                         |                            |                                               | ipment Sect                        | Equipment                                     | Descript                          |                                                       |                                                    |              |          |          |                |                             |                   |        |
| Card 59-                                                | El                         | ec Consump                                    |                                    | Equipment                                     | Descript                          |                                                       |                                                    |              | •••••    |          | emand L        |                             | •                 |        |
| Card 59-                                                | El<br>tive Ti              | ec Consump                                    | Elec Dema                          | Equipment<br>and Demand<br>ay Limit           | Descript                          |                                                       | Schedule                                           |              |          |          | mand L<br>Ten  | imit                        | •                 |        |
| Card 59-<br>Alternat<br>Number                          | El<br>tive Ti              | ec Consump                                    | Elec Dema                          | Equipment<br>and Demand<br>ay Limit           | Descript<br>Alterna               | ion / 100                                             | Schedule                                           | s •••••      |          | De       | mand L<br>Ten  | .imit<br>nperatur           | •                 |        |
| Card 59-<br>Alternat<br>Number<br>3                     | El<br>tive Ti<br>Sc        | ec Consump<br>ime of Day<br>chedule           | Elec Dema                          | Equipment<br>and Demand<br>ay Limit<br>Max KW | Descript<br>Alterna<br>NATURAL    | ion / 100<br>tive Descr<br>DRAFT WAT                  | Schedule<br>ription<br>ER TUBE                     | S<br>BOILERS |          | Schedul  | emand L<br>Ten | imit<br>nperatur<br>Drift   | e                 |        |
| Card 59-<br>Alternat<br>Number<br>3<br>Card 65-<br>Load | El<br>tive Ti<br>Sc        | ec Consump<br>ime of Day<br>chedule           | Elec Dema<br>Time of D<br>Schedule | Equipment<br>and Demand<br>ay Limit<br>Max KW | Descript Alterna NATURAL          | ion / TOD<br>tive Descr<br>DRAFT WAT                  | Schedule<br>Piption<br>ER TUBE                     | BOILERS      |          | Schedul  | emand L<br>Ten | imit nperatur Drift         | e                 |        |
| Card 59-<br>Number<br>3<br>Card 65-<br>Load<br>Assignma | El<br>tive Ti<br>Sc<br>All | ec Consump<br>ime of Day<br>chedule<br>L Coil | Elec Dema<br>Time of D<br>Schedule | Equipment<br>and Demand<br>ay Limit<br>Max KW | Descript  Alterna NATURAL  Heatin | ion / TOD  tive Descr DRAFT WAT  ig Load Ass  - Group | Schedule<br>Fiption<br>ER TUBE<br>Signment<br>4Gro | BOILERS      | -Group ( | Schedul  | Ten            | imit mperatur Drift Group 8 | -<br>e<br><br>3Gr | oup 9- |

| Card 71- |              |        | Base   | Utility P | arameters | •••••     |          |          | ******  |
|----------|--------------|--------|--------|-----------|-----------|-----------|----------|----------|---------|
| Base     | Base         | Hourly | Hourly |           |           | Equip     | Demand   |          |         |
| Utility  | Utility      | Demand | Demand | Schedule  | Energy    | Reference | Limiting | Entering | Leaving |
| Number   | Descrip      | Value  | Units  | Code      | Type      | Number    | Number   | Temp     | Temp    |
| 1        | PIPE HT LOSS | 49.92  | HBH    | FTSAMHTG  | HOT-LD    | 1         |          |          |         |
| 2        | PIPE HT LOSS | 110.89 | MBH    | FTSAMHTG  | HOT-LD    | 2         |          |          |         |

### Utility Description Reference Table

#### Schedules:

FSHBARRL F.S.H. BARRACKS LIGHT/MISC. SCHEDULE
FSHBARRP F.S.H. BARRACKS PEOPLE SCHEDULE
FSHOFFIC F.S.H. OFFICE INTERNAL LOAD SCHEDULE
FTSAMCLG EEAP BOILER/CHILLER STUDY
OFF ALWAYS OFF

#### System:

MZ MULTIZONE SZ SINGLE ZONE

### Equipment:

#### Cooling:

100ACREC AREA 100 EXIST AIR COOLED RECIP CHILLR EQ1161 AIR COOLED COND COMP < 15 TONS EQ1510 AIR COOLED SERIES R (RTAA)

#### Heating:

BOILERWT WATERTUBE BOILER
EQ2454 RESIDENTIAL GAS FURNACE WITH FAN
STEAMBLE GAS FIRED STEAM BOILER
Tower:

### E95200 CONDENSER FANS

#### Misc:

EQ5001 CHILLED WATER PUMP - CONSTANT VOLUME
EQ5020 HEATING WATER CIRCULATION PUMP
EQ5240 BOILER FORCED DRAFT FAN

> 030185.04 EEAP BOILER-CHILLER STUDY FT. SAM HOUSTON - SAN ANTONIO, TX. CORPS. OF ENGINEERS - FORT WORTH, TX. HUITT-ZOLLARS INC.

## AREA 100

Weather File Code:

Enthalpy Factor:

 Location:
 SAN ANTONIO, TEXAS

 Latitude:
 29.0 (deg)

 Longitude:
 98.0 (deg)

 Time Zone:
 6

 Elevation:
 792 (ft)

 Barometric Pressure:
 29.0 (in. Hg)

Summer Clearness Number: 0.90
Winter Clearness Number: 0.90
Summer Design Dry Bulb: 97 (F)
Summer Design Wet Bulb: 76 (F)
Winter Design Dry Bulb: 30 (F)
Summer Ground Relectance: 0.20
Winter Ground Relectance: 0.20

Air Density: 0.0738 (Lbm/cuft)
Air Specific Heat: 0.2444 (Btu/lbm/F)
Density-Specific Heat Prod: 1.0818 (Btu-min./hr/cuft/F)
Latent Heat Factor: 4,761.9 (Btu-min./hr/cuft)

4.4255 (Lb-min./hr/cuft)

Design Simulation Period: June To November
System Simulation Period: January To December
Cooling Load Methodology: TETD/Time Averaging

Time/Date Program was Run: 12:36: 0 6/12/95
Dataset Name: FSH100 .TM

SYSTEM TOTALS LOAD PROFILE - ALTERNATIVE 1
AREA 100 EXISTING SYSTEMS

## System Totals

| Percent   | Cool  | ing Loa | d     | Heatin     | g Load | • • • • • • |
|-----------|-------|---------|-------|------------|--------|-------------|
| Design    | Cap.  | Hours   | Hours | Capacity   | Hours  | Hours       |
| Load      | (Ton) | (%)     |       | (Btuh)     | (%)    |             |
|           |       |         |       |            |        |             |
| 0 - 5     | 25.3  | 8       | 360   | -162,580   | 43     | 972         |
| 5 - 10    | 50.5  | 12      | 510   | -325,160   | 29     | 650         |
| 10 - 15   | 75.8  | 11      | 495   | -487,740   | 8      | 176         |
| 15 - 20   | 101.1 | 8       | 347   | -650,319   | 5      | 106         |
| 20 - 25   | 126.3 | 7       | 290   | -812,899   | 3      | 64          |
| 25 - 30   | 151.6 | 7       | 325   | -975,479   | 3      | 68          |
| 30 - 35   | 176.9 | 7       | 298   | -1,138,059 | 3      | 73          |
| 35 - 40   | 202.1 | 8       | 351   | -1,300,639 | 3      | 62          |
| 40 - 45   | 227.4 | 7       | 297   | -1,463,218 | 2      | 53          |
| 45 - 50   | 252.6 | 7       | 298   | -1,625,798 | 1      | 29          |
| 50 - 55   | 277.9 | 4       | 194   | -1,788,378 | 0      | 0           |
| 55 - 60   | 303.2 | 4       | 169   | -1,950,958 | 0      | 0           |
| 60 - 65   | 328.4 | 3       | 149   | -2,113,538 | 0      | 0           |
| 65 - 70   | 353.7 | 4       | 171   | -2,276,118 | 0      | 0           |
| 70 - 75   | 379.0 | _ 1     | 22    | -2,438,698 | 0      | 0           |
| 75 - 80   | 404.2 | 2       | 86    | -2,601,278 | 0      | 0           |
| 80 - 85   | 429.5 | 0       | 0     | -2,763,858 | 0      | 0           |
| 85 - 90   | 454.8 | 0       | 0     | -2,926,437 | 0      | 0           |
| 90 - 95   | 480.0 | 0       | 0     | -3,089,017 | 0      | 0           |
| 95 - 100  | 505.3 | 0       | 0     | -3,251,597 | 0      | 0           |
| Hours Off | 0.0   | 0       | 4,398 | 0          | 0      | 6,507       |

"JIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 JE CASE

| f | Equip    |       |       |           |       | Mor    | thly Cons | sumption |        |       |        |       |       |         |
|---|----------|-------|-------|-----------|-------|--------|-----------|----------|--------|-------|--------|-------|-------|---------|
| n | Code     | Jan   | Feb   | Mar       | Apr   | May    | June      | July     | Aug    | Sep   | 0ct    | Nov   | Dec   | Tot     |
| ) | LIGHTS   |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | 99030 | 89550 | 105452    | 94800 | 102241 | 101222    | 95819    | 105452 | 94800 | 102241 | 94800 | 95819 | 1,181,2 |
|   | PK       | 444.1 | 444.1 | 444.1     | 444.1 | 444.1  | 444.1     | 444.1    | 444.1  | 444.1 | 444.1  | 444.1 | 444.1 | 444     |
| 1 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | C       |
| 2 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | GAS      | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
| 3 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | OIL      | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 1       |
|   | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P STEAM  | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK ·     | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   |         |
| 5 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P HOTH20 | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   |         |
| 5 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P CHILL  | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   |         |
| l |          |       | BAS   | SE UTILIT | Y     |        |           |          |        |       |        |       |       |         |
|   | CHILLD   | 0     | 0     | 0         | 0     | 893    | 864       | 893      | 893    | 864   | 893    | 0     | 0     | 5,      |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 1.2    | 1.2       | 1.2      | 1.2    | 1.2   | 1.2    | 0.0   | 0.0   |         |
| 2 |          |       |       | SE UTILIT |       |        |           |          |        |       |        |       |       |         |
|   | HOTLD    | 82    | 74    | 82        | 79    | 0      | 0         | 0        | 0      | 0     | 0      | 79    | 82    |         |
|   | PK       | 0.1   | 0.1   | 0.1       | 0.1   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.1   | 0.1   |         |
| 5 |          |       |       | SE UTILIT |       |        |           |          |        |       |        |       |       |         |
|   | CHILLD   | 0     | 0     | 0         | 0     | 982    | 950       | 982      | 982    | 950   | 982    | 0     | 0     | 5,      |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 1.3    | 1.3       | 1.3      | 1.3    | 1.3   | 1.3    | 0.0   | 0.0   |         |
|   |          |       | BAS   | SE UTILIT | Y     |        |           |          |        |       |        |       |       |         |
|   | HOTLD    | 95    | 86    | 95        | 92    | 0      | O         | 0        | 0      | 0     | 0      | 92    | 95    |         |
|   | PK       | 0.1   | 0.1   | 0.1       | 0.1   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.1   | 0.1   |         |

11PHENT ENERGY CONSUMPTION - ALTERNATIVE 1

| lef | Equip  |     |      | • • • • • • • • |     | Mont | hly Cons | umption |      |      |      |     |     |       |
|-----|--------|-----|------|-----------------|-----|------|----------|---------|------|------|------|-----|-----|-------|
| lum | Code   | Jan | Feb  | Mar             | Apr | May  | June     | July    | Aug  | Sep  | Oct  | Nov | Dec | Total |
| 5   |        |     | BASE | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | 0   | 0    | 0               | 0   | 766  | 742      | 766     | 766  | 742  | 766  | 0   | 0   | 4,54  |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 1.0  | 1.0      | 1.0     | 1.0  | 1.0  | 1.0  | 0.0 | 0.0 | 1.0   |
| 6   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | HOTED  | 101 | 92   | 101             | 98  | 0    | 0        | 0       | 0    | 0    | 0    | 98  | 101 | 593   |
|     | PK     | 0.1 | 0.1  | 0.1             | 0.1 | 0.0  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.    |
| 7   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | 0   | 0    | 0               | 0   | 618  | 598      | 618     | 618  | 598  | 618  | 0   | 0   | 3,669 |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 8.0  | 8.0      | 0.8     | 0.8  | 0.8  | 0.8  | 0.0 | 0.0 | 0.8   |
| 8   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | HOTLD  | 75  | 68   | 75              | 73  | 0    | 0        | 0       | 0    | 0    | 0    | 73  | 75  | 44    |
| 1   | PK     | 0.1 | 0.1  | 0.1             | 0.1 | 0.0  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.    |
| 9   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | O   | 0    | 0               | 0   | 662  | 641      | 662     | 662  | 641  | 662  | 0   | 0   | 3,93  |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 0.9  | 0.9      | 0.9     | 0.9  | 0.9  | 0.9  | 0.0 | 0.0 | 0.    |
| 0   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | HOTLD  | 50  | 45   | 50              | 48  | 0    | 0        | 0       | 0    | 0    | 0    | 48  | 50  | 29    |
|     | PK     | 0.1 | 0.1  | 0.1             | 0.1 | 0.0  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.    |
| 1   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | 0   | 0    | 0               | 0   | 1042 | 1008     | 1042    | 1042 | 1008 | 1042 | 0   | 0   | 6,18  |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 1.4  | 1.4      | 1.4     | 1.4  | 1.4  | 1.4  | 0.0 | 0.0 | 1.    |
| 2   |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | HOTLD  | 76  | 69   | 76              | 74  | 0    | 0        | 0       | 0    | 0    | 0    | 74  | 76  | 44    |
|     | PK     | 0.1 | 0.1  | 0.1             | 0.1 | 0.0  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.    |
| 3   |        | _   |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | 0   | 0    | 0               | 0   | 1042 | 1008     | 1042    | 1042 | 1008 | 1042 | 0   | 0   | 6,18  |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 1.4  | 1.4      | 1.4     | 1.4  | 1.4  | 1.4  | 0.0 | 0.0 | 1.    |
| 4   |        |     |      | UTILITY         |     | _    |          |         |      |      |      |     |     |       |
|     | HOTLD  | 76  | 69   | 76              | 74  | 0    | 0        | ٥       | 0    | 0    | 0    | 74  | 76  | 44    |
|     | PK     | 0.1 | 0.1  | 0.1             | 0.1 | 0.0  | 0.0      | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.    |
| 15  |        |     |      | UTILITY         |     |      |          |         |      |      |      |     |     |       |
|     | CHILLD | 0   | 0    | 0               | 0   | 1116 | 1080     | 1116    | 1116 | 1080 | 1116 | 0   | 0   | 6,62  |
|     | PK     | 0.0 | 0.0  | 0.0             | 0.0 | 1.5  | 1.5      | 1.5     | 1.5  | 1.5  | 1.5  | 0.0 | 0.0 | 1.    |

"IPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 .SE CASE

|     | Equip · | Jan | Pak  | W       |     | Mont |      |      |      | C    | 0    | Maria |     |      |
|-----|---------|-----|------|---------|-----|------|------|------|------|------|------|-------|-----|------|
| an. | Lode    | Jan | Feb  | Mar     | Apr | May  | June | July | Aug  | Sep  | Oct  | Nov   | Dec | Tota |
| 6   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTLD   | 76  | 69   | 76      | 73  | 0    | 0    | 0    | 0    | 0    | 0    | 73    | 76  | 44   |
|     | PK      | 0.1 | 0.1  | 0.1     | 0.1 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1   | 0.1 | 0.   |
| 7   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | CHILLD  | 0   | 0    | 0       | 0   | 811  | 785  | 811  | 811  | 785  | 811  | 0     | 0   | 4,81 |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 0.0   | 0.0 | 1.   |
| 8   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTED   | 76  | 69   | 76      | 74  | 0    | 0    | 0    | 0    | 0    | 0    | 74    | 76  | 44   |
|     | PK      | 0.1 | 0.1  | 0.1     | 0.1 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1   | 0.1 | 0.   |
| 9   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | CHILLD  | 0   | 0    | 0       | 0   | 1473 | 1426 | 1473 | 1473 | 1426 | 1473 | 0     | 0   | 8,7  |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 2.0  | 2.0  | 2.0  | 2.0  | 2.0  | 2.0  | 0.0   | 0.0 | 2    |
| 0   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTLD   | 75  | 68   | 75      | 73  | 0    | 0    | 0    | 0    | 0    | 0    | 73    | 75  | 4    |
|     | PK      | 0.1 | 0.1  | 0.1     | 0.1 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1   | 0.1 | 0    |
| 1   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTLD   | 75  | 68   | 75      | 73  | 0    | 0    | 0    | 0    | 0    | 0    | 73    | 75  | 4    |
|     | PK      | 0.1 | 0.1  | 0.1     | 0.1 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1   | 0.1 | 0    |
| 2   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | CHILLD  | 0   | 0    | 0       | 0   | 848  | 821  | 848  | 848  | 821  | 848  | 0     | 0   | 5,0  |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 0.0   | 0.0 | 1    |
| 3   |         |     | BASE | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTLD   | 68  | 61   | 68      | 66  | 0    | 0    | 0    | 0    | 0    | 0    | 66    | 68  | 3    |
|     | PK      | 0.1 | 0.1  | 0.1     | 0.1 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.1   | 0.1 | 0    |
| 4   |         |     |      | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | CHILLD  | 0   | 0    | 0       | 0   | 394  | 382  | 394  | 394  | 382  | 394  | 0     | 0   | 2,3  |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.0   | 0.0 | O    |
| 5   |         |     |      | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | HOTLD   | 23  | 20   | 23      | 22  | 0    | 0    | 0    | 0    | 0    | 0    | 22    | 23  | 1    |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0 | (    |
| 6   |         |     |      | UTILITY |     |      |      |      |      |      |      |       |     |      |
|     | CHILLD  | 0   | 0    | 0       | 0   | 536  | 518  | 536  | 536  | 518  | 536  | 0     | 0   | 3,   |
|     | PK      | 0.0 | 0.0  | 0.0     | 0.0 | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.7  | 0.0   | 0.0 |      |

"IPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 ... JE CASE

| ef | Equip · |     |      |          |        | · Mont    | thly Cons | sumption |       |       |      |     |     |      |
|----|---------|-----|------|----------|--------|-----------|-----------|----------|-------|-------|------|-----|-----|------|
| m  | Code    | Jan | Feb  | Mar      | Apr    | May       | June      | July     | Aug   | Sep   | Oct  | Nov | Dec | Tota |
| 7  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | HOTLD   | 41  | 37   | 41       | 40     | 0         | 0         | 0        | 0     | O     | 0    | 40  | 41  | 23   |
|    | PK      | 0.1 | 0.1  | 0.1      | 0.1    | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.1 | 0.1 | 0    |
| 3  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | CHILLD  | 0   | 0    | 0        | 0      | 82        | 79        | 82       | 82    | 79    | 82   | 0   | 0   | 44   |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 0.1       | 0.1       | 0.1      | 0.1   | 0.1   | 0.1  | 0.0 | 0.0 | 0    |
| 9  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | HOTLD   | 14  | 12   | 14       | 13     | 0         | 0         | 0        | 0     | 0     | 0    | 13  | 14  |      |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.0 | 0.0 | 0    |
| 0  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | CHILLD  | 0   | 0    | 0        | 0      | 2232      | 2160      | 2232     | 2232  | 2160  | 2232 | 0   | 0   | 13,2 |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 3.0       | 3.0       | 3.0      | 3.0   | 3.0   | 3.0  | 0.0 | 0.0 | 3    |
| ı  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | HOTLD   | 170 | 153  | 170      | 164    | 0         | 0         | 0        | 0     | 0     | 0    | 164 | 170 | 9    |
|    | PK      | 0.2 | 0.2  | 0.2      | 0.2    | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.2 | 0.2 | 0    |
| 2  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | CHILLD  | 0   | 0    | 0        | 0      | 290       | 281       | 290      | 290   | 281   | 290  | 0   | 0   | 1,7  |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 0.4       | 0.4       | 0.4      | 0.4   | 0.4   | 0.4  | 0.0 | 0.0 | 0    |
| 5  |         |     | BASE | UTILITY  |        |           |           |          |       |       |      |     |     |      |
|    | HOTLD   | 25  | 22   | 25       | 24     | 0         | 0         | 0        | Ö     | 0     | 0    | 24  | 25  | 1    |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 0.0       | 0.0       | 0.0      | 0.0   | 0.0   | 0.0  | 0.0 | 0.0 | 0    |
| ı  |         |     | AREA | 100 EXI  | ST AIR | COOLED RE | CIP CHI   | LLR      |       |       |      |     |     |      |
|    | ELEC    | 0   | 0    | 0        | 0      | 12971     | 17212     | 21161    | 21472 | 14265 | 5314 | 0   | 0   | 92,3 |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 47.5      | 53.0      | 56.9     | 56.3  | 47.8  | 35.0 | 0.0 | 0.0 | 56   |
| 1  | EQ5001  |     |      | LED WATE | R PUMP | CONST     | ANT VOLU  | ME       |       |       |      |     |     |      |
|    | ELEC    | 0   | 0    | 0        | 0      | 1667      | 1613      | 1667     | 1667  | 1613  | 1667 | 0   | 0   | 9,8  |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 2.2       | 2.2       | 2.2      | 2.2   | 2.2   | 2.2  | 0.0 | 0.0 | 2    |
|    | EQ5300  |     |      | ROL PANE |        |           |           |          |       |       |      |     |     |      |
|    | ELEC    | 0   | 0    | 0        | 0      | 744       | 720       | 744      | 744   | 720   | 744  | 0   | 0   | 4,4  |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 1.0       | 1.0       | 1.0      | 1.0   | 1.0   | 1.0  | 0.0 | 0.0 | 1    |
| ı  | EQ5001  |     | CHIL | LED WATE | R PUMP | - CONST   | ANT VOLU  | ME       |       |       |      |     |     |      |
|    | ELEC    | 0   | 0    | 0        | 0      | 1667      | 1613      | 1667     | 1667  | 1613  | 1667 | 0   | 0   | 9,8  |
|    | PK      | 0.0 | 0.0  | 0.0      | 0.0    | 2.2       | 2.2       | 2.2      | 2.2   | 2.2   | 2.2  | 0.0 | 0.0 | 2    |

'HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

|     | •••••  |     |       | E Q       | UIP      | MENT      | ENE      | RGY       | CONS  | UMPT  | 1 0 N        | ••••• | •••••    |                 |
|-----|--------|-----|-------|-----------|----------|-----------|----------|-----------|-------|-------|--------------|-------|----------|-----------------|
| Ref | Equip  |     |       |           |          | Mon       | thiv con | el motion |       |       |              |       |          |                 |
|     | Code   | Jan | Feb   | Mar       | Арг      | May       | June     | July      | Aug   | Sep   | Oct          | Nov   | Dec      | Total           |
| 2   |        |     | AREA  | 100 EXI   | ST AIR   | COOLED R  | FCID CUI | 110       |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 16071     | 21001    | 25828     | 26166 | 17429 | 6417         | 0     | 0        | 112.012         |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 58.3      | 64.4     | 69.1      | 68.0  | 57.9  | 42.2         | 0.0   | 0.0      | 69.1            |
| 2   | E95001 |     | CHIL  | LED WATE  | R PUMP   | - CONST   | ANT VOLU | MF        |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 1667      | 1613     | 1667      | 1667  | 1613  | 1667         | 0     | 0        | 9,892           |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 2.2       | 2.2      | 2.2       | 2.2   | 2.2   | 2.2          | 0.0   | 0.0      | 2.2             |
| 2   | E95300 |     | CONT  | ROL PANE  | L & INT  | ERLOCKS   |          |           |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 744       | 720      | 744       | 744   | 720   | 744          | 0     | 0        |                 |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0       | 1.0   | 1.0   | 1.0          | 0.0   | 0.0      | 4,416<br>1.0    |
| 2   | EQ5001 |     | CHIL  | LED WATE  | R PLIMP  | - CONST   | ANT VOLU | uc        |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 1667      | 1613     | 1667      | 1667  | 1613  | 1667         | 0     | 0        | 0.002           |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 2.2       | 2.2      | 2.2       | 2.2   | 2.2   | 2.2          | 0.0   | 0.0      | 9,892           |
| 3   |        |     | ARFA  | 100 EXI   | ST AID   | COOLED R  | ECID CUI | 116       |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 1988      | 1982     | 2111      | 2106  | 1941  | 4047         | _     | _        |                 |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 28.4      | 29.7     | 30.8      | 30.6  | 28.6  | 1917<br>26.3 | 0.0   | 0.0      | 12,045<br>30.8  |
| 3   | EQ5001 |     | CHILI | LED WATE  | R PILMP  | - CONST   | ANT VOLU | ME        |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 833       | 806      | 833       | 833   | 806   | 833          | 0     | 0        | 1 244           |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.1       | 1.1      | 1.1       | 1.1   | 1.1   | 1.1          | 0.0   | 0.0      | 1.1             |
| 3   | EQ5300 |     | CONTI | ROL PANEI | L & INT  | FRIOCKS   |          |           |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 744       | 720      | 744       | 744   | 720   | 744          |       | •        |                 |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0       | 1.0   | 1.0   | 1.0          | 0.0   | 0<br>0.0 | 4,416<br>1.0    |
| 4   |        |     | AREA  | 100 EXI   | ST AIR ( | COOLED R  | FCIP CHI | 1 D       |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 11076     | 14142    | 17246     | 17487 | 12190 | 4633         | 0     | 0        | 74 777          |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 37.5      | 42.4     | 44.8      | 44.4  | 38.6  | 27.0         | 0.0   | 0.0      | 76,773          |
| 4   | EQ5001 |     | CHILI | ED WATER  | R PUMP   | - CONST   | ANT VOLU | WF.       |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 833       | 806      | 833       | 833   | 806   | 833          | 0     | 0        | 4.044           |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.1       | 1.1      | 1.1       | 1.1   | 1.1   | 1.1          | 0.0   | 0.0      | 4,946           |
| 4   | EQ5300 |     | CONTR | OL PANEI  | L & INT  | ERLOCKS   |          |           |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 744       | 720      | 744       | 744   | 720   | 744          | 0     | 0        | , ,,,           |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0       | 1.0   | 1.0   | 1.0          | 0.0   | 0.0      | 4,416<br>1.0    |
| 5   |        |     | AREA  | 100 EXIS  | ST AIR 1 | COOLED RI | כום כשיי | I P       |       |       |              |       |          |                 |
|     | ELEC   | 0   | 0     | 0         | 0        | 15584     | 18461    | 21788     | 22374 | 16854 | 8963         | 0     | 0        | 10/ 02/         |
|     | PK     | 0.0 | 0.0   | 0.0       | 0.0      | 49.6      | 51.8     | 53.8      | 53.3  | 49.8  | 45.5         | 0.0   | 0.0      | 104,024<br>53.8 |

'JIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 .SE CASE

| f | Equip - |     |       |           |          | Mon      | thly Con | sumption |       |       |      |     |     |       |
|---|---------|-----|-------|-----------|----------|----------|----------|----------|-------|-------|------|-----|-----|-------|
| m | Code    | Jan | Feb   | Mar       | Apr      | May      | June     | July     | Aug   | Sep   | Oct  | Nov | Dec | Tota  |
| 5 | E95001  |     | CHIL  | LED WATE  | R PUMP   | - CONST. | ANT VOLU | ME       |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 275      | 266      | 275      | 275   | 266   | 275  | o   | 0   | 1,6   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.4      | 0.4      | 0.4      | 0.4   | 0.4   | 0.4  | 0.0 | 0.0 | 0     |
|   | E95300  |     | CONT  | ROL PANE  | L & INT  | ERLOCKS  |          |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 744      | 720      | 744      | 744   | 720   | 744  | 0   | 0   | 4.4   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0  | 0.0 | 0.0 | 1     |
|   |         |     | AREA  | 100 EXI   | ST AIR ( | COOLED R | ECIP CHI | LLR      |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 16505    | 20599    | 24401    | 25104 | 18009 | 9158 | 0   | 0   | 113,7 |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 61.4     | 66.6     | 71.5     | 72.2  | 62.9  | 49.7 | 0.0 | 0.0 | 72    |
|   | EQ5001  |     | CHIL  | LED WATE  | R PUMP   | - CONST  | ANT VOLU | ME       |       |       |      |     |     | _     |
|   | ELEC    | 0   | 0     | 0         | 0        | 1667     | 1613     | 1667     | 1667  | 1613  | 1667 | 0   | 0   | 9,8   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 2.2      | 2.2      | 2.2      | 2.2   | 2.2   | 2.2  | 0.0 | 0.0 | 2     |
|   | E95300  |     | CONT  | ROL PANE  | L & INTI | ERLOCKS  |          |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 744      | 720      | 744      | 744   | 720   | 744  | 0   | 0   | 4.4   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0  | 0.0 | 0.0 | 1     |
|   |         |     | AREA  | 100 EXI   | ST AIR ( | COOLED R | ECIP CHI | LLR      |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 16505    | 20599    | 24401    | 25104 | 18009 | 9158 | 0   | 0   | 113,7 |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 61.4     | 66.6     | 71.5     | 72.2  | 62.9  | 49.7 | 0.0 | 0.0 | 72    |
|   | EQ5001  |     |       | LED WATE  | R PUMP   | - CONST  | ANT VOLU | ME       |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 1667     | 1613     | 1667     | 1667  | 1613  | 1667 | 0   | 0   | 9,8   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 2.2      | 2.2      | 2.2      | 2.2   | 2.2   | 2.2  | 0.0 | 0.0 | 2     |
|   | E95300  |     |       | ROL PANE  | L & INTE | ERLOCKS  |          |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 744      | 720      | 744      | 744   | 720   | 744  | 0   | 0   | 4,4   |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0      | 1.0      | 1.0      | 1.0   | 1.0   | 1.0  | 0.0 | 0.0 | 1     |
|   | E91161  |     |       | COOLED C  |          |          | ONS      |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0     | 0     | 0    | 0   | 0   |       |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0  | 0.0 | 0.0 | 0     |
|   | E95200  |     |       | ENSER FAI |          |          |          |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0     | 0     | 0    | 0   | 0   |       |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0  | 0.0 | 0.0 | 0     |
|   | EQ5303  |     | CONTR |           |          |          |          |          |       |       |      |     |     |       |
|   | ELEC    | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0     | 0     | 0    | 0   | 0   |       |
|   | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0   | 0.0   | 0.0  | 0.0 | 0.0 | 0     |

TIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

| ef | Equip  |     |       |           |         | Mont      | thly Cons | sumption |       |       |       |     |     |         |
|----|--------|-----|-------|-----------|---------|-----------|-----------|----------|-------|-------|-------|-----|-----|---------|
| um | Code   | Jan | Feb   | Mar       | Apr     | May       | June      | July     | Aug   | Sep   | Oct   | Nov | Dec | Total   |
| 9  | EQ1161 |     | AIR ( | COOLED CO |         |           | ONS       |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 9349      | 11812     | 14056    | 14784 | 10019 | 4806  | 0   | 0   | 64,825  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 63.6      | 66.4      | 68.8     | 68.3  | 63.8  | 58.9  | 0.0 | 0.0 | 68.8    |
| 9  | E95200 |     | CONDI | ENSER FAN | IS      |           |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 910       | 1147      | 1607     | 1421  | 987   | 452   | 0   | 0   | 6,524   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 4.5       | 4.8       | 6.2      | 6.2   | 4.6   | 3.6   | 0.0 | 0.0 | 6.2     |
| 9  | EQ5303 |     | CONTI | ROLS      |         |           |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 223       | 216       | 223      | 223   | 216   | 223   | 0   | 0   | 1,325   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 0.3       | 0.3       | 0.3      | 0.3   | 0.3   | 0.3   | 0.0 | 0.0 | 0.3     |
| 10 |        |     | AREA  | 100 EXIS  | T AIR ( | COOLED RE | ECIP CHII | LLR      |       |       |       |     |     | •       |
|    | ELEC   | 0   | 0     | 0         | 0       | 15535     | 19517     | 23118    | 23816 | 17025 | 8376  | 0   | 0   | 107,387 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 59.0      | 64.1      | 68.9     | 69.7  | 60.6  | 47.5  | 0.0 | 0.0 | 69.7    |
| 10 | EQ5001 |     | CHIL  | LED WATER | PUMP    | - CONST   | ANT VOLU  | 4E       |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 833       | 806       | 833      | 833   | 806   | 833   | 0   | 0   | 4,946   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 1.1       | 1.1       | 1.1      | 1.1   | 1.1   | 1.1   | 0.0 | 0.0 | 1.1     |
| 10 | EQ5300 |     | CONT  | ROL PANEI | . & INT | ERLOCKS   |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 744       | 720       | 744      | 744   | 720   | 744   | 0   | 0   | 4,416   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 1.0       | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
| 11 |        |     | AREA  | 100 EXIS  | ST AIR  | COOLED R  | ECIP CHI  | LLR      |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 25325     | 31101     | 37574    | 37169 | 27737 | 11449 | 0   | 0   | 170,355 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 70.0      | 76.4      | 85.0     | 83.4  | 74.2  | 56.3  | 0.0 | 0.0 | 85.0    |
| 11 | E95001 |     | CHIL  | LED WATER | R PUMP  | - CONST.  | ANT VOLU  | ME       |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 2775      | 2686      | 2775     | 2775  | 2686  | 2775  | 0   | 0   | 16,472  |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 3.7       | 3.7       | 3.7      | 3.7   | 3.7   | 3.7   | 0.0 | 0.0 | 3.7     |
| 11 | EQ5300 |     | CONT  | ROL PANE  | L & INT | ERLOCKS   |           |          |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 744       | 720       | 744      | 744   | 720   | 744   | 0   | 0   | 4,416   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 1.0       | 1.0       | 1.0      | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
| 12 |        |     | AREA  | 100 EXI   | ST AIR  | COOLED R  | ECIP CHI  | LLR      |       |       |       |     |     |         |
|    | ELEC   | 0   | 0     | 0         | 0       | 16906     | 20372     | 24091    | 24748 | 17920 | 9344  | 0   | 0   | 113,383 |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 60.4      | 65.5      | 70.3     | 70.6  | 61.9  | 49.6  | 0.0 | 0.0 | 70.6    |
| 12 | EQ5001 |     | CHIL  | LED WATE  | R PUMP  | - CONST   | ANT VOLU  | ME       |       |       |       |     |     | ,       |
|    | ELEC   | 0   | 0     | 0         | 0       | 1109      | 1073      | 1109     | 1109  | 1073  | 1109  | 0   | 0   | 6,580   |
|    | PK     | 0.0 | 0.0   | 0.0       | 0.0     | 1.5       | 1.5       | 1.5      | 1.5   | 1.5   | 1.5   | 0.0 | 0.0 | 1.5     |

'HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

| ••• |         |     |       | E Q       | UIPF     | ENT       | ENER     | G Y C   | ONSU  | MPTI  | O N   |     |     |         |
|-----|---------|-----|-------|-----------|----------|-----------|----------|---------|-------|-------|-------|-----|-----|---------|
| ef  | Equip - |     |       |           |          | Mont      | hly Cons | umption |       |       |       |     |     |         |
| um  | Code    | Jan | Feb   | Mar       | Apr      | May       | June     | July    | Aug   | Sep   | Oct   | Nov | Dec | Total   |
| 12  | EQ5300  |     | CONTI | ROL PANEL | . & INTE | RLOCKS    |          |         |       |       |       |     |     |         |
| -   | ELEC    | 0   | 0     | 0         | 0        | 744       | 720      | 744     | 744   | 720   | 744   | 0   | 0   | 4,416   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
| 13  |         |     | ARFA  | 100 EXIS  | ST AIR ( | COOLED RE | CIP CHIL | LR      |       |       |       |     |     |         |
| _   | ELEC    | 0   | 0     | 0         | 0        | 4477      | 5511     | 6556    | 6721  | 4884  | 2466  | 0   | 0   | 30,616  |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 16.1      | 17.3     | 17.9    | 17.8  | 16.6  | 12.9  | 0.0 | 0.0 | 17.9    |
| 3   | EQ5001  |     | CHIL  | LED WATER | PUMP -   | - CONSTA  | NT VOLUM | F       |       |       |       |     |     |         |
| •   | ELEC    | 0   | 0     | 0         | 0        | 833       | 806      | 833     | 833   | 806   | 833   | 0   | 0   | 4,946   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.1       | 1.1      | 1.1     | 1.1   | 1.1   | 1.1   | 0.0 | 0.0 | 1.1     |
| 17  | E95300  |     | CONT  | ROL PANEI | 2 1411   | EDI OCKS  |          |         |       |       |       |     |     |         |
| •   | ELEC    | 0   | 0     | 0         | 0        | 744       | 720      | 744     | 744   | 720   | 744   | o   | 0   | 4,416   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
|     |         |     |       |           |          |           |          |         |       |       |       |     |     |         |
| 4   |         |     |       | 100 EXI   |          |           |          |         |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0         | 0        | 6115      | 7877     | 9643    | 9951  | 6902  | 2830  | 0   | 0   | 43,319  |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 21.6      | 23.9     | 26.2    | 26.6  | 22.6  | 16.0  | 0.0 | 0.0 | 26.6    |
| 4   | EQ5001  |     |       | LED WATE  |          |           | NT VOLUE |         |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0         | 0        | 1109      | 1073     | 1109    | 1109  | 1073  | 1109  | 0   | 0   | 6,580   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.5       | 1.5      | 1.5     | 1.5   | 1.5   | 1.5   | 0.0 | 0.0 | 1.5     |
| 4   | E95300  |     | CONT  | ROL PANE  | L & INT  | ERLOCKS   |          |         |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0         | 0        | 744       | 720      | 744     | 744   | 720   | 744   | 0   | 0   | 4,416   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 1.0       | 1.0      | 1.0     | 1.0   | 1.0   | 1.0   | 0.0 | 0.0 | 1.0     |
| 5   | EQ1161  |     | AIR   | COOLED C  | OND COM  | P < 15 TO | ONS      |         |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0         | 0        | 1705      | 2262     | 2879    | 2931  | 1893  | 562   | 0   | 0   | 12,232  |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 8.0       | 8.3      | 8.6     | 8.6   | 8.0   | 7.4   | 0.0 | 0.0 | 8.6     |
| 15  | EQ5200  |     | COND  | ENSER FA  | NS       |           |          |         |       |       |       |     |     | r       |
|     | ELEC    | 0   | 0     | 0         | 0        | 140       | 184      | 243     | 238   | 157   | 45    | 0   | 8   | 1,008   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.6       | 0.7      | 0.7     | 0.7   | 0.6   | 0.4   | 0.0 | 0.0 | 0.7     |
| 15  | EQ5303  |     | CONT  | ROLS      |          |           |          |         |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0         | 0        | 223       | 216      | 223     | 223   | 216   | 223   | O   | 0   | 1,325   |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.3       | 0.3      | 0.3     | 0.3   | 0.3   | 0.3   | 0.0 | 0.0 | 0.3     |
| 16  |         |     | AREA  | 100 EXI   | ST AIR   | COOLED R  | ECIP CHI | LLR     |       |       |       |     |     | ,       |
|     | ELEC    | 0   | 0     | 0         | 0        | 55068     | 61582    | 70144   | 71148 | 58363 | 30555 | 0   | 0   | 346,860 |
|     | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 117.2     | 122.9    | 133.5   | 137.3 | 118.3 | 87.7  | 0.0 | 0.0 | 137.3   |

'HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

| кет | Equip  |     |       |          |          | HOTE     | ary cons    | diperon |      |      |      |     |     |        |
|-----|--------|-----|-------|----------|----------|----------|-------------|---------|------|------|------|-----|-----|--------|
| ium | Code   | Jan | Feb   | Mar      | Apr      | May      | June        | July    | Aug  | Sep  | Oct  | Nov | Dec | Total  |
| 16  | EQ5001 |     | CHILL | ED WATER | R PUMP - | CONSTA   | NT VOLUM    | E       |      |      |      |     |     |        |
|     | ELEC   | 0   | 0     | 0        | 0        | 4166     | 4032        | 4166    | 4166 | 4032 | 4166 | 0   | 0   | 24,730 |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0      | 5.6      | 5.6         | 5.6     | 5.6  | 5.6  | 5.6  | 0.0 | 0.0 | 5.6    |
| 16  | EQ5300 |     | CONTR | ROL PANE | L & INTE | RLOCKS   |             |         |      |      |      |     |     |        |
|     | ELEC   | 0   | 0     | 0        | 0        | 744      | 720         | 744     | 744  | 720  | 744  | 0   | 0   | 4,416  |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0      | 1.0      | 1.0         | 1.0     | 1.0  | 1.0  | 1.0  | 0.0 | 0.0 | 1.0    |
| 17  |        |     | AREA  | 100 EXI  | ST AIR C | OOLED RE | CIP CHIL    | LR      |      |      |      |     |     |        |
|     | ELEC   | 0   | 0     | 0        | 0        | 3737     | 5121        | 6202    | 6182 | 3955 | 1429 | 0   | 0   | 26,626 |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0      | 13.8     | 15.3        | 16.5    | 16.7 | 14.0 | 9.8  | 0.0 | 0.0 | 16.    |
| 17  | EQ5001 |     | CHILI | ED WATE  | R PUMP - | CONSTA   | ANT VOLUM   | Œ       |      |      |      |     |     |        |
|     | ELEC   | 0   | 0     | 0        | 0        | 558      | 540         | 558     | 558  | 540  | 558  | 0   | 0   | 3,31   |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0      | 0.8      | 0.8         | 0.8     | 0.8  | 0.8  | 8.0  | 0.0 | 0.0 | 0.     |
| 17  | EQ5300 |     | CONT  | ROL PANE | L & INTE | RLOCKS   |             |         |      |      |      |     |     |        |
|     | ELEC   | 0   | 0     | 0        | 0        | 744      | 720         | 744     | 744  | 720  | 744  | 0   | 0   | 4,41   |
|     | PK     | 0.0 | 0.0   | 0.0      | 0.0      | 1.0      | 1.0         | 1.0     | 1.0  | 1.0  | 1.0  | 0.0 | 0.0 | 1.     |
| 1   |        |     | WATE  | RTUBE BO | ILER     |          |             |         |      |      |      | 1   |     |        |
|     | GAS    | 506 | 499   | 160      | 109      | 0        | 0           | 0       | 0    | 0    | 0    | 172 | 481 | 1,92   |
|     | PK     | 1.8 | 2.0   | 1.1      | 0.3      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 1.0 | 1.8 | 2.     |
| 1   | E95020 |     | HEAT  | ING WATE | R CIRCUL | ATION P  | <b>JM</b> P |         |      |      |      |     |     |        |
|     | ELEC   | 678 | 635   | 484      | 403      | 0        | Ō           | 0       | 0    | 0    | 0    | 491 | 687 | 3,37   |
|     | PK     | 1.1 | 1.1   | 1.1      | 1.1      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 1.1 | 1.1 | 1.     |
| 1   | E95311 |     | BOIL  | ER CONTR | ous      |          |             |         |      |      |      |     |     |        |
|     | ELEC   | 76  | 71    | 54       | 45       | 0        | 0           | 0       | 0    | 0    | 0    | 55  | 77  | 37     |
|     | PK     | 0.1 | 0.1   | 0.1      | 0.1      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 0.1 | 0.1 | 0.     |
| 1   | EQ5020 |     | HEAT  | ING WATE | R CIRCUL | ATION P  | JMP         |         |      |      |      |     |     |        |
|     | ELEC   | 833 | 753   | 833      | 806      | 0        | 0           | 0       | 0    | 0    | 0    | 806 | 833 | 4,86   |
|     | PK     | 1.1 | 1.1   | 1.1      | 1.1      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 1.1 | 1.1 | 1.     |
| 2   |        |     | WATE  | RTUBE BO | ILER     |          |             |         |      |      |      |     |     |        |
|     | GAS    | 600 | 578   | 184      | 127      | 0        | 0           | 0       | 0    | 0    | 0    | 203 | 571 | 2,26   |
|     | PK     | 2.1 | 2.3   | 1.2      | 0.2      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 1.2 | 2.1 | 2.     |
| 2   | EQ5020 |     | HEAT  | ING WATE | R CIRCUL | ATION P  | UMP         |         |      |      |      |     |     |        |
|     | ELEC   | 833 | 753   | 833      | 806      | 0        | 0           | 0       | 0    | 0    | 0    | 806 | 833 | 4,86   |
|     | PK     | 1.1 | 1.1   | 1.1      | 1.1      | 0.0      | 0.0         | 0.0     | 0.0  | 0.0  | 0.0  | 1.1 | 1.1 | 1.     |

"HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 .SE CASE

| f | Equip  |      |      |          |          | HOLLE    | irty cons   | diperon |     |     |     |      |      |       |
|---|--------|------|------|----------|----------|----------|-------------|---------|-----|-----|-----|------|------|-------|
| m | Code   | Jan  | Feb  | Mar      | Apr      | May      | June        | July    | Aug | Sep | 0ct | Nov  | Dec  | Total |
| 2 | EQ5311 |      | BOIL | ER CONTR | OLS      |          |             |         |     |     |     |      |      |       |
|   | ELEC   | 93   | 84   | 93       | 90       | 0        | 0           | 0       | 0   | 0   | 0   | 90   | 93   | 54    |
|   | PK     | 0.1  | 0.1  | 0.1      | 0.1      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 2 | EQ5020 |      | HEAT | ING WATE | R CIRCUL | ATION PU | MP          |         |     |     |     |      |      |       |
|   | ELEC   | 833  | 753  | 833      | 806      | 0        | 0           | 0       | 0   | 0   | 0   | 806  | 833  | 4,865 |
|   | PK     | 1.1  | 1.1  | 1.1      | 1.1      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 1.1  | 1.1  | 1.    |
| 3 |        |      | WATE | RTUBE BO | ILER     |          |             |         |     |     |     |      |      |       |
|   | GAS    | 140  | 126  | 140      | 135      | 0        | 0           | 0       | 0   | 0   | 0   | 135  | 140  | 815   |
|   | PK     | 0.2  | 0.2  | 0.2      | 0.2      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.2  | 0.2  | 0.2   |
| 3 | E95020 |      | HEAT | ING WATE | R CIRCUL | ATION PU | MP          |         |     |     |     |      |      |       |
|   | ELEC   | 275  | 249  | 275      | 266      | 0        | 0           | 0       | 0   | 0   | 0   | 266  | 275  | 1,607 |
|   | PK     | 0.4  | 0.4  | 0.4      | 0.4      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.4  | 0.4  | 0.0   |
| 3 | E95311 |      | BOIL | ER CONTR | OLS      |          |             |         |     |     |     |      |      |       |
|   | ELEC   | 93   | 84   | 93       | 90       | 0        | 0           | 0       | 0   | 0   | 0   | 90   | 93   | 543   |
|   | PK     | 0.1  | 0.1  | 0.1      | 0.1      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 4 |        |      | WATE | RTUBE BO | ILER     |          |             |         |     |     |     |      |      |       |
|   | GAS    | 480  | 454  | 137      | 100      | 0        | 0           | 0       | 0   | 0   | 0   | 152  | 447  | 1,769 |
|   | PK     | 1.5  | 1.5  | 0.9      | 0.1      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.9  | 1.5  | 1.5   |
| 4 | E95020 |      | HEAT | ING WATE | R CIRCUL | ATION PL | <b>IM</b> P |         |     |     |     |      |      |       |
|   | ELEC   | 275  | 249  | 275      | 266      | 0        | 0           | 0       | 0   | 0   | 0   | 266  | 275  | 1,60  |
|   | PK     | 0.4  | 0.4  | 0.4      | 0.4      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.4  | 0.4  | 0.4   |
| 4 | EQ5311 |      | BOIL | ER CONTR | OLS      |          |             |         |     |     |     |      |      |       |
|   | ELEC   | 93   | 84   | 93       | 90       | 0        | 0           | O       | 0   | 0   | 0   | 90   | 93   | 543   |
|   | PK     | 0.1  | 0.1  | 0.1      | 0.1      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 4 | EQ5240 |      | BOIL | ER FORCE | D DRAFT  | FAN      |             |         |     |     |     |      |      | _     |
|   | ELEC   | 2775 | 2507 | 2775     | 2686     | 0        | 0           | 0       | 0   | 0   | 0   | 2686 | 2775 | 16,20 |
|   | PK     | 3.7  | 3.7  | 3.7      | 3.7      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 3.7  | 3.7  | 3.    |
| 5 |        |      | WATE | RTUBE BO | ILER     |          |             |         |     |     |     |      |      |       |
|   | GAS    | 188  | 172  | 78       | 66       | 0        | 0           | 0       | 0   | 0   | 0   | 79   | 175  | 75    |
|   | PK     | 1.3  | 1.4  | 0.3      | 0.2      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.3  | 1.3  | 1.    |
| 5 | EQ5020 |      | HEAT | ING WATE | R CIRCUL | ATION PL | JMP         |         |     |     |     |      |      |       |
|   | ELEC   | 212  | 194  | 148      | 133      | 0        | 0           | 0       | 0   | 0   | 0   | 144  | 208  | 1,03  |
|   | PK     | 0.4  | 0.4  | 0.4      | 0.4      | 0.0      | 0.0         | 0.0     | 0.0 | 0.0 | 0.0 | 0.4  | 0.4  | 0.    |

'JIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

..SE CASE

| ef   | Equip  |      |      |          | • • • • • • • • • • • • • • • • • • • • | Mont     | nty cons | umption - |     |     |     |      |      |       |
|------|--------|------|------|----------|-----------------------------------------|----------|----------|-----------|-----|-----|-----|------|------|-------|
| LITA | Code   | Jan  | Feb  | Mar      | Apr                                     | May      | June     | July      | Aug | Sep | Oct | Nov  | Dec  | Total |
| 5    | E95311 |      | BOIL | ER CONTR | OLS                                     |          |          |           |     |     |     |      |      |       |
|      | ELEC   | 72   | 66   | 50       | 45                                      | 0        | 0        | 0         | 0   | 0   | 0   | 48   | 70   | 35    |
|      | PK     | 0.1  | 0.1  | 0.1      | 0.1                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 6    |        |      | WATE | RTUBE BO | ILER                                    |          |          |           |     |     |     |      |      |       |
|      | GAS    | 276  | 273  | 119      | 101                                     | 0        | 0        | 0         | 0   | 0   | 0   | 112  | 245  | 1,12  |
|      | PK     | 1.7  | 1.8  | 0.8      | 0.3                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.4  | 1.7  | 1.    |
| 6    | EQ5020 |      | HEAT | ING WATE | R CIRCULA                               | ATION PU | MP       |           |     |     |     |      |      |       |
| -    | ELEC   | 360  | 338  | 297      | 270                                     | 0        | 0        | 0         | 0   | 0   | 0   | 290  | 349  | 1,90  |
|      | PK     | 0.8  | 0.8  | 0.8      | 0.8                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.8  | 0.8  | 0.    |
| 6    | E95311 |      | BOIL | ER CONTR | OLS                                     |          |          |           |     |     |     |      |      |       |
| -    | ELEC   | 60   | 56   | 49       | 45                                      | 0        | 0        | 0         | 0   | 0   | 0   | 48   | 58   | 31    |
|      | PK     | 0.1  | 0.1  | 0.1      | 0.1                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 7    |        |      | UATE | RTUBE BO | IIFR                                    |          |          |           |     |     |     |      |      |       |
| •    | GAS    | 276  | 273  | 119      | 101                                     | 0        | 0        | 0         | 0   | 0   | 0   | 112  | 245  | 1,12  |
|      | PK     | 1.7  | 1.8  | 0.8      | 0.3                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.4  | 1.7  | 1.12  |
| 7    | E95020 |      | HEAT | ING WATE | R CIRCUL                                | ATION PU | MP       |           |     |     |     |      |      |       |
| •    | ELEC   | 360  | 338  | 297      | 270                                     | 0        |          | 0         | 0   | 0   | 0   | 290  | 349  | 1,90  |
|      | PK     | 0.8  | 0.8  | 0.8      | 0.8                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.8  | 0.8  | 0.    |
| 7    | EQ5311 |      | BOIL | ER CONTR | OLS                                     |          |          |           |     |     |     |      |      |       |
|      | ELEC   | 60   | 56   | 49       | 45                                      | 0        | o        | 0         | 0   | 0   | 0   | 48   | 58   | 31    |
|      | PK     | 0.1  | 0.1  | 0.1      | 0.1                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.1  | 0.1  | 0.    |
| 8    | EQ2454 |      | REST | DENTIAL  | GAS FURN                                | ACE WITH | FAN      |           |     |     |     |      |      |       |
| _    | GAS    | 85   | 83   | 37       | 26                                      | 0        | 0        | 0         | 0   | 0   | 0   | 36   | 78   | 34    |
|      | PK     | 0.5  | 0.5  | 0.3      | 0.1                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.3  | 0.5  | 0.    |
| 8    | EQ5254 |      | RESI | DENTIAL  | FURNACE                                 | FAN      |          |           |     |     |     |      |      |       |
| _    | ELEC   | 5758 | 5157 | 4670     | 4080                                    | 0        | 0        | 0         | 0   | 0   | 0   | 4624 | 5713 | 30,00 |
|      | PK     | 11.3 | 11.3 | 11.3     | 11.3                                    | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 11.3 | 11.3 | 11.   |
| 9    |        |      | WATE | RTUBE BO | ILER                                    |          |          |           |     |     |     |      |      |       |
|      | GAS    | 276  | 273  | 119      | 101                                     | 0        | 0        | 0         | 0   | 0   | 0   | 112  | 245  | 1,12  |
|      | PK     | 1.7  | 1.8  | 0.8      | 0.3                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.4  | 1.7  | 1.    |
| 9    | E95020 |      | HEAT | ING WATE | R CIRCUL                                | ATION PL | MP       |           |     |     |     |      |      |       |
|      | ELEC   | 360  | 338  | 297      | 270                                     | 0        | 0        | 0         | 0   | 0   | 0   | 290  | 349  | 1,90  |
|      | PK     | 0.8  | 0.8  | 0.8      | 0.8                                     | 0.0      | 0.0      | 0.0       | 0.0 | 0.0 | 0.0 | 0.8  | 0.8  | 0.    |

'HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 .SE CASE

| ef  | Equip  |     |       |           |          | HOTE     | hly Cons | callpt for |     |     |     |     |     |                                         |
|-----|--------|-----|-------|-----------|----------|----------|----------|------------|-----|-----|-----|-----|-----|-----------------------------------------|
| JM) | Code   | Jan | Feb   | Mar       | Apr      | May      | June     | July       | Aug | Sep | Oct | Nov | Dec | Total                                   |
| 9   | EQ5311 |     | BOILE | ER CONTRO | OLS      |          |          |            |     |     |     |     |     |                                         |
|     | ELEC   | 60  | 56    | 49        | 45       | 0        | 0        | 0          | 0   | 0   | 0   | 48  | 58  | 317                                     |
|     | PK     | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.                                      |
| 0   |        |     | WATER | RTUBE BOI | ILER     |          |          |            |     |     |     |     |     | *************************************** |
|     | GAS    | 294 | 306   | 103       | 100      | 0        | D        | 0          | 0   | 0   | 0   | 100 | 258 | 1,161                                   |
|     | PK     | 1.5 | 1.6   | 0.3       | 0.3      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.3 | 1.5 | 1.6                                     |
| 0   | E95020 |     | HEAT  | ING WATER | R CIRCUL | ATION PU | MP       |            |     |     |     |     |     |                                         |
|     | ELEC   | 466 | 415   | 279       | 270      | 0        | 0        | 0          | 0   | 0   | 0   | 270 | 436 | 2,136                                   |
|     | PK     | 0.8 | 8.0   | 0.8       | 0.8      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.8 | 8.0 | 0.8                                     |
| 0   | EQ5311 |     | BOIL  | ER CONTRO | OLS      |          |          |            |     |     |     |     |     |                                         |
|     | ELEC   | 78  | 69    | 47        | 45       | 0        | 0        | 0          | 0   | 0   | 0   | 45  | 73  | 358                                     |
|     | PK     | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1                                     |
| 1   |        |     | WATE  | RTUBE BO  | ILER     |          |          |            |     |     |     |     |     | ,                                       |
|     | GAS    | 294 | 306   | 103       | 100      | 0        | 0        | 0          | 0   | 0   | 0   | 100 | 258 | 1,16                                    |
|     | PK     | 1.5 | 1.6   | 0.3       | 0.3      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.3 | 1.5 | 1.6                                     |
| 1   | EQ5020 |     | HEAT  | ING WATE  | R CIRCUL | ATION PL | IMP      |            |     |     |     |     |     |                                         |
|     | ELEC   | 466 | 415   | 279       | 270      | 0        | 0        | 0          | 0   | 0   | 0   | 270 | 436 | 2,130                                   |
|     | PK     | 8.0 | 0.8   | 0.8       | 0.8      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.8 | 8.0 | 0.8                                     |
| 1   | EQ5311 |     | BOIL  | ER CONTR  | OLS      |          |          |            |     |     |     |     |     |                                         |
|     | ELEC   | 78  | 69    | 47        | 45       | 0        | 0        | 0          | 0   | 0   | 0   | 45  | 73  | 356                                     |
|     | PK     | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.                                      |
| 12  |        |     | WATE  | RTUBE BO  | ILER     |          |          |            |     |     |     |     |     | -                                       |
|     | GAS    | 219 | 207   | 94        | 90       | 0        | 0        | 0          | 0   | 0   | 0   | 91  | 190 | 892                                     |
|     | PK     | 1.5 | 1.5   | 0.5       | 0.4      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.5 | 1.5 | 1.5                                     |
| 12  | EQ5020 |     | HEAT  | ING WATE  | R CIRCUL | ATION PL | JMP      |            |     |     |     |     |     |                                         |
|     | ELEC   | 240 | 235   | 186       | 180      | 0        | 0        | 0          | 0   | 0   | 0   | 180 | 235 | 1,25                                    |
|     | PK     | 0.8 | 8.0   | 0.8       | 0.8      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.8 | 0.8 | 0.1                                     |
| 2   | EQ5311 |     | BOIL  | ER CONTR  | OLS      |          |          |            |     |     |     |     |     |                                         |
|     | ELEC   | 40  | 39    | 31        | 30       | 0        | 0        | 0          | 0   | 0   | 0   | 30  | 39  | 21                                      |
|     | PK     | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.                                      |
| 3   |        |     | WATE  | RTUBE BO  | ILER     |          |          |            |     |     |     |     |     |                                         |
|     | GAS    | 93  | 89    | 37        | 30       | 0        | 0        | 0          | 0   | 0   | 0   | 38  | 88  | 37                                      |
|     | PK     | 0.5 | 0.6   | 0.2       | 0.1      | 0.0      | 0.0      | 0.0        | 0.0 | 0.0 | 0.0 | 0.2 | 0.5 | 0.0                                     |

'IIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 SE CASE

| f  | Equip · |     |       |           |          | HOIT     | hly Cons | disperon |     |     |     |     |     |             |
|----|---------|-----|-------|-----------|----------|----------|----------|----------|-----|-----|-----|-----|-----|-------------|
| m  | Code    | Jan | Feb   | Mar       | Apr      | May      | June     | July     | Aug | Sep | Oct | Nov | Dec | Total       |
| 13 | EQ5020  |     | HEAT  | ING WATER | CIRCULA  | ATION PU | MP       |          |     |     |     |     |     | P           |
|    | ELEC    | 225 | 209   | 157       | 134      | 0        | 0        | 0        | 0   | 0   | 0   | 161 | 219 | 1,106       |
|    | PK      | 0.6 | 0.6   | 0.6       | 0.6      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.6 | 0.6 | 0.6         |
| 3  | E95311  |     | BOILE | R CONTRO  | DLS      |          |          |          |     | •   |     |     |     |             |
|    | ELEC    | 50  | 47    | 35        | 30       | 0        | 0        | 0        | 0   | 0   | 0   | 36  | 49  | 247         |
|    | PK      | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.          |
|    |         |     | WATER | RTUBE BO  | LER      |          |          |          |     |     |     |     |     |             |
|    | GAS     | 261 | 252   | 82        | 55       | 0        | 0        | 0        | 0   | 0   | 0   | 91  | 252 | 99          |
|    | PK      | 1.0 | 1.0   | 0.6       | 0.1      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.6 | 1.0 | 1.          |
| 4  | EQ5020  |     | HEAT  | ING WATER | R CIRCUL | ATION PU | MP       |          |     |     |     |     |     | -           |
|    | ELEC    | 833 | 753   | 833       | 806      | 0        | 0        | 0        | 0   | 0   | 0   | 806 | 833 | 4,86        |
|    | PK      | 1.1 | 1.1   | 1.1       | 1.1      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 1.1 | 1.1 | 1.          |
| •  | EQ5311  |     | BOIL  | ER CONTRO | DLS      |          |          |          |     |     |     |     |     |             |
|    | ELEC    | 93  | 84    | 93        | 90       | 0        | 0        | 0        | 0   | 0   | 0   | 90  | 93  | 54          |
|    | PK      | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.          |
| ;  | EQ2454  |     | RESI  | DENTIAL   | GAS FURN | ACE WITH | FAN      |          |     |     |     |     |     |             |
|    | GAS     | 97  | 91    | 29        | 18       | 0        | 0        | 0        | 0   | 0   | 0   | 31  | 92  | 35          |
|    | PK      | 0.3 | 0.3   | 0.1       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.2 | 0.3 | 0.          |
| 5  | EQ5254  |     | RESI  | DENTIAL   | FURNACE  | FAN      |          |          |     |     |     |     |     |             |
|    | ELEC    | 540 | 488   | 540       | 523      | 0        | 0        | 0        | 0   | 0   | 0   | 523 | 540 | 3,15        |
|    | PK      | 0.7 | 0.7   | 0.7       | 0.7      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 | 0.          |
| 5  |         |     | GAS   | FIRED ST  | EAM BOIL | ER       |          |          |     |     |     |     |     | <del></del> |
|    | GAS     | 350 | 344   | 233       | 226      | 0        | 0        | 0        | 0   | 0   | 0   | 226 | 339 | 1,71        |
|    | PK      | 2.2 | 2.3   | 0.3       | 0.3      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.3 | 2.1 | 2.          |
| 5  | E95311  |     |       | ER CONTR  |          |          |          |          |     |     |     |     |     |             |
|    | ELEC    | 93  | 84    | 93        | 90       | 0        | 0        | 0        | 0   | 0   | 0   | 90  | 93  | 54          |
|    | PK      | 0.1 | 0.1   | 0.1       | 0.1      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.          |
| ,  |         |     | GAS   | FIRED ST  | EAM BOIL | ER       |          |          |     |     |     |     |     |             |
|    | GAS     | 0   | 0     | 0         | 0        | 0        | 0        | 0        | 0   | 0   | 0   | 0   | 0   |             |
|    | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0           |
| 7  | EQ5311  |     | BOIL  | ER CONTR  | OLS      |          |          |          |     |     |     |     |     |             |
|    | ELEC    | 0   | 0     | 0         | 0        | 0        | O        | 0        | 0   | 0   | 0   | 0   | 0   |             |
|    | PK      | 0.0 | 0.0   | 0.0       | 0.0      | 0.0      | 0.0      | 0.0      | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.          |

HIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1

|     | •••••  | ••••• | • • • • • • • • • • • • • • • • • • • • | E Q      | UIPM     | ENT      | ENER     | G Y C   | ONSU  | MPTI | O N | ••••• | • • • • • • • • • • • • • • • • • • • • | ••••••    |
|-----|--------|-------|-----------------------------------------|----------|----------|----------|----------|---------|-------|------|-----|-------|-----------------------------------------|-----------|
| Ref | Equip  |       |                                         |          |          | Mont     | hly Cons | umption | ••••• |      |     | ••••• |                                         |           |
| Num | Code   | Jan   | Feb                                     | Mar      | Apr      | May      | June     | July    | Aug   | Sep  | Oct | Nov   | Dec                                     | Total     |
| 18  |        |       | WATE                                    | RTUBE BO | ILER     |          |          |         |       |      |     |       |                                         |           |
|     | GAS    | 149   | 150                                     | 53       | 33       | 0        | 0        | 0       | 0     | 0    | 0   | 61    | 137                                     | 583       |
|     | PK     | 0.6   | 0.6                                     | 0.3      | 0.1      | 0.0      | 0.0      | 0.0     | 0.0   | 0.0  | 0.0 | 0.3   | 0.6                                     | 0.6       |
| 18  | E95020 |       | HEAT                                    | ING WATE | R CIRCUL | ATION PU | HP       |         |       |      |     |       |                                         | <u></u> 1 |
|     | ELEC   | 188   | 182                                     | 152      | 133      | 0        | 0        | 0       | 0     | 0    | 0   | 162   | 191                                     | 1,008     |
|     | PK     | 0.4   | 0.4                                     | 0.4      | 0.4      | 0.0      | 0.0      | 0.0     | 0.0   | 0.0  | 0.0 | 0.4   | 0.4                                     | 0.4       |
| 18  | EQ5311 |       | BOIL                                    | ER CONTR | OLS      |          |          |         |       |      |     |       |                                         |           |
|     | ELEC   | 63    | 61                                      | 52       | 45       | 0        | 0        | 0       | 0     | 0    | 0   | 55    | 65                                      | 341       |
|     | PK     | 0.1   | 0.1                                     | 0.1      | 0.1      | 0.0      | 0.0      | 0.0     | 0.0   | 0.0  | 0.0 | 0.1   | 0.1                                     | 0.1       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 AIR COOLED SINGLE SCREW CHILLERS

| f | Equip    |       |       |           |       | Hon    | ithly con | sumption |        |       |        |       |       |         |
|---|----------|-------|-------|-----------|-------|--------|-----------|----------|--------|-------|--------|-------|-------|---------|
| m | Code     | Jan   | Feb   | Mar       | Apr   | May    | June      | July     | Aug    | Sep   | 0ct    | Nov   | Dec   | Total   |
| 0 | LIGHTS   |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | 99030 | 89550 | 105452    | 94800 | 102241 | 101222    | 95819    | 105452 | 94800 | 102241 | 94800 | 95819 | 1,181,2 |
|   | PK       | 444.1 | 444.1 | 444.1     | 444.1 | 444.1  | 444.1     | 444.1    | 444.1  | 444.1 | 444.1  | 444.1 | 444.1 | 444     |
| 1 | MISC LD  |       | •     |           |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | O     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0       |
| 2 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | GAS      | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0       |
| 3 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | OIL      | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | ō     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
|   | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P STEAM  | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK .     | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
| 5 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P HOTH20 | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
| 5 | MISC LD  |       |       |           |       |        |           |          |        |       |        |       |       |         |
|   | P CHILL  | 0     | 0     | 0         | O     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
| ı |          |       |       | E UTILIT  |       |        |           |          |        |       |        |       |       |         |
|   | CHILLD   | 0     | 0     | 0         | 0     | 13786  | 13342     | 13786    | 13786  | 13342 | 13786  | 0     | 0     | 81,8    |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 18.5   | 18.5      | 18.5     | 18.5   | 18.5  | 18.5   | 0.0   | 0.0   | 18      |
| ١ | EQ1510   | _     |       | COOLED    |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | 0     | 0     | 0         | 0     | 78520  |           |          | 105495 | 86547 | 42216  | 0     | 0     | 508,    |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 210.8  | 234.2     | 240.0    | 240.0  | 221.0 | 187.4  | 0.0   | 0.0   | 240     |
| ı | E95200   | _     |       | DENSER F  |       |        |           |          |        |       |        |       |       |         |
|   | ELEC     | 0     | 0     | 0         | 0     | 0      | 0         | 0        | 0      | 0     | 0      | 0     | 0     |         |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | (       |
| 1 | EQ5001   |       |       | ILLED WAT |       |        | ANT VOLU  |          |        |       |        |       |       |         |
|   | ELEC     | 0     | 0     | 0         | 0     | 16651  | 16114     | 16651    | 16651  | 16114 | 16651  | 0     | 0     | 98,     |
|   | PK       | 0.0   | 0.0   | 0.0       | 0.0   | 22.4   | 22.4      | 22.4     | 22.4   | 22.4  | 22.4   | 0.0   | 0.0   | 2       |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 2 AIR COOLED SINGLE SCREW CHILLERS

|     | ******* |     | ••••• | E Q      | UIPI    | HENT    | ENE       | RGY      | CONS  | JMPT  | I O N |     |     |         |
|-----|---------|-----|-------|----------|---------|---------|-----------|----------|-------|-------|-------|-----|-----|---------|
| Ref | Equip   |     |       |          |         | Mon:    | thly Cons | sumption |       |       |       |     | •   |         |
| Num | Code    | Jan | Feb   | Mar      | Apr     | Hay     | June      | July     | Aug   | Sep   | Oct   | Nov | Dec | Total   |
| 1   | E95302  |     | CONT  | ROLS     |         |         |           |          |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0        | 0       | 74      | 72        | 74       | 74    | 72    | 74    | 0   | 0   | 442     |
|     | PK      | 0.0 | 0.0   | 0.0      | 0.0     | 0.1     | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.0 | 0.0 | 0.1     |
| 2   | EQ1510  |     | AIR   | COOLED S | ERIES R | (RTAA)  |           |          |       |       |       |     |     | -       |
|     | ELEC    | 0   | 0     | 0        | 0       | 27164   | 41842     | 56709    | 61232 | 28981 | 4824  | 0   | 0   | 220,753 |
|     | PK      | 0.0 | 0.0   | 0.0      | 0.0     | 210.8   | 234.2     | 240.0    | 240.0 | 221.0 | 147.2 | 0.0 | 0.0 | 240.0   |
| 2   | E95001  |     | CHIL  | LED WATE | R PUMP  | - CONST | ANT VOLU  | ME       |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0        | 0       | 4431    | 6624      | 8236     | 8818  | 4476  | 985   | 0   | 0   | 33,570  |
|     | PK      | 0.0 | 0.0   | 0.0      | 0.0     | 22.4    | 22.4      | 22.4     | 22.4  | 22.4  | 22.4  | 0.0 | 0.0 | 22.4    |
| 2   | E95302  |     | CONT  | ROLS     |         |         |           |          |       |       |       |     |     |         |
|     | ELEC    | 0   | 0     | 0        | 0       | 20      | 30        | 37       | 39    | 20    | 4     | 0   | 0   | 150     |
|     | PK      | 0.0 | 0.0   | 0.0      | 0.0     | 0.1     | 0.1       | 0.1      | 0.1   | 0.1   | 0.1   | 0.0 | 0.0 | 0.1     |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
NATURAL DRAFT WATER TUBE BOILERS

| tef | Equip    |             |       |           |         | Mor     | ithly Cons | sumption |        |       |        |       |       |           |
|-----|----------|-------------|-------|-----------|---------|---------|------------|----------|--------|-------|--------|-------|-------|-----------|
| um  | Code     | Jan         | Feb   | Mar       | Apr     | May     | June       | July     | Aug    | Sep   | Oct    | Nov   | Dec   | Total     |
| ٥   | LIGHTS   |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | ELEC     | 99030       | 89550 | 105452    | 94800   | 102241  | 101222     | 95819    | 105452 | 94800 | 102241 | 94800 | 95819 | 1,181,224 |
|     | PK       | 444.1       | 444.1 | 444.1     | 444.1   | 444.1   | 444.1      | 444.1    | 444.1  | 444.1 | 444.1  | 444.1 | 444.1 | 444.1     |
| 1   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | ELEC     | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     | (         |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.0       |
| 2   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | GAS      | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     |           |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.        |
| 3   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | OIL      | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     |           |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.0       |
| 4   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | P STEAM  | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     |           |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.        |
| 5   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | P HOTH20 | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     |           |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.        |
| 6   | MISC LD  |             |       |           |         |         |            |          |        |       |        |       |       |           |
|     | P CHILL  | 0           | 0     | 0         | 0       | 0       | 0          | 0        | 0      | 0     | 0      | 0     | 0     |           |
|     | PK       | 0.0         | 0.0   | 0.0       | 0.0     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.0   | 0.0   | 0.        |
| 1   |          |             |       | E UTILIT  |         |         |            |          |        |       |        |       |       |           |
|     | HOTLD    | 371         | 335   | 371       | 359     | 0       | 0          | 0        | 0      | 0     | 0      | 359   | 371   | 2,16      |
|     | PK       | 0.5         | 0.5   | 0.5       | 0.5     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 0.5   | 0.5   | 0.        |
| 2   |          | ***         |       | E UTILIT  |         |         |            | _        |        |       | _      |       |       |           |
|     | HOTLD    | 825         | 745   | 825       | 798     | 0       | -          | 0        | 0      | 0     | 0      | 798   | 825   | 4,81      |
|     | PK       | 1.1         | 1.1   | 1.1       | 1.1     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 1.1   | 1.1   | 1.        |
| 1   |          | 177         |       | TERTUBE B |         |         |            |          |        |       |        | 071   | 1007  | 17.55     |
|     | GAS      | 1753<br>7.5 | 1911  | 775       | 479     | 0       |            | 0        |        | 0     |        | 834   | 1807  | 7,55      |
|     | PK       | 7.5         | 7.5   | 7.2       | 0.7     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 6.2   | 7.5   | 7.        |
| 1   | EQ5020   |             | HE    | ATING WAT | ER CIRC | ULATION | PUMP       |          |        |       |        |       |       |           |
|     | ELEC     | 5028        | 4461  | 5550      | 5371    | 0       | 0          | 0        | 0      | 0     |        | 5371  | 5021  | 30,80     |
|     | PK       | 7.5         | 7.5   | 7.5       | 7.5     | 0.0     | 0.0        | 0.0      | 0.0    | 0.0   | 0.0    | 7.5   | 7.5   | 7.        |

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 3
NATURAL DRAFT WATER TUBE BOILERS

| ef | Equip  |      | • • • • • • • • • • • • • • • • • • • • |           |          | Mont     | hlv Cons | umption |     |     |     |     |      |       |
|----|--------|------|-----------------------------------------|-----------|----------|----------|----------|---------|-----|-----|-----|-----|------|-------|
| um | Code   | Jan  | Feb                                     | Mar       | Apr      | May      | June     | July    | Aug | Sep | Oct | Nov | Dec  | Total |
| 1  | EQ5311 |      | ROTI                                    | ER CONTR  | 01.6     |          |          |         |     |     |     |     |      | 10141 |
| •  | ELEC   | 84   |                                         |           |          |          |          |         |     |     |     |     |      |       |
|    |        |      | 75                                      | 93        | 90       | 0        | 0        | 0       | 0   | 0   | 0   | 90  | 84   | 516   |
|    | PK     | 0.1  | 0.1                                     | 0.1       | 0.1      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 0.1 | 0.1  | 0.1   |
| 2  |        |      | WATE                                    | RTUBE BO  | ILER     |          |          |         |     |     |     |     |      |       |
|    | GAS    | 1824 | 1665                                    | 0         | 0        | 0        | 0        | 0       |     |     | _   | _   |      |       |
|    | PK     | 16.7 | 16.7                                    | 0.0       | 0.0      |          |          |         | 0   | 0   | 0   | 0   | 1420 | 4,909 |
|    |        | 1017 | 10.7                                    | 0.0       | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 0.0 | 16.7 | 16.7  |
| 2  | EQ5020 |      | HEAT                                    | ING WATE  | R CIRCUL | ATION PU | MP       |         |     |     |     |     |      |       |
|    | ELEC   | 1522 | 1623                                    | 0         | 0        | 0        | 0        | 0       | 0   |     |     | _   |      |       |
|    | PK     | 11,2 | 11.2                                    | 0.0       | 0.0      | 0.0      |          |         |     | 0   | 0   | 0   | 1309 | 4,454 |
|    |        |      |                                         | 0.0       | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0.0 | 0.0 | 0.0 | 11.2 | 11.2  |
| 2  | EQ5311 |      | BOIL                                    | ER CONTRE | OLS      |          |          |         |     |     |     |     |      |       |
|    | ELEC   | 17   | 18                                      | 0         | 0        | O        | 0        | 0       | 0   | •   |     | _   |      |       |
|    | PK     | 0.1  | 0.1                                     | 0.0       | 0.0      | 0.0      | 0.0      | 0.0     | 0.0 | 0   | 0   | 0   | 15   | 50    |

APPENDIX C

DATA FORMS

# APPENDIX C DATA FORMS

# TABLE OF CONTENTS

| Area 900 - Map                         | C-1  |
|----------------------------------------|------|
| Area 900 - Building Data Sheets        | C-2  |
| Area 900 - HVAC Equipment Lists        | C-5  |
| Area 1300 - Map                        | C-6  |
| Area 1300 - Building Data Sheets       | C-7  |
| Area 1300 - HVAC Equipment Lists       | C-12 |
| Area 2200 - Map                        | C-14 |
| Area 2200 - Building Data Sheets       | C-15 |
| Area 2200 - HVAC Equipment Lists       | C-18 |
| Quadrangle Area - Map                  | C-19 |
| Quadrangle Area - Building Data Sheet  | C-20 |
| Quadrangle Area - HVAC Equipment Lists | C-24 |
| Area 100 - Map                         | C-26 |
| Area 100 - Building Data Sheets        | C-27 |
| Area 100 - HVAC Equipment Lists        | C-39 |



## BUILDING DESCRIPTION

NAME: Buildings 904, 905, 906, 907, 915, 916, 917, 920, 921, 924, 925, 926, 929, 930, 931, 932 USE: Barracks for single enlisted personnel and attendees of the NCO Academy. Approximately 1 to 3 people per room, and 24 rooms per building. Buildings occupied continuously through the year.

GROSS AREA (SQ.FT.): 11,220 STORIES: 3 DATE OF SURVEY: 11/30 to 12/2/95

DATE OF CONSTRUCTION: 1974

STRUCTURE: Masonry.

**EXTERIOR WALLS: Brick** 

ROOF: Flat built-up roof.

FLOOR CONSTRUCTION: Slab on grade.

FLOOR FINISH: Concrete and Carpet.

<u>CEILINGS</u>: Lay-in acoustical tile in hallways and plaster ceilings in personnel rooms.

WINDOWS: single pane, clear glass.

COOLING EQUIP: Two-pipe, horizontal fan coil units in each room and hallway and vertical fan coil units in lounge areas. Units are mostly located above restroom ceilings. There are approximately 23 room units, 6 lounge units and 6 corridor units per building. Units are served by central chiller in building 902.

HEATING EQUIP: See cooling equipment above. Units served by central boiler in building 902.

<u>LIGHTING</u>: Wall mounted incandescent fixtures in quarters and lounges, with lay-in fluorescent fixtures in hallways.

<u>DOMESTIC WATER HEATING:</u> Heat exchanger and 588 gallon storage tank in basement of each building, served by central boilers in building 902.

OTHER: Combination chilled water/heating water pump in each building.

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. All mechanical systems appeared to be in a deteriorated state, particularly the HVAC controls and piping distribution system. Leaks and rampant condensation were common throughout all buildings. Corrosion built-up on fan coil units due to placement above restroom ceilings. Also causes accessibility problems for maintenance personnel.

### **BUILDING DESCRIPTION**

NAME: Buildings 908, 919, 922, 928

<u>USE:</u> Buildings 919 & 928 are used for recreation, post office, etc. Average occupancy is 5 persons, between 5 pm till midnight, Monday through Friday, and 9 am till midnight on weekends. Buildings 908 & 922 are used for battalion administration offices, with an average occupancy of 5 persons daily.

GROSS AREA (SQ.FT.): 2,050 STORIES: 1 DATE OF SURVEY: 11/30 to 12/2/95

**DATE OF CONSTRUCTION: 1974** 

STRUCTURE: Masonry.

EXTERIOR WALLS: Brick.

**ROOF:** Flat built-up roof.

FLOOR CONSTRUCTION: Slab on grade.

FLOOR FINISH: Carpet.

**CEILINGS**: Lay-in acoustical tile.

WINDOWS: Single pane with tempered glass.

<u>COOLING EQUIP</u>: Each building has a four-pipe, central air handling unit for both heating and cooling. Air handlers typically have a 3 HP fan motor. Units are served by central chiller in building 902.

<u>HEATING EQUIP</u>: See cooling equipment above. Units are served by central boiler in building 902.

<u>LIGHTING</u>: Lay-in fluorescent fixtures in open areas, restrooms and offices and recess incandescent lights in hallways.

**DOMESTIC WATER HEATING:** Electric water heater in each building, 15 gallon, 1250 W each.

OTHER: Combination chilled water/heating water pump in each building, typically 1-1/2 HP each. REMARKS: Poor temperature control, extremely hot during field survey, doors were opened to control temperatures. All mechanical systems appeared to be in a deteriorated state, particularly the HVAC controls and piping insulation.

## **BUILDING DESCRIPTION**

NAME: Building 902

<u>USE:</u> Used as administrative offices and classrooms, 7 am until 5 pm, Monday through Friday.

Maximum 180 persons when occupied. Other portions used as central boiler and chiller plant for other buildings in the 900 area.

GROSS AREA (SQ.FT.): 23,723 STORIES: 1 DATE OF SURVEY: 11/30 to 12/2/95

**DATE OF CONSTRUCTION:** 1974

STRUCTURE: Masonry.

EXTERIOR WALLS: Brick.

ROOF: Flat built-up roof.

FLOOR CONSTRUCTION: Slab on grade.

FLOOR FINISH: Carpet

**CEILINGS**: Lay-in acoustical tile

WINDOWS: Single pane with clear glass.

<u>COOLING EQUIP</u>: Two four-pipe central air handlers with individual return air fans are serving the administrative and classroom areas. Units are served by central chiller in building 902.

<u>HEATING EQUIP</u>: See cooling equipment above. Units are served by central boiler in building 902.

<u>LIGHTING</u>: Lay-in fluorescent fixtures in the admin and classrooms, industrial fluorescent fixtures in the storage area, and recess

<u>DOMESTIC WATER HEATING:</u> Heating water to domestic hot water heat exchanger in central plant, served by central boilers in building 902.

OTHER: Central chiller and boiler equipment, see HVAC Equipment List for descriptions.

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. All mechanical systems appeared to be in a deteriorated state, particularly the HVAC controls and piping insulation. Exhaust fans appeared to operate while central AHUs were off. Return air grilles appeared to be excessively dirty. Room remodeling has restricted the return air pattern back to the air handling units.

|                      |   | HVAC EQUIP                                                   | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 | RT SAM HOUST | ON, AREA 900 |     |             |     |            |
|----------------------|---|--------------------------------------------------------------|------------------------------------------------------------------|--------------|--------------|-----|-------------|-----|------------|
| T and the I          | Ì |                                                              | מויימים אותיא                                                    | YEAR         | FULL         | g   | ER. TIN     | ES  | ANNUAL USE |
| LEM                  |   | DESCRIPTION                                                  | AKEA SEKVED                                                      | INSTALLED    | LOAD         | HRS | HRS DAYS WK | WKS | KWH MCF    |
| Water Chiller        | - | York #YTC303C1CJC water cooled, centrifugal, 304 tons, R-11  | Area 900                                                         | 1985         | 225 KW       | 24  | 7           | 26  | 444,056    |
| Chilled Water Pump   | - | Weinman<br>720 gpm, 100 ft<br>25 HP                          | Area 900                                                         | 1985         | 18.65 KW     | 24  | 7           | 26  | 82,358     |
| Condenser Water Pump | - | Weinman<br>912 gpm, 50 ft<br>15 HP                           | Area 900                                                         | 1985         | 11.19 KW     | 24  | 7           | 26  | 49,415     |
| Cooling Tower        | - | Marley #MC8608<br>one cell<br>15 HP fan                      | Area 900                                                         | 1979         | 11.19 KW     | 24  | 7           | 26  | 45,510     |
| Hot Water Boiler     | က | Ajax #WG 2250<br>natural draft, watertube<br>1665 MBH output | Area 900                                                         | 1979         | 2,250 MBH    | 24  | 7           | 26  | 7,809      |
| Heating Water Pump   | ٢ | Weinman<br>200 gpm, 38 ft<br>5 HP                            | Area 900                                                         | 1979         | 3.73 KW      | 24  | 7           | 26  | 32,675     |
| Heating Water Pump   | + | Weinman<br>115 gpm, 30 ft<br>5 HP                            | Area 900                                                         | 1979         | 3.73 KW      | 24  | 7           | 26  | 32,675     |
| Heating Water Pump   | - | Weinman<br>115 gpm, 30 ft<br>2 HP                            | Area 900                                                         | 1979         | 1.49 KW      | 24  | 7           | 26  | 13,052     |
| Heating Water Pump   | - | Peerless<br>1.5 HP                                           | Bldg. 902                                                        | 1979         | 1.12 KW      | 24  | 7           | 26  | 9,811      |
|                      |   |                                                              |                                                                  |              |              |     |             |     |            |
|                      |   |                                                              |                                                                  |              |              |     |             |     |            |
|                      |   |                                                              |                                                                  |              |              |     |             |     |            |
|                      |   |                                                              |                                                                  |              |              |     |             |     |            |



NAME: Building 1350

<u>USE:</u> Barracks, administrative offices, dining and classrooms for single enlisted personnel.

Maximum occupancy of 800 persons with current occupancy of 1550 personnel.

GROSS AREA (SQ.FT.): 261,406 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION: 1983** 

STRUCTURE: Masonry

EXTERIOR WALLS: Both brick and precast panel.

**ROOF:** Flat built-up roof.

FLOOR CONSTRUCTION: Slab on grade

FLOOR FINISH: Concrete topping, tile, and carpet

<u>CEILINGS</u>: Lay in acoustical tile, plaster, and stucco

WINDOWS: Single pane with glazed, insulating glass.

<u>COOLING EQUIP</u>: Total of seven central multi-zone, variable volume air handling units serving large areas of the building. Approximately 20 two-pipe fan coil units serving cadre rooms. All units are served by central chillers in building 1377.

<u>HEATING EQUIP</u>: See cooling equipment above. Multiple heating/ventilating units serving scrub rooms, toilets and kitchen areas along with heating water convection units serving multiple areas throughout building. All units are served by central boilers in building 1377.

<u>LIGHTING</u>: Lay-in fluorescent fixtures in barracks, admin, classrooms, and dining areas. Surface mounted fluorescent fixtures in kitchen and scattered incandescent fixtures.

<u>DOMESTIC WATER HEATING:</u> Gas fired hot water heaters in building to serve restrooms.

OTHER: 7 ½, ½, ½ HP heating water pumps in building. Steam boilers in building serve kitchen equipment.

<u>REMARKS:</u> Poor temperature control, extremely hot during field survey. Piping leaks are a problem. All other HVAC systems appeared to be in fair condition.

NAME: Buildings 1374, 1375, 1379, 1380

<u>USE</u>: Barracks for single enlisted personnel, classrooms and administrative offices. Maximum occupancy of approximately 475 people.

GROSS AREA (SQ.FT.): 111,448 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION:** 1971

**STRUCTURE**: Partially exposed structural steel frame

**EXTERIOR WALLS:** Brick and stucco veneer

ROOF: built-up roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: concrete topping and carpet

<u>CEILINGS</u>: Lay-in acoustical tile in building with stucco over exposed areas

WINDOWS: single pane clear and tempered glass

<u>COOLING EQUIP</u>: Approximately six multi-zone, constant volume central air handlers serving barracks and office areas of the buildings. Approximately four cabinet type fan coil units serving classrooms in the buildings. All units served by central chillers in building 1377.

<u>HEATING EQUIP:</u> See cooling equipment above. All units served by central boilers in building 1377.

<u>LIGHTING</u>: Surface mounted incandescent fixtures in exposed areas. Lay-in fluorescent fixtures in admin and barracks areas.

<u>DOMESTIC WATER HEATING:</u> Gas fired hot water boilers in building to serve restrooms.

OTHER: Secondary 7 ½ and 5 HP chilled/heating water pumps in building.

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. Renovations to building has caused restricted return air flow back to air handling units. All other HVAC systems appeared to be in fair condition.

NAME: Building 1382

<u>USE</u>: Barracks for single enlisted personnel, administrative offices. Continuous occupancy of approximately 240 persons.

GROSS AREA (SQ.FT.): 29,390 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1971

**STRUCTURE**: Masonry

**EXTERIOR WALLS:** Brick

**ROOF**: Flat Built-up roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Gypsum wallboard and acoustical tile

WINDOWS: Single pane clear glass

<u>COOLING EQUIP</u>: Building served by two central multi-zone air handlers. Air handler cooling coils served by central chillers in building 1377.

<u>HEATING EQUIP:</u> See cooling equipment above. Air handler heating coils served by central boilers in building 1377.

**LIGHTING**: Surface and suspended mounted fluorescent fixtures

**<u>DOMESTIC WATER HEATING:</u>** Gas fired hot water heaters in building to serve restrooms.

OTHER: Secondary 3/4 HP chilled water and ½ HP heating water pumps in building.

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. All other HVAC systems appeared to be in fair condition. Outside air intake louvers have been blanked off with sheet metal, reducing HVAC loads but also reducing indoor air quality. Building may not meet ASHRAE standards for ventilation.

NAME: Building 1385

<u>USE:</u> Administrative services for 232nd Medical Battalion troops. Continuous occupancy of approximately 22 persons.

GROSS AREA (SQ.FT.): 5,072 STORIES: 1 DATE OF SURVEY: 11/30 to 12/2/94

**DATE OF CONSTRUCTION: 1971** 

**STRUCTURE**: Masonry

EXTERIOR WALLS: Brick

ROOF: Flat built-up roof

FLOOR CONSTRUCTION: Slab on grade

FLOOR FINISH: Concrete and tile

**CEILINGS**: Acoustical tile and gypsum wallboard

WINDOWS: Single pane clear glass

<u>COOLING EQUIP</u>: Building served by central multi-zone air handler in mechanical room. Air handler cooling coil served by central chiller in building 1377.

<u>HEATING EQUIP:</u> See cooling equipment above. Air handler heating coil served by central boiler in building 1377.

<u>LIGHTING</u>: Recessed and surface mounted fluorescent fixtures in office areas and surface mounted incandescent fixtures in other areas

<u>DOMESTIC WATER HEATING:</u> Electric, 66 gallon, 4500 W hot water heater in building to serve restrooms.

OTHER: Secondary 1/4 HP chilled water and 1/8 HP heating water pumps in building.

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. All other HVAC systems appeared to be in fair condition. Outside air intake louvers have been blanked off with sheet metal, reducing HVAC loads but also reducing indoor air quality. Building may not meet ASHRAE standards for ventilation.

NAME: Building 1377

<u>USE</u>: Kitchen and dining hall in building. Other areas serve as central chiller and boiler plant for buildings in 1300 area. Maximum occupancy of 800 persons on weekdays between 4 am and 9 pm.

GROSS AREA (SQ.FT.): 30,350 STORIES: 1

DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1971

STRUCTURE: Masonry

**EXTERIOR WALLS: Brick** 

ROOF: Sloped built-up roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

CEILINGS: Acoustical tile, gypsum wallboard, and plaster

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Dining areas served by two, single zone, central air handlers in mechanical room. Air handler cooling coils served by central chiller in building 1377. Kitchen served by two evaporative coolers only.

<u>HEATING EQUIP</u>: See cooling equipment above. Air handler heating coil served by central boiler in building 1377. Evaporative coolers serving kitchen have steam htg coil which is supplied by steam boiler in building 1377.

LIGHTING: Surface mounted fluorescent fixtures

**<u>DOMESTIC WATER HEATING:</u>** Electric hot water heater in building to serve restrooms.

OTHER: Central chiller and boiler equipment, see HVAC Equipment List for descriptions along with steam boiler to serve bldg. 1377 kitchen equipment..

<u>REMARKS</u>: Poor temperature control, extremely hot during field survey. All mechanical systems appeared to be in a deteriorated state, particularly the HVAC controls and piping insulation. Exhaust fans appeared to operate while central AHUs were off. Return air grilles appeared to be excessively dirty.

|                                                                      | ANNUAL      | YS WKS KWH MCF | 26 1,464,005                                                 | 26 130,286                                                         | 26 595,685                                                           | 26 164,716                                            | 26 131,830                                 | 26 171,908                                            | 26 98,830                                  | 26 210,896                                            | 26 60,215                             | 26 32,406 15,611                                           | 3,140                                                       | . 26 0                                                        |
|----------------------------------------------------------------------|-------------|----------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|
|                                                                      | OPER. TIMES | S DAYS         | 4 7                                                          | 4 7                                                                | 4 7                                                                  | 7                                                     | 4 7                                        | 4 7                                                   | 7                                          | 7                                                     | 7                                     | 7                                                          | 7                                                           | 7                                                             |
|                                                                      |             | HRS            | 24                                                           | 24                                                                 | 24                                                                   | 24                                                    | 24                                         | 24                                                    | 24                                         | 24                                                    | 24                                    | 1 24                                                       | 1 24                                                        | 1 24                                                          |
| ON, AREA 130                                                         | FULL        | LOAD           | 564 KW                                                       | 564 KW                                                             | 329 KW                                                               | 18.65 KW                                              | 29.84 KW                                   | 29.84 KW                                              | 22.38 KW                                   | 52.22 KW                                              | 14.92 KW                              | 8,369 MBH<br>7.46 KW                                       | 7,500 MBH                                                   | 5,800 MBH                                                     |
| T SAM HOUST                                                          | YEAR        | INSTALLED      | 1972                                                         | 1972                                                               | 1983                                                                 | 1972                                                  | 1983                                       | 1972                                                  | 1983                                       | 1972                                                  | 1983                                  | 1972                                                       | 1983                                                        | 1983                                                          |
| HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 1300<br>JUNE 2, 1995 |             | AREA SERVED    | Bldgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385        | Bldgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385              | Bldg. 1350                                                           | Bldgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385 | Bldg. 1350                                 | Bldgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385 | Bldg. 1350                                 | Bidgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385 | Bldg. 1350                            | Bidgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385      | Bldg. 1350                                                  | Bldg. 1350                                                    |
| HVAC EQUIP                                                           |             | DESCRIPTION    | Trane #PCV-5F-C1D1 water cooled, centrifugal, 600 tons, R-11 | Trane #PCV-5F-C1D1<br>water cooled, centrifugal,<br>600 tons, R-11 | Carrier #19DK 78942P<br>water cooled, centrifugal,<br>438 tons, R-11 | Aurora<br>870 gpm, 79 ft<br>25 HP                     | Allis Chalmers<br>775 gpm, 114 ft<br>40 HP | Aurora<br>1440 gpm, 70 ft<br>40 HP                    | Allis Chalmers<br>1314 gpm, 30 ft<br>30 HP | Marley #324T<br>induced draft,<br>2-35 HP fans        | Marley<br>induced draft,<br>20 HP fan | C.B. #CB700X-200<br>10 HP forced draft,<br>5912 MBH output | Rite #A750WG<br>natural draft, watertube<br>5317 MBH output | Ajax #WGB 9500<br>natural draft, watertube<br>4336 MBH output |
|                                                                      |             | ΩTY.           | -                                                            | -                                                                  | -                                                                    | 2                                                     | -                                          | 7                                                     | -                                          | -                                                     | -                                     | 2                                                          | -                                                           | -                                                             |
|                                                                      |             | MEL            | Water Chiller                                                | Water Chiller                                                      | Water Chiller                                                        | Chilled Water Pump                                    | Chilled Water Pump                         | Condenser Water Pump                                  | Condenser Water Pump                       | Cooling Tower                                         | Cooling Tower                         | Hot Water Boiler                                           | Hot Water Boiler                                            | Hot Water Boiler                                              |

|                                                      |             |                                                       |                    | <br> |  |  | <br> |   |
|------------------------------------------------------|-------------|-------------------------------------------------------|--------------------|------|--|--|------|---|
| I NINA                                               | KWH MCF     | 97,218                                                | 129,625            |      |  |  |      |   |
| U                                                    | WKS         | 26                                                    | 56                 |      |  |  |      |   |
| ODED TIMES                                           | DAYS        | 7                                                     | 7                  |      |  |  |      | i |
|                                                      | HRS         | 24                                                    | 24                 |      |  |  |      |   |
| ON, AREA 1300                                        | LOAD        | 11.19 KW                                              | 29.84 KW           |      |  |  |      |   |
| T SAM HOUST                                          | INSTALLED   | 1972                                                  | 1983               |      |  |  |      |   |
| HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 1300 | AREA SERVED | Bldgs. 1374, 1375,<br>1379, 1380, 1382,<br>1377, 1385 | Bldg. 1350         |      |  |  |      |   |
| HVAC EQUIPA                                          | DESCRIPTION | Aurora<br>443 gpm, 76 ft<br>15 HP                     |                    |      |  |  |      |   |
|                                                      | ΩTY.        | 2                                                     | -                  |      |  |  |      |   |
|                                                      | ITEM        | Heating Water Pump                                    | Heating Water Pump |      |  |  |      |   |



NAME: Building 2263

<u>USE:</u> Administrative offices for post fiscal activities. Maximum occupancy of 250 persons from

6:30 am until 5:15 pm on weekdays.

GROSS AREA (SQ.FT.): 81,065 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION: 1970** 

STRUCTURE: Masonry

**EXTERIOR WALLS:** Stucco on CMU

**ROOF**: Pitched shingle roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Lay-in acoustical tile

WINDOWS: single and double pane clear glass in most of building and insulating glass in corridors.

**COOLING EQUIP:** Eight, single zone central air handlers serving the general office areas.

Fourteen, four-pipe fan coil units serving corridors, stairwells and first floor office areas on the east and west ends. All units are served by the central chiller in building 2265.

<u>HEATING EQUIP</u>: See cooling equipment above. All units are served by the central boilers in building 2265.

LIGHTING: Recessed fluorescent fixtures and scattered incandescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heaters in building to serve restrooms.

OTHER: Packaged computer room units with outdoor fluid cooler serve the computer room in building. Some rooms in basement served by window units.

<u>REMARKS</u>: Poor temperature control. Extremely hot inside during field visit in mid March. Some inside areas were above 100 degrees F. All HVAC systems appeared to be in good condition with the exception of the temperature controls.

NAME: Buildings 2264, 2266

<u>USE</u>: Mainly barracks for single enlisted personnel, with administrative offices and classrooms.

Also houses the Academy Museum and band area. Maximum occupancy of 255 persons per building

on a continuous basis.

GROSS AREA (SQ.FT.): 98,190 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1970

STRUCTURE: Masonry

**EXTERIOR WALLS:** Plaster on stone

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Lay-in acoustical tile

WINDOWS: Single pane clear glass

COOLING EQUIP: Ten, four-pipe multi-zone air handlers serving all areas of the building.

Average 3 to 6 zones per unit. All units are served by the central chiller in building 2265.

HEATING EQUIP: See cooling equipment above. All units are served by the central boilers in

building 2265.

<u>LIGHTING</u>: Recessed fluorescent fixtures with incandescent fixtures scattered throughout building.

**<u>DOMESTIC WATER HEATING:</u>** Gas fired hot water heaters in building to serve restrooms.

**REMARKS**: Poor temperature control. Extremely hot inside during field visit in mid March. All

HVAC systems appeared to be in poor condition, especially the temperature controls.

NAME: Building 2265

<u>USE:</u> Mainly barracks for single enlisted personnel, with administrative offices and classrooms.

Also houses the mess hall and central boiler and chiller plants. Maximum occupancy of 600 persons at meal time, with approximately 200 persons on a continuous basis.

GROSS AREA (SQ.FT.): 105,564 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1970

**STRUCTURE**: Masonry

EXTERIOR WALLS: Plaster on stone wall

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Acoustical tile and gypsum wallboard

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Ten, four-pipe multi-zone air handlers serving all areas of the building. Average 2 to 6 zones per unit. All units are served by the central chiller in building.

<u>HEATING EQUIP:</u> See cooling equipment above. All units are served by the central boilers in building behind.

LIGHTING: Recessed fluorescent fixtures with incandescent scattered in building.

<u>DOMESTIC WATER HEATING:</u> Large gas fired boiler located in basement for domestic hot water heating in the building.

OTHER: Central chiller plant equipment in building and central boiler plant equipment in building behind. See HVAC Equipment Lists for descriptions. Steam boilers in basement serve kitchen equipment.

<u>REMARKS</u>: Poor temperature control. Extremely hot inside during field visit in mid March. All HVAC systems appeared to be in poor condition, especially the temperature controls. Boiler (heating water) plant appears in good condition, while chiller plant is aged.

|                                                                   | ANNUAL USE  | KWH MCF     | 994,146                                                             | 329,433                            | 164,717                          | 121,471                                      | 4,949                                                         | 51,512                                | 24                      |  |  |  |
|-------------------------------------------------------------------|-------------|-------------|---------------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------|-------------------------|--|--|--|
|                                                                   | 1           |             | 867                                                                 | 326                                | 164                              | 121                                          |                                                               | 51                                    | ``                      |  |  |  |
|                                                                   | MES         | WKS         | 26                                                                  | 56                                 | 56                               | 56                                           | 26                                                            | 56                                    | 56                      |  |  |  |
|                                                                   | OPER. TIMES | DAYS        | 7                                                                   | 7                                  | 7                                | 7                                            | 7                                                             | 7                                     | 7                       |  |  |  |
|                                                                   | Q           | HRS         | 24                                                                  | 24                                 | 24                               | 24                                           | 24                                                            | 24                                    | 24                      |  |  |  |
| ON, AREA 2200                                                     | FULL        | LOAD        | 595 KW                                                              | 74.60 KW                           | 37.30 KW                         | 29.84 KW                                     | 3,000 MBH                                                     | 11.19 KW                              | 0.56 KW                 |  |  |  |
| F SAM HOUST                                                       | YEAR        | INSTALLED   | 1973                                                                | 1973                               | 1973                             | 1973                                         | 1988                                                          | 1988                                  | 1988                    |  |  |  |
| HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 2200 JUNE 2, 1995 |             | AREA SERVED | Area 2200                                                           | Area 2200                          | Area 2200                        | Area 2200                                    | Area 2200                                                     | Area 2200                             | Hot Water Boiler        |  |  |  |
| HVAC EQUIPN                                                       |             |             | Chrysler #C2MN779-2<br>water cooled, centrifugal,<br>657 tons, R-11 | Paco<br>1526 gpm, 166 ft<br>100 HP | Paco<br>1971 gpm, 63 ft<br>50 HP | Built-up<br>crossflow, 2 cell<br>2-20HP fans | Ajax #WGB 4750<br>natural draft, watertube<br>2240 MBH output | Armstrong<br>207 gpm, 110 ft<br>15 HP | Armstrong<br>3/4 HP     |  |  |  |
|                                                                   | į           | ΩT₹.        | -                                                                   | 1                                  | 1                                | -                                            | က                                                             | က                                     | က                       |  |  |  |
|                                                                   |             | ITEM        | Water Chiller                                                       | Chilled Water Pump                 | Condenser Water Pump             | Cooling Tower                                | Hot Water Boiler                                              | Heating Water Pump                    | Boiler Circulation Pump |  |  |  |



NAME: Building 4015

<u>USE:</u> Medical logistics training and offices, pharmaceutical storage. Maximum occupancy of 100 persons on weekdays, between 7:30 am and 4:30 pm.

GROSS AREA (SQ.FT.): 14,568 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1956

STRUCTURE: Frame

**EXTERIOR WALLS:** Stucco

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Slab on grade

FLOOR FINISH: wood covered with linoleum

**CEILINGS**: suspended metal lathe

WINDOWS: single pane clear glass

**COOLING EQUIP:** Three multizone air handlers serving the classrooms, offices and storage areas.

A 50 ton air cooled reciprocating chiller outside building serves the air handlers. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. A 800 MBH heating water boiler in building serving air handlers. See HVAC Equipment Lists for details.

**LIGHTING**: Suspended fluorescent fixtures

**<u>DOMESTIC WATER HEATING:</u>** Gas fired hot water heaters in building to serve restrooms.

OTHER: 5 HP chilled water pump and 2 HP heating water pump serving chiller and boiler. See HVAC Equipment Lists for details.

**REMARKS**: All HVAC equipment, including controls, appeared to be in fair condition.

NAME: Building 56

USE: Administrative offices for post security and pentathlon, classroom areas for training and

testing. Maximum occupancy of 65 persons during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 8,025 STORIES: 1 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1941

STRUCTURE: Frame

**EXTERIOR WALLS:** Siding and brick

**ROOF**: Pitched roof with shingles

FLOOR CONSTRUCTION: Slab on grade

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: One multi-zone air handler serving all conditioned areas of the building. Unit served by air cooled reciprocating chiller, approximately 30 tons nominal. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Steam to heating water generator served from boiler in building 16, furnishing heating water for multizone above. See HVAC Equipment Lists for details.

LIGHTING: Lay-in fluorescent fixtures

**<u>DOMESTIC WATER HEATING:</u>** Gas fired hot water heaters in building to serve restrooms.

OTHER: 1 HP chilled water pump, and 1/8 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control, very hot inside during the field visit. All HVAC equipment appeared to be in fair to poor condition with the exception of new chiller, however most controls were not functioning properly.

NAME: Building 16

<u>USE:</u> Headquarters for the 5th Army. Maximum 300 occupants during weekdays between 6:30 am and 6:00 pm.

GROSS AREA (SQ.FT.): 76,102 STORIES: 2

DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION: 1940** 

STRUCTURE: Masonry

EXTERIOR WALLS: Stone

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Slab on grade

FLOOR FINISH: concrete and carpet

CEILINGS: acoustical tile

WINDOWS: single and double pane clear glass and insulating glass in corridor

COOLING EQUIP: Approximately five, single zone air handlers serving office areas on the first and second floor. Four fan coil units serving the second floor corridor. All units served by two air cooled chillers outside building, total 230 nominal tons capacity. See HVAC Equipment Lists for details. Also 24 packaged DX cooling units serve the wing areas. DX units served by three evaporative condensers outside building. Computer room units served by air cooled condenser and stand alone compressor in building mechanical room.

<u>HEATING EQUIP</u>: See cooling equipment above. Steam unit heaters serve the wings. All units served by two steam boilers inside building, total 5,800 MBH total output capacity. See HVAC Equipment Lists for details.

<u>LIGHTING</u>: lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heaters in building to serve restrooms.

OTHER: Two, 7.5 HP chilled water pumps serving chillers. See HVAC Equipment Lists for details.

Condensate pumps scattered through building.

<u>REMARKS</u>: Poor temperature control, portions of building were comfortable while others were very hot during the field visit. All HVAC equipment appeared to be in fair to poor condition, however most controls were not functioning properly

NAME: Building 44

<u>USE</u>: Administrative offices for the 5th Army. Maximum occupancy of 350 persons during weekdays between 7:30 am and 4:30 pm.

GROSS AREA (SQ.FT.): 95,332 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/9

DATE OF CONSTRUCTION: 1956

STRUCTURE: Masonry

**EXTERIOR WALLS:** Brick and Stucco

**ROOF**: Flat built-up roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

CEILINGS: Lay-in acoustical tile

WINDOWS: single pane clear glass

COOLING EQUIP: Two dual-duct air handlers serving 1st and 2nd floor offices. Single zone, VAV air handler serving 3rd floor offices. Five single zone air handlers serving 1st floor computer room, 1st floor addition and deli. Most units served by air cooled reciprocating chillers outside with total 255 nominal tons capacity. See HVAC Equipment Lists for details. 1st floor addition and deli unit are DX cooling.

<u>HEATING EQUIP</u>: See cooling equipment above. All units served by 13 steam boilers, total 3440 MBH output capacity. See HVAC Equipment Lists for details.

<u>LIGHTING:</u> Lay in fluorescent fixtures, recessed incandescent scattered in building.

**<u>DOMESTIC WATER HEATING:</u>** Gas fired hot water heaters in building to serve restrooms.

OTHER: 20 HP chilled water pump serving chillers. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control in building. Extremely hot, especially on the second floor where the lights are on 24 hours/day. Large air handlers and boilers in this building are aging and in appear in poor condition.

|                       |          | HVAC EQUIPMENT L                                                     | IST FOR:          | A HOUSTON, C | FORT SAM HOUSTON, QUADRANGLE AREA | REA |             |     |            |
|-----------------------|----------|----------------------------------------------------------------------|-------------------|--------------|-----------------------------------|-----|-------------|-----|------------|
|                       |          |                                                                      |                   | YEAR         | FULL                              | Q   | OPER. TIMES | ES  | ANNUAL USE |
| ITEM                  | oT.      | DESCRIPTION                                                          | AREA SERVED       | INSTALLED    | LOAD                              | HRS | DAYS        | WKS | KWH MCF    |
| Water Chiller         | -        | TSI #CA2CD 75<br>air cooled, recip.<br>50 tons, R-22                 | Bldg. 4015        | 1983         | 88 KW                             | 24  | 7           | 56  | 180,278    |
| Chilled Water Pump    | -        | Paco<br>5 HP                                                         | Bldg. 4015        | 1983         | 3.73 KW                           | 24  | 7           | 56  | 16,472     |
| Hot Water Boiler      | -        | Rite #R8-C-05<br>forced draft, 5 HP blower<br>741 MBH output         | Bldg. 4015        | 1987         | 1,000 MBH<br>3.73 KW              | 24  | 7           | 56  | 120        |
| Heating Water Pump    | -        | N/A<br>3 HP                                                          | Bldg. 4015        | 1987         | 2.24 KW                           | 24  | 7           | 56  | 1,821      |
| Water Chiller         | -        | Trane #CDAGC30GACA air cooled, recip.                                | Bldg. 56          | 1993         | 49 KW                             | 24  | _           | 56  | 76,755     |
| Chilled Water Pump    | 7        | Amstrong<br>207 gpm, 110 ft<br>5 HP                                  | Bldg. 56          | 1993         | 3.73 KW                           | 24  | 7           | 56  | 32,944     |
| Water Chiller         | -        | TSI #30AOCM 140 air cooled, recip. 120 tons                          | Bldg. 16          | 1994         | 194 KW                            | 24  | 7           | 56  | 393,031    |
| Water Chiller         | -        | TSI #CA2CM 110 air cooled, recip.                                    | Bldg. 16          | 1987         | 190 KW                            | 24  | 7           | 26  | 122,759    |
| Chilled Water Pump    | 2        | Taco<br>350 gpm, 50 ft<br>7.5 HP                                     | Bldg. 16          | 1987         | 5.60 KW                           | 24  | 7           | 26  | 49,460     |
| Steam Boiler          | -        | Rite #2255<br>natural draft, watertube<br>1614 MBH output            | Bldg. 16          | 1979         | 2,250 MBH                         | 24  | 7           | 26  | 267        |
| Steam Boiler          | <u>-</u> | Rite #500<br>natural draft, watertube<br>3587 MBH output             | Bldg. 16, Bldg 56 | 1979         | 5,000 MBH                         | 24  | 7           | 26  | 651        |
| Evaporative Condenser | -        | Marley - 3 misc. models<br>2 - 3 HP & 5 HP pumps,<br>3 - 1/2 HP fans | Bldg. 16          | 1978         | 9.33 KW                           | 24  | _           | 26  | 41,201     |

|                    |        | HVAC EQUIPMENT                                     | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, QUADRANGLE AREA | M HOUSTON, 0 | <b>DUADRANGLE</b> | REA |             |     |            |
|--------------------|--------|----------------------------------------------------|------------------------------------------------------------|--------------|-------------------|-----|-------------|-----|------------|
|                    |        |                                                    |                                                            | YEAR         | FULL              | Q   | OPER. TIMES | ES  | ANNUAL USE |
| ITEM               | Ω<br>Ţ |                                                    | AREA SERVED                                                | INSTALLED    | LOAD              | HRS | DAYS WKS    | WKS | KWH MCF    |
| Water Chiller      | -      | York #LCHA 65 17D<br>air cooled, recip.<br>65 tons | Bldg. 44                                                   | 1985         | 114 KW            | 24  | 7           | 26  | 296,194    |
| Water Chiller      | 2      | York #LEHA 95 25D<br>air cooled, recip.<br>95 tons | Bldg. 44                                                   | 1985         | 167 KW            | 24  | 7           | 26  | 347,464    |
| Chilled Water Pump | -      | N/A<br>20 HP                                       | Bldg. 44                                                   | 1985         | 14.92 KW          | 24  | 7           | 26  | 65,887     |
| Chilled Water Pump | 7      | Aurora<br>208 gpm, 421 ft<br>5 HP                  | Bldg. 44                                                   | 1985         | 3.73 KW           | 24  | 7           | 26  | 10,858     |
| Steam Boiler       | 7      | HydroTherm<br>modular<br>264 MBH output            | Bldg. 44                                                   | 1970         | 385 MBH           | 24  | 7           | 26  | 103        |
| Steam Boiler       | က      | HydroTherm<br>modular<br>236 MBH output            | Bldg. 44                                                   | 1970         | 335 MBH           | 24  | 7           | 26  | 99         |
|                    |        |                                                    |                                                            |              |                   |     |             |     |            |
|                    |        |                                                    |                                                            |              |                   |     |             |     |            |
|                    | -      |                                                    |                                                            |              |                   |     |             |     |            |
|                    |        |                                                    |                                                            |              |                   |     |             |     |            |
|                    |        |                                                    |                                                            |              |                   |     |             |     |            |
|                    |        |                                                    |                                                            |              |                   |     |             |     |            |
|                    | -      |                                                    |                                                            |              |                   |     |             |     |            |



NAME: Buildings 122 & 124

<u>USE:</u> Administrative offices - Dir. of Resource Management. Continuous occupancy of approximately 30 people during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 12,782 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1940

STRUCTURE: Masonry

EXTERIOR WALLS: Brick and stone

**ROOF**: Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Three multi-zone air handling units serving all conditioned areas of the building. Units served by air cooled reciprocating chiller, approximately 40 tons nominal in bldg. 122 & 50 tons nominal in bldg. 124.. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Heating water is provided by 850 MBH heating water boiler in basement. See HVAC Equipment Lists for details.

