

Activity-Based Modeling

Session 8: Activity Pattern Generation

Acknowledgments

This presentation was prepared through the collaborative efforts of Resource Systems Group, Inc. and Parsons Brinckerhoff.

- Presenters
 - Peter Vovsha and John Gliebe
- Moderator
 - Stephen Lawe
- Content Development, Review and Editing
 - Peter Vovsha, John Gliebe, Joel Freedman, John Bowman and Mark Bradley, Maren Outwater
- Media Production
 - Bhargava Sana

2012 Activity-Based Modeling Webinar Series

Executive and Management Sessions	
Executive Perspective	February 2
Institutional Topics for Managers	February 23
Technical Issues for Managers	March 15
Technical Sessions	
Activity-Based Model Framework	April 5
Population Synthesis and Household Evolution	April 26
Accessibility and Treatment of Space	May 16
Long-Term and Medium Term Mobility Models	June 7
Activity Pattern Generation	June 28
Scheduling and Time of Day Choice	July 19
Tour and Trip Mode, Intermediate Stop Location	August 9
Network Integration	August 30
Forecasting, Performance Measures and Software	September 20

Where We Are in Series

- Discussed at previous webinars:
 - Overall structure and advantages of activity based modeling
 - Population synthesis
 - Accessibility impacts and treatment of space
 - Long-term and mid-term choices (work, school, car ownership, etc)
- Now we start discussion on how individual travel choices are made on given (modeled) (week)day
- Individual daily activity pattern (DAP) is a central concept of activity based modeling:
 - Replaces trip generation step pertinent to 4-Step
 - Generates activities, tours, and trips with cross-impacts on each other
 - Litmus test on understanding activity based modeling

Learning Outcomes

- Role and placement of DAP model in activity based modeling
- Structure of DAP choice model and alternatives in the choice set
- Advantages of DAP vs. traditional trip and tour generation models
- How integrity of DAP can be achieved:
 - For each person, between number of activities, trips, and tours for different purposes
 - Across household members, including joint activity and travel
- Two main operational approaches to implement DAP
 - Individual person daily activity pattern (IDAP)
 - Coordinated household daily activity pattern (CDAP)
- The main factors and variables explaining individual choice of DAP

Outline

- Basic terminology
- Definition of DAP
- Role and placement of DAP in activity based modeling, linkage with the other models
- Relation of DAP to trip and tour generation models in 4-step framework
- Individual DAP (IDAP) implemented for each person independently
- Coordinated DAP (CDAP) implemented for all household members
- Ongoing research, main directions, and challenges

Terminology

- Main units of activity based modeling analysis:
 - Activity episode
 - Trip
 - Tour
 - Sub-tour
 - Primary activity on tour
 - Half-tour by direction (outbound, inbound)
 - Daily activity pattern

Classification of Activities

- Type/purpose
 - mandatory, maintenance, discretionary
- Location
 - at-home vs. out-of-home
- Priority on the tour
 - primary activity/destination vs. secondary activity/stop
- Intra-household interaction
 - individual, joint, allocated

Daily Activity Patterns

- Joint frequency choice of daily activities, tours, and trips/stops by purpose
- Individual daily activity pattern (IDAP)
 - A single person's day of activity and travel, usually defined by tours of particular purposes
- Coordinated daily activity pattern (CDAP)
 - A single household pattern implying joint occurrence of IDAPs for each household member
 - May include implied interactions not included in IDAPs

Out-of-Home Activities / Travel Purposes

- Mandatory:
 - Work/Business
 - School/College/University
- Maintenance:
 - Escort Passenger(s)
 - Shopping
 - Personal Business (e.g., Medical)
- Discretionary:
 - Eating out
 - Visiting relatives and friends
 - Social/Recreational

Relations between activity model design elements

Bridge Expansion Example

- No Build Alternative
 - 4 lanes (2 in each direction, no occupancy restrictions)
 - No tolls
 - Regional transit prices do not change by time of day
- Build Alternative(s)
 - Add 1 lane in each direction (total of 6)
 - New lanes will be HOV (peak period or all day?)
 - Tolling (flat rate or time/congestion-based)
 - Regional transit fares priced higher during peak periods

