Амплітудно-частотні характеристики шаруватих пластин і циліндричних оболонок зі складною геометрією напрямної

Горячко Тарас Всеволодович

Науковий керівник: доктор фізико-математичних наук, професор Марчук М.В.

Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України

Вступ

Мета дисертаційної роботи

Розвиток методу збурень в поєднанні з методом скінченних елементів стосовно задач визначення амплітудно-частотних характеристик шаруватих пластин і циліндричних оболонок з складною геометрією напрямної за лінійних та геометрично нелінійних коливань.

Об'єкт дослідження

Процеси лінійних і геометрично нелінійних коливань шаруватих пластин і циліндричних оболонок зі складною геометрією напрямної.

Предмет дослідження

Спектри власних частот та амплітудно-частотні залежності шаруватих пластин і циліндричних оболонок зі складною геометрією напрямної за лінійних та геометрично нелінійних коливань.

Вступ

Публікації та апробації за темою дисертації

За результатами досліджень опубліковано 17 наукових робіт, із них 5 статей у виданнях з переліку затвердженого ДАК МОН України, 6 статей у збірниках матеріалів наукових конференцій, а також 6 публікацій у збірниках тез наукових конференцій.

Статті

- Marchuk M., Goriachko T., Pakosh V. Geometrically Nonlinear Free Transversal Vibrations of Thin-Walled Elongated Panels with Arbitrary Generatrix // Vibrations in Physical Systems. – 2014. – Vol. 26. – P. 153–160.
- Marchuk M., Goriachko T., Pakosh V. Natural Frequencies of Layered Elongated Cylindrical Panels for Geometrically Nonlinear Deformation at Discrete Consideration of Components // Vibrations in Physical Systems. – 2016. – Vol. 27. – P. 255–264.

представлені у провідних світових наукометричних базах, зокрема у Scopus.

Матеріали досліджень доповідались на 12 міжнародних та Всеукраїнських наукових конференціях.

Розділ 1. Основні методи і результати теоретичних досліджень за проблемою визначення амплітудно-частотних характеристик шаруватих пластин і циліндричних оболонок за лінійного та геометрично нелінійного деформування.

Огляд публікацій за проблемою теоретичного аналізу лінійних і нелінійних коливань оболонок і пластин

Дослідження процесів лінійних та нелінійних коливань тонкостінних елементів конструкцій із традиційних матеріалів було започатковано на основі використання класичної теорії, що базується на гіпотезі Кірхгофа-Лява. Фундаментальні результати в цьому напрямку отримані в працях В.В. Болотіна, А.С. Вольміра, В.Т. Грінченка, Я.М. Григоренка, В.А. Криська, В.Д. Кубенка, Л.В. Курпи, С.П. Тимошенка та інших учених.

Слід відмітити, що такий підхід дозволяє врахувати анізотропію фізико-механічних характеристик лише в тангенціальних напрямках, однак, не дозволяє дослідити вплив на амплітудно частотні характеристики таких специфічних властивостей нових матеріалів - композитів, як податливість до трансверсальних зсуву та стиснення.

Суттєві результати у вирішенні цієї проблеми містяться в роботах І. Альтенбаха, С.О. Амбарцумяна, І.М. Векуа, К.З. Галімова, Я.М. Григоренка, О.М. Гузя, В.С. Гудрамовича, Р. Міндліна, П. Нагді, Ю.В. Немировського, Б.Л Пелеха, І.С. Мухи, В.Г. Піскунова, Е. Рейснера, М.А. Сухорольського, В.П. Тамужа, С.П. Тимошенка, Л.П. Хорошуна та інших учених.

Розділ 1.

Дія інтенсивних динамічних (зокрема циклічних) експлуатаційних навантажень спричиняє поперечні переміщення в тонкостінних елементах, котрі співмірні з їхніми товщинами. Це зумовлює геометрично нелінійний характер їх деформованого стану.

Постановкам задач про лінійній та геометрично нелінійні коливання пластин і оболонок та розробці методів їх розв'язання на основі застосування уточнених теорій присвячені праці О.І. Беспалової, В.В. Болотіна, А.С. Вольміра, В.Т. Грінченка, О.Я. Григоренка, Я.М. Григоренка, В.А. Криська, Л.В. Курпи, М.В. Марчука, Я.Г. Савули, В.І. Сторожева, С.П. Тимошенка, М. Amabili, J Awrejcewicz, І.К. Banerjee, І.С. Chen, Li. A. Dong, С.L. Dym, D.A. Evenren, P.B. Goncalves, E.L. Jansen, L. Librescu, F.M.A. Silva, M. Sundhakar, T. Ueda та інших учених.

Дослідження коливних процесів тонкостінних елементів на основі просторових співвідношень динамічної теорії пружності відображенні $\mathfrak E$. В. Алтухова, Й. І. Воровича, С. Г. Лехницького, Л. С. Плевако, А. К. Приварникова, Р. М. Раппопорт, О. О. Рассказова, В. І. Сторожева, Ю. А. Устінова, В. А. Шалдирвана та ін.

Розробці та розвиненню методів розв'язування результуючих систем нелінійних алгебнаїчних рівнянь присвячені роботи ????

Розділ 2. РІВНЯННЯ ДИНАМІЧНО НАПРУЖЕНОГО СТАНУ ЗА ГЕОМЕТРИЧНО НЕЛІНІЙНОГО ДЕФОРМУВАННЯ

2.1. Співвідношення просторової геометрично нелінійної динамічної теорії пружності в криволінійній системі координат.

Напружено-деформований стан описується

Рис. 2.1: Криволінійний пружний шар у декартовій системі координат

$$\vec{u} = u^i \vec{R_i} = u_i \vec{R^i}, \tag{2.1}$$

$$\hat{\varepsilon} = \varepsilon^{ij} \vec{R_i} \vec{R_j} = \varepsilon_{ij} \vec{R^i} \vec{R^j}, \tag{2.2}$$

$$\hat{\Sigma} = \sigma^{ij} \vec{R_i} \vec{R_j} = \sigma_{ij} \vec{R^i} \vec{R^j}, \qquad (2.3)$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\nabla_i u_j + \nabla_j u_i + \nabla_i u^j \nabla_j u_k \right), \tag{2.4}$$

$$\nabla_j u_i = \frac{\partial u_i}{\partial \alpha_j} - u_k G_{ij}^k, \tag{2.5}$$

$$G_{ij}^{k} = \frac{1}{2} \sum_{m=1}^{3} g^{km} \left(\frac{\partial g_{im}}{\partial \alpha_{j}} + \frac{\partial g_{jm}}{\partial \alpha_{i}} - \frac{\partial g_{ij}}{\partial \alpha_{m}} \right), (2.6)$$

$$\sigma^{ij} = C^{ijkm} \varepsilon_{km}. \tag{2.7}$$

Рівняння руху точок шару

$$div\hat{P} = \rho \frac{\partial^2 \vec{u}}{\partial t^2},\tag{2.8}$$

де \hat{P} — перший несиметричний тензор Кірхгофа-Піоли, ρ — скалярне поле, яке визначає густину шару, t — змінна за часовою координатою.