LIGHTING: Lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 3 HP chilled water pump, and 1-1/2 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control, very hot inside during the field visit. Building 124 was being renovated at the time of the site visit. All HVAC equipment appeared to be in fair to poor condition, however most controls were not functioning properly.

NAME: Buildings 125, 127, & 135

<u>USE:</u> Administrative offices - Community Operations Div., J. A. office, U.S.M.A. Admin. Field office. Continuous occupancy of approximately 5 people during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 1,593 STORIES: 1 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1940

STRUCTURE: Masonry

EXTERIOR WALLS: Brick

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

CEILINGS: Acoustical tile

WINDOWS: Single pane clear glass

<u>COOLING EQUIP</u>: Building 125 is the only one of these buildings that has fan coils. The other two buildings have furnace units with evaporator coils. Bldgs. 125 and 135 are both served by air cooled chillers that also serve adjacent building 124 and 134. Building 127 is served by a 4.5 ton outdoor condensing unit. See HVAC Equipment Lists for details.

<u>HEATING EQUIP:</u> See cooling equipment above. Heating water for bldg. 125 and 135 is provided by a 820 MBH boiler in the basement of buildings 124 and 134. the furnace in Bldg. 127 is served by gas. See HVAC Equipment Lists for details.

<u>LIGHTING:</u> Lay-in fluorescent fixtures

<u>DOMESTIC WATER HEATING:</u> Electric hot water heater in building.

<u>REMARKS</u>: Poor temperature control, very hot inside during the field visit. All HVAC equipment appeared to be in fair to poor condition, however most controls were not functioning properly.

NAME: Building 128

USE: Boys & Girls Scouts Offices.

GROSS AREA (SQ.FT.): 14,224 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95 DATE

OF CONSTRUCTION: 1940

STRUCTURE: Frame

**EXTERIOR WALLS:** Brick, stone, and siding

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Air handling units, fan coil units, and several window units serve all conditioned areas of the building. Units served by 40 ton nominal air cooled reciprocating chiller. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Heating water is provided by 150 MBH heating water boiler in basement. See HVAC Equipment Lists for details.

<u>LIGHTING:</u> Lay-in fluorescent fixtures

**<u>DOMESTIC WATER HEATING:</u>** Electric hot water heater in building.

OTHER: 1-1/2 HP chilled water pump, and 1/2 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: This building was unavailable to be entered during site visit. Chiller appeared to be in fair condition.

NAME: Building 133

<u>USE</u>: Administrative offices - Medical/Pharmaceutical operations. Continuous occupancy of approximately 50 people during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 13,232 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION: 1940** 

STRUCTURE: Masonry

EXTERIOR WALLS: Brick and siding

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Multi-zone air handling units and fan coil units serving all conditioned areas of the building. Units served by 25 ton nominal air cooled reciprocating chiller. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Heating water is provided by 150 MBH heating water boiler in basement See HVAC Equipment Lists for details.

**LIGHTING**: Lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Electric hot water heater in building.

OTHER: 1-1/2 HP chilled water pump, and 1/2 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Temperature control in good condition. Comfortable inside during the field visit. All HVAC equipment appeared to be in fair condition.

NAME: Building 134

<u>USE:</u> Legal offices. Continuous occupancy of approximately 40 people during weekdays, between

7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 10,434 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1940

STRUCTURE: Masonry

EXTERIOR WALLS: Brick and stone

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

CEILINGS: Acoustical tile

WINDOWS: single pane clear glass

**COOLING EQUIP**: Three multi-zone air handling units serving all conditioned areas of the building.

Units served by 30 ton nominal air cooled reciprocating chiller which also serves bldg. 135. See

HVAC Equipment Lists for details.

HEATING EQUIP: See cooling equipment above. Heating water is provided by 820 MBH heating

water boiler in basement See HVAC Equipment Lists for details.

<u>LIGHTING</u>: Lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 1/2 HP chilled and heating water pumps. See HVAC Equipment Lists for details.

REMARKS: Poor temperature control, very hot inside during the field visit especially on second

floor near window covered vestibule. All HVAC equipment appeared to be in fair to poor condition.

however most controls were not functioning properly.

NAME: Buildings 142

USE: Administrative offices - Reg. H.Q. and deferred maintenance.

GROSS AREA (SQ.FT.): 4,735 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION:** 1945

**STRUCTURE**: Masonry

**EXTERIOR WALLS:** Brick and CMU

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: Single pane clear glass

COOLING EQUIP: This building is served by a 10 ton nominal air cooled chiller. See HVAC

Equipment Lists for details.

<u>HEATING EQUIP</u>: Heating water for this building is assumed to be provided by a 450 MBH boiler

in the basement. See HVAC Equipment Lists for details.

**LIGHTING**: Lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Electric hot water heater in building.

REMARKS: This building was unavailable to be entered during site visit. Chiller appeared to be

in fair condition. This building has it's own electrical meter.

NAME: Buildings 143, 144, 145,146

<u>USE</u>: Administrative offices. Continuous occupancy of approximately 50 people during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 13,483 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1940

STRUCTURE: Masonry with frame add-on

**EXTERIOR WALLS:** Brick, stone and wood shingles

**ROOF**: Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

**CEILINGS**: Acoustical tile

WINDOWS: single pane clear glass and tempered glass for enclosed porch

COOLING EQUIP: Bldgs. 143, 144, and 146 are served by multi-zone and single-zone air handling units, and bldg 143 contains packaged window units for cooling. The air handlers in bldg 143, 144, & 146 are served by 45, 45, & 40 ton nominal air cooled reciprocating chillers. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. The air handlers in bldgs. 143, 144, & 146 are served by an 850 MBH heating water boiler in the basements. Warm air furnace provides heating for bldg. 145. See HVAC Equipment Lists for details.

<u>LIGHTING</u>: Lay-in fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 3 HP chilled water pump, and 1 HP heating water pump in bldgs. 143 & 144. 1-1/2 HP chilled water pump and 1 HP heating water pump for bldg. 146. Building 144 also has a 4 ton condensing unit that serves computer room. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Building 143 was empty and awaiting renovation at the time of the site visit. Window units are in poor condition and thus create maintenance problems. All other HVAC equipment appeared to be in fair to poor condition and most controls were not functioning properly.

NAME: Buildings 147 & 149

<u>USE</u>: Billeting for Reserves, Family Residence. Continuous occupancy of approximately 50 people during weekdays, between 7:00 am and 5:00 pm.

<u>GROSS AREA (SQ.FT.):</u> 11,522 <u>STORIES:</u> 2 <u>DATE OF SURVEY:</u> 3/13 to 3/17/95

**DATE OF CONSTRUCTION:** 1939

STRUCTURE: Masonry

EXTERIOR WALLS: Brick

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

CEILINGS: Acoustical tile

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: One multi-zone air handling unit serves each of these buildings. 50 ton air cooled reciprocating chiller serves both bldg. 147 & 149. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Heating water is provided by 850 MBH heating water boiler in each bldgs. basement. See HVAC Equipment Lists for details.

<u>LIGHTING:</u> Lay-in fluorescent fixtures and scattered incandescent fixtures.

<u>DOMESTIC WATER HEATING:</u> Gas fired hot water heater in building.

OTHER: 5 HP chilled water pump, and two 1 HP heating water pumps. See HVAC Equipment Lists for details.

<u>REMARKS</u>: All HVAC equipment appeared to be in fair to poor condition. Piping between buildings appears to be deteriorating.

NAME: Buildings 197

<u>USE:</u> Headquarter of Fifth Army Band, future 323rd Medical Battalion Supply. Continuous occupancy of approximately 35 people during weekdays, between approximately 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 13,819 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION: 1940

STRUCTURE: Frame

**EXTERIOR WALLS:** Stucco

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Acoustical tile, Plaster

WINDOWS: Single pane clear glass

<u>COOLING EQUIP</u>: Three 4- Pipe, single-zone fan and coil units serve all conditioned areas of the building. Units served by air cooled reciprocating chiller, approximately 50 tons nominal. See HVAC Equipment Lists for details.

<u>HEATING EQUIP:</u> See cooling equipment above. Heating water is provided by 1750 MBH heating water boiler in basement. See HVAC Equipment Lists for details.

<u>LIGHTING</u>: Lay-in and surface mounted fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 2 HP chilled water pump, and 1 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control, very hot inside during the field visit. Very old ductwork with dust mold and mildew. Control problems create moisture pockets on furniture and causes moisture problems with computers. All HVAC equipment appeared to be in poor condition, and most controls were not functioning properly.

NAME: Building 198

<u>USE:</u> Physical/Medical Evaluation Board. Continuous occupancy of approximately 20 people during weekdays, between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 5,468 STORIES: 2 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION: 1945** 

STRUCTURE: Frame

**EXTERIOR WALLS:** Stucco

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and tile

**CEILINGS**: Acoustical tile, Plaster

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Two single-zone fan and coil units serving all conditioned areas of the building. Units served by nominal 10 ton air cooled reciprocating chiller. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above and unit heater. Heating water is provided by 450 MBH heating water boiler in basement. See HVAC Equipment Lists for details.

LIGHTING: Surface mounted incandescent fixtures and fluorescent fixtures

**DOMESTIC WATER HEATING:** Electric water heater in building.

OTHER: 1-1/2 HP chilled water pump, and 3/4 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control. Air-side equipment is maintenance intensive. All HVAC equipment appeared to be in poor condition.

NAME: Building 199

<u>USE:</u> Band Rehearsal Hall. Intermittent occupancy of approximately 60 people during weekdays,

between 7:00 am and 5:00 pm.

GROSS AREA (SQ.FT.): 6,415 STORIES: 1 DATE OF SURVEY: 3/13 to 3/17/95

DATE OF CONSTRUCTION 1940

**EXTERIOR WALLS:** Stucco

**ROOF:** Pitched roof with shingles

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete and carpet

CEILINGS: Plaster

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: One multi-zone air handling unit serves all conditioned areas of the building. Unit is served by nominal 15 ton air cooled reciprocating chiller. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. Heating water is provided by 200 MBH heating water boiler in basement. See HVAC Equipment Lists for details.

LIGHTING: Recessed and surface mounted fluorescent fixtures

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 2 HP chilled water pump, and 1-1/2 HP heating water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control. Area is critical to humidity control because instruments are susceptible to humidity. All HVAC equipment appeared to be in fair condition, however most controls were not functioning properly.

NAME: Building 250

<u>USE:</u> NCO Academy, barracks, and future chef training school. Continuous occupancy of approximately 250 people between 5:00 pm and 7:00 a.m.

GROSS AREA (SQ.FT.): 42,955 STORIES: 3 DATE OF SURVEY: 3/13 to 3/17/95

**DATE OF CONSTRUCTION:** 1940

STRUCTURE: Masonry

**EXTERIOR WALLS:** Stucco

**ROOF:** Flat built-up roof

FLOOR CONSTRUCTION: Pier and beam

FLOOR FINISH: Concrete, tile and carpet

**CEILINGS**: Acoustical tile, gypsum wallboard, plaster

WINDOWS: single pane clear glass

<u>COOLING EQUIP</u>: Six multi-zone air handling units serve the barracks portion of building and one multi-zone air handling unit serves the future chef school. All units are served by a 100 ton nominal air cooled reciprocating chiller. See HVAC Equipment Lists for details.

<u>HEATING EQUIP</u>: See cooling equipment above. All heating coils in the air handlers are steam. Steam is provided by 1000 MBH steam boiler in basement. See HVAC Equipment Lists for details.

<u>LIGHTING</u>: Lay-in fluorescent fixtures in future chef school, admin, and barracks; surface mounted incandescent and fluorescent fixtures in barracks.

**DOMESTIC WATER HEATING:** Gas fired hot water heater in building.

OTHER: 7-1/2 HP chilled water pump. See HVAC Equipment Lists for details.

<u>REMARKS</u>: Poor temperature control, very hot inside during the field visit. The air cooled chiller appeared to be in good condition and all other HVAC equipment appeared to be in fair condition.

|                     |      | HVAC EQUIP                                         | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 100 | T SAM HOUST | ON, AREA 100 |     |             |     |            |     |
|---------------------|------|----------------------------------------------------|-----------------------------------------------------|-------------|--------------|-----|-------------|-----|------------|-----|
|                     |      |                                                    | מונה ליו                                            | YEAR        | FULL         | ဝီ  | OPER. TIMES | ES  | ANNUAL USE | 'n  |
| ITEM                | ΩTY. | DESCRIPTION                                        | AREA SERVED                                         | INSTALLED   | LOAD         | HRS | DAYS        | WKS | KWH N      | MCF |
| Hot Water Boiler    | -    | Rite #HD-85<br>watertube<br>618 MBH output         | Bldg. 122                                           | 1985        | 850 MBH      | 24  | 7           | 26  |            | 193 |
| Heating Water Pump  | 7    | B&G<br>32 gpm, 50 ft<br>1.5 HP                     | Bldg. 122                                           | 1985        | 1.12 KW      | 24  | _           | 26  | 8,242      |     |
| Water Chiller       | 1    | Trane #CGABC401AF01FK air cooled. recip.           | Bldg. 122                                           | 1985        | 70 KW        | 24  | 7           | 56  | 92,395     |     |
| Chilled Water Pump  | 2    | N/A<br>3 HP                                        | Bldg. 122                                           | 1985        | 2.24 KW      | 24  | 7           | 26  | 19,784     |     |
| Hot Water Boiler    | 1    | Ajax<br>natural draft, watertube<br>618 MBH output | Bldgs. 124, 125                                     | 1985        | 850 MBH      | 24  | 7           | 56  |            | 226 |
| Heating Water Pumps | 2    | Amtrol<br>23 GPM, 50 ft<br>1.5 HP                  | Bldgs. 124, 125                                     | 1985        | 1.12 KW      | 24  | 7           | 26  | 9,730      |     |
| Water Chiller       | Ψ-   | TSI #30-AOCD65 air cooled, recip. 50 tons          | Bldgs. 124, 125                                     | 1985        | 88 KW        | 24  | 7           | 56  | 112,912    |     |
| Chilled Water Pumps | 2    | Mueller<br>53 gpm, 71 ft<br>3 HP                   | Bldgs. 124, 125                                     | 1985        | 2.24 KW      | 24  | 7           | 56  | 19,784     |     |
| Split System Fumace | -    | RUUD<br>33 MBH output                              | Bldg 127                                            | 1985        | 45 MBH       | 24  | 7           | 26  | 3,154      | 36  |
| Condensing Unit     | -    | RUUD #UACC-056JAS<br>4.5 ton, 7 EER                | Bldg 127                                            | 1985        | 8.48 KW      | 24  | 7           | 26  | 13,240     |     |
| Hot Water Boiler    | 1    | N/A<br>109 MBH output                              | Bldg. 128                                           | 1985        | 150 MBH      | 24  | 7           | 26  |            | 82  |
| Heating Water Pump  | ~    | N/A<br>1/2 HP                                      | Bldg. 128                                           | 1985        | 0.37 KW      | 24  | 7           | 56  | 1,607      |     |

|                    |          | HVAC EQUIPME                                                  | MENT LIST FOR: FORT SAM HOUSTON, AREA 100 JUNE 2, 1995 | T SAM HOUST | ON, AREA 100       |     |             |     |            |
|--------------------|----------|---------------------------------------------------------------|--------------------------------------------------------|-------------|--------------------|-----|-------------|-----|------------|
|                    |          |                                                               |                                                        | YEAR        | FULL               | g   | OPER. TIMES | ES  | ANNUAL USE |
| EM                 | <u>م</u> | DESCRIPTION                                                   | AREA SERVED                                            | INSTALLED   | LOAD               | HRS | DAYS        | WKS | KWH MCF    |
| Water Chiller      | -        | Trane #CGABC403AE00F air cooled, recip.                       | Bldg. 128                                              | 1985        | 70 KW              | 24  | 7           | 56  | 12,045     |
| Chilled Water Pump | -        | N/A<br>1.5 HP                                                 | Bldg. 128                                              | 1985        | 1.12 KW            | 24  | 7           | 56  | 4,946      |
| Hot Water Boiler   | -        | Ajax #WGHD-150<br>forced draft, 5 HP blower<br>109 MBH output | Bldg. 133                                              | 1985        | 150 MBH<br>3.73 KW | 24  | 7           | 26  | 16,203     |
| Heating Water Pump | -        | N/A<br>1/2 HP                                                 | Bldg. 133                                              | 1985        | 0.37 KW            | 24  | 7           | 56  | 1,607      |
| Water Chiller      | -        | Trane #CGABC256AF01FK air cooled, recip. 25 tons              | Bldg. 133                                              | 1985        | 44 KW              | 24  | 7           | 56  | 76,773     |
| Chilled Water Pump | Ψ-       | Aurora<br>40 gpm, 70 ft<br>1.5 HP                             | Bldg. 133                                              | 1985        | 1.12 KW            | 24  | 7           | 56  | 4,946      |
| Hot Water Boiler   | -        | Thermopak #GWE 825 watertube 596 MBH output                   | Bidgs 134, 135                                         | 1985        | 820 MBH            | 24  | 7           | 56  | 116        |
| Heating Water Pump | -        | Armstrong, close coupled                                      | Bidgs 134, 135                                         | 1985        | 0.37 KW            | 24  | 7           | 56  | 2,136      |
| Water Chiller      | -        | Trane #CGACC306KANDD air cooled, recip. 30 tons               | Bldgs 134, 135                                         | 1985        | 53 KW              | 24  | 7           | 56  | 104,024    |
| Chilled Water Pump | -        | Armstrong, close coupled<br>63 ft,<br>1/2 HP                  | Bidgs 134, 135                                         | 1985        | 0.37 KW            | 24  | 7           | 56  | 1,634      |
| Hot Water Boiler   | 1        | N/A<br>327 MBH output                                         | Bldg. 142                                              | 1985        | 450 MBH            | 24  | 7           | 56  | 28         |
| Heating Water Pump | -        | N/A<br>1/2 HP                                                 | Bldg. 142                                              | 1985        | 0.37 KW            | 24  | 7           | 56  | 1,008      |

|                       |      | HVAC EQUIP                                                         | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 100 | T SAM HOUST | ron, AREA 100 |     |             |     |            |
|-----------------------|------|--------------------------------------------------------------------|-----------------------------------------------------|-------------|---------------|-----|-------------|-----|------------|
|                       |      |                                                                    | מונה לי                                             | YEAR        | FULL          | g   | OPER. TIMES | ES  | ANNUAL USE |
| ITEM                  | ΩT≺. | DESCRIPTION                                                        | AREA SERVED                                         | INSTALLED   | LOAD          | HRS | DAYS        | WKS | KWH MCF    |
| Water Chiller         | -    | Carrier #30GT-020-500<br>air cooler, recip.<br>10 tons             | Bldg. 142                                           | 1985        | 18 KW         | 24  | 7           | 26  | 26,626     |
| Chilled Water Pump    | -    | N/A<br>1 HP                                                        | Bldg. 142                                           | 1985        | 0.75 KW       | 24  | 7           | 26  | 3,312      |
| Water Chiller         | -    | N/A<br>air cooled, recip.<br>45 tons                               | Bidg. 143                                           | 1985        | 79 KW         | 24  | 7           | 26  | 113,775    |
| Chilled Water Pump    | -    | N/A<br>3 HP                                                        | Bldg. 143                                           | 1985        | 2.24 KW       | 24  | 7           | 26  | 9,892      |
| Hot Water Boiler      | -    | N/A<br>596 MBH output                                              | Bldg. 143                                           | 1985        | 820 MBH       | 24  | 7           | 26  | 76         |
| Heating Water Pump    | -    | N/A<br>1/2 HP                                                      | Bldg. 143                                           | 1985        | 0.37 KW       | 24  | 7           | 56  | 1,039      |
| Water Chiller         | -    | TSI #CAZCD 45 air cooled, recip. 45 tons                           | Bldg. 144                                           | 1985        | 79 KW         | 24  | 7           | 26  | 113,775    |
| Chilled Water Pump    | -    | Aurora<br>58 gpm, 86 ft<br>3 HP                                    | Bldg. 144                                           | 1985        | 2.24 KW       | 24  | 7           | 26  | 9,892      |
| Hot Water Boiler      | -    | Bryan<br>596 MBH output                                            | Bldg. 144                                           | 1985        | 820 MBH       | 24  | 7           | 26  | 112        |
| Heating Water Pump    | -    | B&G<br>1 HP                                                        | Bldg. 144                                           | 1985        | 0.75 KW       | 24  | 7           | 26  | 1,904      |
| Terminal Cooling Unit | -    | Data Temp #DTA-0532-01<br>Russell #TD6.5 condenser<br>4 ton, 9 EER | Bldg. 144                                           | 1985        | 5.81 KW       | 24  | 7           | 26  | 0          |
| Window A/C Units      | 23   | Fredrich #MDD YL 24H3513<br>2 ton clg, 22.4 MBH htg.<br>9 EER      | Bldg. 145                                           | 1985        | 2.67 KW       | 24  | 7           | 52  | 71,349     |

|                    |            | HVAC EQUIP                                            | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 100<br>JUNE 2, 1995 | RT SAM HOUST | ON, AREA 100 |     |             |     |         |
|--------------------|------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------|--------------|-----|-------------|-----|---------|
|                    | 3          |                                                       | ADEA 050\/60                                                        | YEAR         | FULL         | ОР  | OPER. TIMES | IES | UAL     |
| N I                | 2.         |                                                       | AKEA SERVED                                                         | INSTALLED    | LOAD         | HRS | DAYS        | WKS | KWH MCF |
| Hot Water Boiler   | 4-         | Teledyne Laars<br>596 MBH                             | Bldg. 146                                                           | 1985         | 820 MBH      | 24  | 7           | 52  | 112     |
| Heating Water Pump | -          | N/A<br>1 HP                                           | Bldg. 146                                                           | 1985         | 0.75 KW      | 24  | 7           | 25  | 1,904   |
| Water Chiller      | -          | Trane #CGABC404AF00F<br>air cooled, recip.<br>40 tons | Bldg. 146                                                           | 1985         | 70 KW        | 24  | 7           | 52  | 107,387 |
| Chilled Water Pump | -          | Taco<br>83 gpm,<br>1.5 HP                             | Bldg. 146                                                           | 1985         | 1.12 KW      | 24  | 7           | 52  | 4,946   |
| Hot Water Boiler   | 1          | Ajax #WG-750-5<br>596 MBH output                      | Bldg. 147                                                           | 1985         | 820 MBH      | 24  | 7           | 52  | 112     |
| Heating Water Pump | -          | Taco<br>1 HP                                          | Bldg. 147                                                           | 1985         | 0.75 KW      | 24  | 7           | 52  | 1,904   |
| Water Chiller      | -          | McQuay #ALR 040AD<br>air cooled, recip.<br>50 tons    | Bldgs 147, 149                                                      | 1985         | 88 KW        | 24  | 7           | 26  | 170,355 |
| Chilled Water Pump | -          | Paco<br>5 HP                                          | Bldgs 147, 149                                                      | 1985         | 3.73 KW      | 24  | 7           | 26  | 16,472  |
| Hot Water Boiler   | -          | Thermopak #GWE 825<br>596 MBH output                  | Bldg. 149                                                           | 1985         | 820 MBH      | 24  | 7           | 56  | 116     |
| Heating Water Pump | -          | Paco<br>40 gpm, 40 ft<br>1 HP                         | Bldg. 149                                                           | 1985         | 0.75 KW      | 24  | 7           | 26  | 2,136   |
| Hot Water Boiler   | <b>-</b> - | Ajax #WG-1750<br>1400 MBH output                      | Bldg. 197                                                           | 1985         | 1,750 MBH    | 24  | 7           | 26  | 88      |
| Heating Water Pump | -          | B&G<br>1 HP                                           | Bldg. 197                                                           | 1985         | 0.75 KW      | 24  | 7           | 56  | 1,257   |

|                    |     | HVAC EQUIP                                          | HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 100 | RT SAM HOUST | ON, AREA 100 | Č          | i                        | C         |                       |
|--------------------|-----|-----------------------------------------------------|-----------------------------------------------------|--------------|--------------|------------|--------------------------|-----------|-----------------------|
| ITEM               | ΩT. | DESCRIPTION                                         | AREA SERVED                                         | YEAR         | FULL         | HRS<br>HRS | OPER. TIMES<br>IS DAYS W | ES<br>WKS | ANNUAL USE<br>KWH MCF |
| Water Chiller      | -   | York #LCHA 50-17A<br>air cooled, recip.<br>50 tons  | Bldg. 197                                           | 1985         | 88 KW        | 24         | 7                        | 26        | 113,383               |
| Chilled Water Pump | -   | Peerless<br>2 HP                                    | Bldg. 197                                           | 1985         | 1.49 KW      | 24         | 7                        | 26        | 6,580                 |
| Hot Water Boiler   | -   | National #209-7<br>natural draft<br>327 MBH output  | Bldg. 198                                           | 1985         | 450 MBH      | 24         | 7                        | 26        | 38                    |
| Heating Water Pump | -   | Тасо<br>3/4 НР                                      | Bldg. 198                                           | 1985         | 0.56 KW      | 24         | 7                        | 26        | 1,106                 |
| Water Chiller      | -   | Trane #MAUG-C156-B<br>air cooled. recip.<br>10 tons | Bldg. 198                                           | 1985         | 18 KW        | 24         | 7                        | 26        | 30,616                |
| Chilled Water Pump | -   | N/A<br>1.5 HP                                       | Bldg. 198                                           | 1985         | 1.12 KW      | 24         | 7                        | 26        | 4,946                 |
| Hot Water Boiler   | -   | Ajax #WG-200-S<br>natural draft<br>145 MBH output   | Bldg. 199                                           | 1985         | 200 MBH      | 24         | 7                        | 26        | 66                    |
| Heating Water Pump | +   | N/A<br>1.5 HP                                       | Bldg. 199                                           | 1985         | 1.12 KW      | 24         | 7                        | 56        | 4,865                 |
| Water Chiller      | -   | RUUD #RAWC 150 CAS<br>air cooled. recip.<br>15 tons | Bldg. 199                                           | 1985         | 26 KW        | 24         | 7                        | 26        | 43,319                |
| Chilled Water Pump | -   | N/A<br>2 HP                                         | Bldg. 199                                           | 1985         | 1.49 KW      | 24         | 7                        | 26        | 6,580                 |
| Steam Boiler       | 7   | Kewanee #581, series 3X<br>800 MBH output           | Bldg. 250                                           | 1985         | 1,000 MBH    | 24         | 7                        | 56        | 172                   |
|                    |     |                                                     |                                                     | 1985         |              |            |                          |           |                       |

|                                                                  | ANNUAL USE KWH MCF              | 346,860                                     | 24,730             |  |   |   |   |  |  |
|------------------------------------------------------------------|---------------------------------|---------------------------------------------|--------------------|--|---|---|---|--|--|
|                                                                  |                                 |                                             | 26 2               |  |   |   |   |  |  |
|                                                                  | OPER. TIMES<br>HRS   DAYS   WKS | 7                                           | 7                  |  |   |   |   |  |  |
|                                                                  | OPE<br>HRS                      | 24                                          | 24                 |  |   |   |   |  |  |
| ON, AREA 100                                                     | FULL                            | 160 KW                                      | 5.60 KW            |  |   |   |   |  |  |
| T SAM HOUST                                                      | YEAR                            | 1985                                        | 1985               |  |   |   | - |  |  |
| HVAC EQUIPMENT LIST FOR: FORT SAM HOUSTON, AREA 100 JUNE 2, 1985 | AREA SERVED                     | Bldg. 250                                   | Bldg. 250          |  | • |   |   |  |  |
| HVAC EQUIPN                                                      | DESCRIPTION                     | Trane #CGACD111 air cooled, recip. 100 tons |                    |  |   |   |   |  |  |
|                                                                  | ΩTY.                            | -                                           | -                  |  |   |   |   |  |  |
|                                                                  | ITEM                            | Water Chiller                               | Chilled Water Pump |  |   | • |   |  |  |

# APPENDIX D RECOMMENDED ECO CALCULATIONS

## APPENDIX D RECOMMENDED ECO CALCULATIONS

### TABLE OF CONTENTS

| ECO-A, Replace Existing Central Chiller With New Electric Screw Chiller, Area 900         | D-1  |
|-------------------------------------------------------------------------------------------|------|
| ECO-C, Replace Existing Central Chillers With New Electric Centrifugal Chiller, Area 1300 | D-19 |
| ECO-D, Replace Existing Central Boilers With High Efficiency Modular Boilers, Area 1300   | D-38 |
| ECO-E, Replace Existing Central Chiller With New Electric Screw Chiller, Area 2200        | D-44 |
| ECO-I, Replace Existing Individual Building Chillers With Central Chiller Plant, Area 100 | D-62 |

### **ENERGY CONSERVATION OPPORTUNITY (ECO)**

ECO NO:

Α

DATE:

6/15/95

ECO TITLE:

Replace Existing Central Chiller With New Electric Screw Chiller

**INSTALLATION:** 

Fort Sam Houston, San Antonio, Texas

LOCATION:

Area 900, Building 902

### A. Summary:

| Electrical Energy Savings | 434     | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 2,520   | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 434     | MMBTU/yr |
| Total Cost Savings        | 17,650  | \$/yr    |
| Total Investment          | 157,256 | \$       |
| Simple Payback            | 8.9     | yrs      |
| SIR                       | 2.08    |          |
|                           |         |          |

### B. ECO Description:

Remove the existing 300 ton, R-11 centrifugal chiller in building 902 and replace it with a 300 ton, R-134a screw chiller. The existing 25 HP chilled water (CHW) pump, 15 HP condenser water (CND) pump and 15 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in these areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

### C. Discussion:

The existing water cooled, centrifugal chiller was installed in 1985 and serves as the primary cooling system for the 21 buildings in the 900 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996<sup>1</sup>. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates<sup>2</sup>. However, since the machine is already ten years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that a dual screw chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 300 tons is required to adequately cool the buildings<sup>3</sup>. Therefore, no increase or decrease in the current chiller capacity is recommended at this time.

### D. Savings Calculations:

### 1. Energy Consumption And Savings

The monthly peak demand and energy consumptions of the existing and proposed alternative chillers and auxiliary equipment were calculated using the Trace 600 computer program<sup>4</sup>. The buildings served by the existing chiller were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>5</sup>.

The 300 ton chiller alternatives which were compared included an electric centrifugal machine, an electric centrifugal with a variable frequency drive, a dual screw machine and a gas driven centrifugal machine. All proposed machines used R-134a. Full and part load performance data from York International were used in the computer simulations of the new chiller energy usages<sup>6</sup>. Equipment lists of the specific chillers and auxiliaries for each alternative modeled by the computer are shown on pages D-4 to D-7.

Once the computer simulations were completed, the total annual demand cost and energy consumption of each alternative were compared with that of the existing systems to determine the annual savings for each<sup>7</sup>. These savings calculations are shown on pages D-8 and D-9. The demand and energy savings values were used in the life cycle cost analysis for each alternative. The results of these savings calculations were as follows:

| Alternative | Chiller Type               | Demand<br>Savings<br>\$/yr | Electrical<br>Savings<br>MMBTU/yr | Gas<br>Savings<br>MMBTU/yr |
|-------------|----------------------------|----------------------------|-----------------------------------|----------------------------|
| <b>A1</b>   | Electric Centrifugal       | 2,870                      | 253                               | 0                          |
| A2          | Electric Centrifugal & VFD | 3,167                      | 529                               | 0                          |
| <b>A3</b>   | Electric Screw             | 2,520                      | 434                               | 0                          |
| <b>A4</b>   | Gas Driven Centrifugal     | 10,987                     | 1,516                             | -3,386                     |

### 2. Maintenance Cost Savings:

By installing a new chiller in place of the existing one, the installation will save the cost of retrofitting the machine for the HCFC-123 refrigerant as mentioned previously. The cost of this retrofit was estimated to be \$248,085 on page D-10. This value was used in the life cycle cost analysis as a non-recurring savings for each alternative.

### E. Cost Estimates

The total installation costs for each alternative chiller mentioned in this ECO were estimated on pages D-11 through D-14. These costs were used in the life cycle cost analysis for each alternative. The results of the costs estimates were as follows:

| Alternative | Chiller Type               | Estimated<br>Cost |
|-------------|----------------------------|-------------------|
| A1          | Electric Centrifugal       | \$153,242         |
| A2          | Electric Centrifugal & VFD | \$193,215         |
| <b>A3</b>   | Electric Screw             | \$157,256         |
| A4          | Gas Driven Centrifugal     | \$349,928         |

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on each chiller alternative for this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for each life cycle cost analysis is shown on pages D-15 through D-18. The results of the alternative life cycle cost analysis were as follows:

| Alternative | Chiller Type               | Payback<br>Years | SIR  |
|-------------|----------------------------|------------------|------|
| <b>A1</b>   | Electric Centrifugal       | 9.1              | 2.05 |
| A2          | Electric Centrifugal & VFD | 10.2             | 1.97 |
| A3          | Electric Screw             | 8.9              | 2.08 |
| <b>A4</b>   | Gas Driven Centrifugal     | 14.6             | 1.11 |

Since the electric screw chiller has the highest SIR, it is recommended as the most economical choice to replace the existing machine. The data from the life cycle cost analysis for this alternative were included in the summary on page D-1.

### **REFERENCES**

- 1. Per current EPA regulations on CFC refrigerants.
- 2. See Appendix G for chiller retrofit estimates from Northeastern Research And Engineering Corporation.
- 3. See Appendix B for Area 900 cooling system load profile.
- 4. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 5. See Appendix C for building field data and existing HVAC system data.
- 6. See Appendix G for manufacturer's equipment performance data from York International.
- 7. See Appendix A for utility cost analysis data, used in the savings calculations.

|                                                                                   | _           |             |                                                                  |                    |                      |                    | <br> | <br> | <br> | <br> |
|-----------------------------------------------------------------------------------|-------------|-------------|------------------------------------------------------------------|--------------------|----------------------|--------------------|------|------|------|------|
|                                                                                   | JAL (       | KWH MCF     | 370,072                                                          | 82,358             | 49,415               | 45,441             |      |      |      | •    |
|                                                                                   | ES          | WKS         | 56                                                               | 56                 | 56                   | 56                 |      |      |      |      |
| 00                                                                                | OPER. TIMES | DAYS        | 7                                                                | 7                  | 7                    | 7                  |      |      |      |      |
| AREA 9                                                                            | ОР          | HRS         | 24                                                               | 24                 | 24                   | 24                 |      |      |      |      |
| AM HOUSTON,                                                                       | FULL        | LOAD        | 177 KW                                                           | 18.65 KW           | 11.19 KW             | 11.19 KW           |      |      |      |      |
| 0-A1, FORT S                                                                      | YEAR        | INSTALLED   | New                                                              | Exist              | Exist                | Exist              |      |      |      |      |
| MENT LIST FOR: EC                                                                 |             | AREA SERVED | Area 900                                                         | Area 900           | Area 900             | Area 900           |      |      |      |      |
| PROPOSED HVAC EQUIPMENT LIST FOR: EC0-A1, FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 |             | DESCRIPTION | York, electric<br>water cooled, centrifugal,<br>300 Tons, R-134a |                    |                      | #MC8608<br>I<br>an |      |      |      |      |
|                                                                                   |             | o<br>F      | -                                                                | -                  | -                    | -                  |      |      |      |      |
| *                                                                                 |             | ITEM        | Water Chiller                                                    | Chilled Water Pump | Condenser Water Pump | Cooling Tower      |      |      |      |      |

| P. R.                |      | PROPOSED HVAC EQUI                                               | PROPOSED HVAC EQUIPMENT LIST FOR: ECO-A2, FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 | O-A2, FORTS | SAM HOUSTON, | AREA  | 006         |    |                       |     |
|----------------------|------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|--------------|-------|-------------|----|-----------------------|-----|
| ITEM                 | QTY. | DESCRIPTION                                                      | AREA SERVED                                                                       | YEAR        | FULL         | P S S | OPER. TIMES | ES | ANNUAL USE<br>KWH MCF | USE |
| Water Chiller        | -    | York, electric, VFD water cooled, centrifugal, 300 Tons, R-134a, | Area 900                                                                          | New         | 177 KW       | 24    | 7           | 26 | 289,309               |     |
| Chilled Water Pump   | -    | Weinman<br>720 gpm, 100 ft<br>25 HP                              | Area 900                                                                          | Exist       | 18.65 KW     | 24    | 7           | 26 | 82,358                |     |
| Condenser Water Pump | -    | Weinman<br>912 gpm, 50 ft<br>15 HP                               | Area 900                                                                          | Exist       | 11.19 KW     | 24    | 7           | 26 | 49,415                |     |
| Cooling Tower        | -    | Marley #MC8608<br>one cell<br>15 HP fan                          | Area 900                                                                          | Exist       | 11.19 KW     | 24    | 7           | 26 | 45,401                |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |
|                      |      |                                                                  |                                                                                   |             |              |       |             |    |                       |     |

| رند دغ.              |   | PROPOSED HVAC EQUIPMENT LIST FOR: ECO-A3, FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 | PMENT LIST FOR: EC<br>JUNE 2, 19 | O-A3, FORT S | SAM HOUSTON, | AREA | 006      |     |         |
|----------------------|---|-----------------------------------------------------------------------------------|----------------------------------|--------------|--------------|------|----------|-----|---------|
| TEM                  | 7 |                                                                                   | AREA SERVED                      | YEAR         | FULL         | ဝ    | ≧        | ES  | AF.     |
| I EIM                | 3 |                                                                                   | טורט סבווע                       | INSTALLED    | LOAD         | HRS  | HRS DAYS | WKS | KWH MCF |
| Water Chiller        | 1 | York, electric water cooled, dual screw 300 Tons, R-134a                          | Area 900                         | New          | 186 KW       | 24   | 7        | 26  | 317,039 |
| Chilled Water Pump   | - | Weinman<br>720 gpm, 100 ft<br>25 HP                                               | Area 900                         | Exist        | 18.65 KW     | 24   | 7        | 26  | 82,358  |
| Condenser Water Pump | - | Weinman<br>912 gpm, 50 ft<br>15 HP                                                | Area 900                         | Exist        | 11.19 KW     | 24   | 7        | 26  | 49,415  |
| Cooling Tower        | ~ | Marley #MC8608<br>one cell<br>15 HP fan                                           | Area 900                         | Exist        | 11.19 KW     | 24   | 7        | 26  | 45,444  |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |
|                      |   |                                                                                   |                                  |              |              |      |          |     |         |

|                                                                                   | ANNUAL USE  | KWH MCF     | 3,386                                                      | 82,358                              | 49,415                             | 45,352                                  |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------|-------------|------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------|--|--|--|--|
|                                                                                   | ES          | WKS         | 26                                                         | 26                                  | 56                                 | 56                                      |  |  |  |  |
| 00                                                                                | OPER. TIMES | HRS DAYS    | 7                                                          | 7                                   | 7                                  | 7                                       |  |  |  |  |
| AREA 9                                                                            | OP          | HRS         | 24                                                         | 24                                  | 24                                 | 24                                      |  |  |  |  |
| SAM HOUSTON,                                                                      | FULL        | LOAD        | 1,980 MBH                                                  | 18.65 KW                            | 11.19 KW                           | 11.19 KW                                |  |  |  |  |
| .0-A4, FORT S                                                                     | YEAR        | INSTALLED   | New                                                        | Exist                               | Exist                              | Exist                                   |  |  |  |  |
| PMENT LIST FOR: EC                                                                | ADEA CEDVED | AREA SERVED | Area 900                                                   | Area 900                            | Area 900                           | Area 900                                |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: EC0-A4, FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 |             |             | York, gas fired water cooled, centrifugal 300 Tons, R-134a | Weinman<br>720 gpm, 100 ft<br>25 HP | Weinman<br>912 gpm, 50 ft<br>15 HP | Marley #MC8608<br>one cell<br>15 HP fan |  |  |  |  |
|                                                                                   | 5           | 2           | 1                                                          | -                                   | -                                  | -                                       |  |  |  |  |
| ***************************************                                           | 11011       | I EM        | Water Chiller                                              | Chilled Water Pump                  | Condenser Water Pump               | Cooling Tower                           |  |  |  |  |

| ITEM          |      |      |      |      | ING C |       |       | LER PI | LANT  |       |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|------|-------|-------|-------|--------|-------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr  | May   | Jun   | Jul   | Aug    | Sep   | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |      | 202.4 | 202.7 | 223.5 | 225.8  | 208.0 | 115.8 |      |      | 444,056                   |                           |
| CHW Pump      |      |      |      |      | 18.6  | 18.6  | 18.6  | 18.6   | 18.6  | 18.6  |      |      | 82,358                    |                           |
| CND Pump      |      |      |      |      | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  | 11.2  |      |      | 49,415                    |                           |
| Cooling Tower |      |      |      |      | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  | 11.2  |      |      | 45,510                    |                           |
| Totals        |      |      |      |      | 243.4 | 243.7 | 264.5 | 266.8  | 249.0 | 156.8 |      |      | 621,339                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50 | 7.50  | 10.00 | 10.00 | 10.00  | 10.00 | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |      | 1,826 | 2,437 | 2,645 | 2,668  | 2,490 | 1,176 |      |      |                           |                           |

Total Demand

13,242 \$/yr

Total Energy

2,121 MMBTU/yr

(electric)

Total Energy

MMBTU/yr

(gas)

| ITEM          |      |      | ECO- | A1: NE | W ELE<br>MONTH |       |       |       | AL CHI | LLER  |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|--------|----------------|-------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr    | May            | Jun   | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |        | 155.7          | 143.0 | 168.4 | 175.9 | 147.1  | 80.7  |      |      | 370,072                   |                           |
| CHW Pump      |      |      |      |        | 18.6           | 18.6  | 18.6  | 18.6  | 18.6   | 18.6  |      |      | 82,358                    |                           |
| CND Pump      |      |      |      |        | 11.2           | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  |      |      | 49,415                    |                           |
| Cooling Tower |      |      |      |        | 11.2           | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  |      |      | 45,441                    |                           |
| Total (KW)    |      |      |      |        | 196.7          | 184.0 | 209.4 | 216.9 | 188.1  | 121.7 |      |      | 547,286                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50   | 7.50           | 10.00 | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |        | 1,475          | 1,840 | 2,094 | 2,169 | 1,881  | 913   |      |      |                           |                           |

**Total Demand** 

10,372 \$/yr

**Demand Savings** 

2,870 \$/yr

**Energy Savings** 

253 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

(gas)

| ITEM          |      | ECO  | -A2: N | EW EL | ECTRI<br>MONTH | C CEN |       |       | ILLER | WITH  | VFD  |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|--------|-------|----------------|-------|-------|-------|-------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar    | Apr   | May            | Jun   | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |        |       | 144.1          | 138.0 | 166.7 | 175.3 | 141.8 | 69.5  |      |      | 289,309                   |                           |
| CHW Pump      |      |      |        |       | 18.6           | 18.6  | 18.6  | 18.6  | 18.6  | 18.6  |      |      | 82,358                    |                           |
| CND Pump      |      |      |        |       | 11.2           | 11.2  | 11.2  | 11.2  | 11.2  | 11.2  |      |      | 49,415                    |                           |
| Cooling Tower |      |      |        |       | 11.2           | 11.2  | 11.2  | 11.2  | 11.2  | 11.2  |      |      | 45,401                    |                           |
| Total (KW)    |      |      |        |       | 185.1          | 179.0 | 207.7 | 216.3 | 182.8 | 110.5 |      |      | 466,483                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50   | 7.50  | 7.50           | 10.00 | 10.00 | 10.00 | 10.00 | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |        |       | 1,388          | 1,790 | 2,077 | 2,163 | 1,828 | 829   |      |      |                           |                           |

Total Demand

10,075 \$/yr

**Demand Savings** 

3,167 \$/yr

(electric)

Energy Savings Energy Savings

*\** 

529 MMBTU/yr MMBTU/yr

| ITEM          |      |      | E    | CO-A3: | NEW I |       |       |       | CHILLE | R     |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|--------|-------|-------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr    | May   | Jun   | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |        | 163.7 | 150.3 | 176.9 | 184.9 | 154.6  | 76.2  |      |      | 317,039                   |                           |
| CHW Pump      |      |      |      |        | 18.6  | 18.6  | 18.6  | 18.6  | 18.6   | 18.6  |      |      | 82,358                    |                           |
| CND Pump      |      |      |      |        | 11.2  | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  |      |      | 49,415                    |                           |
| Cooling Tower |      |      |      |        | 11.2  | 11.2  | 11.2  | 11.2  | 11.2   | 11.2  |      |      | 45,444                    |                           |
| Total (KW)    |      |      |      |        | 204.7 | 191.3 | 217.9 | 225.9 | 195.6  | 117.2 |      |      | 494,256                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50   | 7.50  | 10.00 | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |        | 1,535 | 1,913 | 2,179 | 2,259 | 1,956  | 879   |      |      |                           |                           |

Total Demand

10,721 \$/yr

**Demand Savings** 

2,520 \$/yr

**Energy Savings** 

434 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

(gas)

| ITEM          |      | !    | ECO-A | 4: NEV | V GAS<br>MONTH |       |       |       | GAL CI | HILLER |     |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|-------|--------|----------------|-------|-------|-------|--------|--------|-----|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar   | Apr    | May            | Jun   | Jul   | Aug   | Sep    | Oct    | Nov | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |       |        |                |       |       |       |        |        |     |      |                           | 3,386                     |
| CHW Pump      |      |      |       |        | 18.6           | 18.6  | 18.6  | 18.6  | 18.6   | 18.6   |     |      | 82,358                    |                           |
| CND Pump      |      |      |       |        | 11.2           | 11.2  | 11.2  | 11.2  | 11.2   | 11.2   |     |      | 49,415                    |                           |
| Cooling Tower |      |      |       |        | 11.2           | 11.2  | 11.2  | 11.2  | 11.2   | 11.2   |     |      | 45,352                    |                           |
| Total (KW)    |      |      |       |        | 41.0           | 41.0  | 41.0  | 41.0  | 41.0   | 41.0   |     |      | 177,125                   | 3,386                     |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50  | 7.50   | 7.50           | 10.00 | 10.00 | 10.00 | 10.00  |        |     | 7.50 |                           | 5,555                     |
| Cost (\$)     |      |      |       |        | 308            | 410   | 410   | 410   | 410    | 308    |     |      |                           |                           |

Total Demand

2,255 \$/yr

Demand Savings

10,987 \$/yr

**Energy Savings** 

1,516 MMBTU/yr

(electric)

**Energy Savings** 

-3,386 MMBTU/yr

|                                                                                  |               |               |               |                           |            |            | ,           |           |
|----------------------------------------------------------------------------------|---------------|---------------|---------------|---------------------------|------------|------------|-------------|-----------|
| ENGINEER'S ESTIN                                                                 | AATE          | OF            | PRO           | ESTIMATE OF PROBABLE COST | soo =      | ⊢          |             |           |
| LOCATION:                                                                        |               | PROJECT NO:   | T NO:         | )                         | 03-0185.04 |            | DATE:       | 6/16/95   |
| AREA 900, BUILDING 904, FOR BAIM HOUSION                                         |               | BY:           | PIEPER, C.A.  | .A.                       |            | НЭ         | снескер ву: | CAP       |
| PROJECT DESCRIPTION: ECO-A - Upgrade Existing R-11 Chiller To Operate With R-123 | er To Ope     | erate W       | ith R-12      | ស្ល                       |            |            |             |           |
|                                                                                  | QUANTITY      | TITY          |               | LABOR                     |            | MATERIAL   | RIAL        | 10707     |
| ITEM DESCRIPTION                                                                 | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate                      | Total      | Unit Price | Total       | COST      |
|                                                                                  |               |               |               |                           |            |            |             |           |
| Retrofit of existing R-11 chiller to use R-123                                   | -             | 20            | 80.00         | \$28.00                   | \$2,240    | \$175,000  | \$175,000   | \$177,240 |
| R-123 detection system                                                           | -             | 20            |               |                           |            | \$5,000    | \$5,000     | \$5,000   |
|                                                                                  |               |               |               |                           |            |            |             |           |
| Chiller 2-speed ventilation fan                                                  | -             | 20            | 16.00         | \$25,00                   | \$400      | \$1,185    | \$1,185     | \$1,585   |
| (1.11)                                                                           | Ŝ             | 400           | 004           | 408.00                    | \$1120     | 427        | \$270       | \$1390    |
| Chiller ventilation louver                                                       | 2             | 2 2           | 3             | 00.00                     | 071.14     | 170        | 0/72        | 000       |
| Test & balance                                                                   | -             | 20            | 4.00          | \$50.00                   | \$200      |            |             | \$200     |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           |            |            |             |           |
|                                                                                  |               |               |               |                           | 000        |            | A404 A60    | 4100 410  |
|                                                                                  | _!_           | ľ             |               | SUBIOIAL                  | \$2,300    |            | \$101,400   | CI+,COI+  |
| HUITT-ZOLLARS, INC.                                                              |               |               | K 07 (2) L 8  |                           | 76/4       |            | 167,000     | 600,100   |
| ENGINEERS / ARCHITECTS                                                           |               |               |               | SUBTOTAL                  | \$4,752    |            | \$217,746   | \$222,498 |
| 512 MAIN STREET. SUITE 1500                                                      |               |               | DESIGN @ 6%   | %9                        |            |            |             | \$13,350  |
| FORT WORTH, TEXAS 76102-3922                                                     |               |               |               | SUBTOTAL                  |            |            |             | \$235,848 |
| (817) 335-3000 * FAX (817) 335-1025                                              |               | S             | SIOH @ 6.6%   | %                         |            |            |             | \$12,237  |
|                                                                                  |               |               |               | TOTAL                     |            |            |             | \$248,085 |

| ENGINEER'S ESTIM                                                                           | ATE           | E OF          | PRO           | <b>JBAB</b>  | ESTIMATE OF PROBABLE COST | ST         |             |           |
|--------------------------------------------------------------------------------------------|---------------|---------------|---------------|--------------|---------------------------|------------|-------------|-----------|
| LOCATION:                                                                                  |               | PROJECT NO:   | ST NO:        |              | 03-0185.04                |            | DATE:       | 6/16/95   |
| AREA 900, PUIDING 902, FONT DAIN FIOUDION                                                  |               | BY:           | PIEPER, C.A.  | C.A.         |                           | 당          | снескер ву: | KLK       |
| PROJECT DESCRIPTION: ECO-A1, Replace Existing Central Chiller With New Centrifugal Chiller | Chiller       | With Ne       | iw Centi      | rifugal Chil | ler                       |            |             |           |
|                                                                                            | QUA           | QUANTITY      |               | LABOR        |                           | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                           | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate         | Total                     | Unit Price | Total       | COST      |
|                                                                                            |               |               |               |              |                           |            |             |           |
| Remove chiller                                                                             | -             | EA            | 5             | \$24.64      | \$986                     | \$500      | \$500       | \$1,486   |
|                                                                                            |               |               |               |              |                           |            |             |           |
| Install New Chiller 300 ton, water cooled, centrifugal, R-134a                             | -             | EA            | 933           | \$24.64      | \$22,989                  | \$78,000   | \$78,000    | \$100,989 |
|                                                                                            |               |               |               |              |                           |            |             |           |
|                                                                                            |               |               |               |              |                           |            |             |           |
| Pipe Assembly And Valves                                                                   | -             | EA            | 42            | \$24.64      | \$1,035                   | \$3,300    | \$3,300     | \$4,335   |
|                                                                                            |               |               |               |              |                           |            |             |           |
| RECONNECT:                                                                                 |               |               |               |              |                           |            |             |           |
| Controls                                                                                   | -             | JOB           | 45            | \$24.64      | \$1,109                   | \$100      | \$100       | \$1,209   |
| Electrical                                                                                 | -             | JOB           | 22            | \$24.64      | \$542                     | \$200      | \$200       | \$742     |
|                                                                                            |               |               |               |              |                           |            |             |           |
| Refrigerant Detection System And Ventilation                                               | -             | JOB           | 4             | \$24.64      | \$1,010                   | \$4,000    | \$4,000     | \$5,010   |
|                                                                                            |               |               |               |              |                           |            |             |           |
| Test & Balance and Start-up                                                                | 1             | JOB           | 20            | \$28.00      | \$560                     | \$200      | \$200       | \$760     |
|                                                                                            |               |               |               |              |                           |            |             |           |
|                                                                                            |               |               |               |              |                           |            |             |           |
|                                                                                            |               |               |               |              |                           |            |             |           |
|                                                                                            |               |               |               | SUBTOTAL     | \$28,231                  |            | \$86,300    | \$114,531 |

