Corrigé 6

Exercice 1. Soit Ω un ouvert connexe dans $\mathbb C$ et soit I un intervalle fermé dans Ω . Soit f continue dans Ω et analytique dans $\Omega \setminus I$. Montrer que f est analytique dans tout Ω .

Démonstration. Sans perte de généralité, après rotation et homothétie, on peut supposer que le segment est [0,1]. We have to prove that the integral of f over any contractible loop inside Ω equals zero.

Consider a contractible loop γ in Ω . If it does not intersect I then the integral is zero since f is holomorphic in $\Omega \setminus I$. Suppose it intersects I a finite number of times. Then one can split γ into a union of contractible loops, where each loop either does not intersect I, or intersects the real line at two points, a and b, and is homotopic to a rectangle $[a+i\epsilon, a-i\epsilon, b-i\epsilon, b+i\epsilon]$ for any $\epsilon > 0$.

On considère d'abord un lacet rectangulaire avec sommets $a+i\epsilon, a-i\epsilon, b-i\epsilon$ et $b+i\epsilon$ (qui est bien inclu dans Ω pour ϵ suffisamment petit). L'intégrale le long de ce lacet est

$$\int_{a}^{b} (f(x-i\epsilon) - f(x+i\epsilon)) dx + i \int_{-\epsilon}^{\epsilon} (f(b+iy) - f(a+iy)) dy.$$

Par continuité de f, il existe c > 0 tel que pour tout $\epsilon > 0$ suffisamment petit, on a que $\sup_{y \in [-\epsilon, \epsilon]} |f(a \pm iy)| < c$ and similarly for $f(b \pm iy)$. La seconde intégrale est donc bornée par $2c\epsilon$.

Par continuité et puisque le segment [0,1] est compact, pour tout $\delta > 0$ il existe ϵ_0 tel que pour tout $\epsilon < \epsilon_0$, on a que $\sup_{x \in [a,b]} |f(x-i\epsilon) - f(x+i\epsilon)| \le \delta$. La première intégrale est donc bornée par $|a-b| \delta$.

On a $\forall \epsilon, \epsilon' > 0$ positifs distincts, la valeur de l'intégrale sur les deux rectangles définis par ϵ et ϵ' doit être la même, car l'un est une déformation homotope de l'autre là où f est holomorphe. Or pour tout $\delta > 0$ il existe un $\epsilon > 0$ tel que l'intégrale sur le lacet est bornée par |a-b| $\delta + 2c\epsilon$. En laissant $\delta \to 0$ et $\epsilon \to 0$ on a que l'intégrale doit être nulle.

Suppose γ intersects I infinitely many number of times. Recall we assumed that I=[0,1]. We claim that for any $\delta>0$ there exists $\delta'\in(0,\delta)$ such that shifting the loop by δ' along the imaginary axis will result in a loop with only a finite number of intersections with I. At the same time, by continuity of f, the integrals $\oint_{\gamma} f(z) dz$ and $\oint_{\gamma'} f(z') dz'$, where γ' is γ shifted by δ' , should not differ much. Since we already know that $\oint_{\gamma'} f(z') dz'$ should be zero, these two claims will give $\oint_{\gamma} f(z) dz = 0$.

More formally, let $\epsilon > 0$. Take a compact K inside Ω that contains the whole loop γ in its interior. Since f is continuous on Ω , it is uniformly continuous in K. Take $\delta > 0$ such that $|f(z) - f(z')| < \epsilon$ for any $z, z' \in K$.

Let $\delta' \in (0, \delta)$ and define $\gamma'(t) = \gamma(t) + i\delta'$. Since γ has finite length, the integrals over γ and γ' are close to each other : $\left| \oint_{\gamma} f(z) \, dz - \oint_{\gamma'} f(z') \, dz' \right| < |\gamma| \epsilon$. Therefore proving that there always exists $\delta' \in (0, \delta)$ such that $\oint_{\gamma'} f(z) \, dz = 0$ for any $\epsilon > 0$ will imply $\oint_{\gamma} f(z) \, dz = 0$.

We have to prove that for any $\delta>0$ there exists $\delta'\in(0,\delta)$ such that $\gamma'=\gamma+i\delta'$ has only finite number of intersections with I. Proof by contradiction: suppose for some $\delta>0$, for any $\delta'\in(0,\delta)$, γ' has an infinite number of intersections with I. Then there exists an infinite set of intersection points that remain intersection points when traversing from $\delta'=0$ to $\delta'=\tilde{\delta}$ for some $\tilde{\delta}\in(0,\delta)$. Consider one such intersection point; it travels from $\gamma(s)$ for some $s\in[0,1]$ to $\tilde{\gamma}(\tilde{s})$ for some $\tilde{s}\in[0,1]$. Since $\tilde{\gamma}$ is a result of shifting γ by $\tilde{\delta}$, the distance between $\tilde{\gamma}(\tilde{s})$ and $\gamma(s)+i\tilde{\delta}$ is at least $\tilde{\delta}$. Since there are infinite number of these "traversing" intersection points, the total length they traverse along γ is also infinite. This is a contradiction with the fact that γ should have finite length.

