Santa Clara University

Department of Electrical and Computer Engineering

No.	DAREN LIV	Submitted on:	
	Name (please print)		
Include this pag	e with Homework	Write Name and Page Number on each page	
ELEN 153 Fall 2020	Problem Set #5	Due: 11-05-2020, Thursday, 12:00 pm	
Figure. The are in µm. I line sheet return the resistan	the interconnect pattern shown in a lengths indicated in the Figure The line width is 1 μ m and the esistance is 43.27 Ω / \square . Find the ce from A to B if each corner wibutes a factor of 0.672 of a such 'square.	Not to scale 6 10 Top VIEW 7 1 Jum 1 Jum	
thick with a Calc	nnect line is made from a material that has width of 0.65 μ m. ulate the sheet resistance of the line. the line resistance for a 134 μ m long L	as a resistivity of 7.25 $\mu\Omega$ -cm. The interconnect is 1580 time.	
film is sele If a metal l requires a d determine	cted, the sheet resistance of line is 35 \(\Omega\) ayer is selected instead, the sheet resistation of 36.8 \(\Omega\) m. Cal	lysilicon thin film or a metal layer. If polysilicon thin $2/\Box$ with a width of 0.4 μ m and a length of 26.74 μ m ance is 0.095 Ω/\Box with a width of 0.5 μ m but culate the line resistance R_{line} for each case and the percentage increase in resistance if the larger	

4. An interconnect line runs over an insulating oxide layer that is 12,724 Å thick. The line has a width of 0.286 μm and is 62 μm long. The sheet resistance of the line is known to be 28 Ω / \Box .

a) Find the line resistance Rline.

b) Find the line capacitance C_{line} . Use oxide relative dielectric constant or permittivity to be 3.9. Express your answer in femtofarads (fF).

c) Find the time constant τ for the line in units of picosecond (ps).

3)
$$R_{line, P} = (35)(\frac{26.74}{0.4}) = 2339.75$$

 $R_{line, M} = (0.095)(\frac{36.8}{0.5}) = 6.992$

$$\frac{0}{6}$$
 inc = $\left(\frac{2339.75 - 6.992}{6.992}\right) \cdot 100 = 33363 %$

$$= \frac{3.9.8.864.10^{-14}}{12724.10^{-10}(10000 \text{ mm})^2}$$