Equazioni differenziali ordinarie

Con questo elaborato si vuole analizzare la suite ode offerta dal Matlab per risolvere equazioni o sistemi di equazioni differenziali ordinarie.

Modello SIR di diffusione di un'epidemia.

Calcolare con la function matlab ode45 la soluzione del seguente sistema:

```
\begin{split} S'(t) &= -\alpha S(t) I(t) \\ I'(t) &= \alpha S(t) I(t) - \beta I(t) \\ R'(t) &= \beta I(t) \\ \text{Con: } t \in [0, 20], \ S(0) = 199, \ I(0) = 1, \ R(0) = 0 \end{split}
```

Dove:

S = Suscettibili di infezione, I = Infetti, R = Immuni(guariti), a = costante di contagio, $\beta = \text{costante di guarigione}$.

Per poter calcolare e effettuare le simulazioni, al variare di *a*, dell'andamento della diffusione dell'epidemia è stato relizzata una function che calcola la soluzione del sistema di equazioni della diffusione dell'epidemia,il codice sorgente è presente in simulazioneEpidemia.m.

Prima di procedere con la simulazione, definiamo le costanti del problema, le soluzioni iniziali e analizziamo un esempio di applicazione di **ode45** per calcolare la soluzione del sistema.

```
% Costante definite dalla traccia
b = 0.1;
t = [0, 20];
a = [0.005 0.01 0.05 0.1];

% Soluzioni iniziali
% numero di scettibili iniziali
% numero di infetti iniziali
% numero di guariti iniziali
y0 = [199; 1;0];
```

Dalle soluzioni iniziali del problema di Cauchy, osserviamo che il numero totale di individui è 200, e che inizialmente ci sono 199 persone che sono suscettibili all'infezione, c'è un solo infetto e non c'è nessun immune.

Analizziamo ora come usare ode45 e quali sono i risultati che ci fornisce.

```
[t,y] = ode45(@sistemaEpidemia, t, y0, [], a(1), b);
T = table(t,y(:,1),y(:,2),y(:,3));
T.Properties.VariableNames = {'Tempo' 'Suscettibili' 'Infetti' 'Immuni'}
```

```
T = 73 \times 4 \text{ table}
```

	Tempo	Suscettibili	Infetti	Immuni
1	0	199.0000	1.0000	0
2	0.0005	198.9995	1.0004	0.0001
3	0.0010	198.9990	1.0009	0.0001
4	0.0015	198.9985	1.0013	0.0002
5	0.0020	198.9980	1.0018	0.0002
6	0.0045	198.9955	1.0041	0.0005
7	0.0070	198.9930	1.0063	0.0007
8	0.0095	198.9905	1.0086	0.0010
9	0.0121	198.9879	1.0108	0.0012
10	0.0246	198.9752	1.0223	0.0025
11	0.0372	198.9624	1.0338	0.0038
12	0.0497	198.9494	1.0455	0.0051
13	0.0623	198.9363	1.0573	0.0064
14	0.1251	198.8683	1.1184	0.0132
15	0.1879	198.7965	1.1830	0.0205
16	0.2507	198.7206	1.2513	0.0281
17	0.3135	198.6403	1.3235	0.0362
18	0.5022	198.3703	1.5663	0.0634
19	0.6909	198.0513	1.8531	0.0956
20	0.8795	197.6747	2.1917	0.1336
21	1.0682	197.2303	2.5911	0.1787
22	1.3278	196.4858	3.2599	0.2543
23	1.5874	195.5539	4.0968	0.3494
24	1.8470	194.3898	5.1414	0.4688
25	2.1067	192.9397	6.4417	0.6185
26	2.4108	190.7917	8.3658	0.8426
27	2.7150	188.0410	10.8260	1.1329
28	3.0191	184.5478	13.9444	1.5078
29	3.3233	180.1588	17.8521	1.9892
30	3.6699	173.8685	23.4311	2.7004
31	4.0164	165.9743	30.3964	3.6294
32	4.3630	156.3298	38.8450	4.8253
33	4.7096	144.9327	48.7288	6.3384
34	5.1192	129.4095	61.9906	8.5999

	Tempo	Suscettibili	Infetti	Immuni
35	5.5288	112.3552	76.2165	11.4283
36	5.9384	94.7347	90.4212	14.8441
37	6.3481	77.6268	103.5499	18.8232
38	6.8481	58.9331	116.7178	24.3491
39	7.3481	43.4596	126.1047	30.4357
40	7.8481	31.4326	131.6756	36.8918
41	8.3481	22.5475	133.9091	43.5434
42	8.6424	18.5100	134.0022	47.4878
43	8.9368	15.2003	133.3755	51.4242
44	9.2311	12.4999	132.1660	55.3341
45	9.5255	10.3023	130.4963	59.2014
46	9.8199	8.5134	128.4732	63.0134
47	10.1142	7.0575	126.1808	66.7617
48	10.4086	5.8721	123.6880	70.4399
49	10.7029	4.9045	121.0530	74.0425
50	11.0252	4.0444	118.0600	77.8957
51	11.3475	3.3516	114.9972	81.6512
52	11.6698	2.7919	111.9004	85.3077
53	11.9921	2.3373	108.7984	88.8643
54	12.3374	1.9422	105.4933	92.5644
55	12.6828	1.6232	102.2257	96.1511
56	13.0281	1.3645	99.0096	99.6258
57	13.3735	1.1534	95.8560	102.9906
58	13.7582	0.9622	92.4256	106.6122
59	14.1430	0.8080	89.0884	110.1036
60	14.5277	0.6830	85.8485	113.4685
61	14.9124	0.5808	82.7084	116.7107
62	15.3515	0.4862	79.2478	120.2660
63	15.7906	0.4100	75.9177	123.6722
64	16.2297	0.3484	72.7166	126.9351
65	16.6688	0.2980	69.6419	130.0601
66	17.1688	0.2514	66.2908	133.4578
67	17.6688	0.2139	63.0943	136.6918
68	18.1688	0.1834	60.0469	139.7697

	Tempo	Suscettibili	Infetti	Immuni
69	18.6688	0.1584	57.1427	142.6989
70	19.0016	0.1443	55.2863	144.5695
71	19.3344	0.1318	53.4889	146.3793
72	19.6672	0.1207	51.7490	148.1302
73	20.0000	0.1109	50.0649	149.8242

la funzione ci fornisce gli istanti di tempo che utilizza per calcolare la soluzione e osserviamo subito che il passo che utilizza per la discretizzazione è variabile e che il numero di punti non sono scelti da noi, inoltre y è un vettore che contiene il valore delle funzioni nei punti.

Di seguito analizzeremo come al variare della costante di contaggio evolve il modello di diffusione dell'epidemia.

simulazioneEpidemia(y0,t,a(1),b)

