SmartEnvGuard (智环卫士) 项目文档

本文档详细说明了基于STM32F103C8T6单片机的智能环境监控与控制系统的设计与实现。SmartEnvGuard系统集成了温湿度检测、紫外线感应、红外触发等功能,并通过多种控制模式实现智能化的环境监测和自动调节。本文档包含了完整的硬件接口定义、软件功能说明和调试方法,可作为开发和维护的技术参考手册。

项目名称由来:

• Smart: 体现系统的智能控制特性

• Env: 代表环境监测和控制功能

• Guard:表示系统的保护和监管作用

• 简称SEG, 寓意"智能环境卫士"

目录

- SmartEnvGuard (智环卫士) 项目文档
 - 。 目录
 - 文档信息
 - 。 修订历史
 - 。 系统框图
 - 1. 系统总体框图
 - 2.信号连接
 - 。 一、引脚分配
 - 1. 通信接口
 - 2. 传感器接口
 - 3. 控制输出
 - 4. 按键输入 (4x4矩阵键盘)
 - 5. LED指示
 - · 二、外设资源使用
 - 1. 定时器
 - 2. ADC
 - 3. USART
 - 4.12C (软件模拟)
 - 三、系统功能说明
 - 1. 工作模式
 - 2. 温湿度控制功能
 - 3. 显示功能 (OLED)
 - 4. 通信功能
 - 5. 安全保护功能
 - 四、编译和调试说明
 - 1. 开发环境
 - 2. 项目结构
 - 3. 中断处理
 - 4. 调试方法

文档信息

project documentation.md 2025-04-28

• 文档版本: V1.0

创建日期: 2025/4/28最后更新: 2025/4/28适用项目版本: V1.0.0

修订历史

版本	日期	修改内容	作者		
V1.0	2025/4/28	首次创建,	完整记录系统功能和接口	DK	

系统框图

1. 系统总体框图

2. 信号连接

- 传感器接口:
 - o DHT11 → PB0 (单总线)
 - SD12 → PA0 (ADC)
 - IR → PA7 (外部中断)
- 执行器接口:
 - Fan → PC15 (GPIO)
 - UV LED → PA12 (GPIO)
 - Motor → PA4/5/6 (GPIO+PWM)
 - Servo → PA1 (PWM)
 - Buzzer → PC14 (GPIO)
- 通信接口:
 - o 蓝牙 → PA2/3 (UART2)

project_documentation.md 2025-04-28

- 。 调试 → PA9/10 (UART1)
- \circ OLED \rightarrow PB8/9 (I2C)

一、引脚分配

1. 通信接口

功能	引脚	说明
USART1-TX	PA9	串口通信发送(115200bps)
USART1-RX	PA10	串口通信接收(115200bps)
USART2-TX	PA2	蓝牙通信发送 (9600bps)
USART2-RX	PA3	蓝牙通信接收 (9600bps)
I2C-SCL	PB8	OLED显示屏时钟线(软件模拟)
I2C-SDA	PB9	OLED显示屏数据线(软件模拟)

2. 传感器接口

功能	引脚	说明
DHT11	PB0	温湿度传感器数据线 (单总线)
SD12	PA0	紫外线传感器ADC输入(0-4095对应0-11级)
RED	PA7	红外传感器输入 (上升下降沿触发)

3. 控制输出

功能	引脚	说明
Fan	PC15	风扇控制 (低电平触发)
UV LED	PA12	紫外线灯控制 (高电平触发)
Buzzer	PC14	蜂鸣器控制 (低电平触发)
Servo	PA1	舵机控制 (TIM2_CH2, 50Hz)
Motor Direction1	PA4	电机方向控制1 (正转高电平)
Motor Direction2	PA5	电机方向控制2 (反转高电平)
Motor Speed	PA6	电机速度控制 (TIM3_CH1, 20KHz PWM)

4. 按键输入 (4x4矩阵键盘)

功能	引脚	说明
行线	PA8-PA11	矩阵键盘行扫描 (输出,推挽)
列线	PB12-PB15	—————————————————————————————————————

project_documentation.md 2025-04-28

5. LED指示

功能	引脚	说明
System LED	PC13	系统状态指示灯
LED1	PA1	通用指示灯1 (与舵机共用引脚)
LED2	PA2	通用指示灯2(与蓝牙TX共用引脚)

二、外设资源使用

1. 定时器

	定时器	功能	配置
	TIM2	舵机PWM	频率50Hz(20ms周期),占空比0.5ms-2.5ms对应0-180度
1	TIM3	电机PWM	频率20KHz,占空比0-100%控制速度
	TIM4	系统定时	

2. ADC

- ADC1用于紫外线传感器SD12的模拟信号采集
- 时钟72MHz/6=12MHz
- 采样时间55.5个周期
- 12位分辨率 (0-4095)
- 转换结果右对齐
- 仅在需要时进行单次转换

