

# FCC Part 15C Test Report FCC ID: 2ALYRHG-F02B

Report No.: BCTC-170401623E

| Product Name:    | TAKE                                                                                                 |
|------------------|------------------------------------------------------------------------------------------------------|
| Trademark:       | 高巨创新<br>HIGH GREAT                                                                                   |
| Model Name :     | HG-F02B                                                                                              |
| Prepared For :   | Shenzhen HighGreat Innovation Technology Development Co., Ltd.                                       |
| Address :        | NO.6 Yuanlingzai Park, Henggang Town, Longgang District, Shenzhen<br>City, Guangdong Province, China |
| Prepared By :    | Shenzhen BCTC Technology Co., Ltd.                                                                   |
| Address :        | No.101, Yousong Road, Longhua New District, Shenzhen, China                                          |
| Test Date:       | Apr. 20, 2017 – May 08, 2017                                                                         |
| Date of Report : | May 08, 2017                                                                                         |
| Report No.:      | BCTC-170401623E                                                                                      |



## **VERIFICATION OF COMPLIANCE**

**Applicant's name......** Shenzhen HighGreat Innovation Technology Development

Co., Ltd.

Shenzhen City, Guangdong Province, China

Report No.: BCTC-170401623E

Manufacture's Name ...... Shenzhen HighGreat Innovation Technology Development

Co., Ltd.

Shenzhen City, Guangdong Province, China

**Product description** 

Product name..... TAKE

Model Name ...... HG-F02B

Test procedure ...... FCC Part15.407

ANSI C63.10-2013

Standards KDB789033 D02 General UNII Test Procedures New Rules

v01r02

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Test Result Pass

Prepared by(Engineer): Snow Zeng

Reviewer(Supervisor): Jade Yang

Approved(Manager): Carson Zhang



## **TABLE OF CONTENTS**

Report No.: BCTC-170401623E

| Те  | st R          | eport Declaration                           | Page |
|-----|---------------|---------------------------------------------|------|
| 1.  | TE            | ST SUMMARY                                  | 4    |
| 2.  |               | NERAL PRODUCT INFORMATION                   |      |
|     | 2.1.          | Product Function                            |      |
|     | 2.2.          | Description of Device (EUT)                 |      |
|     | 2.3.          | Independent Operation Modes                 |      |
| :   | 2.4.          | Test Supporting System                      | 6    |
|     | 2.5.          | Test Sites                                  |      |
|     | 2.6.          | List of Test and Measurement Instruments    |      |
| 3.  | TE            | ST SET-UP AND OPERATION MODES               |      |
|     | 3.1.          | Block Diagram of Test Set-up                |      |
|     | 3.2.          | Special Accessories and Auxiliary Equipment |      |
|     | 3.3.          | Countermeasures to Achieve EMC Compliance   | 8    |
|     | 3.4.          | Test Operation Mode and Test Software       |      |
| 4.  |               | MISSION TEST RESULTS                        |      |
|     | 4.1.          | Conducted Emission Measurement              |      |
|     | 4.2.          | Radiated Emission Measurement               |      |
| 5.  |               | ND EDGE COMPLIANCE TEST                     |      |
|     | 5.1.          | Limits TEST PROCEDURE                       |      |
|     | 5.2.<br>5.3.  | Test Data                                   |      |
| 6.  |               | DB AND 99% BANDWIDTH TEST                   |      |
|     | 201<br>6.1.   |                                             |      |
|     | _             |                                             |      |
| 7.  |               | JTPUT POWER TEST                            |      |
|     | 7.1.<br>7.2.  | Limits                                      |      |
|     | 7.2.<br>7.3.  | Test setup Test result                      |      |
| 8.  | _             | AK POWER SPECTRAL DENSITY TEST              |      |
| -   | г∟<br>8.1.    | Limits                                      |      |
|     | 3. 1.<br>8.2. | Test setup                                  |      |
|     | 8.3.          | Test data                                   |      |
| 9.  |               | JTY CYCLE TEST SIGNAL                       |      |
| 10. |               | FREQUENCY STABILITY                         |      |
|     | .10.1         |                                             |      |
|     |               | Test setup                                  |      |
|     |               | Test data                                   |      |
| 11. |               | TRANSMISSION IN THE ABSENCE OF DATA         |      |
|     |               | Limits                                      |      |
|     |               | Test result.                                |      |
| 12. |               | ANTENNA REQUIREMENT                         | 40   |
|     |               | STANDARD REQUIREMENT                        |      |
|     |               | EUT ANTENNA                                 |      |
| 13. |               | PHOTOGRAPHS OF TEST SET-UP                  |      |
| 14. |               | PHOTOGRAPHS OF THE EUT                      |      |
|     |               |                                             |      |



# 1.TEST SUMMARY

| Test Items                                     | Test Requirement       | Result |
|------------------------------------------------|------------------------|--------|
| Conducted Emissions                            | 15.207                 | N/A    |
| Radiated Emissions                             | 15.407(b), 15.209      | PASS   |
| 26dB bandwidth and 99%dB<br>Bandwidth          | 15.403(i)<br>15.407(e) | PASS   |
| Power density                                  | 15.407 (a)             | PASS   |
| Maximum Peak Output Power                      | 15.407 (a)             | PASS   |
| Emissions from out of band                     | 15.407 (b)             | PASS   |
| Transmission in case of Absence of Information | 15.407(c)              | PASS   |
| Frequency Stability                            | 15.407(g)              | PASS   |
| Antenna Requirement                            | 15.203                 | PASS   |

Note: N/A means not applicable.



