《数论讲义》第一章习题

1. 证明 $6 \mid n(n+1)(2n+1)$, 其中 n 是任何整数.

思路: 证 n(n+1)(2n+1) 同时被2、3整除.

(法一)

证明: n, n+1 为一奇一偶,则 $n \mid n(n+1)(2n+1)$.

当 n = 3k 时, $3 \mid n(n+1)(2n+1)$.

当 n = 3k + 1 时, 2n + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1),所以 $3 \mid n(n+1)(2n+1)$

. 当 n = 3k + 2 时,n + 1 = 3k + 2 + 1 = 3(k + 1),所以 $3 \mid n(n + 1)(2n + 1)$.

又因为(2,3)=1

所以
$$6 \mid n(n+1)(2n+1)$$
 证完

(法二)

证明:

$$n(n+1)(n+2) = n(n+1)[2(n+2) - 3].$$

n, n+1 一奇一偶,可被 2 整除,

n, n+1, n+2 中必有一个数被 3 整除,

所以 n, n+1, [2(n+2)-3] 必有一个数被 3 整除

又由(2,3) = 1,

所以 $6 \mid n(n+1)(2n+1)$.

证完

2. 证明:任意 n 个连续整数中($n \ge 1$), 有一个且只有一个数被 n 除尽.

证明: 设 n 个相邻的整数是 $m, m+1, \cdots, m+n-1$.

 $\Rightarrow m = nq + r_0 (0 \leqslant r_0 \leqslant n - 1)$

则
$$m + j = nq + (r_0 + j) = nq_j + r_j (0 \le r_j < n, j = 0, 1, \dots, n - 1)$$

且对 $1 \leq j \leq n-1$, 有 $n \nmid (m+j)$.

② 若 $r_0 \neq 0$, 则当 $j + r_0 < n$ 时, $r_j = j + r_0$.

当 $j + r_0 \geqslant n$ 时, $r_j = j + r_0 - n$.

此时, 取 $j_0 = n - r_0$, 则 $r_{j_0} = 0$.

有 $n \mid (m+j_0)$.

除此之外, $0 < r_j < n$,均有 $n \nmid (m+j)(1 \leq j < n, j \neq j_0)$.

结论得证. 证完

3. 证明:若
$$m-p \mid (mn+qp), 则 m-p \mid (mq+np)$$

证明: 因为 $(mn+qp)-(mq+np)=m(n-q)+p(q-n)=(m-p)(n-q),$
所以 $mq+np=(mn+qp)-(m-p)(n-q).$
又因为 $(m-p) \mid (mn+qp),$
 $(m-p) \mid (m-p)(n-q),$
所以 $(m-p) \mid (mn+qp)-(m-p)(n-q)$
即 $(m-p) \mid (mq+np).$ 证完

4. 证明:若 $p \mid (10a - b)$ 和 $p \mid 10c - d$, 则 $p \mid (ad - bc)$.

证明: 因为 $p \mid (10a - b), p \mid (10c - d),$

所以 10a - b = mp, 10c - d = np,

所以 10a = mp + b,

$$d = 10c - np,$$

两边相乘, 10ad = (mp + b)(10c - np),

所以 $10ad = 10mpc - mnp^2 + 10bc - bnp$

$$10ad - 10bc = p(10mc - mnp - bn)$$

所以 $p \mid 10(ad - bc)$

又因为p是素数,(p,10) = 1

所以 $p \mid (ad - bc)$.

(法二)证明:因为

$$(10a - b)c - (10c - d)a$$
$$= 10ac - bc - 10ac + ad$$
$$= 10ad - bc.$$

且
$$p \mid (10a - b), p \mid (10c - d)$$

所以 $p \mid (10ad - bc)$.

证完

5. 证明:若
$$(a,b) = 1$$
, 则 $(a+b,a-b) = 1$ 或 2. 证明: 设 $(a+b,a-b) = d$

则
$$d \mid a+b, d \mid a-b$$

所以 $d \mid (a+b)+(a-b)$
 $d \mid (a+b)-(a-b)$
所以 $d \mid 2a, d \mid 2b$
所以 $d \mid (2a, 2b)$
又因为 $(a,b)=1$
所以 $(2a, 2b)=2$
所以 $d \mid 2$
所以 $d \mid 2$

证完

6. 证明:若
$$(a,b) = 1$$
, 则 $(a+b,a^2-ab+b^2) = 1$ 或 3..
证明: 因为 $a^2-ab+b^2 = (a+b)^2-3ab$,
由 $(a,b) = 1$, 有 $(a+b,ab) = 1$
所以 $(a+b,3ab) = 1$ 或 3.
所以 $(a+b,(a+b)^2-3ab) = 1$ 或 3
所以 $(a+b,a^2-ab+b^2) = 1$ 或 3.

7. 证明:若方程 $x^n + a_1 x^{n-1} + \cdots + a_n = 0 (n > 0, a_i$ 是整数, $i = 1, \dots, n$) 有有理数解, 则此解必为整数.

