```
pip install pyspark
    Show hidden output
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local").appName('Global Country Data').getOrCreate()
spark
SparkSession - in-memory
     SparkContext
     Spark UI
     Version
          v3.5.3
     Master
          local
     AppName
          Global Country Data
df=spark.read.csv("/content/world-data-2023.csv",header=True,inferSchema=True,multiLine=True)
```

df.show()

Country Densi	ty\n(P/Km2) Abb	reviation Agricul	tural Land(%) La	nd Area(Km2) Arme	d Forces size E	Birth Rate Ca	lling Code	Capital/Major City	Co2-Emissions CF
Afghanistan	60	 AF	58.10%	652,230	323,000	32.49	93	+Kabul	8,672 149.
Albania	105	AL	43.10%	28,748	9,000	11.78	355	Tirana	4,536 119.6
Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213	Algiers	150,006 151.
Andorra	164	AD	40.00%	468	NULL	7.2	376	Andorra la Vella	469 NU
Angola	26	AO	47.50%	1,246,700	117,000	40.73	244	Luanda	34,693 261.
ntigua and Barbuda	223	AG	20.50%	443	0	15.33	1 St	. John's, Saint	557 113.
Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54	Buenos Aires	201,348 232.
Armenia	104	AM	58.90%	29,743	49,000	13.99	374	Yerevan	
Australia	3	AU	48.20%	7,741,220	58,000	12.6	61	Canberra	375,908 119
Austria	109	AT	32.40%	83,871	21,000	9.7	43	Vienna	61,448 118.
Azerbaijan	123	AZ	57.70%	86,600	82,000	14.0	994	Baku	37,620 156.
The Bahamas	39	BS	1.40%	13,880	1,000	13.97	1	Nassau, Bahamas	1,786 116.
Bahrain	2,239	BH	11.10%	765	19,000	13.99	973	Manama	31,694 117.
Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	880	Dhaka	84,246 179.
Barbados	668	ВВ	23.30%	430	1,000	10.65	1	Bridgetown	1,276 134.
Belarus	47	BY	42.00%	207,600	155,000	9.9	375	Minsk	58,280 NU
Belgium	383	BE	44.60%	30,528	32,000	10.3	32	City of Brussels	96,889 117.
Belize	17	BZ	7.00%	22,966	2,000	20.79	501	Belmopan	568 105.
Benin	108	ВЈ	33.30%	112,622	12,000	36.22	229	Porto-Novo	6,476 110.
Bhutan	20	вт	13.60%	38,394	6,000	17.26	975	Thimphu	1,261 167.

only showing top 20 rows

```
df.toPandas().shape
 → (195, 35)
# Dropping unwanted columns
df=df.drop('Abbreviation','Currency-Code')
df = df.withColumnRenamed("Density\n(P/Km2)", "Density (P/Km2)") \
            .withColumnRenamed("Longitude\r", "Longitude")
from pyspark.sql.functions import col, regexp_replace
\label{eq:df}  df = df.select([regexp\_replace(col(c), r'[^\x00-\x7F]+', '').alias(c) for c in df.columns]) 
df = df.select([regexp_replace(col(c), r'\%', '').alias(c) for c in df.columns])
df = df.select([regexp_replace(col(c), r'\$', '').alias(c) for c in df.columns])
df = df.select([regexp_replace(col(c), r'\,', '').alias(c) for c in df.columns])
df = df.select([regexp_replace(col(c), r'\r', '').alias(c) for c in df.columns])
from pyspark.sql import functions as F
from pyspark.sql.types import *
# Strip non-numeric characters for columns containing numerical values as strings, then cast to float
'Co2-Emissions', 'CPI', 'CPI Change (%)', 'Forested Area (%)', 'Gasoline Price', 'Gross primary education enrollment (%)',
                    'Gross tertiary education enrollment (%)', 'Minimum wage',
                    'Out of pocket health expenditure', 'Population', 'Population: Labor force participation (%)',
                    'Tax revenue (%)', 'Total tax rate', 'Unemployment rate', 'Urban_population']
for col in columns_to_cast:
    df= df.withColumn(col, F.regexp_replace(F.col(col), '[^0-9.]', '').cast(FloatType()))
# Typecast relevant columns to numeric types (float or integer)
from pyspark.sql.functions import *
df = df.withColumn("Calling Code", col("Calling Code").cast(IntegerType())) \
           .withColumn("Maternal mortality ratio",col("Maternal mortality ratio").cast(IntegerType())) \
           .withColumn("Birth Rate", col("Birth Rate").cast(DoubleType())) \
            .withColumn("Infant mortality", col("Infant mortality").cast(DoubleType())) \
            .withColumn("Life expectancy", col("Life expectancy").cast(DoubleType())) \
            .withColumn("Physicians per thousand", col("Physicians per thousand").cast(DoubleType())) \
            .withColumn("Latitude", col("Latitude").cast(DoubleType())) \
            .withColumn("Longitude", col("Longitude").cast(DoubleType()))
```

