Санкт-Петербургский государственный университет Прикладная математика и информатика

Отчет по научно-исследовательской работе

Замена непрерывных распределений на дискретные для применения на практике

(ceместр7)

Выполнила: Нагуманова Карина Ильнуровна, группа 19.Б04-мм

Научный руководитель: к.ф.-м.н., доцент Голяндина Нина Эдуардовна. Кафедра статистического моделирования

Содержание

1	Введение		3
2 Условия аппр		ювия аппроксимации в общем случае	4 5 6
3	Аппроксимация нормального распределения Аппроксимация логнормального распределения		
4			
	4.1	Способ нахождения вероятностей через математическое ожидание и дисперсию нормального распределения	6
	4.2	Непосредственная аппроксимация логнормального распределения	7
	4.3	Условие на параметры для нахождения весов при аппроксимации логнормального распределения	10
	4.4	Варианты постановки задачи	12
	4.5	Точность аппроксимации	13
		4.5.1 Неправильное использование правила 30-40-30	13
5	Произведение двух логнормальных распределений		15
	5.1	Квантили вида π , 0.5, $1-\pi$ произведения логнормальных случайных величин	18
6	Сумма двух логнормальных распределений		21
7	7 Заключение		22
C	Списо	ок литературы	22
8	Прі	иложение	23

1 Введение

В практических задачах часто требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для аппроксимации нормального распределения является метод Свонсона. Однако в ряде областей, например, в нефтяной промышленности распределением, описывающим запасы нефти, общепринятым является логнормальное распределение. Соответственно, реальной задачей является аппроксимация логнормального распределения.

С аппроксимируемыми случайными величинами производят сложение и умножение. Например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти. Или зная запасы, параметры нефти и породы для всех залежей можно оценить профиль добычи нефти с каждой залежи и суммарный профиль, оценить экономическую эффективность проекта, которая учитывает выручку, налоги, капитальные затраты, операционные затраты, оптимальные решения по проекту. Соответственно, возникает задача находить аппроксимацию суммы и произведения по аппроксимациям исходных случайных величин.

Часто бывает на практике, что вместо настоящего распределения известны три его квантили, стандартно это 10-, 50- и 90-процентили. Задачей является нахождение по ним математического ожидания и дисперсии. Обычно задача решается построением весов для квантилей так, чтобы у полученного дискретного распределения были такие же математическое ожидание и дисперсия, как у исходного. Вообще говоря, иногда нужно, чтобы и более старшие моменты также аппроксимировались моментами построенного дискретного распределения с целью, чтобы для функций от распределений равенство математических ожиданий и дисперсий оставалось хотя бы приближенными.

Структура работы следующая:

В разделе 2 рассмотрен общий подход к трехточечной аппроксимации.

В разделе 3 аппроксимация нормального распределения, вывод правила 30-40-30.

В разделе 4 рассматривается аппроксимация логнормального распределения, условие аппроксимации и что делать, если это условие не выполняется. А также точность аппроксимации при применении правила 30-40-30 к логнормальному распределению.

В разделе 5 алгоритм аппроксимации произведения двух логнормальных распределений.

В разделе 6 алгоритм аппроксимации суммы двух логнормальных распределений.

Работа этого семестра заключена в разделах 4.3, 4.4, 4.5, 6. В моей работе использовались статьи «Swanson's Swansong» [1] и «Uncertainties impacting reserves, revenue, and costs» [2].

Кроме этого были прочитаны следующие статьи:

«Discretization, Simulation, and Swanson's (Inaccurate) Mean» [3]. В ней одна из частей исследования — сравнение различных методов дискретизации непрерывных распределений, например таких, как Extended Person-Tukey (EPT), McNamee-Celona Shortcut (MCS), Extended Swanson-Megill (ESM).

Статья «Discretization, Simulation, and the Value of Information» [4]. Из нее понятно, что данный метод дискретизации значительно недооценивает среднее значение, дисперсию и асимметрию большинства распределений, особенно логнормального, где он широко используется. И что наилучшая дискретизация зависит от контекста решения, который мы не знаем заранее.

A в статье «Performance Evaluation of Swanson's Rule for the Case of Log-Normal Populations» [5] проводится исследование оценки эффективности метода Свонсона и сравнение с использованием равных весов. Рассмотрены различные преимущества двух методов.

2 Условия аппроксимации в общем случае

Пусть дана случайная величина ξ с математическим ожиданием m, дисперсией s^2 и функцией распределения F(x). Для неё заданы квантили x_{π_1} , x_{π_2} , x_{π_3} . Также есть случайная дискретная величина ξ_n с математическим ожиданием m_n и дисперсией s_n^2 .

$$\xi_n: \begin{pmatrix} x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ p_1 & p_2 & p_3 \end{pmatrix}$$

Мы хотим аппроксимировать распределение случайной величины ξ дискретным распределением ξ_n .

Нужно найти вероятности p_1, p_2, p_3 так, чтобы следующие равенства были верными.

$$p_1 + p_2 + p_3 = 1, (1)$$

$$p_1 x_{\pi_1} + p_2 x_{\pi_2} + p_3 x_{\pi_3} = m, (2)$$

$$p_1 x_{\pi_1}^2 + p_2 x_{\pi_2}^2 + p_3 x_{\pi_3}^2 - m^2 = s^2. (3)$$

Запишем уравнения (1)—(3) в матричной форме следующим образом

$$\begin{pmatrix} 1 & 1 & 1 \\ x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ x_{\pi_1}^2 & x_{\pi_2}^2 & x_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m^2 + s^2 \end{pmatrix}.$$

Теперь введём более изящную форму, которая подчёркивает связь вероятностей с формой распределения путём нормализации математического ожидания и дисперсии.

Предложение 1. Пусть верно

$$\begin{pmatrix} 1 & 1 & 1 \\ \tilde{x}_{\pi_1} & \tilde{x}_{\pi_2} & \tilde{x}_{\pi_3} \\ \tilde{x}_{\pi_1}^2 & \tilde{x}_{\pi_2}^2 & \tilde{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \tag{4}$$

где $\tilde{x}_{\pi_i} = \tilde{\mathsf{F}}^{-1}(\pi_i), \; \tilde{\mathsf{F}}(y) - \phi$ ункция распределения $\eta = \frac{\xi - m}{s}. \;$ Тогда $m = m_n \; u \; s^2 = s_n^2.$

Доказательство.

$$\mathsf{P}(\xi \le x_{\pi_i}) = \pi_i,$$

$$\mathsf{P}\left(\frac{\xi - m}{s} \le \frac{x_{\pi_i} - m}{s}\right) = \tilde{\mathsf{F}}\left(\frac{x_{\pi_i} - m}{s}\right) = \pi_i,$$

