Name:

- 1. Find the volume of the solid bounded by the two paraboloids $z=x^2+2y^2$ and $z=12-2x^2-y^2$.[10pts.]
- 2. Consider two spheres S_1 and S_2 of radius R and mass densities $\rho_1(x,y,z)=1$ and $\rho_2(x,y,z)=C\sqrt{x^2+y^2+z^2}/R$, respectively. (a) Find C such that S_1 and S_2 have the same mass (b) For equal masses, which sphere has a higher moment of inertia I_z ? [10pts]
- 3. Let $\mathbf{F}(\mathbf{r}) = \mathbf{r}/r^p$ with $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$ and $r = \sqrt{x^2 + y^2}$ be a radially symmetric vector field and p > 0 a parameter. (a) Show that \mathbf{F} is conservative, i.e. $\nabla \times \mathbf{F} = 0$. (b) Compute the potential ϕ with $F = \nabla \phi$. (c) For what value of p is \mathbf{F} divergent free, i.e. $\nabla \cdot \mathbf{F} = 0$. (d) In this case, what differential equation (involving ∇) must ϕ fullfill? [10pts]
- 4. A particle moves from the point (0,0) to the point (1,0) along the curve $y=\alpha x(1-x)$ in the force field ${\bf F}=(y^2+1){\bf i}+(x+y){\bf j}$. Find α so that the work done is a minimum. [10pts.]
- 5. Maxwell's curl equations are:

$$\nabla \times \mathbf{E} = -\,\frac{\partial \mathbf{B}}{\partial t} \quad \text{and} \quad \frac{1}{\mu_0} \nabla \times \vec{B} = \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \,.$$

Assuming μ_0 and ϵ_0 are constant, show that

$$\frac{1}{\mu_0}\nabla\cdot(\mathbb{E}\times\mathbb{B}) + \frac{\partial}{\partial t}\left[\frac{1}{2\mu_0}|\mathbb{B}|^2 + \frac{\epsilon_0}{2}|\mathbb{E}|^2\right] = 0.$$

Note: The quantity $(\mathbf{E} \times \mathbf{B})/\mu_0$ is the electromagnetic energy flux, also called Poynting's vector, and

$$\frac{1}{2\mu_0}|\mathbf{B}|^2 + \frac{\epsilon_0}{2}|\mathbf{E}|^2$$

is the electromagnetic energy density.[10pts.]

6. Given a closed surface S bounding a three dimensional region T and the vector field $\mathbf{F}(\mathbf{r}) = \mathbf{r}$ with $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ show that the volume V of T is given by

7. Use Stokes' Theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = 2x\mathbf{i} + x\mathbf{j} + 3y\mathbf{k}$ and where C is the ellipse in which the plane z = x meets the cylinder $x^2 + y^2 = 4$, oriented counterclockwise as viewed from above.[10pts.]

Extra credit questions [5pts.]:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$
 State The

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{T} dV \, \nabla \cdot \mathbf{F} \quad \text{Gauss's Thing}$$

Name the above equalities and associate them with the correct faces (write the corresponding letter under the portrait).

Gauss

Stokes

	*
Score	Max
	10
	10
	10
	10
	10
	10
	10
	.70
	Score