Санкт-Петербургский Государственный Университет Математико-механический факультет

Кафедра информатики

Зернов Алексей Викторович

Разработка системы автоматического анализа новостных публикаций на финансовом рынке

Бакалаврская работа

Научный руководитель: к.ф.-м. н., доцент Григорьев Д. А.

Рецензент: позиция рецензента рецензент

SAINT-PETERSBURG STATE UNIVERSITY Faculty of Mathematics and Mechanics

Computer Science Department

Alexey Zernov

Development of the automatic analysis system of a financial market's news publications

Bachelor's Thesis

Scientific supervisor: assistant professor Dmitry Grigoryev

Reviewer: reviewer position reviewer

Оглавление

Введение			4
1.	Обзор существующих решений		5
	1.1.	IBM: Watson Developer Cloud	5
		1.1.1. News Intelligence	5
		1.1.2. Social Customer Care	5
		1.1.3. News Explorer	6
		1.1.4. Investment Advisor	6
	1.2.	Microsoft: Text Analytics	6
	1.3.	Медиалогия	6
2.	Инс	струменты и методологии	8
	2.1.	Natural Language Toolkit	8
	2.2.	pymorphy2	8
	2.3.	Томита-парсер	9
	2.4.	Яндекс.Спеллер	9
	2.5.	OntosMiner	9
Список литературы		10	

Введение

1. Обзор существующих решений

1.1. IBM: Watson Developer Cloud

Данный сервис представляет из себя набор различных API¹ для анализа текстовых, голосовых и визуальных данных. Среди их сравнительного большого количества я выделил несколько, о которых ниже будет рассказано подробнее.

1.1.1. News Intelligence

Одним из наиболее интересных сервисов для анализа новостных публикаций является приложение News Intelligence².

Приложение предлагает ввести название интересующей Вас компании, после чего предоставляются следующие результаты:

- Наиболее упоминаемые сущности (люди, темы, компании)
- Наиболее просматриваемые новостные публикации
- Анализ тональности новостных публикаций из десяти случайных источников
- Совместные упоминания и оценка их тональности

Важно отметить, что приложение News Intelligence является лишь примером использования данного инструмента, а не готовым продуктом.

1.1.2. Social Customer Care

Еще одним интересным примером использования Watson Developer Cloud является приложение Social Customer Care³. Оно осуществляет мониторинг социальных медиа, определяя потребности клиента или его запросы, а также автоматически отвечает в режиме реального времени.

¹Application Programming Interface

²https://discovery-news-demo.mybluemix.net/

³https://social-customer-care.mybluemix.net/

1.1.3. News Explorer

Следующий пример — News Explorer⁴. В данном приложении отображаются наиболее обсуждаемые запросы, наиболее часто встречающиеся совместные упоминания и список свежих новостей, разбитых по категориям.

В этом приложении также можно самостоятельно задать интересующий запрос, после чего будет отображена визуализированная карта взаимосвязей разных сущностей и новостных публикаций в виде графа.

1.1.4. Investment Advisor

И последним рассматриваемым примером из данной группы является приложение Investment Advisor⁵. В данном приложении есть две группы людей: инвесторы и представители компаний. На основе анализа личностных особенностей людей по их постам, строятся определенные рекомендации по вложениям и наиболее подходящим для сотрудничества представителям компаний.

1.2. Microsoft: Text Analytics

Text Analytics⁶ позволяет провести анализ тональности текста, выделив ключевые слова. Microsoft предоставляет набор методов API для работы с данным сервисом. Подробнее о работе с ними будет написано ниже.

1.3. Медиалогия

Медиалогия⁷ — разработчик автоматической системы мониторинга и анализа СМИ в режиме реального времени.

Данная платформа предоставляет такие решения, как мониторинг СМИ компании (ее брендов, конкурентов и др.) и анализ СМИ и со-

⁴http://news-explorer.mybluemix.net/

⁵http://investment-advisor.mybluemix.net/

⁶https://text-analytics-demo.azurewebsites.net/

⁷http://www.mlg.ru/

общений с использованием уникальной технологии лингвистического анализа текстов.