Граничні умови на лицевих поверхнях

$$P^{3i}\left(\alpha_1, \alpha_2, \pm \frac{h}{2}, t\right) = X_{3i}^{\pm}\left(\alpha_1, \alpha_2, t\right). \tag{2.9}$$

Граничні умови на боковій поверхні $\Omega = \Omega_{\sigma} + \Omega_{u}$

$$P^{im}(\alpha_1, \alpha_2, \alpha_3, t) n_i = f^m(\alpha_1, \alpha_2, \alpha_3, t), i = 1, 2, 3, m = 1, 2, 3, (\alpha_1, \alpha_2, \alpha_3) \in \Omega_{\sigma};$$
(2.10)

$$u^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}, t) = g^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}, t), i = 1, 2, 3, (\alpha_{1}, \alpha_{2}, \alpha_{3}) \in \Omega_{u}.$$
 (2.11)

Початкові умови

$$u^{i}|_{t=t_{0}} = u_{0}^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}), \frac{\partial u^{i}}{\partial t}|_{t=t_{0}} = v_{0}^{i}(\alpha_{1}, \alpha_{2}, \alpha_{3}), i = 1, 2, 3.$$
 (2.12)

2.2. Варіаційна постановка задачі.

$$\int_{V(t)} \delta \hat{E} : \hat{\tau} \, dV + \int_{V(t)} \rho \delta \vec{u} \frac{\partial^2 \vec{u}}{\partial t^2} \, dV = \int_{\Omega_{\sigma}(t)} \delta \vec{u} \vec{f} \, dS, \tag{2.13}$$

$$\forall \delta \vec{u} \in D_A = \{ \vec{u} : \vec{u} \in W_2^{(2)}; \vec{u} = \vec{g}(\alpha_1, \alpha_2, \alpha_3) \in \Omega_u, \forall t \},\$$

де $W_2^{(2)}$ — простір Соболєва,

 $\hat{\tau}$ — тензор напружень Коші,

 \vec{f} — вектор поверхневих сил,

 $\delta \hat{E}$ — тензор лінійних деформацій, який відповідає варіації переміщень.

Оскільки V(t) є невідомим, то в початковій (недеформованій) конфігурації

$$\int_{V_0} \delta \hat{\varepsilon} : \hat{S} \, dV + \int_{V_0} \rho_0 \delta \vec{u} \frac{\partial^2 \vec{u}}{\partial t^2} \, dV = \int_{\Omega_{\sigma_0}} \delta \vec{u} \, \vec{f} \, dS, \tag{2.14}$$

де \hat{S} — другий симетричний тензор напружень Кірхгофа-Піоли, для якого справедлива формула $\hat{S}=\hat{P}\left(\hat{F}^{-1}\right)^T,$

 \hat{P} — тензор з формули 2.8,

 $\hat{F} = \hat{G} + grad^T \vec{u}$ — тензор градієнта локального руху,

 $\delta \hat{\varepsilon}$ — тензор деформацій Гріна, який відповідає варіації переміщень.

2.3. Компоненти тензора деформацій в довільній системі координат.

$$\vec{\nabla}\vec{u} = B \cdot \tilde{u},\tag{2.15}$$

де

$$\vec{\nabla} \vec{u} = (\nabla_1 u_1 \nabla_2 u_1 \nabla_3 u_1 \nabla_1 u_2 \nabla_2 u_2 \nabla_3 u_2 \nabla_1 u_3 \nabla_2 u_3 \nabla_3 u_3)^T, \qquad (2.16)$$

$$\tilde{u} = \left(u_1 \frac{\partial u_1}{\partial \alpha_1} \frac{\partial u_1}{\partial \alpha_2} \frac{\partial u_1}{\partial \alpha_3} u_2 \frac{\partial u_2}{\partial \alpha_1} \frac{\partial u_2}{\partial \alpha_2} \frac{\partial u_2}{\partial \alpha_2} \frac{\partial u_3}{\partial \alpha_1} \frac{\partial u_3}{\partial \alpha_1} \frac{\partial u_3}{\partial \alpha_2} \frac{\partial u_3}{\partial \alpha_3} \right)^T, \tag{2.17}$$

матриця B

$$B = \begin{bmatrix} -G_{11}^1 & 1 & 0 & 0 & -G_{11}^2 & 0 & 0 & 0 & -G_{11}^3 & 0 & 0 & 0 \\ -G_{12}^1 & 0 & 1 & 0 & -G_{12}^2 & 0 & 0 & 0 & -G_{12}^3 & 0 & 0 & 0 \\ -G_{13}^1 & 0 & 0 & 1 & -G_{13}^2 & 0 & 0 & 0 & -G_{13}^3 & 0 & 0 & 0 \\ -G_{21}^1 & 0 & 0 & 0 & -G_{21}^2 & 1 & 0 & 0 & -G_{21}^3 & 0 & 0 & 0 \\ -G_{22}^1 & 0 & 0 & 0 & -G_{22}^2 & 0 & 1 & 0 & -G_{22}^3 & 0 & 0 & 0 \\ -G_{23}^1 & 0 & 0 & 0 & -G_{23}^2 & 0 & 0 & 1 & -G_{23}^3 & 0 & 0 & 0 \\ -G_{31}^1 & 0 & 0 & 0 & -G_{31}^2 & 0 & 0 & 0 & -G_{31}^3 & 1 & 0 & 0 \\ -G_{32}^1 & 0 & 0 & 0 & -G_{32}^2 & 0 & 0 & 0 & -G_{32}^3 & 0 & 1 & 0 \\ -G_{33}^1 & 0 & 0 & 0 & -G_{33}^2 & 0 & 0 & 0 & -G_{33}^3 & 0 & 1 & 0 \\ -G_{33}^1 & 0 & 0 & 0 & -G_{33}^2 & 0 & 0 & 0 & -G_{33}^3 & 0 & 0 & 1 \end{bmatrix}. \tag{2.18}$$

