Ascend 310 V100R001

AI CPU API 参考

文档版本 01

发布日期 2019-03-12

版权所有 © 华为技术有限公司 2019。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWEI和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址:http://www.huawei.com客户服务邮箱:support@huawei.com

客户服务电话: 4008302118

前 言

概述

本文档用于描述Ascend 310项目AI CPU算子的接口。

读者对象

本文档主要描述AI CPU对外提供的接口,适合Ascend 310 V100R001项目相关开发人员、测试人员。

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明	
⚠ 危险	用于警示紧急的危险情形,若不避免,将会导致人员死亡或严重 的人身伤害。	
全 警告	用于警示潜在的危险情形,若不避免,可能会导致人员死亡或严 重的人身伤害。	
▲ 小心	用于警示潜在的危险情形,若不避免,可能会导致中度或轻微的 人身伤害。	
注意	用于传递设备或环境安全警示信息,若不避免,可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 "注意"不涉及人身伤害。	
□ 说明	用于突出重要/关键信息、最佳实践和小窍门等。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害。	

目录

前 言	ii
1 API 总览	1
1.2 枚举定义	
1.2.1 ccblasFillMode_t.	2
1.2.2 ccblasOperation_t.	2
1.2.3 ccblasDiagType_t	3
1.3 错误码定义	3
1.3.1 DEVICE 层错误码定义	4
2 AI CPU 算子 Device 接口	6
2.1 Level1 接口	
2.1.1 ccblas_device_hasum	6
2.1.2 ccblas_device_ihamin	7
2.1.3 ccblas_device_ihamax	8
2.1.4 ccblas_device_haxpy	9
2.1.5 ccblas_device_hcopy	10
2.1.6 ccblas_device_hnrm2	11
2.1.7 ccblas_device_hscal	12
2.1.8 ccblas_device_hrotg	12
2.1.9 ccblas_device_hrotmg	13
2.1.10 ccblas_device_hswap	14
2.1.11 ccblas_device_hdot	15
2.2 Level2 接口	16
2.2.1 ccblas_device_hgemv	16
2.2.2 ccblas_device_hgemv_ex.	18
2.2.3 ccblas_device_hger	20
2.2.4 ccblas_device_htrsv	21
2.2.5 ccblas_device_htbsv	22
2.2.6 ccblas_device_htpsv	24
2.3 Level3 接口	25
2.3.1 ccblas_device_hgemm.	25
2.3.2 ccblas_device_hgemm_ex	27

A 免责声明	30
B 如何获取华为帮助	31
B.1 联系华为前的准备	31
B.2 联系华为技术支持	31
B.3 做好必要的调试准备	31
B.4 如何使用文档	32
B.5 如何从网站获得帮助	32
B.6 联系华为的方法	

1 API 总览

关于本章

- 1.1 API定义
- 1.2 枚举定义
- 1.3 错误码定义

1.1 API 定义

AI CPU算子Device接口如表1-1所示。

表 1-1 AI CPU 算子 Device 接口

接口	说明	
ccblas_device_hasum	该函数提供对向量的绝对值求和。	
ccblas_device_ihamin	该函数提供求向量元素绝对值最小的索引。	
ccblas_device_ihamax	该函数提供求向量中最大值的索引。	
ccblas_device_haxpy	该函数提供常量和向量x相乘,加向量y的过程。	
ccblas_device_hcopy	该函数提供向量拷贝的过程。	
ccblas_device_hnrm2	该函数提供欧几里得范数的求解过程。	
ccblas_device_hscal	该函数提供向量与标量的乘法。	
ccblas_device_hrotg	该函数提供Givens旋转矩阵求解。	
ccblas_device_hrotmg	该函数提供modified givens rotation matix H的构造。	
ccblas_device_hswap	该函数提供两个向量交换的过程。	
ccblas_device_hgemv	该函数提供矩阵与向量乘法。	

接口	说明
ccblas_device_hgemv_ex	该函数实现矩阵与向量乘法。
ccblas_device_hger	该函数提供实现矩阵的rank-1更新。
ccblas_device_htrsv	该函数提供三角线性方程的求解。
ccblas_device_htbsv	该函数提供三角带型矩阵的求解。
ccblas_device_htpsv	该函数提供op(A)x=b方程求x的过程。
ccblas_device_hgemm	该函数提供矩阵与矩阵乘法。
ccblas_device_hgemm_ex	该函数实现矩阵与矩阵乘法。
ccblas_device_hdot	该函数实现了两个向量的内积。

∭说明

- 所有矩阵数据都是按列存储。
- 所有输入向量长度需要满足运算长度。

1.2 枚举定义

1.2.1 ccblasFillMode_t

定义	成员说明
<pre>typedef enum { CCBLAS_FILL_MODE_LOWER = 0, CCBLAS_FILL_MODE_UPPER = 1 } ccblasFillMode_t;</pre>	 CCBLAS_FILL_MODE_LOWER: 下三角矩阵。 CCBLAS_FILL_MODE_UPPER: 上三角矩阵。

