Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 5

ID: 952091294

Term: Spring 2025 Due Date: 7^{th} May 2025

Problem 13.3.5

The 5th cyclotomic field $\mathbb{Q}(\zeta_5)$ contains $\sqrt{5}$.

Solution: Let ζ_5 be a 5th primitive root of x^5-1 . The cyclotomic field $\mathbb{Q}(\zeta_5)$ contains all 5 roots: $1, \zeta^5, \zeta_5^2, \zeta_5^3, \zeta_5^4$. Write $\zeta_5 + \zeta_5^4 = e^{2\pi i/5} + e^{8\pi i/5} \in \mathbb{Q}(\zeta_5)$. On the other hand, we can calculate that

$$\zeta_5 + \zeta_5^4 = e^{2\pi i/5} + e^{-2\pi i/5} = 2\cos(\frac{2\pi}{5}).$$

By calculation, we know that

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}.$$

This implies

$$\sqrt{5} = 2(\zeta_5 + \zeta_5^4) + 1 \in \mathbb{Q}(\zeta_5).$$

Problem 13.3.7

If p is a prime then

$$\Phi_{p^n}(x) = 1 + x^{p^{n-1}} + x^{2p^{n-1}} + \dots + x^{(p-1)p^{n-1}}.$$

Solution: We know by definition of the cyclotomic polynomial that

$$x^{p^n} - 1 = \prod_{d|p^n} \Phi_d(x),$$
$$x^{p^{n-1}} - 1 = \prod_{d|p^{n-1}} \Phi_d(x).$$

The only number that divides p^n but does not divide p^{n-1} is p^n . Thus, we can write

$$\Phi_{p^n}(x) = \frac{x^{p^n} - 1}{x^{p^{n-1}} - 1}.$$

It is easy to check that

$$(1 + x^{p^{n-1}} + x^{2p^{n-1}} + \dots + x^{(p-1)p^{n-1}})(x^{p^{n-1}} - 1) = x^{p^n} - 1.$$

Since $\mathbb{Q}[x]$ is a UFD, we can conclude that

$$\Phi_{n^n}(x) = 1 + x^{p^{n-1}} + x^{2p^{n-1}} + \dots + x^{(p-1)p^{n-1}}.$$

Problem 13.3.9

 $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic extension of \mathbb{Q} .

Solution: The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $x^3 - 2$. Let \mathbb{F} be the splitting field of $x^3 - 2$, then \mathbb{F} is the smallest Galois extension containing a subextension $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$. We have calculated in a previous exercise that the Galois group $\operatorname{Gal}(\mathbb{F}/\mathbb{Q}) \cong S_3$, which is not Abelian. But the Galois group of any cyclotomic extension is Abelian, and S_3 cannot be realized as a quotient group of an Abelian group. This implies that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic extension of \mathbb{Q} .

Problem 13.5.2

Let \mathbb{K}/\mathbb{k} be a field extension. If $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ is algebraically independent over \mathbb{k} , and $\alpha \notin \mathbb{k}$ is the element of $k(\alpha_1, \ldots, \alpha_n)$, then α is transcendental over \mathbb{k} .

Solution: By Theorem 13.5.1, $\alpha \in \mathbb{k}(\alpha_1, \ldots, \alpha_n) \cong \mathbb{k}(x_1, \ldots, x_n)$. So α can be written as a ratio of two polynomials $p, q \in \mathbb{k}[x_1, \ldots, x_n]$ where $\deg p + \deg q \geq 1$. Suppose α is algebraic over \mathbb{k} , then there exists $f \in \mathbb{k}[x]$ such that $f(\alpha) = 0$. This implies that $f(\frac{p}{q}) = 0$. Note that $f(\frac{p}{q})$ is still in $\mathbb{k}(x_1, \ldots, x_n)$, so it can be written as

$$0 = f(\frac{p}{q}) = \frac{p'}{q'}$$

where $p', q' \in \mathbb{k}[x_1, \dots, x_n]$. Now we know that p' = 0. This is the same as saying $p'(\alpha_1, \dots, \alpha_n) = 0$. This shows that $\alpha_1, \dots, \alpha_n$ are algebraically dependent over \mathbb{k} . A contradiction. Thus, α is transcendental over \mathbb{k} .

