

CCA GCA ACC AAT GAT GCC CGT T-TAMRA-3'
CA GCA ACC AAT GAT GCC CGT T-TAMRA-3'

CCA GCA AGC ACT GAT GCC TGT T-TAMRA-3'
CA GCA AGC ACT GAT GCC TGT T-TAMRA-3'

Fig. 1A

Fluorescent Dyes

	Absorbance Maxima	Emission Maxima
Fluorescein	494nm	525nm
Tetrachloro fluorescein	521nm	536nm
TAMRA	565nm	580nm

Fig. 1B

Cleaved Fragments:

Fig. 1C

Fig. 2

Fig. 3A

Fig. 3B

Fig. 3C

Fig. 3D

Fig. 4

<u>e-tag Reporter</u>	<u>Elution Time on CE, min</u>	<u>Mass</u>
	6.4	778
	7.1	925
	7.3	901
	7.7	994
	8.0	985
	9.25	961

Fig. 5

e-tag Reporter	Charge	Elution Time, min
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-C ₃ C ₃ C ₃ C ₃ C ₃ -dC	-8	12.1*
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₆ C ₆ C ₆ C ₆ C ₆ -dC	-9	12.7
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₆ C ₆ C ₆ C ₆ C ₆ -dC	-8	12.8
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₆ C ₆ C ₆ C ₆ -dC	-7	13.1
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₃ C ₃ C ₉ -dC	-6	13.0
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₆ C ₆ C ₆ -dC	-6	13.4
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₃ C ₃ -dC	-5	12.8*
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₃ C ₉ -dC	-5	13.2*
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₉ C ₉ -dC	-5	14.8
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-TTdT-dC	-6	17.3
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-TTdT	-5	17.0
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-C ₉ -dT	-4	15.2*
O-C(=O)-Fluorescein HN-(CH ₂) ₅ -O-P-O-TdT	-4	16.5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17A

Fig. 17B

Fig. 17D

Fig. 17E

Fig. 17F

ACLA070

ACLA071

ACLA072

ACLA073

ACLA074

ACLA075

ACLA076

ACLA077

ACLA078

Fig. 17G

Fig. 17H

Fig. 17I

ET-ACLA001

Fig. 17J

Fig. 18A

Fig. 18B

Fig. 19A

Fig. 19B

Fig. 20

Fig. 21

Fig. 22

Fig. 23A

Fig. 23B

Fig. 23C

Fig. 23D

Fig. 23E

Fig. 23F

Fig. 23G

Fig. 24

Fig. 25A

Fig. 25B

Fig. 25C

Fig. 25D

Fig. 26

Fig. 27

Fig. 28A

Fig. 28B

Fig. 28C

Fig. 29

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34