时间
 2019.1.13
 任课教师_梅加强等_考试成绩

 题号
 二
 三
 四
 五
 总分

 得分
 二
 三
 四
 五
 总分

3) 来积分 $\int_{0}^{\pi/2} \frac{dx}{2 + \cos x}$; (4) (5) 利用高阶导数的 Leibnin

- 一. 简答题. (每题 15 分, 共 30 分)
- (1) 请完整地叙述 Newton-Leibniz 公式,并谈谈你对它的认识和体会.

(2) 请完整地叙述 Lagrange 中值定理,并举一例以展现其应用.

二. 计算题. (每题 8 分, 共 40 分)

- (1) 求函数 $f(x) = x^{2018}e^{-x}$ 在限中的极值; (2) 求积分 $\int_a^b (x-a) \left[x-\frac{a+b}{2}\right]^2 (b-x) dx$;
- (3) 求积分 $\int_0^{\pi/2} \frac{dx}{2 + \cos x}$; (4) 求极限 $\lim_{x\to 0} \frac{x^2 \ln^2(1+x)}{x \sin^2 x}$; (5) 利用高阶导数的 Leibniz 公式求 $g(x) = \ln^2(1+x)$ 的 Maclaurin 展开式.

三. 综合题. (每题 10 分, 共 20 分)

(1) 证明: 当 $x \ge 0$ 时, $\sin^2 x - x^2 + \frac{1}{3}x^4 \ge 0$.

(2) 记 $f(x) = \int_0^x \ln(t + \sqrt{1 + t^2}) dt$, 求 f 的显式表达式, 并证明它是凸函数.

四. 证明题. (每题 5 分, 共 10 分)
(1) 设 f 在 $[0,\infty)$ 中二阶可导, $\Pi |f''| \le |f|$. 如果 f(0) = f'(0) = 0, 证明 $f \equiv 0$.
(2) 设 $\alpha \ge 1$. 证明 $\frac{1}{\alpha + 1/2} < \int_0^1 e^t (1-t)^\alpha dt < \frac{1}{\alpha}$.

五. 附加懋 (10 分): 设 f 在 (0, ∞) 中二給司等. 如果 $\lim_{x\to\infty} \frac{f(x)}{x} = \beta \in \mathbb{R}$, Π f''(x) = O(1/x) $(x\to\infty)$, 则 $\lim_{x\to\infty} f'(x) = \beta$.