Assignment 4

Presented by: Qi (daniel) ZHENG G44426724, Sizhe WU G26890251, Ruibo WANG G24256043, Yinyu LIN G48092483, Xinyue ZHAO G27620695

Part 1 (a)

Figure 1.1 Time series plot of growth of GNP

Table 1.2. Output of ARIMA

(a). Summary output

Name of Variable = g_GNP					
Mean of Working Series	0.007741				
Standard Deviation	0.010697				
Number of Observations	176				

(b). Autocorrelation

Lag	Covariance	Correlation	$\hbox{-}1\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1$	Std Error
0	0.00011443	1.00000	************	0
1	0.00004312	0.37687	. ******	0.075378
2	0.00002905	0.25391	. ****	0.085416

Lag	Covariance	Correlation	-198765432101234567891	Std Error
3	1.4332E-6	0.01253		0.089602
4	-9.8318E-6	08592	. ** .	0.089611
5	-0.0000123	10706	. ** .	0.090078
6	-6.5788E-6	05749	. * .	0.090798
7	-2.0849E-6	01822		0.091005
8	-8.8383E-6	07724	. ** .	0.091026
9	-8.0315E-6	07019	. * .	0.091397
10	1.19116E-6	0.01041		0.091703
11	-2.6307E-6	02299		0.091710
12	-0.0000111	09673	. ** .	0.091743
13	-0.0000116	10106	. ** .	0.092320
14	-0.0000131	11454	. ** .	0.092947
15	-8.5437E-6	07467	. * .	0.093745
16	3.3379E-6	0.02917	. * .	0.094083
17	7.06801E-6	0.06177	. * .	0.094134
18	0.00001049	0.09163	. **.	0.094364
19	3.93535E-6	0.03439	. * .	0.094868
20	2.81195E-6	0.02457		0.094939
21	-4.4305E-6	03872	. * .	0.094975
22	-2.4663E-6	02155		0.095065
23	-0.0000101	08830	. ** .	0.095093
24	-8.3708E-6	07315	. * .	0.095557

The time series (Figure 1.1) is behaving in a stochastic pattern, and drafting both upward and downward with no sign of exhibiting any trend, which is expected if it is a stationary time series. According to the autocorrelations table (Table 2.1(b)), only the first three autocorrelations (lag 0, lag1, and lag 2) are significant, but the value of autocorrelation from lag 1 to lag 24 decays more quickly than the benchmark where Φ_1 =0.9. Therefore, we could conclude that the series looks stationary.

Part 1 (b):

Table 1.2. Output of ARIMA

(a). Autocorrelations

Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	Std Error
0	0.00011443	1.00000	************	0

Lag	Covariance	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1	Std Error
1	0.00004312	0.37687	. ******	0.075378
2	0.00002905	0.25391	. ****	0.085416
3	1.4332E-6	0.01253		0.089602
4	-9.8318E-6	08592	. ** .	0.089611
5	-0.0000123	10706	. ** .	0.090078
6	-6.5788E-6	05749	. * .	0.090798

(b). Partial autocorrelation

Lag	Correlation	-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1	0.37687	. ******
2	0.13040	. ***
3	-0.14209	*** .
4	-0.09880	.** .
5	-0.01995	
6	0.03253	. * .

According to the Table 2.1(b), partial autocorrelations of Lag 2 and Lag 3 seems significant; however, from Table 2.1(a), autocorrelation of Lag 2 is significant, and the autocorrelation of Lag 3 is not significant. Therefore, we were in need to conduct an autoregression process to the second order urgently to determine the significance.

