RNNG Document

2016.10.31 张诗悦

1. Introduction

这篇文档将简单介绍 RNNG 源代码,以及其依赖库 CNN 的代码。

RNNG 的具体内容请参见 Chris Dyer 等在 NAACL 2016 上发表的论文:Recurrent Neural Network Grammars^[1],代码库为:https://github.com/clab/rnng,代码的使用可以参见笔者之前写的 Rnng Code Use Giude^[4]。推荐读者在成功运行代码,了解代码运用流程后,再来读本文档。本文档中将介绍笔者对 RNNG 代码的理解,以辅助读者对代码的阅读。CNN 是 RNNG 的一个依赖库,也是 Chris Dyer 实验室编写的深度学习通用模块的代码库。CNN 的代码可以在编译 RNNG 代码同时得到编译,也可以单独编译运行(https://github.com/clab/cnn-v1)。现在已经封装成了 toolkit: DyNet (https://github.com/clab/dynet),笔者写这篇文档的时候,DyNet 刚刚获得 license,因此文档还非常不完整。本文档将介绍 CNN 库中核心模块的运用,以及笔者对核心模块代码的理解,以辅助读者使用 CNN 库和 理解 RNNG 代码。

以下内容均为笔者自己的理解、错误的地方还望各位读者批评指正。

2. CNN

2.1. Cores

这一部分将介绍 CNN 中一些常用的模块代码,并不完整,后续将逐渐修改和补全。

❖ 基本数据结构模块

- 1. dim.h, dim.cc
 - struct Dim: 表示数据 shape 的结构体
 - 变量
 - ➤ int d[CNN_MAX_TENSOR_DIM]: 存储每一维的 size
 - ▶ int nd: 代表总的维度,最大是 7
 - ➤ int bd: 代表 batch 的数量
 - o 函数
 - ➤ unsigned int size():返回总的 size
 - ➤ unsigned int batch_size(): 返回一个 batch 的 size
 - ▶ unsigned int sum_dims(): 总的 dim,也就是把每一位的长度相加
 - ▶ Dim truncate():简化,去除长度为1的维度
 - ➤ Dim single_batch():设置为一个 batch
 - ➤ void resize(unsigned int i): 重新设置维度个数
 - unsigned int ndims(): 返回维度数. 即返回 nd
 - unsigned int rows(): 行数,返回第一维的长度
 - ▶ unsigned int cols(): 列数, nd>1 时,返回第二维的长度,如果 nd==1, 返回 1
 - unsigned int batch elems(): batch 数,返回 bd

- ▶ void set(unsigned int i, unsigned int s):设置第 n 维的维度
- ➤ unsigned int size(unsigned int i): 返回第 n 维的维度
- ▶ Dim transpose(): 转置,只有在 nd<=2 的时候合法</p>
- ▶ 另外还有一些运算符的重载:[], ==,!=, <<, >>
- 2. tensor.h tensor.cc
 - struct Tensor: 定义 tensor 的结构体
 - 变量
 - ▶ Dim d: Dim 类型的对象。定义了 tensor 的 shape
 - ► float* v: float 类型的指针,tensor 中的值是按照 vector 的形式存储的,v 指向其第一个节点
 - ➤ std::vector<Tensor> bs: 一组 tensor. 每个对应着一个 batch
 - o 函数
 - ➤ Tensor batch_elem(unsigned b): 获取第 b 个 batch 的 tensor
 - std::vector<Tensor> batch_elems(): 获取所有的 batches
 - ➤ 还有一系列函数是利用 Eigen 定义的,主要功能是完成从 tensor 向 matrix 的转化,向 vector 的转化,以及将每个 batch 内行(或列)首 尾相接得到的 matrix
 - struct TensorTools: 对 tensor 做初始化等操作的结构体,包括:按照均匀、高斯、伯努利分布进行随机初始化;初始化为0,或者某个常数;访问、设置、复制 tensor 中的某个元素。
 - real as_scalar(const Tensor &t): 把一个 tensor 转化成一个数(tensor 的 size 必须 是 1)
 - std::vector<real> as_vector(const Tensor &v): 把一个 tensor 转化为一个 vector, 也就是把 tensor 的变量 v 返回
 - real rand01(): 按照均匀分布在 0 到 1 之间随机出一个数
 - int rand0n(int n):在 0, n 之间随机出一个整数
 - real rand normal(): 按照高斯分布随机出一个 0 到 1 之间的数
- 3. dict.h dich.cc
 - class Dict: 字典类型
 - 变量
 - ▶ bool frozen: 设置是否把字典锁定不可更改
 - ▶ bool map_unk: 是否把 unknown 的词设置为 unk_id
 - > int unk id: unknown 的词的 id
 - ➤ std::vector<std::string> words:所有的词
 - ➤ Map d: word-id map
 - o 函数
 - ➤ unsigned size(): 返回 words_的长度
 - ▶ bool Contains: 是否存在某个词
 - ➤ void Freeze(): 设置字典不可更改
 - ➤ bool is_frozen():返回 frozen
 - ▶ int Convert(const std::string& word): 把词的转化为 id,如果没有这个词,就添加到词表 words_里
 - std::string& Convert(const int& id): 把 id 转化为词

