Questão 1. Seja $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Prove que

$$e^{tA} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}.$$

Sugestão: calcule $(tA)^k$, $k = 1, 2, 3, \dots$ para ver um padrão.

Solução: Teste

Questão 2. Prove que se $A = PDP^{-1}$ então $e^A = Pe^DP^{-1}$. Sugestão: repare no efeito telescópico

$$(tA)^k = (P(tD)P^{-1}) (P(tD)P^{-1}) \dots (P(tD)P^{-1}) = P(tD)^k P^{-1}.$$

Solução: Teste

Questão 3. Use o exercício acima para resolver o sistema (para $t \ge 0$)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -3x - 5y, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 2y, \\ (x,y)|_{t=0} = (1,1). \end{cases}$$

 $Sugest\~ao:\ note\ que\ a\ matriz\ dos\ coeficientes\ A\ \'e\ diagonaliz\'avel.$

Solução: Teste

Nos exercícios abaixo, X é um espaço de Banach e $A:D(A)\subset X\to X$ é linear e fechado.

Questão 4. Verifique que A comuta com seu resolvente $(\lambda I - A)^{-1}$.

Solução: Teste

Questão 5. Prove que $\rho(A)$ é aberto em \mathbb{C} .

Solução: Teste

Questão 6. Sejam $A, B \in \mathcal{L}(X)$. Verifique que

$$e^{tA}x - e^{tB}x = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} \left(e^{tsA}e^{t(1-s)B}x \right) \,\mathrm{d}s, \ seja \ qual \ for \ x \in X.$$

Solução: Teste

MATHEUS A. R. M. HORÁCIO