Natural Deduction for Propositional Logic

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

September 15, 2015

Outline

- Natural Deduction
- 2 Propositional logic as a formal language
- Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

Natural Deduction

- In our examples, we (informally) infer new sentences.
- In natural deduction, we have a collection of proof rules.
 - These proof rules allow us to infer new sentences logically followed from existing ones.
- Supose we have a set of sentences: $\phi_1, \phi_2, \dots, \phi_n$ (called <u>premises</u>), and another sentence ψ (called a conclusion).
- The notation

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

is called a sequent.

- A sequent is <u>valid</u> if a proof (built by the proof rules) can be found.
- We will try to build a proof for our examples. Namely,

$$p \land \neg q \implies r, \neg r, p \vdash q.$$

Proof Rules for Natural Deduction – Conjunction

- Suppose we want to prove a conclusion $\phi \wedge \psi$. What do we do?
 - Of course, we need to prove both ϕ and ψ so that we can conclude $\phi \wedge \psi$.
- Hence the proof rule for conjunction is

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

- Note that premises are shown above the line and the conclusion is below. Also, ∧i is the name of the proof rule.
- This proof rule is called "and-introduction" since we introduce a conjunction (∧) in the conclusion.

Proof Rules for Natural Deduction – Conjunction

- For each connective, we have introduction proof rule(s) and also elimination proof rule(s).
- Suppose we want to prove a conclusion ϕ from the premise $\phi \wedge \psi$. What do we do?
 - We don't do any thing since we know ϕ already!
- Here are the elimination proof rules:

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

- The rule $\wedge e_1$ says: if you have a proof for $\phi \wedge \psi$, then you have a proof for ϕ by applying this proof rule.
- Why do we need two rules?
 - Because we want to manipulate syntax only.

Example

Prove $p \land q, r \vdash q \land r$.

Proof.

We are looking for a proof of the form:

Example

Prove $p \wedge q, r \vdash q \wedge r$.

Proof.

We are looking for a proof of the form:

$$\frac{p \wedge q}{q} \wedge e_2 \quad r \\ \frac{q}{q \wedge r} \wedge i$$

We will write proofs in lines:

 $\begin{array}{cccc} 1 & p \wedge q & \text{premise} \\ 2 & r & \text{premise} \\ 3 & q & \wedge e_2 \ 1 \\ 4 & q \wedge r & \wedge i \ 3, \ 2 \\ \end{array}$

Proof Rules for Natural Deduction - Double Negation

- Suppose we want to prove ϕ from a proof for $\neg\neg\phi$. What do we do?
 - ▶ There is no difference between ϕ and $\neg\neg\phi$. The same proof suffices!
- Hence we have the following proof rules:

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$
 $\frac{\neg \neg \phi}{\phi} \neg \neg e$

Example

Prove $p, \neg\neg(q \land r) \vdash \neg\neg p \land r$.

Proof.

We are looking for a proof like:

$$\begin{array}{ccc}
p & \neg\neg(q \land r) \\
& \vdots \\
\neg\neg p \land r
\end{array}$$

Example

Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$.

Proof.

We are looking for a proof like:

$$\frac{p}{\neg \neg p} \neg \neg i \frac{\neg \neg (q \land r)}{q \land r} \neg \neg e$$

$$\neg \neg p \land r \land i$$

Example

Prove $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$.

Proof.

We are looking for a proof like:

Proof Rules for Natural Deduction – Implication

- Suppose we want to prove ψ from proofs for ϕ and $\phi \Longrightarrow \psi$. What do we do?
 - We just put the two proofs for ϕ and $\phi \Longrightarrow \psi$ together.
- Here is the proof rule:

$$\frac{\phi \quad \phi \implies \psi}{\psi} \implies e$$

- This proof rule is also called modus ponens.
- Here is another proof rule related to implication:

$$\frac{\phi \implies \psi \quad \neg \psi}{\neg \phi} MT$$

This proof rule is called modus tollens.

Example

Prove
$$p \Longrightarrow (q \Longrightarrow r), p, \neg r \vdash \neg q$$
.

