Paper Review

The Description Length of Deep Learning Models

Léonard Blier, Yann Ollivier

Gavrilyuk Alexander

October 2023

Outline

Motivation & Problem statement

2 Theory

3 Experiment

Motivation & Problem statement

How much do current deep models actually compress data? (Explicit measurement)

Figure: Supervised learning illustration when the input data x is public but predictions y are needed.

Definitions & Assumption on neural network

Definition (Notation)

Let X be the input space and $Y = \{1, ..., K\}$ the output space. The dataset is $D := \{(x_1, y_1), (x_2, y_2)\}$ A model for supervised learning is defined as a conditional probability distribution p(y|x), such as for each $x \in X$, $\sum_{y \in Y} p(y|x) = 1$ A model class is a set of models depending one some parameter θ :

 $M = \{p_{\theta}, \theta \in \Theta\}$

The Kullback-Leibler divergence between two distributions is

$$\mathit{KL}(\mu||\nu) = \mathit{E}_{X \sim \mu}[\log_2 \frac{\mu(x)}{\nu(x)}]$$

Definition (Shannon-Huffman code)

Suppose that Alice and Bob have agreed in advance on a model p, and both know the inputs $x_{1:n}$. Then there exists a code to transmit the labels $y_{1:n}$ losslessly with codelength

$$L_{p}(y_{1:n}|x_{1:n}) = -\sum_{i=1}^{n} \log_{2} p(y_{i}|x_{i})$$

Studied encodings

Definition (Uniform encoding)

The uniform distribution $p_{unif}(y|x) = \frac{1}{K}$ over K classes does not require any learning from the data, thus no additional information has to be transmitted. Using $p_{unif}(y|x)$ yields a codelength

$$L^{unif}(y_{1:n}|x_{1:n}) = n\log_2 K$$

Definition (Two-Part Encodings)

Assume that Alice and Bob have first agreed on a model class $(p_{\theta})_{\theta \in \Theta}$. Let $L_{param}(\theta)$ be any encoding scheme for parameters $\theta \in \Theta$. Let θ^* be any parameter. The corresponding *two-part codelength* is

$$L_{\theta^*}^{2-part}(y_{1:n}|x_{1:n}) := L_{param}(\theta^*) + L_{p_{\theta^*}}(y_{1:n}|x_{1:n}) = L_{param}(\theta^*) - \sum_{i=0}^n \log_2 p_{\theta^*}(y_i|x_i)$$

Studied encodings

Definition (Variational and Bayesian Codes)

Assume that Alice and Bob have agreed on a model class $(p_{\theta})_{\theta \in \Theta}$ and a prior α over Θ . Then for any distribution β over Θ , there exists an encoding with codelength

$$L_{\beta}^{var}(y|x) = KL(\beta||\alpha) + E_{\theta \sim \beta}[L_{p_{\theta}}(y_{1:n}|x_{1:n})] = KL(\beta||\alpha) - E_{\theta \sim \beta}[\sum_{i=0}^{n} \log_2 p_{\theta}(y_i|x_i)]$$

The variational bound L_{β}^{var} is an upper bound for the Bayesian description length bound of the Bayesian model p_{θ} with parameter θ and a prior α . Considering the Basyesian distribution of y, an associated code with model $p_{\theta}: L^{Bayes}(y_{1:n}|x_{1:n}) = -\log_2 p_{Baves}(y_{1:n}|x_{1:n})$ is provided:

$$L_{\beta}^{var}(y_{1:n}|x_{1:n}) \ge L^{Bayes}(y_{1:n}|x_{1:n})$$

Studied encodings

Definition (Prequential or Online Code)

Lets call p a prediction strategy for predicting the labels in Y knowing the inputs in X if for all k, $p(y_{k+1}|x_{1:k+1},y_{1:k})$ is a conditional model. Any prediction strategy p defines a model on the whole dataset:

$$p^{preq}(y_{1:n}|x_{1:n}) = p(y_1|x_1) * p(y_2|x_{1:2}, y_1) * ... * p(y_n|x_{1:n}, y_{1:n-1})$$

Let $(p_{\theta})_{\theta \in \Theta}$ be a DL model. We assume that we have a learning algorithm which computes, from any number of data samples $(y_{1:k}|x_{1:k})$, a trained parameter vector $\hat{\theta}(x_{1:k},y_{1:k})$. This yields the following description length:

$$L^{preq}(y_{1:n}|x_{1:n}) = t_1 \log_2 K + \sum_{s=0}^{S-1} -\log_2 p_{\hat{\theta}_{t_s}}(y_{t_s+1:t_{s+1}}|x_{t_s+1:t_{s+1}})$$

where for each $s, \hat{\theta}_{t_s} = \hat{\theta}(x_{1:t_s}, y_{1:t_s})$ is the parameter learned on data samples 1 to t_s .

CODE	MNIST			CIFAR10		
	Codelength (kbits)	COMP. RATIO	TEST ACC	CODELENGTH (kbits)	COMP. RATIO	TEST ACC
Uniform	199	1.	10%	166	1.	10%
FLOAT32 2-PART NETWORK COMPR. INTRINSIC DIM.	> 8.6Mb > 400 > 9.28	> 45. > 2. > 0.05	98.4% 98.4% 90%	> 428Mb > 14Mb > 92,8	> 2500. > 83. > 0.56	92.9% 93.3% 70%
VARIATIONAL PREQUENTIAL	22.2 4.10	0.11 0.02	98.2% 99.5 %	89.0 45.3	0.54 0.27	66,5% 93.3%

Figure: Compression bounds via Deep Learning. The *codelength* is the number of bits necessary to send the labels to someone who already has the inputs. This codelength includes the description length of the model. The *compression ratio* for a given code is the ratio between its codelength and the codelength of the uniform code. The *test accuracy* of a model is the accuracy of its predictions on the test set.

Experiment

Figure: Prequential code results on CIFAR. Results of prequential encoding on CIFAR with 5 different models: a small Multilayer Perceptron (MLP), a shallow network, a small convolutional layer (tinyCNN), a VGG-like network without data augmentation and batch normalization (VGGa) and the same VGG-like architecture with data augmentation and batch normalization (VGGb).