Note del corso di Analisi matematica 1

Gabriel Antonio Videtta

23, 24 e 28 marzo 2023

Proprietà principali della continuità e dei limiti di funzione

Nota. Nel corso del documento, per un insieme X, qualora non specificato, si intenderà sempre un sottoinsieme generico dell'insieme dei numeri reali esteso $\overline{\mathbb{R}}$. Analogamente per f si intenderà sempre una funzione $f: X \to \overline{\mathbb{R}}$.

Proposizione. Dati $f: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X tale che $\forall (x_n) \subseteq X \setminus \{\overline{x}\} \mid x_n \xrightarrow[n \to \infty]{} \overline{x}$ vale che $f(x_n)$ converge. Allora il limite di $f(x_n)$ è sempre lo stesso, indipendentemente dalla scelta di (x_n) .

Dimostrazione. Siano per assurdo $(x_n), (y_n) \subseteq X \setminus \{\overline{x}\}$ due successioni tali che $x_n, y_n \xrightarrow[n \to \infty]{} \overline{x}$ e che $f(x_n) \xrightarrow[n \to \infty]{} L$ e $f(y_n) \xrightarrow[n \to \infty]{} G$ con $L \neq G$. Si costruisce allora la successione $(z_n)_{n \in \mathbb{N}} \subseteq X \setminus \{\overline{x}\}$ nel seguente modo:

$$z_n = \begin{cases} x_n & \text{se } n \text{ è pari,} \\ y_n & \text{altrimenti,} \end{cases}$$

ossia unendo le due successioni (x_n) e (y_n) in modo tale che agli indici pari corrispondano gli elementi di x_{2n} e a quelli dispari quelli di y_{2n+1} .

Si mostra che $z_n \xrightarrow[n \to \infty]{} \overline{x}$. Sia I un intorno di \overline{x} . Allora, dal momento che le due sottosuccessioni $(x_{2n}), (y_{2n+1}) \xrightarrow[n \to \infty]{} \overline{x}$, esistono sicuramente due $n_x, n_y \in \mathbb{N}$ tali che $n \geq n_x \implies x_{2n} \in I$ e $n \geq n_y \implies y_{2n+1} \in I$. Pertanto, detto $n_k = \max\{n_x, n_y\}, n \geq n_k \implies x_{2n}, y_{2n+1} \in I$, ossia che per $n \geq 2n_k$, $z_n \in I$. Si conclude allora che $(z_n) \xrightarrow[n \to \infty]{} \overline{x}$.

Tuttavia $f(z_n)$ non può convergere a nessun limite, dal momento che le due sottosuccessioni $f(x_{2n})$ e $f(y_{2n+1})$ convergono per ipotesi a valori distinti ed

il limite deve essere unico. L'esistenza di tale successione contraddice allora l'ipotesi, \mathcal{I} .

Proposizione. Data $(x_n) \subseteq \mathbb{R}$, sia $f : \mathbb{N} \to \overline{\mathbb{R}}$ tale che $f(n) := x_n, \forall n \in \mathbb{N}$. Allora $f(n) \xrightarrow[n \to \infty]{} L \iff x_n \xrightarrow[n \to \infty]{} L$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Allora, poiché $f(n) \xrightarrow[n \to \infty]{} L$, esiste un intorno $J = [a, \infty]$ tale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$. Poiché ∞ è un punto di accumulazione di \mathbb{N} , $A = J \cap \mathbb{N} \setminus \{\infty\}$ non è mai vuoto. Inoltre, poiché $A \subseteq \mathbb{N}$, A ammette un minimo¹, detto m. Vale in particolare che $f(n) \in I$, $\forall n \ge m$, e quindi che $x_n \in I$, ossia che $x_n \xrightarrow[n \to \infty]{} L$.

(\iff) Sia I un intorno di L. Dal momento che $x_n \xrightarrow[n \to \infty]{} L$, $\exists n_k \in \mathbb{N} \mid n \geq n_k \implies x_n \in I$. Allora, detto $J = [n_k, \infty]$, vale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$, ossia che $f(n) \xrightarrow[n \to \infty]{} L$.

Proposizione. Siano $f: X \to \overline{\mathbb{R}}, \overline{x} \in X$ punto di accumulazione di X. Allora sono fatti equivalenti i seguenti:

- (i) $f(x) \xrightarrow[x \to \overline{x}]{} f(\overline{x})$,
- (ii) f è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $f(\overline{x})$. Dal momento che \overline{x} è un punto di accumulazione, si ricava allora da entrambe le ipotesi che esiste un intorno J di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$, e quindi, per definizione, la tesi.

Osservazione. Se \overline{x} è un punto isolato di X, allora f è continua in \overline{x} . Pertanto per rendere la proposizione precedente vera, è necessario ipotizzare che \overline{x} sia un punto di accumulazione (infatti il limite in un punto isolato non esiste per definizione).

Proposizione. Siano $f: X \to \mathbb{R}$ e \overline{x} punto di accumulazione di X. Siano $L \in \overline{\mathbb{R}}$ e $\tilde{f}: X \cup \{\overline{x}\} \to \overline{\mathbb{R}}$ tale che²:

 $^{^{1}}$ Non è in realtà necessario che si consideri il minimo di tale insieme, occorre semplicemente che A sia non vuoto e che sia infinito.

