

EPS-100120

Leistungsdaten Hirschmann elektronischer Gasdrehgriff v1.0

 $Performance\ data\ Hirschmann\ electronic\ throttle\ grip\ v1.0$

Funktion	Abteilung	Name / Unterschrift Datum:	
Function	Departement	Name / Signature	Date
Entwicklung	D_SC_ST	Mähr Dietmar / Dalmer Wal	19.09.701
development	D_SC_ST	Grohs Thomas / Colo	19.09.2017
Qualitätsabteilung Quality Departement	Q_S_A	Holzer Thomas / Thomas Wh	19-92012
Projektleiter Project Manager	OP_SC	Zelenovic Novica / Zellawak Nasca	19,9.2017

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	1	von	27

C.02160 Hirschmann E-Gas 65°

EPS-100120

Änderungsdokumentation/ Change documentation:

Nr.	Kurzbeschreibung	Datum	Bearbeiter
	short description	date	Editor
1.0	Erstellung creation	05.09.2017	Mähr D. / Grohs T.

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	2	von	27

C.02160 Hirschmann E-Gas 65°

EPS-100120

1 Inhalt

		sdaten Hirschmann elektronischer	4
		griff v2.0	1
		gsdokumentation	2
1	Inha		<u>ა</u>
2		eitung	5
	2.1	Vertraulichkeit	5
	2.2	Zweck des Dokumentes	5
	2.3	Abkürzungen	5
3		emeine Beschreibung	6
4		riebsbedingungen	6
5		ktrische Eigenschaften	7
	5.1	Kontaktbelegung	7
	5.2	Ausgangssignale	7
	5.3	Beschaltung Baugruppe	8
	5.4	Linearitätsfehler	8
	5.5	Gleichlauffehler	8
	5.6	Diagnosebereich	8
	5.7	Elektrische Grenzwerte	9
	5.8	Elektrische Eigenschaften	9
6		chanische Eigenschaften	10
	6.1	Mechanische Parameter	10
	6.2	Stecker	10
	6.3	Mechanische Grenzwerte	10
	6.4	Parameter nach Alterung über Lebens	
		g	11
	6.5	Fixierung des E-Gas Drehgriffes	11
7		ktionale Sicherheit	12
8		dierung	15
9		inition der Validierungsprüfungen	16
_	9.1	Großer Funktionstest	16
	9.2	Kleiner Funktionstest	16
	9.3	Temperaturschockprüfung	17
	9.4	Temperaturwechselprüfung	17
	9.5	Lagerung trockene Wärme	18
	9.6	Feuchte Wärme zyklisch Lagerung	18
	9.7	Thermoschockprüfung	19
	9.8	Salznebelprüfung	19
	9.9	IP6KX Staubprüfung	20
	9.10	IPX9K Dampfstrahlprüfung	20
	9.11	Isolationswiderstandsprüfung	20
	9.12	Durchschlagsfestigkeitsprüfung	21
	9.13	UV Beständigkeit	21
	9.14	Chemische Beständigkeit	21
	9.15	Falltest	22
	9.16	Kabelzugprüfung	22
	9.17	Dauerlaufprüfung	22
	9.17	Vibration Breitbandrauschen	23
	9.19	Vibration Dauerschock	
	9.19	Prüfung Rückstellzeit	23 24
	9.20	Beständigkeit gegenüber	∠ 4
	J.∠ I	Kontaktierungsfehler	24
	9.22	Störfestigkeit gegenüber Transienten	24 25
	٧.٧	CIOTICOLIGNEL GEGETUDEL FIGURE SELLET	20

25
26
er
26
ng
27
er
27
er
27
r

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	3	von	27

C.02160 Hirschmann E-Gas 65°

EPS-100120

1 Index

		ance data Hirschmann electronic thro	
	rip v2.0		1
		locumentation:	2
1			4
2		oduction	5
	2.1	Confidentially	5
	2.2	Purpose of the documents	5
	2.3	Acronym	5
3		eral Description	6
4	Ope	rating Conditions	6
5	Elec	trical properties	7
	5.1	Pinning	7
	5.2	Output signal	7
	5.3	Wiring assembly	8
	5.4	Linearity error	8
	5.5	Synchronism error	8
	5.6	Diagnosis area	8
	5.7	Electrical limits	9
	5.8	Electrical characteristics	9
6		chanical characteristics	10
_	6.1	Mechanical parameters	10
	6.2	Connector	10
	6.3	Mechanical limits	10
	6.4	Parameter after aging over lifetime	11
	6.5	Fixation of ETG	11
7		ctional safety	12
		dation	15
9		nition of validation test	16
,	9.1	Large function test	16
	9.2	Small function test	16
	9.2		17
	9.4	Temperature shock test	17
		Temperature cycle	18
	9.5	Aging in dry heat	
	9.6	Humidity heat cyclic	18
	9.7	Thermal shock	19
	9.8	Salt spray fog test	19
	9.9	IP6KX dust test	20
	9.10	IPX9K pressure washer test	20
	9.11	Insulation resistance	20
	9.12	Dielectric strength test	21
	9.13	UV Resistance test	21
	9.14	Chemical resistance	21
	9.15	Drop test	22
	9.16	Resistance to harness tearing	22
	9.17	Fatigue stop test	22
	9.18	Vibration broadband random	23
	9.19	Vibration endurance shock test	23
	9.20	Return time test	24
	9.21	Resistance to accidental connection	24
	9.22	Immunity against inducted transient	
		disturbances	25
	9.23	Immunity against electromagnetic disturbances (Antenna Method) 25	

9.24	Immunity against RF current on cable	
	cluster (BCI Methode)	26
9.25	Immunity against low frequency magne	tic
	fields	26
9.26	Radiated emissions	27
9.27	Immunity against electrostatic discharg	e -
	handling	27
9.28	Immunity against electrostatic discharg	e –
	powered up	27

Dokumenten- Nummer		erstellt / geändert	Status	Seit	te / Seite	(n)
	170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	4	von	27

EPS-100120

2 Einleitung

2.1 Vertraulichkeit

Das vorliegende Dokument ist nur zur Einsicht für direkt am Projekt beteiligte Personen bestimmt. Eine Weitergabe am Dritte ist nicht erlaubt.

