Complex Analysis Done Simple

1. Complex Numbers

Before the actual complex analysis

- (1) Definition of a complex number and its real/im parts, modular, etc.).
- (2) Algebra on complex number
- (3) Euler's Formula
- (4) Every complex number can be associated with a matrix

$$z = x + iy \iff [z] = \begin{bmatrix} x & -y \\ y & -x \end{bmatrix}$$

and the following properties are well-projected

- (a) Multiplication/Addition \iff Matrix multiplication/addition
- (b) Conjugacy ← Transpose
- (c) $z \in (i)\mathbb{R} \iff \text{Matrix is (anti-)symmetric}$
- (d) Polar coordinates \iff Polar decomposition A = |A|u where u is unitary.

Then it's time to do analysis.

2. Differentiation

We recalled that the complex derivative of a function $f: \mathbb{C} \to \mathbb{C}$ is given by

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$

Equivalently, there exists a function $\varphi_z: B_{\varepsilon}(z) \to \mathbb{C}$ such that

$$f(z+h) = f(z) + f'(z)h + \varphi_z(h) \text{ and } \lim_{h \to 0} \frac{\varphi_z(h)}{|h|} = 0.$$

We can canonically identify functions $f:\mathbb{C}\to\mathbb{C}$ with functions $F:\mathbb{R}^2\to\mathbb{R}^2$ by setting

$$F(x,y) = (\text{Re}(f(x+iy)), \text{Im}(f(x+iy))).$$

A function $F:\mathbb{R}^2\to\mathbb{R}^2$ is called differentiable at X=(x,y) if there exists φ_X such that

$$F(X+h) = F(X) + DF(X)h + \varphi_X(h) \text{ and } \lim_{h \to 0} \frac{\varphi_X(h)}{\|h\|} = 0.$$

Here $DF(x) = \begin{pmatrix} \partial_x F_1(x,y) & \partial_y F_1(x,y) \\ \partial_x F_2(x,y) & \partial_y F_2(x,y) \end{pmatrix}$ is the Jacobi matrix. A sufficient criterion for

F to be differentiable at a point X is that all partial derivatives in the Jacobi matrix exist and are continuous function in $B_{\varepsilon}(X)$.

Theorem 2.1 (complex differentiable). $f: \mathbb{C} \to \mathbb{C}$ is differentiable at a point $z \in \mathbb{C}$ if and only if F is differentiable and the Cauchy-Riemann equations hold (which enforce the Jacobi matrix to correspond to a complex number)

$$\partial_x F_1(x,y) = \partial_y F_2(x,y)$$
 and $\partial_y F_1(x,y) = -\partial_x F_2(x,y)$.

One can then introduce Wirtinger derivatives https://en.wikipedia.org/wiki/Wirtinger_derivatives

$$\partial_z = \frac{1}{2}(\partial_x - i\partial_y)$$
 and $\partial_{\bar{z}} = \frac{1}{2}(\partial_x + i\partial_y)$.

The Cauchy-Riemann equations then just simplify to $\partial_{\bar{z}} f(z) = 0$ and for the complex derivative, we have $f'(z) = \partial_z f(z)$.

In addition, we have $4\partial_z\partial_{\bar{z}} = \Delta$ where $\Delta = \partial_x^2 + \partial_y^2$ is the Laplace operator. Thus, every complex differentiable function is in fact harmonic, i.e. satisfies $\Delta f = 0$.

Definition 2.1 (Domain). We call an open connected subset D of \mathbb{C} a domain.

We then showed that

Theorem 2.2. If $f: D \to \mathbb{C}$ is complex differentiable and real-valued where D is a domain, then f is constant.

Then we started discussing about what a power series is.

Definition 2.2 (Power series). The power series of f (if applicable) is in the form

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

It converges for $|z - z_0| < R := \limsup_{n \to \infty} |a_n|^{-1/n}$ and diverges for $|z - z_0| > R$. Here, R is called the radius of convergence.

In particular, we have

Theorem 2.3. Let $f: B_R(z_0) \to \mathbb{C}$ be given by $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, where R is the radius of convergence, then f is differentiable.

Proof. Without loss of generality, we take $z_0 = 0$ and consider $z, w \in B_R(0)$. A candidate for the derivative is $g(z) = \sum_{n=1}^{\infty} a_n z^{n-1}$.

