COMP-170: Homework #9

Ben Tanen - April 17, 2017

Problem 2

Given a universe U and a subset of the power set of U, $S \subseteq \mathcal{P}(U)$, we are interested in determining if S contains an exact covering of U, where an exact covering is a set $I, I \subseteq S$ such that every element of U belongs to exactly one set in I.

EXACT_COVER = $\{\langle U, S \rangle \mid S \subseteq \mathcal{P}(U) \text{ and } S \text{ contains an exact cover of } U\}$

Prove EXACT_COVER is NP-complete. Do a reduction from 3_COLOR

* * *

To prove EXACT_COVER is NP-complete, we will show that EXACT_COVER \in NP and that 3_COLOR \leq_m^p EXACT_COVER. Given that 3_COLOR is NP-complete, we will then be able to see that EXACT_COVER is NP-complete.

First, we will prove EXACT_COVER \in NP. In order to prove this, we can construct a polynomial time verifier V for EXACT_COVER. Once we show that V does indeed verify in polynomial time, we will then be able to see that EXACT_COVER \in NP. We can define V as follows:

V on input $\langle \langle U, S \rangle, I \rangle$:

// I is an subset of S, where S is a subset of $\mathcal{P}(U)$, to be verified

- 1. For each set in S, check said set is a subset of U. If there exists a set in S that is not a subset of U, REJECT
- 2. For each set in I, check said set is in S. If there exists a set in I that is not in S, REJECT
- 3. For each $u \in U$, check that u is in exactly one set of I. If u doesn't appear in a set in I, REJECT. If u appears in more than one set in I, REJECT.
- 4. Return ACCEPT.

Given our definition of V, we claim V runs in polynomial time. We can see that step 1 takes $O(n^2)$ time, where n = |U|, step 2 takes $O(n^3)$ time, step 3 takes $O(n^2)$ time. Thus, V takes polynomial time overall.

Finally, to show that V correctly verifies solutions, consider the following cases:

- 1. Suppose $\langle U, S \rangle \in \text{EXACT_COVER}$ and I is an exact covering of U. We then know that V would not halt on step 1, 2, or 3, by definition of U, S, and I. Thus, V would run until step 4, thus properly accepting.
- 2. Suppose $\langle U, S \rangle \notin \text{EXACT_COVER}$ where S is not a collection of subsets of U. We can then see that there would be some set in S that would halt on step 1, resulting in

V properly rejecting.

- 3. Suppose $\langle U, S \rangle \in \text{EXACT_COVER}$ but I (our witness) is not a subset of S. Given this, there must exist some set in I that is not in S. Therefore, we can see there is some set that would halt V on step 2, causing V to properly reject.
- 4. Suppose $\langle U, S \rangle \in \text{EXACT_COVER}$ but I (our witness) is not an exact covering of S. Given this, there must exist some element u that either doesn't appear in any of the sets of I or appears in two sets of I. Therefore, we can see that V would halt after finding this u and checking against all of the sets of I. Therefore, V would correctly reject.

Given these cases, we can see that V correctly verifies solutions, thus showing V is indeed a polynomial time verifier for EXACT_COVER. Thus, the existence and validity of V shows that EXACT_COVER \in NP.

Next, we will prove 3COLOR \leq_m^p EXACTCOVER. In order to prove this, we can construct a function $f: \Sigma_{3\text{COLOR}}^* \to \Sigma_{\text{EXACTCOVER}}^*$ such that $G \in 3\text{COLOR} \Leftrightarrow f(G) \in \text{EXACTCOVER}$. Once we show that f satisfies this condition, we will have proven that $3\text{COLOR} \leq_m^p \text{EXACTCOVER}$.

Given this, we can define $f: \Sigma_{3\text{COLOR}}^* \to \Sigma_{\text{EXACTCOVER}}^*$ as follows:

f on input G outputs $\langle U, S \rangle$, where U and S are defined as follows:

For each node v in G, add four elements to our universe U: v, R_v , G_v , and B_v .

For each node v in G, add three sets to S (one for each color), where each set contains v and C_{uv} for each $(u,v) \in G$ (in which $C \in \{R,G,B\}$).

For each edge (u, v) in G, add three elements to our universe U: R_{uv} , G_{uv} , and B_{uv} .

For individual element e added to G (excluding the elements added corresponding to the vertices of G), add $\{e\}$ to S.

Given our definition of f, we claim that f is computable in polynomial time. We can see that we could construct a Turing machine M that outputs $\langle U, S \rangle$ when given G. M would simply walk through G and add a linear number of elements for each vertex. M also does the same for each edge. This would take O(E+V) time overall, so we can see that f is indeed computable in polynomial time.

Next, we must verify that f satisfies the condition that $G \in 3$ COLOR $\Leftrightarrow f(G) \in EXACTCOVER$. In order to do this, consider the following:

1. Case analysis to prove this TBD

Given this, we can thus see that f does indeed satisfy the claim $G \in 3\text{COLOR} \Leftrightarrow f(G) \in \text{EXACTCOVER}$. Therefore, we can see that $3\text{COLOR} \leq_m^p \text{EXACTCOVER}$.

Given that EXACTCOVER \in NP, 3COLOR \leq_m^p EXACTCOVER, and 3COLOR is NP-complete, we can see that EXACTCOVER is also NP-complete. \boxtimes