华南理工大学 2015-2016 学年第二学期

◆ 《大学物理 (I)》期末考试 ※ P27

- 一、选择题(30分,每题3分,共10题,请用大写字母将正确答案填写在答案表格里)
- 1、一质点在平面上运动,已知质点位置矢量的表达式为 $\vec{r} = at^2\vec{i} + bt^2\vec{j}$ (其中a、b为常数),则 该质点作()
- A、匀速直线运动 B、变速直线运动 C、抛物线运动

 $B \sqrt{1.5}J$

- D、一般曲线运动
- 2、质量为m=0.5kg的质点,在Oxy 坐标平面内运动,其运动方程为x=5t, $y=0.5t^2$ (SI),从 t = 2s 到 t = 4s 这段时间内,外力对质点做的功为 ().
- A = -1.5J

- $C \setminus 3J$

- 3、一质量为<math>m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑 下,到达最低点B时,它对容器的正压力为N,则质点自A滑到B的过程中,摩擦 力对其作的功为().
- A. $\frac{1}{2}R(N-3mg)$ B. $\frac{1}{2}R(N-4mg)$ C. $\frac{1}{2}R(N-mg)$ D. $\frac{1}{2}R(N-2mg)$

- 4、三个容器 A、B、C 中装有同种理想气体,其分子数密度n相同,而方均根速率之比为 $\left(\overline{v_A^2}\right)^{1/2}:\left(\overline{v_B^2}\right)^{1/2}:\left(\overline{v_C^2}\right)^{1/2}=1:2:4$,则其压强之比 $p_A:p_B:p_C$ 为: () .
- B, 1:4:8
- C、1:4:16
- D, 4:2:1
- 5、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自 由膨胀,达到平衡后().
- A、温度不变,熵不变

B、温度升高,熵增加

C、温度降低, 熵增加

- D、温度不变, 熵增加
- 6、一理想气体经历acb 过程时吸热500J,则经历acbda 过程时,吸热

- A, -1200J B, -900J C, -400J
- $D_{\gamma} 700J$

- 7、两列时速均为64.8km/h迎面对开的列车,一列车的汽笛频率为
- 600Hz,则在另一列车上的乘客听到的汽笛的频率为(空气中声速为340m/s)()
- A, 667Hz B, 568Hz C, 632Hz

- $D \times 883Hz$

8、两相干波源 S_1 和 S_2 相距 $\frac{\lambda}{4}$, (λ 为波长), S_1 的相位比 S_2 的相位 超前 $\frac{\pi}{2}$, 在 S_1 、 S_2 的连线上, S_1 外侧各点 (例如P点) 两波引起 的两谐振动的相位差是().

- A, 0 B, $\frac{\pi}{2}$ C, π D, $\frac{3}{2}\pi$
- 9、在玻璃(折射率为 $n_2=1.60$)表面镀一层 MgF_2 (折射率为 $n_2=1.38$)薄膜作为增透膜,为 了使波长为500nm($1nm = 10^{-9}m$)的光从空气($n_1 = 1.00$)正入射尽可能少反射, MgF_2 薄膜 的可能厚度是().
- $A \sim 78.1 nm$
- B, 96.0nm C, 181.2nm
- D, 271.7nm

