____班

年级 学

_姓名

共4页 第1页

2021~2022 学年第一学期工程硕士期末考试试卷

《 工程数学基础 》(共4页)

(考试时间: 2021年12月31日)

题号	 	Ξ	四	五	六	七	八	九	+	平时成绩	成绩	核分人 签字
得分												

一、判断题 (每小题 1分, 共 10分)

- 1、由全体无理数组成的集合是可数集.
- 2、空间 $P_a[a,b]$ 上任意两种范数都是等价的.
- 3、若算子 $T: P[a,b] \rightarrow P[a,b]$ 定义为: $(Tf)(x) := f(x+1), \forall f \in P[a,b], \forall x \in [a,b],$ 则算子T为线性算子.
- 4、若 $A \in \mathbf{R}^{"\times "}$ 为正定矩阵,则求解Ax = b的 Jacobi 迭代法收敛.
- 5、设 $A \in \mathbb{C}^{n \times n}$ 为正规矩阵,则对应于不同特征值的特征向量具有正交性.
- 6、若 $A \in \mathbb{C}^{n \times n}$ 的n阶行列式因子为一次因式乘积的形式,则矩阵A可对角化.
- 7、赋范线性空间上的线性算子T为有界算子.
- 8、对于试验方程 $y'=\lambda y$ ($\lambda < 0$ 为常数),则任意步长 h>0 ,则 Euler 方法是

绝对稳定的.

9、求积公式 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$, 当f(x)为x''''时,求积公式成为等式,则此求积

公式的代数精度为 m 次.

10、用列主元素 Guass 消去法求解 Ax = b 时,只要矩阵 A 可逆,该方法就能求得问题的近似解.

二、填空题 (每小题 2 分, 共 10 分)

1、已知
$$A(t) = \begin{bmatrix} e^t & t^2 \\ t \cos t & 1 \end{bmatrix}$$
,则 $\int_0^1 A(t) dt =$ ______.

2、设 $\alpha = (i, -1, i)^T \in \mathbb{C}^3$, $\beta = (2-i, 1-i, -1+2i)^T \in \mathbb{C}^3$, 则 $\langle \alpha, \beta \rangle =$ ______

3、设
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, 则 ||A||, ||\mathbf{x}||_1 = _____.$$

4、设 $U \in \mathbf{R}^{n \times n}$ 为酉矩阵,则有界线性算子 $U : (\mathbf{R}^n, \|\cdot\|_*) \to (\mathbf{R}^n, \|\cdot\|_*)$ 的算子范数 $\|U\|_* =$ _____

5、用单点 Guass-Legendre 求积公式计算积分 $\int_0^2 \frac{(x-1)^2}{x^2+1} dx$ 的近似值为 ______.

三. (10 分) 设 $A = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & -1 \end{bmatrix}$, 求 A 的所有可能的 Jordan 标准形 J , 并给出 A 可对角

化的条件.

学院

专业

___班

年级 学号_

_姓名

共4页 第2页

四、(10分) 已知函数 y = f(x) 的函数值表如下

				-	0.0	
r	0.0	0.2	0.4	0.6	0.8	1.0
	1.693147	2.009236	2 351591	2.714330	3.078628	3 418380
y	1.693147	2.008230	2.331371			0.110309

五、(10分) 设 $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, 试求: A的最小多项式, 并计算 $e^{2At} + A^5$ 和 $\frac{d(e^{2At} + A^5)}{dt}$.

用三次 Newton 插值多项式求 f(0.354) 的近似值:若 $|f^{(4)}(x)| \le 5.59092$, $\forall x \in [0.0, 0.6]$

请估计所得结果的误差大小. (数据保留至小数点后6位)

班

年级 学号 _姓名

共4页 第3页

六、(8分) 写出用标准 Runge - Kutta 方法求解初值问题

$$\begin{cases} y' = 3y + 2z - (2x^2 + 1)e^{2x}, & 0 < x \le 1 \\ z' = 4y + z - (x^2 + 2x + 4)e^{2x}, & y(0) = 1, & z(0) = 1. \end{cases}$$

的计算格式.

八、(8分) 对于线性方程组
$$Ax = b$$
, 其中 $A = \begin{bmatrix} 1 & a & a \\ 3a & 1 & 0 \\ a & 0 & 1 \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, $x \in \mathbb{R}^3$, $a \in \mathbb{R}$.

