Predictions using the Weight Lifting Exercises Dataset

- 1. Explore the data, especially focussing on the two paramaters we are interested in
- 2. Model selection, where we try different models to help us answer our questions
- 3. Model examination, to see wether our best model holds up to our standards
- 4. A Conclusion where we answer the questions based on the data
- 5. Predicting the classification of the model on test set

Importing data and exploation

training <- read.csv("./pml-training.csv")
testing <- read.csv("./pml-testing.csv")

Hide

dim(training)

[1] 19622 160

Hide

head(training)</pre>

X user_na <int×fctr></int×fctr>	raw_timestamp_part_1 <int></int>	raw_timestamp_part_2 <int></int>	cvtd_timestamp <fctr></fctr>	new_w <fctr></fctr>
1 1 carlitos	1323084231	788290	05/12/2011 11:23	no
2 2 carlitos	1323084231	808298	05/12/2011 11:23	no
3 3 carlitos	1323084231	820366	05/12/2011 11:23	no
4 4 carlitos	1323084232	120339	05/12/2011 11:23	no
5 5 carlitos	1323084232	196328	05/12/2011 11:23	no
6 6 carlitos	1323084232	304277	05/12/2011 11:23	no

Cleaning data

Hide

```
maxNAPerc = 20
maxNACount <- nrow(training) / 100 * maxNAPerc
removeColumns <- which(colSums(is.na(training) | training=="") > maxNACount)
training.cleaned01 <- training[,-removeColumns]
testing.cleaned01 <- testing[,-removeColumns]</pre>
```

```
removeColumns <- grep("timestamp", names(training.cleaned01))
training.cleaned02 <- training.cleaned01[,-c(1, removeColumns )]
testing.cleaned02 <- testing.cleaned01[,-c(1, removeColumns )]</pre>
```

Hide

Hide

```
classeLevels <- levels(training.cleaned02$classe)
training.cleaned03 <- data.frame(data.matrix(training.cleaned02))
training.cleaned03$classe <- factor(training.cleaned03$classe, labels=classeLevels)
testing.cleaned03 <- data.frame(data.matrix(testing.cleaned02))</pre>
```

Hide

```
training.cleaned <- training.cleaned03
testing.cleaned <- testing.cleaned03</pre>
```

Hide

```
set.seed(19791108)
library(caret)
```

```
le package <U+393C><U+3E31>caret<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil<U
+653C><U+3E39> avec la version R 3.6.3Le chargement a n<U+653C><U+3E39>cessit<U+653C><U+3E39>
le package : lattice
le package <U+393C><U+3E31>lattice<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil
<U+653C><U+3E39> avec la version R 3.6.3Le chargement a n<U+653C><U+3E39>cessit<U+653C><U+3E3
9> le package : ggplot2
le package <U+393C><U+3E31>ggplot2<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil
<U+653C><U+3E39> avec la version R 3.6.3
```

Hide

```
classeIndex <- which(names(training.cleaned) == "classe")
partition <- createDataPartition(y=training.cleaned$classe, p=0.75, list=FALSE)
training.subSetTrain <- training.cleaned[partition, ]
training.subSetTest <- training.cleaned[-partition, ]</pre>
```

Feature correlations

Hide

```
correlations <- cor(training.subSetTrain[, -classeIndex], as.numeric(training.subSetTrain$cla
sse))
bestCorrelations <- subset(as.data.frame(as.table(correlations)), abs(Freq)>0.3)
bestCorrelations
```

	Var1 <fctr></fctr>	Var2 <fctr></fctr>	Freq <dbl></dbl>
44	pitch_forearm	A	0.336018
1 row			

Some graphical representations

Hide

library(Rmisc)

le package <U+393C><U+3E31>Rmisc<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil<U+653C><U+3E39> avec la version R 3.6.3Le chargement a <U+653C><U+3E39> cessit<U+653C><U+3E39> le package : plyr

le package <U+393C><U+3E31>plyr<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil<U+
653C><U+3E39> avec la version R 3.6.3

Hide

```
library(ggplot2)
p1 <- ggplot(training.subSetTrain, aes(classe,pitch_forearm)) +
geom_boxplot(aes(fill=classe))
p2 <- ggplot(training.subSetTrain, aes(classe, magnet_arm_x)) +
geom_boxplot(aes(fill=classe))
multiplot(p1,p2,cols=2)</pre>
```


The correlations heatmap

Hide

library(corrplot)

le package $\langle U+393C \rangle \langle U+3E31 \rangle corrplot \langle U+393C \rangle \langle U+3E32 \rangle$ a $\langle U+653C \rangle \langle U+3E39 \rangle t \langle U+653C \rangle \langle U+3E39 \rangle$ compil $\langle U+653C \rangle \langle U+3E39 \rangle$ avec la version R 3.6.3corrplot 0.84 loaded

Hide

```
correlationMatrix <- cor(training.subSetTrain[, -classeIndex])
highlyCorrelated <- findCorrelation(correlationMatrix, cutoff=0.9, exact=TRUE)
excludeColumns <- c(highlyCorrelated, classeIndex)
corrplot(correlationMatrix, method="color", type="lower", order="hclust", tl.cex=0.70, tl.col
="black", tl.srt = 45, diag = FALSE)</pre>
```


