<u>Chap 3</u> Lois de probabilité discrètes

I) Notion de variable aléatoire

Définition Variable aléatoire

Soir (Ω ;P) un espace probabilisé.

Une variable aléatoire est une fonction X définie sur Ω , et qui à chaque issue associe un nombre réel : $X:\omega\in\Omega\mapsto X(\omega)\in\mathbb{R}$

Exemple

On lance un dé à 6 faces. On gagne 5€ si on obtient un 6, 1€ si on tombe sur un nombre impair, et on perd 3€ sinon.

Soit X la variable aléatoire qui à un résultat associe le gain (algébrique) correspondante on a donc X\left(2\right)=X\left(4\right)=-3,X\left(1\right)=X\left(3\right)=X\left(5\right)=1\ et\ X\left(6\right)=5

Définition événement (X = x)

Soit X une variable aléatoire et $x \in \mathbb{R}$. On note (X = x) l'événement constitué des issues ω tels que X(ω) = x. Autrement dit : (X = x) = { $\omega \in /X(\omega) = x$ }. La probabilité de l'événement (X = x) se note P(X =x).

Remarque

Lorsque la variable aléatoire prend des valeurs « isolées », on parle de variable aléatoire discrète. Dans ce chapitre, toutes les variables aléatoires seront discrètes.

Ex1 1)(X = -3) = {
$$\omega \in /X(\omega) = -3$$
 } = {2 , 4} (X =1) = {1,3,5} (X=5) = {6}

2)
$$P(X = -3) = P(2, 4) = \frac{2}{6} = \frac{1}{3}$$

$$P(X = 1) = P(\{1,3,5\}) = \frac{3}{6} = \frac{1}{2}$$

$$P(X = 5) = P(\{6\}) = \frac{1}{6}$$

Définition loi de probabilité

La loi de probabilité d'un variable aléatoire discrète X est la fonction définie sur \mathbb{R} , et qui à chaque nombre réel x associe la probabilité de l'événement (X=x) : $x \in \mathbb{R} \mapsto P(X = x)$

Lorsque la valirable aléatoire X ne prend q'un nombre fini de valeur x1, x2, ... xn, on résume la loi de probabilité de X dans un tableau :

X	x1	x2	 xn
P(X = x)	p1	p2	 pn

X	-3	4	5
P(X = x)	1	1	1
	$\overline{3}$	$\overline{2}$	$\overline{6}$

Définition espérance, variance et écart-type

Soit X une variable aléatoire discrète prenant un nombre fini de valeurs x1, x2, ... xn

 On appelle espérance mathématique de la variable aléatoire X le nombre noté E(X) par :

$$E(X) = \sum_{k=1}^{n} xk \times P(X = xk)$$

• On appelle variance de la variable aléatoire X le nombre noté V(x) et défini par :

$$V(X) = \sum_{k=1}^{n} (xk - E(X)) \times P(X = xk)$$

• On appelle écart-type de la variable aléatoire X le nombre noté $\sigma(X) = \sqrt{V(X)}$

Ex 3
E(X) =
$$x1 * P(X = x1) + x2 * P(X = x2) + ... + xn * P(X = xn)$$

1) E(X) = -3 *
$$\frac{1}{3}$$
 + 4 * $\frac{1}{2}$ + 5 * $\frac{1}{6}$ = $\frac{1}{3}$

2) V(X) =
$$\frac{100}{3} * \frac{1}{3} + \frac{4}{9} * \frac{1}{2} + \frac{196}{9} * \frac{1}{6} = \frac{68}{9}$$

$$\sigma(X) = \sqrt{V(X)} = \sqrt{\frac{68}{3}} = \frac{2\sqrt{17}}{3} \approx 2.7$$

(x-E(X)) ²	$\frac{100}{3}$	$\frac{4}{\alpha}$	$\frac{196}{9}$
x-E(X)	$-\frac{10}{3}$	$\frac{2}{3}$	$\frac{14}{3}$
х	-3	4	5
P(X = x)	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$

Ex4 1)def esperence(V, P): somme = 0 for i in range(len(V)): somme += V[i]*P[i] return somme

Ex5

1) X prend les valeurs 0,100,500 et 1500

Х	0	100	500	1000
P(X=x)	0,55	0,3	0,1	0,05

2)
$$E(X) = 0*0.55 + 100*0.3 + 500*0.1 + 1000*0.05 = 155$$

L'assureur doit rembourser en moyenne 155 par assuré

3) 160€

Propriété : linéarité de l'espérance

Soit X une variable aléatoire et soit a et b réels.

Alors
$$E(a \times X + b) = a \times E(X) + betV(A \times X + b) = a^2 \times V(X)$$

Ex6

Avant:

$$E(X) = 8$$

$$\sigma(X) = 4$$

Après:

E(aX + b) = 10 = aE(X) + b = 8a + b
$$\sigma$$
 (aX + b) = 3 = |a| σ (X) = 4|a|

$$8a + b = 10$$
$$4|a| = 3$$

$$\begin{array}{ccc} \underline{\text{Si a} \geq 0} \\ 8a + b = 10 \\ 4a = 10 \end{array} = \begin{array}{ccc} b = 4 \\ a = \frac{3}{4} \end{array} \qquad \frac{3}{4}X + 4$$

$$\frac{\text{Si a} < 0}{8a + b = 10} = \begin{array}{c} b = 16 \\ -4a = 10 \end{array} = \begin{array}{c} a = -\frac{3}{4} - \frac{3}{4} + 16 \end{array}$$

Notes	7	18
$\frac{3}{4}X + 4$	9,25	17,5
$-\frac{3}{4} + 16$	10,75	2,5