Examen d'entraînement d'Algèbre

M1 MIASHS

septembre 2025

Correction de l'exercice 1 : Sous-espace des matrices symétriques

On travaille dans $\mathcal{M}_3(\mathbb{R})$ et l'on note

$$\mathscr{S}_3(\mathbb{R}) = \{ A \in \mathcal{M}_3(\mathbb{R}) : A^\top = A \}$$

l'espace des matrices réelles symétriques 3×3 .

- (a) $\mathscr{S}_3(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - La matrice nulle $0_{3\times 3}$ vérifie $0^{\top} = 0$, donc $0 \in \mathscr{S}_3(\mathbb{R})$.
 - Si $A, B \in \mathscr{S}_3(\mathbb{R})$, alors $(A+B)^{\top} = A^{\top} + B^{\top} = A + B$, donc $A+B \in \mathscr{S}_3(\mathbb{R})$.
 - Pour tout $\lambda \in \mathbb{R}$ et tout $A \in \mathscr{S}_3(\mathbb{R})$, $(\lambda A)^{\top} = \lambda A^{\top} = \lambda A$, donc $\lambda A \in \mathscr{S}_3(\mathbb{R})$.

Ainsi $\mathscr{S}_3(\mathbb{R})$ est bien un sous-espace.

(b) Une famille génératrice pratique et une décomposition linéaire explicite. Pour $1 \le i \le 3$, on pose

$$E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

et pour $1 \le i < j \le 3$,

$$F_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad F_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad F_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

On définit

$$\mathcal{B} = \{E_{11}, E_{22}, E_{33}, F_{12}, F_{13}, F_{23}\}.$$

Génération. Toute $S \in \mathscr{S}_3(\mathbb{R})$ s'écrit

$$S = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \quad (a, b, c, d, e, f \in \mathbb{R}).$$

La lecture coefficient par coefficient donne la décomposition linéaire naturelle

$$S = a E_{11} + d E_{22} + f E_{33} + b F_{12} + c F_{13} + e F_{23}.$$

Ainsi $S \in \operatorname{Span} \mathcal{B}$, donc $\operatorname{Span} \mathcal{B} = \mathscr{S}_3(\mathbb{R})$.

Indépendance linéaire. Supposons

$$\alpha E_{11} + \beta E_{22} + \gamma E_{33} + \mu F_{12} + \nu F_{13} + \rho F_{23} = 0_{3 \times 3}.$$

En comparant les coefficients :

$$(1,1): \alpha = 0, (2,2): \beta = 0, (3,3): \gamma = 0,$$

$$(1,2)$$
 et $(2,1)$: $\mu=0$, $(1,3)$ et $(3,1)$: $\nu=0$, $(2,3)$ et $(3,2)$: $\rho=0$.

Donc tous les coefficients sont nuls et \mathcal{B} est libre.

Par conséquent \mathcal{B} est une base de $\mathscr{S}_3(\mathbb{R})$.

(c) **Dimension.** Comme \mathcal{B} a 6 éléments et est une base, on obtient

$$\dim \left(\mathscr{S}_3(\mathbb{R}) \right) = 6.$$

Bonus (cas général n). Pour $n \ge 1$, on définit E_{ii} pour $1 \le i \le n$ et $F_{ij} = E_{ij} + E_{ji}$ pour $1 \le i < j \le n$. Alors

$$\mathcal{B}_n = \{E_{11}, \dots, E_{nn}\} \cup \{F_{ij} : 1 \le i < j \le n\}$$

engendre $\mathscr{S}_n(\mathbb{R})$ (même décomposition coefficientielle que ci-dessus) et est libre par comparaison des coefficients. Ainsi

$$\dim \left(\mathscr{S}_n(\mathbb{R})\right) = n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}.$$

Preuve optionnelle de l'indépendance par produit scalaire. On munit $\mathcal{M}_3(\mathbb{R})$ du produit scalaire de Frobenius $\langle X, Y \rangle = \operatorname{tr}(X^\top Y)$. La famille \mathcal{B} est orthogonale pour ce produit (chaque matrice de base a un support disjoint sauf pour les paires symétriques), donc linéairement indépendante.