## **2.GENERAL PRODUCT INFORMATION**

## 2.1. Product Function

Refer to Technical Construction Form and User Manual.

## 2.2. Description of Device (EUT)

| Equipment           | TAKE                       |                                                                                                                                  |  |  |  |  |
|---------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Trade Name          | 高巨创新<br>HIGH GREAT         |                                                                                                                                  |  |  |  |  |
| Model Name          | HG-F02B                    |                                                                                                                                  |  |  |  |  |
| Model Difference    | N/A                        |                                                                                                                                  |  |  |  |  |
|                     | The EUT is TAKE            |                                                                                                                                  |  |  |  |  |
|                     | Operation Frequency:       | 5745-5825MHz(802.11a/n(HT20))<br>5755-5795MHz(802.11n(HT40))                                                                     |  |  |  |  |
|                     | Modulation Type:           | OFDM/DSSS                                                                                                                        |  |  |  |  |
| Product Description | Bit Rate of Transmitter    | Data speed (IEEE 802.11a): 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps Data speed (IEEE 802.11n): Up to 300Mbps  |  |  |  |  |
|                     | Antenna Type:              | external Antenna                                                                                                                 |  |  |  |  |
|                     | Antenna Gain:              | 2.0dBi                                                                                                                           |  |  |  |  |
|                     | User's Manual, the EUT is  | features, or specification exhibited in s considered as an ITE/Computing Device. nical specification, please refer to the User's |  |  |  |  |
| Channel List        | Please refer to the Note 2 | Please refer to the Note 2.                                                                                                      |  |  |  |  |
| Power Source        | DC 11.4V from battery      | DC 11.4V from battery                                                                                                            |  |  |  |  |
| Adapter             | N/A                        | N/A                                                                                                                              |  |  |  |  |
| hardware version    |                            |                                                                                                                                  |  |  |  |  |
| Software version    |                            |                                                                                                                                  |  |  |  |  |



#### Channel list

#### 802.11a/n20

| Channel | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|---------|-----------------|
|         |                 | 149     | 5745            | 153     | 5765            |
| 157     | 5785            | 161     | 5805            | 165     | 5825            |

Report No.: BCTC-170401623E

the Directional Gain=2dBi+10log(2)=5.01dBi.

#### 2.3. Independent Operation Modes

The basic operation modes are:

| Pretest Mode | Description                     |
|--------------|---------------------------------|
| Mode 1       | 802.11a CH149/CH157/CH165       |
| Mode 2       | 802.11n(HT20) CH149/CH157/CH165 |
| Mode 3       | Link Mode                       |

| For Radiated Emission       |                                 |  |  |
|-----------------------------|---------------------------------|--|--|
| Final Test Mode Description |                                 |  |  |
| Mode 1                      | 802.11a CH149/CH157/CH165       |  |  |
| Mode 2                      | 802.11n(HT20) CH149/CH157/CH165 |  |  |

#### Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- (3) According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" MCS0 for 802.a , MCS0 for 802.11n(HT20), MCS1 for 802.11n(H40).

#### 2.4. Test Supporting System

None.

#### 2.5. Test Sites

#### 2.5.1. Test Facilities

Lab Qualifications : FCC Registration No.:187086

#### 2.6. List of Test and Measurement Instruments

Conduction test equipment



Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-170401623E

| Item | Equipment     | Manufacturer | Type No. | Serial No.                 | Last calibration | Calibrated until |
|------|---------------|--------------|----------|----------------------------|------------------|------------------|
| 1    | Test Receiver | R&S          | ESCI     | 1166.5950K03<br>-101165-ha | 2016.08.27       | 2017.08.26       |
| 2    | LISN          | SCHWARZBECK  | NSLK8127 | 8127739                    | 2016.08.27       | 2017.08.26       |
| 3    | LISN          | R&S          | NSLK8126 | 8126487                    | 2016.08.27       | 2017.08.26       |
| 4    | RF cables     | R&S          | R204     | R20X                       | 2016.08.27       | 2017.08.26       |
| 5    | Attenuator    | R&S          | ESH3-Z2  | 143206                     | 2016.08.27       | 2017.08.26       |

