Chapter 5. Weak Bisimulation and Observation Congruence

Goals

- Introduce the notion of weak bisimulation and observation congruence
- Properties of weak bisimulation and observation congruence
- Techniques for establishing weak bisimulation and observation congruence
- Differences and relationships between the three bisimulation relations

Overview

• In SB, every α action of one agent must be matched by an α action of the other agent, and vice versa—even for τ actions. As a result,

$$a.\tau.b.\mathbf{0} \not\sim a.b.\mathbf{0}$$

- The notion of weak bisimulation (WB) treats τ actions as unobservable, i.e.
 - it merely requires that each τ action of one agent be matched by **zero** or **more** τ actions of the other;
 - and that each external action l of one agent be matched by an l action accompanied, before or after, by **zero** or **more** τ actions of the other;
 - so, we should have that $a.\tau.b.\mathbf{0}$ and $a.b.\mathbf{0}$ are weakly bisimilar.

A WB game of interaction from a pair of agents (P_0, Q_0) is a finite or infinite sequence of the form

$$(P_0,Q_0),\ldots,(P_i,Q_i),\ldots$$

- played by two participants or observers, player I and player II such that
- player I attempts to show that an *observable* difference in behaviour is detectable, whereas player II tries to prevent this.

Rules of WB game

For each j the pair (P_{j+1}, Q_{j+1}) is determined as the result of a next step from the previous pair (P_j, Q_j) as follows:

- First player I chooses P_j (or Q_j) and a transition $P_j \xrightarrow{\alpha} P_{j+1}$ (or $Q_j \xrightarrow{\alpha} Q_{j+1}$).
- Then player II has to choose Q_j (or P_j) and respond as follows:
 - if $\alpha = \tau$, choose Q_j (or P_j) as Q_{j+1} (or P_{j+1}), or she can make one or more τ transitions

$$Q_j \xrightarrow{\tau} \dots \xrightarrow{\tau} Q_{j+1}$$

$$(or \quad P_j \xrightarrow{\tau} \dots \xrightarrow{\tau} P_{j+1})$$

- if $\alpha \neq \tau$, choose a corresponding transition from the other agent accompanied, before or after, by zero or more τ transitions

$$Q_{j}(\stackrel{\tau}{\to})^{*} \stackrel{\alpha}{\to} (\stackrel{\tau}{\to})^{*}Q_{j+1}$$

$$(or \quad P_{j}(\stackrel{\tau}{\to})^{*} \stackrel{\alpha}{\to} (\stackrel{\tau}{\to})^{*}P_{j+1})$$

Winner of WB game

If at any point a player is unable to make a move, then the other player wins the game:

- Player I is stuck if both agents are deadlocked.
- Player II is at a loss if no corresponding transition is available.
- If the game continues forever (is infinite) or if there is a repeated configuration, the pair (P_{j+1}, Q_{j+1}) has occurred previously, then player II also wins.

WB game equivalence

A player has a wining strategy from a pair (P_0, Q_0) if she is able to win any game from the pair.

Two agents P_0 and Q_0 are WB game equivalent if player II has a winning strategy from (P_0, Q_0) .

In other words, whatever moves player I makes, player II can always match them.

Remark Clearly, P and P are WB game equivalent.

Example 1:

Consider $(P, \tau.P)$. Whenever $P \xrightarrow{\alpha} P'$ by player I, player II can response with

$$\tau.P \xrightarrow{\tau} P \xrightarrow{\alpha} P'$$

And if player I choose $\tau.P \xrightarrow{\tau} P$, player II can response by simply not making any transition on P

Thus, player II always wins, and P and $\tau.P$ are WB game equivalent.

Example 2:

Consider the following agents

$$V \stackrel{def}{=} 1p.(little.collect.V + 1p.big.collect.V)$$

 $V' \stackrel{def}{=} 1p.little.collect.V' + 1p.1p.big.collect.V'$

Player I has a winning strategy from (V, V') as follows

- 1. Player I chooses: $V' \stackrel{1p}{\rightarrow} 1p.big.collect.V'$
- 2. Play II has to make: $V \stackrel{1p}{\rightarrow} little.collect.V + 1p.big.collect.V$
- 3. Player I opts for little.collect.V + 1p.big.collect.V and $little.collect.V + 1p.big.collect.V \xrightarrow{little} collect.V$
- 4. Player II cannot make a little transition from 1p.big.collect.V'. Thus, Player II looses.
- 5. Thus, V and V' are not WB game equivalent.

