

Connexité

Exercice 1

Soit *X* un espace métrique.

- 1. Montrer que X est connexe si et seulement si toute application continue $f: X \to \{0,1\}$ est constante.
- 2. Soit *A* une partie de *X* connexe. Montrer que toute partie $B \subset E$ vérifiant $A \subset B \subset \overline{A}$ est connexe.
- 3. Si $(A_n)_{n\geq 0}$ est une suite de parties connexes de X telle que $A_n \cap A_{n+1} \neq \emptyset$ pour tout $n\geq 0$. Prouver que $\bigcup_{n\geq 0}A_n$ est connexe.

Indication ▼

Correction ▼

[002383]

Exercice 2

Déterminer les parties connexes de

$$\{(x,y) \in \mathbb{R}^2 ; x \neq y\}$$
 et de $\{(z,w) \in \mathbb{C}^2 ; z \neq w\}$.

Correction ▼

[002384]

Exercice 3

Soit A et B des parties de X. On suppose B connexe et que $B \cap A$ et $B \cap CA$ sont non vides. Montrer que B coupe la frontière de A.

Indication ▼

Correction ▼

[002385]

Exercice 4

Notons $T = \{0\} \times [-1,1] \cup [-1,1] \times \{0\}$ muni de la topologie induite par celle de \mathbb{R}^2 .

- 1. Montrer que T est compact et connexe et que f(T) est un segment si $f: T \to \mathbb{R}$ est une fonction continue.
- 2. Déterminer les points $x \in T$ pour lesquels $T \setminus \{x\}$ est connexe.
- 3. Montrer que T n'est homéomorphe à aucune partie de \mathbb{R} .

Indication ▼

Correction ▼

[002386]

Exercice 5

- 1. Montrer qu'il existe une surjection continue de \mathbb{R} sur $\mathbb{S}^1 = \{z \in \mathbb{C} ; |z| = 1\}$ et qu'il n'existe pas d'injection continue de \mathbb{S}^1 dans \mathbb{R} .
- 2. Montrer qu'il n'existe pas d'injection continue de \mathbb{R}^2 dans \mathbb{R} .

Indication ▼

Correction ▼

[002387]

Exercice 6

Dans \mathbb{R}^2 , soit B_a l'ensemble $\{a\} \times]0,1]$ si a est rationnel et $B_a = \{a\} \times [-1,0]$ si a est irrationnel. Montrer que $B = \bigcup_{a \in \mathbb{R}} B_a$ est une partie connexe de \mathbb{R}^2 .

Indication \mathbf{V}

Correction ▼

[002388]

Exercice 7

Soit *I* un intervalle ouvert de \mathbb{R} et soit $f: I \to \mathbb{R}$ une application dérivable. Notons $A = \{(x, y) \in I \times I ; x < y\}$.

- 1. Montrer que A est une partie connexe de \mathbb{R}^2 .
- 2. Pour $(x,y) \in A$, posons $g(x,y) = \frac{f(y) f(x)}{y x}$. Montrer que $g(A) \subset f'(I) \subset \overline{g(A)}$.
- 3. Montrer que f'(I) est un intervalle.

Ce résultat signifie que *la dérivée de toute fonction dérivable possède la propriété de la valeur intermédiaire* (un théorème de Darboux).

Indication ▼ Correction ▼ [002389]

Exercice 8

Soit X un espace métrique et $(A_i)_{i \in I}$ une famille de parties connexes par arcs de X telle que $\bigcap_{i \in I} A_i \neq \emptyset$. Montrer que $\bigcup_{i \in I} A_i$ est connexe par arcs.

Correction ▼ [002390]

Exercice 9

Dans \mathbb{R}^2 on considère l'ensemble $A = \{(x, \sin(\frac{1}{x})) ; x > 0\}.$

- 1. Montrer que A est une partie connexe et connexe par arcs de \mathbb{R}^2 .
- 2. Déterminer \overline{A} et justifier que \overline{A} est connexe.
- 3. Montrer que \overline{A} n'est pas connexe par arcs.

Indication ▼ Correction ▼ [002391]

Indication pour l'exercice 1 A

Utiliser la première question pour les deux suivantes.

