Mecânica - F315 B

3º prova - 28 de novembro de 2008

	21111	RA:
Nome:	GABARITO	
Norne		

Questão 1 (2,5)

Uma galáxia tem a densidade de massa dada por $\rho(r) = \frac{A}{r^2}$, onde r é a distância de um ponto na galáxia ao centro da mesma. Obtenha:

- a) O campo gravitacional em função da posição, utilizando a origem no centro da galáxia;(1,0)
- b) A diferença de potencial gravitacional entre um ponto distante r₁ do centro da galáxia e outro ponto distante r₂ do centro da galáxia(r₂>r₁); (1,0)
- c) O trabalho para mover um corpo de massa m de r₁ a r₂; (0,5)

Usar do una Experfície esféries de 1200 r, centrale na orige, tous

$$V(r_{0})-V(r_{1})=-\int_{r_{1}}^{r_{2}} \hat{g}_{1} \cdot \hat{h}_{1}^{2}=4\pi 6 A \int_{r_{1}}^{r_{2}} \frac{dr}{dr}=4\pi 6 A \ln \left(\frac{r_{2}}{r_{1}}\right)$$

Questão 2 (2,5)

Um pêndulo plano de massa m, de comprimento I inextensível tem seu ponto pivô (P) movimentado como X_p = $Asen(\omega t)$ Obtenha:

- a) O lagrangeano $L(\theta;t)$ do problema.(1,0)
- b) A equação diferencial de movimento para o ângulo θ. (1,5)

Questão 3(2,5)

Considere dois blocos iguais de massa m ligados por uma corda de comprimento fixo L, conforme o desenho abaixo. Despreze qualquer atrito, a massa da corda e o momento de inércia da polia:

(a) Obtenha o lagrangeano L(x,y;t) considerando a corda extensível;

(Defab, no forma desembada, x derem MSZ comigni comp)

(b)
$$x = -y = x^2 = y^2$$

 $x = -y = x^2 = y^2$
 $x = -y = x^2 = y^2$

$$\frac{\partial g}{\partial g} = mg$$
 $\frac{\partial g}{\partial g} = 2m\dot{g}$ $\frac{\partial f}{\partial g} \left(\frac{\partial g}{\partial g}\right) = 2m\ddot{g}$

(c)
$$m\ddot{x} + \lambda = 0$$
 (B)
 $m\ddot{y} + mg + \lambda = 0$ (B)

$$\lambda = -\frac{\sqrt{2}}{2}$$

Questão 4 (2,5)

Considere o problema de uma mola no plano, podendo girar e expandindo e contraindo na direção radial segundo a energia potencial $U(r)=k(r-r_0)^2$. Obtenha:

- (a) O lagrangeano em coordenadas polares;(0,5)
- (b) Os momentos generalizados e o hamiltoniano; (1,0)
- (c) As equações de movimento; (1,0)

$$T = \frac{1}{2} m \left(i^{2} + i^{2} \hat{o}^{2} \right) \qquad D = \frac{1}{2} m \left(i^{2} + i^{2} \hat{o}^{2} \right) - k \left(r \cdot r \cdot \hat{o}^{2} \right)$$

$$D) P_{r} = \frac{2L}{2i} = mi \quad Di = \frac{P_{r}}{M_{s}}$$

$$P_{0} = \frac{2L}{2\dot{o}} = mi^{2}\hat{o} \quad m\hat{o} = \frac{P_{0}}{MI^{2}}$$

$$| 1 = T + U = \frac{1}{2m} \left(P_{r}^{2} + \frac{P_{0}}{r} \right) + k \left(r - r_{0} \right)^{2}$$

$$\begin{pmatrix} c \end{pmatrix} \dot{\theta} = \frac{2H}{2P_0} = \frac{P_0}{Mr^2}$$

$$\begin{pmatrix} c \end{pmatrix} \dot{\theta} = -\frac{2H}{2P_0} = 0$$

$$\dot{r} = \frac{2H}{2\rho_r} = \frac{f_r}{m}$$

$$\dot{r}_r = -\frac{2H}{2r} = -\left(-\frac{p_0}{mr^3} + \frac{2k(r-r_0)}{mr^3}\right)$$

$$\dot{r}_r = \frac{p_0}{2r} - \frac{2k(r-r_0)}{mr^3}$$