

EEE319 Optimisation Lecture 4 Linear Programming (2)

Prof. Xinheng Wang

xinheng.wang@xjtlu.edu.cn

Office: EE512

Outline

- Last week
 - Solved linear maximization problems
 - Slack variables
 - Transformation from minimization to maximization

- This week
 - Tableau

- Last week, linear optimisation problem was solved by Simplex Method, by using a step by step inserting variable, and exchanging variable approach.
- Tableau is another approach that we are going to look at today.
- Before that, let us have a look how Simplex Method deals with ≥ inequality constraints and equality (=) constraints.

Minimization from an example

Min
$$c = 2x + 3y + 4z$$

s.t. $4x + 2y + z \ge 10$
 $x + y - z \ge 5$
 $x, y, z \ge 0$

For ≥ constraints, a non-negative surplus variable is going to be introduced. In addition, instead of "+", the surplus variable is subtracted with "-".

 The constraints can be written as following, with the conversion of inequality into equality

$$4x + 2y + z - s_1 = 10$$
$$x + y - z - s_2 = 5$$

• The reason to call this variable *surplus* is because it is the amount by which left-hand side exceeds right hand-side.

 If we set the value of variables x, y, and z to zero to have a basic feasible solution

$$c = 2x + 3y + 4z = 0$$

• The value of surplus variables has to be -10 and -5, respectively, which conflicts the definition of surplus variable, which is positive.

$$4x + 2y + z - s_1 = 10$$
$$x + y - z - s_2 = 5$$

How to solve this problem?

An artificial variable is introduced

$$c = 2x + 3y + 4z = 0$$

 This artificial variable doesn't have any physical meaning. The only purpose is to obtain a basic feasible solution. Therefore, two constraints will become:

$$4x + 2y + z - s_1 + a_1 = 10$$
$$x + y - z - s_2 + a_2 = 5$$
$$x, y, z, s_1, s_2, a_1, a_2 \ge 0$$

• This artificial variable is needed to be reflected in the objective function as well, by using a very large positive coefficient number M. For a minimization problem, a term Ma_i is added for each artificial variable a_i ; for a maximization problem, a term $-Ma_i$ is added for each artificial variable a_i . Then the objective function will become:

$$c = 2x + 3y + 4z + Ma_1 + Ma_2$$

Here are the equations with surplus variables and artificial variables.

$$c = 2x + 3y + 4z + Ma_1 + Ma_2$$

$$4x + 2y + z - s_1 + a_1 = 10$$

$$x + y - z - s_2 + a_2 = 5$$

$$x, y, z, s_1, s_2, a_1, a_2 \ge 0$$

• Artificial variable is also used for "=" constraints.

- An artificial variable is also introduced for equality constraint
- Example

Max
$$z = 3x_1 + 5x_2$$

s.t. $x_1 + x_2 \ge 2$
 $x_2 \le 6$
 $3x_1 + 2x_2 = 18$
 $x_1, x_2 \ge 0$

This will become as follows, after introducing the variables

Max
$$z = 3x_1 + 5x_2 - Ma_1 - Ma_2$$

s.t. $x_1 + x_2 - s_1 + a_1 = 2$
 $x_2 + s_2 = 6$
 $3x_1 + 2x_2 + a_2 = 18$
 $x_1, x_2 \ge 0$

where s_1 is surplus variable, s_2 is slack variable, a_1 and a_2 are artificial variables.

Tableau approach by an example

Max
$$P = 70x_1 + 50x_2$$

s.t. $4x_1 + 3x_2 \le 240$
 $2x_1 + x_2 \le 100$

- A few key steps
- 1) Inequality to equality with all variables;
- 2) Select the column with the "least negative" value;
- 3) Select the rows with the "least positive" value;
- 4) Push the intersected variable to basic by setting the coefficient to 1;
- 5) Push the coefficient of other variables to zero;
- 6) Repeat

