数值分析

一 科学与工程计算基础

任课教师: 黄忠亿

清华大学数学科学系

目录

- 1 引言
- 2 线性方程组的直接解法
- 3 线性方程组的迭代解法
- 4 非线性方程(组)迭代解法
- 5 代数特征值问题的求解
- 6 插值法
 - 引言
 - 多项式插值
 - 分段低次插值
 - 样条插值 (spline interpolation)
 - ENO (Essentially Non-Oscillatory) 插值

2/106

插值法的意义

我们首先要问一个问题: 什么是插值? 为什么要做插值?

在了解某些物理过程之前,它们就是所谓的"黑匣子"或"灰匣子". 我们可以通过科学实验得到一些数据,即我们只知道相应的输入与输出,但对其之间满足什么函数关系并不很清楚.

对另外一大类问题,我们虽然知道其函数关系,但是表达式太复杂,而实际问题又常常需要我们快速计算出某些函数值 (例如一些实时控制问题). 这需要我们寻求另外的简洁表达式.

总之我们常常会面临这样的问题: 有一组数据 $(x_i, f(x_i))$ (量很大), 但往往需要求得另外一些函数值 $f(x^*) = ?$

这就需要做所谓的"插值"!

插值法的定义

定义 6.1

设 $f:[a,b]\to\mathbb{R}$, $x_0,x_1,\cdots,x_n\in[a,b]$ 为互异的 n+1 个点,令 $y_i=f(x_i),\ i=0,\cdots,n$. 所谓插值法,即构造一个一欲计算的简单函数 φ 来近似 f,并且满足

(6.1)
$$\varphi(x_i) = y_i \equiv f(x_i), \quad i = 0, \dots, n$$

这里 (6.1) 式通常称为插值条件, f 称为被插值函数, x_0, \dots, x_n 称为插值节点, [a,b] 称为插值区间, φ 称为插值函数.

一般来说, φ 可取成多项式、分段定义的多项式、三角函数、有理函数等. 当 φ 为多项式时, 特别称之为插值多项式, 相应方法称为多项式插值法.

插值法中的基本问题

从上述定义我们可以看到,有以下三个问题需要解决:

- ① 确定函数类 \mathfrak{S} , $s.t. \varphi \in \mathfrak{S}$.
- ② 验证在 \mathfrak{S} 中<mark>存在唯一的 ϕ 満足 (6.1), 并计算出 φ 的表达式.</mark>
- ③ 做误差估计: 令 $R(x) = f(x) \varphi(x)$, 估计 $||R|| \le$? 并做稳定 性估计. 方法本身也有系统误 主要和舍入 差,也会有一些截断误 误差相关

我们先从最简单的多项式插值研究起.

目录

- 1 引言
- 2 线性方程组的直接解法
- 3 线性方程组的迭代解法
- 4 非线性方程(组)迭代解法
- 5 代数特征值问题的求解
- 6 插值法
 - 引言
 - 多项式插值
 - 分段低次插值
 - 样条插值 (spline interpolation)
 - ENO (Essentially Non-Oscillatory) 插值

Lagrange 插值法

多项式插值即选取函数类为 $\mathfrak{S}=P_n$, 即不超过 n 次的多项式组成的线性空间. 我们要从 P_n 中找一个多项式 $p_n(x)$, 希望它能满足插值条件

(6.2)
$$p_n(x) = y_i \equiv f(x_i), \quad i = 0, 1, \dots, n$$

考虑我们要研究的几个问题,我们选取了函数类之后还需讨论满足上述条件的多项式之存在唯一性.我们需要用到以下几个关于多项式的结论:

- $p_n(x) \not\equiv 0$ 恰好有 n 个复根.
- $p_n(x)$ 若有超过 n 个根,则它恒为零 $p_n(x) \equiv 0$;
- $\{x^k\}_{k=0}^n$ 是线性无关的函数组,构成了 P_n 空间的一组基.

黄忠亿 (清华大学) 北京, 清华大学 7/106

Lagrange 插值法

利用上面几条多项式的知识, 我们马上有

定理 6.1

设 $\{x_i\}_{i=0}^n \subset [a,b]$ 为互异的 n+1 个点, 对于任给的一组函数值 $\{y_i\}_{i=0}^n \subset \mathbb{R}$, 存在唯一的多项式 $p_n(x) \in P_n$, 满足插值条件 (6.2): $p_n(x_i) = y_i$, $i = 0, \cdots, n$.

$$\triangleleft$$
 任何 n 次多项式 $p_n(x) = \sum_{k=0}^n a_k x^k$. 想让它满足插值条件 (6.2),

即

$$\sum_{k=0}^{n} a_k x_i^k = y_i, \quad i = 0, 1, \dots, n.$$

因为 $\{x_i\}_{i=0}^n \subset [a,b]$ 互异, 所以范德蒙行列式 $\left|(x_i^k)\right| \neq 0$, 因此上

面线性方程组存在唯一解 $\{a_k\}_{k=0}^n$. \triangleright

黄忠亿 (清华大学) 北京, 清华大学

Lagrange 插值公式(1794年Lagrange得到)

下面我们看如何给出插值多项式的表达式. 在Lagrange表示下, 我们试图通过先构造基函数的办法来给出表达式:

即设 $p_n(x) = \sum_{k=0}^n y_k l_k(x)$,其中 $y_k = f(x_k)$, $l_k(x)$ 为线性无关的 n 次多项式且满足

(6.3)
$$l_k(x_m) = \delta_{km} = \begin{cases} 0, & k \neq m \\ 1, & k = m \end{cases}$$
 $k, m = 0, 1, \dots, n$

这样令

(6.4)
$$l_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}, \quad k = 0, 1, \dots, n$$

即可满足(6.3)式要求. 即 $\{l_k(x)\}_{k=0}^n$ 构成了 P_n 的一组基函数.

黄忠亿 (清华大学) 北京, 清华大学

Lagrange 插值法

利用表达式 (6.4), 可直接验证有 $p_n(x_i) = y_i = f(x_i)$, 即满足插值条件 (6.2).

如果还有多项式 $q_n \in P_n$, 满足插值条件(6.2): $q_n(x_i) = f(x_i)$

$$\Longrightarrow (p_n-q_n)(x_i)=0$$
, $i=0,1,\cdots,n$

 $\implies p_n - q_n \equiv 0$, 即证明了 n 次插值多项式的唯一性.

例 6.1 (过互异两点 $(x_0, y_0), (x_1, y_1)$ 的直线 (n = 1) 只有一条:)

$$L_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1 = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

我们看到如果<mark>想通过增加节点数来试图提高逼近精度时</mark>,用 Lagrange 型插值公式不方便,因为<mark>每个基函数表达式都变了</mark>. 我们下面研究另一种表达形式. 阶数较高时重算较为麻烦

黄忠亿 (清华大学) 数值分析 北京, 清华大学 10 / 106

为了给出Newton型插值公式,我们先给出均差(或者也称差 商, divided differences)的概念.

假设我们有 n+1 个互异的点 $x_i (i=0,\cdots,n) \in [a,b]$ 及相应 的 n+1 个值 $y_i = f(x_i)$ $(i = 0, \dots, n)$.

定义 6.2 (均差的定义)

分别称

$$D_j^0 \equiv f[x_j] = f(x_j),$$

$$D_j^k \equiv f[x_j, x_{j+1}, \cdots, x_{j+k}] = \frac{D_{j+1}^{k-1} - D_j^{k-1}}{x_{j+k} - x_j}, \quad k = 1, 2, \cdots, n$$

$$j = 0, 1, \cdots, n - k$$

为 f(x) 在 $\{x_i\}$, $\{x_i, \dots, x_{i+k}\}$ 上的 0 阶、k 阶均差.

黄忠亿 (清华大学) 数值分析 北京,清华大学 11 / 106

均差的计算顺序

也就是说

$$D_j^k = \frac{f[x_{j+1}, \cdots, x_{j+k}] - f[x_j, \cdots, x_{j+k-1}]}{x_{j+k} - x_j} \equiv f[x_j, \cdots, x_{j+k}].$$

实际计算顺序如下:

x_k	$f[x_k]$	一阶均差	二阶均差
x_0	$D_0^0 = f(x_0)$		
x_1	$D_1^0 = f(x_1) \hookrightarrow$	$D_0^1 = f[x_0, x_1]$	
x_2	$D_2^0 = f(x_2) \hookrightarrow$	$D_1^1 = f[x_1, x_2] \hookrightarrow$	$D_0^2 = f[x_0, x_1, x_2]$
x_3	$D_3^0 = f(x_3) \hookrightarrow$	$D_2^1 = f[x_2, x_3] \hookrightarrow$	$D_1^2 = f[x_1, x_2, x_3]$
	_		_

 $x_4 \quad D_4^0 = f(x_4) \hookrightarrow \quad D_3^1 = f[x_3, x_4] \hookrightarrow \quad D_2^2 = f[x_2, x_3, x_4]$

均差的计算顺序

例 6.2 (举例来看)

$$x_{k} D_{j}^{0} = f_{k} D_{j}^{1} D_{j}^{2} D_{j}^{3}$$

$$x_{0} = 0 f_{0} = 0$$

$$x_{1} = 1 f_{1} = 2 \hookrightarrow D_{0}^{1} = 2$$

$$x_{2} = 3 f_{2} = 8 \hookrightarrow D_{1}^{1} = 3 \hookrightarrow D_{0}^{2} = \frac{1}{3}$$

$$x_{3} = 4 f_{3} = 9 \hookrightarrow D_{2}^{1} = 1 \hookrightarrow D_{1}^{2} = -\frac{2}{3} \hookrightarrow D_{0}^{3} = -\frac{1}{4}$$

关于均差我们有以下重要性质:

性质1. k 阶均差 $D_j^k = f[x_j, \dots, x_{j+k}]$ 是函数值 $f(x_j), \dots, f(x_{j+k})$ 的线性组合, 即

(6.5)
$$D_j^k = f[x_j, \dots, x_{j+k}] = \sum_{l=j}^{j+k} \frac{f(x_l)}{\omega'_{jk}(x_l)}, \qquad k = 0, 1, \dots, n$$

 $j = 0, \dots, n-k$
 其中 $\omega_{jk}(x) = \prod_{l=j}^{j+k} (x - x_m)$, 这样 $\omega'_{jk}(x_l) = \prod_{l=j}^{j+k} (x_l - x_m)$.

 \triangleleft 我们对 k 用归纳法来证明之. k = 0 显然, 此时对所有 j,

$$\omega_{j0}(x)=x-x_{j}$$
, 即 $\omega_{j0}'(x_{l})\equiv 1$, 因而此时 (6.5) 式显然成立.

$$k = 1$$
 也显然, $f[x_j, x_{j+1}] = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j} = \frac{f(x_j)}{x_j - x_{j+1}} + \frac{f(x_{j+1})}{x_{j+1} - x_j}$.

下面归纳假设 k-1 时 (6.5) 式成立, 即

黄忠忆 (清华大学) 数值分析 北京. 清华大学 14/106

$$D_j^{k-1} = \sum_{l=j}^{j+k-1} \frac{f(x_l)}{\omega'_{j,k-1}(x_l)} = \sum_{l=j}^{j+k-1} \frac{f(x_l)}{\prod_{m=j,m\neq l}^{j+k-1} (x_l - x_m)}$$

这样
$$D_j^k = \frac{D_{j+1}^{k-1} - D_j^{k-1}}{x_{j+k} - x_j}$$

$$= \frac{1}{x_{j+k} - x_j} \left[\sum_{l=j+1}^{j+k} \frac{f(x_l)}{\prod\limits_{m=j+1, m \neq l}^{j+k} (x_l - x_m)} - \sum_{l=j}^{j+k-1} \frac{f(x_l)}{\prod\limits_{m=j, m \neq l}^{j+k-1} (x_l - x_m)} \right]$$

$$= \frac{1}{x_{j+k} - x_j} \left[\sum_{\substack{l=j+1 \ m \neq l}}^{j+k-1} f(x_l) \prod_{\substack{m=j+1 \ m \neq l}}^{j+k-1} \frac{1}{x_l - x_m} \left(\frac{1}{x_l - x_{j+k}} - \frac{1}{x_l - x_j} \right) \right]_{i=j+1}^{j+k-1}$$

 $m \neq l$

$$+ \frac{f(x_{j+k})}{x_{j+k} - x_j} \prod_{m=j+1}^{j+k-1} \frac{1}{x_{j+k} - x_m} - \frac{f(x_j)}{x_{j+k} - x_j} \prod_{m=j+1}^{j+k-1} \frac{1}{x_j - x_m}$$

$$= \frac{1}{x_{j+k} - x_j} \left[\sum_{l=j+1}^{j+k-1} f(x_l) \left(\prod_{m=j+1}^{j+k-1} \frac{1}{x_l - x_m} \right) \frac{x_{j+k} - x_j}{(x_l - x_{j+k})(x_l - x_j)} \right]$$

$$+ f(x_{j+k}) \prod_{m=j}^{j+k-1} \frac{1}{x_{j+k} - x_m} + f(x_j) \prod_{m=j+1}^{j+k} \frac{1}{x_j - x_m}$$

$$= \sum_{l=j}^{j+k} f(x_l) \prod_{m=j}^{j+k} \frac{1}{x_l - x_m} = \sum_{l=j}^{j+k} \frac{f(x_l)}{\omega'_{jk}(x_l)}.$$

$$i \mathbb{E}^{\sharp} \triangleright$$

黄忠亿 (清华大学) 北京, 清华大学 16 / 106

性质**2.** 均差具有对称性,即任意改变节点的次序 $f[x_j,\cdots,x_{j+k}]$ 的值不变. 即 $f[x_j,\cdots,x_{j+k}]=f[x_{i_0},\cdots,x_{i_k}]$,其中 (i_0,i_1,\cdots,i_k) 是 $(j,j+1,\cdots,j+k)$ 的任意一个排序.

