

O objetivo do nosso estudo:

Como o ângulo de inclinação da rampa, o número de integrantes no carrinho e o tamanho do raio do looping interferem na velocidade e no tempo para o carrinho percorrer a montanha russa?

O Modelo:

Figura 1: Sistema Físico e Eixo de Coordenadas

Figura 2: Diagramas de Corpo Livre

→ Fat

FRar

FRar

Rampa:

Equações diferenciais e

1) Rampa:

$$\frac{d_2Xr}{dt_2} = \frac{1}{m} \cdot [F_{at^x} + F_{Rar^x} - N_x]$$

$$\frac{d_2Yr}{dt_2} = \frac{1}{m} \cdot [F_{at^y} + F_{Rar^y} + N_y] - g$$

2) Looping:

$$\frac{d_2Xl}{dt_2} = \frac{1}{m} \cdot \left[-F_{at^x} - F_{Rar^x} - N_x \right]$$

$$\frac{d_2Yl}{dt_2} = \frac{1}{m} \cdot [F_{at^y} + F_{Rar^y} - N_y] - g$$

Simplificações:

- Nosso sistema considera apenas ο μ (coeficiente de arrasto) dinâmico, desconsideramos situações em que carrinho não se desloca por causa do μ estático.
- No looping desconsideramos a força de atrito e a força de resistência do ar

Validações:

Legenda:

Energia Cinética Energia Potencial Gravitacional Energia Mecânica

1^a Parte: Rampa

Tempo que um carrinho leva para percorrer uma rampa

Iterando sobre o número de pessoas no carrinho:

Análise de sensibilidade:

Variação na massa do carrinho de montanha russa em uma rampa de 45° de inclinação

Gráfico conclusivo:

Velocidade do carrinho ao atingir 5m com inclinação inicial da rampa de 45°

Iterando sobre o ângulo inicial de inclinação:

Trajetória em diferentes ângulos de inclinação da rampa da montanha russa Tempo que carrinho leva pra percorrer rampa com diferentes ângulos de inclinação Velocidade que o carrinho atinge na rampa com diferentes ângulos de inclinação

Gráfico conclusivo:

Ângulos de inclinação (°)

2^a Parte: Looping

Abscissa do carrinho de montanha russa no loop ao longo do tempo

Mesmo looping sem atrito e sem resistência do ar:

Trajetória do carrinho de montanha russa no loop, sem atrito e resistência do ar

Iterações variando o raio do loop:

COM atrito e COM resistência do ar:

Trajetória do carrinho de montanha russa no loop com raios diferentes

X

SEM atrito e SEM resistência do ar:

Ordenada do carrinho no loop ao longo do tempo com raios diferentes

Conclusões do Looping:

