UNIVERSIDAD EAFT

Clasificación Automatizada de Madurez y Visibilidad de Arándanos mediante Redes Neuronales Convolucionales

Por Bruno Ramírez Zapata, Oscar Gerardo Santamaría Ordoñez & Josué García Llano

Escuela de Ciencias Aplicadas e Ingeniería

Resumen

- **Propósito:** Automatizar la clasificación de arándanos por madurez (azul/no azul) y visibilidad (ocluido/visible).
- **Dataset:** BlueberryDCM (imágenes de dosel con anotaciones manuales).
- Método:
 - Segmentación por color HSV.
 - Modelo CNN con 4 clases.
- Resultado: Precisión del 68,91% en validación.
- Impacto: Monitoreo agrícola automatizado.

Introducción

- Contexto:

- Agricultura de precisión necesita métodos eficientes.
- Clasificación manual es subjetiva y lenta.

Desafío

Combinar madurez y oclusión en clasificación.

Solución propuesta CNN + segmentación HSV.

Objetivos

General:

Desarrollar un sistema automatizado basado en redes neuronales convolucionales (CNN) para clasificar arándanos según su madurez (azul/no azul) y visibilidad (ocludido/visible), utilizando imágenes del conjunto de datos BlueberryDCM, con el fin de optimizar el monitoreo de cultivos y apoyar decisiones agrícolas de cosecha selectiva.

Específicos:

- Lograr una precisión superior al 90% en la clasificación de arándanos en la cuatro categorías definidas (blue_visible, blue_occluded, unblue_visible, unblue_occluded) mediante un modelo CNN entrenado con datos anotados manualmente.
- Implementar un método robusto de segmentación basado en color HSV que permita detectar frutos en imágenes de dosel con variaciones de iluminación y oclusión por hojas o ramas.
- Validar la generalización del modelo en condiciones reales mediante pruebas con imágenes no vistas durante el entrenamiento, asegurando que mantenga un rendimiento consistente en diferentes escenarios de cultivo.

Dataset BlueberryDCM

Origen

140 imágenes RGB de arbustos en condiciones reales (luz natural, sombras, variaciones climáticas)

Distribución de clases:

- Blue_visible: 20%

- Blue_occluded: 30%

- Unblue_visible: 25%

Unblue_occluded: 25%

Ejemplo visual:

Imagen de dosel con frutos etiquetados (resaltar bounding boxes y colores según clase).

Extracción de ROIs

- Tamaño: 150x150 píxeles (ajuste para preservar detalles).
- Herramienta: Python + OpencCV para recorte automático desde JSON.

División del dataset

- 14281 imágenes entrenamiento
- 3573 imágenes validación (aleatorización estratificada por clase).

Aumento de datos

- Rotación (±30°), zoom (hasta 20%), desplazamiento horizontal/vertical (10%).
- **Librería:** Albumentaciones para diversificar ejemplos.

Metodología (Arquitectura del Modelo CNN)

Detalles técnicos:

- Capa 1: Conv2D (32 filtros, kernel 3x3, ReLU) → MaxPooling (2x2).
- Capa 2: Conv2D (64 filtros, kernol 3x3, ReLU) → MazPooling (2x2).
- Capa 3: Conv2D (128 filtros, kernel 3x3, ReLU) → MaxPooling (2x2).
- Flatten → Capa densa: 512 neuronas (ReLU) + Dropout (50%).
- Salida: 4 neuronas (softmax).

- Entrenamiento:

- **Optimizador:** Adam (tasa de aprendizaje: 0,001).
- **Épocas:** 30 (early stopping si val_los no mejora en 5 épocas).

- Diagrama:

- Esquema visual de la arquitectura CNN (bloques convolucionales → capas densas).

Metodología (Segmentación HSV)

Rangos HSV:

- Azul/morado:
 - Lower= [90, 50, 50] (tono para frutos maduros)
 - Upper= [130, 255, 255].
- Justificación:
 - Evita falsos positivos en hojas verdes (tono ≈ 60-90 HSV).

Proceso

- Conversión RGB → HSV.
- 2. Aplicación de máscara.
- 3. Filtrado de contornos pequeños (<500 píxeles) con OpenCV

Resultados

Precisión en validación: 68,91% (basado en el historial de entrenamiento)

Lo resultados de precisión son los siguientes:

	Pression	Recall	fl score	support
blue occluded	0.75	0.84	0.79	1057
blue visible	0.61	0.58	0.59	337
unblue occluded	0.74	0.63	0.68	1373
unblue_visible	0.57	0.64	0.60	806
accuracy	0.69	3573		
macro avg	0.67	0.67	0.67	3573
weighted avg	0.69	0.69	0.69	3573

Tabla 1. Resultados de precisión.

Resultados

Fortalezas

- Segmentación HSV rápida y eficiente en condiciones controladas.
 - Clasifica dos atributos (madurez + visibilidad) simultáneamente,

Limitaciones

- Bajo rendimiento en frutos inmaduros (solo 57% precisión en Unblue_visible).
 - Dependencia crítica de la iluminación (ej: sombras HSV).

- Ventaja: Método multifuncional vs. YOLOv8 (solo detección).
- **Desventaja:** Precisión inferior a modelos de última generación (ej: EfficientNet).

Conclusiones

Logros alcanzados:

- Sistema funcional con
 68,91% precisión
 usando datos reales.
- Integración exitosa de segmentación + clasificación.

Lecciones aprendidas:

- La calidad de las anotaciones impacta directamente en el modelo.
- HSV es útil, pero insuficiente para frutos inmaduros.

Próximos pasos:

- Reemplazar HSV con
 YOLOv8 para detección
 automática de ROIs.
- Probar fine-tuning con
 EfficientNetB0 para
 mejorar precisión.

Agradecimientos

Este trabajo utiliza datos de BlueberryDCM [1], agradecemos a los autores por proveer un conjunto de datos público y anotado. Agradecemos a la profesora Luisa Fernanda Gómez por su generosidad al brindarnos las herramienta y el conocimiento necesario para lograr los objetivos propuestos a cabalidad en esta actividad.

Referencias

- [1] Y. Lu, "BlueberryDCM: A Canopy Image Dataset for Detection, Counting, and Maturity Assessment of Blueberries", doi: 10.5281/ZENODO.14002517.
- [2] "Development and Preliminary Evaluation of a Deep Learning-based Fruit Counting Mobile Application for Highbush Blueberries," 2024 Anaheim, California July 28-31, 2024, Jul. 2024, doi: 10.13031/AIM.202401022.
- [3] B. Deng, Y. Lu, and Z. Li, "Detection, counting, and maturity assessment of blueberries in canopy images using YOLOv8 and YOLOv9," Smart Agricultural Technology, vol. 9, Dec. 2024, doi: 10.1016/j.atech.2024.100620.