Load the Wine Dataset

I load the built-in Wine dataset from scikit-learn.

This dataset contains chemical analysis of wines grown in the same region in Italy but derived from three different cultivars (classes 0, 1, 2).

The goal is to classify wines into their correct cultivar based on 13 numerical features such as alcohol, malic acid, and color intensity.

```
In [ ]: from sklearn.datasets import load_wine
wine =load_wine()
```

Dataset Details

Print the Wine dataset object to see its description and structure.

```
In [ ]: print(wine)
```

```
{'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
      1.065e+03],
     [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
      1.050e+03],
     [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
      1.185e+03],
     [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
     [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
      8.400e+02],
     [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
      5.600e+02]], shape=(178, 13)), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     2, 2]), 'frame': None, 'target_names': array(['class_0', 'class_1', 'class_
2'], dtype='<U7'), 'DESCR': '.. _wine_dataset:\n\nWine recognition dataset\n-----
-----\n\n**Data Set Characteristics:**\n\n:Number of Instances: 178\n:Num
ber of Attributes: 13 numeric, predictive attributes and the class\n:Attribute Infor
mation:\n - Alcohol\n
                    - Malic acid∖n
                                    Ash\nAlcalinity of ash\n
                                          Nonflavanoid phenols\n
Magnesium\n
           - Total phenols∖n
                            - Flavanoids∖n
Proanthocyanins\n
                Color intensity\n
                                 - Hue\n- OD280/OD315 of diluted wine
     - Proline\n - class_0\n
                                             - class_1\n
                                                             - clas
SD\n========
=\n
                           Min
                                Max
                                     Mean
===== ===== =====\nAlcohol:
                                                 11.0 14.8
                                                            13.0
0.8\nMalic Acid:
                           0.74 5.80
                                       2.34 1.12\nAsh:
                                            10.6 30.0
1.36 3.23
           2.36 0.27\nAlcalinity of Ash:
                                                       19.5
                                                             3.3\nMa
                      70.0 162.0
                                 99.7 14.3\nTotal Phenols:
gnesium:
0.98 3.88
           2.29 0.63\nFlavanoids:
                                            0.34 5.08
                                                      2.03 1.00\nNo
nflavanoid Phenols:
                      0.13 0.66
                                 0.36 0.12\nProanthocyanins:
0.41 3.58
           1.59 0.57\nColour Intensity:
                                             1.3 13.0
                                                        5.1
                                                             2.3\nHu
                      0.48 1.71 0.96 0.23\nOD280/OD315 of diluted wines:
e:
1.27 4.00
           2.61 0.71\nProline:
                                             278 1680
                                                        746
                                                             315\n==
========\n\n:Missing Attribute Values: N
one\n:Class Distribution: class_0 (59), class_1 (71), class_2 (48)\n:Creator: R.A. F
isher\n:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n
\nThis is a copy of UCI ML Wine recognition datasets.\nhttps://archive.ics.uci.edu/m
l/machine-learning-databases/wine/wine.data\n\nThe data is the results of a chemical
analysis of wines grown in the same\nregion in Italy by three different cultivators.
There are thirteen different\nmeasurements taken for different constituents found in
the three types of\nwine.\n\nOriginal Owners:\n\nForina, M. et al, PARVUS -\nAn Exte
ndible Package for Data Exploration, Classification and Correlation.\nInstitute of P
harmaceutical and Food Analysis and Technologies, \nVia Brigata Salerno, 16147 Genoa,
Italy.\n\nCitation:\n\nLichman, M. (2013). UCI Machine Learning Repository\n[http
s://archive.ics.uci.edu/ml]. Irvine, CA: University of California,\nSchool of Inform
ation and Computer Science.\n\n.. dropdown:: References\n\n
                                                 (1) S. Aeberhard, D.
Coomans and O. de Vel,\n Comparison of Classifiers in High Dimensional Setting
      Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of\n
thematics and Statistics, James Cook University of North Queensland.\n
                                                           (Also subm
```

itted to Technometrics).\n\n The data was used with many others for comparing var ious\n classifiers. The classes are separable, though only RDA\n has achieved 100% correct classification.\n (RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-tr ansformed data))\n (All results using the leave-one-out technique)\n\n (2) S. Aeberhard, D. Coomans and O. de Vel,\n "THE CLASSIFICATION PERFORMANCE OF RDA"\n Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of\n Mathematics and Statistics, James Cook University of North Queensland.\n (Also submitted to Journal of Chemometrics).\n', 'feature_names': ['alcohol', 'malic_acid', 'ash', 'alc alinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'prolin e']}

Data Shape

Check the number of rows (samples) and columns (features) in the dataset.

Target Shape

Check how many target labels (wine classes) are available in the dataset.

Feature Names

Display the names of all input features in the Wine dataset.