0 、用波长为 λ 的光垂直照射光栅,已知光栅常数为 $a+b=6\lambda$,透光缝宽度为 $a=1.5\lambda$,则在
观察屏上所能呈现的全部明条纹的数目是().
A. 11 B. 9 C. 7 D. 5
二、填空题(30分,每小题3分)
$11、一物体做斜抛运动,初速度v_0与水平方向夹角为 heta,如图所示,物体 \int_{-\infty}^{v_0}$
轨道最高点的曲率半径 ρ 为
12、设作用在质量为 $1kg$ 的物体上的力 $F=6t+3$ (SI).如果物体在这一力 $\ell\theta$
的作用下,由静止开始沿直线运动,在 0 到2s 的时间间隔内,这个力作
用在物体上的冲量大小 $I=$ $N\cdot s$.
13、质量为m、长为l的棒,可绕过棒中心且与棒垂直的竖直光滑固定轴
O 在水平面内自由转动(转动惯量 $J=rac{ml^2}{12}$).开始时棒静止,现有一子 $m{m}$ $m{m}$ $m{m}$ $m{m}$
\mathbb{P}_{n} ,质量也是 \mathbb{P}_{n} ,在水平面内以速度 \mathbb{P}_{n} 。垂直射入棒端并嵌在其中,则子弹
嵌入后棒的角速度 $\omega =$
14、在平衡状态下,用理想气体分子的麦克斯韦速率分布函数为 $f(v)$ 、分子质量 m 来表示的分子的
平均平动动能表达式为
15、质量为 m 的物体和一个轻弹簧组成弹簧振子,其固有周期为 T .当它作振幅为 A 的自由简谐振
动时,其振动能量 $E=$
16、一质点同时参与了两个同方向的简谐运动,它们的振动方程分别为
$x_1 = 0.05\cos\left(\omega t + \frac{1}{4}\pi\right)$ (SI), $x_2 = 0.05\cos\left(\omega t + \frac{3}{4}\pi\right)$ (SI). 其合成运动的运动方程为
$x = \underline{\hspace{1cm}}$
17、在固定端 $x=0$ 处反射波表达式是 $y_2=A\cos\left(\omega t-\frac{2\pi x}{\lambda}\right)$.设反射波无能量损失,那么形成的驻
波的表达式是 $y =$.
18、在双缝干涉实验中,所用光波波长 $\lambda=5 imes10^{-4}$ $\dot{m}m$,双缝与屏间的距离 $D=300mm$,双缝间
距为 $d=0.2mm$,则中央明条纹两侧的两个第二级明条纹之间的距离为 $_{}mm$.
19、一个平凸透镜的顶点和一平板玻璃接触,,用单色光垂直照射,观察反射光形成的牛顿环,测
得中央暗斑外第 k 个暗环半径为 r_1 .现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃
的折射率),第 k 个暗环半径为 r_2 ,由此可知该液体的折射率为
20、一束平行的自然光,斜入射到平玻璃表面上。若折射角是30°时,反射光束恰好是完全偏振的,
则玻璃的折射率为
三、计 算题 (40 分) 21 、(10 分)质量 $m=2kg$ 的匀质圆盘,可以绕通过其中心且垂直盘面的水平
光滑固定轴转动,对轴的转动惯量 $J=rac{1}{2}mr^2$ (r 为盘的半径),圆盘边缘绕有绳子,绳子下端挂一

质量 $m_1 = 1kg$ 的物体,如图所示,起初在圆盘上加一恒力矩使物体以速率 $v_0 = 5m/s$ 匀速上升,如

撤去所加力矩,问经历多少时间圆盘开始做反方向转动。取 $g=10m/s^2$.

22、(10 分) 一平面简谐波以波速u=2m/s沿x轴正方向传播,周期为2s,振幅为0.06m.在x处有一质点,t=1s时刻,该质点恰好处在平衡位置且向负方向运动,求

(1) 该质点的振动方程; (2) 该波的波长; (3) 该平面简谐波的波动方程。 (注: 要有必要的解题过程)

23、(10 分)(1) 在单缝夫琅禾费衍射实验中, 垂直入射的光有两种波长, $\lambda_1 = 400nm$, $\lambda_2 = 600nm$ $(1nm = 10^{-9}m)$. 已知单缝宽度 $a = 1 \times 10^2 cm$,透镜焦距 f = 50cm. 求两种光第一级衍射明纹中心之间的距离,可认为衍射角极小。

(2) 若用光栅常数 $d=1\times 10^3 cm$ 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离,可认为衍射角极小。

24、(10 分)1mol 单原子分子的理想气体,经历如图所示的循环,联结ac 两点的曲线 III 的方程为 $p=rac{p_0V^2}{V_0^2}$,a 点的温度为 T_0

- (1) 试以 T_0 、普适气体常量R表示I、II、III 各过程中气体吸收的热量。
- (2) 求此循环的效率。

(提示:循环效率的定义式 $\eta=1-\frac{Q_2}{Q_1}$, Q_1 为循环中气体吸收的热量, Q_2 为循环中气体放出的热量)

华南理工大学 2014-2015 学年第二学期

《大学物理(I)》期末考试 ##P30

一、选择题(30分,每题3分,共10题,请用大写字母将正确答案填写在答案表格里)

1、一质点在力 $\vec{F}=(8-2t)mi(SI)$ 的作用下,t=0时从静止由x=0开始沿x轴做直线运动,式 中m 为质点的质量,t 为时间,则当t=3s 时,质点的坐标x 为(

A、25 米

B、26米

C、27 米

D、28 米

2、一质量为60kg的人起初站在一条质量为300kg,且正以2m/s的速率向湖岸驶近的小木船上,湖 水是静止的, 其阻力不计, 现在人沿船的前进方向向河岸水平跳去, 该人起跳后, 船速减为原来的 一半,则人相对于起跳后的船的速率为().

