

Fakulta chemicko-inženýrská

Ústav počítačové a řídicí techniky

NÁZEV

DISERTAČNÍ PRÁCE

AUTOR | JAN VRBA

ŠKOLITEL JAN MAREŠ

ŠKOLITEL SPECIALISTA RATACHAN

STUDIJNÍ PROGRAM Chemické a procesní inženýrství (čtyřleté)

STUDIJNÍ OBOR Technická kybernetika

ROK **2020**

Faculty of Chemical Engineering

Department of Computing and Control Engineering

NAME

DISSERTATION

AUTHOR | JAN VRBA

SUPERVISOR JAN MAREŠ

SUPERVISOR SPECIALIST PANÍ SOBÍKOVÁ

STUDY PROGRAMME Chemical and Process Engineering

FIELD OF STUDY Technical Cybernetics

YEAR **2020**

Tato disertační práce byla vypracována na Ústavu počítačové a řídicí techniky v období OD-KDY – DOKDY.

Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární prameny a informace,

které jsem v práci využil, jsou uvedeny v seznamu použité literatury.

Byl jsem seznámen s tím, že na moji práci se vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon). Zejména se jedná o skutečnost, že Vysoká škola chemicko-technologická v Praze, popř. jiné vzdělávací zařízení, ve kterém jsem svou práci vypracoval, má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona. Pokud bych v budoucnu poskytl licenci o užití práce jinému subjektu, je Vysoká škola chemicko-technologická v Praze, popř. jiné vzdělávací zařízení, ve kterém jsem svou práci vypracoval, oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložil a to podle okolností až do jejich skutečné výše.

Souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách, ve znění pozdějších předpisů.

V Praze dne

JMÉNO

Souhrn

Disertační práce se zabývá detekcí novosti, zejména pak algoritmem Extreme Seeking Entropy. $\# \mathrm{TODO}$

Klíčová slova

 $SLOVO~\#\mathrm{TODO}$

${\bf Summary}$

This dissertation deals with $\#\mathrm{TODO}$

Keywords

 $WORD\ \# TODO$

Obsah

1	Pře	hled n	netod detekce novosti	21
2	Čís	licové	adaptivní filtry a algoritmy	2 3
	2.1	Adapt	tivní filtry	24
		2.1.1	Lineární FIR filtry	25
		2.1.2	Volterrovy filtry	26
		2.1.3	Polynomiální neuronové jednotky	27
		2.1.4	Fuzzy filtry	28
	2.2	Adapt	tivní algoritmy	31
		2.2.1	Algoritmy LMS a NLMS	31
		2.2.2	Algoritmus RLS	33
		2.2.3	Algoritmus Generalized Normalized Gradient Descent	34
		2.2.4	Gradient descent pro fuzzy filtry	35
3 Zobec		ecněn	é Paretovo rozdělení	39
	3.1	Metod	da Peak-over-Threshold	39
	3.2	Metoo	dy odhadu parametrů zobecněného Paretova rozdělení	39
4	\mathbf{Alg}	oritmı	us Extreme Seeking Entropy	41
5	Výs	sledky	experimentů	43
	5.1	Výsle	dky detekce novosti algoritmu Extreme Seeking Entropy	43
		5.1.1	Případová studie: chatociká časová řada Mackey-Glass a detekce pertubace	43
		5.1.2	Případová studie: detekce skokové změny parametrů generátoru signálu	43
		5.1.3	Případová studie: detekce náhlé absence šumu	43
		5.1.4	Případová studie: detekce změny trendu	43
		5.1.5	Případová studie: detekce epilepsie v myším EEG	43
		5.1.6	Vyhodnocení úspěšnosti detekce skokové změny parametrů generátoru	
			signálu	44
		5.1.7	Vyhodnocení úspěšnosti detekce změny trendu a evaluace ROC křivky	44

		5.1.8	Vyhodnocení výpočetní náročnosti metod odhadu parametrů Paretova		
			rozdělení	44	
	5.2	Případ	lová studie použití algoritmu Learning Entropy a adaptivního fuzzy filtru		
		pro de	etekci změn stavů bioprocesu	44	
		5.2.1	Popis bioprocesu a specifikace problému	44	
		5.2.2	Experiment a zhodnocení	46	
6	Záv	ěr		51	
Pτ	ublik	ace au	tora	53	
Li	terat	ura		5 5	
Ρì	říloha	ì		57	

Seznam použitých zkratek

LE learning entropy

ELBND error and learning based novelty detection

GEV generalized extreme value

GNGD generalized normalized gradient descend

NLMS normalized least mean squares

POT peak over threshold
LNU linear neural unit
QNU quadratic neural unit
SNR signal-to-noise ratio
RLS recursive least squares
ESE extreme seeking entropy

#TODO TODO

Seznam symbolů

```
\mathbb{N}
           množina přirozených čísel
\mathbb{R}
           množina reálných čísel
           rychlost učení
\mu
            výstup adaptivního filtru
\hat{y}
k
            diskrétní časový index
            chyba predikce
e
M_{ND}
            délka okna pro vyhodnocení změn adaptabilních parametrů
            chyba predikce
e
           chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
e
            chyba predikce
e
           chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
\# TODO
            #TODO
```

Úvod

Tato disertační práce je věnována problematice využití adaptivních systémů při analýze dat. Vzhledem k exponenciálnímu celosvětovému nárustu dat a ke zvyšování jejich variability roste i potřeba tato data analyzovat, kategorizovat a vytěžovat (TODO: nějaká citace k nárůstu dat). Analýzou dat rozumíme proces, kdy z nezpracovaných naměřených dat získáme nějakou interpretovatelnou informaci, s kterou pak lze dál pracovat. Jedna z možných důležitých interpretací nově získaných dat je, zda-li se nově získaná data nějakým zásadním způsobem odlišují od předchozích dat. Této problematice se věnuje obor detekce novosti, neboli anomálií, který spadá do oblasti vytěžování dat a strojového učení. Úspěšná detekce novosti pak může být využita k vícero účelům. Například k diagnostice sledovaného procesu, ke změně struktury nebo parametrů adaptivního modelu za účelem zlepšení predikce, z konkrétních aplikací pak k odhalení neoprávněného vniknutí do sítě nebo zneužití dat, v lékařství se detekce novosti používá k diagnostickým účelům, z průmyslových aplikací pak k detekci poruchy a monitoringu stavu strojů, senzorů, ev zpracování textových dat k detekci nových témat atd. Spektrum využití je velice široké.

V oblasti detekce novosti byla v posledních desetiletích intenzivního vývoje navrhnuta celá řada algoritmů. Vzhledem k rostoucímu výpočetnímu výkonu a rozmanitosti analyzovaných dat rostla i potřeba nových algoritmů. Nové algoritmy typicky předčili ostatní algoritmy v rámci jedné aplikace, respektive v rámci jednoho typu dat. Doposud se však nepodařilo vytvořit algoritmus, který by ve všech, nebo alespoň ve významné části, oblastech použití předčil již publikované algoritmy. I proto vznikají v oblasti detekce novosti neustále nové přístupy, které navíc umožňují analyzovat nové typy dat.

