Exact Combinatorial Optimization with Graph Convolutional Neural Networks

Angelo Rajendram

25 Mar 2024

- Goal: Solve combinatorial optimization wide-ranging applicability:
 - Logistics: Airline routing & freight transportation
 - Network Design: Telecommunication networks & circuit layouts
 - Planning and scheduling: Inventory management & manufacturing lines

- Goal: Solve combinatorial optimization wide-ranging applicability:
 - Logistics: Airline routing & freight transportation
 - Network Design: Telecommunication networks & circuit layouts
 - Planning and scheduling: Inventory management & manufacturing lines
- Exact optimization algorithms guarantee optimal solutions despite worst case exponential time-complexity
 - If interrupted prior to termination, provides intermediate solution accompanied by an optimality bound (useful in practice)

- Goal: Solve combinatorial optimization wide-ranging applicability:
 - Logistics: Airline routing & freight transportation
 - Network Design: Telecommunication networks & circuit layouts
 - Planning and scheduling: Inventory management & manufacturing lines
- Exact optimization algorithms guarantee optimal solutions despite worst case exponential time-complexity
 - If interrupted prior to termination, provides intermediate solution accompanied by an optimality bound (useful in practice)
 - Traditional solvers are built with hard-coded heuristics but are not tuned to specific problem families of interest to the end-user

- Goal: Solve combinatorial optimization wide-ranging applicability:
 - Logistics: Airline routing & freight transportation
 - Network Design: Telecommunication networks & circuit layouts
 - Planning and scheduling: Inventory management & manufacturing lines
- Exact optimization algorithms guarantee optimal solutions despite worst case exponential time-complexity
 - If interrupted prior to termination, provides intermediate solution accompanied by an optimality bound (useful in practice)
 - Traditional solvers are built with hard-coded heuristics but are not tuned to specific problem families of interest to the end-user
 - Proposal: Use ML to learn heursitic inside of solver

$$\begin{aligned} & \mathsf{argmin}_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ & \mathsf{s.t.} \quad A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} \\ & \mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{aligned}$$

objective coefficient vector
$$\operatorname{argmin}_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$
 decision variables s.t. $A\mathbf{x} \leq \mathbf{b}$ $\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}$ $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

objective coefficient vector
$$\underset{\textbf{argmin}_{\textbf{x}}}{\mathsf{argmin}_{\textbf{x}}} \ \textbf{c}^{\mathsf{T}} \textbf{x}$$
 decision variables constraint coefficient matrix $s.t. \ A \textbf{x} \leq \textbf{b}$ constraint RHS vector $\textbf{I} \leq \textbf{x} \leq \textbf{u}$

 $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

objective coefficient vector
$$\operatorname{argmin}_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$$
 decision constraint coefficient matrix $\mathbf{s.t.} \ A\mathbf{x} \leq \mathbf{b}$ constraint variable lower bound $\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}$ variable $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

decision variables
constraint RHS vector
variable upper bound

objective coefficient vector $\underset{\mathbf{x} \in \mathbb{Z}^p}{\operatorname{argmin}_{\mathbf{x}}} \mathbf{c}^T \mathbf{x}$ constraint coefficient matrix $\mathbf{s.t.} \ A\mathbf{x} \leq \mathbf{b}$ variable lower bound $\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}$ integrality constraints $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

decision variables
constraint RHS vector
variable upper bound
real-valued variables

objective coefficient vector $\operatorname{argmin}_{\mathbf{x}} \mathbf{c}^T \mathbf{x}$ constraint coefficient matrix s.t. Ax < b

variable lower bound I < x < u

integrality constraints $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

decision variables constraint RHS vector variable upper bound real-valued variables

Branch-and-bound tree

 \circ

Solution space

Branch-and-bound tree Solution space

Branch-and-bound tree

Branch-and-bound tree

Solution space

Branch-and-bound tree

Solution space

Branch-and-bound tree

Solution space

Branch-and-bound tree

Solution space

Branch-and-bound tree

Solution space

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimial among leaf nodes

Branch-and-bound tree

Solution space

Lower bound: minimal among leaf nodes

Background: Branch & Bound: Sequential Decision Making

Sequential Decisions in B&B

- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization

• ..

