

# Capstone Project - 2 NYC Taxi Trip Duration Prediction

Team Members

Akanksha Agarwal

Ganeshkumar Patel



## CONTENT

- Introduction
- Problem statement
- Data summary
- Exploratory Data Analysis (EDA)
- Feature Engineering & Selection
- Building and Evaluating Model
- Model Explainability
- Check on kaggle
- Conclusion



## INTRODUCTION

- In New York City, due to traffic jams, construction or road blockage etc. user will need to know how much time it will take to commute from one place to other.
- Increasing popularity of app-based taxi such as ola or uber and there competitive pricing levels made user decisive to choose based on trip pricing and duration.
- Taxi Drivers also have to choose best route having lesser trip time.
- So here we will be building a model which will be predicting the trip duration of taxies running in NewYork. This prediction will help customers to select the taxi based on trip duration and driver to select optimum route to their destination.



#### **Problem Statement**

Task is to predict total ride duration of taxi trips in New York City.

#### **Independent Features:**

id: a unique identifier for each trip.

**vendor\_id**: a code indicating the provider associated with the trip record.

pickup\_datetime: date and time when the meter was engaged.

**dropoff\_datetime**: date and time when the meter was disengaged.

passenger\_count: the number of passengers in the vehicle (driver entered value).

pickup\_longitude: the longitude where the meter was engaged.

**pickup\_latitude**: the latitude where the meter was engaged.

**dropoff\_longitude**: the longitude where the meter was disengaged.

**dropoff\_latitude**: the latitude where the meter was disengaged.

**store\_and\_fwd\_flag**: This flag indicates whether the trip record was held in vehicle.

#### **Target Feature:**

trip\_duration: duration of the trip in seconds.

## **Approach towards Solution**

Al

- 1. Defining Problem Statement
- 2. Data Preparation
  - 2.1 Data Exploration
  - 2.2 Data Processing
  - 2.3 Feature Engineering
  - **2.4 EDA**
- 3. Preparing Dataset For Modeling
  - 3.1 Feature Selection
  - 3.2 Categorical Feature Encoding
  - 3.3 Applying Model
- 4. Model Metrics Evaluation
- 5. Model explainabilty
- 6. Conclusion



## **Dataset Exploration**

|       | vendor_id    | passenger_count | pickup_longitude | pickup_latitude | dropoff_longitude | dropoff_latitude | trip_duration |
|-------|--------------|-----------------|------------------|-----------------|-------------------|------------------|---------------|
| count | 1.458644e+06 | 1.458644e+06    | 1.458644e+06     | 1.458644e+06    | 1.458644e+06      | 1.458644e+06     | 1.458644e+06  |
| mean  | 1.534950e+00 | 1.664530e+00    | -7.397349e+01    | 4.075092e+01    | -7.397342e+01     | 4.075180e+01     | 9.594923e+02  |
| std   | 4.987772e-01 | 1.314242e+00    | 7.090186e-02     | 3.288119e-02    | 7.064327e-02      | 3.589056e-02     | 5.237432e+03  |
| min   | 1.000000e+00 | 0.000000e+00    | -1.219333e+02    | 3.435970e+01    | -1.219333e+02     | 3.218114e+01     | 1.000000e+00  |
| 25%   | 1.000000e+00 | 1.000000e+00    | -7.399187e+01    | 4.073735e+01    | -7.399133e+01     | 4.073588e+01     | 3.970000e+02  |
| 50%   | 2.000000e+00 | 1.000000e+00    | -7.398174e+01    | 4.075410e+01    | -7.397975e+01     | 4.075452e+01     | 6.620000e+02  |
| 75%   | 2.000000e+00 | 2.000000e+00    | -7.396733e+01    | 4.076836e+01    | -7.396301e+01     | 4.076981e+01     | 1.075000e+03  |
| max   | 2.000000e+00 | 9.000000e+00    | -6.133553e+01    | 5.188108e+01    | -6.133553e+01     | 4.392103e+01     | 3.526282e+06  |

