homework-give

April 9, 2025

0.1

```
[1]: import pandas as pd
    import torch
    import matplotlib.pyplot as plt
    from sklearn.decomposition import PCA
    import seaborn as sns
    from scipy import stats
    import numpy as np
    import torch.nn as nn
    df = pd.read_csv('winequality-red.csv')
    temp data = df.values.tolist()
    tensor_data = torch.tensor([list(map(float, 1[0].split(";"))) for 1 in_
      →temp_data])
    print(tensor_data)
    tensor([[ 7.4000, 0.7000, 0.0000, ..., 0.5600, 9.4000,
                                                              5.0000],
            [7.8000, 0.8800, 0.0000, ...,
                                            0.6800, 9.8000,
                                                              5.0000],
            [7.8000, 0.7600, 0.0400, ..., 0.6500,
                                                     9.8000,
                                                              5.0000],
            [6.3000, 0.5100, 0.1300, ..., 0.7500, 11.0000, 6.0000],
            [5.9000, 0.6450, 0.1200, ..., 0.7100, 10.2000, 5.0000],
            [6.0000, 0.3100, 0.4700, ..., 0.6600, 11.0000, 6.0000]])
    0.2
[2]: list_tensor = []
```

```
1.append(0)
    if i[2] >= 0.2:
        1.append(1)
    else:
        1.append(0)
    if i[3] > 1.5 and i[3] < 3.5:
        1.append(1)
    else:
        1.append(0)
    if i[4] <= 0.08:
        1.append(1)
    else:
        1.append(0)
    if i[5] > 10.0 and i[5] < 35.0:
        1.append(1)
    else:
        1.append(0)
    if i[6] > 20.0 and i[6] < 100.0:
        1.append(1)
    else:
        1.append(0)
    if i[7] > 0.995 and i[7] < 0.998:
        1.append(1)
    else:
        1.append(0)
    if i[8] > 3.1 and i[8] < 3.5:
        1.append(1)
    else:
        1.append(0)
    if i[9] >= 0.6:
        1.append(1)
    else:
        1.append(0)
    if i[10] > 0.1:
        1.append(1)
    else:
        1.append(0)
    if i[11] > 5.0:
        1.append(1)
    else:
        1.append(0)
    list_tensor.append(1)
list_tensor = torch.tensor(list_tensor)
print(list_tensor)
```

```
tensor([[1, 0, 0, ..., 0, 1, 0], [1, 0, 0, ..., 1, 1, 0],
```

```
[1, 0, 0, ..., 1, 1, 0],
...,
[0, 1, 0, ..., 1, 1, 1],
[0, 0, 0, ..., 1, 1, 0],
[0, 1, 1, ..., 1, 1, 1]])
```

0.3

```
[3]: list_tensor = list_tensor.clone().detach().to(dtype=torch.float32)
    X = list_tensor[:, :-1] #
    y = list_tensor[:, -1] #
    X_std = X.std(dim=0)
    y_std = y.std()
    print(" :", X_std)
    print(" :", y_std)
           NaN Inf
              NaN:", torch.isnan(X).any() or torch.isnan(y).any())
    print("
    print(" Inf:", torch.isinf(X).any() or torch.isinf(y).any())
    def pearson_correlation(X, y):
        X_mean = X.mean(dim=0, keepdim=True)
        y_mean = y.mean()
        X_{centered} = X - X_{mean}
        y_centered = y - y_mean
        X_std = X_centered.pow(2).sum(dim=0).sqrt()
        y_std = y_centered.pow(2).sum().sqrt()
        valid_features = X_std != 0
        X_centered = X_centered[:, valid_features]
        X_std = X_std[valid_features]
        covariance = (X_centered * y_centered.unsqueeze(1)).sum(dim=0)
```

```
correlation = torch.zeros(X.shape[1]) #
         correlation[valid_features] = covariance / (X_std * y_std)
         return correlation
     correlations = pearson_correlation(X, y)
     best_feature_index = correlations.abs().argmax().item()
     print(f"
              : {best_feature_index}")
     print(f" : {correlations[best_feature_index].item()}")
       : tensor([0.4760, 0.4647, 0.4853, 0.3609, 0.4980, 0.4960, 0.4619, 0.4874,
    0.3983.
            0.4918, 0.0000])
       : tensor(0.4989)
         NaN: tensor(False)
         Inf: tensor(False)
      : 0.30015796422958374
「4]: #
     plt.figure(figsize=(12, 6))
     corr_matrix = pd.DataFrame(list_tensor[:, :]).corr()
     sns.heatmap(corr_matrix, annot=False, cmap='coolwarm', vmin=-1.0, vmax=1.0, u
      ⇒fmt=".2f", linewidths=.5)
     #sns.heatmap(corr_matrix, annot=False, cmap='coolwarm',fmt=".2f",linewidths=.5)
     plt.title('Feature Correlation Heatmap')
     plt.savefig('heatmap.png') #
     plt.show()
     data = pd.DataFrame(list_tensor[:, :-1])
     data['target'] = list_tensor[:, -1] #
             Ph.i.
     def phi_coefficient(col1, col2):
         confusion_matrix = pd.crosstab(col1, col2)
         n = confusion_matrix.sum().sum()
         chi2 = stats.chi2_contingency(confusion_matrix)[0]
         return np.sqrt(chi2 / n)
```

```
Phi
phi_values = {}
for col in data.columns[:-1]:
   phi = phi_coefficient(data[col], data['target'])
   phi_values[col] = abs(phi) #
    DataFrame
phi_df = (
   pd.DataFrame({
        'Feature': [f"Feature_{i}" for i in phi_values.keys()], #
        'Abs_Phi_Correlation': np.round(list(phi_values.values()), 5) # 5
   })
    .sort_values('Abs_Phi_Correlation', ascending=False)
    .reset_index(drop=True)
)
plt.figure(figsize=(10, 6))
sns.barplot(
   x='Abs_Phi_Correlation',
   y='Feature',
   hue='Feature',
   data=phi_df,
   palette='viridis',
   legend=False,
   dodge=False, #
   linewidth=2, #
   edgecolor='black', #
   saturation=0.8 #
)
plt.gca().set(yticklabels=[]) # y
plt.yticks(ticks=range(len(phi_df)),
          labels=phi_df['Feature'],
          fontsize=12,
          va='center') #
plt.xlim(0, phi_df['Abs_Phi_Correlation'].max() * 1.2) #
plt.gcf().subplots_adjust(left=0.3) #
plt.title('Absolute Phi Correlation with Target (5 Decimal Precision)', u

    fontsize=14)
```

```
plt.xlabel('|Phi Coefficient|', fontsize=12)
plt.ylabel('Features', fontsize=12)
plt.grid(axis='x', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()
```


