Chapter 4

Mining Data Streams

Data Streams

 In many data mining situations, we do not know the entire data set in advance

- Stream management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as
 - Infinite
 - non-stationary (i.e., the distribution changes over time)

Data Streams

- Data arrives in a *stream* or *streams* continuously
 - If it is not processed immediately or stored, then it is lost forever
 - The data arrives so rapidly that it is not feasible to store it all in active storage (e.g., in a conventional database)
- We consider *summarization* of a stream
 - How can we make a useful sample of a stream?
 - How can we filter a stream to eliminate undesirable elements?
 - How can we estimate the number of different elements in a stream?
- We also consider summarization of a stream using a window
 - We look at only the last n elements of the stream

Data Stream Management System (DSMS)

General architecture

Data Stream Model (1/2)

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Question
 - How do you make critical calculations about the stream using a *limited* amount of (secondary) memory?

Data Stream Model (2/2)

Streams entering

- They need not have the same date rates or data types
- The time between elements of one stream need not be uniform.
- The arrival rate of a stream is not under the control of the system

Archival storage (disk)

- Streams may be archived in a large archival store
- However, it is not possible to answer queries from the archival store

Limited working storage (main memory or disk)

- Summaries or parts of streams may be placed
- It can be used for answering queries
- It is of sufficiently limited capacity

Examples of Stream Sources

- Sensor data (temperature, GPS, height, etc.)
 - A sensor might send a reading every tenth of a second (3.5 MB/day)
 - There can be a million sensors (3.5 TB/day)

Image data

- Satellite (streams of many terabytes of images per day)
- Surveillance cameras (streams of images at intervals like one second)

Internet and Web traffic

- A switching node receives streams of IP packets from many inputs
 - (ex) Detecting denial-of-service attacks or rerouting packets
- Web sites receive streams of various types
 - (ex) Google (search queries), Facebook (clicks on its various links)

Query Type 1: Standing Queries

- Permanently execute and produce outputs at appropriate times
 - Also called "continuous" queries

Examples

- Output an alert whenever the temperature exceeds 25°C
 - Check only the most recent stream element
- Each time a new reading arrives, produce the average of the 24 most recent readings
 - Store the 24 most recent stream elements in the working store
- Produce the maximum temperature ever recorded by that sensor
 - Retain the maximum of all stream elements ever seen

Query Type 2: Ad-Hoc Queries (1/2)

Asked once about the current state of a stream or streams

- If we do not store all streams, we cannot answer arbitrary queries
- If we have some idea of what kind of queries will be asked, we can prepare for them by storing appropriate parts or summaries of streams

Sliding window

- A common approach to support ad-hoc queries
- Two types
 - *Tuple-based*: store the most recent *n* elements of a stream
 - *Time-based*: store all the elements that arrived within the t time units
- Then, we can treat the window as a relation and query it (e.g., SQL)
- Of course, the stream management system must keep the window fresh
 - Deletes the oldest elements as new ones come in

Query Type 2: Ad-Hoc Queries (2/2)

Example

Report the number of unique users over the past month

```
SELECT COUNT(DISTINCT(name))
FROM Logins
WHERE time >= t;
```

- Logins (name, time)
 - A relation representing a window that is all logins in the most recent month
- †
- A constant representing the time one month before the current time

Issues in Stream Processing

- It is important that the stream-processing algorithm is executed in main memory
 - Without or with only rare accesses to secondary storage
 - Because stream often deliver elements very rapidly
- However, the requirements of many streams can easily exceed the amount of available main memory
- Two generalizations about stream algorithms
 - Often, it is much more efficient to get an approximate answer than an exact solution
 - A variety of techniques related to *hashing* turn out to be useful to produce an approximate answer that is very close to the true result

Problems on Data Streams

- Types of queries one wants on answer on a data stream
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate the average/standard deviation of last k elements
 - Finding frequent elements

Applications (1/2)

