Gov 51: Estimators

Matthew Blackwell

Harvard University

Remember our goal

- We want to learn about the chance process that generated our data.
- · Now we switch to inference.
 - What can I learn about the population distribution from my sample?

How popular is Donald Trump?

- What proportion of the public approves of Trump's job as president?
- Latest Gallup poll:
 - · Oct. 29th-Nov. 4th
 - · 1500 adult Americans
 - Telephone interviews
 - Approve (40%), Disapprove (54%)
- What can we learn about Trump approval in the population from this one sample?

Samples from the population

- Simple random sample of size n from some population Y_1,\ldots,Y_n
 - → i.i.d. random variables
 - e.g.: $Y_i = 1$ if i approves of Trump, $Y_i = 0$ otherwise.
- Statistical inference: using data to guess something about the population distribution of Y_i .

Point estimation

- Quantity of interest: some feature of the population distribution.
 - · Also called: parameters.
 - · These are the things we want to learn about.
- Point estimation: providing a single "best guess" about this q.o.i.
- · Examples of quantities of interest:
 - $\mu = \mathbb{E}[Y_i]$: the population mean (turnout rate in the population).
 - $\sigma^2 = \mathbb{V}[Y_i]$: the population variance.
 - $\mu_1 \mu_0 = \mathbb{E}[Y(1)] \mathbb{E}[Y(0)]$: the population ATE.

Estimators

- **Estimator**: function of the data that produces estimates of the q.o.i.
 - · An estimate is one particular realization of the estimator
- Ideally we'd like to know the estimation error, estimator truth
 - Problem: θ is unknown.
- Solution: figure out the properties of estimator using probability.
 - Estimator is a r.v. because it is a function of r.v.s. (the data)
 - → estimator has a distribution has a distribution.

Estimating Trump's support

- Parameter p: population proportion of adults who support Trump
- · There are many different possible estimators:
 - $\hat{p} = \overline{Y}_n$ the sample proportion of respondents who support Trump.
 - $\hat{p} = Y_1$ just use the first observation
 - $\hat{p} = \max(Y_1, \dots, Y_n)$
 - $\hat{p} = 0.5$ always guess 50% support
- · How good are these different estimators?

Survey

- Assume a simple random sample of n voters: n = 1500
- Define r.v. Y_i for Trump approval:
 - $Y_i = 1 \rightsquigarrow \text{respondent } i \text{ approves of Trump}$
 - $Y_i = 0 \rightsquigarrow \text{respondent } i \text{ disapproves of Trump}$
- Y_i is **Bernoulli** with probability of success p
 - "success" = "selecting a Trump approver"
 - $p = \mathbb{P}(Y_i = 1)$ the population proportion of Trump approvers.
- · Sample proportion is the same as the sample mean:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{\text{number who support Trump}}{n}$$

Sample mean properties

sample proportion
$$=$$
 population proportion $+$ chance error $\overline{Y} = p + \text{chance error}$

- Remember: the sample mean/proportion is a random variable.
 - · Different samples give different sample means.
 - Chance error "bumps" sample mean away from population mean
- \rightsquigarrow \overline{Y} has a distribution across repeated samples.

Central tendency of the sample mean

- Expectation: average of the estimates across repeated samples.
 - From last week, $\mathbb{E}[\overline{Y}] = \mathbb{E}[Y_i] = p$
 - → chance error is 0 on average:

$$\mathbb{E}[\overline{Y} - p] = \mathbb{E}[\overline{Y}] - p = 0$$

 Unbiasedness: Sample proportion is on average equal to the population proportion.

Spread of the sample mean

- Standard error: how big is the chance error on average?
 - · This is the standard deviation of the estimator.
- · Special rule for sample proportions:

$$\sqrt{\mathbb{V}(\overline{Y})} = \sqrt{\frac{p(1-p)}{n}}$$

- Problem: we don't know p!
- Solution: estimate the SE:

$$\sqrt{\hat{\mathbb{V}}(\overline{Y})} = \sqrt{\frac{\overline{Y}(1 - \overline{Y})}{n}} = \sqrt{\frac{0.37 \times (1 - 0.37)}{1500}} \approx 0.012$$