$0.4 \qquad 947$

```
[5]: #
    plt.rcParams['font.sans-serif'] = ['SimHei']
     plt.rcParams['axes.unicode_minus'] = False
     def plot_feature_probability(feature_column, target_column, feature_name):
        feature = list_tensor[:, feature_column].numpy().astype(int)
        target = list_tensor[:, target_column].numpy().astype(int)
        #
             1
        mask = (feature == 1)
        if mask.sum() == 0: #
            print(f" {feature_name} 1 ")
            return
        prob = target[mask].mean()
        plt.figure(figsize=(8, 4))
        plt.bar([f"{feature_name}=1"], [prob], color='skyblue', edgecolor='black',__
      \rightarrowwidth=0.5)
        plt.ylim(0, 1)
        plt.ylabel(" 1 ", fontsize=12)
        plt.title(f" {feature_name}=1 1 {prob:.2f}", fontsize=14)
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.show()
```

```
[6]: plot_feature_probability(feature_column=9, target_column=-1,_u

-feature_name="Feature_9")
```



```
[8]: plot_feature_probability(feature_column=7, target_column=-1,_u

feature_name="Feature_7")
```


1

2

```
[15]: def my_sgd_loss(1, target, lr, batch_size=40, num_epochs=40):
          w = torch.ones(1.shape[1])
          w = torch.nn.init.normal_(w, mean=-1.0, std=1.5)
          b = 0.0
          loss = 0
          for j in range(num_epochs):
              for epoch in range(num_epochs):
                  if epoch != j:
                      i = epoch * batch_size
                      batch_X = l[i:i + batch_size]
                      batch_y = target[i:i + batch_size]
                      z = torch.matmul(batch_X, w) + b
                      sig = 1 / (1 + torch.exp(-z))
                      delta_w = torch.matmul(batch_X.T, (sig - batch_y)) / batch_size
                      delta_b = torch.sum((sig - batch_y)) / batch_size
                      w -= delta_w * lr
                      b -= delta_b * lr
              loss += my_loss(j, w, b, l, target, batch_size)
          return loss / num_epochs
      def my_dataloader(list_tensor):
```

```
list_tensor = list(list_tensor)
   1 = []
   target = []
   for i in list_tensor:
       features = [i[4], i[7], i[9]]
       1.append(features)
        #
       target.append(i[-1])
    # target
   return torch.tensor(1), torch.tensor(target).squeeze()
def my_loss(flag, w, b, l, target, batch_size):
   i = flag * batch_size
   test_data = l[i:i + batch_size]
        . T
   p = torch.matmul(test_data, w) + b #
   p = torch.where(p >= 0.5, 1.0, 0.0) #
   correct = (p == target[i:i + batch_size]).sum().item()
   loss = correct / len(test_data)
   return loss
1, target = my_dataloader(list_tensor)
loss = my_sgd_loss(1, target, 0.01)
print(f'
          {loss}')
```

0.48977564102564103

3 PyTorch

```
net.apply(init_weights)
batch_size, lr, num_epochs = 40, 0.01, 40
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=0.01)
loss = nn.BCEWithLogitsLoss()
def train_evaluate(1, batch_size=40, num_epochs=40):
   val_loss = 0
   correct = 0
   total = 0
   val accuracy = 0
   for j in range(num_epochs):
       net.train() #
       for i in range(num_epochs):
            if j != i:
                batch_x = l[i * batch_size:(i + 1) * batch_size]
                batch_y = target[i * batch_size:(i + 1) * batch_size]
                optimizer.zero_grad()
                my_loss = loss(net(batch_x).squeeze(), batch_y)
                my_loss.backward()
                optimizer.step()
        # epoch
                        epoch batch
       net.eval() #
        with torch.no_grad():
            batch_x = l[j * batch_size:(j + 1) * batch_size]
            batch_y = target[j * batch_size:(j + 1) * batch_size]
                   batch
            eval_batch_x = l[j * batch_size:(j + 1) * batch_size]
            eval_logits = net(eval_batch_x).squeeze() #
            val_loss += loss(eval_logits, batch_y).item() * len(batch_x)
            probabilities = torch.sigmoid(eval_logits) #
            predictions = (probabilities >= 0.5).float()
            correct += (predictions == batch_y).sum().item()
            total += len(batch_y)
            # ACC
            val_accuracy += correct / total
   avg_val_accuracy = val_accuracy / num_epochs
   print(f'
              {avg_val_accuracy:.5f}')
   avg_loss = val_loss / len(1)
   print(f' {avg_loss:.5f}')
```

```
1, target = my_dataloader(list_tensor)
init_weights(net)
train_evaluate(1, batch_size=40, num_epochs=40)
```

0.56422 0.65475