

Modélisation et contrôle numérique de systèmes dynamiques en agronomie Partie 3: Identification par moindres carrés

Module de Formation Continue Supagro Montpellier -Cursus Data Science -16-19 Janvier 2018, Montpellier, France

#### Céline Casenave

<sup>1</sup>INRA UMR INRA-SupAgro MISTEA, Montpellier, France



# Identification de modèles Objectif

**Question**: quelles sont les valeurs  $\hat{\theta}$  des paramètres  $\theta$  d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

# Identification de modèles Objectif

**Question**: quelles sont les valeurs  $\hat{\theta}$  des paramètres  $\theta$  d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

### Formulation mathématique du problème:

Problème de **minimisation** d'une **fonction objectif**  $J(\theta)$ , de la forme:

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

où  $\Omega$  est l'ensemble des valeurs des paramètres  $\theta$  admissibles.



# Identification de modèles Objectif

**Question**: quelles sont les valeurs  $\hat{\theta}$  des paramètres  $\theta$  d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

### Formulation mathématique du problème:

Problème de **minimisation** d'une **fonction objectif**  $J(\theta)$ , de la forme:

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

où  $\Omega$  est l'ensemble des valeurs des paramètres  $\theta$  admissibles.

⇒ notion de proximité à clarifier: "proches" en quel sens? selon quelle distance?



## Identification de modèles Notion de distance en mathématiques

**Objectif:** pour quantifier l'éloignement entre deux objets de même nature.



## Identification de modèles Notion de distance en mathématiques

**Objectif:** pour quantifier l'éloignement entre deux objets de même nature.

**Distance "intuitive" = distance euclidienne**définie comme la racine de la somme des différences au carré

$$d(x,y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

οù

- $x = (x_1, ..., x_N)^T \in \mathbb{R}^N$ : vecteur de **données simulées** (avec le modèle et donc dépendantes des **paramètres**  $\theta$ )
- $y = (y_1, ..., y_N)^T \in \mathbb{R}^N$ : vecteur des données mesurées expérimentalement



## Identification de modèles Notion de distance en mathématiques

**Objectif:** pour quantifier l'éloignement entre deux objets de même nature.

**Distance "intuitive" = distance euclidienne pondérée** définie comme la racine de la somme des différences au carré

$$d(x,y) = \sqrt{\sum_{i=1}^{N} \frac{\beta_i(x_i - y_i)^2}{\beta_i(x_i - y_i)^2}}$$

où •  $\beta_i$  sont des poids positifs

- $x = (x_1, ..., x_N)^T \in \mathbb{R}^N$ : vecteur de **données simulées** (avec le modèle et donc dépendantes des **paramètres**  $\theta$ )
- $y = (y_1, ..., y_N)^T \in \mathbb{R}^N$ : vecteur des données mesurées expérimentalement



# Problème de moindres carrés Formulation

#### Problème de minimisation:

$$\hat{ heta} = \operatorname{argmin}_{ heta \in \Omega} J( heta) \text{ avec } J( heta) = \sum_{i=1}^N eta_i (y_i( heta) - y_i^m)^2$$

où  $\bullet$  est le **vecteur de paramètres** du modèle

- N est le nombre d'instants t<sub>i</sub> d'observation
- $y_i^m$  est le **vecteur des observations (mesures)** à l'instant  $t_i$
- $y_i(\theta)$  est le **vecteur des estimations données** par le modèle à l'instant  $t_i$  en fonction de  $\theta$
- • 
   ¡ est un coefficient de pondération pouvant être différent selon l'instant d'observation



# Problème de moindres carrés Formulation

#### Problème de minimisation:

$$\hat{ heta} = \operatorname{argmin}_{ heta \in \Omega} J( heta) ext{ avec } J( heta) = \sum_{i=1}^N eta_i (y_i( heta) - y_i^m)^2$$

où  $\bullet$  est le **vecteur de paramètres** du modèle

- N est le nombre d'instants t<sub>i</sub> d'observation
- $y_i^m$  est le **vecteur des observations (mesures)** à l'instant  $t_i$
- $y_i(\theta)$  est le **vecteur des estimations données** par le modèle à l'instant  $t_i$  en fonction de  $\theta$
- • 
   ¡ est un coefficient de pondération pouvant être différent selon l'instant d'observation
- ⇒ solution et méthode à utiliser dépendent du modèle utilisé



# Modèles de regression linéaire Solution du problème de moindres carrés

**Forme des modèles**: modèles linéaires par rapport à  $\theta$ :

$$y_i(\theta) = \phi_i^T \theta$$

où  $\phi_i$  est un vecteur de même taille que  $\theta$  appelé **régresseur**.