 ξ нормализуется так, чтобы иметь нулевое математическое ожидание и единичную дисперсию. Имеем $x_{\pi_i} = m + s \tilde{\mathsf{F}}^{-1}(\pi_i)$, обозначим

$$\tilde{x}_{\pi_i} = \frac{x_{\pi_i} - m}{s} = \tilde{\mathsf{F}}^{-1}(\pi_i).$$
 (5)

Предположим, что $m=m_n$ и $s^2=s_n^2$, и получим систему (4). Для этого подставим (5) в уравнение (2), получаем

$$m(p_1 + p_2 + p_3) + s(p_1\tilde{x}_{\pi_1} + p_2\tilde{x}_{\pi_2} + p_3\tilde{x}_{\pi_3}) = m.$$

Используя уравнение (1), получаем

$$s(p_1\tilde{x}_{\pi_1} + p_2\tilde{x}_{\pi_2} + p_3\tilde{x}_{\pi_3}) = 0.$$

Так как $s \neq 0$, то можно разделить на s, тогда получаем

$$p_1\tilde{x}_{\pi_1} + p_2\tilde{x}_{\pi_2} + p_3\tilde{x}_{\pi_3} = 0.$$

Теперь подставим (5) в уравнение (3), получаем

$$p_1(m+s\tilde{x}_{\pi_1})^2 + p_2(m+s\tilde{x}_{\pi_2})^2 + p_3(m+s\tilde{x}_{\pi_3})^2 - m^2 = s^2,$$

$$p_1\tilde{x}_{\pi_1}^2 + p_2\tilde{x}_{\pi_2}^2 + p_3\tilde{x}_{\pi_3}^2 = 1.$$

Получившиеся уравнения в матричной форме

$$\begin{pmatrix} 1 & 1 & 1 \\ \tilde{x}_{\pi_1} & \tilde{x}_{\pi_2} & \tilde{x}_{\pi_3} \\ \tilde{x}_{\pi_1}^2 & \tilde{x}_{\pi_2}^2 & \tilde{x}_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$
 (6)

3 Аппроксимация нормального распределения

В общем случае вероятности p_1, p_2, p_3 будут зависеть от математического ожидания и дисперсии, но если $\xi \sim N(\mu, \sigma)$ имеет нормальное распределение, то $\eta = \frac{\xi - m}{s}$ имеет нормальное стандартное распределение, которое не зависит ни от μ , ни от σ .

Предложение 2. $\xi \sim N(\mu, \sigma)$, пусть верно

$$\begin{cases}
 p_{\pi} = \frac{\delta}{2}, \\
 p_{0.5} = 1 - \delta, \\
 p_{1-\pi} = \frac{\delta}{2}.
\end{cases}$$
(7)

где $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$. Тогда $m = m_n \ u \ s^2 = s_n^2$.

Доказательство. Предположим, что $m=m_n$ и $s^2=s_n^2$, и получим систему (7).

 $\Phi(y) = \mathsf{P}(\eta = \frac{\xi - m}{s} \le y) - функция распределения стандартного нормального распределения, тогда система (6) записывается как$

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi_1) & \Phi^{-1}(\pi_2) & \Phi^{-1}(\pi_3) \\ \Phi^{-1}(\pi_1)^2 & \Phi^{-1}(\pi_2)^2 & \Phi^{-1}(\pi_3)^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$
 (8)

В частном случае симметричных квантилей вида π , 0.5, $1-\pi$ получаем $\Phi^{-1}(\pi) = -\Phi^{-1}(1-\pi)$, $\Phi^{-1}(0.5) = 0$, тогда система (8) упрощается до

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi) & 0 & -\Phi^{-1}(\pi) \\ \Phi^{-1}(\pi)^2 & 0 & \Phi^{-1}(\pi)^2 \end{pmatrix} \begin{pmatrix} p_{\pi} \\ p_{0.5} \\ p_{1-\pi} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\begin{cases}
p_{\pi} + p_{0.5} + p_{1-\pi} = 1, \\
(p_{\pi} - p_{1-\pi})\Phi^{-1}(\pi) = 0, \\
(p_{\pi} + p_{1-\pi})\Phi^{-1}(\pi)^{2} = 1.
\end{cases}$$
(9)

Обозначим $\delta = \frac{1}{\Phi^{-1}(\pi)^2}$, тогда из системы (9) получим систему (7).

Рассмотрим случай $\pi=0.1$, имеем $\Phi^{-1}(0.1)=-\Phi^{-1}(0.9)\approx-1.28$, $\Phi^{-1}(0.5)=0$, из уравнений системы (9) находим значения $p_1,\,p_2,\,p_3$.

$$\begin{cases} p_1 \approx 0.305, \\ p_2 \approx 0.390, \\ p_3 \approx 0.305. \end{cases}$$

Эти вероятности примерно равны 0.3, 0.4, 0.3, поэтому это правило называют правилом 30-40-30 или **правилом Свонсона**.

4 Аппроксимация логнормального распределения

Пусть случайная величина η имеет логнормальное распределение, тогда случайная величина $\xi = \ln(\eta)$ имеет нормальное распределение, $\xi \sim N(\mu, \sigma)$. И поэтому для нее можно использовать формулы, полученные в предыдущих разделах.

4.1 Способ нахождения вероятностей через математическое ожидание и дисперсию нормального распределения

Заметим, что если $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ — квантили логнормального распределения, то $\ln(x_{\pi_1})$, $\ln(x_{\pi_2})$, $\ln(x_{\pi_3})$ — квантили нормального распределения. Можно взять эти квантили и использовать в способе нахождения вероятностей для нормального распределения.

Имеем следующий алгоритм.

Алгоритм 1. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

- 1. Вычисляем значения мат. ожидания т и дисперсии d случайной величины η , используя известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$.
- 2. Выражаем параметры μ и σ мат. ожидание и дисперсию соответствующего нормального распределения через параметры m и d логнормального распределения, используя следующие формулы

$$m = \exp(\mu + \frac{\sigma^2}{2}),\tag{10}$$

$$s^{2} = m^{2}[\exp(\sigma^{2}) - 1]. \tag{11}$$

Заметим, что математическое ожидание логнормально распределенной случайной величины всегда положительное.

3. C помощью системы (7) находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности p_1, p_2, p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины ξ_n .

Пример. Пусть у нас есть логнормальная случайная величина с $m=2, s^2=0.78125$. Значения квантилей $x_{10}=1, x_{50}=2, x_{90}=3$.

По данным формулам можно найти параметры соответствующего нормального распределения.

$$\mu = 0.69314$$
,

$$\sigma = 0.42863$$
.

Теперь можно найти значения p_1, p_2, p_3 .

$$p_{10} = 0.371243,$$

$$p_{50} = 0.282992,$$

$$p_{90} = 0.345764.$$

4.2 Непосредственная аппроксимация логнормального распределения

Есть другой способ нахождения результата, полученного в разделе 4.1. Можно не переходить к нормальному распределению, а сразу вычислять вероятности для квантилей логнормального распределения.