We shall try to show then that

$$\lim_{z \to w} \left(\frac{f(z) - f(w)}{z - w} - g(w) \right) = 0.$$

First, observe that for n > 1

$$\frac{z^n - w^n}{z - w} = \sum_{k=0}^{n-1} z^{n-1-k} w^k.$$

This implies that

$$\frac{f(z) - f(w)}{z - w} - g(w) = \sum_{n=1}^{\infty} a_n \left(\sum_{k=0}^{n-1} z^{n-1-k} - nw^{n-1} \right)$$

Simplifying the expression in brackets, we find

$$\sum_{k=0}^{n-1} z^{n-1-k} w^k - n w^{n-1} = \sum_{k=0}^{n-2} z^{n-1-k} w^k - (n-1) w^{n-1}$$

$$= \sum_{k=0}^{n-2} (k+1) z^{n-1-k} w^k - \sum_{k=0}^{n-2} k z^{n-1-k} - (n-1) w^{n-1}$$

$$= \sum_{k=0}^{n-2} (k+1) z^{n-1-k} w^k - \sum_{k=0}^{n-1} k z^{n-1-k}$$

$$= \sum_{k=1}^{n-1} k z^{n-1-k} w^{k-1} - \sum_{k=0}^{n-1} k z^{n-1-k}$$

$$= (z-w) \sum_{k=1}^{n-1} k z^{n-1-k} w^{k-1}$$

$$= (z-w) \sum_{k=1}^{n-1} k z^{n-1-k} w^{k-1}$$

Let now |w|, |z| < r < R, then by using $|(z-w)\sum_{k=1}^{n-1}kz^{n-1-k}w^{k-1}| \le |z-w|\sum_{k=1}^{n-1}kr^n \le |z-w|r^nn^2$, we find

$$\left| \sum_{n=1}^{\infty} a_n \left(\sum_{k=0}^{n-1} z^{n-1-k} - nw^{n-1} \right) \right| \le |z - w| \sum_{n=1}^{\infty} |a_n| n^2 r^{n-1}.$$

Observe that now that by the root test and since r < R the last series converges. Thus, as $z \to w$ we find

$$\left| \sum_{n=1}^{\infty} a_n \left(\sum_{k=0}^{n-1} z^{n-1-k} - nw^{n-1} \right) \right| \to 0.$$

3. Integration

We define the integral for complex-valued functions and $a, b \in \mathbb{R}$ by

$$\int_a^b f(s) \ ds := \int_a^b \operatorname{Re}(f(s)) \ ds + i \int_a^b \operatorname{Im}(f(s)) \ ds.$$

This way, the complex integral is still linear and satisfies the triangle inequality.

We call a curve a piecewise differentiable map $\gamma:[a,b]\to\mathbb{C}.$ The range of a curve is called its trace.

We then define the line or contour integral

$$\int_{\gamma} f(s) \ ds := \int_{a}^{b} f(\gamma(t))\gamma'(t) \ dt.$$

Let $\psi : [\alpha, \beta] \to \mathbb{C}$ be a bijective continuously differentiable function with $\psi(\alpha) = a$ and $\psi(\beta) = b$, then $\bar{\gamma} := \gamma \circ \psi$ satisfies

$$\int_{\bar{\gamma}} f(z) \ dz = \int_{\gamma} f(z) \ dz.$$

If ψ satisfies $\psi(\alpha) = b$ and $\psi(\beta) = a$, then

$$\int_{\bar{\gamma}} f(z) \ dz = -\int_{\gamma} f(z) \ dz.$$

For example: $\gamma_1 = t(1+i)$ and $\gamma_2(t) = t$ for $t \in [0,1]$ and $\gamma_2(t) = 1 + (t-1)i$ for $t \in [1,2]$, then

$$\int_{\gamma_1} z \ dz = i \text{ and } \int_{\gamma_2} z \ dz = i.$$

In curves taking values in \mathbb{R}^2 , one defines

$$\int_a^b f(\gamma(t))|\gamma'(t)| dt.$$

When using the definition involving the absolute value, one writes in complex analysis instead

$$\int_{\gamma} f(z)|dz| = \int_{a}^{b} f(\gamma(t))|\gamma'(t)| dt.$$

The triangle inequality reads then

$$\left| \int_{\gamma} f(z) \ dz \right| \le \int_{a}^{b} |f(z)| |dz|.$$

Theorem 3.1. Let D be a domain, $F: D \to \mathbb{C}$ analytic and γ a closed curve. Let f = F' also be continuous, then

$$\int_{\gamma} f(z) \ dz = 0.$$

Definition 3.1 (Compactness in \mathbb{C}). A set $A \subset \mathbb{C}$ is called compact if any of the following definitions hold:

- A is closed an bounded (Heine-Borel)
- Every sequence $z_n \in A$ has a convergent subsequence (Bolzano-Weierstrass)
- Let $I_n \subset A$ be a sequence of closed sets, then if $\bigcap I_n = \emptyset$ then already finitely many of them have empty intersection.
- Every open cover has a finite subcover.

Recall that Continuous functions on compact sets are uniformly continuous and attain a maximum and minimum value.

