lecture by Lourakis "Bundle adjustment gone public"

- Bundle Adjustment (BA) is a key ingredient of SaM, almost always used as its last step
 - It is an optimization problem over the 3D structure and viewing parameters (camera pose, intrinsic calibration, & radial distortion parameters), which are simultaneously refined for minimizing reprojection error
 - very large nonlinear least squares problem, typically solved with the Levenberg-Marquardt (LM) algorithm
 - Std LM involves the repetitive solution of linear systems, each with $O(N^3)$ time and $O(N^2)$ storage complexity, resp.
 - Example: for 54 cameras and 5207 3D points, N = 15945. ==> $N^3 = 1e12$
 - Sparse LM is a better solution.
 - Example:
 - M images
 - N features
 - **x_i_j** = projection of feature "i" on image "j"
 - **a_j** = vector of parameters for camera "j"
 - **b i** = vectors of parameters for point "i"
 - Q(aj, bi) = the predicted projection of point i on image j,
 - d(., .) the Euclidean distance between image points
 - vij = 1 iff point i is visible in image j
 - minimize reproduction error over a_j, b_i: min_aj, bi (summation_i=1_to_N(summation_j=1_to_M((v_i_j * d(Q(aj,bi), x_i_j))^2)))
 - ==> total number of parameters is M^* (camera parameters) + N^* (point parameters)
 - let \mathbf{P} = parameter vector of camera then point parameters = [\mathbf{P} _C \mathbf{P} _P]
 - let $X = [(x_hat_1_1)^T x_hat_1_2)^T \dots x_hat_1_M)^T x_hat_2_1)^T \dots x_hat_N_M)^T]$
 - where $x_hat = Q(a_j, b_i)$,
 - let error **eps** = $[(eps_1_1)^T eps_1_2)^T ... eps_1_M)^T eps_2_1)^T ... eps_N_M)^T$
 - where $eps = x_i_j x_hat_i_j$

Bundle Adjustment (BA) becomes

```
min (summation_i=1_to_N(summation_j=1_to_M( (eps_i_j)^2 ))) over P
```

Jacobian $J = d(X_hat) / d(P)$ which has a block structure because of P being [camera parameters point parameters] $J = [A \mid B]$ where $A = d(X_hat) / d(a)$ and $B = A = d(X_hat) / d(b)$

The LM updating vector delta = $[(delta(a))^T (delta(b))^T$

The normal equations:

The lhs matrix above is sparse due to A and B being sparse:

$$\partial x^{ij} \partial a_k = 0, \forall j != k \text{ and } \partial x^{ij} \partial b k = 0, \forall i != k$$

(example cont.) M images = 3, N features = 4

$$\mathbf{J} = rac{\partial \hat{\mathbf{X}}}{\partial \mathbf{P}}$$
 has a block structure $[\mathbf{A}|\mathbf{B}]$,

Let
$$\mathbf{A}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{a}_j}$$
 and $\mathbf{B}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{b}_i}$

The Jacobian J in block form:

$$\frac{\mathbf{a_1}^T}{\mathbf{x_{12}}} \quad \mathbf{a_2}^T \quad \mathbf{a_3}^T \quad \mathbf{b_1}^T \quad \mathbf{b_2}^T \quad \mathbf{b_3}^T \quad \mathbf{b_4}^T}{\mathbf{x_{12}}}$$

$$\mathbf{x_{11}} \quad \mathbf{x_{12}} \quad \begin{pmatrix} \mathbf{A_{11}} & \mathbf{0} & \mathbf{0} & \mathbf{B_{11}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A_{12}} & \mathbf{0} & \mathbf{B_{12}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A_{13}} & \mathbf{B_{13}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A_{21}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{21}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A_{22}} & \mathbf{0} & \mathbf{0} & \mathbf{B_{22}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A_{22}} & \mathbf{0} & \mathbf{0} & \mathbf{B_{23}} & \mathbf{0} & \mathbf{0} \\ \mathbf{A_{31}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{31}} & \mathbf{0} \\ \mathbf{0} & \mathbf{A_{32}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{33}} & \mathbf{0} \\ \mathbf{x_{33}} & \mathbf{x_{41}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{41}} \\ \mathbf{x_{42}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{42}} \\ \mathbf{x_{43}} & \mathbf{0} & \mathbf{0} & \mathbf{A_{43}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B_{43}} \end{pmatrix}$$

