

# **Analyzing the Impact of Weather Conditions on Insurance Claims in Germany**

Presented By
Mohammad Naim
MSc. in Artificial Intelligence

#### Introduction



Overview of the Project and its Goal

The impact of weather on our daily lives extends to various aspects, notably influencing insurance claims. Germany's diverse climate presents an intriguing opportunity to delve into the correlation between weather conditions and other aspects. This study seeks to explore the relationship between weather conditions and the insurance claims in Germany. Unraveling these connections could provide valuable insights for insurers and policymakers in effectively managing risks associated with weather-related claims in the country.

# **Project Structure**



Overview of the Project Structure

- The project stucture consists of multiple files and directories.
- All the necessary variables are present in project/config/config\_var.py
- The main entry file of the project is project/main.py

```
project/
 — config/
        __init__.py
       config_var.py
                                        # Main configuration file
       - config_var.example.py
                                        # Dummy configuration file to duplicate
       - source_info.json
                                        # Data sources file
   data/
                                        # Sqlite Database
    fau_made_project_ws23.sqlite
  - main.py
                                        # Main entry point to run the pipeline
   pipeline.py
                                        # Data Pipeline
   pipeline.sh
                                        # Bash script of running pipeline
   project-plan.md
                                        # Project Plan
   report.ipynb
                                        # Notebook of final project report
  - slides.pdf
                                        # Powerpoint slides of project
                                        # Presentation video of project
   presentation-video.md
                                        # Unit testing file
  - tests.py
  — tests.sh
                                        # Bash script for running tests
```

#### **Data Sources**



#### Overview of the Data Sources

#### **Datasource 1: Weather Data Source**

Source: Deutscher Wetterdienst - DWD

Data Type: CSV

Authentication: not required

License Type: OpenData License

 This dataset offers comprehensive weather-related data i.e., average temperature (in Celsius) covering Germany and its individual states.

#### **Datasource 2: Insurance claims Data Source**

Source: GENESIS

Data Type: CSV

Authentication: Required

License Type: OpenData License

 This dataset provides detailed information on total insurance claims (in thousand euros) across various categories within Germany.

# **Data Exploration**



#### Overview of Weather Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 20 columns):

| Data                                     | columns (total 20 columns):  |                |         |  |  |  |  |
|------------------------------------------|------------------------------|----------------|---------|--|--|--|--|
| #                                        | Column                       | Non-Null Count | Dtype   |  |  |  |  |
|                                          |                              |                |         |  |  |  |  |
| 0                                        | Year                         | 156 non-null   | int64   |  |  |  |  |
| 1                                        | Month                        | 156 non-null   | object  |  |  |  |  |
| 2                                        | Date                         | 156 non-null   | object  |  |  |  |  |
| 3                                        | Brandenburg/Berlin           | 156 non-null   | float64 |  |  |  |  |
| 4                                        | Brandenburg                  | 156 non-null   | float64 |  |  |  |  |
| 5                                        | Baden-Wuerttemberg           | 156 non-null   | float64 |  |  |  |  |
| 6                                        | Bayern                       | 156 non-null   | float64 |  |  |  |  |
| 7                                        | Hessen                       | 156 non-null   | float64 |  |  |  |  |
| 8                                        | Mecklenburg-Vorpommern       | 156 non-null   | float64 |  |  |  |  |
| 9                                        | Niedersachsen                | 156 non-null   | float64 |  |  |  |  |
| 10                                       | Niedersachsen/Hamburg/Bremen | 156 non-null   | float64 |  |  |  |  |
| 11                                       | Nordrhein-Westfalen          | 156 non-null   | float64 |  |  |  |  |
| 12                                       | Rheinland-Pfalz              | 156 non-null   | float64 |  |  |  |  |
| 13                                       | Schleswig-Holstein           | 156 non-null   | float64 |  |  |  |  |
| 14                                       | Saarland                     | 156 non-null   | float64 |  |  |  |  |
| 15                                       | Sachsen                      | 156 non-null   | float64 |  |  |  |  |
| 16                                       | Sachsen-Anhalt               | 156 non-null   | float64 |  |  |  |  |
| 17                                       | Thueringen/Sachsen-Anhalt    | 156 non-null   | float64 |  |  |  |  |
| 18                                       | Thueringen                   | 156 non-null   | float64 |  |  |  |  |
| 19                                       | Germany                      | 156 non-null   | float64 |  |  |  |  |
| dtypes: float64(17), int64(1), object(2) |                              |                |         |  |  |  |  |
| memory usage: 24.5+ KB                   |                              |                |         |  |  |  |  |