# HUITT-ZOLLARS, INC, ENGINEERS / ARCHITECTS 512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

\$7,559

\$153,242

TOTAL

SUBTOTAL

SIOH @ 5.5%

\$8,246 \$145,683

\$137,437

\$17,260

\$22,906

\$5,646 \$33,877

O&P@20%

SUBTOTAL

DESIGN @ 6%

| ENGINEER'S ESTI                                                                                         | MAT           | E OF          | PR(          | <b>JBAB</b> | ESTIMATE OF PROBABLE COST | ST             |                       |           |
|---------------------------------------------------------------------------------------------------------|---------------|---------------|--------------|-------------|---------------------------|----------------|-----------------------|-----------|
| LOCATION:                                                                                               |               | PROJE         | PROJECT NO:  |             | 03-0185.04                |                | DATE:                 | 6/16/95   |
| AKEA SUU, DUIDING SUZ, FUKI SAM HUUSIUN                                                                 |               | BY:           | PIEPER, C.A. | C.A.        |                           | нэ             | снескер ву:           | KLK       |
| PROJECT DESCRIPTION: ECO-A2, Replace Existing Central Chiller With New Centrifugal Chiller And Variable | al Chille     | r With N      | ew Cent      | crifugal Ch | iller And Va              | ariable Freque | Frequency Drive (VFD) | (a:       |
|                                                                                                         | QUA           | QUANTITY      |              | LABOR       | 2                         | MATERIAL       | RIAL                  | TOTAL     |
| ITEM DESCRIPTION                                                                                        | # of<br>Units | Unit<br>Meas. | Hrs/<br>Unit | Rate        | Total                     | Unit Price     | Total                 | COST      |
|                                                                                                         |               |               |              |             |                           |                |                       |           |
| Remove chiller                                                                                          | -             | EA            | 4            | \$24.64     | \$986                     | \$500          | \$500                 | \$1,486   |
|                                                                                                         |               | i             | 100          | 0,04        | 00000                     | 000 004        | 000                   | 000000    |
| Install New Chiller 300 ton, water cooled, centrifugal, K-134a                                          |               | EA            | 222          | \$24.64     | 696,224                   | 000'0/\$       | 000'0/4               | 600,001¢  |
| Adder For VFD                                                                                           | -             | S.J           |              |             |                           | \$29,875       | \$29,875              | \$29,875  |
| Pipe Assembly And Valves                                                                                | -             | EA            | 42           | \$24.64     | \$1,035                   | \$3,300        | \$3,300               | \$4,335   |
|                                                                                                         |               |               |              |             |                           |                |                       |           |
| RECONNECT:                                                                                              |               |               |              |             |                           |                |                       |           |
| Controls                                                                                                | -             | JOB           | 54           | \$24.64     | \$1,109                   | \$100          | \$100                 | \$1,209   |
| Electrical                                                                                              | -             | JOB           | 22           | \$24.64     | \$542                     | \$200          | \$200                 | \$742     |
| Refrigerant Detection System And Ventilation                                                            | -             | 306           | 41           | \$24.64     | \$1,010                   | \$4,000        | \$4,000               | \$5,010   |
| Test & Balance and Start-up                                                                             | -             | JOB           | 20           | \$28.00     | \$560                     | \$200          | \$200                 | \$760     |
|                                                                                                         |               |               |              |             |                           |                |                       |           |
|                                                                                                         |               |               |              |             |                           |                |                       |           |
|                                                                                                         |               |               |              | SUBTOTAL    | \$28,231                  |                | \$116,175             | \$144,406 |
| HIITT-701 LARS INC.                                                                                     |               |               | O&P@20%      | %0          | \$5,646                   |                | \$23,235              | \$28,881  |
|                                                                                                         |               |               |              | SUBTOTAL    | \$33.877                  |                | \$139.410             | \$173.287 |

512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

**ENGINEERS / ARCHITECTS** 

\$10,397 \$183,684 \$9,531 \$193,215

TOTAL

SUBTOTAL

SIOH @ 5.6%

DESIGN @ 6%

\$173,287

\$139,410

\$33,877

SUBTOTAL

| ENGINEER'S ESTIN                                                                                       | ATE           | : OF          | PR(           | <b>JBAB</b> | ESTIMATE OF PROBABLE COST | ST         |             |           |
|--------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------|---------------------------|------------|-------------|-----------|
| LOCATION:                                                                                              |               | PROJECT NO:   | CT NO:        |             | 03-0185.04                |            | DATE:       | 6/16/95   |
| AREA 300, BUILDING 304, FORI SAM HOUSION                                                               |               | BY:           | PIEPER, C.A.  | C.A.        |                           | CH         | снескер ву: | KLK       |
| PROJECT DESCRIPTION: ECO-A3, Replace Existing Central Chiller With New Water Cooled Dual Screw Chiller | l Chiller     | - With N      | ew Wat        | er Cooled   | Dual Screw                | , Chiller  |             |           |
|                                                                                                        | QUA           | QUANTITY      |               | LABOR       | 3                         | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                       | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total                     | Unit Price | Total       | COST      |
|                                                                                                        |               |               |               |             |                           |            |             |           |
| Remove chiller                                                                                         | -             | EA            | 4             | \$24.64     | \$386                     | \$500      | \$500       | \$1,486   |
|                                                                                                        |               |               |               |             |                           |            |             |           |
| Install New Chiller 300 ton, water cooled, dual screw, R-134a                                          | -             | EA            | 933           | \$24.64     | \$22,989                  | \$81,000   | \$81,000    | \$103,989 |
|                                                                                                        |               |               |               |             |                           |            |             |           |
|                                                                                                        |               |               | !             |             | 100                       | 000        | 000         | 1 2 4     |
| Pipe Assembly And Valves                                                                               | -             | EA            | 45            | \$24.64     | GSO,1*                    | 000,04     | 000,00      | \$4,000   |
| WECONNECT:                                                                                             |               |               |               |             |                           |            |             |           |
| Controls                                                                                               | -             | JOB           | 45            | \$24.64     | \$1,109                   | \$100      | \$100       | \$1,209   |
| Electrical                                                                                             | -             | JOB           | 22            | \$24.64     | \$542                     | \$200      | \$200       | \$742     |
|                                                                                                        |               |               |               |             |                           |            |             |           |
| Refrigerant Detection System And Ventilation                                                           | -             | JOB           | 4             | \$24.64     | \$1,010                   | \$4,000    | \$4,000     | \$5,010   |
|                                                                                                        |               |               |               |             |                           |            |             |           |
| Test & Balance and Start-up                                                                            | -             | JOB           | 20            | \$28.00     | \$560                     | \$200      | \$200       | \$760     |
|                                                                                                        |               |               |               |             |                           |            |             |           |
|                                                                                                        |               |               |               |             |                           |            |             |           |
|                                                                                                        |               |               |               |             |                           |            |             |           |

# HUITT-ZOLLARS, INC. ENGINEERS / ARCHITECTS 512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

\$8,462

\$149,499

\$7,757 \$157,250

TOTAL

SUBTOTAL

SIOH @ 6.5%

DESIGN @ 6%

\$23,506

\$89,300

\$28,231

O&P@20%

SUBTOTAL

\$33,877

SUBTOTAL

\$117,531

\$141,037

\$107,160

| ENGINEER'S ESTIMATE                                                                              | ATE           | OF            | PR            | PROBABLE  | LE COST      | ST         |             |           |
|--------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-----------|--------------|------------|-------------|-----------|
| LOCATION:                                                                                        |               | PROJECT NO:   | CT NO:        |           | 03-0185.04   |            | DATE:       | 6/16/95   |
| AREA 900, BUILDING 904, LONI 90M HOUSTON                                                         |               | BY:           | PIEPER, C.A.  | C.A.      |              | 당          | снескер ву: | KLK       |
| PROJECT DESCRIPTION: ECO-A4, Replace Existing Central Chiller With New Gas Engine Driven Chiller | Chiller       | With N        | ew Gas        | Engine Dr | iven Chiller |            |             |           |
|                                                                                                  | QUAN          | QUANTITY      |               | LABOR     |              | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                 | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate      | Total        | Unit Price | Total       | COST      |
|                                                                                                  |               |               |               |           |              |            |             |           |
| Remove chiller                                                                                   | -             | EA            | 4             | \$24.64   | \$986        | \$500      | \$500       | \$1,486   |
|                                                                                                  |               | Ĺ             | 220           | 70 704    | 000000       | 000        | 4226 000    | \$247 QAQ |
| netali New Chiller OCO ton, water coolea centrilugal, N-10-ta                                    | -             | 5             | 3             | 10:13     | 477,000      | 4250,000   | *****       | 000,1124  |
|                                                                                                  |               |               |               |           |              |            |             |           |
| Pipe Assembly And Valves                                                                         | -             | EA            | 42            | \$24.64   | \$1,035      | \$3,300    | \$3,300     | \$4,335   |
|                                                                                                  |               |               |               |           |              |            |             |           |
| RECONNECT:                                                                                       |               |               |               |           |              |            |             |           |
| Controls                                                                                         | 1             | JOB           | 45            | \$24.64   | \$1,109      | \$100      | \$100       | \$1,209   |
| Electrical                                                                                       | -             | JOB           | 22            | \$24.64   | \$542        | \$200      | \$200       | \$742     |
|                                                                                                  |               |               |               |           |              |            |             |           |
| Refrigerant Detection System And Ventilation                                                     | -             | JOB           | 4             | \$24.64   | \$1,010      | \$4,000    | \$4,000     | \$5,010   |
| Test & Balance and Start-up                                                                      | -             | 300           | 20            | \$28.00   | \$560        | \$200      | \$200       | \$760     |
|                                                                                                  |               |               |               |           |              |            |             |           |
|                                                                                                  |               |               |               |           |              |            |             |           |
|                                                                                                  |               |               |               | SUBTOTAL  | \$28,231     |            | \$233,300   | \$261,531 |
| HIIITT-701 I ARS INC.                                                                            |               | 0             | & P @         | 70%       | \$5,646      |            | \$46,660    | \$52,306  |
| ENCINEEDS / APCHITECTS                                                                           |               |               |               | SUBTOTAL  | \$33,877     |            | \$279,960   | \$313,837 |
| 512 MAIN STREET, SUITE 1500                                                                      |               | Q             | DESIGN @ 6%   | %9        |              |            |             | \$18,830  |
| FORT WORTH, TEXAS 76102-3922                                                                     |               |               |               | SUBTOTAL  |              |            |             | \$332,667 |
| (817) 335-3000 * FAX (817) 335-1025                                                              |               | S             | SIOH @ 6.6%   | 5%        |              |            |             | \$17,261  |
|                                                                                                  |               |               |               | TOTAL     |              |            |             | \$349,928 |

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-A1 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 137437. B. SIOH 7559. C. DESIGN COST 8246. D. TOTAL COST (1A+1B+1C) \$ 153242. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D - 1E - 1F) 153242. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL S DISCOUNT DISCOUNTED MBTU/YR(2) FUEL \$/MBTU(1) SAVINGS(3) FACTOR (4) SAVINGS (5) A. ELECT S 6.28 253. 1589. 15.08 23960. B. DIST \$ .00 0. 0. 18.57 0. C. RESID \$ .00 0. 0. 21.02 0. D. NAT G S 2.66 0. 0. 18.58 0. \$ E. COAL \$ .00 0. 0. 16.83 0. F. PPG 0. .00 0. 17.38 0. M. DEMAND SAVINGS 2870. 14.88 42706. 253. \$ N. TOTAL 4459. 66665. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) OC FACTR SAVINGS(+)/ (3) (1) (2) COST(-)(4)1. REFRIG UPGRADE \$ 248085. 0 1.00 248085. d. TOTAL \$ 248085. 248085. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 248085. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 16863. 5. SIMPLE PAYBACK PERIOD (1G/4) 9.09 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 314750. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =2.05 (IF < 1 PROJECT DOES NOT QUALIFY)

\* Project does not qualify for ECIP funding; 4,5,6 for information only.

.

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-A2 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 173287. B. SIOH 9531. C. DESIGN COST 10397. D. TOTAL COST (1A+1B+1C) \$ 193215. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 193215. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED MBTU/YR(2) FUEL SAVINGS(3) \$/MBTU(1) FACTOR(4) SAVINGS (5) A. ELECT S 6.28 529. 3322. 15.08 50098. B. DIST \$ .00 0. 0. 18.57 0. .00 C. RESID \$ 0. 0. 21.02 0. D. NAT G S 2.66 0. 0. 0. 18.58 .00 0. E. COAL \$ 0. 16.83 0. 0. F. PPG \$ .00 0. 17.38 0. M. DEMAND SAVINGS 3167. 14.88 47125. N. TOTAL 529. \$ 6489. 97223. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) YR DISCNT DISCOUNTED OC FACTR SAVINGS(+)/ SAVINGS(+) COST(-) OC ITEM (1) (2) (3) COST(-)(4)1. REFRIG UPGRADE \$ 248085. 1.00 248085. d. TOTAL \$ 248085. 248085. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 248085. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 18893. 5. SIMPLE PAYBACK PERIOD (1G/4) 10.23 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 345308. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =(IF < 1 PROJECT DOES NOT QUALIFY)

\*\* Project does not qualify for ECIP funding; 4,5,6 for information only.

D-16

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-A3 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 141037. B. SIOH \$ 7757. C. DESIGN COST 8462. D. TOTAL COST (1A+1B+1C) \$ 157256. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 157256. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT \$ 434. 6.28 2726. 15.08 41101. .00 B. DIST S 0. \$ 0. 18.57 0. .00 C. RESID \$ \$ 0. 0. 21.02 0. D. NAT G \$ 2.66 0. \$ 0. 18.58 0. \$ E. COAL \$ .00 0. 0. 16.83 0. F. PPG .00 Ο. 17.38 0. 0. 2520. M. DEMAND SAVINGS 14.88 37498. N. TOTAL 434. 5246. 78598. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-)Ŝ 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) ITEM OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4)1. REFRIG UPGRADE \$ 248085. 1.00 0 248085. d. TOTAL \$ 248085. 248085. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 248085. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 17650. 5. SIMPLE PAYBACK PERIOD (1G/4) 8.91 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 326683. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =2.08 (IF < 1 PROJECT DOES NOT QUALIFY) Project does not qualify for ECIP funding; 4,5,6 for information only.

LIFE CYCLE COST ANALYSIS SUMMARY

D-17

STUDY: FSH

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH PROJECT NO. & TITLE: 03018504 REGION NOS. 6 CENSUS: 3 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-A4 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 313837. B. SIOH Ś 17261. C. DESIGN COST \$ 18830. D. TOTAL COST (1A+1B+1C) \$ E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 349928. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELECT \$ 1516. 6.28 9520. 15.08 143569. B. DIST \$ .00 0. 0. 18.57 0. -3386. 0. 0. .00 \$ 0. \$ -9007. C. RESID \$ 21.02 0. 2.66 D. NAT G \$ 18.58 -167346. .00 E. COAL \$ 0. 16.83 0. \$ 0. \$ 10987. \$ 11501. F. PPG .00 0. 17.38 0. M. DEMAND SAVINGS Ŝ 14.88 163487. N. TOTAL -1870. 139710. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4)1. REFRIG UPGRADE \$ 248085. 1.00 0 248085. d. TOTAL \$ 248085. 248085. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 248085. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 23905. 5. SIMPLE PAYBACK PERIOD (1G/4) 14.64 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 387795. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.11 (IF < 1 PROJECT DOES NOT QUALIFY)

\*\* Project does not qualify for ECIP funding; 4,5,6 for information only.

Ŗ.

### **ENERGY CONSERVATION OPPORTUNITY (ECO)**

ECO NO:

C

DATE:

8/13/95

ECO TITLE:

Replace Existing Central Chillers With New Electric Centrifugal Chiller

INSTALLATION:

Fort Sam Houston, San Antonio, Texas

LOCATION:

Area 1300, Building 1377

### A. Summary:

| Electrical Energy Savings | 3,424   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 13,914  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 3,424   | MMBTU/yr |
| Total Cost Savings        | 56,936  | \$/yr    |
| Total Investment          | 479,191 | \$       |
| Simple Payback            | 8.4     | yrs      |
| SIR                       | 1.98    |          |

### B. ECO Description:

Remove the two 600 ton, R-11 centrifugal chillers in building 1377 which were installed in 1972, and replace them with one R-134 centrifugal chiller, rated at 827 tons. The two existing chilled water pumps and condenser water pumps serving the existing chillers should be removed. Install a new chilled water pump and a new condenser water pump, each rated at 75 HP, to serve the new chiller. The new chiller should be connected into the distribution piping at the existing location. New chilled water supply and return headers should be installed to join together the existing distribution systems serving building 1350 and the other seven buildings in the 1300 area. This will create a single chilled water distribution system to be served by the new chiller and the existing 438 ton chiller which was installed in 1983 to serve building 1350. All existing controls and electrical services should be reconnected where possible. Specific requirements in these areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chillers and pumps, and installation of the new chillers, pumps, associated wiring and controls.

### C. Discussion:

There are currently two independent chilled water distribution systems serving the 1300 area, one for building 1350 and the other for seven other buildings. These two systems should be combined into one system to conserve energy in the central plant. This can be accomplished by installing common CHW supply and return headers in the central plant. The existing centrifugal chiller serving building 1350 was installed in 1983, is rated at 438 tons and appears to be in good condition. The two existing centrifugal chillers serving the other seven buildings were installed in 1972, are rated at 600 tons each, and appear to be near the end of their useful life. Also, all three chillers use the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996<sup>1</sup>. To avoid the anticipated increasing operational costs over the life of these machines, they should either be retrofitted to use an approved refrigerant or replaced with new machines that operate on one. The existing centrifugal machines can be retrofitted with no loss of capacity by replacing the impellers with new ones designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates<sup>2</sup>. However, since the older machines are already over twenty years old, it is recommended that the facility replace them instead. A life cycle cost analysis performed on four different types of

replacement chillers available determined that a single electric centrifugal chiller using R-134 would be the most economical choice over the life of the machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 1,638 tons is more than what is required to adequately cool the buildings<sup>3</sup>. Therefore, the new combined capacity is recommended to be 1,265 tons to more nearly match the building cooling load.

### D. Savings Calculations:

### 1. Energy Consumption And Savings

The monthly peak demand and energy consumptions of the existing and proposed alternative chillers and auxiliary equipment were calculated using the Trace 600 computer program<sup>4</sup>. The buildings served by the existing chillers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>5</sup>.

The 827 ton chiller alternatives which were compared included an electric centrifugal machine, an electric centrifugal with a variable frequency drive, a dual screw machine and a gas driven centrifugal machine. All proposed machines used R-134. Full load performance data from York International were used in the computer simulations of the new chiller energy usages<sup>6</sup>. Equipment lists of the specific chillers and auxiliaries for each alternative modeled by the computer are shown on pages E-22 to E-25.

Once the computer simulations were completed, the total annual demand cost and energy consumption of each alternative were compared with that of the existing systems to determine the annual savings for each<sup>7</sup>. These savings calculations are shown on pages E-26 through E-28. The demand and energy savings values were used in the life cycle cost analysis for each alternative. The results of these savings calculations were as follows:

| Alternative | Chiller Type               | Demand<br>Savings<br>\$/yr | Electrical<br>Savings<br>MMBTU/yr | Gas<br>Savings<br>MMBTU/yr |
|-------------|----------------------------|----------------------------|-----------------------------------|----------------------------|
| <b>C</b> 1  | Electric Centrifugal       | 13,914                     | 3,424                             | 0                          |
| C2          | Electric Centrifugal & VFD | 14,532                     | 3,615                             | 0                          |
| С3          | Electric Screw             | 11,345                     | 3,250                             | 0                          |
| C4          | Gas Driven Centrifugal     | 38,536                     | 6,386                             | -8,886                     |

### 2. Maintenance Cost Savings:

By installing a new chiller in place of the two oldest existing ones, the installation will save the cost of retrofitting the machines for the HCFC-123 refrigerant as mentioned previously. The cost of this retrofit was estimated to be \$384,882 on page E-29. This value was used in the life cycle cost analysis as a non-recurring savings for each alternative.

### E. Cost Estimates

The total installation costs for each alternative chiller mentioned in this ECO were estimated on pages E-30 through E-33. These costs were used in the life cycle cost analysis for each alternative. The results of the costs estimates were as follows:

| Alternative | Chiller Type               | Estimated<br>Cost |
|-------------|----------------------------|-------------------|
| <b>C</b> 1  | Electric Centrifugal       | \$479,191         |
| C2          | Electric Centrifugal & VFD | \$633,919         |
| C3          | Electric Screw             | \$653,398         |
| C4          | Gas Driven Centrifugal     | \$765,561         |

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on each chiller alternative for this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for each life cycle cost analysis is shown on pages E-34 through E-37. The results of the alternative life cycle cost analysis were as follows:

| Alternative | Chiller Type               | Payback<br>Years | SIR  |
|-------------|----------------------------|------------------|------|
| C1          | Electric Centrifugal       | 8.4              | 1.98 |
| C2          | Electric Centrifugal & VFD | 10.7             | 1.54 |
| C3          | Electric Screw             | 12.2             | 1.37 |
| C4          | Gas Driven Centrifugal     | 10.0             | 1.51 |

Since the electric centrifugal chillers have the highest SIR, they are recommended as the most economical choice to replace the existing machines. The data from the life cycle cost analysis for this alternative were included in the summary on page E-19.

### REFERENCES

- 1. Per current EPA regulations on CFC refrigerants.
- 2. See Appendix G for chiller retrofit estimates from Northeastern Research And Engineering Corporation.
- 3. See Appendix B for Area 1300 cooling system load profile.
- 4. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 5. See Appendix C for building field data and existing HVAC system data.
- 6. See Appendix G for manufacturer's equipment performance data from York International.
- 7. See Appendix A for utility cost analysis data, used in the savings calculations.

| ANNUAL USE                                                                                          | KWH MCF     | 517,565                                                              | 867,974                                                          | 85,104                                     | 151,513                   | 63,828                                     | 151,513                  | 141,358                                        | 37,204                                |  |  |
|-----------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------|--------------------------|------------------------------------------------|---------------------------------------|--|--|
| ES S                                                                                                | WKS         | 26                                                                   | 26                                                               | 56                                         | 26                        | 56                                         | 26                       | 26                                             | 26                                    |  |  |
| OPER TIMES                                                                                          | DAYS        | 7                                                                    | 7                                                                | 7                                          | 7                         | 7                                          | 7                        | 7                                              | 7                                     |  |  |
| OPP                                                                                                 | HRS         | 24                                                                   | 24                                                               | 24                                         | 24                        | 24                                         | 24                       | 24                                             | 24                                    |  |  |
| - 1                                                                                                 | LOAD        | 329 KW                                                               | 479 KW                                                           | 29.84 KW                                   | 55.95 KW                  | 22.38 KW                                   | 55.95 KW                 | 52.22 KW                                       | 14.92 KW                              |  |  |
| 95<br>VEAR                                                                                          | INSTALLED   | 1983                                                                 | New                                                              | 1983                                       | New                       | 1983                                       | New                      | Exist.                                         | Exist.                                |  |  |
| JUNE 2, 1995                                                                                        | AREA SERVED | Area 1300                                                            | Area 1300                                                        | Area 1300                                  | Area 1300                 | Area 1300                                  | Area 1300                | Area 1300                                      | Area 1300                             |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR. ECO-CT, FORT SAME TOOSTON, SINCE 1995 JUNE 2, 1995 VEAR FILL OPER | DESCRIPTION | Carrier #19DK 78942P<br>water cooled, centrifugal,<br>438 tons, R-11 | York, electric<br>water cooled, centrifugal,<br>827 Tons, R-134a | Allis Chalmers<br>775 gpm, 114 ft<br>40 HP | 1670 gpm, 114 ft<br>75 HP | Allis Chalmers<br>1314 gpm, 30 ft<br>30 HP | 2785 gpm, 70 ft<br>75 HP | Marley #324T<br>induced draft,<br>2-35 HP fans | Marley<br>induced draft,<br>20 HP fan |  |  |
|                                                                                                     | QTY.        | -                                                                    | -                                                                | -                                          | -                         | -                                          | γ-                       | -                                              | 4                                     |  |  |
|                                                                                                     | ITEM        | Water Chiller                                                        | Water Chiller                                                    | Chilled Water Pump                         | Chilled Water Pump        | Condenser Water Pump                       | Condenser Water Pump     | Cooling Tower                                  | Cooling Tower                         |  |  |

|                                                                       |             | П           |                                                                      | T                                                                     | 1                                          |                           |                                            |                          |                                                |                                       |  |  |
|-----------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------|--------------------------|------------------------------------------------|---------------------------------------|--|--|
|                                                                       | ANNUAL USE  | KWH MCF     | 517,565                                                              | 811,935                                                               | 85,104                                     | 151,513                   | 63,828                                     | 151,513                  | 141,412                                        | 37,204                                |  |  |
| <u>.</u>                                                              | ES          | WKS         | 26                                                                   | 26                                                                    | 56                                         | 56                        | 56                                         | 56                       | 56                                             | 26                                    |  |  |
| 300                                                                   | OPER. TIMES | DAYS        | 7                                                                    | 7                                                                     | 7                                          | 7                         | 7                                          | 7                        | 7                                              | 7                                     |  |  |
| AREA 1:                                                               | OP          | HRS         | 24                                                                   | 24                                                                    | 24                                         | 24                        | 24                                         | 24                       | 24                                             | 24                                    |  |  |
| M HOUSTON,                                                            | FULL        | LOAD        | 329 KW                                                               | 479 KW                                                                | 29.84 KW                                   | 55.95 KW                  | 22.38 KW                                   | 55.95 KW                 | 52.22 KW                                       | 14.92 KW                              |  |  |
| c2, FORT SA                                                           | YEAR        | INSTALLED   | 1983                                                                 | New                                                                   | 1983                                       | New                       | 1983                                       | New                      | Exist.                                         | Exist.                                |  |  |
| MENT LIST FOR: ECO-(                                                  |             | AREA SERVED | Area 1300                                                            | Area 1300                                                             | Area 1300                                  | Area 1300                 | Area 1300                                  | Area 1300                | Area 1300                                      | Area 1300                             |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-C2, FORT SAM HOUSTON, AREA 1300 |             | DESCRIPTION | Carrier #19DK 78942P<br>water cooled, centrifugal,<br>438 tons, R-11 | York, electric, VFD<br>water cooled, centrifugal,<br>827 Tons, R-134a | Allis Chalmers<br>775 gpm, 114 ft<br>40 HP | 1670 gpm, 114 ft<br>75 HP | Allis Chalmers<br>1314 gpm, 30 ft<br>30 HP | 2785 gpm, 70 ft<br>75 HP | Marley #324T<br>induced draft,<br>2-35 HP fans | Marley<br>induced draft,<br>20 HP fan |  |  |
|                                                                       |             | ΩT₹.        | -                                                                    | -                                                                     | -                                          | -                         | ~                                          | -                        | -                                              | -                                     |  |  |
|                                                                       |             | ITEM        | Water Chiller                                                        | Water Chiller                                                         | Chilled Water Pump                         | Chilled Water Pump        | Condenser Water Pump                       | Condenser Water Pump     | Cooling Tower                                  | Cooling Tower                         |  |  |

|                                                                                                                                                                                                                                                                                                                        | JUNE 2, 1995 TION AREA SERVED INSTALLED LOAD HRS DAYS WKS KWH MCF                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMES ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL AND | Area 1300       1983       329 KW       24       7       26         Area 1300       New       529 KW       24       7       26         Area 1300       New       55.95 KW       24       7       26         Area 1300       New       55.95 KW       24       7       26         Area 1300       New       55.95 KW       24       7       26         Area 1300       Exist.       52.22 KW       24       7       26         Area 1300       Exist.       52.22 KW       24       7       26 |

|                      |         | PROPOSED HVAC EQUIPMENT LIST FOR: ECO-C4, FORT SAM HOUSTON, AREA 1300 | MENT LIST FOR: EC | D-C4, FORT S | AM HOUSTON, | AREA 1 | 300         |     |            |
|----------------------|---------|-----------------------------------------------------------------------|-------------------|--------------|-------------|--------|-------------|-----|------------|
|                      |         |                                                                       |                   | YEAR         | FULL        | Q      | OPER. TIMES | ES  | ANNUAL USE |
| ITEM                 | ΩT<br>Y | DESCRIPTION                                                           | AREA SERVED       | INSTALLED    | LOAD        | HRS    | DAYS        | WKS | KWH MCF    |
| Water Chiller        | -       | Carrier #19DK 78942P<br>water cooled, centrifugal,<br>438 tons, R-11  | Area 1300         | 1983         | 329 KW      | 24     | 7           | 56  | 517,565    |
| Water Chiller        | -       | York, gas fired water cooled, centrifugal 827 Tons, R-134a            | Area 1300         | New          | 5,127 MBH   | 24     | 7           | 26  | 8,886      |
| Chilled Water Pump   | -       | Allis Chalmers<br>775 gpm, 114 ft<br>40 HP                            | Area 1300         | 1983         | 29.84 KW    | 24     | 7           | 26  | 85,104     |
| Chilled Water Pump   | -       | 1670 gpm, 114 ft<br>75 HP                                             | Area 1300         | New          | 55.95 KW    | 24     | 7           | 26  | 151,513    |
| Condenser Water Pump | -       | Allis Chalmers<br>1314 gpm, 30 ft<br>30 HP                            | Area 1300         | 1983         | 22.38 KW    | 24     | 7           | 26  | 63,828     |
| Condenser Water Pump | -       | 2785 gpm, 70 ft<br>75 HP                                              | Area 1300         | New          | 55.95 KW    | 24     | 7           | 26  | 151,513    |
| Cooling Tower        | -       | Marley #324T induced draft, 2-35 HP fans                              | Area 1300         | Exist.       | 52.22 KW    | 24     | 7           | 26  | 141,358    |
| Cooling Tower        | -       | Marley<br>induced draft,<br>20 HP fan                                 | Area 1300         | Exist.       | 14.92 KW    | 24     | 7           | 26  | 37,204     |
|                      |         |                                                                       |                   |              |             |        |             |     |            |
|                      |         |                                                                       |                   |              |             |        |             |     |            |
|                      |         |                                                                       |                   |              |             |        |             |     |            |
|                      |         |                                                                       |                   |              |             |        |             |     |            |
|                      |         |                                                                       |                   |              |             |        |             |     |            |

| ITEM          |      |      | 1    |      | ī      | LY PEAK | DEMAN  | D (KW) |        |       | 1    |      | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|---------------|------|------|------|------|--------|---------|--------|--------|--------|-------|------|------|------------------------------------|------------------------------------|
|               | Jan  | Feb  | Mar  | Apr  | May    | Jun     | Jul    | Aug    | Sep    | Oct   | Nov  | Dec  |                                    |                                    |
| Water Chiller |      |      |      |      | 524.9  | 541.9   | 549.8  | 556.5  | 540.7  | 371.9 |      |      | 1,464,005                          |                                    |
| Water Chiller |      |      |      |      | 165.4  | 210.0   | 305.1  | 347.3  | 234.0  |       |      |      | 130,286                            |                                    |
| Water Chiller |      |      |      |      | 286.9  | 267.5   | 299.6  | 319.9  | 290.4  | 193.8 |      |      | 595,685                            |                                    |
| CHW Pump      |      |      |      |      | 29.8   | 29.8    | 29.8   | 29.8   | 29.8   | 29.8  |      |      | 131,773                            |                                    |
| CHW Pump      |      |      |      |      | 18.6   | 18.6    | 18.6   | 18.6   | 18.6   | 18.6  |      |      | 82,358                             |                                    |
| CHW Pump      |      |      |      |      | 18.6   | 18.6    | 18.6   | 18.6   | 18.6   | 18.6  |      |      | 82,358                             |                                    |
| CND Pump      |      |      |      |      | 29.8   | 29.8    | 29.8   | 29.8   | 29.8   | 29.8  |      |      | 131,773                            |                                    |
| CND Pump      |      |      |      |      | 29.8   | 29.8    | 29.8   | 29.8   | 29.8   |       |      |      | 31,153                             |                                    |
| CND Pump      |      |      |      |      | 22.4   | 22.4    | 22.4   | 22.4   | 22.4   | 22.4  |      |      | 98,830                             |                                    |
| Cooling Tower |      |      |      |      | 52.2   | 52.2    | 52.2   | 52.2   | 52.2   | 52.2  |      |      | 210,817                            |                                    |
| Cooling Tower |      |      |      |      | 14.9   | 14.9    | 14.9   | 14.9   | 14.9   | 14.9  | _    |      | 60,215                             |                                    |
| Totals        |      |      |      |      | 1193.3 | 1235.5  | 1370.6 | 1439.8 | 1281.2 | 752.0 |      |      | 3,019,253                          |                                    |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50 | 7.50   | 10.00   | 10.00  | 10.00  | 10.00  | 7.50  | 7.50 | 7.50 |                                    |                                    |
| Cost (\$)     |      |      |      |      | 8,950  | 12,355  | 13,706 | 14,398 | 12,812 | 5,640 |      |      |                                    |                                    |

Total Demand

67,861 \$/yr

Total Energy

10,305 MMBTU/yr

(electric)

Total Energy

MMBTU/yr

(gas)

| ITEM          |      |      | ECO-( | C1: NE | W ELE |       |        |        | AL CHI | LLER  |      |      | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|---------------|------|------|-------|--------|-------|-------|--------|--------|--------|-------|------|------|------------------------------------|------------------------------------|
|               | Jan  | Feb  | Mar   | Apr    | May   | Jun   | Jul    | Aug    | Sep    | Oct   | Nov  | Dec  | ()                                 | (,,,,,,                            |
| Water Chiller |      |      |       |        | 268.8 | 287.1 | 326.8  | 330.2  | 307.2  | 276.6 |      |      | 517,565                            |                                    |
| Water Chiller |      |      |       |        | 437.4 | 453.1 | 475.2  | 479.0  | 446.8  | 373.4 |      |      | 867,974                            |                                    |
| CHW Pump      |      |      |       |        | 29.8  | 29.8  | 29.8   | 29.8   | 29.8   | 29.8  |      |      | 85,104                             |                                    |
| CHW Pump      |      |      |       |        | 56.0  | 56.0  | 56.0   | 56.0   | 56.0   | 56.0  |      |      | 151,513                            |                                    |
| CND Pump      |      |      |       |        | 22.4  | 22.4  | 22.4   | 22.4   | 22.4   | 22.4  |      |      | 63,828                             |                                    |
| CND Pump      |      |      |       |        | 56.0  | 56.0  | 56.0   | 56.0   | 56.0   | 56.0  |      |      | 151,513                            |                                    |
| Cooling Tower |      |      |       |        | 14.9  | 14.9  | 14.9   | 14.9   | 14.9   | 14.9  |      |      | 37,204                             |                                    |
| Cooling Tower |      |      |       |        | 52.2  | 52.2  | 52.2   | 52.2   | 52.2   | 52.2  |      |      | 141,358                            |                                    |
| Total (KW)    |      |      |       |        | 937.5 | 971.5 | 1033.3 | 1040.5 | 985.3  | 881.3 |      |      | 2,016,059                          |                                    |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50  | 7.50   | 7.50  | 10.00 | 10.00  | 10.00  | 10.00  | 7.50  | 7.50 | 7.50 |                                    |                                    |
| Cost (\$)     |      |      |       |        | 7,031 | 9,715 | 10,333 | 10,405 | 9,853  | 6,610 |      |      |                                    |                                    |

Total Demand

53,947 \$/yr

Demand Savings

13,914 \$/yr

Energy Savings

3,424 MMBTU/yr

(electric)

Energy Savings

MMBTU/yr

| ITEM          | Jan  | ECO<br>Feb | -C2: N | EW EL | ECTRIC<br>MONTH |       |        |        | HILLER<br>Sep | WITH  | VFD<br>Nov | Dec  | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|---------------|------|------------|--------|-------|-----------------|-------|--------|--------|---------------|-------|------------|------|------------------------------------|------------------------------------|
| Water Chiller | Jun  | 100        | Wildi  | 7,61  | 268.8           | 287.1 | 326.8  | 330.2  | 307.2         | 276.6 | 1101       |      | 517,565                            |                                    |
| Water Chiller |      |            |        |       | 419.5           | 441.7 | 472.9  |        | 437.2         | 340.0 |            |      | 811,935                            |                                    |
| CHW Pump      |      |            |        |       | 29.8            | 29.8  | 29.8   | 29.8   | 29.8          | 29.8  |            |      | 85,104                             |                                    |
| CHW Pump      |      |            |        |       | 56.0            | 56.0  | 56.0   | 56.0   | 56.0          | 56.0  |            |      | 151,513                            |                                    |
| CND Pump      |      |            |        |       | 22.4            | 22.4  | 22.4   | 22.4   | 22.4          | 22.4  |            |      | 63,828                             |                                    |
| CND Pump      |      |            |        |       | 56.0            | 56.0  | 56.0   | 56.0   | 56.0          | 56.0  |            |      | 151,513                            |                                    |
| Cooling Tower |      |            |        |       | 14.9            | 14.9  | 14.9   | 14.9   | 14.9          | 14.9  |            |      | 37,204                             |                                    |
| Cooling Tower |      |            |        |       | 52.2            | 52.2  | 52.2   | 52.2   | 52.2          | 52.2  |            |      | 141,412                            |                                    |
| Total (KW)    |      |            |        |       | 919.6           | 960.1 | 1031.0 | 1040.5 | 975.7         | 847.9 |            |      | 1,960,074                          |                                    |
| Rate (\$/KW)  | 7.50 | 7.50       | 7.50   | 7.50  | 7.50            | 10.00 | 10.00  | 10.00  | 10.00         | 7.50  | 7.50       | 7.50 |                                    |                                    |
| Cost (\$)     |      |            |        |       | 6,897           | 9,601 | 10,310 | 10,405 | 9,757         | 6,359 |            |      |                                    |                                    |

**Total Demand** 

53,329 \$/yr

**Demand Savings** 

14,532 \$/yr

Energy Savings

3,615 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

(gas)

| ITEM          |      |      | EC   | CO-C3: |       | ELECT<br>LY PEAK |        |        | CHILLE | :R    |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|--------|-------|------------------|--------|--------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr    | May   | Jun              | Jul    | Aug    | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |        | 268.8 | 287.1            | 326.8  | 330.2  | 307.2  | 276.6 |      |      | 517,565                   |                           |
| Water Chiller |      |      |      |        | 483.0 | 500.4            | 524.8  | 529.0  | 493.4  | 412.3 |      |      | 916,945                   |                           |
| CHW Pump      |      |      |      |        | 29.8  | 29.8             | 29.8   | 29.8   | 29.8   | 29.8  |      |      | 85,104                    |                           |
| CHW Pump      |      |      |      |        | 56.0  | 56.0             | 56.0   | 56.0   | 56.0   | 56.0  |      |      | 151,513                   |                           |
| CND Pump      |      |      |      |        | 22.4  | 22.4             | 22.4   | 22.4   | 22.4   | 22.4  |      |      | 63,828                    |                           |
| CND Pump      |      |      |      |        | 56.0  | 56.0             | 56.0   | 56.0   | 56.0   | 56.0  |      |      | 151,513                   |                           |
| Cooling Tower |      |      |      |        | 14.9  | 14.9             | 14.9   | 14.9   | 14.9   | 14.9  |      |      | 37,204                    |                           |
| Cooling Tower |      |      |      |        | 52.2  | 52.2             | 52.2   | 52.2   | 52.2   | 52.2  |      |      | 143,448                   |                           |
| Total (KW)    |      |      |      |        | 983.1 | 1018.8           | 1082.9 | 1090.5 | 1031.9 | 920.2 |      |      | 2,067,120                 |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50   | 7.50  | 10.00            | 10.00  | 10.00  | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |        | 7,373 | 10,188           | 10,829 | 10,905 | 10,319 | 6,902 |      |      |                           |                           |

**Total Demand** 

56,516 \$/yr

Demand Savings

11,345 \$/yr

Energy Savings

3,250 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

| ITEM          |      | E    | ECO-C4 | 4: NEV |       | ENGIN<br>LY PEAK |       |       | GAL CH | HILLER |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|--------|--------|-------|------------------|-------|-------|--------|--------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar    | Apr    | May   | Jun              | Jul   | Aug   | Sep    | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |        |        | 268.8 | 287.1            | 326.8 | 330.2 | 307.2  | 276.6  |      |      | 517,565                   |                           |
| Water Chiller |      |      |        |        |       |                  |       |       |        |        |      |      |                           | 8,886                     |
| CHW Pump      |      |      |        |        | 29.8  | 29.8             | 29.8  | 29.8  | 29.8   | 29.8   |      |      | 85,104                    |                           |
| CHW Pump      |      |      |        |        | 56.0  | 56.0             | 56.0  | 56.0  | 56.0   | 56.0   |      |      | 151,513                   |                           |
| CND Pump      |      |      |        |        | 22.4  | 22.4             | 22.4  | 22.4  | 22.4   | 22.4   |      |      | 63,828                    |                           |
| CND Pump      |      |      |        |        | 56.0  | 56.0             | 56.0  | 56.0  | 56.0   | 56.0   |      |      | 151,513                   |                           |
| Cooling Tower |      |      |        |        | 14.9  | 14.9             | 14.9  | 14.9  | 14.9   | 14.9   |      |      | 37,204                    |                           |
| Cooling Tower |      |      |        |        | 52.2  | 52.2             | 52.2  | 52.2  | 52.2   | 52.2   |      |      | 141,358                   |                           |
| Total (KW)    |      |      |        |        | 500.1 | 518.4            | 558.1 | 561.5 | 538.5  | 507.9  |      |      | 1,148,085                 | 8,886                     |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50   | 7.50   | 7.50  | 10.00            | 10.00 | 10.00 | 10.00  | 7.50   | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |        |        | 3,751 | 5,184            | 5,581 | 5,615 | 5,385  | 3,809  |      |      |                           |                           |

Total Demand

29,325 \$/yr

Demand Savings

38,536 \$/yr

**Energy Savings** 

6,386 MMBTU/yr

(electrical)

**Energy Savings** 

-8,886 MMBTU/yr

| ENGINEER'S ESTIM                                                                   | ATE           | PF            | PRC           | BAB      | ESTIMATE OF PROBABLE COST | ST         |             |           |
|------------------------------------------------------------------------------------|---------------|---------------|---------------|----------|---------------------------|------------|-------------|-----------|
| LOCATION:                                                                          |               | PROJECT NO:   | T NO:         |          | 03-0185.04                |            | DATE:       | 8/16/95   |
| AKEA 1300, BUILDING 1377, FORT SAM HOUSTON                                         |               | BY:           | PIEPER, C.A.  | C.A.     |                           | СН         | CHECKED BY: | KLK       |
| PROJECT DESCRIPTION: ECO-C, Upgrade Two Existing R-11 Chillers To Operate On R-123 | Chillere      | 5 To Ope      | rate 0        | n R-123  |                           |            |             |           |
|                                                                                    | QUAN          | QUANTITY      |               | LABOR    | ٤                         | MATERIAL   | IIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                   | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate     | Total                     | Unit Price | Total       | COST      |
|                                                                                    |               |               |               |          |                           |            |             |           |
| Retrofit of two existing R-11 chillers to use R-123                                | -             | e e           | 160           | \$28.00  | \$4,480                   | \$275,000  | \$275,000   | \$279,480 |
| R-123 detection evetem                                                             | -             | JOB           |               |          |                           | \$5,000    | \$5,000     | \$5,000   |
|                                                                                    |               |               |               |          |                           |            |             |           |
| Chiller 2 speed ventilation fan                                                    | -             | <i>a</i>      | 10            | \$25.00  | \$400                     | \$1,185    | \$1,185     | \$1,585   |
|                                                                                    | 5             | 400           | 4             | \$28.00  | \$1120                    | 507        | \$270       | \$1,390   |
| Chiller ventilation louver                                                         | 2             | 2 50          |               |          |                           |            |             |           |
| Test & Balance                                                                     | -             | e a           | 4             | \$50.00  | \$200                     |            |             | \$200     |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               |               |          |                           |            |             |           |
|                                                                                    |               |               | 1             | CHRTOTAL | \$6,000                   |            | \$281455    | \$287.655 |
|                                                                                    |               | 1             |               | 10000    | 0.01                      |            | 2000        | 477774    |
| HUITT-ZOLLARS. INC.                                                                |               | ٥             | & P @ 20%     | %        | \$1,240                   |            | \$20°,73°   | 100,70\$  |
| FINDINEERS / ARCHITECTS                                                            |               |               | S             | SUBTOTAL | \$7,440                   |            | \$337,746   | \$345,186 |
| 512 MAIN STREET SUITE 1500                                                         |               | DE            | DESIGN @ 6%   | %9       |                           |            |             | \$20,711  |
| FORT WORTH, TEXAS 76102-3922                                                       |               |               | S             | SUBTOTAL |                           |            |             | \$365,897 |
| (817) 335-3000 * FAX (817) 335-1025                                                |               | SI            | SIOH @ 5.5%   | %!       |                           |            |             | \$18,985  |

TOTAL

| ENGINEER'S ESTIMATI                        | ESTIMATE OF PROBABLE COST | BLE COST   |             |         |
|--------------------------------------------|---------------------------|------------|-------------|---------|
| LOCATION:                                  | PROJECT NO:               | 03-0185.04 | DATE:       | 8/16/95 |
| AKEA 1300, BUILDING 1377, FORT SAM HOUSTON | BY: PIEPER, C.A.          |            | CHECKED BY: | KLK     |

| Chiller              |
|----------------------|
| Centrifugal          |
| Cooled               |
| w Water              |
| With Ne              |
| Chillers             |
| Central              |
| : Existing           |
| Replace              |
| ECO-C1,              |
| PROJECT DESCRIPTION: |

|                                                                | QUANTITY      | YTITY         |               | LABOR    | ~        | MATERIAL   | NAL       | 10101     |
|----------------------------------------------------------------|---------------|---------------|---------------|----------|----------|------------|-----------|-----------|
| ITEM DESCRIPTION                                               | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate     | Total    | Unit Price | Total     | COST      |
| Remove Pumps                                                   | 2             | EA            | 0             | \$24.64  | \$296    |            |           | \$296     |
| Remove chillers                                                | 2             | EA            | 4             | \$24.64  | \$1,971  | \$500      | \$1,000   | \$2,971   |
|                                                                |               |               |               |          |          |            |           |           |
| Install New Chiller 827 ton, water cooled, centrifugal, R-134a | -             | EA            | 2,609         | \$24.64  | \$64,286 | \$226,800  | \$226,800 | \$291,086 |
|                                                                |               |               |               |          |          |            |           |           |
|                                                                |               |               |               |          |          |            |           |           |
| Pipe Assembly And Valves                                       | -             | EA            | 168           | \$24.64  | \$4,140  | \$10,000   | \$10,000  | \$14,140  |
|                                                                |               |               |               |          |          |            |           |           |
| RECONNECT:                                                     |               |               |               |          |          |            |           |           |
| Controls                                                       | -             | JOB           | 190           | \$24.64  | \$4,682  | \$400      | \$400     | \$5,082   |
| Electrical                                                     | -             | JOB           | 95            | \$24.64  | \$2,267  | \$800      | \$800     | \$3,067   |
|                                                                |               |               |               |          |          |            |           |           |
| Refrigerant Detection System                                   | -             | JOB           | 20            | \$24.64  | \$493    | \$4,500    | \$4,500   | \$4,993   |
|                                                                |               |               |               |          |          |            |           |           |
| Water Pump 75 HP                                               | 2             | EA            | 132           | \$24.64  | \$6,505  | \$13,500   | \$27,000  | \$33,505  |
|                                                                |               |               |               |          |          |            |           |           |
|                                                                |               |               |               |          |          |            |           |           |
| Test & Balance and Start-up                                    | -             | JOB           | 100           | \$28.00  | \$2,800  | \$200      | \$200     | \$3,000   |
|                                                                |               |               | 0,            | SUBTOTAL | \$87,440 |            | \$270,700 | \$358,140 |

# FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025 HUITT-ZOLLARS, INC. **ENGINEERS / ARCHITECTS** 512 MAIN STREET, SUITE 1500

\$23,637 \$479,191

\$25,786

\$455,554

\$71,628 \$429,768

\$54,140 \$324,840

\$17,488 \$104,928

O&P@20%

SUBTOTAL

DESIGN @ 6%

SUBTOTAL

SIOH @ 5.5%

TOTAL

# ENGINEER'S ESTIMATE OF PROBABLE COST

AREA 1300, BUILDING 1377, FORT SAM HOUSTON LOCATION:

CHECKED BY: DATE: 03-0185.04 PROJECT NO:

PIEPER, C.A. BY:

KLK

8/16/95

ECO-C2, Replace Existing Central Chiller With New Centrifugal Chiller And Variable Frequency Drive (VFD) PROJECT DESCRIPTION:

|                                                                | QUA           | QUANTITY      |               | LABOR       | 2        | MATERIAL   | RIAL      | TOTAL     |
|----------------------------------------------------------------|---------------|---------------|---------------|-------------|----------|------------|-----------|-----------|
| ITEM DESCRIPTION                                               | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total    | Unit Price | Total     | COST      |
| Remove Pumps                                                   | 2             | EA            | 0             | \$24.64     | \$296    |            |           | 967\$     |
| Semove chillers                                                | 2             | EA            | 40            | \$24.64     | \$1,971  | \$500      | \$1,000   | \$2,971   |
|                                                                |               |               |               |             |          |            |           |           |
| Install New Chiller 827 ton, water cooled, centrifugal, R-134a |               | EA            | 2,609         | \$24.64     | \$64,286 | \$226,800  | \$226,800 | \$291,086 |
|                                                                |               |               |               |             |          |            |           |           |
| Adder For VED                                                  | 1000          | <u>4</u>      |               |             |          | \$115      | \$115,000 | \$115,000 |
| Pipe Assembly And Valves                                       | -             | EA            | 168           | \$24.64     | \$4,140  | \$10,000   | \$10,000  | \$14,140  |
|                                                                |               |               |               |             |          |            |           |           |
| RECONNECT:                                                     |               |               |               |             |          |            |           |           |
| Controls                                                       | -             | JOB           | 190           | \$24.64     | \$4,682  | \$400      | \$400     | \$5,082   |
| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                        | _             | 306           | 118           | \$24.64     | \$2,908  | \$800      | \$800     | \$3,708   |
|                                                                |               |               |               |             |          |            |           |           |
| Refrigerant Detection System                                   |               | JOB           | 20            | \$24.64     | \$493    | \$4,500    | \$4,500   | \$4,993   |
|                                                                |               |               |               |             |          |            |           |           |
| Water Pump 75 HP                                               | 2             | EA            | 132           | \$24.64     | \$6,505  | \$13,500   | \$27,000  | \$32,505  |
|                                                                |               |               |               |             |          |            |           |           |
|                                                                |               |               |               |             |          |            |           |           |
| Test & Balance and Start-up                                    | -             | JOB           | 100           | 100 \$28.00 | \$2,800  | \$200      | \$200     | \$3,000   |
|                                                                |               |               |               | SUBTOTAL    | \$88,081 |            | \$385,700 | \$473,781 |

### HUITT-ZOLLARS, INC. **ENGINEERS / ARCHITECTS**

\$34,112

\$568,537

\$602,649 \$31,270 \$633,919

TOTAL

SUBTOTAL

SIOH @ 5.5%

\$94,756

\$77,140 \$462,840

\$17,616 \$105,697

O&P@20%

SUBTOTAL

DESIGN @ 6%

(817) 335-3000 \* FAX (817) 335-1025 512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922

|                                            | ENGINEER'S ESTIMATE                                                                 | ESTIMATE OF PROBABLE COST | BLE COST               |             |         |
|--------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|------------------------|-------------|---------|
| LOCATION:                                  |                                                                                     | PROJECT NO:               | 03-0185.04             | DATE:       | 8/16/95 |
| AREA 1300, BUILDING 1377, FORT SAM HOUSTON | W, FORT SAM HOUSTON                                                                 | BY: PIEPER, C.A.          |                        | CHECKED BY: | KLK     |
| PROJECT DESCRIPTION:                       | ECO-C3, Replace Existing Central Chillers With New Water Cooled Dual Screw Chillere | rs With New Water Coc     | oled Dual Screw Chille | 5           |         |

|                                                               | QUAI          | QUANTITY      |               | LABOR   | ~        | MATERIAL   | RIAL      | TOTAL     |
|---------------------------------------------------------------|---------------|---------------|---------------|---------|----------|------------|-----------|-----------|
| ITEM DESCRIPTION                                              | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate    | Total    | Unit Price | Total     | COST      |
| Remove Plima                                                  | 2             | EA            | 0             | \$24.64 | \$296    |            |           | \$296     |
| Remove chillers                                               | 2             | EA            | 40            | \$24.64 | \$1,971  | \$500      | \$1,000   | \$2,971   |
|                                                               |               |               |               |         |          |            |           |           |
| Install New Chiller 827 ton, water cooled, dual screw, R-134a | -             | EA            | 2,609         | \$24.64 | \$64,286 | \$357,000  | \$357,000 | \$421,286 |
|                                                               |               |               |               |         |          |            |           |           |
|                                                               |               |               |               |         |          |            |           |           |
| Pine Assembly And Valves                                      | -             | EA            | 168           | \$24.64 | \$4,140  | \$10,000   | \$10,000  | \$14,140  |
|                                                               |               |               |               |         |          |            |           |           |
| RECONNECT:                                                    |               |               |               |         |          |            |           |           |
| Controls                                                      | -             | JOB           | 190           | \$24.64 | \$4,682  | \$400      | \$400     | \$5,082   |
| Eectrica                                                      | -             | JOB           | 92            | \$24.64 | \$2,267  | \$800      | \$800     | \$3,067   |
|                                                               |               |               |               |         |          |            |           |           |
| Refrigerant Detection System                                  | -             | JOB           | 50            | \$24.64 | \$493    | \$4,500    | \$4,500   | \$4,993   |
|                                                               |               |               |               |         |          |            |           |           |
| Water Pump 75 HP                                              | 2             | EA            | 132           | \$24.64 | \$6,505  | \$13,500   | \$27,000  | \$33,505  |
|                                                               |               |               |               |         |          |            |           |           |
|                                                               |               |               |               |         |          |            |           |           |
| Test & Balance and Start-up                                   | -             | JOB           | 100           | \$28.00 | \$2,800  | \$200      | \$200     | \$3,000   |
|                                                               |               |               |               |         |          |            | 00000.4   | 4100 1710 |

## HUITT-ZOLLARS, INC. ENGINEERS / ARCHITECTS 512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

\$97,668 \$586,008 \$35,160 \$621,168 \$32,230 \$653,398

\$488,340

\$400,900 \$80,180 \$481,080

\$87,440 \$17,488 \$104,928

SUBTOTAL

O&P@20%

SUBTOTAL

DESIGN @ 6%

SUBTOTAL

SIOH @ 5.5%

TOTAL

| ENGINEER'S ESTIN                                                                                   | IAT           | EOF           | PR            | <b>JBAB</b> | ESTIMATE OF PROBABLE COST | ST         |             |           |
|----------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------|---------------------------|------------|-------------|-----------|
| LOCATION:                                                                                          |               | PROJE         | PROJECT NO:   |             | 03-0185.04                |            | DATE:       | 8/16/95   |
| AKEA 1300, BUILDING 1377, FOKI SAM HOUSION                                                         |               | BY:           | PIEPER, C.A.  | C.A.        |                           | S          | CHECKED BY: | KLK       |
| PROJECT DESCRIPTION: ECO-C4, Replace Existing Central Chillers With New Gas Engine Driven Chillere | l Chiller     | rs With       | New Gae       | s Engine D  | riven Chiller             | ė          |             |           |
|                                                                                                    | QUA           | QUANTITY      |               | LABOR       | 2                         | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                   | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total                     | Unit Price | Total       | COST      |
| Remove Pumps                                                                                       | 2             | EA            | 0             | \$24.64     | \$296                     |            |             | \$296     |
| Remove chillers                                                                                    | 2             | EA            | 40            | \$24.64     | \$1,971                   | \$500      | \$1,000     | \$2,971   |
| Let all Naw Chillen 207 + on water cooled centrifical R-1842 and fired                             |               | П             | 609 6         | \$24.64     | \$64.286                  | \$436.800  | \$436.800   | \$501,086 |
|                                                                                                    | -             | i             | ĵ             |             |                           |            |             |           |
|                                                                                                    |               |               |               |             |                           |            |             |           |
| Pipe Assembly And Valves                                                                           | -             | EA            | 168           | \$24.64     | \$4,140                   | \$10,000   | \$10,000    | \$14,140  |
|                                                                                                    |               |               |               |             |                           |            |             |           |
| RECONNECT:                                                                                         | •             | 2             | ,             | 10 V C#     | A 680                     | 4400       | \$400       | 45,080    |
| Controls                                                                                           | -             | 305           | 8             | \$24.64     | \$2.267                   | \$800      | \$800       | \$3,067   |
| וויסטדו וכמו                                                                                       |               |               |               |             |                           |            |             |           |
| Refrigerant Detection System                                                                       | -             | JOB           | 20            | \$24.64     | \$493                     | \$4,500    | \$4,500     | \$4,993   |
|                                                                                                    |               |               |               |             |                           |            |             |           |
| Water Pump 75 HP                                                                                   | 2             | EA            | 132           | \$24.64     | \$6,505                   | \$13,500   | \$27,000    | \$33,505  |
| GAS PIPING                                                                                         |               | JOB           | 95            | \$24.64     | \$1,528                   | \$2,500    | \$2,500     | \$4,028   |
|                                                                                                    |               |               |               |             |                           |            | 0001        | 000       |
| Test & Balance and Start-up                                                                        | -             | JOB           | 100           | \$28.00     | _1                        | \$200      | \$200       | \$3,000   |
|                                                                                                    |               |               |               | SUBTOTAL    | \$88,968                  |            | \$483,200   | \$572,168 |
|                                                                                                    | -<br>         |               |               |             |                           |            |             |           |

### ENG 512 FORT

HUITT-ZOLLARS, INC.
ENGINEERS / ARCHITECTS
512 MAIN STREET, SUITE 1500
FORT WORTH, TEXAS 76102-3922
(817) 335-3000 \* FAX (817) 335-1025

\$114,434

\$96,640

\$17,794

O&P@20%

SUBTOTAL

DESIGN @ 6%

SUBTOTAL

SIOH @ 5.5%

TOTAL

\$41,196 \$727,798 \$37,763 \$765,561

\$686,602

LCCID FY95 (92) ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) INSTALLATION & LOCATION: FSH
PROJECT NO. & TITLE: 03018504 REGION NOS. 6 CENSUS: 3 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C1 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 429768. B. SIOH \$ 23637. \$ C. DESIGN COST 25786. D. TOTAL COST (1A+1B+1C) \$ 479191. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. 0. F. PUBLIC UTILITY COMPANY REBATE 479191. G. TOTAL INVESTMENT (1D - 1E - 1F) 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL MBTU/YR(2) SAVINGS(3) FACTOR(4) \$/MBTU(1) SAVINGS (5) 3424. 21503. 324261. A. ELECT S 6.28 15.08 B. DIST \$ 0. 18.57 .00 0. 0. .00 C. RESID \$ 0. 0. 21.02 0. D. NAT G \$ 0. 0. 18.58 2.66 0. E. COAL S .00 0. 0. 16.83 0. 0. F. PPG 17.38 .00 0. 0. 13914. M. DEMAND SAVINGS 14.88 207040. 3424. \$ 35417. 531301. N. TOTAL 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-)2275. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 33852. B. NON RECURRING SAVINGS(+) / COSTS(-) YR DISCNT DISCOUNTED SAVINGS(+) SAVINGS(+)/ COST(-) FACTR ITEM OC (3) (1) (2) COST(-)(4)1. REFRIG UPGRADE \$ 384882. 0 1.00 384882. d. TOTAL \$ 384882. 384882. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 56936. 8.42 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 950035. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.98 (IF < 1 PROJECT DOES NOT QUALIFY) 6.59 % 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C2 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 568537. \$ B. SIOH 31270. C. DESIGN COST 34112. D. TOTAL COST (1A+1B+1C) \$ 633919. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 633919. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS DISCOUNT DISCOUNTED ANNUAL \$ FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT \$ 6.28 3615. 22702. 15.08 342349. B. DIST \$ .00 0. 0. 18.57 0. C. RESID \$ 0. 0. 21.02 .00 0. 0. 18.58 D. NAT G \$ 2.66 0. 0. .00 E. COAL 0. 0. 16.83 0. F. PPG \$ \$ 0. \$ 14532. 17.38 .00 0. 0. M. DEMAND SAVINGS 14.88 216236. 3615. \$ 37234. 558585. N. TOTAL 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 2275. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 33852. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED TTEM COST(-) OC FACTR SAVINGS(+)/ (2) COST(-)(4)(1) (3) 0 1. REFRIG UPGRADE \$ 384882. 1.00 384882. d. TOTAL \$ 384882. 384882. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 58753. 10.79 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 977319. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.54 (IF < 1 PROJECT DOES NOT QUALIFY) 8. ADJUSTED INTERNAL RATE OF RETURN (AIRR): 5.25 %

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH LCCID FY95 (92) ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C3 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT 586008. A. CONSTRUCTION COST \$ B. SIOH 32230. 35160. C. DESIGN COST D. TOTAL COST (1A+1B+1C) \$ 653398. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. 0. F. PUBLIC UTILITY COMPANY REBATE 653398. G. TOTAL INVESTMENT (1D - 1E - 1F) 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 DISCOUNT DISCOUNTED UNIT COST SAVINGS ANNUAL \$ \$/MBTU(1) FACTOR (4) MBTU/YR(2) SAVINGS(3) SAVINGS (5) FUEL A. ELECT \$ 6.28 3250. 20410. 15.08 307783. B. DIST .00 0. 18.57 0. 0. 0. 0. 21.02 0. C. RESID \$ .00 18.58 0. 0. 0. D. NAT G \$ 2.66 .00 0. 16.83 E. COAL 0. F. PPG 17.38 \$ .00 0. 0. 0. 11345. 14.88 168814. M. DEMAND SAVINGS 3250. 31755. 476596. N. TOTAL 3. NON ENERGY SAVINGS(+) / COST(-) 2275. A. ANNUAL RECURRING (+/-)(1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 33852. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) FACTR SAVINGS(+)/ ITEM OC (2) COST(-)(4)(1) (3) 1.00 384882. 1. REFRIG UPGRADE \$ 384882. \$ 384882. 384882. d. TOTAL C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 53274. 12.26 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 895330. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) (SIR) = (6 / 1G) =1.37 7. SAVINGS TO INVESTMENT RATIO (IF < 1 PROJECT DOES NOT QUALIFY) \*\*\* Project does not qualify for ECIP funding; 4,5,6 for information only.