$$(1)$$

This is the so-called primary structure of BA

Approximate Hessian in block form:

$$\equiv \left(\begin{array}{cc} \mathbf{U} & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V} \end{array} \right),$$

$$\mathbf{U}_{j} \equiv \sum_{i=1}^{4} \mathbf{A}_{ij}^{T} \mathbf{A}_{ij}$$
, for 1 image, summing over all features $\mathbf{V}_{i} \equiv \sum_{j=1}^{3} \mathbf{B}_{ij}^{T} \mathbf{B}_{ij}$, for 1 feature, summing over all images $\mathbf{W}_{ij} = \mathbf{A}_{ij}^{T} \mathbf{B}_{ij}$

(example cont.) M images = 3, N features = 4

• The augmented normal equations $(\mathbf{J}^T\mathbf{J} + \mu\mathbf{I})\delta_{\mathbf{p}} = \mathbf{J}^T\epsilon$ take the form

(3)
$$\begin{pmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

Performing block Gaussian elimination in the lhs matrix, δ_a is determined with Cholesky from V*'s Schur complement:

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$$

note (V*) is invertible and only the block diagonals are populated, so each V_i is inverted.

separate delta_b: $0*delta_a + (V*)*delta_b = eps_b ==> delta_b = eps_b*((V*)^-1)$ solving for delta_a (typically M images << N features) after substitute delta_b:

$$((U^*) - W(((V^*)^{-1})W^T) * delta_a + W * delta_b = epa_a$$

 $((U^*) - W(((V^*)^{-1})W^T) * delta_a = epa_a - W((V^*)^{-1})eps_b$

NOTE: (U*) - W(((V*)^-1)W^T is called the reduced camera matrix (because delta_a is camera parameters)

$$\mathbf{V}^{*-1} = \begin{pmatrix} \mathbf{V}_1^{*-1} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{V}_2^{*-1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

RCM (reduced camera matrix) is sparse because not all features appear in all cameras. this is known as **secondary structure**.

For very large datasets, RCM tends to be in one of two classes:

- (1) visual mapping: extended areas are traversed, limited image overlap (sparse RCM)
- (2) centered-object: a large number of overlapping images taken in a small area (dense RCM)

Solving for delta_a in the equation containing RCM. several ways:

- (1) Store as dense, decompose with **ordinary linear algebra** ○[M. Lourakis, A. Argyros: SBA: A Software Package For Generic Sparse Bundle Adjustment. ACM Trans. Math. Softw. 36(1): (2009) C. Engels, H. Stewenius, D. Nister: Bundle Adjustment Rules. Photogrammetric Computer Vision (PCV), 2006.
- (2) Store as sparse, factorize with sparse direct solvers K. Konolige: Sparse Sparse Bundle Adjustment. BMVC 2010: 1-11
- (3) Store as sparse, use **conjugate gradient methods** memory efficient, iterative, precoditioners necessary! S. Agarwal, N. Snavely, S.M. Seitz, R. Szeliski: Bundle Adjustment in the Large. ECCV (2) 2010: 29-42 M. Byrod, K. Astrom: Conjugate Gradient Bundle Adjustment. ECCV (2) 2010: 114-127
- (4) Avoid storing altogether C. Wu, S. Agarwal, B. Curless, S.M. Seitz: Multicore Bundle Adjustment. CVPR 2011: 30 57-3064 M. Lourakis: Sparse Non-linear Least Squares Optimization for Geometric Vision. ECCV (2) 2010: 43-56

<u>m</u> images (= video frames from same calibrated camera) **?** features

each feature x has M dimensions

n iterations of bundle adjustment over the last m video frames

their "RCM" is formed from a jacobian which places point parameters before camera parameters, so is different than that in the Lourakis notes.