|     | Year | Month     | Date               | Brandenburg/Berlin | Brandenburg | Baden-<br>Wuerttemberg | Bayern | Hessen | Mecklenburg-<br>Vorpommern | Niedersach |
|-----|------|-----------|--------------------|--------------------|-------------|------------------------|--------|--------|----------------------------|------------|
| 0   | 2010 | January   | January-<br>2010   | -5.14              | -5.15       | -2.76                  | -3.77  | -3.36  | -4.64                      | -\$        |
| 1   | 2010 | February  | February-<br>2010  | -0.61              | -0.63       | 0.13                   | -1.12  | -0.23  | -1.03                      | -0         |
| 2   | 2010 | March     | March-<br>2010     | 4.57               | 4.56        | 3.81                   | 3.28   | 4.34   | 3.96                       | 4          |
| 3   | 2010 | April     | April-2010         | 8.95               | 8.93        | 8.79                   | 8.21   | 8.97   | 8.01                       | 8          |
| 4   | 2010 | May       | May-2010           | 11.13              | 11.12       | 10.65                  | 10.69  | 10.32  | 9.96                       | 10         |
|     |      |           |                    |                    |             |                        |        |        |                            |            |
| 151 | 2022 | August    | August-<br>2022    | 20.92              | 20.90       | 20.26                  | 19.57  | 20.84  | 20.02                      | 20         |
| 152 | 2022 | September | September-<br>2022 | 13.56              | 13.55       | 13.29                  | 12.56  | 13.39  | 13.43                      | 13         |
| 153 | 2022 | October   | October-<br>2022   | 12.52              | 12.51       | 12.92                  | 11.92  | 12.15  | 12.40                      | 12         |
| 154 | 2022 | November  | November-<br>2022  | 5.66               | 5.65        | 6.37                   | 5.31   | 6.72   | 6.21                       | ;          |
| 155 | 2022 | December  | December-<br>2022  | 1.56               | 1.55        | 1.95                   | 1.10   | 1.85   | 1.20                       | 2          |

# **Data Exploration**



#### Overview of Insurance Claims Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 624 entries, 0 to 623
Data columns (total 6 columns):

| # | Column        | Non-Null Count | Dtype  |
|---|---------------|----------------|--------|
|   |               |                |        |
| 0 | Year          | 624 non-null   | int64  |
| 1 | Month         | 624 non-null   | object |
| 2 | Date          | 624 non-null   | object |
| 3 | Category_Type | 624 non-null   | object |
| 4 | Category_Name | 624 non-null   | object |
| 5 | Total_Claim   | 624 non-null   | int64  |
|   | / . \         |                |        |

dtypes: int64(2), object(4) memory usage: 29.4+ KB

|     | Year | Month    | Date          | Category_Type | Category_Name                                     | Total_Claim |
|-----|------|----------|---------------|---------------|---------------------------------------------------|-------------|
| 0   | 2010 | January  | January-2010  | WZ08-G        | Wholesale, retail trade, repair of motor vehicles | 496065      |
| 1   | 2010 | January  | January-2010  | WZ08-H        | Transportation and storage                        | 89613       |
| 2   | 2010 | January  | January-2010  | WZ08-I        | Accommodation and food service activities         | 33444       |
| 3   | 2010 | January  | January-2010  | WZ08-Q        | Human health and social work activities           | 14137       |
| 4   | 2010 | February | February-2010 | WZ08-G        | Wholesale, retail trade, repair of motor vehicles | 390388      |
|     |      |          |               |               |                                                   |             |
| 619 | 2022 | November | November-2022 | WZ08-Q        | Human health and social work activities           | 6892        |
| 620 | 2022 | December | December-2022 | WZ08-G        | Wholesale, retail trade, repair of motor vehicles | 230722      |
| 621 | 2022 | December | December-2022 | WZ08-H        | Transportation and storage                        | 22437       |
| 622 | 2022 | December | December-2022 | WZ08-I        | Accommodation and food service activities         | 21600       |
| 623 | 2022 | December | December-2022 | WZ08-Q        | Human health and social work activities           | 56256       |

# **Temperature Pattern**



Temperature pattern in Germany from 2020 to 2022



## **Insurance Claims Pattern**



Insurance claims pattern across various categories in Germany from 2020 to 2022



## **Mean Insurance Claims Pattern**



Mean Insurance claims pattern in Germany from 2020 to 2022



# **Comparison & Analysis**



Detailed comparison, analysis and findings



#### **Analysis with Normalization**

- Here, we have first normalized the average temperature and the total claims to plot them in the same graph.
- The average temperature peaked in July 2022, and then declined in the following months. The total number of claims peaked in August 2022, and then declined in the following months.
- The graph shows that there is a positive correlation between average temperature and total number of claims.

# **Comparison & Analysis**



Detailed comparison, analysis and findings



#### **Analysis with Regression**

- In this graph, the points on the scatter plot show the average temperature and mean total claims for each month. The orange line is the regression line.
- The regression line is the best-fit line for the data.
- The regression line slopes upwards, which means that there is a positive correlation between average temperature and mean total claims.

#### Result



Overview of the Analysis & Findings

Over the period spanning 2020 to 2022, an observable relationship emerges between the average temperature and insurance claims in Germany. This relationship exhibits **a moderate positive** correlation indicating that there is a tendency for both variables to move in sync, either increasing or decreasing together.

#### Conclusion



#### Summary and Discussion of Result

- This correlation isn't absolute there are instances when fluctuations in one factor don't align with changes in the other.
- The study focuses solely on temperature as a weather condition, but it's crucial to acknowledge that other
  factors like seasons, precipitation, snow depth, wind characteristics, air pressure, and sunshine may also play
  a vital role and deserve consideration.
- This suggests that there are other factors besides temperature that are also influencing the number of insurance claims in Germany. For example, population increase.
- One possible explanation for the correlation between average temperature and insurance claims is that warmer weather leads to more outdoor activities, which can increase the risk of accidents and injuries.
- Another possibility is that warmer weather can lead to an increase in stress levels, which can in turn lead to
  more aggressive behavior and an increased risk of accidents.



# Thank You.