1

SEQUENCE LISTINGS

<110>	INJE UNIVERSITY	
<120>	CANCER CELL TARGETING GENE DELIVERY METHOD	
<130>	PCA31275/IJU	
<160>	11	
<170>	Kopatentin 1.71	
<210> <211> <212> <213>	1 36 DNA Artificial Sequence	
<220> <223>	Env F primer	
<400> cgcggato	1 scg aattocatac ctggtgttgc tgacta	36
<210>	2	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	597LN primer	
<400> agctggad	2 ect ggctgccacc acctccgcta ttttggtccc attttac	47
<210> <211> <212> <213>	3 49 DNA Artificial Sequence	

<400>

6

<220> <223> LC597 primer <400> 3 49 caaccccgcc gcaggtggag gaggcagtga atggactcaa aaatttcaa <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Spike R2 primer <400> 4 35 tgctctagaa ttcttaaagg ttaccttcgt tctct <210> 5 <211> 36 <212> DNA Artificial Sequence <213> <220> <223> LnkNScFv primer <400> 5 36 ggaggtggtg gcagccaggt ccagctagtg cagtct <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> ScFvLnkC primer

3

actgcctcct ccacctgcgg cggggttgaa gtccca												
<210> <211> <212> <213>	7 2058 DNA SEATO type of GaLV Env glycoprotein											
<220>												
<221> <222>	sig_peptide (1)(126)											
<220> <221> <222> <223>	misc_feature (127)(1467) surface subunit region											
<220> <221> <222> <223>	misc_feature (1468)(2025) transmembrain domain											
<400>	7 tgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag	60										
	ctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc	120										
gggacgag	gto tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg	180										
tcccaaa	ctg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg	240										
cccacac	tta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg	300										
ggaaccg	atg tetegteete taaaegagte agaeeteegg aeteagaeta taetgeeget	360										
tataago	aaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg	420										
gcaagct	cta cettetacgt atgteceegg gatggeegga ceettteaga agetagaagg	480										
tgcgggg	ggc tagaatccct atactgtaaa gaatgggatt gtgagaccac ggggaccggt	540										
tattggc	tat ctaaatcctc aaaagacctc ataactgtaa aatgggacca aaatagcgaa	600										

660 tggactcaaa aatttcaaca gtgtcaccag accggctggt gtaaccccct taaaatagat 720 ticacayaca aayyaaaali alccaayyac lyyalaacgg gaaaaacctg gggattaaga 780 ttctatgtgt ctggacatcc aggcgtacag ttcaccattc gcttaaaaat caccaacatg 840 ccagctgtgg cagtaggtcc tgacctcgtc cttgtggaac aaggacctcc tagaacgtcc ctcgctctcc cacctcctct tcccccaagg gaágcgccac cgccatctct ccccgactct 900 aactccacag ccctggcgac tagtgcacaa actcccacgg tgagaaaaac aattgttacc 960 ctaaacactc cgcctcccac cacaggcgac agactttttg atcttgtgca gggggccttc 1020 ctaaccttaa atgctaccaa cccaggggcc actgagtctt gctggctttg tttggccatg 1080 ggccccctt attatgaagc aatagcctca tcaggagagg tcgcctactc caccgacctt 1140 gaccggtgcc gctgggggac ccaaggaaag ctcaccctca ctgaggtctc aggacacggg 1200 ttgtgcatag gaaaggtgcc ctttacccat cagcatctct gcaatcagac cctatccatc 1260 aattcctccg gagaccatca gtatctgctc ccctccaacc atagctggtg ggcttgcagc 1320 actggcctca ccccttgcct ctccacctca gtttttaatc agactagaga tttctgtatc 1380 caggiccage igaticeteg catetattae tateetgaag aagtitigit acaggeetat 1440 1500 gacaattete accecaggae taaaagagag getgteteae ttaccetage tgttttactg gggttgggaa tcacggcggg aataggtact ggttcaactg ccttaattaa aggacctata 1560 gacctccagc aaggcctgac aagcctccag atcgccatag atgctgacct ccgggccctc 1620 caagactcag tcagcaagtt agaggactca ctgacttccc tgtccgaggt agtgctccaa 1680 aataggagag gccttgactt gctgtttcta aaagaaggtg gcctctgtgc ggccctaaag 1740 gaagagtgct gtttttacat agaccactca ggtgcagtac gggactccat gaaaaaactc 1800 aaagaaaaac tggataaaag acagttagag cgccagaaaa gccaaaactg gtatgaagga 1860 tggttcaata actccccttg gttcactacc ctgctatcaa ccatcgctgg gcccctatta 1920

