Aula 11 – Convergência Absoluta e Não-Absoluta de Séries

Metas da aula: Definir os conceitos de séries absolutamente convergentes e séries condicionalmente convergentes. Apresentar o Teorema dos Rearranjos para séries absolutamente convergentes. Apresentar os principais testes para a convergência absoluta de séries. Apresentar o teste para convergência de séries alternadas.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber os conceitos de convergência absoluta e convergência condicional (ou não-absoluta) de séries.
- Saber o Teorema dos Rearranjos para séries absolutamente convergentes.
- Conhecer e saber aplicar os principais testes para estabelecer a convergência absoluta de séries, bem como o teste para a convergência de séries alternadas.

Introdução

Nesta aula vamos estudar a importante noção de convergência absoluta de uma série assim como os principais testes para a verificação dessa convergência.

Convergência Absoluta de Séries

Iniciemos com a definição de convergência absoluta de uma série numérica.

Definição 11.1

Seja $\mathbf{x} = (x_n)$ uma sequência em \mathbb{R} . Dizemos que a série $\sum x_n$ é absolutamente convergente se a série $\sum |x_n|$ é convergente. Dizemos que a série é condicionalmente convergente (ou não-absolutamente convergente) se ela é convergente mas não é absolutamente convergente.

O exemplo clássico de série condicionalmente convergente é o da série harmônica alternada $\sum \frac{(-1)^{n+1}}{n}$, que converge, como vimos no Exemplo 10.3 (e),

mas cuja série de valores absolutos é a série harmônica $\sum \frac{1}{n}$ cuja divergência já verificamos em várias oportunidades.

O seguinte resultado mostra que a noção de convergência absoluta de uma série é mais forte que a de convergência simplesmente.

Teorema 11.1

Se uma série $\sum x_n$ é absolutamente convergente, então ela é convergente.

Prova: Como $\sum |x_n|$ converge, o Critério de Cauchy para Séries 10.2 implica que, dado $\varepsilon > 0$, existe $N_0 \in \mathbb{N}$ tal que se $m > n > N_0$, então

$$|x_{n+1}| + |x_{n+2}| + \dots + |x_m| < \varepsilon.$$

Mas então, se (s_n) é a sequência das somais parciais de $\sum x_n$, a desigualdade triangular nos dá

$$|s_m - s_n| = |x_{n+1} + x_{n+2} + \dots + x_m| \le |x_{n+1}| + |x_{n+2}| + \dots + |x_m| < \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, segue do Critério de Cauchy que $\sum x_n$ converge. \square

Dada uma série $\sum x_n$ e uma bijeção $\varphi: \mathbb{N} \to \mathbb{N}$ obtemos uma nova série $\sum x'_n$ fazendo $x'_n = x_{\varphi(n)}$. Os termos da nova série $\sum x'_n$ são iguais aos da série $\sum x_n$ mas estão ordenados de modo distinto.

Definição 11.2

Dizemos que uma série $\sum x'_n$ é um rearranjo de uma série $\sum x_n$ se existe uma bijeção $\varphi : \mathbb{N} \to \mathbb{N}$ tal que $x'_n = x_{\varphi(n)}$ para todo $n \in \mathbb{N}$.

O seguinte resultado afirma que os rearranjos não alteram as somas das séries absolutamente convergentes.

Teorema 11.2 (Teorema dos Rearranjos)

Seja $\sum x_n$ uma série absolutamente convergente. Então qualquer rearranjo $\sum x'_n$ de $\sum x_n$ converge ao mesmo valor.

Prova: Suponhamos que $\sum x_n$ converge a $s \in \mathbb{R}$ e seja (s_n) a sequência das somas parciais. Assim, dado $\varepsilon > 0$, existe N_1 tal que se $n > N_1$ e $m > N_1$, então

$$|s - s_n| < \varepsilon$$
 e $\sum_{k=N_1+1}^m |x_k| < \varepsilon$.

Seja $\varphi : \mathbb{N} \to \mathbb{N}$ uma bijeção qualquer. Ponhamos $x'_n = x_{\varphi(n)}$ e seja (s'_n) a sequência das somas parciais de $\sum x'_n$. Seja $N_0 = \sup\{\varphi(1), \varphi(2), \dots, \varphi(N_1)\}$.

Então todos os termos $x_1, x_2, \ldots, x_{N_1}$ estão contidos como parcelas na soma $s'_{N_0} = x'_1 + x'_2 + \cdots + x'_{N_0}$. Segue que se $l > N_0$, então $s'_l - s_n$ é a soma de um número finito de termos x_k com índice $k > N_1$. Logo, para algum $m > N_1$ temos

$$|s_l' - s_n| \le \sum_{k=N_1+1}^m |x_k| < \varepsilon.$$

Portanto, se $l > N_0$, então temos

$$|s_l' - s| \le |s_l' - s_n| + |s_n - s| < \varepsilon + \varepsilon = 2\varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, concluímos que $\sum x'_n$ converge para s. \square

Exemplos 11.1

(a) Seja $\sum x_n$ uma série condicionalmente convergente. Definamos $p_n := (|x_n| + x_n)/2 = \max\{x_n, 0\}$ e $q_n := (|x_n| - x_n)/2 = \max\{-x_n, 0\}$. Então as séries $\sum p_n$ e $\sum q_n$ são ambas divergentes. Os números p_n e q_n são chamados parte positiva e parte negativa de x_n , respectivamente.

