Automatic Control

Hak-Tae Lee

Dynamics

Newton's Second Law and Units

Equation of Motion

Newton's Second Law

$$\mathbf{F} = m\mathbf{a}$$

- F = the vector sum of all forces applied
- a = the vector acceleration with respect to an inertial reference frame
- m = mass

Units

$$\mathbf{a} = k \frac{\mathbf{F}}{m}$$

"Acceleration is proportional to force and inversely proportional to mass"

Have you ever questioned why there is no constant?

English Units

Constant is not needed if the unit is defined carefully

- SI unit system: create a unit for force → N (Newton)
 - The popular unit, kg, is a unit of mass
 - 1 N: Amount of force that can accelerate a 1 kg object by 1 m/s²
- English Unit system: create a unit for mass → slug
 - The popular unit, lb, is a unit of force
 - 1 slug: mass of an object that will accelerate by 1 ft/s² when 1 lbs of force is applied.

Units

- SI unit system
 - Usually the weight is calculated by multiplying the gravitational acceleration to the mass.

$$1 \text{ N} = 1 \text{ kg} \times 9.8 \text{ m/s}^2$$

- English unit system
 - Usually, the mass is calculated by dividing the weight by the gravitational acceleration.

$$1 lb = 1 slug \times 32.2 ft/s^2$$

$$1 \text{ slug} = 1 \text{ lb}/32.2 \text{ ft/s}^2$$

Importance of Dynamics

Force

- 4 fundamental forces
 - Gravity (중력)
 - Electromagnetic force (전자기력)
 - Weak force (약핵력)
 - Strong force (강핵력)
- Then what about these?
 - Normal force
 - Friction
 - Centripetal force
 - Blah blah blah forces

Force

- Fundamental forces
 - 'body force'
 - 'without contact'

Other forces acts by 'contact'

Free Body Diagram

The Object

• Any body force?

Any contact?

The Object

- Any body force?
 - Gravity is acting on the object
- Any contact?
 - The object is in contact with the table
 - Then the table will apply force on the object

The Table

- Any body force?
- Any contact?

The Ground (Earth)

The Ground (Earth)

Action/Reaction

- Newton's Third Law
- Regardless of body force or contact force
- Same magnitude and opposite direction
- Assignment of action and reaction is arbitrary

Identification of Action/Reaction

Object

- Gravity
 - Action: force that the earth is pulling the object
 - Reaction: force that the object is pulling the earth
- Force between the object and the table
 - Action: force that the table is supporting the object
 - Reaction: force that the object is pushing down the table

Identification of Action/Reaction

Table

- Gravity
 - Action: force that the earth is pulling the table
 - Reaction: force that the table is pulling the earth
- Force between the object and the table
 - Action: force that the object is pushing down the table
 - Reaction: force that the table is supporting the object
- Force between the ground and the table
 - Action: force that the ground is supporting the table
 - Reaction: force that the table is pushing down the ground