#### Topology and Geometry Seminar - IIIT Delhi

(Organizers: Aritra Bhowmick, Sachchidanand Prasad, Sandip Samanta)

Existence of Higher Extremal Kähler Metrics on a Minimal Ruled Surface - Talk 2

Overview of Some Concepts Related to Holomorphic Line Bundles (Prerequisites)

Rajas Sandeep Sompurkar

Department of Mathematics, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India

3<sup>rd</sup> September, 2025 (Wednesday); 02:30 p.m. (IST)

#### Holomorphic Fibre Bundle

Let B, E, F be complex manifolds and  $\pi: E \to B$  be a surjective holomorphic mapping. Let  $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$  be an open covering of B such that for each  $\alpha \in \Lambda$  there exists a biholomorphism  $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F \subseteq B \times F$  further satisfying  $\pi_B|_{U_\alpha\times F}\circ\varphi_\alpha=\pi|_{\pi^{-1}(U_\alpha)}$  where  $\pi_B:B\times F\to B$  is the standard projection. Furthermore for any  $\alpha, \beta \in \Lambda$  if  $U_{\alpha} \cap U_{\beta} \neq \emptyset$  then let  $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times F$  be a holomorphic function which then at each point  $p \in U_{\alpha} \cap U_{\beta}$  will induce a biholomorphism  $\varphi_{\beta\alpha}(p): F \to F$  given by  $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}(p,x) = (p,\varphi_{\beta\alpha}(p)(x))$  for all  $x \in F$  such that the F-automorphism-valued functions  $\varphi_{\beta\alpha}$  will be holomorphic and will satisfy the compatibility condition  $\varphi_{\gamma\beta}\circ\varphi_{\beta\alpha}=\varphi_{\gamma\alpha}$  for all  $\alpha, \beta, \gamma \in \Lambda$  whenever  $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$ . Then the entire data mentioned above is called as a holomorphic fibre bundle.

#### Holomorphic Vector Bundle

A holomorphic vector bundle is a holomorphic fibre bundle in which the typical fibre F is the complex r-space  $\mathbb{C}^r$ , and additionally the induced functions  $\varphi_{\beta\alpha}\left(p\right):\mathbb{C}^r\to\mathbb{C}^r$  are  $\mathbb{C}$ -linear isomorphisms, and hence  $\varphi_{\beta\alpha}$  are matrix-valued functions with the compatibility condition being given in terms of matrix multiplication. The non-negative integer r is called as the rank of the holomorphic vector bundle. A holomorphic vector bundle of rank 1 is called as a holomorphic line bundle.

**Examples:** The holomorphic tangent and cotangent bundles of a complex manifold, the canonical and anticanonical bundles of a complex manifold.

#### Complex Vector Bundle

A complex vector bundle is on the contrary a smooth vector bundle with the same data as that of a holomorphic vector bundle, except that the local trivializations and the transition maps are just smooth functions (instead of being holomorphic), but the induced functions  $\varphi_{\beta\alpha}\left(p\right):\mathbb{C}^{r}\to\mathbb{C}^{r}$  are still required to be  $\mathbb{C}$ -linear isomorphisms.

**Examples:** The complexified tangent and cotangent bundles of a complex manifold.

#### Hermitian Metric on a Holomorphic Vector Bundle

A *Hermitian metric* on a holomorphic vector bundle is a smoothly varying family of Hermitian (complex sesquilinear) inner products on each fibre of the bundle.

There exists a unique torsion-free affine connection  $\nabla$  on a Hermitian holomorphic vector bundle which is compatible with the complex structure as well as with the Hermitian metric, called as the Chern connection. This is a canonical connection on a Hermitian holomorphic vector bundle just like the Levi-Civita connection on a Riemannian manifold.