Předkládáná disertační práce je členěna do pěti kapitol. První kapitola je věnována přehledu různých metod detekce novosti a obsahuje i oblasti jejich využití. Druhá kapitola obsahuje přehled adaptivních filtrů a metod, které byly v rámci práce použity. Třetí kapitola je věnována zobecněnému Paretovu rozdělení, které bylo použito v navrženém algoritmu detekce novosti. Čtvrtá kapitola obsahuje popis nově navrženého algoritmu nazvaném Extreme Seeking Entropy a představuje možnosti jeho použití v různých případech. Dále jsou zde výsledky tohoto algoritmu v porovnání s dalšími vybranými metodami adaptivní detekce novosti.

1 Přehled metod detekce novosti

#TODO

2 Číslicové adaptivní filtry a algoritmy

Tato kapitola je věnována diskrétním adaptivním filtrům, které byly v průběhu práce na tématu dizertační práce použity (viz podkapitola 2.1 a algoritmům, které byli k jejich adaptaci použity (viz podkapitola 2.2). Z pohledu klasifikace filtrů dle impulsní charakteristiky se jedná o filtry s konečnou impulsní charakteristikou (viz podkapitola) i o filtry s nekonečnou impulsní charakteristikou (viz podkapitola). Z pohledu lineární závislosti adaptabilních parametrů potom na filtry lineární a nelinární v parametrech.

Obecně problém filtrace spočívá ve zpracování signálu filtrem tak, že ze signálu získáme nějakou užitečnou informaci[6].

Pro úplnost uveďme, že signálem rozumíme fyzikální veličinu, která se mění v čase, prostoru nebo v jakékoliv jiné nezávislé proměnné (obecně proměnných) [4]. V rámci dizertace jsou analyzovány pouze signály, které se mění v čase.

Jedno ze základních dělení signálů je rozdělení na signály spojité a diskrétní, přičemž signál může být spojitý, resp. diskrétní v čase nebo amplitudě. Uvažujme signál spojitý v čase i amplitudě s(t). Pro takový signál platí, že hodnota jeho amplitudy $s(t) \in R$ a hodnota nezávislé proměnné t je z nějakého intervalu $(t_1;t_2)$, kde $t_1 \in R$ a $t_2 \in R$. Signál spojitý v amplitudě a diskrétní v čase vznikne vzorkováním původního signálu s(t) pomocí vzorkovací funkce ve tvaru

$$v(t) = \sum_{k=-\infty}^{\infty} \delta(t - k\Delta t)$$
 (2.1)

kde Δt je vzorkovací perioda (uvažujeme konstantní vzorkovací periodu) a δ je, z pohledu teorie distribucí, lineární funkcionál na prostoru testovacích funkcí φ (všech hladkých funkcí na R s kompaktním supportem, které mají požadovaný počet derivací) definovaný jako

$$\langle \delta, \varphi \rangle = \varphi(0) \tag{2.2}$$

pro každou testovací funkci φ [7]. Pro navzorkovaný signál tedy platí

$$s(k) = s(t) \cdot v(t) \tag{2.3}$$

a výsledkem je posloupnost vzorků s(k). Signál spojitý v čase a diskrétní v amplitudě získáme aplikací kvantizační funkce Q(s), která převede hodnotu signálu na číslo z nějaké množiny přípustných hodnot, (typicky to bývá celé číslo, případně číslo s plovoucí desetinnou čárkou). Existuje celá řada kvantizačních algoritmů (více viz [8]), takže pro úplnost uvedeme pouze základní uniformní kvantizátor s velikostí kvantizačního kroku definovanou jako

$$q = \frac{s_{max} - s_{min}}{L} \tag{2.4}$$

kde L určuje počet intervalů o délce q. Potom kvantizovanou hodnotu můžeme určit jako

$$Q(s) = \left[s - \frac{s_{min}}{q} \right] q + \frac{q}{2} + s_{min}$$
 (2.5)

Signál, který je diskrétní v čase i amplitudě bývá označován jako digitální signál a právě těmito signály se předložená dizertační práce zabývá.

Signály dále můžeme rozdělit na skalární a vektorové. Vektorových (někdy též označovaným jako vícekanálový) signálem je například EEG. Některé systémy pro měření EEG využívají až 256 kanálů [5]. Takový signál můžeme v časovém okamžiku k reprezentovat 256 ti dimenzionálním vektorem

$$\mathbf{s}(k) = [s_1(k), \dots, s_{256}(k)]^T \tag{2.6}$$

kde i-tá složka $s_i(k)$ odpovídá signálu i-tého kanálu. Skalární signál (někdy též označovaný jako jednokanálový) je pak např. právě i-tá složka signálu $\mathbf{s}(k)$.

Z pohledu počtu nezávislých proměnných, jejichž funkcí lze signál vyjádřit lze rozlišovat mezi signály jednorozměrnými a vícerozměrnými. Jednorozměrným signálem je například záznam jednoho kanálu EEG, kde hodnota signálu $s_i(k)$ je závislá pouze na čase. Vícerozměrným signálem může např. digitální obraz, jehož intenzita je funkcí souřadnic I(x, y).

Filtr můžeme použít v následujících základních úlohách zpracování signálů:

- filtrace
- vyhlazování
- predikce

V rámci této práce byli všechny filtry využity k predikci, jejíž chyba e byla využita k adaptaci parametrů daného filtru (více viz podkapitola 2.2).

2.1 Adaptivní filtry

V této podkapitole jsou stručně popsané adaptivní filtry, které byly v rámci práce použity. FIR (finite impulse response) adaptivní filtry jsou popsány v podkapitole 2.1.1, Volterrovy filtry v podkapitole 2.1.2 a adaptivní fuzzy filtry v podkapitole 2.1.4.

Obrázek 2.1: Schéma adaptivní filtrace

2.1.1 Lineární FIR filtry

Obrázek 2.2: Blokový diagram FIR filtru

Výstup FIR (finite-impulse-response) filtru $\hat{y} \in \mathbb{R}$ v diskrétním čase $k \in Z$ je popsán rovnicí

$$\hat{y}[k] = \sum_{i=0}^{N} w_i \cdot x[k-i]$$
(2.7)

kde $w_i \in \mathbb{R}$ hodnota *i*-tého koeficienty, x[k-i] je hodnota vstupu $x \in \mathbb{R}$ posunutá o *i* hodnot v čase, hodnota N je řád filtru. Pokud jsou koeficienty FIR filtru v čase adaptovány, přejde rovnice (2.7) do tvaru

$$\hat{y}[k] = \sum_{i=0}^{N} w_i[k] \cdot x[k-i]$$
(2.8)

kde člen $w_i[k]$ reprezentuje hodnoty koeficientů filtru v diskrétním čase k. Někdy se pro popis výstupu FIR filtru využívá operátoru konvoluce, potom pro výstup FIR filtru platí

$$\hat{y}[k] = h[k] * x[k] = x[k] * h[k]$$
(2.9)

Hodnoty h[k] v reprezentují impulzní odezvu filtru. Impulsní odezva filtru je definovaná jako

$$h[k] = \sum_{i=0}^{N} w_i \cdot \delta[k-i] = \begin{cases} w_i & 0 \le k \le N \\ 0 & k < 0 \lor k > N \end{cases}$$
 (2.10)

Konečnost impulzní odezvy je dána konečným počtem N+1 koeficientů filtru. Pokud koeficienty filtru splňují podmínku $\forall i: w_i < \infty$, potom je FIR filtr stabilní.

