Machine Learning

Multinomial Distribution and Basic Kernel

Lecture Notes 11: Classification with Dimensionality Reduction

Professor: Zhihua Zhang

Scribe: Tianyuan Liu, Shenjian Zhao

1 Fisher Discriminant Analysis (Cont'd)

Recall Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^T$ be an $n \times p$ matrix and $\mathbf{Y} = \mathbf{H}\mathbf{X}\mathbf{G}$ be an $n \times q$ matrix (q < p). Our goal is to make the with-in covariance \mathbf{S}_w 'small' and the between covariance \mathbf{S}_b 'large', i.e.

$$\max_{\mathbf{G}} \operatorname{tr}((\mathbf{G}^T \mathbf{S}_w \mathbf{G})^{-1} (\mathbf{G}^T \mathbf{S}_b \mathbf{G}))$$

In the last lecture, we have derived that

$$S_bG = S_wG\Lambda$$

Now we move to solve this augmented eigenvalue problem. Consider each column \mathbf{g}_i of matrix \mathbf{G}

$$\mathbf{S}_{b}\mathbf{g}_{i} = \lambda_{i}\mathbf{S}_{w}\mathbf{g}_{i}$$

$$= \lambda_{i}(\mathbf{S}_{t} - \mathbf{S}_{b})\mathbf{g}_{i}$$

$$\mathbf{S}_{b}\mathbf{g}_{i} = \frac{\lambda_{i}}{1 + \lambda_{i}}\mathbf{S}_{t}\mathbf{g}_{i}$$
(1)

If \mathbf{S}_t is invertible, equation (1) can be solved as an ordinary eigenvalue problem

$$\mathbf{S}_t^{-1}\mathbf{S}_b\mathbf{g}_i = \lambda\mathbf{g}_i$$

where $\lambda = \frac{\lambda_i}{1+\lambda_i}$. But it's often the case that \mathbf{S}_t is not invertible. We give the following theorem to show that equation (1) can be solved using the psudo-inverse \mathbf{S}_t^{\dagger} .

Theorem 1.1. Let Σ_1 and Σ_2 be two $m \times m$ real matrices. Assume $\mathcal{R}(\Sigma_1) \subseteq \mathcal{R}(\Sigma_2)$. (Here $\mathcal{R}(\cdot)$ is the range of a matrix) Then if (Λ, Λ) are the nonzero eigenpairs of $\Sigma_2^{\dagger} \Sigma_1$, we have that (Λ, Λ) are the nonzero eigenpairs of matrix pencil (Σ_1, Σ_2) , i.e.

$$oldsymbol{\Sigma}_1 \mathbf{A} = oldsymbol{\Sigma}_2 \mathbf{A} oldsymbol{\Lambda} \Longleftrightarrow oldsymbol{\Sigma}_2^\dagger oldsymbol{\Sigma}_1 \mathbf{A} = \mathbf{A} oldsymbol{\Lambda}$$

Since $\mathcal{R}(\mathbf{S}_b) = \mathcal{R}(\mathbf{X}^T \mathbf{H} \mathbf{E} \mathbf{\Pi}^{-1} \mathbf{E}^T \mathbf{H} \mathbf{X}) = \mathcal{R}(\mathbf{X}^T \mathbf{H} \mathbf{E} \mathbf{\Pi}^{-1/2})$ and $\mathcal{R}(\mathbf{S}_t) = \mathcal{R}(\mathbf{X}^T \mathbf{H} \mathbf{H} \mathbf{X}) = \mathcal{R}(\mathbf{X}^T \mathbf{H})$, we have $\mathcal{R}(\mathbf{S}_b) \subseteq \mathcal{R}(\mathbf{S}_t)$. By Theorem 1.1, equation (1) is equivalent to

$$\mathbf{S}_t^{\dagger}\mathbf{S}_b\mathbf{g} = \lambda\mathbf{g}$$

Now we move to prove Theorem 1.1.

