DATASHIELD – ENSURING PRIVACY WITH K-ANONYMITY PROJECT TUTORIAL

OF

DATABASE AND ONLINE SOCIAL MEDIA SECURITY

(CSLM 654)

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

Submitted By ARWAZ KHAN & ARYAM SHRIVASTVA (242210005 & 242210006)

Submitted To DR. SHELLY SACHDEVA (ASSOCIATE PROFESSOR, DoCSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY DELHI MAY 2025

K-ANONYMITY

1. What is k-Anonymity?

k-Anonymity is a privacy-preserving technique used in data publishing to prevent the re-identification of individuals in datasets. It ensures that any individual cannot be distinguished from at least k-1 other individuals based on a set of quasi-identifiers (QIDs). A dataset satisfies k-anonymity if every combination of quasi-identifier attributes occurs in at least k records.

- Quasi-identifiers: Attributes like age, ZIP code, or gender that may not uniquely identify someone on their own but can do so when combined.
- Anonymized records: By generalizing or suppressing QIDs, the dataset ensures that each person's record is indistinguishable from at least k-1 others.

1.1 When is k-Anonymity Used?

- When releasing datasets for research or statistical purposes while preserving user privacy.
- In healthcare, finance, or government records, where sensitive data must be protected from re-identification.
- To comply with privacy regulations like GDPR or HIPAA.
- When publishing public datasets for data mining, machine learning, or academic use.

1.2 How does k-Anonymity Work?

1. Identify Quasi-Identifiers (QIDs):

 Detect which attributes could be used to identify individuals when combined with external information.

2. Generalization and Suppression:

- \circ Generalize specific values (e.g., age $28 \rightarrow 20-30$).
- o Suppress values where generalization is insufficient.

3. Group Records:

 Modify the dataset such that for every set of QIDs, there are at least k identical records.

4. Check Anonymity:

• Ensure that every record is indistinguishable from at least k-1 others based on QIDs.

1.3 Example of k-Anonymity Work

Age	ZIP Code	Disease
25	13053	Flu
27	13068	Cold
29	13053	Cancer

After 3-Anonymity:

Age	ZIP Code	Disease
25	13***	Flu
27	13***	Cold
29	13***	Cancer

Now, any individual cannot be re-identified since each row shares QID values with at least two others (k=3).

1.4 Limitations of k-Anonymity

- **Homogeneity Attack:** All records in a group have the same sensitive value, making inference easy.
- Background Knowledge Attack: If an attacker knows additional information, k-anonymity may still leak data.

• Does not protect against attribute disclosure, only identity disclosure.

To address these, more advanced techniques like l-diversity and t-closeness have been introduced.

2. Setup

- Download & Install VS Code https://code.visualstudio.com/download
- Download & Install Python https://www.python.org/downloads/
- Install Python libraries in command prompt pip install flask, pandas, numpy

3. Create the file structure

- ➤ app.py
- ➤ requirements.txt
- ➤ static / styles.css
- ➤ static/ script.js
- > templates / index.html

4. Steps to start the project

Step 1: Download the ZIP file from the following link and extract its contents: https://github.com/arwazkhan189/DataShield---Ensuring-Privacy-with-K-Anonymity

Fig 4.1: GitHub Repository Page

- Step 2: Launch VS Code and open the extracted project folder.
- **Step 3:** Open the terminal in VS Code and run the application using the command: py app.py
- **Step 4:** Once the server starts, open the localhost URL displayed in the terminal in your web browser.
- Step 5: The web application will now be displayed in your browser.

Fig 4.2: Web Application Interface

Step 6: Choose a sample dataset on which you want to apply k-anonymity.

1	Name	Age	Gender	Pincode	Disease
2	Alice	29	Female	560001	Flu
3	Bob	35	Male	560002	Cold
4	Carol	42	Female	560003	Diabetes
5	David	33	Male	560004	Asthma
6	Eve	27	Female	560005	Flu
7	Frank	30	Male	560001	Cancer
8	Grace	31	Female	560002	Cold
9	Hank	28	Male	560003	Diabetes
10	lvy	36	Female	560004	Flu

Fig 4.3: Sample Dataset Used for K-Anonymity

Fig 4.4: Selecting the Sample Dataset for Processing

- **Step 7:** Specify the k-value to define the level of anonymity.
- **Step 8:** Provide the column names, separated by commas, that should be considered for anonymization.

Fig 4.5: Defining the K-Value and Specifying Column Names for Anonymization

Step 9: Click on the "Upload and Process" button to process the dataset and download the anonymized output.

Fig 4.6: Processed Dataset Downloaded Successfully

Step 10: Navigate to the Downloads folder and open the file named anonymized_file.csv to view the anonymized dataset.

Fig 4.7: Downloaded Anonymized Dataset

1	Name	Age	Gender	Pincode	Disease
2	Alice	**	Female	5600**	Flu
3	Bob	**	Male	5600**	Cold
4	Carol	**	Female	5600**	Diabetes
5	David	**	Male	5600**	Asthma
6	Eve	**	Female	5600**	Flu
7	Frank	**	Male	5600**	Cancer
8	Grace	**	Female	5600**	Cold
9	Hank	**	Male	5600**	Diabetes
10	Ivy	**	Female	5600**	Flu

Fig 4.8: View of the Anonymized Dataset in CSV Format

Future Work

- Integrate advanced models like l-diversity and t-closeness to improve privacy.
- Enable real-time anonymization for streaming data.
- Improve scalability to handle large datasets efficiently.
- Allow user-defined privacy levels for flexible control.
- Incorporate privacy-preserving machine learning techniques.
- Enhance user interface and data visualization tools.
- Add evaluation metrics to balance privacy and utility.
- Ensure compliance with privacy laws like GDPR (General Data Protection Regulation).

References

- [1] L. Sweeney, "k-Anonymity: A model for protecting privacy," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570, 2002.
- [2] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, "l-Diversity: Privacy beyond k-anonymity," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.
- [3] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 7th ed. Pearson, 2015.