Can liquid crystal phases be identified via machine learning?

Joshua Heaton

School of Physics and Astronomy, The University of Manchester

December 5, 2020

Abstract

hi

1 Introduction

a

2 Liquid crystal phases

a

2.1 Physical structures

a

2.2 Capturing textures

a

3	General machine learning principles
a	
3.1	Tasks, performance measures and experience
a	
3.2	Supervised and unsupervised learning
a	
	Optimisation
a	
3.4 a	Underfitting and overfitting
	7
3.5 a	Model capacity and regularisation
3.6	Hyperparamters
a	11y per paramiters
4	Neural networks
a	ivediai networks
4.1	Hidden units and network architecture
a a	inden umis and network architecture

a 4.3 ${\bf Regularisation\ methods}$ **5** Convolutional neural networks a Convolutional layers 5.1 a Pooling layers 5.24-phase classifier models 6 Dataset preparation 6.1a Model architectures and training configuration 6.2a Results 6.3 a

4.2

Neural network training

7 Smectic phase classifier models

a

7.1 Dataset preparation

a

7.2 Model architectures and training configuration

a

7.3 Results

a

8 Conclusions

a

9 Going forward

a

References