Mining query streams

Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

Look for trending topics on Twitter, Facebook

Applications (2/2)

Sensor Networks

Many sensors feeding into a central controller

Telephone call records

Data feeds into customer bills as well as settlements between telephone companies

IP packets monitored at a switch

- Gather information for optimal routing
- Detect denial-of-service attacks

Sampling Data in a Stream

Extracting reliable samples from a stream

Sampling Data in a Stream

- Why do we select a *subset* of a stream carefully?
 - We can ask queries about the selected subset and have the answers be statistically representative of the stream as a whole

- A motivating example
 - A search engine receives a stream of queries
 - Each query is in the form of (user, query, time)
 - Suppose we want to answer queries such as "what fraction of the typical user's queries were repeated over the past month?"
 - Assume also that we wish to store only 1/10th of the stream elements
 - → How should we select those **1/10th** of the stream elements?

Naïve Approach

- Generate a random integer from 0 to 9 for each query
- Store the tuple if the integer is 0, otherwise discard
- Then, each user has, on average, 1/10th of their queries stored
- However, this scheme gives us the wrong answer to some queries

Problem with Naïve Approach

- Consider the query asking for the fraction of repeated queries for a user
 - Suppose a user has issued s queries once and d queries twice, and no queries more than twice (a total of s+2d queries)
 - Correct answer = d/(s + d)
- If we use the naive approach (1/10th sample of queries)
 - Of the s queries, s/10 will appear in the sample
 - Of the d queries, only d/100 will appear **twice** in the sample
 - $d/100 = 1/10 \cdot 1/10 \cdot d$
 - Of the d queries, 18d/100 will appear exactly **once** in the sample
 - $18 d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
 - Thus, the answer = $\frac{d/100}{s/10 + d/100 + 18d/100} = \frac{d}{10s + 19d}$ (wrong!

Obtaining a Representative Sample

- The example query can't be answered by taking 1/10th of queries
- Instead, we pick 1/10th of the users and take all their searches for the sample
 - Each time a query arrives, we hash the user into one of ten buckets (0...9)
 - If the user hashes to bucket 0, then we add the query to the sample, otherwise not
 - Note that we do not actually store the user in the bucket
- General way of obtaining a sample of a/b of the users
 - Hash users to b buckets (0, 1, ..., b-1)
 - Add the query to the sample if the hash value is less than a

General Sampling Problem

- Our stream consists of tuples with n components
 - Key: a subset of components used for selecting the sample
 - (ex) In the previous example, a tuple is (user, query, time) and the key is user
 - The choice of a key depends on the application
 - (ex) user, query, or (user, search, time)
- To take a sample of size a/b
 - Hash the key value for each tuple to b buckets
 - Accept the tuple for the sample if the hash value is less than a
 - If the key consists of more than one component, the hash function needs to combine the values for those components to make a single hash value
 - (ex) How to generate a 30% sample?
 - Hash into b = 10 buckets, take the tuple if it hashes to bucket 0, 1, or 2

Maintaining a Fixed-Size Sample (1/2)

- The sample will grow as more of the stream enters the system
 - (ex) As time goes on, more searches for the same users will be accumulated
- If there is a limit for how many tuples can be stored as sample, the fraction of key values must *lower* as time goes on
- We maintain a threshold t, which is initially set to B-1
 - B: the number of buckets for the hash function h
 - At all times, the sample contains those tuples whose key K satisfies $h(K) \le t$
 - New tuples from the stream are added to the sample if and only if $h(K) \le t$

Maintaining a Fixed-Size Sample (2/2)

- Suppose the number of stored tuples of the sample exceeds the allotted space
- Then, we lower t to t-1 and remove from the sample all those tuples whose key K hashes to t
- For efficiency, we can lower t by more than 1, and remove the tuples with serval of the highest hash values
- For further efficiency, we can maintain an index on the hash value
 - So we can find all those tuples whose key hashes to a particular value quickly

