CLAIMS

1. A process of preparing an arylamine of formula I:

$$R^1$$
 R^3
 R^4
 R^4

5

comprising heating a heterocyclyl ring moiety with an aromatic compound with a base and a solvent in the presence of a transition metal catalyst including a phosphine ligand at a temperature between about 120 and about 150°C and for a time effective to give an arylamine compound of formula I,

10

wherein: \mathbf{R}^1 is selected from H, C_{1-10} alkyl, halogen, amino, methoxy, ethoxy, or hydroxy;

15

20

R² is selected from H, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkyl-amino, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₁₀heterocyclyl-C₁₋₆alkyl, C₃₋₅heteroaryl, C₆₋₁₀aryl or C₆₋₁₀aryl-C₁₋₆alkyl, wherein said H, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkyl-amino, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₁₀heterocyclyl-C₁₋₆alkyl, C₃₋₅heteroaryl, C₆₋₁₀aryl or C₆₋₁₀aryl-C₁₋₆alkyl, used in defining R² is optionally substituted by one or more groups selected from H, C₁₋₁₀alkyl, halogen, amino, methoxy, ethoxy, oxo and hydroxy;

R³ is selected from H, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkyl-amino, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, C₄₋₈cycloalkenyl-C₁₋ 6alkyl, C3-10heterocyclyl-C1-6alkyl, C3-5heteroaryl, C6-10aryl or C6-10aryl-C1-6alkyl, wherein said H, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkyl-amino, C₃₋₁₀alkyl-amino, C₃₋ 10cycloalkyl, C3-10cycloalkyl-C1-6alkyl, C4-8cycloalkenyl, C4-8cycloalkenyl-C1-6alkyl, C₃₋₁₀heterocyclyl-C₁₋₆alkyl, C₃₋₅heteroaryl, C₆₋₁₀aryl or C₆₋₁₀aryl-C₁₋₆alkyl, used in defining R³ is optionally substituted by one or more groups selected from H, C₁. 10alkyl, halogen, amino, methoxy, ethoxy, oxo and hydroxy;

10

5

R² and R³ can form a substituted or unsubstituted 5- or 10- membered aromatic or heteroaromatic ring having 0, 1, 2, or 3 nitrogen atoms, 0 or 1 oxygen atoms, and 0 or 1 sulfur atoms said aromatic or heteroaromatic rings or ring systems, when substituted, having substituents selected from C₁₋₁₀alkyl, oxygen, oxo, halogen, amino, carbonyl, hydroxycarbony, C₁₋₆alkyl-oxycarbonyl, methoxy, methoxy-C₁. 6alkyl, ethoxy, and hydroxy.

15

R⁴ is selected from H, C₁₋₁₀alkyl, halogen, amino, methoxy, ethoxy, and hydroxy;

- 2. A process according to claim 1, wherein R¹ is, independently, hydrogen or fluoro. 20
 - 3. A process according to claim 1, wherein R² is methyl-carbonyl
 - 4. A process according to claim 1, wherein R³ is hydroxy.
 - A process according to claim 1, wherein R⁴ is methyl.
 - 6. A process according to claim 1, wherein Q is piperazinyl.
- 25
 - 7. A process according to claim 1, wherein R² and R³ form an optionally substituted 3,4dihydro-2H-pyran ring having substitutents, independently selected from H, oxo, C₁. 3alkyl-oxycarbonyl and hydroxycarbonyl.
 - 8. A process according to claim 1, wherein said base is cesium carbonate
 - 9. A process according to claim 1, wherein said solvent is anisole.
- 10. A process according to claim 1, wherein said solvent is xylene. 30

- 11. A process according to claim 1, wherein said transition metal catalyst is selected from palladium or palladium acetate.
- 12. A process according to claim 1, wherein said transition metal catalyst is d₂(dba)₃.
- 13. A process according to claim 1, wherein said phosphine ligand is racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (rac-BINAP).
- 14. A process according to claim 1, wherein said heating is at a temperature between about 125 and about 130°C.
- 15. A process of preparing a compound of formula II:

10

5

comprising:

A) heating a mixture of a compound of formula II:

15

and a compound of formula VIa:

5

with a base and a solvent in the presence of a metal transition catalyst including a phosphine ligand at a temperature between about 120 and about 150°C and for a time effective to give compounds of formula VIb:

B) hydrolysis of compound of formula VIb under either basic or acidic conditions at a temperature and for a time effective to give compounds of formula (II).

