3 数据拟合

代数插值是根据给定的数据表(也称为函数表),按某些条件构造一个代数多项式 $p_n(x)$ 近似代替函数 f(x),所要求的条件中有一个条件是 $p_n(x_i) = y_i(i=0,1,\dots,n)$,即要求函数 $p_n(x)$ 经过点 (x_i,y_i) . 但是,由于数据表中给定的数据 x_i 和 y_i 是从实验或测量中得到的,难免有些误差,而且有个别点的误差可能比较大. 用代数插值所得到的插值多项式 $p_n(x)$ 因为要经过点 (x_i,y_i) ,所以必然保留原来数据的一切误差. 这是我们所不希望的. 为了避免这种情况的发生,可以使用数据拟合法.

3.1 单变量数据拟合及最小二乘法

若给定的数据表表示的是一个量与另一个量的关系,则可以使用单变量数据 拟合法寻找一个近似函数代替函数 f(x).

单变量数据拟合法的一般过程是: 先根据给定函数 y = f(x) 的数据表(如表 3-1 所示),用几何描点法或凭经验选择一个近似函数 F(x),以反映数据表中数据的一般趋势,然后使用最小二乘法确定 F(x)中的未知参数,从而得到 f(x) 的近似函数 F(x).

x	x_1	x_2		x_n
y = f(x)	y_1	y_2	•••	y_n

表 3-1 y = f(x) 的数据表

通常 F(x) 称为拟合函数 f(x) 称为被拟合函数.

从单变量数据拟合法的一般过程可以看到,在使用数据拟合法求拟合函数 F(x)时,要用到最小二乘法.那么,什么是最小二乘法呢?

与插值法的目的一样,单变量数据拟合法也是要寻找一个近似函数 F(x)来近似代替 f(x). 但它与插值法又有些不同,它不要求近似函数 F(x)一定经过点(x_i , y_i). 很自然,人们总是希望能找到一个最好的函数来近似代替 f(x). 现在的问题是,什么是"最好"的函数?"最好"的函数以什么标准来衡量?为了讨论这个问题.需要引入偏差的定义.

定义 3.1 若记 $\delta_i = f(x_i) - F(x_i)$, $i = 1, 2, \dots, n$, 则称 δ_i 为 f(x) 与 F(x) 在 x_i 处的偏差.

一般情况下,使用单变量数据拟合法能找到一个近似函数 F(x),使它与f(x)的偏差 δ 。的平方和最小,即使

$$\sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} [f(x_i) - F(x_i)]^2$$

最小. 能使偏差 δ_i 的平方和最小的函数就是"最好"的函数. 因此,可以以偏差 δ_i 的平方和最小作为原则选择近似函数 F(x).

定义 3.2 以"偏差的平方和最小"为原则选择近似函数的方法称为最小二乘法.

下面介绍一个呈线性关系的数据拟合的例子.

例 3-1 已知一组实验数据如表 3-2 所示,试用单变量数据拟合法求其拟合函数.

x	- 1	0	1	2	3	4	5	6
y = f(x)	10	9	7	5	4	3	0	- 1

表 3-2 例 3-1 数据表

解 按照单变量数据拟合法的一般过程,根据给定的数据表(表3-2),用几何描点法或凭经验选择近似函数,以反映数据表中数据的一般趋势。这里,用几何描点法选择近似函数,而用几何描点法选择近似函数要画出数据表中数据的散点图,散点图如图3-1所示.

从图 3-1 可以看到,点 (x_i,y_i) (i=1,2, …,8)在一条直线附近,这些点基本满足直线方程.因此,可以选择线性函数来拟合这些数据,即可以选取

图 3-1 例 3-1 数据散点图

$$F(x) = a + bx$$

作为 f(x) 的近似函数. 其中 a 和 b 为待定参数.

拟合函数选定之后,还要确定拟合函数中的待定参数.确定拟合函数中的待定 参数最常用的方法是最小二乘法。

先求出被拟合函数 f(x) 与拟合函数 F(x) 的偏差:

$$\delta_i = f(x_i) - F(x_i) = y_i - a - bx_i \quad (i = 1, 2, \dots, 8)$$

按照最小二乘法,要使偏差的平方和最小,即需选择 a 和 b,使

$$\sum_{i=1}^{8} \delta_{i}^{2} = \sum_{i=1}^{8} (y_{i} - a - bx_{i})^{2}$$
 (3.1)

最小.

