第二章 非线性方程的数值解法

- § **1** 引言
- § 2 <u>二分法</u>
- § 3 <u>迭代法</u>
- § 4 牛顿--雷扶生方法
- § 5 <u>正割法</u>
- § 6 迭代法的收敛阶和Aitken加速方法

§引 言

代数方程求根问题是一个古老的数学问题,早在16世纪就找到了三次、四次方程的求根公式。但直到19世纪才证明 $n \ge 5$ 次的一般代数方程式不能用代数公式求解。因此需要研究用数值方法求得满足一定精度的代数方程式的近似解。

在工程和科学技术中许多问题常常归结为求解非线性方程式问题,例如在控制系统的设计领域,研究人口增长率等。

例1 关于真实气体的状态方程(Van der waals方程)为

$$(P + \frac{a}{V^2})(V - b) = RT \tag{1.1}$$

其中, P是气体压力, V是气体提及, T是绝对温度, R是气体常数。

如果已知某气体的温度T及压力P,那么求体积V的方程为:

$$f(x) = (P + \frac{a}{V^2})(V - b) - RT = 0$$
 (1.2)

或

$$V = \frac{RT}{\left(P + \frac{a}{V^2}\right)} + b \equiv g(V)$$

本章将介绍这种类型方程的近似解的数值方法。

设有一非线性方程

$$f(x) = 0 \tag{1.3}$$

其中f(x)为实变量 X的非线性函数。

- 定义 **1** (1) 如果有 x^* 使 $f(x^*)=0$,则称 x^* 为方程 (1.3) 的根,或 称为函数 f(x)的零点。
 - (2) 当 f(x) 为多项式时,即方程为 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0 (a_n \neq 0)$ 称 f(x) = 0 为 n 次代数方程。当 f(x) 包含指数函数或三角函数等特殊函数时,称 f(x) = 0 为超越方程。
 - (3) 如果 $f(x) = (x x^*)^m g(x)$,其中 $g(x^*) \neq 0$,m 为正整数,则称 x^* 为 f(x) = 0 的 m 重根。当 m=1时称 x^* 为 f(x) = 0 的单根。

3

先叙述两个基本定理。

定理 1 (代数基本定理)

设 f(x)=0 为具有复系数的 n 次代数方程,则 f(x)=0 于复数域上恰有 n 个根(r 重根计算 r 个)。如果 f(x)=0 为实系数代数方程,则复数根成对出现,即当 $\alpha+i\beta(\beta\neq 0)$ 是 f(x)=0 的复根,则 $\alpha-i\beta$ 亦是 f(x)=0 的根。

- **定理2** (1) 设 f(x)于 [a,b]上连续:
 - (2) 且 $f(a) \cdot f(b) < 0$,则存在有 $x^* \in (a,b)$ 使 $f(x^*) = 0$ 即 f(x) 于 (a,b) 内存在实的零点。

设有非线性, 实系数方程

$$f(x) = 0$$

问题是:需要求出方程的所有实根(或复根)。

求方程 f(x) = 0式近似根,一般说有这样两个问题。

(1)根的分离。找出有根的区间(或平面区域),使得在一些较小的区间(平面区域)只有一个根(或一对共轭根),这样可获得方程各根的近似值。

最简单的方法就是绘出 y=f(x)图形,方程 f(x)=0 的实根就是曲线 y=f(x)与 X 轴交点的横坐标;也可采用搜索的方法来确定根的范围,即从某 x_0 出发,选取步长 Δx ,如果有

$$f(x) \cdot f(x + \Delta x) < 0$$

则于 $(x, x + \Delta x)$ 内必有f(x) = 0的实根(<u>由定理2知</u>)。其中

$$x = x_0 + i \cdot \Delta x, (i = 0, 1, \dots, N_0)$$

(2) 近似根的精确化。用求方程根的数值方法,使求得的近似根精确化,直到具有足够的精度。

搜索方法框图(<u>图**5-1**</u>):

在[a,b]内搜索方程 f(x)=0 所有实根。取 $x_0=a$,步长为 Δx , f_{\max} 为一大数。 $\Delta x=(b-a)/N$ 。

[注] 当f(x)于[a,b]连续时,输出区间 $(x-\Delta x,x)$ 内一定有实根,若f(x)于 $[a,\infty)$ 某点 x_s 分为两支曲线且 $x \to x_s^+$ 时 $f(x) \to +\infty$ 或 $-\infty$,当 $x \to x_s^-$ 时 $f(x) \to -\infty$ 或 $+\infty$ 时,输出的区间 $(x-\Delta x,x)$ 内可能没有实根,这种情况与 § 2 二分法结合使用即可知此区间有无实根。 L_2 代表判断x > b 框。

例 2 用搜索法确定下述方法在 | 0.1,4.0 | 实根范围。

$$f(x) = 1 + 5.25x - 1/\cos(\sqrt{0.68x}) = 0$$

解 取 $a = 0.1, b = 4.0, \Delta x = 0.1, f_{\text{max}} = 10^4$ 。

输出: 有根区间为(3.3, 3.4)且区间(3.6, 3.7)内无实根。

§ 2 二分法

设有非线性方程

$$f(x) = 0 \tag{2.1}$$

其中,f(x)为[a,b]上连续函数且设 $f(a)\cdot f(b)<0$ (不妨设方程(2.1)于[a,b]内仅有一个实根。

求方程 (2.1) 实根 x^* 的二分法过程,就是将含根区间 [a,b] 逐步分半,检查函数符号的变化,以便确定含根的充分小区间。

二分法叙述如下;记 $a_1 = a, b_1 = b$ <u>(图**5-2**)</u> 第一步分半计算(k=1):

将 $[a_1,b_1]$ 分半,计算中点 $x_1 = (a_1+b_1)/2$ 及 $f(x_1)$,如果 $f(a_1)\cdot f(x_1)<0$ 则根一定在区间 $[a_1,x_1] \equiv [a_2,b_2]$ 内,否则根一定在区间 $[x_1,b_1] \equiv [a_2,b_2]$ 内 (若 $f(x_1) = 0$,则 $x_1 = x^*$)。于是得到长度缩小一半的含根区间 $[a_2,b_2]$,即

