1) Importing modules & dataframe

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
   import linear_regression as lr
   import utils
In [2]: df = pd.read_csv('./insurance.csv')
```

2) Preprocessing

Out[4]:

2.1) Checking out our data

In [3]:	df	.hea	d()					
Out[3]:		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520

age, sex, children, smoker, region are categorical columns and bmi, charges are continuous columns.

We have to predict charges given the rest of the features. And because charges is a continuous variable, this is a regression problem.

```
In [4]: df.describe()
```

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

2.2) Dealing with missing values

```
In [5]: df.isna().sum()
```

```
0
         age
Out[5]:
         sex
                      0
         bmi
                      0
         children
                      0
         smoker
                      0
         region
                      0
         charges
         dtype: int64
In [6]:
         (df == "?").sum()
                      0
         age
Out[6]:
         sex
                      0
         bmi
                      0
         children
                      0
                      0
         smoker
         region
                      0
         charges
                      0
         dtype: int64
```

We don't have any missing values. So we are good to go!

2.3) Dealing with categorical and non-numeric data

We have three categorical and non-numeric columns here - sex, smoker & region. We will do one-hot encoding for them.

```
In [7]: column_names_to_one_hot = ['sex', 'smoker', 'region']
    df = pd.get_dummies(df, columns=column_names_to_one_hot, drop_first=True)
```

drop_first is set to True in pd.get_dummies() to avoid 'Dummy Variable Trap'. Read more about it here: https://www.learndatasci.com/glossary/dummy-variable-trap/

```
In [8]:
          df.head()
                     bmi children
                                                            smoker_yes
                                                                         region_northwest
                                                                                          region_southeast region_sout
             age
                                        charges
                                                 sex_male
Out[8]:
          0
              19 27.900
                                    16884.92400
                                                         0
                                                                      1
                                                                                        0
                                                                                                           0
              18 33.770
                                     1725.55230
                                                                      0
                                                                                        0
          2
              28 33.000
                                 3
                                     4449.46200
                                                         1
                                                                      0
                                                                                        0
                                                                                                           1
              33 22.705
                                    21984.47061
                                                                      0
              32 28.880
                                 0
                                     3866.85520
                                                         1
                                                                      0
                                                                                        1
                                                                                                           0
```

2.4) Dropping duplicate rows

```
In [9]: # Checking for duplicate rows
    df.duplicated().sum()
Out[9]: 1
```

We have just one duplicate row. Let's drop that row.

```
In [10]: df.drop(axis='rows', labels=df.index[df.duplicated()], inplace=True)
    df.reset_index(inplace=True, drop=True)
```

In [11]: df.duplicated().sum()

We have no duplicate rows now!

3) EDA

3.1) Outlier detection and removal

```
In [12]: # Detecting outliers in bmi, age and children columns
         fig, ax = plt.subplots(1, 3, figsize=(22, 4))
         sns.boxplot(ax=ax[0], x=df['bmi'])
         sns.boxplot(ax=ax[1], x=df['age'])
         sns.boxplot(ax=ax[2], x=df['children'])
         plt.show()
In [13]:
         # Removing outliers from bmi
         utils.remove outlier(df, 'bmi')
In [14]:
         fig, ax = plt.subplots(1, 3, figsize=(22, 4))
         sns.boxplot(ax=ax[0], x=df['bmi'])
         sns.boxplot(ax=ax[1], x=df['age'])
         sns.boxplot(ax=ax[2], x=df['children'])
         plt.show()
```

3.2) Correlation

```
In [15]: main_df = pd.read_csv('./insurance.csv')

fig, ax = plt.subplots(2, 2, figsize=(18, 8))
    sns.violinplot(ax=ax[0,0], x="sex", y="charges", data=main_df)
    sns.violinplot(ax=ax[0,1], x="children", y="charges", data=main_df)
    sns.violinplot(ax=ax[1,0], x="smoker", y="charges", data=main_df)
    sns.violinplot(ax=ax[1,1], x="region", y="charges", data=main_df)
    plt.show()
```



```
In [16]: fig, ax = plt.subplots(1, 2, figsize=(15, 4))
    sns.scatterplot(ax=ax[0], x="age", y="charges", data=df)
    sns.scatterplot(ax=ax[1], x="bmi", y="charges", data=df)
    plt.show()
```


In [17]: plt.figure(figsize=(9,7))
 sns.heatmap(df.corr(), vmin=-1, cmap="coolwarm", annot=True)
 plt.show()

We can see that children, sex and region columns have very less correlation with charges (the output). So, we can drop them.