显然,(3.1)右边是关于未知参数 a 和 b 的函数,所以可设

$$\sum_{i=1}^{8} \delta_{i}^{2} = \sum_{i=1}^{8} (y_{i} - a - bx_{i})^{2} = \varphi(a,b)$$

这样一来,选择 a 和 b 使偏差的平方和最小的问题就转化成选择 a 和 b 使二元函数 $\varphi(a,b)$ 最小的问题。而选择 a 和 b 使二元函数 $\varphi(a,b)$ 最小的问题实际上就是求二元函数 $\varphi(a,b)$ 的极小值。根据求多元函数极小值的方法,先对 $\varphi(a,b)$ 分别求关于 a 和 b 的偏导数,得

$$\frac{\partial \varphi(a,b)}{\partial a} = -2 \sum_{i=1}^{8} (y_i - a - bx_i)$$
 (3.2)

$$\frac{\partial \varphi(a,b)}{\partial b} = -2 \sum_{i=1}^{8} (y_i - a - bx_i) x_i$$
 (3.3)

令(3.2)式和(3.3)式等于0.整理后得

$$8a + \left(\sum_{i=1}^{8} x_i\right)b = \sum_{i=1}^{8} y_i \tag{3.4}$$

$$\left(\sum_{i=1}^{8} x_{i}\right) a + \left(\sum_{i=1}^{8} x_{i}^{2}\right) b = \sum_{i=1}^{8} x_{i} y_{i}$$
 (3.5)

把(3.4)式和(3.5)式联立起来,就得到含有两个未知参数 a 和 b 的有两个方程的线性代数方程组.它通常称为正规方程组.

把 x_i 和 y_i 代入正规方程组得

$$\begin{cases} 8a + 20b = 37\\ 20a + 92b = 25 \end{cases}$$
 (3.6)

解方程组(3.6)得 a = 8.6429, b = -1.6071.

于是,拟合函数

$$y = 8.6429 - 1.6071x$$

通过这个具体的例子,可以把单变量数据拟合法的一般步骤归纳如下:

- ①按给定数据表画出散点图;
- ②分析散点图,确定近似函数 F(x)的类型,以反映给定数据的一般趋势;
- ③用最小二乘法确定近似函数 F(x) 的未知参数,从而得到最小二乘拟合函数 F(x).

仿照例 3-1 的求解过程,不难得到如下定理.

定理 3.1 给定 y = f(x) 的数据表(表 3 - 1), 若点(x_i, y_i)($i = 1, 2, \dots, n$)大体上满足线性函数,即最小二乘拟合函数为

$$F(x) = a + bx$$

则待定参数 a 和 b 是正规方程组

$$\begin{cases} na + \left(\sum_{i=1}^{n} x_{i}\right) b = \sum_{i=1}^{n} y_{i} \\ \left(\sum_{i=1}^{n} x_{i}\right) a + \left(\sum_{i=1}^{n} x_{i}^{2}\right) b = \sum_{i=1}^{n} x_{i} y_{i} \end{cases}$$
(3.7)

的解。

单变量线性拟合法算法

①读入数据
$$x_i$$
 和 y_i ($i = 1, 2, \dots, n$).

②计算

$$s_1 = \sum_{i=1}^{n} x_i$$
 $s_2 = \sum_{i=1}^{n} y_i$ $s_3 = \sum_{i=1}^{n} x_i^2$ $s_4 = \sum_{i=1}^{n} x_i y_i$

③解正规方程组

$$\begin{cases} na + s_1b = s_2 \\ s_1a + s_3b = s_4 \end{cases}$$

即按下列公式求 a 和 b:

$$a = \frac{s_2 s_3 - s_1 s_4}{n s_3 - s_1^2} \qquad b = \frac{n s_4 - s_1 s_2}{n s_3 - s_1^2}$$

④输出 a 和 b.

3.2 多变量数据拟合

在实际问题中,很多问题反映的不是一个量与一个量的关系,而是一个量与若干个量的关系. 具体来说,是一个量由若干个量确定. 这就是所谓的多元函数问题. 在数学上,这若干个量通常称为自变量,而由这些自变量确定的量通常称为因变量. 若假设这些自变量为 x_1 , x_2 , \cdots , x_k , 因变量为 y, 则每经过一次实验或测量就会得到一组数据 x_1 , x_2 , \cdots , x_k , y, 而经过 n 次实验或测量就会得到 n 组数据,由这 n 组数据构成的数据表如表 3-3 所示.

实验或 测量次数	x_1	x_2		x_k	$y = f(x_1, x_2, \cdots, x_k)$
1	x_{11}	x ₁₂	•••	x_{1k}	y_1
2	x_{21}	x ₂₂	•••	x_{2k}	<i>y</i> ₂
:	:	:		:	:
n	x_{n1}	x_{n2}	•••	x_{nk}	y_n

表 3-3 多变量拟合数据表

根据表 3-3, 希望能找到一个函数来近似表达这些量的关系. 要做到这一点,可以采用多变量数据拟合法.

多变量数据拟合法的一般过程是: 先根据表 3-3 选择变量 y 与变量 x_1, x_2, \dots, x_k 的一个近似函数 $F(x_1, x_2, \dots, x_k)$ 以反映 y 与变量 x_1, x_2, \dots, x_k 的函数关系,然后使用最小二乘法确定近似函数 $F(x_1, x_2, \dots, x_k)$ 中的未知参数, 从而得到 $F(x_1, x_2, \dots, x_k)$.

