)

3年()組()番 名前(

- 1 通信プロトコルについて知ろう
 - (① <u>通信プロトコル</u>)・・・通信するときの必要な手順や、情報の表現と 形式などに間する取り決め
 - ※インターネットで通信するときはより多くのプロトコル(決め事)が必要なので プロトコルを下の図のように階層ごとに分けている。

OSI参照モデル	TCP/IP階層モデル				
		7層 (L7)	アプリケーション層	ソフトウェア	ゲートウェイ
アプリケーション層	アプリケーション階	6層 (L6)	プレゼンテーション層		
プレゼンテーション層		5層 (L5)	セッション層		
セッション層		4層(L4)	トランスポート層		
トランスポート層	トランスポート層	3層 (L3)	ネットワーク層		ルーター(L3スイッチイングHUB)
ネットワーク層	インターネット層	2層 (L2)	データリンク層		L2スイッチングHUB
データリンク層	ネットワークインターフェイス層	1層 (L1)	物理層	ハードウェア	LANケーブル
https://thinkit.co.jp/story/2015/04/30/5800					

☆OSI参照モデルの覚え方は頭文字を取って「アプセトデネブ」と覚える。

- 2 通信の暗号化技術について
 - (1) (① SSID)・・・wifi ネットワーク(アクセスポイント)を識別する名前
 - (2)(② <u>VPN</u>)・・・専用線っぽいこと(仮想的なこと)をインターネットでする仕組み専用線同様に第三者からの侵入が厳しいです
 - (3) (③ WPA3)・・・無線 LAN において通信の盗聴などを防ぐ最新の暗号化技術 ☆数年前までは(④ WEP)という技術が使われていたが脆弱性などが わかってきたため現在では非推奨になっている
- 3 IP アドレスについて知ろう
- (1) (① <u>IP アドレス</u>)・・・コンピュータ機器に割り当てられる番号。 ネットワーク上の住所のようなもの。

IPアドレスについて実習してみよう。

(2) 自分のパソコンの IP アドレスを調べてみよう。

- 4 IP アドレスの種類について知ろう
- ●①のように32 ビットで IP アドレスを表す方式を(②IPv4)という。 現在インターネット接続機器やコンピューター、スマホが増えたことにより IP アドレス枯渇問題が起きている。近年では(③128 ビット) で IP アドレスを表す方式である(④ IPv6)が利用されつつある。
- 5 IP アドレスの構造について
 - 例) IP アドレス:192.168.0.3

- (①ネットワーク部)・・・・・どのネットワークを使用しているかを指定する部分
- (②<u>ホスト部</u>)・・・ ネットワーク内でどのコンピューターを使用しているかを 指定する部分
- ●上の場合ネットワーク部が()ビット、ホスト部が()ビット 表記方法は 192.168.0.1/() 右端はネットワーク部のビット数
- 問題 このネットワークに割り当てることができるコンピュータは何台? <u>ホスト部を見て 10 進数に直す!</u> ただし!全て 0 になるものと全て 1 になるものはカウントしない
- 問題 192.168.0.3 と 192.168.1.1 が同じネットワークの場合当てることができる ネットワーク部は何ビット?
- 5 ドメインについて知ろう
 - (1) (① <u>ドメイン名</u>)・・・IP アドレスではわかりにくいので、 人がわかりやすいように文字列にしたもの
 - (2) IP アドレスを①に変えるものを(② DNS サーバー)という。

問4 次の先生と生徒 (Kさん) の会話文を読み,空欄 サ ~ セソ に当てはまる数字 をマークせよ。

Kさん: 先生, 今読んでいるネットワークの本の中に 192. 168. 1. 3/24 という記述があったのですが, IP アドレスの後ろに付いている「/24」は何を意味しているのですか?

先生: それは、ネットワーク部のビット数のことだね。

Kさん:ネットワーク部ってなんですか?

先 生: IPv4 方式の IP アドレスでは、ネットワーク部によって所属するネットワークを判別することができるんだ。例えば IP アドレス 192. 168. 1. 3/24 の場合、ネットワーク部のビット数は 24 で、IP アドレスを二進法で表した時の最上位ビットから 24 ビットまでがネットワーク部という意味だ。図で表すと次のようになり、ホスト部を 0 にしたものをネットワークアドレスと呼び192. 168. 1. 0/24 と表すんだ。

図2 先生がホワイトボードに書いた説明

Kさん:ここに書いてあるホスト部ってなんですか?

先生:このネットワークに接続するコンピュータなどに割り当てる固有の番号のことだよ。

Kさん:この場合は、番号が3ということですか?

先生:その通りだ。 サビットで表される数のうち、0にしたものはネットワーク アドレスとして使用されるし、すべてのビットが1である255は管理目的で使 用するため、このネットワークにはホスト部として1~254までの254台のネットワーク機器を割り当てることができるんだ。この考え方でいくと、ネットワーク部のビット数を変えることで、同じアドレスでもネットワークの規模を変えることができるんだよ。例えば、192.168.1.3/シスが割り当てられているコンピュータが接続するネットワークには、何台のネットワーク機器が接続できるかな?

Kさん:0 とすべてのビットを 1 にしたものが利用できないから, $256 \times 256 - 2$ で 65,534 台ですか。

先生:そうだね。一見同じようなアドレスでもネットワークの規模が異なることになるね。では、172.16.129.1と172.16.160.1が同じネットワークに属していると考えるとネットワーク部のビット数は最大何ビットにすることができるかな?

Kさん:二進法で表して最上位ビットから同じところまでだから,最大 セソ ビット ということですか。

先 生:よく理解できたようだね。