NamUs: Unidentified Persons

Using Machine Learning to Predict the "Identification Potential" 5-star rating

Dr. Jennifer A Stark

GitHub: JAStark/Namus_Project

Twitter: @_JAStark

Target Response: "Identification Potential"

5

4

3

- HighModi
- Medium-High
- Medium
- Low-Medium
- Low
- Extremely-Low ★★★

Web-scraped using Requests and BeautifulSoup4, and pickled

Some Data:

Predicting Unidentified Case 5-Star Rating:

Stars are **automatically** calculated when data is entered into the system.

If I can predict the star rating:

- 1. Which features predict "Identification Potential"?
- 2. How do these compare with those identified by NamUs in their Help.PDF?

Predicting Unidentified Case 5-Star Rating:

Stars are **automatically** calculated when data is entered into the system.

If I *cannot* predict the star rating:

- 1. This may indicate key information is not available to the public on NamUs.
- 2. Indicate a re-write of the Help.PDF is required.

Namus Help PDF

3 Stars

A fingerprint classification or fingerprint card has been entered or uploaded, AND/OR, information has been entered in at least one of the tooth boxes on the dental chart page, AND/OR the "Recognizable Face" option has been selected in the "Body Condition" section and a facial photo or artist's rendering has been uploaded

4 Stars

5 Stars

The face is recognizable, a facial photo or rendering has been uploaded, fingerprint information has been entered or uploaded, a DNA profile has been established and specific tooth information has been entered.

New Data: Face Detection!

OpenCV3 compiled with Anaconda Python3 bindings

- Frontal face haar cascade
- Profile face lbp cascade (only works on right-facing faces)
 - Ibp -> Local Binary Patterns. "Faster but less accurate than Haar"

Scrape_images.py

Code: GitHub.com/JAStark/WomenDataScientistsDC_MeetupNov2015

Datatypes -> Key Question -> My Assumption -> Binarize Everything!

Data types:

- Binary
- Continuous integers (height, weight, #images)
- Text ("options" list, like a dropdown menu)
- Long-form text (eg. descriptions)
- Images

Key Question:

- Or is it important what the data actually says?
- Is it the presence / absence of data that's important? Known vs unknown

Binarize!

Examples of Binary Binarized and Continuous numeric Features:

Binary	Binarized	Continuous Numeric
jewelry	_dna	age_range (engineered)
footwear	_dental	images
clothing	_fingerprints	
tattoos	_face	
skeletal_findings	face_images	
	_sex	

Challenges in Binarization

Linear Regression Model

```
Create features for linear regression: all features
linreg features = ['all parts recovered',
                   'amputations',
                   'artificial parts aids',
                   'deformities',
                   'finger toe nails',
                   'foreign objects',
                   'head not recovered',
                    'images',
                   'medical implants',
                   'n-hands not recovered',
                   'n-limbs not recovered',
                   'organ absent',
                   'other distinctive features',
                   'other medical information',
                   'piercings',
                   'prior surgery',
                   'scars and marks',
                   'skeletal findings',
                   'tattoos',
    modified
                   'torso not recovered',
                    sex',
                     dna',
                    dental',
                    fingerprints',
                    face',
                   'l eye',
                   'r eye',
 'hair color'
                   'height bin',
                   'weight bin',
 'face images'
                   'age range']
```

```
linreg = LinearRegression
(normalize=True)
```

A prediction of IP from 0-5 can be off by ~ 0.82 stars. NEW 0.6972

REGULARIZATION:

RidgeCV: RMSE = 0.8158 NEW 0.6970 LassoCV: RMSE = 0.8154 NEW 0.6974

12	other_distinctive_features	0.164711
20	_sex	0.176840
24	_face	0.273228
30	face_images	0.313659
23	_fingerprints	0.425424
22	_dental	0.930528
21	_dna	1.344366

Decision Tree Regression Model


```
treereg = DecisionTreeRegressor
(max_depth=depth,
random_state=1)
```

max depth range 1-10, cv=100

Best: 4 splits, RMSE of 0.7966. Best: 6 splits, RMSE of 0.6234

26	r_eye	0.010029
29	age_range	0.012340
24	_face	0.014764
23	_fingerprints	0.031734
7	images	0.074924
22	_dental	0.213598
21	_dna	0.613137

Regression Tree Splits!

Decision Tree Classification Model

treeclf = DecisionTreeClassifier
(max_depth=depth,
random_state=1)

max_depth range 1-10, cv=100

Best: 8 splits!, Accuracy 64%

Best: 8 splits! Accuracy 77%

6-splits: 0-Star confused with 1-Star

5-Stars dominate some leaves!

