Zadanie 1

Narysuj przebieg procesów kolejkowych N(t) oraz $U(t) = \mathbf{praca}$ do zakończenia w systemie masowej obsługi przyjmującego strumień zgłoszeń: $(t_n^+) = (0.5, 2, 5, 6.5)$, $(b_n) = (3, 2, 2, 3)$ dla dwóch przypadków: a) S = 2 procesory o wydajności v = 1 j.o./s każdy (pełna dostępność, obsługa umiejscowiona), b) S = 1 procesor o wydajności v = 2 j.o./s. Porównaj te przypadki.

Uwaga na nachylenie opadających części wykresu! Co jest podstawą porównania obu przypadków? Czy S=2 pod jakimś względem góruje nad S=1?

Zadanie 2

Porównaj średnie opóźnienie systemowe zgłoszenia w 1-procesorowym systemie kolejkowym z dyscypliną obsługi FIFO oraz *Round Robin* z **kwantem obsługi** 2 s (niepełne wykorzystanie kwantu obsługi powoduje wcześniejsze rozpoczęcie kolejnego kwantu obsługi). Wydajność procesora wynosi 1 j.o./s. Trzy zgłoszenia: X, Y i Z, o wymaganiach odpowiednio 7 j.o., 1 j.o. i 3 j.o., przybywają jednocześnie i ustawiają się w kolejności a) XYZ, b) YZX, c) XZY.

Czy z porównania opóźnień zgłoszeń dla poszczególnych scenariuszy wynikają ogólne cechy FIFO i RR?

Zadanie 3

System masowej obsługi realizuje średnio w ciągu sekundy 800 transakcji, wymagających wykonania średnio 5000 operacji. Każda przybywająca transakcja otrzymuje do swej dyspozycji procesor o średniej wydajności 4 000 000 operacji na sekundę. Oblicz średnią liczbę transakcji w systemie.

Wykorzystaj prawo Little'a.

Zadanie 1

Do 1-procesorowego systemu masowej obsługi z procesorem o wydajności v=1 j.o./s przybywa bardzo "gęsty" strumień zgłoszeń, przy czym współczynnik obciążenia wynosi r=75%. Łączny popyt na obsługę zgłoszony w ciągu sekundy ma odchylenie standardowe $\sigma=0.1$ s. Jakie są szanse, że w tym okresie uda się wygospodarować pół sekundy pracy procesora dla przetwarzania zadań systemowych bez tworzenia zaległości w obsłudze strumienia zgłoszeń?

Wykorzystaj centralne twierdzenie graniczne i **funkcję Laplace'a**: $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-y^2/2} dy$. Jest tablicowana przeważnie dla x=0..5, a jej wybrane wartości wynoszą: $\Phi(0.5)=0.191$, $\Phi(1)=0.341$, $\Phi(1.5)=0.433$, $\Phi(2)=0.477$, $\Phi(2.5)=0.4938$, $\Phi(3)=0.4987$, $\Phi(\ge 4)\approx 0.5$. Co robić, gdy x<0?

Zadanie 2

1-procesorowy system masowej obsługi posiada pamięć buforową o pojemności $Q < \infty$ zgłoszeń i pracuje ze współczynnikiem obciążenia r > 1. W takim systemie pomimo wzrostu Q frakcja utraconych zgłoszeń L nigdy nie spadnie poniżej pewnego progu – jaką ma on wartość?

Wykorzystaj równanie ciągłości przepływu. Jak często procesor jest bezczynny, gdy $Q \rightarrow \infty$?

Zadanie 3

1-procesorowy system przetwarzania raportów z końcówek telemetrycznych posiada skończoną pamięć buforową o pojemności Q raportów. W zależności od Q i współczynnika obciążenia r zbadano charakterystyki: średniego opóźnienia systemowego raportu, znormalizowanego względem średniego czasu przetwarzania przez procesor (wytłuszczone w tabeli) oraz frakcji raportów utraconych wskutek przepełnienia pamięci buforowej.

