4196 Series Temperature Indicating Controllers

The 4196 Series temperature indicating controllers (figure 1) show process temperature and set point on an easy-to-read process scale. The controllers, part of the versatile family of Wizard® pneumatic instrumentation, are used in industries requiring accurate process monitoring and temperature control.

A temperature bulb (figure 7) measures process temperature. A 4196 Series controller then compares process temperature with an operator-adjusted set point. The controller delivers a pneumatic signal to a control element. The control element changes the process temperature toward the set point.

Controller types are available for proportional-only, proportional-plus-reset, proportional-plus-reset-plus-rate, and differential gap for on-off control.

Features

• Easy Maintenance—Simple design allows fast, easy maintenance and minimal spare parts inventory.

- Easy Adjustment—Adjusting the set point, adjusting the zero and span of the process pointer, and switching between direct and reverse action are accomplished quickly and without special tools. Also, no interaction occurs when the set point and proportional band are adjusted.
- Vibration Resistance—The simple design and low mass of internal parts allow the controller to withstand the vibrations found in most plant environments.
- **Highly Visible Display**—Two red pointers on a 4-1/2 inch (114 mm), white-on-black scale show process temperature and deviation from set point at a glance. Two other gauges monitor supply and output pressures.

(continued on page 3)

Figure 1. 4196 Series Temperature Controllers

FISHER°

Fisher, FISHER-ROSEMOUNT, Managing The Process Better, and Wizard are marks owned by Fisher Controls International, Inc. or Fisher-Rosemount Systems, Inc. All other marks are the property of their respective owners.

Specifications

Available Configurations

See table 1

Process⁽¹⁾ Sensor Range (Input Signal⁽¹⁾)

Type: Temperature between -100 and 700°F (-73 and 371°C). See table 2 for available ranges

Minimum Span⁽¹⁾: 100°F or 60°C Maximum Span⁽¹⁾: 600°F or 300°C

Output Signal⁽¹⁾

Proportional, Proportional-Plus-Reset, or Proportional-Plus-Reset-Plus-Rate Range: ■ 3 to 15 psig (0.2 to 1.0 bar) or ■ 6 to 30 psig (0.4 to 2.0

Differential Gap Range: ■ 0 and 20 psig (0 and 1.4 bar) or **1** 0 and 35 psig (0 and 2.4 bar)

Action: Field-reversible between ■ direct (increasing sensed temperature increases output pressure) and ■ reverse (increasing sensed temperature decreases output pressure)

Process Scale

Matched to the range of the sensing element as standard. Optional⁽²⁾ scales available

Supply and Output Connections

1/4-inch NPT, female

Supply Pressure Requirements

See table 3

Remote Set Point Pressures

■ 3 to 15 psig (0.2 to 1.0 bar) or ■ 6 to 30 psig (0.4 to 2.0 bar)

Maximum Allowable Pressure in Closed Vessel (For Temperature Element Assembly)(3)

3/8-Inch (9.5 mm) Diameter Temperature Bulb: 1000 psig (69 bar)

9/16-Inch (14.3 mm) Diameter Temperature **Bulb:** 500 psig (34.5 bar)

Construction Materials

See table 4

Controller Adjustments

Proportional Band⁽¹⁾: 5 to 500% of process scale range

Reset⁽¹⁾: Adjustable from 0.01 to more than 74 minutes per repeat (from 100 to less than 0.0135 repeats per minute)

Rate⁽¹⁾: Adjustable from 0 to 20 minutes

Differential Gap⁽¹⁾ Controllers: Adjustable from 5 to 100% of process scale range

Set Point: Continuously adjustable from 0 to 100% of the scale range.

Controller Performance

Repeatability⁽¹⁾: 0.4% of output span Dead Band⁽¹⁾: Less than 0.4% of process scale

Time Constant of Temperature Bulb: For a 200°F (93°C) span, 6 to 12 seconds (bare bulb in agitated liquid)

Steady-State Air Consumption⁽¹⁾⁽⁴⁾⁽⁵⁾

3 to 15 Psig (0.2 to 1.0 Bar) Output: 3.5 scfh $(0.10 \text{ normal m}^3/h)$ 6 to 30 Psig (0.4 to 2.0 Bar) Output: 5.0 scfh $(0.14 \text{ normal m}^3/h)$

Delivery Capacity⁽⁴⁾

3 to 15 Psig (0.2 to 1.0 Bar) Output: 240 scfh (5.6 normal m³/h)