PCT/KR2004/000545

5

ctcctccttc tgttgctcat cctcgggcca tgcatcatca ataagttagt tcaattcatc	1980
aatgatagga taagtgcagt taaaattotg gtoottagac aaaaatatca ggccctagag	2040
aacgaaggta acctttaa	2058
<210> 8 <211> 786 <212> DNA <213> Tag-72pS1	
<220> <221> misc_feature <222> (346)(390) <223> (Gly4Ser)3 linker	
<220> <221> misc_feature <222> (739)(777) <223> PreS1 Tag	
<400> 8 caggtccagc tagtgcagtc tggggctgaa gtgaagaagc ctggggcttc agtgaaggtg	60
tectgeaagg ettetggeta cacetteact gaccatgeaa tteactgggt gegeeaggee	120
cctggacaac gccttgagtg gatgggatat ttttctcctg gcaacgatga ttttaaatac	180
tcccagaagt tccagggacg cgtgacaatc actgcagaca aatccgcgag cacagcctac	240
atggagetga geageetgag atetgaggae aeggeggtet attactgtge aagategttg	300
aacatggcat actggggcca agggactctg gtcactgtct cttcaggtgg aggcggttca	360
ggcggaggtg gctctggcgg tggcggatcg gacattgtga tgacccagtc tccagactcc	420
ctggctgtgt ctctgggcga gagggccacc atcaactgca agtccagcca gagtgtttta	480
tacagcagca acaataagaa ctacttagct tggtaccagc agaaaccagg acagcctcct	540

PCT/KR2004/000545

6

WO 2005/047338

aagctgctca tttactgggc atctacccgg gaatccgggg tccctgaccg attcagtggc	600
agcgggtctg ggacagattt cactctcacc atcagcagcc tgcaggctga agatgtggca	660
gtttattact gtcagcaata ttattcctat ccgttgacgt tcggccaagg gaccaaggtg	720
gaaatcaaag cggccgcagg agccaacgca aacaatccag attgggactt caaccccgcc	780
gcatag	786
<pre><210> 9 <211> 13 <212> PRT <213> PreS1 epitope at C-terminal of Tag-72pS1 <400> 9 Gly Ala Asn Ala Asn Asn Pro Asp Trp Asp Phe Asn Pro</pre>	
<400> 10 atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag	60
atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc	120
gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg	180
tcccaaactg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg	240
cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg	300
ggaaccgatg tctcgtcctc taaacgagtc agacctccgg actcagacta tactgccgct	360
tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg	420