3. USART

串口	功能	配置
USART1	调试串口	115200波特率,8数据位,1停止位,无校验
USART2	蓝牙通信	9600波特率,8数据位,1停止位,无校验

4. I2C (软件模拟)

- 用于OLED显示屏通信 (0.96寸, 128x64分辨率)
- 时钟线PB8,数据线PB9
- 标准I2C协议,7位地址0x78
- 支持8x16字体,可显示ASCII字符、数字
- 支持显示十进制、十六进制和二进制数

三、系统功能说明

1. 工作模式

1. 手动模式 (MANUAL)

project documentation.md 2025-04-28

。 通过矩阵键盘直接控制各个设备

按键1/2: 蜂鸣器开关

○ 按键3/4: 风扇开关

。 按键5/6: 紫外线灯开关

按键7/8/9: 电机控制 (正转/反转/停止)按键10/11/12: 舵机控制 (0°/90°/180°)

2. **自动模式 (AUTO)**

。 基于温湿度和红外传感器的自动控制

。 温度>31℃且湿度>61%时, 开启风扇和UV灯

。 检测到红外触发时, 开启UV灯2秒并控制舵机转到90°

3. **循环模式 (CYCLE)**

。 5秒循环工作模式

。 前5秒: 开启风扇、UV灯、电机正转

。 后5秒: 关闭所有设备

4. 蓝牙模式 (BT)

。 通过蓝牙APP控制各个设备

。 支持UV灯、舵机、风扇、电机的独立控制

。 可接收蓝牙命令切换工作模式

2. 温湿度控制功能

• 支持传感器实时测量值和固定值两种模式

按键13:切换到固定值1(温度32度,湿度62%)

按键14: 切换到固定值2 (温度25度,湿度40%)

• 按键15: 切换回传感器实时测量值

• 在自动模式下用于控制决策

3. 显示功能 (OLED)

• 第1行: 按键值(K:##)、红外状态(R:Y/N)、DHT11状态(D:OK/ERR)

• 第2行: 湿度值显示(hm:##.#%)

• 第3行: 温度值(T:##.#°C)和紫外线等级(UV:##)

• 第4行: 运行时间(T:####s)、蓝牙状态(B:R)、工作模式(M:MN/AU/CY/BT)

o MN: 手动模式

· AU: 自动模式

。 CY: 循环模式

。 BT: 蓝牙模式

4. 诵信功能

1. 蓝牙通信

- 。 发送数据包格式:
 - 帧头(0xA5)

- 计数值(1字节)
- UV等级(1字节, 0-11)
- 湿度值(4字节float)
- 温度值(4字节float)
- 校验和(1字节)
- 帧尾(0x5A)
- 。 接收数据包格式:
 - 帧头(0xA5)
 - 控制标志(1字节):
 - Bit7: UV灯开关
 - Bit6: 舵机角度选择(0°/90°/180°)
 - Bit5: 风扇开关
 - Bit4-3: 电机控制(停止/正转/反转)
 - Bit2-0: 工作模式选择
 - 校验和(1字节)
 - 帧尾(0x5A)
- 。 固定时间间隔发送传感器数据
- 。 随时接收控制命令

2. 串口调试

- 。 波特率115200
- 。 支持printf重定向
- 。 用于调试信息输出

5. 安全保护功能

- DHT11读取失败时保持使用上次有效数据
- 模式切换时自动关闭所有设备
- 红外触发的UV灯有2秒最大工作时间限制
- 温湿度数据支持固定值模式用于测试
- DHT11故障累计3次才显示ERR,避免显示闪烁
- 每100ms采样一次数据,避免频繁读取

四、编译和调试说明

1. 开发环境

编译器: ARMCCIDE: Keil uVision5支持VSCode开发

2. 项目结构

User/: 用户代码DK/: 驱动库文件

Library/: STM32标准外设库Start/: 启动文件和系统配置

project_documentation.md 2025-04-28

3. 中断处理

- TIM4中断 (1ms):
 - 。 更新系统运行时间计数
 - 。 处理延时计数器
 - 。 执行自动模式和循环模式的定时任务
 - 。 优先级: 2-0
- 串口中断:

USART1:调试信息处理,优先级1-1USART2:蓝牙数据接收,优先级1-1

- 外部中断:
 - 。 EXTI7 (红外传感器): 处理红外触发事件, 优先级1-1

4. 调试方法

- 串口打印调试信息 (115200bps)
- OLED实时显示系统状态 (4行信息更新)
- LED状态指示:
 - 。 LED1/2: 可自定义指示状态
 - 。 System LED: 系统运行指示
- 矩阵按键支持显示当前按键值 (1-16)