HW 2

1.2

5.

Let $x = s^k r^i$ be an element which commutes with every element of D_{2n} with $k \le 1, k < n$. We have $s^k s = s s^k = s^{1-k}$ since s has order 2. Since x commutes with s,

$$ss^k r^i = s^k r^i s$$

$$s^{1-k} r^i = s^k s r^{-i}$$

$$= s^{k+1} r^{-i}$$

By equating exponents of s (which we can do because the representation is unique), 1 - k = k + 1 hence k = 1. By equating exponents of r, we have $i = -i \pmod{n}$ hence $2i = 0 \pmod{n}$ hence $i = 0 \pmod{n}$ because n is odd. Hence x is the identity.

7.

$$s^2=a^2=1$$

$$r^n=(s^2r)^n=(ab)^n=1$$

$$rsr=s(sr)(sr)=ab^2=a=s. \text{ Hence } rs=sr^{-1}$$
 Conversely,
$$a^2=s^2=1$$

$$b^2=(sr)^2=srsr=ss=1$$

$$(ab)^n=(ssr)^n=r^n=1$$

- 1.3
- 11.
- **15.**
- **17.**