Background: Branch & Bound: Sequential Decision Making

Sequential Decisions in B&B

- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization
- ..

Objective?

- L=U fast?
- U-L \(\sqrt{\quad fast?}\)
- U \ √ fast?
- fast on {problem family}

(e.g. TSP, sheduling, etc.)

Background: Branch & Bound: Sequential Decision Making

Sequential Decisions in B&B

- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization
- ..

Objective?

- L=U fast?
- U-L \ ∫ fast?
- U \ √ fast?
- fast on { problem family }

(e.g. TSP, sheduling, etc.)

Strong branching (SB): one-step forward looking

- solve both LPs for each candidate variable (that does not satisfy integrality constraint)
- pick variable resulting in tightest relaxation
- + small trees
- computationally expensive

Background: Markov Decision Process (MDP) Framework

Reinforcement Learning (RL)

$$(S, A, T, r, \gamma)$$

 $T: S \times A \rightarrow S$
 $r: S \times A \rightarrow \mathbb{R}$
 $\gamma \in (0, 1]$
 $\pi: S \rightarrow A$

Goal: Take actions (learn policy π^*) that maximize $\sum_{t=0}^{\infty} \gamma^t r(s_t)$

Background: Markov Decision Process (MDP) Framework

Imitation Learning

$$\begin{split} & (\mathcal{S}, \mathcal{A}, \mathcal{T}, \not f, \not \gamma) \\ & \mathcal{T}: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S} \\ & \overrightarrow{r}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} \\ & \overrightarrow{\gamma} \in (0, 1] \\ & \pi: \mathcal{S} \rightarrow \mathcal{A} \end{split}$$

Goal: Take actions (learn policy π^*) that maximize $\sum_{t=0}^{\infty} \gamma^t r(s_t)$ Goal: Imitate expert policy π^*

 $\mathsf{MDP} \colon (\mathcal{S}, \mathcal{A}, \mathcal{T}, \not r, \not \gamma)$

MDP: $(S, A, T, \rlap/r, \gamma)$

- ullet States \mathcal{S} : the internal state of the solver and the search tree
- Actions \mathcal{A} : branch on variable not satisfying integrality constraint, $a \in \{1,...,p\}$
- ullet Transition function \mathcal{T} : Depends on MILP instance, solver, and heuristics

MDP:
$$(S, A, T, \rlap/r, \rlap/r)$$

- ullet States \mathcal{S} : the internal state of the solver and the search tree
- Actions A: branch on variable not satisfying integrality constraint, $a \in \{1,...,p\}$
- ullet Transition function \mathcal{T} : Depends on MILP instance, solver, and heuristics

Trajectory:
$$au = (s_0,...,s_T)$$
 with $s_t \in \mathcal{S}$

- initial state s_0 : a MILP $\sim p(s_0)$ and solver configuration
- terminal state s_T : the MILP is solved
- intermediate states: branching

$$s_{t+1} \sim p_{\pi}(s_{t+1}|s_t) = \sum_{a \in \mathcal{A}} \overbrace{\pi(a|s_t)}^{ ext{branching policy solver internals}} p(s_{t+1}|s_t,a)$$

State representation: $s \in \mathcal{S}$

- global information: original MILP, search tree, bounds, focused node, ...
- node information: variable bounds, LP solution, simplex statistics, ...

State representation: $s \in \mathcal{S}$

- global information: original MILP, search tree, bounds, focused node, ...
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances

State representation: $s \in \mathcal{S}$

- global information: original MILP, search tree, bounds, focused node, ...
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

State representation: $s \in \mathcal{S}$

- \bullet global information: original MILP, search tree, bounds, focused node, \dots
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

Sampling trajectories for training: $au \sim p_\pi$

State representation: $s \in \mathcal{S}$

- global information: original MILP, search tree, bounds, focused node, ...
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

Sampling trajectories for training: $au \sim p_\pi$

- ullet obtaining a single sample au= solving MILP
- NP-hard, and π likely not optimal
- expensive, so must train on small instances

State representation: $s \in \mathcal{S}$

- \bullet global information: original MILP, search tree, bounds, focused node, \dots
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

Sampling trajectories for training: $au \sim p_\pi$

- ullet obtaining a single sample au= solving MILP
- NP-hard, and π likely not optimal
- expensive, so must train on small instances (GNNs can generalize!)

