Sampled Dense-Dense Matrix Multiplication (SDDMM)

Yevhen Khavrona, Dumeni Manatschal, Konstantinos Stavratis, Woojin Ban, Dominic Wüst

Overview

1. Setup

 Components, testing, data generation, benchmarking, hardware specs, compiler settings

2. Algorithms

○ Naive, cuSPARSE, SM-L2

3. Experiments

Outline of all performed experiments

4. Data Analysis

Methods and plots

5. Profiling

Profiling of SM-L2 using NVidia NSight

Setup I: Benchmark Components and Testing

- CSR/COO/Dense
 - Our own implementations
 - Column- and Row- storage
 - Efficient *ToFile* and *FromFile* methods
- Multiple algorithm variations
- Every component tested with unit tests using UTEST

https://github.com/sheredom/utest.h

Ensuring correctness: time-consuming but top priority

```
PS C:\repos\sddmm\build\x64-Release> .\test1.exe
            Running 14 test cases.
             Matrix.TestEquals
             Matrix.TestDenseMult (37800ns)
             Matrix.Hadamard (399800ns)
             Matrix.Flip (11900ns)
             Matrix.CSR_COO_Conversion
             Matrix.CSR COO Conversion (112100ns)
             Matrix.SDDMM op (288800ns)
        OK ] Matrix.COO_equal (257200ns)
             Matrix.SDDMM_parallel (160835000ns)
 .Generate coords..
             Matrix.Sparse_Mat_Gen (144148800ns)
 .Split coords...
        generated 235197 random pairs, out of which at least
            Matrix.Sparse_Mat_Cuda_Gen (1938142500ns)
PS C:\repos\sddmm\build\x64-Release>
```

- Three generators for three sets of problems
 - **1. Synthetic SDDMM**: Dense A [NxK], B [KxM], Sparse S [NxM]
 - 2. Real-world SDDMM: Dense A [NxK], B [KxM] fitting existing Sparse S
 - **3. Real-world SDDMM Companion**: Dense A [NxK], B [KxM], Sparse S [NxM]

Limitations: cuSPARSE requires sorted CSR format

- Three generators for three sets of problems
 - 1. Synthetic SDDMM: Dense A [NxK], B [KxM], Sparse S [NxM]

- Three generators for three sets of problems
 - 2. Real-world SDDMM: Dense A [NxK], B [KxM] fitting existing sparse

https://sparse.tamu.edu/Pajek?filterrific%5Bsorted_by%5D=rows_asc

ld Name	Group Rows Cols Nonzeros	Kind D	ate Download File
1513 patents_mai n	Pajek 240,547 240,547 560,94	3 Directed Weighted Graph 2	001 MATLAB & Rutherford Boeing & Matrix Market &
1504 IMDB	Pajek 428,440 896,308 3,782,46	3 Bipartite Graph 2	006 MATLAB 🕹 Rutherford Boeing 🕹 Matrix Market 🕹
1514 patents	Pajek 3,774,768 3,774,768 14,970,76	57 Directed Graph 2	001 MATLAB & Rutherford Boeing & Matrix Market &
		- 1 2	3 4 → Display per page: 20

- Three generators for three sets of problems
 - **3. Real-world SDDMM Companion**: Dense A [NxK], B [KxM], Sparse S [NxM]

All used data is stored and can be used to reproduce the experiments

```
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents/" "C:/sddmm_data/data_sets/patents/mm_market/patents.mtx" 32
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents/" "C:/sddmm_data/data_sets/patents/mm_market/patents.mtx" 128
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents/" "C:/sddmm_data/data_sets/patents/mm_market/patents.mtx" 256

.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents_main/" "C:/sddmm_data/data_sets/patents_main/mm_market/patents_main.mtx" 32
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents_main/" "C:/sddmm_data/data_sets/patents_main/mm_market/patents_main.mtx" 128
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/patents_main/" "C:/sddmm_data/data_sets/patents_main/mm_market/patents_main.mtx" 256
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/imdb/" "C:/sddmm_data/data_sets/imdb/mm_market/imdb.mtx" 32
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/imdb/" "C:/sddmm_data/data_sets/imdb/mm_market/imdb.mtx" 128
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/imdb/" "C:/sddmm_data/data_sets/imdb/mm_market/imdb.mtx" 128
.\data_gen_mat_market.exe "C:/sddmm_data/data_sets/imdb/" "C:/sddmm_data/data_sets/imdb/mm_market/imdb.mtx" 256
```

Setup III: Benchmarking Process

- All used matrices are generated and stored as bindat binary files
- One file contains dense A, B and sparse S in COO format
- Experiment varying over 5 sparsities for fixed N, M, K includes 5 binmat files in the same folder
- Experiment loader loads all files in sequence, runs all algorithms and produces benchmark output files