Example 3:

Let

$$C_0 \stackrel{def}{=} \overline{b}.C_1 + a.C_2$$
 $C_1 \stackrel{def}{=} a.C_3$ $C_2 \stackrel{def}{=} \overline{b}.C_3$ $C_3 \stackrel{def}{=} \tau.C_0$

$$D \stackrel{def}{=} a.D_2 + \overline{b}.D_1$$

$$D_1 \stackrel{def}{=} a.D \qquad D_2 \stackrel{def}{=} \overline{b}.D$$

Then C_0 and D are WB game equivalent as any game will go through the following pairs of states (not particularly in this order):

$$(C_0, D), (C_1, D_1), (C_2, D_2), (C_3, D)$$

The associated weak bisimulation relation for (C_0, D) is

$$\{(C_0, D), (C_1, D_1), (C_2, D_2), (C_3, D)\}$$

Weak Bisimulation and Observation Congruence

Goals

- Brief motivation of weak bisimulation and observation congruence
- Definitions of weak bisimulation and observation congruence
- Properties of weak bisimulation and observation congruence
- Techniques for establishing weak bisimulation and observation congruence
- Differences and relationships between the three bisimulation relations

2. Weak Bisimulation

Preliminary definitions

- **Definition 1** Act^* is the set of all finite sequences of actions in Act; $\varepsilon \in Act^*$ is the empty sequence; α^n is the sequence of n actions α .
- **Definition 2** For $t \in Act^*$, \hat{t} is the sequence gained by deleting all occurrences of τ from t.

Note: $\widehat{\tau^n} = \varepsilon$

- **Definition 3** For $t = \alpha_1 \dots \alpha_n \in Act^*$, we write $E \xrightarrow{t} E'$ instead of $E \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} E'$
- **Definition 4** For $t = \alpha_1 \dots \alpha_n \in Act^*$, we write $E \stackrel{t}{\Rightarrow} E'$ instead of

$$E(\xrightarrow{\tau})^* \xrightarrow{\alpha_1} (\xrightarrow{\tau})^* \cdots (\xrightarrow{\tau})^* \xrightarrow{\alpha_n} (\xrightarrow{\tau})^* E'$$

For example $E \stackrel{ab}{\Rightarrow} E'$ means that there exist $p,q,r \geq 0$ such that

$$E \xrightarrow{\tau^p} \xrightarrow{a} \xrightarrow{\tau^q} \xrightarrow{b} \xrightarrow{\tau^r} E'$$

Properties of $\stackrel{t}{\rightarrow}$, $\stackrel{t}{\Rightarrow}$, $\stackrel{\widehat{t}}{\Rightarrow}$

- Each specifies an action sequence with **exactly the** same observable actions, namely those in t, but they are different w.r.t. τ actions:
 - $-\stackrel{t}{\rightarrow}$ specifies **exactly** the τ actions occurring in t.
 - $\stackrel{t}{\Rightarrow}$ specifies **at least** the τ actions occurring in t.
 - $\stackrel{\widehat{t}}{\Rightarrow}$ specifies **nothing** about τ actions.
- $P \xrightarrow{t} P'$ implies $P \xrightarrow{t} P'$, and $P \xrightarrow{t} P'$ implies $P \xrightarrow{\hat{t}} P'$.

Definition 5 A relation $S \subseteq P \times P$ is a weak bisimulation (WB) if, whenever PSQ and $\alpha \in Act$, then

- 1. if $P \xrightarrow{\alpha} P'$, then, for some Q', $Q \stackrel{\widehat{\alpha}}{\Rightarrow} Q'$ and P'SQ', and
- 2. if $Q \stackrel{\alpha}{\to} Q'$, then, for some P', $P \stackrel{\widehat{\alpha}}{\Rightarrow} P'$ and P'SQ'.

Agents P and Q are weakly bisimilar, written $P \approx Q$, if there is a WB \mathcal{S} such that $P\mathcal{S}Q$.