2.2 Zweck des Dokumentes

Das vorliegende Dokument dient als Definition der Leistungsdaten des elektronischen Gasdrehgriffes der Firma Hirschmann Automotive.

Konstruktive Details sind den entsprechenden Freigabezeichnungen zu entnehmen. In folgender Reihenfolge sind die Dokumente zu priorisieren (1=höchste Prioritäten):

- 1- Freigabezeichnung (906-716-..., 906-822-...)
- 2- Leistungsdaten
- 3- Qualitätsvorschriften
- 4- Mitgeltende Unterlagen

Die Leistungsdaten dienen als Ergänzung und Erweiterung der Freigabezeichnung.

2.3 Abkürzungen

Abkürzung	Bedeutung
E-Gas Drehgriff	Elektronischer Gas Drehgriff

2 Introduction

2.1 Confidentially

This document is intended only for inspection for directly involved people of the project. Forwarding to third parties is not allowed.

2.2 Purpose of the documents

This document is intended as a definition of the performance data of the electronic throttle grip from Hirschmann Automotive.

Construction details are given in the corresponding release drawings. In the following order, the documents are to prioritize (1= highest priority):

- 1- Released drawing (906-716-..., 906-822-...)
- 2- Performance data
- 3- Quality regulations
- 4- Applicable documents

Performance data serve as a complement and extension of released drawing.

2.3 Acronym

Acronym	Meaning
ETG	Electronic throttle grip
ECU	Electronic control unit

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	5	von	27

EPS-100120

3 Allgemeine Beschreibung

Die Aufgabe des E-Gas Drehgriffes ist die Messung des Drehwinkels des Gasdrehgriffes welcher durch den Bediener erzeugt wird. Die daraus resultierende Winkelfunktion wird in ein elektrisches Signal umgewandelt welches dem Steuergerät zur weiteren Verarbeitung zur Verfügung gestellt wird. Das Messprinzip der Sensorik basiert auf Basis der HALL Technologie, und ist somit berührungslos und verschleißfrei. Die Sensorik ist redundant ausgeführt um eine Plausibilisierung der Signale im Steuergerät zu ermöglich. Die Signale sind als analoge ratiometrische Spannungen ausgeführt.

4 Betriebsbedingungen

Der E-Gas Drehgriff ist unter folgenden Betriebsbedingungen zu verwenden.

Parameter	Wert
Betriebstemperatur (Top)	-20°C +85°C
Lagertemperatur (Tstor)	-30°C +90°C
Versorgungsspannung (Vdd1,2)	+5,0 ±0,5 V
Ausgangssignal (Vout1,2)	Siehe Grafik1
Versorgungsstrom pro Sensor (Icc1,2)	< 15mA
Belastung Ausgang (Rload)	> 1,0kΩ
Drehmoment Betrieb (Mop)	-2+1Nm
Drehmoment Mißbrauch (Mmu)	+/-15Nm

3 General Description

The purpose of the ETG is to measure the rotation angle of the throttle grip which is generated by the operator. This resulting rotation angle function is converted into an electrical signal which is provided to the ECU for further processing. The measuring principle of the sensor is based on the HALL technology and is therefore contactless and wearless.

The sensor is designed with redundancy to enable a plausibility check of the signals in the control unit. The signals are designed as analog ratiometric voltages.

4 Operating Conditions

The E - throttle grip must be used under the following operating conditions

Parameter	Value
Operating temperature (Top)	-20°C +85°C
Storage temperature (Tstor)	-30°C +90°C
Supply voltage (Vdd1,2)	+5,0 ±0,5 V
Output signal (Vout1,2)	see graph1
Supply current per sensor (Icc1,2)	< 15mA
Output load (Rload)	> 1kΩ
Operating torque (Mop)	-2+1Nm
Misuse torque (Mmu)	+/-15Nm

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	6	von	27

EPS-100120

5 Elektrische Eigenschaften

5.1 Kontaktbelegung

Kontakt	Bezeichnung	Funktion
1	Vdd 1	Versorgung1
2	Gnd 1	Masse1
3	Out 1	Signal 1
4	Vdd 2	Versorgung 2
5	Gnd 2	Masse 2
6	Out 2	Signale 2

5.2 Ausgangssignale

Die beiden Sensorsignale sind als analoge Ausgangsstufen mit ratiometrischem Signalverhalten ausgeführt. Die Sensorsignale haben folgende Charakteristiken.

Drehwinkel	Signal1	Signal 2
-10 °	10,8 [%Vdd]	5,4 [%Vdd]
0 °	20,0 [%Vdd]	10,0 [%Vdd]
65 °	80,0 [%Vdd]	40,0 [%Vdd]

5 Electrical properties

5.1 Pinning

Pin	Description	Function
1	Vdd 1	Supply1
2	Gnd 1	Ground1
3	Out 1	Signal 1
4	Vdd 2	Supply2
5	Gnd 2	Ground2
6	Out 2	Signal2

5.2 Output signal

The two sensor signals are designed as an analog output stages with ratiometric signal behavior. The sensor signals have the following characteristics.

Rotation angle	Signal1	Signal 2
-10 °	10,8 [%Vdd]	5,4 [%Vdd]
0°	20,0 [%Vdd]	10,0 [%Vdd]
65°	80,0 [%Vdd]	40,0 [%Vdd]

graph1: sensor signal characteristic

Dokumenten- Nummer	erstellt / geändert	Status	Seit	te / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	7	von	27

EPS-100120

5.3 Beschaltung Baugruppe

Der E-Gas Drehgriff ist entsprechend Grafik2 zu beschalten.

Grafik2: Beschaltung Baugruppe

5.4 Linearitätsfehler

Für die beiden Sensorsignale ist ein Linearitätsfehler von +/-2% zulässig. Zur Berechnung des Linearitätsfehlers dient die Versorgungsspannung als Referenz.

$$lin_{error} = \frac{(Vsignal - Videal)}{Vcc} * 100\%$$

5.5 Gleichlauffehler

Um eine Plausibilisierung im Steuergerät zu ermöglichen, werden die beiden Sensorsignale zueinander mit Hilfe des Gleichlauffehlers bewertet. Der Gleichlauffehler ist mit einer maximalen Toleranz von +/-2% definiert und wird nach folgender Formel berechnet:

$$sync_{error} = \frac{(Vsignal1 - Vsignal2 * 2)}{Vcc} * 100\%$$

5.6 Diagnosebereich

Zusätzlich zum normalen Betriebsbereich der Sensorsignale ist ein Diagnosebereich definiert. Im Fehlerfall wechselt der Sensor in diesen Signalbereich um dem Steuergerät eine Fehlfunktion des Sensors anzuzeigen.

