A self-contained, simplified analysis of span program algorithms

A.J. Cornelissen¹, S. Jeffery², M. Ozols¹, A. Piedrafita²

 1 QuSoft - UvA

 2 QuSoft – CWI

September 18th, 2020

Boolean function $f: \{0,1\}^n \to \{0,1\}$

Quantum algorithm ${\cal A}$

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Five objects:

• Hilbert space: H,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Five objects:

• Hilbert space: H,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Five objects:

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- ullet Vector space: V,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- lacktriangledown Vector space: V,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- Vector space: V,
- **1** Target vector: $|\tau\rangle \in \mathcal{V}$,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- ullet Vector space: V,
- **1** Target vector: $|\tau\rangle \in \mathcal{V}$,

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- ullet Vector space: V,
- **1** Target vector: $|\tau\rangle \in \mathcal{V}$,
- **5** Span program operator: $A: \mathcal{H} \to \mathcal{V}$.

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}.$

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- Vector space: \mathcal{V} ,
- Target vector: $|\tau\rangle \in \mathcal{V}$,
- **5** Span program operator: $A: \mathcal{H} \to \mathcal{V}$.

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- Vector space: V,
- **1** Target vector: $|\tau\rangle \in \mathcal{V}$,
- **5** Span program operator: $A: \mathcal{H} \to \mathcal{V}$.

Span program:
$$\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V}, |\tau\rangle, A).$$

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Five objects:

- Hilbert space: H,
- ② Input-dependent subspaces: $x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in \{0,1\}^n$,
- Vector space: V,
- **1** Target vector: $|\tau\rangle \in \mathcal{V}$,
- **5** Span program operator: $A: \mathcal{H} \to \mathcal{V}$.

Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V}, |\tau\rangle, A).$

P evaluates f if:

Positive instances:
$$x \in f^{(-1)}(1) \Leftrightarrow |\tau\rangle \in A(\mathcal{H}(x))$$

Negative instances: $x \in f^{(-1)}(0) \Leftrightarrow |\tau\rangle \not\in A(\mathcal{H}(x))$

"A reflection program is a stripped-down version of a span program"

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

• Hilbert space: H,

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

• Hilbert space: H,

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

- Hilbert space: H,
- ② Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0, 1\}^n$,

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,
- **1** Input-independent subspace: K.

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \to \{0,1\}$. Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,
- **1** Input-independent subspace: K.

4 / 13

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0, 1\}^n$,
- 1 Input-independent subspace: K.
- Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $|||w_0\rangle|| = 1$.

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,
- 1 Input-independent subspace: K.
- Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $||w_0\rangle|| = 1$.

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0, 1\}^n$,
- **1** Input-independent subspace: \mathcal{K} .
- **1** Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $|||w_0\rangle|| = 1$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- Hilbert space: H,
- Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,
- **1** Input-independent subspace: \mathcal{K} .
- Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $||w_0\rangle|| = 1$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

 \mathcal{R} evaluates f if:

Positive instance:
$$|x \in f^{(-1)}(1)| \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x)$$

Negative instance: $|x \in f^{(-1)}(0)| \Leftrightarrow |w_0\rangle \notin \mathcal{K} + \mathcal{H}(x)$

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- **①** Hilbert space: H,
- ② Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0, 1\}^n$,
- **⑤** Input-independent subspace: 𝒦.
- **1** Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $||w_0\rangle|| = 1$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

 \mathcal{R} evaluates f if:

Positive instance:
$$|x \in f^{(-1)}(1)| \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x)$$

Negative instance: $|x \in f^{(-1)}(0)| \Leftrightarrow |w_0\rangle \notin \mathcal{K} + \mathcal{H}(x)$

"A reflection program is a stripped-down version of a span program"

Boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}$.

