Université de Rennes 1-Année 2020/2021 L3--PSIN/PRB-Feuille de TD 9

Exercice 1. Soit X une v.a.r. continue sur $(\Omega, \mathcal{F}, \mathbf{P})$ et f sa densité.

- (i) Montrer que e^X est une v.a.r. continue et calculer sa densité. Expliciter cette densité dans le cas où $X \sim \mathcal{N}(0,1)$.
- (ii) On suppose que X>0. Montrer que 1/X est une v.a.r. continue et calculer sa densité.
- (iii) Montrer que |X| est une v.a.r. continue et calculer sa densité.

Exercice 2. Une compagnie aérienne assure une liaison aérienne entre deux villes par un avion de 150 places. Des estimations ont montré que la probabilité pour qu'une personne confirme sa réservation est p=0.75. La compagnie vend n billets avec n>150 ("surbooking"). Soit X le nombre de personnes parmi les n possibles qui confirment leur réservation.

- (i) Quelle est la loi exacte de X.
- (ii) Quel est le nombre maximum de places que la compagnie peut vendre pour que, au risque de 5%, elle soit sûre que tout le monde puisse monter dans l'avion. (*Indication*: On considérera que $Z = (X \mathbb{E}(X))/\sqrt{\operatorname{Var}(X)}$ suit une loi normale $\mathcal{N}(0,1)$ et on utilisera le fait (voir table numérique) que $\Phi(1.645) = 0.95$.)

Exercice 3. Une équipe de surveillance cherche à savoir si les huîtres d'un certain bassin ont été contaminées. Sur un échantillon de 200 huîtres, elle dénombre 32 huîtres atteintes. Déterminer un intervalle de confiance, au risque de 5%, pour la proportion d'huîtres contaminées dans le bassin.

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}^+$ définie par

$$\begin{cases} \frac{e^{-x/y}e^{-y}}{y} & \text{si } 0 < x, 0 < y \\ 0 & \text{sinon} \end{cases}$$

(i) Vérifier que f est bien une densité.

Soit (X,Y) un couple aléatoire de densité f.

- (ii) Déterminer les densités f_X et f_Y de X et Y.
- (iii) X et Y sont-elles indépendantes?
- (iv) Calculer la covariance Cov(X, Y).

Exercice 5. Soient X et Y deux v.a.r. indépendantes et suivant chacune une loi normale centrée-réduite $\mathcal{N}(0,1)$.

(i) Déterminer la densité du couple aléatoire Z = (X, Y).

Soit T la v.a.r définie sur $\{Y \neq 0\}$ par T = X/Y et par T = 0 sur $\{Y = 0\}$.

(ii) Déterminer la fonction de répartition de T. (Indication : penser aux coordonnées polaires). Montrer que T possède une densité et la déterminer.