МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Базы данных»

Тема: Проектирование ER модели и структуры БД по текстовому

описанию предметной области

Беззубов Д.В.
Заславский М.М.

Санкт-Петербург

2023

Цель работы.

Научиться проектировать ER модель и структуру БД по текстовому описанию предметной области.

Залание.

Вариант 2

Пусть требуется создать программную систему, предназначенную для работников библиотеки. Такая система должна обеспечивать хранение сведений об имеющихся в библиотеке книгах, о читателях библиотеки и читальных залах.

Для каждой книги в БД должны храниться следующие сведения: название книги, автор (ы), издательство, год издания, число экземпляров этой книги в каждом зале библиотеки, а также шифр книги и дата закрепления книги за читателем.

Сведения о читателях библиотеки должны включать номер читательского билета, фамилию читателя, номер паспорта, дату рождения, адрес, номер телефон, образование, наличие ученой степени.

Читатели закрепляются за определенным залом и могут записываться и выписываться из библиотеки.

Библиотека имеет несколько читальных залов, которые характеризуются номером, названием и вместимостью, то есть количеством людей, которые могут одновременно работать в зале.

Библиотека может получать новые книги и списывать старые. Шифр книги может измениться в результате переклассификации, а номер читательского билета в результате перерегистрации.

Библиотекарю могут потребоваться следующие сведения о текущем состоянии библиотеки:

- Какие книги закреплены за определенным читателем?
- Как называется книга с заданным шифром?
- Какой шифр у книги с заданным названием?
- Когда книга была закреплена за читателем?
- Кто из читателей взял книгу более месяца тому назад?

- За кем из читателей закреплены книги, количество экземпляров которых в библиотеке не превышает 2?
- Какое число читателей пользуется библиотекой?
- Сколько в библиотеке читателей младше 20 лет?

Выполнение работы.

Была составлена ER-модель, представленная на рисунке 1.

Рисунок 1 – ER-модель базы данных

Обоснование связей:

Читатель обязательно закрепляется только за одним залом, за залом могут быть закреплены несколько читателей, может быть 0.

Книга обязательно имеет автора, но может быть написана несколькими авторами, у автора может быть несколько книг, но как минимум 1, иначе он бы не был автором.

Издательство обязательно издает книги (1 и более), но конкретная книга может быть издана только одним издательством.

Книга может быть в нескольких залах, но при этом конкретная книга может быть только одной «книгой в зале».

В зале может находиться 1 и более книг, но «книга в зале» обязательно находится только в одном зале.

Читатель может бронировать сколько угодно книг, в т.ч. не бронировать, но книга из зала может находиться только у одного читателя.

Составление структуры БД.

1. В случае <u>обязательной связи 1:n</u> ключ односвязной сущности добавляется в атрибуты сущности n-связности.

Таким образом ключи «Книги» и «Читального зала» попадают в сущность «Книга в зале».

А ключ «Издательства» в сущность «Книга».

2. В случае связи n:m создается дополнительная сущность для связи.

Таким образом появляется «Автор книги», содержащая ключи «Автора» и «Книги».

3. В случае <u>связи 1:n, где класс принадлежности n-связной сущности необязательный создается дополнительное отношение связи.</u> Атрибуты главных сущностей попадают в отношение связи.

Таким образом, создается сущность "VisitorHall", содержащая ключи «Читателя» и «Читального зала».

Создается сущность "*Booking*", содержащая ключи «Читателя» и «Книги в зале»

Результат представлен на рисунке 2.

Рисунок 2 – Структура БД

Функциональные зависимости и ключи для каждой сущности:

Сущность	Потенциальные ключи	Ф3
Publisher	id, name	$id \rightarrow name, name \rightarrow id$

Author	id, surname	$id \rightarrow surname, surname \rightarrow id$
Book	id	$id \rightarrow publisher$, title, year
AuthorBook	author_id + book_id	тривиальная
LibraryHall	id, name	$id \rightarrow name$, capacity
		name → id, capacity
Visitor	id,	$id \rightarrow остальные атрибуты$
	reader_ticket,	reader_ticket → остальные арибуты
	passport,	passport → остальные атрибуты
	phone	phone → остальные атрибуты
VisitorHall	visitor_id + hall_id	тривиальная
BookAtHall	hall_id + book_id	hall_id + book_id → остальные
		атрибуты
Booking	ключ BookAtHall +	ключ BookAtHall + visitor_id →
	visitor_id	created_at

Видно, что во всех нетривиальных и неприводимых слева $\Phi 3$ детерминантом является потенциальный ключ. Следовательно, реляционная модель находится в НФБК.

Выводы.

Была спроектирована ER модель и структура БД по текстовому описанию предметной области.

ПРИЛОЖЕНИЕ А ССЫЛКИ

Pull Request:

 $\underline{https://github.com/moevm/sql-2023-1303/pull/9}$