Assignment -I

Sudjet Nigam 2023 AA05523 Sec 3 3

1. Population Voriance and population Standard Deviation.

Xi	fi	χ_{ij}	rj-u	$(\chi_i - \mu)^2$	$(x_i - \mu)^2 \chi_i$
11	33	363	-8.98	80.64	2661-12
13	21	273	-6.98	48.72	1023-12
15	26	390	-4.98	24.8	644.8
17	34	578	-2.98	8-88	3101 301.92
19	41	779	-0.98	+ 0.96	22.2
21	27	567	0-1.02	-01.04	33.36
23	36	8 28	3.02	9.12	28·08 328·32
25	25	625	5.02	25.20	630
27	39	1053	7.02	49.28	1921.92
29	20	580	9.02	81.36	1627.2
	302	6036		330	9205.84

$$N = \sum_{i=1}^{n} \frac{1}{2} = \frac{19.98}{2}$$

$$N = \sum_{i=1}^{n} \frac{1}{2} = \frac{19.98}{302} = \frac{19.98}{302}$$

Variance
$$\sigma^2 = \frac{\sum (x_i - \mu)^2 f}{\sum f} = \frac{9205.84}{302} = \frac{30.48}{}$$

Standard Deviation
$$\sigma = \sqrt{30.48} = 5.52$$

Machine Illow

PROBABILITY' 11 letters 'STATISTICS' 10 letters

Common letters to both words = 'A', 'I', 'T'

Let A be the event of choosing letter from 'PROBABILITY'

Le B be the event of choosing letter from 'STATISTICS"

Since A & B ovre independent so P(AAB)= P(A) P(B)

Probability of getting 'A' from 'PROBABILITY' = 11 Probability of getting 'A' from 'STATISTICS' = 1

Prob. of getting A from both = 1 x 1 = 1

Probability of getting 'I' forom 'PROBABILITY' = 2

Probability of getting 'I' from 'STATISTICS' = 2

Prob of getting I from both = $\frac{2}{11} \times \frac{2}{10} = \frac{4}{110}$

Probability of getting 'T' from 'PROBABILITY' = 1
Probability of getting 'T' from 'STATISTICS' = 3
10

Prob. of getting 'T' from both = $\frac{1}{11} \times \frac{3}{10} = \frac{3}{110}$

Total probability of getting both letter common $P(Commonletters) = \frac{1}{110} + \frac{4}{110} + \frac{3}{110} = \frac{8}{110} = \frac{4}{55}$

Sudipt Nigam 2023 AA 05 523

3.
$$P(x) = 0.25$$

with tabus

New probability

$$P(X_{new}) = \frac{0.25 \times 1}{0.65} = 0.385$$

$$P(\gamma_{\text{new}}) = \frac{0.25 \times 1}{0.65} = 0.385$$

$$P(W_{new}) = \frac{0.15 \times 1}{0.65} = 0.230$$

= (80A)9

Machine Name No. of botts/day defective?.

M1 2 000 3%. IT IT AT 2500 4%.

M2 2500 4%.

M3 4000 2.5%.

let D be the event of getting dejective bolt.

$$P(D|M_1) = 0.03$$

 $P(D|M_2) = 0.04$

$$P(D|M_3) = 0.025$$

Probability of picking the bolt from M₁ $P(M_1) = \frac{2000}{8500} = \frac{4}{17}$ $M_2 P(M_2) = \frac{2500}{8500} = \frac{5}{17}$

$$M_3 P(M_3) = \frac{4000}{8500} = \frac{8}{17}$$

Applying Baye's theorem

Probability of bolt from Me given its defective

$$P(M_2|D) = P(D|M_2) \cdot P(M_2)$$

P(D/M1) · P(M1) + P(D/M2) · P(M2) + P(D/M3) · P(M3)

$$= \frac{0.04 \times 5/17}{0.03 \times 4/17 + 0.04 \times 5/17 + 0.025 \times 8/17}$$

$$P(M_2|D) = \frac{5}{13} = 0.384$$

Let E_1 is the event of getting O Redo ball from A let E_2 is the event of getting I Red ball from A let E_3 is the event of getting 2 Red ball from A let E_4 is the event of getting 3 Red ball from A

$$P(E_1) = \frac{4c_3}{8c_3} = \frac{1}{14}$$

$$P(E_2) = \frac{4c_2 \cdot 4c_1}{8c_3} = \frac{3}{7}$$

$$P(E_3) = \frac{4c_1 \cdot 4c_2}{8c_3} = \frac{3}{7}$$

$$P(E_4) = \frac{4c_3}{8c_3} = \frac{1}{14}$$

$$P(R|E_2) = \frac{3}{5}$$

 $P(R|E_3) = \frac{2}{5}$
 $P(R|E_4) = \frac{1}{5}$

By theory of total probability we have

$$P(R) = P(E_1) \cdot P(R|E_1) + P(R|E_2) \cdot P(E_2) + P(R|E_3) \cdot P(E_3) + P(R|E_4) \cdot P(E_4)$$

$$= \frac{4}{5} \times \frac{1}{14} + \frac{3}{5} \times \frac{3}{7} + \frac{2}{5} \times \frac{3}{7} + \frac{1}{5} \times \frac{1}{14}$$

$$P(R) = \frac{35}{70} = \boxed{\frac{1}{2}} = 0.5$$