## Prova scritta di Elettrotecnica

## Corso di Laurea in Ingegneria Informatica

| Pisa 1 | 1/7/2020 | Allievo: | Matricola: |
|--------|----------|----------|------------|
|--------|----------|----------|------------|

1) Determinare il circuito equivalente di Thevenin fra i punti 1 e 2 del circuito in figura.



2) Determinare l'andamento temporale della corrente **i(t)** indicata nel circuito in figura per  $-\infty < t < +\infty$ , considerando che l'interruttore si **APRE** per t=0. Il circuito è ipotizzato a regime per tempi negativi.



J(t) = 2 A (costante);  $R = 10 \Omega;$   $C = 100 \mu\text{F};$   $L_1 = 10 \text{ mH};$   $L_2 = 15 \text{ mH};$  M = 10 mH.

3) Determinare la rappresentazione a parametri Y della rete a due porte indicata in figura (a sinistra). Si ipotizzi che il circuito si trovi a regime periodico sinusoidale con pulsazione  $\omega$ . Supponendo poi che due circuiti equivalenti al precedente siano collegati come nella seconda figura (a destra), calcolare la **corrente i(t)** e la **potenza complessa** erogata dal generatore di tensione.





R = 10  $\Omega$ ; L = 10 mH; C = 100  $\mu$ F;  $\alpha$  = 10 V/A;  $\omega$  = 1000 rad/sec;  $e(t) = 50\sqrt{2} \cos(1000 t) V$ .