Exercice 2. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière non constante. Démontrer que $f(\mathbb{C})$ est dense dans \mathbb{C} .

Démonstration. Supposons qu'il existe un point $w \in \mathbb{C}$ et un rayon r > 0 tels que $f^{-1}(D(w,r)) = \emptyset$. La fonction $g(z) = \frac{1}{f(z)-w}$ est holomorphe (car $f(z) \neq w$ pour tout $z \in \mathbb{C}$) et est bornée :

$$|g(z)| = \frac{1}{|f(z) - w|} \le \frac{1}{r}.$$

Le théorème de Liouville montre que g est constante et donc que f est constante.

Exercice 3. En utilisant le contour de la Figure 1, calculer l'intégrale

$$\int_0^\infty \frac{\sin t}{t} dt.$$

Figure 1

 $D\acute{e}monstration$. En intégrant $\frac{e^{iz}}{z}$ sur le chemin de la figure, on obtient

$$0 = \int_{\epsilon}^{R} \frac{e^{it}}{t} dt + \int_{0}^{\pi} \frac{e^{iRe^{it}}}{Re^{it}} iRe^{it} dt - \int_{\epsilon}^{R} \frac{e^{-it}}{t} dt + \int_{\pi}^{0} \frac{e^{i\epsilon e^{it}}}{\epsilon e^{it}} i\epsilon e^{it} dt$$

ce qui implique que

$$\int_{\epsilon}^{R} \frac{\sin t}{t} dt = \frac{1}{2i} \int_{\epsilon}^{R} \frac{e^{it} - e^{-it}}{t} dt = \frac{1}{2} \int_{0}^{\pi} e^{i\epsilon e^{it}} dt - \frac{1}{2} \int_{0}^{\pi} e^{iRe^{it}} dt.$$

La première intégrale tend vers π quand $\epsilon \to 0$, tandis que la seconde intégrale peut être bornée comme suit :

$$\left| \int_0^\pi e^{iRe^{it}} dt \right| \leq \int_0^\pi e^{\operatorname{Re}\left[iRe^{it}\right]} dt = \int_0^\pi e^{-R\sin t} dt \leq \int_0^{\frac{\pi}{2}} e^{-R\frac{2t}{\pi}} dt + \int_{\frac{\pi}{2}}^\pi e^{-R(2-\frac{2t}{\pi})} dt = \frac{\pi}{2R} \left[1 - e^{-R}\right] + \frac{\pi}{2R} \left[1 - e^{-R}\right],$$

qui tend vers 0 quand $R \to \infty$. Cela implique que

$$\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$$

Exercice 4.

(1) (Lemme de Schwarz) Démontrer que si $f: \mathbb{C} \to \mathbb{C}$ est analytique dans le disque unité ouvert \mathbb{D} , f(0) = 0 et $|f(z)| \le 1$ pour tout $z \in \mathbb{D}$, alors pour tout $z \in \mathbb{D}$ on a

$$|f(z)| \le |z|$$
.

- (2) Soit $z, a \in \mathbb{D}$, et soit $M_a : \mathbb{D} \to \mathbb{C}$ la fonction analytique $M_a(z) = \frac{z-a}{1-z\bar{a}}$. Montrer que $\forall z, a \in \mathbb{D}$, on a $|M_a(z)| \leq 1$, et que $M_a \circ M_{-a} = M_{-a} \circ M_a = \mathrm{Id}$.
- (3) Déduire que si la fonction $f: \mathbb{D} \to \mathbb{D}$ est analytique dans le disque ouvert \mathbb{D} et qu'elle a deux points fixes dans \mathbb{D} , alors $f(z) \equiv z$. (Indice: Utiliser (2) pour montrer que l'on peut supposer qu'un des deux points fixes est 0.)
- (4) Soit $f: \mathbb{D} \to \mathbb{D}$ analytique et t.q. $f(z_0) = z_0$ et $f'(z_0) = 1$ pour un certain $z_0 \in \mathbb{D}$. Montrer que $f(z) \equiv z$.
- (5) (Lemme de Schwarz-Pick) Démontrer que si $f: \mathbb{D} \to \mathbb{D}$ est holomorphe alors $\forall z, w \in \mathbb{D}$ on a

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(z)} f(w)} \right| \le \left| \frac{z - w}{1 - \overline{z} w} \right|,$$

et en déduire que

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Démonstration.