State representation: $s \in \mathcal{S}$

- \bullet global information: original MILP, search tree, bounds, focused node, \dots
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

Sampling trajectories for training: $au \sim p_\pi$

- obtaining a single sample $\tau = \text{solving MILP}$
- NP-hard, and π likely not optimal
- expensive, so must train on small instances (GNNs can generalize!)

Reward function: r

no consensus

State representation: $s \in \mathcal{S}$

- \bullet global information: original MILP, search tree, bounds, focused node, \dots
- node information: variable bounds, LP solution, simplex statistics, ...
- dynamically growing search tree
- variable-size instances (Use GNN!)

Sampling trajectories for training: $au \sim p_\pi$

- obtaining a single sample $\tau = \text{solving MILP}$
- NP-hard, and π likely not optimal
- expensive, so must train on small instances (GNNs can generalize!)

Reward function: r

- no consensus
- + imitate strong branching (collect $\mathcal{D} = \{(s, a^*), ...\}$)
- + estimate $\pi^*(a|s)$ from $\mathcal D$ by training offline

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

$$\begin{aligned} & \mathsf{argmin}_{\mathsf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ & \mathsf{s.t.} \quad A \mathbf{x} \leq \mathbf{b} \\ & \mathsf{I} \leq \mathbf{x} \leq \mathbf{u} \\ & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{aligned}$$

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

• v_i : variable features (type, coef., bounds, LP solution, ...)

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

$$\begin{array}{lll} \operatorname{argmin}_{x} & \mathbf{c}^{T}\mathbf{x} & & & \\ \text{s.t.} & A\mathbf{x} \leq \mathbf{b} & & & \\ \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} & & & \mathbf{b} \rightarrow \mathbf{c} & & \\ \mathbf{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} & & & \mathbf{b} \rightarrow \mathbf{c} & & \\ \end{array}$$

- v_i : variable features (type, coef., bounds, LP solution, ...)
- c_j : constraint features (right-hand-side constraint, ...)

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

$$\begin{array}{lll} \operatorname{argmin}_{x} & \mathbf{c}^{T}\mathbf{x} & & & \\ \text{s.t.} & A\mathbf{x} \leq \mathbf{b} & & & \\ \mathbf{I} \leq \mathbf{x} \leq \mathbf{u} & & & \mathbf{b} \rightarrow \mathbf{c} & & \\ \mathbf{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} & & & \mathbf{b} \rightarrow \mathbf{c} & & \\ \end{array}$$

- v_i : variable features (type, coef., bounds, LP solution, ...)
- c_j : constraint features (right-hand-side constraint, ...)
- $e_{i,j}$: non-zero coefficients in A

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

$$\begin{aligned} & \operatorname{argmin}_{\mathsf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ & \operatorname{s.t.} \quad A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\ & \mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{aligned} \qquad \begin{aligned} & \mathbf{x} \rightarrow \mathbf{v} \\ & \mathbf{A}(\mathbf{i}, \mathbf{j}) \rightarrow e_{i,j} \\ & \mathbf{b} \rightarrow \mathbf{c} \end{aligned} \qquad \begin{aligned} & \mathbf{v}_0 \\ & \mathbf{e}_{0,0} \\ & \mathbf{v}_1 \end{aligned} \qquad \begin{aligned} & \mathbf{e}_{0,0} \\ & \mathbf{e}_{1,0} \\ & \mathbf{e}_{2,0} \end{aligned}$$

- v_i : variable features (type, coef., bounds, LP solution, ...)
- c_j : constraint features (right-hand-side constraint, ...)
- e_{i,i}: non-zero coefficients in A

Graph structure is fixed through time during solve (low cost!)