证明: 设
$$\alpha = \frac{a}{b}$$
 为方程 $x^n + a_1 x^{n-1} + \dots + a_n = 0$ 的有理数解 $(a,b) = 1$, 且 $b \neq 0$ 所以 $\left(\frac{a}{b}\right)^n + a_1 \left(\frac{a}{b}\right)^{n-1} + \dots + a_n = 0$ 同乘 b^n , 有 $a^n + a_1 a^{n-1} b + \dots + a_n b^n = 0$ 所以 $a^n = b(-a_1 a^{n-1} - \dots + a_n b^{n-1})$ 所以 $b \mid a^n$, 假定 $b \neq \pm 1$ 则 b 有素因子 p , 由 $p \mid b$, $b \mid a^n$, 得 $p \mid a^n$ 所以 $p \mid a$ 但 $(a,b) = 1$. 矛盾,所以 $b = \pm 1$ 所以 $\alpha = \pm a$, 即 α 为整数.

8. 证明:

证明: 设
$$\frac{a}{b} + \frac{c}{d} = n$$
, n 是整数

$$\therefore \frac{ad + bc}{bd} = n, \quad \therefore ad + bc = nbd$$

$$\therefore \begin{cases} ad = b(nd - c) \\ bc = d(nb - a) \end{cases} \quad \therefore \begin{cases} b \mid ad \\ d \mid bc \end{cases}$$

9. 证明:.

证明: 当 n=1 时, $a^2=1, b=1$

当n > 1时,设n的素因数分解式为

 $n = p_1^{l_1} p_2^{l_2} \cdots p_s^{l_s}$,其中 p_1, p_2, \cdots, p_s 是不同的素数

设 l_i 被2除的商是 q_i ,余数是 r_i ,

即 $l_i = 2q_i + r_i, i = 1, 2, \dots, s, \quad r_i = 0$ 或 $r_i = 1$

 $\therefore n = (p_1^{q_1} p_2^{q_2} \cdots p_s^{q_s})^2 p_1^{r_1} p_2^{r_2} \cdots p_s^{r_s}$

 $\Leftrightarrow a = p_1^{q_1} p_2^{q_2} \cdots p_s^{q_s}, b = p_1^{r_1} p_2^{r_2} \cdots p_s^{r_s}$

则 $n = a^2b$,其中 b 无平方因子.

唯一性

设 $n = c^2 d$, 其中 d 无平方因子,

考察 p_i 的幂指数,用 $p_i(n)$ 表示 n 的素因数分解式中 p_i 的幂指数.

則有 $l_i = p_i(c^2d) = p_i(c^2) + p_i(d) = 2p_i(c) + p_i(d)$

·: d 无平方因子

 $\therefore p_i(d) = 0 \ \vec{\boxtimes} \ p_i(d) = 1$

 $p_i(c), p_i(d)$ 分别为 2 除 l_i 的商和余数

 $\therefore p_i(c) = q_i, \quad p_i(d) = r_i$

 $\therefore c^2 = a^2, \quad \therefore d = b$

::分解式惟一的.

证完

10. 证明:.

证明: $\diamondsuit n = p_1^{l_1} \cdots p_s^{l_s}$

用 2 除 l_i , 有 $l_i = 2q_i + r_i$, $r_i = 0$ 或 $1, i = 1, 2, \dots, s$.

 $\therefore a=p_1^{\alpha_1}\cdots p_s^{\alpha_s}$,其中 $\alpha_i\leqslant q_i$,且至少有一个 $\alpha_i\neq q_i$,否则与 b^2 是 n 的最大平方因子矛盾

$$\therefore p_1^{\alpha_1} \cdots p_s^{\alpha_s} \cdot p_1^{q_1 - \alpha_1} \cdots p_s^{q_s - \alpha_s} = p_1^{q_1} \cdots p_s^{q_s} = b$$

$$\therefore a \mid b.$$
证完

11.

证明: 设
$$(x,y) = d$$
, 则 $d \mid x, d \mid y$
 $\because m = ax + by, n = cx + dy$

$$\therefore d \mid m, d \mid n \quad \therefore d \mid (m, n) \tag{1}$$

另一方面

$$\begin{cases} dm = adx + bdy \\ bn = bcx + bdy \end{cases}; \begin{cases} cm = acx + bcy \\ an = acx + ady \end{cases}$$

分别相减,有 $dm - bn = \pm x$; $-cm + an = \pm y$

设
$$(m,n) = d'$$
, 则 $d' \mid m, d' \mid n$

$$\therefore d' \mid (dm - bn), \quad d' \mid (-cm + an)$$

$$\therefore d' \mid x, \quad d' \mid y$$

$$\therefore d' \mid (x, y) \tag{2}$$

由 (1)、(2), 得
$$d = d'$$
, 即 $(m, n) = (x, y)$. 证完

12.