 $f(a_2) \cdot f(b_2) < 0, \perp b_2 - a_2 = \frac{1}{2}(b_1 - a_1)$

第k步分半计算: 重复上述过程,设已完成第1步,• • ,第k-1步分半计算得到含根区间 $|a_1,b_1|\supset |a_2,b_2| \supset \cdots \supset |a_k,b_k|$

且满足; (1) $f(a_k) \cdot f(b_k) < 0$, 即 $x^* \in [a_k, b_k]$;

(2)
$$b_k - a_k = \frac{1}{2^{k-1}}(b-a);$$

现在进行第k步分半计算;

(3) 计算
$$x_k = (a_k + b_k)/2$$
 且有

$$\left| x^* - x_k \right| \le \frac{b_k - a_k}{2} = \frac{1}{2^k} (b - a)$$
 (2. 2)

(4) 确定新的含根区间 $[a_{kn},b_{k+1}]$, 即如果 $f(a_k)\cdot f(x_k)<0$, 则根

一定在 $[a_{k+1},b_{k+1}]=[a_k,x_k]$ 内,否则根一定在区间 $[a_{k+1},b_{k+1}]=[x_k,b_k]$ 且有

$$b_{k+1} - a_{k+1} = \frac{1}{2^k} (b - a)$$

总之,由上述二分法得到一序列 $\{x_k\}$,由(2.2),则有

$$\lim_{k\to\infty} x_k = x^*$$

可用二分法求方程 f(x)=0 实根 x^* 的近似值到任意指定的精度。事实上,设 $\varepsilon>0$ 为给定精度要求,试确定分半次数 k使

$$\left| x_k - x^* \right| \le \frac{b - a}{2^k} < \varepsilon$$

由 $2^{-k} < \varepsilon/(b-a)$ 两边取对数,即得

$$k > (\ln(b-a) - \ln e) / \ln 2$$

(2.3)

- 例3 用二分法求 $f(x) = x^6 x 1 = 0$ 于 [1,2]内一个实根,且要求精度到小数后第3位(即要求 $|x^* x_k| < \frac{1}{2} \times 10^{-3}$)。显然, $f(1) \cdot f(2) < 0$ 。
- 解 由 $\varepsilon = 0.5 \times 10^{-3}$,由公式 (2.3) 可确定所需分半次数 k = 11。计算结果如下表(表 5-1)。

表 5-1

k	a_k	b_k	X_k	$f(x_k)$
1	1.0	2.0	1.5	8.890625
2	1.0	1.5	1.25	1.564697
3	1.0	1.25	1.125	-0.097713
4	1.125	1.25	1.1875	0.616653
5	1.125	1.1875	1.15625	0.233269
6	1.125	1.15625	1.140625	0.0615778
7	1.125	1.140625	1.132813	-0.0195756
8	1.132813	1.140625	1.136719	0.0206190
9	1.132813	1.136719	1.134766	4.307×10^{-4}
10	1.132813	1.134766	1.133789	-0.00959799
11	1.133789	1.134766	1.34277	-0.0045915

二分法优点是简单,且对 f(x) 只要求连续即可。可用二分法求出f(x)=0于[a,b] 内全部实根。但二分法不能求复数及偶数重根。

二分法框图(图5-3):

- 二分法: 设有方程 f(x) = 0, 其中 f(x)于 [a,b] 连续,且满足条件 $f(a) \cdot f(b) < 0$ (且设于|a,b|内只有一个实根)。 $k = 1,2,\cdots,N_0$
 - (1) 计算 $x_0 = (a_k + b_k)/2, f(x_k), h = (b_k a_k)/2;$
 - (2) 如果 $|f(x_k)| < \varepsilon_1$ 或 $h < \varepsilon_2$ 则输出 $x_k, f(x_k), k$;
 - (3) 如果 $f(a_k) \cdot f(x_k) < 0$ 则 $a_{k+1} = a_k, b_{k+1} = x_k$ 否则 $a_{k+1} = x_k, b_{k+1} = b_k$

其中 N_0 表示给定的最大分半次数,当 $|f(x)| < \varepsilon_1$ 或 $h < \varepsilon_2$ 时分半终止, f_{\max} 为一大数。

§ 3 迭代法

——迭代法是一种逐次逼近法。它是求解代数方法,超越方程及方程组的一种基本方法,但存在收敛性及收敛快慢问题。

为了用迭代法求非线性方程 f(x) = 0的近似值,首先需要将此方程转化为等价的方程

$$x = g(x) \tag{3.1}$$

显然,将f(x)=0转化为等价方程(3.1)的方法是很多的。

例4 方程 $f(x) = x - \sin x - 0.5 = 0$ 可用不同方法转化为等价方程

(a)
$$x = \sin x + 0.5 \equiv g_1(x)$$

(b)
$$x = \sin^{-1}(x - 0.5) \equiv g_2(x)$$

定义2 (迭代法) 设方程为 x = g(x)

(1) 选取方程的一个初始近似 x_0 ,且按下述逐次代入法,构造一近似解序列;

$$\begin{cases} x_1 = g(x_0) \\ x_2 = g(x_1) \\ \vdots \\ x_{k+1} = g(x_k) \\ \vdots \end{cases}$$
(3.2)

这种方法称为**迭代法**(或称为**单点迭代法**)。 g(x)称为**迭代函数**。

(2) 如果由迭代法产生的序列 $\{x_k\}$ 有极限存在,即 $\lim_{k\to\infty} x_k = x^*$,则称 $\{x_k\}$ 为收敛或称迭代过程(3.2)收敛。否则称 $\{x_k\}$ 不收敛。

设 g(x)为连续函数,且有 $\lim_{k\to\infty} x_k = x^*$,则有 $x^* = g(x^*)$ 即 x^* 为方程(3.1)的解(称 为函数的不动点)。

事实上,由迭代过程(3.2)两边取极限,则有

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} g(x_k) = g(\lim_{k \to \infty} x_k) = g(x^*)$$

显然在由方程 f(x)=0 转化为等价的方程 x=g(x) 时,选择不同的迭代函数 g(x) 就会产生不同的序列 $\{x_k\}$ (即使初始值 x_0 选择一样),且这些序列的收敛情况也不会相同。