Reservoir Sampling

Algorithm

- Store all the first s elements of the stream to S
- Suppose we have seen (n-1) elements, and now the *n*th element arrives
 - n > s
- With probability s/n, keep the *n*th element, else discard it
- If we picked the nth element, then it replaces one of the s elements in the sample s, picked uniformly at random

Claim

- This algorithm maintains a sample S with the desired property
 - After n elements, S contains each element seen so far with probability s/n

Proof (By Induction) (1/2)

- Assume that after n elements, the sample contains each element seen so far with probability s/n
- We need to show that after seeing element (n + 1) the sample maintains the property
 - i.e., sample contains each element seen so far with probability s/(n+1)
- Base case:
 - After we see n = s elements, the sample S has the desired property
 - Each out of n = s elements is in the sample with probability s/s = 1

Proof (By Induction) (2/2)

Inductive hypothesis:

- After n elements, S contains each element seen so far with probability s/n

Inductive step:

- Now element (n + 1) arrives
- For elements already in S, probability that the algorithm keeps it in S is:

Element
$$(n+1)$$
 discarded $\left(1-\frac{S}{n+1}\right)+\left(\frac{S}{n+1}\right)\left(\frac{S-1}{S}\right)=\frac{n}{n+1}$ Element in S not picked

- At time n, tuples in S were there with probability s/n
- Time $n \rightarrow (n+1)$, tuple stayed in S with probability n/(n+1)
- So the probability that tuple is in S at time $(n+1) = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Filtering Streams

Accepting those tuples in the stream that meet a criterion

Filtering Streams

- Accept only those tuples in the stream that meet a criterion
 - Another common process on streams
 - Rejected tuples are dropped
- Easy example
 - Select those tuples with the first component being less than 10
 - The selection criterion is a property of the tuple itself
- Harder example
 - Select those tuples that are a *member* of a given set
 - Especially hard when the set is too large to store in main memory

A Motivating Example

Scenario

- Suppose we have a set S of 10^9 allowed email addresses
- We will accept only those emails sent from S (i.e., they are not spam)
- The stream consists of pairs (email address, email)
- It is not reasonable to store S in main memory
 - 20 bytes (the size of the typical email address) \times 10⁹ = 20 GB

Two approaches

- Use disk accesses to determine the membership of each address
 - → Not feasible!
- Devise a method that requires no more main memory than we have available, and yet will filter most of the undesired tuples
 - → Bloom filtering

First Cut Solution (1/2)

- Suppose we have 1 GB of available main memory (= 10^9 bytes)
- Use that main memory as a **bit array** of 8×10^9 bits
 - Hash each member of S to a bit, and set that bit to 1
 - All other bits of the array remain 0
 - Note that it is possible that two members of S hash to the same bit

- Devise a hash function h from email addresses to 8×10^9 buckets
- When a stream element arrives, we hash its email element
 - If the bit to which that email address hashes is 1, we accept the email
 - If the bit to which that email address hashes is 0, we drop the email

First Cut Solution (2/2)

No false negative

- If the email address is in S, we surely accept it
- Because that email address surely hashes to a bucket that has bit set to 1

But possible false positive

- If the email address is **not** in S, we may still accept it
- Since there are 10^9 members of S, approximately 1/8th of the bit will be 1
 - Actually, less than 1/8, because two members of S may hash to the same bit
- Thus, approximately 1/8th of the stream elements whose email address is not in S will happen to hash to a bit whose value is 1

If we want to eliminate every spam

- Only check for membership in S those that get through the filter
- Use a cascade of filters (i.e., the general Bloom-filtering technique)

Definition: Bloom Filter (1/2)

A bloom filter consists of

- An array of n bits, initially all 0's
- A *collection* of hash functions $h_1, h_2, ..., h_k$
 - Each hash function maps "key" values to n buckets
- A set S of m key values