Correction de l'exercice 2 : Application linéaire non inversible sur \mathbb{R}^3

On note $(e_i)_{i=1,\dots,3}$ la base canonique de \mathbb{R}^3 , i.e. les vecteurs dont toutes les composantes sont nulles sauf un 1 à la *i*-ème position. On définit $f: \mathbb{R}^3 \to \mathbb{R}^3$ par

$$f(x, y, z) = (x + y - z, 2x + 2y + z, 3x + 3y).$$

(a) Linéarité. Pour tous $(x, y, z), (x', y', z') \in \mathbb{R}^3$ et $\alpha, \beta \in \mathbb{R}$,

$$f(\alpha(x,y,z) + \beta(x',y',z')) = \alpha f(x,y,z) + \beta f(x',y',z').$$

Ceci découle en distribuant α, β dans les formules coordonnées. Donc $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$.

(b) Matrice dans la base canonique. Comme $f(e_1) = (1,2,3)$, $f(e_2) = (1,2,3)$, $f(e_3) = (-1,1,0)$, la matrice associée est

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & 1 \\ 3 & 3 & 0 \end{pmatrix}.$$

(c) Inversibilité / injectivité / surjectivité. En écrivant $A = [C_1 \mid C_2 \mid C_3]$, on lit immédiatement que les colonnes C_1 et C_2 sont linéairement dépendantes (en fait, $C_1 = C_2$). Par suite, la matrice n'est pas inversible, ce qui entraı̂ne directement $\det(A) = 0$. Vérifions-le explicitement par un développement selon la colonne 3:

$$\det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 2 & 1 \\ 3 & 3 & 0 \end{vmatrix} = (-1) \cdot (-1)^{1+3} \begin{vmatrix} 2 & 2 \\ 3 & 3 \end{vmatrix} + (1) \cdot (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} + (0) \cdot (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}.$$

Chaque mineur 2×2 est nul (deux colonnes identiques), d'où det(A) = 0. Par conséquent, A n'est **pas** inversible. Il s'ensuit que f n'est ni injective (noyau non trivial) ni surjective (rang < 3), donc pas bijective.

Noyau de f Pour déterminer une base de $\ker(f)$, prenons $(x, y, z) \in \mathbb{R}^3$ et écrivons les équations que doivent satisfaire ses composantes. Ainsi,

$$(x, y, z) \in \ker(f) \iff \begin{cases} x + y - z = 0 \\ 2x + 2y + z = 0 \\ 3x + 3y = 0 \end{cases}$$

$$\iff \begin{cases} x + y - z = 0 \\ 3x + 3y = 0 \\ 3x + 3y = 0 \end{cases}$$

$$\iff \begin{cases} z = x + y = 0 \\ y = -x \end{cases}$$

Donc tout vecteur du noyau est de la forme

$$(x, y, z) = (x, -x, 0) = x (1, -1, 0), \qquad x \in \mathbb{R}.$$

Ainsi

$$\ker(f) = \text{Span}\{(1, -1, 0)\}\$$
, $\dim \ker(f) = 1$.

Image de f Pour décrire Im(f), calculons f(x, y, z) pour $(x, y, z) \in \mathbb{R}^3$ quelconque :

$$f(x, y, z) = (x + y - z, 2x + 2y + z, 3x + 3y).$$

On peut réarranger en groupant les termes :

$$f(x, y, z) = (x + y)(1, 2, 3) + z(-1, 1, 0).$$

On a donc écrit f(x, y, z) comme combinaison linéaire des deux vecteurs fixes

$$v_1 = (1, 2, 3), v_2 = (-1, 1, 0).$$

Il en découle que pour tout (x, y, z), l'image f(x, y, z) appartient au sous-espace engendré par v_1 et v_2 . Ainsi

$$Im(f) = Span\{(1,2,3), (-1,1,0)\}.$$

Comme v_1 et v_2 sont linéairement indépendants (facile à vérifier, aucun n'est multiple de l'autre), on conclut que

$$\dim \operatorname{Im}(f) = \operatorname{rg}(f) = 2.$$

(e) Équations caractérisant ker(f) et preuve de sous-espace.

Montrons directement que $\ker(f)$ est un sous-espace vectoriel de \mathbb{R}^3 en vérifiant les deux propriétés définitoires.

Vecteur nul dans le noyau.

$$f(0,0,0) = (0+0-0, 2\cdot 0 + 2\cdot 0 + 0, 3\cdot 0 + 3\cdot 0) = (0,0,0),$$

donc $0_{\mathbb{R}^3} \in \ker(f)$.

