2. |
$$0$$
 | 0 |

 $\begin{array}{l}
A = \begin{bmatrix} 2 & 0.13 \\ 2 & 0.22 & 0.23 \\ 0.32 & 0.33 \end{bmatrix} \\
A \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 7 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.12 \\ 0.12 \\ 0.13 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 2 & -2 & 0.13 \\ 1 & -1 & 0.033 \end{bmatrix} \\
A \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 0.13 = 0.13 \cdot 0.33 = 0 \Rightarrow A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \end{bmatrix}$

O Let
$$\vec{x} = \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \end{pmatrix} = \begin{pmatrix} z+s \\ s+t \end{pmatrix}$$
 \vec{x}_1 is a dependent variable \vec{x}_2 and \vec{x}_2 are free variables

O $\vec{x}_1 = \vec{x}_2 = \vec{x}_1 = \vec{x}_2 = \vec{x}_1 = \vec{x}_2 = \vec{x}_1 = \vec{x}_2 = \vec{x}_1 = \vec{x}_1$

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & | & 2 \\ 2 & -2 & 0 & | & 2 \\ 1 & -1 & 0 & | & 2 \end{bmatrix}$$

