BSCCS2001: Practice Assignment with Solutions Week 4

1. Consider the following relations:

[MCQ: 2 points]

$$A = (P, Q, R)$$

$$B = (X, Y, Z)$$

Let relations a(A) and b(B) be given. Which of the following expressions in the tuple relational calculus is equivalent to $\Pi_{P,Z}(\sigma_{R=X}(a \times b))$?

$$\sqrt{\{t\mid \exists p\in a, \exists q\in b(t[P]=p[P]\land t[Z]=q[Z]\land p[R]=q[X])\}}$$

- $\bigcirc \{t \mid \exists p \in a, \exists q \in b(t[P] = p[P] \land t[Z] = q[Z] \lor p[R] = q[X])\}$
- $\bigcirc \{t \mid \exists p \in a, \exists q \in b(t[P] = p[P] \land t[Z] = q[Z] \land p[X] = q[R])\}$
- $\bigcirc \ \{t \mid \exists p \in a, \exists q \in b(t[Z] = p[Z] \land t[P] = q[P] \land p[R] = q[X])\}$

Solution:

 $\Pi_{P,Z}(\sigma_{R=X}(a \times b))$ will return attributes P from relation a(A) and Z from relation b(B). So, options C and D are incorrect.

For SELECT operation, condition R = X must be satisfied, So option B is incorrect. Thus, option 1 is correct.

Consider the following relational schema and answer questions 2 and 3.

[MCQ:2 points]

- $\bullet \ Owner(aadhar_number,o_name)$
- $\bullet \ \ Vehicle(v_number, v_model)$
- $\bullet \ Registration(aadhar_number, v_number, purchase_year)$
- 2. Which of the following relational algebra expressions is equivalent to the statement given below?
 - Find the Aadhaar numbers of owners who purchased the vehicle model V20 after year 2020.
 - $\bigcirc \ \sigma_{aadhar_number}(\prod_{v_model=\text{``}V20\text{''}\ \lor\ purchase_year>\text{''}2020\text{''}}(Registration\bowtie Vehicle))$
 - $\bigcirc \ \sigma_{aadhar_number}(\sigma_{v_model="V20"} \land purchase_year>"2020"}(Registration \bowtie Vehicle))$
 - $\sqrt{\prod_{aadhar\ number}}(\sigma_{v_model="V20"} \land purchase_year>"2020"}(Registration \bowtie Vehicle))$
 - $\bigcirc \prod_{aadhar_number} (\sigma_{v_model="V20"} \vee purchase_year>"2020" (Registration \bowtie Vehicle))$

Solution: Selection Operator (σ) , selects those rows or tuples from the relation that satisfies the selection condition.

Project operator is denoted by the symbol Π , and it is used to select desired columns (or attributes) from a table (or relation).

Option 1 and Option 2 are incorrect. Here, the SELECT operator is used, requiring a specific condition to select tuples from a relation.

Option 3: It will return the Aadhaar number of all the owners who purchased the vehicle model V20 and after year 2020.

So, Option 3 is correct.

Option 4: It will return the Aadhaar number of all the owners who purchased the vehicle model V20 or after year 2020.

- 3. Which of the following queries is equivalent to the statement given below?
 - Find the names of all owners who purchased vehicles with number 123 before the year 2019.
 - $\bigcirc \{T \mid \exists O \in Owner, \exists R \in Registration(O.aadhar_number = R.aadhar_number \land R.v_number = 123 \lor R.purchase_year < 2019 \land T.o_name = O.o_name)\}$
 - $(T \mid \exists O \in Owner, \exists R \in Registration(O.aadhar_number = R.aadhar_number \land R.v_number = 123 \lor R.purchase_year < 2019 \lor T.o_name = O.o_name) \}$
 - $(T \mid \exists O \in Owner, \exists R \in Registration(O.aadhar_number = R.aadhar_number \lor R.v_number = 123 \land R.purchase_year < 2019 \lor T.o_name = O.o_name) \}$
 - $\sqrt{\{T \mid \exists O \in Owner, \exists R \in Registration(O.aadhar_number = R.aadhar_number \land R.v_number = 123 \land R.purchase_year < 2019 \land T.o_name = O.o_name)\}}$

Solution:

 $\exists O \in Owner, \exists R \in Registration(O.aadhar_number = R.aadhar_number)$ will perform the NATURAL JOIN operation of Owner and Registration schema and $(R.v_number = 123 \land R.purchase_year < 2019 \land T.o_name = O.o_name)$ is the required condition for the names of all the owners who purchased the vehicle number 123 before year 2019.