The purpose of the Bloom filter

- Allow through all stream elements whose keys are in S
- Reject **most** of the stream elements whose keys are **not** in S

Definition: Bloom Filter (2/2)

Initialization of the bit array

- Take each key value is S and hash it using each of $h_1, h_2, ..., h_k$
- Set to 1 each bit that is $h_i(K)$ for some h_i and some key value K in S

Testing a key K that arrives in the stream

- Check that **all** of $h_1(K)$, $h_2(K)$, ..., $h_k(K)$ are 1's in the bit array
- If all are 1's, then let the stream element through
- If one or more of these bits are 0, then reject the stream element
 - Because K could not be in S

Analysis of Bloom Filtering (1/4)

- If the key value is not S, it might still pass \rightarrow false positives
- We calculate the probability of a false positive, as function of
 - n: the bit-array length
 - m: the number of members in S
 - k: the number of hash functions
- The throwing darts model
 - Suppose we have x targets and y darts
 - Any dart is equally likely to hit any target
 - After throwing y darts, how many targets will be hit at least once?
 - ✓ In our case, targets = bits, darts = hash values of members in S

Analysis of Bloom Filtering (2/4)

- The probability that a given dart will not hit a given target
 - -(x-1)/x
- The probability that none of the y darts will hit a given target
 - $((x-1)/x)^y = (1-1/x)^{x(y/x)} = e^{-y/x}$ (:: $(1-z)^{1/z} = e^{-1}$ for small z)
- Example: The probability that a given bit in the bit-array will be 1
 - $-x = 8 \times 10^9$ (the number of targets = the number of bits)
 - $y = 10^9$ (the number of darts = the number of members of S)
 - The probability that a given target is not hit = $e^{-y/x} = e^{-1/8}$
 - The probability that a given target *is* hit = $1 e^{-1/8} \approx 0.1175 \approx 1/8$

Analysis of Bloom Filtering (3/4)

Generalization

- The number of targets is x = n
- The number of darts is y = km
- The probability that a bit remains 0 is $e^{-km/n}$
- The probability that a bit is 1 is $1 e^{-km/n}$
- So, the probability of a false positive is $(1 e^{-km/n})^k$
 - The hash values of all k hash functions are the same as 1
- Examples ($m = 10^9$, $n = 8 \times 10^9$)
 - k = 1: the probability of a false positive = $(1 e^{-1/8}) = 0.1175$
 - k = 2: the probability of a false positive = $(1 e^{-1/4})^2 = 0.0493$
 - When we used two different hash functions

Analysis of Bloom Filtering (4/4)

• What happens as we keep increasing k?

- Optimal value of $k = n/m \cdot \ln(2)$
 - (ex) in our case, the optimal $k = 8 \cdot \ln(2) = 5.54 \approx 6$

Bloom Filter: Wrap-Up

- Guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big bit array or k small bit arrays?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big bit array is simpler

Counting Distinct Elements in a Stream

Knowing how many different elements have appeared in the stream

Counting Distinct Elements in a Stream

The Count-Distinct Problem

- Suppose stream elements are chosen from some universal set
- Maintain a count of the number of distinct elements seen so far

Applications

- How many unique users has seen in each month? (e.g., Amazon, Google)
 - Users may be identified by the IP address
 - Note that there are about 4 billion IP addresses!
- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Obvious Approach

- Keep in main memory all the elements seen so far
- Keep them in an efficient search structure
 - (ex) hash table or search tree
 - One can quickly check if a newly arrived element was already seen
- However, if the number of distinct elements is too great, then we cannot store them in main memory
- Several options
 - Store most of the data structure in second storage → too many disk I/O!
 - Only estimate the number of distinct element but use much less memory
 - → this section's topic

Flajolet-Martin Algorithm (1/2)

lacktriangle Hash each element of the stream to a **bit-string** of length N

- The number of possible hash-values = 2^N
- -2^N must be larger than the number of all elements in the universal set
- (ex) 64 bits is sufficient to hash URL's