证明: 若
$$a^n \mid b^n$$
,则 $b^n = qa^n, q \in \mathbb{Z}$
设 $(a,b) = d$,则 $a = a_1d, b = b_1d, a_1, a_2 \in \mathbb{Z}$
 $\therefore (b_1d)^n = (a_1d)^nq$
 $b_1^n = a_1^nq \ (a_1,b_1) = 1$
 $\therefore q = \left(\frac{b_1}{a_1}\right)^n$

若
$$|a_1| > 1$$
,则由 $(a_1^n, b_1^n) = (a_1, b_1)^n = 1$
有 $q = \frac{b_1^n}{a_1^n} \notin \mathbb{Z}$,矛盾
 $\therefore |a_1| = 1$,则 $a = \pm d$, $\therefore a \mid b$

(法二)

证明:设 $a \nmid b$,但 $a^n \mid b^n$ 则 $\exists p^r \mid a, p^r \mid b$,否则 $a \mid b$ ∴ $a = p^r c, c \in \mathbb{Z}$

$$\therefore a^{n} = (p^{r}c)^{n} = p^{rn}c^{n}$$

$$p^{rn} \mid a^{n}, a^{n} \mid b^{n}, \therefore p^{rn} \mid b^{n}$$

$$b^{n} = mp^{rn}, m \in \mathbb{Z}$$

所以每个b都包含r个p因子,矛盾

$$a \mid b$$

证完

13

证明: 设
$$a = \prod_{i=1}^{s} p_i^{\alpha_i}, b = \prod_{i=1}^{s} p_i^{\beta_i},$$

$$\therefore (a,b) = \prod_{i=1}^{s} p_i^{\min(\alpha_i,\beta_i)} = 1, \quad \therefore \min(\alpha_i,\beta_i) = 0$$
又 $\therefore ab = c^n, ab = p_i^{\min(\alpha_i,\beta_i)} = c^n = (p_i^{\gamma_i})^n$

$$\therefore n \mid (\alpha_i + \beta_i)$$

$$\therefore n \mid \alpha_i, \beta_i = 0$$
政 $n \mid \beta_i, \alpha_i = 0$
设 $x = \prod_{i=1}^{s} p_i^{\frac{\alpha_i}{n}}, y = \prod_{i=1}^{s} p_i^{\frac{\beta_i}{n}}$
则 $x^n = a, y^n = b$
且 $ab = x^n y^n = (xy)^n = c^n$

证完

14.

 $\therefore c = xy$

证明:
$$:: 4(2x+3y) + (9x+5y) = 17(x+y)$$
 且 $17 \mid 17(x+y)$
 $:: 17 \mid 4(2x+3y) \iff 17 \mid (9x+5y)$
 $:: 17 \mid (2x+3y) \iff 17 \mid (9x+5y)$
(法二)

证明: 设u = 2x = 3y, v = 9x + 5y

则
$$3v - 5u = 17x$$
 若 $17 \mid u$,则 $17 \mid 3v$ 又因为 $(17,3) = 1$ 所以 $17 \mid v$,即 $17 \mid (9x + 5y)$ 若 $17 \mid v$,则 $17 \mid 5u$ 又由 $(17,5) = 1$,得 $17 \mid u$,即 $17 \mid (2x + 3y)$. 证完

15.

证明: 先证 5∤*m*

因为 $5 \mid f(m)$

所以 $5 \mid am^3 + bm^2 + cm + d$

若 5 | m, 则 5 | d, 矛盾

所以可令 m = 5k + r, r = 1, 2, 3, 4

因为 $1 \times 1 \equiv 1 \pmod{5}, 2 \times 3 \equiv 1 \pmod{5}, 4 \times 4 \equiv 1 \pmod{5}$

所以当m = 5k+1, 5k+2, 5k+3, 5k+4时,n分别取5t+1, 5t+3, 5t+2, 5t+4

则有 $mn \equiv 1 \pmod{5}$, 因此 $5 \mid mn - 1$

设
$$A = am^3 + bm^2 + cm + d$$

$$B = dn^3 + cn^2 + bn + a$$

则有

$$An^{3} - B = am^{3}n^{3} + bm^{2}n^{3} + cmn^{3} - (cn^{2} + bn + a)$$

$$= am^{3}n^{3} + m^{2}n^{2}bn + mncn^{2} - cn^{2} - bn - a$$

$$= a[(mn)^{3} - 1] + bn[(mn)^{2} - 1] + cn^{2}[mn - 1]$$

$$= (mn - 1)[a(m^{2}n^{2} + mn + 1) + bn(mn + 1) + cn^{2}]$$

所以 $5 \mid An^3 - B$

又因为 5 | A

所以
$$5 \mid B = dn^3 + cn^2 + bn + a$$
.

证完

16.

证明: 设
$$d = (a, b)$$
, 则 $a = dr, b = ds, (r, s) = 1$

用
$$b$$
 除 $a, 2a, 3a, \dots, ba$,得 $\frac{dr}{ds}, \frac{2dr}{ds}, \frac{3dr}{ds}, \dots, \frac{sdr}{ds}, \frac{(s+1)dr}{ds}, \dots, \frac{2sdr}{ds}, \dots, \frac{dsdr}{ds}$ $\frac{r}{s}, \frac{2r}{s}, \dots, \frac{sr}{s}, \frac{(s+1)r}{s}, \dots, \frac{2sr}{s}, \dots, \frac{dsr}{d}$ (1)

由 (r,s)=1,知,数列(1)中只有 $\frac{sr}{s},\frac{2sr}{s},\cdots,\frac{dsr}{s}$ 是整数即数列 $a,2a,\cdots,ba$ 中能被 b 整除的项的个数为 (a,b).

证完

17.

