Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék

Digitális Rendszerek (BSc)

 előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások

Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Jegyzetek, segédanyagok:

- Könyvfejezetek:
 - □ http://www.knt.vein.hu
 - -> Oktatás -> Tantárgyak -> Digitális Rendszerek (BSC).

(01_chapter.pdf)

- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

2

Függvényminimalizálás

- Általánosan:
 - □ Függvényminimalizálást a szomszédos mintermek megkeresésével tehetjük meg.
 - □ A szomszédosság megállapítása után egyszerűsítünk.
 - ☐ Minterm → implikáns (egyszerűsíthető) → prímimplikáns (tovább nem egyszerűsíthető)

Függvényegyszerűsítési eljárások

- 1.) Algebrai módszer (Boole algebrai azonosságokkal)
- 2.) Kifejtési módszer
- 3.) Grafikus módszer: (Karnough tábla, igazság tábla)
- 4.) Normálformák:
 - □ DNF: Diszjunktív Normál Forma
 - ☐ KNF: Konjunktív Normál Forma
- 5.) Számjegyes minimalizálás: Quine-McCluskey

.

1.) Algebrai módszer

A Boole-algebra azonosságait használjuk fel az egyszerűsítéshez:

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot C =$$

$$= \overline{A} \cdot C \cdot (\overline{B} + B) + A \cdot C \cdot (\overline{B} + B) = \overline{A} \cdot C + A \cdot C =$$

$$= C \cdot (\overline{A} + A) = C$$

2.) Kifejtési módszer:

Komplexebb függvények esetén egy adott változó értékét először ponáltnak, majd negáltnak definiáljuk, végül pedig az így kiszámított két logikai kifejezést összeadjuk. Ezáltal leegyszerűsödik a függvényminimalizálási feladat.

6

Példa: kifejtési módszer

■ Legyen F₁ függvény a következő:

$$F_1(A, B, C) = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

■ Ha A:=1
$$F_{1}(\mathbf{1}, B, C) = 0 \cdot B \cdot C + 0 \cdot B \cdot C + 1 \cdot \overline{B} \cdot \overline{C} + 1 \cdot B \cdot \overline{C}$$

$$= \overline{B} \cdot \overline{C} + B \cdot \overline{C} = \overline{C} \cdot (B + \overline{B}) = \overline{C}$$

■ Ha A:=0

$$F_{1}(0,B,C) = 1 \cdot B \cdot \overline{C} + 1 \cdot B \cdot C + 0 \cdot \overline{B} \cdot \overline{C} + 0 \cdot B \cdot \overline{C}$$

$$= B \cdot \overline{C} + B \cdot C = B \cdot (\overline{C} + C) = B$$

Végül összeadjuk a kettőt (egyszerűsített alak):

$$F_1(A, B, C) = A \cdot F_1(1, B, C) + \overline{A} \cdot F_1(0, B, C) =$$

$$= A \cdot \overline{C} + \overline{A} \cdot B$$

Az egyszerűsített függvény logikai áramköri realizációja

3.) Grafikus módszer

- Karnough (Veicht) diagramm
 - Tömbösítés szabályainak betartása!
- Példa:

9

Példa 1: 7-szegmenses dekóder áramkör tervezése

- nemzetközi elnevezései a szegmenseknek: (a, b, c, d, e, f, g)
 - □ 16 érték (4 biten ábrázolható): F(X,Y,Z,W)

10

Példa: 7-szegmenses dekóder tervezése (folyt)

- Igazságtábla (f szegmensre)
- Karnough tábla:

sor	Х	Y	Z	W	f
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	1

■ Kapott **f** kimeneti függvény:

$$f(X,Y,Z,W) = \overline{Z} \cdot \overline{W} + X \cdot \overline{Y} + Y \cdot \overline{W} + X \cdot Z + \overline{X} \cdot Y \cdot \overline{Z}$$

Példa 1: A 7-szegmenses dekóder logikai áramköri realizációja

$$f(X,Y,Z,W) = \overline{Z} \cdot \overline{W} + X \cdot \overline{Y} + Y \cdot \overline{W} + X \cdot Z + \overline{X} \cdot Y \cdot \overline{Z}$$

Példa 2: 7-szegmenses dekóder áramkör tervezése

- Csak számjegyeket (0-9) megjelenítésére
 - □ BCD: Binárisan kódolt decimális számokra
- Nemzetközi elnevezései a szegmenseknek: (a, b, c, d, e, f, g)
 - □ 10 érték (4 biten ábrázolható): F(A,B,C,D)
- NTSH: használjunk Nem Teljesen Specifikált Hálózatot (igazságtábla kimeneti függvényértékeiben lehetnek don't care '-' definiált állapotok)

Feladat: $F = \sum_{i=0}^{n=4} (0,1,3,4,5,6,7,8,9)$ x:10,11,12,13,14,15

Példa 2: 7-szegmenses dekóder tervezése (folyt)

- Igazságtábla (**c** szegmensre)
- Karnough tábla:

0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	-
11	1	0	1	1	-
12	1	1	0	0	-
13	1	1	0	1	-
14	1	1	1	0	-
15	1	1	1	1	-

■ Kapott **c** kimeneti függvény:

	_
c(A B C D)	= A + B + C + D

Példa 2: 7-szegmenses dekóder logikai áramköri realizációja (BCD)

$$c(A, B, C, D) = A + B + \overline{C} + D$$

15

4.) Normálformák (NF)