试确定求解该方程组的 Gauss--Seidel 迭代法收敛的充分必要条件,并写出相应的 Gauss—Seidel 迭代公式。

七、(8分) 用 Romberg 算法求积分 $\int_{1}^{2} \frac{1}{x} dx$ 的近似值,并将计算结果列于下表(数据保 留至小数点后6位).

k	T_{2^i}	$S_{2^{t-1}}$	$C_{2^{i-2}}$	R _{2*-3}
0				
1				
2				
3				
4				

学院_

专业

班

年级 __学号_

_姓名

共4页 第4页

九、(8分) 设函数 $f(x) = \sin \frac{x}{2}, -\pi \le x \le \pi$.

- (1) 求 f(x) 在 $P_3[-\pi,\pi]$ 上的三次最佳平方逼近 $S_3^*(x)$
- (2) 求误差平方 $\delta^2 = \left\| f S_3^* \right\|^2$ (结果保留到小数点后第 6 位).

十. (8分) 证明题:

- 1. 设 $C \subset (X, \|\cdot\|)$,若C是有界集,试证: $\exists M \ge 0$ 使得 $\forall x \in C$,都有 $\|x\| \le M$.
- 2. 设 $A \in \mathbb{C}^{n \times n}$ 可逆, $B \in \mathbb{C}^{n \times n}$. 若对某种方阵范数有 $\|B\| < \frac{1}{\|A^{-1}\|}$,试证: A + B 可逆.

2020~2021 学年第一学期工程硕士期末考试试卷

《 工程数学基础 》(共4页)

(考试时间: 2020年12月13日)

 题号	-	=	Ξ	四	五	六	七	八	九	+	平时成绩	成绩	核分人 签字
得分													

- 一、判断题 (每小题 1分, 共 10分)
- 1、设X 是基本集合, $A,B \subset X$, 则 $A \times B = B \times A$.
- 2、空间 P[a,b]上任意两种范数都是等价的.
- 3、设X是数域K上的线性空间M是X的子空间MSpan<math>MCM.
- 4、设 $\|\cdot\|$ 是 $\mathbf{C}^{n\times n}$ 上的任意一种方阵范数, $A \in \mathbf{C}^{n\times n}$ 可逆,则 $\|A^{-1}\|\|A\| = 1$.
- 5、设 $A,B \in \mathbb{C}^{n \times n}$, 若A和 B具有相同的特征多项式,则 $A \sim B$.
- 6、设 $\{x_n\}$ $\subset (X,\|\cdot\|)$,若 $\lim_n \|x_n x\| = 0$,则 $\lim_n \|x_n\| = \|x\|$.
- 7、设 $T: X \rightarrow Y$ 是线性算子,则T(0) = 0.
- 8、用 Euler 方法求解初值问题 $\begin{cases} y' = f(x,y), a < x \le b \\ y(a) = y_0 \end{cases}$, 只要步长 h > 0,则 Euler 方法

是绝对稳定的.

- 9、若求积公式 $\int_1^1 f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$ 为 Gauss 型求积公式,则 $\sum_{k=0}^n A_k = 2$.
- 10、设 $l_0(x), \dots, l_n(x)$ 是[a,b]上以 $a \le x_0 < x_1 < \dots < x_n \le b$ 为节点的Lagrange插值

基函数. 则
$$\sum_{k=0}^{n} l_k(x) x_k^m = x^m$$
, $(m \le n)$.

二、填空题(每小题 2 分,共 10 分)

- 2、设 $(X, \|\cdot\|)$ 是赋范空间,则X可成为内积空间且 $\|\cdot\|$ 是由内积导出的范数的必要条件是:
- 3、设 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 1 \end{bmatrix}$,则A的条件数 $cond_1A = ______$.
- 4、设有界线性算子 $T: l^2 \rightarrow l^2$ 的定义为: $\forall x = (x_1, x_2, \dots) \in l^2$, 有 $Tx = (x_6, x_7, \dots)$,

则 ||T|| = _____.

- 5、设 $p_3(x)$ 是3次Legendre 多项式,则 $\int_1^1 (2x^2 + 10x 11)p_3(x)dx = _____.$

学院_____

幸亚

____班

年级_____学号_

姓名

共4页 第2页

四、(10分) 已知函数 y = f(x) 的函数值表如下

x	0.0	0.2	0.4	0.6	0.8
y	1.00000	1 22140	1 49182	1.82212	2.2255

五、(10分) 设 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 试求: A的最小多项式, 并计算 e^{At} 和 $A^{10} - 2A^4$.

