Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образования в кумето образования в

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ-КФ «Информатика и управление»

КАФЕДРА <u>ИУ4-КФ «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №2

«Метрические методы классификации многомерных объектов пересекающихся классов»

ДИСЦИПЛИНА: «Методы машинного обучения»

Выполнил: студент гр. ИУК4-62Б	(Подпись)	_ (_	Борисов Н.С. (Ф.И.О.))
Проверил:	(Подпись)	_(Кручинин И.И. (Ф.И.О.)	,
Дата сдачи (защиты):				
Результаты сдачи (защиты):				
	я оценка:			
- Оценка:				

Цель: сформировать практические навыки разработки программ с использованием метрических методов классификации многомерных объектов пересекающихся классов на языке R.

Задание на лабораторную работу

Вариант 4

1. Определим уровень финансовой устойчивости предприятия, как составной части общей устойчивости предприятия (при этом соблюдаются сбалансированность финансовых потоков, наличие средств, позволяющих организации поддерживать свою деятельность в течение определенного периода времени, в том числе обслуживая полученные кредиты и производя продукцию).

Исходные данные следует организовать в виде таблицы:

=====	7011	TILDIO TIL	777	P1 011111 0 2 011 2 2 11 2 1 1 1 1 1 1 1								
RES	K1	K2	K3	K4	K5	• • •	KN					
T	0.252	0.301					0.539					
F	0.327	0.240		0.671								
• • •	• • •			• • •	• • •		• • •					
T	0.458			0.683								

В первом столбце заносится значение бинарной классификации — финансовой состояние предприятия - устойчиво или нет (True, False). В данном варианте признаками финансовой устойчивости будут: Коэффициент мобильности имущества, Коэффициент мобильности оборотных средств, Коэффициент обеспеченности запасов, Коэффициент краткосрочной задолженности. Строк в таблице должно быть 120 (каждая строка - сведения по проверенному предприятию).

2. Используем метод К-ближайших соседей и метод Парзена. Сформировать обучающие и тестовые выборки. Полученные результаты визуализировать и сравнить. Представить значения параметров с минимальным уровнем ошибки. Для метода К соседей параметр К = 22, для метода Парзена тип ядра выбрать "rectangular", "triangular" а параметр optim. method = "Brent", "Nelder-Mead". Проверить точность прогнозов.

Ход выполнения работы

финансовой устойчивости предприятия, 1. Определим уровень как составной части общей устойчивости предприятия ЭТОМ сбалансированность финансовых соблюдаются потоков, средств, позволяющих организации поддерживать свою деятельность в течение определенного периода времени, в том числе обслуживая полученные кредиты и производя продукцию).

Исходные данные следует организовать в виде таблицы:

RES	K1	K2	K3	K4	K5	 KN
T	0.252	0.301				0.539
F	0.327	0.240		0.671		
						 •••
T	0.458			0.683		

В первом столбце заносится значение бинарной классификации — финансовой состояние предприятия - устойчиво или нет (True, False). В данном варианте признаками финансовой устойчивости будут: Коэффициент мобильности имущества, Коэффициент мобильности оборотных средств, Коэффициент обеспеченности запасов, Коэффициент краткосрочной задолженности. Строк в таблице должно быть 120 (каждая строка - сведения по проверенному предприятию).

Листинг программы на R

```
#подготовка данных для фрейма
N = 120
RES <- c(T,F)
Kmp <- round(runif(N, 200, 900)) * 10^-3
Kmca <- round(runif(N, 200, 900)) * 10^-3
Rr <- round(runif(N, 200, 900)) * 10^-3
Rstd <- round(runif(N, 200, 900)) * 10^-3
frame = data.frame(RES, Kmp, Kmca, Rr, Rstd)
print(frame)
#созданиефрейма
frame = data.frame(RES, Kmp, Kmca, Rr, Rstd)
print(frame)
```

