## CSE215 Foundations of Computer Science

**State University of New York, Korea** 

Propositional Logic

Predicate Logic

**Proof** 

# CSE215: Foundations of Computer Science

Sequences

Sets

**Functions** 

Relations

## Today's objectives

Know a list of key things that will be covered in the exams

## Today's work

| book chapter   Topics |                     | Exam problems      |  |
|-----------------------|---------------------|--------------------|--|
| 2                     | Propositional logic | 2021-final, pb 1   |  |
| 3                     | Predicate logic     | 2021-midterm1, pb3 |  |
| 4                     | Proof               | 2021-final, pb4    |  |
| 5                     | Sequences           | 2021-final, pb7    |  |
| 6                     | Sets                | 2021-midterm2, pb2 |  |
| 7                     | Functions           | 2021-final, pb9    |  |
| 8                     | Relations           | 2021-final, pb11   |  |

#### How we proceed next:

- We first go over the exam problems, emphasizing "key" concepts.
- Expectation: get an intuition. Do not expect to understand all.

# Propositional Logic Final 2021

Problem 1. [5 points]

Construct a truth table for the following statement form:  $p \land (q \lor r) \leftrightarrow p \land (q \land r)$ .

#### **Key: Truth Table**

Truth table for p ^ q

| p | q | p ^ q |
|---|---|-------|
| T | T | T     |
| T | F | F     |
| F | T | F     |
| F | F | F     |

#### Predicate Logic — Midterm 1, 2021

#### Problem 3. [10 points]

Give negations of the following statements. Reasoning is not required.

- (f) [1 point]  $\forall x, \forall y \text{ such that } p(x, y)$
- (g) [1 point]  $\forall x, \exists y \text{ such that } p(x, y)$

#### Key: Negation on quantifiers

$$-(\forall x, P(x)) \equiv \exists x, \neg P(x)$$

$$-(\exists x, P(x)) \equiv \forall x, \neg P(x)$$

### Proof — Final 2021

#### Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

## Key: Prove things about integers from basic facts

Example of basic facts: an even integer can be written as 2\*n; or  $(x+y)^2 = x^2 + 2xy + y^2$ 

### Sequences - Final 2021

#### Problem 7. [10 points]

Use mathematical induction to prove the following identities.

(a) [5 points] For all integers  $n \ge 1$ ,

$$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$

## Key: Use Mathematical Induction to show facts about integers



### Sets — Midterm 2, 2021

#### Problem 2. [5 points]

Mention whether the following statements are true or false without giving any reasons. Assume all sets are subsets of a universal set U.

(a) [1 point] 
$$(A \cap B) \cap (A \cap C) = A \cap (B \cup C)$$

#### Key: Union and intersection on Sets



### Functions — Final 2021

#### Problem 9. [5 points]

Write and fill the table with  $\checkmark$  or  $\checkmark$ . If a function is one-to-one or onto, then use  $\checkmark$ . On the other hand, if a function is not one-to-one or not onto, then use  $\checkmark$ .

| Function  | Domains                        | One-to-one function? | Onto function? |
|-----------|--------------------------------|----------------------|----------------|
| f(x) = 3x | $f: \mathbb{Z} \to \mathbb{Z}$ |                      |                |

#### Key: One-to-one and onto functions









### Relations - Final 2021

#### Problem 11. [5 points]

Let A be the set of all people. Let R be the relation defined on A as follows: For persons p and q in A, we have p R  $q \Leftrightarrow p$  has the same birthday as q.

Is R an equivalence relation? Prove your answer. If R is an equivalence relation, what are the distinct equivalence classes of the relation?

## Key: Equivalence relations and Equivalence classes





## Today's take-away

| book chapter                    | Topics                                                                       | Exam problems                                                                                                                             | Key                                                                                                                                   |
|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8 | Propositional logic Predicate logic Proof Sequences Sets Functions Relations | 2021-final, pb 1<br>2021-midterm1, pb3<br>2021-final, pb4<br>2021-final, pb7<br>2021-midterm2, pb2<br>2021-final, pb9<br>2021-final, pb11 | truth table negation on quantifiers facts about integers math induction unions and intersections 1-1 and onto equiv. rel. and classes |

## Thank you for your attention!