ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 5

Aufgabe 16. (6 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $\partial \Omega \in C^{k,\alpha}$, $k \geq 1$, $0 < \alpha \leq 1$. Auf $C^{k,\alpha}(\partial \Omega)$ definieren wir eine Norm durch

$$\|u\|_{C^{k,\alpha}(\partial\Omega)}^E:=\inf\left\{\|w\|_{C^{k,\alpha}(\mathbb{R}^n)}:w\in C_c^{k,\alpha}(\mathbb{R}^n)\text{ mit }w=u\text{ auf }\partial\Omega\right\}.$$

Zeige, dass $\|\cdot\|_{C^{k,\alpha}(\partial\Omega)}$ wie in Aufgabe 13 und $\|\cdot\|_{C^{k,\alpha}(\partial\Omega)}^E$ äquivalente Normen auf $C^{k,\alpha}(\partial\Omega)$ sind. Bemerkung: Dies zeigt auch, dass Normen $\|\cdot\|_{C^{k,\alpha}(\partial\Omega)}$ für unterschiedliche Wahlen von η_i , Φ_i äquivalent sind.

Aufgabe 17. (5 Punkte)

Führe die Details zu den Transformationen im Beweis von Theorem 2.5 aus:

(i) Sei $\varphi:\Omega\to\tilde\Omega$ ein Diffeomorphismus zwischen offenen Teilmengen des $\mathbb R^n$ und ψ seine Inverse. Gelte

$$a^{ij}u_{ij} + b^iu_i + du = f$$
 in Ω .

Leite für $\tilde{u}(y) := u(\psi(y))$ eine Differentialgleichung der Form

$$\tilde{a}^{ij}\tilde{u}_{ij} + \tilde{b}^i\tilde{u}_i + \tilde{d}\tilde{u} = \tilde{f} \quad \text{in } \tilde{\Omega}$$

her. Gib \tilde{a}^{ij} , \tilde{b}^i , \tilde{d} und \tilde{f} an und überprüfe auf Elliptizität.

(ii) Konstruiere einen solchen Diffeomorphismus φ , so dass für ein $x_0 \in \Omega$

$$\tilde{a}^{ij}(\varphi(x_0)) = \delta^{ij}$$

gilt.

Aufgabe 18. (5 Punkte)

(i) Sei $\Omega \subset \mathbb{R}^n$ offen. Sei $u \in C^{k,\alpha}(\overline{\Omega}), k \geq 0, 0 < \alpha \leq 1$. Sei η ein positiver symmetrischer Friedrichscher Glättungskern. Definiere $u_{\varepsilon} := u * \eta_{\varepsilon}$. Sei $\Omega' \in \Omega$. Dann gelten

$$u_{\varepsilon} \to u \quad \text{in } C^{k,\beta}(\Omega')$$

für alle $0 < \beta < \alpha$ und

$$||u_{\varepsilon}||_{C^{k,\alpha}(\Omega')} \le c \cdot ||u||_{C^{k,\alpha}(\Omega)}.$$

(ii) Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^{k,\alpha}$, $k \geq 0$, $0 < \alpha \leq 1$. Dann gibt es für $l \in \mathbb{N}$ glatte, offene und beschränkte Mengen Ω_l mit $\Omega \subset \Omega_l$, so dass die die Ränder $\partial \Omega_l$ lokal als Graphen darstellenden Funktionen ω_l lokal in $C^{k,\alpha}$ beschränkt sind und lokal in $C^{k,\beta}$, $0 < \beta < \alpha$, gegen ω , die $\partial \Omega$ lokal als Graphen darstellende Funktion, konvergieren. Hinweis: Benutze eine lokale Graphendarstellung.

Abgabe: Bis Montag, 04.12.2017, 18:00 Uhr, in die Mappe vor Büro F 402.