Proof Rules for Natural Deduction - Implication

- Suppose we want to prove $\phi \implies \psi$. What do we do?
 - We assume ϕ to prove ψ . If succeed, we conclude $\phi \Longrightarrow \psi$ without any assumption.
 - Note that ϕ is added as an assumption and then removed so that $\phi \implies \psi$ does not depend on ϕ .
- We use "box" to simulate this strategy.
- Here is the proof rule:

• At any point in a box, you can only use a sentence ϕ before that point. Moreover, no box enclosing the occurrence of ϕ has been closed.

Example

Prove $\neg q \Longrightarrow \neg p \vdash p \Longrightarrow \neg \neg q$.

$$\frac{\neg q \Longrightarrow \neg p}{\neg \neg q} \xrightarrow{\neg \gamma p} \xrightarrow{\neg \gamma i} MT$$

$$\overline{p \Longrightarrow \neg \neg q} \Longrightarrow i$$

Theorems

Example

Prove $\vdash p \implies p$.

Proof.

$$\begin{array}{ccc}
1 & p & \text{assumption} \\
2 & p \Longrightarrow p & \Longrightarrow i \ 1 - 1
\end{array}$$

In the box, we have $\phi \equiv \psi \equiv p$.

Definition

A sentence ϕ such that $\vdash \phi$ is called a theorem.

Example

Prove $p \land q \Longrightarrow r \vdash p \Longrightarrow (q \Longrightarrow r)$.

Proof Rules for Natural Deduction - Disjunction

- Suppose we want to prove $\phi \lor \psi$. What do we do?
 - We can either prove ϕ or ψ .
- Here are the proof rules:

$$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \qquad \frac{\psi}{\phi \vee \psi} \vee i_2$$

▶ Note the symmetry with $\land e_1$ and $\land e_2$.

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

Can we have a corresponding symmetric elimination rule for disjunction? Recall

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

Proof Rules for Natural Deduction – Disjunction

- Suppose we want to prove χ from $\phi \lor \psi$. What do we do?
 - We assume ϕ to prove χ and then assume ψ to prove χ .
 - If both succeed, χ is proved from $\phi \lor \psi$ without assuming ϕ and ψ .
- Here is the proof rule:

In addition to nested boxes, we may have parallel boxes in our proofs.

Recall that our syntax does not admit commutativity.

Example

Prove $p \lor q \vdash q \lor p$.

$$\frac{p \vee q \quad \boxed{\frac{p}{q \vee p} \vee i_2} \quad \boxed{\frac{q}{q \vee p} \vee i_1}}{q \vee p} \quad \forall e$$

- $p \lor q$ premise
- $\begin{array}{ccc} 2 & p & \text{assumption} \\ 3 & q \lor p & \lor i_2 \end{array}$
- q assumption
- 5 $q \lor p \lor i_1 4$
- 6 $q \lor p \lor e 1, 2-3, 4-5$

Example

Prove $q \Longrightarrow r \vdash p \lor q \Longrightarrow p \lor r$.

Example

Prove $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$.

Example

Prove $(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$.

```
(p \wedge q) \vee (p \wedge r)
                                 premise
   p \wedge q
                                 assumption
                                 \wedge e_1 2
      р
     q
                                 \wedge e_2 2
5 q \vee r
                                 \vee i_1 4
   p \wedge (q \vee r)
                                 \wedge i 3, 5
   p \wedge r
                                 assumption
8
                                 \wedge e_1 7
9
                                 \wedge e_2 7
10 q \vee r
                                 ∨i<sub>2</sub> 9
11 p \wedge (q \vee r) \wedge i \otimes 10
12 p \wedge (q \vee r)
                             ∨e 1, 2-6, 7-11
```

Contradiction

Definition

Contradictions are sentences of the form $\phi \land \neg \phi$ or $\neg \phi \land \phi$.

- Examples:
 - $P \land \neg p, \neg (p \lor q \implies r) \land (p \lor q \implies r).$
- Logically, any sentence can be proved from a contradiction.
 - If 0 = 1, then $100 \neq 100$.
- Particularly, if ϕ and ψ are contradictions, we have $\phi \dashv \vdash \psi$.
 - $\phi \dashv \vdash \psi$ means $\phi \vdash \psi$ and $\psi \vdash \phi$ (called provably equivalent).
- Since all contradictions are equivalent, we will use the symbol \bot (called "bottom") for them.
- We are now ready to discuss proof rules for negation.

