Image Processing and Computer Vision - Notes

Dom Hutchinson

October 14, 2019

Contents

1	Image Acquistion	2
2	Image Representation	2
3	Frequency Domains & Image Transforms	5
0	Reference 0.1 Definitions	8

1 Image Acquistion

Proposition 1.1 - Common Challenges with Image Acquistion

Below are some common challeges that are faced/produced by image acquistion

Viewpoint Variation	Several images may be taken of the same object but will vary the angle
*	, , , , , , , , , , , , , , , , , , , ,
Illumination	Images may be taken in low/high light
Occlusion	Object may be partly obscured
Scale	Objects may look vary different when placed next to other objects due
	to their relative scale
Deformation	Objects may have slight variations on the perfect form
Background Clutter	Lots happening behind an object may work to obscure it
Object Intra-Class Variation	Some objects in the same class can vary a lot in shape (e.g. chairs)
Local Ambiguity	Certain regions of an image can be missinturpred without the rest of the
Local Ambiguity	scene being accounted for
World Behind the Image	Depth may need to be accounted for to make sense of an image.

Definition 1.1 - Dirac Delta-Function, δ

The *Dirac Delta-Function* is used to map continuous distributions to discrete distributions by sampling at particular intervals. Intuitively

$$\delta(t) = \begin{cases} 1 & , t = 0 \\ 0 & , t \neq 0 \end{cases} \implies \delta(t - \alpha) = \begin{cases} 1 & , t = \alpha \\ 0 & , t \neq \alpha \end{cases}$$

Definition 1.2 - Sifting Property

We can apply the Dirac Delta-Function to a function to sample a particular value

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0) \implies \int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)$$

This can be applied to 2D objects (such as images) as

$$\int_{-\infty}^{\infty} f(a,b)\delta(a-x,b-y)dadb = f(x,y)$$

Definition 1.3 - Point Spread-Function

A *Point Spread-Function* is applied after sampling an image. It takes the value of a pixel & transforms pixels around it using this value in some way.

e.g. (Should be a white dot on black background but ink).

2 Image Representation

Definition 2.1 - Colour Space

Colour Space are different techniques for representing colours. These are generally made up of 3D vectors

Colour Space	Vector Description	
RGB	$(\text{Red} \in [0, 255], \text{Green} \in [0, 255], \text{Blue} \in [0, 255])$	
HSI	(Hue $\in [0, 360)$, Saturation $\in [0, 1]$, Intensity $\in [0, 1]$)	
1101	Hue gives the colour in degrees	
YUV	(Brightness $\in [0, 255]$, Blue Projection $\in [0, 255]$, Red Projection $\in [0, 255]$)	
La*b*	(Luminance $\in [0, 100]$, Red/Green $\in \{-a, +b\}$, Blue/Yellow $\in \{+b, -b\}$	

Remark 2.1 - Representing Video

To represent video each fixel is given a third parameter, time so we now have

$$f(x, y, t) \mapsto (R, G, B)$$

or any other Colour Space.

Definition 2.2 - Quantisation

Quantisation is representing a continuous single channel function with discrete single channel function that groups the continuous values into a set number of levels.

Example 2.1 - Quantisation

16 levels

6 levels

2 levels

Definition 2.3 - Aliasing

Aliasing is the result of sparse sampling since single pixels represent to large an area to get any detail out of it.

Example 2.2 - Aliasing

256 x256

64x64

32x32

Definition 2.4 - Anti-Aliasing

Anti-Aliasing is the process for avoiding Aliasing. This can be achieved by using a sampling rate which is a critical limit defined by the Shannon-Nyquist Theorem.

Theorem 2.1 - Shannon-Nyquist Theorem

An analogue signal with maximum frequency xHz may be completly reconstructed if regular samples are taken with frequency 2xHz.

Definition 2.5 - Convolution

Convolution is an operation which takes two functions & produces a third which describes how the shape of one of the two functions is changed by the other.

For functions f & g

$$(f * g)(x) := \int_{-\infty}^{\infty} f(x - t)h(x)\partial t$$

N.B. * is the symbol for convolution.

Remark 2.2 - Convolution in Image Representation

Suppose you have a system, represented by kernel g(x), & an input signal, represented by f(x). Then f * g(x) describes the effect of the system on the input signal. The resulting image is called the *Response of f to the kernel h*.

Proposition 2.1 - 2D Discrete Convolution

Since images are represented by discrete 2D functions $f: \mathbb{N} \times \mathbb{N} \to (\mathbb{N} \times \mathbb{N} \times \mathbb{N})$ it is pertinent to understand 2D Discrete Convolution.

$$h(x,y) = \sum_{i \in I} \sum_{j \in J} f(x-i, y-j)g(i, j)$$

Often the kernel, g(x, y), has negative indices so the pixel being acted upto is equivalent to the middle pixel in the matrix representation of g(x, y).

N.B. A convolution whose kernel is symmetric on 180 degree rotation is called a Correlation.

Example 2.3 - 2D Discrete Convolution

Below is a representation of a grayscale image, f(x,y), on the left & a kernel g(x,y) on the

right.

$$(f*g)(x,y) = f(x+1,y+1)g(-1,-1) + f(x+1,y)g(0-1,0) + \dots + f(x-1,y-1)g(1,1) = -68.$$

Example 2.4 - Kernels

Kernels an be defined with specific outcomes in mind.

