Natural Language Processing Applications

Lecture 1: Course Introduction

- Course Introduction
- Course Evaluation
- Course Outline
- References

COURSE INTRODUCTION

Course Information

- Course name: Natural Language Processing Applications
- Credits: 4
 - Lecture: 45 hrs
 - □ Lab: 30 hrs
 - □ Self-study: 90 hrs
- Knowledge block: Elective Computer Science
- Prerequisite: Introduction to Natural Language Processing

COURSE OBJECTIVES

Course Objectives

- Understand the basic applications of Natural Language Processing (NLP)
- Develop skills in describing, analyzing and modeling a real-world NLP application
- Know the methods/measures used to evaluate NLP applications
- Build some basic NLP applications

COURSE EVALUATION

Course Evaluation

- Lecture:
 - Assignments:
 - Quizzes: 5%
 - Homework: 5%
 - Projects:
 - Project1 (Seminar): 30%
 - Project2 (Application): 40%
- □ Lab:
 - Weekly lab work: 20%

COURSE OUTLINE

Lecture 1. Introduction

- Introduction to NLP Applications
- Development status of NLP Applications

Lecture 2. Language Models

- Introducing n-gram
- Estimating the probability n-gram
- Model evaluation
- Smoothing methods

Lecture 3. Text Classification

- Introduction
- Naive Bayes
- Model evaluation

Lecture 4. Text Clustering

- Introduction
- Word Clustering
- Phrase Clustering
- Text Clustering
- Evaluation

Lecture 5. Text Similarity

- Introduction to Text Similarity
- Text Similarity Approaches
- Model Evaluation

Lecture 6. Text Summarization

- Introduction
- Text Summarization Approaches
- Evaluation

Lecture 7. Readability

- Readability Overview
- Related Work
- Dataset
- Evaluation

Lecture 8. Machine Translation

- MT Introduction
- Word-based MT
- Phrase-based MT
- Evaluation

Lecture 9. Building NLP Applications

- Sample Applications
- Notes in Building NLP Applications

NLPA - Course Introduction REFERENCES

Tài liệu tham khảo

- Vietnamese:
 - Dinh Điền, Xử Lý Ngôn Ngữ Tự Nhiên, 2006, NXB ĐHQG.
- English:
 - Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999.
 - □ **Dan Jurafsky and James H. Martin**, Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Third Edition draft, 2020.
 - □ **Kevyn Collins-Thompson**, Computational Assessment of Text Readability, 2014.
 - Jiapeng Wang and Yihong Dong, Measurement of Text Similarity: A Survey, Information