²Tale costruzione si chiama **estensione continua** di f, nel caso in cui L sia proprio $\lim_{x\to \overline{x}} f(x)$.

$$\tilde{f}(x) = \begin{cases} L & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti.} \end{cases}$$

Allora $f(x) \xrightarrow[x \to \overline{x}]{} L \iff \tilde{f}$ è continua in \overline{x} .

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Si ricava allora dalle ipotesi che esiste sempre un intorno J di \overline{x} tale che $f(\underbrace{J\cap X\setminus\{\overline{x}\}}_{A})\subseteq I$. Dal momento che $\overline{x}\notin A$, si

deduce che $f(J \cap X \setminus \{\overline{x}\}) = \tilde{f}(J \cap X \setminus \{\overline{x}\}) \subseteq I$, ossia che \tilde{f} è continua in \overline{x} .

 (\Longleftarrow) Sia I un intorno di L. Poiché \tilde{f} è continua in $\overline{x},$ esiste un intorno J di \overline{x} tale che $\tilde{f}(\underbrace{J\cap (X\cup \{\overline{x}\})\setminus \{\overline{x}\}})\subseteq I.$ Poiché $\overline{x}\notin A$ e \overline{x} è punto di

accumulazione, si deduce che
$$I \supseteq \tilde{f}(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) = f(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) \supseteq f(J \cap X \setminus \{\overline{x}\})$$
, e quindi che $f(x) \xrightarrow[x \to \overline{x}]{} L$.

Osservazione. Tutte le funzioni elementari (e.g. $\sin(x)$, $\cos(x)$, $\exp(x)$, $\ln(x)$, |x|, x^a) sono funzioni continue nel loro insieme di definizione³.

Proposizione. Siano $f: X \to Y \subseteq \overline{\mathbb{R}}$ e $g: Y \to \overline{\mathbb{R}}$ e sia $\overline{x} \in X$. Sia f continua in \overline{x} e sia g continua in $f(\overline{x})$. Allora $g \circ f$ è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $z=g(f(\overline{x}))$. Allora, poiché g è continua in $f(\overline{x})$, $\exists J$ intorno di $f(\overline{x}) \mid g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$. Tuttavia, poiché f è continua in \overline{x} , $\exists K$ intorno di $\overline{x} \mid f(K \cap X \setminus \{\overline{x}\}) \subseteq J$, da cui si conclude che $g(f(K \cap X \setminus \{\overline{x}\})) \subseteq I$, dacché $\forall x \in K \cap X \setminus \{\overline{x}\}$, o $f(x) = f(\overline{x})$, e quindi g(f(x)) = z chiaramente appartiene a I, o altrimenti $f(x) \in J \cap Y \setminus \{f(\overline{x})\} \implies g(f(x)) \in g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$, da cui la tesi.

Teorema. (di sostituzione nel limite) Sia $f: X \to Y \subseteq \overline{\mathbb{R}}$, sia \overline{x} punto di accumulazione di X tale che $f(x) \xrightarrow[x \to \overline{x}]{\overline{x}} \overline{y}$. Se \overline{y} è un punto di accumulazione di Y e $g: Y \to \overline{\mathbb{R}}$ è tale che $\overline{y} \in Y \implies g$ continua in \overline{y} e $g(y) \xrightarrow[y \to \overline{y}]{\overline{y}} \overline{z}$, allora $g(f(x)) \xrightarrow[x \to \overline{x}]{\overline{x}} \overline{z}$.

 $^{^3}$ Tale fatto è una mera conseguenza della derivabilità delle funzioni elementari nel proprio insieme di definizione.

Dimostrazione. Siano $\tilde{f}:X\cup\{\overline{x}\},\ \tilde{g}:Y\cup\{\overline{y}\}$ due funzioni costruite nel seguente modo:

$$\tilde{f}(x) = \begin{cases} \overline{y} & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti,} \end{cases}$$
 $\tilde{g}(y) = \begin{cases} \overline{z} & \text{se } y = \overline{y}, \\ g(y) & \text{altrimenti.} \end{cases}$

Poiché $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$ e \overline{x} è un punto di accumulazione di X, per una proposizione precedente, \tilde{f} è continua in \overline{x} . Analogamente \tilde{g} è continua in \overline{y} . Dal momento che vale che $\tilde{f}(\overline{x}) = \overline{y}$, per la proposizione precedente $\tilde{g} \circ \tilde{f}$ è continua in \overline{x} , e dunque $\lim_{x \to \overline{x}} \tilde{g}(\tilde{f}(x)) = \tilde{g}(\tilde{f}(\overline{x})) = \overline{z}$.

Si consideri adesso la funzione $g \circ f : X \to \overline{\mathbb{R}}$ definita nel seguente modo:

$$\widetilde{g \circ f}(x) = \begin{cases} \overline{z} & \text{se } x = \overline{x}, \\ g(f(x)) & \text{altrimenti.} \end{cases}$$

Si mostra che $\widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f}$. Se $x = \overline{x}$, chiaramente $\widetilde{g \circ f}(x) = \overline{z} = \widetilde{g}(\widetilde{f}(\overline{x}))$. Se $x \neq \overline{x}$, si considera il caso in cui $\widetilde{f}(x) = f(x)$ è uguale a \overline{y} ed il caso in cui non vi è uguale.

