

ERA-HELICOPTERS, INC.

GULF COAST DIVISION
LAKE CHARLES, LOUISIANA

PROCESS SPECIFICATION

PROCESS SPECIFICATION NUMBER: ERA-1005

412 Auxiliary Fuel Tanks

FABRICATION AND INSTALLATION OF THE PROBE CAVITY

PREPARED BY:

John E. Stanley
MESH PLASTICS LTD.

DATE: 1/22/87

APPROVALS

MANUFACTURING	QUALITY CONTROL	ENGINEERING	MESH
 L.F. Cannon	 David K. Murphy	 J. Stigall	ERA

**GULF COAST DIVISION
LAKE CHARLES, LOUISIANA**

PROCESS SPECIFICATION

Scope:	This specification outlines the requirements for fabricating and installing the probe cavity for the 412 Auxiliary Fuel Tanks.
Conformation:	This specification does not conform to any existing government specification.
Subcontractors:	MESH PLASTICS, LTD. of Lake Charles, Louisiana, or its subcontractor shall be the only subcontractors qualified to construct the FRP requirements and shall comply with this process specification. Any deviations or variations are to be submitted to ERA for approval with proper documentation prior to fabrication.
Conflicts:	In the event of a conflict with engineering drawing(s) and this specification, the drawing(s) shall govern.

Fabrication and installation of the Probe Cavity for the 412 Auxiliary Fuel Tanks

ERA PS 1005

REV IR

DATE 1/22/87

MATERIALS

<u>MATERIAL</u>	<u>NAME</u>	<u>MANUFACTURER</u>
Resin	Derakane 470-36	Dow Chemical Midland, MI
Promoter	Cobalt Napthenate	AKZO Chemie New Brunswick, NJ
Accelerator	Dimethylaniline	Buffalo Colors West Paterson, NJ
MEKP Catalyst	Hi Point 90	Witco Chemical Richmond, CA
	Lupersol DHD 9	Lucidol Chemical Buffalo, NY
Mold Release	PVA	Rexco Carpenteria, CA
	Cerea Mold Release Wax	Ceara Products, Inc. Denver, CO
UV Inhibitor	UV-9	Industrial Chemicals Atlanta, GA

ERA PS 1005

REV IR

DATE 1/22/87

MATERIALS

<u>MATERIAL</u>	<u>NAME</u>	<u>MANUFACTURER</u>
Putty filler (Amorphous Fumed Silica)	Aerosil	Degussa Corp. Teterboro, NJ
	Cabosil	Cabot Corp. Boston, MA
Milled Fiber	731 ED	Owens-Corning Anderson, S.C.
3/4 oz Type 'E' glass mat	M113 - 3/4 oz.	Certainteed Wichita Falls, TX
8.9 oz. Type "ECDE" glass	7781	Burlington Fibers Altavista, VA
10 mil 'C' glass, or	Modiglass	Reichold Chemical Bremen, OH
	Manville Glass	Manville Corp. Denver, CO
10 mil 'A' glass veil	Surglass	Superior Glass Bremen, OH

ERA PS 1005

REV IR

DATE 1/22/87

MATERIALS

<u>MATERIAL</u>	<u>NAME</u>	<u>MANUFACTURER</u>
Paraffinated Styrene	TF-100	Industrial Chemicals Atlanta, GA
Grinding Discs	36 Grit Type D 60 Grit Type C 80 Grit Type C	3M Corp. St. Paul, MN
Mold surface	Black Tooling Gel	Glidden

A. FABRICATION

- 1) Inspect molds for defects (ie. chips, cracks, crazing, etc. . .). DO Not proceed until any defect is corrected.
- 2) Apply mold release agent(s) according to manufacturer's instructions to molds.
- 3) Apply one hot coat of Derakane 470 - 36 resin containing UV inhibitor and allow to dry.
- 4) Apply one layer of 3/4 oz. type E glass mat. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 5) Apply one layer of ECDE Glass. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 6) Apply second layer of 3/4 oz. type E glass mat. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 7) Apply second layer of ECDE glass over the bottom area of the piece only. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 8) Apply third layer of 3/4 oz. type E glass mat. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 9) Apply fourth layer of 3/4 oz. type E glass mat. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 10) Apply one layer of 10 mil veil. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Deaerate with serrated rollers.
- 9) Allow laminate to exotherm and cool down.
- 10) Separate from mold, cut holes and trim to size.

