Optimizers

Gradient Descent

- ▶ Gradient Descent methods are used to find the minimum value of parameters to minimize the cost function.
- ▶ There are different methods to find the minimum values of parameters:
- 1. Stochastic Gradient Descent
- 2. Ada-grad Optimizer
- 3. RMS Prop Optimizer
- 4. Adam Optimizer

Stochastic Gradient Descent

Updated weight
$$b_{n+1} = b_n - \eta \frac{\partial L}{\partial b}$$
 Derivative of Loss function Learning rate

- Initial weight is chosen as a random number.
- Learning rate for data is constant which is initialized as 0.01.
- Loss function is the Sum Squared error of the data.

Momentum in SGD

Momentum is introduced in Stochastic gradient Descent to accelerate the values of parameters so that it can converge the values faster.

Beta value

$$D_{n+1}(b) = \beta D_{avg(n)}(b) + (1-\beta)D_n(b)$$

Updated derivative

Average of initial derivates

Current derivative

Updated Weight formula

$$b_{n+1} = b_n - \eta D_{n+1}(b)$$

Advantages	Disadvantages
It is easier to fit into memory due to a single training sample being processed by the network	Due to frequent updates the steps taken towards the minima are very noisy. This can often lead the gradient descent into other directions.
It is computationally fast as only one sample is processed at a time	Also, due to noisy steps it may take longer to achieve convergence to the minima of the loss function
For larger datasets it can converge faster as it causes updates to the parameters more frequently	Frequent updates are computationally expensive due to using all resources for processing one training sample at a time

Stochastic Gradient Descent

Ada-grad Optimizer

$$b_{n+1} = b_n - \frac{\eta}{\sqrt{\alpha_n + \varepsilon}} \frac{\partial L}{\partial b}$$

Notations	Description
b_{n+1}	Updated weight
b_n	Initial weight
η	Initialized leaning rate
$lpha_n$	Sum of squares of all past gradients
${\cal E}$	Epsilon is small positive value which avoids division by zero

Coefficient a = 0.45

Coefficient b = 0.75

SqFt

1100

1400

1425

1550

1600

1700

1700

1875e

2350

2450

$$Min = 1100$$

Max = 2450

Normalization

$$X = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

X

0.00

0.22

0.58

0.20

0.55

0.39

0.54

0.53

1.00

0.61

Min = 0

Max = 1

Prices

199000

245000

319000

240000

312000

279000

310000

308000

405000

324000

Min = 199000

Max = 405000

/

0.00

Normalization

 $x - x_{\min}$

 $x_{\text{max}} - x_{\text{min}}$

0.22

0.24

0.33

0.37

0.44

0.44

0.57

0.93

1.00

Min = 0

Max = 1

Coefficient a = 0.45

Coefficient b = 0.75

X

0.00

0.22

0.58

0.20

0.55

0.39

0.54

0.53

1.00

0.61

$y_p = a + bX$

Predicted v

0.45

0.62

0.63

0.70

0.73

0.78

0.78

88.0

1.14

1.20

Min = 0

Max = 1

0.00

0.22

0.24

0.33

0.37

0.44

0.44

0.57

0.93

1.00

Min = 0

Max = 1

Range = 1

Predicted y

0.45

0.62

0.63

0.73

0.78

0.78

0.88

1.20

Min

0.70

1.14

= 0

Max = 1

Range = 1

d(SSE)/da

0.45

0.39

0.05

0.50

0.18

0.39

 $\frac{d(SSE)}{d(SSE)} = -(y - y_p)$

0.24

0.35

0.14

0.59

Total = 3.30

X	
0.00	
0.22	
0.58	
0.20	
0.55	
0.39	
0.54	
0.53	
1.00	
0.61	
Min	= 0
Max	= 1

Predic	cted y
0.45	
0.62	
0.63	
0.70	
0.73	
0.78	
0.78	
0.88	
1.14	
1.20	
Min	= 0
Max	= 1