Se $\tilde{f}(x) \neq \overline{y}$, $\tilde{g}(\tilde{f}(x)) = \tilde{g}(f(x)) = g(f(x)) = g(f(x))$. Se invece $\tilde{f}(x) = \overline{y}$, $\overline{y} \in Y$, e quindi g è continua in \overline{y} , da cui necessariamente deriva che $g(\overline{y}) = \overline{z}$. Allora $g \circ f(x) = g(f(x)) = g(\overline{y}) = \overline{z} = \tilde{g}(\tilde{f}(\overline{x}))$.

Si conclude allora che $\widetilde{g\circ f}=\widetilde{g}\circ\widetilde{f},$ e quindi che $\widetilde{g\circ f}$ è continua in \overline{x} . Pertanto, dalla proposizione precedente, $g(f(x))\xrightarrow[x\to\overline{x}]{}\overline{z}$.

Esercizio 1. Si mostri che tutte le ipotesi della proposizione precedente sono necessarie, fornendo un controesempio.

Soluzione. Chiaramente \overline{x} e \overline{y} devono essere punti di accumulazione dei propri insiemi di appartenenza, altrimenti non sarebbe possibile calcolarne il limite.

Inoltre, se $\overline{y} \in Y$ è necessario che g sia anche continua in \overline{y} (nella dimostrazione della proposizione si è infatti utilizzato il fatto che $g(\overline{y}) = \overline{z}$). Se così non dovesse essere, si potrebbero definire due funzioni f e g in modo tale che:

$$f(x) = 0,$$
 $g(y) = \begin{cases} 0 & \text{se } y = 0, \\ 1 & \text{altrimenti.} \end{cases}$

Si osserva subito che g(y) non è continua in 0. Inoltre $f(x) \xrightarrow[x \to 0]{} 0$ e $g(y) \xrightarrow[y \to 0]{} 1$. Tuttavia $g(f(x)) = g(0) = 0 \xrightarrow[x \to 0]{} 0 \neq 1$, da cui il controesempio.

Proposizione. Date $f_1, f_2: X \to \mathbb{R}$ continue in \overline{x} . Allora:

- (i) $f_1 + f_2$ è continua in \overline{x} ,
- (ii) f_1f_2 è continua in \overline{x} .

Dimostrazione. Si dimostrano i due punti separatamente.

- (i) Sia $f := f_1 + f_2$. Poiché f_1, f_2 sono continue in $\overline{x}, \forall \varepsilon > 0$, $\exists \delta > 0 \mid |x \overline{x}| < \delta \implies |f_1(x) f_1(\overline{x})|, |f_2(x) f_2(\overline{x})| \le \varepsilon$ (per ogni $\varepsilon > 0$, è infatti sufficiente considerare $\delta = \min\{\delta_1, \delta_2\}$, ossia il minimo delle semilunghezze degli intorni di \overline{x} rispetto a f_1 ed f_2). Allora, per la disuguaglianza triangolare, $|f(x) f(\overline{x})| \le |f_1(x) f_1(\overline{x})| + |f_2(x) f_2(\overline{x})| \le 2\varepsilon$. Si ricava dunque che $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |f(x) f(\overline{x})| \le 2\varepsilon$, e quindi, poiché $2\varepsilon \xrightarrow[\varepsilon \to 0^+]{} 0$, si conclude anche che f è continua in \overline{x} .
- (ii) Dal momento che f_1, f_2 sono continue in $\overline{x}, \forall \varepsilon > 0, \exists \delta > 0$ tale che $|x \overline{x}| < \delta \implies |f_1(x) f_1(\overline{x})|, |f_2(x) f_2(\overline{x})| < \varepsilon$ (vale lo stesso ragionamento del punto precedente). Allora $f_1(x) = f_1(\overline{x}) + e_1$ e $f_2(x) = f_2(\overline{x}) + e_2$, con $|e_1|, |e_2| < \varepsilon$ e $|x \overline{x}| < \delta$. Dunque $f_1(x)f_2(x) = f_1(\overline{x})f_2(\overline{x}) + \underbrace{e_1f_2(\overline{x}) + e_2f_1(\overline{x}) + e_1e_2}_{e}$. In particolare, per la disuguaglianza triangolare, $|e| \leq |e_1f_2(\overline{x})| + |e_2f_1(\overline{x})| + |e_1e_2| \leq \varepsilon |f_2(\overline{x})| + \varepsilon |f_1(\overline{x})| + \varepsilon^2$. Poiché $\varepsilon' \xrightarrow[\varepsilon \to 0^+]{} 0$, si ricava che $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |x \overline{x}| < \delta \Longrightarrow |f_1(x)f_2(x) f_1(\overline{x})f_2(\overline{x})| = |e| \leq \varepsilon'$, ossia si conclude che f_1f_2 è continua in \overline{x} .