Target Class Names

Show the names of the wine classes (cultivars) present in the dataset.

```
In [ ]: print(wine.target_names)
    ['class_0' 'class_1' 'class_2']
```

Preview Data

Display the first 5 rows of feature values and their corresponding target labels.

```
In [ ]: print(wine.data[:5])
    print(wine.target[:5])
```

```
[[1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02 2.800e+00 3.060e+00 2.800e-01 2.290e+00 5.640e+00 1.040e+00 3.920e+00 1.065e+03]
[1.320e+01 1.780e+00 2.140e+00 1.120e+01 1.000e+02 2.650e+00 2.760e+00 2.600e-01 1.280e+00 4.380e+00 1.050e+00 3.400e+00 1.050e+03]
[1.316e+01 2.360e+00 2.670e+00 1.860e+01 1.010e+02 2.800e+00 3.240e+00 3.000e-01 2.810e+00 5.680e+00 1.030e+00 3.170e+00 1.185e+03]
[1.437e+01 1.950e+00 2.500e+00 1.680e+01 1.130e+02 3.850e+00 3.490e+00 2.400e-01 2.180e+00 7.800e+00 8.600e-01 3.450e+00 1.480e+03]
[1.324e+01 2.590e+00 2.870e+00 2.100e+01 1.180e+02 2.800e+00 2.690e+00 3.900e-01 1.820e+00 4.320e+00 1.040e+00 2.930e+00 7.350e+02]]
[0 0 0 0 0]
```

Create DataFrame

Convert the dataset into a pandas DataFrame, add the target column, and view the first 5 rows.

```
import pandas as pd
df = pd.DataFrame(wine.data,columns=wine.feature_names)
df['target']=wine.target
df.head()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflav
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

Summary Statistics

View statistical summary (mean, std, min, max, quartiles) of all features.

```
In [ ]: df.describe()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flava
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.0
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.0
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.9
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.3
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.2
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.1
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.8
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.0

Alcohol Feature Summary

Show statistical details (mean, std, min, max, quartiles) for the alcohol column only.

```
In [ ]: from sklearn.datasets import load_wine
wine =load_wine()
```

Raw Dataset Object

Print the raw Wine dataset object to check its description and metadata.

```
In [ ]: print(wine)
```

```
{'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
      1.065e+03],
     [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
      1.050e+03],
     [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
      1.185e+03],
     [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
     [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
      8.400e+02],
     [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
      5.600e+02]], shape=(178, 13)), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     2, 2]), 'frame': None, 'target_names': array(['class_0', 'class_1', 'class_
2'], dtype='<U7'), 'DESCR': '.. _wine_dataset:\n\nWine recognition dataset\n-----
-----\n\n**Data Set Characteristics:**\n\n:Number of Instances: 178\n:Num
ber of Attributes: 13 numeric, predictive attributes and the class\n:Attribute Infor
mation:\n - Alcohol\n
                    - Malic acid∖n
                                    Ash\nAlcalinity of ash\n
                                          Nonflavanoid phenols\n
Magnesium\n
           - Total phenols∖n
                            - Flavanoids∖n
Proanthocyanins\n
                Color intensity\n
                                 - Hue\n- OD280/OD315 of diluted wine
     - Proline\n - class_0\n
                                             - class_1\n
                                                             - clas
SD\n========
=\n
                           Min
                                Max
                                     Mean
===== ===== =====\nAlcohol:
                                                 11.0 14.8
                                                            13.0
0.8\nMalic Acid:
                           0.74 5.80
                                       2.34 1.12\nAsh:
                                            10.6 30.0
1.36 3.23
           2.36 0.27\nAlcalinity of Ash:
                                                       19.5
                                                             3.3\nMa
                      70.0 162.0
                                 99.7 14.3\nTotal Phenols:
gnesium:
0.98 3.88
           2.29 0.63\nFlavanoids:
                                            0.34 5.08
                                                      2.03 1.00\nNo
nflavanoid Phenols:
                      0.13 0.66
                                 0.36 0.12\nProanthocyanins:
0.41 3.58
           1.59 0.57\nColour Intensity:
                                             1.3 13.0
                                                        5.1
                                                             2.3\nHu
                      0.48 1.71 0.96 0.23\nOD280/OD315 of diluted wines:
e:
1.27 4.00
           2.61 0.71\nProline:
                                             278 1680
                                                        746
                                                             315\n==
========\n\n:Missing Attribute Values: N
one\n:Class Distribution: class_0 (59), class_1 (71), class_2 (48)\n:Creator: R.A. F
isher\n:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n:Date: July, 1988\n
\nThis is a copy of UCI ML Wine recognition datasets.\nhttps://archive.ics.uci.edu/m
l/machine-learning-databases/wine/wine.data\n\nThe data is the results of a chemical
analysis of wines grown in the same\nregion in Italy by three different cultivators.
There are thirteen different\nmeasurements taken for different constituents found in
the three types of\nwine.\n\nOriginal Owners:\n\nForina, M. et al, PARVUS -\nAn Exte
ndible Package for Data Exploration, Classification and Correlation.\nInstitute of P
harmaceutical and Food Analysis and Technologies, \nVia Brigata Salerno, 16147 Genoa,
Italy.\n\nCitation:\n\nLichman, M. (2013). UCI Machine Learning Repository\n[http
s://archive.ics.uci.edu/ml]. Irvine, CA: University of California,\nSchool of Inform
ation and Computer Science.\n\n.. dropdown:: References\n\n
                                                 (1) S. Aeberhard, D.
Coomans and O. de Vel,\n Comparison of Classifiers in High Dimensional Setting
      Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of\n
thematics and Statistics, James Cook University of North Queensland.\n
                                                           (Also subm
```