Bezeichnung	Wertebereich
DiagLow	04 [%Vdd]
DiagHigh	96100 [%Vdd]

5.3 Wiring assembly

The ETG has to be wired according to the graph2.

graph2: wiring assembly

5.4 Linearity error

For the two sensor signals a linearity error of +/-2% is permissible. In order to calculate the linearity error, the supply voltage is used as reference.

$$lin_{error} = \frac{(Vsignal - Videal)}{Vcc} * 100\%$$

5.5 Synchronism error

In order to allow a plausibility check in the control unit, the two sensor signals are comparable to each other using the synchronization error. The synchronization error is defined with a maximum tolerance of +/-2% and is calculated by the following formula:

$$sync_{error} = \frac{(Vsignal1 - Vsignal2 * 2)}{Vcc} * 100\%$$

5.6 Diagnosis area

In addition to the normal operating range of the sensor signals a diagnostic range is defined. If an error occurs, the sensor switches in this signal range to indicate the ECU a malfunction of the sensor.

Parameter	Value area
DiagLow	04 [%Vdd]
DiagHigh	96100 [%Vdd]

Dokumenten- Nummer	erstellt / geändert	Status	Seit	te / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	8	von	27

EPS-100120

5.7 Elektrische Grenzwerte

Der Sensorbaustein besitzt folgende elektrischen Grenzwerte, welche nicht überschritten werden dürfen. Eine Überschreitung der Grenzwerte kann eine permanente Beschädigung der Baugruppe zur Folge haben.

Parameter	Wert
Überspannung Vdd	+24V
Verpolspannung Vdd	-12V
Überspannung Vout	+18V
Verpolspannung Vout	-0,3V
Ausgangsstrom lout	+30mA

5.8 Elektrische Eigenschaften

Der Sensorbaustein besitzt folgende elektrischen Eigenschaften im Normalbetrieb.

Parameter	Min	Тур	Max	Einhei t
elektrische Parame	ter	<u> </u>		
Versorgungsspann ung (Vdd)	4,5	5,0	5,5	V
Versorgungsstrom (Icc)		13,5	15	mA
Belastung Ausgang (Rload)	1,0	10	∞	kΩ
zeitliches Verhalten	1			
Auffrischungsrate		400		μs
Startzeit			10	ms
Überwachungszeit			4,58	ms
Anstiegsgeschwind igkeit Ausgang		2,5		V/ms
Genauigkeit				
Auflösung		0,02		%Vdd/
Ausgangsstufe		5		LSB
EMV/ESD				
ESD Festigkeit Luft			+/-15	kV
Entladung	<u> </u>	<u> </u>		
ESD Festigkeit			+/-4	kV
Kontakt Entladung				
EMV (stripline)			+/-200	V/m

5.7 Electrical limits

The sensor system has the following electrical limits, which aren't allowed to be exceeded. Exceeding of the critical limits can cause a permanent damage to the sensor system.

Parameter	Value
Overvoltage Vdd	+24V
Reverse Voltage Vdd	-12V
Overvoltage Vout	+18V
Reverse Voltage Vout	-0,3V
Output current Iout	+30mA

5.8 Electrical characteristics

The sensor system has the following electrical characteristics in the normal operation mode.

Parameter	Mi	Тур	Max	Einhei
	n			t
electrical parameter	r			
Supply voltage	4,5	5,0	5,5	V
(Vdd)				
Supply current (Icc)		13,5	15	mA
Output load resistor	1,0	10	∞	kΩ
(Rload)				
timing parameter				
Refresh rate		400		μs
Startup time			10	ms
Watchdog			4,58	ms
Slew rate output		2,5		V/ms
Accuracy				
Output resolution		0,025		%Vdd/
				LSB
EMV/ESD				
ESD stability air			+/-15	kV
discharge				
ESD stability			+/-4	kV
contact discharge				
EMV (stripline)			+/-200	V/m

Dokumenten- Nummer	erstellt / geändert	Status	Seit	te / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	9	von	27

EPS-100120

6 Mechanische Eigenschaften

6.1 Mechanische Parameter

Der E-Gas Drehgriff besitzt im normalen Betriebszustand folgende mechanische Eigenschaften.

Parameter	Min	Тур	Max	Einheit
Drehwinkel				
Leerlauf	-2	0	2	0
Vollgas	63	65	67	0
Tempomat	-12	-10	-8	0
Drehmoment (Neuzu	stand)			
Drehmoment 5°	0,28	0,40	0,52	Nm
Drehmoment 75°	0,47	0,60	0,73	Nm
Drehmoment -10°	1,40	1,75	2,10	Nm
Mechanische Bestän	digkeit			
Anzahl Zyklen 0°80°			1. Mio.	Zyklen
Anzahl Zyklen 0°10°			10k	Zyklen

6.2 Stecker

Der Stecker ist ein Bauteil der "Seal Star" Familie, welcher eine integrierte Aderabdichtung besitzt. Die Einzelkontakte des 6 poligen Steckers haben ein Rastermaß von 4,0mm. Die Stiftkontakte haben die Maße 1.2 x 0.6mm.

6.3 Mechanische Grenzwerte

Der E-Gas Drehgriff ist für ein Drehmoment im Missbrauchsfall von maximal **15Nm** ausgelegt. Eine Überschreitung der Missbrauchsgrenze ist nicht erlaubt.

Bei Überschreitung der mechanischen Grenze, kann es zu Veränderungen einzelner technischer Parameter kommen oder sogar zur mechanischen Zerstörung der Baugruppe.

6 Mechanical characteristics

6.1 Mechanical parameters

The ETG has the following mechanical properties in normal operating condition.

Parameter	Min	Тур	Max	Unit
Rotation angle				
idle position	-2	0	2	0
full throttle position	63	65	67	0
cruise control	-12	-10	-8	0
position				
Torque (new condition	n)			
torque 5°	0,28	0,40	0,52	Nm
torque 75°	0,47	0,60	0,73	Nm
torque -10°	1,40	1,75	2,10	Nm
Mechanical durability	y			
Number cycles			1.	gyalog
0°80°			Mio.	cycles
Number cycles			10k	cyclos
0°10°			TUK	cycles

6.2 Connector

The connector is a component of the "Seal Star" family, which has an integrated wire seal. The contacts of the 6-pin connector have a pitch of 4,0mm. The pin contacts have the dimensions $1,2 \times 0.6$ mm.