6 to 30 Psig (0.4 to 2.0 Bar) Output: 350 scfh (9.9 normal m³/h)

Exhaust Capacity⁽⁴⁾

3 to 15 Psig (0.2 to 1.0 Bar) Output: 186 scfh (4.6 normal m³/h) 6 to 30 Psig (0.4 to 2.0 Bar) Output: 295 scfh (7.0 normal m³/h)

Operative Ambient Temperature Limits⁽⁶⁾

-40 to 160°F (-40 to 71°C)

Mounting

Controller can be mounted on ■ actuator, ■ panel, ■ wall, or ■ pipestand

Approximate Weight

10 pounds (4.5 kg)

These terms are defined in ISA Standard S51.1-1979.

Consult your Fisher Controls sales office or sales representative for additional information At 100°F (40°C)

Scfh—standard cubic feet per hour at 60°F and 14.7 psia; Normal m³/hr—normal cubic meters per hour at 0°C and 1.01325 bar, absolute.

Without auto/manual switch. With auto/manual switch, air consumption is 10.0 scfh (0.28 normal m³/hr) for either output range Also for transportation and storage limits.

Table 1. Available Configurations

		М	ODES	OPTIONS				
TYPE NUMBER ⁽¹⁾	Proportional- Only Suffix Letter A	Proportional- Plus-Reset Suffix Letter B	Proportional-Plus- Reset-Plus-Rate Suffix Letter C	Differential Gap Suffix Letter S	Anti-Reset Windup Suffix Letter F	Remote Set Point Suffix Letter M	Internal Auto/ Manual Station Suffix Letter E	
4196A	Х							
4196AE	X						X	
4196AM	X					X		
4196AME	X					X	X	
4196B		X						
4196BE		X					X	
4196BF		X			X			
4196BFE		X			X		X	
4196BM		X				X		
4196BME		X				X	X	
4196BFM		X			X	X		
4196BFME		X			X	X	X	
4196C			X					
4196CE			X				X	
4196CF			X		X			
4196CFE			X		X		X	
4196CM			X			X		
4196CME			X			X	X	
4196CFM			X		X	X		
4196CFME			X		X	X	X	
4196S				X				
4196SE				X			X	
4196SM				X		X		
4196SME				X		X	X	
Reverse-ac	ting constructions are d	lesignated by the suffix	letter R in the type number.					

Features (continued)

- Low Air Consumption—The relay and nozzle design reduces steady-state air consumption to as low as 3.5 scfh (0.10 normal m³/h).
- Corrosion Resistance—Tough plastic housing withstands corrosive environments. Internal constructions are available to resist corrosive supply pressure media such as sour gas.

Construction Features

Simplified Relay Maintenance

A clean-out wire provides a fast, easy means of cleaning the relay primary orifice during service.

Pressure Protection for the Case

A rubber plug in the plastic case pops out to vent excessive pressure buildup inside the case before structural damage can occur.

Easy Direct/Reverse Switching

Controller action can be switched from direct to reverse or vice versa by simply loosening the screws on

the proportional band cover and moving the cover out to rotate the proportional band knob to the desired action (see figure 2).

Easy Mode Conversion

Conversion from proportional to proportional-plus-reset control requires the addition of a reset valve and two pieces of tubing. Conversion from proportional to proportional-plus-reset-plus-rate control requires the addition of a reset/rate valve and three pieces of tubing. Conversion from proportional to differential gap control requires the addition of one piece of tubing.

These conversions require removing the controller from the case.

Anti-Reset Windup

Anti-reset windup is available with proportional-plus-reset and proportional-plus-reset-plus-rate controllers. A relief valve can be adjusted to limit reset windup on either increasing or decreasing output.

Remote Set Point

The capability of adjusting the set point from a remote location is available as an option with all 4196 Series controllers.

Figure 2. Controller Construction Detail

Auto/Manual Capability

An optional internal auto/manual station permits smooth, bumpless transfer between automatic control and manual operation without disturbing the controller output. A positive-acting, two-position switch, showing either automatic or manual control mode, is clearly visible with the controller cover closed.

External Feedback

In controller override applications, this option minimizes reset windup in the secondary controller. This option is available only with the two-mode (4196B Series) controllers.

Principle of Operation

The schematic diagram in figure 3 emphasizes detail of construction variations between control modes. Refer to table 1 to relate type number suffixes to the construction variations.

