日本国特許庁 JAPAN PATENT OFFICE

REC'D	0 2	SEP	2004	•
WIPO		PCT		

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月21日

出願番号 Application Number:

特願2003-297283

[ST. 10/C]:

[JP2003-297283]

出 願 人 Applicant(s):

コニカミノルタホールディングス株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月31日

【書類名】 特許願 【整理番号】 DKT2683972 【あて先】 特許庁長官殿 【国際特許分類】 H05B 33/14 C09K 11/06 602

【発明者】

【住所又は居所】 東京都日野市さくら町1番地コニカテクノロジーセンター株式会

社内

【氏名】 ▲高▼ 秀雄

【発明者】

【住所又は居所】 東京都日野市さくら町1番地コニカテクノロジーセンター株式会

社内

【特許出願人】

【識別番号】 000001270

【氏名又は名称】 コニカミノルタホールディングス株式会社

【代表者】 岩居 文雄

【手数料の表示】

【予納台帳番号】 012265 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層に下記一般式(1)で表される繰り返し単位を少なくとも一つ含む重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。 【化1】

一般式(1)

$$\star - \left(Ar_1 - L_1 - \frac{1}{n_1} \star \right)$$

〔式中、 Ar_1 は置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。 L_1 は下記連結基群1から選ばれるいずれかの連結基を表す。 n_1 は2以上の整数を表す。1

【化2】

連結基群1

[R1~R6は、各々独立に、アルキル基又はアリール基を表し、R3とR4、R5とR6は互いに連結して環を形成してもよい。]

【請求項2】

前記一般式(1)の Ar_1 は環数が5以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。

【請求項3】

陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層に下記一般式 (2) のいずれかで表される繰り返し単位を少なくとも一つ含む重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。

【化3】

一般式(2)

$$\begin{array}{c}
-\left(-A_{r_2}-L_2-\right)_{n_2}\\
L_3\\
X
\end{array}$$

〔式中、 Ar_2 は置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。 L_2 は下記連結基群1から選ばれるいずれかの連結基を表し、 L_3 は、単なる結合手、又は下記連結基群2から選ばれるいずれかの連結基を表し、Xは、正孔輸送性基、電子輸送性基、蛍光性基、リン光性基のいずれかを表す。 n_2 は2以上の整数を表す。〕

2/

連結基群1

連結基群2

〔R1~R6は、各々独立に、アルキル基又はアリール基を表し、R3とR4、R5とR6は互いに連結して環を形成してもよい。

 $R_7 \sim R_{13}$ は、各々独立に、アルキル基又はアリール基を表し、 $R_{10} \wr R_{11}$ 、 $R_{12} \wr R_{13}$ は互いに連結して環を形成してもよい。]

【請求項4】

前記一般式(2)の Ar_2 は環数が5以下であることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。

【請求項5】

前記正孔輸送性基が下記一般式(3)又は一般式(4)で表される部分構造を有することを特徴とする請求項3又は4に記載の有機エレクトロルミネッセンス素子。

【化6】

一般式(3)

一般式(4)

〔一般式(3)において、 $R_{14} \sim R_{21}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表す。また、 $R_{14} \sim R_{21}$ の隣接する基同士で結合して環を形成していてもよい。

一般式 (4) において、 $R_{22} \sim R_{30}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表し、 $R_{31} \sim R_{34}$ は、各々独立に、水素原子、結合手、アルキル基、又はシクロアルキル基を表し、 $R_{31} \sim R_{34}$ のいずれか1つが結合手を表す。また、 $R_{22} \sim R_{34}$ の 隣接する基同士で結合して環を形成していてもよい。]

【請求項6】

前記リン光性基が、有機金属錯体を含む基であることを特徴とする請求項3~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。

【請求項7】

前記有機金属錯体が、下記一般式(5)~(8)のいずれかで表される部分構造を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。

【化7】

〔一般式(5)において、 $R_{35} \sim R_{42}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{35} \sim R_{42}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。

一般式(6)において、 Z_1 、 Z_2 は、各々独立に、炭素原子、窒素原子とともに芳香環を 形成するのに必要な原子群を表す。Mは、金属原子を表す。

一般式(7)において、 $R_{43} \sim R_{48}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{43} \sim R_{48}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。

一般式(8)において、Yは2価の連結基を表し、 $R_{49} \sim R_{56}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{49} \sim R_{56}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。]

【請求項8】

白色に発光することを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。

【請求項9】

請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを 特徴とする表示装置。

【請求項10】

請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを 特徴とする照明装置。

【請求項11】

請求項10に記載の照明装置と、表示手段として液晶素子と、を備えたことを特徴とする 表示装置。

【書類名】明細書

【発明の名称】有機エレクトロルミネッセンス素子、表示装置および照明装置 【技術分野】

[0001]

本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子ということもある)、表示装置および照明装置に関する。

【背景技術】

[0002]

従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。

[0003]

一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子および正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。

[0004]

今後の実用化に向けた有機エレクトロルミネッセンス素子の開発としては、さらに低消費電力で効率よく高輝度に発光する有機エレクトロルミネッセンス素子が望まれているわけであり、例えば、スチルベン誘導体、ジスチリルアリーレン誘導体又はトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術(例えば、特許文献1参照。)、8ーヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特許文献2参照。)、8ーヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特許文献3参照。)等が知られている。

[0005]

上記文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(η e x t)の限界は5%とされている。

[0006]

ところが、プリンストン大より、励起三重項からのリン光発光を用いる有機エレクトロルミネッセンス素子の報告(例えば、非特許文献 1 参照。)がされて以来、室温でリン光を示す材料の研究が活発になってきている(例えば、非特許文献 2 および特許文献 4 参照。)。

[0007]

励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。

[0008]

例えば、多くの化合物がイリジウム錯体系など重金属錯体を中心に合成検討されている (例えば、非特許文献3参照。)。

[0009]

又、ドーパントとして、トリス (2-フェニルピリジン) イリジウムを用いた検討がされている (例えば、非特許文献 2参照。)。

[0010]

その他、ドーパントとしてL2Ir (acac) (ここでLは2座の配位子、acac はアセチルアセトンを表す)、例えば(ppy)2Ir (acac) (例えば、非特許文 献 4 参照。)を、又、ドーパントとして、トリス (2-(p-トリル) ピリジン) イリジ ウム (Ir (ptpy) 3), トリス (ベンゾ [h] キノリン) イリジウム (Ir (bz q)3), Ir(bzq)2ClP(Bu)3等を用いた検討(例えば、非特許文献5参照 。)が行われている。

[0011]

又、高い発光効率を得るために、正孔輸送性の化合物をリン光性化合物のホストとして 用いている(例えば、非特許文献6参照)。

[0012]

また、各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウ ム錯体をドープして用いている(例えば、非特許文献4参照)。さらに、ホールブロック 層の導入により高い発光効率を得ている(例えば、非特許文献5参照。)。

[0013]

しかし、緑色発光については理論限界である20%近くの外部取り出し効率が達成され ているものの、とくに高輝度発光時における効率の大幅な低下という問題があり、またそ の他の発光色については未だ十分な効率が得られておらず改良が必要であり、例えば高効 率な青色発光を実現する有機エレクトロルミネッセンス素子の検討の例として、特許文献 5 を挙げることができる。加えて今後の実用化に向けた有機エレクトロルミネッセンス素 子では、さらに低消費電力で効率よく高輝度に発光する有機エレクトロルミネッセンス素 子の開発が望まれている。

[0014]

有機EL素子に用いられるリン光性ドーパントについては、これまでにも特許文献 6、 7、8、9、10、11等、非常に多くの開示がある。これらの開示の多くは高い発光効 率や、高い色純度、優れた耐久性を目的としている。しかしながら現在までのところ、有 機EL素子に用いられるリン光性ドーパント化合物として要求される諸要素について未だ 充分とはいえず、さらなる改良が求められている。

[0015]

一方、有機EL素子を大面積化するにあたり、低分子化合物を用いた有機EL素子の作 製において一般的である真空蒸着法による製造は、設備やエネルギー効率の面で問題があ ることが知られており、インクジェット法やスクリーン印刷法などを含む印刷法もしくは スピンコートあるいはキャストコートといった塗布法が望ましいと考えられている。また 、例えば白色発光素子を作製する際には異なる発光極大波長をもつ複数の発光性化合物を 発光層に設置しなければならないが、とくにリン光発光素子の場合、真空蒸着法で複数の リン光性ドーパントを毎回同じ比率で蒸着することは困難であり、製造時の歩留まりに問 題の出ることが予想されるが、溶剤溶解性に優れた材料を用いて前記印刷法や塗布法によ る有機EL素子の作製が可能となれば、リン光性ドーパントを同じ比率で混合した溶液を 調製することによって、製造されるいずれの有機EL素子に対しても同じ比率のリン光性 ドーパントを含有せしめることができ、同じ発光色の白色発光有機EL素子を安定的に作 製することが可能となる。

[0016]

