Math 231A HW 2

Zih-Yu Hsieh

October 07, 2025

1 D

Problem 1

Etingof Problem Sets 2.2:

- (1) Show that every discrete normal subgroup of a connected Lie group is central (hint: consider the map $G \to N : g \mapsto ghg^{-1}$ where h is fixed element in N).
- (2) By applying part (1) to kernel of the map $\tilde{G} \to G$, show that for any connected Lie group G, the fundamental group $\pi_1(G)$ is commutative.

Solution: We'll let $m: G \times G \to G$ denotes the group operation, while $\iota: G \cong G$ denotes the inversion map of the Lie group G. We'll also use $\mathbb{1}$ to denote the identity of G (to prevent confusion with $1 \in I = [0, 1]$).

(1): Recall that on a Lie group, inversion and multiplication are both regular maps. Now, fix an element $h \in N$, if consider the map $\Delta: G \to G \times G$ by $\Delta(g) = (g,g)$, and consider the right multiplication of h and inversion map, $R_h, \iota: G \cong G$ which collects into a regular product map $(R_h, \iota): G \times G \to G \times G$ (by $(R_h, \iota)(k, l) = (kh, l^{-1})$). Then, consider the map $f = m \circ (R_h, \iota) \circ \Delta: G \to G$, we get:

$$\forall g \in G, \quad f(g) = m \circ (R_h, \iota) \circ \Delta(g) = m \circ (R_h, \iota)(g, g) = m(gh, g^{-1}) = ghg^{-1} \tag{1.1}$$

Which, this is the desired map we're working with, and it is a regular map. In particular, it's continuous.

Then, since G is a connected Lie group, one have $f(G) \subseteq G$ being connected; then, because N is a normal subgroup, for any $g \in G$, $f(g) = ghg^{-1} \in N$, so $f(G) \subseteq N$; finally, since N is discrete, then for any $h \in N$, there exists open neighborhood $U \ni h$ (where $U \subseteq G$) such that $U \cap N = \{h\}$, such that its closure $\overline{U} \cap N = \{h\}$ also (since G is a manifold, choose a local chart with domain containing h then one can use the discreteness in \mathbb{R}^n or \mathbb{C}^n to construct such open neighborhood).

As a consequence, f is restricted to be a constant map onto h, since if h is non-constant, then $f(G) \nsubseteq \{h\}$, hence using the open neighborhood $U \ni h$ above, take $V = G \setminus \overline{U}$, one have $V \cap U = \emptyset$, while $f(G) \in V \sqcup U$ (since \overline{U} only contains h while $h \in U$ the interior of \overline{U} , then since $\overline{U} = U^{\circ} \sqcup \partial U$, there's no point of f(G) containing on the boundary ∂U , and $\partial U = G \setminus (V \sqcup U)$ by some point set topology). Then, $V \cap f(G)$ and $U \cap f(G) = \{h\}$ forms a separation of f(G) under its subspace topology, while $V \cap f(G)$ is not empty based on the assumption that f(G) is non-constant (i.e. there exists $h' \neq h$, where $h' \in f(G)$; and since $h' \in V$, one has $f(G) \cap V \neq \emptyset$). Yet, this contradicts the statement that f(G) is connected. So, we must have f(G) being constant, or $f(G) = \{h\}$.

Hence, all $g \in G$ satisfies $f(g) = ghg^{-1} = h$, or gh = hg, showing that $h \in Z(G)$ (the center of G). And, with $h \in N$ chosen arbitrarily, N is central.

(2): Given the covering map $p: \tilde{G} \to G$ that also serves as a group homomorphism. First, say we fix the base point of G at identity $\mathbbm{1}$, and the base point of \tilde{G} at $[c_{\mathbbm{1}}]$, the path class of constant map $c_{\mathbbm{1}}: I \to G$ by $c_1(s) = 1$ (Note: the path class $[c_{\mathbbm{1}}]$ also serves as the identity of \tilde{G} , since for all other path classes [g], its representative g satisfies $g \cdot c_1(s) = g(s) \cdot c_1(s) = g(s) \cdot 1 = g(s) = c_1 \cdot g(s)$, so $[g] \cdot [c_1] = [g \cdot c_1] = [g] = [c_1 \cdot g] = [c_1] \cdot [g]$).

If we consider any path class $[g] \in \ker(p)$, one has p([g]) = g(1) = 1. Since g(0) = 1 also (by definition, the construction of \tilde{G} is all path classes with starting point at base point 1 of G), then g is in fact a loop, hence $[g] \in \pi_1(G) := \pi_1(G, 1)$

This shows that $\ker(p) \subseteq \pi_1(G)$, and $\pi_1(G) \subseteq \ker(p)$ simply because for any loop $[h] \in \pi_1(G) = \pi_1(G, \mathbb{1})$, if identify $[h] \in \tilde{G}$, $p([h]) = h(1) = \mathbb{1}$, hence $[h] \in \ker(p)$. So, $\ker(p) = \pi_1(G)$ as a set.