Theorem 3.2. Let D be a domain, $f: D \to \mathbb{C}$ analytic and $\Delta \subset D$ a compact triangle with boundary curve γ , then

$$\int_{\gamma} f(z) \ dz = 0.$$

Proof. The proof rests on finding a nested sequence of subtriangles:

$$\Delta \supset \Delta_1 \supset \Delta_2...$$

with boundary lengths $L(\gamma_n) = 2^{-n}L(\gamma)$, $\operatorname{diam}(\Delta_n) = 2^{-n}\operatorname{diam}(\Delta)$ and

$$\Big| \int_{\gamma} f(z) \ dz \Big| \le 4^n \Big| \int_{\gamma_n} f(z) \ dz \Big|.$$

Compactness ensures the existence of one point in all triangles. Then one splits the integral for a sufficiently small triangle

$$\int_{\gamma_n} f(z) dz = \int_{\gamma_n} \underbrace{(f(z) - f(z_0) - f'(z_0)(z - z_0))}_{\leq \varepsilon |z - z_0|} dz + \int_{\gamma_n} f(z_0) + f'(z_0)(z - z_0) dz.$$

Recall that a set $G \subset \mathbb{C}$ is convex, if for all

$$p, q \in G \Rightarrow \{tp + (1-t)q; t \in [0,1]\} \subset G.$$

Theorem 3.3. Let $G \subset \mathbb{C}$ be a convex domain and $f: G \to \mathbb{C}$ analytic. Then for every closed curve $\gamma \subset G$ we find

$$\int_{\gamma} f(z) \ dz = 0.$$

Proof. Proof follows from constructing the anti-derivative of f.

Let $G \subset \mathbb{C}$ and γ_0, γ_1 be two closed curves defined on [0, 1], then they are called homotopic, if there exists a continuous map $H : [0, 1]^2 \to G$ such that

$$H(s,0) = H(s,1) \quad \forall s \in [0,1]$$

 $H(0,t) = \gamma_0(t) \quad \forall t \in [0,1]$
 $H(1,t) = \gamma_1(t) \quad \forall t \in [0,1].$ (3.1)

A closed curve that is homotopic to a point is called null-homotopic. A set in which every closed curve is null-homotopic is called simply connected. Examples of simply connected domains that are not convex are e.g. star domains, i.e. sets G such that

there exists a $p_0 \in G$ such that $tp_0 + (1-t)p \in G$ for all p and $t \in [0,1]$. In this case, let γ be a curve, then

$$H(s,t) = p_0 + (1-s)(\gamma(t) - p_0)$$

is a homotopy. This allows us to formula the general Cauchy integral theorem

Theorem 3.4 (Cauchy's Integral Theorem). Let $G \subset \mathbb{C}$ be a domain and $f: G \to \mathbb{C}$ analytic. For two closed curves γ_0, γ_1 that are homotopic, we have

$$\int_{\gamma_0} f(z) \ dz = \int_{\gamma_1} f(z) \ dz.$$

In particular, if γ is nullhomotopic in G, then we have

$$\int_{\gamma} f(z) \ dz = 0.$$

Proof. Let H be the homotopy. Step 1: $\varphi(z) = d(z, \mathbb{C} \setminus G)$ is continuous and therefore attains its infimum on $K = H([0,1])^2$. (Bolzano-Weierstrass). This implies that there is $\varepsilon > 0$ such that

$$z \in K, |w - z| < \varepsilon, \Rightarrow w \in G.$$

Step 2: Since H is continuous on a compact set it is uniformly continuous, i.e. for fixed $\varepsilon > 0$ there is $m \in \mathbb{N}$ such that

$$|s-s'|, |t-t'| \le 1/m, \Rightarrow |H(s,t) - H(s',t')| < \varepsilon.$$

Step 3: We define for k = 0, ..., m a polygonal chain π_k defined by the boundary points

$$H(k/m, 0), H(k/m, 1/m),, H(k/m, 1).$$

Then, it is clear by Step 1 and Step 2 that $\pi_k \subset G$, as π_k is $\varepsilon > 0$ close to the actual curve.

Step 4: The boundary integrals coincide by looking at neighbourhoods $B_{\varepsilon}(H(0, l/m))$ for l between 0 and m. Thus, let σ_l be the curve composed of $\gamma_0|_{[l/m,(l+1)/m]}$ and the straight line between $H_0(0, l/m)$ and $H_0(0, (l+1)/m)$, then $\int_{\sigma_l} f(z) dz = 0$ by the previous versions of Cauchy's theorem. Iterating this yields:

$$\int_{\gamma_0} f(z) \ dz = \int_{\pi_0} f(z) \ dz, \text{ and similarly } \int_{\gamma_1} f(z) \ dz = \int_{\pi_m} f(z) \ dz.$$

Step 5: σ_{kl} is the closed path along

$$H(k/m, l/m), H(k/m, (l+1)/m), H((k+1)/m, l/m), H((k+1)/m, (l+1).$$

Then by a telescopic sum argument the proof follows, as $\int_{\sigma_{kl}} f(z) = 0$.

4. Important theorems, starting from Cauchy's formula

We start with a version of Cauchy's integral formula.