$$J_f = \left[\begin{array}{cc} J_P & J_C \end{array} \right], \tag{15}$$

$$H = \begin{bmatrix} J_P^\top J_P & J_P^\top J_C \\ J_C^\top J_P & J_C^\top J_C \end{bmatrix}, \tag{16}$$

$$\begin{bmatrix} H_{PP} & H_{PC} \\ H_{PC}^{\top} & H_{CC} \end{bmatrix} \begin{bmatrix} dP \\ dC \end{bmatrix} = \begin{bmatrix} b_P \\ b_C \end{bmatrix}, \quad (17)$$

where we have defined $H_{PP} = J_P^\top J_P$, $H_{PC} = J_P^\top J_C$, $H_{CC} = J_C^\top J_C$, $b_P = -J_P^\top f$, $b_C = -J_C^\top f$ to simplify the notation, and dP and dC represent the update of the point parameters and the camera parameters, respectively. Note that the matrices H_{PP} and H_{CC} are block-diagonal, where the blocks correspond to

of as multiplying by

$$\begin{bmatrix} I & 0 \\ -H_{PC}^{\top} & I \end{bmatrix}$$
 (20)

from the left on both sides, resulting in the smaller equation system (from the lower part)

$$\underbrace{(H_{CC} - H_{PC}^{\top} H_{PP}^{-1} H_{PC})}_{A} dC = \underbrace{b_{C} - H_{PC}^{\top} H_{PP}^{-1} b_{P}}_{B}$$
 (21)

for the camera parameter update dC. For very large systems,

We use straightforward Cholesky factorization.

their "RCM" is formed from a jacobian which places point parameters before camera parameters, so is different than that in the Lourakis notes.

Lourakis Let $\mathbf{A}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{a}_j}$ and $\mathbf{B}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{b}_i}$

$$\mathbf{J} = \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{P}} = \begin{bmatrix} \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{a}} & \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{b}} \end{bmatrix} = \begin{bmatrix} J_C & J_P \end{bmatrix}$$

. The Jacobian J in block form:

$$\frac{\mathbf{x}_{11}}{\mathbf{x}_{12}} \begin{pmatrix} \mathbf{a}_{1}^{T} & \mathbf{a}_{2}^{T} & \mathbf{a}_{3}^{T} & \mathbf{b}_{1}^{T} & \mathbf{b}_{2}^{T} & \mathbf{b}_{3}^{T} & \mathbf{b}_{4}^{T} \\ \mathbf{x}_{12} & \mathbf{x}_{13} & \mathbf{x}_{21} & \mathbf{x}_{13} & \mathbf{x}_{21} & \mathbf{x}_{22} & \mathbf{x}_{23} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \mathbf{x}_{23} & \mathbf{x}_{31} & \mathbf{x}_{21} & \mathbf{x}_{22} & \mathbf{x}_{23} \\ \mathbf{x}_{31} & \mathbf{x}_{32} & \mathbf{x}_{31} & \mathbf{x}_{32} & \mathbf{x}_{33} & \mathbf{x}_{41} & \mathbf{x}_{42} & \mathbf{x}_{41} & \mathbf{x}_{42} & \mathbf{x}_{43} & \mathbf{x}_{43} & \mathbf{x}_{43} & \mathbf{x}_{43} & \mathbf{x}_{44} & \mathbf{x}_{42} & \mathbf{x}_{43} & \mathbf{x}_{43} & \mathbf{x}_{44} & \mathbf{x}_{43} & \mathbf{x}_{44} & \mathbf{x}_$$

Engels Let
$$\mathbf{A}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{a}_j}$$
 and $\mathbf{B}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{b}_i}$

$$J_f = \begin{bmatrix} J_P & J_C \end{bmatrix}$$
,

. The Jacobian J in block form:

$$\frac{\hat{X}_{11}}{\hat{X}_{12}} \begin{pmatrix} \mathbf{b_1}^T & \mathbf{b_2}^T & \mathbf{b_3}^T & \mathbf{b_4}^T & \mathbf{a_1}^T & \mathbf{a_2}^T & \mathbf{a_3}^T \\ \mathbf{B}_{11} & 0 & 0 & 0 & A_{11} & 0 & 0 \\ \mathbf{B}_{12} & 0 & 0 & 0 & 0 & A_{12} & 0 & 1 \\ \mathbf{B}_{13} & 0 & 0 & 0 & 0 & 0 & A_{13} & 1 \\ 0 & \mathbf{B}_{21} & 0 & 0 & \mathbf{A}_{21} & 0 & 0 \\ 0 & \mathbf{B}_{22} & 0 & 0 & 0 & \mathbf{A}_{22} & 0 \\ 0 & \mathbf{B}_{22} & 0 & 0 & 0 & \mathbf{A}_{22} & 0 \\ 0 & \mathbf{B}_{23} & 0 & 0 & 0 & \mathbf{A}_{22} & 0 \\ 0 & 0 & \mathbf{B}_{31} & 0 & \mathbf{A}_{31} & 0 & 0 \\ \mathbf{X}_{32} & \mathbf{X}_{33} & 0 & 0 & 0 & \mathbf{A}_{32} & 0 \\ \mathbf{X}_{33} & \mathbf{X}_{41} & \mathbf{X}_{42} & 0 & \mathbf{A}_{41} & 0 & 0 \\ \mathbf{X}_{42} & \mathbf{X}_{43} & 0 & 0 & \mathbf{B}_{42} & 0 & \mathbf{A}_{42} & 0 \\ \mathbf{X}_{43} & 0 & 0 & 0 & \mathbf{B}_{43} & 0 & 0 & \mathbf{A}_{43} \end{pmatrix}$$

