Heart Disease UCI

Dominik Wolff
3 6 2019

Detecting heart desease risks

Abstract

This work analyzes risk factors for heart desease based on the "Heart Disease UCI dataset." The dataset is derived from Kaggle (https://www.kaggle.com/ronitf/heart-disease-uci/downloads/heart-disease-uci.zip/1). The dataset contains 13 features and the target variable. The "target" refers to the presence of heart disease in the patient. It is integer valued from 0 (no presence) to 1 (present). The 13 features are: 1. age 2. sex 3. chest pain type (4 values) 4. resting blood pressure 5. serum cholestoral in mg/dl 6. fasting blood sugar > 120 mg/dl 7. resting electrocardiographic results (values 0.1.2) 8. maximum heart rate achieved 9. exercise induced angina 10. oldpeak = ST depression induced by exercise relative to rest 11. the slope of the peak exercise ST segment 12. number of major vessels (0-3) colored by flourosopy 13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

Load required packages

```
knitr::opts chunk$set(echo = FALSE)
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org")
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 3.5.2
## -- Attaching packages ----- tidyverse 1.2.1 --
## v ggplot2 3.1.0
                      v purrr
                               0.2.5
## v tibble 1.4.2
                      v dplyr
                               0.7.8
            0.8.2
## v tidyr
                      v stringr 1.3.1
            1.3.1
## v readr
                      v forcats 0.3.0
## Warning: package 'readr' was built under R version 3.5.2
## Warning: package 'forcats' was built under R version 3.5.2
## -- Conflicts ------ tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
## Loading required package: caret
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
```

```
if(!require(lubridate)) install.packages("lubridate", repos = "http://cran.us.r-project.org")
## Loading required package: lubridate
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
##
       date
if(!require(e1071)) install.packages("e1071", repos = "http://cran.us.r-project.org")
## Loading required package: e1071
if(!require(naivebayes)) install.packages("naivebayes", repos = "http://cran.us.r-project.org")
## Loading required package: naivebayes
## Warning: package 'naivebayes' was built under R version 3.5.2
if(!require(rmarkdown)) install.packages("rmarkdown", repos = "http://cran.us.r-project.org")
## Loading required package: rmarkdown
## Warning: package 'rmarkdown' was built under R version 3.5.2
if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org")
if(!require(ranger)) install.packages("ranger", repos = "http://cran.us.r-project.org")
## Loading required package: ranger
if(!require(rpart)) install.packages("rpart", repos = "http://cran.us.r-project.org")
## Loading required package: rpart
```

Download heart desease dataset and prepare data

Source of the Data

https://www.kaggle.com/ronitf/heart-disease-uci/downloads/heart-disease-uci.zip/1. The data is downloaded from the web and unzipped. The csv file is saved to the working directory.

```
tmpdir <-"C:/Users/Dominik/Downloads/"
setwd(tmpdir)

url <- "https://www.kaggle.com/ronitf/heart-disease-uci/downloads/heart-disease-uci.zip/1"
temp <- tempfile(tmpdir=tmpdir, fileext=".zip")
download.file(url, temp)
unzip(temp)

## Warning in unzip(temp): Fehler 1 während des Extrahierens aus Zipfile
unlink(temp)</pre>
```

Prepare Data:

Load data from csv. Rename column names.

```
HeartDeaseaseData <- read.csv("C:/Users/Dominik/Downloads/heart.csv",header = TRUE, sep = ",",dec = "."</pre>
class(HeartDeaseaseData)
## [1] "data.frame"
dim(HeartDeaseaseData)
## [1] 303 14
names <- c("age",</pre>
             "ChestPainType",
             "RestingBloodPressure",
             "SerumCholestoral",
             "FastingBloodSugar",
             "RestingElectrocardiographic",
             "MaximumHeartRate",
             "ExerciseAngina",
             "STDepressionExercise",
             "SlopePeakExercise",
             "NumberMajorVessels",
             "thal",
             "heartdesease")
names(HeartDeaseaseData) <- names</pre>
head(HeartDeaseaseData)
     age sex ChestPainType RestingBloodPressure SerumCholestoral
## 1 63
           1
                                               145
## 2
      37
           1
                           2
                                               130
                                                                  250
                                                                  204
## 3 41
           0
                          1
                                               130
## 4
      56
          1
                          1
                                               120
                                                                  236
                           0
                                               120
## 5 57
           0
                                                                  354
                           0
## 6 57
           1
                                               140
                                                                  192
     {\tt FastingBloodSugar}\ {\tt RestingElectrocardiographic}\ {\tt MaximumHeartRate}
## 1
                                                     0
                      1
## 2
                      0
                                                     1
                                                                     187
## 3
                      0
                                                     0
                                                                     172
## 4
                      0
                                                     1
                                                                     178
## 5
                      0
                                                     1
                                                                     163
                      0
## 6
                                                     1
                                                                     148
##
     ExerciseAngina STDepressionExercise SlopePeakExercise NumberMajorVessels
## 1
                                        2.3
                                                             0
## 2
                   0
                                        3.5
                                                             0
                                                                                  0
## 3
                   0
                                        1.4
                                                             2
                                                                                  0
                                                             2
                                                                                  0
## 4
                   0
                                        0.8
## 5
                   1
                                        0.6
                                                             2
                                                                                  0
## 6
                   0
                                        0.4
                                                             1
                                                                                  0
##
     thal heartdesease
## 1
        1
                      1
## 2
        2
                      1
## 3
        2
                      1
        2
## 4
                      1
## 5
        2
                      1
## 6
        1
                      1
```

```
#Check for missing values
sum(is.na(HeartDeaseaseData))
```

[1] 0

There are no missing values in the dataset.

Explanatory Data Analysis

Plot histograms for all variables to analyze the distribution

```
for (i in (1:ncol(HeartDeaseaseData))){
hist(HeartDeaseaseData[,i], xlab=names(HeartDeaseaseData[i]), main="Histograms of heart desease dataset
}
```


Show a data summary

summary(HeartDeaseaseData)

sex

```
##
         age
                                       ChestPainType
                                                         RestingBloodPressure
##
                                               :0.000
            :29.00
                             :0.0000
                                       Min.
                                                         Min.
                                                                : 94.0
    Min.
                     Min.
    1st Qu.:47.50
                     1st Qu.:0.0000
                                       1st Qu.:0.000
                                                         1st Qu.:120.0
##
    Median :55.00
                     Median :1.0000
                                       Median :1.000
                                                         Median :130.0
            :54.37
                                               :0.967
##
    Mean
                     Mean
                             :0.6832
                                       Mean
                                                         Mean
                                                                 :131.6
##
    3rd Qu.:61.00
                     3rd Qu.:1.0000
                                       3rd Qu.:2.000
                                                         3rd Qu.:140.0
##
    Max.
            :77.00
                     Max.
                             :1.0000
                                       Max.
                                               :3.000
                                                         Max.
                                                                 :200.0
##
    {\tt SerumCholestoral\ FastingBloodSugar\ RestingElectrocardiographic}
##
    Min.
            :126.0
                      Min.
                              :0.0000
                                          Min.
                                                 :0.0000
                                          1st Qu.:0.0000
##
    1st Qu.:211.0
                      1st Qu.:0.0000
    Median :240.0
                      Median :0.0000
                                          Median :1.0000
##
##
    Mean
           :246.3
                      Mean
                              :0.1485
                                          Mean
                                                 :0.5281
##
    3rd Qu.:274.5
                      3rd Qu.:0.0000
                                          3rd Qu.:1.0000
##
    Max.
            :564.0
                      Max.
                              :1.0000
                                                 :2.0000
##
    MaximumHeartRate ExerciseAngina
                                         STDepressionExercise SlopePeakExercise
    Min.
           : 71.0
                      Min.
                              :0.0000
                                        Min.
                                                :0.00
                                                               Min.
                                                                       :0.000
##
    1st Qu.:133.5
                      1st Qu.:0.0000
                                         1st Qu.:0.00
                                                               1st Qu.:1.000
    Median :153.0
                      Median :0.0000
                                         Median:0.80
                                                               Median :1.000
##
    Mean
            :149.6
                      Mean
                              :0.3267
                                         Mean
                                                :1.04
                                                               Mean
                                                                       :1.399
##
    3rd Qu.:166.0
                      3rd Qu.:1.0000
                                         3rd Qu.:1.60
                                                               3rd Qu.:2.000
##
    Max.
            :202.0
                      Max.
                              :1.0000
                                         Max.
                                                :6.20
                                                               Max.
                                                                       :2.000
    NumberMajorVessels
                              thal
                                           heartdesease
    Min.
            :0.0000
                                                 :0.0000
##
                        Min.
                                :0.000
                                          Min.
```

```
## 1st Qu.:0.0000
                     1st Qu.:2.000
                                    1st Qu.:0.0000
## Median :0.0000
                     Median :2.000
                                    Median :1.0000
## Mean
                     Mean :2.314
         :0.7294
                                    Mean
                                           :0.5446
## 3rd Qu.:1.0000
                     3rd Qu.:3.000
                                    3rd Qu.:1.0000
## Max.
          :4.0000
                     Max.
                            :3.000
                                    Max.
                                           :1.0000
```