Формула для компонент тензора деформацій Гріна

$$\vec{\varepsilon} = \vec{e} + \vec{\eta} = \left(E + E_{NL}^{(1)} \left(\vec{\nabla} \vec{u} \right) \right) \vec{\nabla} \vec{u} = \left(E + E_{NL}^{(2)} \left(\vec{\nabla} \vec{u} \right) \right) \vec{\nabla} \vec{u}, \tag{2.19}$$

де

$$\vec{\varepsilon} = (\varepsilon_{11} \,\varepsilon_{22} \,\varepsilon_{33} \,2\varepsilon_{12} \,2\varepsilon_{13} \,2\varepsilon_{23})^T, \qquad (2.20)$$

$$\vec{e} = (e_{11} e_{22} e_{33} 2e_{12} 2e_{13} 2e_{23})^T,$$
 (2.21)

$$\vec{\eta} = (\eta_{11} \, \eta_{22} \, \eta_{33} \, 2\eta_{12} \, 2\eta_{13} \, 2\eta_{23})^T \,, \tag{2.22}$$

матриця E:

матриці $E_{NL}^{(1)}, E_{NL}^{(2)}$:

$$E_{NL}^{(1)} = \begin{bmatrix} \frac{\lambda_{11}}{2} & 0 & 0 & \frac{\lambda_{21}}{2} & 0 & 0 & \frac{\lambda_{31}}{2} & 0 & 0 \\ 0 & \frac{\lambda_{12}}{2} & 0 & 0 & \frac{\lambda_{22}}{2} & 0 & 0 & \frac{\lambda_{32}}{2} & 0 \\ 0 & 0 & \frac{\lambda_{13}}{2} & 0 & 0 & \frac{\lambda_{23}}{2} & 0 & 0 & \frac{\lambda_{33}}{2} \\ 0 & \lambda_{11} & 0 & 0 & \lambda_{21} & 0 & 0 & \lambda_{31} & 0 \\ \lambda_{13} & 0 & 0 & \lambda_{23} & 0 & 0 & \lambda_{33} & 0 & 0 \\ 0 & 0 & \lambda_{12} & 0 & 0 & \lambda_{22} & 0 & 0 & \lambda_{32} \end{bmatrix}, \quad (2.24)$$

$$E_{NL}^{(2)} = \begin{bmatrix} \frac{\lambda_{11}}{2} & 0 & 0 & \frac{\lambda_{21}}{2} & 0 & 0 & \frac{\lambda_{31}}{2} & 0 & 0 \\ 0 & \frac{\lambda_{12}}{2} & 0 & 0 & \frac{\lambda_{22}}{2} & 0 & 0 & \frac{\lambda_{32}}{2} & 0 \\ 0 & 0 & \frac{\lambda_{13}}{2} & 0 & 0 & \frac{\lambda_{23}}{2} & 0 & 0 & \frac{\lambda_{33}}{2} \\ \lambda_{12} & 0 & 0 & \lambda_{22} & 0 & 0 & \lambda_{32} & 0 & 0 \\ 0 & 0 & \lambda_{11} & 0 & 0 & \lambda_{21} & 0 & 0 & \lambda_{31} \\ 0 & \lambda_{13} & 0 & 0 & \lambda_{23} & 0 & 0 & \lambda_{33} & 0 \end{bmatrix}, \quad (2.25)$$

де $\lambda_{ij} = \sum_k g^{ik} \nabla_j u_k$.

2.4. Фізичні компоненти переміщень і параметри Ламе.

Змішана криволінійна ортогональна система координат:

$$g_{11} = H_1^2, g_{22} = H_2^2, g_{33} = 1,$$
 (2.26)

$$g_{ij} = 0, i, j = 1, 2, 3, i \neq j;$$
 (2.27)

Довільна циліндрична система координат

$$H_1 = H_1(\alpha_1, \alpha_2, \alpha_3) = A(\alpha_1)(1 + \alpha_3 K(\alpha_1)),$$
 (2.28)

$$H_2 = H_2(\alpha_1, \alpha_2, \alpha_3) = 1,$$
 (2.29)

де $A\left(\alpha_{1}\right)$ — коефіцієнт першої квадратичної форми серединної поверхні оболонки, $K\left(\alpha_{1}\right)$ — головна кривина напрямної в напрямку осі α_{1} .

тоді матриця B (2.18)

2.5. Варіаційна постановка задачі відносно переміщень.

$$\int_{V_0} \delta \hat{\varepsilon} : \hat{S} \, dV = \int_{V_0} \delta \overline{u}^T B^T \left(E + E_{NL} \right)^T C \left(E + E_{NL}^{(1)} \right) B \overline{u} \, dV, \tag{2.31}$$

$$\int_{V_0} \rho_0 \delta \tilde{u}^T \frac{\partial^2 \tilde{u}}{\partial t^2} dV = \int_{V_0} \rho_0 \delta \overline{u}^T \tilde{B}^T \tilde{B} \frac{\partial^2 \overline{u}}{\partial t^2} dV.$$
 (2.32)

Тоді (2.14):

$$\int_{V_0} \delta \overline{u}^T B^T (E + E_{NL})^T C \left(E + E_{NL}^{(1)} \right) B \overline{u} \, dV +
+ \int_{V_0} \rho_0 \delta \overline{u}^T \tilde{B}^T \tilde{B} \frac{\partial^2 \overline{u}}{\partial t^2} \, dV = F_{out}, \quad (2.33)$$

де

2.6. Побудова одновимірної моделі на основі двовимірної.

Апроксимація переміщень u_1 та u_3 , за координатою α_3

$$u_1(\alpha_1, \alpha_3) = u_{10}(\alpha_1) p_0(\alpha_3) + u_{11}(\alpha_1) p_1(\alpha_3) + u_{12}(\alpha_1) p_2(\alpha_3),$$
 (2.34)

$$u_3(\alpha_1, \alpha_3) = u_{30}(\alpha_1) p_0(\alpha_3) + u_{31}(\alpha_1) p_1(\alpha_3) + u_{32}(\alpha_1) p_2(\alpha_3),$$
 (2.35)

де поліноми p_0, p_1 та p_2 мають вигляд

$$p_0(\alpha_3) = \frac{1}{2} - \frac{\alpha_3}{h}, p_1(\alpha_3) = \frac{1}{2} + \frac{\alpha_3}{h}, p_2(\alpha_3) = 1 - \left(\frac{2\alpha_3}{h}\right)^2,$$
 (2.36)

h — товщина шару.

