FCC Certification Test Report

For the Guangdong Meijiaxin Innovative Technology Co., Ltd RC Drone

Model: X900, X901, X902, X903, X904, X905, X906T, X916H, X909T, X919H, X910T, X911H, X908T, X918H

FCC ID: 2AHV3GR902

REPORT# 16WS0328012F. Rev 0 Apr.06, 2016

Prepared for:
Guangdong Meijiaxin Innovative Technology Co., Ltd
Xingye South Road, Laimei Industrial Park, Chenghai,
Shantou, Guangdong, China

Prepared by:

WASHINGTON TECHNOLOGY INTERNATIONAL LIMITED

This report applies only to the sample evaluated prior to the preparation date stated above.

This report must be copied in its entirety, including all technical documents.

Certificates and reports shall not be reproduced except in full, without the written permission of Washington Laboratories, Limited.

FCC Certification Test Report

For the Guangdong Meijiaxin Innovative Technology Co., Ltd

Model: X900, X901, X902, X903, X904, X905, X906T, X916H, X909T, X919H, X910T, X911H, X908T, X918H

RC Drone

FCC ID: 2AHV3GR902

WLL REPORT# 16WS0328012F. Rev 0 Apr.06, 2016

Prepared by:

Henry Cuo

Henry guo

Reviewed by:

Steven Jang

Steven yang

Abstract

This report has been prepared on behalf of Guangdong Meijiaxin Innovative Technology Co., Ltd to support the attached Application for Equipment Authorization. The test report and application are submitted for a Spread Spectrum Transceiver under Part 15.249 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for Guangdong Meijiaxin Innovative Technology Co., Ltd RC Drone.

And Testing was performed by Compliance Certification Services (Shenzhen) Inc. has been accepted by the FCC, the FCC Registration Number is 441872.

RC Drone is a RF device and complies with the limits for a Direct Sequence Spread Spectrum Transmitter device under Part 15.249 of the FCC Rules and Regulations.

Revision History	Reason	Date
Rev 0	Initial Release	Apr.06, 2016

Table of Contents

Al	ostra	.ct	
1		Introduction	6
	1.1	Compliance Statement	<i>6</i>
	1.2	Test Scope Summary	<i>6</i>
	1.3	Contract Information	
	1.4	Test and Support Personnel	7
	1.5	Abbreviations	8
2		Equipment Under Test	9
	2.1	EUT Identification	9
	2.2	EUT Description	9
	2.3	Test Configuration	11
	2.4	Equipment Configuration	11
	2.5	Support Equipment	11
	2.6	EUT Modifications	12
	2.7	Testing Algorithm	12
	2.8	Test Location	12
	2.9	Measurements	12
3		Test Equipment	15
4		System Test Configuration	
5		Test Results	17
	5.1	Radiated Emissions:	17
	5.2	Band Edge Measurement (Radiated)	31
	5.3	20dB Bandwidth	
	5.4	AC Powerline Conducted Emissions: (FCC Part §15.207)	40
6		Attachment (EUT Photograph)	

List of Tables

Table 1: Overview of RC Drone, Equipment Under Test	9
Table 2: Equipment Configuration	11
Table 3: Expanded Uncertainty List	14
Table 4: Test Equipment List	
Table 5: Field strength of the fundamental signal	21
Table 6: Radiated Emission Test Data (Below 1GHz)	22
Table 7: Radiated Emission Test Data (Above 1GHz)	28
Table 8: Band Edge Measurements (Radiated)	32
Table 9: 20dB Bandwidth Results	37
List of Figures Figure 1: Test Configuration	11
Tigure 1. Test Configuration	11
List of Photographs	
Photograph 1: Radiated Emission Test Configuration, (Below 1GHz) Front	41
Photograph 2: Radiated Emission Test Configuration, (Below 1GHz) Back	
Photograph 3: Radiated Emission Test Configuration. (Above 1GHz) Front	42

1 Introduction

1.1 Compliance Statement

After the modifications listed in Section 2.6 were installed:

The Guangdong Meijiaxin Innovative Technology Co., Ltd RC Drone complies with the limits for a Spread Spectrum Transceiver device under Part 15.249 of the FCC Rules and Regulations.