Proof Rules for Natural Deduction - Negation

• Since any sentence can be proved from a contradiction, we have

$$\frac{\perp}{\phi}$$
 $\perp e$

• When both ϕ and $\neg \phi$ are proved, we have a contradiction.

$$\frac{\phi \quad \neg \phi}{\bot} \ \neg e$$

▶ The proof rule could be called $\pm i$. We use $\neg e$ because it eliminates a negation.

Example

Prove $\neg p \lor q \vdash p \implies q$.

```
\neg p \lor q premise
                  assumption
    \neg p
3
                   assumption
     р
                 \neg e 3, 2
5
           ⊥e 4
6
        \implies q \implies i \ 3-5
              assumption
     q
                   assumption
9
                   copy 7
     p \Longrightarrow q \Longrightarrow i 8-9
10
     p \implies q \quad \forall e \ 1, \ 2-6, \ 7-10
11
```

Proof Rules for Natural Deduction - Negation

- Suppose we want to prove $\neg \phi$. What do we do?
 - We assume ϕ and try to prove a contradiction. If succeed, we prove $\neg \phi$.
- Here is the proof rule:

Example

Prove $p \implies q, p \implies \neg q \vdash \neg p$.

Example

Prove $p \land \neg q \implies r, \neg r, p \vdash q$.

Derived Rules

Some rules can actually be derived from others.

Examples

Prove $p \implies q, \neg q \vdash \neg p \text{ (modus tollens)}.$

Derived Rules

Examples

Prove
$$p \vdash \neg \neg p (\neg \neg i)$$

- These rules can be replaced by their proofs and are not necessary.
 - They are just macros to help us write shorter proofs.

Reductio ad absurdum (RAA)

Example

Prove $\neg p \implies \bot \vdash p \text{ (RAA)}.$

Tertium non datur, Law of the Excluded Middle (LEM)

Example

Prove $\vdash p \lor \neg p$.

Proof Rules for Natural Deduction (Summary)

Conjunction (
$$\wedge$$
)
$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i \qquad \frac{\phi \wedge \psi}{\phi} \wedge e_1 \quad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$
Disjunction (\vee)
$$\frac{\phi}{\phi \vee \psi} \vee i_1 \quad \frac{\psi}{\phi \vee \psi} \vee i_2 \qquad \frac{\phi \vee \psi \quad \frac{\downarrow}{\chi} \quad \psi}{\chi} \vee e$$
Implication (\Longrightarrow)
$$\frac{\phi}{\psi} \quad \vdots \quad \psi}{\psi} \quad \Longrightarrow \quad i \qquad \frac{\phi \quad \phi \quad \Longrightarrow \psi}{\psi} \quad \Longrightarrow \quad e$$

Proof Rules for Natural Deduction (Summary)

$$\frac{\phi - \neg \phi}{\bot} \neg \epsilon$$

Contradiction (1)

(no introduction rule)

$$\frac{\perp}{\phi}$$
 $\perp e$

Double negation $(\neg\neg)$

(no introduction rule)

$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

Useful Derived Proof Rules

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

$$\frac{}{\phi \vee \neg \phi}$$
 LEM

Provable Equivalence

- Recall $p \dashv \vdash q$ means $p \vdash q$ and $q \vdash p$.
- Here are some provably equivalent sentences:

Try to prove them.

Proof by Contradiction

Although it is very useful, the proof rule RAA is a bit puzzling.

- ullet Instead of proving ϕ directly, the proof rule allows indirect proofs.
 - If $\neg \phi$ leads to a contradiction, then ϕ must hold.
- Note that indirect proofs are not "constructive."
 - We do not show why ϕ holds; we only know $\neg \phi$ is impossible.
- In early 20th century, some logicians and mathematicians chose not to prove indirectly. They are <u>intuitionistic</u> logicians or mathematicians.
- For the same reason, intuitionists also reject

$$\frac{1}{\phi \vee \neg \phi} LEM$$

Proof by Contradiction

Theorem

There are $a, b \in \mathbb{R} \setminus \mathbb{Q}$ such that $a^b \in \mathbb{Q}$.

Proof.

Let $b = \sqrt{2}$. There are two cases:

- If $b^b \in \mathbb{Q}$, we are done since $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.
- If $b^b \notin \mathbb{Q}$, choose $a = b^b = \sqrt{2}^{\sqrt{2}}$. Then $a^b = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$. Since $\sqrt{2}^{\sqrt{2}}$, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$, we are done.