6.3 Mechanical limits

The ETG is designed for a torque in the case of misuse of a maximum of 15Nm.

Exceeding the misuse limit is not allowed.

If this mechanical limit is exceeded, there may be changes of individual technical parameters or even mechanical destruction of the ETG.

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	10	von	27

EPS-100120

6.4 Parameter nach Alterung über Lebenszeit

Folgende Parameter gelten für den E-Gas Drehgriff nach einer Alterung von 1Mio Zyklen.

Parameter	Min	Тур	Max	Einheit
Sensorsignal				
Linearitätsfehler	-3	0	3	%/Vdd
Drehmoment				
Drehmoment 5°	0,28	0,40	0,70	Nm
Drehmoment 75°	0,47	0,60	1,10	Nm
Drehmoment -10°	1,40	1,75	2,30	Nm

Durch die Alterung im Betriebsfall kann es zu einer Abnützung der Weichkomponente kommen.

6.5 Fixierung des E-Gas Drehgriffes

Der E-Gas Drehgriff wird über ein Klemmprofil auf das Lenkerrohr befestigt. Die Außenmaße des Lenkerrohrdurchmessers müssen innerhalb des Toleranzbereiches von 22,0mm bis 22,15mm liegen. Ist der Lenkerrohrdurchmesser größer oder kleiner als der definierte Toleranzbereich, kann keine ausreichende Fixierung des Gasdrehgriffes gewährleistet werden.

Für die Fixierung des E-Gas Drehgriffes auf dem Lenkerrohr, muss die Klemmprofilschraube mit einem Drehmoment von 3,0Nm +/-0,1Nm angeschraubt werden.

Die Fixierung der Baugruppe auf einer Lenkerrohrstange durch das Klemmprofil darf nur einmal erfolgen. Ein zweiter Verschraubungsprozess des Klemmprofiles ist nicht zulässig.

Im Falle einer Fehlfunktion oder Beschädigung ist der E-Gas Drehgriff zu ersetzen. Eine Reparatur des E-Gas Drehgriffes ist nicht erlaubt.

6.4 Parameter after aging over lifetime

The following parameters are valid to the ETG after aging for 1 million cycles.

Parameter	Min	Тур	Max	Unit
Sensor signal				
Linearity error	-3	0	3	%/Vdd
torque				
torque 5°	0,28	0,40	0,70	Nm
torque 75°	0,47	0,60	1,10	Nm
torque -10°	1,40	1,75	2,30	Nm

Through the aging over Lifetime a wear and tear of the soft component can be caused .

6.5 Fixation of ETG

The ETG is fastened via a clamping profile on the handlebar. The dimensions of the outer handlebar diameter must be within the tolerance range of 22,0mm to 22,15mm. If the outer handlebar diameter is larger or smaller than the defined tolerance range, a correct fixation of the ETG can't be ensured.

For the fixation of the ETG on the handlebar, the clamping profile screw must be tightened with a torque of 3,0 Nm +/- 0,1Nm.

Fixing the ETG on a handlebar through the clamping profile is only once allowed. A second screwing process of the clamping profile screw is not permitted.

In case of malfunction or defects the ETG has to be replaced. Reparation of the ETG is not allowed.

Dokumenten- Nummer	erstellt / geändert	Status	Seite / Seite		(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	11	von	27

EPS-100120

7 Funktionale Sicherheit

Zur Bewertung der funktionalen Sicherheit des E-Gas Drehgriffes im Sinne der ISO26262 wurden Erfahrungen und Bewertungen aus einem E-Gas Vorgängerprojekt berücksichtigt.

ASIL Level:

Für die Bewertung der funktionalen Sicherheit vom E-Gas Drehgriff wurden die Anforderungen der ASIL Level B Bewertungsstufe herangezogen.

Sicherheitsziel Gesamtsystem:

Ein Selbstbeschleuniger soll verhindert werden.

Sicherer Zustand Gesamtsystem:

Die Fahrzeugbeschleunigung ist kleiner oder gleich der gewünschten Beschleunigung des Fahrers.

Zugehörige Fehlfunktion:

Drosselklappe ist weiter geöffnet als vom Fahrer gewünscht (Selbstbeschleuniger).

Funktionale Sicherheitsanforderungen:

Zur Erreichung der Sicherheitsziele sind folgende funktionale Sicherheitsanforderungen für den E-Gas Drehgriff definiert:

- Der E-Gas Drehgriff soll ein Sensorsignal (Signal1) zur Verfügung stellen, welches dem Drehwinkel des E-Gas Drehgriffes entspricht.
- Der E-Gasdrehgriff soll ein Sensorsignal (Signal2) zur Verfügung stellen, welches dem Drehwinkel des E-Gas Drehgriffes entspricht und dazu geeignet ist Fehler des Sensorsignales Signal1 im gesamten Arbeitsbereich durch einen Vergleich im Steuergerät zu erkennen.
- 3. Der Signalpfad der beiden Sensorsignale ist unabhängig voneinander auszuführen.

7 Functional safety

Experiences and reviews from a previous ETG project were taken into account in order to evaluate the functional safety of the ETG within the meaning of ISO26262.

ASIL Level:

For the evaluation of functional safety of the ETG the requirements of the ASIL Level B have been used.

Safety goal complete system:

A self-accelerator has to be prevented

Safe state complete system:

The vehicle acceleration is less than or equal to the desired acceleration of the driver.

Related malfunction:

Throttle is opened further as desired by the driver (self-accelerator).

Functional safety requirements:

For the achievement of the safety goals following functional safety requirements for the ETG are defined.

- 1. The ETG should provide a sensor signal (Signal1) which corresponds to the rotation angle of the throttle grip.
- 2. The ETG should provide a sensor signal (Signal2) which corresponds to the rotation angle of the throttle grip and is suitable to detect errors of the sensor signal Signal1 in the entire working range by comparison in the ECU.
- 3. The signal path of the two sensor signals have to be independent from each other.