Tableau approach by an example

Max
$$P = 70x_1 + 50x_2$$

s.t. $4x_1 + 3x_2 \le 240$
 $2x_1 + x_2 \le 100$

 Step 1 inequality to equality with all variables, starting from constraints

$$4x_1 + 3x_2 + s_1 = 240$$

 $2x_1 + x_2 + + s_2 = 100$
 $-70x_1 - 50x_2 + + P = 0$

 Step 2 establish an initial tableau by making a matrix with all of the coefficients into the matrix.

$$4x_1 + 3x_2 + s_1 = 240$$

 $2x_1 + x_2 + + s_2 = 100$
 $-70x_1 - x_2 + + P = 0$

Basic variables	x_1	x_2	s_1	s_2	P	Right hand side
\boldsymbol{s}_1	4	3	1	0	0	240
s_2	2	1	0	1	0	100
P	-70	-50	0	0	1	0

This tableau represents the initial solution;

$$x_1 = 0$$
; $x_2 = 0$; $s_1 = 240$; $s_2 = 100$; $P = 0$

Basic variable: only one coefficient is 1 and all others are zero in one column.

Essential idea of Simplex Method: Replace the basic variable with nonbasic variable.

• Step 3 Select the pivot column – by selecting the column with the least negative value in the objective function.

$$4x_1 + 3x_2 + s_1 = 240$$

 $2x_1 + x_2 + + s_2 = 100$
 $-70x_1 - x_2 + + P = 0$

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
\boldsymbol{s}_1	4	3	1	0	0	240
s_2	2	1	0	1	0	100
P	-70	-50	0	0	1	0

 Pivot: a fixed point supporting something that turns or balances; The central or most important person or thing in a situation

 Step 4 Select the pivot row – by selecting the row with the least nonnegative of the ratio, which is value of the right-hand side over value in pivot column

$$4x_1 + 3x_2 + s_1$$
 = 240
 $2x_1 + x_2 + + s_2 = 100$
 $-70x_1 - x_2 + + P = 0$

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
\boldsymbol{s}_1	4	3	1	0	0	240
s_2	2	1	0	1	0	100
P	-70	-50	0	0	1	0

• Step 5 calculate the new values by dividing every number in the pivot row by the pivot number (to make the coefficient to 1)

Basic variables	x_1	x_2	s_1	s_2	P	Right hand side
s_1	4	3	1	0	0	240
s_2	1	1/2	0	1/2	0	50
P	-70	-1	0	0	1	0

• Step 6 make the other values in pivot column zero, by row operations.

Basic variables	x_1	x_2	s_1	s_2	P	Right hand side
s_1	0	1	1	-2	0	40
s ₂	1	1/2	0	1/2	0	50
P	0	-15	0	35	1	3500

•
$$R_1$$
-4 R_2

•
$$R_3 + 70R_2$$

• Step 6 x_1 becomes the basic variable

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
s_1	0	1	1	-2	0	40
x_1	1	1/2	0	1/2	0	50
P	0	-15	0	35	1	3500

- In this case, x_1 =50, x_2 = 0, x_1 = 40, x_2 = 0, P = 3500
- This is the end of first process. Next is to repeat these steps

• Repeat previous steps

Basic variables	x_1	x ₂	s_1	s_2	P	Right hand side
s_1	0	1	1	-2	0	40
x_1	1	1/2	0	1/2	0	50
P	0	-15	0	35	1	3500

• Repeat previous steps

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
\boldsymbol{s}_1	0	1	1	-2	0	40
x_1	1	1/2	0	1/2	0	50
P	0	-15	0	35	1	3500

Repeat previous steps

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
s_1	0	1	1	-2	0	40
x_1	1	0	-1/2	3/2	0	30
P	0	0	15	5	1	4100

•
$$-1/2 R_1 + R_2$$

•
$$15R_1 + R_3$$

Repeat previous steps

Basic variables	x_1	<i>x</i> ₂	s_1	s_2	P	Right hand side
\boldsymbol{x}_2	0	1	1	-2	0	40
x_1	1	0	-1/2	3/2	0	30
P	0	0	15	5	1	4100

•
$$x_1 = 30$$
, $x_2 = 40$, $s_1 = s_2 = 0$, $P=4100$

 On objective row, no other values are negative. The iteration is terminated.

Summary

• Tableau to solve linear programming

THANK YOU

X The picture can't be displayed.		