

Problem Given a number N, find the sum of all numbers less than or equal to N that are co-prime with N.

In case you forgot, a number x is co-prime with N if $\gcd(x,N)=1$.

For example, if N=10, then the following numbers are co-prime with it: [1,3,7,9]. Therefore, sum of co-prime

numbers will be 1 + 3 + 7 + 9 = 20. **Solution**

we can calculate the value of f(n) with the following formula: $f(n) = \frac{\phi(n)}{2}n$

Let us define a function f(n), which gives us sum of all numbers less than or equal to n that are co-prime to n. Then

For example, for n=10, then we get the sum of co-prime as:

where $\phi(n)$ is <u>Euler Phi Function</u>.

 $f(10)=rac{\phi(10)}{2} imes 10$

$$=\frac{4}{2}\times 10$$
$$=20$$

Prerequisite

Proof

In order to understand this section, you have to be familiar with the following topic: **Euler Totient or Phi Function**

The proof is very simple. We divide the proof in two sections: when n=2 and when n>2.

When n=2

When n=2, we can see that the formula works by directly inserting the values:

$$f(2)=\frac{\phi(2)}{2}\times 2$$

$$=1\times 1$$

$$=1$$
 Hence $f(2)=1$, which is correct since the only integer less than 2 co-prime with 2 is 1 . So the formula works for

When n > 2

1. When n>2, $\phi(n)$ is always even

even number.

when n=2.

 $\phi(n) = n imes rac{p_1-1}{p_1} imes rac{p_2-1}{p_2} \ldots imes rac{p_k-1}{p_k}$.

This is easy to establish. We just need to look at the formula for $\phi(n)$. We know that

Now, every p_i divides n as they are factor of n. So we can re-write the formula as:

In order to prove the formula for the rest of the integers, we need to establish the following two facts:

 $\phi(n) = rac{n}{p_1 imes p_2 \cdots imes p_k} imes (p_1-1) imes (p_2-1) imes \cdots imes (p_k-1)$ Since n>2, if n is not a power of 2 then there must be an odd prime factor, p_j , in n and p_j-1 is even. Hence,

 $\phi(n)$ is a multiple of p_j-1 or an even number when n is not a power of 2. When n is a power of 2, $phi(n)=rac{n}{2} imes(2-1)=rac{n}{2}$. Since n>2 and a power of 2, we will always get an

Hence $\phi(n)$ is even for all values of n>2. 2. If gcd(x,n)=1, then gcd(n-x,n)=1

This is a property of gcd function. This can be proved using contradiction.

Suppose $\gcd(x,n)=1$, but $\gcd(n-x,n)=d$, where d>1. Then d divides n-x and n. If d divides nand n-x, then it must also divide x. But that's impossible since if d can divide both n and x, then

gcd(x,n)=d. But we started with the fact that gcd(x,n)=1. Contradiction! Hence, $gcd(n-x,n) \neq d$. Instead, it must be gcd(n-x,n)=1.

With the two facts above established, we can now continue with our proof.

• Let $S=r_1,r_2,r_3,\ldots,r_{\phi(n)}$, where r_i is a number which is co-prime to n . • Since r_i is co-prime to n and belongs to S, $n-r_i$ is also co-prime to n and belongs to S.

• Since $\phi(n)$ is even, we can form $\phi(n)/2$ such pairs. • Each pair gives us a sum of n.

• Hence, we can form a pair: $r_i, n-r_i$ such that sum of the pair $r_i, n-r_i$ equals to n.

- So, if we take sum of all pairs, we get $r_1+r_2+r_3+\cdots+r_{\phi(n)}=rac{\phi(n)}{2}n$. Proved $oldsymbol{arphi}$
- The proof is very cute. Hopefully, you found it easy to understand. Unfortunately, I did not find any related problems. If you happen to know any related problems, please let me know in the comments.

1. DevSkill 550 – Interesting Lab Task Post Views: 1,327

Related Problems

Conclusion

Previous: My Interview Experience with Shopee / Garena / Sea

Group

Category: CPPS, Number Theory Tag: proof, theorem

MyStory#00 - Preface

Next:

B $I \cup I = I = I \cup I$ Login with

Comments: 7

Your comment..

Add Anycomment to your site

Sort by <u>newest</u>

Archives

May 2019 (1) April 2019 (1)

March 2019 (1) December 2018 (2)

November 2018 (4)

September 2018 (2) February 2018 (1)

January 2018 (1) November 2017 (2)

September 2015 (7) August 2015 (13) July 2015 (15)

Meta (1) Misc (4)

Combinatorics (4)

Data Structure (1)

Number Theory (36)

Categories

CPPS (45)

My Shopee Interview – Shadman Protik on My Interview Experience with Shopee / Garena / Sea Group

Rifat Chowdhury on MyStory#02 –

Salman Farsi on Leading Digits of **Factorial**

Learning Notes on Multiplicative

Deciding Where to Study CS

Istiad Hossain Akib on SPOJ LCMSUM –

Recent Comments

LCM Sum

Functions, Dirichlet Convolution, Mobius Inversion, etc – RobeZH's Blog on SPOJ LCMSUM - LCM Sum

© 2015-2019 Mohammad Samiul Islam