

Automatic Differentiation in RooFit

Jonas Rembser*, Vaibhav Thakkar*, Petro Zarytskyi*, <u>Vassil Vassilev</u>* { *CERN, *Princeton, <u>compiler-research.org</u> }

Disclaimer

- The purpose of this talk is not about promoting a specific analysis tool
- The talk is not about having more of RooFit, rather the opposite to demonstrate how to have less RooFit with extended capabilities
- The goal of the talk is to demonstrate another take on automatic differentiation in scientific workflows

Introduction

If math is the language of science, the language of experimental science is statistics.

Statistical modelling helps us define a scientific narrative by talking to our data sets

Introduction

Observation of a New Boson at a Mass of 125 GeV with the ATLAS and CMS Experiments at the LHC

Credits: ATLAS, CMS Collaborations

Motivation

Likelihoods are central for High Energy Physics

$$L(\vec{n}, \vec{a} | \vec{\eta}, \vec{\chi}) = \prod_{c \in unbinned\ ch\ i \in obs} \frac{f_c(\vec{x}_{ci} | \vec{\eta}, \vec{\chi})}{\int f_c(\vec{x}_{ci} | \vec{\eta}, \vec{\chi})\, d\vec{x}_c} \cdot \prod_{c \in binned\ ch(analytical)\ b \in obs} \frac{Pois(n_{cb} | \nu(\vec{\eta}, \vec{\chi})) \cdot \prod_{\chi \in \vec{\chi}} c_{\chi}(a_{\chi} | \chi)}{\sum_{\chi \in \vec{\chi}} c_{\chi}(a_{\chi} | \chi)}$$

 \vec{n} : data, \vec{a} : auxiliary data, $\vec{\eta}$: unconstrained parameters, $\vec{\chi}$: constrained parameters

CMS Combine Paper https://arxiv.org/pdf/2404.06614

Object Oriented Math with RooFit

$$g_1(x) = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma_1})^2}$$

$$g_2(x) = \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma_2})^2}$$

$$P_{bkg}(\mathbf{x}) = \frac{1 + a_0 * T_1(\mathbf{x}) + a_1 * T_2(\mathbf{x})}{\int 1 + a_0 * T_1(\mathbf{x}) + a_1 * T_2(\mathbf{x})}$$

$$S(x) = f_{sig1}g_1(x) + (1 - f_{sig1})g_2(x)$$

$$Model(x) = f_{bkg}P_{bkg}(x) + (1 - f_{bkg})S(x)$$

$$a_0 = 0.5, a_1 = 0.2, f_{sig1} = 0.8, f_{bkg} = 0.5,$$

 $\mu = 5, \sigma_1 = 0.5, \sigma_1 = 1.0$

```
RooGaussian sig1("sig1", "Signal component 1", x, mu, sigma1);
RooGaussian sig2("sig2", "Signal component 2", x, mu, sigma2);
// Build Chebychev polynomial pdf
RooChebychev bkg("bkg", "Background", x, {a0, a1});
// Sum the signal components into a composite signal pdf
RooRealVar sig1frac("sig1frac", "fraction of c 1 in signal", 0.8, 0.,
1.);
RooAddPdf sig("sig", "Signal", {sig1, sig2}, sig1frac);
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac", "fraction of background", 0.5, 0., 1.);
RooAddPdf model("model", "g1+g2+a", {bkg, sig}, bkgfrac);
// Create NLL function
std::unique ptr<RooAbsReal> nll{model.createNLL(*data,
EvalBackend("codegen"))};
```

Object Oriented Math. Compute Cost

Serial Old

Gradient is compute bottleneck

Z. Wolffs, ICHEP22

Lower Compute Cost of Gradients

- Automatic/Algorithmic differentiation (AD) employs the chain rule to decompose the compute graph into atomic operations.
- Top-down decomposition is called forward and bottom up -- reverse mode
- Reverse mode provides independent time complexity of the gradient from input parameters at the cost of adding extra code to enable functions to be run bottom-up (reverse) requiring extra memory
- Operation record-and-replay (operator overloading) or source code transformation are the two common approaches to implement AD

Automatic/Algorithmic Differentiation

```
Symbolic via Wolfram Alpha
                                                        \frac{d}{dx}\left(e^{e^{e^{e^{e^x}}}}\right) = e^{x + e^{e^{e^x}} + e^{e^x} + e^{e^x} + e^x}
      Figure out the
                     Handcode
                                                                              Handcode, optimized by expert
      analytical fn
                                                            double f_dx (double x) {
// f(x) = e^{(e^{(e^{(e^{(e^{(x)})})})}
                                                               double result = x;
#include <cmath>
                                                               double d result = 1;
double f (double x) {
                                                 AD
                                                               for (unsigned i = 0; i < 5; i++) {
  double result = x;
                                                                   result = std::exp(result);
  for (unsigned i = 0; i < 5; i++)
                                                                  d result *= result;
     result = std::exp(result);
  return result;
                                                               return d result;
```