Bridge Expansion Example—Relevance to Daily Activity Pattern Generation

- Accessibility increases may lead to a greater frequency of activities
 - More discretionary activities, possibly more tours
- Potential increase in intra-household ridesharing to take advantage of HOV
 - Affects tour type choice—coordination between household members for commutes
 - More joint tours/fewer independent tours
 - May result in more joint activities—joint discretionary stops before/after work

Placement of DAP in activity based modeling

Transport
level-of-service
and
accessibilities

Evolution of Travel Generation Models

- **Trip production rates** (trips per HH segmented by purpose and HH types)
- Trip production regression model (trips by purpose per HH as a function of HH & other variables)
- Trip frequency choice model (probability of 0,1,2... trips by purpose per HH/person as a function of HH & other variables)
- Daily activity-travel pattern model (simultaneous trip/tour/activity frequency choice model for all purposes)

Suitable for microsimulation

Why model trips for different purposes jointly?

- Tour/trip generation for **different purposes** for the same person and HH **are not independent:**
 - Time-space constraints and interactions between persons dictate many trade-offs
 - Tour formation has strong impact on trip purposes with the same set of activity episodes (Work, Shop):

Work

Shop

Linked Tour-Frequency Model (New York MTC)

Daily Activity-Travel Pattern (Bowman 1995)

18

The Travel Model

Program

Person Individual DAP (IDAP) Dimensions

- Pattern type (main characteristic of entire day; most important determinants of person travel behavior; strongly constrains generation of tours by purpose)
- Set of tours (by primary activity and primary destination)
- Secondary activities (stops) on the way to and from primary destinations

Main Person Types

Туре	Age	Work stat	Stud stat
Full-time worker	18+	Full	Part
Part-time worker	18+	Part	Part
University student	18+	Part	Full U
Non-worker	18-64		Part
Retired	65+		
Driving school child	16+	Part	Full S
Pre-driving school child	6-15		Full S
Pre-school child	U6		Full S

Individual Daily Activity Pattern Type

No out-of-home activities (tours) or absence from home/town

At least one out-ofhome mandatory activity (tour) and any other activities No mandatory activities; at least one out-of-home non-mandatory activity (tour)

21

Observed Individual DAP (Bay Area, 2000):

Observed Individual DAP (San Diego, 2007):

Similar Distribution

Simplified IDAP Choice Example

- Possible frequency of work/school tours:
 - 0 tours
 - 1 work
 - **–** 2+ work
 - 1+ work & 1+ school/university
 - 1+ school/university
- Possible frequency of other tours:
 - 0 tours
 - 1+ shopping/escort/maintenance
 - 1+ eating/visiting/discretionary
 - 1+ shopping/escort/maintenance & 1+ eating/visiting/discretionary
- Total combinations $5\times4=20$

Daily Activity Patterns

DAP Type	Mandatory Tours	Non-Mandatory Tours	DAP alternative
Home	0	0	1
Mandatory	1 Work	0	2
		1+ Escort/Shop/Maintenance	3
		1+ Eating/Visit/Discretion	4
		1+ Maintenance & 1+ Discretion	5
	2+ Work	0	6
		1+ Escort/Shop/Maintenance	7
		1+ Eating/Visit/Discretion	8
		1+ Maintenance & 1+ Discretion	9
	1+ Work & 1+School/University	0	10
		1+ Escort/Shop/Maintenance	11
		1+ Eating/Visit/Discretion	12
		1+ Maintenance & 1+ Discretion	13
	1+ School/University	0	14
		1+ Escort/Shop/Maintenance	15
		1+ Eating/Visit/Discretion	16
		1+ Maintenance & 1+ Discretion	17
Non-Mandatory	0	1+ Escort/Shop/Maintenance	18
		1+ Eating/Visit/Discretion	19
		1+ Maintenance & 1+ Discretion	20

Observed Frequency for Workers: Your Guess?

Bay Area Transportation Survey (2000)

IDAP Type	Mandatory Tours	
Home	0	7.4%
Mandatory	1 Work	60.8%
	2+ Work	3.1%
	1+ Work & 1+School/University	1.2%
	1+ School/University	3.1%
Non- Mandatory	0	24.5%

Observed Frequency for Workers: Your Guess?