Four objects:

- Hilbert space: H,
- ② Input-dependent subspace: $x \mapsto \mathcal{H}(x)$ for all $x \in \{0,1\}^n$,
- Input-independent subspace: K.
- **1** Initial state: $|w_0\rangle \in \mathcal{K}^{\perp}$ with $||w_0\rangle|| = 1$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

 \mathcal{R} evaluates f if:

Positive instance:
$$|x \in f^{(-1)}(1)| \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x)$$

Negative instance: $|x \in f^{(-1)}(0)| \Leftrightarrow |w_0\rangle \notin \mathcal{K} + \mathcal{H}(x)$

$$\mathcal{K} = \mathsf{Ker}(A) \ |w_0
angle = rac{A^+| au
angle}{\|A^+| au
angle\|}$$

$$\mathcal{K} = \mathsf{Ker}(A) \ |w_0
angle = rac{A^+| au
angle}{\|A^+| au
angle\|}$$

$$\mathcal{V} = \mathcal{H}, \ |\tau\rangle = |w_0\rangle \ A = I - \Pi_{\mathcal{K}}.$$

$$\mathcal{K} = \operatorname{\mathsf{Ker}}(A) \ |w_0\rangle = rac{A^+| au
angle}{\|A^+| au
angle\|}$$

These conversions don't change positive and negative instances.

$$\mathcal{V} = \mathcal{H}, \ |\tau\rangle = |w_0\rangle \ A = I - \Pi_{\mathcal{K}}.$$

Pos	$ w_0\rangle \in \mathcal{K} + \mathcal{H}(x)$
Neg	$ w_0\rangle \not\in \mathcal{K} + \mathcal{H}(x)$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$.

Reflection program operator: $U(x) = (2\Pi_{\mathcal{H}(x)} - I)(2\Pi_{\mathcal{K}} - I)$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$. Reflection program operator: $U(x) = (2\Pi_{\mathcal{H}(x)} - I)(2\Pi_{\mathcal{K}} - I)$.

- Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp})$,
- $ext{ Acts as } -I ext{ on } (\mathcal{K} \cap \mathcal{H}(x)^{\perp}) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x)).$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$.

- Reflection program operator: $U(x) = (2\Pi_{\mathcal{H}(x)} I)(2\Pi_{\mathcal{K}} I)$.

 Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp})$.
 - ② Acts as -I on $(\mathcal{K} \cap \mathcal{H}(x)^{\perp}) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x))$.
 - **3** The remainder decomposes into 2-dimensional rotation spaces with angles $\varphi_1, \ldots, \varphi_n$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

Reflection program operator: $U(x) = (2\Pi_{\mathcal{H}(x)} - I)(2\Pi_{\mathcal{K}} - I)$.

- Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp})$,
- ② Acts as -I on $(\mathcal{K} \cap \mathcal{H}(x)^{\perp}) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x))$.
- **3** The remainder decomposes into 2-dimensional rotation spaces with angles $\varphi_1, \ldots, \varphi_n$.

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$.

Reflection program operator: $U(x) = (2\Pi_{\mathcal{H}(x)} - I)(2\Pi_{\mathcal{K}} - I)$.

- Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp})$,
- **2** Acts as -I on $(\mathcal{K} \cap \mathcal{H}(x)^{\perp}) \oplus (\mathcal{K}^{\perp} \cap \mathcal{H}(x))$.
- ullet The remainder decomposes into 2-dimensional rotation spaces with angles $arphi_1,\dots,arphi_n$.
- **1** $\Pi_{\mathcal{K}}$ and $\Pi_{\mathcal{H}(x)}$ commute with the projectors on all these spaces.

Positive instance: | |v

$$|w_0\rangle \in \mathcal{K} + \mathcal{H}(x)$$

Negative instance: $|w_0\rangle \not\in \mathcal{K} + \mathcal{H}(x)$

Negative instance:

Thought experiment: run phase estimation

- With operator U(x),
- ② With initial state $|w_0\rangle$,
- With infinite precision,

call the outcome Φ .

Thought experiment: run phase estimation

- With operator U(x),
- **②** With initial state $|w_0\rangle$,
- With infinite precision,

call the outcome Φ .

Thought experiment: run phase estimation

- With operator U(x),
- **②** With initial state $|w_0\rangle$,
- With infinite precision,

call the outcome Φ .

