In-EVM Mina State Verification Circuit Description

Cherniaeva Alisa

a.cherniaeva@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

Shirobokov Ilia

i.shirobokov@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

November 6, 2021

1 Introduction

WIP

High level description according to RfP¹

- 1. Computing several hash values from the data of the proof. This involves using the Poseidon hash function with 63 full rounds both over \mathbb{F}_p and \mathbb{F}_q with round constants and MDS matrix specified for \mathbb{F}_p^2 and for \mathbb{F}_q^3 .
- 2. Checking arithmetic equations.
- 3. Performing one multi-scalar multiplication (MSM) of size $2n_2 + 4 + (2 + 25) = 63$, for which some of the bases are fixed and some are variable.
- 4. For each $i \in \{1, 2\}$, performing a multi-scalar multiplication over \mathbb{G}_i of size 2^{n_i} with a fixed array of bases, and with scalars that can be very efficiently computed from the proof.

Note that for MSM in Step 4:

$$\begin{split} \sum_{i=0}^{2^{n_k}-1} s_i \cdot G_i &= H \\ s_i &\coloneqq \prod_{\substack{0 \leq j \leq n_k \\ \text{bits}(i)[j]=1}} \phi(c_j), \end{split}$$

where:

- $\phi: \{0,1\}^{128} \to \mathbb{F}$ is defined as to_field in the implementation⁴.
- Given an integer $i < 2^{n_k}$, bits(i) is defined as the little-endian bit array of length n representing the binary expansion of i.
- $G_0, ..., G_{2^{n_k-1}} \in \mathbb{G}_k$ is a fixed sequence of group elements⁵.
- $c_0, ..., c_{n_k-1} \in \{0,1\}^{128}$ is a sequence of challenges.

We use the same 15-wires PLONK circuits that are designed for Mina.⁶

2 Preliminaries

WIP

¹https://hackmd.io/u_2Ygx8XS5Ss1aObgOFjkA

²https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fp.rs

³https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fq.rs

 $^{^4 \}text{https://github.com/ol-labs/proof-systems/blob/49f81edc9c86e5907d26ea791fa083640ad0ef3e/oracle/src/sponge.rs\#L33}$

⁵https://github.com/o1-labs/proof-systems/blob/master/dlog/commitment/src/srs.rs#L70

 $^{^6\}mathrm{https://o1-labs.github.io/mina-book/specs/15_wires/15_wires.html}$

2.1Pasta Curves

Let $n_1 = 17$, $n_2 = 16$. Pasta curves parameters:

- $p = 2^254 + 45560315531419706090280762371685220353$
- $q = 2^254 + 45560315531506369815346746415080538113$
- Pallas:

$$\mathbb{G}_1 = \{(x, y) \in \mathbb{F}_p | y^2 = x^3 + 5\}$$
$$|\mathbb{G}_1| = q$$

• Vesta:

$$\mathbb{G}_2 = \{(x, y) \in \mathbb{F}_q | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_2| = p$

Verification Algorithm 2.2

Notations:

$N_{\mathtt{wires}}$	Number of wires ('advice columns')
$N_{\mathtt{perm}}$	Number of wires that are included in the permutation argument
$N_{ m prev}$	Number of previous challenges
$S_{\sigma_i}(\mathbf{X})$	Permutation polynomials for $0 \le i < N_{\text{perm}}$
pub(X)	Public input polynomial
$w_i(X)$	Witness polynomials for $0 \le i < N_{\text{wires}}$
ω	<i>n</i> -th root of unity

Proof π constains (here \mathbb{F}_r is a scalar field of \mathbb{G}):

- Commitments:
 - Witness polynomials: $w_{0,\text{comm}}, \dots, w_{N_{\text{wires}},\text{comm}} \in \mathbb{G}$
 - Permutation polynomial: $z_{comm} \in \mathbb{G}$
 - Quotinent polynomial: $t_{\text{comm}} = (t_{\text{comm},1}, t_{\text{comm},2}) \in (\mathbb{G}^{N_{\text{perm}}} \times \mathbb{G})$
- Evaluations:
 - $w_0(\zeta), ..., w_{N_{\text{wires}}}(\zeta) \in \mathbb{F}_r$
 - $w_0(\zeta\omega), ..., w_{N_{\text{wires}}}(\zeta\omega) \in \mathbb{F}_r$
 - $-z(\zeta), z(\zeta\omega) \in \mathbb{F}_r$