De fato, como $x_n = p_n - q_n$ e $|x_n| = p_n + q_n$ então $s_n = P_n - Q_n$ e $S_n = P_n + Q_n$, onde (s_n) , (S_n) , (P_n) e (Q_n) são as sequências das somas parciais de $\sum x_n$, $\sum |x_n|$, $\sum p_n$ e $\sum q_n$, respectivamente. Temos que $S_n \to +\infty$, já que $\sum x_n$ é condicionalmente convergente. Como s_n converge, a igualdade $s_n = P_n - Q_n$ implica que se P_n converge, então Q_n converge, e vice-versa. Nesse caso, então teríamos a convergência de $P_n + Q_n$, contradizendo o fato de que $S_n \to +\infty$.

(b) Considere as séries

$$\sum x_n = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \cdots$$
$$\sum x'_n = 1 + \frac{1}{3^2} - \frac{1}{2^2} + \frac{1}{5^2} + \frac{1}{7^2} - \frac{1}{4^2} + \cdots,$$

onde $\sum x'_n$ é um rearranjo de $\sum x_n$ no qual dois termos positivos são sempre seguidos de um termo negativo.

A bijeção $\varphi: \mathbb{N} \to \mathbb{N}$ correspondente é definida por $\varphi(3k-2) = 4k-3$, $\varphi(3k-1) = 4k-1$ e $\varphi(3k) = 2k$ para todo $k \in \mathbb{N}$. Note que se \mathbf{I} é o conjunto dos números naturais ímpares, então $\mathbf{I} = \{4k-3: k \in \mathbb{N}\} \cup \{4k-1: k \in \mathbb{N}\}$ ao passo que $\{4k-3: k \in \mathbb{N}\} \cap \{4k-1: k \in \mathbb{N}\} = \emptyset$. Por outro lado, $\{3k-1: k \in \mathbb{N}\}$, $\{3k-2: k \in \mathbb{N}\}$ e $\{3k: k \in \mathbb{N}\}$ são três subconjuntos infinitos de \mathbb{N} , disjuntos dois a dois, cuja união é \mathbb{N} . Portanto, φ é, de fato, uma bijeção (por quê?).

A série $\sum (-1)^{n+1}/n^2$ é absolutamente convergente pois os valores absolutos de seus termos formam a 2-série $\sum 1/n^2$ que já vimos que é convergente no Exemplo 10.3 (b). Logo, as séries $\sum x_n$ e $\sum x_n'$ consideradas neste exemplo convergem ao mesmo limite, pelo Teorema 11.2.

(c) Considere as séries

$$\sum x_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
$$\sum x'_n = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$$

Como no item anterior, $\sum x'_n$ é um rearranjo de $\sum x_n$ onde a bijeção φ é a mesma definida em (b). Sabemos que a série $\sum x_n$ é condicionalmente convergente. Seja $s = \sum_{n=1}^{\infty} x_n$. Temos

$$s = 1 - \frac{1}{2} + \frac{1}{3} - (\frac{1}{4} - \frac{1}{5}) - (\frac{1}{6} - \frac{1}{7}) - \dots < 1 - \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$$

Com relação à série $\sum x'_n$, como

$$\frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} > \frac{1}{4k} + \frac{1}{4k} - \frac{1}{2k} = 0 \quad \text{para todo } k \in \mathbb{N},$$

temos $s_3' < s_6' < s_9' < \cdots$, onde (s_n') é a sequência das somas parciais de $\sum x'_n$. Além disso, como

$$-\frac{1}{2k} + \frac{1}{4k+1} + \frac{1}{4k+3} < -\frac{1}{2k} + \frac{1}{4k} + \frac{1}{4k} = 0 \quad \text{para todo } k \in \mathbb{N},$$

concluímos que

$$s_{3n}' = 1 + \frac{1}{3} + \left(-\frac{1}{2} + \frac{1}{5} + \frac{1}{7}\right) + \dots + \left(-\frac{1}{2(n-1)} + \frac{1}{4n-3} + \frac{1}{4n-1}\right) - \frac{1}{2n} < \frac{4}{3}$$

para todo $n \in \mathbb{N}$. Logo, a subsequência (s'_{3n}) da sequência (s'_n) é convergente. Seja $s' := \lim s'_{3n}$.

