

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

На тему: Получение фотографий обратной стороны Луны Авторы курсовой работы: Горюнов Д.В., Караев Т.Ж., Иванов А.К., Кудрявов Л.В. Преподавател и: Кондратцев В. Л., Тимохин М. Ю.

Зачетная работа

Копатыч Команда "Кумаролёт 3000"

Группа: М8О-108Б-22

Участники: Горюнов Д.В., Караев Т.Ж., Иванов А.К., Кудрявов Л.В.

Введение

Цель:

В KSP отправить космический аппарат к спутнику Земли, собрать данные о небесном теле, используя приборы, которые доступны в игре, и сравнить полученную информацию со знаниями полученными в ходе реальной миссии.

Задачи реальной миссии:

Получение фотографий обратной стороны Луны, а также космического пространства вблизи луны.

Задачи проекта:

- 1. Смоделировать полет космического аппарата "Копатыч" в KSP
- 2. Произвести необходимые математические расчеты и вывести математические формулы и представить выкладки о полете
- 3. Составить отчёт о проделанной работе
- 4. Грамотно представить проект зрителю

Состав команды:

Участник	Роль	
Иванов А.К	Копирайтер	
Горюнов Д.В	Тимлид, KSP	
Караев Т.Ж	Программист	
Кудрявов Л.В	Математик	

Глава 1. Описание реальной миссии.

Цель миссии

Основной целью космической миссии являлась передача снимков обратной стороны Луны на Землю.

Описание миссии

Космический аппарат был запущен 4 октября 1959 года ракетой-носителем «Восток-Л» и впервые в мире сфотографировал невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр.

4 октября 1959 года к Луне устремилась автоматическая межпланетная станция «Луна-3». Впервые в истории аппарату предстояло обогнуть спутник Земли, сфотографировать его обратную, никем невидимую до сих пор сторону, и передать снимки на Землю. Комплекс телевизионной аппаратуры включал в себя: бортовое фототелевизионное устройство "Енисей", работающее в двух режимах и два типа наземной приемной аппаратуры.

Историческая съёмка была выполнена 7 октября. С тех пор эта дата – день рождения космического телевидения. Передача первых снимков на Землю осуществлялась 18 октября с расстоянии 40 тысяч км при возвращении станции «Луна-3» в район Земли.

Удалось сфотографировать почти половину поверхности Луны, охватившей 30% видимой стороны и 70% стороны никогда ранее невидимой с Земли. На основе изображений в 1960 и 1967 гг. выпущен Атлас обратной стороны Луны, некоторым образованиям присвоены наименования. Так на Луне появились Море Москвы, Море Мечты, кратеры Циолковский, Ломоносов, Жюль Верн, Джордано Бруно и многие другие. В 1966—1967 гг. в нашей стране по материалам атласа и карты обратной стороны Луны опубликована первая полная карта Луны и создан лунный глобус.

Связь со станцией поддерживалась до 18 октября 1959 г., она совершила 11 оборотов вокруг Земли и 20 апреля 1960 г. прекратила существование, войдя в ее плотные слои атмосферы.[1]

Устройство аппарата

Космический аппарат был запущен ракетой-носителем «Восток-Л» и впервые в мире сфотографировал невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр.

Конечная масса последней ступени ракеты-носителя с «Луной-3» составляла 1553 кг (масса научной и измерительной аппаратуры с источниками питания 435 кг).

Масса аппарата «Луна-3»: 278,5 кг.

Космический аппарат имел системы: радиотехнической, телеметрической, фототелеметрической ориентации (относительно Солнца и Луны), энергопитания (с солнечными батареями), терморегулирования и комплекс научной аппаратуры, включая фотолабораторию.

Система ориентации аппарата «Чайка» была разработана и построена коллективом под руководством Бориса Раушенбаха, впервые в мире решившему задачу управления аппаратами в космическом пространстве.[1]

4

¹ Луна-3 // Википедия URL: https://ru.wikipedia.org/wiki/%D0%9B%D1%83%D0%BD%D0%B0-3 (дата обращения: 17.12.2022).