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

8 / 13

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

- Finite precision algorithm:
 - Run phase estimation
 - With operator U(x),
 - **②** With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

- Finite precision algorithm:
 - Run phase estimation
 - With operator U(x),
 - **2** With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

8 / 13

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

Finite precision algorithm:

- Run phase estimation
 - With operator U(x),
 - ② With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

- ② Distinguish between

 - ② $\mathbb{P}(\Phi_{\delta}=0)\geq \varepsilon$ (output f(x)=0),

by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

8 / 13

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

Finite precision algorithm:

- Run phase estimation
 - With operator U(x),
 - **②** With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

- ② Distinguish between

 - ② $\mathbb{P}(\Phi_{\delta}=0)\geq \varepsilon$ (output f(x)=0),

by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Total cost: $\Theta\left(\frac{1}{\delta\sqrt{\varepsilon}}\right)$ calls to U(x).

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

Finite precision algorithm:

- Run phase estimation
 - With operator U(x),
 - ② With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

- ② Distinguish between

 - ② $\mathbb{P}(\Phi_{\delta}=0)\geq \varepsilon$ (output f(x)=0),

by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Total cost: $\Theta\left(\frac{1}{\delta\sqrt{\varepsilon}}\right)$ calls to U(x).

Analysis of phase estimation:

$$\mathbb{P}(\Phi=0) \leq \mathbb{P}(\Phi_{\delta}=0) \leq \delta^2 \mathbb{E}\left[rac{1}{\sin^2\left(rac{\Phi}{2}
ight)}
ight]$$
 ,

8 / 13

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

Finite precision algorithm:

- Run phase estimation
 - With operator U(x),
 - ② With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

- ② Distinguish between
 - $\mathbb{P}(\Phi_{\delta}=0) \leq \varepsilon/2$ (output f(x)=1),
 - ② $\mathbb{P}(\Phi_{\delta}=0)\geq \varepsilon$ (output f(x)=0),

by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Total cost: $\Theta\left(\frac{1}{\delta\sqrt{\varepsilon}}\right)$ calls to U(x).

Analysis of phase estimation:

$$\mathbb{P}(\Phi=0) \leq \mathbb{P}(\Phi_{\delta}=0) \leq \delta^2 \mathbb{E}\left[rac{1}{\sin^2(rac{\Phi}{2})}
ight]$$
 ,

We need to ensure that:

For positive instances:

$$\mathbb{E}\left[\frac{1}{\sin^2(\frac{\Phi}{2})}\right] \leq \frac{\varepsilon}{2\delta^2}.$$

Positive instance:
$$\mathbb{P}(\Phi = 0) = 0$$
, Negative instance: $\mathbb{P}(\Phi = 0) > 0$.

Finite precision algorithm:

- Run phase estimation
 - With operator U(x),
 - ② With initial state $|w_0\rangle$,
 - **3** With precision $\delta > 0$,

call the outcome Φ_{δ} .

- ② Distinguish between
 - $\mathbb{P}(\Phi_{\delta}=0) \leq \varepsilon/2$ (output f(x)=1),

by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Total cost: $\Theta\left(\frac{1}{\delta\sqrt{\varepsilon}}\right)$ calls to U(x).

Analysis of phase estimation:

$$\mathbb{P}(\Phi=0) \leq \mathbb{P}(\Phi_{\delta}=0) \leq \delta^2 \mathbb{E}\left[rac{1}{\sin^2(rac{\Phi}{2})}
ight]$$
 ,

We need to ensure that:

For positive instances:

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] \leq \frac{\varepsilon}{2\delta^2}.$$

② For negative instances:

$$\mathbb{P}(\Phi=0)\geq \varepsilon.$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi=0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} \left| w_0 \right\rangle \right\|^2$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} | w_0 \rangle \right\|^2$$
$$= \min\{ \| |\omega_x \rangle \|^2 : |\omega_x \rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_x | w_0 \rangle = 1 \}^{-1}$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} | w_{0} \rangle \right\|^{2}$$

$$= \min\{ \| |\omega_{x}\rangle \|^{2} : |\omega_{x}\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_{x} | w_{0}\rangle = 1 \}^{-1}$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} | w_{0} \rangle \right\|^{2}$$

$$= \min\{ \| |\omega_{x}\rangle \|^{2} : |\omega_{x}\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_{x} | w_{0}\rangle = 1 \}^{-1}$$
Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} |w_{0}\rangle \right\|^{2}$$

$$= \min\{ \||\omega_{x}\rangle\|^{2} : \underline{|\omega_{x}\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_{x} | w_{0}\rangle = 1} \}^{-1}$$
Negative witnesses

$$\geq \frac{1}{\left\|\left|\omega_{\mathsf{x}}\right\rangle\right\|^{2}}$$

for any negative witness $|\omega_x\rangle$.