Radiation test, Band-edge test and 6db bandwidth test equipment

| Item | equipment                              | Manufacturer    | Type No.     | Serial No.       | Last calibration | Calibrated until |
|------|----------------------------------------|-----------------|--------------|------------------|------------------|------------------|
| 1    | Spectrum<br>Analyzer<br>(9kHz-26.5GHz) | Agilent         | E4407B       | MY45108040       | 2016.08.27       | 2017.08.26       |
| 2    | Test Receiver<br>(9kHz-7GHz)           | R&S             | ESPI         | 101318           | 2016.08.27       | 2017.08.26       |
| 3    | Bilog Antenna<br>(30MHz-1GHz)          | R&S             | VULB<br>9168 | VULB91<br>68-438 | 2016.08.27       | 2017.08.26       |
| 4    | Horn Antenna<br>(1GHz-18GHz)           | SCHWARZBECK     | BBHA9120D    | 1201             | 2016.09.03       | 2017.09.03       |
| 5    | Horn Antenna<br>(14GHz-40GHz)          | SCHWARZBECK     | BBHA 9170    | 9170-181         | 2016.09.03       | 2017.09.03       |
| 6    | Amplifier<br>(9KHz-6GHz)               | SCHWARZBECK     | BBV9744      | 9744-0037        | 2016.08.27       | 2017.08.26       |
| 7    | Amplifier<br>(1GHz-18GHz)              | SCHWARZBECK     | BBV9718      | 9718-309         | 2016.08.27       | 2017.08.26       |
| 8    | Amplifier<br>(18GHz-40GHz)             | SCHWARZBECK     | BBV 9721     | 9721-205         | 2016.08.27       | 2017.08.26       |
| 9    | Loop Antenna<br>(9KHz-30MHz)           | SCHWARZBECK     | FMZB1519B    | 00014            | 2016.09.03       | 2017.09.03       |
| 10   | RF cables1<br>(9kHz-1GHz)              | R&S             | R203         | R20X             | 2016.08.27       | 2017.08.26       |
| 11   | RF cables2<br>(1GHz-40GHz)             | R&S             | R204         | R21X             | 2016.08.27       | 2017.08.26       |
| 12   | Antenna connector                      | Florida RF Labs | N/A          | RF 01#           | 2016.08.27       | 2017.08.26       |
| 13   | Power Metter                           | ANRITSU         | ML2487A      | 6K00001568       | 2016.08.27       | 2017.08.26       |
| 14   | Power Sensor<br>(AV)                   | ANRITSU         | ML2491A      | 030989           | 2016.08.27       | 2017.08.26       |
| 15   | Signal Analyzer<br>9kHz-26.5GHz        | Agilent         | N9010A       | MY48030494       | 2016.08.27       | 2017.08.26       |
| 16   | Test Receiver<br>20kHz-40GHz           | R&S             | ESU 40       | 100376           | 2016.08.27       | 2017.08.26       |
| 17   | D.C. Power<br>Supply                   | LongWei         | PS-305D      | 010964729        | 2016.08.27       | 2017.08.26       |



## 3. TEST SET-UP AND OPERATION MODES

## 3.1. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

EUT

## 3.2. Special Accessories and Auxiliary Equipment

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|-----------|-----------|----------------|------------|------|
| E-1  | TAKE      | N/A       | HG-F02B        | N/A        | EUT  |
|      |           |           |                |            |      |
|      |           |           |                |            |      |

|   | Item | Shielded Type | Ferrite Core | Length | Note |
|---|------|---------------|--------------|--------|------|
|   |      |               |              |        |      |
| Ī |      |               |              |        |      |

## 3.3. Countermeasures to Achieve EMC Compliance

None.

## 3.4. Test Operation Mode and Test Software

None.



## 4. EMISSION TEST RESULTS

#### 4.1. Conducted Emission Measurement

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

| EDECHENCY (MH=) | Class B (dE | Standard  |          |
|-----------------|-------------|-----------|----------|
| FREQUENCY (MHz) | Quasi -peak | Average   | Standard |
| 0.15 -0.5       | 66 - 56 *   | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00       | 46.00     | FCC      |
| 5.0 -30.0       | 60.00       | 50.00     | FCC      |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 4.1.1. TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 4.1.2. DEVIATION FROM TEST STANDARD

No deviation



#### 4.1.3. TEST SETUP



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

#### 4.1.4. EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.

The data only show the worst mode.

If peak level comply with Quasi-Peak limit, then the Quasi-Peak level is deemed to comply with Quasi-Peak limit.

We pretest AC 120V and AC 240V, the worst voltage was AC 120V and the data recording in the report.

#### 4.1.5. TEST RESULTS

N/A: The EUT's power provide by battery, no requirements for this item.



#### 4.2. Radiated Emission Measurement

#### 4.2.1. Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) |
|----------------------|-----------------------------------|-------------------------------|
| 0.009~0.490          | 2400/F(KHz)                       | 300                           |
| 0.490~1.705          | 24000/F(KHz)                      | 30                            |
| 1.705~30.0           | 30                                | 30                            |
| 30~88                | 100                               | 3                             |
| 88~216               | 150                               | 3                             |
| 216~960              | 200                               | 3                             |
| Above 960            | 500                               | 3                             |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz)    | Class B (dBuV | /m) (at 3M) |
|--------------------|---------------|-------------|
| FREQUENCT (IVII12) | PEAK          | AVERAGE     |
| Above 1000         | 74            | 54          |

#### Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

# FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

| Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz) | Range (MHz)                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Below 1.705                                                                                                                     | 30                                                                  |
| 1.705 – 108                                                                                                                     | 1000                                                                |
| 108 – 500                                                                                                                       | 2000                                                                |
| 500 – 1000                                                                                                                      | 5000                                                                |
| Above 1000                                                                                                                      | 5th harmonic of the highest frequency or 40 GHz, whichever is lower |



Shenzhen BCTC Technology Co., Ltd.

Report No.: BCTC-170401623E

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 10th carrier harmonic                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

#### 4.2.2. TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter.
- h Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

#### 4.2.3. DEVIATION FROM TEST STANDARD

No deviation



#### 4.2.4. TEST SETUP

## (A) Radiated Emission Test-Up Frequency Below 30MHz



## (B) Radiated Emission Test-Up Frequency 30MHz~1GHz





## (C) Radiated Emission Test-Up Frequency Above 1GHz



#### 4.2.5. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.

The data only show the worst mode.