通常 $F(x_1,x_2,\cdots,x_k)$ 称为拟合函数, $y=f(x_1,x_2,\cdots,x_k)$ 称为被拟合函数.

从多变量数据拟合法的一般过程可以看出,若使用这种方法求拟合函数,需根据表 3-3 选择一个近似函数 $F(x_1,x_2,\cdots,x_k)$. 这是多变量数据拟合的关键. 这与两个变量的情况不同,两个变量的情况可以使用几何描点法画出散点图辅助选择近似函数. 但对多变量的情况,一般来说,作图是困难的,通常是凭经验或根据实际问题的物理背景和一些专业知识来找.

为了说明多变量数据拟合的一般过程,现在讨论一种特殊情况. 假定表 3-3 中的数据呈线性关系,这时选择线性函数

$$F(x_1, x_2, \dots, x_k) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k$$
 (3.8)

来近似表达 y 与变量 x_1, x_2, \dots, x_k 的函数关系,其中 a_0, a_1, \dots, a_k 为待定参数.

按数据拟合的方法,要确定这些参数,需使用最小二乘法.现在使用最小二乘法来确定待定参数 a_0, a_1, \dots, a_k .

先把 $x_{m1}, x_{m2}, \dots, x_{mk}$ ($m = 1, 2, \dots, n$)代入(3.8)式得

$$F(x_{m1}, x_{m2}, \dots, x_{mk}) = a_0 + a_1 x_{m1} + a_2 x_{m2} + \dots + a_k x_{mk}$$

则 $F(x_1, x_2, \dots, x_k)$ 与 $y = f(x_1, x_2, \dots, x_k)$ 在 $x_{m1}, x_{m2}, \dots, x_{mk}$ 处的偏差为

$$\delta_{m} = y_{m} - F(x_{m1}, x_{m2}, \dots, x_{mk})$$

$$= \gamma_{m} - a_{0} - a_{1}x_{m1} - a_{2}x_{m2} - \dots - a_{k}x_{mk}$$

偏差的平方和为

$$\sum_{m=1}^{n} \delta_{m}^{2} = \sum_{m=1}^{n} (y_{m} - a_{0} - a_{1}x_{m1} - a_{2}x_{m2} - \dots - a_{k}x_{mk})^{2} \xrightarrow{\text{id} \mathcal{B}} \varphi(a_{0}, a_{1}, \dots, a_{k})$$

根据最小二乘法,要选择近似函数使 $\sum_{m=1}^{n} \delta_{m}^{2}$ 最小,而 $\sum_{m=1}^{n} \delta_{m}^{2}$ 是关于 a_{0} , a_{1} , …, a_{k} 的函数,所以可以转化为选择 a_{0} , a_{1} , …, a_{k} 使 $\varphi(a_{0}$, a_{1} , …, a_{k}) 最小. 实际上就是求 $\varphi(a_{0}$, a_{1} , …, a_{k}) 的极小值.

根据多元函数求极小值的方法,对 $\varphi(a_0, a_1, \dots, a_k)$ 分别求关于 a_0, a_1, \dots, a_k 的偏导数并令其等于 0,得

$$\frac{\partial \varphi}{\partial a_0} = -2 \sum_{m=1}^{n} (y_m - a_0 - a_1 x_{m1} - a_2 x_{m2} - \dots - a_k x_{mk}) = 0$$

$$\frac{\partial \varphi}{\partial a_1} = -2 \sum_{m=1}^{n} (y_m - a_0 - a_1 x_{m1} - a_2 x_{m2} - \dots - a_k x_{mk}) x_{m1} = 0$$

$$\frac{\partial \varphi}{\partial a_{2}} = -2 \sum_{m=1}^{n} (y_{m} - a_{0} - a_{1}x_{m1} - a_{2}x_{m2} - \dots - a_{k}x_{mk}) x_{m2} = 0$$

$$\vdots$$

$$\frac{\partial \varphi}{\partial a_{k}} = -2 \sum_{m=1}^{n} (y_{m} - a_{0} - a_{1}x_{m1} - a_{2}x_{m2} - \dots - a_{k}x_{mk}) x_{mk} = 0$$

整理化简后联立起来得方程组(3.9):

$$\begin{cases} na_0 + a_1 \sum_{m=1}^{n} x_{m1} + a_2 \sum_{m=1}^{n} x_{m2} + \dots + a_k \sum_{m=1}^{n} x_{mk} = \sum_{m=1}^{n} y_m \\ a_0 \sum_{m=1}^{n} x_{m1} x_{m1} + a_1 \sum_{m=1}^{n} x_{m1} + a_2 \sum_{m=1}^{n} x_{m2} x_{m1} + \dots + a_k \sum_{m=1}^{n} x_{mk} x_{m1} = \sum_{m=1}^{n} y_m x_{m1} \\ a_0 \sum_{m=1}^{n} x_{m2} + a_1 \sum_{m=1}^{n} x_{m1} x_{m2} + a_2 \sum_{m=1}^{n} x_{m2} x_{m2} + \dots + a_k \sum_{m=1}^{n} x_{mk} x_{m2} = \sum_{m=1}^{n} y_m x_{m2} \\ a_0 \sum_{m=1}^{n} x_{mk} + a_1 \sum_{m=1}^{n} x_{m1} x_{mk} + a_2 \sum_{m=1}^{n} x_{m2} x_{mk} + \dots + a_k \sum_{m=1}^{n} x_{mk} x_{mk} = \sum_{m=1}^{n} y_m x_{mk} \end{cases}$$