- ➤ void SetUnk(const std::string& word): 在字典锁定之后,设置 map_unk=true
- ReadSentence: 把一个句子转化为词 id 的序列
- ReadSentencePair:把一对句子转化为词 id 的序列,两句子用"|||"分割

❖ 模型构建模块

- 1. cnn.h cnn.cc
 - struct ComputationGraph: 计算网络结构体
 - 变量
 - ➤ std::vector<Node*> nodes:存储计算网络中所有的节点,按照添加节点的时间顺序存储
 - ➤ std::vector<VariableIndex> parameter_nodes:nodes 的一个子集,存储计算网络中需要更新参数的节点
 - ➤ ExecutionEngine* ee:执行引擎,用于整个计算网络的计算操作,例如:前向传播和反向传播
 - o 函数
 - ➤ add input: 增加输入变量
 - ▶ add parameters: 增加模型参数
 - ➤ add lookup: 增加 lookup 类型的模型参数
 - ➤ add function: 增加函数
 - ➤ forward: 前向传播计算,从第一个节点到最后一个
 - ➤ incremental_forward: 增量的前向传播计算,从上一个计算过的节点 到最后一个
 - ➤ get_value(i): 获得某个变量的值
 - ➤ backward: 计算反向传播的梯度
 - ➤ backward(i): 计算某个节点反向传播的梯度
 - struct Node: 计算节点的基结构体。Node 有很多子类,例如 Min, Max, DotProduct 等,具体参见 nodes.h, param-nodes.h。子类都需要实现自己的 forward_impl 和 backward_impl 函数。
 - o 函数
 - ➤ forward: 前向传播的计算,其中调用 forward_impl
 - ▶ backward:后向传播的计算, 其中调用 backward_impl
 - ▶ forward_impl: 具体执行前向传播的计算,虚函数,由子类实现
 - ▶ backward impl: 具体执行后向传播的计算,虚函数,由子类实现
- 2. expr.h expr.cc
 - struct Expression: 表达式类, cnn 框架下,模型运算过程中所有的计算单元都 是表达式(expression),如参数,输入,中间结果。

例如:

```
ComputationGraph cg;
Expression W = parameter(cg, m.add_parameters({HIDDEN_SIZE, 2})); //参数 vector<cnn::real> x_values(2);
Expression x = input(cg, {2}, &x_values); //输入
Expression h = tanh(W*x); //模型中的运算

○ 变量
```

- ➤ ComputationGraph *pg: 表达式一定是来自于某一个计算网络
- ➤ VariableIndex i:该表达式对应着计算网络中的某个变量,这里就是变量的 index
- o 函数
 - ➤ Expression(ComputationGraph *pg, VariableIndex i):表达式在构建的时候,需要给定计算网络,和要表达的变量的索引
 - ➤ const Tensor& value() const:获取表达式的值,返回表达式表示变量的值
- 声明表达式函数,以及进行表达式之间的运算函数。简单举几个例子, 其他类似。
 - ▶ input: 定义输入变量
 - > const_parameter: 定义常数参数,参数不更新
 - ▶ parameter: 定义参数
 - ▶ lookup: 定义 LookupParameters 类型的参数
 - ▶ const_look: 定义常数 LookupParameters 类型的参数,参数不更新
 - ➤ zeros:定义归0的函数
 - nobackprop: 定义不需要求导的函数
 - ▶ +. -. *: 定义一些系列表达式之间的操作符
 - **>**
- 3. model.h model.cc
 - struct ParameterBase: 虚基结构体
 - 0 函数
 - ➤ squared_l2norm: 参数的 l2 正则
 - ▶ g_squared_l2norm:参数导数的 l2 正则
 - > size():参数的大小,也就是参数的个数
 - struct Parameters:普通参数的结构体(例如,权重矩阵等)
 - 变量
 - ➤ dim: 参数的维度
 - ➤ values:参数的值, tensor
 - ➤ g:参数的导数, tensor
 - o 函数
 - ▶ 构造函数:初始化 values 和 g, values 是随机初始化, g 全部初始化 为 0
 - scale parameters: 所有的参数上同乘以一个常数
 - > size: dim 的 size
 - ➤ accumulate_grad:累加导数
 - struct LookupParameters:用于 embed 离散对象参数的结构体,参数是一组 tensor,每个对应着一个需要 embedding 的对象(例如,词的 embedding 矩阵)
 - 变量
 - ▶ dim: 参数的维度,指每个 tensor 的维度
 - ➤ values:参数的值, vector<tensor>
 - ▶ grads: 参数的导数, vector<tensor>