Natural representation: variable/constraint bipartite graph $s_t = (\mathcal{G}, \mathbf{C}, \mathbf{V}, \mathbf{E})$

$$\begin{aligned} & \operatorname{argmin}_{\mathsf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ & \operatorname{s.t.} \quad A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\ & \mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \end{aligned} \qquad \begin{aligned} & \mathbf{x} \rightarrow \mathbf{v} \\ & \mathbf{A}(\mathbf{i}, \mathbf{j}) \rightarrow e_{i,j} \\ & \mathbf{b} \rightarrow \mathbf{c} \end{aligned} \qquad \begin{aligned} & \mathbf{v}_0 \\ & \mathbf{e}_{0,0} \\ & \mathbf{v}_1 \end{aligned} \qquad \begin{aligned} & \mathbf{e}_{0,0} \\ & \mathbf{e}_{1,0} \\ & \mathbf{e}_{2,0} \end{aligned}$$

- v_i : variable features (type, coef., bounds, LP solution, ...)
- c_i : constraint features (right-hand-side constraint, ...)
- $e_{i,j}$: non-zero coefficients in A

Graph structure is fixed through time during solve (low cost!)

Complete state-information not captured, so this is a partially-observed MDP

+ Several good branching policies do not have access to the full state description

Branching Policy as a GCNN Model

Neighbourhood-based updates: $v_i \leftarrow \sum_{j \in \mathcal{N}_i} f_{\theta}(v_i, e_{i,j}, c_j)$

- permutation invariance
- sparse representation

Branching Policy as a GCNN Model

Bipartite graph representation permits graph convolution in the form of two interleaved half-convolutions

$$\mathbf{c_i} \leftarrow \mathit{f_C}\left(\mathbf{c}_i, \sum_{j}^{(i,j) \in \mathsf{E}} \mathit{g_C}(\mathbf{c}_i, \mathbf{v}_j, \mathbf{e}_{i,j})\right) \qquad \mathbf{v_i} \leftarrow \mathit{f_V}\left(\mathbf{v}_i, \sum_{i}^{(i,j) \in \mathsf{E}} \mathit{g_v}(\mathbf{c}_i, \mathbf{v}_j, \mathbf{e}_{i,j})\right)$$

Prenorm Layer: messages are normalized after aggregation to stabilize learning,

$$\mathbf{x} \leftarrow (\mathbf{x} - \beta)/\sigma$$

eta and σ are the mean and standard deviation of ${f x}$ on the training dataset ${\cal D}$

Empirical Results

Comparing ML methods for predicting branching variable scores (ranking) of SB $\,$

Table 1: Imitation learning accuracy on the test sets.

	Set Covering			Comb	inatorial A	Auction	Capacita	ted Facility	y Location	Maximum Independent Set		
model	acc@1	acc@5	acc@10	acc@1	acc@5	acc@10	acc@1	acc@5	acc@10	acc@1	acc@5	acc@10
TREES	51.8±0.3	80.5±0.1	91.4±0.2	52.9 ± 0.3	84.3 ± 0.1	94.1 ± 0.1	63.0 ± 0.4	97.3±0.1	99.9±0.0	30.9 ± 0.4	47.4±0.3	54.6 ± 0.3
SVMRANI	57.6±0.2	84.7 ± 0.1	94.0 ± 0.1	57.2 ± 0.2	86.9 ± 0.2	95.4 ± 0.1	67.8 ± 0.1	98.1 ± 0.1	99.9 ± 0.0	48.0 ± 0.6	69.3 ± 0.2	78.1 ± 0.2
LMART	57.4 ± 0.2	84.5 ± 0.1	93.8 ± 0.1	57.3 ± 0.3	86.9 ± 0.2	95.3 ± 0.1	68.0 ± 0.2	98.0 ± 0.0	99.9 ± 0.0	48.9 ± 0.3	68.9 ± 0.4	77.0 ± 0.5
GCNN	65.5 ± 0.1	92.4 ±0.1	98.2 ± 0.0	61.6 \pm 0.1	91.0 ± 0.1	97.8 ± 0.1	71.2 ±0.2	98.6 ±0.1	99.9 ± 0.0	$\textbf{56.5} \!\pm\! 0.2$	80.8 ± 0.3	89.0 ±0.1

Empirical Results

Search tree size and solving time comparison

Table 2: Policy evaluation on separate instances in terms of solving time, number of wins (fastest method) over number of solved instances, and number of resulting B&B nodes (lower is better). For each problem, the models are trained on easy instances only. See Section 5.1 for definitions.