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

N/A

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-C4 08-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 686602. B. SIOH \$ 37763. C. DESIGN COST 41196. 765561. D. TOTAL COST (1A+1B+1C) \$ E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 765561. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED MBTU/YR(2) FUEL \$/MBTU(1) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT S 6.28 6386. 40104. 15.08 604770. .00 B. DIST 0. 0. 18.57 0. C. RESID S .00 0. 0. 21.02 0. -8880 0. 0. D. NAT G \$ -23637. 2.66 18.58 -439171. .00 E. COAL \$ 0. 16.83 0. F. PPG .00 0. 17.38 0. M. DEMAND SAVINGS 38536. 14.88 573416. 739014. 55003. N. TOTAL -2500. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 2275. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 33852. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED OC FACTR COST(-) SAVINGS(+)/ (1) (2) (3) COST(-)(4)\$ 384882. 1. REFRIG UPGRADE 1.00 384882. d. TOTAL \$ 384882. 384882. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 418734. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 76522. 10.00 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) \$ 1157748. 1.51 (SIR) = (6 / 1G) =7. SAVINGS TO INVESTMENT RATIO (IF < 1 PROJECT DOES NOT QUALIFY)

8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

### ENERGY CONSERVATION OPPORTUNITY (ECO)

ECO NO: D

DATE: 6/15/95

ECO TITLE: Replace Existing Central Boilers With High Efficiency Modular Boilers

INSTALLATION: Fort Sam Houston, San Antonio, Texas

LOCATION: Area 1300, Building 1377

### A. Summary:

**Electrical Energy Savings** 712 MMBTU/yr **Electrical Demand Savings** 1.847 \$/vr Gas Energy Savings 4,020 MMBTU/yr **Total Energy Savings** 4,732 MMBTU/yr **Total Cost Savings** 17,012 \$/yr **Total Investment** 163,724 \$ Simple Payback 9.6 yrs SIR 1.79

### B. ECO Description:

Remove the two existing watertube boilers and single 40 HP heating water (HW) distribution pump in building 1377, which are serving building 1350. Also remove the two existing firetube boilers and the two 15 HP distribution pumps in building 1377 which serve buildings 1374, 1375, 1379, 1380, 1382, 1377 and 1385. Connect the two separate distribution loops together in building 1377 with new HW supply and return headers to make a single HW distribution system. Install four new modular high efficiency boilers, rated at 1,830 MBH output each and four new 7 ½ HP distribution pumps to serve this single system. The existing electrical service and controls should be reused as much as possible. Specific requirements in these areas should be determined by the design engineer responsible for this project. The boilers and pumps should be sequenced to operate only as needed to maintain the supply water temperature setpoint of approximately 180°F. This project will require engineering drawings and specifications, demolition and removal of the existing boilers and pumps, and installation of the new boilers, pumps, associated wiring and controls.

### C. Discussion:

The two existing watertube boilers serving building 1350 were installed in 1983 and are rated at 5,317 MBH and 4,336 MBH output capacity. The single 40 HP pump circulates HW from these boilers through building 1350. The two existing firetube boilers serving the other buildings in the 1300 area were installed in 1972 and are rated at 5,912 MBH output capacity each. Two 15 HP pumps circulate HW from these boilers to the seven other buildings listed above. All these boilers appear to be in fair condition. Computer simulations of the eight buildings served by these boilers determined that the current combined capacity of 21,477 MBH is about three times the amount required to adequately heat the buildings<sup>1</sup>. The existing boilers are therefore operating at an inefficient, low load condition most of the time. Also, because of the constant flow rate requirements of the large boilers, excessive pumping energy is expended. By combining the two distribution systems together and staging four new high efficiency modular boilers to operate only as needed, a substantial energy savings can be realized. Also, a decrease in the combined boiler output capacity to 7,320 MBH is recommended to more closely match the heating load in the eight buildings and reduce the associated pumping energy consumption.

### D. Savings Calculations:

The monthly peak demand and energy consumptions of the existing and proposed boilers and HW pumps were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing boilers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>3</sup>.

The four new high efficiency, modular type boilers modeled were rated at 1,830 MBH output each. Full and part load performance data from Aerco International were used in the computer simulations of the new boiler energy usages<sup>4</sup>. An equipment list with specific data on the new boilers and pumps used in the computer simulation is shown on page D-40.

Once the computer simulations of the existing and new boiler systems were completed, the total annual demand cost and energy consumption of the new systems were compared with that of the existing systems to determine the annual savings<sup>5</sup>. These savings calculations are shown on page D-41. The demand and energy savings values were used in the life cycle cost analysis for this ECO. The results of these savings calculations were as follows:

| New Boiler Type          | Gas      | Electrical | Demand  |
|--------------------------|----------|------------|---------|
|                          | Savings  | Savings    | Savings |
|                          | MMBTU/yr | MMBTU/yr   | \$/yr   |
| Modular, High Efficiency | 4,020    | 712        | 1,847   |

### E. Cost Estimates

The total installation costs for this ECO were estimated on page D-42. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page D-43. The data from the life cycle cost analysis were included in the summary on page D-38.

### **REFERENCES**

- 1. See Appendix for Area 1300 heating system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix G for manufacturer's equipment performance data from Aerco International.
- 5. See Appendix A for utility cost analysis data, used in the savings calculations.

|                                                                                   | щ           | MCF       | 14,731                                                      |                                    |   |   |   |   |  |  |  |
|-----------------------------------------------------------------------------------|-------------|-----------|-------------------------------------------------------------|------------------------------------|---|---|---|---|--|--|--|
|                                                                                   | ANNUAL USE  | Σ         | ₩.                                                          |                                    |   |   |   |   |  |  |  |
|                                                                                   | ANNU        | CWH       |                                                             | 50,529                             |   |   |   |   |  |  |  |
|                                                                                   | Ц           |           |                                                             |                                    |   |   |   |   |  |  |  |
|                                                                                   | MES         | WKS       | 26                                                          | 26                                 |   |   |   |   |  |  |  |
| 300                                                                               | OPER. TIMES | DAYS      | 7                                                           | 7                                  |   |   |   |   |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-D, FORT SAM HOUSTON, AREA 1300 JUNE 2, 1995 | g           | HRS       | 24                                                          | 24                                 |   |   |   |   |  |  |  |
| TON, A                                                                            |             |           | МВН                                                         | X<br>K                             |   |   |   |   |  |  |  |
| HOUS                                                                              | FULL        | LOAE      | 2,000 MBH                                                   | 5.60 KW                            |   |   |   |   |  |  |  |
| SAM                                                                               |             | 0         |                                                             |                                    |   |   |   |   |  |  |  |
| FORT                                                                              | YEAR        | INSTALLED | New                                                         | New                                |   |   |   |   |  |  |  |
| CO-D,                                                                             | <b>&gt;</b> | .SNI      |                                                             | _                                  |   |   |   |   |  |  |  |
| OR: E(                                                                            | VFD         |           |                                                             |                                    |   |   |   |   |  |  |  |
| IST FC                                                                            | ARFA SFRVFD |           | 8                                                           | 00                                 |   |   | : |   |  |  |  |
| AENT 1                                                                            | ARE         |           | Area 1300                                                   | Area 1300                          |   |   |   | : |  |  |  |
| QUIPA                                                                             |             |           | - ∢                                                         | ⋖                                  |   |   |   |   |  |  |  |
| VAC E                                                                             | NOI         |           | 3WB<br>rtube                                                |                                    |   |   |   |   |  |  |  |
| SED H                                                                             | DESCRIPTION |           | Aerco #KC-2000 GWB natural draft, watertube 1830 MBH output | o ft                               |   | • |   |   |  |  |  |
| ROPOS                                                                             | DES         |           | o #KCral draf                                               | Aurora<br>100 gpm, 80 ft<br>7.5 HP |   |   |   |   |  |  |  |
| Ā                                                                                 |             |           | Aero<br>natu<br>1830                                        | Aurora<br>100 gpr<br>7.5 HP        |   |   |   |   |  |  |  |
|                                                                                   | ΩT          |           | 4                                                           | 4                                  |   |   |   |   |  |  |  |
|                                                                                   |             |           | iler                                                        | dwn                                |   |   |   |   |  |  |  |
|                                                                                   | ITEM        |           | iter Bo                                                     | Vater F                            | , | , | · |   |  |  |  |
| r.                                                                                |             |           | Hot Water Boiler                                            | Heating Water Pump                 |   |   |   |   |  |  |  |
| *80%                                                                              |             |           | 1.                                                          | Fe                                 |   |   |   |   |  |  |  |

### 1300 AREA

| ITEM             |      |      |      | EXIS |      | ENTR/<br>LY PEAK |       |       | _ANT  |      |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|------------------|------|------|------|------|------|------------------|-------|-------|-------|------|------|------|---------------------------|---------------------------|
|                  | Jan  | Feb  | Mar  | Apr  | May  | Jun              | Jul   | Aug   | Sep   | Oct  | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Watertube Boiler |      |      | ,    |      |      |                  |       |       |       |      |      |      |                           | 3,140                     |
| Firetube Boiler  | 7.5  | 7.5  | 7.5  | 7.5  |      |                  |       |       |       |      | 7.5  | 7.5  | 32,406                    | 15,611                    |
| HW Pump          | 29.8 | 29.8 | 29.8 | 29.8 |      |                  |       |       |       |      | 29.8 | 29.8 | 129,625                   |                           |
| HW Pump          | 11.2 | 11.2 | 11.2 | 11.2 |      |                  |       |       |       |      | 11.2 | 11.2 | 48,609                    |                           |
| HW Pump          | 11.2 | 11.2 | 11.2 | 11.2 |      |                  |       |       |       |      | 11.2 | 11.2 | 48,609                    |                           |
| Totals           | 59.7 | 59.7 | 59.7 | 59.7 |      |                  |       |       |       |      | 59.7 | 59.7 | 259,249                   | 18,751                    |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50 | 7.50 | 10.00            | 10.00 | 10.00 | 10.00 | 7.50 | 7.50 | 7.50 |                           |                           |
| Cost (\$)        | 448  | 448  | 448  | 448  |      |                  |       |       |       | 1    | 448  | 448  |                           |                           |

Total Demand

2,687 \$/yr

Total Energy

885 MMBTU/yr

(electric)

Total Energy

18,751 MMBTU/yr

(gas)

| ITEM           |      | ECO-[ | D: NEV | V CEN |      |       | FFICIE<br>DEMAN |       | ODULA | R BOII | LERS |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|----------------|------|-------|--------|-------|------|-------|-----------------|-------|-------|--------|------|------|---------------------------|---------------------------|
|                | Jan  | Feb   | Mar    | Apr   | May  | Jun   | Jul             | Aug   | Sep   | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Modular Boiler |      |       |        |       |      |       |                 |       |       |        |      |      |                           | 8,632                     |
| Modular Boiler |      |       |        |       |      |       |                 |       |       |        |      |      |                           | 3,976                     |
| Modular Boiler |      |       |        |       |      |       |                 |       |       |        |      |      |                           | 1,919                     |
| Modular Boiler |      |       |        |       |      |       |                 |       |       |        |      |      |                           | 204                       |
| HW Pump        | 5.6  | 5.6   | 5.6    | 5.6   |      |       |                 |       |       |        | 5.6  | 5.6  | 24,326                    |                           |
| HW Pump        | 5.6  | 5.6   | 5.6    | 5.6   |      |       |                 |       |       |        | 5.6  | 5.6  | 15,742                    |                           |
| HW Pump        | 5.6  | 5.6   | 5.6    |       |      |       |                 |       |       |        | 5.6  | 5.6  | 7,504                     |                           |
| HW Pump        | 5.6  | 5.6   |        |       |      |       |                 |       |       |        |      | 5.6  | 2,957                     |                           |
| Total (KW)     | 22.4 | 22.4  | 16.8   | 11.2  |      |       |                 |       |       |        | 16.8 | 22.4 | 50,529                    | 14,731                    |
| Rate (\$/KW)   | 7.50 | 7.50  | 7.50   | 7.50  | 7.50 | 10,00 | 10.00           | 10.00 | 10.00 | 7.50   | 7.50 | 7.50 |                           |                           |
| Cost (\$)      | 168  | 168   | 126    | 84    |      |       |                 |       |       |        | 126  | 168  | 1                         |                           |

**Total Demand** 

840 \$/yr

Demand Savings

1,847 \$/yr

**Energy Savings** 

712 MMBTU/yr

(electric)

**Energy Savings** 

4,020 MMBTU/yr

| ENGINEER'S ESTIMATE OF PROBABLE COST                                                              | ATE           | P             | PR(           | BAB       | LE CO       | ST         |             |           |
|---------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-----------|-------------|------------|-------------|-----------|
| LOCATION:                                                                                         |               | PROJECT NO:   | CT NO:        | )         | 03-0185.04  |            | DATE:       | 6/16/95   |
| ANEA 1900, DUILDING 1977, LONI BANK HOUBION                                                       |               | BY:           | PIEPER, C.A.  | C.A.      |             | СН         | СНЕСКЕВ ВҮ: | KLK       |
| PROJECT DESCRIPTION: ECO-D, Replace Existing Central Boilers With High Efficiency Modular Boilers | oilers        | With Hig      | gh Effic      | iency Mod | ular Boiler | S          |             |           |
|                                                                                                   | QUA           | QUANTITY      |               | LABOR     |             | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                  | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate      | Total       | Unit Price | Total       | COST      |
|                                                                                                   |               |               |               |           |             |            |             |           |
| Remove Boilers                                                                                    | 4             | EA            | 00            | \$24.64   | \$5,914     | \$500      | \$2,000     | \$7,914   |
| Remove Pumps                                                                                      | 3             | EA            | 0             | \$24.64   | \$444       |            |             | \$444     |
| Install New Boilers, AERCO # KC 2000 GWB, Water Tube 1830 MBH                                     | 4             | EA            | 80            | \$24.64   | \$7,885     | \$18,000   | \$72,000    | \$79,885  |
|                                                                                                   |               |               |               |           |             |            |             |           |
| Install New Pump                                                                                  | 4             | EA            | 11            | \$24.64   | \$1,084     | \$1,670    | \$6,680     | \$7,764   |
| pipe Assembly & valves Boiler                                                                     | 4             | JOB           | 28            | \$24.64   | \$2,760     | \$2,400    | \$9,600     | \$12,360  |
| pipe Assembly & valves Pump                                                                       | 4             | EA            | 6             | \$24.64   | \$887       | \$350      | \$1,400     | \$2,287   |
| Boiler Breaching Stainless Steel                                                                  | 40            | LF            | 2             | \$24.64   | \$1,971     | \$147      | \$5,880     | \$7,851   |
| Reconnect Controls                                                                                | 4             | JOB           | 5             | \$24.64   | \$386       | \$55       | \$220       | \$1,206   |
| Reconnect Electrical                                                                              | 4             | JOB           | 9             | \$26.64   | \$629       | \$64       | \$256       | \$895     |
| Reconnect Chemical system                                                                         | 4             | JOB           | D             | \$26.64   | \$533       | \$50       | \$200       | \$733     |
|                                                                                                   |               |               |               |           |             |            |             |           |
| Teet, Balance & Start-up                                                                          | 4             | S             | 0             | \$25.64   | \$1,026     |            |             | \$1,026   |
|                                                                                                   |               |               |               |           |             |            |             |           |
|                                                                                                   |               |               |               |           |             |            |             |           |
|                                                                                                   |               |               |               |           |             |            |             |           |
|                                                                                                   |               |               |               |           |             |            |             |           |
|                                                                                                   |               |               |               | SUBTOTAL  | \$24,129    |            | \$98,236    | \$122,365 |

\$8,810

\$24,473

\$19,647

\$4,826 \$28,955

O&P@20%

SUBTOTAL

DESIGN @ 6%

\$8,076

\$163,724

TOTAL

SUBTOTAL

512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

**ENGINEERS / ARCHITECTS** 

SIOH @ 6.6%

\$155,648

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-D 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 146838. B. SIOH \$ 8076. C. DESIGN COST \$ 8810. D. TOTAL COST (1A+1B+1C) \$ 163724. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 163724. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL MBTU/YR(2) \$/MBTU(1) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT S 6.28 712. 4471. 15.08 67428. .00 B. DIST 0. 0. 18.57 0. C. RESID \$ .00 0. 0. 21.02 0. 10693. D. NAT G S 2.66 4020. 198680. 18.58 .00 0. E. COAL S 0. 16.83 0. 0. F. PPG .00 0. 17.38 0. M. DEMAND SAVINGS 1847. 14.88 27483. N. TOTAL 4732. \$ 17012. 293591. 3. NON ENERGY SAVINGS (+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) ITEM OC FACTR SAVINGS(+)/ (1)(3) (2) COST(-)(4)d. TOTAL 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 17012. 5. SIMPLE PAYBACK PERIOD (1G/4) 9.62 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 293591. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.79 (IF < 1 PROJECT DOES NOT QUALIFY)

### **ENERGY CONSERVATION OPPORTUNITY (ECO)**

ECO NO: E

DATE: 6/15/95

ECO TITLE: Replace Existing Central Chiller With New Electric Centrifugal Chiller

INSTALLATION: Fort Sam Houston, San Antonio, Texas

LOCATION: Area 2200, Building 2265

### A. Summary:

| Electrical Energy Savings | 1,304   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 11,822  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 1,304   | MMBTU/yr |
| Total Cost Savings        | 37,433  | \$/yr    |
| Total Investment          | 237,078 | \$       |
| Simple Payback            | 6.3     | yrs      |
| SIR                       | 2.73    |          |

### B. ECO Description:

Remove the existing 675 ton, R-11 centrifugal chiller in building 2265 and replace it with a 555 ton, R-134a centrifugal chiller. The existing 100 HP chilled water (CHW) pump, 50 HP condenser water (CND) pump and 40 HP cooling tower will be reused. The new chiller should be connected into the distribution piping at the existing chiller location. All existing controls and electrical services should be reconnected where possible. Specific requirements in these areas should be determined by the design engineer responsible for this project. To meet the current ASHRAE Standard 15, a refrigerant detection and ventilation system should be installed. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

### C. Discussion:

The existing water cooled, centrifugal chiller was installed in 1973 and serves as the primary cooling system for the four large buildings in the 2200 area. It appears to be in fair condition but uses the R-11 refrigerant, which will no longer be manufactured as of January 1, 1996<sup>1</sup>. To avoid the anticipated increasing operational costs over the life of this machine, it should either be retrofitted to use an approved refrigerant or replaced with a new machine that operates on one. The existing centrifugal machine can be retrofitted with no loss of capacity by replacing the impeller with one designed for HCFC-123 refrigerant. A company which produces these new impellers for existing R-11 centrifugal machines has provided cost estimates<sup>2</sup>. However, since the machine is already 22 years old, it is recommended that the facility replace it instead. A life cycle cost analysis performed on four different types of replacement chillers available determined that an electric centrifugal chiller using R-134a would be the most economical choice over the life of the new machine. Computer simulations of the buildings served by this machine determined that the current installed capacity of 657 tons is more than what is required to adequately cool the buildings<sup>3</sup>. Therefore, the new chiller should only be sized for 555 tons to more closely match the cooling load of the four buildings.

### D. Savings Calculations:

### 1. Energy Consumption And Savings

The monthly peak demand and energy consumptions of the existing and proposed alternative chillers and auxiliary equipment were calculated using the Trace 600 computer program<sup>4</sup>. The buildings served by the existing chiller were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>5</sup>.

The 555 ton chiller alternatives which were compared included an electric centrifugal machine, an electric centrifugal with a variable frequency drive, a dual screw machine and a gas driven centrifugal machine. All proposed machines used R-134a. Full and part load performance data from York International were used in the computer simulations of the new chiller energy usages<sup>6</sup>. Equipment lists of the specific chillers and auxiliaries for each alternative modeled by the computer are shown on pages D-47 To D-50.

Once the computer simulations were completed, the total annual demand cost and energy consumption of each alternative were compared with that of the existing systems to determine the annual savings for each<sup>7</sup>. These savings calculations are shown on pages D-51 and D-52. The demand and energy savings values were used in the life cycle cost analysis for each alternative. The results of these savings calculations were as follows:

| Alternative | Chiller Type               | Demand<br>Savings<br>\$/yr | Electrical<br>Savings<br>MMBTU/yr | Gas<br>Savings<br>MMBTU/yr |
|-------------|----------------------------|----------------------------|-----------------------------------|----------------------------|
| <b>E</b> 1  | Electric Centrifugal       | 11,822                     | 1,304                             | 0                          |
| E2          | Electric Centrifugal & VFD | 12,188                     | 1,498                             | 0                          |
| <b>E3</b>   | Electric Screw             | 10,102                     | 1,236                             | 0                          |
| <b>E</b> 4  | Gas Driven Centrifugal     | 28,597                     | 3,394                             | -6,578                     |

### 2. Maintenance Cost Savings:

By installing a new chiller in place of the existing one, the installation will save the cost of retrofitting the machine for the HCFC-123 refrigerant as mentioned previously. The cost of this retrofit was estimated to be \$348,435 on page D-53. This value was used in the life cycle cost analysis as a non-recurring savings for each alternative.

### E. Cost Estimates

The total installation costs for each alternative chiller mentioned in this ECO were estimated on pages D-54 through D-57. These costs were used in the life cycle cost analysis for each alternative. The results of the costs estimates were as follows:

| Alternat   | ive Chiller Type           | Estimated<br>Cost |
|------------|----------------------------|-------------------|
| E1         | Electric Centrifugal       | \$237,078         |
| <b>E2</b>  | Electric Centrifugal & VFD | \$277,051         |
| <b>E3</b>  | Electric Screw             | \$240,791         |
| <b>E</b> 4 | Gas Driven Centrifugal     | \$619,177         |

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on each chiller alternative for this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for each life cycle cost analysis is shown on pages D-58 through D-61. The results of the alternative life cycle cost analysis were as follows:

| Alternative | Chiller Type               | Payback<br>Years | SIR  |
|-------------|----------------------------|------------------|------|
| <b>E</b> 1  | Electric Centrifugal       | 6.3              | 2.73 |
| <b>E2</b>   | Electric Centrifugal & VFD | 7.1              | 2.42 |
| E3          | Electric Screw             | 6.8              | 2.56 |
| <b>E4</b>   | Gas Driven Centrifugal     | 12.4             | 1.24 |

Since the electric centrifugal chiller has the highest SIR, it is recommended as the most economical choice to replace the existing machine. The data from the life cycle cost analysis for this alternative were included in the summary on page D-44.

### REFERENCES

- 1. Per current EPA regulations on CFC refrigerants.
- 2. See Appendix G for chiller retrofit estimates from Northeastern Research And Engineering Corporation.
- 3. See Appendix B for Area 2200 cooling system load profile.
- 4. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 5. See Appendix C for building field data and existing HVAC system data.
- 6. See Appendix G for manufacturer's equipment performance data from York International.
- 7. See Appendix A for utility cost analysis data, used in the savings calculations.

|                                                                       | JSE         | ב                |                                                        |                                    |                                  |                                              |  |  |  |   |     |
|-----------------------------------------------------------------------|-------------|------------------|--------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|--|--|--|---|-----|
|                                                                       | ANNUAL USE  | -                |                                                        |                                    | _                                |                                              |  |  |  |   |     |
|                                                                       | ANNI        | LWA              | 611,543                                                | 329,433                            | 164,717                          | 122,039                                      |  |  |  |   |     |
|                                                                       | ES          | WAS              | 56                                                     | 26                                 | 26                               | 26                                           |  |  |  |   |     |
| 200                                                                   | OPER. TIMES | DATO             | 7                                                      | 2                                  | 7                                | 7                                            |  |  |  |   |     |
| AREA 2                                                                | O           | CYL              | 24                                                     | 24                                 | 24                               | 24                                           |  |  |  |   |     |
| STON,                                                                 | -1 9        | اد               | 322 KW                                                 | 74.60 KW                           | 37.30 KW                         | 29.84 KW                                     |  |  |  |   |     |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-E1, FORT SAM HOUSTON, AREA 2200 | FULL        |                  | 32.                                                    | 74.60                              | 37.30                            | 29.87                                        |  |  |  |   |     |
| ORT S                                                                 | YEAR        | LLED             | New                                                    | 1973                               | 1973                             | 1973                                         |  |  |  |   |     |
| O-E1, F                                                               | YE          | INSTALLED        | ž                                                      | 19                                 | 19                               | 19                                           |  |  |  |   |     |
| OR: ECO-F                                                             | VED         |                  |                                                        |                                    |                                  |                                              |  |  |  |   |     |
| LIST FO                                                               | AREA SERVED |                  | 200                                                    | 200                                | 200                              | 500                                          |  |  |  |   |     |
| MENT                                                                  | AR          |                  | Area 2200                                              | Area 2200                          | Area 2200                        | Area 2200                                    |  |  |  |   |     |
| C EQUIF                                                               | z           |                  | ugal,                                                  |                                    |                                  |                                              |  |  |  |   |     |
| D HVA                                                                 | DESCRIPTION |                  | roin<br>water cooled, centrifugal,<br>555 tons, R-134a | 36 ft                              | 3 ft                             | ell                                          |  |  |  |   |     |
| OPOSE                                                                 | DESC        |                  | water cooled, cen 555 tons, R-134a                     | Paco<br>1526 gpm, 166 ft<br>100 HP | Paco<br>1971 gpm, 63 ft<br>50 HP | Built-up<br>crossflow, 2 cell<br>2-20HP fans |  |  |  |   |     |
| PR(                                                                   |             | \<br>\<br>\<br>\ | water<br>555 to                                        | Paco<br>1526 (<br>100 H            | Paco<br>1971 gi<br>50 HP         | Built-up<br>crossflov<br>2-20HP              |  |  |  |   |     |
|                                                                       | ΩTY.        |                  | -                                                      | 1                                  | 1                                | 1                                            |  |  |  | · |     |
|                                                                       |             |                  | <u></u>                                                | dwn                                | Pump                             | 3r                                           |  |  |  |   |     |
|                                                                       | ITEM        |                  | Water Chiller                                          | /ater Pi                           | Water                            | Cooling Tower                                |  |  |  |   |     |
| e.,                                                                   | E           |                  | Water                                                  | Chilled Water Pump                 | Condenser Water Pump             | Coolin                                       |  |  |  |   |     |
| ð                                                                     |             |                  |                                                        | ភ                                  | Con                              |                                              |  |  |  |   | , , |

| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-E2, FORT SAM HOUSTON, AREA 2200 | TIMES |   | 322 KW 24 7 26 5                                              | Paco<br>1 1526 gpm, 166 ft Area 2200 1973 74.60 KW 24 7 26 329,433<br>100 HP | Paco<br>1 1971 gpm, 63 ft Area 2200 1973 37.30 KW 24 7 26 164,717<br>50 HP | Built-up         1 crossflow, 2 cell       Area 2200       1973       29.84 KW       24       7       26       121,861         2-20HP fans       2-20HP fans |  |  |  |  |
|-----------------------------------------------------------------------|-------|---|---------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PROPOSED HVAC                                                         |       |   | York, electric, VFD water cooled, centrifuge 555 tons, R-134a | Paco<br>1526 gpm, 166 ft<br>100 HP                                           | Paco<br>1971 gpm, 63 ft<br>50 HP                                           | Built-up<br>crossflow, 2 cell<br>2-20HP fans                                                                                                                 |  |  |  |  |
|                                                                       | 7     | , | -                                                             | 1                                                                            | -                                                                          | 1                                                                                                                                                            |  |  |  |  |
| no.                                                                   | ITEM  |   | Water Chiller                                                 | Chilled Water Pump                                                           | Condenser Water Pump                                                       | Cooling Tower                                                                                                                                                |  |  |  |  |

|                                                                                    | ANNUAL USE    | KWH MCF     | 631,571                                              | 329,433                            | 164,717                          | 122,031                                      |  |  |  |  |
|------------------------------------------------------------------------------------|---------------|-------------|------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|--|--|--|--|
|                                                                                    | ES            | WKS         | 56                                                   | 26                                 | 26                               | 26                                           |  |  |  |  |
| 200                                                                                | OPER. TIMES   | DAYS        | 7                                                    | 7                                  | 7                                | 7                                            |  |  |  |  |
| AREA 2                                                                             | ОО            | HRS         | 24                                                   | 24                                 | 24                               | 24                                           |  |  |  |  |
| AM HOUSTON,                                                                        | FULL          | LOAD        | 355 KW                                               | 74.60 KW                           | 37.30 KW                         | 29.84 KW                                     |  |  |  |  |
| O-E3, FORT S,                                                                      | YEAR          | INSTALLED   | New                                                  | 1973                               | 1973                             | 1973                                         |  |  |  |  |
| MENT LIST FOR: EC                                                                  | מני מני אני א | AREA SERVED | Area 2200                                            | Area 2200                          | Area 2200                        | Area 2200                                    |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-E3, FORT SAM HOUSTON, AREA 2200 JUNE 2, 1995 |               | DESCRIPTION | York<br>water cooled, dual screw<br>555 tons, R-134a | Paco<br>1526 gpm, 166 ft<br>100 HP | Paco<br>1971 gpm, 63 ft<br>50 HP | Built-up<br>crossflow, 2 cell<br>2-20HP fans |  |  |  |  |
|                                                                                    | 3             |             | 1                                                    | 1                                  | 1                                | -                                            |  |  |  |  |
| **************************************                                             |               |             | Water Chiller                                        | Chilled Water Pump                 | Condenser Water Pump             | Cooling Tower                                |  |  |  |  |

|                                                                                    | UAL         | KWH MCF     | 6,578                                                            | 329,433                            | 164,717                          | 121,172                                      |  |  |   |  |  |
|------------------------------------------------------------------------------------|-------------|-------------|------------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------------------|--|--|---|--|--|
|                                                                                    | S           | WKS         | 26                                                               | 26 3                               | 26 1                             | 26 1                                         |  |  |   |  |  |
| 200                                                                                | OPER. TIMES | DAYS        | 7                                                                | 7                                  | 7                                | 7                                            |  |  | · |  |  |
| AREA 2                                                                             | OPI         | HRS         | 24                                                               | 24                                 | 24                               | 24                                           |  |  |   |  |  |
| AM HOUSTON,                                                                        | FULL        | LOAD        | 3,663 MBH                                                        | 74.60 KW                           | 37.30 KW                         | 29.84 KW                                     |  |  |   |  |  |
| D-E4, FORT S.                                                                      | YEAR        | INSTALLED   | New                                                              | 1973                               | 1973                             | 1973                                         |  |  |   |  |  |
| MENT LIST FOR: ECC<br>JUNE 2, 19                                                   | ADEA SEDVED | ANEA SERVED | Area 2200                                                        | Area 2200                          | Area 2200                        | Area 2200                                    |  |  |   |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-E4, FORT SAM HOUSTON, AREA 2200 JUNE 2, 1995 | DESCRIPTION | DESCRIPTION | York, gas fired<br>water cooled, centrifugal<br>555 tons, R-134a | Paco<br>1526 gpm, 166 ft<br>100 HP | Paco<br>1971 gpm, 63 ft<br>50 HP | Built-up<br>crossflow, 2 cell<br>2-20HP fans |  |  |   |  |  |
|                                                                                    | 7           |             | 1                                                                | 1                                  | -                                | -                                            |  |  |   |  |  |
|                                                                                    | MHLI        |             | Water Chiller                                                    | Chilled Water Pump                 | Condenser Water Pump             | Cooling Tower                                |  |  |   |  |  |

### 2200 AREA

| ITEM          |      |      |      | EXIST | ING CI |       |       |       | LANT  |       |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|-------|--------|-------|-------|-------|-------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr   | May    | Jun   | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |       | 481.0  | 522.3 | 568.8 | 596.6 | 535.0 | 368.3 |      |      | 994,146                   |                           |
| CHW Pump      |      |      |      |       | 74.6   | 74.6  | 74.6  | 74.6  | 74.6  | 74.6  |      |      | 329,433                   |                           |
| CND Pump      |      |      |      |       | 37.3   | 37.3  | 37.3  | 37.3  | 37.3  | 37.3  |      |      | 164,717                   |                           |
| Cooling Tower |      |      |      |       | 29.8   | 29.8  | 29.8  | 29.8  | 29.8  | 29.8  |      |      | 121,471                   |                           |
| Totals        |      |      |      |       | 622.7  | 664.0 | 710.5 | 738.3 | 676.7 | 510.0 |      |      | 1,609,767                 |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50  | 7.50   | 10.00 | 10.00 | 10.00 | 10.00 | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |       | 4,670  | 6,640 | 7,105 | 7,383 | 6,767 | 3,825 |      |      |                           |                           |

**Total Demand** 

36,390 \$/yr

Total Energy

5,494 MMBTU/yr

(electric)

Total Energy

MMBTU/yr

(gas)

| ITEM          |      |      | ECO- | E1: NE | W ELE | CTRIC<br>LY PEAK |       |       | AL CHI | LLER  |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|--------|-------|------------------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr    | May   | Jun              | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |        | 306.9 | 311.1            | 319.4 | 322.0 | 314.8  | 240.0 |      |      | 611,543                   |                           |
| CHW Pump      |      |      |      |        | 74.6  | 74.6             | 74.6  | 74.6  | 74.6   | 74.6  |      |      | 329,433                   |                           |
| CND Pump      |      |      |      |        | 37.3  | 37.3             | 37.3  | 37.3  | 37.3   | 37.3  |      |      | 164,717                   |                           |
| Cooling Tower |      |      |      |        | 29.8  | 29.8             | 29.8  | 29.8  | 29.8   | 29.8  |      |      | 122,039                   |                           |
| Total (KW)    |      |      |      |        | 448.6 | 452.8            | 461.1 | 463.7 | 456.5  | 381.7 |      |      | 1,227,732                 |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50   | 7.50  | 10.00            | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |        | 3,365 | 4.528            | 4.611 | 4,637 | 4.565  | 2.863 |      |      |                           |                           |

**Total Demand** 

24,568 \$/yr

Demand Savings

11,822 \$/yr

Energy Savings

1,304 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

(gas)

| ITEM          |      | ECO  | -E2: N | EW EL | ECTRIC<br>MONTH |       |       |       | IILLER | WITH  | VFD  |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|--------|-------|-----------------|-------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar    | Apr   | May             | Jun   | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |        |       | 297.8           | 304.5 | 317.9 | 322.0 | 310.5  | 216.8 |      |      | 554,847                   |                           |
| CHW Pump      |      |      |        |       | 74.6            | 74.6  | 74.6  | 74.6  | 74.6   | 74.6  |      |      | 329,433                   |                           |
| CND Pump      |      |      |        |       | 37.3            | 37.3  | 37.3  | 37.3  | 37.3   | 37.3  |      |      | 164,717                   |                           |
| Cooling Tower |      |      |        |       | 29.8            | 29.8  | 29.8  | 29.8  | 29.8   | 29.8  |      |      | 121,861                   |                           |
| Total (KW)    |      |      |        |       | 439.5           | 446.2 | 459.6 | 463.7 | 452.2  | 358.5 |      |      | 1,170,858                 |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50   | 7.50  | 7.50            | 10.00 | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 | Ì                         |                           |
| Cost (\$)     |      |      |        |       | 3,296           | 4,462 | 4,596 | 4,637 | 4,522  | 2,689 |      |      | ]                         |                           |

**Total Demand** 

24,202 \$/yr

**Demand Savings** 

12,188 \$/yr

Energy Savings

1,498 MMBTU/yr

(electric)

Energy Savings

MMBTU/yr

### 2200 AREA

| ITEM          |      |      | EC   | CO-E3: |       | ELECT<br>LY PEAK |       |       | CHILLE | R     |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|------|--------|-------|------------------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar  | Apr    | May   | Jun              | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |      |        | 338.4 | 343.0            | 352.2 | 355.0 | 347.1  | 264.5 |      |      | 631,571                   |                           |
| CHW Pump      |      |      |      |        | 74.6  | 74.6             | 74.6  | 74.6  | 74.6   | 74.6  |      |      | 329,433                   |                           |
| CND Pump      |      |      |      |        | 37.3  | 37.3             | 37.3  | 37.3  | 37.3   | 37.3  |      |      | 164,717                   |                           |
| Cooling Tower |      |      |      |        | 29.8  | 29.8             | 29.8  | 29.8  | 29.8   | 29.8  |      |      | 122,031                   |                           |
| Total (KW)    |      |      |      |        | 480.1 | 484.7            | 493.9 | 496.7 | 488.8  | 406.2 |      |      | 1,247,752                 |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50 | 7.50   | 7.50  | 10.00            | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |      |        | 3,601 | 4,847            | 4,939 | 4,967 | 4,888  | 3,047 |      |      |                           |                           |

Total Demand

26,288 \$/yr

Demand Savings

10,102 \$/yr

**Energy Savings** 

1,236 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

(gas)

| ITEM          |      | ı    | ECO-E | 4: NEV | V GAS<br>MONTH |       | E CEN |       | GAL C | HILLER |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|-------|--------|----------------|-------|-------|-------|-------|--------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar   | Apr    | May            | Jun   | Jul   | Aug   | Sep   | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |       |        |                |       |       |       |       |        |      |      |                           | 6,578                     |
| CHW Pump      |      |      |       |        | 74.6           | 74.6  | 74.6  | 74.6  | 74.6  | 74.6   |      |      | 329,433                   |                           |
| CND Pump      |      |      |       |        | 37.3           | 37.3  | 37.3  | 37.3  | 37.3  | 37.3   |      |      | 164,717                   |                           |
| Cooling Tower |      |      |       |        | 29.8           | 29.8  | 29.8  | 29.8  | 29.8  | 29.8   |      |      | 121,172                   |                           |
| Total (KW)    |      |      |       |        | 141.7          | 141.7 | 141.7 | 141.7 | 141.7 | 141.7  |      |      | 615,322                   | 6,578                     |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50  | 7.50   | 7.50           | 10.00 | 10.00 | 10.00 | 10.00 | 7.50   | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |       |        | 1,063          | 1,417 | 1,417 | 1,417 | 1,417 | 1,063  |      |      |                           |                           |

Total Demand

7,794 \$/yr

**Demand Savings** 

28,597 \$/yr

**Energy Savings** 

3,394 MMBTU/yr

(electric)

**Energy Savings** 

-6,578 MMBTU/yr

| ENGINEER'S ESTIMATE OF PROBABLE COST                                             | ATE           | OF            | PRO           | BABLE    | SOD =      | T          |             |           |
|----------------------------------------------------------------------------------|---------------|---------------|---------------|----------|------------|------------|-------------|-----------|
| LOCATION: APER 2200 BILL DING 2265 FORT SAM HOLISTON                             |               | PROJECT NO:   | ST NO:        | )        | 03-0185.04 |            | DATE:       | 6/16/95   |
|                                                                                  |               | BY:           | PIEPER, C.A.  | .A.      |            | 5          | CHECKED BY: | CAP       |
| PROJECT DESCRIPTION: ECO-E - Upgrade Existing R-11 Chiller To Operate With R-123 | To Ope        | erate W       | /th R-12      | ญ        |            |            |             |           |
|                                                                                  | QUANTITY      | TITY          |               | LABOR    |            | MAT        | MATERIAL    | TOTAL     |
| ITEM DESCRIPTION                                                                 | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate     | Total      | Unit Price | Total       | COST      |
| Retrofit of existing R-11 chiller to use R-123                                   |               | 20            | 80.00         | \$28.00  | \$2,240    | \$250,000  | \$250,000   | \$252,240 |
| R-123 detection eystem                                                           | -             | eg eg         |               |          |            | \$5,000    | \$5,000     | \$5,000   |
| Chiller 2-speed ventilation fan                                                  | -             | å             | 16.00         | \$25.00  | \$400      | \$1,185    | \$1,185     | \$1,585   |
| Chiller ventilation louver                                                       | 5             | saft          | 4.00          | \$28.00  | \$1,120    | \$27       | \$270       | \$1,390   |
| Test & balance                                                                   | +             | 20            | 4.00          | \$50.00  | \$200      |            |             | \$200     |
|                                                                                  |               |               |               |          |            |            |             |           |
|                                                                                  |               |               |               |          |            |            |             |           |
|                                                                                  |               |               |               |          |            |            |             |           |
|                                                                                  |               |               |               |          |            |            |             |           |
|                                                                                  |               |               |               | SUBTOTAL | \$3,960    |            | \$256,455   | \$260,415 |
| HIITT-701 I ARS INC                                                              | <u> </u>      | 0             | & P @ 20%     | %        | \$792      |            | \$51,291    | \$52,083  |
| ENGINEERS / ARCHITECTS                                                           |               |               |               | SUBTOTAL | \$4,752    |            | \$307,746   | \$312,498 |
| 512 MAIN STREET, SUITE 1500                                                      | 1             |               | DESIGN @ 6%   | %9       |            |            |             | \$18,750  |
| FORT WORTH, TEXAS 76102-3922                                                     |               |               |               | SUBTOTAL |            |            |             | \$331,248 |
| (817) 335-3000 * FAX (817) 335-1025                                              |               | S             | SIOH @ 6.6%   | %        |            |            |             | \$17,187  |
|                                                                                  |               |               |               | TOTAL    |            |            |             | \$348,435 |

| ENGINEER'S ESTIMATE OF PROBABLE COST                                                       | ATE           | OF            | PR(           | OBAB        | LE CO      | ST         |             |           |
|--------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------|------------|------------|-------------|-----------|
| LOCATION:                                                                                  |               | PROJECT NO:   | CT NO:        |             | 03-0185.04 |            | DATE:       | 6/16/95   |
| AREA 2200, BUILDING 2265, FORT SAM HOUSTON                                                 |               | BY:           | PIEPER, C.A.  | C.A.        |            | Н          | СНЕСКЕВ ВҮ: | KLK       |
| PROJECT DESCRIPTION: ECO-E1, Replace Existing Central Chiller With New Centrifugal Chiller | Chiller       | With No       | ew Cen        | trifugal Ch | iller      |            |             |           |
|                                                                                            | QUAN          | QUANTITY      |               | LABOR       | 24         | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                           | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total      | Unit Price | Total       | COST      |
| Remove chiller                                                                             | -             | EA            | 09            | \$24.64     | \$1,478    | \$500      | \$500       | \$1,978   |
| Install New Chiller 655 ton water cooled centrifical R-134a                                | -             | я             | 1200          | \$24.64     | \$29.568   | \$130.425  | \$130,425   | \$159,993 |
|                                                                                            | -             |               |               |             |            |            |             |           |
| Pipe Assembly And Valves                                                                   | -             | EA            | 63            | \$24.64     | \$1,552    | \$4,900    | \$4,900     | \$6,452   |
| RECONNECT:                                                                                 |               |               |               |             |            |            |             |           |
| Controls                                                                                   | -             | JOB           | 65            | \$24.64     | \$1,602    | \$100      | \$100       | \$1,702   |
| Electrical                                                                                 | -             | JOB           | 33            | \$24.64     | \$813      | \$200      | \$200       | \$1,013   |
| Refrigerant Detection System And Ventilation                                               | -             | 900           | 14            | \$24.64     | \$1,010    | \$4,000    | \$4,000     | \$5,010   |
| Test & Balance and Start-up                                                                | -             | gor           | 30            | \$28.00     | \$840      | \$200      | \$200       | \$1,040   |
|                                                                                            |               |               |               |             |            |            |             |           |
|                                                                                            |               |               |               | SUBTOTAL    | \$36,863   |            | \$140,325   | \$177,188 |
| ONI SAD I IOZ-TTIIIH                                                                       |               | 0             | & P @         | 20%         | \$7,373    |            | \$28,065    | \$35,438  |
| ENCINEEDS / ADCHITECTS                                                                     |               |               |               | SUBTOTAL    | \$44,236   |            | \$168,390   | \$212,626 |
| 512 MAIN STREET, SUITE 1500                                                                |               | D             | DESIGN @ 6%   | %9 i        |            |            |             | \$12,758  |
| FORT WORTH, TEXAS 76102-3922                                                               |               |               |               | SUBTOTAL    |            |            |             | \$225,384 |
| (817) 335-3000 * FAX (817) 335-1025                                                        |               | S             | SIOH @ 6.6%   | %9          |            |            |             | \$11,694  |
|                                                                                            |               |               |               | TOTAL       |            |            |             | \$237,078 |

| ENGINEER'S ESTIMATE OF PROBABLE COST                                                                                          | ATE           | Ö             | PRC           | BABI        | E CO        | ST              |               |           |
|-------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------|-------------|-----------------|---------------|-----------|
| LOCATION:                                                                                                                     |               | PROJE         | PROJECT NO:   | )           | 03-0185.04  |                 | DATE:         | 6/16/95   |
| AREA 2200, BUILDING 2265, FORT SAM HOUSTON                                                                                    |               | BY:           | PIEPER, C.A.  | ٧.          |             | CH              | CHECKED BY:   | KLK       |
| PROJECT DESCRIPTION: ECO-E2, Replace Existing Central Chiller With New Centrifugal Chiller And Variable Frequency Drive (VFD) | Chiller       | · With !      | Vew Cent      | rifugal Chi | ller And Va | ariable Frequer | 1cy Drive (VF | ۵)        |
|                                                                                                                               | QUANTITY      | TITY          |               | LABOR       |             | MATERIAL        | RIAL          | TOTAL     |
| ITEM DESCRIPTION                                                                                                              | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total       | Unit Price      | Totai         | COST      |
|                                                                                                                               |               |               |               |             |             |                 |               |           |
| Remove chiller                                                                                                                | -             | EA            | 00.09         | \$24.64     | \$1,478     | \$500.00        | \$500         | \$1,978   |
|                                                                                                                               | -             | Ц<br>Д        | 00000         | \$04.64     | 800 DOR     | \$180 425 OO    | \$120.425     | \$159 993 |
| Install New Chiller DOD COT, water cooled cellul lugal N 10-1a                                                                | -             | 3             | 200           | 5:53        | 200,000     |                 |               |           |
| Adder For VFD                                                                                                                 | -             | 2             |               |             |             | \$29,875.00     | \$29,875      | \$29,875  |
| Pipe Assembly And Valves                                                                                                      | -             | EA            | 63.00         | \$24.64     | \$1,552     | \$4,900.00      | \$4,900       | \$6,452   |
|                                                                                                                               |               |               |               |             |             |                 |               |           |
| RECONNECT:                                                                                                                    |               |               |               |             |             |                 |               |           |
| Controls                                                                                                                      | -             | JOB           | 00.59         | \$24.64     | \$1,602     | \$100.00        | \$100         | \$1,702   |
| Electrical                                                                                                                    | -             | 900           | 33.00         | \$24.64     | \$813       | \$200.00        | \$200         | \$1,013   |
|                                                                                                                               |               |               |               |             |             |                 |               |           |
| Refrigerant Detection System And Ventilation                                                                                  | -             | gor           | 41.00         | \$24.64     | \$1,010     | \$4,000.00      | \$4,000       | \$5,010   |
| Test & Balance and Start-up                                                                                                   | -             | JOB           | 30.00         | \$28.00     | \$840       | \$200.00        | \$200         | \$1,040   |
|                                                                                                                               |               |               |               |             |             |                 |               |           |
|                                                                                                                               | Γ             |               |               | SUBTOTAL    | \$36,863    |                 | \$170,200     | \$207,063 |
| HIITT-701   ARS INC                                                                                                           |               |               | O&P@20%       | %           | \$7,373     |                 | \$34,040      | \$41,413  |
| ENCINEEDS / ADCUITECTS                                                                                                        |               |               |               | SUBTOTAL    | \$44,236    |                 | \$204,240     | \$248,476 |
| 512 MAIN STREET SLITE 1500                                                                                                    |               |               | DESIGN @ 6%   | %9          |             |                 |               | \$14,909  |
| FORT WORTH, TEXAS 76102-3922                                                                                                  |               |               |               | SUBTOTAL    |             |                 |               | \$263,385 |
| (817) 335-3000 * FAX (817) 335-1025                                                                                           |               |               | SIOH @ 6.6%   | %           |             |                 |               | \$13,666  |
|                                                                                                                               | ı             |               |               | TOTAL       |             |                 |               | \$277,051 |

| ENGINEER'S ESTIMATE OF PROBABLE COST                                                                | ATE           | PP            | PRO           | BAB        | LE CO        | ST         |             |           |
|-----------------------------------------------------------------------------------------------------|---------------|---------------|---------------|------------|--------------|------------|-------------|-----------|
| LOCATION:                                                                                           | Ī             | PROJECT NO:   | :ON T         |            | 03-0185.04   |            | DATE:       | 6/16/95   |
| AREA 2200, BUILDING 2265, FORT SAM HOUSTON                                                          | 1             | BY:           | PIEPER, C.A.  | C.A.       |              | СН         | снескер ву: | KLK       |
| PROJECT DESCRIPTION: ECO-E3, Replace Existing Central Chiller With Water Cooled, Dual Screw Chiller | Chiller       | With Wa       | iter Coo      | oled, Dual | Screw Chille | i.         |             |           |
|                                                                                                     | QUANTITY      | TITY          |               | LABOR      |              | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                    | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate       | Total        | Unit Price | Total       | COST      |
|                                                                                                     |               |               |               |            |              |            |             |           |
| Remove chiller                                                                                      | -             | EA            | 00            | \$24.64    | \$1,478      | 005\$      | \$500       | \$1,978   |
|                                                                                                     |               | 1             |               | 10000      | 000          | 000 22.4   | 000 2214    | 4100769   |
| Install New Chiller 555 ton, water cooled, dual screw, R-134a                                       | -             | EA            | 1,200         | \$24.04    | 900,62\$     | 002,661\$  | 002,001\$   | 907,201¢  |
|                                                                                                     |               |               |               |            |              |            |             |           |
| Pipe Assembly And Valves                                                                            | -             | EA            | 63            | \$24.64    | \$1,552      | \$4,900    | \$4,900     | \$6,452   |
|                                                                                                     |               |               |               |            |              |            |             |           |
| RECONNECT:                                                                                          |               |               |               |            |              |            |             |           |
| Controls                                                                                            | -             | JOB           | 92            | \$24.64    | \$1,602      | \$100      | \$100       | \$1,702   |
| Electrical                                                                                          | -             | JOB           | 33            | \$24.64    | \$813        | \$200      | \$200       | \$1,013   |
|                                                                                                     |               | 9             | ;             | 10101      | 200          | 4          | 4           | 040       |
| Refrigerant Detection System And Ventilation                                                        | -             | 305           | 4             | \$24.04    | 00,19        | 000,44     | 500,4       | 010,04    |
| Test & Balance and Start-up                                                                         | -             | gor           | 30            | \$28.00    | \$840        | \$200      | \$200       | \$1,040   |
|                                                                                                     |               |               |               |            |              |            |             |           |
|                                                                                                     |               |               |               |            |              |            |             |           |
|                                                                                                     |               |               |               | SUBTOTAL   | \$36,863     |            | \$143,100   | \$179,963 |
| UI JABO INC                                                                                         | 1             |               | 0 & P @ 2     | 20%        | \$7,373      |            | \$28,620    | \$35,993  |
|                                                                                                     |               |               |               | SUBTOTAL   | \$44,236     |            | \$171,720   | \$215,956 |
| ENGINEERS / ARCHIECLS                                                                               | 1             | ٥             | DESIGN @ 6%   | %9         |              |            |             | \$12,957  |
| FORT WORTH, TEXAS 76102-3922                                                                        | !             |               |               | SUBTOTAL   |              |            |             | \$228,913 |
| (817) 335-3000 * FAX (817) 335-1025                                                                 |               | S             | SIOH @ 5.5%   | 2%         |              |            |             | \$11,878  |
|                                                                                                     | 1             |               |               | TOTAL      |              |            |             | \$240,791 |

| ENGINEER'S ESTIN                                                         | IAT           | EOF           | PRO           | BABL                                             | ESTIMATE OF PROBABLE COST | TS         |             |               |
|--------------------------------------------------------------------------|---------------|---------------|---------------|--------------------------------------------------|---------------------------|------------|-------------|---------------|
| LOCATION:                                                                |               | PROJECT NO:   | T NO:         |                                                  | 03-0185.04                |            | DATE:       | 6/16/95       |
| AREA 2200, BUILDING 2265, FORT SAM HOUSTON                               |               | BY:           | PIEPER, C.A.  | ď                                                |                           | CH         | снескер ву: | KLK           |
| PROJECT DESCRIPTION: ECO-E4, Replace Existing Central                    | Chiller       | With Ga       | ıs Engine     | g Central Chiller With Gas Engine Driven Chiller | ller                      |            |             |               |
|                                                                          | QUA           | QUANTITY      |               | LABOR                                            |                           | MATERIAL   | SIAL        | TOTAL         |
| ITEM DESCRIPTION                                                         | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate                                             | Total                     | Unit Price | Total       | COST          |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
| Remove chiller                                                           | -             | EA            | 00.00         | \$24.64                                          | \$1,478                   | \$500      | \$500       | \$1,978       |
|                                                                          |               | i             | 0             |                                                  | 0000                      | 000 000    | 416,000     | # 4 4 5 5 6 B |
| Install New Chiller 555 ton, water cooled centrifugal, R-134a, gas fired | -             | EA            | 1200.00       | \$24.64                                          | 20C'67\$                  | 000,014    | 44.00°C     | 00000         |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
| Pine Accomply And Valvea                                                 | -             | E             | 63.00         | \$24.64                                          | \$1,552                   | \$4,900    | \$4,900     | \$6,452       |
| The Abbelling This raise                                                 |               |               |               |                                                  |                           |            |             |               |
| RECONNECT:                                                               |               |               |               |                                                  |                           |            |             |               |
| Controls                                                                 | -             | JOB           | 00.39         | \$24.64                                          | \$1,602                   | \$100      | \$100       | \$1,702       |
| Electrical                                                               | -             | JOB           | 33.00         | \$24.64                                          | \$813                     | \$200      | \$200       | \$1,013       |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
| Refrigerant Detection System And Ventilation                             | -             | JOB           | 41.00         | \$24.64                                          | \$1,010                   | \$4,000    | \$4,000     | \$5,010       |
| Test & Balance and Gtart-110                                             | -             | gor           | 30.00         | \$28.00                                          | \$840                     | \$200      | \$200       | \$1,040       |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
|                                                                          |               |               |               |                                                  |                           |            |             |               |
|                                                                          |               |               |               | SUBTOTAL                                         | \$36,863                  |            | \$425,900   | \$462,763     |
| ONI SAVI IOZ-TTIIIH                                                      |               |               | O&P@20%       | *                                                | \$7,373                   |            | \$85,180    | \$92,553      |
| STOCK ADDITION                                                           |               |               |               | SUBTOTAL                                         | \$44,236                  |            | \$511,080   | \$555,316     |
| ENGINEERS / ARCHIECTS                                                    |               |               | DESIGN @ 6%   | %8                                               |                           |            |             | \$33,319      |
| FORT WORTH, TEXAS 76102-3922                                             |               |               |               | SUBTOTAL                                         |                           |            |             | \$588,635     |
| (817) 335-3000 * FAX (817) 335-1025                                      |               |               | SIOH @ 6.5%   | %                                                |                           |            |             | \$30,542      |
|                                                                          |               |               |               | TOTAL                                            |                           |            |             | \$619,177     |

STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-E1 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 212626. B. SIOH 11694. C. DESIGN COST 12758. D. TOTAL COST (1A+1B+1C) \$ 237078. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE \$ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 237078. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) 1304. \$ 8189. 0. \$ 0. 0. \$ 0. 0. \$ 0. 0. \$ 0. 0. \$ 0. \$ 11822. 6.28 A. ELECT \$ 15.08 123492. B. DIST \$ .00 18.57 0. C. RESID \$ .00 21.02 0. \$ 0. \$ 0. \$ 0. \$ 11822. D. NAT G \$ 2.66 18.58 0. E. COAL \$ .00 16.83 0. F. PPG \$ .00 17.38 0. \$ 175911. M. DEMAND SAVINGS 14.88 1304. \$ 20011. N. TOTAL 299403. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) DISCNT DISCOUNTED FACTR SAVINGS(+)/ SAVINGS(+) YR ITEM COST(-) OC (2) (1) (3) COST(-)(4)1. REFRIG UPGRADE \$ 348435. 1.00 0 348435. d. TOTAL \$ 348435. 348435. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 348435. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 37433. 5. SIMPLE PAYBACK PERIOD (1G/4) 6.33 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 647838. 7. SAVINGS TO INVESTMENT RATIO (SIR)=(6 / 1G)= 2.73 (IF < 1 PROJECT DOES NOT QUALIFY)

LIFE CYCLE COST ANALYSIS SUMMARY

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-E2 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 248476. B. SIOH 13666. C. DESIGN COST 14909. D. TOTAL COST (1A+1B+1C) \$ 277051. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE \$ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 277051. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) 1498. \$ 0. \$ 9407. A. ELECT \$ 6.28 15.08 141864. .00 B. DIST \$ 0. 18.57 0. 0. \$ 0. \$ 0. \$ 0. \$ 1498. \$ C. RESID \$ .00 0. 21.02 0. 0. D. NAT G \$ 2.66 18.58 0. 0. E. COAL \$ .00 16.83 0. F. PPG \$ .00 0. 17.38 0. 12188. M. DEMAND SAVINGS 14.88 181357. N. TOTAL 21595. 323222. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) DISCOUNTED SAVINGS(+)/ SAVINGS(+) YR DISCNT COST(-) ITEM OC FACTR (1) \$ 348435. COST(-)(4)(2) (3) 1. REFRIG UPGRADE 0 1.00 348435. d. TOTAL \$ 348435. 348435. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 348435. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 39017. 5. SIMPLE PAYBACK PERIOD (1G/4) 7.10 YEAF 671657. 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =2.42 (IF < 1 PROJECT DOES NOT QUALIFY)

D-59

LCCID FY95 (92) ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-E3 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 215956. B. SIOH 11878. C. DESIGN COST 12957. D. TOTAL COST (1A+1B+1C) \$ 240791. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 240791. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) 1236. \$ A. ELECT S 6.28 7762. 15.08 117052. .00 B. DIST \$ 0. 0. 0. 18.57 0. 0. 0. C. RESID \$ .00 \$ 0. 21.02 0. D. NAT G \$ 2.66 0. 18.58 0. \$ 0. \$ 0. \$ 10102. E. COAL \$ .00 16.83 0. F. PPG \$ .00 17.38 0. M. DEMAND SAVINGS 14.88 150318. 1236. \$ N. TOTAL 17864. 267370. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) ITEM OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4)1. REFRIG UPGRADE 0 \$ 348435. 1.00 348435. d. TOTAL \$ 348435. 348435. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 348435. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 35286. 5. SIMPLE PAYBACK PERIOD (1G/4) 6.82 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 615805. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =2.56 (IF < 1 PROJECT DOES NOT QUALIFY)

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-E4 ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 555316. B. SIOH 30542. C. DESIGN COST 33319. D. TOTAL COST (1A+1B+1C) \$ 619177. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 619177. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) 3394. A. ELECT \$ 6.28 21314. 15.08 321420. B. DIST \$ .00 0. 0. 18.57 0. C. RESID \$ .00 0. \$ -17497. \$ 21.02 0. -6578. D. NAT G S 2.66 18.58 -325103. 0. E. COAL \$ .00 16.83 0. F. PPG S .00 0. 17.38 0. \$ 28597. M. DEMAND SAVINGS 425523. 14.88 -3184. N. TOTAL 32414. 421840. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED ITEM COST(-) oc FACTR SAVINGS(+)/ (2) (3) (1) COST(-)(4)1. REFRIG UPGRADE \$ 348435. 0 1.00 348435. d. TOTAL \$ 348435. 348435. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 348435. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 49836. 5. SIMPLE PAYBACK PERIOD (1G/4) 12.42 YEAR: 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 770275. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =(IF < 1 PROJECT DOES NOT QUALIFY)

\*\* Project does not qualify for ECIP funding; 4,5,6 for information only.

D-61

### ENERGY CONSERVATION OPPORTUNITY (ECO)

ECO NO:

DATE: 6/15/95

ECO TITLE: Replace Existing Individual Building Chillers With Central Chiller Plant

INSTALLATION: Fort Sam Houston, San Antonio, Texas

LOCATION: Area 100, Building 250

### A. Summary:

| Electrical Energy Savings | 2,816   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 19,781  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 2,816   | MMBTU/yr |
| Total Cost Savings        | 64,465  | \$/yr    |
| Total Investment          | 556,559 | \$       |
| Simple Payback            | 8.6     | yrs      |
| SIR                       | 1.73    |          |

### B. ECO Description:

Remove the 14 existing air cooled, reciprocating chillers serving buildings 122, 124, 125, 128, 133, 134, 135, 142, 143, 144, 146, 147, 149, 197, 198, 199 and 250. Install 6" chilled water supply and return piping loop between the buildings in this area and terminate loop behind building 250, near the existing air cooled chiller installation. Install two new 210 ton, air cooled screw chillers behind building 250. Install two new 30 HP chilled water distribution pumps to circulate water from new chillers through new distribution loop. The existing chilled water pumps that serve buildings where chillers were removed will be reused to circulate chilled water from the new loop through the buildings. These existing pumps should be connected into the new distribution piping at the existing chiller locations. All new controls and electrical services should be installed at building 250 to serve the new chillers and pumps. Other specific requirements should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing chiller and installation of the new chiller, associated wiring and controls.

### C. Discussion:

The 14 existing air cooled, reciprocating chillers in the 100 area were installed in 1985 and serves as the primary cooling systems for 17 buildings. They generally appear to be in fair condition at this time. However, the cost of maintaining so many chillers is excessive and difficult for the maintenance staff. It is recommended that a central chiller plant, consisting of two air cooled screw machines be installed to serve all these buildings. This will not only save energy but will also greatly reduce the maintenance costs to the installation. Computer simulations of the buildings in this area determined that the current installed capacity of 540 tons is more than is required to adequately cool the buildings<sup>1</sup>. Therefore, it is recommended that the two new chillers be rated at a combined 420 tons to more closely match the cooling load of the buildings.

### D. Savings Calculations:

### 1. Energy Consumption And Savings

The monthly peak demand and energy consumptions of the existing and proposed chillers and pumps were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing chillers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>3</sup>.

The 210 ton air cooled screw chillers which were modeled by the computer had better part load performance ratings than reciprocating machines and were chosen for that reason. Full and part load performance data from McQuay Incorporated were used in the computer simulations of the new chiller energy usages. An equipment list of the specific chillers and pumps modeled for the new central plant are shown on page D-64.

Once the computer simulations of the existing and new chiller plants were completed, the total annual demand cost and energy consumption of the new central plant was compared with that of the existing individual systems to determine the annual savings for this ECO<sup>4</sup>. These savings calculations are shown on pages D-65 and D-66. These demand and energy savings values were used in the life cycle cost analysis.

### 2. Maintenance Cost Savings:

Maintenance cost estimates were obtained from a local maintenance contractor and were used to estimate the maintenance savings from reducing the total number of air cooled chillers in this area from fourteen down to two<sup>5</sup>. Based on an annual maintenance cost of \$2,250 per chiller, the total maintenance cost savings from this ECO is estimated to be \$27,000 per year. This figure was used in the life cycle cost analysis.

### E. Cost Estimates

The total installation costs for the new central chiller plant were estimated on page D-67. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page D-68. The data from the summary sheet were presented in the ECO summary on page D-62.

### REFERENCES

- 1. See Appendix B for Area 100 cooling system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix A for utility cost analysis data, used in the savings calculations.
- 5. See Appendix G for maintenance contractor cost estimates for air cooled chillers.

|                                                                                  | UAL          | KWH MCF     | 508,916                                                          | 220,753                                                          | 98,830                   | 33,570                   |  |  |  |  |
|----------------------------------------------------------------------------------|--------------|-------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------------------|--|--|--|--|
|                                                                                  | ES           | WKS         | 26                                                               | 26                                                               | 26                       | 26                       |  |  |  |  |
| 00                                                                               | OPER. TIMES  | DAYS        | 7                                                                | 7                                                                | 7                        | 7                        |  |  |  |  |
| AREA 10                                                                          | ОР           | HRS         | 24                                                               | 24                                                               | 24                       | 24                       |  |  |  |  |
| AM HOUSTON,                                                                      | FULL         | LOAD        | 240 KW                                                           | 240 KW                                                           | 22.38 KW                 | 22.38 KW                 |  |  |  |  |
| 30-1, FORT SA                                                                    | YEAR         | INSTALLED   | New                                                              | New                                                              | New                      | New                      |  |  |  |  |
| PMENT LIST FOR: E                                                                | מה ימה אים א | AREA SERVED | Area 100                                                         | Area 100                                                         | Area 100                 | Area 100                 |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-1, FORT SAM HOUSTON, AREA 100 JUNE 2, 1995 |              | DESCRIPTION | McQuay, electric<br>air cooled, single screw<br>210 Tons, R-134a | McQuay, electric<br>air cooled, single screw<br>210 Tons, R-134a | 504 gpm, 150 ft<br>30 HP | 504 gpm, 150 ft<br>30 HP |  |  |  |  |
|                                                                                  | 7            | <u>2</u>    | -                                                                | 1                                                                | 1                        | -                        |  |  |  |  |
|                                                                                  | 1111         | IEM         | Water Chiller                                                    | Water Chiller                                                    | Chilled Water Pump       | Chilled Water Pump       |  |  |  |  |

| ITEM             |      |      | E    |      | NG IND |       |       |       | LANTS |       |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|------------------|------|------|------|------|--------|-------|-------|-------|-------|-------|------|------|---------------------------|---------------------------|
|                  | Jan  | Feb  | Mar  | Apr  | May    | Jun   | Jul   | Aug   | Sep   | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller    |      |      |      |      | 47.5   | 53.0  | 56.9  | 56.3  | 47.8  | 35.0  |      |      | 92,395                    |                           |
| Water Chiller    |      |      |      |      | 58.3   | 64.4  | 69.1  | 68.0  | 57.9  | 42.2  |      |      | 112,912                   |                           |
| Water Chiller    |      |      |      |      | 28.4   | 29.7  | 30.8  | 30.6  | 28.6  | 26.3  |      |      | 12,045                    |                           |
| Water Chiller    |      |      |      |      | 37.5   | 42.4  | 44.8  | 44.4  | 38.6  | 27.0  |      |      | 76,773                    |                           |
| Water Chiller    |      |      |      |      | 49.6   | 51.8  | 53.8  | 53.3  | 49.8  | 45.5  |      |      | 104,024                   |                           |
| Water Chiller    |      |      |      |      | 61.4   | 66.6  | 71.5  | 72.2  | 62.9  | 49.7  |      |      | 113,775                   |                           |
| Water Chiller    |      |      |      |      | 61.4   | 66.6  | 71.5  | 72.2  | 62.9  | 49.7  |      |      | 113,775                   |                           |
| Water Chiller    |      |      |      |      | 59.0   | 64.1  | 68.9  | 69.7  | 60.6  | 47.5  |      |      | 107,387                   |                           |
| Water Chiller    |      |      |      |      | 70.0   | 76.4  | 85.0  | 83.4  | 74.2  | 56.3  |      |      | 170,355                   |                           |
| Water Chiller    |      |      |      |      | 60.4   | 65.5  | 70.3  | 70.6  | 61.9  | 49.6  |      |      | 113,383                   |                           |
| Water Chiller    |      |      |      |      | 16.1   | 17.3  | 17.9  | 17.8  | 16.6  | 12.9  |      |      | 30,616                    |                           |
| Water Chiller    |      |      |      |      | 21.6   | 23.9  | 26.2  | 26.6  | 22.6  | 16.0  |      |      | 43,319                    |                           |
| Water Chiller    |      |      |      |      | 117.2  | 122.9 | 133.5 | 137.3 | 118.3 | 87.7  |      |      | 346,860                   |                           |
| Water Chiller    |      |      |      |      | 13.8   | 15.3  | 16.5  | 16.7  | 14.0  | 9.8   |      |      | 26,626                    |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 1.1    | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   |      |      | 4,946                     |                           |
| CHW Pump         |      |      |      |      | 1.1    | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   |      |      | 4,946                     |                           |
| CHW Pump         |      |      |      |      | 0.4    | 0.4   | 0.4   | 0.4   | 0.4   | 0.4   |      |      | 1,634                     |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 2.2    | 2.2   | 2.2   | 2.2   | 2.2   | 2.2   |      |      | 9,892                     |                           |
| CHW Pump         |      |      |      |      | 1.1    | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   |      |      | 4,946                     |                           |
| CHW Pump         |      |      |      |      | 3.7    | 3.7   | 3.7   | 3.7   | 3.7   | 3.7   |      |      | 16,472                    |                           |
| CHW Pump         |      |      |      |      | 1.5    | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   |      |      | 6,580                     |                           |
| CHW Pump         |      |      |      |      | 1.1    | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   |      |      | 4,946                     |                           |
| CHW Pump         |      |      |      |      | 1.5    | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   |      |      | 6,580                     |                           |
| CHW Pump         |      |      |      |      | 5.6    | 5.6   | 5.6   | 5.6   | 5.6   | 5.6   |      |      | 24,730                    |                           |
| CHW Pump         |      |      |      |      | 0.8    | 0.8   | 0.8   | 0.8   | 0.8   | 0.8   |      |      | 3,312                     |                           |
| Air Cooled Comp. |      |      |      |      | 8.0    | 8.3   | 8.6   | 8.6   | 8.0   | 7.4   |      |      | 12,232                    |                           |
| Compresser Fans  |      |      |      |      | 0.6    | 0.7   | 0.7   | 0.7   | 0.6   |       |      |      | 1,008                     |                           |
| Air Cooled Comp. |      |      |      |      | 63.6   | 66.4  | 68.8  | 68.3  | 63.8  | 58.9  |      |      | 64,825                    |                           |
| Compresser Fans  |      |      |      |      | 4.5    | 4.8   | 6.2   |       | 4.6   | 3.6   |      |      | 6,524                     |                           |
| Totals           |      |      |      |      | 810.0  | 871.2 | 932.1 | 934.0 | 824.8 | 656.6 |      |      | 1,687,278                 |                           |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50 | 7.50   | 10.00 | 10.00 | 10.00 |       |       | 7.50 | 7.50 | 1                         |                           |
| Cost (\$)        |      |      |      |      | 6,075  |       | 9,321 | 9,340 |       | 4,925 |      |      |                           |                           |

**Total Demand** 

46,621 \$/yr

Total Energy

5,759 MMBTU/yr

(electric)

Total Energy

MMBTU/yr

### 100 AREA

| ITEM          |      | E    | CO-I: N | NEW C | ENTRA<br>MONTH |       |       |       | REW CH | HILLER | s    |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|---------|-------|----------------|-------|-------|-------|--------|--------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar     | Apr   | May            | Jun   | Jul   | Aug   | Sep    | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |         |       | 210.8          | 234.2 | 240.0 | 240.0 | 221.0  | 187.4  |      |      | 508,916                   |                           |
| Water Chiller |      |      |         |       | 210.8          | 234.2 | 240.0 | 240.0 | 221.0  | 147.2  |      |      | 220,753                   |                           |
| CHW Pump      |      |      |         |       | 22.4           | 22.4  | 22.4  | 22.4  | 22.4   | 22.4   |      |      | 98,830                    |                           |
| CHW Pump      |      |      |         |       | 22.4           | 22.4  | 22.4  | 22.4  | 22.4   | 22.4   |      |      | 33,570                    |                           |
| Total (KW)    |      |      |         |       | 466.4          | 513.2 | 524.8 | 524.8 | 486.8  | 379.4  |      |      | 862,069                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50    | 7.50  | 7.50           | 10.00 | 10.00 | 10.00 | 10.00  | 7.50   | 7.50 | 7.50 |                           |                           |
| Cost (\$)     |      |      |         |       | 3,498          | 5,132 | 5,248 | 5,248 | 4,868  | 2,846  |      |      |                           |                           |

Total Demand

26,840 \$/yr

Demand Savings

19,781 \$/yr

**Energy Savings** 

2,816 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

| PIEPER, C.A ers With Cen unit Unit Unit 120 \$ \$ 192 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ \$ 120 \$ | Replace Existing    | BY: BY: BY: Unit Meas. EA EA EA EA EA EA EA                        | CT NO: PIEPER, C  With C  With C  650  650  660  660         | 5.7A. LABOR LABOR \$24.64 \$24.64 \$24.64 | 03-0185.04   Total                   | MA.             | DATE:<br>CHECKED BY: | 6/16/95<br>KLK |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------|----------------------|----------------|
| PTION: ECO-1, Replace Existing  ITEM DESCRIPTION  er Pump 30 HP  te Distribution  ves Chiller Assembly  G" Trench & backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Replace Existing    | BY:  Ig Chiller  Unit Meas.  EA  EA  EA  EA  EA  EA  EA  EA  EA  E | PIEPER, (  Hrs /  Unit  20  20  20  60  60                   | 5.A.  LABOR  Rate \$24.64 \$23.64 \$24.64 | ### Total  Total  \$13,798  \$30,732 |                 | ECKED BY:            | KLK            |
| PTION: ECO-1, Replace Existing  ITEM DESCRIPTION  er Pump 30 HP  te Distribution  ves Chiller Assembly  G" Trench & backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Replace Existing    | NTITY Notification Chiller EA  | 9 With C 650 650 60 60 60 60 60 60 60 60 60 60 60 60 60      | #24.64 \$24.64 \$24.64 \$24.64            | ## Total  Total  \$13,798  \$30,732  | MATE Unit Price |                      |                |
| TEM DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TION  Screw R-22  2 | Unit Meas.  Unit EA            | Hrs / Unit 40 650 650 60 60 60 60 60 60 60 60 60 60 60 60 60 | 1ABOR<br>824.64<br>\$23.64<br>\$24.64     | \$13,798<br>\$30,732<br>\$986        | MATE            |                      |                |
| ten DESCRIPTION         # of Unit         Unit         Hrs / Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TION screw R-22     |                                                                    | Hrs / Unit C50 650 60 60 60 60 60 60 60 60 60 60 60 60 60    | 824.64<br>\$24.64<br>\$24.64              | \$13,798<br>\$30,732<br>\$986        | Unit Price      | RIAL                 | 10.0           |
| ton, air-cooled, single screw R-22  er Pump 30 HP  te Distribution  te Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ecrew R-22          |                                                                    | 65 65 66 66 66 66 66 66 66 66 66 66 66 6                     | \$24.64<br>\$23.64<br>\$24.64<br>\$24.64  | \$13,798<br>\$30,732<br>\$986        |                 | Total                | COST           |
| ton, air-cooled, single screw R-22  er Pump 30 HP  te Distribution  te Distribution  wes Chiller Assembly  G" Trench & backfill  1 JOB 390  1 JOB 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ocrew R-22          |                                                                    | 0 0 0 0 0 0                                                  | \$24.64                                   | \$13,798<br>\$30,732<br>\$986        |                 |                      |                |
| ton, air-cooled, single screw R-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ocrew R-22          |                                                                    | 60 20 60                                                     | \$23.64<br>\$24.64<br>\$24.64             | \$30,732                             | \$200           | \$7,000              | \$20,798       |
| er Pump 30 HP       2       EA       20         te Distribution       16       EA       6         ves Chiller Assembly       2       EA       60         . G" Trench & backfill       2950       LF       1         . G" Trench & backfill       1       JOB       390         1       JOB       192         1       JOB       120         1       JOB       120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                                                    | 0 0                                                          | \$24.64                                   | 986\$                                | \$73,500        | \$147,000            | \$177,732      |
| er Pump 30 HP       2       EA       20         te Distribution       16       EA       6         ves Chiller Assembly       2       EA       60         ves Chiller Assembly       2       EA       60         o" Trench & backfill       1       JOB       390         1       JOB       192         1       JOB       120         1       JOB       120         1       JOB       120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                    | 00 00                                                        | \$24.64                                   | \$986                                |                 |                      |                |
| te Distribution       16       EA       6         ves Chiller Assembly       2       EA       60         . 6" Trench & backfill       2950       LF       1         1       JOB       390         1       JOB       192         1       JOB       120         1       JOB       120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                    | 0 00                                                         | \$24.64                                   |                                      | \$3,957         | \$7,914              | \$8,900        |
| te Distribution     16     EA     6       ves Chiller Assembly     2     EA     60       . 6" Trench & backfill     2950     LF     1       1     JOB     390       1     JOB     192       1     JOB     120       1     JOB     120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                                                    | 0 0                                                          | \$24.64                                   |                                      |                 |                      |                |
| ves Chiller Assembly       2       EA       60         . 6" Trench & backfill       2950       LF       1         1       JOB       390       192         1       JOB       192       192         1       JOB       120       120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                                    | 00                                                           |                                           | \$2,365                              | \$800           | \$12,800             | \$15,165       |
| 6" Trench & backfill 2950 LF 1 1 JOB 390 1 JOB 192 1 JOB 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                    |                                                              | \$24.64                                   | \$2,957                              | \$3,300         | \$6,600              | \$9,557        |
| 1 JOB 390<br>1 JOB 192<br>1 JOB 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                    | -                                                            | \$24.64                                   | \$72,688                             | \$17            | \$50,150             | \$122,838      |
| 1 JOB 390<br>1 JOB 192<br>1 JOB 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                    |                                                              |                                           |                                      |                 |                      |                |
| 1 JOB 192 192 120 1 1 JOB 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | JOB                                                                | 290                                                          | \$24.64                                   | \$9,610                              | \$26,000        | \$26,000             | \$35,610       |
| 1 308 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | JOB                                                                | 192                                                          | \$24.64                                   | \$4,731                              | \$13,800        | \$13,800             | \$18,531       |
| 1 308 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                   |                                                                    |                                                              |                                           |                                      |                 |                      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | JOB                                                                | 120                                                          | \$15.60                                   | \$1,872                              | \$1,400         | \$1,400              | \$3,272        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                    |                                                              |                                           |                                      |                 |                      |                |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | JOB                                                                | 120                                                          | \$28.00                                   | \$3,360                              | \$200           | \$200                | \$3,560        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                    | S                                                            | SUBTOTAL                                  | \$143,099                            |                 | \$272,864            | \$415,963      |
| HUITT-ZOLLARS. INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS. INC.            | )                                                                  | & P                                                          | %                                         | \$28,620                             |                 | \$54,573             | \$83,193       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HITECTS             |                                                                    | S                                                            | SUBTOTAL                                  | \$171,719                            |                 | \$327,437            | \$499,156      |
| 512 MAIN STREET, SUITE 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UITE 1500           | 0                                                                  | ESIGN @                                                      | %:                                        |                                      |                 |                      | \$29,949       |
| FORT WORTH, TEXAS 76102-3922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76102-3922          |                                                                    | S                                                            | SUBTOTAL                                  |                                      |                 |                      | \$529,105      |
| %9'9 WOIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 0,                                                                 | ЮН @ 5.5%                                                    | *                                         |                                      |                 |                      | \$27,454       |
| TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                    |                                                              | TOTAL                                     |                                      |                 |                      | \$556,559      |

```
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)
                                                    LCCID FY95 (92)
INSTALLATION & LOCATION: FSH
                                     REGION NOS. 6 CENSUS: 3
PROJECT NO. & TITLE: 03018504
                                 EEAP BOILER CHILLER STUDY
FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-I
ANALYSIS DATE:
               06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER
1. INVESTMENT
A. CONSTRUCTION COST
                             499156.
B. STOH
                         $
                              27454.
C. DESIGN COST
                         Ŝ
                             29949.
D. TOTAL COST (1A+1B+1C) $ 556559.
E. SALVAGE VALUE OF EXISTING EQUIPMENT $
F. PUBLIC UTILITY COMPANY REBATE
                                            0.
G. TOTAL INVESTMENT (1D - 1E - 1F)
                                                      556559.
2. ENERGY SAVINGS (+) / COST (-)
DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994
            UNIT COST SAVINGS ANNUAL $ DISCOUNT
                                                           DISCOUNTED
            $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4)
   FUEL
                                                           SAVINGS (5)
   A. ELECT $
               6.28
                          2816.
                                        17684.
                                                    15.08
                                                               266682.
   B. DIST
               .00
                          0.
                                        0.
                                                   18.57
                                                                   0.
                         0.
0.
0.
   C. RESID $
                .00
                                    $
                                                                    0.
                                           0.
                                                   21.02
   D. NAT G $
               2.66
                                           0.
                                                   18.58
                                                                    0.
   E. COAL $
               .00
                                           0.
                                                   16.83
                                                                    0.
   F. PPG
           $ .00
                                           0.
                                                   17.38
                                                                    0.
                                      0.
19781.
                         $
2816. $
   M. DEMAND SAVINGS
                                                    14.88
                                                               294341.
   N. TOTAL
                                        37465.
                                                               561023.
3. NON ENERGY SAVINGS(+) / COST(-)
  A. ANNUAL RECURRING (+/-)
                                                                27000.
       (1) DISCOUNT FACTOR (TABLE A)
                                                   14.88
       (2) DISCOUNTED SAVING/COST (3A X 3A1)
                                                               401760.
  B. NON RECURRING SAVINGS(+) / COSTS(-)
                           SAVINGS(+) YR
                                            DISCNT
                                                      DISCOUNTED
                             COST(-)
              ITEM
                                       OC
                                                      SAVINGS(+)/
                                            FACTR
                                                     COST(-)(4)
                                (1)
                                      (2)
                                             (3)
   d. TOTAL
                                 0.
                                                             0.
  C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ 401760.
4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$
                                                               64465.
5. SIMPLE PAYBACK PERIOD (1G/4)
                                                              8.63 YEAR
6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
                                                               962783.
7. SAVINGS TO INVESTMENT RATIO
                                    (SIR) = (6 / 1G) =
                                                              1.73
    (IF < 1 PROJECT DOES NOT QUALIFY)
```

LIFE CYCLE COST ANALYSIS SUMMARY

D-68

STUDY: FSH

# APPENDIX E NON-RECOMMENDED ECO CALCULATIONS

## APPENDIX E NON-RECOMMENDED ECO CALCULATIONS

### TABLE OF CONTENTS

| ECO-B, R  | Replace Existing Central Boilers With High Efficiency Modular Boilers, Area 900      | E-1  |
|-----------|--------------------------------------------------------------------------------------|------|
| ECO-F, R  | Replace Existing Central Boilers With High Efficiency Modular Boilers, Area 2200     | E-7  |
| ECO-G, R  | Replace Existing Individual Building Chillers With Central Chiller Plant, Quadrangle | E-13 |
| ECO-H, R  | Replace Existing Individual Building Boilers With Central Boiler Plant, Quadrangle   | E-19 |
| ECO-J, Re | Leplace Existing Individual Building Boilers With Central Boiler Plant, Area 100     | E-25 |

### **ENERGY CONSERVATION OPPORTUNITY (ECO)**

ECO NO:

В

DATE:

6/15/95

ECO TITLE:

Replace Existing Central Boilers With High Efficiency Modular Boiler

INSTALLATION:

Fort Sam Houston, San Antonio, Texas

LOCATION:

Area 900, Building 902

### A. Summary:

| Electrical Energy Savings | 0      | MMBTU/yr |
|---------------------------|--------|----------|
| Electrical Demand Savings | 0      | \$/yr    |
| Gas Energy Savings        | 1,235  | MMBTU/yr |
| Total Energy Savings      | 1,235  | MMBTU/yr |
| Total Cost Savings        | 3,285  | \$/yr    |
| Total Investment          | 50,591 | \$       |
| Simple Payback            | 15.4   | yrs      |
| SIR                       | 1.21   |          |

### B. ECO Description:

Remove the three existing watertube boilers in building 902 which are serving the 21 buildings in the 900 area. Install one new modular high efficiency boiler, rated at 1,830 MBH output in place of the existing boilers. Connect the new boiler to the existing distribution headers at the existing boiler location. The four existing heating water distribution pumps in building 902 should be reused. The existing electrical service and controls should be reused as much as possible. Other specific requirements in these areas should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing boilers, and installation of the new boilers, associated wiring and controls.

### C. Discussion:

The three existing watertube boilers serving the 900 area buildings were installed in 1985 and are rated at 1,665 MBH output capacity each. The four existing pumps in 902 circulate HW from these boilers through the buildings. All these boilers and pumps appear to be in fair condition. Computer simulations of the 21 buildings served by these boilers determined that the current combined capacity of 4,995 MBH is about 2 ½ times the amount required to adequately heat the buildings¹. The existing boilers are therefore operating at an inefficient, low load condition most of the time. The new high efficiency modular boiler is designed to maintain extremely high efficiencies even at very low load conditions and is therefore recommended to replace the existing boilers. The decrease in the boiler output capacity to 1,830 MBH is recommended to more closely match the heating load in the buildings.

### D. Savings Calculations:

The monthly peak demand and energy consumptions of the existing and proposed boilers and HW pumps were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing boilers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>3</sup>.

The new high efficiency, modular type boiler modeled was rated at 1,830 MBH output. Full and part load performance data from Aerco International were used in the computer simulations of the new boiler energy usage<sup>4</sup>. An equipment list with specific data on the new boiler and existing pumps used in the

computer simulation is shown on page E-3.

Once the computer simulations of the existing and new boiler systems were completed, the total annual demand cost and energy consumption of the new systems were compared with that of the existing systems to determine the annual savings<sup>5</sup>. These savings calculations are shown on page E-4. The demand and energy savings values were used in the life cycle cost analysis for this ECO.

### E. Cost Estimates

The total installation costs for this ECO were estimated on page E-5. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page E-6. The data from the life cycle cost analysis were included in the summary on page E-1.

### REFERENCES

- 1. See Appendix B for Area 900 heating system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix G for manufacturer's equipment performance data from Aerco International.
- 5. See Appendix A for utility cost analysis data, used in the savings calculations.

|                                                                                  | UAL I       | KWH MCF     | 6,574                                                              | 32,675                            | 32,675                            | 13,052                            | 9,811              |  |  |  |  |
|----------------------------------------------------------------------------------|-------------|-------------|--------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------|--|--|--|--|
|                                                                                  | ES          | WKS         | 56                                                                 | 56                                | 56                                | 56                                | 26                 |  |  |  |  |
| 00                                                                               | OPER. TIMES | DAYS        | 7                                                                  | 7                                 | 7                                 | 7                                 | 7                  |  |  |  |  |
| AREA 9                                                                           | Q           | HRS         | 24                                                                 | 24                                | 24                                | 24                                | 24                 |  |  |  |  |
| AM HOUSTON,                                                                      | FULL        | LOAD        | 2,000 MBH                                                          | 3.73 KW                           | 3.73 KW                           | 1.49 KW                           | 1.12 KW            |  |  |  |  |
| :0-B, FORT S/<br>35                                                              | YEAR        | INSTALLED   | New                                                                | Exist                             | Exist                             | Exist                             | Exist              |  |  |  |  |
| PMENT LIST FOR: EC                                                               |             | AREA SERVED | Area 900                                                           | Area 900                          | Area 900                          | Area 900                          | Bldg. 902          |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-B, FORT SAM HOUSTON, AREA 900 JUNE 2, 1995 |             | DESCRIPTION | Aerco #KC-2000 GWB<br>natural draft, watertube<br>1,758 MBH output | Weinman<br>200 gpm, 38 ft<br>5 HP | Weinman<br>115 gpm, 30 ft<br>5 HP | Weinman<br>115 gpm, 30 ft<br>2 HP | Peerless<br>1.5 HP |  |  |  |  |
|                                                                                  |             | Ω           | -                                                                  | -                                 | -                                 | -                                 | ~                  |  |  |  |  |
|                                                                                  |             | ITEM        | Hot Water Boiler                                                   | Heating Water Pump                | Heating Water Pump                | Heating Water Pump                | Heating Water Pump |  |  |  |  |

### 900 AREA

| ITEM             |      |      |      | EXIS. |      | ENTR/ |       | LER PL<br>ID (KW) | ANT   |      |      |      | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|------------------|------|------|------|-------|------|-------|-------|-------------------|-------|------|------|------|------------------------------------|------------------------------------|
|                  | Jan  | Feb  | Mar  | Apr   | May  | Jun   | Jul   | Aug               | Sep   | Oct  | Nov  | Dec  | ((\(\nu\)                          | (MCF)                              |
| Watertube Boiler |      |      |      |       |      |       |       |                   |       |      |      |      |                                    | 7,809                              |
| HW Pump          | 3.7  | 3.7  | 3.7  | 3.7   | 3.7  | 3.7   | 3.7   | 3.7               | 3.7   | 3.7  | 3.7  | 3.7  | 32,675                             |                                    |
| HW Pump          | 3.7  | 3.7  | 3.7  | 3.7   | 3.7  | 3.7   | 3.7   | 3.7               | 3.7   | 3.7  | 3.7  | 3.7  | 32,675                             |                                    |
| HW Pump          | 1.5  | 1.5  | 1.5  | 1.5   | 1.5  | 1.5   | 1.5   | 1.5               | 1.5   | 1.5  | 1.5  | 1.5  | 13,052                             |                                    |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1   | 1.1  | 1.1   | 1.1   | 1.1               | 1.1   | 1.1  | 1.1  | 1.1  | 9,811                              |                                    |
| Totals           | 10.0 | 10.0 | 10.0 | 10.0  | 10.0 | 10.0  | 10.0  | 10.0              | 10.0  | 10.0 | 10.0 | 10.0 | 88,213                             | 7,809                              |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50  | 7.50 | 10.00 | 10.00 | 10.00             | 10.00 | 7.50 | 7.50 | 7.50 |                                    |                                    |
| Cost (\$)        | 75   | 75   | 75   | 75    | 75   | 100   | 100   | 100               | 100   | 75   | 75   | 75   |                                    |                                    |

Total Demand

1,000 \$/yr

Total Energy

301 MMBTU/yr

(electric)

Total Energy

7,809 MMBTU/yr

(gas)

| ITEM           |      |      | ECO-E | 3: NEV | V CENT | FRAL H |       |       | NCY BO | OILER |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|----------------|------|------|-------|--------|--------|--------|-------|-------|--------|-------|------|------|---------------------------|---------------------------|
|                | Jan  | Feb  | Mar   | Apr    | May    | Jun    | Jul   | Aug   | Sep    | Oct   | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Modular Boiler |      |      |       |        |        |        |       |       |        |       |      |      |                           | 6,574                     |
| HW Pump        | 3.7  | 3.7  | 3.7   | 3.7    | 3.7    | 3.7    | 3.7   | 3.7   | 3.7    | 3.7   | 3.7  | 3.7  | 32,675                    |                           |
| HW Pump        | 3.7  | 3.7  | 3.7   | 3.7    | 3.7    | 3.7    | 3.7   | 3.7   | 3.7    | 3.7   | 3.7  | 3.7  | 32,675                    |                           |
| HW Pump        | 1.5  | 1.5  | 1.5   | 1.5    | 1.5    | 1.5    | 1.5   | 1.5   | 1.5    | 1.5   | 1.5  | 1.5  | 13,052                    |                           |
| HW Pump        | 1.1  | 1.1  | 1.1   | 1.1    | 1.1    | 1.1    | 1.1   | 1.1   | 1.1    | 1.1   | 1.1  | 1.1  | 9,811                     |                           |
| Total (KW)     | 10.0 | 10.0 | 10.0  | 10.0   | 10.0   | 10.0   | 10.0  | 10.0  | 10.0   | 10.0  | 10.0 | 10.0 | 88,213                    | 6,574                     |
| Rate (\$/KW)   | 7.50 | 7.50 | 7.50  | 7.50   | 7.50   | 10.00  | 10.00 | 10.00 | 10.00  | 7.50  | 7.50 | 7.50 |                           |                           |
| Cost (\$)      | 75   | 75   | 75    | 75     | 75     | 100    | 100   | 100   | 100    | 75    | 75   | 75   | 1                         |                           |

Total Demand

1,000 \$/yr

Demand Savings

\$/yr

**Energy Savings** 

MMBTU/yr

(electric)

Energy Savings

1,235 MMBTU/yr

| ENGINEER'S ESTIMATE                                                                                  | MATE          |               | PRC           | BABI        | OF PROBABLE COST | ST         |             |          |
|------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------|------------------|------------|-------------|----------|
| LOCATION:                                                                                            |               | PROJECT NO:   | ST NO:        |             | 03-0185.04       |            | DATE:       | 6/16/95  |
| AKEA 900, BUIDING 902, FORT SAM HOUSTON                                                              |               | BY:           | PIEPER, C.A.  | S.A.        |                  | НЭ         | снескер ву: | KLK      |
| PROJECT DESCRIPTION: ECO-B, Replace Existing Central Boilers With New High Efficiency Modular Boiler | Boilers \     | With Ne       | w High E      | fficiency h | dodular Bo       | iler       |             |          |
|                                                                                                      | QUAI          | QUANTITY      |               | LABOR       |                  | MATERIAL   | RIAL        | TOTAL    |
| ITEM DESCRIPTION                                                                                     | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate        | Total            | Unit Price | Totai       | COST     |
|                                                                                                      |               |               |               |             |                  |            |             |          |
| Remove Boilers                                                                                       | Ю             | EA            | 09            | \$24.64     | \$4,435          | \$500      | \$1,500     | \$5,935  |
| Man Bailer AEPCO # KC 2000 GWB Water Tibe 1758 MBH                                                   | -             | FA            | 80            | \$24.64     | \$1.971          | \$18,000   | \$18,000    | \$19,971 |
|                                                                                                      |               |               |               |             |                  |            |             |          |
|                                                                                                      |               |               |               |             |                  |            |             |          |
| pipe Assembly & valves                                                                               | -             | JOB           | 28            | \$24.64     | 069\$            | \$2,400    | \$2,400     | \$3,090  |
| Boiler Breachina Stainless steel                                                                     | 5             | 7             | 2             | \$24.64     | \$1,971          | \$147      | \$5,880     | \$7,851  |
| Reconnect Controls                                                                                   | -             | JOB           | 10            | \$24.64     | \$246            | \$55       | \$55        | \$301    |
| Reconnect Electrical                                                                                 | -             | JOB           | 0             | \$26.64     | \$160            | \$64       | \$64        | \$224    |
| Reconnect Chemical system                                                                            | -             | JOB           | 2             | \$26.64     | \$133            | \$50       | \$50        | \$183    |
|                                                                                                      |               |               |               |             |                  |            |             |          |
| Test, Balance & Start-up                                                                             | -             | SI            | 5             | \$25.64     | \$256            |            |             | \$256    |
|                                                                                                      |               |               |               |             |                  |            |             |          |
|                                                                                                      |               |               |               | SUBTOTAL    | \$9,862          |            | \$27,949    | \$37,811 |
| ONI SOVI ICE THIS                                                                                    |               |               | 0 & P @ 2     | 20%         | \$1,972          |            | \$5,590     | \$7,562  |
| TOTI TOTI TOTI TOTI                                                                                  |               |               |               | SUBTOTAL    | \$11,834         |            | \$33,539    | \$45,373 |
| 612 MAIN STREET SLITE 1500                                                                           |               | ַ             | DESIGN @ 6%   | %9          |                  |            |             | \$2,722  |
| FORT WORTH, TEXAS 76102-3922                                                                         |               |               |               | SUBTOTAL    |                  |            |             | \$48,095 |
| (817) 335-3000 * FAX (817) 335-1025                                                                  |               |               | SIOH @ 5.     | 5.5%        |                  |            |             | \$2,496  |
|                                                                                                      | 1             |               |               | TOTAL       |                  |            |             | \$50,591 |

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) REGION NOS. 6 CENSUS: 3 INSTALLATION & LOCATION: FSH PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-B 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER ANALYSIS DATE: 1. INVESTMENT A. CONSTRUCTION COST 45373. B. SIOH 2496. C. DESIGN COST 2722. D. TOTAL COST (1A+1B+1C) \$ E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE G. TOTAL INVESTMENT (1D - 1E - 1F) 50591. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) 6.28 A. ELECT S 0. Ο. 15.08 0. .00 B. DIST \$ 0. 0. 18.57 0. C. RESID \$ .00 0. 0. 21.02 0. \$ 3285. \$ 0. D. NAT G \$ 2.66 1235. 18.58 61037. .00 0. 0. E. COAL \$ 16.83 0. F. PPG \$ .00 0. 17.38 0. 0. M. DEMAND SAVINGS 0. 14.88 0. N. TOTAL 1235. 61037. 3285. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) \$ 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 Ś (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) ITEM OC FACTR SAVINGS(+)/ (1) COST(-)(4)(2) (3) 0. d. TOTAL 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 3285. 15.40 YEARS 5. SIMPLE PAYBACK PERIOD (1G/4) 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 61037. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =1.21

LIFE CYCLE COST ANALYSIS SUMMARY

(IF < 1 PROJECT DOES NOT QUALIFY)

STUDY: FSH

### ENERGY CONSERVATION OPPORTUNITY (ECO)

ECO NO:

F

DATE:

6/15/95

ECO TITLE:

Replace Existing Central Boilers With High Efficiency Modular Boilers

INSTALLATION:

Fort Sam Houston, San Antonio, Texas

LOCATION:

Area 2200, Building 2265

### A. Summary:

| Electrical Energy Savings | 38     | MMBTU/yr |
|---------------------------|--------|----------|
| Electrical Demand Savings | 378    | \$/yr    |
| Gas Energy Savings        | 910    | MMBTU/yr |
| Total Energy Savings      | 948    | MMBTU/yr |
| Total Cost Savings        | 3,037  | \$/yr    |
| Total Investment          | 78,553 | \$       |
| Simple Payback            | 25.8   | yrs      |
| SIR                       | 0.69   |          |
|                           |        |          |

### B. ECO Description:

Remove the three existing watertube boilers and three 15 HP heating water (HW) distribution pumps in building 2265, which are serving four large buildings in the 2200 area. Install two new modular high efficiency boilers, rated at 1,830 MBH and 915 MBH output, and two new HW distribution pumps, one rated at 7 ½ HP and the other at 5 HP. Connect the new boilers and pumps to the distribution piping at the existing boiler and pump locations. The existing electrical service and controls should be reused as much as possible. Specific requirements in these areas should be determined by the design engineer responsible for this project. The boilers and pumps should be sequenced to operate only as needed to maintain the supply water temperature setpoint of approximately 180°F. This project will require engineering drawings and specifications, demolition and removal of the existing boilers and pumps, and installation of the new boilers, pumps, associated wiring and controls.

### C. Discussion:

The three existing watertube boilers serving the 2200 area buildings were installed in 1988 and are rated at 2,240 MBH output capacity each. The three 15 HP pumps circulate HW from these boilers through buildings 2263, 2264, 2265 and 2266. All these boilers appear to be in fair condition. Computer simulations of the four buildings served by these boilers determined that the current combined capacity of 6,720 MBH is over two times the amount required to adequately heat the buildings<sup>6</sup>. The existing boilers are therefore operating at an inefficient, low load condition most of the time. Also, because of the constant flow rate requirements of the boilers, excessive pumping energy is expended. By staging two new high efficiency modular boilers to operate only as needed, a substantial energy savings can be realized. Also, a decrease in the combined boiler output capacity to 2,745 MBH is recommended to more closely match the heating load in the buildings and reduce the associated pumping energy consumption.

### D. Savings Calculations:

The monthly peak demand and energy consumptions of the existing and proposed boilers and HW pumps were calculated using the Trace 600 computer program<sup>7</sup>. The buildings served by the existing boilers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>8</sup>.

The two new high efficiency, modular type boilers modeled were rated at 1,830 MBH and 915 MBH output. Full and part load performance data from Aerco International were used in the computer simulations of the new boiler energy usages<sup>9</sup>. An equipment list with specific data on the new boilers and pumps used in the computer simulation is shown on page E-9.

Once the computer simulations of the existing and new boiler systems were completed, the total annual demand cost and energy consumption of the new systems were compared with that of the existing systems to determine the annual savings<sup>10</sup>. These savings calculations are shown on page E-10. The demand and energy savings values were used in the life cycle cost analysis for this ECO. The results of these savings calculations were as follows:

| New Boiler Type          | Gas      | Electrical | Demand  |
|--------------------------|----------|------------|---------|
|                          | Savings  | Savings    | Savings |
|                          | MMBTU/yr | MMBTU/yr   | \$/yr   |
| Modular, High Efficiency | 910      | 38         | 378     |

### E. Cost Estimates

The total installation costs for this ECO were estimated on page E-11. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page E-12. The data from the life cycle cost analysis were included in the summary on page E-7.

### **REFERENCES**

- 6. See Appendix B for Area 2200 heating system load profile.
- See Appendix B for computer model input assumptions and data, and energy consumption output data.
- See Appendix C for building field data and existing HVAC system data.
- 9. See Appendix G for manufacturer's equipment performance data from Aerco International.
- 10. See Appendix A for utility cost analysis data, used in the savings calculations.

|                                                                      | L USE       | Z<br>C    | 3,983                                                             | 26                                                               |                           |                        |  |  |  |  |
|----------------------------------------------------------------------|-------------|-----------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|------------------------|--|--|--|--|
|                                                                      | ANNUAL USE  | KWH       |                                                                   |                                                                  | 24,326                    | 16,203                 |  |  |  |  |
|                                                                      | ES.         | WKS       | 26                                                                | 26                                                               | 26                        | 26                     |  |  |  |  |
| 500                                                                  | OPER. TIMES | DAYS      | 7                                                                 | 7                                                                | 7                         | 7                      |  |  |  |  |
| REA 2                                                                | o S         | HRS       | 24                                                                | 24                                                               | 24                        | 24                     |  |  |  |  |
| M HOUSTON,                                                           | FULL        | LOAD      | 2,000 MBH                                                         | 1,000 MBH                                                        | 5.60 KW                   | 3.73 KW                |  |  |  |  |
| O-F, FORT SA                                                         | YEAR        | INSTALLED | New                                                               | New                                                              | New                       | New                    |  |  |  |  |
| MENT LIST FOR: ECO-<br>JUNE 2, 1995                                  | ARFA SFRVED |           | Area 2200                                                         | Area 2200                                                        | Area 2200                 | Area 2200              |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-F, FORT SAM HOUSTON, AREA 2200 | NOITGIBOSEO |           | Aerco #KC-2000 GWB<br>natural draft, watertube<br>1830 MBH output | Aerco #KC-1000 GWB<br>natural draft, watertube<br>915 MBH output | 166 gpm, 110 ft<br>7.5 HP | 83 gpm, 110 ft<br>5 HP |  |  |  |  |
|                                                                      | 21          |           | -                                                                 | -                                                                | -                         | 1                      |  |  |  |  |
|                                                                      | TEM         |           | Hot Water Boiler                                                  | Hot Water Boiler                                                 | Heating Water Pump        | Heating Water Pump     |  |  |  |  |

### 2200 AREA

| ITEM             |      |      |      | EXIS |      | ENTRA<br>LY PEAK |       |       | ANT   |      |      |      | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|------------------|------|------|------|------|------|------------------|-------|-------|-------|------|------|------|------------------------------------|------------------------------------|
|                  | Jan  | Feb  | Mar  | Apr  | May  | Jun              | Jul   | Aug   | Sep   | Oct  | Nov  | Dec  | (17471)                            | (IVICT)                            |
| Watertube Boiler |      |      |      |      |      |                  |       |       |       |      |      |      |                                    | 4,936                              |
| Watertube Boiler |      |      |      |      |      |                  |       |       |       |      |      |      |                                    | 13                                 |
| HW Pump          | 11.2 | 11.2 | 11.2 | 11.2 |      |                  |       |       |       |      | 11.2 | 11.2 | 48,609                             |                                    |
| HW Pump          | 0.6  | 0.6  | 0.6  | 0.6  |      |                  |       |       |       |      | 0.6  | 0.6  | 2,433                              |                                    |
| HW Pump          | 11.2 | 11.2 |      |      |      |                  |       |       |       |      |      | 11.2 | 470                                |                                    |
| HW Pump          | 0.6  | 0.6  |      |      |      |                  |       |       |       |      |      | 0.6  | 24                                 |                                    |
| Totals           | 23.6 | 23.6 | 11.8 | 11.8 |      |                  |       |       |       |      | 11.8 | 23.6 | 51,536                             | 4,949                              |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50 | 7.50 | 10.00            | 10.00 | 10.00 | 10.00 | 7.50 | 7.50 | 7.50 |                                    |                                    |
| Cost (\$)        | 177  | 177  | 89   | 89   |      |                  |       |       |       |      | 89   | 177  |                                    |                                    |

Total Demand

797 \$/yr

Total Energy

176 MMBTU/yr

(electric)

Total Energy

4,949 MMBTU/yr

(gas)

| ITEM           |      | ECO-I | F: NEV | V CEN |      | IIGH EI<br>LY PEAK |       |       | ODULA | AR BOI | LERS |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|----------------|------|-------|--------|-------|------|--------------------|-------|-------|-------|--------|------|------|---------------------------|---------------------------|
|                | Jan  | Feb   | Mar    | Apr   | May  | Jun                | Jul   | Aug   | Sep   | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Modular Boiler |      |       |        |       |      |                    |       |       |       |        |      |      |                           | 3,983                     |
| Modular Boiler |      |       |        |       |      |                    |       |       |       |        |      |      |                           | 56                        |
| HW Pump        | 5.6  | 5.6   | 5.6    | 5.6   |      |                    |       |       |       |        | 5.6  | 5.6  | 24,326                    |                           |
| HW Pump        | 3.7  | 3.7   | 3.7    | 3.7   |      |                    |       |       |       |        | 3.7  | 3.7  | 16,203                    |                           |
| Total (KW)     | 9.3  | 9.3   | 9.3    | 9.3   |      |                    |       |       |       |        | 9.3  | 9.3  | 40,529                    | 4,039                     |
| Rate (\$/KW)   | 7.50 | 7.50  | 7.50   | 7.50  | 7.50 | 10.00              | 10.00 | 10.00 | 10.00 | 7.50   | 7.50 | 7.50 |                           |                           |
| Cost (\$)      | 70   | 70    | 70     | 70    |      |                    |       |       |       |        | 70   | 70   |                           |                           |

**Total Demand** 

419 \$/yr

**Demand Savings** 

378 \$/yr

Energy Savings

38 MMBTU/yr

(electric)

**Energy Savings** 

910 MMBTU/yr

# ENGINEER'S ESTIMATE OF PROBABLE COST

CHECKED BY: 03-0185.04 PROJECT NO: AREA 2200, BUILDING 2265, FORT SAM HOUSTON LOCATION:

KLK

6/16/95

DATE:

BY: PIEPER, C.A.