Proposition 1

A relation $S \subseteq \mathcal{P} \times \mathcal{P}$ is a WB iff whenever PSQ then

- 1. if $P \xrightarrow{l} P'$ then for some Q', $Q \Rightarrow Q'$ and P'SQ',
- 2. if $P \xrightarrow{\tau} P'$ then for some Q', $Q(\xrightarrow{\tau})^*Q'$ and P'SQ',
- 3. if $Q \xrightarrow{l} Q'$ then for some P', $P \Rightarrow P'$ and P'SQ',
- 4. if $Q \xrightarrow{\tau} Q'$ then for some P', $P(\xrightarrow{\tau})^*P'$ and P'SQ',

Corollary 2 For all P and Q, $P \sim Q$ implies $P \approx Q$.

The converse of Corollary 2 is clearly not valid.

By Corollary 2 all the **equational** laws for \sim hold for \approx . Moreover, all three τ laws hold for \approx .

Thus, all equational laws from Chapter 3 hold for \approx :

$$\forall P, Q. P = Q \text{ implies } P \approx Q$$

But the converse is not valid! There are agents P and Q, as in Example 4, such that

$$P \approx Q$$
 and $P \neq Q$

Example 4

1. $P \approx \tau . P$ since the following is a WB

$$\{(P, \tau.P), (P, P), (P', P') \mid P \xrightarrow{t} P'\}$$

Recall that $P \neq \tau.P$.

2. $\mu.\tau.P \approx \mu.P$ since the following is a WB

$$\{(\mu.\tau.P, \mu.P), (\tau.P, P), (P, P), (P', P') \mid P \xrightarrow{t} P'\}$$

3. $P + \tau P \approx \tau P$ since the following is a WB

$$\{(P + \tau.P, \tau.P), (P, P), (P', P') \mid P \xrightarrow{t} P'\}$$

4. $\alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$ since the following is a WB

$$\{(\alpha.(P+\tau.Q)+\alpha.Q, \ \alpha.(P+\tau.Q)),$$

$$(P,P),(Q,Q),(P',P'),(Q',Q')\mid P\stackrel{t}{\rightarrow} P',Q\stackrel{s}{\rightarrow} Q'\}$$

Example 5 For C_0 and D as in Example 3, $C_0 \approx D$ since the following is a WB

$$\{(C_0, D), (C_1, D_1), (C_2, D_2), (C_3, D)\}$$

Example 6 $a.\tau.b.\mathbf{0} \approx a.b.\mathbf{0}$. The following is a WB

$$\{(a.\tau.b.\mathbf{0}, a.b.\mathbf{0}), (\tau.b.\mathbf{0}, b.\mathbf{0}), (b.\mathbf{0}, b.\mathbf{0}), (\mathbf{0}, \mathbf{0})\}$$

Example 7 (\approx is not a congruence relation)

Although $b.0 \approx \tau.b.0$, but if $a \neq b$, then

$$a.0 + b.0 \not\approx a.0 + \tau.b.0$$

Proof: If there is a WB S such that $(LHS, RHS) \in S$, then

since
$$RHS \xrightarrow{\tau} b.\mathbf{0}$$

we need $LHS \stackrel{\widehat{\tau}}{\Rightarrow} P'$ for some P' ,
and $(P', b.\mathbf{0}) \in \mathcal{S}$;
in fact $P' \equiv LHS$ and clearly
 $(a.\mathbf{0} + b.\mathbf{0}, \ b.\mathbf{0}) \not\in \mathcal{S}$

Thus, \approx is not a congruence relation:

although $b.\mathbf{0} \approx \tau.b.\mathbf{0}$ but not $a.\mathbf{0} + b.\mathbf{0} \approx a.\mathbf{0} + \tau.b.\mathbf{0}!$

3. Properties of Weak Bisimulation

Weak bisimulation shares many properties with strong bisimulation.

Proposition 3 Assume that each S_i (i = 1, 2, ...) is a WB. Then the following relations are WBs

(1) $Id_{\mathcal{P}}$ (3) $\mathcal{S}_1\mathcal{S}_2$

 $(2) \quad \mathcal{S}_i^{-1} \qquad (4) \quad \bigcup_{i \in I} \mathcal{S}_i$

Proposition 4

1. \approx is the largest WB.

2. \approx is an equivalence relation.

