中山大学数据科学与计算机学院本科生实验报告 (2017 学年秋季学期)

课程名称:数字电路与逻辑设计实验 任课教师:保延翔 助教:岳锐

年级&班级	2016 级(1)班	专业(方向)	软件工程
学号	16340041	姓名	陈亚楠
电话	15989010314	Emai1	chenyn0201@gmail.com
开始日期	2017. 10. 28	完成日期	2017. 11. 06

实验六 利用 MSI 设计组合逻辑电路

一、实验目的

- 1. 熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法。
 - 2. 掌握用 MSI 设计组合逻辑电路的方法。

二、实验仪器及器件

- 1. 数字电路实验箱、示波器。
- 2. 虚拟器件: 74LS00, 74LS197, 74LS138, 74LS151, 74LS86, 74LS08, 74LS20。

三、实验原理

详见实验内容。

四、实验内容

4. ALU 设计 (Arithmetic & Logic Unit, 算术逻辑单元)

用 vivado 在 Basys3 实验板上实现一个六输入二输出的 ALU。

六个输入包括三个控制端和三个数据输入端。

控制端: S2、S1、S0 决定 ALU 的八种功能,其中指定 6 种功能为与、或、非、异或、全加、全减,剩余功能自由拟定。

数据输入端: 当 ALU 进行全加(全减)运算时,三个数据输入端分别为被加数(被减数)、加数(减数)、进位(借位)。当 ALU 进行逻辑运算时(与、或、非、异或)时,三个数据输入端中的两个作为操作数的输入,另外一个可以忽略(在设计报告中需指明)。

输出端: 当 ALU 进行全加(全减)运算时,两个输出端分别为和(差)、进位(借位)。当 ALU 进行逻辑运算时(与、或、非、异或)时,两个输出端为逻辑运算的结果和结果的取反。

控制端			功能
S2	S1	S0	
0	0	0	5
0	0	1	或
0	1	0	非A
0	1	1	B非
1	0	0	异或
1	0	1	全加
1	1	0	全减
1	1	1	清零

提示: ALU 的输入端接 6 位计数器 (000000-111111) 的输出。

(1) 实验原理:

全加器:

	输入			
Ci-1	Ai	Bi	Si	Ci
0	0	0	0	0
0	0	1	1	0
О	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1 2
1	1	0	0	1
1	1	1	1	1

 $Si=Ai \oplus Bi \oplus Ci-1$:

$$C_i = A_i B_i + C_{i-1} (A_i + B_i)$$

全减器:

Ai	Bi	Ci-1	Di	Ci
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = \overline{A_i}(B_i \oplus C_{i-1}) + B_i C_{i-1}$$

(2) Vivado bd 设计:

五、实验心得

依据各种仪器,如 74LS138 和 74LS151 的特性,找到输入和输出之间的 关系,再根据我们的实验目标,通过真值表、卡诺图,得到逻辑表达式的最简 形式,再与仪器输入输出进行对比,设计电路。