Схполета

После старта с космодрома Байконур космический аппарат «Луна-3» вышел на сильно вытянутую эллиптическую орбиту искусственного спутника Земли с наклонением 75° и периодом обращения 22 300 мин и обогнул обратную сторону Луны по направлению с юга на север, пройдя на расстоянии 6200 км от её поверхности. Под действием гравитации Луны орбита аппарата изменилась; кроме того, поскольку Луна продолжала двигаться по своей орбите, изменилась и плоскость орбиты космического аппарата. Изменение орбиты было рассчитано так, чтобы аппарат при возвращении к Земле снова пролетел над Северным полушарием, где были расположены советские наблюдательные станции. Траектория полёта была рассчитана под руководством М. В. Келдыша в Математическом институте им. В. А. Стеклова.[3]

Положение Луны при возвращении ракеты к Земле Орбитальная плоскость ракеты до облёта Луны при облёте Зематор орбитальная плоскость ракеты до облёта Луны при облёте Положение Луны при запуске ракеты

Траектория Луны-3 и гравитационный маневр

2

² Луна-3 // Википедия URL: https://ru.wikipedia.org/wiki/%D0%9B%D1%83%D0%BD%D0%B0-3 (дата обращения: 17.12.2022).

Глава 2. Описание математической и физической моделей

Математическая модель

Угол наклона будем считать от вертикали, то есть вертикальному положению ракеты будет соответствовать 0 градусов, горизонтальному - 90 градусов. За основу расчётов будет использована динамика свободной материальной точки и будет решаться вторая задача динамики, то есть, по известным массе точки и силам, действующим на неё, будут вычислены законы её движения. Основное уравнение динамики:

$$m\overrightarrow{w}=\sum_{i=1}^{n}\overrightarrow{P_{i}}$$

где m- масса точки, \overrightarrow{w} - вектор ускорения, $\overrightarrow{P_i}$ - векторы приложенных к точке сил. С учётом действующих на ракету сил уравнение примет вид:

$$m\overrightarrow{w}=\overrightarrow{P_T}+\overrightarrow{G}$$

где $\overrightarrow{P_T}$ -суммарная тяга двигателей, \overrightarrow{G} - сила тяжести. Ускорение свободного падения принято постоянным, равным поверхности Земли, тогда

$$\overrightarrow{G}=m\overrightarrow{g}$$

И уравнение примет вид:

$$m\overrightarrow{w}=\overrightarrow{P_T}+m\overrightarrow{g}$$

Разделим обе части уравнения на т:

$$\overrightarrow{w} = rac{\overrightarrow{P_T}}{m} + \overrightarrow{g}$$

Космическая ракета - это тело переменной массы, топливо сгорает, масса ракеты уменьшается. Будем называть расход топлива расходом массы. Поэтому m в знаменателе первого слагаемого правой части будет представляться некоторой линейной (так как расход топлива принят постоянным) функцией зависимости массы от времени m=f(t). Обозначим M_0 начальную массу ракеты , массу ракеты после выработки топлива M. Тогда M_0-M есть масса топлива. Обозначим время работы двигателей T. Тогда

$$k = rac{M_0 - M}{T}$$

есть расход массы в единицу времени и уравнение расхода массы примет вид:

$$m(t) = M_0 - kt$$

Подставим это уравнение в уравнение динамики:

$$\overrightarrow{w} = rac{\overrightarrow{P_T}}{M_0 - kt} + \overrightarrow{g}$$

Как было сказано выше, тяга двигателя зависит от внешнего давления, это актуально для двигателей первой и второй ступеней до отделения первой ступени, пока ракета летит в плотных слоях атмосферы. Поэтому числитель первого слагаемого правой части уравнения тоже должен быть представлен в виде линейной функции (выше оговаривалось, что за неимением реального закона изменения тяги в зависимости от давления будет использована линейная зависимость). $P_{1_{min}}$ - тяга на старте, $P_{1_{max}}$ - тяга