Uvedný filtr (viz rovnice (2.7)) lze zapsat ve tvaru

$$\hat{y}(k) = \mathbf{w}(k) \cdot \mathbf{x}(k) \tag{2.11}$$

kde $\mathbf{w}(k)$ je vektor vah

$$\mathbf{w}(k) = [w_1, \dots, w_N] \tag{2.12}$$

a $\mathbf{x}(k)$ je vstupní vektor

$$\mathbf{x}^{T}(k) = [x(k), x(k-1), \dots, x(k-N)]$$
(2.13)

.

2.1.2 Volterrovy filtry

Jeden z filtrů, který se použivá k modelování nelineárních systémů je nelineární Voltérrův filtr (někdy uváděný pod označením Higher Order Neural Unit - HONU). Výstup $\hat{y}[k]$ těchto filtrů, využíva jících zkrácených Voltérových řad, je popsán rovnicí

$$\hat{y}[k] = w_0 + \sum_{i=0}^{N-1} w_1(i)x(k-i) + \sum_{i_1=0}^{N-1} \sum_{i_2=i_1}^{N-1} w_2(i_1, i_2)x(k-i_1)x(k-i_2) +] \cdots$$

$$\cdots \sum_{i_1=0}^{N-1} \cdots \sum_{i_p=i_{p-1}}^{N-1} w_p i_1, \dots, i_p x(k-i_1) \cdots x(k-i_p) \quad (2.14)$$

kde w_0 je konstanta, $\{w_j(i_1,\ldots,i_j), 1\leq j\leq p\}$ je množina koeficientů Volterrovo jader j-tého řádu a x(k) je vstupní signál. Filtr pracuje s pamětí N vzorků, parametr p určuje řád filtru. Analogický zápis využívající vektorové násobení

$$\hat{y}[k] = \mathbf{w} \cdot \mathbf{colx} \tag{2.15}$$

kde w je uspořádaný vektor koeficientů Volterrovo jader a colx uspořádaný vektor ve tvaru

$$\mathbf{colx} = [1, x[0], \dots, x[N-1], x[1] \cdot x[2], \dots, x[1] \cdot x[N-1], x[2]^2, x[2] \cdot x[3], \dots,$$

$$x[2] \cdot x[N-1], \dots, \dots, x[N-2] \cdot x[N-1], x[N-1]^2, \dots, \dots, \dots, x[N-1]^p]^T \quad (2.16)$$

Určitým faktorem limitujícím použití Volterrovo filtrů je vysoký počet jejich parametrů, přičemž každé zvýšení počtu vzorků v paměti, nebo řádu filtru, výrazně zvýši počet jeho parametrů. Pro počet parametrů m Volterrova filtru s délkou paměti N a řádu p je dán jako

$$m(p,N) = \frac{(N+p)!}{N!p!}$$
 (2.17)

kde N! je faktoriál N a p! je faktoriál p. Např. pro N=3 a p=3 má filtr 20 parametrů, pro N=4 a p=3 má 35 parametrů, pro N=4 a p=4 již 70 parametrů. Pro zpracování signálů v reálném čase je tedy využití Volterrových filtrů s velkou pamětí a vysokým řádem, vzhledem k vysokému počtu parametrů, komplikované. Volterrův filtr druhého řádu bývá někdy označován Quadratic neural unit (QNU) a třetího řádu Cubic neural unit (CNU) [viz Ivo nebo IGI]. Volterrův filtr prvního řádu je variantou standartního FIR filtru (viz kap.) v případě, že $w_0=0$. V případě, že $w_0\neq 0$, je tento filtr typu IIR, tedy má nekonečnou impulsní charakteristiku.

2.1.3 Polynomiální neuronové jednotky

Jedním z typů nelineární filtrů, které jsou ale lineární v adaptivních parametrech jsou polynomiální neuronové jednotky, někdy též nazývané HONU (Higher Order Neural Units). Výstup HONU p-tého řádu je difinován jako

$$\hat{y}(k) = \sum_{i_1=0}^{n} \sum_{i_2=i_1}^{n} \cdots \sum_{i_p=i_{p-1}}^{n} w_{i_1,i_2,\dots,i_p} x_{i_1} \cdot x_{i_2} \cdots x_{i_p}$$
(2.18)

přičemž člen $x_{0,\dots,0}=1$ je označován jako bias, $w_{i_1,i_2,\dots,i_px_{i_1}}$ jsou váhy a x_{i_j} je j-tý vstup. Uvedený filtr lze reprezentovat pomocí násobení vektorů, obdobně jako Volterrovy filtry, jako

$$\hat{y}(k) = \mathbf{w} \cdot \mathbf{colx} \tag{2.19}$$

kde w je uspořádaný vektor adaptivních parametrů

$$\mathbf{w} = [w_{0,\dots,0},\dots,w_{n,\dots,n}] \tag{2.20}$$

Obrázek 2.3: LNU jako lineární kombinační filtr

a colx je odpovídajícím způsobem uspořádaný vektor vstupů ve tvaru

$$\mathbf{colx} = [1, x_{0,\dots,1}, \dots, x_{n,\dots,n}]^T$$
 (2.21)

přičemž pokud vektor vstupů obsahuje časově spožděné vzorky vstupního signálu, jsou HONU identické s Volterrovými filtry. Pokud je vstupem n+1-dimenzionální vektor různých vstupů, tak je HONU kombinačním filtrem. HONU prvního řádu bývá označována jako lineární neuronová jednotka (LNU). Pokud jsou vstupem do LNU časově posunuté hodnoty vstupního signálu, je identická s klasickým FIR filtrem (viz kapitola 2.1.1), protože její výstup je definován jako

$$\hat{y}(k) = \sum_{i=0}^{n} w_i \cdot x(k-i)$$
 (2.22)

Pokud je vstupem n+1-dimenzionální vektor n+1 různých vstupů, potom je LNU klasickým lineárním kombinačním filtrem (viz obr. 2.3). Použijeme-li terminologii neuronových sítí, potom je lineárním neuronem, kde \mathbf{w} je vektor synaptických vah, \mathbf{x} je vstupní vektor a přenosová funkce tohoto neuronu realizuje lineární kombinaci.

$$\hat{y}(k) = \sum_{i=0}^{n} w_i \cdot x_i(k)$$
 (2.23)

Často používanými HONU jsou jednotky druhého (quadratic neural unit - QNU) a třetího řádu (cubic neural unit - CNU). Podobně jako pro Volterrovy filtry, i úskalím použití HONU vyššího řádu s velkou pamětí je velký počet parametrů.