Dokumenten- Nummer	erstellt / geändert	Status	Seite / Seite		(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	12	von	27

C.02160 Hirschmann E-Gas 65°

EPS-100120

Sicherheitsrelevante Fehler des E-Gas Drehgriffes

- Gefährlicher Fehler: Das Sensorsignal (Signal1) liegt innerhalb des plausiblen Signalbereiches und entspricht einem Drehwinkel welcher größer ist, als der tatsächliche Drehwinkel des Gasdrehgriffes.
- Latenter Fehler: Das Sensorsignal (Signal2) liegt innerhalb des plausiblen Signalbereichs und entspricht einem Drehwinkel welcher größer ist, als der tatsächliche Drehwinkel des Gasdrehgriffes.

Diagnosemaßnahmen zur Erkennung sicherheitsrelevanter Fehler

Um sicherheitsrelevante Fehler erkennen zu können müssen folgende Sicherheitsmaßnahmen im Steuergerät umgesetzt werden:

- Sensorsignale des E-Gas Drehgriffes unterhalb des Minimalwertes oder oberhalb des Maximalwertes sind als Fehler zu erkennen.
- Abweichungen des Sensorsignals Signal1 zum Sensorsignal Signal2, die größer einer Fehlererkennungsschwelle sind, werden als Fehler erkannt.

Fehlerreaktionszeit

Im Falle von internen Fehlern und Unterbrechungen der Spannungsversorgung oder der Masseanbindung wechselt der E-Gasdrehgriff innerhalb von 40ms in den sicheren Zustand.

Sicherer Zustand

Folgende Betriebszustände sind als sicherer Zustand zu bewerten:

- Mindestens eines der Sensorsignale liegt unterhalb oder oberhalb des Minimal- bzw. Maximalwertes der Diagnosemaßnahme 1.
- Die Abweichung des Sensorsignales Signal1 zum Sensorsignal Signal2 ist größer als die Fehlererkennungsschwelle der Diagnosemaßnahme 2.

Safety related fault of the ETG

- 1. **Dangerous fault:** The sensor signal (signal 1) is within the plausible signal range and corresponds to a rotation angle which is larger than the actual rotation angle of the throttle grip.
- 2. **Latent fault:** The sensor signal (Signal2) is within the plausible signal range and corresponds to a rotation angle which is larger than the actual rotation angle of the throttle grip.

Diagnostic measures to detect safety relevant faults

To be able to detect safety relevant faults, the following safety measures have to be implemented in the ECU:

- 1. Sensor signals of the ETG below the minimum value or above the maximum value have to be detected as a fault.
- 2. Deviations of the sensor signal Signal 1 to the sensor signal Signal 2 which are greater than the fault detection threshold have to be detected as a fault.

Fault reaction time

In case of internal errors and interruptions of the power supply or the ground connection, the ETG will switch within 40 ms into the safe state.

Safe State:

The following operating states have to be rated as a safe state:

- 1. At least one of the sensor signals are below or above the minimum or maximum value of the diagnostic measure 1.
- 2. The deviation of the sensor signal Signal1 to the sensor signal Signal2 is greater than the fault detection threshold of the diagnostic measure 2.

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	13	von	27

C.02160 Hirschmann E-Gas 65°

EPS-100120

Quantitative Bewertung der Sicherheitsanforderungen

Die folgenden Werte sind die Ergebnisse aus der FMEDA für die "Single Point Fehler" und die "Latent Multiple Point Fehler":

 λ resfault = 0,9653 [FIT] λ latfault = 0,9653 [FIT]

Qualitative Bewertung der Sicherheitsanforderungen

Die folgenden Metriken ergeben sich aus der FMEDA.

SPF-Metriken: 99,65%
 LF-Metriken: 99,65%

Quantitative evaluation of the safety requirements

The following values are the results of the FMEDA for the "Single Point Fault" and the "latent Multiple Point Fault":

 λ resfault = 0,9653 [FIT] λ latfault = 0,9653 [FIT]

Qualitative evaluation of the safety requirements

The following metrics are the results of the FMEDA.

SPF-Metriken: 99,65%
 LF-Metriken: 99,65%

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	14	von	27

EPS-100120

8 Validierung

Das Produkt wurde entsprechend folgendem Validierungsplan geprüft.

8 Validation

The product was validated according following validation plan.

Testing plan DVP-100309

Testing plan DVP-100361 65° variante

Ryde by wire gas handlebar Operating temperature range TI=-20°C, Th=+85°C (Storage temperature range: TIs=-30°C, Ths=+90°C)

large function test:

- Measurement of passive property:

- Measurement of active property:

- Measurement of active property:

- V characteristic

- Measurement of Waveform:

- General of Sequence of Sequence of Sequence

- Measurement of Sequence

- Measurement of Sequence

- Measurement of Waveform:

- Measurement of Waveform:

- Measurement of Waveform:

- Gelocitic signal characteristic

- Measurement of Waveform:

- Gelocitic signal characteristic

- Measurement of Sequence

- Lorque measurement

Abt.: DSE 1 19.09.2017

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	15	von	27

EPS-100120

9 Definition der Validierungsprüfungen

Die Validierungsprüfungen wurden entsprechend folgender Definitionen durchgeführt

9.1 Großer Funktionstest

Prüfungsdefinition:

Folgende Prüfungen wurden beim großen Funktionstest durchgeführt:

- Messung Sensor Signal Charakteristik
- Messung passiver Eigenschaften mittels LCR Meter
- Messung der Halbleitereigenschaften mittels U-I Messgerät
- Messung des Drehmomentverlaufes
- Messung der Leerlaufposition bei -20°C, +25°C und +85°C bei einer
 Versorgungsspannung von 4.5V, 5.0V und 5.5V

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.2 Kleiner Funktionstest

Prüfungsdefinition:

Folgende Prüfungen wurden beim kleinen Funktionstest durchgeführt:

- Messung Sensor Signal Charakteristik
- Messung des Drehmomentverlaufes

Prüfungskriterium:

Die Sensoreigenschaften dürfen die spezifizierten Toleranzgrenzen nicht überschreiten.

9 Definition of validation test

The validation tests were executed according following definitions.

