Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2025-2026

Transistor

cfr. https://inst.eecs.berkeley.edu/~ee105/fa15/lectures/Lecture06-pn%20Junction%20(with%20appendix).pdf

http://studenti.fisica.unifi.it/~carla/appunti/2008-9/cap.4.pdf

http://ume.gatech.edu/mechatronics_course/Transistor_F04.ppt

Storia del Transistor

- Inventati nel 1947, ai Bell Laboratories.
- John Bardeen, Walter Brattain, and William Schockly sviluppano il primo modello di transistor (fatto in Germanio)
- Hanno ricevuto il premio Nobel in Fisica nel 1956 "per le loro ricerche sui semiconduttori e per la loro scoperta dell'effetto transistor"
- Prima applicazione: rimpiazzare i tubi a vuoto (valvole), grandi e iniefficienti
- Oggi si realizzano milioni di transistor su un singolo wafer di silicio e sono utilizzati su praticamente tutti i dispositivi elettronici

primo modello di transistor

Cosa è un transistor?

- Il transistor è un dispositivo a semiconduttore a 3 terminali
- E' possibile, con un transistor, controllare la corrente elettrica o il voltaggio fra due terminali applicando una corrente elettrica o un voltaggio al terzo. E' un componente "attivo".

- Con il transistor possiamo fare dispositivi amplificanti o interruttori elettrici. La configurazione del circuito determina se il funzionamento è quello dell'amplificatorore o quello dell'interruttore.
- Nel caso di interruttore (miniaturizzato) ha due "posizioni" di funzionamento: "1" o "0". Questo permette le funzionalità binarie e permette di processare le informazioni in un microprocessore.

Semiconduttori

Semiconduttore comunemente utilizzato:

Silicio

- è il materiale di base per la maggior parte dei circuiti integrati
- ha 4 elettroni di valenza, nel reticolo ci sono 4 legami covalenti
- il cristallo di silicio, normalmente, è un isolante: non ci sono elettroni "liberi"
- la concentrazione intrinseca di portatori di carica (n_i) è funzione della temperatura (a temperatura ambiente, 300K, $n_i = 10^{10} / \text{cm}^3$)

Semiconduttori

- si può aumentare la conducibilità elettrica, nel cristallo di silicio, aumentando la temperatura (poco utile) e con il dopaggio
- il dopaggio consiste nell'aggiungere piccole percentuali degli elementi vicini

Semiconduttori: dopaggio

Due tipi di dopaggio

- N-type (negativo)
 - · impurità di *donori* (dal Gruppo V) aggiunte al reticolo cristallino del Si
 - portatori di carica dominante: elettroni negativi
 - > elementi del Gruppo V come Fosforo, Arsenico e Antimonio
- P-type (positivo)
 - impurità di accettori (dal Gruppo III) aggiunte al reticolo cristallino del Si
 - portatori di carica dominante: lacune (holes) positive
 - elementi del Gruppo III come Boro, Alluminio e Gallio

Costituente base: la giunzione p-n

- chiamata anche diodo
- permette alla corrente, idealmente, di scorrere solamente da p verso n

- a causa del gradiente di densità gli elettroni diffondono nella regione p e le lacune in quella n
- questi portatori di carica si ricombinano. La regione intorno alla giunzione è svuotata di cariche mobili
- due tipi di comportamenti possibili: inverso e diretto

Bias esterno

Polarizzazione (bias) diretta

polarizzazione diretta:

- il potenziale esterno abbassa la barriera di potenziale alla giunzione
- le <u>lacune</u> (dal materiale *p*-type) e gli elettroni (dal materiale *n*-type) sono spinte verso la giunzione
- Una corrente di elettroni fluisce verso p (sinistra nel disegno) e una di lacune verso n (destra). La corrente totale è la somma delle due correnti

Polarizzazione inversa

polarizzazione inversa:

- il potenziale esterno alza la barriera di potenziale della giunzione
- c'è una corrente transiente che fluisce fintanto che gli elettroni e le lacune sono tirate via dalla giunzione
- quando il potenziale formato dall'allargamento della zona di svuotamento eguaglia il voltaggio esterno applicato la corrente transiente si ferma (ad eccezione di una piccola corrente "termica")

- Polarizzazione diretta: la corrente passa
 - sono necessari ~0.7V (nel Si) per iniziare la conduzione ("vincendo" il potenziale di contatto, V_d)
- Polarizzazione inversa: il diodo blocca la corrente
 - ideale: corrente = 0
 - $\text{ reale} : I_{flow} = 10^{-9} \text{ A}$

I_s è la **corrente di saturazione inversa** che, asintoticamente, fluisce in regime di contropolarizzazione (bastano poche centinaia di mV)

$$I_D = I_S \left(e^{V_D / \eta V_T} - 1 \right)$$

$$V_V = V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$
soglia di conduzione in diretta
$$V_T : \text{ thermal voltage } (= 26 \text{ mV at room temp})$$

$$N_A : \text{ acceptor concentration on n-side}$$

$$N_D : \text{ donor concentration on n-side}$$

$$N_D : \text{ intrinsic carrier concentration}$$

$$(=1.5 \times 10^{10} \text{ cm}^{-3} \text{ at room temp})$$

$$I_S = 1 \text{ nA}$$

$$\eta = 1.5$$

$$V_T = 26 \text{ mV} = \frac{kT}{q}$$

 I_s è la **corrente di saturazione inversa** che, regime di contropolarizzazione (bastano pocne centinaia di mv)

