Midterm Solution

July 17, 2022

1 Problem 1

Let

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 2 & 3 \\ 2 & -5 & -6 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix},$$

- 1. Find all the solutions of the linear equation Ax = b with $x = [x_1, x_2, x_3]^T \in \mathbb{R}^3$.
- 2. Find the dimension of Null(A), i.e. $\{x \in \mathbb{R}^3 | Ax = 0\}$, and the rank of A^T .

2 Problem 2

Are the following statements true or false? If true, prove the statement. If false, give a counterexample.

- 1. A matrix $A \in \mathbb{R}^{n \times n}$ with n real orthonormal eigenvectors is symmetric.
- 2. Assume that $w \neq 0$ is an eigenvector for matrices $A, B \in \mathbb{R}^{n \times n}$, then AB BA is not invertible.
- 3. If the Jordan canonical form of A is J, then that of A^2 is J^2 .

3 Problem 3

Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, $D \in \mathbb{R}^{m \times m}$, $a \in \mathbb{R}^n$, and $b \in \mathbb{R}^m$. Assume D and $(A - BD^{-1}C)$ are invertible. Let $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

- 1. Give the expression of the solution to $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$. Also, give the expression of X^{-1} .
- 2. Prove that $det(X) = det(D)det(A BD^{-1}C)$.

Solution:

Problem 1

1. We first transform [A, b] into a row-reduced echelon form. Here r_1 , r_2 and r_3 refer to the first, second and third row of [A, b], respectively. First multiplication of r_1 by $\frac{1}{2}$ gives

$$\left[\begin{array}{cccc} 1 & \frac{3}{2} & 2 & \frac{1}{2} \\ 4 & 2 & 3 & 3 \\ 2 & -5 & -6 & 3 \end{array}\right],$$

1

and then we add $-4r_1$ to r_2 , and add $-2r_1$ to r_3 , and get

$$\begin{bmatrix} 1 & \frac{3}{2} & 2 & \frac{1}{2} \\ 0 & -4 & -5 & 1 \\ 0 & -8 & -10 & 2 \end{bmatrix}.$$

Then we multiply r_2 by $-\frac{1}{4}$ and add $8r_2$ to r_3 and get

$$\left[\begin{array}{cccc} 1 & \frac{3}{2} & 2 & \frac{1}{2} \\ 0 & 1 & \frac{5}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Finally we add $-\frac{3}{2}r_2$ to r_1 and get

$$\left[\begin{array}{cccc} 1 & 0 & \frac{1}{8} & \frac{7}{8} \\ 0 & 1 & \frac{5}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 \end{array}\right].$$

To find the solution of Ax = b, from the echelon form,

$$\begin{cases} x_1 + \frac{1}{8}x_3 = \frac{7}{8} \\ x_2 + \frac{5}{4}x_3 = -\frac{1}{4} \end{cases}$$

gives a particular solution $x_p = [1, 1, -1]^T$. Then we need to find the solution of the homogeneous equation Ax = 0. From the echelon form,

$$\begin{cases} x_1 + \frac{1}{8}x_3 = 0 \\ x_2 + \frac{5}{4}x_3 = 0 \end{cases}$$

gives the basic solution $x_h = k[-1, -10, 8]^T$ with $k \in \mathbb{R}$. Therefore, all the solutions can be written as

$$x = x_p + x_h = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} -1 \\ -10 \\ 8 \end{bmatrix} k, \quad k \in \mathbb{R}.$$

2. Since the basic solution x_h spans a one dimensional subspace, dim Null(A) = 1. Since $\mathbb{R}^3 = \text{Null}(A) \oplus \mathbb{R}(A^T)$ where $\mathbb{R}(A^T)$ is the image space of A^T , $\text{rank}(A^T) = \dim \mathbb{R}(A^T) = 3 - \dim \text{Null}(A) = 2$.

Problem 2

- 1. True. Assuming matrix $A \in \mathbb{R}^{n \times n}$ has n real orthonormal eigenvectors $p_i \in \mathbb{R}^n$ and corresponding eigenvalue $\lambda_i \in \mathbb{R}$ for i = 1, ..., n, then if $P = [p_1, ..., p_n] \in \mathbb{R}^{n \times n}$ and $D = \text{diag}\{\lambda_1, \lambda_2, ..., \lambda_n\} \in \mathbb{R}^{n \times n}$ (D is a diagonal matrix and the diagnal elements are arranged in order), $A = PDP^T$, from which $A^T = PDP^T = A$ and A is symmetric.
- 2. True. As $w \neq 0$ is an eigenvector for both matrices $A, B \in \mathbb{R}^{n \times n}$, there exist $\lambda_1, \lambda_2 \in \mathbb{C}$, such that $Aw = \lambda_1 w$ and $Bw = \lambda_2 w$. Hence,

$$ABw = A(Bw) = A(\lambda_2 w) = \lambda_2 Aw = \lambda_1 \lambda_2 w$$

$$BAw = B(Aw) = B(\lambda_1 w) = \lambda_1 Bw = \lambda_1 \lambda_2 w$$

As a consequence, w is the eigenvector of AB and BA. As $(AB - BA)w = ABw - BAw = \lambda_1\lambda_2w - \lambda_1\lambda_2w = 0$, the nullspace of (AB - BA) is not empty, and it cannot be invertible.

2

3. False. Assume $A=J=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, then $A^2=J^2=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ which is similar to the Jordan canonical form J, as $A^2=PJP^{-1}$ with $P=\begin{bmatrix}1&0\\0&\frac{1}{2}\end{bmatrix}$ and $P^{-1}=\begin{bmatrix}1&0\\0&2\end{bmatrix}$. Since $J\neq J^2$, the statement is false.

Problem 3

1. The linear equation can be rewritten as

$$Ax + By = a$$
$$Cx + Dy = b.$$

As D is invertible,

$$y = D^{-1}(b - Cx).$$

Plugging this into the first equation, we get

$$Ax + BD^{-1}(b - Cx) = a.$$

This equation can be rewritten as

$$(A - BD^{-1}C)x = a - BD^{-1}b.$$

As $(A - BD^{-1}C)$ is invertible,

$$x = (A - BD^{-1}C)^{-1}(a - BD^{-1}b)$$

$$y = D^{-1}[b - C(A - BD^{-1}C)^{-1}(a - BD^{-1}b)].$$

That is

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}.$$

As
$$\begin{bmatrix} x \\ y \end{bmatrix} = X^{-1} \begin{bmatrix} a \\ b \end{bmatrix}$$
, we have

$$X^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}$$

2. X can be factorized as

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

Then.

$$\begin{split} \det(X) &= \det \begin{pmatrix} \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \end{pmatrix} \det \begin{pmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \end{pmatrix} \det \begin{pmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix} \end{pmatrix} \\ &= \det(A - BD^{-1}C) \det(D). \end{split}$$