Indication pour l'exercice 3 ▲

Utiliser la partition $X = \mathring{A} \cup \operatorname{Fr} A \cup (X \setminus \bar{A})$ où $\operatorname{Fr} A = \bar{A} \setminus \mathring{A}$ est la frontière de A.

Indication pour l'exercice 4 ▲

Faites un dessin de T. Pour la dernière question, raisonner par l'absurde. Où peuvent s'envoyer les points de la deuxième question?

Indication pour l'exercice 5 ▲

- 1. Pour la surjection, pensez à l'exponentielle ou aux sinus et cosinus... Pour l'injection, raisonner par l'absurde et utiliser la connexité du cercle privé d'un point.
- 2. Raisonner par l'absurde et utiliser la connexité de \mathbb{R}^2 privé d'un point.

Indication pour l'exercice 6 ▲

Définir $g : \mathbb{R} \longrightarrow \{0,1\}$ tel que g(x) prend la valeur qu'a f sur B_x . Montrer pour chaque points de $\mathbb{R} \setminus \mathbb{Q}$, g est constante dans un voisinage de ce point, puis faire la même chose pour un point de \mathbb{Q} . Conclure.

Indication pour l'exercice 7 ▲

- 1. Faire un dessin!
- 2. Utiliser le théorème des accroissements finis d'une part. La définition de la dérivée d'autre part.
- 3. Utiliser l'exercice 1 ou refaire la demonstration.

Indication pour l'exercice 9

- 1. Faire un dessin!!
- 2. Voir l'exercice 1.
- 3. Raisonner par l'absurde. Prendre un chemin qui relie le point (0,0) au point $(\frac{1}{2\pi},0)$ (par exemple). Ce chemin va quitter à un instant t_0 le segment $\{0\} \times [-1,1]$. Chercher une contradiction à ce moment là.

Correction de l'exercice 1

- 1. C'est du cours.
- 2. Si $f: B \longrightarrow \{0,1\}$ est continue alors elle induit une application restreinte $f_{|A}: A \longrightarrow \{0,1\}$ continue. Donc f est constante sur A. Soit $b \in B$ et soit (a_n) une suite d'éléments de A qui tendent vers b (c'est possible car $B \subset \bar{A}$), alors $f(a_n)$ est constante, par exemple égal à 1, car A est connexe. Mais f est continue sur B, donc $f(b) = \lim f(a_n) = 1$. On montre ainsi que f est constante sur g. Donc g est connexe. (Au passage on a montrer que g était connexe.)
- 3. Soit $f: A \longrightarrow \{0,1\}$ une fonction continue, où $A = \bigcup A_n$. A_0 est connexe donc f est constante sur A_0 et vaut v_0 , de même A_1 est connexe donc f est constante sur A_1 et vaut v_1 . Mais pour $a \in A_0 \cap A_1 \neq \emptyset$, on a $f(a) = v_0$ car $a \in A_0$ et $f(a) = v_1$ car $a \in A_1$. Donc $v_0 = v_1$. Donc f est constante sur $A_0 \cup A_1$. Par récurrence f est constante sur A.

Correction de l'exercice 2

- 1. Dans \mathbb{R}^2 il y a deux composantes connexes : $\{(x,y) \in \mathbb{R}^2 : x > y\}$ et $\{(x,y) \in \mathbb{R}^2 : x < y\}$.
- 2. Dans \mathbb{C}^2 il n'y en a qu'une seule : $\{(z, w) \in \mathbb{C}^2 ; z \neq w\}$

Correction de l'exercice 3

Notons la frontière $\operatorname{Fr} A = \bar{A} \setminus \mathring{A}$. Nous avons la partition $X = \mathring{A} \cup \operatorname{Fr} A \cup (X \setminus \bar{A})$. Si $B \cap \operatorname{Fr} A = \emptyset$ alors $B \subset \mathring{A} \cup (X \setminus \bar{A})$.

