

L'usage des calculatrices programmables ou d'ordinateurs n'est pas autorisé

Ce sujet comporte un exercice de chimie et trois exercices de physique

CHIMIE	 Etude de l'acidité de deux solutions acides Argenture par électrolyse 	(4 points) (3 points)
PHYSIQUE 1	Détermination du diamètre d'un fil fin	(1,75 points)
PHYSIQUE 2	Etude d'un oscillateur électrique libreModulation d'amplitude	(2 points) (3,25 points)
PHYSIQUE 3	 Séparation des isotopes d'un élément chimique Etude énergétique d'un pendule pesant 	(3 points)

RS31

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية ◘ **■ ۞ ② الموضوع** - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

CHIMIE (7 points): Les deux parties sont indépendantes

1ère partie (4 points) Etude de l'acidité de deux solutions acides

Cet exercice a pour but d'étudier la solution d'acide benzoïque et de comparer son acidité à celle de l'acide salicylique.

1- Etude de la solution d'acide benzoïque

L'acide benzo \ddot{q} un solide blanc de formule C_6H_5COOH , il est utilisé comme conservateur alimentaire et il est naturellement présent dans certaines plantes .

Pour simplifier, on symbolise l'acide benzoïque par HA1.

Données:

Masse molaire moléculaire de l'acide HA_1 : $M(HA_1) = 122 \text{ g.mol}^{-1}$

Produit ionique de l'eau à 25° C : Ke = 10^{-14}

On dissout une masse $m=305\ mg$ de l'acide benzo \Hag{i} que dans de l'eau distillée pour obtenir une solution aqueuse S_A de volume $V=250\ mL$.

La mesure du pH de la solution S_A donne pH = 3,10.

- **0,5** | **1.1-** Calculer la concentration molaire C_A de la solution S_A .
- **0.25** | **1.2-** Ecrire l'équation de la réaction de l'acide benzoïque avec l'eau .
- **0,5** | **1.3-** Exprimer la constante pK_A du couple HA_1/A_1^- en fonction de C_A et τ , le taux d'avancement final de la réaction d'acide benzoïque avec l'eau.
- 1.4- Calculer le p K_A et déduire l'espèce chimique prédominante dans la solution S_A sachant que $\tau = 7.94\%$.

2- Réaction entre une solution d'acide benzoïque et une solution d'hydroxyde de sodium

On mélange un volume V_A = 40,0 mL de la solution S_A de l'acide benzoïque avec un volume V_B = 5,00 mL d'une solution S_B d'hydroxyde de sodium de concentration molaire C_B = 2,50.10⁻² mol.L⁻¹.

La mesure du pH du mélange obtenu donne pH = 3.80.

- **0.25** | **2.1-** Ecrire l'équation de la réaction qui a lieu .
- **0,75** | **2.2-** Calculer la quantité de matière n(HO)_f qui se trouve dans le mélange à l'état final.
- **2.3-** En déduire le taux d'avancement final de la réaction .On peut utiliser le tableau d'avancement du système (On néglige les ions HO provenant de l'eau)

0,75 | 3- Comparaison de l'acidité de deux solutions

On prépare une solution (S_1) d'acide benzoïque et une solution (S_2) d'acide salicylique ayant la même concentration molaire C, et on mesure la conductivité de chacune d'elle, on trouve alors :

- Pour la solution (S_1) : $\sigma_1 = 2,36.10^{-2} \text{ S.m}^{-1}$;
- Pour la solution (S₂) : $\sigma_2 = 0.86.10^{-2} \text{ S.m}^{-1}$

On symbolise l'acide salicylique par HA_2 .

On rappelle l'expression de la conductivité d'une solution ionique : $\sigma = \Sigma \lambda_i.[X_i]$ dont λ_i est la conductivité molaire ionique de l'ion X_i et $[X_i]$ la concentration de cet ion dans la solution .

Données:

$$\lambda(H_3O^+) = 35,0.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$$

 $\lambda(A_1^-) = 3,20.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$
 $\lambda(A_2^-) = 3,62.10^{-3} \text{ S.m}^2.\text{mol}^{-1}$

On néglige la contribution des ions HO à la conductivité de la solution.