Lemma 4.1. Let $f: B_R(z_0) \to \mathbb{C}$ be analytic and $r \in (0, R)$, let $\gamma_r(t) = z_0 + re^{it}$ with $t \in [0, 2\pi]$, then for any $z \in B_r(z_0)$ we have

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{w - z} \ dw.$$

Proof. f is continuous, therefore we may use a homotopy argument to reduce everything to radii $r < \delta$. Hence, by the integral theorem

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \ dw = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{w - z} \ dw.$$

Then, it is easy to see that

$$\left| \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{w - z} \, dw - f(z) \right| < \varepsilon.$$

A sequence of functions $f_n: K \to \mathbb{C}$ is said to converge uniformly to f if

$$\lim_{n \to \infty} \sup_{z \in K} |f_n(z) - f(z)| = 0.$$

Example: $\sqrt{x^2 + 1/n}$ on [-1, 1], counterexample x^n on [0, 1] is not uniformly convergent.

Lemma 4.2. Let $\gamma:[0,1] \to K$ be a curve and g_n continuous functions that converge uniformly to g on K, then

$$\lim_{n \to \infty} \int_{\gamma} g_n(z) \ dz = \int_{\gamma} g(z) \ dz.$$

Theorem 4.1. Let $f: D \to \mathbb{C}$ be analytic, then f has a power series expansion with positive radius of convergence

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n,$$

which converges uniformly in every open disc around points a fully contained in D.

Proof. Use Cauchy's integral formula and the geometric series.

Corollary 4.3. Let $f: D \to \mathbb{C}$ be analytic, then f is infinitely many times differentiable and for any $a \in G$ we have that if $\gamma(t) = a + re^{2\pi it} \in D$ that for all $z \in B_r(a)$

$$\frac{f^{(n)}(z)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} \ dw.$$

Theorem 4.2. Let $f, g: D \to \mathbb{C}$, the following are equivalent

- (1) f = g,
- (2) There is $a \in D$ such that $f^{(n)}(a) = g^{(n)}(a)$ for all $n \in \mathbb{N}_0$,
- (3) $\{z \in D : f(z) = g(z)\}\$ has an accumulation point.

Proof. (1) implies (2) and (3) is clear. That (2) implies (1) follows from the power series representation. That (3) implies (2) follows also from the power series representation and a simple contradiction argument. \Box

Theorem 4.3. Any analytic function on a simply connected domain has an antiderivative.

Proof. Use contour integral and Cauchy's integral theorem.

Definition 4.4 (Entire). A function that is analytic on all of \mathbb{C} is called entire.

Entire functions are good enough, but bounded Entire functions are even better. Since we have

Theorem 4.4 (Liouville). Every bounded entire function is constant.

Proof. We derive Cauchy estimates

$$|f^{(n)}(z)| = \left| \frac{n!}{2\pi i} \int_{|w|=r} \frac{f(w)}{(w-z)^{n+1}} dw \right|$$

$$\leq \frac{n!}{2\pi} \left| \int_{|w|=r} \frac{f(w)}{(w-z)^{n+1}} dw \right|$$

$$\leq \frac{n!}{2\pi} \sup \frac{|f(w)|}{|w-z|^{n+1}} 2\pi r$$

$$= n! \cdot r \cdot \sup \frac{|f(w)|}{|w-z|^{n+1}}$$

We set z = 0 and it follows that, given $|f| < \infty$, for $n \ge 1$

$$|f^n(0)| \le \frac{n!}{r^n} \sup |f(w)| \xrightarrow{r \to \infty} 0$$

In particular, we have f' = 0, which implies f constant.(Or alternatively, do the series expansion).

As a corollary one readily obtains the fundamental theorem of algebra.

Corollary 4.5 (Fundamental Theorem of Algebra). Every non-constant polynomial on \mathbb{C} has a root.

Proof. If not, then 1/p would be bounded and entire, hence constant, which contradicts our assumptions.

We next discuss the maximum principle

Theorem 4.5. Let D be a domain and $f: D \to \mathbb{C}$ analytic. If there is $a \in D$ and $\varepsilon > 0$ such that

$$|z - a| < \varepsilon \Rightarrow |f(z)| \le |f(a)|$$

then f is constant.

Proof. Use $|f(a)| \ge \frac{1}{2\pi} \int_0^{2\pi} |f(a+re^{it})|^2 dt$ and the power series expansion of f.

$$|f(z)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(z)|^2 dt$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z + re^{it})|^2 dt$$

We do the series expansion of $f(z + re^{it})$ and use

- (1) $|x|^2 = x\bar{x}$
- (2) Uniform convergence legitimizes exchange of limit i.e.

$$(\sum_{i=0}^{\infty} \rho)(\sum_{j=0}^{\infty} \phi) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \rho \phi$$

Thus, we have

$$|f(z)|^{2} \geq \sum_{m}^{\infty} \sum_{n}^{\infty} c_{n} \bar{c_{m}} r^{n+m} \cdot \frac{\int_{0}^{2\pi} e^{it(n-m)}}{2\pi}$$

$$= \sum_{m}^{\infty} \sum_{n}^{\infty} c_{n} \bar{c_{m}} r^{n+m} \delta_{n,m}$$

$$= \sum_{n=0}^{\infty} |c_{n}|^{2} r^{2n}$$

$$= |f(z)|^{2} + \frac{|f^{(1)}(z)|^{2}}{1!} r^{2} + \dots$$

It follows that the remainder terms are 0, which implies f is constant.