- An intuitionist would criticize the proof since it does not tell us what a, b give $a^b \in \mathbb{Q}$.
 - We know (a, b) is either $(\sqrt{2}, \sqrt{2})$ or $(\sqrt{2}^{\sqrt{2}}, \sqrt{2})$.

Outline

- Natural Deduction
- Propositional logic as a formal language
- Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

Well-Formedness

Definition

A <u>well-formed</u> formula is constructed by applying the following rules finitely many times:

- atom: Every propositional atom p, q, r, ... is a well-formed formula;
- \neg : If ϕ is a well-formed formula, so is $(\neg \phi)$;
- \wedge : If ϕ and ψ are well-formed formulae, so is $(\phi \wedge \psi)$;
- \vee : If ϕ and ψ are well-formed formulae, so is $(\phi \vee \psi)$;
- \Longrightarrow : If ϕ and ψ are well-formed formulae, so is $(\phi \Longrightarrow \psi)$.
- More compactly, well-formed formulae are defined by the following grammar in Backus Naur form (BNF):

$$\phi := p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \Longrightarrow \phi)$$

Inversion Principle

- How do we check if $(((\neg p) \land q) \implies (p \land (q \lor (\neg r))))$ is well-formed?
- Although a well-formed formula needs five grammar rules to construct, the construction process can always be inverted.
 - This is called inversion principle.
- To show $(((\neg p) \land q) \Longrightarrow (p \land (q \lor (\neg r))))$ is well-formed, we need to show both $((\neg p) \land q)$ and $(p \land (q \lor (\neg r)))$ are well-formed.
- To show $((\neg p) \land q)$ is well-formed, we need to show both $(\neg p)$ and q are well-formed.
 - q is well-formed since it is an atom.
- To show $(\neg p)$ is well-formed, we need to show p is well-formed.
 - p is well-formed since it is an atom.
- Similarly, we can show $(p \land (q \lor (\neg r)))$ is well-formed.

Parse Tree

• The easiest way to decide whether a formula is well-formed is perhaps by drawing its parse tree.

Subformulae

- Given a well-formed formula, its subformulae are the well-formed formulae corresponding to its parse tree.
- For instance, the subformulae of the well-formed formulae $(((\neg p) \land q) \Longrightarrow (p \land (q \lor (\neg r))))$ are

```
\begin{array}{l}
p\\
q\\
r\\
(\neg p)\\
(\neg r)\\
((\neg p) \land q)\\
(q \lor (\neg r))\\
(p \land (q \lor (\neg r)))\\
(((\neg p) \land q) \Longrightarrow (p \land (q \lor (\neg r))))
\end{array}
```

Outline

- Natural Deduction
- Propositional logic as a formal language
- Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

From \vdash to \models

- We have developed a calculus to determine whether $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid.
 - ▶ That is, from the premises $\phi_1, \phi_2, \dots, \phi_n$, we can conclude ψ .
 - Our calculus is syntactic. It depends on the syntactic structures of $\phi_1, \phi_2, \dots, \phi_n$, and ψ .
- We will introduce another relation between premises $\phi_1, \phi_2, \dots, \phi_n$ and a conclusion ψ .

$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi.$$

The new relation is defined by 'truth values' of atomic formulae and the semantics of logical connectives.

Truth Values and Models

Definition

The set of $\underline{\text{truth values}}$ is $\{F, T\}$ where F represents 'false' and T represents 'true.'

Definition

A <u>valuation</u> or <u>model</u> of a formula ϕ is an assignment from each proposition atom in ϕ to a truth value.

Truth Values of Formulae

Definition

Given a valuation of a formula ϕ , the truth value of ϕ is defined inductively by the following truth tables:

Example

- $\phi \wedge \psi$ is T when ϕ and ψ are T.
- $\phi \lor \psi$ is F when ϕ or ψ is T.
- ⊥ is always F; ⊤ is always T.
- $\phi \implies \psi$ is T when ϕ "implies" ψ .

Example

Consider the valuation $\{q \mapsto T, p \mapsto F, r \mapsto F\}$ of $(q \land p) \implies r$. What is the truth value of $(q \land p) \implies r$?

Proof.