Find risk factors for heart desease

Compute correlation coefficients with target variable for all features

```
correlations <- NULL
for (i in (1:(ncol(HeartDeaseaseData)-1))){
correlations[i] <- cor(HeartDeaseaseData[,i],HeartDeaseaseData$heartdesease)</pre>
}
names(correlations) <-names(HeartDeaseaseData[-ncol(HeartDeaseaseData)])</pre>
as.data.frame(correlations)
##
                                correlations
## age
                                -0.22543872
## sex
                                 -0.28093658
## ChestPainType
                                 0.43379826
## RestingBloodPressure
                                -0.14493113
## SerumCholestoral
                                 -0.08523911
## FastingBloodSugar
                                -0.02804576
## RestingElectrocardiographic 0.13722950
## MaximumHeartRate
                                 0.42174093
## ExerciseAngina
                                 -0.43675708
## STDepressionExercise
                                -0.43069600
## SlopePeakExercise
                                 0.34587708
## NumberMajorVessels
                                -0.39172399
## thal
                                 -0.34402927
sort(correlations, decreasing=TRUE)
```

##	${\tt ChestPainType}$	${ t MaximumHeartRate}$
##	0.43379826	0.42174093
##	${ t Slope Peak Exercise}$	RestingElectrocardiographic
##	0.34587708	0.13722950
##	${ t Fasting Blood Sugar}$	${\tt SerumCholestoral}$
##	-0.02804576	-0.08523911
##	${\tt RestingBloodPressure}$	age
##	-0.14493113	-0.22543872
##	sex	thal
##	-0.28093658	-0.34402927
##	${\tt NumberMajorVessels}$	STDepressionExercise
##	-0.39172399	-0.43069600
##	ExerciseAngina	
##	-0.43675708	

Findings from correlation analysis:

^{*}The Chest Pain Type as well as the maximum heart rate are important risk factors for heart deseases

Setup Training and Testing Datasets

Covert target variable to factor Shuffle data Split into training data (70%) and test data (30%) check dimensions

```
ColsToFactors <- c(
             #"sex",
             #"ChestPainType",
             \#"FastingBloodSugar",
             #"RestingElectrocardiographic",
             #"ExerciseAngina",
             #"SlopePeakExercise"
             #"NumberMajorVessels",
             #"thal",
             "heartdesease")
HeartDeaseaseData[,ColsToFactors] <- as.factor(HeartDeaseaseData[,ColsToFactors])</pre>
RowIndices <- sample((1:nrow(HeartDeaseaseData)))</pre>
HeartDeaseaseData <- HeartDeaseaseData[RowIndices,]</pre>
split <- floor(0.7*nrow(HeartDeaseaseData))</pre>
training <- HeartDeaseaseData[(1:split),]</pre>
test <- HeartDeaseaseData[((split+1):nrow(HeartDeaseaseData)),]</pre>
dim(training)
## [1] 212 14
dim(test)
## [1] 91 14
```

Apply Machine Learning Models on dataset

- Logistic Regression
- PCA Regression
- Ridge, LASSO and Elastic Net Regression
- Random Forest Model

Logistic regression

```
LogReg_model <- train(as.factor(heartdesease)~., data=training, method="glm")

# Out-of-Sample predictions
LogReg_predictions <-
predict(
    LogReg_model,
    newdata = test, type="prob")

# Out-of-sample forecast error:
confusionMatrix(
    as.factor(as.numeric(LogReg_predictions[,2]>0.5)),
    as.factor(test$heartdesease))
```