Proposizione. Date $f_1, f_2: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X. Se $\lim_{x \to \overline{x}} f_1(x) = L_1 \in \mathbb{R}$ e $\lim_{x \to \overline{x}} f_2(x) = L_2 \in \mathbb{R}$, allora valgono i seguenti risultati:

(i)
$$f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} L_1 + L_2$$
,

(ii)
$$f_1(x)f_2(x) \xrightarrow[x \to \overline{x}]{} L_1L_2$$
.

Dimostrazione. Si definiscono preliminarmente le funzioni \tilde{f}_1 , $\tilde{f}_2: X \cup \{\overline{x}\} \to \mathbb{R}$ in modo tale che:

$$\tilde{f}_1(x) = \begin{cases} L_1 & \text{se } x = \overline{x}, \\ f_1(x) & \text{altrimenti,} \end{cases}$$
 $\tilde{f}_2(x) = \begin{cases} L_2 & \text{se } x = \overline{x}, \\ f_2(x) & \text{altrimenti.} \end{cases}$

Si dimostrano ora i due risultati separatamente.

(i) Si definisce $\widetilde{f_1+f_2}:X\cup\{\overline{x}\}\to\overline{\mathbb{R}}$ nel seguente modo:

$$\widetilde{f_1 + f_2}(x) = \begin{cases}
L_1 + L_2 & \text{se } x = \overline{x}, \\
f_1(x) + f_2(x) & \text{altrimenti.}
\end{cases}$$

Si osserva che la somma $L_1 + L_2$ è ben definita dacché sia L_1 che L_2 sono elementi di \mathbb{R} . Poiché da una proposizione precedente \tilde{f}_1 e \tilde{f}_2 sono continue in \overline{x} , $\tilde{f}_1 + \tilde{f}_2$ è continua anch'essa in \overline{x} . È sufficiente allora dimostrare che $f_1 + f_2 = \tilde{f}_1 + \tilde{f}_2$. Se $x \neq \overline{x}$, $f_1 + f_2(x) = f_1(x) + f_2(x) = \tilde{f}_1(x) + \tilde{f}_2(x) = (\tilde{f}_1 + \tilde{f}_2)(x)$. Se invece $x = \overline{x}$, $f_1 + f_2(x) = L_1 + L_2 = \tilde{f}_1(x) + \tilde{f}_2(x) = (\tilde{f}_1 + \tilde{f}_2)(x)$. Quindi $f_1 + f_2 = \tilde{f}_1 + \tilde{f}_2$, e dunque si conclude che $f_1 + f_2$ è continua in \overline{x} , ossia che $(f_1 + f_2)(x) = f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} L_1 + L_2$.

(ii) Si definisce, analogamente a prima, $\widetilde{f_1f_2}:X\cup\{\overline{x}\}\to\overline{\mathbb{R}}$ nel seguente modo:

$$\widetilde{f_1f_2}(x) = \begin{cases} L_1L_2 & \text{se } x = \overline{x}, \\ f_1(x)f_2(x) & \text{altrimenti.} \end{cases}$$

Come prima, si osserva che il prodotto L_1L_2 è ben definito dacché sia L_1 che L_2 sono elementi di \mathbb{R} . Poiché da una proposizione precedente \tilde{f}_1 e \tilde{f}_2 sono continue in \overline{x} , $\tilde{f}_1\tilde{f}_2$ è continua anch'essa in \overline{x} . È sufficiente allora dimostrare che $f_1f_2 = \tilde{f}_1\tilde{f}_2$. Se $x \neq \overline{x}$, $f_1f_2(x) = f_1(x)f_2(x) = \tilde{f}_1(x)\tilde{f}_2(x) = (\tilde{f}_1\tilde{f}_2)(x)$. Se invece $x = \overline{x}$,

 $\widetilde{f_1f_2}(x) = L_1L_2 = \widetilde{f_1}(x)\widetilde{f_2}(x) = (\widetilde{f_1}\widetilde{f_2})(x)$. Quindi $\widetilde{f_1f_2} = \widetilde{f_1}\widetilde{f_2}$, da cui si conclude che $\widetilde{f_1f_2}$ è anch'essa continua in \overline{x} , ossia che $(f_1f_2)(x) = f_1(x)f_2(x) \xrightarrow[x \to \overline{x}]{} L_1L_2$.

Definizione. (intorno destro e sinistro) Se $\overline{x} \in \mathbb{R}$, si dicono **intorni destri** di \overline{x} gli intervalli della forma $[\overline{x}, \overline{x} + \varepsilon]$ con $\varepsilon > 0$. Analogamente, gli **intorni sinistri** sono gli intervalli della forma $[\overline{x} - \varepsilon, \overline{x}]$.

Definizione. (punto di accumulazione destro e sinistro) Sia $\overline{x} \in X$. Si dice che \overline{x} è un **punto di accumulazione destro** di X se $\forall I$ intorno destro di \overline{x} , $I \cap X \setminus \{\overline{x}\} \neq \emptyset$. Analogamente si dice **punto di accumulazione** sinistro di X se è tale per gli intorni sinistri.

