Lecture 3: Linear Regression

Machine Learning, Summer Term 2019

Michael Tangermann Frank Hutter Marius Lindauer

University of Freiburg

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Additional Literature

This book covers linear regression models (today's lecture) and linear discriminant functions (last lecture) nicely, however, it has a dominantly probabilistic approach...

Reminder: ML Design Cycle

Linear regression model are for supervised regression:

• Use past experience to predict the future

Reminder: ML Design Cycle

Linear regression model are for supervised regression:

- Use past experience to predict the future
- Use labelled data points $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^N$

Reminder: ML Design Cycle

Linear regression model are for supervised regression:

- Use past experience to predict the future
- Use labelled data points $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^N$
- Train a **model** which can predict the label y_{N+1} of a new data point \mathbf{x}_{N+1}

Supervised Learning: A Simple Regression Example

Predicting housing prices

- Let's say we only know the average number of rooms in an area
- And we'd like to predict the prize for a house in that area
- ullet One data point: number of rooms ${f x}_i$ and its prize y_i (in 1000's)

feature	Casels
avg. # rooms	y_i
6.575	24
6.377	21.6
5.57	34.7
5.713	33.4
7.024	36.2
5.963	28.7
5.741	22.9
6.417	27.1

Supervised Learning: A Simple Regression Example

Predicting housing prices

- Let's say we only know the average number of rooms in an area
- And we'd like to predict the prize for a house in that area
- One data point: number of rooms x_i and its prize y_i (in 1000's)

	avg. # rooms	y_i	
	6.575	24	
	6.377	21.6	
	5.57	34.7	
	5.713	33.4	
	7.024	36.2	b
	5.963	28.7	
	5.741	22.9	
	6.417	27.1	

Your ideas for other input variables?

Reminder: Terminology

• A data point \mathbf{x}_i is a column vector in \mathbb{R}^D In the literature, x_i are called "regressors", "covariates" or independent" / "explanatory" / "exogenous" / "explanatory" / "input" / "predictor" variables

Reminder: Terminology

• The label y a scalar value, $y \in \mathbb{R}$ In the literature, y is called "regressand", or "endogenous" / "response" / "criterion" / "dependent" variable.

Regression Terminology

- ullet A data point \mathbf{x}_i is a column vector in \mathbb{R}^D
- One label y_i a scalar value, $y_i \in \mathbb{R}$

We are given a labeled data set of N examples:

- \mathbf{X} is a $N \times D$ matrix containing the continuous feature values. (\mathbf{X} contains one transposed data point \mathbf{x}_i^T per row.)
- y is a $N \times 1$ vector containing the continuous labels.
- Beware: Bishop uses(t_i) instead of y_i to denominate labels.

Regression Terminology

- In case x is one-dimensional: *simple* linear regression.
- ullet General case: a data point \mathbf{x}_i is a column vector in \mathbb{R}^D
- ullet One label y_i a scalar value, $y_i \in \mathbb{R}$

Remark:

$$\mathbf{x} \in \mathbb{R}^{\perp}$$

multivariable linear regression or multiple linear regression $u_i \in \mathbb{R}$

$$\neq$$

Regression: The Workflow

• Learn a function $f(\mathbf{x})$, which shall predict the label y based on a data point \mathbf{x} as good as possible.

Regression: The Workflow

- Learn a function $f(\mathbf{x})$, which shall predict the label y based on a data point \mathbf{x} as good as possible.
- Once the function $f(\mathbf{x})$ has been learned, you can infer the continuous label y for a novel input vector \mathbf{x} by simply evaluating the function $f(\mathbf{x})$.

Lecture Overview

- Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Linear Regression: The Basic Idea

The simplest linear model of regression is:

$$f(\mathbf{x},\mathbf{w}) = \widehat{w_0} + \widehat{w_1}x_1 + \dots + \widehat{w_D}x_D$$

where w_0 is a fixed offset, called the *bias*, \mathbf{w} is the weight vector or parameter vector, and data point $\mathbf{x} = (x_1, \dots, x_D)^T$ contains the input variables.