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} |w_{0}\rangle \right\|^{2}$$

$$= \min\{ \||\omega_{x}\rangle\|^{2} : \underline{|\omega_{x}\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_{x} | w_{0}\rangle = 1} \}^{-1}$$
Negative witnesses

$$\geq \frac{1}{\||\omega_x\rangle\|^2}$$

for any negative witness $|\omega_x\rangle$.

$$W_{-} := \max_{\mathbf{x} \in f^{(-1)}(\mathbf{0})} \left\| |\omega_{\mathbf{x}}\rangle \right\|^{2}$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\mathbb{P}(\Phi = 0) = \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} |w_{0}\rangle \right\|^{2}$$

$$= \min\{ \||\omega_{x}\rangle\|^{2} : \underline{|\omega_{x}\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle \omega_{x} | w_{0}\rangle = 1} \}^{-1}$$
Negative witnesses

$$\geq \frac{1}{\||\omega_x\rangle\|^2}$$

for any negative witness $|\omega_x\rangle$.

$$W_- := \max_{x \in f^{(-1)}(0)} \left\| \ket{\omega_x}
ight\|^2 \quad \Rightarrow \quad \mathbb{P}(\Phi = 0) \geq rac{1}{W_-} =: arepsilon.$$

For all negative instances, we need to ensure that $\mathbb{P}(\Phi = 0) \geq \varepsilon$.

$$\begin{split} \mathbb{P}(\Phi = 0) &= \left\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}} \left| w_{0} \right\rangle \right\|^{2} \\ &= \min\{ \left\| \left| \omega_{x} \right\rangle \right\|^{2} : \underbrace{\left| \omega_{x} \right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \left\langle \omega_{x} \right| w_{0} \right\rangle = 1}_{\textit{Negative witnesses}} \}^{-1} \\ &\geq \frac{1}{\left\| \left| \omega_{x} \right\rangle \right\|^{2}} \end{split}$$

for any negative witness $|\omega_x\rangle$.

$$W_- := \max_{x \in f^{(-1)}(0)} \left\| \ket{\omega_x}
ight\|^2 \quad \Rightarrow \quad \mathbb{P}(\Phi = 0) \geq rac{1}{W_-} =: arepsilon.$$

Shorter negative witnesses give better bounds.

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\Phi}{2})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\theta}{2})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right>\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

$$\begin{split} \mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] &= \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)} \\ &= \sum_{j=1}^n \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \Pi_{R_{\varphi_j}} \left|w_0\right\rangle\} \end{split}$$

$$\begin{split} \mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] &= \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)} \\ &= \sum_{j=1}^n \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \Pi_{R_{\varphi_j}} \left|w_0\right\rangle\} \end{split}$$

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} |w_0\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

$$= \sum_{j=1}^n \min\{\||w_x\rangle\|^2 : |w_x\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = \Pi_{R_{\varphi_j}} |w_0\rangle\}$$

$$= \min\{\||w_x\rangle\|^2 : |w_x\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = |w_0\rangle\}$$

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\theta}{2})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

$$= \sum_{j=1}^n \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \Pi_{R_{\varphi_j}} \left|w_0\right\rangle\}$$

$$= \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \left|w_0\right\rangle\}$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\theta}{\alpha})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} |w_0\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

$$= \sum_{j=1}^n \min\{\||w_x\rangle\|^2 : |w_x\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = \Pi_{R_{\varphi_j}} |w_0\rangle\}$$

$$= \min\{\||w_x\rangle\|^2 : |w_x\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = |w_0\rangle\}$$

Positive witnesses

$$\leq \||w_{x}\rangle\|^{2}$$
,

for any positive witness $|w_x\rangle$.