Remark 4.1. If given f nonzero analytic, minimum principle also holds by applying the above theorem to $\frac{1}{f}$.

Corollary 4.6. Let f be a bounded domain and $f: D \to \mathbb{C}$ analytic, then

$$\sup_{z \in D} |f(z)| = \sup_{z \in \partial D} |f(z)|.$$

Proof. If it happens in the interior, then the function is constant and the statement holds. \Box

We also recall Morera's theorem

Theorem 4.6 (Morera's Theorem). Let D be a domain and $f: D \to \mathbb{C}$ continuous such that

$$\int_{\Delta} f(z) \ dz = 0 \ for \ all \ triangles \ \Delta \subset D$$

then f is analytic.

Theorem 4.7 (Weierstrass Convergence Theorem). Analycity is preserved under Uniform Convergence

Proof. Uniform convergence allows exchange of limit and integral i.e. if $f_n \xrightarrow[u]{n \to \infty} f$, then $\lim_{n \to \infty} \int_a^b f = \int_a^b \lim_{n \to \infty} f_n = \int_a^b f$. Given this fact, we have

$$\int_{\Delta} f = \int_{\Delta} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{\Delta} f_n = 0$$

5. WINDING NUMBERS, CAUCHY'S FORMULA, AND LOGARITHM

Definition 5.1 (Winding Number). Let γ be a closed curve and $z \notin \gamma([0,1])$, then

$$n(\gamma, z) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z}$$

is called the winding number of γ around z. It is an constant integer on connected components of $\mathbb{C} \setminus \gamma([0,1])$.

Proof. Check $\varphi(t) = e^{\int_0^t \frac{\gamma'(s)}{\gamma(s)-z} ds}$ satisfies

$$\varphi'(t) = \varphi(t) \frac{\gamma'(t)}{\gamma(t) - z}.$$

This way,

$$\frac{d}{dt} \left(\frac{\varphi(t)}{\gamma(t) - z} \right) (t) = 0.$$

Hence $\varphi/(\gamma-z) = \text{const}$ which implies that $\varphi(0) = \varphi(1)$ and thus $n(\gamma, z) \in \mathbb{Z}$.

Theorem 5.1 (Cauchy's formula). Let $G \subset \mathbb{C}$ be open and $\gamma : [0,1] \to G$ nullhomotopic, $f: G \to \mathbb{C}$ analytic, then

$$n(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw.$$

Proof. Consider the auxiliary function $g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z}, & \zeta \neq z \\ f'(z), & \zeta = z \end{cases}$. This function is analytic as g (power series), Cauchy's integral theorem therefore implies the result. \square

Remark 5.1. This formula can be viewed as a general version of the Cauchy integral formula, where the winding number is introduced into the story.

Definition 5.2 (Logarithm). Let G be a domain. We call an analytic function $g: G \to \mathbb{C}$ a branch of the logarithm, if $e^{g(z)} = z$ for all $z \in G$.

Since $e^z \neq 0$ for all $z \in \mathbb{C}$, we cannot have $0 \in G$.

However, this is still not sufficient. By the chain rule $e^{g(z)}g'(z) = 1$, hence g'(z) = 1/z which cannot have an analytic anti-derivative on let's say $\mathbb{C} \setminus \{0\}$.

On the other hand, we have

Theorem 5.2. Let G be simply connected with $0 \notin G$, then there exists a branch g of the logarithm. Any other branch is different by $2\pi i \mathbb{Z}$ different from g.

Proof. Since 1/z has an antiderivative g, we can check that $\frac{d}{dz}ze^{-g(z)}=0$, so we have that $ze^{-g(z)}$ is constant.

We may therefore define $g(z) = w_0 + \int_{\gamma} \frac{dw}{w}$, where γ is a curve starting at $e^{w_0} = z_0$, then $ze^{-g(z)} = 1$. This is a branch of the logarithm.

Any other branch satisfies $1 = \frac{z}{z} = \frac{e^{g(z)}}{e^{h(z)}} = e^{g(z) - h(z)}$.

Definition 5.3 (General powers/roots z^{α}). For $z \in \mathbb{C}$, $z^{\alpha} := e^{g(z)\alpha}$ and are analytic functions of z.

