Contents

1	Lecture 01 - 方程组的几何解释	1
2	Lecture 02 - 矩阵消元	3
3	Lecture 03 - 乘法和逆矩阵	6

1 Lecture 01 - 方程组的几何解释

 \mathbf{n} linear equations, \mathbf{n} unknowns

- row picture
- column picture ⋆
- matrix form

$$\begin{cases} 2x - y = 0 \\ -x + 2y = 3 \end{cases}$$
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, i.e.$$

 $\mathbf{A} \text{ (matrix of coefficients)} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \mathbf{x} \text{ (vector of unknowns)} = \begin{bmatrix} x \\ y \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \text{ such that}$

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

what's the **row** picture?

to find the point that lies on both two lines

what's the **column** picture?

$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$1\overrightarrow{c_1} + 2\overrightarrow{c_2} = \overrightarrow{b}$$

to find the linear combination of columns of A, such that it equals b

what linear combination gives **b**?
what do all the linear combinations give?
what are all the possible, achievable right-hand sides be?

$$\begin{cases} 2x - y &= 0 & 1 \\ -x + 2y - z &= -1 & 2 \\ &- 3y + 4z &= 4 & 3 \end{cases}$$

$$\begin{cases} \mathbf{1} &: \text{ the plot of all the points that solve it are a plane} \end{cases}$$

$$\begin{cases} \mathbf{2} &: \text{ two planes meet at a line} \end{cases}$$

$$\begin{cases} \mathbf{1} &: \text{ meet at a point} \end{cases}$$

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -3 & 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

what's the **row** picture?

to find out all the points that satisfy all the equations

what's the **column** picture?

$$x \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} + z \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

can I always solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ for every right-hand side \mathbf{b} ? do the linear combinations of the columns fill 3-dimensional space? for this \mathbf{A} , the answer is \mathbf{YES} (non-singular, invertible) but for some others \mathbf{A} , the answer could be \mathbf{NO} (singular, not-invertible)

if the 3 columns all lie in the same plane, so I could solve it for some right-hand sides, when \overrightarrow{b} is in the plane, but most right-hand sides would be out of the plane and unreachable.

in some case, the combinations of **n** columns can only fill out **m**-D (m < n)

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}$$

Ax means: Ax is a combination of columns of A

2 Lecture 02 - 矩阵消元

when solving equations-system,

Elimination, if it succeeds, it gets the answer.

It's always good to ask how could it fail.

$$\begin{cases} x + 2y + z = 2 \\ 3x + 8y + z = 12 \\ 4y + z = 2 \end{cases}$$

$$\begin{bmatrix} \mathbf{1} & 2 & 1 \\ \mathbf{1} & \mathbf{2} & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow[row_3 - 0 \times row_1]{row_3 - 0 \times row_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & \mathbf{2} & -2 \\ 0 & 4 & 1 \end{bmatrix} \xrightarrow[row_3 - 2 \times row_2]{row_3 - 2 \times row_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & \mathbf{5} \\ \text{third-pivot} \end{bmatrix}$$

pivots can **NOT** be 0!

if there is a 0 in the pivot position, then try to switch lines if 0 is in the pivot position and no place to exchange, then failure

let's bring the right-hand side in (Augmented Matrix)

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{bmatrix} \Rightarrow \begin{cases} x + 2y + z = 2 \\ 2y - 2z = 6 \\ 5z = -10 \end{cases}$$
by back-substitution: $x = 2, y = 1, z = -2$

"elimination matrices"

$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \operatorname{col}_1 & \operatorname{col}_2 & \operatorname{col}_3 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = 1 \times \operatorname{col}_1 + 2 \times \operatorname{col}_2 + 3 \times \operatorname{col}_3$$

the result of multiplying a matrix by some vectors, is a combination of columns of the matrix

the product of a row times a matrix, is a combination of rows of the matrix

when we do matrix multiplication, keep your eye on what it is doing with the whole vectors what does the matrix, which can subtract $3 \times row_1$ from row_2 look like?