△由性质1, (6.5) 式右端的求和显然与排序无关,

$$D_j^k = f[x_j, \dots, x_{j+k}] = \sum_{l=j}^{j+k} \frac{f(x_l)}{\omega'_{jk}(x_l)},$$

因为它取遍了所有下标. ▷

性质3. 若 $f[x, x_0, \dots, x_k]$ 是 x 的 m 次多项式,则 $f[x, x_0, \dots, x_k, x_{k+1}]$ 是 x 的 m-1 次多项式.

⊲由定义

$$f[x, x_0, \dots, x_k, x_{k+1}] = \frac{f[x_0, \dots, x_k, x_{k+1}] - f[x, x_0, \dots, x_k]}{x_{k+1} - x}.$$

因为 $f[x, x_0, \dots, x_k]$ 是 x 的 m 次多项式, 可设其为 $p_m(x)$.

由性质 2 有:
$$f[x_0, x_1, \dots, x_{k+1}] = f[x_{k+1}, x_0, \dots, x_k] = p_m(x_{k+1})$$
.

这样记
$$p_m(x_{k+1}) - p_m(x) \equiv q_m(x)$$
,有 $q_m(x_{k+1}) = 0$,即

$$q_m(x) = (x - x_{k+1})q_{m-1}(x)$$

$$\implies f[x, x_0, \dots, x_k, x_{k+1}] = -q_{m-1}(x)$$
 为 $m-1$ 次多项式. \triangleright

推论 6.1

若 f(x) 为 n 次多项式, 那么 $f[x, x_0, \dots, x_n] \equiv 0$.

黄忠亿 (清华大学) 数值分析 北京,清华大学 18/106

4 D > 4 P > 4 B > 4 B > ...

性质**4.** 设 f(x) 在定义域 [a,b] 上有 n 阶导数,且 x_0, \dots, x_n 为 [a,b] 上互异的 n+1 个点.则存在 $\xi \in (\min_i x_i, \max_i x_i)$,使得 $f[x_0, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi)$.

 \lhd 记 $L_n(x)$ 为 f(x) 关于 $\{x_i\}_{i=0}^n$ 的插值多项式, 用Lagrange公

式有
$$L_n(x) = \sum_{k=0} f(x_k) l_k(x)$$
, 其中

$$l_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i} = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}, \text{ id } \underline{\underline{\textbf{y}}} \ \omega_{n+1}(x) = \prod_{i=0}^n (x - x_i).$$

令 $R_n(x) = f(x) - L_n(x)$ 为插值余项,由插值条件 $L_n(x_i) = f(x_i)$

知 $R_n(x_i) = 0$, $0 \le i \le n$. 由Roll定理即存在 $\xi \in (\min_i x_i, \max_i x_i)$

黄忠亿 (清华大学) 数值分析 北京,清华大学 19/106

s.t.
$$R^{(n)}(\xi) = f^{(n)}(\xi) - L_n^{(n)}(\xi) = 0.$$

由 $L_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$ 为 n 次多项式,即

$$f^{(n)}(\xi) = L^{(n)}(\xi) = \sum_{k=0}^{n} f(x_k) l_k^{(n)}(\xi) = n! \sum_{k=0}^{n} f(x_k) \frac{1}{\omega'_{n+1}(x_k)}$$
(由性质1) = $n! f[x_0, x_1, \dots, x_n]$

$$\implies f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi).$$

利用均差的定义和性质可以立即得到Newton型插值公式:

$$f[x, x_0] = \frac{f(x) - f(x_0)}{x - x_0} \Longrightarrow f(x) = f(x_0) + (x - x_0)f[x, x_0]$$

$$f[x, x_0, x_1] = \frac{f[x, x_0] - f[x_0, x_1]}{x - x_1}$$

$$\Longrightarrow f[x, x_0] = f[x_0, x_1] + (x - x_1)f[x, x_0, x_1]$$

$$\begin{aligned}
\widetilde{f}[x, x_0, \cdots, x_{n-1}] &= f[x_0, \cdots, x_n] + (x - x_n) f[x, x_0, \cdots, x_n] \\
&\implies f(x) = f(x_0) + (x - x_0) f[x_0, x_1] + \cdots + \prod_{j=0}^{n-1} (x - x_j) f[x_0, \cdots, x_n]
\end{aligned}$$

这样我们就得到以下定理 (规定 $\Pi_{i=0}^{-1}(x-x_i)\equiv 1$)

定理 6.2

在 Newton 型插值公式中, 前面定理 6.1 中的 n 阶插值多项式 p_n 也可表示为

$$p_n^N(x) = \sum_{k=0}^n D_0^k \prod_{i=0}^{k-1} (x - x_i)$$

$$= f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

 \triangleleft 对 n 进行归纳证明. n=0,1 显然成立.

黄忠亿 (清华大学) 数值分析 北京, 清华大学 22 / 106

设 n-1 时有 $p_{n-1}^N = L_{n-1}$ (前面定义的 Lagrange 型公式). 再令

$$q_n(x) = L_n(x) - p_n^N(x) \equiv L_n(x) - p_{n-1}^N(x) - f[x_0, \dots, x_n] \prod_{i=0}^{n-1} (x - x_i).$$

由性质1及Lagrange插值基函数表达式知(参看性质4中证明过 程), $L_n(x)$ 中 x^n 的系数即为 $D_0^n = f[x_0, \dots, x_n]$.

这样 $q_n(x)$ 中 x^n 系数为零, 即 q_n 实际上为 n-1 次多项式.

再由归纳假设, p_n^N $_1(x_i) = f(x_i)$, $i = 0, \dots, n-1$.

即
$$q_n(x_i) = 0, i = 0, \dots, n-1 \Longrightarrow q_n \equiv 0$$
. 即 $p_n^N(x) = L_n(x)$.

即 Newton型插值公式与Lagrange型插值公式实际是一样的.

黄忠亿 (清华大学) 数值分析 北京. 清华大学 23 / 106

我们已经构造出 f(x) 在点 x_0, \cdots, x_n 上的插值多项式 $p_n(x)$,一般来说我们需要用 $p_n(x)$ 来代替 f(x) 计算一些 f(x) 在其他点的值. 这样还需要<mark>估计误差 $f(x) - p_n(x)$ </mark> 在非节点上有多大?

记插值多项式 $p_n(x)\equiv L_n(f)(x)$, 即看成一个映射 $L_n:f\to p_n$. 令插值余项为 $R_n(f)\equiv f-L_n(f)$. 我们有以下定理

定理 6.3 (插值余项估计)

设 $f:[a,b]\to\mathbb{R}$ 是 n+1 次连续可微函数, $p_n(x)$ 为在 n+1 个不同点 $x_i\in[a,b]$ 上的插值多项式, 则插值余项 $R_n(f)$ 有以下表达式

$$R_n(f)(x) = \frac{f^{(n+1)}(\eta)}{(n+1)!} \prod_{j=0}^n (x - x_j), \quad \forall x \in [a, b].$$

其中 $\eta \in (a,b)$ 为依赖于 x 的一个点.

黄忠亿 (清华大学) 北京, 清华大学 24 / 106

 \lhd 显然若 $x=x_i\ (i=0,\cdots,n)$ 上式左右都为零,等式自然成立。故下面设 $x\neq x_i$, $(i=0,\cdots,n)$ 。由上面性质4中定义,令 $\omega_{n+1}(x)=\prod_{j=0}^n(x-x_j)$. 任意固定 x, 再定义 g(y) 如下:

$$g(y) = f(y) - L_n(f)(y) - \omega_{n+1}(y) \frac{R_n(f)(x)}{\omega_{n+1}(x)}.$$

显然 g(y) 作为 y 的函数 也是 n+1 次连续可微的,且 $g(x_i)=0$, $i=0,\cdots,n$ 及 g(x)=0. 因此由Roll定理值,存在 $\eta\in(a,b)$ s.t.

$$g^{(n+1)}(\eta) = 0.$$

即 0 =
$$f^{(n+1)}(\eta) - (L_n(f))^{(n+1)}(\eta) - \omega_{n+1}^{(n+1)}(\eta) \cdot \frac{R_n(f)(x)}{\omega_{n+1}(x)}$$

= $f^{(n+1)}(\eta) - (n+1)! \frac{R_n(f)(x)}{\omega_{n+1}(x)}$. 证毕. \triangleright

推论 6.2

推论 6.3

记
$$h = \max_{1 \le j \le n} |x_j - x_{j-1}|$$
 称为步长, $M_{n+1} = \|f^{(n+1)}\|_{\infty}$,则

$$||R_n(f)||_{\infty} \equiv ||f - L_n(f)||_{\infty} \le \frac{h^{n+1}M_{n+1}}{4(n+1)}.$$

 $rac{1}{2} \forall x \in [a, b]$,假设 $x_k \le x \le x_{k+1}$. 利用 $|ab| \le (\frac{|a|+|b|}{2})^2$ 有

$$|(x-x_k)(x-x_{k+1})| \le \left(\frac{x-x_k+x_{k+1}-x}{2}\right)^2 \le \frac{h^2}{4}.$$

黄忠亿 (清华大学) 北京, 清华大学 26 / 106

当 l > k + 1 时, 我们有

$$|x - x_l| \le |x - x_{k+1}| + |x_{k+1} - x_l| \le h + (l - k - 1)h = (l - k)h.$$

当 l < k 时, 我们有

$$|x - x_l| \le |x - x_k| + |x_k - x_l| \le h + (k - l)h = (k - l + 1)h.$$

这样

$$|\omega_{n+1}(x)| = \prod_{j=0}^{n} |x - x_j| \le \frac{h^2}{4} \prod_{l=0}^{k-1} [(k-l+1)h] \cdot \prod_{l=k+2}^{n} [(l-k)h]$$
$$= \frac{h^{n+1}}{4} 2 \cdot 3 \cdots (k+1) \cdot 2 \cdot 3 \cdots (n-k) \le \frac{h^{n+1}}{4} n!$$

再利用上一推论即得证. ▷

黄忠亿 (清华大学) 北京, 清华大学 27 / 106

来看一个例子:

例 6.3 (假设有一张关于 $\sin x$ 的函数表 (有6位有效数字):)

 $\sin(0.32) = 0.314567$, $\sin(0.34) = 0.333487$, $\sin(0.36) = 0.352274$.

欲求 sin(0.3367) 的近似值.

解: 若使用线性插值: $\sin(0.3367) \approx y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \approx 0.330365$

其误差为 $|R_1(f)| \le \frac{h^2}{4 \times 2} \max_{x \in [x_0, x_1]} |f''(x)| \approx 1.67 \times 10^{-5}$ (4位有效数字)

若使用二次插值:

$$\sin(0.3367) \approx y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \approx 0.330374$$

误差为
$$|R_2(f)| \leq \frac{h^3}{4 \times 3} \max_{x \in [x_0, x_2]} |f'''(x)| \approx 6.3 \times 10^{-7} \left($$
实际为 $1.9 \times 10^{-7} \right)$ 有6位有效数字

黄忠亿 (清华大学) 北京, 清华大学 28 / 106

多项式插值余项估计—一致收敛的例子

从前面定理6.3的推论6.3中可以看到, 如果被插值函数 f(x)的<mark>任意阶导数在区间 [a,b] 上都有界</mark>, 那么插值多项式 $L_n(f)$ 随 着 $n \to \infty$ 会在无穷范数意义下收敛到 f(x).

例 6.4

设
$$f(x) = \underset{n}{\sin x}, x_0, \cdots, x_n \in [0, \pi]$$
 互不相同,则

$$L_n(f)(x) = \sum_{j=0} f(x_j) l_j(x) \ \hbox{在} \ [0,\pi] \ \hbox{上一致收敛到} \ f(x).$$

$$riangle$$
 因为 $orall n \in \mathbb{N}$, $\|f\|_{\infty} \leq 1$. 且 $orall x \in [0,\pi]$, $|\omega_{n+1}(x)| \leq \pi^{n+1}$.