例 5 对例**4**中方程,考查用迭代法求根

(a)
$$x_{k+1} = \sin x_k + 0.5, (k = 0,1,\cdots)$$

(b)
$$x_{k+1} = \sin^{-1}(x_k - 0.5), (k = 0,1,\dots)$$
 $\frac{1}{5}$ 5-2

k	$(a)x_k$	$(b)x_k$	$(a)f(x_k)$
0	1.0	1.0	
1	1.341471	0.523599	
2	1.473820	0.023601	
3	1.495301	-0.496555	
4	1.497152	-1.487761	
5	1.497285		
6	1.497300		
7	1.497300		- 3.6 ×10 ⁻⁷

由计算看出,选取的两个迭代函数 $g_1(x), g_2(x)$ 分别构造序列 $\{x_k\}$ 收敛情况不一样(初始值都为1.0),在(a)种情况 $\{x_k\}$ 收敛且 $x^* \approx 1.497300$ 。在(b)种情况出现计算 $\arcsin(x_4-0.5) = \arcsin(-1.987761)$ 无定义。因 此,对于用迭代法求方程f(x)=0 近似根需要研究下述问题:

- (1) 如何选取迭代函数 g(x) 使迭代过程 $x_{k+1} = g(x_k)$ 收敛。
- (2) 若 $\{x_{\iota}\}$ 收敛较慢时,怎样加速 $\{x_{\iota}\}$ 收敛。

迭代法的几何意义:

从几何上解释,求方程 x = g(x) 根的问题,是求曲线 y = g(x)与 直线 y = x 交点的横坐标 x^* 。 当迭代函数 g(x) 的导数 g'(x) 在根 x^* 处满足下述几种条件时,从几何上来考查迭代过程 $X_{l+1} = g(X_l)$ 的收敛 情况如图5-4。

从曲线 x = g(x) 上一点 $P_0(x_0, g(x_0))$ 出发,沿着平行于 x 轴方

图 5-4

方向前进交 y = x 于一点 Q_0 ,再从 Q_0 点沿平行于 y 轴方向前进交 y = g(x) 于 P_1 点,显然, P_1 的横坐标就是 $x_1 = g(x_0)$ 。继续这过程就得 到序列 $\{x_k\}$,且从几何上观察知在 (1) (2) 情况下 $\{x_k\}$ 收敛于 x_k ,在 (3) (4) 情况不收敛于 x_k 。

由迭代法的几何意义可知,为了保证迭代过程收敛,应该要求迭代函数的导数满足条件 |g'(x)| < 1,当 $x \in [a,b]$,否则方程于 [a,b]可能有几个根或迭代法不收敛,为此有下述关于迭代法收敛定理。

定理3 设有方程 x = g(x)

- (1) 设 g(x) 于 |a,b| 一阶导数存在;
- (2) 当 $x \in [a,b]$ 时有 $g(x) \in [a,b]$;
- (3) g'(x)满足条件: $|g'(x)| \le L < 1, \text{当}x \in [a,b]$ 。

则

(a)
$$x = g(x)$$
 在 $[a,b]$ 上有唯一解 x^* ;

(b) 对任意选取初始值
$$x_0 \in [a,b]$$
 迭代过程 $x_{k+1} = g(x_k)$ 收敛,即 $\lim_{k \to \infty} x_k = x^*$;

(c)
$$\left| x^* - x_k \right| \le \frac{1}{1 - L} \left| x_{k+1} - x_k \right|;$$
 (3.3)

(d) 误差估计 $|x^* - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0| (k = 1, 2, \dots)$ (3.4)

证明 只证明(b), (c), (d) (见图5-5)。

证 (b) 由定理<u>假设条件(2)</u>, 当取 $x_0 \in [a,b]$ 时,则有 $x_k \in [a,b]$ $(k=1,2\cdots)$ 。 记误差 $e_k = x^* - x_k$,由中值公式有

$$x^* - x_{k+1} = g(x^*) - g(x_k) = g'(c)(x^* - x_k)$$

其中c在 x^* 与 x_k 之间,即 $c \in [a,b]$ 。 又利用假设条件 (3) 得到误差 的递推关系

$$|x^* - x_{k+1}| \le |g'(c)| |x^* - x_k| \le L |x^* - x_k|$$

$$(k = 0, 1, 2 \cdots)$$
(3.5)

反复利用(3.5),得到

$$|x^* - x_k| \le L|x^* - x_{k-1}| \le L^2|x^* - x_{k-2}|$$

$$\le \dots \le L^k|x^* - x_0| \to 0 (\stackrel{\text{def}}{=} k \to \infty)$$

即

$$\lim_{k\to\infty} x_{k} = x^{*}$$

证 (c) 取迭代公式 $x_{k+1} = g(x_k)$, 显然有 $|x_{k+1} - x_k| = |g(x_k) - g(x_{k-1})| = |g'(c)(x_k - x_{k-1})|$

$$\leq L|x_k - x_{k-1}|, (k = 1, 2, \cdots)$$

其中 c 在 χ_{k-1} 与 χ_k 之间,于是

$$|x_{k+1} - x_{k}| = |x^{*} - x_{k} - (x^{*} - x_{k+1})|$$

$$\geq |x^{*} - x_{k}| - |x^{*} - x_{k+1}|$$

$$\geq |x^{*} - x_{k}| - L|x^{*} - x_{k}| = (1 - L)|x^{*} - x_{k}|$$

$$|x*-x_{k}| \le \frac{1}{1-L}|x_{k+1}-x_{k}| = \frac{L}{1-L}|x_{k}-x_{k-1}| \tag{3.6}$$

证(d) 反复利用(3.6),可得

$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k|$$

$$\leq \frac{L^{\kappa}}{1-L} \left| x_1 - x_0 \right|$$

由定理3结果(3.3)可知,当计算得到的相邻两次迭代满足条件

$$\left| \chi_{k+1} - \chi_{k} \right| < \varepsilon \tag{3.7}$$

时,则误差

$$\left| x^* - x_k \right| < \frac{1}{1 - L} \varepsilon$$

所以在电算时可利用 $|x_{k+1} - x_k| < \varepsilon$ 来控制迭代中止,但是要注意,当 $L\approx 1$ 时,即使 $\left|x_{k+1}-x_{k}\right|$ 很小,但误差 $\left|x^{*}-x_{k}\right|$ 还可能较大。 当已知 $x_0, x_1, L(<1)$ 及给定精度要求 ε 时,利用(3.4)可确定使误差 达到给定精度要求所需要迭代次数 k。