Table 2.2 Output of AR(2)

Conditional Least Squares Estimation AR (2)									
Standard Approx									
Parameter	Estimate	Error	t Value	Pr > t	Lag				
MU	0.0076333	0.0013830	5.52	<.0001	0				
AR1,1	0.33072	0.07556	4.38	<.0001	1				
AR1,2	0.13440	0.07583	1.77	0.0781	2				

Estimated AR (2) process:

$$Y_t = 0.1344Y_{t-2} + 0.33072Y_{t-1} + 0.0076333$$

By observing the conditional least squares estimation AR(2), we obtained the P-value of the first lag term (AR1,1) to be < 0.05, and the second lag term (AR1,2) to be 0.0781 > 0.05. As a result, we concluded that the coefficient at the lag of 2 (AR 1,2) is not statistically

significant, while coefficient of AR1,1 is significant. However, second-order autoregression model cannot be reduced to a first-order one, and we must conduct a first-order autoregressive process to generate the appropriate model here.

Table 2.3 Output of AR(1)

Conditional Least Squares Estimation AR(1)								
Parameter	Estimate	Standard Error		$\begin{array}{c} Approx \\ Pr > t \end{array}$				
MU	0.0076840	0.0012065	6.37	<.0001	0			
AR1,1	0.38074	0.07052	5.40	<.0001	1			

Estimated AR(1) process:

$$Y_t = 0.38074Y_{t-1} + 0.0076840$$

According to Table 2.3, the P-value of the first lag term (AR1,1) is < 0.0001, and thus < 0.05, and we could conclude that the coefficient AR1,1 is statistically significant. As a result, the first-order autoregression model, $Y_t = 0.38074Y_{t-1} + 0.0076840$, turned out to be the proper model for our purpose here.

Part 1 C:

Table 3.1 Autocorrelation check of residuals

To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	8.36	5	0.1372	-0.051	0.170	-0.057	-0.071	-0.079	-0.019
12	11.76	11	0.3822	0.036	-0.063	-0.064	0.056	0.008	-0.074
18	15.79	17	0.5389	-0.042	-0.077	-0.062	0.044	0.027	0.080
24	18.55	23	0.7268	-0.005	0.040	-0.056	0.028	-0.077	-0.046

Table 3.1 is the autocorrelation table of residuals where χ^2 -testing results are shown. For χ^2 -testing, there are null hypothesis H_0 : residual series $\{\epsilon_t\}$ is unautocorrelated to the indicated lag, and alternative hypothesis H_a : $\{\epsilon_t\}$ is autocorrelated to at least one lag smaller than the indicated lag. With all P-values greater than 0.05, we retained all of null hypotheses, and must conclude statistically that all autocorrelations up to a lag of 24 are 0. Since autocorrelations die out with lag increasing, all autocorrelation can then be seen as equal to 0. Because the residual term is zero-mean and homoscedastic, χ^2 -testing in our case essentially tests for white noise. Therefore, the residual term is a white noise series on a statistical basis.

Part 2:

(a) Estimate the constant term C, coefficient ϕ_1 and write down the estimated AR(1) model.

Solution:

At lag=1,
$$\phi_1 = r_1 = 0.709$$

For estimation of unconditional mean of Y_t : $\mu = \frac{C}{1-\phi_1} = 40.268$

Solve for constant:
$$C = \mu \times (1 - \phi_1) = 40.268 \times (1 - 0.709) = 11.718$$

Model AR(1):
$$Y_t = 0.709Y_{t-1} + 11.718$$

(b) Estimate the autocorrelations at lag 2 and 3, and the partial autocorrelation of lag 1.

Solution:

For AR(1) process:
$$r_k = \phi_1 r_{k-1} = \phi_1^k$$

Therefore,

$$r_2 = \phi_1^2 = 0.709^2 = 0.50268$$

$$r_3 = {\phi_1}^3 = 0.709^3 = 0.35640$$

Also, for AR(1) process: PACF(1) =
$$\phi_1 = 0.709$$

That is, the autocorrelations at Lag 2 and Lag 3 are 0.50268 and 0.3564 respectively. And, according to the statistically induction, we know that the partial autocorrelation at lag 1 equals 0.709.

(c) Estimate the variance of the ϵ_t 's

Solution:

For estimation of unconditional variance of Y_t: $\gamma_0 = \frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}$

$$: \sigma_{\varepsilon}^{2} = \gamma_{0} \times (1 - \phi_{1}^{2}) = 12.867 \times (1 - 0.709^{2}) = 6.399$$