Wyznacz maksymalną liczbę jednakowych końcówek telemetrycznych oraz niezbędną pojemność pamięci buforowej przy następujących założeniach:

- końcówka generuje średnio 20 raportów na minute,
- raport zawiera średnio 1800 rekordów,
- dysponujemy procesorem o wydajności przetwarzania 12000 rekordów na sekundę,
- podział procesora pomiędzy obsługiwane końcówki ma miejsce na zasadzie wspólnego obszaru pamięci buforowej o skończonej pojemności (w raportach),
- dopuszczalne średnie opóźnienie systemowe raportu wynosi 1.8 s,
- dopuszczalna frakcja raportów utraconych wskutek przepełnienia wynosi 4%.

Q=	20		21		22		23		24		25	
<i>r</i> =												
0.1	1.11	0	1.11	0	1.11	0	1.11	0	1.11	0	1.11	0
0.2	1.25	0	1.25	0	1.25	0	1.25	0	1.25	0	1.25	0
0.3	1.43	0	1.43	0	1.43	0	1.43	0	1.43	0	1.43	0
0.4	1.67	0	1.67	0	1.67	0	1.67	0	1.67	0	1.67	0
0.5	2	0	2	0	2	0	2	0	2	0	2	0
0.6	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0
0.7	3.32	0	3.32	0	3.32	0	3.33	0	3.33	0	3.33	0
0.8	4.77	0	4.8	0	4.84	0	4.86	0	4.89	0	4.91	0
0.9	7.23	0.01	7.42	0.01	7.6	0.01	7.76	0.01	7.92	0.01	8.07	0.01
1	10.5	0.05	11	0.05	11.5	0.04	12	0.04	12.5	0.04	13	0.04
1.1	13.5	0.11	14.3	0.1	15.1	0.1	15.9	0.1	16.7	0.1	17.5	0.1
1.2	15.5	0.17	16.5	0.17	17.4	0.17	18.4	0.17	19.3	0.17	20.3	0.17
1.3	16.8	0.23	17.8	0.23	18.7	0.23	19.7	0.23	20.7	0.23	21.7	0.23
1.4	17.5	0.29	18.5	0.29	19.5	0.29	20.5	0.29	21.5	0.29	22.5	0.29
1.5	18	0.33	19	0.33	20	0.33	21	0.33	22	0.33	23	0.33
1.6	18.3	0.38	19.3	0.38	20.3	0.38	21.3	0.38	22.3	0.38	23.3	0.38
1.7	18.6	0.41	19.6	0.41	20.6	0.41	21.6	0.41	22.6	0.41	23.6	0.41
1.8	18.8	0.44	19.8	0.44	20.8	0.44	21.8	0.44	22.8	0.44	23.8	0.44
1.9	18.9	0.47	19.9	0.47	20.9	0.47	21.9	0.47	22.9	0.47	23.9	0.47
2	19	0.5	20	0.5	21	0.5	22	0.5	23	0.5	24	0.5

Zadanie 1

Każda z 50 końcówek sieciowych dołączonych do wspólnego nadajnika pracuje w następujący sposób: faza namysłu trwa średnio ²/₃ s, po czym generowane jest zgłoszenie; w 80% przypadków jest to wiadomość (średnio 1000 B), zaś w 20% – raport diagnostyczny (średnio 160 B). Nadajnik pracuje w trybie transmisji półdupleksowej z prędkością 1 Mb/s i w każdej sekundzie średnio przez 750 ms jest przełączony na odbiór (w tym czasie jest niedostępny dla naszych zgłoszeń). Jaka będzie średnia frakcja zgłoszeń utraconych?

Dane pozwalają na identyfikację $a_{\text{śr}}$, $b_{\text{śr}}$ oraz współczynnika zajętości procesora. Należy teraz powrócić do równania ciągłości przepływu.

Zadanie 2

O 1-procesorowym systemie masowej obsługi z pamięcią buforową o pojemności Q=2 wiadomo, że w stanie ustalonym mamy $p_0 \ge p_1 \ge p_2$ oraz że r=0.75. Znajdź przedział możliwych wartości p_1 .

