基礎數學

許博翔

February 6, 2023

講師簡介

- 許博翔
- ICPC 台北站金牌
- 國際數學奧林匹亞銀牌
- IMOC、清華數學人才培育計畫講師
- 爲了學基礎數學來當講師
- Google 搜尋仙草

大綱

- 1 計數原理
 - 基本定義 與公式
 - 排容原理

 - 組合對應

函數

2 生成函數

- ■普通生成
- ■指數生成 4 數論 函數
- 3 群論
 - ■基礎定義

- 一些群
- ■群作用
 - ■質數與因 數分解
- 同餘
- 5 致謝

一些定理

■階與原根

6 補充講義 ■質數與最 大公因數 與勘誤

2 生成函數

■普通生成

函數

排容原理

基本定義

與公式

1 計數原理

- 組合對應
- ■基礎定義

- 一些群
- 群作用 ■階與原根
 - 質數與因 數分解

一些定理

- ■指數生成 4 數論
 - 同餘
- 5 致謝
- ■質數與最 6 補充講義 大公因數 與勘誤

計數原理

定義

$$lacksquare \sum_{i=1}^n f(i) := f(1) + f(2) + \cdots + f(n)$$

$$f(i) = i$$

$$\sum_{i=1}^{5} f(i) = 1 + 2 + 3 + 4 + 5 = 15$$

定義

- $lacksymbol{lack} \sum_{i \in S} f(i) := 所有 S$ 中的元素代入 f 後的總和
- lacksquare $\sum_{i\in\emptyset}f(i):=0$

$$f(i) = i$$

定義

$$\blacksquare \prod_{i=1}^n f(i) := f(1)f(2)\cdots f(n)$$

$$f(i) = i$$

定義

- $lacksymbol{\square}\prod_{i\in S}f(i):=$ 所有 S 中的元素代入 f 後的積
- $lacksquare \prod_{i\in\emptyset}f(i):=1$

$$f(i) = i$$

$$\blacksquare \prod_{i \in \{1,3,5\}} f(i) = 1 \times 3 \times 5 = 15$$

$$lacksquare$$
 $igcup_{i=1}^n S_i := S_1 \cup S_2 \cup \dots \cup S_n$

- $lacksymbol{lack}lacksymbol{lack} \bigcup_{i\in T}S_i:=$ 所有T中的元素(也是集合)聯集
- $lacksquare \bigcup_{i\in\emptyset} {\mathcal S}_i := \emptyset$

$$lacksquare$$
 $\bigcap_{i=1}^n S_i := S_1 \cap S_2 \cap \dots \cap S_n$

- $igcap \bigcap_{i \in T} S_i :=$ 所有 T 中的元素(也是集合)交集
- $\bigcap_{i \in \mathbb{N}} S_i :=$ 所有有被包含在任何 S_i 中的元素

基本定義與公式 - 高中複習

- n! 是 n 個相異物的排列方法數。
- $\binom{n}{k}$ (高中課本寫做: $\binom{n}{k}$) 是從 n 不同物品取 k 個出來的方法數,也是 n 元集的 k 元子集的個數。
- $lacksquare ig(egin{array}{c} n \\ k \end{array}ig)$ 是滿足 $\sum\limits_{i=1}^n x_i = k$ 的非負整數解 (x_1,x_2,\ldots,x_n) 的個數,也是包含 k 相異元素的 n 元多重集的個數。

基本定義與公式 - 高中複習

公式

- $n! = \prod_{i=1}^{n} i$, 特別定義 0! = 1 ∘
- $\blacksquare \ \left(\left(\begin{smallmatrix} n \\ k \end{smallmatrix} \right) \right) = \left(\begin{smallmatrix} n+k-1 \\ k \end{smallmatrix} \right) \, \circ \,$

基本定義與公式 - 高中複習

公式

$$\blacksquare \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \circ$$

$$lacksquare$$
 $\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1} \circ$

$$\label{eq:continuous_section} \begin{array}{l} \blacksquare \sum\limits_{i=a}^{n-b} {i \choose a} {n-i \choose b} = {n+1 \choose a+b+1} \ \circ \end{array}$$

題目 (球與箱子 (1))

請求出把n 顆相異的球放進m 個相異箱子的方法數。

題目 (球與箱子 (1))

請求出把 n 顆相異的球放進 m 個相異箱子的方法數。

因爲每顆球都可以選擇要放進 m 個箱子中的哪個箱子,所以答案是 m^n 。

題目 (球與箱子 (2))

請求出把n 顆相同的球放進m 個相異箱子的方法數。

題目 (球與箱子 (2))

請求出把 n 顆相同的球放進 m 個相異箱子的方法數。

設第i個箱子放了 x_i 顆球,這個問題的答案就是 $x_1+x_2+\cdots+x_m=n$ 的非負整數解數,也就是 $\binom{m}{n}$ 。

定理 (排容原理)

設有n個集合 S_1, S_2, \ldots, S_n ,則

$$\sum_{T\subseteq\{1,2,...,n\}} (-1)^{|T|} \left| igcap_{i\in T} S_i
ight| = 0$$

,特別定義
$$\bigcap_{i\in \emptyset} S_i = \bigcup_{i\in \{1,2,\ldots,n\}} S_i$$
,即 $(\{S_1,S_2,\ldots,S_n\},\cap)$ 的單位元素。

定理 (排容原理)

設有n個集合 S_1, S_2, \ldots, S_n ,則

$$\sum_{T\subseteq\{1,2,...,n\}}(-1)^{|T|}\left|igcap_{i\in T}S_i
ight|=0$$

,特別定義 $\bigcap\limits_{i\in\emptyset}S_i=igcup\limits_{i\in\{1,2,\dots,n\}}S_i$,即 $(\{S_1,S_2,\dots,S_n\},\cap)$ 的單位元素。

以
$$n=3$$
 爲例,這個公式即是 $|S_1\cup S_2\cup S_3|-|S_1|-|S_2|-|S_3|+|S_1\cap S_2|+|S_2\cap S_3|+|S_3\cap S_1|-|S_1\cap S_2\cap S_3|=0$

定理 (集合上的莫比烏斯反演 (Möbius inversion of the power set))

令
$$A=\{S_1,S_2,\ldots,S_n\}$$
,則 $g(A)=\sum_{B\subseteq A}f(B)\iff f(A)=\sum_{B\subseteq A}\mu(A\setminus B)g(B)$

,其中 $\mu: \mathcal{P}(A) \to \mathbb{Z}$ 定義如下:

$$\mu(B) = \begin{cases} 0 & \text{如果} B \text{中有重複的元素} \\ (-1)^{|B|} & \text{如果} B \text{中沒有重複的元素} \end{cases}$$

定理 (集合上的莫比烏斯反演 (Möbius inversion of the power set))

$$g(A) = \sum_{B \subseteq A} f(B) \iff f(A) = \sum_{B \subseteq A} \mu(A \setminus B) g(B)$$

$$egin{aligned} A &= \{S_1, S_2, \dots, S_n\} \ f(B) &= \left| \{s | s \in S \iff S \in B\}
ight| \ g(B) &= \left| igcup_{S \in B} S
ight| \end{aligned}$$

題目 (錯排數)

有多少個 $1,2,\ldots,n$ 的排列沒有不動點? 其中若排列 $\sigma_i = i$,則稱 i 是 σ 的不動點。

這題的答案稱作第 n 個錯排數。

令
$$S_i = \{\sigma : \sigma_i = i\}$$
。因爲

$$igcap_{i\in T} S_i = \{\sigma: orall i\in T, \,\, \sigma_i = i\}$$

,也就是對於所有 T 中的元素都是不動點的排列,所以

$$\left| igcap_{i \in T} S_i
ight| = (n - |T|)!$$

另外,

$$|\{T:|T|=k,\,\,T\subseteq\{1,2,\ldots,n\}\}|=inom{n}{k}$$

所以根據排容原理:

$$egin{aligned} \left|igcup_{i=1}^{n} S_i
ight| &= -\sum_{T
eq\emptyset,\ T\subseteq\{1,2,...,n\}} (-1)^{|T|} \left|igcap_{i\in T} S_i
ight| \ &= -\sum_{k=1}^{n} \sum_{|T|=k,T\subseteq\{1,2,...,n\}} (-1)^k \left|igcap_{i\in T} S_i
ight| \ &= -\sum_{k=1}^{n} \sum_{|T|=k,T\subseteq\{1,2,...,n\}} (-1)^k (n-k)! \ &= -\sum_{k=1}^{n} ig(n \choose k) (-1)^k (n-k)! \ &= -n! \sum_{k=1}^{n} rac{(-1)^k}{k!} \end{aligned}$$

因為 $\bigcup_{i=1}^{n} S_i$ 爲所有有不動點的排列所形成的集合,所以

第
$$n$$
個錯排數 $= n! - \left| \bigcup_{i \in T} S_i \right|$ $= n! \sum_{k=0}^n \frac{(-1)^k}{k!}$

題目 (沒有空箱)

請求出把n 顆不同的球放進m 個相同的箱子且沒有空箱的方法數。

如果箱子是相異的,也就是給這些箱子加上編號,任意換另一種順序上編號都會得到不同的結果,因爲沒有兩個箱子的內容物是一樣的。換句話說,如果箱子是相異的,答案會剛好是原題答案的 m! 倍,所以我們可以假設這些箱子是相異的,再把最後的答案除以 m!。

假設箱子是相異的,令 S_i 爲沒有球放進第 i 個箱子的方法所形成的集合。於是我們要的答案就是 $\bigcup_{i=1}^m S_i$ 的補集的大小。

因爲 $\bigcap\limits_{i\in T}S_i$ 就是對於所有 T 中的元素都沒有球的方法,所以每次放球有 m-|T| 種選擇, $\left|\bigcap\limits_{i\in T}S_i\right|=(m-|T|)^n$ 。

另外, $|\{T:|T|=k,\ T\subseteq\{1,2,\ldots,m\}\}|={m\choose k}$ 。所以根據排容原理:

$$egin{aligned} \left|igcup_{i=1}^m S_i
ight| &= -\sum_{T
eq\emptyset,\ T\subseteq\{1,2,...,m\}} (-1)^{|T|} \left|igcap_{i\in T} S_i
ight| \ &= -\sum_{k=1}^m \sum_{|T|=k,T\subseteq\{1,2,...,m\}} (-1)^k \left|igcap_{i\in T} S_i
ight| \ &= -\sum_{k=1}^m \sum_{|T|=k,T\subseteq\{1,2,...,m\}} (-1)^k (m-k)^n \ &= -\sum_{k=1}^m ig(m top_k) (-1)^k (m-k)^n \end{aligned}$$

而其補集大小,也就是相異箱子的答案是

$$m^k + \sum_{k=1}^m \binom{m}{k} (-1)^k (m-k)^n = \sum_{k=0}^m \binom{m}{k} (-1)^k (m-k)^n$$

而相同箱子的答案即爲

$$\sum_{k=0}^{m} \frac{(-1)^k (m-k)^n}{k! (m-k)!}$$

排容原理 - 球與箱子 (3)

題目 (球與箱子 (3))

請求出把n 顆不同的球放進m 個相同箱子的方法數。

排容原理 - 球與箱子 (3)

設 n 顆球放入剛好 i 個箱子的答案為 a_i 。 因為這 n 顆球有可能放入剛好 $1,2,\ldots,m$ 個箱子中,所以這題的答案即為 $a_1+a_2+\cdots+a_m$ 。 在上個例題中我們得知:

$$a_i = \sum_{k=0}^{i} \frac{(-1)^k (i-k)^n}{k! (i-k)!}$$

排容原理 - 球與箱子 (3)

所以這題的答案即是

$$\sum_{i=1}^{m} a_i = \sum_{i=0}^{m} \sum_{k=0}^{i} \frac{(-1)^k (i-k)^n}{k! (i-k)!}$$

$$= \sum_{k=0}^{m} \sum_{i=k}^{m} \frac{(-1)^k (i-k)^n}{k! (i-k)!}$$

$$= \sum_{k=0}^{m} \sum_{j=0}^{m-k} \frac{(-1)^k j^n}{k! j!}$$

$$= \sum_{j=0}^{m} \frac{j^n}{j!} \sum_{k=0}^{m-j} \frac{(-1)^k}{k!}$$

$$= \sum_{j=0}^{m} \frac{j^n}{j! (m-j)!} d_{m-j}$$

,其中 d_{m-j} 爲第 m-j 個錯排數。

定義

設數列 $\{a_i\}_{i=0}^{\infty}$ 與函數 f 滿足

 $\forall n, \ a_n = f(n, a_{n-1}, a_{n-2}, \ldots, a_0)$, 則稱 f 是 a_n 的遞迴式。

遞迴-錯排數

題目 (錯排數)