6. Singularities

There are three types of singularities, which are

- Removable Singularities
- Poles
- Essential Singularities

We then give definitions for each of them.

Definition 6.1 (Removable singularities). If an analytic function $f: D \setminus \{z_0\} \to \mathbb{C}$ has an analytic extension $\bar{f}: D \to \mathbb{C}$ such that $\bar{f}|_{D \setminus \{z_0\}} = f$, then z_0 is a removable singularity.

Definition 6.2 (Poles). If $\lim_{z\to z_0} |f(z)| = \infty$ then z_0 is a pole.

Definition 6.3 (Essential Singularities). If neither of the first two applies, then z_0 is an essential singularity of f.

We will then give a series of examples of different types of singularities

Example 6.1. We will give one example for each.

(1) Removable Singularity.

$$f(z) = \frac{\sin(z)}{z}$$

$$\hat{f}(z) = \begin{cases} f(z) & z \neq 0\\ 1 & z = 0 \end{cases}$$

- (2) Examples for poles are trivial
- (3) Examples for essesntial singularities are highly nontrivial, and the construction somehow relies on the Laurent Series. One typical example is

$$f(z) = e^{1/z}$$

In particular, we have Riemann's theorem (for removable singularities):

Theorem 6.1 (Riemann). Let $z_0 \in D \subset \mathbb{C}$ be the point in question, if f is bounded in a neighbourhood of z_0 then z_0 is a removable singularity

Proof. The rough idea is to let $h(z) = (z - z_0)^2 f(z)$ and show this function is analytic.

We define a function h with $h(z) = (z - z_0)^2 f(z)$ and $h(z_0) = \lim_{z \to z_0} h(z) = 0$. h is analytic, since at $z = z_0$, we have

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= 0$$

We then do the series expansion of h around z_0 (which seems to be the fate of the analytics). In particular, we have the first two coefficient (denoted by c)

$$c_0 = h(z_0) = 0$$

 $c_1 = h'(z_0) = 0$

Therefore, we have

$$h(z) = \sum_{n=0}^{\infty} (z - z_0)^n$$

$$= (z - z_0)^2 \sum_{n=2}^{\infty} c_n (z - z_0)^{n-2} + c_0 + c_1 (z - z_0)$$

$$= (z - z_0)^2 \sum_{n=0}^{\infty} c_{n+2} (z - z_0)^n$$

$$:= (z - z_0)^2 \hat{f}(z)$$

where \hat{f} is the analytic function that allows z_0 to be removable.

The following result appears in the textbook.

Theorem 6.2. If f has an isolated singularity at z_0 then the point is a removable singularity if and only if

$$\lim_{z \to z_0} (z - z_0) f(z) = 0$$

Remark 6.1. This result somehow makes removable singularity and poles comparable. The condition to meet a removable is stronger since it requires 0 on the right hand side but a general analytic function would suffice for a pole.

The next result characterizes essential singularities:

Theorem 6.3 (Casorati-Weierstrass). Let $z_0 \in D \subset \mathbb{C}$ be an essential singularity for $f: D \setminus \{z_0\} \to \mathbb{C}$ analytic, then $f(B_{\delta}(z_0) \setminus \{z_0\})$ is dense in \mathbb{C} .

Proof. Assume it is not dense, by definition, we have some $w \in \mathbb{C}$ that f cannot touch i.e.

$$|z - z_0| < \delta \implies |f(z) - w| \ge \varepsilon$$

Let $g(z) = \frac{1}{f(z)-w}$ on $B_{\delta(z_0)} \setminus z_0$ and $g(z_0) = \lim_{z \to z_0} g(z)$. Since $g < \infty$ by assumption, we have z_0 is a removable singularity and g is analytic on the ball with z_0 extracted. We have 2 cases then,

- (1) $g(z_0) = 0$. It follows that $\lim_{z\to z_0} |f(z)| = \infty$ i.e. z_0 is a pole
- (2) $g(z_0) = c \neq 0$. It follows that $\lim_{z\to z_0} f(z) = \frac{1}{c} + w$ i.e. z_0 is removable.

Density follows from the contracdiction.

Finally, for poles we have

Theorem 6.4 (Poles). Let $z_0 \in D \subset \mathbb{C}$ be a pole for $f : D \setminus \{z_0\} \to \mathbb{C}$ analytic, then there is an analytic function $g : D \to \mathbb{C}$ and a natural number m, such that $g(z_0) \neq 0$ and

$$f(z) = \frac{g(z)}{(z - z_0)^m}.$$

Proof. Given $\lim_{z\to z_0} |f(z)| = \infty$, h = 1/f is bounded locally, thus having removable singularities. Thus, h is locally analytic and let $h(z_0) = 0$. As usual, we do series expansion. With c_n representing its coefficient, we have $c_0 = h(z_0) = 0$. Let $m \ge 1$ be the first natural number with $c_m \ne 0$, we have

$$h(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} c_n (z - z_0)^{n-m} (z - z_0)^m$$

$$= (z - z_0)^m \sum_{n=0}^{\infty} c_{n+m} (z - z_0)^n$$

$$:= (z - z_0)^m \cdot l(z)$$

It follows that

$$f(z) = \frac{g(z)}{(z - z_0)^m}$$

where
$$g(z) = \frac{1}{l(z)}$$

People may be confused why we denote the series by l(z). I don't know either, but I suspect it indicates the birth of Laurent Series. This characterization of poles actually gives us a opportunity to derive a series expansion of function around poles and removables, just like the Power Series to analytic functions.