Należy postąpić tak, jak w poprzednim zadaniu.

Zadanie 3 (eksperyment symulacyjny)

Każdy spośród użytkowników systemu jednoprocesorowego generuje strumień dokumentów ze średnim interwałem $a_{\text{śr}}$. Długości dokumentów mają średnią $b_{\text{śr}}$. Wydajność przetwarzania dokumentów przez procesor wynosi v. Dopuszcza się:

- frakcję dokumentów utraconych wskutek przepełnienia nie większą niż L_{max} ,
- średnie opóźnienie systemowe dokumentu nie większe niż c-krotność $b_{\text{śr}}/v$.

Porównaj maksymalną liczbę $J_{\rm max}$ użytkowników oraz wymaganą pojemność pamięci buforowych dla przypadków: a) *dostęp dedykowany* z procesorami wirtualnymi o jednakowej wydajności i z odrębnymi kolejkami, b) *dostęp ze wspólną kolejką* do procesora fizycznego. Wykonaj symulacje dla $a_{\rm \acute{s}r}=6$ s, $b_{\rm \acute{s}r}=0.6$ KB, v=24 KB/s, $L_{\rm max}=0.1\%$, c=5.

Zadanie 1

1-procesorowy system masowej obsługi współpracuje z J = 10 inteligentnymi końcówkami w trybie konwersacyjnym zapytanie-odpowiedź. Po otrzymaniu odpowiedzi końcówka generuje nowe zapytanie po czasie namysłu wynoszącym średnio $h_{\text{sr}} = 4$ s. Średnia liczba operacji niezbędnych do wygenerowania odpowiedzi wynosi $b_{\text{sr}} = 15000$, zaś procesor w systemie posiada wydajność v = 5000 operacji/s. Wyznacz zależność pomiędzy współczynnikiem

bezczynności procesora a średnim opóźnieniem buforowania.

Przyda się prawo Little'a.

Zadanie 2

Każda z J = 30 końcówek systemu komputerowego generuje zgłoszenia wymagające sekwencyjnego przetwarzania w procesorze, stacji wolnych dysków i stacji szybkich dysków. Średnie liczby wizyt zgłoszenia w urządzeniach wynoszą $l_p = 21$, $l_{wd} = 12$, $l_{sd} = 8$, zaś średnie czasy przetwarzania w trakcie wizyty wynoszą $\tau_p = 0.05$ s, $\tau_{wd} = 0.07$ s, $\tau_{sd} = 0.02$ s. Po zakończeniu przetwarzania zgłoszenia końcówka przechodzi do fazy namysłu trwającej średnio $h_{\text{śr}} = 15 \text{ s}$, po czym generuje kolejne zgłoszenie.

a) Gdzie jest wąskie gardło systemu, a gdzie występuje największe przewymiarowanie? Jak się to zmieni, gdy przyśpieszymy procesor tak, że $\tau_p = 0.03$ s?

b) Jakie przyśpieszenie procesora niezbędne jest dla uzyskania średniego opóźnienia

systemowego $d^*_{\text{sr}} = 12 \text{ s}$, a jakie dla uzyskania $d^*_{\text{sr}} = 9 \text{ s}$?

Załóż jakąś prędkość przepływu [zgł/s] na styku systemu komputerowego i zbioru końcówek. Wyraź przy jego pomocy współczynnik obciążenia dowolnego urządzenia w systemie. W punkcie b) wykorzystaj prawo Little'a.

Zadanie 1

- a) W systemie M/M/1/2 średnia intensywność przybywania zgłoszeń wynosi 40 na sekundę, zaś średni czas obsługi zgłoszenia wynosi 20 ms. Ile zgłoszeń średnio zostaje utraconych w ciągu doby?
- b) W systemie M/M/1/5 w trakcie obsługi zgłoszenia o średnim wymaganiu obsługi przybywają średnio dwa nowe zgłoszenia. Jak duża jest frakcja zgłoszeń utraconych wskutek przepełnienia pamięci buforowej?
- c) W systemie M/M/1/Q strumień zgłoszeń ma dane parametry a_{sr} i b_{sr} . Dla prawidłowej pracy procesor potrzebuje p-% udziału czasu bezczynności, do czego z kolei wymagana jest pewna minimalna wydajność obsługi v_{min} . Jak v_{min} zmienia się ze wzrostem Q?

