Electric Dipole Moment in COM Framework

Martin Doina

Energy Pattern Asymmetry

In the COM framework, the electric dipole moment is redefined as an asymmetry in the energy pattern:

$$E_{\text{EDM}} = \int_{V} \Psi(x, t) \cdot x \, dV$$

where $E_{\rm EDM}$ is the COM-equivalent of the electric dipole moment.

Asymmetric Energy Pattern

$$\Psi(x,t) = A \sin(\omega t - kx + \phi) \cdot e^{-\alpha |x|} \cdot (1 + \beta \tanh(x))$$

The asymmetry factor β controls the degree of energy pattern asymmetry, directly relating to the magnitude of the EDM.

Phase Asymmetry Parameter

The phase asymmetry that corresponds to time-reversal violation is:

$$\Delta \phi = \phi_{\text{forward}} - \phi_{\text{backward}} = 2 \arcsin \left(\frac{E_{\text{EDM}}}{2 \text{LZ} \cdot E_0} \right)$$

where E_0 is the base energy of the particle.

COM-EDM Scaling Law

The scaling of EDM across different particles follows:

$$E_{\text{EDM}}(m) = E_0 \cdot \left(\frac{m}{m_0}\right)^{\text{LZ}}$$

where:

- $E_{\text{EDM}}(m)$ is the EDM for a particle of mass m
- E_0 is a reference EDM value
- m_0 is a reference mass

HQS Threshold Constraint

The upper limit on EDM is constrained by:

$$|E_{\text{EDM}}| < E_0 \cdot \text{HQS} \cdot \sin\left(\frac{\pi}{2} \cdot \text{Oct}(m)\right)$$

Experimental Measurement in COM Terms

The precession frequency shift in EDM experiments is reinterpreted as:

$$\Delta \omega = \frac{2E_{\rm EDM} \cdot F}{\hbar \cdot LZ}$$

where:

- $\Delta \omega$ is the frequency shift
- *F* is the effective field amplitude
- \hbar is the reduced Planck constant