2. Variables estadísticas bidimensionales

2.1. Variables bidimensionales. Tabulación de datos: tabla de correlación y tabla de contingencia

Definiciones

Sean X e Y dos variables estadísticas que hacen referencia a dos características de una población o muestra de tamaño N. Sean $x_1, x_2,...,x_r$ y $y_1, y_2,...,y_s$ las distintas categorías o valores que toman X e Y y sea $\{(x_i,y_j)_k\}_{k=1}^N$ el conjunto de todos los pares de caracteres cuyo total es N. Estos pares son realizaciones de la variable bidimensional (X,Y). Se definen

■ Frecuencia absoluta conjunta del par (x_i, y_j) de caracteres: Número de pares (x_i, y_j) en el número total de observaciones de (X, Y) que se denota por n_{ij} , siendo

$$N = \sum_{j=1}^{s} \sum_{i=1}^{r} n_{ij}$$

■ Frecuencia relativa conjunta del par (x_i, y_j) : Proporción de observaciones de este par en el conjunto de todos los pares

$$f_{ij} = n_{ij}/N$$

El conjunto formado por todos los pares y las frecuencias absolutas $\{(x_i, y_j), n_{ij}\}$, con i = 1, 2, ..., r y j = 1, 2, ..., s se denomina distribución de frecuencias bidimensional. Se representa en una tabla de doble entrada llamada **tabla de correlación** si las variables X e Y son cuantitativas y **tabla de contingencia** si alguna de las variables es cualitativa. El proceso de construcción de las tablas se llama **tabulación**.

X/Y	y_1	y_2		y_s
x_1	n_{11}	n_{12}	• • •	n_{1s}
x_2	n_{21}	n_{22}	• • •	n_{2s}
:	:	÷	٠.,	:
x_r	n_{r1}	n_{r2}		n_{rs}

Se puede representar una variable bidimensional utilizando un diagrama de dispersión o nube de puntos, donde en el plano se representa en el eje de abscisas

la primera variable y en el de ordenadas la segunda y cada (x_i, y_j) es un punto en el plano. Esta representación puede ayudar a descubrir visualmente la existencia de algún tipo de relación entre dos variables.

2.2. Distribuciones marginales. Distribuciones condicionadas. Independencia estadística

Definiciones

Distribuciones de frecuencias marginales

Cuando interesa saber el número de pares que tienen un determinado valor de la variable estadística X sin importar lo que vale la variable estadística Y se obtiene la distribución de las frecuencias marginales de la variable X.

En concreto la frecuencia marginal absoluta de la modalidad o valor x_i de X es:

$$n_{i.} = \sum_{j=1}^{s} n_{ij}, \quad i = 1, ..., r$$

siendo la frecuencia marginal relativa

$$f_{i\cdot} = \frac{n_{i\cdot}}{N}$$

Análogamente, la frecuencia marginal absoluta de la modalidad o valor y_j de la variable estadística Y es

$$n_{\cdot j} = \sum_{i=1}^{r} n_{ij}, \quad j = 1, ..., s$$

y su frecuencia marginal relativa:

$$f_{\cdot j} = \frac{n_{\cdot j}}{N}$$

X/Y	y_1	y_2		y_s	n_i .
x_1	n_{11}	n_{12}	• • •	n_{1s}	n_1 .
x_2	n_{21}	n_{22}	• • •	n_{2s}	n_2 .
:	:	:	٠	:	
x_r	n_{r1}	n_{r2}		n_{rs}	n_r .
$n_{\cdot j}$	$n_{\cdot 1}$	$n_{\cdot 2}$		$n_{\cdot s}$	N

La distribución marginal de frecuencias absolutas de X es $\{x_i, n_i.\}_{i=1,\dots,r}$, donde n_i es el número de pares del conjunto total de los pares de valores que toman X e Y, para los que la característica X toma el valor x_i sea cual sea el valor de la característica Y.