1.2 Test Scope Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2013 version of ANSI C63.10

Test Specification	Specific Description	Result	Modifications (Y/N)	Test Location
CFR47 Part 15.207	Conducted Emissions – AC Power Ports	Not Applicable	Not Applicable	Not Applicable
CFR47 Part 15.249(a)	Field Strength of the Fundamental Signal	Complied	No	Compliance Certification Services (Shenzhen) Inc.
CFR47 Part 15.249 (a)/15.209	Radiated Emission	Complied	No	Compliance Certification Services (Shenzhen) Inc.
CFR47 Part 15.249(a)/15.205	Band Edge Measurement (Radiated)	Complied	No	Compliance Certification Services (Shenzhen) Inc.
CFR47 Part 15.215 (c)	20dB Bandwidth	Complied	No	Compliance Certification Services (Shenzhen) Inc.
			_	

1.3 Contract Information

Customer: Guangdong Meijiaxin Innovative Technology Co., Ltd

Xingye South Road, Laimei Industrial Park, Chenghai,

Shantou, Guangdong, China

1.4 Test and Support Personnel

Ad Gan Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan lan Town, Baoan Distr, Shenzhen,

Guangdong, China

Test Engineer

1.5 Abbreviations

A	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	BandWidth	
CE	Conducted Emission	
cm	centimeter	
CW	Continuous Wave	
dB	deci B el	
dc	direct current	
EMI	Electromagnetic Interference	
EUT	Equipment Under Test	
FM	Frequency Modulation	
G	giga - prefix for 10 ⁹ multiplier	
Hz	Hertz	
IF	Intermediate Frequency	
k	kilo - prefix for 10 ³ multiplier	
LISN	Line Impedance Stabilization Network	
M	Mega - prefix for 10 ⁶ multiplier	
m	m eter	
μ	m icro - prefix for 10 ⁻⁶ multiplier	
NB	Narrowband	
QP	Quasi-Peak	
RE	RE Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	SN Serial Number	
S/A	Spectrum Analyzer	
V	Volt	

2 Equipment Under Test

2.1 EUT Identification

The results obtained relate only to the item(s) tested.

Table 1: Overview of RC Drone, Equipment Under Test

ITEM	DESCRIPTION
FCC ID Number	2AHV3GR902
EUT Name:	RC Drone
Test Model:	X902
FCC Rule Parts:	§15.249
Frequency Range:	2410MHz – 2478MHz
Maximum Field Strength:	90.51 dBμV/m
Modulation Technology:	GFSK
Necessary Bandwidth:	N/A
Keying:	Automatic
Type of Information:	General 2.4GHz: GFSK
Number of Channels:	69
Antenna Type	Whip
Antenna Gain	2dBi±0.5
Frequency Tolerance:	N/A
Emission Type(s):	N/A
Interface Cables:	None
Power Source & Voltage:	DC 4.5V (3 X AAA Battery)

2.2 EUT Description

Product Name: RC Drone

Model No.: X900, X901, X902, X903, X904, X905, X906T, X916H, X909T, X919H,

X910T, X911H, X908T, X918H

Test Model: X902

EUT Rated Voltage: DC 4.5V (3 X AAA Battery)

Declaration on model difference

产品差异声明

We the undersigned hereby confirm that any of our production units bearing the following model numbers are identical in circuitry and electrical, mechanical and physical construction; the only differences are the appearance、trade name and model no. for trading purpose. 我们在下面接名并提此的认识下产品最易之间的差异仅为外观、青标及型号不同。其它设计完全相同。

The above appearance is for color and silk-screen only.

