

Jedrski reaktor

Igor Jenčič

Institut "Jožef Stefan"

Izobraževalni center za jedrsko tehnologijo

Vsebina

- atomi, jedra, nuklidi, izotopi
- vezavna energija jedra
- cepitev težkih jeder
- upočasnjevanje nevtronov
- verižna reakcija
- transuranski elementi in cepitveni produkti
- energijska bilanca cepitve
- zaostala toplota
- vrste reaktorjev
- napredni reaktorji
- reaktorji IV. generacije

Atom in njegovo jedro

jedro vsebuje <u>nukleone</u>:

masno število:

oznaka nuklida:

Z protonov in N nevtronov

$$A = Z + N$$

$${}_{Z}^{A}\mathbf{X}_{N}$$
 \rightarrow ${}^{A}\mathbf{X}$, npr. ${}_{92}^{235}\mathbf{U}_{143}$ \rightarrow ${}^{235}\mathbf{U}$

• nukleone veže <u>močna jedrska sila</u>, protoni se elektrostatsko odbijajo

Tabela stabilnih nuklidov

www.icjt.org 5/57

Mase nuklidov

• 1 u = 1/12 mase atoma ${}^{12}C = 1,66 \cdot 10^{-27}$ kg

```
\begin{array}{lll} \bullet & m_{\text{C-}12} & = & 12 \text{ u} \\ \bullet & m_{\text{n}} & = & 1,008665 \text{ u} \\ \bullet & m_{\text{H-}1} & = & 1,007826 \text{ u} \\ \bullet & m_{\text{H-}2} & = & 2,014103 \text{ u} \\ \bullet & m_{\text{Fe-}56} & = & 55,934938 \text{ u} \\ \bullet & m_{\text{U-}238} & = & 238,050786 \text{ u} \end{array}
```

- Einstein: $E = m c^2$: u $c^2 = 1,66 \cdot 10^{-27} \text{kg} \cdot (2,998 \cdot 10^8 \text{m/s})^2 = 1,492 \cdot 10^{-10} \text{J} = 931 \text{ MeV}$
- praviloma lahko v energijo pretvorimo le zelo majhen del mase:
 - jedrske reakcije: do 4·10⁻³ (cepitev okoli 10⁻³)
 - kemične reakcije: okoli 10⁻¹⁰

6/57

Masni defekt jedra

- masa jedra je manjša kot vsota mas nukleonov
 - masni defekt je razlika med vsoto mas vseh nukleonov, ki sestavljajo jedro ^AX, in maso jedra:

$$\Delta m = m_x - Z \cdot m_p - N \cdot m_n$$
 $(m_x \dots \text{masa jedra})$

- ${}^{1}H: \Delta m = 0$
- D (2 H): $\Delta m = m_{D} (m_{H} + m_{D}) = -0,002388 u$
- ^{12}C : $\Delta m = m_{\text{C}} (6 m_{\text{H}} + 6 m_{\text{n}}) = -0,098946 \text{ u}$
- 56 Fe: $\Delta m = m_{Fe} (26 m_H + 30 m_n) = -0.528488 u$
- 238 U: $\Delta m = m_U (92 m_H + 146 m_n) = -1,934296 u$

Vezavna energija jedra

- neto energija, potrebna, da razstavimo (razbijemo) jedro na sestavne dele
 - energija, ki je ekvivalentna masnemu defektu jedra $W_{\rm B} = \Delta m \cdot c^2$

• primeri:

```
W_{\rm B}(^{1}{\rm H}) = 0

W_{\rm B}(^{2}{\rm H}) = -0.002388 \cdot 931 \; {\rm MeV} = -2.2 \; {\rm MeV}

W_{\rm B}(^{12}{\rm C}) = -0.098946 \cdot 931 \; {\rm MeV} = -92 \; {\rm MeV}

W_{\rm B}(^{56}{\rm Fe}) = -0.528488 \cdot 931 \; {\rm MeV} = -492 \; {\rm MeV}

W_{\rm B}(^{238}{\rm U}) = -1.934178 \cdot 931 \; {\rm MeV} = -1801 \; {\rm MeV}
```