Proportional-Only Controllers (4196A Series)

The input element is connected to the process pointer and to the flapper by connecting links. As the process temperature increases (in a direct-acting controller), the flapper moves toward the nozzle, restricting flow through the nozzle and increasing nozzle pressure. When this occurs, relay action increases the output pressure (delivery) of the controller. Output pressure is fed back to the proportional bellows. The action of the proportional bellows counters the flapper movement that resulted from the process temperature change and backs the flapper away from the nozzle until the controller reaches a point of equilibrium.

The set point adjustment changes the proximity of the nozzle and flapper as does a change in process temperature except that, when the set point is changed, the nozzle moves with respect to the flapper.

The proportional band adjustment knob positions the nozzle on the flapper. Increasing (widening) the proportional band moves the nozzle to a position on the flapper where less flapper motion occurs, decreasing the gain of the controller. Decreasing (narrowing) the proportional band moves the nozzle toward a position where more flapper motion occurs, increasing the gain. Controller action is changed from direct to reverse by turning the proportional band adjustment knob to position the nozzle to a point on the flapper where the direction of the flapper motion versus input motion is reversed (see flapper detail in figure 3). With the controller in the reverse-acting mode, an increase in process temperature causes a decrease in output pressure.

Figure 3. Schematic of 4196 Series Temperature Controllers

	TEMPERATURE SPAN		ELEMENT RANGE	OPERATING RANGE	TEMPERATURE BULB DIAMETER	OVER!	MAXIMUM TEMPERATURE ⁽³⁾	
	°F Minimum	°F Maximum	°F	°F	Inch	°F Minimum	°F Maximum	°F
			0 to 200			-20	300	
	175	200	50 to 250	0 to 300	2/0	30	350	450
			100 to 300		3/8	80	400	450
U. S. Units	250	300	0 to 300	-25 to 325		-30	450	
			0 to 100	25 to 200		-10	150	
	100	100	50 to 150	–25 to 200		40	200	
			100 to 200	75 to 300		65	250	375
	125	450	0 to 150	05 4- 005		-15	225	
		150	50 to 200	-25 to 225	9/16	35	275	
	070	300	-100 to 200	-100 to 275		-130	350	
	270		100 to 400	25 to 400		70	550	750
	300	400	0 to 400	-100 to 450		-40	600	
	425	500	0 to 500	-100 to 600		-50	750	1000
	525	600	0 to 600	-100 to 700		-60	900	1100
	°C Minimum	°C Maximum	°C	°C	mm	°C Minimum	°C Maximum	°C
		100	0 to 100	45 4 450		-10	150	
	100		50 to 150	-15 to 150	0.5	40	200	000
			-15 to 85		9.5	-25	135	230
	150	150	0 to 150	-30 to 160		-15	225	
			-20 to 40	-30 to 95		-26	70	
Metric	60	60	0 to 60	-30 to 95		-6	90	190
Units			60 to 120	38 to 150		54	150	
	450	450	-75 to 75	-75 to 135	44.0	-90	150	
	150	150	50 to 200	-5 to 200	14.3	35	275	400
	170	200	0 to 200	-75 to 230		-20	300	
	235	250	0 to 250	-75 to 315		-25	375	535
	275	300	0 to 300	-75 to 370		-30	450	590

Table 3. Supply Pressure Data

0	UTPUT SIGNAL RANGE	NORMAL OPERATING SUPPLY PRESSURE ⁽¹⁾	MAXIMUM PRESSURE TO PREVENT INTERNAL DAMAGE ⁽²⁾
Deia	3 to 15 or 0 and 20 (differential gap)	20	40
Psig	6 to 30 or 0 and 35 (differential gap)	35	40
Bar	0.2 to 1.0 or 0 and 1.4 (differential gap)	1.4	2.8
Dar	0.4 to 2.0 or 0 and 2.4 (differential gap)	2.4	2.8
	s pressure is exceeded, control stability s pressure is exceeded, damage to the		t.

Proportional-Plus-Reset Controllers (4196B Series)

This controller operation is similar to that of proportional-only controllers except that output pressure is fed back to the reset bellows as well as to the proportional

bellows. In operation, proportional-plus-reset controllers minimize the offset between the process temperature and set point.

Proportional-Plus-Reset-Plus-Rate Controllers (4196C Series)

Figure 4 shows details of the reset/rate option. Controllers with this option have a rate valve, an adjustable restriction that momentarily maintains the controller gain to accelerate the corrective action for slow temperature systems. A proportional-plus-reset-plusrate controller responds to a change in process temperature as follows: First, the rate action delays the gain reduction just long enough to allow the system to respond to the change, but not long enough for the system to become unstable. Then, the low gain provided by the proportional action keeps the system stable. Finally, reset action slowly increases the gain and returns the process temperature toward set point.

