Engineering Rank and Select Queries on Wavelet Trees

Roland Larsen Pedersen

Datalogi, Aarhus Universitet

Thesis defence

June 25, 2015

Overview

- What is a Wavelet Tree?
 - Definitions
 - Constructing the Wavelet Tree
- Queries
 - Rank
 - Select
- 3 Applications
 - Information Retrieval
 - Compression
 - Run-length encoding
 - Burrows-Wheeler Transform
 - Huffman Shaped Wavelet tree
- 4 Experiments and Results

Wavelet Tree

What is a wavelet tree?

Wavelet Tree: Definitions

- In its basic form, the wavelet tree is a balanced binary tree.
- It stores a sequence $S[1, n] = c_1 c_2 c_3 \dots c_n$ of symbols $c_i \in \Sigma$, where $\Sigma = [1 \dots \sigma]$ is the alphabet of S.
- The tree has height $h = \lceil \log \sigma \rceil$, and $2\sigma 1$ nodes, with σ of those as leaf nodes and $\sigma 1$ as internal nodes.

Constructing the Wavelet Tree

- The wavelet tree is constructed recursively, starting at the root node and moving down the tree, with each node in the tree receiving a string constructed by its parent, except the root node that receives the full input string.
- Each node calculates the middle character of Σ and uses it to set the bits in the bitmap and split S in two substrings S_{left} and S_{right} .

Wavelet Tree Example

$$S = \mathsf{adsfadaadsfaads}, \Sigma = \mathsf{adfs}$$

Construction time and memory usage

- Construction time: $O(n \cdot h) = O(n \log \sigma)$
 - The Wavelet Tree can theoretically be constructed in $O(n \cdot h) = O(n \log \sigma)$ time as the sum of the lengths of the strings being processed at any single layer of the tree is the length of the input string to the tree.
- Memory usage: $O(n \log \sigma + \sigma \cdot ws)$ bits
 - At each level in the tree at most n bits are stored in the bitmaps in total, making $n \cdot h = n \cdot \log \sigma$ an upper bound to the total number of bits that a wavelet tree stores in its bitmaps.
 - In addition to this, each node takes some constant amount of machine words of space, and there are $2\sigma-1$ nodes in the tree. ws is the size of our machine words. This makes the total memory consumption $O(n\log\sigma+\sigma\cdot ws)$ bits.

Wavelet Tree

Queries

Wavelet Tree: Queries

- The wavelet tree supports three queries:
 - Access(p): Return the character c at position p in sequence S.
 - Running time: $O(n \log \sigma)$.
 - We have not implemented Access because it resembles Rank.
 - Rank(c, p): Return the number of occurrences of character c in S up to position p.
 - Running time: $O(n \log \sigma)$.
 - Select(c, o): Return the position of the oth occurrence of character c in S.
 - Running time: $O(n \log \sigma)$

Rank on a Wavelet Tree

Select on a Wavelet Tree

Wavelet Tree: Applications

Applications

Information Retrieval: Applications

- Information Retrieval
 - Positional inverted index
 - Document retrieval
 - Range Quantile Query: Return the kth smallest number within a subsequence of a given sequence of elements.
 - FM-count: Return number of occurrences of a pattern p in S.

Compression: Applications

Compression

- Zero-order entropy compression (H_0) using a RLE Wavelet Tree or a Huffman Shaped Wavelet Tree.
- Higher-order entropy compression (H_k) using Burrows-Wheeler transformation and a RLE wavelet tree.
- $H_k <= H_0 <= \log \sigma$.

Compression: Run-length encoding

- Run-length encoding counts the number of consecutive occurrences of a symbol and substitutes the consecutive occurrences with the symbol followed by its number of occurrences.
- Example: *RLE*(aaaaabbbaacccccaaaaa) = a5,b3,a2,c5,a5.
- Binary example: RLE(0000000001111100000) = 10, 5, 5
 - We can avoid specifying the symbol by assuming that 0 is always the first symbol.
 - If the binary number begins with a 1 we just add a 0 to the beginning of the result.
- Query by reversing RLE. It takes linear time O(n) to reverse. Rank and select query time becomes $O(2n\log\sigma) = O(n\log\sigma)$
- Achieves space complexity within H₀

RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(a) Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(b) RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

Compression: Burrows-Wheeler transform

- BWT permutes the order of the characters. If the original string had several substrings that occurred often, then the transformed string will have several places where a single character is repeated multiple times in a row.
- As a result it groups symbols more which improves the effect of Run-length encoding
- BWT is reversible
- Combined with RLE Wavelet Tree it achieves H_k compression.