Рис. 2.2: Графіки поліномів p_0 , p_1 та p_2 на проміжку [-0.5;0.5]

$$\begin{split} \varepsilon_{ij}\left(\alpha_{1},\alpha_{3}\right) &= \frac{\varepsilon_{ij0}\left(\alpha_{1}\right)p_{0}\left(\alpha_{3}\right) + \varepsilon_{ij1}\left(\alpha_{1}\right)p_{1}\left(\alpha_{3}\right) + \varepsilon_{ij2}\left(\alpha_{1}\right)p_{2}\left(\alpha_{3}\right)}{1 + \alpha_{3}K}, \\ \varepsilon_{ijk} &= e_{ijk}\left(\alpha_{1}\right) + \eta_{ijk}\left(\alpha_{1}\right), \quad i,j = 1,3, k = 0,1,2, \end{split}$$
 де $e_{ijk}\left(\alpha_{1}\right)$ — лінійна складова, $\eta_{ijk}\left(\alpha_{1}\right)$ — нелінійна складова.

$$e_{11k}\left(\alpha_{1}\right) = \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{1k}}{d\alpha_{1}} + u_{3k}K\left(\alpha_{1}\right), k = 0, 1, 2,$$

$$e_{130}\left(\alpha_{1}\right) = u_{10}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{11}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) +$$

$$+u_{12}\left(\frac{4}{h} - 2K\left(\alpha_{1}\right)\right) + \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{30}}{d\alpha_{1}},$$

$$e_{131}\left(\alpha_{1}\right) = u_{10}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{11}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) +$$

$$+u_{12}\left(-\frac{4}{h} - 2K\left(\alpha_{1}\right)\right) + \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{31}}{d\alpha_{1}},$$

$$e_{132}\left(\alpha_{1}\right) = \frac{1}{A\left(\alpha_{1}\right)} \frac{du_{32}}{d\alpha_{1}} + u_{12}K\left(\alpha_{1}\right),$$

$$e_{330}\left(\alpha_{1}\right) = u_{30}\left(-\frac{1}{h} + \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{31}\left(\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) +$$

$$+u_{32}\left(\frac{4}{h} - 2K\left(\alpha_{1}\right)\right),$$

$$e_{331}\left(\alpha_{1}\right) = u_{30}\left(-\frac{1}{h} - \frac{K\left(\alpha_{1}\right)}{2}\right) + u_{31}\left(\frac{1}{h} + \frac{K\left(\alpha_{1}\right)}{2}\right) +$$

$$+u_{32}\left(-\frac{4}{h} - 2K\left(\alpha_{1}\right)\right),$$

$$e_{332}\left(\alpha_{1}\right) = 2K\left(\alpha_{1}\right)u_{32}.$$

$$\eta_{iik}(\alpha_1) = \begin{bmatrix} \omega_{20} & \omega_{21} & \omega_{22} \end{bmatrix} \Theta_k(\alpha_1) \begin{bmatrix} \omega_{20} & \omega_{21} & \omega_{22} \end{bmatrix}^T,
\eta_{13k}(\alpha_1) = 0, \quad k = 0, 1, 2, i = 1, 3,$$
(2.39)

$$\begin{split} \Theta_0\left(\alpha_1\right) &= \frac{1}{32} \left[\begin{array}{cccc} 16 + 6Kh + K^2h^2 & 4Kh + 2K^2h^2 & 16 + 16Kh + 4K^2h^2 \\ 4Kh + 2K^2h^2 & -2Kh + K^2h^2 & -16Kh + 4K^2h^2 \\ 16 + 16Kh + 4K^2h^2 & -16Kh + 4K^2h^2 & -16 + 8Kh + 4K^2h^2 \end{array} \right], \\ \Theta_1\left(\alpha_1\right) &= \frac{1}{32} \left[\begin{array}{cccc} 2Kh + K^2h^2 & -4Kh + 2K^2h^2 & -16 + 4K^2h^2 \\ -4Kh + 2K^2h^2 & 16 - 6Kh + K^2h^2 & 16 - 16Kh + 4K^2h^2 \\ -16 + 4K^2h^2 & 16 - 16Kh + 4K^2h^2 & -16 - 8Kh + 4K^2h^2 \end{array} \right], \\ \Theta_2\left(\alpha_1\right) &= \frac{1}{32} \left[\begin{array}{ccccc} -4 - 4Kh - K^2h^2 & 8 - 2K^2h^2 & 16 - 8Kh - K^2h^2 \\ 8 - 2K^2h^2 & -4 + 4Kh - K^2h^2 & 16 + 8Kh - 4K^2h^2 \end{array} \right], \\ \left(2.40) \end{array} \right], \end{split}$$

$$\omega_{20}(\alpha_{1}) = \frac{1}{2} \left[u_{10} \left(-\frac{1}{h} + \frac{3K(\alpha_{1})}{2} \right) + u_{11} \left(\frac{1}{h} - \frac{K(\alpha_{1})}{2} \right) + u_{12} \left(\frac{4}{h} - 2K(\alpha_{1}) \right) - \frac{1}{A(\alpha_{1})} \frac{du_{30}}{d\alpha_{1}} \right],
\omega_{21}(\alpha_{1}) = \frac{1}{2} \left[-u_{10} \left(\frac{1}{h} + \frac{K(\alpha_{1})}{2} \right) + u_{11} \left(\frac{1}{h} + \frac{3K(\alpha_{1})}{2} \right) - u_{12} \left(\frac{4}{h} + 2K(\alpha_{1}) \right) - \frac{1}{A(\alpha_{1})} \frac{du_{31}}{d\alpha_{1}} \right],
\omega_{22}(\alpha_{1}) = \frac{1}{2} \left[3K(\alpha_{1}) u_{12} - \frac{1}{A(\alpha_{1})} \frac{du_{30}}{d\alpha_{1}} \right].$$
(2.41)

Тоді (2.14):

$$\int_{0}^{L} \delta \overline{u}'^{T} \left(E' + E'_{NL} \right)^{T} C' \left(E' + E'_{NL} \right) \overline{u}' A (\alpha_{1}) d\alpha_{1} +$$

$$+ \int_{0}^{L} \rho_{0} \delta \overline{u}'^{T} B' \frac{\partial^{2} \overline{u}'}{\partial t^{2}} A (\alpha_{1}) d\alpha_{1} = F_{out}. \quad (2.42)$$