On symbolise le taux d'avancement final de la réaction de l'acide benzoïque avec l'eau par τ_1 et le taux d'avancement final de la réaction de l'acide salicylique avec l'eau par τ_2 .

Calculer le rapport $\frac{\tau_2}{\tau_1}$.

Que peut-on déduire à propos des acidités des solutions (S_1) et (S_2) ?

الصفحة 3

RS31

2^{eme} partie : (3points) Argenture par électrolyse

L'électrolyse est utilisé pour recouvrir les métaux avec une couche mince d'un autre métal, comme le zingage ou l'argenture..., pour les protéger de la corrosion ou pour améliorer son aspect.

Données :

La masse volumique de l'argent : $\rho = 10.5~g.cm^{-3}$; La masse molaire de l'argent $M(Ag) = 108~g.mol^{-1}$; Le volume molaire dans les conditions de l'expérience $V_M = 25~L.mol^{-1}$; $1F = 9.65.10^4~C.mol^{-1}$.

On veut argenter une assiette métallique de surface totale $S=190,\!5~cm^2$ en couvrant sa surface avec une couche mince d'argent de masse m et d'épaisseur $e=20\mu m$.

Pour atteindre cet objectif , on réalise une électrolyse dont l'assiette constitue l'une des électrodes .

Le deuxième électrode est une tige en platine inattaquable dans les conditions de l'expérience .

L'électrolyte utilisé est une solution aqueuse de nitrate d'argent $(Ag^+_{(aq)} + NO_3^-_{(aq)})$ de volume V = 200 mL (voir figure).

Seuls les couples $Ag^+_{(aq)}/Ag_{(s)}$ et $O_{2\,(g)}/H_2O_{(\ell)}$ interviennent dans cet électrolyse .

- **0,25** | **1-** L'assiette doit être l'anode ou la cathode ?
- **0,5** | **2-** Ecrire l'équation bilan de l'électrolyse .
- **3-** Calculer la masse m de la couche d'épaisseur e déposée sur la surface de l'assiette.
- **0,5** | **4-** Quelle est la concentration molaire initiale minimale nécessaire de la solution de nitrate d'argent ? (Ag⁺_(aq) + NO_{3 (aq)})
 - 5- L'électrolyse a lieu pendant une durée $\Delta t = 30,0$ min avec un courant d'intensité constante .
- **0,75 5.1-** Dresser le tableau d'avancement de la transformation qui a lieu au niveau de la cathode, et déduire l'expression de l'intensité du courant I en fonction de m, M(Ag), F et Δt . Calculer la valeur de I.
- **0,5** | **5.2-** Calculer le volume $V(O_2)$ du dioxygène formé pendant Δt .

PHYSIQUE 1 (1,75 points) Détermination du diamètre d'un fil fin

Lorsque la lumière rencontre un obstacle, elle ne se propage plus en ligne droite, il se produit le phénomène de diffraction. ce phénomène peut être utilisé pour déterminer le diamètre d'un fil très fin.

Données:

La célérité de la lumière dans l'air est $c = 3,00.10^8 \text{ m.s}^{-1}$.

L'écart angulaire θ entre le centre de la tache centrale et la 1^{ère} extinction lors de la diffraction par une fente ou par un fil est exprimé par la relation $\theta = \frac{\lambda}{a}$ dont λ est la longueur d'onde et a la largeur de la

fente ou le diamètre du fil.

1- Diffraction de la lumière

On réalise une expérience de diffraction à l'aide d'une lumière monochromatique de fréquence $\nu=4,44.10^{14}~Hz$.

On place à quelques centimètres de la source lumineuse une fente verticale de largeur a .

La figure de diffraction est observée sur un

écran vertical placé à une distance D = 50,0cm de la fente . La figure de diffraction est constituée d'une série de taches

situées sur une perpendiculaire à la fente ,figure (1) .

