Local Fourier Analysis of Domain Decomposition and Multigrid Methods for High-Order Matrix-Free Finite Elements

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

July 8, 2021

Funding

This work is supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed platforms, in support of the nation's exascale computing imperative.

Overview

- Introduction
- High-Order Matrix-Free FEM
- LFA of High-Order Matrix-Free FEM
- LFA of Multigrid Methods
 - P-Multigrid
 - H-Multigrid
- LFA of BDDC
- Summary

Big Picture

- High-order matrix-free representations of PDEs are better suited to modern hardware than sparse matrices
- High-order matrix-free representations require preconditioned iterative solvers
- Local Fourier Analysis (LFA) provides sharp convergence estimates for these preconditioners
- We develop LFA of p-multigrid and Balancing Domain Decomposition by Constraints (BDDC) on high-order element subdomains
- Further, we investigate LFA of p-multigrid with a BDDC smoother

Modern Hardware

Modern hardware has lower memory bandwidth than FLOPs [4]

Benefits of Matrix-Free

Requirements for matrix-vector product with sparse matrix vs matrix-free for screened Poisson $\nabla^2 u - \alpha^2 u = f$ in 3D

Matrix-free representations using tensor product bases better match modern hardware limitations

Matrix-Free Representation

Weak form for an arbitrary second order PDE [2]:

find
$$u \in V$$
 such that for all $v \in V$
 $\langle v, u \rangle = \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0$ (1)

- contraction over fields
- : contraction over fields and spatial dimensions

Matrix-Free Representation

Galerkin form for an arbitrary second order PDE:

$$\sum_{e} \mathcal{E}^{T} \left[(\mathsf{N}^{e})^{T} \mathsf{W}^{e} \Lambda \left(f_{0} \left(u^{e}, \nabla u^{e} \right) \right) + \sum_{i=0}^{d-1} (\mathsf{D}_{i}^{e})^{T} \mathsf{W}^{e} \Lambda \left(f_{1} \left(u^{e}, \nabla u^{e} \right) \right) \right] = 0$$
(2)

- ullet element assembly/restriction operator
- N^e interpolation to quadrature points
- D_i^e derivatives at quadrature points
- W^e quadrature weights
- Λ pointwise multiplication at quadrature points

libCEED Representation

- P parallel element assembly operator
- G local element assembly operator
- B basis action operator
- D weak form and geometry at quadrature points

LFA Background

Consider a scalar Toeplitz operator L_h on the infinite 1D grid G_h

$$L_{h} = [s_{\kappa}]_{h} (\kappa \in V)$$

$$L_{h}w_{h}(x) = \sum_{\kappa \in V} s_{\kappa}w_{h}(x + \kappa h)$$
(3)

where

- $V \subset \mathcal{Z}$ is an index set
- $s_k \in \mathcal{R}$ are constant coefficients
- $w_h(x)$ is a I^2 function on G_h

LFA Background

If for all grid functions $\varphi(\theta, x)$

$$L_{h}\varphi\left(\theta,x\right) = \tilde{L}_{h}\left(\theta\right)\varphi\left(\theta,x\right) \tag{4}$$

then
$$\tilde{L}_h(\theta) = \sum_{\kappa \in V} s_{\kappa} e^{i\theta\kappa}$$
 is the **symbol** of L_h

Our function can be diagonalized by the standard Fourier modes

LFA Background

For a $q \times q$ system of equations, the matrix symbol is given by

$$\mathsf{L}_{h} = \begin{bmatrix} \mathcal{L}_{h}^{1,1} & \cdots & \mathcal{L}_{h}^{1,q} \\ \vdots & \vdots & \vdots \\ \mathcal{L}_{h}^{q,1} & \cdots & \mathcal{L}_{h}^{q,q} \end{bmatrix} \quad \Rightarrow \quad \tilde{\mathsf{L}}_{h} = \begin{bmatrix} \tilde{\mathcal{L}}_{h}^{1,1} & \cdots & \tilde{\mathcal{L}}_{h}^{1,q} \\ \vdots & \vdots & \vdots \\ \tilde{\mathcal{L}}_{h}^{q,1} & \cdots & \tilde{\mathcal{L}}_{h}^{q,q} \end{bmatrix} \quad (5)$$

