- 1. Two blocks 1 and 2 rest on a frictionless horizontal surface. They are connected by three massless strings and two frictionless, massless pulleys as shown below.
- (a) Draw the free-body diagram for each block and each pulley.
- (b) Find the acceleration of the each block

(b)
$$\begin{cases} 3T = m_2 a_2 \cdots (1) \\ F - 2T = m_1 a_1 \cdots (2) \\ 2a_1 = 3a_2 \cdots (3) \end{cases}$$

因為 m_1 受滑輪組之拉力是 m_2 受滑輪組之拉力的2/3 倍故 m_1 之位移是 m_2 之位移的3/2 倍

(1),(3)
$$\rightarrow 3T = \frac{2}{3}m_2a_1\cdots(4)$$

(2),(4)
$$\rightarrow \begin{cases} a_1 = \frac{9F}{9m_1 + 4m_2} \\ a_2 = \frac{6F}{9m_1 + 4m_2} \end{cases}$$

- 2. A small block of mass *m* rests on the sloping side of a wedge of mass *M* which itself rests on a horizontal table as shown in Fig. 2. Assuming all surfaces are frictionless.
- (a) Draw the free-body diagram for each block and determine the acceleration of each block. Assume M=3m, $\theta=37^{0}$, g=10 m/s² Find the minimum value of the external force (F) such that the mass m leave the surface of the wedge .
- (b) Find the acceleration of each block when (i) F = 2mg and (ii) F = 5mg.

 $ec{a}_{\it m}^{\prime}$ 為the mass m 相對於 ${\sf wedge}$ 之加速度

$$\begin{vmatrix} a'_{mx} = \frac{4F + 12mg}{21m} \\ a_{M} = \frac{25F + 12mg}{84m} \end{vmatrix}$$
 代回得 $N = \frac{5(12mg - 3F)}{84}$

When $F \ge 4mg$ the mass m will leave the surface of whe wedge.

When
$$F \le 4mg$$
, $N = \frac{5(12mg - 3F)}{84}$

$$\rightarrow F = 2mg$$
, $N = \frac{5}{14}mg$

$$\begin{cases} F + N \sin \theta = Ma_{M} \\ mg - N \cos \theta = ma_{my} \\ N \sin \theta = ma_{mx} \end{cases}$$

$$\Rightarrow \begin{cases} a_{M} = \frac{31}{42}g \\ a_{my} = \frac{5}{7}g \\ a_{mx} = \frac{3}{14}g \end{cases}$$

When
$$F \ge 4mg$$
, $N = 0$

$$\rightarrow F = 5mg$$
, $N = 0$

$$\begin{cases} F + N \sin \theta = Ma_{M} \\ mg - N \cos \theta = ma_{my} \\ N \sin \theta = ma_{mx} \end{cases}$$

$$\Rightarrow \begin{cases}
 a_{M} = \frac{5}{3}g \\
 a_{my} = g \\
 a_{mx} = 0
\end{cases}$$

3.The double Atwood machine shown in Fig.3 has frictionless, massless pulleys and cords. Determine (a) the acceleration of mass $m_A,\,m_B,$ and $m_C,$ and (b) the tensions F_{TA} and F_{TC} in the cords.

 $m_A = 3Kg$, $m_B = 2Kg$ and $m_C = 5Kg$

Fig. 3

$$F_{TC}$$
 $F_{TA} = F_{TB}$ $F_{TC} = 2F_{TA}$ — \longrightarrow 因pulley無質量

$$a_A = a' + a_C$$
$$a_B = -a' + a_C$$

(a)
$$\begin{cases} F_{TA} - m_A g = m_A a_A \\ F_{TB} - m_B g = m_B a_B \\ m_C g - F_{TC} = m_C a_C \end{cases}$$

$$F_{TA} = \frac{120}{49} g , F_{TC} = \frac{240}{49} g \end{cases}$$

$$\begin{cases} F_{TA} - 3g = 3(a' + a_C) \cdots (1) \\ F_{TA} - 2g = 2(a_C - a') \cdots (2) \\ 5g - 2F_{TA} = 5a_C \cdots (3) \end{cases}$$

$$g = -5a' - a_C$$
 (2),(3)
$$g = -5a' - a_C$$

$$\Rightarrow a' = -10a_C$$

$$\Rightarrow a' = -10a_C$$

$$\Rightarrow a' = -\frac{10}{49} g$$

$$a_A < 0 \ \text{代表m}_A \text{的加速度的方向舆假設的方向相反}$$

$$\Rightarrow a_B = \frac{11}{49} g$$

$$a_C = \frac{1}{49} g$$

$$F_{TC} = 2F_{TA} = 5(g - a_C)$$

 $F_{TA} = \frac{120}{49}g$, $F_{TC} = \frac{240}{49}g$