Fundamental Method of Binary Classification

Hsu An, Du Yixuan, Xiong Yi Neptunus Team Nov 7, 2018

任务整体评估

任务整体评估

任务类型

评价方法

任务整体评估

任务类型

Binary Classification

评价方法

F1-Score

Step 2 数据清洗&预处理

Step 3 模型选择

Step 4 模型优化

Overall Preview

命令: Dateframe.info(), Dataframe.describe()

Overall Preview

Data Columns	Data	count	mean	std	Min	25%	50%	75 %	max
age	Int64	32561.0	38.6	13.6	17.0	28.0	37.0	48.0	90.0
workclass	object								
fnlwgt	Int64	32561.0	189778.4	105550.0	12285.0	117827.0	178356.0	237051.0	1484705.0
education	object								
education_num	Int64	32561.0	10.1	2.6	1.0	9.0	10.0	12.0	16.0
marital_status	object								
occupation	object								
relationship	object								
race	object								
sex	object								
capital_gain 🜈	Int64	32561.0	1077.7	7385.3	0.0	0.0	0.0	0.0	99999.0
capital_loss	Int64	32561.0	87.3	403.0	0.0	0.0	0.0	0.0	4356.0
hours_per_week	Int64	32561.0	40.1	40.4	1.0	40.0	40.0	45.0	99.0
native_country	object								
y	object								

Y-label overview

Y-label overview

数值型连续变量

Numerical Variable

e.g. age, fnlwgt, capital_gain, capital_loss...

Numerical Variable

琴箱图

Violinplot

Step 1 数据探索

Numerical Variable

capital_gain

类别型离散变量

Categorical Variable

e.g. workclass, education, marital_status...

Categorical Variable

Sex (Binary-category)

Categorical Variable

Race (Multi-category)

相关度分析 Correlation analysis

Correlation analysis

Pearson correlation coefficient

$$r = rac{\sum\limits_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum\limits_{i=1}^n (X_i - \overline{X})^2} \sqrt{\sum\limits_{i=1}^n (Y_i - \overline{Y})^2}}$$

Correlation analysis

Correlation analysis

Step 2 数据清洗&预处理

Step 3 模型选择

Step 4 模型优化

缺失值处理 Missing Data

Missing Data

平均值 (Mean)

众数 (Mode)

中位数 (Median)

成为新的类别(Unknown)

Missing Data

变量编码 Variables Encoding

Step 2 数据清洗&预处理

Variables Encoding

Data Columns	Data	count	mean	std	Min	25%	50%	75 %	max
age	Int64	32561.0	38.6	13.6	17.0	28.0	37.0	48.0	90.0
workclass	object								
fnlwgt	Int64	32561.0	189778.4	105550.0	12285.0	117827.0	178356.0	237051.0	1484705.0
education	object								
education_num	Int64	32561.0	10.1	2.6	1.0	9.0	10.0	12.0	16.0
marital_status	object								
occupation	object								
relationship	object								
race	object								
sex	object								
capital_gain	Int64	32561.0	1077.7	7385.3	0.0	0.0	0.0	0.0	99999.0
capital_loss	Int64	32561.0	87.3	403.0	0.0	0.0	0.0	0.0	4356.0
hours_per_week	Int64	32561.0	40.4	40.4	1.0	40.0	40.0	45.0	99.0
native_country	object								
y	object								

Step 2 数据清洗&预处理

Variables Encoding

数据行	数据类型	编码值域
workclass	object	0, 1 7, np.nan
education	object	0, 1 15
marital_status	object	0, 1 6
occupation	object	0, 1 13, np.nan
relationship	object	0, 1 12
race	object	0, 1 15
sex	object	0, 1
native_country	object	0, 1 40, np.nan
y	object	0, 1

非平衡数据处理

Un-Balanced Samples

Un-Balanced Samples

欠采样 (Under-sampling)

ClusterCentroids, RandomUnderSampler, NearMiss, EditedNearestNeighbours

过采样 (Over-sampling)

