Práctica de Laboratorio Pthreads

Nombre: Sebastian Ugarte Concha

1. Implementación:

Para esta implementación se usaron 3 códigos de la misma lista, uno utilizando un único mutex otro usando read&write barriers y por último utilizando un metex por nodo, a continuación se dará una breve explicación de estas 3 implementaciones y luego se hará una comparativa de su rendimiento.

1.1 Un único mutex:

En esta implementación, se utiliza un único mutex para toda la lista enlazada. Cada operación (inserción, eliminación, búsqueda) adquiere y libera este único mutex para garantizar la exclusión mutua. La barrera se utiliza para asegurarse de que todas las operaciones se completen antes de imprimir la lista.

1.2 Un mutex por nodo:

En esta implementación, cada nodo de la lista enlazada tiene su propio mutex. Cuando se realiza una operación en un nodo, se adquiere y libera el mutex de ese nodo específico. La barrera se utiliza para asegurarse de que todas las operaciones en todos los nodos se completen antes de imprimir la lista.

1.3 Uso de read and write

En esta implementación, se utilizan bloqueos de lectura y escritura (read-write locks) para permitir que múltiples hilos realicen lecturas concurrentes en la lista, pero solo un hilo a la vez puede realizar una escritura (inserción o eliminación). La barrera se utiliza para asegurarse de que todas las operaciones de escritura se completen antes de imprimir la lista.

2. Resultados

En cuanto a la eficiencia, los resultados proporcionados indican que la implementación más eficiente depende del número de hilos involucrados. Estos resultados se obtuvieron teniendo una lista enlazada de un tamaño de 10000 elementos

	Numero de Threads			
Implementacion	1	2	4	8
Read-Write Locks	0.347	0.212	0.153	0.109
Un unico mutex	0.344	0.571	0.387	0.439
Un mutex por nodo	2.752	5.887	4.259	3.161

De aquí se puede observar:

-Para un pequeño número de hilos (1-2), la implementación con un solo mutex por lista y la implementación con bloqueos de read y write son las más eficientes.

- Para un número moderado de hilos (4-8), la implementación con bloqueos de read y write tiende a ser la más eficiente, ya que permite una mayor concurrencia en lecturas.
- -La implementación con un mutex por cada nodo es la menos eficiente en todos los casos debido a la sobrecarga de administrar un gran número de mutexes.

Por lo tanto, la elección de la implementación más eficiente depende de la carga de trabajo y del número de hilos en su aplicación. En escenarios con un alto número de hilos y muchas operaciones de lectura, la implementación con bloqueos de read y write suele ser la mejor opción. Sin embargo, para aplicaciones con un número limitado de hilos o una carga de trabajo menor, la implementación con un solo mutex por lista puede ser suficiente y más eficiente.

3. Referencias

-https://github.com/sbes243/Lab-pthread