4. Consider the E-R diagram for a cricket-training-camp database as given in Figure 1.

[MCQ: 2 points]

Figure 1: E-R diagram of cricket-training-camp database

Identify the option in which both the statements correctly describe the relations between the given entity sets.

- Each member can be either a coach or a player or both in the crickettraining-camp.
 - 2. Each player can be a batsman or a bowler or both.
- 1. Each member can be a coach or a player or both.
 - 2. Each player can be either a batsman or a bowler. However, a player cannot be both, a batsman and a bowler at the same time.
- Each member can be either a coach or a player. But, a member cannot be a coach and a player at the same time.
 - 2. Each player can be either a batsman or a bowler, but cannot be both.
- $\sqrt{}$ 1. Each member can be either a coach or a player or just a member of the cricket-training-camp. But, a member cannot be a coach and a player at the same time.
 - 2. Each player can be a batsman or a bowler or both.

Solution:

• Coach and Player are disjoint specializations of Member.

- Batsman and Bowler are overlapping specializations of Member.
- Both kind of specializations given in Figure 1 are partial specializations.

Hence,

- Each member must be a coach or a player or just a member. But, a member cannot be a coach and a player at the same time.
- Each player can be a batsman or a bowler or both.

5. Consider the E-R diagram given in Figure 2.

[MCQ: 2 points:Solve with instructor]

Figure 2: E-R diagram

The table for entity set **ProjectMember** is created using the command below:

```
CREATE TABLE ProjectMember(
member_id INT NOT NULL,
member_name VARCHAR(20) NOT NULL,
skill_level VARCHAR(20) NOT NULL,
PRIMARY KEY (member_id)
);
```

Select the appropriate command to create the table for relationship set managed_by.

```
CREATE TABLE managed_by(
   member_id INT NOT NULL,
   since INT NOT NULL,
   PRIMARY KEY (member_id),
   FOREIGN KEY (member_id) REFERENCES ProjectMember(member_id)
   );
\sqrt{\text{CREATE TABLE managed_by}}
   member_id INT,
   manager_id INT,
   since INT NOT NULL,
   PRIMARY KEY (member_id, manager_id),
   FOREIGN KEY (member_id) REFERENCES ProjectMember(member_id),
   FOREIGN KEY (manager_id) REFERENCES ProjectMember(member_id)
   );
CREATE TABLE managed_by(
   manager_id INT NOT NULL,
   since INT NOT NULL,
   PRIMARY KEY (manager_id),
```

```
FOREIGN KEY (manager_id) REFERENCES ProjectMember(member_id)
);

CREATE TABLE managed_by(
  member_id INT NOT NULL,
  manager_id INT NOT NULL,
  since INT NOT NULL,
  PRIMARY KEY (member_id, manager_id),
  FOREIGN KEY (manager_id) REFERENCES ProjectMember(member_id)
);
```

Solution: The table **managed_by** must have {member_id, manager_id} as primary key, both reference to **ProjectMember**(member_id), and the descriptive attribute since also becomes an attribute in the table.

Thus, it must be created by the command:

```
CREATE TABLE managed_by(
member_id INT,
manager_id INT,
since INT NOT NULL,
PRIMARY KEY (member_id, manager_id),
FOREIGN KEY (member_id) REFERENCES ProjectMember(member_id),
FOREIGN KEY (manager_id) REFERENCES ProjectMember(member_id));
```

Please note that since {member_id, manager_id} is the primary key, the prime attributes member_id and manager_id by default not NULL.

6. Consider the entity set given in Figure 3.

Figure 3: Entity set Gamer

Which of the following relational schemas appropriately represents the E-R diagram?

