Operating Systems

Assignment 2

Group 17

By

Vishwas Baya 2019AAPS0224H
Abdul Azeem Shaik 2019AAPS1234H
Haarika Manda 2019AAPS1226H
Mohit Krishna 2019AAPS0343H
Pavan Sreekireddy 2019AAPS1225H
Surya Garikipati 2019AAPS1221H
Nilay Arya 2019AAPS1230H
Pradeep Alapati 2019AAPS0283H

Plots for Process P1

100 Numbers

Number of Threads	Time taken
1	0.000137
5	0.000252
10	0.000344
15	0.000574
20	0.000761
25	0.000918
30	0.001149
35	0.001249
40	0.001516
45	0.001692
50	0.002338
55	0.002124
60	0.002564
65	0.002585
70	0.00291
75	0.002974
80	0.003226
85	0.004203
90	0.003742
95	0.004191

1000 Numbers

Threads		Time Taken
	1	0.000305
	5	0.001051
	10	0.000913
	15	0.001238
	20	0.001483
	25	0.001825
	30	0.002206
	35	0.002038
	40	0.002014
	45	0.001924
	50	0.00243
	55	0.002328
	60	0.00263
	65	0.003384
	70	0.003143
	75	0.003298
	80	0.003364
	85	0.004002
	90	0.00388
	95	0.00429

1000 integers

1 Lakh Numbers

Threads		Time Taken
	1	0.01157
	5	0.023244
	10	0.025249
	15	0.026314
	20	0.026498
	25	0.026149
	30	0.02684
	35	0.027068
	40	0.027712
	45	0.027135
	50	0.027524
	55	0.027846
	60	0.027924
	65	0.028564
	70	0.028521
	75	0.028702
	80	0.028826
	85	0.030977
	90	0.030071
	95	0.029905

1 Lakh integers

1 Million Numbers

Threads		Time Taken
IIIIeaus		
	1	0.136134
	5	0.225059
	10	0.229567
	15	0.234575
	20	0.257966
	25	0.274126
	30	0.251031
	35	0.243655
	40	0.24256
	45	0.236152
	50	0.239141
	55	0.244059
	60	0.301475
	65	0.245425
	70	0.356761
	75	0.329704
	80	0.289032
	85	0.300812
	90	0.291859
	95	0.299305

1 million integers

As we can see the write time to a shared memory increases as the number of threads increase, although it can be seen that the relation is not linear as is somewhat erratic. For example, we can see for smaller numbers (like 100, 1000) the relation is close to linear while for larger numbers (like 1 Lakh and 1 Million) there seems to be a general increasing trend of time taken per increase in threads, but as can be seen from the graph higher values are reaching towards a plateau where the time taken either flat-lines, or decreases.

Plots for Process P2

100 Numbers

Number of Threads	Time Taken
1	0.000128
5	0.000684
10	0.000465
15	0.000516
20	0.0006
25	0.000689
30	0.000787
35	0.000925
40	0.000987
45	0.00109
50	0.001264
55	0.001325
60	0.001498
65	0.001687
70	0.001639
75	0.001747
80	0.002382
85	0.002458
90	0.002215
95	0.002331

100 integers

1000 Numbers

1	0.000122
10	0.000603
20	0.000882
30	0.001055
40	0.001533
50	0.001565
60	0.001767
70	0.001922
80	0.002415
90	0.002843
100	0.002601
110	0.002924
120	0.003258
130	0.003309
140	0.004528
150	0.003699
160	0.004025
170	0.004658
180	0.005828
190	0.00456
200	0.005399

1 Lakh Numbers

1	0.000215
1	0.000215
100	0.009687
200	0.010389
300	0.008037
400	0.009195
500	0.0112
600	0.014902
700	0.016678
800	0.02337
900	0.02666
1000	0.032748
1100	0.031444
1200	0.032495
1300	0.038255
1400	0.039118
1500	0.048424
1600	0.042959
1700	0.049579
1800	0.055831
1900	0.051466
2000	0.06888

1 Million Numbers

1	0.000129
100	0.002243
200	0.00472
300	0.00685
400	0.009604
500	0.012528
600	0.015253
700	0.016346
800	0.018865
900	0.021862
1000	0.023807
1100	0.027192
1200	0.028499
1300	0.031861
1400	0.035737
1500	0.036619
1600	0.043128
1700	0.040801
1800	0.044162
1900	0.045483
2000	0.049115

As we can see the read time from the shared memory increases as the number of threads increase, the time taken to complete the task also increases. The relation is very close to linear, and it only deviates at certain points which are depicted as spikes in time in the general increasing trend. The plots also show that if number of threads stays constant, the time decreases with an increase in numbers to sum per thread.

Plots for Process P3: Pre-emptive Priority Scheduling Total Turnaround Time vs No of Integers

Waiting Time vs No of Integers

As we can see the "Turn Around Time" of Process 1 is always lesser than Process 2 assuming the number of integers remain the same. We can also notice that the "Turn Around Time" till about 800 integers remains plateaued and then increases as the number of integers increase. This relation is very close to linear. We can also notice a dip in the "Turn Around Time" taken for about 800 numbers.

As we can see the "Waiting Time" of Process 1 is also less than that of Process 2 assuming the number of integers remain the same. We can also notice that the graph is very semi-linear as it is always increasing when the amount of integers increases, but it also shows erratic slopes. For example, Process 1 at 100 integers it almost plateaus but it shoots up again at 100000 integers, whereas Process 2 till about a 100000 integers it remains about constant, and then increases linearly.

Plots for Process P3: Round Robin Scheduling

Total Turnaround Time vs No of Integers

Waiting Time vs No of Integers

As we can see the "Turn Around Time" of Process 1 is always lesser than Process 2 assuming the number of integers remains the same. We can also notice that the "Turn Around Time" till about 8000 integers remains plateaued and then increases as the number of integers increase. This relation is very close to linear. We can also notice a dip in the "Turn Around Time" taken for about 8000 numbers.

As we can see the "Waiting Time" of Process 1 is always lesser than Process 2 assuming the number of integers remains the same. We can also notice that the "Waiting Time" till about 8000 integers remains plateaued and then increases as the number of integers increase. This relation is very close to linear. We can also notice a dip in the "Waiting Time" taken for about 8000 numbers.