SESSION 2014 MPM1002

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé de deux exercices et d'un problème, tous indépendants.

I: PREMIER EXERCICE

I.1. On note $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\}$, calculer l'intégrale double $\iint_D \frac{1}{1 + x^2 + y^2} dx dy$.

II: DEUXIEME EXERCICE

a et b étant deux fonctions continues sur \mathbb{R} , on note l'équation différentielle

(E):
$$x^2y'' + a(x)y' + b(x)y = 0$$
.

On note S^+ l'espace vectoriel des solutions de (E) sur l'intervalle $I =]0, +\infty[$ et S^- l'espace vectoriel des solutions de (E) sur l'intervalle $J =]-\infty, 0[$.

L'objectif de cet exercice est d'étudier la dimension de l'espace vectoriel S des fonctions y de classe C^2 sur \mathbb{R} vérifiant (E) sur \mathbb{R} tout entier.

- II.1. Donner la dimension des espaces vectoriels S^+ et S^- .
- II.2. On note φ l'application linéaire de S vers $S^+ \times S^-$ définie par $\varphi(f) = (f_I, f_J)$ où f_I désigne la restriction de la fonction f à l'intervalle I et f_J désigne la restriction de la fonction f à l'intervalle J.

Donner le noyau de l'application φ et en déduire que dim $S \leq 4$.

II.3. Dans cette question, on considère a(x) = x et b(x) = 0, d'où

$$(E): \quad x^2y'' + xy' = 0.$$

Déterminer S^+ et S^- .

Déterminer ensuite S et donner sans détails la dimension de S.

II.4. Dans cette question (E): $x^2y'' - 6xy' + 12y = 0$.

Déterminer deux solutions sur I de cette équation de la forme $x \longmapsto x^{\alpha}$ (α réel).

En déduire S^+ puis S^- .

Déterminer S et donner la dimension de S.

II.5. Donner un exemple d'équation différentielle du type (E) : $x^2y'' + a(x)y' + b(x)y = 0$ tel que dim S = 0 (on détaillera).

On pourra, par exemple, s'inspirer de la question précédente.

III: PROBLEME

Première partie : convergence de séries par transformation d'Abel

III.1. On considère une suite de réels (a_n) , une suite de complexes (b_n) et on note pour tout entier naturel $n: S_n = \sum_{k=0}^n a_k b_k$ et $B_n = \sum_{k=0}^n b_k$.

En remarquant que, pour $k \ge 1$, $b_k = B_k - B_{k-1}$, démontrer que, pour tout entier naturel n non nul,

$$S_n = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n \text{ (transformation d'Abel)}.$$

III.2. On suppose que la suite (B_n) est bornée et que la suite (a_n) est décroissante de limite nulle.

III.2.a Démontrer que la série
$$\sum_{k\geq 0} (a_k - a_{k+1})$$
 converge.

- III.2.b En déduire que la série $\sum_{n>0} a_n b_n$ converge.
- **III.2.c** En appliquant le résultat précédent au cas où $b_n = (-1)^n$, donner une démonstration du théorème des séries alternées, après l'avoir énoncé.
- III.3. Exemple.

Dans cette question, θ est un réel différent de $2k\pi$ $(k \in \mathbb{Z})$ et $\alpha \in \mathbb{R}$.

- III.3.a Calculer pour n entier naturel non nul, $\sum_{k=1}^{n} e^{ik\theta}$.
- III.3.b Discuter en fonction du réel α la nature de la série $\sum_{n\geq 1} \frac{e^{in\theta}}{n^{\alpha}}$.
- **III.4.** Soit la série de fonctions $\sum_{n\geq 1} u_n$ où pour x réel et n entier naturel non nul, $u_n(x) = \frac{\sin(nx)}{\sqrt{n}}$.

Démontrer que cette série de fonctions converge simplement en tout point de \mathbb{R} .

On pourra utiliser sans démonstration le fait qu'une série de complexes $\sum u_n$ converge si et seulement si, les deux séries ayant pour termes généraux les parties réelles et parties imaginaires (c'est-à-dire $\sum \text{Re}(u_n)$ et $\sum \text{Im}(u_n)$) convergent.

On notera U sa fonction somme : pour tout réel x, $U(x) = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}$.

Deuxième partie : convergence uniforme de séries

III.5. On considère une suite de réels (a_n) et (f_n) une suite de fonctions définies sur une partie A de \mathbb{C} et à valeurs dans \mathbb{C} .

On pose, pour tout $z \in A$ et pour tout entier naturel n, $F_n(z) = \sum_{k=0}^n f_k(z)$.