ECO-F, Replace Existing Central Boilers With High Efficiency Modular Boilers PROJECT DESCRIPTION:

|                                                        | OUA<br>OUA    | QUANTITY      |               | LABOR   |         | MATERIAL    | RIAL     | TOTAL    |
|--------------------------------------------------------|---------------|---------------|---------------|---------|---------|-------------|----------|----------|
| ITEM DESCRIPTION                                       | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate    | Total   | Unit Price  | Total    | COST     |
|                                                        |               |               |               |         |         |             |          |          |
| Remove Boiler                                          | ы             | EA            | 60.00         | \$24.64 | \$4,435 | \$500.00    | \$1,500  | \$5,935  |
| Remove Pump                                            | ы             | EA            | 6.00          | \$24.64 | \$444   |             |          | \$444    |
| Install New Boiler                                     |               |               |               |         |         |             |          |          |
| AFRCO # KC 2000 GWB Natural Draft. Water Tube 1830 MBH | +             | EA            | 81.00         | \$24.64 | \$1,996 | \$18,001.00 | \$18,001 | \$19,997 |
| AFROO # KC 1000 GWB Natural Draft. Water Tube 915 MBH  | -             | EA            | 40.00         | \$24.64 | \$986   | \$12,000.00 | \$12,000 | \$12,986 |
| Leatell New Pirms 75. Ho                               |               | EA            | 11.00         | \$24.64 | \$271   | \$1,669.00  | \$1,669  | \$1,940  |
| Horal New Plans R O HP                                 | -             | EA            | 10.00         | \$24.64 | \$246   | \$1,600.00  | \$1,600  | \$1,846  |
| Pine Agaembly & valves Boiler                          | -             | JOB           | 42.00         | \$24.64 | \$1,035 | \$3,600.00  | \$3,600  | \$4,635  |
| Pine Agaembly & valves Pimp                            | 2             | EA            | 9.00          | \$24.64 | \$444   | \$350.00    | \$700    | \$1,144  |
| Boiler Breaching Stainless attect                      | 5             | I.F           | 2.00          | \$24.64 | \$1,971 | \$147.00    | \$5,880  | \$7,851  |
| Reconnect Controls                                     | -             | JOB           | 20.00         | \$24.64 | \$493   | \$55.00     | \$55     | \$548    |
| Reconnect Flectrical                                   | -             | JOB           | 16.00         | \$24.64 | \$394   | \$200.00    | \$200    | \$594    |
| Reconnect Chemical system                              | -             | JOB           | 10.00         | \$24.64 | \$246   | \$50.00     | \$50     | \$296    |
|                                                        |               |               |               |         |         |             |          |          |
| Test , Balance & Start-up                              | -             | 67            | 20.00         | \$24.64 | \$493   |             |          | \$493    |
|                                                        |               |               |               |         |         |             |          |          |
|                                                        |               |               |               |         |         |             |          |          |

# **HUITT-ZOLLARS, INC.**

(817) 335-3000 \* FAX (817) 335-1025 FORT WORTH, TEXAS 76102-3922 **ENGINEERS / ARCHITECTS** 512 MAIN STREET, SUITE 1500

|             | SUBTOTAL | \$13,454 | \$45,255 | \$58,709 |
|-------------|----------|----------|----------|----------|
| O&P@20%     | *        |          | \$9,051  | \$11,742 |
|             | SUBTOTAL | \$16,145 | \$54,306 | \$70,451 |
| DESIGN @ 6% | *        |          |          | \$4,227  |
|             | SUBTOTAL |          |          | \$74,678 |
| SIOH @ 5.5% |          |          |          | \$3,875  |
|             | TOTAL    |          |          | \$78,553 |

STUDY: FSH ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID FY95 (92) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-F ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 70451. B. SIOH 3875. C. DESIGN COST \$ 4227. D. TOTAL COST (1A+1B+1C) \$ 78553. E. SALVAGE VALUE OF EXISTING EQUIPMENT S F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 78553. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) A. ELECT \$ 6.28 38. 239. 15.08 3599. 0. B. DIST \$ .00 18.57 0. 0. C. RESID \$ .00 0. 0. 21.02 0. 910. 2421. D. NAT G \$ 2.66 18.58 \$ 44975. E. COAL S .00 0. 16.83 0. 0. F. PPG .00 0. 17.38 0. 0. M. DEMAND SAVINGS 378. 14.88 5625. 948. \$ N. TOTAL 3037. 54198. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 0. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 0. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) ITEM oc FACTR SAVINGS(+)/ (1)(2) (3) COST(-)(4)d. TOTAL 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 3037. 5. SIMPLE PAYBACK PERIOD (1G/4) 25.86 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 54198. 7. SAVINGS TO INVESTMENT RATIO .69 (SIR) = (6 / 1G) =

LIFE CYCLE COST ANALYSIS SUMMARY

(IF < 1 PROJECT DOES NOT QUALIFY)

### ENERGY CONSERVATION OPPORTUNITY (ECO)

ECO NO:

G

DATE:

6/15/95

ECO TITLE:

Replace Existing Individual Building Chillers With Central Chiller Plant

INSTALLATION:

Fort Sam Houston, San Antonio, Texas

LOCATION:

Quadrangle Area

### A. Summary:

| Electrical Energy Savings | 2,212   | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 14,116  | \$/yr    |
| Gas Energy Savings        | 0       | MMBTU/yr |
| Total Energy Savings      | 2,212   | MMBTU/yr |
| Total Cost Savings        | 39,257  | \$/yr    |
| Total Investment          | 824,178 | \$       |
| Simple Payback            | 20.9    | yrs      |
| SIR                       | 0.71    |          |

### B. ECO Description:

Remove the seven existing air cooled, reciprocating chillers serving buildings 4015, 56, 16 and 44. Install a chilled water supply and return piping loop between the buildings in this area and terminate loop behind building 56, near the existing air cooled chiller installation. Install two new 275 ton, air cooled screw chillers in that location. Install two new 30 HP chilled water distribution pumps by new chillers to circulate water from new chillers through new distribution loop. Construct 10' high stone wall around new chiller plant to match local historical architecture. The existing chilled water pumps that serve buildings where chillers were removed will be reused to circulate chilled water from the new loop through the buildings. These existing pumps should be connected into the new distribution piping at the existing chiller locations. All new controls and electrical services should be installed at building 56 to serve the new central chillers and pumps. Other specific requirements should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing chillers and installation of the new chillers, associated wiring and controls.

### C. Discussion:

The seven existing air cooled, reciprocating chillers in the Quadrangle area were installed between 1983 and 1994. They serve as the primary cooling systems for the four historically significant buildings. They generally appear to be in fair condition at this time. However, the cost of maintaining so many chillers is excessive and difficult for the maintenance staff. It is recommended that a central chiller plant, consisting of two air cooled screw machines be installed to serve all these buildings. This will not only save energy but will also reduce the maintenance costs to the installation. Computer simulations of the buildings in this area determined that the current installed capacity of 565 tons is slightly more than is required to adequately cool the buildings<sup>1</sup>. Therefore, it is recommended that the two new chillers be rated at a combined 550 tons to more closely match the cooling load of the buildings.

### D. Savings Calculations:

### 1. Energy Consumption And Savings

The monthly peak demand and energy consumptions of the existing and proposed chillers and pumps were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing chillers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>3</sup>.

The 275 ton air cooled screw chillers which were modeled by the computer had better part load performance ratings than reciprocating machines and were chosen for that reason. Full and part load performance data from McQuay Incorporated were used in the computer simulations of the new chiller energy usages. An equipment list of the specific chillers and pumps modeled for the new central plant are shown on page E-15.

Once the computer simulations of the existing and new chiller plants were completed, the total annual demand cost and energy consumption of the new central plant was compared with that of the existing individual systems to determine the annual savings for this ECO<sup>4</sup>. These savings calculations are shown on page E-16. These demand and energy savings values were used in the life cycle cost analysis.

### 2. Maintenance Cost Savings:

Maintenance cost estimates were obtained from a local maintenance contractor and were used to estimate the maintenance savings from reducing the total number of air cooled chillers in this area from seven down to two<sup>5</sup>. Based on an annual maintenance cost of \$2,250 per chiller, the total maintenance cost savings from this ECO is estimated to be \$11,250 per year. This figure was used in the life cycle cost analysis.

### E. Cost Estimates

The total installation costs for the new central chiller plant were estimated on page E-17. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page E-18. The data from the summary sheet were presented in the ECO summary on page E-13.

### REFERENCES

- 1. See Appendix B for Quadrangle Area cooling system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix A for utility cost analysis data, used in the savings calculations.
- 5. See Appendix G for maintenance contractor cost estimates for air cooled chillers.

|                                                       | ANNUAL USE KWH MCF              | _                                                                | 253,553                                                          | 98,830                   | 25,759                   |  |  |  |  |
|-------------------------------------------------------|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------------------|--|--|--|--|
|                                                       | WKS                             |                                                                  | 56                                                               | 56                       | 56                       |  |  |  |  |
| E AREA                                                | OPER. TIMES<br>HRS   DAYS   WKS | 7                                                                | 7                                                                | 7                        | 7                        |  |  |  |  |
| RANGL                                                 | OPE                             | 24                                                               | 24                                                               | 24                       | 24                       |  |  |  |  |
| ECO-G, FORT SAM HOUSTON, QUADRANGLE AREA JUNE 2, 1995 | FULL                            | 351 KW                                                           | 351 KW                                                           | 22.38 KW                 | 22.38 KW                 |  |  |  |  |
| FORT SAM HG                                           | YEAR                            | New                                                              | New                                                              | New                      | New                      |  |  |  |  |
| r LIST FOR: ECO-G,<br>JUNE 2, 198                     | AREA SERVED                     | Quadrangle Area                                                  | Quadrangle Area                                                  | Quadrangle Area          | Quadrangle Area          |  |  |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR:                     | DESCRIPTION                     | McQuay, electric<br>air cooled, single screw<br>275 Tons, R-134a | McQuay, electric<br>air cooled, single screw<br>275 Tons, R-134a | 660 gpm, 120 ft<br>30 HP | 660 gpm, 120 ft<br>30 HP |  |  |  |  |
| PR                                                    | ΩTY.                            | -                                                                | -                                                                | 1                        | -                        |  |  |  |  |
|                                                       | ITEM                            | Water Chiller                                                    | Water Chiller                                                    | Chilled Water Pump       | Chilled Water Pump       |  |  |  |  |

### QUADRANGLE AREA

| ITEM            |      |      | E    | EXISTI | NG IND<br>MONTH |       |        |        | LANTS |       |      |      | ANNUAL<br>ENERGY<br>USAGE<br>(KWH)      | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|-----------------|------|------|------|--------|-----------------|-------|--------|--------|-------|-------|------|------|-----------------------------------------|------------------------------------|
|                 | Jan  | Feb  | Mar  | Apr    | May             | Jun   | Jul    | Aug    | Sep   | Oct   | Nov  | Dec  | ((((((((((((((((((((((((((((((((((((((( | (MCF)                              |
| Water Chiller   |      |      |      |        | 83.1            | 86.8  | 90.0   | 89.3   | 83.4  | 76.9  |      |      | 180,278                                 |                                    |
| Water Chiller   |      |      |      |        | 36.9            | 40.4  | 43.9   | 44.1   | 37.5  | 27.4  |      |      | 76,755                                  |                                    |
| Water Chiller   |      |      |      |        | 159.0           | 185.9 | 188.5  | 189.2  | 166.5 | 157.2 |      |      | 393,031                                 |                                    |
| Water Chiller   |      |      |      |        | 155.6           | 170.6 | 184.6  | 185.3  | 160.4 | 119.9 |      |      | 122,759                                 |                                    |
| Water Chiller   |      |      |      |        | 98.2            | 106.1 | 113.6  | 115.1  | 103.4 | 93.6  |      |      | 296,194                                 |                                    |
| Water Chiller   |      |      |      |        | 143.1           | 155.5 | 166.4  | 168.7  | 151.4 | 137.2 |      |      | 243,230                                 |                                    |
| Water Chiller   |      |      |      |        | 143.1           | 155.5 | 166.4  | 168.7  | 151.4 | 121.0 |      |      | 104,234                                 |                                    |
| CHW Pump        |      |      |      |        | 3.7             | 3.7   | 3.7    | 3.7    | 3.7   | 3.7   |      |      | 16,472                                  |                                    |
| CHW Pump        |      |      |      |        | 3.7             | 3.7   | 3.7    | 3.7    | 3.7   | 3.7   |      |      | 16,472                                  |                                    |
| CHW Pump        |      |      |      |        | 3.7             | 3.7   | 3.7    | 3.7    | 3.7   | 3.7   |      |      | 16,472                                  |                                    |
| CHW Pump        |      |      |      |        | 5.6             | 5.6   | 5.6    | 5.6    | 5.6   | 5.6   |      |      | 24,730                                  |                                    |
| CHW Pump        |      |      |      |        | 5.6             | 5.6   | 5.6    | 5.6    | 5.6   | 5.6   |      |      | 24,730                                  |                                    |
| CHW Pump        |      |      |      |        | 14.9            | 14.9  | 14.9   | 14.9   | 14.9  | 14.9  |      |      | 65,887                                  |                                    |
| CHW Pump        |      |      |      |        | 3.7             | 3.7   | 3.7    | 3.7    | 3.7   | 3.7   |      |      | 7,822                                   |                                    |
| CHW Pump        |      |      |      |        | 3.7             | 3.7   | 3.7    | 3.7    | 3.7   | 3.7   |      |      | 3,036                                   |                                    |
| Evap. Condenser |      |      |      |        | 9.3             | 9.3   | 9.3    | 9.3    | 9.3   | 9.3   |      |      | 41,201                                  |                                    |
| Totals          |      |      |      |        | 872.9           | 954.7 | 1007.3 | 1014.3 | 907.9 | 787.1 |      |      | 1,633,303                               |                                    |
| Rate (\$/KW)    | 7.50 | 7.50 | 7.50 | 7.50   | 7.50            | 10.00 | 10.00  | 10.00  | 10.00 | 7.50  | 7.50 | 7.50 |                                         |                                    |
| Cost (\$)       |      |      |      |        | 6,547           | 9,547 | 10,073 | 10,143 | 9,079 | 5,903 |      |      |                                         |                                    |

**Total Demand** 

51,292 \$/yr

Total Energy

5,574 MMBTU/yr

(electric)

Total Energy

MMBTU/yr

(gas)

| ITEM          |      | EC   | :O-G: | NEW C | ENTRA<br>MONTH |       |       |       | REW C | HILLEF | RS   |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|---------------|------|------|-------|-------|----------------|-------|-------|-------|-------|--------|------|------|---------------------------|---------------------------|
|               | Jan  | Feb  | Mar   | Apr   | May            | Jun   | Jui   | Aug   | Sep   | Oct    | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Water Chiller |      |      |       |       | 287.6          | 328.3 | 351.0 | 351.0 | 306.5 | 271.9  |      |      | 607,003                   |                           |
| Water Chiller |      |      |       |       | 287.6          | 328.3 | 351.0 | 351.0 | 306.5 | 216.4  |      |      | 253,553                   |                           |
| CHW Pump      |      |      |       |       | 22.4           | 22.4  | 22.4  | 22.4  | 22.4  | 22.4   |      |      | 98,830                    |                           |
| CHW Pump      |      |      |       |       | 22.4           | 22.4  | 22.4  | 22.4  | 22.4  | 22.4   |      |      | 25,759                    |                           |
| Total (KW)    |      |      |       |       | 620.0          | 701.4 | 746.8 | 746.8 | 657.8 | 533.1  |      |      | 985,145                   |                           |
| Rate (\$/KW)  | 7.50 | 7.50 | 7.50  | 7.50  | 7.50           | 10.00 | 10.00 | 10.00 | 10.00 | 7.50   | 7.50 | 7.50 |                           | -                         |
| Cost (\$)     |      |      |       |       | 4,650          | 7,014 | 7,468 | 7,468 | 6,578 | 3,998  |      |      |                           |                           |

Total Demand

37,176 \$/yr

Demand Savings Energy Savings 14,116 \$/yr

2,212 MMBTU/yr

(electric)

**Energy Savings** 

MMBTU/yr

| ENGINEER'S ESTI                                                                                      | MATE          | OF            | PRC           | BAB                      | ESTIMATE OF PROBABLE COST | ST          |             |           |
|------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|--------------------------|---------------------------|-------------|-------------|-----------|
| LOCATION:                                                                                            |               | PROJE         | PROJECT NO:   |                          | 03-0185.04                |             | DATE:       | 6/16/95   |
| QUAD AKEA, FORI SAM HOUSION                                                                          |               | BY:           | PIEPER, (     | PIEPER, C.A./KOTHMANN,K. | MANN,K.                   | CH          | снескер ву: | WHW       |
| PROJECT DESCRIPTION: ECO-G, Replace Existing Individual Building Chillers With Central Chiller Plant | ual Build     | ling Chil     | lers With     | ı Central                | Chiller Plan              | 4           |             |           |
|                                                                                                      | QUAN          | QUANTITY      |               | LABOR                    | R                         | MATERIAL    | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                     | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate                     | Total                     | Unit Price  | Total       | COST      |
| Prefabricated Inulated ConduitSCH 40 BIK Stl Pipe W/ PVC Jacket                                      |               |               |               | \$24.64                  |                           |             |             |           |
| <u>~</u>                                                                                             | 2556          | LF            | 1.28          | \$24.64                  | \$80,614                  | \$17.88     | \$45,701    | \$126,315 |
| 4"                                                                                                   | 500           | LF            | 1.04          | \$24.64                  | \$12,813                  | \$15.96     | 096'1\$     | \$20,793  |
| 2-1/2"                                                                                               | 588           | LF            | 0.94          | \$24.64                  | \$13,619                  | \$12.54     | \$7,374     | \$20,993  |
| Chiller Yard Enclosure 40' X 40' W/ Steel Gate 10'-0" High                                           | -             | JOB           |               | \$24.64                  | \$11,291                  |             | \$38,707    | \$49,998  |
| Stone Vent Wall (12" X 12" X 18") Historicly Correct                                                 |               |               |               |                          |                           |             |             |           |
|                                                                                                      |               |               |               |                          |                           |             |             |           |
| Water Chiller Air Cooled 275 TON Single Screw W/ Pipe Assembly                                       | 2             | EA            | 1420.00       | \$24.64                  | \$69,978                  | 00.000,66\$ | \$198,000   | \$267,978 |
| Chilled Water Pump 660 GPM X 120' 30 HP W/ Pipe Assembly                                             | 2             | EA            | 27.50         | \$24.64                  | \$1,355                   | \$3,300.00  | \$6,600     | \$7,955   |
| Connect to Existina Hydronic System                                                                  | 4             | BLDG          | 75.00         | \$24.64                  | \$7,392                   | \$2,800.00  | \$11,200    | \$18,592  |
| Controls / Test & Ballance                                                                           | -             | JOB           | 90.00         | \$24.64                  | \$2,218                   | \$6,500.00  | \$6,500     | \$8,718   |
| Remove Chiller & CW pump (50 Ton ) BLDG 4015                                                         | -             | JOB           | 80.00         | \$24.64                  | \$1,971                   | \$100.00    | \$100       | \$2,071   |
| Remove Chiller & CW pump (30 Ton ) BLDG 56                                                           | 1             | JOB           | 48.00         | \$24.64                  | \$1,183                   | \$100.00    | \$100       | \$1,283   |
| Remove Chiller & CW pump (110 Ton ) BLDG 16                                                          | -             | JOB           | 150.00        | \$24.64                  | \$3,696                   | \$200.00    | \$200       | \$3,896   |
| Remove Chiller & CW pump (120 Ton ) BLDG 10                                                          | -             | JOB           | 150.00        | \$24.64                  | \$3,696                   | \$200.00    | \$200       | \$3,896   |
| Remove Chiller & CW pump BLDG 44                                                                     | 255           | TON           | 1.49          | \$24.64                  | \$9,362                   | \$1.50      | \$383       | \$9,745   |
| Remove Condenser Pump Bida 16                                                                        | 33            | EA            | 00.9          | \$24.64                  | \$444                     | \$100.00    | \$300       | \$744     |
| Electrical                                                                                           | 1             | JOB           |               |                          |                           |             | \$73,000    | \$73,000  |
|                                                                                                      |               |               | 3,            | SUBTOTAL                 | \$219,632                 |             | \$396,345   | \$615,977 |
| ONI SAVI IOZ TITILI                                                                                  |               |               | O&P@20%       | %1                       | \$43,926                  |             | \$79,269    | \$123,195 |
| HOLLI-COLLAND, INC.                                                                                  |               |               |               | SUBTOTAL                 | \$263.558                 |             | \$475,614   | \$739,172 |

512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 (817) 335-3000 \* FAX (817) 335-1025

**ENGINEERS / ARCHITECTS** 

\$739,172 \$44,350 \$783,522 \$40,654 \$824,176

\$475,614

SUBTOTAL \$263,558

TOTAL

SUBTOTAL

SIOH @ 6.5%

DESIGN @ 6%

LCCID FY95 (92) ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) INSTALLATION & LOCATION: FSH REGION NOS. 6 CENSUS: 3 PROJECT NO. & TITLE: 03018504 EEAP BOILER CHILLER STUDY FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-G ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER 1. INVESTMENT A. CONSTRUCTION COST 739172. B. SIOH 40655. C. DESIGN COST Ŝ 44351. D. TOTAL COST (1A+1B+1C) \$ 824178. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ F. PUBLIC UTILITY COMPANY REBATE 0. G. TOTAL INVESTMENT (1D - 1E - 1F) 824178. 2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994 UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS (5) A. ELECT \$ 6.28 2212. 13891. 15.08 209482. .00 B. DIST \$ 0. 0. 18.57 0. .00 C. RESID \$ 0. 0. 21.02 0. 0. 0. D. NAT G \$ 2.66 0. 18.58 0. \$ \$ E. COAL .00 0. 16.83 0. F. PPG .00 0. 17.38 0. 0. \$ 2212. \$ 14116. M. DEMAND SAVINGS 14.88 210046. N. TOTAL 28007. 419528. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) 11250. (1) DISCOUNT FACTOR (TABLE A) 14.88 (2) DISCOUNTED SAVING/COST (3A X 3A1) 167400. B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCOUNTED DISCNT COST(-) ITEM OC FACTR SAVINGS(+)/ (1) (2) (3) COST(-)(4)d. TOTAL 0. 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 167400. 4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 39257. 5. SIMPLE PAYBACK PERIOD (1G/4) 20.99 YEARS 6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C) 586928. 7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) =.71 (IF < 1 PROJECT DOES NOT QUALIFY) \*\*\*\* Project does not qualify for ECIP funding; 4,5,6 for information only.

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: FSH

### **ENERGY CONSERVATION OPPORTUNITY (ECO)**

ECO NO:

Н

DATE:

6/15/95

ECO TITLE:

Replace Existing Individual Building Boilers With Central Boiler Plant

INSTALLATION:

Fort Sam Houston, San Antonio, Texas

LOCATION:

Quadrangle Area, Building 16

### A. Summary:

| Electrical Energy Savings | -12     | MMBTU/yr |
|---------------------------|---------|----------|
| Electrical Demand Savings | 122     | \$/yr    |
| Gas Energy Savings        | -434    | MMBTU/yr |
| Total Energy Savings      | -446    | MMBTU/yr |
| Total Cost Savings        | 5,542   | \$/yr    |
| Total Investment          | 394,910 | \$       |
| Simple Payback            | 71.2    | yrs      |
| SIR                       | 0.20    |          |

### B. ECO Description:

Remove twelve existing steam boilers in building 44, which serve as the primary heating source for that building. Install a new condensate receiver, pump and buried piping to return condensate to the new central boiler plant in building 16. Provide new electrical connections as required for the new condensate pump.

Remove one 741 MBH hot water boiler from building 4015 which serves as the primary heating source for that building. Install a new 250 MBH steam to hot water generator in place of the boiler. The existing 3 HP distribution pump will remain to circulate heating water from the new generator through the building. Install a new condensate receiver, pump and buried piping to return condensate from the new generator to the new central boiler plant in building 16. Provide new electrical connections as required for the new condensate pump.

Remove one 1,614 MBH steam boiler from building 16, which serves only that building. The 3,587 MBH steam boiler in building 16 which serves it and building 56 shall remain and be used as a new central steam boiler for buildings 16, 56, 44 and 4015. Install a new condensate receiver and pump in the location where the other boiler was removed, and install new condensate return piping from there to the new central steam boiler plant in the building

Install new buried steam distribution piping from the new central steam boiler in the building out to buildings 4015, 44 and the area in building 16 where the other boiler was removed.. Connect existing steam distribution piping in buildings 44 and 16 to the new central steam distribution piping. Connect the new steam to hot water generator in building 4015 to the new central steam distribution piping.

### C. Discussion:

The twelve existing steam boilers in building 44 were installed in 1970 and are rated at a combined 2,902 MBH output capacity. The single hot water boiler in building 4015 was installed in 1983, and the two steam boilers in building 16 were installed in 1979. All of these boilers appear to be in fair to poor condition. Computer simulations of the four buildings in the Quadrangle area determined that the current combined capacity of 8,970 MBH is over two times the amount required to adequately heat the buildings<sup>1</sup>. The existing boilers are therefore operating at an inefficient, low load condition most of the

time. By eliminating the extra boilers in the area, maintenance cost savings can be realized. Also, a decrease in the combined boiler output capacity to 3,587 MBH is recommended to more closely match the heating load in the buildings.

### D. Savings Calculations:

### 1. Energy Savings:

The monthly peak demand and energy consumptions of the existing and proposed boilers and HW pump were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing boilers were modeled by the computer to provide a realistic load profile. Field data obtained from the buildings were used to create these computer building models<sup>3</sup>. An equipment list with specific data on the new central boiler system used in the computer simulation is shown on page E-21.

Once the computer simulations of the existing and new boiler systems were completed, the total annual demand cost and energy consumption of the new systems were compared with that of the existing systems to determine the annual savings<sup>4</sup>. These savings calculations are shown on page E-22. The demand and energy savings values were used in the life cycle cost analysis for this ECO.

### 2. Maintenance Savings:

Since the total number of boilers is being reduced from fifteen down to one, there will be a substantial savings in maintenance costs. Maintenance cost estimates were obtained from a local contractor and used to estimate these savings for the installation<sup>5</sup>. Based on a cost annual maintenance cost of \$475 per boiler, the total estimated maintenance cost savings for this ECO is \$6,650. This figure was used in the life cycle cost analysis.

### E. Cost Estimates

The total installation costs for this ECO were estimated on page E-23. These costs were used in the life cycle cost analysis.

### F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page E-24. The data from the life cycle cost analysis were included in the summary on page E-19.

### REFERENCES

- 1. See Appendix B for Quadrangle Area heating system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix A for utility cost analysis data, used in the savings calculations.
- 5. See Appendix G for maintenance contractor cost estimates.

|                                                                                         | ANNUAL USE  | KWH MCF     | 1,644                                                    | 9,731              |  |  |   |  |  |
|-----------------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------|--------------------|--|--|---|--|--|
| _                                                                                       | ES          | WKS         | 56                                                       | 26                 |  |  |   |  |  |
| E ARE                                                                                   | OPER. TIMES | DAYS WKS    | 7                                                        | 7                  |  |  |   |  |  |
| RANGL                                                                                   | Q           | HRS         | 24                                                       | 24                 |  |  |   |  |  |
| JUSTON, QUAE                                                                            | FULL        | LOAD        | 5,000 MBH                                                | 2.24 KW            |  |  |   |  |  |
| FORT SAM HG                                                                             | YEAR        | INSTALLED   | Exist                                                    | Exist              |  |  |   |  |  |
| T LIST FOR: ECO-H,                                                                      |             | AREA SERVED | Quadrangle Area                                          | Bldg. 4015         |  |  |   |  |  |
| PROPOSED HVAC EQUIPMENT LIST FOR: ECO-H, FORT SAM HOUSTON, QUADRANGLE AREA JUNE 2, 1995 |             | DESCRIPTION | Rite #500<br>natural draft, watertube<br>3587 MBH output | N/A<br>3 HP        |  |  | , |  |  |
| A.                                                                                      |             | Ω<br>Y      | -                                                        | -                  |  |  |   |  |  |
| r.                                                                                      |             | ITEM        | Steam Boiler                                             | Heating Water Pump |  |  |   |  |  |

### QUADRANGLE AREA

| ITEM            | Jan  | Feb  | Mar  | EXISTI<br>Apr |      | DIVIDU<br>LY PEAK<br>Jun |       |       | _ANTS | Oct  | Nov  | Dec  | ANNUAL<br>ENERGY<br>USAGE<br>(KWH) | ANNUAL<br>ENERGY<br>USAGE<br>(MCF) |
|-----------------|------|------|------|---------------|------|--------------------------|-------|-------|-------|------|------|------|------------------------------------|------------------------------------|
| Steam Boiler    |      |      |      |               |      |                          |       |       |       |      |      |      |                                    | 651                                |
| Steam Boiler    |      |      |      |               |      |                          |       |       |       |      |      |      |                                    | 267                                |
| Steam Boiler    |      |      |      |               |      |                          |       |       |       |      |      |      |                                    | 103                                |
| Steam Boiler    |      |      |      |               |      |                          |       |       |       |      |      |      |                                    | 66                                 |
| Steam Boiler    |      |      |      |               |      |                          |       |       |       |      |      |      |                                    | 3                                  |
| Firetube Boiler | 3.7  | 3.7  | 3.7  |               |      |                          |       |       |       |      | 3.7  | 3.7  | 4,275                              | 120                                |
| HW Pump         | 2.2  | 2.2  | 2.2  |               |      |                          |       |       |       |      | 2.2  | 2.2  | 1,821                              |                                    |
| Totals          | 5.9  | 5.9  | 5.9  |               |      |                          |       |       |       |      | 5.9  | 5.9  | 6,096                              | 1,210                              |
| Rate (\$/KW)    | 7.50 | 7.50 | 7.50 | 7.50          | 7.50 | 10.00                    | 10.00 | 10.00 | 10.00 | 7.50 | 7.50 | 7.50 |                                    |                                    |
| Cost (\$)       | 44   | 44   | 44   |               |      |                          |       |       |       |      | 44   | 44   |                                    |                                    |

**Total Demand** 

221 \$/yr

Total Energy

21 MMBTU/yr

(electric)

Total Energy

1,210 MMBTU/yr

(gas)

| ITEM         |      |      | 1    | ECO-H |      | CENT  |       |       | PLANT |      |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|--------------|------|------|------|-------|------|-------|-------|-------|-------|------|------|------|---------------------------|---------------------------|
|              | Jan  | Feb  | Mar  | Apr   | May  | Jun   | Jul   | Aug   | Sep   | Oct  | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Steam Boiler |      |      |      |       |      |       |       |       |       |      |      |      |                           | 1,644                     |
| HW Pump      | 2.2  | 2.2  | 2.2  | 2.2   |      |       |       |       |       |      | 2.2  | 2.2  | 9,731                     |                           |
| Total (KW)   | 2.2  | 2.2  | 2.2  | 2.2   |      |       |       |       |       |      | 2.2  | 2.2  | 9,731                     | 1,644                     |
| Rate (\$/KW) | 7.50 | 7.50 | 7.50 | 7.50  | 7.50 | 10.00 | 10.00 | 10.00 | 10.00 | 7.50 | 7.50 | 7.50 |                           |                           |
| Cost (\$)    | 17   | 17   | 17   | 17    |      |       |       |       |       |      | 17   | 17   |                           |                           |

**Total Demand** 

99 \$/yr

Demand Savings

122 \$/yr

**Energy Savings** 

-12 MMBTU/yr

(electric)

**Energy Savings** 

-434 MMBTU/yr

| ENGINEER'S ESTIF                                                       | IATE          | 9<br>P        | PRO           | ESTIMATE OF PROBABLE COST                                 | SO2 =      | ⊢          |             |           |
|------------------------------------------------------------------------|---------------|---------------|---------------|-----------------------------------------------------------|------------|------------|-------------|-----------|
| LOCATION:                                                              |               | PROJECT NO:   | CT NO:        |                                                           | 03-0185.04 |            | DATE:       | 6/16/95   |
| QUAD AKEA, FOKI SAM HOUSION                                            |               | BY:           | PIEPER,       | PIEPER, C.A. / KOTHMANN,K.                                | ANN,K.     | CH         | снескер ву: | WHW       |
| PROJECT DESCRIPTION: ECO-H, Replace Existing Individ                   | al Buildi     | ing Boile     | rs With       | ing Individual Building Boilers With Central Boiler Plant | ler Plant  |            |             |           |
|                                                                        | QUAN          | QUANTITY      |               | LABOR                                                     |            | MATE       | MATERIAL    | TOTAL     |
| ITEM DESCRIPTION                                                       | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate                                                      | Total      | Unit Price | Total       | COST      |
| Condinsate Rreciever Pump Combo Unit with Pipe Assembly & Valves       |               |               |               |                                                           |            |            |             |           |
| 6 GPM. 60 psi. 640 lb BLDG 44                                          | -             | М             | 33.00         | \$24.64                                                   | \$813      | \$4,600.00 | \$4,600     | \$5,413   |
| 1.5 GPM, 30psi, 2451b / hr, BLDG 4015                                  | -             | EA            | 16.60         | \$24.64                                                   | \$409      | \$2,700.00 | \$2,700     | \$3,109   |
| 6 GPM, 60 psi, 640 lb / hr. BLDG 16                                    | -             | EA            | 33.00         | \$24.64                                                   | \$813      | \$4,600.00 | \$4,600     | \$5,413   |
| Electrcal Connections & Motor Feeders                                  | 1             | 308           | 81.00         | \$24.64                                                   | \$1,996    | \$1,800.00 | \$1,800     | \$3,796   |
| Prefabricted Insulated Conduit sch 80 STL Carrier 2" insul. PVC Jacket |               |               |               |                                                           |            |            |             |           |
| 2-1/2" with Fittings Trench & Backfill                                 | 2375          | LF            | 0.94          | \$24.64                                                   | 600'55\$   | \$15.70    | \$37,288    | \$92,297  |
| 1-1/2" with Fittings Trench & Backfill                                 | 250           | 4             | 0.84          | \$24.64                                                   | \$5,174    | \$13.60    | \$3,400     | \$8,574   |
| I" with Fittings Trench & Backfill                                     | 100           | 片             | 62.0          | \$24.64                                                   | \$1,947    | \$12.75    | \$1,275     | \$3,222   |
| Connect to Existing Hydronic System                                    | 4             | BLDG          | 40.00         | \$24.64                                                   | \$3,942    | \$2,150.00 | \$8,600     | \$12,542  |
| Prefabricted Insulated Conduit sch 40 STL Carrier I" insul. PVC Jacket |               |               |               |                                                           |            |            |             |           |
| 2" with Fittings Trench & Backfill                                     | 2,375         | LF            | 0.81          | \$24.64                                                   | \$47,401   | \$11.75    | \$27,906    | \$75,307  |
| 1-1/2" with Fittings Trench & Backfill                                 | 250           | LF            | 0.78          | \$24.64                                                   | \$4,805    | \$10.54    | \$2,635     | \$7,440   |
| I" with Fittings Trench & Backfill                                     | 100           | LF            | 0.76          | \$24.64                                                   | \$1,873    | \$9.37     | \$937       | \$2,810   |
| Reuse 3 HP Hot Water Pump Blgd 4015                                    | 1             | EA            | 13.20         | \$24.64                                                   | \$325      | \$345.00   | \$345       | \$670     |
| Steam to Hot Water Generator, 250 MBH, bldg 4015                       | 1             | EA            | 15.65         | \$24.64                                                   | \$386      | \$1,500.00 | \$1,500     | \$1,886   |
| Remove Boiler & Pipina                                                 | 15            | EA            | 137.00        | \$24.64                                                   | \$50,635   | \$225.00   | \$3,375     | \$54,010  |
| Controls and Test & Balance                                            | ß             | BLDG          | 50.00         | \$24.64                                                   | \$6,160    | \$2,500.00 | \$12,500    | \$18,660  |
|                                                                        |               |               |               | SUBTOTAL                                                  | \$181,688  |            | \$113,461   | \$295,149 |
| ONI SAN INC                                                            |               |               | O&P@20%       | %(                                                        | \$36,338   |            | \$22,692    | 020'69\$  |
|                                                                        |               |               |               |                                                           |            |            |             |           |

\$354,179 \$21,251 \$375,430 \$19,480 \$394,910

\$136,153

HUITT-ZOLLARS, INC.

SUBTOTAL \$218,026

TOTAL

SUBTOTAL

SIOH @ 5.5%

(817) 335-3000 \* FAX (817) 335-1025 512 MAIN STREET, SUITE 1500 FORT WORTH, TEXAS 76102-3922 **ENGINEERS / ARCHITECTS** 

DESIGN @ 6%

```
STUDY: FSH
        ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)
                                                        LCCID FY95 (92)
   INSTALLATION & LOCATION: FSH
                                        REGION NOS. 6 CENSUS: 3
   PROJECT NO. & TITLE: 03018504
                                    EEAP BOILER CHILLER STUDY
   FISCAL YEAR 96 DISCRETE PORTION NAME: ECO-H
   ANALYSIS DATE: 06-16-95 ECONOMIC LIFE 20 YEARS PREPARED BY: PIEPER
   1. INVESTMENT
   A. CONSTRUCTION COST
                                354179.
   B. SIOH
                                19480.
   C. DESIGN COST
                            Ś
                                21251.
   D. TOTAL COST (1A+1B+1C) $ 394910.
   E. SALVAGE VALUE OF EXISTING EQUIPMENT S
   F. PUBLIC UTILITY COMPANY REBATE
                                                0.
   G. TOTAL INVESTMENT (1D - 1E - 1F)
                                                         394910.
   2. ENERGY SAVINGS (+) / COST (-)
   DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1994
               UNIT COST SAVINGS ANNUAL $ DISCOUNT
                                                              DISCOUNTED
               $/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4)
       FUEL
                                                              SAVINGS(5)
       A. ELECT $ 6.28
                                             <del>-</del>75.
                              -12.
                                                       15.08
                                                                   -1136.
                                0.
                  .00
       B. DIST $
                                               0.
                                                       18.57
                                                                       0.
                  .00
       C. RESID $
                               0.
                                                      21.02
                                              0.
                                                                       0.
                           -434.
0.
0.
       D. NAT G $ 2.66
                                       $ -1154.
                                                      18.58
                                                                 -21449.
                             0. $
0. $
-446. $
                                           0.
       E. COAL $
                  .00
                                                      16.83
                                                                       0.
       F. PPG $
                   .00
                                                      17.38
                                               0.
                                                                       0.
       M. DEMAND SAVINGS
                                                       14.88
                                            122.
                                                                    1815.
       N. TOTAL
                                           -1108.
                                                                  -20771.
   3. NON ENERGY SAVINGS(+) / COST(-)
      A. ANNUAL RECURRING (+/-)
                                                                    6650.
          (1) DISCOUNT FACTOR (TABLE A)
                                                      14.88
          (2) DISCOUNTED SAVING/COST (3A X 3A1)
                                                                   98952.
      B. NON RECURRING SAVINGS(+) / COSTS(-)
                              SAVINGS(+) YR
                                                        DISCOUNTED
SAVINGS(+)/
COST(-)(4)
                                               DISCNT
                                COST(-)
                  ITEM
                                          OC
                                               FACTR
                                   (1)
                                          (2)
                                               (3)
       d. TOTAL
                                   0.
      C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)$ 98952.
   4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))$ 5542.
   5. SIMPLE PAYBACK PERIOD (1G/4)
                                                                71.26 YEAR
   6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)
                                                                   78181.
   7. SAVINGS TO INVESTMENT RATIO
                                         (SIR) = (6 / 1G) =
                                                                   .20
       (IF < 1 PROJECT DOES NOT QUALIFY)
**** Project does not qualify for ECIP funding; 4,5,6 for information only.
```

LIFE CYCLE COST ANALYSIS SUMMARY

### ENERGY CONSERVATION OPPORTUNITY (ECO)

ECO NO: J

DATE: 6/15/95

ECO TITLE: Replace Existing Individual Building Boilers With Central Boiler Plant

INSTALLATION: Fort Sam Houston, San Antonio, Texas

LOCATION: Area 100, Building 250

### A. Summary:

186 MMBTU/yr **Electrical Energy Savings Electrical Demand Savings** 680 \$/vr Gas Energy Savings 680 MMBTU/yr **Total Energy Savings** 866 MMBTU/vr **Total Cost Savings** 11,483 \$/yr 273,951 \$ **Total Investment** Simple Payback 23.8 yrs SIR 0.66

### B. ECO Description:

Remove fourteen existing hot water boilers in buildings 122, 124, 128, 133, 134, 142, 143, 144, 146, 147, 149, 197, 198 and 199 which serve as the primary heating source for those buildings. Remove the two existing steam boilers in building 250. Install two new central hot water boilers rated at 563 MBH and 1250 MBH output. Locate these new boilers outside of building 250, near existing air cooled chiller installation. Install new 3 ½ inch hot water supply and return piping between the buildings in the 100 area and terminate loop at the new boiler locations behind building 250. Install new 10 HP and 15 HP heating water pumps at that location to circulate HW from the new central boilers through the new distribution loop. Reconnect individual building HW pumps to new central HW distribution piping at existing boiler locations and reuse pumps to circulate HW from loop through buildings. Provide new electrical service for new boilers as required. Other specifications in these areas should be determined by the design engineer responsible for this project. This project will require engineering drawings and specifications, demolition and removal of the existing boilers and installation of the new boilers, pumps, distribution loop, associated electrical services and controls.

### C. Discussion:

The sixteen existing boilers in Area 100 were installed in 1985 and are rated at a combined 8,829 MBH output capacity. All of these boilers appear to be in fair condition. Computer simulations of the 100 Area buildings determined that the current combined capacity is nearly five times the amount required to adequately heat the buildings<sup>1</sup>. The existing boilers are therefore operating at an inefficient, low load condition most of the time. By eliminating the extra boilers in the area, energy and maintenance cost savings can be realized. Also, a decrease in the combined boiler output capacity to 1,813 MBH is recommended to more closely match the heating load in the buildings.

### D. Savings Calculations:

### 1. Energy Savings:

The monthly peak demand and energy consumptions of the existing and proposed boilers and HW pumps were calculated using the Trace 600 computer program<sup>2</sup>. The buildings served by the existing boilers were modeled by the computer to provide a realistic load profile. Field data obtained from the

buildings were used to create these computer building models<sup>3</sup>. An equipment list with specific data on the new central boiler system used in the computer simulation is shown on page E-27.

Once the computer simulations of the existing and new boiler systems were completed, the total annual demand cost and energy consumption of the new systems were compared with that of the existing systems to determine the annual savings<sup>4</sup>. These savings calculations are shown on pages E-28 through E-29. The demand and energy savings values were used in the life cycle cost analysis for this ECO.

### 2. Maintenance Savings:

Since the total number of boilers is being reduced from sixteen down to two, there will be a substantial savings in maintenance costs. Maintenance cost estimates were obtained from a local contractor and used to estimate these savings for the installation<sup>5</sup>. Based on a cost annual maintenance cost of \$475 per boiler, the total estimated maintenance cost savings for this ECO is \$6,650. This figure was used in the life cycle cost analysis.

### E. Cost Estimates

The total installation costs for this ECO were estimated on page E-30. These costs were used in the life cycle cost analysis.

F. Life Cycle Cost Analysis.

A life cycle cost analysis was performed on this ECO using the Life Cycle Cost In Design (LCCID) computer program, and data from the previously mentioned calculations. A summary sheet for this life cycle cost analysis is shown on page E-31. The data from the life cycle cost analysis were included in the summary on page E-25.

### REFERENCES

- 1. See Appendix B for 100 Area heating system load profile.
- 2. See Appendix B for computer model input assumptions and data, and energy consumption output data.
- 3. See Appendix C for building field data and existing HVAC system data.
- 4. See Appendix A for utility cost analysis data, used in the savings calculations.
- 5. See Appendix G for maintenance contractor cost estimates.

| ш           | MCF         | 756                                                          | 491                                                           |                         |                          |   |  |  |  |
|-------------|-------------|--------------------------------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|---|--|--|--|
| ANNUAL USE  | KWH         |                                                              |                                                               | 30,802                  | 4,454                    |   |  |  |  |
| ES          | WKS         | 26                                                           | 26                                                            |                         |                          |   |  |  |  |
| OPER. TIMES | DAYS        | 7                                                            | 7                                                             |                         |                          |   |  |  |  |
| OP          | HRS         | 24                                                           | 24                                                            |                         |                          |   |  |  |  |
| FULL        | LOAD        | 750 MBH                                                      | 1,666 MBH                                                     | 7.46 KW                 | 11.19 KW                 |   |  |  |  |
| %<br>YEAR   | INSTALLED   | New                                                          | New                                                           | New                     | New                      | · |  |  |  |
| JUNE 2, 19  | AREA SERVED | Area 100                                                     | Area 100                                                      | Area 100                | Area 100                 |   |  |  |  |
|             | DESCRIPTION | Teledyne Laars<br>natural draft, watertube<br>563 MBH output | Teledyne Laars<br>natural draft, watertube<br>1250 MBH output | 57 gpm, 150 ft<br>10 HP | 125 gpm, 150 ft<br>15 HP |   |  |  |  |
|             | o<br>FT     | -                                                            | -                                                             | -                       | _                        |   |  |  |  |
|             | ITEM        | Hot Water Boiler                                             | Hot Water Boiler                                              | Heating Water Pump      | Heating Water Pump       |   |  |  |  |

### 100 AREA

| ITEM             |      |      | i    |      | NG INE |       |       |       | ANTS  |      |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|------------------|------|------|------|------|--------|-------|-------|-------|-------|------|------|------|---------------------------|---------------------------|
|                  | Jan  | Feb  | Mar  | Apr  | May    | Jun   | Jul   | Aug   | Sep   | Oct  | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 193                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 226                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 82                        |
| Firetube Boiler  | 3.7  | 3.7  | 3.7  | 3.7  |        |       |       |       |       |      | 3.7  | 3.7  | 16,203                    | 177                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 76                        |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 190                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 112                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 112                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 116                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 116                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 89                        |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 38                        |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 99                        |
| Steam Boiler     |      |      |      |      |        |       |       |       |       |      |      |      |                           | 172                       |
| Watertube Boiler |      |      |      |      |        |       |       |       |       |      |      |      |                           | 58                        |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1  |        |       |       |       |       |      | 1.1  | 1.1  | 3,377                     |                           |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1  |        |       |       |       |       |      | 1.1  | 1.1  | 4,865                     |                           |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1  |        |       |       |       |       |      | 1.1  | 1.1  | 4,865                     |                           |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1  |        |       |       |       |       |      | 1.1  | 1.1  | 4,865                     |                           |
| HW Pump          | 0.4  | 0.4  | 0.4  | 0.4  |        |       |       |       |       |      | 0.4  | 0.4  | 1,607                     |                           |
| HW Pump          | 0.4  | 0.4  | 0.4  | 0.4  |        |       |       |       |       |      | 0.4  | 0.4  | 1,607                     |                           |
| HW Pump          | 0.4  | 0.4  | 0.4  | 0.4  |        |       |       |       |       |      | 0.4  | 0.4  | 1,039                     |                           |
| HW Pump          | 0.8  | 0.8  | 0.8  | 0.8  |        |       |       |       |       |      | 0.8  | 0.8  | 1,904                     |                           |
| HW Pump          | 0.8  | 8.0  | 8.0  | 0.8  |        |       |       |       |       |      | 0.8  | 0.8  | 1,904                     |                           |
| HW Pump          | 0.8  | 8.0  | 8.0  | 0.8  |        |       |       |       |       |      | 0.8  | 0.8  | 1,904                     |                           |
| HW Pump          | 0.8  | 0.8  | 0.8  | 0.8  |        |       |       |       |       |      | 0.8  | 0.8  | 2,136                     |                           |
| HW Pump          | 0.8  | 0.8  | 0.8  | 0.8  |        |       |       |       |       |      | 8.0  | 0.8  | 2,136                     |                           |
| HW Pump          | 0.8  | 0.8  | 0.8  | 0.8  |        |       |       |       |       |      | 0.8  | 0.8  | 1,257                     |                           |
| HW Pump          | 0.6  | 0.6  | 0.6  | 0.6  |        |       |       |       |       |      | 0.6  | 0.6  |                           |                           |
| HW Pump          | 1.1  | 1.1  | 1.1  | 1.1  |        |       |       |       |       |      | 1.1  | 1.1  | 4,865                     |                           |
| HW Pump          | 0.4  | 0.4  | 0.4  | 0.4  |        |       |       |       |       |      | 0.4  |      |                           |                           |
| Gas Furnace      | 11.3 | 11.3 | 11.3 | 11.3 |        |       |       |       |       |      | 11.3 |      |                           |                           |
| Gas Furnace      | 0.7  | 0.7  | 0.7  | 0.7  |        |       |       |       |       |      | 0.7  | 0.7  |                           |                           |
| Totals           | 28.2 | 28.2 | 28.2 | 28.2 |        |       |       |       |       |      | 28.2 | 28.2 | 89,804                    | 1,927                     |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50 | 7.50   | 10.00 | 10.00 | 10.00 | 10.00 | 7.50 | 7.50 |      | 1                         |                           |
| Cost (\$)        | 212  | 212  | 212  | 212  |        |       |       |       |       |      | 212  |      | 1                         |                           |

Total Demand

1,269 \$/yr

Total Energy

307 MMBTU/yr

(electric)

Total Energy

1,927 MMBTU/yr

### 100 AREA

| ITEM             |      |      |      | ECO-J: |      |       | RAL BO |       | PLANT |      |      |      | ANNUAL<br>ENERGY<br>USAGE | ANNUAL<br>ENERGY<br>USAGE |
|------------------|------|------|------|--------|------|-------|--------|-------|-------|------|------|------|---------------------------|---------------------------|
|                  | Jan  | Feb  | Mar  | Apr    | May  | Jun   | Jul    | Aug   | Sep   | Oct  | Nov  | Dec  | (KWH)                     | (MCF)                     |
| Watertube Boiler |      |      |      |        |      |       |        |       |       |      |      |      |                           | <b>75</b> 6               |
| Watertube Boiler |      |      |      |        |      |       |        |       |       |      |      |      |                           | 491                       |
| HW Pump          | 7.5  | 7.5  | 7.5  | 7.5    |      |       |        |       |       |      | 7.5  | 7.5  | 30,802                    |                           |
| HW Pump          | 11.2 | 11.2 |      |        |      |       |        |       |       |      |      | 11.2 | 4,454                     |                           |
| Total (KW)       | 18.7 | 18.7 | 7.5  | 7.5    |      |       |        |       |       |      | 7.5  | 18.7 | 35,256                    | 1,247                     |
| Rate (\$/KW)     | 7.50 | 7.50 | 7.50 | 7.50   | 7.50 | 10.00 | 10.00  | 10.00 | 10.00 | 7.50 | 7.50 | 7.50 |                           |                           |
| Cost (\$)        | 140  | 140  | 56   | 56     |      |       |        |       |       |      | 56   | 140  |                           |                           |

Total Demand

590 \$/yr

Demand Savings

680 **\$**/yr

**Energy Savings** 

186 MMBTU/yr

(electric)

**Energy Savings** 

680 MMBTU/yr

| ENGINEER'S ESTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAT           | E OF          | PR(           | ESTIMATE OF PROBABLE COST                                   | E CO        | ST         |             |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------------------------------------------------------|-------------|------------|-------------|-----------|
| LOCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | PROJE         | PROJECT NO:   |                                                             | 03-0185.04  |            | DATE:       | 6/16/95   |
| AREA 100, FORT SAM HOUSTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | BY:           | PIEPER, C.A.  | .C.A.                                                       |             | CH         | снескер ву: | KLK       |
| PROJECT DESCRIPTION: ECO-J, Replace Existing Indivi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dual Bu       | ilding Bo     | ilers Wi      | sting Individual Building Boilers With Central Boiler Plant | Boiler Plan | 4          |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l g           | QUANTITY      |               | LABOR                                                       |             | MATERIAL   | RIAL        | TOTAL     |
| ITEM DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # of<br>Units | Unit<br>Meas. | Hrs /<br>Unit | Rate                                                        | Total       | Unit Price | Total       | COST      |
| Prefabricated Conduit 3-1/2" Trench & backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2950          | O<br>LF       |               | \$24.64                                                     | \$72,688    | \$14       | \$41,300    | \$113,988 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | EA            | \$            | \$24.64                                                     | \$15,770    | \$500      | \$8,000     | \$23,770  |
| Reconnect Pump to Site Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5             | EA            | 8             | \$24.64                                                     | \$3,154     | \$780      | \$12,480    | \$15,634  |
| Track of New Boiler 503 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             | EA            | 58            | \$24.64                                                     | \$1,429     | \$5,600    | \$5,600     | \$7,029   |
| Install New Boiler 1250 MBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             | EA            | 69            | \$25.64                                                     | \$1,769     | \$8,500    | \$8,500     | \$10,269  |
| Tratal New Pimp 10 HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -             | EA            | ट्            | \$24.64                                                     | \$370       | \$1,800    | \$1,800     | \$2,170   |
| Inatall New Pump 15 HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             | E             | 15            | \$24.64                                                     | \$370       | \$1,900    | \$1,900     | \$2,270   |
| nine Assembly & valves Boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2             | EA            | 28            | \$24.64                                                     | \$1,380     | \$2,400    | \$4,800     | \$6,180   |
| pipe Aggembly & valves Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2             | Ë             | 12            | \$24.64                                                     | \$591       | \$350      | \$700       | \$1,291   |
| Boiler Breachina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -             | JOB           | 36            | \$24.64                                                     | \$887       | \$3,000    | \$3,000     | \$3,887   |
| Controla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             | JOB           | 160           | \$24.64                                                     | \$3,942     | 006'9\$    | \$6,900     | \$10,842  |
| THE TEST OF THE TE | -             | JOB           | 30            | \$26.64                                                     | \$799       | \$290      | 065\$       | \$1,389   |
| Chemical Shot Feed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -             | JOB           | 5             | \$26.64                                                     | \$426       | \$1,500    | \$1,500     | \$1,926   |
| diameter order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |               |               |                                                             |             |            |             | 44,000    |
| Teet , Balance & Start-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -             | टी            | 9             | \$25.64                                                     | \$4,102     |            |             | 44,102    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |                                                             |             |            |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |               |               |                                                             |             |            |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               | SUBTOTAL                                                    | \$107,677   |            | 010,76\$    | \$204,747 |
| OM SOA LICE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               | 0 & P @       | @ 20%                                                       | \$21,535    |            | \$19,414    | \$40,949  |
| HOII I-COLLARS, INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |               | SUBTOTAL                                                    | \$129,212   |            | \$116,484   | \$245,696 |
| ENGINEERS / ARCHITECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |               | DESIGN @ 6%   | %9 @                                                        |             |            |             | \$14,742  |
| 512 MAIN STREET, SUITE 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |               | SUBTOTAL                                                    |             |            |             | \$260,438 |
| (817) 335-3000 * FAX (817) 335-1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               | SIOH @ 6.6%   | 2.6%                                                        |             |            |             | \$13,513  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |               |               | TOTAL                                                       |             |            |             | \$273,951 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |                                                             |             |            |             |           |

### APPENDIX F

(EEAP) BOILER AND CHILLER STUDY SCOPE OF WORK AND REVIEW COMMENTS CESAM-EN-DM January 1995

GENERAL SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

#### SCOPE OF WORK FOR A LIMITED ENERGY STUDY

#### TABLE OF CONTENTS

- 1. BRIEF DESCRIPTION OF WORK
- 2. GENERAL
- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION

  - 5.1 ECIP Projects5.2 Non-ECIP Projects5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
  - 7.2 Perform a Limited Site Survey

  - 7.4 Evaluate Selected ECOs7.5 Combine ECOs into Recommended Projects
  - 7.6 Submittals, Presentations and Reviews

#### ANNEXES

- A DETAILED SCOPE OF WORK
- B -- EXECUTIVE SUMMARY GUIDELINE
- C -- REQUIRED DD FORM 1391 DATA

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.2 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 1.4 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.5 Provide project documentation for recommended ECOs as detailed herein.
- 1.6 Prepare a comprehensive report to document all work performed, the results and all recommendations.  $\cdot$

#### 2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from DAIM-FDF-U, dated 10 Jan 1994 (including current updates) establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified

in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

- 2.6 Computer modeling will be used to determine the energy savings of ECOs which would replace or significantly change an existing heating, ventilating, and air-conditioning (HVAC) system. The requirement to use computer modeling applies only to heated and air-conditioned or air-conditioned-only buildings which exceed 8,000 square feet or heated-only buildings in excess of 20,000 square feet. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true. hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month! The Detailed Scope of Work, Annex A, will list programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP or FEMP funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.7.3 At some installations Energy Conservation and Management (ECAM) funding will be used instead of ECIP funding. The criteria for each program is the same. The Director of Public Works will indicate which program is used at this installation. This Scope of Work mentions only ECIP, however, ECAM is also meant.
- 2.8 Metric Reporting Requirements: In this study, the analyses of the ECOs may be performed using English or Metric units as long as they are consistent throughout the report. The final results of energy savings for individual recommended projects and for the overall study will be reported in units of MegaBTU per year and in MegaWatts per year. Paragraph 7.6.2 details requirements for the contents of the final submittal.