Proof. Let $\Sigma_1 = \mathbf{U}_1 \mathbf{\Gamma}_1 \mathbf{V}_1^T$ and $\Sigma_2 = \mathbf{U}_2 \mathbf{\Gamma}_2 \mathbf{V}_2^T$ be the condensed SVD of Σ_1 and Σ_2 . Then we have $\mathcal{R}(\Sigma_1) = \mathcal{R}(\mathbf{U}_1)$ and $\mathcal{R}(\Sigma_2) = \mathcal{R}(\mathbf{U}_2)$. The psudo-inverse is $\Sigma_2^{\dagger} = \mathbf{V}_2 \mathbf{\Gamma}_2^{-1} \mathbf{U}_2^T$, thus $\Sigma_2 \Sigma_2^{\dagger} = \mathbf{U}_2 \mathbf{U}_2^T$. Given $\mathcal{R}(\Sigma_1) \subseteq \mathcal{R}(\Sigma_2)$, we have $\mathcal{R}(\mathbf{U}_1) \subseteq \mathcal{R}(\mathbf{U}_2)$. Further, we can assume there is some \mathbf{Q} such that $\mathbf{U}_1 = \mathbf{U}_2 \mathbf{Q}$

$$\Sigma_{2}\Sigma_{2}^{\dagger}\Sigma_{1} = \mathbf{U}_{2}\mathbf{U}_{2}^{T}\mathbf{U}_{1}\mathbf{\Gamma}_{1}\mathbf{V}_{1}^{T}$$

$$= \mathbf{U}_{2}\mathbf{U}_{2}^{T}\mathbf{U}_{2}\mathbf{Q}\mathbf{\Gamma}\mathbf{V}_{1}^{T}$$

$$= \mathbf{U}_{1}\mathbf{\Gamma}_{1}\mathbf{V}_{1}^{T}$$

$$= \mathbf{\Sigma}_{1}$$

Therefore,

$$egin{array}{lcl} oldsymbol{\Sigma}_2^\dagger oldsymbol{\Sigma}_1 \mathbf{A} &=& \mathbf{A} oldsymbol{\Lambda} \ oldsymbol{\Sigma}_2 oldsymbol{\Sigma}_2^\dagger oldsymbol{\Sigma}_1 \mathbf{A} &=& oldsymbol{\Sigma}_2 \mathbf{A} oldsymbol{\Lambda} \ oldsymbol{\Sigma}_1 \mathbf{A} &=& oldsymbol{\Sigma}_2 \mathbf{A} oldsymbol{\Lambda} \end{array}$$

2 Method 2: Complete Orthogonal Decomposition

Definition 2.1 (Generalized Singular Value Decomposition). For $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{k \times m}$, their GSVD is given by:

$$\mathbf{U}^{T}\mathbf{A}\mathbf{X} = \mathbf{C} = \operatorname{diag}(\alpha_{1}, \cdots, \alpha_{m}) = [\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}], \alpha_{i} \geq 0$$
$$\mathbf{V}^{T}\mathbf{B}\mathbf{X} = \mathbf{S} = \operatorname{diag}(\beta_{1}, \cdots, \beta_{q}) = [\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}], \beta_{i} \geq 0, q = \min(k, m),$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{V} \in \mathbb{R}^{k \times k}$ and $\mathbf{U}^T \mathbf{U} = \mathbf{I_n}$, $\mathbf{V}^T \mathbf{V} = \mathbf{I_k}$, $\mathbf{X} \in \mathbb{R}^{m \times m}$ is nonsingular. It holds that $\mathbf{\Sigma_A}^T \mathbf{\Sigma_A} + \mathbf{\Sigma_B}^T \mathbf{\Sigma_B} = \mathbf{I_m}$.

Proposition 2.1. Application of GSVD. For $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{k \times m}$, their GSVD is

$$\mathbf{U}^T \mathbf{A} \mathbf{X} = [\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}],$$

 $\mathbf{V}^T \mathbf{B} \mathbf{X} = [\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}]$

 $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_m)$, then first r vectors of \mathbf{X} are the generalized eigenvectors of $\mathbf{A}^T \mathbf{A}$ and $\mathbf{B}^T \mathbf{B}$, and the corresponding eigenvalue is $\frac{\alpha_i^2}{\beta_i^2}$.