their "RCM" is formed from a jacobian which places point parameters before camera parameters, so is different than that in the Lourakis notes.

Lourakis Let
$$\mathbf{A}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{a}_j}$$
 and $\mathbf{B}_{ij} = \frac{\partial \hat{\mathbf{x}}_{ij}}{\partial \mathbf{b}_i}$

$$\mathbf{C} \qquad \mathbf{P}$$

$$\mathbf{J} = \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{P}} = \begin{bmatrix} \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{a}} & \frac{\partial \hat{\mathbf{X}}}{\partial \mathbf{b}} \end{bmatrix} = \begin{bmatrix} \mathbf{J} c & \mathbf{J} \mathbf{P} \end{bmatrix}$$

$$\mathbf{J}^{T}\mathbf{J} = \begin{bmatrix} \mathbf{a_{1}}^{T} & \mathbf{a_{2}}^{T} & \mathbf{a_{3}}^{T} & \mathbf{b_{1}}^{T} & \mathbf{b_{2}}^{T} & \mathbf{b_{3}}^{T} & \mathbf{b_{4}}^{T} \\ \mathbf{a_{1}} & \begin{bmatrix} \mathbf{U}_{1} & 0 & 0 & \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ 0 & \mathbf{U}_{2} & 0 & \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ 0 & 0 & \mathbf{U}_{3} & \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \\ \mathbf{b_{1}} & \mathbf{W}_{11}^{T} & \mathbf{W}_{12}^{T} & \mathbf{W}_{13}^{T} & \mathbf{V}_{1} & 0 & 0 & 0 \\ \mathbf{b_{2}} & \mathbf{W}_{21}^{T} & \mathbf{W}_{22}^{T} & \mathbf{W}_{23}^{T} & 0 & \mathbf{V}_{2} & 0 & 0 \\ \mathbf{b_{3}} & \mathbf{W}_{31}^{T} & \mathbf{W}_{32}^{T} & \mathbf{W}_{33}^{T} & 0 & 0 & \mathbf{V}_{3} & 0 \\ \mathbf{b_{4}} & \mathbf{W}_{11}^{T} & \mathbf{W}_{12}^{T} & \mathbf{W}_{12}^{T} & \mathbf{W}_{12}^{T} & 0 & 0 & 0 & \mathbf{V}_{4} \end{bmatrix}$$

where
$$\mathbf{U}_{j} \equiv \sum_{i=1}^{4} \mathbf{A}_{ij}^{T} \mathbf{A}_{ij}$$
, for 1 image, sum over features $\mathbf{V}_{i} \equiv \sum_{j=1}^{3} \mathbf{B}_{ij}^{T} \mathbf{B}_{ij}$, for 1 feature, sum over images $\mathbf{W}_{ij} = \mathbf{A}_{ij}^{T} \mathbf{B}_{ij}$

Note that
$$\mathbf{V}^{*-1} = \begin{pmatrix} \mathbf{V}_1^{*-1} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{V}_2^{*-1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Lourakis

The augmented normal equations $(\mathbf{J}^T\mathbf{J} + \mu\mathbf{I})\delta_{\mathbf{p}} = \mathbf{J}^T\epsilon$ take the form

(3)
$$\begin{pmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

$$\left[\begin{array}{cc} U - W V^{-1} W^T & 0 \end{array} \right] \left[\begin{array}{c} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{array} \right] = \left[\begin{array}{cc} I & -W V^{-1} \end{array} \right] \left[\begin{array}{c} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{array} \right]$$

(solve delta a first because typically m_images << n_features) determine $\delta_{\bf a}$ with Cholesky (or other method)

