Introducción a la Inteligencia Artificial Clase 4

Índice

Clase 4

- O. Rieryo Empírico
- 1. Regularización
 - a. Caso general
 - b. Ridge
 - c. Lasso
- 2. Gradient descent
 - a. GD
 - b. GD Estocástico
 - c. GD Mini-Batch
- Entrenamiento de modelos
 - a. Selección de modelos
 - b. Cross-Validation

Regularización - Motivación

regularización: analiza ps. - s mejora* por restricción
Ricago Empírico: analiza la perdida. - s mejora* por construcción

Riesgo Empírico

$$\mathbb{R}(f) = \mathbb{E}\left(L(f,\hat{f})\right) \longrightarrow L(f,\hat{f}) = (f-\hat{f})^2$$
 fn. cle perchicles

función de pérdicles (loss function)

$$L' = \begin{cases} (f - \hat{f})^2 & \text{sin} |f - \hat{f}| \leq c \\ 0 & \text{o. } \omega. \end{cases}$$

c'Como pocleures mejorar mi ray, lineal?

1. Combiar L
$$- L_1 = |f-\hat{f}|$$

$$- L_2 = (f-\hat{f})^2$$

$$- L_{II} = I_{J-\hat{f}|\leq C}$$

'huber regressor' en sklearn

cobret regressor en stat models.

nosotras siempre busannes minimizar R de la forma más sencillo, a mos cambiar L no es barato o pear no es vitil mo probamos regularizar 2. Regularización Con rey, busanos min R al mismo tiempo que restringimos (limitamos) el comp. ele los parametros (parameter shrinking). Pr BEIR? ŷ = po + Z Bi ti partimos de $\frac{1}{2} \sum_{j=1}^{3} \beta_{j}^{2} \leq t \quad \left(||\beta||^{2} \leq t \right)$ P's volids Espacio le parametres q=2 -D $\hat{\beta}=$ argmin $\left(\frac{z}{z} \hat{y}_{i} - \frac{z}{j} \hat{p}_{j} \hat{x}_{ij}\right)^{2} - \hat{\lambda} \frac{z}{z} \hat{p}_{j}^{2}$ L'Termino de regulorizacións (Weigth decay) parametro de complezidal

en este caso
$$\overline{W} = \overline{P}$$

$$\frac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}_n)\}^2+\frac{\lambda}{2}\sum_{j=1}^{M}|w_j|^q \text{ Término de regularización "weight decay"} \longrightarrow \text{w afecta la pérdida}$$

$$w_2$$

$$q=0.5 \qquad q=1 \qquad q=2 \qquad q=4$$

$$\text{Valores valides}$$

$$\text{Lasso} \qquad \text{Ridge}$$

$$\text{cle } \|\mathbf{w}\|_2 \qquad \text{pendidoel L1} \qquad \text{pen L2}$$

$$w=(\Phi^T\Phi+\lambda I)^{-1}\Phi^T y \qquad \text{Lapa fiub}$$

Maximum A Posteriori como regularización

Distribución "a priori" de los parámetros

$$p(w) \sim D(\theta)$$
 $p(\omega)$
 $p(\beta)$

$$(\mathcal{X},\mathcal{Y})$$

$$p(w|\mathcal{X}, \mathcal{Y}) = \frac{p(\mathcal{Y}|\mathcal{X}, w)p(w)}{p(\mathcal{Y}|\mathcal{X})}$$

$$w_{map} = (\Phi^T \Phi + \frac{\sigma^2}{b^2} I)^{-1} \Phi^T y$$

Gaussian prior con varianza b2

del estimoclos).

a costo de alejarnos del óptimo. Pero, regularizar

¿ Como funciona?

