Contents

1	Useful formulas	3
	1.1 Guassian Integrals	. 3
	1.2 Fourier Transform of Delta Function	. 3
	1.3 Euler Integral	. 3
	1.3.1 Euler Integral of The First Kind: Beta Function	. 3
	1.3.2 Euler Integral of The Second Kind: Gamma Function	
	1.4 Baker-Campbell-Hausdorff Formula	. 5
	1.5 Feynman Result	. 6
	1.6 Laguerre Polynomials	. 6
	1.7 Cramer's Rule	. 6
	1.8 Sherman-Morrison Formula	. 6
	1.9 Simple Impurity Model at Zero Temperature	. 7
	1.10 Green's Function for Simple Cubic Lattice	. 8
2	Coherent States	9
	2.1 Boson Coherent States	
	2.2 Grassmann Algebra	
	2.3 Fermion Coherent States	. 10
3	Linear Response	13
	3.1 Perturbations Depending on Time	. 13
	3.2 Fermi Golden Rule	. 14
	3.3 The Generalized Susceptibility	. 14
	3.4 The Fluctuation Dissipation Theorem	. 15
	3.5 Kubo Greenwood Formula	. 16
	3.6 Green Kubo Formula	. 17
4	Small Polaron	19
	4.1 Holstein Model	. 19
	4.2 Weak Coupling Limit	
	4.3 Atomic Limit (Zero Temperature)	. 20
	4.4 Atomic Limit (Finite Temperature)	
	4.5 The Impurity Analogy for A Single Electron	. 23
	4.5.1 The Zero Temperature Formalism	. 24
	4.5.2 The Finite Temperature Formalism	. 25
	4.5.3 Dynamical Mean Field	. 26
5	Physical Constants	29

2 CONTENTS

Chapter 1

Useful formulas

1.1 Guassian Integrals

For a positive number a,

$$\int_{-\infty}^{\infty} dx e^{-ax^2} = \sqrt{\frac{\pi}{a}}, \quad \int \frac{dz^* dz}{2\pi i} e^{-z^* az} = \frac{1}{a} \quad . \tag{1.1.1}$$

For real multi-dimensional integrals,

$$\int \frac{dx_1 \cdots dx_n}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2}\sum_{ij} x_i A_{ij} x_j + \sum_i x_i J_i} = [\det A]^{-\frac{1}{2}} e^{\frac{1}{2}\sum_{ij} J_i A_{ij}^{-1} J_j} \quad . \tag{1.1.2}$$

For complex multi-dimensional integrals,

$$\int \left(\prod_{i=1}^{n} \frac{dz_{i}^{*} dz_{i}}{2\pi i} \right) e^{-\sum_{ij} z_{i}^{*} H_{ij} z_{j} + \sum_{i} (J_{i}^{*} z_{i} + z_{i}^{*} J_{i})} = [\det H]^{-1} e^{\sum_{ij} J_{i}^{*} H_{ij} J_{j}} \quad . \tag{1.1.3}$$

For Grassmann variables integrals,

$$\int \left(\prod_{i=1}^{n} d\eta_{i}^{*} d\eta_{i} \right) e^{-\sum_{ij} \eta_{i}^{*} H_{ij} \eta_{j} + \sum_{i} (\xi_{i}^{*} \eta_{i} + \eta_{i}^{*} \xi_{i})} = [\det H] e^{\sum_{ij} \xi_{i}^{*} H_{ij} \xi_{j}} \quad . \tag{1.1.4}$$

1.2 Fourier Transform of Delta Function

The δ function can be expressed as

$$\delta(x - \alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ip(x - \alpha)} dp.$$
 (1.2.1)

1.3 Euler Integral

1.3.1 Euler Integral of The First Kind: Beta Function

Euler integral of the first kind: the Beta function:

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx. \tag{1.3.1}$$

The Beta function has the following properties:

(i) Substitute x with x = 1 - t and it is easy to get

$$B(a,b) = B(b,a).$$
 (1.3.2)

(ii) When b > 1, integrate by parts (note that $x^a = x^{a-1} - x^{a-1}(1-x)$)

$$B(a,b) = \int_{0}^{1} (1-x)^{b-1} d\frac{x^{a}}{a}$$

$$= \frac{x^{a}(1-x)^{b-1}}{a} \Big|_{0}^{1} + \frac{b-1}{a} \int_{0}^{1} x^{a} (1-x)^{b-2} dx$$

$$= \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-2} dx - \frac{b-1}{a} \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

$$= \frac{b-1}{a} B(a,b-1) - \frac{b-1}{a} B(a,b),$$
(1.3.3)

thus

$$B(a,b) = \frac{b-1}{a+b-1}B(a,b-1). \tag{1.3.4}$$

For a > 1, it is similar that

$$B(a,b) = \frac{a-1}{a+b-1}B(a-1,b). \tag{1.3.5}$$

Let n be a positive integer,

$$B(n,a) = B(a,n) = \frac{1 \cdot 2 \cdot 3 \cdots (n-1)}{a \cdot (a+1) \cdot (a+2) \cdots (a+n-1)}.$$
 (1.3.6)

Let m, n be two positive integers,

$$B(m,n) = \frac{(n-1)!(m-1)!}{(m+n-1)!}. (1.3.7)$$

(iii) Substitute x with $x = \frac{y}{1+y}$, here y is a new variable runs from 0 to ∞ , then

$$B(a,b) = \int_0^\infty \frac{y^{a-1}}{(1+y)^{a+b}} dy.$$
 (1.3.8)

(iv) If b = 1 - a and 0 < a < 1 then

$$B(a, 1-a) = \int_0^\infty \frac{y^{a-1}}{1+y} dy, \tag{1.3.9}$$

this is also a Euler integral,

$$B(a, 1 - a) = \frac{\pi}{\sin a\pi} \quad (0 < a < 1), \tag{1.3.10}$$

especially we have

$$B(\frac{1}{2}, \frac{1}{2}) = \pi. (1.3.11)$$

1.3.2 Euler Integral of The Second Kind: Gamma Function

Euler integral of the second kind: the Gamma function is defined as

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx.$$
 (1.3.12)

The Euler-Gauss formula:

$$\Gamma(a) = \lim_{n \to \infty} n^a \frac{1 \cdot 2 \cdot 3 \cdots (n-1)}{a \cdot (a+1) \cdot (a+2) \cdots (a+n-1)}.$$
(1.3.13)

The Gamma Function has the following properties:

- (i) For a > 0, $\Gamma(a)$ is smooth.
- (ii) Integrate by parts we shall get

$$\Gamma(a+1) = a\Gamma(a), \tag{1.3.14}$$

repeat this formula

$$\Gamma(a+n) = (a+n-1)(a+n-1)\cdots(a+1)\Gamma(a). \tag{1.3.15}$$

Let n be a positive integer, then

$$\Gamma(n+1) = n! \qquad (1.3.16)$$

(iii) If $a \to +0$ then

$$\Gamma(a) = \frac{\Gamma(a+1)}{a} \to +\infty.$$
 (1.3.17)

If a > n + 1 the

$$\Gamma(a) > n! \qquad (1.3.18)$$

(iv) Relation to Beta function:

$$B(a,b) = \frac{\Gamma(a)c \cdot \Gamma(b)}{\Gamma(a+b)}.$$
 (1.3.19)

(v) if 0 < a < 1 then

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin a\pi},\tag{1.3.20}$$

and

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}.\tag{1.3.21}$$

(vi)

$$\prod_{\nu=1}^{n-1} \Gamma(\frac{\nu}{n}) = \frac{(2\pi)^{\frac{n-1}{2}}}{\sqrt{n}}.$$
(1.3.22)

(vii) Raabe's formula:

$$\int_{a}^{a+1} \ln \Gamma(t)dt = \frac{1}{2} \ln 2\pi + a \ln a - a, \quad a > 0,$$
(1.3.23)

in particular, if a = 0 then

$$\int_{0}^{1} \ln \Gamma(t) dt = \frac{1}{2} \ln 2\pi. \tag{1.3.24}$$

(viii) Legendre formula:

$$\Gamma(a)\Gamma(a+\frac{1}{2}) = \frac{\sqrt{\pi}}{2^{2a-1}}\Gamma(2a). \tag{1.3.25}$$

1.4 Baker-Campbell-Hausdorff Formula

Baker-Campbell-Hausdorff Formula is

$$e^{A}Be^{-A} = \sum_{n=0}^{\infty} \frac{1}{n!} [A, B]_n = B + [A, B] + \frac{1}{2} [A, [A, B]] + \frac{1}{6} [A, [A, A, B]] + \cdots$$
, (1.4.1)

this formula can be proved by defining $B(\tau) = e^{\tau A} B e^{-\tau A}$ and formally integrating its equation of motion $dB/d\tau = [A, B(\tau)]$.

1.5 Feynman Result

The Feynman result reads

$$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]},\tag{1.5.1}$$

which is true only if [A, B] commutes with both A and B.

To prove it, recall that

$$e^{\tau(A+B)} = e^{\tau A} T_{\tau} \exp\left[\int_{0}^{\tau} d\tau' e^{-\tau' A} B e^{\tau' A}\right]$$
 (1.5.2)

and evaluate the integral for $\tau = 1$.

