DATUM:		TŘÍDA:
	SPŠ CHOMUTOV	
ČÍSLO ÚLOHY:		JMÉNO:
	Měření na přístrojovém zesilovači	

ZADÁNÍ:

SCHEMA ZAPOJENÍ:

POUŽITÉ PŘÍSTROJE:

OCEITE I RIGIROJE.						
NÁZEV	OZN.	ÚDAJE	invent. číslo			
zdroj	Uz					
generátor	G					
přístrojový zesilovač	MZ					
elektronické voltmetry	EV1,EV2					
osciloskop	Osc.					
číslicové voltmetry	ČV1,ČV2					
potenciometr	P					

1) Změřte převodní charakteristiku měřícího zesilovače pro zesílení 1 a 8 Postup:

2) Vypočtěte hodnoty R_g pro zesílení 1 a 8:

Hodnoty převodní charakteristiky měřícího zesilovače

zesileni I		zesileni 8			
U ₁ (V)	U ₂ (V)	U ₁ (V)	U ₂ (V)		

- 3) Definujte pojem vstupní zbytkové napětí a určete jeho hodnotu.
- 4) Určete chybu zesílení a nelinearitu daného zesilovače :
- 5) Definujte pojem mezní a tranzitní kmitočet. Změřte kmitočtovou závislost rozdílového zesílení zesilovače při zesílení 2 a 8. Stanovte mezní a tranzitní kmitočet. Při zesílení 2 udržujte vstupní napětí na hodnotě 2V. Při zesílení 8 na hodnotě 1V. Uvedené kmitočty vyznačte v charakteristikách

Postup:

Frekvenční závislost rozdílového zesílení zesílení 2 zesílení 8

	Zesheni Z			Zeshem o		
f (kHz)	$U_2(V)$	G _R (-)	$G_{R}(dB)$	$U_2(V)$	G _R (-)	$G_{R}(dB)$
0,5						
1,0						
2,0						
5,0						
10,0						
20,0						
50,0						
100,0						
200,0						
500,0						
1 000						
2 000						

zesílení 2	zesílení 8		
fm =	fm=		
ft=	ft=		

Příklad výpočtu:

6) Změřte kmitočtovou charakteristiku součtového zesílení v rozsahu kmitočtů 1kHz až 20kHz pro zesílení 2 a 8. Pro zesílení 2 udržujte vstupní napětí na hodnotě 2V. Pro zesílení 8 na hodnotě 1V.

Postup

Frekvenční závislost souhlasného zesílení zesílení 2 zesílení 8

f (kHz)	U ₂ (mV)	$G_{s}(-)$	G _s (dB)	U ₂ (mV)	G s (-)	G _s (dB)
1,0						
2,0						
5,0						
10,0						
20,0						

Příklad výpočtu:

7) Určete činitel potlačení CMRR při kmitočtu 1kHz a 20kHz

8) Změřte dobu ustálení Tu ($\Delta Uv = 1V$) a určete rychlost přeběhu S výstupního napětí zesilovače při zesílení 1 při buzení rozdílového vstupu obdélníkovým signálem o takové amplitudě, aby nedocházelo k přebuzení zesilovače. Znázorněte graficky.

Naměřené hodnoty

- Překmit
- Strmost
- Doba náběhu
- Doba ustálení

Závěr: