CONVOLUTIONAL NEURAL NETWORKS

By: Mohamed Aziz Tousli

Convolution

■ Computer vision problems: Image classification, Object detection, Neural style transfer, Edge detection...

		_		•		
Vertical edge detection: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	0	-1] [1 0	-1] [3	0	-3]
Vertical edge detection: 1	0	-1,	2 0	-2 , 10	0	-10
l ₁ ,	Q	_ 1] [1, 0	-1J L 3	0	-3
	_	1	T			
Horizontal edge detection:	0	0	0			
L	-1,	-,1,	-1			
	$ vv_1 $	w ₂	w3			
Detect edges in general:	$ W_4 $	W_5	w_6	→ Paramet	ers t	o learr

_						"Convolution"
3	1	1	2	8	4	
1	0	7	3	2	6	-7)
2	3	5	1	1	3	★ 1 0 -1 =
1	4	1	2	6	5	
3	2	1	3	7	2	1 0 -1 Filter 3x3
9	2	6	2	5	1	Output 4x4
	Orig	ginal i	mage	6x6		™ / ∏
						Result of the element-wise product and sum of the filter matrix and the <u>orginal</u> image

- \rightarrow Shrinking output + Throwing away information from edge \rightarrow Solution: Padding
 - Valid convolution: No padding (p=0)
 - Same convolution: Padding so that output size is same as input size $p = \frac{f-1}{2}$
- Strided convolution: Convolution with pace
- $(n,n)*(f,f)\to (\left[\frac{n+2p-f}{s}+1\right],\left[\frac{n+2p-f}{s}+1\right])$

PS: <u>Cross-correlation</u>: Convolution with rotating the filter

PS: Convolution can be done in 1D and 3D the same way as in 2D

0	0	0	0	0	0	0
0						0
0						0
0						0
0						0
0						0
0	0	0	0	0	0	0

Convolution Layer

 $(n, n, n_c) * (f, f, n_c) \rightarrow (n - f + 1, n - f + 1, n'_c); n_c = number of channels; = number of filters$

- $a^{[1]} = g(w^{[1]}.a^{[0]} + b^{[1]}); w = filters, a^{[0]} = input, b = bias$
- Filter size: $f^{[l]}$, Padding: $p^{[l]}$, Stride: $s^{[l]}$, Number of filters: $n_c^{[l]}$
- Filter: $(f^{[l]}, f^{[l]}, n_c^{[l-1]})$, Activation: $(n_H^{[l]}, n_W^{[l]}, n_c^{[l]})$, Weights: $(f^{[l]}, f^{[l]}, n_c^{[l-1]}, n_c^{[l]})$, Bias: $(1,1,1,n_c^{[l]})$
- Input: $\left(n_H^{[l-1]}, n_W^{[l-1]}, n_C^{[l-1]}\right)$, Output: $\left(n_H^{[l]}, n_W^{[l]}, n_C^{[l]}\right)$, $n_{H/W}^{[l]} = \left[\frac{n_{H/W}^{[l-1]} + 2p^{[l]} f^{[l]}}{s^{[l]}} + 1\right]$

Convolutional Network

- Types of a layer in a CN: Convolution (Conv), Pooling (Pool), Fully connected (FC)
- Max pooling: (Hyper parameters: f (filter size), s (stride))
- Input size: $(n_H, n_W, n_c) \rightarrow \left(\left[\frac{n_H f}{s} + 1 \right], \left[\frac{n_H f}{s} + 1 \right], n_c \right)$

2	1	3	1
1	0	1	4
0	6	9	5
7	1	4	1

PS: There is also average pooling + There is no padding in pooling + There are no parameters to learn

- Why convolutions?
 - Parameter sharing: A feature detector is probably useful in many parts of the image
 - Sparsity of connections: In each layer, each output value depends only on a small number of inputs

Examples: LeNet5 – AlexNet

Examples: VGG16

Residual Network

- Shortcut = Skip connection: $a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$
- Residual network vs Plain network:
 - \rightarrow Identity function is easier for Residual block to learn (If $W^{[l+2]}=0$ and $b^{[l+2]}=0$)

Ps: If sizes don't much $\Rightarrow a^{[l+2]} = g(z^{[l+2]} + W_s, a^{[l]})$; Exp: $a^{[l+2]} \Rightarrow 256, a^{[l]} \Rightarrow 128, W_s \Rightarrow (256,128)$

1x1 Convolution

- Goal: Change size from (n, n, value) to (n, n, #filters) thanks to (1, 1, value) #filters
- → Reduce computational cost (1x1 layer is called « bottleneck » layer
- <u>Tip</u>: Use open source code
 - Use architectures of networks published in the literature
 - Use open source implementations if possible
 - Use pretrained models and fine-tune on your dataset

Inception Network

Transfer Learning

Data Augmentation

- <u>Techniques</u>: Mirroring, Random cropping, Rotation, Shearing, Local warping, Color shifting...
- Implementing distortions during training → Parallel job using threads:
 - CPU thread to distort picture
 - CPU thread to train data
- Two sources of knowledge:
 - Labeled data
 - Hand engineered features/network architecture/other components
- Little data (More hand-engineering) vs Much data (Less hand-engineering ⇔ Simpler algorithms)
- Little data: Object detection → Image recognition → Speech recognition: Much data
- <u>Tips for doing well on benchmarks</u>:
 - Ensembling: Train several networks independently and average their outputs
 - Multi-crop at test time: Run classifier on multiple versions of test images and average results

Keras {1}

- High level framework that provides additional abstractions (Higher than TensorFlow)
- In Keras, instead of creating a new variable on each step of forward propagation (X, Z1, A1, Z2, A2...) we just reassign X to a new value

```
def model(input_shape):
   # Define the input placeholder as a tensor with shape input shape. Think of this as your input image!
   X input = Input(input shape)
   # Zero-Padding: pads the border of X input with zeroes
   X = ZeroPadding2D((3, 3))(X input)
   # CONV -> BN -> RELU Block applied to X
   X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)
   X = BatchNormalization(axis = 3, name = 'bn0')(X)
   X = Activation('relu')(X)
   # MAXPOOL
   X = MaxPooling2D((2, 2), name='max pool')(X)
   # FLATTEN X (means convert it to a vector) + FULLYCONNECTED
   X = Flatten()(X)
   X = Dense(1, activation='sigmoid', name='fc')(X)
   # Create model. This creates your Keras model instance, you'll use this instance to train/test the model.
   model = Model(inputs = X input, outputs = X, name='HappyModel')
   return model
```

Keras {2}

- 1. Create the model by calling the function above
- 2. Compile the model by calling model.compile(optimizer="", loss="", metrics=["accuracy"])
- 3. Train the model on train data by calling model.fit(X=,Y=,epochs=,batch_size=)
- 4. Test the model on test data by calling model.evaluate(X=,Y=)

Useful tips:

- model.summary(): prints the details of your layers in a table with the sizes of its inputs/outputs
- plot.model(): plots your graph in a nice layout. You can even save it as ".png" using SVG()

Classification, Localization, Detection

Image classification

Classification with localization

Detection

Classification with Localization

Output layer contains:

```
\begin{pmatrix} p_c \rightarrow 1 & if & object & exist \ b_x \rightarrow box & x\_coordinate \ b_y \rightarrow box & y\_coordinate \ b_h \rightarrow box & height \ b_w \rightarrow box & width \ c_1 \rightarrow 1st & object & class \ c_2 \rightarrow 2nd & object & class \ c_3 \rightarrow 3rd & object & class \end{pmatrix}
```

; PS: If pc=0, we don't care about other values

Landmark Detection & Non-Convolution Implementation of Sliding Windows

■ Goal: Detect points (coordinates) instead of boxes (with height and width)

Output layer contains:

```
p_c 
ightarrow 1 if object exist l_{1x} 
ightarrow landmardk1 x\_coordinate l_{1y} 
ightarrow landmardk1 y\_coordinate l_{2x} 
ightarrow landmardk2 x\_coordinate l_{2y} 
ightarrow landmardk2 y\_coordinate l_{2y} 
ightarrow landmardk2 y\_coordinate
```


Turning FC layer into Convolutional Layer

Convolution Implementation of Sliding Windows

■ PS: Instead of working on each window by itself (non-convolution), we will work on all the windows together using convolutional implementation

YOLO Algorithm

- YOLO = You Only Look Once
- Output size $\rightarrow (\sqrt{\#grids}, \sqrt{\#grids}, 5 + \#classes), 5 = pc + b_x + b_y + b_h + b_w$
- PS: If P_c =0, other values don't matter
- PS1: $0 \le b_x$ and $b_y \le 1 \to Relative$ to the grid
- PS2: b_h and b_w can be > 1

