Sprawozdanie Laboratorium Mikroelektronika Obsługa programu LTSpice

Stanisław Fiedler 160250

LAB 1, 15 października 2024

Spis treści

1	Zadanie 1		1
	1.1	Wyjaśnić czym różni się analiza Transient od analizy stało- prądowej DC	1
2 Zadanie 2		lanie 2	2
	2.1	Przedstawić wyniki symulacyjne oraz wyjaśnić zasadę działania obwodu	2
	2.2	Zaproponować dowolną zmianę w obwodzie. Opisać wprowadzoną zmianę oraz przedstawić dla niej wyniki symulacyjne	3

1 Zadanie 1

1.1 Wyjaśnić czym różni się analiza Transient od analizy stałoprądowej DC.

Analiza transient przedstawia zmianę badanej wartości w układzie względem czasu. Analiza stałoprądowa DC pozwala zbadać wartość napięcia w badanym miejscu względem napięcia podawanego na układ.

2 Zadanie 2

2.1 Przedstawić wyniki symulacyjne oraz wyjaśnić zasadę działania obwodu.

Rysunek 1: Symulacja 1

Jeżeli napięcie V3 będzie wyższe niż napięcie V2 to napięcie na wyjściu komparatora będzie wynosiło 0V. W sytuacji odwrotnej, kiedy napięcie V2 będzie wyższe niż V3 napięcie na wyjściu będzie wynosić V+.

W obwodzie symulacji 1 napicie V2 wynosi 1V, a V3 zmienia się w czasie od 0V do 2V. Kiedy napięcie V3 przekracza 1V na wyjście podawane jest 0V, w pozostałym czasie na wyjściu jest 5V.

2.2 Zaproponować dowolną zmianę w obwodzie. Opisać wprowadzoną zmianę oraz przedstawić dla niej wyniki symulacyjne.

Rysunek 2: Symulacja 2

W obwodzie symulacji 2 napięcie V2 zostało zmienione na 0,5V. Zmiana ta spowodowała że napięcie 5V na wyjściu komparatora jest tylko kiedy napięcie V3 spada poniżej 0,5V. Przez pozostały czas wynosi ono 0V.