Definizione. (limite destro e sinistro) Sia \overline{x} un punto di accumulazione destro di X. Allora si dice che f ammette un **limite destro** L in \overline{x} , $\lim_{x\to \overline{x}^+} f(x) = L$, se e solo se $\forall I$ intorno di L, $\exists J$ intorno destro di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$. Analogamente si definisce il **limite sinistro**: $\lim_{x\to \overline{x}^-} f(x) = L \iff \forall I$ intorno di L, $\exists J$ intorno sinistro di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$.

Definizione. (continuità destra e sinistra) Sia $\overline{x} \in X$. Allora f è **continua** a **destra** in \overline{x} se e solo se $\forall I$ intorno di $f(\overline{x})$, $\exists J$ intorno destro di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$. Analogamente si dice che f è **continua a sinistra** su \overline{x} se e solo se $\forall I$ intorno di $f(\overline{x})$, $\exists J$ intorno sinistro di \overline{x} tale che $f(J \cap X \setminus \{\overline{x}\}) \subseteq I$.

Osservazione. Vi sono chiaramente alcuni collegamenti tra la continuità destra e sinistra e la continuità classica, così come ve ne sono tra il limite destro e sinistro ed il limite classico.

- $ightharpoonup \overline{x}$ punto di accumulazione destro o sinistro di $X \iff \overline{x}$ punto di accumulazione di X,
- ▶ \overline{x} punto di accumulazione destro e sinistro di $X \Longrightarrow \overline{x}$ punto di accumulazione di X (non è però per forza vero il contrario, è sufficiente considerare $(0,\infty)$, dove 0 è solo un punto di accumulazione destro),
- ightharpoonup f è continua sinistra e destra in \overline{x} ,
- ▶ Se \overline{x} è un punto di accumulazione destro e sinistro, $\lim_{x\to \overline{x}} f(x) = L \iff \lim_{x\to \overline{x}^+} f(x) = L$ e $\lim_{x\to \overline{x}^-} f(x) = L$,
- ▶ Se \overline{x} è un punto di accumulazione solo destro, $\lim_{x\to\overline{x}} f(x) = L \iff$

 $\lim_{x \to \overline{x}^+} f(x) = L,$

▶ Se \overline{x} è un punto di accumulazione solo sinistro, $\lim_{x\to \overline{x}} f(x) = L \iff \lim_{x\to \overline{x}^-} f(x) = L$.

Proposizione. Sia $f: X \to \overline{\mathbb{R}}$ monotona e sia \overline{x} un punto di accumulazione destro di X. Allora esiste $\lim_{x \to \overline{x}^+} f(x)$. Analogamente esiste il limite sinistro se \overline{x} è invece un punto di accumulazione sinistro di X.

Dimostrazione. Senza perdità di generalità, si assuma f crescente (per il caso decrescente è sufficiente considerare g=-f). Si consideri allora l'insieme:

$$E = \{ f(x) \mid x > \overline{x} \in X \in X \}.$$

Si consideri adesso $L=\inf E$ e un suo intorno I. Se non esistesse $x>\overline{x}$ tale che $f(x)\in I$, sup I sarebbe un minorante di E maggiore⁴ di L, \mathcal{E} . Quindi esiste $x>\overline{x}\mid f(x)\in I$, e dal momento che f è crescente, l'intorno destro J di \overline{x} di raggio $x-\overline{x}$ sarebbe tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq I$, da cui la tesi. \square

Esempio. (funzione discontinua in ogni punto di \mathbb{R}) Si consideri la funzione⁵ $f: \mathbb{R} \to \mathbb{R}$ definita nel seguente modo:

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q}, \\ 0 & \text{altrimenti,} \end{cases}$$

ossia la funzione indicatrice dell'insieme $\mathbb Q$ in $\mathbb R$. Si dimostra che f non è continua in nessun punto di $\mathbb R$. Sia infatti $\overline x \in \mathbb R \setminus \mathbb Q$. Dal momento che $\mathbb Q$ è denso in $\mathbb R$, $\overline x$ è un punto di accumulazione di $\mathbb Q$, e quindi esiste una successione $(x_n) \subseteq \mathbb Q$ tale che $x_n \xrightarrow[n \to \infty]{} \overline x$. Se f fosse continua in $\overline x$, $\lim_{n \to \infty} f(x_n) = 0$, ma per l'intorno $I = [0 - \frac{1}{2}, 0 + \frac{1}{2}]$ di 0 non esiste alcun n_k tale per cui $f(x_n) \in I \ \forall n \geq n_k$, dal momento che, per definizione di f, $f(x_n) = 1 \ \forall n \in \mathbb N$. Quindi f non è continua in nessun $\overline x \in \mathbb R \setminus \mathbb Q$.

Sia ora $\overline{x} \in \mathbb{Q}$. \overline{x} è un punto di accumulazione di $\mathbb{R} \setminus \mathbb{Q}$ (si può infatti considerare la successione $(x_n) \subseteq \mathbb{R} \setminus \mathbb{Q}$ definita da $x_n = \overline{x} + \frac{\sqrt{2}}{n}$, che è tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$). Analogamente a come visto prima, allora, per l'intorno $I = [1 - \frac{1}{2}, 1 + \frac{1}{2}]$ di $1, f(x_n) \notin I \ \forall n \in \mathbb{N}$, e quindi f non è continua neanche su $\overline{x} \in \mathbb{Q}$, ossia è discontinua ovunque.

