0.1 Analisi di complessità di un job map-reduce

0.1.1 Es: moltiplicazione di matrici

 $A_{m \times n} \times B_{m \times o}(i,j,a_{ij}) \longmapsto M_A((i,j),(A,k,a_{ik})) \ \forall \ j=1,...,o(k,j,b_{kj}) \longmapsto M_B((i,j),(B,k,b_{ik})) \ \forall \ i=1,...,m(i,j)[(A,1,a_{i1}),...,(A,m,a_{im})]$

$$R(A,B) \bowtie S(B,C) \bowtie T(C,D)(a,b) \longmapsto_{M_R} (b,(R,a))(b,c) \longmapsto_{M_S} (b,(S,a))$$

Quale è il costo di questo algoritmo. Indichiamo con r, s, t i rispettivi numeri di tuple delle tabelle R, S, T. Il primo processo M_R riceve tutte e sole le tuple di R, quindi ha costo r. Il secondo, similmente, ha costo s.

Il risultato del costo di complessità sarà quindi un O(r + s). Ma questo è tra due relazioni. Se volessi farlo da 3 relazioni (**join in cascata**) cosa andrei ad ottenere?

$$(R \bowtie S) \bowtie T$$

Ottengo il costo O(r + s + t + r s p), con p rappresentante la probabilità che due valori di R e S hanno un attributo uguale.

0.1.2 Join multi-way

Date due funzioni di hash, una h per l'attributo B ed una g per l'attributo C, con b **bucket** e c **bucket**, avendo che bc = k.

Nel caso di una tupla $(u, v) \in R$ viene inviata ad un'unica colonna verticale, riducendo i nodi (**c reducer**).

Nel caso di una tupla $(w, z) \in T$ viene inviata ad un'unica colonna orizzontale, riducendo i nodi (**b reducer**).

Nel caso di una tupla $(v, w) \in S$ viene inviata ad un'unica cella, riducendo i nodi ad uno soltanto (1 reducer).

Il costo quindi risulta essere:

$$O(r+2s+t+cr+bt)$$

0.1.3 Rilassamento lagrangiano

N.B. Il parametro lambda non può essere negativo.

$$L(b,c) = cr + br - \lambda(bc - k)$$

$$\frac{dL(b,c)}{db} = 0$$

$$\frac{dL(b,c)}{dc} = 0$$

Ottengo quindi un sistema:

$$\begin{cases} t - \lambda c = 0 \\ r - \lambda b = 0 \end{cases} \implies \begin{cases} t = \lambda c \\ r = \lambda b \end{cases}$$

$$\lambda = \sqrt{\frac{rt}{k}}$$

$$c = \sqrt{\frac{kt}{r}}$$

$$b = \sqrt{\frac{kr}{t}}$$

Il costo ottimizzato della join multiway risulta quindi essere:

$$O(r+2s+t+2\sqrt{krt})$$

0.1.4 Es: Join sui nodi di facebook

Prendiamo ad esempio il grafo dei nodi facebook, dotato di 10⁹ nodi.

 $R(U_1, U_2), |R| = r = 3 \times 10^1 1$ (dati arbitrari)

$$R \bowtie R \bowtie R$$

Approccio Multi-way: $r + 2r + r + 2r\sqrt{k} = 4r + 2r\sqrt{k} = 1 \times 2 \times 10^{1}2 + 6 \times 10^{1}1\sqrt{k}$ Approccio cascata (nell'ipotesi che *absR* × R = 30r): $r + r + r + r^{2} \times p = ... = 2r + 60r = 1 \times 2 \times 10^{1}2 + 1 \times 86 \times 10^{1}3$

Ottengo quindi che: $6 \times 10^1 1 \sqrt{k} \le 1 \times 86 \times 10^3 3 \longrightarrow k \le 961$, e risulta quindi migliore utilizzare l'approccio multi way quando si hanno meno di 961 nodi da allocare a dei reducer.

0.1.5 Es: Google pagerank

Come funziona pagerank:

	A	В	С	D
A	0	1/2	1	0
В	1/3	0	0	1/2
С	1/3	0	0	1/2
D	1/3	1/2	0	0

 $v_j(t+1) = P(\text{Trovarsi in j al tempo t} + 1) = \sum_i P(\text{trovarsi in i al tempo t}) \bullet P(\text{spostarsi da i a j} \mid \text{trovarsi in i al punto t})$

$$\sum_i v_i(t) m_{ji} = \sum_i m_{ji} v_i(t) = (Mv(t))_j$$

con $M_{ij} = P$ Spostarsi da j a i.

$$\vec{V}(t+1) = M\vec{v}(t)$$

Prova di convergenza

Definizione 0.1.1 (Determinante)

$$detA = \sum_{i} a_{ij} c_{ij} = \sum_{i} a_{ij} c_{ij}$$

Definizione 0.1.2 (Determinante di matrice trasposta) *Una matrice e la sua trasposta possiedono lo stesso determinante.*

$$detA^T = \sum_i a_{ij}^T c_{ij}^T = \sum_i a_{ji} c_{ji} = \sum_j a_{ij} c_{ij}$$

