Lucrarea 3

.1 Calcul simbolic în Matlab

Toolbox-ul *Symbolic Math*, care utilizează nucleul Maple ca și motor de calcul algebric, permite calcule simbolice în MATLAB.

.1.1 Variabile simbolice

Declararea unei variabile simbolice se poate face utilizând comanda syms. Spre exemplu, syms x creează variabila simbolică x. Comanda clear all permite ștergerea tuturor variabilelor din MATLAB și Maple (comenzile clear sau clear x șterg variabilele din MATLAB nu și cele din Maple). Variabilele simbolice pot fi construite din variabile numerice existente cu ajutorul funcției sym, spre exemplu: z=10; a=sym(z).

.1.2 Operații asupra expresiilor simbolice

Diferențiere

Funcția diff poate fi utilizată pentru a diferenția expresii simbolice și pentru a aproxima derivata unei funcții numerice:

```
>> syms \ x; \ diff(x^3)

ans =

3*x^2

>> f = inline('x^3', 'x'); \ diff(f(x))
```

Sintaxa pentru calculul derivatei de ordinul doi este diff(f(x), 2), şi pentru calculul derivatei de ordin n este diff(f(x), n).

Funcția diff permite de asemenea calculul derivatelor parțiale pentru expresii cu mai multe variabile:

```
>> syms x y z;
```

LUCRAREA 3 .1

```
\begin{split} &>> diff(x^{\hat{}}2*y,y)\\ &ans = \\ &x^{\hat{}}2\\ &>> diff(diff(sin(x*y/z),x),y)\\ &ans = \\ &cos((x*y)/z)/z - (x*y*sin((x*y)/z))/z^{\hat{}}2 \end{split}
```

Dacă cel de al doilea argument este omis, MATLAB alege o variabilă simbolică implicită pentru expresie, care poate fi aflată utilizând funcția findsym:

```
>> syms \ x \ x1 \ x2
>> F = x * (x1 * x2 + x1 - 2)
>> findsym(F, 1)
ans =
```

Funcția dsolve permite rezolvarea ecuațiilor diferențiale utilizând solver-ul ODE simbolic. În cazul utilizării acestei funcții diferențierea se va reprezenta prin litera D. Spre exemplu, pentru rezolvarea ecuației xy'+1=y, se va utiliza sintaxa:

```
>> dsolve('x*Dy+1=y','x')

ans=

C2*x+1
```

Integrare

MATLAB permite calculul integralelor definite și nedefinite.

```
>> syms \ x; int(asin(x), 0, 1)

ans = pi/2 - 1

>> syms \ x; int(x^2, 'x')

ans = x^3/3
```

Limite

Funcția limit este utilizată pentru a calcula limitele diverselor expresii simbolice. Spre exemplu:

```
>> limit(sin(x), x, 0) % calculează limita expresiei sin(x), x \to 0 >> limit((sin(x+h)-sin(x))/h, h, 0)
```

Sume și produse

Funcțiile sum și prod permit calculul sumelor și produselor numerice finite. Funcția symsum permite realizarea de sume simbolice finite și infinite: >> syms k n; symsum(k,1,n) %calcul sumă $\sum_{k=1}^{n} k$

```
>> syms\ a\ k; symsum(a^k, 1, n) %calcul serie geometrică infinită
```

Substituire numerică și simbolică

O expresie simbolică poate fi modificată sau evaluată numeric utilizând funcția subs. Funcția are rolul de a înlocui toate aparițiile variabilei simbolice într-o expresie cu o altă expresie specificată. Dacă toate variabilele expresiei sunt înlocuite cu valori numerice rezultatul va fi numeric.

```
>> syms x s t
>> subs(sin(x), x, pi/3)
ans =
0.8660
>> subs(sin(x), x, sym(pi)/3)
ans =
3^{(1/2)/2}
double(ans)
ans =
0.8660
>> subs(2*t^2/2,t,sqrt(2*s))
ans =
2 * s
>> subs(sqrt(1-x^2), x, cos(x))
ans =
(1 - \cos(x)^2)^(1/2)
>> subs(sqrt(1-x^2), 1-x^2, cos(x))
ans =
cos(x)^{(1/2)}
```

