```
rules = {
    RegularExpression["(\\w+)(ss)(es)"] ⇒ "$1$2",
    RegularExpression["(\\w+)(sh)(es)"] ⇒ "$1$2",
    RegularExpression["(\\w+)(ies)"] ⇒ "$1" ~~ "y",
    RegularExpression["(\\w+)(ss)"] ⇒ "$1$2",
    RegularExpression["(\\w+)(us)"] ⇒ "$1$2",
    RegularExpression["(\\w+)(s)"] ⇒ "$1$2",
    RegularExpression["(\\w+)(s)"] ⇒ "$1"
};
```

COMP90042 LECTURE 1B

PREPROCESSING

DEFINITIONS

- Corpus: a collection of documents
- Document: a collection of tokens
- Token: a particular instance of a type
- Type: a distinct word form
- Lexicon: a grouping of types
- Vocabulary: a list of all word types in the corpus

 $V = \{ \text{Hodor} \}$

TEXT NORMALISATION

- Remove unwanted formatting (e.g. HTML)
- Segment structure (e.g. sentences)
- Tokenise words
- Normalise words
- Remove unwanted words

SENTENCE SEGMENTATION

- Naïve approach: break on sentence punctuation ([.?!])
 - But periods are used for abbreviations! (U.S. dollar)
- Second try: use regex to require capital ([.?!] [A-Z])
 - But abbreviations often followed by names (Mr. Brown)
- Better yet: have lexicons
 - But difficult to enumerate all names and abbreviations
- State-of-the-art uses machine learning, not rules

TOKENISATION: ENGLISH

- ► Naïve approach: separate out alphabetic strings (\w+)
- ightharpoonup Abbreviations (*U.S.A.*)
- Hyphens (merry-go-round vs. well-respected vs. yes-but)
- Numbers (1,000,00.01)
- ▶ Dates (3/1/2016)
- Clitics (n't in can't)
- Internet language (http://www.google.com, #RefugeesWelcome, :-))
- Multiword units (New Zealand)

TOKENISATION: CHINESE

- Some Asian languages are written without spaces between words
- In Chinese, words often correspond to more than one character

墨大的学生与众不同

墨大的学生与众不同 Unimelb 's student(s) (are) special

TOKENISATION: CHINESE

- Standard approach assumes an existing vocabulary
- MaxMatch algorithm
 - Greedily match longest word in the vocabulary

 $V = \{ \mathbb{Z}, \mathbb{Z$

、墨大的学生与众不同,

match 墨大, match 的, match 学生, match与众不同, move to 的 move to 学 move to 与 done

TOKENISATION: CHINESE

- But how do we know what the vocabulary is
- And doesn't always work

去买新西兰花

去 买 新 西兰花 go buy new broccoli

WORD NORMALISATION

- Lower casing (Australia -> australia)
- Removing morphology
- Correcting spelling
- Expanding abbreviations

INFLECTIONAL MORPHOLOGY

- Inflectional morphology creates grammatical variants
- English inflects nouns, verbs, and adjectives
 - Nouns: number of the noun (-s)
 - ▶ Verbs: *number* of the subject (-s), the *aspect* (-ing) of the action and the *tense* (-ed) of the action
 - Adjectives: *comparatives* (-*er*) and *superlatives* (-*est*)
- Many languages have much richer inflectional morphology than English
 - E.g. French inflects nouns for gender (un chat, une chatte)

LEMMATISATION

- Lemmatisation means removing any inflection to reach the uninflected form, the *lemma*
 - ightharpoonup speaking \rightarrow speak
- In English, there are irregularities that prevent a trivial solution:
 - ightharpoonup poked o poke
 - $ightharpoonup stopping \rightarrow stop (not stopp)$
 - \blacktriangleright watches \rightarrow watch (not watche)
 - was \rightarrow be (not wa)
- A lexicon of lemmas needed for accurate lemmatisation

DERIVATIONAL MORPHOLOGY

- Derivational morphology creates distinct words
- English derivational suffixes often change the lexical category, e.g.
 - $-ly (personal \rightarrow personally)$
 - $-ise (final \rightarrow finalise)$
 - -er (write \rightarrow writer)
- English derivational *prefixes* often change the meaning without changing the lexical category
 - ightharpoonup write
 ightharpoonup rewrite
 - ightharpoonup healthy ightharpoonup unhealthy

STEMMING

- Stemming strips off all suffixes, leaving a stem
 - E.g. automate, automatic, automation \rightarrow automat
 - Often not an actual lexical item
- Even less lexical sparsity than lemmatisation
- Popular in information retrieval

THE PORTER STEMMER

- Most popular stemmer for English
- Applies rewrite rules in stages
 - First strip inflectional suffixes,
 - E.g. $-ies \rightarrow -i$
 - ► Then derivational suffixes, from right to left
 - ► E.g -isation \rightarrow -ise; -ise \rightarrow

FIXING SPELLING ERRORS

- Why fix them?
 - Spelling errors create new, rare types
 - Disrupt various kinds of linguistic analysis
 - Very common in internet corpora
 - In web search, particularly important in queries
- ► How?
 - String distance (Levenshtein, etc.)
 - Modelling of error types (phonetic, typing etc.)
 - ► Use an *n*-gram language model

OTHER WORD NORMALISATION

- Normalising spelling variations
 - ► Normalize → Normalise (or vice versa)
 - ▶ U r so coool! \rightarrow you are so cool
- Expanding abbreviations
 - ► US, U.S. → United States
 - ightharpoonup imho \rightarrow in my humble opinion

STOP WORDS

- Definition: a list of words to be removed from the document
 - Typical in bag-of-word (BOW) representations
 - Not appropriate when sequence is important
- ► How to choose them?
 - ► All *closed-class* or *function* words
 - **E**.g. *the*, *a*, *of*, *for*, *he*, ...
 - Any high frequency words

A FINAL WORD

- Preprocessing unavoidable in text analysis
- Can have a major effect on downstream applications
- Exact steps may vary depending on corpus, task
- Simple rule-based systems work well, but rarely perfectly

FURTHER READING

- ▶ J&M3 Ch 2. on Normalisation (includes a review of regex and Levenshtien distance)
- (Optional) details on the Porter Stemmer algorithm (http://snowball.tartarus.org/algorithms/porter/stemmer.h tml)