2.1.4 Fuzzy filtry

Jedním z rozšířených typů nelineárních adaptivních filtrů jsou filtry založené na fuzzy logice. (Fuzzy adaptive filters, with application to nonlinear channel equalization) V rámci práce

ČÍSLICOVÉ ADAPTIVNÍ FILTRY A ALGORITMY

byl použit fuzzy adaptivní filtr, tvořený Mamdaniho fuzzy systémem se součinovým inferenčním mechanismem a defuzzifikací využívající metody těžiště typických hodnot. Báze pravidel tohoto fuzzy filtru je tvořena M pravidly, kdy l-té pravidlo je ve tvaru

$$Ru^l: IF \ x_1 \ is \ A_1^l \ and \ x_2 \ is \ A_2^l \ and \ \dots x_n \ is \ A_n^l \ THEN \ \hat{y} \ is \ B^l$$
 (2.24)

kde A_i^l je i-tá množina ve vstupním prostoru $U \subset R^n$, B^l je fuzzy množina ve výstupním prostoru $V \subset R$ a $x_i \in U$ a $\hat{y} \in V$ jsou lingvistické proměnné. Fuzzy množiny ve výstupním prostoru jsou singletony, obsahují tedy jediný prvek x^* z univerza X a pro jejich funkce příslušnosti (charakteristické funkce) platí, že

$$\mu_B(x^*) = 1 \tag{2.25}$$

takže jádro této množiny je identické s jejím nosičem a obsahují pouze jeden stejný prvek.

$$ker(B) = supp(B) = \{1/x^*\}$$
 (2.26)

Studovaný fuzzy systém využívá součinové konjukce a Larsenovy implikace. Tím se převede vyhodnocení implikace na několik součinů tak, že pro j-té pravidlo platí

$$[\mu_{A_1^j}(x_1) \ AND \ \mu_{A_2^j}(x_2) \ AND \dots AND \ \mu_{A_n^j}(x_n)] \implies \mu_{B^j}(\hat{y}) =$$

$$= \mu_{A_1^j}(x_1) \cdot \mu_{A_2^j}(x_2) \dots \mu_{A_n^j}(x_n) \cdot \mu_{B^j}(\hat{y}) \quad (2.27)$$

kde $\mu_{A_i^j}(x_i)$ je funkce příslušnosti k i-té množině j-tého pravidla ve vstupním prostoru a μ_{B^j} je funkce příslušnosti ke množině ve výstupním prostoru.

Defuzzifikace převádí fuzzy do její reprezentace pomocí jediného čísla z množiny ostrých hodnot. Metodou těžiště typických hodnot se výstup fuzzy systému určí podle rovnice

$$y^* = \frac{\sum_{j=1}^{M} \bar{b}^j z_j}{\sum_{j=1}^{M} z_j}$$
 (2.28)

kde \bar{b}^j je střed j-té fuzzy množiny reprezentující příslušné pravidlo a z_j je její váha ve smyslu hodnoty funkce příslušnosti tohoto pravidla.

Výstup uvedeného fuzzy systému je potom ve tvaru

$$\hat{y}(\mathbf{x}) = \frac{\sum_{j=1}^{M} \bar{b}^{j} \left[\prod_{i=1}^{n} \mu_{i}^{j}(x_{i}) \right]}{\sum_{i=1}^{M} \left[\prod_{i=1}^{n} \mu_{i}^{j}(x_{i}) \right]}$$
(2.29)

Obrázek 2.4: Fuzzy filtr jako dopředná síť

přičemž \mathbf{x} je vektor vstupů o délce n

$$\mathbf{x} = [x_1, \dots, x_n] \tag{2.30}$$

a \overline{b}^j je střed výstupní množiny $B^j,$ což je fuzzy množina j-tého pravidla.

Funkce filtru lze znázornit třívrstvou dopřednou sítí (viz Figure 2.4).

V první vrstvě jsou určeny váhy jednotlivých pravidel, tedy jsou vypočteny hodnoty z_j , kde $j=1,\ldots,M$. V druhé vrstvě jsou váhy jednak pronásobeny hodnotami středů a sečteny (výpočet a), druhak jsou váhy jednotlivých pravidel sečteny (b). Ve třetí vrstvě se pak vypočte výstup fuzzy systému jako $\hat{y}=\frac{a}{b}$ (více viz podkapitola 2.2.4).

Nespornou výhodou uvedeného fuzzy adaptivního filtru je, že tvoří tzv. univerzální aproximátor. Při vhodně zvolené bázi pravidel a typu funkcí příslušnosti množin ve vstupním prostoru tak dokážet aproximovat libovolnou funkci s libovolně velkou přesností (více viz. [?])

2.2 Adaptivní algoritmy

V této podkapitole jsou popsány adaptivní algoritmy, které byly v rámci dizertační práce vyzkoušeny. Jedná se o LMS a NLMS (viz podkap. 2.2.1), Generalized Normalized Gradient Descent (GNGD, viz podkap. 2.2.3) a algoritmus Gradient descent ve verzi pro adaptivní fuzzy filtry s Gausovskými funkcemi příslušnosti ve vstupním prostoru (viz podkap. 2.2.4).

2.2.1 Algoritmy LMS a NLMS

Při použití LMS algoritmu optimální hodnoty adaptivních parametrů filtru $\mathbf{w}(k+1)$ minimalizují střední kvadratickou chybu predikce J(k) definovanou jako

$$J(k) = E[|e(k)|^2] (2.31)$$

kde $E[\cdot]$ značí střední (očekávanou) hodnotu, a e(k) je chyba predikce, definovaná jako rozdíl výstupu adaptivního filtru a skutečné hodnoty

$$e(k) = d(k) - \hat{y}(k).$$
 (2.32)

Hodnoty adaptivních parametrů filtru jsou nalezeny gradientním algoritmem. S každými nově získanými daty jsou potom váhy filtru upraveny podle rovnice

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \Delta \mathbf{w}(k) \tag{2.33}$$

přičemž pro LMS algoritmus je přírůstek vah definován jako

$$\Delta \mathbf{w}(k) = -\frac{\mu}{2} \nabla_{\mathbf{w}} E[|e(k)|^2] = \mu E[\mathbf{x}(k)e(k)]$$
(2.34)

kde μ je rychlost učení (velikost kroku) ovlivňující rychlost konvergence algoritmu a ∇ je operátor nabla

$$\nabla = \left(\frac{\partial}{\partial w_1}, \dots, \frac{\partial}{\partial w_n}\right). \tag{2.35}$$

Protože jsou parametry filtru přepočítány s každými nově získanými daty (online), je možné nahradit očekávanou hodnotu $E[\mathbf{x}(k)e(k)]$ hodnotou okamžitou. Výpočet nových hodnot parametrů adaptivního filtru tak přejde do tvaru

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu \mathbf{x}(k)e(k) \tag{2.36}$$

přičemž pro konvergenci a stabilitu algoritmu musí být splněna podmínka pro velikost rychlosti učení

$$0 < \mu < \frac{2}{\lambda_{max}} \tag{2.37}$$

kde λ_{max} je největší vlastní číslo autokorelační matice

$$R_{xx} = E[\mathbf{x}(k)\mathbf{x}^T(k)]. \tag{2.38}$$

Pokud není podmínka splňěna, pak je algoritmus nestabilní a hodnoty $\mathbf{w}(k)$ divergují. Pokud je naopak velikost rychlosti učení μ příliž malá, váhy konvergují pomalu.

