

Cosmic web

- Matter perturbations in the primordial
 Universe grew to form the cosmic web
- **Static description**: matter density contrast (δ) follows linear power spectrum at large-scales
- Dynamic description: Velocity of the cosmic web in linear perturbation theory:

$$abla \cdot {f v} \propto -a H f \delta$$

Growth rate

$$\nabla \cdot \mathbf{v} \propto -aHf\delta$$

$$f=rac{d\ln\delta_+(a)}{d\ln a}$$

Logarithmic growth rate of linear perturbations

 Degeneracy with the amplitude of the linear power spectrum

$$P_{
m m} \propto \sigma_8^2$$

 Applications: Test of general relativity, constraints on dark energy properties

Redshift Space Distortion

- Redshifts precisely measured by spectroscopic surveys:
 - Universe expansion + peculiar velocity
 - Position shifted by the line-of-sight peculiar velocity

Redshift Space Distortions (RSD):
 Distortion of cosmological observable due to peculiar velocities

RSD example

Galaxy-galaxy auto-correlation

• Two effects:

- Linear RSD (or Kaiser): cohesive movement of galaxies around over densities
- Non-linear RSD (or Fingerof-god): small-scale random velocities due to collapse

Peculiar velocities

 Direct estimation of the galaxy peculiar velocity.

 Distance estimated with Type Ia supernovae (ZTF, LSST):

$$\sigma_D/D\sim7\%$$

 Comparison between distance and redshift gives velocity

Peculiar velocities

• Other estimators: empirical relations

Tully-Fisher for spiral galaxies (luminosity/mass vs rotational velocity)

Fundamental plan for elliptical galaxies (effective angular radius vs velocity dispersion vs luminosity)

Forecasts

- RSD very effective for high-z
- Peculiar velocities for low-z

 Constraint improvement with combination of methods

Methods

Growth rate measurement methods with peculiar velocities:

Density/momentum power spectra

$$\langle \delta_{
m g}(k) \delta_{
m g}(k)
angle \; \langle \delta_{
m g}(k) {f v}(k)
angle \; \langle {f v}(k) {f v}(k)
angle \;$$

Density-velocity comparison

$$\mathbf{v}_{\mathrm{measured}} \longleftrightarrow \nabla \cdot \mathbf{v}_{\mathrm{pred}} \propto -aHf\delta$$

Forward modeling

Maximum likelihood

Maximal likelihood estimator

- Purpose: Minimize a likelihood computed from all coordinates of the data
- p = parameters: contains cosmology and Hubble diagram parameters

Computation of covariance matrix

$$egin{aligned} egin{aligned} \mu_i &= \mathbf{k} \cdot \mathbf{r_i} \ & C_{ ext{vv}}(\mathbf{r_1}, \mathbf{r_2}) = rac{1}{(2\pi)^3} \int_{\mathbf{k}} P_{ ext{vv}}(k, \mu_1, \mu_2) e^{i\mathbf{k} \cdot \mathbf{r}} d^3\mathbf{k} \end{aligned}$$
 $P_{ ext{vv}} = (aHf)^2 rac{\mu_1 \mu_2}{k^2} P_{ heta heta}(k) D_u^2(k, \sigma_u)$ linear perturbation theory

Estimator with wide-angle effects

A word on wide-angle in clustering

Plane parallel models

Result for ZTF simulation

- Use of SNsim package based on SNcosmo
- ZTF survey parameters, and SNIa model

Carreres et al. 2023

 Other measurements performed with FP and TF

 ZTF will be competitive with only 1600 SNIa (compare to ~10k TF/FP)

Objective

 Improvement of growth rate measurement using simultaneously velocities and densities

 Improvement of the python package for maximum likelihood fitting

Covariance matrix

Covariance matrice computed from theory and coordinates

Linear power spectrum model with wide-angle

$$\boxed{ P_{\rm gg} = \left[b^2 P_{\rm mm}(k) + b f(\mu_1^2 + \mu_2^2) P_{\rm m}\theta(k) + f^2 \mu_1^2 \mu_2^2 P_{\theta\theta}(k) \right] \exp \left[\frac{-k^2 (\mu_1^2 + \mu_2^2) \sigma_{\rm g}^2}{2} \right] } \\ P_{\rm gv} = ia H \frac{\mu_2}{k^2} \left(b f P_{\rm m}\theta(k) + f^2 \mu_1^2 P_{\theta\theta}(k) \right) \exp \left[\frac{-k^2 \mu_1^2 \sigma_{\rm g}^2}{2} \right] D_u(k, \sigma_u) } \\ P_{\rm vv} = (aHf)^2 \frac{\mu_1 \mu_2}{k^2} P_{\theta\theta}(k) D_u^2(k, \sigma_u) \qquad \text{Very complicated (especially with the exponential term)} \\ \longrightarrow C_{\rm ab}(\mathbf{r_1}, \mathbf{r_2}) = \frac{1}{(2\pi)^3} \int_{\mathbf{k}} P_{\rm ab}(k, \mu_1, \mu_2) e^{i\mathbf{k} \cdot \mathbf{r}} d^3\mathbf{k} \longrightarrow C_{\rm gg}, C_{\rm gv}, C_{\rm vv}$$