Production name 产品名称	Trade name 飛椒	Model no. 世号
RC Drone	MJX	X902
RC Drone	MJX	X900
RC Drone	MJX	X901
RC Drone	MJX	X903
RC Drone	MJX	X904
RC Drone	MJX	X905
RC Drone	MJX	X906T
RC Drone	MJX	Х916Н
RC Drone	MJX	X909T
RC Drone	MJX	X919H
RC Drone	MJX	X910T
RC Drone	MJX	X911H
RC Drone	MJX	X908T
RC Drone	MJX	X918H

Please provide at least 1 sample with difference except specified as above for further evaluation.

Production name 产品名称	Trade name	Model no.	Description 苯异描述
4			

Authorized Signature: 授权人签字

Company Stamp:

2016. 3. 31 Date:

2.3 Test Configuration

The Guangdong Meijiaxin Innovative Technology Co., Ltd RC Drone, Equipment Under Test (EUT), was operated from 4.5VDC (3 X AAA Battery).

The EUT firmware/software was set up to control power, bit rate, and channel selection.

Conducted test setup:

Not Applicable

Radiated Emissions test setup:

EUT

Figure 1: Test Configuration

2.4 Equipment Configuration

The EUT was set up as outlined in Figure 1. The EUT was comprised of the following equipment. (All Modules, PCBs, etc. listed were considered as part of the EUT, as tested.)

Table 2: Equipment Configuration

Name / Description	Model Number		Serial Number	Revision
RC Drone	X902	/	/	/

2.5 Support Equipment

The following support equipment was used during testing:

No.	Description	ACS No.	Manufacturer	Model	Serial Number
1.					

2.6 EUT Modifications

N/A

2.7 Testing Algorithm

RC Drone was operated continuously by normal operating conditions.

2.8 Test Location

And Testing was performed by Compliance Certification Services (Shenzhen) Inc. has been accepted by the FCC, the FCC Registration Number is 441872.

2.9 Measurements

2.9.1 Measurement Method

All measurements were performed according to the 2013 version of ANSI C63.10 for testing compliance of a wide variety of unlicensed wireless devices

2.9.2 *Measurement Uncertainty*

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

where u_c = standard uncertainty

a, b, c,.. = individual uncertainty elements

div_a, _b, _c = the individual uncertainty element divisor based on the probability

distribution

divisor = 1.732 for rectangular distribution

divisor = 2 for normal distribution

divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

where U = expanded uncertainty

k = coverage factor

 $k \le 2$ for 95% coverage (ANSI/NCSL Z540-2

Annex G)

u_c = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 3 below

Table 3: Expanded Uncertainty List

Scope	Expanded Uncertainty
	2.6dB(30~200MHz, Polarize: H)
Uncertainty for Radiation Emission test	2.6dB(30~200MHz, Polarize: V)
in 3m chamber	3.0dB(200M~1GHz, Polarize: H)
	2.8dB(200M~1GHz, Polarize: V)
Uncertainty for Radiation Emission test in	6.3dB (1~6GHz, Distance: 3m)
3m chamber (1GHz-18GHz)	5.7dB (6~18GHz, Distance: 3m)
Uncertainty for Radiated Spurious Emission test in RF chamber	3.6dB
Uncertainty for Conduction Spurious emission test	2.0dB
Uncertainty for Output power test	0.8dB
Uncertainty for Power density test	2.0dB
Uncertainty for Frequency range test	7x10 ⁻⁸
Uncertainty for Bandwidth test	83 kHz
Uncertainty for DC power test	0.1%
Uncertainty for test site temperature and	0.6℃
humidity	3%

3 Test Equipment

Table 4 shows a list of the test equipment used for measurements along with the calibration information.

