

OLIMPIADA NAȚIONALĂ DE FIZICĂ SIBIU 2000

Subjectul 1		
a) 4,00	Procesul fiind adiabatic $Q = 0$	0,50
	Vasul este închis $\Rightarrow L = 0$	0,50
	Principiul I al termodinamicii $\Delta U = 0 \iff U_0 = U_f$	0,50
	$U_0 = vC_VT + E_{c,gaz} = vC_VT + mv^2/2$, unde m este masa gazului	0,50
	$U_{\rm f} = \nu C_{\rm V} (T + \Delta T)$	0,50
	Rezultă $\Delta T = \mu v^2 / 2C_v$ depinde liniar de v^2	0,50
	Graficul funcției $\Delta T(v^2)$ este o dreaptă ce trece prin origine și are panta $tg\alpha = \mu/2C_v$	0,50
	Din $tg\alpha = \mu/2C_v = 5.6/R$ rezultă $\mu = 28 \text{ kg/kmol} \implies N_2$	0,50
	Presiunea in compartimentul superior este: $p_1 = p_0 + mg / S$	0,50
	Cantitatea de substanță din compartimentul superior: $v_1 = \frac{p_1 Sl}{RT}$	0,25
b) 5,00	Cantitatea de substanță din compartimentul inferior: $v_2 = \frac{pSl}{RT}$	0,25
	După îndepărtarea peretelui, la echilibru, presiunea în întreg cilindrul este tot p_1	0,50
	$p_1S(2l-x) = (v_1 + v_2)RT_1$, unde T_1 este temperatura finală	0,50
	Din principiul I al termodinamicii $\Delta U = -L$ rezultă: $(v_1 + v_2)C_v(T_1 - T) = p_1Sx$	1,00
	Calculul conduce la: $x = 3l(p_1 - p)/5p_1$	1,00
	Discuție: daca $p_1 > p$ pistonul se deplasează in jos; daca $p_1 = p$ pistonul nu se	1,00
	deplasează; daca $p_1 < p$ pistonul se deplasează in sus	
Punct din oficiu		1,00
Total Subject 1		10,00

Subjectul 2 $Q = -a\Delta T$ 0,50 $Q_1 = m_l c_l \Delta T$ 0,50 $Q_2 = (m_l c_l + m_c c_c) \Delta T$ 0,50 a) 3,00 $\frac{Q_2}{Q_1} = \frac{\Delta t_2}{\Delta t_1}; \ \Delta t_2 = n\Delta t_1$ 1,00 $\frac{c_c}{}=n-1$ 0,50 c_l b) 1,50 6,00

	Pentru transformarea 1–2: $\rho p = \text{const.} \Rightarrow \frac{p}{V} = \text{const.}$	0,50
	$\frac{\rho_1}{\rho_2} = 2 \Rightarrow V_2 = 2V_1 \Rightarrow p_2 = 2p_1$	0,50
	$\eta = \frac{L}{Q_{12}}$	0,50
	$L = \frac{(p_2 - p_1)(V_2 - V_1)}{2} \Rightarrow L = \frac{p_1 V_1}{2}$	0,50
	$Q_{12} = \Delta U_{12} + L_{12}$	0,50
	$Q_{12} = vC_v(T_2 - T_1) + \frac{p_1 + p_2}{2}(V_2 - V_1) \implies Q_{12} = 6p_1V_1$	0,50
	$\eta = 1/12 = 8,33\%$	0,50
	$\eta_{\rm C} = 1 - \frac{T_{\rm I}}{T_{\rm 2}} \implies \eta_{\rm C} = 1 - \frac{p_{\rm I}V_{\rm I}}{p_{\rm 2}V_{\rm 2}} \implies \eta_{\rm C} = \frac{3}{4} = 75\%$	0,50
	$\eta/\eta_{\rm C} = 1/9$	0,50
Punct din oficiu		1,00
Total Subject 2		10,00

Subjectul 3			
a) 4,00	+q	1,00	
	Energia totală a sistemului în starea inițială: $E_1 = \frac{mv_0^2}{2} - \frac{2q^2}{8\pi\epsilon_0 d} + \frac{q^2}{8\pi\epsilon_0 d\sqrt{2}}$	0,75	
	Energia totală a sistemului în starea finală: $E_2 = \frac{mv^2}{2} - \frac{2q^2}{16\pi\epsilon_0 d} + \frac{q^2}{16\pi\epsilon_0 d\sqrt{2}}$	0,75	
	Conservarea energiei totale(se neglijează influența câmpului gravitațional): $\frac{mv_0^2}{2} - \frac{2q^2}{8\pi\epsilon_0 d} + \frac{q^2}{8\pi\epsilon_0 d\sqrt{2}} = \frac{mv^2}{2} - \frac{2q^2}{16\pi\epsilon_0 d} + \frac{q^2}{16\pi\epsilon_0 d\sqrt{2}}$	0,50	
	$v = \sqrt{v_0^2 + \frac{q^2(1 - 2\sqrt{2})}{8\sqrt{2}\pi\varepsilon_0 md}} = 0.79 \frac{\text{m}}{\text{s}}$	0,50	
	$\Delta v / v_0 = -21\%$	0,50	
b) 5,00	Comutator deschis: $C = \frac{C_1 C_2}{C_1 + C_2} = \frac{4}{3}C$	0,50	
	Sarcina de pe fiecare condensator $\Rightarrow q_0 = \frac{8}{3}CE$	0,50	
	Comutator închis: $q_{01} = 4CE$, $q_{02} = 6CE$	1,50	
	$q_{01} = -q_0 + q_1 \implies q_1 = 20 \mu C$	0,75	
	$q_{02} = q_0 + q_2 \implies q_2 = 10 \mu C$	0,75	
		1,00	
Punct din oficiu Total Subiect 3		1,00	
Total Subject 5		10,00	

Notă: Orice rezolvare corectă va fi punctată corespunzător.