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$$

 $\delta_{\rm b}$ can be computed by back substitution into

$$\mathbf{V}^* \ \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \ \delta_{\mathbf{a}}$$

$$\delta_{\mathbf{b}} = \mathbf{V}^{*-1} \epsilon_{\mathbf{b}} - \mathbf{V}^{*-1} \mathbf{w}^{T} \delta_{\mathbf{a}}$$

Engels

$$\begin{pmatrix} \mathbf{V}^* & \mathbf{W}^T \\ \mathbf{W} & \mathbf{U}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{b}} \\ \delta_{\mathbf{a}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{b}} \\ \epsilon_{\mathbf{a}} \end{pmatrix}$$

$$\begin{bmatrix} H_{PP} & H_{PC} \\ H_{PC}^{\top} & H_{CC} \end{bmatrix} \begin{bmatrix} dP \\ dC \end{bmatrix} = \begin{bmatrix} b_P \\ b_C \end{bmatrix}, \qquad \begin{aligned} H_{PP} &= J_P^{\top} J_P \\ H_{PC} &= J_P^{\top} J_C, \\ H_{CC} &= J_C^{\top} J_C, \\ b_P &= -J_D^{\top} f, \\ b_C &= -J_C^{\top} f \end{aligned}$$

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$$

$$\underbrace{(H_{CC} - H_{PC}^{\top} H_{PP}^{-1} H_{PC})}_{A} dC = \underbrace{b_C - H_{PC}^{\top} H_{PP}^{-1} b_P}_{B}$$

 $\delta_{\rm b}$ can be computed by back substitution into

$$\mathbf{V}^* \ \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \ \delta_{\mathbf{a}}$$

$$H_{PP} \ dP = b_P - H_{PC} \ dC$$

$$dP = H_{PP}^{-1} b_P - H_{PP}^{-1} H_{PC} dC.$$

Engels, et al 2006

Note that
$$\mathbf{V}^{*-1} = \begin{pmatrix} \mathbf{V}_1^{*-1} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{V}_2^{*-1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\begin{array}{ll} H_{PP} = J_P^\top J_P & \equiv & \mathbf{V}^* \\ H_{PC} = J_P^\top J_C, & \equiv & \mathbf{W}^T \\ H_{CC} = J_C^\top J_C, & \equiv & \mathbf{U}^* \\ b_P = -J_P^\top f, & \equiv & \boldsymbol{\epsilon}_{\mathbf{b}} \\ b_C = -J_C^\top f & \equiv & \boldsymbol{\epsilon}_{\mathbf{a}} \end{array}$$

$$\mathbf{V}_i \equiv \sum_{j=1}^3 \mathbf{B}_{ij}^T \mathbf{B}_{ij}, \;\; ext{for 1 feature, sum over images}$$

$$\mathbf{U}_{j} \equiv \sum_{i=1}^{4} \mathbf{A}_{ij}^{T} \mathbf{A}_{ij}$$
, for 1 image, sum over features

$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$

Engels

$$\underbrace{\left(H_{CC}-H_{PC}^{\intercal}H_{PP}^{-1}H_{PC}\right)}_{A}dC=\underbrace{b_{C}-H_{PC}^{\intercal}H_{PP}^{-1}b_{P}}_{B}$$

- Initialize λ.
- 2 Compute cost function at initial camera and point configuration.
- 3 Clear the left hand side matrix A and right hand side vector B.
- 4 For each track p (p is feature i of N)

V

Clear a variable H_{pp} to represent block p of H_{PP} (in our case a symmetric 3×3 matrix) and a variable b_p to represent part p of b_P (in our case a 3-vector).

 $\epsilon_{\mathbf{b}}$

(Compute derivatives) For each camera c on track p

(c is image j of M)

Compute error vector f of reprojection in camera c of point p and its Jacobians J_p and J_c with respect to the

3 A

point parameters (in our case a 2×3 matrix) and the camera parameters (in our case a 2×6 matrix), respectively.

 $\mathbf{B}^T \mathbf{B}$

 V^*

Add $J_p^{\top} J_p$ to the upper triangular part of H_{pp} . Subtract $J_p^{\top} f$ from b_p .