B. 3m/s

 $C \cdot 5m/s$

D, 6m/s

3、质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动,已 知地球质量为M,万有引力恒量为G,则当它从距地球中心 R_1 处下降到 R_2 处时,飞船增加的动能 应等于().

A. $GMm \frac{R_1 - R_2}{R_1^2 R_2^2}$ B. $GMm \frac{R_1 + R_2}{R_1 R_2}$ C. $GMm \frac{R_1 - R_2}{R_1 R_2}$ D. $GMm \frac{R_1^2 - R_2^2}{R_1^2 R_2^2}$

4、1 mol 双原子分子理想气体,从初态 $V_1=20L$, $T_1=300K$ 经一热力学过程到达末态 $V_2=40L$, $T_2 = 300K$,则该过程中气体的熵变为().(普适气体常量 $R = 8.31 J \cdot mol^{-1} \cdot K^{-1}$, $\ln 2 = 0.693$) ·

A. $5.76J \cdot K^{-1}$ B. $6.15J \cdot K^{-1}$ C. $6.47J \cdot K^{-1}$

D. $7.26J \cdot K^{-1}$

5、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为 S_1 和 S_2 ,则两者的 大小关系是().

 $A, S_1 > S_2$

 $B, S_1 = S_2 \qquad C, S_1 < S_2$

D、无法确定

6、一简谐运动曲线如图所示,则振动周期是().

 $A \cdot 2.60s$

B. 2.40s

 $C_{\lambda} 2.20s$

 $D \cdot 2.00s$

7、一辆机车以30m/s 的速度驶近一位静止的观察者, 如果机车的汽笛的 频率为550Hz, 此观察者听到的声音频率是(空气中声速为330m/s)

A. 605Hz

B, 600Hz C, 504Hz

D, 500Hz

8、如图所示, S_1 和 S_2 为两相干波源,它们的振动方向均垂直于图面, 发出波长为 λ 的简谐波,P点是两列波相遇区域中的一点,已知 $\overline{S_1P}=2\lambda$, $\overline{S_2P}=2.2\lambda$, P 点处因两列波发生相消干涉而静止。若

 S_1 的振动方程为 $y_1 = A\cos\left(2\pi t + \frac{1}{2}\pi\right)$,则 S_2 的振动方程为().

A. $y_2 = A\cos\left(2\pi t - \frac{1}{2}\pi\right)$ B. $y_2 = A\cos\left(2\pi t - \pi\right)$

C. $y_2 = A \cos \left(2\pi t + \frac{1}{2}\pi \right)$ D. $y_2 = A \cos \left(2\pi t - 0.1\pi \right)$

Ш (

三、 计算题 (40 分)

21、(10 分) 光滑的水平桌面上,有一长为2L,质量为m的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为 $J=\frac{1}{3}mL^2$,起初杆静止,桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v相向运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则

- (1) 这一系统碰撞后的初始转动角速度是多少?
- (2) 设系统转动时受到恒定大小的阻力矩 M 作用,则系统从开始转动到停止转动所需要的时间是多少?

22、(10 分)如图所示,一平面简谐横波沿Ox轴的正方向传播,已知振幅A=2m,T=2s, $\lambda=2m$,L=0.5m .若 t=0 时,P 处介质质点刚好到达负的最大位移处。以y 轴表示振动方向,求

- (1) P 处质点的振动方程; (2) OP 两点的相位差;
- (3) O处质点的振动方程: (4) 该波的波动方程。(注: 要有必要的解题过程)

23、(10 分) 波长 $\lambda = 600nm$ 的单色光垂直入射到一光栅上,相邻两条明纹的衍射角分别由公式 $\sin\theta = 0.2$ 与 $\sin\theta = 0.3$ 确定,已知第四级缺级,

- (1) 光栅常数(a+b)等于多少nm? (2) 透光缝可能的最小宽度a等于多少nm?
- (3) 在选定了上述(a+b)和a之后,求在衍射角 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ 范围内可能观察到的全部主极大的级次。

24、(10分)刚性双原子分子理想气体,进行如图所示的abca循环,状态a的温度为300K.