De plus, par hypothèses, $B \cap A \neq \emptyset$ et $B \cap \operatorname{Fr} A = \emptyset$ or $\mathring{A} = A \setminus \operatorname{Fr} A$ donc $B \cap \mathring{A} \neq \emptyset$. Comme $\operatorname{Fr} A = \operatorname{Fr}(X \setminus A)$ on a $B \cap \operatorname{Fr}(X \setminus A) = \emptyset$. Par hypothèse $B \cap (X \setminus A) \neq \emptyset$ donc $B \cap (X \setminus \overline{A}) = (B \cap (X \setminus A)) \setminus (B \cap \operatorname{Fr}(X \setminus A)) \neq \emptyset$. Nous avons montrer que B est inclus dans l'union de deux ouverts disjoints \mathring{A} et $X \setminus \overline{A}$, d'intersection non vide avec B, donc B n'est pas connexe. Par contraposition, si B est connexe alors B ne rencontre pas la frontière de A

Correction de l'exercice 4 A

1. T est compact car c'est un fermé borné de \mathbb{R}^2 .

Soit $g: T \longrightarrow \{0,1\}$ une application continue. Par connexité du segment [-1,1], g est constante sur $\{0\} \times [-1,1]$ (et vaut v); g est aussi constante sur $[-1,1] \times \{0\}$ et vaut v'. Mais alors v = g(0,0) = v' donc g est constante sur T. Donc T est connexe.

Pour $f: T \to \mathbb{R}$ une fonction continue. T est compact donc f(T) est compact. T est connexe donc f(T) est connexe. Donc f(T) est un compact connexe de \mathbb{R} c'est donc un segment compact.

- 2. Ce sont les quatre points cardinaux N = (0, 1), S = (0, -1), E = (1, 0), W = (-1, 0).
- 3. Par l'absurde, supposons que *T* soit homéomorphe à une partie *I* de ℝ, alors il existe un homéomorphisme $f: T \longrightarrow I$. Par le premier point *I* est un segment compact I = [a,b]. $T \setminus \{N\}$ est connexe donc sont image par $f, f(T \setminus \{N\})$ est connexe, mais c'est aussi le segment *I* privé d'un point. *I* privé d'un point étant connexe, le point retiré est nécessairement une extrémité. Donc f(N) = a ou f(N) = b. Supposons par exemple f(N) = a. On refait le même raisonnement avec *S*, qui s'envoie aussi sur une extrémité, comme *f* est bijective cela ne peut être *a*, donc f(S) = b. Maintenant f(E) est aussi une extrémité donc $f(E) \in \{a,b\}$. Mais alors *f* n'est plus injective car on a f(E) = f(N) ou f(E) = f(S). Contradiction.

Correction de l'exercice 5 ▲

- 1. (a) $\phi : \mathbb{R} \longrightarrow \mathbb{S}^1$ définie par $\phi(t) = e^{it}$ est une surjection continue.
 - (b) \mathbb{S}^1 est un compact connexe donc, par l'absurde, si $\psi: \mathbb{S}^1 \longrightarrow \mathbb{R}$ est une injection continue alors $\psi(\mathbb{S}^1)$ est un compact connexe de \mathbb{R} donc un segment compact I. Soit $y \in \mathring{I}$, comme I est l'image de \mathbb{S}^1 alors il existe un unique $x \in \mathbb{S}^1$ tel que f(x) = y. L'application f induit alors une bijection continue $f: \mathbb{S}^1 \setminus \{x\} \longrightarrow I \setminus \{y\}$. Mais $\mathbb{S}^1 \setminus \{x\}$ est connexe alors que son image par f, qui est $I \setminus \{y\}$

ne l'est pas (car $y \in \mathring{I}$). L'image d'un connexe par une application continue doit être un connexe, donc nous avons une contradiction.

2. Si $\chi : \mathbb{R}^2 \longrightarrow \mathbb{R}$ est une injection continue. Comme \mathbb{R}^2 est connexe $f(\mathbb{R}^2) = I$ est un connexe de \mathbb{R} donc un segment (non réduit à un point!). Prenons y un élément de \mathring{I} , soit $x \in \mathbb{R}^2$ tel que f(x) = y. Alors $\mathbb{R}^2 \setminus \{x\}$ est connexe, $I \setminus \{y\}$ ne l'est pas, et f est une bijection continue entre ces deux ensembles, d'où une contradiction.

