Lines in \mathbb{R}^2

Point-parallel form Two-point form Standard form Parametric form Point-normal form

In \mathbb{R}^2 , y - a = k(x - b) is the *slope-point* form of a line with slope of k and through the point (a, b);

In \mathbb{R}^2 , y - a = k(x - b) is the *slope-point* form of a line with slope of k and through the point (a, b);

y = kx + b is the *slope-intercept* form of a line with slope of k and y-intercept b;

In \mathbb{R}^2 , y - a = k(x - b) is the *slope-point* form of a line with slope of k and through the point (a, b);

y = kx + b is the *slope-intercept* form of a line with slope of k and y-intercept b;

ax + by = c is the *standard form* of a line equation.

In \mathbb{R}^2 , y - a = k(x - b) is the *slope-point* form of a line with slope of k and through the point (a, b);

y = kx + b is the *slope-intercept* form of a line with slope of k and y-intercept b;

ax + by = c is the *standard form* of a line equation.

Goal: use vector equations to describe lines in \mathbb{R}^2 .

Recall a vector in \mathbb{R}^2 is a directed line segment from the origin (0,0) to a point. So there is a line determined by a vector.

Recall a vector in \mathbb{R}^2 is a directed line segment from the origin (0,0) to a point. So there is a line determined by a vector.

Do you still remember the translating a vector to a point?

Recap: translation

Theorem Let \overrightarrow{PQ} be a directed line segment from P to Q, where P and Q are two distinct points in \mathbb{R}^2 or \mathbb{R}^3 . Then \overrightarrow{PQ} is equivalent to the vector $\overrightarrow{q} - \overrightarrow{p}$, where $\overrightarrow{q} = \overrightarrow{OQ}$ and $\overrightarrow{p} = \overrightarrow{OP}$ and O denotes the origin.

Recap: translation

Theorem Let \overrightarrow{PQ} be a directed line segment from P to Q, where P and Q are two distinct points in \mathbb{R}^2 or \mathbb{R}^3 . Then \overrightarrow{PQ} is equivalent to the vector $\overrightarrow{q} - \overrightarrow{p}$, where $\overrightarrow{q} = \overrightarrow{OQ}$ and $\overrightarrow{p} = \overrightarrow{OP}$ and O denotes the origin.

- ullet The process of replacing \overrightarrow{PQ} by the vector $\overrightarrow{q}-\overrightarrow{p}$ is called *translating P* to the origin.
- The process of replacing the vector \vec{v} with an equivalent directed line segment which starts at some point P is called translating \vec{v} to P.

Definition Any non-zero line vector parallel to a line L is called a *direction* vector of the line.

Definition Any non-zero line vector parallel to a line *L* is called a *direction* vector of the line.

Given a line in \mathbb{R}^2 , how to find its direction vector?

Definition Any non-zero line vector parallel to a line *L* is called a *direction* vector of the line.

Given a line in \mathbb{R}^2 , how to find its direction vector?

For example, 2x+y=1 is a line in \mathbb{R}^2 . Points P(0,1) and $Q(\frac{1}{2},0)$ are on the line. Let $\vec{p}=(0,1)$ and $\vec{q}=(\frac{1}{2},0)$ be the two vectors ending at P and Q, respectively. Then the vector $\vec{q}-\vec{p}=(\frac{1}{2},-1)$ is *equivalent* to the directed line segment \overrightarrow{PQ} . Hence, the vector $(\frac{1}{2},-1)$ is a direction vector of the line 2x+y=1.

Definition Any non-zero line vector parallel to a line *L* is called a *direction* vector of the line.

Given a line in \mathbb{R}^2 , how to find its direction vector?

For example, 2x+y=1 is a line in \mathbb{R}^2 . Points P(0,1) and $Q(\frac{1}{2},0)$ are on the line. Let $\vec{p}=(0,1)$ and $\vec{q}=(\frac{1}{2},0)$ be the two vectors ending at P and Q, respectively. Then the vector $\vec{q}-\vec{p}=(\frac{1}{2},-1)$ is *equivalent* to the directed line segment \overrightarrow{PQ} . Hence, the vector $(\frac{1}{2},-1)$ is a direction vector of the line 2x+y=1.

A property: if \vec{v} is the direction vector of a line L, so is $-\vec{v}$. Indeed, any scalar multiple $c\vec{v}$ for which $c \neq 0$ is also a direction vector of L.

Point-parallel form

Let $\vec{v}=(v_1,v_2)$ be a vector in \mathbb{R}^2 . Then the line L determined by \vec{v} is given by $t\vec{v}$ and t is a parameter. Since $t\vec{v}=(tv_1,tv_2)$ is a vector with parameter t, we denote by $\vec{x}(t)=t\vec{v}$.

