CSE 321

Real -Time and Embedded Operating Systems

Documentation

- In general, documentation is critical
- Allows for proper design
- Allows for efficient maintenance

This is a critical idea all around and it comes in many forms

 Some cases will need all the types of documentation, some will not

Why do we care about this now?

- Why not care?
- Reality is collaborative...you are one step closer to those projects and jobs if you aren't there already
 - Others will read, maintain, debug, and modify your code
- Academic Integrity

What things can go in documentation?

- Specifications
- Features
- Applications
- Revision History
- Quick Start
- Conventions
- Block Diagrams
- Logic Description
- Schematics
- Timing Diagrams
- Circuit Description
- Behavior Table

- Test Plan
- Active Levels
- Name Explanations
- Reference Designations
 - Pin configurations and functions
- Operating Properties
- Glossary
- Bill of Materials
- ASM (Algorithm State Machine)
- FSM (Finite State Machine)
- Flow Chart

How do you know what to include?

- It will be in the assignment instructions for each project
 - A template **Table of Contents** will be provided to guide you in building the content for your documentation

School of Engineering and Applied Sciences

Some Key Documentation Elements

Specification

- Often referred to as spec
- Describes what the system should do
 - Inputs
 - Outputs
 - Functions
- The what not the how in this part (you can have some with how in it)

Applications

The where and when for using this design

Revisions

- Frequently things are "snowballed" ... they are built on top of legacy materials
 - Not from scratch

Block diagram

- A high level graphical overview
 - Function modules
 - Basic interconnects

How much detail?

Logic-device description

- Functions that are custom
 - You see this with ASIC, FPGA, PLD, and CPLD type devices
 - ASIC- application specific integrated circuits
 - FPGA-field programmable gate array
 - PLD- programmable logic device
 - CPLD- complex programmable logic device
- Mostly in English but internal specifications need another approach to describe the behavior
 - Diagrams, equations and tables
 - HDL- Hardware descriptive language
 - Conventional languages (like C)

Logic Diagram vs Logic Schematic

Diagram: Basic

Schematic: More detailed, contains all the necessary stuff to actually build it, including

electrical properties

Not all schematics have the electrical detail, sometimes it is just more detail

BOM - Bill of materials

- You saw this on UB Learns
 - It typically won't have links or as many options
- It is the list of the components that are needed for implementation

Timing Diagram

- Time is real
- Nothing is ideal
- Nothing happens instantly
- There are delays that can happen from the changes
- This means everything is actually a signal

Circuit Description

- This gives more details to how the circuit works internally
- There are a lot of operational considerations

Test Plan

- Plans are good and important
- What do good plans include?
 - Methods and resources to verify/test proper operation
 - This is for before, during, and after construction

Names

- Arbitrary, but good skills are important
- What does a good name tell you?
 - What the purpose is for that signal or input
 - Active high or active low functionality
 - Be safe and define it still

Active Low	Active High			
READY-	READY+			
ERROR.L	ERROR.H			
ADDR15(L)	ADDR15(H)			
RESET*	RESET			
ENABLE-	ENABLE			
~GO	GO			
/RECEIVE	RECEIVE			
TRANSMIT_L	TRANSMIT			

Reference Designation

- Consider the notch or dot on your ICs from lab
- Tells you orientation info

Pin Functions

PIN									
NAME	CDIP, CFP, SOIC, PDIP, SO, SSOP	SO (SN74xx00)	CFP (SN5400)	LCCC	I/O	DESCRIPTION			
1A	1	1	1	2	- 1	Gate 1 input			
1B	2	2	2	3	- 1	Gate 1 input			
1Y	3	3	3	4	0	Gate 1 output			
2A	4	6	6	6	- 1	Gate 2 input			
2B	5	7	7	8	- 1	Gate 2 input			
2Y	6	5	5	9	0	Gate 2 output			
3A	10	_	9	13	- 1	Gate 3 input			
3B	9	_	10	14	- 1	Gate 3 input			

Copyright © 1983-2017, Texas Instruments Incorporated

Submit Documentation Feedback

Product Folder Links: SN5400 SN54LS00 SN54S00 SN7400 SN74LS00 SN74S00

SN5400, SN54LS00, SN54S00 SN7400, SN74LS00, SN74S00

SDLS025D - DECEMBER 1983-REVISED MAY 2017

www.ti.com

Pin Functions (continued)

PIN									
NAME	CDIP, CFP, SOIC, PDIP, SO, SSOP	SO (SN74xx00)	CFP (SN5400)	LCCC	I/O	DESCRIPTION			
3Y	8	_	8	12	0	Gate 3 output			
4A	13	_	12	18	- 1	Gate 4 input			
4B	12	_	13	19	- 1	Gate 4 input			
4Y	11	_	14	16	0	Gate 4 output			
GND	7	4	11	10	_	Ground			
NC	_	_	_	1, 5, 7, 11, 15, 17	_	No connect			
V _{CC}	14	8	4	20	_	Power supply			

Time Properties

6.9 Switching Characteristics: SNx4LS00

 $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
фин	A or B Y $R_L = 2 k\Omega$ and $C_L = 15$	D = 01:0 == 40 = 45 = 5		9	15		
t _{PHL}		ĭ	R _L = 2 KΩ and C _L = 15 pr		10	15	ns

ASM vs FSM

Flow Chart

Very Very similar to an ASM...
but flow charts don't have timing considered

Language

- Complete sentences outside of lists
- Captions on all figures
- No pronouns
- Descriptive
- Concise
- Tends to be passive tone
 - That dry "it shall be known..." type

Need help with grammar/spelling...try my friend grammarly.com (the free version is really helpful)

- You can use the UB Writing center on your work: http://www.buffalo.edu/writing.html
- Other references: Purdue OWL, Excelsior OWL, IEEE Citation Guide
- Talk with a TA/Instructor

References

- "Digital Design: Principles and Practice" 5th Edition, by John F. Wakerly. Pearson, 2017. ISBN-13: 978-0134460093, ISBN-10: 013446009X
- "Digital Design With An Introduction to the Verilog HDL, VHDL, and SystemVerilog" 6th Edition, by M.Morris Mano and Michael D. Ciletti
- "Fundamentals of Digital Logic with Verilog Design", 1st Edition, by Stephen Brown and Zvonko Vranesic

Plus more in the notes on many pages

imgflip.com

JAKE-CLARK. TUMBER