Technische Schulden in Softwareunternehmen

Gliederung

Ol Definition & Entstehung

O2 Auswirkungen auf Software

O3 Auswirkungen auf Teams

O4 Fazit & Ausblick

Technische Schulden

Definition & Entstehung

Technische Schulden bezeichnen in der Softwareentwicklung die zusätzlichen Kosten für Nachbesserungen, die entstehen, wenn zugunsten einer schnelleren Umsetzung auf sauberen und effizienten Code verzichtet wird.

—SonarSource

Definition

- → Releasezyklen beschleunigen
- → Niedrigere Priorisierung von Code-Qualität
- → Erhöhte Wartungskosten im Nachhinein

Klassifizierung

Klassifizierung

	nischer Schulden
Bewusst	Versehentlich
Wir haben	Wir wissen
keine Zeit	nicht wie
Wir werden uns	Das hätten wir
später darum kümmern	nicht machen sollen

Zeitdruck

Begrenzte Ressourcen oder enge Deadlines

Mangelnde **Erfahrung**

Verminderte Code Qualität

Unklare Anforderungen

Zeitdruck

Begrenzte Ressourcen oder enge Deadlines

Mangelnde **Erfahrung**

Verminderte Code Qualität

Unklare Anforderungen

Zeitdruck

Begrenzte Ressourcen oder enge Deadlines

Mangelnde **Erfahrung**

Verminderte Code Qualität

Unklare Anforderungen

Zeitdruck

Begrenzte Ressourcen oder enge Deadlines

Mangelnde **Erfahrung**

Verminderte Code Qualität

Unklare Anforderungen

02

Auswirkungen auf Software

Verlangsamte Entwicklung

Hoher Zeitaufwand durch Erlangung von Code Verständnis

Geringere Qualität

Fehleranfälliger Code fördert Instabilität

Erhöhte Wartungskosten

Verlangsamte Entwicklung

Hoher Zeitaufwand durch Erlangung von Code Verständnis

Geringere Qualität

Fehleranfälliger Code fördert Instabilität

Erhöhte Wartungskosten

Verlangsamte Entwicklung

Hoher Zeitaufwand durch Erlangung von Code Verständnis

Geringere Qualität

Fehleranfälliger Code fördert Instabilität

Erhöhte Wartungskosten

Verlangsamte Entwicklung

Hoher Zeitaufwand durch Erlangung von Code Verständnis

Geringere Qualität

Fehleranfälliger Code fördert Instabilität

Erhöhte Wartungskosten

"Technische Schulden zu begleichen kostet 3,61 \$ pro Zeile Code."

Y. Guo, R. O. Spínola, und C. Seaman

03

Auswirkungen auf Teams

Motivation & Arbeitszufriedenheit

Menschen machen Software

Gründe zur Motivation von Mitarbeitern auf Basis einer empirischen Studie im Bereich der globalen Softwareentwicklung aus 2017

Autonomie

Treffen eigenständiger Entscheidungen

Kompetenz

Fachliche Weiterentwicklung

Soziale Eingebundenheit

Autonomie

Treffen eigenständiger Entscheidungen

Kompetenz

Fachliche Weiterentwicklung

Soziale Eingebundenheit

Autonomie

Treffen eigenständiger Entscheidungen

Kompetenz

Fachliche Weiterentwicklung

Soziale Eingebundenheit

Autonomie

Treffen eigenständiger Entscheidungen

Kompetenz

Fachliche Weiterentwicklung

Soziale Eingebundenheit

Reaktion auf Veränderung

Widerstand und Frustration

Ohne Unterstützung sinken Motivation und Produktivität

Konflikte und Spannungen

Unterschiedliche Prioritäten führen zu Teamkonflikten

Beeinträchtigte Unternehmenskultur

Widerstand und Frustration

Ohne Unterstützung sinken Motivation und Produktivität

Konflikte und Spannungen

Unterschiedliche Prioritäten führen zu Teamkonflikten

Beeinträchtigte Unternehmenskultur

Widerstand und Frustration

Ohne Unterstützung sinken Motivation und Produktivität

Konflikte und Spannungen

Unterschiedliche Prioritäten führen zu Teamkonflikten

Beeinträchtigte Unternehmenskultur

Widerstand und Frustration

Ohne Unterstützung sinken Motivation und Produktivität

Konflikte und Spannungen

Unterschiedliche Prioritäten führen zu Teamkonflikten

Beeinträchtigte Unternehmenskultur

Fazit & Ausblick

Fazit

- → Langfristige Auswirkungen
- → Teamdynamik und Motivation
- → Notwendige Strategien

Ausblick

Clean Code	Die Anwendung von Prinzipien des Clean Code sorgt für lesbaren, wartbaren und testbaren Code, der weniger fehleran fällig ist
Refactoring	Regelmäßiges Refactoring verbessert die Codequalität und hilft, technische Schulden abzubauen.
Test-Driven Development	Höhere Testabdeckung erreicht und Senkung der Fehlerquote.

Vielen Dank!