因此
$$\|R_n(f)\|_{\infty} \leq \frac{\pi^{n+1}}{(n+1)!} \to 0$$
, 当 $n \to +\infty$. \triangleright

数值分析 黄忠亿 (清华大学) 北京,清华大学 29 / 106

多项式插值余项估计-Runge现象

Runge 于1901年发现不收敛的例子:

例 6.5

设
$$f(x) = \frac{1}{1+25x^2}$$
, 对 $x \in [-1,1]$, 取 $n \in \mathbb{N}$, 令 $h = \frac{2}{n}$, $x_j = -1 + jh$,

$$j=0,\cdots,n$$
. 可以看到 $L_n(f)(x)=\sum_{j=0}f(x_j)l_j(x)$ 在大约

 $0.726 \le |x| \le 1$ 时是发散的, 当 $n \to +\infty$ 时. 事实上从左下图

可以看到, $n \to \infty$ 时, 中间收敛得很好. 但是靠近 $x = \pm 1$ 附近却振荡得越来越 厉害! 这是因为, 虽然 $f \in \mathbb{C}^{\infty}[-1,1]$, 但是 $f^{(n)}(x)$ 在 [-1,1] 上不一致有界 (事实上 $||f^{(n)}||_{\infty} \to +\infty$).

黄忠化 (清华大学) 北京, 清华大学 30 / 106

多项式插值-收敛性小结

从前面的几个例子也可以看出,插值多项式的收敛性有多种 可能性:

- 任给一连续函数,一定有一组点 $\{x_i^{(n)}\}_{i=0}^n$ s.t. $L_n(f) \Rightarrow f$, 当 $n \to +\infty$ H. 受函数的影响也受选点方式影响
- 任给 [a,b] 上的一组点列 $\{x_i^{(n)}\}_{i=0}^n$, 必有一连续函数 f s.t. $L_n(f) \nrightarrow f$

所以为了克服上述不收敛性(或者说<mark>高次插值的数值不稳定性)</mark>, 我们可以尝试 因为尾项是多项

● 限制插值函数的阶数 → 分段低次插值 式,如果固定点的 话会震荡比较厉害

② 让点数远大于多项式阶数 → 最小二乘拟合 (下章内容)

黄忠亿 (清华大学) 数值分析 北京,清华大学

Hermite 插值

有时候在插值时,不仅希望在节点上的<mark>函数值相等</mark>,也<mark>希望相应的导数值相等.</mark> 求这样的多项式即为 Hermite 插值.

Lagrange 型插值公式:

给定 n+1 个点 $a \le x_0 < x_1 < \cdots < x_n \le b$, 即相应函数值 $y_i = f(x_i)$ 和导数值 $m_i = f'(x_i)$. 欲构造插值多项式 H(x) s.t.

(6.6)
$$H(x_j) = y_j, \quad H'(x_j) = m_j, \quad j = 0, 1, \dots, n$$

我们可以看到,上式有 2n+2 个约束(插值)条件,因此我们可以期望确定一个 2n+1 次多项式 $H_{2n+1}(x)$ (恰好有 2n+2 个自由度).

可以参照前面 Lagrange 插值公式形式来确定 $H_{2n+1}(x)$:

Lagrange 型 Hermite 插值公式

设 H_{2n+1} 具有形式

(6.7)
$$H_{2n+1}(x) = \sum_{j=0}^{n} [y_j \alpha_j(x) + m_j \beta_j(x)],$$

这样我们希望上面的基函数 α_i, β_i 满足

(6.8)
$$\begin{cases} \alpha_j(x_k) = \delta_{jk}, & \beta_j(x_k) = 0, \\ \alpha'_j(x_k) = 0, & \beta'_j(x_k) = \delta_{jk}. \end{cases}$$

其中 $\delta_{jk} = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$ 为所谓的 Kroneker δ-符号.

易验证, 如果 α_j , β_j 满足 (6.8), 就有 (6.7) 式定义的 $H_{2n+1}(x)$ 满足插值条件 (6.6).

黄忠亿 (清华大学) 北京,清华大学 33 / 106

Lagrange 型 Hermite 插值公式

如何得到 α_j,β_j 的表达式呢? 我们可以借助之前的 Lagrange 插值基函数 $l_j(x)$ 来构造.

因为 α_j , β_j 为 2n+1 阶多项式, 故我们可以假设其具有形式

$$\alpha_j(x) = (a_j x + b_j) l_j^2(x), \quad \beta_j(x) = (c_j x + d_j) l_j^2(x).$$

利用
$$l_j(x_i) = \delta_{ji}$$
 知道, 只需 $\alpha_j(x_j) = 1 = a_j x_j + b_j$, 以及

$$0 = \alpha'_j(x_i) = a_j l_j^2(x_i) + 2(a_j x_i + b_j) l_j(x_i) l'_j(x_i).$$

$$\Longrightarrow a_j = -2l'_j(x_j), b_j = 1 - a_j x_j.$$

Lagrange 型 Hermite 插值公式

类似地对于 β_i :

$$\beta_j(x_j) = c_j x_j + d_j = 0, \ 1 = \beta'_j(x_j) = c_j + 2(c_j x_j + d_j) l'_j(x_j)$$
 $\implies c_j = 1, \ d_j = -x_j$. 因此最后得到

$$H_{2n+1}(x) = \sum_{j=0}^{n} l_j^2(x) \left[y_j \left(1 + 2x_j l_j'(x_j) - 2l_j'(x_j)x \right) + m_j(x - x_j) \right]$$

显然上述公式<mark>也不适合逐步增加 n 来构造多项式情形</mark>, 所以我们也希望可以写出 Newton 型的 Hermite 插值公式.

Newton 型 Hermite 插值公式

为了构造 Newton 型 Hermite 插值公式, 我们先引入"重节点的差商"概念. 先将之前定义的均差写成等价的积分形式.

定理 6.4

设 $x_0, \dots, x_n \in [a, b]$ 互异, $f \in C^{(n)}[a, b]$, 则 $\forall n \geq 1$, 有

(6.9)
$$D_0^n = \int_0^1 \int_0^{t_1} \cdots \int_0^{t_{n-1}} f^{(n)} (x_0 + t_1(x_1 - x_0) + \cdots + t_n(x_n - x_{n-1})) dt_n \cdots dt_1$$

 \triangleleft 用归纳法来证明. n=1 时即要证明

$$= \int_{0}^{1} f'(x_0 + t_1(x_1 - x_0)) dt_1 \stackrel{\xi = x_0 + t_1(x_1 - x_0)}{=} \int_{0}^{x_1} f'(\xi) \frac{d\xi}{x_1 - x_0}$$

$$= \int_{0}^{1} f'(x_0 + t_1(x_1 - x_0)) dt_1 \stackrel{\xi = x_0 + t_1(x_1 - x_0)}{=} \int_{0}^{x_0} f'(\xi) \frac{d\xi}{x_1 - x_0}$$

下面归纳假设 n-1 时上述积分式成立, 即

$$D_0^{n-1} = \int_0^1 \int_0^{t_1} \cdots \int_0^{t_{n-2}} f^{(n-1)} \left(x_0 + t_1(x_1 - x_0) + \cdots + t_{n-1}(x_{n-1} - x_{n-2}) \right) dt_{n-1} \cdots dt_1$$

这样在上面 (6.9) 式中做类似变量替换

$$\xi = x_0 + t_1(x_1 - x_0) + \dots + t_n(x_n - x_{n-1}),$$
 $\mathbf{f} d\xi = (x_n - x_{n-1})dt_n,$

积分上下限为

$$\xi_{\perp} = x_0 + \dots + t_{n-2}(x_{n-2} - x_{n-3}) + t_{n-1}(x_n - x_{n-2}),$$

 $\xi_{\perp} = x_0 + \dots + t_{n-2}(x_{n-2} - x_{n-3}) + t_{n-1}(x_{n-1} - x_{n-2}).$

这样 (6.9) 式中最里层积分成为

$$\int_{\xi_{\perp}}^{\xi_{\top}} f^{(n)}(\xi) \frac{d\xi}{x_n - x_{n-1}} = \frac{f^{(n-1)}(\xi_{\perp}) - f^{(n-1)}(\xi_{\top})}{x_n - x_{n-1}}$$

黄忠亿 (清华大学) 数值分析 北京,清华大学 37 / 106

将上式代入 (6.9) 式, 再由归纳假设有

(6.9)式右端积分 =
$$\frac{f[x_0, \dots, x_{n-2}, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_{n-1}}$$

(由前面均差定义) = $f[x_0, x_1, \dots, x_n] = D_0^n$.

由此定理可以看出, 当 $f \in C^{(n)}[a,b]$ 时, (6.9) 式右端为 x_0 , · · · , x_n 的连续函数. 因此 $f[x_0, \cdots, x_n]$ 是 x_0 , · · · , x_n 的连续函数. 这样可以推广到 x_0 , · · · , x_n 中有重节点 (即某两个 $x_i = x_j$) 情形.

推论 6.4

设 $f \in C^{(n)}[a,b]$, 那么 $\forall \{x_j\}_{j=0}^n \subset [a,b]$, n 阶均差 $f[x_0, \dots, x_n]$ 为 x_i 的连续函数.

黄忠亿 (清华大学) 北京, 清华大学 38 / 106

推论 6.5

设 $f \in C^{(n)}[a, b]$, 那么 $\forall \{x_i\}_{i=0}^n \subset [a, b]$, 存在 $\xi \in (\min x_i, \max x_i)$ s.t. $f[x_0, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi)$ (注意这里不需要 x_i 互异).

 \triangleleft 设 $(\min x_i, \max x_i) \equiv (\alpha, \beta)$, 并令 $m = \min_{\alpha \le x \le \beta} f^{(n)}(x)$, $M = \max_{0 \le x \le \beta} f^{(n)}(x)$,有 $m \le f^{(n)}(x) \le M$. 这样由 (6.9) 式得 $mI_n \leq f[x_0, \cdots, x_n] \leq MI_n$, 其中 $I_n = \int_0^1 \int_0^{t_1} \cdots \int_0^{t_{n-1}} 1 dt_n \cdots dt_1$. 容 易用归纳法计算出 $I_n = \frac{1}{n!}$ 由前一推论知 $f[x_0, \dots, x_n]$ 为 x_i 的 连续函数, 因此 $n! f[x_0, \dots, x_n] - f^{(n)}(x)$ 在 $x \in [\alpha, \beta]$ 上或者端 点处取值为零,或者会变号,即总会取到零值. ▷

推论 6.6

(在前一推论中取 $x_i \equiv x$) 设 $f \in C^{(n)}[a,b]$, 那么存在 $\xi \in [a,b]$ s.t.

$$f[\underbrace{x,\cdots,x}] = \frac{1}{n!}f^{(n)}(\xi).$$

推论 6.7

设 $f \in C^{(n)}[a,b]$, $x, x_0, \dots, x_n \in [a,b]$ 则

$$\frac{d}{dx}f[x,x_0,\cdots,x_n] = f[x,x,x_0,\cdots,x_n].$$

< 上式左端
$$\lim_{h\to 0} \frac{f[\mathbf{x}+\mathbf{h},x_0,\cdots,x_n]-f[\mathbf{x},x_0,\cdots,x_n]}{(x+h)-x}$$

均差定义 $\lim_{h\to 0} f[\mathbf{x}+\mathbf{h},\mathbf{x},x_0,\cdots,x_n]$ 连续性 $f[\mathbf{x},\mathbf{x},x_0,\cdots,x_n]$ \triangleright

上面推论表明,对于重节点可以定义均差为

$$f[\mathbf{x}, \mathbf{x}, x_0, \cdots, x_n] = \lim_{\epsilon \to 0} f[\mathbf{x} + \epsilon, \mathbf{x}, x_0, \cdots, x_n]$$

只要 $\varphi(x) = f[\mathbf{x}, x_0, \cdots, x_n]$ 可微, 那么

$$f[\mathbf{x}, \mathbf{x}, x_0, \cdots, x_n] = \varphi'(\mathbf{x})$$
. 最简单情形 $f[\mathbf{x}, \mathbf{x}] = f'(\mathbf{x})$.

