ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

Pazlokuens Pazlokuens

- (21) 3268639/23-04
- (22) 30.03.81
- (46) 23.12.86. Бюл. № 47
- (71) Институт физико-органической химии и углехимии АН Украинской ССР и Запорожский государственный медицинский институт
- (72) Ю.М. Ютилов, А.Г. Игнатенко,
- Л.Е. Михайлова и В.В. Кириченко
- (53) 547.859(088.8)
- (54) 2,4-дистириллроизводные имидазо [4,5-с] пиридиния, обладающие бакте-риостатической и фунгистатической активностью

(57) 2,4-Дистирилпроизводные имидазо [4,5-с]пиридиния общей формулы

- где a) $R_1 = N(CH_3)_2$, $R_2 = H$;
- б) R,=R,=OCH,,, обладающие бактериостатической и фунгистатической активностью.

Изобретение относится к новым химическим соединениям ряда имидазопиридина, а именно к 2,4-дистирилпроизводным имидаэо [4,5-с] пиридиния, которые проявляют бактериостатическую и фунгистатическую активность и могут быть использованы в химикофармацевтической промышленности.

В патентной литературе описан 5додецил-1-метилимидазо[4,5-с]пиридинийбромид, проявляющий антимикробную и фунгастатическую активность. Однако он обладает высокой токсичностью (ЛД $_{50}$ =13 мг/кг).

рение арсенала средств воздействия на живой организм.

Поставленная цель достигается описываемыми 2,4-дистирилпроизводными имидазо[4,5-с]пиридиния общей формулы

$$\begin{array}{c|c} CH_3 & R_2 \\ \hline N & CH = CH - R_1 \\ \hline CH_3 & CH = CH - R_2 \\ \hline \end{array}$$

где a) $R_1 = N(CH_3)_2$, 6) $R_1 = R^2 = OCH_3$, R2=H:

которые получают взаимодействием 1,2,4,5-тетраметилимидазо[4,5-с]пиридинийнодида с избытком соответствующего ароматического альдегида в присутствии пиперидина в качестве катализатора.

Пример 1. 2,4-Ди-(n-N',N'диметиламиностирил)-1,5-диметилимидазо[4,5-с]пиридинийиодид (1а).

0,1 г (3,3 10⁻⁴ моль) 1,2,4,5-тет-раметилимидазо [4,5-с] пиридиний и одида и 0.2 г ($13.2 \cdot 10^{-4}$ моль) n-N , N диметиламинобензальдегида растворяют при нагревании в 5 мл н-бутанола, добавляют 0,24 мл (2,4·10⁻⁴моль) пиперидина и кипятят на масляной бане при температуре 135-145°C 3,5 ч. После охлаждения выпавший осадок вишневого цвета отфильтровывают и промывают эфиром, выход 0,072 г (38,6%), т.пл. 250°С с разложением (н-бутанол). Chektp IMP, δ , M.d.(CF₃ COOH):3,02

 $[c, -(CH_3)_2]$; 3,92 [c, 1(5)-CH₃]; 4,12 [c, 5(1)-CH]; 7,30-7,55 (M, -C,H₄-H

-CH=CH-); 7,72 [д, 7(6)-H, J=6,5 гц); 8,43 [д, 6(7)-Н, J=6,5 гц]. Найдено, %: С 59,7; Н 6,0; N 22.3. $C_{29}H_{3}, N_{c}J$ Вычислено, %: С 59,5; Н 5,7; N 22,4.

Пример 2. 2,4,-Ди-(3,4-диметоксистирил)-1,5-диметилимидазо-[4,5-с]пиридинийиодид (16).

Получают аналогично примеру 1, исходя из 0,1 г (3,3 10 моль) 1,2, 4,5-тетраметилимидазо [4,5-с]пиридинийиодида и $0.25 \text{ r} (1.5 \cdot 10^{-4} \text{ моль})$ 3,4-диметоксибензальдегида, выход Целью изобретения является расши- 15 0,15 г (75,8%), вещество светло-коричневого цвета, т.пл. 175-176°C (н-бутанол).

Спектр ПМР (CF, COOH, δ , м.д.): $3,60 (c,2,5-OCH_3); 3,89 [c, 1(5)-$ 20 CH₃]; 4,09 [c,5(1)-CH₃]; 6,6-7,23 $(M, -C_6H_3 - M - CH = CH -);$ 7,69 [A, 7(6) -Н, Ј=6,5 гц]; 8,33 [д,6(7)-Н, J=6,5 rg].

Найдено, %: С 55,8; Н 5,2;

25 N 20,9.

С₂₈Н₃₀N₃JO₄ Вычислено, %: С 56,1; Н 5,0; N 21,2.

Бактериостатическую активность 30 соединений изучали методом двукратных разведений на жидкой среде. Для культивирования бактерий использовали бульон Хоттингера (рН 7,2-7,4). Микробная нагрузка для бактерий 5 10 ^в клеток агаровой 18-часовой культуры в 1 мл среды. Максимальная из испытанных концентраций 200 мкг/мл.

Для выращивания грибов использовали среду Сабуро (рН 6,0-6,8). Нагрузка 500 тыс. репродуктивных телец в 1 мл. Максимальная из испытанных концентраций 200 мкг/мл. Антимикробную активность соединений по минимальной бактериостатической или микостатической концентрации химических соединений, выраженной в мкг/мл.

Результаты испытаний активности и токсичности приведены в таблице.

Таким образом, 2,4-дистирилпроизводные имидаво[4,5-с] пиридиния общей формулы 1 обладают более широким спектром бактериостатической и фунгистатической активности, чем 5-додецил-1-метилимидазо[4,5-с] пиридинийбромид, а также являются менее токсичными соединениями.

Результаты испытаний на антимикробную и фунгистатическую активность (минимальная бактериостатическая и микостатическая концентрация указаны в мкг/мл).

Штамм микроорганизмов и грибов	2,4-Дистирилпроизводные имидазо[4,5-с]пиридиния	
	1a	16
Staphylococcus aureus 209 P	100	более 200
Esheria colie 675	200	более 200
Shigella Flexneri	50	200
Bacilus antracoides 1312	6,25	200
Microsporum lanosum 257	50	200
Trichophyton mentag. IMI 124768	50	200
Aspergillus niger BKMF-1119	200	Более 200
Гоксичность ЛД ₅₀ , мг/кг	44,7±6,05	48,7±2,67

Редактор О. Кузнецова Техред М. Ходанич

Корректор Л: Патай

Заказ 6978/3

Тираж 379

Подписное

вниипи Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г. Ужгород, ул. Проектная, 4