Vezavna energija na nukleon

$$W_{\rm B} = \Delta m c^2 / A$$

- Če želimo iz jedra odtrgati en nukleon, v poprečju porabimo $w_{\rm B}$ energije
- primeri:

$$w_{\rm B}(^{1}{\rm H}) = 0$$

 $w_{\rm B}(^{2}{\rm H}) = -2.2 \text{ MeV}/2 = -1.1 \text{ MeV}$
 $w_{\rm B}(^{12}{\rm C}) = -92 \text{ MeV}/12 = -7.7 \text{ MeV}$
 $w_{\rm B}(^{56}{\rm Fe}) = -492 \text{ MeV}/56 = -8.8 \text{ MeV}$
 $w_{\rm B}(^{238}{\rm U}) = -1801 \text{ MeV}/238 = -7.6 \text{ MeV}$

Krivulja vezavne energije na nukleon

Mehanizem cepitve

- težko jedro zajame nevtron
- vmesno jedro po zajetju nevtrona vzbujeno
 - ⇒ zaradi velike notranje energije zaniha
- če pri tem zavzame podolgovato obliko
 - ⇒ električne odbojne sile premagajo jedrske privlačne

• sprostita se 2 ali 3 nevtroni (poprečje 2,43) z $\langle E_{kin} \rangle = 2 \text{ MeV}$

Kritična energija za cepitev

Kritična energija E_c je energija, ki jo moramo dovesti jedru, da se lahko razcepi

Jedro	Vmesno jedro	Vezavna energija nevtrona, $E_{ m b}$ [MeV]	Kritična energija <i>E</i> _c [MeV]	Razlika $E_{\rm c}$ – $E_{\rm b}$ [MeV]
²³² Th	²³³ Th	4,8	6,0	1,2
233U	234U	6,8	5,1	-1,7
235U	236U	6,5	5,2	-1,3
238U	239U	4,8	5,7	0,9
²³⁹ Pu	²⁴⁰ Pu	6,5	4,8	-1,7
²⁴⁰ Pu	²⁴¹ Pu	5,2	5,3	0,1
²⁴¹ Pu	²⁴² Pu	6,3	5,0	-1,3

12/57

Verjetnost za reakcijo: presek

v naravnem uranu je 99,7% ²³⁸U in 0,7% ²³⁵U

Termična in hitra cepitev

- pri cepitvi rojeni nevtroni so hitri nevtroni (E ~ MeV)
- za reakcijo cepitve najbolj učinkoviti termični nevtroni $(E \sim 0,1 \text{ eV})$
- v termičnih reaktorjih nevtrone upočasnjujemo
- nevtroni se upočasnjujejo s sipanjem
- elastično sipanje najbolj učinkovito na lahkih jedrih
- energija nevtronov se zmanjšuje, dokler se ne izenači z energijo (termičnega) nihanja atomov v snovi
- v hitrih reaktorjih večino cepitev povzročijo hitri nevtroni
 - čim manj snovi z lahkimi jedri, hladilo kovina (tekoči Na)

Moderacija nevtronov

- elastično sipanje nevtronov je v fizikalnem smislu primerljivo s trki biljardnih kroglic
- nevtron pri enem trku izgubi energijo $0 < T < T_{\text{max}}$:

$$T_{\text{max}} = \frac{4A}{(A+1)^2} E_0$$

- pri vsakem trku izgubi nevtron v povprečju enak <u>delež</u> svoje energije
- moderatorji so snovi, ki vsebujejo lahke atome
 - voda (vodik)
 - težka voda (devterij)
 - grafit (ogljik)

15/57

Lastnosti moderatorjev

- število trkov za termalizacijo je povprečno število trkov, potrebno, da se nevtronu zniža energija od 2 MeV na 0,1 MeV
- zaviralni čas je povprečni čas od trenutka, ko se nevtron sprosti pri cepitvi, pa do trenutka, ko postane termičen
- difuzijski čas je povprečni čas od trenutka, ko se nevtron termalizira, pa do trenutka, ko se absorbira
 - odvisen v glavnem od količine absorberjev v sredici

Moderator	število trkov za termalizacijo	zaviralni čas [µs]	difuzijski čas [µs]
H ₂ O	18	7,1	240
D ₂ O	33	50	60000
Grafit	107	140	16000
Sredica PWR	20	10	10