证明: 由 ac, bc + ad, bd 都能被 u 整除,且设 u 有因子 p^r (p 为素数)则

$$ac = p^r A \tag{1}$$

$$bc + ad = p^r B (2)$$

$$bd = p^r C (3)$$

其中 $A, B, C \in \mathbb{Z}$

 $(1) \times (3)$,得 $(bc)(ad) = p^{2r}AC$

所以 bc 和 ad 分解式中必有一个 p 的指数不小于 r

不妨设 $bc = p^t D(t \ge r, D \in \mathbb{Z})$

所以 $p^r \mid bc$

由 (2),有 $p^r \mid ad$

又由 p^r 的任意性

有 $u \mid bc, u \mid ad$.

证完

18.

证明: 当 a, b 有一个为 0 时,显然成立,现假设 $a, b \neq 0$

因为 (am,bm)=(|a|m,|b|m)

$$(a,b)m = (|a|,|b|)m$$

所以不妨假定 a,b>0

由带余除法,有

$$a = q_1b + r_1, \quad 0 < r_1 < b$$

$$b = q_2r_1 + r_2, \quad 0 < r_2 < r_1$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n, \quad 0 < r_n < r_{n-1}$$

$$r_{n-1} = q_{n+1}r_n + r_{n+1}, \quad r_{n+1} = 0$$

两边同乘m,有

$$am = q_1(bm) + r_1m, \quad 0 < r_1m < bm$$

$$bm = q_2(r_1m)_1 + r_2m, \quad 0 < r_2m < r_1m$$

$$\vdots$$

$$r_{n-2}m = q_n(r_{n-1}m) + r_nm, \quad 0 < r_n < r_{n-1}$$

$$r_{n-1}m = q_{n+1}(r_nm) + r_{n+1}, \quad r_{n+1} = 0$$

所以
$$(am, bm) = r_n m = (a, b)m$$
 证完

19.

证明: 令
$$a = (a_1, \cdots, a_n), b = ((a_1, \cdots, a_s), (a_{s+1}, \cdots, a_n))$$
 $c = (a_1, \cdots, a_s, d = (a_{s+1}, \cdots, a_n))$
则 $b = (c, d)$
因为 $a \mid a_i, i = 1, \cdots, n$
所以 $a \mid c, a \mid d$, 所以 $a \mid b$ (1)
又因为 $b = (c, d)$

又因为
$$c = (a_1, \dots, a_s), d = (a_{s+1}, \dots, a_n)$$

所以
$$c \mid a_i i = 1, \dots, s, d \mid a_i, i = s + 1, \dots, n$$

所以 $b \mid a_i, i = 1, \cdots n$

所以
$$b \mid a$$
 (2)

由
$$(1)$$
, (2) 得 $a = b$.

20.

证完

21.

证明: 由最大公约数的性质,可得
$$(aa', ab', ba', bb') = ((aa', ab'), (ba', bb'))$$
 $\therefore (aa', ab') = a(a', b') = ad'$ $(ba', bb') = b(a', b') = bd'$ $\therefore (aa', ab', ba', bb') = (ad', bd') = (a, b)d' = dd'$ 证完

22.

证明:
$$\because d \mid 2n^2$$

 $\therefore 2n^2 = kd, k \in \mathbb{Z}^+$
若 $n^2 + d$ 是完全平方数,则 $\exists x \in \mathbb{Z}$
使得 $n^2 + d = x^2$
 $\therefore x^2 = n^2 + d = n^2 + \frac{2n^2}{k}$
 $\therefore k^2x^2 = n^2(k^2 + 2k)$
 k^2x^2 是平方数, n^2 是平方数,则 $(k^2 + 2k)$ 为平方数.
(这是因为: 若 $a, b, c \in \mathbb{Z}^+$ 满足 $a^2 = b^2c$

则 c 一定为平方数 可设 p 为任意素数,则 $p(a^2) = p(b^2c) = p(b^2) + p(c)$ $\therefore 2p(a) = 2p(b) + p(c)$ $p(a) = p(b) + \frac{1}{2}p(c)$ $\therefore p(c)$ 一定为偶数 又由 p 的任意性,知 c 为平方数.) 但 $k^2 < k^2 + 2k < (k+1)^2$ $\therefore k^2 + 2k$ 不是平方数,矛盾 $n^2 + d$ 不是平方数.

证完

23.

证明: 设n 的标准分解式为 $n=\prod_{i=1}^s p_i^{\alpha_i}$,其中 p_i 是不同的素数, $\alpha_i\in\mathbb{Z}^+,i=1,2,\cdots,s$

$$:: [u, v] = n$$

u,v 的标准分解式中只能包含素数 p_1,p_2,\cdots,p_s

现讨论 p_i 在 u,v 的标分解式中的指数

$$p_i(n) = \alpha_i, [u, v] = n$$

$$\therefore p_i(u) \leqslant \alpha_i, \ p_i(v) \leqslant \alpha_i$$

$$\textcircled{1}p_i(u) = p_i(v) = \alpha_i$$

②
$$p_i(u) = \alpha_i, p_i(v) < \alpha_i, 则 p_i(v)$$
 可取 $0, 1, 2, \dots, \alpha_i - 1$, 共有 α_i 种可能

③
$$p_i(v) = \alpha_i, p_i(u) < \alpha_i$$
,同理,有 α_i 种可能

 p_i 的指数分配共有 $\alpha_i + \alpha_i + 1 = 2\alpha_i + 1$ 种可能

对 $i = 1, 2, \dots, s$ 在 u, v 的标准分解式中

 p_1, p_2, \cdots, p_s 的指数分配有 $(2\alpha_1 + 1)(2\alpha_2 + 1)\cdots(2\alpha_s + 1)$ 种可能

∴满足
$$[u,v]=n$$
 的数对 $\{u,v\}$ 个数为 $\prod_{i=1}^{s}(2\alpha_i+1)$

另一方面,
$$n^2 = \prod_{i=1}^s p_i^{2\alpha_i}$$

 $\therefore n^2$ 的因数的个数为 $\prod_{i=1}^s (2\alpha_i + 1)$

即数对 $\{u,v\}$ 适合 [u,v]=n 的对数为 n^2 的因数的个数.

