

SESA2023 Propulsion

Lecture 7: Compressible flow and speed of sound

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

- Introduction to compressible flow
- Simplifications
- Stagnation properties
- Speed of sound and Mach number
- Critical properties

manual

FROM INCOMPRESSIBLE TO COMPRESSIBLE -too Compox for

Mass conservation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho U_j) = 0$$

Momentum conservation:

$$\frac{\partial}{\partial t}(\rho U_i) + \frac{\partial}{\partial x_i}(\rho U_i U_j) = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i}$$

Energy conservation:

$$\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_i}(\rho h U_i) = \frac{\partial}{\partial x_i} \left(k \frac{\partial T}{\partial x_i} \right) + \frac{\mathrm{D}P}{\mathrm{D}t} + \mu \Phi$$

$$P = \rho RT$$

for incompressible dependent $P = \rho$ flow these Equation of state: $P = \rho$ they couple and it they couple and it becomes heligh (Id)

SIMPLIFICATIONS

One-dimensional flow

avoiding 30 hell

$$\frac{\partial g}{\partial t} + \frac{\partial}{\partial x_j}(\rho U_j) = 0$$

- Steady flow (no time dependence)
- · Inviscid flow (yum)
- No thermal diffusion

$$\frac{\partial}{\partial t}(\partial U_i) + \frac{\partial}{\partial x_j}(\rho U_i U_j) = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$

$$\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_i}(\rho h U_i) = \frac{\partial}{\partial x_i} \left(k \frac{\partial \mathcal{T}}{\partial x_i} \right) + \frac{\mathrm{D}P}{\mathrm{D}t} + \mu \Phi$$

$$P = \rho RT$$

SIMPLIFIED EQUATIONS

$$\frac{\mathrm{d}}{\mathrm{d}x}(\rho U) = 0$$

$$U\frac{\mathrm{d}U}{\mathrm{d}x} + \frac{1}{\rho}\frac{\mathrm{d}P}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}h}{\mathrm{d}x} + U\frac{\mathrm{d}U}{\mathrm{d}x} = 0$$

$$P = \rho RT$$

Moduagedble

(still more camplex than what we do though)

WHAT WE WILL ACTUALLY BE DEALING WITH...

Compressible (Congarunt)

$$\rho_1 U_1 A_1 = \rho_2 U_2 A_2$$

$$h_1 + \frac{1}{2}U_1^2 = h_2 + \frac{1}{2}U_2^2$$

$$P = \rho RT$$

Incompressible

 $U_1A_1 = U_2A_2$

$$\frac{P_1}{\rho} + \frac{1}{2}U_1^2 = \frac{P_2}{\rho} + \frac{1}{2}U_2^2$$

converted to based versions
of bernoulli

STAGNATION PROPE

street in line

 $h_1 + \frac{1}{2}V_1^2 = h_2 + \frac{1}{2}V_2^2 = 1$ assume isativopic compressionip=P(Top-1)(Stagnation Sternation | 1 Stagnation equations (du now find everything else with | P=RT!

University of

SPEED OF SOUND once you get to will of spend of sould compression graves to be important

SPEED OF SOUND

____→

 $T + \delta T$

 $P+\delta P$

 ρ + $\delta \rho$

 $U=\delta U$

SPEED OF SOUND

$$T + \delta T$$

$$P + \delta P$$

$$\rho$$
+ $\delta\rho$

$$U = a - \delta U$$

$$U=a$$

SPEED OF SOUND

From mass and momentum conservation:

$$a^2 = \frac{dP}{d\rho}$$
speed of sound

Assuming isentropic flow:

$$\frac{\mathrm{d}P}{\mathrm{d}\rho} = \gamma RT,$$

$$a = \sqrt{\gamma RT}$$

MACH NUMBER

$$M_{d} = \frac{V}{d} = \frac{V}{VRT}$$

$$M_{d} = \frac{V}{VRT}$$

$$VSINY To = 1 + \frac{V}{2CPT}$$

$$VSINY To = 1 + \frac{V}{2CPT}$$

$$VSINY To = 1 + \frac{V}{2CPT}$$

EXAMPLE: MACH NUMBER

A supersonic jet is flying at Ma = 1.1, where the local temperature is 220 K.

Ma = U

Keeping the same flight speed, but at a temperature of 300 K, what is the Mach

number?