Análogamente la distribución marginal de frecuencias absolutas de la variable estadística Y es $\{y_j, n_{\cdot j}\}_{j=1,\dots,s}$, donde $n_{\cdot j}$ es el número de pares para los cuales la variable Y toma el valor y_j independientemente del valor que toma X.

Distribuciones de frecuencias condicionadas

Se construyen para cada una de las dos variables cuando se fija un valor o valores concretos de la otra variable.

1. Por ejemplo, si se fija un valor de la variable Y, denotado por y_j , se define la distribución de X condicionada a que la variable Y tome el valor y_j , que se denota $X/Y = y_j$, como aquella cuya frecuencia absoluta de que X valga x_i (condicionada a que $Y = y_j$) es n_{ij} , siendo la frecuencia relativa de que X tome el valor x_i condicionada a que la variable Y sea igual a y_i

$$f_{i/j} = \frac{n_{ij}}{n \cdot i}$$

Análogamente se puede fijar un valor de la variable estadística X, x_i , y se puede definir la distribución de Y condicionada a que $X = x_i$, es decir $Y/X = x_i$.

$X/Y = y_j$	$n_{i/j}$	$f_{i/j}$
x_1	$n_{1/j} = n_{1j}$	$f_{1/j} = n_{1j}/n_{\cdot j}$
x_2	$n_{2/j} = n_{2j}$	$f_{2/j} = n_{2j}/n_{\cdot j}$
÷	:	÷:
x_r	$n_{r/j} = n_{rj}$	$f_{r/j} = n_{rj}/n_{\cdot j}$
	$n_{\cdot j}$	1

 Las distribuciones de frecuencias condicionadas permite estudiar el comportamiento de una de la variables estadísticas cuando la otra variable cumple una cierta condición.

Importante: Las distribuciones marginales y condicionadas son distribuciones de frecuencias unidimensionales, luego para cada una de ellas pueden calcularse las medidas estudiadas en el tema 1.

■ Independencia estadística Dos variables estadísticas X e Y son independientes si los valores que toma una de las variables no dependen de los valores que tome la otra variable. Cuando esto ocurre

$$f_{i/1} = f_{i/2} = \dots = f_{i/s}$$
 $i = 1, 2, \dots, r$
 $f_{1/j} = f_{2/j} = \dots = f_{r/j}$ $j = 1, 2, \dots, s$

lo que es equivalente a que

$$f_{ij} = f_{i\cdot} \cdot f_{\cdot j}$$

o bien

$$\frac{n_{ij}}{N} = \frac{n_{.j}}{N} \cdot \frac{n_{i.}}{N}$$

Para que dos variables sean estadísticamente independientes se ha de cumplir que cada una de las frecuencias conjuntas sea el producto de las correspondientes frecuencias marginales.

Observación

Si alguna de las frecuencias conjuntas es igual a 0, las variables son dependientes.

2.3. Covarianza y coeficiente de correlación lineal

Definición

La covarianza entre dos variables X e Y se define:

$$S_{XY} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{s} (x_i - \overline{x})(y_j - \overline{y})n_{ij}}{N}$$

que es una medida del grado de relación lineal existente entre las variables X e Y

Propiedades

De la definición de covarianza se obtiene una expresión alternativa:

$$S_{XY} = \frac{\sum_{i=1}^{r} \sum_{j=1}^{s} x_i y_j n_{ij}}{N} - \overline{x} \cdot \overline{y}$$

- Si las variables son independientes la covarianza vale cero.
- No le afectan los cambios de origen.
- Le afectan los cambios de escala: Sean las variables U = a + bX y V = c + dY construidas a partir de las variables X e Y, con a, b, c y d parámetros, entonces

$$S_{UV} = bdS_{XY}$$

Observación

Si la covarianza es cero, no hay relación lineal entre las variables, pero las variables pueden estar relacionadas de otra manera.