			M	ledium		Hard					
Model	Easy Time Wins Nodes		Time		Wins Nodes		Time	Wins	Nodes		
FSB	$17.30 \pm 6.1\%$	0/100	17 ±13.7%	411.34 ±	4.3%	0 / 90	171 ± 6.4%	$3600.00 \pm 0.0\%$	0/ 0	n/a ± n/a %	
RPB	$8.98 \pm 4.8\%$	0 / 100	54 ±20.8%	60.07 ±	3.7%	0/100	1741 ± 7.9%	$1677.02 \pm 3.0\%$	4/ 65	47 299 ± 4.9%	
TREES	$9.28 \pm 4.9\%$	0/100	$187 \pm 9.4\%$	$92.47 \pm$	5.9%	0/100	2187 ± 7.9%	$2869.21 \pm 3.2\%$	0 / 35	59 013 ± 9.3%	
SVMRANK	$8.10 \pm 3.8\%$	1/100	$165 \pm~8.2\%$	$73.58 \pm$	3.1%	0/100	1915 ± 3.8%	$2389.92 \pm 2.3\%$	0 / 47	$42120\pm5.4\%$	
LMART	$7.19 \pm 4.2\%$				3.9%			$2165.96 \pm 2.0\%$		45 319 ± 3.4%	
GCNN	$6.59 \pm 3.1\%$	85 / 100	$134 \pm 7.6\%$	42.48 \pm	2.7%	100 / 100	$1450 \pm 3.3\%$	$1489.91 \pm 3.3\%$	66 / 70	$29981 \pm 4.9\%$	
	Set Covering										
FSB	4.11 ±12.1%	0/100	6 ±30.3%	86.90 ± 1	12.9%	0/100	72 ±19.4%	1813.33 ± 5.1%	0 / 68	400 ± 7.5%	
RPB	$2.74 \pm 7.8\%$	0 / 100	10 ±32.1%	17.41 ±	6.6%	0 / 100	689 ±21.2%	136.17 ± 7.9%	13 / 100	5511 ±11.7%	
TREES	$2.47 \pm 7.3\%$	0/100	$86 \pm 15.9\%$	23.70 ± 1	11.2%	0/100	$976 \pm 14.4\%$	451.39 ±14.6%	0 / 95	$10290 \pm 16.2\%$	
SVMRANK	$2.31 \pm 6.8\%$	0/100	$77 \pm 15.0\%$	$23.10 \pm$	9.8%	0/100	$867 \pm 13.4\%$	$364.48 \pm 7.7\%$	0/98	$6329 \pm 7.7\%$	
LMART	$1.79 \pm 6.0\%$	75 / 100	$77 \pm 14.9\%$	$14.42 \pm$	9.5%	1/100	873 ±14.3%	$222.54 \pm 8.6\%$	0/100	$7006 \pm 6.9\%$	
GCNN	$1.85 \pm 5.0\%$	25/100	$70 \pm 12.0\%$	10.29 \pm	7.1%	99/100	657 ±12.2%	114.16 $\pm 10.3\%$	87/100	$5169 \pm 14.9\%$	
Combinatorial Auction											
FSB	30.36 ±19.6%	4/100	14 ±34.5%	214.25 ± 1	15.2%	1/100	76 ±15.8%	$742.91 \pm 9.1\%$	15 / 90	55 ± 7.2%	
RPB	$26.55 \pm 16.2\%$	9/100	22 ±31.9%	156.12 ± 1	11.5%	8/100	142 ±20.6%	$631.50 \pm 8.1\%$	14 / 96	110 ±15.5%	
TREES	$28.96 \pm 14.7\%$	3/100	$135 \pm 20.0\%$	159.86 ± 1	15.3%	3/100	401 ±11.6%	$671.01 \pm 11.1\%$	1/95	$381 \pm 11.1\%$	
SVMRANK	$23.58 \pm 14.1\%$			130.86 ± 1	13.6%	13 / 100	$348 \pm 11.4\%$	586.13 ±10.0%	21 / 95	$321 \pm 8.8\%$	
LMART	$23.34 \pm 13.6\%$	16/100	$117 \pm 20.7\%$	128.48 ± 1	15.4%	23 / 100	$349 \pm 12.9\%$	$582.38 \pm 10.5\%$	15 / 95	$314 \pm 7.0\%$	
GCNN	$22.10 \pm 15.8\%$	57/100	$107 \pm 21.4\%$	120.94 ± 1	14.2%	52/100	$339 \pm 11.8\%$	563.36 ±10.7%	30 / 95	$338 \pm 10.9\%$	
Capacitated Facility Location											
FSB	$23.58 \pm 29.9\%$	9/100	7 ±35.9%	1503.55 ± 2	20.9%	0 / 74	38 ±28.2%	$3600.00 \pm 0.0\%$	0/ 0	n/a ± n/a %	
RPB	8.77 ±11.8%	7/100	20 ±36.1%	110.99 ± 2	24.4%	41/100	729 ±37.3%	$2045.61 \pm 18.3\%$	22 / 42	2675 ±24.0%	
TREES	$10.75 \pm 22.1\%$	1/100	$76 \pm 44.2\%$	1183.37 ± 3	34.2%	1 / 47	4664 ±45.8%	$3565.12 \pm 1.2\%$	0/ 3	$38296 \pm 4.1\%$	
SVMRANK	$8.83 \pm 14.9\%$	2/100	$46 \pm 32.2\%$	242.91 ± 2	29.3%	1/ 96	$546 \pm 26.0\%$	$2902.94 \pm 9.6\%$	1 / 18	$6256 \pm 15.1\%$	
LMART	$7.31 \pm 12.7\%$	30 / 100	$52 \pm 38.1\%$	219.22 ± 3		15 / 91	747 ±35.1%	$3044.94 \pm 7.0\%$	0 / 12	$8893 \pm 3.5\%$	
GCNN	6.43 ±11.6%	51/100	43 ±40.2%	192.91 ± 11	10.2%	42 / 82	$1841 \pm 88.0\%$	2024.37 ±30.6%	25 / 29	$2997 \pm 26.3\%$	
	Maximum Independent Set										