The *curvature* of a Hermitian holomorphic vector bundle is then defined to be the extent to which the covariant derivatives given in terms of the Chern connection fail to commute, i.e. the *curvature tensor* is given by:

$$F_{k\bar{l}} = \nabla_k \nabla_{\bar{l}} - \nabla_{\bar{l}} \nabla_k$$

#### Hermitian Metric on a Complex Manifold

A Hermitian metric g on a complex manifold M by definition provides for a smoothly varying family of Hermitian inner products on each holomorphic tangent space of the manifold, i.e. it naturally endows the holomorphic tangent bundle of the manifold with a Hermitian metric.

So associated to g we have the unique Chern connection on the holomorphic tangent bundle  $T^{(1,0)}M$ . But since g is a Riemannian metric on the underlying smooth manifold of M, there exists the unique Levi-Civita connection on the real tangent bundle TM afforded by Riemannian geometry. The question that arises is: When do the two canonical connections coincide?

**Answer:** The Chern connection and the Levi-Civita connection coincide if and only if the Hermitian metric g satisfies the Kähler condition.

#### Ricci Form, First Chern Form and First Chern Class

Let M be a compact Kähler n-manifold and  $\omega$  be a Kähler metric on M.

The *Ricci form* of  $\omega$  is defined as:

$$\mathrm{Ric}\left(\omega\right)=-\sqrt{-1}\partial\bar{\partial}\ln\det\left(\omega\right)$$

where  $\det(\omega) = \det H(\omega)$ ,  $H(\omega)$  being the Hermitian matrix of  $\omega$ . Ric  $(\omega)$  is a closed real (1,1)-form on M. If  $\eta$  is any other Kähler metric on M then it can be checked that:

$$[\operatorname{\mathsf{Ric}}(\eta)] = [\operatorname{\mathsf{Ric}}(\omega)] \in H^{(1,1)}(M,\mathbb{R}) \subseteq H^2(M,\mathbb{R})$$

The first Chern form of  $\omega$  and the first Chern class of M (which is as a result independent of the choice of  $\omega$ ) are defined as:

$$c_1(\omega) = \frac{1}{2\pi} \operatorname{Ric}(\omega), \ c_1(M) = \frac{1}{2\pi} \left[ \operatorname{Ric}(\omega) \right]$$

#### Kähler-Einstein and cscK Metrics

#### Definition (Kähler-Einstein Metric)

The Kähler metric  $\omega$  is said to be a *Kähler-Einstein metric* on M if  $\mathrm{Ric}\,(\omega)=\lambda\omega$  for some constant  $\lambda\in\mathbb{R}$ .

The constant  $\lambda = \lambda (\omega)$  which appears above is called as the *Ricci* curvature of the Kähler-Einstein metric  $\omega$ .

The scalar curvature of  $\omega$ , denoted by  $S(\omega): M \to \mathbb{R}$ , is a smooth function given by the following formula:

$$n \operatorname{Ric}(\omega) \wedge \omega^{n-1} = S(\omega) \omega^n$$

#### Definition (cscK Metric)

The Kähler metric  $\omega$  is said to be a constant scalar curvature Kähler (cscK) metric on M if  $S(\omega)$  is a constant function on M.

We clearly have the following implication:

 $\omega$  is Kähler-Einstein  $\implies \omega$  is cscK



#### Extremal Kähler Metric

#### Definition (Calabi Functional; Calabi)

Let  $\Omega \in H^{(1,1)}(M,\mathbb{R})$  be a Kähler class and  $\Omega^+$  denote the set of all Kähler metrics in  $\Omega$ . The Calabi functional on  $\Omega^+$  is defined as:

$$\mathsf{Cal}: \Omega^+ o \mathbb{R}, \; \; \mathsf{Cal}\left(\omega\right) = \int\limits_{M} S\left(\omega\right)^2 \omega^n, \; \; \omega \in \Omega^+$$

#### Definition (Extremal Kähler Metric; Calabi)

 $\omega \in \Omega^+$  is said to be an extremal Kähler metric if  $\omega$  is a critical point of Cal on  $\Omega^+$ .