方程组(3.9)是一个含有k+1个方程和k+1个未知数的线性代数方程组,也称为正规方程组.解这个方程组就能得到 a_0, a_1, \cdots, a_k .

综上所述,得到如下定理,

定理 3. 2 给定 $y = f(x_1, x_2, \dots, x_k)$ 的数据表(表3 - 3), 若数据表中的数据呈线性关系, 这时选取线性函数

$$F(x_1, x_2, \dots, x_k) = a_0 + a_1x_1 + a_2x_2 + \dots + a_kx_k$$

作为 y 与变量 x_1, x_2, \dots, x_k 的最小二乘拟合函数,则待定参数 a_0, a_1, \dots, a_k 是正规方程组(3.9)的解.

例3-2 已知一组测量数据如表3-4所示,求其线性拟合函数.

测量次数	x_1	x_2	$y = f(x_1, x_2)$
1	1	1	7
2	1	2	9
3	2	1	10
4	2	2	11
5	2	3	12

表 3-4 例 3-2 数据表

解 据题意, 选择线性函数

$$F(x_1,x_2) = a_0 + a_1x_1 + a_2x_2(a_0,a_1,a_2$$
为待定参数)

拟合给定数据表中的数据.

由定理 3.2 得到正规方程组

$$\begin{cases} na_0 + a_1 \sum_{m=1}^{5} x_{m1} + a_2 \sum_{m=1}^{5} x_{m2} = \sum_{m=1}^{5} y_m \\ a_0 \sum_{m=1}^{5} x_{m1} + a_1 \sum_{m=1}^{5} x_{m1} x_{m1} + a_2 \sum_{m=1}^{5} x_{m2} x_{m1} = \sum_{m=1}^{5} y_m x_{m1} \\ a_0 \sum_{m=1}^{5} x_{m2} + a_1 \sum_{m=1}^{5} x_{m1} x_{m2} + a_2 \sum_{m=1}^{5} x_{m2} x_{m2} = \sum_{m=1}^{5} y_m x_{m2} \end{cases}$$
(3. 10)

而
$$\sum_{m=1}^{5} x_{m1} = 8$$
, $\sum_{m=1}^{5} x_{m2} = 9$, $\sum_{m=1}^{5} x_{m1} x_{m1} = 14$, $\sum_{m=1}^{5} x_{m1} x_{m2} = \sum_{m=1}^{5} x_{m2} x_{m1} = 15$, $\sum_{m=1}^{5} x_{m2} x_{m2} = 19$, $\sum_{m=1}^{5} y_m = 49$, $\sum_{m=1}^{5} y_m x_{m1} = 82$, $\sum_{m=1}^{5} y_m x_{m2} = 93$, 把它们代入正规方程组(3.10)得

$$\begin{cases} 5a_0 + 8a_1 + 9a_2 = 49 \\ 8a_0 + 14a_1 + 15a_2 = 82 \\ 9a_0 + 15a_1 + 19a_2 = 93 \end{cases}$$

解方程组得 $a_0 = 3.8$, $a_1 = 2.4$, $a_2 = 1.2$.

于是,所求的拟合函数为

$$y = F(x_1, x_2) = 3.8 + 2.4x_1 + 1.2x_2$$

多变量线性拟合法算法

- ①输入数据 x_{mi} 和 y_m $(m=1,2,\cdots,n;i=1,2,\cdots,k)$.
- ②计算正规方程组的系数:

$$l_{00} = n l_{0i} = l_{i0} = \sum_{m=1}^{n} x_{mi} (i = 1, 2, \dots, k) g_0 = \sum_{m=1}^{n} y_m$$

$$l_{ij} = \sum_{m=1}^{n} x_{mi} x_{mj} (i, j = 1, 2, \dots, k) g_i = \sum_{m=1}^{n} y_m x_{mi} (i = 1, 2, \dots, k)$$

③解正规方程组

$$\begin{cases} l_{00}a_0 + l_{01}a_1 + \dots + l_{0k}a_k = g_0 \\ l_{10}a_0 + l_{11}a_1 + \dots + l_{1k}a_k = g_1 \\ \vdots \\ l_{k0}a_0 + l_{k1}a_1 + \dots + l_{kk}a_k = g_k \end{cases}$$

求出 a_0, a_1, \dots, a_k .

