CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

I. Généralités et exemples

1. Supposons que le produit infini $\prod_{n\geqslant 0}u_n$ converge. Posons $P=\prod_{n=n_0}^{+\infty}u_n$. Par définition P est un réel non nul.

Pour tout entier naturel n, $P_n \neq 0$ puis pour $n \in \mathbb{N}^*$,

$$\frac{P_n}{P_{n-1}} = \frac{\prod_{k=0}^{n} u_k}{\prod_{k=0}^{n-1} u_k} = u_n.$$

Puisque $P \neq 0$, $\lim_{n \to +\infty} u_n = \frac{P}{P} = 1$.

- 2. a) En appliquant la définition de la limite au réel $\varepsilon = 1$, il existe un entier $n_0 \in \mathbb{N}^*$, tel que $\forall n \geqslant n_0, u_n > 1 1 = 0$.
- $\mathbf{b)} \text{ Pour tout } n \geqslant n_0, \ \prod_{k=0}^n u_k = \lambda \prod_{k=n_0}^n u_k \text{ où } \lambda = \left(\prod_{k=0}^{n_0-1} u_k\right). \text{ Comme } \lambda \neq 0, \text{ la suite } \left(\prod_{k=0}^n u_k\right)_{n\geqslant 0} \text{ converge vers une } \lambda \neq 0$

limite non nulle si et seulement si la suite $\left(\prod_{k=0}^n u_k\right)_{n\geqslant n_0}$ converge vers une limite non nulle. Donc les produits infinis

 $\prod_{n\geqslant 0}u_n \ {\rm et} \ \prod_{n\geqslant n_0}u_n \ {\rm sont} \ {\rm de} \ {\rm m{\hat e}me} \ {\rm nature}.$

3. a) Pour $n \in \mathbb{N}$, posons $P_n = \prod_{k=0}^n u_k$ et $S_n = \sum_{k=0}^n \ln(u_k)$. Par hypothèse la suite (P_n) est strictement positive et pour tout $n \in \mathbb{N}$, on a $S_n = \ln(P_n)$ ou encore $P_n = e^{S_n}$.

Si la suite (S_n) converge vers un réel S, $P_n = e^{S_n}$ converge vers e^S qui est un réel strictement positif.

Si la suite P_n converge vers une limite non nulle P, on a P>0 puisque la suite (P-N) est positive et de plus $S_n=\ln(P_n)$ converge vers le réel $\ln(P)$.

Finalement, le produit infini de terme général u_n converge si et seulement si la série de terme général $\ln(u_n)$ converge.

b) La suite $(1 + u_n)$ est strictement positive. D'après la question précédente, le produit infini $\prod_{n \geqslant 0} (1 + u_n)$ converge si et seulement si la série de terme général $\ln(1 + u_n)$ converge.

Si la série de terme général u_n converge, alors en particulier u_n tend vers 0 puis $\ln(1+u_n) {\sim \atop n \to +\infty} u_n > 0$. Mais alors la série de terme général $\ln(1+u_n)$ converge.

Si la série de terme général $\ln(1+u_n)$ converge, alors en particulier $\ln(1+u_n)$ tend vers 0 puis $u_n = e^{\ln(1+u_n)} - 1$ tend vers 0. Mais alors $u_n \underset{n \to +\infty}{\sim} \ln(1+u_n) > 0$. Mais alors la série de terme général u_n converge.

Finalement , le produit infini de terme général $1+u_n$ converge si et seulement si la série de terme général u_n converge.

c) On réécrit tout se qui précède en remplaçant u_n par $-u_n$ et on obtient le résultat.

- **4.** a) Pour tout $n \ge 1$, $u_n = \frac{1}{4n^2} \in]0,1[$. Puisque la série de terme général $\frac{1}{4n^2}$ converge, les questions 2.b et 3.c permettent d'affirmer que le produit infini $\prod_{n\ge 1} \left(1-\frac{1}{4n^2}\right)$ converge.
- b) Soit $x \in]-\pi,\pi[$. Pour tout $n \geqslant 1, \frac{x^2}{n^2\pi^2} \in \left]0, \frac{x^2}{\pi^2}\right] \subset]0,1[$. Puisque la série de terme général $\frac{x^2}{n^2\pi^2}$ converge, le produit infini $\prod_{n \ge 1} \left(1 \frac{x^2}{n^2\pi^2}\right)$ converge.
- c) Soit x>0. Pour $n\geqslant 1$, posons $u_n=\left(1+\frac{x}{n}\right)e^{-x/n}$. Alors, pour tout $n\geqslant 1$ n $u_n>0$ puis

$$\ln(u_n) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n} \underset{n \to +\infty}{=} \frac{x}{n} + O\left(\frac{1}{n^2}\right) - \frac{x}{n} \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right).$$

