Heheheh

3 - 4

1 3 - 4

Homeomorfizm pomiedzy

• $X = \mathbb{R} \cup \{\infty\}$

•
$$Y = D^n / \sim = D^n \setminus S^{n-1} \cup \{\delta\}$$
 - gdzie δ jest klasą abstrakcji S^{n-1}

Łatwo możemy obrać dwa ciągłe, ściśle monotoniczne i wzajemnie odwrotne przekształcenia pomiędzy [0,1) a $[0,+\infty)$ które zadają homeomorfizm między tymi przedziałami, zadane wzorami:

$$d_f(x) = \frac{x}{1-x}$$

$$d_f: [0,1) \to [0,+\infty)$$

$$d_g(x) = \frac{x}{1+x}$$

$$d_g: [0,+\infty) \to [0,1)$$

I na ich podstawie tworzymy przekształcenia między A i B.

$$\begin{array}{ll} f(\delta) = \infty & \text{else} & f(x) = x \cdot \frac{d_f(||x||)}{||x||} & f: Y \to X \\ g(\infty) = \delta & \text{else} & g(x) = x \cdot \frac{d_g(||x||)}{||x||} & g: X \to Y \end{array}$$

Które są oczywiście ciągłe odpowiednio dla $Y \setminus \delta$ oraz $X \setminus \infty$, ponieważ obcięte do tych zbiorów są ich homeomorfizmami, ponieważ d_f i d_g są homeorfizmami długości ich wektorów.

$$g \circ f = id_Y$$
 oraz $f \circ g = id_X$

Ponieważ superpozyca d_f oraz d_g są identycznościami, a f i g zmieniają jedynie za ich pomocą długości wektorów, to ich superpozycje też są identycznościami.

f jest ciagle

Niech $U \subset X$ będzie otwarty. Pokażmy że $f^{-1}(U)$ też jest otwarty. Mamy dwie możliwości:

- $\infty \in U$ Wtedy $\mathbb{R}^n \setminus U$ jest zwarty. Ponieważ jest on podzbiorem \mathbb{R}^n to wiemy że jest on domknięty i ograniczony. Stąd na mocy ciągłości i monotoniczności $d_f(x)$ wiemy że $f^{-1}(\mathbb{R}^n \setminus U)$ też jest ograniczonym zbiorem, a ponieważ g jest domknięty
- $\infty \notin U$ Już udowodnione.

g jest ciągłe

Niech $U\subset Y$ będzie otwarty. Pokażmy że $g^{-1}(U)$ też jest otwarty. Mamy dwie możliwości:

- $\delta \in U$ Wtedy $\mathbb{R}^n \setminus U$ jest domknięty, a ponieważ
- $\infty \notin U$ Już udowodnione.

1 **- 6**

2 1 - 6

Homeomorfizm pomiędzy S^n a $A = (D^p \times S^q) \cup (S^{p-1} \times D^{q+1})$.

Ustalmy dla $z \in \mathbb{R}^{n+1}$ notację: $z = (x(z), y(z)) = (x_1, ..., x_p, y_1, ..., y_{q+1})$ gdzie jak łatwo zauważyć $x \in \mathbb{R}^p$ oraz $y\mathbb{R}^{q+1}$.

Zauważmy, że dla $z \in A$ zachodzi:

$$z \in A \implies z \in (D^p \times S^q) \lor z \in (S^{p-1} \times D^{q+1})$$

$$z \in (D^p \times S^q) \implies \sum x_i^2 \leqslant 1 \land \sum y_i^2 = 1$$

$$z \in (S^{p-1} \times D^{q+1}) \implies \sum x_i^2 = 1 \land \sum y_i^2 \leqslant 1$$

$$z \in A \implies 1 \leqslant ||z|| \leqslant \sqrt{2}$$

Obierzmy teraz przekształcenie $f:A\to S^n$ dane wzorem:

$$f((x_1,...,x_p,y_1,...,y_{q+1})=z)=z\cdot\frac{1}{\sqrt{||x(z)||^2+||y(z)||^2}}$$

Ponieważ $||z|| = \sqrt{||x(z)||^2 + ||y(z)||^2}$

Łatwo znależć dla niego przekształcenie odwrotne $g:S^n \to A$ dane wzorem:

$$f((x_1, ..., x_p, y_1, ..., y_{q+1}) = z) = z \cdot \frac{1}{\max(||\mathbf{x}(\mathbf{z})||, ||\mathbf{y}(\mathbf{z})||)}$$

Ponieważ przekształcenia f oraz g modyfikują jedynie długość wektora z, do udowodnienia ich odwrotności wystarczy udowodnić że ich superpozycje zachowują długości.

2.1
$$f \cdot g = id_{S^n}$$