Curricular Module Development Integrating Hands-on Physical Tests with Model-Based Design: Gear Test Activity for GE 410

PI: Prof. James T. Allison^{1,3,4}; Research Assistant: Junwu Zhang^{2,3,4}

Department of Industrial & Enterprise System Engineering (ISE)¹, Department of Mechanical Science & Engineering², College of Engineering³, University of Illinois at Urbana-Champaign⁴

Introduction & Aim

Motivation:

Through our experiences in design courses including GE 410 (Component Design), we found that students often struggle conceptually with the design of gears, due to a lack of first-hand experience using them. We anticipate that students will strongly benefit from a complete design activity where they design a gearset to meet specific requirements, fabricate the gears, and test the physical system to evaluate its performance.

Design Problem Context:

	Simulated torque output (HIL)	 Find gear ratio that: Minimize time to travel fixed distance Stand adequate force & stress
--	-------------------------------	--

Gear Ratio Design:

Technical Background

Gear Design:

- Involute profile
- Simplest, commonly used
- Conjugate action
- Force analysis
- Geometry design through MATLAB

Hardware-in-the-Loop (HIL) Simulation:

Testbed

Gearset Testbed CAD Mode

- 2 x 12V Brushless DC Motors
- CNC Milling machine used for test bed machining
- Motor Controlled Lead Screw (upgrade over initial design)
- Encoder, Current and Voltage sensors attached for torque

Gear Geometry Through MATLAB

Involute Gear Profile Equations

Basic equations:

 $P = \frac{N}{d} \tag{1}$

 $p = \frac{\pi d}{N} = \pi m \tag{2}$

Equation used to generate gear geometry, where:

 $t = 2 \times r \times \left| \frac{t_P}{2 \cdot r_P} + (\tan \varphi_P - \varphi_P) - (\tan \varphi - \varphi) \right|$ (3)

 $\varphi = \cos^{-1} \frac{r_b}{r} \tag{4}$

are t and r at pitch circle, respectively.

D and N represents pitch diameter and number of teeth, respectively.

Solar Car Simulation Through MATLAB

Optimization:

Also including vehicle dimensional constraints, road profiles, wind profiles and related constraints.

Simulation Results^[3]

C. T.

voltage comed

Current Testbed Setup

Encode

Conclusions & Future Plans

Speed and Torque Motor Control:

With current, voltage and encoder sensors in place and working, PID control of either speed or torque can be achieved. Our plan is to realize speed control on traction motor and torque control on load motor. By having these two controls, students can see directly how their gear designs are affecting the smoothness and efficiency of gear transmission

Torque Estimation:

Through data-driven motor modelling techniques, obtain motor torque data and map them accurately with current and voltage. With good torque estimation we can make HIL simulation closer to real-life and more robust.

Acknowledgments

Special thanks to Prof. James Allison and graduate students Madhav Arora, Andrew Blanco and Albert Patterson on their contribution to the project.

Sensing and Hardware Setup

Encoder RPM Sensing

Was a big problem during previous development. Successfully obtained steady and accurate readings by using two LS7366r encoder counter buffers.

Arduino and Encoder Buffer

Reference

[1]coewww.rutgers.edu/classes/mae/mae488/hw/lectures/gear/nomenclature.png

[2] www.lucidchart.com

[3] Co-developed with Prof. James Allison