例えば、ポリフェニレンビニレン誘導体 (PPV)、ポリアルキルフルオレン誘導体 (PAF) 等の高分子である発光体(例えば、非特許文献 7 、 8 参照)や、ポリスチレン、 ポリメチルメタクリレート、ポリビニルカルバゾール(PVK)等の高分子中に低分子の 発光色素を分散又は溶解させる技術(例えば、特許文献12、非特許文献9参照)が知ら れている。

[0017]

また、ビニルカルバゾール重合体とイリジウム錯体の共重合体が非常に優れた有機EL 素子となることが報告されている(例えば、非特許文献10参照)。

【特許文献1】特許第3093796号明細書 【特許文献2】特開昭63-264692号公報

【特許文献3】特開平3-255190号公報

【特許文献4】米国特許第6097147号公報

【特許文献5】特開2002-100476号公報

【特許文献6】特開2001-181616号公報

【特許文献7】特開2001-247859号公報

【特許文献8】特開2002-83684号公報

【特許文献9】特開2002-175884号公報

【特許文献10】特開2002-338588号公報

【特許文献11】特開2003-7469号公報

【特許文献12】特開平4-212286号公報

【非特許文献1】M. A. Baldo et al., nature、395卷、1 51-154ページ (1998年)

【非特許文献2】M. A. Baldo et al., nature、403卷、1 7号、750-753ページ (2000年)

【非特許文献3】S. Lamansky et al., J. Am. Chem. So c., 123巻、4304ページ (2001年)

【非特許文献4】M. E. Tompson et al., The 10th In ternational Workshop on Inorganic and Organic Electroluminescence (EL'00、浜松)

【非特許文献 5】 Moon-Jae Youn. Og, Tetsuo Tsutsu iet al., The 10th International Worksho on Inorganic and Organic Electrolumi nescence (EL'00、浜松)

【非特許文献 6】 I kai et al., The 10th Internati onal Workshop on Inorganic and Organic Electroluminescence (EL'00、浜松)

【非特許文献7】nature、Vol.357、477、1992年

【非特許文献8】アドバンスドマテリアルズ、4項、1992年

【非特許文献9】第38回応用物理学関係連合講演会予稿集31p-G-12、19 91年

【非特許文献10】平成15年度NHK放送技研公開予稿集P52~57

【発明の開示】

【発明が解決しようとする課題】

[0018]

しかしながら、従来の有機EL素子では、発光輝度、発光効率、発光寿命、駆動電力に おいて、十分に満足のできる性能が得られていなかった。

[0019]

本発明は、かかる課題に鑑みてなされたものであり、本発明の目的は、高い発光輝度、 発光効率、発光寿命を有し、さらに駆動電力が抑えられた有機エレクトロルミネッセンス 素子、およびそれを具備してなる表示装置もしくは照明装置を提供することである。

【課題を解決するための手段】

[0020]

本発明の目的は下記構成により達成される。

(請求項1)

陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子で あって、前記有機層の少なくとも1層に下記一般式 (1) で表される繰り返し単位を少な くとも一つ含む重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。

[0021]

【化1】

一般式(1)

-(-Ar₁-L₁-)_{n1}

[0022]

〔式中、Arıは置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。Liは下記連結基群1から選ばれるいずれかの連結基を表す。niは2以上の整数を表す。〕

【0023】 【化2】

連結基群1

[0024]

〔R1~R6は、各々独立に、アルキル基又はアリール基を表し、R3とR4、R5とR6は互いに連結して環を形成してもよい。〕

(請求項2)

前記一般式(1)のArıは環数が5以下であることを特徴とする請求項1に記載の有機 エレクトロルミネッセンス素子。

(請求項3)

陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層に下記一般式 (2) のいずれかで表される繰り返し単位を少なくとも一つ含む重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。

【0025】 【化3】

一般式(2)

[0026]

〔式中、 Ar_2 は置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。 L_2 は下記連結基群1から選ばれるいずれかの連結基を表し、 L_3 は、単なる結合手、又は下記連結基群2から選ばれるいずれかの連結基を表し、Xは、正孔輸送性基、電子輸送性基、蛍光性基、リン光性基のいずれかを表す。 n_2 は2以上の整数を表す。)

[0027]

5/

連結基群1

連結基群2

[0029]

〔R1~R6は、各々独立に、アルキル基又はアリール基を表し、R3とR4、R5とR6は互いに連結して環を形成してもよい。

 $R_7 \sim R_{13}$ は、各々独立に、アルキル基又はアリール基を表し、 R_{10} と R_{11} 、 R_{12} と R_{13} は互いに連結して環を形成してもよい。]

(請求項4)

前記一般式(2)の Ar_2 は環数が5以下であることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。

(請求項5)

前記正孔輸送性基が下記一般式(3)又は一般式(4)で表される部分構造を有することを特徴とする請求項3又は4に記載の有機エレクトロルミネッセンス素子。

[0030]

【化6】

一般式(3)

一般式(4)

[0031]

〔一般式(3)において、 $R_{14} \sim R_{21}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表す。また、 $R_{14} \sim R_{21}$ の隣接する基同士で結合して環を形成していてもよい。

一般式(4)において、 $R_{22} \sim R_{30}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表し、 $R_{31} \sim R_{34}$ は、各々独立に、水素原子、結合手、アルキル基、又はシクロアルキル基を表し、 $R_{31} \sim R_{34}$ のいずれか1つが結合手を表す。また、 $R_{22} \sim R_{34}$ の隣接する基同士で結合して環を形成していてもよい。〕

(請求項6)

前記リン光性基が、有機金属錯体を含む基であることを特徴とする請求項3~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。

(請求項7)

前記有機金属錯体が、下記一般式(5)~(8)のいずれかで表される部分構造を有することを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。

[0032]

【化7】

[0033]

〔一般式(5)において、 $R_{35} \sim R_{42}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{35} \sim R_{42}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。

一般式(6)において、 Z_1 、 Z_2 は、各々独立に、炭素原子、窒素原子とともに芳香環を形成するのに必要な原子群を表す。Mは、金属原子を表す。

一般式(7)において、 $R_{43} \sim R_{48}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{43} \sim R_{48}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。

一般式(8)において、Yは2価の連結基を表し、 $R_{49} \sim R_{56}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{49} \sim R_{56}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。]

(請求項8)

白色に発光することを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロル ミネッセンス素子。

(請求項9)

請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。

(請求項10)

請求項1~8のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。

(請求項11)

請求項10に記載の照明装置と、表示手段として液晶素子と、を備えたことを特徴とする 表示装置。

[0034]

以下、本発明についてさらに詳しく説明する。

本発明者らは鋭意検討の結果、陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子であって、この有機層の少なくとも1層に前記一般式(1)で表される繰り返し単位を少なくとも一つ含む重合体を含有させることで、高い発光輝度、発光効率、発光寿命を有し、さらに駆動電力が抑えられた有機エレクトロルミネッセンス素子とすることができることを見出した。

[0036]

前記一般式(1)において、Arlは置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。Llは前記連結基群1から選ばれるいずれかの連結基を表す。nlは2以上の整数を表す。

[0037]

前記連結基群1において、R1~R6は、各々独立に、アルキル基又はアリール基を表し、R3とR4、R5とR6は互いに連結して環を形成してもよい。

[0038]

連結基群1の中でも、特にO原子、S原子、Se原子、Si原子で連結される連結基が本発明の効果を得る上で特に好ましく、最も好ましくはO原子又はS原子で連結されたものである。

[0039]

以下に前記連結基群 1 の例を示すが、本発明の態様がこれによって限定されるものではない。

[0040]

【化8】

L ₁ -1	L ₁ -2	L ₁ -3	L ₁ -4
-0-	*-s-*	*-Se-*	*-Te-*
L ₁ -5	L ₁ -6	L ₁ -7	L ₁ -8
-p-	*P*	*p*	*p*
L ₁ -9	L ₁ -10	L ₁ -11	L ₁ -12
-B-	*B*	*-B-*	*B*
L ₁ -13	L ₁ -14	L ₁ -15	L ₁ -16
^-si-*	°-si-	°-si-°	"-si-"
L ₁ -17	L ₁ -18	L ₁ -19	L ₁ -20
-si-	*-Si* Me Me	*-Ge*	·-Ge-·

[0041]

以下に前記一般式(1)の Ar_1 の例を示すが、本発明の態様がこれによって限定されるものではない。

[0042]

【化9】

[0043]

【化10】

【化11】

[0045]

前記一般式(1)の Ar_1 は環数が5以下であることが好ましく、これにより、一層高 い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0046]

本発明において、環数とは芳香環およびヘテロ芳香環1つを1と数え、 n 個の芳香環お よびヘテロ芳香環からなるアリーレン基およびヘテロアリーレン基の環数はnとなる。ま

た、縮合環の場合は、縮合環の数を示し、n個の環からなる縮合環の環数はnとなる。例えば、 $Ar-3\sim Ar-6$ 、Ar-29, Ar-30、 $Ar-50\sim Ar-58$ は環数 2、 $Ar-7\sim Ar-13$ 、 $Ar-31\sim Ar-36$ 、 $Ar-59\sim Ar-62$ は環数 3、 $Ar-14\sim Ar-23$ 、 $Ar-37\sim Ar-42$ は環数 4、 $Ar-24\sim Ar-28$ 、 $Ar-43\sim Ar-45$ は環数 5と数える