в вакууме, Т - время работы двигателей до отделения первой ступени. Тогда коэффициент возрастания тяги будет

$$\sigma = rac{P_{1_{max}} - P_{1_{min}}}{T}$$

Уравнение тяги

$$P_1(t) = P_{1_{min}} + \sigma t$$

Для каждого этапа полёта это уравнение будет считаться отдельно. Р1суммарная тяга двигателей первой и второй ступеней на старте, М1стартовая масса ракеты, Р2- тяга двигателя второй ступени, М2- масса ракеты в момент после отделения первой ступени, Р3- тяга двигателя третьей ступени, М3- масса ракеты в момент после отделения второй ступени. Теперь распишем эти уравнения по осям координат, заранее задав линейный закон изменения угла наклона ракеты.

$$\alpha(t) = \alpha + \beta t$$

Для первого этапа полёта:

$$w_x = rac{(P_{1_{min}} + \sigma t)sin(lpha_1 + eta_1 t)}{M_1 - k_1 t}$$

$$w_y = rac{(P_{1_{min}} + \sigma t)cos(lpha_1 + eta_1 t)}{M_1 - k_1 t} - g$$

Для второго и третьего этапов полёта:

$$w_x = rac{P_2 sin(lpha_2 + eta_2 t)}{M_2 - k_2 t}$$

$$w_y=rac{P_2 cos(lpha_2+eta_2 t)}{M_2-k_2 t}-g$$

$$w_x=rac{P_3 sin(lpha_3+eta_3 t)}{M_3-k_3 t}$$

$$w_y=rac{P_3 cos(lpha_3+eta_3 t)}{M_3-k_3 t}-g$$

Теперь заменим в этих уравнениях все ускорения на вторую производную от перемещения:

Мы получили шесть дифференциальных уравнений, которые будем решать численным методом с начальными условиями с помощью программы. Начальные условия для первых двух уравнений принимаются нулевыми (начальные координаты и скорость равны 0). Начальные условия для остальных уравнений берутся из конечных значений решений предыдущих уравнений соответственно

Физическая модель

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

$$F = C_F rac{
ho V^2}{2} S$$

Мы учитываем силу сопротивления воздуха до выхода за пределы атмосферы земли, так как во время полёта она создаёт трение между обшивкой ракетоносителя и воздухом, и из-за этого может повредиться корпус аппарата.

Сила трения:

$$F_f = \mu N$$

Мы учитываем эту силу, так как она является одним из факторов препятствующих полёту и может повредить обшивку.

Сила притяжения земли:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$
.

Мы учитываем силу притяжения земли, так как она является одним из основных критериев для определения количества топлива для полёта и является главным препятствием для взлёта ракеты.

Импульс и закон сохранения импульса:

$$\vec{p} = m\vec{v}$$
.

$$\vec{p}_1 + \vec{p}_2 + \ldots + \vec{p}_n = \vec{p}_1' + \vec{p}_2' + \ldots + \vec{p}_n'$$

Мы учитываем их, так как после выхода в космос и набора максимальной скорости, наш аппарат будет двигаться в невесомости по закону сохранения импульса.

Реактивная тяга, уравнение Мещерского:

$$m_p \cdot rac{\Delta ec{v}}{\Delta t} = ec{F} + ec{F}_p \Leftrightarrow m_p \cdot rac{\Delta ec{v}}{\Delta t} = ec{F} + (-ec{u} \cdot rac{\Delta m_t}{\Delta t})$$

Мы используем именно это уравнение, так как на нашу ракету действуют другие силы.

Движение по орбите, уравнение Кеплера, движение по параболической орбите:

$$t-t_0=r_\pi\,\sqrt{rac{2\,r_\pi}{\mu}}\left({
m tg}\,rac{artheta}{2}+rac{1}{3}{
m tg}^3\,rac{artheta}{2}
ight)$$

Мы используем эту формулу для выхода на орбиту луны и движения по ней.

Глава 3. Результаты полученные из KSP и в ходе математических вычислений. Сравнение с реальной космической миссией.

	Первая ступень	Вторая ступень	Третья ступень
Масса, т	489.5	179,3	50,062
Топливо, т	428.3	157,3	43,062
Время, мин	121.35	211,1	240,5
Скорость, км/с	474,4	241,3	24,5
Импульс, кг*м/с	546163,5	59383,93	767,83
Ускорение, км/с^2	6,34	1,14	0,1
Перегрузка	1,7	1.1	1.01

Глава 4. Программная реализация.

