

Autonomous Multiple Cycle Farming in Space

Dominic Allard, Philip Bernhard, Joshua Calhoun, Courtney Cline, Giampiero Corsbie, Timothy Frazier, Kali Jenson, Bryce Johnson, & Christopher Millsap

Faculty Advisor(s): Dr. Elisabeth Kames, Dept. of Mechanical Engineering, & Dr. Philip Chan, Dept. of Computer Science, Florida Institute of Technology

MOTIVATION

- Space exploration expanding rapidly and the need to accommodate life beyond Earth.
- To grow food autonomously in space that can support humans reliably, without compromising valuable time, or energy, from other missions.

PROJECT GOAL

- To build an Autonomous Multiple Cycle
 Farming Chamber that seeds, grows, and
 notifies crew that crop is ready for harvest
 while in microgravity.
- Streamline the Growth Chamber configuration for multiple farming cycles by creating a web application user station.

CONFIGURABLE AUTONOMOUS SCHEDULING

- Growth Chamber runs
 autonomously based on
 botanist and astronaut
 configuration files.
- Sensors and actuators can be uniquely scheduled to monitor or activate in a defined manner for any number of phases.

USER STATION CONFIGURATION LIBRARY

- User Station
 allows many
 different crop
 configurations to
 be accessed and
 modified.
- Each may be saved and can be run on the growth chamber.

Station Growth Chamber User Station	Hello, U
Farming Chamber 1 Configuration for 001-apple	
Phase 1	
START:	
activate Light with intensity: 85 lux	
activate MoistureSensor with frequency: 34 sec ▼	
activate HeightSensor with frequency: 58 sec ▼	

GROWTH CHAMBER DESIGN

GROWTH CHAMBER FEATURES

- An aluminum tank, that controls the intake and outflow of water nutrient solution with a plunger.
 Solenoid valves control the direction of the water utilizing capillary action.
- The End Effector is capable of planting seeds in microgravity by forcing seeds out with filament driven by a stepper motor.

USER STATION CONTROL

- User Station allows any number of farming chambers to be selected for direct manual control or configuration.
- Users may also be alerted to important status updates, such as a signal to harvest.
- System administrators can load any number of farming chambers to the Farming User Station and control user access via Lightweight Directory Access Protocol.

TESTING & VALIDATION

- Multiple iterations of the tray were tested through growth cycles, in order to achieve the requirement of 70% harvest.
- Circuitry and software was also successfully tested over several weeks, proving the autonomous capabilities of the system.

COST ANALYSIS	
Planting System & End Effector	\$560.21
Water Delivery & Tray	\$329.16
Lighting & Electrical	\$83.95
Miscellaneous & Case	\$341.74
Total	\$1315.06

USER STATION REPORTS

 The User Station provides reports for each device with metrics such as component uptime and phase runtime.

CONFIGURATION VERSION CONTROL

- The history of each configuration is recorded with the appropriate metadata.
- The user may reload any previous version for modification.

