# Обучение взаимосвязанных информативных представлений в задаче генерации образов

Охотников Никита Владимирович Научный руководитель: к.ф.-м.н. Исаченко Р.В.

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация Интеллектуальный анализ данных Направление: 03.03.01 Прикладные математика и физика

2024

## Введение

Исследуется задача поиска наилучшего дополнения образа — множества взаимосвязанных элементов — элементами конечной коллекции.

#### Проблемы

- ▶ Взаимосвязь элементов в образе имеет неизвестную структуру.
- ▶ Точное решение задачи дополнения требует полного перебора.

## Задача

Предложить эффективный приближенный алгоритм дополнения образа несколькими элементами.

## Предлагается

На основе известной функции оценки образа построить функцию для генерации зависимых скрытых представлений элементов, использующихся далее для выбора элементов дополнения

## Постановка задачи

#### Основные понятия и обозначения

- ▶ Основная единица данных объект или элемент , множество всех объектов  $\mathcal{X}$
- ightharpoonup Каждый объект  $X \in \mathcal{X}$  есть пара X = (I, T) из соответственно изображения и текстового описания.
- lacktriangle Далее под объектом  $X\in\mathcal{X}$  будем понимать его векторное представление  $X\in\mathbb{R}^d$  в общем для элементов пространстве
- ▶ Непустые подмножества множества элементов  $O = \{X_i\}_{i=1}^k \subset \mathcal{X}, O \neq \{\emptyset\}$  будем называть *образами*. Множество образов обозначим  $\mathcal{O}$ .
- Для оценки образов введем функцию оценки или совместимости его элементов:

$$\mathcal{S}: \ 2^{\mathcal{X}} \longrightarrow [0,1]$$
  
 $\forall O \in \mathcal{O}: \ \mathcal{S}(O) > 0$ 

Совместимостью или оценкой образа O будем называть  $\mathcal{S}(O)$ 

## Постановка задачи

## Задача дополнения образа

#### Дано:

 $O_n \in \mathcal{O}, \ |\mathcal{O}| = n$  — исходный образ  $k \in \mathbb{N}, \ k$  — количество элементов дополнения

#### Требуется:

Найти наилучшее в смысле максимизации функции оценки  $\mathcal S$  дополнение образа  $O_n$  k элементами  $\{\hat X_i\}_{i=1}^k\subset \mathcal X$  т.е. решить следующую оптимизационную задачу

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

Точное решение для известной  $\mathcal{S}$ : полный перебор всех подмножеств  $\mathcal{X}$  размера k.

Асимптотика:  $|\mathcal{X}|^k$  вызовов функции  $\mathcal{S}$ 

#### Теоретическая часть

- ightharpoonup В качестве аппроксимации функции оценки S далее будем рассматривать предобученную модель OutfitTransformer<sup>1</sup>.
- ▶ Для задачи дополнения

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

существует 2 глобальных подхода

- Дискретный оптимизация полного перебора
- Непрерывный решение некоторой связанной задачи в непрерывном множестве и выбор ближайших к решению элементов  ${\cal X}$

<sup>&</sup>lt;sup>1</sup>https://doi.org/10.48550/arXiv.2204.04812

#### Дискретный подход

- ▶ Решение задачи приближенным перебором
- Бейзлайн: жадные алгоритмы

$$\text{ $\mathscr{X}_1$-step} \quad X_1 = \mathop{\mathsf{argmax}}_{X \in \mathcal{X}} \mathcal{S}(O_n \cup X), \ \ldots, X_k = \mathop{\mathsf{argmax}}_{X \in \mathcal{X}} \mathcal{S}(O_n \cup X) \\ \underset{X \in \mathcal{X}}{\underset{i=1}{\overset{k-1}{\bigcup}}} X_i$$

Асимптотика:  $|\mathcal{X}|$  вызовов функции  $\mathcal{S}$ 

$$\text{ $\mathsf{w}$-step} \ \ \, X_1 = \mathop{\mathsf{argmax}}_{X \in \mathcal{X}} \mathcal{S}(O_n \cup X), \ \ldots, X_k = \mathop{\mathsf{argmax}}_{X \in \mathcal{X}} \ \ \, \mathcal{S}(O_n \cup X_1 \ldots X_{k-1} \cup X) \\ \ \, X_i = \mathop{\mathsf{argmax}}_{X \in \mathcal{X}} \ \ \, \sum_{i=1}^{k-1} X_i$$