- (1) 求状态b、c的温度; (2) a到b过程中气体所作的功 A_{ab} ;
- (3) b到c过程中气体吸收的热量 Q_{bc} ; (4) c到a过程中气体吸收的热量 Q_{ca} ;

(普适气体常量 $R = 8.31 J \cdot mol^{-1} \cdot K^{-1}$)

华南理工大学 2013-2014 学年第二学期

)《大学物理(I)》期末考试 A 卷 \$\$ \$734

1、一物体质量为10kg。受到方向不变的力F = 3 + 4t(SI)的作用,在开始的2s 内,此力的冲量大小

B、13;

2、一质量为 m 的滑块, 由静止开始沿着 1/4 圆弧形光滑的木槽滑下, 设木槽的 质量也是 m. 槽的圆半径为 R, 放在光滑水平地面上, 如图所示. 则滑块离开 槽时的速度是().

A. \sqrt{Rg} B. $2\sqrt{Rg}$ C. $\sqrt{2Rg}$ D. $\frac{1}{2}\sqrt{Rg}$ E. $\frac{1}{2}\sqrt{2Rg}$

3 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动 方程为:().

A.
$$x = 2\cos(\frac{2}{3}\pi t + \frac{2}{3}\pi)$$

科 $x = 2\cos(\frac{2}{3}\pi t + \frac{2}{3}\pi)$ B、 $x = 2\cos(\frac{2}{3}\pi t - \frac{2}{3}\pi)$ C、 $x = 2\cos(\frac{4}{3}\pi t + \frac{2}{3}\pi)$ D、 $x = 2\cos(\frac{4}{3}\pi t - \frac{2}{3}\pi)$

B、555Hz

C、550Hz

D、645 Hz

5、在双缝干涉实验中,入射光的波长为 λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相 同厚度的空气的光程大 2.5%,则屏上原来的明纹处(

A、仍为明条纹

B、变为暗条纹

其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部

A、凸起, 且高度为 λ/4

B、凸起, 且高度为 *λ*/2

C、凹陷,且深度为 λ/2

D、凹陷,且深度为 λ/4

7、在单缝夫琅禾费衍射实验中波长为 λ 的单色光垂直入射到单缝上.对应于衍射角为 30°的方向 上, 若单缝处波面可分成 3 个半波带, 则缝宽度 b 等于 ().

 $A \setminus \lambda$ $B \setminus 1.5\lambda$ $C \setminus 2\lambda$

 $D = 3\lambda$

8、1mol 单原子分子理想气体,在恒定压强下经一准静态过程从 300K 加热到 400K,则气体的熵 变为 () . (普适气体常量 R = 8.31 J • mol⁻¹ • K⁻¹)

A. $5.98 \text{ J} \cdot \text{K}^{-1}$ B. $6.15 \text{ J} \cdot \text{K}^{-1}$ C. $6.47 \text{ J} \cdot \text{K}^{-1}$ D. $7.26 \text{ J} \cdot \text{K}^{-1}$

9、一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m. 根据理想气体的分子 模型和统计假设,分子速度在x方向的分量平方的平均值().

A,
$$\overline{v_x^2} = kT/m$$

A, $\overline{v_x^2} = kT/m$ B, $\overline{v_x^2} = \frac{1}{3}\sqrt{\frac{3kT}{m}}$ C, $\overline{v_x^2} = \sqrt{\frac{3kT}{m}}$ D, $\overline{v_x^2} = 3kT/m$

$$C = \sqrt{\frac{3kT}{m}}$$

D,
$$\overline{v_x^2} = 3kT/m$$

10、如图表示的两个卡诺循环、第一个沿 ABCDA进行, 第二个沿 ABC'D'A进

- 行,这两个循环的效率 η_1 和 η_2 的关系及这两个循环所做的净功 W_1 和 W_2 的关 系是(). $\mathbf{A},\ \eta_1=\eta_2, W_1=W_2 \qquad \qquad \mathbf{B},\ \eta_1>\eta_2, W_1=W_2$