Сначала найдём $\tilde{\mathsf{F}}(y)$ в терминах параметров распределения, затем найдём $\tilde{\mathsf{F}}^{-1}(p)$, чтобы использовать формулу (4).

Предложение 3. В терминах Предложения 1 функция $\tilde{\mathsf{F}}^{-1}(\pi)$ выражается через σ как

$$\tilde{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$
 (12)

Доказательство.

$$\begin{split} \tilde{\mathsf{F}}(y) &= \mathsf{P}\left(\eta \leq y\right) = \mathsf{P}\left(\frac{\xi - m}{s} \leq y\right) = \\ &= \mathsf{P}(\log(\xi) \leq \log(m + sy)) = \\ &= \mathsf{P}\left(\frac{\log(\xi) - \mu}{\sigma} \leq \frac{\log(m + sy) - \mu}{\sigma}\right) = \\ &= \Phi\left(\frac{\log(m + sy) - \mu}{\sigma}\right). \end{split}$$

Найдём $\log(m+sy)$, используя $m=e^{\mu+\frac{\sigma^2}{2}}$ и $s=m\sqrt{e^{\sigma^2}-1}$.

$$m + sy = e^{\mu + \frac{\sigma^2}{2}} + ye^{\mu + \frac{\sigma^2}{2}}\sqrt{e^{\sigma^2} - 1} = e^{\mu + \frac{\sigma^2}{2}}(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

возьмем натуральный логарифм от обеих частей, получаем

$$\log(m + sy) = \log(e^{\mu + \frac{\sigma^2}{2}} (1 + y\sqrt{\exp(\sigma^2) - 1})) =$$
$$= \mu + \frac{\sigma^2}{2} + \log(1 + y\sqrt{\exp(\sigma^2) - 1}),$$

тогда

$$\frac{\log(m+sy)-\mu}{\sigma} = \frac{\sigma}{2} + \frac{\log(1+y\sqrt{\exp(\sigma^2)-1})}{\sigma}.$$

То есть можно выразить

$$\tilde{\mathsf{F}}(y) = \Phi\left(\frac{\log(m+sy) - \mu}{\sigma}\right) = \Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right).$$

Далее можно найти $\Phi^{-1}(\pi)$.

$$\Phi\left(\frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}\right) = \pi,$$

$$\Phi^{-1}(\pi) = \frac{\sigma}{2} + \frac{\log(1 + y\sqrt{\exp(\sigma^2) - 1})}{\sigma}.$$

Теперь можно найти $\log(1+y\sqrt{\exp(\sigma^2)-1})$.

$$\log(1 + y\sqrt{\exp(\sigma^2) - 1}) = \sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2},$$

$$1 + y\sqrt{\exp(\sigma^2) - 1} = \exp(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}).$$

В итоге получаем

$$\tilde{\mathsf{F}}^{-1}(\pi) = y = \frac{\exp(\sigma\Phi^{-1}(\pi) - \frac{\sigma^2}{2}) - 1}{\sqrt{\exp(\sigma^2) - 1}}.$$

Предложение 4. Параметр σ для логнормального распределения выражается через значения квантилей, как

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$
 (13)

Доказательство. Покажем, что дисперсию логнормального распределения можно вычислить из отношения двух квантилей.

$$\mathsf{P}(\xi \le x_{\pi}) = \pi,$$

$$\mathsf{P}\left(\frac{\log(\xi) - \mu}{\sigma} \le \frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi.$$

Следовательно,

$$\Phi\left(\frac{\log(x_{\pi}) - \mu}{\sigma}\right) = \pi,$$

и тогда

$$\log(x_{\pi}) = \mu + \sigma \Phi^{-1}(\pi). \tag{14}$$

С помощью двух квантилей мы можем исключить μ из соответствующих уравнений. Пусть есть π_1 -ый и π_3 -ый квантили со значениями x_{π_1} и x_{π_3} .

$$\log(x_{\pi_1}) = \mu + \sigma \Phi^{-1}(\pi_1),$$

$$\log(x_{\pi_3}) = \mu + \sigma \Phi^{-1}(\pi_3).$$

Вычтем из второго уравнения первое, получаем

$$\log\left(\frac{x_{\pi_3}}{x_{\pi_1}}\right) = \sigma(\Phi^{-1}(\pi_3) - \Phi^{-1}(\pi_1)).$$

И в итоге получаем

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Алгоритм 2. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины $\eta, \ln(\eta) \sim N(\mu, \sigma)$.

Шаги:

- 1. Выражаем параметр σ из отношения x_{π_3} к x_{π_1} , используя формулу (13).
- 2. Вычисляем значения $\tilde{\mathsf{F}}^{-1}(\pi)$ для случайной величины η по формуле (12).
- 3. C помощью системы (4) находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности p_1, p_2, p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины ξ_n . Замечание 1. Результаты Алгоритмов 1 и 2 совпадают.

Пример.

Посчитаем пример для $\frac{x_{90}}{x_{10}}=3$. По формулам из этого раздела получаем

$$\sigma = \frac{\log(\frac{x_{90}}{x_{10}})}{\phi^{-1}(0,9) - \phi^{-1}(0,1)} \approx 0.428626,$$

$$\tilde{\mathsf{F}}^{-1}(p) = \frac{\exp(\sigma\phi^{-1}(p) - \frac{\sigma^2}{2}) - 1}{\sqrt{\exp(\sigma^2) - 1}}$$

$$\tilde{\mathsf{F}}^{-1}(0.9) \approx 1.2915826424,$$

$$\tilde{\mathsf{F}}^{-1}(0.1) \approx -1.0539640761,$$

$$\tilde{\mathsf{F}}^{-1}(0.5) \approx -0.1954343914.$$

Из системы (4) находим вероятности p_{10} , p_{50} , p_{90} .

$$p_{10} = 0.371243,$$

 $p_{50} = 0.282992,$
 $p_{90} = 0.345764.$

4.3 Условие на параметры для нахождения весов при аппроксимации логнормального распределения

Мы рассмотрели способы вычисления вероятностей для квантилей при аппроксимации логнормального распределения. Но эти вероятности находятся не при любом σ. Выясним, какое должно быть ограничение на этот параметр.

Предложение 5. Положительные вероятности p_1 , p_2 , p_3 для аппроксимации логнормальной случайной величины η с квантилями вида $x_{0.1}$, $x_{0.5}$, $x_{0.9}$ существуют только при условии

$$\exp(\sigma^2) + \exp(-\sigma^2) - \exp(\Phi(0.1)\sigma - \frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2}) \le 0,$$

(при $\sigma \le 0.6913$ примерно).