Algoritmus NLMS řeší problém klasického LMS algoritmu, který v případě nevhodně škálovaného vstupu $\mathbf{x}(k)$ ztrácí stabilitu. Tento problém je vyřešen normalizací vstupu. Velikost přírůstku vah je tedy

$$\Delta \mathbf{w}(k) = \mu \frac{e(k)\mathbf{x}(k)}{\mathbf{x}^{T}(k)\mathbf{x}(k)}.$$
(2.39)

Podmínka pro velikost rychlosti učení zajišťující stabilitu algoritmu je v případě, že vstupní signál x(k) není korelovaný s aditivním šumem

$$0 < \mu < 2.$$
 (2.40)

Velikost optimální rychlosti učení je ovlivněná vlastnostmi aditivního šumu n(k) a v případě, že tento šum není korelovaný se vstupním signálem \mathbf{x} je dána jako

$$\mu_{optimal} = \frac{E[|d(k) - \hat{y}(k)|^2]}{E[|e(k)|^2]}$$
(2.41)

Problém nastane v případě, že vektor $\mathbf{x}(k)$ je nulový. Z tohoto důvodu, se přidává do jmenovatele v rovnici 2.39 malá pozitivní konstanta $\epsilon > 0$, která řeší problém s potenciálním dělením nulou. Změna adaptivních vah filtru je v tomto případě dána jako

$$\Delta \mathbf{w}(k) = \mu \frac{e(k)\mathbf{x}(k)}{\mathbf{x}^{T}(k)\mathbf{x}(k) + \epsilon}$$
(2.42)

a podmínka pro velikost rychlosti učení přejde do tvaru

$$0 < \mu < 2 + \frac{\epsilon}{\mathbf{x}^T(k)\mathbf{x}(k)}. (2.43)$$

2.2.2 Algoritmus RLS

Při použití rekurzivní metody nejmenších čtverců (RLS - recursive least squares) je odhad parametrů filtru získán na základě minimalizace kriteriální funkce ve tvaru

$$J(k) = \sum_{j=j_1}^{k} \lambda^{k-j} e(j)^2$$
 (2.44)

která je exponenciálně váženým součtem chyb výstupu posledních $k-j_i$ vzorků, přičemž parametr $\lambda \in (0;1)$ je tzv. faktor exponenciálního zapomínání. Chyba výstupu je pak definována jako

$$e(j) = d(j) - \hat{y}(j) \tag{2.45}$$

kde

$$\hat{y}(j) = \mathbf{w}^{T}(k)\mathbf{x}(j) \tag{2.46}$$

přičemž $\mathbf{w}^T(k)$ je vektor adaptivních parametrů filtru

$$\mathbf{w}^{T}(k) = [w_0(k), w_1(k), \dots, w_n(k)]$$
(2.47)

a $\mathbf{x}(k)$ je vstupní vektor v diskrétním časovém okamžiku k obsahující posledních n+1 vzorků a definovaný jako

$$\mathbf{x}(j) = [x(j), x(j-1), \dots, x(j-n)]^T$$
(2.48)

kde parametr n se označuje jako řád filtru. Z uvedené kriteriální funkce 2.44 je tedy zřejmé, že historicky starší chyby výstupu mají exponenciálně klesající význam a vzorky, které jsou starší než $k-j_i$ vzorků, nejsou pro odhad parametrů filtru použity. Pro hodnoty adaptivních parametrů, které minimalizují výše uvedenou kriteriální funkci (2.44) v diskrétním časovém okamžiku k pak platí

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \mathbf{P}(k)\mathbf{x}(k)[d(k) - \mathbf{x}^{T}(k)\mathbf{w}(k-1)]$$
(2.49)

kde matice $\mathbf{P}(k)$ je

$$\mathbf{P}(k) = \frac{1}{\lambda} \left[\mathbf{P}(k-1) - \frac{\mathbf{P}(k-1)\mathbf{x}(k)\mathbf{x}^{T}(k)\mathbf{P}(k-1)}{\lambda + \mathbf{x}^{T}(k)\mathbf{P}(k-1)\mathbf{x}(k)} \right]. \tag{2.50}$$

Člen $\mathbf{x}^T(k)\mathbf{w}(k-1)$ v rovnici (2.49) reprezentuje apriorní chybu filru, která je vypočtena ještě před korekcí adaptivních vah. Kritérium, která je minimalizováno (viz rovnice (2.44)) ale obsahuje aposteriorní chyby filtru, která je vypočtena po korekci adaptivních vah (zde se nabízí určitá podobnost s Kalmanovým filtrem, více viz [3]). Dále poznamenejme, že $\mathbf{P}(k)$ je

inverzní maticí k vážené výběrové kovarianční matici $\mathbf{R}_x(k)$ definované jako

$$\mathbf{R}_{x}(k) = \lambda^{k} \mathbf{R}_{x}(0) + \sum_{j=1}^{k} \lambda^{k-j} \mathbf{x}(j) \mathbf{x}^{T}(j) = \lambda \mathbf{R}_{x}(k-1) + \mathbf{x}(k) \mathbf{x}^{T}(k)$$
(2.51)

přičemž $\mathbf{R}_x(0)$ je počáteční hodnota. V praxi se počáteční hodnota matice $\mathbf{P}(0) = \mathbf{R}_x^{-1}(0)$ volí jako

$$\mathbf{P}(0) = \delta \cdot \mathbf{I} \tag{2.52}$$

kde δ je dostatečně velká pozitivní konstanta a **I** je jednotková matice (v některé literatuře nazývaná jako matice identity). Pro signály s vysokým poměrem výkon-šum se volí malé hodnoty δ , pro signály s malým poměrem výkon-šum pak velké hodnoty δ . Pokud je k dispozici apriorní informace o σ_x^2 tedy varianci vstupního signálu x(k), volí se hodnota konstanty podle [2] jako

