Facoltà di Scienze MH. F.F. NN.
Corso di laurea in Informatica
prova senta di Geometria
(8-02-2012)

1) Sia L: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ l'enolomozfismo olefinito da L(x,y,z) = (2x+y+z,x+2y+z,x+y+2z).

Determinare Ker L, hm L, stabilire se L è oli agonal zgabile e, in easo affermativo, oleterminare una base per R³ formata ole Autovettori.

2) Considerato & sistema lineare

 $\begin{cases} x+z = x \\ 2x+xy-z=0 \\ x-2y-z=1 \end{cases}$

dipendente dan valon reali h, k, stabilire quendo è compatibile e determiname le eventual soluzioni.

- 3) Determinare l'equazione contenona del luogo

 delle rette per P(1,0,1) e formati un angolo di

 II con la retta 7: \$ x= Z

 4
- 4) Verificare che le rette τ ; $\begin{cases} x = z 1 \\ y = z \overline{z} \end{cases}$ sono sghen be e oleterminare la retto oli minne distaze -

Università degli studi di Palermo Facoltà di Scieze M. M. F.F. NN. prove scritta di Geometrie 9-2-2009

1) Discutere, ed eventualiste risolvere, il sistema lineare

$$\begin{cases} x + y + K = 1 \\ 2x - y + E = 0 \\ 3c + y + 2z = 1 \end{cases}$$

al vanoire del parametro reale K e dare un'interpretazione geometrica dei un latati.

- 2) Sie Lk un endomorfromo in R³ olefinito do;

 LK(SC, y, Z) = (x+y+KZ, 2x-y+Z, x+y+ZZ)

 eon K paraetro reale. Determinere Ker Lk, lm Lk ol

 variore di K in R.
- 3) Consolerata la matrice $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ stabilité se é obagonalizzable e, un caso affermativo, obeterminare una bisse ob autovettor. B' é la matrie ob passaggio M B (Ld).
- 4) Determinare centro e rouggio della circo-ferenza. $C: \begin{cases} xc^2+y^2+z^2-2x-4y+2z=0\\ 2xc-y+z=0 \end{cases}$

€ le equazioni della retta tonge-te l'in O.

5) Determinare la minima distaza tra le rette $x: \begin{cases} x=7 \\ y=27 \end{cases}$ $\begin{cases} x=1 \\ y=-7 \end{cases}$.

Università di Palermon Facoltà di Scienze Corso di laurea in Informatica Prova senitta di GEOMETRIA (21-06-2012)

1) Determinare le equazioni della retta z passante per P(1,1,0), incidente la retta s: § x=Z+1 e perpendicolare alla retta
meidente la retta si sx=2+1 e perpendicolare alla retta
(y=2₹
t: } n=27
t: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2) Déterminare l'equazione obllo sfera tangente in $P(1,1,0)$ alla retta $r: \sum x=2\overline{z}+1$ e tongente in $Q(0,0,1)$ alla retta $(y=\overline{z}+1)$
alla retta r: S x= 27+1 e tompente in Q(0,01) alla retta
(1 - Z +1
5: \{ 2 - 7-1 \\ y = 0
y=0
3) Disentere ed eventualmente riso Evere il sistema lineare
(n-y-2=-1
2-24+37 h clvariare di h, k in R.
2-2y+3z=-h olvaniare di h, k in R. (Kx +4y+z=-3
4) Siano U= {(x,y, z,t) & R4/2+2y-z=0, x-2y-t-0} e
W- {(x, y, Z,t) TER" / x-y+z=0, x+y+t-03 sottospazi oli R4.
peterminare un endomorfismo in R'ache ammeta U come nucleo
eW come spazio immograe
5) Data la matrice A - (-1 2 0 1)
2 0 -1 -1
determinarne autovalori ed autospazi e stabilize,
motivando la risposta, se A è oliagonalizzabile.
. ,

Facoltà di Scienze MM. FF. NN. Corro di laurea in Informatica prova seri Ha di Geometria (8-02-2012)

1) Sia L: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ l'enolomozfismo olefinito da L(x,y,z) = (2x+y+z,x+2y+z,x+y+zz).

Determinare Ker L, Im L, stabilire se Lè oli agonalizzatione e, vi easo affermativo, oleterminare una base per R³ formata ole Autorettori.

2) Considerato il sistema l'neare

 $\begin{cases} x+z = 2 \\ 2x+ky-z = 0 \\ x-2y-z = 1 \end{cases}$

di pendente obsi valon reali h, k, stabilire quando è compatibile e determiname le eventual saluzioni.

- 4) Ven freare che le rette τ : $\begin{cases} x = Z-1 \\ y = 2Z \end{cases}$ $\begin{cases} x = 1 \\ y = Z-1 \end{cases}$ sono sghen be e oletermare la retto di minime distaze.

Università di Palermo Facoltà di Scienze HH. FF. NN. Corso di laurea in Informatica prova senta di Geometria

(11-0+-11)
1) Considerato il sistema lineare
(x+y+z=1)
2x-y-2-2
2x + 2y + z = 0
stabilize per quale valore di h & R il notema è compatibile
e oleterminerne le eventuali soluzioni. Dare une
interpretazione geometrica dei risultati.
2) Sie L: R3-0 R3 l'endomorfismo definito da
L(x,y,z)= (0, -2x+y+z, y+z).
Determinare Kerl, ImL
(0 0 0
3) Considerata la matrice A - (-2 1 1
\ 0 1 1 /
stabilise se é objegonalizzabile, nel easo
contrario oleterminarne una forma canonica
oli Jordan, assegnando anche una base oli
autovetlon generalizat.
0 00
4) Verifice else la retta z: x=-2t, y=-1-t, Z=1-t
e la retta s. { ½ = -1 o sono sylvembe.
Determina la rette di minime distanze e la minima
olistanza delle due rette.
5) Determine l'eparione carteriane della superlice
generata dalla ratazione della retta 7, 5x=27-2
5) Détermine l'épazione contenana della superfice generata dalla retazione della retta 7: 5x=27-2 (4=7-2
intorno alla netta s: \ n = Z-1
\\ \\ - \tilde{\tau} - 1

Università di Palermo-Facoltà di Scienze Corso di laurea in Sinformatica Prova scritta di GEOMETRIA (21-06-2012)

1) Determinare le equazioni della retta z passante per P(1,1,0),
me dente la retta si sx=Z+1 e perpendicolare alla retta y=27
Y=2=
t: \n=27
t: 2 n=27
2) Déterminare l'equazione della sfera tangente in P(1,1,0)
alla retta $r : \begin{cases} x = 7 + 1 \end{cases}$ e tongente in $Q(0,0,1)$ alla retta
$(4-\pm 1)$
3: \frac{3}{y=0}
(y = 0
3) Disentere ed eventualmente riso Evere il sistema lineare
2-24+3= 2 alvaniare di h, k in R. (Kx +44+ = -3
(Kx +44+ == -3
4) Siamo U= {(x,y,z,t) & 184/24-2-0, x-2y-t-0} e
W- {(x, y, 7,t) TER" / x-y+z=0, x+y+t-0} sottospazi chi R4.
Determinare un endomorfismo in R'ache ammetta U come nucleo
eW come spazie immogrine
5) Data la matrice A - (-1 2 0 1)
2 0 -1 -1
determinarne autovalori ed automais estal l'is
determinarne autovalori ed autospazi e stabilize, motivando la risposta, se A e oliagonalizzabile.
, some some .