Ainsi, la série de terme général $\ln(\mathfrak{u}_n),\ n\geqslant 1$, converge et d'après la question 3.a, le produit infini $\prod_{n\geqslant 1}\left(1+\frac{x}{n}\right)e^{-\frac{x}{n}}$ converge.

 $\textbf{5.} \quad \textbf{a} \ \text{Pour tout} \ n \geqslant 1, \ \frac{1}{n} > 0. \ \text{D'après la question 3.b, la série de terme général} \ \frac{1}{n}, \ n \geqslant 1, \ \text{et le produit infini} \ \prod_{n \geqslant 1} \left(1 + \frac{1}{n}\right) \\ \text{sont de même nature.}$

Pour tout $n \ge 1$, $\prod_{k=1}^n \left(1 + \frac{1}{k}\right) = \prod_{k=1}^n \frac{k+1}{k} = \frac{n+1}{1} = n+1$ (produit télescopique). Par suite, le produit infini $\prod_{n \ge 1} \left(1 + \frac{1}{n}\right)$ diverge vers $+\infty$ et il en est de même de la série de terme général $\frac{1}{n}$, $n \ge 1$.

 $\mathbf{b} \,\, \mathrm{Soit} \,\, p \geqslant 2. \,\, \mathrm{Alors} \,\, 0 < \frac{1}{p} < 1 \,\, \mathrm{et} \,\, \mathrm{la} \,\, \mathrm{s\acute{e}rie} \,\, \mathrm{g\acute{e}om\acute{e}trique} \,\, \mathrm{de} \,\, \mathrm{terme} \,\, \mathrm{g\acute{e}n\acute{e}ral} \,\, \frac{1}{p^k}, \,\, k \geqslant 0, \,\, \mathrm{converge} \,\, \mathrm{puis}$

$$\sum_{k=0}^{+\infty} \frac{1}{p^k} = \frac{1}{1 - \frac{1}{p}}.$$

c) Soit $N \geqslant 2$ puis $p_1 < p_2 < \ldots < p_n$, les nombres premiers deux à deux distincts inférieurs ou égaux à N. Tout entier $k \in [\![1,n]\!]$ s'écrit donc de manière unique sous la forme $p_1^{\beta_1} \ldots p_n^{\beta_n}$ où $0 \leqslant \beta_i \leqslant \alpha_i = E\left(\frac{N}{p_i}\right)$. Par suite,

$$\begin{split} \sum_{k=1}^N \frac{1}{k} &\leqslant \sum_{(\beta_1, \dots, \beta_n) \in \llbracket 0, \alpha_1 \rrbracket \times \dots \times \llbracket 0, \alpha_n \rrbracket} \frac{1}{p_1^{\beta_1} \dots p_n^{\alpha_n}} = \prod_{i=1}^n \left(\sum_{\beta_i = 0}^{\alpha_i} \frac{1}{p_i^{\beta_i}} \right) \\ &\leqslant \prod_{i=1}^n \left(\sum_{\beta_i = 0}^{+\infty} \frac{1}{p_i^{\beta_i}} \right) = \prod_{i=1}^n \frac{1}{1 - \frac{1}{p_i}} \\ &= \prod_{n=1}^{+\infty} \frac{1}{1 - \frac{1}{n}}. \end{split}$$

Ainsi, pour tout entier $N \geqslant 2$, $\prod_{n=1}^{+\infty} \frac{1}{1-\frac{1}{p_n}} \geqslant \sum_{k=1}^{N} \frac{1}{k}$. Quand N tend vers $+\infty$, on obtient $\prod_{n=1}^{+\infty} \frac{1}{1-\frac{1}{p_n}} = +\infty$. La question