itted to Technometrics).\n\n The data was used with many others for comparing var ious\n classifiers. The classes are separable, though only RDA\n has achieved 100% correct classification.\n (RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-tr ansformed data))\n (All results using the leave-one-out technique)\n\n (2) S. Aeberhard, D. Coomans and O. de Vel,\n "THE CLASSIFICATION PERFORMANCE OF RDA"\n Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of\n Mathematics and Statistics, James Cook University of North Queensland.\n (Also submitted to Journal of Chemometrics).\n', 'feature_names': ['alcohol', 'malic_acid', 'ash', 'alc alinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'prolin e']}

Feature Data Shape

Check the dimensions of the feature data (rows × columns).

Target Data Shape

Check how many target values (labels) are present in the dataset.

Feature Names

List all the feature names used in the Wine dataset.

Target Class Labels

Display the names of the wine classes $(0 = class_0, 1 = class_1, 2 = class_2)$.

```
In [ ]: print(wine.target_names)
    ['class_0' 'class_1' 'class_2']
```

Preview of Data and Targets

Show the first 5 rows of feature values along with their corresponding target labels.

```
In [ ]: print(wine.data[:5])
    print(wine.target[:5])
```

```
[[1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02 2.800e+00 3.060e+00 2.800e-01 2.290e+00 5.640e+00 1.040e+00 3.920e+00 1.065e+03]
[1.320e+01 1.780e+00 2.140e+00 1.120e+01 1.000e+02 2.650e+00 2.760e+00 2.600e-01 1.280e+00 4.380e+00 1.050e+00 3.400e+00 1.050e+03]
[1.316e+01 2.360e+00 2.670e+00 1.860e+01 1.010e+02 2.800e+00 3.240e+00 3.000e-01 2.810e+00 5.680e+00 1.030e+00 3.170e+00 1.185e+03]
[1.437e+01 1.950e+00 2.500e+00 1.680e+01 1.130e+02 3.850e+00 3.490e+00 2.400e-01 2.180e+00 7.800e+00 8.600e-01 3.450e+00 1.480e+03]
[1.324e+01 2.590e+00 2.870e+00 2.100e+01 1.180e+02 2.800e+00 2.690e+00 3.900e-01 1.820e+00 4.320e+00 1.040e+00 2.930e+00 7.350e+02]]
[0 0 0 0 0]
```

Create DataFrame

Convert the Wine dataset into a pandas DataFrame, add the target column, and display the first 5 rows.

```
import pandas as pd
df = pd.DataFrame(wine.data,columns=wine.feature_names)
df['target']=wine.target
df.head()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflav
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

Dataset Statistics

Generate summary statistics (count, mean, std, min, max, quartiles) for all features in the dataset.

```
In [ ]: df.describe()
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flava
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.0
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.0
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.9
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.3
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.2
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.1
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.8
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.0

Alcohol Column Statistics

Show detailed statistics (count, mean, std, min, max, quartiles) for the alcohol feature only.

```
In [ ]: df['alcohol'].describe()
       count
                178.000000
       mean
                 13.000618
       std
                  0.811827
       min
                 11.030000
       25%
                 12.362500
       50%
                 13.050000
       75%
                 13.677500
       max
                 14.830000
       Name: alcohol, dtype: float64
```

Dataset Information

Display info about the DataFrame including column names, data types, and non-null counts.

```
In [ ]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
    Column
                                Non-Null Count Dtype
   -----
                                -----
                                178 non-null
0
    alcohol
                                              float64
                                178 non-null float64
1
    malic_acid
    ash
                                178 non-null
                                               float64
 3
                                178 non-null float64
    alcalinity_of_ash
                                              float64
    magnesium
                                178 non-null
 5
    total_phenols
                                178 non-null float64
   flavanoids
                                178 non-null float64
 7
    nonflavanoid_phenols
                                178 non-null float64
    proanthocyanins
                                178 non-null float64
    color_intensity
                                               float64
                                178 non-null
10 hue
                                178 non-null float64
11 od280/od315_of_diluted_wines 178 non-null float64
12 proline
                                178 non-null
                                               float64
13 target
                                178 non-null
                                               int64
dtypes: float64(13), int64(1)
memory usage: 19.6 KB
```

