

Boosting algorithms for Supervised Learning

Boosting algorithms for Supervised Learning A practical study of AdaBoost

Alexandre Combessie Ismail Machraoui

ENSAF ParisTech

Project for the "Aggregation in Statistical Learning" course by Pierre Alguier, 2016

Introduction

Boosting algorithms for Supervised Learning

> Combessie Ismail Machraou

Introduction

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

Mathematical results

Generalizatio

study Chosen implementation Performance

- Freund and Schapire (1996) start with a generalized algorithm for the on-line allocation model
 - Example: allocating bets among horse-racing "experts"
 - Adaptation of Littlestone and Warmuth (1994) multiplicative weight-update rule for majority voting
- From this on-line setting, they derive a Boosting algorithm for supervised, batch learning
 - Idea: convert a family of "Weak Learner" algorithms into a single "Strong Learner"
 - Non-obvious reversal of the online-to-batch framework
- Starting with a simple algorithm for binary classification, they extend it to multi-class classification and regression

Outline

Boosting algorithms for Supervised Learning

> Combessie Ismail Machraou

Introduction

Algorithm
description
On-line
allocation orig
Batch binary

Batch binary classification Multi-class extensions

Mathematica results

Training Generalization

study Chosen implementatio Algorithm description

- On-line allocation origin
- Batch binary classification
- Multi-class extensions
- 2 Mathematical results
 - Training
 - Generalization
- 3 Empirical study
 - Chosen implementations
 - Performance analysis

General on-line allocation framework

Boosting algorithms for Supervised Learning

> Alexandre Combessie Ismail Machraoui

Introduction

description
On-line
allocation origin
Batch binary
classification
Multi-class

Mathematical results

Training Generalizatio

study Chosen

Chosen implementations Performance analysis

- Starting example: How to allocate money among gamblers on horse races? (a bit like bandits, but with agents)
- Mathematical framework:
 - Agent A with $\{1,...,N\}$ strategies to choose from
 - At each *trial* $t = \{1, ..., T\}$, agent A decides on the distribution \mathbf{p}^t over the strategies
 - Each strategy i incurs loss l_i^t (possibly in adversarial environment) so that the loss of A is $\mathbf{p}^t \cdot \mathbf{l}^t$
 - The goal of agent A is to minimize its cumulative loss compared to the loss of the best strategy:

$$\min_{\mathbf{p}^t} \left\{ \sum_{t=1}^T \mathbf{p}^t \cdot \mathbf{l}^t - \min_i \sum_{t=1}^T l_i^t \right\}$$

Proposed on-line allocation algorithm $Hedge(\beta)$

Boosting algorithms for Supervised Learning

> Alexandre Combessie Ismail Machraoui

Introductio

description On-line allocation origin Batch binary

Batch binary classification Multi-class extensions

Mathematica results

Training Generalization

Empiri study

> Chosen implementations Performance analysis

Initialization:

```
Weight multiple parameter \beta \in [0, 1]
Number of trials T \in \mathbb{N}^*
Initial weight vector \mathbf{w}^1 \in [0,1]^N with \sum_{i=1}^N w_i^1 = 1
for t = 1 to T number of trial do
   Set strategy allocation \mathbf{p}^t \leftarrow \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}
   Observe realization with loss vector I<sup>t</sup>
   Incur loss of \mathbf{p}^t \cdot \mathbf{l}^t
   for i = 1 to N do
       Update weight vector w_i^{t+1} \leftarrow w_i^t \times \beta^{l_i^t}
   end for
end for
```


Preliminary framework to define the concepts of Boosting, Weak Learners and Strong Learners

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraou

Introduction

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

Mathematical results

Training Generalization

Empirical study Chosen implementation Performance analysis

- Boosting is the transformation of a "Weak Learner" algorithm into a "Strong Learner" one
- The notion of "Weak Learner" is defined in the Probably Approximately Correct (PAC) learning framework
 - A "Strong Learner" is an algorithm that given $\varepsilon, \delta > 0$ outputs a hypothesis with error $< \varepsilon$ with probability 1δ
 - A "Weak Learner" only verifies it for $\varepsilon \geq 1/2 \gamma$ where $\gamma > 0$ or decreases as 1/p with p polynomial
 - For simplification, the PAC learning framework is not used in the rest of the paper, in favor of a more general one where examples (x_i, y_i) are chosen randomly according to a fixed but unknown distribution $\mathfrak P$ over $X \times Y$
- In the context of *batch* learning we will focus on boosting by *sampling* over the examples