9.1 Large function test

Test definition:

The following tests were executed for the large function test:

- Measurement Sensor signal characteristic
- Measurement passive characteristics with LCR Meter
- Measurement active characteristics with U-I Meter
- Measurement of torque characteristic
- Measurement of zero position signal at -20°C, +25°C and +85°C supplied by 4.5V, 5.0V and 5.5V

Test criteria:

The measurement data's fulfill the specified tolerances.

9.2 Small function test

Test definition:

The following tests were executed for the large function test:

- Measurement Sensor signal characteristic
- Measurement of torque characteristic

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	16	von	27

EPS-100120

9.3 Temperaturschockprüfung

Prüfungsdefinition:

Die Temperaturschockprüfung wurde in Anlehnung an die Norm LV214:B19.1 durchgeführt.

Parameter	Wert
Temperatur min	-20°C
Temperatur max	+85°C
Verweildauer	15 min.
Umlagerungsdauer	max 10s
Zyklen	144

Während der Prüfung wurden das Sensorsignal und die Stromaufnahme überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.4 Temperaturwechselprüfung

Prüfungsdefinition:

Die Temperaturwechselprüfung wurde in Anlehnung an die Norm LV214:B19.2 durchgeführt.

Parameter	Wert
Temperatur min	-20°C
Temperatur max	+85°C
Verweildauer	3h
Zyklen	20

Während der Prüfung wurden das Sensorsignal und die Stromaufnahme überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.3 Temperature shock test

Test definition:

The temperature shock was tested in dependence to the norm LV214:B19.1

Parameter	Value
Temperature min	-20°C
Temperature max	+85°C
Duration	15 min.
Acclimatization period	max 10s
Cycles	144

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances.

9.4 Temperature cycle

Test definition:

The temperature cycle test was tested in dependence to the norm LV214:B19.2

Parameter	Value
Temperature min	-20°C
Temperature max	+85°C
Retention time	3h
Cycles	20

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	17	von	27

EPS-100120

9.5 Lagerung trockene Wärme

Prüfungsdefinition:

Die Alterung in trockener Wärme wurde in Anlehnung an die Norm LV214:B19.3 durchgeführt.

Parameter	Wert
Temperatur	+85°C
Verweildauer	120h

Während der Prüfung wurden das Sensorsignal und die Stromaufnahme überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.6 Feuchte Wärme zyklisch Lagerung

Prüfungsdefinition:

Die zyklische Feuchte Wärme Lagerung wurde in Anlehnung an die Norm LV214:B19.5 durchgeführt.

Parameter	Wert
Temperatur min	+25°C
Temperatur max	+55°C
Relative Luftfeuchtigkeit	95%
Zyklusdauer	24h
Zyklen	10

Während der Prüfung wurden das Sensorsignal und die Stromaufnahme überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.5 Aging in dry heat

Test definition:

The aging in dry heat test was tested in dependence to the norm LV214:B19.3

Parameter	Value
Temperature	+85°C
Retention time	120h

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances.

9.6 Humidity heat cyclic

Test definition:

The humidity heat test was tested in dependence to the norm LV214:B19.5

Parameter	Value
Temperature min	+25°C
Temperature max	+55°C
Relative humidity	95%
Cycle duration	24h
cycles	10

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	18	von	27

EPS-100120

9.7 Thermoschockprüfung

Prüfungsdefinition:

Die Thermoschockprüfung wurde in Anlehnung an die Norm LV214:B23.3 durchgeführt.

Parameter	Wert
Medium	5% NaCl Lösung
Lufttemperatur	+85°C
Wassertemperatur	0°C
Verweildauer Luft	30 min
Verweildauer Wasser	15 min
Zyklen	5

Während der Prüfung wurden das Sensorsignal und die Stromaufnahme überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.8 Salznebelprüfung

Prüfungsdefinition:

Parameter	Wert
Medium	5+/-1 Teile Natriumchlorid
	95+/- Teile demineralisiertes
	Wasser
Prüfungsdauer	150h

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.7 Thermal shock

Test definition:

The thermal shock test was tested in dependence to the norm LV214:B23.3 $\,$

Parameter	Value
Medium	5% NaCl dilution
Air temperature	+85°C
Water temperature	0°C
Retention time air	30 min
Retention time water	15 min
cycles	5

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances

9.8 Salt spray fog test

Test definition:

Parameter	Value
Medium	5+/-1 parts sodium chloride
	95+/- 1 parts demineralized
	water
Test duration	150h

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	te / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	19	von	27

EPS-100120

9.9 IP6KX Staubprüfung

Prüfungsdefinition:

Die IP6KX Staubprüfung wurde entsprechend der Norm DIN 40050-9 durchgeführt.

Parameter	Wert
Teststaub	DIN40050-9 7.3.1
Bestaubungsdauer	6s
Wartezeit	900s
Zyklen	20

Prüfungskriterium:

Kein Staubeintritt in die Baugruppe.

9.10 IPX9K Dampfstrahlprüfung

Prüfungsdefinition:

Die IPX9K Dampfstrahlprüfung wurde entsprechend der Norm LV214:B23.4 durchgeführt.

Parameter	Wert
Wasserdruck	80 bar
Wassertemperatur	80°C
Prüfungsdauer	15s
Zyklen	3

Prüfungskriterium:

Kein Wassereintritt in die Baugruppe. Die Messwerte erfüllen die spezifizierten Toleranzgrenzen.

9.11 Isolationswiderstandsprüfung

Prüfungsdefinition:

Die Isolationswiderstandsprüfung wurde entsprechend der Norm LV214:E 0.3 durchgeführt.

Parameter	Wert
Spannung	500 VDC
Prüfungsdauer	60s

Prüfungskriterium:

Der Isolationswiderstand der Baugruppe ist größer $100M\Omega$.

9.9 IP6KX dust test

Test definition:

The dust test was tested in dependence to the norm DIN 40050-9.

Parameter	Value
Dust	DIN40050-9 7.3.1
Dusting duration	6s
Retention time	900s
cycles	20

Test criteria:

No dust entry into the product

9.10 IPX9K pressure washer test

Test definition:

The pressure washer test was tested in dependence to the norm LV214:B23.4

Parameter	Value
Water pressure	80 bar
Water temperature	80°C
Test duration	15s
Cycles	3

Test criteria:

No water entry into the product. The measurement data's fulfill the specified tolerances

9.11 Insulation resistance

Test definition:

The insulation resistance test was tested in dependence to the norm LV214:E 0.3.

