Contents

Problem 1.											 											2
Problem 2.											 											4
Problem 3.											 											6
Problem 4.											 											6
Problem 5.											 											6
Problem 6.											 											6
Problem 7.											 											7
Problem 8.											 											8
Problem 9.											 											8
Problem 10											 											8
Problem 11											 											8
Problem 12											 											8
Problem 13											 											8
Problem 14	٠.										 											Ģ
Problem 15											 											Ģ
Problem 16	,										 											10
Problem 17											 											10
Problem 18											 											10
Problem 19											 											11
D==1-1 20																						1.1

Math 350 - Advanced Calculus Homework 6

Chan Nguyen

November 12, 2012

Problem 1 Let 0 < a < 3 be a number. Let $x_0 = a$ and $y_0 = a - 1$, and inductively define

$$x_{n+1} = x_n - \frac{x_n y_n}{2}$$

$$y_{n+1} = \frac{y_n^2(y_n - 3)}{4}$$

- (a) Prove that $a(1+y_n)=x_n^2$ for all n.
- (b) Prove that the sequence (y_n) converges to 0.
- (c) Prove that the sequence (x_n) converges to \sqrt{a}

Solution.

(a) *Proof.* We will prove by induction n. Base case:

$$lhs = x_0^2 = a^2 = rhs = a(1+y_0) = a(1+a-1) = a^2$$

Suppose $a(1+y_n)=x_n^2$, we will show that it's also true for n+1. We have

$$x_{n+1}^{2} = \left(x_{n} - \frac{x_{n}y_{n}}{2}\right)^{2}$$

$$= x_{n}^{2} - 2 \cdot x_{n} \cdot \frac{x_{n}y_{n}}{2} + \frac{x_{n}^{2}y_{n}^{2}}{4}$$

$$= x_{n}^{2}(1 - y_{n} + \frac{y_{n}^{2}}{4})$$

$$= a(1 + y_{n})(1 - y_{n} + \frac{y_{n}^{2}}{4})$$

$$= a(1 - y_{n}^{2} + \frac{y_{n}^{2}}{4} + \frac{y_{n}^{3}}{4})$$

$$= a(1 - \frac{3y_{n}^{2}}{4} + \frac{y_{n}^{3}}{4})$$

$$= a(1 + \frac{y_{n}^{2}(y_{n} - 3)}{4})$$

$$= a(1 + y_{n+1})$$

(b) Proof. Since $0 < a < 3 \Rightarrow -1 < a - 1 = y_0 < 2$. A brief C++ program shows that:

```
a = -0.5
_____
-0.5
-0.21875
-0.0385056
-0.00112628
-9.51739e-007
-6.79356e-013
-3.46143e-025
-8.98612e-050
-6.05628e-099
-2.75089e-197
-0
-0
-0
-0
-0
initial a = 0.5
-----
0.5
-0.15625
-0.0192642
-0.00028012
-5.88559e-008
-2.59801e-015
-5.06225e-030
-1.92198e-059
-2.77049e-118
-5.75673e-236
-0
-0
-0
-0
-0
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
void generate_sequence(double init) {
        cout << "initial a = " << init << endl;</pre>
        cout << "----\n";
       double y0 = init;
        for (int i = 0; i < 15; ++i) {
               cout << y0 << endl;</pre>
               y0 = y0*y0*(y0 - 3)/4.0;
        }
        cout << endl << endl;</pre>
int main() {
```

```
double inits[5] = {-0.5, 0.0, 0.5, 1.0, 1.5};
for (int i = 0; i < 5; ++i) {
          generate_sequence(inits[i]);
}
return 0;
}</pre>
```

As we can see if the initial value falls in the range between (-1,2), the sequence is actually increasing and converges to 0 except for the first value. So our goal is to prove that it's bounded by 0 and increasing. First we will prove that (y_n) is bounded by 0 for all $n \ge 1$. Base case n = 1, we have

$$y_1 = \frac{y_0^3 - 3y_0^2}{4}$$

where $-1 < y_0 < 2 \Rightarrow -1 < y_0^3 < 8$, and $0 \le 3y_0^2 < 12$. Thus $\frac{y_0^3 - 3y_0^2}{4} < 0$. Suppose that $y_n < 0$, we want to show that it's also true for n+1. Indeed, $y_{n+1} = \frac{y_n^3 - 3y_n^2}{4} < 0$ because $y_n^3 < 0$ and $3y_n^2 > 0$. Therefore, (y_n) is bounded above by 0.

Next we want to show that (y_n) is increasing starting from y_1 , so we want to show that

$$y_{n+1} \ge y_n , \forall n$$

$$\Leftrightarrow \frac{y_n^2(y_n - 3)}{4} \ge y_n$$

$$\Leftrightarrow y_n^3 - 3y_n^2 - 4y_n \ge 0$$

We have

$$y(a) = y_n^3 - 3y_n^2 - 4y_n = y_n(y_n - 4)(y_n + 1)$$

where $y_n \leq 0$.

$$\underbrace{y_n}_{\leq 0}\underbrace{(y_n-4)}_{\leq 0}\underbrace{(y_n+1)}_{???}$$

To make this expression greater than 0, we need $y_n \ge -1$ which is true because $y_n \le 0$ for all n, so it will never be able to reach -1 except for the initial value which is consistent with our data from the program. Hence (y_n) is bounded by 0 and it's increasing after the first few terms, so there exists $N \in \mathbb{N}$ such that if n > N then (y_n) is bounded and increasing. By Monotone Theorem, we can conclude that (y_n) converges or the limit of (y_n) exists. To show that this limit is 0, let L be the limit of the sequence. We have

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} = L$$

Hence,

$$\frac{L^{2}(L-3)}{4} = L$$

$$\Leftrightarrow L^{3} - 3L - 4L = 0$$

$$\Leftrightarrow L(L-4)(L+1) = 0$$

There are 3 solutions to this equation, however only 0 actually works. 4 can be eliminated because $4 \notin (-1,2)$ and we know that the (y_n) is bounded by 0. The same logic applies to -1, since the sequence is bounded by 0 and increasing, it can't be -1. Therefore the limit of (y_n) must be 0.

(c) *Proof.* From part (a) we have that:

$$x_n^2 = a(1+y_n) \Leftrightarrow x_n = \sqrt{a(1+y_n)}$$

Hence,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \sqrt{a(1 + y_n)}$$

By Algebra Limit Theorem, we have

$$\lim_{n \to \infty} \sqrt{a(1+y_n)} = \lim_{n \to \infty} \sqrt{a} + \lim_{n \to \infty} ay_n$$
$$= \sqrt{a} + a \cdot 0$$
$$= \sqrt{a}$$

Problem 2 Let $S \subset \mathbb{R}$. A number x is an interior point of the set $S \subset R$ if there is r > 0 such that the interval $(x - r, x + r) \subset S$. The set of all interior points of S is denoted by S° . Prove the following properties:

- (i) $S^{\circ} \subset S$
- (ii) $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$
- (iii) $S^{\circ} \cup T^{\circ} \subset (S \cup T)^{\circ}$, but these two sets are not necessarily equal.
- (iv) S° is the largest open set contained in S, that is S° is an open set, and if $U \subset S$ is an open set, then $U \subset S^{\circ}$.

Solution.

- (i) Let $x \in S^{\circ}$, then by definition of interior point, there exists r > 0 such that $(x r, x + r) \subset S \Rightarrow x \in S \Rightarrow S^{\circ} \subset S$.
- (ii) \subset : Let $x \in (S \cap T)^{\circ}$, then by definition of interior point, there exists r > 0 such that $(x r, x + r) \subset (S \cap T)$ which implies

$$(x-r,x+r)\subset S$$

and

$$(x-r,x+r)\subset T$$

Hence, $x \in S^{\circ}$ and $x \in T^{\circ} \Rightarrow x \in (S^{\circ} \cap T^{\circ}) \Rightarrow (S \cap T)^{\circ} \subset (S^{\circ} \cap T^{\circ})$. (1) \supset : Let $x \in (S^{\circ} \cap T^{\circ}) \Rightarrow x \in S^{\circ}$ and $x \in T^{\circ}$. By definition of interior point, $\exists r_1, r_2 > 0$ such that

$$(x-r_1,x+r_1)\subset S$$
 and $(x-r_2,x+r_2)\subset T$

Let
$$r = \min(r_1, r_2) \Rightarrow (x - r, x + r) \subset (S \cap T) \Rightarrow x \in (S \cap T)^{\circ}$$
. (2) From (1) and (2) we have $(S \cap T)^{\circ} = S^{\circ} \cap T^{\circ}$

(iii) Let $x \in (S^{\circ} \cup T^{\circ}) \Rightarrow x \in S^{\circ}$ or $x \in T^{\circ}$. By definition of interior point, and without loss of generality, we assume that there exists r > 0 in such that $(x - r, x + r) \subset S \Rightarrow x \in (S \cup T) \Rightarrow x \in (S \cup T)^{\circ}$. Thus $(S^{\circ} \cup T^{\circ}) \subset (S \cup T)^{\circ}$.

However, it's not always true that $(S \cup T)^{\circ} \subset (S^{\circ} \cup T^{\circ})$. For example if $S = (-\infty, 0)$ and $T = (0, +\infty)$

(iv) Recall

Theorem 7.3. A set $S \in \mathbb{R}$ is open if and only if $\forall x \in S$, $\exists r > 0$ such that $(x - r, x + r) \subset S$.

By definition of interior sets, $\forall x \in S^{\circ}$, $\exists r > 0$ such that $(x - r, x + r) \subset S^{\circ}$. Apply Theorem 7.3 to S° , we have that S° is open. Let U be a set such that $U \subset S$ and U is open, then $\forall x \in U, \exists r > 0$ such that $(x - r, x + r) \subset U$, but $U \subset S$, thus $\forall x \in U, \exists r > 0$ such that $(x - r, x + r) \subset U \subset S$. In other words, U is also a set that contains interior points of S, where S° is the set that contains "all" interior points of S, thus $U \subset S^{\circ}$. Since U is arbitrarily chosen, S° is the largest open set contained in S.

<u>Problem 3</u> The closure of a set of numbers $S \subset \mathbb{R}$ is the set $S^- = S \cup S'$, the union of the set and its set of limit points S'. Prove the following properties.

(i) If $S \subset T$ then $S^- \subset T^-$

(ii) If
$$(S \cup T)^- = S^- \cup T^-$$

(iii) If
$$(S \cap T)^- \subset S^- \cap T^-$$

(iv) S^- is the smallest closed set that contains S.

Problem 4 Define $\lim_{x\to a} f(x) = \infty$ to mean that for every N there is a $\delta>0$ such that for all x if $0<|x-a|<\delta$ then f(x)>N. Prove that

$$\lim_{x \to 3} \frac{1}{(x-3)^2} = \infty$$

Solution.

Proof. Let $N \in \mathbb{R}+$, and $\delta = \frac{1}{\sqrt{N}} > 0$. Thus if $0 < |x-3| < \frac{1}{\sqrt{N}} \Rightarrow (|x-3|)^2 < \frac{1}{N} \Rightarrow \frac{1}{(x-3)^2} > N$. Since N is arbitrarily chosen, $\frac{1}{(x-3)^2} > N$ for all N. Therefore,

$$\lim_{x \to 3} \frac{1}{(x-3)^2} = \infty$$

Problem 5 Prove that if $\lim_{x\to 0}\frac{f(x)}{x}=L$ and $b\neq 0$, then $\lim_{x\to 0}\frac{f(bx)}{x}=bL$ Solution.

Proof. By definition of limit, we have that there exists $\epsilon > 0$, and $\delta > 0$ such that if $|x - 0| = |x| < \delta$ then

$$\left| \frac{f(x)}{x} - L \right| < \epsilon$$

Now consider,

$$\lim_{x \to 0} \frac{f(bx)}{x} = \lim_{x \to 0} \frac{bf(bx)}{bx} = b \lim_{x \to 0} \frac{f(bx)}{bx} \text{ since } b \neq 0$$

On the other hand, $|x| < \delta \Rightarrow |x| < \frac{\delta}{|b|} \text{ because } \frac{\delta}{|b|} > 0 \Rightarrow |bx| < \delta \Rightarrow \left| \frac{f(bx)}{bx} - L \right| < \epsilon.$ Therefore,

$$b \lim_{x \to 0} \frac{f(bx)}{bx} = bL$$

<u>Problem 6</u> Let S be a nonempty subset of real numbers that is bounded above but has no greatest element. Prove that $\sup(S)$ is a limit point of S.

Proof.

<u>Problem 7</u> A sequence (a_n) is a Cauchy sequence if, for any $\epsilon > 0$, there is a natural number N such that if n, m > N, then $|a_n - a_m| < \epsilon$. Prove the following:

- (a) Any convergent sequence is a Cauchy sequence.
- (b) Any Cauchy sequence is bounded.
- (c) Any subsequence of a Cauchy sequence is a Cauchy sequence.
- (d) If a subsequence of Cauchy sequence converges, then the whole sequence also converges.

Solution.

(a) *Proof.* Let (a_n) be a convergent sequence to L, then $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < \frac{\epsilon}{2}$. Given $\epsilon > 0$, we choose n, m > N, then

$$|a_n-L|<rac{\epsilon}{2} ext{ and } |a_m-L|<rac{\epsilon}{2}$$

Consider, $|a_n - a_m| = |a_n - L + L - a_m| < |a_n - L| + |a_m - L|$ by Triangle Inequality. Hence,

$$|a_n - a_m| = |a_n - L| + |a_m - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

And this shows that a convergent sequence satisfy all Cauchy sequence property which implies it must be a Cauchy sequence. \Box

(b) *Proof.* Let (a_n) be such a Cauchy sequence, then by definition for any $\epsilon > 0$, there is a natural number N such that if n, m > N, then $|a_n - a_m| < \epsilon$. Let m = N + 1, n > m and $\epsilon = 1$, then

$$1 > |a_n - a_{N+1}| > |a_n| - |a_{N+1}| \Leftrightarrow |a_n| < (|a_{N+1}| + 1)$$
 for all n

Let $M = \max\{a_0, a_1, a_2, \dots, |a_{N+1}| + 1\}$, then $a_n < M$ for all $n \in \mathbb{N}$. Thus (a_n) is bounded.

(c) *Proof.* Let (a_n) be such a Cauchy sequence. From (ii), we know that (a_n) is bounded. By Theorem 6.6

Theorem 6.6. Every bounded sequence of real numbers has a convergent susbequence.

We have, (a_n) has a convergent subsequene, and since it converges, it is a Cauchy sequence as proved in (i). \Box

(d) Proof. Let $A=(a_n)$ be such a Cauchy sequence, then given $\epsilon>0, \exists N\in\mathbb{N}$ such that if n,m>N then

$$|a_n - a_m| < \frac{\epsilon}{2}$$

Also, let $B=(a_{n_i})=\{a_{n_1},a_{n_2},a_{n_3},a_{n_4},\ldots\}$ be a convergent subsequence of A that converges to L, then $\exists M\in\mathbb{N}$ such that

$$|a_M - L| < \frac{\epsilon}{2}$$

Hence, if $n \geq M$, we have

$$|a_n - L| = |a_n - a_M + a_M - L|$$

$$\leq |a_n - a_M| + |a_M - L| \text{ (Triangle Inequality)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

Therefore, (a_n) converges.

- 1. Prove that a set $U \subset \mathbb{R}$ is open if and only if for any $x \in U$ there is r > 0 such that the interval $(x-r, x+r) \subset U$.
- 2. Prove that a set $U \subset \mathbb{R}$ is open if and only if U is a union of open intervals.
- 3. Prove that a set $U \subset \mathbb{R}$ if and only if U is a union of countably many disjoint open intervals.

<u>Problem 9</u> Give an example of open sets $U_1 \supset U_2 \supset U_2 \dots$ in \mathbb{R} such that the intersection $\bigcap_{n=1}^{\infty} U_n$ is closed and non-empty.

Problem 10 Give an example of closed sets $C_1 \supset C_2 \supset C_3 \ldots$ in $\mathbb R$ such that the intersection $\bigcup_{n=1}^{\infty} C_n$ is empty.

Problem 11

(a) Suppose that $\lim_{x\to a} f(x) = L \neq 0$. Prove that $\lim_{x\to a} \frac{1}{f(x)} = \frac{1}{L}$.

Proof. By definition of limit, fix $\epsilon > 0$, there exists $\delta > 0$ such that $|x - a| < \delta \Rightarrow |f(x) - L| < \epsilon \cdot f(x) \cdot L$. Consider,

$$\left| \frac{1}{f(x)} - \frac{1}{L} \right| = \left| \frac{L - f(x)}{f(x) \cdot L} \right| < \frac{\epsilon f(x) \cdot L}{f(x) \cdot L} = \epsilon$$

(b) Let $r(x) = \frac{p(x)}{q(x)}$ be a rational function, where p(x) and q(x) are polynomials in x. Prove that r is continuous at all x such that $q(x) \neq 0$.

Proof.

Problem 12 Let I be an interval in \mathbb{R} and let $a \in I$. If f is a function whose domain contains $I \setminus \{a\}$ define

$$\lim_{x \to a+} f(x) = \lim_{x \to a} f_+(a)$$

where f_+ is the function with domain $I \cap (a, \infty)$ given by $f_+(x) = f(x)$. Similarly, define

$$\lim_{x \to a_{-}} f(x) = \lim_{x \to a} f_{-}(x)$$

where f_- is the function with domain $I \cap (-\infty, a)$ given by $f_+(x) = f(x)$. Prove that $\lim_{x \to a} f(x)$ exists if and only if both $\lim_{x \to a+} \operatorname{and} \lim_{x \to a-} f(x)$ exist and are equal.

Problem 13 Let f be a real valued function defined on (a, ∞) , where a > 0 is some positive real number. Let $\lim_{x \to \infty +} f(x)$ given by

$$\lim_{x \to \infty+} = \lim_{y \to 0} g(y)$$

where $g:(0,1/a)\to\mathbb{R}$ is given by g(y)=f(1/y) if the latter limit exists. Prove that $\lim_{x\to\infty+}f(x)$ exists if and only if for any $\epsilon>0$ there exists a number $N\geq a$ such that $|f(x)-f(y)|<\epsilon$ if x,y>N.

(a) If $\lim_{x\to a} g(x)$ does not exist, can $\lim_{x\to a} [f(x)+g(x)]$ exist? Can $\lim_{x\to a} f(x)g(x)$ exist?

Proof. Yes, for example if g(x)=1-f(x) then $\lim_{x\to a}[f(x)+g(x)]=\lim_{x\to a}[f(x)+1-f(x)]$ exists even if $\lim_{x\to a}f(x)$ does not exist; and if $g(x)=\frac{1}{f(x)}$ where $f(x)\neq 0$ for all $x\neq a$, then $\lim_{x\to a}f(x)g(x)$ does exists even if $\lim_{x\to a}f(x)$ and $\lim_{x\to a}g(x)$ do not exist. For example, if f(x)=1/(x-a) for $x\neq a$, and g(x)=x-a.

(b) If $\lim_{x\to a} f(x)$ exist and $\lim_{x\to a} [f(x)+g(x)]$ exists, must $\lim_{x\to a} g(x)$ exists?

Proof. Yes, again we can write g(x) = (f(x) + g(x)) - f(x). Each of the terms f(x) + g(x) and f(x) on the right side has limit when $x \to a$, so their difference also has limit when $x \to a$.

(c) If $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a} g(x)$ does not exist, can $\lim_{x\to a} [f(x)+g(x)]$ exist?

Proof. No. This is just another of starting part (b).

(d) If $\lim_{x\to a} f(x)$ exist, and $\lim_{x\to a} f(x)g(x)$ exists, does it follow that $\lim_{x\to a} g(x)$ exists?

Proof. No. Let f(x) = 0 for all x and let g(x) = 1 if x is rational and -1 if x is irrational. Then for any a, f(x) and f(x)g(x) = 0 both have limit when $x \to a$. but the limit of g(x) does not exist when $x \to a$.

Problem 15

(a) Prove that if 0 < a < 2 then $a < \sqrt{2a} < 2$.

Proof. If 0 < a < 2 then $a^2 < 2a < 4 \Rightarrow a < \sqrt{2a} < 2$.

(b) Prove that the sequence,

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

converges.

Proof. Part (a) show that $\sqrt{2} < \sqrt{2\sqrt{2}} < \sqrt{2\sqrt{2}} < \ldots < 2$. so by Monotonic Convergence Theorem, the sequence converges.

(c) Find the limit. Hint: Notice that if $\lim_{n\to\infty} a_n = L$ then $\lim_{n\to\infty} \sqrt{2a_n} = \sqrt{2L}$.

Proof. If this sequence is denoted by $\{a_n\}$, then the sequence $\{\sqrt{2a_n}\}$ is the same as $\{a_{n+1}\}$ for all n. So the hint show that $L=\sqrt{2L}\Leftrightarrow L=2$.

(a) Prove that a convergent sequence is always bounded.

Proof. Suppose that $\lim_{n\to\infty} a_n = L$. Choose N so that $|a_n - L| < 1$ for n > N. Then $|a_n| < \max(|L| + 1, |a_1|, |a_2|, \dots, |a_N|)$ for all n.

(b) Suppose that $\lim_{n\to\infty} a_n = 0$, and that some $a_n > 0$. Prove that the sets of all numbers a_n actually has a maximum member.

Proof. Choose N so that $|a_n - 0| < a_1$ for n > N. Then the maximum of $a_1, a_2, a_3, \ldots, a_N$ is the maximum of a_n for all n.

Problem 17 Prove that $\lim_{n\to\infty} a_n = L$, then

$$\lim_{n \to \infty} \frac{a_1 + \ldots + a_n}{n} = L$$

Proof. If $\epsilon > 0$, pick N so that $|a_n - L| < \epsilon$. Then

$$|a_N + a_{N+1} + a_{N+2} + a_{N+M} - ML| < \epsilon M$$

so

$$\left| \frac{1}{N+M} \cdot [a_N + a_{N+1} + \ldots + a_{N+M}] - \frac{ML}{N+M} \right| < \frac{\epsilon M}{N+M} < \epsilon$$

Choose M so that,

$$\left| \frac{ML}{N+M} - L \right| < \epsilon \text{ and } \left| \frac{1}{N+M} [a_1 + a_2 + \ldots + a_N] \right| < \epsilon$$

Then,

$$\left| \frac{1}{N+M} [a_1 + a_2 + \ldots + a_N] - L \right| < 3\epsilon$$

Problem 18

(a) Prove that if $\lim_{n\to\infty}(a_{n+1}-a_n)=L$, then $\lim_{n\to\infty}a_n/n=L$.

Proof. Let $b_n = a_{n+1} - a_n$. Then $\{b_n\}$ satisfies the hypothesis of Problem 17 and the conclusion says that

$$L = \lim_{n \to \infty} \frac{b_1 + \ldots + b_n}{n} = \lim_{n \to \infty} \frac{a_{n+1} - a_1}{n} = \lim_{n \to \infty} \frac{a_n}{n}$$

(b) Suppose that f is continuous and $\lim_{x\to\infty}[f(x+1)-f(x)]=L$. Prove that $\lim_{x\to\infty}f(x)/x=L$.

Proof. The hypothesis $\lim_{x\to\infty}[f(x+1)-f(x)]=L$ implies that a_n and b_n , the inf and sup of f on [n,n+1] satisfy $\lim_{n\to\infty}[a_{n+1}-a_n]=L$ and $\lim_{n\to\infty}[b_{n+1}-b_n]=L$. So by part (a), we have $\lim_{n\to\infty}a_n/n=\lim_{n\to\infty}b_n/n=L$, which implies that $\lim_{x\to\infty}f(x)/x=L$.

1. Suppose that $\{a_n\}$ is a convergent sequence of points all in [0,1]. Prove that $\lim_{n\to\infty} a_n$ is also in [0,1].

Proof. Suppose $\lim_{n\to\infty} a_n = L > 1$. Since L-1>0, there would be some n with $|L-a_n| < L-1$, hence $a_n > 1$, a contradiction. Similarly, we cannot have L < 0.

2. Find a convergent sequence $\{a_n\}$ of points all in (0,1) such that $\lim_{n\to\infty}a_n$ is not on (0,1).

Proof. $a_n = 1/n$.

Problem 20 Suppose that f is a function on \mathbb{R} such that

$$|f(x) - f(y)| \le c|x - y|$$
 for all x, y

Prove that f is continuous.

Proof. If c=0 then f is constant, so continuous. If $c\neq 0$, then $\epsilon>0$, then $|f(x)-f(a)|<\epsilon$ for $|x-a|<\epsilon/c$. \square