利用这个性质,可将插值推广到有重节点情形:设 $x_k = x_{k+1}$, 自然在 x_{k+1} 上应该加上导数条件 $f'(x_k) = m_k$: 我们可以直接写 出 $N_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + \cdots + (x - x_0) \cdots (x - x_{k-1})$ $\cdot f[x_0, \cdots, x_k] + (x - x_0) \cdots (x - x_k)f[x_0, \cdots, x_k, x_k]$ $+(x - x_0) \cdots (x - x_{k-1})(x - x_k)^2 f[x_0, \cdots, x_k, x_k, x_{k+2}] + \cdots$ $+(x - x_0) \cdots (x - x_k)^2 (x - x_{k+2}) \cdots (x - x_n)f[x_0, \cdots, x_k, x_k, x_k, \cdots, x_n]$

黄忠亿(清华大学) 数值分析 北京,清华大学 41/106

设 $f \in C^{(2n+2)}[a,b]$, 假设给了节点 $z_0, \dots, z_{2n+1} \in [a,b]$, 那么利用上面结果可以写出 2n+1 次插值多项式为

$$H_{2n+1}(x) = f(z_0) + (x-z_0)f[z_0, z_1] + \dots + \prod_{i=0}^{2n} (x-z_i)f[z_0, \dots, z_{2n+1}].$$

但<mark>实际上 Hermite 插值只有 n+1 个节点</mark>,即有 $z_0=z_1=x_0$,

$$\cdots$$
, $z_{2n} = z_{2n+1} = x_n$. 这样有

$$H_{2n+1}(x) = f(x_0) + (x - x_0)f[x_0, x_0] + (x - x_0)^2 f[x_0, x_0, x_1]$$

$$+ \dots + (x - x_n) \prod_{i=0}^{n} (x - x_i)^2 f[x_0, x_0 \dots, x_n, x_n].$$

利用前面给的Newton型插值余项公式, 我们可以立即得到 Hermite 插值的余项公式.

黄忠亿 (清华大学) 北京, 清华大学 42 / 106

$$R_{2n+1}(f)(x) = f[z_0, z_1, \cdots, z_{2n+1}, x] \prod_{i=0}^{2n+1} (x - z_i)$$

$$= f[x_0, x_0, \cdots, x_n, x_n, x] \prod_{i=0}^{n} (x - x_i)^2$$

$$\equiv \omega_{n+1}^2(x) \frac{f^{(2n+2)}(\eta)}{(2n+2)!}$$
 误差(余项)估计

利用
$$f(x) = H_{2n+1} + R_{2n+1}(f)$$
,以及 $R_{2n+1}(x_i) = R'_{2n+1}(x_i) = 0$,
这表明 $H_{2n+1}(x_j) = f(x_j)$, $H'_{2n+1}(x_j) = f'(x_j)$.

即上面 (6.10) 式给出的插值多项式确实是满足 (6.6) 式插值 条件的 Hermite 插值多项式.

黄忠亿 (清华大学) 北京, 清华大学 43 / 106

利用插值条件也可立即得到 Hermite 插值多项式的唯一性:

假设有两个插值多项式 $H_{2n+1}(x)$, $G_{2n+1}(x)$ 满足插值条件 **(6.6).** 令 $\varepsilon_{2n+1} = H_{2n+1} - G_{2n+1}$. 有

$$\varepsilon_{2n+1}(x_i) = 0$$
, $\varepsilon'_{2n+1}(x_i) = 0$, $i = 0, 1, \dots, n$.

即说明 x_i 是 2n+1 次多项式 $\varepsilon_{2n+1}(x)$ 的重根, 也就是说 $(x-x_i)^2$ 可以整除 $\varepsilon_{2n+1}(x)$:

$$\Longrightarrow \left(\prod_{i=0}^{n} (x-x_i)^2\right) \mid \varepsilon_{2n+1}(x) \Longrightarrow \varepsilon_{2n+1}(x) \equiv 0.$$

最常用的是三次 Hermite 插值.

例 6.6

求 $f(x) = \ln x$ 在区间 [1,2] 上的三次*Hermite*插值多项式, 并计算 $\ln 1.5$ 的近似值, 估计误差.

解:由
$$f(1) = 0$$
, $f'(1) = 1$, $f(2) = 0.693147$, $f'(2) = 0.5$, 计算得

$$f[1,2] = \frac{f(2) - f(1)}{2 - 1} = 0.693147, \ f[1,1,2] = \frac{f[1,2] - f[1,1]}{2 - 1} = -0.306853,$$

$$f[1,2,2] = \frac{f[2,2] - f[1,2]}{2-1} = -0.193147, \quad f[1,1,2,2] = 0.113706.$$

$$H_3(1.5) = 0.409074$$
,估计其误差 $|R_3(1.5)| \le \frac{\|f^{(4)}\|_{\infty}}{4!} \omega_3^2(x) = 0.015625$.

(实际误差约为 0.0036)

黄忠亿 (清华大学)

更一般的, 设 $x_0, \dots, x_n \in [a, b]$ 为互异的 n+1 个点, 我们欲 求<mark>在不同节点上赋予不同插值要求的插值多项式</mark>. (要求 p(x) 与 f(x) 在节点导数相同, 即相切, 故称为密切插值)

设 $m_0, \cdots, m_n \in \mathbb{Z}_+$ 为 n+1 个非负整数, 令 $m = \max_{0 \le i \le n} m_i$, n mi表示第i个点上有前mi阶导数要求

 $M = \sum_{i=0} m_i + n$. 设 $f \in C^{(m)}[a,b]$, 欲求M次多项式 $p_M \in P_M$ s.t.

(6.11)
$$p_M^{(k)}(x_i) = f^{(k)}(x_i), \quad i = 0, \dots, n; \ k = 0, 1, \dots, m_i.$$

满足上面 (6.11) 式插值条件的多项式 $p_M(x)$ 称为在 x_0, \dots, x_n

上的密切插值多项式. 显然, 上面插值条件有 $\sum_{i=0}^{\infty} (1+m_i) = M+1$

个, 而 M 次多项式也恰好有 M+1 个参数...

一般 Hermite 插值(密切插值)

特别地, $m_i \equiv 0$, 即为最开始的 Lagrange 插值; 而 $m_i \equiv 1$, 即为前面的 Hermite 插值。 我们用几个例子来说明如何用 Newton 型插值公式给出一般密切插值:

例 6.7

求
$$p(x)$$
 s.t. $p(x_j) = f(x_j)$, $j = 0, 1, 2$, 及 $p'(x_1) = f'(x_1)$.

解: 共有四个条件, 可以确定一个三次多项式 $p_3(x)$: 节点 x_1 上有两个条件, 可看成 $z_0 = x_0$, $z_1 = x_1$, $z_2 = x_1$, $z_3 = x_2$:

$$p_3(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_1](x - x_0)(x - x_1)$$
$$+ f[x_0, x_1, x_1, x_2](x - x_0)(x - x_1)^2.$$

余项为 $R_3(x) = f(x) - p_3(x) = f[x, x_0, x_1, x_1, x_2](x - x_0)(x - x_1)^2(x - x_2)$

黄忠亿 (清华大学) 北京, 清华大学 47 / 106

一般 Hermite 插值(密切插值)

例 6.8

求
$$p(x)$$
 s.t. $p^{(k)}(x_0) = f^{(k)}(x_0)$, $k = 0, 1, 2$, 及 $p(x_1) = f(x_1)$, $P(x_2) = f(x_2)$, $p'(x_2) = f'(x_2)$.

解: 共有**6**个条件, 可以确定一个五次多项式 $p_5(x)$, 节点 x_0 用了三次, 节点 x_2 用了两次:

$$p_5(x) = f(x_0) + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_0](x - x_0)^2$$

$$+ f[x_0, x_0, x_0, x_1](x - x_0)^3 + f[x_0, x_0, x_0, x_1, x_2](x - x_0)^3 (x - x_1)$$

$$+ f[x_0, x_0, x_0, x_1, x_2, x_2](x - x_0)^3 (x - x_1)(x - x_2)$$

余项为 $R_5(x) = f(x) - p_5(x) =$

$$f[x, x_0, x_0, x_0, x_1, x_2, x_2](x - x_0)^3 (x - x_1)(x - x_2)^2$$

黄忠亿 (清华大学) 北京, 清华大学 48 / 106

目录

- 1 引言
- 2 线性方程组的直接解法
- 3 线性方程组的迭代解法
- 4 非线性方程(组)迭代解法
- 5 代数特征值问题的求解
- 6 插值法
 - 引言
 - 多项式插值
 - 分段低次插值
 - 样条插值 (spline interpolation)
 - ENO (Essentially Non-Oscillatory) 插值

高次插值的病态性

前面我们已经通过例子说明, 如果 $\|f^{(n)}\|_{\infty}$ 不是一致有界的, 那么在 $n \to +\infty$ 时, 有时会有 $L_n(f) \nrightarrow f(x)$, 甚至还会有 $\|L_n(f) - f\|_{\infty} \uparrow +\infty$. (Runge 现象)

这说明如果想提高逼近精度,一味地增加插值多项式的次数, 有时会事与愿违!

尤其是等距节点情形,由于舍入误差的影响,更是可能会带来严重的数值不稳定性!

因此我们要想在保证数值稳定性的前提下提高精度,可以考虑<mark>扩大函数类(使用分段低次插值、有理函数插值等)</mark>,或者使用不等距节点.

黄忠亿 (清华大学) 北京, 清华大学 50 / 106

分段低次插值的意思就是先将区间分成若干小段, 然后在每 一小段上用低次多项式插值. 如果想提高精度, 那么久增加分段 数, 而不是提高多项式阶数!

最简单的分段低次插值自然是分段线性插值,也就是说用折 <mark>线段来近似函数</mark> f(x):

我们先把区间分成 n 小段: $a = x_0 < x_1 < \cdots < x_n = b$. 记 $h_k = x_k - x_{k-1}$, $h = \max_{1 \le k \le n} h_k$, 设 f(x) 在每个点上的值为 $f_i = f(x_i)$, 0 < i < n.

黄忠亿 (清华大学) 数值分析 北京,清华大学 51 / 106

我们希望找一个函数 $I_h(x)$ 满足下面三个条件:

- $I_h(x) \in C[a,b]$;
- $I_h(x_j) = f_j, \ j = 0, 1, \cdots, n;$
- ③ $I_h|_{[x_k,x_{k+1}]}$ 为线性函数,即 $I_h|_{[x_k,x_{k+1}]} = f_k \frac{x x_{k+1}}{x_k x_{k+1}} + f_{k+1} \frac{x x_k}{x_{k+1} x_k}.$

满足上面条件的函数 I_h 称为 $\{x_j\}_{j=0}^n$ 上的分段线性插值多项式.

下面看如何构造出 I_h 及验证其唯一性、并估计插值误差.

我们可以用构造Lagrange型插值基函数的办法来构造.

黄忠亿 (清华大学) 北京, 清华大学 52 / 106

如果令 $\phi_j(x)$ 表示满足 $\phi_j|_{[x_k,x_{k+1}]}$ 为线性函数,且 $\phi_j(x_k)=\delta_{jk}$ 的连续函数,那么 $I_h(x)$ 可以表示为 $I_h(x)=\sum_{j=0}^n f_j\phi_j(x)$. 即易检验这样定义的 I_h 满足上面三个条件.

这些基函数 $\phi_i(x)$ 可以很容易写出其表达式:

很容易验证上述定义的 $\{\phi_j\}_{j=0}^n$ 构成了函数空间

$$\mathfrak{S} = \{ f \in C[a,b] \mid f|_{[x_k,x_{k+1}]}$$
 为线性函数, $k = 0, \dots, n-1 \}$

上的一组基. 从而也很容易验证分段线性插值多项式的唯一性:

假设还有一个函数 $J_h(x) \in \mathfrak{S}$ s.t.

 $J_h(x_j) = f_j$, $0 \le j \le n$; 且 $J_h|_{[x_k, x_{k+1}]}$ 为线性函数, $0 \le k \le n-1$.

那么在每一段 $[x_k, x_{k+1}]$ 上, 由于

$$J_h(x_k) = I_h(x_k), J_h(x_{k+1}) = I_h(x_{k+1}),$$
 \coprod

 $J_h(x)$ 和 $I_h(x)$ 在 $[x_k, x_{k+1}]$ 上为线性函数.

由前面插值多项式性质可知在 $[x_k, x_{k+1}]$ 上, $I_h \equiv J_h$. 即证明了唯一性.

下面我们来看一下插值误差: $f(x) - I_h(x)$ 有多大?

利用前面插值余项估计式:

$$\max_{a \le x \le b} |f(x) - I_h(x)| = \max_{1 \le k \le n} \max_{x_{k-1} \le x \le x_k} |f(x) - I_h(x)| \le \frac{M_2}{8} h^2.$$

其中 $M_2 = ||f''||_{\infty} = \max_{a \le x \le b} |f''(x)|$.

考虑到Runge现象, 我们自然关心 $h \to 0$ 时, 是否有 $I_h \to f$? 为此我们先引入连续模的概念:

定义 6.3 (连续模)

设
$$f:[a,b] \to \mathbb{R}$$
, $h > 0$ 为一实数,令
$$\omega(f;h) = \sup_{x,x+t \in [a,b], \ |t| \le h} |f(x+t) - f(x)|.$$

称 $\omega(f;h)$ 为 f(x) 在区间 [a,b] 上关于 h 的连续模.

