

Навчання з підкріпленням

Лекція 1: Вступ (частина 2)

Кочура Юрій Петрович iuriy.kochura@gmail.com @y_kochura

Сьогодні

- Цикл взаємодії
- Гіпотеза винагороди
- Стан агента
- Стратегія
- Функції цінності
- Класифікація агентів
- Підзадачі RL

Цикл взаємодії

Мета — оптимізувати загальну винагороду, отриману агентом при взаємодії з навколишнім середовищем.

Агент та середовище

На кожному кроці в момент часу t агент:

- ullet Отримує спостереження O_t та винагороду R_t
- ullet Виконує дію A_t

Середовище:

- ullet Отримує дію A_t
- ullet Продукує спостереження O_{t+1} та винагороду R_{t+1}

Винагорода

Винагорода R_t — це скалярний сигнал, який отримує агент у якості зворотного зв'язку від середовища.

- Показує, наскільки добре працює агент у момент часу t відповідно до поставленої мети.
- Завдання агента максимізувати кумулятивну винагороду:

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

- G_t називається загальною винагородою (return) сума всіх винагород, які агент розраховує отримати при дотриманні стратегії від певного стану до кінця епізоду.
 - Епізод кожна спроба агента вивчити середовище.

Гіпотеза винагороди

Навчання з підкріпленням базується на гіпотезі винагороди:

"Будь-яка мета може бути формалізована як результат максимізації сукупної винагороди."

Цінність

Очікувана сукупна винагорода від стану s називається цінністю (value):

$$egin{aligned} v(s) &= \mathbb{E}\left[G_t \mid S_t = s
ight] = \ &= \mathbb{E}\left[R_{t+1} + R_{t+2} + R_{t+3} + \cdots \mid S_t = s
ight] \end{aligned}$$

- Цінність залежить від дій агента
- Метою ϵ максимізація цінності v(s) шляхом вибору агентом правильних дій
- Винагороди та цінності визначають користь станів та дій (немає контрольованого зворотного зв'язку)
- Зверніть увагу, що загальна винагорода та цінність можуть бути визначені рекурсивно:

$$G_t = R_{t+1} + G_{t+1} \ v(s) = \mathbb{E}\left[R_{t+1} + v(S_{t+1}) \mid S_t = s
ight]$$

Цінність дій — **Q**-функція

• 'Q' означає якість (quality)

Q-функція дозволяє оцінити цінність (якість) дій:

$$egin{aligned} q(s,a) &= \mathbb{E}\left[G_t \mid S_t = s, A_t = a
ight] = \ &= \mathbb{E}\left[R_{t+1} + R_{t+2} + R_{t+3} + \cdots \mid S_t = s, A_t = a
ight] \end{aligned}$$

Q-функція — функція якості, яка передбачає очікувану загальну винагороду (return) від виконання дій у певному стані та дотриманні заданої стратегії.

• Значення стану та дії буде детальніше розглянуто пізніше

Ключові поняття

Формалізм навчання з підкріплення включає у себе такі поняття:

- Середовище (динаміка задачі)
- Винагорода (визначає мету)
- Агент, який включає:
 - Стан агента
 - Стратегію (policy)
 - Q-функцію, відома також як функція цінності стан-дія (state-action value function)
 - Модель (за бажанням)

Компоненти агента

- Стан агента (agent state)
- Стратегія
- Q-функція
- Модель

Стан середовища

- Стан середовища це внутрішній стан середовища
- Зазвичай цей стан невидимий агенту
- Навіть якщо стан середовища видимий агенту він може містити багато зайвої інформації

• Історія — це послідовність з спостережень O, дій A та винагород R:

$$H_t = O_0, A_0, R_1, O_1, \cdots, O_{t-1}, A_{t-1}, R_t, O_t$$

• Історія використовується для побудови стану агента S_t

Повністю оглядове середовище

Припустимо, що агент бачить повністю стан середовища. Тоді:

- спостереження = стан середовища
- Стан агента є просто спостереженням:

$$S_t = O_t = \mathsf{стан}$$
 середовища

У цьому випадку агент бере участь у процесі прийняття рішень Маркова (Markov decision process - MDP). Цей процес названий на честь Андрія Маркова. MDP слугує математичною основою для того, щоб змоделювати прийняття рішення в ситуаціях, де результати є частково випадкові та частково під контролем агента, який приймає рішення.