④輸出 a_0, a_1, \dots, a_k .

非线性数据线性化 3.3

本章介绍的例3-1和例3-2都是线性拟合的例子.在这两个例子中,数据与 数据之间的关系呈线性关系, 如果数据与数据之间的关系呈线性关系, 则可以按这 两个例子所介绍的方法求拟合函数:否则,就不能直接使用这两个例子所介绍的方 法求拟合函数. 但是,在这类问题中有一些问题,经过数据与数据之间的变换之后 能得到线性关系,这时就可以直接使用前面介绍过的方法.

例3-3 某炼钢厂出钢时用的钢包(用来装钢水的容器)是用特殊耐火材料 制成的,在使用过程中,由于钢水及炉渣对包衬耐火材料的侵蚀,使其容量随着使 用次数的增多而增大. 为了找出使用次数 x 与容量 y 之间的函数关系,工程技术人 员做了 15 次测试,测试数据如表 3-5 所示. 试用数据拟合法找出使用次数 x 与容 $\pm \gamma$ 之间的函数关系.

	使用次数	容量		使用次数	容量		使用次数	容量
i	x_i	y_i	i	x_i	y_i	i	x_i	y_i
1	2	6. 42	6	7	10.00	11	12	10.60
2	3	8. 20	7	8	9. 93	12	13	10. 80
3	4	9. 58	8	9	9. 99	13	14	10.60
4	5	9. 50	9	10	10. 49	14	15	10. 90
5	6	9. 70	10	11	10. 59	15	16	10. 76

表 3-5 例 3-3 数据表

为了找出使用次数 x 和容量 y 之 间的函数关系, 先画出散点图如图 3-2 所 示.

按照图 3-2 中散点的趋势, 凭直观可 以画出一条近似曲线,使这些点或者落在 这条曲线上,或者落在曲线的两侧.而这条 近似曲线大致上像一条双曲线,因而可以 把使用次数 x 与容量 γ 之间的关系近似表 示为

$$\frac{1}{y} = a + b \frac{1}{x}$$

$$\frac{1}{y} = a + b \, \frac{1}{x}$$

图 3-2 例 3-3 数据散点图

这是双曲线方程的一种形式,其中 a 和 b 为待定参数.

为了确定待定参数 a 和 b,可以直接采用最小二乘法. 但这样得出的方程组为非线性方程组,而非线性方程组一般是比较难求解的.

令 $X = \frac{1}{x}$ 和 $Y = \frac{1}{y}$,得到 Y = a + bX. 这是一个线性函数,现取它作为拟合函数.

由关系式 $X = \frac{1}{x}$ 和 $Y = \frac{1}{y}$ 得到 $X_i = \frac{1}{x_i}$ $(i = 1, 2, \dots, 15)$ 和 $Y_i = \frac{1}{y_i}$ $(i = 1, 2, \dots, 15)$,从而得到一个新的数据表,如表 3 – 6 所示.

i	x_i	y_i	$X_i = \frac{1}{x_i}$	$Y_i = \frac{1}{y_i}$	i	x_i	y_i	$X_i = \frac{1}{x_i}$	$Y_i = \frac{1}{y_i}$
1	2	6. 42	0. 5000	0. 1558	9	10	10. 49	0. 1000	0. 0953
2	3	8. 20	0. 3333	0. 1220	10	11	10. 59	0. 0909	0. 0944
3	4	9. 58	0. 2500	0. 1044	11	12	10. 60	0. 0833	0. 0943
4	5	9. 50	0. 2000	0. 1053	12	13	10. 80	0. 0769	0. 0926
5	6	9. 70	0. 1667	0. 1031	13	14	10. 60	0. 0714	0. 0943
6	7	10.00	0. 1429	0. 1000	14	15	10. 90	0. 0667	0. 0917
7	8	9. 93	0. 1250	0. 1007	15	16	10. 76	0. 0625	0. 0929
8	9	9. 99	0. 1111	0. 1001					

表 3-6 例 3-3 新数据表

有了新数据表和选定的拟合函数,就可以按最小二乘法确定待定参数 a 和 b. 由定理 3.1 得到正规方程组

$$\begin{cases} 15a + \left(\sum_{i=1}^{15} X_i\right)b = \sum_{i=1}^{15} Y_i \\ \left(\sum_{i=1}^{15} X_i\right)a + \left(\sum_{i=1}^{15} X_i^2\right)b = \sum_{i=1}^{15} X_iY_i \end{cases}$$
(3.11)

而 $\sum_{i=1}^{15} X_i \approx 2.380$ 7, $\sum_{i=1}^{15} Y_i \approx 1.546$ 9, $\sum_{i=1}^{15} X_i^2 \approx 0.584$ 2, $\sum_{i=1}^{15} X_i Y_i \approx 0.272$ 7. 把它 们代入正规方程组(3.11)得

$$\begin{cases} 15a + 2.3807b = 1.5469 \\ 2.3807a + 0.5842b = 0.2727 \end{cases}$$

解方程组得 $a \approx 0.0824, b \approx 0.1318.$ 故

$$Y = 0.082 \ 4 + 0.131 \ 8X$$

 $\frac{1}{x} = 0.082 \ 4 + 0.131 \ 8 \frac{1}{x}$

即有

于是,拟合函数

$$y = \frac{x}{0.082 \ 4x + 0.131 \ 8}$$

例 3 - 4 已知一组数据如表 3 - 7 所示,求一个经验函数,形如 $y = ae^{bx}(a, b)$ 为常数),使它与表 3 - 7 中的数据相拟合.

