Laboratorio 1: Análisis de componentes principales

KEVIN STEVEN GARCÍA^a, ALEJANDRO VARGAS^b

1. Introducción

En el presente informe veremos el uso y aplicación del análisis de componentes principales en una base de datos que contiene las importaciones hechas por los países suramericanos (Colombia, Brasil, Chile, Argentina, Ecuador y Perú), éstas provenientes de Estados Unidos, entre 1991 y 2010. Se analizara la cantidad de ejes o componentes principales a utilizar y se darán algunas interpretaciones de las trayectorias que se pueden formar entre los años consecutivos.

La base de datos sobre la cuál se va a trabajar es la siguiente:

Año	Colombia	Brasil	Chile	Argentina	Ecuador	Peru
1991	44.4	27.2	45.6	20.0	6.0	14.1
1992	75.5	11.8	58.9	22.6	17.8	14.4
1993	110.7	50.6	128.3	17.2	119.4	118.5
1994	80.3	70.6	102.2	15.2	154.9	146.1
1995	81.6	82.3	89.0	35.1	169.4	127.1
1996	76.4	97.4	185.0	51.0	75.5	129.0
1997	32.0	89.5	195.3	31.1	33.4	110.2
1998	55.5	63.1	66.3	24.4	9.7	66.7
1999	74.3	72.6	76.3	28.1	11.2	110.7
2000	84.5	76.2	80.1	29.5	11.8	110.2
2001	87.1	97.4	89.3	51.5	63.1	89.3
2002	89.3	89.5	72.4	40.3	66.3	70.2
2003	70.2	63.1	80.1	60.5	76.3	90.1
2004	90.1	66.3	70.5	39.1	20.0	64.5
2005	60.5	76.3	107.2	31.1	63.4	92.7
2006	140.3	20.0	63.4	50.2	101.2	120.8
2007	120.4	22.6	101.2	51.0	103.1	107.2
2008	130.2	17.2	103.1	42.5	66.7	70.8
2009	110.1	31.1	75.6	25.7	110.7	101.2
2010	120.2	24.4	68.9	60.3	110.2	110.8

2. Procedimiento ACP

2.1. ACP para los individuos R^6

Para llevar a cabo el análisis de componentes principales de la base de datos anterior, estandarizaremos las variables que en nuestro caso son los países, ya que aunque todas están medidas en la

^aCódigo: 1533173. E-mail: kevin.chica@correounivalle.edu.co

^bCódigo: 1525953. E-mail: jose.alejandro.vargas@correounivalle.edu.co

misma escala, podría haber diferencias por el tipo de economía que maneja cada país. La matriz de correlaciones correspondiente a esta base de datos es:

	Colombia	Brasil	Chile	${ m Argentina}$	Ecuador	Perú
Colombia	1	-0.524830476	-0.22431855	0.391517899	0.48620724	0.2790988
Brasil	-0.524830476	1	0.46610474	0.005930606	-0.04478948	0.3709440
Chile	-0.22431855	0.46610474	1	0.051451487	0.15920217	0.4937184
Argentina	0.391517899	0.005930606	0.05145149	1	0.16157351	0.1828657
Ecuador	0.4862072	-0.04478948	0.15920217	0.16157351	1	0.6547563
Perú	0.2790988	0.3709440	0.4937184	0.1828657	0.6547563	1

Para realizar el análisis de forma multivariada, debemos diagonalizar la matriz de correlaciones, es decir, obtener su descomposición en valores y vectores propios correspondientes.