LFA of High-Order FEM

For a scalar PDE operator on a single 1D finite element

$$\tilde{\mathsf{A}}\left(\boldsymbol{\theta}\right) = \mathsf{Q}^{\mathsf{T}}\left(\mathsf{A}^{\mathsf{e}} \odot \left[e^{\imath\left(\mathsf{x}_{j}-\mathsf{x}_{i}\right)\cdot\boldsymbol{\theta}/\mathsf{h}}\right]\right)\mathsf{Q} \tag{6}$$

where

$$A^e = B^T DB \tag{7}$$

$$Q = \begin{bmatrix} I \\ e_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \end{bmatrix}$$
 (8)

LFA of High-Order FEM

Symbol naturally extends to multiple components and higher dimensions

Multiple Components:

Multiple Dimensions:

$$Q_n = I_n \otimes Q$$

$$Q_{nd} = Q \otimes Q \otimes \cdots \otimes Q \quad (10)$$

Example: Scalar Poisson

$$\int \nabla v \nabla u = \int f v \tag{11}$$

- B given by tensor H1 Lagrange basis
- D given by quadrature weights and product

```
# mesh
dim = 1
mesh = Mesh1D(1.0)

# basis
p = 3
ncomp = 1
basis = TensorH1LagrangeBasis(p+1, p+1, ncomp, dim)

# weak form
function diffusionweakform(du::Array{Float64}, w::Array{Float64})
    return dv = du*w[1]
end
```

Example: Scalar Poisson

Scalar Poisson problem on quartic elements

low frequencies -
$$\theta \in T^{\text{low}} = [-\pi/2, \pi/2)^d$$

high frequencies - $\theta \in T^{\text{high}} = [-\pi/2, 3\pi/2)^d \setminus T^{\text{low}}$

LFA of High-Order Smoothers

Error propagation operator for smoothers given by

$$S = I - M^{-1}A \tag{12}$$

with a symbol given by

$$\tilde{S}(\omega, \theta) = I - \tilde{M}^{-1}(\omega, \theta) \tilde{A}(\theta)$$
(13)

Jacobi Smoothing

Jacobi smoothing given by

$$\mathsf{M}^{-1} = \omega \, \mathsf{diag} \left(\mathbf{A} \right)^{-1} \tag{14}$$

with an error symbol given by

$$\tilde{S}(\omega, \boldsymbol{\theta}) = I - \omega \left(Q^T \operatorname{diag}(A^e) Q \right)^{-1} \tilde{A}(\boldsymbol{\theta})$$
 (15)

Example: Jacobi Smoothing

Jacobi smoothing with $\omega = 1.0$ on quartic elements

low frequencies -
$$\theta \in T^{\text{low}} = [-\pi/2, \pi/2)^d$$

high frequencies - $\theta \in T^{\text{high}} = [-\pi/2, 3\pi/2)^d \setminus T^{\text{low}}$

Chebyshev Smoother

Error in kth order Chebyshev smoothing is given by

$$E_{0} = I$$

$$E_{1} = I - \frac{1}{\alpha} (\operatorname{diag} A)^{-1} A$$

$$E_{k} = \left((\operatorname{diag} A)^{-1} A E_{k-1} - \alpha E_{k-1} - \beta_{k-2} E_{k-2} \right) / \gamma_{k-1}$$
(16)

for an operator with a spectrum on the interval $[\alpha-c,\alpha+c]$ where

$$\beta_0 = -\frac{c^2}{2\alpha} \qquad \gamma_0 = -\alpha$$

$$\beta_k = \frac{c}{2} \frac{T_k(\eta)}{T_{k+1}(\eta)} = \left(\frac{c}{2}\right)^2 \frac{1}{\gamma_k} \quad \gamma_k = \frac{c}{2} \frac{T_{k+1}(\eta)}{T_k(\eta)} = -\left(\alpha + \beta_{k-1}\right). \tag{17}$$

