III. MKP – vlastní kmitání

- 1. Rovnice vlastního kmitání
- 2. Rayleighova Ritzova metoda
- 3. Jacobiho metoda
- 4. Metoda inverzních iterací
- 5. Metoda iterace podprostoru
- 6. Příklady

1. Rovnice vlastního kmitání

určení základních dynamických charakteristik systému:

vlastní frekvence a tvary kmitání

$$\mathbf{M\ddot{r}}(t) + \mathbf{Kr}(t) = \mathbf{0}$$

soustava pohybových rovnic pro netlumené vlastní kmitání soustav s *n* - SV

$$\mathbf{r}(t) = \mathbf{\phi}_n (A_n \cos \omega_n t + B_n \sin \omega_n t)$$
 řešení pohybových rovnic – harmonické kmitání ř $(t) = -\omega_n^2 \mathbf{r}(t)$

$$(\mathbf{K} - \omega_n^2 \mathbf{M}) \phi_n = \mathbf{0}$$

rovnice vlastního kmitání problém vlastních čísel

 ϕ_n - vlastní tvar kmitání

 ω_n - vlastní (kruhová) frekvence

$$\det\left(\mathbf{K}-\omega_{n}^{2}\mathbf{M}\right)=0$$

podmínka netriviálního řešení frekvenční rovnice – polynom stupně N pro ω_n^2 pro řešení praktických úloh nevhodná metoda

2. Rayleighova – Ritzova metoda

redukce původního problému vl. čísel s *N* stupni volnosti na řešení problému vlastních čísel s *J* stupni volnosti

$$\begin{aligned} & \left(\mathbf{K} - \boldsymbol{\omega}_{n}^{2} \mathbf{M}\right) \boldsymbol{\phi}_{n} = \mathbf{0} \\ & \left(\mathbf{K} - \boldsymbol{\rho} \mathbf{M}\right) \boldsymbol{\phi} = \mathbf{0} \\ & \boldsymbol{\phi}^{T} \mathbf{K} \boldsymbol{\phi} = \boldsymbol{\rho} \boldsymbol{\phi}^{T} \mathbf{M} \boldsymbol{\phi} \end{aligned} \longrightarrow \begin{bmatrix} \boldsymbol{\rho} = \frac{\boldsymbol{\phi}^{T} \mathbf{K} \boldsymbol{\phi}}{\boldsymbol{\phi}^{T} \mathbf{M} \boldsymbol{\phi}} \end{bmatrix}$$
 Rayleighův kvocient $\boldsymbol{\phi}$ libovolný vektor

Vlastnosti

- 1. Je-li ϕ vlastní vektor ϕ_n , potom Rayleighův kvocient je roven odpovídajícímu vlastnímu číslu $\rho = \omega_n^2$
- 2. Rayleighův kvocient je ohraničen nejnižším a nejvyšším vlastním číslem $\omega_1^2 \le \rho \le \omega_2^2$
 - a dále platí: $\omega_1^2 \le \rho_1 \quad \omega_2^2 \le \rho_2 \quad \dots \quad \omega_n^2 \le \rho_n$

2. Rayleighova – Ritzova metoda

nalezení minima Rayleighova kvocientu Ritzovou metodou

$$\phi = \Psi z$$

vlastní tvary se vyjádří jako kombinace lineárně nezávislých vektorů ψ_i , i = 1,2...J < N $Ritzovy vektory <math>\psi_i$ tvoří sloupce matice Ψ typu $N \times J$ z – vektor J zobecněných souřadnic

substituce Ritzových vektorů (Ritzova transformace) do Rayleighova kvocientu

$$\rho = \rho(\phi) = \frac{\phi^T \mathbf{K} \phi}{\phi^T \mathbf{M} \phi} = \frac{\mathbf{z}^T \mathbf{\Psi}^T \mathbf{K} \mathbf{\Psi} \mathbf{z}}{\mathbf{z}^T \mathbf{\Psi}^T \mathbf{M} \mathbf{\Psi} \mathbf{z}} = \rho(\mathbf{z})$$

$$\tilde{\mathbf{M}} = \mathbf{\Psi}^T \mathbf{M} \mathbf{\Psi}$$
 $\tilde{\mathbf{K}} = \mathbf{\Psi}^T \mathbf{K} \mathbf{\Psi}$ transformace matic \mathbf{K} , \mathbf{M} typu $N \times N$ na matice typu $J \times J$

$$\mathbf{z}^T \tilde{\mathbf{K}} \mathbf{z} = \rho(\mathbf{z}) \mathbf{z}^T \tilde{\mathbf{M}} \mathbf{z}$$

