Teste para três ou mais amostras pareadas

Exemplos:

- a) Dez juízes de vinhos avaliam algumas características de determinado tipo de vinho, produzido por quatro vinícolas. Os critérios são: intensidade, limpidez, álcool, transparência, e ao final, atribuem uma nota de 0 a 10.
 Alguma vinícola produz vinho "melhor" (nota mais alta) do que as demais?
- b) Quinze soldadores usam, cada um, três tochas de soldagem, e as soldas resultantes são avaliadas quanto à qualidade. Pelo menos uma das tochas produz soldas consistentemente melhores ou piores do que as demais?

Duas aplicações:

1) Em um estudo sobre hipnose, oito pessoas receberam uma tensão elétrica na superfície da pele (em milivolts), em quatro situações emocionais distintas: medo, alegria, tristeza e calma. Podemos afirmar que existe diferença na tensão entre os diferentes estados emocionais?

Pacientes	Medo	Alegria	Tristeza	Calma
1	23,1	22,7	22,5	22,6
2	57,6	53,2	53,7	53,1
3	10,5	9,7	10,8	8,3
4	23,6	19,6	21,1	21,6
5	11,9	13,8	13,7	13,3
6	54,6	47,1	39,2	37,0
7	21,0	13,6	13,7	14,8
8	20,3	23,6	16,3	14,8

(Lehmann, E. L. and D'abrera, H. J. M. Nonparametrics : statistical methods based on ranks, 2006)

2) Em um estudo sobre variedades de cana-de-açúcar, foram registrados a produção (em toneladas por hectare), de seis canteiros para as cinco variedades da cana. O que podemos concluir sobre as cinco variedades?

Canteiros	Variedade 1	Variedade 2	Variedade 3	Variedade 4	Variedade 5
1	110,6	116,7	128,7	140,3	143,4
2	119,5	128,4	140,2	150,0	153,8
3	120,1	131,5	130,3	150,9	151,5
4	105,3	114,8	138,7	144,7	144,1
5	130,8	146,8	146,0	153,9	154,6
6	138,1	155,5	149,8	156,0	159,3

Teste de Friedman

- extensão do teste do sinal
- comparar mais de duas amostras pareadas
- útil para estudos de medidas repetidas
- verificar se as amostras provêm da mesma população
- o mesmo elemento amostral é observado várias vezes (uma vez em cada um dos tratamentos) => detectar possíveis diferenças entre os diferentes tratamentos
- os dados numéricos não são usados diretamente, mas sim os postos ocupados pelos valores
- A ordenação é realizada para cada bloco separadamente.

Amostra

- considere v.as. independentes k-variadas (Xi1, Xi2,...,Xik) (i = 1,..., n) (i representa o elemento amostral e k e o número de tratamentos)
- atribua postos dentro de cada bloco (elemento amostral). Em caso de valores iguais, atribua a média dos postos.

Suposições:

- os dados consistem de blocos (u.a.'s) independentes, para os k tratamentos
- as observações são independentes dentro e entre as amostras
- a variável de estudo é contínua
- a escala de medidas é, pelo menos, ordinal, dentro de cada bloco
- não existe interação entre blocos e tratamentos.

Hipóteses:

H₀: a ordenação das v.as. dentro dos blocos é igualmente provável (ou ainda os **tratamentos têm efeitos idênticos**)

VS

H₁: a ordenação das v.as. dentro dos blocos não é igualmente provável para, pelo menos, um par de tratamentos.

(pelo menos um dos tratamentos tende a produzir valores diferentes dos demais).

Teste estatístico:

$$T = \frac{12}{nk(k+1)} \sum_{i=1}^{k} R_i^2 - 3n(k+1)$$

em que

$$R_j = \sum_{i=1}^n R(X_{ij}), \ j = 1, \cdots, k.$$

- Regra de Decisão:
 - rejeite H₀, ao nível α de significância, se T exceder o quantil (1-α) da distribuição qui-quadrado com (k-1) g.l.

Vamos para o R!