Inner Product

If \vec{u} and \vec{v} are vectors in R^{u} , then $\vec{u} \cdot \vec{v}$ is a 1*1 natrix which we write as a single (real) number without brackets, we call the number $\vec{u} \cdot \vec{v}$ the inner product of \vec{u} and \vec{v} . We will often write $\vec{u} \cdot \vec{v}$ as $\vec{u} \cdot \vec{v}$. In this case, we refer to the inner product of \vec{u} and \vec{v} . If

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \qquad \text{and} \qquad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

nen

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

$$E_{\times}$$
 Let $\vec{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\vec{\nabla} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$. Then

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} \frac{3}{2} \\ -1 \end{bmatrix} = (1)(5) + (-1)(2) + (2)(-1)$$

(b)
$$(\vec{x} \cdot \vec{v}) \cdot \vec{x} = \vec{x} \cdot \vec{x} + \vec{v} \cdot \vec{w}$$
,

(c) $(c\vec{x}) \cdot \vec{v} = c (\vec{x} \cdot \vec{v}) = \vec{x} \cdot (c\vec{v})$,

(d) $\vec{x} \cdot \vec{x} \ge 0$, and $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$.

Longth of a Vector

If \vec{x} is a vector in \vec{x} with $\vec{x} = \begin{bmatrix} \vec{w}_1 \\ \vec{w}_2 \end{bmatrix}$

From the longth of \vec{x} is

$$||\vec{x}|| = \sqrt{\vec{w} \cdot \vec{x}} = \sqrt{\vec{w}_1^2 + \vec{w}_2^2 + \cdots + \vec{w}_n^2}$$
.

For any scalar c ,

$$||c\vec{x}|| = |c|||\vec{x}||$$

A vector where longth is 1 is called a unit vector.

It is clear that for any vector \vec{x} in \vec{x}^{**} , the

Let I, I, and I be vectors in IRT,

and let c be a scalar. Then

(~) な・マ・マ・は,

$$a \mapsto \frac{a}{a}$$

$$E \times .$$
 Let $\vec{u} = \begin{bmatrix} \frac{2}{4} \end{bmatrix}$. Find a unit vector in the

We have
$$||\vec{u}|| = \sqrt{(1)^2 + (4)^2 + (-1)^2} = \sqrt{21}$$

$$= > \frac{\vec{u}}{||\vec{u}||} = \frac{1}{\sqrt{21}} \begin{bmatrix} \frac{1}{4} \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{4} | \sqrt{21} \\ \frac{1}{4} | \sqrt{21} \end{bmatrix}.$$

For
$$\vec{u}$$
 and \vec{v} in R^{-} , the distance between \vec{u} and \vec{v} , written as dist (\vec{u}, \vec{v}) , is the length of $\vec{u} - \vec{v}$.

$$E \times$$
. Let $\vec{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Then

and

We see that
$$dis+(\vec{u},-\vec{v})=dis+(\vec{u},\vec{v})$$
 if and only if $\vec{u}\cdot\vec{v}=0$.

Two vectors is and if are orthogonal if it is = 0.

perpendicular.

Theorem (Pythagorean Theorem) Two vectors are orthogonal if and only if $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2.$

orthogonal Complements

Let H be a subspace of IR^{-} . The <u>orthogonal</u> complement of H, denoted by H^{\perp} , is defined as $H^{\perp} = \{\vec{z} : \vec{x} \cdot \vec{z} = 0 \text{ for all } \vec{x} \in H\}$.

Fact: (i) A vector $\frac{1}{2}$ is in H^{\perp} if and only if $\frac{1}{2}$ is orthogonal to every vector in a set that spans H.

Theorem Let A be an man matrix Then

(401(A)) = Na1(AT).