24.

证明: 设 $\frac{21n+4}{14n+3}$ 可约,且设 (21n+4,14n+3)=d,d>1

$$\therefore 21n + 4 = (14n + 3) + (7n + 1)$$

 $\therefore d \mid (7n+1)$

X :: 14n + 3 = 2(7n + 1) + 1

 $\therefore d \mid 1$,与 d > 1 矛盾

 \therefore 对任意自然数 n 都不可约.

证完

25.

证明: 设 (a,b) 为方程 $x^m = y^n$ 的整数解

则 $a^m = b^n$

$$\therefore b = (a^m)^{\frac{1}{n}} = (a^{\frac{1}{n}})m$$

由 b 是整数且 (m, n) = 1

 $\therefore a^{\frac{1}{n}}$ 也是整数,记 $a^{\frac{1}{n}} = t$,则 $a = t^n$

代入
$$a^m = b^n$$
, 得 $(t^n)^m = b^n$

$$\therefore (t^m)^n = b^n \quad \therefore b = t^m$$

 $\mathbb{RI} \ a = t^n, b = t^m$

∴ 方程 $x^m = y^n$ 的全部整数解可由 $x = t^n, y = t^m$ 给出.

证完

26. 证明: 由奇+奇=偶, 偶+偶=偶, 知

当两点对应的横纵坐标的奇偶性一样时, 中点为整点

5个坐标只有4种可能

(奇,奇),(奇,偶),(偶,奇),(偶,偶)

由抽屉原理可知,至少有两个坐标奇偶相同

所以必有两点的连线的中点也是整点.

证完

28. 证明: 设 $v_n = \{1 + n, 1 + 2n, \dots, 1 + kn, \dots\}$,其中 $n > 2, k = 1, 2, \dots$

 $\therefore n > 2$

 $\therefore n-1 \notin v_n, 2n-1 \notin v_n$ 且 n-1 与 2n-1 均不可能分解成几个 v_n 中的数的乘积

$$(n-1)(2n-1) = 1 + (2n-3)n \in v_n$$
$$(n-1)^2 = 1 + (n-2)n \in v_n$$

$$(2n-1)^2 = 1 + 4(n-1)n \in v_n$$

$$\therefore (n-1)(2n-1), (n-1)^2, (2n-1)^2$$
 都是 v_n 中的不可约数
设 $r = (n-1)^2(2n-1)^2$,则
由 $r = (n-1)^2(2n-1)^2 = 1 + (n(2n-3)^2 + 2(2n-3))n$,得
 $r \in v_n$

显然,r 有以下两种方式表示为 v_n 中不可约数的乘积

$$r = (n-1)^2 (2n-1)^2$$

$$r = ((n-1)(2n-1))((n-1)(2n-1))$$

:. 存在 $r \in v_n$ 它可用至少两种方式表示为 v_n 中若干不可约数的乘积. 证完

29. 证明: 设
$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$$
 $b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_n^{\beta_n}$ $c = p_1^{\gamma_1} p_2^{\gamma_2} \cdots p_n^{\gamma_n}$, 其中 p_i 是素数, $\alpha_i, \beta_i, \gamma_i$ 是非负整数 $i = 1, 2, \cdots, n$ $\therefore [a, b] = \prod_{i=1}^n p_i^{\max(\alpha_i, \beta_i)}$ $(a, b) = \prod_{i=1}^n p_i^{\min(\alpha_i, \beta_i)}$ \therefore 只需证 $2 \max(\alpha_i, \beta_i, \gamma_i) - \max(\alpha_i, \beta_i) - \max(\beta_i, \gamma_i) - \max(\gamma_i, \alpha_i)$ $= 2 \min(\alpha_i, \beta_i, \gamma_i) - \min(\alpha_i, \beta_i) - \min(\beta_i, \gamma_i) - \min(\gamma_i, \alpha_i)$ 不失一般性, $\alpha_i \leq \beta_i \leq \gamma_i, i = 1, 2, \cdots, n$ 则 $2 \max(\alpha_i, \beta_i, \gamma_i) - \max(\alpha_i, \beta_i) - \max(\beta_i, \gamma_i) - \max(\gamma_i, \alpha_i)$ $= 2\gamma_i - \beta_i - \gamma_i - \gamma_i = -\beta_i$ $2 \min(\alpha_i, \beta_i, \gamma_i) - \min(\alpha_i, \beta_i) - \min(\beta_i, \gamma_i) - \min(\gamma_i, \alpha_i)$

: 原式成立. 证完

 $=2\alpha_i-\alpha_i-\beta_i-\alpha_i=-\beta_i$

故
$$d(n) = (\alpha_1 + 1) \cdots (\alpha_l + 1)$$
 为 n 的因子个数
由 (1) , 得 $n^{d(n)} = n^4$ (2)
由 (2) , 得 $(\alpha_1 + 1) \cdots (\alpha_l + 1) = 4$
 $\therefore l = 1, \alpha_1 = 3$ 或 $l = 2, \alpha_1 = \alpha_2 = 1$
即 n 为一素数的立方或两不同素数之积.