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 0 1
            0 27 6
##
##
            1 9 49
##
##
                  Accuracy: 0.8352
##
                    95% CI : (0.7427, 0.9047)
##
       No Information Rate : 0.6044
##
       P-Value [Acc > NIR] : 1.684e-06
##
##
                     Kappa : 0.6503
   Mcnemar's Test P-Value: 0.6056
##
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.8909
            Pos Pred Value: 0.8182
##
            Neg Pred Value: 0.8448
##
                Prevalence: 0.3956
##
##
            Detection Rate: 0.2967
##
      Detection Prevalence: 0.3626
##
         Balanced Accuracy: 0.8205
##
##
          'Positive' Class : 0
##
```

Logistic PCA regression

```
training.pca <- prcomp(training[,-ncol(training)])
# Scree-Plot to determine number of PCA factors
plot(training.pca , type="1", main="Scree Plot")</pre>
```

Scree Plot


```
# steep decline of the slope until the 5th PCA facor -> Include 5 PCA factors in PCA regression model
# Set Training Parameter: Cross Validation & number of PCA Factors
                            for PCA Regression
  fitControlPCA <-
    trainControl(method="none",
                 preProcOptions=list(pcaComp=5),
                 verboseIter = TRUE,
                 allowParallel = TRUE)
# Logistic PCA Regression with 5 PCA Factors
  PCR_model <-
      train(
      as.factor(heartdesease)~.,
      data=training,
      method="glm",
      trControl = fitControlPCA,
      preProcess="pca",
      weights = NULL
    )
## Fitting parameter = none on full training set
  # Out-of-Sample predictions
  PCR_predictions <-
```

predict(
 PCR_model,

```
newdata = test, type="prob")
  # Out-of-sample forecast error:
  confusionMatrix(
    as.factor(as.numeric(PCR_predictions[,2]>0.5)),
    as.factor(test$heartdesease))
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
           0 28 6
##
##
           1 8 49
##
##
                  Accuracy : 0.8462
##
                    95% CI: (0.7554, 0.9133)
##
      No Information Rate: 0.6044
      P-Value [Acc > NIR] : 4.859e-07
##
##
##
                     Kappa: 0.6752
   Mcnemar's Test P-Value: 0.7893
##
##
##
              Sensitivity: 0.7778
##
              Specificity: 0.8909
##
           Pos Pred Value: 0.8235
            Neg Pred Value: 0.8596
##
##
               Prevalence: 0.3956
##
           Detection Rate: 0.3077
##
     Detection Prevalence: 0.3736
##
         Balanced Accuracy: 0.8343
##
##
          'Positive' Class : 0
##
```

Logistic, Ridge-, LASSO- and Elastic Net Regression

```
set Parameters
set.seed(1234)
# Initialize Parameters
Elastic_NetParameter <- data.frame(alpha=NaN, lambda=NaN)
LASSO_Parameter
                  <- data.frame(alpha=NaN, lambda=NaN)
RidgeReg_Parameter <- data.frame(alpha=NaN, lambda=NaN)
# Set Grids for hyperparameters
Ridge_Grid
            <-
  expand.grid(alpha = 0,
              lambda = \exp(seq(-9.21034, 9.21034, length.out = 100)))
LASSO Grid
             <-
  expand.grid(alpha = 1,
              lambda = \exp(seq(-9.21034, 9.21034, length.out = 100)))
Elastic_Grid <-</pre>
```

```
expand.grid(alpha = seq(0,1,length.out = 100),
                lambda = \exp(seq(-9.21034, 9.21034, length.out = 100)))
  # Set Training Parameter: Cross Validation
  fitControl <- trainControl(method="cv",</pre>
                             number=5,
                             verboseIter = TRUE,
                              allowParallel = TRUE)
# Logistic Ridge regression -
  RidgeReg_model <-
   train(as.factor(heartdesease)~.,
          data=training,
          method="glmnet",
          trControl = fitControl,
          tuneGrid = Ridge_Grid,
          preProcess = NULL,
          weights = NULL)
## + Fold1: alpha=0, lambda=10000
## - Fold1: alpha=0, lambda=10000
## + Fold2: alpha=0, lambda=10000
## - Fold2: alpha=0, lambda=10000
## + Fold3: alpha=0, lambda=10000
## - Fold3: alpha=0, lambda=10000
## + Fold4: alpha=0, lambda=10000
## - Fold4: alpha=0, lambda=10000
## + Fold5: alpha=0, lambda=10000
## - Fold5: alpha=0, lambda=10000
## Aggregating results
## Selecting tuning parameters
## Fitting alpha = 0, lambda = 0.0673 on full training set
  # Parameter of the best Ridge-Model (in cross-valiation)
  RidgeReg_Parameter <- RidgeReg_model$bestTune</pre>
  RidgeReg_Parameter
##
      alpha
                lambda
          0 0.06734151
## 36
 # Ridge Regression Prediction
  # Out-of-sample-Sample predictions
 RidgeReg_predictions <-</pre>
   predict(RidgeReg_model, test, type="prob")
  # Out-of-sample forecast error:
    # Out-of-sample forecast error:
  confusionMatrix(
    as.factor(as.numeric(RidgeReg_predictions[,2]>0.5)),
    as.factor(test$heartdesease))
## Confusion Matrix and Statistics
##
##
             Reference
```

