Chaospy:

A modular implementation of Polynomial Chaos expansions and Monte Carlo methods

Simen Tennøe

Supervisors:

Jonathan Feinberg Hans Petter Langtangen Gaute Einevoll Geir Halnes

University of Oslo, CINPLA

Chaospy is a Python toolbox for forward model UQ

Properties of Chaospy

Chaospy is a Python toolbox for forward model UQ

Properties of Chaospy

Monte Carlo methods

Chaospy is a Python toolbox for forward model UQ

Properties of Chaospy

Monte Carlo methods

$$\sum_{n=0}^{\infty} c_n(x) P_n(q)$$
 Polynomial Chaos

Chaospy is modular and therefore very flexible

Chaospy is modular and therefore very flexible

Chaospy has support for dependent variables

Chaospy is modular and therefore very flexible

Chaospy has support for dependent variables

Chaospy has a large collection of methods and distributions

Chaospy is modular and therefore very flexible

Chaospy has support for dependent variables

Chaospy has a large collection of methods and distributions

It is easy to compare different methods on given a problem

Comparing Chaospy with Turns and Dakota

Feature	Dakota	Turns	Chaospy
Distributions	11	26	64
Copulas	1	7	6
Sampling schemes	4	7.5	7
Orthogonal polynomial schemes	4	3	5
Numerical integration strategies	7	0	7
Regression methods	5	4	8
Analytical metrics	6	6	7

Comparing Chaospy with Turns and Dakota

Feature	Dakota	Turns	Chaospy
Distributions	11	26	64
Copulas	1	7	6
Sampling schemes	4	7.5	7
Orthogonal polynomial schemes	4	3	5
Numerical integration strategies	7	0	7
Regression methods	5	4	8
Analytical metrics	6	6	7

Comparing Chaospy with Turns and Dakota

Feature	Dakota	Turns	Chaospy
Distributions	11	26	64
Copulas	1	7	6
Sampling schemes	4	7.5	7
Orthogonal polynomial schemes	4	3	5
Numerical integration strategies	7	0	7
Regression methods	5	4	8
Analytical metrics	6	6	7

► Monte Carlo with variance reduction techniques

- ► Monte Carlo with variance reduction techniques
- ► Intrusive and non-intrusive polynomial chaos

- ► Monte Carlo with variance reduction techniques
- ► Intrusive and non-intrusive polynomial chaos
 - ► Pseudo-spectral method

- ► Monte Carlo with variance reduction techniques
- ► Intrusive and non-intrusive polynomial chaos
 - ► Pseudo-spectral method
 - ► Point collocation/regression

```
def solver(*node):
   # node: tuple of the uncertain stochastic parameters
   model.set_parameters(node)
```

```
def solver(*node):
   # node: tuple of the uncertain stochastic parameters
   model.set_parameters(node)
   model.run()
```

```
def solver (*node):
   # node: tuple of the uncertain stochastic parameters
   model.set_parameters(node)
   model.run()
   results = model.post_processing()
```

```
def solver(*node):
    # node: tuple of the uncertain stochastic parameters
    model.set_parameters(node)
    model.run()
    results = model.post_processing()
    return results
```

Chaospy is a completly generic software; for simplicity we use a very simple example problem

$$\frac{du(x)}{dx} = -au(x), \qquad u(0) = 1.$$

u The quantity of interest.

x Spatial location.

a, I Parameters containing uncertainties.

Chaospy is a completly generic software; for simplicity we use a very simple example problem

$$\frac{du(x)}{dx} = -au(x), \qquad u(0) = 1.$$

u The quantity of interest.

x Spatial location.

a, I Parameters containing uncertainties.

$$a \sim \text{Uniform}(0, 0.1)$$
 $I \sim \text{Uniform}(8, 10)$

$$I \sim \mathsf{Uniform}(8, 10)$$

Chaospy is a completly generic software; for simplicity we use a very simple example problem

$$\frac{du(x)}{dx} = -au(x), \qquad u(0) = 1.$$

u The quantity of interest.

x Spatial location.

a, I Parameters containing uncertainties.

$$a \sim \text{Uniform}(0, 0.1)$$
 $I \sim \text{Uniform}(8, 10)$

We want to compute E(u) and Var(u).

