Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Systems are Equivalent

Chana Weil-Kennedy

joint work with A. R. Balasubramanian, Technical University of Munich

introduced in [Delzanno, Sangnier & Zavattaro, CONCUR '10]

- processes communicate by selective broadcast
- broadcast and receives happen at the same time
- multiple receives can happen simultaneously

introduced in [Esparza, Ganty & Majumdar, CAV '13]

Goal: put a process in final

- processes communicate by writing to a shared register
- writes and reads are asynchronous events
- only one process reads at a time

A **cube** is a boolean combination of constraints

A **cube** is a boolean combination of constraints

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

RBN and ASMS are polynomial-time equivalent w.r.t. to cube-reachability

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

RBN and ASMS are polynomial-time equivalent w.r.t. to cube-reachability

cube-reachability: given cubes $\mathscr C$ and $\mathscr C'$, does there exist $M \in \mathscr C$ and $M' \in \mathscr C'$ such that M reaches M'?

Thank you!