Since the truth values of q and p are T and F respectively, the truth value of $q \wedge p$ is F. Moreover, the truth value of r is F. The truth value of $(q \land p) \Longrightarrow r \text{ is T}.$

September 15, 2015

Truth Tables for Formulae

• Given a formula ϕ with propositional atoms p_1, p_2, \dots, p_n , we can construct a truth table for ϕ by listing 2^n valuations of ϕ .

Example

Find the truth table for $(p \Longrightarrow \neg q) \Longrightarrow (q \lor \neg p)$.

Proof.

p	q	$\neg p$	$\neg q$	$p \Longrightarrow \neg q$	$q \vee \neg p$	$(p \Longrightarrow \neg q) \Longrightarrow (q \vee \neg p)$
F	F	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т
Т	F	F	Т	Т	F	F
Т	Т	F	F	F	Т	Т

Outline

- Natural Deduction
- Propositional logic as a formal language
- Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

Validity of Sequent Revisited

- Informally $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid if we can derive ψ with assumptions $\phi_1, \phi_2, \dots, \phi_n$.
 - We have formalized "deriving ψ with assumptions $\phi_1, \phi_2, \dots, \phi_n$ " by "constructing a proof in a formal calculus."
- We can give another interpretation by valuations and truth values.
- Consider a valuation ν over all propositional atoms in $\phi_1, \phi_2, \dots, \phi_n, \psi$.
 - By "assumptions $\phi_1, \phi_2, \dots, \phi_n$," we mean " $\phi_1, \phi_2, \dots, \phi_n$ are T under the valuation ν .
 - By "deriving ψ ,", we mean ψ is also T under the valuation ν .
- Hence, "we can derive ψ with assumptions $\phi_1, \phi_2, \dots, \phi_n$ " actually means "if $\phi_1, \phi_2, \dots, \phi_n$ are T under a valuation, then ψ must be T under the same valuation.

Semantic Entailment

Definition

We say

$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$$

holds if for every valuations where $\phi_1, \phi_2, \dots, \phi_n$ are T, ψ is also T. In this case, we also say $\phi_1, \phi_2, \dots, \phi_n$ semantically entail ψ .

- Examples
 - ▶ $p \land q \models p$. For every valuation where $p \land q$ is T, p must be T. Hence $p \land q \models p$.
 - ▶ $p \lor q \not\models q$. Consider the valuation $\{p \mapsto \mathsf{T}, q \mapsto \mathsf{F}\}$. We have $p \lor q$ is T but q is F . Hence $p \lor q \not\models q$.
 - ▶ $\neg p, p \lor q \vDash q$. Consider any valuation where $\neg p$ and $p \lor q$ are T. Since $\neg p$ is T, p must be F under the valuation. Since p is F and $p \lor q$ is T, q must be T under the valuation. Hence $\neg p, p \lor q \vDash q$.
- The validity of $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is defined by syntactic calculus. $\phi_1, \phi_2, \dots, \phi_n \models \psi$ is defined by truth tables. Do these two relations coincide?

Theorem (Soundness)

Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional logic formulae. If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds.

Proof.

Consider the assertion M(k):

"For all sequents $\phi_1, \phi_2, \dots, \phi_n \vdash \psi(n \ge 0)$ that have a proof of length k, then $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds."

k = 1. The only possible proof is of the form

 1ϕ premise

This is the proof of $\phi \vdash \phi$. For every valuation such that ϕ is T, ϕ must be T. That is, $\phi \vDash \phi$.

Proof (cont'd).

Assume M(i) for i < k. Consider a proof of the form

```
\begin{array}{cccc} 1 & \phi_1 & \text{premise} \\ 2 & \phi_2 & \text{premise} \\ & \vdots & \\ \text{n} & \phi_n & \text{premise} \\ & \vdots & \\ \text{k} & \psi & \text{justification} \end{array}
```

We have the following possible cases for justification:

i $\wedge i$. Then ψ is $\psi_1 \wedge \psi_2$. In order to apply $\wedge i$, ψ_1 and ψ_2 must appear in the proof. That is, we have $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi_1$ and $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi_2$. By inductive hypothesis, $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi_1$ and $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi_2$. Hence $\phi_1, \phi_2, \ldots, \phi_n \vDash \psi_1 \wedge \psi_2$ (Why?).

