Synchronous Sequential Circuits I

Counters

Counters

- Counters are a special type of sequential circuits.
- The internal states (i.e., the flip-flop outputs) themselves serve as the "output".
- In a count-up counter, the output value increases by one at each clock cycle. After the largest value, the output "wraps" back to 0.
- For instance, a 2-bit binary counter is something like this:

Present	State	Next State		
Α	В	Α	В	
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	0	0	

Counters

- Counters are available in two categories:
 synchronous counters and ripple counters.
- In a synchronous counter, the clock inputs of all flip-flops receive the common clock.
- In a ripple counter, a flip-flop output transition serves as a source for triggering other flop-flops.
 In other words, the clock input of some or all flipflops are triggered, not by the common clock pulse, but rather by the transition that occurs in other flip-flop outputs.

- In a synchronous counter, the clock inputs of all flip-flops receive the common clock.
- We can design a synchronous counter following the sequential logic design procedures introduced in Lecture 8.
- e.g. consider a modulo-5 counter. The five output states of the counter are given by the table on the right.
- Our design will consist of three JK flipflops (the outputs of which will be labelled A, B and C) and the connecting logic.

	Α	В	С
t_0	0	0	0
t ₁	0	0	1
t_2	0	1	0
t_3	0	1	1
t ₄	1	0	0

- Since we know the next states of the counter from the time sequence transition, no need to list the next states separately.
- E.g., the transition of the B output from t₂ to t₃ is highlighted.
- To make this transition the corresponding J_B and K_B inputs can be known from the JK excitation table.

	А	В	С	J _A	K _A	J _B	K _B	J_{C}	K _C
t _o	0	0	0	0	X	0	X	1	X
t ₁	0	0	1	0	X	1	X	X	1
t ₂	0	1	0	0	X	X	0	1	X
t ₃	0	1	1	1	X	X	1	X	1
t ₄	1	0	0	X	1	0	X X 0 1 X	0	X

Q _t	Q _{t+1}	J	K
0	0	0	Х
0	1	1	X
1	0	Χ	1
1	1	Χ	0

- Six Karnaugh maps corresponding to the inputs {J_A,K_A, J_B,K_B,J_C,K_C}
 - $\{J_A, N_A, J_B, N_B, J_C, N_C\}$ are created.
- For the J_A input the map is given as.

	BC				
A		00	01	11	10
	0	0	0	1	0
	1	X	Х	X	Х

	Α						K_B		
t _o	0	0	0	0	X	0	X	1	X
t ₁	0	0	1	0	X	1	X	X	X 1 X 1
t ₂	0	1	0	0	X	X	0	1	X
t ₃	0	1	1	1	X	X	1	X	1
t ₄	1	0	0	X	1	0	Χ	0	X

$$J_C = \overline{A}$$

$$K_C = 1$$

$$J_{B} = C$$

$$K_B = C$$

$$J_A = BC$$

$$K_A = 1$$

- The logic diagram of the counter shown in the right
 - lamps are connected to the flip-flop outputs and
 - a synchronising clock is connected.

Counter with Unused States

- A circuit with *n* flip-flops has 2ⁿ binary states, but often not all of these states are used.
- In simplifying the input equations, the unused states may be treated as don't care conditions, which may cause the circuit to enter one of unused states.
- In that case, it is necessary to check if the circuit can eventually return to one of the valid states.
- If the circuit cannot return to the valid states, the unused state must be re-assigned to a specific state and redesign the circuit to force the return.

Counter with Unused States

- For example, the modulo-5 counter only uses five states.
- 101,110,111 are not used. These states must be checked.

$J_{\scriptscriptstyle A}$	=	BC
$\sim A$		

$$K_A = 1$$

$$J_B = C$$

$$K_R = C$$

$$J_C = \overline{A}$$

$$K_C = 1$$

1	Present State			Flip-Flop Input					Ne	xt St	ate
Α	В	С	J _A	K _A	J_{B}	K _B	J _C	K _C	Α	В	С
1	0	1	0	1	1	1	0	1	0	1	0
1	1	0	0	1	0	0	0	1	0	1	0
1	1	1	1	1	1	1	0	1	0	0	0

- •A ripple counter consists of a series connection of flip-flops.
- •Logic 1 is inputted into each T-type flip-flop, so the output is toggled upon each clock edge.
- •The first flip-flop is clocked by a count sequence.
- •The output of each flip-flop is fed into the clock of the next flip-flop.

- The counter output is initially set to $A_3A_2A_1A_0=0000$
- Upon the first negative clock edge the output of the first flip-flop is toggled, i.e. A₃A₂A₁A₀=0001
- Upon the second negative edge the output of the first flip-flop is toggled again.
- As this output transitions from high to low the second flip-flop toggles, i.e. A₃A₂A₁A₀=0010

In three steps the output of the counter A₃A₂A₁A₀ transitions from 0000 → 0001 → 0010

- In effect this circuit counts in binary.
- The counter is known as a ripple counter because of the way the clock signal ripples through the flip-flops.

As the count progresses the sequence
0, 1, 2, 3, 4, 5, 6, 7, 8, ..., 13, 14, 15
is counted before the counter resets.

	A_3	A_2	A_1	A_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0 0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
Ε	1	1	1	0
F	1	1	1	1
0	0	0	0	0

Ripple Counters are also known as divide by 2,4,8 counter, i.e. the original clock signal of frequency f₀ is used to produce clock signals of frequencies f₀/2, f₀/4 and f₀/8.

Exercise

- How would the design change for a count-down counter?
- What connections would you use to implement a ripple counter with:
 - D flip-flops?
 - JK flip-flops?

BCD Ripple Counter

- BCD: Binary Coded Decimal
- A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9.
- It is similar to a binary counter, except that the state after 1001 is 0000.

BCD Ripple Counter

- Q1 changes state after each clock pulse.
- Q2 complements every time Q1 goes from 1 to 0, as long as Q8=0. When Q8 becomes 1, Q2 remains at 0.
- Q4 complements every time Q2 goes from 1 to 0.
- Q8 remains at 0 as long as Q2 or Q4 is 0. When both Q2 and Q4 become 1, Q8 complements when Q1 goes from 1 to 0. Q8 is cleared on the next transition of Q1.

BCD Ripple Counter

- Four JK flip-flops can be used to represent 10 decimal digits.
- Remember that when the C (clock) input goes from 1 to 0, the flip-flops is set if J=1, is cleared if K=1, is complemented if J=K=1, and is left unchanged if J=K=0.
- The output of Q1 is applied to the C(clock) inputs of both Q2 and Q8 and output of Q2 is applied to the C(clock) input of Q4.
- The J and K inputs are connected either to a permanent 1 signal or to outputs of other flip-flops.

Multi-Decade Ripple Counter

- The 4-JK flip-flops BCD counter only can count from 0 to 9, which is called a **decade** counter.
- Multiple-decade counters can be constructed by connecting BCD counts in cascade, one for each decade.