1.2.2 ccblasOperation_t

定义	成员说明
typedef enum {	● CCBLAS_OP_N: 非转置。
$CCBLAS_OP_N = 0,$	● CCBLAS_OP_T: 转置。
$CCBLAS_OP_T = 1,$	
} ccblasOperation_t;	

1.2.3 ccblasDiagType_t

定义	成员说明
typedef enum { CCBLAS_DIAG_NON_UNIT = 0, CCBLAS_DIAG_UNIT = 1 } ccblasDiagType_t;	 CCBLAS_DIAG_NON_UNIT: 对角线元素 不全为1。 CCBLAS_DIAG_UNIT: 对角线元素全为 1。

1.3 错误码定义

1.3.1 DEVICE 层错误码定义

定义	成员说明
typedef enum CCBLAS_DEV_ERR_CODE	CCBLAS_DEV_STATUS_SUCCESS: 函数执行成功。
{	CCBLAS_DEV_STATUS_M_ERR: 入参M错误。
CCBLAS_DEV_STATUS_SUCCE	CCBLAS_DEV_STATUS_N_ERR: 入参N错误。
SS = 0,	CCBLAS_DEV_STATUS_K_ERR: 入参K错误。
CCBLAS_DEV_STATUS_M_ER R,	CCBLAS_DEV_STATUS_INCX_ERR: 入参INCX 错误。
CCBLAS_DEV_STATUS_N_ERR	CCBLAS_DEV_STATUS_INCY_ERR: 入参INCY 错误。
CCBLAS_DEV_STATUS_K_ERR	CCBLAS_DEV_STATUS_ALPHA_ERR: 入参 ALPHA错误。
CCBLAS_DEV_STATUS_INCX_ERR,	CCBLAS_DEV_STATUS_BETA_ERR: 入参 BETA错误。
CCBLAS_DEV_STATUS_INCY_ ERR = 5,	CCBLAS_DEV_STATUS_LDA_ERR: 入参LDA 错误。
CCBLAS_DEV_STATUS_ALPH A_ERR,	CCBLAS_DEV_STATUS_LDB_ERR: 入参LDB错 误。
CCBLAS_DEV_STATUS_BETA_ ERR,	CCBLAS_DEV_STATUS_LDC_ERR: 入参LDC错 误。
CCBLAS_DEV_STATUS_LDA_E RR,	CCBLAS_DEV_STATUS_UPLO_ERR: 入参 UPLO错误。
CCBLAS_DEV_STATUS_LDB_E RR,	CCBLAS_DEV_STATUS_DIAG_ERR: 入参DIAG 错误。
CCBLAS_DEV_STATUS_LDC_E RR = 10,	CCBLAS_DEV_STATUS_TRANS_ERR: 入参 TRANS错误。
CCBLAS_DEV_STATUS_UPLO_ERR,	CCBLAS_DEV_STATUS_TRANSA_ERR: 入参 TRANSA错误。
CCBLAS_DEV_STATUS_DIAG_ ERR,	CCBLAS_DEV_STATUS_TRANSB_ERR: 入参 TRANSB错误。
CCBLAS_DEV_STATUS_TRAN S_ERR,	CCBLAS_DEV_STATUS_X_NULL_ERR: 入参X 为NULL非法。
CCBLAS_DEV_STATUS_TRAN SA_ERR,	CCBLAS_DEV_STATUS_Y_NULL_ERR: 入参Y 为NULL非法。
CCBLAS_DEV_STATUS_TRAN SB_ERR = 15,	CCBLAS_DEV_STATUS_A_NULL_ERR: 入参A 为NULL非法。
CCBLAS_DEV_STATUS_X_NU LL_ERR,	CCBLAS_DEV_STATUS_B_NULL_ERR: 入参B 为NULL非法。
CCBLAS_DEV_STATUS_Y_NU LL_ERR,	CCBLAS_DEV_STATUS_C_NULL_ERR: 入参C 为NULL非法。
CCBLAS_DEV_STATUS_A_NU LL_ERR,	CCBLAS_DEV_STATUS_a_NULL_ERR: 入参a 为NULL非法。