3.a permet d'affirmer que la série de terme général $\ln\left(\frac{1}{1-\frac{1}{p_n}}\right) = -\ln\left(1-\frac{1}{p_n}\right)$ diverge. Enfin, p_n tend vers $+\infty$

quand n tend vers $+\infty$ et donc $\frac{1}{p_n}$ tend vers 0 quand n tend vers $+\infty$. Mais alors $-\ln\left(1-\frac{1}{p_n}\right) \sim \frac{1}{n\to +\infty} > 0$ et la série de terme général $\frac{1}{p_n}$ diverge.

$$\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty.$$

II. Développements eulériens du sinus et formule de Wallis

6. Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. La fonction f_{α} est 2π -périodique, continue sur $\mathbb{R} \setminus \pi\mathbb{Z}$. De plus, $f_{\alpha}(\pi^+) = f_{\alpha}(-\pi^+) = \cos(-\alpha\pi) = \cos(\alpha\pi) = f_{\alpha}(\pi) = f_{\alpha}(\pi^-)$. Donc, f_{α} est continue en π puis en tous les $k\pi$, $k \in \mathbb{Z}$, par 2π -périodicité.

En résumé, la fonction f_{α} est 2π -périodique, continue sur \mathbb{R} et de classe C^1 par morceaux sur \mathbb{R} . D'après le théorème de DIRICHLET, la série de FOURIER de f_{α} converge simplement vers f_{α} sur \mathbb{R} .

 $f_{\alpha} \text{ est paire. Donc } \forall n \in \mathbb{N}^*, \ b_n(f_{\alpha}) = 0 \text{ puis pour } n \in \mathbb{N},$

$$\begin{split} \alpha_n(f_\alpha) &= \frac{2}{\pi} \int_0^\pi \cos(\alpha t) \cos(nt) \; dt = \frac{1}{\pi} \int_0^\pi (\cos((\alpha+n)t) + \cos((\alpha-n)t)) \; dt \\ &= \frac{1}{\pi} \left[\frac{\sin((\alpha+n)t)}{\alpha+n} + \frac{\sin((\alpha-n)t)}{\alpha-n} \right]_0^\pi \; (\operatorname{car} \; \alpha \notin \mathbb{Z}) \\ &= \frac{1}{\pi} \left(\frac{\sin((\alpha+n)\pi)}{\alpha+n} + \frac{\sin((\alpha-n)\pi)}{\alpha-n} \right) = \frac{(-1)^n \sin(\alpha\pi)}{\pi} \left(\frac{1}{\alpha+n} + \frac{1}{\alpha-n} \right) = \frac{(-1)^n 2\alpha \sin(\alpha\pi)}{\pi(\alpha^2-n^2)}. \end{split}$$

Mais alors, pour tout $t \in [-\pi, \pi]$,

$$\cos(\alpha t) = f_\alpha(t) = \frac{a_0(f_\alpha)}{2} + \sum_{n=1}^{+\infty} a_n(f_\alpha)\cos(\alpha t) + b_n(f_\alpha)\sin(\alpha t) = \frac{\sin(\alpha\pi)}{\alpha\pi} + \sum_{n=1}^{+\infty} \frac{(-1)^n 2\alpha\sin(\alpha\pi)}{\pi(\alpha^2 - n^2)}\cos(nt).$$

 $\text{Pour } t = \pi \text{, on obtient en particulier } \cos(\alpha\pi) = \frac{\sin(\alpha\pi)}{\alpha\pi} + \sum_{n=1}^{+\infty} \frac{2\alpha\sin(\alpha\pi)}{\pi(\alpha^2 - n^2)} \text{ puis en divisant par le réel non nul } \sin(\alpha\pi),$

$$\forall \alpha \in \mathbb{R} \setminus \mathbb{Z}, \, \operatorname{cotan}(\alpha \pi) = \frac{1}{\alpha \pi} + \sum_{n=1}^{+\infty} \frac{2\alpha}{\pi(\alpha^2 - n^2)}.$$

7. a) La fonction g est continue sur $]0,x] \subset]0,\pi[$ en vertu de théorèmes généraux. De plus,

$$g(t) = \frac{t \cos t - \sin t}{t \sin t} \underset{t \to 0, t > 0}{\sim} \frac{t^3 \left(-\frac{1}{2} + \frac{1}{6}\right)}{t^2} = -\frac{t}{3} \underset{t \to 0, t > 0}{\rightarrow} 0 = g(0).$$

Par suite, g est continue en 0 et finalement g est continue sur [0,x].

