EE 546 HW3

1. Randomized mattix multiplication:

Solve: (i) (ompute the spectral norms of the matrix B and C and scale them so that their spectral norms are equal to one (The maximum singular value of a matrix)

11811 = 11011 = 1

The stable rank: Strank (B) = $\frac{||B||_F^2}{||B||^2}$ (The Frobenius Norm of a matrix is defined as the square root of the sum of the squares $\frac{||C||_F^2}{||C||}$ of the elements of the matrix)

Let asr = = (srank(B) + srank(c))

$$\frac{E\{||\hat{A}-A||\}}{||B||\cdot||C||} = \frac{\frac{after scalling}{B \text{ and } C}}{E\{||\hat{A}-A||\}} = \sqrt{\frac{4 \cdot asr \cdot log(mtn)}{r} + \frac{2 \cdot asr \cdot log(mtn)}{3r}}$$

(ii) $P_i = \frac{\|bi\|^2 + \|C_i^T\|^2}{\|B\|_F^2 + \|C_i^T\|^2}$ for $i = 1, 2, 3, \dots, N$, where bi are the columns of B and C_i^T are the columns of C_i^T ,

 $\frac{4inte}{||B|| + |C||} \le \frac{E[||A| - ||||]}{||B|| + ||C||} \le \frac{2}{2}$ $\frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{3} = \frac{2}{3}$

(iv) The computational cost is $D\left(4(-3+\sqrt{9+62})^{-2}\right)$. asr. mn. log (m+n)

Problem2: Randomized SVD

First, draw $X \in R^{m \times m}$ and $Y \in R^{n \times m}$ with $m \ge n$ uniformly at random from the space of orthonormal matrices with m = 1000 and n = 100000. I use Python to implement this step as shown below:

```
m, n = 1000, 100000
# np.random.seed(seed=546)
X = special_ortho_group.rvs(m)
print("X.shape", X.shape)
Y = np.random.random(size=(n, m)) # Generate a random matrix (n, m)
Y, _ = np.linalg.qr(Y) # Perform a QR decomposition.
print("Y shape" Y shape.
```

Then, set the diagonal matrix $D \in \mathbb{R}^{m \times m}$ with diagonal entries

$$D_{ii} = \begin{cases} r-i+1, & i \leq r \\ 4\times 10^{-3} & i > r \end{cases}$$

with r = 10. The Python code is:

```
def get_D(m, r):
    """
    Get the required diagonal matrix D.
    Inputs:
        the size
        the value of r
    Outputs:
        The diagonal matrix
    """
    D = np.zeros((m, m), dtype="float")
    for i in range(m):
        if i + 1 <= r:
            D[i, i] = r - (i + 1) + 1
        else:
            D[i, i] = 4e-3
    return D</pre>
```

Next, use the randomized SVD of Drineas et al. to calculate the r = 10 top eigenvectors of A. The algorithm is

```
Input: Data matrix A \in \mathbb{R}^{m \times n}
```

Output: Approximate for left eigenspace $H \in \mathbb{R}^{m \times r}$

For
$$t \in \{1, 2, ..., c\}$$

Pick one column among $\{1, 2, ..., n\}$ at random with the probability distribution $\{P_1, P_2, ..., P_n\}$,

where
$$P_i = \frac{\|A_i^2\|}{\|A\|_F^2}$$
.

The column of B:
$$B_t = \frac{A_i}{\sqrt{c \times P_i}}$$
.

