实验五 触发器和寄存器

盖将自其变者而观之,则天地曾不能以一瞬;自其不变者而观之,则物与我皆无尽也。

实验背景

D触发器

D触发器是最常用的触发器。它只有一个输入端D,对上升沿触发的D触发器,在时钟CLK的上升沿,输出Q=D,其余时刻Q不变。基本的D触发器的状态转换表和激励表见下图。

状态转换表:

D	Q^n	Q^n+1
0	0	0
0	1	0
1	0	1
1	1	1

激励表:

Q^n -> Q^(n+1)	D
0 0	0
0 1	1
10	0
11	1

触发器除了同步输入端外,还有异步输入端(包括置1端SET和清零端CLR);不同的触发器可以通过加入组合电路来实现功能转换。触发器可以组合构成不同类型的寄存器。

寄存器

寄存器是用来暂时存放一组二进制代码的器件,主要分为数码寄存器和移位寄存器;数码寄存器在时钟脉冲的作用下,实现数据的并行接收、存储和传送;常用的数码寄存器器件有74LS175和74LS273等;74LS175的功能见表5-7.移位寄存器除了有存储功能外,还可以在时钟脉冲的作用下对数据实现移位功能,移位寄存器器件有74LS164和74LS194等;

74LS175的功能表:

RD CP	工作状态
0 X	异步清零
1上升沿	数据存放
10	数据保存

74LS194的功能表:

RD	A1 A0	工作状态
0	XX	异步清零
1	0 0	数据保持
1	0 1	右移
1	10	左移
1	11	并行置数

实验内容

- 1、用System Verilog语言描述带异步清零和异步置数的D触发器,编译并实现器件逻辑功能。
- 2、用输出分别为q1和q0的两个D触发器设计一个2位的加法计数器。其中, q1为高位。
- 3、用D触发器构成74LS175。
- 4、用System Verilog语言描述74LS194双向移位寄存器。