Simplificări algebrice

Funcția expand extinde simbolic polinoamele și funcțiile elementare, în timp ce funcția factor funcționează invers. Funcția collect vede o expresie simbolică ca fiind un polinom în variabila sa simbolică (care poate fi specificată) și colectează toți termenii care au aceeași putere cu variabila.

```
>> syms \ a \ b \ x \ y \ z
>> expand((a+b)^5)
ans =
a^5 + 5 * a^4 * b + 10 * a^3 * b^2 + 10 * a^2 * b^3 + 5 * a * b^4 + b^5
>> factor(ans)
ans =
(a + b)^5
>> expand(exp(x+y))
ans =
exp(x) * exp(y)
>> expand(sin(x+y))
ans =
cos(x) * sin(y) + cos(y) * sin(x)
>> factor(x^3-1)
ans =
(x-1)*(x^2+x+1)
>> collect(x*(x*(x+3)+5)+1)
x^3 + 3 * x^2 + 5 * x + 1
>> horner(ans)
ans =
x*(x*(x+3)+5)+1
>> collect((x+y+z)*(x-y-z))
ans =
x^2 - (y+z)^2
>> collect((x+y+z)*(x-y-z),y)
-y^2 + (-2*z)*y + (x+z)*(x-z)
>> collect((x+y+z)*(x-y-z),z)
-z^2 + (-2*y)*z + (x+y)*(x-y)
>> diff(x^3 * exp(x))
3 * x^2 * exp(x) + x^3 * exp(x)
```

```
>> factor(ans)
ans =
exp(x) * x^2 * (x + 3)
Funcția simplify încearcă să reducă expresia simbolică la o formă simplă.
>> simplify(exp(5*log(x)+1))
ans =
x^5 * exp(1)
>> d = diff((x^2 + 1)/(x^2 - 1))
(2*x)/(x^2-1) - (2*x*(x^2+1))/(x^2-1)^2
>> simplify(d)
ans =
-(4*x)/(x^2-1)^2
Funcția simple, alternativă a funcției simplify calculează mai multe sim-
plificări și alege varianta mai compactă.
simplify(cos(x) + (-sin(x)^2)^(1/2))
simple(cos(x) + (-sin(x)^2)^{\hat{}}(1/2))
simplify((1/x^3 + 6/x^2 + 12/x + 8)^(1/3))
simple((1/x^3 + 6/x^2 + 12/x + 8)^(1/3))
```

Exercitii

- 1. Derivați următoarele funcții. Simplificați răspunsul dacă este posibil.
- (a) f(x) = arcsin(2x + 3)
- (b) $f(x) = arctan(x^2 + 1)$
- 2. Calculați următoarele integrale:
- (a) $\int x \sin(x^2) dx$
- (b) $\int x^2 \sqrt{x + 4} dx$ (c) $\int_{-\infty}^{\infty} e^{-x^2} dx$

Integrarea folosind descompunerea polinomială

Pentru integrarea numerică a unei funcții, intervalul de integrare poate fi descompus în intervale mai mici și se poate aproxima aria de sub curbă pe

Expresia unei curbe care trece prin trei puncte $(x_{j-1}, f_{j-1}), (x_j, f_j)$ și (x_{j+1}, f_{j+1}) poate fi scrisă sub forma patratic:

$$f_q(x) = f_0 + \Delta f_0 \frac{x - x_0}{h} + \Delta^2 f_0 \frac{(x - x_0)(x - x_1)}{2h^2}$$
 (.1)

Pentru a obține formula integralei pe intervalul $[x_0, x_2]$ este necesară integrarea funcției $f_q(x)$ de la $x = x_0$ la $x = x_2$.

Secvența de cod pentru a obține expresia integralei în MATLAB:

```
>> syms\ x\ f0\ f1\ f2\ h\ x0
>> q=f0+(f1-f0)/h*(x-x0)+(f2-2*f1+f0)/(2*h^2)*(x-x0)*(x-(x0+h));
>> iq=int(q,x0,x0+2*h);
>> simplify(iq)
ans=
1/3*h*(f0+4*f1+f2)
Descrierea secvenței de cod:
```

- linia 1: se declară variabilele x, f0, f1, f2, h și x0 ca fiind simbolice;
- linia 2: se definește funcția $q(f_q(x))$;
- linia 3: se integrează funcția q între x0 și x2 = x0 + 2 * h;
- linia 4: se simplifică rezultatul integrării.