黄忠亿 (清华大学) 北京, 清华大学 55 / 106

显然, $\forall x, y \in [a, b]$, 只要 $|x - y| \le h$, 就有 $|f(x) - f(y)| \le \omega(f; h)$. 且当 $f \in C[a,b]$ 时, 由连续函数在闭区间上的一致连续性知, 当 $h \to 0$ 时, 有 $\omega(f;h) \to 0$.

这样利用连续模的性质,我们可以得到以下收敛性定理:

定理 6.5

设 $f \in C[a,b]$, 那么当 $h \to 0$ 时, 分段线性插值函数 $I_h \rightrightarrows f$.

$$riangle$$
 欲证明 $h o 0$ 时, $\max_{a \le x \le b} |f(x) - I_h(x)| o 0$. 而

$$\max_{a \le x \le b} |f(x) - I_h(x)| = \max_{1 \le k \le n} \max_{x_{k-1} \le x \le x_k} |f(x) - I_h(x)|.$$

在
$$x \in [x_{k-1}, x_k]$$
 时, $1 = \sum_{j=0}^n 1 \cdot \phi_j(x) = \phi_{k-1}(x) + \phi_k(x)$.

这样在
$$x \in [x_{k-1}, x_k]$$
 时, $f(x) = 1 \cdot f(x) = [\phi_{k-1}(x) + \phi_k(x)]f(x)$. 而在 $x \in [x_{k-1}, x_k]$ 时, $I_h(x) = f_{k-1}\phi_{k-1}(x) + f_k\phi_k(x)$. 这样在 $x \in [x_{k-1}, x_k]$ 时,

$$|f(x) - I_h(x)| = |[f(x) - f(x_{k-1})]\phi_{k-1}(x) + [f(x) - f(x_k)]\phi_k(x)|$$

$$\leq \phi_{k-1}(x) \cdot \omega(f; h_k) + \phi_k(x) \cdot \omega(f; h_k) = \omega(f; h_k) \leq \omega(f; h).$$

曲
$$f \in C[a,b] \Longrightarrow h \to 0$$
时 $\max_{a \le x \le b} |f(x) - I_h(x)| \le \omega(f;h) \to 0$.

这样分段低次插值确实解决了Runge现象, 只要 $f \in C[a,b]$ 就有一致收敛性 $I_b \Rightarrow f$. 当然分段线性插值的<mark>精度不高</mark>, 而且函 数光滑性也不高(折线段仅仅连续,在内部节点不可微).为了改 善它, 我们可采用分段三次插值 (Hermite 插值) 或者样条插值.

黄忠亿 (清华大学) 数值分析 北京,清华大学

分段低次插值—分段Hermite插值

欲求 $I_h(x)$ s.t.

二次多项式可以保证在全局有连续 可微性质,但是没法满足条件2:在 每一小段上的两个节点上, 即要保 证函数值, 又要保证导数值, 这样 就4个约束了

- $I_h(x) \in C^1[a,b];$
- 2 $I_h(x_i) = f_i, I'_h(x_i) = m_i \equiv f'(x_i), j = 0, 1, \dots, n;$
- ③ $I_h|_{[x_k,x_{k+1}]}$ 为三次多项式.

满足上面条件的函数 I_h 就称为 $\{x_j\}_{j=0}^n$ 上的分段Hermite插值.

类似地,我们利用前面三次Hermite插值多项式的表达式可 以得到基函数表达式, 在 $[x_k, x_{k+1}]$ 上, 设

$$I_h(x) = f_k \alpha_k(x) + f_{k+1} \alpha_{k+1}(x) + m_k \beta_k(x) + m_{k+1} \beta_{k+1}(x).$$

黄忠亿 (清华大学) 数值分析 北京,清华大学 58 / 106

分段低次插值—分段Hermite插值

我们有

$$\alpha_j(x) = \begin{cases} (1 + 2\frac{x - x_j}{x_{j-1} - x_j})(\frac{x - x_{j-1}}{x_j - x_{j-1}})^2, & x_{j-1} \leq x \leq x_j \ (j = 0 \textbf{bres}); \\ (1 + 2\frac{x - x_j}{x_{j+1} - x_j})(\frac{x - x_{j+1}}{x_j - x_{j+1}})^2, & x_j \leq x \leq x_{j+1} \ (j = n \textbf{bres}); \\ 0, & \mbox{\sharp \mathfrak{t}} \mbox{\mathfrak{t}} \mbox{\mathfrak{F}}; \end{cases}$$

$$\beta_{j}(x) = \begin{cases} (x - x_{j})(\frac{x - x_{j-1}}{x_{j} - x_{j-1}})^{2}, & x_{j-1} \leq x \leq x_{j} \ (j = 0 \mathbf{bns 4}); \\ (x - x_{j})(\frac{x - x_{j+1}}{x_{j} - x_{j+1}})^{2}, & x_{j} \leq x \leq x_{j+1} \ (j = n \mathbf{bns 4}); \\ 0, & \mathbf{\sharp hf 7}; \end{cases}$$

这样分段三次Hermite插值函数为

$$I_h(x) = \sum_{j=0}^n [f_j \alpha_j(x) + m_j \beta_j(x)].$$

黄忠亿 (清华大学) 北京, 清华大学 59 / 106

分段低次插值—分段Hermite插值

利用上面表达式我们可以得到 $|\beta_j(x)| \le \frac{4}{27} \max(h_j, h_{j+1})$, $0 \le \alpha_j(x) \le 1$. 我们有类似的一致收敛性定理:

定理 6.6

设 $f \in C^1[a,b]$, 则 $h \to 0$ 时, 分段 Hermite 插值 $I_h \rightrightarrows f$.

⊲由
$$1 = \sum_{j=0}^{n} \alpha_{j}(x)$$
,即 $x \in [x_{k}, x_{k+1}]$ 时, $1 = \alpha_{k}(x) + \alpha_{k+1}(x)$.此时

$$|f(x) - I_h(x)| = |[f(x) - f(x_k)]\alpha_k(x) + [f(x) - f(x_k)]\alpha_{k+1}(x) - f'_k\beta_k(x) - f'_{k+1}\beta_{k+1}(x)|$$

$$\leq \alpha_k(x)\omega(f;h) + \alpha_{k+1}(x)\omega(f;h) + (|\beta_k(x)| + |\beta_{k+1}(x)|) \|f'\|_{\infty}$$

黄忠亿 (清华大学) 北京, 清华大学 60 / 106

目录

- 1 引言
- 2 线性方程组的直接解法
- 3 线性方程组的迭代解法
- 4 非线性方程(组)迭代解法
- 5 代数特征值问题的求解
- 6 插值法
 - 引言
 - 多项式插值
 - 分段低次插值
 - 样条插值 (spline interpolation)
 - ENO (Essentially Non-Oscillatory) 插值

61 / 106

黄忠亿 (清华大学) 数值分析 北京, 清华大学

分段低次插值—样条插值

同时不想像刚刚的方法那样需要增加太高多项式的阶数要想进一步提高插值函数的光滑性,我们需要考虑样条插值.

定义 6.4

设区间 [a,b] 上给定了一个剖分 $(\mathfrak{J}): a = x_0 < x_1 < \cdots < x_n = b.$ 函数 $S: [a,b] \to \mathbb{R}$ 如果满足以下条件

- ① $S \in C^{(m-1)}[a,b]$, 对某个 $m \in \mathbb{N}$;
- ② $S|_{[x_j,x_{j+1}]} \in P_m$ (即为<mark>分段 m 次多项式)</mark>, $j = 0, \dots, n-1$;

则称 S 为 [a,b] 上关于剖分 $\mathfrak{J} = \{x_j\}_{j=0}^n$ 的 m 次样条. 一般我们记 m 次样条函数的集合为 S_m^n .

三次样条用得最多, 即m=3. 我们这里先考虑此情形.

分段低次插值—样条插值

我们当然还希望有插值条件成立,即

(6.12)
$$S(x_j) = f(x_j), \quad j = 0, \dots, n.$$

称还满足插值条件 (6.12) 的函数 S 为样条插值.

我们计算一下 S(x) 的自由度为 4n (每个区间上取三次多项式有4个自由度, 共有 n 小段).

再看约束: 三次样条要求 $S \in C^{(2)}[a,b]$, 因此在内部每个节点要求左右极限相等: $S^{(k)}(x_j^-) = S^{(k)}(x_j^+)$, $j=1,\cdots,n-1$, k=0,1,2. 因此共有 3(n-1) 个条件. 再加上插值条件(6.12)有n+1 个约束, 总共 4n-2 个约束条件.

这样约束比自由度还少两个, 我们还需加上两个边界条件.

分段低次插值—样条插值

通常可以在边界加以下几种边界条件之一:

- 给定端点处的一阶导数值 (Ⅰ型边界条件):
- ② 给定端点处的 $\stackrel{S''}{=}$ 的 $\stackrel{F}{=}$ 数 $\stackrel{F}{=}$ 011 型 $\stackrel{F}{=}$ 02 第条件 $\stackrel{F'}{=}$ 12 第二十二 $\stackrel{F''}{=}$ 12 第二十二 $\stackrel{F''}{=}$ 2 第二十二 $\stackrel{F''}{=}$ 3 第二十二 $\stackrel{F''}{=}$ 4 第二十二 $\stackrel{F''}{=}$ 5 第二十 $\stackrel{F''}{=}$ 5 第三十 $\stackrel{F''}{=}$ 5 第二十 $\stackrel{F''}{=}$ 5 第三十 $\stackrel{F'$
- **③** 周期边界条件: $(S_0) = f''(x_0)$, $S''(x_n) = f''(x_n)$.

这样对于样条插值来说约束与自由度一致了.

下面看如何求得其表达式,以及考虑其唯一性和误差估计.

黄忠化 (清华大学) 北京, 清华大学 64 / 106

转角方程(即先求出 $S'(x_j) = m_j$)

记 $h_j = x_j - x_{j-1}, j = 1, \dots, n$, 并令 $h = \max_{1 \le j \le n} h_j$.

假设 $S'(x_j) = m_j$, $(j = 0, \dots, n)$ 若 m_j 已经求出, 那么利用 前面分段三次 Hermite 插值多项式公式, 就可以给出 S(x) 的表

达式. 即 $S(x) = \sum_{j=0}^n [f_j \alpha_j(x) + m_j \beta_j(x)]$. 假设已知一阶导数并用此来表示其他的

其中 $\alpha_j(x)$, $\beta_j(x)$ 的表达式如前定义. 下面看如何求出 m_j ?

自然我们需要<mark>利用其他条件:</mark>即两个边界条件和S''(x) 连续的条件,来求出 m_i .

 $\mathbf{E}[x_j, x_{j+1}]$ 上,利用上面表达式及基函数支集的性质:

$$S''(x) = f_j \alpha_j''(x) + m_j \beta_j''(x) + f_{j+1} \alpha_{j+1}''(x) + m_{j+1} \beta_{j+1}''(x).$$

黄忠亿 (清华大学) 数值分析 北京, 清华大学 65 / 106

代入 $\alpha_i(x), \beta_i(x)$ 的表达式有

$$S''(x) = \frac{f_j}{h_{j+1}^3} [2h_{j+1} + 4(x - x_j) + 8(x - x_{j+1})]$$

$$+ \frac{f_{j+1}}{h_{j+1}^3} [2h_{j+1} - 4(x - x_{j+1}) - 8(x - x_j)]$$

$$+ \frac{m_j}{h_{j+1}^2} [4(x - x_{j+1}) + 2(x - x_j)] + \frac{m_{j+1}}{h_{j+1}^2} [4(x - x_j) + 2(x - x_{j+1})]$$

这样 $x \to x_i^+$ 时,

$$S''(x_j^+) = \frac{f_j(-6h_{j+1})}{h_{j+1}^3} + \frac{f_{j+1}(6h_{j+1})}{h_{j+1}^3} + \frac{m_j(-4h_{j+1})}{h_{j+1}^2} + \frac{m_{j+1}(-2h_{j+1})}{h_{j+1}^2}$$
$$= \frac{1}{h_{j+1}} \{ 6f[x_j, x_{j+1}] - 4m_j - 2m_{j+1} \}$$

类似地可求出 $x \to x_i^-$ 时,

$$S''(x_j^-) = \frac{1}{h_j} \{ -6f[x_j, x_{j-1}] + 4m_j + 2m_{j-1} \}.$$

黄忠亿 (清华大学) 数值分析 北京, 清华大学 66 / 106

利用二阶导数连续条件 $S''(x_i^-) = S''(x_i^+)$ 得

(6.13)
$$\lambda_j m_{j-1} + 2m_j + \mu_j m_{j+1} = g_j, \quad j = 1, \dots, n-1$$

其中
$$\lambda_j = \frac{h_{j+1}}{h_j + h_{j+1}}$$
, $\mu_j = 1 - \lambda_j$, $g_j = 3\{\lambda_j f[x_{j-1}, x_j] + \mu_j f[x_j, x_{j+1}]\}$.