Non-Mandatory Tours	
0	58.7%
1+ Escort/Shopping/Maintenance	22.2%
1+ Eating/Visiting/Discretionary	14.0%
1+ Escort/Shopping/Maintenance & 1+ Eating/Visiting/Discretionary	5.2%

27

Observed IDAP Frequency vs. Independent Calculation by Tour Purpose

Utility Formation Examples

DAP=3	W1 (pattern) +
(1 Work + Maintenance)	W (tour) + M (tour)
DAP=13	WS (pattern) +
(Work + School +	W (tour) + S (tour)
Maintenance + Discret)	M (tour) + D (tour)
DAP=19	N (pattern) +
(Discretionary)	D (tour)

IDAP Example from Sacramento activity based modeling

- Further on, we will consider example of IDAP applied in Sacramento, CA (SACOG) activity based modeling (DaySim) in detail
- Similar structures successfully applied in many activity based models in practice:
 - San Francisco, CA (SFCTA)
 - Denver, CO (DRCOG)
 - Seattle, WA (PSRC)
 - Jacksonville, FL (NFTPO)
 - Fresno County and San Joaquin Valley, CA

IDAP Main Features

- Predicts for each person:
 - Tours by purpose
 - Purposes for which intermediate stops occur during the day
- High level of intra-person consistency of the day's tours and stops for seven different purposes
- Relatively simple and possible to enumerate all main IDAPs although results in thousands of alternatives
- Intra-household interactions not modeled explicitly but somewhat accounted implicitly through household variables

IDAP Dimensions and Sub-Models

Main pattern configuration Models applied in order, **Exact daily number of** before tours TOD, DC, mode Number and purpose of **Work-Based Sub-Tours** Model Number and purpose of applied after intermediate stops

For each person:

0 vs. 1+ tours, 0 vs. 1+ stops by 7 activity purposes

For each 1+ choice:

1, 2, or 3 tours

For each work tour:

0, 1 (more) sub-tours by 7 purposes (repeat structure with 8 alternatives)

For each half-tour:

0, 1 (more) stops by 7 purposes (repeat structure with 8 alternatives)

TOD, DC,

mode

IDAP Main Pattern Configuration

Purpose	Possible	# tours	Possible # add	itional stops
1=Work	0	1+	0	1+
2=School	0	1+	0	1+
3=Escort	0	1+	0	1+
4=Personal business	0	1+	0	1+
5=Shopping	0	1+	0	1+
6=Eating out	0	1+	0	1+
7=Social & recreational	0	1+	0	1+

- 2¹⁴=16,384 possible combinations
- Truncation by max of 3 tour purposes, 4 stop purposes, 5 total purposes
- Exclusion of unobserved and infrequent combinations
- 2,080 realistic choice alternatives

IDAP Main Pattern Utility Function

- Parsimonious component-wise structure:
 - More than 2,000 alternatives
 - Only 100 coefficients to estimate
- Main utility components:
 - Nominal utility component for tour (Tx) and stop (Sx) by purpose (x)
 - Tour & stop frequency related components (NTx, NSx, NTx+NSx) by purpose
 - Interaction terms ensuring intra-person consistency and trade-offs between tours and stops by purpose (ITxy, ISxy, ITSxy) by pairs of purposes

IDAP Main Pattern Utility Examples

IDAP	Tour component	Stop Component	Interaction term
Work tour + shopping tour	(work) + (shop)		(work, shop)
Work tour w/shopping stop	(work)	(shop)	(work, shop)
Work tour + school tour + recreational stop	(work) + (school)	(recreational)	<pre>(work, school) + (work, recreational) + (school, recreational)</pre>
Recreational tour	(recreational)		
2 shopping tours	(shop) + (shop)		

Formulation of Component-Wise Utilities

- Form a utility by components for IDAP that includes work tour and shopping tour:
 - Component that measures the utility for total number of 1+ tours
 - Component that measures utility for 1+ tours for a particular purpose
 - Component that measures the joint utility of 2 tours of different purpose

$$Utility_{1+work, 1+shop} = Utility_{1+work} + Utility_{1+shop} + Utility_{2+ tours} + Utility_{1+work \& 1+ shop}$$

- Where:
 - Utility_{1+work} = $2.5 + -0.2*(0,1)_{part-time worker} + 0.5*work_MC_logsum_{home-work}$
 - Utility_{1+ shop} = $-0.3 + 2*(0,1)_{high-income\ hh} + 1.5*hh_size + 0.5*shop_DC_logsum_{home}$
 - Utility_{2+ tours} = -1.0
 - Utility_{1+work & 1+shop} = -0.18

