Programme de la semaine 26 (du 05/05 au 11/05).

Matrices, déterminants

Reprise avec en plus:

• Définition du déterminant d'une matrice comme l'unique forme sur $\mathcal{M}_n(\mathbb{K})$ n-linéaire et antisymétrique par rapport aux colonnes et qui envoie I_n sur 1. Propriétés : cas de deux colonnes identiques, d'une colonne nulle, déterminant de $\lambda.A$, de A^T , effet des opérations élémentaires. Développement par rapport à une ligne, à une colonne. Cas d'une matrice triangulaire ou diagonale. Déterminant d'un produit, traduction de l'inversibilité et déterminant de l'inverse.

Ensembles finis, dénombrement : COURS UNIQUEMENT

- Ensembles finis, cardinal (définition intuitive, propriétés admises).
- Cardinal d'une réunion disjointe, du complémentaire, d'une différence et d'une réunion de deux ensembles, d'un produit cartésien, de $\mathcal{P}(E)$.
- Dénombrement : définition et nombre de *p*-listes, de *p*-arrangements, de permutations, de *p*-combinaisons d'un ensemble fini.

Décomposition en éléments simples

⚠ La notion formelle de fraction rationnelle n'est pas au programme de PTSI.

L'objectif est uniquement calculatoire; on admet le théorème suivant :

Si
$$f: x \mapsto \frac{A(x)}{B(x)}$$
 avec : $\deg(A) < \deg(B)$, $B = (X - x_1) \dots (X - x_p)$ avec les x_k 2 à 2 distincts, alors $\exists ! (a_1, \dots, a_p) \in \mathbb{R}^p$, $\forall x \in \mathbb{R} \setminus \{x_1, \dots, x_p\}$, $f(x) = \frac{a_1}{x - x_1} + \dots + \frac{a_p}{x - x_p}$.

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- une petite décomposition en éléments simple dans le cadre du programme (fonctions rationnelles à pôles simples de degré < 0).
- et l'une des démonstrations suivantes :
 - Soient E un \mathbb{K} -ev de dimension finie, \mathcal{B} une base de E; F un \mathbb{K} -ev de dimension finie, \mathcal{C} une base de E, avec $\dim(E) = \dim(F)$. Soit $u \in \mathcal{L}(E, F)$. u est bijective ssi $\max_{\mathcal{B},\mathcal{C}}(u)$ est inversible, expression de la matrice de u^{-1} dans ce cas.
 - Calcul de $\det(A \lambda I_3)$ directement sous forme factorisée, pour $A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$.
 - Preuve combinatoire de : $p\binom{n}{p} = n\binom{n-1}{p-1}$ (bien introduire p et n).

Semaine suivante de colle : Matrices, déterminants, dénombrement.