$\mathbf{F}(\mathbf{t})$	$\mathcal{L}\left\{\mathbf{F}(\mathbf{t}) ight\} = \mathbf{f}(\mathbf{s})$
1	$\frac{1}{s}$ $s > 0$
t	$\frac{1}{s^2} \qquad s > 0$
$n = 0, 1, 2, \dots$	$\frac{n!}{s^{n+1}} \qquad s>0$ Note. Factorial $n=n!=1\cdot 2\dots n$ Also, by definition $0!=1$
e^{at}	$\frac{1}{s-a} \qquad s > a$
$\sin at$	$\frac{a}{s^2 + a^2} \qquad s > 0$
$\cos at$	$\frac{s}{s^2 + a^2} \qquad s > 0$
$\sinh at$	$\frac{a}{s^2 - a^2} \qquad s > a $
$\cosh at$	$\frac{s}{s^2 - a^2} \qquad s > a $