18/19 浙江工业大学高等数学IIA 考试试卷

学院:		_ 班级	班级:		姓名:		学号:		
任课者	老师:_								
	题 号			=	四	五.	六	总 分	
	得 分								
									•
	空选择题								
1. 微分方程 $y'' + 4y = 0$ 的通解是。 $y = c_1 \sin 2x + c_2 \cos 2x$									
2. 动	点 $M(x, $	y,z) 到 z	轴的距	离与到点	₹ (1,−1,0)) 的距离	将相等,	则动点 $M(x)$, y, z) 的
轨	迹方程是	<u> </u>	o z ²	-2x+2	2y+2=	0			
3. 设 $z = f(xy, \frac{y}{x})$, 其中 $f(x, y)$ 偏导数连续,则 $\frac{\partial z}{\partial x} = \underline{\qquad}$ $yf_1' - \frac{y}{x^2} f_2'$									
4. 函数 $f(x,y) = x^2 - xy + y^2$ 在点 $(0,0)$ 沿方向 $\overline{l} = (1,1)$ 的方向导数是。0									
5. 设	Ω 是曲面	$\vec{j} z = \frac{1}{2} (.$	$x^2 + y^2 -$	$+z^{2}$), z	$=x^2+y$	v ² 所围空	区间体大	的那部分,贝	川三重积
分 $\iint_{\Omega} f$	f(x, y, z)a	kv 在柱面	[坐标系	下的三次	水积分是				∘
22				$\int_{0}^{2\pi} d\theta$	$\int_{0}^{1} \rho d\rho$	$\int_{-2}^{1+\sqrt{1-\rho^2}}$	$f(\rho \cos \theta)$	$\theta, \rho \sin \theta, z$)dz

6. 设 L 是曲线
$$y = x^2$$
 上从点 $(0,0)$ 到点 $(1,1)$ 的一段弧,则 $\int_L (x^2 - y^2) dx = ___$ 。 $\frac{2}{15}$

7. 幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 的收敛域为 (-2, 2),则级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛域是 ($-\sqrt{2}, \sqrt{2}$)

8. 设
$$f(x) = \begin{cases} x^2 & -\pi \le x < 0 \\ 4 - x^2 & 0 \le x \le \pi \end{cases}$$
, $S(x) \neq f(x) \cup 2\pi$ 为周期的傅里叶级数的和函

9. 设
$$z = z(x, y)$$
 可微,且满足 $z(x, y)|_{y=x^2} = 1$, $\frac{\partial z}{\partial x}|_{y=x^2} = x$,则有(D)

A,
$$\frac{\partial z}{\partial y}\Big|_{y=x^2} = 0$$
; B, $\frac{\partial z}{\partial y}\Big|_{y=x^2} = 1$; C, $\frac{\partial z}{\partial y}\Big|_{y=x^2} = x$; D, $\frac{\partial z}{\partial y}\Big|_{y=x^2} = -\frac{1}{2}$.

10. 下列级数中条件收敛的是(B

A.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{2n^3 + 1}}$$

A,
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{2n^3+1}}$$
; B, $\sum_{n=1}^{\infty} (-1)^{n-1} (\sqrt{n+1} - \sqrt{n})$;

$$C, \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi}{n+1};$$

$$D_{n} \sum_{n=1}^{\infty} \ln(1+\frac{1}{n}) .$$

11. 设 Ω : $x^2 + y^2 + z^2 \le R^2$; Σ : $x^2 + y^2 + z^2 = R^2$ 的外侧,则下列等式正确的是(C)。

A.
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dv = \iiint_{\Omega} R^2 dv = \frac{4\pi}{3} R^5$$
;

B.
$$\iint_{\Sigma} (x^2 + y^2 + z^2) dx dy = \iint_{\Sigma} R^2 dx dy = \pi R^4$$
;

C.
$$\iint_{\Sigma} (x^2 + y^2 + z^2) dS = \iint_{\Sigma} R^2 dS = 4\pi R^4$$
; D. $\iint_{\Omega} (x^2 + y^2 + z^2) dv = 0$.

二、判断下列各命题(结论)是否正确(在括弧内填入√或×)(每小题2分):

1. 若函数
$$f(x,y)$$
 在点 (x_0,y_0) 处偏导数存在,则函数在该点连续。(\times)

2. 函数
$$f(x, y) = \sqrt{x^2 + y^2}$$
 在点(0,0) 处可微。(×)

3. 级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛的充分必要条件是数列 $S_n = \sum_{i=1}^n u_i$ 的极限存在。 (\checkmark)

4. 若
$$\lim_{n\to\infty} n^2 u_n = 0$$
,则正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛。 (\checkmark)

5. 若
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
 收敛,则 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都收敛。 (×)

三、试解下列各题(每小题6分):

解:

平面的法向量
$$\vec{n} = (1,2,1) \times (0,1,1) = (1,-1,1)$$
 3 分
平面方程 $x-y+z=0$ 6 分

2. 曲线 $2x = y^2$, $z = x^2$ 在某一点处的切线与向量 $\vec{a} = (1,1,1)$ 平行,求该点的坐标。解:

曲线的切向量
$$\vec{T} = (y, 1, y^3)$$
 3分

与
$$\vec{a} = (1,1,1)$$
 平行可得 $y = 1$,从而有该点坐标 $(\frac{1}{2},1,\frac{1}{4})$ 6分

3. 证明球面上任意一点的法线都过球心。

解.