Correction de l'exercice 6 ▲

L'ensemble B est connexe si et seulement si toute fonction continue $f: B \to \{0,1\}$ est constante. Soit alors $f: B \to \{0,1\}$ une fonction continue et montrons qu'elle est constante. Remarquons que la restriction de f à tout ensemble B_a est constante (B_a est connexe).

On définit $g : \mathbb{R} \longrightarrow \{0,1\}$ tel que g(x) prend la valeur qu'a f sur B_x . Nous allons montrer que g est localement constante (on ne sait pas si g est continue).

- Soit $a \notin \mathbb{Q}$ alors on a $(a,0) \in B$, f est une fonction continue et $\{f(a,0)\}$ est un ouvert de $\{0,1\}$, donc $f^{-1}(\{f(a,0)\})$ est un ouvert de B. Donc il existe $\varepsilon > 0$ tel que si $(x,y) \in (]a \varepsilon, a + \varepsilon[\times] \varepsilon, \varepsilon[) \times B$ alors f(x,y) = f(a,0). Alors pour $x \in]a \varepsilon, a + \varepsilon[$ on a g(x) = g(a): si $x \notin \mathbb{Q}$ alors g(x) = f(x,0) = f(a,0) = g(a); et si $x \in \mathbb{Q}$ alors $g(x) = f(x, \frac{\varepsilon}{2}) = f(a,0) = g(a)$. Donc g est localement constante au voisinage des point irrationnels
- Si $a ∈ \mathbb{Q}$ et soit b ∈]0,1] alors f est continue en (a,b) donc il existe ε > 0 tel que pour tout $x ∈]a ε, a + ε[∩ \mathbb{Q}, g(x) = f(x,b) = f(a,b) = g(a)$. Si maintenant $x ∈]a ε, a + ε[∩ (\mathbb{R} \setminus \mathbb{Q}), on prend une suite <math>(x_n)$ de rationnels qui tendent vers x. Comme f est continue alors $g(a) = g(x_n) = f(x_n,b)$ tend vers f(x,b) = g(x). Donc g(a) = g(x). Nous avons montrer que g est localement constante au voisinage des point rationnels.
- Bilan : g est localement constante sur \mathbb{R} .

Comme \mathbb{R} est connexe, alors g est constante sur \mathbb{R} . Donc f est constante sur \mathbb{R} . Ce qu'il fallait démontrer.

Correction de l'exercice 7

- 1. A est connexe car connexe par arcs.
- 2. Si $z \in g(A)$ alors il existe $(x,y) \in A$ tel que g(x,y) = z. Donc $z = \frac{f(y) f(x)}{y x}$ par le théorème des accroissements finis il existe $t \in]x, y[\subset I$ tel que z = f'(t) donc $z \in f'(I)$. Donc $g(A) \subset f'(I)$. Si maintenant $z \in f'(I)$, il existe $y \in I$ tel que z = f'(y), mais par définition de la dérivée f'(y) est la limite de $\frac{f(y) f(x)}{y x}$ quand x tend vers y (et on peut même dire que c'est la limite à gauche, i.e. x < y). Donc f'(y) est limite de points de g(x,y) avec x < y, donc de points de A. Conclusion z = f'(y) est dans $\overline{g(A)}$, et donc $f'(I) \subset \overline{g(A)}$.
- 3. A est connexe, g est continue sur A donc g(A) est un connexe de \mathbb{R} . Par l'exercice 1 comme on a

$$g(A) \subset f'(I) \subset \overline{g(A)}$$

avec g(A) connexe alors f'(I) est connexe. Comme f'(I) est un connexe de \mathbb{R} c'est un intervalle.

Correction de l'exercice 8 A

Soit $a \in \bigcap_{i \in I} A_i$; soit $x, y \in \bigcup_{i \in I} A_i$. Il existe i_1 tel que $x \in A_{i_1}$ on a aussi $a \in A_{i_1}$ donc il existe une chemin γ_1 qui relie x à a. De même il existe i_2 tel que $x \in A_{i_2}$ et on a également $a \in A_{i_2}$ donc il existe une chemin γ_2 qui relie a à y. Le chemin $\gamma_2 \circ \gamma_1$ relie x à y. Ceci étant valable quelque soient x et y, $\bigcup_{i \in I} A_i$ est connexe par arcs.