i.e.
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix}$$
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$
$$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

$$\frac{as \ R_{1}=1 \times row_{1}+0 \times row_{2}+0 \times row_{3}}{as \ R_{3}=0 \times row_{1}+0 \times row_{2}+1 \times row_{3}} = \begin{bmatrix} 1 & 0 & 0 \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \\
\frac{as \ R_{3}=0 \times row_{1}+0 \times row_{2}+1 \times row_{3}}{0 & 0 & 1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
: elementary matrix (初等矩阵)

E_{i,j} means it's the matrix that we use to fix the (i, j) position

e.g.
$$\begin{bmatrix}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{bmatrix}
\xrightarrow{R_1 = row_1}
\begin{bmatrix}
1 & 0 & 0 \\
? & ? & ? \\
? & ? & ?
\end{bmatrix}
\xrightarrow{R_2 = row_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
? & ? & ?
\end{bmatrix}
\xrightarrow{R_3 = row_3 - 2 \times row_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{bmatrix} = E_{3,2}$$

in elimination, we can use an elementary matrix to describe the change in each step

the next point in this lecture is to put these steps together, into a matrix that does these steps all in sequence, in another words, how could I create the matrix that does the whole job at once? i.e.

$$E_{3,2}(E_{2,1}A) = U \Longleftrightarrow ?A = U$$

Associative Law

$$(AB)C = A(BC)$$

permutation(置换):

• exchange rows, e.g.

$$\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ is to exchange } row_1 \text{ and } row_2$$

• exchange columns, e.g.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} b & a \\ d & c \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 is to exchange col_1 and col_2

when I multiply a matrix on the left, I am doing row operations if I want to do column operations, I should put a matrix on the right

if $\begin{cases} ? A = U, \text{ then how can I "from U back to A"?} \\ \text{this is about reversing steps, invertible, \cdots} \end{cases}$

$$\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

"what steps can get me back?"

[&]quot;what matrix can bring me back?"

3 Lecture 03 - 乘法和逆矩阵

key words:

- matrix multiplication (4 ways)
- inverse of A, AB, A^T
- Gauss-Jordan, to find \mathbf{A}^{-1}

$$egin{bmatrix} oldsymbol{iggle} & oldsymbol{i$$

 $c_{i,j}$ comes from row_i of **A** and col_j of **B** e.g.

$$c_{3,4} = \begin{bmatrix} row_3 & of & \mathbf{A} \end{bmatrix} \begin{bmatrix} col_4 \\ of \\ \mathbf{B} \end{bmatrix}$$

$$= a_{3,1}b_{1,4} + a_{3,2}b_{2,4} + \dots + a_{3,i}b_{i,4} + \dots + a_{3,n}b_{n,4}$$

$$= \sum_{k=1}^{n} a_{3,k}b_{k,4}$$

the number of columns of A has to match the number of rows of B

$$\mathbf{A}_{m\times n}\mathbf{B}_{n\times p}=\mathbf{C}_{m\times p}$$

the matrix times the n^{th} column is the n^{th} column of the answer

so I could think of multiplying a matrix by a vector, side by side I can just think of having several columns, multiplying by \mathbf{A} , and getting the columns of answer

the columns of C are combinations of columns of A

 \iff every column of **C** is a combination of columns of **A**, and numbers in **B** tell me what the combination is

in the same way, the rows of C are combinations of rows of B

what about "
$$\underbrace{col \ of \ \mathbf{A}}_{m \times 1} \times \underbrace{row \ of \ \mathbf{B}}_{1 \times p}$$
"?
e.g.
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 6 \end{bmatrix} + \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\mathbf{AB} = \text{sum of } (col_i \ of \ \mathbf{A}) \times (row_i \ of \ \mathbf{B})$$

$$= \sum_{i=1}^{n} (col_i \ of \ \mathbf{A}) \times (row_i \ of \ \mathbf{B})$$

the row space for $\begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix}$, which is like all combinations of the rows, is the line through the row-vector $\begin{bmatrix} 1 & 6 \end{bmatrix}$, the same to the column space

you could also cut the matrix into blocks and do the multiplication by blocks, i.e.