df.printSchema()

```
→ root
      |-- Country: string (nullable = true)
       |-- Density (P/Km2): float (nullable = true)
      |-- Agricultural Land( %): float (nullable = true)
      |-- Land Area(Km2): float (nullable = true)
       -- Armed Forces size: float (nullable = true)
      |-- Birth Rate: double (nullable = true)
       -- Calling Code: integer (nullable = true)
       |-- Capital/Major City: string (nullable = true)
       -- Co2-Emissions: float (nullable = true)
       -- CPI: float (nullable = true)
       -- CPI Change (%): float (nullable = true)
       -- Fertility Rate: double (nullable = true)
       |-- Forested Area (%): float (nullable = true)
       -- Gasoline Price: float (nullable = true)
       -- GDP: string (nullable = true)
      |-- Gross primary education enrollment (%): float (nullable = true)
       -- Gross tertiary education enrollment (%): float (nullable = true)
       |-- Infant mortality: double (nullable = true)
       -- Largest city: string (nullable = true)
       -- Life expectancy: double (nullable = true)
      |-- Maternal mortality ratio: integer (nullable = true)
       -- Minimum wage: float (nullable = true)
       |-- Official language: string (nullable = true)
       |-- Out of pocket health expenditure: float (nullable = true)
       -- Physicians per thousand: double (nullable = true)
       -- Population: float (nullable = true)
       -- Population: Labor force participation (%): float (nullable = true)
       |-- Tax revenue (%): float (nullable = true)
       |-- Total tax rate: float (nullable = true)
       |-- Unemployment rate: float (nullable = true)
      |-- Urban_population: float (nullable = true)
       -- Latitude: double (nullable = true)
      |-- Longitude: double (nullable = true)
categorical_cols=['Country','Capital/Major City','Largest city','Official language']
from pyspark.ml.feature import StringIndexer
indexers = [StringIndexer(inputCol = c, outputCol = f''(c)_indexer'', handleInvalid = "keep") for \ c \ in \ categorical\_cols]
df=indexers[0].fit(df).transform(df)
df=indexers[1].fit(df).transform(df)
df=indexers[2].fit(df).transform(df)
df=indexers[3].fit(df).transform(df)
df.printSchema()
Show hidden output
# Checking the shape of the dataset
df.toPandas().shape
→ (195, 37)
df.toPandas().isnull().sum()
 Show hidden output
import matplotlib.pyplot as plt
import seaborn as sns
# Convert a PySpark DataFrame to Pandas for plotting
numeric_cols = ['Birth Rate', 'Fertility Rate', 'Infant mortality', 'Life expectancy',
                'Physicians per thousand', 'Maternal mortality ratio']
df_pd = df.select(numeric_cols).toPandas()
# Plot histograms to visually inspect the distribution
plt.figure(figsize=(10, 8))
for i, col in enumerate(numeric cols, 1):
    plt.subplot(2, 3, i)
    sns.histplot(df_pd[col].dropna(), kde=True, bins=30)
   plt.title(f"Distribution of {col}")
plt.tight_layout()
plt.show()
```


