TAREA ÁLGEBRA MODERNA SEMESTRE 2013-II

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO HÉCTOR MANUEL TÉLLEZ GÓMEZ

Proposición 11

Sea H un grupo cíclico y sea N un grupo arbitrario. Si φ and ψ son monomorfismos de H a Aut(N) tales que $\varphi(H) = \psi(H)$, entonces $N \rtimes_{\varphi} H \cong N \rtimes_{\psi} N$.

Demostración: Sea $H = \langle x \rangle$. Como las imágenes de H bajo φ y ψ , $\varphi(x)$ y $\psi(x)$ generan al mismo subgrupo cícilco de Aut(N). Por lo tanto existen $a, b \in \mathbb{Z}$ tales que $\varphi(x)^a = \psi(x)$ y $\varphi(x) = \psi(x)^b$.

De aquí que:

(1)
$$\varphi(x) = \psi(x)^b = \varphi(x)^{ab} = \varphi(x^{ab}).$$

Como φ es monomorfimso, tenemos que

$$(2) x = x^{ab}$$

Es decir, elevar a la ab es otra manera de escribir el homomorfismo identidad.

Como H es cíclico tenemos que para todo $h \in H$, existe $r \in \mathbb{Z}$ tal que $x^r = h$ y entonces

$$\varphi(h^a) = \varphi((x^r)^a) = \varphi(x^a r) = (\varphi(x)^a)^r = \psi(x)^r = \psi(x^r) = \psi(h),$$
análogamente $\varphi(h) = \psi(h^b).$

Definamos $\tau: N \rtimes_{\varphi} H \to N \rtimes_{\psi} N$ como $\tau(n,h) = (n,h^a)$.

(3)
$$\tau((n_1, h_1)(n_2, h_2)) = \tau(n_1 \psi(h_1)(n_2), h_1 h_2)$$

$$= (n_1 \psi(h1)(n_2), (h_1 h_2)^a)$$

(5)
$$= (n_1 \varphi(h_1^a)(n_2), h_1^a h_2^a)$$

(6)
$$= n_1 h_1^a n_2 h_2^a \text{ (por definición de } N \rtimes_{\psi} H)$$

$$= \tau(n_1 h_1) \tau(n_2 h_2)$$

Con esto, tenemos que τ separa productos y manda inversos en inversos. Por lo tanto τ es homomorfismo.

Análogamente $\lambda: N \rtimes_{\psi} H \to N \rtimes_{\varphi} N$ definida como $\lambda(n,h) = (n,h^b)$, resulta ser homomorfismo.

Ahora notemos que $\tau \circ \lambda(n,h) = \tau(n,h^b) = (n,h^{ab})$ y por (2), tenemos que $\tau \circ \lambda = id_{N \rtimes_{\psi} H}$.

Análogamente, tenemos que $\lambda \circ \tau = id_{N \rtimes_{\varphi} H}$. Con esto tenemos que tanto τ como λ son isomorfismos, con lo que termina la demostración.

Proposición 12

Sean N y H grupos, sea $\psi: H \to Aut(N)$ un homomorfismo y $f \in Aut(N)$. Si \hat{f} es el automorfismo interno de Aut(N) inducido por f, entonces $N \rtimes_{\hat{f} \circ \psi} \cong N \rtimes_{\psi} H$.

Demostración: Sea $\theta: N \rtimes_{\psi} H \to N \rtimes_{\hat{f} \circ \psi}$ definida por $\theta(n,h) = (f(n),h)$. Veamos que θ es homomorfismo:

(8)
$$\theta((n_1, h_1) \cdot (n_2, h_2)) = \theta(n_1 \psi(h_1)(n_2), h_1 h_2)$$

(9)
$$= (f(n_1\psi(h_1)(n_2)), h_1h_2)$$

$$= (f(n_1) \cdot (f \circ \psi(h_1))(n_2), h_1 h_2)$$

(11)
$$= (f(n_1) \cdot (f \circ \psi(h_1) \circ f^{-1} \circ f)(n_2), h_1 h_2)$$

(12)
$$= (f(n_1) \cdot (\hat{f}(\psi(h_1)) \circ f)(n_2), h_1 h_2)$$

(13)
$$= (f(n_1) \cdot (\hat{f} \circ \psi)(h_1)f(n_2), h_1h_2)$$

$$= (f(n_1), h_1)(f(n_2), h_2)$$

(15)
$$= \theta(n_1, h_1)\theta(n_2, h_2).$$

Con esto hemos demostrado que θ es homomorfismo pues abre multiplicaciones y manda inversos en inversos.

De manera análoga vemos que $\iota: N \rtimes_{\hat{f} \circ \psi} \to N \rtimes_{\psi} H$ definida por $\iota(n,h) = (f^{-1}(n),h)$ es homomorfismo.

Ahora notemos que:

(16)
$$(\iota \circ \theta)(n,h) = \iota(f(n),h) = (f^{-1}(f(n)),h) = (n,h).$$

Por lo tanto $\iota \circ \theta = id_{N \rtimes_{\psi} H}$.

Análogamente $\theta\circ\iota=id_{N\rtimes_{\hat{f}\circ\psi}H}.$ Por lo tanto, θ y ι son isomorfismos y con esto terminamos la demostración.