Name	Туре	Size
hadamard_S-102539x102539-0.99_X-102539x128-0_Y-128x102539-0Wed_Dec_13_21-31-33_202317024994931749238.bindat	BINDAT File	2'156'101 KB
hadamard_S-102539x102539-0.995_X-102539x128-0_Y-128x102539-0Wed_Dec_13_21-35-10_202317024997102399268.bindat	BINDAT File	1'129'321 KB
hadamard_S-102539x102539-0.999_X-102539x128-0_Y-128x102539-0Wed_Dec_13_21-35-44_202317024997448199940.bindat	BINDAT File	307'893 KB
hadamard_S-102539x102539-0.9995_X-102539x128-0_Y-128x102539-0Wed_Dec_13_21-36-01_202317024997616012556.bindat	BINDAT File	205'223 KB
hadamard_S-102539x102539-0.9999_X-102539x128-0_Y-128x102539-0Wed_Dec_13_21-36-06_202317024997660200808.bindat	BINDAT File	123'079 KB

Setup IV: Hardware Specs

- Benchmarking Hardware
 - o AMD Ryzen 7 5800X, 32GB RAM
 - o Nvidia GeForce RTX 3080, 10GB RAM, 6MB L2-cache, 49KB shared memory
- Profiling Hardware
 - o Intel Core i9-12900K, 64GB RAM
 - Nvidia GeForce RTX 3080Ti, 12GB RAM, 6MB L2-cache, 98KB shared memory
- Operating System
 - o Windows 11
- C++ Compiler (run cl.exe without args)
 - o Microsoft (R) C/C++ Optimizing Compiler Version 19.38.33133 for x64
 - o /O2/Ob2/DNDEBUG/std:c++20
 - Visual Studio Community Edition 2022
- Cuda Compiler (output of nvcc --version)
 - Built on Fri_Nov__3_17:51:05_Pacific_Daylight_Time_2023
 - o Cuda compilation tools, release 12.3, V12.3.103
 - Build cuda_12.3.r12.3/compiler.33492891_0

Algorithms I: Overview

- 3 algorithms: naive, SM-L2, cuSDDMM
- Our assumptions/decisions
 - A in row store, B in col store but not transposed
 - Preprocessing time for SM-L2 algo not measured
 - Time is measured only around the Cuda kernel using C++ chrono::high_resolution_clock from start of kernel to directly after cudaDeviceSynchronize();

Algorithms II: Naive

- Straightforward
- Direct translation of the CPU code to CUDA
- No tiling
- No efficient data handling

```
// Each CUDA thread is responsible for computing one entry
// of the output sparse matrix `out d`.
int index = threadIdx.x;
int stride = blockDim.x;
int blockNum = blockIdx.x;
SDDMM::Types::vec size t access ind = index + blockNum*stride;
SDDMM::Types::expmt t val = A sparse values d[access ind];
SDDMM::Types::vec size t row = A sparse rows d[access ind];
SDDMM::Types::vec size t col = A sparse cols d[access ind];
SDDMM::Types::expmt t inner product = 0;
// the ind index has to be tiled later
// X == X n x X m
for(SDDMM::Types::vec size t ind=0; ind < X m; ++ind){</pre>
    inner product += X dense d[row * X m + ind]*Y dense d[col * Y n + ind];
out values d[access ind] = val*inner product;
out row d[access ind] = row;
out col d[access ind] = col;
```

Algorithms III: cuSPARSE

NVIDIA's closed source SDDMM implementation

https://docs.nvidia.com/cuda/cusparse/

This function performs the multiplication of mata and matB, followed by an element-wise multiplication with the sparsity pattern of matC.

Formally, it performs the following operation:

$$\mathbf{C} = lpha(op(\mathbf{A}) \cdot op(\mathbf{B})) \circ spy(\mathbf{C}) + eta \mathbf{C}$$

where

- \rightarrow op(A) is a dense matrix of size $m \times k$
- ightarrow op(B) is a dense matrix of size k imes n
- ightharpoonup is a sparse matrix of size m imes n
- $\rightarrow \alpha$ and β are scalars
- ightarrow o denotes the Hadamard (entry-wise) matrix product, and $spy(\mathbf{C})$ is the sparsity pattern matrix of $\boxed{\mathbf{c}}$ defined as:

$$spy(\mathbf{C})_{ij} = \begin{cases} 0 & \text{if } \mathbf{C}_{ij} = 0 \\ 1 & \text{otherwise} \end{cases}$$

Algorithms III: cuSPARSE

NVIDIA's closed source SDDMM implementation

https://docs.nvidia.com/cuda/cusparse/

```
Performance notes: <a href="mailto:cuspaseSDDMM">cuspaseSDDMM</a>() for <a href="mailto:cuspaseSDDMM">cuspaseSDDMM</a>() for <a href="mailto:cuspaseSDDMM">cuspaseSDDMM</a>() for <a href="mailto:cuspaseSDDMM">cuspaseSuperation_non_transpose</a>, or <a href="mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mailto:mail
```