- DNF: Diszjunktív Normál Forma
 - □mintermek (szorzattermek) VAGY kapcsolata
- KNF: Konjunktív Normál Forma
 - ☐ Maxtermek (összegtermek) ÉS kapcsolata

Példa 1: Diszjunktív Normál Forma

Legyen: $F = \sum_{i=0}^{n-4} (0,1,3,7,11,12,14,15)$

■ Karnough tábla: AB 00

Kapott F függvény:

$$F(A, B, C, D) = C \cdot D + \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{D}$$

Példa 2: Konjunktív Normál Forma

Legyen: $F = \prod_{n=4}^{n=4} (2, 4, 5, 6, 8, 9, 10, 13)$

■ Karnough tábla:

Kapott F függvény:

$$F(A,B,C,D) = (A + \overline{C} + D) \cdot (A + \overline{B} + C) \cdot (\overline{A} + C + \overline{D}) \cdot (\overline{A} + B + D)$$

5.) Számjegyes minimalizálás (Quine-McCluskey módszer)

- Szomszédosság szükséges feltételei:
 - □ Decimális indexek különbsége 2ⁿ kell legyen (szükséges, de nem elégséges feltétel!)
 - PI: i: 6-2=4 (szomszédos), de i:10-6=4 (nem szomszédos)
 - □ Bináris súlyuk különbsége 1. (Hamming távolság)

(szükséges, de nem elégséges feltétel!)

 A nagyobb decimális indexűnek kell nagyobb bináris súllyal szerepelnie! (szükséges, de nem elégséges feltétel!)

	00	01	11	10
00	Y ₀	Y ₁	Y ₃	Y ₂
01	Y ₄	Y ₅	Y ₇	Y ₆
11	Y ₁₂	Y ₁₃	Y ₁₅	Y ₁₄
10	Y ₈	Y ₉	Y ₁₁	Y ₁₀

Példa: Számjegyes minimalizálásra (Quine-McCluskey módszer)

- Oldjuk meg a következő feladatot a Quine-McCluskey módszerrel
- Ha adott az F függvény DNF alakban:

$$F = \sum_{i=0}^{n=4} (0,1,3,7,11,12,14,15)$$

Karnough tábla:

\	CD)		(2	
ΑB		00	01	11	10	
	00	1 0	1	1 3	0 2	
	01	0 4	0 5	1 7	0 6	В
	11	1	0	1	1	B
Α	10	0 8	0 9	1	0	
		-	Г	<u> </u>		20

Számjegyes minimalizálás Quine-McCluskey módszer I.lépés

- Csoportosítás bináris súlyuk szerint: □ ahol a kimeneti értékük '1-s' volt.
 - 0
 0000
 [0 bináris súly]

 1
 0001
 [1 bináris súly]

 3
 0011
 [2 bináris súly]

 12
 1100

 7
 0111
 [3 bináris súly]

 11
 1011

 14
 1110

 15
 1111
 [4 bináris súly]

bináris súly szerinti csoportképzések

21

Számjegyes minimalizálás Quine-McCluskey módszer II.lépés

 II. Összes létező szomszédos kételemű lefedő tömb összevonása (Karnough tábla alapján)

Minterm	Decimális különbsé
<u>0,1</u>	<u>(1)</u>
<u>1,3</u>	(2)
3,7	(4)
3,11	(8)
<u>12,14</u>	(2)
7,15	(8)
11,15	(4)
14,15	(1)

Számjegyes minimalizálás Quine-McCluskey módszer III.lépés

■ III. Összes létező szomszédos kettesekből képzett **négyelemű** lefedő tömb összevonása (Karnough tábla alapján)

`	.,			C	
Mintorm		AB \ 00	01 11	10	
Minterm	Decimális különbség	20		$\sqrt{}$	
0,1	<u>(1)</u>	00 1		0 2	
1,3	(2)	01 0			
3,7	(4) Négyes		0 1 1	7 0 6	
3,11	(8) Összevon				_ В
<u>12,14</u>	<u>(2)</u> 3,7,11,15	(4,8) 1 1 ₂	0 13 1	5 14	-
7,15	(8)	10 0	0 \1/	0	
11,15	(4)	-	$\frac{1}{3}$ $\frac{1}{9}$ $\frac{1}{1}$	1 10	
14,15	(1)		D		

Számjegyes minimalizálás Quine-McCluskey módszer IV.lépés

 IV. Prímimplikáns tábla felírása a megmaradt összevonásokkal (III. lépés alapján)

sor		0	1	3	7	11	12	14	15
*	0,1 (1)	*	*						
	1,3 (2)		*	*					
*	12,14 (2)						*	*	
	14,15 (1)							*	*
*	3,7,11,15 (4,8)			*	*	*			*

^{* :} ahol egy adott mintermhez tartozó oszlopban csak egy '*' van, az a sor jelöli a **lényeges prímimplikánst** (ahol az implikáns tovább már nem egyszerűsíthető!). Az a sor nem elhagyható!

Számjegyes minimalizálás Quine-McCluskey módszer V.lépés

V. Prímimplikánsokból képzett kimeneti függvény megadása (IV. lépés alapján):

■ Tehát a kimeneti minimalizált F függvény a következő:

$$F = 0000 + 1100 + 0011 \Longrightarrow \qquad F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{D} + C \cdot D \qquad _{\scriptscriptstyle 25}$$

 Ajánlott: fejezetek végén a feladatok (Exercises) részek áttekintése.