Characteristics:

- ullet Linear function of the weights /parameters w_i
- ullet linear function of the input dimensions / variables x_i
- → significant limitation of the model!

Linear Regression: The Basic Idea

Which relationsships between ${\bf x}$ and y can ${\bf not}$ be described using this

This limitation can partially be removed by considering linear combinations of fixed nonlinear functions of the input variables:

$$f(\mathbf{x}, \mathbf{w}) = \underline{w_0} + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$
where ϕ_j is the imput variables.

where $\phi_j(\mathbf{x})$ are known as *basis functions*.

Characteristics of this *enhanced* linear regression model:

- $ullet f(\mathbf{x}, \mathbf{w})$ is still a linear function of the weights / parameters w_i
- But: $f(\mathbf{x}, \mathbf{w})$ is a **nonlinear** function of the input dimensions / variables x_i

This limitation can partially be removed by considering linear combinations of fixed nonlinear functions of the input variables:

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as basis functions.

Characteristics of this *enhanced* linear regression model (cont.):

Adding basis functions may enlarge the dimensionality

This limitation can partially be removed by considering linear combinations of fixed nonlinear functions of the input variables:

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

where $\phi_j(\mathbf{x})$ are known as basis functions.

Characteristics of this enhanced linear regression model (cont.):

- Adding basis functions may enlarge the dimensionality
- The use of fixed basis functions corresponds to an earlier step in the ML pipeline

Caution with Polynomial Regression / Basis Functions!

• Which risks are involved when using a polynomial basis function?

Reminder: ML Design Cycle: Feature Extraction & Encoding

Combine features:

- We can use complex operations to combine features
- Combined features can be more expressive than their components (use expert knowledge!)

See [Bishop, Section 3.1] for common examples on non-linear basis functions.

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Please realize

- The index of j is now running up to M-1, thus the number of free parameters is M
- It is often convenient to define an additional dummy basis function $\phi_0(\mathbf{x})=1$ to get rid of the bias w_0

Linear Regression with Basis Functions ... and Some Syntactic Sugar

Compare:

$$f(\mathbf{x}, \mathbf{w}) = \mathbf{w_0} + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

Using one extra basis function $\phi_0(\mathbf{x}) = 1$ delivers a simpler form:

$$f(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

with
$$\mathbf{w} = (w_0), \dots, w_{M-1})^T$$
 and $\phi = (\phi_0), \dots, \phi_{M-1})^T$.

In the literature, this is referred to as "augmented notation", and $\widehat{w_0}$ as the "intercept".

Interpretation of the Weight Parameters $\mathbf{w_i}$

**

Please discuss: what is the interpretation of a single weight w_i ?

Interpretation of the Weight Parameters w_i

Please discuss: what is the interpretation of a single weight w_i ?

Importance / Sensitivity:

Interprete a single weight w_i as a partial derivative with respect to the dependent variable x_i :

• Assume we can keep all other variables fixed – how much would the estimated value for \hat{y} change, if the value of x_1 would be increased/decreased by a value of 1?

(omitting the basis functions but including augmented x and w): How can we guess the quality of the regression model?

(omitting the basis functions but including augmented ${\bf x}$ and ${\bf w}$): How can we guess the quality of the regression model?

- Error residuals: as the model usually is not perfect, an estimated value \hat{y} may differ from the true y!
- Thus you may find the model expanded to :

$$f(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{D} w_j \mathbf{x}^j + \varepsilon_j + \mathbf{w}^T \mathbf{x} + \boldsymbol{\varepsilon}$$

(with x^j denoting the j-th dimension of x)

(omitting the basis functions but including augmented ${\bf x}$ and ${\bf w}$): How can we guess the quality of the regression model?

- Error residuals: as the model usually is not perfect, an estimated value \hat{y} may differ from the true y!
- Thus you may find the model expanded to :

$$f(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{D} w_j \mathbf{x}^j + \varepsilon_j = \mathbf{w}^T \mathbf{x} + \boldsymbol{\varepsilon}$$

(with \mathbf{x}^j denoting the j-th dimension of \mathbf{x})

(omitting the basis functions but including augmented ${\bf x}$ and ${\bf w}$): How can we guess the quality of the regression model?

