1.	Which o	of the	following	points	in the	Cartesian	Plane	is on	the	u-axis?

- \bigcirc (1, 1)
- \bigcirc (5,0)
- \bigcirc (0,-5)
- $\bigcirc (-5,0)$

⊘ Correct

The y-axis is defined to be all points in the Cartesian plane with zero as x-coordinate. The point (0,-5) meets that requirement.

2. Find the distance between the points $A=\left(2,2\right)$ and $C=\left(3,3\right)$:

1/1 point

- \odot $\sqrt{2}$
- O 2
- O 1
- \bigcirc 0

⊘ Correct

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):

1/1 point

- igcirc $y-3=rac{1}{2}\left(x-1
 ight)$
- $\bigcirc \ y = \frac{1}{2} \, x$
- $\bigcirc \ y-1=rac{1}{2}\left(x-5
 ight)$

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope $m=rac{3-1}{5-1}=rac{1}{2}$

We can choose either ${\cal A}$ or ${\cal B}$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1/1 point

$$y - 1 = 2(x - 2)$$
?

- \bigcirc (2, 1)
- \bigcirc (0,0)
- \bigcirc (3, 2)
- \bigcirc (2,3)
 - **⊘** Correct

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?

1/1 point

- \bigcirc 0
- O -1
- 2
- \bigcirc 1
 - **⊘** Correct

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0)\in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1/1 point

- $\bigcap f(a)=4a$, for each $a\in A$
- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1/1 point

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

$$\bigcirc$$
 $T(a) = + \text{ and } D(a) = H$

$$\bigcirc \ T(a) = - \text{ and } D(a) = S$$

$$\bigcap T(a) = + \text{ and } D(a) = S$$

$$\bigcap T(a) = - \text{ and } D(a) = H$$

⊘ Correct

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?

1/1 point

- $\bigcirc (0,-1)$
- $\bigcirc (-1,0)$
- \bigcirc (1,0)
- (2,-1)

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

1/1 point

- lacksquare The graph of h(x)=x-1
- \bigcirc The graph of g(x)=x+2
- \bigcirc The graph of f(x)=2x
- \bigcirc The graph of $s(x) = x^2$
- **⊘** Correct

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1\neq 4$, so the point (2,4) is not on the graph of h.

5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1/1 point									
	igcirc h is neither a strictly increasing function nor a strictly decreasing function.										
	igcirc h is a strictly increasing function										
	lacktriangledown is a strictly decreasing function										
	All statements are correct										
	igodots Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$										
	Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!										
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1 / 1 point									
Which of the following is a possible value for $f(3.7)$?											
O 14.7											
	O 3										
	\bigcirc -3										
	igotimes correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$.										
	Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)$, and this answer satisfies that.										

1. Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate?	1/1 point
$\bigcirc (-4,5)$ $\bigcirc (5,7)$ $\circledcirc (7,-1)$ $\bigcirc (0,0)$	
\odot correct The x -coordinate, 7 , is positive, and the y -coordinate, -1 , is negative.	
2. Which of the following points is in the first quadrant of the Cartesian Plane? $\bigcirc \ (5,-1)$ $\bigcirc \ (-4,-7)$ $\circledcirc \ (7,11)$ $\bigcirc \ (-5,1)$	1/1 point
Correct The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.	
3. Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ?	1/1 point
○ A○ D○ B	
\bigcirc $\mathbf{Correct}$ The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of $S.$	

- O 25
- \bigcirc -25
- 5
- O 1
 - **⊘** Correct

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4)

1/1 point

- y-4=2(x-5)
- y-5=-2(x-4)
- \bigcirc (5,4)
- y-4=-2(x-5)

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 point

- 0 y = 5x + 2
- $\bigcirc y = 5x$
- 0 y = 8x 3
- - ✓ Correct

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

	Which of the following equations is for a line with the same y -intercept as y	_ 2 _ 1 22
8.	which of the following equations is for a line with the same y -intercept as y :	= -3x + 2

- 0 y = 8x 3
- 0 y = -3x 8
- $\bigcirc y = 5x$

The the slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. This line has a y-intercept of 2 which is the same as the given line.

9. How many lines contain both the point A=(1,1) and the point B=(2,2)?

1/1 point

- O infinitely many
- O None
- 1
- O 2

The line with equation y=x is the one and only line that meets the stated requirements.

11 How many	graphs contain	both the poin	+ 4 - (0	0)	and the no	int R — I	(1 1)
II. HOW IIIdily	graphs contain	nour trie poir	$I L A - \{ 0 \}$. U I	and the po	m L D - 1	1,11

- O None
- O 1
- O 2
- Infinitely many

The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B

12. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a continuous function whose graph intersects the x-axis more than once. Which of the following statements is true?

1/1 point

- \odot g is neither strictly increasing nor strictly decreasing.
- \bigcirc g is strictly decreasing.
- O All of the above.
- \bigcirc g is strictly increasing.
 - **⊘** Correct

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly decreasing.

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1/1 point

- O 4
- O 2
- \odot $\frac{1}{2}$
- \bigcirc $\sqrt{20}$

⊘ Correct

The slope of this line segment is $\ \frac{3-1}{5-1}=\frac{1}{2}$, where 3-1 is the rise and 5-1 is the run.

_	Find the clane of the	line segment between	the points 1 -	(0.1	and R —	(1.0)	
5.	Find the slope of the	iine segment between	the points $A = 1$	(υ, τ) and $D=1$	(I,U).	

- $\bigcirc -1$
- O 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0

⊘ Correct

The slope of this line segment is $\, rac{0-1}{1-0} = -1 \,$

10. Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A\to Z$ are possible?

1/1 point

- O There are none
- O There are infinitely many
- 0 1
- 4

A function F:A o Z is a rule which assigns an element $F(a)\in Z$ to each element $a\in A$.

There are two elements in A; namely, a and b. For each of these elements, there are two assignment choices we could make: x and y.

Here are the four possible functions:

$$F(a)=x,F(b)=y$$
, OR

$$F(a) = y, F(b) = x$$
, OR

$$F(a)=x, F(b)=x, \operatorname{OR}$$

$$F(a) = y, F(b) = y.$$