定义	成员说明
CCBLAS_DEV_STATUS_B_NUL L_ERR,	CCBLAS_DEV_STATUS_b_NULL_ERR: 入参b 为NULL非法。
CCBLAS_DEV_STATUS_C_NUL L_ERR = 20,	CCBLAS_DEV_STATUS_c_NULL_ERR: 入参c 为NULL非法。
CCBLAS_DEV_STATUS_a_NUL L_ERR,	CCBLAS_DEV_STATUS_s_NULL_ERR: 入参s为 NULL非法。
CCBLAS_DEV_STATUS_b_NUL L_ERR,	CCBLAS_DEV_STATUS_d1_NULL_ERR: 入参d1为NULL非法。
CCBLAS_DEV_STATUS_c_NUL L_ERR,	CCBLAS_DEV_STATUS_d2_NULL_ERR: 入参d2为NULL非法。
CCBLAS_DEV_STATUS_s_NUL L_ERR,	CCBLAS_DEV_STATUS_x1_NULL_ERR: 入参x1为NULL非法。
CCBLAS_DEV_STATUS_d1_NU LL_ERR = 25,	CCBLAS_DEV_STATUS_y1_NULL_ERR: 入参 y1为NULL非法。
CCBLAS_DEV_STATUS_d2_NU LL_ERR,	CCBLAS_DEV_STATUS_param_NULL_ERR: 入参param为NULL非法。
CCBLAS_DEV_STATUS_x1_NU LL_ERR,	CCBLAS_DEV_STATUS_RESULT_NULL_ERR:入参result为NULL非法。
CCBLAS_DEV_STATUS_y1_NU LL_ERR,	
CCBLAS_DEV_STATUS_param_ NULL_ERR,	
CCBLAS_DEV_STATUS_RESUL T_NULL_ERR = 30,	
CCBLAS_DEV_STATUS_DONO N_ERR,	
CCBLAS_DEV_STATUS_ERR_ MAX,	
}ENUM_CCBLAS_DEV_ERR_C ODE;	

∭说明

#define AICPU_EID(mid, eid) ((0xFFFF0000 & (mid << 16)) | (0xFFFF & (eid))) 每个算子返回的实际错误码为本身的module id和错误码两部分按上述规则组成。

2 AI CPU 算子 Device 接口

关于本章

2.1 Level1接口

2.2 Level2接口

2.3 Level3接口

2.1 Level1 接口

2.1.1 ccblas device hasum

函数功能

该接口实现对向量的绝对值求和。

函数格式

int32_t ccblas_device_hasum(

int32_t n,

const half_float* x,

int32_t incx,

half_float* result)

参数	说明	取值范围
int32_t n	向量元素个数	>0的整数

参数	说明	取值范围
const half_float*x	输入数据起始地址	不能为NULL 说明 x的长度>=1+(n-1)*abs(incx)
int32_t incx	向量x连续两个元素之间的步长	>0的整数
half_float * result	输出绝对值求和结果	不能为NULL 说明 当incx<=0或n<=0时,返回的 result值为0.0

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS。

函数执行失败时返回错误码。

相关函数

无。

2.1.2 ccblas_device_ihamin

函数功能

该接口实现求向量元素绝对值最小的索引。

函数格式

int32_t ccblas_device_ihamin(
int32_t n,
const half_float *x,
int32_t incx,
int32_t* result)

参数	说明	取值范围
int32_t n	向量元素的总的个数	>0的整数
const half_float*x	输入向量起始地址	不能为NULL 说明 x的长度>=(1+ (n-1)*incx)
int32_t incx	向量x连续两个元素之间的 步长	取值>=1

参数	说明	取值范围
int32_t * result	输出向量绝对值中最小值 的索引	不能为NULL 说明 当incx<=0或n<=0时,返回的result值 为0

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.3 ccblas_device_ihamax

函数功能

该接口实现求向量中最大值的索引。

函数格式

int32_t ccblas_device_ihamax(
int32_t n,
const half_float *x,
int32_t inc_x,
int32_t *result)

参数	说明	取值范围
int32_t n	向量元素个数	取值范围>0
const half_float*x	输入数据起始地址	不能为NULL 说明 x的长度>=(1+ (n-1)*incx)
int32_t inex	向量x连续两个元素之间的 步长	取值>=1
int32_t * result	输出向量中绝对值的最大 值索引	不能为NULL 说明 当incx<=0或n<=0时,返回的 result值为0

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.4 ccblas_device_haxpy

函数功能

该函数实现了常量和向量x相乘,加向量y的过程。

函数格式

```
int32_t ccblas_device_haxpy(
int32_t n,
const half_float alpha,
const half_float * x,
int32_t incx,
half_float * y,
int32_t incy))
```

参数	说明	取值范围
int32_t n	向量元素个数	>0的整数
half_float alpha	向量x的标量值	任意值
const half_float * x:	输入向量x首地址	不能为NULL 说明 x的长度>=1+(n-1)*abs(incx)
int32_t inex	向量x连续两个元素之间的 步长	任意值,但需要满足和x之 间的关系
half_float * y	输入向量y首地址 同时也是输出向量y的首地 址	不能为NULL 说明 y的长度>=1+(n-1)*abs(incy)
int32_t incy	向量y连续两个元素之间的 步长	任意值,但需要满足和y之 间的关系

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.5 ccblas_device_hcopy

函数功能

该函数实现向量拷贝的过程。

函数格式

ccblas_device_hcopy(
int32_t n,
const half_float *x,
int32_t incx,
half_float *y,
int32_t incy)