2. Rayleighova – Ritzova metoda

podmínka minima Rayleighova kvocientu

$$\frac{\partial \rho(z)}{\partial z_i} = 0 \qquad i = 1, 2, \dots J$$

$$\mathbf{z}^T \tilde{\mathbf{K}} \mathbf{z} = \rho(\mathbf{z}) \mathbf{z}^T \tilde{\mathbf{M}} \mathbf{z}$$

$$2\tilde{\mathbf{K}}\mathbf{z} = \frac{\partial \rho(z)}{\partial z_i} \mathbf{z}^T \tilde{\mathbf{M}}\mathbf{z} + \rho(\mathbf{z}) 2\tilde{\mathbf{M}}\mathbf{z} \implies \tilde{\mathbf{K}}\mathbf{z} = \rho(\mathbf{z})\tilde{\mathbf{M}}\mathbf{z}$$

$$\mathbf{\tilde{K}} - \rho \mathbf{\tilde{M}} \mathbf{\tilde{Z}} = \mathbf{0}$$
 $\mathbf{\tilde{K}} - \rho \mathbf{\tilde{M}} \mathbf{\tilde{Z}} = \mathbf{0}$
 $\Rightarrow \rho_i, \mathbf{z}_i$
 $redukovaný problém vlastních čísel
 $\mathbf{\tilde{z}} = 1, 2... \mathbf{\tilde{Z}} < \mathbf{N}$$

$$\left(\mathbf{K} - \omega_n^2 \mathbf{M}\right) \mathbf{\phi}_n = \mathbf{0} \left\{ \begin{array}{l} \omega_i^2 \leq \rho_i \\ \mathbf{\phi}_i \approx \mathbf{\Psi} \mathbf{z}_i \end{array} \right.$$
 aproximace vlastních čísel a vektorů

3. Jacobiho metoda

určení <u>všech</u> vlastních čísel a vektorů využití – např. redukovaný problém vl. čísel v Rayleighově-Ritzově metodě

základní myšlenka – transformace matic tuhosti a hmotnosti na matice diagonální pomocí transformačních matic **T** (matice rotace) iterační proces – vytváří se posloupnost transformovaných matic **K** resp. **M**

$$\mathbf{K}_{k+1} = \mathbf{T}_k^T \mathbf{K}_k \mathbf{T}_k \qquad \mathbf{M}_{k+1} = \mathbf{T}_k^T \mathbf{M}_k \mathbf{T}_k$$

na konci iteračního cyklu platí

vlastní frekvence:
$$\omega_i^2 = \frac{k_{ii}}{m_{ii}}$$

vlastní tvary:
$$\Phi = \mathbf{T}_1 \mathbf{T}_2 ... \mathbf{T}_k$$
 (spektrální matice)

$$\mathbf{T} = \begin{bmatrix} 1 & & & & & \\ & \cdot & & & & \\ & & 1 & \cdot & \alpha & & \\ & & \cdot & \cdot & \cdot & & \\ & & \beta & \cdot & 1 & & \\ & & & & \cdot & \\ & & & & 1 \end{bmatrix} \mathring{\mathsf{r}} \mathring{\mathsf{adek}} \, i$$

transformační matice pro nulování mimodiagonálního prvku (*i,j*)

4. Metoda inverzních iterací (Stodolova metoda postupných aproximací)

Iterace vzad - inverzní iterace určení **nejnižší** vlastní frekvence

$$\mathbf{K}\overline{\mathbf{x}}_{k+1} = \mathbf{M}\mathbf{x}_{k} \Rightarrow \overline{\mathbf{x}}_{k+1} = \mathbf{K}^{-1}\mathbf{M}\mathbf{x}_{k}$$

$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^{T}\mathbf{M}\overline{\mathbf{x}}_{k+1})^{1/2}}$$

$$\overline{\mathbf{x}}_{k+1} \Rightarrow \mathbf{\phi}_{1} \quad \text{pro} \quad k \to \infty$$