де

$$\overline{u}' = \left(u_{10}\frac{du_{10}}{d\alpha_1}u_{11}\frac{du_{11}}{d\alpha_1}u_{12}\frac{du_{12}}{d\alpha_1}u_{30}\frac{du_{30}}{d\alpha_1}u_{31}\frac{du_{31}}{d\alpha_1}u_{32}\frac{du_{32}}{d\alpha_1}\right)^T,$$

$$C' = \begin{bmatrix} C'_{11} & C'_{13} & 0 \\ C'_{13} & C'_{33} & 0 \\ 0 & 0 & C'_{55} \end{bmatrix}, \quad C'_{ij} = hC_{ij} \begin{bmatrix} 1/3 & 1/6 & 1/3 \\ 1/6 & 1/3 & 1/3 \\ 1/3 & 1/3 & 8/15 \end{bmatrix}, i, j = 1, 3, 5,$$

$$B' = \begin{bmatrix} B'_0 & 0 \\ 0 & B'_0 \end{bmatrix}, \quad B'_0 = h \begin{bmatrix} 1/3 & 0 & 1/6 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1/6 & 0 & 1/3 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 1/3 & 0 & 8/15 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

матриці E', E'_{NL} та $E'^{(1)}_{NL}$ побудовані з (2.38), (2.40) та (2.41).

Висновки до розділу 2

- У розділі розглянута загальна диференціальна постановка задачі про динамічний напружено-деформований стан ортотропного криволінійного шару за геометрично нелінійного деформування.
- На цій основі зроблено постановку еквівалентної варіаційної задачі в компонентах апроксимацій переміщень.
- Проаналізовано та досліджено структуру побудованого функціоналу.
- Отримані основні співвідношення вказаного методу з врахуванням особливості побудованого фунціоналу.
- Шляхом апроксимації компонент вектора переміщень за нормальною до серединної поверхні шару координатою по запропонованим співвідношенням отримано одновимірну варіаційну задачу.

Розділ 3. УЗАГАЛЬНЕНИЙ МЕТОД ЗБУРЕНЬ У ЗАДАЧАХ ПРО КОЛИВАННЯ

3.1. Скінченно-елементні апроксимації для двовимірних моделей коливань товстостінних і тонкостінних оболонок і пластин.

$$V = \bigcup_{e=1}^{NM} V^{(e)}.$$
 (3.1)

Тоді (2.33)

$$\sum_{e=1}^{NM} \int_{V^{(e)}} \left[\delta \overline{u}^T B^T (E + E_{NL})^T C \left(E + E_{NL}^{(1)} \right) B \overline{u} + \rho_0 \delta \overline{u}^T \tilde{B}^T \tilde{B} \frac{\partial^2 \overline{u}}{\partial t^2} \right] dV = 0.$$
(3.2)

Апроксимації переміщень на скінченному елементі $V^{(e)}$

$$\varphi_0 = \frac{1}{4} (1 - \xi) (1 + \eta) \quad \varphi_1 = \frac{1}{4} (1 + \xi) (1 + \eta)
\varphi_2 = \frac{1}{4} (1 + \xi) (1 - \eta) \quad \varphi_3 = \frac{1}{4} (1 - \xi) (1 - \eta)$$
(3.3)

де $\xi \in [-1;1], \eta \in [-1;1].$

$$K_{L}\overline{U} + \left(K_{NL}^{(1)}\left(\overline{U}\right) + K_{NL}^{(2)}\left(\overline{U}, \overline{U}\right)\right)\overline{U} + M\ddot{\overline{U}} = 0, \tag{3.4}$$

де

$$M = \sum_{e=1}^{NM} \left[\int_{-1}^{1} \int_{-1}^{1} \rho_0 H^{(e)}{}^T \tilde{B}^T \tilde{B} H^{(e)} J^{(e)} d\xi d\eta \right], \tag{3.5}$$

$$K_L = \sum_{e=1}^{NM} \left[\int_{-1}^{1} \int_{-1}^{1} H^{(e)T} B^T E^T C E B H^{(e)} J^{(e)} d\xi d\eta \right], \tag{3.6}$$

$$K_{NL}^{(1)} = \sum_{e=1}^{NM} \begin{bmatrix} \int_{-1}^{1} \int_{-1}^{1} H^{(e)T} B^{T} E_{NL} \left(\overline{U} \right)^{T} CEBH^{(e)} J^{(e)} d\xi d\eta + \\ \int_{-1}^{1} \int_{-1}^{1} H^{(e)T} B^{T} E^{T} CE_{NL}^{(1)} \left(\overline{U} \right) BH^{(e)} J^{(e)} d\xi d\eta \end{bmatrix},$$
(3.7)

$$K_{NL}^{(2)} = \sum_{e=1}^{NM} \left[\int_{-1}^{1} \int_{-1}^{1} H^{(e)} B^{T} E_{NL} \left(\overline{U} \right)^{T} C E_{NL}^{(1)} \left(\overline{U} \right) B H^{(e)} J^{(e)} d\xi d\eta \right]. \tag{3.8}$$

3.3. Метод скінченних елементів стосовно одновимірної моделі.

$$V = \bigcup_{e=1}^{N} V^{(e)}.$$
 (3.9)

Апроксимації переміщень на одновимірному скінченному елементі $V^{(e)} = [\alpha_{1s}; \alpha_{1e}]$

$$\varphi_0 = \frac{1}{2} (1 - \xi) \quad \varphi_1 = \frac{1}{2} (1 + \xi)$$
 (3.10)

де $\xi \in [-1;1].$

$$K_L'\overline{U}' + \left(K_{NL}'^{(1)}\left(\overline{U}'\right) + K_{NL}'^{(2)}\left(\overline{U}', \overline{U}'\right)\right)\overline{U}' + M'\ddot{\overline{U}}' = 0, \tag{3.11}$$