En particulier, $\int_0^x g(t) dt$ existe et de plus

$$\int_0^x g(t) \ dt = \lim_{\epsilon \to 0} \left[\ln(\sin t) - \ln(t) \right]_{\epsilon}^x = \ln\left(\frac{\sin x}{x}\right) - \lim_{\epsilon \to 0} \ln\left(\frac{\sin \epsilon}{\epsilon}\right) = \ln\left(\frac{\sin x}{x}\right).$$

$$\forall x \in]0, \pi[, \int_0^x g(t) = \ln\left(\frac{\sin x}{x}\right).$$

b) La formule est vraie quand t = 0. Soit $t \in]0,x] \subset]0,1[$ puis $\alpha = \frac{t}{\pi} \in]0,1[$. Alors $\alpha \notin \mathbb{Z}$ et d'après la question 6,

$$g(t) = \cot(t) - \frac{1}{t} = \left(\frac{1}{t} + \sum_{n=1}^{+\infty} \frac{\frac{2t}{\pi}}{\pi \left(\frac{t^2}{\pi^2} - n^2\right)}\right) - \frac{1}{t} = 2t \sum_{n=1}^{+\infty} \frac{1}{t^2 - n^2\pi^2}.$$

c) Soit $x \in]0,\pi[$. Pour $t \in [0,x]$ et $n \in \mathbb{N}^*$, posons $g_n(t) = \frac{2t}{t^2 - n^2\pi^2}$. Tout d'abord, pour $n \in \mathbb{N}^*$ et $t \in [0,x]$, $n^2\pi^2 - t^2 \geqslant \pi^2 - x^2 > 0$. Par suite, pour tout $n \in \mathbb{N}$ et tout $t \in [0,x]$,

$$|g_n(t)| = \frac{2t}{n^2\pi^2 - t^2} \leqslant \frac{2x}{n^2\pi^2 - x^2}$$

et donc $\|g_n\|_{\infty} \leqslant \frac{2x}{n^2\pi^2-x^2}$ (où $\|g_n\|_{\infty} = \sup\{|g_n(t)|, \ t \in [0,x]\}$). Comme la série numérique de terme général $\frac{2x}{n^2\pi^2-x^2}$, $n \geqslant 1$, converge (car $\frac{2x}{n^2\pi^2-x^2}$ $\underset{n \to +\infty}{\sim} \frac{2x}{n^2\pi^2}$, on a montré que la série de fonctions de terme général g_n , $n \geqslant 1$, converge normalement et donc uniformément sur [0,x].

Ainsi, chaque fonction g_n est continue sur le segment $[0,\pi]$ et la série de fonctions de terme général g_n converge uniformément vers g sur [0,x]. On peut donc intégrer terme à terme et on obtient

$$\begin{split} \ln\left(\frac{\sin x}{x}\right) &= \int_0^x g(t) \ dt = \sum_{n=1}^{+\infty} \int_0^x g_n(t) \ dt \\ &= \sum_{n=1}^{+\infty} \left[\ln|t^2 - n^2\pi^2|\right]_0^x = \sum_{n=1}^{+\infty} \ln\left|\frac{x^2 - n^2\pi^2}{n^2\pi^2}\right| = \sum_{n=1}^{+\infty} \ln\left(1 - \frac{x^2}{n^2\pi^2}\right) \\ &= \lim_{n \to +\infty} \sum_{k=1}^n \ln\left(1 - \frac{x^2}{k^2\pi^2}\right) = \lim_{n \to +\infty} \ln\prod_{k=1}^n \left(1 - \frac{x^2}{k^2\pi^2}\right) \\ &= \ln\left(\lim_{n \to +\infty} \prod_{k=1}^n \left(1 - \frac{x^2}{k^2\pi^2}\right)\right) \ (\text{par continuit\'e de ln sur }]0, +\infty[) \\ &= \ln\left(\prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2\pi^2}\right)\right), \end{split}$$

et finalement, $\frac{\sin x}{x} = \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$ ou encore $\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right)$. Cette égalité reste vraie pour x = 0 et aussi pour $x \in]-\pi, 0[$ par parité. On a montré que

$$\forall x \in]-\pi, \pi[, \sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right).$$