- Error residuals: as the model usually is not perfect, an estimated value \hat{y} may differ from the true y!
- Thus you may find the model expanded to :

$$f(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{D} w_j \mathbf{x}^j + \varepsilon_j = \mathbf{w}^T \mathbf{x} + \boldsymbol{\varepsilon}$$

(with \mathbf{x}^j denoting the j-th dimension of \mathbf{x})

How Can We Derive the Weight Parameters w_i?

Weight vector \mathbf{w} can be derived in (at least) two manners:

How Can We Derive the Weight Parameters wi?

Weight vector w can be derived in (at least) two manners:

Option 1: Guess the entries of w and try to improve them iteratively (gradient descent, other heuristic methods)

Option 2: Determine the weights analytically.

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Assumptions Required for Analytical Solution

$$y_i = w_0 + w_1 x_1 + \ldots + w_D x_D + \varepsilon_i$$

To formulate the analytical solution for the linear regression model requires to make **three assumptions** about the data and how it can be fitted. If violated, the model may fail or underperform. For $i = 1 \dots N$ data points:

Assumptions Required for Analytical Solution

$$y_i = w_0 + w_1 x_1 + \ldots + w_D x_D + \varepsilon_i$$

To formulate the analytical solution for the linear regression model requires to make **three assumptions** about the data and how it can be fitted. If violated, the model may fail or underperform. For $i = 1 \dots N$ data points:

- (A1) The expected value of the residual errors is zero:
 - $\forall i \colon \mathbf{E}(\varepsilon_i) = 0$
- **A2**: The residual errors are <u>uncorrelated</u> and share the <u>same variance</u> (across the input range of x):
 - $\forall i \colon \operatorname{Var}(\varepsilon_i) = \sigma^2$
- A3: The residual errors follow a normal distribution:
 - $\varepsilon_i \sim N(0, \sigma^2)$

Assumptions Required for Analytical Solution

$$y_i = w_0 + w_1 x_1 + \ldots + w_D x_D + \varepsilon_i$$

To formulate the analytical solution for the linear regression model requires to make **three assumptions** about the data and how it can be fitted. If violated, the model may fail or underperform. For $i = 1 \dots N$ data points:

- **A1:** The expected value of the residual errors is zero:
 - $\forall i \colon \mathbf{E}(\varepsilon_i) = 0$
- **A2:** The residual errors are uncorrelated and share the same variance (across the input range of x):
 - $\forall i \colon \operatorname{Var}(\varepsilon_i) = \sigma^2$
- A3: The residual errors follow a normal distribution: $\varepsilon_i \sim \mathrm{N}(0,\sigma^2)$

How would data look like, that violates these assumptions?

(Draw here ...)

What influences the Regression Function?

- Offsets
- Heteroscedasctic data
- Outliers

Role of outliers

Four datasets generated by the statistician Francis Anscombe in 1973. They demonstrate

- importance of graphing data before analyzing it
- effect of outliers on statistical properties

[https://en.wikipedia.org/wiki/Anscombe's_quartet]

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Optimization of w via Least Squares Loss Function

Assuming the slightly more elegant formulation for linear regression (in augmented vector notation):

$$y = Xw + \varepsilon$$

we would like to minimize the squared error of the model:

$$\underset{\mathbf{v}}{\operatorname{argmin}} ||\boldsymbol{\varepsilon}||^2 = \underset{\mathbf{w}}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2$$

$$\underset{\mathbf{v}}{\downarrow} ||\mathbf{v} - \mathbf{X}\mathbf{w}||^2$$

$$\underset{\mathbf{v}}{\downarrow} ||\mathbf{v} - \mathbf{X}\mathbf{w}||^2$$

Optimization of w via Least Squares Loss Function

Find optimum by setting the partial derivatives wrt. \mathbf{w}_i to zero. Use: $\frac{\delta}{\delta \mathbf{w}} \mathbf{w}^T A \mathbf{w} = \mathbf{w}^T (A + A^T)$

