ame: Student ID	
King Mongkut's University of Technology Thonburi inal-term Examination Semester 1/2012 IEE 234 Thermal Engineering Credits 3 repartment of Control system and Instrumentation Engineering	
November 2012 Time allowed 3 hou 13.00 - 16.00	ırs
 You are not allowed to bring lecture notes and any other texts to the examination room. Calculators are permitted. Answer all five questions. If you have any doubt that the given information does not clarify, you may assume. Tables of thermodynamic properties are provided. Total marks 110 	L
Pr. Wanchai Asvapoositkul	
Basic Principle Formulations	
imple Compressible Closed System:	
Conservation of mass: $m_1 = m_2$ Conservation of energy: $Q = U_2 - U_1 + W$ Mechanical work of simple compressible system: $W = \int p \ d \forall$ Open system, Steady Flow: one inlet, one outlet Conservation of mass: $m_i = m_e = \rho_i A_i \ \overline{v_i} = \rho_e A_e \ \overline{v_e}$	
Conservation of mass.	
roperties of pure substances:	
Specific heats: $c_v = \left(\frac{\partial u}{\partial T}\right)_v$ and $c_p = \left(\frac{\partial h}{\partial T}\right)_p$	
The specific volume of the mixture (liquid and vapor): $v = v_f + x (v_g - v_g)$	′ _f)
An ideal gas equation of state: $\frac{p_1 v_1}{T_1} = \frac{p_2 v_2}{T_2}$	
Enthalpy $h = u + p v$ $du = c_v dT$, $dh = c_p dT$ Gas Law $p v = R T$ The isentropic relations of ideal gases with constant specific heats	
(k-1)	

Seat NO

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{P_2}{P_1}\right)^{\frac{(k-1)}{k}} = \left(\frac{v_1}{v_2}\right)^{k-1}$$

Air at room temperature are $c_p = 1.005$ kJ/kg·K, $c_v = 0.718$ kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4

Clausius inequality
$$\oint \left(\frac{dQ}{T}\right) \le 0$$

1. In the following questions, underline the correct words in the bracket. (20 points)

- 1.1 A reservoir that supplies energy in the form of heat is called a (source, sink).
- 1.2 A reservoir that absorbs energy in the form of heat is called a (source, sink).
- 1.3 When we can add energy to thermal energy reservoirs their temperatures will (increase, decrease, remains the same).
- 1.4 When we can remove energy from thermal energy reservoirs their temperatures will (increase, decrease, remains the same).
- 1.5 (Heat engines, Heat Pumps): produce work by converting a portion of energy extracted from a hot energy reservoir.
- 1.6 (Heat engines, Heat Pumps): consume work while removing energy from a cold energy reservoir.
- 1.7 Carnot heat engine can be (more efficient than, less efficient than, the same efficient as) a reversible heat engine which uses the same energy reservoirs.
- 1.8 A piston—cylinder device contains nitrogen gas. During a reversible, adiabatic process, the entropy of the nitrogen will (never, sometimes, always) increase.
- 1.9 A piston-cylinder device contains superheated steam. During an actual adiabatic process, the entropy of the steam will (never, sometimes, always) increase.
- 1.10 The entropy of the working fluid of the ideal Carnot cycle (*increases*, *decreases*, *remains the same*) during the isothermal heat addition process.
- 1.11 The entropy of the working fluid of the ideal Carnot cycle (*increases*, *decreases*, *remains the same*) during the isothermal heat rejection process.
- 1.12 Compression of gas in (*isentropic*, *polytropic*, *isothermal*) processes between the same pressure limits requires the maximum work.

Name:	Student ID
Name:	Student ID

- 1.13 Compression of gas in (*isentropic*, *polytropic*, *isothermal*) processes between the same pressure limits requires the minimum work.
- 1.14 Compressing steam in the vapor form would require (more work than, the same work as, less work than) compressing it in the liquid form between the same pressure limits.
- 1.15 In (gas cycles, vapor cycles), the working fluid remains in the gaseous phase throughout the entire cycle.
- 1.16 A process of constant entropy is called an (*adiabatic, isothermal, isentropic*) process.
- 1.17 An isentropic processes of compressor is required (more work than, the same work as, less work than) that of an adiabatic actual compressor between the same pressure limits
- 1.18 An isentropic processes of turbine is produced (more work than, the same work as, less work than) that of an adiabatic actual turbine between the same pressure limits
- 1.19 Processes can only occur in directions consistent with the (*increase*, *decrease*, *conservation*) of entropy principle.
- 1.20 The greater the entropy generation, the (higher, same, lower) the performance.