Idea

- The more different elements we seen in the stream, the more different hash-values we shall see
- As we see more different hash-values, it becomes more likely that one of these values will be "unusual"
- In our case, an unusual value is a value ending in many 0's
 - Of course, many other options exist

Flajolet-Martin Algorithm (2/2)

- Whenever we apply a hash function h to a stream element a, the bit-string h(a) will end in some number of 0's, possibly none
 - Call this number the **tail length** for a, denoted by r(a)
 - (ex) if h(a) = 1100, then r(a) = 2
- Let R be the maximum tail length seen so far in the stream
 - That is, $R = \max_{a} r(a)$, over all the stream elements a seen so far
- Then, we estimate the number of distinct elements as 2^R
 - Why?

Very Very Rough and Heuristic Intuition

- h(a) hashes a with **equal** probability to any of 2^N values
- Then $1/2^r$ fraction of all h(a) have a tail of r zeros
 - About $1/2^1$ of as hash to ****0
 - About $1/2^2$ of as hash to ***00
 - About $1/2^3$ of as hash to **000
 - So, for example, if we saw the longest tail of r=3 (i.e., item hash ending *1000), then we have probably seen about 4 distinct items so far
- So, it takes to hash about 2^r items before we see one with a tail of r zeros

Why It Works: More Formally (1/2)

■ The probability that a stream element a has h(a) ending in at least r 0's is $(1/2)^r = 2^{-r}$

- Suppose there are m distinct elements in the stream
- The probability of **not** finding a tail of length at least r

$$-(1-2^{-r})^m = ((1-2^{-r})^{2^r})^{m2^{-r}} \approx e^{-m2^{-r}}$$
Probability that given $h(a)$ ends in fewer than r zeros

■ The probability of finding a tail of length at least *r*

$$-1-e^{-m2^{-r}}$$

Why It Works: More Formally (2/2)

We can conclude:

- If $m >> 2^r$, the probability of finding a tail of length at least r approaches 1
 - $1 e^{-m2^{-r}} \to 1 e^{-\infty} \to 1$
- If $m \ll 2^r$, the probability of finding a tail of length at least r approaches 0

•
$$1 - e^{-m2^{-r}} \rightarrow 1 - e^{-0} \rightarrow 0$$

- Thus, 2^R will almost always be around m
 - Recall that R is the largest tail length for any stream element
 - In other words, 2^R is unlikely to be either much too higher or much too lower than m
- Consequently, we estimate m as 2^R

Combining Estimates

- m is always estimated as a power of 2
 - May not be accurate
- We may obtain a *combined* estimates by using *many different* hash functions $h_1, h_2, ..., h_k$ (i.e., $2^{R_1}, 2^{R_2}, ..., 2^{R_k}$)
- How can we combine 2^{R_1} , 2^{R_2} , ..., 2^{R_k} ?
 - Average? \rightarrow What if one very large value 2^{R_i} ? (the value of 2^R doubles)
 - Median? \rightarrow All estimates are a power of 2 (what if m is between them?)

Solution

- Partition the hash functions into small groups
- Take their averages
- Then take the median of the averages

Space Requirements

- The only thing we need to keep in memory is one integer per hash function
 - i.e., R_i (the largest tail length seen so far) for each hash function h_i
- If we are processing only one stream, we could use million of hash functions
 - Far more than we need to get a close estimate
- In practice, the time it takes to compute hash values for each stream element would be more significant limitation on the number of hash functions we use

Counting Ones in a Window

Answering "how many 1's are there in the last k elements?"