B. INSTALLATION

- 1) Sand the leading edge on piece where it attaches to the inside of the tank.
- 2) Attach piece to the tank using putty and allow to cure.
- 3) Apply first layer of 3/4 oz. type E glass mat lapping 1-1/2" on the piece and the tank wall. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Degaerate with serrated rollers.
- 4) Apply second layer of 3/4 oz. type E glass mat lapping 1-1/2" on the piece and the tank wall. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Degaerate with serrated rollers.
- 5) Apply third layer of 3/4 oz. type E glass mat lapping 1-1/2" on the piece and the tank wall. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Degaerate with serrated rollers.
- 6) Apply fourth layer of 3/4 oz. type E glass mat lapping 1-1/2" on the piece and the tank wall. Saturate completely with Derakane 470-36 resin containing UV inhibitor. Degaerate with serrated rollers.
- 7) Apply one layer of 10 mil veil over the wet mat, making sure the veil extends over all mat fibers. Saturate with Derakane 470-36 resin containing UV inhibitor. Degaerate with serrated rollers.
- 8) Allow to cure for a minimum of 4 hours.

ERA PS 1005

REV IR

DATE 1/22/87

INSPECTION

It is the purpose of the inspection to verify that each part has been fabricated in accordance with and meets the requirements of this specification.

RESPONSIBILITIES: It is the responsibility of the fabricator to make available to ERA Helicopter or his authorized representative any or all of the following:

Records: Records pertaining to the part(s) being purchased shall be supplied when requested. These may include:

- Materials specifications
- Equipment drawings or mold jig
- Materials test results.
- Dimensional verification reports.
- Rework and repair reports.

MATERIALS:

Raw materials used for laminates shall be virgin materials and shall be free of contaminants as described in pgs. 11, 12, 13, 14, 15, and 16.

FABRICATED PARTS: The part to be inspected shall be properly located and positioned, and shall be in condition to permit safe and thorough inspection. Reasonable means shall be provided to permit the inspector to visually examine the entire inner and outer surfaces of the part.

Allowable defects are listed on pgs. 9 and 10.

The following inspection tools and equipment shall be made available for use by the inspector.

- Barcol hardness tester.
- Acetone squeeze bottle with acetone.
- Extension cord with ground fault switch.
- A vapor tight inspection light.
- Thickness gauge.

INSPECTION

TEST OF FINISHED
PARTS:

The following basic tests shall be included as a minimum in the Acceptance Inspection.

Barcol Hardness Test - A test of resin cure shall be made in accordance with ASTM D2583. Take 10 readings, discard highest and lowest, average the remaining readings. Minimum acceptable average reading is 30.

Surface Cure Test - An acetone test shall be used to detect surface inhibition on surfaces exposed to air during cure. The procedure that shall be used is the following: rub a few drops of acetone on the surface and check for tackiness after the acetone has evaporated. Persistent tackiness indicates incomplete cure.

Dimensions - The inspector shall be provided with copies of all approved drawings or mold jigs.

OTHER APPLICABLE DOCUMENTS:

ASTM Standards

C 581-74-Test Method for Chemical Resistance of Thermosetting Resins Used in Glass Fiber Reinforced Structures.

D 638-77a-Test method for Tensile Properties of Plastics.

D 790-71-Test Methods for Flexural Properties of Plastics and Electrical Insulating Materials.

D 883-78a-Definitions of Terms Relating to Plastics.

D 2583-75-Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor.