有多少個 $1,2,\ldots,n$ 的排列沒有不動點? 其中若排列 $\sigma_i=i$,則稱 i 是 σ 的不動點。

遞迴 - 錯排數

設 a_n 爲第 n 個錯排數,計算以下兩種錯排 σ 的數量:

 $\sigma_{\sigma_1}=1$: $\sigma_1=i,\;\sigma_i=1$ 的錯排數量,即爲 $\{2,3,\ldots,n\}\setminus\{i\}$ 這 n-2 個數字的錯排數量,有 a_{n-2} 種,而 σ_1 有 n-1 種可能,所以這種錯排的數量爲 $(n-1)a_{n-2}$ \circ

遞迴-錯排數

 $\sigma_{\sigma_1} \neq 1$: 計算 $\sigma_1 = i$ 的錯排數量。設一個新的排列 $\sigma': \{1, 2, ..., n\} \setminus \{i\}$ 爲 $\sigma'_1 = \sigma_{\sigma_1}$, $\sigma'_j = \sigma_j$, 可知 σ' 是一個 $\{1, 2, ..., n\} \setminus \{i\}$ 這 n-1 個數字的錯排,有 a_{n-1} 種,而 σ_1 有 n-1 種可能,所以 這種錯排的數量爲 $(n-1)a_{n-1}$ 。

綜合上述,

$$a_n = (n-1)(a_{n-1} + a_{n-2})$$

定義

設數列 $\{a_i\}_{i=0}^{\infty}$ 有遞迴式

 $orall n \geq k$, $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$,則稱爲 k 階線性遞迴。

遞迴 - 線性遞迴

如果把遞迴式寫成以下矩陣的形式:

$$egin{pmatrix} a_n \ a_{n-1} \ a_{n-2} \ dots \ a_{n-k+1} \end{pmatrix} = egin{pmatrix} c_1 & c_2 & \cdots & c_{k-1} & c_k \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} egin{pmatrix} a_{n-1} \ a_{n-2} \ a_{n-3} \ dots \ a_{n-k} \end{pmatrix}$$

遞迴 - 線性遞迴

設中間的矩陣爲 A,可以發現:

$$egin{pmatrix} a_n \ a_{n-1} \ dots \ a_{n-k+1} \end{pmatrix} = A^{n-k+1} egin{pmatrix} a_{k-1} \ a_{k-2} \ dots \ a_0 \end{pmatrix}$$

因此可以用矩陣快速幂在 $O(k^3\log n)$ 的時間算出 A^{n-k+1} ,再

乘上
$$\begin{pmatrix} a_{k-1} \\ a_{k-2} \\ \vdots \\ a_0 \end{pmatrix}$$
 即可得到 a_n 。

所以這是一個時間複雜度 $O(k^3 \log n)$ 的算法。

定義 (費氏數列)

以 F_n 代表費氏數列第 n 項, $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$ 。

遞迴-費氏數列

題目

有多少個 $S \subseteq \{1, 2, ..., n\}$ 滿足 $\forall i, j \in S, |i - j| \neq 1$?

遞迴 - 費氏數列

以 a_n 代表這題的答案。

S 有雨種:

 $n \in S$:

 $n-1 \notin S$,而 $S':=S\setminus \{n\}$ 即是一個 $\{1,2,\ldots,n-2\}$ 的子集 且 $\forall i,j\in S',\ |i-j|\neq 1$,所以這種 S 有 a_{n-2} 種。

 $n \notin S$:

S 即是一個 $\{1,2,\ldots,n-1\}$ 的子集且 $\forall i,j\in S',\ |i-j|\neq 1$,所以這種 S 有 a_{n-1} 種。

綜合上述 $a_n=a_{n-1}+a_{n-2}$,有跟費氏數列一樣的遞迴式,而 $a_0=1,\ a_1=2$,所以 $a_n=F_{n+2}$ 。

遞迴 - 球與箱子 (3)

題目 (球與箱子 (3))

請求出把n 顆不同的球放進m 個相同箱子的方法數。

遞迴 - 球與箱子 (3)

 $a_{i,j}$:將i 顆球放進j 個相同箱子的方法數,且j 個箱子每個都不是空的。

分成

- (1) 第 i 顆球所在的那個箱子只有一顆球。
- (2) 第 i 顆球所在的那個箱子有兩顆以上的球。

遞迴 - 球與箱子 (3)

我們將第i 顆球拿掉,若是產生了空箱,代表剩下的i-1 顆球被放進j-1 個相同箱子且沒有空箱,也就是有 $a_{i-1,j-1}$ 種可能。

如果沒有產生空箱,代表剩下的 i-1 顆球被放進 j 個相同箱子且沒有空箱,且第 i 顆球有可能是從任何箱子拿出來的,也就是有 $ja_{i-1,j}$ 種可能。

所以

$$a_{i,j} = a_{i-1,j-1} + ja_{i-1,j}$$

而答案就是

$$\sum_{j=1}^{m} a_{n,j}$$

遞迴 - 球與箱子 (4)

題目 (球與箱子 (4))

請求出把n 顆相同的球放進m 個相同箱子的方法數。

遞迴 - 球與箱子 (4)

 $a_{i,j}$: 將 i 顆球放進 j 個相同箱子的方法數,且 j 個箱子每個都不是空的。

球數最少的箱子,可以分成

- (1) 只有一顆球。
- (2) 有雨顆以上的球。

遞迴 - 球與箱子 (4)

如果只有一顆球,我們將那個箱子連同球一起拿掉,剩下的i-1 顆球被放進 j-1 個箱子且沒有空箱,也就是有 $a_{i-1,j-1}$ 種可能。

如果有至少兩顆球,我們可以從所有箱子中的抽出一球,剩下的i-j 顆球被放進 j 個箱子且沒有空箱,也就是有 $a_{i-j,j}$ 種可能。

所以

$$a_{i,j} = a_{i-1,j-1} + a_{i-j,j}$$

而答案就是

$$\sum_{j=1}^m a_{n,j}$$

定義 (Dyck Path)

一條長度 2n 的 Dyck Path 是指一條從在一個 $n \times n$ 的格線從左下角 (0,0) 走到右上角 (n,n),每一步只能往右或往上走的路徑,且整條路徑都在對角線 (0,0)-(n,n) 之下或是剛好壓到對角線。

遞迴 - 卡特蘭數

Dyck Path:

不是 Dyck Path:

遞迴 - 卡特蘭數

定義 (卡特蘭數)

以 C_n 代表卡特蘭數第 n 項, C_n 爲長度 2n 的 Dyck Path 的 數量。

公式

$$C_{n+1} = \sum_{k=0}^n C_k C_{n-k}$$

遞迴 - 卡特蘭數

- 從 (0,0) 走到 (k,k): 有 Ck 種走法。
- 從 (k,k) 走到 (2k+1,2k+1): 有 C_{n-k} 種走法。

組合對應 - 雙射函數

定義

設 $f: A \rightarrow B$ 爲一函數

- 單射 (-對-): $\forall x, y \in A, f(x) = f(y) \iff x = y$
- 滿射: $\forall z \in B, \exists x \in A \text{ s.t. } f(x) = z$
- 雙射:單射且滿射

組合對應 - 雙射函數

性質

設 $f: A \rightarrow B$ 爲一函數,則

- f 單射 $\Rightarrow |A| \leq |B|$
- f 滿射 $\Rightarrow |A| \ge |B|$
- f 雙射 $\Rightarrow |A| = |B|$

$${C}_n = rac{1}{n+1} inom{2n}{n}$$

不合法的路徑:

不合法的路徑:

不合法的路徑:

不合法路徑數 =
$$\binom{2n}{n-1}$$

$$C_n =$$
 合法路徑數 $-$ 不合法路徑數 $= \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$

性質

以下問題的答案都是 C_n :

- 長度 2n 的合法括號序列數量。
- 凸 n+2 邊形分割成多個三角形的方法數。
- n+1 個點的有根樹的數量 (子結點有分順序)。
- n 個點的二元樹數量 (子結點有分左右)。

題目 (Prufer's code)

 K_n 有多少個生成樹?

- 答案是 n^{n-2} 。
- 將生成樹與 $(a_1, a_2, \ldots, a_{n-2})$ 做對應 $(a_i \in \{1, 2, \ldots, n\})$ 。

7 7 7

7 7 7 7

7 7 7 7 7

7 7 7 7 7 1

7 7 7 7 7 1 4

7 7 7 7 7 1 4 4

7 7 7 7 7 1 4 4 9

7 7 7 7 7 1 4 4 9 (11)

```
7 7 7 7 7 1 4 4 9 (11)
2 3
```

```
7 7 7 7 7 1 4 4 9 (11)
2 3 5
```

```
7 7 7 7 7 1 4 4 9 (11)
2 3 5 6 8 7 1 10 4
```


題目 (停車問題)

停車場有 n 個空的停車位,依序編號爲 $1,2,\ldots,n$,有 n 台車想進去停車,第 i 台車想停在 p_i 這個位置,如果 p_i 這個位置已經有其他台車時,這台車就會開到 p_i 之後的第一個空位停車,如果 p_i 之後都沒有空位了這台車就會開出停車場。求有多少個 n 元數組 (p_1,p_2,\ldots,p_n) 使得每一台車最終都會停在停車場中?

- 答案是 $(n+1)^{n-1}$ 。
- 加上第 n+1 個停車位並將停車場變成環狀的。
- 調整 p_i 的值域: $p_i \in \{1, 2, ..., n+1\}$ 。
- 同樣是合法的定義不變。
- 合法 ⇐⇒ 最後第 n+1 個停車位是空的。

$$(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9) = (9, 10, 2, 5, 5, 9, 2, 2, 7)$$

$$\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
6 & 3 & 7 & 8 & 4 & 5 & & 1 & 2
\end{bmatrix}$$

■
$$(n+1)^n$$
 組 $(p_1, p_2, ..., p_n)$

- 每 n+1 個分一類
- 每類有恰好一個是合法的
- $\frac{(n+1)^n}{n+1} = (n+1)^{n-1}$

組合對應 - 整數分割

題目 (整數分割)

整數分割是指將一個正整數分割成多個正整數的和,我們並不在 乎分割後的正整數的順序。

舉例來說,4有以下5種整數分割:

$$4 = 4$$

$$= 3 + 1$$

$$= 2 + 2$$

$$= 2 + 1 + 1$$

$$= 1 + 1 + 1 + 1$$

證明:將一個正整數的奇整數分割(即分割成多個正奇整數的和)的方法數 = 相異整數分割(即分割成多個相異整數的和)的方法數。

組合對應 - 整數分割

奇整數分割 → 相異整數分割:

$$3 + 3 + 3 + 3 + 3 + 5 + 5 + 5$$

奇整數分割 → 相異整數分割:

$$6+6+3+10+5$$

奇整數分割 → 相異整數分割:

$$12 + 3 + 10 + 5$$

相異整數分割 → 奇整數分割:

$$12 + 3 + 10 + 5$$

相異整數分割 → 奇整數分割:

$$6+6+3+10+5$$

相異整數分割 → 奇整數分割:

$$3 + 3 + 3 + 3 + 3 + 5 + 5 + 5$$

- 2 生成函數
 - ■普通生成 函數
- 指數生成 4 數論 ■排容原理 函數
- . 琥迥

1 計數原理

■基本定義

■基礎定義 ■ 組合對應

- 一些群
- 一些定理
- 群作用

- ■階與原根
- 質數與因 數分解

同餘

- 5 致謝
- ■質數與最 6 補充講義 大公因數 與勘誤

生成函數

定義

$$A(x) = \sum_{i=0}^{\infty} a_i x^i$$

稱爲 $\{a_i\}_{i=0}^{\infty}$ 的普通生成函數。

普通生成函數 - 公式

公式

$$A(x) = \sum_{i=0}^{\infty} rac{A^{(i)}(c)}{i!} (x-c)^i = A(c) + A'(c) (x-c) + rac{A''(c)}{2} (x-c)^2 + \cdots$$