# Modèles de regression linéaire Solution du problème de moindres carrés

**Forme des modèles**: modèles linéaires par rapport à  $\theta$ :

$$y_i(\theta) = \phi_i^T \theta$$

où  $\phi_i$  est un vecteur de même taille que  $\theta$  appelé **régresseur**.

Problème de moindres carrés:

$$\min_{\theta \in \Omega} J(\theta) = \min_{\theta \in \Omega} \sum_{i=1}^{N} \beta_i (\phi_i^T \theta - y_i^m)^2$$

## Modèles de regression linéaire Solution du problème de moindres carrés

**Forme des modèles**: modèles linéaires par rapport à  $\theta$ :

$$y_i(\theta) = \phi_i^T \theta$$

où  $\phi_i$  est un vecteur de même taille que  $\theta$  appelé **régresseur**.

Problème de moindres carrés:

$$\min_{\theta \in \Omega} J(\theta) = \min_{\theta \in \Omega} \sum_{i=1}^{N} \beta_i (\phi_i^T \theta - y_i^m)^2$$

Solution analytique appelée estimateur des moindres carrés:

$$\hat{\theta} = \left[\sum_{i=1}^{N} \beta_i \phi_i \phi_i^{\mathsf{T}}\right]^{-1} \sum_{i=1}^{N} \beta_i \phi_i y_i^{\mathsf{m}}$$

sous condition que la matrice  $\sum_{i=1}^{N} \beta_i \phi_i \phi_i^T$  est inversible.



Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left( \mu_i - k \frac{S_i}{a + S_i} \right)^2$$

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left( \mu_i - k \frac{S_i}{\alpha + S_i} \right)^2$$

- ⇒ modèle non linéaire par rapport à a
- ⇒ utilisation de méthodes non linéaires



Exemple: taux de croissance

Fonction de Monod:  $\mu(S) = k \frac{S}{G + S}$ 

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Méthode 2: transformer le problème pour le rendre linéaire

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{C + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

**Méthode 2:** transformer le problème pour le rendre linéaire Par exemple:

$$\mu_{i} = k \frac{S_{i}}{\alpha + S_{i}} \iff (\alpha + S_{i})\mu_{i} = kS_{i} \iff S_{i}\mu_{i} = kS_{i} - \alpha\mu_{i}$$

$$\iff S_{i}\mu_{i} = [S_{i} \mid -\mu_{i}] \begin{bmatrix} k \\ \alpha \end{bmatrix} \iff Y_{i}^{m} = Y_{i}(\theta)$$

avec: 
$$y_i(\theta) = \phi_i^{\mathsf{T}} \theta$$
,  $y_i^{\mathsf{m}} = S_i \mu_i$ ,  $\theta = \begin{bmatrix} k \\ a \end{bmatrix}$  et  $\phi_i = \begin{bmatrix} S_i \\ -\mu_i \end{bmatrix}$ 



Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

**Méthode 2:** transformer le problème pour le rendre linéaire Puis résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left( [S_i \mid -\mu_i] \begin{bmatrix} k \\ a \end{bmatrix} - S_i \mu_i \right)^2$$

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{C + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

**Méthode 2:** transformer le problème pour le rendre linéaire Puis résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left( [S_i \mid -\mu_i] \begin{bmatrix} k \\ a \end{bmatrix} - S_i \mu_i \right)^2$$

Solution:

$$\hat{\theta} = \left[\sum_{i=1}^{N} \beta_{i} \begin{bmatrix} S_{i} \\ -\mu_{i} \end{bmatrix} [S_{i} | -\mu_{i}]\right]^{-1} \sum_{i=1}^{N} \beta_{i} \begin{bmatrix} S_{i} \\ -\mu_{i} \end{bmatrix} S_{i}\mu_{i}$$



Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 



$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de  $\theta$ 

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de  $\theta$ 

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine  $\Omega$  donné

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de  $\theta$ 

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine  $\Omega$  donné

- algorithmes itératifs
- démarrent d'une valeur initiale donnée



$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de  $\theta$ 

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine  $\Omega$  donné

- algorithmes itératifs
- démarrent d'une valeur initiale donnée

Valeur initiale = première estimation "grossière" des paramètres.