Name:	Student ID

2. An automobile engine consumes fuel at a rate of 28 L/h and delivers 60 kW of power to the wheels. If the fuel has a heating value of 44,000 kJ/kg and a density of 0.8 g/cm³, determine the efficiency of this engine. (20 points)

Name:	Student ID
3.1 What is the difference between a refrigerator and a he	at pump? (10 points)
3.2 How does a diesel engine differ from a gasoline engin	te? (10 points)
3.3 In order to save energy, what should be done in an air points)	-conditioning room? (10

Name:	. Student ID
-------	--------------

4. A food department is kept at -12C by a refrigerator in an environment at 30C. The total heat gain to the food department is estimated to be 3,300 kJ/h and the heat rejection in the condenser is 4,800 kJ/h. Determine the power input to the compressor, in kW and the COP of the refrigerator.

What is the maximum possible COP of this refrigerator when it works with an ideal reversible process? (20 points)

Name:	Student ID.
-------	-------------

5. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 3 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 35 kg/s. Show the cycle on a *T-s* diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the net power output of the power plant. (20 points)

892 I Thermodynamics

TABLE A-5												
Saturated water—Pressure table												
			fic volume, m³/kg	Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Press.,	Sat. temp.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
P kPa	T _{sat} °C	V _f	V _g	Uf	U _{fg}	и _g	h _f	h _{fg}	h _g	S _f	Stg	s _g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6691
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3589 7.3545 7.2841
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1270 7.0877 7.0525
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1		5.3200 5.2645 5.2128 5.1645 5.1191	6.9650 6.9402 6.9171
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.37483 0.34261 0.31560	622.65 639.54 655.16 669.72 683.37	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8207 6.7886 6.7593
700 750	164.95 167.75	0.001108 0.001111		696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195		6.7071 6.6837

TABLE	A6			;								
Superheated water (Continued)												
	v	u	h	s	v	u	h	s	v	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	= 1.00 MF	Pa (179.88		P = 1.20 MPa (187.96°C)				P = 1.40 MPa (195.04°C)			
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956		2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246		2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455		3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482		3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464		3477.0	7.6779	0.25216	3121.8	3474.8 3695.5	7.6047 7.8730
600	0.40111 0.44783	3297.5 3476.3	3698.6 3924.1	8.0311 8.2755	0.33395 0.37297		3697.0 3922.9	7.9456 8.1904	0.28597 0.31951	3295.1 3474.4	3921.7	
700 800	0.44783	3661.7	4156.1	8.5024	0.37297		4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.41164	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928		4639.4	8.8310	0.41933	4051.7		8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792		4891.0	9.0212	0.45247	4257.0		8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3		9.1308
1300	0.72610	4685.8	5411.9	9.4593			5411.6	9.3750	0.51866	4685.1	5411.3	
	P :	= 1.60 M	Pa (201.3	7°C)	P = 1.80 MPa (207.11°C)				P = 2.00 MPa (212.38°C)			
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795	.9 6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0		2 6.4825	0.10381	2628.5	2836.1	6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.	7 6.6088	0.11150	2680.3	2903.3	6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.		0.12551	2773.2		6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	3141.	9 7.0120	0.13860	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		2 7.9509 5 8.1791
800 900	0.30865	3659.5	4153.4	8.2834	0.27426 0.30020	3658.8 3851.5			0.24674 0.27012	3658.0 3850.9		8.3925
1000	0.33780 0.36687	3852.1 4051.2	4392.6 4638.2	8.4965 8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			1	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.				4684.2		9.1384
	P	= 2.50 M	Pa (223.9	5°C)	P = 3.00 MPa (233.85°C)				P = 3.50 MPa (242.56°C)			
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803	.2 6.1856	0.05706	2603.0	2802.	7 6.1244
225	0.08026	2604.8	2805.5	6.2629					0.05076	00040	2000	7 6 1764
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7				2624.0		7 6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118					2738.8		4 6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056					2836.0 2927.2		9 6.6601 2 6.8428
400	0.12012	2939.8	3240.1	7.0170	0.09938							1 7.0074
450 500	0.13015	3026.2	3351.6	7.1768 7.3254	0.10789							7.0074
600	0.13999 0.15931	3112.8 3288.5	3462.8 3686.8	7.3254 7.5979	0.11620							7.1353 9 7.4357
700	0.13931	3469.3	3915.2	7.8455	0.13243					3464.7		3 7.6855
800	0.17633	3656.2	4149.2	8.0744	0.16420					3652.5		6 7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988							7 8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549				1	4046.4		7 8.3324
1100	0.25330	4254.7	4887.9	8.6804	0.21105			.7 8.5955		4252.5		6 8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658							1 8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.	<u>6</u> 5408	8.8 8.9502	0.20750	4681.8	5408.	8.8786