Fun With Series

Julia found a series, G, defined as:

$$G_n = \left\{egin{array}{ll} 0 & n=0 \ 1 & n=1 \ a imes G_{n-1} + b imes G_{n-2} & n>1 ext{ and } a,b\geq 1 \end{array}
ight.$$

For some integer p (where p>0), she finds p+2 integers, $c_0,\ c_1,\ c_2,\ldots,\ c_{p+1}$, such that L(p,n)=0 holds for all integers n (where n>p):

$$L(p,\ n) = \sum_{i=0}^{p+1} c_i (G_{n-i})^p$$

She realized that the values of c_i are not unique, so she only considers the tuple $(c_0, c_1, \ldots, c_{p+1})$ such that $c_0 > 0$ and c_0 is minimal. It is guaranteed that when $c_0 > 0$ and c_0 is minimal, there exists only one tuple $(c_0, c_1, \ldots, c_{p+1})$.

Next, she defines $S_1(p)$ and $S_2(p)$:

$$S_1(p) = \left(\sum c_i\right)\%(10^9 + 7) \quad orall c_i > 0$$

$$S_2(p) = \left(\sum |c_i|\right)\%(10^9 + 7) \quad \forall c_i < 0$$

She then finds the following interesting property of c_i :

$$\prod_{i=0}^{p+1} |c_i| = w \times \prod_{i=2}^{p+1} G_i^{z_i}$$

where w and z_i are integers such that:

- $w \neq 0$
- $z_2 + 2p = z_{n+1} + 2$

$$ullet \sum_{i=2}^{p+1} z_i = p$$

Julia wants you to answer q queries in the following forms:

- 1. 1 l r: Using $S_1(p)$ and $S_2(p)$, print three space-separated integers denoting the respective values of $Count_1$, $Count_2$, and $Count_3$ where:
 - ullet $Count_1$ is the total number of possible values of p (where $l \leq p \leq r$) such that $S_1(p) > S_2(p)$.
 - ullet $Count_2$ is the total number of possible values of p (where $l \leq p \leq r$) such that $S_1(p) < S_2(p)$.
 - ullet $Count_3$ is the total number of possible values of p (where $l \leq p \leq r$) such that $S_1(p) = S_2(p)$.
- 2. 2 p u v: Find the value of S modulo $(10^9 + 7)$:

$$S = \left(\prod_{i=u}^v G_i
ight)^{(w+\phi)}, ext{where } \phi = \left|\sum_{i=u}^v z_i
ight|$$

Input Format

The first line contains three space-separated integers describing the respective values of a, b, and q.

Each line i of the q subsequent lines contains three or four space-separated values denoting a query asked by Julia.

Constraints

- $1 \le a, b \le 10^6$
- $1 \le q \le 5 \times 10^4$
- $1 \le l \le r \le 10^3$
- $1 \le p \le 10^6$
- $2 \le u \le v \le p+1$

Output Format

Print q lines of output where each line i denotes the answer to query i.

Sample Input

```
112
112
2122
```

Sample Output

```
0 2 0
1
```

Explanation

The first few terms of series G are $\{0,1,1,2,3,5,8,\ldots\}$, and:

•
$$L(1, n) = G_n - G_{n-1} - G_{n-2} = 0, \forall n > 1$$

•
$$L(2,\ n)=G_n^2-2 imes G_{n-1}^2-2 imes G_{n-2}^2+G_{n-3}^2=0,\ orall n>2$$

Query 1 1 2:

The values of $S_1(p)$ and $S_2(p)$ are:

- ullet For p=1, $c_0=1$, $c_1=-1$, and $c_2=-1$. So, $S_1(1)=1$ and $S_2(1)=2$.
- ullet For p=2, $c_0=1$, $c_1=-2$, $c_2=-2$, and $c_3=1$. So, $S_1(2)=2$ and $S_2(2)=4$.

So,

- $S_1 = \{1, 2\}$
- $S_2 = \{2, 4\}$

Now,

- $Count_1=0$, because for $1\leq p\leq 2$, no $S_1(p)>S_2(p)$.
- ullet $Count_2=2$, because for $1\leq p\leq 2$, each $S_2(p)>S_1(p)$.
- $Count_3=0$, because for $1\leq p\leq 2$, no $S_1(p)=S_2(p)$.

Thus, we print $0\ 2\ 0$ (i.e., the respective values of $Count_1$, $Count_2$, and $Count_3$) on a new line as the

Query 2 1 2 2:

For p=1, $c_0=1$, $c_1=-1$, and $c_2=-1$:

$$egin{aligned} \prod_{i=0}^{p+1} |c_i| &= w imes \prod_{i=2}^{p+1} G_i^{z_i} \ &\Rightarrow w imes \prod_{i=2}^2 G_i^{z_i} = 1 \ &\Rightarrow w imes G_2^{z_2} = 1 \end{aligned}$$

because $G_2=1$. So, w=1 and $z_2=1$ because for $z_2=1$, $\sum_{i=2}^{p+1}z_i=p$ holds true.

$$\phi = \left|\sum_{i=2}^2 z_i
ight| = |z_2| = 1$$
 $\Rightarrow w + \phi = 2$

Finally, we can find the value of S:

$$S = \left(\prod_{i=u}^v G_i
ight)^{(w+\phi)}$$

$$\Rightarrow S = \left(\prod_{i=2}^2 G_i
ight)^2 = G_2^2 = 1$$

Thus, we print 1 on a new line as the answer to Julia's query.