Dado qualquer $n \in \mathbb{N}$, temos $n \in \{3m-2, 3m-1, 3m\}$ para algum $m \in \mathbb{N}$ (por quê?). Assim,

$$|s'_n - s'| \le |s' - s'_{3m}| + |s'_n - s'_{3m}|$$

$$\le |s' - s'_{3m}| + |x'_{3m-2}| + |x'_{3m-1}| = |s' - s'_{3m}| + \frac{1}{4m - 3} + \frac{1}{4m - 1}.$$

Como $3m-2 \le n \le 3m$, temos que se $n \to +\infty$ então $m \to +\infty$ e vice-versa. Daí deduzimos facilmente que toda a sequência s'_n converge e $\lim s'_n = s'$. Além disso, temos

$$s' = \lim_{k \to \infty} s'_{3k} > s'_3 = \frac{5}{6} > s.$$

Portanto, a série $\sum x'_n$ converge a uma soma diferente daquela da série $\sum x_n$, da qual ela é um rearranjo.

(d) Se $\sum x_n$, $\sum x'_n$, s e s' são como no item anterior, então s' = (3/2)s.

Isso pode ser provado com o seguinte truque. Temos

$$\frac{s}{2} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \cdots$$

Assim, podemos escrever

$$s = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

$$\frac{s}{2} = 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + \cdots$$

Somando-se termo a termo obtemos

$$\frac{3s}{2} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots,$$

o que mostra que s'_n converge para (3/2)s.

(e) Diz-se que uma série $\sum x_n$ é comutavelmente convergente quando qualquer rearranjo dela $\sum x'_n$ converge para a mesma soma. Em particular, uma série comutavelmente convergente é convergente. O Teorema dos Rearranjos 11.2 afirma que toda série absolutamente convergente é comutavelmente convergente.

O seguinte resultado mostra que vale a recíproca, isto é, $\sum x_n$ é comutavelmente convergente se, e somente se, $\sum x_n$ é absolutamente convergente:

"Se $\sum x_n$ é condicionalmente convergente então, dado qualquer $c \in \mathbb{R}$, existe um rearranjo $\sum x'_n$ de $\sum x_n$ cuja soma é igual a c."

A afirmação anterior é um lema devido a BERNHARD RIEMANN (1826-1866). Riemann é considerado por muitos um dos maiores matemáticos de todos os tempos, tendo feito contribuições fundamentais à Análise e Geometria Diferencial dentre outras áreas da Matemática.

Segue desse lema de Riemann, em particular, que séries condicionalmente convergentes não são comutavelmente convergentes, o que prova a recíproca do Teorema 11.2, ou seja, que se uma série é comutavelmente convergente então ela é absolutamente convergente. Apresentamos a demonstração do lema na seção Prossiga ao final desta aula.

Testes para Convergência Absoluta

A seguir enunciaremos e provaremos alguns dos principais testes para a verificação da convergência absoluta de séries.

Teorema 11.3 (Teste da Comparação Limite II)

Sejam $\mathbf{x} = (x_n)$ e $\mathbf{y} = (y_n)$ sequências de números reais com $y_n \neq 0$ para todo $n \in \mathbb{N}$ e suponhamos que exista

$$r := \lim \left| \frac{x_n}{y_n} \right|. \tag{11.1}$$

Temos:

- (i) Se $r \neq 0$, então $\sum x_n$ é absolutamente convergente se, e somente se, $\sum y_n$ é absolutamente convergente.
- (ii) Se r = 0 e $\sum y_n$ é absolutamente convergente, então $\sum x_n$ é absolutamente convergente.

Prova: Esse resultado segue imediatamente do Teorema 10.5.

O seguinte teste é devido a Cauchy e por isso é também conhecido como Teste de Cauchy.

Teorema 11.4 (Teste da Raiz)

Seja $\mathbf{x} = (x_n)$ uma sequência em \mathbb{R} .

(i) Se existe $r \in \mathbb{R}$ com r < 1 e $N_0 \in \mathbb{N}$ tais que

$$|x_n|^{1/n} \le r \qquad \text{para } n > N_0, \tag{11.2}$$

então a série $\sum x_n$ é absolutamente convergente. Em particular, se existe $\bar{r} := \lim |x_n|^{1/n}$ e $\bar{r} < 1$, então vale a mesma conclusão.

(ii) Se existe uma subsequência (x_{n_k}) de (x_n) satisfazendo

$$|x_{n_k}|^{1/n_k} \ge 1 \qquad \text{para todo } k \in \mathbb{N}, \tag{11.3}$$

então a série $\sum x_n$ é divergente.

Prova: (i) Se (11.2) vale, então temos $|x_n| \leq r^n$ para $n > N_0$. Como a série geométrica $\sum r^n$ é convergente para $0 \leq r < 1$, o Teste da Comparação 10.4 implica que $\sum |x_n|$ é convergente. No caso em que existe $\bar{r} := \lim |x_n|^{1/n}$ e $\bar{r} < 1$, dado $0 < \varepsilon < 1 - \bar{r}$, podemos obter $N_0 \in \mathbb{N}$ tal que $|x_n|^{1/n} < \bar{r} + \varepsilon < 1$ para todo $n > N_0$ e, assim, vale (11.2) com $r := \bar{r} + \varepsilon < 1$.