$$\begin{array}{c}
0.00 \\
0.09 \\
0.01 \\
0.17 \\
0.07 \\
0.08 \\
0.18 \\
0.11 \\
0.20 \\
0.13 \\
0.59 \\
Total = 1.55
\end{array}$$

d(SSE)/db

First Epoch

Step 1

$$\alpha_a = \left(\frac{d(SSE)}{da}\right)^2 \quad -$$

$$\alpha_b = \left(\frac{d(SSE)}{db}\right)^2 \quad ----$$

$$\frac{d(SSE)}{da}$$
=3.30

$$\frac{d(SSE)}{da} = 1.55$$

$$\alpha_a = (3.30)^2 = 10.89$$

$$\alpha_b = (1.55)^2 = 2.4025$$

Step 2

$$a_{n+1} = a_n - \frac{\eta}{\sqrt{\alpha_a + \varepsilon}} \frac{d(SSE)}{da}$$

$$b_{n+1} = b_n - \frac{\eta}{\sqrt{\alpha_b + \varepsilon}} \frac{d(SSE)}{db}$$

$$b_{n+1} = b_n - \frac{\eta}{\sqrt{\alpha_b + \varepsilon}} \frac{d(SSE)}{db}$$

$$a_n = 0.45$$
 $\eta = 0.01$
 $\varepsilon = 0.00000001$
 $b_n = 0.75$

$$a_{n+1} = 0.45 - \frac{0.01}{\sqrt{10.89 + 0.00000001}} (3.30)$$

$$= 0.45 - (0.00303) (3.30)$$

$$= 0.44$$

$$b_{n+1} = 0.75 - \frac{0.01}{\sqrt{2.4025 + 0.00000001}} (1.55)$$

$$= 0.75 - (0.00645) (1.55)$$

$$= 0.74$$

Second Epoch

L3		₹ : □	< _/	f _x =SU	JM(L14^2+	M14^2)												
\square	Α	В	С	D	Е	F	G	Н	1	J	K	L	М					
1	a =	0.44	b=	b= 0.74				del SSE/del(<mark>a</mark>) =-(Y-YP)	del SSE/del(b) =- (Y-YP)X									
2		Sq Ft	Price\$	X	Y	ΥP	(1/2)SSE											
3		1100 1		0.00	0.00	0.44	0.0968	0.44	0.00		alpha(a)=	20.8125						
4		1400 245000		1400 245000		1400 245000		0.22	0.22	0.60	0.072635	0.38	0.08		eta'(a)=	0.002191986		
5		1425	319000	0.24	0.58	0.62	0.000635	0.04	0.01		a2=	0.433085146						
6		1550	240000	0.33	0.20	0.69	0.118895	0.49	0.16									
7		1600	312000	0.37	0.55	0.71	0.0137	0.17	0.06									
8		1700	279000	0.44	0.39	0.77	0.072405	0.38	0.17		alpha(b)=	4.56340000000000						
9		1700	310000	0.44	0.54	0.77	0.026462	0.23	0.10		eta'(b)=	0.004681184						
10		1875	308000	0.57	0.53	0.86	0.056343	0.34	0.19		b2=	0.733117119						
11		2350	405000	0.93	1.00	1.13	0.007836	0.13	0.12									
12		2450	324000	1.00	0.61	1.18	0.164281	0.57	0.57									
13	MIN	1100	199000	0	0	Total SSE=	0.629993	3.15	1.47			1st	2nd					
14	MAX	2450	405000	1	1						D(a) values	3.3	3.15					
15	RANGE	1350	206000	1	1						D(b) values	1.55	1.47	1				
16																		
17																		

