# Graph neural networks for classification and task-conditioned brain connectivity estimation of electrophysiological data



Lorenzo Mattia 1793272

Master Thesis – M.Sc. in Artificial Intelligence and Robotics

Thesis Advisor: Prof. Laura Astolfi

Co-Advisor: Prof. Nicola Toschi

Co-Examiner: Prof. Thomas Alessandro Ciarfuglia



## Introduction - Neuroscience and Al

- The use of AI to support neuroscience is getting more and more attention
- Most of the efforts are devoted to brain disorder diagnosis
- Particular focus on the use of CNN and RNN







# Graph neural networks - Introduction

- Increasing number of fields based on graph-structured data (social networks, chemistry, neuroscience)
- Extension of the classical convolution operation to graphs
  - Spatial convolutions
  - Spectral convolutions





# Scalp electroencephalography (EEG)

- Measures electrical signals of the brain
- Advantages:
  - Non invasive
  - Cost effective
  - Excellent time resolution
- Limitations:
  - Sensitive to noise and artifacts
  - Spatial blur





## Aims of the thesis

General aim: to investigate the effectiveness of GNN applied to real EEG data collected in human subjects.

#### Specific aims:

- 1. to build an effective classification pipeline based on GNN architectures and meaningful features extraction;
- 2. to develop an automatic mechanism for graph structure learning to avoid the arbitrariness of the choice about graph edges, with the purpose to improve the interpretability of the results.



# Dataset description

#### VISUAL STIMULATION ADMINISTERED TO THE SUBJECTS



Cognitive task: Working Memory with a cue:

- a human avatar (social condition)
- a **stick** (non-social condition)

Cueing window: 2.5s -3.5s

Healthy subjects: 47

Trials per subject: 224

Social/Non-social condition trials: 112/112



# 1<sup>st</sup> study

Building an effective pipeline based on GNN

architectures and meaningful features

extraction for the single trial, subject-dependent

classification of the social/non-social content



# Preprocessing and feature extraction







# Preprocessing and feature extraction - summary



\*Phase Locking Value (PLV) as an alternative



# Graph neural networks - Classifiers

- Three different convolution operator tested:
  - Graph-SAGE
  - Graph Isomorphism Network (GIN)
  - Graph Convolution Network (GCN)
- Readout function to obtain graph level embedding
- Final multi-layer perceptron





# Graph neural networks - Complete classification pipeline





# Results - Machine learning baselines

SVM - Linear kernel Avg. Accuracy:  $81.4\% \pm 7.5\%$ 



Random Forest Avg. Accuracy:  $78.6\% \pm 8.9\%$ 





# Results – Machine learning baselines features comparison





# Results - Graph neural networks



Comparison between GNNs



**GNNs** compared with the baselines



# 2<sup>nd</sup> study

Development of an automatic mechanism for

graph structure learning:

allowing the model itself to learn the graph topology.



## Automatic graph-structure learning mechanism - Motivations

- Improve interpretability
- Avoid arbitrary decisions about edge determination
- Allow quantitative and statistical tests on the <u>connectivity</u>
  maps learned by the algorithm



# Automatic graph-structure learning mechanism - Explanation



Node connections formula:

$$A_{mn} = g(\boldsymbol{x}_m, \boldsymbol{x}_n) = \frac{\exp(\text{ReLU}(\boldsymbol{w}^T | \boldsymbol{x}_m - \boldsymbol{x}_n|))}{\sum_{n=1}^{N} \exp(\text{ReLU}(\boldsymbol{w}^T | \boldsymbol{x}_m - \boldsymbol{x}_n|))}$$

Loss function to be minimized: 
$$\mathcal{L}_{ ext{graph\_learning}} = \sum_{m,n=1}^N \|m{x}_m - m{x}_n\|_2^2 A_{mn} + \lambda \|m{A}\|_F^2$$



# Automatic graph-structure learning mechanism - Adaptation

- Insertion in a new classification pipeline: new input features and new network architecture
- New normalization strategy to avoid artefactual asymmetry



# Graph neural networks - Modified classification pipeline





# Results - Adaptive graph-structure learning mechanism



Graph-structure learning based classifier compared with 'standard' ones



Graph-structure learning based classifier accuracies over subjects



# Results – Learned Adjacency Matrices



Average matrices across all subjects



# Results - Quantitative analysis of the learned matrices

- Integration and segregation test on learned subject-specific matrices
- Computation of three graph indices on the matrices of the two conditions and on their difference matrix:
  - Modularity
  - Divisibility
  - Weights of intra- and inter-connections between submatrices (classes)

#### Intra-classes and inter-classes links



#### Chosen classes:



Right and left hemispheres

Frontal and parietal-occipital lobes



### Results - Statistical tests on behavioral data

#### Two significant correlation results:

- absolute value of the difference between reaction times and the divisibility computed on the difference matrices, considering the two hemispheres as classes (r = -0.338; p=0.05)
- absolute value of the difference between reaction times and the divisibility computed on the difference matrices, considering the the frontal and parietaloccipital lobes as classes (r =-0.473; p=0.004)







# Conclusion

- I proposed a classification pipeline based on GNNs and meaningful features that shows better classification accuracies than the baseline, effectively classifying some challenging human EEG data that only differ for the social component of the stimulus
- 2. I developed an automatic mechanism for graph structure learning to avoid any arbitrariness in the choice of graph edges. This also improves the interpretability of the results, as shown by the physiologically meaningful results in terms of learned matrices and by the significant correlations between graph indices and behavioral data



# Novelty

- 1. The choice of expressive and meaningful node features, never used before in the literature, leading to better classification accuracies
- 2. The development of an automatic graph-structure learning mechanism to improve the interpretability of the results
- 3. The application to a particularly challenging dataset, significantly different from the previous literature targets, and the quantitative (statistical) analysis which returned results physiologically meaningful.

# Thank you for your kind attention!