表 3-7 例 3-4 数据表

x	0	1	2	3	4
y = f(x)	1.5	2. 5	3. 5	5	7.5

解 据题意,表 3 – 7 中的数据大体上满足函数关系 $y = ae^{bx}$. 所以,表 3 – 7 的 拟合函数为 $y = ae^{bx}$. 为了便于确定 a 和 b,可以通过变量变换把 $y = ae^{bx}$ 转换为线性函数,然后用最小二乘法来确定 a 和 b.

先对 $y = ae^{bx}$ 两边取自然对数得

$$\ln y = \ln a + bx$$

令 $Y = \ln y$, $A = \ln a$, B = b 和 X = x, 则有

$$Y = A + BX$$

这是一个线性函数,取它作为拟合函数.

由 $Y = \ln y$ 和 X = x 得到 $Y_i = \ln y_i$ 和 $X_i = x_i$,从而得到新的数据表,如表 3 - 8 所示.

i	x_i	y_i	X_i	$Y_i = \ln y_i$
1	0	1. 5	0	0. 405465
2	1	2. 5	1	0. 916291
3	2	3. 5	2	1. 252763
4	3	5. 0	3	1. 609438
5	4	7. 5	4	2. 014903

表 3-8 例 3-4 新数据表

有了拟合函数,又有了新的数据表,就可以使用最小二乘法确定 a 和 b. 由定理 3.1 得到正规方程组

$$\begin{cases}
5A + \left(\sum_{i=1}^{5} X_{i}\right) B = \sum_{i=1}^{5} Y_{i} \\
\left(\sum_{i=1}^{5} X_{i}\right) A + \left(\sum_{i=1}^{5} X_{i}^{2}\right) B = \sum_{i=1}^{5} X_{i} Y_{i}
\end{cases} (3.12)$$

而 $\sum_{i=1}^{5} X_i = 10$, $\sum_{i=1}^{5} Y_i \approx 6.19886$, $\sum_{i=1}^{5} X_i^2 = 30$, $\sum_{i=1}^{5} X_i Y_i \approx 16.309743$, 把它们代入

正规方程组(3.12)得

$$\begin{cases} 5A + 10B = 6.19886 \\ 10A + 30B = 16.309743 \end{cases}$$

解上述方程组得 $A \approx 0.457367$, $B \approx 0.3912023$. 又由 $A = \ln a$ 得 $a \approx 1.579910$, $b = B \approx 0.3912023$.

于是,所求的拟合函数为

$$\gamma = 1.579910e^{0.3912023x}$$

在实践中,有时要进行多项式拟合.多项式拟合也可以采用非线性数据线性化的方法.

设有两个量 z 和 y 基本满足 m 次多项式函数,经过实验或测量得到数据表(表 3-9),从而可以把

$$y = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$
 (3.13)

作为给定数据的拟合函数,其中 a_0, a_1, \cdots, a_m 为待定参数.

令
$$x_1 = z, x_2 = z^2, \dots, x_m = z^m$$
,则由(3.13)式有
$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m \frac{i z_h}{} F(x_1, x_2, \dots, x_m)$$

使它变成多变量线性拟合.

在数据拟合法中,当选定拟合函数后,非线性拟合函数能否线性化是首先要考虑的问题.为了方便读者对非线性拟合函数进行线性化,表 3-10 中给出了常用非线性拟合函数线性化的方法.

非线性拟合函数的形式	对非线性拟合函数线性化 为 Y = A + BX	需做的变换				
$y = a + b \ln x$	$y = a + b \ln x$	$X = \ln x, Y = y$ $A = a, B = b$				
$y = ae^{bx}$	$\ln y = \ln a + bx$	$X = x, Y = \ln y$ $A = \ln a, B = b$				
$y = a + \frac{b}{x}$	$y = a + b \frac{1}{x}$	$X = \frac{1}{x}, Y = y$ $A = a \cdot B = b$				