Доказательство.

$$\ln(\eta) \sim N(\mu, \sigma^2), \qquad \tilde{\mathsf{F}}(y) = \mathsf{P}\left(\eta \leq y\right).$$

Рассмотрим случай $\pi_1=0.1,\ \pi_2=0.5,\ \pi_3=0.9.$ С помощью формулы (12) найдем $\tilde{\mathsf{F}}^{-1}(\pi_i)$ и сделаем следующие обозначения

$$\tilde{\mathsf{F}}^{-1}(0.1) = t_1, \qquad \tilde{\mathsf{F}}^{-1}(0.5) = t_2, \qquad \tilde{\mathsf{F}}^{-1}(0.9) = t_3.$$

Теперь рассмотрим систему (6), запишем ее через t_1 , t_2 , t_3 и выразим вероятности p_1 , p_2 , p_3 .

$$p_2(t_2 - t_3) = p_1(t_3 - t_1) - t_3,$$

$$p_1(t_1^2 - t_3^2) + p_2(t_2^2 - t_3^2) = 1 - t_3^2.$$

Тогда получаем

$$p_1(t_1^2 - t_3^2) + (t_2 + t_3)(p_1(t_3 - t_1) - t_3) = 1 - t_3^2,$$

$$p_1(t_1 - t_3)(t_1 - t_2) = 1 + t_2t_3.$$

$$p_1 = \frac{1 + t_2 t_3}{(t_1 - t_3)(t_1 - t_2)},\tag{15}$$

$$p_2 = \frac{p_1(t_3 - t_1) - t_3}{t_2 - t_3} = \frac{1 + t_1 t_3}{(t_2 - t_1)(t_2 - t_3)},\tag{16}$$

$$p_3 = 1 - p_1 - p_2. (17)$$

Все вероятности должны быть положительными, подставим в формулы для вероятностей значения переменных t_1 , t_2 , t_3 , которые ищутся по формуле (11).

$$p_1 = \frac{1 + \frac{(\exp(-\frac{\sigma^2}{2}) - 1)(\exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2}) - 1)}{\exp(\sigma^2) - 1}}{\frac{\exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}} \frac{\exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2}) - \exp(-\frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}} = \frac{\exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2}) - \exp(-\frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}}$$

$$=\frac{\exp(\sigma^2)+\exp(\Phi^{-1}(0.9)\sigma-\sigma^2)-\exp(-\frac{\sigma^2}{2})-\exp(\Phi^{-1}(0.9)\sigma-\frac{\sigma^2}{2})}{\exp(\Phi^{-1}(0.1)*2\sigma-\sigma^2)-\exp(\Phi^{-1}(0.1)\sigma-\sigma^2)-\exp(-\sigma^2)+\exp(\Phi^{-1}(0.9)\sigma-\sigma^2)}.$$

$$p_2 = \frac{1 + \frac{(\exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2}) - 1)(\exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2}) - 1)}{\exp(\sigma^2) - 1}}{\frac{\exp(-\frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}} \frac{\exp(-\frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}} = \frac{1 + \frac{(\exp(\Phi^{-1}(0.1)\sigma - \frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2}) - \exp(\Phi^{-1}(0.9)\sigma - \frac{\sigma^2}{2})}{\sqrt{\exp(\sigma^2) - 1}}}$$

$$=\frac{\exp(\sigma^2)+\exp(-\sigma^2)-\exp(\Phi(0.1)\sigma-\frac{\sigma^2}{2})-\exp(\Phi^{-1}(0.9)\sigma-\frac{\sigma^2}{2})}{\exp(-\sigma^2)-\exp(\Phi^{-1}(0.9)\sigma-\sigma^2)-\exp(\Phi^{-1}(0.1)\sigma-\sigma^2)+\exp(-\sigma^2)}.$$

График зависимости p_1, p_2, p_3 от σ представлен на Рис. 1.

Заметим, что знаменатель дроби в p_2 всегда отрицательный, поэтому можно смотреть только на числитель. Он отрицательный, когда $\sigma \leq 0.6913$. А вероятности p_1 и p_3 положительные при любом параметре σ .

Таким образом, получили условие $\sigma \le 0.6913$.

Рис. 1: Зависимость p_1, p_2, p_3 от σ .

Посмотрим, какому коэффициенту асимметрии соответствует это значение σ .

$$\gamma_3 = \sqrt{\exp(\sigma^2) - 1}(\exp(\sigma^2) + 2),$$

 $\gamma_3 = 2.82778.$

4.4 Варианты постановки задачи

Задача: имеются квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ логнормальной случайной величины η . Нужно уметь считать её математическое ожидание и дисперсию.

Варианты решения задачи:

1. Не переходить к аппроксимации дискретной случайной величиной, а сразу же из двух уравнений вида (14), записанных для двух квантилей, найти значения параметров μ и σ нормальной случайной величины $\ln(\eta) \sim N(\mu, \sigma)$. Далее по формулам (10) и (11) вычислить значения мат. ожидания m и дисперсии s^2 случайной величины η .

- 2. Перейти к трехточечной аппроксимации дискретной случайной величиной ξ_n , у которой мат. ожидание и дисперсия равны мат. ожиданию m и дисперсии s^2 случайной величины ξ . И считать значения m и s через квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ и вероятности p_1 , p_2 , p_3 .
- 3. Если условие для положительных вероятностей не выполняется, можно воспринимать задачу не как поиск вероятностей для ξ_n , а как поиск коэффициентов для x_{π} , $x_{0.5}$, $x_{1-\pi}$ таких, чтобы параметры, полученные по формулам (2) и (3), были равны мат. ожиданию и дисперсии η .

4.5 Точность аппроксимации

Предлагаемые методы аппроксимации логнормального распределения не работают при $\sigma \leq 0.6913$. На практике часто используют правило Свонсона 30-40-30 для аппроксимации логнормального распределения, поэтому посмотрим на точность 30-40-30. Особенно это важно при $\sigma \geq 0.6913$.

4.5.1 Неправильное использование правила 30-40-30

Предложение 6. Ошибка аппроксимации мат.ожидания логнормального распределения с помощью правила 30-40-30 равна

$$\frac{\mid m_1 - m_2 \mid}{m_1} = \frac{\left| \exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2(\Phi^{-1}(0.1))^2} \left(\exp(\sigma\Phi^{-1}(0.1)) - 1 + \exp(\sigma\Phi^{-1}(0.9)) \right) + 1 \right|}{\exp\left(\frac{\sigma^2}{2}\right)}$$

и не зависит от параметра μ .