7. Residue Theorem and his friends

We need a guy called Laurent Series to define residue. The Laurent series around poles turns out to be pretty nice, but we give a general definition first.

Definition 7.1. The Laurent series for a complex function f(z) about a point z_0 is given by

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

In particular, since g is holomorphic (analytic), $g(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, any function with only with removable singularities and poles can therefore be expanded into a somehow special *Laurent series* defined above.

Before we do the derivation, we first give the functions in scope an elegant name.

Definition 7.2 (meromorphic). Functions with only removable singularties and poles are called meromorphic.

For meromorphic functions, we have

$$f(z) = \frac{g(z)}{(z - z_0)^m} = \sum_{n = -m}^{\infty} c_n (z - z_0)^n.$$

One thing we may notice is that: for removable singularities, m is actually 0; for poles, m > 0 but is finite. We then have the following corollary

Corollary 7.3. Let z_0 be a singular point of f and $f(z) = \sum_{-\infty}^{\infty} c_n (z - z_0)^n$ its Laurent Series. Then:

- (1) z_0 is removable \iff $c_n = 0$ for n < 0
- (2) z_0 is a pole $\iff \exists m < \infty \text{ such that } a_{-n} = 0 \ \forall n > m.$
- (3) z_0 is essential $\iff c_n \neq 0$ for infinitely many negative indices.

In particular, the coefficient c_{-1} is so crucial that it worth a name.

Definition 7.4 (residue). The coefficient c_{-1} of the Laurent Series is called the residue of f at z_0 , denoted by res (f, z_0) .

Corollary 7.5. If f has a pole of order m and $g(z) = (z - z_0)^m f(z)$, then

$$\operatorname{res}(f, z_0) = \frac{g^{(m-1)}(z_0)}{(m-1)!}.$$

Theorem 7.1 (Residue theorem). Let D be a domain and γ a null-homotopic curve in D. Let f have poles $\{z_1,...,z_N\}$ in D and $f:D\setminus\{z_1,...,z_N\}$ holomorphic, then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \ dz = \sum_{k=1}^{N} \operatorname{res}(f, z_k) n(\gamma, z_k).$$

Proof. With out loss of generality, we assume there's only one pole z_1 . Laurent series about z_1 reads

$$f(z) = \sum_{n=-m}^{\infty} c_n (z - z_z)^n$$

We define g(z) by

$$g(z) = f(z) - \sum_{n=-m}^{-1} c_n (z - z_1)^n$$
$$= \sum_{n=0}^{\infty} c_n (z - z_1)^n$$

Note that g(z) is analytic, by Cauchy's theorem, we have $\int_{\gamma} g(z) = 0$. It follows that

$$\int_{\gamma} f dz = \int_{\gamma} \sum_{n=-m}^{-1} c_n (z - z_1)^n dz = \sum_{n=-m}^{-1} c_n \int_{\gamma} \frac{1}{(z - z_1)^n}$$

where

$$\int_{\gamma} \frac{1}{(z-z_n)^n} dz = \begin{cases} 2\pi i \cdot n(\gamma, z_1) & n=1\\ 0 & n \ge 2 \end{cases}$$

We have the above assertion since, let h(z) = 1, by Cauchy's integral formula we have

$$n(\gamma, z)h^{(n)}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{h(w)}{(w - z)^{n+1}} dw = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{(w - z)^{n+1}}$$

The theorem therefore follows.

Example 7.1. Here's an example of computing integral on the real by applying the residue theorem.

We can then compute for $f(x) = e^x + e^{-x}$

$$\int_{-\infty}^{\infty} \frac{dx}{f(x)} = \pi/2.$$

This follows from integrating along -R, R, $R + \pi i$, $-R + \pi i$, using that $f(z + i\pi) = -f(z)$ and the residue theorem stating that with g(z) = 1/f(z)

$$\operatorname{res}(f, i\pi/2) = \lim_{z \to i\pi/2} \frac{(z - i\pi/2)}{f'(i\pi/2)(z - i\pi/2)} = \frac{1}{2i}.$$

The following theorems follows from the residue theorem.

Theorem 7.2 (Argument Principle). Let D be a domain and $f: D \to \mathbb{C}$ meromorphic, γ a (simply) closed curve, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N(f) - P(f),$$

where N(f) is the number of zeros (counting multiplicities) and P(f) is the number of poles (counting multiplicities) enclosed by γ .

