§ 9.1 简谐振动 § 9.2 旋转矢量

一、简谐振动(谐振动)的描述

简谐振动:恢复力与位移关系为F = -kx的振动。

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0 \iff \omega^2 = \frac{k}{m}$$

§ 9. 1-2 简谐振动 旋转矢量

$$\frac{d^2x}{dt^2} + \omega^2 x = 0 \longrightarrow x = A\cos(\omega t + \varphi)$$
 运动方程

$$v = \frac{dx}{dt} = -\omega A \sin(\omega t + \varphi)$$
 $a = \frac{dv}{dt} = -\omega^2 A \cos(\omega t + \varphi)$

$$x = A\cos(\omega t + \varphi)$$

$$v = -\omega A\sin(\omega t + \varphi)$$

$$a = -\omega^2 A\cos(\omega t + \varphi)$$

 $x = x_0 = A\cos \varphi$, $v = v_0 = -\omega A\sin \varphi$

●A:振幅,反映系统能

量大小,与初始条 件有关。

设 *t* = 0 时:

$$x_0 = A\cos\varphi$$

$$v_0 = -\omega A \sin \varphi$$

$$A = \sqrt{x_0^2 + (\frac{v_0}{\omega})^2}$$

$$x = A\cos(\omega t + \varphi)$$

$$v = -\omega A\sin(\omega t + \varphi)$$

$$a = -\omega^2 A\cos(\omega t + \varphi)$$

● Ø 角频率或园频率,反映振动快慢,系统属性。

$$\omega = \frac{2\pi}{T} = 2\pi v$$

$$\omega^2 = \frac{k}{m} \quad \omega = \sqrt{\frac{k}{m}}$$

 $ot + \varphi$ 相位或周相或相,反映谐振子振动状态。

$$\phi(t) = \omega t + \varphi \longrightarrow x, v, a$$

9: 初相位,反映谐振子初始时刻振动状态。

§ 9. 1-2 简谐振动 旋转矢量

二、谐振动曲线

三、谐振动的图解法——旋转矢量法

旋转矢量 A: 作逆时针匀角速率 ω 旋转。

t 时刻其投影 p 的坐标:

$$x = A\cos(\omega t + \varphi)$$

即做简谐振动。

t 时刻 \overline{A} 与+x 轴夹角 = ωt + φ 对应于物体谐振动的相位。

 $\phi(t) = \omega t + \varphi \longleftrightarrow$ 旋转矢量 $\vec{A} \longleftrightarrow x, v, a$

例如,下图中 t=0、 t_1 、 t_2 、 t_3 、 t_4 时刻谐振动所对应

的旋转矢量: $x,v,a \longrightarrow$ 旋转矢量 \tilde{A}

思考:该振动的初相位 $\varphi = ?$

四、振动问题求解

美键: A、 ω 、 φ 的求解

- 1. 明确初始条件,如已知 x_0 , v_0 方向等;
- 2. 画出与初始条件相对应的 旋转矢量;
- 3. 该旋转矢量与+x轴的夹角 即为初相位 φ 。

Fig. t = 0 时的旋转矢量

$$x = A\cos(\omega t + \varphi)$$
 $A = \sqrt{x_0^2 + (\frac{v_0}{\omega})^2}$

例 一物体作简谐振动,其速度最大值 $v_{\rm m}$ =3×10⁻² m/s,振幅A=2×10⁻² m。若 t=0 时,物体位于平衡位置且向-x方向运动,求: T、 $a_{\rm max}$ 、振动方程。

 $\mathbf{m} \quad v = -\boldsymbol{\omega} A \sin(\boldsymbol{\omega} t + \boldsymbol{\varphi})$

$$v_m = \omega A$$
 $\omega = \frac{v_m}{A} = 1.5 \text{ rad/s}$

$$T = \frac{2\pi}{\omega} \approx 4.19 \,\mathrm{s}$$

$$a = -\omega^2 A \cos(\omega t + \varphi)$$

$$a_{max} = \omega^2 A = 1.5^2 \times 2 \times 10^{-2} = 4.5 \times 10^{-2} \text{ m/s}^2$$

由旋转矢量图可知: $\varphi = \frac{\pi}{2}$

物体的振动方程为:

$$x = 2 \times 10^{-2} \cos(1.5t + \frac{\pi}{2})$$
 (the end)

§ 9. 1-2 简谐振动 旋转矢量

课堂练习 用旋转矢量法判断下列各振动的初位相 φ

例 平衡时将物体向下拉到0.08m处由静止释放后物体作简谐振动,已知 T = 4 s, m = 0.01 kg, 求:

- (1) t = 1.5 s 时,物体所处位置和所受到弹簧作用力;
- (2) 由起始位置运动到 x = 0.04m处所需的最短时间。

解 物体振幅: A= 0.08 m

$$\omega = \frac{2\pi}{T} = \frac{\pi}{2}$$

由旋转矢量图得: $\varphi = \pi$

§ 9. 1-2 简谐振动 旋转矢量

物体的振动方程: $x = 0.08 cos(\frac{\pi}{2}t + \pi)$

t=1.5 s 时,物体位置: $x = 0.08 cos(\frac{\pi}{2} \times 1.5 + \pi) \approx 0.057 \text{ m}$

物体所受合力:

$$F = -kx$$
 $\omega = \sqrt{k/m}$

$$F = -m\omega^2 x \approx -1.41 \times 10^{-3} \,\mathrm{N}$$

$$F = T - mg$$

$$T = F + mg \approx 9.7 \times 10^{-2} \,\mathrm{N}$$

§ 9. 1-2 简谐振动 旋转矢量

(2) 由起始位置运动到 x = 0.04m处所需的最短时间。

$$\omega t = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$
 $\omega = \frac{\pi}{2}$

最短时间: t≈1.33s

(the end)

五、简谐振动的超前与落后

$$x_1 = A\cos(\omega t + \varphi_1)$$

$$x_2 = A\cos(\omega t + \varphi_2)$$

$$x_1$$
 超前 x_2 位相: $2\pi - (\varphi_2 - \varphi_1)$

课堂练习 周期皆为 T=2s,问:哪个超前?超前多少

位相和时间?

解 由旋转矢量图可知:

$$a$$
超前 b 位相: $\frac{\pi}{2} - (-\frac{\pi}{3}) = \frac{5\pi}{6}$

$$\omega \Delta t = \frac{5\pi}{6}$$
 $\omega = \frac{2\pi}{T}$

$$\Delta t = \frac{5}{12} T \approx 0.83 \,\mathrm{s}$$

a超前 b 时间约 0.83 秒。

b超前 a 多少位相和时间?

归纳

1. 简谐振动的描述 恢复力: F = -kx

$$x = A\cos(\omega t + \varphi)$$

$$v = -\omega A\sin(\omega t + \varphi)$$

$$a = -\omega^2 A\cos(\omega t + \varphi)$$

$$\omega = \sqrt{\frac{k}{m}}, A = \sqrt{x_0^2 + (\frac{v_0}{\omega})^2}$$

2. 旋转矢量法

$$\phi(t) = \omega t + \varphi \longleftrightarrow 旋转矢量 Ā \longleftrightarrow x, v, a$$

3. 振动的超前与落后