將 c 帶 0 後即可得到

$$a_i = \frac{A^{(i)}(0)}{i!}$$

其中 A(x) 不一定要在 c 的附近無窮可微,對於非無窮可微的則定義

$$A'(x) = \sum_{i=1}^{\infty} i a_i x^{i-1}$$

普通生成函數 - 常用性質

性質

一些普通生成函數的性質:

令 A(x), B(x), C(x) 分別爲 $\{a_i\}_{i=0}^{\infty}$, $\{b_i\}_{i=0}^{\infty}$, $\{c_i\}_{i=0}^{\infty}$ 的普通生成函數

$$C(x) = A(x) + B(x), c_n = a_n + b_n$$

$$lacksquare$$
 $C(x) = A(x)B(x), \ c_n = \sum_{i=0}^n a_i b_{n-i}$

$$\blacksquare B(x) = A(rx), b_n = r^n a_n$$

$$lacksquare B(x) = A(x)^r, \ b_n = \sum\limits_{i_1+\cdots+i_k=n} a_{i_1}\cdots a_{i_k}$$

$$\blacksquare \ B(x) = xA'(x), \ b_n = na_n$$

普通生成函數 - 常見生成函數

公式

以下是一些常見的生成函數

- $\blacksquare a_n = \binom{m}{n}$ 的生成函數為 $(1+x)^m$
- $a_n = r^n$ 的生成函數為 $\frac{1}{1-rx} = 1 + rx + r^2x^2 + \cdots$
- lacksquare $-\ln(1-x) = \sum\limits_{i=1}^{\infty} rac{1}{i} x^i$

其中 $\binom{m}{n}$ 的 m 不一定要是正整數,對於任意實數 $m \neq 0$,

$$egin{pmatrix} m \ n \end{pmatrix} := rac{m(m-1)\cdots(m-n+1)}{n!}$$

的生成函數也是 $(1+x)^m$ 。

題目 (費氏數列)

求費氏數列的生成函數: $A(x) = \sum\limits_{i=0}^{\infty} F_i x^i$ 。

$$A(x) = F_0 + F_1x + F_2x^2 + F_3x^3 \ -xA(x) = - F_0x - F_1x^2 - F_2x^3 \ +) \ -x^2A(x) = - F_0x^2 - F_1x^3 \ (1-x-x^2)A(x) = F_0 + (F_1-F_0)x + 0 + 0$$

$$A(x) = rac{F_0 + (F_1 - F_0)x}{1 - x - x^2} = rac{x}{1 - x - x^2}$$

實際上,設 $\{a_i\}_{i=0}^{\infty}$ 有 k 階線性遞迴式

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

$$f(x) = \det \left(egin{pmatrix} c_1 & c_2 & \cdots & c_{k-1} & c_k \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} - xI_k
ight) \ = x^k - c_1 x^{k-1} - c_2 x^{k-2} - \cdots - c_k$$

稱爲 $\{a_i\}_{i=0}^{\infty}$ 的特徵多項式。

而生成函數

$$A(x)=rac{g(x)}{x^kf(1/x)}$$

,其中 $\deg g(x) \leq k-1$,爲

$$(a_0+a_1x+\cdots+a_{k-1}x^{k-1})x^kf(1/x)$$

的前 k-1 項。

題目 (卡特蘭數)

證明卡特蘭數第 n 項 $C_n = \frac{1}{n+1} {2n \choose n}$ 。

設卡特蘭數的生成函數

$$A(x) = \sum_{i=0}^{\infty} C_i x^i$$

 $A^2(x)$ 的 x^n 項係數爲

$$\sum_{i=0}^n C_i C_{n-i} = C_{n+1}$$

$$\Rightarrow xA^2(x) = \sum_{i=1}^{\infty} C_i x^i = A(x) - C_0 = A(x) - 1$$
 $\Rightarrow A(x) = rac{1 \pm \sqrt{1 - 4x}}{2x}$

因爲

$$C_0 = \lim_{x \to 0} A(x)$$

而

$$\lim_{x o 0^+}rac{1+\sqrt{1-4x}}{2x}=\infty$$
 $\sqrt{1-4x}$. . $1-1+4x$

$$\lim_{x o 0} rac{1 - \sqrt{1 - 4x}}{2x} = \lim_{x o 0} rac{1 - 1 + 4x}{2x(1 + \sqrt{1 - 4x})} = 1$$

所以

$$A(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

計算 A(x) 的 x^n 項係數,爲 $\frac{1-\sqrt{1-4x}}{2}$ 的 x^{n+1} 項係數,即爲:

$$\frac{1}{2}(-(-4)^{n+1}\binom{\frac{1}{2}}{n+1}) = -\frac{1}{2}(-4)^{n+1}\frac{\prod\limits_{i=0}^{n}(\frac{1}{2}-i)}{(n+1)!}$$

$$= -2^{n} \cdot \frac{\prod\limits_{i=0}^{n}(-1+2i)}{(n+1)!}$$

$$= 2^{n} \cdot \frac{\prod\limits_{i=1}^{n}(2i-1)}{(n+1)!}$$

$$egin{aligned} &=rac{\prod\limits_{i=1}^{n}2i}{\prod\limits_{i=1}^{n}i}\cdotrac{\prod\limits_{i=1}^{n}(2i-1)}{(n+1)!}\ &=rac{(2n)!}{n!(n+1)!}\ &=rac{1}{n+1}inom{2n}{n} \end{aligned}$$

題目 (整數分割)

證明:將一個正整數的奇整數分割(即分割成多個正奇整數的和)的方法數 = 相異整數分割(即分割成多個相異整數的和)的方法數。

設 a_n 是 n 的奇整數分割的方法數, b_n 是 n 的相異整數分割的方法數,A(x) 是 a_n 的生成函數,B(x) 是 b_n 的生成函數。

$$egin{align} A(x) &= (1+x+x^2+\cdots)(1+x^3+x^6+\cdots)\cdots = \prod\limits_{i=1}^{\infty}rac{1}{1-x^{2i-1}} \ B(x) &= (1+x)(1+x^2)(1+x^3)\cdots = \prod\limits_{i=1}^{\infty}(1+x^i) \ \end{array}$$

$$egin{aligned} rac{B(x)}{A(x)} &= \left(\prod_{i=1}^\infty (1+x^i)
ight) \left(\prod_{i=1}^\infty (1-x^{2i-1})
ight) \ &= \left(\prod_{2
mid i} (1+x^i) (1-x^i)
ight) \left(\prod_{2
mid i} (1+x^i)
ight) \ &= \left(\prod_{2
mid i} (1+x^i)
ight) \left(\prod_{i \equiv 2 \pmod 4} (1-x^i)
ight) \ &= rac{B(x^2)}{A(x^2)} = \cdots = rac{B(x^{2^k})}{A(x^{2^k})} \end{aligned}$$

因爲 $\forall n > 0$,

$$rac{B(x)}{A(x)} = rac{B(x^{2^{\lfloor \log_2 n
floor}+1})}{A(x^{2^{\lfloor \log_2 n
floor}+1})}$$

而其第 n 項係數爲 0,所以 $\frac{B(x)}{A(x)}$ 是常數函數,並且可以得到其常數項爲 1。

所以
$$rac{B(x)}{A(x)}=1$$
,也就是 $A(x)=B(x)$ 。

$$\therefore a_n = b_n \circ$$

指數生成函數 - 定義

定義

$$A(x) = \sum_{i=0}^{\infty} rac{a_i}{i!} x^i$$

稱爲 $\{a_i\}_{i=0}^{\infty}$ 的指數生成函數。

指數生成函數 - 例子

1,1,1,... 的普通生成函數:

$$\sum_{i=0}^{\infty} 1 \cdot x^i = rac{1}{1-x}$$

1,1,1,... 的指數生成函數:

$$\sum_{i=0}^{\infty} 1 \cdot \frac{1}{i!} x^i = e^x$$

指數生成函數 - 公式

公式

$$A(x) = \sum_{i=0}^{\infty} A^{(i)}(c)(x-c)^i = A(c) + A'(c)(x-c) + A''(c)(x-c)^2 + \cdots$$

將 c 帶 0 後即可得到

$$a_i=A^{(i)}(0)$$

指數生成函數 - 一些性質

性質

一些指數生成函數的性質:

令 A(x), B(x), C(x) 分別爲 $\{a_i\}_{i=0}^{\infty}$, $\{b_i\}_{i=0}^{\infty}$, $\{c_i\}_{i=0}^{\infty}$ 的指數生成函數

$$C(x) = A(x) + B(x), c_n = a_n + b_n$$

$$lacksquare$$
 $C(x)=A(x)B(x), \ c_n=\sum\limits_{i=0}^ninom{n}{i}a_ib_{n-i}$

$$\blacksquare B(x) = A(rx), b_n = r^n a_n$$

$$lacksquare B(x) = A(x)^r, \ b_n = \sum_{i_1 + \cdots + i_k = n} rac{n!}{i_1! i_2! \cdots i_k!} a_{i_1} \cdots a_{i_k}$$

$$\blacksquare B(x) = xA'(x), \ b_n = na_n$$

題目 (2019ShangHai)

給定正整數 n,m,求有多少個 n 元正整數組 (a_1,a_2,\ldots,a_n) 滿足 $\forall i,\ a_i \leq m$ 且 \forall 偶數 $k,\ |\{i|a_i=k\}|$ 也是偶數。 $(n\leq 10^{18},\ m\leq 2\times 10^5)$

先考慮另一個問題:如果 a_i 重新排列後算是相同的,那答案是多少?

令
$$b_k = |\{i|a_i = k\}|$$
 ,每個 (b_1, b_2, \ldots, b_m) 會唯一對應到一組 $\{a_1, a_2, \ldots, a_n\}$,而 b_{2k-1} 可以是 $0, 1, 2, 3, \ldots$,生成函數爲 $\frac{1}{1-x}$, b_{2k} 可以是 $2, 4, 6, 8, \ldots$,生成函數爲 $\frac{1}{1-x^2}$

所以

$$egin{aligned} \prod_{i=1}^m rac{1}{1-x^{(i+1)\pmod{2}+1}} &= (1-x)^{-\lceilrac{m}{2}
ceil} (1-x^2)^{-\lfloorrac{m}{2}
floor} \ &= (1-x)^{-m} (1+x)^{-\lfloorrac{m}{2}
floor} \end{aligned}$$

的 x^n 項係數即爲答案。

回到原命題, (b_1,b_2,\ldots,b_m) 會對應到 $\binom{n}{b_1,b_2,\ldots,b_m}$ 組 (a_1,a_2,\ldots,a_n) ,也就是我們會在乎 b_i 個相同數字內部的排列以及最終 n 個數字的排列,所以此時如果將 b_i 對應到生成函數時在第 i 項多除一個階乘,即改爲指數生成函數,就可以解決這個問題。

 b_{2k-1} 的生成函數是

$$1+x+rac{x^2}{2}+rac{x^3}{6}+\cdots=e^x$$

, b_{2k} 的生成函數是

$$1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots = \frac{e^x + e^{-x}}{2}$$

所以

$$(e^x)^{\lceil \frac{m}{2} \rceil} (rac{e^x + e^{-x}}{2})^{\lfloor \frac{m}{2} \rfloor}$$