参数说明

参数	说明	取值范围
int32_t n	向量元素个数	取值范围>0
const half_float * x	输入数据起始地址	不能为NULL 说明 x的长度>=(1+n*abs(inex))
int32_t inex	向量x连续两个元素之间的 步长	任意整数
half_float* y	输出数据起始地址	不能为NULL 说明 y的长度>=(1+n*abs(incy))
int32_t incy	向量y连续两个元素之间的 步长	任意整数

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.6 ccblas_device_hnrm2

函数功能

该函数实现了欧几里得范数的求解过程。

函数格式

int32_t ccblas_device_hnrm2(
int32_t n,
const half_float *x,
int32_t inc_x,
half_float* result)

参数说明

参数	说明	取值范围
int32_t n	向量元素个数	>0的整数
const half_float * x	输入数据起始地址	不能为NULL 说明 x的长度>= (1+ (n-1)*abs(incx))
int32_t inex	向量x连续两个元素之间的 步长。	>=1的整数
half_float * result	计算结果	不能为NULL 说明 当n<=0或incx<=0时, *result=0.0

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.7 ccblas_device_hscal

函数功能

该函数实现向量与标量的乘法。

函数格式

int32_t ccblas_device_hscal(
int32_t n,

half_float alpha,

half_float* x,

int32_t incx)

参数说明

参数	说明	取值范围
int32_t n	向量元素个数	取值范围>0
half_float * x	输入数据x起始地址 同时也是输出数据的起始 地址 说明 计算结果为对应位置上的数 与scale的乘积,没有被操作 的数保持原值不变	不能为NULL 说明 x长度>=(1+ (n-1)*incx)
half_float alpha	乘法公式的中标量,scale 系数	任意值
int32_t inex	向量x连续两个元素之间的 步长	取值范围>=1

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.8 ccblas_device_hrotg

函数功能

该函数实现Givens旋转矩阵求解。

函数格式

int32_t ccblas_device_hrotg(

half_float* a,

half_float* b,

half_float* c,

half_float* s);

参数说明

参数	说明	取值范围
half_float * a	输入x-y平面上二维向量的 横坐标 同时也是输出	不能为NULL
half_float * b	输入x-y平面上二维向量的 纵坐标 同时也是输出	不能为NULL
half_float * c	输出旋转矩阵的cosin值	不能为NULL
half_float * s	输出旋转矩阵的sin值	不能为NULL

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS

函数执行失败时返回错误码。

相关函数

无。

2.1.9 ccblas_device_hrotmg

函数功能

该函数实现了modified givens rotation matix H的构造。

函数格式

int32_t ccblas_device_hrotmg(

half_float *d1,

half_float *d2,

half_float *x1,

const half_float *y1,

half_float *param)

参数说明

参数	说明	取值范围
half_float* d1	用于辅助计算H矩阵,在函数中会被重写。	不能为 NULL。
half_float* d2	用于辅助计算H矩阵,在函数中会被重写。	不能为 NULL。
half_float* x1	用于计算H矩阵,在函数中会被重写。	不能为 NULL。
const half_float* y1	用于计算H矩阵,在函数中不会被重写。	不能为 NULL。
half_float* param	在函数中会被重写,保存flag和H矩阵。 其中param[0]保存flag,param[1]保存h11,param[2]保存h21,param[3]保存h12,param[4]保存h22。 对于param[0]=-2,param[1] - param[4]不会在程序中重写,默认的对应值为1001。 对于param[0]=-1,param[1] - param[4]会在程序中重写。 对于param[0]=0,param[2]、param[3]会在程序中重写,param[1]、param[4]默认为11。 对于param[0]=1,param[1]、param[4]会在程序中重写,param[2]、param[3]默认为1-1。 注意 这里的默认不是指param会赋予一个默认值,而是当函数返回后,用户看到param[0]的值后,就应该知道默认位置处的值,在param里对应位置处的值在调用前后是没有变化的。	不能为 NULL。

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.10 ccblas_device_hswap

函数功能

该函数实现了两个向量交换的过程。

函数格式

int32_t ccblas_device_hswap(
int32_t n,
half_float *x,
int32_t incx,

half_float *y,

int32_t incy);

参数说明

参数	说明	取值范围
int32_t n	向量运算的个数	>0的整数
half_float * x	向量x首地址。既是输入指针又 是输出指针	不能为NULL 说明 x的长度=1+(n-1)*abs(incx)
int32_t incx	向量x连续两个元素之间的步长	任意值
half_float * y	向量y首地址。既是输入指针又 是输出指针	不能为NULL 说明 y的长度=1+(n-1)*abs(incy)
int32_t incy	向量y连续两个元素之间的步长	任意值

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.1.11 ccblas_device_hdot

函数功能

该函数实现了两个向量的内积。

函数格式

int32_t ccblas_device_hdot(
int32_t n,
const half float *x,

int32_t incx,
const half_float *y,
int32_t incy,
half_float *result);

