Ferienkurs Experimentalphysik 4 2011

Übung 2

1. Wasserstoffatom

Die Wellenfunktionen für ein Elektron im Zustand 1s und 2s im Coulombpotential eines Kerns mit Kernladungszahl Z sind gegeben durch:

$$\Psi(r,\vartheta,\varphi)_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-\frac{Zr}{a_0}} \tag{1}$$

$$\Psi(r, \vartheta, \varphi)_{200} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-\frac{Zr}{2a_0}} \tag{2}$$

wobei die Konstante a_0 durch:

$$a_0 = \frac{4\pi\epsilon_0 \hbar^2}{\mu e^2} \tag{3}$$

definiert ist. Das μ im Nenner steht wiederum für die reduzierte Masse von Elektron und Atomkern.

- a) Berechnen Sie den Erwartungswert $\langle r \rangle$ für das Elektron im Wasserstoff!
- b) Leiten Sie in der Bohrschen Theorie mit Hilfe der Drehimpulsquantelung die Bahnradien ab! Was fällt Ihnen sofort auf?

2. Magnetischer Dipol

Ein magnetischer Dipol $\vec{\mu}_1$ erzeugt um sich ein Magnetfeld $\vec{B}(\vec{r})$ das durch den Ausdruck:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{\mu}_1 \cdot \vec{r})\vec{r} - \vec{\mu}_1 r^2}{r^5} \right) \tag{4}$$

gegeben ist.

- a) Berechnen Sie die Wechselwirkungsenergie zwischen zwei magnetischen Dipolen! Bei welchen Korrekturen der Energien aus der Schrödingertheorie trifft man etwas Vergleichbares an?
- b) Der Winkel ϑ sei der Winkel des Verbindungsvektors zwischen den beiden Dipolen. Bei welcher Anordnung nimmt bei parallel stehenden Momenten die Energie E einen Maximalwert ein? Wann ist E=0?

c) Berechnen Sie im Fall b) mit $r=2\mathring{A}$ die Energie für die Elektron-Elektron, Elektron-Proton und Proton-Proton Wechselwirkung. Wie groß ist dabei jeweils das Magnetfeld am Ort von $\vec{\mu}_2$, verursacht durch $\vec{\mu}_1$?

3. Stern-Gerlach Experiment

Bei Silber im Grundzustand befindet sich das 5s-Elektron als einziges in einer nicht abgeschlossenen Schale. Ein Strahl von Silberatomen durchlaufe nun das Feld eines inhomogenen Stern-Gerlach Magneten in x-Richtung. Das Feld sei dabei durch:

$$\vec{B}(\vec{r}) = B_0 \vec{e}_x + B_0 \vec{e}_y + z \cdot 10^3 \frac{T}{m} \vec{e}_z$$
 (5)

gegeben. In Richtung des Atomstrahls habe es eine Ausdehnung von $l_1=4cm$, der Auffangschirm steht im Abstand $l_2=10cm$ vom Magneten entfernt.

- a) Berechnen Sie die Komponente des magnetischen Moments in Richtung der Inhomogenität des Magnetfeldes, wenn die Aufspaltung des Strahls auf dem Schirm zu d=2mm und die Geschwindigkeit der Atome zu $v_x=500m/s$ gemessen wurde. Die durchschnittliche Masse von Silberatomen beträgt $M=1,79\cdot 10^{-25}kg$.
- b) Wie kann man mit diesem Experiment den g-Faktor des Elektrons bestimmen? Berechnen Sie ihn!
- c) Warum stört der Kernspin der Silberkerne das Experiment nicht wesentlich?

4. Drehimpulskopplung

- a) Charakterisieren Sie den Zustand eines $3d_{5/2}$ und eines $3d_{3/2}$ -Elektrons durch die Quantenzahlen n, l und j!
- b) Atome mit einem $3d_{3/2}$ -Leuchtelektron werden durch eine Stern-Gerlach Apparatur geschickt. Der für die Strahlaufspaltung verantwortliche Drehimpuls dieser Atome sei gleich dem Gesamtdrehimpuls des Leuchtelektrons. Wie viele Teilstrahlen ergeben sich nach dem Durchlaufen der Apparatur?

5. Feinstruktur

Betrachten Sie ein Wasserstoffatom, dessen Elektron sich in einem 3d-Zustand befindet, gemäß der Schrödingertheorie.

a) Geben Sie an, in welche Niveaus der 3d-Zustand bei Berücksichtigung der LS-Kopplung aufspaltet!

b) Die Energieverschiebung der Niveaus sei gegeben durch $\Delta E = a(\vec{l} \cdot \vec{s})$. Berechnen Sie die neuen Energieniveaus mit dieser Konstante a und skizzieren Sie die beiden neuen Zustände relativ zum ursprünglichen 3d-Zustand!

6. Feinstruktur

Wasserstoffähnlich nennt man Ionen, welche nur ein Elektron haben. Ihre Feinstruktur wird analog zum Wasserstoff beschrieben.

- a) Zeigen Sie, dass der Korrekturterm für die Feinstruktur und die relativistische Korrektur zu keinem möglichen Wert der Quantenzahlen n und j verschwindet, sondern stets zu einer Absenkung der Energie, also zu einer stärkeren Bindung führt!
- b) Das einfach ionisierte Helium ist ein wasserstoffähnliches Atom. In wie viele Energieniveaus spalten die Terme des einfach ionisierten Heliums, die zu den Hauptquantenzahlen n=3 und n=4 gehören, durch die Feinstruktur-Wechselwirkung auf? Berechnen Sie die Aufspaltung!
- c) Berechnen Sie die Energie der unverschobenen Niveaus und die Verschiebung relativ dazu! Für welches n und welches j entsteht die größte Verschiebung?

7. Hyperfeinstruktur

Die Hyperfeinstruktur beschreibt eine weitere Aufspaltung magnetischer Zustände, die analog zur Spin-Bahn Kopplung durch die Kopplung des magnetischen Moments $\vec{\mu}_i$ mit dem des Kernspins $\vec{\mu}_I$ entsteht.

- a) Schätzen Sie das Verhältnis $\frac{\Delta E_{HFS}}{\Delta E_{Fs}}$ der Hyperfeinaufspaltung zur Spin-Bahn Kopplung ab!
- b) Der Grundzustand von Deuterium ist in zwei Hyperfeinniveaus mit F=1/2 und F=3/2 aufgespalten. Welchen Wert muss entsprechend die dem Deuterium zugeordnete Spinquantenzahl I haben?
- c) In welche Hyperfeinzustände spaltet das $p_{3/2}$ -Niveau des Deuteriums auf, wenn sie vom vorher ermittelten I ausgehen?