An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

Andrew Winslow

ISAAC 2015 Accepted Papers

Andrew Winslow. An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

Eli Fox-Epstein, Duc Hoang, Yota Otachi and Ryuhei Uehara. Sliding Token on Bipartite Pe

Mamadou Moustapha Kanté, Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, Sigve H. S Polynomial Enumeration on Graphs of Bounded (Local) Linear MIM-Width

Yasushi Kawase. The secretary problem with a choice function.

Siu-Wing Cheng and Lau Man Kit. Adaptive point location in planar convex subdivisions

Prosenjit Bose, Rolf Fagerberg, André van Renssen and Sander Verdonschot. Competitive L

Hicham El-Zein, Ian Munro and Siwei Yang. On the Succinct Representation of Unlabeled I

Siu-Wing Cheng, Man Kwun Chiu, Jiongxin Jin and Antoine Vigneron. Navigating Weighte Tetrahedra

Sang Duk Yoon, Min-Gyu Kim, Wanbin Son and Hee-Kap Ahn. Geometric Matching Algor

Petr Hlineny and Gelasio Salazar. On Hardness of the Joint Crossing Number

<u>Diptarka Chakraborty</u> and <u>Raghunath Tewari</u>. An \$O(n^{\epsilon})\$ Space and Polynomial Directed Layered Planar Graphs

Polyominoes

Rectilinear simple polygons with unit edge lengths

Boundary words

[Wijshoff, van Leeuwen 1984], [Beauquier, Nivat 1991]:

For any polyomino P

P has a plane tiling

P has an isohedral plane tiling

if and only if

[Beauquier, Nivat 1991]:

A polyomino has an isohedral plane tiling if and only if the boundary word has factorization $ABC\widehat{A}\widehat{B}\widehat{C}$:

where if
$$X=x_1x_2\dots x_n$$
 with $\overline{d}=d$ $\overline{r}=l$ then $\widehat{X}=\overline{x}_n\overline{x}_{n-1}\dots\overline{x}_1$ with $\overline{d}=u$ $\overline{l}=r$

[Beauquier, Nivat 1991]:

A polyomino has an isohedral plane tiling if and only if the boundary word has factorization $ABC\widehat{A}\widehat{B}\widehat{C}$:

where if
$$X=x_1x_2\dots x_n$$
 with $\overline{u}=d$ $\overline{r}=l$ then $\widehat{X}=\overline{x}_n\overline{x}_{n-1}\dots\overline{x}_1$ with $\overline{d}=u$ $\overline{l}=r$

[Beauquier, Nivat 1991]:

For any polyomino P

P has a plane tiling

Boundary word of P has BN factorization

if and only if

Testing for BN factorization

Given boundary word W with |W| = n, does $W = ABC\widehat{A}\widehat{B}\widehat{C}$?

- [Gambini, Vuillon 2007]: O(n²)
- [Provençal 2008]: O(n*log³(n))
- [Brlek, Provençal, Fédou 2009]: O(n) in two special cases.

This work: O(n) algorithm for all inputs.

The algorithm

Factors come in pairs: A, \widehat{A} & B, \widehat{B} & C, \widehat{C}

Factors come in pairs: $A, \widehat{A} \& B, \widehat{B} \& C, \widehat{C}$ Each pair is centered around diametral locations.

Factors come in pairs: $A, \widehat{A} \& B, \widehat{B} \& C, \widehat{C}$ Each pair is centered around diametral locations. Pairs match as far along boundary as possible.

Admissible factor: word A such that boundary word $W = AU\widehat{A}V$ with IUI = IVI, $U[1] \neq \overline{U[-1]}$, $V[1] \neq \overline{V[-1]}$.

Admissible factor: word A such that boundary word $W = AU\widehat{A}V$ with IUI = IVI, $U[1] \neq \overline{U[-1]}$, $V[1] \neq \overline{V[-1]}$.

[Brlek et al. 2009]: Every factor of a BN factorization is admissible.

