

## **TAREFA DA SEMANA 13**

**01. (10 pontos, sendo 1,25 por item**) Calcule as seguintes integrais indefinidas usando o método da Integração por Partes.

- a)  $\int xe^x dx$
- **b)**  $\int \ln x \, dx$
- c)  $\int x^3 \ln x \, dx$
- d)  $\int 2x \cos 3x \, dx$
- **e)**  $\int \ln(1 + x^2) dx$
- f)  $\int x \arctan x \, dx$
- g)  $\int x^2 e^x dx$
- h)  $\int e^x \cos x \, dx$

## **DESAFIO** (opcional)

**02.** Calcule as seguintes integrais indefinidas:

- a)  $\int \cos(\ln x) dx$
- **b)**  $\int x^4 (\ln x)^2 dx$

26 DERIVADAS



## **GABARITO DA TAREFA DA SEMANA 13**

**01.** a) 
$$\int xe^x dx = xe^x - e^x + C$$

$$\mathbf{b)} \quad \int \ln x \ dx = x \ln x - x + C$$

c) 
$$\int x^3 \ln x \, dx = \frac{x^4 \ln x}{4} - \frac{x^4}{16} + C$$

**d)** 
$$\int 2x \cos 3x \, dx = \frac{2x \sin 3x}{3} + \frac{2\cos 3x}{9} + C$$

e) 
$$\int \ln(1 + x^2) dx = x \ln(1 + x^2) - 2x + 2 \arctan x + C$$

f) 
$$\int x \arctan x \, dx = \frac{x^2 \arctan x}{2} - \frac{x}{2} + \frac{\arctan x}{2} + C$$

g) 
$$\int x^2 e^x dx = x^2 e^x - 2x e^x + 2e^x + C$$

$$\mathbf{h)} \quad \int e^x \cos x \ dx \ = \ \frac{e^x \cos x \ + \ e^x \sin x}{2} \ + \ C$$

**02.** a) 
$$\int \cos(\ln x) dx = \frac{x\cos(\ln x) + x\sin(\ln x)}{2} + C$$

**b)** 
$$\int x^4 (\ln x)^2 dx = \frac{x^5 (\ln x)^2}{5} - \frac{2x^5 \ln x}{25} + \frac{2x^5}{125} + C$$

DERIVADAS 27