1. Elegic ? (Casso: 1, Ridge: 2)

2. Voy a elegir un vector de 2's "apropioils" (27 no 7 pendidad)

3. optimizo para 2; ms RSS(2;q)= 11 4-xp11 + 2484q

4. Calular las métricos (Error ele representación, bondad, algun enterio externo).

5. Comparanus y eleginus el mejor:

\$\hat{\beta} \text{P2} \text{Lasso tipica}

\text{Lasso 1 \lefta_3(A)}

Maximum A Posteriori como regularización - Ridge (L2)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n}_{\mathsf{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\mathsf{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(eta) \propto e^{-eta^Teta/2 au^2}$$

Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$

$$\mathrm{Ridge Regression}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{Y}$$

Maximum A Posteriori como regularización - LASSO (L1)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta) \}$$
 Conditional log likelihood log prior

II) Laplace Prior

$$\beta_i \stackrel{iid}{\sim} \mathsf{Laplace}(0,t)$$

$$p(eta_i) \propto e^{-|eta_i|/t}$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \\ \downarrow_{\text{constant}(\sigma^2, t)} \text{Lasso}$$

.UBAfiuba FACULTAD DE INGENIERÍA

Regularización

Regularización

 β_1

ElasticNet
$$\lambda$$
 térmius le complejidal ¿Qué β se reduce más? $(\alpha\lambda||\beta||_1+\frac{1}{2}(1-\alpha)||\beta||_2^2)$ χ parametro cle elasticnet

Regularización

Entrenamiento de modelos - Cross-Validation

Entrenamiento numérico del modelo seleccionado - Obtención de parámetros

Mini-Batch Gradient Descent

for epoch in n_epochs:

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - o compute the gradient for the batch
 - update the parameters of the model
- plot error vs epoch

Entrenamiento de modelos - Hiper parámetros

Selección de los hiper parámetros

Grid Search

Random Search

Gradiente Descendente

Implementación de Gradiente Descendente

Solucion analitica

$$\min_{W} \|Y - XW\|_2^2$$

$$W = (X^T X)^{-1} X^T Y$$

Implementación de Gradiente Descendente

Solución numérica

$$\min_{W} \|Y - XW\|_{2}^{2} \implies \min_{W} \sum_{i} (y_{i} - X_{i} \cdot W)^{2} \quad \min_{\substack{\text{intrinsity of phines} \\ \text{(ybbol)}}} \log x^{i}$$

60 (X, wo)

Gradiente Descendente

Gradiente Descendente

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Implementación de Gradiente Descendente

Solución numérica

$$\nabla_w J(w) = \nabla_w \left(\sum_i (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - (x_{i1} w_1 + x_{i2} w_2 + \dots + x_{im} w_m))^2 \right)$$

$$= \sum_i \left(-2(y_i - \hat{y}_i) x_{ij} \right) \quad \forall j \in (1 \dots m)$$

Implementación de Gradiente Descendente

Solución numérica

$$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$$

Gradient Descent algorithm
for epoch in n_epoch < Alternativa while e < tol 11 n_epoch < n_epochs:

- compute the predictions for all the samples
- compute the error between truth and predictions
- compute the gradient using all the samples
- update the parameters of the model

- shuffle the samples
- for sample in n_samples:
 - compute the predictions for the sample
 - compute the error between truth and predictions
 - compute the gradient using the sample
 - update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

Implementación de Gradiente Descendente Mini-Batch

Solución numérica

$$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right) \quad \text{e.g.} \quad B_3 \quad B_2 \quad B_3 \quad B_4 \quad B_5$$

$$\text{e.g.} \quad B_4 \quad B_4 \quad B_3 \quad B_5 \quad B_2$$

Mini-Batch Gradient Descent algorithm nepuch, n. batch, batch size for epoch in n_epochs:

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - compute the gradient for the batch
 - update the parameters of the model

Comparativa de gradientes

	Gradient Descent	Stochastic Gradient Descent	Mini-Batch Gradient Descent
Gradient	$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$	$\nabla \left((y_i - f_W(X_i))^2 \right)$	$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$
Speed	Very Fast (vectorized)	Slow (compute sample by sample)	Fast (vectorized)
Memory	O(dataset)	O(1)	O(batch)
Convergence	Needs more epochs	Needs less epochs	Middle point between GD and SGD
Gradient Stability	Smooth updates in params	Noisy updates in params	Middle point between GD and SGD

Entrenamiento de modelos - Cross-Validation

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- A visual explanation for regularization of linear models Terence Parr
- A Complete Tutorial on Ridge and Lasso Regression in Python Aarshay Jain