设球面方程为 $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$, $M(x_1,y_1,z_1)$ 是球面上点,

则球面在
$$M$$
 点的法线方程是 $\frac{x-x_1}{x_1-x_0} = \frac{y-y_1}{y_1-y_0} = \frac{z-z_1}{z_1-z_0}$ 4分

把球心坐标 (x_0, y_0, z_0) 代入法线方程知满足,即法线过球心 6分

注: 若对 $x^2 + y^2 + z^2 = R^2$ 证明扣 2 分。

4. 求 $\iint_{D} (x^2 + y^2) dx dy$, 其中区域 D 由曲线 $x^2 - 2x + y^2 = 0$ 所围成。

解:
$$\iint_{D} (x^2 + y^2) dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} \rho^3 d\rho$$
 4 分
$$= \frac{3}{2}\pi$$
 6 分

5. 求 $\iint_{\Sigma} (z^2 + x) dy dz - 2y^2 dx dy$,其中 Σ 是曲面 $z = x^2 + y^2$ 在 $0 \le z \le 1$ 之间部分

的下侧。

解 1:
$$\iint_{\Sigma} (z^2 + x) dy dz - 2y^2 dx dy = -\iint_{\Sigma} \left[2x(z^2 + x) + 2y^2 \right] dx dy \qquad 2 \%$$
$$= 2 \iint_{D} \left[x(x^2 + y^2)^2 + x^2 + y^2 \right] dx dy \qquad 4 \%$$
$$= 2 \iint_{D} (x^2 + y^2) dx dy = \pi \qquad 6 \%$$

解 2: 补上一个面 $\sum_{i}:z=1$,利用高斯公式

$$\iint_{\Sigma} (z^2 + x) dy dz - 2y^2 dx dy = \iiint_{\Omega} dx dy dz + 2 \iint_{D} y^2 dx dy$$
 3 \(\frac{1}{2}\)

$$=\pi$$
 6分

四、试解下列各题(每小题7分):

1. 积分 $I = \int_{(0,0)}^{(1,1)} [e^x + f(x)]ydx + f(x)dy$ 与路径无关, f(x)可导,且 f(0) = 1,求 I 的值。

解:

由积分与路径无关可得
$$e^x + f(x) = f'(x)$$
 2 分解微分方程得 $f(x) = (x+1)e^x$ 5 分从而 $I = \int_{(0,0)}^{(1,1)} [e^x + (x+1)e^x] y dx + (x+1)e^x dy = 2e$ 7 分

2. (1) 将函数 $f(x) = (1+x)\ln(1-x)$ 展开成 x 的幂级数,

(2) 求数项级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)}$$
 的和。

解:

$$(1+x)\ln(1-x) = \ln(1-x) + x\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n - \sum_{n=1}^{\infty} \frac{1}{n} x^{n+1}$$
 3 $\frac{1}{2}$
$$= -x - \sum_{n=1}^{\infty} \frac{2n-1}{n(n-1)} x^n$$
 $-1 \le x < 1$ 5 $\frac{1}{2}$

$$=-x-\sum_{n=1}^{\infty}\frac{2n+1}{n(n+1)}x^{n+1}$$
用 $x=-1$ 代入可得 $\sum_{n=1}^{\infty}(-1)^{n-1}\frac{2n+1}{n(n+1)}=1$ 7分

五、 (9 分) 求球面 Σ : $x^2+y^2+z^2-2ax-2ay-2az+2a^2=0$ (a>0) 上到平面 x+y+z=0 的最大与最小距离,并证明 $\iint_{\Sigma} \left(\frac{x+y+z}{\sqrt{3}}+a\right)^2 dS \ge 12\pi a^4$,

解:

球面上的点到平面 x+y+z=0 的距离 $d=\frac{|x+y+z|}{\sqrt{3}}$,利用条件极值得目标函

数
$$L = \frac{1}{3}(x+y+z)^2 + \lambda(x^2+y^2+z^2-2ax-2ay-2az+2a^2)$$
 2 分
 由方程组
$$\begin{cases} L_x = \frac{2}{3}(x+y+z) + \lambda(2x-2a) = 0 \\ L_y = \frac{2}{3}(x+y+z) + \lambda(2y-2a) = 0 \\ L_z = \frac{2}{3}(x+y+z) + \lambda(2z-2a) = 0 \end{cases}$$
 得驻点 $x = y = z = (1 \pm \frac{1}{\sqrt{3}})a$

(或利用球面上平行平面 x + y + z = 0 的切平面也可得驻点)

5分

由此可得球面上的点到平面x+y+z=0的最大最小距离分别是

 $x^{2} + y^{2} + z^{2} - 2ax - 2ay - 2az + 2a^{2} = 0$

$$(\sqrt{3}+1)a$$
, $(\sqrt{3}-1)a$ 6 $\%$

进而易知函数 $\frac{x+y+z}{\sqrt{3}}$ 在上述球面约束条件下的最小值是 $(\sqrt{3}-1)a$

即有
$$\frac{x+y+z}{\sqrt{3}} + a \ge \sqrt{3}a$$
 $(x, y, z) \in \Sigma$

所以有
$$\iint_{\Sigma} \left(\frac{x+y+z}{\sqrt{3}} + a \right)^2 dS \ge \iint_{\Sigma} 3a^2 dS = 12\pi a^4$$
 9分

六、(4分)函数 z = f(x, y) 偏导数存在是可微分的必要条件,请证明之。证明:

由 z = f(x, y) 可微,

有
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = A\Delta x + B\Delta y + o(\rho)$$
 1 分

在上式中令
$$\Delta y = 0$$
, 得 $\Delta z = f(x + \Delta x, y) - f(x, y) = A\Delta x + o(|\Delta x|)$

从而极限
$$\lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{A\Delta x + o(|\Delta x|)}{\Delta x} = A$$
存在