的 x^n 項係數乘上 n! 即爲答案。

$$\diamondsuit k = \lfloor \frac{m}{2} \rfloor$$
,

$$e^{m-k} \left(\frac{e^x + e^{-x}}{2}\right)^k = 2^{-k} \sum_{i=0}^k \binom{k}{i} e^{(m-k)x} e^{(k-2i)x}$$

$$= 2^{-k} \sum_{i=0}^k \binom{k}{i} e^{(m-2i)x}$$

$$= 2^{-k} \sum_{i=0}^k \binom{k}{i} \sum_{j=0}^\infty (m-2i)^j \frac{x^j}{j!}$$

$$= 2^{-k} \sum_{i=0}^\infty \sum_{j=0}^k \binom{k}{i} (m-2i)^j \frac{x^j}{j!}$$

所以最終答案即爲

$$2^{-k}\sum_{i=0}^k \binom{k}{i}(m-2i)^n$$

2 生成函數

- ■普通生成
- ■指數生成 4 數論 ■排容原理 函數
- . 琥迥 群論

1 計數原理

■基本定義

■基礎定義 ■ 組合對應

一些群

一些定理

■群作用

- ■階與原根
- ■質數與因 數分解

同餘

- 5 致謝
- 大公因數 與勘誤
- ■質數與最 6 補充講義

4□ > 4□ > 4□ > 4□ > 4□ > 900

群論

基礎定義 - 運算的專有名詞

定義

S 是一個集合, \circ 是一個定義在 S 上的二元運算。

- 封閉: $\forall a, b \in S, a \circ b \in S \circ$
- 結合律 (associative law): $\forall a,b,c \in S, (a \circ b) \circ c = a \circ (b \circ c) \circ$
- 交換律 (commutative law): $\forall a, b \in S, a \circ b = b \circ a \circ$
- 單位元素 (identity): 若 $\forall a \in S$, $b \circ a = a \circ b = a$, 則稱 b 爲單位元素,通常以 1 表示單位元素,或者是在 $\circ = +$ 時以 0 表示。

基礎定義 - 運算的專有名詞

- 當 o ≠ + 時,會直接省略不寫,也就是會以 ab 表示 a o b。
- 假設 o 是有結合律的運算。

性質

- (1) 若 orall a, $1_L a = a$, $a 1_R = a$,則 $1_L = 1_R$ 。
- (2) 若 $ab_R = b_L a = 1$,則 $b_L = b_R$ 。

證明:

(1)
$$1_L = 1_L 1_R = 1_R \circ$$

(2)
$$b_L = b_L 1 = b_L a b_R = 1 b_R = b_R \circ$$

- 單位元:1,因爲單位元素存在即唯一。
- 1 跟任何元素都可交換。
- a 的反元素:a-1,因爲反元素存在即唯一。
- a⁻¹ 跟 a 可交換。

例子 (經典題)

設 A, B 爲兩方陣滿足 A + B = AB, 證明 AB = BA。

證明:

$$A + B = AB$$

$$\Rightarrow AB - A - B = 0$$

$$\Rightarrow AB - A - B + I = I$$

$$\Rightarrow (A - I)(B - I) = I$$

$$\Rightarrow (B - I)(A - I) = I$$

$$\Rightarrow BA - A - B + I = I$$

$$\Rightarrow BA = A + B = AB$$

基礎定義 - 群

定義

若集合 S 與 S 上的二元運算 。在 S 中封閉,且有結合律、單位元素、反元素,則稱爲一個群 (group)。通常以 G 來表示一個群,並寫做 $G=(S,\circ)$ 。若 。有交換律,則稱 G 是一個交換群,或説是阿貝爾群 (abelian group)。

基礎定義 - 群

加藤軍台灣粉絲團 2.0

爸爸應該開心還是應該擔心

我想測試一下我五歲兒子的數學天賦,於是我問他: "5+7=多少?"

兒子歪著頭想想: "不知道。"

我又問: "7+5=多少?"

兒子還是回答我説不知道。

正當我失望時,他卻突然説: "雖然我不知道5+7 和7+5等於多少,但我知道它們一定相等。"

我開心的問兒子: "你知道是為什麼嗎?"

兒子: "因為整數集對加法構成阿貝爾群"

4:20 PM · Feb 1, 2023 · 加藤軍KATOTAKA2.0

基礎定義 - 各種群

- (ℤ, +), (ℚ, +), (ℝ, +), (ℂ, +), ({1, -1}, ·) 都是交換群。
- (ℤ, ·), (ℚ, ·), (ℝ, ·), (ℂ, ·) 都不是群。
- \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* 分別定義成 $\mathbb{Q}-0$, $\mathbb{R}-0$, $\mathbb{C}-0$, 這三個集合配上. 運算都是交換群。
- $(M_{2\times 2}^*, \cdot)$ 不是交換群。 $(M_{2\times 2}$ 是指所有 2×2 矩陣的集合,而 $M_{2\times 2}^*$ 則是指所有可逆 2×2 矩陣的集合)

基礎定義 - 小引理

引理

若 $\forall a,b \in G$, $ab^{-1} \in G$,則 G 是一個群。

基礎定義 - 序

定義

- |G|: G 中元素的個數,稱作 G 的序 (order)。
- |g|: 設 n 爲最小的正整數使得 $g^n = 1$,則 |g| := n,稱作 g 的序。當不存在這樣的正整數 n 時,定義 $|g| = \infty$ 。

基礎定義 - 序

性質

若 |G| 有限,且 \circ 在 G 中封閉,則 G 是一個群 \circ

基礎定義 - 序

證明:

 $orall g \in G$, $|g| \leq |G|$ 有限,所以存在正整數 n 使得 $g^n = 1$ $\Rightarrow gg^{n-1} = 1$ $\Rightarrow g^{n-1} = g^{-1}$ 因爲 o 封閉,所以 $g^{n-1} \in G$ $\therefore \forall g, h \in G, \ g, h^{-1} \in G$,因爲 o 封閉,所以 $gh^{-1} \in G$

定義

- 若存在 $g \in G$ 使得 $G = \{g^n | n \in \mathbb{Z}\}$,則稱 G 是循環群 (cyclic group),g 是 G 的生成元 (generator),寫做 $G = \langle g \rangle$ 。
- 若存在 $S \subseteq G$ 使得 $G = \{\prod_{s \in S} s^{n_s} | n_s \in \mathbb{Z} \}$,則稱 $S \not\in G$ 的 生成集,寫做 G = < S > 或 $G = < s_1, s_2, \ldots, > \circ$

- $(\mathbb{Z}_n, +)$ 是一個循環群,其中滿足 $\gcd(a, n) = 1$ 的 a 都是生成元。 $(\mathbb{Z}_n$ 是指所有除以 n 的餘數所形成的集合,加法的定義則是相加之後取餘數)
- (ℤ, +) 也是一個循環群,其中 1, -1 是生成元。
- $(\mathbb{Q}, +)$ 不是循環群,有生成集 $\{\frac{1}{p}|p\in\mathbb{P}\}$ 。

性質

循環群是交換群。

證明:

設
$$G = \langle g \rangle$$
 是循環群。 $\forall a,b \in G$,設 $a = g^c, b = g^d$ $ab = g^c g^d = g^{c+d} = g^d g^c = ba$ 所以 G 是交換群。

基礎定義 - 子群

定義

 $\stackrel{.}{H}\subseteq G$ 且 $\stackrel{.}{H}$ 是一個群,則稱 $\stackrel{.}{H}$ 是 $\stackrel{.}{G}$ 的子群 (subgroup),寫 做 $\stackrel{.}{H}\leq G$ 。

基礎定義 - 子群

 $(n\mathbb{Z},+)$ 是 $(\mathbb{Z},+)$ 的一個子群。 $(其中 n\mathbb{Z}:=\{nm|m\in\mathbb{Z}\}\$ 爲所有 n 的倍數的集合)

定義

$H \leq G$

- $lacksymbol{\bullet} gH := \{gh|h \in H\}$ 稱爲 H 的左餘集 (left coset), $Hg := \{hg|h \in H\}$ 稱爲 H 的右餘集 (right coset)。
- $G/H := \{gH|g \in G\}$,所有左餘集所形成的集合。

 $\mathbb{Z}/n\mathbb{Z} = \{n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, \dots, (n-1) + n\mathbb{Z}\}$,也就是所有除以 n 的餘數所形成的集合,另外也把 $\mathbb{Z}/n\mathbb{Z}$ 寫做 \mathbb{Z}_n 。

引理

 $H \leq G$

- (1) 若 G 有限,則 $\forall g \in G$, |gH| = |H|
- $(2)\ orall g_1,\,g_2\in G$,若 $g_1H\cap g_2H
 eq\emptyset$,則 $g_1H=g_2H$
- (3) 若 G 有限,則 |H| | |G|

基礎定義 - 餘集

證明: (1) 定義函數 $f_1: H \to gH$, $f_1(x) := gx$, $f_2: gH \to H$, $f_2(x) := g^{-1}x$ 。可以發現 $\forall h \in H$, $(f_2 \circ f_1)(h) = g^{-1}gh = h$,所以 f_1, f_2 互爲反函數,因此 f_1 是雙射函數 H 與 gH 間的雙射函數,於是有 |H| = |gH|。

基礎定義 - 餘集

證明: (2) 設
$$g_1H \cap g_2H \neq \emptyset$$
,也就是存在 $h_1, h_2 \in H$ 使得 $g_1h_1 = g_2h_2$ $\Rightarrow g_2^{-1}g_1 = h_2h_1^{-1} \in H$ $\forall g_1h_3 \in g_1H$
$$g_1h_3 = g_2g_2^{-1}g_1h_3 = g_2(h_2h_1^{-1}h_3) \in g_2H$$
 所以有 $g_1H \subseteq g_2H$,反之亦然 $\therefore g_1H = g_2H$

證明: (3) 因爲 $1 \in H$,所以 $\bigcup_{a \in G} gH = G$

由 (2) 知:可以取出 G 中的某些元素 $S = \{g_1, g_2, \dots, g_n\}$ 使得 $\forall 1 \leq i < j \leq n$, $g_i H \cap g_j H = \emptyset$ 且 $\forall g \in G - S$, 存在 i 使得 $gH = g_i H$ 。 由 (1) 知:

$$|G| = |\bigcup_{g \in S} gH| = \sum_{g \in S} |gH| = \sum_{g \in S} |H| = |S||H| = |G/H||H|$$

所以

$$|H| \mid |G|$$

基礎定義 – Lagrange's theorem

定理 (Lagrange's theorem)

設G有限且 $H \le G$,則|G| = |H||G/H|。

基礎定義 – Lagrange's theorem

推論

設G有限,則

- $egin{aligned} (1) \ orall g \in G, \ |g| \ |G| \ (2) \ orall g \in G, \ g^{|G|} = 1 \end{aligned}$

基礎定義 – Lagrange's theorem

- \blacksquare (\mathbb{Z}_n^* ,·) 是指除以 n 的餘數的乘法群,即所有跟 n 互質的餘數所形成的群。
- 透過上個定理可以直接推得之後數論會講的歐拉定理

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

性質

設 $H \leq G, K \leq G$,則 $H \cap K \leq G$ 。

證明:

設 $g_1,g_2\in H\cap K$,因為 $g_1g_2^{-1}\in H,g_1g_2^{-1}\in K$,所以 $g_1g_2^{-1}\in H\cap K$ ∴ $H\cap K< G$ ∘

定理

設 $H \leq G, K \leq G$,則

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

,其中 $HK:=\{hk|h\in H, k\in K\}$ 。

證明: 注意到 $HK = \bigcup\limits_{h \in H} hK$,且 |hK| = |K|,又因爲 $h \in G$,所以

$$h_1K \cap h_2K \neq \emptyset \iff h_1K = h_2K$$

證明: 因爲

$$egin{aligned} h_1K &= h_2K \iff h_2^{-1}h_1 \in K \ &\iff h_2^{-1}h_1 \in H \cap K \ &\iff h_1(H \cap K) = h_2(H \cap K) \end{aligned}$$

所以

$$egin{aligned} |\{hK|h\in H\}| &= |\{h(H\cap K)|h\in H\}| \ &= |H/(H\cap K)| \ &= rac{|H|}{|H\cap K|} \end{aligned}$$

證明: 因此

$$|HK|=|K||H/(H\cap K)|=rac{|H||K|}{|H\cap K|}$$

一些群 – Dihedral group

定義

設 G 是由所有旋轉與鏡射一個正 n 邊形但看不出改動的旋轉與鏡射所形成的群,群中的運算爲操作的合成,這個群稱作 Dihedral group,寫作 D_{2n} 。

一些群 – Dihedral group

舉例來說,設 L 是一條正 n 邊形的對稱軸,r 是逆時針旋轉 $\frac{2\pi}{n}$,s 是對 L 作鏡射,則 rs 是指鏡射後逆時針旋轉 $\frac{2\pi}{n}$ 的操作。

可以發現對 L 做兩次鏡射跟沒做一樣,也就是 $s^2 = 1$ 。

(圖片來源:維基百科)