Table 4: Test Equipment List

Frequency range: 30~1000MHz

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	R&S	ESCI	100088	Feb.22,16	1Year
2.	Pre- Amplifier	MITEQ	AM-1604-3000	1093583	Feb.22,16	1Year
3.	Bi-log Antenna	TESEQ	CBL6143A	26039	Feb.22,16	1Year
4.	System- Controller	CCS	CC-C-F	N/A	/	/
5.	Turntable	CCS	CC-T-1F	N/A	/	/
6.	Antenna Tower	CCS	CC-A-1F	N/A	/	/
7.	System Software	FARAD	EZ-EMC	CCS-3A1- CE	/	/

Frequency range: above 1000MHz

	Treducticy range: above rootvitiz							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval		
1.	PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	Feb.21,16	1 Year		
2.	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R		
3.	Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R		
4.	Controller	CT	N/A	N/A	N.C.R	N.C.R		
5.	High Noise Amplifier	Agilent	8449B	3008A01838	Feb.22,16	1 Year		
6.	Horn Antenna	Schwarzbeck	BBHA9120	D286	Feb.22,16	1 Year		
7.	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb.22,16	1 Year		
8.	Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R		
9.	Test S/W	FARAO	LZ-RF / CCS-SZ-3A2					

4 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. It was powered by a 4.5V DC (3 X AAA Battery). Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

5 Test Results

5.1 Radiated Emissions:

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in 15.209(a).

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	120kHz	>30 kHz
>1000 MHz	1 MHz	<30 Hz

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 18 to 26.5GHz, was pre-scan and the test result which was 20dB lower than the limit was not reported.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20 dB.

5.1.1 Limit

Field strength of the fundamental signal (FCC Part 15.249a)

Frequency	Limit (dBµV/m @3m)	Remark
2400MH = 2492 FMH=	94.0	Average Value
2400MHz-2483.5MHz	114.0	Peak Value

Radiated Emission (FCC Part 15.249a/15.209)

Eroguanav	Field strength	Limit	Remark	Measurement
Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	1	300
0.490MHz-1.705MHz	24000/F(kHz)	-	1	30
1.705MHz-30MHz	30	-	ı	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

5.1.2 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.10-2013. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

5.1.3 Test Data

The EUT RC Drone complied with the FCC Part 15.249 Field strength of the fundamental signal and Spurious Emissions requirements.

Table 5~7 Provides the test results for Field strength of the fundamental signal and Spurious Emissions.

Note: Only the worst case data (the EUT is place in X axis) were recorded in this test report.

5.1.4 Areas of Concern

None.

The plots of duty cycle:

Note: The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 3.82ms

Effective period of the cycle = $392\mu s = 0.392ms$

Duty cycle = 0.392ms / 3.82ms = 0.1026

Therefore, the averaging factor is found by 20 log10 0.1026 = -19.78 dB

Table 5: Field strength of the fundamental signal

EUT: RC Dr	rone				
M/N: X902					
Test date: 20	16-04-06	Pressure:99.54±1.0kPa	Humidity:57	±3.0%	
Tested by: A	d Gan	Test site: RE site	Temperature:	25.6±0.6 °C	C
Test Mode	Frequency (MHz)	Field Strength Of The Fundamental Signal (dBµV/m)	Limit (dBµV/m)	Detector	Antenn a Polaxis
		88.21	114.00	Peak	Н
	2410	68.43	94.00	Average	Н
		85.40	114.00	Peak	V
		65.62	94.00	Average	V
		89.46	114.00	Peak	Н
	2444	69.68	94.00	Average	Н
Tx	2444	86.33	114.00	Peak	V
		66.55	94.00	Average	V
		90.51	114.00	Peak	Н
	2478	70.73	94.00	Average	Н
	2770	85.83	114.00	Peak	V
		66.05	94.00	Average	V
Conclusion:	PASS	-	1	1	

Table 6: Radiated Emission Test Data (Below 1GHz)

Test Mode: Tx-2410MHz

Job No.: 1603281040 Probe: Horizontal

Standard: FCC Class B 3M Radiation Tested Distance: 3m

Test item: Radiation Test Power Source: DC 4.5V

Temp.(C)/Hum.(%RH):25.6 (C) / 57 %RH Date: 2016-4-6 Time: 11:52:17

Company: Guangdong Meijiaxin Innovative Technology Co., Ltd EUT: RC Drone Model: X902 Test By: Ad Gan