(ii) Se (11.3) vale para uma subsequência (x_{n_k}) de (x_n) então x_n não converge a zero e o Teorema 10.1 implica que $\sum x_n$ é divergente.

Observação 11.1

Quando $\lim |x_n|^{1/n} = 1$ o Teste da Raiz não permite que se tire qualquer conclusão quanto à convergência ou divergência da série. Por exemplo, ambas as séries $\sum 1/n^2$ e $\sum 1/n$ satisfazem $|x_n|^{1/n} \to 1$ (por quê?). No entanto, a primeira série é convergente enquanto a segunda é divergente como já vimos.

O seguinte teste é também conhecido com Teste de D'Alembert em referência ao grande matemático e físico francês Jean le Rond d'Alembert (1717-1783) que foi quem primeiro o enunciou e provou.

Teorema 11.5 (Teste da Razão)

Seja $\mathbf{x} = (x_n)$ uma sequência de números reais não-nulos.

(i) Se existe $r \in \mathbb{R}$ com 0 < r < 1 e $N_0 \in \mathbb{N}$ tais que

$$\left| \frac{x_{n+1}}{x_n} \right| \le r \qquad \text{para } n > N_0, \tag{11.4}$$

então a série $\sum x_n$ é absolutamente convergente. Em particular, se existe $\bar{r} := \lim(|x_{n+1}|/|x_n|)$ e $\bar{r} < 1$, então vale a mesma conclusão.

(ii) Se existe $N_0 \in \mathbb{N}$ tal que

$$\left| \frac{x_{n+1}}{x_n} \right| \ge 1 \qquad \text{para } n > N_0, \tag{11.5}$$

então a série $\sum x_n$ é divergente. Em particular, se existe $\bar{r} := \lim(|x_{n+1}|/|x_n|)$ e $\bar{r} > 1$, então $\sum x_n$ é divergente.

Prova: (i) Se vale (11.4) então podemos provar usando Indução Matemática que $|x_{N_0+1+m}| \leq |x_{N_0+1}|r^m$ para todo $m \in \mathbb{N}$. De fato, a afirmação vale para m=1 e supondo que ela valha para algum $k \in \mathbb{N}$ temos

$$|x_{N_0+1+(k+1)}| \le r|x_{N_0+1+k}| \le r(|x_{N_0+1}|r^k) = |x_{N_0+1}|r^{k+1},$$

o que conclui a prova por indução. Assim, para $n > N_0$ os termos em $\sum |x_n|$ são dominados por uma constante $(|x_{N_0+1}|)$ multiplicando os termos na série

geométrica $\sum r^n$ com 0 < r < 1. Logo, o Teste da Comparação 10.4 implica que $\sum |x_n|$ é convergente.

No caso em que existe $\bar{r} := \lim(|x_{n+1}|/|x_n|)$ e $\bar{r} < 1$, tomando $0 < \varepsilon <$ $1-\bar{r}$, obtemos que existe $N_0 \in \mathbb{N}$ tal que (11.4) vale com $r=\bar{r}+\varepsilon<1$, e então podemos aplicar o resultado já provado.

(ii) Se vale (11.5), de novo um simples argumento por indução prova que $|x_{N_0+1+m}| \geq |x_{N_0+1}|$ para todo $m \in \mathbb{N}$. Logo, x_n não converge a 0 e, portanto, o Teorema 10.1 implica que a série $\sum x_n$ é divergente.

Da mesma forma, se existe $\bar{r} := \lim(|x_{n+1}|/|x_n|)$ e $\bar{r} > 1$, tomando 0 < $\varepsilon < \bar{r} - 1$, temos que existe $N_0 \in \mathbb{N}$ tal que $|x_{n+1}|/|x_n| > \bar{r} - \varepsilon > 1$. Portanto, (11.5) vale e podemos aplicar o resultado que acabou de ser provado.

Observação 11.2

Quando $\lim(|x_{n+1}|/|x_n|) = 1$ nada pode ser afirmado quanto a convergência ou divergência da série $\sum x_n$. Por exemplo, a série $\sum (1/n^2)$ é convergente ao passo que a série $\sum (1/n)$ é divergente, como já vimos, mas ambas satisfazem essa condição (por quê?).

Exemplos 11.2

(a) Sejam $a, b \in \mathbb{R}$ com b > 1 e $q \in \mathbb{N}$. Mostraremos que as séries $\mathbf{s}_1 :=$ $\sum (a^n/n!)$, $\mathbf{s}_2 := \sum (n!/n^n)$ e $\mathbf{s}_3 := \sum (n^q/b^n)$ são convergentes.