- \bigcirc **Gamer**(gamer_id, gamer_name, fname, mname, lname, email_id, join_time)
- \bigcirc Gamer($\underline{gamer_id}$, fname, mname, lname, $email_id$, $join_time$, $play_time$) Gamer_email($gamer_id$, $email_id$)
- $\sqrt{\operatorname{\mathbf{Gamer}}(\underline{gamer_id}, fname, mname, lname, join_time)}$ $\operatorname{\mathbf{Gamer_email}}(\underline{gamer_id}, \underline{email_id})$
- Gamer(gamer_id, email_id, join_time)
 Gamer_name(gamer_id, gamer_name, fname, mname, lname)

Solution:

- The identifying attribute gamer_id becomes primary key for the schema.
- The composite attribute gamer_name will be replaced by its parts fname, mname and lname in the schema.
- The simple attribute *join_time* becomes another attribute.
- The derived attribute *play_time* does not need to be added in the schema.
- ullet For the multivalued attribute $email_id$ a separate relation has to be created which will be:

 $Gamer_email(gamer_id, \underline{email_id}).$

- 7. Consider the relations given below:
 - doctor(<u>doc_id</u>, doc_name, specialization)
 - patient(patient_num, patient_name)
 - $operationRoster(\underline{doc_id}, patient_num, operation_cost)$

Identify the appropriate statement(s) to find the names of all doctors having specialization in orthopedics and who have charged more than \$1000 as surgery charges.

```
\sqrt{\prod_{doc\_name}(\sigma_{specialization} = \text{``orthopedic''} \land operation\_cost > 1000}(doctor \bowtie operationRoster))}
\bigcirc \{s \mid \exists s \in doctor, \exists r \in operationRoster(s.doc\_id = r.doc\_id \land s.specialization = \text{``orthopedic''} \land r.operation\_cost > 1000)\}
\sqrt{\{t \mid \exists s \in doctor, \exists r \in operationRoster(s.doc\_id = r.doc\_id \land s.specialization = \text{``orthopedic''} \land r.operation\_cost > 1000 \land t.doc\_name = s.doc\_name)\}}
\sqrt{\{c \mid D_N > \mid \exists D_I \exists R_P \exists R_C (c \mid D_I, D_N, \text{``orthopedic''} > \in doctor \land c \mid D_I, R_P, R_C > \in operationRoster) \land R_C > 1000\}}
```

Solution: As per the specifications given in the question, a natural join needs to be applied between **doctor** and **operationRoster** as:

 $doctor \bowtie operationRoster.$

Then, a select operation can be applied as:

 $\sigma_{specialization="orthopedic"} \land operation_cost>1000 (doctor \bowtie operationRoster).$

Finally, apply project the doc_name as:

 $\prod_{doc_name} (\sigma_{specialization="orthopedic"} \land operation_cost>1000 (doctor \bowtie operationRoster)).$

The equivalent tuple relational calculus is:

 $\{t \mid \exists s \in doctor, \exists r \in operationRoster(s.specialization = "orthopedic")\}$

 $\land r.operation_cost > 1000 \land t.doc_name = s.doc_name)$.

The equivalent domain relational calculus is:

 $\{\langle D_N \rangle \mid \exists D_I \exists R_P \exists R_C (\langle D_I, D_N, "orthopedic") > \in doctor \land \}$

 $\langle D_I, R_P, R_C \rangle \in operationRoster) \land R_C > 1000 \}.$

Please note the tuple relation calculus:

 $\{s \mid \exists s \in doctor \exists \ r \in operationRoster(s.doc_id = r.doc_id \land s.specialization = "orthopedic" \land r.operation_cost > 1000)\}$

projects all attributes rather than doc_name alone.

8. Consider the relations below:

- [MSQ: 2 points]
- **customer**(<u>customer_id</u>, <u>customer_name</u>, <u>customer_city</u>)
- invoice(invoice_number, customer_id, amount_payable)

Choose the correct relational algebra expressions that return the names of all customers having amount payable (*amount_payable*) more than \$1,000 and who are located in **Chennai**.

```
\bigcap_{customer\_name} (\sigma_{amount\_payable}>1000 \land customer\_city="Chennai"} (customer \times invoice))
\bigcap_{amount\_payable}>1000 \lor customer\_city="Chennai"} (customer \bowtie invoice))
\bigvee_{customer\_name} (\sigma_{amount\_payable}>1000 \land customer\_city="Chennai"} (customer \bowtie invoice))
\bigvee_{customer\_name} (\sigma_{amount\_payable}>1000 \land customer\_city="Chennai"} \land customer\_id=invoice.customer\_id (customer \times invoice))
```

Solution: First, natural join can be applied between the two relations **customer** and **invoice** such that tuples will be combined by equality in $customer_id$. Then, σ with predicate $amount_payable > 1000 \land customer_city = "Chennai" can be applied to find the tuples as per the specification given.$

Alternatively, the same can also be achieved by a Cartesian product between **customer** and **invoice** along with σ with predicate equality of $customer_id$ of both the relations and σ with predicate $amount_payable > 1000 \land customer_city = "Chennai".$

Finally, we project (\prod) the $customer_name$.

