Determining The Odds For Cardiovascular Disaease

By Matthew Curcio

1. Executive Summary

This report investigates data from the 1948 Framingham Heart Study.¹ This longitudinal study includes 4,133 participants with 13 factors total over 10 years. Using this data, I investigate the risk factors for cardiovascular disease (CVD).

- 1. This report and my article Introduction to Logit² discuss my details on logistic regression and R.
- 2. Seven (7) factors have a strong correlation that leads to cardiovascular disease. The odds related to each factor are calculated from the data.

Seven Factors and Their Odds Of Developing Cardiovascular Disease

No.	Factors	Approximate Odds
1	Age (80 yr Male : 20 yr Male)	28.0:1
2	High Systolic Blood Pressure	7.8:1
3	High Glucose Levels	2.5:1
4	Prevalence Of Stroke In Family History	2.4:1
5	Cigarettes Per Day	2.1:1
6	Male Vs Female	1.5:1
7	Prevalence Of Hypertension In Family History	1.3:1

2. Introduction

Data can be found at Kaggle.³

The Framingham Heart Study began in 1948 by recruiting 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts. [These recruits] had not yet developed overt symptoms of cardiovascular disease or suffered a heart attack or stroke.

[The] study has since led to the identification of major CVD risk factors, as well as valuable information on the effects of these factors such as blood pressure, blood triglyceride and cholesterol levels, age, gender, and psychosocial issues.⁴

Odds are calculated by using dividing two probabilities. In the case of a *Risk of Stroke*. We would divide the Probability *WITH* the prevalence of stroke in patients' family history *VERSUS* the Probability of *WITHOUT* having the prevalence of stroke in the family history.

For Example:

$$Odds \ of \ Stroke \ = \ \frac{Probability \ [Stroke \ in \ family \ history]}{Probability \ [NO \ stroke \ in \ family \ history]} \ = \ \frac{0.18761}{0.07778} \ = \ \frac{2.41}{1}$$

¹https://www.framinghamheartstudy.org

²https://github.com/mcc-us/intro-2-logit/blob/main/intro-2-logit.pdf

³https://www.kaggle.com/datasets/captainozlem/framingham-chd-preprocessed-data

⁴https://www.framinghamheartstudy.org/fhs-about

3. Exploratory Data Analysis

```
# Create a dataframe for males and females
males <- df[df$male == 1,]</pre>
females <- df[df$male == 0,]
df2 = rbind(males, females)
```

2. Logistic Regression Model Results

2.1 Model Using 13 Factors

```
mylogit <- glm(TenYearCHD ~ male + age + education + cigsPerDay + glucose +
                          prevalentStroke + prevalentHyp + diabetes +
                          totChol + sysBP + diaBP + BMI + heartRate,
              data = df,
              family = "binomial")
summary(mylogit)
##
## Call:
## glm(formula = TenYearCHD ~ male + age + education + cigsPerDay +
##
      glucose + prevalentStroke + prevalentHyp + diabetes + totChol +
      sysBP + diaBP + BMI + heartRate, family = "binomial", data = df)
##
##
## Deviance Residuals:
##
   Min 1Q Median
                             3Q
                                   Max
## -1.964 -0.596 -0.432 -0.294
                                  2.810
##
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -8.04990
                             0.64770 -12.43 < 2e-16 ***
                                       4.73 2.2e-06 ***
## male1
                   0.48093
                              0.10163
                            0.00625
                   0.06263
                                      10.02 < 2e-16 ***
## age
## education1
                   0.03031
                            0.10610
                                      0.29
                                              0.775
## cigsPerDay
                   0.02087
                            0.00397
                                      5.25 1.5e-07 ***
## glucose
                   0.00619
                            0.00215
                                       2.88
                                              0.004 **
## prevalentStroke1 1.00721 0.43923
                                      2.29
                                               0.022 *
## prevalentHyp1 0.25864
                           0.12955
                                      2.00
                                                0.046 *
                                              0.417
## diabetes1
                   0.24052
                            0.29605
                                      0.81
## totChol
                   0.00184
                            0.00106
                                       1.73
                                              0.083 .
                                      4.22 2.5e-05 ***
## sysBP
                  0.01498
                            0.00355
## diaBP
                 -0.00386
                            0.00602
                                      -0.64
                                              0.521
                  0.00212
                                       0.18
                                                0.857
## BMI
                             0.01182
              -0.00248
                              0.00393
                                       -0.63
                                                0.528
## heartRate
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3521.9 on 4132 degrees of freedom
##
## Residual deviance: 3131.2 on 4119 degrees of freedom
## AIC: 3159
##
## Number of Fisher Scoring iterations: 5
```

• 7 most significant variables

• Seven predictors have $\alpha < 0.05$. They are significant and associated with acquiring cardiovascular disease.