1.6 Laguerre Polynomials

The Laguerre polynomials are solution of Laguerre's equation:

$$xy'' + (1-x)y' + ny = 0, (1.6.1)$$

where n is non-negative integer. The Laguerre polynomials is

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n) = \sum_{k=0}^n \frac{(-x)^k}{k!} \frac{n!}{k!(n-k)!}.$$
 (1.6.2)

The generating function is

$$\frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} L_n(x)t^n \quad . \tag{1.6.3}$$

1.7 Cramer's Rule

Consider a system of n linear equations of n unknowns, represented in matrix multiplication form:

$$Ax = b, (1.7.1)$$

where the $n \times n$ matrix A has a nonzero determinant, and the vector $x = (x_1, \dots, x_n)^T$ is the column vector of the variables. Then Cramer's rule states that the system has a unique solution, whose individual values are given by:

$$x_i = \frac{\det A_i}{\det A},\tag{1.7.2}$$

where A_i is the matrix formed by replacing the *i*-th column of A by the column vector b.

1.8 Sherman-Morrison Formula

Suppose A is an invertible square matrix and u, v are column vectors. Suppose that $1 + v^T A^{-1} u \neq 0$, then the Sherman-Morrison formula states that

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}.$$
(1.8.1)

Here uv^T is the outer product of two vectors u and v.

1.9 Simple Impurity Model at Zero Temperature

The Hamiltonian of simple impurity model is defined as

$$H = \sum_{k} \varepsilon_k c_k^{\dagger} c_k + \sum_{k} V_k (c_k^{\dagger} d + d^{\dagger} c_k) + \varepsilon_0 d^{\dagger} d, \qquad (1.9.1)$$

let $H = H_0 + V$, where

$$H_0 = \sum_k \varepsilon_k c_k^{\dagger} c_k + \varepsilon_0 d^{\dagger} d, \quad V = \sum_k V_k (c_k^{\dagger} d + d^{\dagger} c_k). \tag{1.9.2}$$

The Green's function is

$$G(t) = -i\langle 0|Td(t)d^{\dagger}|0\rangle = -i\langle 0|d(t)d^{\dagger}|0\rangle, \tag{1.9.3}$$

apply Fourier transform on it, then

$$G(\omega) = \langle 0|d\frac{1}{\omega + i0 - H}d^{\dagger}|0\rangle. \tag{1.9.4}$$

Notice that

$$\frac{1}{\omega - H} = \frac{1}{\omega - H_0} + \frac{1}{\omega - H_0} V \frac{1}{\omega - H}
= \frac{1}{\omega - H_0} + \frac{1}{\omega - H_0} V \frac{1}{\omega - H_0} + \frac{1}{\omega - H_0} V \frac{1}{\omega - H_0} V \frac{1}{\omega - H},$$
(1.9.5)

the second term produce just 0, thus

$$G(\omega) = \langle 0|d\frac{1}{\omega - H_0}d^{\dagger}|0\rangle + \langle 0|d\frac{1}{\omega - H_0}V\frac{1}{\omega - H_0}V\frac{1}{\omega - H}d^{\dagger}|0\rangle$$

$$= \frac{1}{\omega - \varepsilon_0} + \frac{1}{\omega - \varepsilon_0}\langle 0|dV\frac{1}{\omega - H_0}V\frac{1}{\omega - H}d^{\dagger}|0\rangle$$

$$= \frac{1}{\omega - \varepsilon_0} + \frac{1}{\omega - \varepsilon_0}\langle 0|d\sum_k d^{\dagger}c_k\frac{V_k^2}{\omega - H_0}c_k^{\dagger}d\frac{1}{\omega - H}d^{\dagger}|0\rangle$$

$$= \frac{1}{\omega - \varepsilon_0} + \frac{1}{\omega - \varepsilon_0}\sum_k \frac{V_k^2}{\omega - \varepsilon_k}G(\omega).$$

$$(1.9.6)$$

Therefore

$$G^{-1}(\omega) = \omega - \varepsilon_0 - \sum_k \frac{V_k^2}{\omega - \varepsilon_k},$$
(1.9.7)

it can be written as

$$G^{-1}(\omega) = \omega - \varepsilon_0 - \int_{-\infty}^{\infty} d\varepsilon \frac{\Delta(\varepsilon)}{\omega - \varepsilon},$$
(1.9.8)

where

$$\Delta(\varepsilon) = \sum_{k} V_k^2 \delta(\varepsilon - \varepsilon_k). \tag{1.9.9}$$

Now consider V is in site representation:

$$V = \sum_{i} (t_{io}c_i^{\dagger}d + t_{oi}d^{\dagger}c_i), \qquad (1.9.10)$$

then we have that

$$G(\omega) = \frac{1}{\omega - \varepsilon_0} + \frac{1}{\omega - \varepsilon_0} \sum_{ij} t_{oi} t_{jo} \langle 0 | dd^{\dagger} c_i \frac{1}{\omega - H_0} c_j^{\dagger} d \frac{1}{\omega - H} d^{\dagger} | 0 \rangle$$

$$= \frac{1}{\omega - \varepsilon_0} + \frac{1}{\omega - \varepsilon_0} \sum_{ij} t_{oi} t_{jo} G_{ij}^{(o)}(\omega) G(\omega), \qquad (1.9.11)$$

thus

$$G^{-1}(\omega) = \omega - \varepsilon_0 - \sum_{ij} t_{oi} t_{jo} G_{ij}^{(o)}(\omega), \qquad (1.9.12)$$

where $G_{ij}^{(o)}$ is the Green's function with one site removed.

1.10 Green's Function for Simple Cubic Lattice

The first Brillouin zone for the simple cubic lattice is the cube

$$-\pi/a \le k_x < \pi/a, \quad -\pi/a \le k_x < \pi/a, \quad -\pi/a \le k_x < \pi/a,$$
 (1.10.1)

where a is the lattice constant. The diagonal matrix element of Green's function is

$$G(\omega) = \frac{a^3}{(2\pi)^3} \int_{-\pi/a}^{\pi/a} dk_x \int_{-\pi/a}^{\pi/a} dk_y \int_{-\pi/a}^{\pi/a} dk_z \frac{1}{\omega - 2t(\cos k_x a + \cos k_y a + \cos k_z a)},$$
 (1.10.2)

introducing the variable $x = k_x a, y = k_y a, z = k_z a$ we obtain

$$G(\omega) = \frac{1}{(2\pi)^3} \int_{-\pi}^{\pi} dx \int_{-\pi}^{\pi} dy \int_{-\pi}^{\pi} dz \frac{1}{\omega - 2t(\cos x + \cos y + \cos z)}.$$
 (1.10.3)

This function can be expressed by complete elliptic integral. The complete elliptic integral of the first kind K(k) as complex function of the complex modulus k is defined by

$$K(k) = \int_0^{\frac{\pi}{2}} d\theta (1 - k^2 \sin^2 \theta)^{-\frac{1}{2}},$$
(1.10.4)

this function is an even function and $K(k^*) = K(k)^*$.

After the integration over y and z, the integral (1.10.3) yields

$$G(\omega) = \frac{1}{2\pi^2 t} \int_0^{\pi} kK(k)dx,$$
 (1.10.5)

where

$$k = \frac{4t}{\omega - 2t\cos x}. ag{1.10.6}$$

For simple cubic lattice, ReG is an odd function of ω and ImG is an even function:

Re
$$G(\omega) = -\text{Re } G(\omega)$$
, Im $G(\omega) = \text{Im } G(\omega)$, (1.10.7)

hence we have only to consider the range $0 \le \omega \le 6t$ in the following. The Green's function can calculated numerically, when $0 < \omega < 2t$,

$$\operatorname{Re} G(\omega) = -\frac{1}{2\pi^{2}t} \int_{0}^{\cos^{-1}(\omega/2t)} dx K\left(\frac{1}{|k|}\right) + \frac{1}{2\pi^{2}t} \int_{\cos^{-1}(\omega/2t)}^{\pi} K\left(\frac{1}{k}\right),$$

$$\operatorname{Im} G(\omega) = \frac{1}{\pi^{2}} \int_{0}^{\pi} dx K\left(\frac{\sqrt{k^{2}-1}}{k}\right),$$

$$(1.10.8)$$

when $2t \le \omega < 6t$,

$$\operatorname{Re} G(\omega) = \frac{1}{2\pi^{2}t} \int_{0}^{\cos^{-1}[(\omega - 4t)/2t]} dx K\left(\frac{1}{k}\right) + \frac{1}{2\pi^{2}t} \int_{\cos^{-1}[(\omega - 4t)/2t]}^{\pi} dx K(k),$$

$$\operatorname{Im} G(\omega) = \frac{1}{2\pi^{2}t} \int_{0}^{\cos^{-1}[(\omega - 4t)/2t]} dx K\left(\frac{\sqrt{k^{2} - 1}}{k}\right).$$
(1.10.9)

Chapter 2

Coherent States

Coherent states is defined as the eigenstates of annihilation operator:

$$a_{\alpha}|\phi\rangle = \phi_{\alpha}|\phi\rangle.$$
 (2.0.1)

2.1 Boson Coherent States

Boson coherent states:

$$|\phi\rangle = e^{\sum_{\alpha} \phi_{\alpha} a_{\alpha}^{\dagger}} |0\rangle, \quad \langle \phi| = \langle 0| e^{\sum_{\alpha} \phi_{\alpha}^{*} a_{\alpha}} \quad ,$$
 (2.1.1)

where ϕ_{α} is complex number.

