Problem 1.

Conway V.6.6.

 $Problem\ 2.$

Conway V.7.6.

Problem 3.

Conway V.7.2.

(Recall that if (X, μ) is a measure space, then an *atom* of (X, μ) is a measurable $E \subseteq X$ with $\mu(E) > 0$ and so that if $F \subseteq E$ is measurable with $\mu(F) > 0$, then $\mu(F) \in \{0, \mu(E)\}$.)

problems to think about. do not turn in

Problem 4.

Let V be a separable Banach space. For a σ -finite measure space (X, μ) and $1 \le p \le \infty$, we let $L^p(X, \mu; V)$ be the space of all weakly measurable functions $f: X \to V$ so that $||f||_p = \left(\int ||f(x)||^p d\mu(x)\right)^{1/p} < +\infty$.

(a) Prove that $L^p(X,\mu;V)$ is a Banach space. Hint: if $(f_n)_n \in L^p(X,\mu;V)$ and $\sum_n \|f_n\|_p < +\infty$ argue that

$$\int \left(\sum_{n=1}^{\infty} \|f_n(x)\|\right)^p d\mu(x) < +\infty.$$

Use this to show that $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges a.e x and that $||f - \sum_{n=1}^{N} f_n||_p \to_{N \to \infty} 0$.

(b) Prove that $I: L^1(X, \mu; V) \to V$ given by $I(f) = \int f(x) d\mu(x)$ is a bounded linear contraction.

Problem 5.

Prove that if (X, μ) is σ -finite and $L^1(X, \mu)$ is the dual of a Banach space, then there is a countable collection of atoms $(E_j)_{j \in J}$ so that $\mu\left(X \setminus \bigcup_{j \in J} E_j\right) = 0$.