 - $\begin{array}{l} \ S_{\sigma_0}(\zeta), \dots S_{\sigma_{N_{\mathrm{perm}}}}(\zeta) \in \mathbb{F}_r \\ \ S_{\sigma_0}(\zeta\omega), \dots S_{\sigma_{N_{\mathrm{perm}}}}(\zeta\omega) \in \mathbb{F}_r \end{array}$
 - $-\bar{L}(\zeta\omega) \in \mathbb{F}_r$
- Opening proof Π_o :
 - $-(L_i, R_i) \in \mathbb{G} \times \mathbb{G} \text{ for } 0 \leq i < \text{lr_rounds}$
 - $-\delta, \bar{G} \in \mathbb{G}$
 - $-z_1, z_2 \in \mathbb{F}_r$
- previous challenges:

$$-(\xi_i, p_{\xi_i}) \in (\mathbb{F}_r \times \mathbb{G}) \text{ for } 0 \leq i < \text{prev}$$

Denote multi-scalar multiplication $\sum_{s_i \in \mathbf{s}, G_i \in \mathbf{G}} [s_i] G_i$ by $\mathtt{MSM}(\mathbf{s}, \mathbf{G})$ for $l_{\mathbf{s}} = l_{\mathbf{G}}$ where $l_{\mathbf{s}} = |\mathbf{s}|, l_{\mathbf{G}} = |\mathbf{G}|$. If $l_{\mathbf{s}} < l_{\mathbf{G}}$, then we use only first $l_{\mathbf{s}}$ elements of \mathbf{G}

Algorithm 1 Inner Product Argument Verification

Input: $\zeta_1, \zeta_2, \xi, r, \{f_0(\zeta_1), \dots, f_k(\zeta_1)\}, \{f_0(\zeta_2), \dots, f_k(\zeta_2)\}$ Output

1.
$$s = \sum_{i=0}^{k-1} \xi^i \cdot (f_i(\zeta_1) + r \cdot f_i(\zeta_2))$$

- 2. for 5-wires: $s = s + \xi^k \cdot (\zeta_1^{n-m\%n} \cdot f_k(\zeta_1) + r \cdot \zeta_2^{n-m\%n} \cdot f_k(\zeta_2))$
- 3. for 15-wires: $s = s + \xi^k \cdot (f_k(\zeta_1) + r \cdot f_k(\zeta_2))$

Algorithm 2 Random Oracle

Input: pub_{comm}, π

Output: {digest, $(\beta, \gamma, \alpha', \alpha, \zeta, v, u, \zeta', v', u')$,

 $\alpha_2, (pub_1, pub_2), \mathtt{evlp}, \mathtt{polys}, \zeta_1, \mathtt{combined\ inner\ product}\}$