3. $P \approx Q$ iff, for all $\alpha \in Act$

(a) Whenever $P \stackrel{\alpha}{\to} P'$ then, for some Q',

 $Q \stackrel{\widehat{\alpha}}{\Rightarrow} Q'$ and $P' \approx Q'$

(b) Whenever $Q \xrightarrow{\alpha} Q'$ then, for some P'

 $P \stackrel{\widehat{\alpha}}{\Rightarrow} P'$ and $P' \approx Q'$

Note:

 \approx is not a congruence relation since the choice operator does not preserve it:

• it is not in general the case that if $P \approx Q$ then $P + R \approx Q + R$, as shown in Example 7.

Proposition 5

If $P \approx Q$, $P_1 \approx P_2$ and $P_i \approx Q_i$ for $i \in I$, then

- 1. $\alpha . P \approx \alpha . Q$
- 2. $\sum_{i \in I} \alpha_i . P_i \approx \sum_{i \in I} \alpha_i . Q_i$
- 3. $P_1|Q \approx P_2|Q$
- 4. $P_1 \setminus L \approx P_2 \setminus L$
- 5. $P_1[f] \approx P_2[f]$

This proposition tells us that prefixing, parallel, restriction and relabelling operators preserve \approx .

Also, a combined operation of a choice of prefixed agents preserves \approx .

But the choice operator **does not** preserve \approx .

5. Observation Congruence

Observation congruence is very closely related to \approx .

Definition 7 Agents P, Q are observation congruent, denoted by $P \approx_o Q$, if for all $\alpha \in Act$,

- 1. if $P \stackrel{\alpha}{\to} P'$, then, for some Q', $Q \stackrel{\alpha}{\Rightarrow} Q'$ and $P' \approx Q'$, and
- 2. if $Q \xrightarrow{\alpha} Q'$, then, for some P', $P \xrightarrow{\alpha} P'$ and $P' \approx Q'$

Remarks

- \approx_o differs from \approx only in one respect: $\stackrel{\alpha}{\Rightarrow}$ takes the place of $\stackrel{\widehat{\alpha}}{\Rightarrow}$ for the first actions of P and Q only.
- Thus, each action of P or Q must be matched by at least one action of the other—this only applies to the first actions of P and Q.

This becomes more clear if we compare the above definition with Proposition 4.3:

(Recall **Proposition 4.3**: $P \approx Q$ iff, for all $\alpha \in Act$

- 1. if $P \stackrel{\alpha}{\to} P'$, then, for some Q', $Q \stackrel{\widehat{\alpha}}{\Rightarrow} Q'$ and $P' \approx Q'$
- 2. if $Q \xrightarrow{\alpha} Q'$, then, for some $P' P \stackrel{\widehat{\alpha}}{\Rightarrow} P'$ and $P' \approx Q'$)

It easy to show using the definitions that $\approx_o \subseteq \approx$.

The following result tells us clearly how to check that two agents are observation congruent.

Proposition 7

 $P \approx_o Q$ iff

- 1. if $P \stackrel{l}{\to} P'$ then for some Q', $Q \stackrel{l}{\Rightarrow} Q'$ and $P' \approx Q'$,
- 2. if $P \xrightarrow{\tau} P'$ then for some Q', $Q \xrightarrow{\tau} Q'$ and $P' \approx Q'$,
- 3. if $Q \xrightarrow{l} Q'$ then for some P', $P \stackrel{l}{\Rightarrow} P'$ and $P' \approx Q'$,
- 4. if $Q \xrightarrow{\tau} Q'$ then for some P', $P \xrightarrow{\tau} P'$ and $P' \approx Q'$.

6. Fundamental Properties of \approx_o

Proposition 8

- 1. \approx_o is an equivalence relation and a congruence relation.
- 2. All the equational laws for = in Chapter 3 are valid for \approx_o .

Part 2 means that if P = Q can be proved using the laws from Chapter 3, then $P \approx_o Q$.