Générateur

Assiette

Electrode

en platine

نحة	الصة
	4
l 7 `	

0,5

RS31

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية • 102 – الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

La tache centrale est plus éclairée et plus large que les autres , sa largeur est $L_1=6,\!70.10^{\text{-1}}\text{cm}$.

- **1.1-** Quel est la nature de la lumière que montre cette expérience ?
- 0,75 1.2-Trouver l'expression de a en fonction de L₁, D, v et c. Calculer a.
 - 2- On place entre la fente et l'écran un bloc de verre de forme parallélépipédique comme l'indique la figure (2).
 L'indice de réfraction du verre pour la lumière monochromatique utilisée est n = 1,61.
 On observe sur l'écran que la largeur de la tache lumineuse centrale prend une valeur L₂.

Trouver l'expression de L_2 en fonction de L_1 et n .

0,25 | 3- Détermination du diamètre du fil de la toile d'araignée

On garde la source lumineuse et l'écran à leur place . On enlève le bloc de verre et on remplace la fente par un fil rectiligne vertical de la toile d'araignée . On mesure la largeur de la tache centrale sur l'écran , on trouve alors $L_3 = 1,00 \text{cm}$.

Déterminer le diamètre du fil de toile d'araignée.

PHYSSIQUE 2 (5,25 points) Les deux parties sont indépendantes

1ère partie (2 points): Etude d'un oscillateur électrique libre

On charge un condensateur de capacité $C = 10\mu F$ sous une tension continue U = 6V. On le branche aux bornes d'une bobine d'inductance L et de résistance négligeable, figure (1).

On ferme l'interrupteur K à l'instant t = 0.

0,25 1- Etablir l'équation différentielle vérifiée par la charge q(t) du condensateur .

0,75 2- La solution de l'équation différentielle s'écrit sous la forme :

$$q=Q_{m}\,cos\!\left(\frac{2\pi}{T_{0}}\!\cdot\!t\right)$$
 , dont T_{0} est la période propre de l'oscillateur (LC) .

Κ

Figure 1

sous la forme :
$$\frac{E_e}{E} = \cos^2\left(\frac{2\pi}{T_0} \cdot t\right)$$
.

0, 75 3.2- Compéter le tableau suivant ,après l'avoir copié sur votre copie ,en calculant le rapport $\frac{E_e}{E}$:

L'instant t	0	$\frac{T_0}{8}$	$\frac{T_0}{4}$	$\frac{3T_0}{8}$	$\frac{T_0}{2}$
Le rapport $\frac{E_e}{E}$					

Déduire la période T de l'échange d'énergie entre le condensateur et la bobine en fonction de T₀.

RS31

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية • 102 – الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

2^{eme} partie (3,25 points) : communication par les ondes électromagnétiques

Lors d'une communication , la voix est convertie en signal électrique par un microphone, grâce à un système de conversion numérique et d'amplification. Le signal électrique est porté par une onde porteuse qui après amplification est émise vers l'antenne la plus proche . L'antenne transmet le signal à une station base qui l'envoie alors à une centrale , par ligne téléphonique conventionnelle ou par les ondes électromagnétiques . De là sont acheminées les conversations vers le téléphone du destinataire .

Figure 2

1- émission d'une onde électromagnétique par un portable

Les ondes électromagnétiques sont utilisées par la télévision , La radio et les radars .Si bien que la gamme de fréquence restant pour les portables sont de plus en plus restreints : l'une d'entre elles s'étend de 900 à 1800 MHz.

Données : La célérité des ondes électromagnétiques dans le vide et dans l'air : $c = 3,00.10^8 \text{ m.s}^{-1}$; $1 \text{MHz} = 10^6 \text{Hz}$.

- **1.1-** Calculer la durée que met une onde électromagnétique de fréquence f=900MHz pour parcourir la distance M₁M₂=1km séparant le téléphone et l'antenne ,figure (2).
 - 1.2- Que signifie l'expression « l'air est un milieu dispersif pour les ondes électromagnétiques » ?
 - 1.3- On peut représenter la chaine d'émission par le schéma de la figure (3).

En quel point A ou B ou C de la figure (3) trouve-t-on :

- 25 | a- L'onde porteuse?
 - **b-** Le signal modulant?

