QUIZ 01

PSTAT 120B: Mathematical Statistics, I

Summer Session A, 2024 with Instructor: Ethan P. Marzban

Information				
Your Name:				
(Firs	st and Last)			
Your NetID:				
(NC	T Perm Number)			
Your Section: (Circle One)	2pm (Hyuk-Jean)	3pm (Hyuk-Jean)	4pm (Minwoo)	5pm (Minwoo

Instructions

- PLEASE DO NOT REMOVE ANY PAGES FROM THIS QUIZ.
- You have 20 minutes to complete this quiz.
- The use of **calculators** is permitted, but the use of any other aids (including, but not limited to, notes, phones, laptops, etc.) is prohibited.
- Ensure you show **all your work**; correct answers with no supporting justification will not receive full credit.
- Kindly note that any instances of academic misconduct (including, but not limited to: unauthorized collaboration, or the use of unauthorized resources) will be dealt with in the strictest manner possible.
- Please refrain from discussing the contents of this quiz with **ANYONE**, until given the all-clear by the Instructor.
- Good Luck!

This quiz contains 15 points in total

The Quiz Begins on the Next Page

Problem 1. Jack and Jill have both taken a PSTAT 120B midterm. Because they studied together, their scores are correlated: specifically, if Y_1 denotes the (percentage) score Jack receives on the exam and Y_2 denotes the (percentage) score Jill receives on the exam, the joint distribution of Y_1 and Y_2 is given by

$$f_{Y_1,Y_2}(y_1,y_2) = 8y_1y_2 \cdot \mathbb{1}_{\{0 \le y_1 \le y_2 \le 1\}}$$

(a) (4 points) Find the marginal density function for Y_2 . For full credit, make sure to clearly specify the support of Y_2 .

Solution: We integrate out y_1 from the joint density:

$$\begin{split} f_{Y_2}(y_2) &= \int_{\mathbb{R}} f_{Y_1,Y_2}(y_1,y_2) \, \mathrm{d}y_1 \\ &= \int_{\mathbb{R}} 8y_1 y_2 \cdot \mathbb{1}_{\{0 \le y_1 \le y_2\}} \cdot \mathbb{1}_{\{0 \le y_2 \le 1\}} \, \mathrm{d}y_1 \\ &= 8y_2 \cdot \mathbb{1}_{\{0 \le y_2 \le 1\}} \cdot \int_0^{y_2} y_1 \, \mathrm{d}y_1 \\ &= \frac{4y_2^3 \cdot \mathbb{1}_{\{0 \le y_2 \le 1\}}}{} \end{split}$$

(b) (6 points) Given that Jack scored exactly a 50%, what is the probability that Jill scores above 75%? You may use, without proof, the fact that the marginal density of Y_1 is

$$f_{Y_1}(y_1) = 4y_1(1 - y_1^2) \cdot \mathbb{1}_{\{0 \le y_1 \le 1\}}$$

Solution: We seek to compute $\mathbb{P}(Y_2 \geq 3/4 \mid Y_1 = 1/2)$. Since we are conditioning on an event with zero probability, we cannot use the definition of conditional probabilities. Instead, we must integrate the conditional density:

$$\mathbb{P}(Y_2 \geq {}^3\!/\!{}_4 \mid Y_1 = {}^1\!/\!{}_2) = \int_{3/4}^\infty f_{Y_2 \mid Y_1}(y_2 \mid {}^1\!/\!{}_2) \, \mathrm{d}y_2$$

To find the conditional density $f_{Y_2\mid Y_1}(y_2\mid y_1)$, we use the definition:

$$\begin{split} f_{Y_2|Y_1}(y_2 \mid y_1) &= \frac{f_{Y_1,Y_2}(y_1,y_2)}{f_{Y_1}(y_1)} \\ &= \frac{8 \cancel{y_1} y_2 \cdot \mathbb{1}_{\{0 \le \cancel{y_1} \le 1\}} \cdot \mathbb{1}_{\{y_1 \le y_2 \le 1\}}}{4 \cancel{y_1} (1 - y_1^2) \cdot \mathbb{1}_{\{0 \le \cancel{y_1} \le 1\}}} \\ &= \frac{2 y_2}{1 - y_1^2} \cdot \mathbb{1}_{\{y_1 \le y_2 \le 1\}} \end{split}$$