Algorithms IV: SM-L2

- SM-L2: fast SDDMM for sample matrices with sparsity > 95%
- I. Nisa, A. Sukumaran-Rajam, S. E. Kurt, C. Hong and P. Sadayappan, "Sampled Dense Matrix Multiplication for High-Performance Machine Learning" 2018 IEEE 25th International Conference on High Performance Computing (HiPC), Bengaluru, India, 2018, pp. 32-41, doi: 10.1109/HiPC.2018.00013.
- Key points:
 - Loading only necessary ("active") rows of A into fast on-chip memory (shared memory)
 - Reuse of elements loaded into shared memory and L2 cache through tiling
- Main technics: (3-way) tiling, vectorisation, loop unrolling, virtual warps, warp shuffling, autotuning
- Kernel launch configuration: 1024 threads, roughly ½ of SM's shared memory reserved, 1 CUDA stream (sequential kernel execution)

Experiments I: Overview

- Varying sparsity with same dimensions N, M, K
 - All sparse input matrices have uniform density
- Varying K with same N, M and sparsity
 - One series using existing sparse matrix with non-uniform distribution and produced dense matrices
 - o One companion series with all produces inputs with uniform distribution
- Reproducibility
 - 40GB of stored matrix data
 - One bindat file per algorithm run
 - Code on GitHub

```
.\GPU_SDDMMBenchmarks.exe 1
.\GPU_SDDMMBenchmarks.exe 2
.\GPU_SDDMMBenchmarks.exe 3
.\GPU_SDDMMBenchmarks.exe 4
.\GPU_SDDMMBenchmarks.exe 5
.\GPU_SDDMMBenchmarks.exe 6
.\GPU_SDDMMBenchmarks.exe 7
.\GPU_SDDMMBenchmarks.exe 8
.\GPU_SDDMMBenchmarks.exe 9
.\GPU_SDDMMBenchmarks.exe 10
.\GPU_SDDMMBenchmarks.exe 11
.\GPU_SDDMMBenchmarks.exe 11
```

Experiments II: IMDB

- IMDB
 https://sparse.tamu.edu/Pajek?filterrific%5Bsorted_by%5
 D=rows_asc (p. 4, id: 1504)
- Rows = 428,400, cols = 896,308, #nnz = 3,782,463
- We measured the runtime with sparsity = 0.99999, K = 32, 128, 256 (#iterations = 30, #warm-up iterations = 5)

Experiments II: IMDB

Experiments III: patents_main

- Patents_main
 - https://sparse.tamu.edu/Pajek?filterrific%5Bsorted_by%5D=rows_asc (p. 4, id: 1513)
- Rows = 240,547, cols = 240,547, #nnz = 560,943
- Measurement with sparsity = 0.99999, K = 32, 128, 256 (#iterations = 30, #warm-up iterations = 5)

Experiments III: patents_main

Experiments IV: sparsity_large

- N = 102539, M = 102539, K = 32, 128, 512
- Large in terms of the matrix size
- Varying sparsity 0.99, 0.995, 0.999, 0.9995, 0.9999
- #iteration = 30, #warm_up iteration = 5

Experiments IV: sparsity_large

Experiments V: sparsity_small

- N = 10253, M = 10253, K = 32, 128, 256
- Small in terms of the matrix size
- Varying sparsity 0.99, 0.995, 0.999, 0.9995, 0.9999

Experiments V: sparsity_small

Experiments VI: Conclusion

- We measured baseline, cuSparse and sm_l2 on various datasets such as IMDB, IMDB_companion, patents, patents_companion, patents_main, patents_main_companion with different K and fixed matrix size with varying sparsity
- For K=32, sm_l2 is superior to baseline and cuSparse (in all datasets and with varying sparsity except for sparsity with small matrix size)
- From K=128, cuSparse is superior to sm_l2 and baseline

Profiling SM-L2 I: Overview

- NVIDIA Nsight Compute
- Input: N=M=100K, sparsity = 0.99
- Results in 13 kernel invocations,
 each launching 268 threadblocks

Compute Throughput	Memory Throughput	
21.21	83.10	
21.15	89.01	
21.09	82.85	
21.11	82.88	
21.06	82.52	
21.12	82.73	
21.23	83.00	
21.12	82.94	
21.11	82.70	
21.10	82.79	
21.01	82.38	
20.93	82.02	
22.46	68.55	

Profiling SM-L2 II: Observations

- Memory bound, L2 (red dot) saturated, low "compute" utilisation
- Uncoalesced global memory accesses
- Occupancy limited by the number of required registers
- High on-chip memory usage (register file and shared memory)

Profiling SM-L2 III: Memory


```
__global__ void thankYouKernel()
{
    printf("Thank you for your attention!\\n");
}
```