Informację zawartą w punkcie b) przetłumacz na współczynnik obciążenia.

Zadanie 2

Każdy spośród 150 użytkowników systemu M/M/S/S generuje w ciągu sekundy średnio 10 transakcji, dopuszczając $L \le 3$ %. Każda transakcja wymaga wykonania średnio 800 operacji. Operator systemu ma do wyboru wydzierżawienie procesorów o wydajności 0.5 miliona operacji na sekundę lub procesorów 4-krotnie szybszych, których koszt dzierżawy jest 2.5-krotnie wyższy.

Ile i których procesorów powinien wydzierżawić, by zminimalizować koszty, spełniając zarazem wymagania użytkowników?

Do obliczeń wykorzystaj poniższy fragment "kalkulatora formuły B Erlanga", gdzie podano wartości L (w %) dla *normatywnych* współczynników obciążenia od 0.2 do 6 erlangów oraz dla liczb procesorów od 1 do 10.

	r=	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
S=																
	1	16.67	28.57	37.5	44.44	50	54.55	58.33	61.54	64.29	66.67	68.75	70.59	72.22	73.68	75
	2	1.64	5.41	10.11	15.09	20	24.66	28.99	32.99	36.65	40	43.06	45.86	48.42	50.78	52.94
	3	0.11	0.72	1.98	3.87	6.25	8.98	11.92	14.96	18.03	21.05	24	26.84	29.56	32.15	34.61
	4	0.01	0.07	0.3	0.77	1.54	2.62	4	5.65	7.5	9.52	11.66	13.87	16.12	18.37	20.61
	5	0	0.01	0.04	0.12	0.31	0.63	1.11	1.77	2.63	3.67	4.88	6.24	7.73	9.33	11
	6	0	0	0	0.02	0.05	0.12	0.26	0.47	0.78	1.21	1.76	2.44	3.24	4.17	5.21
	7	0	0	0	0	0.01	0.02	0.05	0.11	0.2	0.34	0.55	0.83	1.19	1.64	2.19
	8	0	0	0	0	0	0	0.01	0.02	0.05	0.09	0.15	0.25	0.39	0.57	0.81
	9	0	0	0	0	0	0	0	0	0.01	0.02	0.04	0.07	0.11	0.18	0.27
	10	0	0	0	0	0	0	0	0	0	0	0.01	0.02	0.03	0.05	0.08
	r=	3.2	3.4	3.6	3.8	4	4.2	4.4	4.6	4.8	5	5.2	5.4	5.6	5.8	6
S=	r=															
S=	1	76.19	77.27	78.26	79.17	80	80.77	81.48	82.14	82.76	83.33	83.87	84.37	84.85	85.29	85.71
S=	1 2		77.27 56.78	78.26 58.48		80 61.54	80.77 62.91	81.48 64.19	82.14 65.39	82.76 66.51	83.33 67.57	83.87 68.56	84.37 69.49	84.85 70.38	85.29 71.21	85.71 72
S=	1	76.19	77.27	78.26	79.17	80	80.77	81.48	82.14	82.76	83.33	83.87	84.37	84.85	85.29	85.71 72 59.02
S=	1 2	76.19 54.94	77.27 56.78	78.26 58.48	79.17 60.07	80 61.54	80.77 62.91	81.48 64.19	82.14 65.39	82.76 66.51	83.33 67.57	83.87 68.56	84.37 69.49	84.85 70.38	85.29 71.21	85.71 72
S=	1 2 3	76.19 54.94 36.95	77.27 56.78 39.15 24.97 14.51	78.26 58.48 41.24	79.17 60.07 43.21	80 61.54 45.07	80.77 62.91 46.83	81.48 64.19 48.49	82.14 65.39 50.06	82.76 66.51 51.55	83.33 67.57 52.97	83.87 68.56 54.3	84.37 69.49 55.57 42.86 31.64	84.85 70.38 56.78	85.29 71.21 57.92	85.71 72 59.02 46.96 36.04