Iterace vpřed určení nejvyšší vlastní frekvence

$$\mathbf{M}\overline{\mathbf{x}}_{k+1} = \mathbf{K}\mathbf{x}_{k} \Rightarrow \overline{\mathbf{x}}_{k+1} = \mathbf{M}^{-1}\mathbf{K}\mathbf{x}_{k}$$

$$\mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{(\overline{\mathbf{x}}_{k+1}^{T}\mathbf{M}\overline{\mathbf{x}}_{k+1})^{1/2}}$$

$$\overline{\mathbf{x}}_{k+1} \Rightarrow \mathbf{\phi}_{n} \quad \text{pro} \quad k \to \infty$$

$$\lambda_i = \omega_i^2$$

4. Metoda inverzních iterací

Startovací vektor x₀ – libovolný

$$\mathbf{R}_0 = \mathbf{M}\mathbf{x}_0$$

$$\mathbf{K}\overline{\mathbf{x}}_1 = \mathbf{R}_0 \quad \Longrightarrow \quad \overline{\mathbf{x}}_1 = \mathbf{K}^{-1}\mathbf{R}_0$$

2.
$$\mathbf{K}\overline{\mathbf{x}}_{k+1} = \mathbf{M}\mathbf{x}_k$$

$$\Rightarrow \overline{\mathbf{x}}_{k+1} = \mathbf{K}^{-1} \mathbf{M} \mathbf{x}_k = \boldsymbol{\delta} \mathbf{M} \mathbf{x}_k$$

3.
$$\rho^{(k+1)} = \frac{\overline{\mathbf{x}}_{k+1}^T \mathbf{K} \overline{\mathbf{x}}_{k+1}}{\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \overline{\mathbf{x}}_{k+1}} = \frac{\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \mathbf{x}_k}{\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \overline{\mathbf{x}}_{k+1}}$$
 (Rayleighův kvocient)

4.
$$\frac{\left|\rho^{(k+1)} - \rho^{(k)}\right|}{\rho^{(k+1)}} \le tol$$

5. Není-li kritérium konvergence splněno: normování

$$\mathbf{X}_{k+1} = \frac{\overline{\mathbf{X}}_{k+1}}{\left(\overline{\mathbf{X}}_{k+1}^T \mathbf{M} \overline{\mathbf{X}}_{k+1}\right)^{1/2}}$$
 a návrat do bodu 2 $(k = k+1)$

4. Metoda inverzních iterací

6. Je-li kritérium konvergence splněno: pro iteraci (k+1)

$$\omega_1^2 = \rho^{(k+1)} \qquad \phi_1 = \mathbf{x}_{k+1} = \frac{\overline{\mathbf{x}}_{k+1}}{\left(\overline{\mathbf{x}}_{k+1}^T \mathbf{M} \overline{\mathbf{x}}_{k+1}\right)^{1/2}} \qquad \text{(normování vl. tvaru)}$$

Grammova-Schmidtova ortogonalizace

v této formulaci metoda <u>konverguje k 1. vlastnímu tvaru</u> vyšší tvary lze určit tak, že se do algoritmu zavedou podmínky ortogonality mezi hledaným (*m*+1) tvarem a všemi předcházejícími vlastními tvary (nutno určit všech *m* předcházejících vlastních tvarů)

modifikace vektoru \mathbf{x}_{k+1}

provádí se v každém iteračním kroku před návratem do bodu 2

$$\tilde{\mathbf{x}}_{k+1} = \mathbf{x}_{k+1} - \sum_{j=1}^{m} c_j \mathbf{\phi}_j \quad \text{kde} \quad c_j = \mathbf{\phi}_j^T \mathbf{M} \mathbf{x}_{k+1}$$

4. Metoda inverzních iterací

Inverzní iterace s posunutím μ

umožňuje výpočet libovolného vlastního čísla λ_i

- 1. vlastní vektory původního problém i problému s posunutím jsou stejné
- 2. inverzní iterace konverguje k vl. číslu, které je **nejblíže** k hodnotě **posunutí** μ tj. např. k $\tilde{\lambda}_3$ v (c)