また前記一般式 (1) で表される繰り返し単位を有する少なくとも一つ含む重合体の両末端の構造については特に制限するものではないが、水素原子、アルキル基、置換基を有しても良いアリール基などでキャップすることが好ましく、有機EL素子としての機能上の観点から正孔阻止性基、後述する蛍光性基又はリン光性基によってキャップすることがより好ましい。

[0047]

正孔阻止性基としては、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる能力を持つもの、すなわち電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さいという特徴を有していれば使用できるが、スチリル化合物、トリアゾール誘導体、フェナントロリン誘導体、オキサジアゾール誘導体、トリアリールボラン誘導体の部分構造を有する基があげられる。具体的には後述する電子輸送性基のものを用いることができる。

[0048]

前記一般式(1)で表される繰り返し単位を少なくとも一つ含む重合体の例としては、 上述した例を組み合わせた重合体が挙げられるが、以下に前記一般式(1)で表される繰 り返し単位を少なくとも一つ含む重合体の特に好ましい例を示す。しかしながら、本発明 の態様がこれによって限定されるものではない。

[0049]

【化12】

[0050]

【化13】

[0051]

【化14】

Poly-11

[0052]

前記一般式(1)で表される繰り返し単位を少なくとも一つ含む重合体は、陰極と陽極 との間にある有機層のいずれの有機層に含有されていてもよいが、好ましくは、発光層に 含有されるのが好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、 さらに一層駆動電力を抑えることができる。

[0053]

また、本発明者らは、陰極と陽極との間に有機層を少なくとも1層有する有機エレクト ロルミネッセンス素子であって、この有機層の少なくとも1層に前記一般式 (2) のいず れかで表される繰り返し単位を少なくとも一つ含む重合体を含有させることで、高い発光

[0054]

前記一般式(2)において、 Ar_2 は置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、ヘテロアリーレン基のヘテロ原子の数は2以下である。 L_2 は前述した連結基群1から選ばれるいずれかの連結基を表し、 L_3 は、単なる結合手、又は前記連結基群2から選ばれるいずれかの連結基を表し、Xは、正孔輸送性基、電子輸送性基、蛍光性基、リン光性基のいずれかを表す。 n_2 は2以上の整数を表す。

[0055]

前記連結群 2 において、R7~R13は、各々独立に、アルキル基又はアリール基を表し、R10とR11、R12とR13は互いに連結して環を形成してもよい。

[0056]

連結基群2の中でも、特にO原子、Se原子、S原子、Si原子で連結される連結基が本発明の効果を得る上で特に好ましく、最も好ましくはO原子、又はS原子で連結されたものである。

[0057]

以下に前記連結基群2の例を示すが、本発明の態様がこれによって限定されるものではない。

[0058]

【化15】

[0059]

前記一般式(2)のAr2は環数が5以下であることが好ましく、これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0060]

前記一般式(2)の Ar_2 の例としては前述した一般式(1)の Ar_1 の例が挙げられるが、本発明はこれに限定されるものではない。

[0061]

正孔輸送性基とは、正孔を輸送する機能を有する部分構造を有する基であり、広い意味で正孔注入性基、電子阻止性基も正孔輸送性基に含まれる。特に制限はなく、従来、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層、正孔輸送層に使

[0062]

正孔輸送基は、正孔の注入もしくは輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体等の部分構造を有する基が挙げられる。より好ましくは、トリアリールアミン誘導体、カルバゾール誘導体の部分構造を有する基が挙げられる。

[0063]

トリアリールアミン誘導体を形成するアリール基として代表的であるのはフェニル基であるが、他にナフチル基、アントリル基、アズリル基、フルオレニル基といった炭化水素芳香環残基や、フリル基、チエニル基、ピリジル基、イミダゾリル基などのヘテロ芳香環残基や、該ヘテロ芳香環が別の芳香環と縮合して形成された縮合芳香環残基であってもよい。トリアリールアミン部分を構成するアリール基として好ましくはフェニル基、ナフチル基、フルオレニル基、チエニル基である。

[0064]

本発明においては、正孔輸送性基として特にカルバゾール誘導体を含む基が好ましく、前記一般式(3)又は一般式(4)で表される部分構造を有する基であることが最も好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0065]

前記一般式(3)において、 $R_{14} \sim R_{21}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表す。また、 $R_{14} \sim R_{21}$ の隣接する基同士で結合して環を形成していてもよい。

[0066]

前記一般式(4)において、 $R_{22}\sim R_{30}$ は、各々独立に、水素原子、アルキル基、又はシクロアルキル基を表し、 $R_{31}\sim R_{34}$ は、各々独立に、水素原子、結合手、アルキル基、又はシクロアルキル基を表し、 $R_{31}\sim R_{34}$ のいずれか1つが結合手を表す。また、 $R_{22}\sim R_{34}$ の隣接する基同士で結合して環を形成していてもよい。

[0067]

以下に正孔輸送性である部分構造の例を示す(これらの部分構造のいずれかの部分が結合手となる)。正孔輸送性基は、これらの部分構造を有する基であるが、本発明の態様がこれによって限定されるものではない。

[0068]

【化16】

[0069]

電子輸送性基とは電子を輸送する機能を有する基であり、広い意味で電子注入性基、正孔阻止性基も電子輸送性基に含まれる。電子輸送性基は、陰極より注入された電子を発光層に伝達する機能を有していればよく、従来、電子輸送層に用いられている化合物の部分構造を有する基を用いることができる。

[0070]

この電子輸送性基の例としては、トリアリールボラン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などの部分構造を有する基が挙げられる。さらに、上記オキサジアゾール誘導体

[0071]

また、8ーキノリノール誘導体の金属錯体、例えばトリス(8ーキノリノール)アルミニウム(Alq)、トリス(5,7ージクロロー8ーキノリノール)アルミニウム、トリス(5,7ージブロモー8ーキノリノール)アルミニウム、トリス(2ーメチルー8ーキノリノール)アルミニウム、トリス(5ーメチルー8ーキノリノール)アルミニウム、ビス(8ーキノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体の部分構造を有する基も、電子輸送性基として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されている部分構造を有する基も、電子輸送性基として好ましく用いることができる。

[0072]

好ましくは、トリアリールボラン誘導体や窒素原子を含む複素芳香環の部分構造を有する基が挙げられる。窒素原子を含む芳香環は2つ以上のヘテロ原子を含むものがより好ましく、その例としてはピラジン環、ピリミジン環、フェナントロリン環、ピリドインドール環、ジピリドピロール環、ジアザフルオレン環、フェナチアジン環、チアゾール環もしくはこれらの芳香環がさらに芳香環と縮合して形成された縮合芳香環化合物残基が挙げられるほか、さらには電子吸引性置換基によって置換された炭化水素環残基(例えばペンタフルオロフェニル基、2,4,6ートリシアノフェニル基など)を挙げることもできる。特に好まくは、ペンタフルオロフェニル基、トリアリールボラン類残基、フェナントロリン環、ピリドインドール環、チアゾール環およびこれらの部分構造を有する縮合芳香環化合物残基を挙げることができる。これにより、より一層発光効率を向上させることができる。

[0073]

トリアリールボラン誘導体を形成するアリール基として代表的であるのはフェニル基であるが、他にナフチル基、アントリル基、アズリル基、フルオレニル基といった炭化水素芳香環残基や、フリル基、チエニル基、ピリジル基、イミダゾリル基などのヘテロ芳香環残基や、該ヘテロ芳香環が別の芳香環と縮合して形成された縮合芳香環残基であってもよい。

[0074]

トリアリールボラン誘導体はその電子欠乏性のためにしばしば不安定であり、安定化のためにアリール基のホウ素原子と結合した原子に隣接する原子に置換基を導入することが多い。たとえばホウ素原子と結合したベンゼン環にメチル基を導入したトリメシチルボランや、イソプロピル基を導入したトリス (ジイソプロピル) ボランである。配位子にトリアリールボラン構造を含む場合、ホウ素原子と結合したアリール基には、そのホウ素原子と直接結合した原子の隣接位に置換基を導入することが好ましい。好ましい置換基としてはメチル基、フルオロメチル基、トリフルオロメチル基、イソプロピル基等を挙げることができる。

[0075]

以下に電子輸送性である部分構造の例を示す(これらの部分構造のいずれかの部分が結合手となる)。電子輸送性基は、これらの部分構造を有する基であるが、本発明の態様がこれによって限定されるものではない。

[0076]

【化17】

【化18】

ET-6

[0078]

【化19】

[0079]

【化20】

[0080]

【化21】

ET-13

$$N$$
 CF_3
 N
 N
 N
 N
 N
 N
 N

ET-14

$$F_3C$$
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3
 CF_3

[0081]

蛍光性基とは、溶液状態で蛍光量子収率が高い蛍光性有機分子、または、希土類錯体系 蛍光体の部分構造を有する基である。ここで、蛍光量子収率は10%以上、特に30%以 上が好ましい。蛍光量子収率が高い蛍光性有機分子としては、例えばクマリン系色素、ピ ラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツ アントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペ リレン系色素、スチルベン系色素、ポリチオフェン系色素などが挙げられ、これらの部分 構造を有する基を蛍光性基として用いることができる。

