# Evaluating QPU Performance with the Ising Model

Nolan McMahon
Under the Supervision of Dr. Barry Sanders

4 Apr 2019

Thanks to Dr. Sanders, Seyed Shakib Vedaie, and Archismita Dalal for their support of this project.

#### Aim

Introduction

To use state of the art classical computational solving techniques to evaluate Ising model instances, evaluate the performance, and compare against D-Wave's 2000Q.

Methods

#### Claim

There exists at least one Ising model optimization problem which is evaluated with a smaller time-to-solution metric on D-Wave's 2000Q than with an optimized, classical simulated annealer.

## Optimization

Introduction

An optimization problem seeks to extremize a given function.

## Ising Problem

$$H = -\sum_{i=1}^{N} B_i s_i - \sum_{i=nn(i)}^{N} \sum_{j \in nn(i)} J_{ij} s_i s_j$$

Which vector  $\vec{S}$  (with each  $s_i \in \{-1, +1\}$ ) minimizes the Ising Hamiltonian H, given some input sets:

$$\vec{B} = \{B_1, B_2, \dots, B_N\}; \qquad \vec{J} = \begin{pmatrix} J_{1,1} & J_{1,2} & \cdots & J_{1,N} \\ J_{2,1} & J_{2,2} & \cdots & J_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ J_{N,1} & J_{N,2} & \cdots & J_{N,N} \end{pmatrix}$$

### The Chimera Unit Cell

#### Bipartite Cell

A graph with a set of vertices V and a set of non-zero edges E is **bipartite** if its vertices can be partitioned into two disjoint subsets A and B such that every edge  $e_i \in E$  connects one vertex from set A to one vertex in set B.

#### One Chimera Unit Cell



# The Chimera Graph



# From Ising Model to Chimera Graph

### Embedding Ising Problems onto the Chimera Graph

Features of the Ising problem need to be embedded onto the Chimera graph, solved, and then interpreted.

- The set of vertices (qubits) V are binary and therefore should correspond to the set of spins  $\vec{S}$ .
- The weight associated with each vertex should correspond to the magnetic field strength  $\vec{B}$  at the location each spin.
- The set of edges E correspond to the set of interspin coupling strengths J.

#### Hardware Limitations

Only problems which can be embedded onto the Chimera graph represent feasible problems.

## **Instance Definition**



Introduction

### **Embedding this Problem**

Consider the following problem:

# Example Problem



# Simulated Annealing



# D-Wave's Quantum Processing Unit (QPU)

#### D-Wave's 2000Q

The QPU inside of the 2000Q is described by the Hamiltonian:

initial Hamiltonian

$$\mathsf{H}_{\mathsf{Ising}} = \underbrace{-\frac{\mathit{A}(s)}{2} \sum_{i} \hat{\sigma}_{x}^{(i)}}_{\mathsf{I}}$$

$$+\underbrace{\frac{B(s)}{2}\left(\sum_{i}h_{i}\hat{\sigma}_{z}^{(i)}+\sum_{i>j}J_{i,j}\hat{\sigma}_{z}^{(i)}\hat{\sigma}_{z}^{(j)}\right)}_{\text{final Hamiltonian}}$$

## Annealing Schedule



## Performance Metric

## Success probability Ps

The probability of finding the global minimum in a single annealing run of time  $t_A$ .

#### Time-to-Solution

The time-to-solution (TTS) required to achieve a success probability of  $P_s$  at least once with a desired probability P is found using:

$$TTS = t_A \frac{\log(1 - P)}{\log(1 - P_s)}$$

## **Problem Definition**

#### **Problem Definition**

Introduction

Consider the problem described by:

$$\vec{B} = \{0.5143, 0.9702, 0.7975, 0.5248, 0.5397, 0.1735, 0.6969, 0.6760\}$$

$$\vec{J} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.909 \\ 0 & 0 & 0 & 0 & 0.917 & 0.623 & 0.832 & 0.292 \\ 0 & 0 & 0 & 0 & 0.361 & 0.650 & 0 & 0.603 \\ 0 & 0 & 0 & 0 & 0 & 0.063 & 0.291 & 0.255 \\ 0 & 0.917 & 0.361 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.623 & 0.650 & 0.063 & 0 & 0 & 0 & 0 \\ 0 & 0.832 & 0 & 0.291 & 0 & 0 & 0 & 0 \\ 0.909 & 0.292 & 0.603 & 0.255 & 0 & 0 & 0 & 0 \end{pmatrix}$$

# Chimera Graph Representation









### Solver Performance





# Summary

- Minimizing the Ising model's Hamiltonian constitutes an optimization problem.
- The Ising model Hamiltonian can be embedded onto the Chimera graph, which represents the 2000Q's hardware structure.
- The structure of the Chimera graph restricts the problems that can be solved by the 2000Q.
- Chimera problems can be instantiated with an integer multiple size
  of the smallest instance and grown by embedding the problem
  again in an adjacent unit of the Chimera graph.
- Both simulated annealing and quantum annealing can be used to solve optimization problems.
- There exists at least one problem which can be solved with a smaller time to solution metric on the 2000Q than with an optimized simulated annealer.