

Fundamental Equations of Mechanics of Materials

Axial Load

Normal Stress

$$\sigma = \frac{N}{A}$$

Displacement

$$\delta = \int_0^L \frac{N(x)dx}{A(x)E}$$
$$\delta = \sum \frac{NL}{AE}$$
$$\delta_T = \alpha \Delta TL$$

Torsion

Shear stress in circular shaft

$$\tau = \frac{T\rho}{J}$$

where

$$J = \frac{\pi}{2}c^4 \quad \text{solid cross section}$$

$$J = \frac{\pi}{2}(c_o^4 - c_i^4) \quad \text{tubular cross section}$$

Power

$$P = T\omega = 2\pi fT$$

Angle of twist

$$\phi = \int_0^L \frac{T(x)dx}{J(x)G}$$
$$\phi = \sum \frac{TL}{JG}$$

Average shear stress in a thin-walled tube

$$\tau_{\text{avg}} = \frac{T}{2tA_m}$$

Shear Flow

$$q = \tau_{\text{avg}}t = \frac{T}{2A}$$

Bending

Normal stress

$$\sigma = \frac{My}{I}$$

Unsymmetric bending

$$\sigma = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}, \quad \tan \alpha = \frac{I_z}{I_y} \tan \theta$$

Average direct shear stress

$$au_{
m avg} = rac{V}{A}$$

Transverse shear stress

$$\tau = \frac{VQ}{It}$$

Shear flow

$$q = \tau t = \frac{VQ}{I}$$

Stress in Thin-Walled Pressure Vessel

Cylinder

$$\sigma_1 = \frac{pr}{t}$$
 $\sigma_2 = \frac{pr}{2t}$

Sphere

$$\sigma_1 = \sigma_2 = \frac{pr}{2t}$$

Stress Transformation Equations

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

Principal Stress

$$\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$$

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Maximum in-plane shear stress

$$\tan 2\theta_s = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_{\text{avg}} = \frac{\sigma_x + \sigma_y}{2}$$

Absolute maximum shear stress

$$au_{
m abs} = rac{\sigma_{
m max}}{2} \, {
m for} \, \sigma_{
m max}, \, \sigma_{
m min} \, {
m same \, sign}$$

$$au_{
m abs} = rac{\sigma_{
m max} - \sigma_{
m min}}{2} \, {
m for} \, \sigma_{
m max}, \, \sigma_{
m min} \, {
m opposite \, signs}$$

Geometric Properties of Area Elements

Material Property Relations

Poisson's ratio

$$u = -\frac{\epsilon_{\mathrm{lat}}}{\epsilon_{\mathrm{lon}}}$$

Generalized Hooke's Law

$$\epsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu(\sigma_{y} + \sigma_{z}) \right]$$

$$\epsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu(\sigma_{x} + \sigma_{z}) \right]$$

$$\epsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu(\sigma_{x} + \sigma_{y}) \right]$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \gamma_{yz} = \frac{1}{G} \tau_{yz}, \gamma_{zx} = \frac{1}{G} \tau_{zx}$$

where

$$G = \frac{E}{2(1+\nu)}$$

Relations Between w, V, M

$$\frac{dV}{dx} = w(x), \quad \frac{dM}{dx} = V$$

Elastic Curve

$$\frac{1}{\rho} = \frac{M}{EI}$$

$$EI \frac{d^4v}{dx^4} = w(x)$$

$$EI \frac{d^3v}{dx^3} = V(x)$$

$$EI \frac{d^2v}{dx^2} = M(x)$$

Buckling

Critical axial load

$$P_{\rm cr} = \frac{\pi^2 EI}{(KL)^2}$$

Critical stress

$$\sigma_{\rm cr} = \frac{\pi^2 E}{(KL/r)^2}, r = \sqrt{I/A}$$

Secant formula

$$\sigma_{\text{max}} = \frac{P}{A} \left[1 + \frac{ec}{r^2} \sec \left(\frac{L}{2r} \sqrt{\frac{P}{EA}} \right) \right]$$

Energy Methods

Conservation of energy

$$U_e = U_i$$

Strain energy

$$U_i = \frac{N^2L}{2AE}$$
 constant axial load $U_i = \int_0^L \frac{M^2dx}{2EI}$ bending moment $U_i = \int_0^L \frac{f_s V^2dx}{2GA}$ transverse shear $U_i = \int_0^L \frac{T^2dx}{2GJ}$ torsional moment

 $I_x = \frac{1}{12} bh^3$ $I_x = \frac{1}{12} bh^3$

Rectangular area

 $I_x = \frac{1}{36} bh^3$

Triangular area

Trapezoidal area

 $I_x = \frac{1}{8} \pi r^4$

Semicircular area

 $I_x = \frac{1}{4} \pi r^4$

Circular area

Semiparabolic area

Exparabolic area

Average Mechanical Properties of Typical Engineering Materials^a

(SI Units)