Finally, to prove that the multiplication on \tilde{G} restricted to $\ker(p)$ is compatible with the concatination operation on $\pi_1(G)$, choose any path classes $[f], [g] \in \pi_1(G)$. If we define the map $H: I \times I \to G$ by $H(s,t) = f(s) \cdot g(t)$ (where the \cdot is the group operation of G).

Then, consider the diagonal path $H_{\Delta}: I \to G$ by $H_{\Delta(s)} = H(s,s) = f(s) \cdot g(s) = (f \cdot g)(s)$, and the following path $h: I \to G$:

$$h(s) := \begin{cases} H(2s,0) & s \le \frac{1}{2} \\ H(1,2s-1) & s > \frac{1}{2} \end{cases}$$
 (1.2)

Which, h is tracing out the interval $[0,1] \times \{0\}$, then continue with the interval $\{1\} \times [0,1]$ in $I \times I$, which is continuous.

Similarly, H_{Δ} is tracing out the diagonal within $I \times I$, then since $I \times I$ is itself convex, and $H_{\Delta(0)} = H(0,0) = h(0)$ while $H_{\Delta(1)} = H(1,1) = h(1)$, then H_{Δ} and h are in fact path homotopic (since looking at their parametrization within $I \times I$, they're convex hence homotopic, or can cf. **Square Lemma** in **Introduction to Topological Manifold** by Lee). So, $[h] = [H_{\Delta}]$ as paths.

Finally, notice that H_{Δ} is a path characterized by $f \cdot g$ (the multiplication defined for \tilde{G}), while h is a concatination of f and g (since $H(t,0)=f(t)\cdot g(0)=f(t)\cdot \mathbb{1}=f(t)$, while $H(0,t)=f(0)\cdot g(t)=\mathbb{1}\cdot g(t)=g(t)$). Hence, H_{Δ} and h being path homotopic, implies that the $[f]\cdot_{\pi_1(G)}[g]=[f]\cdot_{\tilde{G}}[g]$ (concatination in the fundamental group is the same as group operation in \tilde{G}). Therefore, $\ker(p)=\pi_1(G)$ not only as sets, but as groups (since their group structure are th same from a topological perspective).

Which, with $\ker(p) = \pi_1(G)$ being discrete due to the fact that p is a covering map, hence there exists evenly covered neighborhood $U \subseteq G$ of $\mathbb{1}$, where $p^{-1}(U) = \bigsqcup_{i \in I} \tilde{U}_i$ (with each $\tilde{U}_i \cong U$ via restriction of p), and each component in $\ker(p)$ must be containd in exactly one \tilde{U}_i , while each \tilde{U}_i can contain only one candidate from $\ker(p)$. So, these open subsets \tilde{U}_i forms a separation of $\ker(p)$, showing it's discrete.

Then, based on the fact that $\ker(p) \leq \tilde{G}$ and its discrete, statement in (1) implies that it's central. Hence, $\pi_1(G)$ is central.

Problem 2

Etingof Problem Sets 2.4:

Let $\mathcal{F}_n(\mathbb{C})$ be the set of all flags in \mathbb{C}^n . Show that

$$\mathcal{F}_n(\mathbb{C}) = \mathrm{GL}(n, \mathbb{C})/B(n, \mathbb{C}) = U(n)/T(n)$$
 (2.1)

Where $B(n,\mathbb{C})$ is the group of invertible complex upper triangular matrices, and T(n) is the group of diagonal unitary matrices (which is easily shown to be the *n*-dimensional torus $(\mathbb{R}/\mathbb{Z})^n$). Deduce from this that $\mathcal{F}_{n(\mathbb{C})}$ is a compact complex manifold and find its dimension over \mathbb{C} .

Solution: As a premise, we'll identify $\mathrm{GL}(n,\mathbb{C})$ as a collection of linear operators on \mathbb{C}^n with standard basis $\{e_1,...,e_n\}$ being the ordered basis. Let $V_i \coloneqq \mathrm{span}\{e_1,...,e_i\}$, we'll denote the flag $\{0\} = V_0 \subsetneq V_1 \subsetneq ... \subsetneq V_n = \mathbb{C}^n$ as \mathcal{F}_0 , called the *Standard Flag*.

Equality between Sets:

Notice that $GL(n,\mathbb{C})$ has a natural action on $\mathcal{F}_n(\mathbb{C})$: For each $A\in GL(n,\mathbb{C})$ (viewed as an operator on \mathbb{C}), any subspace has its dimension being preserved (i.e. given $V\subseteq\mathbb{C}^n$ with $\dim(V)=k$, $A(V)\subseteq\mathbb{C}^n$ also has $\dim(A(V))=k$), and it preserves subspace inclusion (so $U\subseteq V\Longrightarrow A(U)\subseteq A(V)$). Hence, if $U_0\subseteq U_1\subseteq \ldots\subseteq U_n$ is a flag, so is $A(U_0)\subseteq A(U_1)\subseteq \ldots\subseteq A(U_n)$; so, it makes sense to define $\mu: GL(n,\mathbb{C})\times\mathcal{F}_n(\mathbb{C})\to\mathcal{F}_n(\mathbb{C})$ by $\mu(A,\mathcal{F})=A(\mathcal{F})$ (where given \mathcal{F} as $U_0\subseteq U_1\subseteq \ldots\subseteq U_n$, $A(\mathcal{F})$ denotes $A(U_0)\subseteq A(U_1)\subseteq \ldots\subseteq A(U_n)$). It's clear that $\mu(B,\mu(A,\mathcal{F}))=\mu(BA,\mathcal{F})$ for all $A,B\in GL(n,\mathbb{C})$ and $\mathcal{F}\in\mathcal{F}_n(\mathbb{C})$ by composition of operators, while the identity matrix satisfies $\mu(\mathrm{id},\mathcal{F})=\mathcal{F}$, hence μ in fact forms a left action.

Now, we claim that $\mathrm{GL}(n,\mathbb{C})$ can be partitioned through its action on \mathcal{F}_0 , which can be seen through the following statements:

1. $B(n,\mathbb{C})$ is the stabilizer of \mathcal{F}_0 :

We'll claim that $A \in GL(n, \mathbb{C})$ satisfies $\mu(A, \mathcal{F}_0) = A(\mathcal{F}_0) = \mathcal{F}_0$ iff $A \in B(n, \mathbb{C})$:

If $A(\mathcal{F}_0) = \mathcal{F}_0$, it satisfies $A(V_i) = V_i$ for all i = 1, ..., n, hence $A(e_i) \in A(V_i) = V_i = \text{span}\{e_1, ..., e_i\}$ for each index i, showing A is in fact uppertriangular with respect to basis $\{e_1, ..., e_n\}$, hence $A \in B(n, \mathbb{C})$.

Else, if $A \in B(n, \mathbb{C})$, each e_i satisfies $A(e_i) \in V_i = \operatorname{span}\{e_1, ..., e_i\}$, hence $A(V_1) = A(\operatorname{span}\{e_1\}) \subseteq \operatorname{span}\{e_1\} = V_1$ (while $A(V_1)$ and V_1 have the same dimension due to the fact that $A \in \operatorname{GL}(n, \mathbb{C})$), showing that $A(V_1) = V_1$. Inductively one can show that all $A(V_i) = V_i$, hence $\mu(A, \mathcal{F}_0) = A(\mathcal{F}_0) = \mathcal{F}_0$.

So, this concludes that \mathcal{F}_0 is stable under (and only under) $B(n,\mathbb{C})$, which $B(n,\mathbb{C})$ is a stabilizer of \mathcal{F}_0 .

2. μ is a Transitive Action:

To show such, consider a flag \mathcal{F} formed by $\{0\} = U_0 \subsetneq U_1 \subsetneq ... \subsetneq U_n = \mathbb{C}^n$. Choose u_1 so that $U_1 = \operatorname{span}\{u_1\}$, and inductively choose $u_i \in U_i \setminus U_{i-1}$ so that $U_i = \operatorname{span}\{u_1, ..., u_i\}$, then the list $\{u_1, ..., u_n\}$ eventually forms a basis of \mathbb{C}^n (**Rmk:** in particular using Gram Schmidt Formula one can restrict $\{u_1, ..., u_n\}$ to be an orthonormal basis of \mathbb{C}^n with Euclidean Inner Product).

Then, take a linear operator $T \in \mathrm{GL}(n,\mathbb{C})$ that satisfies $T(e_i) = u_i$ for all index i. It satisfies $T(V_1) = T(\mathrm{span}\{e_1\}) \subseteq \mathrm{span}\{u_1\} = U_1$, while the two have the same dimension, hence $T(V_1) = U_1$. Then, inductively one can derive $T(V_i) = \mathrm{span}\{u_1,...,u_i\} = U_i$ using similar logic. Hence, $\mu(T,\mathcal{F}_0) = T(\mathcal{F}_0) = \mathcal{F}$, which shows that μ is a transitive action. (Rmk 2: Because u_i s can be chosen as orthonormal basis, T in fact can be chosen as a unitary operator, or $T \in U(n)$. Hence, resrict the action μ to an sub-action $U(n) \times \mathcal{F}_n(\mathbb{C}) \to \mathcal{F}_n(\mathbb{C})$ is still a transitive action).

Then, since the orbit $\operatorname{Orb}(\mathcal{F}_0) = \mathcal{F}_n(\mathbb{C})$ while $G_{\mathcal{F}_0} = B(n,\mathbb{C})$ (the stabilizer), there is a one-to-one correspondance between \mathcal{F}_n and cosets of $B(n,\mathbb{C})$, hence set wise $\mathcal{F}_n(\mathbb{C}) \cong \operatorname{GL}(n,\mathbb{C})/B(n,\mathbb{C})$.

