Gesture Recognition with mmW Radar Tracking

Jupiter Blue - Tsz Chung Mak, Thuan Pham, Jayden Situ, Micheal Guarrera

Aims (J)

Simplified and User-friendly Presentations

- Our innovative gesture recognition system offers a new way to deliver presentations.
- Uses mmW Radar Tracking technology and tracks your hand gestures to control your presentation
- Vertical gestures adjust the volume (Up = Increase Volume, Down = Decrease Volume).
- Horizontal gestures navigate slides (Left = Previous Slide, Right = Next Slide).
- An M5Core2 timer is used to set the presentation's duration.
- An M5Core2 gesture display provides real-time feedback to the presenter.

System Overview (T)

mmW Radar AWR1843

 Capture movement data and send to the PC for processing

M5Core2 and Nucleo Board for User Interactive Interface

- Have interactive button that can be used to manage the presentation
- Can set timer to start/stop the hand gesture recognition feature, hence the presentation
- Visualise presentation progress using LCD and on board LED

M5Core2 to Display Gesture

 Enhance user experience by displaying the gesture captured using and LCD

PC as Hand Gesture Processor

- Communicate and extract
 Range-Doppler data from mmW
 Radar over serial
 communication
- Managed in real-time by M5Core2 through MQTT protocol
- Ultilise Machine Learning with Tensorflow Keras to train the model for hand gesture recognition

Results (Mi)

Mmw Radar

- Radar can capture the doppler data in batches.
- General direction of gestures can be determined with relevant data points.

M5Core2

- Timer is configured based on a real-life model. Seconds can be set by tapping the left two buttons, minutes can be set by holding the left two buttons.
- Vibrations occur at the start of the timer, at the last 30 seconds of the timer and when the timer stops.

Nucleo Board

 LED's can be changed from UART from the gesture displaying M5Core2.

Machine Learning

- Is able to learn from the doppler vector data provided.
- Results can be a bit inconsistent at times.
- More data and a better model would need to be implemented for higher accuracy day to day use

GUI

 PC python GUI for adding extra training data has been made.

Conclusions (To)

Performance

- The radar can successfully recognize some of the gesture and control the slides accordingly
- The M5 core 2 timer is functioning properly
- The other M5 core 2 can display gesture correctly based on the recognized gesture

Significance

- The doppler and range data which captured by the AWR1843 is the compulsory data which is needed for gesture recognition
- The development and training of the AI model is the key which allows the PC to recognize gesture

Future Development

- An advanced AI model is recommended to discover to improve the accuracy of the AI training
- Research is recommended on other possible sensor which can improves the accuracy on capturing data