```
In [18]: df.drop(['children', 'sex_male', 'region_northwest', 'region_southeast', 'region_southwe
```

3.3) Normalization and standardization

```
In [19]: df['bmi'] = utils.normalize(df['bmi'])
    df['age'] = utils.normalize(df['age'])

In [20]: # Scaling the output variable (charges) by a factor of 1000
    df['charges'] = df['charges']/1000
```

4) Multivariate Linear Regression

4.1) Feature-target split

```
In [21]: X = df.drop(axis='columns', labels='charges').to_numpy().astype(np.float64)

# Adding a column of ones to the data matrix
n = X.shape[0]
X = np.c_[ np.ones(n), X]

y = df['charges'].to_numpy().astype(np.float64)
```

4.2) Train-test split

```
In [22]: X_train, X_test, y_train, y_test = utils.train_test_split(X, y, train_size=0.75)
```

4.3) Closed Form

4.3.1) Training

```
In [23]: w = lr.closed form(X train, y train)
In [24]: yhat train = lr.predict(X train, w)
          print('Metrics for the training data:')
          print('MSE', utils.mean squared error(y train, yhat train))
          print('MAE', utils.mean absolute error(y train, yhat train))
          Metrics for the training data:
          MSE 34.27654428672158
          MAE 4.093436671285072
In [25]: # Plot the results
          features = ['age', 'bmi', 'smoker yes']
          fig, ax = plt.subplots(1, 3, figsize=(18, 4))
          for i in range (1,4):
            sns.scatterplot(ax=ax[i-1], x=X train[:,i], y=y train, label = 'True Value')
            sns.scatterplot(ax=ax[i-1], x=X train[:,i], y=yhat train, label = 'Predicted')
            ax[i-1].set xlabel(features[i-1])
            ax[i-1].set ylabel('charges')
          plt.legend()
          plt.show()
                                                 True Value
                                                                                  True Value
                                                 Predicted
                                                                                  Predicted
           50
                                            50
                                                                             50
          charges
88
                                            30
                                                                             30
           20
                                            20
                                                                             20
           10
                                                                             10
                                       1.0
                                                                                          smoker yes
```

4.3.2) Testing

```
In [26]: yhat test = lr.predict(X test, w)
         print('Metrics for test data:')
         print('MSE', utils.mean squared error(y test, yhat test))
         print('MAE', utils.mean absolute error(y test, yhat test))
         Metrics for test data:
         MSE 43.19853329289433
         MAE 4.443096903456985
In [27]: # Plot the results
         features = ['age', 'bmi', 'smoker yes']
         fig, ax = plt.subplots(1, 3, figsize=(18, 4))
         for i in range (1,4):
           sns.scatterplot(ax=ax[i-1], x=X test[:,i], y=y test, label = 'True Value')
           sns.scatterplot(ax=ax[i-1], x=X test[:,i], y=yhat test, label = 'Predicted')
           ax[i-1].set xlabel(features[i-1])
           ax[i-1].set ylabel('charges')
         plt.legend()
         plt.show()
```


4.4) Gradient Descent

4.4.1) Training

```
In [28]: iters = 1000
         w, cost = lr.fit(X train, y train, 0.1, iters)
In [29]:
         yhat train = lr.predict(X train, w)
         print('Metrics for the training data:')
         print('MSE', utils.mean squared error(y train, yhat train))
         print('MAE', utils.mean absolute error(y train, yhat train))
         Metrics for the training data:
         MSE 34.27655679747978
         MAE 4.092583452025161
In [30]: # Convergence of gradient descent
         plt.title('Convergence Of Gradient Descent')
         plt.ylabel('Cost')
         plt.xlabel('Iterations')
         plt.plot(range(iters), cost)
         plt.show()
```



```
In [31]: # Plot the results
    features = ['age', 'bmi', 'smoker_yes']
    fig, ax = plt.subplots(1, 3, figsize=(18, 4))
    for i in range(1,4):
        sns.scatterplot(ax=ax[i-1], x=X_train[:,i], y=y_train, label = 'True Value')
        sns.scatterplot(ax=ax[i-1], x=X_train[:,i], y=yhat_train, label = 'Predicted')
        ax[i-1].set_xlabel(features[i-1])
        ax[i-1].set_ylabel('charges')
    plt.legend()
    plt.show()
```


4.4.1) Testing