Target Class Distribution

Count the number of samples in each wine class (0, 1, 2).

```
In [ ]: df['target'].value_counts()

    target
    1    71
    0    59
    2    48
    Name: count, dtype: int64
```

Dataset Shape

Check the total number of rows (samples) and columns (features + target) in the dataset.

Check for Missing Values

Display a boolean DataFrame showing True/False for missing values in each cell.

```
In [ ]: df.isnull()
```

		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonf
	0	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	
	•••								
1	73	False	False	False	False	False	False	False	
1	74	False	False	False	False	False	False	False	
1	75	False	False	False	False	False	False	False	
1	76	False	False	False	False	False	False	False	
1	77	False	False	False	False	False	False	False	

178 rows × 14 columns

Missing Values Count

Show the number of missing values in each column of the dataset.

```
In [ ]: df.isnull().sum()
       alcohol
                                        0
       malic_acid
                                        0
                                        0
       ash
       alcalinity_of_ash
                                        0
       magnesium
                                        0
       total_phenols
                                        0
       flavanoids
       nonflavanoid_phenols
                                        0
       proanthocyanins
       color_intensity
                                        0
       hue
                                        0
       od280/od315_of_diluted_wines
                                        0
       proline
                                        0
       target
                                        0
       dtype: int64
```

Total Missing Values

Calculate the total number of missing values across the entire dataset.

Any Missing Values?

Check if the dataset contains any missing values (True/False).

Boxplot of Alcohol by Target

Visualize the distribution of alcohol content across different wine classes using a boxplot.

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(x='target',y='alcohol',data=df)
plt.show()
```


Alcohol Distribution by Class

Plot the distribution of alcohol values for each wine class using a histogram with KDE.

```
In [ ]: sns.histplot(x='alcohol',hue='target',kde=True,data=df)
    plt.show()
```


Scatter Plot (Alcohol vs Color Intensity)

Visualize the relationship between alcohol and color intensity, colored by wine class.

```
In [ ]: sns.scatterplot(x='alcohol',y='color_intensity',hue='target',data=df)
plt.show()
```


Pairplot of Selected Features

Plot pairwise relationships between alcohol, color intensity, and proline, separated by wine class.

```
In [ ]: sns.pairplot(df,vars=["alcohol","color_intensity","proline"],hue='target')
    plt.show()
```


Target Class Counts

Show the number of samples available in each wine class using a count plot.

```
In [ ]: sns.countplot(x='target',data=df)
    plt.show()
```


Train-Test Split

Split the dataset into training (80%) and testing (20%) sets to evaluate model performance.

```
In [ ]: from sklearn.model_selection import train_test_split
    x=df.drop("target",axis=1)
    y=df['target']
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
    plt.show()
```

Preview Train and Test Sets

Display the feature values of training and testing sets along with their target labels.

```
In [ ]: print(x_train)
    print(x_test)
    print(y_train)
    print(y_test)
```