On the other hand, one has $B(n,\mathbb{C})\cap U(n)=T(n)$: Recall that U(n) collects all unitary operators, so $A\in B(n,\mathbb{C})$ satisfies $A\in U(n)$, iff as an uppertriangular matrix, it's also unitary (which equivalently requires A to have orthonormal column vectors). Which, let u_j be the j^{th} column vector of A, $u_j=\sum_{i=1}^j a_{i,j}e_i$. Since $u_1\cdot u_2=0$, it satisfies $(a_{1,1}e_1)\cdot (a_{1,2}e_1+a_{2,2}e_2)=a_{1,2}a_{1,2}=0$, with $u_1\neq \mathbf{0}$ (or $a_{1,1}\neq 0$), it requires $a_{1,2}=0$, showing $u_2=a_{2,2}e_2$ Inductively one can verify $u_i=a_{i,i}e_i$ by the fact that $\{u_1,...,u_n\}$ is an orthonormal list. Hence, A is in fact a diagonal matrix, showing $A\in T(n)$, which concludes that $B(n,\mathbb{C})\cap U(n)\subseteq T(n)$ (while $T(n)\subseteq B(n,\mathbb{C})\cap U(n)$ by definition). Hence, $B(n,\mathbb{C})\cap U(n)=T(n)$.

As a consequence, the sub-action $\mu: U(n) \times \mathcal{F}_n(\mathbb{C}) \to \mathcal{F}_n(\mathbb{C})$ has stabilizer of \mathcal{F}_0 , $G_{\mathcal{F}_0} = B(n,\mathbb{C}) \cap U(n) = T(n)$, hence set wise $\mathcal{F}_n(\mathbb{C}) \cong U(n)/T(n)$ also.

Since $\mathrm{GL}(n,\mathbb{C}),U(n)$ are Lie groups, while $B(n,\mathbb{C}),T(n)$ are their closed Lie subgroups (since they're stabilizers of the given action / sub-action μ , and all stabilizers are closed Lie subgroups b **Proposition 4.12** in Etingof's lecture notes), then can classify $\mathcal{F}_n(\mathbb{C}) := \mathrm{GL}(n,\mathbb{C})/B(n,\mathbb{C})$ or $\mathcal{F}_n(\mathbb{C}) := U(n)/T(n)$ as homogeneous space (and these two structures are compatible, since the cosets in U(n)/T(n) is simply a restriction of cosets in $\mathrm{GL}(n,\mathbb{C})/B(n,\mathbb{C})$ onto U(n)). Hence, with U(n) being a compact Lie group, its quotient $\mathcal{F}_n(\mathbb{C}) = U(n)/T(n)$ is also compact.

(Note: The reason why U(n) is compact, since chosen the smooth endomorphism on $M_n(\mathbb{C})$ by $A \mapsto AA^{\dagger}$ (here it represents conjugate transpose), we have the preimage of {id} being U(n), hence {id} is closed implies U(n) is closed; similarly, U(n) is compact, since for all $A \in U(n)$, its operator norm $||A|| := \sup_{\|v\|=1} ||Av|| = 1$, and this operator norm is compactible with Euclidean norm, showing that U(n) is also bounded under Euclidean Norm).

Finally, to collect the dimension of $\mathcal{F}_n(\mathbb{C})$, we claim that $B(n,\mathbb{C})$ has real dimension n(n+1): Given any $A \in B(n,\mathbb{C}) \subseteq \mathrm{GL}(n,\mathbb{C})$, since $\mathrm{GL}(n,\mathbb{C})$ is open in $M_n(\mathbb{C})$, there exists r>0 such that with respect to the Euclidean Norm $B_r(A) \subseteq \mathrm{GL}(n,\mathbb{C})$. Take the smooth inclusion $\iota:\mathbb{C}^{\frac{n(n+1)}{2}} \hookrightarrow M_n(\mathbb{C})$, by sending $\frac{n(n+1)}{2}$ entries to an upper triangular matrix in some particular order, then take $\iota^{-1}(B_r(A))$ as the desired open set, it has a natural 1-to-1 correspondance with $B_r(A) \cap B(n,\mathbb{C})$, and ι (when restricting onto $B(n,\mathbb{C})$) has inverse naturally given by canonical projection $\pi: B(n,\mathbb{C}) \to \mathbb{C}^{\frac{n(n+1)}{2}}$ that projects the $\frac{n(n+1)}{2}$ upper triangular entries back. Hence, this ι characterizes a homeomorphism from an open subset of $\mathbb{C}^{\frac{n(n+1)}{2}}$ to an open neighborhood of A, showing that $B(n,\mathbb{C})$ has real dimension of n(n+1) (since $\mathbb{C}^{\frac{n(n+1)}{2}}$ has real dimension n(n+1)).

Then, with $\mathrm{GL}(n,\mathbb{C})$ having real dimension of $2n^2$, $\mathcal{F}_n(\mathbb{C})=\mathrm{GL}(n,\mathbb{C})/B(n,\mathbb{C})$ has real dimension $2n^2-n(n+1)=n^2-n$.