Chebyshev Smoother

The error symbol of kth order Chebyshev smoother is given by

$$\tilde{\mathsf{E}}_{0}(\boldsymbol{\theta}) = \mathsf{I}$$

$$\tilde{\mathsf{E}}_{1}(\boldsymbol{\theta}) = \mathsf{I} - \frac{1}{\alpha}\tilde{\mathsf{A}}_{J}\tilde{\mathsf{A}}(\boldsymbol{\theta})$$

$$\tilde{\mathsf{E}}_{k}(\boldsymbol{\theta}) = \left(\tilde{\mathsf{A}}_{J}\tilde{\mathsf{A}}(\boldsymbol{\theta})\tilde{\mathsf{E}}_{k-1}(\boldsymbol{\theta}) - \alpha\tilde{\mathsf{E}}_{k-1}(\boldsymbol{\theta}) - \beta_{k-2}\tilde{\mathsf{E}}_{k-2}(\boldsymbol{\theta})\right)/\gamma_{k-1}$$
(18)

with \tilde{A}_J being the symbol of the Jacobi preconditioner

Example: Chebyshev Smoothing

Third order Chebyshev smoothing quartic elements

low frequencies -
$$\theta \in T^{\text{low}} = [-\pi/2, \pi/2)^d$$
 high frequencies - $\theta \in T^{\text{high}} = [-\pi/2, 3\pi/2)^d \setminus T^{\text{low}}$

Two-Grid Multigrid Error

Multigrid methods target the low frequency error

$$\mathsf{E}_{\mathsf{2MG}} = \mathsf{S}_f \left(\mathsf{I} - \mathsf{P}_{\mathsf{ctof}} \mathsf{A}_c^{-1} \mathsf{R}_{\mathsf{ftoc}} \mathsf{A}_f \right) \mathsf{S}_f \tag{19}$$

- \bullet A_f fine grid PDE operator
- \bullet A_c^{-1} coarse grid solve (low frequency error)
- S_f fine grid smoother (high frequency error)
- P_{ctof} coarse to fine grid prolongation operator
- R_{ftoc} fine to coarse grid restriction operator

Grid transfer operators and coarse representation differentiate h-multigrid and p-multigrid

Two-Grid Multigrid Error

The definition of the symbol follows naturally

$$\tilde{\mathsf{E}}_{\mathsf{2MG}}(\boldsymbol{\theta}) = \tilde{\mathsf{S}}_{f}(\boldsymbol{\theta}, \omega) \left(\mathsf{I} - \tilde{\mathsf{P}}_{\mathsf{ctof}}(\boldsymbol{\theta}) \left(\tilde{\mathsf{A}}_{c}(\boldsymbol{\theta}) \right)^{-1} \tilde{\mathsf{R}}_{\mathsf{ftoc}}(\boldsymbol{\theta}) \, \tilde{\mathsf{A}}_{f}(\boldsymbol{\theta}) \right) \tilde{\mathsf{S}}_{f}(\boldsymbol{\theta}, \omega) \tag{20}$$

- \bullet A_f fine grid PDE operator
- A_c^{-1} coarse grid solve (low frequency error)
- S_f fine grid smoother (high frequency error)
- P_{ctof} coarse to fine grid prolongation operator
- R_{ftoc} fine to coarse grid restriction operator

P-Multigrid Transfer Operators

P-multigrid prolongation can be represented as an interpolation from the coarse to fine grid

P-Prolongation from Coarse Basis to Fine Nodes

$$P_{ctof} = P_f^T G_f^T P_e G_c P_c$$

$$P_e = ID_{scale} B_{ctof}$$
(21)

D scales for node multiplicity

Example: P-Multigrid

p-multigrid with third order Chebyshev on quadratic to linear elements

low frequencies -
$$\theta \in T^{\text{low}} = [-\pi/2, \pi/2)^d$$

high frequencies - $\theta \in T^{\text{high}} = [-\pi/2, 3\pi/2)^d \setminus T^{\text{low}}$

Validation: P-Multigrid

p_{fine} to p_{coarse}	LFA	libCEED	
p = 2 to p = 1	0.312	0.301	
p = 4 to p = 2	1.436	1.402	
p=4 to $p=1$	1.436	1.401	
p = 8 to p = 4	1.989	1.885	
p = 8 to p = 2	1.989	1.874	
p = 8 to p = 1	1.989	1.875	

LFA and experimental two-grid convergence factors with Jacobi smoothing for 3D Laplacian with $\omega=1.0$