Асимптотика:  $k \cdot |\mathcal{X}|$  вызовов функции  $\mathcal{S}$ 

- Альтернатива: алгоритм beam-search. В граничных случаях вырождается либо в полный перебор, либо в k-step алгоритм выше. Асимптотика:  $\geq k \cdot |\mathcal{X}|$  вызовов функции  $\mathcal{S}$
- ▶ Очень неэффективно

## Непрерывный подход (градиентный спуск)

- lacktriangle Функция  ${\mathcal S}$  липшицева с некоторой константой M
- ightharpoonup Есть доступ не только к  $\mathcal{S}$ , но и к  $\nabla \mathcal{S}$
- Идея: перейдем к релаксированной задаче:

$$\{\tilde{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathbb{R}^d}{\operatorname{argmax}} S\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

lacktriangle Далее выберем  $\{\hat{X}_i\}\subset\mathcal{X}$  как ближайшие к решениям в смысле функции близости ho:

$$\hat{X}_i = \underset{X \in \mathcal{X}}{\operatorname{argmin}} \rho(\tilde{X}_i, X)$$

- Полученная задача разрешима с помощью градиентного спуска.
- lacktriangle Асимптотика: n вызовов  $\mathcal S$  и  $\nabla \mathcal S$  , где n количество шагов градиентного спуска (не зависит от  $|\mathcal X|$ )

#### Непрерывный подход (градиентный спуск)

- ▶ S М-липшицева
- ightharpoonup рассмотрим  $L_p$  метрику в качестве ho, тогда

$$\sum_{i=1}^{k} \rho(\hat{X}_{i}, \tilde{X}_{i}) < \varepsilon \longrightarrow \left| \mathcal{S}\left(O_{n} \cup \{\tilde{X}_{i}\}_{i=1}^{k}\right) - \mathcal{S}\left(O_{n} \cup \{\hat{X}_{i}\}_{i=1}^{k}\right) \right| < M \cdot \varepsilon$$

▶ Проблема подхода:  $\exists \{\hat{X}_i\} \subset \mathcal{X}: \sum_{i=1}^k \rho(\hat{X}_i, \tilde{X}_i) < \varepsilon$  — очень сильное условие и требует по крайней мере

$$\exists \{\hat{X}_i\}_{i=1}^k \subset \mathcal{X}: \ \mathcal{S}\left(O_n \cup \{\hat{X}_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

$$\max_{\{X_i\}_{i=1}^k \subset \mathcal{X}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) \geqslant \max_{\{X_i\}_{i=1}^k \subset \mathbb{R}^d} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right) - M\varepsilon$$

### Непрерывный подход (генерация скрытых представлений)

- lacktriangle Предлагается *полностью* отказаться от вызовов функции  ${\mathcal S}$
- Переформулируем задачу как поиск аппроксимации функции

$$\mathcal{F}_k: \mathcal{O} \longrightarrow \mathcal{X}^k, \quad O_n \in \mathcal{O}, \ \mathcal{F}_k(O_n) = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

Композицией функций

$$egin{aligned} F_k^{ heta}: \mathcal{O} &\longrightarrow \mathbb{R}^d, \ F_k^{ heta}(\mathcal{O}_n) = \{ ilde{X}_i\}_{i=1}^k \ & \ \ \ \ \ 
ho_{\mathcal{X}}: \mathbb{R}^d &\longrightarrow \mathcal{X}, \ 
ho_{\mathcal{X}}( ilde{X}_i) = rgmax_i 
ho( ilde{X}_i, \hat{X}_i) \ & \ \ \hat{X}_i \in \mathcal{X} \end{aligned}$$

## Непрерывный подход (генерация скрытых представлений)

lacktriangle Свели задачу к генерации скрытых представлений недостающих элементов  $\{ ilde{X}_i\}\subset\mathbb{R}^d$ , наиболее близких в смысле функции ho к точным решениям

$$\{\hat{X}_i\}_{i=1}^k = \underset{\{X_i\}_{i=1}^k \subset \mathcal{X}}{\operatorname{argmax}} \, \mathcal{S}\left(O_n \cup \{X_i\}_{i=1}^k\right)$$

с помощью функции  $F_k^{\theta}$  с вектором параметров  $\theta$ .