2- Modulation d'amplitude

Le circuit de modulation est constitué d'un composant nommé multiplieur qui possède deux entrées E_1 et E_2 et une sortie S ,figure (4). Pour simuler la modulation d'amplitude , on applique :

- à l'entrée E_1 le signal $u_1(t)=u(t)+U_0$ dont $u(t)=U_mcos(2\pi.f.t)$ est le signal modulant et U_0 tension continue de décalage .
- à l'entrée E_2 le signal porteur $u_2(t)=v(t)=V_m\cos(2\pi F.t)$.

Le circuit intégré X donne une tension modulée proportionnelle au produit des deux tensions , $s(t) = k.u_1(t).u_2(t)$ où k est une constante dépendant uniquement du circuit intégré .

s(t) s'écrit sous la forme : $s(t) = S_m cos (2\pi Ft)$.

0,25 0,25

0,25

0,25

RS31

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية •102 – الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

2^{eme} Partie (3 points) : Etude énergétique d'un pendule pesant

On considère un pendule pesant effectuant des oscillations libres non amorties.

Le pendule étudié est une tige AB homogène de masse m et de longueur $AB = \ell = 60,0$ cm pouvant tourner dans un plan vertical autour d'un axe (Δ) horizontal passant par son extrémité A , figure (2).

Le moment d'inertie de la tige par rapport à l'axe (Δ) est $J_{\Delta}=\frac{1}{3}m.\ell^2$.

On étudie le mouvement du pendule dans un repère lié au référentiel terrestre que l'on suppose galileen .

On repère à chaque instant la position du pendule par l'abscisse angulaire θ qui est l'angle que fait la tige avec la verticale passant par A.

On choisit le plan horizontal passant par G_0 , position du centre d'inertie de la tige AB dans la position d'équilibre stable, comme état de référence pour l'énergie potentielle de pesanteur($E_p=0$).

On admet dans le cas de faibles oscillations que $\cos\theta\approx 1-\frac{\theta^2}{2}$ avec θ en radian et on prend $g=9.80~\text{m.s}^{-2}$.

1- Equation différentielle du mouvement du pendule

- 0,25 | 1.1- Montrer que l'expression de l'énergie potentielle de pesanteur E_p de la tige peut s'écrire sous la forme $E_p = m.g \cdot \frac{\ell}{2} (1 \cos \theta)$.
- 0,5 | 1.2- Dans le cas de faibles oscillations , écrire l'expression de l'énergie mécanique E_m de la tige à un instant t en fonction de m , ℓ , g , θ et $\frac{d\theta}{dt}$.
- 0,5 | 1.3- Déduire l'équation différentielle vérifiée par l'abscisse angulaire dans le cas de faibles oscillations.

2- Etude énergétique

On lance la tige AB à partir de sa position d'équilibre stable avec une vitesse initiale qui lui permet d'acquérir une énergie mécanique $E_{\rm m}$.

La figure 3 donne le diagramme de l'évolution de l'énergie potentielle E_p et de l'énergie mécanique E_m de la tige AB pour deux expériences différentes .Dans chaque expérience la tige est lancée à partir de sa position d'équilibre stable avec une vitesse initiale donnée ; elle acquiert dans chaque expérience une énergie mécanique donnée :

- dans l'expérience(1) : $E_m = E_{m1}$
- dans l'expérience (2) : E_m=E_{m2}
- **0, 5 2.1-** Déterminer à l'aide du graphe, de la figure (3), la nature du mouvement de la tige dans chaque expérience .
- 0,75
 2.2- Préciser à partir du graphe la valeur maximale de l'abscisse angulaire θ du pendule dans l'expérience (1).
 En déduire la masse m de la tige .
- 0,5 2.3-Au cours de l'expérience (2) , l'énergie cinétique de la tige varie entre une valeur minimale $E_{c(min)}$ et une valeur maximale $E_{c(max)}$.

 $Trouver\ la\ valeur\ de E_{c(min)}\ et\ celle\ de\ E_{c(max)}\ .$

Figure 3