Proof. The punchline is to use residue theorem to do the integral. There are two kinds of poles of function $\frac{f'}{f}$, one is the poles of f, and the other is the zeros of f(since it is placed as the denominator). Whatever it is, it can be written into

$$f(z) = (z - z_0)^m g(z)$$

where m is either the multiplicity of the zero or the negative multiplicity of the pole, and g is analytic.

With this expression, we have

$$\frac{f'(z)}{f(z)} = \frac{m}{z - z_0} + \frac{g'(z)}{g(z)}$$

Though people may get frustrated that f has other zeros/poles other than z_0 , the splendid fact is that, the remaining term, $\frac{g'}{g}$ can be expressed in the same way again about another zero/pole.

With that process, we have the following expression

$$\frac{f'(z)}{f(z)} = \sum_{z_i \text{ zeros}} \frac{n_i}{z - z_i} - \sum_{z_j \text{ poles}} \frac{p_j}{z - z_j} + \frac{g'(z)}{g(z)}$$

where $n_i(p_j)$ is the multiplicity of each zero(pole), g is analytic and nonzero, making $\frac{g'}{g}$ analytic.

By residue theorem(or Cauchy integral formula), we have

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{z_i \text{ zeros}} n_i - \sum_{z_j \text{ poles}} p_j = N(f) - P(f)$$

Theorem 7.3 (Rouché). Let $f, g: D \to \mathbb{C}$ be analytic and γ a simply closed curve. Let neither f nor g have any zeros on $\gamma([0,1])$, then under the assumption |f(z)+g(z)| < |f(z)| + |g(z)| for $z \in \gamma([0,1])$, f and g have the same number of zeros inside γ .

Proof. Let

$$\left| \frac{f(z)}{g(z)} + 1 \right| < \left| \frac{f(z)}{g(z)} \right| + 1$$

The above inequality implies f(z)/g(z) cannot be a positive real number. We then study

$$h_t(z) = \frac{f(z)}{f(z)} - t$$

where $t \in \mathbb{R}_{\geq 0}$, and

$$\varphi(t) = \frac{1}{2\pi i} \int_{\gamma} \frac{h'_0(z)}{h_0(z) - t} dt = \frac{1}{2\pi i} \int_{\gamma} \frac{h'_t(z)}{h_t(z)} = N(h_t) - P(h_t)$$

Note that φ is continuous and the image is in \mathbb{Z} . Given $\lim_{t\to\infty} \varphi(t) = 0$, by continuity, $\varphi(0) = 0$. Thus, we have

$$0 = \varphi(0) = N(h_t) - P(h_t) = N(f) - N(g)$$

and theorem follows.

The following example is another version of Fundamental Theorem of Algebra by applying Rouché.

Example 7.2. let f and g be:

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

 $g(z) = -a_n z^n$

let |z| = R > 1 and provided R is large enough, we have

$$|f(z) + g(z)| = |a_0 + \dots + a_{n-1}z^{n-1}|$$

$$\leq |a_0| + |a_1|R + \dots + |a_{n-1}|R^{n-1}|$$

$$\leq \max |a_0|, |a_1|, \dots, |a_{n-1}|nR^{n-1}|$$

$$< |a_n|R^n|g(z)|$$

$$\leq |g(z)| + |f(z)|$$

By Rouché, f has n zeros inside |z| = R as g does.

The following theorem is again a corollary of Rouché

Theorem 7.4. Let $f: D \to \mathbb{C}$ be an analytic function such that $f(z) - w_0$ has at z_0 a zero of order k. There exist $\varepsilon > 0$, $\delta > 0$ such that for every $|w - w_0| < \varepsilon$ but $w \neq w_0$, there are precisely k distinct points $|z_i - z_0| < \delta$ with $f(z_i) = w$

Proof. We have the following 2 assertions. There exists $\delta > 0$ with

- (1) $f'(z) \neq 0$ for $\delta > |z z_0| > 0$.
- (2) $f'(z) \neq w_0 \text{ for } \delta > |z z_0| > 0$

These two assertions are guaranteed by analycity and the function cannot be constant(otherwise $f = w_0$ would have a accumulation point/ $f^n(=0)$ which imply constantness.). Let $g(z) = f(z) - w_0$, we have $|g(z)| \ge \varepsilon$ for z on the circle $|z - z_0| = \delta$ (Compactness + Continuity). Choose w such that $|w - w_0| < \varepsilon$ and take the curve $|z - z_0| = \delta$. We have

$$|(w - f(z)) + g(z)| = |w - w_0| < \varepsilon \le |g(z)| \le |g(z)| + |w - g(z)|$$

By Rouché, we have the number of zeros of g is the same as the number of zeros of w - f(z), and the distinctness is guaranteed by non-vanishing gradient.