Problem 13.5.4

If β is algebraic over $\mathbb{k}(\alpha)$ and β is transcendental over \mathbb{k} then α is algebraic over $\mathbb{k}(\beta)$.

Solution: Suppose α is transcendental over $\mathbb{k}(\beta)$. Since $\mathbb{k}(\beta)/\mathbb{k}$ is a transcendental field extension, by the Main Criterion, we know that the set $\{\alpha, \beta\}$ is algebraically independent. Use the Main Criterion again, and we have shown that β is transcendental over $\mathbb{k}(\alpha)$. This is a contradiction.

Problem 13.5.19

Let $\mathbb{k} \subseteq \mathbb{F} \subseteq \mathbb{k}(x)$ be field extensions, with x transcendental over \mathbb{k} . Then $\mathbb{k}(x)/\mathbb{F}$ is finite.

Solution: Suppose \mathbb{F}/\mathbb{k} is algebraic. Choose an element $\alpha \in \mathbb{F} \subseteq \mathbb{k}(x)$ but $\alpha \notin \mathbb{k}$, then $\alpha = \frac{p(x)}{q(x)}$ where $p(x), q(x) \in \mathbb{k}[x]$. α being algebraic over \mathbb{k} implies that there exists a polynomial $F(x) \in \mathbb{k}[x]$ such that $F(\alpha) = 0$. This can be written as $F(\frac{p(x)}{q(x)}) = 0$. Note that $F(\frac{p(x)}{q(x)})$ is still in $\mathbb{k}(x)$, so it can be written as

$$0 = F(\frac{p(x)}{q(x)}) = \frac{p'(x)}{q'(x)}$$

where $p'(x), q'(x) \in \mathbb{k}[x]$. This implies that p'(x) = 0 for some polynomial p' and x is algebraic over \mathbb{k} . A contradiction. So \mathbb{F}/\mathbb{k} is a transcendental field extension. By the Tower Law for transcendental

degree, $k(x)/\mathbb{F}$ is algebraic. x being algebraic over \mathbb{F} implies there exists $g(y) \in \mathbb{F}[y]$ such that g(x) = 0. This tells us that $[k(x) : \mathbb{F}] \leq \deg g < \infty$ is finite. So $k(x)/\mathbb{F}$ is a finite field extension.

Problem 13.6.5 (Newton's identities)

Let x_1, \ldots, x_n be variables, and define power sum symmetric functions

$$p_k = p_k(x_1, \dots, x_n) = x_1^k + \dots + x_n^k \quad (k \in \mathbb{Z}_{>0}).$$

Prove the Newton identities:

$$ke_k = \sum_{i=1}^{k} (-1)^{i-1} e_{k-i} p_i$$

where e_k are the elementary symmetric functions interpreted 1 if k = 0 and as 0 if k > n. Deduce that every elementary symmetric function e_k can be written down as a polynomial in p_1, \ldots, p_k with rational coefficients. Deduce that every symmetric polynomial can be written down as a polynomial in the power sum symmetric functions.

Solution: Let x_1, \ldots, x_n be variables, define the following polynomial

$$f(x) = (x - x_1)(x - x_2) \cdots (x - x_n).$$

Remove the parentheses, and we can rewrite f(x) as

$$f(x) = x^{n} - e_{1}x^{n-1} + \dots + (-1)^{n-1}e_{n-1}x + (-1)^{n}e_{n}.$$

We prove Newton's identities in different cases.

(a) Suppose k = n.