Constants

Household and person variables

Accessibility information

IDAP Exact Number Tours: e.g., Shopping

Main variables	1 tour	2 tours	3 tours
Constant	0	-7.469	-14.18
Accessibility to shops		0.5011	0.9517
Full-time worker		0.5642	0.5642
School child age 5-15		-0.6396	-0.6396
Adult age group 26-35		-1.661	-1.661
Male w/children of age 5-15		1.105	1.105
Female w/children of age 5-15		0.5436	0.5436
Only adult in HH		0.5404	0.5404
HH Income 75K+		0.3538	0.3538
Work at home		0.4937	0.4937
# work tours		-2.443	-2.443
# personal business tours		-0.2152	-0.2152

IDAP Exact Number of Stops

- Separate choice model for each purpose by half-tour with frequency alternatives 1, 2, 3, 4, 5
- Stop-and-go structure
- Controlled by total number of secondary stop purposes predicted by main IDAP configuration

Questions and Answers

Coordinated DAP (CDAP)

- Further development and generalization of IDAP concept to account for intra-household interactions
- Successfully applied in many activity based models of CT-RAMP family in practice:
 - Columbus, OH (MORPC)
 - Lake Tahoe, NV (TMPO)
 - Atlanta, GA (ARC)
 - Bay Area, CA (MTC)
 - San Diego, CA (SANDAG)
 - Phoenix, AZ (MAG)
 - Chicago, IL (CMAP)
 - Miami, FL (SERPM)

Importance of Intra-Household Interactions

- For understanding and modeling travel behavior:
 - More than 30% of activities and trip implemented jointly
 - More than 50% of activity schedules affected by schedules of other persons
- For modeling practical policies:
 - HOV and joint travel (not mode choice!)
 - Impact of changing demographics
 - Reluctance to switch to transit and give up car

Micro-simulation aggravates intra-household inconsistency

HH members	Daily pattern					
	Work, School	Non-mandatory	Stay at home / vacation			
Fractional probabili	ity:					
1 st Worker	0.70	0.15	0.15			
2 nd Worker	0.60	0.25	0.15			
Child	0.65	0.05	0.30			
"Crisp" choices:	"Crisp" choices:					
1 st Worker	Go to work					
2 nd Worker		Major shopping				
Child			Sick at home			

Simple Numeric Example

- For each worker:
 - 80% probability of going to work
 - 20% probability of non-going to work
- In 2-worker HH following IDAP:
 - $-64\% = 80\% \times 80\%$ both workers going to work
 - $-4\%=20\%\times20\%$ neither of workers going to work
 - 32% one of workers going to work
- In 2-worker HH (observed and CDAP):
 - 72% both workers going to work
 - 10% neither of workers going to work
 - 18% one of workers going to work

Main Intra-Household Interactions

- Entire-day level:
 - Staying at home / absent together (vacation, indoor family event, care of sick child)
 - Non-mandatory DAP together (day-off for major shopping, outdoor family event)
- Episode level:
 - Shared activity and joint travel (sporting event)
 - Escorting (children to school)
 - Allocation of maintenance tasks (shopping, banking)
 - Car allocation

44

Daily Activity Pattern Type (Reminder)

No out-of-home activities (tours) or absence from home/town

At least one out-ofhome mandatory activity (tour) and any other activities No mandatory activities; at least one out-of-home non-mandatory activity (tour)

We will consider now several household members making this choice

Observed DAP Type Sharing, Atlanta, 2001

Travel Tours by Type

Basic Choice Structure for CDAP

- Simultaneous rather than sequential modeling of all HH members
- 363 alternative combinations of individual trinary choices for HH≤5 (98%):
 - 1 person: 3 alternatives
 - -2 persons: $3\times3=9$ alternatives
 - -3 persons: $3 \times 3 \times 3 = 27$ alternatives
 - 4 persons: $3 \times 3 \times 3 \times 3 = 81$ alternatives
 - 5 persons: $3 \times 3 \times 3 \times 3 \times 3 = 243$ alternatives

Coordinated DAP Type – 3 Persons

Is Coordination of DAPs Significant?