Nevtronski cikel

Efektivni pomnoževalni faktor k

Efektivni pomnoževalni faktor k je:

$$k = \frac{\text{število nevtronov v neki generaciji}}{\text{število nevtronov v predhodni generaciji}}$$

Lahko ga zapišemo produkt šestih faktorjev:

$$k = \eta \cdot f \cdot P_{t} \cdot p \cdot P_{f} \cdot \varepsilon$$

- k = 1: kritična verižna reakcija (število nevtronov se ohranja)
- k > 1: nadkritična verižna reakcija (število nevtronov narašča)
- k < 1: podkritična verižna reakcija (število nevtronov pada)

Verižna reakcija

vsaka generacija nevtronov povzroči rojstvo nove

generacije nevtronov

verižna reakcija v primeru k = 2

Drugi procesi v gorivu med cepitvijo

- Poleg verižne reakcije v sredici reaktorja potekata še najmanj dva pomembna procesa:
- nastajanje plutonija in drugih transuranskih elementov ali aktinidov
- 2. nastajanje radioaktivnih cepitvenih produktov

Nastajanje plutonija

$$^{238}U + n \rightarrow ^{239}U + \gamma \equiv ^{238}U (n, \gamma)^{239}U$$
 $^{239}U \xrightarrow{\beta^{-}(t_{1/2}=24 \text{ min})} \rightarrow ^{239}Np \xrightarrow{\beta^{-}(t_{1/2}=2 \text{ d})} \rightarrow ^{239}Pu (t_{1/2}=24100 \text{ let})$

- Plutonij-239 je cepljiv nuklid (jedrsko gorivo, tako kot ²³⁵U)
 - Uran-238 ni cepljiv nuklid (s termičnimi nevtroni), vendar je oplodni nuklid, ker iz njega lahko pridobivamo cepljivi ²³⁹Pu
- Tudi ²³²Th je oplodni nuklid:

$${}^{232}_{90}\text{Th}(n,\gamma){}^{233}_{90}\text{Th} \xrightarrow{\beta^{-}(t_{1/2}=22,3\,\text{min})} {}^{233}_{91}\text{Pa} \xrightarrow{\beta^{-}(t_{1/2}=27\,\text{dni})} {}^{233}_{92}\text{U}$$

Nastajanje transuranskih elementov

Skica cepitve

Cepitveni pridelek

• število razcepkov z masnim številom A na 100 cepitev

Razmerje nukleonov pri razcepkih

Cepitveni produkti

$$N/Z_{\rm razcepkov} \approx N/Z_{\rm začetno\ jedro}$$

 $N/Z_{\rm razcepkov} > N/Z_{\rm stabilna\ jedra}$

- Razcepki so vzbujena jedra (5 do 20 MeV)
 - β in γ razpadi

Cepitveni produkti

- razcepki in njih potomci
- 3 do 4 β razpadov do stabilnih jeder
- t_{1/2} cepitvenih produktov:
 - od ~0.1 s do nekaj milijonov let

Primer radioaktivne verige razcepkov

235
U + n \to 99 Nb + 135 I + 2 n
 236 U: $N/Z \approx 1,57$
 135 I: $N/Z \approx 1,55$
 135 I \longrightarrow 135 Xe \longrightarrow 135 Cs \longrightarrow 135 Ba (stabilen)
Stabilni nuklid 135 Ba: $N/Z \approx 1,41$

 pri cepitvah nastane okrog 300 cepitvenih produktov, večinoma radioaktivnih

Pomen razpada cepitvenih produktov

- Pri razpadih se sprošča velika količina toplote (zakasnele toplote) tudi po zaustavitvi reaktorja in jo moramo odvajati
- Radioaktivno sevanje je človeškemu organizmu škodljivo
- Emisija zakasnelih nevtronov
- Nevtronski absorberji

Zakasneli nevtroni

- Nastanejo po β-n razpadu nekaterih cepitvenih produktov
- <u>Čas zakasnitve glede na cepitev</u> je določen z razpolovnim časom prednika zakasnelega nevtrona