Результат программы – созданный фрейм

^	RES [‡]	Kmp ÷	Kmca [‡]	Rr ‡	Rstd												
1	TRUE	0.306	0.701	0.686	0.257	24	FALSE	0.662	0.724	0.860	0.406	47	TRUE	0.391	0.638	0.877	0.35
2	FALSE	0.756	0.722	0.790	0.398	25	TRUE	0.727	0.273	0.789	0.487	48	FALSE	0.824	0.386	0.527	0.47
3	TRUE	0.692	0.804	0.341	0.833	26	FALSE	0.725	0.669	0.580	0.659	49	TRUE	0.868	0.218	0.336	0.32
4	FALSE	0.719	0.697	0.690	0.461	27	TRUE	0.524	0.664	0.339	0.879	50	FALSE	0.634	0.689	0.784	0.29
5	TRUE	0.629	0.251	0.683	0.679	28	FALSE	0.625	0.807	0.607	0.895	51	TRUE	0.465	0.396	0.699	0.24
6	FALSE	0.791	0.316	0.230	0.319	29	TRUE	0.384	0.699	0.312	0.336	52	FALSE	0.241	0.383	0.722	0.35
7	TRUE	0.528	0.713	0.657	0.591	30	FALSE	0.639	0.808	0.588	0.595	53	TRUE	0.285	0.291	0.580	0.24
8	FALSE	0.821	0.856	0.779	0.384	31	TRUE	0.739	0.866	0.877	0.559	54	FALSE	0.579	0.229	0.880	0.58
9	TRUE	0.238	0.317	0.517	0.339	32	FALSE	0.215	0.683	0.229	0.633	55	TRUE	0.296	0.420	0.738	0.64
10	FALSE	0.635	0.413	0.558	0.825	33	TRUE	0.469	0.396	0.717	0.742	56	FALSE	0.351	0.410	0.360	0.8
11	TRUE	0.433	0.424	0.359	0.831	34	FALSE	0.482	0.232	0.401	0.419	57	TRUE	0.756	0.638	0.255	0.3
12	FALSE	0.340	0.835	0.879	0.893	35	TRUE	0.866	0.642	0.366	0.479	58	FALSE	0.209	0.550	0.715	0.24
13	TRUE	0.312	0.537	0.633	0.601	36	FALSE	0.549	0.389	0.218	0.747	59	TRUE	0.544	0.414	0.635	0.25
14	FALSE	0.719	0.245	0.556	0.532	37	TRUE	0.705	0.603	0.410	0.885	60	FALSE	0.306	0.287	0.431	0.4
15	TRUE	0.571	0.762	0.626	0.410	38	FALSE	0.401	0.270	0.283	0.879	61	TRUE	0.861	0.570	0.599	0.5
16	FALSE	0.458	0.209	0.301	0.363	39	TRUE	0.588	0.459	0.242	0.713	62	FALSE	0.790	0.214	0.267	0.2
17	TRUE	0.653	0.737	0.818	0.632	40	FALSE	0.692	0.603	0.342	0.666	63	TRUE	0.289	0.662	0.228	0.4
18	FALSE	0.734	0.767	0.866	0.246	41	TRUE	0.840	0.260	0.680	0.626	64	FALSE	0.403	0.540	0.421	0.2
19	TRUE	0.746	0.770	0.784	0.458	42	FALSE	0.639	0.368	0.833	0.606	65	TRUE	0.335	0.772	0.311	0.2
20	FALSE	0.680	0.446	0.754	0.305	43	TRUE	0.388	0.213	0.226	0.286	66	FALSE	0.829	0.335	0.710	0.5
21	TRUE	0.337	0.735	0.841	0.305	44	FALSE	0.474	0.260	0.716	0.210	67	TRUE	0.531	0.529	0.695	0.4
22	FALSE	0.223	0.349	0.424	0.898	45	TRUE	0.499	0.587	0.634	0.732	68	FALSE	0.512	0.623	0.573	0.4
23	TRUE	0.518	0.712	0.530	0.657	46	FALSE	0.808	0.625	0.788	0.725	69	TRUE	0.292	0.326	0.309	0.6