де

$$M' = \sum_{e=1}^{N} \left[\int_{-1}^{1} \rho_0 H'^{(e)} B' H'^{(e)} J'^{(e)} A(\xi) d\xi \right], \tag{3.12}$$

$$K'_{L} = \sum_{e=1}^{N} \left[\int_{-1}^{1} H'^{(e)} E'^{T} E'^{T} C' E' H'^{(e)} J'^{(e)} A(\xi) d\xi \right],$$
(3.13)

$$K_{NL}^{\prime(1)} = \sum_{e=1}^{N} \begin{bmatrix} \int_{-1}^{1} H^{\prime(e)T} E_{NL}^{\prime} \left(\overline{U}^{\prime} \right)^{T} C^{\prime} E^{\prime} H^{\prime(e)} J^{\prime(e)} A\left(\xi\right) d\xi + \\ + \int_{-1}^{1} H^{\prime(e)T} E^{\prime T} C^{\prime} E_{NL}^{\prime(1)} \left(\overline{U}^{\prime} \right) H^{\prime(e)} J^{\prime(e)} A\left(\xi\right) d\xi \end{bmatrix},$$
(3.14)

$$K_{NL}^{(2)} = \sum_{e=1}^{NM} \left[\int_{-1}^{1} \int_{-1}^{1} H^{(e)T} B^{T} E_{NL} \left(\overline{U} \right)^{T} C E_{NL}^{(1)} \left(\overline{U} \right) B H^{(e)} J^{(e)} d\xi d\eta \right].$$
(3.15)

3.4. Узагальнення методу збурень до розв'язання результуючої системи нелінійних алгебраїчних рівнянь.

$$K_{L}\overline{U} + \mu \left(K_{NL}^{(1)}\left(\overline{U}\right) + K_{NL}^{(2)}\left(\overline{U}, \overline{U}\right)\right)\overline{U} + M\overline{\overline{U}} = 0, \tag{3.16}$$

де $\mu \in [0;1]$ — параметр збурення.

$$\overline{U}(t) = \overline{U}_0(t) + \mu \overline{U}_1(t) + O(\mu^2). \tag{3.17}$$

Секулярний член

$$\overline{U}_S(t) = t \sin \omega t. \tag{3.18}$$

Узагальнення методу збурень

$$K_L = K - \mu K_{L1} + O(\mu^2). \tag{3.19}$$

Початкові умови

$$|\overline{U}|_{t=t_0} = \overline{A} \approx A\overline{\phi}, \qquad \dot{\overline{U}}|_{t=t_0} = \overline{0}.$$
 (3.20)

де $\overline{\phi}$ — власний вектор лінійної задачі, для якого

$$\overline{\phi}^T K_L \overline{\phi} = \omega_L^2,$$

$$\overline{\phi}^T M \overline{\phi} = 1.$$
(3.21)

$$K\overline{U}_0 + M\ddot{\overline{U}}_0 = 0, (3.22)$$

$$K\overline{U}_1 + M\overline{\overline{U}}_1 = K_{L1}\overline{U}_0 - K_{NL}^{(1)}(\overline{U}_0)\overline{U}_0 - K_{NL}^{(2)}(\overline{U}_0, \overline{U}_0)\overline{U}_0.$$
(3.23)

Розв'язок (3.22)

$$\overline{U}_0 = A\overline{\phi}\cos\omega t. \tag{3.24}$$

Тоді з (3.21)

$$\omega^2 = \overline{\phi}^T K \overline{\phi}. \tag{3.25}$$

Використавши

$$\cos^2 \omega t = \frac{1}{2} + \frac{1}{2}\cos 2\omega t, \quad \cos^3 \omega t = \frac{3}{4}\cos \omega t + \frac{1}{4}\cos 3\omega t,$$
 (3.26)

і представивши

$$K_{L1} = \frac{3}{4} K_{NL}^{(2)} \left(A \overline{\phi}, A \overline{\phi} \right), \tag{3.27}$$

Рівняння (3.23):

$$K\overline{U}_{1} + M\ddot{\overline{U}}_{1} = -\frac{1}{2}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi} - \frac{1}{2}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi}\cos 2\omega t - \frac{1}{4}K_{NL}^{(2)}\left(A\overline{\phi},A\overline{\phi}\right)A\overline{\phi}\cos 3\omega t. \quad (3.28)$$

Розв'язки (3.28):

$$\overline{U}_1^{(1)} = x_1 \overline{\phi},\tag{3.29}$$

$$\overline{U}_1^{(2)} = x_2 \overline{\phi} \cos 2\omega t, \tag{3.30}$$

$$\overline{U}_1^{(3)} = x_3 \overline{\phi} \cos 3\omega t, \tag{3.31}$$

де

$$x_1 = -\frac{1}{2\omega^2} \overline{\phi}^T K_{NL}^{(1)} \left(A \overline{\phi} \right) A \overline{\phi}, \tag{3.32}$$

$$x_2 = \frac{1}{6\omega^2} \overline{\phi}^T K_{NL}^{(1)} \left(A \overline{\phi} \right) A \overline{\phi}, \tag{3.33}$$

$$x_3 = \frac{1}{32\omega^2} \overline{\phi}^T K_{NL}^{(2)} \left(A \overline{\phi}, A \overline{\phi} \right) A \overline{\phi}, \tag{3.34}$$

Загальний розв'язок (3.16):

$$\overline{U}(t) = \left[(A - x_1 - x_2 - x_3) \cos \omega t + x_1 + x_2 \cos 2\omega t + x_3 \cos 3\omega t \right] \overline{\phi}. \tag{3.35}$$

Алгоритм відшукання розв'язку:

- 1. Розв'язання лінійної задачі: $K_L \overline{\phi} + \omega_L^2 M \overline{\phi} = 0$.
- 2. Апроксимація початкової умови $\overline{A} \approx A \overline{\phi}$: $A = \min_{C \in R} ||\overline{A} C \overline{\phi}||$.
- 3. Обчислення матриці: $K = K_L + \frac{3}{4} K_{NL}^{(2)} \left(A \overline{\phi}, A \overline{\phi} \right)$.
- 4. Знаходження власної частоти ω геометрично нелінійних коливань:

$$\omega^2 = \overline{\phi}^T K \overline{\phi}.$$

5. Визначення амплітуд:

$$x_{1} = -\frac{1}{2\omega^{2}}\overline{\phi}^{T}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi},$$

$$x_{2} = \frac{1}{6\omega^{2}}\overline{\phi}^{T}K_{NL}^{(1)}\left(A\overline{\phi}\right)A\overline{\phi},$$

$$x_{3} = \frac{1}{32\omega^{2}}\overline{\phi}^{T}K_{NL}^{(2)}\left(A\overline{\phi},A\overline{\phi}\right)A\overline{\phi}.$$

6. Наближений розв'язок:

$$\overline{U}(t) = \left[(A - x_1 - x_2 - x_3)\cos\omega t + x_1 + x_2\cos2\omega t + x_3\cos3\omega t \right] \overline{\phi}.$$

3.6. Висновки до розділу 3

- На основі застосування двовимірної схеми МСЕ отримано у матричному вигляді системи нелінійних алгебраїчних рівнянь відносно векторів вузлових переміщень, через які визначаються амплітудно-частотні характеристики криволінійного пружного шару.
- Аналогічним чином застосовано МСЕ до одновимірної варіаційної задачі та отримано однотипну систему нелінійних алгебраїчних рівнянь.
- Виведені аналітичні формули для коефіцієнтів лінійних і нелінійних матриць жорсткості та мас, які дозволяють проводити їх швидке обчислення
- ▶ Для розв'язання отриманих систем узагальнено метод збурень.
- ▶ На цій основі розроблено алгоритм знаходження скінченної кількості перших форм і значень власних частот.