#### Radiated Spurious Emission (Below 30MHz)

| Temperature:   | 20 ℃     | Relative Humidity: | 48% |
|----------------|----------|--------------------|-----|
| Pressure :     | 1010 hPa | Polarization :     |     |
| Test Voltage : | DC 11.4V |                    |     |
| Test Mode :    | TX       |                    |     |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | PASS  |
|       |          |          |        | PASS  |

#### Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



## Radiated Spurious Emission (Between 30MHz – 1GHz)

| Temperature:        | 26 °C     | Relative Humidity: | 54%        |
|---------------------|-----------|--------------------|------------|
| Pressure:           | 1010 hPa  | Polarization :     | Horizontal |
| Test Voltage :      | DC 11.4V  |                    |            |
| Test Mode : (Worst) | Link Mode |                    |            |



Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
All interfaces was connected, and BT TX mode was link.

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 36.0007  | 25.79            | -8.59             | 17.20            | 40.00  | -22.80 | QP       |
| 2   |     | 53.8818  | 28.13            | -10.93            | 17.20            | 40.00  | -22.80 | QP       |
| 3   | *   | 319.9370 | 56.94            | -12.06            | 44.88            | 46.00  | -1.12  | QP       |
| 4   |     | 399.0302 | 48.52            | -10.20            | 38.32            | 46.00  | -7.68  | QP       |
| 5   |     | 531.9635 | 43.27            | -7.57             | 35.70            | 46.00  | -10.30 | QP       |
| 6   |     | 798.9797 | 35.40            | -2.52             | 32.88            | 46.00  | -13.12 | QP       |



| Temperature:        | 26 °C     | Relative Humidity: | 54%      |
|---------------------|-----------|--------------------|----------|
| Pressure:           | 1010 hPa  | Polarization :     | Vertical |
| Test Voltage :      | DC 11.4V  |                    |          |
| Test Mode : (Worst) | Link Mode |                    |          |



Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All interfaces was connected, and BT TX mode was link

| This interfaces was connected, and by TX mode was link. |       |   |  |                  |
|---------------------------------------------------------|-------|---|--|------------------|
|                                                         |       |   |  |                  |
| No. Mk.                                                 | Freq. | _ |  | Measure-<br>ment |

Limit

Over



#### Radiated Spurious Emission (Above 1GHz)

| Polar                                   | Frequency                               | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detector |  |  |  |
|-----------------------------------------|-----------------------------------------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|----------|--|--|--|
| (H/V)                                   | (MHz)                                   | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре     |  |  |  |
| 802.11a Band 4 Operation frequency:5745 |                                         |                  |                   |               |                   |                   |              |        |          |  |  |  |
| V                                       | 11490.00                                | 57.22            | 39.73             | 18.19         | 27.31             | 62.99             | 74           | -11.01 | PK       |  |  |  |
| V                                       | 11490.00                                | 38.23            | 39.73             | 18.19         | 27.31             | 44.00             | 54           | -10.00 | AV       |  |  |  |
| V                                       | 17235.00                                | 53.28            | 38.59             | 18.92         | 28.41             | 62.02             | 74           | -11.98 | PK       |  |  |  |
| V                                       | 17235.00                                | 33.73            | 38.59             | 18.92         | 28.41             | 42.47             | 54           | -11.53 | AV       |  |  |  |
| V                                       | 25450.00                                | 37.24            | 37.23             | 20.36         | 30.35             | 50.72             | 74           | -23.28 | PK       |  |  |  |
| Н                                       | 11490.00                                | 57.73            | 39.73             | 18.19         | 27.31             | 63.50             | 74           | -10.50 | PK       |  |  |  |
| Н                                       | 11490.00                                | 38.69            | 39.73             | 18.19         | 27.31             | 44.46             | 54           | -9.54  | AV       |  |  |  |
| Н                                       | 17235.00                                | 53.47            | 38.59             | 18.92         | 28.41             | 62.21             | 74           | -11.79 | PK       |  |  |  |
| Н                                       | 17235.00                                | 33.96            | 38.59             | 18.92         | 28.41             | 42.70             | 54           | -11.30 | AV       |  |  |  |
| Н                                       | 25450.00                                | 37.02            | 37.23             | 20.36         | 30.35             | 50.50             | 74           | -23.50 | PK       |  |  |  |
|                                         | 802.11a Band 4 Operation frequency:5785 |                  |                   |               |                   |                   |              |        |          |  |  |  |
| V                                       | 11570.00                                | 57.45            | 39.76             | 18.25         | 27.39             | 63.33             | 74           | -10.67 | PK       |  |  |  |
| V                                       | 11570.00                                | 38.83            | 39.76             | 18.25         | 27.39             | 44.71             | 54           | -9.29  | AV       |  |  |  |
| V                                       | 17355.00                                | 53.57            | 38.62             | 19.16         | 28.48             | 62.59             | 74           | -11.41 | PK       |  |  |  |
| V                                       | 17355.00                                | 33.45            | 38.62             | 19.16         | 28.48             | 42.47             | 54           | -11.53 | AV       |  |  |  |
| V                                       | 25450.00                                | 37.46            | 37.23             | 20.36         | 30.35             | 50.94             | 74           | -23.06 | PK       |  |  |  |
| Н                                       | 11570.00                                | 56.78            | 39.76             | 18.25         | 27.39             | 62.66             | 74           | -11.34 | PK       |  |  |  |
| Н                                       | 11570.00                                | 38.71            | 39.76             | 18.25         | 27.39             | 44.59             | 54           | -9.41  | AV       |  |  |  |
| Н                                       | 17355.00                                | 53.18            | 38.62             | 19.16         | 28.48             | 62.20             | 74           | -11.80 | PK       |  |  |  |
| Н                                       | 17355.00                                | 34.01            | 38.62             | 19.16         | 28.48             | 43.03             | 54           | -10.97 | AV       |  |  |  |
| Н                                       | 25450.00                                | 37.84            | 37.23             | 20.36         | 30.35             | 51.32             | 74           | -22.68 | PK       |  |  |  |
|                                         |                                         | 802.1            | 1a Band           | 4 Oper        | ation fre         | quency:5          | 825          |        |          |  |  |  |
| V                                       | 11650.00                                | 57.31            | 39.79             | 18.32         | 27.42             | 63.26             | 74           | -10.74 | PK       |  |  |  |
| V                                       | 11650.00                                | 38.01            | 39.79             | 18.32         | 27.42             | 43.96             | 54           | -10.04 | AV       |  |  |  |
| V                                       | 17475.00                                | 53.72            | 38.66             | 19.24         | 28.53             | 62.83             | 74           | -11.17 | PK       |  |  |  |
| V                                       | 17475.00                                | 33.60            | 38.66             | 19.24         | 28.53             | 42.71             | 54           | -11.29 | AV       |  |  |  |
| V                                       | 25450.00                                | 37.77            | 37.23             | 20.36         | 30.35             | 51.25             | 74           | -22.75 | PK       |  |  |  |
| Н                                       | 11650.00                                | 57.20            | 39.79             | 18.32         | 27.42             | 63.15             | 74           | -10.85 | PK       |  |  |  |
| Н                                       | 11650.00                                | 38.61            | 39.79             | 18.32         | 27.42             | 44.56             | 54           | -9.44  | AV       |  |  |  |
| Н                                       | 17475.00                                | 52.63            | 38.66             | 19.24         | 28.53             | 61.74             | 74           | -12.26 | PK       |  |  |  |
| Н                                       | 17475.00                                | 33.50            | 38.66             | 19.24         | 28.53             | 42.61             | 54           | -11.39 | AV       |  |  |  |
| Н                                       | 25450.00                                | 37.68            | 37.23             | 20.36         | 30.35             | 51.16             | 74           | -22.84 | PK       |  |  |  |

#### Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



| Polar | Frequency                                     | Meter<br>Reading | Pre-<br>amplifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detector |  |  |  |  |
|-------|-----------------------------------------------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|----------|--|--|--|--|
| (H/V) | (MHz)                                         | (dBuV)           | (dB)              | (dB)          | (dB/m)            | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре     |  |  |  |  |
|       | 802.11n(HT20) Band 4 Operation frequency:5745 |                  |                   |               |                   |                   |              |        |          |  |  |  |  |
| V     | 11490.00                                      | 57.19            | 39.73             | 18.19         | 27.31             | 62.96             | 74           | -11.04 | PK       |  |  |  |  |
| V     | 11490.00                                      | 38.21            | 39.73             | 18.19         | 27.31             | 43.98             | 54           | -10.02 | AV       |  |  |  |  |
| V     | 17235.00                                      | 53.25            | 38.59             | 18.92         | 28.41             | 61.99             | 74           | -12.01 | PK       |  |  |  |  |
| V     | 17235.00                                      | 34.71            | 38.59             | 18.92         | 28.41             | 43.45             | 54           | -10.55 | AV       |  |  |  |  |
| V     | 25450.00                                      | 37.73            | 37.23             | 20.36         | 30.35             | 51.21             | 74           | -22.79 | PK       |  |  |  |  |
| Н     | 11490.00                                      | 57.70            | 39.73             | 18.19         | 27.31             | 63.47             | 74           | -10.53 | PK       |  |  |  |  |
| Н     | 11490.00                                      | 38.67            | 39.73             | 18.19         | 27.31             | 44.44             | 54           | -9.56  | AV       |  |  |  |  |
| Н     | 17235.00                                      | 53.44            | 38.59             | 18.92         | 28.41             | 62.18             | 74           | -11.82 | PK       |  |  |  |  |
| Н     | 17235.00                                      | 33.94            | 38.59             | 18.92         | 28.41             | 42.68             | 54           | -11.32 | AV       |  |  |  |  |
| Н     | 25450.00                                      | 37.01            | 37.23             | 20.36         | 30.35             | 50.49             | 74           | -23.51 | PK       |  |  |  |  |
|       | 802.11n(HT20) Band 4 Operation frequency:5785 |                  |                   |               |                   |                   |              |        |          |  |  |  |  |
| V     | 11570.00                                      | 57.52            | 39.76             | 18.25         | 27.39             | 63.40             | 74           | -10.60 | PK       |  |  |  |  |
| V     | 11570.00                                      | 37.88            | 39.76             | 18.25         | 27.39             | 43.76             | 54           | -10.24 | AV       |  |  |  |  |
| V     | 17355.00                                      | 53.64            | 38.62             | 19.16         | 28.48             | 62.66             | 74           | -11.34 | PK       |  |  |  |  |
| V     | 17355.00                                      | 34.49            | 38.62             | 19.16         | 28.48             | 43.51             | 54           | -10.49 | AV       |  |  |  |  |
| V     | 25450.00                                      | 37.52            | 37.23             | 20.36         | 30.35             | 51.00             | 74           | -23.00 | PK       |  |  |  |  |
| Н     | 11570.00                                      | 57.85            | 39.76             | 18.25         | 27.39             | 63.73             | 74           | -10.27 | PK       |  |  |  |  |
| Н     | 11570.00                                      | 38.76            | 39.76             | 18.25         | 27.39             | 44.64             | 54           | -9.36  | AV       |  |  |  |  |
| Н     | 17355.00                                      | 53.25            | 38.62             | 19.16         | 28.48             | 62.27             | 74           | -11.73 | PK       |  |  |  |  |
| Н     | 17355.00                                      | 34.05            | 38.62             | 19.16         | 28.48             | 43.07             | 54           | -10.93 | AV       |  |  |  |  |
| Н     | 25450.00                                      | 37.90            | 37.23             | 20.36         | 30.35             | 51.38             | 74           | -22.62 | PK       |  |  |  |  |
|       |                                               | 802.11n(         | HT20) Ba          | nd 4 O        | peration          | frequen           | cy:5825      | 5      |          |  |  |  |  |
| V     | 11650.00                                      | 57.28            | 39.79             | 18.32         | 27.42             | 63.23             | 74           | -10.77 | PK       |  |  |  |  |
| V     | 11650.00                                      | 37.99            | 39.79             | 18.32         | 27.42             | 43.94             | 54           | -10.06 | AV       |  |  |  |  |
| V     | 17475.00                                      | 53.69            | 38.66             | 19.24         | 28.53             | 62.80             | 74           | -11.20 | PK       |  |  |  |  |
| V     | 17475.00                                      | 34.58            | 38.66             | 19.24         | 28.53             | 43.69             | 54           | -10.31 | AV       |  |  |  |  |
| V     | 25450.00                                      | 37.76            | 37.23             | 20.36         | 30.35             | 51.24             | 74           | -22.76 | PK       |  |  |  |  |
| Н     | 11650.00                                      | 57.17            | 39.79             | 18.32         | 27.42             | 63.12             | 74           | -10.88 | PK       |  |  |  |  |
| Н     | 11650.00                                      | 38.59            | 39.79             | 18.32         | 27.42             | 44.54             | 54           | -9.46  | AV       |  |  |  |  |
| Н     | 17475.00                                      | 53.60            | 38.66             | 19.24         | 28.53             | 62.71             | 74           | -11.29 | PK       |  |  |  |  |
| Н     | 17475.00                                      | 34.48            | 38.66             | 19.24         | 28.53             | 43.59             | 54           | -10.41 | AV       |  |  |  |  |
| Н     | 25450.00                                      | 38.67            | 37.23             | 20.36         | 30.35             | 52.15             | 74           | -21.85 | PK       |  |  |  |  |