Contact your Fisher sales office or sales representative about other spans and ranges.
 All temperature bulbs are tested to +50 percent of overrange limits. With travel stops in place, if the overrange limits are exceeded, the controller may require recalibration.
 With travel stops in place, temperatures in excess of these values may cause permanent damage to the temperature element.

Table 4. Construction Materials

PART	STANDARD MATERIAL	OPTIONAL MATERIAL
Thermal element assembly	N09902 (Nickel Alloy) and S30300 ⁽¹⁾ (303 stainless steel)	
Case and cover	Polyester plastic	
Exterior tubing	Copper	stainless steel, polyethylene
Exterior fittings	C36000 (brass)	stainless steel, polyethylene
Interior tubing	Copper	S30400 (304 stainless steel)
Nozzle	S30300 (303 stainless steel)	
Flapper	S31600 (316 stainless steel)	
Relay springs	■ S30200 (302 stainless steel), ■ steel	
Relay O-rings	Nitrile	
Relay diaphragms	Nitrile	
Other relay metal parts	■ Aluminum, ■ stainless steel	
Feedback bellows assembly	C51000 (bronze)	S32100 (321 stainless steel)
Supply and output gauges	Brass (wetted parts only)	Stainless steel (wetted parts only)
Bushing	Stainless steel	
Thermowell	Stainless steel	■ Carbon steel, ■ N04400 (Monel)
Remote set point element	■ N09902 (Nickel Alloy), ■ S30300 (303 stainless steel)	
1. For the temperature bulb, capillary tu	be, and armor.	

Differential Gap Controllers (4196S Series)

In this version, feedback pressure does not counteract the change in flapper position. Instead, the change is reinforced because feedback pressure is piped directly to the reset bellows only. This construction causes the controller output to switch from full supply pressure to zero pressure or vice versa.

Anti-Reset Windup Option

Anti-reset windup is available on all 4196B and 4196C Series controllers and is designated by the suffix letter F in the type number. The differential relief valve operates when the difference between proportional bellows pressure and reset bellows pressure reaches a predetermined value. Anti-reset windup reduces overshoot of the process temperature that can result from large or prolonged deviation from set point. This option can be adjusted to operate on either increasing or decreasing output pressure.

Remote Set Point Option

The optional capability to change the controller set point from a remote location is available with all 4196 Series controllers. This option is designated by the suffix letter M in the type number.

Figure 4. Schematic of Reset/Rate Option

Figure 5. Schematic of Auto/Manual Option

Auto/Manual Option

Controllers with the auto/manual option (designated by the suffix letter E in the type number) have piping on the output side of the relay as shown in figure 5. Supply pressure to the relay is also applied to the manual loader. The manual loader, functioning as a regulator, applies pressure to one side of the plastic tube and to the auto/manual switch. Output pressure from the relay registers on the other side of the plastic tube as well as in the auto/manual switch.

When the auto/manual switch is in the MANUAL position, the output of the manual loader becomes the output of the controller. The output of the manual loader is adjustable using the manual loader knob.

When the auto/manual switch is in the AUTO position, the output of the relay is channeled through the switch to become the output of the controller.

Before the auto/manual switch is operated, the output of the relay must equal the output of the manual loader to avoid bumping the process. Adjusting the set point varies the pressure on the left-hand side of the plastic tube. Adjusting the manual loader knob varies the pressure on the right-hand side. When the pressures are equal, the metal ball is centered in the tube. Pressure imbalance will force the ball to one end of

the tube where it forms a seal, blocking air flow through the tube.

External Feedback Option

External feedback is available with all 4196B Series controllers. Controllers with this option have an external process connection on the bottom of the controller case (see figure 9). This connection breaks the positive feedback (reset) loop inside the controller and brings it outside (see figure 6). The connection allows the positive feedback loops of two controllers (primary and secondary) to be tied together when the controllers are used in an override application. Thus connected, the feedback loop of the secondary controller tracks the primary controller, minimizing reset windup.

Installation

In a typical installation, a 4196 Series temperature controller mounts on a pipestand. The capillary tube length determines the installation site.