Esta matriz de correlaciones tiene 6 valores propios positivos, que son:

 $\lambda_1 = 2.1934092$ $\lambda_2 = 1.9561781$ $\lambda_3 = 0.9038789$ $\lambda_4 = 0.5119470$ $\lambda_5 = 0.2854407$ $\lambda_6 = 0.1491461$

Con los valores propios obtenidos, procedemos a hallar los vectores propios correspondientes

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
-0.3266572	0.5708984	0.0068014	0.1170875	0.5332445	0.5189071
-0.1588587	-0.6033277	0.2009878	-0.5413708	0.1852719	0.4929051
-0.3381710	-0.4635960	0.0514265	0.7890499	-0.0779079	0.1985066
-0.2898593	0.2066273	0.8863988	-0.0448699	-0.2455986	-0.1589085
-0.5459391	0.1756044	-0.3785943	-0.2216216	-0.6626128	0.1990175
-0.6096157	-0.1470297	-0.1669623	-0.1395665	0.4193810	-0.6192861

Ahora, para encontrar las componentes principales, hacemos el producto de la matriz de datos estandarizados con la matriz que contiene los vectores propios obtenidos de la matriz de correlaciones:

$$C = Z \cdot V$$

Entonces, las componentes serán:

```
3.57940293
                      0.2200186
                                  -0.45449358
                                                 0.07133223
                                                               -0.720973151
                                                                              -0.20047529
        2.98416620
                      1.1042398
                                  -0.46390509
                                                 0.71180698
                                                               -0.455553845
                                                                              0.19923050
       -1.18011107
                     -0.0116174
                                  -1.74610834
                                                 0.70549306
                                                               0.310200546
                                                                               0.48646527
       -1.55340630
                     -0.7593625
                                  -2.19242499
                                                 -0.62366337
                                                               -0.204020462
                                                                              -0.20732998
       -1.75941910
                     -0.3826535
                                  -0.86317511
                                                 -1.17272788
                                                               -0.865691407
                                                                              0.12542483
       -1.95192515
                     -2.1096857
                                   1.13135115
                                                 0.91256447
                                                               -0.033529896
                                                                              0.19059358
       -0.24144158
                     -3.3571269
                                   0.21738043
                                                 1.42840546
                                                               -0.256638938
                                                                              -0.32533218
        1.98337243
                     -0.7162408
                                  -0.17289755
                                                 -0.37637158
                                                               0.202418839
                                                                              -0.25420678
        0.73442430
                     -0.7828704
                                                -0.46668505
                                                                              -0.52216426
                                  -0.07627906
                                                               1.061208739
        0.53228046
                     -0.6705084
                                   0.04502957
                                                 -0.41734440
                                                               1.233682980
                                                                              -0.25313938
C =
       -0.37260533
                     -0.5712985
                                   1.32752250
                                                 -0.83881402
                                                                              0.54991653
                                                               0.043950908
        0.34063969
                     -0.2236844
                                   0.59420850
                                                -0.93477773
                                                               -0.009209529
                                                                              0.85547004
       -0.25306113
                      0.1018299
                                   1.54180034
                                                 -0.54482210
                                                               -0.818951578
                                                                              -0.47394187
        1.13138487
                                                 -0.28906437
                      0.1457486
                                   0.74310059
                                                               0.448604684
                                                                              0.38436376
        0.26399863
                     -1.2144046
                                                -0.12147196
                                                               -0.240048044
                                                                              -0.04377519
                                   -0.14020651
       -1.30421117
                      2.4709380
                                                 0.01303094
                                                                              -0.33221632
                                   0.21944271
                                                               0.504568106
       -1.21980212
                      1.6156676
                                   0.38826932
                                                 0.71976837
                                                               -0.148517945
                                                                              -0.21359085
       -0.07690509
                      1.8051120
                                   0.27156821
                                                 1.24900452
                                                               0.206211966
                                                                              0.49705097
       -0.35915931
                      1.2125308
                                                                               0.03874664
                                  -1.25387195
                                                 0.04770938
                                                               0.035716022
       -1.27762217
                      2.1233680
                                   0.88368884
                                                 -0.07337295
                                                               -0.293427995
                                                                              -0.50109002
```

• Representación de los individuos en el primer plano principal:

Figura 1: Representación de los individuos

Porcentaje de Inercia explicado por las componentes principales:
 Para decidir cuantas componentes principales utilizar, nos centramos en el criterio de los valores propios, el cuál nos dice que debemos utilizar las componentes cuyo valor propio sea mayor a la unidad. Para decidir esto, realizamos la siguiente tabla y la siguiente gráfica para tener en cuenta también, el porcentaje de inercia acumulado entre las componentes que vayamos a seleccionar.