Correction de l'exercice 9 A

1. Si $(x_1, \sin \frac{1}{x_1})$ et $(x_2, \sin \frac{1}{x_2})$ sont deux points de A alors le graphe au dessus de $[x_1, x_2]$ définie un chemin reliant ces deux points. Plus précisément le chemin est l'application $\gamma: [x_1, x_2] \longrightarrow \mathbb{R}^2$ définie par $\gamma(t) = (t, \sin \frac{1}{t})$. Donc A est connexe par arcs donc connexe.

- 2. $\bar{A} = A \cup (\{0\} \times [-1,1])$. On peut utiliser l'exercice 1 pour montrer que \bar{A} est connexe. Ici nous allons le montrer directement. Supposons, par l'absurde, que $\bar{A} \subset U \cup V$ avec U et V des ouverts de \mathbb{R}^2 disjoints, d'intersection non vide avec A. Comme $\{0\} \times [-1,1]$ est connexe il est entièrement inclus dans un des ouverts, supposons qu'il soit inclus dans U. Comme A est connexe alors il est inclus dans un des ouverts, donc il est inclus dans V (car s'il était inclus dans U, tout \bar{A} serait contenu dans U). Trouvons une contradiction en prouvant qu'en fait $U \cap A \neq \emptyset$. En effet U est un ouvert et $(0,0) \in U$, soit $B((0,0),\varepsilon)$ une boule contenue dans U. Pour n suffisamment grand on a $x_n = \frac{1}{2\pi n} < \varepsilon$ avec $\sin \frac{1}{x_n} = \sin 2\pi n = 0$ donc $(x_n, \sin \frac{1}{x_n}) = (x_n, 0)$ est un élément de A et de U. Comme V contient A alors $U \cap V \neq \emptyset$. Ce qui fournit la contradiction.
- 3. Montrons que \bar{A} n'est pas connexe par arcs. Soit O=(0,0) et $P=(\frac{1}{2\pi},0)$ deux points de \bar{A} , par l'absurde supposons qu'il existe un chemin $\gamma:[0,1]\longrightarrow \bar{A}$ tel que $\gamma(0)=O$ et $\gamma(1)=P$. On décompose en coordonnées $\gamma(t)=(\gamma_1(t),\gamma_2(t))\in\mathbb{R}^2$. $\gamma_1^{-1}(\{0\})$ est un fermé car γ_1 est continue et de plus il est non vide car $\gamma_1(0)=0$. Soit $t_0=\sup\gamma_1^{-1}(\{0\})$, comme l'ensemble est fermé alors $\gamma_1(t_0)=0$ et de plus $t_0<1$ car $\gamma_1(1)=\frac{1}{2\pi}$.

On regarde ce qui se passe au temps t_0 , c'est l'instant ou notre chemin "quitte" l'ensemble $\{0\} \times [-1,1]$. Notons $y_0 = \gamma_2(t_0)$. Comme γ_2 est continue en y_0 et pour $\varepsilon = \frac{1}{2}$ il existe $\eta > 0$ tel que $(|t - t_0| < \eta \Rightarrow |\gamma_2(t) - y_0| < \frac{1}{2})$. Choisissons $t_1 \in]t_0, t_0 + \eta[$. Alors $t_1 > t_0$ donc $\gamma_1(t_1) > 0$. Donc le point $\gamma(t_1) = (\gamma_1(t_1), \gamma_2(t_1))$ est dans A (et plus seulement dans A).

Supposons par exemple $y_0 \le 0$, alors quand x parcourt $]\gamma_1(t_0), \gamma_1(t_1)[$, $\sin\frac{1}{x}$ atteint la valeur 1 une infinité de fois. Donc il existe $t_2 \in]t_0, t_1[$ tel que $\gamma_2(t_2) = 1$. Donc $\gamma(t_2) = (\gamma_1(t_2), 1)$. Mais comme $|t_2 - t_0| < \eta$ alors $|\gamma_2(t_2) - y_0| = |1 - y_0| > \frac{1}{2}$. Ce qui contredit la continuité de γ_2 . Nous avons obtenu une contradiction donc \bar{A} n'est pas connexe par arcs.