The overlap of two coherent states:

$$\langle \phi | \phi' \rangle = e^{\sum_{\alpha} \phi_{\alpha}^* \phi_{\alpha}'} \quad . \tag{2.1.2}$$

The overcompleteness in the Fock space:

$$\int \left(\prod_{\alpha} \frac{d\phi_{\alpha}^* d\phi_{\alpha}}{2\pi i} \right) e^{-\sum \phi_{\alpha}^* \phi_{\alpha}} |\phi\rangle \langle \phi| = 1, \tag{2.1.3}$$

where

$$\frac{d\phi_{\alpha}^* d\phi_{\alpha}}{2\pi i} = \frac{d(\operatorname{Re}\phi_{\alpha})d(\operatorname{Im}\phi_{\alpha})}{\pi} \quad . \tag{2.1.4}$$

The trace of an operator A in Fock space can be written as

$$\operatorname{Tr} A = \int \left(\prod_{\alpha} \frac{d\phi_{\alpha}^* d\phi_{\alpha}}{2\pi i} \right) e^{-\sum \phi_{\alpha}^* \phi_{\alpha}} \langle \phi | A | \phi \rangle \quad . \tag{2.1.5}$$

The average particle number of a coherent state is

$$\bar{N} = \frac{\langle \phi | N | \phi \rangle}{\langle \phi | \phi \rangle} = \frac{\langle \phi | \sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} | \phi \rangle}{\langle \phi | \phi \rangle} = \sum_{\alpha} \phi_{\alpha}^{*} \phi_{\alpha}, \tag{2.1.6}$$

and the variance is

$$\sigma^2 = \frac{\langle \phi | N^2 | \phi \rangle}{\langle \phi | \phi \rangle} - \bar{N}^2 = \bar{N} \quad . \tag{2.1.7}$$

2.2 Grassmann Algebra

The Grassmann numbers is defined to be anticommuting numbers:

$$\xi_{\alpha}\xi_{\beta} + \xi_{\beta}\xi_{\alpha} = 0, \quad \xi_{\alpha}^{2} = 0 \quad . \tag{2.2.1}$$

The conjugation of a Grassmann number is defined as

$$(\xi_{\alpha})^* = \xi_{\alpha}^*, \quad (\xi_{\alpha}^*)^* = \xi_{\alpha} \quad .$$
 (2.2.2)

If λ is a complex number,

$$(\lambda \xi_{\alpha})^* = \lambda^* \xi_{\alpha}, \tag{2.2.3}$$

and for any product of Grassmann numbers:

$$(\xi_1 \cdots \xi_n)^* = \xi_n^* \xi_{n-1}^* \cdots \xi_1^* \quad , \tag{2.2.4}$$

and for combinations of Grassmann variables and creation and annihilation operators

$$\xi a + a\xi = 0, \quad (\xi a)^{\dagger} = a^{\dagger} \xi^* \quad .$$
 (2.2.5)

Because of property (2.2.3),

$$f(\xi) = f_0 + f_1 \xi, \quad A(\xi^*, \xi) = a_0 + a_1 \xi + \bar{a}_1 \xi^* + a_{12} \xi^* \xi,$$
 (2.2.6)

in particular,

$$e^{-\lambda\xi} = 1 - \lambda\xi \quad . \tag{2.2.7}$$

A derivative can be defined for Grassmann variable function,

$$\frac{\partial}{\partial \xi}(\xi^*\xi) = \frac{\partial}{\partial \xi}(-\xi\xi^*) = -\xi^* \quad . \tag{2.2.8}$$

And a integral can be defined as

$$\int d\xi \, 1 = 0, \quad \int d\xi \, \xi = 1, \quad \int d\xi^* \, 1 = 0, \quad \int d\xi^* \, \xi^* = 1, \tag{2.2.9}$$

to remember,

$$\int d\xi = \frac{\partial}{\partial \xi}, \quad \int d\xi^* = \frac{\partial}{\partial \xi^*} \quad . \tag{2.2.10}$$

2.3 Fermion Coherent States

Fermion Coherent States is defined as

$$|\xi\rangle = e^{-\sum_{\alpha} \xi_{\alpha} a_{\alpha}^{\dagger}} |0\rangle = \prod_{\alpha} (1 - \xi_{\alpha} a_{\alpha}^{\dagger}) |0\rangle,$$
 (2.3.1)

we can verify that $a_{\alpha}|\xi\rangle = \xi_{\alpha}|\xi\rangle$ by using

$$\xi_{\alpha}|0\rangle = \xi_{\alpha}(1 - \xi_{\alpha}a^{\dagger})|0\rangle$$
 (2.3.2)

Similarly, the adjoint of the coherent states is

$$\langle \xi | = \langle 0 | e^{-\sum_{\alpha} a_{\alpha} \xi_{\alpha}^{*}} = \langle 0 | e^{\sum_{\alpha} \xi_{\alpha}^{*} a_{\alpha}} \quad . \tag{2.3.3}$$

The overlap of two coherent states is

$$\langle \xi | \xi' \rangle = \prod_{\alpha} (1 + \xi_{\alpha}^* \xi_{\alpha}') = e^{\sum_{\alpha} \xi_{\alpha}^* \xi_{\alpha}'} \quad . \tag{2.3.4}$$

The closure relation can be written as

$$\int \left(\prod_{\alpha} d\xi_{\alpha}^* d\xi_{\alpha} \right) e^{-\sum_{\alpha} \xi_{\alpha}^* \xi_{\alpha}} |\xi\rangle \langle \xi| = 1 \quad . \tag{2.3.5}$$

The trace of an operator A in Fock space can be written as

$$\operatorname{Tr} A = \int \left(\prod_{\alpha} d\xi_{\alpha}^* d\xi_{\alpha} \right) e^{-\sum_{\alpha} \xi_{\alpha}^* \xi_{\alpha}} \langle -\xi | A | \xi \rangle, \tag{2.3.6}$$

note the anti periodic condition here.

Chapter 3

Linear Response

3.1 Perturbations Depending on Time

We now seek the solution of the perturbed equation

$$i\hbar \frac{\partial \Psi(t)}{\partial t} = [H_0 + V(t)]\Psi(t),$$
 (3.1.1)

in the form of a sum

$$\Psi(t) = \sum_{k} a_k(t)\psi_k(t), \qquad (3.1.2)$$

where the expansion coefficients $a_k(t)$ are functions of time, and $\psi_k(t)$ are unperturbed stationary wave functions:

$$i\hbar \frac{\partial \psi_k(t)}{\partial t} = H_0 \psi_k(t) = E_k^{(0)} \psi_k(t). \tag{3.1.3}$$

Therefore we obtain that

$$i\hbar \sum_{k} \psi_k(t) \frac{da_k(t)}{dt} = \sum_{k} a_k(t) V(t) \psi_k(t), \qquad (3.1.4)$$

multiplying both sides of this equation on the left by $\psi_m(t)$ and integrating then

$$i\hbar \frac{da_m(t)}{dt} = \sum_k V_{mk}(t)a_k(t), \qquad (3.1.5)$$

where

$$V_{mk}(t) = \langle m|V|k\rangle e^{i\omega_{mk}t} = V_{mk}e^{i\omega_{mk}t}, \quad \omega_{mk} = \frac{E_m^{(0)} - E_k^{(0)}}{\hbar}.$$
 (3.1.6)

Let the unperturbed wave function be $\psi_n(t)$, i.e. $a_n^{(0)} = 1$ and $a_k^{(0)} = 0$ for $k \neq n$. To find the first approximation, we seek $a_k = a_k^0 + a_k^{(1)}$, substituting $a_k = a_k(0)$ we find

$$i\hbar \frac{da_k^{(1)}(t)}{dt} = V_{kn}(t),$$
 (3.1.7)

integrating it gives

$$a_{kn}^{(0)}(t) = -\frac{i}{\hbar} \int V_{kn} e^{i\omega_{kn}t} dt.$$
 (3.1.8)

3.2 Fermi Golden Rule

Let the perturbation be

$$V(t) = Ve^{-i\omega t}, (3.2.1)$$

then

$$a_{fi} = -\frac{i}{\hbar} \int_0^t V_{fi}(t)dt = -V_{fi} \frac{e^{i(\omega_{fi} - \omega)t} - 1}{\hbar(\omega_{fi} - \omega)}.$$
 (3.2.2)