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\theta}{\alpha})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] = \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} |w_0\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)}$$

$$= \sum_{j=1}^n \min\{\||w_x\rangle\|^2 : |w_x\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = \Pi_{R_{\varphi_j}} |w_0\rangle\}$$

$$= \min\{\||w_x\rangle\|^2 : \underline{|w_x\rangle} \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}} |w_x\rangle = |w_0\rangle\}$$

Positive witnesses

$$\leq \||w_{\mathsf{x}}\rangle\|^2$$
,

for any positive witness $|w_x\rangle$.

$$W_{+} := \max_{x \in f^{(-1)}(1)} \||w_{x}\rangle\|^{2}$$

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin^2(\frac{\theta}{\alpha})}\right] \leq \frac{\varepsilon}{\delta^2}$.

$$\begin{split} \mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] &= \sum_{j=1}^n \frac{\left\|\Pi_{R_{\varphi_j}} \left|w_0\right\rangle\right\|^2}{\sin^2\left(\frac{\varphi_j}{2}\right)} \\ &= \sum_{j=1}^n \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_j}, \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \Pi_{R_{\varphi_j}} \left|w_0\right\rangle\} \\ &= \min\{\left\|\left|w_x\right\rangle\right\|^2 : \left|w_x\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}} \left|w_x\right\rangle = \left|w_0\right\rangle\} \end{split}$$

Positive witnesses

$$\leq \||w_{x}\rangle\|^{2}$$
,

for any positive witness $|w_x\rangle$.

$$W_+ := \max_{x \in f^{(-1)}(1)} \||w_x\rangle\|^2 \quad \Rightarrow \quad \mathbb{E}\left[\frac{1}{\sin^2\left(\frac{\Phi}{2}\right)}\right] \leq W_+ =: \frac{\varepsilon}{2\delta^2}.$$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$.

- Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$
 - For all $x \in f^{(-1)}(1)$, find a positive witness $|w_x\rangle$,
 - **2** For all $x \in f^{(-1)}(0)$, find a *negative witness* $|\omega_x\rangle$,

 $W_{+} = \max_{x \in f^{(-1)}(1)} |||w_{x}\rangle||^{2},$ $W_{-} = \max_{x \in f^{(-1)}(0)} |||\omega_{x}\rangle||^{2}.$

- Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$
 - For all $x \in f^{(-1)}(1)$, find a positive witness $|w_x\rangle$,
 - ② For all $x \in f^{(-1)}(0)$, find a negative witness $|\omega_x\rangle$,

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

- For all $x \in f^{(-1)}(1)$, find a positive witness $|w_x\rangle$,
- 2 For all $x \in f^{(-1)}(0)$, find a negative witness $|\omega_x\rangle$,

Choose the finite precision parameters:

- $② W_+ = \frac{\varepsilon}{2\delta^2} \quad \Rightarrow \quad \delta := 1/\sqrt{2W_-W_+},$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

- For all $x \in f^{(-1)}(1)$, find a positive witness $|w_x\rangle$,
- 2 For all $x \in f^{(-1)}(0)$, find a negative witness $|\omega_x\rangle$,

Choose the finite precision parameters:

- \bullet $\varepsilon := 1/W_-$,

Run the algorithm:

- Run phase estimation
 - ① with operator $U(x) = (2\Pi_{\mathcal{H}(x)} I)(2\Pi_{\mathcal{K}} I)$,
 - ② with initial state $|w_0\rangle$,
 - \odot with precision δ ,

call the outcome Φ_{δ} .

$$|w_0
angle \in \mathcal{H}(x), \ \Pi_{\mathcal{K}^{\perp}} |w_x
angle = |w_0
angle$$

- Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$
 - **1** For all $x \in f^{(-1)}(1)$, find a *positive witness* $|w_x\rangle$,
 - ② For all $x \in f^{(-1)}(0)$, find a *negative witness* $|\omega_x\rangle$,

Choose the finite precision parameters:

Run the algorithm:

- Run phase estimation
 - ① with operator $U(x) = (2\Pi_{\mathcal{H}(x)} I)(2\Pi_{\mathcal{K}} I)$,
 - ② with initial state $|w_0\rangle$,
 - \odot with precision δ ,

call the outcome Φ_{δ} .

