PREMIÈRE COMPOSITION DE MATHÉMATIQUES

Dans tout le problème, p désigne un nombre entier premier et \mathbb{F}_p le corps $\mathbb{Z}/p\mathbb{Z}$ des entiers modulo p.

On propose ici une étude des polynômes irréductibles à coefficients dans \mathbb{F}_p . On montre, en particulier, que pour tout nombre premier p et tout nombre entier n, il existe un polynôme irréductible unitaire sur \mathbb{F}_p de degré n sans qu'on sache fournir explicitement un tel polynôme. On étudie également une formule d'inversion de Möbius qui permet de dénombrer l'ensemble de ces polynômes.

PARTIE I : Calculs en caractéristique p

- 1. Montrer que $\binom{p}{i} \equiv 0 \pmod{p}$ pour 0 < i < p où $\binom{p}{i}$ désigne le coefficient binomial, coefficient de X^i dans le développement du binôme $(X+1)^p$.
- 2. Soit K un corps commutatif contenant le corps \mathbb{F}_p ; déduire de la question précédente que $(x+y)^p = x^p + y^p$ pour $x,y \in K$ puis que $R\left(x^{p^n}\right) = R(x)^{p^n}$ pour tout $x \in K$, pour tout $n \in \mathbb{N}$ et tout polynôme R à coefficients dans \mathbb{F}_p .

PARTIE II : L'anneau-quotient k[X]/(Q)

Dans cette partie, k désigne un corps commutatif quelconque. Q un polynôme à coefficients dans k, de degré ≥ 1 , et (Q) l'idéal de k[X] engendré par Q.

On définit une relation d'équivalence \mathcal{R} sur k[X] par $R\mathcal{R}S \stackrel{def}{=} R - S \in (Q)$; on note A = k[X]/(Q) l'ensemble des classes d'équivalence modulo \mathcal{R} et $\overline{R} \in A$ la classe de $R \in k[X]$. On rappelle les propriétés suivantes :

— Les lois suivantes sont bien définies et confèrent à A = k[X]/(Q) une structure d'algèbre sur k, commutative et unitaire :

$$\overline{R} + \overline{S} = \overline{R + S}; \qquad \overline{R} \times \overline{S} = \overline{R \times S}; \qquad \lambda \overline{R} = \overline{\lambda R} \qquad (R, S \in k[X], \lambda \in k)$$

- L'application $\lambda \in k \mapsto \overline{\lambda} \in A$ est un morphisme injectif qui permet d'identifier le corps k à un sous-anneau de A.
- Tout élément de A s'écrit $R(\overline{X})$ où R est un polynôme à coefficients dans k.
- 1. Expliciter une base de A en tant qu'espace vectoriel sur k; quelle est la dimension de cet espace vectoriel?
- 2. Caractériser les éléments $R \in k[X]$ tels que $\overline{R} \in A$ soit inversible dans A.

3. En déduire une condition nécessaire et suffisante, portant sur le polynôme Q, pour que A = k[X]/(Q) soit un corps. À titre d'exemple, quels sont les corps parmi $\mathbb{F}_2[X]/(X^2 + X + 1)$, $\mathbb{F}_{11}[X]/(X^2 + 1)$, $\mathbb{F}_{13}[X]/(X^2 + 1)$?

PARTIE III : Les facteurs irréductibles de $X^{p^n} - X$

Dans cette partie, Q désigne un polynôme irréductible de $\mathbb{F}_p[X]$ de degré d; on note K le corps $\mathbb{F}_p[X]/(Q)$ et \overline{X} la classe de X dans ce quotient.

- 1. Quel est l'ordre du groupe multiplicatif $K^* = K \setminus \{0\}$? En déduire que $y^{p^d-1} = 1$, $\forall y \in K^*$.
- 2. On suppose, dans cette question que $d=\deg Q$ divise n; déduire de la question précédente que $\overline{X}^{p^n}=\overline{X}$ puis que Q divise $X^{p^n}-X$.
- 3. On suppose, dans cette question, que Q divise $X^{p^n} X$.
 - a. Montrer que $\overline{X}^{p^n} = \overline{X}$ puis que $y^{p^n} = y, \forall y \in K$.
 - b. Soit r le reste dans la division euclidienne de n par d; montrer que : $y^{p^r-1} = 1$, $\forall y \in K^*$.
 - c. En déduire que le polynôme $Y^{p^r-1}-1$ est le polynôme nul puis que $d=\deg Q$ divise n.
- 4. Montrer que le polynôme $X^{p^n}-X$ est sans facteur carré puis que : $X^{p^n}-X=\prod_{d\mid n}\prod_{Q\in K_p^d}Q,$ K_p^d désignant l'ensemble des polynômes irréductibles unitaires de degré d sur \mathbb{F}_p .

PARTIE IV : Dénombrement des polynômes irréductibles

On désigne, dans cette partie par I_p^n le nombre de polynômes irréductibles unitaires de degré n sur \mathbb{F}_p .