Therefore the squared modulus of a_{fi} is

$$|a_{fi}|^2 = |V_{fi}|^2 \frac{4\sin^2[\frac{1}{2}(\omega_{fi} - \omega)t]}{\hbar^2(\omega_{fi} - \omega)^2},$$
(3.2.3)

noticing that $\lim_{t\to\infty} \frac{\sin^a \alpha t}{\pi t \alpha^2} = \delta(\alpha)$ we have

$$|a_{fi}|^2 = \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(E_f - E_i - \hbar\omega)t.$$
 (3.2.4)

Thus the probability dw_{fi} of the transition rate per unit time is

$$dw_{fi} = \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(E_f - E_i - \hbar\omega). \tag{3.2.5}$$

Another method to derive the above formula is that let

$$V(t) = Ve^{-i\omega t + \eta t}, (3.2.6)$$

and integrating from $t = -\infty$ to t = 0, then

$$|a_{fi}|^2 = \frac{1}{\hbar^2} |V_{fi}|^2 \frac{e^{2\eta t}}{(\omega_{fi} - \omega)^2 + \eta^2}$$
(3.2.7)

Then the transition rate is [note that $\lim_{\eta\to 0} \frac{\eta}{\pi(\alpha^2+\eta^2)} = \delta(\alpha)$]

$$\frac{d}{dt}|a_{fi}|^2 = \frac{2\pi}{\hbar}|V_{fi}|^2\delta(E_f - E_i - \hbar\omega). \tag{3.2.8}$$

3.3 The Generalized Susceptibility

When there exists an external interaction, the perturbing operator can be written as

$$V = -xf(t), (3.3.1)$$

where x is the operator of the physical quantity concerned, and the perturbing generalized force f is a given function of time.

The quantum mean value $\bar{x}(t)$ is given by a formula of the type

$$\bar{x}(t) = \int_0^\infty \alpha(\tau) f(t - \tau) d\tau, \qquad (3.3.2)$$

where $\alpha(\tau)$ being a function of time which depends on the properties of the body.

Applying fourier transform on both sides of this formula

$$\int_0^\infty \bar{x}(t)e^{i\omega t}dt = \int_0^\infty \alpha(\tau)f(t-\tau)e^{i\omega t}d\tau dt,$$
(3.3.3)

we obtain that

$$\bar{x}(\omega) = \alpha(\omega)f(\omega). \tag{3.3.4}$$

If the function f is purely monochromatic and is given by the real expression

$$f(t) = \frac{1}{2} (f_0 e^{-i\omega t} + f_0^* e^{i\omega t}), \tag{3.3.5}$$

then we shall have

$$\bar{x}(t) = \frac{1}{2} [\alpha(\omega) f_0 e^{-i\omega t} + \alpha(-\omega) f_0^* e^{i\omega t}]$$
(3.3.6)

The function $\alpha(\omega)$ has the similar properties as retarded Green's function:

$$\alpha(-\omega) = \alpha^*(\omega), \tag{3.3.7}$$

i.e.,

$$\operatorname{Re} \alpha(-\omega) = \operatorname{Re} \alpha(\omega), \quad \operatorname{Im} \alpha(-\omega) = -\operatorname{Im} \alpha(\omega).$$
 (3.3.8)

And the Kramers-Kronig relations:

$$\operatorname{Re}\alpha(\omega) = -\frac{1}{\pi}P \int_{-\infty}^{\infty} \frac{\operatorname{Im}\alpha(\varepsilon)}{\omega - \varepsilon} d\varepsilon, \quad \operatorname{Im}\alpha(\omega) = \frac{1}{\pi}P \int_{-\infty}^{\infty} \frac{\operatorname{Re}\alpha(\varepsilon)}{\omega - \varepsilon} d\varepsilon.$$
 (3.3.9)

The energy change per unit time of the system is just $dE/dt = \overline{\partial H/\partial t}$, since only the perturbation V in Hamiltonian depends on explicitly on time, we have

$$\frac{dE}{dt} = -\bar{x}\frac{df}{dt}. ag{3.3.10}$$

Substituting \bar{x} and f from (3.3.5) and (3.3.6) and averaging over time, the terms containing $e^{2i\omega t}$ vanish, and we obtain

$$Q = \frac{1}{4}i\omega(\alpha^* - \alpha)|f_0|^2 = \frac{1}{2}\omega \text{Im}\,\alpha(\omega)|f_0|^2,$$
(3.3.11)

where Q is the mean energy dissipated per unit time.

3.4 The Fluctuation Dissipation Theorem

Let us now assume that the system is at state $|n\rangle$ and is subject to a periodic perturbation, described by the operator

$$V = -xf = -\frac{1}{2}x(f_0e^{-i\omega t} + f_0^*e^{i\omega t}).$$
(3.4.1)

Using Fermi Golden Rule, the transition rate from state n to state m per unit time is given by

$$w_{mn} = \frac{\pi |f_0|^2}{2\hbar^2} |x_{mn}|^2 [\delta(\omega + \omega_{mn}) + \delta(\omega + \omega_{nm})].$$
 (3.4.2)

The dissipation per unit time is given by

$$Q = \sum_{m} w_{mn} \hbar \omega_{mn} = \frac{\pi}{2\hbar} |f_0|^2 \sum_{m} |x_{mn}|^2 [\delta(\omega + \omega_{mn}) + \delta(\omega + \omega_{nm})] \omega_{mn}, \qquad (3.4.3)$$

or, since the delta function zero except when their argument is zero,

$$Q = \frac{\pi}{2\hbar}\omega|f_0|^2 \sum_{m} |x_{mn}|^2 [\delta(\omega + \omega_{nm}) - \delta(\omega + \omega_{mn})], \qquad (3.4.4)$$

thus

$$\operatorname{Im} \alpha(\omega) = \frac{\pi}{\hbar} \sum_{m} |x_{mn}|^2 [\delta(\omega + \omega_{nm}) - \delta(\omega + \omega_{mn})]. \tag{3.4.5}$$

Now define

$$(x^2)_{\omega} = \int_{-\infty}^{\infty} \frac{1}{2} \langle x(t)x(0) + x(0)x(t) \rangle e^{i\omega t} dt, \qquad (3.4.6)$$

in canonical ensemble it is

$$(x^2)_{\omega} = \pi \sum_{nm} \rho_n |x_{mn}|^2 [\delta(\omega + \omega_{nm}) + \delta(\omega + \omega_{mn})], \qquad (3.4.7)$$

where $\rho_n = e^{(F-E_n)/T}$, E_n denotes the energy levels and F is free energy. Since the summation is now over both m and n, these can be interchanged:

$$(x^{2})_{\omega} = \pi \sum_{mn} (\rho_{n} + \rho_{m}) |x_{mn}|^{2} \delta(\omega + \omega_{nm})$$

$$= \pi \sum_{mn} \rho_{n} (1 + e^{-\hbar \omega_{mn}/T}) |x_{mn}|^{2} \delta(\omega + \omega_{nm})$$

$$= \pi (1 + e^{-\hbar \omega/T}) \sum_{mn} \rho_{n} |x_{mn}|^{2} \delta(\omega + \omega_{nm}).$$
(3.4.8)

Similarly, in canonical ensemble

$$\operatorname{Im} \alpha(\omega) = \frac{\pi}{\hbar} (1 - e^{-\hbar\omega/T}) \sum_{mn} \rho_n |x_{nm}|^2 \delta(\omega + \omega_{nm}), \tag{3.4.9}$$

a comparison of these two expressions gives

$$(x^2)_{\omega} = \hbar \operatorname{Im} \alpha(\omega) \coth \frac{\hbar \omega}{2T}.$$
 (3.4.10)

The mean square of the fluctuating quantity is given by the integration

$$\langle x^2 \rangle = \frac{\hbar}{\pi} \int_0^\infty \operatorname{Im} \alpha(\omega) \coth \frac{\hbar \omega}{2T} d\omega.$$
 (3.4.11)

3.5 Kubo Greenwood Formula

Now write the perturbing operator as

$$V = -\int \vec{j} \cdot \vec{A} dx, \tag{3.5.1}$$

let $\alpha(\omega)$ denotes the corresponding generalized susceptibility then the mean energy dissipated per unit time and per unit volume is

$$Q = \frac{1}{2}\omega \operatorname{Im}\alpha(\omega)|\vec{A}|^2. \tag{3.5.2}$$

However, this generalized susceptibility is not the conductivity, to get the conductivity, recall that

$$\vec{E}(t) = -\frac{\partial \vec{A}}{\partial t},\tag{3.5.3}$$

therefore

$$\vec{E}(\omega) = i\omega \vec{A},\tag{3.5.4}$$

which means

$$j(\omega) = \alpha(\omega)A(\omega) = \frac{\alpha(\omega)}{i\omega}E(\omega),$$
 (3.5.5)

or

$$\sigma(\omega) = \frac{\alpha(\omega)}{i\omega}.\tag{3.5.6}$$

Thus the dissipated term written in conductivity is just

$$Q = \frac{1}{2} \operatorname{Im} \alpha(\omega) |A|^2 = \frac{1}{2} \operatorname{Re} \sigma(\omega) |E|^2,$$
(3.5.7)

and

$$\operatorname{Re} \sigma = \frac{\operatorname{Im} \alpha}{\omega} = \frac{\pi}{\hbar \omega} \sum_{mn} (\rho_n - \rho_m) |j_{mn}|^2 \delta(\omega + \omega_{nm}). \tag{3.5.8}$$