70	FALSE	0.447	0.593	0.204	0.397												
	TRUE	0.610	0.359	0.551	0.694	93	TRUE	0.206	0.747	0.670	0.320						
						94	FALSE	0.375	0.387	0.732	0.843						
	FALSE	0.701	0.228	0.330	0.551	95	TRUE	0.261	0.560	0.315	0.266						
	TRUE	0.492	0.509	0.890	0.880	96	FALSE	0.853	0.543	0.288	0.331						
74	FALSE	0.527	0.472	0.258	0.276	97	TRUE	0.857	0.477	0.240	0.650						
75	TRUE	0.608	0.667	0.709	0.502	98	FALSE	0.309	0.373	0.419	0.785						
76	FALSE	0.676	0.800	0.331	0.617	99	TRUE	0.543	0.832	0.846	0.430						
77	TRUE	0.217	0.439	0.646	0.838	100	FALSE	0.771	0.207	0.524	0.200						
78	FALSE	0.572	0.375	0.866	0.256	101	TRUE	0,351	0.593	0.614	0.712						
79	TRUE	0.859	0.886	0.288	0.876	102	FALSE	0.248	0.378	0.785	0.428						
80	FALSE	0.641	0.575	0.704	0.603		TRUE	0.380	0.614	0.408	0.546						
81	TRUE	0.808	0.338	0.849	0.655		FALSE	0.775	0,483	0.471	0.388						
82	FALSE	0.751	0.286	0.833	0.894		TRUE	0.870	0,259	0.717	0.698						
83	TRUE	0.625	0.635	0.619	0.735		FALSE	0.506	0.480	0.815	0.259						
	FALSE	0.736	0.224	0.266	0.637												
	TRUE	0.527	0.744	0.844	0.579		TRUE	0.244	0.396	0.353	0.416						
							FALSE	0.612	0.605	0.827	0.796						
	FALSE	0.280	0.570	0.486	0.404		TRUE	0.436	0.679	0.852	0.298						
		0.720	0.638	0.599	0.833	110	FALSE	0.242	0.350	0.682	0.765	116	FALSE	0.556	0.791	0.472	0.601
88	FALSE	0.555	0.823	0.736	0.771	111	TRUE	0.258	0.373	0.831	0.581		TRUE	0.318	0.626	0.598	0.430
89	TRUE	0.883	0.504	0.421	0.533	112	FALSE	0.862	0.662	0.886	0.328						
90	FALSE	0.765	0.529	0.637	0.860	113	TRUE	0.374	0.417	0.552	0.602	118	FALSE	0.774	0.644	0.818	0.820
91	TRUE	0.649	0.630	0.225	0.771	114	FALSE	0.428	0.212	0.440	0.541	119	TRUE	0.579	0.359	0.521	0.766
92	FALSE	0.250	0.603	0.220	0.864	115	TRUE	0.709	0.793	0.244	0.827	120	FALSE	0.504	0.344	0.265	0.457

2. Используем метод К-ближайших соседей и метод Парзена. Сформировать обучающие и тестовые выборки. Полученные результаты визуализировать и сравнить. Представить значения параметров с минимальным уровнем ошибки. Для метода К соседей параметр К = 22, для метода Парзена тип ядра выбрать "rectangular", "triangular" а параметр optim. method = "Brent", "Nelder-Mead". Проверить точность прогнозов.

Листинг программы на R

А) метод К-ближайших соседей

```
write.table(frame, file="GMB1.txt")
      ramFo2 = data.frame(read.csv("GMB1.txt", stringsAsFactors =
FALSE, header = TRUE, sep = ""))
     table(ramFo2$RES)
      ramFo2$RES <- factor(ramFo2$RES, levels = c(TRUE, FALSE),</pre>
                            labels = c("Stable", "Unstable"))
      round(prop.table(table(ramFo2$RES))*100, digits = 1)
     normalize <- function(x) {return ((x - min(x)) / (max(x) - max(x)))
min(x)))
      rm n <- as.data.frame(lapply(ramFo2[2:5], normalize))</pre>
      rm train <- rm n[1:60, ]</pre>
      rm test <- rm n[61:120, ]
      rm_train_labels <- ramFo2[1:60, 1]</pre>
      rm test labels <- ramFo2[61:120, 1]</pre>
      library("class")
      rm test pred <- knn(train = rm train, test = rm test,cl =
                              rm_train labels, k=22)
      library("gmodels")
      CrossTable(x = rm \text{ test labels}, y = rm \text{ test pred},
prop.chisq=FALSE)
```

Результат программы

Вывод: в ходе выполнения лабораторной работы были приобретены практические навыки разработки программ с использованием метрических методов классификации многомерных объектов пересекающихся классов на языке R.