#### Remark:

<sup>1.</sup> Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

<sup>2.</sup> If peak below the average limit, the average emission was no test.

<sup>3.</sup> The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



## 5. BAND EDGE COMPLIANCE TEST

## 5.1. Limits

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

#### **5.2. TEST PROCEDURE**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect—its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

#### 5.3. Test Data

Please see data as below:



## Ant1 Band 4 802.11a





Report No.: BCTC-170401623E

#### 802.11n20





#### 802.11n40







## Ant2 Band 4

#### 802.11a





Report No.: BCTC-170401623E

#### 802.11n20







## 6. 26DB AND 99% BANDWIDTH TEST

#### 6.1. Limits

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3\*RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

we test all antennas, the antenna 1 was worst mode and the data recording in the report.



|                   | Frequency<br>(MHz) |        | ındwidth<br>Hz) | 99% Band<br>(MHz |       | Limit<br>(MHz) |
|-------------------|--------------------|--------|-----------------|------------------|-------|----------------|
|                   |                    | Ant 1  | Ant 2           | Ant 1            | Ant 2 |                |
|                   | 5745               | 16.775 | 16.755          | 21.22            | 21.19 | >0.5           |
| 802.11a           | 5785               | 16.776 | 16.762          | 21.10            | 21.04 | >0.5           |
|                   | 5825               | 16.758 | 17.746          | 21.03            | 21.00 | >0.5           |
|                   | 5745               | 17.808 | 17.798          | 21.69            | 21.59 | >0.5           |
| 802.11n<br>(HT20) | 5785               | 17.810 | 17.803          | 21.60            | 21.75 | >0.5           |
| ( - /             | 5825               | 17.820 | 17.816          | 21.81            | 21.72 | >0.5           |







#### 802.11a 5785MHz





#### 802.11a 5825MHz

Report No.: BCTC-170401623E



#### 802.11n(HT20) 5745MHz





802.11n(HT20) 5785MHz









## 7. OUTPUT POWER TEST

#### 7.1. Limits

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

Report No.: BCTC-170401623E

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

## 7.2. Test setup

- 1. The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter):
- 2. Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- a. The Transmitter output (antenna port) was connected to the power meter.
- b. Turn on the EUT and power meter and then record the power value.
- c. Repeat above procedures on all channels needed to be tested.



3.