# Minimum global ou local Importance de la condition initiale

Existence de deux types de minimum Pour tout  $a \in \Omega$ , f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine  $\Omega$
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V



# Minimum global ou local Importance de la condition initiale

### Existence de deux types de minimum Pour tout $a \in \Omega$ , f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine  $\Omega$
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V



### exemple:

la fonction  $f \mapsto -3e^{-x^2} - e^{-(x-3)^2}$ admet deux minimums locaux sur [-5, 10] dont un est global



# Minimum global ou local Importance de la condition initiale

Existence de deux types de minimum Pour tout  $a \in \Omega$ , f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine  $\Omega$
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V

Importance de bien choisir la condition initiale car les algorithmes convergent généralement vers un minimum local, souvent le plus proche de la condition initiale.



## Méthode du gradient Problème considéré

Algorithme du gradient aussi appelé algorithme de plus forte pente ou de plus profonde descente = un algorithme d'optimisation (minimisation ou maximisation) de fonction.



## Méthode du gradient Problème considéré

Algorithme du gradient aussi appelé algorithme de plus forte pente ou de plus profonde descente = un algorithme d'optimisation (minimisation ou maximisation) de fonction.

**Problème considéré**: minimisation d'une fonction  $f: x \in \Omega \subset \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$  sur un domaine  $\Omega$ :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x)$$

**Notation**:  $\nabla f(x)$  = gradient de f en x:

$$\nabla f(x) = \left[ \begin{array}{c} \partial_{X_1} f(x) \\ \vdots \\ \partial_{X_n} f(x) \end{array} \right]$$

**direction de descente =** direction, donc vecteur  $d \in \Omega \setminus \{0\}$  selon laquelle, au voisinage de x, la fonction f décroit.



direction de descente = direction, donc vecteur  $d \in \Omega \setminus \{0\}$  selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- $\Rightarrow$  définie localement autour d'un point  $x \in \Omega$



**direction de descente =** direction, donc vecteur  $d \in \Omega \setminus \{0\}$  selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- $\Rightarrow$  définie localement autour d'un point  $x \in \Omega$

### Définition mathématique:

 $d \in \Omega \setminus \{0\}$  est une **direction de descente** en x pour f si il existe un intervalle  $[0, \alpha_0]$  tel que:

$$f(x + \alpha d) \leqslant f(x), \ \forall \alpha \in [0, \alpha_0]$$

d est une direction de descente stricte si l'inégalité est stricte (< au lieu de ≤).



direction de descente = direction, donc vecteur  $d \in \Omega \setminus \{0\}$  selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- $\Rightarrow$  définie localement autour d'un point  $x \in \Omega$

### Résultat mathématique

Si  $\nabla f(x) \neq 0$ , alors:

 $d = -\nabla f(x)$  est une direction de descente stricte en x pour f.

avec une fonction f est la direction du gradient et d'autre direction de descente.



# Méthode du gradient Algorithme du gradient



# Méthode du gradient Algorithme du gradient

1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x



- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. Initialisation: k = 0 et calcul de  $\nabla f(x_0)$



- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. Initialisation: k = 0 et calcul de  $\nabla f(x_0)$
- 3. Itérations: Tant que  $k+1 \le N$  et  $\|\nabla f(x_k)\| > \epsilon$  alors

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$
  
$$k = k+1$$

où  $\alpha_k$  peut être choisi selon différentes méthodes.



- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. Initialisation: k = 0 et calcul de  $\nabla f(x_0)$
- 3. Itérations: Tant que  $k+1 \le N$  et  $\|\nabla f(x_k)\| > \epsilon$  alors

$$X_{k+1} = X_k - \alpha_k \nabla f(X_k)$$
  
 $k = k+1$ 

où  $\alpha_k$  peut être choisi selon différentes méthodes.

4. Solution approchée  $\hat{x} \simeq x_k$  et  $\min_{x \in \Omega} f(x) \simeq f(x_k)$ 



- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. Initialisation: k = 0 et calcul de  $\nabla f(x_0)$
- 3. Itérations: Tant que  $k+1 \le N$  et  $\|\nabla f(x_k)\| > \epsilon$  alors

$$X_{k+1} = X_k - \alpha_k \nabla f(X_k)$$
  
 $k = k+1$ 

où  $\alpha_k$  peut être choisi selon différentes méthodes.

4. Solution approchée  $\hat{x} \simeq x_k$  et  $\min_{x \in \Omega} f(x) \simeq f(x_k)$ 

#### Deux choix de $\alpha_k$ classiques:

- α<sub>k</sub> constante indépendante de k ⇒ gradient à pas fixe
- $\alpha_k$  choisi pour minimiser  $f(x_k \alpha_k \nabla f(x_k)) \Rightarrow$  gradient à pas optimal



# Méthode du gradient

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \left( k \frac{S_i}{a + S_i} - \mu_i \right)^2 = \operatorname{argmin}_{(a,k) \in \Omega} f(a,k)$$

# Méthode du gradient

Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{C + S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \left( k \frac{S_i}{a + S_i} - \mu_i \right)^2 = \operatorname{argmin}_{(a,k) \in \Omega} f(a,k)$$

Le gradient de f:

$$\nabla f(k, \alpha) = \begin{bmatrix} \partial_k f(k, \alpha) \\ \partial_{\alpha} f(k, \alpha) \end{bmatrix} = \begin{bmatrix} \frac{2}{N} \sum_{i=1}^{N} \frac{S_i}{\alpha + S_i} \left( k \frac{S_i}{\alpha + S_i} - \mu_i \right) \\ -\frac{2}{N} \sum_{i=1}^{N} k \frac{S_i}{(\alpha + S_i)^2} \left( k \frac{S_i}{\alpha + S_i} - \mu_i \right) \end{bmatrix}$$



### Méthode du gradient Exemple: taux de croissance

Fonction de Monod: 
$$\mu(S) = k \frac{S}{G+S}$$

**Problème**: trouver les paramètres a et k de la fonction à partir de N mesures bruitées  $S_i$  et  $\mu_i$ , i=1:N de  $S(t_i)$  et  $\mu(S(t_i))$ 





### Méthode de Newton-Raphton Problème considéré

**Méthode de Newton-Raphton** = algorithme destiné à trouver une approximation numérique d'un zéro (ou racine) d'une fonction f, c'est à dire la valeur de x telle que f(x) = 0.

**Utilisation pour l'optimisation**: pour un ensemble fermé  $\Omega$ :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x) \Leftrightarrow f'(\hat{x}) = 0 \text{ OU } \hat{x} \in \partial \Omega$$

 $\Rightarrow$  application de la méthode de Newton-Raphton à f'



### Méthode de Newton-Raphton Problème considéré

**Méthode de Newton-Raphton** = algorithme destiné à trouver une approximation numérique d'un zéro (ou racine) d'une fonction f, c'est à dire la valeur de x telle que f(x) = 0.

**Utilisation pour l'optimisation**: pour un ensemble fermé  $\Omega$ :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x) \Leftrightarrow f'(\hat{x}) = 0 \text{ OU } \hat{x} \in \partial \Omega$$

 $\Rightarrow$  application de la méthode de Newton-Raphton à f'

#### Problème considéré:

Trouver  $\hat{x} \in \Omega$  tel que:

$$g(\hat{x}) = 0$$



Formule de Taylor à l'ordre 1 de g au voisinage de  $x_k$ :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où  $R_1(x)$  est négligeable devant les autres termes.

Formule de Taylor à l'ordre 1 de g au voisinage de  $x_k$ :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où  $R_1(x)$  est négligeable devant les autres termes.