参数说明

参数	说明	取值范围
int32_t n	向量运算的个数	>0的整数
half_float * x	向量x首地址	不能为NULL 说明 x的长度>=1+(n-1)*abs(inex)
int32_t inex	向量x连续两个元素之间的 步长	任意值
half_float * y	向量y首地址	不能为NULL 说明 y的长度>=1+(n-1)*abs(incy)
int32_t incy	向量y连续两个元素之间的 步长	任意值
half_float * result	输出结果的地址	不能为NULL 说明 当n<=0时,*result=0.0

返回值

函数执行成功时返回CCBLAS_DEV_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.2 Level2 接口

2.2.1 ccblas_device_hgemv

函数功能

该函数实现矩阵与向量乘法。

函数格式

int32_t ccblas_device_hgemv(
ccblasOperation_t trans,
int32_t m,
int32_t n,
const half_float alpha,
const half_float* A,
int32_t lda,
const half_float* x,
int32_t incx,
const half_float beta,
half_float* y,
int32_t incy);

参数	说明	取值范围
ccblasOperation_t trans	输入为: CCBLAS_OP_N或 CCBLAS_OP_T,其中 CCBLAS_OP_T表示转置矩阵	请参见1.2.2 ccblasOperation_t
int32_t m	矩阵A的行数	大于0的整数
int32_t n	矩阵A的列数	大于0的整数
const half_float alpha	标量,比例因子	任意值
const half_float* A	输入矩阵A的首地址 说明 维度为lda×n的数组,其中 lda>=max(1,m),以列形式存储	不能为NULL 说明 维度为lda×n的矩阵, 其中lda>=max(1,m)
int32_t lda	用于存储矩阵A的二维数组的第一 个维度值	lda >= max(1,m)
const half_float* X	输入向量X的首地址	不能为NULL 说明 ● 当 trans==CCBLAS_ OP_N时,至少有 (1+(n-1)*abs(incx)) 个元素 ● 其他情况,至少有 (1+ (m-1)*abs(incx))个 元素

参数	说明	取值范围
int32_t Inex	向量x连续两个元素之间的步长	非0整数
const half_float beta	标量,比例因子	任意值
half_float* y	输入和输出向量y的首地址 计算得到的结果会重写y	不能为NULL 说明 ■ 当 trans=CCBLAS_ OP_N时,至少有 (1+ (m-1)*abs(incy))个 元素 ■ 其他情况,至少有 (1+(n-1)*abs(incy)) 个元素
int32_t incy	向量y连续两个元素之间的步长	非0整数

函数执行成功时返回CCBLAS_STATUS_SUCCESS

函数执行失败时返回错误码。

相关函数

无。

2.2.2 ccblas_device_hgemv_ex

函数功能

该函数实现矩阵与向量乘法。

该接口专供TE使用。

函数格式

int32_t ccblas_device_hgemv_ex(

int trans,

int32_t m,

int32_t n,

const __fp16 alpha,

const __fp16* A,

int32_t lda,

const __fp16* x,

int32_t incx,
const __fp16 beta,
__fp16* y,
int32_t incy)

参数	说明	取值范围
int trans	输入为: ● 0:表示CCBLAS_OP_N ● 1: CCBLAS_OP_T,其中 CCBLAS_OP_T表示转置矩阵	请参见1.2.2 ccblasOperation_t
int32_t m	矩阵A的行数	大于0的整数
int32_t n	矩阵A的列数	大于0的整数
constfp16 alpha	标量,比例因子	任意值
constfp16* A	输入矩阵A的首地址 说明 维度为lda×n的数组。其中lda>= max(1,m),以列形式存储	不能为NULL 说明 维度为lda×n的矩阵。 其中lda>=max(1,m)
int32_t lda	用于存储矩阵A的二维数组的第一个 维度值	lda>=max(1,m)
constfp16* x	输入向量X的首地址	不能为NULL 说明 1.当 trans==CCBLAS_OP_ N时,至少有(1+ (n-1)*abs(incx))个元素 2.其他情况,至少有 (1+(m-1)*abs(incx))个元素
int32_t inex	向量x连续两个元素之间的步长	非0整数
constfp16 beta	标量,比例因子	任意值
fp16* у	输入和输出向量y的首地址 计算得到的结果会重写y	不能为NULL 说明 1.当 trans==CCBLAS_OP_ N时,至少有(1+ (m-1)*abs(incy))个元素 2.其他情况,至少有 (1+(n-1)*abs(incy))个元素
int32_t incy	向量y连续两个元素之间的步长	非0整数

函数执行成功时返回CCBLAS_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.2.3 ccblas_device_hger

函数功能

该函数实现矩阵的rank-1更新。

函数格式

```
int32_t ccblas_device_hger(
int32_t m,
int32_t n,
const half_float alpha,
const half_float *x,
int32_t inc_x,
const half_float *y,
int32_t inc_y,
half_float *a,
int32_t lda)
```