⁴Infatti $f(x) \ge L$ dacché è L è un minorante di E, da cui $f(x) \notin I \implies f(x) > \sup I$.

⁵Tale funzione è detta funzione di Dirichlet, in onore al matematico tedesco Peter Dirichlet (1805 – 1859).

Esercizio 2. Mostrare⁶ che l'insieme dei punti di discontinuità di una funzione $f: I \to \mathbb{R}$ monotona è al più numerabile, dove I è un intervallo.

Soluzione. Si assuma f crescente, senza perdita di generalità (altrimenti è sufficiente considerare g=-f). Sia E l'insieme dei punti di discontinuità di f. $\forall \overline{x} \in E$, \overline{x} è un punto di accumulazione destro e sinistro di I (infatti I è un intervallo), ed in particolare, per la proposizione precedente, esistono sempre il limite sinistro $L^-(\overline{x})$ ed il limite destro $L^+(\overline{x})$ in \overline{x} (dal momento che f è monotona), e sono tali che f che in intervallo f considerate diversi, altrimenti f sarebbe continua in \overline{x} ; inoltre f è crescente). Allora sia $f:E\to\mathbb{Q}$ tale che $\overline{x}\mapsto c$, dove $c\in\mathbb{Q}$ è un punto razionale in $(L^-(\overline{x}),L^+(\overline{x}))$ (tale c esiste sempre, per la densità di \mathbb{Q} in \mathbb{R}). Inoltre f0, f1, f2, f3, f3, f4, f5, f5, f6, f7, f8, f8, f9, f9, e quindi ogni intervallo da cui f9, e setratto è distinto al variare di f1, f3, f4, f5, f5, f7, f7, f7, f8, f8, f9, f9, e quindi ogni intervallo da cui f9, e setratto è distinto al variare di f1, f3, f4, f5, f5, f7, f8, f8, f8, f9, f

Teorema. (della permanenza del segno, per le successioni) Data $(x_n) \subseteq \mathbb{R}$ tale che $x_n \xrightarrow[n \to \infty]{} L > 0$, allora (x_n) è strettamente positiva definitivamente. Analogamente, se L < 0, (x_n) è negativa definitivamente.

Dimostrazione. Senza perdita di generalità si pone L>0. Allora esiste sicuramente un intorno I di L tale che ogni suo elemento è positivo (e.g. $I=\left[L-\frac{L}{2},L+\frac{L}{2}\right]$, se $L\in\mathbb{R}$, altrimenti $[a,\infty]$ con a>0 se $L=+\infty$). Dal momento che $x_n\xrightarrow[n\to\infty]{}L$, $\exists\,n_k\mid n\geq n_k\implies x_n\in I$, ossia, in particolare, $n\geq n_k\implies x_n>0$, da cui la tesi. Analogamente per il caso di L<0. \square

Teorema. (della permanenza del segno, per le funzioni) Sia $f: X \to \overline{\mathbb{R}}$ e sia \overline{x} un punto di accumulazione di X. Se $\lim_{x\to \overline{x}} f(x) = L > 0$, allora $\exists J$ intorno non vuoto di \overline{x} tale che $f(x) > 0 \ \forall x \in J \cap X \setminus \{\overline{x}\}$. Analogamente se L < 0, $\exists J$ intorno non vuoto di \overline{x} tale che $f(x) < 0 \ \forall x \in J \cap X \setminus \{\overline{x}\}$.

Dimostrazione. Senza perdita di generalità si pone L>0. Similmente a come visto per l'analogo teorema per le successioni, deve esiste sicuramente un intorno I di L tale che ogni suo elemento è positivo. Poiché $\lim_{x\to \overline{x}} f(x) = L>0$, deve in particolare esistere un intorno J di \overline{x} tale che $f(J\cap X\setminus\{\overline{x}\})\subseteq$

 $^{^6\}mathrm{La}$ tesi altro non è che un caso particolare del cosiddetto teorema di Froda.

⁷Detti $A = \{f(x) \mid x < \overline{x} \text{ e } x \in X\}$ e $B = \{f(x) \mid x > \overline{x} \text{ e } x \in X\}$, vale che $L^-(\overline{x}) = \sup A$ e $L^+(\overline{x}) = \inf B$. Dal momento che f è crescente, vale che $B \geq A$. Se inf $B < \sup A$, esisterebbe un $b \in B$ tale che sup A > b, da cui ancora esisterebbe un $a \in A$ tale che a > b, f. Quindi inf $B = L^+(\overline{x}) \geq \sup A = L^-(\overline{x})$.

⁸Sia $C = \{f(a) \mid x < a < y\}$. Allora $L^+(x) = \inf C$ e $L^-(y) = \sup C$. Dal momento che sup $C \ge \inf C$, deve allora valere anche che $L^+(x) \le L^-(y)$.