Definizione 0.1.3 (Autovalori) Si ottengono trovando gli zeri dell'equazione caratteristica.

$$det(A - \lambda I) = 0 \leftrightarrow det(A - \lambda I)^T = 0 \leftrightarrow (A^T - \lambda I) = 0$$

Definizione 0.1.4 (Matrice stocastica per righe) *Una qualsiasi matrice stocastica per righe ammette* 1 *come autovet-tore.*

$$\forall i \sum_{j} a_{ij} = 1$$

Definizione 0.1.5 (Matrice stocastica per colonne) *Una qualsiasi matrice stocastica per colonne ammette* 1 *come autovettore poiché si tratta della trasposta di una matrice stocastica per righe.*

Theorem 0.1.6 (La potenza di una matrice stocastica è sempre stocastica) Il risultato dell'elevazione a potenza di una matrice stocastica risulta sempre essere stocastico. Dimostriamo per induzione:

Base:
$$k = 1$$
 $A^k = A$

Passo:
$$A^k$$
 stocastica $\rightarrow A^{k+1}$ stocastica

Dimostriamo che ad un generico passo k, otteniamo sempre 1 quando andiamo a sommare i termini.

$$a_{ij}^{k+1} = \sum_{s} a_{ij}^{k} a_{sj} \sum_{j} a_{ij}^{k} = \sum_{j} \sum_{s} a_{is}^{k} a_{sj}$$

Inverto le sommatorie ed ottengo:

$$\sum_{s} a_{is}^k \sum_{j} a_{sj} = \sum_{s} a_{is}^k = 1$$

Theorem 0.1.7 (Autovalori di una stocastica) Se A è stocastica per colonne, il suo autovalore massimo è 1.

Procediamo a dimostrare per assurdo.

Sappiamo che 1 è un autovale di A, poiché A è stocastica. Affermiamo che, per assurdo, esista un $\lambda > 1$ autovalore di A (che è anche l'autovalore di A^T) e ν un autovettore per λ .

$$A^T \nu \Rightarrow \lambda \nu$$

$$A^{2T}v = A^T \times A^Tv = A(\lambda v) = \lambda A^Tv = \lambda^2 v \Rightarrow A^{Tk}v = \lambda^k v$$

Maggioriamo / minoriamo la sommatoria:

$$\sum_{j} a_{ij}^{Tk} v_{max} \geq \sum_{j} a_{ij}^{Tk} v_{j} = \lambda^{k} v_{i} > G$$

$$v_{max} \sum_{i} a_{ij}^{Tk} > G$$

Ma siccome la sommatoria è dei termini di una matrice stocastica per righe (essendo la trasposta di A), deve essere pari a 1, per cui:

$$v_{max} \sum_{j} a_{ij}^{Tk} = v_{max} > G$$

$$1 > \frac{G}{v_{max}} \Rightarrow assurdo!$$

Theorem 0.1.8 (Autovalori di potenza di matrice)

$$v_0 \to v_1 = Av_0 \to v_2 = Av_1 = A^2 v_0 \to \dots \to v_k = A^k v_0$$

Dimostrazione

$$Av_0 = A(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n) = \alpha_1 Ax_1 + \alpha_2 Ax_2 + \dots + \alpha_n Ax_n = \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \dots + \alpha_n \lambda_n x_n$$

$$\nu_k = A^k \nu_0 = \alpha_1 \lambda_1^k x_1 + \alpha_2 x_2 \frac{\lambda_2^k \lambda_1^k}{\lambda_1^k} + \dots + \alpha_k x_k \frac{\lambda_k^k \lambda_1^k}{\lambda_1^k}$$

$$v_k = A^k v_0 = \lambda_1^k (\alpha_1 x_1 + \alpha_2 x_2 \frac{\lambda_2^k}{\lambda_1^k} + \dots + \alpha_k x_k \frac{\lambda_k^k}{\lambda_1^k})$$

 $per \ k$ "grande" $v_k = A^k v_0 \approx \lambda_1^k \alpha_1 x_1$, $nel \ nostro \ caso \ \lambda_1 = 1$, $cio\`e \ \lim_{k \to \infty} \alpha_1 \lambda_1^k x_1 = 1$.

Figure 1: In questo grafo, dopo 10 esecuzioni, pagerank assegna ai nodi A, B, C, D rispettivamente $^3/_9$, $^2/_9$ e $^2/_9$

0.1.6 Trappole per ragni

Nodi di grafi (figura 2) con loop, da cui gli spider non possono uscire.

Figure 2: Dopo un certo numero di iterazioni, tutta la "massa" distribuita inizialmente sul grafo sarà finita su E

0.1.7 Risolvere le trappole per ragni col teletrasporto

Per evitare le trappole per ragni, andiamo a inserire una certa probabilità β di teletrasportarci da un nodo ad un altro al posto di continuare a navigare tramite link.

$$v_{t+1} = \beta M v_t + (1 - \beta) \frac{1}{n} \mathbf{1}$$

P(mi trovo in i al tempo t + 1) = P(spostarsi tramite link in i | scelgo i link) P(scelgo i link) + P (teletrasportarsi in i | mi teletrasporto) P(scegliere teletrasporto)