Test Mode: Tx-2410MHz

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	59.1000	30.49	-13.18	17.31	40.00	-22.69	QP
2	157.0700	26.61	-11.79	14.82	43.50	-28.68	QP
3	226.9100	26.91	-10.82	16.09	46.00	-29.91	QP
4	380.1700	27.55	-8.32	19.23	46.00	-26.77	QP
5	561.5600	27.74	-6.39	21.35	46.00	-24.65	QP
6*	772.0500	27.17	-3.66	23.51	46.00	-22.49	QP

Job No.: 1603281040

Standard: FCC Class B 3M Radiation

Test item: Radiation Test

Temp.(C)/Hum.(%RH):25.6(C) / 57 %RH

Company: Guangdong Meijiaxin Innovative Technology Co., Ltd

Model: X902

Probe : Vertical

Tested Distance: 3m

Power Source: DC 4.5V

Date: 2016-4-6 Time: 11:54:13

EUT: RC Drone

Test By : Ad Gan

Test Mode: Tx-2410MHz

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	45.5200	27.42	-11.83	15.59	40.00	-24.41	QP
2	158.0400	26.32	-11.78	14.54	43.50	-28.96	QP
3	242.4300	26.06	-10.87	15.19	46.00	-30.81	QP
4	395.6900	26.72	-8.53	18.19	46.00	-27.81	QP
5	512.0900	27.13	-6.80	20.33	46.00	-25.67	QP
6*	688.6300	27.92	-4.68	23.24	46.00	-22.76	QP

Test Mode: Tx-2444MHz

Job No.: 1603281040 Probe: Horizontal

Standard: FCC Class B 3M Radiation Tested Distance: 3m

Test item: Radiation Test Power Source: DC 4.5V

Temp.(C)/Hum.(%RH):25.6 (C) / 57 %RH Date: 2016-4-6 Time: 12:00:37 Company: Guangdong Meijiaxin Innovative Technology Co., Ltd EUT: RC Drone

Model: X902 Test By : Ad Gan

Test Mode: Tx-2444MHz

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	28.59	-11.37	17.22	40.00	-22.78	QP
2	59.1000	29.94	-13.18	16.76	40.00	-23.24	QP
3	253.1000	27.09	-10.77	16.32	46.00	-29.68	QP
4	355.9200	27.39	-9.27	18.12	46.00	-27.88	QP
5	497.5400	27.41	-6.94	20.47	46.00	-25.53	QP
6*	559.6200	28.58	-6.38	22.20	46.00	-23.80	QP

3m

Job No.: 1603281040

Standard: FCC Class B 3M Radiation

Test item: Radiation Test

Temp.(C)/Hum.(%RH):25.6(C) / 57 %RH

Company: Guangdong Meijiaxin Innovative Technology Co., Ltd

X902 Model:

EUT: RC Drone Test By: Ad Gan

Tested Distance:

Vertical

Power Source: DC 4.5V Date: 2016-4-6 Time: 11:57:03

Probe:

Test Mode: Tx-2444MHz

NO.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	29.15	-11.37	17.78	40.00	-22.22	QP
2	59.1000	29.70	-13.18	16.52	40.00	-23.48	QP
3	159.0100	26.39	-11.77	14.62	43.50	-28.88	QP
4	465.5300	26.95	-7.45	19.50	46.00	-26.50	QP
5	650.8000	28.30	-5.19	23.11	46.00	-22.89	QP
6*	955.3800	26.23	-0.98	25.25	46.00	-20.75	QP

Horizontal

Test Mode: Tx-2478MHz

Job No.: 1603281040 Probe :

Standard: FCC Class B 3M Radiation Tested Distance: 3m

Test item: Radiation Test Power Source: DC 4.5V

Temp.(C)/Hum.(%RH):25.6 (C) / 57 %RH Date: 2016-4-6 Time: 12:04:14

Company: Guangdong Meijiaxin Innovative Technology Co., Ltd EUT: RC Drone Model: X902 Test By: Ad Gan