事实上,由

$$\left|x^* - x_k\right| \le \frac{L^k}{1 - L} \left|x_1 - x_0\right| < \varepsilon$$

则

$$k > \left(\ln \varepsilon - \ln \frac{|x_1 - x_0|}{1 - L}\right) / \ln L \tag{3.8}$$

定理3中的假设条件 $|g'(x)| \le L < 1$, 当 $x \in [a,b]$ 。在一般情况下,可能对于大范围的含根区间不满足,而在根的邻近是进成立的,为此有下述迭代过程局部收敛性结果。

定理4 (由迭代法局部收敛性) 设给定方程 x = g(x)

- (1) 设 χ^* 为方 程的解;
- (2) 设 g(x)在 x^* 的邻近连续可微且有 $|g'(x^*)| < 1$ (根据 g'(x) 在 x^* 邻近连续性,此条件即为存在 x^* 的一个邻域

$$S = \{x \mid |x - x^*| \le \delta\}$$
使 $|g'(x)| \le L < 1$, 当 $x \in S$ 时成立).

则对任意取初值 $x_0 \in S$, 迭代过程 $x_{k+1} = g(x_k)(k = 0,1,2,\cdots)$ 收敛于 x^* (称迭代过程具有**局部收敛性**)。

证明 $\mathbb{R}[a,b] = [x^* - \delta, x^* + \delta]$,于是只要验证**定理3中条件(2)**成立,定理4即得证。事实上,设 $x \in S$,则 x' = g(x)

$$|x'-x^*| = |g(x)-g(x^*)| = |g'(c)(x-x^*)|$$

$$\leq L|x-x^*| < |x-x^*| \leq \delta$$

其中, $c \in S$ 。说明 $x' \in S$ 。

例6 试用迭代法解方程: $f(x) = x - \ln(x+2) = 0$

解 (1) 显然有(见图5-6)

$$f(0) \cdot f(2) < 0$$

 $f(-1.9) \cdot f(-1) < 0$

即知,方程于[0, 2]及[-1.9, -1]内有根,记为 x_1^* 及 x_2^* (参看图5-6)。

(2) 考查取初值 $x_0 \in [0,2]$ 迭代过程 $x_{k+1} = \ln(x_k + 2)$ 的收敛性,其中迭代函数为 $g_1(x) = \ln(x + 2)$ 。

显然, $g_1(0) = \ln 2 \approx 0.6931 > 0$, $g_1(2) = \ln 4 \approx 1.386 < 2$ 及 $g_1(x)$ 为增函数,则有当 $0 \le x \le 2$ 时, $0 \le g_1(x) \le 2$ 。又由

$$g_1(x) = \frac{1}{x+2}$$

则有

$$|g_1(x)| = \frac{1}{x+2} \le g_1(0) = \frac{1}{2} < 1, \exists x \in [0,2]$$

于是,由<u>定理3</u>可知,当初值 $x_0 \in [0,2]$ 时迭代过程 $x_{k+1} = \ln(x_k + 2)$ 收敛。如果要求 x_1^* 近似根准确到小数后第6位(即要求 $\left|x_1^* - x_k\right| \leq \frac{1}{2} \times 10^{-6}$ 。

由表5-3可知

$$|x_{15} - x_{14}| \approx 10^{-7},$$
 $\exists L = \frac{1}{2}$

所以

$$|x_{1}^{*} - x_{14}| \le \frac{1}{1 - L} |x_{15} - x_{14}| \approx 2 \times 10^{-7} < 0.5 \times 10^{-6}$$

$$x_{1}^{*} \approx 1.461931$$

$$|f(x_{14})| \approx 0.8 \times 10^{-7}$$

表 5-3

k	$x_{k+1} = \ln(x_k + 2)$
0	0.0
1	0.69314718
2	0.99071046
•	•
14	1.1461931
15	1.1461932

(3) 为了求 |-1.9,-1|内 方程 的根,考察迭代过程

$$x_{k+1} = \ln(x_k + 2) \tag{3.9}$$

显然

$$|g_1(x)| = \frac{1}{x+2} > g'(-1) = 1, \stackrel{\text{def}}{=} x \in [-1.9, -1]$$

所以,迭代过程(3.9)(初值 $x_0 \in [-1.9,-1], x_0 \neq x_2^*$) 不收敛于 x_2^* 。(4)可将方程转化等价方程

$$e^{x} = x + 2, \, \overrightarrow{\mathfrak{p}}x = e^{x} - 2 \equiv g_{2}(x)$$

且有

$$g_2(x) = e^x$$

$$|g_2(x)| \le g_2(-1) \approx 0.368 < 1, \exists x \in [-1.9, -1]$$

所以,当选取 $x_0 \in [-1.9, -1]$ 时迭代方程

$$x_{k+1} = e^{x_k} - 2(k = 0, 1, \cdots)$$

收敛。如取 $x_0 = -1$ 则迭代12次有 $x_2^* \approx x_{12} = -1.841405660$

$$|f(x_{12})| \approx 0.2 \times 10^{-8}$$

由上例可见,对于方程f(x)=0,迭代函数 g(x)选取不同,相应由迭代法产生的 $\{x_k\}$ 收敛情况也不一样。因此,我们应该选取迭代函数,使构造的迭代过程 $x_{k+1}=g(x_k)$ 收敛且收敛较快。

迭代法框图(图5-7):

迭代法: 求解方程 x = g(x)

- (1) 选取解的初始估计 x_1 ;
- (2) 对于 $k = 1, 2, \dots, N_0$ 计算 $x_{k+1} = g(x_k)$,其中 N_0 为给定的 最大迭代次数。当 $|x_{k+1} x_k| < \varepsilon$ 时(或 $\frac{|x_{k+1} x_k|}{|x_k|} < \varepsilon$ 或 $|f(x_k)| < \varepsilon$, 其中 ε 为给定精度要求)迭代终止。

§ 4 牛顿-雷扶生方法

解非线性方程 f(x) = 0的牛顿方法是一种将非线性函数线性化的方法。 牛顿方法的最大优点是在方程单根附近具有较高的收敛速度。牛顿方法可用来计算 f(x) = 0 的实根,还可计算代数方程的复根。