Vamos aplicar o Teste da Razão 11.5. No caso de s_1 temos

$$\frac{|x_{n+1}|}{|x_n|} = \frac{|a|^{n+1}}{(n+1)!} \frac{n!}{|a|^n} = \frac{|a|}{n+1} \to 0,$$

o que implica a convergência da série pelo Teorema 11.5. No caso de s_2 temos

$$\frac{|x_{n+1}|}{|x_n|} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{(n+1)n!}{(n+1)(n+1)^n} \frac{n^n}{n!}$$
$$= \left(\frac{n}{n+1}\right)^n = \frac{1}{(1+1/n)^n} \to 1/e < 1,$$

e a convergência da série segue do referido teste. Finalmente, para s_3 temos

$$\frac{|x_{n+1}|}{|x_n|} = \frac{(n+1)^q}{b^{(n+1)}} \frac{b^n}{n^q} = (1 + \frac{1}{n})^q \frac{1}{b} \to \frac{1}{b} < 1,$$

o que, pelo Teste da Razão, implica a convergência da série.

(b) Sejam (x_n) uma sequência em \mathbb{R} e $a, a', b, b' \in \mathbb{R}$, com a' < a e b < b'. Mostraremos que se existe $N_0 \in \mathbb{N}$ tal que

$$\left| \frac{x_{n+1}}{x_n} \right| > a \qquad \text{para } n > N_0, \tag{11.6}$$

então existe $N_1 \in \mathbb{N}$ tal que

$$|x_n|^{1/n} > a'$$
 para $n > N_1$. (11.7)

Analogamente, se existe $N_0 \in \mathbb{N}$ tal que

$$\left| \frac{x_{n+1}}{x_n} \right| < b \qquad \text{para } n > N_0, \tag{11.8}$$

então existe $N_1 \in \mathbb{N}$ tal que

$$|x_n|^{1/n} < b'$$
 para $n > N_1$. (11.9)

Com efeito, suponhamos que existe $N_0 \in \mathbb{N}$ tal que valha (11.6). Dado qualquer $m \in \mathbb{N}$ com $m > N_0 + 1$, multiplicando as desigualdades (11.6) com $n = N_0 + 1, N_0 + 2, \dots, m - 1$ obtemos

$$\frac{|x_m|}{|x_{N_0+1}|} > a^{m-N_0-1}$$
 ou seja $|x_m| < Ka^m$, com $K := a^{-N_0-1}|x_{N_0+1}|$.

Extraindo a m-ésima raiz na última desigualdade obtemos

$$|x_m|^{1/m} < K^{1/m}a.$$

Como $K^{1/m} \to 1$ e a' > a, existe $N_1 \in \mathbb{N}$ tal que se $m > N_1$ então $K^{1/m}a < a'$, o que implica (11.7) e prova a primeira afirmação.

A prova da segunda afirmação, relativa às desigualdades (11.8) e (11.9), é inteiramente análoga e deixaremos para você como exercício.

(c) Suponha que existe $\bar{r} := \lim(|x_{n+1}|/|x_n|)$. Então $\lim |x_n|^{1/n} = \bar{r}$.

De fato, dado qualquer $\varepsilon > 0$, tomando no exemplo anterior a, a', b, b' satisfazendo $a' := \bar{r} - \varepsilon < a < \bar{r} \ e \ \bar{r} < b < b' := \bar{r} + \varepsilon$, concluímos que existe $N_1 \in \mathbb{N}$ tal que se $m > N_1$ então

$$\bar{r} - \varepsilon < |x_m|^{1/m} < \bar{r} + \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, concluímos que $\lim |x_n|^{1/n} = \bar{r}$.

(d) Os fatos provados nos itens anteriores (b) e (c) mostram que se o Teste da Razão é capaz de indicar a convergência de uma série, então o Teste da Raiz também será capaz de fazê-lo, embora o Teste da Razão é frequentemente mais fácil de ser aplicado.

Contudo, existem casos em que o Teste da Raiz pode afirmar a convergência de uma série para os quais o Teste da Razão não é aplicável. Um exemplo disso é fornecido pela série

$$\mathbf{s}' := \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$$

que é um rearranjo da série geométrica $\mathbf{s} := \sum 1/2^{(n-1)},$ onde a bijeção $\varphi: \mathbb{N} \to \mathbb{N}$ é definida por $\varphi(2k) = 2k - 1$, $\varphi(2k - 1) = 2k$ para todo $k \in \mathbb{N}$. Como s é absolutamente convergente, sabemos do Teorema dos Rearranjos 11.2 que \mathbf{s}' converge para uma soma igual à de \mathbf{s} . A convergência de s' é confirmada pelo Teste da Raíz já que

$$\lim |x_{2k-1}|^{1/(2k-1)} = \lim 2^{-\frac{2k-2}{2k-1}} = \frac{1}{2} \lim 2^{1/(2k-1)} \to \frac{1}{2}$$
$$\lim |x_{2k}|^{1/(2k)} = \lim 2^{-\frac{2k-1}{2k}} = \frac{1}{2} \lim 2^{1/(2k)} \to \frac{1}{2},$$

e, portanto, $\lim |x_n|^{1/n} = 1/2 < 1$. Por outro lado, o Teste da Razão não é aplicável já que $|x_{2k}|/|x_{2k-1}| = 2 > 1$ e $|x_{2k+1}|/|x_{2k}| = 1/8 < 1$ para todo $k \in \mathbb{N}$.

