Name	

TOPOLOGY QUALIFYING EXAM

Spring 2000

(Lee and Strecker)

Choose and work any 6 of the following problems. Start each problem on a new sheet of paper. Do not turn in more than six problems. In the problems below, a "space" always means a "topological space".

- **1.** Prove or disprove each of the following:
 - a) If A is a connected subset of space X and $Q \subseteq X$ such that $A \subseteq Q \subseteq \overline{A}$, then Q must be connected.
 - b) Each component of a space must be closed.
 - c) Each component of a space must be open.
- **2.** Prove or disprove each of the following:
 - a) Every subspace of a compact Hausdorff space is locally compact.
 - b) Every subspace of a connected Hausdorff space is locally connected.
- **3.** Prove that each compact subset of a Hausdorff space must be closed but a compact subset of a T_1 -space need not be closed.
- **4.** a) Complete the following sentence so that it is a true statement:

Given a set X, a family \mathcal{B} of subsets of X is a base for a topology on X if, and only if ______.

- b) Construct another true sentence that describes a subbase for a topology on X.
- 5. Let (X_1, τ_1) and (X_2, τ_2) be topological spaces and let τ be the product topology on $X_1 \times X_2$. Let $Y_1 \subseteq X_1$ and $Y_2 \subseteq X_2$. There is a "natural" subspace topology σ on $Y_1 \times Y_2$ that is induced from τ and the fact that $Y_1 \times Y_2$ is a subset of $X_1 \times X_2$. There is also a "natural" product topology ρ on $Y_1 \times Y_2$ that comes from the subspace topologies (Y_1, ρ_1) and (Y_2, ρ_2) induced by τ_1 and τ_2 respectively. Prove or disprove that $\sigma = \rho$.

- **6.** Let $A = \{x | x \text{ is an ordinal number that is less than or equal to <math>\omega_1\}$, where ω_1 is the first uncountable ordinal number and let τ be the order-topology on A induced by the usual order. Prove one of the following:
 - a) The space (A, τ) is a compact Hausdorff space.
 - b) If $f:(A,\tau)\to\mathbb{R}$ is a real-valued continuous function (where \mathbb{R} is assumed to have its usual topology) then there exists some $x_0<\omega_1$ such that $f(x)=f(x_0)$ for all $x\geq x_0$ in A.
 - c) The Stone-Čech compactification of $A \setminus \{\omega_1\}$ (with its usual subspace topology) is equivalent to (A, τ) .
- 7. Prove that for any set X the cardinality of X is strictly smaller than the cardinality of $\mathcal{P}(X)$, the set of all subsets of X.
- **8.** A continuous map $f:(X,\tau)\to (Y,\sigma)$ is said to be **final** provided that for each topological space (Z,μ) each set-function $g:Y\to Z$ is continuous whenever $g\circ f:(X,\tau)\to (Z,\mu)$ is continuous. Prove any two of the following statements:
 - a) The composition of final (continuous) maps is final.
 - b) The "second factor" of a final map is final: i.e., if

$$(X,\tau) \xrightarrow{f} (Y,\sigma) \xrightarrow{h} (W,s)$$

are continuous maps and $h \circ f$ is final, then h is final.

- c) Each quotient map is final.
- **9.** Work one of the following:
 - a) Give an example of two topologies σ and τ on the set of integers \mathbb{Z} for which $\sigma \subseteq \tau$ and (\mathbb{Z}, σ) is homeomorphic to (\mathbb{Z}, τ) .
 - b) Give an example of a point-finite open covering of the real line with the usual topology that is not locally finite.
- **10.** Prove one of the following statements:
 - a) Each compact Hausdorff space is a Baire space.
 - b) The set of rational numbers is not a G_{δ} -set in \mathbb{R} (where \mathbb{R} has its usual topology).

- 11. Prove or disprove one of the following:
 - a) For each open covering $\{U_{\alpha} | \alpha \in A\}$ of a paracompact space X, there is a partition of unity subordinated to $\{U_{\alpha}\}_{{\alpha}\in A}$.
 - b) Each locally compact Hausdorff space is paracompact.
- 12. Prove one of the following theorems:
 - a) Urysohn Lemma.
 - b) Tychonoff Theorem on Product of Compact Spaces.
 - c) Urysohn Metrization Theorem.
- 13. Let X, Y and Z be topological spaces and X be locally compact Hausdorff. Let C(X,Y) be the space of continuous functions from X into Y with compact-open topology. For a function

$$F: X \times Z \to Y$$

let \hat{F} be the function from Z into the set of all functions from X to Y defined by

$$\hat{F}(z)(x) = F(x, z).$$

Prove one of the following:

- a) If F is continuous, then \hat{F} is continuous from Z into C(X,Y).
- b) If \hat{F} is continuous from Z into C(X,Y) then F is continuous.
- **14.** For any $\varepsilon > 0$ and any $(a,b) \in \mathbb{R}^2$ let an $\underline{\varepsilon}$ -plus centered at (a,b) be the set $+_{\varepsilon}(a,b) = \{(x,b) \in \mathbb{R}^2 \middle| |x-a| < \varepsilon\} \cup \{(a,y) \in \mathbb{R}^2 \middle| |y-b| < \varepsilon\}$. Then call a set $U \subseteq \mathbb{R}^2$ plus-open if for each $(a,b) \in U$ there is some $\varepsilon > 0$ such that $+_{\varepsilon}(a,b) \subseteq U$.
 - a) Prove that the plus-open subsets of \mathbb{R}^2 form a topology for \mathbb{R}^2 , (called the plus-topology for \mathbb{R}^2).
 - b) Prove that the plus-topology for \mathbb{R}^2 is <u>strictly</u> finer than the usual topology for \mathbb{R}^2 .

3