4.1 牛顿法公式及误差分析

设有非线性方程

$$f(x) = 0 \tag{4.1}$$

其中,设f(x)为 [a,b]上一阶连续可微,且 $f(a) \cdot f(b) < 0$;又设 x_0 是 f(x) 的 一个零点 $x^* \in (a,b)$ 的近似值(设 $f'(x_0) \neq 0$,现考虑用过曲线 y = f(x)上点 $P(x_0, f(x_0))$ 的切线近似代替函数 f(x),即用线性函数 (图5-8)

 $y = f(x_0) + f'(x_0)(x - x_0)$

得到

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \tag{4.2}$$

一般,若已求得 x_k ,将(4.2)中 x_0 换为 x_k ,重复上述过程,即求得方程 f(x)=0 根的牛顿方法的计算公式

$$\begin{cases} x_0(\dot{n}) = x_0(\dot{n}) \\ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \\ (k = 0,1,2,\cdots) \end{cases}$$
 (4.3)

图 5-8

下面利用 f(x)的泰勒公式进行误差分析。设已知 f(x)=0根 x^* 的第 k 次近似 x_k ,于是 f(x) 在 x_k 点泰勒公式为(设 f(x) 二次连续可微):

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(c)}{2!}(x - x_k)^2$$
 (4.4)

其中c在 χ 与 χ_k 之间。

如果用线性函数 $P(x) = f(x_k) + f'(x_k)(x - x_k)$ 近似代替 f(x),其误差为 $\frac{f''(c)}{2!}(x - x_k)^2$ 。且用 P(x) = 0 根记为 x_{k+1} 作为 f(x) = 0 的根 x^* 的近似值又得到牛顿公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

现在 (4.4) 中取 $x = x^*$,则有

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(c)}{2!}(x^* - x_k)^2$$

于是
$$x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(c)}{2f'(x_k)} (x^* - x_k)^2$$

(设
$$f'(x_k) \neq 0$$
)。

利用牛顿公式(4.3) 即得误差关系式

$$x^* - x_{k+1} = \left[\frac{f''(c)}{2f'(x_k)}\right](x^* - x_k)^2$$
 (4.5)

误差公式 (4.5) 说明 X_{k+1} 的误差是与 X_k 误差的平方成比例的。当初始 误差(即 $x^* - x_0 \equiv \varepsilon_0$)是充分小时,以后迭代的误差将非常快的减少。 由计算公式(4.3)可知,用牛顿法求方程 f(x)=0 根,每计算一步需 要计算一次函数值 $f(x_{k})$ 以及一次导数 $f'(x_{k})$ 。

用牛顿法求 $f(x) = e^{-x/4}(2-x)-1=0$ 根。

显然, $f(0) \cdot f(2) < 0$, 方程于 0,2 内有一根.求导

$$f'(x) = e^{-x/4}(x-6)/4$$

牛顿法计算公式为

$$x_{k+1} = x_k - \frac{e^{-x_k/4}(2-x_k)-1}{e^{-x_k/4}(x_k-6)/4}, (k=0,1,2,\cdots)$$

$x^* \approx 0.783596, f(x_6) \approx -3.8 \times 10^{-8}$ 求得近似值

说明当初值 x_0 选取靠近根 x^* 时牛顿法收敛且收敛较快,当初 值不是选取接近方程根时, 牛顿法可能会给出发散的结果。

表 **5-4** (1) 取 $x_0 = 1.0$

\overline{k}	X_k
0	1.0
1	-1.155999
2	0.189438
3	0.714043
4	0.782542
5	0.783595
6	0.783596

表 5-5 (2) 取 $x_0 = 8.0$

k	\mathcal{X}_k	
0	8.0	
1	34.778107	
2	869.1519	
3		
•	•	
	发散	

4.2 牛顿法的局部收敛性

设有方程f(x)=0,显然,牛顿法是一种迭代法,即

$$x_{k+1} = g(x_k) \tag{4.6}$$

其中迭代函数为

$$g(x) = x - \frac{f(x)}{f'(x)}$$
 (设 $f'(x) \neq 0$)

于是,可用迭代法理论来考查牛顿方法的收敛性。

定理 5 (牛顿法局部收敛性) 设有方程 f(x)=0

- (1) 设f(x)在根 x^* 邻近具有连续二阶导数;
- (2) 且设 $f(x^*) = 0$, 但 $f'(x^*) \neq 0$, 则存在 x^* 的一个邻域 $S = \langle x | x^* - x | \le \delta \rangle$ 使得对于任意选取初值 $x_0 \in S$,由牛顿法产生的序列 $\{x_{i}\}$ 收敛于 x^{*} 且有

$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(x^*)}{2f'(x^*)}$$
(4.7)

由于牛顿法是一个迭代法, 其迭代函数为 证明

$$g(x) = x - \frac{f(x)}{f'(x)}$$

计算

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

由假设条件(2),则有

$$g'(x) = \frac{f(x^*)f''(x^*)}{(f'(x^*))^2} = 0 \qquad \text{EP} \quad (|g'(x^*)| < 1)$$

于是由<u>定理4</u>, 迭代法<u>(4.6)</u>(即牛顿法)为局部收敛。且由 **(4.5)** 取极限即得**(4.7)**。

牛顿法误差估计:

设 χ^* 为 f(x)=0 的 根, 其中f(x) 在 χ^* 邻近具有连续的一阶导数 ,且 $f'(x^*) \neq 0$, x_k 为由牛顿法得到的近似值,考虑 x_k 误差估计。

利用中值公式有

$$f(x_k) = f(x_k) - f(x^*) = f'(c_k)(x_k - x^*)$$

其中 C_k 在 X_k 和 $X^{\hat{}}$ 之间。

当 X_k 充分接近 χ^* 时,则有

$$x^* - x_k = -\frac{f(x_k)}{f'(c_k)}, f'(c_k) \approx f'(x_k)$$

又由牛顿法公式,则

$$x^* - x_k = -\frac{f(x_k)}{f'(x_k)} = x_{k+1} - x_k$$
 (4.8)