	Valor propio	Porcentaje de Inercia	Inercia Acumulada
λ_1	2.1934092	36.56%	36.56%
λ_2	1.9561781	32.60%	69.16%
λ_3	0.9038789	15.06%	84.22%
λ_4	0.5119470	8.53%	92.75%
λ_5	0.2854407	4.76%	97.51%
λ_6	0.1491461	2.49%	100%

Figura 2: Gráfico de barras de la inercia explicada por las componentes principales

De acuerdo a lo anterior, seleccionamos las primeras dos componentes principales, ya que sus valores propios correspondientes son los únicos mayor a la unidad y además, el porcentaje de inercia acumulado entre ellas dos es de casi el $70\,\%$.

• Circulo de correlaciones:

Figura 3: Círculo de correlaciones para las variables de la tabla de importaciones generado por las dos primeras componentes principales

• Representación de los individuos en el primer plano principal:

FIGURA 4: Representación de los individuos

• Representación de los individuos con las variables en el primer plano principal:

Figura 5: Primer plano principal para la tabla de importaciones, generado por las dos primeras componentes principales

• Cosenos cuadrados y contribuciones:

Los cosenos cuadrados y las contribuciones en las dos primeras dimensiones para los individuos son:

cos^2		contribuciones	
Componente 1	${\bf Componente}\ 2$	Componente 1	Componente 2
0.939844281	0.003551024	29.20596190	0.1237316
0.802730728	0.1099134	20.30001454	3.116652
0.264147747	0.0000256	3.17465182	0.00034497
0.291786249	0.06972573	5.50073162	1.473873
0.505191102	0.02389618	7.05649339	0.3742597
0.365961449	0.4275083	8.68513660	11.37620
0.004290144	0.8294368	0.13288454	28.80694
0.832735084	0.1085967	8.96724173	1.311233
0.194391979	0.2208839	1.22954496	1.566540
0.113548769	0.1801813	0.64584957	1.149132
0.042910068	0.1008759	0.31648160	0.8342337
0.054608053	0.02354711	0.26450923	0.1278890
0.017575565	0.0028458	0.14598264	0.02650405
0.559940767	0.00929244	2.91790445	0.05429631
0.042537936	0.9001189	0.15887431	3.769540
0.206935729	0.7427854	3.87744963	15.60577
0.307751740	0.5399155	3.39179115	6.672147
0.001140083	0.6281081	0.01348219	8.328560
0.040609619	0.4628499	0.29405231	3.757917
0.224698257	0.6206480	3.72096180	11.52424

Con respecto a la tabla anterior, podemos observar que los cosenos cuadrados del primero, segundo, quinto, octavo, y catorceavo año (1991,1992, 1995, 1998 y 2004 respectivamente) son los más altos con 0.94,0.80,0.50,0.83 y 0.56 respectivamente, en la primera componente principal. Esto nos dice que dichos individuos en este caso, esos años, están muy bien representados en el plano principal. En cuanto a la segunda componente principal, están mejor representados en el plano principal los años 1997,2005, 2006, 2007, 2008, 2009 y 2010, ya que son los años que tienen mayor cosenos cuadrados.

Ahora, en cuanto a las contribuciones de los individuos, podemos notar que los años 1991, 1992, 1996 y 1998 son los que más aporte tuvieron en la construcción del eje 1, ya que sus contribuciones son las más altas. Los años 1996, 1997, 2006, 2008 y 2010 tuvieron un aporte alto en la construcción del eje 2 por sus valores altos en las contribuciones.

2.2. ACP para las variables R^{20}

Para realizar el análisis de componentes principales en el espacio de las variables (R^20) ya no hacemos uso de la matriz de correlaciones para la descomposición en valores y vectores propios.