Problem 3

Etingof Problem Sets 2.5:

Let $G_{n,k}$ be the set of all dimension k subspaces in \mathbb{R}^n (usually called the Grassmanian). Show that $G_{n,k}$ is a homogeneous space of the group $O(n,\mathbb{R})$ and thus can be identified with coset space $O(n,\mathbb{R})/H$ for appropriate H. Use it to prove that $G_{n,k}$ is a manifold and find its dimension.

Solution: First, let $\{e_1, ..., e_n\}$ be the ordered elementary basis of \mathbb{R}^n , and we'll set $V_s := \operatorname{span}\{e_1, ..., e_k\}$ as the standard subspace with dimension k. We aim to show that $O(n, \mathbb{R})$ has a transitive action on $G_{n,k}$.

1. Action of $O(n, \mathbb{R})$ on $G_{n,k}$:

First, given $V \in G_{n,k}$ (a k-dimensional subspace), it's clear that all $A \in O(n,\mathbb{R})$ satisfies $\dim(A(V)) = k$ (since the linear operator is invertible). So, define the map $\mu : O(n,\mathbb{R}) \times G_{n,k} \to O(n,\mathbb{R})$ by $\mu(A,V) = A(V)$, it forms a left action since $\mu(B,\mu(A,V)) = B(A(V)) = (BA)(V) = \mu(BA,V)$ for all $A,B \in O(n,\mathbb{R})$ and $V \in G_{n,k}$, while $\mu(\mathrm{id},V) = \mathrm{id}(V) = V$.

2. Action μ is Transitive:

To show it is transitive, it suffices to show that $O(n,\mathbb{R})$ can permute the standard subspace V_s to any k-dimensional subspace $V \in G_{n,k}$.

For any $V \in G_{n,k}$, let $\{v_1,...,v_k\}$ be a a basis of V, and extend it to a basiss $\{v_1,...,v_n\}$ of the whole space \mathbb{R}^n . Using Gram Schmidt formula, $\{v_1,...,v_n\}$ can specifically be modified to an orthonormal basis $\{f_1,...,f_n\}$, such that $V = \operatorname{span}\{f_1,...,f_k\}$ still, so WLOG, we'll say $\{v_1,...,v_n\}$ is orthonormal.

Define a linear operator $A \in M_n(\mathbb{R})$ satisfying $A(e_i) = v_i$ for all index i = 1, ..., n, since it sends orthonormal basis $\{e_1, ..., e_n\}$ to orthonormal basis $\{v_1, ..., v_n\}$, it's a real unitary operator, hence $A \in O(n, \mathbb{R})$. And, since $A(e_i) = v_i$, then $A(V_s) = A(\operatorname{span}\{e_1, ..., e_k\}) = \operatorname{span}\{A(e_1), ..., A(e_k)\} = \operatorname{span}\{v_1, ..., v_k\} = V$, showing that $\mu(A, V_s) = A(V_s) = V$. This shows the transitivity of the action μ .

Hence, let $H = G_{V_s}$, the stabilizer of V_s under the action μ , $H \leq O(n, \mathbb{R})$ is a closed Lie subgroup (by **Proposition 4.12** in Etingof's lecture notes), and since $G_{n,k} = \operatorname{Orb}(V_s)$ has a natural set isomorphism to the let cosets of G_{V_s} , we have $G_{n,k} \cong O(n, \mathbb{R})/H$ as sets, showing that $G_{n,k}$ can be identified as a homogeneous space of $O(n, \mathbb{R})$ by $O(n, \mathbb{R})/H$, with dimension $\dim(O(n, \mathbb{R})) - \dim(H)$.

Now, to calculate the dimension of $G_{n,k}$, it requires both the dimension of $O(n,\mathbb{R})$ and H. For this, we'll explicitly calculate H. Recall that dimension of $O(l,\mathbb{R})$ for all $l \in \mathbb{N} \setminus \{0\}$ is given by $\frac{l(l-1)}{2}$. We'll eventually show that $H \cong O(k,\mathbb{R}) \times O(n-k,\mathbb{R})$.

For all $A \in H = G_{V_s}$, let $u_i = A(e_i)$ for all index i, we have $\{u_1, ..., u_n\}$ being an orthonormal basis, such that $\operatorname{span}\{u_1, ..., u_k\} = \operatorname{span}\{A(e_1), ..., A(e_k)\} = A(\operatorname{span}\{e_1, ..., e_k\}) = A(V_s) = V_s$, hence if restrict A as a linear operator to V_s , since $\{u_1, ..., u_k\}$ is an orthonormal basis of $V_s = \operatorname{span}\{e_1, ..., e_k\}$ (so each component can be expressed as unique linear combination of $e_1, ..., e_k$), hence $A|_{V_s} \in O(V_s)$ (or it's a unitary operator on V_s).