# 7.3. Test result

|                   | Frequency | Average Output<br>Power(dBm) |       | Total<br>Power | Total<br>Power | FCC Limit<br>(dBm) | Result |
|-------------------|-----------|------------------------------|-------|----------------|----------------|--------------------|--------|
|                   | (MHz)     | Ant.1                        | Ant.2 | (mW)           | (dBm)          |                    |        |
| 802.11a           | 5745      | 20.75                        | 20.66 | 235.26         | 23.72          | 30.00              | Pass   |
|                   | 5785      | 20.67                        | 20.58 | 230.97         | 23.64          | 30.00              | Pass   |
|                   | 5825      | 20.62                        | 20.53 | 228.32         | 23.59          | 30.00              | Pass   |
|                   | 5745      | 20.26                        | 20.36 | 214.81         | 23.32          | 30.00              | Pass   |
| 802.11n<br>(HT20) | 5785      | 20.24                        | 20.27 | 212.10         | 23.27          | 30.00              | Pass   |
|                   | 5825      | 20.31                        | 20.27 | 213.81         | 23.30          | 30.00              | Pass   |



## 8. PEAK POWER SPECTRAL DENSITY TEST

## 8.1. Limits

In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

Report No.: BCTC-170401623E

## 8.2. Test setup

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows FCC KDB 789033 D02.
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to

Spectrum.

4. For U-NII1, U-NII-2A, U-NII-2C Band:

Set RBW=1MHz, VBW=3MHz, where span is enough to capture the entire bandwidth, Sweep time = Auto (601 pts), detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth)

For U-NII-3 Band:

Set RBW=510 kHz, VBW=3\*RBW, where span is enough to capture the entire bandwidth, Sweep time = Auto (601 pts), detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth)

- 5. User the cursor on spectrum to peak search the highest level of trace
- 6. Record the max. reading and add 10 log(1/duty cycle).

we test all antennas, the antenna 1 was worst mode and the data recording in the report.



# 8.3. Test data

Test data as below

|                   | Frequency<br>(MHz) | Le     | ding<br>vel<br>Bm) | Duty<br>factor<br>(dB) | Duty<br>factor<br>10 log<br>(1MHz/ | PPSD<br>(dBm) | FCC<br>Limit<br>(dBm) | Result |
|-------------------|--------------------|--------|--------------------|------------------------|------------------------------------|---------------|-----------------------|--------|
|                   |                    | ANT1   | ANT2               | , ,                    | RBW)                               |               | , ,                   |        |
|                   | 5745               | 1.662  | 1.562              | 0.21                   | 0.0                                | 4.83          | 30.00                 | Pass   |
| 802.11a           | 5785               | 0.727  | 1.250              | 0.21                   | 0.0                                | 4.22          | 30.00                 | Pass   |
|                   | 5825               | -0.121 | -0.226             | 0.21                   | 0.0                                | 3.05          | 30.00                 | Pass   |
|                   | 5745               | 1.568  | 1.316              | 0.44                   | 0.0                                | 4.89          | 30.00                 | Pass   |
| 802.11n<br>(HT20) | 5785               | 1.029  | 1.006              | 0.44                   | 0.0                                | 4.47          | 30.00                 | Pass   |
|                   | 5825               | 0.071  | 1.032              | 0.44                   | 0.0                                | 4.03          | 30.00                 | Pass   |



802.11a 5745MHz



802.11a 5785MHz



802.11a 5825MHz









## 802.11n(HT20) 5785MHz



## 802.11n(HT20) 5825MHz





## 9. DUTY CYCLE TEST SIGNAL

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle.

Report No.: BCTC-170401623E

All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

#### Formula:

Duty Cycle = Ton / (Ton+Toff)

#### **Measurement Procedure:**

- 1. Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

## Duty Cycle:

| Operation<br>Mode | Duty Cycle | Duty Fator (dB)<br>10 * log (1/ Duty cycle) |
|-------------------|------------|---------------------------------------------|
| 802.11a           | 95.35%     | 0.21                                        |
| 802.11n(HT20)     | 90.78%     | 0.42                                        |



#### 802.11a



#### 802.11n(HT20)





## 10. FREQUENCY STABILITY

#### **10.1. Limits**

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

Report No.: BCTC-170401623E

## 10.2. Test setup

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and max hold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10<sup>6</sup> ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C. we test all antennas, the antenna 1 was worst mode and the data recording in the report.



# 10.3. Test data

Test data as below

| Ref.<br>Freq.<br>(MHz) | Test<br>Voltage<br>(V) | Test<br>Temp.<br>(°C) | Measured<br>Frequency<br>(MHz) | Spectrum<br>Frequency<br>(MHz) | Δ<br>Frequency<br>(MHz) | Deviation (ppm) | Limit<br>(ppm) | Result |
|------------------------|------------------------|-----------------------|--------------------------------|--------------------------------|-------------------------|-----------------|----------------|--------|
|                        | 11.40                  |                       | 5745                           | 5745.0102                      | -0.0102                 | -1.7696         |                | Pass   |
|                        | 13.11                  | 25                    | 5745                           | 5745.0088                      | -0.0088                 | -1.5329         |                | Pass   |
|                        | 9.69                   |                       | 5745                           | 5745.0096                      | -0.0096                 | -1.6791         |                | Pass   |
|                        |                        | -20                   | 5745                           | 5745.0095                      | -0.0095                 | -1.6565         |                | Pass   |
|                        |                        | -10                   | 5745                           | 5745.0107                      | -0.0107                 | -1.8671         |                | Pass   |
|                        |                        | 0                     | 5745                           | 5745.0128                      | -0.0128                 | -2.2361         |                | Pass   |
| 5745                   |                        | 10                    | 5745                           | 5745.0137                      | -0.0137                 | -2.3823         | ±20            | Pass   |
|                        | 44.40                  | 20                    | 5745                           | 5745.0109                      | -0.0109                 | -1.8897         |                | Pass   |
|                        | 11.40                  | 30                    | 5745                           | 5745.0145                      | -0.0145                 | -2.5268         |                | Pass   |
|                        |                        | 40                    | 5745                           | 5745.0107                      | -0.0107                 | -1.8671         |                | Pass   |
|                        |                        | 50                    | 5745                           | 5745.0117                      | -0.0117                 | -2.0412         |                | Pass   |
|                        |                        | 60                    | 5745                           | 5745.0107                      | -0.0107                 | -1.8706         |                | Pass   |
|                        |                        | 70                    | 5745                           | 5745.0114                      | -0.0114                 | -1.9907         |                | Pass   |