(1) On considère la fonction

$$g(z) = \frac{f(z)}{z}$$

et en zéro on choisit g(0) = f'(0), ce qui rend la fonction holomorphe dans tout disque fermé $\mathbb{D}(0,r)$ pour r < 1. Sur chacun de ces disques, le maximum de |g| est atteint en un point x_r du cercle $\partial \mathbb{D}(0,r)$ et on a donc pour tout $z \in \mathbb{D}(0,r)$

$$|g(z)| \le |g(x_r)| \le \frac{1}{|x_r|} = \frac{1}{r}.$$

En laissant $r \to 1$, on obtient

$$|g(z)| \le 1$$

pour tout $z \in \mathbb{D}$ et donc que

$$|f(z)| \le |z| |g(z)| \le |z|$$
.

(2) On a

$$|z - a|^2 - |1 - z\bar{a}|^2 = |z|^2 + |a|^2 - (z\bar{a} + \bar{z}a) - 1 + (z\bar{a} + \bar{z}a) - |z|^2|a|^2$$

$$= |z|^2(1 - |a|^2) + |a|^2 - 1$$

$$\leq (1 - |a|^2) + |a|^2 - 1$$

$$= 0$$

et donc $|M_a(z)| = \left|\frac{z-a}{1-z\bar{a}}\right| \le 1$. D'autre part, on a que

$$M_a(M_{-a}(z)) = \frac{M_{-a}(z) - a}{1 - M_{-a}(z)\bar{a}} = \frac{z + a - a(1 + z\bar{a})}{1 + z\bar{a} - (z + a)\bar{a}} = z.$$

(3) Sans perte de généralité, on peut supposer qu'un des deux points fixes est 0. En effet, si ce n'est pas le cas, alors on note $a \neq 0$ un point fixe et on considère la fonction

$$\tilde{f}(z) = M_a \circ f \circ M_{-a}.$$

La fonction $\tilde{f}(z)$ a deux points fixes en $M_a(a) = 0$ et en $M_a(b) \in \mathbb{D} \setminus \{0\}$ et elle est égale à l'identité si et seulement si f est l'identité. En supposant donc que f à deux points fixes en 0 et en b, on considère la fonction $g(z) = \frac{f(z)}{z}$ comme en (1). Puisque le maximum de |g(z)| est atteint en b car $g(b) = \frac{b}{b} = 1$ et que b se trouve à l'intérieur du disque, g doit être constante égale à 1 par le principe du maximum et ainsi f est l'identité.

- (4) On peut supposer que $z_0=0$, sinon on prend $\tilde{f}(z)=M_{z_0}\circ f\circ M_{-z_0}$ qui satisfait $\tilde{f}(0)=0$ et $\tilde{f}'(0)=M'_{z_0}(z_0)f'(z_0)M'_{-z_0}(0)=1$ car $M'_{z_0}(z_0)M'_{-z_0}(0)=1$. On considère donc $g(z)=\frac{f(z)}{z}$ dont le maximum est atteint en zéro : g(0)=f'(0)=1. Ce qui implique que g(z)=1 et que f(z)=z.
- (5) La fonction $h = M_{f(z)} \circ f \circ M_{-z}$ de \mathbb{D} en \mathbb{D} satisfait $h(0) = M_{f(z)}(f(z)) = 0$. On peut donc appliquer le Lemme de Schwarz pour obtenir

$$|h(x)| = \left| \left(M_{f(z)} \circ f \circ M_{-z} \right) (x) \right| \le |x|.$$

En prenant $x = M_z(w)$ on obtient

$$\left| \frac{f(w) - f(z)}{1 - \overline{f(z)}f(w)} \right| \le |M_z(w)| = \left| \frac{w - z}{1 - \overline{z}w} \right|$$

et en prenant $w \to z$ on obtient

$$\left|\frac{f'(z)}{1-\left|f(z)\right|^2}\right| = \left|\lim_{w\to z} \frac{f(w)-f(z)}{w-z} \frac{1}{1-\overline{f(z)}f(w)}\right| \le \left|\lim_{w\to z} \frac{w-z}{w-z} \frac{1}{1-\overline{z}w}\right| = \left|\frac{1}{1-\left|z\right|^2}\right|.$$

Puisque $|f(z)| \le 1$ et $|z| \le 1$, on obtient

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$