FACULTY OF SCIENCE AND ENGINEERING

ASSESSMENT COURSEWORK 2016/17

UNIT CODE: 6G4Z1102	UNIT DESC: Computer Systems Fundamentals	
ASSESSMENT ID: 1CWK50	ASSESSMENT NAME: coursework 50%	WEIGHT FACTOR: 50%

Tasks for this coursework:

- Answer all 7 questions.
- The marks awarded for each question are shown in square brackets.
- To obtain full marks **ALL** working must be shown. The report structure and presentation will also be marked.
- You must attach a completed 'Assessment Cover Sheet' to your coursework when you submit it. The Assessment Cover Sheet can be downloaded from:

http://coursework.mmu.ac.uk

- The hand-out date is the beginning week of 5th December 2016. This coursework must be completed and submitted by 16th January 2017.
- Your mark will be scaled down by a maximum of 10% if sufficient presentation effort has not been made in your submitted coursework.

NAME OF STAFF SETTING ASSIGNMENT: Dr Tariq Jarad & Frank Bierbrauer

1.	Given that $U = \{1, 2, 3,, 10\}$ is the universal set, $A = \{x : x \in N, x \text{ is odd } B = \{x : x \in N, x \text{ is square number}\}$ and $C = \{x : x \in N, 2 \le x < 5\}$, find following:		
	a)	$ A $, $ A \cap B $, $ C $;	[4]
		P(B);	[3]
	c)	C' , $B \times C$, $A \cap C$, $C \setminus B$.	[8]
		[15 mark	s for this question]
2.			
	a)	Draw a Venn diagram to represent the following sets:	[6]
		$F = \{x : x \in N, x \text{ is prime number, } 0 \le x \le 15\};$ $G = \{x : x \in N, x \text{ is multiple of } 3, 1 \le x \le 20\};$	
		$H = \{x : x \in \mathbb{N}, x \text{ is factor of } 36\}.$	
	b)	Use a Venn diagram to illustrate the following:	[4]
		(i) $(A \cap B) \cap C'$; (ii) $(B \cup C) \setminus A'$.	
		[10 mark	s for this question]
3.	For th	e three vectors $\mathbf{a} = 2\hat{i} - 3\hat{j} - \hat{k}$, $\mathbf{b} = \hat{i} - 2\hat{j} - \hat{k}$ and $\mathbf{c} = \hat{i} - \hat{j}$	$-\hat{k}$:
	a)	calculate $\mathbf{a} + 2\mathbf{c}$;	[3]
	b)	the unit vector in the direction of \mathbf{c} ;	[3]
	c)	calculate $\mathbf{a} \cdot \mathbf{c}$ and find the angle between the two vectors;	[5]
	d)	calculate $\mathbf{a} \times \mathbf{b}$.	[4]
		[15 mark	s for this auestion)

[15 marks for this question]

4. In a computer game, a laser gun is fired from a point given by the position vector $\mathbf{q} = (10, -10, 20)$ in the direction given by $\mathbf{v} = (20, -30, 10)$. Calculate:

- a) the coordinates of the point where the laser hits a target after time t = 3; [5]
- b) if the laser changes direction after hitting the first target along the vector $\mathbf{w} = (5, 10, 30)$ to hit another target after t = 4, what is the total distance travelled by the laser. [5]

[10 marks for this question]

5. You are given the following matrices:

$$U = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 2 & -1 \\ 3 & -2 & 5 \end{pmatrix} \qquad V = \begin{pmatrix} -1 & 5 & 2 \\ 0 & 3 & 1 \end{pmatrix} \qquad W = \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} \qquad Z = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 4 & 2 \end{pmatrix}.$$

- a) Write down matrix elements u_{31} , u_{21} , v_{32} , v_{12} , w_{22} and z_{33} if possible. Explain why if not possible. [6]
- b) Calculate the following if possible and explain why if not possible:

(i)
$$V + W$$
; [2]

(ii)
$$V-Z$$
; [3]

(iii)
$$UV^T$$
; [6]

c) If a point (3, 1) is reflected about the line $y = (\tan \theta)x$ with $\theta = 120^{\circ}$, find the reflection line and the reflection point. [4]

[25 marks for this question]

- 6. For the three functions $h: R \to R$, h(x) = 2x 1, $u: R \to R$, $u(x) = \frac{x}{2} 1$ and $v: R \to R$, $f(x) = x^2 + 3$, where R is the set of the real numbers:
 - a) write down the composite functions $v \circ h$ and $v \circ u$; [5]
 - b) find the values of the composite function $v \circ h$, for x = -1,0,2. [5]

[10 marks for this question]

7. Given the relation below, defined on $R \rightarrow R$, where R is the set of the real numbers:

$$b(x) = \frac{2(x+1)}{x-1}.$$

- a) explain when b is a function and write down the three values of b(x), for x = 0, 2, 3, using the ordered pair representation; [5]
- b) if the relation is a function, state whether it is a total or partial function, and classify it as an injection, surjection, bijection or a combination of these; [4]
- c) find the inverse relation $b^{-1}: R \to R$ and determine the domain and the range that make the relation a function; [4]
- d) explain why the values b(1) and $b^{-1}(2)$ are not valid for these functions. [2]

[15 marks for this question]

[Total:100]