Stabilité par combinaisons linéaires. Soient $v_1, v_2 \in \ker(f)$ et $\alpha, \lambda \in \mathbb{R}$. Par linéarité de f,

$$f(\alpha v_1 + \lambda v_2) = \alpha f(v_1) + \lambda f(v_2) = \alpha 0 + \lambda 0 = 0,$$

donc $\alpha v_1 + \lambda v_2 \in \ker(f)$. Ainsi $\ker(f)$ est un sous-espace vectoriel de \mathbb{R}^3 .

Forme équationnelle (depuis la partie (d)). En partant de la définition,

$$(x, y, z) \in \ker(f) \iff \begin{cases} x + y - z = 0 \\ 2x + 2y + z = 0 \\ 3x + 3y = 0 \end{cases}$$

$$\iff \begin{cases} x + y - z = 0 \\ 3x + 3y = 0 \\ 3x + 3y = 0 \end{cases} \text{ (par ex. } R_2 \leftarrow R_2 + R_1)$$

$$\iff \begin{cases} y = -x \\ z = 0 \end{cases}$$

Donc tout vecteur du noyau est de la forme (x, y, z) = (t, -t, 0) = t(1, -1, 0) avec $t \in \mathbb{R}$. En particulier,

$$\ker(f) = \text{Span}\{(1, -1, 0)\}\$$
, $\dim \ker(f) = 1$.

Cohérence avec la preuve de sous-espace. Toute combinaison linéaire $\alpha(1, -1, 0) + \lambda(1, -1, 0) = (\alpha + \lambda)(1, -1, 0)$ reste de la forme t(1, -1, 0), donc $\alpha v_1 + \lambda v_2 \in \ker(f)$ pour tous $v_1, v_2 \in \ker(f)$ et $\alpha, \lambda \in \mathbb{R}$.

(f) **Théorème du rang.** On a trouvé dim ker(f) = 1 et rg(f) = 2, donc

$$\dim \ker(f) + \operatorname{rg}(f) = 1 + 2 = 3 = \dim \mathbb{R}^3,$$

ce qui vérifie le théorème du rang.

Correction de l'exercice 3 : Diagonalisation et théorème spectral

On considère

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix}.$$

(a) Symétrie.

$$S^{\top} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix} = S,$$

donc S est symétrique.

(b) Vérification du couple propre donné.

$$S\begin{pmatrix} 1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 + 1 \cdot 1 + 2 \cdot (-1)\\1 \cdot 1 + 1 \cdot 1 + 0 \cdot (-1)\\2 \cdot 1 + 0 \cdot 1 + 4 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 2\\2\\-2 \end{pmatrix} = 2\begin{pmatrix} 1\\1\\-1 \end{pmatrix}.$$

Ainsi $\lambda = 2$ est une valeur propre et (1, 1, -1) un vecteur propre associé.

(c) **Injectivité / surjectivité / bijectivité.** En dimension finie, ces propriétés sont équivalentes à l'inversibilité. Calculons det(S) (développement sur la première ligne) :

$$\det(S) = \begin{vmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 4 \end{vmatrix} = 3 \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 \\ 2 & 4 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 3 \cdot 4 - 1 \cdot 4 + 2 \cdot (-2) = 4 \neq 0.$$

Donc S est inversible, donc injective, surjective et bijective sur \mathbb{R}^3 .

(d) Diagonalisabilité, polynôme caractéristique, spectre, espaces propres.

Comme S est symétrique, il est diagonalisable sur \mathbb{R} avec une base orthonormée de vecteurs propres (théorème spectral). On peut obtenir toutes les valeurs propres sans développer un déterminant 3×3 complet, en utilisant les invariants $\mathrm{Tr}(S)$ et $\det(S)$, ainsi que la valeur propre connue en (b).