Séries Alternadas

Grande parte das séries condicionalmente convergentes é formada por "séries alternadas" cuja definição damos a seguir.

Definição 11.3

Diz-se que a sequência de números reais $\mathbf{x} = (x_n)$ é alternada se $x_n x_{n+1} < 0$ para todo $n \in \mathbb{N}$. Assim, $x_1 < 0 \Rightarrow x_2 > 0 \Rightarrow x_3 < 0 \Rightarrow \cdots$ e $x_1 > 0 \Rightarrow$ $x_2<0 \Rightarrow x_3>0 \Rightarrow \cdot \cdot \cdot$. Se a sequência (x_n) é alternada, dizemos que a série $\sum x_n$ é uma série alternada.

Tipicamente, uma série alternada é escrita na forma $\sum (-1)^{n+1}a_n$ (ou $\sum (-1)^n a_n$) onde (a_n) é uma sequência de números positivos.

O principal resultado sobre séries alternadas é o seguinte teste que nos fornece, em particular, um modo muito simples de construir e de identificar séries condicionalmente convergentes. Esse teorema é também conhecido como Teste de Leibniz em referência ao grande filósofo e matemático Got-TFRIED VON LEIBNIZ (1646-1716) a quem sua descoberta é atribuída.

Teorema 11.6 (Teste das Séries Alternadas)

Seja (a_n) uma sequência decrescente de números estritamente positivos com $\lim a_n = 0$. Então a série $\sum (-1)^{n+1} a_n$ é convergente.

Prova: Seja (s_n) a sequência de somas parciais da série $\sum (-1)^{n+1}a_n$. Como

$$s_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}),$$

e $a_k - a_{k+1} \ge 0$, segue que a subsequência (s_{2n}) de (s_n) é crescente. Como

$$s_{2n} = a_1 - (a_2 - a_3) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n},$$

segue também que $s_{2n} \leq a_1$ para todo $n \in \mathbb{N}$. Portanto, o Teorema da Sequência Monótona 8.1 implica que a subsequência (s_{2n}) converge para algum $s \in \mathbb{R}$. Agora, temos $s_{2n-1} = s_{2n} + a_{2n}$ e, portanto,

$$|s_{2n-1} - s| \le |s_{2n-1} - s_{2n}| + |s - s_{2n}| = a_{2n} + |s - s_{2n}|$$
 para todo $n \in \mathbb{N}$.

Daí decorre facilmente, usando o fato de que $a_{2n} \to 0$ e $|s - s_{2n}| \to 0$, que a subsequência (s_{2n-1}) também converge a s. Concluímos então que toda a sequência (s_n) converge a s (por quê?). Logo, $\sum (-1)^{n+1} a_n$ é convergente. \square

Exemplos 11.3

Como exemplo de aplicação imediata do Teste das Séries Alternadas 11.6 temos a atestação da convergência das séries

$$\sum \frac{(-1)^{n+1}}{\sqrt{n}}$$
 e $\sum (-1)^{n+1} \log(1 + \frac{1}{n}),$

já que as sequências de números positivos $(1/\sqrt{n})$ e $(\log(1+1/n))$ são ambas decrescentes e convergem a 0.

Ambas são condicionalmente convergentes. De fato, a primeira porque $\sum (1/\sqrt{n})$ é a 1/2-série que sabemos ser divergente pelo Exemplo 10.3 (d).

A segunda porque

$$\sum_{k=1}^{n} \log(1 + \frac{1}{k}) = \sum_{k=1}^{n} \log\left(\frac{k+1}{k}\right) = \sum_{k=1}^{n} (\log(k+1) - \log k) = \log(n+1).$$

Como $\log(n+1) \to +\infty$, segue que a série $\sum \log(1+1/n)$ diverge.

Exercícios 11.1

- 1. Diz-se que uma série é limitada se a sequência de suas somas parciais é limitada. Mostre que se uma série limitada contém apenas um número finito de termos negativos, então ela é absolutamente convergente.
- 2. Mostre que se uma série $\sum x'_n$ é um rearranjo de uma série absolutamente convergente $\sum x_n$, então $\sum x'_n$ é absolutamente convergente.

- 3. Mostre que se (y_n) é uma sequência limitada e $\sum x_n$ é uma série absolutamente convergente, então a série $\sum x_n y_n$ é absolutamente convergente. (Dica: Use o Critério de Cauchy.)
- 4. Encontre uma expressão explícita para a n-ésima soma parcial de

$$\sum_{n=2}^{\infty} \log(1 - 1/n^2)$$

para mostrar que esta série converge a $-\log 2$. Diga se a convergência é absoluta ou condicional.