Source Code Transformation with Clad

Extensible Clang/LLVM plugin that runs at compile time to produce readable C++ source code and apply advanced AD high-level analyses

Clad as RooFit's AD Engine

Most of HistFactory RooFit primitives are supported. Please reach out if you need additional primitive support

Automatic Differentiation in RooFit. Approach

What that we want to differentiate

C++ code the Clad can understand

Stateless function enabling differentiation of each class.

```
double ADDetail::gauss(double x, double mean, double sigma) {
  const double arg = x - mean;
  const double sig = sigma;
  return std::exp(-0.5 * arg * arg / (sig * sig));
}
```

The "glue" function enabling graph squashing.

Team

2013-2021

Garima Singh
2022

Vaibhav Thakkar
2024

Social Engineering, Software Engineering, Social Engineering...

ATLAS Benchmark Models

49 HistFactory channels, 739 parameter in total, in rootbench, toy data

How to read this plot:

- Seeding time: initial Hessian estimate (num. second derivatives)
- Minimization time: finding the minimum
- JIT time: time to generate and compile the gradient code
 - The gradient can be be reused across different minimizations, amortizing the JIT time
 - For example, possible reuse in **profile likelihood scans**

Using AD drastically reduces minimization time on top of the new CPU backend in ROOT 6.32.

Bottom line: **10x faster minimization** compared to ROOT 6.30.

Experiments with ATLAS Benchmark models

Memory consumption of gradient evaluation is very low compared to the python/ML based frameworks. Constant factor of the consumption by primal function.

CMS Higgs Observation Open Data Models

CMS published RooFit-based Higgs observation likelihood, 672 parameters, 102 channels, real data

Very heterogeneous likelihood:

- Template histogram fits line in the ATLAS benchmark
- Analytical shape fits, numerical integration necessary in some cases
 Perfect example to test the new RooFit developments

See also the <u>presentation on CMS analysis tools</u> at ICHEP.

We implemented CMS-specific primitives in a custom CMS combine branch

E Showing 17 changed files with 1,704 additions and 113 deletions.

CMS Higgs Observation Models. Benchmarks

- The new CPU code path default in ROOT 6.32 is a big improvement to the old RooFit, possibly making many custom improvements in combine obsolete
- The AD backend further reduces minimization time
- Printing out the generated NLL code helps a lot to understand what's actually fitted
- Work in progress to improve the produced code and its gradient

CMS Higgs Observation Models. Numerical Stability

In the CMS model we observed that the derivatives are small compared to the NLL value

- Numerical differentiation often fails because the finite differences are smaller than numerical precision on the NLL
- Essential workaround for the Higgs model is to offset the NLL by initial value with:

```
pdf.createNLL(data, RooFit::Offset(true))
```

Problems with this:

- Offsetting might fail if initial value is far from the minimum
- Bookkeeping of offsets is error-prone

With AD, the offsetting is not necessary anymore!

```
36 - FCN = -9801946.549 Edm = 0.01129396511
37 - FCN = -9801946.566 Edm = 0.01497173883
38 - FCN = -9801946.574 Edm = 0.007242353199
39 - FCN = -9801946.583 Edm = 0.004954953322
40 - FCN = -9801946.589 Edm = 0.005774308843
41 - FCN = -9801946.596 Edm = 0.004695329674
42 - FCN = -9801946.602 Edm = 0.004558156748
43 - FCN = -9801946.615 Edm = 0.008141300763
44 - FCN = -9801946.625 Edm = 0.004861879849
45 - FCN = -9801946.628 Edm = 0.003472778648
46 - FCN = -9801946.63 Edm = 0.001782083931
47 - FCN = -9801946.631 Edm = 0.0007515760698
```

Minimizer output, showing the small changes wrt. large NLL value

Possible next steps and perspectives

- Make the codegen backend default for RooFit
- Work together with experiments to support your usecases and help out in integration RooFit AD in experiment frameworks. We have an open bi-weekly implementers' meeting discussing high-performance statistical analysis w/ AD
- Extend RooFit's interfaces so it will be easy to get out the generated code and gradients to use them outside the RooFit minimization routines
- R & D on analytic higher-order derivatives that are used in Minuit
- Implement advanced clad-based analyses to remove the redundant computation

Conclusion

Source-code transformation AD with Clad fits naturally into the ROOT ecosystem and RooFit benefits from it in many ways:

- Faster likelihood gradients
- No need for tricks to get numerically stable gradients
- Likelihoods can be expressed in **plain C++** without need for aggressive **caching** by the user or in frameworks like RooFit
 - Good for understanding the math: optimization gets decoupled from logic simple code
 - Good for collaboration: simple C++ can easily be shared and used in other contexts

Thank you!