Now there comes an assumption which is called "independent particle approximation": we replace ρ by single electron distribution function f and recall that j = -ev then

$$\operatorname{Re}\sigma = \frac{\hbar\pi e^2}{V} \sum_{mn} \frac{f_n - f_m}{\hbar\omega_{mn}} |v_{mn}|^2 \delta(E_n + \hbar\omega - E_m), \tag{3.5.9}$$

where V is the volume which acts as normalized factor. Notice that

$$\frac{f_n - f_m}{\hbar \omega_{mn}} \delta(E_n + \hbar \omega - E_m) = \int dE \frac{f(E) - f(E + \hbar \omega)}{\hbar \omega} \delta(E - E_n) \delta(E_n + \hbar \omega - E_m), \tag{3.5.10}$$

then the formula of $\operatorname{Re} \sigma$ become

$$\operatorname{Re} \sigma(\omega) = \frac{\hbar \pi e^{2}}{V} \int dE \frac{f(E) - f(E + \hbar \omega)}{\hbar \omega} \sum_{nm} v_{nm} \delta(E_{n} + \hbar \omega - E_{m}) v_{mn} \delta(E - E_{n})$$

$$= \frac{\hbar e^{2}}{\pi V} \int dE \frac{f(E) - f(E + \hbar \omega)}{\hbar \omega} \operatorname{Tr}[v \operatorname{Im} G^{R}(E + \hbar \omega) v \operatorname{Im} G^{R}(E)].$$
(3.5.11)

For static conductivity, we have

$$\lim_{\omega \to 0} \operatorname{Re} \sigma(\omega) = \frac{\hbar e^2}{\pi V} \int dE \left(-\frac{\partial f}{\partial E} \right) \sum_{k} |\langle k|v|k\rangle|^2 |\operatorname{Im} G^R(E, k)|^2, \tag{3.5.12}$$

or in three dimension (need correction)

$$\lim_{\omega \to 0} \operatorname{Re} \sigma(\omega) = \frac{\hbar e^2}{\pi V} \int dE \left(-\frac{\partial f}{\partial E} \right) \frac{a^3}{(2\pi)^3} \int d^3k \ v^2(k) |\operatorname{Im} G^R(E, k)|^2. \tag{3.5.13}$$

3.6 Green Kubo Formula

Let $\Psi_n^{(0)}$ be the wave function of the unperturbed system, then applying equations of perturbations depending on time in first approximation we have

$$\Psi_n = \Psi_n^{(0)} + \sum_m a_m \Psi_m^{(0)}, \tag{3.6.1}$$

where a_m satisfy the equation

$$i\hbar \frac{da_m}{dt} = V_{mn}e^{i\omega_{mn}t} = -\frac{1}{2}x_{mn}e^{i\omega_{mn}t}(f_0e^{-i\omega t} + f_0^*e^{i\omega t}).$$
 (3.6.2)

In solving this, we must assume that the perturbation is "adiabatically" applied until the time t from $t=-\infty$, this means that we must put $\omega \to \omega \mp i0$ in factors $e^{\pm i\omega t}$. Then

$$a_m = \frac{1}{2\hbar} x_{mn} e^{i\omega_{mn}t} \left[\frac{f_0 e^{-i\omega t}}{\omega_{mn} - \omega - i0} + \frac{f_0^* e^{i\omega t}}{\omega_{mn} + \omega + i0} \right]. \tag{3.6.3}$$

Accordingly,

$$\bar{x} = \int \Psi_n^* x \Psi_n dq$$

$$= \sum_m (a_m x_{nm} e^{i\omega_{nm}t} + a_m^* x_{mn} e^{i\omega_{mn}t})$$

$$= \frac{1}{2\hbar} \sum_m x_{mn} x_{nm} \left[\frac{1}{\omega_{mn} - \omega - i0} + \frac{1}{\omega_{mn} + \omega + i0} \right] f_0 e^{-i\omega t} + \text{c.c.},$$
(3.6.4)

it can be seen that

$$\alpha(\omega) = \frac{1}{\hbar} \sum_{m} |x_{mn}|^2 \left[\frac{1}{\omega_{mn} - \omega - i0} + \frac{1}{\omega_{mn} + \omega + i0} \right]. \tag{3.6.5}$$

This expression is the Fourier transform of the function

$$\alpha(t) = \frac{i}{\hbar}\theta(t)\langle x(t)x(0) - x(0)x(t)\rangle = -G^{R}(t), \tag{3.6.6}$$

thus the we have the final result

$$\alpha(\omega) = \frac{i}{\hbar} \int_0^\infty e^{i\omega t} \langle x(t)x(0) - x(0)x(t) \rangle dt.$$
 (3.6.7)

Chapter 4

Small Polaron

4.1 Holstein Model

The Hamiltonian of Holstein Model is

$$H = -\sum_{\langle i,j \rangle} t_{ij} c_i^{\dagger} c_j + g \sum_i c_i^{\dagger} c_i (a_i + a_i^{\dagger}) + \omega_0 \sum_i a_i^{\dagger} a_i,$$
 (4.1.1)

where c_i^{\dagger} (c_i) is creation (annihilation) operator for electron, and a_i^{\dagger} (a_i) is creation (annihilation) operator for phonon.

The model possesses two independent control parameters:

$$\lambda = g^2/\omega_0 t,\tag{4.1.2}$$

$$\gamma = \omega_0/t. \tag{4.1.3}$$

A third parameter can be conveniently introduced as a combination of the above ones:

$$\alpha = \lambda/\gamma = q/\omega_0. \tag{4.1.4}$$

It is worth defining the following regimes and limits, which are relevant to the Holstein model:

- (i) weak (strong) couplings $\lambda < 1 \ (\lambda > 1)$;
- (ii) small (large) phonon frequency $\gamma < 1 \ (\gamma > 1);$
- (iii) multiphonon regime $\alpha^2 > 1$;
- (iv) adiabatic limit $\omega_0 = 0$, finite λ .

4.2 Weak Coupling Limit

Consider zero density (n = 0) and zero temperature (T = 0) limits, Green's function for a single electron can be defined as

$$G_{ij}(t) = -i\langle 0|Tc_i(t)c_i^{\dagger}(0)|0\rangle, \tag{4.2.1}$$

where $|0\rangle$ is the vacuum for phonons and electrons. There is only one possible ordering (t > 0), so the function is purely retarded.

Let $g \sum_{i} c_i^{\dagger} c_i (a_i + a_i^{\dagger})$ acts as perturbation, we have that

$$G_{ij}(t) = -i\langle 0|Tc_i(t)c_j(0)^{\dagger}S|0\rangle, \tag{4.2.2}$$

where

$$S = Te^{-i\int dt [g\sum_{i} c_{i}^{\dagger} c_{i}(a_{i} + a_{i}^{\dagger})]} \quad . \tag{4.2.3}$$

The expansion of S to second order of g gives

$$G_{ij}(t) = -i\langle 0|Tc_{i}(t)c_{j}^{\dagger}|0\rangle$$

$$-i\frac{g^{2}}{2}\int dt'dt''\sum_{l,l}\langle 0|Tc_{i}(t)c_{j}^{\dagger}c_{k}^{\dagger}(t')c_{k}(t')c_{l}^{\dagger}(t'')c_{l}(t'')[a_{k}(t')a_{l}^{\dagger}(t'')+a_{k}^{\dagger}(t')a_{l}(t'')]|0\rangle,$$

$$(4.2.4)$$

apply Wick's theorem and recall that (D is the Green's function for phonon)

$$\langle 0|a_k^{\dagger}(t')a_l(t'')|0\rangle = 0, \langle 0|a_k(t')a_l^{\dagger}(t'')|0\rangle = D_{kl}(t'-t'') = \delta_{kl}D_{kk}(t'-t''),$$
(4.2.5)

we can obtain that

$$G_{ij}(t) = G_{ij}^{(0)}(t) + ig^2 \sum_{k} \int dt' dt'' G_{ik}^{(0)}(t - t') G_{kk}^{(0)}(t' - t'') D_{kk}(t' - t'') G_{kj}(t''), \tag{4.2.6}$$

in frequency space, (note that $D_{kk}(t'-t'')=-ie^{-i\omega_0(t'-t'')}$)

$$G_{ij}(\omega) = G_{ij}^{(0)}(\omega) + g^2 \sum_{k} G_{ik}^{(0)}(\omega) G_{kk}^{(0)}(\omega - \omega_0) G_{kj}^{(0)}(\omega).$$
(4.2.7)

Compare with the Dyson equation

$$G_{ij} = G_{ij}^{(0)} + \sum_{kl} G_{ik}^{(0)} \Sigma_{kl} G_{lj} = G_{ij}^{(0)} + \sum_{kl} G_{ik}^{(0)} \Sigma_{kl} G_{lj}^{(0)} + \cdots , \qquad (4.2.8)$$

it is clear to see that second order perturbation gives a local (k-independent) self energy:

$$\Sigma_2(\omega) = q^2 G^{(0)}(\omega - \omega_0). \tag{4.2.9}$$

The electron effective mass, in the case of a local self-energy, is easily calculated via

$$\frac{m^*}{m} = \left. \frac{d(\omega - \text{Re}\Sigma(\omega))}{d\omega} \right|_{E_0} = 1 - \left. \frac{d\text{Re}\Sigma(\omega)}{d\omega} \right|_{E_0}, \tag{4.2.10}$$

where E_0 is the ground-state energy.