[0082]

以下に蛍光性である部分構造の例を示す(これらの部分構造のいずれかの部分が結合手となる)。蛍光性基は、これらの部分構造を有する基であるが、本発明の態様がこれによって限定されるものではない。

[0083]

【化22】

【化23】

E-15

E-16

[0085]

【化24】

[0086]

リン光性基とは励起三重項からの発光が観測される部分構造を有する基であり、化合物のリン光畳子収率が、25℃において0.001以上である。リン光畳子収率は好ましくは0.01以上、更に好ましくは0.1以上である。

OCH₃

H₃CO

[0087]

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸 出証特2004-3046338

[0088]

リン光性基は、有機金属錯体を含む基であることが好ましく、これにより、一層高い発 光輝度、発光効率、発光寿命を有し、さらに一層駆動電力が抑えることができる。

[0089]

有機金属錯体は、前記一般式 (5) ~ (8) のいずれかで表される部分構造を有することが好ましく、これにより、さらに一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0090]

- 一般式(5)において、 $R_{35} \sim R_{42}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{35} \sim R_{42}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。
- 一般式(6)において、 Z_1 、 Z_2 は、各々独立に、炭素原子、窒素原子とともに芳香環を 形成するのに必要な原子群を表す。Mは、金属原子を表す。
- 一般式(7)において、 $R_{43}\sim R_{48}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{43}\sim R_{48}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。
- 一般式(8)において、Yは2価の連結基を表し、 $R_{49}\sim R_{56}$ は、各々独立に、水素原子、結合手、又は置換基を表し、 $R_{49}\sim R_{56}$ の隣接する基同士で結合して環を形成していてもよい。Mは、金属原子を表す。

[0091]

一般式(5)~(8)のMには、イリジウム原子、パラジウム原子、白金原子、ロジウム原子、ルテニウム原子、オスミウム原子であることが好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0092]

本発明に係る有機金属錯体は、好ましくは元素の周期律表で8族の金属を含有する有機金属錯体であり、更に好ましくは、イリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、ロジウム化合物、パラジウム化合物、ルテニウム化合物、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0093]

以下にリン光性である部分構造の例を示す(これらの部分構造のいずれかの部分が結合手となる)。リン光性基は、これらの部分構造を有する基であるが、本発明の態様がこれによって限定されるものではない。

[0094]

[0095]

また前記一般式 (2) で表される繰り返し単位を有する少なくとも一つ含む重合体の両末端の構造については特に制限するものではないが、水素原子、アルキル基、置換基を有しても良いアリール基などでキャップすることが好ましく、有機EL素子としての機能上の観点から正孔阻止性基、蛍光性基又はりん光性基によってキャップすることがより好ましい。

[0096]

前記一般式 (2) で表される繰り返し単位を少なくとも一つ含む重合体の例としては、

【0097】 【化26】

[0098]

【化27】

Poly-17

Poly-18

Poly-19

Poly-20

[0099]

【化28】

Poly-22

Poly-23

Poly-24

Poly-25

[0100]

【化29】

Poly-26

Poly-27

Poly-28

[0101]

【化30】

[0102]

【化31】

【化32】

[0104]

【化33】

Poly
$$-38$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0105]

【化34】

[0106]

【化35】

Poly-45

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ N & O \\ \hline \\ M & O \\ \hline \\ N &$$

[0107]

【化36】

[0108]

一般式(2)で表される繰り返し単位を少なくとも一つ含む重合体は、陰極と陽極との間にある有機層のいずれの有機層に含有されていてもよいが、Xが正孔輸送性基である場合には、後述する正孔輸送層、電子阻止層、又は発光層に含有されていることが本発明の

効果を得る上で好ましい。

[0109]

また、Xが電子輸送性基である場合には、後述する電子輸送層、正孔阻止層、又は発光層に含有されていることが本発明の効果を得る上で好ましい。

[0110]

また、Xが蛍光性基、又はリン光性基である場合には、発光層に含有されていることが本発明の効果を得る上で好ましい。

[0111]

本明細書において置換基はアルキル基(例えば、メチル基、エチル基、プロピル基、イ ソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基 、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シ クロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、ヘテロ原子を有するもの を含むアリール基(例えば、フェニル基、ナフチル基、ピリジル基、チエニル基、フリル 基、イミダゾリル基等)、ヘテロ環基(例えば、ピロリジル基、イミダゾリジル基、モル ホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プ ロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオ キシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオ キシ基等)、ヘテロ原子を有するものを含むアリールオキシ基 (例えば、フェノキシ基、 ナフチルオキシ基、ピリジルオキシ基、チエニルオキシ基等)、アルキルチオ基(例えば 、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オ クチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチ オ基、シクロヘキシルチオ基等)、ヘテロ原子を有するものを含むアリールチオ基(例え ば、フェニルチオ基、ナフチルチオ基、ピリジルチオ基、チエニルチオ基等)、アルコキ シカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチ ルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等) 、ヘテロ原子を有するものを含むアリールオキシカルボニル基(例えば、フェニルオキシ カルボニル基、ナフチルオキシカルボニル基、ピリジルオキシカルボニル基、チエニルオ キシカルボニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ 基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシル アミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、フッ素原子、塩 素原子、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタ フルオロエチル基、ペンタフルオロフェニル基等)、シアノ基が挙げられる。これらの置 換基は複数が互いに結合して環を形成していても、上記置換基によってさらに置換されて いてもよい。

[0112]

本発明に係る重合体の分子量は、1000-10000 ののののであることが好ましく、より好ましくは、2000-5000 のである。この範囲とすることで、塗布法で有機EL素子の有機層を形成する場合に、溶媒への溶解性が確保され、溶液の粘度が有機層形成に適するようになり、有機層を容易に形成することができる。

[0113]

本発明に係る重合体について、重合体を形成するためのモノマーは既知の方法によって、当業者であれば容易に得ることができる。また、本発明に係る重合体とするためのモノマーの重合方法についても当業者であれば既知の方法を応用することによって可能である

[0114]

以下に本発明に係る重合体の代表的な例について合成法を示すが、本発明の態様がこれによって限定されるものではない。

[0115]

(1) Poly-13 (高分子量) 前駆体の合成

N-(3-プロモー6-ヒドロキシ) フェニルカルバゾール 1.01g(3.0mmo)1)を5mlのヘキサフルオロイソプロパノール(HFIP)に溶解し、激しく攪拌させ た6Mの水酸化ナトリウム水溶液5mlの中に加えた。1分ほどそのまま激しく攪拌させ た溶液の中に、テトラブチルアンモニウムヒドロスルファート 0. 047g (0.14 m mol)を加え、室温で5h反応を行った。所定時間経過後、反応液に濃塩酸を加え中和 し、有機相を分離した。有機相を蒸留水で良く洗浄し、再び有機相を分離し、無水硫酸ナ トリウムで乾燥した。乾燥終了後、減圧下で溶媒を流去し、メタノールからの再沈殿によ り収率81%(0.63g)で目的のポリマー前駆体を得た。また、GPCによる数平均 分子量は28000 (ポリスチレン換算)であった。

[0116]

Poly-13 (低分子量) 前駆体の合成

N-(3-プロモー6-ヒドロキシ) フェニルカルバゾール 1.01g(3.0mmo)1)を5mlのトルエンに溶解し、激しく攪拌させた6Mの水酸化ナトリウム水溶液5m 1の中に加えた。1分ほどそのまま激しく攪拌させた溶液の中に、テトラブチルアンモニ ウムヒドロスルファート 0. 0 4 7 g (0. 1 4 mm o l) を加え、室温で 0. 5 h 反応 を行った。所定時間経過後、生成した沈殿をろ別した。この沈殿をアセトンで良く洗浄し た後、HFIPに溶解し、1N塩酸、水で洗浄し無水硫酸ナトリウムで乾燥した。乾燥終 了後、減圧下で溶媒を流去し、メタノールからの再沈殿により収率20%(0.16g) で目的のポリマー前駆体を得た。また、GPCによる数平均分子量は2500(ポリスチ レン換算)であった。

[0117]

(3) Poly-14、27 (高分子量) 前駆体の合成

N- (2, 5-ジブロモ) フェニルカルバゾール1.20g(3.0mmol) と硫化 ナトリウム 0. 0 2 3 g (3. 0 mm o l) を 1 0 m l の N - メチルピロリドンに溶解し 、反応装置内を十分に窒素置換した後、攪拌しながら230℃まで加熱し、2時間反応を 行った。反応終了後、500mlのメタノール中に溶液をあけ、再沈殿により収率75% (0.62g)目的のポリマー前駆体を得た。また、GPCによる数平均分子量は190 00 (ポリスチレン換算) であった。

[0118]