Operation	Matrix
Identity	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
Edge Detection	$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$
Sharpen	$ \begin{pmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{pmatrix} $
Box Blur	$ \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $
Gaussian Blur 3×3	$ \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} $

Gaussian Blur 5×5	$ \frac{1}{256} \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 5 & 4 & 1 \end{pmatrix} $
Unsharp Masking 5×5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

3 Frequency Domains & Image Transforms

Definition 3.1 - *Image Transform*

An *Image Transform* is deriving a new representation of the input data by encoding the image using another parameter space (e.g. Fourier, DCT, Wavelet, etc.).

${\bf Remark~3.1~-~} {\it Purpose~of~Image~Transforms}$

Image Transforms can be used in

- i) Image Filtering;
- ii) Image Compression;
- iii) Feature Extraction;
- iv) etc.

Definition 3.2 - Properties of a Signal

A Signal is a sinusoidal function over continuous time. They have the following properties

- i) Frequency Number of cycles per second, Hz;
- ii) Period Length of a cycle, s;
- iii) Amplitude Peak intensity of the signal;
- iv) Phase The shift of the trig wave from its default position, π .

Theorem 3.1 - Fourier's Theorem

All periodic functions over continous time can be expressed as a sum of sin &cos terms, each with their own amplitude & shift.

$$f(t) = a_0 \sin(t + \theta_0) + a_1 \cos(t + \theta_1) + \dots$$

Example 3.1 - Fourier Transform

Proposition 3.1 - Frequency in Images

Frequency in Images is measured as the rate of change in intensity along a given line on the image.

Remark 3.2 - Fourier Transform on Frequency in Images

If we read the intensity values along a single row or column we can produce a sinusoidal wave which generalises the distribution & then perform a Fourier Transform.

Definition 3.3 - 2D Discrete-Space Fourier Transform

Images can be considered as 2-Dimensional discrete space. Let f(x,y) be the intensity of the pixel at position (x,y). 2D Discrete-Space Fourier Transforms have two variables: $u \in [-\pi,\pi)$ for the vertical frequency; and, $v \in [-\pi,\pi)$ for the horizontal frequency.

$$\underbrace{F(u,v)}_{\text{Fourier Space}} = \sum_{y=0}^{m-1} \sum_{x=0}^{n-1} f(x,y) e^{i(ux+vy)}$$
$$= \sum_{y=0}^{m-1} \sum_{x=0}^{n-1} f(x,y) \left[\cos(ux+vy) + \sin(ux+vy) \right]$$

N.B. F(u, v) is a complex number.

Proposition 3.2 - Interpretations of 2D Fourier Transform

Since F(u,v) is a complex number we cannot plot it exactly. Thus we consider

i) Magnitude,
$$|F(u,v)| := \sqrt{F_r(u,v)^2 + F_i(u,v)^2}$$
, and

ii) Phase Angles,
$$\theta(u,v) := \tan^{-1} \left(\frac{F_{\mathbf{i}}(u,v)}{F_{\mathbf{r}}(u,v)} \right)$$

Remark 3.3 - Expressing F(u, v) in Polar Cordinates

$$F(u,v) = |F(u,v)|e^{i\theta(u,v)}$$

Remark 3.4 - Plotting Magnitude, |F(u,v)|

On the left we have a gray scale image & on the right we have the magnitude of a fourier transform on this image. On the right hand image the y-axis is $u \in [-\pi, \pi)$ and the x-axis is $v \in [-\pi, \pi)$. We see lots of straight lines since a linear transformation on $F(u, v) = F(au, av) \, \forall \, a \in \mathbb{R}$. Each line can be interpreted as the frequency of intensity for lines in the left hand image which are parallel to it.

Theorem 3.2 - Convolution Theorem

Let f be an image, g be a kernel, F be the result of a fourier transform on f and G be a kernel. Then

$$h = f * g \iff H = FG$$

Proof 3.1 - Convolution Theorem

$$h(x) = f(x) * g(x)$$

$$= \sum_{y} f(x - y)g(y)$$

$$H(u) = \sum_{x} \left(\sum_{y} f(x - y)g(y)\right) e^{iux}$$

$$= \sum_{x} g(y) \sum_{x} f(x - y)e^{iux}$$

$$= \sum_{y} g(y) \left(F(u)e^{iux}\right)$$

$$= \sum_{y} g(y)e^{iuy}F(u)$$

$$= G(u) \cdot F(u)$$

$$= F(u) \cdot G(u)$$

Definition 3.4 - Butterworth's Low Pass Filter

Butterworth's Low Pass Filter is a Signal Processing Filter designed to have a frequency response which is as flat as possible. It appears to soften an image

$$H(u,v) = \frac{1}{1 + \left(\frac{r(u,v)}{r_0}\right)^{2n}} \text{ of order } n$$

Definition 3.5 - Butterworth's High Pass Filter

Butterworth's High Pass Filter is a Signal Processing Filter designed to have a frequency response which is as flat as possible. It appears to sharpen an image

$$H(u,v) = \frac{1}{1 + \left(\frac{r_0}{r(u,v)}\right)^{2n}} \text{ of order } n$$

0 Reference

0.1 Definitions

Definition 0.1 - Kernel

A Kernel is a small matrix used in convolution. Typically 3×3 or 5×5 . Kernels can be defined for blurring, sharpening, embossing, edge detection & more N.B. This definition only applies to image processing & is different from the definition in linear algebra.