- (1) 用三次 Newton 插值多项式求 f(0.65) 的近似值.
- (2) 若 $|f^{(4)}(x)| \le 1 \quad \forall x \in [0.0, 0.8]$,请估计所得结果的误差. (数据保留至小数点后 5 位)

「六、(8分) 写出用标准 Runge - Kutta 方法求解初值问题

学号 年级

共4页 第3页

$$\begin{cases} y'' = 2y' + y^2 \cos x, \ 0 < x \le 1 \\ y(0) = 1, \quad y'(0) = 3 \end{cases}$$

的计算格式.

八、(8分) 写出求解线性方程组 Ax = b的 Gauss--Seidel 迭代格式,并判断其迭代格式 的敛散性, 其中

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

七、(8分) 用 Romberg 算法求积分 $\int_0^1 e^{-\frac{x^2}{2}} dx$ 的近似值,并将计算结果列于下表(数据 保留至小数点后6位).

k	$T_{2^{\star}}$	$S_{2^{i-1}}$	$C_{2^{k-2}}$	R _{2*-3}
0				
1				
2				
3				
4				

年级

专业

——班

_____学号_

姓名

共4页 第4页

九、(8分) 设函数 $f(x) = x \sin \frac{\pi}{2}x$

- (1) 求f(x)在 $P_3[-1,1]$ 上的三次最佳平方逼近 $S_3^*(x)$;
- (2) 求误差平方 $\delta^2 = \|f S_3^*\|^2$ (结果保留到小数点后 4 位).

十. (8分) 证明题:

- 1. 若 $A \in \mathbb{C}^{n \times n}$ 是正规矩阵,试证: $\rho(A) = ||A||_2$.
- 2. 设算子 $T:(X,\|\cdot\|) \to (Y,\|\cdot\|)$ 是一个连续线性算子, 试证: 算子T的有界性.

年级 学号

()

()

()

()

()

()

()

()

()

姓名 共 4 页 第 1 页

2019~2020 学年第一学期工程硕士期末考试试卷

《 工程数学基础 》(共4页)

(考试时间: 2020年1月3日)

题	-	=	Ξ	四	五	六	七	八	九	+	平时	成绩	核分人
号											成绩		签字
得													
分													

一、判断题 (每小题 1 分, 共 10 分)

- 1、有限个或可数个可数集的并集是可数集.
- 2、 $\forall A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n$, 若 $x \neq 0$, 则 $x^H A^H Ax > 0$.
- 3、设 $T:(X,\|\cdot\|) \to (Y,\|\cdot\|)$ 是线性算子,则算子T 是一个有界算子.
- 4、设 $\|\cdot\|$ 是 $\mathbb{C}^{n\times n}$ 上的任意一种算子范数, $E\in\mathbb{C}^{n\times n}$ 是单位矩阵,则 $\|E\|=1$.
- 5、设 $A, B \in \mathbb{C}^{n \times n}$, 若 $A \sim B$, 则 $\rho(A) = \rho(B)$.
- 6、改变 Ax = b 中方程的排列顺序,不会改变迭代格式的收敛性.
- 7、设 $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\alpha}$ 为赋范空间X上的两种等价范数, $\{x_n\}$ 为X中的序列,

若
$$\lim_{n \to \infty} \|x_n \to x\|_{\alpha} = 0$$
 , 则 $\lim_{n \to \infty} \|x_n\|_{\beta} = \|x\|_{\beta}$.

- 8、若求积公式 $\int_{-1}^{1} f(x)dx \approx \sum_{k=0}^{n} A_{k}f(x_{k})$ 为 Gauss 型求积公式,则 $\sum_{k=0}^{n} |A_{k}| = 2$.
- 9、若矩阵 $A \in \mathbb{C}^{n \times n}$ 满足 $A^H = A$,则 e^A 是西矩阵
- 10、影响插值型求积公式代数精度有求积节点和求积系数两个因素。
- 二、填空题 (每小题 2 分, 共 10 分)
- 1. $i\Re f(x) = (x_1 + x_3 e^{x_3}, x_1^2 + x_2^2 \sin x_3)^T$, $i \Re f'(x) =$

2、设 $M_1 \in \mathbf{R}^{n \times n}$ 是 Jacobi 迭代矩阵,则 det e^{M_1} =

$$3 \lor \partial A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 10 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
,则 A 的条件数 $cond_{\infty}A =$ _______.