Definiciones

lacksquare Se define el coeficiente de correlación lineal de las variables estadísticas X e Y como:

$$r_{XY} = \frac{S_{XY}}{S_X S_Y}$$

Las variables X e Y son incorreladas cuando su coeficiente de correlación lineal es cero (lo que implica que su covarianza es cero).

Propiedades

- El coeficiente de correlación lineal de dos variables estadísticas toma valores entre −1 y +1.
- El signo de r_{XY} coincide con el signo de la covarianza.
- Sean las variables estadísticas X e Y y las variables obtenidas de una trasformación lineal (supone un cambio de origen y de escala) U = a + bX y V = c + dY, se cumple que $r_{UV} = r_{XY}$ si b y d tienen el mismo signo, mientras que $r_{UV} = -r_{XY}$ si b y d tienen distinto signo.
- Si dos variables son estadísticamente independientes, entonces están incorreladas (el recíproco no es cierto).
- Si $S_{XY} \neq 0$, entonces X e Y son dependientes. El recíproco no es cierto.

2.4. Recta de regresión. Estimación de coeficientes. Bondad de ajuste. Predicción

Sean dos variables estadísticas X e Y con distribución conjunta de frecuencias $\{(x_i, y_j), n_{ij}\}$ que se representa gráficamente mediante un diagrama de dispersión o nube de puntos.

El objetivo del procedimiento llamado **regresión lineal** es determinar la recta que mejor representa dicha nube de puntos según un criterio.

La regresión lineal mínimo cuadrática explica el comportamiento de Y, variable dependiente, a partir de X, variable independiente, utilizando la recta y = ax + b cuyo criterio consiste en minimizar la suma de los cuadrados de la diferencia entre le valor observado de la variable dependiente (y_i) y el valor estimado mediante la recta, llamada recta de regresión, de la variable dependiente $(\hat{y}_i = ax_i + b)$. Esta diferencia se llama residuo $\hat{y}_i - y_i = e_i$.

Esquemáticamente el proceso para obtener la recta de regresión utilizando mínimos cuadrados es:

• Recta de regresión:

La recta buscada adopta la forma: $\hat{y} = a + bx$ siendo a y b los parámetros a determinar.

• Residuo para el par (x_i, y_i) :

$$e_i = y_i - \widehat{y}_i = y_i - (ax_i + b)$$

 Objetivo de la regresión mínimo cuadrática: Encontrar los valores de a y b tal que se minimice la suma del cuadrado de los residuos.

$$\min_{a,b} \sum_{i=1}^{N} e_i^2 = \min_{a,b} \sum_{i=1}^{N} (y_i - ax_i - b)^2 = \min_{a,b} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

 Solución del problema: utilizando las técnicas de optimización se obtiene el resultado

$$b = \frac{S_{XY}}{S_X^2},$$
 $a = \overline{y} - b\overline{x} = \overline{y} - \frac{S_{XY}}{S_X^2}\overline{x}$

ullet Luego la recta de regresión de Y sobre X se puede expresar:

$$\widehat{y} - \overline{y} = \frac{S_{XY}}{S_X^2} (x - \overline{x})$$

Definición

En un ajuste lineal de dos variables estadísticas X e Y el **coeficiente de determinación** se define como:

$$R^2 = \frac{S_{XY}^2}{S_X^2 S_Y^2} = r_{XY}^2$$

Se tiene que $0 \le R^2 \le 1$, que da el porcentaje en el que la regresión es fiable.

Observaciones importantes

- $r_{XY} = 1$ relación lineal perfecta positiva (todos los puntos están sobre una recta de pendiente positiva).
- $r_{XY} = -1$ relación lineal perfecta negativa (todos los puntos están sobre una recta de pendiente negativa).
- $r_{XY} = 0$ inexistencia de relación lineal (covarianza cero). Las variables son incorreladas o independientes.
- $-1 < r_{XY} < 0$ relación lineal negativa.
- $0 < r_{XY} < 1$ relación lineal positiva.