Importantly, the converse is also true, i.e. if $P \approx_o Q$, then P = Q can be proved using the laws from Chapter 3. Hence,

$$\forall P, Q. \ P \approx_o Q \ \text{iff} \ P = Q$$

7. Relationship between \sim , \approx and \approx_o

Proposition 9

- 1. If $P \sim Q$ then $P \approx Q$,
- 2. if $P \sim Q$ then $P \approx_o Q$,
- 3. if $P \approx_o Q$ then $P \approx Q$.
- 4. So, $\sim \subseteq \approx_o$ (which is the same as =) $\subseteq \approx$.
- 5. None of the inverses above are generally valid:

$$b.\mathbf{0} \approx \tau.b.\mathbf{0}$$
, but $b.\mathbf{0} \not\approx_o \tau.b.\mathbf{0}$
 $\tau.b.\mathbf{0} \approx_o \tau.\tau.b.\mathbf{0}$, but $\tau.b.\mathbf{0} \not\sim \tau.\tau.b.\mathbf{0}$

- 6. Thus, $\sim \subset \approx_o$ (same as =) $\subset \approx$.
- 7. Thus, all the **equational** laws for \sim hold for \approx_o ; and all the **equational** laws for \approx_o hold for \approx .

Proposition 10

- 1. If $P \approx Q$ and P and Q are stable, i.e. have no immediate τ -transitions, then P = Q.
- 2. If $P \approx Q$, then $\alpha . P = \alpha . Q$

Further reading: Milner's book, Chapter 4, 5 and 7.

Equational laws

• Monoid laws

1.
$$P + Q = Q + P$$
 — commutativity

2.
$$P + (Q + R) = (P + Q) + R$$
 — associativity

3.
$$P + P = P$$
 — Idempotence

4.
$$P + \mathbf{0} = P - \mathbf{0}$$
 is the zero element of +

• The τ laws

1.
$$\alpha.\tau.P = \alpha.P$$
 — Drop any τ except the first one

2.
$$P + \tau P = \tau P - Add$$
 a first τ

3.
$$\alpha.(P + \tau.Q) + \alpha.Q = \alpha.(P + \tau.Q)$$

• Laws for Agent constants and equations

1. If
$$A \stackrel{def}{=} P$$
, then $A = P$.

2. Let E_i $(i \in I)$ contain at most the variables $\{X_j : j \in I\}$, and let these variables are guarded and sequential in each E_i . Then

If
$$\tilde{P} = \tilde{E}\{\tilde{P}/\tilde{X}\}$$
 and $\tilde{Q} = \tilde{E}\{\tilde{Q}/\tilde{X}\}$ then $\tilde{P} = \tilde{Q}$

• The expansion law

Let
$$P \equiv (P_1[f_1]| \dots |P_n[f_n]) \setminus L$$
. Then

$$P = \sum \{f_i(\alpha).(P_1[f_1]|\dots|P'_i[f_i]|\dots|P_n[f_n]) \setminus L : P_i \xrightarrow{\alpha} P'_i, f_i(\alpha) \not\in L \cup \overline{L}\}$$

+
$$\sum \{\tau.(P_1[f_1]|\dots|P'_i[f_i]|\dots|P'_j[f_j]|\dots|P_n[f_n])\setminus L$$

 $P_i \xrightarrow{l_1} P'_i, P_j \xrightarrow{l_2} P'_j, f_i(l_1) = \overline{f_j(l_2)}, i < j\}$

• Composition laws

- 1. P|Q = Q|P commutativity
- 2. P|(Q|R) = (P|Q)|R associativity
- 3. $P|\mathbf{0} = P \mathbf{0}$ is an unit

• Restriction laws

- 1. $P \setminus L = P$ if $\mathcal{L}(P) \cap (L \cup \overline{L}) = \emptyset$
- 2. $P \setminus K \setminus L = P \setminus (K \cup L)$
- 3. $P[f] \setminus L = (P \setminus f^{-1}(L))[f]$
- 4. $(P|Q)\backslash L = P\backslash L|Q\backslash L$ if $\mathcal{L}(P)\cap \overline{\mathcal{L}(Q)}\cap (L\cup \overline{L}) = \emptyset$

• Relabelling laws

- 1. P[Id] = P
- 2. P[f] = P[f'] if $f \upharpoonright \mathcal{L}(P) = f' \upharpoonright \mathcal{L}(P)$
- 3. $P[f][f'] = P[f' \circ f]$
- 4. (P|Q)[f] = P[f]|Q[f] if $f \upharpoonright (L \cup \overline{L})$ is one-one, where $L = \mathcal{L}(P|Q)$