Coarse-grained materials control groundwater flow in the largest watershed in Italy

Po River basin (4 regions):

- 16 millions inhabitants
- 40% of Italian GDP
- 87 000km²

- 530km x 330 km
- dx = dy = 2km
- Thickness 225m
- 9 layers (var dz)
- $PME = 750 \, mm/y$
- > 4000 wells

Methodology

Reconstruction of geomaterials based on integration of ML-based prediction and globally available datasets of geomaterials (SoilGrids)

Key Results

	SubS	SurS	WTD lom	WTD val	Q	80 100 120 140 160 180 200 80 100 120 140 160 180 200 80 100 120 140 160 180 200
			m	m		160
K1	-1%	-4%	3.22	2.42	-5%	140 Land Current Work
K2	-3%	-33%	3.75	6.76	24%	120 120 Construction of
К3	0%	0%	0.00	0.00	0%	
K4	-3%	1%	2.44	5.71	7%	surrogate models via
K5	0%	0%	0.00	0.05	0%	traditional methods l
К6	0%	0%	0.00	0.00	0%	Polynomial Chaos
por1	1%	0%	0.00	0.00	0%	140
por2	4%	0%	0.00	0.00	0%	Expansion and
por3	0%	0%	0.00	0.00	0%	convolutional neura
por4	12%	0%	0.00	0.00	0%	networks.
por5	2%	0%	0.00	0.00	0%	1 2 10 2 10 2
por6	0%	0%	0.00	0.00	0%	Evaluation of pumpi
a1	0%	0%	-0.04	0.00	0%	scenarios that reflect
a2	0%	0%	-0.02	0.00	0%	different degrees of
a3	0%	0%	0.00	0.00	0%	120
a4	0%	0%	-0.02	0.00	0%	anthropic impact on
a5	0%	0%	-0.08	0.00	0%	aquifers of the study
a6	0%	0%	-0.01	0.00	0%	10-30m 30-100m 100-225m area.
Ss	6%	0%	0.00	0.00	0%	80 100 120 140 160 180 200 80 100 120 140 160 180 200 80 100 120 140 160 180 200
Mann1	0%	9%	-0.01	-0.01	0%	
Mann2	0%	16%	-0.03	-0.03	3%	Gravel Sand Silt Clay Perm. Rock Imp. Rock

- els via hods like OS neural
- umping reflect es of ct on the study

EONARDO SANDOVAL, MONICA RIVA, LAURA CONDON, ALBERTO GUADAGNINI

Forcing data available until 2022