```
alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \
    14.34
                  1.68 2.70
                                        25.0
                                                   98.0
                                                                 2.80
158
      12.53
                  5.51 2.64
                                         25.0
                                                   96.0
                                                                 1.79
137
                                        18.5
                                                                 3.52
98
      12.37
                  1.07 2.10
                                                   88.0
159
      13.48
                  1.67 2.64
                                         22.5
                                                   89.0
                                                                 2.60
38
      13.07
                  1.50 2.10
                                        15.5
                                                   98.0
                                                                 2.40
. .
      . . .
                  . . .
                       . . .
                                         . . .
                                                   . . .
                                                                 . . .
                  1.51 2.67
                                         25.0
                                                                 2.95
71
      13.86
                                                   86.0
106
    12.25
                  1.73 2.12
                                        19.0
                                                                 1.65
                                                 80.0
14
      14.38
                  1.87 2.38
                                        12.0
                                                  102.0
                                                                 3.30
92
      12.69
                  1.53 2.26
                                         20.7
                                                  80.0
                                                                 1.38
102
      12.34
                  2.45 2.46
                                         21.0
                                                   98.0
                                                                 2.56
    flavanoids nonflavanoid_phenols proanthocyanins color_intensity
                                                                   hue \
158
          1.31
                              0.53
                                             2.70
                                                            13.00 0.57
137
          0.60
                              0.63
                                             1.10
                                                            5.00 0.82
98
          3.75
                              0.24
                                             1.95
                                                            4.50 1.04
159
          1.10
                              0.52
                                             2.29
                                                            11.75 0.57
38
          2.64
                              0.28
                                             1.37
                                                            3.70 1.18
. .
          . . .
                              . . .
                                              . . .
                                                             ... ...
71
          2.86
                              0.21
                                             1.87
                                                            3.38 1.36
          2.03
                             0.37
                                             1.63
                                                            3.40 1.00
106
14
          3.64
                              0.29
                                             2.96
                                                            7.50 1.20
92
          1.46
                              0.58
                                             1.62
                                                            3.05 0.96
102
          2.11
                              0.34
                                             1.31
                                                            2.80 0.80
    od280/od315_of_diluted_wines proline
158
                          1.96
                                 660.0
137
                          1.69
                                 515.0
98
                          2.77
                               660.0
159
                          1.78
                               620.0
                          2.69 1020.0
38
. .
                          ...
71
                          3.16
                               410.0
106
                          3.17
                               510.0
14
                          3.00 1547.0
                               495.0
92
                          2.06
102
                          3.38
                               438.0
[142 rows x 13 columns]
    alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \
                  3.10 2.56
19
      13.64
                                         15.2
                                                  116.0
                                                                 2.70
45
      14.21
                  4.04 2.44
                                         18.9
                                                  111.0
                                                                 2.85
                  2.81 2.70
                                         21.0
                                                                 1.54
140
      12.93
                                                  96.0
30
      13.73
                  1.50 2.70
                                         22.5
                                                  101.0
                                                                 3.00
67
    12.37
                  1.17 1.92
                                         19.6
                                                 78.0
                                                                 2.11
                                                120.0
    14.30
                  1.92 2.72
                                        20.0
                                                                 2.80
16
119
    12.00
                  3.43 2.00
                                        19.0
                                                 87.0
                                                                 2.00
                  3.91 2.48
174
      13.40
                                        23.0
                                                  102.0
                                                                 1.80
109
    11.61
                  1.35 2.70
                                        20.0
                                                  94.0
                                                                 2.74
                  2.56 2.35
                                        20.0
141
    13.36
                                                 89.0
                                                                 1.40
24
   13.50
                  1.81 2.61
                                        20.0
                                                 96.0
                                                                 2.53
    13.50
                  3.12 2.62
                                       24.0
                                                123.0
                                                                 1.40
150
                  3.84 2.12
41
      13.41
                                        18.8
                                                  90.0
                                                                 2.45
118
    12.77
                  3.43 1.98
                                        16.0
                                                 80.0
                                                                 1.63
                  1.81 2.70
                                         17.2
                                                                 2.85
15
      13.63
                                                  112.0
```

111	12.52	2.43 2.1	7	21.0	88.0	2	.55	
113	11.41	0.74 2.5	0	21.0	88.0	2	.48	
82	12.08	1.13 2.5	1	24.0	78.0	2	.00	
9	13.86	1.35 2.2	7	16.0	98.0	2	.98	
114	12.08	1.39 2.5	0	22.5	84.0	2	.56	
18	14.19	1.59 2.4	8	16.5	108.0		.30	
66	13.11	1.01 1.7		15.0	78.0		.98	
60	12.33	1.10 2.2		16.0	101.0		.05	
169	13.40	4.60 2.8		25.0	112.0		.98	
171	12.77	2.39 2.2		19.5	86.0		.39	
164	13.78	2.76 2.3		22.0	90.0		.35	
117	12.42	1.61 2.1		22.5	108.0		.00	
65	12.37	1.21 2.5		18.1	98.0		.42	
90	12.08	1.83 2.3		18.5	81.0		.60	
55	13.56	1.73 2.4		20.5	116.0		.96	
29	14.02	1.68 2.2		16.0	96.0		.65	
128	12.37	1.63 2.3		24.5	88.0		.22	
145	13.16	3.57 2.1		21.0	102.0		.50	
31	13.58	1.66 2.3		19.1	106.0		.86	
12	13.75	1.73 2.4		16.0	89.0		.60	
42		1.89 2.5		15.0			.25	
42	13.88	1.89 2.5	9	15.0	101.0	3	. 25	
	flavanoids	nonflavanoid	nhenols	proanthocyanins	color	intensity	hue	\
19	3.03	nom iavanoia	_pricho13 0.17	1.66	CO101_	5.100000	0.96	`
45	2.65		0.30	1.25		5.240000	0.87	
140	0.50		0.53	0.75		4.600000	0.77	
30	3.25		0.29	2.38		5.700000	1.19	
67	2.00		0.27	1.04		4.680000	1.12	
16	3.14		0.33	1.97		6.200000	1.07	
119	1.64		0.37	1.87		1.280000	0.93	
174	0.75		0.43	1.41		7.300000	0.70	
109	2.92		0.29	2.49		2.650000	0.96	
141	0.50		0.23	0.64		5.600000	0.70	
24	2.61		0.28	1.66		3.520000	1.12	
150	1.57		0.22	1.25		8.600000	0.59	
41	2.68		0.27 0.43	1.48		4.280000	0.91	
118	1.25			0.83		3.400000	0.70	
15	2.91		0.30	1.46		7.300000	1.28	
111	2.27		0.26	1.22		2.000000	0.90	
113	2.01		0.42 0.40	1.44		3.080000	1.10	
82	1.58			1.40		2.200000	1.31	
9	3.15		0.22	1.85		7.220000	1.01	
114	2.29		0.43	1.04		2.900000	0.93	
18	3.93		0.32	1.86		8.700000	1.23	
66	3.18		0.26	2.28		5.300000	1.12	
60	1.09		0.63	0.41		3.270000	1.25	
169	0.96		0.27	1.11		8.500000	0.67	
171	0.51		0.48	0.64		9.899999	0.57	
164	0.68		0.41	1.03		9.580000	0.70	
117	2.09		0.34	1.61		2.060000	1.06	
65	2.65		0.37	2.08		4.600000	1.19	
90	1.50		0.52	1.64		2.400000	1.08	
55	2.78		0.20	2.45		6.250000	0.98	
29	2.33		0.26	1.98		4.700000	1.04	
128	2.45		0.40	1.90		2.120000	0.89	
145	0.55		0.43	1.30		4.000000	0.60	