证完

31. 证明: 设
$$n = p + 1 \cdots p_s, p_i$$
 是素数 $(i = 1, 2, \cdots, s), p_1 < \cdots < p_s$ $\therefore \sigma(n) = (p_1 + 1) \cdots (p_s + 1)$ 若 $\sigma(n) = 2n$ 则 $s = 1$ 时, $p_1 + 1 = 2p_1$,得 $p_1 = 1$,矛盾 当 $p_1 \ge 2$ 时,若 n 是奇数,则有 $4 \mid \sigma(n)$,即 $4 \mid 2n$,与 n 为奇数矛盾 故 n 是偶数 当 $s = 2$ 时, $(p_1 + 1)(p_2 + 1) = 2p_1p_2$ $\therefore n = 6$ 当 $s = 3$ 时, $\sigma(n) = (2 + 1)(p_2 + 1)(p_3 + 1) = 2 \cdots 2p_2p_3$ 即 $3(p_2 + 1)(p_3 + 1) = 4p_2p_3$,无解 当 $s > 3$ 时,由 $8 \mid \sigma(n)$ 得 $4 \mid n$,与 n 无平方因子矛盾 $\therefore n = 6$.

32. 证明: 设 $F_n = 2^{2^n} + 1$, $n \ge 0$

$$\therefore 2^{2^{n}} - 1 = (2^{2^{n-1}} - 1)(2^{2^{n-1}} + 1)
= (2^{2^{n-2}} - 1)(2^{2^{n-2}} + 1)(2^{2^{n-1}} + 1)
= \cdots
= (2^{2^{1}} - 1)(2^{2^{1}} + 1) \cdots (2^{2^{n-2}} + 1)(2^{2^{n-1}} + 1)
= (2^{2^{0}} - 1)(2^{2^{0}} + 1)(2^{2^{1}} + 1) \cdots (2^{2^{n-2}} + 1)(2^{2^{n-1}} + 1)
= F_0 F_1 \cdots F_{n-1}$$

 $:: (F_i, F_j) = 1 (i \neq j)$,即 $F_0, F_1, \cdots, F_{n-1}$ 各至少有一个不同的素因子 $:: 2^{2^n} - 1$ 至少有 n 个不同的素因数. 证完

33. 证明: 令
$$S = \frac{1}{x} + \frac{1}{x+1} + \dots + \frac{1}{x+n}$$
, 可设 $x + i = 2^{\lambda_i} l_i, \lambda_i \ge 0, 2 \nmid l_i, i = 0, 1, \dots, n$ 由于 $n \in \mathbb{Z}^+$

 $\therefore x, x+1, x+n$ 中至少有一个偶数, 即至少有一个 i, 使 $\lambda_i > 0$

设 λ 是 $\lambda_0,\cdots,\lambda_n$ 中最大的数

则不可能有 $k \neq j$,而 $\lambda_k = \lambda_i = \lambda$

否则,设 $0 \leqslant k < j \leqslant n, \lambda_k = \lambda_j = \lambda$

$$x + k = 2^{\lambda} l_k, x + j = 2^{\lambda} l_j$$

$$\therefore x + k < x + j$$

$$\therefore l_k < l_j$$

:. 存在偶数 h 使 $l_k < h < l_j$

故在 x + k < x + j 之间有数 $2^{\lambda}h, 2 \mid h$

即可设 $2^{\lambda}h = x + e = 2^{\lambda e}le > x + k = 2^{\lambda}lk$

此时 $\lambda_e > \lambda$,与 l 的最大性矛盾

 $\therefore \exists |k, 0 \leqslant k \leqslant n \notin x + k = 2^{\lambda} lk, 2 \nmid l_k$

设 $l = l_0 \cdots l_n$, 在 S 两端乘以 $2^{\lambda-1}l$, 得

$$2^{\lambda - 1}lS = \frac{N}{2} + M \tag{1}$$

其中
$$\frac{N}{2} = 2^{\lambda - 1} l \frac{1}{x + k} = \frac{2^{\lambda - 1} l}{2^{\lambda} l^k}$$

 $\therefore N$ 是奇数,其余项均为整数,设它们的和为 M

由①知 S 不是整数

若 S 为整数,则由①

 $2^{\lambda}lS - 2M = N$

左端是偶数,右端是奇数,不可能.

 $p_{k+1} \leq p \leq N < 2^{2^{k+1}}$ 成立.