Mast =
$$\frac{1}{\sqrt{2}}$$
 constant

Ma, $\sqrt{T_1} = Ma_2 T_2$

Ma, $\sqrt{T_2} = Ma_2 = 0.9419\%$

CAL PROPF

10 = 1 + x = 1 Ma2 = 1 + x - 1 T* 1

$$P^* = P_0 \left(\frac{T^*}{T} \right)^{\frac{1}{2}} = \left(\frac{1}{1 + x} \right)^{\frac{1}{2}}$$

$$P^* = P_0 \left(\frac{T^*}{T} \right)^{\frac{1}{2}}$$

$$P^* = P_0 \left(\frac{T^*}{1 + x} \right)^{\frac{1}{2}}$$

$$P^* = P_0 \left(\frac{T^*}{1 + x} \right)^{\frac{1}{2}}$$

RTIES Props at
$$Md = 1$$
; T^* , P^* , P^* , P^*
 $Y = P_0 \left(\frac{T^*}{T} \right)^{\frac{1}{2}} = \left(\frac{1}{1} \right)^{\frac{1}{2}} = \left(\frac{$

SUMMARY

- Difficulty with compressible flows
- Assumptions and simplifications for steady 1D inviscid flow
- Define stagnation properties
 - Enthalpy, temperature, pressure, and density at zero velocity
- Speed of sound
 - Temperature dependence, Mach number
- Critical properties
 - Temperature, pressure, and density at Ma = 1

SESA2023 Propulsion

Lecture 8: Shocks

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

- Introduction to shocks
- Analysis outline
- Shock relations
- Shock properties

SPEED OF SOUND: INFINITESIMAL DISTURBANCE

 $T + \delta T$

$$P + \delta P$$

$$\rho + \delta \rho$$

$$U = \delta U$$

T

P

ρ

U=0

SHOCK: FINITE DISTURBANCE

SHOCK

NORMAL SHOCKS AND OBLIQUE SHOCKS

NORMAL SHOCK ANALYSIS

Mass conservation

Momentum conservation

Energy conservation

Perfect gas

Not isentropic!

SHOCK RELATIONS

$$Ma_1$$

$$Ma_2$$

$$Ma_2^2 = \frac{(\gamma - 1)Ma_1^2 + 2}{2\gamma Ma_1^2 + 1 - \gamma}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)Ma_1^2}{(\gamma - 1)Ma_1^2 + 2}$$

$$\frac{T_2}{T_1} = 1 + \frac{2(\gamma - 1)}{(\gamma + 1)^2} \left(\frac{\gamma M a_1^2 + 1}{M a_1^2} \right) \left(M a_1^2 - 1 \right)$$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(Ma_1^2 - 1 \right)$$

EXAMPLE

An airflow T = 250 K, P = 0.5 bar, U = 600 m/s, encounters a shock. What is the stagnation temperature and pressure before and after the shock?

SHOCK PROPERTIES

ENTROPY CHANGE

$$\Delta s = s_2 - s_1 = c_P \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{P_2}{P_1}\right)$$

SHOCK RELATIONS

Normal shock relations

1. Mach number after the shock

```
In [2]: def shock_Ma2(Ma1, gamma=1.4):
    A = (gamma-1)*Ma1**2+2
    B = 2*gamma*Ma1**2+1-gamma
    return (A/B)**0.5
```

2. Temperature after the shock

Returns the temperature ratio T2/T1

```
In [3]: def shock_T(Ma1, gamma=1.4):
    A = 2*(gamma-1)/(gamma+1)**2
    B = (gamma*Ma1**2+1)/Ma1**2
    C = Ma1**2-1
    return 1+A*B*C
```


SHOCK TABLES

М	$\frac{p_2}{p_1}$	$\frac{\rho_2}{\rho_1}$	$\frac{T_2}{T_1}$	$\frac{p_{0_2}}{p_{0_1}}$	$\frac{p_{0_2}}{p_1}$	<i>M</i> ₂	
0.2000 + 01	0.4500 + 01	0.2667 + 01	0.1687 + 01	0.7209 + 00	0.5640 + 01	0.5774 + 00	
0.2050 + 01	0.4736 + 01	0.2740 + 01	0.1729 + 01	0.6975 + 00	0.5900 + 01	0.5691 + 00	
0.2100 + 01	0.4978 + 01	0.2812 + 01	0.1770 + 01	0.6742 + 00	0.6165 + 01	0.5613 + 00	
0.2150 + 01	0.5226 + 01	0.2882 + 01	0.1813 + 01	0.6511 + 00	0.6438 + 01	0.5540 + 00	
0.2200 + 01	0.5480 + 01	0.2951 + 01	0.1857 + 01	0.6281 + 00	0.6716 + 01	0.5471 + 00	

