PERTEMUAN 15

Program Studi Informatika Universitas Indraprasta PGRI

Penyelesaian Integral Lipat

Penyelesaian integral lipat dua adalah mengunakan teknik pengintergral sebanyak dua kali dimulai dari yang paling dalam dahulu untuk di integralkan.

kumus

$$\iint_{R} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

Contoh 1

$$\int_{0}^{3} \left[\int_{1}^{2} (2x+3y) dx \right] dy$$

$$\int_{1}^{2} (2x+3y) dx = \left[x^{2} + 3yx \right]_{1}^{2} = 4 + 6y - (1+3y) = 3 + 3y$$

$$\int_{0}^{3} \left[\int_{1}^{2} (2x+3y) dx \right] dy = \int_{0}^{3} [3+3y] dy = \left[3y + \frac{3}{2}y^{2} \right]_{0}^{3} = 9 + \frac{27}{2} = \frac{3}{2}$$

Contoh 2

$$\int_{1}^{2} \left[\int_{0}^{3} (2x + 3y) dy \right] dx$$

$$\int_{0}^{3} (2x+3y)dy = \left[2xy + \frac{3}{2}y^{2}\right]_{0}^{3} = 6x + \frac{27}{2}$$

$$\int_{1}^{2} \left[\int_{0}^{3} (2x + 3y) dy \right] dx = \int_{1}^{2} \left[6x + \frac{27}{2} \right] dx = \left[3x^{2} + \frac{27}{2} x \right]_{1}^{2}$$

$$= 12 + 27 - \left(3 + \frac{27}{2}\right)$$

$$= \frac{45}{2}$$

Contoh 3

$$\int_{0}^{8} \int_{16}^{4} \frac{1}{16} (64 - 8x + y^{2}) \, dx \, dy$$

$$\int_{16}^{1} (64 - 8x + y^2) dx = \frac{1}{16} [64x - 4x^2 + y^2 x]_0^4$$
$$= \frac{1}{16} [256 - 64 + 4y^2]$$

$$= 12 + \frac{1}{4}y^2$$

$$\int_{0}^{8} \left(12 + \frac{1}{4} y^{2} \right) dy = \left[12y + \frac{y^{2}}{12} \right]_{0}^{8} = 96 + \frac{512}{12} = 96 + \frac{128}{3} = 138 \frac{2}{3}$$

Conton 4

$$\iint_{R} (x^{2} + 2y^{2}) dA = \int_{0}^{6} \int_{0}^{4} (x^{2} + 2y^{2}) dy dx$$

$$= \int_{0}^{6} \left[x^{2}y + \frac{2}{3}y^{3} \right]_{0}^{4} dx$$

$$= \int_{0}^{6} \left(4x^{2} + \frac{128}{3} \right) dx$$

$$= \left[\frac{4}{3}x^{3} + \frac{128}{3}x \right]_{0}^{6}$$

$$= 288 + 256$$

Contoh 5

Contoh 5
$$\iint_{R} \sin(x+y) dA = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin(x+y) dy dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left[-\cos(x+y) \right]_{0}^{\frac{\pi}{2}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos\left(\frac{\pi}{2} + y\right) + \cos y \right) dx$$

$$= \int_{0}^{\pi} \left(-\cos\left(\frac{\pi}{2} + y\right) + \cos y \right) dx$$

$$= \left[\sin y \right]_{0}^{\frac{\pi}{2}} - \left[\sin\left(\frac{\pi}{2} + y\right) \right]_{0}^{\frac{\pi}{2}}$$

$$= \sin\left(\frac{\pi}{2}\right) - \sin(\pi) + \sin\left(\frac{\pi}{2}\right)$$

$$= 2$$

Latihan Soal

$\int_{0}^{\frac{\pi}{2}} x^{2} y dy dx$	6. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} x \sin xy dy dx$
-	7. $\int_{0}^{\pi} \int_{0}^{\infty} x e^{xy} dy dx$
$\int_{0}^{2} (xy + y^{2}) dy dx$	8. $\int_{0}^{3} \int_{0}^{1} 2x\sqrt{x^2 + y} dx dy$
$\int_{-1}^{1} \int_{1}^{2} (x^2 + y^2) dx dy$	9. $\iint_{0}^{1} \int_{0}^{1} \frac{y}{(xy+1)^{2}} dx dy$
$\int_{0}^{\pi} \int_{0}^{1} x \sin y dx dy$	10. $\iint_{0}^{1} \int_{0}^{2} \frac{y}{1+x^{2}} dy dx$