- 4、设 $A \in \mathbb{C}^{3\times 3}$ 为酉矩阵,且 $\det(\lambda E A) = (\lambda 1)^3$,则 $\lambda E A$ 的不变因子 $d_2(\lambda) = _____$.5、对于 Simpson 求积公式 $\int_a^b f(x)dx \approx S$,若 f(x) 为 3 次多项式函数,则 $\int_a^b f(x)dx - S = \underline{\qquad}.$

 Ξ . **(10 分)** 设 $A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$,求 A 的 Jordan 标准形 J 和有理标准形 C .

四、(10分) 已知函数 y = f(x) 的数值表如下

х	7.7	7.8	7.9	8.0	8.1
y	2.90256	2.97857	3.06173	3.25530	3.36987

- (1) 用三次 Newton 插值多项式求 f (7.93) 的近似值.
- (2) 若 $|f^{(4)}(x)| \le 12$, $\forall x \in [7.7, 8.1]$,请估计所得结果的误差. (计算结果保留至小数点后第5位)

六、(8分) 用 Romberg 算法求积分 $\int_0^1 2\sqrt{1+x^2}\,dx$ 的近似值,并将计算结果列于下表(数据保留至小数点后第 5 位).

 $\begin{cases} x_1'(t) = 3x_1(t) + 3x_2(t) + x_3(t), \\ x_2'(t) = 0, \\ x_3'(t) = -x_1(t) - x_2(t) + x_3(t), \\ x_1(0) = 1, x_2(0) = 2, x_3(0) = 3. \end{cases}$

五、(10分) 求解初值问题

k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	R _{2*-3}
0				
1				
2				
3				
4				

学号

七、(8分) 写出求解线性方程组 Ax = b的 Gauss—Seidel 迭代格式,并判断所写格式的收敛性,其中

$$A = \begin{bmatrix} 5 & 2 & 1 \\ -1 & 4 & 2 \\ 2 & -3 & 10 \end{bmatrix} , \quad b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} .$$

九、(8分) 设函数
$$f(x) = \begin{cases} x^2, & -1 \le x \le 0 \\ x^3 + x, & 0 < x \le 1 \end{cases}$$

- (1) 求 f(x) 在 $P_2[-1,1]$ 上的二次最佳平方逼近 $S_2^*(x)$
- (2) 求 $\delta^2 = \|f S_2^*\|$ (结果保留到小数点后第 5 位)

八、(8分) 写出用标准 Runge - Kutta 法求解初值问题

$$\begin{cases} y'' = -4y' + y \cos x, \\ y(0) = 1, \quad y'(0) = 3 \end{cases}$$

的计算格式.

学院_____专业

____班

年级

学号

姓名

共4页 第4页

十. (8分) 证明题:

1. 若 $A \in C^{max}$ 是 Hermite 矩阵,试证矩阵 A 对应不同特征值的特征向量都是正交的。

2.
$$\Re X = C[0, 1], \forall f \in X \Re \|f\|_{\infty} = \max_{0 \le t \le 1} |f(t)| = \|f\|_{2} = \left(\int_{0}^{1} |f(t)|^{2} dt\right)^{\frac{1}{2}}.$$

算子T:(X,|□||∞)→(X,|□||₂) 定义为:

$$(Tf)(x) = x \cdot f(x) \quad (\forall f \in X, \ x \in [0,1]),$$

试证: T是有界线性算子.

课程名称:工程数学基础 课程编号: S131A305

______ 班 学号: ______ 姓名: _____

题号	1	2	3	4	5	6	7	8	9	10	平时成绩	成绩
得分												

一. 判断 (10分)

1. 设
$$A, B \in \mathbb{C}^{n \times n}$$
,则 $\|A + B\|_F^2 + \|A - B\|_F^2 = 2(\|A\|_F^2 + \|B\|_F^2)$.

