Diseño e implementación de una interfaz entre las bibliotecas OMPL y nD FMM

TRABAJO FIN DE GRADO

13 de octubre de 2015

Álvaro Muñoz Serrano

Departamento de Sistemas y Automática

Índice

Motivación y objetivos

Marco teórico

Trabajo Realizado

Resultados y conclusiones

Motivación

Objetivos

nD FMM: n-Dimensional Fast Marching Methods

OMPL: Open Motion Planning Library

Objetivos

Crear una interfaz que permita complementar las funcionalidades que ofrecen ambas bibliotecas.

- ▶ nD FMM
 - Cargar entornos y robots 3D
 - Aplicar orientación de los robots
 - Visualizar resultados
- ► OMPL
 - Utilizar algoritmos basados en Fast Marching

- ▶ Métodos combinatorios
- ► Métodos basados en muestreo aleatorio

- ▶ Métodos combinatorios
- ► Métodos basados en muestreo aleatorio

- Métodos combinatorios
- Métodos basados en muestreo aleatorio

- ▶ Métodos combinatorios
- ► Métodos basados en muestreo aleatorio

- ► El FMM es un método numérico que modeliza el comportamiento de una onda.
- ► Se basa en la ecuación Eikonal

$$1 = F(x) |\nabla T(x)| \tag{1}$$

	2			
2	1	2		
1	0	1	2	
2	1	2		

3	2	3			
2	1	2	3		
1	0	1	2	3	
2	1	2	3		

5					
4					
3	2	3			
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7			
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7	8		8
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

5	6	7	8		8
4					7
3	2	3			6
2	1	2	3	4	5
1	0	1	2	3	4
2	1	2	3	4	5

Clases principales de nD FMM

- ▶ nDGridMap: Contiene la información del espacio.
- ► Solver: Implementa los algoritmos basados en FMM para la expansión de la onda.
- GradientDescent: Calcula el camino mediante la aplicación del descenso de gradiente.

¿Alguna pregunta?