ALLOWABLE DEFECTS

Defect	Surface inspected
Cracks (through part)	None
Draizing (fine surface cracks)	Max dimension 1/2 in., max density 5 per sq. ft. min 2 in apart
Blisters (rounded elevations of the laminate surface over bubbles)	Max 1/4 in., dia x 1/8 in. high, max 1 per sq ft, min 2 in apart
Wrinkles and solid blisters	Max deviation, 20% of wall thickness but not exceeding 1/8 in.
Pits (craters in the laminate surface)	Max dimensions, 1/8 in dia x 1/16 in deep, max density 10 per sq. ft.
Surface porosity (pin-holes or pores in the laminate)	Max dimensions, 1/16 in dia x 1/16 in deep, max density 10 per sq. ft.
Chips	Max dimension of break, 1/4 in, and thickness no greater than 20 percent of wall thickness, max density 1 per sq ft
Dry spot (nonwetted reinforcing)	Max dimension, 2 sq in. per sq ft
Entrapped air (bubbles or voids in the laminate)	1/8 in. max dia, 4 per sq in. max density; 1/16 in. max dia. 10 per sq in. max density

ERA PS 1005

REV IR

DATE 1/22/87

ALLOWABLE DEFECTS

Defect	Surface inspected
Exposed Glass	None
Burned Areas	None
Exposure of cut edges	None
Scratches	Max length 1 in. max depth 0.010 in.
Foreign Matter	1/16 in. dia, max density 1 per sq ft

FIBERGLASS SURFACING MAT

1.0 Scope

1.1 The scope of these procedures is to describe the visual, physical and mechanical parameters which characterize fiberglass surfacing mat used by the fabricator.

2.0 Definitions

2.1 Fiberglass Surfacing Mat - A random arrangement of glass fibers bonded with a binder to form a thin porous mat which is supplied in roll form. Surfacing mat is usually used to reinforce the corrosion resistant resin rich liner on the inside of equipment and to provide a smooth surface on the exterior of equipment.

2.2 Binder - Chemical treatment applied to the jackstraw arrangement of glass fibers to give the mat integrity. Specific binders are utilized to promote chemical compatibility with the various laminating resins used.

2.3 Slugs - Unfiberized beads of glass.

3.0 Requirements

3.1 Visual Requirements - Each roll of fiberglass surfacing mat shall be inspected to insure it is consistent in color, texture and appearance. Any holes, cuts or visual irregularities shall be removed from the mat prior to or during fabrication.

3.1.1 Slugs - Mat which contains more than four slugs per 100 lineal feet is rejectable.

3.1.2 Wrinkles - Crosswise wrinkles or waves that are visible at a 45 deg. angle and lengthwise wrinkles that can be readily flattened under pressure and that do not crease or change the dimensions of the mat are acceptable.

3.1.3 Wet Spots and Bar Marks - The mat shall be free from these defects.

3.1.4 Delamination - The mat shall not delaminate, i.e. shall not separate into layers in coming off the roll.

FIBERGLASS SURFACING MAT

3.2 Physical Properties

3.2.1 Thickness - The thickness of the mat in each roll shall be measured.

3.3 Packaging Requirement - Packaging shall be visually inspected to assure proper labeling and that the package is free from damage that may render the mat unusable.

3.3.1 The mat shall be packaged in an unbroken carton as shipped from the mat manufacturer's factory. The mat used shall not be repackaged in the distribution of the mat after the manufacturer has shipped the mat.

3.4 Documentation - It is the responsibility of the fabricator to maintain records showing the results of all material testing. This information shall show at a minimum, the following:

- (a) Form of material
- (b) Manufacturer
- (c) Manufacturer's product description including binder type (treatment)
- (d) Manufacturer's product code
- (e) Production date, if available, or production code on carton.
- (f) Property measured and value recorded
 - * Visual inspection
 - * Width
 - * Thickness
 - * Packaging
- (g) Job number (Internal Fabricator Control Number)
- (h) Fabricated part identification number

ERA PS 1005

REV IR

DATE 1/22/87

FIBERGLASS CHOPPED STRAND MAT

1.0 Scope

1.1 The scope of these procedures is to describe the visual, physical and mechanical parameters which characterize fiberglass chopped strand mat used by the fabricator.

2.0 Definitions

2.1 Chopped Strand Mat - Chopped strand mat is made from randomly oriented glass strands which are held together in mat form using a binder. Each strand contains a sizing.

