

DPP - 8

	~				
Video	So	lution	On	W/el	heite.
V ILICLI				VV	

https://physicsaholics.com/home/courseDetails/52

Video Solution on YouTube:- https://youtu.be/hmH8jwEsj98

(Q 1.	A boat moves relative to water with a velocity which is n times the river flow velocity (a) If $n < 1$, boat cannot cross the river (b) If $n = 1$, boat cannot cross the river without drifting (c) If $n > 1$, boat can cross the river along shortest path (d) Boat can cross the river whatever is the value of n (excluding zero value)
(Q 2.	A river is flowing east to west with velocity v. A man can swim with velocity v_0 in still water. He takes minimum time t_1 to cross the river. When he swims along shortest path, takes time t_2 . The ratio of time t_1t_2 is $1:2$, then $\frac{v_0}{v}$ is equal to (a) $\sqrt{3}:2$ (b) $1:1$ (c) $2:\sqrt{3}$ (d) $2:1$
(Q 3.	A boat which has a speed of 5 km/h in still water crosses a river of width 1 km along the shortest possible path in 15 min. The velocity of the river water in km/h is: (a) 1 (b) 3 (c) 4 (d) $\sqrt{41}$
	Q 4.	River is flowing with a velocity $\vec{v}_R = 4\hat{\imath}$ m/s. A boat is moving with a velocity of $\vec{v}_{BR} = (-\hat{\imath} + 4\vec{\jmath})$ m/s relative to river. The width of the river is 100 m along ydirection. Choose the correct alternative(s) (a) The boatman will cross the river in 25 s (b) Absolute velocity of boatman is $2\sqrt{5}$ m/s (c) Drift of the boatman along the river current is 50 m (d) The boatman can never cross the river.
(Q 5.	A man wants to cross a river 500 m wide. The rowing speed of the man relative to water is 3 km/hr and the river flows at the speed of 2 km/hr. If the man's walking speed on the shore is 5 km/hr, then in which direction should he start rowing in order to reach the directly opposite point on the other bank in the shortest time? (a) At an angle $\sin^{-1}\left(\frac{3}{7}\right)$ with the river flow direction (b) At an angle $90^{\circ} + \sin^{-1}\left(\frac{3}{7}\right)$ with the river flow direction (c) At an angle $90^{\circ} - \sin^{-1}\left(\frac{3}{7}\right)$ with the river flow direction (d) At an angle $90^{\circ} - \cos^{-1}\left(\frac{3}{7}\right)$ with the river flow direction
(Q 6.	A swimmer crosses a river of width d flowing at velocity v. While swimming, he keeps

himself always at an angle of 120° with the river flow and on reaching the other end

hysicsaholics

he finds a drift of d/2 in the direction of flow of river. The speed of the swimmer with respect to the river is

(a) $(2-\sqrt{3})$ v

(b) $2(2-\sqrt{3})$ v

(c) 4 $(2-\sqrt{3})$ v

- (d) $(2 + \sqrt{3})$ v
- Q 7. A motor boat is to reach at a point 30^0 upstream on the other side of a river flowing with velocity 5 m/s. Velocity of motor boat with respect to water is $5\sqrt{3}$ m/sec. The driver should steer the boat an angle:
 - (a) 30° w.r.t. the line of destination from starting point
 - (b) 60^0 w.r.t.. normal to the bank
 - (c) 120° w.r.t. stream direction
 - (d) None of these
- Q 8. A man can swim at a speed of 5 km/h w.r.t. water. He wants to cross a 1.5 km wide river flowing at 3 km/h. He keeps himself always at an angle of 60° with the flow direction while swimming. The time taken by him to cross the river will be
 - (a) 0.25 hr.
- (b) 0.35 hr.
- (c) 0.45 hr.
- (d) 0.55 hr.
- Q 9. A swimmer wishes to cross a 1 km wide river flowing at $5 \text{ km}h^{-1}$. His speed in still waters is 3 km/h. He has to reach directly opposite in minimum possible time. If he does not reach directly opposite by swimming, he has to walk that distance at $5 \text{ km}h^{-1}$. Find the time taken
 - (a) 0.45 hr

(b) 0.66 hr

(c) 1 hr

- (d) 1.5 hr
- Q 10. A swimmer swims (with respect to water) perpendicular to the current with acceleration a = 2t (where t is time) starting from rest form the origin O at t = 0. Velocity of the river with respect to ground is given by 'V₀'. Width of the river is 'd'. The equation of trajectory of the path followed by the swimmer

- (a) $y = \frac{x^3}{3V_0^3}$ (b) $y = \frac{x^2}{2V_0^2}$
- (c) $y = \frac{x}{v_0}$ (d) $y = \sqrt{\frac{x}{v_0}}$
- Q 11. Two swimmers start a race. One who reaches the point C first on the other bank wins the race. A makes his strokes in a direction of 37° to the river flow with velocity 5km/hr relative to water. B makes his strokes in a direction 127° to the river flow with same relative velocity. River is flowing with speed of 2km/hr and is 100m wide. speeds of A and B on the ground are 8km/hr and 6km/hr respectively.

Physicsaholics

- (a) A will win the race
- (b) B will win the race
- (c) the time taken by A to reach the point C is 165 seconds
- (d) the time taken by B to reach the point C is 150 seconds
- Q 12. A man wishes to swim across a river 0.5 km wide. If he can swim at the rate of 2 km/h in still water and the river flows at the rate of 1 km/h. The angle (with respect to the flow of the river) along which he should swim so at to reach a point exactly opposite his starting point, should be-
 - (a) 60°
- (b) 120°
- (c) 145°
- (d) 90°
- Q 13. A boat moves relative to water with a speed which is $\frac{1}{n}$ times the river flow speed. At what angle to the stream direction be boat move to minimize drifting (given n > 1) -
 - (a) $\frac{\pi}{2}$
- (b) $\sin^{-1}\frac{1}{n}$
- $(c) \frac{\pi}{2} + \sin^{-1} \frac{1}{n}$
- (d) $\frac{\pi}{2} + \sin^{-1}(n)$
- Q 14. Flow velocity of river of width d is given as $u = u_0 r$, where u_0 is constant and r is perpendicular distance from nearer bank. A swimmer heads perpendicular to direction of flow of river. Find his drift if his velocity in still water is v?
 - (a) $\frac{u_0 d^2}{4v}$
- (b) $\frac{u_0 a}{2}$
- (c) $\frac{u_0^2 d^3}{3v^2}$
- (d) $\frac{u_0^2 d^2}{2v}$

Answer Key

Q.1 b,c,d	Q.2 c	Q.3 b	Q.4 a	Q.5 b
Q.6 c	Q.7 b	Q.8 b	Q.9 b	Q.10 a
Q.11 b,c,d	Q.12 b	Q.13 c	Q.14 a	