How to adapt this on-line allocation algorithm to boosting problems in batch settings? (1/2)

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraou

Introductio

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

Mathematical results

Generalizatio

chosen implementation Performance

- The original boosting algorithm was developed by Schapire, and improved by Freund as the "boost-by-majority" algorithm
- The issue of these algorithms is that they require to know the bias of the Weak Learner in advance, and does not make us of all the Weak Learner hypothesis.
- To solve these problems, Freund and Schapire decide to adapt their online allocation algorithm in the context of boosting

How to adapt this on-line allocation algorithm to boosting problems in batch settings? (2/2)

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraoui

Introduction

Algorithm
description
On-line
allocation origin
Batch binary
classification
Multi-class
extensions

Mathematical results
Training

Generalization

Chosen
implementations
Performance
analysis

- There are correspondences between the on-line allocation model and the problem of boosting
- The authors actually choose the less obvious reverse correspondence:

	Boosting problem	
On-line allocation	Natural	Reversed
Strategy	Weak Learner	Training example
Trial	Training example	Weak Learner

Boosting algorithm for binary $Y=\{0,1\}$

return Final hypothesis

Boosting algorithms for Supervised Learning

> Alexandre Combessie, Ismail Machraoui

Introductio

Algorithm description On-line allocation origin

Batch binary classification Multi-class extensions

Mathematical results

Generalizatio

Empiri study

Chosen implementations Performance analysis

Input: Labeled examples $(x_1, y_1)...(x_N, y_N)$ with distribution D, algorithm WeakLearn, number of iterations T Initialization: Weight vector $w_i^1 \leftarrow D(i)$ for i=1 to N for t=1 to T number of iterations do Set example distribution $\mathbf{p}^t \leftarrow \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}$ Call WeakLearn with distribution \mathbf{p}^t , get hypothesis h_t Compute h_t loss $\varepsilon_t \leftarrow \sum_{i=1}^N p_i^t \llbracket h_t(x_i) \neq y_i \rrbracket$ Set $\beta_t \leftarrow \varepsilon_t/(1-\varepsilon_t)$ Update weight $w_i^{t+1} \leftarrow w_i^t \times \beta^{1-\llbracket h_t(x_i) \neq y_i \rrbracket}$ for i=1 to N end for

$$h_f(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{t=1}^T \left(\log \frac{1}{\beta_t} \right) \llbracket h_t(x) \neq y \rrbracket$$

Multi-class extensions $Y = \{1, ..., k\}$

Boosting algorithms for Supervised Learning

Combessie Ismail Machraou

Introduction

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

results
Training
Generalization

Empirical study

Chosen implementations Performance analysis There are several ways to extend the previous algorithm in multi-class contexts:

- **3** AdaBoost.M1: Naive extension of binary AdaBoost by replacing $Y = \{0,1\}$ by $Y = \{1,...,k\}$ and adding a rule to abort the main loop if $\varepsilon_t > 1/2$
- Adaboost.M2: Advanced extension of AdaBoost with more communication between the boosting and Weak Learner algorithm: probabilities and class weights
- **3 Binarization**: For *k* classes, perform boosting separately on the *k* binarized problems and aggregate them according to rules like One-vs-Rest or Error-Correcting Output

AdaBoost.M1

Boosting algorithms for Supervised Learning

Multi-class extensions

 The algorithm is very close to the binary AdaBoost, but it adds an important loop breaking rule:

$$\varepsilon_t = \sum_{i=1}^N p_i^t \llbracket h_t(x_i) \neq y_i \rrbracket > 1/2$$

- Without this rule, we could have a weight multiplier $\beta_t > 1$ and the algorithm would diverge
- Inherent problem with this approach: The more k classes, the harder it is for a Weak Learner to ensure $\varepsilon_t \leq 1/2$