表 3-10 常用非线性拟合函数线性化的方法

绿	上表	

非线性拟合函数的形式	对非线性拟合函数线性化 为 $Y = A + BX$	需做的变换
$y = \frac{x}{a + bx}$	$\frac{1}{y} = b + a \frac{1}{x}$	$X = \frac{1}{x}, Y = \frac{1}{y}$ $A = b, B = a$
$y = (a + bx)^{-2}$	$y^{-\frac{1}{2}} = a + bx$	$X = x, Y = y^{-\frac{1}{2}}$ $A = a, B = b$
$y = axe^{-bx}$	$ \ln \frac{y}{x} = \ln a - bx $	$X = x, Y = \ln \frac{y}{x}$ $A = \ln a, B = -b$
$y = \frac{1}{1 + ae^{bx}}$	$\ln\left(\frac{1}{y} - 1\right) = \ln a + bx$	$X = x, Y = \ln\left(\frac{1}{y} - 1\right)$ $A = \ln a, B = b$

3.4 正交多项式拟合

多项式拟合的做法是:先把多项式拟合函数变成多变量拟合函数,然后按照多变量拟合法求出多项式的系数 a_0 , a_1 ,…, a_m .在多变量拟合法中,要解一个正规方程组.理论上可以证明该正规方程组有惟一解,但当多项式的次数比较高时,正规方程组就会变成病态方程组.所谓病态方程组,就是如果方程组 Ax = b 中的系数矩阵 A 和常数项 b 有微小变化,就会引起方程组的解很大变化,则方程组 Ax = b 就是一个病态方程组.为了克服这个缺点,把多项式拟合函数取为

$$y^* = \Psi_m(x) = a_0 p_0(x) + a_1 p_1(x) + \dots + a_m p_m(x)$$

$$= \sum_{k=0}^{m} a_k p_k(x)$$
(3.14)

其中 a_0, a_1, \dots, a_m 为待定参数, $p_k(x)(k=0,1,\dots,m)$ 是 k 次多项式.

很显然, $\gamma^* = \Psi_m(x)$ 是一个 m 次多项式函数.

把 x_i 代入(3.14)式得到 y_i 的近似值 y_i^* ,则 y_i^* 与 y_i 就可能产生偏差.记 y_i^* 与 γ_i 的偏差为 δ_i ,有

$$\delta_i = y_i - y_i^* = y_i - \sum_{k=0}^m a_k p_k(x_i) \quad (i = 1, 2, \dots, n)$$

为了求得 a_0 , a_1 , \cdots , a_m , 按最小二乘法选择 a_0 , a_1 , \cdots , a_m 使误差 δ_i 的平方和最小,即选择 a_0 , a_1 , \cdots , a_m , 使 $\sum_{i=1}^n \delta_i^2$ 最小. 由于从实验或测量中得到的数据的精度

不同,通常在每一个 δ 的前面乘上一个表示数据精度的权数 α 即要使

$$\sum_{i=1}^{n} (\alpha_i \delta_i)^2 = \sum_{i=1}^{n} \alpha_i^2 \delta_i^2 = \sum_{i=1}^{n} \omega_i \delta_i^2$$

最小. 其中 $\omega_i = \alpha_i^2$ 称为权因子. 而

$$\sum_{i=1}^{n} \omega_{i} \delta_{i}^{2} = \sum_{i=1}^{n} \omega_{i} \left[y_{i} - \sum_{k=0}^{m} a_{k} p_{k}(x_{i}) \right]^{2} \xrightarrow{\stackrel{\cdot}{\boxtimes} h} \varphi(a_{0}, a_{1}, \dots, a_{m})$$

因此,可以把选择 a_0 , a_1 , …, a_m 使 $\sum_{i=1}^n \omega_i \delta_i^2$ 最小的问题转化为求函数 $\varphi(a_0$, a_1 , …, a_m) 极小值的问题. 按多元函数求极小值的方法,对函数 $\varphi(a_0, a_1, \dots, a_m)$ 分别求关于 a_0 , a_1 , …, a_m 的导数, 令其为 0 并联立起来得到方程组

$$\frac{\partial \varphi}{\partial a_j} = -2 \sum_{i=1}^n \omega_i \left[y_i - \sum_{k=0}^m a_k p_k(x_i) \right] p_j(x_i) = 0 \quad (j = 0, 1, \dots, m)$$
 (3.15)

将方程组(3.15)整理后得

$$\sum_{i=1}^{n} \omega_{i} \left[\sum_{k=0}^{m} a_{k} p_{k}(x_{i}) p_{j}(x_{i}) \right] - \sum_{i=1}^{n} \omega_{i} y_{i} p_{j}(x_{i}) = 0$$

即

$$\sum_{k=0}^{m} a_{k} \left[\sum_{i=1}^{n} \omega_{i} p_{k}(x_{i}) p_{j}(x_{i}) \right] = \sum_{i=1}^{n} \omega_{i} y_{i} p_{j}(x_{i})$$
(3.16)

令 $c_{jk} = \sum_{i=1}^{n} \omega_{i} p_{k}(x_{i}) p_{j}(x_{i}), b_{j} = \sum_{i=1}^{n} \omega_{i} y_{i} p_{j}(x_{i}),$ 则方程组(3.16)可以写成

$$\sum_{k=0}^{m} c_{jk} a_k = b_j \tag{3.17}$$

方程组(3.17)也称为正规方程组.