参数	说明	取值范围
int32_t m	矩阵A的行数	>0的整数
int32_t n	矩阵A的列数	>0的整数
half_float alpha	标量,比例因子	任意值
const half_float * x	输入向量x数据起始地址	不能为NULL 说明 至少有(1+ (m-1)*abs(incx))个元 素
int32_t inex	向量x连续两个元素之间的步长	非0值

参数	说明	取值范围
const half_float * y	输入向量y起始地址	不能为NULL。 说明 至少有(1+ (n-1)*abs(inc_y))个元 素
int32_t incy	向量y连续两个元素之间的步长	非0值,但需要满足 和y之间的关系
half_float * A	输入矩阵的起始地址 同时也是输出矩阵的起始地址	不能为NULL 说明 维度为lda×n的矩阵。 其中lda>=max(1,m)
int32_t lda	用于存储矩阵A的二维数组的第一个 维度值	lda>=max(1,m)

函数执行成功时返回CCBLAS_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.2.4 ccblas_device_htrsv

函数功能

该函数实现了三角线性方程的求解。

函数格式

```
int32_t ccblas_device_htrsv(
ccblasFillMode_t uplo,
ccblasOperation_t trans,
ccblasDiagType_t diag,
int32_t n,
const half_float *A,
int32_t lda,
half_float *x,
int32_t incx)
```

参数说明

参数	说明	取值范围
ccblasFillMode_t uplo	指示三角矩阵A存储上半部 分或下半部分,其他元素未 引用或可从存储的部分进行 推导	 CCBLAS_FILL_MODE_LO WER存储下半部分 CCBLAS_FILL_MODE_UPP ER存储上半部分
ccblasOperation_t trans	针对矩阵A的枚举类型定义	 CCBLAS_OP_N:表示不做 任何操作 CCBLAS_OP_T:表示对指 定对象做转置操作
ccblasDiagType_t diag	指示主对角线上的元素是否 是全1	● CCBLAS_DIAG_NON_UNIT :表示对角线有非1元素 ● CCBLAS_DIAG_UNIT:表 示对角线元素全为1
int32_t n	矩阵A的行数和列数	大于0的整数值,满足参数A的 要求
const half_float * A	输入矩阵A的起始地址	不能为NULL 说明 维度为lda×n的矩阵, lda>=max(1,n)
int32_t lda	用于存储矩阵A的二维数组 的第一个维度值	lda >= max(1,n)
half_float * x	输入向量x的起始地址 同时是输出向量的起始地址	不能为NULL 说明 x的长度>=1+(n-1)*abs(incx)
int32_t incx	向量x连续两个元素之间的 步长。	非0整数

返回值

函数执行成功时返回CCBLAS_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.2.5 ccblas_device_htbsv

函数功能

该函数实现三角带型矩阵的求解。

函数格式

int32_t ccblas_device_htbsv(
ccblasFillMode_t uplo,
ccblasOperation_t trans,
ccblasDiagType_t diag,
int32_t n,
int32_t k,
const half_float* a,
int32_t lda,
half_float* x,
int32_t incx)

参数	说明	取值范围
ccblasFillMode_t uplo	指示三角矩阵A存储上半部分 或下半部分,其他元素未引用 或可从存储的部分进行推导	● CCBLAS_FILL_MODE_L OWER存储下半部分 ● CCBLAS_FILL_MODE_U PPER存储上半部分
ccblasOperation_t trans	针对矩阵A的枚举类型定义	● CCBLAS_OP_N: 表示不做任何操作 ● CCBLAS_OP_T: 表示对指定对象做转置操作
ccblasDiagType_t diag	指示主对角线上的元素是否是 全1	● CCBLAS_DIAG_NON_U NIT:表示对角线有非1元 素 ● CCBLAS_DIAG_UNIT: 表示对角线元素全为1
int32_t n	矩阵A的行数和列数	大于0的整数值,满足参数A 的要求
int32_t K	矩阵的带状宽度	大于0的整数值,满足参数A 的要求
const half_float * A	输入矩阵A的起始地址	不能为NULL 说明 维度为lda×n的矩阵,lda>=k+1
int32_t lda	用于存储矩阵A的二维数组的 第一个维度值	lda >= max(1,n)

参数	说明	取值范围
half_float * x	输入向量x的起始地址 同时也是输出向量的起始地址	不能为NULL 说明 x的长度>=(1+(n-1)*incx)
int32_t inex	向量x连续两个元素之间的步 长	非0的整数

函数执行成功时返回CCBLAS_STATUS_SUCCESS

函数执行失败时返回错误码。

相关函数

无。

2.2.6 ccblas_device_htpsv

函数功能

该函数实现了op(A)x=b方程求x的过程。

函数格式

int32_t ccblas_device_htpsv(

ccblasFillMode_t uplo,

ccblasOperation_t trans,

ccblasDiagType_t diag,

int32_t n,

const half_float *AP,

half_float *x,

int32_t incx);

