The King of Byteland wants to grow his territory by conquering $m{K}$ other countries. To prepare his $m{4}$ heirs for the future, he decides they must work together to capture each country.

The King has an army, \pmb{A} , of \pmb{N} battalions; the $\pmb{i^{th}}$ battalion has $\pmb{A_i}$ soldiers. For each battle, the heirs get a detachment of soldiers to share but will fight amongst themselves and lose the battle if they don't each command the same number of soldiers (i.e.: the detachment must be divisible by 4). If given a detachment of size $\mathbf{0}$, the heirs will fight alone without any help.

The battalions chosen for battle must be selected in the following way:

- 1. A subsequence of ${\pmb K}$ battalions must be selected (from the ${\pmb N}$ battalions in army ${\pmb A}$).
- 2. The j^{th} battle will have a squad of soldiers from the j^{th} selected battalion such that its size is divisible by 4.

The soldiers within a battalion have unique strengths. For a battalion of size 5, the detachment of soldiers $\{0,1,2,3\}$ is different from the detachment of soldiers $\{0,1,2,4\}$

The King tasks you with finding the number of ways of selecting \boldsymbol{K} detachments of battalions to capture \boldsymbol{K} countries using the criterion above. As this number may be quite large, print the answer modulo $10^9 + 7$.

Input Format

The first line contains two space-separated integers, N (the number of battalions in the King's army) and K (the number of countries to conquer), respectively.

The second line contains N space-separated integers describing the King's army, A, where the i^{th} integer denotes the number of soldiers in the i^{th} battalion (A_i) .

Constraints

- $\begin{array}{l} \bullet \ 1 \leq N \leq 10^4 \\ \bullet \ 1 \leq K \leq min(100,N) \end{array}$
- $1 \le A_i \le 10^9$
- $1 < A_i < 10^3$ holds for test cases worth at least 30% of the problem's score.

Output Format

Print the number of ways of selecting the K detachments of battalions modulo $10^9 + 7$.

Sample Input

3 2 3 4 5

Sample Output

20

Explanation

First, we must find the ways of selecting 2 of the army's 3 battalions; then we must find all the ways of selecting detachments for each choice of battalion.

Battalions $\{A_0, A_1\}$:

 A_0 has 3 soldiers, so the only option is an empty detachment ($\{\}$).

 A_1 has 4 soldiers, giving us 2 detachment options ($\{\}$ and $\{0,1,2,3\}$).

So for this subset of battalions, we get $1 \times 2 = 2$ possible detachments.

Battalions $\{A_0, A_2\}$:

 A_0 has **3** soldiers, so the only option is an empty detachment ($\{\}$).

 A_2 has 5 soldiers, giving us 6 detachment options ($\{\}$, $\{0,1,2,3\}$, $\{0,1,2,4\}$, $\{1,2,3,4\}$, $\{0,1,3,4\}$

, $\{0,2,3,4\}$). So for this subset of battalions, we get $1\times 6=6$ possible detachments.

Battalions $\{A_1,A_2\}$:

 A_1 has 4 soldiers, giving us 2 detachment options ($\{\}$ and $\{0,1,2,3\}$).

 A_2 has 5 soldiers, giving us 6 detachment options ($\{\}$, $\{0,1,2,3\}$, $\{0,1,2,4\}$, $\{1,2,3,4\}$, $\{0,1,3,4\}$, $\{0,2,3,4\}$).

So for this subset of battalions, we get $2 \times 6 = 12$ possible detachments.

In total, we have 2+6+12=20 ways to choose detachments, so we print $20~\%~(10^9+7)$, which is 20.