```
31
                                0.22
          3.19
12
                                0.29
          2.76
42
          3.56
                                0.17
    od280/od315_of_diluted_wines proline
19
                             3.36
                                    845.0
45
                             3.33
                                   1080.0
140
                             2.31
                                    600.0
30
                             2.71
                                   1285.0
67
                             3.48
                                    510.0
16
                            2.65
                                   1280.0
119
                            3.05
                                    564.0
174
                                    750.0
                            1.56
109
                            3.26
                                    680.0
141
                            2.47
                                    780.0
24
                            3.82
                                    845.0
150
                            1.30
                                    500.0
41
                            3.00
                                   1035.0
118
                            2.12
                                    372.0
15
                            2.88
                                   1310.0
111
                            2.78
                                    325.0
113
                            2.31
                                    434.0
82
                            2.72
                                    630.0
9
                            3.55
                                   1045.0
114
                            3.19
                                    385.0
18
                            2.82
                                   1680.0
66
                            3.18
                                    502.0
60
                            1.67
                                    680.0
169
                            1.92
                                    630.0
171
                            1.63
                                    470.0
164
                            1.68
                                    615.0
117
                             2.96
                                    345.0
65
                            2.30
                                    678.0
90
                            2.27
                                    480.0
55
                            3.03
                                   1120.0
29
                            3.59
                                   1035.0
128
                            2.78
                                    342.0
145
                            1.68
                                    830.0
31
                             2.88
                                   1515.0
12
                            2.90
                                   1320.0
42
                            3.56
                                   1095.0
      2
158
137
      2
98
      1
159
       2
38
      0
      . .
71
      1
106
      1
14
      0
92
      1
102
Name: target, Length: 142, dtype: int64
19
      0
45
      0
       2
140
```

1.95

1.81

1.70

6.900000 1.09

5.600000 1.15

5.430000 0.88

```
0
30
67
       1
       0
16
       1
119
174
       2
109
       1
141
       2
24
       0
       2
150
41
       0
118
       1
15
       0
111
       1
113
       1
82
       1
9
       0
114
       1
18
       0
66
       1
60
       1
       2
169
171
       2
164
       2
117
       1
65
       1
90
       1
55
       0
29
       0
128
       1
145
       2
31
       0
12
       0
42
```

Name: target, dtype: int64

Train-Test Shapes

Check the dimensions of training and testing sets for both features and target labels.

```
In [ ]: print(x_train.shape)
        print(x_test.shape)
        print(y_train.shape)
        print(y_test.shape)
       (142, 13)
       (36, 13)
       (142,)
       (36,)
```

Preview Training Data

Show the first few rows of training features and their corresponding target labels.