5. Metoda iterace podprostoru

metoda vhodná pro řešení rozsáhlých úloh pro určení **několika nejnižších** vlastních tvarů a frekvencí spojení inverzních iterací a Rayleighovy-Ritzovy metody iterace se provádějí s několika vektory současně – jejich počet je *m m* – menší z čísel (2*p*) a (*p*+8), kde *p* je počet hledaných vlastních čísel (*p* je obvykle podstatně menší než počet stupňů volnosti *N*)

1. Startovací vektory \mathbf{X}_0

$$\mathbf{R}_0 = \mathbf{M}\mathbf{X}_0$$

$$\mathbf{K}\overline{\mathbf{X}}_{1} = \mathbf{R}_{0}$$

2. Iterace podprostoru

a) inverzní iterace

$$\mathbf{K}\overline{\mathbf{X}}_{k+1} = \mathbf{M}\mathbf{X}_k$$

b) Ritzova transformace

$$\mathbf{\tilde{K}}_{k+1} = \mathbf{\bar{X}}_{k+1}^T \mathbf{K} \mathbf{\bar{X}}_{k+1} \quad \mathbf{\tilde{M}}_{k+1} = \mathbf{\bar{X}}_{k+1}^T \mathbf{M} \mathbf{\bar{X}}_{k+1}$$

5. Metoda iterace podprostoru

c) redukovaný problém vlastních čísel (m vlastních čísel) Ω – spektrální matice, \mathbf{Q} – modální matice

$$\widetilde{\mathbf{K}}_{k+1}\mathbf{Q}_{k+1} = \mathbf{\Omega}_{k+1}^2 \widetilde{\mathbf{M}}_{k+1}\mathbf{Q}_{k+1}$$

řešení - např. Jacobiho metoda

d) výpočet nových vektorů

$$\mathbf{X}_{k+1} = \overline{\mathbf{X}}_{k+1} \mathbf{Q}_{k+1}$$

- e) návrat do bodu 2 a)
- 3. Sturmova kontrola

ověření, zda byla vypočtena požadovaná vlastní čísla (vl. frekvence) a vlastní vektory (vl.tvary) – t.j. právě prvních *p* vl. čísel

6.1 Jednoduchý rám

$EI = 32\ 000\ kNr$
$\mu = 252 \text{ kgm}^{-1}$

	přesné řešení		6 prvků	12 prvků
$f_1[Hz]$	7,270	7,282	7,270	7,270
f_2 [Hz]	28,693	34,285	28,845	28,711
f_3 [Hz]	46,799	74,084	47,084	46,854

6.1 Jednoduchý rám

 $EI = 32\ 000\ kNm^2$ $\mu = 252\ kgm^{-1}$

1. vl. tvar

	přesné řešení	3 prvky	6 prvků
$f_1[Hz]$	28,662	34,285	28,845
f_2 [Hz]	41,863	65,623	42,393
f_3 [Hz]	50,653	-	51,474

Doporučení:

při vytváření výpočetního modelu MKP vkládat alespoň 1 uzel mezi styčníky jednotlivých prutů – vede k podstatnému zvýšení přesnosti výpočtu (zejména u jednoduchých konstrukcí)

6.2 Rovinný rám – budova

1. tvar kmitání $f_1 = 2.19 \text{ Hz}$

2. tvar kmitání $f_2 = 6.91 \text{ Hz}$

3. tvar kmitání $f_3 = 12.64 \text{ Hz}$

4. tvar kmitání $f_4 = 19.47 \text{ Hz}$

5. tvar kmitání $f_5 = 27.70 \text{ Hz}$

6.2 Rovinný rám – budova

6. tvar kmitání $f_6 = 30.93 \text{ Hz}$

7. tvar kmitání $f_7 = 36.49 \text{ Hz}$

8. tvar kmitání $f_8 = 37.78 \text{ Hz}$

9. tvar kmitání $f_9 = 41.62 \text{ Hz}$

10. tvar kmitání $f_{10} = 48.33 \text{ Hz}$

6.3 Prostorový rám – základ turbosoustrojí

6.3 Prostorový rám – základ turbosoustrojí

6.3 Prostorový rám – základ turbosoustrojí

6.4 Prostorový rám + pružné podloží

6.5 Zavěšený most

6.5 Zavěšený most

6.5 Zavěšený most

6.6 Trojský most

6.6 Trojský most