Third Epoch

SU	IM ▼ : X ✓ f _x =SUM(L14^2,M14^2,N14^2)														
4	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N	
1	a =	0.433085			733117		SS):		del SSE/del(b) =- (Y-YP)X						
2		Sq Ft Price\$ X		X	Y	YP	(1/2)SSE								
3		1100 199000 0.00		0.00	0.00	0.43	0.093781	0.43	0.00						
4		1400	245000	0.22	0.22	0.60	0.069452	0.37	0.08		alpha(a)=	V14^2,N14^2)			
5		1425	319000	0.24	0.58	0.61	0.000366	0.03	0.01		eta'(a)=	0.001822253			
6		1550	240000	0.33	0.20	0.68	0.114447	0.48	0.16		a3=	0.4275198			
7		1600	312000	0.37	0.55	0.70	0.012178	0.16	0.06						
8		1700	279000	0.44	0.39	0.76	0.068659	0.37	0.16		alpha(b)=	5.64363081742593			
9		1700	310000	0.44	0.54	0.76	0.024218	0.22	0.10		eta'(b)=	0.004209405			
10		1875	308000	0.57	0.53	0.85	0.052755	0.32	0.19		b3=	0.727145619			
11		2350	405000	0.93	1.00	1.11	0.006261	0.11	0.10						
12		2450	324000	1.00	0.61	1.17	0.156468	0.56	0.56						
13	MIN	1100	199000	0	0	Total SSE=	0.598585	3.05	1.42			1st	2nd	3rd	
14	MAX	2450	405000	1	1						D(a) values	3.3	3.15	3.05	5
15	RANGE	1350	206000	1	1						D(b) values	1.55	1.47	1.42	2
16															
17															
18															

Disadvantage of Ada-grad

As the learning rate is decreasing drastically so in deep neural networks, at a particular time the weight up-dation will be so small that it will stop moving towards global minima.

RMS Prop Optimizer

$$w_{n+1} = \gamma w_n + (1 - \gamma) D_n^2(b)$$

Notations	Description
w_{n+1}	Moving weighted average
γ	Moving average parameter
w_n	Initial weighted average
$D_n(b)$	Derivative of loss function

Updated Weight

$$b_{n+1} = b_n - \frac{\eta}{\sqrt{w_{n+1} + \varepsilon}} \frac{\partial L}{\partial b}$$

First Epoch

Step 1
$$w_{a(n+1)} = \gamma w_{a(n)} + (1 - \gamma) \left(\frac{d(SSE)}{da}\right)^{2}$$

$$w_{b(n+1)} = \gamma w_{b(n)} + (1 - \gamma) \left(\frac{d(SSE)}{db}\right)^{2}$$

$$\frac{d(SSE)}{da} = 3.30$$

$$w_{a(n)} = 0$$

$$\gamma = 0.9$$

$$\frac{d(SSE)}{da} = 1.55$$

$$w_{b(n)} = 0$$

$$w_{n+1} = (0.9)(0) + (1 - 0.9)(3.30)^{2}$$

= 0 + 1.089
= 1.089

$$w_{b(n+1)} = (0.9)(0) + (1 - 0.9)(1.55)^{2}$$

= 0 + 0.240
= 0.240

Step 2

$$a_{n+1} = a_n - \frac{\eta}{\sqrt{w_{a(n+1)} + \varepsilon}} \frac{d(SSE)}{da}$$

$$b_{n+1} = b_n - \frac{\eta}{\sqrt{w_{b(n+1)} + \varepsilon}} \frac{d(SSE)}{db}$$