Monte Carlo integration can be used for any model


```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
```

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
# Joint distribution
dist = cp.J(dist_a, dist_I)
```

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
# Joint distribution
dist = cp.J(dist_a, dist_I)
samples = dist.sample(size=1000)
```

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
# Joint distribution
dist = cp.J(dist_a, dist_I)
samples = dist.sample(size=1000)
# solver returns the u(x), where x is fixed
samples_u = [solver(a, I) for a, I in samples]
# solver_u : list of all u values for each
#
            set of uncertain parameters
```

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
# Joint distribution
dist = cp.J(dist_a, dist_I)
samples = dist.sample(size=1000)
# solver returns the u(x), where x is fixed
samples_u = [solver(a, I) for a, I in samples]
# solver_u : list of all u values for each
#
            set of uncertain parameters
E = np.mean(samples_u, 0)
Var = np.var(samples_u, 0)
```

Convergence of Monte Carlo is slow

$$\varepsilon_E = \int |\mathsf{E}(u) - \mathsf{E}(\hat{u})| \, dx$$
 $\varepsilon_{Var} = \int |\mathsf{Var}(u) - \mathsf{Var}(\hat{u})| \, dx$

Convergence of Monte Carlo is slow

$$\varepsilon_E = \int |\mathsf{E}(u) - \mathsf{E}(\hat{u})| \, dx$$
 $\varepsilon_{Var} = \int |\mathsf{Var}(u) - \mathsf{Var}(\hat{u})| \, dx$

Chaospy has several variance reduction techniques for sampling a distribution

Hammersley sampling:

Halton sampling
nodes = dist.sample(100, "H")

Latin Hypercube sampling:

nodes = dist.sample(100, "L")

Sobol sampling

nodes = dist.sample(100, "S")

The different sampling schemes available in Chaospy compared to Turns and Dakota

	Dakota	Turns	Chaospy
Quasi-Monte Carlo scheme			
Faure sequence	No	Yes	No
Halton sequence	Yes	Yes	Yes
Hammersley sequence	Yes	Yes	Yes
Haselgrove sequence	No	Yes	No
Korobov latice	No	No	Yes
Niederreiter sequence	No	Yes	No
Sobol sequence	No	Yes	Yes
Other methods			
Antithetic variables	No	No	Yes
Importance sampling	Yes	Yes	Yes
Latin Hypercube sampling	Yes	Limited	Yes

Quasi-Monte Carlo with Latin Hypercube sampling

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
samples = dist.sample(size=1000)
samples_u = [solver(a, I) for a, I in samples]
E = np.mean(samples_u, 0)
Var = np.var(samples_u, 0)
```

Quasi-Monte Carlo with Latin Hypercube sampling

```
import chaospy as cp
import numpy as np
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
samples = dist.sample(size=1000, rule="L")
samples_u = [solver(a, I) for a, I in samples]
E = np.mean(samples_u, 0)
Var = np.var(samples_u, 0)
```

Convergence of quasi-Monte Carlo is better than Monte Carlo, but still slow

$$u(x;q) \approx \hat{u}_M(x;q) = \sum_{n=0}^{N} c_n(x)$$
 $P_n(q)$ Coefficient Polynomial

 $\hat{u}_M(x;q)$ is the mapping from the uncertain variables q to the response variable u, x is a set variable.

$$u(x;q) \approx \hat{u}_M(x;q) = \sum_{n=0}^N c_n(x)$$
 $P_n(q)$

 $\hat{u}_M(x;q)$ is the mapping from the uncertain variables q to the response variable u, x is a set variable.

Mean and variance are calculated from $\hat{u}_M(x;q)$.

$$u(x;q) \approx \hat{u}_M(x;q) = \sum_{n=0}^{N} c_n(x)$$
 $P_n(q)$

 $\hat{u}_M(x;q)$ is the mapping from the uncertain variables q to the response variable u, x is a set variable.

Mean and variance are calculated from $\hat{u}_M(x;q)$.

$$u(x;q) \approx \hat{u}_M(x;q) = \sum_{n=0}^{N} c_n(x)$$
 $P_n(q)$

Coefficient Polynomial

 $\hat{u}_M(x;q)$ is the mapping from the uncertain variables q to the response variable u, x is a set variable.

Mean and variance are calculated from $\hat{u}_M(x;q)$.

 P_n are orthogonal polynomials and are generaly calculated through the three-term discretized Stiltjes recursion

P_n are orthogonal polynomials and are generaly calculated through the three-term discretized Stiltjes recursion

