NEURAL NETWORKS AND MULTIVARIATE LINEAR REGRESSION

Josh Christensen

Introduction

Objectives

- Generally compare point predictions from Neural Networks and Multivariate Linear Regression
- Assess how covariance in a multivariate response affects predictions
- Assess how non-linearity affects predictions

Why these two and point predictions?

- Linear regression is the default
- Neural networks are often presented as the superior alternative
- Point estimates is the primary area where the two sets of use cases overlap

DATA

Data Set Information

- University of California Irvine Machine Learning Repository
- Characterization of over 200 automobiles in terms of structure and function
- Insurance information:
 - Symboling
 - Normalized losses (not used due to missing values)

Variables

11. Width

Symboling 12. Height **Response Variables:** 13. Curb Weight Make 1. City MPG **Fuel Type** 14. Engine Type 2. Highway MPG 3. 15. Number of Cylinders 3. Horsepower 4. **Aspiration Number of Doors** 16. Engine Size **Body Style** 17. Fuel System 6. **Drive wheels** 7. 18. Bore **Engine Location** 19. Stroke 8. Wheel Base 20. Compression Ratio 9. 21. Peak RPM 10. Length

22. Price

METHODS

Multivariate Regression

- $\bullet Y = XB + \Xi$
- For point predictions we only need an estimate for $\widehat{\boldsymbol{B}}$ since our point estimate is $E(\mathbf{Y}) = \mathbf{X}\mathbf{B}$
- $\bullet \, \widehat{B} = (X'X)^{-1}X'Y$
- $\widehat{y} = x\widehat{B}$
- Since \hat{y} is just a linear combination of x it cannot capture non-linear effects unless we explicitly include them

Neural Networks

Neural Networks

Linear function

$$o = c'w + bias$$

Activation function (ReLU)

$$f(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$$

- Backpropagation
 - Iterative gradient based optimization
 - Usually paired with stochastic gradient descent

SIMULATION STUDIES

- 10 covariates with values drawn from standard normals
- Beta values
 - $\beta_1 = (1, 2, ..., 10)'$
 - $\beta_2 = (0.1, 0.2, ..., 1)'$
 - $\beta_3 = (-0.5, -0.4, ..., 0.4)'$
- Standard deviations
 - (1,10,5)

- Run 1
 - Independent responses
- Run 2
 - $\rho_1 = (0.0,0)$
 - $\rho_2 = (0.9, -0.1, 0.3)$
- Run 3
 - $\rho_1 = (0.8, -0.1, -0.5)$
 - $\overline{ \cdot \rho_2 = (-0.8, 0.1, 0.5) }$

	Run 1	Run 2	Run 3
Multivariate Regression	4.282	4.275	4.271
Neural Network	4.256	4.256	4.249

Table 1: Mean absolute error results from the first simulation study.

Figure 2: Demonstration of the data generating process for simulation two.

					σ^2					
	Multivariate Regression					Neural Network				
	0.1	1	3	8		0.1	1	3	8	
$\rho = 0.1$	0.654	0.992	1.499	2.372		0.554	0.964	1.500	2.387	
$\rho = 0.3$	0.658	0.985	1.501	2.333		0.545	0.948	1.505	2.366	
$\rho = 0.5$	0.654	0.994	1.501	2.362		0.563	0.965	1.500	2.405	
$\rho = 0.7$	0.658	1.009	1.535	2.410		0.545	0.964	1.547	2.428	
$\rho = 0.9$	0.645	0.979	1.570	2.310		0.548	0.946	1.566	2.360	

Table 2: Mean absolute error results from the second simulation study.

RESULTS

Car data

- Included all variables
- Two layer neural network with 40 nodes per layer
- Out of sample MAE
 - Neural Network: 3.86
 - Multivariate Regression: 35.57

CONCLUSION

Practical Recommendations

- Generally don't use neural nets for regression
- Use cases:
 - Unstructured data
 - Non-traditional data
 - Difficult to explore non-linearities or collinearity with curves that trees may struggle with
- Consider whether prediction is REALLY your ONLY goal
 - Consider "tuning" your multivariate regression using validation/test sets

Future Work

- Investigate theoretical bases and effects of using validation sets for tuning and test sets for evaluation
- Investigate the effects of tuning parameters on neural network regression predictions
 - Activation functions
 - Optimization routine
 - Learning rate
 - Early stopping rules
 - Pruning rules