```
In [ ]: print("X_train rows:",x_train.head())
        print("Y_train rows:",y_train.head())
      X train rows:
                         alcohol malic_acid
                                              ash alcalinity_of_ash magnesium total_ph
      enols \
                                                            98.0
             14.34
                          1.68 2.70
      158
                                                  25.0
                                                                           2.80
             12.53
                                                  25.0
                                                                           1.79
      137
                          5.51 2.64
                                                            96.0
      98
             12.37
                          1.07 2.10
                                                  18.5
                                                            88.0
                                                                           3.52
             13.48
                                                            89.0
      159
                          1.67 2.64
                                                  22.5
                                                                           2.60
             13.07
                          1.50 2.10
                                                  15.5
                                                            98.0
                                                                           2.40
           flavanoids nonflavanoid_phenols proanthocyanins color_intensity
                                                                              hue \
                 1.31
      158
                                      0.53
                                                       2.70
                                                                      13.00 0.57
      137
                 0.60
                                      0.63
                                                       1.10
                                                                      5.00 0.82
      98
                 3.75
                                      0.24
                                                      1.95
                                                                      4.50 1.04
                                                                      11.75 0.57
      159
                 1.10
                                      0.52
                                                       2.29
      38
                 2.64
                                      0.28
                                                      1.37
                                                                      3.70 1.18
           od280/od315_of_diluted_wines proline
      158
                                  1.96
                                          660.0
      137
                                  1.69
                                          515.0
      98
                                  2.77
                                          660.0
      159
                                          620.0
                                  1.78
      38
                                  2.69 1020.0
      Y_train rows: 158
      137
             2
      98
             1
             2
      159
      38
             0
      Name: target, dtype: int64
```

Feature Scaling

Standardize the training and testing feature data so that all features have mean 0 and standard deviation 1.

```
In [ ]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    x_train_scaled = scaler.fit_transform(x_train)
    x_test_scaled = scaler.transform(x_test)
```

Verify Scaled Data

Display the first 5 rows of scaled training data and check that the mean is \sim 0 and standard deviation is \sim 1.

```
In [ ]: print("First 5 rows of scaled training data:\n",x_train_scaled[:5])
    print("\n Mean of scaled training data(approx 0):\n",x_train_scaled.mean(axis=0))
    print("\n Std of scaled training data(approx 1):\n",x_train_scaled.std(axis=0))
```

```
First 5 rows of scaled training data:
 [ 1.66529275 -0.60840587 1.21896194 1.60540017 -0.16738426 0.80400157
            1.26722552 1.8775398 3.41947305 -1.65632857 -0.87940904
 -0.6916784
 -0.24860607]
 [-0.54952506 2.7515415 1.00331502 1.60540017 -0.30437887 -0.78538376
 -1.40123291 2.04959953 -0.87350523 -0.0248012 -0.58463272 -1.25462095
 -0.72992237]
 [-0.74531007 -1.14354109 -0.93750727 -0.28270426 -0.8523573 1.93702874
  1.7467906 -1.00165913 0.58798744 -0.24006834 0.35845962 0.2462267
 -0.24860607]
 -0.90154664 1.18898812 1.17258451 2.8813052 -1.65632857 -1.12955031
 -0.38138298]
 [ 0.11124931 -0.76631462 -0.93750727 -1.15413707 -0.16738426  0.17454204
  0.63748708 -0.68870952 -0.40926638 -0.58449577 0.95860929 0.1350528
  0.94638614]]
Mean of scaled training data(approx 0):
 [ 8.30321727e-15 -5.73387191e-16 4.72196617e-15 1.22359087e-16
 -3.69813726e-16 1.83343169e-16 9.90795865e-16 -1.01268759e-15
 3.63558948e-16 3.19775505e-16 1.24626444e-15 1.76697467e-16
 -1.56369440e-18]
 Std of scaled training data(approx 1):
 [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
```

Random Forest Classifier

Train a Random Forest model with 100 trees, make predictions on the test set, and evaluate performance using accuracy, confusion matrix, and classification report.

```
In []: from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score,confusion_matrix,classification_report

    rf=RandomForestClassifier(n_estimators=100,random_state=42)
    rf.fit(x_train,y_train)

#predictions
    y_pred=rf.predict(x_test)

# Comparing prediction and actual answers
    print("Random Forest Accuracy:",accuracy_score(y_test,y_pred))
    print("\nConfusion_matrix:\n",confusion_matrix(y_test,y_pred))
    print("\nClassification_report:\n",classification_report(y_test,y_pred))
```

```
Random Forest Accuracy: 1.0
Confusion_matrix:
[[14 0 0]
[ 0 14 0]
[0 0 8]]
Classification_report:
             precision recall f1-score
                                         support
         0
                1.00
                       1.00
                                  1.00
                                            14
                1.00
         1
                         1.00
                                  1.00
                                            14
                1.00
                         1.00
                                  1.00
                                             8
                                  1.00
                                            36
   accuracy
```

1.00

1.00

1.00

1.00

Logistic Regression

macro avg

weighted avg

Train a Logistic Regression model on the training set, predict on the test set, and evaluate using accuracy, confusion matrix, and classification report.

1.00

1.00

36

36

Logistic Regression classification_report.							
	precision	recall	f1-score	support			
0	1.00	0.93	0.96	14			
1	0.93	1.00	0.97	14			
2	1.00	1.00	1.00	8			
accuracy			0.97	36			
macro avg	0.98	0.98	0.98	36			
weighted avg	0.97	0.97	0.97	36			

```
c:\Users\rohan\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\lin
ear_model\_logistic.py:473: ConvergenceWarning: lbfgs failed to converge after 500 i
teration(s) (status=1):
STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT

Increase the number of iterations to improve the convergence (max_iter=500).
You might also want to scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
```

Model Accuracy Comparison

Print and compare the accuracy scores of Random Forest and Logistic Regression models.

