Contextual Decision Processes with low Bellman rank are PAC-Learnable

June 29, 2020

Hoe Sung Ryu

1. Exploration

Problems

- 2. Long term planning
- 3. Generalization

Markov Decision Processes (MDPs)

State: $\chi_1 \sim \Gamma_1$

Take action : a_1

Observe: $r(a_1)$

Markov Decision Processes (MDPs)

State: $\chi_2 \sim \Gamma_1(\chi_2, a_1)$

Take action : a_2

Markovian:

Observe: $r(a_2)$

- χ_h only depend on (χ_{h-1}, a_{h-1})

- r_h only depend on (χ_h, a_h)

Episodic: *H* steps in trajectory

Challenge: Allow large number of unique observations ${\mathcal X}$

Goal of Reinforcement Learning

Maximize long-term reward

$$\sum_{h=1}^{H} r_h(a_h)$$

Goal of Reinforcement Learning

Maximize long-term reward using policies that are mapping from state to actions

$$\sum_{h=1}^{H} r_h(\mathbf{\pi}(x_h))$$

Existing results

Cardinality state space

Good: Learn ε —optimal policy using $poly(|X|, A, H, \frac{1}{\varepsilon})$

The ϵ -greedy algorithm continues to explore forever

- With probability 1ϵ select $a = \operatorname{argmax} \hat{Q}(a)$
- With probability ϵ select a random action

Bad: Small number of states necessary for learning

Lower Bound Exponential lower bound exists(Akshay Krishnamurthy, NIPS 2016)

There is an MDP with $|A|^H$ states where finding an ε —optimal policy requires $\Omega(\frac{|A|^H}{\epsilon^2})$ trajectories.

Too many "unique" states in real-wold task

- => Typically, done via value-function approximation
- => I.e. Using Deep Learning method generalizes across realted observations

1. Introduction

Develop Reinforcement learning approaches guaranteed to learn an optimal policy with a small number of samples despite rich observations

1. Introduction

Key ideas

- Introduce a new model: Contextual Decision processes (CDPs)
- New measure of the hardness of exploration: Bellman Rank & Bellman error Matrices
- Algorithm with sample complexity scaling with `Bellman Rank': Optimism Led Iterative Value-function Elimination(OLIVE)

1. Introduction

Assumption 2 (*Realizability*). We are given access to a class of predictors $\mathcal{F} \subseteq (\mathcal{X} \times \mathcal{A} \to [0,1])$ of size $|\mathcal{F}| = N$ and assume that $Q^* = f^* \in \mathcal{F}$. We identify each predictor f with a policy $\pi_f(x) \triangleq \operatorname{argmax}_a f(x,a)$. Observe that the optimal policy is π_{f^*} which satisfies $V(\pi_{f^*}) = V^*$.

https://papers.nips.cc/paper/6575-pac-reinforcement-learning-with-rich-observations.pdf

Define new formulation: CDPs

Average Bellman error

2. Contextual Decision Processes(CDPs)

Definitions 1. CDPs

Let, $H \in \mathbb{N}$ denote a time Horizon , A is the action space and

 \mathcal{X} be a large state space of unbounded size and partitioned into subset $\chi_1, \chi_2 \dots \chi_H$

Then, finite horizon episodic CDP tuple is (\mathcal{X}, A, R, P) where R is reward and P is policy

2. Contextual Decision Processes(CDPs)

Definitions 2. Policy and Value of a policy

- Policy $\pi: \mathcal{X} \to A$ s.t. $a_h = \pi(x_h)$, $\forall h \in H$
- Value function of a policy $V^\pi = \mathbb{E}[\sum_{h=1}^H r_h | a_{1:H} \sim \pi]$ (where $a_{1:H \sim \pi}$ abbreviates for $a_1 = \pi(x_1)$, ... $a_H = \pi(x_H)$)

Sketch of Algorithm

- Start with an initial guess $f_1 \in F$
- According to f_1 . Collect trajectories (\mathcal{X} ,A, R, P) s.t. (χ_1 , a_1 , r_1 ..., χ_h , a_h , r_h) where $a_h = \pi_{f_1}(\chi_h)$
- Use trajectories to obtain better estimate $f_2 \in F$
- Repeat

Definitions 3. Average Bellman error

Given a policy $\pi: \mathcal{X} \to A$ and a function $f: \mathcal{X} \times A \to [0,1]$ then, the average Bellman error of f under π at level h is defined as

$$\varepsilon(f, \pi, h) = \mathbb{E}[f(x_h, a_h) - r_h - f(x_{h+1}, a_{h+1}) | a_{1:h-1} \sim \pi, a_{h:h+1} \sim \pi_f]$$

Definitions 4. (Bellman error is zero)

Given an (f, π, h) triple,

If f is optimal value function in \mathcal{F} then $\varepsilon(f,\pi,h)=0$ where, $\forall \pi \ and \ h$

 \Rightarrow Finally, we can discover f that behaves as Q^* ,

Bellman error Matrix

We do not know the basis, just its exitence.

Define new formulation: CDPs

Average Bellman error

Simplified Algorithm (OLIVE)

STEP 1. Generate trajectories using π_f

STEP 2. Eliminate all f with non-zero Bellan error

STEP 3. Choose a new π_f , optimistically:

STEP4. Repeat until $V^{\pi*} - V^{\pi} \leq \varepsilon$

Maximize the value function V^{π}

Q&A

Thank you