(4) Poly-14、27 (低分子量) 前駆体の合成

N-(2, 5-ジプロモ) フェニルカルバゾール 1.20g(3.0mmol) を50mlの無水テトラヒドロフランに溶解し、反応装置内を十分に窒素置換した。-20℃ま で冷却した後、n-ブチルリチウム・ヘキサン溶液2.0ml(2.9mmol)をゆっ くり加えた。さらに10分間撹拌した後、硫黄粉末96mg(3.0mmol)を加え1 時間撹拌した。反応終了後、10mlの水を加えクエンチした後、沈殿をろ別した。この 沈殿をアセトンで良く洗浄した後、HFIPに溶解し、1N塩酸、水で洗浄し無水硫酸ナ トリウムで乾燥した。乾燥終了後、減圧下で溶媒を流去し、メタノールからの再沈殿によ り収率20%(0.16g)で目的のポリマー前駆体を得た。また、GPCによる数平均 分子量は1600 (ポリスチレン換算)であった。

[0119]

Poly-6前駆体の合成

2-ヒドロキシー3-メチルビフェニレン1.84g(10.0mmol)を15ml のトルエンに溶解し、1分ほどそのまま激しく攪拌させた溶液の中に、酸化銀13.9g (60.0mmol)を加えた。室温で7h反応を行った後、濾過にて生成する銀と酸化 銀を取り除き、メタノールからの再沈殿により収率98%(1.79g)で目的のポリマ ー前駆体を得た。また、GPCによる数平均分子量は30000 (ポリスチレン換算) で あった。

[0120]

Poly-12、16、26、35前駆体の合成 N-(2-ヒドロキシー3-メチル) フェニルカルバゾール 1.64g(6.0mmol))を $10\,\mathrm{ml}$ のトルエンに溶解し、1分ほどそのまま激しく攪拌させた溶液の中に、酸化銀8.34g(36.0 mmol)を加えた。室温で $12\,\mathrm{h}$ 反応を行った後、濾過にて生成する銀と酸化銀を取り除き、メタノールからの再沈殿により収率91%(1.49g)で目的のポリマー前駆体を得た。また、GPCによる数平均分子量は22000(ポリスチレン換算)であった。

[0121]

(7) Poly-18前駆体の合成

N-(3- 7 + 6 - 2 + 4 + 5) フェニルカルバゾール1. 01g(3.0 mm o 1) と2-ブロモー5-ヒドロキシフェニルピリジン75.0mg(0.3mmol)を 5mlのトルエンに溶解し、激しく攪拌させた6Mの水酸化ナトリウム水溶液5mlの中 に加えた。1分ほどそのまま激しく攪拌させた溶液の中に、テトラブチルアンモニウムヒ ドロスルファート0.047g(0.14mmol)を加え、室温で5h反応を行った。 所定時間経過後、反応液に濃塩酸を加え中和し、有機相を分離した。有機相を蒸留水で良 く洗浄し、再び有機相を分離し、無水硫酸ナトリウムで乾燥した。乾燥終了後、減圧下で 溶媒を流去し、メタノールからの再沈殿により収率83%(0.68g)で重合物を得た 。GPCによる数平均分子量は21000(ポリスチレン換算)であった。次に、減圧下 、80℃、8時間過熱乾燥した前述の共重合体0.5gとビス(μ ークロロ)テトラキス (2-フェニルピリジン) ジイリジウム (III) {[Ir(ppy) 2C1] 2 0. 21 g(0.2 mm o 1)を50 m l の脱水トルエンに懸濁させ、窒素気流下、トリフルオロ メチルスルホン酸銀 (I) (AgCF3SO3) 0.10g(0.4mmol) を加え、反 応を開始した。6時間過熱還流を行った後、反応液を500mlのメタノール中に投入し 沈殿物をろ過によって回収した。沈殿物を塩化メチレン、アセトンで順次洗浄し、減圧化 で60℃、4時間乾燥を行い目的のポリマー前駆体0.5gを得た。

[0122]

(1) \sim (7) で合成したそれぞれのポリマー前駆体は、下記に示す末端基処理例で処理を行うことで、本発明に係る重合体を合成することができる。なお(8) \sim (10) ではPoly-12、13、16についての合成を示している。

[0123]

- (8) Poly-12前駆体の末端残基の処理 (アルキル化)

[0124]

- (9) Poly-13の末端残基の処理(アリール(フェニル)化)
- (1)で得られたポリマー前駆体 0.5ge50mloHFIPに溶解し、窒素気流下、酢酸銅(II) 18mg(0.1mmol)、フェニルボロン酸 2mg(0.2mmol)、ピリジン 0.1mle か、室温で 24 時間撹拌した。メタノールを用いて再沈殿を行い、得られた沈殿物を 3mle のの 3mle の、アセトン、水、アセトンの順に良く洗浄を行った後。減圧乾燥を行い、3mle の 3mle の 3mle の 3mle で、下端処理前のポリマーと大きな違いを示さなかった。また、3mle の 3mle で、末端処理前のポリマーと大きな違いを示さなかった。また、3mle の 3mle で、末端処理前のポリマーと大きな違いを示さなかった。また、3mle の 3mle の 3

[0125]

(10) Poly-16の末端残基の処理(りん光性発光機能基によるキャップ)

(4) 得られたポリマー前駆体1.0 gと3ープロモフェニルピリジンービスフェニルピリジンイリジウム (III) 2 mg (0.0 4 mmol) を5 0 ml のピリジンに溶かし、銅紛2. mgを加え、1 2 時間加熱還流を行った。反応終了後、反応液をろ過し、その遮液を5 0 0 ml の水に投入した。沈殿した重合体をろ過により集め、クロロホルム、アセトンの順に十分に洗浄し、減圧化で6 0 C、4時間乾燥を行い $\text{Polyological polyological polyological$

[0126]

《有機EL素子の構成層》

本発明の有機EL素子の構成層について説明する。

[0127]

本発明において、有機EL素子の有機層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。

- (1)陽極/発光層/陰極
- (2)陽極/発光層/陰極バッファー層/陰極
- (3)陽極/陽極バッファー層/発光層/陰極バッファー層/陰極
- (4)陽極/正孔輸送層/発光層/陰極
- (5)陽極/正孔輸送層/発光層/電子輸送層/陰極
- (6)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
- (7)陽極/正孔輸送層/電子阻止層/発光層/電子輸送層/陰極
- (8)陽極/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極
- (9)陽極/陽極バッファー層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極

《陽極》

[0128]

《陰極》

一方、陰極としては、仕事関数の小さい(4 e V以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウムーカリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/のでで、アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウムに合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が皆られる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性および酸化等に対する耐久性の点から、電子注入性および酸化等に対する耐久性の点から、電子注入性および酸化等に対する耐久性の点から、電子注入性および酸化等に対する耐久性の点から、電子注マグを通路といる。これらの電極物では、アルミニウム/でルミニウム(A 1 2 O 3)混合物、リチウム/アルミニウムにより、アルミニウム(B 1 2 O 3)混合物、リチウム/アルミニウムである。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより、作製することができる。また、陰極とし

てのシート抵抗は数百Ω╱□以下が好ましく、膜厚は通常10nm~1000nm、好ま しくは50nm~200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL 素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好 都合である。

[0129]

《バッファー層:陰極バッファー層、陽極バッファー層》

バッファー層は、必要に応じて設け、陰極バッファー層、陽極バッファー層があり、上 記のごとく陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との 間に存在させてもよい。

[0130]

バッファー層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティ - ・エス社発行) 」の第2編第2章「電極材料」(123~166頁)に詳細に記載され ており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。

[0131]

陽極バッファー層は、特開平9-45479号公報、同9-260062号公報、同8 -288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニ ンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッフ ァー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチ オフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。なかでも、ポリ ジオキシチオフェン類を用いたものが好ましく、これにより、より一層高い発光輝度と発 光効率を示し、かつさらに長寿命である有機EL素子とすることができる。

[0132]

陰極バッファー層は、特開平6-325871号公報、同9-17574号公報、同1 0-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやア ルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属 化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファ ー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。

[0133]

上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0 . 1nm~100nmの範囲が好ましい。

[0134]

阻止層は、上記のごとく、有機化合物薄膜の基本構成層の他に必要に応じて設けられる ものである。例えば、特開平11-204258号、同11-204359号、及び「有 機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行) 」の237頁等に記載されている正孔阻止(ホールブロック)層がある。

[0135]

陰極バッファー層、陽極バッファー層は、上記材料を、例えば、真空蒸着法、スピンコ ート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化すること により形成することができる。

[0136]

《阻止層:正孔阻止層、電子阻止層》

正孔阻止層とは広い意味では電子輸送層であり、電子を輸送する機能を有しつつ正孔を 輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子 と正孔の再結合確率を向上させることができる。

[0137]

正孔阻止層は、正孔輸送層から移動してくる正孔を陰極に到達するのを阻止する役割と 、陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物により 形成される。正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正 孔移動度が低いこと、及び正孔を効率的に発光層内に閉じこめるために、発光層のイオン

化ポテンシャルより大きいイオン化ポテンシャルの値を有するか、発光層のバンドギャップより大きいバンドギャップを有することが好ましい。正孔阻止材料としては、スチリル化合物、トリアゾール誘導体、フェナントロリン誘導体、オキサジアゾール誘導体、ボロン誘導体の少なくとも1種を用いることも本発明の効果を得るうえで有効である。