Non-Max Suppression Algorithm

- Intersection over Union: $IoU = \frac{size\ of\ intersection}{size\ of\ union} \rightarrow Correct\ if\ IoU \ge 0,5$
 - IoU is measure of the overlap between two bounding boxes
- Algorithm:
 - 1. Each output prediction is $\begin{pmatrix} p_c \\ b_x \\ b_y \\ b_h \\ b_w \end{pmatrix}$
 - 2. Discard all boxes with $p_c \leq 0.6$
 - 3. While there are any remaining boxes:
 - 1. Pick the box with the largest p_c and output that as a prediction
 - 2. Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Anchor Box Algorithm

■ Goal: Find solution to overlapping objects

PS: With two anchor boxes, each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU

- Output size $\rightarrow (\sqrt{\#grids}, \sqrt{\#grids}, (5 + \#classes) * \#AnchorBoxes), 5 = pc + b_x + b_y + b_h + b_w$
- PS: If one P_c =0, other values with same anchor box don't matter

Drawbacks:

- It is bad when different objects have the same shape
- It is bad if 3 objects appear when having 2 anchor boxes

Final Algorithm

- 1. For each grid call, get 2 predicted bounding boxes
- 2. Get rid of low probability predictions
- 3. For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions

Region Proposal: R-CNN

- It is a segmentation algorithm to reduce the calculations
 - R-CNN: Propose regions. Classify proposed regions one at a time. Output level + bounding box
 - Fast R-CNN: Propose regions. Use convolution implementation of sliding windows to classify all the proposed regions
 - Faster R-CNN: Use convolutional network to propose regions

One-shot Learning (1)

- Face verification:
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
- Face recognition:
 - Has a database of K persons
 - Input image
 - Output ID if the image is any of the K persons (or "not recognized")
- One-shot learning: Learning from one example to recognize the person again
 - \rightarrow Learning a "similarity" function: $d(img1, img2) = degree \ of \ difference \ between \ images$

$$d(x^{(1)}, x^{(2)}) = \left| \left| f(x^{(1)}) - f(x^{(2)}) \right| \right|_{2}^{2}$$

$$if \ d(img1, img2) \le \tau \rightarrow \text{same}$$

$$if \ d(img1, img2) > \tau \rightarrow different$$

- → Siamese Network.
 - Person 1 → CNN → Softmax output (128 units) = encoding of person 1
 - Person 2 → Same CNN → Softmax output = encoding of person 2
 - \rightarrow Learn parameters so that is person 1/2 are the same person, d is small, and large otherwise
- Famous Networks: FaceNet, DeepFace

One-shot Learning (2)

- We want $||f(A) f(P)||^2 + \alpha \le ||f(A) f(N)||^2 \Leftrightarrow d(A, P) + \alpha \le d(A, N)$
 - A: Anchor image, P: Positive, N: Negative, α: margin to make difference larger
- Loss function: $L(A, P, N) = \max(||f(A) f(P)||^2 ||f(A) f(N)||^2 + \alpha, 0)$
- $J = \sum_{i=1}^{n} L(A^{(i)}, P^{(i)}, N^{(i)})$; Training set: 10k pictures of 1k persons for example
- PS: if A, P, N are chosen randomly, the inequality is easily satisfied
 - \rightarrow Choose triplets that are "hard" to train on $\Leftrightarrow d(A, P) \approx d(A, N)$
- **Learning the similarity function**: If a new person is added to the dataset, its ouput $f(x^{(new)})$ will be compared to the already precomputed $f(x^{(i)})$ of the dataset

$$\widehat{y} = \sigma \left(\sum_{k=1}^{128} w_i \left| f(x^{(i)})_k - f(x^{(j)})_k \right| + b \right)$$

Visualizing what a deep network is learning

■ **Tip**: Pick a unit in layer I. Find the nine image patches that maximize the unit's activation.

- Initialize G randomly
- 2. Use gradient descent to minimize J(G): $G := G \frac{a}{dC}J(G)$

■ Style matrix: = Gram matrix: $G_{kk'}^{[l]} = \sum_{i=1}^{n_H^{[l]}} \sum_{i=1}^{n_W^{[l]}} a_{ijk}^{[l]} a_{ijk'}^{[l]}$

Correlation between filters

