I pledge my honor that I have abided by the Stevens Honor System

Question 1

1.1)

$$\frac{\text{Clock Rate}}{\text{CPI}} = \frac{\text{Instructions}}{\text{Second}}$$

$$P_1: \frac{3.2 * 10^9}{1.5} = 2.13 * 10^9 \frac{\text{instructions}}{\text{second}}$$

$$P_2: \frac{2.0 * 10^9}{1} = 2.00 * 10^9 \frac{\text{instructions}}{\text{second}}$$

$$P_3: \frac{4.0*10^9}{2.3} = 1.74*10^9 \frac{\text{instructions}}{\text{second}}$$

1.2)

$$Instructions = \frac{(Time) * (Clock Rate)}{(CPI)}$$

 $Clock\ Cycles = CPI * Instructions$

$$P_1$$
: instructions = $\frac{(10)(3.2 * 10^9)}{1.5}$ = 2.13 * 10¹⁰ instructions

$$P_1$$
: cycles = $(2.13 * 10^{10}) * (1.5) = 3.20 * 10^{10}$ cycles

$$P_2$$
: instructions = $\frac{(10)(2.0 * 10^9)}{1}$ = 2.00 * 10¹⁰ instructions

$$P_2$$
: cycles = $(2.00 * 10^{10}) * (1) = 2.00 * 10^{10}$ cycles

$$P_3$$
: instructions = $\frac{(10)(4.0*10^9)}{2.3}$ = 1.74 * 10¹⁰ instructions

$$P_3$$
: cycles = $(1.74 * 10^{10}) * (2.3) = 4.00 * 10^{10}$ cycles

1.3)
$$P_{2}: \text{New CPI} = 1.0 * 1.30 = 1.30$$

$$P_{2}: \text{New Time} = 10 * (1 - .30) = 7.0$$

$$\text{Clock Rate} = \frac{(\text{Instructions}) * (\text{CPI})}{(\text{Time})}$$

$$\text{New clock rate} = \frac{(1.74 * 10^{10})(1.3)}{7.0} = 3.23 * 10^{9} \frac{\text{Clock Cycles}}{\text{second}}$$

Question 2

2.1)

$$P_1$$
: Overall CPI = 1(.30) + 2(.20) + 3(.30) + 3(.20) = 2.2
 P_2 : Overall CPI = 2(.30) + 2(.20) + 2(.30) + 2(.20) = 2

2.2)

Number of instructions =
$$1.0 * 10^6$$

Clock Cycles = CPI * Instructions
 P_1 : Clock cycles = $2.2 * (1.0 * 10^6) = 2.2 * 10^6$ cycles

$$P_2$$
: Clock cycles = $2.0 * (1.0 * 10^6) = 2.0 * 10^6$ cycles

2.3)

$$P_1$$
: Time = $\frac{(1.0 * 10^6)(2.2)}{2.5 * 10^9}$ = 8.8 * 10⁻⁴ seconds

$$P_2$$
: Time = $\frac{(1.0 * 10^6)(2.0)}{3 * 10^9}$ = 6.67 * 10⁻⁴ seconds

Therefore, P_2 is the faster processor for this instruction set.

Question 3

3.1) The variables that are exhibiting temporal locality are the index variables i and j, the length variables n and m, the references for both the A array and Anew array, and finally the errs variable. This is because they are being referenced every iteration of the loop and being often by the program.

3.2) The variables that are exhibiting spatial locality are the values of both the A array and the Anew array that are referenced by row. More specifically this would include Anew[j][i], A[j][i+1], A[j][i-1], and A[j][i]. This is because when an array is stored into memory, the values of each row are stored next to each other. Therefore, when the loops iterate over each row and get new values, they are right next to each other and easy to access with caches.

3.3) The program would become slightly slower. This is because C is a row-major language, which means that in memory, values in each row of a matrix are stored next to each other. Therefore, if we switched the i and j variables, we would not be efficiently taking advantage of the spatial locality that is available when getting values from the arrays.