[0138]

その他の化合物例として、特開2003-31367号、同2003-31368号、特許第2721441号等に記載の例示化合物が挙げられる。

[0139]

一方、電子阻止層とは広い意味では正孔輸送層であり、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。

[0140]

この正孔阻止層、電子阻止層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。

[0141]

《発光層》

本発明に係る発光層は、電極または電子輸送層、正孔輸送層等から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。

[0142]

発光層に使用される発光材料には、従来公知の蛍光性化合物やリン光性化合物を用いることができる。

[0143]

本発明においては、蛍光性化合物として、前述した一般式 (2) で表される繰り返し単位を少なくとも一つ含む重合体で、Xが蛍光性基である重合体を用いるのが好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0144]

本発明においては、発光材料としてリン光性化合物を用いることが本発明の効果を得るうえで好ましい。リン光性化合物は、励起三重項からの発光が観測される化合物であり、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物である。リン光量子収率は好ましくは0.1以上である。

[0145]

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光性化合物は、任意の溶媒の何れかにおいて上記リン光量子収率が達成されればよい。

[0146]

リン光性化合物の発光は、原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光性化合物に移動させることでリン光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光性化合物がキャリアトラップとなり、リン光性化合物上でキャリアの再結合が起こりリン光性化合物からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。

[0147]

リン光性化合物は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。

[0148]

本発明においては、リン光性化合物として、前述した一般式 (2) で表される繰り返し単位を少なくとも一つ含む重合体で、Xがリン光性基である重合体を用いるのが好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力を抑えることができる。

[0149]

また、他に、リン光性化合物として、元素の周期律表で8族の金属を含有する錯体系化合物を用いるのも好ましく、更に好ましくは、イリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、ロジウム化合物、パラジウム化合物、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。

[0150]

以下に、錯体系化合物のリン光性化合物の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg. Chem. 40巻、1704~1711に記載の方法等により合成できる。

【0151】 【化37】

[0152]

【化38】

[0153]

【化39】

lr-1

Ir-3

lr-5

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

[0154]

【化40】

$$Ir-13$$

$$\begin{bmatrix}
F \\
N
\end{bmatrix}_{2} Ir$$
 O
 C
 O

[0155]

また、発光層には、他にホスト化合物を含有してもよい。

[0156]

本発明においてホスト化合物は、発光層に含有される化合物のうちで室温 (25℃) においてリン光発光のリン光量子収率が、0.01未満の化合物である。

[0157]

本発明においては、ホスト化合物として前述した一般式 (1) で表される繰り返し単位を少なくとも一つ含む重合体を発光層に含有させるのが好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力が抑えることができる。

[0158]

また、ホスト化合物として、前述した一般式(2)で表される繰り返し単位を少なくとも一つ含む重合体で、Xが正孔輸送性基である重合体を発光層に含有させるのも好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力が抑えることができる。

[0159]

さらに、公知のホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種も ちいることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化するこ とができる。

[0160]

これらの公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発 光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。

[0161]

公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。

[0162]

特開2001-257076、特開2002-308855、特開2001-313179、特開2002-319491、特開2001-357977、特開2002-334786、特開2002-88860、特開2002-334787、特開2002-15871、特開2002-334788、特開2002-43056、特開2002-154789、特開2002-75645、特開2002-338579、特開2002-14789、特開2002-343568、特開2002-141173、特開2002-15445、特開2002-343568、特開2002-141173、特開2002-352957、特開2002-203683、特開2002-2348888、特開2002-231453、特開2003-3165、特開2002-2348888、特開2002-231453、特開2002-255934、特開2002-2348888、特開2002-280183、特開2002-299060、特開2002-260861、特開2002-280183、特開2002-299060、特開2002-302516、特開2002-305083、特開2002-305084、特開2002-308837

[0163]

また、発光層は、ホスト化合物としてさらに蛍光極大波長を有するホスト化合物を含有していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物へのエネルギー移動で、有機EL素子としての電界発光は蛍光極大波長を有する他のホスト化合物からの発光も得られる。蛍光極大波長を有するホスト化合物として好ましいのは、溶液以上が好ましい。具体的な蛍光極大波長を有するホスト化合物としては、クマリン系色素以上が好ましい。具体的な蛍光極大波長を有するホスト化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベ、プリン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素等が挙げられる。蛍光量子収率は、前記第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することができる。

[0164]

本明細書の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(ミノルタ製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。

本発明においては、発光材料であるリン光性化合物のリン光発光極大波長としては特に 制限されるものではなく、原理的には、中心金属、配位子、配位子の置換基等を選択する

[0165]

発光層に、リン光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。

[0166]

発光層は、例えば真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット 法等の公知の薄膜化法により製膜して形成することができる。

[0167]

発光層は、本発明に係る重合体を含有させて塗布法により製造されることが好ましい。本発明に係る重合体は、特に、スピンコート法や、インクジェット法等の塗布法による製造が非常に適しており、これらの方法で製造を行うことにより製造を容易にすることができ、さらに大面積の有機EL素子や白色発光型有機EL素子を作製が容易となり好ましい。

[0168]

発光層としての膜厚は特に制限はないが、通常は $5 \text{ nm} \sim 5 \mu \text{ m}$ 、好ましくは $5 \text{ nm} \sim 2 \text{ 0 0 nm}$ の範囲で選ばれる。

[0169]

《正孔輸送層》

正孔輸送層とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層、電子輸送層は単層もしくは複数層設けることができる。

[0170]

正孔輸送材料としては、特に制限はなく、従来、光導伝材料において、正孔の電荷注入輸送材料として慣用されているものやEL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。

[0171]

本発明においては、正孔輸送材料として、前述した一般式 (2) で表される繰り返し単位を少なくとも一つ含む重合体で、Xが正孔輸送性基である重合体を正孔輸送層に含有させるのも好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力が抑えることができる。

[0172]

他に、正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。

[0173]

正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、 芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を 用いることが好ましい。

[0174]

芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N, N, N, N' ーテトラフェニルー4, 4' ージアミノフェニル;N, N' ージフェニルーN, N' ービス (3-メチルフェニル) ー [1, 1' ービフェニル] ー [4, 4' ージアミン([1] [1] [1] [2] [3] [4] [4] [5] [5] [5] [5] [5] [6] [6] [7] [

4-ジ-p-トリルアミノフェニル) シクロヘキサン; <math>N, N', N'-テトラ-pートリルー4, 4'ージアミノビフェニル; 1, 1ービス (4ージーpートリルアミノフ エニル) - 4 - フェニルシクロヘキサン; ビス (4 - ジメチルアミノー2 - メチルフェニ u) フェニルメタン; ビス (4-ジーp-トリルアミノフェニル) フェニルメタン; N, N' ージフェニルーN, N' ージ (4-メトキシフェニル) ー4, <math>4' ージアミノビフェ 4, 4' -ビス (ジフェニルアミノ) クオードリフェニル; N, N, N-トリ (p-トリ ル) アミン; 4- (ジ-p-トリルアミノ) -4' - [4-(ジ-p-トリルアミノ) ス チリル] スチルベン;4-N,N-ジフェニルアミノー(<math>2-ジフェニルビニル)ベンゼン;3-メトキシ-4'-N, N-ジフェニルアミノスチルベンゼン;N-フェニルカル バゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮 合芳香族環を分子内に有するもの、例えば、4, 4, -ビス [N-(1-ナフチル)-Nーフェニルアミノ〕ビフェニル (NPD)、特開平4-308688号公報に記載されて いるトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4′, ートリス [N-(3-メチルフェニル)-N-フェニルアミノ] トリフェニルアミン (MTDATA) 等が挙げられる。

[0175]

更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした 高分子材料を用いることもできる。

[0176]

また、p型-Si, p型-Si C等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。

[0177]

また、本発明においては正孔輸送層の正孔輸送材料は415 n m以下に蛍光極大波長を有することが好ましい。すなわち、正孔輸送材料は、正孔輸送能を有しつつかつ、発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。

[0178]

この正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5~5000 nm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一層構造であってもよい。

[0179]

《電子輸送層》

電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正 孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層設けることができる。

[0180]

従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料としては、電子輸送層に使用される公知のものの中から任意のものを選択して用いることができる。

[0181]

本発明においては、電子輸送材料として、前述した一般式 (2) で表される繰り返し単位を少なくとも一つ含む重合体で、Xが電子輸送性基である重合体を電子輸送層に含有させるのも好ましい。これにより、一層高い発光輝度、発光効率、発光寿命を有し、さらに一層駆動電力が抑えることができる。

[0182]

他に、電子輸送材料としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体などが挙げられる。さ

らに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子 に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有す るキノキサリン誘導体も、電子輸送材料として用いることができる。これらの電子輸送材 料を前述した電子輸送性部分としても本発明の効果を得ることができ好ましい。

[0183]

さらに、電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。

[0184]

更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした 高分子材料を用いることもできる。

[0185]

また、8ーキノリノール誘導体の金属錯体、例えばトリス(8ーキノリノール)アルミニウム(A1q)、トリス(5,7ージクロロー8ーキノリノール)アルミニウム、トリス(5,7ージブロモー8ーキノリノール)アルミニウム、トリス(2ーメチルー8ーキノリノール)アルミニウム、トリス(2ーメチルー8ーキノリノール)アルミニウム、トリス(5ーメチルー8ーキノリノール)アルミニウム、ドリス(8ーキノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料としての末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として所いることができる。電子輸送材料として用いることができる。で乳油によりでできる。

[0186]

電子輸送層に用いられる好ましい化合物は、415 n m以下に蛍光極大波長を有することが好ましい。すなわち、電子輸送層に用いられる化合物は、電子輸送能を有しつつかつ、発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。

[0187]

この電子輸送層は、上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5~5000 nm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一層構造であってもよい。

[0188]

《基体(基板、基材、支持体等ともいう)》

本発明の有機EL素子に係る基体としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明のものであれば特に制限はないが、好ましく用いられる基板としては例えばガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好ましい基体は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。

[0189]

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート (PET)、ポリエチレンナフタレート (PEN)、ポリエーテルスルホン (PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート (PC)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート (CAP) 等からなるフィルム等が挙げられる。

[0190]

樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリッド 被膜が形成されていてもよい。

[0191]

本発明の有機エレクトロルミネッセンス素子の発光の室温における外部取り出し効率は

[0192]

また、カラーフィルター等の色相改良フィルター等を併用してもよい。

[0193]

本発明の多色表示装置は少なくとも2種類の異なる発光極大波長を有する有機EL素子からなるが、有機EL素子を作製する好適な例を説明する。

[0194]

《有機EL素子の作製方法》

本発明の有機EL素子の作製方法の一例として、陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極からなる有機EL素子の作製法について説明する。

[0195]

まず適当な基体上に、所望の電極物質、例えば、陽極用物質からなる薄膜を、 1μ m以下、好ましくは 10 n m ~ 2 0 0 n m の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に素子材料である陽極バッファー層、正孔輸送層、発光層、電子輸送層、陰極バッファー層の有機化合物薄膜を形成させる。

[0196]

この有機化合物薄膜の薄膜化の方法としては、前記の如くスピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。 さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 $50 \sim 450 \, \text{C}$ 、真空度 10^{-6} Pa $\sim 10^{-2}$ Pa、蒸着速度 0.01 nm ~ 50 nm/ 秒、基板温度-50 C ~ 300 C、膜厚 0.1 nm $\sim 5\mu$ mの範囲で適宜選ぶことが望ましい。

[0197]

これらの層の形成後、その上に陰極用物質からなる薄膜を、 1μ m以下好ましくは50 n m ~ 200 n m の範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施してもかまわない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。

[0198]

本発明の表示装置は、発光層形成時のみシャドーマスクを設け、他層は共通であるのでシャドーマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で層を形成できる。

[0199]

発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。

[0200]

また作製順序を逆にして、陰極、陰極バッファー層、電子輸送層、発光層、正孔輸送層 、陽極バッファー層、陽極の順に作製することも可能である。

[0201]

このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧 $2\sim4$ 0 V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。

[0202]

本発明の表示装置は、本発明の有機EL素子を用いており、表示デバイス、ディスプレー、各種発光光源として用いることができる。表示デバイス、ディスプレーにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる

[0203]

表示デバイス、ディスプレーとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。

[0204]

本発明の照明装置は、本発明の有機EL素子を用いており、本発明の有機EL素子のリン光性化合物を調節して白色に発光させ、家庭用照明、車内照明、時計のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。また、液晶表示装置等のバックライトとしても用いることができる。

[0205]

また、本発明に係る有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。

[0206]

このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい

[0207]

本発明の有機E L素子は、前述したように照明用や露光光源のような1種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機E L素子を3種以上使用することにより、フルカラー表示装置を作製することが可能である。または、一色の発光色、例えば白色発光をカラーフィルターを用いてBGRにし、フルカラー化することも可能である。さらに、有機E Lの発光色を色変換フィルターを用いて他色に変換しフルカラー化することも可能であるが、その場合、有機E L 発光の λ m a x は 4 8 0 n m以下であることが好ましい。

[0208]

本発明の有機EL素子から構成される表示装置の一例を図面に基づいて以下に説明する

[0209]

図1は、有機EL素子から構成される表示装置の一例を示した模式図である。有機EL 素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図で ある。

[0210]

ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像 走査を行う制御部B等からなる。

[0211]

制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。

[0212]

図2は、表示部Aの模式図である。

[0213]

表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。図2においては、画素3の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。

[0214]

配線部の走査線5及び複数のデータ線6は、それぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している (詳細は図示せず)

[0215]

画素 3 は、走査線 5 から走査信号が印加されると、データ線 6 から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。

[0216]

次に、画素の発光プロセスを説明する。

[0217]

図3は、画素の模式図である。

[0218]

画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。

[0219]

図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。

[0220]

画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。

[0221]

制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。

[0222]

すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。

[0223]

ここで、有機EL素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。

[0224]

また、コンデンサ13の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。

[0225]

本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光 駆動でもよい。

[0226]

図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。

[0227]

順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。パッシブマトリクス方式では画素3にアクティブ素子がなく、製造コストの低減が計れる。

【発明の効果】

[0228]

本発明により、高い発光輝度、発光効率、発光寿命を有し、さらに駆動電力が抑えられた有機エレクトロルミネッセンス素子、およびそれを具備してなる表示装置もしくは照明 装置を提供することができた。

【実施例】

[0229]

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない

[0230]

《実施例1》

<有機EL素子1-1-1~1-1-5、1-2-1~1-2-4の作製>

(1) 有機EL素子1-1-1の作製

陽極として $100 \, \text{mm} \times 100 \, \text{mm} \times 1$. $1 \, \text{mm}$ のガラス基板上に $1 \, \text{TO}$ (インジウムチンオキシド)を $100 \, \text{nm}$ 製膜した基板 (NHテクノグラス社製NA45)にパターニングを行った後、この $1 \, \text{TO}$ 透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 $U \, \text{V}$ オゾン洗浄を $5 \, \text{分間}$ 行った。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにNPDを $200 \, \text{mg}$ 入れ、別のモリブデン製抵抗加熱ボートにCBPを $200 \, \text{mg}$ 入れ、別のモリブデン製抵抗加熱ボートに $1 \, \text{r} - 1 \, \text{e} \, 100 \, \text{mg}$ 入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン (BCP)を $200 \, \text{mg}$ 入れ、真空蒸着装置に取り付けた。

[0231]

次いで、真空槽を 4×10^{-4} Paまで減圧した後、NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1 nm/secで透明支持基板に蒸着し45 nm正孔輸送層を設けた。

[0232]

更にCBPとIr-1の入った前記加熱ポートに通電して加熱し、それぞれ蒸着速度 0. 1 nm/sec 0. 0 0 6 nm/sec で正孔輸送層上に共蒸着して 3 0 nm の発光層を設けた。

[0233]

更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1 nm/secで前記発光層上に蒸着して膜厚30 nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。

引き続き陰極バッファー層としてフッ化リチウム 0.5 nmを蒸着し、更に、アルミニウム 110 nmを蒸着して陰極を形成し、有機 E L 素子 1-1-1を作製した。

[0235]

有機EL素子1-1-1の電子輸送層、発光層、正孔輸送層に用いた化合物を表1、表2に示すものに変更した以外は、有機EL素子1-1-1と同様の方法で有機EL素子1-1-2~1-1-5、1-2-1~1-2-4を作製した。

[0236] [1241]

NPD

BCP

CBP

【0237】 【表1】

有機EL素子	正孔輸送層	発光層	電子輸送層	備考
1-1-1	NPD	CBP Ir-1	ВСР	比較例
1-1-2	Poly-33	Poly-33	ВСР	本発明
1-1-3	Poly-5	Poly-5	ВСР	本発明
1-1-4	Poly-10	Poly-10	ВСР	本発明
1-1-5	Poly-16	Poly-16	ВСР	本発明

有機EL素子	正孔輸送層	発光層	電子輸送層	備考
1-2-1	NPD	CBP E — 5	ВСР	比較例
1-2-2	Poly-12	Poly-12 E-5	ВСР	本発明
1-2-3	Poly-14	Poly-14 E-5	ВСР	本発明
1-2-4	NPD	Poly-1	ВСР	本発明

[0239]

〈有機EL素子1-1-1~1-1-5、1-2-1~1-2-4の評価〉 得られた有機EL素子1-1-1~1-1-5、1-2-1~1-2-4について下記に示す評価を行った。

[0240]

(外部取りだし量子効率)

作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5 mA/c m² 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお測定には同様に分光放射輝度計CS-1000(ミノルタ製)を用いた。

[0241]

(発光寿命)

23℃、乾燥窒素ガス雰囲気下で2.5 mA/c m²の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお測定には分光放射輝度計CS-1000(ミノルタ製)を用いた。

[0242]

(駆動電圧)