Similarly, since $u_{k+1},...,u_n$ are all orthogonal to $u_1,...,u_k$, then $\operatorname{span}\{u_{k+1},...,u_n\}\subseteq \operatorname{span}\{u_1,...,u_k\}^\perp = V_s^\perp$; and since $\dim(V_s^\perp) = n - \dim(V_s) = n - k$, then $\{u_{k+1},...,u_n\} \subset V_s^\perp$ (an orthonormal list of n-k vectors) is a basis of V_s^\perp . Notice that $e_{k+1},...,e_n \in V_s^\perp$ (since $V_s = \operatorname{span}\{e_1,...,e_k\}$, and the standard basis forms an orthonormal basis), hence we again get $A(V_s^\perp) = V_s^\perp$ (since it sends $\{e_{k+1},...,e_n\}$ an orthonormal basis of V_s^\perp to $\{u_{k+1},...,u_n\}$ another orthonormal basis of V_s^\perp). So, when restricting to V_s^\perp , $A|_{V_s^\perp} \in O(V_s^\perp)$.

Then, given $O(V_s) = O(k, \mathbb{R})$ (if using $e_1, ..., e_k$ as its basis) and $O(V_s^{\perp}) \cong O(n-k, \mathbb{R})$ (if using $e_{k+1}, ..., e_n$ as its basis) by similar reason, then, A in fact can be decomposed as follow:

$$A = \begin{pmatrix} A|_{V_s} & 0\\ 0 & A|_{V_s^{\perp}} \end{pmatrix} \tag{3.1}$$

This is due to the fac that each $u_1,...,u_k\in V_s$ can be written as linear combination of $e_1,...,e_k$ (and such linear combination is unique), and similar reason for $u_{k+1},...,u_n\in V_s^\perp$ being written as unique linear combination of $e_{k+1}, ..., e_n$.

Hence, there is a natural group homomorphism $\rho: H \to O(k, \mathbb{R}) \times O(n-k, \mathbb{R})$ given by $\rho(A) =$ $(A|_{V}, A|_{V^{\perp}})$, since it satisfies the following for all $A, B \in H$:

$$AB = \begin{pmatrix} A|_{V_s} & 0 \\ 0 & A|_{V_s^\perp} \end{pmatrix} \begin{pmatrix} B|_{V_s} & 0 \\ 0 & B|_{V_s^\perp} \end{pmatrix} = \begin{pmatrix} A|_{V_s}B|_{V_s} & 0 \\ 0 & A|_{V_s^\perp} & B|_{V_s^\perp} \end{pmatrix} = \begin{pmatrix} (AB)|_{V_s} & 0 \\ 0 & (AB)|_{V_s^\perp} \end{pmatrix} \ (3.2)$$

Which, $\rho(AB) = \left(A|_{V_s} \ B|_{V_s}, A|_{V_s^\perp} \ B|_{V_s^\perp}\right) = \left(A|_{V_s} \ A|_{V_s^\perp}\right) \cdot \left(B|_{V_s}, B|_{V_s}^\perp\right) = \rho(A) \cdot \rho(B).$ This morphism is injective, simply because if $\rho(A) = \left(\mathrm{id}|_{V_s}, \mathrm{id}|_{V_s}^\perp\right)$, with $\mathbb{R}^n = V_s \oplus V_s^\perp$ and restriction of A fixing both subspaces, we must have A = id; and, this morphism is surjective, simply because any unitary operators $A_k \in O(k,\mathbb{R})$ and $A_{n-k} \in O(n-k,\mathbb{R})$, the following is a unitary operator fixing V_s :

$$A \coloneqq \begin{pmatrix} A_k & 0\\ 0 & A_{n-k} \end{pmatrix} \tag{3.3}$$

Since first k and last (n-k) column vectors form two orthonormal lists, while any column vector u_i $(i \le k)$ and u_j (j > k) are orthonormal because their nonzero entries are mutually disjoint. Hence, the column vectors of A form an orthonormal list of n vectors, which is an orthonormal basis, showing $A \in O(n, \mathbb{R})$; also, since every e_i for $1 \leq i \leq k$ satisfies $A(e_i) \in \text{span}\{e_1, ..., e_k\} = V_s$, it stabilizes V_s , hence $A \in H$.

As a result, one has $H \cong O(k,\mathbb{R}) \times O(n-k,\mathbb{R})$, and the map is in fact smooth (since it's essentially projecting onto the top left $k \times k$ minor, and the bottom right $(n-k) \times (n-k)$ k) minor), which demonstrates that $\dim(H) = \dim(O(k,\mathbb{R})) + \dim(O(n-k,\mathbb{R})) = \frac{k(k-1)}{2} + (n-k)$ $k)\frac{n-k-1}{2}$. Finally, we conclude that the dimension of $O(n,\mathbb{R})/H$ is given as follow:

$$\dim(O(n,\mathbb{R})/H) = \dim(O(n,\mathbb{R})) - \dim(H) \tag{3.4}$$

$$=\frac{n(n-1)}{2}-\left(\frac{k(k-1)}{2}+(n-k)\frac{n-k-1}{2}\right)=k(n-k) \tag{3.5}$$

4 D

Problem 4

Etingof Problem Sets 2.6:

Show that if $G = \operatorname{GL}(n,\mathbb{R}) \subset \operatorname{End}(\mathbb{R}^n)$ so that each tangent space is canonically identified with $\operatorname{End}(\mathbb{R}^n)$, then $(L_g)_*v = gv$ (or $(dL_g)_{\operatorname{id}}v = gv$) where the product in the right-hand side is the usual product of matrices, and similarly for the right action. Also, the adjoint action is given by $\operatorname{Ad} g(v) = gvg^{-1}$.