End for

Compute top r left singular vectors of B: $h_1, h_2, ..., h_r$

Return
$$H = [h_1, h_2, ..., h_r]$$

The Python code is:

```
def generalized_power(A, row_value, r):
```

```
Q, _ = np.linalg.qr(Q) # Perform a QR decomposition.
       Q, = np.linalg.qr(U)
def simple power(A r, B r, row value):
   x = np.ones((row value, 1), dtype='float')
       x = dot(A_r, dot(A_r, dot(A_r, dot(A_r, x)))) \setminus
           - dot(A r, dot(A r.T, dot(B r, dot(B r.T, x)))) \
           + dot(B_r, dot(B_r.T, dot(B_r, dot(B_r.T, x))))
   x = x / np.max(x)
```

numer value = dot(x.T, dot(A r, dot(A r.T, dot(A r.T, x)))))

max_eig_value = fabs(numer_value) / dot(x.T, x)
spec norm = sqrt(np.squeeze(max eig value))

return spec norm

class hw3_randomizedSVD(object):

- dot(x.T, dot(A_r, dot(A_r.T, dot(B_r, dot(B_r.T, x))))) \
- dot(x.T, dot(B_r, dot(B_r.T, x)))) \
+ dot(x.T, dot(B_r, dot(B_r.T, x)))) \
+ dot(x.T, dot(B_r, dot(B_r, dot(B_r, dot(B_r.T, x)))))

```
def check c(self, r, prob):
       D = get D(m=self.m, r=r)
       A_{i2_1}, A_{i2_2} = sum(square(A), axis=0), sum(square(A.T), axis=0)
       A F2 1, A F2 2 = sum(square(A)), sum(square(A.T))
       col_pdf1 = A_i2_1 / A_F2_1
       col pdf2 = A i2 2 / A F2 2
            select_cols1 = np.random.choice(a=self.n, size=c, p=col_pdf1) # For
            select cols2 = np.random.choice(a=self.m, size=c, p=col pdf2) # For
            B1, B2 = 0, 0
                col index1 = select cols1[t]
                B t1 = expand dims(A[:, col index1], axis=1) / sqrt(c *
col pdf1[col index1])
                col index2 = select cols2[t]
                B t2 = expand dims(A.T[:, col index2], axis=1) / sqrt(c *
col_pdf2[col_index2])
                   B1 = B t1
                   B2 = B t2
                    B1 = np.hstack((B1, B t1))
                    B2 = np.hstack((B2, B t2))
            B U r = generalized power(A=B1, row value=self.m, r=r)
            B_V_r = generalized_power(A=B2, row_value=self.n, r=r)
           A U r = generalized power(A=A, row value=self.m, r=r)
           A_V_r = generalized_power(A=A.T, row_value=self.n, r=r)
           V spec norm = simple power(A r=A V r, B r=B V r, row value=self.n)
```

if U spec norm <= 0.1 and V spec norm <= 0.1:

if prob == "prob i":

```
if verbose1:
                        print("When epsilon is 0.1, the c is %d, " % (c))
                        verbose1 = False
                if U spec norm \leftarrow 0.05 and V spec norm \leftarrow 0.05:
                    if verbose2:
                        verbose2 = False
                    print("When epsilon is 0.01, the c is %d" % (c))
           elif prob == "prob ii":
                if U spec norm <= 0.05 and V spec norm <= 0.05:
                   print("When r is %d, the c is %d" % (r, c))
   def check_time(self, c, r, epsilon):
       D = get_D(m=self.m, r=r)
       t0 = time.time()
       A i2 1, A i2 2 = sum(square(A), axis=0), sum(square(A.T), axis=0)
       A F2 1, A F2 2 = sum(square(A)), sum(square(A.T))
       col pdf1 = A i2 1 / A F2 1
       col pdf2 = A i2 2 / A F2 2
       select_cols1 = np.random.choice(a=self.n, size=c, p=col pdf1) # For U
       select_cols2 = np.random.choice(a=self.m, size=c, p=col_pdf2) # For V
       B1. B2 = 0.0
           col index1 = select cols1[t]
           B_t1 = expand_dims(A[:, col_index1], axis=1) / sqrt(c *
col_pdf1[col_index1])
           col index2 = select cols2[t]
           B t2 = expand dims(A.T[:, col index2], axis=1) / sqrt(c *
col pdf2[col index2])
```