4.3 Atomic Limit (Zero Temperature)

The atomic limit is defined as the zero hopping case (t = 0). In this case, Hamiltonian (4.1.1) can be diagonalized by the unitary Lang-Firsov transformation

$$U = e^{-S}, \quad S = -\alpha \sum_{i} c_i^{\dagger} c_i (a_i - a_i^{\dagger}).$$
 (4.3.1)

With the aid of Baker-Campbell-Hausdorff formula we have

$$\bar{c}_{i} = e^{S} c_{i} e^{-S} = c_{i} X_{i}, \quad X_{i} = e^{\alpha(a_{i} - a_{i}^{\dagger})};$$

$$\bar{c}_{i}^{\dagger} = e^{S} c_{i}^{\dagger} e^{-S} = c_{i}^{\dagger} X_{i}^{\dagger}, \quad X_{i}^{\dagger} = e^{\alpha(a_{i}^{\dagger} - a_{i})};$$

$$\bar{a}_{i} = e^{S} a_{i} e^{-S} = a_{i} - \alpha c_{i}^{\dagger} c_{i};$$

$$\bar{a}_{i}^{\dagger} = e^{S} a_{i}^{\dagger} e^{-S} = a_{i}^{\dagger} - \alpha c_{i}^{\dagger} c_{i};$$

$$\bar{H} = e^{S} H e^{-S} = -\frac{g^{2}}{\omega_{0}} \sum_{i} c_{i}^{\dagger} c_{i} + \omega_{0} \sum_{i} a_{i}^{\dagger} a_{i}.$$

$$(4.3.2)$$

After the transformation, we can see that the ground energy is $\varepsilon_p = -g^2/\omega_0$, the excited state energy is $\varepsilon_p + n\omega_0$.

The static electron-displacement correlation function is defined as $C_0 = \langle n_i(a_i + a_i^{\dagger}) \rangle$, apply Lang-Firsov transformation it reads

$$C_0 = \langle n_i(a_i + a_i^{\dagger}) \rangle - 2\alpha \langle n_i \rangle = -2\alpha \langle n_i \rangle, \tag{4.3.3}$$

at the ground state $n_i = 1$, thus $C_0 = -2\alpha$. Meanwhile,

$$\langle e^S a^{\dagger} a e^{-S} \rangle = \langle a^{\dagger} a \rangle + \alpha^2 \langle c^{\dagger} c \rangle = \alpha^2.$$
 (4.3.4)

The electron Green's function can also be calculated after the Lang-Firsov transformation¹:

$$G(t) = -i\langle 0|c(t)c^{\dagger}|0\rangle$$

$$= -i\langle 0|cXe^{-i\bar{H}t}c^{\dagger}X^{\dagger}|0\rangle$$

$$= -i\sum_{mn}\langle 0|cX|m\rangle\langle m|e^{-i\bar{H}t}|n\rangle\langle n|c^{\dagger}X^{\dagger}|0\rangle,$$
(4.3.5)

where $|m\rangle$ is the phonon state corresponding to m phonons.

Using the Feynman result $(e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]})$, we have that

$$X^{\dagger} = e^{-\alpha^2/2} e^{\alpha a^{\dagger}} e^{-\alpha a}, \quad X = e^{-\alpha^2/2} e^{-\alpha a^{\dagger}} e^{\alpha a}, \tag{4.3.6}$$

accordingly,

$$\langle m|X^{\dagger}|0\rangle = e^{-\alpha^{2}/2} \langle m|e^{\alpha a^{\dagger}}|0\rangle = e^{-\alpha^{2}/2} \sum_{n} \langle m|\frac{\alpha^{n}}{\sqrt{n!}}|n\rangle = e^{-\alpha^{2}/2} \frac{\alpha^{m}}{\sqrt{m!}},$$

$$\langle 0|X|m\rangle = e^{-\alpha^{2}/2} \frac{\alpha^{m}}{\sqrt{m!}}.$$
(4.3.7)

Finally the electron Green's function is

$$G(\omega) = \sum_{n=0}^{\infty} \frac{\alpha^{2n} e^{-\alpha^2}}{n!} \frac{1}{\omega - n\omega_0 - \varepsilon_p}.$$
 (4.3.8)

Let us now consider the action of the hopping. After the Lang-Firsov transformation, the hopping term becomes

$$t_{ij}c_i^{\dagger}c_j \rightarrow t_{ij}X_i^{\dagger}X_jc_i^{\dagger}c_j,$$
 (4.3.9)

consider Holstein approximation, which neglect phonon emission and absorption during the hopping process, we have

$$t_{ij}\langle 0|X_i^{\dagger}X_j|0\rangle = t_{ij}\langle 0|X^{\dagger}|0\rangle\langle 0|X|0\rangle = t_{ij}e^{-\alpha^2}.$$
(4.3.10)

4.4 Atomic Limit (Finite Temperature)

The Lang-Firsov transformation is the same as zero temperature case. Here we need to calculate $\langle n|X^{\dagger}|n\rangle$. We have that

$$e^{-\alpha a}|n\rangle = \sum_{m=0}^{\infty} \frac{(-\alpha)^m}{m!} a^m |n\rangle$$

$$= \sum_{m=0}^{n} \frac{(-\alpha)^m}{m!} \left[\frac{n!}{(n-m)!} \right]^{\frac{1}{2}} |n-m\rangle,$$
(4.4.1)

and

$$\langle n|e^{\alpha a^{\dagger}} = \sum_{m=0}^{n} \frac{\alpha^{m}}{m!} \left[\frac{n!}{(n-m)!} \right]^{\frac{1}{2}} \langle n-m|, \tag{4.4.2}$$

¹Mahan's Many-Particle Physics, page 221

therefore

$$\langle n|e^{\alpha a^{\dagger}}e^{-\alpha a}|n\rangle = \sum_{m=0}^{n} \frac{(-\alpha^{2})^{m}}{m!} \frac{n!}{m!(n-m)!} = L_{n}(\alpha^{2}),$$
 (4.4.3)

where $L_n(x)$ is Laguerre polynomial. Thus

$$\langle n|X^{\dagger}|n\rangle = \langle n|X|n\rangle = e^{-\alpha^2/2}L_n(\alpha^2).$$
 (4.4.4)

At finite temperature, the assumption is that we only average on phonon according to temperature. ("cold" electron in a thermalized phonon bath). So at finite temperature the effective hopping amplitude is

$$t_{ij}(1 - e^{-\beta\omega_0})^2 \sum_{mn} e^{-\beta m\omega_0} \langle m | X_i^{\dagger} | m \rangle e^{-\beta n\omega_0} \langle n | X_j | n \rangle$$

$$= t_{ij} e^{-\alpha^2} \left[(1 - e^{-\beta\omega_0}) \sum_{n=0}^{\infty} e^{-n\beta\omega_0} L_n(\alpha^2) \right]^2.$$
(4.4.5)

Recall that the generating function of Laguerre polynomials:

$$\frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^{\infty} L_n(x)t^n,$$
(4.4.6)

let $t = e^{-\beta\omega_0}$ and $x = \alpha^2$ we find that the effective hopping amplitude is

$$t_{ij}e^{-S_T}, \quad S_T = \alpha^2(1 + 2\langle n \rangle_T).$$
 (4.4.7)

Now let us turn to electron Green's function, now defined as

$$G(t) = -i(1 - e^{-\beta\omega_0}) \sum_{n} e^{-\beta n\omega_0} \langle n|c(t)c^{\dagger}|n\rangle$$

$$= -i(1 - e^{-\beta\omega_0}) \sum_{n} e^{-\beta n\omega_0} \langle 0|c(t)X(t)c^{\dagger}X^{\dagger}|0\rangle$$

$$= -i(1 - e^{-\beta\omega_0}) \langle 0|c(t)c^{\dagger}|0\rangle \sum_{n} e^{-\beta n\omega_0} \langle n|X(t)X^{\dagger}|n\rangle.$$

$$(4.4.8)$$

According to Heisenberg equation of motion (with Hamiltonian \bar{H}), we have that

$$c(t) = ce^{-i\varepsilon_p t}, \quad c^{\dagger}(t) = c^{\dagger}e^{i\varepsilon_p t};$$

$$a(t) = ae^{-i\omega_0 t}, \quad a^{\dagger}(t) = a^{\dagger}e^{i\omega_0 t},$$

$$(4.4.9)$$

thus

$$X(t) = e^{-\alpha^2} e^{-\alpha a^{\dagger} e^{i\omega_0 t}} e^{\alpha a e^{-i\omega_0 t}} = e^{-\alpha^2} e^{-\alpha a^{\dagger}(t)} e^{\alpha a(t)} \tag{4.4.10}$$

and

$$X(t)X^{\dagger} = e^{-\alpha^2} e^{-\alpha a^{\dagger}(t)} e^{\alpha a(t)} e^{\alpha a^{\dagger}} e^{-\alpha a}. \tag{4.4.11}$$