8. Pour $x = \frac{\pi}{2}$, on obtient en particulier $1 = \frac{2}{\pi} \prod_{n=1}^{+\infty} \left(1 - \frac{1}{4n^2}\right)$ et donc

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{4n^2}\right) = \frac{\pi}{2}.$$

III. Formule de Weierstrass et constante d'Euler

 $\textbf{9.} \quad \textbf{a)} \ \mathrm{Soit} \ x>0. \ \mathrm{La} \ \mathrm{fonction} \ t\mapsto e^{-t}t^{x-1} \ \mathrm{est} \ \mathrm{continue} \ \mathrm{sur} \]0,+\infty[.$

Quand t tend vers $+\infty$, $t^2e^{-t}t^{x-1}=e^{-t}t^{x+1}\to 0$ et donc $e^{-t}t^{x-1}=o\left(\frac{1}{t^2}\right)$. Par suite, la fonction $t\mapsto e^{-t}t^{x-1}$ est intégrable sur un voisinage de $+\infty$.

intégrable sur un voisinage de $+\infty$. Quand t tend vers 0, $e^{-t}t^{x-1} \sim t^{x-1} > 0$. Comme x-1>-1, la fonction $t\mapsto t^{x-1}$ est intégrable sur un voisinage de 0 et il en est de même de la fonction $t\mapsto t^{x-1}e^{-t}$.

Finalement, la fonction $\mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$.

b)
$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = [-e^{-t}]_0^{+\infty} = 1.$$

c) Soient $\mathfrak a$ et $\mathfrak b$ deux réels tels que $0 < \mathfrak a < 1 < \mathfrak b$. Soit $\Phi: [\mathfrak a,\mathfrak b] \times]0, +\infty[\ \rightarrow \ \mathbb R \ (x,t) \ \mapsto \ t^{x-1}e^{-t}$.

- Pour chaque $x \in [a, b] \subset]0, +\infty[$, la fonction $t \mapsto \Phi(x, t)$ est continue par morceaux et intégrable sur $]0, +\infty[$ d'après la question 9.a).
- Φ admet sur $[a, b] \times]0, +\infty[$ une dérivée partielle par rapport à sa première variable x à savoir

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \ \frac{\partial \Phi}{\partial x}(x,t) = \ln t e^{-t} t^{x-1}.$$

De plus,

- Pour chaque $x \in [a,b]$, la fonction $t \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$.
- Pour chaque $t \in]0, +\infty[$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x,t)$ est continue sur [a,b].
- $\ \mathrm{Pour} \ \mathrm{chaque} \ (x,t) \in [\mathfrak{a},\mathfrak{b}] \times]\mathfrak{0}, + \infty [, \ \left| \frac{\partial \Phi}{\partial x}(x,t) \right| = |\ln t| e^{-t} t^{x-1} \leqslant \left\{ \begin{array}{l} |\ln t| e^{-t} t^{\mathfrak{a}-1} \sin \mathfrak{0} < t < 1 \\ |\ln t| e^{-t} t^{\mathfrak{b}-1} \sin t \geqslant 1 \end{array} \right. = \phi(t).$

La fonction φ est continue par morceaux sur]0, $+\infty$ [, négligeable devant $\frac{1}{t^2}$ en $+\infty$ d'après un théorème de croissances comparées et donc la fonction φ est intégrable sur un voisinage de $+\infty$.

comparées et donc la fonction ϕ est intégrable sur un voisinage de $+\infty$. Quand t tend vers 0, $t^{1-\frac{\alpha}{2}}\phi(t)=|\ln t|e^{-t}t^{\frac{\alpha}{2}}\sim |\ln t|t^{\frac{\alpha}{2}}\to 0$ (car $\alpha>0$) et donc $\phi(t)=o\left(t^{-1+\frac{\alpha}{2}}\right)$.

Comme $-1 + \frac{\alpha}{2} > -1$, la fonction $t \mapsto t^{-1+\frac{\alpha}{2}}$ est intégrable sur un voisinage de 0 et il en est de même de la fonction φ .

Finalement, la fonction φ est continue par morceaux et intégrable sur $]0, +\infty[$.