I. Inoltre, $J \cap X \setminus \{\overline{x}\}$ non può essere mai vuoto, dal momento che \overline{x} è un punto di accumulazione di X. Infine vale anche che $f(x) > 0 \,\forall \, x \in J \cap X \setminus \{\overline{x}\}$ (dal momento che $f(x) \in I$, che ha tutti elementi positivi). Si conclude allora che J è l'intorno desiderato, da cui la tesi. Analogamente per il caso di L < 0.

Teorema. (degli zeri) Sia I = [a, b] e sia $f : I \to \overline{\mathbb{R}}$ continua tale che f(a)f(b) < 0 (i.e. f(a) e f(b) sono discordi). Allora $\exists c \in (a, b) \mid f(c) = 0$.

Dimostrazione. Senza alcuna perdita di generalità si pone f(a) < 0 < f(b) (il caso f(a) > 0 > f(b) si dimostra considerando g = -f). Si definisce allora l'insieme E in modo tale che:

$$E = \{ x \in I \mid f(x) < 0 \}.$$

Si osserva che $E \neq \emptyset$, dacché $a \in E$. Allora, per la completezza dei numeri reali, E ammette un estremo superiore $\overline{x} := \sup E$. Sia dunque $(x_n) \subseteq E \setminus \{\overline{x}\}$ una successione tale che $x_n \xrightarrow[n \to \infty]{} \overline{x}$: poiché f è continua in \overline{x} , $\lim_{x \to \overline{x}} f(x) = f(\overline{x}) \implies f(x_n) \xrightarrow[n \to \infty]{} f(\overline{x})$. Dal momento che $f(x_n) < 0 \ \forall n \in \mathbb{N}, \ f(\overline{x}) \le 0$ (se così non fosse $f(x_n)$ dovrebbe essere definitivamente positiva per il teorema della permanenza del segno, ma questo è assurdo dacché $x_n \in E \ \forall n \in \mathbb{N}, f$).

Sia ora $(y_n) \in I$ una successione tale che $y_n \xrightarrow[n \to \infty]{} \overline{x}$ e che $y_n > \overline{x} \, \forall \, n \in \mathbb{N}$ (questo è sempre possibile dal momento che $\overline{x} \neq b \iff f(\overline{x}) \leq 0$). Allora, poiché $y_n > \overline{x} = \sup E$, y_n non appartiene ad E, e quindi deve valere che $f(y_n) > 0$. Si conclude allora, per il teorema della permanenza del segno, che $f(\overline{x}) \geq 0$. Pertanto $f(\overline{x}) \leq 0$ e $f(\overline{x}) \geq 0 \implies f(\overline{x}) = 0$, da cui la tesi.

Dimostrazione alternativa. (metodo di bisezione per la ricerca degli zeri) Come prima, senza alcuna perdita di generalità, si pone f(a) < 0 < f(b). Si ponga $x_0 = \frac{a+b}{2} \in I$ e $I_0 = (a,b)$. Se $f(x_0) = 0$, allora il teorema è dimostrato. Altrimenti, $f(x_0) > 0$ o $f(x_0) < 0$. Nel primo caso, si consideri $I_1 = (a, x_0)$, altrimenti si ponga $I_1 = (x_0, b)$. Si riapplichi allora l'algoritmo con $a := \inf I_1$ e $b := \sup I_1$, definendo le due successioni (x_n) e I_n per ogni passo n dell'algoritmo.

Se la successione (x_n) è finita, allora $\exists n \mid f(x_n) = 0$, e quindi il teorema è dimostrato. Altrimenti, si osservi che la successione degli intervalli è decrescente, e che $|I_n| = \frac{b-a}{2^n} \xrightarrow[n \to \infty]{} 0$: allora, poiché $x_n \in I_n \ \forall n \in \mathbb{N}$, (x_n)

ammette limite. In particolare, $I_n \xrightarrow[n \to \infty]{} \{c\}$, e quindi $x_n \xrightarrow[n \to \infty]{} c \in I_0$. Siano a_n , b_n le successioni di numeri reali tali che $I_n = (a_n, b_n) \ \forall n \in \mathbb{N}$. Vale in particolare che a_n , $b_n \xrightarrow[n \to \infty]{} c$. Allora, per la continuità di f su (a,b), vale che $\lim_{n \to \infty} f(a_n) = f(c)$ e che $\lim_{n \to \infty} f(b_n) = f(c)$: poiché ogni elemento di (a_n) è per costruzione tale che $f(a_n) < 0$, deve valere che $f(x) \leq 0$ per il teorema della permanenza del segno; analogamente deve valere per costruzione di (b_n) che $f(c) \geq 0$. Si conclude allora che f(c) = 0, da cui la tesi.

Teorema. (dei valori intermedi) Dati I = (a, b) e $f : I \to \overline{\mathbb{R}}$ continua, allora $y_1, y_2 \in f(I) \Longrightarrow [y_1, y_2] \subseteq f(I)$ (ossia f assume tutti i valori compresi tra y_1 e y_2 ; e quindi f(I) è un insieme convesso di \mathbb{R}).