Now we write $e^{\alpha a(t)}e^{\alpha a^{\dagger}}$ as²

$$e^{\alpha a(t)}e^{\alpha a^{\dagger}} = e^{\alpha a^{\dagger}}[e^{-\alpha a^{\dagger}}e^{\alpha a(t)}e^{\alpha a^{\dagger}}], \tag{4.4.12}$$

using Baker-Campbell-Hausdorff formula we get

$$e^{-\alpha a^{\dagger}} e^{\alpha a(t)} e^{\alpha a^{\dagger}} = e^{\alpha^2 e^{-i\omega_0 t}} e^{\alpha a(t)}. \tag{4.4.13}$$

²see Mahan's Many-Particle Physics, page 222

Finally the electron Green's function is arranged into the desired form:

$$G(t) = -i(1 - e^{-\beta\omega_0})e^{-\alpha^2(1 - e^{-i\omega_0 t})}\langle 0|c(t)c^{\dagger}|0\rangle \sum_n e^{-\beta n\omega_0}\langle n|e^{\alpha a^{\dagger}(1 - e^{i\omega_0 t})}e^{-\alpha a(1 - e^{-i\omega_0 t})}|n\rangle, \qquad (4.4.14)$$

again using Laguerre polynomials we can prove that

$$(1 - e^{-\beta\omega_0}) \sum_{n} e^{-\beta n\omega_0} \langle n | e^{u^* a^{\dagger}} e^{-ua} | n \rangle = e^{-|u|^2/(e^{\beta\omega_0} - 1)}, \tag{4.4.15}$$

thus

$$G(t) = -ie^{-i\varepsilon_p t} \exp\left[-\alpha^2 [(N+1)(1 - e^{-i\omega_0 t}) + N(1 - e^{i\omega_0 t})]\right], \tag{4.4.16}$$

where

$$N = \frac{1}{e^{\beta\omega_0} - 1}. (4.4.17)$$

Recall the generating function of Bessel functions of complex argument,

$$e^{z\cos\theta} = \sum_{n=-\infty}^{\infty} I_n(z)e^{in\theta},$$
(4.4.18)

let [note $(N+1)/N = e^{\beta \omega_0}, \sqrt{(N+1)/N} = e^{\beta \omega_0/2}$]

$$z = 2\alpha^2 \sqrt{N(N+1)}, \quad \theta = \omega_0(t + i\beta/2)$$
 (4.4.19)

then (note that $I_n = I_{-n}$)

$$G(t) = -ie^{-(2N+1)\alpha^2} e^{-i\varepsilon_p t} \sum_{n=-\infty}^{\infty} e^{-in\omega_0 t} e^{\beta n\omega_0/2} I_n \{ 2\alpha^2 \sqrt{N(N+1)} \}, \tag{4.4.20}$$

in frequency space

$$G(\omega) = e^{-(2N+1)\alpha^2} \sum_{n=-\infty}^{\infty} e^{\beta n\omega_0/2} I_n \{ 2\alpha^2 \sqrt{N(N+1)} \} \frac{1}{\omega - n\omega_0 - \varepsilon_p}.$$
 (4.4.21)

4.5 The Impurity Analogy for A Single Electron

The Hamiltonian for impurity model is

$$H_{\text{imp}} = \sum_{k} \varepsilon_k c_k^{\dagger} c_k + \sum_{k} V_k (c_k^{\dagger} d + d^{\dagger} c_k) + \omega_0 a^{\dagger} a + g d^{\dagger} d(a + a^{\dagger}), \tag{4.5.1}$$

here V_k and E_k is related to G_0 by

$$G_0^{-1}(\omega) = \omega - \int_{-\infty}^{\infty} d\varepsilon \frac{\Delta(\varepsilon)}{\omega - \varepsilon},$$
(4.5.2)

where

$$\Delta(\varepsilon) = \sum_{k} V_k^2 \delta(\varepsilon - \varepsilon_k). \tag{4.5.3}$$

Let us separate the Hamiltonian into two parts H_0 and V, where

$$H_0 = \sum_k \varepsilon_k c_k^{\dagger} c_k + \sum_k V_k (c_k^{\dagger} d + d^{\dagger} c_k) + \omega_0 a^{\dagger} a, \quad V = g d^{\dagger} d(a + a^{\dagger}). \tag{4.5.4}$$

4.5.1 The Zero Temperature Formalism

The Green's function for one electron at zero temperature is

$$G(t) = -i\theta(t)\langle 0|d(t)d^{\dagger}|0\rangle, \tag{4.5.5}$$

after Fourier transformation:

$$G(\omega) = \langle 0|d\frac{1}{\omega + i0 - H}d^{\dagger}|0\rangle. \tag{4.5.6}$$

An operator identity holds:

$$\frac{1}{\omega - H} = \frac{1}{\omega - H_0} + \frac{1}{\omega - H_0} V \frac{1}{\omega - H}.$$
(4.5.7)

To proceed further one needs to introduce the generalized matrix elements:

$$G_{nm} = \langle 0 | \frac{a^n}{\sqrt{n!}} d \frac{1}{\omega - H} d^{\dagger} \frac{(a^{\dagger})^m}{\sqrt{m!}} | 0 \rangle, \tag{4.5.8}$$

now introduce a set of zero electron p-phonon states and a set of one electron p-phonon states

$$|0,p\rangle = \frac{(a^{\dagger})^p}{\sqrt{p!}}|0\rangle, \quad |1,p\rangle = \frac{(a^{\dagger})^p}{\sqrt{p!}}d^{\dagger}|0\rangle,$$
 (4.5.9)

one can write

$$G_{nm} = \langle 0 | \frac{a^{n}}{\sqrt{n!}} d \frac{1}{\omega - H_{0}} d^{\dagger} \frac{(a^{\dagger})^{m}}{\sqrt{m!}} | 0 \rangle + \langle 0 | \frac{a^{n}}{\sqrt{n!}} d \frac{1}{\omega - H_{0}} V \frac{1}{\omega - H} d^{\dagger} \frac{(a^{\dagger})^{m}}{\sqrt{m!}} | 0 \rangle$$

$$= G_{nm}^{(0)} + g \sum_{p_{1}, p_{2}} \langle 0 | \frac{a^{n}}{\sqrt{n!}} d \frac{1}{\omega - H_{0}} d^{\dagger} | 0, p_{1} \rangle \langle 0, p_{1} | d(a + a^{\dagger}) | 1, p_{2} \rangle \langle 0, p_{2} | d \frac{1}{\omega - H} d^{\dagger} \frac{(a^{\dagger})^{m}}{\sqrt{m!}} | 0 \rangle$$

$$= G_{nm}^{(0)} + g \sum_{p_{1}, p_{2}} G_{n, p_{1}}^{(0)} X_{p_{1}, p_{2}} G_{p_{2}, m}$$

$$= G_{nn}^{(0)} \delta_{nm} + g \sum_{p_{1}, p_{2}} G_{nn}^{(0)} X_{np} G_{pm} , \qquad (4.5.10)$$

where $G_{nn}^{(0)}(\omega) = G_{00}^{(0)}(\omega - n\omega_0)$ is the diagonal element of the free Green's function, X_{np} are the phonon displacement matrix elements:

$$X_{np} = \sqrt{p+1}\delta_{n,p+1} + \sqrt{p}\delta_{n,p-1}.$$
(4.5.11)

Equation (4.5.10) can be solved in matrix notation:

$$G^{-1} = G_0^{-1} - gX, (4.5.12)$$

it is easy to that G^{-1} is a tridiagonal matrix.