显然,如果能找到 $p_k(x)$ 满足下列关系式:

$$c_{jk} = \sum_{i=1}^{n} \omega_{i} p_{j}(x_{i}) p_{k}(x_{i}) = 0 \quad (j \neq k)$$
 (3.18)

$$c_{ij} = \sum_{k=1}^{\infty} \omega_i p_j(x_i)^2 > 0 \quad (j, k = 0, 1, \dots, m)$$
 (3.19)

则正规方程组(3.17)变为

$$c_{kk}a_k = b_k \tag{3.20}$$

由(3.20)式可以求出

$$a_k = \frac{b_k}{c_{kk}} \tag{3.21}$$

定义 3. 3 满足(3.18)式和(3.19)式的多项式 $p_k(x)$ ($k = 0, 1, \dots, m$)通常称为正交多项式簇,确切地说,称为对数据 x_i 和对应的权数 $ω_i$ 的正交多项式簇.

常用的正交多项式簇有一些,在这里只介绍一个常用的等距节点正交多项式 簇.

假设给定一组 n+1 个等距节点 ξ_i ($i=0,1,\cdots,n$),它们的间隔为 h,选取权数 $\omega_i=1$,引入变换

$$x = \frac{\xi - \xi_0}{h}$$

则 ξ_i 变为 $x_i = i$ 等 n+1 个整数等距节点.

构造多项式

$$p_{m,n}(x) = \sum_{k=0}^{m} (-1)^{k} {m \brack k} {m+k \brack k} \frac{x^{(k)}}{n^{(k)}}$$

其中 $x^{(k)} = x(x-1)\cdots(x-k+1)$ 且 $x^{(0)} = 1$. 可以证明 $p_{m,n}(x)$ 是在 $x_i = i$ 等n+1个整数等距节点上权数 $\omega_i = 1$ 的正交多项式簇 其前 6 个多项式为

$$p_{0,n}(x) = 1$$

$$p_{1,n}(x) = 1 - 2\frac{x}{n}$$

$$p_{2,n} = 1 - 6\frac{x}{n} + 6\frac{x(x-1)}{n(n-1)}$$

$$p_{3,n} = 1 - 12\frac{x}{n} + 30\frac{x(x-1)}{n(n-1)} - 20\frac{x(x-1)(x-2)}{n(n-1)(n-2)}$$

$$p_{4,n} = 1 - 20\frac{x}{n} + 90\frac{x(x-1)}{n(n-1)} - 140\frac{x(x-1)(x-2)}{n(n-1)(n-2)} + 70\frac{x(x-1)(x-2)(x-3)}{n(n-1)(n-2)(n-3)}$$

$$p_{5,n} = 1 - 30\frac{x}{n} + 210\frac{x(x-1)}{n(n-1)} - 560\frac{x(x-1)(x-2)}{n(n-1(n-2))} + 630\frac{x(x-1)(x-2)(x-3)}{n(n-1)(n-2)(n-3)} + 252\frac{x(x-1)(x-2)(x-3)(x-4)}{n(n-1)(n-2)(n-3)(n-4)}$$

练习与思考

1. 求方程组

$$\begin{cases} x_1 + 2x_2 = 1 \\ x_1 + x_2 = 0 \\ x_1 - x_2 = 1 \end{cases}$$

的最小二乘解.

2. 给定数据表如表 3-11 所示,求形如 $y = a + bx^2$ 的拟合函数.

表 3-11 数据表

x	19	25	31	38	44
у	19	32. 3	49	73. 3	97. 8

3. 用最小二乘法求一个形如 $y = \frac{1}{a + bx}$ 的经验公式,使之与如下数据(表 3 – 12)相拟合.

表 3-12 数据表

x	1	1.4	1.8	2. 2	2. 6	
У	0. 931	0. 473	0. 297	0. 224	0. 168	

4. 在某个低温过程中,函数 y 依赖于温度 $\theta(\mathcal{C})$ 的测试数据如表 3-13 所示,而且已知经验公式是 $y = a\theta + b\theta^2$,试用最小二乘法确定 a 和 b.

表 3-13 数据表

θ	1	2	3	4
у	0.8	1. 5	1. 8	2

5. 给定数据表如表 3-14 所示,试用三次多项式拟合表中的数据.

表 3-14 数据表

x	-2	-1	0	1	2
у	-0.1	0. 1	0.4	0. 9	1.6

6. 在某一化学反应里,据实验得到分解生成物的浓度与时间的数据如表 3-15 所示,试使用正交多项式拟合法构造一个 5 次多项式求 y 的近似值.

表 3-15 数据表

时间 t(min)	0	5	10	15	20	25	30	35	40	45	50
浓度 y(×10 ⁻⁴)	0	1. 27	2. 16	2. 86	3. 44	3. 87	4. 15	4. 37	4. 51	4. 60	4. 66