Доказательство. Выразим ошибку аппроксимации мат.ожидания логнормального распределения через параметры μ и σ .

$$m_1 = \exp\left(\mu + \frac{\sigma^2}{2}\right).$$

Имеем следующие квантили

$$x_{\pi} = \exp(\mu + \sigma \Phi^{-1}(0.1)),$$

Точные значения вероятностей

$$p_1 = p_3 = \frac{1}{2(\Phi^{-1}(0.1))^2},$$

$$p_2 = 1 - \frac{1}{(\Phi^{-1}(0.1))^2}.$$

Тогда мат.ожидание аппроксимации равно

$$m_2 = \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(\mu + \sigma \Phi^{-1}(0.1)) +$$

$$+ \left(1 - \frac{1}{(\Phi^{-1}(0.1))^2}\right) \exp(\mu + \sigma \Phi^{-1}(0.5)) + \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(\mu + \sigma \Phi^{-1}(0.9)) =$$

$$= \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(\mu) (\exp(\sigma \Phi^{-1}(0.1)) - 1 + \exp(\sigma \Phi^{-1}(0.9))) + \exp(\mu).$$

Получили ошибку

$$\frac{|m_1 - m_2|}{m_1} = \frac{\left| \exp\left(\mu + \frac{\sigma^2}{2}\right) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(\mu)(\exp(\sigma\Phi^{-1}(0.1)) - 1 + \exp(\sigma\Phi^{-1}(0.9))) + \exp(\mu) \right|}{\exp\left(\mu + \frac{\sigma^2}{2}\right)} = \frac{\left| \exp\left(\frac{\sigma^2}{2}\right) - \frac{1}{2(\Phi^{-1}(0.1))^2} (\exp(\sigma\Phi^{-1}(0.1)) - 1 + \exp(\sigma\Phi^{-1}(0.9))) + 1 \right|}{\exp\left(\frac{\sigma^2}{2}\right)} = \exp\left(\frac{\sigma^2}{2}\right)$$

Рис. 2: Ошибка аппроксимации мат. ожидания.

Рис. 3: Ошибка аппроксимации мат.ожидания, $\sigma \leq 1.5$.

Предложение 7. Ошибка аппроксимации дисперсии логнормального распределения с помощью правила 30-40-30 равна

$$\frac{\mid d_1 - d_2 \mid}{d_1} = \mid \exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.1)) + \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.9)) + \frac{m_2^2}{2\mu} \mid /\exp(\sigma^2)(\exp(\sigma^2 - 1))$$

и не зависит от параметра и.

Доказательство. Выразим аппроксимации дисперсии через параметры распределения.

$$d_1 = \exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)).$$

$$d_2 = \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\mu + 2\sigma\Phi^{-1}(0.1)) +$$

$$+ \left(1 - \frac{1}{(\Phi^{-1}(0.1))^2}\right) \exp(2\mu + 2\sigma\Phi^{-1}(0.5)) + \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\mu + 2\sigma\Phi^{-1}(0.9)) - m_2^2.$$

Получили ошибку

$$\frac{\mid d_1 - d_2 \mid}{d_1} = \mid \exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\mu + 2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\mu + 2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\mu + 2\sigma\Phi^{-1}(0.9)) + m_2^2 \mid / \exp(2\mu + \sigma^2)(\exp(\sigma^2 - 1)) =$$

$$= \mid \exp(\sigma^2)(\exp(\sigma^2 - 1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.1)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.9)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.9)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.9)) - \frac{1}{2(\Phi^{-1}(0.1))^2} \exp(2\sigma\Phi^{-1}(0.9)) + \frac{1}{2(\Phi^{-1}(0.1))^2$$

Рис. 4: Ошибка аппроксимации дисперсии.

Рис. 5: Ошибка аппроксимации дисперсии, $\sigma \leq 1.5$.

5 Произведение двух логнормальных распределений

Нам доступен метод объединения любых логнормально распределенных случайных величин. Эта процедура применяется в нефтяной промышленности, она выполняется быстро и может быть выполнена вручную. Например, используем площадь дренирования пласта, среднюю чистую толщину и коэффициент извлечения углеводородов. При перемножении этих параметров получаем количество резервов нефти.

Рассмотрим произведение любых двух логнормально распределенных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

 $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2).$

Введем следующие обозначения:

 $x_{\pi}, x_{0.5}, x_{1-\pi}$ — квантили случайной величины $\xi_1, y_{\pi}, y_{0.5}, y_{1-\pi}$ — квантили случайной величины ξ_2 .

Предложение 8. При перемножении квантилей x_{π} и y_{π} двух логнормальных случайных величин ξ_1 и ξ_2 получается квантиль случайной величины $\xi_1\xi_2$ вида z_q , где

$$q = \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right). \tag{18}$$

Доказательство. Выразим параметры распределений $\mu_1, \ \mu_2, \ \sigma_1, \ \sigma_2$ через квантили. По определению квантиля $\mathsf{P}(\xi_1 < x_\pi) = \pi.$

Преобразуем эту вероятность так, чтобы ее можно было записать через функцию распределения стандартного нормального распределения, следующим образом:

$$P(\xi_1 < x_\pi) = P(\ln(\xi_1) < \ln(x_\pi)) = P\left(\frac{\ln(\xi_1) - \mu_1}{\sigma_1} < \frac{\ln(x_\pi) - \mu_1}{\sigma_1}\right).$$

Так как ξ_1 распределена логнормально с параметрами μ_1 и σ_1^2 , то

$$\frac{\ln(\xi_1) - \mu_1}{\sigma_1} \sim N(0, 1).$$

Следовательно, можно записать логарифм квантиля, как:

$$\ln(x_{\pi}) = \sigma_1 \Phi^{-1}(\pi) + \mu_1. \tag{19}$$

Аналогично для x_{50} , получаем, что

$$\mu_1 = \ln(x_{0.5}). \tag{20}$$

Используя формулы (19) и (20) можно выразить значение σ_1 .

$$\sigma_1 = \frac{\ln(x_\pi) - \ln(x_{0.5})}{\Phi^{-1}(\pi)}.$$
(21)

Аналогичные действия проводим для ξ_2 и тогда получаем

$$\frac{\ln(y_{\pi}) - \mu_2}{\sigma_2} = \Phi^{-1}(\pi), \tag{22}$$

$$\mu_2 = \ln(y_{0.5}). \tag{23}$$

Используя формулы (22) и (23) можно выразить значение σ_2 ,

$$\sigma_2 = \frac{\ln(y_\pi) - \ln(y_{0.5})}{\Phi^{-1}(\pi)}.$$
 (24)

Теперь рассмотрим случайную величину $\eta=\xi_1\xi_2$. Мы хотим вычислить, каким квантилем для η является произведение квантилей x_π и y_π .