$$a_n = 0.45$$
 $\eta = 0.01$
 $\varepsilon = 0.00000001$
 $b_n = 0.75$

$$a_{n+1} = 0.45 - \frac{0.01}{\sqrt{1.089 + 0.000000001}} (3.30)$$

$$= 0.45 - 0.03162$$

$$= 0.41838$$

$$b_{n+1} = 0.75 - \frac{0.01}{\sqrt{0.240 + 0.000000001}} (1.55)$$

$$= 0.75 - 0.03164$$

$$= 0.72$$

Second Epoch

115	5	- : [×	f _x =M	10*M11+(1	L-M10)*(H1	3)^2							
4	А	В	С	D	E	F	G	Н	1	J	K	L	М	
1	a =	0.418377	b=	b= <mark>0.72</mark>				del SSE/del(<mark>a</mark>) =-(Y-YP)	del SSE/del(b) =- (Y-YP)X					
2		Sq Ft	Price\$	X	Y	ΥP	(1/2)SSE							
3		1100	199000	0.00	0.00	0.42	0.08752	0.42	0.00					
4		1400	245000	0.22	0.22	0.58	0.06304	0.36	0.08					
5		1425	319000	0.24	0.58	0.59	4.22E-05	0.01	0.00					
6		1550	240000	0.33	0.20	0.66	0.1055	0.46	0.15					
7		1600	312000	0.37	0.55	0.69	0.009316	0.14	0.05					
8		1700	279000	0.44	0.39	0.74	0.06126	0.35	0.16					
9		1700	310000	0.44	0.54	0.74	0.019909	0.20	0.09					
10		1875	308000	0.57	0.53	0.83	0.045779	0.30	0.17		gamma=		0.9	
11		2350	405000	0.93	1.00	1.09	0.003616	0.09	0.08		initial wei	ight_a=	1.089106798735	
12		2450	324000	1.00	0.61	1.14	0.141289	0.53	0.53		initial wei	ight_b=	0.23783001	
13	MIN	1100	199000	0	0	Total SSE=	0.53727	2.85	1.31					
14	MAX	2450	405000	1	1									
15	RANGE	1350	206000	1	1			w_avg(a)	1.790889275389		w_avg(b)=	0.386463		
16								eta'(a)=	0.007472495		eta'(b)=	0.016086		
17								a2=	0.397101033		b2=	0.70		
18														

Third Epoch

116	5	₹ : □	× •/	f _x =0.0	01/SQRT(I	15+0.000000	001)							▼ : × ✓ f _x =0.01/SQRT(I15+0.00000001)												
4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М													
1	a =	0.397101	b= 0.7					del SSE/del(<mark>a</mark>) =-(Y-YP)	del SSE/del(b) =- (Y-YP)X																	
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE																			
3		1100	199000	0.00	0.00	0.40	0.078845	0.40	0.00																	
4		1400	245000	0.22	0.22	0.55	0.054238	0.33	0.07																	
5		1425	319000	0.24	0.58	0.57	0.000143	-0.02	0.00																	
6		1550	240000	0.33	0.20	0.63	0.093055	0.43	0.14																	
7		1600	312000	0.37	0.55	0.66	0.005812	0.11	0.04																	
8		1700	279000	0.44	0.39	0.71	0.051156	0.32	0.14																	
9		1700	310000	0.44	0.54	0.71	0.014344	0.17	0.08																	
10		1875	308000	0.57	0.53	0.80	0.036403	0.27	0.15		gamma=		0.9													
11		2350	405000	0.93	1.00	1.05	0.001024	0.05	0.04		initial_wei	ght_a=	1.790889													
12		2450	324000	1.00	0.61	1.10	0.120199	0.49	0.49		initial_wei	ght_b=	0.386463													
13		1100	199000	0	0	Total SSE=	0.455219	2.54	1.16																	
14	MAX	2450	405000	1	1																					
15	RANGE	1350	206000	1	1			w_avg(a)	2.258685837197		w_avg(b)=	0.481773														
16								eta'(a)=	0.006653836		eta'(b)=	0.014407														
17								a3=	0.380177704		b3=	0.68														
18																										

Adam Optimizer (Combination of Ada-grad and RMS Prop)