Expresia rezultată este:

$$\int_{x=x_0}^{x=x_2} f_q(x)dx = \frac{h}{3}(f_0 + 4f_1 + f_2)$$
 (.2)

.1.4 Pendulul simplu

Figura .1 prezintă un pendul simplu (punctul de masă m) suspendat de un fir de lungime l, considerat inextensibil şi fără greutate.

Figure .1: Pendulul simplu

Derivarea ecuațiilor de mişcare presupunând că forța de frecare este o funcție liniară de viteza unghiulară ($T_f = B_m \omega$), B_m este coeficientul de frecare vâscoasă):

$$F_{rest} = -mg\sin\theta \tag{.3}$$

$$\sum M = T_{rest} + T_a - T_f = -mgl\sin(\theta) + T_a - B_m\omega$$
 (.4)

Ecuațiile diferențiale de ordinul doi pentru modelarea mișcării pendulului

$$J\alpha = J\frac{d^2\theta}{dt^2} = -mgl\sin\theta + T_a - B_m\omega$$
, sau
$$\frac{d^2\theta}{dt^2} = \frac{1}{J}(-mgl\sin\theta + T_a - B_m\omega)$$
 (.5)

Sistemul de două ecuații diferențiale:

$$\frac{d\omega}{dt} = \frac{1}{J}(-mgl\sin\theta + T_a - B_m\omega) ,$$

$$\frac{d\theta}{dt} = \omega$$
 (.6)

Momentul de inerție este $J=ml^2$, prin urmare ecuațiile pot fi scrise sub forma:

$$\frac{d\omega}{dt} = -\frac{B_m}{ml^2}\omega - \frac{g}{l}\sin\theta + \frac{1}{ml^2}T_a ,$$

$$\frac{d\theta}{dt} = \omega$$
 (.7)

Rezultatele simulării modelului pendulului pentru unghiuri mici (care permit aproximarea: $\sin\theta=\theta$) și parametrii $l=4,~B_m/J=0.05,~T_a=0$ sunt prezentate în Figura .2. Secvența de cod utilizată este

syms u w l g uw = dsolve('Du = w', 'Dw = -0.05 * w - g/l * u', 'u(0) = 4', 'w(0) = 0') theta = subs(uw.u, l, g, 4, 9.8); omega = subs(uw.w, l, g, 4, 9.8); hold on ezplot(theta, [0, 30]);ezplot(omega, [0, 30]);

Figure .2: Simulare pendul simplu pentru unghiuri mici

Figure .3:

.1.5 Dinamica unui circuit electric RL

Considerăm un model pentru un circuit electric care conține un rezistor, un inductor, o sursă de tensiune continuă și un întrerupător (Figura .3).

Dacă la momentul t=0 se închide întrerupătorul (anterior acestui moment curentul prin inductor este nul) avem ecuația:

$$L\frac{di}{dt} + Ri = V \tag{.8}$$

Pornind de la ecuația diferențială (.8), se deduce următoarea expresie pentru i:

$$i = \frac{V}{R} [1 - \exp\{-Rt/L\}]$$
 (.9)

Pentru verificarea acestei soluții folosind toolbox-ul simbolic al Matlab-ului, se poate utiliza următoarea secvență de cod:

% Script pentru a verifica că

$$\% i = (V/R) * (1 - \exp(-R*t/L))$$

```
% este soluția ecuției % \operatorname{di/dt} + (R/L) * i - V/L = 0 % % Pas 1: Se definesc variabilele simbolice % syms i V R L t % % Pas 2: Se construiește soluția pentru i % i = (V/R) * (1 - \exp(-R*t/L)); % Pas 3: Se calculează derivata lui i % didt = \operatorname{diff}(i,t); % % Pas 4: Însumarea termenilor în ODE % didt + (R/L) * i - V/L; % % Pas 5: Răspunsul este ZERO? % simple(ans) % % Pas 6: Care este valoarea lui i la momentul t = 0? % subs(i,t,0)
```