- 5. Sejam (x_{n_k}) e (x_{m_k}) duas subsequências de uma sequência (x_n) e suponhamos que os subconjuntos infinitos de N constituídos pelos valores de (n_k) e (m_k) , $\mathbb{N}' = \{n_k : k \in \mathbb{N}\}$ e $\mathbb{N}'' = \{m_k : k \in \mathbb{N}\}$, satisfaçam $\mathbb{N}' \cup \mathbb{N}'' = \mathbb{N}$ e $\mathbb{N}' \cap \mathbb{N}'' = \emptyset$. Mostre que a série $\sum x_n$ é absolutamente convergente se, e somente se, as séries $\sum_{k=1}^{\infty} x_{n_k}$ e $\sum_{k=1}^{\infty} x_{m_k}$ são absolutamente convergentes.
- 6. Estabeleça a convergência ou a divergência das séries cujo n-ésimo termo é:
 - (a) 1/(n+1)(n+2).
 - (b) n/(n+1)(n+2).
 - (c) $2^{1/n}$.
 - (d) $n/2^n$.
- 7. Discuta a convergência ou a divergência das séries cujo n-ésimo termo (para n suficientemente grande) é dado por:
 - (a) $(\log n)^{-p}$.
 - (b) $(\log n)^{-n}$.
 - (c) $(n \log n)^{-1}$.
 - (d) $(n(\log n)(\log \log n)^2)^{-1}$.
- 8. Mostre que se a e b são números positivos, então a série $\sum (an+b)^{-p}$ converge se p > 1 e diverge se $p \le 1$.
- 9. Considere a série $\sum x_n$ cuja sequência (x_n) é definida por $x_{2k-1} :=$ $(1/2)^k$ e $x_{2k} := (1/3)^k$ para todo $k \in \mathbb{N}$. Mostre que o Teste da Raíz atesta a convergência da série, ao passo que o Teste da Razão não é aplicável.

- 10. Use o Teste da Raíz ou o Teste da Razão para determinar os valores de x para os quais as seguintes séries convergem:
 - (a) $\sum n^3 x^n$.
 - (b) $\sum \frac{2^n}{n!} x^n$.
 - (c) $\sum \frac{2^n}{n^2} x^n$.
 - (d) $\sum \frac{n^3}{3n} x^n$.
- 11. Discuta a convergência e a convergência absoluta das seguintes séries:
 - (a) $\sum \frac{(-1)^{n+1}}{n^2+1}$.
 - (b) $\sum \frac{(-1)^{n+1}}{n+1}$.
 - (c) $\sum \frac{(-1)^{n+1}n}{n+2}$.
 - (d) $\sum (-1)^{n+1} \frac{\log n}{n}$.

Prossiga: Rearranjos de Séries Condicionalmente Convergentes

Nesta seção complementar vamos provar o seguinte lema devido a Riemann e mencionado no Exemplo 11.1 (e).

Lema 11.1

Se $\sum x_n$ é condicionalmente convergente então, dado qualquer $c \in \mathbb{R}$, existe um rearranjo $\sum x'_n$ de $\sum x_n$ que converge para c.

Prova: Vamos supor, para simplificar, que $x_n \neq 0$ para todo $n \in \mathbb{N}$. Sejam p_n e q_n definidos como no Exemplo 11.1 (a). Vimos que as séries $\sum p_n$ e $\sum q_n$ são divergentes, crescendo ambas para $+\infty$. Sejam

$$\mathbb{N}' := \{ n \in \mathbb{N} : p_n \neq 0 \} \qquad \text{e} \qquad \mathbb{N}'' := \{ n \in \mathbb{N} : q_n \neq 0 \}.$$

Como estamos supondo $x_n \neq 0$ para todo $n \in \mathbb{N}$, segue que $\mathbb{N}' \cup \mathbb{N}'' = \mathbb{N}$ e $\mathbb{N}' \cap \mathbb{N}'' = \emptyset$. Além disso, como as séries $\sum p_n$ e $\sum q_n$ crescem para $+\infty$, os conjuntos \mathbb{N}' e \mathbb{N}'' são infinitos. Denotemos por $n_1 < n_2 < n_3 < \cdots$ os elementos de \mathbb{N}' e por $m_1 < m_2 < m_3 < \cdots$ os elementos de \mathbb{N}'' . Para não carregar demais a notação, ponhamos $\tilde{p}_k = p_{n_k}$ e $\tilde{q}_k = q_{m_k}$.

