Descripción Funcional del Proyecto

Título del Proyecto

Algoritmo de Optimización para la Recolección de Pedidos en el Sector Retail

Autor

Pablo González Madroño Fecha: 10/02/2025

Contexto y Propósito

En los supermercados, la preparación de pedidos online (también conocida como *picking*) es un proceso clave en la logística diaria. Cada día se generan cientos de pedidos que deben ser recogidos en tienda para ser enviados a domicilio o retirados por los clientes.

Este proyecto tiene como objetivo principal **reducir los tiempos de preparación de pedidos** mediante el desarrollo de un **modelo de optimización de rutas** de picking. La idea es asistir al operario para que recorra la tienda en el orden más eficiente posible, recogiendo los artículos del pedido con el menor recorrido necesario.

Descripción Técnica del Proyecto

Problemática

El picking eficiente enfrenta múltiples desafíos:

- 1. La ubicación de productos y obstáculos varía y debe ser modelada con precisión.
- 2. Las distancias entre productos no pueden calcularse simplemente en línea recta debido a pasillos y obstáculos.
- 3. La ruta óptima debe considerar no solo la distancia, sino también ciertas **reglas logísticas específicas**, conocidas como "reglas de oro".

1. Extracción y Mapeado del Espacio Físico

Se utiliza una herramienta de Real Estate del supermercado que proporciona un **formato JSON** con la disposición del espacio:

- Artículos ubicados en góndolas.
- Obstáculos y zonas no transitables (por ejemplo, muros, cajas, zonas restringidas).

A partir de esta información, se genera una matriz de transitabilidad:

- Valor 1 para celdas transitables (representadas en morado).
- Valor **0** para celdas no transitables (representadas en azul claro).
- Las ubicaciones de los artículos se destacan en amarillo.

2. Cálculo de Distancias entre Puntos

Para medir la distancia entre artículos, se implementa el algoritmo A^* (*A-star*), que permite encontrar la ruta más corta entre dos puntos en una matriz con obstáculos.

• Dado que el cálculo de distancias para todos los pares posibles puede ser computacionalmente costoso (exponencial), se realiza una reducción de la matriz para mejorar la eficiencia sin perder precisión.

3. Cálculo de la Ruta Óptima

Una vez conocidas todas las distancias, se enfrenta el problema clásico del "Traveling Salesman Problem" (TSP):

- El operario debe visitar cada punto (artículo) una sola vez, minimizando la distancia total.
- La complejidad del TSP es factorial: (n−1)!, lo que lo hace intratable para un número alto de artículos.

Exactitud del Modelo

- En un estudio con datos reales de pedidos:
 - Media de artículos por pedido: 13
 - o Mediana: 11
 - El 81% de los pedidos tienen menos de 22 artículos, permitiendo una solución exacta al TSP.

Reglas de Oro (Restricciones Funcionales)

El modelo incluye restricciones logísticas realistas que afectan la ruta:

- 1. **Congelados siempre al final**: Penalización si se recoge un congelado antes que un alimento normal.
- 2. **Artículos pesados primero**: Priorizar productos voluminosos o pesados al comienzo de la ruta.

3. Las reglas se modelan como **penalizaciones en la distancia** o variables discretas que afectan el orden de recogida.

Conclusión

El proyecto desarrolla un sistema de apoyo inteligente para optimizar el proceso de picking en supermercados, basado en la planificación de rutas eficientes y realistas. La solución considera tanto la estructura física del establecimiento como las reglas operativas del negocio. Es un ejemplo de aplicación práctica de técnicas de inteligencia artificial y algoritmos de optimización en logística de última milla.