현재 상황 요약 및 수정 내역 보고

1. 초기 구조

• **버파**: deque(maxlen=10)

• 예측 트리거: 시퀀스 길이 10 도달 시 자동 실행

• 한계:

○ 동작 길이가 10프레임에 정확히 맞지 않으면 핵심 구간을 놓침

○ 모델 예측이 일정 간격 없이 반복 호출되어 불안정

2. 수정 내역 및 각 단계별 이유

단계	수정 사항	수정 이유
버퍼구조 확장	deque(maxlen=10) → deque()	전체 동작을 저장해 두고, 후처리 단계에서 최적 구간을 자유롭게 추 출하기 위함
수집토글 기능	s 키로 collecting 플래그 토글	사용자가 "수집 시작/중지" 시점을 명확히 제어하여, 불필요한 프레임 누적을 방지
예측 트리거 변경	자동 예측 제거 → p 키 입력 시 예측 실행	예측 시점을 사용자가 직접 결정하 게 하여, 동작이 완전히 끝난 시점 에만 모델을 호출하기 위함
슬라이딩 윈도우	단일 10프레임 입력 → 시퀀스 전체 에서 연속된 10프레임 구간을 모두 생성	동작 중 가장 정보가 풍부한 10프 레임 구간을 자동으로 찾기 위해
배치 예측 도 입 버퍼	반복 호출 → np.stack 으로 윈도우 묶음 생성 후 model.predict 한 번만 호출 예측 후 앞절반 삭제 →	호출 횟수와 오버헤드를 줄여 예측 속도 및 안정성을 확보 이전 동작 데이터가 다음 예측에
초기화	에륵 후 표할한 역세 → sequence.clear() 전부 초기화	잔류하여 방해하지 않도록 완전 초

		기화
UI 통합· 경량화	macOS용 폰트·디버그 로직 제거 → Windows malgun.ttf, draw_text로 통 합	코드 일관성 유지 및 불필요한 의 존성·디버그 로직 제거

3. 도입 효과

- 유연한 동작 길이 처리: 동작 길이가 5~20프레임 사이 어디든 저장한 뒤, 핵심 10프레임 구간만 골라 예측 가능
- 예측 안정성 강화: 배치 예측으로 반복 호출에 따른 네이티브 충돌 가능성 감소
- 명확한 제어 흐름: s/p/q 키만으로 수집·예측·종료를 직관적으로 수행

4. 현재 한계 및 대응 방안

- 오분류 지속: 모델이 특정 클래스("입원")로 편향 예측
 - 。 **원인**: 학습 데이터 편향 또는 피처(상대좌표·각도) 한계
- 권장 조치:
- 1. 데이터셋에 다양한 사용자·속도·동작 추가 수집 후 재학습
- 2. 속도·가속도 등 추가 피처 도입 검토
- 3. 윈도우 크기(8, 12, 15프레임 등) 실험을 통한 최적값 탐색