Rank	Risk Factor
1	Prevalence of Stroke1
2	Male1
3	Prevalence of Hypertension1
4	Age
5	Cigarettes Per Day
6	Systolic Blood Pressure
7	Glucose

2.2 Wald Test: Do The Seven Factors Fit Our Model

- The Wald Chi-Square Test can help determine if our proposed model is significant.
- The Wald test generates a P-value « 0.001.
- Therefore, we conclude the seven (7) parameters are significant and useful in describing cardiovascular disease.

2.3 Determination of Odds for Seven Variables

- We can calculate the odds of acquiring cardiovascular disease for each of the seven variables.
- By holding all other values constant we create a dataframe that investigates the odds given Prevalence of Stroke, for example.

```
strok_test <- with(df, data.frame(male = "0",</pre>
                                    age = mean(age),
                                    education = "0",
                                    cigsPerDay = 0, # Non-smoker
                                   prevalentHyp = "0",
                                   diabetes = "0",
                                    totChol = mean(totChol),
                                    sysBP = mean(sysBP),
                                   diaBP = mean(diaBP),
                                   BMI = mean(BMI),
                                   heartRate = mean(heartRate),
                                    glucose = mean(glucose),
                                   prevalentStroke = c("0", "1"))
                    )
# Convert prevalentStroke from Numeric to FACTOR
strok_test$prevalentStroke <- as.factor(strok_test$prevalentStroke)</pre>
# str(strok_test)
strok_test$prevalentStroke <- predict(mylogit,</pre>
                                        newdata = strok_test,
                                        type = "response")
#strok_test$prevalentStroke
```

2.4 Odds Given Prevalence Of Stroke In family history.

- 1. WITH Prevalence of Stroke: 0.18761
- 2. NO Prevalence of Stroke: 0.07778
- Odds = 2.4119

2.5 Odds Given For Male Vs Female

```
male_test <- with(df, data.frame(male = c("0","1"), # Factor of Interest</pre>
                                  age = mean(age),
                                  education = "0",
                                  cigsPerDay = 0,
                                  prevalentHyp = "0",
                                  diabetes = "0",
                                  totChol = mean(totChol),
                                  sysBP = mean(sysBP),
                                  diaBP = mean(diaBP),
                                  BMI = mean(BMI),
                                  heartRate = mean(heartRate),
                                  glucose = mean(glucose),
                                  prevalentStroke = "0"))
# REMEMBER convert male test from numeric to FACTOR
male_test$male <- as.factor(male_test$male)</pre>
male_test$male <- predict(mylogit, newdata = male_test, type = "response")</pre>
```

Males: 0.12005
 Female: 0.07778

• Odds = 1.54343

2.6 Odds Prevalence of Hypertension In Family History

```
hyperT_test <- with(df, data.frame(male = "0",
                                    age = mean(age),
                                    education = "0",
                                    cigsPerDay = 0,
                                    prevalentHyp = c("0","1"), # Factor of Interest
                                    diabetes = "0",
                                    totChol = mean(totChol),
                                    sysBP = mean(sysBP),
                                    diaBP = mean(diaBP),
                                    BMI = mean(BMI),
                                    heartRate = mean(heartRate),
                                    glucose = mean(glucose),
                                    prevalentStroke = "0"))
# REMEMBER convert male_test from numeric to FACTOR
hyperT_test$prevalentHyp <- as.factor(hyperT_test$prevalentHyp)</pre>
hyperT_test$prevalentHyp <- predict(mylogit, newdata = hyperT_test, type = "response")
```

1. WITH Prevalence of Hypertension: 0.09848

2. NO Prevalence of Hypertension: 0.07778

• Odds = 1.2661

2.7 Odds Given Age

Age (years)	Probability Given Age	Odds Compared to 20 yr old
20	0.01307	1
30	0.02418	1.84969
40	0.0443	3.38895
50	0.0798	6.1044
60	0.13958	10.67785
70	0.23282	17.81084
80	0.36214	27.70331

2.8 Odds Given Number Of Cigarettes Per Day

1. A pack of cigarettes gave a person 45% increase of acquiring Cardiovascular disease, **using this data set.** This seems oddly low.