- ▶ non_zero_grads: 记录不为 0 的导数
- o 函数
 - ▶ 构造函数:初始化 values 和 g, values 是随机初始化,g 全部初始化 为 0
 - scale_parameters: 所有的参数上同乘以一个常数
 - ➤ size: values 的 size×dim 的 size
 - ➤ accumulate_grad:每个 tensor 内部进行导数累加
- class Model:模型通用类,任何模型都是一个 Model 类型的对象
 - 变量
 - ➤ all_params: ParameterBase 类的参数集合,也就是 params 和 lookup_params 的集合,模型中所有的参数
 - ▶ params: Parameters 类的参数集合
 - ▶ lookup_params: LookupParameters 类的参数集合
 - ▶ gradient_norm_scratch: 模型内参数的 I2 正则
 - 0 函数
 - ➤ gradient_I2_norm: 计算模型中导数的 I2 正则
 - ➤ add_parameters: 添加 Parameters 类的参数
 - ➤ add lookup parameters: 添加 LookupParameters 类的参数
 - > save, load: 保存和加载模型
- 4. training.h training.cc
 - struct Trainer: 训练工具的基结构体
 - 变量
 - ▶ eta0, eta...: 学习率参数
 - ➤ lambda: 正则项参数
 - ➤ clipping_enabled...: 对梯度进行 scale 的参数
 - ➤ model: 要训练的模型
 - o 函数
 - ➤ update: 更新模型参数的函数
 - ▶ update epoch: 更新学习率的函数
 - clip_gradients: scale 梯度的函数
 - struct SimpleSGDTrainer
 - struct MomentumSGDTrainer
 - struct AdagradTrainer
 - struct AdadeltaTrainer
 - struct RmsPropTrainer
 - struct AdamTrainer

以上的优化方法都需要分别实现自己的update方法。在每个update方法中,要分别更新模型的两部分参数:Parameters和LookupParameters. 对于每个Parameters整体更新即可,而对于每个LookupParameters则需要逐列更新。

❖ 深度学习模型

- 1. rnn.h rnn.cc
 - struct RNNbuilder: 实现 RNN, LSTM, GRU 的接口结构体

○ 变量

- ➤ cur: 当前状态的 timestamp
- ➤ head: 记录历史的timstamp
- > sm: rnnbuilder当前的工作状态: new_graph, start_new_sequence, add input
- o 函数
 - ➤ state: 返回cur
 - ➤ new_graph: 在计算网络cg中添加新的rnnbuilder
 - ➤ start_new_sequence: 开始新的句子, 并用h_0初始化timestamp 0, 这个函数需要在add_input之前和new_graph之后调用
 - ➤ add_input: 增加新的timestamp输入,返回输出的隐向量,recurrent 的链接位置为cur,即新添加的节点要recurrent到当前节点。
 - ➤ add_input(prev, x): 增加新的timestamp输入, 返回输出的隐向量, 但是recurrent的链接位置为prev, 而非cur。
 - ➤ rewind_one_step: 后退一步,将cur设置为上一步的状态
- 虚函数:需要子类去实现
 - ▶ back: 返回当前状态cur对应的隐向量
 - ➤ final_h: 返回rnn最后输出的隐向量
 - ▶ get_h: 返回第i个timestamp輸出的隐向量
 - ➤ final s: 返回rnn最后输出的状态
 - ➤ get_s:返回第i个timestamp的状态
 - ➤ copy: 拷贝函数
 - num_h0_components
 - new_graph_impl
 - start_new_sequence_impl
 - add_input_impl
- struct SimepleRNNBuilder: 继承 rnnbuilder, 标准的 rnn 模型
 - 变量
 - ▶ params: 模型参数, Parameters类型, 第一个index是层数
 - ➤ param_vars: 模型参数, Expression类型, 也就是params中的参数加入到计算网络后的表达式对象, 第一个index是层数
 - ▶ h: 记录每个timestamp每层的隐向量。第一个index是timestamp
 - ▶ h0:初始化的隐状态
 - ➤ layers: 模型的层数
 - ➤ lagging: 是否使用滞后
 - o 函数
 - ➤ SimpleRNNBuilder: 构造函数,为model模型添加rnn相关的参数, 初始化params
 - ➤ new_graph_impl: 把参数添加到计算网络cg中,返回Expression类的对象,初始化param_vars
 - ➤ start_new_sequence_impl: 用参数h_0初始化h0
 - ➤ add_input_impl: 执行向前一个timestamp的操作,循环每一层执行:
 - 1. $x=h(cur) = tanh(W^*x + U^*h(prev) + b)$

- 2. 返回当前timestamp的隐向量
- ➤ add_auxiliary_input: 执行向前一个timestamp的操作, 但除了输入in 之外, 还多出一个aux作为输入, 循环每一层执行:
 - 1. x=h(cur)=tanh(W*x + U*h(prev) + L*aux + b)
 - 2. 返回当前timestamp的隐向量

2. lstm.h lstm.cc

- struct LSTMBuilder: 继承 RNNBuilder,lstm 模型
 - 变量
 - ▶ params: 模型参数、Parameters类型、第一个index是层数
 - ➤ param_vars: 模型参数, Expression类型, 也就是params中的参数加入到计算网络后的表达式对象, 第一个index是层数
 - ► h, c: 记录每个timestamp每层的隐向量和状态, 第一个index是 timestamp
 - has_initial_state: 是否有初始化的状态,如果等于false,则h0和c0为
 - ➤ layers: 模型层数
 - ➤ dropout_rate: dropout的比例
 - 0 函数
 - ➤ LSTMBuilder:构造函数,为model模型添加rnn相关的参数,初始化params
 - ➤ new_graph_impl: 把参数添加到计算网络cg中, 返回Expression类的 对象, 初始化param_vars
 - ➤ start_new_sequence_impl: 用参数hinit初始化h0, c0
 - ➤ add_input_impl: 执行向前一个timestamp的操作,循环每一层执行:
 - 1. 如果有初始化,取出该层初始化的h0和c0
 - 2. 如果有dropout, 对输入dropout
 - 3. i = logistic(bi + Wi*in + Ui*h(prev) + Ci*c(prev))
 - 4. f = 1 i
 - 5. $w = \tanh(bc + Wc^*in + Uc^*h(prev))$
 - 6. $c(cur) = i \times w + f \times c(prev)$
 - 7. o = logistic(bo + Wo*in + Uo*h(prev) + Ci*c(cur))
 - 8. $h(cur) = o \times tanh(c(cur))$
 - 9. 如果有dropout, 对输出的h(cur)dropout
 - 10. 返回h(cur)

2.2. Examples

上一部分简单地介绍了 cnn 中的一些核心模块,有些地方比较复杂,也不直观。那么这一部分,将介绍一些简单的例子,增强对核心模块的理解和运用。这些例子在 cnn 代码库的 examples 目录下,读者可以在那里看到具体的代码,并可以尝试运行看到输出的结果。

1. xor.cc:一个简单的两层的回归模型,模型的结构如图:

代码简介:

- main:
 - 定义隐层维度. 迭代次数
 - 定义model, SimpleSGD作为模型优化算法: Model, SimpleSGD
 - o 定义计算网络(ComputationGraph, cg): ComputationGraph
 - 添加模型参数W, V, a, b, 以及输入x, y: parameter()
 - o 构建模型, 并把平方距离作为损失函数: input()
 - 训练模型, 打印每轮的loss: forward(), backward()
- 2.xor-batch.cc:模型结构和xor.cc相同,唯一不同的是在训练的时候,xor-batch.cc 直接将所有样本输入,用Dim来设置batch,而不是像xor.cc中生一个样本更新一次。该代码中也设置一个样本作为一个batch, 但是训练时收敛的速度显然没有xor.cc快,不知为何,之后会再深入研究。
- 3. xor-batch-lookup.cc: 基本模型结构和xor.cc相同,但是分别在输入和输出层增加了embedding的矩阵,也就是两个LookupParameters。模型结构如下:

4.xor-xent.cc:基本模型结构也和xor.cc相同,不同之处是该模型为二分类模型,在最后一层增加了logistic激活单元,并把交叉熵作为损失函数,训练采用每个样本跟新一次的训练方式。模型结构如下:

5.rnnlm.cc, rnnlm2.cc: rnn语言模型, rnnlm2和rnnlm不同之处仅仅是打印了每步更新后真实词对应的模型输出值。 基本的模型结构如下:

代码简介:

- RNNLanguageModel:
 - 变量
 - ▶ p_c: 对输入的词进行embedding的lookup参数
 - ▶ p_R: 隐向量向输出转化的权重矩阵
 - ▶ p_bias: 隐向量向输出转化的偏置向量
 - o 函数
 - ➤ BuildLMGraph: 建立计算网络,返回输出损失函数 (logsoftmax之后 正确词的概率)
 - ➤ RandomSample: 根据训练好的模型随机生成句子
- main:
 - 1) 定义句子的开始结束标签, 定义训练集和测试集的矩阵
 - 2) 读取训练集和验证集的数据
 - 3) 定义模型存储文件名, 定义model, simplesgd作为优化工具
 - 4) 用Istm作为rnn模型, 建立rnn语言模型

- 5) 训练,每次输入一个句子更新模型,每50个句子之后打印出当前训练集上的loss和ppl
- 6) 每500个句子在验证集上测试,并打印loss和ppl
- 6.rnnlm-batch.cc: 基本模型结构和rnnlm.cc一致,不同之处在于这里是以4个句子为一个batch来更新的,而不是逐个更新。
- 7.rnnlm-aevb.cc:该例子是Auto-Encoding Variational Bayes的实现代码。
- 8.rnnlm-givenbag: 基本模型结构和rnnlm.cc一致, 不同之处在于, 该模型训练过程中, 句子中有哪些词会"告知"模型, 因此模型只需要从这些词中选择生成下个词即可, 如图所示:

代码简介:

- RNNLanguageModel:
 - 函数
 - ➤ BuildLMGraph: 相比标准的rnnlm多了一个参数prows, 该参数记录了当前训练句子中所有的词。根据prows, 过滤hidden->word的权重矩阵和偏移, 只保留句子中有的词。也就是生成的词被控制在句子中存在的词范围内。
- main: 相比标准的rnnlm, 多了rows, w2sl, rmsent三个向量, rows存储一个 句子中不重复的词表, 为w2sl用来辅助生成rows和rmsent, rmsent中存储一个 句子中每个词在rows词表中对应的位置。

3. RNNG

3.1. Discriminative model

RNNG的discriminative model模型代码为nt-parser.cc。其基本模型结构如下图所示:

模型执行过程如下图:

Input: The hungry cat meows.

	Stack	Buffer	Action
0		The hungry cat meows .	NT(S)
1	(S	The hungry cat meows .	NT(NP)
2	(S (NP	The $ $ hungry $ $ cat $ $ meows $ $.	SHIFT
3	(S (NP The))	hungry cat meows .	SHIFT
4	(S (NP The hungry)	cat meows .	SHIFT
5	(S (NP The hungry cat)	meows .	REDUCE
6	(S (NP The hungry cat)	meows .	NT(VP)
7	(S (NP The hungry cat) (VP	meows .	SHIFT
8	(S (NP The hungry cat) (VP meows		REDUCE
9	(S (NP The hungry cat) (VP meows)		SHIFT
10	(S (NP The hungry cat) (VP meows) .		REDUCE
11	(S (NP The hungry cat) (VP meows).)		

代码有两个主要部分:1) main函数: 对应着整体的训练和测试的流程;2) log_prob_parser函数:对应着模型的计算流程。下面将主要介绍这两个部分。

❖ Main函数

下图为 main 函数的主体执行流程,具体说明如下:

- 1. 调用 InitCommandLine 函数,从命令行获取输入参数;
- 2. 设置模型存储文件名, 定义 model;
- 3. 加载训练集的数据和格式化前验证集句法树的文件路径,TopDownOracleh 类在oracle.h 代码中定义,主要用来加载格式化的数据;
- 4. 如果有预先训练的 word embedding 参数传入,则读入 word embedding;
- 5. 把 term, action, nonterminal term, pos 的词表字典设置为不可改,如果验证集和测试集中有未知的词,要设置词典的 unk;