Étape 1 : calculer la trace et le déterminant (déjà fait).

$$Tr(S) = 3 + 1 + 4 = 8, \quad det(S) = 4.$$

Étape 2 : mettre en place le système sur les valeurs propres. Notons $\lambda_0, \lambda_1, \lambda_2$ les valeurs propres de S, avec $\lambda_0 = 2$ d'après (b). (Elles ne sont pas nécessairement toutes distinctes.) En utilisant $\text{Tr}(S) = \lambda_0 + \lambda_1 + \lambda_2$ et $\det(S) = \lambda_0 \lambda_1 \lambda_2$, on écrit

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = \operatorname{Tr}(S) = 8, \\ \lambda_0 \lambda_1 \lambda_2 = \det(S) = 4 \end{cases} \iff \begin{cases} 2 + \lambda_1 + \lambda_2 = 8, \\ 2 \lambda_1 \lambda_2 = 4 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_2 = 6, \\ \lambda_1 \lambda_2 = 2. \end{cases}$$

Étape 3 : résoudre pour les deux valeurs propres restantes. Ainsi λ_1, λ_2 sont les racines du quadratique

$$X^{2} - (\lambda_{1} + \lambda_{2})X + \lambda_{1}\lambda_{2} = X^{2} - 6X + 2,$$

d'où

$$\lambda_1 = 3 - \sqrt{7}, \qquad \lambda_2 = 3 + \sqrt{7}.$$

$$Sp(S) = \{ 2, 3 - \sqrt{7}, 3 + \sqrt{7} \} , \qquad \chi_S(X) = (X - 2)(X^2 - 6X + 2).$$

Étape 2 (espaces propres).

Les trois valeurs propres étant distinctes, chaque espace propre est de dimension 1.

5

 $Pour \lambda = 2$: pas besoin de recalculer. On connaît déjà un vecteur propre par (b). Un seul suffit car $\dim(E_2) = 1$ (valeurs propres distinctes) donc

$$E_2 = \operatorname{Span}\{(1, 1, -1)\}$$

On peut cependant vérifier :

$$(x,y,z) \in E_2 = \ker(S-2I) \iff \begin{cases} (3-2)x + 1 \cdot y + 2 \cdot z = 0 \\ 1 \cdot x + (1-2)y + 0 \cdot z = 0 \\ 2 \cdot x + 0 \cdot y + (4-2)z = 0 \end{cases} \iff \begin{cases} x + y + 2z = 0 \\ x - y = 0 \\ 2x + 2z = 0 \end{cases}$$

De x - y = 0 on déduit y = x. De 2x + 2z = 0 on déduit z = -x. La première équation est alors automatiquement vérifiée :

$$x + y + 2z = x + x + 2(-x) = 0.$$

Ainsi

$$(x, y, z) = (t, t, -t) = t(1, 1, -1), \quad t \in \mathbb{R}, \quad \Rightarrow \quad E_2 = \text{Span}\{(1, 1, -1)\} \quad \checkmark$$

Pour $\lambda = 3 + \sqrt{7}$ (notons $\lambda_{+} = 3 + \sqrt{7}$):

$$(x, y, z) \in E_{\lambda_{+}} \iff \begin{cases} (3 - \lambda_{+})x + y + 2z = 0\\ x + (1 - \lambda_{+})y = 0\\ 2x + (4 - \lambda_{+})z = 0 \end{cases}$$

De la troisième équation on tire $x = \frac{\lambda_+ - 4}{2}z = \frac{-1 + \sqrt{7}}{2}z$. En injectant dans la seconde :

$$\frac{-1+\sqrt{7}}{2}z+(1-\lambda_{+})y=0 \iff y=\frac{\lambda_{+}-4}{2(\lambda_{+}-1)}z=\frac{-1+\sqrt{7}}{2(2+\sqrt{7})}z=\frac{3-\sqrt{7}}{2}z,$$

(où l'on a rationalisé le dénominateur). On peut choisir z=2 pour éviter les fractions et obtenir le vecteur propre

$$v_{+} = \left(-1 + \sqrt{7}, \ 3 - \sqrt{7}, \ 2\right), \qquad \Rightarrow \qquad \boxed{E_{3 + \sqrt{7}} = \mathrm{Span}\{(-1 + \sqrt{7}, \ 3 - \sqrt{7}, \ 2)\}}$$

Pour $\lambda = 3 - \sqrt{7}$ (notons $\lambda_{-} = 3 - \sqrt{7}$):

$$(x, y, z) \in E_{\lambda_{-}} \iff \begin{cases} (3 - \lambda_{-})x + y + 2z = 0 \\ x + (1 - \lambda_{-})y = 0 \\ 2x + (4 - \lambda_{-})z = 0 \end{cases}$$