2. 设有算子
$$T: X \to Y$$
,则 $T(0) = 0$.

$$3. A \in \mathbb{C}^{n \times n}$$
,定义 $T: C^n \to C^n$ 为 $Tx = Ax(\forall x \in C^n)$ 则 T 是连续算子. ()

4. Legendre 多项式
$$\{p_0(x), p_1(x), ..., p_n(x)...\}$$
 线性无关.

5.设
$$\mathbf{A} \in \mathbb{C}^{n \times n}$$
, \mathbf{A} 是正定矩阵、则 \mathbf{A} 可酉对角化.

6. 若求积公式为
$$\int_{I} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$
 ,则此求积公式必为 Gauss-Legendre 型. ()

7. 设
$$A \in \mathbb{C}^{n \times n}$$
, $A^H = A \perp A$ 非奇异,则 $cond_{\gamma}A = \rho(A)\rho(A^{-1})$.

8. 改进的 Euler 格式的局部截断误差
$$\varepsilon_{n+1} = O(h^2)$$
.

9. Newton-Cotes 公式
$$\int_a^b f(x) dx \approx (b-a) \sum_{k=0}^{10} C_k^{(10)} f(x_k)$$
 的代数精度至少为 10 次. ()

10. 设
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
,若 \mathbf{A} 为对称矩阵,则 \mathbf{A} 的最小多项式无重零点. () 二、填空 (10分)

1. 己知
$$A(t) = \begin{bmatrix} e' & 2 \\ 2t^2 & te^{2t} \end{bmatrix}$$
,则 $\int_0^t A(t)dt = \underline{\hspace{1cm}}$.

2. 己知
$$A = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}$$
,则 A 条件数 $cond_1 A =$ ______.

3. 已知
$$\sin At = \begin{bmatrix} \sin t + 4t \cos t & -4t \cos t \\ 4t \cos t & \sin t - 4t \cos t \end{bmatrix}$$
, 则 $A =$ ______.

4. 设求积公式为
$$\int_{1}^{1} f(x)dx \approx f(-\sqrt{3}/3) + f(\sqrt{3}/3)$$
, 则其余项

$$R(f) =$$
_______.
5. 设 $A \in \mathbb{C}^{3\times 3}$, $A^H = A$, $\det(\lambda E - A) = (\lambda - 2)^3$ 则 $\lambda E - A$ 不变因子 $d_1(\lambda) =$ _______.

(二)
$$\equiv .(8 \, \hat{\mathcal{T}})$$
 设 $\mathbf{A} = \begin{bmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{bmatrix}$, 求 \mathbf{A} 的 Jordan 标准形 \mathbf{J} ,有理标准形 \mathbf{C} .

四. (10 分) 设
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, 求 $e^{\mathbf{A}t}$

五.
$$(8 分)$$
 已知线性方程组为 $\begin{bmatrix} 1 & 2 & 2 \\ 3 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 4 \end{bmatrix}$

六. (8分)由下列插值条件

x	3.0	3.1	3.2	3.3	3.4
f(x)	1.09861	1.13140	1.16315	1.19392	1.22378

用三次 Newton 插值多项式计算 f(3.27) 的近似值(结果保留至小数点后第5位)

课程名称:	工程数学基础	课程编号:	S131A305	学院名称:	班	学号:	姓名:
-------	--------	-------	----------	-------	---	-----	-----

八. (10 分) 用 Legendre 多项式求函数 $f(x) = \sin x$ 在 $P_2[0,\pi]$ 上的二次最佳平方逼近 $S_2^*(x)$,并求 $\delta^2 = \|f - S_2^*\|_2^2$ (结果保留到小数点后第 5 位)

七. (10 分) 用 *Romberg* 算法求积分 $\int_0^1 \frac{4}{1+x^2} dx$ 的近似值,并将计算结果 列于下表 (计算结果保留至小数点后第 5 位)

k	<i>T</i> _{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$
0				
1				
2				
3				
4				

课程名称: 工程数学基础 课程编号: S131A305

九(8分) 写出用标准 Runge-Kutta 方法求解下列初值问题的计算格式:

$$\begin{cases} y'' = 2(y')^2 + 3xy + 4x \\ y(0) = y'(0) = 1 \end{cases}$$

十. (10分)证明

- 1. 设 $l_k(x)$, $(k=0,1,\cdots n)$ 是以 Gauss 点 x_k $(k=0,1,\cdots n)$ 为节点的 n 次 Lagrange 插值基函数,则 $\int_a^b l_k(x) dx > 0$.