$\tau_{1}^{#2} + \alpha$	$\tau_{1}^{#1} + \alpha$	$\sigma_{1}^{#2} \uparrow^{\alpha}$	$\sigma_{1^{-}}^{*1} + ^{\alpha}$	$\tau_{1+}^{#1} + \alpha \beta$	$\sigma_{1+}^{\#2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	0	0		$\sigma_{1^{+}lphaeta}^{*1}$
0	0	0	0	0	0	0	$\sigma_{1+}^{\#2}{}_{lphaeta}$ $\tau_{1+}^{\#1}{}_{lphaeta}$
0	0	0	0	0	0	0	$\tau_{1}^{\#1}{}_{lphaeta}$
$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	0	0	$\sigma_{1^- lpha}^{\#2}$
0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	0	0	$t_{1^{-}\alpha}^{#2}$

$\frac{2}{3}t_3 \ \omega_{\alpha}^{(\alpha)} \ \omega_{\kappa\alpha}^{\kappa-\frac{1}{2}}r_3 \partial_i \omega_{\kappa}^{k\lambda} \partial_i \omega_{\lambda}^{\alpha} - r_5 \partial_i \omega_{\kappa}^{k\lambda} \partial^i \omega_{\lambda}^{\alpha} + \frac{2}{3}r_2 \partial_{\theta} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_3 \partial_{\theta} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_2 \partial_{\theta} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_2 \partial_{\theta} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_3 \partial_{\phi} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_3 \partial_{\phi} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_3 \partial_{\phi} \omega_{\alpha\beta}^{\kappa-\frac{1}{2}}r_3 \partial_{\phi} \omega_{\alpha\beta}^{\kappa-\frac{1}{2$

	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-} \ lpha}^{\# 1}$	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{#1}\dagger^{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<i>t</i> 3 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{2^{-}}^{\#1}{}^{\alpha\beta\chi}==0$	$\sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
24	5	5	3	3	3	3	1	1	#	

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_0^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\sharp 1}{}_{\alpha\beta}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

Unitarity conditions
$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)