Lai et al. 2022 method

Taylor expansion of the finger-of-god term

$$\exp\left[rac{-k^2\mu^2\sigma_{
m g}^2}{2}
ight]=\sum_{i=0}^{\infty}rac{(-1)^i(k\sigma_g)^{2i}}{2^ii!}\mu^{2i}$$

• Complete equations:

$$\begin{aligned} \mathbf{C}_{\text{gg}}\left(\mathbf{s_{1}},\mathbf{s_{2}}\right) &= \sum_{pq} \frac{(-1)^{p+q}}{2^{p+q}p!q!} \sigma_{g}^{2(p+q)} \sum_{l} i^{l} \left[b^{2} \xi_{mm,l}^{p,q,0}(s,0) H_{p,q}^{l}\left(\mathbf{s_{1}},\mathbf{s_{2}}\right) \right. \\ &\left. + f^{2} \xi_{\theta\theta,l}^{p,q,0}(s,0) H_{p+1,q+1}^{l}\left(\mathbf{s_{1}},\mathbf{s_{2}}\right) + b f \xi_{m\theta,l}^{p,q,0}(s,0) \left(H_{p+1,q}^{l}\left(\mathbf{s_{1}},\mathbf{s_{2}}\right) + H_{p,q+1}^{l}\left(\mathbf{s_{1}},\mathbf{s_{2}}\right) \right) \right] \end{aligned}$$

$$\mathbf{C}_{gv}\left(s,\sigma_{u}
ight)=\left(aHf
ight)\sum_{p}rac{\left(-1
ight)^{p}}{2^{p}p!}\sigma_{g}^{2p}\sum_{l}i^{l+1}\left(b\xi_{m heta,l}^{p,-0.5,1}\left(s,\sigma_{u}
ight)H_{p,0.5}^{l}\left(\mathbf{s_{1},s_{2}}
ight)+f\xi_{ heta heta,l}^{p,-0.5,1}\left(s,\sigma_{u}
ight)H_{p+1,0.5}^{l}\left(\mathbf{s_{1},s_{2}}
ight)
ight)$$

$$\mathbf{C}_{vv}\left(s,\sigma_{u}
ight)=(aHf)^{2}\sum_{l}i^{l+2}\xi_{ heta heta.l}^{-0.5,-0.5,2}\left(s,\sigma_{u}
ight)H_{0.5,0.5}^{l}\left(\mathbf{s_{1},s_{2}}
ight)$$

Model evaluation

• **Test**: expressing covariance matrix as a function of parallel and transverse separation

Shape similar to correlation function models

Idea: general covariance calculation

• Objectives:

- Test more density models
- Possible extension to non linear corrections

• Let's start "simple":

$$C_{
m ab}(\mathbf{r_1},\mathbf{r_2})=rac{1}{(2\pi)^3}\int_{\mathbf{k}}P_{
m ab}(k,\mu)e^{i\mathbf{k}\cdot\mathbf{r}}d^3\mathbf{k}$$

Using some spherical harmonic

definition and multipole theorems

 $C_{
m ab}({f r_1, r_2}) = \sum_\ell i^\ell \int_k rac{k^2 dk}{2\pi^2} j_\ell(kr) L_\ell(\hat{f d} \cdot \hat{f r}) \int_{\mu=-1}^1 rac{2\ell+1}{2} L_\ell(\mu) P_{
m ab}(k,\mu) d\mu$

• Express power spectrum model in a general way:

• Without loosing generality we can express the covariance:

$$C_{\mathrm{ab}}(\mathbf{r_1},\mathbf{r_2}) = \sum_i A_{\mathrm{ab},i} \sum_l \xi_{\mathrm{ab},\ell}^i(r)$$

$$egin{aligned} \xi_{\mathrm{ab},\ell}^i(r) &= L_\ell(\hat{\mathbf{d}}\cdot\hat{\mathbf{r}}) \left[i^\ell \int_k rac{k^2 dk}{2\pi^2} P_{\mathrm{ab},i}(k) K_{\mathrm{ab},\ell}^i(k) j_\ell(kr)
ight] \end{aligned}$$

$$K^i_{\mathrm{ab},\ell}(k, heta,\phi)=\int_{\mu=-1}^1 rac{2\ell+1}{2} L_\ell(\mu) B_{\mathrm{ab},i}(k,\mu) d\mu$$

• Some insights:

$$C_{
m ab}({f r_1, r_2}) = \sum_i A_{
m ab,} i \sum_l \xi^i_{
m ab,} \ell(r)$$

linear sum of matrix

• Some insights:

$$C_{
m ab}(\mathbf{r_1},\mathbf{r_2}) = \sum_i A_{
m ab,\it i} \sum_l \xi^i_{
m ab,\it \ell}(r)$$