```
## Prediction 0 1
##
           0 26 5
           1 10 50
##
##
##
                  Accuracy : 0.8352
##
                    95% CI: (0.7427, 0.9047)
##
       No Information Rate: 0.6044
       P-Value [Acc > NIR] : 1.684e-06
##
##
##
                     Kappa: 0.6468
##
   Mcnemar's Test P-Value : 0.3017
##
               Sensitivity: 0.7222
##
##
               Specificity: 0.9091
            Pos Pred Value: 0.8387
##
##
            Neg Pred Value: 0.8333
##
                Prevalence: 0.3956
##
            Detection Rate: 0.2857
##
     Detection Prevalence: 0.3407
##
         Balanced Accuracy: 0.8157
##
##
          'Positive' Class: 0
##
# Logistic LASSO regression --
 LASSO_model <- train(
   as.factor(heartdesease)~.,
   data=training,
   method="glmnet",
   trControl=fitControl,
   tuneGrid=LASSO_Grid,
   preProcess=NULL, weights=NULL
## + Fold1: alpha=1, lambda=10000
## - Fold1: alpha=1, lambda=10000
## + Fold2: alpha=1, lambda=10000
## - Fold2: alpha=1, lambda=10000
## + Fold3: alpha=1, lambda=10000
## - Fold3: alpha=1, lambda=10000
## + Fold4: alpha=1, lambda=10000
## - Fold4: alpha=1, lambda=10000
## + Fold5: alpha=1, lambda=10000
## - Fold5: alpha=1, lambda=10000
## Aggregating results
## Selecting tuning parameters
## Fitting alpha = 1, lambda = 0.00413 on full training set
  # Parameter of the best LASSO-Model (in cross-valiation)
 LASSO_Parameter <- LASSO_model$bestTune
 LASSO_Parameter
     alpha
                 lambda
## 21 1 0.004132013
```

```
# Out-of-sample-Sample predictions
  LASSO_predictions <-
   predict(LASSO model, test, type="prob")
  # Out-of-sample forecast error:
   confusionMatrix(
    as.factor(as.numeric(LASSO_predictions[,2]>0.5)),
    as.factor(test$heartdesease))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 27 5
##
##
            1 9 50
##
                  Accuracy : 0.8462
##
##
                    95% CI: (0.7554, 0.9133)
       No Information Rate: 0.6044
##
##
       P-Value [Acc > NIR] : 4.859e-07
##
##
                     Kappa : 0.672
   Mcnemar's Test P-Value: 0.4227
##
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9091
##
            Pos Pred Value: 0.8437
##
            Neg Pred Value: 0.8475
                Prevalence: 0.3956
##
##
            Detection Rate: 0.2967
##
      Detection Prevalence: 0.3516
##
         Balanced Accuracy: 0.8295
##
##
          'Positive' Class : 0
##
# Logistic Elastic Net regression ----
  Elastic_Net_model <- train(</pre>
   as.factor(heartdesease)~.,
   data=training,
   method="glmnet",
    trControl=fitControl,preProcess=NULL,weights=NULL
## + Fold1: alpha=0.10, lambda=0.04376
## - Fold1: alpha=0.10, lambda=0.04376
## + Fold1: alpha=0.55, lambda=0.04376
## - Fold1: alpha=0.55, lambda=0.04376
## + Fold1: alpha=1.00, lambda=0.04376
## - Fold1: alpha=1.00, lambda=0.04376
## + Fold2: alpha=0.10, lambda=0.04376
## - Fold2: alpha=0.10, lambda=0.04376
## + Fold2: alpha=0.55, lambda=0.04376
## - Fold2: alpha=0.55, lambda=0.04376
## + Fold2: alpha=1.00, lambda=0.04376
## - Fold2: alpha=1.00, lambda=0.04376
```