- If intra-household interactions are not significant and DAPs independent across persons, frequency of any DAP type combination would be close to product of individual frequencies
- Significant biases in group-wise choice frequency versus products of individual frequencies express intrahousehold interactions
- All possible 36 pair-wise combinations and 120 three-way combinations of 8 person types were explored with respect to joint NON-MANDATORY and HOME patterns (Atlanta HTS, 2001, 8060 HHs, 2 days)

50

Example of Pair-Wise Effects (Home DAP)

Example of 3-Way Effects (Home DAP)

Simplified Version of CDAP

- All HHs are considered
- However, only 3 persons are modeled:
 - 1st HH head
 - 2nd HH head (if present)
 - Youngest child (if present)
- Skipped person types are the most "individual":
 - Older school children
 - College/university students
 - Granny living in

Choice Structure for Training

- 1-person HH (adult HH head):
 - 3 alternatives
- 2-person HH (2 adult HH heads):
 - $-3\times3=9$ alternatives
- 2-person HH (adult HH head+child):
 - $-3 \times 3 = 9$ alternatives
- 3-person HH (2 adult HH heads+child):
 - $-3\times3\times3=27$ alternatives
- Total:
 - -3+9+9+27=48 alternatives

Utility Components of CDAP Logit Model

- Individual choice (H, M, N):
 - Adult HH head (gender, age, income, worker status etc)
 - Child (age, school grade, etc)
- 2-way interaction terms (HH, NN, MM):
 - Between HH heads
 - Between HH head and child
- 3-way interaction terms (HHH, NNN, MMM):
 - HH heads + child

CDAP Utility (1-Person HH)

1 st head	2 nd head	Child	Alternative	Utility
Н	Missing	Missing	1	H1
M	Missing	Missing	2	M1
N	Missing	Missing	3	N1

CDAP Utility (2 Adults)

1st head	2 nd head	Child	Alternative	Utility
Н	Н	Missing	1	H1+H2+HH12
	M	Missing	2	H1+M2
	N	Missing	3	H1+N2
М	Н	Missing	4	M1+H2
	M	Missing	5	M1+M2
	N	Missing	6	M1+N2
N	Н	Missing	7	N1+H2
	M	Missing	8	N1+M2
	N	Missing	9	N1+N2+NN12

CDAP Utility (Adult + Child)

1st head	2 nd head	Child	Alternative	Utility
Н	Missing	Н	1	H1+H3+HH13
	Missing	M	2	H1+M3
	Missing	N	3	H1+N3
М	Missing	Н	4	M1+H3
	Missing	M	5	M1+M3
	Missing	N	6	M1+N3
N	Missing	Н	7	N1+H3
	Missing	M	8	N1+M3
	Missing	N	9	N1+N3+NN13

Acti

4
Child)
2 Adults +
CDAP Utility (
ivity-

	1 st head	2 nd head	Child	Alternative	Utility
	н	н	Н	1	Н1+Н2+Н3+ННН
~			M	2	H1+H2+M3+HH12
			N	3	H1+H2+N3+HH12
		М	Н	4	H1+M2+H3+HH13
			M	5	H1+M2+M3
			N	6	H1+M2+N3
		N	Н	7	H1+N2+H3+HH13
			M	8	H1+N2+M3
			N	9	H1+N2+N3+N23
	М	Н	Н	10	M+H2+H3+HH23
			M	11	M+H2+M3
			N	12	M1+H2+N3
		М	Н	13	M1+M2+H3
			М	14	M1+M2+M3
			N	15	M1+M2+N2
		N	Н	16	M1+N2+H3
			M	17	M1+N2+M3
			N	18	M1+N2+N3+NN23
	N	н	Н	19	N1+H2+H3
			M	20	N1+H2+M3
			N	21	N1+H2+N3+N13
		М	Н	22	N1+M2+H3
			M	23	N1+M2+M3
			N	24	N1+M2+N3+NN13
		N	Н	25	N1+N2+H3
M			M	26	N1+N2+M2+NN12
			N	27	N1+N2+N3+NNN

CDAP Estimation: Person Age Effects

M = mandatory DAP NM = non-mandatory DAP

CDAP Estimation: Gender Effects

Pair-Wise Interactions – Stay at Home DAP

Calibration & Policy Levers

 Increased telecommuting (in addition to work from home regularly)

Adjust DAP constant for workers – fewer mandatory patterns, increases in non-mandatory and stay-at-home patterns

