В результате вычислений получим частное $(-5_{10})=11011_2$ и остаток $2_{10}=00010_2.$

Приведем пример вычисления суммы двух 16-ти разрядных чисел, используя рассматриваемый алгоритм (см. таблицу 13).

	Ma	Pa	Mb	Pb	dP
Входные данные	01010101000	00111	01011111111	00100	_
Находим разность порядков					00011
Сдвигаем меньшее число вправо, увеличивая его порядок	01010101000	00111	01011111	00111	00000
Суммируем мантиссы. Записываем результат в разряды первого операнда	01100000111	00111	01011111	00111	00000
Проверяем нормализованность результата	01100000111	00111	01011111	00111	00000
Ответ	01100000111	00111			

Таблица 13: Пример вычисления суммы двух чисел в экспоненциальном формате

12 Управляющий автомат

Управляющий автомат был построен по схеме с регулярной адресацией (последовательный вариант). Рассмотрим строение управляющего автомата. См рисунок 6.

Рис. 6: УА с регулярной адресацией

На вход УА подаются сигналы от операционного автомата соответствующие логическим блокам алгоритма. С выхода управляющего автомата снимаются микроинструкции хранящиеся в ПЗУ (ROM) УА. Микроинструкции обеспечивают наличие необходимых управляющих сигналов