Test Mode: Tx-2478MHz

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	29.45	-11.37	18.08	40.00	-21.92	QP
2	56.1900	29.05	-12.89	16.16	40.00	-23.84	QP
3	158.0400	27.14	-11.78	15.36	43.50	-28.14	QP
4	285.1100	25.97	-9.77	16.20	46.00	-29.80	QP
5	363.6800	28.22	-9.04	19.18	46.00	-26.82	QP
6*	688.6300	27.50	-4.68	22.82	46.00	-23.18	QP

Job No.: 1603281040

Standard: FCC Class B 3M Radiation

Test item: Radiation Test

Temp.(C)/Hum.(%RH):25.6(C) / 57 %RH

Company: Guangdong Meijiaxin Innovative Technology Co., Ltd

Model: X902

Probe : Vertical

Tested Distance: 3m

Power Source: DC 4.5V

Date: 2016-4-6 Time: 12:05:53

EUT: RC Drone

Test By : Ad Gan

Test Mode: Tx-2478MHz

No.	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.8200	29.14	-11.35	17.79	40.00	-22.21	QP
2	59.1000	29.71	-13.18	16.53	40.00	-23.47	QP
3	165.8000	27.17	-12.34	14.83	43.50	-28.67	QP
4	223.0300	26.32	-10.80	15.52	46.00	-30.48	QP
5	682.8100	27.18	-4.63	22.55	46.00	-23.45	QP
6*	914.6400	26.49	-2.02	24.47	46.00	-21.53	QP

Table 7: Radiated Emission Test Data (Above 1GHz)

Above 1GHz					
Test mode:	Transmitting	Test Mode:	Tx-2410MHz	Remark:	Peak

Frequency (MHz)	Height (cm)	Azimuth (deg)	Correct Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis
4820.000	150	37	4.41	63.87	74.00	-10.13	Н
4820.000	150	0	4.41	56.11	74.00	-17.89	V
7230.000	150	37	8.13	52.19	74.00	-21.81	Н
7230.000	150	0	8.13	55.50	74.00	-18.50	V

Test mode:	Transmittin	g Test Mo	de: T	x-2410MHz	Rem	ark:	Ave	erage
Frequency (MHz)	Peak level (dBuv/m)	Duty cycle factor (dB)	AV leve	I Limit(dRi	ıv/m)	Over Lim (dB)	nit	Antenna Polaxis
4820.000	63.87	19.78	44.09	54		-9.91		Н
4820.000	56.11	19.78	36.33	54		-17.67		V
7230.000	52.19	19.78	32.41	54		-21.59		Н
7230.000	55.50	19.78	35.72	54		-18.28		V

Above 1GHz										
Test mode:	Transmitt	ing	Tes	st Mode:	Tx-244	14MHz	Re	emark:	Peak	
Frequency (MHz)	Height (cm)	Azimı (deg		Correct Fa	actor	Level (dBµV/m	า)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis
4888.000	150	25		4.63		62.47		74.00	-11.53	Н
4888.000	150	18		4.63		55.23		74.00	-18.77	V
7332.000	150	25		8.33		51.66		74.00	-22.34	Н
7332.000	150	18		8.33		52.26		74.00	-21.74	V

Test mode:	Transmittir	g Test Mo	de:	de: Tx-2444MHz R		Rem	emark:		erage
Frequency (MHz)	Peak level (dBuv/m)	Duty cycle factor (dB)	AV le		Limit(dBu	v/m)	Over Lin (dB)	nit	Antenna Polaxis
4888.000	62.47	19.78	42.6	9	54		-11.31		Н
4888.000	55.23	19.78	35.4	5	54		-18.55		V
7332.000	51.66	19.78	31.8	8	54		-22.12		Н
7332.000	52.26	19.78	32.4	8	54		-21.52		V