Proof (cont'd).

ii $\vee e$. Recall the proof rule for $\vee e$:

In order to apply $\vee e$, $\eta_1 \vee \eta_2$ must appear in the proof. We have $\phi_1,\phi_2,\ldots,\phi_n \vdash \eta_1 \vee \eta_2$. By turning "assumptions" η_1 and η_2 to "premises," we obtain proofs for $\phi_1,\phi_2,\ldots,\phi_n,\eta_1 \vdash \psi$ and $\phi_1,\phi_2,\ldots,\phi_n,\eta_2 \vdash \psi$. By inductive hypothesis, $\phi_1,\phi_2,\ldots,\phi_n \models \eta_1 \vee \eta_2,\ \phi_1,\phi_2,\ldots,\phi_n,\eta_1 \models \psi$, and $\phi_1,\phi_2,\ldots,\phi_n,\eta_2 \models \psi$. Consider any valuation such that $\phi_1,\phi_2,\ldots,\phi_n$ evaluates to T. $\eta_1 \vee \eta_2$ must be T. If η_1 is T under the valuation, ψ is also T (Why?). Similarly for η_2 is T. Thus $\phi_1,\phi_2,\ldots,\phi_n \models \psi$.

Proof (cont'd).

iii Other cases are similar. Prove the case of $\implies e$ to see if you understand the proof.

- The soundness theorem shows that our calculus does not go wrong.
- If there is a proof of a sequent, then the conclusion must be true for all valuations where all premises are true.
- The theorem also allows us to show the non-existence of proofs.
- Given a sequent $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$, how do we prove there is no proof for the sequent?
 - ▶ Try to find a valuation where $\phi_1, \phi_2, \dots, \phi_n$ are T but ψ is F.

Outline

- Natural Deduction
- Propositional logic as a formal language
- Semantics of propositional logic
 - The meaning of logical connectives
 - Soundness of Propositional Logic
 - Completeness of Propositional Logic

- " $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid" and " $\phi_1, \phi_2, \dots, \phi_n \models \psi$ holds" are very different.
 - " $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid" requires proof search (syntax);
 - " $\phi_1, \phi_2, \dots, \phi_n \models \psi$ holds" requires a truth table (semantics).
- If " $\phi_1, \phi_2, \dots, \phi_n \models \psi$ holds" implies " $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid," then our natural deduction proof system is complete.
- The natural deduction proof system is both sound and complete.
 That is
 - $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid iff $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds.

- We will show the natural deduction proof system is complete.
- That is, if $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds, then there is a natural deduction proof for the sequent $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$.
- Assume $\phi_1, \phi_2, \dots, \phi_n \models \psi$. We proceed in three steps:
 - $\bullet \models \phi_1 \Longrightarrow (\phi_2 \Longrightarrow (\dots (\phi_n \Longrightarrow \psi)))$ holds;
 - $\bullet \vdash \phi_1 \Longrightarrow (\phi_2 \Longrightarrow (\dots (\phi_n \Longrightarrow \psi)))$ is valid;
 - $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid.

Lemma

If $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds, then $\vDash \phi_1 \Longrightarrow (\phi_2 \Longrightarrow (\dots (\phi_n \Longrightarrow \psi)))$ holds.

Proof.

Suppose $\models \phi_1 \Longrightarrow (\phi_2 \Longrightarrow (\dots (\phi_n \Longrightarrow \psi)))$ does not hold. Then there is valuation where $\phi_1, \phi_2, \dots, \phi_n$ is T but ψ is F. A contradiction to $\phi_1, \phi_2, \dots, \phi_n \models \psi$.

Definition

Let ϕ be a propositional logic formula. We say ϕ is a <u>tautology</u> if $\models \phi$.

A tautology is a propositional logic formula that evaluates to T for all
of its valuations.

• Our goal is to show the following theorem:

Theorem

If $\vDash \eta$ holds, then $\vdash \eta$ is valid.

• Similar to tautologies, we introduce the following definition:

Definition

Let ϕ be a propositional logic formula. We say ϕ is a theorem if $\vdash \phi$.

- Two types of theorems:
 - If $\vdash \phi$, ϕ is a theorem proved by the natural deduction proof system.
 - The soundness theorem for propositional logic is another type of theorem proved by mathematical reasoning (less formally).

