AYOMI AI-Classes

Al (Artificial Intelligence) & ML (Machine Learning) Syllabus

1. Introduction to Artificial Intelligence & Machine Learninge	 What is Artificial Intelligence? Types of AI: Narrow AI vs. General AI What is Machine Learning? AI vs. Machine Learning vs. Deep Learning Applications of AI and ML Real-world examples of AI and ML
2. Mathematics for Machine Learning and AI	 Linear Algebra: Vectors, Matrices, Eigenvalues/Eigenvectors Matrix operations Singular Value Decomposition (SVD) Probability & Statistics: Probability distributions (Normal, Binomial, Poisson, etc.) Bayes' Theorem Hypothesis Testing, p-values, confidence intervals Calculus: Derivatives and Gradients Optimization techniques (Gradient Descent) Optimization: Convex vs. Non-convex problems Stochastic Gradient Descent (SGD)
3. Programming for Al and MLDates	 Introduction to Python (or R) Key Libraries: Python: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, TensorFlow, Keras, PyTorch R: ggplot2, dplyr, caret Data Structures and Algorithms for Al Functions, Loops, Recursion, and Debugging Software Development Practices for Al (Version control with Git)

4.Supervised Learning Algorithms

• Regression:

o Linear Regression

	 Polynomial Regression Regularized Regression (Ridge, Lasso) Classification: Logistic Regression k-Nearest Neighbors (k-NN) Support Vector Machines (SVM) Decision Trees and Random Forests Naive Bayes Ensemble Methods (Bagging, Boosting, AdaBoost, Gradient Boosting) Model Evaluation: Cross-validation Accuracy, Precision, Recall, F1 Score ROC-AUC curve Hyperparameter Tuning (Grid Search, Random Search)
5.Unsupervised Learning Algorithmstives	 Clustering: k-Means Clustering Hierarchical Clustering DBSCAN Dimensionality Reduction: Principal Component Analysis (PCA) t-Distributed Stochastic Neighbor Embedding (t-SNE) Autoencoders Anomaly Detection (Isolation Forest)
6.Deep Learning Audience	 Introduction to Neural Networks: Perceptron and Feedforward Neural Networks Activation Functions (ReLU, Sigmoid, Tanh) Backpropagation and Gradient Descent Advanced Deep Learning Architectures: Convolutional Neural Networks (CNNs) for Image Data Recurrent Neural Networks (RNNs) for Sequential Data Long Short-Term Memory (LSTM) Networks Transfer Learning and Fine-tuning Pre-trained Models Generative Models:

	 Generative Adversarial Networks (GANs) Variational Autoencoders (VAE)
7. Natural Language Processing (NLP)	 Text Preprocessing (tokenization, stemming, lemmatization) Bag-of-Words (BoW) Model Term Frequency-Inverse Document Frequency (TF-IDF) Word Embeddings (Word2Vec, GloVe, FastText) Sequence Models: Recurrent Neural Networks (RNN) LSTM, GRU Advanced NLP Models: Transformer Networks (BERT, GPT, T5) Attention Mechanisms and Self-Attention Applications of NLP: Text Classification, Named Entity Recognition (NER), Sentiment Analysis
8.Reinforcement Learning	 Introduction to Reinforcement Learning (RL) Key Concepts: Agent, Environment, Actions, Rewards Markov Decision Processes (MDPs) Q-Learning and Temporal Difference Learning Policy Gradient Methods Deep Reinforcement Learning (DRL) Applications of RL (Game Playing, Robotics)
9. Ethics and Bias in Al	 Al Bias and Fairness Transparency and Explainability (Explainable Al) Ethical Considerations in Al Privacy and Security in Machine Learning
10. Advanced Topics (Optional)	 Time Series Analysis and Forecasting ARIMA Models, LSTM for time series prediction Al in Computer Vision Object Detection and Segmentation (YOLO, SSD, Faster R-CNN)

	 Transfer Learning in Vision Models Al in Healthcare, Autonomous Vehicles, Robotics Federated Learning Meta-Learning Graph Neural Networks (GNNs)
11. Model Deployment and Production	 Introduction to Model Deployment Model Deployment with Flask/Django Containerization with Docker Cloud Platforms (AWS, Google Cloud, Azure) Model Monitoring and Versioning
12. Capstone Project	 Real-world problem solving using AI/ML End-to-End implementation of a model Documentation, Reporting, and Presentation