$$0 = -2\mathbf{y}^T \mathbf{X} + \mathbf{w}^T (\mathbf{X}^T \mathbf{X})^T$$

Optimization of w via Least Squares Loss Function

$$0 = -2\mathbf{y}^{T}\mathbf{X} + \mathbf{w}^{T}(\mathbf{X}^{T}\mathbf{X}) + (\mathbf{X}^{T}\mathbf{X})$$

$$= -2\mathbf{y}^{T}\mathbf{X} + 2\mathbf{w}^{T}\underline{\mathbf{X}^{T}\mathbf{X}}$$

$$\Leftrightarrow \qquad \qquad (AD)^{T} = B^{T}A^{T}$$

$$\Leftrightarrow \qquad \mathbf{X}^{T}\mathbf{y} = \mathbf{X}^{T}\mathbf{X}\mathbf{w}$$

$$\Leftrightarrow \qquad (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y} = \mathbf{w}$$

Optimization of w

This delivers the analytical solution:

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{\underline{X}}^T\mathbf{\underline{y}} = \mathbf{w}$$

• What is the costly part of the model training?

Optimization of w

This delivers the analytical solution:

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{w}$$

- What is the costly part of the model training?
 - \rightarrow Calculation of inverse $\in \mathbb{R}^{D \times D}$
 - Gauss-Jordan elimination procedure: $O(D^3)$
 - Coppersmith-Winograd: $O(D^{2.37...})$
 - For large dimensions: stochastic gradient descend (nice: the error function is convex!)

Besides squared loss (L_2) , other loss functions are possible. They have different pros and cons.

Besides squared loss (L_2) , other loss functions are possible. They have different pros and cons.

In which situations would you expect absolute loss (L_1) to be preferable compared to squared loss (L_2) ?

Besides squared loss (L_2), other loss functions are possible. They have different pros and cons.

Besides squared loss (L_2), other loss functions are possible. They have different pros and cons.

Regularization with Penalty Terms

Loss functions can be combined with penalties for large weight vectors \mathbf{w} . So-called penality terms are utilized to regularize the optimization problems.

(Regularization may limit overfitting!). Famous regression models:

• Ridge regression: quadratic loss on residuals with L_2 norm penalty on the weights. Analytic formulation for \mathbf{w} . Strong influence of outliers.

Lasso: quadratic loss on residuals with L_1 norm penalty on the weights. No analytic solution, but sparse in \mathbf{w} . Reduced influence by outliers.

For most-used combinations, their pros and cons, see e.g.

[http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote10.html]

Typical Use of Linear Regression

- ullet To predict unknown values y_i for novel input variables \mathbf{x}_i
- Estimate the influence of a single input variable or several variables (e.g. in medicine), i.e. estimating the strength of the **correlation** between x_i and y. **BUT: does not allow for causal interpretation!**
- Visualization to understand a novel dataset: linear or non-linear relationships? Outliers? Distribution of residual errors?

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

Summary by learning goals

Having heard this lecture, you can now ...

- describe a regression problem
- explain pros and cons of using non-linear basis functions
- formulate the regression function (in augmented and non-augmented form)
- explain the meaning / interpretation of the weight vector
- explain (different) assumptions for linear regression models and effects that violations may have ALAZ
- formulate the optimization criterion for ordinary least-square regression
- describe pros and cons of different loss functions and regularizations
- derive a regression model from given data and apply it to new data

Organizational Issues

Exam-related:

• Date of the exam: August 22nd, 2pm

Organizational Issues

Exam-related:

- Date of the exam: August 22nd, 2pm
- The overview sheets for the different algorithms are meant to help you to prepare the exam, but will not be allowed to bring into the exam.

Organizational Issues

Exam-related:

- Date of the exam: August 22nd, 2pm
- The overview sheets for the different algorithms are meant to help you to prepare the exam, but will not be allowed to bring into the exam.

Assigment-related:

• Let's discuss: why do we offer assignments at all, if they are not obligatory?

Lecture Overview

- 1 Brief Recapitulation: Supervised Regression
- 2 The Linear Regression Model
- 3 Assumptions and Data Scenarios
- 4 How to Derive the Parameters...
- 5 Wrapup: Summary, Related Topics, Preview
- 6 Let's Work on Assignment 2

· . . . '