| ≺clas | ss 'pandas.core.fram             | e.DataFrame'>     |         |  |  |  |  |
|-------|----------------------------------|-------------------|---------|--|--|--|--|
| Range | eIndex: 1458644 entr             | ies, 0 to 1458643 |         |  |  |  |  |
| Data  | Oata columns (total 11 columns): |                   |         |  |  |  |  |
| #     | Column                           | Non-Null Count    | Dtype   |  |  |  |  |
|       |                                  |                   |         |  |  |  |  |
| 0     | id                               | 1458644 non-null  | object  |  |  |  |  |
| 1     | vendor_id                        | 1458644 non-null  | int64   |  |  |  |  |
| 2     | pickup_datetime                  | 1458644 non-null  | object  |  |  |  |  |
| 3     | dropoff_datetime                 | 1458644 non-null  | object  |  |  |  |  |
| 4     | passenger_count                  | 1458644 non-null  | int64   |  |  |  |  |
| 5     | pickup_longitude                 | 1458644 non-null  | float64 |  |  |  |  |
| 6     | pickup_latitude                  | 1458644 non-null  | float64 |  |  |  |  |
| 7     | dropoff_longitude                | 1458644 non-null  | float64 |  |  |  |  |
| 8     | dropoff_latitude                 | 1458644 non-null  | float64 |  |  |  |  |
| 9     | store_and_fwd_flag               | 1458644 non-null  | object  |  |  |  |  |
| 10    | trip_duration                    | 1458644 non-null  | int64   |  |  |  |  |
| dtype | es: float64(4), int6             | 4(3), object(4)   |         |  |  |  |  |
|       |                                  |                   |         |  |  |  |  |

- 1. There are 1458644 observations and 11 available features
- 2. There are no null values and duplicate data.
- 3. Datetime column is of object datatype
- 4. From above table we can infer that trip duration has max value of 3526282 seconds i.e almost 979.5 hours and minimum 1 second. Thus, it seems to have outliers. Also the number of passenger counts in upto 9, which may not be the case



#### **Passenger Count**







#### **Vendor ID**







## **Pickup Month**







## **Pickup Day**







## **Pickup Hour**







## **Trip Duration**







## **Distance vs Trip Duration**





#### **Feature Creation:**

#### Feature-correlation (pearson)

#### We have created the following features:

- pickup\_day\_name which contains the name of the day on which the ride was taken.
- pickup\_hour with an hour of the day in the 24 - hour format.
- pickup\_month with month number as January = 1 and December = 12.
- Distance from geographical coordinates in kms





#### **Model Creation:**

**Linear Regression :** The linear regression model finds the set of  $\theta$  coefficients that minimize the sum of squared errors.

**Random Forest Regressor**: Provides higher accuracy through cross validation. Random forest classifier will handle the missing values and maintain the accuracy of a large proportion of data.

**XGBoost**: The dataset was very large, as a result for this type of problem XGBoost was applied in which all the attributes were taken and parallel processing of boosting trees executed. Another aspect of XGBoost is that it keeps a nice check between bias and variance which helps in better prediction.

**LGBM Regressor**: It is a gradient boosting framework based on decision trees to increases the efficiency of the model and reduces memory usage.



## **Model Evaluations:**

| Training Model             | Train<br>MAE | Test MAE | Train MSE   | Test MSE    | Train<br>RMSE | Test<br>RMSE | Train R2 | Test R2 | Adjusted R2 |
|----------------------------|--------------|----------|-------------|-------------|---------------|--------------|----------|---------|-------------|
| Linear Regression          | 269.2901     | 268.9965 | 159653.8131 | 159956.1934 | 399.5670      | 399.9452     | 0.6310   | 0.6314  | 0.6314      |
| Random Forest<br>Regressor | 223.6980     | 223.3548 | 117301.2883 | 117756.9907 | 342.4927      | 343.1573     | 0.7289   | 0.7286  | 0.7286      |
| LGBM Regressor             | 164.7305     | 175.7869 | 66466.9927  | 81785.4432  | 257.8119      | 285.9815     | 0.8463   | 0.8115  | 0.8115      |
| XGB Regressor              | 215.5263     | 215.2902 | 112840.3943 | 113606.1822 | 335.9172      | 337.0551     | 0.8087   | 0.8088  | 0.8088      |

# Al

## **Model Explainability (using SHAP)**





## Real world model performance check



We get 0.44606 public score and 0.44676 private score on Kaggle platform. It means our model is working perfectly fine.



## **Conclusion:**

- For Linear regression model, MSE and RMSE for training and testing are similar but has very poor R2 for training and testing data.
- Random Forest Regressor R2 increases, but not with significant amount.
- We can see that MSE and RMSE of XGB Regressor model are not varying much during training and testing time. Also the R2 is almost same for training and testing time.
- RMSE of LGBM Regressor model are very similar and their R2 is above 81% for training and test data.
- From above table, we can conclude LGBM Regressor is best model for our dataset.



# **Challenges:**

- Large dataset to handle.
- Need to Remove outliers
- Carefully handled feature selection part as it affects the R2 score.
- Carefully tuned Hyperparameters as it affects the R2 score.