- 16. A process according to claim 15, wherein said base is cesium carbonate
- 17. A process according to claim 15, wherein said solvent is anisole.
- 18. A process according to claim 15, wherein said solvent is xylene.
- 19. A process according to claim 15, wherein said transition metal catalyst is selected from palladium or palladium acetate.
 - 20. A process according to claim 15, wherein said transition metal catalyst is Pd₂(dba)₃.
 - 21. A process according to claim 15, wherein said phosphine ligand is racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (rac-BINAP).
- 22. A process according to claim 15, wherein said heating is at a temperature between about about 125 and 130°C.

- 23. A process of preparing a compound of formula II comprising:
 - A) heating a mixture of a compound of formula Va:

5

and acetyl chloride in the presence of a Lewis acid catalyst at a temperature and for a time effective to give compounds of formula Vb:

10

B) combining the compounds of formula Vb and diethyl oxalate to an alcohol solution at a temperature and for a time effective to give compounds of formula Vc:

15

C) heating the compound of formula Vc with a mixture of acids at a temperature and for a time effective to give compounds of formula II:

WO 2005/090318 PCT/SE2005/000416

-30-

D) heating a mixture of a compound of formula II and a compound of formula VIa:

5

with a base and a solvent in the presence of a metal transition catalyst including a bidentate phosphine ligand at a temperature between about 120 and 150°C and for a time effective to give compounds of formula VIb:

10

B) hydrolysis of compound of formula VIb under either basic or acidic conditions at a temperature and for a time effective to give compounds of formula (II).

15

24. A process according to claim 23, wherein said Lewis acid catalyst is aluminum chloride.

- 25. A process according to claim 23, wherein said Lewis acid catalyst is zirconium tetrachloride.
- 26. A process according to claim 23, wherein said alcohol solution is sodium ethoxide in absolute ethanol.
- 5 27. A process according to claim 23, wherein said mixture of acids is a mixture of acetic acid and hydrochloric acid.
 - 28. A process according to claim 23, wherein said base is cesium carbonate
 - 29. A process according to claim 23, wherein said solvent is anisole.
 - 30. A process according to claim 23, wherein said solvent is xylene.
- 31. A process according to claim 23, wherein said transition metal catalyst is selected from palladium or palladium acetate.
 - 32. A process according to claim 23, wherein said transition metal catalyst is Pd2(dba)3.
 - 33. A process according to claim 23, wherein said phosphine ligand is racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (rac-BINAP).
- 15 34. A process according to claim 23, wherein said heating is at a temperature between about 125 and 130°C.
 - 35. A compound of the formula (IV):

$$R^1$$
 O
 CH_3
 Q
 Q
 R^4
 (IV)

wherein

20 R¹ is selected from H, C₁-C₆ alkyl, halogen, hydroxy, methoxy or cyano,
Q is selected from piperidinyl, piperazinyl, morpholinyl, pyrrolidinyl, azetidinyl or
isoxazolidinyl, and R⁴ is selected from H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, hydroxy,
methoxy, aryl or heterocyclyl.

- 36. A compound according to claim 35, wherein R¹ is, independently, hydrogen or fluoro.
- 37. A compound according to claim 35, wherein Q is piperazinyl.
- 5 38. A compound according to claim 35, wherein R⁴ is, independently, H or C₁-C₄ alkyl.
 - 39. A compound according to claim 35, wherein R⁴ is methyl.