

prueba_tema2_2016_resuelto.pdf

Exámenes Resueltos (teoría y Prácticas)

- 2° Arquitectura de Computadores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

ARQUITECTURA DE COMPUTADORES BENCHMARK del TEMA 2

1. Suponiendo que en la figura Ta=10 s. y Tb=30 s.

¿Qué valor tiene la ganancia de velocidad para p=4 procesadores?

¿Cuál es el valor de la f de la ley de Gustafson? f = Ta/(Ta+Tb) = 10/(10+30) = 1/4 = 0.25

2. Complete la siguiente Tabla de Ganancias de Velocidad (Ts=tiempo secuencial):

2. Complete la signiente rabia de Ganancias de Velocidad (13-tiempo secuenciar).				
Fracción no paralela en Ts	Grado de Paralelismo	Overhead	Ganancia para p procesadores (con p>n)	Ganancia para p→∞
0	ilimitado	Τ _ο (p)=p	1/((1/p)+(p/Ts)) (también he dado por bueno si se supone Ts=1)	0
f	n	0	1/(f+((1-f)/n))	1/(f+((1-f)/n))
f	ilimitado	0	1/(f+((1-f)/p))	
0	n	Τ _Ο (p)=p	1/((1/n)+(p/Ts)) (también he dado por bueno si se supone Ts=1 y/o se utiliza n en el overhead)	

3. Responda Verdadero (V) o Falso (F):

- En la comunicación colectiva *all-scatter* todos los procesadores reciben información de todos, cosa que no ocurre en la comunicación *gossiping*

- La asignación de carga dinámica afecta al tiempo de overhead del programa paralelo

(V)

(F)

- En la comunicación colectiva *all-scatter* todos los procesadores reciben información de todos, cosa que también ocurre en la comunicación *gossiping*

(V)

- La asignación de carga dinámica no afecta al tiempo de overhead del programa paralelo

(F)

- En la comunicación colectiva de tipo *gossiping* todos los procesadores envían información, pero no todos los procesadores reciben

(F)