- 1. $H_{\mathbb{F}_a}$.absorb (p_{comm})
- 2. $H_{\mathbb{F}_q}$.absorb $(w_{0,\text{comm}}||...||w_{N_{\text{wires}},\text{comm}})$
- $3. \ \beta = H_{\mathbb{F}_q}.\mathtt{squeeze}()$
- 4. $\gamma = H_{\mathbb{F}_q}.\mathtt{squeeze}()$
- 5. $H_{\mathbb{F}_q}$.absorb (z_{comm})
- 6. $\alpha' = H_{\mathbb{F}_q}.\mathtt{squeeze}()$
- 7. $\alpha = \phi(\alpha')$
- 8. $H_{\mathbb{F}_q}$.absorb $(t_{1,\text{comm}}||\infty||...||\infty||t_{2,\text{comm}})$
- 9. $\zeta' = H_{\mathbb{F}_q}.\mathtt{squeeze}()$
- 10. $\zeta = \phi(\zeta')$
- 11. Transfrorm $H_{\mathbb{F}_q}$ to $H_{\mathbb{F}_r}$
- 12. $\zeta_1 = \zeta^n$
- 13. $\zeta_{\omega} = \zeta \cdot \omega$
- 14. $\alpha_s = [\alpha^2, ..., \alpha^5 9]$
- 15. Evaluate public polynomial p in two points: $p_{\text{eval},\zeta} = p(\zeta)$, $p_{\text{eval},\zeta_{\omega}} = p(\zeta_{\omega})$
- 16. $H_{\mathbb{F}_r}$.absorb $(p_{\mathrm{eval},\zeta}||w_0(\zeta)||...||w_{N_{\mathrm{wires}}}(\zeta)||S_0(\zeta)||...||S_{N_{\mathrm{perm}}}(\zeta))$
- 17. $H_{\mathbb{F}_r}$.absorb $(p_{\mathrm{eval},\zeta_\omega}||w_0(\zeta\omega)||...||w_{N_{\mathrm{wires}}}(\zeta\omega)||S_0(\zeta\omega)||...||S_{N_{\mathrm{perm}}}(\zeta\omega))$
- 18. $H_{\mathbb{F}_r}$.absorb $(\bar{L}(\zeta\omega))$
- 19. $v' = H_{\mathbb{F}_r}$.squeeze()
- 20. $v = \phi(v')$
- $21.\ u'=H_{\mathbb{F}_r}.\mathtt{squeeze}()$
- 22. $u = \phi(u')$
- 23. Compute evaluation of $\mathrm{prev_chal}_i(\zeta), \mathrm{prev_chal}_i(\zeta\omega)$
- 24. Compute evaluation of $ft(\zeta)$

Algorithm 3 Final Check

```
Input: \pi_0, \ldots, \pi_{\mathtt{batch\_size}}, where \pi_i = \{H_{\mathbb{F}_q}, \zeta, \zeta\omega, v, u, u, u, v, u, v,
```

PE,
$$\pi_{o,i}$$
 for $0 \le i < bl$,

where \mathbf{PE} is a set of elements of the form $(f_{\mathtt{comm}}, f(\zeta), f(\zeta\omega))$ for the following polynomials: $\eta_0, \dots, \eta_{N_{\mathtt{prev}}}, p, w_0, \dots, w_{N_{\mathtt{vires}}}, z, S_{\sigma_0}, \dots, S_{\sigma_{N_{\mathtt{perm}}}}, \bar{L}$ **Output**: acc or rej

- 1. $\rho_1 \to \mathbb{F}_r$
- 2. $\rho_2 \to \mathbb{F}_r$
- 3. $r_0 = r'_0 = 1$
- 4. for $0 \le i < \mathtt{batch_size}$:

4.1
$$cip_i = inner_product(\zeta, \zeta\omega, v, u, \mathbf{PE}_i, n)$$

$$4.2 \ H_{\mathbb{F}_q,i}$$
.absorb $(cip-2^255)$

$$4.3 \ u_i' = H_{\mathbb{F}_q,i}.\mathtt{squeeze}()$$

$$4.4\ U_i = u_i'.to_group() \in \mathbb{G}$$

4.5 Calculate opening challenges $\xi_{i,j}$ from $\pi_{o,i}$

$$4.6 \ c_i = \phi(H_{\mathbb{F}_q}.\mathtt{squeeze}())$$

4.7
$$h(X) \coloneqq \prod_{k=0}^{\log(d+1)-1} (1+\xi_{\log(d+1)-k}X^{2^k})$$
, where $d=$ lr_rounds

$$4.8 \ b_i = h(\zeta) + u \cdot h(\zeta\omega)$$

4.9
$$C_i = \sum_i (\sum_k \xi^k f_{k,\text{comm}})$$
, where $f_{k,\text{comm}}$ from **PE**.

4.10
$$Q_i = \sum (\xi_{i,j} \cdot L_{i,j} + \xi_{i,j}^{-1} \cdot R_j) + cip \cdot U_i + C_i$$

4.11
$$r_i = r_{i-1} \cdot \rho_1$$

4.12
$$r'_i = r'_{i-1} \cdot \rho_2$$

4.13 Check
$$\bar{G}_i = \langle s, G \rangle$$
, where s is set of $h(X)$ coefficients.

Remark: This check can be done inside the MSM below using additional random r'_i .