Energijska bilanca cepitve

- w_B težkih jeder:
 ~ 7.5 MeV/nukleon
- w_B srednje težkih jeder:
 ~ 8.5 MeV/nukleon

29/57

• pri cepitvi težkega jedra na dve srednje težki pričakujemo sprostitev nekaj manj kot ~ 1 MeV energije na vsak nukleon, skupaj ~ 200 MeV

30/57

Reakcijska energija cepitve

- primer cepitve: $^{235}\text{U} + \text{n} \rightarrow ^{92}\text{Rb} + ^{142}\text{Cs} + 2 \text{ n}$ • $m_{^{235}\text{U}} = 235,0439 \text{ u}$ $m_{^{92}\text{Rb}} = 91,9194 \text{ u}$ • $m_{^{142}\text{Cs}} = 141,9239 \text{ u}$ $m_{^{n}} = 1,0087 \text{ u}$
 - $\Delta m = m_{Rb} + m_{Cs} + 2 m_n m_U m_n = -0.1920 \text{ u}$
 - $Q = -0.192 \cdot 931 \text{ MeV} = -179 \text{ MeV}$
- reakcijska energija cepitve Q:
 - kinetična energija razcepkov
 - kinetična energija takojšnjih nevtronov
 - kinetična energija takojšnjih γ
- praktično v celoti ostane v sredici
- cepljiva jedra se lahko cepijo na več kot 100 različnih načinov (prikazan primer je le eden od možnih)

Energija β⁻ razpada

- ⁹²Rb: po 3 razpadih β preide v stabilni ⁹²Zr
 - sprosti se ~ 13,4 MeV
- 142Cs: po 3 razpadih β preide v 142Ce
 - sprosti ~ 13,6 MeV.
- Energija iz β razpadov postopno (zakasnjeno) v obliki:
 - kinetične energije β delcev, antinevtrinov, žarkov gama
 - kinetične energije novo nastalih jeder
- Del energije odnesejo nevtrini, večina ostane v sredici
- Skupaj z reakcijsko energijo cepitve ~206 MeV
- Brez energije nevtrinov: 200 MeV

Poraba ²³⁵U v reaktorju

Reaktor obratuje na moči *P* [MW].

Koliko cepitev ²³⁵U na sekundo bi bilo potrebnih za tako moč:

- pri cepitvi se sprosti 200 MeV = $200 \cdot 10^6 \cdot 1,6 \cdot 10^{-19} \text{ J} = 3,2 \cdot 10^{-11} \text{ Ws}$
- 1 W ustreza $1/(3,2\cdot10^{-11})$ cepitev/s = $3,13\cdot10^{10}$ cepitev/s
- 1 MW ustreza 3,13·10¹⁶ cepitev/s

Število potrebnih cepitev na dan: $3,13\cdot10^{16}\cdot3600\cdot24=2,7\cdot10^{21}$ cepitev

- če reaktor obratuje 1 dan, se za vsak MW cepi 2,7·10²¹ atomov ²³⁵U
- za pridobitev energije 1 MWd se porabi 2,7·10²¹ atomov ²³⁵U

Masa ²³⁵U, ki ustreza energiji 1 MWd:

$$n = \frac{m}{M} N_{\rm A} \implies m = \frac{n M}{N_{\rm A}} = \frac{2,7 \cdot 10^{21} \cdot 235 \text{ g/mol}}{6 \cdot 10^{23} \text{ mol}^{-1}} = 1,06 \text{ g}$$

Za sprostitev 1 MWd energije se cepi ≈1 g ²³⁵U

Zakasnela toplota

- Energija, ki se sprošča v sredici reaktorja po ugasnitvi reaktorja
 - posledica β in γ razpada razcepkov in njih potomcev
- Takoj po ugasnitvi se hitro zmanjšuje s časom
 - posledica razpada kratkoživih izotopov
- Če je reaktor obratoval dalj časa, počasneje pada s časom
 - nastalo je več dolgoživih izotopov
- Je sorazmerna moči reaktorja pred zaustavitvijo
 - ravnotežna koncentracija kratkoživih radionuklidov sorazmerna gostoti cepitev

