EXPERIMENT-3

OBJECT

To determine total alkalinity in given water sample due to the presence of carbonate and bicarbonate ions by titrating against standard hydrochloric acid (N/10) solution by using phenolphthalein and methyl orange as indicators.

- (A)APPARATUS: Burette, Pipette, Conical Flask, Funnel, Beaker, Burette Stand.
- **(B) CHEMICALS:** Sodium Bicarbonate Solution, Sodium Carbonate Solution, Standard Hydrochloric Acid (N/10), Distilled Water
- (C) Indicator: Phenolphthalein and Methyl Orange

PRINCIPLE

When alkaline water solution containing carbonate and bicarbonate ions is titrated against standard HCL solution in presence of phenolphthalein indicator, the carbonate ions are converted to bicarbonate ions. At this point the pink color of the alkaline solution disappears.

The chemical reactions involved in this process are given below: -

$$Na_2CO_3 + HCl$$
 [phenolphthalein] = $NaHCO_3 + NaCl$

$$CO_3$$
—ion + H^+ ion [phenolphthalein] = HCO_3 —ion

On further titration against the standard HCl solution in presence of methyl orange indicator the bicarbonate ions are completely neutralized. The chemical reaction involved can be depicted as:-

$$Na_2HCO3 + HCl$$
 [methyl orange] = $NaCl + H_2O + CO_2$

$$HCO_3$$
—ion + H^+ ion [methyl orange] = $H_2O + CO_2$

THE OVERALL REACTION INVOLVED IN THE PROCESS IS:-

 Na_2CO_3 + HCl phenolphthalein = $NaHCO_3$ [methyl orange] = NaCl H_2O + CO_2

 $NaHCO_3 + NaCl [methyl orange] = NaCl H_2O + CO_2$

$$CONC.$$
 H_2SO_4
 $heat$

Phenolphthalein: -

Colorless acidic medium benzenoid form

Pink color (alkaline medium) Quinonoid form

Methyl Orange: -

the yellow form of methyl orange

the red form of methyl orange

PROCEDURE

- 1. Rinse the glass apparatus properly with distilled water. Fill the burette with standard HCl solution.
- 2. Take out 10 ml alkaline water sample in conical flask with the help of pipette and add 1 drop phenolphthalein in it. Pink color appears.
- 3. Start titration with this solution against standard HCL solution with continuous shaking till the pink color of the solution disappears at end point.
- 4. The reading is noted down. This is phenolphthalein end point of the titration.
- 5. Now add 1 drop of methyl orange indicator in it. Light yellow color appears. Start the titration process in similar manner against standard HCl solution with continuous shaking till the color of sample solution changes from light yellow to wine red which indicates the completion of reaction and thereby end point of the titration.
- 6. Note down this reading. This is methyl orange end point of the titration.
- 7. The process is repeated till we get two concordant readings

OBSERVATION

S.No	Volume of sample solution taken ml	Burette reading				Volume of HCl	Volume of HCl
		Phenolphthalein		methyl orange		used by CO ₃ -2	used by
		Initial	Finial (X)	Initial	Finial (Y)	[2X]	[y-2X]
1.							
2.							
3.							

CALCULATION

(A): FOR carbonate ions

 N_1V_1 = N_2V_2 Water sample HCl

Strength of the solution = normality × Equivalent weight

Normality of alkaline water due to the presence of Na₂CO₃ or CO₃-ions =

Equivalent weight of co_3 —ion =30

Strength of the co₃ ion in alkaline solution =----g/L

B: for Bicarbonate ions

 N_1V_1 = N_2V_2 Water sample HCl

Strength of the solution = normality × Equivalent weight

Normality of alkaline water due to the presence of bicarbonate ions =

Equivalent weight of HCO₃ ion = 61

Strength of the HCO₃⁻ion in alkaline solution =---g/L

END POINT

Tow END POINTS are recorded in this titration: -

- 1. Phenolphthalein END POINTS- pink color to colorless solution.
- 2. Methyl orange END POINTS- light yellow color to Wine Red color solution

RESULT

The alkalinity of water sample due to presence of carbonate ions =----g/l

The alkalinity of water sample due to presence of bicarbonate ions =----g/l

Total alkalinity =-----g/l

PRECAUTIONS

- 1. Glass apparatus should be cleaned properly.
- 2. Always distilled water should be used for reagent preparation.
- 3. Titration should be done drop wise and with regular shaking of sample solution.
- 4. The pH of solution should be maintained during the process of titration.
- 5. End point should be observed correctly.
- 6. Standard solution in burette should be free from leaks and bubbles.