Classification methods

Random Forest

Hide

library(rpart)

le package <U+393C><U+3E31>rpart<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil<U
+653C><U+3E39> avec la version R 3.6.3

Hide

library(rpart.plot)

le package $\langle U+393C \rangle \langle U+3E31 \rangle$ rpart.plot $\langle U+393C \rangle \langle U+3E32 \rangle$ a $\langle U+653C \rangle \langle U+3E39 \rangle$ t $\langle U+653C \rangle \langle U+3E39 \rangle$ avec la version R 3.6.3

Hide

library(rattle)

le package <U+393C><U+3E31>rattle<U+393C><U+3E32> a <U+653C><U+3E39>t<U+653C><U+3E39> compil< U+653C><U+3E39> avec la version R 3.6.3Rattle: A free graphical interface for data science wi th R.

Version 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.

Entrez 'rattle()' pour secouer, faire vibrer, et faire d<U+653C><U+3E39>filer vos donn<U+653C
><U+3E39>es.

Hide

```
training <- read.csv("./pml-training.csv")
testing <- read.csv("./pml-testing.csv")
label <- createDataPartition(training$classe, p = 0.7, list = FALSE)
train <- training[label, ]
test <- training[-label, ]</pre>
```

Hide

```
NZV <- nearZeroVar(train)
train <- train[ ,-NZV]
test <- test[ ,-NZV]
label <- apply(train, 2, function(x) mean(is.na(x))) > 0.95
train <- train[, -which(label, label == FALSE)]
test <- test[, -which(label, label == FALSE)]
train <- train[ , -(1:5)]
test <- test[ , -(1:5)]</pre>
```

Hide

```
library(caret)
set.seed(13908)
control <- trainControl(method = "cv", number = 3, verboseIter=FALSE)
modelRF <- train(classe ~ ., data = train, method = "rf", trControl = control)
modelRF$finalModel</pre>
```

```
Call:
randomForest(x = x, y = y, mtry = param$mtry)
             Type of random forest: classification
                   Number of trees: 500
No. of variables tried at each split: 27
       OOB estimate of error rate: 0.2%
Confusion matrix:
    Α
         B C
                  D E class.error
A 3905
             0 0 1 0.0002560164
    6 2650
             2 0 0.0030097818
C
    0
         5 2391 0
                       0 0.0020868114
         0
             8 2244
                       0 0.0035523979
D
    0
Ε
                  5 2520 0.0019801980
                                                                                    Hide
```

predictRF <- predict(modelRF, test)
confMatRF <- confusionMatrix(predictRF, test\$classe)
confMatRF</pre>

```
Confusion Matrix and Statistics
```

Reference n A B

Prediction С D Е A 1674 6 В 0 1131 0 1 2 1025 6 C 0 D 0 0 958 0 0 0 0 0 1082

Overall Statistics

Accuracy : 0.9975

95% CI: (0.9958, 0.9986)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9968

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	1.0000	0.9930	0.9990	0.9938	1.0000
Specificity	0.9986	0.9998	0.9984	1.0000	1.0000
Pos Pred Value	0.9964	0.9991	0.9923	1.0000	1.0000
Neg Pred Value	1.0000	0.9983	0.9998	0.9988	1.0000
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2845	0.1922	0.1742	0.1628	0.1839
Detection Prevalence	0.2855	0.1924	0.1755	0.1628	0.1839
Balanced Accuracy	0.9993	0.9964	0.9987	0.9969	1.0000

Gradient Boosting

Hide

library(rpart)
library(rpart.plot)
library(rattle)

Hide

control <- trainControl(method = "repeatedcv", number = 5, repeats = 1, verboseIter = FALSE)
modelGBM <- train(classe ~ ., data = train, trControl = control, method = "gbm", verbose = FA
LSE)</pre>

modelGBM\$finalModel

A gradient boosted model with multinomial loss function. 150 iterations were performed.

There were 53 predictors of which 52 had non-zero influence.

Hide

predictGBM <- predict(modelGBM, test)
confMatGBM <- confusionMatrix(predictGBM, test\$classe)
confMatGBM</pre>

Confusion Matrix and Statistics

Reference

Prediction	Α	В	C	D	Е
Α	1667	16	0	0	0
В	6	1108	5	3	3
С	0	15	1015	16	4
D	1	0	6	945	4
F	a	a	a	a	1071

Overall Statistics

Accuracy : 0.9866

95% CI : (0.9833, 0.9894)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.983

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E
Sensitivity	0.9958	0.9728	0.9893	0.9803	0.9898
Specificity	0.9962	0.9964	0.9928	0.9978	1.0000
Pos Pred Value	0.9905	0.9849	0.9667	0.9885	1.0000
Neg Pred Value	0.9983	0.9935	0.9977	0.9961	0.9977
Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
Detection Rate	0.2833	0.1883	0.1725	0.1606	0.1820
Detection Prevalence	0.2860	0.1912	0.1784	0.1624	0.1820
Balanced Accuracy	0.9960	0.9846	0.9910	0.9890	0.9949