Fitting Topic Numbers

```
df \leftarrow data.frame(p = c(5,15,20,26),n=c(952,3260,8254,21937))
df$k <- c(50,65,90,120)
m1 \leftarrow lm(k\sim n+p,df)
m2 \leftarrow lm(k~n,df)
m3 \leftarrow lm(k\sim poly(n,2),df)
m4 \leftarrow lm(k\sim log(n),df)
p <- ggplot(df, aes(n,k)) +</pre>
  geom_point() +
  ylim(0,150) +
  theme_bw() +
  theme(
    axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5)
p1 <- p + stat_smooth(method="lm") + ggtitle("n")</pre>
p2 \leftarrow p + stat\_smooth(method="lm", formula = y \sim poly(x,2)) +
  ggtitle("n^2")
p3 <- p + stat_smooth(method="lm", formula = y ~ log(x)) +
  ggtitle("log(n)")
multiplot(p1, p2, p3, cols=3)
```


stargazer(m1,m2,m3,m4, header=FALSE)

Table 1:

		Table 1.		
	Dependent variable: k			
	(1)	(2)	(3)	(4)
n	$0.002 \\ (0.001)$	0.003** (0.001)		
p	1.558 (0.796)			
poly(n, 2)1			51.573*** (0.442)	
poly(n, 2)2			-12.600** (0.442)	
$\log(n)$				22.438** (3.282)
Constant	39.494 (8.505)	54.002** (6.485)	81.250*** (0.221)	-109.259^* (28.128)
Observations	4	4	4	4
\mathbb{R}^2	0.988	0.944	1.000	0.959
Adjusted R ²	0.965	0.915	1.000	0.938
Residual Std. Error F Statistic	5.735 (df = 1) 42.344 (df = 2; 1)	8.915 (df = 2) $33.467^{**} (df = 1; 2)$	0.442 (df = 1) $7,198.410^{***} \text{ (df} = 2; 1)$	7.606 (df = 2) $46.726^{**} (df = 1; 2)$
77. /			* .0.1	** .0.05 *** .0.01

Note:

*p<0.1; **p<0.05; ***p<0.01