Марковські процеси прийняття рішень (MDPs)

MDPs надають корисний математичний апарат

Визначення. Процес прийняття рішень є Марковським, якщо

$$ig|p(r,\ s\mid S_t,\ A_t)=p(r,\ s\mid H_t,\ A_t)$$

- Це означає, що стан містить все, що нам потрібно знати з історії
- Це не означає, що стан містить усе, але просто додавання історії не допомагає
- \Longrightarrow Як тільки стан стане відомим, історію можна буде відкинути
 - Усе середовище + стан агента Марковські
 - \circ Повна історія H_t є Марковською
- ullet Як правило, стан агента S_t є деяким стисненням H_t
- Примітка: S_t стан агента, а не середовища

Частково оглядове середовище

- Часткова оглядовість: агент отримує неповну інформацію про стан середовища
 - Камера зору не повідомляє роботу його абсолютне місце розташування
 - Агент, що грає в покер, бачить лише відкриті карти
- Тепер спостереження не є Марковським процесом
- Формально це частково оглядовий процес прийняття рішень Маркова (partially observable Markov decision process, POMDP)
- Стан середовища все ще може бути Марковським, але агент цього не знає
- Ми все ще можемо побудувати стан агента, який буде Марковським

- Дії агента залежать від його стану
- Стан агента є функцією історії
- Для конкретного стану: $S_t = O_t$
- Більш загально:

$$oxed{S_{t+1} = u(S_t, A_t, R_{t+1}, O_{t+1})}$$

де u — функція оновлення стану

• Стан агента, як правило, набагато менший, ніж стан середовища

Повний стан середовища-лабіринту

Потенційна дальність спостережень агента

Спостереження в іншому місці

Два спостереження неможливо відрізнити

Ці два стани не є Марковськими

Частково оглядове середовище

- Маючи справу з частково оглядовим середовищем, агент може побудувати правильне представлення стану
- Приклади станів агента:
 - \circ Останнє спостереження: $S_t = O_t$ (може бути недостатньо)
 - \circ Уся історія: $S_t = H_t$ (може бути занадто великим)
 - \circ Загальне оновлення: $S_t=u(S_{t-1},A_{t-1},R_t,O_t)$ (але як обрати/вивчити и?)
- Побудувати повнісю Марковський стан агента часто є неможливим

Компоненти агента

- Стан агента
- Стратегія (Policy)
- Q-функція
- Модель

Стратегія

- Стратегія визначає поведінку агента
- Стратегія це план переходу між станом агента до дії
- ullet Детерімінована стратегія: $A=\pi(S)$
- ullet Стохастична стратегія: $\pi(A|S) = p(A|S)$

Компоненти агента

- Стан агента
- Стратегія
- Q-функція, функція цінності
- Модель

Функція цінності

• Фактична функція цінності — це очікувана загальна винагорода:

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}\left[G_t \mid S_t = s, \pi
ight] = \ &= \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s, \pi
ight] \end{aligned}$$

- Тут введено фактор зменшення $\gamma \in [0,1]$. Чим він менший, тим менше агент замислюється над вигодою від майбутніх своїх дій.
 - Вимірює важливість найближчих vs довгострокових винагород
- ullet Цінність $v_\pi(s)$ залежить від стратегії
- Може використовуватися для оцінки бажаних станів
- Може використовуватися для вибору між діями

Функції цінності

- ullet Загальна винагорода має рекурсивну форму: $G_t = R_{t+1} + \gamma G_{t+1}$
- Тому функція цінності може бути записана так:

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}\left[R_{t+1} + \gamma G_{t+1} \mid S_t = s, \; A_t \sim \pi(s)
ight] = \ &= \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, \; A_t \sim \pi(s)
ight] \end{aligned}$$

Тут $A_t=a\sim\pi(s)$ означає, що a вибрано стратегією π у стані s (π є детермінованою)

- Це рівняння відоме як рівняння Беллмана (Bellman 1957)
- Подібне рівняння можна отримати для оптимальної (= максимально можливої) цінності:
 - Не залежить від стратегії

$$igg|v_*(s) = \max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, \; A_t = a]$$