9. Consider the table given in Figure 4.

S1	
Α	В
5	25
6	36
7	49
8	64
9	91

Figure 4: Relation S1

Choose the correct set of expressions that will return the tuple given below.


```
\bigcirc \sigma_{A}(\Pi_{B=49}(S1)) 

\sqrt{\{t \mid \exists p \in S1(t[A] = p[A] \land p[B] = 49)\}} 

\bigcirc \{t \mid \exists p \in S1(t[A] = p[A] \land p[B] = 7)\} 

\sqrt{\{\langle a \rangle \mid \exists b(\langle a, b \rangle \in S1 \land b = 49)\}}
```

Solution:

 $\sigma_A(\Pi_{B=49}(S1))$ is logically incorrect, the correct TRC query is $\Pi_A(\sigma_{B=49}(S1))$, this will first perform the Select operation and return the row having B = 49 then it will project the corresponding value of attribute A.

$$\{t \mid \exists p \in S1(t[A] = p[A] \land p[B] = 49)\}$$
 is equivalent to $\Pi_A(\sigma_{B=49}(S1))$
 $\{\langle a \rangle \mid \exists b (\langle a, b \rangle \in S1 \land b = 49)\}$ is equivalent to $\Pi_A(\sigma_{B=49}(S1))$

10. Consider the E-R diagram in Figure 5.

Figure 5: ERD

What is the minimum number of tables needed to represent this E-R diagram?

Solution: 1

The minimum and maximum cardinality is 1 (1..1).

- A minimum value of 1 indicates total participation.
- A maximum value of 1 indicates that the entity participates in at most one relationship.

Thus, it can be represented using a single table: **team_captain**(*team_code*, *team_name*, *player_num*, *player_name*).

Consider the E-R diagram given in Figure 6 and answer the questions 11 and 12.

Figure 6: E-R diagram

11. The minimum number of tables required to represent the entity sets and relationship sets is [NAT: 2 points]

Answer: 3

Solution: 3

- E1 is associated with E2 via R1 in a one-to-many relation.
- E3 is associated with E2 via R2 in a one-to-many relation.

Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side. Thus, we can represent the entire ERD using 3 tables as follows:

- **E1**(*a*1, *a*2)
- **E2**($\underline{c1}, c2, \underline{a1}, \underline{b1}$)
- **E3**(<u>b1</u>, b2)
- 12. What will be the correct attribute set for the table corresponding to the entity set **E2**? [MCQ: 2 points:Solvewithinstructor]
 - \bigcirc **E2**($\underline{c1}$, $\underline{c2}$)
 - \bigcirc **E2**($\underline{c1},\underline{a1},c2$)
 - \bigcirc **E2**(c1, a1, b1, c2)
 - $\sqrt{\mathbf{E2}(\underline{c1}, c2, \underline{a1}, \underline{b1})}$

Solution:

- R1 is a one-to-many relationship set from E2 to E1.
- R2 is a one-to-many relationship set from E2 to E3.

Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side. Thus, we can represent the entire ERD using 3 tables as follows:

- $E1(\underline{a1}, a2)$
- **E2**($\underline{c1}, c2, \underline{a1}, \underline{b1}$)
- **E3**(<u>b1</u>, b2)
- 13. Consider the E-R diagram with aggregation given in Figure 7.

[MCQ: 2 points]

Figure 7: ERD

What will be the correct attribute set for the table corresponding to relationship-set A1?

- \bigcirc c1, e1, d1
- $\bigcirc a1, b1, d1, c1, e1, e2$
- $\bigcirc a1, b1, d1, e1, e2$
- $\sqrt{a1, b1, e1, d1}$

Solution: The ER-diagram presents a scenario of aggregation. Thus, the relationship set **A1** must be mapped to a table having the following:

- \bullet Primary keys of $E1,\,E2$ and E3.
- Any descriptive attributes of **A1**.

So the attribute set for $\mathbf{A1}$ is: $\{a1, b1, e1, d1\}$