TALLTEORI 7. VI. 2010

- 13 | 13 + 10021 Hence 13 + 10021 is not a prime number.
- (2) Antitheris: $6n^2 = m^2$, gcd(m,n) = 1 $3 \cdot 2 n^2 = m^2 = > 3 | m^2 = > 3 | m = >$ $m = 3\mu$ $3/2 n^2 = 3/3 \mu^2 => 3 | n^2 => 3 | n$ Thus gcd (m,n) ≥ 3 . This is a \mathcal{J} contradiction. Hence the antitheris is false.
- (3) $X^{65} = 6 (133), 133 = 7.19$ $\varphi(133) = 6.18 = 108$

65. e = 1 (108) has the solution e = 5 (Use Endid's algorithm to find it.)

 $X = 6^{e} (133) = 6^{5} (133) = 62 (133)$ Answer: X = 62 (133).

(4) Wilson:
$$(p-1)! \equiv -1 \pmod{p}$$
 103 is a prime number.

 $102! \equiv -1 \pmod{103}$

$$\frac{102 \cdot 101!}{\equiv -1} \equiv -1 \implies 101! \equiv 1$$
 $101 \cdot 100! \equiv 1, -2 \cdot 100! \equiv 1$
 $(-2)[51) \cdot 100! \equiv 51, 102 \cdot 101! \equiv -51$
 $[-1) \cdot 101! \equiv -51 \implies 101! \equiv 51$

5)
$$m^n-1=(m-1)(m^{n-1}+m^{n-2}+\cdots+m+1)$$

If $m>2$, $m-1\geq 2$ and we have
a factorization. (When $m=2$, $m-1=1$
so that there is no "first factor".)

6)
$$\sqrt{23} = [4; 1, 3, 1, 8]$$
 fungth of the period is $m = 4$.

Use p_3, q_3 .

 $4 \cdot 1 \cdot 3 \cdot 1 \cdot 8 \cdot 1$
 $4 \cdot 5 \cdot \frac{19}{4} \cdot \frac{24}{5}$
 $x = 24, y = 5$.

(7) Claim
$$a^{4n+1} \equiv a \pmod{10}$$

$$\varphi(10) = 4$$
, $\alpha = 1 \pmod{10}$ when $2,5 \nmid \alpha$

In this case

$$a^{4n}+1=(a^{4})^{n}a=1^{n}a\equiv a$$

$$a^{4n+1} \equiv a \pmod{5}$$
. Only one of the numbers $\alpha, \alpha+5$ is even. Now a is even, so is a^{4n+1} . Thus $a^{4n+1} \equiv a \pmod{10}$.

(8) Claim 2 - 1 has at least k different prime factors, k = 1, 2, 3, ...

Proof by induction 10) k=1 $g^2-1=3$ %.

2°) Ind. Hypotheris: 22-1 has at least le diff. prime factors.

$$3^{\circ}$$
) $g^{2^{k+1}} = g^{2^{k}} \cdot d - 1 = (g^{2^{k}})^{2} - 1$

$$= (g^{2^{k}} - 1)(g^{2^{k}} + 1)$$
Now $g^{2^{k}} + 1$ contains a new prime factor, ring

(A common factor is both odd and even!)

Thus and bone at leart let 1 diterent prime factors.