 \mathbf{R}^T

 $\epsilon_{\mathbf{b}}$

```
If camera c is free
           \mathbf{A}^T \mathbf{A}
     Add J_c^{\top} J_c (optionally with an augmented diagonal) to
     upper triangular part of block (c, c) of left hand side
     matrix A (in our case a 6 \times 6 matrix).
     Compute block (p, c) of H_{PC} as H_{pc} = J_p^{\top} J_c (in our
     case a 3 × 6 matrix) and store it until track is done.
     Subtract J_c^{\top} f from part c of right hand side vector B
     (related to b_C).
Augment diagonal of H_{pp}, which is now accumulated and
ready. Invert H_{pp}, taking advantage of the fact that it is a
symmetric matrix.
Compute H_{pp}^{-1}b_p and store it in a variable t_p.
(Outer product of track) For each free camera c on track p
   Subtract H_{pc}^{\top}t_p = H_{pc}^{\top}H_{pp}^{-1}b_p from part c of right hand
   side vector B.
   Compute the matrix H_{pc}^{\top}H_{pp}^{-1} and store it in a variable T_{pc}
   For each free camera c2 \ge c on track p
```

Subtract $T_{pc}H_{pc2}=H_{pc}^{\top}H_{pp}^{-1}H_{pc2}$ from block (c,c2)

of left hand side matrix A.

Engels, et al 2006

Note that
$$\mathbf{V}^{*-1} = \begin{pmatrix} \mathbf{V}_1^{*-1} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{V}_2^{*-1} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\begin{array}{ll} H_{PP} = J_P^\top J_P & \equiv & \mathbf{V} \\ H_{PC} = J_P^\top J_C, & \equiv & \mathbf{W} \\ H_{CC} = J_C^\top J_C, & \equiv & \mathbf{U} \\ b_P = -J_P^\top f, & \equiv & \mathbf{C} \\ b_C = -J_C^\top f & \equiv & \mathbf{C} \end{array}$$

$$\begin{array}{ll} H_{PP} = J_P^\top J_P & \equiv & \mathbf{V}^* \\ H_{PC} = J_P^\top J_C, & \equiv & \mathbf{W}^T \\ H_{CC} = J_C^\top J_C, & \equiv & \mathbf{U}^* \\ b_P = -J_P^\top f, & \equiv & \boldsymbol{\epsilon}_{\mathbf{b}} \\ b_C = -J_C^\top f & \equiv & \boldsymbol{\epsilon}_{\mathbf{a}} \end{array} \qquad \begin{array}{ll} \mathbf{V}_i \equiv \sum_{j=1}^3 \mathbf{B}_{ij}^T \mathbf{B}_{ij}, & \text{for 1 feature, sum over images} \\ \mathbf{U}_j \equiv \sum_{i=1}^4 \mathbf{A}_{ij}^T \mathbf{A}_{ij}, & \text{for 1 image, sum over features} \end{array}$$

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$$
$$(\underline{H_{CC} - H_{PC}^{\perp} H_{PP}^{-1} H_{PC}}) dC = \underbrace{b_C - H_{PC}^{\perp} H_{PP}^{-1} b_P}_{B}$$

Engels

- 5 (Optional) Fix gauge by freezing appropriate coordinates and thereby reducing the linear system with a few dimensions.
- 6 (Linear Solving) Cholesky factor the left hand side matrix B and solve for dC. Add frozen coordinates back in.

```
7 (Back-substitution) For each track p
     Start with point update for this track dp = t_p.
     For each camera c on track p
       Subtract T_{pc}^{\top}dc from dp (where dc is the update for camera
       c).
     Compute updated point.
```

- 8 Compute the cost function for the updated camera and point configuration.
- 9 If cost function has improved, accept the update step, decrease λ and go to Step 3 (unless converged, in which case quit).
- 10 Otherwise, increase λ and go to Step 3 (unless exceeded the maximum number of iterations, in which case quit).

every real-valued symmetric positive-definite matrix has a unique Cholesky decomposition.

A in the RCM is the Schur complement of HPP (HPP is called V* by Lourakis).

V* is a symmetric positive definite matrix (spdm). There exists proof the that Schur complement of a spdm is a symmetric positive definite matrix.

So A can be solved by Cholesky decomposition.

Bill Triggs, Philip Mclauchlan, Richard Hartley, Andrew Fitzgibbon.

Bundle Adjustment - A Modern Synthesis.