Hence, plugging in $y_1=1/2$ we have

$$f_{Y_2|Y_1}(y_2 \mid y_1) = \frac{8}{3} \cdot y_2 \cdot \mathbb{1}_{\{1/2 \le y_2 \le 1\}}$$

and so

$$\mathbb{P}(Y_2 \geq {}^3\!/\!_4 \mid Y_1 = {}^1\!/\!_2) = \int_{3/4}^\infty f_{Y_2\mid Y_1}(y_2 \mid {}^1\!/\!_2) \, \mathrm{d}y_2$$

$$= \int_{3/4}^{\infty} \frac{8}{3} \cdot y_2 \cdot \mathbb{1}_{\{1/2 \le y_2 \le 1\}} \, dy_2$$

$$= \frac{8}{3} \cdot \int_{3/4}^{1} y_2 \, dy_2$$

$$= \frac{4}{3} \cdot \left(1 - \frac{9}{16}\right) = \frac{7}{12} \approx 58.3\%$$

Problem 2. The amount of time (in minutes) Pam spends on the phone is uniformly distributed between 0 minutes and 10 minutes. The amount of time (in minutes) Phyllis spends on the phone is uniformly distributed between 0 minutes and however long Pam was on the phone. Let N denote the amount of time (in minutes) Pam spends on the phone, and let X denote the amount of time (in minutes) Phyllis spends on the phone.

Note: The uniform distribution in this problem is the *continuous* uniform distribution.

(a) (2 points) Compute $\mathbb{E}[X \mid N]$. Show all your steps!

Solution: From the problem statement, we see that

$$N \sim \mathrm{Unif}[0,10]$$

$$(X \mid N=n) \sim \mathrm{Unif}[0,n]$$

To compute $\mathbb{E}[X\mid N]$, we use our two-step procedure: first we compute $\mathbb{E}[X\mid N=n]$, and then we substitute N in place of n. Since $(X\mid N=n)\sim \mathsf{Unif}[0,n]$, we can use the formula for the expectation of a continuous uniform distribution to conclude

$$\mathbb{E}[X\mid N=n]=\frac{n}{2}$$

which means

$$\mathbb{E}[X\mid N] = N$$

(b) (3 points) Compute $\mathbb{E}[X]$. Again, show all your steps!

Solution: We use the Law of Total Probability,

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid N]] = \mathbb{E}\left[\frac{N}{2}\right] = \frac{1}{2} \cdot \mathbb{E}[N] = \frac{1}{2} \cdot 5 = \frac{5}{2}$$

where we have (again) utiliuzed the formula for the expectation of a continuous uniform distribution to compute $\mathbb{E}[N]$.

END OF QUIZ

Selected Discrete Distributions

Distribution	PMF	Expec./Var.	MGF
$X \sim \mathrm{Bin}(n,p)$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$ $k \in \{0, \cdots, n\}$	$\mathbb{E}[X] = np$ $\operatorname{Var}(X) = np(1-p)$	$M_X(t) = (1 - p + pe^t)^n$
$X \sim Geom(p)$	$p_X(k) = p(1-p)^{k-1}$, $k \in \{1, 2, \cdots\}$	$\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{pe^t}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$
$X \sim \operatorname{Geom}(p)$	$p_X(k) = p(1-p)^k$, $k \in \{0, 1, \dots\}$	$\mathbb{E}[X] = \frac{1-p}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{p}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$
$X \sim NegBin(r,p)$	$p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, k \in \{r, r+1, \dots\}$	$\mathbb{E}[X] = \frac{r}{p}$ $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$	$M_X(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r,$ $t < -\ln(1 - p)$
$X \sim \operatorname{Pois}(\lambda)$	$p_X(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!},$ $k \in \{0, 1, \dots\}$	$\mathbb{E}[X] = \lambda \\ \operatorname{Var}(X) = \lambda$	$M_X(t) = \exp\left\{\lambda(e^t-1) ight\}$

Selected Continuous Distributions

Distribution	PDF	Expec./Var.	MGF
$X \sim Unif[a,b]$	$f_X(x) = \frac{1}{b-a} \cdot \mathbb{1}_{\{x \in [a,b]\}}$	$\mathbb{E}[X] = \frac{a+b}{2}$ $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$
$X \sim \operatorname{Exp}(\beta)$	$f_X(x) = \frac{1}{\beta} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \beta \\ \operatorname{Var}(X) = \beta^2$	$M_X(t) = (1 - \beta t)^{-1}, \ t < 1/\beta$
$X \sim \operatorname{Gamma}(\alpha,\beta)$	$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \alpha\beta$ $\operatorname{Var}(X) = \alpha\beta^2$	$M_X(t) = (1 - \beta t)^{-\alpha}, \ t < 1/\beta$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\mathbb{E}[X] = \mu \\ \operatorname{Var}(X) = \sigma^2$	$M_X(t) = \exp\left\{\mu t + rac{\sigma^2}{2}t ight\}$