Question 4

4.1)
$$C = 16 * 4 = 64 \text{ bytes}$$

 $S = 16 \text{ s} = 4$
 $B = 4 \text{ b} = 2$
 $E = 1 \text{ t} = 2$

Hex Value	Binary Address	Tag	Set Index	Offset	Hit or Miss
0x43	01000011	01	0000	11	miss
0xc4	11000100	11	0001	00	miss
0x2b	00101011	00	1010	11	miss
0x42	01000010	01	0000	10	hit
0xc5	11000101	11	0001	01	hit
0x28	00101000	00	1010	00	hit
0xbe	10111110	10	1111	10	miss
0x05	00000101	00	0001	01	miss
0x92	10010010	10	0100	10	miss
0x2a	00101010	00	1010	10	hit
0xba	10111010	10	1110	10	miss
0xbd	10111101	10	1111	01	miss

4.2)
$$C = 8 * 8 = 64 \text{ bytes}$$

 $S = 8 * s = 3$

$$B = 8 \quad b = 3$$

$$E = 1$$
 $t = 2$

Hex Value	Binary Address	Tag	Set Index	Offset	Hit or Miss
0x43	01000011	01	000	011	miss
0xc4	11000100	11	000	100	miss
0x2b	00101011	00	101	011	miss
0x42	01000010	01	000	010	miss
0xc5	11000101	11	000	101	miss
0x28	00101000	00	101	000	hit
0xbe	10111110	10	111	110	miss
0x05	00000101	00	000	101	miss
0x92	10010010	10	010	010	miss
0x2a	00101010	00	101	010	hit
0xba	10111010	10	111	010	hit
0xbd	10111101	10	111	101	hit

Question 5

$$5.1$$
) C = $512 * 4 = 2048$ bytes

$$S = 512$$
 $S = 9$

$$B = 4 \qquad \qquad b = 2$$

$$E = 1$$
 $t = 53$

The first 53 bits would be used for the tag. 9 bits would be used for the set index. Then 2 bits would be used for the byte offset.

5.2)
$$C = 64 * 32 = 2048$$
 bytes

$$S = 64$$
 $S = 6$

$$B = 32$$
 $b = 5$

$$E = 1$$
 $t = 53$

The first 53 bits would be used for the tag. 6 bits would be used for the set index. Then 5 bits would be used for the byte offset.

5.3) For 5.1:

Total bits in cache = (1 valid bit + 53 bits for tag + (8 * 4) bits for data) * 64 sets = 19840 bits

Total bits storing data = 2048 * 8 = 16384 bits

$$\frac{16384}{44032} = .372$$

For 5.2:

Total bits in cache = (1 valid bit + 53 bits for tag + (8 * 32) bits for data) * 512 sets = 44032 bits

Total bits storing data = 2048 * 8 = 16384 bits

$$\frac{16384}{19840} = .826$$

5.4)
$$C = 512 * 4 = 2048$$
 bytes

$$S = 256$$
 $S = 8$

$$B=4 \qquad \qquad b=2$$

$$E = 2 \qquad \qquad t = 54$$

The first 54 bits would be used for the tag. 8 bits would be used for the set index. Then 2 bits would be used for the byte offset.

Question 6

$$C = 16 * 4 = 64$$
bytes

$$S=4$$
 $s=2$

$$B=4 \qquad \qquad b=2$$

$$E=4$$
 $t=8$

Hex Value	Binary Address	Tag	Set Index	Offset
0x143	000101000011	00010100	00	11
0xc4a	110001001010	11000100	10	10
0x22b	001000101011	00100010	10	11
0x42f	010000101111	01000010	11	11
0x492	010010010010	01001001	00	10
0x2a2	001010100010	00101010	00	10
0x3ba	001110111010	00111011	10	10
0xb2d	101100101101	10110010	11	01

See cache below.

Set/Line	Line 0	Line 1	Line 2	Line 3
Set 0	Tag = 00010100	Tag = 01001001	Tag = 00101010	
	<u>Data</u>	<u>Data</u>	<u>Data</u>	
	0x140, 0x141,	0x490, 0x491,	0x2a0, 0x2a1,	
	0x142, 0x143	0x492 , 0x493	0x2a2 , 0x2a3	
Set 1				
Set 2	Tag = 11000100	Tag = 00100010	Tag = 00111011	
	<u>Data</u>	<u>Data</u>	<u>Data</u>	
	0xc49, 0xc48,	0x228, 0x229,	0x3b8, 0x3b9,	
	0xc4a , 0xc4b	0x22a, 0x22b	0x3ba , 0x3bb	
Set 3	Tag = 01000010	Tag = 10110010		
	<u>Data</u>	Data		
	0x42c, 0x42d,	0xb2c, 0xb2d ,		
	0x42e, 0x42f	0xb2e, 0xb2f		