 $V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right) = 0.88 \text{ V}$

Il diodo come rivelatore di particelle

- se passa una particella carica ionizza il materiale, oppure un fotone "promuove" un elettrone in conduzione per effetto fotoelettrico
- i portatori liberi migrano verso le "strip" sotto l'effetto del campo elettrico
- è possibile realizzare strutture 2D (misura di X e Y)
- è possibile non leggere tutte le strip ma avere comunque risoluzioni spaziali di
 - ~ 10 um grazie al "travaso di carica" (accoppiamento capacitivo fra le strip)

Rivelatore di particelle

Tracciatore al Si – AMS-02

Bipolar Junction Transistor (BJT)

- 3 zone adiacenti di Si dopato (ognuna connessa ad un filo):
 - Base (sottile, poco dopata).
 - Collettore
 - Emettitore
- 2 tipi di BJT:
 - npn
 - pnp
- più comune: npn

npn bipolar junction transistor

pnp bipolar junction transistor

Sviluppato da Shockley (1949)

Bipolar Junction Transistor (BJT)

pnp

npn

Transistor BJT npn

- 1 strato sottile di p-type, fra 2 strati di n-type
- il n-type dell'Emettitore è più dopato (n+) di quello del Collettore
- con $V_C > V_B > V_E$:
 - la giunzione B-E è polarizzata direttamente, la B-C inversamente
 - gli elettroni diffondono da E verso B (da n verso p)
 - c'è una zona di svuotamento della giunzione B-C → flusso di e- non permesso
 - ma la B è sottile e E è n⁺ → gli elettroni hanno abbastanza momento per attraversare B, verso C e quindi la maggior parte fluirà proprio verso C
 - la corrente di base, l_B (piccola), controlla quella di collettore, l_C (più grande)

Caratteristica del BJT (zona attiva)

Equazioni di Ebers-Moll semplificate:

$$I_{E} = -I_{ES} \cdot (e^{V_{BE}/\eta V_{T}} - 1)$$

$$I_{C} = \alpha_{F} I_{ES} \cdot (e^{V_{BE}/\eta V_{T}} - 1) = -\alpha_{F} I_{E}$$

La corrente di base I_B controlla una corrente di collettore I_C che e' β_F volte piu' grande:

$$I_{B} = -I_{E} - I_{C} = \frac{I_{C}}{\alpha_{F}} - I_{C} = I_{C} \frac{1 - \alpha_{F}}{\alpha_{F}}$$

$$I_{C} = \frac{\alpha_{F}}{1 - \alpha_{F}} I_{B} = \beta_{F} I_{B}$$

coefficienti di amplificazione di corrente:

$$\alpha_F = 0.95 \dots 0.999$$
 a base comune

$$\beta_E = 20...1000$$
 a emettitore comune

rapporto fra I_C e I_E rapporto fra I_C e I_B

Polarizzazione collettorebase nella configurazione base comune $I_R + I_C$

Polarizzazione collettore-emettitore nella configurazione *emettitore comune*

$$I_E = -(\beta_F + 1)I_B$$

Materiale aggiuntivo non discusso a lezione

Caratteristica con Emettitore Comune

BJT come interruttore

 V_{in} ("bassa") < 0.7 V

- B-E non polarizzata direttamente
- regione di cutoff → non fluisce corrente
- V_{out} = V_{CE} = V_{cc}

 → V_{out} = "alta"

V_{in}("alta")

- B-E polarizzata direttamente (V_{BE}>0.7V)
- Ic massima → V_{CE} minima (~0.2 V, BJT in saturazione) → regione di saturazione
- V_{out} = piccola
- $I_B = (V_{in} V_B)/R_B$
- → V_{out} = "bassa"

BJT come amplificatore (zona attiva)

- Emettitore comune
- Regione di linearità
- Guadagno elevato

Esempio:

- guadagno, β = 100
- V_{BF}=0.7V

BJT come amplificatore (zona attiva)

$$\begin{split} V_{BE} &= 0.7V \\ I_E &= I_B + I_C = (\beta + 1)I_B \\ I_B &= \frac{V_{BB} - V_{BE}}{R_B + R_E * 101} = \frac{5 - 0.7}{402} = 0.0107 mA \\ I_C &= \beta * I_B = 100 * 0.0107 = 1.07 mA \\ V_{CB} &= V_{CC} - I_C * R_C - I_E * R_E - V_{BE} = \\ &= 10 - (3)(1.07) - (2)(101 * 0.0107) - 0.7 = \\ &= 3.93V \end{split}$$

V_{CB}>0 quindi il BJT è nella zona attiva

Field Effect Transistors - FET

- 1955: the first Field effect transistor works
- Similar to the BJT:
 - Three terminals,
 - Control the output current

Enhancement mode

BJT Terminal	FET Terminal
Base	Gate
Collector	Drain
Emitter	Source

MOSFET: Metal-Oxide Semiconductor Field Effect Transistor