参数	说明	取值范围
ccblasFillMode_t uplo	指示三角矩阵A存储上半部 分或下半部分,其他元素未 引用或可从存储的部分进行 推导	CCBLAS_FILL_MODE_LO WER存储下半部分CCBLAS_FILL_MODE_UP PER存储上半部分

参数	说明	取值范围
ccblasOperation_t trans	针对矩阵A的枚举类型定义	 CCBLAS_OP_N:表示不做 任何操作 CCBLAS_OP_T:表示对指
		定对象做转置操作
ccblasDiagType_t diag	指示主对角线上的元素是否 是全1	● CCBLAS_DIAG_NON_UNI T:表示对角线有非1元素
		● CCBLAS_DIAG_UNIT: 表 示对角线元素全为1
int32_t n	矩阵A的行数和列数	大于0的整数值,满足参数x的 要求
const half_float * AP	输入矩阵的首地址	不能为NULL 说明 长度>=(n*(n+1))/2
half_float *x	输入向量x首地址	不能为NULL
	同时也是输出向量的首地址	说明 x的长度=1+(n-1)*abs(incx)
int32_t inex	向量x连续两个元素之间的 步长	非0整数

函数执行成功时返回CCBLAS_STATUS_SUCCESS
函数执行失败时返回CCBLAS_STATUS_EXECUTION_FAILED

相关函数

无。

2.3 Level3 接口

2.3.1 ccblas_device_hgemm

函数功能

该函数实现矩阵与矩阵乘法。

函数格式

int32_t ccblas_device_hgemm(
ccblasOperation_t transa,
ccblasOperation_t transb,

int32_t m,

int32_t n,

int32_t k,

const half_float alpha,

const half_float* A,

int32_t lda,

const half_float* B,

int32_t ldb,

const half_float beta,

half_float* C, int32_t ldc);

参数	说明	取值范围
ccblasOperation_t transa	针对矩阵A的枚举类型定 义	● CCBLAS_OP_N:表示 不做任何操作 ● CCBLAS_OP_T:表示 对指定对象做转置操作
ccblasOperation_t transb	针对矩阵B的枚举类型定义	 CCBLAS_OP_N:表示 不做任何操作 CCBLAS_OP_T:表示 对指定对象做转置操作
int32_t m	矩阵A和C的行数	大于0的整数,满足A/C的 要求
int32_t n	矩阵B和C的列数	大于0的整数,满足B/C的 要求
int32_t k	矩阵A的列数,和B的行数。	大于0的整数,满足A/B的 要求
half_float alpha	标量,比例因子	任意值
const half_float* A	输入矩阵A的起始地址	不能为NULL 说明 1.当非转置时,ldaxk的矩阵,其中lda>=max(1,m) 2.当转置时,A是ldaxm维的,其中lda>=max(1,k)
int32_t lda	用于存储矩阵A的二维数 组的第一个维度值	lda>=max(1,m)

参数	说明	取值范围
const half_float* B	输入矩阵B的起始地址	不能为NULL 说明 1.当非转置时,ldbxn的矩阵,其中ldb>=max(1,k) 2.当转置时,B是ldbxk维的,其中lda>=max(1,n)
int32_t ldb	用于存储矩阵B的二维数 组的第一个维度值。	ldb>=max(1,k)
half_float beta	标量,比例因子	任意值
half_float* C	输入矩阵C的起始地址 同时也是输出矩阵C的起 始地址	不能为NULL 说明 维度为ldc×n的矩阵, ldc>=max(1,m)
int32_t ldc	用于存储矩阵C的二维数 组的第一个维度值	ldc>=max(1,m)

函数执行成功时返回CCBLAS_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

2.3.2 ccblas_device_hgemm_ex

函数功能

该函数实现矩阵与矩阵乘法。

函数格式

int32_t ccblas_device_hgemm_ex(
int transa,

int transb,

int32_t m,

int32_t n,

int32_t k,

const __fp16 alpha,

const __fp16 * A,

int32_t lda,
const __fp16 * B,
int32_t ldb,
const __fp16 beta,
__fp16 * C,
int32_t ldc);

参数	说明	取值范围
int transa	针对矩阵A的类型定义	0:表示不做任何操作1:表示对指定对象做转置操作
int transb	针对矩阵B的类型定义	0:表示不做任何操作1:表示对指定对象做转置操作
int32_t m	矩阵A和C的行数	大于0的整数,满足A/C的 要求
int32_t n	矩阵B和C的列数	大于0的整数,满足B/C的 要求
int32_t k	矩阵A的列数,和B的行数。	大于0的整数,满足A/B的 要求
fp16 alpha	标量,比例因子	任意值
constfp16* A	输入矩阵A的起始地址	不能为NULL 说明 1.当非转置时,ldaxk的矩阵,其中lda>=max(1,m) 2.当转置时,A是ldaxm维的,其中lda>=max(1,k)
int32_t lda	用于存储矩阵A的二维数 组的第一个维度值	lda>=max(1,m)
constfp16* B	输入矩阵B的起始地址	不能为NULL 说明 1.当非转置时,ldbxn的矩阵,其中ldb>=max(1,k) 2.当转置时,B是ldbxk维的,其中lda>=max(1,n)
int32_t ldb	用于存储矩阵B的二维数 组的第一个维度值。	$ldb \ge max(1,k)$
fp16 beta	标量,比例因子	任意值