Predicción

Dada la recta de regresión de Y sobre X obtenida a partir de N pares

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

$$\widehat{y} - \overline{y} = \frac{S_{XY}}{S_X^2} (x - \overline{x})$$

si se tiene un nuevo valor de la variable X, x_{N+1} , la predicción del correspondiente valor de la variable dependiente Y, \hat{y}_{N+1} , se obtiene como :

$$\widehat{y}_{N+1} = \overline{y} + \frac{S_{XY}}{S_X^2} (x_{N+1} - \overline{x})$$

La bondad de esta predicción dependerá del valor del coeficiente de determinación del ajuste.

Observaciones

- La predicción será más fiable cuanto más cerca esté x_{N+1} del rango de variación de los datos utilizados para estimar la recta de regresión.
- La predicción será mejor cuanto mayor sea el número de datos.

2.5. Ejemplos

Ejemplo 1

a) Construir la tabla de correlación correspondiente a los siguientes datos sobre el número de hijos de la familia (X) de 16 alumnos y su edad (Y)

X	2	2	3	3	3	3	4	4	3	3	3	4	2	4	2	4
Y	18	18	19	20	18	22	19	20	20	20	22	20	19	23	19	18

- b) ¿Cuál es el porcentaje de alumnos con 18 años y solo dos hijos en su familia?
- c) Distribuciones marginales. ¿Qué porcentaje de alumnos forman parte de una familia con tres hijos? ¿Cuál es el porcentaje de familias en las que hay un estudiante menor de 20 años?
- d) Construir la distribución de la edad para los alumnos que pertenecen a una familia de cuatro hijos. ¿cuál es la moda de esta distribución? ¿cuál es el número medio de hijos en las familias de los alumnos de más de 20 años?

Solución

$\overline{X Y}$	18	19	20	22	23	$n_{i.}$
2	2	2	0	0	0	4
3	1	1	3	2	0	7
4	1	1	2	0	1	5
$n_{.j}$	4	4	5	2	1	16

a)

b) El 50% de los alumnos de 18 años pertenece a una familia con 2 hijos.

X	$n_{i.}$
2	4
3	7
4	5

c)

Ejemplo 2

Sea la tabla de frecuencias conjunta de la variable estadística bidimensional

X/Y	1	2	3	n_i .
1	2	3	1	6
2	4	6	2	12
3	6	9	3	18
$n_{\cdot j}$	12	18	6	36

Calcular S_{XY} . ¿Son las variables estadísticas X e Y independientes?

Solución

 $S_{XY}=0$ y las variables son independientes, lo que se observa fácilmente.

Ejemplo 3

Sea la tabla de frecuencias conjunta de la variable estadística bidimensional (X,Y)

X/Y	1	2	3	n_i .
-1	0	1	1	0
0	1	0	1	2
1	0	1	0	1
$n_{\cdot j}$	1	2	1	4

Comprobar que X e Y no son independientes, siendo $S_{XY}=0.$

Solución

No son independientes porque $f_{i.} \cdot f_{.j} \neq f_{ij}$. Sin embargo, $S_{XY} = 0$.

Ejemplo 4

Se dispone de información sobre las subvenciones recibidas por un sector (X, en millones de euros) durante diez años consecutivos, así como del número de contrataciones llevadas a cabo por las empresas de dicho sector (Y)durante el mismo periodo

- a) Obtener la recta de regresión que expresa el volumen de empleo generado en función de la subvención recibida.
- b) Estimar la bondad del ajuste.

\overline{X}	Y
1.52	145.00
1.74	180.00
1.83	182.00
1.75	155.00
1.92	200.00
2.06	220.00
2.14	240.00
2.08	200.00
2.06	179.00
1.96	164.00

c) ¿Qué cantidad de nuevos empleos esperarían obtenerse el próximo año si la subvención planificada es de dos millones de euros?