3.0 Requirements

3.1 Visual Requirements - Each roll of chopped strand mat shall be inspected to insure it is consistent in color, texture and appearance. It shall be free from surface irregularities, fluffy masses, dirt spots or other foreign material; water spots, knots, binder spots larger than 2" in diameter, clumps of strands and tears of holes which may result from removal of defects.

3.2 Physical Requirements

3.2.1 Weight - The square foot weight of the mat shall be measured for each carton of mat used. All specimens shall fall within the range specified for the product.

3.3 Packaging Requirement - Packaging shall be visually inspected to assure proper labeling and that the package is free from damage that may render the mat unusable.

3.3.1 The mat shall be packaged in an unbroken carton as shipped from the mat manufacturer's factory. The mat used shall not be repackaged in the distribution of the mat after the manufacturer has shipped the mat.

FIBERGLASS CHOPPED STRAND MAT

3.4 Documentation - It is the responsibility of the fabricator to maintain records showing the results of all material testing. This information shall show at a minimum, the following:

- (a) Form of material
- (b) Manufacturer
- (c) Manufacturer's product description including binder type (treatment)
- (d) Manufacturer's product code
- (e) Production date, if available, or production code on carton.
- (f) Property measured and value recorded
 - * Visual inspection
 - * Width
 - * Thickness
 - * Packaging
- (g) Job number (Internal Fabricator Control Number)
- (h) Fabricated part identification number

FIBERGLASS ECDE GLASS

1.0 Scope

1.1 The scope of these procedures is to describe the visual, physical and mechanical parameters which characterize ECDE glass used by the fabricator.

2.0 Definitions

2.1 Fiberglass ECDE glass - Glass fiber rovings woven into a heavy weight fabric.

2.2 Wrap Ends - The rovings which run in the longitudinal direction of the fabric, i.e., along the roll length of the fabric.

2.3 Fill Picks - The rovings which run in the transverse direction of the fabric, i.e., across the roll length of the fabric.

2.4 Leno Strands - A pair of warp ends at each edge of the woven fabric. One Leno warp end is always over each fill pick while the other Leno warp end is always under the fill pick. The Leno strands define the edges of the woven field and serve to stabilize the edges of the fabric.

3.0 Requirements

3.1 Visual Requirements

3.1.1 Dirt Spots - Defined as all foreign matter, dirt, grease spots, etc. - The average number of dirt spots (1/16" to 3/4" in diameter) per 100 lineal feet shall be 6 or less. All rolls shall be free of dirt spots in excess of 3/4" diameter.

3.1.2 Warp Ends - All rolls shall be free of missing warp ends for more than two consecutive feet.

3.1.3 Fill Picks - All rolls shall be free of consecutive missing picks in excess of five, or more than eleven missing picks, either individual picks or any combination of individual and multiple (2, 3, 4, or 5) picks, in any consecutive 100 lineal feet.

3.1.4 Fuzz Clumps and Loops - The product is designed to exhibit proper laydown and shall be free of fuzz clumps or loops exceeding one inch in height from the surface.

FIBERGLASS ECDE GLASS

3.2 Physical Properties

3.2.1 Thickness - The thickness of the mat in each roll of ECDE glass shall be measured.

3.3 Packaging Requirement - Packaging shall be visually inspected to assure proper labeling and that the package is free from damage that may render the ECDE glass unusable.

3.3.1 The ECDE glass shall be packaged in an unbroken carton as shipped from the manufacturer's factory. The ECDE glass used shall not be repackaged in the distribution of the ECDE glass after the manufacturer has shipped the ECDE glass.

3.4 Documentation - It is the responsibility of the fabricator to maintain records showing the results of all material testing. This information shall show at a minimum, the following:

- (a) Form of material
- (b) Manufacturer
- (c) Manufacturer's product description including binder type (treatment)
- (d) Manufacturer's product code
- (e) Production date, if available, or production code on carton.
- (f) Property measured and value recorded
 - * Visual inspection
 - * Width
 - * Thickness
 - * Packaging
- (g) Job number (Internal Fabricator Control Number)
- (h) Fabricated part identification number