Dimostrazione. Supponiamo $y_1 < y_2$: poiché y_1, y_2 appartengono già a f(I), è sufficiente mostrare che anche ogni $y \in (y_1, y_2)$ appartiene a f(I). Dal momento che $y_1, y_2 \in f(I), \exists x_1, x_2 \in I \mid f(x_1) = y_1 \in f(x_2) = y_2$. Si consideri allora $g: I \to \overline{\mathbb{R}}$ tale che g(x) = f(x) - y. Allora $g(x_1) = y_1 - y < 0$, mentre $g(x_2) = y_2 - y > 0$. Pertanto, per il teorema degli zeri, $\exists \overline{x} \in (x_1, x_2) \mid g(\overline{x}) = 0 \implies f(\overline{x}) = y$. Si conclude allora che anche $y \in f(I)$, da cui la tesi.

Proposizione. Gli unici insiemi convessi di \mathbb{R} sono gli intervalli.

Dimostrazione. La dimostrazione del fatto che gli intervalli siano insiemi convessi è banale. Si dimostra piuttosto che ogni insieme convesso di $\mathbb R$ è un intervallo. Sia A dunque un insieme convesso di $\mathbb R$, e si considerino $a:=\inf A$ e $b:=\sup A$. Sia $x\in(a,b)$. Se non esistesse un punto $c\in A$ tale che a< c< x, $c\in A$ sarebbe un estremo inferiore di $c\in A$ tale che $c\in A$. Pertanto vale che $c\in A$ poiché $c\in A$ e in particolare $c\in A$. Pertanto vale che $c\in A$ poiché $c\in A$ e in particolare $c\in A$ tale che converso e superiore di $c\in A$ non possono esistere altri punti non appartenenti a $c\in A$ ma appartenenti ad $c\in A$ Quindi $c\in A$ può variare a seconda dell'appartenenza o meno di questi estremi nei seguenti modi:

- (i) A = (a, b), se $a, b \notin A$,
- (ii) A = [a, b), se $a \in A$, ma $b \notin A$,
- (iii) A = (a, b], se $b \in A$, ma $a \notin A$,
- (iv) $A = [a, b], \text{ se } a, b \in A.$

In ognuno di questi casi A è un intervallo, da cui la tesi.

Osservazione. Una delle principali conseguenze del teorema dei valori intermedi è allora che f(I) stesso è un intervallo, dal momento che è un insieme convesso di \mathbb{R} .

Teorema. (di Weierstrass) Sia I un intervallo chiuso⁹ e sia $f:I\to \overline{\mathbb{R}}$ continua. Allora esistono x_m e x_M punti di massimo e minimo assoluti.

Dimostrazione. Ci si limita a dimostrare l'esistenza del minimo, dacché l'esistenza del massimo segue dal considerare g=-f. Sia $m:=\inf f(I)$. Esiste allora una successione $(y_n)\subseteq f(I)$ tale che $y_n\xrightarrow[n\to\infty]{}m$. Poiché $y_n\in f(I)$, $\exists\,x_n\in I\mid y_n=f(x_n)$. Per il teorema di Bolzano-Weierstrass, $\exists\,(x_{n_k})\subseteq I$ sottosuccessione convergente, ossia tale che $x_{n_k}\to \overline{x}\in \overline{\mathbb{R}}$. In particolare vale che $\overline{x}\in I$, dal momento che I è un intervallo chiuso. Per la continuità di f (in particolare in \overline{x}), allora $f(x_{n_k})\xrightarrow[n\to\infty]{}f(\overline{x})$. Essendo $f(x_{n_k})$ una sottosuccessione di (y_n) , che è convergente, deve valere che $f(\overline{x})=m$, ossia $m\in f(I)$, da cui si ricava che f(I) ammette un minimo, ovvverosia la tesi.

Osservazione. In particolare, una conseguenza del teorema di Weierstrass è che, nel caso di I chiuso, considerando $f:I\to\overline{\mathbb{R}}$ continua, non solo f(I) è un intervallo, ma è anche un intervallo chiuso.

Osservazione. (algoritmo di ricerca dei massimi e dei minimi) Sia $f: I \to \overline{\mathbb{R}}$ la funzione continua di cui si ricerca i massimi e i minimi. Si ipotizzi^{10} di poter considerare $\tilde{f}: \overline{I} \to \overline{\mathbb{R}}$, ossia l'estensione continua di f. Allora, poiché \tilde{f} è continua ed è definita su un intervallo chiuso, per Weierstrass ammette un massimo e un minimo. Preso per esempio il minimo, esso potrebbe essere un estremo di \tilde{I} , oppure un punto stazionario di f, o infine un punto dell'intervallo I in cui la funzione f non è derivabile. Analogamente l'algoritmo di ricerca funziona per i massimi di f.

⁹In realtà è sufficiente che I sia chiuso, ossia che contenga i suoi punti di accumulazione. ¹⁰Non è infatti sempre possibile considerarne un'estensione continua (e.g. $\sin(\frac{1}{x})$, il

Non e infatti sempre possibile considerarne un estensione continua (e.g. $\sin \left(\frac{1}{x}\right)$, il seno del topologo); ciò accade qualora non esista almeno uno dei limiti negli estremi dell'intervallo di I.