Hankel transform

$$egin{aligned} \xi_{\mathrm{ab},\ell}^i(r) &= L_\ell(\hat{\mathbf{d}}\cdot\hat{\mathbf{r}}) \left[i^\ell \int_k rac{k^2 dk}{2\pi^2} P_{\mathrm{ab},i}(k) K_{\mathrm{ab},\ell}^i(k) j_\ell(kr)
ight] \end{aligned}$$

• **Most important**: Algorithmically optimized way to compute power spectrum integral, with FFTLog

Wide angle model

 More complicated formalism derived and implemented for wideangle

• Conclusion:

- Formalism can reproduce all recent covariance models (*Adams & Blake 2017, Adams & Blake 2020, Lai et al. 2022, Carreres et al. 2023*)
- Start extension to other models
- Fast with FFTLog (Hankel transform)

Wide angle model

$$P_{\mathrm{ab}}(k,\mu_1,\mu_2) = \sum_i A_{\mathrm{ab},i} B_{\mathrm{ab},i}(k,\mu_1,\mu_2) P_{\mathrm{ab},i}(k)$$

$$C_{
m ab}({f r_1, r_2}) = \sum_i A_{{
m ab},i} \sum_l \xi^i_{{
m ab},\ell}(r)$$

$$\xi^i_{\mathrm{ab},\ell}(r) = \sum_j N^{i,j}_{\mathrm{ab},\ell}(heta,\phi) \left[i^\ell \int_k rac{k^2 dk}{2\pi^2} P_{\mathrm{ab},i}(k) M^{i,j}_{\mathrm{ab},\ell}(k) j_\ell(kr)
ight]$$

$$M_{\mathrm{ab},\ell}^{i,j=(\ell_1,\ell_2)}(k) = \int_{\mu_1=-1}^1 \int_{\mu_2=-1}^1 frac{1}{4} L_{\ell_1}(\mu_1) L_{\ell_2}(\mu_2) B_{\mathrm{ab},i}(k,\mu_1,\mu_2) d\mu_1 d\mu_2$$

$$N_{{
m ab},\ell}^{i,j=(\ell_1,\ell_2)}(heta,\phi) = (4\pi)^2 \sum_{m,m_1,m_2} G_{l,l_1,l_2}^{m,m_1,m_2} Y_{\ell m}(\hat{f r})^* Y_{\ell_1 m_1}(\hat{f r_1})^* Y_{\ell_2 m_2}(\hat{f r_2})^*$$

$$G^{l_1,l_2,l_3}_{m_1,m_2,m_3} = \sqrt{rac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \left(egin{array}{ccc} l_1 & l_2 & l_3 \ 0 & 0 & 0 \end{array}
ight) \left(egin{array}{ccc} l_1 & l_2 & l_3 \ m_1 & m_2 & m_3 \end{array}
ight) e^{-l_1,l_2,l_3}$$

flip Field Level Inference Package

• Currently: python package for this new formalism

https://github.com/corentinravoux/flip

Contains:

- Symbolic code generation for covariance model
- Fast generation of covariance
- Minuit fitter (MCMC in progress)
- Gridding routines
- Covariance model evaluation

A word on symbolic calculation

$$K^i_{\mathrm{ab},\ell}(k, heta,\phi) = \int_{\mu=-1}^1 rac{2\ell+1}{2} L_\ell(\mu) B_{\mathrm{ab},i}(k,\mu) d\mu$$

Computed analytically

 With **Sympy**, similar to mathematica (but free)

```
P_{
m gg} = \exp\left(-(k\mu\sigma_{
m g})^2
ight) \ egin{array}{c} \left[b^2P_{
m mm}(k) & 	ext{pycode generator} 
ight. \ + 2bf\mu^2P_{
m m}	heta(k) \ + f^2\mu^4P_{	heta	heta}(k)
ight] \end{array}
```

```
return (5 / 16) * mp.cos(2 * phi) + (35 / 64) * mp.cos(4 * phi) + 9 / 64
 M on 1 0 0(sig 6):
      return -mp.exp(-(***2) * sig_g**2) / (***2 * sig_g**2) + (
      ) " np.sgrt(np.pi) " scipy.special.mrf(k " sig_g) / (k**3 " sig_g**3)
  return func
If N gg 1 0 0(thets, phi):
  return 1
  M.gu 1 7 0(sig_g):
           5 " np.exp(-[k**2] " sig g**2] / (k**2 " sig g**2)
           mp.sqrt(mp.pi)
            scipy.special.erf(k * sig.g)
                   * mp.exp(-(k**2) * sig.g**2) / (k**4 * sig.g**4)
          * scipy.special.erf(k * sig.g)
          / (k**5 * 810 g**5)
  meturn func
 N gg 1 2 0(theta, phi):
  return (3 / 4) * mp.cos(2 * ph1) + 1 / 4
```

