Pattern Recognition

Lecture 2: Curve Fitting and Probability Theory

Ahmed Hamdy

Computer Engineering Department

Cairo University

Spring 2017

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$

Polynomial Coefficients

	M=0	M = 1	M = 3	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Data Set Size: N = 15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Regularization: $\ln \lambda = -18$

Regularization: $\ln \lambda = 0$

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Apples and Oranges

$$p(B=r) = \frac{4}{10}$$
$$p(B=b) = \frac{6}{10}$$

$$p(F = a|B = r) = \frac{1}{4}$$

$$p(F = o|B = r) = \frac{3}{4}$$

$$p(F = a|B = b) = \frac{3}{4}$$

$$p(F = o|B = b) = \frac{1}{4}$$

Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}.$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional Probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Sum Rule

Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

The Rules of Probability

Sum Rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product Rule

$$p(X,Y) = p(Y|X)p(X)$$

Apples and Oranges

$$p(B = r) = \frac{4}{10}$$
$$p(B = b) = \frac{6}{10}$$

$$p(F=a)=?$$

$$p(F = o) = ?$$

$$p(B = r|F = o) = ?$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

posterior ∞ likelihood × prior

Probability Densities

Expectations

$$\mathbb{E}[f] = \sum_{x} p(x) f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x$$

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Approximate Expectation (discrete and continuous)

Variances and Covariances

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

$$cov[x, y] = \mathbb{E}_{x,y} [\{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}]$$
$$= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x]\mathbb{E}[y]$$

$$cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \} \right]$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]$$

The Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Gaussian Mean and Variance

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 dx = \mu^2 + \sigma^2$$

$$var[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Gaussian Parameter Estimation

Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 $\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$

Properties of $\,\mu_{ m ML}\,$ and $\,\sigma_{ m ML}^2$

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$$

$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$

$$\widetilde{\sigma}^2 = \frac{N}{N-1} \sigma_{\text{ML}}^2$$

$$= \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$$

Curve Fitting Re-visited

Maximum Likelihood

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n|y(x_n, \mathbf{w}), \beta^{-1}\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)}_{\beta E(\mathbf{w})}$$

Determine \mathbf{w}_{ML} by minimizing sum-of-squares error, $E(\mathbf{w})$.

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}_{\text{ML}}) - t_n\}^2$$

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

MAP: A Step towards Bayes

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine $\mathbf{W}_{\mathrm{MAP}}$ by minimizing regularized sum-of-squares error, $\widetilde{E}(\mathbf{w})$.

Bayesian Curve Fitting

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w} = \mathcal{N}(t|m(x), s^2(x))$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n$$
 $s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$

$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathrm{T}} \qquad \boldsymbol{\phi}(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

Bayesian Predictive Distribution

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

Model Selection

Cross-Validation