Для реализации полета в Kerbal Space Program[5] была разработана инструкция для автопилота:

- 1) включить тягу и лететь вертикально вверх, постепенно отбрасывая ступени;
- 2) если апоцентр аппарата достиг отметки в 12.5 млн км, выключить тягу и лететь по инерции;
- 3) если высота аппарата относительно Земли достигла значения в 12 млн км, совершить оборот на 100 градусов относительно горизонта Земли и включить тягу;
- 4) если апоцентр аппарата достиг отметки в 45 млн км, выключить тягу. Далее её программное воплощение в kos[4]:

³ Протон-М // Wikipedia URL:

https://translated.turbopages.org/proxy_u/en-ru.ru.8a332669-639ae389-3eafdcb8-74722d776562/https/en.wikipe dia.org/wiki/Proton-M (дата обращения: 13.12.2022).Протон-М // Wikipedia URL: https://translated.turbopages.org/proxy_u/en-ru.ru.8a332669-639ae389-3eafdcb8-74722d776562/https/en.wikipe dia.org/wiki/Proton-M (дата обращения: 13.12.2022).

```
CLEARSCREEN.
LOCK THROTTLE TO 1.0.
WHEN MAXTHRUST = 0 THEN {
       PRINT "Staging".
       STAGE.
       PRESERVE.
}.
WHEN MAXTHRUST = 0 THEN {
       PRINT "Staging".
       STAGE.
       PRESERVE.
}.
WHEN MAXTHRUST = ∅ THEN {
       PRINT "Staging".
       STAGE.
       PRESERVE.
}.
LOCK STEERING TO HEADING(90, 90).
WHEN SHIP: APOAPSIS > 12500000 THEN {
       LOCK THROTTLE TO 0.0.
       WAIT UNTIL SHIP:ALTITUDE > 12000000.
       LOCK STEERING TO HEADING(90, -10).
       WAIT 5.
       LOCK THROTTLE TO 1.0.
       WAIT UNTIL APOAPSIS > 45000000.
       LOCK THROTTLE TO 0.0.
       PRESERVE.
WAIT UNTIL SHIP:ALTITUDE > 1000000000.
```

Также для визуализации явления гравитационного маневра была разработана программа на языке Python с использованием библиотеки PyGame.[4]Программа рисует на дисплее объекты в виде окружностей. Она просчитывает взаимное притяжение объектов при помощи законов Ньютона, а затем меняет их координаты.

```
import pygame, math
from pygame import *
from math import *

WIN_WIDTH = 800
WIN_HEIGHT = 640
PLANET_WIDTH = 20
PLANET_HEIGHT = 20
DISPLAY = (WIN_WIDTH, WIN_HEIGHT)
SPACE_COLOR = "#000022"
SUN_COLOR = "yellow"
PLANET_COLOR = "blue"
```

```
X0 = WIN_WIDTH // 2
Y0 = WIN HEIGHT // 2
M0 = 5000
CRASH DIST = 10
OUT_DIST = 1000
def main():
    pygame.init()
    screen = pygame.display.set_mode(DISPLAY)
    bg = Surface((WIN WIDTH, WIN HEIGHT))
    bg.fill(Color(SPACE_COLOR))
    draw.circle (bg, Color(SUN_COLOR), (X0, Y0), 10)
    timer = pygame.time.Clock()
    planet = Surface((PLANET_WIDTH, PLANET_HEIGHT))
    planet.fill(Color(SPACE_COLOR))
    draw.circle (planet,
        Color(PLANET COLOR),
        (PLANET_WIDTH // 2, PLANET_HEIGHT // 2), 5)
    x = 100.0
    y = 290.0
    vy = 1.5
    ax = 0.0
    ay = 0.0
    done = False
    while not done:
        timer.tick(25)
        for e in pygame.event.get():
            if e.type == QUIT:
                done = True
                break
        r = sqrt((x - X0)**2 + (y - Y0)**2)
        ax = M0 * (X0 - x) / r**3
        ay = M0 * (Y0 - y) / r**3
        vx += ax
        vy += ay
        x += vx
        y += vy
        screen.blit(bg, (0, 0))
        screen.blit(planet, (int(x), int(y)))
        pygame.display.update()
        if r < CRASH_DIST:</pre>
            done = True
```

```
print("Crashed")
    break

if r > OUT_DIST:
    done = True
    print("Out of system")
    break

if name == "main": main()
```