AdaBoost.M2

Boosting algorithms for Supervised Learning

> Alexandre Combessie Ismail Machraoui

Introduction

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

Mathematical results

Generalizatio

Chosen implementation Performance

Modifications to AdaBoost.M1 are highlighted in red

Input: Labeled examples $(x_1, y_1)...(x_N, y_N)$ with distribution D, algorithm **WeakLearn**, number of iterations T

Initialization: $w_{i,y}^1 \leftarrow D(i)/(k-1)$ for i=1 to N and $y \in Y - \{y_i\}$

for t=1 to T number of iterations $\mathbf{do}_{\mathbf{q}}$

Set example distribution
$$D_t(i) \leftarrow \frac{\sum_{y \neq y_i} w_{i,y}^t}{\sum_{i=1}^N \sum_{y \neq y_i} w_{i,y}^t}$$

Set label weights
$$q_t(i, y) \leftarrow \frac{w_{i, y}^t}{\sum_{y \neq y_i} w_{i, y}^t}$$

Call WeakLearn with example distribution D_t and label weights q_t , get hypothesis h_t with probability values in [0,1]

Compute h_t pseudo-loss

$$\varepsilon_t \leftarrow \frac{1}{2} \sum_{i=1}^{N} D_t(i) \Big(1 - h_t(x_i, y_i) + \sum_{y \neq y_i} q_t(i, y) h_t(x_i, y) \Big)$$

Set
$$\beta_t \leftarrow \varepsilon_t/(1-\varepsilon_t)$$

$$w_{i,y}^{t+1} \leftarrow w_{i,y}^{t} \times \beta^{\frac{1}{2}(1+h_{t}(x_{i},y_{i})-h_{t}(x_{i},y))}$$
 for $i=1$ to N and $y \in Y - \{y_{i}\}$

end for

return Final hypothesis $h_f(x) = \operatorname{argmax}_{y \in Y} \sum_{t=1}^{T} \left(\log \frac{1}{\beta_t} \right) h_t(x, y)$

Binarization - One vs all

Boosting algorithms for Supervised Learning

Multi-class

extensions

Input: Labeled examples $(x_1, y_1)...(x_N, y_N)$ with $y_i \in \{1, ..., k\}$ and with distribution D, algorithm **AdaBoost**, number of iterations T

for j = 1 to k number of classes **do**

Transform $(x_1, y_1)...(x_N, y_N)$ into a binary dataset

 $(x_1, y_1^{(j)})...(x_N, y_N^{(j)})$ where $y_i^{(j)} = [y_i = j]$

Call **AdaBoost** on $(x_1, y_1^{(j)})...(x_N, y_N^{(j)})$ with distribution

D and number of iterations T

Get hypothesis $h_{\epsilon}^{(j)}$ with probability values in [0, 1]

end for

return Final hypothesis

$$h_f(x) = \underset{j \in \{1, \dots, k\}}{\operatorname{argmax}} h_f^{(j)}(x)$$

Training error: Adaboost.M1

Boosting algorithms for Supervised Learning

Alexandre Combessie, Ismail Machraoui

Introduction

Algorithm description On-line allocation origin Batch binary

Multi-class extensions

Mathematica

results Training

Generalization

Chosen implementations
Performance analysis

• Let $\varepsilon_1 \dots \varepsilon_t$ be the **Weak Learner** algorithm generated errors : $\varepsilon_t = \sum_{i=1}^N p_i^t \llbracket h_t(x_i) \neq y_i \rrbracket$

• Let ε the error of h_f (the final hypothesis) :

$$\varepsilon \leq 2^T \prod_{t=1}^T \sqrt{\varepsilon_t (1 - \varepsilon_t)}$$
(similar to **Adaboost**)

