Mikroprogrammering I

Att bygga en CPU

Olle Roos-datorn (fö2+3) Björn Lindskog-datorn (lab1)

Pipelinad dator (fö4,lab2)

- Variabel exekveringstid
- Variabelt format
- Inget överlapp
- Central styrenhet, som är mikroprogrammerad
- Flera adresseringsmoder/instruktion
- 1 ackumulator
- Nästan alla instruktioner har operand i minnet:

LDA A ; A=M(A)ADDA A ; A=A+M(A)

- Alla instruktioner tar 5 CK
- Alla instruktioner har samma format
- Pipelining/överlapp ger 1 färdig instruktion/CK
- Flera avkodare (inget µprog)
- 1 a-mod/instruktion
- 32 register
- Endast LD/ST har operand i minnet:

LD Rd,(Ra) ; Rd=M(Ra) ADD Rd,Ra,Rb ; Rd=Ra+Rb

1

Att bygga en CPU

- Typisk CISC
- Programmering på 2 nivåer asm och mikro
- Enkel controller:
 - garageportsöppnare
 - del av dator
- + Man kan göra avancerade instruktioner: sortera
- - Många CK/instr blir det ...

- Typisk RISC
- Programmering på 1 nivå: asm
- Enkel CPU
 - enkel mobil
- Finns bara enkla instr.
- Snabb

1

Mikroprogrammering

- o Vi ska bygga en liten dator med enkla komponenter
- Styrenheten (sekvensnät) visar sig vara svårast. Hur gör man för att konstruera ett SN med 100 tillstånd?
- o mikroprogrammering är en vidareutveckling (och faktiskt begränsning) av tekniken att bygga sekvensnät med ROM
- o idé: byt tillståndsvipporna mot en universalräknare
- o Moore, få hopp

Ritning 9 - instruktionsformat

Opkod Märkfält 32 instruktioner 8 adresseringsmoder

Adress/data

Adresseringsmoder

M	Mod	Exempel	EA		
000	Absolut	LDA $addr$	addr		
001	Indirekt	LDA $(addr)$	M(addr)		
010	Indexerad	LDA disp, (XR)	XR + disp		
011	Relativ	JMP disp	PC + 2 + disp		
100	Omedelbar	LDA #n	PC+1		
101	Underförstådd	INCA/INC	_		

M(addr)->AR M(M(addr))->AR M(XR+disp)->AR PC+2+disp->PC n->AR

Exempelvis:

0: LDA 000 1: 3 2: 3; 5 LDA 3
Absolut

EA=3 Operanden = 5

	ns ii ukiit	JI	15	-						
				Instruktioner						
Instruktion	Verkan	Status								
		N	Z	C	V					
LDA addr	AR := M(addr)	*	*	: =	0					
STA addr	M(addr) := AR	-	+	-	0					
ADD addr	AR := AR + M(addr)	*	*	*	*					
SUB addr	AR := AR - M(addr)	*	*	*	*					
INCA	AR := AR + 1	*	*	*	*					
DEC	AR := AR - 1	*	*	*	*					
CMP addr	AR - M(addr)	*	*	*	*					
CLRA	AR := 0	0	1	0	0					
ASRA	AR := AR/2	*	*	*	-					
ASLA	$AR := AR \cdot 2$	*	*	*	*					
LSRA	logiskt högerskift av AR	0	*	*	_					
AND addr	AR := AR and $M(addr)$	*	*	_	0					
OR addr	AR := AR or M(addr)	*	*	-	0					
JMP addr	PC := addr	-	-	_	_					
JMPN addr	PC := addr om N = 1	-	-	-	_					
JMPZ addr	PC := addr om Z = 1		-		_					
JMPC addr	PC := addr om C = 1	_	_	_	_					
JMPV addr	PC := addr om V = 1	_	122	22	_					
IN	AR := IN	*	*	-	0					
OUT	UT := AR	832	- 33		0					

Normal arbetsgång - översikt OP M 0: LDA 000 För varje instruktion { 1: 2: 1. Hämtfas => Samma för alla instruktioner 1. Hämta instruktionen till IR 12: 2. PC++ 3. Hoppa till rätt 2. Adresseringsmodsfas Beroende på M sker olika saker 1. Vanligen: Hämta byten, PC++ EA till ADR 2. 3. Hoppa till rätt **3. Exekveringsfas =>** Beroende på OP sker olika saker 1. Vanligen: Hämta operanden Resultatet till AR och uppdatera SR 3. Hoppa till Hämtfas }

Steg 1 M(PC)->IR

Hämtfas

PC: 0: LDA 0 1: 12

- 0: pc->adr, mpc++ 18,1,11
- 1: adr->minne,data->dr,mpc++ 2,3,5,11
- 2: dr->ir,mpc++ 7,8,11
- 3: PC++, K2->mpc 17,10

K2(0) = 4

Steg 2 $M(PC) \rightarrow ADR$

A-modsfas: absolut

- 4: pc->adr,mpc++ 18,1,11
- 5: data->dr,mpc++ 2,3,5,11
- 6: dr->adr,K1->mpc,PC++ 7,1,9,17

K1(0)=30

Steg 3 AR=M(ADR)

Exe-fas: LDA

AR: 12: 1 13: 0

• 30: data->dr,mpc++ 2,3,5,11

• 31: dr->tr,mpc++ 7,25,11

• 32: tr->ar,mpc++ 27,32,33,11

• 33: status, 0->mpc 34,12

Mikrokod för ADD #7

Steg 1 : samma som förut

K2(4) = 27

27: pc->adr, mpc++ 18,1,11 28: PC++,K1->mpc 17,9

K1(2)=36

Steg 3: exekvering AR = AR + M(ADR)

36: data->dr,mpc++ 2,3,5,11 37: dr->tr, mpc++ 7,25,11 38: ar+tr->ar,mpc++ 27,33,30,11

39: status, 0->mpc 34,12

Mikrokod för STA 13

Steg 1 : hämtfas har vi redan skrivit

Steg 2: absolut har vi redan skrivit

AR: 8 12: 1 ADR: 13 • 13: 0

K1(2)=34

Steg 3: exekvering AR->M(ADR)

34: ar->dr,mpc++ 37,6,11 35: dr->M, 0->mpc 2,4,5,12

LDA

3

PC

Mikrokod för LDA 3(X)

 $M(XR+3) \rightarrow AR$

Hämtfas

finns redan

indexerad a-mod

12: PC->ADR, PC++, MPC++

13: M->DR, XR->TR, MPC++

14: DR->TR, TR->AR, AR->HR, MPC++

15: AR+TR->AR, MPC++

16: HR->AR, AR->**ADR**, K1->MPC

Exekvering för LDA

finns redan

Mikrokod för INCA

 $AR+1 \rightarrow AR$

Hämtfas

finns redan

underförstådd a-mod

29: K1->MPC

Exekvering för INCA

44: AR+1->AR, MPC++

45: status, 0->MPC

Mikrokod för LDA (3)

M(M(3)) -> AR

Hämtfas

finns redan

indirekt a-mod

7: PC->ADR, PC++, MPC++

8: M->DR, MPC++

9: DR->ADR, MPC++

10: M->DR, MPC++

11: DR->ADR, K1->MPC

0

LDA

Exekvering för LDA

finns redan