 $B1 = B_t1$ B2 = B t2

(i) In this part, I am about to report the value of c (number of drawn columns / rows) based on the average of 10 random draws from the columns of A as shown in the Table 1, which means drawing c columns from the matrix A 10 independent times when the epsilon is 0.01, 0.05, and 0.1 respectively.

$$\frac{\left\|\widehat{U}_{r}\widehat{U}_{r}^{T} - U_{r}U_{r}^{T}\right\|}{\left\|U_{r}U_{r}^{T}\right\|} \leq \epsilon \ and \ \frac{\left\|\widehat{V}_{r}\widehat{V}_{r}^{T} - V_{r}V_{r}^{T}\right\|}{\left\|V_{r}V_{r}^{T}\right\|} \leq \epsilon$$

Table 1: the value of c among 10 independent trials when r=10

Trial	1	2	3	4	5	6	7	8	9	10	Mean
Epsilon=0.1	13	13	12	12	13	12	13	15	12	13	13
Epsilon=0.05	19	18	18	19	21	15	18	16	19	16	18
Epsilon=0.01	192	189	191	201	201	185	203	187	205	190	195

Table 2: the running time (seconds) with a specific c (mean value) when r=10

Trial	1	2	3	4	5	6	7	8	9	10	Mean
Epsilon=0.1	4.57	4.39	4.44	4.34	4.41	4.48	4.56	4.71	4.57	4.74	4.52
Epsilon=0.05	4.45	4.56	4.52	4.51	4.43	4.47	4.54	4.52	4.55	4.65	4.52
Epsilon=0.01	10.98	11.05	10.93	10.97	10.98	11.02	10.88	11.05	11.15	11.21	11.02

Therefore, the value of c among 10 independent trials when r=10 is shown in the Table 1. Then 1 set the c as 13, 18, and 195 respectively to get the running time as shown in the Table 2. I will use the randomized SVD algorithm since it can avoid the memory error when matrices are too large and the final error is acceptable. Also, using the built-in function "sp.linalg.svd(a=A, full_matrices=False, lapack_driver='gesvd')" will takes about 10 seconds, which is a bit longer when we only want epsilon to be around 0.05. Finally, when I calculate the spectral norm of $\hat{U}_T \hat{U}_T^T - U_T U_T^T$, which is its largest singular value, I should use the power method to calculate the dominant eigenvalue of $(\hat{U}_T \hat{U}_T^T - U_T U_T^T)^2$.

(ii) In this part, I am about to repeat the experiment of the previous part with r=2,5,15, and 20. In these experiments. I will use epsilon = 0.05 and calculate the minimal number of required columns c to get to a relative error over the 10 independent trials as shown in the Table 3. The value of c as a function of r is shown in the Fig. 1, which has a positive correlation relationship consistent with the theorem in class since c is $O(r/r_{\sim}2)$.

Table 3: the value of c among 10 independent trials when epsilon=0.05

Trial	1	2	3	4	5	6	7	8	9	10	Mean
r=2	9	9	9	8	10	10	8	8	15	8	10

r=5	12	12	14	16	13	11	14	11	16	14	14
r=15	22	20	23	22	22	22	22	22	24	25	23
r=20	26	28	30	29	26	26	28	24	26	28	28

Table 4: the running time (seconds) with a specific c among 10 independent trials when epsilon=0.05

Trial	1	2	3	4	5	6	7	8	9	10	Mean
r=2	3.44	3.44	3.45	3.51	3.54	3.51	3.47	3.55	3.49	3.45	3.48
r=5	3.87	3.73	3.72	3.83	3.82	3.82	3.78	3.89	3.85	3.81	3.81
r=15	5.34	5.33	5.39	5.35	5.51	5.64	5.71	5.55	5.56	5.39	5.47
r=20	6.01	6.08	5.98	6.03	6.13	5.99	6.55	6.16	6.19	6.04	6.11

Figure 1: The value of c as a function of r