实 验 报 告

评分: 4

<u>少年班</u> 系 06 级

学号 PB06000680

姓名 张力

日期 2007-4-9

实验题目:光电效应法测普朗克常量

实验目的:了解光电效应的基本规律,并用光电效应的方法测量普朗克常量,并测定光电管的光电特性曲

线。

实验仪器:光电管、滤波片、水银灯、相关电学仪器

实验原理:在光电效应中,光显示出粒子性质,它的一部分能量被物体表面电子吸收后,电子逸出形成光

电子,若使该过程发生于一闭合回路中,则产生光电流。

实验原理图:

图 8.2.1-1 光电效应实验原理图

图 8.2.1-2 光电管的伏安特性曲线

图一:原理图

光电流随加速电压差 U 的增加而增加,其大小与光强成正比,并且有一个遏止电位差 U_a 存在 (此时光电流 I=0)。

当 U=Ua时, 光电子恰不能到达 A, 由功能关系:

$$\frac{1}{2}mv^2 = eU_a$$

而每一个光子的能量 $\mathcal{E} = hV$,同时考虑到电子的逸出功 A,由能量守恒可以知道:

$$hv = \frac{1}{2}mv^2 + A$$

这就是爱因斯坦光电效应方程。

若用频率不同的光分别照射到 $K \perp$,将不同的频率代入光电效应方程,任取其中两个就可以解出:

$$h = \frac{e(U_1 - U_2)}{V_1 - V_2}$$

其中光的频率 ν 应大于红限 $\nu_0=\frac{A}{h}$,否则无电子逸出。根据这个公式,结合图象法或者平均值法就可以在一定精度范围内测得 h 值。

实验中单色光用水银等光源经过单色滤光片选择谱线产生;使用交点法或者拐点法可以确定较

<u>实 验 报 告</u> :

<u>少年班</u>系<u>06</u>级

学号 PB06000680

姓名 张力

日期 2007-4-9

准确的遏止电位差值。

实验内容:1、在光电管入光口装上 365nm 的滤色片,电压为-3V,调整光源和光电管之间的距离,直到电流为-0.3 µA,固定此距离,不需再变动;

- 2、分别测 365nm,405nm,436nm,546nm,577nm 的 V-I 特性曲线,从-3V 到 25V,拐点出测量间隔尽量小;
- 3、装上 577 滤色片,在光源窗口分别装上透光率为 25%、50%、75%的遮光片,加 20V 电压,测量饱和光电流 Im 和照射光强度的关系,作出 Im-光强曲线;
- 4、作 Ua-V 关系曲线, 计算红限频率和普朗克常量 h, 与标准值进行比较。

数据处理和误差分析:

本实验中测量的原始数据如下:

电压 U/V	-3.0	-2.0	-1.7	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0	-0.9	-0.8
电流 I/uA	-0.3	-0.3	-0.2	-0.1	0.0	0.1	0.4	0.7	1.1	1.6	2.1
电压 U/V	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3
电流 I/uA	2.6	3.2	3.7	4.4	5.1	5.8	6.5	7.2	7.7	8.4	9.0
电压 U/V	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.5	2.0	2.5
电流 I/uA	9.4	9.8	10.3	10.6	10.9	11.3	11.7	12.3	13.0	14.1	14.6
电压 U/V	3.0	4.0	5.0	7.0	10.0	15.0	20.0	25.0			
电流 I/uA	15.4	16.5	17.2	18.3	19.2	19.8	20.0	20.1			

表一: 365nm 光下电压和光电流

电压 U/V	-3.0	-2.0	-1.3	-1.0	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3
电流 I/uA	-0.2	-0.2	-0.1	0.0	0.1	0.4	0.7	1.1	1.6	2.3	3.0
电压 U/V	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
电流 I/uA	3.7	4.4	5.0	5.6	6.1	6.5	6.9	7.4	7.7	8.0	8.2
电压 U/V	0.9	1.0	1.2	1.5	2.0	2.5	3.0	4.0	5.0	7.0	10.0
电流 I/uA	8.4	8.7	9.0	9.6	10.1	10.8	11.2	11.7	12.1	12.9	13.3
电压 U/V	15.0	20.0	25.0								
电流 I/uA	13.7	13.9	14.0								