•	gcaagctcta	ccttctacgt	atgtccccgg	gatggccgga	ccctttcaga	agctagaagg	480
	t gcggggggc	tagaatccct	atactgtaaa	gaatgggatt	gigagaccac	ggggaccggt	540
	tattggctat	ctaaatcctc	aaaagacctc	ataactgtaa	aatgggacca	aaatagcgga	600
	ggtggtggca	gccaggtcca	gctagtgcag	tctggggctg	aagtgaagaa	gcctggggct	660
	tcagtgaagg	tgtcctgcaa	ggcttctggc	tacaccttca	ctgaccatgc	aattcactgg	720
	gtgcgccagg	cccctggaca	acgccttgag	tggatgggat	atttttctcc	tggcaacgat	780
	gattttaaat	actcccagaa	gttccaggga	cgcgtgacaa	tcactgcaga	caaatccgcg	840
	agcacagcct	acatggagct	gagcagcctg	agatctgagg	acacggcggt	ctattactgt	900
	gcaagatcgt	tgaacatggc	atactggggc	caagggactc	tggtcactgt	ctcttcaggt	960
	ggaggcggt t	caggcggagg	tggctctggc	ggtggcggat	cggacattgt	gatgacccag	. 1020
	tctccagact	ccctggctgt	gtctctgggc	gagagggcca	ccatcaactg	caagtccagc	1080
	cagagtgttt	tatacagcag	caacaataag	aactacttag	cttggtacca	gcagaaacca	1140
	ggacagcctc	ctaagctgct	catttactgg	gcatctaccc	gggaatccgg	ggtccctgac	1200
	cgattcagtg	gcagcgggtc	tgggacagat	ttcactctca	ccatcagcag	cctgcaggct	1260
	gaagatgtgg	cagtttatta	ctgtcagcaa	tattattcct	atccgttgac	gttcggccaa	1320
	gggaccaagg	tggaaatcaa	ageggeegea	ggagccaacg	caaacaatcc	agattgggac	1380
	ttcaaccccg	ccgcaggtgg	aggaggcagt	gaatggactc	aaaaatttca	acagtgtcac	1440
	cagaccggct	ggtgtaacco	ccttaaaata	gatttcacag	acaaaggaaa	attatccaag	1500
	gactggataa	cgggaaaaaa	ctggggatta	agattctatg	tgtctggaca	tccaggcgta	1560
	cagttcacca	ttcgcttaaa	aatcaccaac	atgccagctg	tggcagtagg	tcctgacctc	1620
	gtccttgtgg	aacaaggaco	: tcctagaacg	tocctogoto	tcccacctcc	tcttcccca	1680
	agggaagcgo	caccgccato	tctccccgac	totaactcca	cagccctggc	gactagtgca	1740

caaactccca	cggtgagaaa	aacaattgtt	accctaaaca	ctccgcctcc	caccacaggc	1800
gacagactit	tigatetigi	gcagggggcc	ttcctaacci	iaaaigciac	caacccaggg	1660
gccactgagt	cttgctggct	ttgtttggcc	atgggcccc	cttattatga	agcaatagcc	1920
tcatcaggag	aggtcgccta	ctccaccgac	cttgaccggt	gccgctgggg	gacccaagga	1980
aagctcaccc	tcactgaggt	ctcaggacac	gggttgtgca	taggaaaggt	gccctttacc	2040
catcagcato	tctgcaatca	gaccctatcc	atcaattcct	ccggagacca	tcagtatctg	2100
ctccctcca	accatagctg	gtgggcttgc	agcactggcc	tcaccccttg	cctctccacc	2160
tcagttttta	atcagactag	agatttctgt	atccaggtcc	agctgattcc	togcatotat	2220
tactatocto	aagaagtttt	gttacaggcc	tatgacaatt	ctcaccccag	gactaaaaga	2280
gaggetgtet	cacttaccct	agctgtttta	ctggggttgg	gaatcacggc	gggaataggt	2340
actggttcaa	ı ctgccttaat	taaaggacct	atagacctcc	agcaaggcct	gacaagcctc	2400
cagatcgcca	a tagatgotga	cctccgggcc	ctccaagact	cagtcagcaa	gttagaggac	2460
tcactgacti	ccctgtccga	ggtagtgctc	caaaatagga	gaggcct tga	cttgctgttt	2520
ctaaaagaaq	gtggcctctg	tgcggcccta	aaggaagagt	gctgtttta	catagaccac	2580
tcaggtgcag	g tacgggactc	catgaaaaaa	ctcaaagaaa	aactggataa	aagacagtta	2640
gagegeeaga	a aaagccaaaa	ctggtatgaa	ggatggttca	ataactcccc	ttggttcact	2700
accctgcta	t caaccatcgo	tgggccccta	ttactcctcc	ttctgttgct	catcctcggg	2760
ccatgcatca	a tcaataagtt	agttcaattc	atcaatgata	ggataagtgc	agttaaaatt	2820
ctggtcctta	a gacaaaaata	tcaggcccta	gagaacgaag	gtaaccttta	a	2871