27	height_bin	0.019130		
29	age_range	0.033670		
31	face_images	0.044708		
23	_fingerprints	0.070071		
7	images	0.129285		
22	_dental	0.249570		
21	_dna	0.361732		

Classification Tree Splits! (depth8 too big to render png...

I have depth 6 in repo) FACE? 0 & 5 dna ish dental dental finger finger images images prints prints weight height tattoos images bin bin age range images images images

Random Forest Regression

of-Bag Score: 0.69827779742411078

After Tuning:

0	all_parts_recovered	0.015528
24	_face	0.022618
23	_fingerprints	0.039977
7	images	0.107092
29	age_range	0.180272
22	_dental	0.197411
21	_dna	0.276950

-		
24	_face	0.019658
31	face_images	0.029949
23	_fingerprints	0.033139
7	images	0.075582
29	age_range	0.119363
22	_dental	0.182083
21	_dna	0.391180

Random Forest Classification

After Tuning:

```
rfclf_test = RandomForestClassifier(n_estimators=65 90,
max_features=10 10, random_state=1, oob_score=True)
rfclf_test.fit(X, y)
```

R² Out-of-Bag Score: **0.65** Accuracy: **60**%

R² Out-of-Bag Score: **0.77** Accuracy: **74**%

0	all_parts_recovered	0.025640
24	_face	0.027298
23	_fingerprints	0.046634
22	_dental	0.099698
7	images	0.112156
21	_dna	0.183071
29	age_range	0.240513

_face	0.022283		
face_images	0.027830		
_fingerprints	0.042146		
images	0.082232		
_dental	0.121611		
age_range	0.159470		
_dna	0.308432		
	face_images _fingerprints images _dental age_range		

Reverse-Engineering is Hard Because:

Humans!

Humans who wrote the Algorithm / Documentation

1 Star

The case information includes a case number, the date the body or body part was found, the county and state where the body or body part was found and the condition of the body. Entries are also required for the estimated age group, race, sex, weight and height, but these entries may be listed as "unsure" or "cannot estimate."

case_number	date_found	county	state	recognizable_face	race	sex	weight	height	est_age
A98-3798	September 12, 1998 00:00	Richmond	Georgia	Recognizable face	Black/African American	Male	161,	68,\n\t\t\t\t\tEstimated	Adult

Reverse-Engineering is Hard Because:

Humans!

- Humans who wrote the Algorithm / Documentation
- Humans who input the data 5-star requires facial images (+DNA, fingerprints, recognizable face and dental)

Caption

Jewelry/rosary associated with
FCME case 04-0917. No facial
reconstruction available. The
horseshoe shaped object is a toe

Viewable to public?

Reverse-Engineering is Hard Because:

Humans!

- Humans who wrote the Algorithm / Documentation
- Humans who input the data
- Foolish Human who tries to reverse engineer the Algorithm (me!)
 - Incorrect assumptions
 - Not a pro at machine learning OR coding in general tons more for me to learn!
 - Face detection was not perfect! Low-res, contrast, head-models...
 - Don't have full access to full documentation
 - Don't have full access to case details

Improvements?

- Regression better than classification? Difficult to compare performance between %age accuracy and RMSE and R²...
- Better exploration / visualization of model performance (eg confusion matrices, AUC - better than accuracy for unbalanced data, BUT need to fiddle with it to make it work with multinomial data)
- Ensembling (0, 1, 5 stars have distinct requirements)
- Ordinal Logistic Regression? Made for multiple, ordered classes.
 - Not yet available on scikit-learn
 - Available from GitHub Account fabiano/mord
 - "Collection of Ordinal Regression algorithms in Python, following a scikit-learn compatible API

New Questions and Future Additions:

• Is Binarization the way to go!?

3 Stars

A fingerprint classification or fingerprint card has been entered or uploaded, AND/OR, information has been entered in at least one of the tooth boxes on the dental chart page, AND/OR the "Recognizable Face" option has been selected in the "Body Condition" section and a facial photo or artist's rendering has been uploaded

4 Stars

5 Stars

The face is recognizable, a facial photo or rendering has been uploaded, fingerprint information has been entered or uploaded, a DNA profile has been established and specific tooth information has been entered.

New Questions and Future Additions:

- Is Binarization the way to go!?
- Submit a FOIA (Freedom of Information Act) request?
 - Request data on solved cases what features lead to the resolution?
 - Do they update their algorithm based on evidence from solved cases?
- Create an interactive map for the find-locations and case summary
- Create other visuals...

Thank you! Questions?