```
In [32]: yhat test = lr.predict(X test, w)
          print('Metrics for test data:')
          print('MSE', utils.mean squared error(y test, yhat test))
          print('MAE', utils.mean absolute error(y test, yhat test))
          Metrics for test data:
          MSE 43.19954714763513
          MAE 4.4424370353870675
In [33]: # Plot the results
          features = ['age', 'bmi', 'smoker yes']
          fig, ax = plt.subplots(1, 3, figsize=(18, 4))
          for i in range (1,4):
            sns.scatterplot(ax=ax[i-1], x=X test[:,i], y=y test, label = 'True Value')
            sns.scatterplot(ax=ax[i-1], x=X test[:,i], y=yhat test, label = 'Predicted')
            ax[i-1].set xlabel(features[i-1])
            ax[i-1].set ylabel('charges')
          plt.legend()
          plt.show()
                                                                                    True Value
                                                                     True Value
           60
                                             60
                                                                               60
                                                                                    Predicted
                                                                     Predicted
                                    Predicted
           50
                                             50
                                                                               50
           40
           30
                                             30
                                                                               30
           20
                                             20
                                                                               20
           10
                                                                               10
                                       1.0
                                                                         1.0
                                                                                            smoker_yes
```

5) Univariate Linear Regression

We'll use age as our input feature and charges as our target variable.

5.1) Feature-target split

```
In [34]: X = df['age'].to_numpy().astype(np.float64).reshape(-1,1)

# Adding a column of ones to the data matrix
n = X.shape[0]
X = np.c_[ np.ones(n), X]

y = df['charges'].to_numpy().astype(np.float64)
```

5.2) Train-test split

```
In [35]: X_train, X_test, y_train, y_test = utils.train_test_split(X, y, train_size=0.75)
```

5.3) Closed Form

5.3.1) Training

```
In [36]: w = lr.closed form(X train, y train)
In [37]:
         yhat train = lr.predict(X train, w)
         print('Metrics for the training data:')
         print('MSE', utils.mean squared error(y train, yhat train))
         print('MAE', utils.mean absolute error(y train, yhat train))
         Metrics for the training data:
         MSE 127.7258718002987
         MAE 8.869895866118968
In [38]: # Plot the results
          sns.scatterplot(x=X_train[:,1], y=y_train, label = 'True Value')
          sns.lineplot(x=X train[:,1], y=yhat train, label = 'Predicted', color='red')
         plt.xlabel('age')
         plt.ylabel('charges')
         plt.legend()
         plt.show()
                   True Value
                   Predicted
            50
```

Predicted 50 40 20 10 0.0 0.2 0.4 0.6 0.8 1.0

5.3.2) Testing

```
In [39]: yhat_test = lr.predict(X_test, w)
    print('Metrics for test data:')
    print('MSE', utils.mean_squared_error(y_test, yhat_test))
    print('MAE', utils.mean_absolute_error(y_test, yhat_test))

Metrics for test data:
    MSE 140.27309565146032
    MAE 9.080383025558111

In [40]: # Plot the results
    sns.scatterplot(x=X_test[:,1], y=y_test, label = 'True Value')
    sns.lineplot(x=X_test[:,1], y=yhat_test, label = 'Predicted', color='red')
    plt.xlabel('age')
    plt.ylabel('charges')
    plt.legend()
    plt.show()
```


5.4) Gradient Descent

5.4.1) Training

```
In [41]: iters = 1000
         w, cost = lr.fit(X train, y train, 0.1, iters)
In [42]:
         yhat train = lr.predict(X train, w)
         print('Metrics for the training data:')
         print('MSE', utils.mean squared error(y train, yhat train))
         print('MAE', utils.mean absolute error(y train, yhat train))
         Metrics for the training data:
         MSE 127.7258718002989
         MAE 8.869895872811778
In [43]:
         # Convergence of gradient descent
         plt.title('Convergence Of Gradient Descent')
         plt.ylabel('Cost')
         plt.xlabel('Iterations')
         plt.plot(range(iters), cost)
         plt.show()
```



```
In [44]: # Plot the results
    sns.scatterplot(x=X_train[:,1], y=y_train, label = 'True Value')
    sns.lineplot(x=X_train[:,1], y=yhat_train, label = 'Predicted', color='red')
    plt.xlabel('age')
    plt.ylabel('charges')
```

```
plt.legend()
plt.show()
```


5.4.2) Testing

In [45]: yhat_test = lr.predict(X test, w)

```
print('Metrics for test data:')
print('MSE', utils.mean_squared_error(y_test, yhat_test))
print('MAE', utils.mean_absolute_error(y_test, yhat_test))

Metrics for test data:
    MSE 140.2730965539362
    MAE 9.080383055192343

In [47]: # Plot the results
    sns.scatterplot(x=X_test[:,1], y=y_test, label = 'True Value')
    sns.lineplot(x=X_test[:,1], y=yhat_test, label = 'Predicted', color='red')
    plt.xlabel('age')
    plt.ylabel('charges')
    plt.legend()
    plt.show()
```