$$\underbrace{\left[\begin{array}{c|c|c} A_1 & A_2 \\ \hline A_3 & A_4 \end{array} \right]}_{A} \underbrace{\left[\begin{array}{c|c|c} B_1 & B_2 \\ \hline B_3 & B_4 \end{array} \right]}_{B} = \underbrace{\left[\begin{array}{c|c|c} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\ \hline A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 \end{array} \right]}_{AB}$$

Inverses (square matrices)

not all matrices have inverses, if a matrix is square, is it invertible or not? if A is invertible, non-singular, then

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1}$$

in singular case, no inverse!

e.g.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

thinking about columns here, if I multiply **A** by some other matrices, the columns of the results are all multiples of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, so no way to get the identity matrix **I**

there is another more important reason

a square matrix has no inverse if I can find a vector \boldsymbol{x} such that $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ and $\boldsymbol{x}\neq\boldsymbol{0}$

but

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

the matrix can't have an inverse if some columns give no contribution!

because

if
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$
 has an inverse, named \mathbf{A}^{-1} , then $\mathbf{A}^{-1}\mathbf{A} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and meanwhile, $\mathbf{A}^{-1}\mathbf{A} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \mathbf{I} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, so that $\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, which is not True

our conclusion is that for non-invertible/singular matrices, some combinations of their columns give the zero column

let's take a matrix that does have an inverse for example

e.g.

$$\underbrace{\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} a & b \\ c & d \end{bmatrix}}_{\mathbf{A}^{-1}} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{I}}$$
then
$$\begin{cases} \mathbf{A} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{A} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

generally,

$$\mathbf{A} \cdot (col_j \ of \ \mathbf{A}^{-1}) = (col_j \ of \ \mathbf{I})$$

then how to solve the inverse for an invertible matrix?

here is the Gauss-Jordan idea, to solve two equations at once

$$\begin{cases} \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
"solve them together!"

$$\underbrace{\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{bmatrix}}_{\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}} \rightarrow \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}}_{\begin{bmatrix} \mathbf{I} & \mathbf{A}^{-1} \end{bmatrix}} \rightarrow \underbrace{\begin{bmatrix} 1 & 0 & 7 & -3 \\ 0 & 1 & -2 & 1 \end{bmatrix}}_{\begin{bmatrix} \mathbf{I} & \mathbf{A}^{-1} \end{bmatrix}}$$

把单位矩阵当成草稿纸, 记录下对左侧矩阵的变换

相当于左右两边同时乘上逆矩阵,当左边变成单位矩阵时,右边即是该逆矩阵

i.e.

$$\begin{aligned} \mathbf{E}_{i_1,j_1} \mathbf{E}_{i_2,j_2} \cdots \mathbf{E}_{i_n,j_n} \left[\begin{array}{c|c} \mathbf{A} & \mathbf{I} \end{array} \right] &= \left[\begin{array}{c|c} \mathbf{E}_{i_1,j_1} \mathbf{E}_{i_2,j_2} \cdots \mathbf{E}_{i_n,j_n} \mathbf{A} & \mathbf{E}_{i_1,j_1} \mathbf{E}_{i_2,j_2} \cdots \mathbf{E}_{i_n,j_n} \mathbf{I} \end{array} \right] \\ &= \left[\begin{array}{c|c} \mathbf{I} & \mathbf{E}_{i_1,j_1} \mathbf{E}_{i_2,j_2} \cdots \mathbf{E}_{i_n,j_n} \end{array} \right] \end{aligned}$$

then $\mathbf{A}^{-1} = \mathbf{E}_{i_1,j_1} \mathbf{E}_{i_2,j_2} \cdots \mathbf{E}_{i_n,j_n}$ 注:

$$\mathbf{E}_{i_t,j_t}\left[\begin{array}{c|c}\mathbf{A} & \mathbf{I}\end{array}\right]$$
,即对 $\left[\begin{array}{c|c}\mathbf{A} & \mathbf{I}\end{array}\right]$ 做行变换 \Longleftrightarrow 对 \mathbf{A} 与 \mathbf{I} 同时、做同样的行变换同理,可以对 $\left[\begin{array}{c|c}\mathbf{A} & \mathbf{I}\end{array}\right]$ 做列变换,求得 \mathbf{A}^{-1}