```
In [ ]: print("Random Forest Accuracy:",accuracy_score(y_test,y_pred))
    print("Logistic Regression accuracy score:",accuracy_score(y_test,y_pred_lr))
    Random Forest Accuracy: 1.0
    Logistic Regression accuracy score: 0.97222222222222
```

Short Observations

The Random Forest Classifier achieved an accuracy of 100%, while Logistic Regression achieved an accuracy of 97.2%. Random Forest performed slightly better and captured the dataset patterns perfectly, making it the stronger model for this task. Logistic Regression, though a bit less accurate, still gave very good results and can be used as a simple, fast baseline model.

PCA 2D Visualization

Apply Principal Component Analysis (PCA) to reduce the features to 2 components and plot them to visualize class separation in 2D.

```
In []: from sklearn.decomposition import PCA

wine = load_wine()
df =pd.DataFrame(wine.data,columns=wine.feature_names)
df["target"]=wine.target
X=df.drop("target",axis=1)
y=df['target']
pca =PCA(n_components=2)
x_pca=pca.fit_transform(X)
pca_df=pd.DataFrame(data=x_pca,columns=['PC1','PC2'])
pca_df['target']=y
plt.figure(figsize=(8,6))
sns.scatterplot(x="PC1",y="PC2",hue='target',palette='Set1',data=pca_df)
```


Hyperparameter Tuning with GridSearchCV

Use GridSearchCV to find the best Random Forest parameters (number of trees, maximum depth, minimum samples split) and display the best parameters with cross-validation accuracy.

```
In []: from sklearn.model_selection import GridSearchCV

rf=RandomForestClassifier(random_state=42)
rf.fit(x_train,y_train)
param_grid={
        'n_estimators':[50,100,200],
        'max_depth':[None,5,10],
        'min_samples_split':[2,5,10]
}
grid_search = GridSearchCV(estimator=rf,param_grid=param_grid,cv=5,scoring='accurac grid_search.fit(x_train,y_train)
print("Best parameters:",grid_search.best_params_)
print("Best Cross Validation Accuracy:",grid_search.best_score_)
```

Best parameters: {'max_depth': None, 'min_samples_split': 2, 'n_estimators': 100}
Best Cross Validation Accuracy: 0.9785714285714286

Feature Importance Table

Extract feature importances from the Random Forest model and display them in descending order.

```
In [ ]: importances = rf.feature_importances_
    feature_names = x_train.columns
    feat_imp = pd.DataFrame({'Features':feature_names,'Importance':importances })
    feat_imp = feat_imp.sort_values(by="Importance",ascending=False)
    print(feat_imp)
```

```
Features Importance
                   flavanoids 0.202293
6
9
               color_intensity 0.171202
12
                      proline 0.139046
                      alcohol 0.112398
0
11 od280/od315_of_diluted_wines 0.111564
10
                         hue 0.070891
                    magnesium 0.036841
4
1
                   malic_acid 0.035703
             alcalinity_of_ash 0.032425
3
                total_phenols 0.029279
5
8
               proanthocyanins 0.023561
                          ash 0.021282
2
7
          nonflavanoid_phenols 0.013515
```

Feature Importance Plot

Visualize the Random Forest feature importances as a horizontal bar chart to see which features contribute most to classification.

```
In []: plt.figure(figsize=(10,6))
    plt.barh(feat_imp["Features"],feat_imp["Importance"])
    plt.title(" Random Forest Feature Importance")
    plt.gca().invert_yaxis()
    plt.xlabel("Importance")
    plt.ylabel("Features")
    plt.show()
```


Confusion Matrix Heatmap

Plot the confusion matrix as a heatmap to clearly visualize correct and incorrect predictions across the three wine classes.

```
In [ ]: cm=confusion_matrix(y_test,y_pred)
   plt.figure(figsize=(6,4))
   sns.heatmap(cm,annot=True,fmt='d',cmap='Blues',xticklabels=[0,1,2],yticklabels=[0,1
   plt.xlabel('Predicted Label')
   plt.ylabel('True Label')
   plt.title('Confusion Matrix Heatmap')
   plt.show()
```