D'après le théorème de dérivation des intégrales à paramètres, Γ est de classe C^1 sur [a,b] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tous réels a et b tels que 0 < a < 1 < b, Γ est de classe C^1 sur $]0,+\infty[$ et

$$\forall x \in]0, +\infty[, \Gamma'(x) = \int_0^{+\infty} \ln t e^{-t} t^{x-1} dt.$$

10. a) Soit $n \in \mathbb{N}^*$. Si $t \ge n$, $f_n(t) = 0$ et donc $0 \le f_n(t) \le e^{-t}$.

Soit $t \in]0, n[$. Alors, $1 - \frac{t}{n} \ge 0$ puis $f_n(t) \ge 0$.

Ensuite, on sait que pour tout $u \in]-1,+\infty[$, $\ln(1+u) \le u$ (inégalité de convexité). Comme $-\frac{t}{n} \in]-1,0[\subset]-1,+\infty[$, on en déduit que $\ln\left(1-\frac{t}{n}\right) \le -\frac{t}{n}$ ou encore $\ln\left(\left(1-\frac{t}{n}\right)^n\right) \le -t$ et finalement $\left(1-\frac{t}{n}\right)^n \le e^{-t}$. Encore une fois, $0 \le f_n(t) \le e^{-t}$.

On a montré que

$$\forall n \in \mathbb{N}^*, \, \forall t \in]0, +\infty[, \, 0 \leqslant f_n(t) \leqslant e^{-t}.$$

- $\mathbf{b)} \text{ Soit } x \in]0,+\infty[. \text{ Pour } n \in \mathbb{N}^* \text{ et } t \in]0,+\infty[, \text{ posons } \gamma_n(t) = f_n(t)t^{x-1}.$
- $\bullet \ {\rm Chaque \ fonction} \ \gamma_n \ : \ t \mapsto f_n(t)t^{x-1} \ {\rm est \ continue \ par \ morceaux \ sur \ }]0, +\infty[.$
- $\begin{array}{l} \bullet \text{ V\'erifions que la suite de fonctions } (\gamma_n) \text{ converge simplement sur }]0, +\infty[\text{ vers la fonction } t \mapsto e^{-t}t^{x-1}. \text{ Soit } t \in]0, +\infty[.] \\ \text{Pour } n > t, \text{ on a } f_n(t) = \left(1-\frac{t}{n}\right)^n = \exp\left(n\ln\left(1-\frac{t}{n}\right)\right). \text{ Quand } n \text{ tend vers } +\infty, \end{array}$

$$f_n(t) = \exp\left(n\left(-\frac{t}{n} + o\left(\frac{1}{n}\right)\right)\right) = e^{-t + o(1)}.$$

Ainsi, pour tout t > 0, $\gamma_n(t)$ tend vers $e^{-t}t^{x-1}$ quand n tend vers $+\infty$ ou encore la suite de fonctions (γ_n) converge simplement sur $]0, +\infty[$ vers la fonction $t \mapsto e^{-t}t^{x-1}$.

• Pour tout entier naturel non nul n et tout $t \in]0, +\infty[$, $0 \le \gamma_n(t) \le e^{-t}t^{x-1} = \phi(t)$ où la fonction ϕ est une fonction continue par morceaux et intégrable sur $]0, +\infty[$ d'après la question 9.a.

Le théorème de convergence dominée permet alors d'affirmer que

$$\begin{split} \Gamma(x) &= \int_0^{+\infty} e^{-t} t^{x-1} \ dt = \lim_{n \to +\infty} \gamma_n(t) \ dt \\ &= \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{x-1} \ dt. \end{split}$$

$$\forall x > 0, \ \Gamma(x) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^n t^{x-1} \ dt.$$

11. a) Soient $x \in]0, +\infty[$ et $n \in \mathbb{N}^*$. Soit $\epsilon \in]0, 1[$. Les deux fonctions $\mathfrak{u} \mapsto (1-\mathfrak{u})^n$ et $\mathfrak{u} \mapsto \frac{\mathfrak{u}^x}{x}$ sont de classe C^1 sur le segment $[\epsilon, 1]$. On peut donc effectuer une intégration par parties qui fournit

$$\begin{split} \int_{\varepsilon}^{1} (1-u)^n u^{x-1} \ du &= \left[(1-u)^n \frac{u^x}{x} \right]_{\varepsilon}^{1} - \int_{\varepsilon}^{1} (-n)(1-u)^{n-1} \frac{u^x}{x} \ du \\ &= -(1-\varepsilon)^n \frac{\varepsilon^x}{x} + \frac{n}{x} \int_{\varepsilon}^{1} (1-u)^{n-1} u^x \ du. \end{split}$$