Admissible factor: word A such that boundary word $W = AU\widehat{A}V$ with IUI = IVI, $U[1] \neq \overline{U[-1]}$, $V[1] \neq \overline{V[-1]}$.

[Brlek et al. 2009]: Every factor of a BN factorization is admissible.

[Brlek et al. 2009]: can compute all O(n) admissible factors in O(n) time.

Admissible factor: word A such that boundary word $W = AU\widehat{A}V$ with IUI = IVI, $U[1] \neq \overline{U[-1]}$, $V[1] \neq \overline{V[-1]}$.

[Brlek et al. 2009]: Every factor of a BN factorization is admissible.

[Brlek et al. 2009]: can compute all O(n) admissible factors in O(n) time.

W has BN factorization \Leftrightarrow W has consecutive admissible factors A, B, C with IABCl = IWI/2.

The barrier

Given O(n) admissible factors of W, decide if W has consecutive admissible factors A, B, C with IABCI = IWI/2.

The barrier

in O(n) time

Given O(n) admissible factors of W, decide if W has consecutive admissible factors A, B, C with IABCI = IWI/2.

The barrier

in O(n) time

Given O(n) admissible factors of W, decide if W has consecutive admissible factors A, B, C with IABCI = IWI/2.

The key idea comes from:

A Linear-Time On-Line Recognition Algorithm for "Palstar"

Journal of the Association for Computing Machinery, Vol 25, No 1, January 1978, pp 102-111

ZVI GALIL

Tel Aviv University, Tel Aviv, Israel

AND

JOEL SEIFERAS

The Pennsylvania State University, University Park, Pennsylvania

Lemma: X = PS with P, S admissible $\langle + \rangle$ $X = P_{max}S$ or $X = PS_{max}$ with:

- P_{max} the longest prefix admissible factor of X, or
- S_{max} the longest suffix admissible factor of X.

Proof nearly identical to similar result for palindromes by [Galil, Seiferas 1978]

Finding consecutive A,B,C with IABCI = n/2.

- 1. For each A, search for longest B such that IABI ≤ n/2, check whether factor C with IABCI = n/2 is admissible.
- 2. For each C, search for longest B such that IBCl ≤ n/2, check whether factor A with IABCl = n/2 is admissible.

Finding consecutive A,B,C with IABCI = n/2.

- 1. For each A, search for longest B such that IABI ≤ n/2, check whether factor C with IABCI = n/2 is admissible.
- 2. For each C, search for longest B such that IBCl ≤ n/2, check whether factor A with IABCl = n/2 is admissible.

O(n) time using two-finger scans.

Algorithm

- 1. Compute all admissible factors.
- 2. Sort admissible factors starting at each letter. Repeat for factors ending at each letter.
- 3. Two-finger scans to search for consecutive admissible factors A,B,C with IABCI = n/2.

O(n)-time algorithm

Enumeration

BN factorizations = isohedral tilings.

Algorithm can also enumerate all k factorizations in O(n+k) time.

Is k = O(n)? Claimed by [Provençal 2008]. Proved here.

Without additional structure on admissible factors, $\Omega(n^{3/2})$ factorizations possible:

 $\Theta(n^{1/2})$ locations, every pair defines an admissible factor Pick diametral locations for start of A, end of C: $\Theta(n^{1/2})$ Pick start & end locations of B: $\Theta(n)$

Need structure!

O(n) Factorizations

Lemma: there exists a set of O(1) locations in W such that every admissible factor with length $\geq |W|/6$ either starts or ends at a location in the set.

By symmetry, O(1) locations where ABC starts.

O(n) choices of B per ABC \Leftrightarrow O(n) factorizations.

Conclusion

Optimal O(n) algorithm to decide if a polyomino can tile plane by translation (at all!)

- Key: 1978 result on palindromes

Algorithm also enumerates all such tilings that are isohedral.

Upcoming work: other factorization forms, extending to polygons.

An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

Andrew Winslow