证完

34. **证明**: 当
$$n=1$$
 时, $p_1=2<4$,成立 假设对 $n\leqslant k$ 都成立,即 $p_i<2^{2^i}, i=1,2,\cdots,k$ 下证 $p_{k+1}<2^{2^{k+1}}$ 令 $N=p_1\cdots p_k+1$,则 $N=p_1\cdots p_k+1\leqslant 2^{2+2^2+\cdots+2^k}=2^{2^{k+1}-2}<2^{2^{k+1}}$ 设 p 是 N 的一个素因子则 $p\neq p_i, i=1,\cdots,k$

35. 证明: 设 $(2^m - 1, 2^n + 1) = d$

... 可设
$$2^m = dk + 1, k > 0$$

$$2^n = de - 1, e > 0$$
 2

①、②式分别自乘n次和m次,有

$$2^{nm} = (dk+1)^n = td+1, t>0$$

(1)

$$2^{nm} = (de - 1)^m = ud - 1, u > 0$$

 $\therefore (u-t)d = 2$

 $d \mid 2$

 $∴ d = 1 \space$ 或 2

又: $2^m - 1$ 和 $2^n + 1$ 都是奇数

$$\therefore d = 1$$
 证完

36. **证明**: 存在 m 的因数与 a 互素,例如 1 用 c 表示 m 的因数中与 a 互素的所有书中的最大数设 (a+bc,m)=d 先证 d=1,由 (a,b)=1, (a,c)=1,得

$$(a, bc) = 1 \tag{1}$$

$$\therefore (d, a) = 1, (d, bc) = 1 \tag{2}$$

否则 (d,a) > 1 或 (d,bc) > 1

∴ (d, a) 或 (d, bc) 有素因数

即存在素数 p, 使 $p \mid (d, a)$ 或 $p \mid (d, bc)$

 $\overline{\mathbb{m}} d \mid a + bc$

当 $p \mid (d,a)$ 时, $p \mid d,p \mid a$

 $\therefore p \mid a + bc, p \mid bc$, 与(1)矛盾

当 $p \mid (d,bc)$ 时,同理,与(1)矛盾

 $\therefore (d,bc)=1, \therefore (d,c)=1$

另一方面,由 $d \mid m, c \mid m \ \ \ \ (d, c) = 1$,得

 $dc \mid m$

又由
$$(2)$$
 的 $(d,a) = 1, (a,c) = 1$ 得 $(a,cd) = 1$

由于 c 是 m 的因数中与 a 互素的数中最大的数

$$\therefore d = 1$$
 (否则 $cd > c$)

$$\mathbb{P}(a+bc,m)=1$$

对
$$k = c + lm, l = 0, 1, \dots$$
, 有 $(a + bk, m) = (a + bc + blm, m) = (a + bc, m) = 1$
∴ 有无穷多 k , 使 $(a + bk, m) = 1$ 证完

37. 证明: 设
$$(a+b, \frac{a^p+b^p}{a+b}) = d$$
,则 $a+b=dt, \frac{a^p+b^p}{a+b} = ds$

$$\therefore d^{2}st = a^{p} + b^{p} = a^{p} + (dt - a)^{p}$$
$$= d^{p}t^{p} - pad^{p-1}t^{p-1} + \dots + pdta^{p-1}$$

约去 dt,有

$$ds = d^{p-1}t^{p-1} - pad^{p-2}t^{p-2} + \dots + pa^{p-1}$$

$$d \mid pa^{p-1}$$

下证
$$(d,a) = 1$$
, 设 $(d,a) = d_1$, 若 $d_1 > 1$

则存在素数 q, 使 $q \mid d_1, q \mid d, q \mid a$

 $\overrightarrow{\text{m}} d \mid a+b, \therefore q \mid a+b$

$$\therefore q \mid b$$
, 与 $(a,b) = 1$ 矛盾

$$\therefore (d, a) = 1, \quad \therefore (d, a^{p-1}) = 1$$

由①, 得 d | p

∴
$$d=1$$
 或 p .

38. **证明**: 考察裴波那契数列 $\{u_n\}$

$$u-1=1$$
 $u_2=1, u_{n+2}=u_{n+1}+u_n, n=1, 2, \cdots,$ (1)

先证
$$u_{n+5} > 10u_n, \ n \geqslant 2$$
 (2)

$$n=2$$
 时, $u_2=1, u_7=13$,(2) 成立

设
$$n \ge 3$$
 时, $u_{n+5} = u_{n+4} + u_{n+3} = 2u_{n+3} + u_{n+2} = 2u_{n+2} + 2u_{n+1} = 5u_{n+1} + 3u_n = 8u_n + 5u_{n-1}$

$$\therefore u_n = u_{n-1} + u_{n-2} \leqslant 2u_{n-1}
\therefore 2u_n \leqslant 4u_{n-1}
\therefore u_{n+5} = 8u_n + 5u_{n-1} > 8u_n + 4u_{n-1} \geqslant 8u_n + 2u_n = 10u_n
由 (2), 得 $u_{n+5t} > 10^t u_n, n = 2, 3, \dots, t = 1, 2, \dots$
(3)$$

设
$$a=n_0, b=n_1$$
, 由辗转相除法得

$$n_{0} = q_{1}n_{1} + n_{2}, 0 < n_{2} < n_{1}$$

$$n_{1} = q_{2}n_{2} + n_{3}, 0 < n_{3} < n_{2}$$

$$\cdots$$

$$n_{k-2} = q_{k-1}n_{k-1} + n_{k}, 0 < n_{k} < n_{k-1}$$

$$n_{k-1} = q_{k}n_{k}$$

$$(4)$$

 $\therefore q_k \geqslant 2, \therefore$ 由 (4), 有

$$n_{k-1} = q_k n_k \geqslant 2n_k \geqslant 2 = u_3$$

 $n_{k-2} \geqslant n_{k-1} + n_k \geqslant u_3 + u_2 = u_4$
...
 $n_1 \geqslant n_2 + n_3 \geqslant u_k + u_{k-1} = u_{k+1}$

$$\therefore$$
 若 $k > 5l$, 即 $k \ge 5l + 1$, 则 $n_1 \ge u_{k+1} \ge u_{5l+2}$
由 (3), 有 $u_1 \ge u_{5l+2} > 10^l u_2 = 10^l$ (5)