$$\delta > 100\sigma_x^2. \tag{2.53}$$

Počáteční hodnota adaptivních parametrů se obvykle volí jako

$$\mathbf{w}(0) = 0. \tag{2.54}$$

2.2.3 Algoritmus Generalized Normalized Gradient Descent

Algoritmus Generalized Normalized Gradient Descent (GNGD) řeší problém případné pomalé konvergence algoritmu NLMS zavedením dalšího kompenzačního členu, který ovlivňuje velikost kroku při gradientní adaptaci. Nejprve uvažujme kvadratickou kriteriální funkce ve tvaru

$$J(k) = \frac{1}{2}e^2(k) \tag{2.55}$$

a adaptaci parametrů ve tvaru (2.42). Malou pozitivní konstantu ϵ nahradíme dalším adaptivním členem

$$\epsilon(k+1) = \epsilon(k) - \rho \nabla_{e(k-1)} J(k) \tag{2.56}$$

přičemž

$$\frac{\partial J(k)}{\partial \epsilon(k-1)} = \frac{\partial J(k)}{\partial e(k)} \frac{\partial e(k)}{\partial y(k)} \frac{\partial y(k)}{\partial \mathbf{x}(k)} \frac{\partial \mathbf{w}(k)}{\partial \eta(k-1)} \frac{\partial \eta(k-1)}{\partial \epsilon(k-1)} = \frac{e(k)e(k-1)\mathbf{x}^{T}(k)\mathbf{x}(k-1)}{(\mathbf{x}^{T}(k)\mathbf{x}(k) + \epsilon(k-1))^{2}}.$$
(2.57)

Adaptace parametrů je tedy dána jako

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \eta(k)e(k)\mathbf{x}(k) \tag{2.58}$$

kde

$$\eta(k) = \frac{\mu}{\mathbf{x}^T(k)\mathbf{x}(k) + \epsilon(k)}$$
(2.59)

$$\epsilon(k) = \epsilon(k-1) - \rho \mu \frac{e(k)e(k-1)\mathbf{x}^T(k)\mathbf{x}(k-1)}{(\mathbf{x}^T(k)\mathbf{x}(k) + \epsilon(k-1))^2}$$
(2.60)

přičemž parametr ρ je parametr adaptace velikosti kroku při spuštění algoritmu. Algoritmus GNGD je vhodný pro zpracování nelineární a nestacionárních signálů.

2.2.4 Gradient descent pro fuzzy filtry

Při použití metody gradient descent pro adaptivní fuzzy filtry je potřeba nejdříve specifikovat strukturu filtru, tedy počet pravidel, množiny ve vstupním a výstupním prostoru, typ inferenční metody, fuzzifikace a defuzzifikace. Uvažujme fuzzy systém specifikovaný v podkapitole 2.1.4, v jehož vstupním prostoru $U \subset \mathbb{R}^n$ jsou Gaussovské funkce příslušnosti ve tvaru

$$\mu_{A_i^j}(x_i) = exp\left[-\left(\frac{x_i - \overline{x}_i^j}{\sigma_i^j}\right)^2\right]$$
(2.61)

kde \overline{x}_i^j je středem i-té vstupní množiny j-tého pravidla a σ_i^j je parametr, určující tvar, respektive šířku, této fuzzy množiny. Zobrazení, realizováné výše specifikovaným fuzzy systémem je dáno rovnicí

$$\hat{y}(x) = \frac{\sum_{j=1}^{M} \overline{b}^{j} \left[\prod_{i=1}^{n} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}{\sum_{j=1}^{M} \left[\prod_{i=1}^{n} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}$$
(2.62)

přičemž parametr M určující počet množin je vzhledem k adaptaci parametrem fixním a parametry \overline{b}^j , σ_i^j a \overline{x}_i^j jsou parametry, které se adaptují. Dále uvažujme množinu N dvojic vstup-výstup, kde N odpovídá počtu vzorků experimentu.

$$\{\mathbf{x}^d(k), d(k)\}, \ k = 1, 2, \dots, N$$
 (2.63)

Při použití algoritmu gradient descent pro fuzzy filtr v kontextu detekce novosti se vždy s nově naměřenými daty tento filtr adaptuje. Adaptace probíhá s každými daty na základě minimalizace kritériální funkce

$$J(k) = \frac{1}{2} [\hat{y}(\mathbf{x}(k)) - d(k)]^2$$
 (2.64)

která je zvolená tak, aby měla právě jeden globální extrém, přičemž parametry jsou adaptovány dokud není dosaženo dostatečně malé chyby, nebo dokud není překročen předem stanovený maximální počet iterací q_{max} . Volba Gaussovských funkcí příslušnosti ve vstupním prostoru je výhodná z hlediska výpočtu derivace podle adaptabilních parametrů, neboť tato

derivace existuje v každém bodě.

$$\overline{b}^{j}(q+1) = \overline{b}^{j}(q) - \mu \frac{\partial e}{\partial \overline{b}^{j}} \Big|_{q} = \overline{b}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} z^{j}(q)$$
(2.65)

$$\overline{x}_{i}^{j}(q+1) = \overline{x}_{i}^{j}(q) - \mu \frac{\partial e}{\partial \overline{x}_{i}^{j}} \Big|_{q} =$$

$$= \overline{x}_{i}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} [\overline{b}^{j}(q) - \hat{y}] z^{j}(q) \frac{2[x_{i}(k) - \overline{x}_{i}^{j}(q)]}{\sigma_{i}^{j2}(q)} \quad (2.66)$$

$$\sigma_{i}^{j}(q+1) = \sigma_{i}^{j}(q) - \mu \frac{\partial e}{\partial \sigma_{i}^{j}} \Big|_{q} =$$

$$= \sigma_{i}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} [\overline{b}^{j}(q) - \hat{y}] z^{j}(q) \frac{2[x_{i}(k) - \overline{x}_{i}^{j}(q)]^{2}}{\sigma_{i}^{j3}(q)} \quad (2.67)$$

S každými nově získanými daty (v diskrétním časovém okamžiku k) jsou tedy v q-té iteraci hodnoty parametru \bar{b}^j vypočítány podle rovnice (2.65), parametru \bar{x}_i^j podle rovnice (2.66) a parametru σ_i^j podle rovnice (2.67). Parametr μ je fixní a určuje velikost kroku. Algoritmus lze shrnout následujícími 5-ti kroky:

- 1. Krok Určení počtu pravidel a počáteční nastavení parametrů $\overline{b}^j(0), \overline{x}_i^j(0), \sigma_i^j(0)$ a velikosti kroku μ .
- 2. Krok Pro ktou dvojici ($\mathbf{x}(\mathbf{k})$, $\mathbf{d}(\mathbf{k})$) v q-té iteraci jsou vypočteny hodnoty výstupních vrstev fuzzy systému (viz obr 2.4) podle rovnic (2.68), (2.69), (2.70) a (2.71).
- 3. Krok Výpočet nových hodnot parametrů $\overline{b}^j(q+1)$, $\overline{x}_i^j(q+1)$, $\sigma_i^j(q+1)$ dle rovnic (2.65), (2.66), (2.67).
- 4. Krok q=q+1 a opakování kroků 2. a 3. pro , dokud není dosaženo maximálního množství iterací q_{max} nebo požadované přesnosti ϵ .
- **5. Krok** Návrat do kroku 2. pro hodnotu k = k + 1, tedy s novou dvojicí dat (\mathbf{x}, d) .

