Training neural network

Gradient descent

► Hill climbing algorithm that follows the gradient of the function to be optimized

see notebook Linear - Nonlinear separation

Gradient descent

► Hill climbing algorithm that follows the gradient of the function to be optimized

 $\mathbf{w} \leftarrow$ any point in the parameter space \mathbf{loop} until convergence \mathbf{do}

for each w_i in w do

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

see notebook Linear - Nonlinear separation

Linear regression - with gradient descent

- Univariate linear function with input x and output y: $y = w_1 * x + w_0$
- ► Univariate Linear regression finding the h_w that best fits n point x, y

$$h_w(x)=w_1x+w0$$

How? with gradient descent in order to minimize the loss see detailed analysis - it will also be discussed during IS lab

Math explanation

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

For one example:

$$\begin{split} \frac{\partial}{\partial w_i} Loss(\mathbf{w}) &= \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2 \\ &= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x)) \\ &= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0)) \\ \frac{\partial}{\partial w_0} Loss(\mathbf{w}) &= -2(y - h_{\mathbf{w}}(x)) \; ; \qquad \frac{\partial}{\partial w_1} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)) \times x \end{split}$$

Gradient descent rule:

$$w_0 \leftarrow w_0 + \alpha (y - h_{\mathbf{w}}(x)); \quad w_1 \leftarrow w_1 + \alpha (y - h_{\mathbf{w}}(x)) \times x$$

Batch gradient descent

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j))\,; \quad w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j)) \times x_j$$

Backpropagation

see slide 1 - what is a neural network?

Neural networks

$$a_j = g(in_j)$$

$$a_j = g(\sum_i (w_{i,j} * a_i))$$

- a_i output of neuron i,
- $ightharpoonup a_0 = 1$ bias
- \triangleright $W_{i,j}$ weight between neuron i and neuron j
- ▶ g activation function

example:
$$a_{h_1} = g(w_{1,1} * a_i + w_{2,1} * a_2 + w_{0,1})$$

Layered transformation

Mean square error MSE

$$MSE = \frac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

Log Loss

$$\textit{LogLoss} = \sum_{(x,y) \in D} -\textit{ylog}(y') - (1-y)log(1-y')$$

▶ $(x, y) \in D$ - labeled dataset; y - label for sample x, x is a vector of features. For binary classification y is 0 or 1; y' - prediction(x)

Backpropagation - based on Gradient Descent

Back-propagation

Output layer

$$w_{j,i} = w_{j,i} + \alpha * a_j * \Delta_i$$

, unde
$$\Delta_i = Error_i * g'(in_i)$$

► Hidden layer (k node - j node - i nodes) Propagated error:

$$\Delta_j = g'(in_j) \sum_i w_{j,i} \Delta_i$$

hidden node j is responsible for some fraction of the error Δ_i in each of the output nodes to which it connects; stronger connection (higher weight) means higher contribution to error

$$w_{k,j} = w_{k,j} + \alpha * a_k * \Delta_j$$

Backpropagation

- ightharpoonup compute the Δ values for the output units using the observed error (loss)
- starting with output layer, repeat fpr each layer in the network, until earliest hiddent layer is reached:
 - propagate the Delta value back to the previous layer
 - update the weights between two layers

Math demo (Chain rule (nice explanations AIMA, notes)

Neural Network Playground

https://playground.tensorflow.org/

What can go wrong

- Vanishing gradient
- ► Exploding gradient
- Overfitting/underfitting
 - Adjust size of the network
 - ▶ Use regularization: reduce complexity

```
minimize(Loss(Data|Model) + complexity(Model))
```

- ► L2 penalizes weight², L1 penalizes ||weight||.
- the derivative of L2 is 2 * weight, The derivative of L1 is k (a constant, whose value is independent of weight). L2 does not normally drive weights to zero, while L1 can → L1 eliminates irrelevant features
- Dropout Dropout, is useful for neural networks. It works by randomly "dropping out" unit activations in a network for a single gradient step. The more you drop out, the stronger the regularization:
- Early stopping
- Adjust learning rate

Vanishing gradient

- ► The gradients for the lower layers (closer to the input) can become very small. In deep networks, computing these gradients can involve taking the product of many small terms.
- ▶ When the gradients vanish toward 0 for the lower layers, these layers train very slowly, or not at all.
- ► The ReLU activation function can help prevent vanishing gradients.

see Google Machine Learning Crash Course

Exploding gradient

- ▶ If the weights in a network are very large, then the gradients for the lower layers involve products of many large terms. In this case you can have exploding gradients: gradients that get too large to converge.
- ▶ Batch normalization can help prevent exploding gradients, as can lowering the learning rate.