

Formel

$$|X| = \frac{\ln(\frac{z}{m})}{k * \ln(1 - \frac{1}{m})}$$

 \Rightarrow Basiert auf Berechnung Anzahl von Nullen in einem Bloomfilter:

$$\Rightarrow z = m * (1 - \frac{1}{m})^{k*X}$$

Algorithmus basierend auf Elgamal

Client

- ⇒ Erstellt Bloom Filter ihre Daten
- \Rightarrow Verschlüsselt jede Stelle ihres Bloom Filters mittels ElGamal

$$(R_i,S_i)=(g^{r_i},pk^{r_i}*g^{1\text{-BF}_1[i]})$$

- \Rightarrow Alice entschlüsselt mit sk Ciphertext von Bob
- ⇒ Bestimmt Anzahl der Einträge an denen beide Bloom Filter null sind
- ⇒ Berechnet die Set-Union der BF

Server

(V, W)

- ⇒ Erstellt Bloom Filter seiner Daten
- \Rightarrow Selektiert jene Stellen Stellen in seinem BF die den Eintrag null besitzen.
 - ⇒ Multipliziert an diesen Stellen die Werte des Ciphertextes von Alice auf
 - ⇒ Rerandomisiert die entstandenen Ergebnisse

$$V = (g^s * \Pi_{i:BF_2[i]=0}R_i)$$

$$W = (pk^s * \Pi_{i:BF_2[i]=0}S_i)$$

Paillier - Verfahren

Schlüsselerzeugung:

Das Schlüsselpaar wird folgendermaßen generiert: Der Client wählt zwei Primzahlen p,q , mit ggt(pq, (p-1)(q-1))= 0. Des weiteren wird der Generator g so gewählt, sodass $g \in (\mathbb{Z}/n^2\mathbb{Z})$ undn die Ordnung von g teilt. Das Schlüsselpaar wird dann folgendermaßen gebildet.

Secrect key: $\lambda = kgV(p-1, q-1)$

Public Key: (n, g)

Verschlüsselung:

Zur Verschlüsselung einer Nachricht $m \in \mathbb{Z}$ wählt der Client zunächst eine Zufalls Zahl r wobei $0 \le r \le n$ Dann berechnet sich der Ciphertext $c = g^m * r^n \mod n^2$

Entschlüsselung:

Der Plaintext kann folgendermaßen berechnet werden: $m = L(c^{\lambda} \mod n^2) * \mu modn$

Homomorphie:

Paillier ist homomorph gegenüber der Addition.

$$E(m_1 + m_2) = (E(m_1) + E(m_2))$$

Algorithmus basierend auf Paillier

Client

- ⇒ Erstellt Bloom Filter ihre Daten
- ⇒ Invertiert jede Stelle de Bloomfilters.
- \Rightarrow Verschlüsselt jede Stelle ihres Bloomfilters mittels Paillier

$$c = (g^m * r^n) mod n^2$$

- ⇒ Alice entschlüsselt mit sk Ciphertexte von Bob
- ⇒ Bestimmt Anzahl der Einträge an denen beide Bloom Filter null sind
- ⇒ Berechnet die Set-Union der BF

Server

[pk, c]

- ⇒ Erstellt für jedes Element des Datensatzes einen Bloomfilter seiner Daten
- ⇒ Selektiert in jedem Blommfilter jene Stellen die den Eintrag Eins besitzen.
- ⇒ Addiert an diesen Stellen die Werte des Ciphertextes des Clients auf

 $Rerandc_j = (cj*encrypt_{pailier}(0))$

Ergebnisse

Uberschneidung	14000	7500	5000	2000
Runtime (sec)	221	247	211	222
Abw. zur Überschn.	0.01%	3.3%	8.8%	36.8%

Table 1: Hashfunktionen : 14, Anzahl Bloomfilter Bits:3029660, Größe der Datensätze: 15000 SNPs

Array	1442696	1009887	577079	144270
Runtime (sec)	108	83	47	11
Abweichung	4%	6%	13%	51%

Table 2: Verhältnis: 100/1, Hashfunktionen: 10