Proposition

Let ϕ be a formula with propositional atoms p_1, p_2, \ldots, p_n . Let l be a line in ϕ 's truth table. For all $1 \le i \le n$, let \hat{p}_i be p_i if p_i is T in l; otherwise \hat{p}_i is $\neg p_i$. Then

- **1** $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi$ is valid if the entry for ϕ at I is T;
- ② $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \phi$ is valid if the entry for ϕ at l is F.

Proof.

We prove by induction on the height of the parse tree of ϕ .

- ϕ is a propositional atom p. Then $p \vdash p$ or $\neg p \vdash \neg p$ have one-line proof.
- ϕ is $\neg \phi_1$.
 - If ϕ is T at I. Then ϕ_1 is F. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \phi_1 (\equiv \phi)$.
 - If ϕ is F at I. Then ϕ_1 is T. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1$. Using $\neg \neg i$, we have $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \neg \phi_1 (\equiv \neg \phi)$.

Proof (cont'd).

- $\bullet \phi \text{ is } \phi_1 \Longrightarrow \phi_2.$
 - If ϕ is F at I, then ϕ_1 is T and ϕ_2 is F at I. By IH, $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1$ and $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \neg \phi_2$. Consider

Proof (cont'd).

- ϕ is $\phi_1 \Longrightarrow \phi_2$.
 - If ϕ is T at I, we have three subcases. Consider the case where ϕ_1 and ϕ_2 are F at I. Then

The other two subcases are simple exercises.

Proof (cont'd).

- ϕ is $\phi_1 \wedge \phi_2$.
 - If ϕ is T at I, then ϕ_1 and ϕ_2 are T at I. By IH, we have $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1$ and $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_2$. Using \wedge i, we have $\hat{p}_1, \hat{p}_2, \dots, \hat{p}_n \vdash \phi_1 \wedge \phi_2$.
 - If ϕ is F at I, there are three subcases. Consider the subcase where ϕ_1 and ϕ_2 are F at I. Then

The other two subcases are simple exercises.

Proof.

- ϕ is $\phi_1 \vee \phi_2$.
 - If ϕ is F at I, then ϕ_1 and ϕ_2 are F at I. Then

ightharpoonup If ϕ is T at I, there are three subcases. All of them are simple exercises.

Theorem

If ϕ is a tautology, then ϕ is a theorem.

Proof.

Let ϕ have propositional atoms p_1, p_2, \ldots, p_n . Since ϕ is a tautology, each line in ϕ 's truth table is T. By the above proposition, we have the following 2^n proofs for ϕ :

$$\neg p_1, \neg p_2, \dots, \neg p_n \vdash \phi
p_1, \neg p_2, \dots, \neg p_n \vdash \phi
\neg p_1, p_2, \dots, \neg p_n \vdash \phi
\vdots
p_1, p_2, \dots, p_n \vdash \phi$$

We apply the rule LEM and the \vee e rule to obtain a proof for $\vdash \phi$. (See the following example.)

Example

Observe that $\models p \implies (q \implies p)$. Prove $\vdash p \implies (q \implies p)$.

Proof.

```
LEM
            p \vee \neg p
                                           assumption
                                           LEM
            q \vee \neg q
                                           assumption
 \mathsf{i} \qquad p \Longrightarrow (q \Longrightarrow p) \qquad p, q \vdash p \Longrightarrow (q \Longrightarrow p)
                                        assumption
            p \Longrightarrow (q \Longrightarrow p) p, \neg q \vdash p \Longrightarrow (q \Longrightarrow p)
            p \Longrightarrow (q \Longrightarrow p) \quad \forall e \ 3, \ 4-i, \ (i+1)-j
                                           assumption
            q \vee \neg q
                                           LEM
                                           assumption
            p \Longrightarrow (q \Longrightarrow p) \quad \neg p, q \vdash p \Longrightarrow (q \Longrightarrow p)
k + 1
                                        assumption
 l+1 p \Longrightarrow (q \Longrightarrow p) \forall e (j+3), (j+4)-k, (k+1)-l
l+2 p \Longrightarrow (q \Longrightarrow p) \forall e 1, 2-(i+1), (i+2)-(l+1)
```

Lemma

If $\phi_1 \Longrightarrow (\phi_2 \Longrightarrow (\cdots(\phi_n \Longrightarrow \psi)))$ is a theorem, then $\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$ is valid.

Proof.

Consider