Or if $\varepsilon = \frac{1}{2} - \gamma$:

$$\varepsilon \leq \prod_{t=1}^{I} \sqrt{1-4\gamma^2}$$

If all the errors of all the hypotheses are equal, the inequality can be simplified to :

$$\varepsilon \leq exp(-2T\gamma^2)$$

Training error: Adaboost.M2

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraou

Introduction

description
On-line
allocation origin
Batch binary
classification
Multi-class

Mathematical results

Training
Generalization

study
Chosen
implementations
Performance
analysis

- Let $\varepsilon_1 \dots \varepsilon_t$ be the **Weak Learner** algorithm generated errors. As a reminder, ε_t stands here for the p-loss.
- Let ε the error of h_f (the final hypothesis) :

$$\varepsilon \leq 2^{T}(k-1) \prod_{t=1}^{T} \sqrt{\varepsilon_{t}(1-\varepsilon_{t})}$$

 It can be explained by a reduction to a binary Adaboost and then apply Adaboost upper-bound to get to the stated result.

Generalization error

Boosting algorithms for Supervised Learning

> Alexandre Combessie Ismail Machraou

Introduction

description
On-line
allocation origin
Batch binary
classification
Multi-class
extensions

Mathematical results Training Generalization

Empirical study Chosen implementation: Performance analysis • Provided that hypotheses of WeakLearn are from a class of functions which VC-dimension d \geq 2 then : For any $\delta>0$

$$\Pr[|\varepsilon_f - \hat{\varepsilon}| > 2\sqrt{\frac{d_f(\ln(\frac{2N}{d_f}) + \ln(\frac{9}{\delta}))}{N}}] \le \delta$$

where $d_f \leq 2(d+1)(T+1)log_2[e(T+1)]$, ε_f stands for the generalization error of the final hypothesis

- The cross-validation technique might be used in order to get an optimal performance (i.e smallest error of the final hypothesis h_f^T).
- Making the parameter T vary, the best T kept is the one minimizing the error of the final hypothesis on the validation set.

Chosen dataset Heart Disease UCI

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraoui

Introduction

Algorithm description On-line allocation origin Batch binary classification Multi-class extensions

Mathematical results

Training Generalization

Chosen implementations Performance

- Heart disease UCI dataset gathers data about 303 patients in Hungary, Switzerland and the USA. It is available on archive.ics.uci.edu/ml/datasets/Heart+Disease.
- The dataset contains 14 features either catagorical or numerical, with few missing values.
- The target variable refers to the existence of heart disease for a given patient. It takes values in {0,1,2,3,4} where 0 stands for pathology absence and the other remaining values points out some level degree of the disease.

Algorithm implementations

Boosting algorithms for Supervised Learning

> Combessie Ismail Machraou

Introductio

Algorithm description On-line allocation origin Batch binary classification

Multi-class extensions

Mathematical

Training Generalization

study Chosen implementations The algorithms we've chosen to implement are :

- Adaboost.M1
- Adaboost.M2
- Binarization one vs all

We set max iterations to T = 100

Performance analysis : Adaboost.M1 (1/2)

Boosting algorithms for Supervised Learning

Performance analysis

Performance analysis: Adaboost.M1 (2/2)

Boosting algorithms for Supervised Learning

Performance analysis

Evolution of the sample weight distribution for AdaBoost.M1

Sample (sorted according last iteration's weights)

Performance analysis : Adaboost.M2 (1/3)

Boosting algorithms for Supervised Learning

Performance analysis

Performance analysis: Adaboost.M2 (2/3)

Boosting algorithms for Supervised Learning

Performance analysis

Evolution of the sample weight distribution for AdaBoost.M2

Sample (sorted according to last iteration's weights)

Performance analysis: Adaboost.M2 (3/3)

Boosting algorithms for Supervised Learning

Performance analysis

Performance analysis: One vs all

Boosting algorithms for Supervised Learning

Performance analysis

Performance analysis Summary

Boosting algorithms for Supervised Learning

Alexandre Combessie Ismail Machraoui

Introduction

Introduction

On-line
allocation origin
Batch binary
classification

Mathematica results

Training

Generalizatio

Chosen

Performance analysis

Number of iterations

For Further Reading

Boosting algorithms for Supervised Learning

> Alexandre Combessie, Ismail Machraoui

Appendix For Further Reading Y. Freund and R. Schapire.

A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

Journal of Computer and System Sciences, 55:119–139, 1997.

Y. Freund and R. Schapire.

A Short Introduction to Boosting

In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1401–1406, 1999.