De la troisième, $x = \frac{\lambda_- - 4}{2}z = \frac{-1 - \sqrt{7}}{2}z$. De la seconde,

$$\frac{-1-\sqrt{7}}{2}z + (1-\lambda_{-})y = 0 \iff y = \frac{\lambda_{-}-4}{2(\lambda_{-}-1)}z = \frac{-1-\sqrt{7}}{2(2-\sqrt{7})}z = \frac{3+\sqrt{7}}{2}z.$$

En prenant z=2, on obtient le vecteur propre

$$v_{-} = \left(-(1+\sqrt{7}), \ 3+\sqrt{7}, \ 2\right), \qquad \Rightarrow \qquad \boxed{E_{3-\sqrt{7}} = \mathrm{Span}\{(-(1+\sqrt{7}), \ 3+\sqrt{7}, \ 2)\}}$$

Les trois valeurs propres étant distinctes, chaque espace propre est de dimension 1 et ils sont deux à deux orthogonaux (symétrie de S).

(e) Diagonalisation orthogonale $S = QDQ^{\top}$.

Normalisons les trois vecteurs propres.

$$||(1,1,-1)|| = \sqrt{3},$$

$$||v_{+}||^{2} = (\sqrt{7}-1)^{2} + (3-\sqrt{7})^{2} + 2^{2} = 28 - 8\sqrt{7},$$

$$||v_{-}||^{2} = (1+\sqrt{7})^{2} + (3+\sqrt{7})^{2} + 2^{2} = 28 + 8\sqrt{7}.$$

Posons

$$u_2 = \frac{1}{\sqrt{3}}(1, 1, -1), \qquad u_+ = \frac{1}{\sqrt{28 - 8\sqrt{7}}}v_+, \qquad u_- = \frac{1}{\sqrt{28 + 8\sqrt{7}}}v_-.$$

Alors $Q = \begin{bmatrix} u_+ & u_- & u_2 \end{bmatrix}$ est orthogonale $(Q^\top Q = I_3)$ et

$$D = \text{diag}(3 + \sqrt{7}, 3 - \sqrt{7}, 2), \qquad S = QDQ^{\top}$$

(Tout autre ordre des colonnes de Q doit être assorti du même ordre des entrées diagonales de D.)

Correction de l'exercice 4 : Chaîne stochastique en dimension 3

On encode les probabilités au jour t par

$$v_t = \begin{pmatrix} p_t \\ \ell_t \\ m_t \end{pmatrix}, \qquad p_t, \ell_t, m_t \ge 0, \quad p_t + \ell_t + m_t = 1.$$

(a) Des règles au système linéaire.

Lecture des flux entrants pour chaque ville à partir des règles données :

$$\begin{cases} p_{t+1} = \frac{1}{2} p_t + \frac{1}{4} \ell_t + 0 \cdot m_t \\ \ell_{t+1} = \frac{1}{2} p_t + \frac{1}{4} \ell_t + 1 \cdot m_t \\ m_{t+1} = 0 \cdot p_t + \frac{1}{2} \ell_t + 0 \cdot m_t \end{cases}.$$

(b) Matrice de transition A avec $v_{t+1} = Av_t$.

En collectant les coefficients on obtient

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0\\ \frac{1}{2} & \frac{1}{4} & 1\\ 0 & \frac{1}{2} & 0 \end{pmatrix}, \qquad v_{t+1} = A v_t.$$

(c) Vérification « colonne-stochastique ».

Toutes les entrées sont ≥ 0 et chaque colonne somme à 1 :

$$\operatorname{col}_1:\ \tfrac{1}{2}+\tfrac{1}{2}+0=1,\quad \operatorname{col}_2:\ \tfrac{1}{4}+\tfrac{1}{4}+\tfrac{1}{2}=1,\quad \operatorname{col}_3:\ 0+1+0=1.$$

Donc A est colonne-stochastique. En particulier, 1 est une valeur propre.

En effet,

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{4} + \frac{1}{2} \\ 0 + 1 + 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(d) Spectre Sp(A) et espaces propres E_{λ} .