因此,在用牛顿法求 f(x)=0 单根 χ^* 时,一般可用 $|x_{k+1}-x_k|$ 来 估计 χ_{ι} 的误差, 即当 χ_{ι} 充分接近 χ^* 时, 若

$$\left| X_{k+1} - X_{k} \right| \leq \varepsilon$$

$$\left|x^* - x_k\right| \le \varepsilon$$

电算时,对于牛顿法可用当 $\left| x_{k+1} - x_{k} \right| \leq \varepsilon$ 时迭代终止。

例 8 对于例 3 使用牛顿法计算 [0,2] 内一实根。

解

$$f(x) = x^6 - x - 1, f'(x) = 6x^5 - 1$$

由牛顿法计算公式有:

$$\begin{cases} x_0 = 1.5 \\ x_{k+1} = x_k - \frac{x_k^6 - x_k - 1}{6x_k^5 - 1} (k = 0, 1, \dots) \end{cases}$$

方程的真根 $x^* = 1.134724138$, 求得的近似根 x_6 具有8位有

$$x^* - x_3 = -4.72 \cdot 10^{-3}$$

$$x_4 - x_3 = -4.68 \cdot 10^{-3}$$

表 5-6

k	\mathcal{X}_k	$f(x_k)$	$x_k - x_{k-1}$
0	1.5	8.89×10^{1}	
1	1.30049088	2.54×10^{1}	-2.00×10^{-1}
2	1.18148042	5.38×10^{-1}	-1.19×10^{-1}
3	1.13945559	4.92×10^{-2}	-4.20×10^{-2}
4	1.13477763	5.50×10^{-4}	-4.68×10^{-3}
5	1.13472415	6.08×10^{-8}	-5.35×10^{-5}
6	1.13472414	-4.00×10^{-9}	-1.00×10^{-8}

4.3牛顿法例子及框图

例9 设 c > 0, 试用牛顿法建立计算 $x = \sqrt{c}$ 的公式。

解 开方问题即为求解方程 $f(x) = x^2 - c = 0$ 。现用牛顿法解此方程,有(图 5-9)

图 5-9

$$f(x) = x^2 - c = 0, f'(x) = 2x$$

于是即得计算 $x = \sqrt{c}$ 的公式

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2}(x_k + \frac{c}{x_k})(k = 0, 1, 2, \dots)$$

易知,上述迭代过程,对任意选取初值 $x_0 > 0$ 都是收敛的。

试计算 $x = \sqrt{10}$, 要求 $|x_{k+1} - x_k| < 10^{-6}$ 时迭代终止。

表 5-7

k	X_k	
0	1.0	
1	5.5	
2	3.65909091	
3	3.19600508	
4	3.16245562	
5	3.16227767	
6	3.16227766	

所以 $\sqrt{10} \approx 3.16227766$

$$f(x) = (x-4.3)^2(x^2-54) =$$

 $x^4 - 8.6x^3 - 35.51x^2 + 464.4x - 998.46 = 0$ 的正实根。

解 方程在[7,8]内有一实根,在[4,5]内有二重根([8,5]10)。

(1) 用牛顿法计算[7,8]内单根,要求 $|x_{k+1}-x_k|$ <10⁻⁶。

表 5-8

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	7.0	
1	7.0485612	0.485612
2	7.36041	-0.125205
3	7.34857	-0.118×10^{-1}
4	7.34847	-0.102×10^{-3}
5	7.34847	-0.758×10^{-8}

 $x_5 = 7.34847$ 即为所要求的近似根。

(2) 用牛顿法求 [4,5] 内重根。

表 5-9

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	4.0	
1	4.145408	0.145408
2	4.22138	0.038952
3	4.26033	0.038952
4	4.28007	0.019740
: 5	4:29001	0.009939

需要迭代19次,则有 $x_{19} = 4.30000$,且 $|x_{19} - x_{18}| = 0.612 \times 10^{-6}$ 。

由此例可见,牛顿方法在单根附近具有较快的收敛速度(达到一定的精度所需要的迭代次数较少),而用一般牛顿法求[4,5]内二重根时收敛较慢。这种情况牛顿方法可改进如下:

设 x^* 为f(x) = 0二重根(即 $f(x) = (x - x^*)^2 g(x)$ 且 $g(x^*) \neq 0$)。这种情况可定义一个函数

$$u(x) = \frac{f'(x)}{f'(x)}$$

显然, x^* 为其单根,于是可用牛顿求法解 u(x) = 0 且计算公式为:

$$\begin{cases} \chi_{k+1} = \chi_k - \frac{u(x_k)}{u'(x_k)}, (k = 0, 1, \cdots) \\ u'(x) = \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} \\ = 1 - \frac{f(x)f''(x)}{(f'(x))^2} \end{cases}$$
(4.9)

表 5-10

k	\mathcal{X}_k	$x_k - x_{k-1}$
0	4.0	
1	4.308129	0.308129
2	4.300001	-0.812×10^{-2}
3	4.300000	-0.807×10^{-5}
4	4.300000	-0.660×10^{-9}

用(4.9) 公式计算 [4,5]内方程 f(x) = 0二重根,只迭代4 次就得到 满足精度要求 $|x_{k+1}-x_k|<10^{-6}$ 的二重根,但这方法付出的代价是需要计 算f"(x)。

牛顿法框图图 5-11

牛顿法: 设有方程 f(x) = 0 ,

- (1) 选择合适的初值 x_0 ;
- (2) $k = 1, 2, \dots, N_0$, 计算

$$x_{k+1} = x_k - f(x_k) / f'(x_k)$$

其中 N_0 表最大迭代数, 当 $|x_{k+1}-x_k|<\varepsilon$ 时, 迭代终止。

 $I_0 = 0$ 表示求得满足给定精度的近似根。

 $I_0 = 1$ 表示 $f'(x_0) = 0$ 计算中断。

 $I_0 = 2$ 表示迭代 N_0 次后精度要求仍不满足。

§ 5 正 割 法

若函数f(x) 比较复杂,求导可能有困难,此时可将牛顿公式中f'(x) 近似用差商来代替,即

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

于是得到计算公式:

$$\begin{cases} \chi_{k+1} = \chi_k - \frac{\dot{\eta}(\dot{x}_k)}{f(\chi_k) - f(\chi_{k-1})} (\chi_k - \chi_{k-1}) \\ (k = 1, 2, \dots) \end{cases}$$
 (5.1)

(5.1)就是正割法公式(图 5-12)。

图 5-12

正割法公式(5.1) 可从下述想法得到:

设方程 f(x)=0,且 $f(a)\cdot f(b)<0$,于 [a,b]连续,如果已知 x_{k-1},x_k ,则可用通过两点 $P_1(x_{k-1},f(x_{k-1}))$, $P_2(x_k,f(x_k))$ 的线性函数 P(x)近似代替 f(x),且求 P(x)=0的根记为 x_{k+1} 作为 f(x)=0的 近似根,其中 P(x) 为:

$$P(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k)$$

 X_{k+1} 即为(5.1),正割法与牛顿法相比,其收敛速度比较慢。

用正割法求方程 $f(x) = x^3 - 3x^2 - x - 9 = 0$ 于 (-2,-1.5)内的 根。

取初值 $x_0 = -2, x_1 = -1$, 计算结果见表5-11。 解

表 5-11

k	\mathcal{X}_k	$f(x_k)$
0	-2	-9
1	-1	6
2	-1.4	1.776000
3	-1.499	0.389743
4	-1.526841	-0.026330
5	-1.525079	0.000348
6	-1.525102	0.000000

§ 6 迭代法的收敛阶和Aitken加速方法

在迭代法<u>定理4</u>的条件下,且 $g'(x^*) \neq 0$,由中值公式有

$$x^* - x_{k+1} = g(x^*) - g(x_k) = g'(c)(x^* - x_k)$$
 (6.1)

其中c 在 x^* 与 x_k 之间,且由 $x_0 \in S$,于是 $x_k \in S, c \in S$ 。又由 (6.1) 式及g'(x) 的连续性, χ_k 的误差 $\chi^* - \chi_k$ 有关系

$$\lim_{k \to \infty} \frac{x^* - \chi_{k+1}}{x^* - \chi_k} = g'(x^*)$$
 (6.2)

由<u>定理5</u>可知,求解方程 f(x)=0的牛顿法产生的 X_k 的误差 X^*-X_k 有关系

$$\lim_{k \to \infty} \frac{x^* - \chi_{k+1}}{(x^* - \chi_k)^2} = -\frac{f''(x^*)}{2f'(x^*)}$$
(6.3)

一般情况,设有方程 x = g(x) 及迭代过程

$$\begin{cases} \chi_0(\dot{\eta}) \\ \chi_{k+1} = g(\chi_k), (k = 0, 1, 2, \cdots) \end{cases}$$
 (6.4)

且设 $\{x_k\}$ 收敛于 x^* 。

如果误差有关系

$$\lim_{k \to \infty} \frac{\left| \chi^* - \chi_{k+1} \right|}{\left| \chi^* - \chi_k \right|^p} = c \neq 0$$
 (6.5)

其中P为实数且 $P \ge 1$,C为正常数,称迭代过程为P 阶收敛,当P = 1时(且要求0<c<1)称迭代过程为**线性收敛**,当P > 1 时称迭代过程为**超线性收敛**,当P = 2时称迭代过程为二次收敛(或为平方收敛)。当一迭代过程为P 阶收敛时,(6.5) 表示当 X_k 充分接近根 X^* 时有

$$|x^* - x_{k+1}| \approx c |x^* - x_k|^p$$
 (6.6)

(6.6)反映了 X_k 在接近收敛于 X 过程中,每迭代一次近似解误差的缩减速度,当 C 数值不大时,近似解误差下降速度主要取决于(6.6)中的幂次 P 。

56

当 P 越大, $\{x_k\}$ 收敛于 x^* 速度就越快,于是 P可以作为衡量迭代法 收敛速度的一种度量。因此,P 值的大小是衡量一个迭代过程优劣的标志之一。

于是,一般迭代法 $x_{k+1} = g(x_k)$,当 $g'(x^*) \neq 0$ 时迭代过程为线性收敛(P=1,(6.2)式)。牛顿法具有二阶收敛(由<u>定理5</u>及(6.3)

式,P=2)。牛顿法在接近收敛过程中,近似根 x_k 的误差将是平方地下降,因此牛顿法在单根邻近具有 较快的收敛速度。但牛顿法对初值要求比较苛刻。初值选取不好,牛顿法可能发散(图5-13)。当 x^* 为f(x)=0二重根时,则牛顿法为线性收敛。

对于收敛较慢数列 $\{x_k\}$ (例如, χ_k 由迭代过程 $\chi_{k+1} = g(\chi_k)$ 产生),一个补救的方法是采用加速度公式。

设有

$$\lim_{k\to\infty} \chi_k = \chi^*, \coprod \lim_{k\to\infty} \frac{\chi^* - \chi_{k+1}}{\chi^* - \chi_k} = c(0 < c < 1)$$

图5-13

于是

$$\frac{\chi^* - \chi_{k+1}}{\chi^* - \chi_k} \approx C \tag{6.7}$$

则 χ^* 能由 χ_k , χ_{k+1} , χ_{k+2} 用下述方程确定, 事实上, 由(6.7)有

$$\frac{\chi_{k+2} - \chi^*}{\chi_{k+1} - \chi^*} \approx \frac{\chi_{k+1} - \chi^*}{\chi_k - \chi^*}$$

解出 χ^* , 则得

$$\chi^* \approx \frac{\chi_k \chi_{k+2} - \chi_{k+1}^2}{\chi_{k+2} - 2\chi_{k+1} + \chi_k}$$

$$\approx \chi_k - \frac{(\chi_{k+1} - \chi_k)^2}{\chi_{k+2} - 2\chi_{k+1} + \chi_k} \equiv \chi'$$
(6.8)

上式说明,当<u>(6.7)</u>得到较好的满足时,则 X' 是近似值 X_{k+2} 的很大的 改进。于是,由数列 $\{x_k\}$ 可定义一新的数列 $\{x_k\}$

定义

$$\hat{x}_{k} = x_{k} - \frac{(x_{k+1} - x_{k})^{2}}{x_{k+2} - 2x_{k+1} + x_{k}}, (k = 0, 1, 2 \cdots)$$
 (6.9)

且序列 $\left\{ \stackrel{\hat{x}}{x_k} \right\}$ 可能比 $\left\{ x_k \right\}$ 更快的收敛于 x^* 。这种由给出的数列 $\left\{ x_k \right\}$ (收敛较慢)来计算新数列 $\left\{ \stackrel{\hat{x}}{x_k} \right\}$ 的方法称为**Aitken加速方法**。

当迭代过程收敛较慢时,一般可用**Aitken**方法加速,但有时**Aitken**方法加速可能失败,如当 g'(x)起伏很大,初值 x_0 和根 x^* 有较大的距离时,**Aitken**加速就可能失败。