5.
$$res = \sum_{i} r^{i} (c_{i}Q_{i} + delta_{i} - (z_{1,i}(\bar{G}_{i} + b_{i}U_{i}) + z_{2,i}H))$$

 $6. \ \mathtt{return} \ \mathtt{res} \ == 0$

Verification algorithm:

```
Algorithm 4 Verification
Input: \pi_0, \ldots, \pi_{\mathtt{batch\_size}} (see 2.2)
Output: acc or rej
     1. for each \pi_i:
           1.1 pub_{comm} = MSM(\mathbf{L}, pub) \in \mathbb{G}, where \mathbf{L} is Lagrange bases vector
           1.2 random_oracle(p_{\text{comm}}, \pi):
                1.2.1 H_{\mathbb{F}_q}.absorb(pub_{\mathtt{comm}}||w_{0,\mathtt{comm}}||...||w_{N_{\mathtt{wires}},\mathtt{comm}})
                1.2.2 \ \beta, \gamma = H_{\mathbb{F}_q}.\mathtt{squeeze}()
                1.2.3 H_{\mathbb{F}_a}.absorb(z_{\text{comm}})
                1.2.4 \alpha = \phi(H_{\mathbb{F}_q}.\mathtt{squeeze}())
                1.2.5 H_{\mathbb{F}_q}.absorb(t_{1,\mathtt{comm}}||\infty||...||\infty||t_{2,\mathtt{comm}})
                1.2.6 \zeta = \phi(H_{\mathbb{F}_q}.\mathtt{squeeze}())
                1.2.7 Transfrorm H_{\mathbb{F}_q} to H_{\mathbb{F}_r}
                1.2.8 \bar{\alpha} = [\alpha^2, ..., \alpha^5 9]
                1.2.9 \ H_{\mathbb{F}_r}.\mathtt{absorb}(pub(\zeta)||w_0(\zeta)||...||w_{N_{\mathrm{wires}}}(\zeta)||S_0(\zeta)||...||S_{N_{\mathrm{perm}}}(\zeta))
              1.2.10 H_{\mathbb{F}_r}.absorb(pub(\zeta\omega)||w_0(\zeta\omega)||...||w_{N_{\mathrm{wires}}}(\zeta\omega)||S_0(\zeta\omega)||...||S_{N_{\mathrm{perm}}}(\zeta\omega))
              1.2.11~H_{\mathbb{F}_r}.\mathtt{absorb}(L(\zeta\omega))
              1.2.12 v = \phi(H_{\mathbb{F}_r}.\mathtt{squeeze}())
              1.2.13 u = \phi(H_{\mathbb{F}_r}.\mathtt{squeeze}())
              1.2.14 Compute evaluation of \eta_i(\zeta), \eta_i(\zeta\omega) for 0 \le i < N_{\text{prev}}
              1.2.15 Compute evaluation of \bar{L}(\zeta)
```

 $1.3 \ \mathbf{f}_{\mathrm{base}} = \{S_{\sigma_{N_{\mathtt{perm}}-1},\mathtt{comm}}, \mathtt{gate}_{\mathrm{mult},\mathtt{comm}}, w_{0,\mathtt{comm}}, w_{1,\mathtt{comm}}, w_{2,\mathtt{comm}}, q_{\mathtt{const},\underline{\mathtt{comm}}}, \mathtt{gate}_{\mathrm{psdn},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},\mathtt{comm}}, \mathtt{gate}_{\mathrm{rc},$

$$\begin{split} & \text{gate}_{\text{ec_add,comm}}, \text{gate}_{\text{ec_dbl,comm}}, \text{gate}_{\text{ec_endo,comm}}, \text{gate}_{\text{ec_vbase,comm}} \} \\ & 1.4 \ s_{\text{perm}} \coloneqq (w_0(\zeta) + \gamma + \beta \cdot S_{\sigma_0}(\zeta)) \cdot \ldots \cdot (w_5(\zeta) + \gamma + \beta \cdot S_{\sigma_{N_{\text{perm}}}}(\zeta)) \\ & 1.5 \ \mathbf{f}_{\text{scalars}} = \{ -z(\zeta\omega) \cdot \beta \cdot \alpha_0 \cdot zkp(\zeta) \cdot s_{\text{perm}}, w_0(\zeta) \cdot w_1(\zeta), w_0(\zeta), w_1(\zeta), 1 \} \end{split}$$