温度 $2\ 3\ \mathbb{C}$ 、感想窒素ガス雰囲気下で発光開始の電圧を測定した。なお、発光開始の電圧は、輝度 $5\ 0\ c\ d\ /m^2$ 以上となったときの電圧値を測定した。輝度の測定には分光放射輝度計 $C\ S-1\ 0\ 0\ 0\ (\ S\ /)$ 、を用いた。

[0243]

有機EL素子1-1-1-1-5の外部取り出し量子効率、発光寿命、駆動電圧の 測定結果は、有機EL素子1-1-1を100とした時の相対値で表3に示した。有機E L素子1-2-1-1-2-5の外部取り出し量子効率、発光寿命、駆動電圧の測定結果 は、有機EL素子1-2-1を100とした時の相対値で表4に示した。

[0244]

【表3】

有機EL素子	外部取り出し量子効率 (相対値)	発光寿命 (相対値)	駆動電圧 (相対値)	備考
1-1-1	100	100	100	比較例
1-1-2	225	275	89	本発明
1-1-3	180	149	87	本発明
1-1-4	197	512	79	本発明
1-1-5	160	654	90	本発明

【0245】 【表4】

有機EL素子	外部取り出し量子効率 (相対値)	発光寿命 (相対値)	駆動電圧 (相対値)	備考
1 - 2 - 1	100	100	100	比較例
1-2-2	191	378	91	本発明
1-2-3	201	149	74	本発明
1-2-4	121	507	90	本発明

[0246]

表3、表4より明らかなように、本発明の有機EL素子は、発光輝度、発光効率、発光 寿命が高く、さらに駆動電力が抑えられていることが分かった。

[0247]

《実施例2》

<有機EL素子2-1-1~2-1-10、2-2-1~2-2-5の作製>

陽極として $100\,\mathrm{mm}\times100\,\mathrm{mm}\times1$. $1\,\mathrm{mm}$ のガラス基板上にITO(インジウムチンオキシド)を $100\,\mathrm{nm}$ 成膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。この透明支持基板上にポリビニルカルバゾール(PVK) $30\,\mathrm{mg}$ とIr-1を1. $8\,\mathrm{mg}$ とをジクロロベンゼン $1\,\mathrm{ml}$ に溶解させ、 $1000\,\mathrm{rpm}$ 、 $5\,\mathrm{sec}$ の条件下、スピンコートし(膜厚約 $100\,\mathrm{nm}$)、60度で1時間真空乾燥し、発光層とした。

[0248]

これを真空蒸着装置に取付け、次いで、真空槽を 4×10⁻⁴ P a まで減圧し、陰極バッファー層としてフッ化リチウム 0.5 n m 及び陰極としてアルミニウム 1 1 0 n m を蒸着して陰極を形成した。最後にガラス封止をし、有機 E L 素子 2-1-1を作製した。

[0249]

有機EL素子2-1-1の発光層に用いたPVKとIr-1を表5、表6に示すものに変更した以外は、有機EL素子2-1-1と同様の方法で有機EL素子2-1-2~2-1-10、2-2-1~2-2-5を作製した。

[0250]

【表5】

有機EL素子	発光層	備考
2-1-1	PVK r1	比較例
2-1-2	Poly-12 r - 1	本発明
2-1-3	Poly-15 1r-1	本発明
2-1-4	Poly-18	本発明
2-1-5	Poly-19	本発明
2-1-6	Poly-8	本発明
2-1-7	Poly-27	本発明
2-1-8	Poly-28	本発明
2-1-9	Poly-46	本発明
2-1-10	Poly-39	本発明

【0251】 【表6】

有機EL素子	発光層	備考
2-2-1	PVK E — 5	比較例
2-2-2	Poly-12 E-5	本発明
2-2-3	Poly-34	本発明
2-2-4	Poly-36	本発明
2 - 2 - 5	Poly-38	本発明

[0252]

〈有機EL素子2-1-1~2-1-10、2-2-1~2-2-5の評価〉 得られた有機EL素子2-1-1~2-1-10、2-2-1~2-2-5について実施例1と同じ評価を行った。

[0253]

有機EL素子2-1-1~2-1-10の外部取り出し量子効率、発光寿命、駆動電圧の測定結果は、有機EL素子2-1-1を100とした時の相対値で表7に示した。有機EL素子2-2-1~2-2-5の外部取り出し量子効率、発光寿命、駆動電圧の測定結果は、有機EL素子2-2-1を100とした時の相対値で表8に示した。

[0254]

【表7】

	Al dormand the second			, , , , , , , , , , , , , , , , , , ,
有機EL素子	外部取り出し量子効率	発光寿命	駆動電圧	/# ±
	(相対値)	(相対値)	(相対値)	備考
2-1-1	100	100	100	比較例
2 - 1 - 2	152	341	91	本発明
2-1-3	163	297	85	本発明
2-1-4	156	310	78 ·	本発明
2-1-5	136	720	76	本発明
2-1-6	200	300	71	本発明
2 - 1 - 7	191	410	80	本発明
2-1-8	176	612	74	本発明
2-1-9	223	554	69	本発明
2-1-10	235	688	68	本発明
		- 550	70	平光明

. 【0255】 【表8】

有機EL素子	外部取り出し量子効率 (相対値)	発光寿命 (相対値)	駆動電圧 (相対値)	備考
2-2-1	100	100	100	比較例
2-2-2	167	327	87	
2-2-3	208	288	78	本発明
2-2-4	231	178	71	本発明
2 - 2 - 5	190	400	74	本発明

[0256]

表7、表8より明らかなように、本発明の有機EL素子は、発光輝度、発光効率、発光 寿命が高く、さらに駆動電力が抑えられていることが分かった。

[0257]

《実施例3》

〈フルカラー表示装置〉

(青色発光有機EL素子)実施例2で作製した有機EL素子2-1-5において、Poly-19をPoly-47に変更した以外は有機EL素子2-1-5と同様の方法で作製した有機EL素子2-1-5Bを用いた。

[0258]

(緑色発光有機EL素子)

実施例2で作製した有機EL素子2-1-5を用いた。

[0259]

(赤色発光有機 E L 素子)

実施例2で作製した有機EL素子2-1-5において、Poly-19をPoly-48に変更した以外は有機EL素子2-1-5と同様の方法で作製した有機EL素子2-1-5Rを用いた。

[0260]

上記の赤色、緑色及び青色発光有機EL素子を、同一基板上に並置し、図1に記載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。即ち、同一基板上に、複数の走査線5及

びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。

[0261]

該フルカラー表示装置を駆動することにより、発光輝度、発光効率、発光寿命が高く、 さらに駆動電力が抑えられたフルカラー動画表示が得られることを確認することができた

[0262]

《実施例4》

実施例2で作製した有機EL素子2-1-5において、Poly-19を、Poly-19、Poly-47、Poly-48の混合物に変更した以外は有機EL素子2-1-5と同様の方法で作製した有機EL素子2-1-5Wを用いた。有機EL素子2-1-5Wの非発光面をガラスケースで覆い、照明装置とした。照明装置は、発光輝度、発光効率の高く、長寿命であり、駆動電力が抑えられた白色光を発する薄型の照明装置として使用することができた。図5は照明装置の概略図で、図6は照明装置の断面図である。

【図面の簡単な説明】

- [0263]
 - 【図1】有機EL素子から構成される表示装置の一例を示した模式図である。
 - 【図2】表示部の模式図である。
 - 【図3】 画素の模式図である。
 - 【図4】パッシブマトリクス方式フルカラー表示装置の模式図である。
 - 【図5】照明装置の概略図である。
 - 【図6】照明装置の断面図である。

【符号の説明】

[0264]

- 1 ディスプレイ
- 3 画素
- 5 走査線
- 6 データ線
- 7 電源ライン
- 10 有機正L素子
- 11 スイッチングトランジスタ
- 12 駆動トランジスタ
- 13 コンデンサ
- A 表示部
- B 制御部

【図2】

【図3】

【書類名】要約書

【要約】

【課題】 高い発光輝度、発光効率、発光寿命を有し、さらに駆動電力が抑えられた有機 エレクトロルミネッセンス素子、およびそれを具備してなる表示装置もしくは照明装置を 提供する。

【解決手段】 陰極と陽極との間に有機層を少なくとも1層有する有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層に下記一般式(1)で表される繰り返し単位を少なくとも一つ含む重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。

【化1】

一般式(1)

 $\star - \left(Ar_1 - L_1 - \right)_{n_1} \star$

〔式中、Arıは置換基を有していてもよいアリーレン基又はヘテロアリーレン基を表し、nıは2以上の整数を表し、Lıは2価の連結基を表す。〕

【選択図】 なし

特願2003-297283

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-297283

受付番号

50301376271

書類名

特許願

担当官

第四担当上席

0093

作成日

平成15年 8月22日

<認定情報・付加情報>

【提出日】

平成15年 8月21日

出願人履歴情報

識別番号

[000001270]

1. 変更年月日 [変更理由]

2003年 8月 4日

住所

名称変更

任 所 名

東京都新宿区西新宿1丁目26番2号

コニカミノルタホールディングス株式会社

2. 変更年月日

2003年 8月21日

[変更理由]

住所変更

住 所 名

東京都千代田区丸の内一丁目6番1号

コニカミノルタホールディングス株式会社