Now define T_k as the determinant of G^{-1} with first k rows and columns removed, using Cramer's rule we find that

$$G_{00} = \frac{T_1}{T_0},\tag{4.5.13}$$

and define D_k as the determinant comprising the first k+1 rows and columns of G^{-1} and $D_{-1}=1, D_{-2}=0$, then

$$D_{0} = [G^{(0)}]_{00}^{-1},$$

$$D_{1} = [G^{(0)}]_{11}^{-1}[G^{(0)}]_{00}^{-1} - g^{2} = [G^{(0)}]_{11}^{-1}D_{0} - g^{2},$$

$$D_{2} = \dots = [G^{(0)}]_{2}^{-1}D_{1} - 2g^{2}D_{0},$$

$$(4.5.14)$$

and, for the general case, the recurrence relations

$$D_k = [G^{(0)}]_{k,k}^{-1} D_{k-1} - kg^2 D_{k-2}. (4.5.15)$$

What's more, we have that

$$T_k = [G^{(0)}]_{kk}^{-1} T_{k+1} - (k+1)g^2 T_{k+2}, \quad \text{or} \quad \frac{T_k}{T_{k+1}} = [G^{(0)}]_{kk}^{-1} - (k+1)g^2 \frac{T_{k+2}}{T_{k+1}},$$
 (4.5.16)

therefore

$$\frac{T_1}{T_0} = \frac{1}{[G^{(0)}]_{00}^{-1} - g^2 \frac{T_2}{T_1}} = \cdots, (4.5.17)$$

or

$$G(\omega) = \frac{1}{G_0^{-1}(\omega) - \frac{g^2}{G_0^{-1}(\omega - \omega_0) - \frac{2g^2}{G_0^{-1}(\omega - 2\omega_0) - \frac{3g^2}{G_0^{-1}(\omega - 3\omega_0) - \cdots}}}$$
(4.5.18)

Now use Dyson equation $\Sigma = G_0^{-1} - G^{-1}$ and we shall get

$$\Sigma(\omega) = \frac{g^2}{G_0^{-1}(\omega - \omega_0) - \frac{2g^2}{G_0^{-1}(\omega - 2\omega_0) - \frac{3g^2}{G_0^{-1}(\omega - 3\omega_0) - \cdots}}}$$
(4.5.19)

The self-energy can be defined recursively,

$$\Sigma^{(p)}(\omega) = \frac{pg^2}{G_0^{-1}(\omega - p\omega_0) - \Sigma^{(p+1)}} \quad . \tag{4.5.20}$$

4.5.2 The Finite Temperature Formalism

At finite temperature, the trace performed over free phonon states gives

$$G(\omega) = (1 - e^{\beta\omega_0}) \sum_{n} e^{-\beta n\omega_0} G_{nn}(\omega). \tag{4.5.21}$$

Now we need to calculate $G_{nn}(\omega)$, according to $G^{-1}G = I$ we have such a recurrence relation (recall that G^{-1} is a tridiagonal matrix):

$$G_{nn} = G_n^{(0)} + gG_n^{(0)}(\sqrt{n}G_{n-1,n} + \sqrt{n+1}G_{n+1,n}), \tag{4.5.22}$$

which we seek to write in a form as

$$G_{nn} = G_n^{(0)} + G_n^{(0)} (AG_{nn} + BG_{nn}). (4.5.23)$$

Again according to Cramer's rule,

$$G_{n-1,n} = \sqrt{n}g \frac{D_{n-2}T_{n+1}}{T_0}, \quad G_{nn} = \frac{D_{n-1}T_{n+1}}{T_0},$$
 (4.5.24)

recall the recurrence relation for D:

$$D_k = [G_k^{(0)}]^{-1} D_{k-1} - kg^2 D_{k-2}, (4.5.25)$$

or

$$\frac{D_{k-1}}{D_k} = \frac{1}{[G_k^{(0)}]^{-1} - kg^2 \frac{D_{k-2}}{D_{k-1}}} (4.5.26)$$

Therefore

$$G_{n-1,n} = \sqrt{n}g \frac{D_{n-2}}{D_{n-1}} \frac{D_{n-1}T_{n+1}}{T_0} = \sqrt{n}g \frac{D_{n-2}}{D_{n-1}}G_{nn}, \tag{4.5.27}$$

i.e.,

$$A = ng^{2} \frac{D_{n-2}}{D_{n-1}} = \frac{ng^{2}}{\left[G_{n}^{(0)}(\omega + \omega_{0})\right]^{-1} - \frac{(n-1)g^{2}}{\left[G_{n}^{(0)}(\omega + 2\omega_{0})\right]^{-1} - \frac{(n-2)g^{2}}{\cdot \cdot \cdot - \frac{g^{2}}{\left[G_{n}^{(0)}(\omega + n\omega_{0})\right]^{-1}}}}$$

$$(4.5.28)$$

Similarly,

$$G_{n+1,n} = \sqrt{n+1}g\frac{D_{n-1}T_{n+2}}{T_0} = \sqrt{n+1}g\frac{T_{n+2}}{T_{n+1}}G_{nn},$$
(4.5.29)

recall the recurrence relation for T:

$$T_k = [G_k^{(0)}]^{-1} T_{k+1} - (k+1)g^2 T_{k+2}, (4.5.30)$$

or

$$\frac{T_{k+1}}{T_k} = \frac{1}{[G_k^{(0)}]^{-1} - (k+1)g^2 \frac{T_{k+2}}{T_{k+1}}}. (4.5.31)$$

Therefore

$$B = (n+1)g^{2}\frac{T_{n+2}}{T_{n+1}} = \frac{(n+1)g^{2}}{\left[G_{n}^{(0)}(\omega - \omega_{0})\right]^{-1} - \frac{(n+2)g^{2}}{\left[G_{n}^{(0)}(\omega - 2\omega_{0})\right]^{-1} - \frac{(n+3)g^{2}}{\left[G_{n}^{(0)}(\omega - 3\omega_{0})\right]^{-1} - \cdots,}}$$

$$(4.5.32)$$

finally

$$G_{nn} = \frac{1}{[G_n^{(0)}]^{-1} - A - B}. (4.5.33)$$

4.5.3 Dynamical Mean Field

If we want to apply dynamical mean field theory, then a self consistent condition is needed. Basically it is (see the solution for simple impurity model)

$$G^{-1}(\omega) = \omega - \sum_{ij} t_{oi} t_{jo} G_{ij}^{(o)}(\omega), \qquad (4.5.34)$$

where $G_{ij}^{(o)}$ is the Green's function with one site removed. For Bethe lattice, it is very simple, in this case it is restricted i = j, and in limit of infinite connectivity $G_{ii}^{(o)} = G_{ii}$. Therefore for Bethe lattice

$$G^{-1}(\omega) = \omega - t^2 G(\omega). \tag{4.5.35}$$

For a general lattice, the relation between the cavity and full Green's functions reads

$$G_{ij}^{(o)} = G_{ij} - \frac{G_{io}G_{oj}}{G_{oo}}. (4.5.36)$$

Therefore equation (4.5.34) become

$$G^{-1} = \omega - \sum_{ij} t_{oi} t_{jo} G_{ij} + \frac{\left(\sum_{i} G_{oi}\right)^{2}}{G_{oo}}, \tag{4.5.37}$$

recall that

$$G(\omega, k) = \frac{1}{\omega - \varepsilon_k - \Sigma(\omega)},$$
(4.5.38)

we have that

$$G^{-1} = \omega - \int d\varepsilon \frac{\rho(\varepsilon)\varepsilon^2}{\zeta - \varepsilon} - \left(\int d\varepsilon \frac{\rho(\varepsilon)\varepsilon}{\zeta - \varepsilon} \right)^2 / \int d\varepsilon \frac{\rho(\varepsilon)}{\zeta - \varepsilon}, \tag{4.5.39}$$

where $\zeta = \omega - \Sigma(\omega)$. This can be simplified further using the following relations:

$$\int d\varepsilon \frac{\rho(\varepsilon)\varepsilon^2}{\zeta - \varepsilon} = \zeta \int d\varepsilon \frac{\rho(\varepsilon)\varepsilon}{\zeta - \varepsilon}, \quad \int d\varepsilon \frac{\rho(\varepsilon)}{\zeta - \varepsilon} = -1 + \zeta \int d\varepsilon \frac{\rho(\varepsilon)}{\zeta - \varepsilon}. \tag{4.5.40}$$

We have used $t_{oo} = \sum_k t_k = \int \rho(\varepsilon)\varepsilon = 0$, finally

$$G_0^{-1} = \Sigma + G^{-1}. (4.5.41)$$

Chapter 5

Physical Constants

- The speed of light in vaccum, $c = 299,792,458 \text{ m/s} \approx 3 \times 10^8 \text{ m/s}$.
- Electric charge $e = -1.602 \times 10^{-19}$ C.
- energy in SI unit, joule $J = kg \cdot (m/s)^2 = N \cdot m = C \cdot V$.
- Plank constant $h = 6.62607004 \times 10^{-34} \text{ J} \cdot \text{s} = 4.135667662 \times 10^{-15} \text{ eV} \cdot \text{s}.$
- \bullet reduced Plank constant $\hbar=1.0545718\times 10^{-34}~\rm{J\cdot s}=6.582119514\times 10^{-16}~\rm{eV\cdot s}$
- Boltzmann constant $k_B = 1.38064852 \times 10^{-23} \text{ J} \cdot \text{K}^{-1} = 8.6173324 \times 10^{-5} \text{ eV} \cdot \text{K}^{-1}$.
- Bohr magneton $\mu_B = 9.27400968 \times 10^{-24} \text{ J} \cdot \text{T}^{-1} = 5.7883818066 \times 10^{-5} \text{ eV} \cdot \text{T}^{-1}$.
- Bohr radius $a_0 = 5.29 \times 10^{-11}$ m.
- Electron mass $m_e = 9.10938215 \times 10^{-31} \text{ kg} = 8.18710438 \times 10^{-14} \text{ J/c}^2 = 0.51099891 \text{ MeV/c}^2$
- Ohm $\Omega = \frac{V}{A} = \frac{V \cdot s}{C} = \frac{J \cdot s}{C^2} = \frac{J}{s \cdot A^2}$.