```
dist = cp.Normal()
P = cp.orth_ttr(3, dist)
print P
[1.0, q0, q0<sup>2</sup>-1.0, q0<sup>3</sup>-3.0q0]
```

Methods for generating expansions of orthogonal polynomials

Orthogonalization Method	Dakota	Turns	Chaospy
Askey-Wilson scheme	Yes	Yes	Yes
Bertran recursion	No	No	Yes
Cholesky decomposition	No	No	Yes
Discretized Stieltjes	Yes	No	Yes
Modified Chebyshev	Yes	Yes	No
Modified Gram-Schmidt	Yes	Yes	Yes

The pseudo-spectral method, used to calculate c_n , needs numerical integration, which demands generating quadrature nodes and weights

```
dist = cp.Normal()
nodes, weights = cp.generate_quadrature(2, dist, rule="G")
```

The pseudo-spectral method, used to calculate c_n , needs numerical integration, which demands generating quadrature nodes and weights

Numerical integration strategies implemented in the three software toolboxes

Node and weight generators	Dakota	Turns	Chaospy
Clenshaw-Curtis quadrature	Yes	No	Yes
Cubature rules	Yes	No	No
Gauss-Legendre quadrature	Yes	No	Yes
Gauss-Patterson quadrature	Yes	No	Yes
Genz-Keister quadrature	Yes	No	Yes
Leja quadrature	No	No	Yes
Monte Carlo integration	Yes	No	Yes
Optimal Gaussian quadrature	Yes	No	Yes


```
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
P = cp.orth_ttr(2, dist)
```

```
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
P = cp.orth_ttr(2, dist)
nodes, weights = cp.generate_quadrature(3, dist)
```

```
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
P = cp.orth_ttr(2, dist)
nodes, weights = cp.generate_quadrature(3, dist)
samples_u = [solver(*node) for node in nodes.T]
```

```
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a,dist_I)

P = cp.orth_ttr(2, dist)

nodes, weights = cp.generate_quadrature(3, dist)

samples_u = [solver(*node) for node in nodes.T]

u_hat = cp.fit_quadrature(P, nodes, weights, samples_u rule="Gaussian")
```

```
dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)
P = cp.orth_ttr(2, dist)
nodes, weights = cp.generate_quadrature(3, dist)
samples_u = [solver(*node) for node in nodes.T]
u_hat = cp.fit_quadrature(P, nodes, weights, samples_u
                          rule="Gaussian")
mean = cp.E(u_hat, dist)
var = cp.Var(u_hat, dist)
```

Convergence of polynomial chaos is much faster than the Monte Carlo methods

With a few lines of Python code it is easy to customize: distributions ▶ polynomials ► integration schemes

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- ▶ sampling schemes

chaos Py

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- ▶ sampling schemes
- statistical analysis of the result

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- ▶ sampling schemes
- statistical analysis of the result

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- ▶ sampling schemes
- ► statistical analysis of the result

Custom polynomials:

```
q0, q1 = cp.variable(2)
```

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- ▶ sampling schemes
- ▶ statistical analysis of the result

Custom polynomials:

```
q0, q1 = cp.variable(2)
phi = cp.Poly([1, q0, q1, q0**2 - 1, q0*q1])
```

With a few lines of Python code it is easy to customize:

- distributions
- ▶ polynomials
- ► integration schemes
- sampling schemes
- statistical analysis of the result

Custom polynomials:

```
q0, q1 = cp.variable(2)
phi = cp.Poly([1, q0, q1, q0**2 - 1, q0*q1])
print phi
[1, q0, q1, q0^2-1, q0q1]
```

Chaospy handles Polynomial Chaos expansions with stochastically dependent variables

Diffusion in layered media with uncertain boundary, I, and uncertain diffusion constants, D_0 , D_1 .

Uncertain *I* slows down convergence, but introduction of auxiliary *dependent* variables restores convergence.

Summary: Chaospy is a Python toolbox for forward model UQ with advanced Monte Carlo methods and Polynomial Chaos expansions

Chaospy is modular, flexible, with syntax that resembles the mathematics

A vast collection of methods, ideal for method comparisons

Summary: Chaospy is a Python toolbox for forward model UQ with advanced Monte Carlo methods and Polynomial Chaos expansions

Installation instructions:

https://github.com/hplgit/chaospy

Reference:

Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing methods of uncertainty quantification. Journal Of Computational Science, 11, 46-57

http://hplgit.github.io/chaospy/doc/pub/chaospy-4screen.pdf

Summary: Chaospy is a Python toolbox for forward model UQ with advanced Monte Carlo methods and Polynomial Chaos expansions

Installation instructions:

https://github.com/hplgit/chaospy

Reference:

Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing methods of uncertainty quantification. Journal Of Computational Science, 11, 46-57

http://hplgit.github.io/chaospy/doc/pub/chaospy-4screen.pdf

Questions?