Ablation Study

Table 3: Ablation study of our GCNN model on the set covering problem. Sum convolutions generalize better to larger instances, especially when combined with a prenorm layer.

	Accuracies				Easy			Mediun	n	Hard		
Mode	el acc@1	acc@5	acc@10	time	wins	nodes	time	wins	nodes	time	wins	nodes
MEA	N 65.4 ±0.1	92.4 ±0.1	98.2 ±0.0	$6.7 \pm 3\%$	13 / 100	134 ±6%	$43.7 \pm 3\%$	19/100	1894 ±4%	1593.0 ±4%	6/70	$62227 \pm 6\%$
SUM	65.5 ± 0.2	$2.92.3 \pm 0.2$	98.1 ± 0.1	6.6 $\pm 3\%$	27 / 100	$134 \pm\!6\%$	42.5 $\pm 3\%$	45 / 100	$1882 \pm \! 4\%$	$1511.7 \pm 3\%$	22/70	$57864 \pm 4\%$
GCN	N 65.5 ± 0.1	92.4 ± 0.1	98.2 ± 0.0	6.6 $\pm 3\%$	60 / 100	$134 \pm 8\%$	42.5 \pm 3%	36/100	1870 $\pm 3\%$	1489.9 $\pm 3\%$	42 / 70	56 348 \pm 5%

- sum aggregation is more expressive than mean aggregation
- prenorm layers stabilize learning and permits better generalization to harder instances

Related Work

- Khalil et al. (2016) attempts to learn branching rules during B&B customized to a single instance (trained online)
 - Learning to branch in mixed integer programming.
- Alvarez et al (2017) treats problem of variable selection as a regression problem on variable scores (trained offline)
 - A machine learning-based approximation of strong branching.
- Hansknecht et al. (2018) treats problem of variable selection as a ranking problem, learning a partial ordering of candidates from an expert policy
 - Cuts, primal heuristics, and learning to branch for the time-dependent traveling salesman problem.

Gasse et al. in this work:

- + learns variable selection heuristics for branching in an offline manner
- + treats the problem as classification and can learn from expert rules that do not produce variable rankings
- + The approach generalizes to harder instances, competitive with traditional MILP solvers

Conclusions

Heuristic vs. data-driven branching:

- + tune B&B to problem families of interest (e.g. TSP)
- + can generalize to harder problems
- no guarantees outside training distribution
- requires training instances \mathcal{D} (NP-hard problems)
- will never surpass expert wrt. decision quality
- + but may be able to solve instances faster