- $C_{1} = \eta_{2}, W_{1} > W_{2}$ $D_{1} = \eta_{2}, W_{1} < W_{2}$

- 11、順点沿半径为R的圆周运动,运动学方程为 $\theta=3+2t^2$ (SI) ,则t时刻质点的切向加速度大 小为 $a_n = ____$; 法向加速度大小为 $a_n = ____$; 角加速度 $\beta = _____$
- 12、质量为 0.25 kg 的质点,受力 $\vec{F}=t\ \vec{i}$ (SI)的作用,式中t 为时间,t=0时该质点以 $\vec{v}=2\vec{j}$ (SI) 的速度通过坐标原点,则该质点任意时刻的位置矢量是
- 13、一沿 x 轴正方向的力作用在一质量为 0.5 kg 的质点上,已知质点 14、如图所示, 一静止的均匀细棒, 长为L、质量为m, 可绕通过棒 的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 $\frac{1}{2}mL^2$. 一质量为m、速率为v的子弹在水平面内沿与棒垂直的方向射

出并穿出棒的自由端,设穿过棒后子弹的速率为 $\frac{1}{2}v$,则此时棒的角速度=__

- 15、两个同方向同频率的简谐运动 $x_1 = 3 \times 10^{-2} \cos(\omega t + \frac{5}{6}\pi)$, $x_2 = 4 \times 10^{-2} \cos(\omega t \frac{2}{3}\pi)$ (SI) 它们的合振幅是_____(SI).
- 16、设入射波的表达式为 $y_1 = A\cos(\omega t \frac{2\pi x}{\lambda})$. 波在距原点 $x_0 = \frac{3\lambda}{8}$ 处发生反射, 反射点为固定端, 则形成的反射波表达式为_
- 17、一束波长为 $\lambda = 600$ nm $(lnm = 10^9 m)$ 的平行单色光垂直入射到折射率为n = 1.33的透明薄膜上, 该薄膜是放在空气中的. 要使反射光得到最大限度的加强, 薄膜最小厚度应为___
- 18、一束自然光从空气投射到玻璃表面上(空气折射率为 1), 当折射角为 30° 时, 反射光是完全偏振 光,则此玻璃板的折射率等于_____.
- $19、3\times10^{-2}$ kg 的气体放在容积为 3×10^{-2} m³的容器中,容器内气体的压强为 0.2×10^{5} Pa。则气体分子 的最概然速率等于______m • s⁻¹
- 20、有容积不同的 A、B 两个容器, A 中装有氦气, B 中装有氧气, 若两种气体的压强相同, 那么, 这两种气体的单位体积的内能 $(U/V)_{A}$ _(U/V)_B (填>、=或<)

三、计算题(共40分)

21、(10分)两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m, 半径为r,对轴的转动惯量 $J=\frac{1}{2}mr^2$. 大滑轮的质量m'=2m,半径r'=2r,对轴的转动惯量 $J' = \frac{1}{2}m'r'^2$. 一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体 A 和 B. A 的

质量为m, B 的质量m'=2m. 这一系统由静止开始转动. 已知 $m=6.0 \, \text{kg}$, $r=5.0 \, \text{cm}$ 求两滑轮 的角加速度和它们之间绳中的张力.

22、(10 分) 将压强 $p_1 = 1.013 \times 10^5 Pa$, 体积 $V_1 = 1 \times 10^{-3} m^3$ 的氧气,自 $T_1 = 300 K$ 加热到 $T_2 = 400 K$,间:

- (1) 当压强不变时,需要多少热量?
- (2) 当体积不变时,需要多少热量?
- (3) 在等压和等体过程中各做多少功?

(普适气体常量 R = 8.31J/(mol·K)

23、(10 分) 沿 x 轴负方向传播的平面简谐波在 t=2 s 时刻的波形曲线如图所示,设波速 u=0.5 m/s. 求:

- (1) 波的角频率;
- (2)原点O的振动方程;
- (3) 该波的波动方程。

24、(10 分) 一束平行光垂直入射到某个光栅上,该光束有两种波长的光, $\lambda = 440 \, \mathrm{nm}$, $\lambda = 660 \, \mathrm{nm}$ ($\ln m = 10^9 \, \mathrm{m}$).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角 $\varphi = 60^\circ$ 的方向上.求此光栅的光栅常数d.