Tiempo: 90 minutos Felipe Osorio

1. Primeramente, note que para una m.a.(n) desde una $\mathcal{N}(\theta,1)$ tenemos

$$\ell(\theta) = -\frac{n}{2}\log 2\pi - \frac{1}{2}\sum_{i=1}^{n} (X_i - \theta)^2.$$

De este modo la función score adopta la forma $U_n(\theta) = \sum_{i=1}^n (X_i - \theta)$ y por tanto, $\widehat{\theta}_{ML} = \overline{X}$. Además,

$$U'_n(\theta) = -n, \qquad \mathcal{F}_n(\theta) = \mathbb{E}\{-U'_n(\theta)\} = n.$$

Lo que lleva a $\widehat{\mathsf{SE}}(\widehat{\theta}) = 1/\sqrt{n}$.

Ahora, podemos notar que

$$\psi = P(Y_1 = 1) = P(X_1 > 0) = 1 - P(X_1 \le 0) = 1 - P(X_1 - \theta \le 0 - \theta)$$
$$= 1 - P(Z \le -\theta) = 1 - \Phi(-\theta),$$

donde $\Phi(\cdot)$ representa la CDF de una distribución normal estándar. Es decir, tenemos que $\psi = g(\theta)$, con $g(\theta) = 1 - \Phi(-\theta)$. Así, por la invarianza de los estimadores de ML, sigue que

$$\widehat{\psi}_{\mathsf{ML}} = 1 - \Phi(-\widehat{\theta}_{\mathsf{ML}}) = 1 - \Phi(-\overline{X}).$$

Sabemos también que $\widehat{\mathsf{SE}}(\widehat{\psi}) = |g'(\widehat{\theta})| \widehat{\mathsf{SE}}(\widehat{\theta})$, y dado que $g'(\theta) = \Phi'(-\theta) = \phi(-\theta)$. Obtenemos

$$\widehat{\mathsf{SE}}(\widehat{\psi}_{\mathsf{ML}}) = \phi(-\widehat{\theta}_{\mathsf{ML}}) \frac{1}{\sqrt{n}}.$$

Lo que permite escribir un intervalo de confianza asintótico del $100(1-\alpha)\%$ para ψ como:

$$IC_n(\psi) = \left[\widehat{\psi}_{\mathsf{ML}} - z_{1-\alpha/2} \frac{\phi(-\overline{x})}{\sqrt{n}}, \widehat{\psi}_{\mathsf{ML}} + z_{1-\alpha/2} \frac{\phi(-\overline{x})}{\sqrt{n}}\right],$$

con $z_{1-\alpha/2}$ siendo un valor cuantil $1-\alpha/2$ de la distribución $\mathcal{N}(0,1)$.

2. Sabemos que

$$Q(\mathbf{X}; \theta) = 2\theta \sum_{i=1}^{n} X_i \sim \chi^2(2n).$$

- a. Como la distribución de $Q(X;\theta)$ no depende de θ , sigue que es una cantidad pivotal.
- **b.** Se desea un intervalo para θ , tal que

$$P\left(q_1 \le 2\theta \sum_{i=1}^n X_i \le q_2\right) = 1 - \alpha,$$

donde q_1 y q_2 son valores cuantiles desde la distribución $\chi^2(2n)$,* así

$$P\left(\frac{q_1}{2n\overline{X}} \le \theta \le \frac{q_2}{2n\overline{X}}\right) = 1 - \alpha.$$

^{*}Una alternativa es considerar $q_1 = \chi^2_{\alpha/2}(2n)$ y $q_2 = \chi^2_{1-\alpha/2}(2n)$.

De este modo un intervalo de confianza del $100(1-\alpha)\%$ para θ es dado por

$$IC(\theta) = \left[\frac{q_1}{2n\overline{X}}, \frac{q_2}{2n\overline{X}}\right].$$

3. La distribución exponencial $X \sim \mathsf{EXP}(\theta)$ pertenece a la familia exponencial, pues su densidad es de la forma $f(x;\theta) = \theta \exp(-\theta x)$, con x > 0. De este modo, para una muestra IID la estadística suficiente es dada por $T(x) = \sum_{i=1}^n x_i$ y $T \sim \mathsf{EXP}(n\theta)$. Además el modelo tiene MLR en -T.

Para probar $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. El test UMP de tamaño α (aplicando el Teorema de Blackwell) es dado por:

$$\psi(\mathbf{x}) = \begin{cases} 1, & \text{si } T < k, \\ 0, & \text{si } T \ge k, \end{cases}$$

donde $k = -\log(1 - \alpha)/(n\theta_0)$.

4. a. Note que podemos escribir la distribución conjunta en la familia exponencial como

$$p(\boldsymbol{x}; \lambda) = \prod_{i=1}^{n} p_i(x; \lambda) = \prod_{i=1}^{n} \frac{(n_i \lambda)^{x_i}}{x_i!} \exp(-n_i \lambda)$$
$$= \prod_{i=1}^{n} \frac{n_i^{x_i}}{x_i!} \exp\left(-\lambda \sum_{i=1}^{n} n_i\right) \exp\left(\log \lambda \sum_{i=1}^{n} x_i\right),$$

con estadística suficiente $T(\mathbf{x}) = \sum_{i=1}^{n} x_i$. Lo que permite notar que esta familia tiene MLR en $T(\mathbf{x})$.

4. b. Aplicando el Teorema de Blackwell, sigue que el test UMP de tamaño α es dado por

$$\psi(\boldsymbol{x}) = \begin{cases} 1, & \text{si } T < c, \\ \gamma, & \text{si } T = c, \\ 0, & \text{si } T > c, \end{cases}$$

con c y γ tales que

$$P_0(T < c) + \gamma P_0(T = c) = \alpha$$

donde $P_0 = Poi(N), N = \sum_{i=1}^n n_i$.