一些群 – Dihedral group

性質

$$D_{2n} = < r, s | r^n = s^2 = (sr)^2 = 1 >$$

一些群 - 排列群

定義

設 G 是由所有 $1,2,\ldots,n$ 的排列所形成的群,排列可以看成是一個 $\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ 的函數,群中的運算是排列函數的合成,這個群稱作對稱群 (Symmetric group),寫作 S_n 。

一些群 - 排列群

計算 231。132,即先把 (1,2,3) 打到 (1,3,2) 再把 (1,2,3) 打到 (2,3,1),所以

- 1 會先被打到 1 再被打到 2、
- 2 會先被打到 3 再被打到 1、
- 3 會先被打到 2 再被打到 3,

因此 231 0 132 = 213 0

可以發現 $123 \cdots n$ 相當於什麼都沒做的排列,也就是 $1(\text{identity}) = 123 \cdots n$ 。

一些群 - 排列群

定義

設 $\sigma \in S_n$, 若 $i \neq j$, $\sigma_i = j$, $\sigma_j = i$, $\forall k \neq i, j$, $\sigma_k = k$, 則稱 σ 是一個 i, j 的置換 , 寫作 $\sigma = (ij)$ °

性質

$$S_n = <(ij)|1 \leq i < j \leq n>$$

性質

$$S_n = <(1i)|i \neq 1>$$

群作用 - 名詞定義

定義

一個群 G 與一個集合 A 上的群作用 (group action) 是指滿足以下條件的一個運算 $\circ: G \times A \to A$:

- $\blacksquare \ \, \forall g_1,g_2 \in G, a \in A, \,\, (g_1g_2) \circ a = g_1 \circ (g_2 \circ a)$

群作用 - 名詞定義

定義

- $lacksquare G_a := \{g \in G | ga = a\}$,稱爲 a 的 stabilizer
- $lacksymbol{\blacksquare}$ $Ga:=\{ga|g\in G\}$,稱爲 a 的軌道 (orbit)
- $A/G := \{Ga|a \in A\}$,爲所有軌道的集合
- $\blacksquare \ A^g := \{a \in A | ga = a\}$

群作用 - 小引理

引理

設G有限,則 $\forall a \in A$

$$|G| = |G_a||Ga|$$

群作用 - 小引理

證明:
$$\forall g_1, g_2 \in G_a$$

$$g_1g_2^{-1}a=g_1g_2^{-1}g_2a=g_1a=a$$

所以
$$G_a \leq G$$
。 $orall g_1, g_2 \in G$

$$egin{aligned} g_1a &= g_2a &\iff g_1g_2^{-1}a = a \ &\iff g_1g_2 - 1 \in G_a \ &\iff g_1g_2 - 1 = G_a \ &\iff g_1G_a = g_2G_a \end{aligned}$$

群作用 - 小引理

證明: 所以

$$|\{ga|g\in G\}|=|\{gG_a|g\in G\}|$$

 \Rightarrow \bowtie Lagrange's theorem ,

$$|G_a||Ga| = |G_a||G/G_a| = |G|$$

群作用 – Burnside's lemma

定理 (Burnside's lemma)

設 G 爲有限群,則

$$|A/G||G| = \sum_{g \in G} |A^g|$$

群作用 – Burnside's lemma

證明:

$$egin{aligned} \sum_{g \in G} |A^g| &= |\{(g,a) \in G imes A | ga = a\}| \ &= \sum_{a \in A} |G_a| \ &= \sum_{a \in A} rac{|G|}{|Ga|} \ &= \sum_{B \in A/G} \sum_{a \in B(=G_a)} rac{|G|}{|Ga|} \ &= \sum_{B \in A/G} rac{|G|}{|B|} \cdot |B| \ &= |A/G||G| \end{aligned}$$

aurampaeraer e 990

例子 (環狀塗色)

有一條項鍊由 n 個實石串成,其中有至多 m 種不同的實石,因爲項鍊是環狀的,所以旋轉視爲相同的,請問有多少種不同的項鍊?

首先假設旋轉視爲不同的,爲了避免混淆,我們說兩條項鍊是相 異的如果在旋轉視爲不同時是相異的,而兩條項鍊是屬於同一種 項鍊如果兩者旋轉後相同。

令 A 爲所有項鍊所形成的集合, G 爲所有旋轉所形成的群。

那麼 A/G 即爲所有項鍊的種類所形成的集合,因爲

兩條項鍊會被放在同個軌道上 ← 兩條項鍊之間是一個旋轉 ← 兩條項鍊是屬於同一種

令逆時針旋轉一格的操作為 g,可以知道

$$G = \langle g \rangle = \{1, g, \dots, g^{n-1}\}$$

設 $a \in A$ 爲一條項鍊,以 a_i 代表代表項鍊上第 i 個寶石的種類。

接下來我們來計算
$$A^{g^k}$$
,若 $a \in A^{g^k}$,則 $\forall x \in \mathbb{Z}, \ g^{xk} = (g^k)^x a = a$ 。

另外
$$g^n a = 1a = a$$
。

所以

$$a \in A^h \iff h \in < g^k > = g^{< k, n >} = \{g^x | x \in k\mathbb{Z} + n\mathbb{Z}\}$$

而 Bézout's theorem 告訴我們

$$k\mathbb{Z}+n\mathbb{Z}=\gcd(k,n)\mathbb{Z}$$

所以

$$egin{aligned} a \in A^h &\iff h \in \{g^x | x \in \gcd(k,n)\mathbb{Z}\} \ &\iff h = g^{\gcd(k,n)x} \end{aligned}$$

對於某個整數 x。

因此,對於每個 $r \in \{0,1,\ldots,\gcd(k,n)-1\}$,都可以自由的選擇

 $a_r, a_{r+\gcd(k,n)}, a_{r+2\gcd(k,n)}, \ldots$ 要共同有什麼顏色。

所以 a 有 $m^{\gcd(k,n)}$ 種選擇,即

$$|A^{g^k}| = m^{\gcd(k,n)}$$

由 Burnside's lemma 知:

$$egin{aligned} |A/G| &= rac{1}{|G|} \sum_{g \in G} |A^g| \ &= rac{1}{n} \sum_{k \in \mathbb{Z}_n} |A^{g^k}| \ &= rac{1}{n} \sum_{k \in \mathbb{Z}_n} m^{\gcd(k,n)} \ &= rac{1}{n} \sum_{d \mid n} \sum_{\gcd(k,n) = d} m^d \ &= rac{1}{n} \sum_{d \mid n} arphi(rac{n}{d}) m^d \end{aligned}$$

群作用 - 環狀排列習題

題目 (有鏡射的環狀塗色)

有一條項鍊由 n 個寶石串成,其中有至多 m 種不同的寶石,因 爲項鍊是一個環,所以正面看反面看視爲相同的,且旋轉也視爲 相同的,請問有多少種不同的項鍊?

證明: Hint:考慮 A/D_{2n} 。

2 生成函數

- ■普通生成 函數
- 排容原理 函數
- 遞迴 3 群部

1 計數原理

■基本定義

■ 組合對應 ■ 基礎定義

- 一些群
- 群作用

- ■一些定理
- ■階與原根
- 質數與因 數分解

- ■指數生成 4 數論
 - ■同餘

- 5 致謝
- ■質數與最 6 補充講義 大公因數 與勘誤

數論

同餘-整除

定義

設 a, b 爲整數, $a \neq 0$, 若存在整數 c 使得 b = ac, 則稱 a 整除 b, 寫成:

a|b

這個定義在群論中就是 $a|b:=b \in a\mathbb{Z}$ 。

同餘 - 同餘

定義

設 n, a, b 爲整數 $n \neq 0$,若 n|a-b ,則稱 a 同餘 b 模 n , 寫成:

$$a \equiv b \pmod{n}$$

這個定義在群論中就是 $a - b \in n\mathbb{Z}$ 。

同餘 - 同餘運算

性質

設 n, a, b 爲整數, $n \neq 0$, 若 n|a, n|b, 則 $\forall c, d \in \mathbb{Z}$,

$$n|ac+bd$$

同餘-同餘運算

證明:

n|a,n|b

⇒ 根據整除定義 $\exists x, y \in \mathbb{Z}$ s.t. a = nx, b = ny

 $\Rightarrow ac + bd = cnx + dny = n(cx + dy)$

⇒ 根據整除定義 n|ac+bd∘

同餘 - 同餘運算

 $n\mathbb{Z}$ 是封閉的,並且是一個 \mathbb{Z} 的子群。

同餘 - 同餘運算

性質

若
$$a \equiv c \pmod{n}$$
, $b \equiv d \pmod{n}$, 則:

$$(1) a + b \equiv c + d \pmod{n}$$

$$(2) a - b \equiv c - d \pmod{n}$$

$$(3) ab \equiv cd \pmod{n}$$

同餘-同餘運算

證明:

根據同餘定義 n|a-c, n|b-d (1)

$$n|(a-c)+(b-d)=(a+b)-(c+d)$$

 $\Rightarrow a+b\equiv c+d\pmod{n}$

(2)

$$n|(a-c)-(b-d)=(a-b)-(c-d)$$

 $\Rightarrow a-b\equiv c-d\pmod{n}$

(3)

$$n|(a-c)b+(b-d)c=ab-bc+bc-cd=ab-cd$$

 $\Rightarrow ab \equiv cd \pmod{n}$

同餘-計算問題

數論中:模之前做加法減法乘法 = 模之後做加法減法乘法。

程式中:不一定。

原因:

1 溢位問題

- int、long long 有可能會溢位
- 先取模再做乘法再取模乘法的量級會較原先的小,可以減少 溢位的發生
- lacksquare a*b%n
 ightarrow (a%n)*(b%n)%n

2 程式中的模並非餘數

- 除法:向①取整而非向下取整
- 9/4 是 2.25,向下取整與向 0 取整之後都是 2
- (-9)/4 是 -2.25,向下取整是 -3,但向 0 取整是 -2
- a%b := a (a/b) * b,即拿 a/b 當作商去計算餘數,當商是 向 0 取整但不是向下取整時,a%b 就會輸出負數而非 $\{0,1,\ldots,b-1\}$ 中的餘數。
- $9\%4 = 1 \cdot (-9)\%4 = -1 \circ$

同餘-快速幂

求 $a^b\%n$:

- 一個一個慢慢乘: O(b)
- 使用快速幂: O(log b)
- 將 b 寫成 2 進位的型式 $b = (b_k b_{k-1} \cdots b_0)_2$
- 接著讓 i 從 0 跑到 k ,如果 b_i 是 1 那就讓結果乘上 a^{2^i} ,而 a^{2^i} 可以從 $a^{2^i} = a^{2^{i-1}} \times a^{2^{i-1}}$ 前一項推得。

同餘-快速幂

舉例:計算 2100%19

 $100 = (1100100)_2$

同餘-快速幂

```
1 #define ll long long
2 // 因爲通常模數是 int 量級的,所以要開 long long 才能避免乘法溢位
3 ll fpow(ll a, ll b, ll n){ // 計算 a^b%n
4 ll r=1;
5 for(; b; b>>=1, a=a*a%n)if(b&1)r=r*a%n;
6 return r;
7 }
```

質數與最大公因數 - 定義

定義

- a,b 為整數且 a ≠ 0, 若 a|b, 則稱 a 是 b 的因數。
- 若 c 同時是 a, b 的因數則稱 c 是 a, b 的公因數。
- a,b 是不全爲 0 的整數,a,b 的最大公因數寫成:gcd(a,b)。
- 若 p > 1 且 p 的正因數只有 1,p,則稱 p 爲質數。

如果沒有特別説明,p就是一個質數。

質數與最大公因數 - 挨氏篩

```
bool prime[kN]={0};

void eratosthenes(){

for(int i=2; i<kN; ++i)prime[i]=1;

for(int i=2; i<kN; ++i)if(prime[i])

for(int j=i*i; j<kN; j+=i)prime[j]=0;

}</pre>
```

定義

 $\pi(x) := 小於等於 x 的質數個數。$

舉例來說, $\pi(10) = 4$,因爲 $2,3,5,7 \le 10$; $\pi(13) = 6$,因爲 $2,3,5,7,11,13 \le 13$ 。