Parameter	Value
Testing voltage	500 VDC
Retention time	60s

Test criteria:

The insulation resistance test must be greater than $100 M \Omega_{\rm c}$

Dokumenten- Nummer	erstellt / geändert	Status	Seite / Seite (n)		(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	20	von	27

EPS-100120

9.12 Durchschlagsfestigkeitsprüfung

Prüfungsdefinition:

Die Durchschlagsfestigkeitsprüfung wurde entsprechend der Norm ISO 16750-2 4.11 durchgeführt.

Parameter	Wert
Testspannung	500VAC
Frequenz	50Hz
Wartezeit	60s

Prüfungskriterium:

Kein elektrischer Überschlag

9.13 UV Beständigkeit

Prüfungsdefinition:

Die UV Beständigkeitsprüfung wurde entsprechend folgender Parameter durchgeführt.

Parameter	Wert
UV Lampen	8 Stk. 313nm UVB
Bestrahlungsdauer	4h
Pause	4h
Prüfungsdauer	500h

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.14 Chemische Beständigkeit

Prüfungsdefinition:

Die Prüfung der chemischen Beständigkeit wurde entsprechend der Norm LV214:PG22A durchgeführt.

Chemikalie	Beaufschlagung / Alterung
Cockpitspray	aufsprühen / 48h bei 50°C
Rostlöser	aufsprühen / 48h bei 50°C
Unverdünntes	begießen / 48h bei 50°C
Scheiben-	
frostschutzmittel	
Isopropanol	begießen / 48h bei RT
Schmierfett	Einreiben / 48h bei 50°C

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.12 Dielectric strength test

Test definition:

The dielectric strength test was tested in dependence to the norm ISO 16750-2 4.11

Parameter	Value
Test voltage	500VAC
Frequency	50Hz
Retention time	60s

Test criteria:

The insulation resistance test must be greater than $100 \text{M}\Omega$

9.13 UV Resistance test

Test definition:

The UV resistance test was tested in dependence to the following parameters.

Parameter	Value
UV lights	8 pcs. 313nm UVB
Radiation time on	4h
Radiation time off	4h
Exposer time	500h

Test criteria:

The measurement data's fulfill the specified tolerances

9.14 Chemical resistance

Test definition:

The chemical resistance test was tested in dependence to the norm LV214:PG22A

Chemically	Appliance / aging
Cockpit spray	spraying / 48h at 50°C
Penetrating oil	spraying / 48h at 50°C
Undiluted	douse / 48h at 50°C
washer fluid	
anti-freeze	
Isopropanol	douse / 48h at RT
Grease	rubbing / 48h at 50°C

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seite / Seite (n)		(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	21	von	27

EPS-100120

9.15 Falltest

Prüfungsdefinition:

Die Falltest wurde entsprechend der Norm LV214: B6.1 durchgeführt.

Parameter	Wert
Testhöhe	1m
Wiederholungen	3 mal je Raumachse

Prüfungskriterium:

Keine Beschädigung der Baugruppe

9.16 Kabelzugprüfung

Prüfungsdefinition:

Die Kabelzugprüfung wurde entsprechend folgender Parameter durchgeführt.

Parameter	Wert
Belastung	200N in axialer Richtung des
	Kabelaustrittes

Prüfungskriterium:

Keine Beschädigung der Baugruppe

9.17 Dauerlaufprüfung

Prüfungsdefinition:

Die Dauerlaufprüfung wurde entsprechend folgender Parameter durchgeführt.

Parameter	Wert
Zyklen	1.000.000
Temperaturprofil	-20°C, +25°C,+85°C jeweils
	für 48h lagern
Temperaturzyklen	min. 4

Prüfungskriterium:

Keine Beschädigung der Baugruppe

9.15Drop test

Test definition:

The drop test was tested in dependence to the norm LV214: B6.1

Parameter	Value
Drop height	1m
cycles	3 times each axis

Test criteria:

No damage off the product

9.16 Resistance to harness tearing

Test definition:

The resistance to harness tearing was tested according following parameters.

Parameter	Value
Strain	200N in axial direction of the
	harness output

Test criteria:

No damage off the product

9.17 Fatigue stop test

Test definition:

The fatigue stop test was tested according following parameters.

Parameter	Value
cycles	1.000.000
Temperature	-20°C, +25°C,+85°C each
profile	temperature 48h
Temperature	min. 4
cycles	

Test criteria:

No damage off the product

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	22	von	27

EPS-100120

9.18 Vibration Breitbandrauschen

Prüfungsdefinition:

Die Vibrationsprüfung mit Breitbandrauschen wurde in Anlehnung an die Norm LV124: 13.4.2.5 durchgeführt.

Parameter	Wert	
Vibrationserregung	Breitbandra	uschen
Prüfungsdauer	8h je Raum	achse
RMS	107,3 m/s ²	
Beschleunigung		
Vibrationsprofil	Frequenz [Hz]	Effektive Beschleunigung (m/s²)/Hz
	20	200
	40	200
	300	0,5
	800	0,5
	1000	3
	2000	3

Während der Prüfung wurde das Sensorsignal überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.19 Vibration Dauerschock

Prüfungsdefinition:

Die Vibrationsprüfung mit Dauerschockbelastung wurde in Anlehnung an die Norm LV214: B17.3 durchgeführt.

Parameter	Wert
Anzahl positive Schocks	2500
Anzahl negative Schocks	2500
Beschleunigung	30g
Impulszeit	6ms

Während der Prüfung wurde das Sensorsignal überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.18 Vibration broadband random

Test definition:

The broadband random vibration test was tested according following norm LV124: 13.4.2.5

Parameter	Value	
Vibration	Broad band	random
Testing duration	8h each axis	
RMS acceleration	$107,3 \text{ m/s}^2$	
Vibration profile	frequency [Hz]	Eff. acceleration (m/s²)/Hz
	20	200
	40	200
	300	0,5
	800	0,5
	1000	3
	2000	3

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances

9.19 Vibration endurance shock test

Test definition:

The endurance shock test was tested according following norm LV214: B17.3

Parameter	Value
number positive	2500
Shocks	
number negative	2500
Shocks	
Acceleration	30g
impulse time	6ms

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	23	von	27

EPS-100120

9.20 Prüfung Rückstellzeit

Prüfungsdefinition:

Die Prüfung der Rückstellzeit wurde entsprechend folgender Parameter durchgeführt:

Parameter	Wert
Prüfungstemperatur	-20°C / +85°C
Rückstellzeit	200ms
Prüfwinkel 1	80° -> 0°
Prüfwinkel 2	5° -> 0°

Während der Prüfung wurde das Sensorsignal überwacht.