Age (years)	Probability Given Age	Odds Compared to Zero Cigarettes Per Day
0	0.07778	1
10	0.09414	1.21027
20	0.11351	1.45932
30	0.13627	1.7519
40	0.16275	2.09238

2.9 Odds Given Systolic Blood Pressure

```
summary(df$sysBP)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                             {\tt Max.}
      83.5 117.0 128.0 132.4 144.0
                                             295.0
##
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 83.5 117.0 128.0 132.4 144.0
sysBP_calc <- with(df, data.frame(male = "0",</pre>
                                  age = mean(age),
                                  education = "0",
                                  cigsPerDay = 0,
                                  prevalentHyp = "0",
                                  diabetes = "0",
                                  totChol = mean(totChol),
                                  sysBP = c(117, 128, 144, 295),
                                  diaBP = mean(diaBP),
                                  BMI = mean(BMI),
                                  heartRate = mean(heartRate),
                                  glucose = mean(glucose),
                                  prevalentStroke = "0"))
sysBP_calc$sysBP <- predict(mylogit, newdata = sysBP_calc, type = "response")</pre>
#sysBP_calc$sysBP
```

Systolic BP	Probability Given Systolic BP	Odds Systolic BP
117	0.06279	1
128	0.07322	1.16607
144	0.09124	1.45318
Max 295	0.49104	7.8204

2.10 Odds Given Glucose Levels

```
summary(df$glucose)
```

```
Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
               72
                                82
                                        85
                                               394
    Min. 1st Qu. Median
                           Mean 3rd Qu.
                                             Max.
                                      85
                              82
     40 72
                     80
                                             394
glucose_calc <- with(df, data.frame(male = "0",</pre>
                                  age = mean(age),
                                  education = "0",
                                  cigsPerDay = 0,
                                  prevalentHyp = "0",
                                  diabetes = "0",
                                  totChol = mean(totChol),
                                  sysBP = mean(sysBP),
                                  diaBP = mean(diaBP),
                                  BMI = mean(BMI),
                                  heartRate = mean(heartRate),
                                  glucose = c(72, 80, 85, 394),
                                  prevalentStroke = "0"))
```

```
glucose_calc$glucose <- predict(mylogit, newdata = glucose_calc, type = "response")
# glucose_calc$glucose.
# 0.094843 0.100852 0.110194 0.239738</pre>
```

Glucose	Probabilities	Odds Given Glucose
72	0.094843	1
80	0.100852	1.06336
85	0.110194	1.16186
Max 394	0.239738	2.52774

3. Conclusion

1. We find seven (7) of the 13 factors lead to cardiovascular disease. The odds related to each factor were calculated from the study.

No.	Factors	Approximate Odds
1	Prevalence Of Stroke In Family History	240%
2	Male Vs Female	150%
3	Prevalence Of Hypertension In Family History	130%
4	Age	$2,\!800\%$
5	Cigarettes Per Day	210%
6	Systolic Blood Pressure	780%
7	Glucose Levels	250%

- 2. The Wald Chi-Square Test can help determine if our proposed model is valuable and significant. The Wald test generates a P-value « 0.001. Therefore, we conclude the seven (7) parameters are significant and useful in describing cardiovascular disease.
- 3. A pack of cigarettes gave a person 45% increase of acquiring Cardiovascular disease, **using this data set.** This seems oddly low.

Cigs Per	Given	Odds Compared to Zero Cigarettes Per Day
Day	Age	Odds Compared to Zero Organettes Fer Day
0	0.07778	1
10	0.09414	1.21027
20	0.11351	1.45932
30	0.13627	1.7519
40	0.16275	2.09238

Notes

- For analysis help https://stats.idre.ucla.edu/r/dae/logit-regression/
- $\bullet \ \ For interpretation \ help \ https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/. \\$
- $\bullet \ https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faqhow-are-the-likelihood-ratio-wald-and-lagrange-multiplier-score-tests-different-andor-similar/ \\$

Wald test info

- $\bullet \ \, https://www.mbaskool.com/business-concepts/statistics/6916-wald-test.html$
- https://www.statology.org/wald-test-in-r/
- $\bullet \ \ https://handwiki.org/wiki/Wald_test$
- $\bullet \ \ https://questionerlab.com/what-is-the-use-of-wald-test-in-logistic-regression$
- https://bookdown.org/mike/data_analysis/wald-test.html
- $\bullet \ \ https://bookdown.org/mike/data_analysis/hypothesis-testing.html\#wald-test$