Rovnice popisující výstup jednotlivých vrstev fuzzy systému (viz obr. 2.4) následují.

$$z^{j} = \prod_{i=1}^{n} exp \left[-\left(\frac{x_{i}(k) - \overline{x}_{i}^{j}(q)}{\sigma_{i}^{j}(q)}\right) \right]$$
 (2.68)

$$b = \sum_{j=1}^{M} z^j (2.69)$$

ČÍSLICOVÉ ADAPTIVNÍ FILTRY A ALGORITMY

$$a = \sum_{j=1}^{M} \overline{b}^{j}(q)z^{j} \tag{2.70}$$

$$\hat{y} = \frac{a}{b} \tag{2.71}$$

Pro správnou funkci algoritmu je důležitá prvotní volba hodnot parametrů $\overline{b}^j(0), \overline{x}_i^j(0), \sigma_i^j(0)$. Náhodné hodnoty parametrů nejsou v případě použití tohoto algoritmu vhodné. Jedna z možných metod, jak vybrat hodnoty parametrů je využití prvních M dvojic vstup-výstup. Uvažujme množinu M dvojic vstup-výstup

$$\{\mathbf{x}(j), d(j)\}, \ j = 1, 2, \dots, M$$
 (2.72)

kterou využijeme k počátečnímu nastavení parametrů následujícím způsobem.

$$\bar{b}^j(0) = d(j) \tag{2.73}$$

$$\overline{x}_i^j(0) = x_i(j) \tag{2.74}$$

$$\sigma_i^j(0) = \frac{[\max(x_i^l: l = 1, 2, \dots, M)] - \min(x_i^l: l = 1, 2, \dots, M)}{M}$$
(2.75)

Pro správnou funkci algoritmu je důležitá i volba velikosti kroku μ , která se obvykle provádí experimentálně.

3 Zobecněné Paretovo rozdělení

#TODO

3.1 Metoda Peak-over-Threshold

#TODO

3.2 Metody odhadu parametrů zobecněného Paretova rozdělení

#TODO

4 Algoritmus Extreme Seeking Entropy

#TODO

5 Výsledky experimentů

V této kapitole jsou shrnuty výsledky, kterých bylo v rámci práce na tématu dizertace dosaženo. Jmenovitě jsou to výsledky navrženého algoritmu Extreme Seeking Entropy (viz kapitola 5.1) a potom použití algoritmu Learning Entropy pro adaptivní fuzzy filtr při detekci změn stavu bioprocesu (viz kapitola 5.2).

5.1 Výsledky detekce novosti algoritmu Extreme Seeking Entropy

#TODO

5.1.1 Případová studie: chatociká časová řada Mackey-Glass a detekce pertubace

#TODO

5.1.2 Případová studie: detekce skokové změny parametrů generátoru signálu

#TODO

5.1.3 Případová studie: detekce náhlé absence šumu

#TODO

5.1.4 Případová studie: detekce změny trendu

#TODO

5.1.5 Případová studie: detekce epilepsie v myším EEG

#TODO

5.1.6 Vyhodnocení úspěšnosti detekce skokové změny parametrů generátoru signálu

#TODO

- 5.1.7 Vyhodnocení úspěšnosti detekce změny trendu a evaluace ROC křivky # TODO
- 5.1.8 Vyhodnocení výpočetní náročnosti metod odhadu parametrů Paretova rozdělení
- 5.2 Případová studie použití algoritmu Learning Entropy a adaptivního fuzzy filtru pro detekci změn stavů bioprocesu

#TODO

5.2.1 Popis bioprocesu a specifikace problému

Podle [1] je pro fermentační procesy, které probíhají v dávkovém režimu je podstatné, aby probíhalo správně dávkované živení substrátem. Pro tyto procesy je specifické, že se při nadměrných koncentracích stává substrát pro mikroorganismy toxickým a může dojít k tzv. přeživení a tím i zahubení těchto mikroorganismů. Naopak, v důsledku nedostatečného zábovení živinami může dojít k odumření kultivovaného organismu. Z tohoto pohledu se je tedy důležité v závislosti na koncentraci substrátu a stavu populace mikroorganismů měnit i strategii pro řízení procesu kultivace. Historicky byl stav bioprocesu klasifikován expertem, přičemž vyhodnocení bylo poměrně časově náročné a nebylo neobvyklé, že různí experti docházeli k rozdílným závěrům. Protože výnos fermentačního procesu je zásadním způsobem ovlivněn správnou klasifikací stavu ve kterém se právě nacházi, bylo by vhodné klasifikaci automatizovat a pokud možno zvýšit její přesnost. Tomuto problému je právě věnována publikace [1], která řeší problém automatické klasifikace stavů bioprocesu kultivace bakterie *Pseudomonas putida KT2442*. V této publikaci je navržen komplexní algoritmus pro online klasifikaci stavů bioprocesu. Autoři zde rozlišují celkem tři stavy bioprocesu kultivace *Pseudomonas putida KT2442*, konkrétně:

- 1. normální živení
- 2. přeživení
- 3. nedoživení

Navržený algoritmus vyhodnocuje přísun vstupujících živin (Fm), respektive substrátu, a změny a trendu rozpuštěného kyslíku (DO), který je produkován bakteriemi *Pseudomonas putida* a pomocí hřebenové regrese (v literatuře se vyskytuje také pod názvem Tichonova regularizace) je určován vývoj populace bakterií respektive stav bioprocesu. Vzhledem k tomu, že modely vývoje populace pro jednotlivé stavy jsou různé, mohlo by v průběhu experimentu dojít i k podstatným změnám v adaptivním modelu v okamžicích změn stavů kultivace. Tyto změny se mohli projevit neobvykle velkými přírůstky adaptivních parametrů.

Protože algoritmus Learning Entropy využívá přírůstku adaptivních parametrů, mohl by být vhodným nástrojem pro detekci změn stavů bioprocesu. Předpokládáme, že tedy existuje korelace mezi změnami stavu bioprocesu a nárůstem Learning Entropy. Přestože může být proces kultivace bakterií *Pseudonomas Putidas* modelován různými a různě složitými modely, pro využití algoritmu Learning Entropy se jeví výhodné použít jednoduché prediktory nebo sledovače. Dosud publikované články využívali pro algoritmus LE pouze FIR filtry, případně Volterrovy filtry, které mají adaptivní parametry v lineární závislosti. V tomto experimentu je použit adaptivní fuzzy filtr, jehož struktura je specifikována v kapitole 2.1.4 a k jehož adaptaci byl použit algoritmus, který je uveden v kapitole 2.2.4.