- ▶ Рассмотрим образы  $\mathcal{O}_n = \{O^i\}_{i=1}^n \subset \mathcal{O}$  и множество известных точных решений  $\mathcal{X}_n = \{\{\hat{X}_i^i\}_{i=1}^k\}_{i=1}^n \subset \mathcal{X}^k$
- ightharpoonup Тогда на параметры heta получаем следующую задачу:

$$\theta = \underset{\hat{\theta}}{\operatorname{argmin}} \left( \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \rho \left( X_{j}^{i}, [F_{k}^{\hat{\theta}}(O^{i})]_{j} \right) \right)$$

## Непрерывный подход (генерация скрытых представлений)

- ▶ Задача симметрична к перестановке ⇒ разумно рассматривать операции эквивариантные относительно группы перестановок.
- lacktriangle Тогда представим функцию  $F_k^{ heta}$  с помощью графовой нейронной сети (GNN)
- ▶ Вершины графа представления элементов образа
- Общий вид преобразования  $h_i^{(t)}$  скрытого состояния i-ой вершины на шаге t в message passing  $GNN^2$ :

$$h_i^{(t)} = U^{(t)} \left( h_i^{(t-1)}, \bigoplus_{j \in \overline{1,n}} M^{(t)} \left( h_i^{(t-1)}, h_j^{(t-1)} \right) \right),$$

где  $U^{(t)}, M^{(t)}$  – дифференцируемые функции,  $\bigoplus$  — дифференцируемая аггрегирующая функция, инвариантная к перестановкам (в эксперименте будем использовать сумму)

<sup>&</sup>lt;sup>2</sup>https://arxiv.org/pdf/1704.01212

## Непрерывный подход (генерация скрытых представлений)

- Аппроксимация напрямую решений дискретной, а не релаксированной задачи
- ightharpoonup Асимптотика: один вызов функции  $F_k^{ heta}$
- ▶ Произвольное количество элементов дополнения за одну итерацию
- ► GNN моделирует зависимости между элементами дополнения
- ightharpoonup В качестве  $\mathcal{X}_n$  можно рассмотреть набор решений задачи многошаговым жадным алгоритмом

#### Условия эксперимента

- ▶ Данные: датасет Polyvore<sup>3</sup> 17000 образов из 65000 объектов
- ▶ Случайно выберем 1000 образов
- ightharpoonup Зафиксируем количество элементов дополнения k=2
- Оцениваем алгоритмы на основании распределения оценок дополненных образов
- ▶ Бейзлайн: рапределение оценок исходных образов
- ▶ В качестве  $\rho$  рассмотрим метрики  $L_1$ ,  $L_2$  и  $L_{10}$  и косинусное расстояние.

<sup>&</sup>lt;sup>3</sup>http://arxiv.org/abs/1707.05691

## Дискретный подход (жадные алгоритмы)



Показывают хороший результат, но требуют слишком много времени

### Непрерывный подход (градиентный спуск)



Результат заметно хуже чем для жадных алгоритмов, а время вычислений еще медленнее, чем ожидалось

## Непрерывный подход (генераций представлений)



Хорошее качество, достижимое за десятки миллисекунд. Интересно, что разницы между различными ho почти нет

#### Сравнение методов

| ρ               | Выборочная медиана оценок образов |            |           |        |
|-----------------|-----------------------------------|------------|-----------|--------|
|                 | ж. однош.                         | ж. многош. | гр. спуск | GNN    |
| $L_1$           | 0.8511                            | 0.8467     | 0.6602    | 0.8417 |
| L <sub>2</sub>  |                                   |            | 0.4850    | 0.8417 |
| L <sub>10</sub> |                                   |            | 0.6132    | 0.8415 |
| cos dist        |                                   |            | 0.7142    | 0.8428 |
| Задержка, с     | ~4                                | ~8         | $\sim$ 5  | ~0.03  |

#### Выводы

- Жадные алгоритмы показывают хороший результат, но не применимы на практике.
- ▶ Подход с решением релаксированной задачи себя не оправдал для данных не выполнено теоретическое предположение.
- ▶ Генерация представлений существенно быстрее и почти не уступает в качестве.

## Выносится на защиту

- ▶ Предложен и обоснован эффективный алгоритм дополнения образа произвольным числом взаимосвязанных элементов
- ▶ Предложен способ пополнения обучающих данных для модели в условиях недостатка образов с высокой оценкой
- Реализован программный код для вычислительного эксперимента и проведена оценка предложенных подходов