SAMPLE PROBLEM E

Overcoming Friction

PROBLEM

A student attaches a rope to a 20.0 kg box of books. He pulls with a force of 90.0 N at an angle of 30.0° with the horizontal. The coefficient of kinetic friction between the box and

the sidewalk is 0.500. Find the acceleration

of the box.

SOLUTION

1. DEFINE

Given:
$$m = 20.0 \text{ kg}$$
 $\mu_k = 0.500$

$$\mathbf{F_{applied}} = 90.0 \text{ N at } \theta = 30.0^{\circ}$$

Unknown: a = ?

Diagram:

2. PLAN Choose a convenient coordinate system, and find the x and y components of all forces.

The diagram at right shows the most convenient coordinate system, because the only force to resolve into components is $\mathbf{F}_{\mathbf{applied}}$.

$$F_{applied,y} = (90.0 \text{ N})(\sin 30.0^{\circ}) = 45.0 \text{ N (upward)}$$

$$F_{applied,x} = (90.0 \text{ N})(\cos 30.0^{\circ}) = 77.9 \text{ N} \text{ (to the right)}$$

- **A.** Find the normal force, F_n , by applying the condition of equilibrium in the vertical direction: $\Sigma F_{\nu} = 0$.
- **B.** Calculate the force of kinetic friction on the box: $F_k = \mu_k F_n$.
- **C.** Apply Newton's second law along the horizontal direction to find the acceleration of the box: $\Sigma F_x = ma_x$.

3. CALCULATE

Substitute the values into the equations and solve:

A. To apply the condition of equilibrium in the vertical direction, you need to account for all of the forces in the y direction: F_g F_m and $F_{applied,y}$. You know $F_{applied,y}$ and can use the box's mass to find F_g .

$$F_{applied,y} = 45.0 \text{ N}$$

$$F_g = (20.0 \text{ kg})(9.81 \text{ m/s}^2) = 196 \text{ N}$$