Sliding Windows

- \blacksquare A useful model of stream processing is that queries are about a window of length N
 - The N most recent elements received

Interesting case

- -N is **so large** that the data cannot be stored in memory, or even on disk
- Or, there are so many streams that windows for all cannot be stored

Amazon example:

- For every product **X** we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want to answer queries, how many times have we sold ${\bf X}$ in the last k sales

Sliding Window: 1 Stream

• Sliding window on a single stream (N=6)

Counting Ones in a Window (1/2)

- Suppose we have a window of length N on a binary stream
 - That is, each stream element is 0 or 1
- We want at all times to be able to answer queries of the form "How many 1's are there in the last k bits?" for any $k \le N$
- Obvious solution
 - Store the most recent N bits
 - When new bit comes in, discard the (N+1)st bit

Counting Ones in a Window (2/2)

- Real problem: What if we cannot store the entire window?
 - (ex) we are processing a stream with a window of length $N=10^9$

- Of course, you cannot get an exact answer without storing the entire window
- But we are happy with an approximate answer

An Attempt: Simple Solution

- Question: How many 1s are in the last k bits?
- Simple solution
 - We may make the *uniformity* assumption

- We maintain 2 counters
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream
- How many 1s are in the last k bits? $\rightarrow k \cdot S/(S + Z)$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

Datar-Gionis-Indyk-Motwani(DGIM) Algorithm

- Does *not* assume uniformity
- Uses $O(\log^2 N)$ bits to represent a window of N bits
- Allows us to estimate the number of 1's in the window with an error of no more than 50%

- This method can be improved to limit the error to any fraction $\varepsilon > 0$, and still uses only $O(\log^2 N)$ bits
 - Although with a constant factor that grows as ε shrinks

DGIM: Timestamps

- Each bit of the stream has a timestamp
 - The position in which it arrives (the first bit = 1, the second bit = 2, ...)
- lacktriangle We represent timestamps modulo N
 - Since we only need to distinguish positions within the window of length N
 - So they can be represented by $\log_2 N$ bits (to distinguish N different values)

The current window

Timestamp modulo *N*: 1 2 3 0 1 2 3 0 1 2 3 0 1 2

Suppose
$$N = 4$$

DGIM: Buckets

- We divide the window into buckets, consisting of:
 - 1 The timestamp of its right (most recent) end
 - $\log_2 N$ bits
 - 2 The number of 1's in the bucket (called the *size* of the bucket)
 - $\log_2 \log_2 N$ bits
 - \rightarrow Thus, $O(\log_2 N)$ bits suffice to represent a bucket
- Constraint on buckets
 - The number of 1's must be **a power of 2** (i.e., 2^{j})
 - We can represent this number by coding j in binary
 - Since j is at most $\log_2 N$, it requires $\log_2 \log_2 N$ bits

6 Rules to Represent a Stream By Buckets

- The right end of a bucket is always a position with a 1
- Every position with a 1 is in some bucket
- No position is in more than one bucket (buckets do not overlap)
- There are one or two buckets of any given size
- All sizes must be a power of 2
- The sizes of buckets increase as we move to the left

Storage Requirements

- Each bucket can be represented by $O(\log N)$ bits
- There are $O(\log N)$ buckets
 - The total number of 1's in all the buckets cannot exceed N
 - That is, if the largest bucket is of size 2^{j} , then j cannot exceed $\log_2 N$
 - Thus, there are at most two buckets of all sizes from $\log_2 N$ down to 1
 - Consequently, the total number of buckets is $O(\log N)$
- Thus, the total space required for all the buckets is $O(\log^2 N)$

Query Answering

■ Suppose we are asked how many 1's there are in the last k bits of the window ($1 \le k \le N$)

Basic steps

- Find the bucket b with the earliest timestamp that includes at least some of the k most recent bits
- Sum the sizes of all the buckets to the right than bucket b
- Add half the size of b itself
- The result is the estimation of the number of 1's in the last k bits

(Ex) Query Answering

■ How many 1's are there in the last 10 bits of window? (k = 10)