Апроксимація функції цінності

- Агент постійно апроксимує значення функції цінності
- Для виконання апроксимації існують спеціальні алгоритми
- Завдяки правильній функції цінності агент може поводитися оптимально
- При правильних наближеннях агент може добре поводитися навіть у надзвичайно великих середовищах

Компоненти агента

- Стан агента
- Стратегія
- Q-функція, функція цінності
- Модель

Модель

- Модель передбачає поведінку середовища
- Передбачає наступний стан агента \mathcal{P} :

$$igg| \mathcal{P}(s,a,s') pprox p(S_{t+1} = s' \mid S_t = s, \; A_t = a) igg|$$

• Або передбачиає наступну (миттєву) винагороду \mathcal{R} :

$$\mathcal{R}(s,a)pprox \mathbb{E}[R_{t+1}\mid S_t=s,\ A_t=a)]$$

- Модель не відразу дає нам хорошу стратегію, тому приходиться агенту планувати свої дії
- Можуть також розглядатись стохастичні (генеративні) моделі

Приклад

Приклад з лабіринтом

- Винагорода: -1 або 1 за крок
- Дії: N, E, S, W
- Стани: місцезнаходження агента

Приклад з лабіринтом: стратегія

ullet Стрілки представляють стратегію агента $\pi(s)$ для кожного стану s

Приклад з лабіринтом: функція цінності

ullet Числа представляють значення $v_\pi(s)$ для кожного стану s

Приклад з лабіринтом: модель

- ullet Даний шаблон являє собою модель часткового переходу ${\cal P}^a_{ss'}$
- Цифри позначають миттєву винагороду $\mathcal{R}^a_{ss'}$ (у цьому випадку однакова для усіх a та s')

Класифікація агентів

Класифікація агентів

- На основі цінності (Value Based)
 - Відсутня стратегія (неявна)
 - Функція цінності
- На основі стратегії (Policy Based)
 - Стратегія
 - Відсутня функція цінності
- Actor Critic
 - Стратегія
 - Функція цінності

Класифікація агентів

- Без моделі (Model Free)
 - Стратегія і/або функція цінності
 - Немає моделі
- На основі моделі (Model Based)
 - Стратегія і/або функція цінності (за бажанням)
 - Модель

Підзадачі RL

Передбачення та контроль

- Передбачення: оцінити майбутнє (для певної стратегії)
- Контроль: оптимізувати майбутнє (знайти найкращу стратегію)
- Передбачення та контроль можуть бути сильно пов'язані між собою:

$$igg|\pi_*(s) = rgmax_a v_\pi(s)igg|$$

Навчання та планування

Два фундаментальні завдання навчання з підкріплення

- Навчання:
 - Середовище спочатку невідоме агенту
 - Агент взаємодіє з середовищем
- Планування:
 - Дається (або вивчається) модель середовища
 - Плани агента в цій моделі (без зовнішньої взаємодії)
 - У літературі використовується такі терміни: reasoning, pondering, thought, search, planning

Навчальні компоненти агента

• Усі компоненти є функціями:

```
\circ Стратегія: \pi:\mathcal{S}	o\mathcal{A} \circ Функція цінності: v:\mathcal{S}	o\mathbb{R} \circ Модель: m:\mathcal{S}	o\mathcal{S} та/або r:\mathcal{S}	o\mathbb{R} \circ Оновлення стану: u:\mathcal{S}	imes\mathcal{O}	o\mathcal{S}
```

- Наприклад, ми можемо використовувати нейронні мережі та використовувати методи глибинного навчання для вивчення
- Глибинне навчання важливий інструмент
- Глибинне навчання з підкріпленням це багата та активна галузь досліджень

Приклад: Пересування

DeepMind - Emergence of Locomotion Behaviours in Rich Environments

Кінець

Література

- Richard Sutton and Samuel Barto, Reinforcement Learning: an introduction, second edition
- Richard Sutton Learning to predict by the methods of temporal differences
- Marco Wiering and Martijn van Otterlo, Reinforcement Learning
- Watkins Christopher and Peter Dayan, Q-Learning