Construimos la matriz $N^{\frac{1}{2}}ZZ'N^{\frac{1}{2}}$ donde N es una matriz nxn diagonal de métricas (en nuestro caso es diagonal de $\frac{1}{20}$) y Z es la matriz de datos estandarizada.

Omitiremos parte de esta matriz por ser de dimensión 20x20, mostraremos las primeras 6 columnas

```
0.681608944
                                                                          -0.395701422
               0.5737302260
                               -0.18519501
                                             -0.229336367
                                                            -0.273710543
0.573730226
                                                                          -0.398824545
               0.5546846289
                               -0.11333334
                                             -0.242467793
                                                            -0.284395366
-0.185195009
               -0.1133333432
                               0.26361424
                                             0.253304454
                                                            0.127653907
                                                                           0.053932996
-0.229336367
              -0.2424677931
                               0.25330445
                                             0.413499801
                                                            0.289905699
                                                                           0.077596926
-0.273710543
              -0.2843953662
                               0.12765391
                                             0.289905699
                                                            0.306374712
                                                                           0.112386040
-0.395701422
              -0.3988245455
                               0.05393300
                                             0.077596926
                                                            0.112386040
                                                                           0.520548243
-0.067475147
               -0.1729786502
                               0.03571085
                                             0.083835479
                                                            0.001400524
                                                                           0.452490148
0.344922990
               0.2398628533
                               -0.11783905
                                             -0.095594779
                                                            -0.141600252
                                                                           -0.147732998
0.089875556
                                                                          -0.021460636
               0.0221447658
                               -0.04892431
                                             -0.009816717
                                                            -0.068181345
0.043439102
                               -0.03669375
                                            -0.017767179
                                                                          -0.002196556
               -0.0041194441
                                                            -0.066455386
-0.113225897
               -0.1433073356
                              -0.10911370
                                            -0.074885343
                                                            0.037145990
                                                                           0.138615853
0.033423373
               0.0001558856
                               -0.08415630
                                            -0.062727544
                                                            0.009243469
                                                                          -0.010521496
-0.046877464
               -0.0733568088
                              -0.16318284
                                            -0.122968492
                                                            0.018193734
                                                                           0.073169435
0.166145415
               0.1429454542
                                            -0.174415225
                                                            -0.134446395
                                                                          -0.094036443
                               -0.12560915
0.045733399
               -0.0236983327
                               -0.01170398
                                             0.047663835
                                                            0.023300266
                                                                           0.088846903
-0.226031480
              -0.0776022768
                               0.05656681
                                             -0.018683518
                                                            0.033298661
                                                                           -0.124362897
-0.199295622
              -0.0749343874
                               0.05502943
                                             -0.027879459
                                                            0.022522326
                                                                           0.001639325
-0.008038376
               0.1265967100
                               0.03912637
                                             -0.138537296
                                                            -0.118537546
                                                                          -0.106162464
-0.023951731
               0.0437110014
                               0.13313722
                                             0.117055766
                                                            0.058411712
                                                                          -0.161292551
               -0.0948132414
                               -0.02232485
                                             -0.067782249
                                                            0.047489793
                                                                          -0.056933861
```

Ahora, en este caso, se debe descomponer en valores y vectores propios la matriz anterior.

Los valores propios son: $\lambda_1 = 2.193409$, $\lambda_2 = 1.956178$, $\lambda_3 = 0.9038789$, $\lambda_4 = 0.5119470$, $\lambda_5 = 0.2854407$, $\lambda_6 = 0.1491461$, $\lambda_i = 0$ $i = 7, \dots, 20$.

Y, de los 20 vectores propios asociados solo se mostrarán los primeros 6.