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.21 Beständigkeit gegenüber Kontaktierungsfehler

Prüfungsdefinition:

Die Prüfung wird entsprechend folgender Parameter durchgeführt.

Parameter	Wert
Kontaktierungs-	Vdd -> Vbat
varianten	Vdd -> -Vbat
	Out -> Gnd
	Out -> Vdd

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.20 Return time test

Test definition:

The endurance shock test was tested according following parameters

Parameter	Value
Testing	-20°C / +85°C
temperature	
Return time	200ms
Testing angle 1	80° -> 0°
Testing angle 2	5° -> 0°

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances

9.21 Resistance to accidental connection

Test definition:

The endurance shock test was tested according following parameters

Parameter	Value
Accidental	Vdd -> Vbat
connection	Vdd -> -Vbat
	Out -> Gnd
	Out -> Vdd

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	24	von	27

EPS-100120

9.22 Störfestigkeit gegenüber Transienten

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 7637-3 durchgeführt.

Parameter	Wert
Amplitude	3a: -300V
	3b: 300V
Prüfzeit	30 min (10 Minuten
	Einzellitze, 20 Minuten
	Leitungssatz)

Während der Prüfung wurde das Sensorsignal überwacht

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.23 Störfestigkeit gegenüber eingestrahlte magnetische Felder (Antennen Methode)

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 11452-5 durchgeführt.

Parameter	Wert
Frequenzbereich	10 MHz 1,0 GHz
Feldstärke	200 V/m

Während der Prüfung wurde das Sensorsignal überwacht

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.22 Immunity against inducted transient disturbances

Test definition:

The immunity against inducted transient test was tested according following norm ISO 7637-3.

Parameter	Value
Amplitude	3a: -300V
	3b: 300V
Testing duration	30 min (10 Minute single wire,
	20 Minute cluster of cable)

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances

9.23 Immunity against electromagnetic disturbances (Antenna Method)

Test definition:

The immunity against electromagnetic disturbances test was tested according following norm ISO 11452-

Parameter	Wert
Frequency range	10 MHz 1,0 GHz
Magnetic field	200 V/m

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	25	von	27

EPS-100120

9.24 Störfestigkeit gegenüber eingestrahlte magnetische Felder (BCI Methode)

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 11452-4 durchgeführt.

Parameter	Wert
Prüfstrom	200mA f < 10MHz
	200mA 10MHz < f <400MHz
Signalart	CW
	AM 1kHz, 80% Modulation

Während der Prüfung wurde das Sensorsignal überwacht

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.25 Störfestigkeit gegenüber niederfrequenten Magnetfeldern

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 11452-8 durchgeführt.

Parameter	Wert
Magnetfeld	170 dBµA/m 10Hz < f< 1kHz
	170-(30*log(f/1000)) dBµA/m
	1kHz < f < 10kHz
	140 dBµA/m 10kHz < f< 150kHz

Während der Prüfung wurde das Sensorsignal überwacht

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.24 Immunity against RF current on cable cluster (BCI Methode)

Test definition:

The immunity against RF current on cable clusters test was tested according following norm ISO 11452-4.

Parameter	Value
Current	200mA f < 10MHz
	200mA 10MHz < f <400MHz
Signal mode	CW
	AM 1kHz, 80% Modulation

During the test the sensor signal and the sensor current was monitored.

Test criteria:

The measurement data's fulfill the specified tolerances

9.25 Immunity against low frequency magnetic fields

Test definition:

The immunity against low frequency magnetic fields was tested according following norm ISO 11452-8

Parameter	Value		
Magnetic field	170 dBμA/m 10Hz < f< 1kHz		
	170-(30*log(f/1000)) dBμA/m		
	1kHz < f < 10kHz		
	140 dBμA/m 10kHz < f< 150kHz		

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seit	e / Seite	(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	26	von	27

EPS-100120

9.26 Messung elektronmagnetisch Abstrahlung

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm CISPR_25 durchgeführt.

Parameter	Wert
Prüfschärfe	Level 5

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.27 Störfestigkeit gegenüber elektrostatischer Entladung - Handlingstest

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 10605:2008-9 durchgeführt.

Parameter	Wert
Kapazität	150pF
Widerstand	2kΩ
Luftentladung	±15kV
Kontaktentladung	±4kV

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.28 Störfestigkeit gegenüber elektrostatischer Entladung – Systemtest bestromt

Prüfungsdefinition:

Die Prüfung wurde in Anlehnung an die Norm ISO 10605:2008-8 durchgeführt.

Parameter	Wert
Kapazität	150pF
Widerstand	2kΩ
Luftentladung	±15kV
Kontaktentladung	±4kV
Indirekte Entladung	±4kV

Während der Prüfung wurde das Sensorsignal überwacht

Prüfungskriterium:

Die Messwerte erfüllen die spezifizierten Toleranzgrenzen

9.26 Radiated emissions

Test definition:

The immunity against low frequency magnetic fields was tested according following norm CISPR_25

Parameter	Value
Emission level	Level 5

Test criteria:

The measurement data's fulfill the specified tolerances

9.27 Immunity against electrostatic discharge - handling

Test definition:

The immunity against electrostatic discharge test was tested according following norm ISO 10605:2008-9

Parameter	Wert
capacity	150pF
resistance	2kΩ
Air discharge	±15kV
Contact discharge	±4kV

Test criteria:

The measurement data's fulfill the specified tolerances

9.28 Immunity against electrostatic discharge – powered up

Test definition:

The immunity against electrostatic discharge test was tested according following norm 10605:2008-8

Parameter	Wert
Capacity	150pF
Resistance	2kΩ
Air discharge	±15kV
Contact discharge	±4kV
Indirect discharge	±4kV

During the test the sensor signal and the sensor current was monitored.

Test criteria:

Dokumenten- Nummer	erstellt / geändert	Status	Seite / Seite (n)		(n)
170905_Leistungsdaten Hirschmann E-Gas Drehgriff v1.0.doc	05.09.2017	released	27	von	27