S=	1 2 3 4	76.19 54.94 36.95 22.81	77.27 56.78 39.15 24.97	78.26 58.48 41.24 27.07	79.17 60.07 43.21 29.1	80 61.54 45.07 31.07	80.77 62.91 46.83 32.96	81.48 64.19 48.49 34.78	82.14 65.39 50.06 36.54	82.76 66.51 51.55 38.22	83.33 67.57 52.97 39.83	83.87 68.56 54.3 41.38	84.37 69.49 55.57 42.86	84.85 70.38 56.78 44.29	85.29 71.21 57.92 45.65	85.71 72 59.02 46.96
S=	1 2 3 4 5	76.19 54.94 36.95 22.81 12.74	77.27 56.78 39.15 24.97 14.51	78.26 58.48 41.24 27.07 16.31	79.17 60.07 43.21 29.1 18.11	80 61.54 45.07 31.07 19.91	80.77 62.91 46.83 32.96 21.68	81.48 64.19 48.49 34.78 23.44	82.14 65.39 50.06 36.54 25.16	82.76 66.51 51.55 38.22 26.84	83.33 67.57 52.97 39.83 28.49	83.87 68.56 54.3 41.38 30.09	84.37 69.49 55.57 42.86 31.64	84.85 70.38 56.78 44.29 33.15	85.29 71.21 57.92 45.65 34.62	85.71 72 59.02 46.96 36.04
S=	1 2 3 4 5	76.19 54.94 36.95 22.81 12.74 6.36	77.27 56.78 39.15 24.97 14.51 7.6	78.26 58.48 41.24 27.07 16.31 8.91	79.17 60.07 43.21 29.1 18.11 10.29	80 61.54 45.07 31.07 19.91 11.71	80.77 62.91 46.83 32.96 21.68 13.18	81.48 64.19 48.49 34.78 23.44 14.66	82.14 65.39 50.06 36.54 25.16 16.17	82.76 66.51 51.55 38.22 26.84 17.68	83.33 67.57 52.97 39.83 28.49 19.18	83.87 68.56 54.3 41.38 30.09 20.68	84.37 69.49 55.57 42.86 31.64 22.16	84.85 70.38 56.78 44.29 33.15 23.63	85.29 71.21 57.92 45.65 34.62 25.07	85.71 72 59.02 46.96 36.04 26.49
S=	1 2 3 4 5 6 7	76.19 54.94 36.95 22.81 12.74 6.36 2.83	77.27 56.78 39.15 24.97 14.51 7.6 3.56	78.26 58.48 41.24 27.07 16.31 8.91 4.38	79.17 60.07 43.21 29.1 18.11 10.29 5.29	80 61.54 45.07 31.07 19.91 11.71 6.27	80.77 62.91 46.83 32.96 21.68 13.18 7.33	81.48 64.19 48.49 34.78 23.44 14.66 8.44	82.14 65.39 50.06 36.54 25.16 16.17 9.6	82.76 66.51 51.55 38.22 26.84 17.68 10.81	83.33 67.57 52.97 39.83 28.49 19.18 12.05	83.87 68.56 54.3 41.38 30.09 20.68 13.32	84.37 69.49 55.57 42.86 31.64 22.16 14.6	84.85 70.38 56.78 44.29 33.15 23.63 15.9	85.29 71.21 57.92 45.65 34.62 25.07 17.2	85.71 72 59.02 46.96 36.04 26.49 18.5
S=	1 2 3 4 5 6 7 8	76.19 54.94 36.95 22.81 12.74 6.36 2.83 1.12	77.27 56.78 39.15 24.97 14.51 7.6 3.56 1.49	78.26 58.48 41.24 27.07 16.31 8.91 4.38 1.93	79.17 60.07 43.21 29.1 18.11 10.29 5.29 2.45	80 61.54 45.07 31.07 19.91 11.71 6.27 3.04	80.77 62.91 46.83 32.96 21.68 13.18 7.33 3.7	81.48 64.19 48.49 34.78 23.44 14.66 8.44 4.44	82.14 65.39 50.06 36.54 25.16 16.17 9.6 5.23	82.76 66.51 51.55 38.22 26.84 17.68 10.81 6.09	83.33 67.57 52.97 39.83 28.49 19.18 12.05	83.87 68.56 54.3 41.38 30.09 20.68 13.32 7.97	84.37 69.49 55.57 42.86 31.64 22.16 14.6 8.97	84.85 70.38 56.78 44.29 33.15 23.63 15.9 10.01	85.29 71.21 57.92 45.65 34.62 25.07 17.2 11.09	85.71 72 59.02 46.96 36.04 26.49 18.5 12.19