International Workshop on Vision Algorithms,

Sep **2000**, Corfu, Greece. pp.298–372,

10.1007/3-540-44480-7 21 . inria-00548290

see Appendix B, and page 23...

6.1 The Schur Complement and the Reduced Bundle System

Schur complement: Consider the following block triangular matrix factorization:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ C\,A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & \overline{D} \end{pmatrix} \begin{pmatrix} 1 & A^{-1}B \\ 0 & 1 \end{pmatrix} \,, \qquad \overline{D} \equiv \, D - C\,A^{-1}B \qquad (16)$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -A^{-1}B \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & \overline{D}^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -CA^{-1} & 1 \end{pmatrix} = \begin{pmatrix} A^{-1}+A^{-1}B\overline{D}^{-1}CA^{-1} & -A^{-1}B\overline{D}^{-1} \\ -\overline{D}^{-1}CA^{-1} & \overline{D}^{-1} \end{pmatrix}$$
 (17)

Here \overline{A} must be square and invertible, and for (17), the whole matrix must also be square and invertible. \overline{D} is called the **Schur complement** of \overline{A} in \overline{M} . If both \overline{A} and \overline{D} are invertible, complementing on \overline{D} rather than \overline{A} gives \overline{D} , the Schur complement, is HPP is \overline{V} .

$$\left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right)^{-1} \; = \; \left(\begin{smallmatrix} \overline{A}^{-1} & -\overline{A}^{-1}B \, D^{-1} \\ -D \, C \, \overline{A}^{-1} & D^{-1} + D^{-1} \, C \, \overline{A}^{-1}B \, D^{-1} \end{smallmatrix} \right), \qquad \overline{A} = A - B \boxed{D^{-1}} C$$

Equating upper left blocks gives the Woodbury formula:

$$(A \pm B D^{-1}C)^{-1} = A^{-1} \mp A^{-1}B (D \pm C A^{-1}B)^{-1} C A^{-1}$$
(18)

This is the usual method of updating the inverse of a nonsingular matrix A after an update (especially a low rank one) $A \rightarrow A \pm B D^{-1}C$. (See §8.1).

Bill Triggs, Philip Mclauchlan, Richard Hartley, Andrew Fitzgibbon.

Bundle Adjustment - A Modern Synthesis.

International Workshop on Vision Algorithms, Sep **2000**, Corfu, Greece. pp.298–372, 10.1007/3-540-44480-7 21 . inria-00548290

see Appendix B, and page 23...

$$\begin{aligned} \mathsf{L} &= \mathbf{profile_cholesky_decomp}(\mathsf{A}) \\ & \textbf{for } i = 1 \textbf{ to } n \textbf{ do} \\ & \textbf{for } j = \mathsf{first}(i) \textbf{ to } i \textbf{ do} \\ & a &= \mathsf{A}_{ij} - \sum_{k=\max(\mathsf{first}(i),\mathsf{first}(j))}^{j-1} \mathsf{L}_{ik} \mathsf{L}_{jk} \\ & \mathsf{L}_{ij} = (j < i) \ ? \ a / \mathsf{L}_{jj} \ : \ \sqrt{a} \end{aligned}$$

$$\mathbf{x} = \mathbf{profile_cholesky_forward_subs}(\mathsf{A}, \mathsf{b})$$
 $\mathbf{for} \ i = \mathrm{first}(\mathsf{b}) \ \mathbf{to} \ n \ \mathbf{do}$

$$\mathbf{x}_i = \left(\mathsf{b}_i - \sum_{k=\max(\mathrm{first}(i),\mathrm{first}(\mathsf{b}))}^{i-1} \mathsf{L}_{ik} \, \mathbf{x}_k \right) / \mathsf{L}ii$$

$$\mathbf{y} = \mathbf{profile_cholesky_back_subs}(\mathsf{A}, \mathsf{x})$$

$$\mathbf{y} = \mathbf{x}$$

$$y = profile_cholesky_back_subs(A, x)$$

 $y = x$
 $for i = last(b) to 1 step -1 do$
 $for k = max(first(i), first(y)) to i do$
 $y_k = y_k - y_i L_{ik}$
 $y_i = y_i / L_{ii}$

Figure 10: A complete implementation of profile Cholesky decomposition.

cholesky:

but usually, for A * x= b:

- (1) A=L*L*
- (2) L * y = b ==> y via forward subst
- (3) $L^* * x = y ==> x$ via backward subst