Из предоставленных примеров отчетов 8 на сайте можно увидеть, что сервис учитывает следующее:

- **Количество упоминаний.** Отслеживается динамика по кварталам и месяцам. Отслеживая динамику по дням, платформа определяет наиболее заметные информационные поводы, вызывающие более сильный всплеск упоминаний. Также учитывается цитируемость, совместные упоминания и распределение по тематическим рубрикам.
- **Качество упоминаний.** В рассмотренном отчете предоставлена информация о положительных и негативных сообщениях. Выделены пики и проанализирована связь со СМИ, которые способствуют больше благоприятному или отрицательному всплеску упоминаний.

Также в отчете были учтены распределения по уровням СМИ, по их географическому расположению, и прочее. Однако среди всего этого наиболее важным моментом является как раз анализ текста новости: является упоминание положительным или отрицательным, как это совместно упоминается с другими запросами и тому подобное.

 $^{^8{\}rm B}$ качестве образца был взял аналитический отчет компании «Вымпелком» в СМИ за II квартал 2009 года

2. Инструменты и методологии

2.1. Natural Language Toolkit

NTLK⁹ является пакетом библиотек и программ для разработки программ на Python, работающих с естественным языком. Сопровождается обширной документацией, а также книгой¹⁰, объясняющей основные концепции проблем, для решения которых предназначен данный пакет. NTLK — свободное программное обеспечение, то есть доступное бесплатно.

Данный пакет подходит для таких областей как компьютерная лингвистика, эмпирическая лингвистика, когнитивистика, искусственный интеллект, информационный поиск и машинное обучение. NTLK используется преимущественно в качестве учебного пособия, индивидуального обучения или прототипирования и создания систем, ориентированных на научно-исследовательскую деятельность.

Изначально пакет предназначен для англоязычных текстов, но имеется возможность обучения классификаторов для остальных языков.

2.2. pymorphy2

 $Pymorphy2^{11}[1]$ написан на языке Python и имеет следующие возможности:

- Приведение слова к нормальной форме
- Ставить слово в нужную форму
- Возвращать грамматическую информацию о слове

Распространяется рутогру2 под лицензией MIT^{12} , если используется в научной работе.

⁹http://www.nltk.org

¹⁰http://www.nltk.org/book/

¹¹https://pymorphy2.readthedocs.io/en/latest/index.html

¹²https://opensource.org/licenses/MIT

2.3. Томита-парсер

Томита-парсер¹³ способен извлекать структурированные данные из текстов на естественном языке. Как и почти во всех инструментах, рассматриваемых в данном разделе, Томита-парсер ориентирован преимущественно на русскоязычные тексты. В нем используются контекстносвободные грамматики и словари ключевых слов. Код проекта¹⁴ находится в свободном доступе.

2.4. Яндекс.Спеллер

Яндекс.Спеллер¹⁵ выполняет задачу проверки орфографии в текстах на английском, русском и украинском языках. Для этого используется орфографический словарь. К тому же, предоставлен набор API методов для реализации данной проверки разработчиками сайтов или приложений.

2.5. OntosMiner

OntosMiner¹⁶ является решением компании Eventos¹⁷, занимающейся в большей степени разработкой продуктов в области лингвистического анализа текстовой информации, кластеризацией и классификацией информации. Конкретно OntosMiner является целой комплексной системой, дающей возможность распозавания связей между сущностями в текстах на естественной языке. Также, она позволяет определеять общую тональность текста.

¹³https://tech.yandex.ru/tomita/

¹⁴https://github.com/yandex/tomita-parser/

¹⁵https://tech.yandex.ru/speller/

¹⁶http://my-eventos.com/solution/ontosminer/

¹⁷http://my-eventos.com/solution/ontosminer/

Список литературы

[1] Korobov Mikhail. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of Images, Social Networks and Texts / Ed. by Mikhail Yu. Khachay, Natalia Konstantinova, Alexander Panchenko et al.— Springer International Publishing, 2015.— Vol. 542 of Communications in Computer and Information Science.— P. 320–332.— URL: http://dx.doi.org/10.1007/978-3-319-26123-2_31.