1	Вычислить $\sqrt{3-4i}$.	
2	Найти z_1z_2 , $\frac{z_1}{z_2}$, $\frac{z_1-\overline{z_2}}{z_1+\overline{z_2}}$, где $z_1=7+i$, $z_2=1+7i$.	
3	Решить уравнение $x^2 - (2+ni)x + (2-n+ni) = 0$	
4	Вычислить $\frac{(1+i\sqrt{3})^{3n}}{(1+i)^{4n}}$.	
5	Найти модуль и аргумент числа $z = -4\cos 15^{\circ} - 4i\sin 15^{\circ}$	
6	Вычислить $\frac{\cos 140^{\circ} - i \sin 140^{\circ}}{-\cos 50^{\circ} + i \sin 50^{\circ}}.$	
7	Вычислить $\left(\cos\frac{3}{4}\pi - i\sin\frac{3}{4}\pi\right)\left(-\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi\right)\left(-\cos\frac{7}{12}\pi - i\sin\frac{2}{3}\pi\right)$	$\left(\frac{7}{12}\pi\right)^3$
8	Вычислить $(\sqrt{3}-i)^n$.	
9	Вычислить $\frac{(1-i\sqrt{3})^{6n}}{(1-i)^{8n}}$.	
10	Доказать, что $\left(\frac{1+i\operatorname{tg}\alpha}{1-i\operatorname{tg}\alpha}\right)^n = \frac{1+i\operatorname{tg}n\alpha}{1-i\operatorname{tg}n\alpha}$.	
11	Вычислить $\frac{(-1+i\sqrt{3})^{18}}{(1-i)^{20}}$.	
12	Вычислить $(1-i)^{40}$.	
13	1) $\sqrt[5]{\frac{\sqrt{3}-i}{-\sqrt{3}-i}}$; 2) $\sqrt[3]{2-i\sqrt{12}}$ 3) $\sqrt[4]{-\sqrt{3}+i}$; 4) $\sqrt[6]{\frac{1+i}{\sqrt{3}-i}}$;	

	5) $\sqrt[4]{\frac{-1+i}{1-i\sqrt{3}}}$; $\sqrt[7]{\frac{-1+i}{-1-i\sqrt{3}}}$ 7) $\sqrt[7]{\frac{1-i}{-\sqrt{3}+i}}$ 8) $\sqrt[5]{\sqrt{3}-i}$; 9) $\sqrt[6]{\frac{-1-i}{1-i\sqrt{3}}}$; $\sqrt[3]{-2-i\sqrt{12}}$;
14	Найти сумму квадратов всех корней из 1 степени N.
15	Найти произведение всех корней степени n из 1.