HW₁

b09902004 郭懷元

1.5

a.

P1:
$$\frac{3\times10^9}{1.5}=2\times10^9$$
 instructions per second P2: $\frac{2.5\times10^9}{1.0}=2.5\times10^9$ instructions per second P3: $\frac{4.0\times10^9}{2.2}=1.8\times10^9$ instructions per second

P2 has the highest instructions per second.

b.

P1:
$$(3\times 10^9)\times 10=3\times 10^{10}$$
 cycles; $\frac{3\times 10^{10}}{1.5}=2\times 10^{10}$ instructions P2: $(2.5\times 10^9)\times 10=2.5\times 10^{10}$ cycles; $\frac{2.5\times 10^{10}}{1.0}=2.5\times 10^{10}$ instructions P3: $(4.0\times 10^9)\times 10=4\times 10^{10}$ cycles; $\frac{4\times 10^{10}}{2.2}=1.8\times 10^{10}$ instructions

C.

$$time = instructions \times \frac{cycle}{instruction} \times \frac{time}{cycle} = instructions \times \frac{CPI}{clock \ rate}$$

$$clock \ rate = instructions \times \frac{CPI}{time}$$

$$\begin{array}{l} \text{P1: } 3\times 10^9\times (1\times \frac{1.2}{0.7}) = 5.1\,\text{GHz} \\ \text{P2: } 2.5\times 10^9\times (1\times \frac{1.2}{0.7}) = 4.3\,\text{GHz} \\ \text{P3: } 4\times 10^9\times (1\times \frac{1.2}{0.7}) = 6.9\,\text{GHz} \end{array}$$

1.6

a.

P1:
$$1 \times 0.1 + 2 \times 0.2 + 3 \times 0.5 + 3 \times 0.2 = 2.6$$
 CPI P2: $2 \times 0.1 + 2 \times 0.2 + 2 \times 0.5 + 2 \times 0.2 = 2$ CPI

h

P1:
$$2.6 \times 10^6$$
 cycles P2: 2×10^6 cycles

P1 runs for
$$\frac{2.6\times10^6}{2.5\times10^9}=1.04$$
 ms; P2 runs for $\frac{2\times10^6}{3\times10^9}=0.67$ ms P2 is faster.

1.7

a.

Compiler A:
$$\frac{1.1/10^{-9}}{10^9}=1.1$$
 CPI Compiler B: $\frac{1.5/10^{-9}}{1.2\times 10^9}=1.25$ CPI

b.

$$rac{10^9}{1.2 imes 10^9} imes rac{1.1/1.25}{1/1} = 0.73$$
 times faster

C.

New compiler time: $6\times10^8\times1.1\times10^{-9}=0.66$ s Reduce 40% of time versus compiler A; Reduce 56% of time versus compiler B.

1.11

1.11.1

$$rac{750/(0.333 imes10^{-9})}{2.389 imes10^{12}}=0.943~ ext{CPI}$$

1.11.2

SPECratio:
$$\frac{9650}{750}=12.87$$

1.11.3

CPU time increase $750 \times 0.1 = 75 \ \mathrm{s}.$

1.11.4

CPU time increase $750 \times (1.1 \times 1.05 - 1) = 116.25$ s.

1.11.5

SPECratio decreased by
$$1-\frac{750}{750+116.25}=13.4\%$$

1.11.6

$$rac{700 imes 4 imes 10^9}{2.389 imes 10^{12} imes 0.85} = 1.379 \, \mathrm{CPI}$$

1.11.7

Clock rate increased by 33.3%, and CPI increased by 46.2%. They are dissimilar because the new processor is using a different instruction set.

1.11.8

CPU time is reduced by $1-\frac{700}{750}=6.67\%$

1.11.9

$$rac{4 imes10^9 imes0.9 imes960 imes10^{-9}}{1.61}=2147$$
 instructions

1.11.10

$$3 imes10^9 imes(rac{1}{0.9})=3.33\,\mathrm{GHz}$$

1.11.11

$$3 imes 10^9 imes (rac{0.85}{0.8}) = 3.19 \, \mathrm{GHz}$$

1.14

1.14.1

Number of cycles needed is $(50 \times 1 + 110 \times 1 + 80 \times 4 + 16 \times 2) \times 10^6 = 5.12 \times 10^8$ Number of cycles of FP instructions is $50 \times 10^6 \times 1 = 5 \times 10^7$ By Amdahl's Law, $0.5 \times 5.12 \times 10^8 = \frac{5 \times 10^7}{n} + 4.62 \times 10^8$ where n is the improvement of the CPI. But there are no positive solution of n, so it's impossible to run two times faster by only improving CPI of FP instruction.

1.14.2

Number of cycles of L/S instructions is $80 \times 10^6 \times 4 = 3.2 \times 10^8$ By Amdahl's Law, $0.5 \times 5.12 \times 10^8 = \frac{3.2 \times 10^8}{n} + 1.92 \times 10^8$ where n is the improvement of the CPI. n=5 is the solution to that equation, so the CPI of L/S instructions should be improved by 5 times, which is to be reduced to 20%.

1.14.3

Number of cycles after improvement is

$$\begin{array}{l} \left(50\times0.6+110\times0.6+80\times4\times0.7+16\times2\right)\times10^{6} = 3.52\times10^{8} \\ \text{Time improvement is } \frac{5.12\times10^{8}}{2\times10^{9}} - \frac{3.52\times10^{8}}{2\times10^{9}} = 0.08 \text{ s, which is about a } 31\% \text{ reduction.} \end{array}$$