#### Theorem (The Euler-Lagrange Equation for an Extremal Kähler Metric; Calabi)

 $\omega$  is an extremal Kähler metric on M if and only if  $abla^{1,0}S(\omega) = (\bar{\partial}S(\omega))^{\sharp}$  is a real holomorphic vector field on M. We clearly have the following implication:

 $\omega \text{ is cscK} \implies \omega \text{ is extremal K\"ahler}$ 



## Higher Chern Forms and Higher Chern Classes

Consider the invariant homogeneous polynomials  $P_k$  of degree k with  $1 \le k \le n$  in the following expansion:

$$\det\left(I+A\right)=1+\sum_{k=1}^{n}P_{k}\left(A\right)$$

Let  $\omega$  be a Kähler metric on M,  $H(\omega)$  be the Hermitian matrix of  $\omega$  and  $\Theta(\omega) = \bar{\partial} (H^{-1}\partial H)(\omega)$  be the *curvature form matrix* of  $\omega$ . The  $k^{th}$  Chern form of  $\omega$  is defined as:

$$c_k(\omega) = P_k\left(\frac{\sqrt{-1}}{2\pi}\Theta(\omega)\right)$$

 $c_k(\omega)$  is a closed real (k, k)-form on M. The  $k^{th}$  Chern class of M (which can again be verified to be independent of the choice of  $\omega$ ) is defined as:

$$c_k(M) = [c_k(\omega)] \in H^{(k,k)}(M,\mathbb{R}) \subseteq H^{2k}(M,\mathbb{R})$$



## Higher cscK and Higher Extremal Kähler Metrics

#### Definition (Higher cscK Metric; Pingali)

A Kähler metric  $\omega$  on M is said to be higher constant scalar curvature Kähler (higher cscK) if  $c_n(\omega) = \frac{\lambda}{n!(2\pi)^n}\omega^n$  for some constant  $\lambda \in \mathbb{R}$ .

#### Definition (Higher Extremal Kähler Metric; Pingali)

A Kähler metric  $\omega$  on M is said to be *higher extremal Kähler* if  $c_n(\omega) = \frac{\lambda}{n!(2\pi)^n}\omega^n$  for some smooth function  $\lambda: M \to \mathbb{R}$  such that  $\nabla^{1,0}\lambda = (\bar{\partial}\lambda)^\sharp$  is a real holomorphic vector field on M.

We again have the following implication:

 $\omega$  is higher cscK  $\implies \omega$  is higher extremal Kähler

The smooth real-valued function  $\lambda = \lambda (\omega)$  which appears in the above 2 definitions can be dubbed by analogy as the "higher scalar curvature" of  $\omega$ .



## "Canonical" Kähler Metrics on Compact Kähler Manifolds

Let M be a compact Kähler manifold. We have the following 3 well-known and well-studied notions of "canonical" Kähler metrics in a given fixed Kähler class  $\Omega$  on M:

```
\begin{aligned} & \{ \mathsf{K\"{a}hler}\text{-}\mathsf{Einstein} \ \mathsf{Metrics} \} \subseteq \{ \mathsf{cscK} \ \mathsf{Metrics} \} \\ & \{ \mathsf{cscK} \ \mathsf{Metrics} \} \subseteq \{ \mathsf{Extremal} \ \mathsf{K\"{a}hler} \ \mathsf{Metrics} \} \end{aligned}
```

The definitions of these 3 notions are related to the first Chern class  $c_1(M) \in H^{(1,1)}(M,\mathbb{R}) \subseteq H^2(M,\mathbb{R})$ .

Taking the analogy of these to the level of the top Chern class  $c_n(M) \in H^{(n,n)}(M,\mathbb{R}) = H^{2n}(M,\mathbb{R})$ , Pingali introduced the following 2 new notions of canonical Kähler metrics in the Kähler class  $\Omega$ :

{Higher cscK Metrics} ⊆ {Higher Extremal Kähler Metrics}

# Reference Books for Complex Differential Geometry and Kähler Geometry

- ► Complex Geometry: An Introduction Daniel Huybrechts
- An Introduction to Extremal Kähler Metrics Gábor Székelyhidi
- Complex Analytic and Differential Geometry Jean-Pierre Demailly

# Thank You For Your Kind Attention!