再加上边界条件就可以解出 m_i :

1) 给了 $S'(x_0) = m_0$, $S'(x_n) = m_n$, 解以下方程组即得 m_i :

$$\begin{pmatrix} 2 & \mu_1 & & & \\ \lambda_2 & 2 & \mu_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \mu_{n-2} \\ & & & \lambda_{n-1} & 2 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_{n-2} \\ m_{n-1} \end{pmatrix} = \begin{pmatrix} g_1 - \lambda_1 m_0 \\ g_2 \\ \vdots \\ g_{n-2} \\ g_{n-1} - \mu_{n-1} m_n \end{pmatrix}$$

黄忠亿 (清华大学) 数值分析 北京, 清华大学 67 / 106

2) 给了 $S''(x_0) = M_0$, $S''(x_n) = M_n$, 我们需要再得到两个方程:

当
$$x \in [x_0, x_1]$$
 时,从上面可得 $S''(x_0^+) = \frac{1}{h_1} \{6f[x_0, x_1] - 4m_0 - 2m_1\}$

$$\implies 2m_0 + m_1 = 3f[x_0, x_1] - \frac{h_1}{2} M_0 \equiv g_0.$$

类似在
$$x \in [x_{n-1}, x_n]$$
 上, $m_{n-1} + 2m_n = 3f[x_{n-1}, x_n] + \frac{h_n}{2} M_n \equiv g_n$. 令 $\mu_0 = 1, \lambda_0 = 0$, $\lambda_n = 1, \mu_n = 0$:

$$\begin{pmatrix} 2 & \mu_0 & & & \\ \lambda_1 & 2 & \mu_1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \mu_{n-1} \\ & & & \lambda_n & 2 \end{pmatrix} \begin{pmatrix} m_0 \\ m_1 \\ \vdots \\ m_{n-1} \\ m_n \end{pmatrix} = \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_{n-1} \\ g_n \end{pmatrix}$$

黄忠化 (清华大学) 北京, 清华大学 68 / 106

3) 若给了周期边界条件 $S'(x_0) = S'(x_n)$, $S''(x_0) = S''(x_n)$:

即
$$m_0 = m_n$$
,再利用 $S''(x_0^+) = \frac{1}{h_1} \{6f[x_0, x_1] - 4m_0 - 2m_1\}$

和
$$S''(x_n^-) = \frac{1}{h_n} \{ -6f[x_{n-1}, x_n] + 2m_{n-1} + 4m_n \}$$

$$\implies \lambda_n m_{n-1} + 2m_n + \mu_n m_1 = g_n \equiv 3\{\lambda_n f[x_{n-1}, x_n] + \mu_n f[x_0, x_1]\}.$$

这里
$$\lambda_n = \frac{h_1}{h_1 + h_n}$$
, $\mu_n = 1 - \lambda_n$:

$$\begin{pmatrix} 2 & \mu_1 & 0 & \cdots & 0 & \lambda_1 \\ \lambda_2 & 2 & \mu_2 & 0 & & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & \ddots & \mu_{n-1} \\ \mu_n & 0 & \cdots & 0 & \lambda_n & 2 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ \vdots \\ m_{n-1} \\ m_n \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ \vdots \\ g_{n-1} \\ g_n \end{pmatrix}$$

黄忠亿 (清华大学) 北京, 清华大学 69 / 106

三弯矩方程 (即先求 $S''(x_i) = M_i$)

类似的想法, 如果我们已<mark>经求出了 $S''(x_j) = M_j$ </mark>, 那么在每个 小区间 $[x_j, x_{j+1}]$ 上, S''(x) 为线性函数, 可完全由 M_j, M_{j+1} 确定:

在
$$[x_j, x_{j+1}]$$
 上, $S''(x) = M_j \frac{x_{j+1} - x}{h_{j+1}} + M_{j+1} \frac{x - x_j}{h_{j+1}}$.

利用插值条件 $S(x_j) = f(x_j), \ S(x_{j+1}) = f(x_{j+1})$ 可以定出 C_j, D_j :

$$C_j = \frac{1}{h_{j+1}} \left(f_j - \frac{M_j}{6} h_{j+1}^2 \right), \quad D_j = \frac{1}{h_{j+1}} \left(f_{j+1} - \frac{M_{j+1}}{6} h_{j+1}^2 \right)$$

然后我们再利用 S'(x) 的连续性以及边界条件定出 M_i :

三弯矩方程 (即先求 $S''(x_j) = M_j$)

从上面表达式立即可以得到

$$S'(x_j^+) = -\frac{M_j h_{j+1}}{3} + f[x_j, x_{j+1}] - \frac{M_{j+1} h_{j+1}}{6},$$

$$\mathcal{B} \qquad S'(x_j^-) = \frac{M_j h_j}{3} + f[x_{j-1}, x_j] + \frac{M_{j-1} h_j}{6}.$$

利用
$$S'(x_j^+) = S'(x_j^-)$$
 便得

 黄忠化 (清华大学)
 数值分析
 北京, 清华大学
 71 / 106

三弯矩方程 (即先求 $S''(x_i) = M_i$)

如果是给了第二型边界条件则倾向于用这个三弯矩方程

1) 若给了 $S''(x_0) = M_0$, $S''(x_n) = M_n$, 解以下方程组即得 M_i :

$$\begin{pmatrix} 2 & \lambda_1 & & & \\ \mu_2 & 2 & \lambda_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \lambda_{n-2} \\ & & & \mu_{n-1} & 2 \end{pmatrix} \begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix} = \begin{pmatrix} \hat{g}_1 - \mu_1 M_0 \\ \hat{g}_2 \\ \vdots \\ \hat{g}_{n-2} \\ \hat{g}_{n-1} - \lambda_{n-1} M_n \end{pmatrix}$$

三弯矩方程 (即先求 $S''(x_i) = M_i$)

2) 给了 $S'(x_0) = m_0$, $S'(x_n) = m_n$, 我们再得到两个方程:

$$2M_0 + M_1 = \hat{g}_0 \equiv \frac{6}{h_1} (f[x_0, x_1] - f'_0) = 6f[x_0, x_0, x_1].$$

$$M_{n-1} + 2M_n = \hat{g}_n \equiv \frac{6}{h_n} (f'_n - f[x_{n-1}, x_n]) = 6f[x_{n-1}, x_n, x_n].$$

 $\Leftrightarrow \lambda_0 = 1, \mu_0 = 0, \mu_n = 1, \lambda_n = 0$:

$$\begin{pmatrix} 2 & \lambda_0 & & & \\ \mu_1 & 2 & \lambda_1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \lambda_{n-1} \\ & & & \mu_n & 2 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ \vdots \\ M_{n-1} \\ M_n \end{pmatrix} = \begin{pmatrix} \hat{g}_0 \\ \hat{g}_1 \\ \vdots \\ \hat{g}_{n-1} \\ \hat{g}_n \end{pmatrix}$$

73 / 106

黄忠亿 (清华大学) 数值分析 北京,清华大学

三弯矩方程 (即先求 $S''(x_i) = M_i$)

3) 若给了周期边界条件, 利用 $S'(x_0^+) = -\frac{M_0h_1}{3} + f[x_0, x_1] - \frac{M_1h_1}{6}$ 和 $S'(x_n^-) = \frac{M_n h_n}{3} + f[x_{n-1}, x_n] + \frac{M_{n-1} h_n}{6}$

$$\implies \mu_n M_{n-1} + 2M_n + \lambda_n M_1 = \hat{g}_n \equiv 6 \frac{f[x_0, x_1] - f[x_{n-1}, x_n]}{h_1 + h_n}.$$

这里 $\lambda_n = \frac{h_1}{h_1 + h_n}$, $\mu_n = 1 - \lambda_n$:

$$\begin{pmatrix} 2 & \lambda_1 & 0 & \cdots & 0 & \mu_1 \\ \mu_2 & 2 & \lambda_2 & 0 & & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & \ddots & \lambda_{n-1} \\ \lambda_n & 0 & \cdots & 0 & \mu_n & 2 \end{pmatrix} \begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ M_n \\ M_n \end{pmatrix} = \begin{pmatrix} \hat{g}_1 \\ \hat{g}_2 \\ \vdots \\ \vdots \\ \hat{g}_{n-1} \\ \hat{g}_n \end{pmatrix}$$

$$\begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ \vdots \\ M_{n-1} \\ M_n \end{pmatrix} = \begin{pmatrix} \hat{g}_1 \\ \hat{g}_2 \\ \vdots \\ \vdots \\ \hat{g}_{n-1} \\ \hat{g}_n \end{pmatrix}$$

由上面我们知道,无论给了什么边界条件,均可以用转角方程或者三弯矩方程的办法得到样条函数的表达式.

下面我们来看一下样条插值的误差估计. 先给出一个引理:

引理 6.1 (Gershgorin)

设 $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ 是严格对角占优矩阵, 即

$$\sum_{i \neq j} |a_{ij}| < |a_{ii}|, \quad i = 1, \cdots, n$$

则 A^{-1} 存在, 且

$$||A^{-1}||_{\infty} \le \frac{1}{\min\limits_{1 \le i \le n} (|a_{ii}| - \sum_{i \ne j} |a_{ij}|)}.$$

黄忠亿 (清华大学) 数值分析 北京, 清华大学 75 / 106

 \triangleleft 先证明 A 可逆. 用反证法证明 Ax = 0 只有零解.

假设
$$A\mathbf{x} = 0$$
, $0 \neq \mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ s.t.

$$|x_k| = \|\mathbf{x}\|_{\infty} > 0$$
. 那么 $\|A\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} x_j \right| \stackrel{\mathbf{R}}{\geq} \left| \sum_{j=1}^n a_{kj} x_j \right|$

$$= \left| a_{kk} x_k + \sum_{j \neq k} a_{kj} x_j \right| \ge |a_{kk}| \cdot |x_k| - \sum_{j \neq k} |a_{kj}| \cdot |x_j|$$

$$\geq |a_{kk}| \cdot |x_k| - \sum_{j \neq k} |a_{kj}| \cdot |x_k| = (|a_{kk}| - \sum_{j \neq k} |a_{kj}|) \|\mathbf{x}\|_{\infty}.$$

即有
$$0 \ge (|a_{kk}| - \sum_{j \ne k} |a_{kj}|) \|\mathbf{x}\|_{\infty} > 0$$
, 矛盾! 这样 A^{-1} 存在.

黄忠亿 (清华大学) 北京, 清华大学 76 / 106

又
$$\|A^{-1}\|_{\infty} = \max_{\|\mathbf{y}\|_{\infty}=1} \|A^{-1}\mathbf{y}\|_{\infty}$$
.
记 $\mathbf{x} = A^{-1}\mathbf{y}$,即 $\mathbf{y} = A\mathbf{x}$.由上面的推导

$$\|\mathbf{y}\|_{\infty} = \|A\mathbf{x}\|_{\infty} \ge \|\mathbf{x}\|_{\infty} \cdot \min_{1 \le i \le n} (|a_{ii}| - \sum_{j \ne i} |a_{ij}|)$$
即
$$\|A^{-1}\|_{\infty} = \max_{\|\mathbf{y}\|_{\infty}=1} \|A^{-1}\mathbf{y}\| = \max_{\|A\mathbf{x}\|_{\infty}=1} \|\mathbf{x}\|_{\infty}$$

$$\le \frac{1}{\min_{1 \le i \le n} (|a_{ii}| - \sum_{i \ne i} |a_{ij}|)}.$$

然后利用此引理我们可以得到三次样条插值的误差估计.

定理 6.7

设
$$f \in C[a,b]$$
, $S(x)$ 是 (I) 型边界条件 $(S'(x_0) = S'(x_n) = 0)$ 下的 三次样条. 记 $\bar{h} = \max_{1 \le j \le n} h_j$, $\underline{h} = \min_{1 \le j \le n} h_j$. 并设在 $\bar{h} \to 0$ 时, $\frac{\bar{h}}{\underline{h}} \le C < +\infty$. 那么有 $S(x) \Rightarrow f(x)$.

$$\lhd$$
 利用表达式 $S(x) = \sum_{j=0}^n [f_j \alpha_j(x) + m_j \beta_j(x)]$ 以及三次 Hermite

插值的估计式:

$$||f(x) - I_h(x)| \le \omega(f, h) + \frac{8h}{27} ||f_j'||_{\infty}$$

即
$$|f(x) - S(x)| \le \omega(f; \bar{h}) + \frac{8\bar{h}}{27} \|\vec{m}\|_{\infty}$$
 (这里 $\|\vec{m}\|_{\infty} = \max_{1 \le \le n-1} |m_i|$)

黄忠亿 (清华大学) 北京, 清华大学 78 / 106

由转角方程, $A \overrightarrow{m} = \overrightarrow{g}$ 即 $\overrightarrow{m} = A^{-1} \overrightarrow{g}$. 由于 $||A^{-1}|| \le 1$, 有 $||\overrightarrow{m}||_{\infty} \le ||A^{-1}||_{\infty} \cdot ||\overrightarrow{g}||_{\infty} \le ||\overrightarrow{g}||_{\infty}$.

$$\mathbb{X} g_{j} = 3\{\lambda_{j} f[x_{j-1}, x_{j}] + \mu_{j} f[x_{j}, x_{j+1}]\}, j = 1, \dots, n$$

$$\implies |g_{j}| \leq 3(\lambda_{j} + \mu_{j}) \max_{1 \leq j \leq n-1} |f[x_{j}, x_{j+1}]| \leq 3 \frac{\omega(f; \bar{h})}{h}.$$

即有
$$\|\vec{g}\|_{\infty} \leq \frac{3}{\underline{h}}\omega(f;\bar{h})$$
.

