LELEC2770 - Practical Sessions

Practical Session 4: Anonymous Credentials

- 1. Consider the different groups G_1, G_2, G_T of prime order q and a bilinear map $e: G_1 \times G_2 \leftarrow G_T$. Prove that if one has a polynomial time algorithm \mathcal{A} that extracts the discrete logarithm in G_T , then the El Gamal encryption scheme is not semantically secure in G_1 .
- 2. The verification algorithm of the Boneh-Boyen signature checks the following equality:

$$e(\sigma, \mathbf{a}^{\mathbf{m}}b^rc) \stackrel{?}{=} e(g, \hat{g})$$

Consider the simpler case of $e(g,A) \stackrel{?}{=} T$, design a proof of knowledge of A. In order to make your proof as efficient as possible, keep in mind that computations are more costly in G_T than in G_2 .

- 3. Consider a polynomial time algorithm \mathcal{A} that, given B and T, produces A such that e(A, B) = T. Use \mathcal{A} to forge a Boneh-Boyen signature.
- 4. Suppose that one of the attribute of $\mathbf{m} = (m_1, ..., m_l)$ say m_1 is the birth year and consider the commitment $A := g^{m_1}h^r$. Getting access to some service provider requires the user to prove that he is older than 18 years old. How can we actually make such proof in zero-knowledge which means that the service provider learns only one bit of information? In practice, how can we perform such proof on the commitment $B := \mathbf{a}^{\mathbf{m}}b^rc$ of the Boneh-Boyen signature?
- 5. Consider the modified Camenish-Lysyanskaya signature scheme:
 - $vk = (N, \mathbf{a}, b),$
 - in the signature algorithm $v = (\mathbf{a}^{\mathbf{m}} b^r)^{1/e} \mod N$,
 - and in the verification algorithm, one checks that $v^e \stackrel{?}{=} \mathbf{a}^{\mathbf{m}} b^r \mod N$.

This modified version is not secure, show why.

6. In Figure 1 what happens if we use an encryption scheme instead of a commitment scheme?

Figure 1: Anonymous Credentials