Розділ 4. ВІЛЬНІ КОЛИВАННЯ ПЛАСТИН СМУГ ТА ВИДОВЖЕНИХ ЦИЛІНДРИЧНИХ ПАНЕЛЕЙ

4.1. Пластина-смуга

$$A(\alpha_1) = 1, \quad K(\alpha_1) = 0.$$
 (4.1)

4.1.1 Одношарова пластина-смуга

Геометричні та механічні параметри

$$l = 1 \mathrm{m}, h = 0.1 \mathrm{m},$$

$$E_1 = E, v_{13} = v_{31} = 0.3, G_{13} = G;$$

Рис. 4.1: Пластина-смуга з защемленими краями

4.1.1.1 Лінійні коливання

Рис. 4.2: Збіжність значення мінімальної частоти при збільшенні кількості скінченних елементів вздовж осі α_3 з врахуванням стиснення $\frac{E_1}{E_3} \to 1$

Рис. 4.3: Збіжність значення мінімальної частоти при збільшенні кількості скінченних елементів вздовж осі α_3 без врахування стиснення $\frac{E_1}{E_3} \to 0$

Рис. 4.4: Вплив значення модуля трансверсального зсуву на власну мінімальну частоту $G_{13}=\frac{G}{k}$

4.1.1.2 Геометрично нелінійні коливання

Рис. 4.5: Лінійні (ullet) і нелінійні (∇) вільні коливання точки панелі з координатами $(\frac{1}{2};0)$ при $w_{max}=2h.$

Співвідношення для визначення власної частоти геометрично нелінійних вільних коливань

$$\omega^2 = \overline{\phi}^T K \overline{\phi}, \quad K = K_L + \frac{3}{4} K_{NL}^{(2)} \left(A \overline{\phi}, A \overline{\phi} \right). \tag{4.2}$$

Толі

$$\omega^2 = \omega_0^2 \left(1 + \frac{3}{4} R \left(\frac{w_{max}}{h} \right)^2 \right) \tag{4.3}$$

де ω_0^2 — лінійна власна частота, ω^2 — нелінійна власна частота.

$$R = \frac{\overline{\phi}^T K_{NL}^{(2)} \left(h \overline{\phi}', h \overline{\phi}' \right) \overline{\phi}}{\omega_0^2} \tag{4.4}$$

де $\overline{\phi}'$ — нормований власний вектор $\overline{\phi}$.

	R
Аналітичне значення ¹	0.8363
Зсувна модель Тимошенко	0.8694
Модель на основі квадратичних апроксимацій	1.4586
Модель на основі просторової теорії	3.2488

Табл. 4.1: Значення параметра R для різних моделей панелі, видовжені краї якої защемлені

¹Marchuk M., Pakosh V., Lesyk O., Hurayewska I. Influence of Pliability to Transversal Deformations of Shear and Compression on Correlation Frequency from Amplitude for Nonlinear Oscillations of Composite Plates // Vibrations in Physical Systems. - 2006. - Vol. XXII. - P. 251-256.

Рис. 4.6: Амплітудно-частотні характеристики, отримані за допомогою узагальненого методу збурень для панелі, видовжені краї якої защемлені

Рис. 4.7: Амплітудно-частотні характеристики, отримані за допомогою вдосконаленого методу збурень для панелі, видовжені краї якої закріплені на нерухомих шарнірах

4.1.2 Тришарова пластина-смуга

Умови контакту між шарами

$$u_i^{(k-1)}(\alpha_1, h_{k-1}, t) = u_i^{(k)}(\alpha_1, h_k, t),$$
(4.5)

$$S^{(k-1)3i}(\alpha_1, h_{k-1}, t) = S^{(k)3i}(\alpha_1, h_k, t), \qquad (4.6)$$

$$i = 1, 3, \alpha_1 \in [0; L], k = 2, \dots, N.$$

Граничні умови на лицевих площинах панелі

$$S^{(m)31}(\alpha_1, h_m, t) = S^{(m)33}(\alpha_1, h_m, t) = 0, \alpha_1 \in [0; L], m = 0, N.$$
(4.7)

Розглянуто пластину з геометричним та механічними характеристиками

$$L = 1 \text{M}, h = 0.1 \text{M};$$

Гума:
$$E_1 = E_3 = 210 \cdot 10^9 \text{Па}, v_{13} = v_{31} = 0.3, \rho = 8000 \text{кг/м}^3;$$

Сталь:
$$E_1 = E_3 = 0.1 \cdot 10^9 \text{Па}, v_{13} = v_{31} = 0.48, \rho = 1200 \text{кг/м}^3.$$

Рис. 4.8: Тришарова пластина-смуга з нерухомими шарнірами на нижніх ребрах видовжених країв

$\frac{h_r}{h}$	1	0.95	0.9	0.8	0.6	0.4	0
ω_0 , Гц	25.061	72.121	69.587	69.056	84.453	111.765	375.763

Табл. 4.2: Вплив товщини шару гуми (h_r) на мінімальну власну частоту

$\frac{h_r}{h}$	1	0.95	0.9	0.8	0.6	0.4	0
R, Гц	16.1053	44.0470	73.2043	104.7005	92.1796	59.2721	5.7266

Табл. 4.3: Вплив товщини шару гуми (h_r) на значення параметра нелінійності R

Рис. 4.9: Амплітудно-частотні характеристики для тришарової панелі з нерухомими шарнірами на видовжених краях для різних значень h_r

4.2. Видовжена циліндрична панель

$$A(\alpha_1) = 1, \quad K(\alpha_1) = \frac{1}{R}.$$
 (4.8)

Рис. 4.10: Амплітудно-частотні характеристики для панелі з вуглепластика з для різних значень кривини напрямної K