将 Aitken 加速方法用于迭代法: 设有方程 x = g(x), x_0 为初值。

(1) 迭代

$$y_k = g(x_k), z_k = g(y_k) (k = 0,1,2,\cdots)$$
 (6.10)

(2) 加速

$$\chi_{k+1} = \chi_k - \frac{(y_k - \chi_k)^2}{z_k - 2y_k + \chi_k} (k = 0, 1, 2, \dots)$$
(6.11)

例 12 设有方程 $x = e^{-x}$, 试用 Aitken 方法求 [0.5,0.6]内方程根的近似值。

解 迭代过程

$$\begin{cases} x_0 = 0.5 \\ x_{k+1} = e^{-x_k}, (k=0,1,2\cdots) \end{cases}$$

计算到 $x_{23} = 0.567143438$ 方程的精确解为

$$x^* = 0.56714329 \cdots$$

$$|\chi_{23} - \chi^*| \approx 0.15 \times 10^{-6}$$

现用法加速(即<u>(6.10)</u>,(6.11)式)。结果如<u>表5-12</u>。且

$$|\chi_2 - \chi^*| \approx 0.2 \times 10^{-7}$$

加速效果较好。

表 5-12

k	\mathcal{X}_k	${\cal Y}_k$	Z_k
0	0.5	0.60653066	0.5423921
1	0.56762388	0.56687079	0.56729786
2	0.56714331		

小 结

本章讨论了计算机上常用的求解非线性方程一些数值方法。

二分法可用来计算 f(x)=0 于[a,b]的所有实根,且方法简单,对函数 f(x) 只要连续即可。但二分法收敛较慢。

解非线性方程的迭代法。是一种逐次逼近的方法。迭代法一般具有线性收敛速度。此时。可采用Aitken加速方法,使其收敛得到加速。

牛顿方法也是一种迭代法,牛顿法的特点是在单根邻近收敛快。具有2价收敛速度,但牛顿法初值选取要求比较可刻,即要求初值选取充分靠近方程的根,否则牛顿法可能不收敛。利用牛顿法求重根时收敛缓慢。

如果计算函数 f(x) 的一介导数比较复杂,可采用正割法求根。正割法是利用线性内插或外插来改善初值 x_0, x_1 的一种插值方法。公式中不需要计算 f'(x) 且正割法收敛阶为1.618,但初值一般要求充分靠近根。

习 题 五

- 1.设方程为 $x^4 3x + 1 = 0$, 用二分法求方程在[0.3, 0.4]内的一个实根,使精确到小数后第 5 位。
 - 2.用二分法求方程 $x^3 + x 4 = 0$,在.[1, 2]内的根其误差满足 $|x^* x_k| < 10^{-4}$ 所需要分半次数。
 - 3. 设有方程 $f(x) = e^{x} \sin x = 0$:
 - (1) f(x) = 0于 $(-2\pi, \pi)$ 内有几个根;
- (2) 试将 f(x) = 0于 $(-2\pi, \pi)$ 转化为等价方程组 x = g(x) (可有几种)。
- 4. 设有方程 $x = \cos x$,试确定有根区间 [a,b]且使取 $x_0 \in [a,b]$ 时迭代过程 $x_{k+1} = \cos x_k$ 收敛。

5. 设有方程
$$f(x) = e^x + 10x - 2 = 0$$
。试用迭代法

$$\chi_{k+1} = (2 - e^x k)/10$$
 (\text{\text{\$\pi}} \chi_0 = 0.0, k = 0,1\cdots)

求方程近似根,要求精确到小数后第3位。

6. 为求方程 $x^3 - x^2 - 1 = 0$ 在 $x_0 = 1.5$ 附近一根,现将方程转化为等价形式且建立迭代公式:

(1)
$$x = 1 + \frac{1}{x^2}$$
, 迭代公式 $x_{k+1} = 1 + \frac{1}{x_k^2} \equiv g_1(x_k)$;

(2)
$$x^2 = \frac{1}{x-1}$$
, 迭代公式 $x_{k+1} = \frac{1}{\sqrt{x_k - 1}} \equiv g_2(x_k)$.

这两种迭代过程都收敛吗?

7. 设有方程 f(x)=0 ,其中设f'(x) 存在,且对一切 x 值满足 $0 < m \le f'(x) \le M$,构造迭代过程

$$\chi_{k+1} = \chi_k - \lambda f(x), (k = 0,1,2,\dots; \lambda$$
为常数.)

试证明当 λ 选取为满足 $0 < \lambda < \frac{2}{M}$ 的任意数时,对任意选取的初值 \mathcal{X}_0 ,上述迭代过程收敛。

- 8. 用牛顿访法求下述满足 $|x_{k+1}-x_k| < 10^{-5}$ 的近似根。
- (1) $x^2 + 10\cos x = 0$;
- (2) $f(x) = \arctan x = 0$
- 9. 用牛顿法计算具有4位有效数字的近似值。
- 10. 应用牛顿法于方程 $x^n a = 0 (a > 0)$,试导出一个求 $x = \sqrt[n]{a}$ 的迭代过程。
 - 11. 设有方程 $f(x) = x^3 + 4x^2 10 = 0$
 - (1) 画出 y = f(x)的草图;
- (2) 试分别取初值 $x_0 = 1.0, x_0 = -5$, 用牛顿法求 f(x) = 0于 [1,2] 实根且要求 $|x_{k+1} x_k| < 10^{-3}$ 。

- 12. 设f(x)于[a,b] 连续且 $f(a) \cdot f(b) < 0$, f(x) = 0于[a,b]内有一实根,试建立试位法计算公式。
- (1) 每次搜索有根区间 $[a_k,b_k]$;
- (2) 且于 $[a_k, b_k]$ 用过两点 $(a_k, f(a_k)), (b_k, f(b_k))$ 直线近似代替 f(x) 建立求根公式且划出试位法计算框图。
- 13. 选取常数 λ 使得

$$x_{k+1} = (\lambda x_k + 1 - \sin x_k)/(1 + \lambda)$$

成为求 $1-x-\sin x=0$ 的 $x_0=0.5$ 附近的根的快速收敛过程。且用初值 $x_0=0.5$ 计算迭代的前几步。