表二:405nm 光下电压和光电流

电压 U/V	-3.0	-2.0	-1.5	-1.2	-1.0	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
电流 I/uA	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.1	0.3	0.6	1.0	1.5
电压 U/V	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
电流 I/uA	2.1	2.7	3.4	3.9	4.4	4.9	5.3	5.6	5.9	6.2	6.4
电压 U/V	0.8	0.9	1.0	1.2	1.5	2.0	2.5	3.0	4.0	5.0	7.0
电流 I/uA	6.6	6.8	7.0	7.3	7.8	8.3	8.7	9.1	9.6	9.8	10.1

<u>实 验 报 告</u> _{评分:}4

少年班_	系	06 级		学号 <u>PB060</u>	00680	姓名 <u>张力</u>	日期 2007-4-9
电压 U/V	10.0	15.0	20.0	25.0			
电流 I/uA	10.5	10.8	10.9	10.9			

表三:436nm 光下电压和光电流

电压 U/V	-3.0	-2.0	-1.5	-1.0	-0.8	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
电流 I/uA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	1.2	1.7
电压 U/V	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
电流 I/uA	2.2	2.6	3.0	3.2	3.5	3.7	3.9	4.0	4.2	4.3	4.4
电压 U/V	1.2	1.5	2.0	2.5	3.0	4.0	5.0	7.0	10.0	15.0	20.0
电流 I/uA	4.6	4.8	5.2	5.4	5.5	5.8	5.9	6.1	6.2	6.3	6.4
电压 U/V	25.0										
电流 I/uA	6.4										

表四:546nm 光下电压和光电流

电压 U/V	-3.0	-2.0	-1.5	-1.0	-0.7	-0.5	-0.4	-0.3	-0.2	-0.1	0.0
电流 I/uA	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.8	1.0
电压 U/V	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.5
电流 I/uA	1.2	1.4	1.5		1.6		1.7			1.8	1.9
电压 U/V	2.0	3.0	5.0	10.0	15.0	20.0	25.0				
电流 I/uA	2.0	2.0	2.1	2.1	2.2	2.2	2.2				

表五:577nm 光下电压和光电流

100%	75%	50%	25%	0%
2.2	1.8	1.1	0.6	0

表六:在不同透光率下的饱和光电流(577nm光下)

电流单位: µ A

根据以上表一至表五的数据,可分别作出各种不同波长(频率)光下,光电管的 V-I 特性曲线:

<u>少年班 系 06 级</u>

学号 PB06000680

姓名 张力

日期 2007-4-9

图三:405nm 光下光电管的伏安特性曲线

<u>少年班</u>系<u>06</u>级

学号 PB06000680

姓名 张力

日期 2007-4-9

图四:436nm 光下光电管的伏安特性曲线

图五:546nm 光下光电管的伏安特性曲线

<u>少年班 系 06 </u>级

学号 PB06000680

姓名 张力

日期 2007-4-9

图六:577nm 光下光电管的伏安特性曲线

根据以上五个图,利用拐点法可确定在不同光频率下的遏止电压差值,列表如下:

/nm	/Hz	Ua/V
365	8.22×10^{14}	1.58
405	7.41×10^{14}	1.14
436	6.88×10^{14}	\ 1.04
546	5.49×10^{14}	0.69
577	5.20×10^{14}	0.53

表七:光频率和遏止电压的关系

由此作出频率-遏止电压图,用直线拟合:

少年班 系 06 级

学号 PB06000680

姓名 张力

日期 2007-4-9

图七:频率-遏止电压图

其中该直线的斜率 k=h/e。

利用最小二乘法计算直线斜率,得:

$$k = \frac{5\sum_{i=1}^{5} v_{i} U_{a_{i}} - \sum_{i=1}^{5} v_{i} \sum_{i=1}^{5} U_{a_{i}}}{5\sum_{i=1}^{5} v_{i}^{2} - (\sum_{i=1}^{5} v_{i})^{2}} \approx 3.50 \times 10^{-15} \,\text{V/Hz}$$