定理 (質數定理)

$$\pi(n) \sim rac{n}{\log n}$$

定理 (質數倒數和)

$$\sum_{p \leq n} rac{1}{p} = \Theta(n \log \log n)$$

質數與最大公因數 - 線性篩

```
int d[kN]; // 最小質因數
   vector<int> prime;
3
   void linearSieve(){
        for(int i=2; i<kN; ++i){</pre>
5
            if(!d[i])prime.push_back(i), d[i]=i;
6
            for(int p:prime){
7
                 if(i*p>=kN)break;
                 d[i*p]=p;
9
                 if(i%p==0)break;
10
11
12
13
```

質數與最大公因數 - 積性函數

定義

設 $f: \mathbb{N} \to \mathbb{N}$ 滿足 $\forall \gcd(a, b) = 1$

$$f(ab) = f(a)f(b)$$

則稱 f 是積性函數。

積性函數也可以用類似線性篩的方法建表。

可參考進階數學講義。

質數與最大公因數 - 輾轉相除法

性質

 $orall k \in \mathbb{Z}$,

$$\gcd(a,b)=\gcd(a,b+ka)=\gcd(a+kb,b)$$

質數與最大公因數 - 輾轉相除法

證明:

$$\therefore d|\gcd(a,b) \iff d|\gcd(a,b+ka)$$

$$\therefore \gcd(a,b) = \gcd(a,b+ka)$$

質數與最大公因數 - 輾轉相除法

```
int gcd(int a, int b) {
    return b?gcd(b, a%b):a;
}
```

質數與最大公因數 - Bézout's theorem

定理 (Bézout's theorem)

$$\{ax+by|x,y\in\mathbb{Z}\}=\{k\gcd(a,b)|k\in\mathbb{Z}\}$$

質數與最大公因數 - Bézout's theorem

證明: 設 $d=ax_0+by_0$ 爲 $S=\{ax+by|x,y\in\mathbb{Z}\}$ 中最小的正數。若 $d \nmid a$,設 $a=qd+r,\ 0 < r < d$,則

$$r=a-qd=a(1-qx_0)+b(-qy_0)\in S$$

與 d 的最小性矛盾,所以 d|a。 同理 d|b,所以 $d|\gcd(a,b)$ 。

質數與最大公因數 - Bézout's theorem

證明: 另外

$$egin{aligned} &\gcd(a,b)|a,\ \gcd(a,b)|b \ \Rightarrow \gcd(a,b)|ax+by \ \Rightarrow &S\subseteq \{k\gcd(a,b)|k\in\mathbb{Z}\} \ \therefore &\gcd(a,b)|ax_0+by_0=d \ \therefore &d=\gcd(a,b) \ \Rightarrow &k\gcd(a,b)=a(kx_0)+b(ky_0)\in S \ \therefore &S=\{k\gcd(a,b)|k\in\mathbb{Z}\} \end{aligned}$$

質數與最大公因數 - 擴展歐幾里德算法

```
// return (d, x, y) s.t. ax+by=d=gcd(a, b)
tuple<int, int, int> exgcd(int a, int b){
    if(!b)return make_tuple(a, 1, 0);
    int d, x, y;
    tie(d, x, y)=exgcd(a, b);
    return make_tuple(d, y, x-a/b*y);
}
```

定義

a 模 n 的模逆元 a^{-1} 是指满足 $aa^{-1}\equiv a^{-1}a\equiv 1\pmod n$ 的數,也就是 a 在 \mathbb{Z}_n^* 中的反元素。

性質

a 模 n 有模逆元 \iff gcd(a,n)=1。

證明:

由 Bézout's theorem 可知:

$$a$$
模 n 有模逆元 \iff 存在 $x,y\in\mathbb{Z}$ 使得 $ax+ny=1$ \iff $\gcd(a,n)=1$

有些題目會要求某個有理數 $(=\frac{a}{b})$ 模 p,實際上就是要求某個數 c 使得 $bc \equiv a \pmod{p}$,而這個 $c \equiv \frac{a}{b} \pmod{p}$,可以用 $c = ab^{-1}$ 求得。

定理 (中國剩餘定理 (Chinese remainder theorem))

給定兩兩互質的正整數 n_1, n_2, \ldots, n_m ,以及 r_1, r_2, \ldots, r_m ,必存在 x 使得

$$egin{cases} x\equiv r_1\pmod{n_1} \ x\equiv r_2\pmod{n_2} \ dots \ x\equiv r_m\pmod{n_m} \end{cases}$$

且所有可能的 x 模 $n_1 n_2 \cdots n_m$ 同餘。

證明: 對 m 使用數學歸納法來證明中國剩餘定理中 x 的存在性。

當 m=1 時顯然。 設當 m=k 時成立,此時 $x\equiv x_0 \pmod{n_1n_2\cdots n_k}$ 。

當 m = k + 1 時,取

$$egin{aligned} x &= x_0 + (n_1 n_2 \cdots n_k) (n_1 n_2 \cdots n_k)^{-1} (r_{k+1} - x_0) \ &\equiv r_{k+1} \pmod{n_{k+1}} \end{aligned}$$

(其中 $(n_1n_2\cdots n_k)^{-1}$ 爲 $n_1n_2\cdots n_k$ 模 n_{k+1} 的模逆元)

證明: 同時

$$egin{aligned} x &= x_0 + (n_1 n_2 \cdots n_k) (n_1 n_2 \cdots n_k)^{-1} (r_{k+1} - x_0) \ &\equiv x_0 \pmod{(n_1 n_2 \cdots n_k)} \end{aligned}$$

所以x 满足中國剩餘定理的k+1 條同餘式。 根據數學歸納法,中國剩餘定理中x 必存在。 另外,因爲 (r_1,r_2,\ldots,r_m) 有 $n_1n_2\cdots n_m$ 種組合,而x模 $n_1n_2\cdots n_m$ 也有 $n_1n_2\cdots n_m$ 種相異的餘數,所以每個 (r_1,r_2,\ldots,r_m) 會對應到唯一一種餘數的解。

定理

給定兩兩互質的正整數 n_1, n_2, \ldots, n_m , 存在一個雙射函數

$$f: \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_m} \to \mathbb{Z}_{n_1 n_2 \cdots n_m}$$

滿足

$$orall (x_1,x_2,\ldots,x_m)\in \mathbb{Z}_{n_1} imes \mathbb{Z}_{n_2} imes \cdots imes \mathbb{Z}_{n_m}, i\in \{1,2,\ldots,m\}$$
 $f(x_1,x_2,\ldots,x_m)\equiv x_i\pmod{n_i}$

一些定理 – Wilson's theorem

定理 (Wilson's theorem)

設 p 爲質數,則

$$(p-1)! \equiv -1 \pmod{p}$$

一些定理 – Wilson's theorem

證明: 若
$$a = a^{-1}$$
,則 $a^2 \equiv 1 \pmod{p}$

$$p|a^2-1=(a+1)(a-1)$$

因爲p是質數,所以p|a+1或p|a-1,於是

$$a \equiv \pm 1 \pmod{p}$$

所以 $\forall a \not\equiv \pm 1 \pmod{p}, \ a \not= a^{-1}$ 另外,我們知道 $(a^{-1})^{-1} = a$,所以對於 $a \not\equiv \pm 1 \pmod{p}$,可以把 a, a^{-1} 雨雨凑對,也就是

$$\{2,3,\ldots,p-2\}=\{a_1,a_1^{-1},a_2,a_2^{-1},\ldots,a_{\frac{p-3}{2}},a_{\frac{p-3}{2}}^{-1}\}$$

一些定理 – Wilson's theorem

$$(p-1)! \equiv -2 \times 3 \times \cdots \times (p-2)$$

 $\equiv -a_1 a_1^{-1} a_2 a_2^{-1} \cdots a_{\frac{p-3}{2}} a_{\frac{p-3}{2}}^{-1} \equiv -1 \pmod{p}$

引理 (Recall from 群論)

$$\forall g \in G$$

$$g^{|G|}=1$$

定理 (費馬小定理)

設p是質數, $p \nmid a$,則

$$a^{p-1} \equiv 1 \pmod{p}$$

證明:

因爲 a^{-1} 存在,所以 $g \to ag$ 是一個雙射函數。 $\Rightarrow a, 2a, \ldots, (p-1)a$ 是一個 $1, 2, \ldots, p-1$ 的排列。 $\Rightarrow a^{p-1}(p-1)! \equiv a(2a)\cdots(p-1)a \equiv (p-1)! \pmod{p}$ $\Rightarrow a^{p-1} \equiv 1 \pmod{p}$ 另外,有一個群論的證明方法:因爲 a 是一個 \mathbb{Z}_p^* 的元素,所以 $a^{p-1} = a^{|\mathbb{Z}_p^*|} = 1$ 。

計算模逆元:因爲 $aa^{p-2}\equiv a^{p-1}\equiv 1\pmod p$,所以 $a^{p-2}\equiv a^{-1}\pmod p$ 。

- 另外一個求模逆元的方法 (O(p) 建表)
- 巳知 1^{-1} , 2^{-1} , $(a-1)^{-1}$, 求 a^{-1}
- 設 p = aq + r, 其中 $1 \le r \le a 1$
- $pr^{-1} = aqr^{-1} + 1$
- $lacksquare -aqr^{-1} \equiv 1 \pmod{p}$
- $lacksquare -q r^{-1} \equiv a^{-1} \pmod{p}$
- lacksquare C++ \darkoverightarrow q=p/a, r=p%a

定義

 $\varphi(n):=|\{\gcd(a,n)=1|0\leq a\leq n-1,\ a\in\mathbb{Z}\}|=|\mathbb{Z}_n^*|$,也就是小於 n 且與 n 互質的非負整數個數。

性質

若 $\gcd(a,b)=1$,則 $\varphi(ab)=\varphi(a)\varphi(b)$,也就是 φ 是積性函數。

證明:

$$\gcd(d, ab) = 1 \iff \gcd(d, a) = 1, \gcd(d, b) = 1$$

:: 在中國剩餘定理中的雙射函數 $f: \mathbb{Z}_a \times \mathbb{Z}_b \to \mathbb{Z}_{ab}$ 會把 $\mathbb{Z}_a^* \times \mathbb{Z}_b^*$ 送到 \mathbb{Z}_{ab}^* 因爲 f 雙射,所以

$$arphi(a)arphi(b) = |\mathbb{Z}_a^* imes\mathbb{Z}_b^*| = |\mathbb{Z}_{ab}^*| = arphi(ab)$$

定義

設p 爲質數, $\nu_p(n) :=$ 最大的整數 α 使得 $\frac{n}{p^{\alpha}}$ 爲整數。 其中n 不一定要是整數,也可以是有理數。

公式

$$arphi(n) = \prod_{p \mid n} (p-1) p^{
u_p(n)-1}$$

證明:

$$arphi(p^k)=|\{\gcd(a,p^k)=1|a\in\mathbb{Z}_{p^k}\}|=|\{p
mid a|a\in\mathbb{Z}_{p^k}\}|=(p-1)p^{k-1}$$

由 φ 是積性函數知:

$$arphi(n) = \prod_{p \mid n} arphi(p^{
u_p(n)}) = \prod_{p \mid n} (p-1)p^{
u_p(n)-1}$$

公式

$$\sum_{d|n} arphi(d) = n$$

一些定理 - 歐拉函數

證明:

$$egin{aligned} n &= \sum_{d \mid n} |\{\gcd(a,n) = d | a \in \mathbb{Z}_n\}| \ &= \sum_{d \mid n} |\{\gcd(a,rac{n}{d}) = 1 | a \in \mathbb{Z}_{rac{n}{d}}\}| \ &= \sum_{d \mid n} arphi(rac{n}{d}) \ &= \sum_{d \mid n} arphi(d) \end{aligned}$$

一些定理 - 歐拉函數

引理

定義數列: $a_0 = n$, $\forall i \geq 1$,

$$a_i = egin{cases} arphi(a_{i-1}), ext{ if } a_{i-1} \geq 2 \ 0, ext{ if } a_{i-1} = 1 \end{cases}$$

則

$$\sum_{i=0}^{\infty}a_i=\Theta(n)$$

一些定理 - 歐拉函數

證明:

首先對於 $a_{i+1}>0$,有 $a_{i+1}< a_i$ 。 如果 $2|a_i$,那麼 $a_{i+1}\leq \frac{a_i}{2}$ 。 如果 a_i 是偶數且 >1,那麼 $a_{i+2}< a_{i+1}\leq \frac{a_i}{2}$ 如果 a_i 是奇數且 >1,其必有奇質數 p,而 $p-1|\varphi(a_i)$, a_{i-1} 是偶數,所以 $a_{i+2}\leq \frac{a_{i+1}}{2}<\frac{a_i}{2}$ 。 所以對於所有 $a_{i+2}>0$, $a_{i+2}<\frac{a_i}{2}$ 。 於是

$$\sum_{i=0}^{\infty}a_i \leq \sum_{i=0}^{\infty}rac{a_0}{2^{\lfloorrac{i}{2}
floor}} = 2\sum_{i=0}^{\infty}rac{a_0}{2^i} = 4a_0 = \mathcal{O}(n)$$

又 $a_0 = n$,所以

$$\sum_{i=0}^{\infty}a_i=\Theta(n)$$

- 99C

一些定理 - 歐拉定理

定理 (歐拉定理)

設
$$gcd(a, n) = 1$$
,則

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

一些定理 - 歐拉定理

證明: 因爲 $a \in \mathbb{Z}_n^*$,所以有 $a^{\varphi(n)} = a^{|\mathbb{Z}_n^*|} = 1$ 。

一些定理 - 歐拉定理

歐拉定理即爲推廣至合數的費馬小定理。

因此在計算 $a^k \pmod{n}$ 時,其中 $\gcd(a,n)=1$,如果 k 非常大,可以將 k 模 $\varphi(n)$ 之後再做計算。

如果 $gcd(a, n) \neq 1$,要怎麼計算 $a^k \pmod{n}$?

