$$y = x^3 - 6x^2$$
 SEGNO E INTERSEZIONI W GLI ASSI

$$\begin{cases} y = x^{3} - 6x^{2} \\ y = 0 \end{cases} \Rightarrow \begin{cases} x^{3} - 6x^{2} = 0 \\ x^{2}(x - 6) = 0 \end{cases} \Rightarrow \begin{cases} x^{2} = 0 \Rightarrow x = 0 \\ x - 6 = 0 \Rightarrow x = 6 \end{cases}$$

$$Z) \xrightarrow{\text{INTERS. ASSE } y}$$

$$\begin{cases} y = x^3 - 6x^2 & y = 0 \\ x = 0 & x = 0 \end{cases}$$

$$\begin{cases} y = 0 & \text{RITROVO} & O(0,0) \\ x = 0 & \text{RITROVO} \end{cases}$$

$$\times^3 - 6 \times^2 > 0$$
 $\times^2 (\times - 6) > 0$

$$(i)$$
 $x^2 > 0 \Rightarrow \forall x \neq 0$

Le funcione é >0 per x>6

143)
$$y = 2x^2 - x + 1$$
 $D = \mathbb{R}$

ASSFX
$$\begin{cases} y = 2 \times \frac{7}{2} \times +1 \\ y = 0 \end{cases}$$
 $\begin{cases} 2 \times \frac{2}{2} \times +1 = 0 \\ y = 0 \end{cases}$ $\begin{cases} 4 = 1 - 8 = -7 \\ 1 \times 7 \end{cases}$ CON

ASSE
$$y = 1$$

$$x = 0$$

$$A(0,1)$$

$$\triangle \langle 0 = \rangle \quad 2 \times^{2} \times + 1 \quad \text{is semple } > 0$$

$$2 \times^{2} \times + 1 > 0 = \rangle \quad \forall x \in \mathbb{R}$$

$$y = \frac{x^2 - 9}{x}$$

$$D = \mathbb{R} \setminus \{0\}$$

1MT.
ASSE X
$$\begin{cases} 9 = 0 \\ y = \frac{x^2 - 9}{x} = 0 \end{cases} \Rightarrow \begin{cases} \frac{x^2 - 9}{x} = 0 \Rightarrow x^2 - 9 = 0 \\ x = \pm 3 \end{cases}$$

$$A(-3,0) B(3,0)$$

ASSE X

$$y = x^{3} + 4x$$

$$D = \mathbb{R}$$

$$x > 5 \notin \begin{cases} y = x (x^{2} + 4) \\ x = 0 \end{cases}$$

$$y = 0$$

$$x (x^{2}+4) = 0 \implies x = 0$$

$$x = 0 \qquad 0 (0,0)$$

$$x = 0$$

SELNO

$$\times (\times^{2} + 4) > 0$$

FUNZIONI INIETTIVE (1-1)

IDEA

ELEMENTI DISTINTI DI A VANNO IN ELEMEMI DISTINTI DI B

NON DEVE

SUCCEDERE CHE

GRAFICAME NTE

NON INIETTIVA

×1,×2,×3 hams be stens immagine!

DEFINIZIONE FORMALE

J:A→B E INIETTIVA re

for som $x_1, x_2 \in A$, $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$

VERIFICARE L'INIETTIVITÉ

Una qualsioni setta arissantale interseca il exofico di une funsione INTETTIVA al max in un funto (5 1 offure nessur)

FUNZIONI SURIETTIVE

1DFA

TUTTI GLI FLEMENTI DIB SONO IMMAGINI DI QUALCUE ELEMENTO DI A

NON DEVE SUCCEDERF

opressi elementi nom sons immeegini di nomme elemento si A

La surieblisate difede dell'insieme B: se cambió B a la sotituise con l'insieme delle immagini, la funsione diventa surieblira. ESEMPIO

$$\left[\mathbb{R}_{o}^{\dagger} = \left\{ \times \in \mathbb{R} \mid \times \geq 0 \right\} \right] \approx : \mathbb{R} \rightarrow \mathbb{R}_{o}^{\dagger}$$

$$f(x) = x^2$$

Se prends on numers
negatives in B, ad os. - 2,
questes non i immagine
di alam elements del
dominis

Se prends un quelsioni
elements di B=Ro, quests
e pontino, quindi pons
risalire agli elementi del
sominis di cui è immagine!
Ad es. 4 è immagine di 2 e di-2.
Prendere -3 NON è lecits perhè -3 &B.

DEFINIZIONE FORMLE

Una funcione f: A -> B @ SURIETTIVA se

PER OGNI YEB ESISTE ALMENO UN $x \in A$ TALE CHE y = f(x)

UNA FUNZIONE INIFITIVA E SURIFITIVA SI DICE BIETTIVA O CORRISPONDENZA BIUNIVOCA

FUNZIONI CRESCENTI

PAG. 385 N 163 -> INDICATE GLI INTERVALUI IN CUI SONO CRESCENTI O DECRESCENTI LE FUNZIONI

$$y = 8 - x^{2} \longrightarrow y = 8 - x^{2}$$

CRESCENTE PER X < 0

DECRESCEME PER X > 0

$$y = \begin{cases} 1 - 3 \times^2 & \times \le 1 \\ \frac{\times - 3}{\times} & \times > 1 \end{cases}$$

$$SE(x \le 1, 1-3x^2, x > 1, (x-3)/x)$$

CRESCENTE PER X <0

DECRESCEME IER OCXCA

CRESCENTE PER × >1