First moment vector

$$m_{n+1} = \beta_1 m_n + (1 - \beta_1) D_n(b)$$

First decay rate Initial moment vector Derivative of loss function

Second moment vector

$$v_{n+1} = \beta_2 v_n + (1 - \beta_2) D_n^2(b)$$

Second decay rate

Initial moment vector Square of derivative of loss function

Step 1

$$m_{a(n+1)} = \beta_1 m_{a(n)} + (1 - \beta_1) \frac{d(SSE)}{da}$$

$$m_{b(n+1)} = \beta_1 m_{b(n)} + (1 - \beta_1) \frac{d(SSE)}{db}$$

Step 2

$$v_{a(n+1)} = \beta_2 v_{a(n)} + (1 - \beta_2) \left(\frac{d(SSE)}{da}\right)^2$$

$$v_{b(n+1)} = \beta_2 v_{b(n)} + (1 - \beta_2) \left(\frac{d(SSE)}{db}\right)^2$$

$$m_{a(n)} = 0$$

$$m_{b(n)} = 0$$

$$\frac{d(SSE)}{da} = 3.30$$

$$\frac{d(SSE)}{db} = 1.55$$

$$\beta_1 = 0.9$$

$$\beta_2 = 0.999$$

$$v_{a(n)} = 0$$

$$v_{b(n)} = 0$$

$$m_{a(n+1)} = (0.9)(0) + (1 - 0.9)(3.30)$$

= 0 + 0.33
= 0.33

$$m_{b(n+1)} = (0.9)(0) + (1 - 0.9)(1.55)$$

= 0 + 0.155
= 0.155

$$v_{a(n+1)} = (0.999)(0) + (1 - 0.999)(3.30)^{2}$$

= 0 + 0.01089
= 0.01089

$$v_{b(n+1)} = (0.999)(0) + (1 - 0.999)(1.55)^{2}$$

= 0 + 0.0024
= 0.0024

First moment bias correction

$$\widehat{m}_{n+1} = \frac{m_{n+1}}{1 - \beta_1}$$

Second moment bias correction

$$\widehat{v}_{n+1} = \frac{v_{n+1}}{1 - \beta_2}$$

Updated weight

$$b_{n+1} = b_n - \eta \frac{\widehat{m}_{n+1}}{\sqrt{\widehat{v}_{n+1} + \varepsilon}}$$

Note:

 β_1 is initialized to 0.9

 β_2 is initialized to 0.999

Step 3

$$\widehat{\widehat{m}}_{a(n+1)} = \frac{m_{a(n+1)}}{1 - \beta_1}$$

$$\widehat{m}_{b(n+1)} = \frac{m_{b(n+1)}}{1 - \beta_1}$$

Step 4

$$\hat{v}_{a(n+1)} = \frac{v_{a(n+1)}}{1 - \beta_2}$$

$$\hat{v}_{b(n+1)} = \frac{v_{b(n+1)}}{1 - \beta_2}$$

Step 5

$$a_{n+1} = a_n - \eta \frac{\widehat{m}_{a(n+1)}}{\sqrt{\widehat{v}_{a(n+1)}} + \varepsilon}$$

$$b_{n+1} = b_n - \eta \frac{\widehat{m}_{b(n+1)}}{\sqrt{\widehat{v}_{b(n+1)}} + \varepsilon}$$

