Intelligent evaluation of complex algorithms

Andre Hofmeister | ♠ @HofmeisterAn | ♥ @HofmeisterAn 2. November 2018

Problem des Handlungsreisenden

Abbildung 1: Beispiel anhand einer Rundreise in Frankreich

$$k = \frac{(n-1)!}{2} \text{ mit } n = 13$$
 $k = 239.500.800 \text{ Rundreisen}$ (1)

1

Lösungsverfahren

Exakte Lösungsverfahren	Heuristiken
Optimallösung	Näherungsverfahren
Ineffizient je größer <i>n</i>	Schnelle brauchbare Lösung ¹
Einfach zu implementieren	Komplexe Anwendungslogik
Keine Abhängigkeiten	Diverse Parameter
Methode der rohen Gewalt	z. B.: Ameisenalgorithmus und
	Genetischer Algorithmus

¹Max. Abweichung vom Optimum beliebig groß

Algorithmen |

Ameisenalgorithmus	Genetischer Algorithmus
Imitiert Ameisen auf Futtersuche	Angelehnt an Evolution
Theoretische Analyse schwierig	Keine Vorhersage über Dauer
Schnell gute Lösung	Einfache Implementierung

Abbildung 2: Applikation mit geladenen Komponenten

Abbildung 3: Ergebnis für AOC 178 (links) und GA 128 (rechts)

Vielen Dank!

Quellen

Abb. 1 Ameisenalgorithmen am Beispiel des Handlungsreisenden https://commons.wikimedia.org/wiki/File:Aco_TSP.svg#/media/File:Aco_TSP.svg