Computational Fluid Dynamics

Part 1: from high-school maths to CFD

Mashy Green - Doom-conf - 14 May 2022

Who am I?

Imperial College London

Layout

- Basics of differential equation
- Numerical differential equations
- Computational fluid dynamics

C	ly
C	$\mathbf{l}x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

$$'='$$
?

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a$$

$$y = \int a \, dx = ax + c$$

$$v(0) = c$$
 Initial value

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ax + b$$

$$y = \int (ax + b) dx = \frac{1}{2}ax^2 + bx + c$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos(x)$$

$$y = \int \cos(x) \ dx = \sin(x) + c$$

$$\frac{dy}{dx} = -ay$$

$$y = \int -ay \ dx = e^{-ay} + c$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{CHANGE}$$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u \text{ Velocity}$$

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = u$$
 Velocity

$$\frac{du}{dt} = \frac{d^2x}{dt} = \frac{d^2x}{dt^2} = a \text{ Acceleration}$$

F=ma

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

$$y = ?$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

Euler Method

$$y^{n+1} = y^n + \Delta t f(t^n, y^n)$$
$$y(t^0) = c$$

To org-mode for some examples

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

Backwards Euler Method

$$y^{n+1} = y^n + \Delta t f(t^{n+1}, y^{n+1})$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

To org-mode for some examples

F=ma

$$F = ma$$

$$\rho = \frac{m}{V} \qquad \frac{Du}{Dt} = a$$

$$\rho \frac{Du}{Dt} = F$$

$$\rho \frac{Du}{Dt} = F$$

Pressure gradient

Dissipative force due to *viscosity*

External **forces**: *Gravity*;
Surface tension;
Magnetic;
etc.

$$\nabla P = \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z}\right)$$

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u$$

$$\frac{\partial u}{\partial t} = -\left((u \cdot \nabla) u + \frac{1}{\rho} \nabla P \right) + \frac{\mu}{\rho} \nabla^2 u + f$$

Advection term

Pressure term

Dissipative term

External forces

$$\frac{\partial u}{\partial t} = -\left((u \cdot \nabla) u + \frac{1}{\rho} \nabla P \right) + \frac{\mu}{\rho} \nabla^2 u + f$$

$$\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \boldsymbol{u}$$
Velocity divergence

Basics of 'computational' fluid dynamics

$$P_{\rm in} > P_{out}$$

Computational Fluid Dynamics: part2

- Eulerean and Lagrangin forms
- Basic spatial discretisation methods
- Viscosity
- Pipe-flow (Poiseuille flow)
- Advance spatial discretisation: mesh generation and particle methods