引理

設
$$\gcd(a,n)$$
 有質因數集 P , $b=\max_{p\in P}(\lceil rac{
u_p(n)}{
u_p(a)} \rceil)$, $d=\prod_{p\in P}p^{
u_p(n)}$,則 $\forall k\geq b$
$$a^k\equiv a^{k+arphi(\frac{n}{d})}\pmod{n}$$

證明: 因為
$$\forall k \geq b$$

$$egin{aligned} orall p \in P, \
u_p(a^k) = k
u_p(a) \geq b
u_p(a) \geq
u_p(n) \
orall p
otin P, \
u_p(a^k) = k
u_p(a) = 0 \end{aligned}$$

證明: 所以

$$egin{aligned} d|a^k& oxed{oxed{\mathbb{L}}} rac{a^k}{d} \in \mathbb{Z}_{rac{n}{d}}^*, \ a \in \mathbb{Z}_{rac{n}{d}}^*, \end{aligned} egin{aligned} & \Rightarrow a^{arphi(rac{n}{d})} \equiv 1 \pmod{rac{n}{d}} \ & \Rightarrow rac{a^k}{d} \equiv rac{a^{k+arphi(rac{n}{d})}}{d} \pmod{rac{n}{d}} \ & \Rightarrow rac{n}{d}|rac{a^k-a^{k+arphi(rac{n}{d})}}{d} \ & \Rightarrow n|a^k-a^{k+arphi(rac{n}{d})} \ & \therefore a^k \equiv a^{k+arphi(rac{n}{d})} \pmod{n} \end{aligned}$$

引理

$$\gcd(a^k, n) \neq \gcd(a^{k+1}, n) \iff k < b$$

,其中 b 的定義與上個定理相同。

所以我們在算 a^k (mod n) 時,可以先算出 b,注意到我們並不用去算 P,而是去找到最小的 x 使得 $\gcd(a^x,n)=\gcd(a^{x+1},n)$,這個 x 就是 b。

因爲必須要存在某個質數 p 使得 $\nu_p(n) \geq b$,所以 b 的量級爲 $O(\log n)$ 。 如果 k < b 那就直接算 $a^k \pmod n$,否則再算出 $d = \gcd(a^b, n)$ 。

將 k-b 拿去算除以 $\varphi(\frac{n}{d})$ 的餘數得到 r, a^{b+r} 即爲所求。

一些定理 - 次方塔

例子 (次方塔)

給定 $n < 10^6$,計算

$$a_1^{a_2} \pmod{n}$$

一些定理 - 次方塔

證明: 如果遇到某個 $a_i=1$,那 a_i 後面的東西都不用算了。所以我們假設 a_1,a_2,\ldots,a_m 都不是 1。

令 $b_i := a_i^{a_{i+1}} \pmod{n}$ 。 $\Rightarrow b_i = a_i^{b_{i+1}}$ 令 $a = a_1, k = b_2$,並延續上個定理中使用的符號 b, d。 b 可以在 $O(\log n)$ 的時間算出來,因爲可以依序計算 $1, a, a^2, \ldots, a^x$ 然後看什麼時候 $\gcd(a^i, n) = \gcd(a^{i+1}, n)$ 。
而 d 其實不需要算。

一些定理 - 次方塔

證明: 先遞迴下去算 b_2 (mod $\varphi(n)$),接著再回來算 $a_1^{b_2}$ ° 當然,如果 $b_2 < b$,可以在 5 層內判斷,因爲上去 k 層的 結果至少爲 2^2 (其中有 k 個 2),而 $2^{2^{2^2}} = 2^{65536}$,遠 超過 $\log n$ 也就是 b 的量級。 若 $b_2 > b$,算完 $r := (b_2 - b) \pmod{\varphi(n)}$ 之後,接著計 算 a^{b+r} (mod n) 即爲所求。 預先建表可以在 O(n) 的時間算完所有 n 以内的 φ 值。 每一層遞迴會花 $O(\log n) + O(\log(b+r)) = O(\log n + \log n)$ $\log(\log n + \varphi n)) \in O(n)$ 的時間,所以總時間複雜度爲 $O(n) + O(n) + O(\varphi(n)) + O(\varphi(\varphi(n))) + \cdots = O(n)$

定義

設 gcd(a, n) = 1,若 m 是最小的正整數使得 $a^m \equiv 1 \pmod{n}$, 則稱 m 是 a 模 n 下的階,寫作 $ord_n(a) = m$ 。

引理

設
$$\gcd(a,n)=1$$
,若 $a^k\equiv 1\ (\mathrm{mod}\ n)$,則 $\mathrm{ord}_n(a)|k$

證明:

設
$$r$$
 爲 $k = qord_n(a) + r$,其中 $0 \le r \le ord_n(a) - 1$ 。

$$a^r \equiv a^r \cdot 1^q \equiv a^r (a^{\operatorname{ord}(a)})^q \equiv a^k \equiv 1 \pmod n$$

而我們假設 $\mathrm{ord}_n(a)$ 是最小的正整數使得 $a^{\mathrm{ord}_n(a)}=1$,所以 r 不能是正整數,r=0。

$$\therefore \operatorname{ord}_n(a)|k|^{\circ}$$

推論

設
$$gcd(a, n) = 1$$
,則

$$\operatorname{ord}_n(a)|arphi(n)$$

性質

設 $\gcd(a,n)=1$,則 $1,a,a^2,\ldots,a^{\operatorname{ord}_n(a)-1}$ 雨雨相異。

證明:

若 $0 \leq i < j \leq \operatorname{ord}_n(a) - 1$, $a^i = a^j$, 則 $a^{j-i} \equiv a^j (a^i)^{-1} \equiv 1 \pmod{n}$, 但是 $1 \leq j - i \leq \operatorname{ord}_n(a) - 1$, 與 $\operatorname{ord}_n(a)$ 的最小性矛盾。 所以 $a^i \neq a^j$,即 $1, a, a^2, \ldots, a^{\operatorname{ord}_n(a) - 1}$ 雨雨相異。

引理

設
$$gcd(a, n) = 1$$
,則

$$\operatorname{ord}_n(a^k) = rac{\operatorname{ord}_n(a)}{\gcd(\operatorname{ord}_n(a),k)}$$

定義

設 $\gcd(a,n)=1$,若 $\operatorname{ord}_n(a)=\varphi(n)$,則稱 a 是模 n 下的原根。

如果 n 存在原根 a ,那麼因爲 $1, a, \ldots, a^{\operatorname{ord}_n(a)-1}$ 雨雨相異,且 $|\mathbb{Z}_n^*| = \varphi(n)$,就有 $\{1, a, \ldots, a^{\operatorname{ord}_n(a)-1}\} = \mathbb{Z}_n^*$,也就是 a 是 \mathbb{Z}_n^* 的生成元。此時 $\mathbb{Z}_n^* \cong \mathbb{Z}_{\varphi(n)}$,這個群就會變得非常容易討論。 於是我們關心對於哪些 n 有原根。

定理

設 F 是一個 field,則 $\forall p \in F[x]$,即 p 是係數 $\in F$ 的多項式,

$$p(a) = 0 \iff x - a|p(x)$$

證明:

 (\Leftarrow)

$$egin{aligned} x-a|p(x)\ &\Rightarrow p(x)=q(x)(x-a) ext{ for some } q\ &\Rightarrow p(a)=q(a)(a-a)=0 \end{aligned}$$

$$(\Rightarrow)$$
 設 $p(x) = q(x)(x-a) + r(x)$,其中我們能保證 $\deg(r(x)) < \deg(x-a)$,也就是 $r(x)$ 是個常數。

$$egin{aligned} 0 &= p(a) = q(a)(a-a) + r(a) = r(a) \ &\Rightarrow r(a) = 0 \ &\Rightarrow p(x) = q(x)(x-a) \ &\Rightarrow x - a|p(x) \end{aligned}$$

定理

設 F 是一個 field,則 $\forall p \in F[x]$, p 有至多 $\deg(p)$ 個根。

定理

 \mathbb{Z}_n^* 有原根 $\iff n = 1, 2, 4, p^k, 2p^k$, 其中 p 爲奇質數。

證明: 來證明 n=p 是質數的 case。 令 $f(d)=\left|\{a|a\in\mathbb{Z}_p^*,\ \mathrm{ord}_p(a)=d\}\right|$ 。 設 $\mathrm{ord}_p(a)=d$,則 $1,a,a^2,\ldots,a^{d-1}$ 是所有 x^d-1 的根。

$$\operatorname{ord}_p(a^k) = d \iff \dfrac{\operatorname{ord}_p(a)}{\gcd(\operatorname{ord}_p(a), k)} = d \iff \gcd(d, k) = 1$$

 \therefore 一共有 $\varphi(d)$ 個數 b 使得 $\operatorname{ord}_p(b) = d$,即 $f(d) = \varphi(d)$ 。 若不存在 a 使得 $\operatorname{ord}_p(a) = d$,則 f(d) = 0。 所以 $f(d) \leq \varphi(d)$,等號成立若且唯若存在 a 使得 $\operatorname{ord}_p(a) = d$ 。 因爲 $\forall a \in \mathbb{Z}_n^*$, $\operatorname{ord}_p(a)|p-1$,所以

$$\sum_{d|p-1} f(d) = p-1$$

證明: 另外

$$\sum_{d|p-1} arphi(d) = p-1$$

所以

$$\sum_{d|p-1} f(d) = \sum_{d|p-1} arphi(d)$$

也就是 $\forall d|p-1, f(d) = \varphi(d)$, 因此

$$f(p-1)=\varphi(p-1)$$

所以質數有 $\varphi(p-1)$ 個原根。

質數與因數分解 - 隨機

降低標準:100% 正確 $\rightarrow 99.99\%$ 正確

質數與因數分解 - 隨機

引理

設 $0 < \epsilon < 1$,若有一個隨機演算法,每次做會正確的機率都是 $\Omega(\frac{1}{f(n)})$ 且獨立的,則做 $O(f(n)(-\log \epsilon))$ 次即可保證每次都錯 的機率 $< \epsilon$ 。

質數與因數分解 - 隨機

證明:

存在 c 使得每次正確的機率 $> c\frac{1}{f(n)}$ ⇒ 每次錯誤的機率 $< 1 - c\frac{1}{f(n)}$ 做 $\frac{1}{c}f(n)$ 次錯誤的機率 $< (1 - \frac{c}{f(n)})^{\frac{f(n)}{c}} < \frac{1}{e}$ ⇒ 做 $\frac{1}{c}f(n)(-\log\epsilon)$ 次 每 次 都 是 錯 誤 的 機 率 $< (e^{-1})^{-\ln\epsilon} = \epsilon$ 。 當 $\epsilon = \Omega(1)$ 時,做 O(f(n)) 次即可保證每次都錯的機率 $< \epsilon$ 。

質數與因數分解 - Miller-Rabin

給定一個正整數 n,要如何判斷 n 是不是質數呢?

