```
9101 Assignment 1
Haojin Guo
z5216214
```

Question 2

From the question, it can get that $y_i = c_i + E$, where $c_i \ge 1$, E is a positive integer, y_i is positive integer.

```
Let y_min = min\{y_i: 1 \le i \le n\}.
Then, for all the c_i and y_i, c_i = y_i - E \ge 1,
And then, c_i = y_min - E \ge 1,
and hence, y_i \ge y_min - E \ge 1,
So, the range of E is (0, y_min - 1].
```

Then, the algorithm detail is,

Using binary search in the range of $[0, y_min - 1]$, (the cost is $O(\log y_min)$)

Based on $y_i = c_i + E$, each binary search for E, we can get a set of values of $\frac{x_i}{c_i}$, and do the sum operation $S' = \sum_{i=1}^n \frac{x_i}{c_i}$ which costs O(n). If S' < S, binary search

searches in the second half. If S' > S, binary search searches in the first half. Repeat the above operation until we find the value of E at the position S' = S.

(Notice that,
$$S' = \sum_{i=1}^{n} \frac{x_i}{c_i}$$
 is monotonic, because, $E \uparrow$, $c_i \downarrow$, $\frac{x_i}{c_i} \uparrow$, $S' \uparrow$)

Therefore, the total cost is,

 $O(\log y_{\min})^* O(n) = O(n \log y_{\min}) = O(n \log \min \{y_i : 1 \le i \le n\}).$