 $s_{\text{psdn}}, \alpha^0, \dots, \alpha^{14}, s_{\text{ec}} \text{ add}, s_{\text{ec}} \text{ dbl}, s_{\text{ec}} \text{ endo}, s_{\text{ec}} \text{ vbase}$

3 Elliptic Curve Arithmetic

1.6 $f_{\text{comm}} = \text{MSM}(\mathbf{f}_{\text{base}}, \mathbf{f}_{\text{scalars}})$ 1.7 $\bar{L}_{\text{comm}} = f_{\text{comm}} - t_{\text{comm}} \cdot (\zeta^n - 1)$

WIP

3.1 Addition

2. final_check()

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
$$i$$
 x_1 y_1 x_2 y_2 x_3 y_3 r \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

Constraints:

•
$$(x_2 - x_1) \cdot (y_3 + y_1) - (y_1 - y_2) \cdot (x_1 - x_3)$$

• $(x_1 + x_2 + x_3) \cdot (x_1 - x_3) \cdot (x_1 - x_3) - (y_3 + y_1) \cdot (y_3 + y_1)$
• $(x_2 - x_1) \cdot r = 1$

3.2 Doubling and Tripling

```
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i x_1 y_1 x_2 y_2 x_3 y_3 r_1 r_2 \vdots \vdots \vdots \vdots \vdots \vdots \vdots
```

Constraints:

• Doubling:

$$-4 \cdot y_1^2 \cdot (x_2 + 2 \cdot x_1) = 9 \cdot x_1^4$$

-2 \cdot y_1 \cdot (y_2 + y_1) = (3 \cdot x_1^2) \cdot (x_1 - x_2)
- y_1 \cdot r_1 = 1

• Addition (for tripling):

$$-(x_2 - x_1) \cdot (y_3 + y_1) - (y_1 - y_2) \cdot (x_1 - x_3) -(x_1 + x_2 + x_3) \cdot (x_1 - x_3) \cdot (x_1 - x_3) - (y_3 + y_1) \cdot (y_3 + y_1) -(x_2 - x_1) \cdot r_2 = 1$$

3.3 Variable Base Scalar Multiplication

For S = [r]T, where $r = 2^n + k$ and $k = [k_n...k_0], k_i \in \{0, 1\}$:

1.
$$S = [2]T$$

2. for i from n-1 to 0:

$$2.1 \ Q = k_{i+1} ? T : -T$$

$$2.2 R = S + Q$$

$$2.3 \ S = R + S$$

3.
$$S = k_0 ? S - T : S$$

Constraints for i + z, where $z \mod 2 = 0$:

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $s_1^2 s_2^2 = x_T x_R$
- $(2 \cdot x_P + x_T s_1^2) \cdot (s_1 + s_2) = 2y_P$
- $\bullet \ (x_P x_R) \cdot s_2 = y_R + y_P$
- $(x_R x_T) \cdot s_3 = y_R (2b_2 1) \cdot y_T$
- $s_3^2 s_4^2 = x_T x_S$
- $(2 \cdot x_R + x_T s_3^2) \cdot (s_3 + s_4) = 2 \cdot y_R$
- $\bullet \quad (x_R x_S) \cdot s_4 = y_S + y_R$
- $n = 32 \cdot \text{next}(n) + 16 \cdot b_1 + 8 \cdot b_2 + 4 \cdot \text{next}(b_1) + 2 \cdot \text{next}(b_2) + \text{next}(b_3)$

Constraints for i + z, where $z \mod 2 = 1$:

⁷Using the results from https://arxiv.org/pdf/math/0208038.pdf

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $(x_P x_T) \cdot s_1 = y_P (2b_1 1) \cdot y_T$
- $(2 \cdot x_P + x_T s_1^2) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2y_P$
- $(y_R + y_P)^2 = (x_P x_R)^2 \cdot (s_1^2 x_T + x_R)$
- $(x_T x_R) \cdot s_3 = (2b_2 1) \cdot y_T y_R$
- $(2x_R s_3^2 + x_T) \cdot ((x_R x_V) \cdot s_3 + y_V + y_R) = (x_R x_V) \cdot 2y_R$ $(y_V + y_R)^2 = (x_R x_V)^2 \cdot (s_3^2 x_T + x_V)$
- $(x_T x_V) \cdot s_5 = (2b_3 1) \cdot y_T y_V$
- $(2x_V s_5^2 + x_T) \cdot ((x_V x_S) \cdot s_5 + y_S + y_V) = (x_V x_S) \cdot 2y_V$
- $(y_S + y_V)^2 = (x_V x_S)^2 \cdot (s_5^2 x_T + x_S)^2$

Variable Base Endo-Scalar Multiplication

For S = [r]T, where $r = [r_n...r_0]$ and $r_i \in \{0, 1\}$: 8

- 1. $S = [2](\phi(T) + T)$
- 2. for i from $\frac{\lambda}{2} 1$ to 0:

2.1
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

- 2.2 R = S + Q
- $2.3 \ S = R + S$

Constraints:

- $b_1 \cdot (b_1 1) = 0$
- $b_2 \cdot (b_2 1) = 0$
- $b_3 \cdot (b_3 1) = 0$
- $b_4 \cdot (b_4 1) = 0$
- $((1 + (\text{endo} 1) \cdot b_2) \cdot x_T x_P) \cdot s_1 = (2 \cdot b_1 1) \cdot y_T y_P$
- $(2 \cdot x_P s_1^2 + (1 + (\text{endo} 1) \cdot b_2) \cdot x_T) \cdot ((x_P x_R) \cdot s_1 + y_R + y_P) = (x_P x_R) \cdot 2 \cdot y_P$
- $(y_R + y_P)^2 = (x_P x_R)^2 \cdot (s_1^2 (1 + (\text{endo} 1) \cdot b_2) \cdot x_T + x_R)$
- $\begin{array}{l} \bullet \ \ ((1+(\verb"endo"-1")\cdot b_2)\cdot x_T-x_R)\cdot s_3=(2\cdot b_3-1)\cdot y_T-y_R \\ \bullet \ \ (2\cdot x_R-s_3^2+(1+(\verb"endo"-1")\cdot b_4)\cdot x_T)\cdot ((x_R-x_S)\cdot s_3+y_S+y_R)=(x_R-x_S)\cdot 2\cdot y_R \\ \end{array}$
- $(y_S + y_R)^2 = (x_R x_S)^2 \cdot (s_3^2 (1 + (\text{endo} 1) \cdot b_4) \cdot x_T + x_S)$
- $n = 16 \cdot \text{next}(n) + 8 \cdot b_1 + 4 \cdot b_2 + 2 \cdot b_3 + b_4$

4 Multi-Scalar Multiplication Circuit

WIP

Input: $G_0,...,G_{k-1} \in \mathbb{G}, s_0,...,s_{k-1} \in \mathbb{F}_r$, where \mathbb{F}_r is scalar field of \mathbb{G} .

Output:
$$S = \sum_{i=0}^{k} s_i \cdot G_i$$

⁸Using the results from https://eprint.iacr.org/2019/1021.pdf

4.1 Naive Algorithm

Using endomorphism:

```
1. A = \infty

2. for j from 0 to k - 1:

2.1 r := s_j, T := G_j

2.2 S = [2](\phi(T) + T)

2.3 for i from \frac{\lambda}{2} - 1 to 0:

2.3.1 Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T

2.3.2 R = S + Q

2.3.3 S = R + S
```

rows
$$\approx k \cdot (sm_rows + 1 + 2) \approx 67k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

Without endomorphism:

 $2.4 \ A = A + S$

1.
$$A = \infty$$

2. for
$$j$$
 from 0 to $k-1$:

$$2.1 \ r := s_j, T := G_j$$

$$2.2 \ S = [2]T$$

2.3 for i from n-1 to 0:

$$2.3.1 \ Q = k_{i+1} ? T : -T$$

$$2.3.2 R = S + Q$$

$$2.3.3 S = R + S$$

$$2.4 \ S = k_0 ? S - T : S$$

$$2.5\ A=A+S$$

rows
$$\approx k \cdot (sm_rows + 1 + 1) \approx 105k$$
,

where sm_rows is the number of rows in the scalar multiplication circuit.