- ∵ n₁ 位数是 l
- :: (5) 不成立

$$\therefore k \leq 5l$$
 证完

39. **证明**: 反证法 若
$$a_1 \leq \left[\frac{2n}{3}\right] \leq \frac{2n}{3}$$
,则 $3a_1 \leq 2n$
 \therefore 在不大于 $2n$ 的 $n+1$ 个数 $2a_1, 3a_1, a_2, \cdots, a_n$ 中
 若 $2a_1, 3a_1$ 不与 a_2, \cdots, a_n 中任一个相等,则至少有一个数整除另一个

由于 $2a_1 \nmid 3a_1, 3a_1 \nmid 2a_1$, 故可设

$$2a_1 \mid a_j, 2 \leqslant j \leqslant n \tag{1}$$

或
$$3a_1 \mid a_j, 2 \leqslant j \leqslant n$$
 (2)

或
$$a_j \mid 2a_1, 2 \leqslant j \leqslant n$$
 (3)

或
$$a_j \mid 3a_1, 2 \leqslant j \leqslant n$$
 (4)

或
$$a_i \mid a_j, 2 \leqslant i < j \leqslant n$$
 (5)

若 $2a_1$ 或 $3a_1$ 与某一 a_i 相等,则可归为 (1), (2) 情况

由 (1), 得
$$[a_1, a_j] \leq [2a_1.a_j] = a_j \leq 2n$$

由 (2),得
$$[a_1, a_j] \leq [3a_1.a_j] = a_j \leq 2n$$

由 (3), 得
$$[a_1, a_j] \leq [2a_1.a_j] = 2a_1 \leq 2n$$

由 (4),得
$$[a_1, a_j] \leq [3a_1.a_j] = 3a_1 \leq 2n$$

由 (5),得
$$[a_i, a_j] = a_j \leqslant 2n$$

与
$$[a_i, a_j] > 2n$$
 矛盾,故 $a_1 > \left\lceil \frac{2n}{3} \right\rceil$ 证完

40. **证明**: 设最大公因数为 d

$$\begin{pmatrix} 2n \\ 0 \end{pmatrix} + \begin{pmatrix} 2n \\ 1 \end{pmatrix} + \begin{pmatrix} 2n \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 2n \\ 2n \end{pmatrix} = 2^{2n}$$

$$\begin{pmatrix} 2n \\ 0 \end{pmatrix} - \begin{pmatrix} 2n \\ 1 \end{pmatrix} + \begin{pmatrix} 2n \\ 2 \end{pmatrix} - \dots + \begin{pmatrix} 2n \\ 2n \end{pmatrix} = 0$$

$$\begin{pmatrix} 2n \\ 1 \end{pmatrix} + \begin{pmatrix} 2n \\ 3 \end{pmatrix} + \dots + \begin{pmatrix} 2n \\ 2n - 1 \end{pmatrix} = 2^{2n-1}$$

$$\therefore d \mid 2^{2n-1}$$

... 可设
$$d=2^{\lambda}, \lambda\geqslant 0$$
,又设 $2^{k}\mid n$,下证 $d=2^{k+1}$

由于 $2^{k+1} \mid \binom{2n}{1}$

∴ 只需证
$$2^{k+1} \mid {2n \choose j}, j = 3, 5, \cdots, 2n-1$$
 (1)

设 $n=2^k l, 2 \nmid l$

$$\boxplus \binom{2n}{j} = \binom{2^{k+1}l}{j} = \frac{2^{k+1}l}{j} \binom{2^{k+1}l-1}{j-1}, j = 3, 5, \dots, 2n-1$$

即
$$j\binom{2n}{j} = 2^{k+1}l\binom{2^{k+1}l-1}{j-1}, j = 3, 5, \dots, 2n-1$$

 $\therefore 2^{k+1} \mid j\binom{2n}{j}$
又 $\therefore j$ 是奇数,即 $2 \nmid j$
 $\therefore (2^{k+1}, j) = 1$
 $\therefore 2^{k+1} \mid \binom{2n}{j}$
即 $d = 2^{k+1}$

41. **证明**: 设
$$a_1, a_2, \cdots, a_k$$
 是 k 个不同的正整数 则 $a_2 - a_1, a_3 - a_1, \cdots, a_k - a_1$ 是 $k - 1$ 个不同的正整数 由于 $k \geqslant \left[\frac{n+1}{2}\right] > \frac{n+1}{2}$ $\therefore 2k-1 > n$ 又 $\therefore 2k-1$ 个数 $a_1, \cdots, a_k, a_2 - a_1, \cdots, a_k - a_1$ 都不超过 n $\therefore \exists 1 \leqslant i < j \leqslant k$,使 $a_j - a_1 = a_i$ 即 $a_j = a_1 + a_i$ 证完

其它章节答案联系qq:3563928035