故可求得 r=0.984。

那么斜率的相对标准差为

$$\frac{s_k}{k} = \sqrt{(\frac{1}{r^2} - 1)/(n - 2)} = \sqrt{(\frac{1}{0.984^2} - 1)/(5 - 2)} = 0.105$$

普朗克常量的实验平均值为 $h=ek=1.60\times 10^{-19}\times 3.50\times 10^{-15}$ $Js\approx 5.6\times 10^{-34}$ $J\cdot s$ 又对该实验而言, $_{\rm B}=0.1{\rm V}$,其相对标准差为 $\frac{\Delta_{\rm B}}{{\rm U_a}}<\frac{0.1}{0.53}=0.19$ (取最大误差进行计算)。

取 P=0.997, 那么普朗克常量的展伸不确定度为:

$$U_{0.95} = \sqrt{u_A^2 + (K\frac{\Delta_B}{C})^2} = 5.6 \times 10^{-34} \times \sqrt{0.105^2 + \left(3 \times \frac{0.19}{3}\right)^2} \,\text{J} \cdot \text{s} = 1.2 \times 10^{-34} \,\text{J} \cdot \text{s}$$

<u>实 验 报 告</u> _{评分:}4

少年班 系 06 级

学号 PB06000680

姓名 张力

日期 2007-4-9

得到普朗克常量的最终表达形式为:

$$h = \overline{h} \pm U_{0.997} = (5.6 \pm 1.2) \times 10^{-34} \,\text{J} \cdot \text{s}, P = 0.997$$

将结果和公认值比较,发现偏差较大,但仍然在(-3 ,3)范围内,可以认为在一定范围内符合要求。本实验得出的结果误差较大,原因主要是电学仪器示数不稳定造成读数偏差,以及在读图过程中判断拐点的偏差有关。

对于光电管 K 的逸出功,根据公式 A=h $-eU_a$,分别计算五种频率下 A 的值:

365nm $\overline{\mathsf{F}}$: A₁=2.08 × 10⁻¹⁹J

405nm \top : A₂=2.32 × 10⁻¹⁹J

436nm $\overline{\mathsf{F}}: A_3=2.19 \times 10^{-19} \mathrm{J}$

546nm $\mathbf{F}: A_4=1.97 \times 10^{-19} J$

577nm $\mathbf{F}: \mathbf{A}_5 = 2.06 \times 10^{-19} \mathbf{J}$

故平均值: $\overline{A} = 2.12 \times 10^{-19} J$,再利用误差传递公式:

$$U_{A0.997} < U_{0.997} \times V_{\text{max}} + e \times \Delta_{\text{R}} = (1.2 \times 10^{-34} \times 8.22 \times 10^{14} + 1.6 \times 10^{-19} \times 0.1) \text{J} = 1.1 \times 10^{-20} \text{J}$$

那么逸出功的最终表达式为:

$$A = \overline{A} \pm U_{A0.997} = (2.12 \pm 0.11) \times 10^{-19} J, P = 0.997$$

考虑红限频率,由于 $h\nu_0 = A$,那么

$$v_0 = A/h = 2.12 \times 10^{-19} / 5.6 \times 10^{-34} Hz = 3.78 \times 10^{14} Hz$$

由误差传递公式,那么

$$\frac{U_{\nu 0.997}}{\overline{V}_0} = \sqrt{\left(\frac{U_{A0.997}}{\overline{A}}\right)^2 + \left(\frac{U_{0.997}}{h}\right)^2} = \sqrt{\left(\frac{0.11}{2.12}\right)^2 + \left(\frac{1.1}{5.6}\right)^2} = 0.203$$

$$U_{v0.997} = 0.203 \times 3.82 \times 10^{14} \, Hz = 7.7 \times 10^{13} \, Hz$$

故红限频率的最终表达式为:

$$V_0 = (\overline{V}_0 \pm U_{v0.997}) = (3.78 \pm 0.77) \times 10^{14} Hz, P = 0.997$$

(此实验不用算不确定度)

对于表六中关于光电流和光强度的关系,可以作出下图:

少年班 系 06 级

学号 PB06000680

姓名 张力

日期 2007-4-9

图八:光饱和电流和光强度的关系

从上图可以看出,在误差范围内,光饱和电流和光强度成正比例关系。(在这里不作定量计算)