Handling null values

from pyspark.ml.feature import Imputer

Impute missing numerical values with median

numerical_columns = ['Population','CPI','Armed Forces size','Gross tertiary education enrollment (%)','CPI Change (%)',

'Co2-Emissions', 'Tax revenue (%)', 'Life expectancy',

'Unemployment rate','Urban_population','Population: Labor force participation (%)', 'Minimum wage','Maternal mortality ratio','Gasoline Price','Forested Area (%)','Fertility Rate',

'Agricultural Land(%)','Total tax rate','Land Area(Km2)',

'Physicians per thousand', 'Out of pocket health expenditure',

'Infant mortality','Gross primary education enrollment (%)','Birth Rate']

imputer=Imputer(inputCols=numerical_columns,outputCols=numerical_columns)
imputer.setStrategy("median")
df=imputer.fit(df).transform(df)

df.show()

Change (%)	CPI CP	Co2-Emissions	Capital/Major City	ling Code C	rth Rate Cal	ed Forces size Bi	nd Area(Km2) Arm	ural Land(%) La	ity (P/Km2) Agricul	Country Dens
2.3	149.9	8672.0	Kabul	93	32.49	323000.0	652230.0	58.1	60.0	Afghanistan
1.4	119.05	4536.0	Tirana	355	11.78	9000.0	28748.0	43.1	105.0	Albania
2.6	151.36	150006.0	Algiers	213	24.28	317000.0	2381741.0	17.4	18.0	Algeria
2.5	125.08	469.0	Andorra la Vella	376	7.2	31000.0	468.0	40.0	164.0	Andorra
17.1	261.73	34693.0	Luanda	244	40.73	117000.0	1246700.0	47.5	26.0	Angola
1.2	113.81	557.0	. John's Saint	1 St.	15.33	0.0	443.0	20.5	223.0	Antigua and Barbuda
53.5	232.75	201348.0	Buenos Aires	54	17.02	105000.0	2780400.0	54.3	17.0	Argentina
1.4	129.18	5156.0	Yerevan	374	13.99	49000.0	29743.0	58.9	104.0	Armenia
1.6	119.8	375908.0	Canberra	61	12.6	58000.0	7741220.0	48.2	3.0	Australia
1.5	118.06	61448.0	Vienna	43	9.7	21000.0	83871.0	32.4	109.0	Austria
2.6	156.32	37620.0	Baku	994	14.0	82000.0	86600.0	57.7	123.0	Azerbaijan
2.5	116.22	1786.0	Nassau Bahamas	1	13.97	1000.0	13880.0	1.4	39.0	The Bahamas
2.1	117.59	31694.0	Manama	973	13.99	19000.0	765.0	11.1	2239.0	Bahrain
5.6	179.68	84246.0	Dhaka	880	18.18	221000.0	148460.0	70.6	1265.0	Bangladesh
4.1	134.09	1276.0	Bridgetown	1	10.65	1000.0	430.0	23.3	668.0	Barbados
5.6	125.08	58280.0	Minsk	375	9.9	155000.0	207600.0	42.0	47.0	Belarus
1.4	117.11	96889.0	City of Brussels	32	10.3	32000.0	30528.0	44.6	383.0	Belgium
0.9	105.68	568.0	Belmopan	501	20.79	2000.0	22966.0	7.0	17.0	Belize
0.9	110.71	6476.0	Porto-Novo	229	36.22	12000.0	112622.0	33.3	108.0	Benin
2.7	167.18	1261.0	Thimphu	975	17.26	6000.0	38394.0	13.6	20.0	Bhutan

only showing top 20 rows

Removing duplicate rows

df = df.dropDuplicates()

df.toPandas().shape

→ (195, 37)

df.toPandas().isnull().sum()

Show hidden output

#dropping the rows with null value

df=df.dropna(how="any")

```
df.toPandas().isnull().sum()
```

Show hidden output

df.toPandas().shape

→ (188, 37)

df.toPandas().describe().transpose()

Show hidden output

df.show()