Jaki będzie normatywny współczynnik obciążenia przy wolniejszych i szybszych procesorach?

Zadanie 3

Do systemu M/M/1 przybywa strumień zgłoszeń ze średnim interwałem $a_{\text{śr}} = 10$ s i średnim wymaganiem zgłoszenia $b_{\text{śr}} = 10$ j.o. Wydajność procesora wynosi v. Narysuj odpowiedni graf przejść stanów dla procesu urodzin i śmierci w przypadku, gdy

- a) z prawdopodobieństwem 25% zgłoszenie po zakończeniu obsługi nie opuszcza systemu, lecz natychmiast powraca do kolejki,
- b) przy 3 lub więcej zgłoszeniach w systemie procesor zwiększa wydajność obsługi o 50%,
- c) po zakończeniu okresu zajętości procesor "idzie na wakacje", w trakcie których ignoruje zgłoszenia, zaś wznawia pracę dopiero przy 3 oczekujących zgłoszeniach,
- d) każdorazowo po zakończeniu obsługi zgłoszenia procesor "idzie na wakacje", w trakcie których ignoruje znajdujące się w systemie zgłoszenia; czas trwania "wakacji" ma rozkład wykładniczy ze średnią $h_{\text{śr}}$,
- e) procesor ulega awariom, w trakcie których nie obsługuje zgłoszeń (przerwana obsługa zgłoszenia zostaje dokończona po zakończeniu awarii); czasy trwania awarii oraz bezawaryjnej pracy mają rozkłady wykładnicze ze średnimi odpowiednio $f_{\text{śr}}$ i $g_{\text{śr}}$,
- f) system przyjmuje zgłoszenia parami pierwsze z pary oczekuje na następne i tak utworzona para traktowana jest jako jedno przybywające zgłoszenie o wymaganiu obsługi równym wymaganiu drugiego z pary.

Dla każdego z powyższych modeli starannie zdefiniuj stan systemu. Rozpatrz zdarzenia, jakie w każdej chwili mogą zajść w danym stanie oraz wynikające z nich stany w następnej chwili.

Zadanie 4

Zgłoszenia przybywają do systemu M/M/1 średnio co $a_{\text{śr}} = 10$ s, średnie wymaganie wynosi $b_{\text{śr}} = 10$ j.o., zaś wydajność procesora v = 1 j.o/s. W chwili przybycia każde zgłoszenie losuje swój "próg cierpliwości" z rozkładu wykładniczego o średniej $c_{\text{śr}}$. Jeżeli po jego upływie ciągle jeszcze oczekuje na rozpoczęcie obsługi – ucieka z kolejki. Przyjmując $c_{\text{śr}} = b_{\text{śr}}/v$, znajdź rozkład liczby zgłoszeń w systemie i frakcję zgłoszeń, które uciekły z kolejki.

Posłuż się rozwiązaniem ogólnych równań urodzin i śmierci, wykorzystaj też równanie ciągłości przepływu.