3D manufactured solution on the domain $[-3,3]^3$ with Dirichlet boundaries:

$$f(x, y, z) = xyz\sin(\pi x)\sin(\pi (1.23 + 0.5y))\sin(\pi (2.34 + 0.25z))$$
 (22)

Validation: P-Multigrid

p_{fine} to p_{coarse}	k = 2		k = 3		k = 4	
	LFA	libCEED	LFA	libCEED	LFA	libCEED
p = 2 to p = 1	0.253	0.222	0.076	0.058	0.041	0.033
p = 4 to p = 2 p = 4 to p = 1	0.277 0.601	0.251 0.587	0.111 0.416	0.097 0.398	0.062 0.295	0.050 0.276
p = 8 to p = 4 p = 8 to p = 2 p = 8 to p = 1	0.398 0.748 0.920	0.391 0.743 0.914	0.197 0.611 0.871	0.195 0.603 0.861	0.121 0.506 0.827	0.110 0.469 0.814

LFA and experimental two-grid convergence factors with Chebyshev smoothing for 3D Laplacian

H-Multigrid Transfer Operators

H-multigrid prolongation can be represented as an interpolation from the coarse grid to fine grid macro-elements

H-Prolongation from Coarse Basis to Fine Nodes

$$P_{\text{ctof}} = P_f^T G_f^T P_e G_c P_c$$

$$P_e = ID_{\text{scale}} B_{\text{ctof}}$$
(23)

D scales for node multiplicity

Example: H-Multigrid

h-multigrid with third order Chebyshev on linear elements

low frequencies -
$$\theta \in T^{\text{low}} = [-\pi/2, \pi/2)^d$$

high frequencies - $\theta \in T^{\text{high}} = [-\pi/2, 3\pi/2)^d \setminus T^{\text{low}}$

Validation: P-Multigrid

p, d	$\nu = (0,1)$		$\nu = (1,1)$		$\nu = (2,2)$	
	ρ	ω	ρ	ω	ρ	ω
p = 2, d = 1	0.821	1.000	0.821	1.000	1.279	1.000
p = 2, d = 1	0.526	0.838	0.495	0.838	0.302	0.838
p = 2, d = 1	0.291	0.709	0.249	0.709	0.064	0.709
p = 3, d = 1	0.491	0.650	0.337	0.650	0.131	0.650
p = 4, d = 1	0.608	0.640	0.559	0.640	0.331	0.640
p = 2, d = 2	0.452	1.000	0.288	1.000	0.091	1.000

Two-grid convergence factor and Jacobi smoothing parameter for high-order h-multigrid

Results agree with previous work [3]

Big Picture

- High-order matrix-free representations of PDEs are better suited to modern hardware than sparse matrices
- High-order matrix-free representations require preconditioned iterative solvers
- Local Fourier Analysis (LFA) provides sharp convergence estimates for these preconditioners
- We develop LFA of p-multigrid and Balancing Domain Decomposition by Constraints (BDDC) on high-order element subdomains
- Further, we investigate LFA of p-multigrid with a BDDC smoother

Big Picture

- High-order matrix-free representations of PDEs are better suited to modern hardware than sparse matrices
- High-order matrix-free representations require preconditioned iterative solvers
- Local Fourier Analysis (LFA) provides sharp convergence estimates for these preconditioners
- We develop LFA of p-multigrid and Balancing Domain Decomposition by Constraints (BDDC) on high-order element subdomains
- Further, we investigate LFA of p-multigrid with a BDDC smoother

Local Fourier Analysis of Domain Decomposition and Multigrid Methods for High-Order Matrix-Free Finite Elements

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

July 8, 2021

Jed Brown.

Efficient nonlinear solvers for nodal high-order finite elements in 3D. *Journal of Scientific Computing*, 45(1-3):48–63, 2010.

Yunhui He and Scott MacLachlan.

Two-level fourier analysis of multigrid for higher-order finite-element discretizations of the laplacian.

Numerical Linear Algebra with Applications, 27(3):e2285, 2020.

Karl Rupp.
CPU-GPU-MIC comparision charts, 2020.

Local Fourier Analysis of Domain Decomposition and Multigrid Methods for High-Order Matrix-Free Finite Elements

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

July 8, 2021