Calibration Results (DAP Type, San Diego activity based modeling)

• IDAP and CDAP models are of crucial importance and have to be well-calibrated

Scaled Survey CDAP by Person type		Pattern (observed) Pattern (modeled)		leled)				
Person type	Mandatory	Non Mandatory	Home	Total	Mandatory	Non Mandatory	Home	Total
Full-time worker	87%	8%	5%	100%	87%	8%	5%	100%
Part-time worker	73%	20%	7%	100%	72%	21%	7%	100%
University student	66%	25%	9%	100%	66%	25%	9%	100%
Non-working adult	0%	75%	25%	100%	0%	75%	25%	100%
Non-working senior	0%	73%	27%	100%	0%	73%	27%	100%
Driving age student	91%	4%	5%	100%	91%	4%	5%	100%
Pre-driving student	94%	4%	2%	100%	94%	4%	2%	100%
Pre-school	44%	41%	16%	100%	44%	40%	16%	100%
Total	61%	28%	11%	100%	61%	28%	11%	100%

Generation of Non-Mandatory Tours

Types of Joint Travel

By travel party	By individual	
	Individual	
Fully-jo	oint tour	
Joint or	ıtbound	
Joint in	nbound	
Ducto off (anthony d)	Drop-off	
Drop-off (outbound)	Get off	
Dial- set (inhound)	Pick-up	
Pick-up (inbound)	Get-in	

Travel Tours by Type

Observed School Escorting Frequency (NHTS 2008, Phoenix/Tucson, 5000 HHs)

Escorting Children to School

Stop Frequency Model

- We have to insert intermediate stops in all tours generated for each person:
 - Similar to Exact Number of Stops sub-model for IDAP but we have to consider zero-stop option for CDAP since it is not modeled explicitly at the previous stages
- Predicts for each half-tour (outbound, inbound):
 - Number of stops (0, 1, 2, 3, 4):
 - Up to $5 \times 5 = 25$ alternatives for work tours
 - Up to $3\times3=9$ alternatives for non-work tours
 - Activity purpose for each stop:
 - One of 6 non-mandatory purposes assigned probabilistically conditional upon tour purpose and stop order

Stop Frequency (IDAP vs. CDAP)

- Interesting comparison:
 - IDAP achieves a great level of consistency between tour and stop generation (joint modeling) but is lack of intrahousehold interactions
 - CDAP incorporates intra-household interactions but models stops conditional upon tours
 - Search for an approach that would combine the best of both continues
- More details will follow in Session 10:
 - Stop frequency is intertwined with stop location choice and accessibility as well as conditional upon the tour mode

Beyond IDAP (DaySim) and CDAP (CT-RAMP)

- Many advanced structures:
 - CEMDAP (UTA) applied in LA (SCAG) activity based modeling
 - FAMOS (UF, ASU)
 - DASH (Portland Metro)
 - TASHA (University of Toronto)
 - ALBATROSS (University of Eindhoven)
 - ADAPTS (UIC)
- Ongoing research and improvements:
 - Integration between activity generation, scheduling, and location (time-space constraints, tour formation)
 - Intra-person and intra-household consistency
 - Trade-offs between in-home and out-of-home activities (telecommuting, teleshopping)

Questions and Answers

Summary

- Role and placement of DAP model:
 - Cornerstone and main distinguishing feature of activity based modeling
 - First travel related model that generates activities, tours, and trips for each person and HH
 - Applied after population synthesis, long-term models of work and school locations, and car ownership
 - Applied before tour/trip destination, mode, and TOD choices
- Two main approaches applied in practice:
 - Individual DAP (IDAP) generates activities, tours, and trip in a consistent way for each person independently
 - Coordinated DAP (CDAP) considers interactions between HH members and joint travel explicitly

Next Webinar

Executive and Management Sessions	
Executive Perspective	February 2
Institutional Topics for Managers	February 23
Technical Issues for Managers	March 15
Technical Sessions	
Activity-Based Model Framework	April 5
Population Synthesis and Household Evolution	April 26
Accessibility and Treatment of Space	May 16
Long-Term and Medium Term Mobility Models	June 7
Activity Pattern Generation	June 28
Scheduling and Time of Day Choice	July 19
Tour and Trip Mode, Intermediate Stop Location	August 9
Network Integration	August 30
Forecasting, Performance Measures and Software	September 20