M	$\frac{T}{T_0}$	$\frac{p}{p_0}$	$\frac{ ho}{ ho_0}$	$\frac{V}{\sqrt{c_p T_0}}$	$\frac{\dot{m}\sqrt{c_pT_0}}{Ap_0}$	$\frac{\dot{m}\sqrt{c_pT_0}}{Ap}$	$\frac{F}{\dot{m}\sqrt{c_pT_0}}$	$\frac{4c_fL_{max}}{D}$	$\frac{\frac{1}{2}\rho V^2}{p_0}$	M_s	$\frac{p_{0s}}{p_0}$	$\frac{p_s}{p}$	$\frac{p_{0s}}{p}$	$\frac{T_s}{T}$	v_{PM} (de	g.) <i>M</i>
1.960	0.5655	0.1360	0.2405	0.9322	0.7846	5.7695	1.1055	0.2929	0.3657	0.5844	0.7395	4.3152	5.4378	1.6553	25.27	1.9600
1.970	0.5630	0.1339	0.2378	0.9349	0.7782	5.8118	1.1069	0.2960	0.3638	0.5826	0.7349	4.3611	5.4881	1.6633	25.55	1.9700
1.980	0.5605	0.1318	0.2352	0.9375	0.7718	5.8542	1.1084	0.2990	0.3618	0.5808	0.7302	4.4071	5.5386	1.6713	25.83	1.9800
1.990	0.5580	0.1298	0.2326	0.9402	0.7655	5.8969	1.1098	0.3020	0.3598	0.5791	0.7255	4.4535	5.5894	1.6794	26.10	1.9900
2.000	0.5556	0.1278	0.2300	0.9428	0.7591	5.9397	1.1112	0.3050	0.3579	0.5774	0.7209	4.5000	5.6404	1.6875	26.38	2.0000

SUMMARY

- What is a shock, how is it formed
- A shock converts a supersonic flow to a subsonic flow
- Entropy increases across a shock
- The Mach number determines change in speed, pressure, temperature and density
- Shock relations
 - Equations
 - Tables

SESA2023 Propulsion

Lecture 9: Duct flow

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

- Nozzle applications
- Nozzle analysis assumptions
- Limitations of converging nozzles
- Converging-diverging nozzles
- Mass flow rate

NOZZLE APPLICATIONS

Goal: accelerate flows to increase thrust. Ideally to supersonic speeds.

ANALYSIS AND ASSUMPTIONS

- Steady Flow
- Quasi 1D: Gradual changes in area
- No friction
- Adiabatic
- Isentropic (except for shocks!)

Mass and momentum conservation:

$$\frac{1}{A}\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{1}{U}\frac{\mathrm{d}U}{\mathrm{d}x}\left(\mathrm{Ma}^2 - 1\right)$$

LIMITATIONS OF CONVERGING NOZZLES

CONVERGING-DIVERGING NOZZLES

 P_b

 P_t

 $P_{\scriptscriptstyle 0}$

EXAMPLE: ISENTROPIC NOZZLE

Reservoir conditions: air at $p_0 = 10$ bar, $T_0 = 400$ K.

What is the exit pressure for $Ma_e = 2.0$?

MASS FLOW RATE

From mass flow rate and **isentropic** relations:

$$\frac{\dot{m}}{\rho_0 (2c_P T_0)^{1/2}} = A \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}} \left[1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma - 1}{\gamma}}\right]^{1/2}$$

For choked flow we know that at the throat: $\frac{P^*}{P_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}}$

So mass flow rate is limited by:

$$\frac{\dot{m}}{\rho_0 (2c_P T_0)^{1/2}} = A_t \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} \left(\frac{\gamma - 1}{\gamma + 1}\right)^{1/2}$$

EXAMPLE: THRUST

For the nozzle from the previous example, what is the thrust generated if the throat area is 0.1 m²?

SUMMARY

- Nozzle applications
- Converging nozzles
 - Acceleration for Ma < 1
 - Deceleration for Ma >1
- Choked flow
 - Critical conditions (Ma = 1) at throat
- Converging-diverging nozzles for supersonic exit velocity
 - Performance with changing back pressure
- Mass flow rate, area-pressure relation