Quand ϵ tend vers 0, on obtient $I_n(x) = \frac{n}{x}I_{n-1}(x+1)$.

b) Soient $n \in \mathbb{N}^*$ et x > 0.

$$\mathrm{I}_n(x) = \frac{n}{x} \times \frac{n-1}{x+1} \times \ldots \times \frac{1}{x+n-1} \mathrm{I}_0(x+n) = \frac{n!}{\displaystyle\prod_{k=0}^n (x+k)}$$

ce qui reste vrai quand n = 0.

c) Soient $n \in \mathbb{N}^*$ et x > 0. En posant $u = \frac{t}{n}$, on obtient

$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n \left(\frac{t}{n}\right)^{x-1} \frac{dt}{n} = \frac{1}{n^x} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt,$$

et donc $\int_0^n \left(1-\frac{t}{n}\right)^n t^{x-1} \ dt = n^x I_n(x) = \frac{n!n^x}{\displaystyle\prod_{k=0}^n (x+k)}.$ La question 10.b permet alors d'affirmer que

$$\forall x > 0, \ \Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{\displaystyle\prod_{k=0}^n (x+k)}.$$

12. Application: a) Soit $x \in]0,1[$. Puisque la fonction $t \mapsto e^{-t}t^{x-1}$ est continue positive et non nulle sur $]0,+\infty[$, on

a
$$\Gamma(x) > 0$$
 et $\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} \frac{\displaystyle\prod_{k=0}^{n} (x+k)}{n! n^x}$ puis $1-x \in]0,1[$ et

$$\begin{split} \frac{1}{\Gamma(x)\Gamma(1-x)} &= \lim_{n \to +\infty} \frac{\prod_{k=0}^{n} (x+k) \prod_{k=0}^{n} (1-x+k)}{n! n^{x} n! n^{1-x}} \\ &= \lim_{n \to +\infty} \frac{\prod_{k=0}^{n} (x+k) \prod_{k=1}^{n+1} (k-x)}{n!^{2} n} = \lim_{n \to +\infty} \frac{x(1-x+n)}{n} \frac{\prod_{k=1}^{n} (k+x) \prod_{k=1}^{n} (k-x)}{\prod_{k=1}^{n} k^{2}} \\ &= \lim_{n \to +\infty} x \prod_{k=1}^{n} \left(1 - \frac{x^{2}}{k^{2}}\right) = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^{2}}{n^{2}}\right). \end{split}$$

b) Soit $x \in]0,1[$. D'après la question 7.c, $\forall x \in]-\pi,\pi[$, $\sin x = x \prod_{n=1}^{+\infty} \left(1-\frac{x^2}{n^2\pi^2}\right)$ ou encore $\forall x \in]-1,1[$, $\sin(\pi x) = \pi x \prod_{n=1}^{+\infty} \left(1-\frac{x^2}{n^2}\right)$ et donc

$$\frac{1}{\Gamma(x)\Gamma(1-x)} = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2}\right) = \frac{\sin(\pi x)}{\pi}$$

et finalement

$$\forall x \in]0,1[, \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}.$$

c) En particulier, si $x = \frac{1}{2}$, on obtient $\left(\Gamma\left(\frac{1}{2}\right)\right)^2 = \frac{\pi}{\sin(\pi/2)} = \pi$ et donc puisque $\Gamma\left(\frac{1}{2}\right) > 0$, $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = \sqrt{\pi}.$

En posant $t=u^2$ (l'application $u\mapsto u^2$ est un C^1 -difféomorphisme de $]0,+\infty[$ sur lui-même) ou encore $u=\sqrt{t}$ puis $du=\frac{2dt}{\sqrt{t}},$ on obtient

$$\int_{0}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_{0}^{+\infty} e^{-u^{2}} du,$$

et donc

$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}.$$

13. a) Quand n tend vers $+\infty$,

$$u_n = \ln(n) - \ln(n-1) - \frac{1}{n} = -\ln\left(1 - \frac{1}{n}\right) - \frac{1}{n} = \frac{1}{n} + O\left(\frac{1}{n^2}\right) - \frac{1}{n} = O\left(\frac{1}{n^2}\right).$$

