Sistemas de Controle

Modelagem Matemática de Sistemas Térmicos

Sistemas Térmicos

Conservação de Energia:

$$C\frac{dT}{dt} = q_{ent}(t) - q_{sai}(t)$$

sendo:

c - Capacitância térmica

q - Fluxo de calor

onde:

$$q=rac{\Delta T}{R}=rac{T_{alta}(t)-T_{baixa}(t)}{R}$$
 , sendo R a resistência térmica ao fluxo de calor.

Exemplo

Determine T(t) no interior da câmara de ar, assumindo uma temperatura inicial de T_0 .

Resolução

Conservação de Energia:

$$C\frac{dT}{dt} = q_{ent}(t) - q_{sai}(t)$$

resultando em:

$$C\frac{dT}{dt} = -q_{sai}(t)$$

sendo:

$$q_{sai}(t) = \frac{\Delta T}{R} = \frac{T(t) - T_a}{R}$$

Resolução

Assim:

$$C\frac{dT}{dt} = -\frac{T(t) - T_a}{R}$$

OU:

$$C\frac{dT}{dt} + \frac{T(t)}{R} = \frac{T_a}{R}$$

Multiplicando por R:

$$CR\frac{dT}{dt} + T(t) = T_a$$

Chamando $\tau = CR$:

$$\tau \frac{dT}{dt} + T(t) = T_a$$

sendo:

au - Tempo de resposta

Exercício

Obtenha T(t) para a equação abaixo:

$$\tau \frac{dT}{dt} + T(t) = T_a$$

sendo $T(0) = T_0$.

Dúvidas?

Grupo Whatsapp