On suppose que la suite (a_n) est décroissante de limite nulle et qu'il existe $M \in \mathbb{R}^+$, tel que pour tout $z \in A$ et tout $n \in \mathbb{N}$, $|F_n(z)| \leq M$ (on dit que la suite (F_n) est uniformément bornée).

- III.5.a Démontrer que la suite (a_nF_n) converge uniformément sur A et que la série de fonctions $\sum_{k\geq 0}(a_k-a_{k+1})F_k$ converge normalement sur A.
- III.5.b A l'aide d'une transformation d'Abel, en déduire que la série de fonctions $\sum a_n f_n$ converge uniformément sur A.

III.6. Exemple.

Pour x réel et n entier naturel non nul, $u_n(x) = \frac{\sin(nx)}{\sqrt{n}}$.

III.6.a Démontrer que pour $x \in \mathbb{R}$, $1 - e^{ix} = -2i\sin(x/2)e^{ix/2}$.

Démontrer que la série de fonctions $\sum_{n\geq 1} u_n$ converge uniformément sur tout intervalle

$$[a, 2\pi - a]$$
 où $a \in]0, \pi[$.

En déduire que la fonction U est continue sur l'intervalle $]0, 2\pi[$.

III.6.b Pour p entier naturel, on considère la série de fonctions $\sum_{n\geq 1} v_n$ où pour x réel et n entier naturel non nul, $v_n(x) = \frac{\sin(nx)\sin(px)}{\sqrt{n}}$.

Démontrer que, pour tout entier naturel p, la série de fonctions $\sum_{n\geq 1} v_n$ converge uniformément sur l'intervalle $[0,\pi]$.

On pourra, par exemple, utiliser sans démonstration, que :

pour tout
$$x \in [0, \pi], \frac{x}{\pi} \le \sin\left(\frac{x}{2}\right)$$
.

III.6.c On se propose dans cette question de démontrer que la fonction U n'est pas continue par morceaux sur \mathbb{R} .

Pour cela, on raisonne par l'absurde en supposant que la fonction U est continue par morceaux sur \mathbb{R} .

i. Déterminer alors les coefficients de Fourier de la fonction U. On pourra utiliser pour p et n entiers naturels non nuls :

$$p \neq n$$
, $\int_0^{\pi} \sin(nx)\sin(px)dx = 0$ et pour $p = n$ $\int_0^{\pi} \sin(nx)\sin(px)dx = \frac{\pi}{2}$.

ii. En utilisant la formule de Parseval, aboutir à une contradiction.

Troisième partie : convergence uniforme d'une série entière

- III.7. Si $\sum_{n\geq 0} a_n z^n$ est une série entière de la variable complexe de rayon R>0, rappeler le résultat du cours concernant la convergence uniforme de cette série.
- III.8. On considère la série entière de la variable complexe $\sum_{n\geq 1} \frac{z^n}{\sqrt{n}}$ de rayon 1.
 - III.8.a On note $D = \{z \in \mathbb{C}, |z| < 1\}.$

Démontrer que la série entière de la variable réelle $\sum_{n\geq 1} \frac{x^n}{\sqrt{n}}$ ne converge pas uniformément sur]-1,1[(en particulier la série $\sum_{n\geq 1} \frac{z^n}{\sqrt{n}}$ ne converge pas uniformément sur D).

III.8.b On pourra confondre un point de \mathbb{R}^2 et son affixe.

Pour $\alpha \in \left]0, \frac{\pi}{2}\right[$, on note D_{α} l'ensemble des complexes z, tels que $|z| \leq 1$ et dont la partie réelle vérifie $\operatorname{Re}(z) \leq \cos \alpha$.

Représenter géométriquement l'ensemble D_{α} dans un repère orthonormé du plan.

III.8.c Démontrer que D_{α} est une partie fermée de \mathbb{C} .

On pourra écrire:

$$D_{\alpha} = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le 1\} \cap \{(x, y) \in \mathbb{R}^2, x \le \cos \alpha\}$$

et démontrer que D_{α} est une partie fermée de \mathbb{R}^2 .

En déduire que D_{α} est une partie compacte de \mathbb{C} .

III.8.d On note pour $z \in \mathbb{C}$ et n entier naturel, $F_n(z) = \sum_{k=0}^n z^k$.

Démontrer que pour tout $z \in D_{\alpha}$ et tout entier naturel n, si x = Re(z):

$$|F_n(z)| \le \frac{2}{1-x} \le \frac{2}{1-\cos\alpha} .$$

III.8.e Démontrer que la série entière $\sum_{n\geq 1} \frac{z^n}{\sqrt{n}}$ converge uniformément sur tous les compacts D_{α} (pour $\alpha \in \left]0, \frac{\pi}{2}\right[$).

Fin de l'énoncé