We know that for $1 \le i \le n$, x_i is the root of f, so it satisfies the following equation.

$$x_i^n - e_1 x_i^{n-1} + \dots + (-1)^{n-1} e_{n-1} x + (-1)^n e_n = 0.$$
 (1)

Add all these equations from i = 1 to i = n, we obtain

$$p_n - e_1 p_{n-1} + \dots + (-1)^{n-1} e_{n-1} p_1 + (-1)^n n e_n = 0.$$

This is the same as

$$(-1)^{n-1}ne_n = \sum_{i=1}^n (-1)^{n-i}e_{n-i}p_i$$
$$ne_n = \sum_{i=1}^n (-1)^{i-1}e_{n-i}p_i.$$

(b) Suppose k > n.

Let $\alpha_1, \alpha_2, \ldots, \alpha_{k-n}$ be a variable. Consider the polynomial

$$g(x) = f(x)(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_{k-n}).$$

In this case, the generic polynomial is e'_j and the power sum function is p'_j for $1 \le j \le k$. From the result in (a), we have an equation

$$ke'_k = \sum_{i=1}^k (-1)^{i-1} e'_{k-i} p'_i.$$

Let $\alpha_1 = \alpha_2 = \cdots = \alpha_{k-n} = 0$. Then we have

$$e'_{j} = e_{j},$$
 if $1 \le j \le n,$ (2)

$$e_i' = 0, if n+1 \le j \le k, (3)$$

$$p_j' = p_j, if 1 \le j \le k. (4)$$

Then the equation can be rewritten as

$$0 = ke_k = \sum_{i=1}^{k} (-1)^{i-1} e_{k-i} p_i.$$

(c) Suppose k < n.

Consider the formal derivative f'(x) of f(x), which can be written in two forms:

$$f'(x) = \sum_{j=1}^{n} \frac{f(x)}{x - x_j},$$

$$f'(x) = nx^{n-1} - (n-1)e_1x^{n-2} + \dots + (-1)^{n-1}e_{n-1}.$$

For $0 \le l \le n-1$, the coefficient in front of x^{n-1-l} is $(-1)^l(n-l)e_l$. For $1 \le j \le n$, $\frac{f(x)}{x-x_j}$ can be written as

$$\frac{f(x)}{x - x_j} = (x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n).$$

Remove the parentheses, and we obtain

$$\frac{f(x)}{x - x_j} = x^{n-1} + (-e_1 + x_j)x^{n-2} + (e_2 - e_1x_j + x_j^2)x^{n-3}$$

$$+ \dots + ((-1)^l e_l + \sum_{m=1}^l (-1)^{l+m} e_{l-m}x_j^m)x^{n-l-1} + \dots$$

$$+ (-1)^{n-1} e_{n-1} + \sum_{m=1}^{n-1} (-1)^{m+n-1} e_{n-m-1}x_j^m.$$

Add j = 1 to j = n together, and we have

$$f'(x) = nx^{n-1} + \sum_{l=1}^{n-1} [(-1)^l ne_l + (\sum_{m=1}^l (-1)^{l+m} e_{l-m} p_m)] x^{n-l-1}$$

Comparing coefficients, and we have, for $1 \le l \le n-1$,

$$(-1)^{l}(n-l)e_{l} = (-1)^{l}ne_{l} + \sum_{m=1}^{l} (-1)^{l+m}e_{l-m}p_{m}.$$

This is equivalent to

$$le_l = \sum_{m=1}^{l} (-1)^{m-1} e_{l-m} p_m$$

for all $1 \le l \le n-1$.

We have proved Newton's identities for k > 0. We have

$$e_1 = p_1,$$

 $2e_2 = e_1p_1 - p_2,$
 $3e_3 = e_2p_1 - e_1p_2 + p_3,$

for all k > 0. From this, we can inductively write e_k as a polynomial of p_1, \ldots, p_k with rational coefficients. By Theorem 13.6.1, since every symmetric polynomial can be written down as a polynomial in symmetric functions, then it can also be written as a polynomial in power sum functions.