UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO

Arquitetura e Organização de Computadores

Armazenamento e E/S
Parte II

Prof. Sílvio Fernandes

- Barramentos
 - Os diversos subsistemas precisam ter interfaces e precisam se comunicar
 - Durante anos isso tem sido feito com um barramento
 - É um link de comunicação compartilhado, que utiliza um conjunto de fios paralelos
 - Vantagens
 - Versatilidade
 - Baixo custo
 - Desvantagem
 - Gargalo de comunicação

- Barramentos
 - A largura de banda limita a vazão máxima de E/S
 - Barramentos tradicionais
 - Barramentos processador-memória
 - Curtos e de alta velocidade
 - Barramentos de E/S
 - Podem ser extensos
 - Podem ter muitos dispositivos conectados
 - Grande faixa de largura de banda
 - Normalmente n\u00e3o realizam interface direta com a mem\u00f3ria
 - Utilizam barramento processador-memória
 - ou backplane: permite conexão processador, memória e E/S

- Barramentos
 - Fatores físicos limitam a velocidade
 - Extensão do barramento
 - Número de dispositivos nele conectado
 - Os barramentos estão sendo substituídos por interconexões ponto a ponto de alta velocidade com switches: redes de interconexão ou redes em chip

- Fundamentos sobre conexão
 - Uma transação de E/S corresponde a enviar o endereço e receber ou enviar os dados
 - As transações podem ser de entrada e saída do ponto de vista do processador
 - Entrada: entrar dados do dispositivo para memória para leitura do processador
 - Saída: sai dados para um dispositivo a partir da memória, na qual o processador escreveu
 - A interconexão de E/S serve como um modo de expandir a máquina e conectar novos periféricos

- Fundamentos sobre conexão
 - Padrões de E/S dominantes

Characteristic	Firewire (1394)	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Intended use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Basic data width (signals)	4	2	2 per lane	4	4
Theoretical peak bandwidth	50 MB/sec (Firewire 400) or 100 MB/sec (Firewire 800)	0.2 MB/sec (low speed), 1.5 MB/sec (full speed), or 60 MB/sec (high speed)	250 MB/sec per lane (1x); PCle cards come as 1x, 2x, 4x, 8x, 16x, or 32x	300 MB/ sec	300 MB/sec
Hot pluggable	Yes	Yes	Depends on form factor	Yes	Yes
Maximum bus length (copper wire)	4.5 meters	5 meters	0.5 meters	1 meter	8 meters
Standard name	IEEE 1394, 1394b	USB Implementors Forum	PCI-SIG	SATA-IO	T10 committee

- Fundamentos sobre conexão
 - Barramentos tradicionais são síncronos
 - Inclui um clock que serve de referência nas transmissões
 - O dispositivo precisa executar na velocidade do clock
 - Os barramentos não podem ser longos se forem rápidos devido a problemas de variação de clock
 - Interconexões assíncronas
 - Não utilizam clock
 - Os barramentos podem ser estendidos sem problemas com variação do clock ou sincronismo

- Fundamentos sobre conexão
 - Interconexões assíncronas
 - Utilizam um protocolo de transmissão
 - Handshaking: uma série de etapas usadas para coordenar as transferências que só acontecem se emissor e receptor concordarem que a etapa atual foi concluída

- Como uma solicitação de E/S de um usuário é transformada em um comando de dispositivo e comunicada ao dispositivo?
- Como os dados são realmente transferidos de ou para um local de memória?
- Qual é o papel do sistema operacional?

- Sistema operacional (SO)
 - Atua como interface entre o HW e o programa que solicita a E/S
 - Responsabilidades do SO surgem de
 - Diversos programas usando o processador compartilham o sistema de E/S
 - Os sist. E/S normalmente usam interrupções para comunicar informações sobre E/S – causam transferência ao modo kernel
 - 3. Controle de baixo nível de um dispositivo de E/S é complexo, exige o gerenciamento de um conjunto de eventos simultâneos

- Dando comando a dispositivos de E/S
 - O processador deve ser capaz de endereçar o dispositivo e fornecer uma ou mais palavras de comando
 - Dois método de endereçar os dispositivos
 - E/S mapeada em memória: parte do espaço de endereçamento é atribuída a dispositivos de E/S e a memória ignora-os. Endereços são interpretados como comandos aos dispositivos
 - Instruções de E/S: podem especificar o número do dispositivo e a palavra comando (ou local de comando na memória)

- Dando comando a dispositivos de E/S
 - Uma leitura ou escrita de dados para cumprir uma solicitação do programa normalmente exige várias operações de E/S separadas
 - O processador pode interrogar o status do dispositivo entre comandos individuais para determinar se o comando foi concluído com sucesso