Donc la série de terme général u_n , $n \geqslant 2$, est absolument convergente et en particulier convergente.

b) Soit $n \ge 2$. $\nu_{n-1} - \nu_n = \frac{1}{n} + \ln(n) - \ln(n-1) = u_n$. On sait que la suite (ν_n) et la série de terme général $\nu_{n-1} - \nu_n$ sont de même nature. D'après la question précédente, la série de terme général $\nu_{n-1} - \nu_n$ converge et donc la suite (ν_n) converge.

14. Soit x > 0.

$$\begin{split} \frac{1}{\Gamma(x)} &= \lim_{n \to +\infty} \frac{\displaystyle\prod_{k=0}^{n} (x+k)}{n! n^{x}} = x \lim_{n \to +\infty} \frac{1}{n^{x}} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) = x \lim_{n \to +\infty} e^{x + \frac{x}{2} + \dots + \frac{x}{n} - x \ln n} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}} \\ &= x \lim_{n \to +\infty} e^{x \nu_{n}} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}} \\ &= x e^{\gamma x} \prod_{n=1}^{+\infty} \left(1 + \frac{x}{n}\right) e^{-\frac{x}{n}} \text{ (d'après la question 4.c, le produit infini converge)} \end{split}$$

15. a)Soit $x \in]0,1]$.

$$(*) \quad \ln\left(\Gamma(x)\right) = -\ln\left(\frac{1}{\Gamma(x)}\right) = -\ln x - \gamma x + \sum_{n=1}^{+\infty} \left(-\ln\left(1+\frac{x}{n}\right) + \frac{x}{n}\right) \text{ (par continuit\'e de ln sur]0, } + \infty[\text{)}.$$

Pour $n \in \mathbb{N}^*$ et $x \in [0, 1]$, posons $f_n(x) = -\ln\left(1 + \frac{x}{n}\right) + \frac{x}{n}$.

- \bullet La série de fonctions de terme général $f_{\mathfrak{n}},\,\mathfrak{n}\geqslant 1,$ converge simplement sur]0, 1].
- Chaque fonction f_n est dérivable sur $]0, +\infty[$.
- Soit $n \in \mathbb{N}^*$. Pour tout $x \in [0, 1]$,

$$f_n'(x) = -\frac{1}{n} \frac{1}{1 + \frac{x}{n}} + \frac{1}{n} = -\frac{1}{n + x} + \frac{1}{n} = \frac{x}{n(n + x)}.$$

Pour tout $x \in]0,1], |f_n'(x)| = \frac{x}{n(n+x)} \leqslant \frac{1}{n(n+0)} = \frac{1}{n^2}.$ Comme la série numérique de terme général $\frac{1}{n^2}$, $n \geqslant 1$, converge, la série de fonctions de terme général f_n' converge normalement et donc uniformément sur]0,1].

D'après le théorème de dérivation terme à terme, la fonction $\sum_{n=1}^{+\infty} f_n$ est dérivable sur]0,1] et sa dérivée s'obtient par dérivation terme à terme.

En dérivant l'égalité (*), on obtient

$$\forall x \in]0,1], \frac{\Gamma'(x)}{\Gamma(x)} = -\frac{1}{x} - \gamma + \sum_{n=1}^{+\infty} \frac{x}{n(n+x)}.$$

b) D'après la question 9.c, $\forall x > 0$, $\Gamma'(x) = \int_0^{+\infty} e^{-t} \ln t t^{x-1} dt$ et d'après la question 9.b, $\Gamma(1) = 1$. D'après la question précédente,

$$\begin{split} \int_0^{+\infty} e^{-t} \ln t \ dt &= \frac{\Gamma'(1)}{\Gamma(1)} = -1 - \gamma + \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} \\ &= -1 - \gamma + \lim_{n \to +\infty} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = -1 - \gamma + \lim_{n \to +\infty} \left(\frac{1}{k} - \frac{1}{n+1}\right) \text{ (somme t\'elescopique)} \\ &= -\gamma. \end{split}$$

$$\int_0^{+\infty} e^{-t} \ln t \, dt = -\gamma.$$