可以枚舉 $2,3,\ldots,\lfloor\sqrt{n}\rfloor$,看是不是 n 的因數,但這樣做的時間複雜度是 $\tilde{O}(\sqrt{n})$,實在是太慢了。

如果隨便找一個數 a,然後發現 $\gcd(a,n) \neq 1$ 且 $\gcd(a,n) \neq n$,那就可以説明 n 不是質數了。

但是在 \mathbb{Z}_n 中與 n 滿足上述條件的數只有 $n-\varphi(n)-1$ 個,對於是兩個差不多量級的質數 p,q 的乘積 n, $n-\varphi(n)-1=pq-(p-1)(q-1)-1=p+q=\Theta(\sqrt{n})$,也就是與 n 不互質的數只有佔 \mathbb{Z}_n 的 $\Theta(\frac{1}{\sqrt{n}})$ 。

隨機找 a 也要找 $\Theta(\sqrt{n})$ 次才能讓找不到 a 的機率為 $\Omega(1)$,這樣時間複雜度同樣是 $\tilde{O}(\sqrt{n})$ 。

質數與因數分解 - Miller-Rabin

互質的 a 也能做事?

費馬小定理:如果 n 是質數,那就會有 $a^{n-1} \equiv 1 \pmod{n}$ 。

因此,若有 $a^{n-1} \not\equiv 1 \pmod{n}$,那麼 n 就不是質數。

對於每個 n 都存在這樣的 a 嗎?就算存在,容易找嗎?

而如果存在這樣的 a,找到的機率蠻高的。

質數與因數分解 - Miller-Rabin

引理

 $otag eta \exists a \in \mathbb{Z}_n^* 使得 \ a^{n-1} \not\equiv 1 \pmod n$,則 $|\{b|b \in \mathbb{Z}_n^*, \ b^{n-1} \not\equiv 1 \pmod n\}| \geq rac{arphi(n)}{2} \circ$

證明:

```
設 G=\mathbb{Z}_n^*,H=\{b|b\in G,\ b^{n-1}\equiv 1\ (\mathrm{mod}\ n)\} 。 因爲 H 封閉且包含於 G,所以 H 是 G 的子群且因爲 a 的存在知 H\neq G 由 Lagrange's theorem 知 |H|\mid |G|,所以 |H|\leq \frac{1}{2}|G|=\frac{\varphi(n)}{2} 所以 |\{b|b\in \mathbb{Z}_n^*,\ b^{n-1}\not\equiv 1\ (\mathrm{mod}\ n)\}|=|G-H|\geq \frac{\varphi(n)}{2} 。
```

所以要判斷不是 Carmichael 數的 n 是合數時,隨機取 a ,要嘛取到 $a \notin \mathbb{Z}_n^*$,要嘛有 $\frac{1}{2}$ 的成功率可以判斷 n 是合數,所以只需要取 O(1) 個 a 就能高機率正確判斷 n 是不是合數。

不過我們還可以再更進一步,如果 n 是質數,除了費馬小定理會滿足之外,還有其他性質。

若
$$x^2 \equiv 1 \pmod{n}$$
,那麼 $(x+1)(x-1) \equiv 0 \pmod{n}$ 。

$$\Rightarrow n|(x+1)(x-1)$$

如果 n 是質數, n|x+1 或 n|x-1

$$\Rightarrow x \equiv \pm 1 \pmod{n}$$

有了這個性質之後,我們可以取一個序列 $a^b, a^{2b}, a^{4b}, \ldots, a^{2^{\nu_2(n-1)}b} (=a^{n-1})$,如果 n 是質數,這個序列由 費馬小定理最後一定會變成 1,而這個序列變成 1 的前一項必須 是 -1 \circ

因此,我們不僅僅驗費馬小定理,還額外驗這個序列,兩個只要有其中一個不成立就可以知道 n 不是質數,這就是 Miller Rabin 的運作原理。

另外,對於一些n的範圍,有人已經發現了驗檢查表中的a即可在該範圍內準確判斷n是不是質數。

```
1 /*
2 檢查表:
3 n<2^32: 2, 7, 61
4 n<2^64: 2, 325, 9375, 28178, 450775, 9780504, 1795265022
5 */
6 #define ll long long
7
8 // 要自己寫乘法與幂,因爲兩個 long long 相乘有可能會溢位
9 ll mul(ll a, ll b, ll n); // return a*b%n
10 ll fpow(ll a, ll b, ll n); // return a^b%n
```

```
bool millerRabin(ll a, ll n){
1
        if(n==2)return 1;
2
        if(n<2||!(n&1))return 0;
3
        if(!(a%=n))return 1;
4
5
        ll b=n-1;
6
        int t=0;
        for(; !(b&1); b>>=1)++t;
8
9
        ll c=fpow(a, b, n);
10
        for(int i=0; i<t; ++i){</pre>
11
             ll c2=mul(c, c, n);
12
             if(c2==1&&c!=1&&c!=n-1)return 0;
13
             c=c2;
14
15
        return c==1;
16
17
```

質數與因數分解 - Cycle Finding

例子 (Cycle finding)

給你一個函數 f 和 x_0 ,對於所有 $i \ge 1$ 令 $x_i := f(x_{i-1})$,如果 f 的確存在循環節,請找出 $i \ne j$ 使得 $x_i = x_j$ 。

我們希望空間複雜度 O(1),如果有解,設最小的解爲 $x_i = x_j$, i < j,那要求時間複雜度是 O(j) (即進入循環節前的長度 + 循環節的長度)

質數與因數分解 - Cycle Finding

設最小的解爲 (i', j') 演算法:

- 剛開始令 i = 1
- 檢查是否有 $j \in (i, 2i]$ 使得 $x_i = x_j$
- 如果沒有就把 i* = 2

檢查次數:

- $j' \le i < 2j'$ 時一定找得到對應的 j
- **②** 設此時的 $i = 2^k$,檢查次數 $= 2^k + 2^{k-1} + \dots + 1 = 2^{k+1} 1 < 2i < 4j' = O(j')$

質數與因數分解 – Birthday Paradox

例子 (Birthday paradox)

均勻隨機取n個人(設一年有365天且每天出生的人數相同),n至少要是多少,能取到有兩個生日相同天的人的機率才會>50%?

質數與因數分解 – Birthday Paradox

答案是 23。

我們來計算沒有兩個人的生日相同的機率p。將n個人一個一個加進來,第i個人加進來時,生日沒跟已經加進來的人重複的機率是 $\frac{365-i+1}{365}$,所以

$$p = \prod_{i=1}^{n} \frac{364-i}{365} = \prod_{i=0}^{n-1} \frac{365-i}{365} < \prod_{i=0}^{n-1} e^{-i/365} = e^{-n(n-1)/730}$$
。當 $n = 23$ 時, $e^{-n(n-1)/730} < e^{-0.69315} < \frac{1}{2}$ 。

將 365 推廣成任意的 m,只要使 $n = \Theta(\sqrt{m})$ 即足夠讓機率足夠小(能小於任意給定常數)。

設我們要因數分解 n = pq, 其中 gcd(p,q) = 1, 並且不失一般性假設 p < q。 隨機選多少個數即足夠找到兩個模 p 同餘的數?

由 Birthday Paradox 知: $\Theta(\sqrt{p})$ 個即足夠,也就是隨機一個一階遞迴數列(即只由前一項去推下一項的數列),有高機率循環節長度在 $\Theta(\sqrt{p})$ 以内。

假設這個數列第 i 項是 x_i ,若 $x_i \equiv x_j \pmod{p}$,有多高的機率 $x_i \equiv x_j \pmod{n}$?

答案是 $\frac{1}{q}$,因爲模 p 同餘與模 q 同餘可以想成是獨立事件 (實際上不是獨立事件,但在這個例子中可以想成幾乎是獨立)

所以會有 $\frac{q-1}{q}$ 的機率 $x_i \not\equiv x_j \pmod n$,此時可以發現, $\gcd(x_i-x_j,n)$ 即是一個 n 的因數,且不是 n 也不是 1 (因爲至 少會被 p 整除)。

而失敗率是 $\frac{1}{q}$,表示我們只要做 O(1) 次即可讓失敗率 $\rightarrow 0$ 。

我們設 x_0 爲 $\{0,1,\ldots,n-1\}$ 中隨機一個數, $x_i=x_{i-1}^2+1$ 配合 Cycle finding,雖然我們沒辦法知道是否有 $p|x_i-x_j$,但是實際上只要去檢測 $\gcd(x_i-x_j,n)$ 是否不是 1 即可,時間複雜 度是 O(循環節長度),也就是 $O(\sqrt{p})=O(\sqrt[4]{n})$ 。

```
ll pollardRho(ll n) {
        if(n%2==0)return 2;
2
        ll xi, xj;
3
        int i=1, j=1;
       xi=xj=2;
5
        while(1){
6
            j++;
7
            xj=f(xj, n);
            int d=__gcd(abs(xi - xj), n);
9
            if(d!=1)return d;
10
            if(j==i*2)i<<=1, xi=xj;
11
12
13
```

2 生成函數

■普通生成

函數

■排容原理

■基本定義

1 計數原理

- . 琥迥
- 組合對應 ■基礎定義

- 一些群
- 群作用

■ 階與原根

一些定理

■質數與因 數分解

- ■指數生成 4 數論
 - 同餘

- 5 致謝
- ■質數與最 6 補充講義 大公因數 與勘誤

致謝

本篇講義特別感謝以前的 IOIC 數學講師、IMOC 數論講師、以及 zscoder 在 Codeforces 撰寫的生成函數教學。

2 生成函數

- ■普通生成
- ■指數生成 4 數論 ■排容原理 函數
- . 琥迥

■基本定義

■ 組合對應 ■基礎定義 一些群

一些定理

■ 群作用

- ■階與原根
- ■質數與因 數分解

同餘

- 5 致謝
- ■質數與最 6 補充講義 大公因數
- 與勘誤

補充講義與勘誤

計數原理

- 連加、連乘、聯集、交集符號
- 莫比烏斯反演回推排容原理
- 講義 p166,改成 n 顆相同的球放進 m 個相異的箱子
- $lacksymbol{\blacksquare}$ 講義 p168, $n! \left| \bigcap_{i \in T} S_i \right|$ 改成 $n! \left| \bigcup_{i \in T} S_i \right|$
- 講義 p169, $\bigcap_{i \in T} S_i = \{\sigma : \forall i \in T, \ \sigma_i = i\}$ 改成 $\bigcap_{i \in T} S_i$
- 雙射函數的定義
- $lacksymbol{\blacksquare}$ 講義 p186,令 $b_i = |\{i|a_i = k\}|$ 改成令 $b_k = |\{i|a_i = k\}|$

群論

- 單位元素與反元素性質的經典題
- 講義 p191:在 |g| 的定義後面補上:當不存在這樣的正整數 n 時,定義 $|g|=\infty$ \circ
- 講義 p191: |g| < |G| 改成 $|g| \le |G|$
- 講義 p191:若存在 $S \in G$ 改成 $S \subseteq G$
- 講義 p197: $\sum\limits_{g\in G}|A^g|=\{(g,a)\in G imes A|ga=a\}$ 改成 $\sum\limits_{g\in G}|A^g|=|\{(g,a)\in G imes A|ga=a\}|$
- 講義 p198: $g^{-1}Hg \in G$ 改成 $g^{-1}Hg = H$

數論

- 講義 p202:(a%n * b%n)%n 改成 (a%n) * (b%n)%n
- 有理數如何模質數
- 模逆元可以用費馬小定理求得
- $lacksymbol{\blacksquare}$ 講義 p $209: a_{i+2} \leq rac{a_{i-1}}{2} < rac{a_i}{2}$ 改成 $a_{i+2} \leq rac{a_{i+1}}{2} < rac{a_i}{2}$
- 講義 p213: \mathbb{Z}_n^* 有原根 \iff $n=1,2,4,p^k,2p^k$,加上 p 爲 奇質數
- 講義 p214:每次做會正確的機率都是 $O(\frac{1}{f(n)})$ 改成每次做會正確的機率都是 $\Omega(\frac{1}{f(n)})$
- 講義上的全改成投影片的:整個 Pollard's rho 的章節(包括 Cycle finding、Birthday paradox 與 Pollard's rho)