→ +-	+			+		+	+	++		+	+	+	+
_ !	Country	Density	(P/Km2)	Agricultural	Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2-Emissions	CPI	CPI Change (%) Fe
	Nigeria		226.0	† 	77.7	923768.0	215000.0	37.91	234	Abuja	120369.0	267.51	11.4
	Laos		32.0		10.3	236800.0	129000.0	23.55	856	Vientiane	17763.0	135.87	3.3
s	aint Vincent and		284.0		25.6	389.0	31000.0	14.24	1	Kingstown	220.0	109.67	2.3
- 1	Mauritania		5.0		38.5	1030700.0	21000.0	33.69	222	Nouakchott	2739.0	135.02	2.3
ĺ	Guinea-Bissau		70.0	ĺ	58.0	36125.0	4000.0	35.13	245	Bissau	293.0	111.65	1.4
	The Gambia		239.0		59.8	11300.0	1000.0	38.54	220	Banjul	532.0	172.73	7.1
- 1	Seychelles		214.0		3.4	455.0	0.0	17.1	248	Victoria Seychelles	605.0	129.96	1.8
Įυ	nited Arab Emirates		118.0	ĺ	5.5	83600.0	63000.0	10.33	971	Abu Dhabi	206324.0	114.52	1.9
	Guinea		53.0		59.0	245857.0	13000.0	36.36	224	Conakry	2996.0	262.95	9.5
	Nicaragua		55.0		42.1	130370.0	12000.0	20.64	505	Managua	5592.0	162.74	5.4
ĺ	Switzerland		219.0	ĺ	38.4	41277.0	21000.0	10.0	41	Bern	34477.0	99.55	0.4
	Madagascar		48.0		71.2	587041.0	22000.0	32.66	261	Antananarivo	3905.0	184.33	5.6
	Palau		39.0		10.9	459.0	31000.0	14.0	680	Ngerulmud	224.0	118.17	1.3
İ	Netherlands		508.0		53.3	41543.0	41000.0	9.7	31	Amsterdam	170780.0	115.91	2.6
	Iceland		3.0		18.7	103000.0	0.0	12.0	354	Reykjav	2065.0	129.0	3.0
	Mexico		66.0	1	54.6	1964375.0	336000.0	17.6	52	Mexico City	486406.0	141.54	3.6
į	Somalia		25.0		70.3	637657.0	20000.0	41.75	252	Mogadishu	645.0	125.08	2.5
İ	Spain		94.0		52.6	505370.0	196000.0	7.9	34	Madrid	244002.0	110.96	0.7
į	Benin		108.0	ĺ	33.3	112622.0	12000.0	36.22	229	Porto-Novo	6476.0	110.71	0.9
Ì	Marshall Islands		329.0		63.9	181.0	31000.0	29.03	692	Majuro	143.0	125.08	2.5

only showing top 20 rows

Correlation matrix

```
from pyspark.ml.stat import Correlation
from pyspark.ml.feature import VectorAssembler
import pyspark.sql.functions as F
# Select numerical columns for correlation
numeric_cols = ['Population', 'Co2-Emissions', 'Tax revenue (%)', 'Life expectancy',
                  'Land Area(Km2)', 'Birth Rate', 'Fertility Rate', 'Infant mortality',
                  'Maternal mortality ratio', 'Physicians per thousand']
\ensuremath{\text{\#}} Assemble columns into a vector for correlation computation
assembler = VectorAssembler(inputCols=numeric_cols, outputCol="features")
vectorized_data = assembler.transform(df).select("features")
# Compute correlation matrix
correlation_matrix = Correlation.corr(vectorized_data, "features").head()
# Convert correlation matrix to a dense array
correlation_array = correlation_matrix[0].toArray()
# Convert to Pandas DataFrame for plotting
import pandas as pd
correlation_df = pd.DataFrame(correlation_array, index=numeric_cols, columns=numeric_cols)
import seaborn as sns
import matplotlib.pyplot as plt
# Set up the figure size
plt.figure(figsize=(10, 8))
# Create a heatmap with annotations for better clarity
sns.heatmap(correlation_df, annot=True, cmap="coolwarm", linewidths=0.5)
# Set titles and labels
plt.title('Correlation Heatmap of Numerical Features', fontsize=15)
plt.show()
```