Рис. 4.11: Перша мода циліндричної панелі з вуглепластику для різної кривизни: а) $K=0.8{
m m}^{-1};$ б) $K=2{
m m}^{-1};$

Рис. 4.12: Вигляд циліндричної панелі $K=0.8{\rm m}^{-1}$ з вуглепластику в різних модах: а) — перша мода; б) — друга;

Рис. 4.13: Залежність найменшої власної частоти від радіуса кривини K і товщини h циліндричної панелі

Висновки до розділу 4

- На основі розробленого алгоритму (методики) досліджено лінійні і геометрично нелінійні коливання одношарових та тришарових пластин-смуг.
- Отримані числові результати дозволили встановити його ефективність шляхом його порівняння з розв'язками, отриманими іншими авторами.
- Досліджено вплив податливості до трансверсьного зсуву на мінімальну власну частоту одношарової пластини-смуги.
- Отримано аналітичну формулу для обчислення першої власної частоти за нелінійних коливань одношарової пластини смуги через значення лінійної власної частоти, нелінійної матриці жорсткості та лінійних власних векторів.
- ▶ У випадку тришарової пластини смуги, що складається двох металевих лицевих та гумового середнього елементів, встановлено, що зі зростанням товщини гумового шару, мінімальна лінійна власна частота спадає. Встановлено, що максимальне значення нелінійної першої власної частоти досягається при 80% заповнені пластини смуги гумовим складником.
- Для циліндричної панелі встановлено, що зі зростанням кривизни вона стає менш жорсткою за нелінійних коливань.

РОЗДІЛ 5. ВІЛЬНІ КОЛИВАННЯ ГОФРОВАНИХ ПЛАСТИН СМУГ ТА ВИДОВЖЕНИХ ЦИЛІНДРИЧНИХ ПАНЕЛЕЙ.

Геометричні співвідношення і базові вектори для видовженої циліндричної панелі з гофруванням

$$x_1 = (R + g_A \cos(g_v \theta)) \cos(\theta), \qquad (5.1)$$

$$x_2 = \alpha_2, \tag{5.2}$$

$$x_3 = (R + g_A \cos(g_v \theta)) \sin(\theta), \qquad (5.3)$$

де L — довжина напрямної циліндричного шару,

R — відстань від осі панелі до напрямної циліндричного шару,

h — товщина гофрованого шару,

 g_A — амплітуда гофрування,

 g_v — частота гофрування,

$$\theta = \theta (\alpha_1) = \frac{\pi}{2} + \frac{1}{R} \left(\frac{L}{2} - \alpha_1 \right)$$

Рис. 5.1: Напрямна серединної поверхні шару в декартовій системі координат за $g_v = 20.$

Рис. 5.2: Вектори коваріантної бази \vec{R}_1 (червоний колір) і \vec{R}_3 (синій колір) на верхній лицевій поверхні L=2м, h=0.05м, R=1.25м, $g_A=0.03$ м, $g_v=20$.

Радіус вектор до будь-якої точки панелі

$$\vec{R} = \vec{r} + \alpha_3 \vec{n},\tag{5.4}$$

де $\vec{r}=x_1\vec{e}_1+x_2\vec{e}_2+x_3\vec{e}_3$ — радіус вектор до серединної поверхні, \vec{n} — нормаль до серединної поверхні.

Вектори коваріантної бази локальної системи координат

$$\vec{R}_1 = \frac{\partial \vec{r}}{\partial \alpha_1} + \alpha_3 \frac{\partial \vec{n}}{\partial \alpha_1},\tag{5.5}$$

$$\vec{R}_2 = \vec{e}_2,$$
 (5.6)

$$\vec{R}_3 = \vec{n}.\tag{5.7}$$

Коефіцієнт першої квадратичної форми і головна кривизна

$$A\left(\alpha_1\right) = \sqrt{w^2 + z^2},\tag{5.8}$$

$$K(\alpha_1) = \frac{\left(wy + 2z^2/R\right)}{A(\alpha_1)^{\frac{3}{2}}},\tag{5.9}$$

де

$$w = 1 + \frac{g_A}{R} \cos(g_v \theta),$$

$$z = \frac{g_A g_v}{R} \sin(g_v \theta),$$

$$y = -\frac{w}{R} + \frac{g_A g_v^2}{R^2} \cos(g_v \theta).$$

5.2. Геометрично нелінійні коливання.

Геометричні та механічні характеристики

$$L=2\text{м},h=0.05\text{м},R=1.25\text{м},g_A=0.03\text{м},g_v=20,$$

$$E_1=E_3=2.1\cdot 10^{11}\Pi\text{a},v_{13}=v_{31}=0.3,G_{13}=8.1\cdot 10^{10}\Pi\text{a},\rho=8000\text{kg/m}^3.$$

g_v	2	4	6	8	15	20	50	80	100	200	300	500
ω , Гц	105	98	92	110	132	217	2588	8007	11138	20220	18239	12042

Табл. 5.1: Залежність найменшої власної частоти (ω) від частоти гофрування (g_v) панелі

Рис. 5.4: Перша мода гофрованої циліндричної панелі з різними частотами гофрування: а) $g_v = 10$; 6) $g_v = 20$.

Рис. 5.5: Вигляд гофрованої циліндричної панелі в різних модах: а) перша; б) друга.

Рис. 5.6: Амплітудно-частотні характеристики гофрованої панелі для різних значень частоти гофрувань g_v .

g_A , M								
ω , Гц	101	143	217	377	622	675	552	461

Табл. 5.2: Залежність найменшої власної частоти (ω) від амплітуди гофрування (g_A) панелі.

Рис. 5.7: Залежність найменшої власної частоти (ω) від амплітуди гофрування (g_A) панелі.

Рис. 5.8: Вигляд гофрованої циліндричної панелі при а) $g_A=0$ м; б) $g_A=0.1$ м; в) $g_A=0.3$ м.

Рис. 5.9: Амплітудно-частотні характеристики гофрованої панелі для різних значень частоти гофрувань $g_{\rm A}$.

Висновки до розділу 5

- Отримані співвідношення просторової геометрично нелінійної динамічної теорії пружності для гофрованого в колову напрямку циліндричного шару.
- Досліджено вплив частоти гофрування на мінімальну власну частоту гофрованої в колову напрямку циліндричної оболонки.
- Знайдено форми власних коливань гофрованої в колову напрямку циліндричної оболонки для різних значень частот.
- Проаналізовані