INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4071B gates Quadruple 2-input OR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input OR gate

HEF4071B gates

DESCRIPTION

The HEF4071B is a positive logic quadruple 2-input OR gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

Fig.1 Functional diagram.

HEF4071BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4071BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4071BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Philips Semiconductors Product specification

Quadruple 2-input OR gate

HEF4071B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		_	EXTRAPOLATION ORMULA
Propagation delays							
$I_n \to O_n$	5		55	115	ns	28 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	25	50	ns	15 ns +	(0,23 ns/pF) C _L
	15		20	35	ns	12 ns +	(0,16 ns/pF) C _L
	5		45	90	ns	18 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	45	ns	9 ns +	(0,23 ns/pF) C _L
	15		15	30	ns	7 ns +	(0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns +	(1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15		20	40	ns	6 ns +	(0,28 ns/pF) C _L
	5		60	120	ns	10 ns +	(1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15		20	40	ns	6 ns +	(0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1150 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4800 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	19 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	fo = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)