参数	说明	取值范围
fp16* C	输入矩阵C的起始地址 同时也是输出矩阵C的起 始地址	不能为NULL 说明 维度为ldc×n的矩阵, ldc>=max(1,m)
int32_t ldc	用于存储矩阵C的二维数 组的第一个维度值	ldc>=max(1,m)

函数执行成功时返回CCBLAS_STATUS_SUCCESS 函数执行失败时返回错误码。

相关函数

无。

$\mathbf{A}_{\scriptscriptstyle{\mathrm{A}}$

- 本文档可能包含第三方信息、产品、服务、软件、组件、数据或内容(统称"第三方内容")。华为不控制且不对第三方内容承担任何责任,包括但不限于准确性、兼容性、可靠性、可用性、合法性、适当性、性能、不侵权、更新状态等,除非本文档另有明确说明。在本文档中提及或引用任何第三方内容不代表华为对第三方内容的认可或保证。
- 用户若需要第三方许可,须通过合法途径获取第三方许可,除非本文档另有明确 说明。

B 如何获取华为帮助

日常维护或故障处理过程中遇到难以解决或者重大问题时,请寻求华为技术有限公司的技术支持。

B.1 联系华为前的准备

为了更好的解决故障,建议在寻求华为技术支持前做好必要的准备工作,包括收集必要的故障信息和做好必要的调试准备。

B.2 联系华为技术支持

故障处理过程中遇到难以确定或解决的问题时,请联系华为技术有限公司客户服务中心(电话: 4008229999、网址: http://enterprise.huawei.com)。同时,您在向华为工程师反馈问题时,请注意收集以下信息:

- 用户名称、地址。
- 联系人姓名、电话号码。
- 故障发生的具体时间。
- 故障现象的详细描述。
- 设备类型、硬件型号及软件版本。
- 故障后已采取的措施和结果。
- 问题的级别及希望解决的时间。

□说明

对于以上介绍的可能在本产品上出现的故障现象,按参考处理建议操作后,如果故障仍无法得到解决,请及时与就近的华为办事处或客户服务中心联系,以便能够快速获取华为公司的技术支持。

B.3 做好必要的调试准备

在寻求华为技术支持时,华为技术支持工程师可能会协助您做一些操作,以进一步收集故障信息或者直接排除故障。

在寻求技术支持前请准备好单板和端口模块的备件、螺丝刀、螺丝、串口线、网线等可能使用到的物品。

B.4 如何使用文档

华为技术有限公司提供全面的随设备发货的指导文档。指导文档能解决您在日常维护或故障处理过程中遇到的常见问题。

为了更好的解决故障,在寻求华为技术支持前,建议充分使用指导文档。

B.5 如何从网站获得帮助

华为技术有限公司通过办事处、公司二级技术支持体系、电话技术指导、远程支持及现场技术支持等方式向用户提供及时有效的技术支持。

技术支持网址

查阅技术支持网站上的技术资料:

- 企业网网址: http://e.huawei.com
- 运营商网址: http://carrier.huawei.com

获取华为技术支持

如果在设备维护或故障处理过程中,遇到难以确定或难以解决的问题,通过文档的指导仍然不能解决,请通过如下方式获取技术支持:

- 联系华为技术有限公司客户服务中心。
 - 中国区企业用户请通过以下方式联系华为:
 - 客户服务电话: 400-822-9999
 - 客户服务邮箱: ChinaEnterprise_TAC@huawei.com 企业网全球各地区客户服务热线可以通过以下网站查找: 企业用户全球服务 热线

中国区运营商用户请通过以下方式联系我们:

- 客户服务电话: 400-830-2118
- 客户服务邮箱: support@huawei.com 运营商全球各地区客户服务热线可以通过以下网站查找: 运营商用户全球服 务热线
- 联系华为技术有限公司驻当地办事处的技术支持人员。

案例库与自助平台

如果您想进一步学习和交流:

- 访问**华为服务器信息自助服务平台**,获取相关服务器产品资料。
- 访问**华为服务器自助问答系统**,快速查询产品问题。
- 访问华为企业互动论坛(服务器),进行学习交流。
- 参阅已有案例进行学习: 华为服务器案例库。

B.6 联系华为的方法

华为技术有限公司为客户提供全方位的技术支持,用户可与就近的办事处联系,也可直接与公司总部联系。

华为技术有限公司

地址:深圳市龙岗区坂田华为总部办公楼

邮编: 518129

网址: http://enterprise.huawei.com/