<210> 11

<211> 956

<212> PRT

<213> Artificial Sequence

9 <220> ScFv-GaLV Env GP chimeric ligand (FvGEL199) <223> <400> 11 Met Val Leu Leu Pro Gly Ser Met Leu Leu Thr Ser Asn Leu His His 10 Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu Ile Ile Leu 25 20 Leu Ser Cys Val Phe Gly Gly Gly Gly Thr Ser Leu Gln Asn Lys Asn 40 Pro His Gln Pro Met Thr Leu Thr Trp Gln Val Leu Ser Gln Thr Gly 55 Asp Val Val Trp Asp Thr Lys Ala Val Gln Pro Pro Trp Thr Trp Trp 70

Pro Thr Leu Lys Pro Asp Val Cys Ala Leu Ala Ala Ser Leu Glu Ser 95 85

Trp Asp IIe Pro Gly Thr Asp Val Ser Ser Ser Lys Arg Val Arg Pro 100 105

Pro Asp Ser Asp Tyr Thr Ala Ala Tyr Lys Gln lle Thr Trp Gly Ala 120 115

lle Gly Cys Ser Tyr Pro Arg Ala Arg Thr Arg Met Ala Ser Ser Thr 135 140 130

Phe Tyr Val Cys Pro Arg Asp Gly Arg Thr Leu Ser Glu Ala Arg Arg 150 155 145

Cys Gly Gly Leu Glu Ser Leu Tyr Cys Lys Glu Trp Asp Cys Glu Thr 170 165

Thr Gly Thr Gly Tyr Trp Leu Ser Lys Ser Ser Lys Asp Leu Ile Thr 185

Val Lys Trp Asp Gin Asn Ser Gly Gly Gly Gly Ser Gin Val Gin Leu 205 200

Val Gin Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp His Ala IIe His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Met Gly Tyr Phe Ser Pro Gly Asn Asp Asp Phe Lys Tyr Ser Gln Lys Phe Gln Gly Arg Val Thr lie Thr Ala Asp Lys Ser Ala Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Leu Asp Met Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp lle Val Met Thr Gin Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu Arg Ala Thr lie Asn Cys Lys Ser Ser Gin Ser Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu lie Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gin Ala Giu Asp Val Ala Val Tyr Tyr Cys Gin Gin Tyr Tyr Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu lie Lys Ala