#### 3. PROJECT MANAGEMENT

- 3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.
- 3.2 <u>Installation Assistance</u>. The Commanding Officer or authorized representative at the installation will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the installation representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 <u>Meetings</u>. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, will be in addition to the presentation and review conferences.
- 3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

#### 3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this

- contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.
- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Director of Public Works before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
  - a. Schedules.
  - b. Names of energy analysts who will be conducting the site survey.
  - c. Proposed working hours.
  - d. Support requirements from the Director of Public Works.
- 3.7.2 Exit. The exit interview shall be held when the field work is essentially complete; it shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Director of Public Works.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), labor, supervision, and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. PROJECT DOCUMENTATION. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio (SIR) greater than 1.25 and a simple payback period of less than ten years. The overall project and each discrete part of the project shall have an SIR greater than 1.25. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391 and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECOs must take into account

the synergistic effects of the individual ECOs.

- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate, but which have an SIR greater than 1.25 shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA (energy savings calculations and cost estimate), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:
  - a. Federal Energy Management Program (FEMP) Projects. A FEMP (or O&M Energy) project is one that results in needed maintenance or repair to an existing facility, or replaces a failed or failing existing facility, and <u>also</u> results in energy savings. The criteria are similar to the criteria for ECIP projects, ie, SIR ≥ 1.25, and simple payback period of less than ten years. Projects with a construction cost estimate up to \$1,000,000 shall be documented as outlined in par 5.2 above; projects over \$1,000,000 shall be documented on 1391s. In the FEMP program, a system may be defined as "failed or failing" if it is inefficient or technically obsolete. However, if this strategy is used to justify a proposed project, the equipment to be replaced must have been in use for at least three years.
  - b. Low Cost/No Cost Projects. These are projects which the Director of Public Works (DPW) can perform using his resources. Documentation shall be as required by the DPW.
  - 5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.
  - 6.  $\underline{\text{DETAILED}}$   $\underline{\text{SCOPE}}$   $\underline{\text{OF}}$   $\underline{\text{WORK}}$ . The Detailed Scope of Work is contained in Annex A.
  - 7. WORK TO BE ACCOMPLISHED.
  - 7.2 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. However, the AE is encouraged to use any data that may have been documented in a previous study. The AE shall document his site survey on forms developed for the survey, or on

standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.

- 7.4 Evaluate Selected ECOs. The AE shall analyze the ECOs listed in Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratics (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.
- 7.5 Combine ECOs Into Recommended Projects. During the Interim Review Conference, as outlined in paragraph [7.6.1], the AE will be advised of the DEH's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par [7.6.2].
- '7.6 <u>Submittals</u>, <u>Presentations and Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. Tabs and dividers shall clearly and distinctly divide sections,

subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the Director of Public Works, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

7.6.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:

a.All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.

b.All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study.

The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and AE's representatives shall coordinate with the Director of Public Works to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

- 7.6.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph [7.6.1] shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA  $\mbox{\it Summary Sheets}$  ).
  - d. Appendices to include as a minimum:
    - Energy cost development and backup data
    - Detailed calculations
    - 3) Cost estimates
    - 4) Computer printouts (where applicable)
    - 5) Scope of Work

#### ANNEX A

# DETAILED SCOPE OF WORK CONTRACT NO. DACAC63-94-D-0015 DELIVERY ORDER NO. 000

1. The Architect-Engineer (A-E) shall furnish all services, material, supplies, plant, labor, equipment, investigations, studies, superintendence and travel as required in connection with the below identified project for design in accordance with the original basic contract and this Detailed Scope of Work. Appendix "A" of the basic contract shall be followed for performance requirements for A-E services. Where this Detailed Scope of Work conflicts with Appendix "A", this Detailed Scope of Work shall govern.

INSTALLATION

PROJECT TITLE

Fort Sam Houston, TX

Boiler/Chiller Study (EEAP)

2. The work and other related data and services required in this Delivery Order shall be accomplished within the time schedule required, in accordance with the subject stated above and scope of work described in paragraph 3 below. The schedule for delivery of data to the Contracting Officer is in calendar days as follows:

#### DELIVERY SCHEDULE

- a. Interim Submittal and related data for studies (See Annex B for number of copies)
- 60 calendar days after receipt of Delivery Order

b. Pre-Final Submittal(s)

- 90 calendar days after approval of Interim submittal
- c. Final Submittal (original and all data developed under this submittal)
- 90 calendar days after approval of the pre-final
- 3. The items of work included in this Delivery Order shall be in accordance with criteria furnished at the Scoping conference held 29 June 1994 at Fort Sam Houston. The services to be provided shall include, but not be limited to, the following Scope of Work.
  - a. Items of Work:
- (1) 2200 Area. Evaluate the feasibility and economic impacts of modifying the existing cooling and heating plant in Building 2265. This plant provides heating hot water and chilled water to Buildings 2263, 2264, 2265 and 2266. The feasibility study will consider chiller replacement or retrofit and boiler

upgrade or replacement. A limited survey of the four existing buildings served by this plant will be performed to permit a qualitative verification that the existing plant capacities are adequate. The survey will also reveal constraining requirements such as year-round cooling requirements which may influence the recommendations. Chiller replacement/retrofit recommendations will consider refrigerants 123 or 134a only, gas vs. electrical driven compressors, drive configuration (i.e., open-drive vs. hermetic), operating efficiency (i.e., compressor type: screw vs. centrifugal part load and full load capacities and variable speed drive) and maintainability. The cost effects of the new design criteria from the Uniform Mechanical code which requires a partition be provided between the chiller and boiler shall be investigated. As the thermal load history for the plant is not available, a generalized load profile will be assumed and used to analyze the benefits of energy saving options and equipment selections. Recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment.

- (2) 2200 Area (item 1 must be performed in conjunction with this item). Evaluate buildings 2263, 2264, 2265, and 2266 and model each building to develop a probable annual thermal load profile. Receive as-built drawings on the buildings from Fort Sam Houston and perform a survey of the buildings to collect information necessary to more accurately develop the annual thermal profile of each.
- (3) 2200 Area (items 1 or 1a must be performed in conjunction with this item). Evaluate the use of four-pipe heating and cooling distribution from the central plant. Recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment. Based on the current type of building occupancy, a determination will be provided on whether a single mode of plant operation will suit the air conditioning requirements for the group of buildings tied into the plant, as will occur in a two pipe system. Also, considering the constant changing use of the Army facilities, the firm performing the study shall provide their own engineering judgement on whether locking a facility into a particular type of occupancy (i.e., loss of flexibility) makes sense, as will also occur in a two pipe system. The fact that a complete system shut down is needed in order to perform maintenance in a two pipe system, will be addressed in the engineering judgement decision.

- 1300 Area. Evaluate the feasibility and economic impacts of modifying the existing cooling and heating plant in Building 1377. This plant provides heating hot water and chilled water to Buildings 1350, 1374, 1375, 1379, 1380, 1382, and 1385. The feasibility study will consider chiller replacement or retrofit and boiler upgrade or replacement. A limited survey of the seven existing buildings served by this plant will be performed to permit a qualitative verification that the existing plant capacities are adequate. The survey will also reveal constraining requirements such as year-round cooling requirements which may influence the recommendations. Chiller replacement/retrofit recommendations will consider refrigerants 123 or 134a only, gas vs. electrical driven compressors, drive configuration (i.e., open-drive vs. hermetic), operating efficiency (i.e, compressor type: screw vs. centrifugal part load and full load capacities and variable speed drive) and maintainability. The cost effects of the new design criteria from the Uniform Mechanical code which requires a partition be provided between the chiller and boiler shall be investigated. As the thermal load history for the plant is not available, a generalized load profile will be assumed and used to analyze the benefits of energy saving options and equipment selections. recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment.
- (5) 1300 Area (item 2 must be performed in conjunction with this item). Evaluate Buildings 1350, 1374, 1375, 1379, 1380, 1382 and 1385 and model each building to develop a probable annual thermal load profile. Receive as-built drawings on the buildings from Fort Sam Houston and perform a survey of the buildings to collect information necessary to more accurately develop the annual thermal profile of each. Evaluate the optimum size and configuration for the central plant.
- (6) 900 Area. Evaluate the feasibility and economic impacts of modifying the existing cooling and heating plant in Building 902. This plant provides heating hot water and chilled water to Buildings 902, 904, 905, 906, 907, 908, 916, 917, 919, 920, 921, 922, 924, 925, 926, 928, 929, 930, and 931. The feasibility study will consider chiller replacement or retrofit or refrigerant upgrade and boiler upgrade or modification or replacement. A limited survey of the nineteen existing buildings served by this plant will be performed to permit a qualitative verification that the existing plant capacities are adequate. The survey will also reveal constraining requirements such as year-round cooling requirements which may influence the recommendations. Chiller replacement/retrofit recommendations will consider refrigerants 123 or 134a only, gas vs. electrical

driven compressors, drive configuration (i.e., open-drive vs. hermetic), operating efficiency (i.e., compressor type: screw vs. centrifugal part load and full load capacities and variable speed drive) and maintainability. The cost effects of the new design criteria from the Uniform Mechanical code which requires a partition be provided between the chiller and boiler shall be investigated. As the thermal load history for the plant is not available, a generalized load profile will be assumed and used to analyze the benefits of energy saving options and equipment selections. Recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment.

- (7) 900 Area (item 3 must be performed in conjunction with this item. Evaluate Buildings 902, 904, 905, 906, 907, 908, 916, 917, 919, 920, 921, 922, 924, 925, 926, 928, 929, 930, and 931 and model each building to develop a probable annual thermal load profile. Receive as-built drawings on the buildings from Fort Sam Houston and perform a survey of the buildings to collect information necessary to more accurately develop the annual thermal profile of each. Evaluate the optimum size and configuration for the central plant.
- (8) 100 Area. Review the existing design manual and construction documents prepared in 1986 to provide a central plant at building 250 to serve Buildings 122, 124, 125, 127, 128, 132, 133, 134, 135, 142, 143, 144, 145, 146, 147, 149, 197, 198, 199, and 250. A limited survey of the twenty existing buildings served by this plant will be performed to permit a qualitative verification that the plant capacities established in 1986 are adequate. The survey will also reveal constraining requirements such as year-round cooling requirements which may influence the recommendations. Make recommendations to modify the equipment selections developed with that design and develop a conceptual cost estimate for its implementation. Recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment.
- (9) 100 Area (item 4 must be performed in conjunction with this item). Evaluate Buildings 122, 124, 125, 127, 128, 132, 133, 134, 135, 142, 143, 144, 145, 146, 147, 149, 197, 198, 199, and 250 and model each building to develop a probable annual thermal load profile. Receive as-built drawings on the buildings from Fort Sam Houston and perform a survey of the buildings to collect information necessary to more accurately develop the annual thermal profile of each. Evaluate the optimum size and configuration for the central plant.

- (10) Quadrangle. Evaluate the feasibility and economic impacts of providing a new cooling and heating plant adjacent to the Quadrangle. This plant would provide heating hot water and chilled water to buildings 16, 44, T-56, and 4015. Receive asbuilt drawings on the buildings from Fort Sam Houston and model each building to develop a probable annual thermal load profile. Evaluate the optimum size and configuration for the central plant. Develop recommendations for a central plant configuration and location which will complement the historic nature of the Quadrangle. Evaluate the use of 2-pipe versus 4-pipe thermal distribution. Recommendations will be supported by life cycle cost analyses which will include initial purchase and installation costs, energy consumption costs, and maintenance costs extended over the useful life of the equipment.
- c. Special Requirements: Distribution of submittal documents are as follows:
  - (1) Three copies of all documents shall be mailed to:

Commander
U.S. Army Engineer District, Fort Worth
819 Taylor Street/P.O. Box 17300
ATTN: CESWF-ED-MR/Champagne
Fort Worth, Texas 76102-0300

(2) Ten copies of all documents, field survey data and one disk shall be mailed to:

Commander
ATTN: AFZG-PW-ESB/Mr. De La Pena
Department of Army
HQ, Fort Sam Houston
Fort Sam Houston, TX 78234

#### ANNEX B

## EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
  - o Total Annual Energy Used.
  - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Fuel Oil - GALS, Dollars, BTU, MWH
Natural Gas - THERMS, Dollars, BTU, MWH
Propane - GALS, Dollars, BTU, MWH
Other - QTY, Dollars, BTU, MWH

- 4. Reevaluated Projects Results.
- Energy Conservation Analysis.
  - o ECOs Investigated.
  - o ECOs Recommended.
  - o ECOs Rejected. (Provide economics or reasons)
  - o ECIP Projects Developed. (Provide list)\*
  - o Non-ECIP Projects Developed. (Provide list)\*
  - o Operational or Policy Change Recommendations.
- \* Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 6. Energy and Cost Savings.
  - o Total Potential Energy and Cost Savings.
  - o Percentage of Energy Conserved.
  - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

#### ANNEX C

#### REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor ajects.
- (11) Latest MCP Index, essential for projecting costs for project documentation.
- (12) The following items are important and should be provided to the AE to the extent to which they are available:
- (a) As-built drawings of applicable buildings, equipment, or systems
- (b) Handbooks or SOPs relating to the operation of applicable equipment or systems.
  - (c) Applicable records of energy or fuel usage.
- (d) Copies of bills for electrical enetration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

- g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.
- i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.
- k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- 1. Any requirements required by ECIP guidance dated 10 Jan 1994 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

## INTERIM SUBMITTAL REVIEW COMMENTS - HO FORSCOM

REVIEW COMMENTS FOR INTERIM SUBMITTAL : EEAP CHILLER AND BOILER PLANT STUDY AT FORT SAM HOUSTON, TX

REVIEWER: NARESH K.KAPUR, P.E. DATED: 6 JULY 95 ORGANIZATION: HQ FORSCOM

ADDARESS: ATTN: AFPI-ENO/KAPUR TEL: 404-669-5327, FAX 7751 BLDG 200,

FORT MCPHERSON, GA 30330-6000

1. THE INTERIM REPORT IS WELL ORGANIZED. IT WOULD BE NICE TO HAVE ONE OR TWO PAGE WRITEUP TO PROVIDE A GIST OF THIS STUDY. SOME OF THE ITEMS TO BE ADDRESSED IN THIS ARE: PURPOSE & SCOPE: ALTERNATIVES CONSIDERED; METHODS OF ANALYSIS AND ASSUMPTIONS; RECOMMENDED ECOS AND THEIR LCC INFO.

- 2. GENERAL. FOR MANY BUILDINGS, LACK OF HVAC CONTROLS LEAD TO OCCUPIED AREAS VERY HOT. REQUEST PROVIDE A SUGGESTED SOLUTION BASED ON YOUR FIELD OBSERVATIONS.
- DISCUSS VARIOUS OPTIONS FOR SELECTING CHILLERS AND GENERAL. BOILERS FOR ECOB. MENTION PROS AND CONS OF EACH, INCLUDING COST FACTORS, ENERGY EFFICIENCIES, POSSIBLE CHILLER WITH INTEGRAL HEATING UNIT, AND EASE OF MAINTENANCE ETC.
- 4. GENERAL. FROM ENVIRONMENTAL CONSIDERATIONS, IT IS DESIRABLE TO AVOID OZONE DEPLETING CHEMICALS (ODC) TYPE REFRIGERENTS FOR NEW CHILLERS. NATURAL GAS ABSORPTION CHILLERS (SEE ENCLOSED INFO) ARE AVAILABLE IN MANY VARIETIES AND USE NON-ODC REFRIGERENT. PL DISCUSS POSSIBILITIES. BY USING NON-ODC REFRIGERENT IN NEW CHILLERS WE CAN POSSIBLY HAVE RECURRING SAVINGS DUE TO SOME AVOIDED MAINTENANCE COST.
- 5. GENERAL. PER YOUR SITE VISIT OBSERVATIONS, MOST OF THE AREAS WERE EXCESSIVELY WARM AND HVAC CONTROLS POOR. HOW DOES THIS AFFECT THE LCC ANALYSIS?
- PG 6. PROVIDE A RECOMMENDED ACTION PLAN TO ADEQUATELY MAINTAIN HVAC SYSTEMS IN VIEW OF EVER DIMINISHING MAINTENANCE PERSONNEL WHO ARE NOT WELL TRAINED.
- 7. GENERAL. IN A CENTRAL PLANT SITUATION, THERE ARE TRANSMISSION LOSSES AND OTHER INHERENT INEFFICIENCIES WHEN THE OCCUPANCY OF BUILDINGS IS NOT UNIFORM. CONSIDER DOING A SAMPLE LCC ANALYSIS CONSIDERING SELECTIVE DECENTRALIZING HEATING AND COOLING EQUIPMENT. IN SMALLER UNITS, WE EXPECT EASIER CONTROLS/ MAINTENANCE. SMALLER UNITS CAN BE SHUTDOWN DURING WEEKENDS/ HOLIDAYS AND NON-WORKING HOURS.
- GENERAL. PL ADDRESS THE FOLLOWINGS:
- A. WHAT ARE DOMESTIC HOT WATER REQUIREMENTS DURING HEATING AND COOLING SEASON? HOW ARE THESE REQUIREMENTS CURRENLY MET? ADDRESS THIS ISSUE IN EACH ALTERNATIVE AS APPROPRIATE.
- B. ARE THERE SIGNIFICANT ENERGY REQUIREMENTS RELATED TO COOKING? PL DISCUSS.
  C. ANY SIGNIFICANT COOLING LOADS DURING HEATING SEASON/
- PL DISCUSS.
- D. PL DISCUSS 4 PIPE V/S 2PIPE SYSTEM AS RELATED TO FT SAM HOUSTON SITUATION.

# INTERIM SUBMITTAL REVIEW COMMENTS - USAED MOBILE 7/6/95

| MCBILE DIST. OFFICE PROJECT REV                              | IEN CORMENTS          | DATE: 6 July 95                  | P.3-3<br>FAGE 1 of 1 |
|--------------------------------------------------------------|-----------------------|----------------------------------|----------------------|
| TO: Army Corps of Engineers<br>Fort Worth Division           | PROM: (Section Review | n): EN-DM<br>er): Robert S. Noo: | iruff                |
| PROJECT: Boiler and Chiller St<br>LOCATION: Fort Sam Houston | udy                   | Year:                            | Line Item            |

Type of Action: Interim Report

| tem<br>No. | Drawing No.<br>Or Par. No. | COMOGRALZ                                                                                                                                                                                                                                                        | Raview<br>Action |
|------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1'.        | Page i                     | The first sentence of the third paragraph should be raworded.                                                                                                                                                                                                    |                  |
| 2.         | Page 2<br>Parz.<br>B.1.    | Buildings 915 and 932 should be added to the list of of 900 area buildings studied. The actual study data indicates that these two building were studied (see page C-2).                                                                                         |                  |
| 3.         | Page 2<br>Para.<br>5.2.    | Building 1377 should be added to the list of 1300 area buildings. This building was part of the actual study (see page C-11).                                                                                                                                    |                  |
| 4.         | Page 5<br>Perz. 1          | The type of refrigerant used in each of the chillers serving the quadrangle buildings should be listed.                                                                                                                                                          |                  |
| 5.         | General                    | The operating schedules used in the Trace studies appear to be reasonable. It should be pointed out in the study report that if the existing controls were repaired and set properly the energy savings would be even greater than those predicted by the study. |                  |
| 6.         | General                    | The replacement chiller for the 1300 area appears very close to meeting the criteria for approval. Are there any ways that this SCO could be modified to make it feasible?                                                                                       |                  |
|            |                            |                                                                                                                                                                                                                                                                  |                  |
|            |                            |                                                                                                                                                                                                                                                                  |                  |
|            |                            |                                                                                                                                                                                                                                                                  |                  |
|            |                            |                                                                                                                                                                                                                                                                  |                  |
|            |                            |                                                                                                                                                                                                                                                                  |                  |

# INTERIM SUBMITTAL REVIEW COMMENTS - FORT SAM HOUSTON, TX

| <u></u>        |                  |              | 7/10/95        |                            |                                         |                |             |
|----------------|------------------|--------------|----------------|----------------------------|-----------------------------------------|----------------|-------------|
| I              | REVIEW CONNE     | HTS          | AFZG-          | PN-E.                      | 5/3                                     | 2/10/          | 95          |
| FYNC OF REVIEW | 74               |              | 1. CIVIL       | 3. [] 1<br>TUANI, 4, 1/4/4 | THUCTUR.                                | AL 3. [] CI.KC | THICAL      |
| MOTHET Bollen  | Knicer           | ITEM HUNUCA  | <del></del>    | LHLHY                      | 1000                                    |                |             |
| Common Per     | mr Soudy         |              | •              |                            | 6-                                      | ARDON          | ELL         |
| LEGEND:        | D. Do not concur | E - Exceptia | ı, em cariconi | X.00144 co                 | ,                                       |                |             |
| THEMOS SHIMAND |                  | COM          | EHT            | ·                          | ,                                       | OY BEXISE Y    | SYSIF1      |
| 3, x, 5        | 0                | ITYPEO       | <del></del>    | <del></del>                |                                         |                |             |
| 127-1-         | Do No            |              |                |                            |                                         |                |             |
| <del> </del>   | REJUCIA          | <u> </u>     | EAPA CIT       | 155                        |                                         |                |             |
| <u>.</u>       | SINCE            | _EX1         | 571NG          |                            |                                         |                |             |
|                | CAPACITIC        | =3 w         | ERE F          | o und                      |                                         |                |             |
|                | 20 _ be          |              | •              |                            |                                         |                |             |
|                | MOST             |              | rerdu          | L IN                       |                                         |                |             |
|                | Most CI          |              |                |                            |                                         | -              |             |
|                |                  | ,            |                | ** .** *                   |                                         |                | [           |
| 5 2            | A (0)            | NTRAL        | PLAN           | 7                          |                                         |                |             |
|                | FOR 7            |              |                |                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |             |
|                | ARUA_            | .wev         | Ld Reg         | WIRE.                      |                                         | <u> </u>       |             |
|                | MY EH            |              |                |                            |                                         |                |             |
|                | A "H             | STORI        | CALLY          |                            |                                         |                |             |
|                | CORPEC           |              |                | <u>+0</u>                  |                                         |                |             |
|                | HIde_            | Fy. LF       | MONT           |                            |                                         |                |             |
|                | THE O            |              |                |                            |                                         |                |             |
|                | would            | EITH         | P HAV          | <u>e</u> 70                |                                         |                |             |
|                | be _ in          | ,            |                |                            |                                         |                |             |
|                | 12 0             | No           | <u> </u>       | te                         |                                         |                |             |
|                | Q15TING          |              |                |                            |                                         |                |             |
|                | SURROW           |              |                |                            |                                         |                |             |
|                | QUALAN           | mere         | THIS           |                            |                                         |                |             |
|                | I would          | 2590         | RE me          | VERT                       |                                         |                |             |
|                |                  |              | 1              |                            |                                         |                | <del></del> |

ESH FORM 847\* THOROUGH AND A CHARTZENTZERT

## INTERIM SUBMITTAL REVIEW COMMENTS - FORT SAM HOUSTON, TX 7/10/95

| ENGINEERING REVIEW COMM   | ENTS AFZG-                   | PN-ESA 7/10/95               |
|---------------------------|------------------------------|------------------------------|
| TYPE OF NEVIFW            | T. GIVIL                     | 3. STAUCTUHAL 3. CELECHRICAL |
| CHOISET /                 |                              | TROSPANDOT                   |
| CENTRAL PLANT Sondy       |                              | V. CARbONELL                 |
| A-Concor 0- De not concut | E. Exception, and comment    | C. Dalars gament             |
| MO. UR COMENT             | COMMENT<br>TYPE OR PRINT!    | ACTION BY REVIEW AGENCIES .  |
|                           | LE THE WOR                   | 2 /3                         |
| parki "                   | APPEARS' TO                  | o ho"                        |
| IN THE                    | soond LI                     | ~e                           |
| 1 1                       | nre EIGHTH                   | , , , , ,                    |
|                           | or para or                   |                              |
|                           | V ANCE LATTA                 |                              |
|                           | word 15"                     |                              |
|                           |                              |                              |
|                           | ر ايم مين مسيد استداد استداد |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
|                           |                              |                              |
| ESH FORM 847.             | ·                            |                              |

# RESPONSES TO INTERIM SUBMITTAL REVIEW COMMENTS 7/10/95

#### A. FORSCOM Comments:

- 1. Executive summary in final report will summarize the study as requested.
- Additional maintenance recommendations will be added to study which will address the repair of HVAC controls in the buildings.
- 3. Additional text will be added which will describe the selection of new equipment to be used in the analysis in this study.
- 4. Gas absorption cooling systems would eliminate the concerns over refrigerant types to be used in the new chillers. However, analysis of these types of cooling systems is beyond the scope of this study. (See pages F-11 through F-15)
- 5. An underlying assumption in all ECOs in this study is that the building controls remain as-is, and the new central cooling and heating systems merely save central plant heating and cooling energy, rather than improve building temperature control. Therefore, the LCC analysis of each ECO is valid whether the building HVAC controls are repaired or not. However, it is acknowledged that additional energy savings are possible if these controls are repaired. But analysis of these savings is beyond the scope of this study. (See pages F-11 through F-15)
- 6. An underlying assumption in the maintenance and operations recommendations made in this study is that the installation has adequate resources to implement them. It is beyond the scope of this study to determine the installations maintenance capabilities and provide maintenance strategies based on them.
- 7. Because of the apparent shortage of HVAC maintenance manpower at this installation, it is felt that centralization of the primary heating and cooling equipment is the best strategy to pursue. Consideration of unitized primary heating and cooling equipment is beyond the scope of this study. (See pages F-11 through F-15)
- 8(A). Descriptions of all domestic hot water heating systems can be found in the building data sheets in Appendix C. All DHW systems, except for the 900 area, are unitized by building, and separate from the heating system. It is assumed that DHW demand is directly related to building occupancy rather than outside weather conditions. In area 900, the DHW demand used in the study was taken from a 12 month metered gas profile for building 902. This amounted to boiler base load of 565 BTUH, as described on page B-3, item E (5). This load was constant throughout the year, due to the nearly constant occupancy of the barracks buildings in the 900 area.
- 8(B). Only buildings 1377 and 2265 have small boilers which are used for cooking loads. These cooking energy demands were assumed to be small as compared to the heating and cooling demands of all buildings in the study. Therefore, any ECO performed on these cooking boilers would have very long paybacks of greater than 10 years.
- 8(C). Because of the physical size of the buildings studied, and the types of internal heat sources present within them, the only significant cooling loads possible during the heating season would be in areas which house central computer equipment. The areas which fit this description were

generally served by unitary cooling equipment which could operate independently of the central HVAC systems, therefore providing cooling during the heating season if required. Building 2263 however has large computer areas without unitized cooling systems. In almost all cases, the analyst feels that the lack of operable HVAC controls along with the apparent over sizing of the central boiler systems is the cause of the high temperatures within the buildings during the heating season. However, operable windows are available in many cases to offset the lack of temperature controls.

8(D). The evaluation of two-pipe vs. Four-pipe systems at the installation was determined by the contracting officer to be beyond the scope of this study. Therefore, it was omitted.

#### B. MOBILE

- 1. Sentence reworded as requested.
- 2. Buildings added to list as requested.
- 3. Building added to list as requested.
- 4. Refrigeration types added to description as requested.
- 5. Statement added to Maintenance & Operations Recommendations as requested.
- 6. The area 1300 chiller replacement (ECO-C) was reevaluated, leaving the 1983 chiller in place and only replacing the two 1972 chillers with a single new chiller. The new payback is 8.4 years and this ECO is now recommended.

#### C. FORT SAM HOUSTON

- Over sizing of the new boiler and chiller equipment in the study would cause the ECO paybacks to be over 10 years and therefore unacceptable. Therefore, new equipment was sized to closely match the heating and cooling load profiles given in Appendix B.
- 2. ECO-G, the central chiller plant for the Quadrangle area, was evaluated to have a 20.9 year payback and was therefore not recommended for implementation. Increasing the implementation cost of this ECO by adding funds for architectural aesthetics would not improve the payback time. Therefore, no changes were made to this ECO.
- 3. Words replaced as requested.

 $\begin{array}{c} \text{APPENDIX G} \\ \\ \text{SAMPLE PRODUCTS} \end{array}$ 

## APPENDIX G SAMPLE PRODUCTS

## TABLE OF CONTENTS

| Maintenance Cost Estimate Data                           | G-1         |
|----------------------------------------------------------|-------------|
| Chiller Retrofit Cost Data For R-11 To HCFC-123 Upgrades | G-3         |
| York International Data On Chiller Performance           | G-5         |
| Aerco International Data On Modular Boiler Performance   | <b>G-</b> 9 |
| Area 100 New Central Boiler Data                         | 3-12        |

# DYNASERVICE

RECEIVED

MAR 0 1 1995

HZ

FEBRUARY 27, 1995

MR. WALTER WILLIAMS, III P.E. HUITT-ZOLLARS, INC. 512 MAIN STREET SUIT 1500 FORT WORTH, TX 76102

Walter,

I have projected maintenance cost for equipment you have noted broken down to per unit per visit on AHU, FCU, Fans, etc. Recommended at four (4) visits per year normal conditions. Severe conditions may require more frequent visits. To obtain heating and cooling season costs just divide visits in half and omit items such as water heater and exhaust fans if you do not want them included in heating and cooling costs.

NOTES: Boilers: one (1) visit per year annual inspection Chillers: four (4) visits per year. Three (3) routine checks and one (1) annual winter

service.

GeoTherm Wells: not applicable Cooling Towers: one (1) visit per year complete

annual clean and service

\*Annual switch from heat to cool is per season per building.

817.589 0200

A DIVISION OF

CORPORATION
7466 Dogwood Par-

DYNA TEN

Fort Worth
Texas 76118

817.595.4433

817.589 9911

Metro

Attached list shows breakdown of costs. If you have any questions, please call.

Sincerely,

David J. Recca

Customer Relations &

Sales

DR/als huitt

# DYNASERVICE

PAGE FOUR OF FIVE HUITT ZOLLARS PAGE THREE OF BREAKDOWN PREVENTIVE MAINTENANCE

#### B. CENTRAL PLANT EQUIPMENT

#### 1. Cooling Equipment

All of the below alternatives include a new chilled water pump (25 hp) and cooling tower.

| a.  | Existing Chiller retrofit to R-123                |           |
|-----|---------------------------------------------------|-----------|
|     | refrigerant, includes checking room sensors*      | \$2275/yr |
| b.  | New Water Cooled Centrifugal Chiller R-22*        | \$2275/yr |
| c.  | New Water Cooled Centrifugal Chiller R-123*       | \$2275/yr |
| d.  | New Water Cooled Centrifugal Chiller R-134A*      | \$2275/yr |
| e.  | New Water Cooled Screw Chiller*                   | \$2275/yr |
| f.  | New Water Cooled Centrifugal Chiller with         |           |
|     | VFD Compressor motor and inlet vanes*             | \$2275/yr |
| g.  | New Engine Driven Chiller - Natural Gas fired     |           |
|     | combustion engine. Similar to York CAT engine     |           |
|     | drive chiller. Jacket water will be utilized to   |           |
|     | heat domestic hot water during the summer months* | \$3075/yr |
| *Oi | il test only, no oil change                       |           |
|     |                                                   |           |

All of the below alternatives include a new chilled water pump (25 hp)

| <ul><li>b. New air</li><li>c. Chilled</li></ul> | cooled reciprocating chiller* cooled screw chiller* Water Pump (25 hp) O ton size equipment | \$2250/yr<br>\$2250/yr<br>\$25** |
|-------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|
| **ber Arei                                      | L                                                                                           |                                  |

#### 2. Heating Equipment

All of the below alternatives include a new heating water pump (20 hp)

| <ul><li>a. New standard firetube boilers</li><li>b. New vertical fired high efficiency</li></ul> | 2 | \$475* |
|--------------------------------------------------------------------------------------------------|---|--------|
| firetube boilers                                                                                 | 4 | \$475* |
| c. New cast iron boilers                                                                         | 2 | \$475* |
| <pre>d. Hot water pump (20 hp) *One visit per year. **Price per visit.</pre>                     |   | \$25** |



39 Olympia Avenue - Woburn, MA 01801-2073 USA Telephone: (617) 935-9050 - Telefax: (617) 935-9052 Telex: 455328 NOR RES WOB UD

June 16, 1995

Mr. John Carter Huitt-Zollars 512 Main Street, Suite 1500 Forth Worth, TX 76102 Post-it Fax Note 7671 Date 6/16 1301 4

The folia Caster From James Tang

State 3 17 335-1025 547-935-905

Dear Mr. Carter:

We are pleased to provide our Preliminary and Budgetary Quotation No. 950-2361 describing the design and manufacture of replacement impellers for returning original capacity to various chillers described in your fax of June 14, 1995.

Based on our past experience, we believe that any capacity loss resulting from the conversion from CFC-11 refrigerant to HCFC-123 can be rectified by changing the impellers. This option will retain original operating conditions, including driving speed, and will avoid the need to change other system components such as the condenser. This presumes that the evaporator and condenser are adequately sized for the added HCFC-123 flow rates.

NREC proposes to design and supply new compressor impellers which will provide the pressure ratios and flow rates required by the use of the new refrigerant. NREC predicts that the present capacity of the systems using CFC-11 can be achieved using our high performance impellers with negligible increases in power consumption. However, we reserve the possibility of up to a 5 percent increase in power consumption.

This proposal assumes that we will work with a contractor of Hultt-Zollars's choice to perform the entire conversion of the machines for the customer. NREC will be responsible for:

- · measuring compressor internals,
- designing and fabricating new impellers,
- balancing the impellers.
- supporting the contractor during the installation, conversion, completion, and operational testing of the converted system.

The selected contractor would be responsible for:

- · removing and reinstalling the impeller,
- providing all other on-site support and conversion tasks.

NREC will retain overall responsibility for the satisfaction of the performance requirements. The impellers will be designed and manufactured to operate within the

Mr. John Carter June 16, 1995 Page 2

specified original equipment. The impellers will be individually balanced, spin-tested, and assembled to the original rotor shaft.

Listed below are the preliminary and budgetary prices for the chillers you outlined in your request:

| Area:                                         | 900                                                | 2200                                        | 1300                                           | 1350                              |
|-----------------------------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------|
| Manufacturer:                                 | York                                               | Chrysler                                    | Trane                                          | Carrier                           |
| Make:<br>Model:<br>Quantity:<br>Budget Price: | TurboPak HT<br>YTC3D3C1CJC<br>One (1)<br>\$175,000 | Airtemp<br>C2MN7792<br>One (1)<br>\$250,000 | Centravac<br>PCV5FC1D1<br>Two (2)<br>\$275,000 | 19DK7894CP<br>One (1)<br>\$35,000 |

Since NREC have not yet designed impellers for the specific York, Chrysler, and Trane compressors above, a significant non-recurring engineering and tooling effort is included in the budget price. NREC is currently evaluating market potentials and, within six months, may develop a design and production plan for the York TurboPak and Trane Centravac chillers. This new position could possibly reduce the costs for the replacement TurboPak and Centravac impellers.

This proposal is subject to the standard "Products Sales" Terms and Conditions of our parent company, Ingersoil-Rand. A copy of these Terms and Conditions is attached. If you have any questions about the quotation, please feel free to contact me at (617) 937-4668 or Mel Mittnick, Senior Applications Engineer, at (617) 937-4855.

Sincerely,

NORTHERN RESEARCH AND ENGINEERING CORPORATION

Chi-Wu (dimmy) Tang Sales Engineer

CJT/ph Enclosure

2361HUIT.DOC

# CHILLER STUDY FT. SAM HOUSTON

Prepared For:
Mr. John T. Carter
HUITT-ZOLLARS, INC.
512 Main Street
Suite 1500
Ft. Worth, Texas 76102
Project # 03-0185-04

Prepared By:

TOM McGREAL YORK INTERNATIONAL 12901 Nicholson Road #260 Dallas, Texas 75234 (214) 620-8830

February 2, 1995

1,1

G-5

February 2, 1995

Huitt-Zollars, Inc. 512 Main Street **Suite 1500** Ft. Worth, Texas 76102

Attention: Mr. John T. Carter

Re: Chiller Study - Ft. Sam Houston Huitt-Zollars Project 03-0185-04

Dear John,

Per your request, we are pleased to provide you with the following information concerning the study you are doing on the above referenced project:

#### Overview

900 Area

Served by (1) - 300 ton R-11 York YT Model

1300 Area

Served by (2)-500 ton R-11 chillers and (1)-440 ton R-11 Chiller

Some initial thoughts about the existing chillers:

Since the York chiller serving the 900 Area is "open" drive, it can be retrofitted quite inexpensively to R-123 (cost of approximately \$20,000). However, there will be a tonnage deration and loss of efficiency (see attached chiller rating).

The units serving the 1300 Area will be hermetic chillers, and converting them to R-123 would be cost prohibitive, as the units would require total motor rework to become compatible with R-123. Replacement may be the only solution for this area, with the only exception being York "Codekits", new Open Drive Motor/Compressor Assemblies, field mounted. If the shells and tubes are in good shape, this option may make some sense.

For the energy evaluation of electric centrifugal chiller full and part load performance, the curve you have will be excellent for the centrifugal chillers. As a baseline for full load efficiencies, use the following:

#### R-123 Model YT Tonnage Range 150 - 800 tons

150 - 250 tons use .62 KW/Ton

250 - 350 tons use .59 KW/Ton

350 - 675 tons use .56 KW/Ton

675 - 800 tons use .58 KW/Ton

## R-22 Model YK Tonnage Range 350 - 2100 Tons

350 - 600 tons use .62 KW/Ton

600 - 1200 tons use .58 KW/Ton

1200 - 1700 tons use .60 KW/Ton

1700 - 2000 tons use .62 KW/Ton

12901 Nicholson, Suite 260, Dallas, Texas 75234 Telephone (214) 620-8830 • Fax (214) 484-7689



#### CORPORATION

Huitt-Zollars Ft. Sam Houston Project Page 2

R-134a Model YK Tonnage Range 350 - 2100 Tons

350 - 600 tons use .62 KW/Ton 600 - 1200 tons use .58 KW/Ton 1200 - 1700 tons use .60 KW/Ton 1700 - 2000 tons use .62 KW/Ton

For the Gas Engine Drive Chillers, utilize the R-134a selections (only refrigerant available on CAT Engine Drive Chillers), and use the following:

R-134a Model YG Tonnage Range 400 - 2100 Tons 6.6 MBH per ton (full load) from 350 - 700 Tons 6.2 MBH per ton (full load) above that

The part load curve will be slightly better than the centrifugal curve, but it will conservatively show the savings offered by gas.

- For the Water Cooled Screw Chillers, the part load curve will also be slightly better than the centrifugal, particularly through the 25% to 50% range. I've attached a "Marked Up" art load curve which should be used for the screw chillers. The full load efficiency base line should be:

R-22 Model YS Tonnage Range 125 - 675 tons, 1000 - 1200 tons

125 - 200 tons use .64 KW/Ton 200 - 280 tons use .62 KW/Ton 280 - 375 tons use .62 KW/Ton 375 - 675 tons use .64 KW/Ton

- For Air Cooled and Water Cooled Reciprocating Chillers, the full and part load points are attached.
- For the Gas Fired Absorption Chillers, utilize the attached curve and 12 MBH per ton for full load energy consumption.

We appreciate your interest in York products. Please feel free to call me if you have any questions.

Cincordly

Thomas J. McGreal Systems Consultant

C.\WPWIN60\TOM\SAMHQUST

Water Course Sure a Chailer



<sup>\*</sup>Based on 2.4 GPM/Ton of 44°F leaving chilled water temperature; 3 GPM/Ton of condenser water; 0.0005 FF on both circuits.;

13

G-8



## MODEL KC-1000 GWB

TECHNICAL DATA

# AERCO KC Gas Fired Hot Water Boiler System

The AERCO KC Water Boiler is a true industry advance that meets the needs of today's energy and environmental concerns. Designed for application in any closed loop hydronic system, it relates energy input directly to fluctuating system load, yielding seasonal efficiencies as high as 95%. The boiler can be used singly or in modular arrangements for inherent standby with minimum space requirements. Venting flexibility permits installation without normal restrictions.



The advanced electronics of each boiler module offer selectable modes of operation. The options available include:

AERCO

Constant Temperature Internal Setpoint Indoor/Outdoor Reset 4-20ma Linear Signal Response AERCO Boiler Management System Integration AERCO Combination Domestic Water/Boiler Plant

Regardless of the mode of operation, the load tracking capability of every unit delivers the ultimate in energy control through energy input modulation with a 14:1 ratio while meeting all load demands.

With condensing capability, the KC Boiler is ideally suited for modern low temperature as well as conventional heating systems. Because of the compact design with direct or conventional venting, the KC Boiler system is applicable to either new construction or retrofit application with the same excellent results. Efficiently, reliability, and longevity make the KC Boiler System a true step forward in heating system design.



25 GPM

#### KC1000 FEATURES

- Natural Gas or Propane
- 14:1 Turndown Ratio
- Direct Vent or Conventional Vent Capabilities
- ASME 150 PSIG Working Pressure Certified
- UL, ULC Listed, FM Approved, ASME Coded
- UL, ULC Listed for Alcove Installation on Combustible Flooring
- Quiet Operation throughout Firing Range
- Internal Low Water Cutoff and Dual Over Temperature Protection
- · Compact Space Efficient Design
- Precise Temperature Control +/- 2F
- Optional Sealed Combustion

#### KC-1000 Specifications

| BTU Input               | 1,000,000 BTU/Hr†                                |
|-------------------------|--------------------------------------------------|
| Net Output @ full input | 860,000-915,000 BTU/Hp*                          |
| ASME Working Pressure   | 150 PSIG                                         |
| Electrical Requirement  | 120/1/60 20 Amp                                  |
| Gas Requirements8       | 3.5" W.C. Minimum @Full Load<br>14" W.C. Maximum |
| Vent Size               | 6* Diameter                                      |
| Water Connections       | 4" Flanged 150 lb. ANSI                          |
| Gas Connection          | 1-1/4" NPT                                       |
|                         |                                                  |

| ************************************** | 23 GI W           |
|----------------------------------------|-------------------|
| Maximum Water Flow                     | 150 GPM           |
| Water Pressure Drop                    | 0.23 Ft. 100 GPM  |
| Water Volume                           | 23 Gallons        |
| Control Range                          | 50F to 220F       |
| Standard Listings & Approvals          | UL, ULC, FM, ASME |
| Optional Approval                      | IRI               |
| Weight, Installed                      | 1200 lbs.         |
|                                        |                   |

\*Output is dependent upon return water temp, and firing ratesee efficiency curves on reverse. †Up to 2000 Altitude.









Minimum Water Flow

# FEB-15-'95 WED 09:47 ID:NEAL ASSOCIATES TEL NO:214 AERCO INTERNATIONAL INC. KC HEATING BOILERS TEL NO:214 340 7767

PERFORMANCE COMPARISON

^ase Date: Feb 13, 1995

.oject Name: BOILER JOB 1

Rep Firm: Salesperson:

AERCO International, Inc.

Javier Piraneque

Design Firm:

Design Information:

Facility: MILITARY BASE Square Footage: 000 BIN City Data: DALLAS

Competition: BURNHAM FIRETUBE Its Max Known Thermal Effy:80.0%

Design Heat Loss 2,500,000 BTU/H TYDICAL Outdoor Design Temp: 10 F Temp Differential: 20 F FOR ANY LOAD.

50,817 EU 25,232 EU

Supply Water Temp @ Design:180 F Indoor Design Temp: 70 F # of KC-1000 Boilers: 3 With an Efficiency of 86.2%

Energy Units Consumption

TOTALS:

10

Fuel Consumed: Natural Gas

| Outdoor<br>AirTemp<br>70<br>65<br>60<br>55<br>50<br>45<br>40<br>35<br>30<br>25<br>20 | ASHRAE<br>BIN Hours<br>1,400<br>1,200<br>1,000<br>900<br>800<br>770<br>499<br>350<br>250<br>150<br>59 | BURNHAM<br>Effy %<br>50.0<br>52.5<br>55.0<br>57.5<br>60.0<br>62.5<br>65.0<br>67.5<br>70.0<br>72.5<br>75.0 | FIRETUBE<br>Energy<br>0<br>4,762<br>7,576<br>9,783<br>11,111<br>12,833<br>9,596<br>7,562<br>5,952<br>3,879<br>1,639<br>887 | AERCO B<br>Effy \$ 93.0<br>99.7<br>99.5<br>98.9<br>97.9<br>91.0<br>89.6<br>89.0<br>88.8<br>86.8<br>86.5 | oilers<br>Energy<br>2,509<br>4,191<br>5,692<br>6,816<br>8,550<br>6,861<br>5,699<br>4,682<br>3,168<br>1,417<br>796 | Difference<br>Energy Units<br>0<br>2,253<br>3,385<br>4,091<br>4,295<br>4,284<br>2,735<br>1,863<br>1,271<br>711<br>221<br>91 |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 15<br>10                                                                             |                                                                                                       |                                                                                                           |                                                                                                                            |                                                                                                         |                                                                                                                   | 221<br>91<br>33                                                                                                             |

lf BURNHAM FIRETUBE equipment is selected for this project, the INCREASE in energy usage over Aerco International KC Boilers will be approximately 49.7% MORE per year.

76,049 EU

AERCO International reserves the right to revise any information contained within this program in accordance to the written legal agreement as stated in the pages of our users manual dated 5/94

#### Dimensions KC-1000 Boiler



#### Ratings and Dimensions

| Modules   | Model     | Mbh Input | MBH Output      | Length | Depth | Height | Weight                           |  |
|-----------|-----------|-----------|-----------------|--------|-------|--------|----------------------------------|--|
|           | (a)       | (b)       | (b) (c)         |        |       |        |                                  |  |
| One (1)   | KC-1000   | 1000mbh   | 860mbh-915mbh   | 1'10"  | 4'9"  | 6′8″   | 1200lbs.                         |  |
| Two (2)   | KC-1000-2 | 2000mbh   | 1720mbh-1830mbh | 5′10″  | 4'9"  | 6′8″   | 2400lbs                          |  |
| Three (3) | KC-1000-3 | 3000mbh   | 2580mbh-2745mbh | 9'8"   | 4'9"  | 6'8"   | 3600lbs                          |  |
| Four (4)  | KC-1000-4 | 4000mbh   | 3440mbh-3660mbh | 13'6"  | 4'9"  | 6'8"   | 4800lbs                          |  |
| Five (5)  | KC-1000-5 | 5000mbh   | 4300mbh-4575mbh | 17'4"  | 4'9"  | 6′8″   | 6000lbs                          |  |
| Six (6)   | KC-1000-6 | 6000mbh   | 5160mbh-5490mbh | 21'2"  | 4'9"  | 6'8"   | 7200lbs.<br>8400lbs.<br>9600lbs. |  |
| Seven (7) | KC-1000-7 | 7000mbh   | 6020mbh-6405mbh | 25'    | 4'9"  | 6'8"   |                                  |  |
| light (8) | KC-1000-8 | 8000mbh   | 6880mbh-7320mbh | 28'10" | 4'9"  | 6′8″   |                                  |  |

(a) Style to be Determined by Individual Application Requirement

(b) Altitude below 2,000', Apply Altitude Correction Factor above 2,000. (c) Output dependent upon application-see efficiency curves.

## **Efficiency Curves**



Represented by:

GFB-1 BBC 08/93 5M

#### Programmable Modes of Operation



HEAT EXCHANGES • WATER HEATERS • BOILERS
CONTROL VALVES • STEAM GENERATORS



HOT WATER SYSTEMS

AERCO INTERNATIONAL, INC. • 159 PARIS AVE., P.O. BOX 128 NORTHVALE, N.J. 07647-0128 • (201) 768-2400 • FAX 201-768-7789

# Hydronic Boilers





# \*\*TELEDYNE LAARS

## **Dimensions and Technical Data**

Series H copper tube hydronic boilers are designed for closed system heating applications. All models are design-certified by AGA for natural or propane gas. Note: Two-stage with outdoor reset available.

|      | Boiler Ratings'<br>Natural & Propane Gas |                                   |                                    | Gas Connection <sup>4</sup> |            |       |      |                         | Dimensions'—see drawings below |        |        |       |       |        |                         |                        |                          |                      |
|------|------------------------------------------|-----------------------------------|------------------------------------|-----------------------------|------------|-------|------|-------------------------|--------------------------------|--------|--------|-------|-------|--------|-------------------------|------------------------|--------------------------|----------------------|
| 16   | BTU<br>Input<br>x 1000                   | BTU<br>Output<br>x 1000<br>Indoor | BTU<br>Output<br>x 1000<br>Outdoor | Mechanical<br>Modulation    |            |       |      | Motorized<br>Modulation | Air <sup>3</sup><br>Supply     |        |        |       |       | v      | Indoor<br>Draft<br>Hood | Outdoor<br>Vent<br>Cap | Water<br>Piping<br>Conn. | Ship-<br>ping<br>Wt. |
|      | A 1000                                   |                                   |                                    | Nat.                        | Pro.       | Nat.  | Pro. | Nat.                    | (Sq. Ft.)                      | A      | В      | С     | D     | (Dia.) |                         | н                      |                          |                      |
| 250  | 250                                      | 200                               | 188                                | 3/4                         | 1/2        | -     | _    | _                       | .5                             | 221/2  | 32%    | 151/4 | 113/4 | 7      | 27                      | 23                     | 2                        | 251                  |
| 325  | 325                                      | 260                               | 244                                | 3/4                         | <b>1/2</b> | -     | _    | _                       | .6                             | 26 3/4 | 36%    | 17%   | 113/4 | 8      | 273/4                   | 23%                    | 2                        | 316                  |
| 400  | 400                                      | 320                               | 300                                | 3/4                         | 1/2        | -     | _    | -                       | .8                             | 31 3/4 | 41%    | 20%   | 113/4 | 9      | 29 1/4                  | 261/4                  | 2                        | 371                  |
| 500  | 500                                      | 400                               | 375                                | _                           | -          | 1     | 3/4  | 1                       | .9                             | 30%    | 361/2  | 20    | 6     | 10     | _                       | _                      | 2                        | 407                  |
| 625  | 625                                      | 500                               | 469                                |                             | _          | 1     | 3/4  | 1                       | 1.0                            | 361/2  | 42%    | 23    | 7     | 12     | _                       | _                      | 2                        | 562                  |
| 750  | 750                                      | 600                               | 563                                |                             | -          | 1     | 3/4  | 11/4                    | 1.3                            | 42%    | 481/4  | 25%   | 8     | 14     | _                       | _                      | 2                        | <b>6</b> 03          |
| 925  | 925                                      | 740                               | 694                                | _                           | _          | 1     | 1    | 11/4                    | 1.6                            | 50%    | 56 1/2 | 30    | 8     | 14     | _                       | _                      | 2                        | 798                  |
| 1100 | 1100                                     | 880                               | 825                                | -                           | -          | 11/4  | 1    | 11/4                    | 1.9                            | 58%    | 64%    | 34%   | 9     | 16     | _                       | _                      | 21/2                     | 863                  |
| 1266 | 1266                                     | 1013                              | 950                                | _                           | -          | 1 1/4 | 1    | 1 1/2                   | 2.0                            | 66%    | 721/2  | 38    | 9     | 16     | _                       | -                      | 21/2                     | 933                  |
| 1466 | 1466                                     | 1173                              | 1100                               |                             | -          | 11/4  | 11/4 | 1 1/2                   | 2.5                            | 76     | 81%    | 423/4 | 10    | 18     | _                       | _                      | 21/2                     | 1004                 |
| 1666 | 1666                                     | 1333                              | 1250                               | _                           | _          | 11/4  | 11/4 | 11/2                    | 2.9                            | 851/2  | 911/4  | 47%   | 10    | 18     | _                       | _                      | 21/2                     | 1146                 |

#### Boiler standard with 2-stage firing on Models 500 through 1666.

#### Notes:

- All dimensions nominal. Dimensions not shown in table are given in drawings below. Where measurements are critical request certified drawing.

  The design of all models has been certified by AGA for natural and propane gases.

  All models conform to ASME Boiler Code for 160 PSI working passive. working pressure.

  Derate propane ratings for outdoor boilers by 10%.

Derate BTU input and output 4% for every 1000 ft installation is above sea level. No derating necessary up to 2000 ft. elevation. Ex. At 4000 ft. elevation derate BTU input and output 16%. For other boiler ratings:

IBR Net BTU) = Output 1.15

EDR (So. Et.) = Output

EDR (Sq. Ft.) =  $\frac{0.13}{150}$ IBR (Sq. Ft.) = Net IBR BTU

- 3. Area indicated is for each of two openings, one at floor and one at ceiting, communicating directly through a wall to outside air. For all other condition: refer to American National Standards Bulletin Z223.1—1974 Section 1.3.4.
  Check touver manufacturers for Net Free Area of louver. Correct screen resistance to net Free Area screen used.

  4. Size shown is the connection at the boiler. For correct sizing of the gas supply piping and gas supply pressure see Document 1010.









Type HQ-Slimline Integral Draft Hood Indoor Only 500-1666