The Maximum Nullity Lights Out Boards

William Boyles

October 11, 2021

1 Intro

In previous works, we introduced d(n), the nullity of an $n \times n$ Lights Out board. We will observe which boards have the maximum nullities and make some conjectures.

2 Observations of Maximum Nullities

Below is a table of the maximum nullities and which b family the board size belongs to. We have checked these results with a computer. The next row in the table will have n > 5950.

n	d(n)	(b,k)
4	4	(5,1)
9	8	(5,2)
19	16	(5,3)
30	20	(31, 1)
39	32	(5,4)
61	40	(31, 2)
65	42	(33, 2)
79	64	(5,5)
123	80	(31, 3)
131	86	(33, 3)
159	128	(5,6)
247	160	(31, 4)
263	174	(33, 4)
319	256	(5,7)
495	320	(31, 5)
527	350	(33, 5)
639	512	(5,8)
991	640	(31, 6)
1055	702	(33, 6)
1279	1024	(5,9)
1983	1280	(31,7)
2111	1406	(33,7)
2559	2048	(5, 10)
3967	2560	(31, 8)
4223	2814	(33, 8)
5119	4096	(5,11)
	•	

Table 1: Board Sizes with Maximum Nullity

We can see that all of b=5 is present. In a previous work, we have proven that $d(g(5,k))=2^{k+1}$. We can see that all of b=31 is present. It seems that $d(g(31,k))=5\cdot 2^{k+1}$. We can see that all of b=33 is present, except k=1. In fact, d(g(33,1))=20, the same nullity as the smaller g(31,1). It seems that $d(g(33,k))=11\cdot 2^k-2$. It seems that b=5,31,33 are the only b values that occur.

3 Conjectures

Conjecture 1. For all $k \in \mathbb{N}$,

$$d(g(31,k)) = 5 \cdot 2^{k+1}.$$

Conjecture 2. For all $k \in \mathbb{N}$,

$$d(g(33,k)) = 11 \cdot 2^k - 2.$$

Conjecture 3. Let

$$m(n) = \min \left\{ \operatorname*{arg\,max}_{1 \leq j \leq n} d(j) \right\}.$$

That is, the board size at most n with the greatest nullity, where ties are broken by taking the smallest board. Let

$$M = \{ m(i) \mid i \in \mathbb{N} \}.$$

That is, the set of all maximum-nullity board sizes. Let $x \in \mathbb{N}$. Then $x \in M$ if and only if x = g(b, k), where $b \in \{5, 31, 33\}$ and $k \in \mathbb{N}$, except for b = 33 and k = 1.

Combining these conjectures together, we can predict the next few rows of our table.

n	d(n)	(b,k)
7935	5120	(31, 9)
8447	5630	(33, 9)
10239	8192	(5, 12)
15871	10240	(31, 10)
16895	11262	(33, 10)
20479	16384	(5, 13)
31743	20480	(31, 11)
33791	22526	(33, 11)

Table 2: Conjectured Board Sizes with Maximum Nullity