- The bucket with the earliest timestamp that includes at least some of the
 10 recent bits
 - 4
- The sum of the sizes of all the buckets to the right than bucket 4
 - 2 + 1 + 1 = 4
- Half the size of bucket (4)
 - 4/2 = 2
- Thus, our estimate is 4 + 2 = 6 (c.f., the correct answer is 5)

Error Bound (1/2)

- How far from the correct answer c our estimate could be?
 - Let the largest bucket be of size 2^j
- Case 1: the estimate is less than c
 - In the worst case, all the 1's of b are within the range of the query, so the estimate misses half bucket b, or 2^{j-1} 1's
 - In this case, c is at least $1 + 2^{j-1} + 2^{j-2} + ... + 1 = 2^{j}$
 - Thus, the error is at most $2^{j-1}/2^j = 50\%$ of c

Error Bound (2/2)

- Case 2: the estimate is greater than *c*
 - In the worst case, only the rightmost bit of bucket b is within range
 - In this case, $c = 1 + 2^{j-1} + 2^{j-2} + \dots + 1 = 2^{j}$
 - Our estimation is $2^{j-1} + 2^{j-1} + 2^{j-2} + \dots + 1 = 2^j + 2^{j-1} 1$
 - Thus, the error is $((2^{j} + 2^{j-1} 1) 2^{j})/2^{j} = (2^{j-1} 1)/2^{j} < 50\%$ of c

lacktriangle Thus, the error is at most 50% of the correct answer

Maintaining DGIM Conditions (1/3)

- When a new bit comes in, we may need to modify the buckets
 - So they continue to represent the window and satisfy the 6 DGIM rules
- First, whenever a new bit enters:
 - Drop the oldest bucket if its timestamp has now reached the current timestamp ${\cal N}$
 - This bucket no longer has any of its 1's in the window of length N
 - Then we check whether the new bit is 0 or 1
- If the new bit is 0
 - No other changes are needed

Maintaining DGIM Conditions (2/3)

If the new bit is 1

- Create a new bucket of size 1, for just this bit
 - The timestamp of its right end = the current timestamp
- If there are now three buckets of size 1
 - Combine the oldest two into a bucket of size 2
- If there are now three buckets of size 2
 - Combine the oldest two into a bucket of size 4
- And so on ...

• This process takes $O(\log N)$ time

- There are at most log_2N different sizes
- The combination of two buckets only requires constant time

(Ex) Maintaining DGIM Conditions

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

Further Reducing the Error (1/2)

- Instead of allowing either 1 or 2 of each size bucket, suppose we allow either r-1 or r of each size bucket for some integer r>2
 - Except for the buckets of size 1 and buckets of the largest size
 - There may be any number from 1 to r of buckets of these sizes
- The rule for combining buckets is essentially the same
 - If we get r + 1 buckets of size 2^{j} , combine the oldest two into a bucket of size 2^{j+1}
 - If that causes there to be r+1 buckets of size 2^{j+1} , continue combining buckets of larger sizes

Further Reducing the Error (2/2)

- However, we can get a stronger bound on the error
 - Because there are more buckets of smaller sizes
- The largest relative error
 - Occurs when only one 1 from the oldest bucket b is within the query range
 - Suppose bucket b is of size 2^{j}
 - The true count is at least $1 + (r-1)(2^{j-1} + 2^{j-2} + ... + 1) = 1 + (r-1)(2^{j} 1)$
 - The overestimate is $2^{j-1}-1$
- Thus, the fractional error is

$$\frac{2^{j-1} - 1}{1 + (r-1)(2^j - 1)} < \frac{1}{r - 1} = O(1/r)$$

– By picking r sufficiently large, we can limit the error to any desired $\varepsilon > 0$

Extensions (1/2)

- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?
 - What if we represent each bucket by the sum of the integers therein and estimate the contribution of b by half its sum?
 - Our estimate may be *meaningless* if a stream contains both very large positive integers and very large negative integers
- However, we can handle the case where stream consists of only **positive** integers in the range 1 to 2^m for some m
 - Assume that each integer is represented by m bits
 - Then how? \rightarrow In the next slide