综上所述
$$\|f-S\|_{\infty} \leq (1+\frac{8}{9}\frac{\bar{h}}{\underline{h}})\omega(f,\bar{h}) \leq (1+\frac{8C}{9})\omega(f;\bar{h}) \rightarrow 0.$$
 ▷

79 / 106

如果 f 的光滑性更好, 那么我们可以得到收敛速度的估计:

引理 6.2

设 $f \in C^{4}[a,b]$, $S \sim f$ 是在 (1) 型边界条件下的样条插值, 则

$$\max_{1 \le i \le n-1} |m_i - f'(x_i)| \le \frac{\bar{h}^3}{24} \|f^{(4)}\|_{\infty}.$$

✓利用转角方程及右端项的Taylor展开的积分余项估计,以及引 理 6.1 可以证明. ⊳

数值分析

80 / 106

利用上述引理可以得到以下误差收敛速度估计:

定理 6.8

设 $f \in C^{4}[a,b]$, $S \sim f$ 是在 (I) 型边界条件下的样条插值, 则

$$||f - S||_{\infty} \le \frac{5\bar{h}^4}{384} ||f^{(4)}||_{\infty}.$$

 \triangleleft 设 H(x) 为分段三次 Hermite 插值, 即满足

$$H(x_j) = f_j, \quad H'(x_j) = f'_j, \quad j = 0, \dots, n.$$

也就是说,在 $[x_j, x_{j+1}]$ 上,

$$H(x) = f_j \alpha_j(x) + f_{j+1} \alpha_{j+1}(x) + f'_j \beta_j(x) + f'_{j+1} \beta_{j+1}(x).$$

由 Hermite 插值多项式的误差估计式有

$$((f-H)(x) = \frac{f^{(4)}(\xi)}{4!}[(x-x_j)(x-x_{j+1})]^2, \quad \xi \in (x_j, x_{j+1}).$$

又由三角不等式
$$|f(x) - S(x)| \le |f(x) - H(x)| + |H(x) - S(x)|$$

$$= |f(x) - H(x)| + |(f'_j - m_j)\beta_j(x) + (f'_{j+1} - m_{j+1})\beta_{j+1}(x)|$$

$$\leq |f(x) - H(x)| + (|\beta_j(x)| + |\beta_{j+1}(x)|) \max_{1 \leq j \leq n-1} |f'_j - m_j|.$$

再利用 $x \in [x_j, x_{j+1}]$ 时,

$$|\beta_j(x)| + |\beta_{j+1}(x)| = \frac{1}{h_{j+1}}(x - x_j)(x_{j+1} - x) \le \frac{\bar{h}}{4},$$

以及引理 6.2, 立即有

$$||f - S||_{\infty} \le \frac{\bar{h}^4}{24 \times 16} ||f^{(4)}||_{\infty} + \frac{\bar{h}}{4} \frac{\bar{h}^3}{24} ||f^{(4)}||_{\infty} = \frac{5\bar{h}^4}{384} ||f^{(4)}||_{\infty}. \triangleright$$

更一般地我们可以得到以下各阶导数的误差收敛速度估计:

定理 6.9

设 $f \in C^4[a,b]$, $S \sim f$ 是在 (1) 型边界条件下的样条插值,

$$\bar{h} = \max_{1 \le j \le n} h_j, \, \underline{h} = \min_{1 \le j \le n} h_j, \, C = \bar{h}/\underline{h}. \, \boxed{\parallel}$$

$$\|f^{(k)} - S^{(k)}\|_{\infty} \le C_k \bar{h}^{4-k} \|f^{(4)}\|_{\infty},$$

S的三阶导数指的是 **分段三阶导数** k = 0, 1, 2, 3.

其中
$$C_0 = \frac{5}{384}$$
, $C_1 = \frac{1}{24}$, $C_2 = \frac{1}{4}$, $C_3 = \frac{1}{2}\left(C + \frac{1}{C}\right)$.

黄忠亿 (清华大学) 数值分析 北京,清华大学 83 / 106

前面已经讲过一般样条 S_m^n 的定义 **6.4** (即在 n+1 个节点上 定义的分段 m 次多项式, 内部为 m-1 次连续可微).

上面我们主要学习了 S_3^n 的性质及其表达式的求解办法,即可以从计算 m_i 或 M_i 入手. 我们也可以采用所谓的"基本样条函数(Basic Spline)"的概念来构造一般样条函数. 首先证明:

定理 6.10

S_m^n 是m+n 维线性空间.

⊲ 因为 $C^{m-1}[a,b]$ 与 P_m 均为线性空间, 自然 S_m^n 也是线性空间.

我们的基本思路便是找出其中的 n+m 个线性无关的函数, 再说明任何一个样条函数都可以用其线性组合表示.

设
$$a = x_0 < x_1 < \dots < x_n = b$$
. 记

可定义如下 m+n 个函数:

(6.16)
$$\begin{cases} u_k(x) = (x - x_0)^{\overline{k}}, & k = 0, 1, \dots, m \\ v_k(x) = (x - x_k)^{\overline{m}}, & k = 1, 2, \dots, n - 1 \end{cases}$$

我们先来证明上述 m+n 个函数线性无关. 假设有 $\{\alpha_k\}_{k=0}^m$ 与 $\{\beta_k\}_{k=1}^{n-1}\subset\mathbb{R}$ s.t.

(6.17)
$$\sum_{k=0}^{m} \alpha_k u_k(x) + \sum_{k=1}^{n-1} \beta_k v_k(x) \equiv 0.$$

那么特别 $x \in [x_0, x_1]$ 时, 上式为零. 注意此时 $v_k \equiv 0$, 即有

$$0 = \sum_{k=0}^{m} \alpha_k (x - x_0)^k \Longrightarrow \alpha_k \equiv 0, \quad k = 0, \dots, m.$$

再看 $x \in [x_1, x_2]$ 时, 上式成为 (注意此时 $v_k \equiv 0$, $k \geq 2$)

$$0 = \beta_1 (x - x_1)^m \Longrightarrow \beta_1 = 0.$$

依次类推便得到所有 $\beta_k=0$, $k=1,\cdots,n-1$. 即证明了 $\{u_k\}_{k=0}^m$ 与 $\{v_k\}_{k=1}^{n-1}$ 是线性无关的函数.

再证 $\forall s(x) \in S_m^n$, s(x) 可以写成 u_k 与 v_k 的线性组合. 我们下面对 j 用归纳法来证明: 当 $x \in [x_0, x_j]$ 时, s(x) 可以表示成

(6.18)
$$s(x) = \sum_{k=0}^{m} \alpha_k (x - x_0)^k + \sum_{k=1}^{j-1} \beta_k (x - x_k)_+^m$$

黄忠亿 (清华大学) 北京, 清华大学 86 / 106

上面 (6.18) 式对于 j=1 显然成立, 因为 $s(x)\big|_{[x_0,x_1]}\in P_m$. 归纳假设对某个 $j\geq 1$, (6.18) 式成立. 下面看

$$p(x) = s(x) - \sum_{k=0}^{m} \alpha_k (x - x_0)^k + \sum_{k=1}^{j-1} \beta_k (x - x_k)_+^m$$

由 $pig|_{[x_j,x_{j+1}]}\in P_m$,为 m 次多项式,且由归纳假设有 $pig|_{[x_0,x_j]}\equiv 0$ 。这样由 $s\in C^{(m-1)}[a,b]$ 知 $p^{(l)}(x_j)=0$, $l=0,\cdots,m-1$ 。

因而必有在 $[x_j, x_{j+1}]$ 上 $p(x) = \beta_j (x - x_j)_+^m$. 而由定义, 在 $[x_0, x_j]$ 上 $(x - x_j)_+^m \equiv 0$. 即证明了在 $[x_0, x_{j+1}]$ 上确实有

$$s(x) = \sum_{k=0}^{m} \alpha_k (x - x_0)^k + \sum_{k=1}^{j} \beta_k (x - x_k)_+^m$$

归纳证毕. 即 S_m^n 确实为 n+m 维线性空间. \triangleright

下面来看样条插值,即要求

(6.19)
$$s(x_i) = f(x_i), \quad j = 0, \dots, n$$

注意到 S_m^n 为 n+m 维空间, 而上面只有 n+1 个插值条件, 因而 m>1 时就 缺少 m-1 个条件.

通常我们都在边界上加上m-1个边界条件。考虑到对称性,我们希望在两边加的条件个数一致,因此一般都考虑奇数次的样条插值,即m=2l-1。这样有以下引理

黄忠亿 (清华大学) 北京, 清华大学 88 / 106

引理 6.3

设 $m=2l-1,\ 2\leq l\in\mathbb{N}.\ f\in C^l[a,b]$, 且 $s\in S^n_m$ 为 f 的样条插值, 即有: $s(x_j)=f(x_j)$, $j=0,1,\cdots,n$. 且满足以下边界条件

(6.20)
$$s^{(j)}(x_0) = f^{(j)}(x_0), \quad s^{(j)}(x_n) = f^{(j)}(x_n), \quad j = 1, \dots, l-1$$

$$\text{If } \int_a^b [f^{(l)}(x) - s^{(l)}(x)]^2 dx = \int_a^b [f^{(l)}(x)]^2 dx - \int_a^b [s^{(l)}(x)]^2 dx \ge 0.$$

即
$$R = \int_{a}^{b} [f^{(l)}(x) - s^{(l)}(x)] s^{(l)}(x) dx$$
. 利用分部积分即可证明

不会出现Runge现象

「从这里可以看出, 样条函数 l 阶导数的 L^2 范数不会超过原函数的, 即自然满足数值稳定性. 且 $f^{(l)}(x) - s^{(l)}(x)$ 与 $s^{(l)}(x)$ 正交 」

在以上引理的条件下,还可以得到以下结论 (由此立即得到 样条插值的唯一性)

引理 6.4

在以上引理的假设下, $\overline{f} = 0$, 则必有 s = 0.

0的插值函数一定是0

$$0 = R = -\int_{a}^{b} [s^{(l)}(x)]^{2} dx \Longrightarrow s^{(l)} \equiv 0 \Longrightarrow s \in P_{l-1}$$

再加上边界条件 $s^{(j)}(a)=s^{(j)}(b)=0,\;0\leq j\leq l-1\Longrightarrow s\equiv 0.$

黄忠亿 (清华大学) 北京, 清华大学 90 / 106

注 6.1

上面边界条件(6.20)也可以换成以下周期边界条件

(6.21)
$$s^{(j)}(a) = s^{(j)}(b), \quad j = 1, \dots, m-1.$$

或者如下的"自然边界条件"

(6.22)
$$s^{(j+l)}(a) = s^{(j+l)}(b) = 0, \quad j = 0, \dots, l-2.$$

「可以对比前面 m=3 即 l=2 的情形.」

综合上面的引理便可以得到如下定理(样条插值的存在唯一性)

定理 6.11

对 $m = 2l - 1, 2 \le l \in \mathbb{N}$, 任给 n + 1 个函数值 $\{y_i\}_{i=0}^n$ 及边界值 $\{a_k, b_k\}_{k=1}^{l-1}$, 那么存在唯一的 $s \in S_m^n$ **s.t.**

$$s(x_j) = y_j, \ 0 \le j \le n, \ \not \boxtimes s^{(k)}(a) = a_k, \ s^{(k)}(b) = b_k, \ 1 \le k \le l-1$$

 \triangleleft 设 $s(x) = \sum_{k=0}^{m} \alpha_k u_k(x) + \sum_{k=0}^{n-1} \beta_k v_k(x)$. 这样 n+m 个系数 α_k, β_k 需要满足下面 n+m 个线性方程

$$\begin{cases} \sum_{k=0}^{m} \alpha_k u_k(x_j) + \sum_{k=0}^{n-1} \beta_k v_k(x_j) = y_j, & j = 0, \cdots, n, \\ \text{ 因为已经证明了唯一性,因此系数矩阵非奇异,因此也存在解} \\ \sum_{k=0}^{m} \alpha_k u_k^{(j)}(a/b) + \sum_{k=0}^{n-1} \beta_k v_k^{(j)}(a/b) = a_j/b_j, & j = 1, \cdots, l-1 \end{cases}$$

由引理6.4, 齐次方程组只有零解, 即上述方程组存在唯一解. ▷

黄忠亿 (清华大学) 数值分析 北京,清华大学 92 / 106

理论上讲,求解上述方程组即可得到所需样条插值函数.但是当 n+m 较大时,上述方程组是病态的. 因此我们一般会用另一条途径去求得基函数和表达式,即采用所谓的基本样条函数 (Basic Spline).