**Autrement dit**: si x proche de  $x_k$  alors on néglige  $R_1(x)$  et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

Formule de Taylor à l'ordre 1 de g au voisinage de  $x_k$ :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où  $R_1(x)$  est négligeable devant les autres termes.

**Autrement dit**: si x proche de  $x_k$  alors on néglige  $R_1(x)$  et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

#### Rappel:

 $y = g(x_k) + g'(x_k)(x - x_k)$ : équation de la tangente au graphe de g en  $x_k$ 



Formule de Taylor à l'ordre 1 de g au voisinage de  $x_k$ :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où  $R_1(x)$  est négligeable devant les autres termes.

**Autrement dit**: si x proche de  $x_k$  alors on néglige  $R_1(x)$  et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

"autour de  $x_k$  la courbe de g est à peu près égale à sa tangente"

#### Rappel:

$$y = g(x_k) + g'(x_k)(x - x_k)$$
: équation de la tangente au graphe de  $g$  en  $x_k$ 



**Idée**: Au lieu de chercher  $x \in \Omega$  tel que:

$$g(x) = 0$$

on cherche  $x \in \Omega$  tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

**Idée**: Au lieu de chercher  $x \in \Omega$  tel que:

$$g(x) = 0$$

on cherche  $x \in \Omega$  tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

**Idée**: Au lieu de chercher  $x \in \Omega$  tel que:

$$g(x) = 0$$

on cherche  $x \in \Omega$  tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

 $\Rightarrow$  nouvelle valeur de x supposée plus proche du zéro de f que  $x_k$ 



**Idée**: Au lieu de chercher  $x \in \Omega$  tel que:

$$g(x) = 0$$

on cherche  $x \in \Omega$  tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

 $\Rightarrow$  nouvelle valeur de x supposée plus proche du zéro de f que  $x_k$ 

$$\Rightarrow$$
 itération  $x_{k+1} = x$ 

**Idée**: Au lieu de chercher  $x \in \Omega$  tel que:

$$g(x) = 0$$

on cherche  $x \in \Omega$  tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

- $\Rightarrow$  nouvelle valeur de x supposée plus proche du zéro de f que  $x_k$
- $\Rightarrow$  itération  $x_{k+1} = x$
- ⇒ convergence vers le zéro le plus proche





1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x



- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de  $g(x_0)$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de  $g(x_0)$
- 3. <u>Itérations</u>: Tant que  $k+1 \le N$  et  $g(x_k) > \epsilon$  alors

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$
$$k = k+1$$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision  $\epsilon$  et valeur initiale  $x_0$  pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de  $g(x_0)$
- 3. <u>Itérations</u>: Tant que  $k+1 \leqslant N$  et  $g(x_k) > \epsilon$  alors

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$
$$k = k+1$$

4. Solution approchée  $\hat{x} \simeq x_k$ 

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{dt} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{dt} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

**Modèle de croissance** d'une biomasse B sur un substrat S dans un réacteur batch:

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B\\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

 $\begin{array}{ll} \textbf{Point d'équilibre non nul} & = \text{solution de l'équation } \mu(\mathcal{S}) = \frac{\mathcal{Q}}{\mathcal{V}} \\ & = \text{zéro de la fonction } g: \mathcal{S} \mapsto \mu(\mathcal{S}) - \frac{\mathcal{Q}}{\mathcal{V}} \\ \end{array}$ 

Exemple: points d'équilibre

**Modèle de croissance** d'une biomasse B sur un substrat S dans un réacteur batch:

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B\\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Point d'équilibre non nul = solution de l'équation  $\mu(S) = \frac{Q}{V}$  = zéro de la fonction  $g: S \mapsto \mu(S) - \frac{Q}{V}$ 

 $\Rightarrow$  application de l'agorithme de Newton-Raphton à g



### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





#### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$





### Quelques remarques pour finir

Quels paramètres doit on identifier?:

**Analyse de sensibilité** pour quantifier l'impact de la variation des paramètres sur les sorties du modèle.

⇒ réduction du nombre de paramètres à identifier: on identifie que les plus importants

Fonctions pré-codées: en python/scilab/R/etc.