Começamos somando $\tilde{p}_1 + \tilde{p}_2 + \cdots$ até encontrarmos o índice $j_1 \in \mathbb{N}$ tal que o valor da soma $\tilde{p}_1 + \tilde{p}_2 + \cdots + \tilde{p}_{j_1}$ se torna pela primeira vez > c. Note que $j_1 = 1$ se $\tilde{p}_1 > c$. O índice j_1 existe já que $\sum \tilde{p}_i \to +\infty$. Fazemos, $\varphi(1) := n_1, \dots, \varphi(j_1) := n_{j_1}$. Ponhamos $s'(j_1) := \tilde{p}_1 + \tilde{p}_2 + \dots + \tilde{p}_{j_1}$.

Em seguida, começamos a subtrair $s'(n_{j_1}) - \tilde{q}_1 - \tilde{q}_2 - \cdots$ até encontrarmos o primeiro índice k_1 tal que $s'(j_1) - \tilde{q}_1 - \tilde{q}_2 - \cdots - \tilde{q}_{k_1} < c$. De novo, o índice k_1 existe já que $\sum \tilde{q}_k \to +\infty$. Fazemos, $\varphi(j_1+1) := m_1, \ldots,$ $\varphi(j_1 + k_1) := m_{k_1} \text{ e pomos } s'(j_1 + k_1) := s'(j_1) - \tilde{q}_1 - \tilde{q}_2 - \dots - \tilde{q}_{k_1}.$

Retornamos ao procedimento de adição dos \tilde{p}_i fazendo $s'(j_1 + k_1) +$ $\tilde{p}_{j_1+1} + \tilde{p}_{j_1+2} + \cdots$ até encontrarmos o primeiro índice $j_2 > j_1$ tal que $s'(j_1 + j_2)$ k_1)+ \tilde{p}_{j_1+1} + \tilde{p}_{j_1+2} +···+ \tilde{p}_{j_2} > c. Fazemos $\varphi(j_1+k_1+1)=n_{j_1+1}, \, \varphi(j_1+k_1+2)=n_{j_1+1}$ $n_{j_1+2}, \dots, \varphi(j_1+k_1+j_2)=n_{j_2}$. Então, pomos

$$s'(j_1 + k_1 + j_2) := s'(j_1 + k_1) + \tilde{p}_{j_1+1} + \tilde{p}_{j_1+2} + \dots + \tilde{p}_{j_2}.$$

Retomamos então o procedimento de subtração dos \tilde{q}_k fazendo $s'(j_1 +$ $(k_1+j_2)-\tilde{q}_{k_1+1}-\tilde{q}_{k_1+2}-\cdots$ até encontrarmos o primeiro índice k_2 tal que $s'(j_1 + k_1 + j_2) - \tilde{q}_{k_1+1} - \tilde{q}_{k_1+2} - \dots - \tilde{q}_{k_2} < c$. Fazemos então

$$\varphi(j_1 + k_1 + j_2 + 1) := m_{k_1 + 1}, \quad \varphi(j_1 + k_1 + j_2 + 2) := m_{k_1 + 2}, \cdots$$
$$\cdots, \varphi(j_1 + k_1 + j_2 + k_2) := m_{k_2}.$$

Continuando esse procedimento indefinidamente definimos uma bijeção φ : $\mathbb{N} \to \mathbb{N}$ e um rearranjo $\sum x'_n$ de $\sum x_n$, com $x'_n := x_{\varphi(n)}$.

Como $|x_n| \to 0$ quando $n \to +\infty$, segue que $\tilde{p}_j \to 0$ quando $j \to +\infty$ e $\tilde{q}_k \to 0$ quando $k \to +\infty$. Assim, temos que $|x'_n| \to 0$ quando $n \to +\infty$. Façamos

$$s'(l) := \sum_{n=1}^{l} x'_n,$$

e sejam $l_0 := 0 < l_1 < l_2 < l_3 < \cdots$, com $l_j \in \mathbb{N}$ para todo $j \in \mathbb{N}$, definidos da seguinte forma. O número l_1 é o primeiro índice l tal que s'(l) > c; l_2 é o primeiro índice $l > l_1$ tal que s'(l) < c; de modo indutivo, l_{2k-1} é o primeiro índice $l > l_{2k-2}$ tal que s'(l) > c, e l_{2k} é o primeiro índice $l > l_{2k-1}$ tal que s'(l) < c para todo $k \in \mathbb{N}$.

Temos

$$|s'(l+1) - c| < |s'(l) - c|$$
 para $l_j \le l < l_{j+1}$ (11.10)

ao passo que

$$|s'(l_j) - c| < |x'_{l_j}| \qquad \text{para todo } j \in \mathbb{N}, \text{ com } j > 1, \tag{11.11}$$

já que

$$s'(l_{2k}) < c \le s'(l_{2k}-1)$$
 e $s'(l_{2k+1}-1) \le c < s'(l_{2k+1})$ para todo $k \in \mathbb{N}$.

Como $l_j \to +\infty$ quando $j \to +\infty$ e $|x_n'| \to 0$ quando $n \to +\infty$, deduzimos de (11.10) e (11.11) que $|s'(l) - c| \to 0$ quando $l \to +\infty$ e, portanto, $\sum x_n'$ converge para c.