B-样条函数具有紧支集, 即其只在一个小区间段上非零.

为简单起见, 我们现在考虑等距剖分, 即 $x_j = a + jh$, $j = 0, \dots, n$, $h = \frac{b-a}{n}$. 我们先递归定义基本样条函数如下:

如左图所示, 先令

(6.23)
$$B_0(x) = \begin{cases} 1, & |x| \le 0.5, \\ 0, & |x| > 0.5. \end{cases}$$

然后令

(6.24)
$$B_{m+1}(x) = \int_{x-\frac{1}{2}}^{x+\frac{1}{2}} B_m(y) dy$$
, $m = 0, 1, \cdots$

如左图所示,有

$$B_1(x) = \begin{cases} 1 - |x|, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

$$B_2(x) = \frac{1}{2} \begin{cases} \frac{\frac{3}{4} - |x|^2}{\frac{1}{2}(|x| - 1.5)^2}, & |x| \le \frac{1}{2}, \\ \frac{1}{2}(|x| - 1.5)^2, & \frac{1}{2} < |x| \le 1.5, \\ 0, & |x| > 1.5. \end{cases}$$

94 / 106

数值分析 北京,清华大学 黄忠亿 (清华大学)

关于 B_m 有以下定理

定理 6.12

对 $m \in \mathbb{N} \cup \{0\}$, B-样条函数 $B_m(\cdot - k)$, $k = 0, 1, \dots, m$ 在区间

$$I_m = [\frac{m-1}{2}, \frac{m+1}{2}]$$
上线性无关. 相同阶的是线性无关的

 \triangleleft 可以用归纳法来证明. m=0 是显然的, 此时只有一个函数. 设 m-1 时成立, 并假设

$$0 = \sum_{k=0}^{m} \alpha_k B_m(x-k), \quad \forall x \in I_m = \left[\frac{m-1}{2}, \frac{m+1}{2}\right]$$

由 (6.24) 的递归定义式,将上式微分一次有

$$0 = \sum_{k=0}^{m} \alpha_k \left[B_{m-1}(x - k + \frac{1}{2}) - B_{m-1}(x - k - \frac{1}{2}) \right], \quad \forall x \in I_m.$$

而函数 $B_{m-1}(x+\frac{1}{2})$ (其支集为 $[-\frac{m+1}{2},\frac{m-1}{2}]$) 和 $B_{m-1}(x-m-\frac{1}{2})$ (其支集为 $[\frac{m+1}{2},\frac{3m+1}{2}]$) 在 $I_m=[\frac{m-1}{2},\frac{m+1}{2}]$ 上为零,即上式实际为

$$0 = \sum_{k=1}^{m} (\alpha_k - \alpha_{k-1}) B_{m-1} \left(x - k - \frac{1}{2} \right), \quad \forall x \in I_m.$$

由归纳假设有 $\alpha_k = \alpha_{k-1}$, $k = 1, \dots, m$. 即所有的 $\alpha_k \equiv \alpha$.

$$\forall x \in I_m, \quad 0 = \alpha \sum_{k=0}^m B_m(x-k) \overset{\text{RD} \to \text{X}}{\Longrightarrow} 0 = \alpha \int_{-\frac{m+1}{2}}^{\frac{m+1}{2}} B_m(x) dx$$

因为 $B_m \geq 0$ 且 $B_m \neq 0 \Longrightarrow \alpha = 0$. 证毕. \triangleright

推论 6.8

设 $x_k = a + kh$, $k = 0, 1, \dots, n$, $h = \frac{b-a}{n}$ $(n \ge 2)$. 令 m = 2l - 1 (其中 $l \in \mathbb{N}$). 则 B-样条

$$B_{m,k}(x) = B_m \left(\frac{x - a - kh}{h} \right), \quad x \in [a, b]$$

对 $k = 1 - l, 2 - l, \dots, n + l - 1$ (共 n + 2l - 1 = n + m 个) 构成了 S_m^n 的一组基.

利用 $B_{m,k}(x)$, 可以从另一角度给出样条函数. 例如<mark>对 m=3,</mark>

设 $S_3(x) = \sum_{k=1}^{n+1} \alpha_k B_3(\frac{x-x_k}{h})$,可得 α_k 的一个三对角方程组.

目录

- 1 引言
- 2 线性方程组的直接解法
- 3 线性方程组的迭代解法
- 4 非线性方程(组)迭代解法
- 5 代数特征值问题的求解
- 6 插值法
 - 引言
 - 多项式插值
 - 分段低次插值
 - 样条插值 (spline interpolation)
 - ENO (Essentially Non-Oscillatory) 插值

前面几节讲的都是考虑对 $f \in C[a,b]$ 这样的光滑函数进行插值, 由分段低次插值性质即有 $I_h \Rightarrow f\ (h \to 0)$ 时.

但是许多科学与工程计算问题中会涉及到分片光滑函数的插值问题, $\mathbf{p} f \notin C[a,b]$,f(x) 在 [a,b] 上有间断点 (一般是第一类间断点,即间断两边的单边极限还是存在的). 或者导数较大

例如,对于双曲守恒律问题的解,就可能出现激波、接触间断等.

对于有间断的函数,如果我们不考虑其间断性,仍然用之前办法来做插值,会出现不好的结果.

我们来看一个简单例子.

对不光滑函数插值出现振荡

例 6.9

设
$$f(x) = \begin{cases} 1, & x \le 0; \\ 0, & x > 0. \end{cases}$$
 取节点 $x_{j+\frac{1}{2}} = (j + \frac{1}{2})h, \ j = 0, \pm 1, \pm 2, \cdots$

若简单地构造分段三次多项式插值, 例如在 $\{x_{-\frac{3}{2}}, x_{-\frac{1}{2}}, x_{\frac{1}{2}}, x_{\frac{3}{2}}\}$ 这 四个点上构造三次插值多项式

$$p_3(x) = 1 - \frac{1}{2h^2}(x - x_{-\frac{3}{2}})(x - x_{-\frac{1}{2}}) + \frac{1}{3h^3}(x - x_{-\frac{3}{2}})(x - x_{-\frac{1}{2}})(x - x_{\frac{1}{2}})$$

可以看到 $p_3(x)$ 产生了振荡. 且当 $h \to 0$ 时,振荡不会消失. 这种现象称为所谓的 Gibbs 现象.

黄忠亿 (清华大学)

数值分析

北京,清华大学

如何构造间断函数的好的插值逼近呢?

利用Newton型插值公式, 在 $x_{i-\frac{1}{2}}$ 附近构造 f(x) 的 k 次插值 多项式为

$$p_k(x) = \sum_{j=0}^k f[x_{i-\frac{1}{2}}, \cdots, x_{i+j-\frac{1}{2}}] \prod_{l=0}^{j-1} (x - x_{i+l-\frac{1}{2}})$$

由前面关于均差的性质我们已经知道, 若 $f \in C^{(j)}[a,b]$, 那么有

(6.25)
$$f[x_{i-\frac{1}{2}}, \cdots, x_{i+j-\frac{1}{2}}] = \frac{1}{j!} f^{(j)}(\xi), \quad \xi \in (a, b).$$

但若 f(x) 在 $(x_{i-\frac{1}{2}},x_{i+j-\frac{1}{2}})$ 上有间断, 即 $\mathcal{O}(1)$ 的跳跃, 那么易见

(6.26)
$$f[x_{i-\frac{1}{2}}, \cdots, x_{i+j-\frac{1}{2}}] = \mathcal{O}(h^{-j}).$$

由此看出若简单选取节点构造插值多项式, 误差可能会很大!

101 / 106

如何才能使得在插值点附近都有

$$f(x) - p_k(x) = \mathcal{O}(h^{k+1})$$

从上面 (6.25)-(6.26)可知, 如果插值模板

 $\{x_{i-\frac{1}{2}},x_{i+\frac{1}{2}},\cdots,x_{i+j-\frac{1}{2}}\}$ 之间没有函数 f 的间断点,那么是可以让由此得到的插值多项式 $p_k(x)$ 尽可能靠近 f(x) 的. 因此我们只要尽可能避免跨过间断点插值即可. 如何实现呢?这就是

ENO 格式:

假设 $x_{i-\frac{1}{2}}$ 不是 f 的间断点. 从模板 $S_1(i)=\{x_{i-\frac{1}{2}}\}$ 出发, k=0. 即 $p_0(x)=f(x_{i-\frac{1}{2}})$

黄忠亿 (清华大学) 北京, 清华大学 102 / 106

1. 有两种方法选取一次逼近多项式:

$$p_1(x) \equiv f(x_{i-\frac{1}{2}}) + f[x_{i-\frac{1}{2}}, x_{i-\frac{1}{2}}](x - x_{i-\frac{1}{2}}, x_{i-\frac{1}{2}}),$$

由 (6.25)–(6.26) 的启示, 要希望模板不跨过间断点, 我们应该取差商绝对值小的, 即:

若
$$|f[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]| < |f[x_{i-\frac{1}{2}},x_{i-\frac{3}{2}}]|$$
,则取 $S_2(i) = \{x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\}$;否则取 $S_2(i) = \{x_{i-\frac{1}{2}},x_{i-\frac{3}{2}}\}$.

2. 重复以上原则去构造二次、三次 · · · · · 插值多项式.

即每次选取插值模板(节点)时, 选取使得 / 在其上的最高阶

<mark>均差绝对值最小的模板</mark>. 这样可使得 $p_k(x)$ 尽可能光滑.

黄忠亿 (清华大学) 北京, 清华大学 103 / 106

事实上我们如上构造的 $p_k(x)$ 有以下性质 (为简单起见, 仅对

$$f(x) = \begin{cases} 1, & x \le 0; \\ 0, & x > 0. \end{cases}$$
 证明)

1. 若 $I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ 中没有 f(x) 的间断点,则

(6.27)
$$p_k(x) = f(x) + \mathcal{O}(h^{k+1}), \quad \forall x \in I_i.$$

$$\triangleleft$$
 对 $f(x)=\begin{cases} 1, & x\leq 0;\\ 0, & x>0. \end{cases}$, 及 $x_{i+\frac{1}{2}}=(i+\frac{1}{2})h, i=0,\pm 1,\pm 2,\cdots$

当 i < 0 时, $f(x_{i+\frac{1}{2}}) \equiv 1$; 当 $i \ge 0$ 时, $f(x_{i+\frac{1}{2}}) \equiv 0$.

因而按照上述算法构造出来的插值多项式满足

$$p_k(x) \equiv 1$$
 (当 $i < 0$) 或者 $p_k(x) \equiv 0$ (当 $i \ge 0$).

也即没有震荡

2. 若 I_i 中包含 f 的间断点 (即有时我们必须在含间断点的区间 $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ 上插值), 则如上构造出来的 $p_k(x)$ 在 I_i 上单调.

 \lhd 设在 $\{x_{i-l+\frac{1}{2}},\cdots,x_{i+k-l+\frac{1}{2}}\}$ 上构造了 $p_k(x)$,且间断点 $O\in I_i$.

对 $I_j = [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}]$, 如果 $j \neq i$, 那么由插值条件

 $p_k(x_{j-\frac{1}{2}})=f(x_{j-\frac{1}{2}})=f(x_{j+\frac{1}{2}})=p_k(x_{j+\frac{1}{2}})$ 知 $p_k'(x)$ 在 I_j 上有零 点 $\xi_j\in(x_{j-\frac{1}{2}},x_{j+\frac{1}{2}})$.

这样对于 $j \in \{i-l+1, il+2, \cdots, i-l+k\}$ 且 $j \neq i$ (共 k-1 个), $p'_k(x)$ 在 I_j 内均有零点, 即已经找到了 $p'_k(x)$ 互异的 k-1 个零点 (因 p'_k 为 k-1 次多项式, 即已全部找到).

这样必有 $p'_k(x)$ 在 I_i 上不为零, 即 $p_k(x)$ 在 I_i 上单调. \triangleright

考虑到舍入误差对于计算均差的影响,为了避免由此影响比较大小,我们也可以考虑所谓的 WENO 格式.

即将所有可能的模板都使用,对其插值多项式做一个加权求和,其中的权重系数与函数在上面的光滑性有关:

越不光滑的地方让其权重越小,光滑的地方让其权重较大,最后再归一化一下系数.

可以证明,如上适当选取权重,可以使得插值多项式逼近阶达到最优!

黄忠亿 (清华大学) 北京, 清华大学 106 / 106