- Comunicação com o processador
 - O processo de verificar periodicamente os bits de status de um dispositivo de E/S para determinar a necessidade de atende-lo é chamado de polling
 - É a forma mais simples do dispositivo se comunicar com o processador
 - O processador está no controle e realiza todo trabalho
 - É uma técnica boa para aplicações embutidas de tempo real onde o tempo de resposta é predeterminado
 - O overhead do polling levou a invenção da E/S controlada por interrupção

- Comunicação com o processador
 - E/S controlada por interrupção
 - Usada em quase todos os sistemas
 - O dispositivo notifica o processador quando completou alguma operação ou que precisa de atenção
 - O processador é interrompido, assim como nas exceções, entretanto
 - Uma interrupção de E/S é assíncrona com relação à execução da instrução (nada impede o término da instrução)
 - É importante transmitir informações adicionais como a identidade do dispositivo gerando a interrupção que podem ter diferentes prioridades

- Comunicação com o processador
 - Para comunicar informações ao processador
 - Interrupções vetorizadas
 - O dispositivo envia o endereço do vetor
 - Registrador de causa
 - O dispositivo coloca sua identidade no campo do registrador de causa
 - Como resultado o SO adquire o controle e sabe a identidade do dispositivo e pode interrogar imediatamente o dispositivo

- Níveis de prioridade de interrupção
 - Indicam a ordem em que o processador deverá processar interrupções
 - Exceções gerada internamente e interrupções de E/S externas possuem prioridades
 - Em geral as de E/S possuem prioridades menor do que as exceções

- Níveis de prioridade de interrupção
 - O MIPS oferece as primitivas que deixam o SO implementar a política usando os registradores Cause e Status

- Níveis de prioridade de interrupção
 - Tratamento de uma exceção
 - Realize um AND lógico entre o campo interrupções pendentes e o campo máscara de interrupções para ver quais poderiam ser as culpadas
 - 2. Selecione a prioridade mais alta (mais à esquerda)
 - 3. Salve o campo de máscara de interrupções
 - 4. Mude o campo de máscara para desativar todas as interrupções de prioridade igual ou inferior
 - 5. Salve o estado do processador necessário para lidar com as interrupções
 - 6. A fim de permitir interrupções de prioridade mais alta, coloque o bit interrupções habilitadas do reg. Cause em 1

- Níveis de prioridade de interrupção
 - Tratamento de uma exceção
 - Chame a rotina de interrupção
 - 8. Antes de restaurar o estado, coloque o bit interrupções habilitadas do reg. Cause em 0. Isso permite restaurar o campo de máscara de interrupções
 - O Nível de Prioridade de Interrupção ou IPL (Interrupt Priority Levels) é uma invenção do SO, armazenado na memória do processo, para bloquear ou desbloquear interrupções através do campo de máscara

- Transferindo os dados entre dispositivo e mem.
 - Polling e interrupções de E/S são a base para 2 métodos de implementação da transferência de dados
 - No polling usamos o processador para transferir dados entre um dispositivo e a memória, o qual também verifica constantemente o status da transferência
 - Na interrupção de E/S o SO assume um papel importante de colocar o processador para realizar a transferência mas enquanto a operação de E/S está em curso outro programa pode usar o processador

- Transferindo os dados entre dispositivo e mem.
 - Mesmo usando interrupções de E/S durante a transferência acontecem várias operações de E/S e, consequentemente, várias interrupções ao processador
 - Para desafogar o processador inventou-se o mecanismo de acesso direto à memória ou DMA (Direct Memory Access)
 - A interrupção ainda é usada mas somente quando a transferência é concluída ou quando ocorrer um erro
 - O DMA é implementado por um controlador especializado que transfere dados entre o dispositivo e a memória, independente do processador

- Transferindo os dados entre dispositivo e mem.
 - Existem 3 etapas em transferência DMA
 - O processador configura o DMA fornecendo a identidade do dispositivo, a operação a realizar, o endereço de memória (para ler ou escrever) e o número de bytes a transferir
 - O DMA inicia a operação, fornecendo o endereço de memória (para leitura ou escrita) e na conclusão gerando o próximo endereço
 - Quando a transferência termina, o controlador interrompe o processador que pode interrogar o DMA ou verificar a memória se a operação inteira foi concluída

- Transferindo os dados entre dispositivo e mem.
 - Com DMA os acessos a memória não são mais restritos apenas ao processador
 - Isso gera problemas em sistema de memória virtual e sistema de caches
 - Esse problemas normalmente s\(\tilde{a}\) o solucionados com uma combina\(\tilde{a}\) de t\(\tilde{c}\) ticas de HW e suporte de SW

Referências

 PATTERSON, D. A.; HENNESSY, J.L. Organização e projeto de computadores – a interface hardware software. 4. ed. Editora Campus, 2014.