- ② Distinguish between

with amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

$$W_{+} = \max_{x \in f^{(-1)}(1)} |||w_{x}\rangle||^{2},$$

$$W_{-} = \max_{x \in f^{(-1)}(0)} |||\omega_{x}\rangle||^{2}.$$

$$|w_0
angle \in \mathcal{H}(x), \ \Pi_{\mathcal{K}^{\perp}} |w_x
angle = |w_0
angle.$$

Reflection program: $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle).$

- **1** For all $x \in f^{(-1)}(1)$, find a *positive witness* $|w_x\rangle$,
- 2 For all $x \in f^{(-1)}(0)$, find a negative witness $|\omega_x\rangle$,

Choose the finite precision parameters:

Run the algorithm:

- Run phase estimation
 - ① with operator $U(x) = (2\Pi_{\mathcal{H}(x)} I)(2\Pi_{\mathcal{K}} I)$,
 - ② with initial state $|w_0\rangle$,
 - \bullet with precision δ ,

call the outcome Φ_{δ} .

- ② Distinguish between

 - ② $\mathbb{P}(\Phi_{\delta} = 0) \geq \varepsilon$ (output f(x) = 0),

with amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Total calls to U(x): $\mathcal{O}\left(\frac{1}{\delta\sqrt{\varepsilon}}\right) = \mathcal{O}(W_-\sqrt{W_+})$,

$$W_{+} = \max_{x \in f^{(-1)}(1)} |||w_{x}\rangle||^{2},$$

$$W_{-} = \max_{x \in f^{(-1)}(0)} |||\omega_{x}\rangle||^{2}.$$

$$|w_0
angle \in \mathcal{H}(x),$$
 $\Pi_{\mathcal{K}^{\perp}} |w_x
angle = |w_0
angle.$

• The complexity can be improved from $\mathcal{O}(W_-\sqrt{W_+})$ to $\mathcal{O}(\sqrt{W_-W_+})$:

- **1** The complexity can be improved from $\mathcal{O}(W_-\sqrt{W_+})$ to $\mathcal{O}(\sqrt{W_-W_+})$:
 - Using a technique called *span program renormalization*.

Span program \mathcal{P} W_+ ,	Span program renormalization	Span program \mathcal{P}' $W'_{+} = \Theta(W_{+}W_{-}),$
W_{-} .		$W'_{-} = \Theta(1).$

- **1** The complexity can be improved from $\mathcal{O}(W_-\sqrt{W_+})$ to $\mathcal{O}(\sqrt{W_-W_+})$:
 - Using a technique called *span program renormalization*.

Mow does this technique look in the reflection program case?

- **1** The complexity can be improved from $\mathcal{O}(W_-\sqrt{W_+})$ to $\mathcal{O}(\sqrt{W_-W_+})$:
 - Using a technique called *span program renormalization*.

When the domain is the effection of t

② Other relations seem to play a non-trivial role:

$$\chi(y) := \mathbb{E}\left[\frac{1}{y - \sin^2\left(\frac{\Phi}{2}\right)}\right] = \langle w_0 | \left(\Pi_{\mathcal{K}^{\perp}} \Pi_{\mathcal{H}(x)^{\perp}} \Pi_{\mathcal{K}^{\perp}} - (1 - y)I\right)^{-1} | w_0 \rangle.$$

- **1** The complexity can be improved from $\mathcal{O}(W_-\sqrt{W_+})$ to $\mathcal{O}(\sqrt{W_-W_+})$:
 - Using a technique called *span program renormalization*.

When the domain is a superior of the domain of the doma

② Other relations seem to play a non-trivial role:

$$\chi(y) := \mathbb{E}\left[\frac{1}{y - \sin^2\left(\frac{\Phi}{2}\right)}\right] = \langle w_0 | \left(\Pi_{\mathcal{K}^{\perp}} \Pi_{\mathcal{H}(x)^{\perp}} \Pi_{\mathcal{K}^{\perp}} - (1 - y)I\right)^{-1} | w_0 \rangle.$$

To be continued...

Thanks for your attention! arjan@cwi.nl

Span programs – example

Span programs – example

Search function: $f(x_1, ..., x_n) = x_1 \vee \cdots \vee x_n$.

Search function: $f(x_1, ..., x_n) = x_1 \lor \cdots \lor x_n$.

13 / 13

Search function: $f(x_1, ..., x_n) = x_1 \vee ... \vee x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}.$

13 / 13

Search function: $f(x_1, ..., x_n) = x_1 \lor ... \lor x_n$.

- $\mathcal{V} = \mathbb{C}$.