Для этого надо найти, чему равна вероятность $P(\xi_1 \xi_2 < x_\pi y_\pi)$.

$$P(\xi_1 \xi_2 < x_\pi y_\pi) = P(\ln(\xi_1) + \ln(\xi_2) < \ln(x_\pi) + \ln(y_\pi)) =$$

$$= P\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\ln(x_\pi) + \ln(y_\pi) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Так как ξ_1 распределена логнормально с параметрами μ_1 и σ_1^2 , а ξ_2 распределена логнормально с параметрами μ_2 и σ_2^2 , то

$$\ln(\xi_1) + \ln(\xi_2) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2),$$

$$\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \sim N(0, 1).$$

Используя формулы (19) и (21), выразим $\ln(x_{\pi})$ и $\ln(y_{\pi})$.

$$\ln(x_{\pi}) = \mu_1 + \Phi^{-1}(\pi)\sigma_1,$$
$$\ln(y_{\pi}) = \mu_2 + \Phi^{-1}(\pi)\sigma_2.$$

Тогда можно записать

$$\begin{split} \mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{(\mu_1 + \Phi^{-1}(\pi)\sigma_1) + (\mu_2 + \Phi^{-1}(\pi)\sigma_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \mathsf{P}\left(\frac{\ln(\xi_1) + \ln(\xi_2) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} < \frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right) = \\ = \Phi\left(\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right). \end{split}$$

Используя формулы (21) и (24), перепишем эту дробь через значения кванилей.

$$\frac{\Phi^{-1}(\pi)(\sigma_{1} + \sigma_{2})}{\sqrt{\sigma_{1}^{2} + \sigma_{2}^{2}}} = \frac{\Phi^{-1}(\pi) \left(\frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{-\Phi^{-1}(\pi)} \right)}{\sqrt{\frac{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}{(\Phi^{-1}(\pi))^{2}}}} = \frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^{2} + (\ln(y_{0.5}) - \ln(y_{\pi}))^{2}}}}{\frac{(\ln(x_{0.5}) - \ln(x_{\pi})) + (\ln(y_{0.5}) - \ln(y_{\pi}))}{\Phi^{-1}(\pi)}}.$$

Тогда получаем следующую формулу

$$\mathsf{P}(\xi_1 \xi_2 < x_\pi y_\pi) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_\pi) - \ln(y_\pi))}{\sqrt{(\ln(x_{0.5}) - \ln(x_\pi))^2 + (\ln(y_{0.5}) - \ln(y_\pi))^2}}\right).$$

Таким образом, с помощью формулы (18) можно посчитать, какой квантиль получается при перемножении π -ых квантилей.

Следствие 1. При перемножение квантилей $x_{0.5}$ и $y_{0.5}$ получается снова 0.5-ый квантиль.

Доказательство. Из раздела 4.2 знаем, что $\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5})$ можно написать следующим образом:

$$\mathsf{P}(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi\left(\frac{\ln(x_{0.5}) + \ln(y_{0.5}) - (\mu_1 + \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right).$$

Но по формуле (14) в числителе получается 0. Значит,

$$P(\xi_1 \xi_2 < x_{0.5} y_{0.5}) = \Phi(0) = 0.5.$$

5.1 Квантили вида π , 0.5, $1-\pi$ произведения логнормальных случайных величин

Как по каким-то произвольным получившимся квантилям, полученным при перемножении данных квантилей для двух логнормальных случайных величин, найти нужные нам, такие же, как исходные π , 0.5, $1-\pi$ квантили произведения этих двух случайных величин? Сначала нужно понять на какой прямой лежат точки вида $(x_{\pi}; \Phi^{-1}(\pi))$.

Для этого рассмотрим следующий QQ-плот:

$$\left\{x_i, \mathsf{F}_{\eta}^{-1}(\mathsf{F}_{\xi}(x_i))\right\}_{i=1}^n$$
.

Как связаны параметры нормального распределения, квантили которого откладываются по оси X, и параметры прямой, на которой лежат точки этого QQ плота?

Ось X: $\xi \sim N(a, \sigma^2)$. Ось Y: $\eta \sim N(0, 1)$.

Возьмем две точки и построим по ним уравнение прямой.

$$\begin{split} &(\mathsf{F}_{\xi}^{-1}(0.1),\mathsf{F}_{\eta}^{-1}(0.1)),\\ &(\mathsf{F}_{\xi}^{-1}(0.5),\mathsf{F}_{\eta}^{-1}(0.5)). \end{split}$$

$$\Phi\left(\frac{x_p-a}{\sigma}\right)=p$$
 \Rightarrow $\frac{x_p-a}{\sigma}=\Phi^{-1}(p).$

Получаем, что

$$x_p = a + \sigma \Phi^{-1}(p).$$

Для первой точки возьмем p = 0.1.

$$(a + \sigma\Phi^{-1}(0.1); \Phi^{-1}(0.1)).$$

Для второй точки возьмем p = 0.5.

$$(a + \sigma \Phi^{-1}(0.5); \Phi^{-1}(0.5)) \Rightarrow (a; 0).$$

Составим уравнение прямой:

$$\frac{x-a}{(a+\Phi^{-1}(0.1)\sigma)-a} = \frac{y}{\Phi^{-1}(0.1)}, \qquad \frac{x-a}{\Phi^{-1}(0.1)\sigma} = \frac{y}{\Phi^{-1}(0.1)}.$$

Следовательно,

$$\sigma y = x - a$$

Получили уравнение прямой на которой лежат точки данного QQ-плота:

$$y = \frac{x - a}{\sigma}. (25)$$

Предложение 9. Зная квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_{π} , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 можно найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины $\xi_1\xi_2$, как

$$z_{\pi} = \exp(\sigma \Phi^{-1}(\pi) + a),$$

$$z_{0.5} = x_{0.5} y_{0.5},$$

$$z_{1-\pi} = \exp(\sigma \Phi^{-1}(1-\pi) + a),$$

где а u σ – параметры прямой $y=\frac{x-a}{\sigma}$, на которой лежат точки $(\ln(x_\pi y_\pi),t)$ u $(\ln(x_{0.5}y_{0.5}),0),$

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Доказательство. С помощью формулы (18) можно посчитать, какой получается квантиль для случайной величины $\xi_1\xi_2$, если перемножить квантили x_π и y_π исходных случайных величин.

Обозначим $z_{\pi}, z_{0.5}, z_{1-\pi}$ — квантили случайной величины η . Тогда по Следствию 1 имеем $x_{0.5}y_{0.5}=z_{0.5}$.

Нужно вычислить значения z_{π} и $z_{1-\pi}$. Введем обозначение:

$$t = \frac{\Phi^{-1}(\pi)((\ln(x_{0.5}) + \ln(y_{0.5})) - (\ln(x_{\pi}) + \ln(y_{\pi})))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Тогда с помощью точек $(\ln(x_{\pi}y_{\pi}),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$ можно найти параметры a и σ прямой, на которой они лежат, по формуле (25).

$$\frac{\ln(x_{0.5}y_{0.5}) - a}{\sigma} = 0 \qquad \Rightarrow \qquad a = \ln(x_{0.5}y_{0.5}),$$

$$\frac{\ln(x_{\pi}y_{\pi}) - a}{\sigma} = t,$$

$$\sigma = \frac{\ln(x_{\pi}y_{\pi}) - a}{t} = \frac{\ln(x_{\pi}y_{\pi}) - \ln(x_{0.5}y_{0.5})}{t}.$$