4.2 Simultanious Doubling

Using endomorphism:

1.
$$A = \sum_{j=0}^{k} [2](\phi(G_j) + G_j)$$

2. for
$$i$$
 from $\frac{\lambda}{2} - 1$ to 0:

2.1 for j from 0 to k-1:

$$2.1.1 \ r \coloneqq s_j, T \coloneqq G_j$$

2.1.2
$$Q = r_{2i+1} ? \phi([2r_{2i} - 1]T) : [2r_{2i} - 1]T$$

$$2.1.3 \ A = A + Q$$

2.2 if $i \neq 0$:

$$2.2.1 \ A = 2 \cdot A$$

$$rows \approx \frac{\lambda}{2} \cdot (k \cdot add_rows + dbl_rows) + 2k \approx 64 \cdot (k+1) \approx 66k + 64,$$

where

- add_rows is the number of rows in the addition circuit.
- dbl_rows is the number of rows in the doubling circuit.

Without endomorphism:

1.
$$A = \sum_{j=0}^{k} [2]G_j$$

2. for i from n-1 to 0:

2.1 for j from 0 to k-1:

$$2.1.1 \ r := s_i, T := G_i$$

2.1.2
$$Q = k_{i+1} ? T : -T$$

$$2.1.3 \ A = A + Q$$

2.2 if $i \neq 0$:

$$2.2.1 \ A = 2 \cdot A$$

3.
$$A = A + \sum_{j=0}^{k} [1 - s_{j,0}]G_j$$

$$rows \approx \frac{2}{5}n \cdot (k \cdot add_rows + dbl_rows) + k \approx 103 \cdot (k+1) + 2k \approx 104k + 103,$$

where

- add_rows is the number of rows in the addition circuit.
- dbl_rows is the number of rows in the doubling circuit.

Poseidon Circuit 5

WIP

Mina uses Poseidon hash with width = 3. Therefore, each permutation state is represented by 3 elements and each row contains 5 states.

Denote *i*-th permutation state by $T_i = (T_{i,0}, T_{i,1}, T_{i,2})$.

State change constraints:

$$STATE(i+1) = STATE(i)^{\alpha} \cdot MDS + RC$$

Denote the index of the first state in the row by start (e.g. start = 50 for 10-th row). We can expand the previous formula to:

• For i from start to start + 5:

$$\begin{array}{l} - \ T_{i+1,0} = T_{i,0}^5 \cdot \mathtt{MDS}[0][0] + T_{i,1}^5 \cdot \mathtt{MDS}[0][2] + T_{i,2}^5 \cdot \mathtt{MDS}[0][2] + \mathtt{RC}_{i+1,0} \\ - \ T_{i+1,1} = T_{i,0}^5 \cdot \mathtt{MDS}[1][0] + T_{i,1}^5 \cdot \mathtt{MDS}[1][2] + T_{i,2}^5 \cdot \mathtt{MDS}[1][2] + \mathtt{RC}_{i+1,1} \\ - \ T_{i+1,2} = T_{i,0}^5 \cdot \mathtt{MDS}[2][2] + T_{i,1}^5 \cdot \mathtt{MDS}[2][2] + T_{i,2}^5 \cdot \mathtt{MDS}[2][2] + \mathtt{RC}_{i+1,2} \end{array}$$

$$-T_{i+1,2} = T_{i,0}^5 \cdot MDS[2][2] + T_{i,1}^5 \cdot MDS[2][2] + T_{i,2}^5 \cdot MDS[2][2] + RC_{i+1,2}$$

Notice that the constraints above include the state from the next row (start + 5).

Other Circuits 6

WIP

Bringing it all together

WIP

References