Search function: $f(x_1, ..., x_n) = x_1 \lor ... \lor x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- | au
 angle=1.

Search function: $f(x_1, ..., x_n) = x_1 \vee ... \vee x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}.$
- | au
 angle=1.
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

- **2** $\mathcal{H}(x) = \text{Span}\{|j\rangle : x_j = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- $| au\rangle=1.$
- $A = \sum_{j=1}^{n} \langle j |.$

 $\mathcal{P}=\left(\mathcal{H},x\mapsto\mathcal{H}(x),\mathcal{V},\left| au
ight>,A
ight)$ evaluates f, as:

Search function: $f(x_1, ..., x_n) = x_1 \vee ... \vee x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- | au
 angle=1.
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

$$\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V}, \ket{\tau}, A)$$
 evaluates f , as:

Positive instance:	$x \neq 0^n$	\Rightarrow
Negative instance:	$x = 0^n$	\Rightarrow

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- $| au\rangle = 1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

 $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V}, |\tau\rangle, A)$ evaluates f, as:

Positive instance:
$$x \neq 0^n \Rightarrow \text{Let } x_j = 1, \ A|j\rangle = 1 = |\tau\rangle$$
, Negative instance: $x = 0^n \Rightarrow$

Search function: $f(x_1, ..., x_n) = x_1 \vee \cdots \vee x_n$.

- $\mathcal{V} = \mathbb{C}$.
- $| au\rangle=1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

 $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V}, |\tau\rangle, A)$ evaluates f, as:

Positive instance:
$$|x \neq 0^n| \Rightarrow \text{Let } x_j = 1, \ A|j\rangle = 1 = |\tau\rangle$$
, Negative instance: $|x = 0^n| \Rightarrow A(\mathcal{H}(x)) = \{0\} \not\ni |\tau\rangle$.

13 / 13

Positive instance

Search function: $f(x_1, ..., x_n) = x_1 \lor \cdots \lor x_n$.

Search function: $f(x_1, ..., x_n) = x_1 \lor \cdots \lor x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- $| \tau \rangle = 1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

Search function: $f(x_1, ..., x_n) = x_1 \lor \cdots \lor x_n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}.$
- $\mathcal{V} = \mathbb{C}.$
- $| au\rangle = 1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

 \mathfrak{O} $\mathcal{H}=\mathbb{C}^n$.

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$ $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}$.
- $| \tau \rangle = 1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

- \mathfrak{O} $\mathcal{H}=\mathbb{C}^n$.
- $\mathcal{V} = \mathbb{C}$.
- $| \tau \rangle = 1.$
- $\bullet A = \sum_{j=1}^{n} \langle j |.$

- \mathfrak{O} $\mathcal{H}=\mathbb{C}^n$.
- $② \ \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}. \qquad \textcircled{2} \ \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_j = 1\}.$

Search function: $f(x_1, ..., x_n) = x_1 \lor \cdots \lor x_n$.

- $\mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}.$
- $| au \rangle = 1.$
- **6** $A = \sum_{j=1}^{n} \langle j | .$

- $2 \mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$
 - **3** $|w_0\rangle = \frac{A^+|\tau\rangle}{\|A^+|\tau\rangle\|} = \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle.$
 - $\mathcal{K} = \operatorname{Ker}(A) \stackrel{\sim}{=} \operatorname{Ker}(\langle w_0 |) = \operatorname{Span}\{|w_0\rangle\}^{\perp}.$

- $\mathfrak{A} \mathcal{H} = \mathbb{C}^n$.
- $2 \mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_i = 1\}. 2 \mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_i = 1\}.$
- $\mathcal{V} = \mathbb{C}$
- $| \tau \rangle = 1.$
- $\bullet A = \sum_{i=1}^{n} \langle j|.$
- $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ evaluates f, as:

- \mathfrak{O} $\mathcal{H}=\mathbb{C}^n$.
- **3** $|w_0\rangle = \frac{A^+|\tau\rangle}{\|A^+|\tau\rangle\|} = \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle.$
- $\mathcal{K} = \text{Ker}(A) = \text{Ker}(\langle w_0 |) =$ $\operatorname{\mathsf{Span}}\{|w_0\rangle\}^{\perp}$.