Solution: Given $\mathrm{GL}(n,\mathbb{R})$ is an open subset of $\mathrm{End}(\mathbb{R}^n)=M(n,\mathbb{R})\cong\mathbb{R}^{n^2}$ (the $n\times n$ matrix space), then for any $g\in\mathrm{GL}(n,\mathbb{R})$, the left multiplication $L_g:\mathrm{GL}(n,\mathbb{R})\hookrightarrow\mathrm{GL}(n,\mathbb{R})$ can be viewed as a restriction of a left multiplication $L_g:M(n,\mathbb{R})\hookrightarrow M(n,\mathbb{R})$, and since $\mathrm{GL}(n,\mathbb{R})$ is viewed as an open subset, so the tangent space T_g $\mathrm{GL}(n,\mathbb{R})$ can be identified as $T_gM(n,\mathbb{R})\cong M(n,\mathbb{R})$, hence it suffices to calculate $\left(dL_g\right)_{\mathrm{id}}:T_{\mathrm{id}}M(n,\mathbb{R})\to T_gM(n,\mathbb{R})$.

For this question specifically, calculating using directional derivative would be a lot easier: Recall that $L_g: M(n,\mathbb{R}) \to M(n,\mathbb{R})$ is a linear map, since for all $a,b \in \mathbb{R}$ and $S,T \in M(n,\mathbb{R})$, it satisfies $L_{g(aS+bT)} = g \cdot (aS+bT) = a(g \cdot S) + b(g \cdot T) = aL_{g(S)} + bL_{g(T)}$. Then, for each entry x_{ij} , denote $e_{ij} \in M(n,\mathbb{R})$ as the elementary matrix that has 1 at the ij entry, while 0 everywhere else (so that e_{ij} for $i \leq i, j \leq n$ forms a basis for for $M_{n,\mathbb{R}}$).

Then, for each basis direction e_{ij} (which corresponds to a tangent vector $e_{ij} \in T_{id}M(n,\mathbb{R})$), its corresponding differential in $T_qM(n,\mathbb{R})$ can be calculated as follow:

$$\left(dL_g\right)_{\mathrm{id}\left(e_{ij}\right)} = \lim_{t \to 0} \frac{L_g\left(\mathrm{id} + t \cdot e_{ij}\right) - L_g\left(\mathrm{id}\right)}{t} = \lim_{t \to 0} \frac{t \cdot L_g\left(e_{ij}\right)}{t} = ge_{ij} \tag{4.1}$$

Hence, since L_g is smooth, arbitrary differential (the directional derivative) can be expressed as linear combinations of the differentials of the basis elements. Hence, given $v = \sum_{1 \le i,j \le n} a_{ij} e_{ij} \in M(n,\mathbb{R})$, we have the following:

$$\left(dL_g\right)_{\mathrm{id}}(v) = \sum_{1 \leq i,j \leq n} a_{ij} \left(dL_g\right)_{\mathrm{id}(e_{ij})} = \sum_{1 \leq i,j \leq n} a_{ij} g \cdot e_{ij} = g \cdot \left(\sum_{1 \leq i,j \leq n} a_{ij} e_{ij}\right) = g \cdot v \qquad (4.2)$$

Showing that the differential of L_g acts canonically on the tangent space, the same way as doing a left multipliation.

Apply similar proof for right multiplication R_a one would get similar results.

(Note: In general given any linear map on \mathbb{R}^n to \mathbb{R}^m , its differential with respect to standard basis is automatically given by its own matrix with respect to the standard basis).

5 D

Problem 5

Let $\varphi: \mathrm{SU}(2) \to \mathrm{SO}(3,\mathbb{R})$ be the morphism defined in the previous problem. Compute explicitly the map of tangent spaces $\varphi_*: \mathfrak{su}(2) \to \mathfrak{so}(3,\mathbb{R})$ and show that φ_* is an isomorphism. Deduce from this that $\ker \varphi$ is a discrete normal subgroup in $\mathrm{SU}(2)$ and that im φ is an open subgroup in $\mathrm{SO}(3,\mathbb{R})$.

Solution: We'll compute the differential of φ , by doing an explicit calculation of its map with respect to SU(2) (when characterizing it as S^3), and later on when computing the differential we'll utilize stereographic projection for calculation.

1. Explicit Map of φ :

Given that all matrix $A \in SU(2)$ are in the form $A = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$, where a = x + iy and b = z + iw satisfies $(x, y, z, w) \in S^3$.