Point-parallel form

Let $\vec{v}=(v_1,v_2)$ be a vector in \mathbb{R}^2 . Then the line L determined by \vec{v} is given by $t\vec{v}$ and t is a parameter. Since $t\vec{v}=(tv_1,tv_2)$ is a vector with parameter t, we denote by $\vec{x}(t)=t\vec{v}$.

Definition The *point-parallel form* equation of the line L which passes through point $P(p_1, p_2)$ and has direction vector \vec{v} is given by

$$\vec{x}(t) = \vec{p} + t\vec{v}$$

i.e.,

$$\vec{x}(t) = (p_1, p_2) + (tv_1, tv_2).$$

Point-parallel form

Let $\vec{v} = (v_1, v_2)$ be a vector in \mathbb{R}^2 . Then the line L determined by \vec{v} is given by $t\vec{v}$ and t is a parameter. Since $t\vec{v} = (tv_1, tv_2)$ is a vector with parameter t, we denote by $\vec{x}(t) = t\vec{v}$.

Definition The *point-parallel form* equation of the line L which passes through point $P(p_1, p_2)$ and has direction vector \vec{v} is given by

$$\vec{x}(t) = \vec{p} + t\vec{v}$$

i.e.,

$$\vec{x}(t) = (p_1, p_2) + (tv_1, tv_2).$$

Example Write a point-parallel form of each of the following line.

- 1. The line through P(2,3) and Q(-1,4);
- 2. The line through the origin with a direction vector $\vec{v} = (-2, 1)$.
- 3. The line through P(2,3) with the direction vector $\vec{v} = (2,-4)$.

Parametric form

Definition The line L with point-parallel form equation $\vec{x}(t) = (p_1, p_2) + t(v_1, v_2)$ has parametric equations

$$x = p_1 + tv_1$$
$$y = p_2 + tv_2.$$

Parametric form

Definition The line L with point-parallel form equation $\vec{x}(t) = (p_1, p_2) + t(v_1, v_2)$ has parametric equations

$$x = p_1 + tv_1$$
$$y = p_2 + tv_2.$$

Example Write a point-parallel form of each of the following line.

- 1. The line through P(2,3) and Q(-1,4);
- 2. The line through the origin with a direction vector $\vec{v} = (-2, 1)$.
- 3. The line through P(2,3) with the direction vector $\vec{v} = (2,-4)$.

Two-point form

Definition The *two-point form* of equation for the line through points P and Q is

$$\vec{x}(t) = (1-t)\vec{p} + t\vec{q}.$$

Example Write the two-point form of equation for the lines in the previous example.

Point-normal form

Definition A vector which is perpendicular to a particular line in \mathbb{R}^2 is said to be *normal* to the line or a *normal vector* for the line.

Point-normal form

Definition A vector which is perpendicular to a particular line in \mathbb{R}^2 is said to be *normal* to the line or a *normal vector* for the line.

perpendicular \longleftrightarrow two lines orthogonal \longleftrightarrow two vectors normal \longleftrightarrow a vector and a line

Point-normal form

Definition A vector which is perpendicular to a particular line in \mathbb{R}^2 is said to be *normal* to the line or a *normal vector* for the line.

perpendicular \longleftrightarrow two lines orthogonal \longleftrightarrow two vectors normal \longleftrightarrow a vector and a line

Definition Let L be any line in \mathbb{R}^2 . If $\vec{n}=(n_1,n_2)$ is a normal for line L, and $P(p_1,p_2)$ is a point on line L, then an equation for line L in *point-normal form* is

$$(n_1, n_2) \cdot (\vec{x} - (p_1, p_2)) = 0.$$

Standard form

Definition The equation ax + by = c is called the *standard form* equation of a line.

Standard form

Definition The equation ax + by = c is called the *standard form* equation of a line.

Example 1. Find an equation in point-normal form for the line

$$\vec{x}(t) = (0,1) + t(2,-1).$$

2. Find an equation in point-normal form for the line with parametric form

$$x = 3 + t$$
 and $y = 2t - 4$.

- 3. Find a point-normal form for the line contains the point P(1,2) with normal vector $\vec{n} = (-4,3)$.
- 4. Find parametric equations for the line through the point (2,2) and parallel to the vector (-3,-1).
- 5. Give a point-parallel form for the line given by y = 3x + 1.
- 6. What is the standard form for each line above?

Lines and planes in $\ensuremath{\mathbb{R}}^3$