Polynôme caractéristique.

$$\chi_A(\lambda) = \det(\lambda I - A) = \lambda^3 - \frac{3}{4}\lambda^2 - \frac{1}{2}\lambda + \frac{1}{4} = (\lambda - 1)(4\lambda^2 + \lambda - 1)/4.$$

Les valeurs propres sont donc

$$\lambda_0 = 1, \qquad \lambda_{\pm} = \frac{-1 \pm \sqrt{17}}{8}$$

(toutes réelles).

Sans développer un déterminant 3×3 complet. Polynôme caractéristique et valeurs propres.

Étape 1 : calcul de Tr(A) et det(A).

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0\\ \frac{1}{2} & \frac{1}{4} & 1\\ 0 & \frac{1}{2} & 0 \end{pmatrix}, \quad \operatorname{Tr}(A) = \frac{1}{2} + \frac{1}{4} + 0 = \boxed{\frac{3}{4}}.$$

Pour le déterminant, on évite un développement complet. Développons sur la première ligne (puisque $a_{13}=0$) :

$$\det(A) = \frac{1}{2} \begin{vmatrix} \frac{1}{4} & 1 \\ \frac{1}{2} & 0 \end{vmatrix} - \frac{1}{4} \begin{vmatrix} \frac{1}{2} & 1 \\ 0 & 0 \end{vmatrix} + 0 = \frac{1}{2} (\frac{1}{4} \cdot 0 - 1 \cdot \frac{1}{2}) - \frac{1}{4} \cdot 0 = \boxed{-\frac{1}{4}}.$$

(Ce calcul cible un cofacteur nul et un mineur simple : pas besoin d'un développement 3×3 complet.)

Étape 2 : utiliser trace et déterminant avec la valeur propre connue $\lambda_0=1.$

Notons $\lambda_0, \lambda_1, \lambda_2$ les valeurs propres de A, avec $\lambda_0 = 1$ (matrice stochastique). Elles ne sont pas supposées distinctes a priori. Par les identités spectrales usuelles $\text{Tr}(A) = \lambda_0 + \lambda_1 + \lambda_2$ et $\det(A) = \lambda_0 \lambda_1 \lambda_2$, on obtient

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = \text{Tr}(A) \\ \lambda_0 \lambda_1 \lambda_2 = \det(A) \end{cases} \iff \begin{cases} 1 + \lambda_1 + \lambda_2 = \frac{3}{4} \\ 1 \cdot \lambda_1 \lambda_2 = -\frac{1}{4} \end{cases}$$
$$\iff \begin{cases} \lambda_1 + \lambda_2 = -\frac{1}{4} \\ \lambda_1 \lambda_2 = -\frac{1}{4} \end{cases}$$

Étape 3 : résoudre le quadratique pour les deux valeurs propres restantes.

Les inconnues λ_1, λ_2 sont les racines de

$$X^{2} - (\lambda_{1} + \lambda_{2})X + \lambda_{1}\lambda_{2} = X^{2} + \frac{1}{4}X - \frac{1}{4} = 0,$$

ou, en éliminant les dénominateurs,

$$4X^2 + X - 1 = 0$$

Par la formule quadratique,

$$\lambda_{1,2} = \frac{-1 \pm \sqrt{1+16}}{8} = \boxed{\frac{-1 \pm \sqrt{17}}{8}}$$

Ce sont des réels, donc tout le spectre est réel :

$$\operatorname{Sp}(A) = \left\{ 1, \ \frac{-1 - \sqrt{17}}{8}, \ \frac{-1 + \sqrt{17}}{8} \right\}$$

Espace propre pour $\lambda = 1$. On résout (A - I)x = 0 avec x = (x, y, z):

$$(x, y, z) \in E_1 = \ker(A - I) \iff \begin{cases} -\frac{1}{2}x + \frac{1}{4}y + 0 \cdot z = 0 \\ \frac{1}{2}x - \frac{3}{4}y + 1 \cdot z = 0 \\ 0 \cdot x + \frac{1}{2}y - 1 \cdot z = 0 \end{cases}$$

$$\iff \begin{cases} -2x + y = 0 \\ 2x - 3y + 4z = 0 \\ y - 2z = 0 \end{cases} \text{ (en multipliant par 4)}$$