Extensions (2/2)

Solution

- Treat each of the m bits of each integer as if it were a separate stream
- Use DGIM to count the 1's in each bit
- Let c_i be the count of the *i*th bit
 - Assume that 0th bit is the least significant bit
- Then the sum of the integers is

The worst case

– When all the c_i 's are overestimated or all are underestimated by the same fraction

Decaying Windows

Weighting the recent elements more heavily

Decaying Windows

- Sometimes we want to weight the recent elements more heavily
- The problem of most *frequent* elements
 - Consider a stream whose elements are the movie tickets purchased
 - We want to know what are "currently" most popular movies
 - i.e., we want to discount the popularity of a move that was sold decades ago

One solution

- Imagine a bit stream for each movie
 - The *i*th bit is 1 if the *i*th ticket is for that movie, and 0 otherwise
- Pick a window size N, which represents the recentness of move tickets
- Then use DGIM to estimate the number of tickets for each movie
- Drawbacks: (1) Only approximate, (2) The number of items is way too big

Definition: Exponentially Decaying Window

- Let a stream consist of a_1 , a_2 , ..., a_t
 - a_1 is the first element and a_t is the current element
- Let c be a small constant (such as 10^{-6} or 10^{-9})
- The *exponentially decaying window* is defined as follows:

$$\sum_{i=0}^{t-1} a_{t-i} (1-c)^i$$

The weight of a stream element decreases as the stream goes

•
$$a_t \rightarrow (1-c)^0$$
, $a_{t-1} \rightarrow (1-c)^1$, $a_{t-2} \rightarrow (1-c)^2$, ..., $a_1 \rightarrow (1-c)^{t-1}$

Fixed Windows vs. Decaying Windows

Fixed window

- Puts equal weight 1 on each of the most recent elements
- Puts weight 0 on all previous elements

Updating An Exponentially Decaying Window

- When a new element a_{t+1} arrives
 - Multiply the current sum by (1-c)
 - Add a_{t+1}
- The reason this method works
 - The weight of each of the previous elements is multiplied by (1-c)
 - Each of them has now moved one position further from the current element
 - The weight of the current element is $(1-c)^0 = 1$
 - So just adding a_{t+1} is the correct way

Finding the Most Popular Elements (1/2)

- Consider the problem of finding the most popular movies in a stream of ticket sales
- For each movie, we imagine a separate stream
 - 1, each time a ticket for the movie appears in the stream
 - 0, each time a ticket for some other movies arrives
- The current popularity of a movie
 - Measured by the **decaying sum of the 1's** = $\sum_{i=0}^{t-1} a_{t-i} (1-c)^i$
 - $a_{t-i} = 1 \text{ or } 0$
 - That is, we use an exponentially decaying window with a constant c
 - You might think of c as 10^{-9}

Finding the Most Popular Elements (2/2)

- If the popularity score for a move goes below a threshold, its score is dropped from the counting
 - Because the number of possible movies in the stream is *huge*, we do not want to record values for the unpopular movies
 - We assume that the threshold is 1/2 (must be less than 1)
- When a new ticket arrives on the stream
 - For each movie whose score we are currently maintaining, multiply its score by (1-c)
 - Suppose the new ticket is for movie M
 - If there is currently a score for M, add 1 to that score
 - If there is no score for M, create one and initialize it to 1
 - If any score is below the threshold 1/2, drop that score

Limit on The Number of Scores

- In fact, the number of movies whose scores are maintained at any time is *limited*
- Note that the sum of all scores is 1/c

$$\sum_{i=0}^{\infty} (1-c)^i = 1 + (1-c) + (1-c)^2 + \dots + 0 = 1/c$$

- There cannot be more than 2/c movies with score of 1/2 or more
 - Or else the sum of the scores would exceed 1/c
- Thus, 2/c is a limit on the number of movies being counted at any time