| Ref.<br>Freq.<br>(MHz) | Test<br>Voltage<br>(V) | Test<br>Temp.<br>(°C) | Measured<br>Frequency<br>(MHz) | Spectrum<br>Frequency<br>(MHz) | Δ<br>Frequency<br>(MHz) | Deviation (ppm) | Limit<br>(ppm) | Result |
|------------------------|------------------------|-----------------------|--------------------------------|--------------------------------|-------------------------|-----------------|----------------|--------|
|                        | 11.40                  |                       | 5775                           | 5775.0107                      | -0.0107                 | -1.8576         |                | Pass   |
|                        | 13.11                  | 25                    | 5775                           | 5775.0114                      | -0.0114                 | -1.9719         |                | Pass   |
|                        | 9.69                   |                       | 5775                           | 5775.0110                      | -0.0110                 | -1.9130         |                | Pass   |
|                        |                        | -20                   | 5775                           | 5775.0134                      | -0.0134                 | -2.3251         |                | Pass   |
|                        |                        | -10                   | 5775                           | 5775.0125                      | -0.0125                 | -2.1693         |                | Pass   |
|                        |                        | 0                     | 5775                           | 5775.0120                      | -0.0120                 | -2.0861         |                | Pass   |
| 5775                   |                        | 10                    | 5775                           | 5775.0109                      | -0.0109                 | -1.8887         | ±20            | Pass   |
|                        | 44.40                  | 20                    | 5775                           | 5775.0118                      | -0.0118                 | -2.0515         |                | Pass   |
|                        | 11.40                  | 30                    | 5775                           | 5775.0129                      | -0.0129                 | -2.2316         |                | Pass   |
|                        |                        | 40                    | 5775                           | 5775.0115                      | -0.0115                 | -1.9961         |                | Pass   |
|                        |                        | 50                    | 5775                           | 5775.0110                      | -0.0110                 | -1.9078         |                | Pass   |
|                        |                        | 60                    | 5775                           | 5775.0147                      | -0.0147                 | -2.5416         |                | Pass   |
|                        |                        | 70                    | 5775                           | 5775.0117                      | -0.0117                 | -2.0238         |                | Pass   |



| Ref.<br>Freq.<br>(MHz) | Test<br>Voltage<br>(V) | Test<br>Temp.<br>(°C) | Measured<br>Frequency<br>(MHz) | Spectrum<br>Frequency<br>(MHz) | Δ<br>Frequency<br>(MHz) | Deviation (ppm) | Limit<br>(ppm) | Result |
|------------------------|------------------------|-----------------------|--------------------------------|--------------------------------|-------------------------|-----------------|----------------|--------|
|                        | 11.40                  |                       | 5785                           | 5785.0104                      | -0.0104                 | -1.8003         |                | Pass   |
|                        | 13.11                  | 25                    | 5785                           | 5785.0119                      | -0.0119                 | -2.0544         |                | Pass   |
|                        | 9.69                   |                       | 5785                           | 5785.0107                      | -0.0107                 | -1.8573         |                | Pass   |
|                        |                        | -20                   | 5785                           | 5785.0117                      | -0.0117                 | -2.0198         |                | Pass   |
|                        |                        | -10                   | 5785                           | 5785.0109                      | -0.0109                 | -1.8901         |                | Pass   |
|                        |                        | 0                     | 5785                           | 5785.0125                      | -0.0125                 | -2.1650         |                | Pass   |
| 5785                   |                        | 10                    | 5785                           | 5785.0115                      | -0.0115                 | -1.9939         | ±20            | Pass   |
|                        | 44.40                  | 20                    | 5785                           | 5785.0110                      | -0.0110                 | -1.9040         |                | Pass   |
|                        | 11.40                  | 30                    | 5785                           | 5785.0114                      | -0.0114                 | -1.9748         |                | Pass   |
|                        |                        | 40                    | 5785                           | 5785.0109                      | -0.0109                 | -1.8901         |                | Pass   |
|                        |                        | 50                    | 5785                           | 5785.0134                      | -0.0134                 | -2.3137         |                | Pass   |
|                        |                        | 60                    | 5785                           | 5785.0137                      | -0.0137                 | -2.3742         | -              | Pass   |
|                        |                        | 70                    | 5785                           | 5785.0120                      | -0.0120                 | -2.0820         |                | Pass   |



## 11. TRANSMISSION IN THE ABSENCE OF DATA

#### **11.1.** Limits

According to §15.407(c)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

#### 11.2. Test result

No non-compliance noted:

Refer to the theory of operation.



## 12. ANTENNA REQUIREMENT

## 12.1. STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 12.2. EUT ANTENNA

The EUT antenna is external antenna, and used permanently connected antenna, It comply with the standard requirement.



# 13. PHOTOGRAPHS OF TEST SET-UP







# 14. PHOTOGRAPHS OF THE EUT











-----END-----