Так как точки $(\ln(z_{\pi}), \Phi^{-1}(\pi))$ и $(\ln(z_{1-\pi}), \Phi^{-1}(1-\pi))$ тоже лежат на этой прямой, то мы можем вычислить значения $\ln(z_{\pi})$ и $\ln(z_{0.5})$, зная уравнение прямой, следующим образом:

$$\frac{\ln(z_{\pi}) - a}{\sigma} = \Phi^{-1}(\pi),$$

$$\ln(z_{\pi}) = \sigma\Phi^{-1}(\pi) + a,$$

$$\frac{\ln(z_{1-\pi}) - a}{\sigma} = \Phi^{-1}(1 - \pi),$$
$$\ln(z_{1-\pi}) = \sigma\Phi^{-1}(1 - \pi) + a.$$

 Π , наконец, находим z_{π} и $z_{1-\pi}$.

$$z_{\pi} = \exp(\sigma \Phi^{-1}(\pi) + a),$$

 $z_{1-\pi} = \exp(\sigma \Phi^{-1}(1-\pi) + a).$

Как теперь найти математическое ожидание $\eta=\xi_1\xi_2$? Случайные величины ξ_1 и ξ_2 распределены логнормально. Их произведение—случайная величина η тоже имеет логнормальное распределение, поэтому

$$\ln(\eta) = \ln(\xi_1 \xi_2) = \ln(\xi_1) + \ln(\xi_2) \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

20

В разделе 3 было описано, как искать математическое ожидание и дисперсию. Можно использовать метод Свонсона аппроксимации нормального распределения для $\ln(\eta)$. Для этого надо взять не сами квантили z_{π} , $z_{0.5}$ и $z_{1-\pi}$, а их логарифмы. Соответствующие вероятности p_1 , p_2 , p_3 можно найти с помощью системы (7), так как данные квантили симметричны.

6 Сумма двух логнормальных распределений

Рассмотрим сумму двух логнормальных случайных величин.

$$\ln(\xi_1) \sim N(\mu_1, \sigma_1^2),$$

 $\ln(\xi_2) \sim N(\mu_2, \sigma_2^2),$
 $\eta = \xi_1 + \xi_2.$

Дано: квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ случайной величины ξ_1 и квантили y_{π} , $y_{0.5}$, $y_{1-\pi}$ случайной величины ξ_2 .

Нужно найти квантили z_{π} , $z_{0.5}$, $z_{1-\pi}$ случайной величины η , а также вычислить вероятности p_1 , p_2 , p_3 такие, что мат. ожидание и дисперсия исходной логнормальной случайной величины равны мат. ожиданию и дисперсии дискретной аппроксимации.

Берем симметричные квантили, а именно $\pi=0.1$. Чтобы найти z_{10} , z_{50} , z_{90} будем использовать аппроксимацию суммы логнормальных распределений логнормальным распределением. $\ln(\eta) \sim N(\mu, \sigma)$.

У нас есть следующие ограничения на параметры: $\mu_1, \mu_2 < 12, \sigma_1, \sigma_2 < 1.5$. Пусть мы нашли аппроксимацию суммы двух логнормальных величин, тогда с учетом этих ограничений её значения μ и σ тоже будут иметь свои ограничения. При этом, чтобы найти значения вероятностей p_1, p_2, p_3 нужно, чтобы выполнялось то же условие, что в разделе 4.3. А именно, $\sigma < 0.6913$.

Альтернатива: Если это ограничение на σ не выполняется и мы не можем вычислить положительные вероятности, то можно не переходить к аппроксимации дискретным распределением, а вычислить значения мат. ожидания и дисперсии η с помощью квантилей z_{π} , $z_{0.5}$, $z_{1-\pi}$ по формулам вида (14).

Имеем следующий алгоритм для решения задачи.

Алгоритм 3. Дано: Квантили x_{π} , $x_{0.5}$, $x_{1-\pi}$ — квантили ξ_1 , y_{π} , $y_{0.5}$, $y_{1-\pi}$ — квантили ξ_2 .

- 1. Найти параметры μ_1 , σ_1 , μ_2 и σ_2 через значения квантилей, используя формулы раздела 4.2.
- 2. Вычислить значения мат. ожидания m и дисперсии s^2 случайной величины $\xi_1 + \xi_2$, как суммы $m = m_1 + m_2$, $d = d_1 + d_2$, где m_1, d_1 мат. ожидание и дисперсия ξ_1 , а m_2 , d_2 случайной величины ξ_2 . Они пересчитываются аналогично m и d.

- 3. Выразить параметры μ и σ нормального распределения через параметры m и d логнормального распределения, используя формулы (10) и (11).
- 4. Вычислить, какой квантиль получается при сложении x_{π} и y_{π} , используя следующую формулу

$$P(\xi_{1} + \xi_{2} < x_{\pi} + y_{\pi}) = P(\ln(\xi_{1} + \xi_{2}) < \ln(x_{\pi} + y_{\pi})) =$$

$$= P\left(\frac{\ln(\xi_{1} + \xi_{2}) - \mu}{\sigma} < \frac{\ln(x_{\pi} + y_{\pi}) - \mu}{\sigma}\right) =$$

$$= \Phi\left(\frac{\ln(x_{\pi} + y_{\pi}) - \mu}{\sigma}\right).$$

5. Найти значения квантилей z_{10}, z_{50}, z_{90} по Алгоритму 2.

Результат: вероятности p_1 , p_2 , p_3 для квантилей $z_{\pi_1}, z_{\pi_2}, z_{\pi_3}$ случайной величины $\xi_1 + \xi_2$.

7 Заключение

Таким образом, были получены следующие результаты: методы аппроксимации нормального и логнормального распределений, условие на σ для аппроксимации логнормального распределения, точность аппроксимации логнормального правилом 30-40-30, методы аппроксимации суммы и произведения двух логнормальных распределений.

При этом возникали проблемы с тем, что аппроксимировать дискретным распределением получается только при ограниченных значениях параметра σ и тем, что для суммы логнормальных результат имеет ошибки, так как сумма логнормальных распределений не является логнормальным распределением.

Список литературы

- [1] Keith G. Swanson's Swansong.—Текст: электронный // stochastic: [сайт].—URL: https://www.stochastic.dk/post/swanson-s-swansong (дата обращения: 23.12.2021).
- [2] Uncertainties impacting reserves, revenue, and costs—Текст: электронный // AAPG Wiki: [сайт].—URL: https://wiki.aapg.org/Uncertainties impacting reserves, revenue, and costs (дата обращения: 27.05.2022).
- [3] Bickel, J. Eric, Lake, Larry W., and John Lehman. "Discretization, Simulation, and Swanson's (Inaccurate) Mean."SPE Econ Mgmt 3 (2011): 128–140. doi: https://doi.org/10.2118/148542-PA.