BWT example

S = bananahat.

bananahat#[†] ananahat#b nanahat#ba anahat#ban nahat#bana ahat#banan hat#banana at#bananah t#bananaha #bananahat $\lceil \# \mathit{bananaha} \mathbf{t}
ceil$ ahat#banan anahat#ban ananahat#**b** at#bananah bananahat# hat#banana nahat#bana nanahat#ba t#bananah**a**

BWT(S) = tnnbhaaaa.

Burrows-Wheeler reverse transform example

$$S = dca$$

$$M = \begin{bmatrix} dca\#\\ ca\#d\\ a\#dc\\ \#dca \end{bmatrix} \Rightarrow M' = \begin{bmatrix} \#dc\mathbf{a}\\ a\#d\mathbf{c}\\ ca\#\mathbf{d}\\ dca\# \end{bmatrix}$$

BWT(S) = acd

Reverse BWT:

Add 1	Sort 1	Add 2	Sort 2	Add 3	Sort 3	Add 4	Sort 4
а	#	a#	#d	a#d	#dc	a#dc	#dca
С	a	ca	a#	ca#	a#d	ca#d	a#dc
d	С	dc	са	dca	ca#	dca#	ca#d
#	d	#d	dc	#dc	dca	#dca	dca#

^{*# =} end of line character

RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(a) RLE Wavelet Tree on string bananahat with alphabet $\Sigma = abhnt$

(b) BWT RLE Wavelet Tree on string tnnbhaaaa with alphabet $\Sigma = abhnt$

Huffman shaped wavelet tree

- Use Huffman codes of symbols to shape the tree
- A Huffman code is a binary value assigned to each symbol. The symbol with the highest frequency gets the lowest value.
- Shaping the tree based on Huffman codes places the most frequent symbols at the top of the tree and least frequent symbols at the bottom of the tree.
- Huffman shaping only makes sense on non-uniformly distributed data like a natural language text.

Huffman Shaped Wavelet Tree: Example

(a) Balanced Wavelet tree: 39 bits

(b) Huffman-shaped wavelet tree: 22 bits

Huffman Shaped WT: Space complexity

- Balanced version: $n \log \sigma + o(n \log \sigma) + O(\sigma \log n)$ bits
- Huffman-shaped: $n(H_0(S)+1)+o(n(H_0(S)+1))+O(\sigma \log n)$ bits. [Efficient Compressed Wavelet Trees over Large Alphabets by Navarro et al.]
- Huffman-shaped + Compressed Bitmap (RLE): $nH_0(S) + o(n(H_0(S) + 1)) + O(\sigma \log n)$ bits.

Experiments and Results

Experiments and Results

Focus of experiments

- Focus on optimizing and observing the effect of hardware penalties.
 - Cache Misses.
 - Branch Mispredictions.
 - Translation Lookaside Buffer (TLB) Misses.

Experiments

- 1. Calculate binary rank and select using popcount
- 2. Pre-compute binary rank values in blocks
- 3. Block size dependence on input n
- 4. Pre-compute cumulative sums of rank values
- 5. Branchless select query
- 6. Queries on skewed cumulative sum wavelet tree

Calculate binary rank and select using popcount

Figure: Rank and select queries using simple binary rank and select vs. rank and select queries using binary rank and select using the popcount instruction. Y-Axis is index 100 of the simple queries, that is, every value is percent of the value for the simple query.

Experiments: Pre-compute binary rank values in blocks

Name	Concatenated Bitmaps	Page-aligned Blocks
Preallocated	yes	yes
UnalignedPreallocated	yes	no
Naive	no	yes
UnalignedNaive	no	no

Running time: Pre-compute binary rank values in blocks

(a) Rank: Running Time

(b) Select: Running Time

Best Block size: $\frac{1}{2}$ page size $=\frac{1}{2}*4096$ bytes =2048 bytes.

Memory usage: Pre-compute binary rank values in blocks

Running time: Not precomputed vs. best precomputed

Figure: Comparison of wall time of rank and select queries between SimpleNaive not using precomputed values and UnalignedNaive using precomputed values.

Block size dependence on input size n

- When using lookups of precomputed values It costs $O(\frac{n}{b} + b)$ to calculate the binary rank.
- It costs $O(\frac{n}{b})$ to scan the blocks, and O(b) to calculate the rank within a single block using popcount. The optimal block size should be one that minimizes this.
- The derivative of $\frac{n}{b} + b$ is $1 \frac{n}{b^2}$ and its root is $n = b^2$ making the optimal block size $b = \sqrt{n}$.
- This is only the optimal block size for a single bitmap, and a wavelet tree has many bitmaps of varying sizes n that are lower near the leaves.

Experiment: Block size dependence on input size n

(c)
$$n = 10^7$$

Block Size (bits)

Experiments

The End