$$\beta_1 = 0.9$$

$$m_{a(n+1)} = 0.33$$

$$m_{b(n+1)} = 0.155$$

$$\beta_2 = 0.999$$

$$v_{a(n+1)} = 0.01089$$

$$v_{b(n+1)} = 0.0024$$

 $a_n = 0.45$

 $b_n = 0.75$

 $\eta = 0.01$

 $\varepsilon = 0.00000001$

$$\hat{m}_{a(n+1)} = \frac{0.88}{1 - 0.9} = 3.3$$

0.33

$$\widehat{m}_{b(n+1)} = \frac{0.155}{1 - 0.9} = 1.55$$

$$\hat{v}_{a(n+1)} = \frac{0.01089}{1 - 0.999}$$

$$= 10.89$$

$$\hat{v}_{b(n+1)} = \frac{0.0024}{1 - 0.999}$$

$$= 2.4$$

$$a_{n+1} = 0.45 - (0.01) \frac{3.3}{\sqrt{10.89 + 0.00000001}}$$
$$= 0.449$$

$$b_{n+1} = 0.75 - (0.01) \frac{1.55}{\sqrt{2.4} + 0.0000001}$$
$$= 0.749$$

Second Epoch

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	
									del					
								del	SSE/del(
								SSE/del(a	b) =-(Y-					
1	a =	0.449	b=	0.749353) =-(Y-YP)	YP)X					
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE							
3		1100	199000	0.00	0.00	0.45	0.100801	0.45	0.00					
4		1400	245000	0.22	0.22	0.62	0.076919	0.39	0.09					
5		1425	319000	0.24	0.58	0.63	0.001099	0.05	0.01			m(a)_n=	0.330016	
6		1550	240000	0.33	0.20	0.70	0.124878	0.50	0.17			v(a)_n=	0.010891	
7		1600	312000	0.37	0.55	0.73	0.015841	0.18	0.07			m(b)_n=	0.154526	
8		1700	279000	0.44	0.39	0.78	0.077498	0.39	0.17			v(b)_n=	0.002388	
9		1700	310000	0.44	0.54	0.78	0.029576	0.24	0.11			beta_1=	0.9	
10		1875	308000	0.57	0.53	0.88	0.06127	0.35	0.20			beta_2=	0.999	
11		2350	405000	0.93	1.00	1.14	0.010202	0.14	0.13			eta=	0.001	
12		2450	324000	1.00	0.61	1.20	0.17497	0.59	0.59			epsilon=	0.0000001	
13	MIN	1100	199000	0	0	Total SSE=	0.673053	3.29	1.54					
14	MAX	2450	405000	1	1									
15	RANGE	1350	206000	1	1		m(a)=	0.625736	m(b)=	0.292954				
16							v(a)=	0.021686	v(b)=	0.004754				
17							m^(a)=	6.257358	m^(b)=	2.929538				
18							v^(a)=	21.68589	v^(b)=	4.753531				
19							w(a)=	0.447656	w(b)=	0.748894				

Third Epoch

\square	Α	В	С	D	E	F	G	Н	I	J	K	L	М	
									del					
								del	SSE/del(
								SSE/del(a	b) =-(Y-					
1	a =	0.447656	b=	0.748894) =-(Y-YP)	YP)X					
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE							
3		1100	199000	0.00	0.00	0.45	0.100198	0.45	0.00					
4		1400	245000	0.22	0.22	0.61	0.076353	0.39	0.09					
5		1425	319000	0.24	0.58	0.63	0.001032	0.05	0.01			m(a)_n=	0.625736	
6		1550	240000	0.33	0.20	0.70	0.124131	0.50	0.17			v(a)_n=	0.021686	
7		1600	312000	0.37	0.55	0.73	0.015573	0.18	0.07			m(b)_n=	0.292954	
8		1700	279000	0.44	0.39	0.78	0.07689	0.39	0.17			v(b)_n=	0.004754	
9		1700	310000	0.44	0.54	0.78	0.0292	0.24	0.11			beta_1=	0.9	
10		1875	308000	0.57	0.53	0.88	0.060709	0.35	0.20			beta_2=	0.999	
11		2350	405000	0.93	1.00	1.14	0.009951	0.14	0.13			eta=	0.001	
12		2450	324000	1.00	0.61	1.20	0.173905	0.59	0.59			epsilon=	0.0000001	
13	MIN	1100	199000	0	0	Total SSE=	0.667941	3.27	1.53					
14	MAX	2450	405000	1	1									
15	RANGE	1350	206000	1	1		m(a)=	0.890331	m(b)=	0.416792				
16							v(a)=	0.032368	v(b)=	0.007094				
17							m^(a)=	8.903307	m^(b)=	4.167919				
18							v^(a)=	32.36823	v^(b)=	7.094228				
19							w(a)=	0.446091	w(b)=	0.748519				
20														

Thank You