Above 1GHz					
Test mode:	Transmitting	Test Mode:	Tx-2478MHz	Remark:	Peak

Frequency (MHz)	Height (cm)	Azimuth (deg)	Correct Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis
4956.000	150	41	4.85	63.73	74.00	-10.27	Н
4956.000	150	0	4.85	57.35	74.00	-16.65	V
7434.000	150	41	8.53	52.02	74.00	-21.98	Н
7434.000	150	0	8.53	53.63	74.00	-20.37	V

Test mode:	Transmittin	g Test	Mode:	Tx-2	2478MHz	Rem	nark:	Ave	erage
Frequency (MHz)	Peak level (dBuv/m)	Duty cyc factor (dB)	AV le		Limit(dBu	v/m)	Over Lim (dB)	nit	Antenna Polaxis
4956.000	63.73	19.78	43.	95	54		-10.05		Н
4956.000	57.35	19.78	37.	57	54		-16.43		V
7434.000	52.02	19.78	32.	24	54		-21.76		Н
7434.000	53.63	19.78	33.	85	54	•	-20.15		V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9KHz to 26.5GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

5.2 Band Edge Measurement (Radiated)

Radiated band edge measurements at 2390MHz and 2483MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 1 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz for average levels).

5.2.1 Test Data

The EUT RC Drone complied with the FCC Part 15.249 Radiated band edge emissions requirements.

Table 8 provides the test results for Radiated band edge emissions.

5.2.2 Areas of Concern

None.

Table 8: Band Edge Measurements (Radiated)

Test Mode: Tx-2410MHz

Antenna Polarity: Horizontal

Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2390.000	50.04	74	19.78	30.26	54	Pass

Antenna Polarity: Vertical

Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2390.000	48.85	74	19.78	29.07	54	Pass

Test Mode: Tx-2478MHz

Antenna Polarity: Horizontal

Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2483.500	63.30	74	19.78	43.52	54	Pass

Antenna Polarity: Vertical

Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	Duty cycle factor (dB)	AV level (dBuv/m)	Limit (dBuv/m)	Conclusion
2483.500	59.77	74	19.78	39.99	54	Pass

5.3 20dB Bandwidth

20dB bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

5.3.1 Limit

Within 2400-2483.5MHz.

5.3.2 Test Procedure

The transmitter output was connected to a spectrum analyzer, The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.3.3 Test Data

Table 9 provides the test results for 20dB bandwidth.

5.3.4 Areas of Concern

None.

Table 9: 20dB Bandwidth Results

EUT: RC Drone		
M/N: X902		
Test date: 2016-04-06	Pressure:99.54±1.0kPa	Humidity:57±3.0%
Tested by: Ad Gan	Test site: RF site	Temperature:25.6±0.6 ℃

Test Mode	Frequency (MHz)	20dB bandwidth	Limit
		(MHz)	(MHz)
Tx	2410	1.074	Within 2400- 2483.5MHz
	2444	1.085	Within 2400- 2483.5MHz
	2478	1.118	Within 2400- 2483.5MHz
Conclusion: Pass			

Test Mode: Tx-2410MHz

Transmit Freq Error 74.061 kHz x dB Bandwidth 1.074 MHz

Test Mode: Tx-2444MHz

x dB Bandwidth 1.085 MHz

Transmit Freq Error 75.383 kHz x dB Bandwidth 75.383 kHz

5.4 AC Powerline Conducted Emissions: (FCC Part §15.207)

According to Paragraph (c) of FCC Part 15 section 15.207, Tests to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

Photograph 1: Radiated Emission Test Configuration, (Below 1GHz) Front

Photograph 3: Radiated Emission Test Configuration, (Above 1GHz) Front

6 Attachment (EUT Photograph)

EUT Photo #1 - Front View

EUT Photo #2- Front View

EUT Photo #4- Front View

EUT Photo #5- Front View

EUT Photo #6- Rear View

EUT Photo #7- Inside View

EUT Photo #8- Inside View

2.4GHz Antenna

EUT Photo #9- Inside View

EUT Photo #10- Inside View