Materials	Density ρ (Mg/m ³)	Moduls of Elasticity E (GPa)	Modulus of Rigidity G (GPa)	Yield Tens.	Yield Strength (MPa) σ_Y Comp. ^b Sl	IPa) Shear	Ultim Tens.	Ultimate Strength (MPa) $\sigma_{\rm u}$ S. Comp. ^b She	(MPa) Shear	%Elongation in 50 mm specimen	Poisson's Ratio ν	Coef. of Therm. Expansion $lpha$ $(10^{-6})/^{\circ}\mathrm{C}$
Metallic Aluminum —2014-T6 Wrought Alloys —6061-T6	2.79	73.1	27	414	414	172	469	469	290	10	0.35	23
Cast Iron Gray ASTM 20 Alloys Malleable ASTM A-197	7.19	67.0	27	1 1	1 1	1 1	179	669 572	1 1	0.6	0.28	12
Copper —Red Brass C83400 Alloys —Bronze C86100	8.74	101	37	70.0	70.0	1 1	241	241	1 1	35 20	0.35	18
Magnesium [Am 1004-T61] Alloy	1.83	44.7	18	152	152	I	276	276	152	1	0:30	26
Steel — Structural A-36 Alloys — Stainless 304 — Tool L2	7.85 7.85 7.86 8.16	200 200 193 200	27 27 27	250 345 207 703	250 345 207 703	1 1 1 1	400 450 517 800	400 450 517 800	1 1 1 1	30 30 40 22	0.32 0.32 0.27 0.32	12 12 17 12
Titanium [Ti-6Al-4V] Alloy	4.43	120	4	924	924	I	1,000	1,000	1	16	0.36	9.4
Nonmetallic Concrete Low Strength High Strength	2.38	22.1	1 1	1 1	1 1	12 38	1 1	1 1	1 1	1 1	0.15	11 11
Plastic Kevlar 49 Reinforced 30% Glass	1.45	131	1 1	1 1	1 1	1 1	717	483	20.3	7.8	0.34	1 1
Wood Select Structural — Douglas Fir Grade — White Spruce	3.60	13.1	1 1	1 1	1 1	1 1	2.1° 2.5°	26 ^d 36 ^d	6.2 ^d 6.7 ^d	1 1	0.29e 0.31e	1 1

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

11/12/15 4:06 PM Z_19650_EP_ptg01_hr.4c.indd 68

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^c Measured perpendicular to the grain.

 $^{^{\}rm d}$ Measured parallel to the grain. $^{\rm e}$ Deformation measured perpendicular to the grain when the load is applied along the grain.

Average Mechanical Properties of Typical Engineering Materials $^{\rm a}$

(U.S. Customary Units)

Materials	Specific Weight (lb/in³)	Moduls of Elasticity E (10³) ksi	Modulus of Rigidity G (10 ³) ksi	Yield Tens.	Yield Strength (ksi) σ_Y . Comp. ^b S	Shear	Ultim: Tens.	Ultimate Strength (ksi) $\frac{\sigma_{\rm u}}{\rm s.} \qquad \text{Comp.}^{\rm b} \text{Sh}$	(ksi) Shear	%Elongation in 2 in. specimen	Poisson's Ratio ν	Coef. of Therm. Expansion α (10-6) /°F
Metallic												
Aluminum = 2014-T6 Wrought Alloys = 6061-T6	0.101	10.6	3.9	97	97	25	68	68 42	42	10	0.35	12.8
Cast Iron Cray ASTM 20 Alloys Malleable ASTM A-19	0.260	10.0	3.9	1 1	1 1	1 1	26	96	1 1	0.6	0.28	6.70
Copper Red Brass C83400 Alloys Bronze C86100	0.316	14.6	5.4	11.4	11.4	1 1	35 35	35 35	1 1	35 20	0.35 0.34	9.80
Magnesium [Am 1004-T61] Alloy	0.066	6.48	2.5	22	22	1	40	40	22	1	0:30	14.3
Steel Structural A-36 Alloys Stainless 304 — Tool L2	0.284 0.284 0.284 0.295	29.0 29.0 28.0 29.0	11.0 11.0 11.0	36 50 30 102	36 50 30 102	1 1 1 1	58 65 75 116	58 65 75 116	1 1 1 1	30 30 40 22	0.32 0.32 0.27 0.32	09.9 09.6 06.5 05.0
Titanium [Ti-6Al-4V] Alloy	0.160	17.4	6.4	134	134	ı	145	145	I	16	0.36	5.20
Nonmetallic Concrete Low Strength High Strength	0.086	3.20	1 1	1 1	1 1	1.8	1 1	1 1	1 1	1 1	0.15	6.0
Plastic — Kevlar 49 Reinforced — 30% Glass	0.0524	19.0	1 1	1 1	1 1	1 1	104	70	10.2	2.8	0.34	1 1
Wood —Douglas Fir Select Structural —White Spruce	0.017	1.90	1 1	1 1	1 1	1 1	0.30°	3.78 ^d 5.18 ^d	b06.0	1 1	0.29e 0.31e	1 1
	,	?					000	2			1	

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

Z_19650_EP_ptg01_hr.4c.indd 69 11/12/15 4:06 PM

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

 $^{^{\}rm c}$ Measured perpendicular to the grain.

^d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.