DSLsofMath 2021: Assignment 2

Optimisation using Newton's method

This assignment is based on the lectures from weeks 3 and 4 (the FunExp type, eval, derive, D, tupling, homomorphisms, FD, apply, ...) so it pays off to work through those notes carefully.

1. The evaluation of the second derivative is given by

```
eval'' = eval' \circ derive = eval \circ derive \circ derive
```

- (a) Show that eval'' is not a homomorphism from FunExp to $FunSem = \mathbb{R} \to \mathbb{R}$.
- (b) Given the following types

```
type Tri~a=(a,a,a)
type TriFun~a=Tri~(a\rightarrow a) --= (a\rightarrow a,a\rightarrow a,a\rightarrow a)
type FunTri~a=a\rightarrow Tri~a --= a\rightarrow (a,a,a)
```

Define instances of the classes Additive, AddGroup, Multiplicative, MulGroup, Algebraic, and Transcendental, for Tri a and define a homomorphism evalDD from FunExp to FunTri a (for any type a in Field). You don't need to prove that it is a homomorphism in this part.

- (c) Show that evalDD is a homomorphism for the case of multiplication.
- 2. Newton's method allows us to find zeros of a large class of functions in a given interval. The following description of Newton's method follows Bird and Wadler [1988], page 23:

```
 \begin{aligned} \mathbf{type} \ \mathbb{R} &= Double \\ newton :: (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \to \mathbb{R} \\ newton \ f \ \epsilon \ x &= \mathbf{if} \ abs \ fx < \epsilon \\ &\qquad \qquad \mathbf{then} \ x \\ &\qquad \qquad \mathbf{else} \ \mathbf{if} \ fx' \neq 0 \ \mathbf{then} \ newton \ f \ \epsilon \ next \\ &\qquad \qquad \mathbf{else} \ newton \ f \ \epsilon \ (x + \epsilon) \end{aligned}   \mathbf{where} \ fx \qquad = f \ x \\ fx' \qquad = undefined \qquad --f' \ x \ (\mathbf{derivative} \ \mathbf{of} \ f \ \mathbf{at} \ x) \\ next = x - (fx \ / fx') \end{aligned}
```

(a) Implement Newton's method, using $Tri \mathbb{R} \to Tri \mathbb{R}$ for the type of the first argument. In other words, use the code above to implement

$$newtonTri :: (Tri \mathbb{R} \to Tri \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$$

in order to obtain the appropriate value for f'(x).

(b) Test your implementation on the following functions:

```
\begin{array}{lll} test0 \ x = x^2 & -- \text{ one (double) zero, in zero} \\ test1 \ x = x^2 - one & -- \text{ two zeros, in } +- \text{ one} \\ test2 \ x = sin \ x & -- \text{ many, many zeros (in } n*\pi \text{ for all } n::\mathbb{Z}) \\ test3 \ n \ x \ y = y^n - constTri \ x & -- test3 \ n \ x, \text{ has zero in "nth roots of } x" \\ -- \text{ where } constTri \text{ is the embedding of } Const \end{array}
```

For each of these functions, apply Newton's method to a number of starting points from a sensible interval. For example:

```
map (newton test1 0.001) [-2.0, -1.5...2.0]
```

but be aware that the method might not always converge!

For debugging is advisable to implement *newton* in terms of *newtonList*, a minor variation which returns a list of the approximations encountered on the way to the final answer:

```
newton \ f \ \epsilon \ x = last \ (newtonList \ f \ \epsilon \ x)
newtonList \ f \ \epsilon \ x = x : \mathbf{if} \ ... \ \mathbf{then} \ [] \ \mathbf{else} \ ...
```

- 3. We can find the optima of a twice-differentiable function on an interval by finding the zeros of its derivative on that interval, and checking the second derivative. If $f'(x_0)$ is zero, then
 - if $f''(x_0 < 0)$, then x_0 is a maximum
 - if $f''(x_0 > 0)$, then x_0 is a minimum
 - if $f''(x_0 = 0)$, then, if $f''(x_0 \epsilon) * f''(x_0 + \epsilon) < 0$ (i.e., f'' changes its sign in the neighbourhood of x_0), x_0 is an inflection point (not an optimum)
 - otherwise, we don't know

Use Newton's method to find the optima of the test functions from point 2. That is, implement a function

```
optim :: (Tri \mathbb{R} \to Tri \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \to Result \mathbb{R}
```

so that optim $f \in x$ uses Newton's method to find a zero of f' starting from x. If y is the result (i.e. f' y is within ϵ of 0), then check the second derivative, returning Maximum y if f'' y < 0, Minimum y if f'' y > 0, and Dunno y if f'' = 0.

As before, use several starting points.

Hint: you might want to modify the code you've written for Newton's method at point 2.

Formalities **5**

Submission: Assignments are to be submitted via Canvas

Deadline: 2021-03-02

Grading: Discussions with each of the teams during one of the slots 2021-03-08.

Skeleton code

Here is some useful skeleton Haskell code to start from, and the *Algebra* and *FunExp* modules are also available on github.

```
{-# LANGUAGE FlexibleContexts, FlexibleInstances, TypeSynonymInstances #-}
module A2 Skeleton where
import Prelude hiding ((+), (-), (*), (/), negate, recip, (),
                          \pi, sin, cos, exp, fromInteger, fromRational)
{\bf import}\ DSLs of Math. Algebra
import DSLsofMath.FunExp
type Tri a
                = (a, a, a)
type TriFun\ a = Tri\ (a \rightarrow a) \quad -- = (a \rightarrow a, a \rightarrow a, a \rightarrow a)
type FunTri\ a = a \rightarrow Tri\ a
                                --=a \rightarrow (a,a,a)
instance Additive a
                             \Rightarrow Additive (Tri a)
                                                           where (+) = addTri; zero = zeroTri
instance (Additive\ a, Multiplicative\ a)
                              \Rightarrow Multiplicative (Tri a) where (*) = mulTri; one = oneTri
instance AddGroup a
                              \Rightarrow AddGroup (Tri a)
                                                           where negate = negateTri
instance (AddGroup \ a, MulGroup \ a)
                              \Rightarrow MulGroup (Tri a)
                                                           where recip = recipTri
(addTri, zeroTri, mulTri, oneTri, negateTri, recipTri) = undefined
instance Transcendental\ a \Rightarrow Transcendental\ (Tri\ a) where
  \pi = piTri; sin = sinTri; cos = cosTri; exp = expTri
(piTri, sinTri, cosTri, expTri) = undefined
```

References

R. Bird and P. Wadler. Introduction to Functional Programming, 1988. Prentice-Hall, Englewood Cliffs, NJ, 1988.