- [4] Bickel, J. Eric. "Discretization, Simulation, and the Value of Information." Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, October 2011. doi: https://doi.org/10.2118/145690-MS.
- [5] Moghadasi, Maryam and Jerry L. Jensen. "Performance Evaluation of Swanson's Rule for the Case of Log-Normal Populations." (2014). DOI:10.1007/978-3-642-32408.

8 Приложение

На С++ были реализованы следующие полезные на практике функции.

•

Дано: значения квантилей x_{π_i} , математическое ожидание m, дисперсия s^2 непрерывной случайной величины.

Задача: найти вероятности p_i такие, что непрерывное распределение можно заменить дискретным с данными квантилями и полученными весами с сохранением математического ожидания и дисперсии.

Решение описано в разделе 2.

Система:

$$\begin{pmatrix} 1 & 1 & 1 \\ x_{\pi_1} & x_{\pi_2} & x_{\pi_3} \\ x_{\pi_1}^2 & x_{\pi_2}^2 & x_{\pi_3}^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ m \\ m^2 + s^2 \end{pmatrix}.$$

Функция:

vector<double> P (double m, double s, double x_{π_1} , double x_{π_2} , double x_{π_3}).

•

Дано: вероятности π_i .

Задача: найти вероятности p_i для дискретного распределения, заменяющего исходное нормальное распределение, с любыми тремя квантилями x_{π_1}, x_{π_2} и x_{π_3} .

Решение описано в разделе 3.

Система:

$$\begin{pmatrix} 1 & 1 & 1 \\ \Phi^{-1}(\pi_1) & \Phi^{-1}(\pi_2) & \Phi^{-1}(\pi_3) \\ \Phi^{-1}(\pi_1)^2 & \Phi^{-1}(\pi_2)^2 & \Phi^{-1}(\pi_3)^2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Функция:

vector<double> PNormal (double π_1 , double π_2 , double π_3).

•

Дано: вероятность π .

Задача: найти вероятности p_i для дискретного распределения, заменяющего исходное нормальное распределение, в случае симметричных квантилей вида π , 0.5 и $1-\pi$.

Решение описано в разделе 3 с помощью системы (2).

Формулы:

$$\begin{cases}
p_{\pi} = \frac{1}{2\Phi^{-1}(\pi)^{2}}, \\
p_{0.5} = 1 - \frac{1}{\Phi^{-1}(\pi)^{2}}, \\
p_{1-\pi} = \frac{1}{2\Phi^{-1}(\pi)^{2}}.
\end{cases}$$

Функция:

vector<double> PNormalSim (double π).

•

Дано: параметры нормального распределения μ и σ , соответствующего логнормальному распределению.

Задача: найти параметры этого логнормального распределения m и s.

Решение получено из определений логнормального распределения и соответствующего ему нормального распределения.

Формулы:

$$m = \exp(\mu + \frac{\sigma^2}{2}),$$

$$s^2 = m^2(\exp(\sigma^2) - 1).$$

Функции:

double M (double μ , double σ), double S (double μ , double σ).

•

Дано: вероятности π_1 , π_2 , значения квантилей x_{π_1} , x_{π_2} .

Задача: найти дисперсию логарифмически нормального распределения через квантили дискретного распределения, которое его заменяет.

Решение описано в разделе 4.2, получена формула (2).

Формула:

$$\sigma = \frac{\log\left(\frac{x_{\pi_2}}{x_{\pi_1}}\right)}{\Phi^{-1}(\pi_2) - \Phi^{-1}(\pi_1)}.$$

Функция:

double Sig (double π_1 , double π_2 , double x_{π_1} , double x_{π_2}).

•

Дано: вероятность π , значения квантилей x_{π} , $x_{0.5}$.

Задача: найти дисперсию логарифмически нормального распределения через квантили дискретного распределения, которое его заменяет в случае симметричных кванилей.

Решение получено как частый случай формулы (2).

Формула:

$$\sigma = \frac{\ln(x_{\pi}) - \ln(x_{0.5})}{\Phi^{-1}(\pi)}.$$

Функция:

double SigSim (double π , double x_{π} , double $x_{0.5}$).

•

Дано: вероятность π , параметры нормального распределения μ , σ .

Задача: найти квантили логнормальной случайной величины, зная параметры соответствующего нормального распределения в случае симметричных квантилей.

Решение описано в разделе 5.

Формулы:

$$\ln(x_{\pi}) = \mu + \Phi^{-1}(\pi)\sigma,$$

$$\ln(x_{0.5}) = \mu,$$

$$\ln(x_{1-\pi}) = \mu + \Phi^{-1}(1-\pi)\sigma.$$

Функция:

double $\ln X$ (double π , double μ , double σ).

•

Дано: вероятность π , дисперсии σ_1 и σ_2 нормальных случайных величин.

Задача: понять, какой квантиль получается при перемножении квантилей логнормальных случайных величин, через дисперсии соответствующих нормальных случайных величин в случае симметричных квантилей.

Решение описано в разделе 5.

Формулы:

$$P(\xi_1 \xi_2 < x_{\pi} y_{\pi}) = \Phi\left(\frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}\right),$$

$$q = \frac{\Phi^{-1}(\pi)(\sigma_1 + \sigma_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}.$$

Функция:

double ProbPr (double π , double σ_1 , double σ_2).

•

Дано: вероятность π , квантили x_{π} , $x_{0.5}$ и y_{π} , $y_{0.5}$.

Задача: понять, какой квантиль получается при перемножении π -ых квантилей логнормальных случайных величин, через логарифмы π -го и 0.5-го квантилей.

Решение описано в разделе 5, получена формула (??).

Формулы:

$$P(\xi_1 \xi_2 < x_{\pi} y_{\pi}) = \Phi\left(\frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_{\pi}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}\right),$$

$$q = \frac{\Phi^{-1}(\pi)(\ln(x_{0.5}) + \ln(y_{0.5}) - \ln(x_{\pi}) - \ln(y_{\pi}))}{\sqrt{(\ln(x_{0.5}) - \ln(x_{\pi}))^2 + (\ln(y_{0.5}) - \ln(y_{\pi}))^2}}.$$

Функция:

double ProbPrX (double π , double x_{π} , double $x_{0.5}$, double y_{π} , double $y_{0.5}$).

•

Дано: вероятность π , квантили x_{π} , $x_{0.5}$ и y_{π} , $y_{0.5}$.

Задача: найти значения π -го квантиля для произведения двух логнормально распределенных случайных величин через их квантили.

Решение описано в разделе 7.

Формулы:

$$z_{\pi} = \exp\left(\frac{\ln(x_{\pi}y_{\pi}) - \ln(x_{0.5}y_{0.5})}{q}\Phi^{-1}(\pi) + \ln(x_{0.5}y_{0.5})\right),$$
$$q = \Phi^{-1}(\mathsf{P}(\xi_{1}\xi_{2} < x_{\pi}y_{\pi})).$$

Функция:

double Q (double π , double x_{π} , double $x_{0.5}$, double y_{π} , double $y_{0.5}$).