- 6. 找出只出现一次的词,记录在 singleton 里;
- 7. 加载验证集和测试集的数据;
- 8. 设置 action 到 nonterminal word index 的对应数组;
- 9. 如果有训练好的 model 输入,则加载 model;
- 10. 如果需要训练,则进行11步,否则跳到16步;
- 11. 在没有接收到外部停止信号时,进行12步,否则跳到16步;
- 12. for 循环中依次更新 100 个句子,第一次进入循环时需要把全部训练集数据进行 shuffle, 每次取一个句子,取出对一个的 actions,传入 log_prob_parser 进行模型;
- 13. 输出在训练集上的 ppl;
- 14. 每更新 25 轮, 在验证集上评估一次, 输出在验证集上的预测结果, 和对应的 F1 值, 如果新的 F1 值更优, 则存储新的模型;
- 15. 返回 11 步;
- 16. 如果测试集不为空、进行 17 步、否则跳到 19 步;
- 17. 如果 N_SAMPLES 不为 0, 说明需要用训练好的模型进行采样,输出采样结果;
- 18. 训练好的模型输出在测试集上的预测结果,和对应的 F1 值;
- 19. 结束。

❖ log_prob_parser函数

下图为 log_prob_parser 函数的主体执行流程,具体说明如下:

- 1. 新建 stack, buffer, action, fwd, rev 五个 lstm;
- 2. 设置是否使用 dropout;
- 3. 获取模型参数, action lstm 输入初始的第一个 action;
- 4. 设置当前句子的 buffer 内容,而后 buffer lstm 执行一遍;
- 5. 如果 stack.size()>2 或者 buffer.size()>1, 则进行第 6 步, 否则跳到 18 步
- 6. 挑选当前出合法的 actions;
- 7. 取出 stack lstm, action lstm, buffer lstm 当前的隐向量, nlp_t=rectify(stack*S+buffer*B+action*A+b), adiste = log_softmax(ab+pa*nlp_t) 得到预测 action 的概率分布;
- 8. 如果需要 sample, 则 sample 出 action, 否则取概率最大的作为预测 action;
- 9. 如果在训练过程,记录当前预测是否正确,并按照正确的 action 继续;
- 10. action lstm 向前走一步;
- 11. 如果 action==SHIFT,进行 12 步,否则跳到 14 步;
- 12. stack lstm 向前走一步,buffer lstm 回退一步;
- 13. 如果 action==NT, 进行 14 步, 否则跳到 15 步;
- 14. stack lstm 向前走一步;
- 15. 如果 action==REDUCE, 进行 16 步, 否则跳到 5 步;
- 16. 将 stack lstm 回退一个 children(也就是两个'()'之间的部分),用 fwd 和 rev 两个双向 lstm,得到 children 的双向隐向量,连接到一起,再做维度变换,得到 composed 输出再输入到 stack lstm 里;
- 17. 返回 5 步;
- 18. 结束,并返回预测的 action 序列。

3.2. Generative model

RNNG的generative model模型代码为nt-parser-gen.cc。其基本模型结构如下图所示:

模型执行过程如下图:

	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(The)
3	(S (NP <i>The</i>	The	GEN(hungry)
4	$(S \mid (NP \mid The \mid hungry))$	The hungry	GEN(cat)
5	(S (NP The hungry cat)	The $ $ hungry $ $ cat	REDUCE
6	(S (NP The hungry cat)	The $ $ hungry $ $ cat	NT(VP)
7	(S (NP The hungry cat) (VP	The $ $ hungry $ $ cat	GEN(meows)
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	GEN(.)
10	(S (NP The hungry cat) (VP meows) .	The $ $ hungry $ $ cat $ $ meows $ $.	REDUCE
11	(S (NP The hungry cat) (VP meows) .)	The hungry cat meows .	

可以看出,generative model和discriminative model的基本结构相同,不同之处在于两点:第一,生成模型的buffer是逐渐向前的,而判别模型中buffer先卷一遍,之后慢慢从后先前输出;第二,在预测得到SHIFT操作时,在生成模型中被认为是GEN操作,需要用class-factored softmax生成词。

代码的主体流程基本和判别模型一致,这里就不在赘述了。

4. Reference

- [1] Dyer C, Kuncoro A, Ballesteros M, et al. Recurrent Neural Network Grammars[J]. 2016
- [2] https://github.com/clab/rnng
- [3] https://github.com/clab/cnn-v1
- [4]http://cslt.riit.tsinghua.edu.cn/mediawiki/images/2/2b/RNNG_Code_Use_Guide_simplified.pdf