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
-0.54042541	-0.035175496	-0.10689506	-0.02229248	0.301749219	0.11607531
-0.45055537	-0.176540432	-0.10910861	-0.22245121	0.190663157	-0.11535458
0.17817553	0.001857333	-0.41067765	-0.22047800	-0.129828375	-0.28166368
0.23453639	0.121403156	-0.51564953	0.19490490	0.085388776	0.12004418
0.26564061	0.061176767	-0.20301531	0.36649645	0.362318216	-0.07262105
0.29470556	0.337286185	0.26608924	-0.28519117	0.014033283	-0.11035380
0.03645333	0.536720974	0.05112700	-0.44639983	0.107411211	0.18836753
-0.29945353	0.114509067	-0.04066481	0.11762221	-0.084718448	0.14718587
-0.11088485	0.125161482	-0.01794053	0.14584663	-0.444148173	0.30233342
-0.08036477	0.107197588	0.01059077	0.13042688	-0.516333895	0.14656785
0.05625670	0.091336397	0.31222795	0.26214296	-0.018394793	-0.31840200
-0.05143046	0.035761568	0.13975545	0.29213317	0.003854469	-0.49531767
0.03820767	-0.016280064	0.36262524	0.17026573	0.342756174	0.27441262
-0.17081875	-0.023301569	0.17477427	0.09033730	-0.187754721	-0.22254684
-0.03985904	0.194153041	-0.03297601	0.03796196	0.100467416	0.02534586
0.19691241	-0.395041436	0.05161204	-0.00407238	-0.211177117	0.19235345
0.18416816	-0.258304997	0.09131938	-0.22493927	0.062159283	0.12366923
0.01161128	-0.288592444	0.06387175	-0.39033413	-0.086305988	-0.28779281
0.05422659	-0.193853472	-0.29490564	-0.01490995	-0.014948243	-0.02243433
0.19289795	-0.339473648	0.20784006	0.02293024	0.122808551	0.29013142

Ahora, para encontrar finalmente las componentes principales, hacemos el producto:

$$Z'N^{\frac{1}{2}}V$$

Las 6 primeras componentes principales están dadas por:

País	C_1	C_2	C_3	C_4	C_5	C_6
Colombia	0.4837847	-0.7984781	0.006466285	-0.08377667	-0.28489471	-0.20039902
Brasil	0.2352724	0.8438349	0.191084241	0.38735334	-0.09898461	-0.19035719
Chile	0.5008368	0.6484013	0.048892549	-0.56456896	0.04162357	-0.07666214
Argentina	0.4292863	-0.2889960	0.842721906	0.03210461	0.13121512	0.06136957
Ecuador	0.8085448	-0.2456063	-0.359939262	0.15857133	0.35401184	-0.07685944
Peru	0.9028508	0.2056407	-0.158735325	0.09986052	-0.22406122	0.23916484

• Representación de las variables en el primer plano principal:

FIGURA 6: Representación de las variables

• Cosenos cuadrados y contribuciones:

Los cosenos cuadrados y las contribuciones en las dos primeras dimensiones para las variables son:

País	cos^2		contribuciones	
	Componente 1	${\bf Componente}\ 2$	Componente 1	Componente 2
Colombia	0.23404762	0.63756727	10.670495	32.592496
Brasil	0.05535309	0.71205730	2.523610	36.400433
Chile	0.25083751	0.42042429	11.435965	21.492127
Argentina	0.18428677	0.08351869	8.401841	4.269483
Ecuador	0.65374465	0.06032246	29.804956	3.083689
Peru	0.81513961	0.04228811	37.163134	2.161772

Con respecto a la tabla anterior, podemos observar que los cosenos cuadrados de los países Ecuador y Perú son los más altos con 0.6537 y 0.8151 respectivamente, en la primera componente principal. Esto nos dice que dichas variables en este caso, estos países, están muy bien representados en el plano principal correspondiente a las variables. En cuanto a la segunda componente principal, están mejor representados en el plano principal los países Colombia, Brasil y un poco Chile. El país Argentina se encuentra muy bien representado (con $\cos^2 = 0.71$) en la tercera componente que no fue expuesta en la tabla.

Ahora, en cuanto a las contribuciones de las variables, podemos notar que los países Perú, Ecuador, Chile y Colombia son los que más aporte tuvieron en la construcción del eje 1, ya que sus contribuciones son las más altas. En cuanto a la construcción del eje 2, los países que mas contribuyeron fueron Brasil, Colombia y Chile.

?????