MiCO: Migratory Connectivity in the Ocean

Connie Y. Kot

Daniel C. Dunn, Corrie Curtice, Eleanor Heywood, Autumn-Lynn Harrison, Sarah Deland, Guillermo Ortuño Crespo, Ei Fujioka, Benjamin Donnelly, Jesse Cleary, Patrick N. Halpin

Marine Geospatial Ecology Lab
Nicholas School of the Environment
Duke University

THANK YOU!

Funding:

Partners/Collaborators:

Area-based Planning and Network Approaches

Literature Review and Data Compilation

Data Type		Connection	
	Telemetry	Sites Routes	Points with dates (individuals identified), high spatial resolution
M4552	Mark- Recapture	Sites	Points with dates (individual identified), high spatial resolution
	Passive Acoustic	Sites	Points with dates (populations or individuals identified), often coarse spatial resolution
Q	Genetics	Sites	Points with variable temporal information (populations or individuals identified), variable spatial resolution
	Stable Isotopes	Sites	Points with variable temporal information (populations or individuals identified), often coarse spatial resolution

Icons © Mello, bfarias, Artem Kovyazin, Royyan Razka, Nate Eul & Arther Shlain, Noun Project, CC-BY 3.0, https://creativecommons.org/licenses/by/3.0/legalcode

Scaling up Data to Knowledge

DATA

- Sites
- Routes

KNOWLEDGE

- Nodes
- Corridors

"Raw" observations, Geographic representation

Seminoff et al. (2012) PLoS ONE.

Interpreted patterns, Functional representation

Using Knowledge for a Framework

KNOWLEDGE

- Nodes
- Corridors

Interpreted patterns, Functional representation

FRAMEWORK to assess:

- Function
- Relative importance
- Interconnections
- Alternative pathways

Communicating Knowledge with New Tools

KNOWLEDGE

- Nodes
- Corridors

Interpreted patterns, Functional representation

COMMUNICATION TOOLS

to explain:

- Function
- Relative importance
- Interconnections
- Alternative pathways

Sea Turtle Case Study: Data

- How to contribute:
 - Direct transfer to MiCO initiative
 - Established network connections
 - Seaturtle.org/STAT
 - □ OBIS-SEAMAP
 - ☐ SWOT

High level of interest/engagement

Seabird Case Study: Data

- How to contribute:
 - Direct transfer to MiCO initiative
 - Requested through network connections
 - □ BirdLife Seabird Tracking Database
 - USGS North American Bird Banding Program
 - ☐ Smithsonian Institute Migratory
 Bird Center

High level of interest/engagement

Examples for Visualizing Connectivity: Nodes

General location and utilization

- Center of node placed in general geographic location
- Size is scaled by quantity (e.g., % birds tracked in wintering zones)

Pérez et al. (2014) Behav Ecol.

- Utilization distribution
 - Minimum convex polygon/hull (MCH)
 - Grid density
 - Local convex hull (LoCoH)
 - Kernel density

Doherty et al. (2017) Biol Conserv.

Examples for Visualizing Connectivity: Corridors

- Schematic
 - general extents delineating activities; simplified paths

Northwest Atlantic: 2%

Brazilian Atlantic: 2%

Benguela and Atlantic: 2%

Ramos et al. (2012) PLoS ONE.

- Utilization distribution
 - Gridded line density
 - Line-based kernel density estimate
 - Brownian bridge

Brenner et al. (2016) TNC.

Examples for Visualizing Connectivity: Networks

2D adjacency matrix

Chord diagrams

https://flowingdata.com/2017/06/15/ mappings-for-choose-your-own-adventure-books

Hierarchical graph-networks

Kivelä et al. (2014) J Complex Networks.

Sandbox Fun!

Questions?

Migratory Connectivity in the Ocean http://www.micosystem.org

Connie Y. Kot connie.kot@duke.edu

Marine Geospatial Ecology Lab
Nicholas School of the Environment
Duke University

Mauri 3

Cape yerda a