Eletrônica Retificador de precisão

Prof. Felipe Pinheiro

Universidade Federal do Rio Grande do Norte 2019.1

Sumário

Circuitos já vistos

- 2 Retificador
 - Retificadores conhecidos
 - Retificador de precisão

Amplificador operacional

Características dos AMPOPs:

- Dispositivo de 2 terminais;
- Saída em malha aberta: $V_0 = A(V^+ V^-)$
- Ganho infinito: $A = \infty$;
- Impedância de entrada infinita: $R_{in} = \infty$
- Impedância de saída nula: $R_{out} = 0$;

Configurações:

- $\bullet \ \, {\rm Amplificador \ inversor:} \ \, G = -\frac{R_2}{R_1}; \\$
- \bullet Amplificador não inversor: $G=1+\frac{R_2}{R_1}$
- Somador ponderado inversor: $v_o = -R_f \left(\sum_{i=1}^n \frac{v_i}{R_i} \right)$.
- Buffer ou seguidor de tensão: G = 1.
- Integrador: $\frac{V_o}{V_i} = -\frac{^1/_{R_1C}}{s+^1/_{R_2C}}$
- Derivador: $V_o = -RC \frac{dV_i}{dt}$

ELETRÔNICA PROF. FELIPE PINHEIRO 4 / 2

Aula passada Amplificador inversor

$$\frac{v_o}{v_i} = G = -\frac{R_2}{R_1}$$

Amplificador não inversor

$$G = 1 + \frac{R_2}{R_1}$$

ELETRÔNICA PROF. FELIPE PINHEIRO 6 / 20

Circuitos já vistos

Somador ponderado inversor

$$v_o = -R_f \left(\sum_{i=1}^n \frac{v_i}{R_i} \right)$$

ELETRÔNICA PROF. FELIPE PINHEIRO 7 / 20

Buffer ou seguidor de tensão

$$G = 1$$

Aula passada Integrador

$$V_i = -R_1 \left(\frac{V_o}{R_f} + C \frac{dV_o}{dt} \right)$$

Aula passada Derivador

$$V_o = -RC\frac{dV_i}{dt}$$

ELETRÔNICA PROF. FELIPE PINHEIRO 10 / 20

Aula passada Realimentação positiva

$$V^{+} = \frac{(R_1//R_2//R_3)(R_1V_{ref} + R_3V_o)}{R_3R_1}$$

Amplificador de diferenças

Considerando $R_1 = R_3$ e $R_2 = R_4$:

$$V_o = \frac{R_2}{R_1} \left(V_2 - V_1 \right)$$

ELETRÔNICA PROF. FELIPE PINHEIRO 12 / 20

Amplificador de instrumentação

$$V_o = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (V_1 - V_2)$$

ELETRÔNICA PROF. FELIPE PINHEIRO 13 / 20

Retificadores conhecidos

Meia onda:

Onda completa:

Polarização reversa ≈ V_p

Retificador usando diodo Problema

Para sinais de amplitude menor que $V_{D,on}$ (geralmente 0,7V) os retificadores passivos não são adequados.

Superdiodo

Utilizando um diodo e a configuração de buffer temos:

Superdiodo

Utilizando um diodo e a configuração de buffer temos:

- Para $v_i \ge 0$ teremos $v_o = v_i$;
- Para $v_i < 0$ o diodo entrará em corte e o AMPOP ficará em saturação;
- Para $v_i < 0$ teremos $v_o = 0$;
- Devemos evitar a operação em saturação.

- Para $v_i \ge 0$ teremos $v_o = v_i$;
- Para $v_i < 0$ o diodo entrará em corte e o AMPOP ficará em saturação;
- Para $v_i < 0$ teremos $v_o = 0$;
- Devemos evitar a operação em saturação.

- Para $v_i \ge 0$ teremos $v_o = v_i$;
- Para $v_i < 0$ o diodo entrará em corte e o AMPOP ficará em saturação;
- Para $v_i < 0$ teremos $v_o = 0$;
- Devemos evitar a operação em saturação.

- Para $v_i \ge 0$ teremos $v_o = v_i$;
- Para $v_i < 0$ o diodo entrará em corte e o AMPOP ficará em saturação;
- Para $v_i < 0$ teremos $v_o = 0$;
- Devemos evitar a operação em saturação.

Retificador usando superdiodo Ideia geral

ou

Retificador usando superdiodo

Forma alternativa do superdiodo

Retificador de precisão

