

Amendments to the Claims

- 1 1. (currently amended) A method for partitioning an image including a plurality of points into segments, comprising:
 - 3 selecting a set of base points in the image;
 - 4 initializing and emitting a wavefront from each base point;
 - 5 propagating each wavefront according to a speed function until a termination condition is satisfied to determine a corresponding final
 - 6 wavefront; and
 - 8 segmenting the image according to each final wavefront; and
 - 9 rendering the segmented image.
- 1 2. (original) The method of claim 1, further comprising:
 - 2 constructing a gradient image from the input image;
 - 3 constructing a variance image from the input image; and
 - 4 selecting each base point iteratively in order of least gradient and
 - 5 variance values in the respective gradient and variance images.
- 1 3. (original) The method of claim 2, in which a likelihood of selecting the base point is inversely proportional to the gradient and variance values.
- 1 4. (original) The method of claim 2, in which the gradient image and the variance image are constructed at hierarchical resolution levels.
- 1 5. (original) The method of claim 1, in which the initial wavefront is substantially circular.

- 1 6. (original) The method of claim 1, in which the speed function varies
2 according to colors in the image.

- 1 7. (original) The method of claim 6, in which a speed of propagation
2 increases for adjacent points having a similar color and decreases for the
3 adjacent points having a dissimilar color.

- 1 8. (original) The method of claim 6, in which a speed of propagation
2 increases for adjacent points having a low average gradient magnitude and
3 decreases for the adjacent points having a high average gradient magnitude.

- 1 9. (original) The method of claim 6, in which a speed of propagation
2 increases for adjacent points having a low gradient magnitude on the normal
3 direction to the wavefront and decreases for the adjacent points having a
4 high gradient magnitude on the direction normal to the wavefront.

- 1 10. (original) The method of claim 1, in which the termination condition is a
2 color similarity of the points.

- 1 11. (original) The method of claim 1, in which the termination condition is
2 an edge in the image.

- 1 12. (original) The method of claim 1, in which the termination condition is
2 an arrival time of each wavefront.

- 1 13. (original) The method of claim 1, in which the speed function is
- 2 constant.

- 1 14. (original) The method of claim 1, in which the speed function is varying.

- 1 15. (original) The method of claim 1, in which the propagating is performed
- 2 iteratively using fast marching.

- 1 16. (original) The method of claim 15, further comprising:
 - 2 choosing \mathbf{x}^* as a point in a narrow band set of points with a smallest
 - 3 arrival time $\psi(\mathbf{x}^*)$ of the wavefront;
 - 4 moving point \mathbf{x}^* from the narrow band set of points to a current
 - 5 segment;
 - 6 moving all neighboring points \mathbf{x}_j^* of the point \mathbf{x}^* into the narrow band
 - 7 set of points if the neighboring points are not in the narrow band set of
 - 8 points;
 - 9 updating the arrival time $\psi(\mathbf{x}_j^*)$ for all the neighboring points of \mathbf{x}^* ,
 - 10 updating a color mean for the current segment;
 - 11 updating a color mean for the narrow band set of points;
 - 12 increasing a total number of points in the current segment; and
 - 13 updating a total number of points in the narrow band set of points.

- 1 17. (original) The method of claim 16, in which the color mean of the
- 2 current segment is S_K , and updated the color mean by $S'_K = 1/N'_K [N'^{-1}_K S_K +$
- 3 $I(\mathbf{x}^*)]$, where t is time, and N_K is the total number of points in the current
- 4 segment, and I is the image.

- 1 18. (original) The method of claim 16, in which the narrow band set of
- 2 points is the wavefront.

- 1 19. (original) The method of claim 16, in which the color mean of the
- 2 narrow band set of points is B'_K , and the color mean is updated by $B'_K =$
- 3 $1/M_{IK} [M^{-1}KB_K - I(\mathbf{x}_j^*) + \sum_j^c I(\mathbf{x}_j)]$, where M_K is the number of points in the
- 4 current narrow band set.

- 1 20. (original) The method of claim 16, in which the color mean S_K of the
- 2 current segment and the color mean of the narrow band set of points are used
- 3 to determine color similarity.

- 1 21. (original) The method of claim 16, in which a set of representative colors
- 2 for the current segment and a set of representative colors for narrow band set
- 3 of points are used to determine color similarity.