When installing a controller, the vent must point down. When the temperature bulb (with dimensions shown in figure 7) is used within a closed vessel, the bulb screws into a bushing (see figure 8) that penetrates

Figure 6. Schematic of External Feedback Option

the vessel. Where pressure within the closed vessel exceeds the limits of the temperature bulb or when the process fluid is corrosive, the temperature bulb screws into a thermowell (see figure 8) that penetrates the vessel. Lag type bushings and thermowells (also shown in figure 8) are used where extra length is re-

quired, such as installation in a process vessel that is coated with insulation.

See figure 9 for basic controller dimensions. Figure 10 shows dimensions for specific mounting configurations.

	TEMPE	DIMENSION							
SAMA STYLE	٥٢	°C	B ⁽¹⁾	J		Х		Y	
	· F	- 0	В(-)	Inch	mm	Inch	mm	Inch	mm
Adjustable Union	200 and 300,	100 and 150	1/2-14 NPSM	17.50	445	5.70	145	0.38	10
(Standard Construction)	100 and 150, 300 through 600	60, 150 through 300	1-20 UNEF-2A	23.00	584	7.00	178	0.56	14

^{1.} NPSM—National Straight Pipe Threads for Mechanical Joints; UNEF—Unified Thread-Extra

Figure 7. Dimensions for Temperature Bulb with Adjustable Union

3/4-14 NPT

C

INCH (mm)

3/4-NPT

2

BUSHINGS WITHOUT LAGGING

BUSHINGS WITH LAGGING

BUSHING										
Tempe	erature		Dimension							
Bulb Dia.		A(1)	E	3	С					
Inch	mm	A(··/	Inch	mm	Inch	mm				
3/8	10	1/2-14 NPSM	0.44	11	0.44	11				
9/16	14	1-20 UNEF	0.75	19	0.63	16				
1. Seat	1. Seat area per SAMA Standard RC-17-10-1963.									

	LAGGED BUSHING												
Temper ature Bulb Dia.			Dimension										
		A(1) B		3	С		D		E				
Inch	mm	A(·)	Inch	mm	Inch	mm	Inch	mm	Inch	mm			
3/8	10	1/2-14 NPSM	0.44	11	0.47	12	4.44	113	0.44	11			
9/16	14	1-20 UNEF	0.75	19	0.66	17	4.75	121	0.63	16			

THERMOWELL										
Temperature Bulb Dia.			Dime							
		A B		C ⁽¹⁾	U (Insertion Length)					
Inch	mm	Inch mm		Inch	mm					
3/8	10	1/2-14 NPT 3/4-14 NPT	0.63 0.77	16 20	1/2-14 NPSM-2B	7.5 10.5 16	191 267 206			
9/16	14	3/4-14 NPT	0.88	22	1-20 UNEF-2B	7.5 10.5 16 24	191 267 406 610			

 \bigcirc TOLERANCES FOR THIS DIMENSION ARE AS FOLLOWS: $\pm\,0.06$ INCH (1.5 mm) WHEN LENGTH IS 12 INCHES (305 mm) OR LESS

- \pm 0.125 INCH (3.2 mm) WHEN LENGTH IS GREATER THAN 12 INCHES (305 mm) $\boxed{2}$ 7/8-INCH HEX FOR 3/8-INCH TEMPERATURE BULB;

1-1/8-INCH HEX FOR 9/16-INCH TEMPERATURE BULB

Figure 8. Bushing and Thermowell Dimensions

Figure 9. Controller Dimensions

Figure 10. Mounting Dimensions

Ordering Information

Applications

When ordering, specify:

- 1. Description of the service
- 2. Temperature range of the process
- 3. Ambient temperature
- 4. Velocity of the process fluid (if measuring the temperature of a process fluid flowing through a pipe)
- 5. Pressure in the process vessel (if closed)

6. Bushing or thermowell. Specify either bushing or thermowell (if required) when the temperature bulb is used in a closed vessel. Refer to figure 8 for available sizes. Specify straight-shank or tapered-shank⁽¹⁾ thermowell.

Construction

Refer to the specifications on page 2 and the Construction Features section. Carefully review each specification and feature, specifying your choice whenever a selection is offered. Pipestand mounting hardware will be supplied unless some other mounting method is specified.

Refer to table 1 for type numbers (add R to any type number if reverse action is desired).

1. Tapered-shank thermowells, with their high strength-to-weight ratio, permit operation in higher process fluid velocities than do straight shank thermowells

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

For information, contact Fisher Controls: Marshalltown, Iowa 50158 USA Cernay 68700 France Sao Paulo 05424 Brazil Singapore 0512

