Vertex of the Quadratic

 $j_1=-\frac{b}{2\,a}$ namely $h\,(\,j_1\,)=c\,-\,\frac{b^2}{4\,a}$ Now compute the same quadratic at j_1+h , namely

Given a quadratic $h(j) = a j^2 + b j + c$ compute its value at

Now compute the same quadratic at j_1+h , namely $h(j_1+h) = -\frac{b^2}{4a} + ah^2 + c$ Compute $A = h(j_1+h) - h(j_1) = ah^2$

Compute $\triangle = h(j_1 + h) - h(j_1) = ah^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

global minimum!

Example 1.

 $h(j) = j^2 + 4j - 67$ 150

-100

-150

-200

-250