Časovni potek zakasnele toplote

• glede na različne čase obratovanja reaktorja pred zaustavitvijo

NEK po daljšem času obratovanja:

Čas po zaustavitvi	% polne moči	Zakasnela toplota
1 s	6,0%	120 MW
1 min	4,5%	90 MW
1 ura	1,6%	32 MW
8 ur	1,0%	20 MW
1 dan	0,7%	14 MW
1 teden	0,5%	10 MW
1 mesec	0.1%	2 MW

www.icjt.org 35/57

Komponente jedrskega reaktorja

Jedrsko gorivo

- naravni uran
- obogateni uran (višji % U-235)
- plutonij
- Moderator (snov za upočasnjevanje nevtronov)
 - vodik: navadna voda
 - devterij (težki vodik): težka voda
 - ogljik: grafit
- Hladilo (snov za odvajanje toplote)
 - navadna ali težka voda
 - CO₂
 - He
- Kontrolni sistem (snov, ki absorbira nevtrone)

36/57

Uporaba reaktorjev

Jedrski reaktor je vir:

- nevtronov → raziskovalni reaktorji
 - nevtronska aktivacijska analiza
 - proizvodnja radionuklidov
 - testiranje materialov
 - šolanje
- toplote → močnostni reaktorji
 - proizvodnja elektrike
 - pogon plovil
 - daljinsko ogrevanje
 - razsoljevanje morske vode
 - proizvodnja vodika
 - pridobivanje nafte

Raziskovalni reaktor TRIGA pri Ljubljani

Training
Research
Isotopes
GA General Atomic

šolanje raziskave izotopi proizvajalec

Prerez reaktorja TRIGA

Pulz v reaktorju TRIGA

reaktor razsvetljuje Čerenkovo sevanje

Jedrska elektrarna Krško

Tlačnovodni reaktor (PWR)

- jedrska elektrarna Krško je tlačnovodni reaktor
- PWR = Pressurized Water Reactor
- sovjetske elektrarne tipa VVER so tudi tlačnovodne
- hladilo in moderator navadna (lahka) voda
- $T = 330^{\circ} \text{ C}$, $p = 155 \text{ bar} \Rightarrow primarna \text{ voda ne zavre}$
- primarna voda v **uparjalnikih** greje sekundarno
- v uparjalnikih nastaja para in poganja turbino
- gorivo 3-5% obogaten uran
- ✓ sekundarni krog učinkovito ločuje radioaktivno primarno hladilo od okolja
- vmesni sistem pomeni več komponent in možnih okvar
- približno 75% vseh obratujočih jedrskih elektrarn

Tlačnovodni reaktor

Vrelni reaktor (BWR)

- BWR = Boiling Water Reactor
- hladilo in moderator navadna voda
- po zasnovi najbolj podobna klasičnim termoelektrarnam
- voda se uparja v reaktorju, para neposredno v turbino
- gorivo slabo ubogaten (3-5%) uran
- ✓ razmeroma enostavna zasnova
- radioaktivno onesnaženje turbine
- zahtevnejša regulacija moči
- drugi najbolj razširjeni tip jedrskih elektrarn (21%)

Vrelni reaktor

Težkovodni tlačni reaktor - PHWR

- PHWR = Pressurized Heavy Water Reactor
- CANDU = CANada Deuterium Uranium
- gorivo naravni (ali rahlo obogateni) uran
- moderator težka voda nizek tlak
- hladilo težka (redko navadna) voda pod visokim tlakom
- gorivo in hladilo v sistemu vodoravnih cevi calandria
- ✓ uporaba naravnega urana
- ✓ menjava goriva med obratovanjem
- draga težka voda in nadomeščanje njenih izgub
- zapletenost regulacije
- Kanada, Indija, Pakistan, Argentina, Romunija... (9% vseh JE)

Težkovodni tlačni reaktor PHWR (CANDU)

Plinsko hlajeni reaktor – GCR, AGR, HTGR, PBMR

- gorivo naravni uran, moderator grafit
- hladilo plin:
 - GCR CO₂, 400°C (Velika Britanija *Magnox*)
 - AGR CO₂, 650°C (Velika Britanija, gorivo rahlo obogateno)
 - HTGR He, 750°C (ZDA)
 - PBMR He, 900°C, gorivo velikosti biljardnih krogel (JAR)
- ✓ visok termodinamski izkoristek
- cena elektrike dražja kot pri lahkovodnih reaktorjih
- PBMR obetajo ekonomsko učinkovitost ob hkratni bistveno višji stopnji varnosti kot sedanja generacija

<u>a</u>-

Plinsko hlajeni reaktor – GCR, AGR

Grafitni vodno hlajeni reaktor - LWGR

- v Sovjetski zvezi elektrarne z oznako RBMK
- moderator grafit, hladilo voda, ki vre v kanalih ob gorivu
- ✓ menjava goriva med obratovanjem
- velika sredica, zapletena regulacija
- zadrževalnega hrama ni
- določenem območju se z višanjem temperatue moč poveča
- 26. aprila 1986 v Černobilu najhujša jedrska nesreča, sprostitev ogromne količine radioaktivnih snovi
 - 38 mrtvih zaradi velikih doz radioaktivnega sevanja
 - ~4000 otrok dobilo raka na ščitnici, 9 otrok umrlo, ostale ozdravili
 - ocena: med skupno 600 000 reševalci in prebivalci do 4000 dodatnih primerov raka levkemije
- po nesreči so ostale RBMK reaktorje precej izboljšali, a na zahodu velja prepričanje, da jih je treba čim prej zapreti

50/57

Grafitni vodno hlajeni reaktor – LWGR (RBMK)

Hitri oplodni reaktor - FBR

- FBR = Fast Breeder Reactor
- ne deluje na počasne (termične), ampak na hitre nevtrone
- cepitev na hitre nevtrone manj učinkovita, zato obogatitev goriva višja (15-35%)
- moderatorja ni, hladilo naj čim manj upočasnjuje nevtrone
- običajno hladilo tekoči natrij
- 3 toplotne zanke (1. in 2. Na, 3. voda)
- v oplodnih reaktorjih nastane več iz ²³⁸U plutonija kot izgori ²³⁵U
- zaradi trenutno nizke cene urana in zapletenih tehnoloških rešitev se je njihov razvoj ustavil

Hitri oplodni reaktor - FBR

Primarni natrijev krog

UO₂/PuO₂ Gorivo

20% Obogatitev

Sredica D=1.8m, H=1m

Tlak 8bar

530°C Temperatura

Sekundarni natrijev krog

Turbinski krog

120bar Tlak

Temperatura 480°C

www.icjt.org 53/57

Reaktorji III. generacije

- EPR
 - tlačnovodni reaktor, moč 1600 MW
 - izboljšani/števičnejši varnostni sistemi
 - proizvajalec Areva (Francija, Nemčija)
 - gradijo ga na Finskem in v Franciji
- AP-1000
 - tlačnovodni reaktor, moč 1100 MW
 - zasnovan v smer večje inherentne varnosti
 - proizvajalec Westinghouse
 - sklenjena pogodba s Kitajsko
- SBWR (General Electric)
- SWR 1000 (Areva)
 - napredna vrelna reaktorja

www.icjt.org 54/57

Reaktorji III+ generacije

- komercialno dostopni 2010-2020
- PBMR
 - 6 cm kroglice iz karbida/grafita
 - v kroglicah 0,5 mm zrnca 9% U
 - 456000 kroglic v sredici
 - 165 MW

IRIS

- PWR
- integralna reaktorska posoda
- 335 MW

Reaktorji IV. generacije

- poudarek na trajnostnem razvoju
 - velik izkoristek goriva
 - minimalen vpliv na okolje
- ekonomičnost, varnost
- minimalna možnost uporabe v vojaške namene
- predvsem razne vrste oplodnih reaktorjev
- komercialna proizvodnja okoli 2030

Nabor reaktorjev IV. generacije

56/57

Hitri plinski reaktor

Zelo visokotemperaturni reaktor

Nadkritični vodno hlajeni reaktor

Vabljeni s svojimi učenci na razstavo o jedrski tehnologiji na ICJT

- predavanje, poskusi, ogled razstave, ogled Trige
- brezplačne publikacije
- od 1993 do 2007 je bilo 100.000 obiskovalcev

