Implementierung und Evaluation von Deep Learning Architekturen für die Klassifikation von Videos

von Yannick Kloss

Agenda

- 1. Der Datensatz
- 2. CNN basierte Verfahren
- 3. Zu untersuchende Architekturen
- 4. Ergebnisse
- 5. Nachtrag

Der Datensatz

HMDB51 - Human Motion Database¹:

- 51 Kategorien
- 6849 Video Clips
- > 100 Clips pro Kategorie

- Die besten Algorithmen:
 - Improved Dense Trajectory: 57,2%
 - W-Flow Dense Trajectories: 52,1%
 - Dense Trajectories: 46,6%

CNN basierte Verfahren

Feature-Pooling Architekturen¹:

- 1. CNN extrahiert Features einzelner Frames
- 2. Max-pooling über alle Features
- 3. Klassifizierung

Conv Pooling¹: Convolution (rot), max-pooling (blau), fully connected (gelb) und softmax (orange).

¹J. Ng et al. (2015): Beyond Short Snippets: Deep Networks for Video Classification. In ArXiv e-prints, 1503.08909.

CNN basierte Verfahren

LSTM Architekturen¹:

- 1. CNN extrahiert Features einzelner Frames
- 2. Features als Input für LSTM Schichten
- 3. Klassifizierung

Deep Video LSTM¹: Convolution (rot), LSTM Zellen (blau) und softmax (orange).

¹J. Ng et al. (2015): Beyond Short Snippets: Deep Networks for Video Classification. In ArXiv e-prints, 1503.08909.

Feature-Pooling und LSTM Architekturen auf Basis einer CNN Architektur implementieren und evaluieren.

CNN-Feature-Extraction:

- Annahme: Trainieren von komplexen CNN Architekturen ist aufwendig
- Idee: Mit *Transfer Learning* eine vor-trainierte CNN Architektur umtrainieren

Inception-v3 umtrainieren:

Fully connectedSoftmax

 Mit extrahierten Frames der Videos die letzten beiden Inception-Module und die Klassifizierungsschichten trainieren

Bild in Anlehnung an: Train your own image classifier with Inception in Tensorflow. Google Research Blog, https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html.

Inception-v3 umtrainieren:

Overfitting nach wenigen Epochen

Inception-v3 umtrainieren (mit Dropout):

Features extrahieren:

Bild in Anlehnung an: Train your own image classifier with Inception in Tensorflow. Google Research Blog, https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html.

Bezüglich Feature-Pooling Architektur:

- Conv Pooling hat h

 öchste Genauigkeit
- Max-pooling Schicht: Was genau wird gepoolt?

Zu untersuchen:

- Vor-trainierte CNN Architektur verwenden oder umtrainieren?
- Feature-Pooling Architektur: Globales 1D-max-pooling oder 1D-max-pooling?
- Klassifizierung: Schichten Topologien untersuchen

Ergebnisse

Einschränkungen:

- Fast keine Vorverarbeitung
- Nur 40 Frames pro Video
- Kein Hyperparameter tuning

Ergebnisse

Feature Pooling mit trainierten Inception-v3	
Global 1D-max-pooling	6,06%
1D-max-pooling	6,35%
Feature Pooling mit Inception-v3	
Global 1D-max-pooling	43,32%
1D-max-pooling	39,86%

Ergebnisse

LSTM mit trainierten Inception-v3	5,27%
LSTM mit Inception-v3	38,27%

Nachtrag

Möglichkeiten für das Verbessern Genauigkeit:

- Hyperparameter tuning
- Bildvorverarbeitung
- Mit allen Frames trainieren