•		435	•				440					445			
Ala	Ala 450	Gly	Ala	Asn	Ala	Asn 455	Asn	Pro	Asp	Trp	Asp 460	Phe	Asn	Pro	Ala
Ala 465	Gly	Gly	Gly	Gly	Ser 470	Glu	Trp	Thr	Gln	Lys 475	Phe	Gln	Gin	Cys	His 480
Gln	Thr	Gly	Trp	Cys 485	Asn	Pro	Leu	Lys	11e 490	Asp	Phe	Thr	Asp	Lys 495	Gly
Lys	Leu	Ser	Lys 500	Asp	Trp	He	Thr	Gly 505	Lys	Thr	Trp	Gly	Leu 510	Arg	Phe
Tyr	Val	Ser 515	Gly	His	Pro	Gly	Val 520	Gln	Phe	Thr	iie	Arg 525	Leu	Lys	He
Thr	Asn 530	Met	Pro	Ala	Val	Ala 535	Val	Gļy	Pro	Asp	Leu 540	Val	Leu	Val	Glu
GIn 545	Gly	Pro	Pro	Arg	Thr 550	Ser	Leu	Ala	Leu	Pro 555	Pro	Pro	Leu	Pro	Pro 560
Arg	Glu	Ala	Pro	Pro 565	Pro	Ser	Leu	Pro	Asp 570	Ser	Asn	Ser	Thr	A1a 575	Leu
Ala	Thr	Ser	Ala 580	GIn	Thr	Pro	Thr	Va I 585	Arg	Lys	Thr	lle	Va I 590	Thr	Leu
Asn	Thr	Pro 595	Pro	Pro	Thr	Thr	Gly 600	Asp	Arg	Leu	Phe	Asp 605	Leu	Val	Gln
Gly	Ala 610	Phe	Leu	Thr	Leu	Asn 615	Ala	Thr	Asn	Pro	Gly 620	Ala	Thr	Glu	Ser
Cys 625	Trp	Leu	Cys	Leu	Ala 630	Met	Gly	Pro	Pro	Tyr 635	Tyr	Glu	Ala	He	Ala 640
Ser	Ser	Gly	Glu	Va I 645	Ala	Tyr	Ser	Thr	Asp 650	Leu	Asp	Arg	Cys	Arg 655	Trp
Gly	Thr	Gln	Gly 660	Lys	Leu	Thr	Leu	Thr 665	Glu	Val	Ser	Glý	His 670	Gly	Leu

- Cys lle Gly Lys Val Pro Phe Thr His Gln His Leu Cys Asn Gln Thr 675 680 685
- Leu Ser lie Asn Ser Ser Gly Asp His Gin Tyr Leu Leu Pro Ser Asn 690 695 700
- His Ser Trp Trp Ala Cys Ser Thr Gly Leu Thr Pro Cys Leu Ser Thr 705 710 715 720
- Ser Val Phe Asn Gln Thr Arg Asp Phe Cys lle Gln Val Gln Leu lle 725 730 735
- Pro Arg lle Tyr Tyr Pro Glu Glu Val Leu Leu Gin Ala Tyr Asp 740 745 750
- Asn Ser His Pro Arg Thr Lys Arg Glu Ala Val Ser Leu Thr Leu Ala 755 760 765
- Val Leu Leu Gly Leu Gly Ile Thr Ala Gly Ile Gly Thr Gly Ser Thr 770 775 780
- Ala Leu IIe Lys Gly Pro IIe Asp Leu Gln Gln Gly Leu Thr Ser Leu 785 790 795 800
- Gln lle Ala lle Asp Ala Asp Leu Arg Ala Leu Gln Asp Ser Val Ser 805 810 815
- Lys Leu Glu Asp Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln Asn 820 825 830
- Arg Arg Gly Leu Asp Leu Leu Phe Leu Lys Glu Gly Gly Leu Cys Ala 835 840 845
- Ala Leu Lys Glu Glu Cys Cys Phe Tyr lle Asp His Ser Gly Ala Val 850 855 860
- Arg Asp Ser Met Lys Lys Leu Lys Glu Lys Leu Asp Lys Arg Gln Leu 865 870 875 880
- Glu Arg Gln Lys Ser Gln Asn Trp Tyr Glu Gly Trp Phe Asn Asn Ser 885 890 895
- Pro Trp Phe Thr Thr Leu Leu Ser Thr Ile Ala Gly Pro Leu Leu Leu 900 905 910

WO 2005/047338 PCT/KR2004/000545

13

Leu Leu Leu Leu lle Leu Gly Pro Cys IIe IIe Asn Lys Leu Val 915 920 925

Gin Phe ile Asn Asp Arg ile Ser Ala Vai Lys ile Leu Vai Leu Arg 930 935 940

Gin Lys Tyr Gin Ala Leu Giu Asn Giu Gly Asn Leul 945 950 955