```
## + Fold3: alpha=0.10, lambda=0.04376
## - Fold3: alpha=0.10, lambda=0.04376
## + Fold3: alpha=0.55, lambda=0.04376
## - Fold3: alpha=0.55, lambda=0.04376
## + Fold3: alpha=1.00, lambda=0.04376
## - Fold3: alpha=1.00, lambda=0.04376
## + Fold4: alpha=0.10, lambda=0.04376
## - Fold4: alpha=0.10, lambda=0.04376
## + Fold4: alpha=0.55, lambda=0.04376
## - Fold4: alpha=0.55, lambda=0.04376
## + Fold4: alpha=1.00, lambda=0.04376
## - Fold4: alpha=1.00, lambda=0.04376
## + Fold5: alpha=0.10, lambda=0.04376
## - Fold5: alpha=0.10, lambda=0.04376
## + Fold5: alpha=0.55, lambda=0.04376
## - Fold5: alpha=0.55, lambda=0.04376
## + Fold5: alpha=1.00, lambda=0.04376
## - Fold5: alpha=1.00, lambda=0.04376
## Aggregating results
## Selecting tuning parameters
## Fitting alpha = 0.1, lambda = 0.00438 on full training set
  # Parameter of the best Elastic-Net-Model (in cross-valiation)
 Elastic_NetParameter <- Elastic_Net_model$bestTune</pre>
  # Out-of-sample-Sample predictions
 Elastic_Net_predictions <-</pre>
   predict(Elastic_Net_model, test, type="prob")
  # Out-of-sample forecast error:
  confusionMatrix(
    as.factor(as.numeric(Elastic_Net_predictions[,2]>0.5)),
    as.factor(test$heartdesease))
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction 0 1
            0 27
##
            1 9 50
##
##
##
                  Accuracy : 0.8462
##
                    95% CI: (0.7554, 0.9133)
##
       No Information Rate: 0.6044
       P-Value [Acc > NIR] : 4.859e-07
##
##
##
                     Kappa: 0.672
##
   Mcnemar's Test P-Value: 0.4227
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9091
##
            Pos Pred Value: 0.8437
            Neg Pred Value: 0.8475
##
##
                Prevalence: 0.3956
##
            Detection Rate: 0.2967
```

```
## Detection Prevalence : 0.3516
## Balanced Accuracy : 0.8295
##
## 'Positive' Class : 0
##
```

Random Forest -


```
# Random Forest -----
set.seed(1234)
rf_model <-
    ranger (as.factor(heartdesease)~.,
        data=training,
        probability = TRUE,
        num.trees = 150,
        splitrule="gini",
        importance="impurity",</pre>
```

Variable Importance in Random Forest


```
# Out-of-sample-Sample predictions
rf_predictions <- predict(rf_model,test)
rf_predictions <- rf_predictions$predictions
# Out-of-sample forecast error:
confusionMatrix(
   as.factor(as.numeric(rf_predictions[,2]>0.5)),
   as.factor(test$heartdesease))
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 28
            1 8 47
##
##
##
                  Accuracy : 0.8242
##
                    95% CI : (0.7302, 0.896)
##
       No Information Rate: 0.6044
##
       P-Value [Acc > NIR] : 5.408e-06
##
```

```
##
                     Kappa: 0.6323
    Mcnemar's Test P-Value : 1
##
##
               Sensitivity: 0.7778
##
##
               Specificity: 0.8545
            Pos Pred Value: 0.7778
##
##
            Neg Pred Value: 0.8545
                Prevalence: 0.3956
##
##
            Detection Rate: 0.3077
##
      Detection Prevalence: 0.3956
##
         Balanced Accuracy: 0.8162
##
          'Positive' Class : 0
##
##
```

Conclusion:

- The random forest model achieves a similar performance compared to the regression models on the test set.
- The variable importance plot shows that the most important variables in the random forest model are:
- 1. Number of Major Vessels
- 2. MaximumHeartRate (Feature 8: maximum heart rate achieved)
- 3. ChestPainType (Feature 3: chest pain type (4 values))
- 4. DepressionExercise (Feature 10. oldpeak = ST depression induced by exercise relative to rest)
- The Ridge Regression Model achieves the best accuracy on the test set, slightly better than the PCA Regression, LASSO, ELastic Net and Random Forest