 \mathcal{H}

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

$$\mathfrak{O}$$
 $\mathcal{H} = \mathbb{C}^n$.

$$\mathcal{H}(x) = \mathsf{Span}\{|j\rangle : x_i = 1\}.$$

$$\mathcal{V} = \mathbb{C}$$
.

$$|w_0\rangle = \frac{A^+|\tau\rangle}{\|A^+|\tau\rangle\|} = \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle.$$

$$| au\rangle = 1.$$

•
$$\mathcal{K} = \text{Ker}(A) = \text{Ker}(\langle w_0 |) = \text{Span}\{|w_0\rangle\}^{\perp}$$
.

$$\bullet \ \ A = \sum_{j=1}^{n} \langle j |.$$

$$\mathcal{R} =$$

 $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ evaluates f, as:

Positive instance: $|x \neq 0^n| \Rightarrow$

Negative instance: $x = 0^{n}$

 \mathcal{H}

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

$$\mathfrak{O}$$
 $\mathcal{H}=\mathbb{C}^n$.

$$\mathcal{H}(x) = \mathsf{Sp}$$

$$\mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_j = 1\}. \qquad \mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_j = 1\}.$$

$$\mathcal{V} = \mathbb{C}$$

•
$$h(x) = \text{Span}\{|j\rangle : x_j = 1\}.$$

• $|w_0\rangle = \frac{A^+|\tau\rangle}{\|A^+|\tau\rangle\|} = \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle.$

$$| au\rangle=1.$$

•
$$\mathcal{K} = \text{Ker}(A) = \text{Ker}(\langle w_0 |) = \text{Span}\{|w_0\rangle\}^{\perp}$$
.

$$\bullet A = \sum_{i=1}^{n} \langle j |.$$

$$\mathcal{R} =$$

 $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ evaluates f, as:

Positive instance:
$$|x \neq 0^n| \Rightarrow \text{Let } x_j = 1,$$
 $|w_0\rangle = \underbrace{\sqrt{n}|j\rangle}_{\in \mathcal{H}(x)} + \underbrace{\frac{1}{\sqrt{n}}\sum_{k=1}^n|k\rangle - \sqrt{n}|j\rangle}_{k=1} \in \mathcal{K} + \mathcal{H}(x)$

 $x = 0^{n}$ Negative instance:

 \mathcal{H}

Search function: $f(x_1, \ldots, x_n) = x_1 \vee \cdots \vee x_n$.

$$\mathfrak{O}$$
 $\mathcal{H} = \mathbb{C}^n$.

$$\mathcal{H}(x) = \mathsf{Span}$$

②
$$\mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_j = 1\}.$$
 ② $\mathcal{H}(x) = \operatorname{Span}\{|j\rangle : x_j = 1\}.$

$$\circ$$
 $\mathcal{V} = \mathbb{C}$

$$\mathcal{V} = \mathbb{C}$$
.

$$|w_0\rangle = \frac{A^+|\tau\rangle}{\|A^+|\tau\rangle\|} = \frac{1}{\sqrt{n}} \sum_{j=1}^n |j\rangle.$$

$$| au
angle=1.$$

$$\mathcal{K} = \operatorname{Ker}(A) = \operatorname{Ker}(\langle w_0 |) = \operatorname{Span}\{|w_0\rangle\}^{\perp}.$$

$$\bullet A = \sum_{j=1}^{n} \langle j |.$$

 $\mathcal{R} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ evaluates f, as:

Positive instance: $| x \neq 0^n \Rightarrow \text{Let } x_i = 1$,

$$x \neq 0^n \Rightarrow \text{Let } x_j = 1,$$
 $|w_0\rangle = \underbrace{\sqrt{n}|j\rangle}_{\in \mathcal{H}(x)} + \underbrace{\frac{1}{\sqrt{n}}\sum_{k=1}^n|k\rangle - \sqrt{n}|j\rangle}_{\in \mathcal{K}} \in \mathcal{K} + \mathcal{H}(x)$

 $x = 0^n \Rightarrow \mathcal{K} + \mathcal{H}(x) = \overline{\mathcal{K}} = \operatorname{Span}\{|w_0\rangle\}^{\perp} \not\ni |w_0\rangle.$ Negative instance: