Three-strategy decision tree in R - HVE with "OpenTree"

The DARTH workgroup

Developed by the Decision Analysis in R for Technologies in Health (DARTH) workgroup:

Fernando Alarid-Escudero, PhD (1)

Eva A. Enns, MS, PhD (2)

M.G. Myriam Hunink, MD, PhD (3,4)

Hawre J. Jalal, MD, PhD (5)

Eline M. Krijkamp, MSc (3)

Petros Pechlivanoglou, PhD (6,7)

Alan Yang, MSc (7)

In collaboration of:

- 1. Drug Policy Program, Center for Research and Teaching in Economics (CIDE) CONACyT, Aguas-calientes, Mexico
- 2. University of Minnesota School of Public Health, Minneapolis, MN, USA
- 3. Erasmus MC, Rotterdam, The Netherlands
- 4. Harvard T.H. Chan School of Public Health, Boston, USA
- 5. University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- 6. University of Toronto, Toronto ON, Canada
- 7. The Hospital for Sick Children, Toronto ON, Canada

Please cite our publications when using this code:

- Jalal H, Pechlivanoglou P, Krijkamp E, Alarid-Escudero F, Enns E, Hunink MG. An Overview of R in Health Decision Sciences. Med Decis Making. 2017; 37(3): 735-746. https://journals.sagepub.com/doi/abs/10.1177/0272989X16686559
- Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou P. Microsimulation modeling for health decision sciences using R: A tutorial. Med Decis Making. 2018;38(3):400–22. https://journals.sagepub.com/doi/abs/10.1177/0272989X18754513
- Krijkamp EM, Alarid-Escudero F, Enns E, Pechlivanoglou P, Hunink MM, Jalal H. A Multidimensional Array Representation of State-Transition Model Dynamics. Med Decis Making. 2020 Online first. https://doi.org/10.1177/0272989X19893973

Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS. All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR Sick CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

Change eval to TRUE if you want to knit this document.

```
rm(list = ls())  # clear memory (removes all the variables from the workspace)
```

01 Load packages

```
if (!require('pacman')) install.packages('pacman'); library(pacman) # use this package to conveniently
# load (install if required) packages from CRAN
p_load("devtools", "scales", "ellipse", "lazyeval", "igraph", "ggraph", "reshape2", "knitr", "stringr"
# load (install if required) packages from GitHub
p_load_gh("DARTH-git/darthtools", "DARTH-git/OpenTree")
```

02 Load functions

```
# all functions are in the darthtools package so no need for additional functions
```

03 Define parameter input values

```
<- c("Do not treat", "Treat", "Biopsy") # names of strategies
v names str
            <- length(v_names_str)</pre>
                                                    # number of strategies
n_str
             <- 100000
                                                     # willingness to pay threshold
wtp
# Probabilities
p_HVE <- 0.52 # prevalence of HVE
             <- 0.71 # complications with untreated HVE
p_HVE_comp
p_OVE_comp <- 0.01 # complications with untreated OVE
p_HVE_comp_tx <- 0.36 # complications with treated HVE
p_OVE_comp_tx <- 0.20 # complications with treated OVE
p_biopsy_death <- 0.005 # probability of death due to biopsy</pre>
# Costs
            <- 1200 # cost of viral encephalitis care without complications
c_VE
            <- 9000 # cost of viral encephalitis care with complications
c_VE_comp
             <- 9500 # cost of treatment
c_tx
c_biopsy <- 25000 # cost of brain biopsy
c_death_biopsy <- 0  # cost of death from brain biopsy</pre>
# QALYs
             <- 20 # remaining QALYs for those without VE-related complications
q_VE
q_VE_comp <- 19
                       # remaining QALYs for those with VE-related complications
q_loss_biopsy <- 0.01 # one-time QALY loss due to brain biopsy</pre>
q_death_biopsy <- 0  # remaining QALYs for those who died during biopsy
```

04 Create and run decision tree model

```
# Create vector of weights for each strategy
                                           , # HVE, complications
                  p_HVE * p_HVE_comp
v_w_no_tx <- c(
                  p_HVE * (1 - p_HVE_comp) , # HVE, no complications
             p_HVE_comp_tx , # HVE w/tx, complications
         <- c(
v_w_tx
                  p_{HVE} *
                  p_HVE * (1 - p_HVE_comp_tx) , # HVE w/tx, no complications
             (1 - p_HVE) * p_OVE_comp_tx , # OVE w/tx, complications
              (1 - p_HVE) * (1 - p_OVE_comp_tx)) # OVE w/tx, no complications
                                            , # biopsy death
v_w_biopsy <- c(p_biopsy_death</pre>
             # no biopsy death., HVE w/tx,
                                                complications
             (1-p_biopsy_death) * p_HVE * p_HVE_comp_tx ,
             # no biopsy death., HVE w/tx,
                                           {\it no~complications}
             (1-p_biopsy_death) * p_HVE * (1-p_HVE_comp_tx) ,
             # no biopsy death.,
                                                complications
                                     OVE,
                                                 p_OVE_comp
             (1-p_biopsy_death) * (1-p_HVE) *
             # no biopsy death.,
                                  OVE,
                                              no complications
             (1-p\_biopsy\_death) * (1-p\_HVE) * (1 - p\_OVE\_comp))
# Create vector of outcomes (QALYs) for each strategy
v_qaly_no_tx <- c(q_VE_comp ,</pre>
                                   # HVE, complications
                 q_VE
                                   # HVE, no complications
                                 # OVE, complications
                 q_VE_comp ,
                                    # OVE, no complications
                 q_VE)
                                 # HVE, complications
           <- c(q_VE_comp ,</pre>
v_qaly_tx
                 q_VE
                                   # HVE, no complications
                                 # OVE, complications
                 q_VE_comp ,
                                   # OVE, no complications
                 q_VE)
v_qaly_biopsy <- -q_loss_biopsy + # loss due to biopsy</pre>
                c(q_death_biopsy , # biopsy complications
                              , # no biopsy comp., HVE w/tx, complications
                  q_VE_comp
                                 , # no biopsy comp., HVE w/tx, no complications
                  q_VE
                                , # no biopsy comp., OVE, complications
                  q_VE_comp
                                    # no biopsy comp., OVE, no complications
                  q_VE)
# Create vector of costs for each strategy
v_cost_no_tx <- c(c_VE_comp ,</pre>
                                   # HVE, complications
                                   # HVE, no complications
                 c_VE
                 c_VE_comp ,
                                 # OVE, complications
                 c_VE)
                                   # OVE, no complications
                                    # cost of treatment
            <- c_tx +
v_cost_tx
                                 # HVE, complications
               c(c_VE_comp ,
                                  # HVE, no complications
                 c_VE
```

```
c_VE_comp ,
                                 # OVE, complications
                                       # OVE, no complications
                  c_VE)
v_cost_biopsy <- c_biopsy</pre>
                                  + # cost of biopsy procedure
                                 , # cost of death (zero)
                c(0
                  \verb|c_VE_comp| + \verb|c_tx|, \qquad \textit{\# no biopsy comp., HVE w/tx, complications}|\\
                  , # no biopsy comp., OVE, complications
                  c_VE_comp
                  c_VE)
                                     # no biopsy comp., OVE, no complications
# Calculate total utilities for each strategy
total_qaly_no_tx <- v_w_no_tx %*% v_qaly_no_tx
total_qaly_tx <- v_w_tx %*% v_qaly_tx
total_qaly_biopsy <- v_w_biopsy %*% v_qaly_biopsy</pre>
# Calculate total costs for each strategy
total_cost_no_tx <- v_w_no_tx %*% v_cost_no_tx
total_cost_tx <- v_w_tx
                           %*% v_cost_tx
total_cost_biopsy <- v_w_biopsy %*% v_cost_biopsy</pre>
# vector of total QALYs
v_total_qaly <- c(total_qaly_no_tx, total_qaly_tx, total_qaly_biopsy)</pre>
# vector of total costs
v_total_cost <- c(total_cost_no_tx, total_cost_tx, total_cost_biopsy)</pre>
# calculate vector of nmb
            <- v_total_qaly * wtp - v_total_cost
v nmb
# Name outcomes
names(v_total_qaly) <- v_names_str # names for the elements of the total QALYs vector
names(v_total_cost) <- v_names_str # names for the elements of the total cost vector
names(v_nmb)
                 <- v_names_str # names for the elements of the nmb vector</pre>
df_output <- data.frame(Strategy = v_names_str,</pre>
                       Cost = v_total_cost,
                       Effect = v_total_qaly,
                       NMB = v_nmb)
# model output
df output
```

04.1 Use OpenTree to create and run decision tree model

Create or open decision tree.

The function create_tree() creates a blank tree and the function open_tree() opens an existing decision tree.

IMPORTANT: since create_tree() always creates blank new tree, do not use it to access or modify an existing tree, or else the tree will get erased. Always use open_tree() to open and modify existing trees.

Any changes made to the tree in OpenTree are automatically saved as a .json file to the working directory. If you are running it in an R script, the .json file will be saved to the path on your machine specified in dir_name. If you are running it in an R markdown document, the .json file will be saved to the path where the R markdown document is located.

```
#create_tree(file_name = "Helloworld", dir_name = getwd())
open_tree(file_name = "HVEsolution", dir_name = getwd())
```

Extract probability weights and outcomes of the decision tree.

```
# extract the probability weights and outcomes
df_tree <- evaluate_model("HVEsolution", n_payoffs = 2)</pre>
```

Compute total cost and QALYs.

05 Cost-Effectiveness Analysis

05.1 Plot frontier of Decision Tree

```
plot(decision_tree_HVE_cea, effect_units = "QALYs", label="all")
```