Použitý adaptivní fuzzy filtr má 9 pravidel (M = 9), jehož l-té pravidlo je ve tvaru

$$IF\ do(k-1)\ is\ A_1^l\ AND\ do(k-6)\ is\ A_2^l\ AND\ do(k-19)\ is\ A_3^l\ THEN\ do(k)\ is\ B^l\ \ (5.1)$$

kde A_i^l je množina ve vstupním prostoru $U\subset R^3$ a B^l je fuzzy množina ve výstupním prostoru $V\subset R$. V uvedeném pravidle jsou do(k-1), do(k-6), do(k-19) a do(k) lingvistické proměnné, které vyjadřují koncentraci rozpuštěného kyslíku do v v diskrétních časových okamžicích k, k-1, k-6 respektive k-19, kde k je diskrétní časový index. Vzhledem k tomu, že uvedený adaptivní fuzzy filtr používá Gaussovské funkce příslušnosti (viz kapitola 2.1.4 je zobrazení popisující jeho výstup ve tvaru

$$\hat{y}(\mathbf{x}(k)) = \frac{\sum_{j=1}^{9} \overline{b}^{j} \left[\prod_{i=1}^{3} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}{\sum_{j=1}^{9} \left[\prod_{i=1}^{3} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}$$
(5.2)

kde vektor $\mathbf{x}(k)$ je

$$\mathbf{x}(k) = [do(k-1), do(k-6), do(k-19)]. \tag{5.3}$$

Protože hodnota koncetnrace rozpuštěného kyslíku je uváděna v procentech, platí pro všechna $x_i \in \langle 0; 100 \rangle$. K adaptování výše uvedeného filtru byl použit algoritmus gradient descent (viz kapitola 2.2.4. Maximální počet epoch byl stanoven na $q_{max}=100$ a požadovaná chyba predikce mezi výstupem adaptivního filtru a naměřenými daty na $\epsilon=0,001$. Rychlost učení byla během experimentů nastavena na $\mu=1$.

Pro vyhodnocení novosti byla použita přímá verze algoritmu LE, takže

$$E(k) = \max\{0, \sum_{j=1}^{9} z(|\Delta \overline{b^{j}})| - \beta\}$$
 (5.4)

kde funkce z je dána rovnicí (XY) a β je citlivostní parametr. Pro vyhodnocení novosti jsou tedy použity změny polohy středů množin ve výstupním prostoru, nikoliv změny parametrů fuzzy množin ve vstupním prostoru.

5.2.2 Experiment a zhodnocení

Experiment s použitím algoritmu LE a adaptivního fuzzy filtru byl uskutečněn na datech z kultivace bakterie $Pseudonomas\ Putida$, který byl uskutečněn na Ústavu počítačové a řídicí techniky VŠCHT Praha. Celkem byly zpracovávány hodnoty ze dvou kultivací. Přestože bylo během experimentu měřena sada různých veličin (např. teplota, pH, atd.), osvědčil se pro použití LE signál rozpustěného kyslíku do [%]. Během experimentu bylo použito vzorkování $T=1\ min$, což je vzhledem k rychlosti celého procesu dostatečně rychlé vzorkování. Počáteční nastavení parametrů adaptivního fuzzy filtru bylo provedeno tak, jak je popsáné v kapitole 2.2.4. Podstatný vliv na výsledek detekce změn stavu bioprocesu měla volba volba délky okna pro vyhodnocení změn adaptabilních parametrů filtru M_{ND} . Na základě experimentů s různými délkami byla nakonec zvolena délka okna $M_{ND}=20$.

Na následujících obrázcích je znázorněn průběh signálu do během první kultivace (viz obrázek 5.1), chyba predikce (viz obrázek 5.2) a odpovídající hodnoty LE společně se stavy bioprocesu (viz obrázek 5.5). Význam stavů bioprocesu znázorněných na obrázku 5.2 respektive obrázku 5.6 jsou: 1 - nedoživení, 2 - živení, 3 - přeživení. Aby byli detekovány všechny změny stavu bioprocesů, byla stanovena hodnota parametru $\beta = 2,58$ (viz rovnice 5.4).

Data z druhé kultivace byla použita k ověření správného nastavení parametru β . Obrázek 5.4 zobrazuje průběh signálu do během druhého experimentu. Chyba predikce adaptivního fuzzy filtru je zobrazena na obrázku 5.3. Obrázek 5.6 zobrazuje stavy bioprocesu během kultivace a odpovídající hodnoty LE. S tímto nastavením parametru β se podařilo detekovat pouze tři změny bioprocesu. Nicméně pro jiné hodnoty délky okna M_{ND} a hodnoty parametru β se tyto změny detekovat podařilo. Je tedy zřejmé, že pro praktické použití je správná volba obou parametrů zásadní. Vzhledem k malému množství dat a časové náročnosti kultivace nebylo možné použít nějakou validační metodu.

Obrázek 5.1: Průběh signálu doběhem první kultivace

Obrázek 5.2: Chyba predikce \boldsymbol{e} během první kultivace

Obrázek 5.3: Stav bioprocesu a hodnota LE první kultivace

Obrázek 5.4: Průběh signálu doběhem druhé kultivace

Obrázek 5.5: Chyba predikce e během druhé kultivace

Obrázek 5.6: Stav bioprocesu a hodnota LE během druhé kultivace

6 Závěr

TODO

Publikace autora

Literatura

- [1] MAREŠ, Jan, et al. Process state classification of fed-batch fermentation based on process variables analysis. Biochemical Engineering Journal, 2016, 112: 178-185.
- [2] ROWELL, D. 2.161 Signal Processing: Continuous and Discrete, Fall 2008. 2008.
- [3] MANDIC, Danilo P.; KANNA, Sithan; CONSTANTINIDES, Anthony G. On the intrinsic relationship between the least mean square and Kalman filters [Lecture Notes]. IEEE Signal Processing Magazine, 2015, 32.6: 117-122.
- [4] PROAKIS, John G. a Dimitris G. MANOLAKIS. Digital signal processing: principles, algorithms, and applications. 3rd ed. Upper Saddle River, N.J.: Prentice Hall, 1996. ISBN 0133737624.
- [5] OOSTENVELD, Robert; PRAAMSTRA, Peter. The five percent electrode system for high-resolution EEG and ERP measurements. Clinical neurophysiology, 2001, 112.4: 713-719.
- [6] HAYKIN, Simon S. Adaptive filter theory. Fifth edition. vyd. Upper Saddle River, New Jersey: Pearson, 2014. ISBN 978-0-13-267145-3.
- [7] STRICHARTZ, Robert S. A guide to distribution theory and Fourier transforms. World Scientific Publishing Company, 2003.
- [8] GERSHO, Allen; GRAY, Robert M. Vector quantization and signal compression. Springer Science & Business Media, 2012.

Příloha