RandomOverSampler,SMOTE,ADASYN

过采样算法SMOTE

设训练集少数类样本数为T,则SMOTE至少合成NT个样本(N为正整数)

考虑该少数类的一个样本 i , 其特征向量为: $x_i, i \in \{1, ..., T\}$

- 1. 首先从该少数类的全部 T 个样本中找到样本 xi 的 k 个近邻(例如用欧氏距离),记为 $x_{i(near)}$, $near \in \{1, ..., k\}$
- 2. 然后从这 k 个近邻中随机选择一个样本 xi(nn) ,再生成一个 0 到 1 之间的随机数 ζ 1 ,从而合成一个新样本 xi1:

$$\boldsymbol{x}_{i1} = \boldsymbol{x}_i + \zeta_1 \cdot (\boldsymbol{x}_{i(nn)} - \boldsymbol{x}_i)$$

3. 将步骤2重复进行 N 次,从而可以合成 N 个新样本: xinew,new∈1,...,N。

那么,对全部的 T 个少数类样本进行上述操作,便可为该少数类合成 NT 个新样本。

标准化 (Standardization)

归一化(Normalization)

(不适用)

Step 2 数据清洗&预处理

Step 3 模型选择

Step 4 模型优化

Step 3 模型选择

各个模型在不优化情况下的F1-Score

lightGBM等树状模型

Step 2 数据清洗&预处理

Step 3 模型选择

Step 4 模型优化

Step 4 模型优化

对于lightGBM,有如下关键参数:

max_depth : 设置树深度,深度越大可能过拟合

num_leaves: 树的复杂程度。设置应该小于 2^(max_depth), 否则可能会导致过拟合。

min_data_in_leaf :它的值取决于训练数据的样本个数.

Step 4 模型优化

对于lightGBM,有如下关键参数:

learning_rate : 设置学习率

lambda_l1(reg_alpha), lambda_l2(reg_lambda):正则化参数.降低过拟合,两者分别对应l1正则化和l2正则化

Step 4 模型优化

```
Core Parameters

    config □, default = "", type = string, aliases: config_file

    o path of config file

    Note: can be used only in CLI version

 • task \(\subseteq\), default = train, type = enum, options: train, predict, convert_model, refit, aliases: task_type
    o train, for training, aliases: training
    o predict, for prediction, aliases: prediction, test
    • convert_model, for converting model file into if-else format, see more information in IO Parameters
    o refit , for refitting existing models with new data, aliases: refit_tree
    • Note: can be used only in CLI version; for language-specific packages you can use the correspondent functions
   objective , default = regression, type = enum, options: regression, regression_l1, huber, fair, poisson,
    quantile, mape, gammma, tweedie, binary, multiclass, multiclassova, xentropy, xentlambda, lambdarank, aliases:
    objective_type , app , application

    regression application

       regression_l2 , L2 loss, aliases: regression , mean_squared_error , mse , l2_root , root_mean_squared_error , rmse
         regression_l1 , L1 loss, aliases: mean_absolute_error , mae
         huber, Huber loss
         fair, Fair loss
          poisson, Poisson regression
          quantile, Quantile regression
          mape , MAPE loss, aliases: mean_absolute_percentage_error
          gamma, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any
          target that might be gamma-distributed
```

https://lightgbm.readthedocs.io/en/latest/Parameters.html

调参策略: grid-search

```
# #1.{'n_estimators': 35}
param_test1 = {'n_estimators':list(range(35,46,2))}
gsearch1 = GridSearchCV(estimator = lgb.LGBMClassifier(
learning_rate=0.1,
subsample=0.8,
max_depth=13,
num leaves=21
),param_grid =
param_test1,scoring='f1_socre',iid=False,cv=5)
gsearch1.fit(data_train,data_train_result)
print(gsearch1.grid_scores_)
print(gsearch1.best_params_)
print(gsearch1.best_score_)
```

调参结果

application='binary', objective='binary', is unbalance=True, num leaves=100, colsample_bytree=0.8, reg_alpha=0.001, reg lambda=0.06

Sweet

Point

数据预处理十分重要!

Thanks

