Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 20: June 14th, 2017

Lecturer: Alan Arroyo Guevara

Notes By: Harsh Mistry

Definition 20.1 A graph is Connected, id for every two vertices $x, y \in V(G)$ there is a path from x to y.

Theorem 20.2 Let G be a graph and $v \in V(G)$. G is connected if and only if for every $w \in V(G)$ there is a path from v to w in G.

Proof: Prove as an exercise.

Hint: Suppose that for very $w \in V(G)$, there is a path from v to w

Problem 20.3 Show that the k-cube Q_k is connected.

Solution: By previous theorem, we only need to show that every $s \in V(Q_k)$ is connected (by using a path) to 00...0, So suppose s has ℓ 1s.

- $S_{\ell} = S$
- $S_{\ell-1}=$ the string obtained from S_{ℓ} by replacing the first 1 in S_{ℓ} with a 0

:

• $S_0 = 00 \dots 0$

 $P: S_{\ell}S_{\ell-1} \dots S_0$ connects S to $00 \dots 0$

Definition 20.4 Given a G = (V, E), a **Subgraph** H = (V', E') is a graph such that $V' \subseteq V$ and $E' \subseteq E$

Definition 20.5 A Component of G is a sub-graph H such that

- (a) H is connected
- (b) H is not a proper subgraph of a connected subgraph.

Given $u, v \in V(G)$, if we define $u \sim v$ if u and v are in the same component then

- $a \sim a$
- If $a \sim b \implies b \sim a$
- $a \sim b$ and $b \sim c \implies a \sim c$