

Project 5: Introduction to Exponential FunctionsActivity Sheet

Part 1: Analyze Data

Here are the populations of three cities during different years.

City	1950	1960	1970	1980	1990	2000
Paris	6,300,000	7,400,000	8,200,000	8,700,000	9,300,000	9,700,000
Austin	132,000	187,000	254,000	346,000	466,000	657,000
Chicago	3,600,000	3,550,000	3,400,000	3,000,000	2,800,000	2,900,000

What do you notice? What do you wonder?

Part 2: Writing Equations to Model Populations

The table above gives the population data for three cities at different times between 1950 and 2000. What does the data tell us, if anything, about the current population in the cities or what the population will be in 2050?

1. How would you describe the population change in each city during this time period? Write one to two sentences for each city. Then discuss with your group.

2.	What kind of model (linear, exponential, both, or neither) do you think is appropriate for each city's population?

- 3. For each population that you think can be modeled by a linear and/or exponential function:
 - 1. Write an equation for the function(s).

2. Graph the functions.

4. Compare the graphs of your functions with the actual population data. How well do the models fit the data?

5.	Use your models to predict to 2050.	he popu	ılation ir	n each ci	ty in 20	10, the c	urrent y	ear, and
6.	Do you think that these pred your reasoning.	ictions a	are (or w	vill be) a	ccurate?	' Be prep	pared to	show
Part :	3: Open-Ended Modeling	with D	ata In	vestiga	ation			
	Year	1804	1927	1960	1974	1987	1999	2011
Wo	orld Population in Billions	1	2	3	4	5	6	7
1.	Would a linear function be ap over the last 200 years? Expla			_			_	
2.	Would an exponential function	on be ap			_	the wor		

3.	From 1950 to the present day, by about what percentage has the world population grown each year?
4.	From 1950 to the present day, by about how many people has the world population grown each year?
5.	If the growth trend continues, what will the world population be in 2050? How long do you think the growth will continue? Be prepared to show your reasoning.