Eigenvectors and Eigenvalues Eigenvectors and Eigenvalues

Sources:

https://www.youtube.com/watch?v=PFDu9oVAE-g

similar topics:

- linear systems
- determinates
- change of basis

One way to think about matricies is to picture them as linear transformations. Think about a 2d coordinate system, with \hat{x} and \hat{y} unit vectors. The matrix

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

will take the \hat{x} vector (originally $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$) and map it to the coordinate $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$ in the new coordinate system and take the \hat{y} vector (originally $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$) and map it to the coordinate $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in the new coordinate system.

When undergoing this transformation, most vectors in the the space will be rotated and / or stretched / shrinked.

For example, the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ will get mapped to $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$:

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3*1+1*1 \\ 0*1+2*1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

However take, for example, the vector $\begin{bmatrix} -1\\1 \end{bmatrix}$:

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3*-1+1*1 \\ 0*1+2*1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

The resultant vector after the linear transformation is a stretched version of the original vector

The name we give to these special vectors are eigenvectors

The factor by which the eigenvector is streteched is called the eigenvalue

Other discussion points / applications

- Consider a 3d rotation the axis that does not get rotated during that transformation is (by definition) the axis of rotation. So finding the eigenvector of a 3d rotation gives you the axis of rotation
- The eigenvectors of the covariance matrix of a dataset give the principal components (PCA), where the eigenvalues describe how much variance is in each principal component (i.e. the relative importance of each component)
- usually the eigenvectors / eigenvalues let you get at the heart of what a linear transformation really does

How to calculate the eigenvectors and eigenvalues

$$A\vec{v} = \lambda \vec{v}$$

where A = matrix of interest, \vec{v} = eigenvector, λ = eigenvalue

rewrite it as:

$$A\vec{v} = (\lambda I)\vec{v}$$

(where I is the identity matrix)

some manipulation:

$$Aec{v}-(\lambda I)ec{v}=(A-\lambda I)ec{v}=0$$

For this to be true, the linear transformation associated with $A-\lambda I$ must squish \vec{v} to 0. This is equivalent to saying $\det(A-\lambda I)=0$