4

⁴ kOS: Kerbal Operating System // kOS URL: https://ksp-kos.github.io/KOS/#kos-kerbal-operating-system (дата обращения: 13.12.2022).

kna27 / ksp-data-export // Github URL: https://github.com/kna27/ksp-data-export (дата обращения:

^{13.12.2022).} Создаем симулятор солнечной системы // Хабр URL: https://habr.com/ru/post/197754/ (дата обращения: 13.12.2022).

Данные и графики

В ходе полёта были получены некоторые данные. Со всем объёмом информации вы можете ознакомится по ссылке:

Далее графики некоторых характеристик:

- ось Х время;
- ось Y соответствующие величины;
- значения даны в системе СИ.

Скорость

Обратим внимание на пики графика - это следствие сброса ступеней. Также заметим, что к концу оси X график начинает убывать, т. к. к этому моменту выключается тяга.

Скорость, ускорение, тяга

Заметим, что уровень тяги меняется трижды вследствие сброса ступеней. Также характер ускорения меняется в зависимости от текущей ступени.

Высота над поверхностью

Изменение скорости относительно ступеней аппарата

Глава 4.Вывод.

В ходе курсовой работы нашей командой были получены фотографии обратной стороны луны в Kerbal Space Program. Были составлены математическая и физическая модели расчетов, необходимых для полёта и был выполнен запуск ракеты-носителя Протон-М в KSP. Также мы составили автопилот для данной ракеты при помощи мода kos. Для более удобного ознакомления с материалами нашей работы наша команда записала небольшой видеоролик о проделанной нами деятельности.

Использованные источники

- 1. Создаем симулятор солнечной системы // Хабр URL: https://habr.com/ru/post/197754/ (дата обращения: 13.12.2022).
- 2. kOS: Kerbal Operating System // kOS URL: https://ksp-kos.github.io/KOS/#kos-kerbal-operating-system (дата обращения: 13.12.2022).
- 3. kna27 / ksp-data-export // Github URL: https://github.com/kna27/ksp-data-export (дата обращения: 13.12.2022).
- 4. Протон-М, Протон-К // SPACEDOCK.ru URL: https://spacedock.ru/4484-proton-m-proton-k.html (дата обращения: 13.12.2022).
- 5. KSP How to get to the moon (aka Mun) Tutorial for Beginners // YouTube URL: https://www.youtube.com/watch?v=uCBSpUXrezk (дата обращения: 13.12.2022).
- 6. Протон-М // Wikipedia URL: https://translated.turbopages.org/proxy_u/en-ru.ru.8a332669-639ae 389-3eafdcb8-74722d776562/https/en.wikipedia.org/wiki/Proton-M (дата обращения: 13.12.2022).Протон-М // Wikipedia URL: https://translated.turbopages.org/proxy_u/en-ru.ru.8a332669-639ae 389-3eafdcb8-74722d776562/https/en.wikipedia.org/wiki/Proton-
- 7. Tutorials // Wiki KSP URL: https://wiki.kerbalspaceprogram.com/wiki/Tutorials (дата обращения: 13.12.2022).

М (дата обращения: 13.12.2022).

- 8. Космические скорости // Asteropa URL: https://asteropa.ru/kosmicheskie-skorosti/ (дата обращения: 13.12.2022).
- 9. Как на самом деле фотографировали обратную сторону Луны // TechInsider URL: https://www.techinsider.ru/technologies/9815-temnaya-storona-lun y-pervye-fotografii-nevidimoy-storony-luny/ (дата обращения: 20.12.2022).

- 10. Богатов Г. Б. Как было получено изображение обратной стороны Луны. СПб.: Государственное энергетическое издательство, 1961. 66 с.
- 11. Т.М. Энеев, Э.Л. Аким. Академик М.В. Келдыш. Механика космического полёта. Институт прикладной математики им. М. В. Келдыша, 2014. 43 с.