III - ALGÈBRE DE BOOLE

On a remarqué qu'il existe une concordance entre les langages de la logique et de la théorie des ensembles. Il s'agit de deux cas particuliers d'une structure appelée ALGÈBRE DE BOOLE.

Rmq: Georges Boole: logicien, mathématicien, et philosophe britannique (1815-1864).

A) Définition

Un ensemble B (non vide) muni de deux lois de composition interne (+ et .), d'une opération unaire (négation \bar{a}) et possédant deux éléments particuliers (0 et 1), a une STRUCTURE d'ALGÈBRE DE BOOLE si et seulement si les propriétés suivantes sont vérifiées:

$\forall (a,b) \in B^2$ $\forall (a,b) \in B^2$ $\forall (a,b,c) \in B^3$	a+b=b+a commutativité de + a.b=b.a commutativité de . a.(b+c)=a.b+a.c distributivité de . par rapport à +
$\forall (a,b,c) \in B^3$	a+(b.c)=(a+b).(a+c) distributivité de+ par rapport à.
$\forall a \in B$	a+0=a 0 élément nul
$\forall a \in B$	a.1=a 1élément unité
$\forall a \in B$	$a+\bar{a}=1$ $\bar{a}=complément de a$
$\forall a \in B$	$a.\bar{a}=0$ $\bar{a}=complément de a$

Analogies:

$$+=v=U$$
 et $.= \land = \cap$
De plus, $a+(b.c)=(a+b).(a+c)$ équivaut à $Pu(Q \cap R)=(PUQ) \cap (PUR)$

 \rightarrow L'ensemble B = {0,1} muni de l'addition booléenne et de la multiplication booléenne, de l'opération unaire définie par $\bar{0}=1$ et $\bar{1}=0$ a une structure d'algèbre de Boole.

Table de l'addition booléenne:

	0	1
0	0	1
1	1	1

Table de la multiplication booléenne:

	0	1
0	0	0
1	0	1

B) Propriétés

Soit un ensemble B muni d'une structure d'algèbre de Boole. Prenons $a \in B, b \in B, c \in B$:

1. Idempotence

$$a+a=a$$

$$a.a=a$$

2. Propriétés des éléments nul et unité: 0 et 1

$$a+1=1$$

$$a0=0$$

3. Absorption

$$\begin{array}{l}
a+ab=a\\ a(a+b)=a
\end{array}$$

4. Associativité

$$(a+b)+c=a+(b+c)$$
 on écrit $a+b+c$
 $(ab)c=a(bc)$ on écrit abc

5. Propriétés du complément

 $\forall a \in B$

$\bar{a} = a$
$\overline{0} - 1$
0=1
1=0

6. Lois de Morgan

$$\forall (a,b) \in B^2$$

$$\frac{\overline{a+b}}{\overline{(ab)}} = \overline{a} + \overline{b}$$

C) Tableaux de KARNAUGH

Préambule: exemples de fonctions ou expressions booléennes.

Les tableaux de Karnaugh permettent de représenter graphiquement des expressions booléennes comportant plusieurs variables booléennes.

Nous nous limiterons au cas de 2 ou 3 variables booléennes.

1. Cas de deux variables booléennes

Dans ce cas un tableau de Karnaugh est un carré comportant 4 cases correspondant aux 4 produits ab, $\bar{a}b$, $\bar{a}b$, $\bar{a}b$:

	b	\bar{b}
а	ab	аБ
ā	āb	$\bar{a}\bar{b}$

On a donc:

Exemple:

 $ab+a\bar{b}+\bar{a}\bar{b}=a+\bar{b}$

Un tableau de Karnaugh permet de simplifier une expression ou de vérifier des calculs.

2. Cas de 3 variables booléennes

3 variables impliquent 8 cases correspondant aux 8 produits: abc, $ab\bar{c}$, $a\bar{b}c$, $a\bar{b}\bar{c}$, $\bar{a}bc$, $\bar{a}b\bar{c}$, $\bar{a}\bar{b}\bar{c}$, $\bar{a}\bar{b}\bar{c}$.

	b		Ī)
а	abc	ab $ar{c}$	$aar{b}ar{c}$	$a \bar{b} c$
ā	ā bc	ābī	āБ̄с	āБc
	С	\overline{c}		С

On a donc:

a:

	b		Ī	5
а				
ā				
	С	Ō	7	С

b:

					<i>c</i> :
	ŀ)	Ī	5	
а					
ā					
	С	ō	5	С	

 \bar{b} b а ā С \bar{c} C

 \bar{a} :

	b		b		Ī)
а						
ā						
	С	Ō	Ī,	С		

 \bar{b} :

	ŀ)	Ī	5
а				
ā				
	С	Ō		С

b \bar{b} а ā \bar{c} С C

et:

ab:

	b		Ī	5
а				
ā				
	С	ō	7	С

 $a\,\overline{b}$:

	b		Ī)
а				
ā				
	С	ō	5	С

 \bar{b} b а ā \overline{c}

С

С

ac:

	Ŀ)	Ī)
а				
ā				
	С	Ō	7	С

аĒ

:					
		ŀ)	Ī)
	а				
	ā				
		С	Ō	7	С

 $b\bar{c}$:

bc:

 \bar{c} :

	b			\overline{b}
а				
ā				
	С	ō	7	С

 $\bar{a}b$:

	b		Ī	5
а				
ā				
	С	ō	7	С

 $\bar{a}\,\bar{b}$:

	b		Ī)
а				
ā				
	С	ō	7	С

 $\bar{b}c$:

		b		Ī)
	а				
	ā				
,		С	ō	5	С

 $\bar{a}c$:

	ŀ)	Ī)
а				
ā				
	С	ā	5	С

 $\bar{a}\bar{c}$:

	b		Ī)
а				
ā				
	С	ō	7	С

 $\bar{b}\bar{c}$:

	b		Ī	,
а				
ā				
	С	ō	7	С