23.10.2024

System: Ubuntu 24.04 LTS

immer die neue Package-Liste sicherstellen:

sudo apt-get update sudo apt-get ungrade

Type, ID eines nvidia-graphic-cards, CUDA-Version, Driver Information auflisten: nvidia-smi

						Version: 550			+	
	Name Temp	Perf			e/Cap 	Bus-Id M	emor	Disp.A y-Usage	Volatile GPU-Util 	Compute M. MIG M.
		P8		N/A /	Off 19W 	00000000: 6MiB	01:0 /	00.0 Off 2048MiB	 0% 	N/A Default N/A
Processes: GPU GI CI PID Type Proces					ss name				GPU Memory Usage	
===== 0	====== N/A	======= N / A	2502	====== C	/uss /1	:======= .ib/xorg/Xorg	====	======	:======:	 4MiB

falls nicht funktioniert, sehr wahrscheinlich ist Driver-Konfiguaton problematsich: sudo ubuntu-drivers list

sudo ubuntu-drivers install nvidia:{xxx} : xxx ist Version.

CUDA

sudo apt install nvidia-cuda-toolkit

nvcc -V

falls

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2023 NVIDIA Corporation

Built on Fri_Jan__6_16:45:21_PST_2023

Cuda compilation tools, release 12.0, V12.0.140

Build cuda_12.0.r12.0/compiler.32267302_0

auf Bildschirm gezeigt dann fertig.

CUDNN

sudo apt-get install zlib1g sudo apt install nvidia-cudnn

Eine ISOLIERTE UMGEBUNG ist sehr wichtig:

python3 -m venv {myenv}

man kann eine neue Umgebung unter /home/jd/myenv finden source myenv/bin/activate: um die Umgebung myenv zu aktivieren

```
pip install tensorflow
pip install scikit-learn
pip install torch
```

deactivate: <u>Man kann jetzt den Vorgang abbrechen, wenn man kein Jupyterbook benutzt.</u> Dann deine spezielle Umgebung ist fertig.

In dieser Umgebung ipykernel installieren und weiter in diesem Kernel registrieren: pip install jupyter

pip install ipykernel

python -m ipykernel install --user --name={Envname} --display-name "Python ({Envname})" dann sollte die folgende Nachricht gezeigt werden:

Installed kernelspec myenv in /home/{hostname}/.local/share/jupyter/kernels/{Env-name}

weiter immer in dieser Umgebung Jupyterbook aufrufen, im Terminal weiter tippen: jupyter notebook

jetzt kann man oben recht Python 3 (ipykernel) clicken, dann sieht man eine Liste und check Python(myenv).

```
Test:
```

import tensorflow as tf
print("TensorFlow version:", tf.__version__)

TensorFlow version: 2.17.0

```
import tensorflow as tf
# list all your GPUs
gpus = tf.config.list_physical_devices('GPU')
if gpus:
    print("GPU available :", gpus)
else:
    print("no GPU detected")
GPU available : [PhysicalDevice(name='/physical_device:GPU:0',
device_type='GPU')]
```

random forest test import tensorflow as tf from tensorflow import keras from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score import numpy as np

mnist = keras.datasets.mnist

```
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train_flat = x_train.reshape(-1, 28 * 28)
x_test_flat = x_test.reshape(-1, 28 * 28)
rf_classifier = RandomForestClassifier(n_estimators=100)
rf_classifier.fit(x_train_flat, y_train)
y_pred = rf_classifier.predict(x_test_flat)
accuracy = accuracy_score(y_test, y_pred)
print("Random Forest Classifier Accuracy:", accuracy)
```

Random Forest Classifier Accuracy: 0.9694

```
2
 Jupyter Untitled Last Checkpoint: 45 minutes ago
 File Edit View Run Kernel Settings Help
                                                                                                                                                                                                                    Trusted
□ + % □ □ ▶ ■ C → Code
                                                                                                                                                                             JupyterLab ☐ # Python (myenv) ○ ■
       [8]: import tensorflow as tf
               # list all your GPUs
gpus = tf.config.list_physical_devices('GPU')
               if gpus:
    print("GPU available :", gpus)
                  print("no GPU detected")
               GPU available : [PhysicalDevice(name='/physical device:GPU:0', device type='GPU')]
               # random forest test
                                                                                                                                                                                               向个少去写真
               # random forest test
import tensorflow as tf
from tensorflow import keras
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import numpy as np
                mnist = keras.datasets.mnist
               mnist = kerds.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train_flat = x_train.reshape(-1, 28 * 28)
x_test_flat = x_test.reshape(-1, 28 * 28)
                rf_classifier = RandomForestClassifier(n_estimators=100)
               rf classifier.fit(x train flat, v train)
               y_pred = rf_classifier.predict(x_test_flat)
               accuracy = accuracy_score(y_test, y_pred)
print("Random Forest Classifier Accuracy:", accuracy)
               Random Forest Classifier Accuracy: 0.9694
```

Voilà