$$\iff \begin{cases} y = 2x \\ y = 2z \end{cases} \implies y = 2x, \ z = x.$$

Donc (x, y, z) = x(1, 2, 1) et

$$E_1 = \text{Span}\{(1,2,1)\}$$

Espaces propres pour λ_{\pm} . Posons $\lambda_{\pm} = \frac{-1 \pm \sqrt{17}}{8}$. En résolvant $(A - \lambda_{\pm}I)x = 0$ (réductions élémentaires, voir ci-dessous), on obtient les vecteurs propres

$$v_{+} = (-3 - \sqrt{17}, -1 + \sqrt{17}, 4), \qquad v_{-} = (-3 + \sqrt{17}, -1 - \sqrt{17}, 4),$$

d'où

$$E_{\lambda_+} = \operatorname{Span}\{v_+\}, \qquad E_{\lambda_-} = \operatorname{Span}\{v_-\}$$

(Une façon propre d'obtenir v_{\pm} .) À partir de $(A - \lambda I)(x, y, z)^{\top} = 0$

$$\begin{cases} (\frac{1}{2} - \lambda)x + \frac{1}{4}y = 0 \\ \frac{1}{2}x + (\frac{1}{4} - \lambda)y + z = 0 \\ \frac{1}{2}y - \lambda z = 0 \end{cases} \iff \begin{cases} (2 - 4\lambda)x + y = 0 \\ 2x + (1 - 4\lambda)y + 4z = 0 \\ 2y - 4\lambda z = 0 \end{cases}$$

(après multiplication par 4). Pour $\lambda_+, \lambda_- \neq 0$, la troisième donne $y = 2\lambda_+ z$, puis la première $x = \frac{y}{4\lambda_+ - 2} = \frac{2\lambda_+}{4\lambda_+ - 2} z$.

En réinjectant dans la seconde, on obtient une identité (car λ_+ est racine de $4\lambda_+^2 + \lambda_+ - 1 = 0$). On obtient le même schéma avec λ_- . En prenant z = 4, on retrouve exactement les vecteurs v_{\pm} ci-dessus.

(e) Diagonalisation $A = PDP^{-1}$.

Choisissons

$$P = \begin{bmatrix} v_{+} \mid v_{-} \mid (1,2,1) \end{bmatrix} = \begin{pmatrix} -3 - \sqrt{17} & -3 + \sqrt{17} & 1 \\ -1 + \sqrt{17} & -1 - \sqrt{17} & 2 \\ 4 & 4 & 1 \end{pmatrix}, \qquad D = \operatorname{diag}(\lambda_{+}, \lambda_{-}, 1),$$

de sorte que

$$A = PDP^{-1}$$

(Toute permutation des colonnes de P doit être couplée à la même permutation des entrées diagonales de D.)

(f) Calcul de P^{-1} par élimination de Gauss.

Former la matrice augmentée $(P \mid I_3)$ et effectuer des opérations élémentaires jusqu'à $(I_3 \mid P^{-1})$:

$$(P \mid I_3) \sim (I_3 \mid P^{-1}).$$

(Les étudiants peuvent effectuer la réduction explicitement. L'arithmétique est directe mais un peu lourde à cause des racines; les radicaux exacts sont acceptés.)

(g) Limite à long terme pour $v_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et interprétation.

Grâce à la diagonalisation,

$$A^t = PD^tP^{-1}, v_t = A^tv_0 = PD^tP^{-1}v_0.$$

Comme $|\lambda_{\pm}| < 1$ (en effet $\lambda_{\pm} = \frac{-1 \pm \sqrt{17}}{8} \in (-1,1)$), on a $\lambda_{\pm}^t \to 0$. Donc

$$\lim_{t \to \infty} A^t = P \operatorname{diag}(0, 0, 1) P^{-1} = \Pi,$$

le projecteur de rang 1 sur $E_1 = \text{Span}\{(1,2,1)\}$ parallèlement aux autres directions propres. En normalisant le vecteur propre pour $\lambda = 1$ pour que la somme vaille 1, on obtient la distribution stationnaire

$$\pi = \frac{1}{1+2+1} (1,2,1)^{\top} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \end{pmatrix}.$$

Ainsi, pour
$$v_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
,

$$v_{\infty} := \lim_{t \to \infty} v_t = \pi = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{4} \end{pmatrix}.$$

Interprétation. Quel que soit le point de départ, la distribution converge vers $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$: à long terme, le voyageur passe la moitié du temps à Lyon et un quart à Paris et à Marseille.