Given also the basis $i\sigma_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $i\sigma_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and $i\sigma_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ for Lie algebra $\mathfrak{su}(2)$. $\varphi(A) = \mathcal{M}(\mathrm{Ad}\ A)$ under the basis $\{i\sigma_1, i\sigma_2, i\sigma_3\}$ is given as follow:

$$\varphi(A) = \begin{pmatrix} \operatorname{Re}(a^2 - b^2) & \operatorname{Im}(a^2 + b^2) & -2 \operatorname{Re}(ab) \\ -\operatorname{Im}(a^2 - b^2) & \operatorname{Re}(a^2 + b^2) & 2 \operatorname{Im}(ab) \\ 2 \operatorname{Re}\left(a\overline{b}\right) & 2 \operatorname{Im}\left(a\overline{b}\right) & |a|^2 - |b|^2 \end{pmatrix}$$

$$(5.1)$$

$$= \begin{pmatrix} (x^2 - y^2 - z^2 + w^2) & 2(xy + zw) & -2(xz - yw) \\ -2(xy - zw) & (x^2 - y^2 + z^2 - w^2) & 2(yz + xw) \\ 2(xz + yw) & 2(yz - xw) & (x^2 + y^2 - z^2 - w^2) \end{pmatrix}$$
 (5.2)

2. Stereographic Projection onto S^3 :

If we specifically consider \mathbb{R}^3 as $\mathbb{R}^3 \times \{0\}$ (the affine plane that's tangent to the south pole of $S^3 \subset \mathbb{R}^4$), then the stereographic projection is given as follow: Let $v = (x, y, z) \in \mathbb{R}^3$, $t = \frac{2}{1 + \|v\|^2}$, we have the following:

$$(x, y, z) \mapsto (tx, ty, tz, 1 - t) = t\left(x, y, z, \frac{1}{t} - 1\right)$$
 (5.3)

Hence, if mapping to the point $(1,0,0,0) \in S^3$, one needs y,z=0 (since t>0 in general) and t=1 (since 1-t=0), so $tx=1 \Longrightarrow x=1$. Hence, $(1,0,0) \mapsto (1,0,0,0) \in S^3$.

Now, to do the explicit calculation, since $S^3 \cong \mathrm{SU}(2)$ by $(x,y,z,w) \mapsto \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$ (where a=x+iy,b=z+iw), and $(1,0,0,0) \mapsto \mathrm{id}$ (since then a=1 and b=0), then if consider the map $\mathbb{R}^3 \to \mathrm{SO}(3,\mathbb{R})$ by compose φ with the map of $S^3 \to \mathrm{SU}(2)$, and the stereographic projection $\mathbb{R}^3 \to S^3$, we get the following map:

$$(x,y,z) \mapsto t^2 \begin{pmatrix} (x^2-y^2-z^2+w^2) & 2(xy+zw) & -2(xz-yw) \\ -2(xy-zw) & (x^2-y^2+z^2-w^2) & 2(yz+xw) \\ 2(xz+yw) & 2(yz-xw) & (x^2+y^2-z^2-w^2) \end{pmatrix}, \qquad (5.4)$$

$$w = \frac{1}{t}-1$$

If taking the partial derivative with respect to x,y,z and evaluated at (x,y,z)=(1,0,0) (which corresponds to the point that maps to $(1,0,0,0)\in S^3$, or id $\in SU(2)$), we get the following (where t=1 and w=0, $\frac{\partial}{\partial k}w^2=0$, $\frac{\partial}{\partial k}w=k$, $\frac{\partial}{\partial k}t=k$ for all k=x,y,z, when evaluated at the point):

$$\frac{\partial}{\partial x} = -2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{pmatrix}$$
 (5.5)

$$\frac{\partial}{\partial y} = \begin{pmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{5.6}$$

$$\frac{\partial}{\partial z} = \begin{pmatrix} 0 & 0 & -2\\ 0 & 0 & 0\\ 2 & 0 & 0 \end{pmatrix} \tag{5.7}$$

Notice that the three tangent vectors that're spanning the image of the differential in $\mathfrak{so}(3,\mathbb{R})$ are linearly independent, hence they span a 3-dimensional subspace of $\mathfrak{su}(3,\mathbb{R})$; on the other hand, because $\mathrm{SO}(3,\mathbb{R})$ has dimension 3, then its tangent space $\mathfrak{so}(3,\mathbb{R})$ is also 3-dimensional. Hence, this shows that φ_* maps 3 basis of tangent vectors (in the original space $\mathfrak{su}(2)$) to the above 3 linearly independent tangent vectors in $\mathfrak{so}(3,\mathbb{R})$ (which forms a basis since $\dim(\mathfrak{so}(3,\mathbb{R}))=3$), hence φ_* is an isomorphism.

Finally, since φ_* is an isomorphism, in particular it's a submersion, so if we take $\varphi^{-1}(\mathrm{id}) = \ker(\varphi)$, it is naturally a smooth manifold with dimension $\dim(\ker(\varphi)) = \dim(\mathrm{SU}(2)) - \dim(\mathrm{SO}(3,\mathbb{R})) = 3 - 3 = 0$, hence $\ker(\varphi)$ must be a discrete normal subgroup in $\mathrm{SU}(2)$.