- 1. En utilisant le résultat de la question III.4., montrer que : (*) $p^n = \sum_{d|n} dI_p^d$.
- 2. Déduire de la question précédente que $p^d \ge dI_p^d$, puis que $I_p^n \ge 1$, autrement dit qu'il existe au moins un polynôme irréductible modulo p en tout degré.
- 3. Donner les valeurs de I_p^1 et de I_p^n pour n premier. Montrer que la formule (*) ci-dessus permet de calculer I_p^n par une formule récurrente en n.
- 4. On désire, dans cette question, retrouver directement la valeur de I_p^2 puis « expliciter » les I_p^2 trinômes unitaires irréductibles sur \mathbb{F}_p .
 - a. Donner un argument autre que celui fourni par la relation (*) permettant de calculer I_p^2 . Expliciter les I_2^2 polynômes unitaires irréductibles sur \mathbb{F}_2 . On suppose maintenant $p\neq 2$.

- b. Montrer que l'ensemble des carrés de \mathbb{F}_p^* est un sous-groupe de \mathbb{F}_p^* contenant exactement (p-1)/2 éléments.
- c. En déduire la forme des I_p^2 trinômes unitaires irréductibles de $\mathbb{F}_p[X]$ puis de nouveau la valeur de I_p^2 .

À titre d'exemple, on explicitera les I_5^2 trinômes unitaires irréductibles de $\mathbb{F}_5[X]$.

PARTIE V : La formule d'inversion de Möbius

Soit une égalité : (**) $f(n) = \sum_{d|n} g(d), n \ge 1$

où f et g sont deux fonctions de \mathbb{N}^* dans \mathbb{C} ; on désire exprimer g en fonction de f. Ce résultat sera appliqué au calcul de I_n^n .

On désigne par $\mathfrak F$ l'ensemble de toutes les fonctions de $\mathbb N^*$ dans $\mathbb C$, muni de l'addition ordinaire des fonctions et du produit arithmétique défini par :

$$(f \star h)(n) = \sum_{d|n} f(d)h\left(\frac{n}{d}\right), \ n \ge 1.$$

- 1. Vérifier que $\mathfrak F$ est un anneau commutatif et unitaire ; quel est son élément unité, que l'on notera χ ?
- 2. Montrer que $f \in \mathfrak{F}$ est inversible dans \mathfrak{F} si et seulement si $f(1)\neq 0$.
- 3. On définit la fonction μ de Möbius par :

 $\begin{cases} \mu(1) = 1 \\ \mu(p_1 p_2 \dots p_k) = (-1)^k \text{ si } p_1, p_2, \dots, p_k \text{ sont des premiers } distincts \\ \mu(n) = 0 \text{ sinon (c'est-à-dire si } n \text{ est divisible par un carré).} \end{cases}$

et par cst_1 la fonction de \mathbb{N}^* dans \mathbb{C} constamment égale à 1.

- a. Calculer $\mu \star cst_1$.
- b. Soient f et g dans \mathfrak{F} , liées par une égalité (**); déduire de ce qui précède qu'on peut exprimer g en fonction de f par :

$$g(n) = \sum_{d|n}^{3} \mu(d) f\left(\frac{n}{d}\right).$$

4. En déduire une formule exprimant I_n^p .

PARTIE VI : De nombreux polynômes . . . mais un seul corps

Dans cette partie, on fixe un nombre entier n et on s'intéresse aux corps commutatifs à p^n éléments; on souhaite démontrer que deux tels corps sont isomorphes.

1. Montrer l'existence d'un corps commutatif ayant p^n éléments et préciser sa construction.

On désigne maintenant par K' un (autre) corps commutatif « abstrait » à p^n éléments.

- 2. a. En utilisant le noyau de l'application de $\mathbb{Z} \to K'$ qui à $m \in \mathbb{Z}$ associe $m \times 1$ (1 est l'élément unité de K'), montrer l'existence d'un entier premier q tel que qy = 0 pour tout $y \in K'$.
 - b. Montrer que p = q.
 - c. En déduire l'existence et l'unicité d'un isomorphisme de corps σ du corps \mathbb{F}_p sur un sous-corps $\sigma(\mathbb{F}_p)$ de K'.

Si $Q = \sum_i \lambda_i X^i$ est un polynôme à coefficients dans \mathbb{F}_p , on note Q^{σ} le polynôme $\sum_i \sigma(\lambda_i) X^i$ à coefficients dans $\sigma(\mathbb{F}_p) \subset K'$.

3. Soit $y\in K'$; vérifier que l'application $eval_y$ de $F_p[X]$ dans K' définie par : $eval_y(Q)=Q^\sigma(y),\,Q\in\mathbb{F}_p[X],$

est un morphisme d'anneaux.

- 4. On fixe un polynôme $P \in \mathbb{F}_p[X]$ irréductible de degré n auquel on associe le corps « concret » $K = \mathbb{F}_p[X]/(P)$; montrer que le polynôme P^{σ} admet une racine dans K'.
- 5. En déduire l'existence d'un isomorphisme du corps K sur le corps K'.

•