Proof: From GSVD:

$$\mathbf{A} = \mathbf{U}[\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}]\mathbf{X}^{-1} \Longrightarrow \mathbf{A}^{T}\mathbf{A} = \mathbf{X}^{-T}[\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}]^{T}[\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}]\mathbf{X}^{-1}$$
$$\mathbf{B} = \mathbf{V}[\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}]\mathbf{X}^{-1} \Longrightarrow \mathbf{B}^{T}\mathbf{B} = \mathbf{X}^{-T}[\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}]^{T}[\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}]\mathbf{X}^{-1}$$

Because X is nonsingular,

$$\mathbf{A}^T \mathbf{A} \mathbf{X} = \mathbf{X}^{-T} \begin{pmatrix} \mathbf{\Sigma_A}^T \mathbf{\Sigma_A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
 $\mathbf{B}^T \mathbf{B} \mathbf{X} = \mathbf{X}^{-T} \begin{pmatrix} \mathbf{\Sigma_B}^T \mathbf{\Sigma_B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$

Let $\mathbf{x}_i, i \leq r$, then

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x}_{i} = \mathbf{X}^{-T} \begin{pmatrix} \alpha_{i}^{2} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
$$\mathbf{B}^{T}\mathbf{B}\mathbf{x}_{i} = \mathbf{X}^{-T} \begin{pmatrix} \beta_{i}^{2} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

We get $\mathbf{A}^T \mathbf{A} \mathbf{x}_i = \frac{\alpha_i^2}{\beta_i^2} \mathbf{B}^T \mathbf{B} \mathbf{x}_i$. This is the solution to the generalized eigenvalue problems.

Lemma 2.1. The CS Decomposition: Consider matrix

$$\mathbf{Q} = \begin{pmatrix} \mathbf{Q}_1 \\ \mathbf{Q}_2 \end{pmatrix}, \mathbf{Q}_1 \in \mathbb{R}^{m_1 \times n}, \mathbf{Q}_2 \in \mathbb{R}^{m_2 \times n},$$

where $m_1 \geq n$, $m_2 \geq n$, if the columns of **Q** are orthogonal, then exist orthogonal matrices $\mathbf{U}_1 \in \mathbb{R}^{m_1 \times m_1}, \mathbf{U}_2 \in \mathbb{R}^{m_2 \times m_2}, \mathbf{V}_1 \in \mathbb{R}^{n \times n}, \text{ such that}$

$$\mathbf{U}_1^T \mathbf{Q}_1 \mathbf{V}_1 = \mathbf{C}, \qquad \mathbf{U}_2^T \mathbf{Q}_2 \mathbf{V}_1 = \mathbf{S}, \qquad \mathbf{C}^T \mathbf{C} + \mathbf{S}^T \mathbf{S} = \mathbf{I}_n$$

Proposition 2.2. Using QR decomposition to solve GSVD.

Proof: Let $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\mathbf{B} \in \mathbb{R}^{k \times m}$,

$$\mathbf{C} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$$

and $t = \text{rank}(\mathbf{C})$, perform QR to \mathbf{C} , gets

$$\mathbf{P}^T \mathbf{C} \mathbf{Q} = egin{pmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Where **Q** is a permutation matrix, **P** is an orthogonal matrix. $\mathbf{R}_{t \times t}$ is nonsingular. Let

$$\mathbf{P} = \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix}$$

Where $\mathbf{P}_{11} \in \mathbb{R}^{n \times t}$, $\mathbf{P}_{21} \in \mathbb{R}^{k \times t}$, $||\mathbf{P}|| \le 1$, $||\mathbf{P}_{11}|| \le 1$. From the lemma, first apply SVD on \mathbf{P}_{11} , we will have $\mathbf{U}^T \mathbf{P}_{11} \mathbf{W} = \mathbf{\Sigma}_{\mathbf{A}}$, then apply QR to $\mathbf{P}_{21}\mathbf{W}$, we will have $\mathbf{P}_{21}\mathbf{W} = \mathbf{VL}$.So

$$\begin{pmatrix} \boldsymbol{\Sigma}_{\mathbf{A}} \\ \mathbf{L} \end{pmatrix} = \begin{pmatrix} \mathbf{U}^T \mathbf{P}_{11} \\ \mathbf{V}^T \mathbf{P}_{21} \end{pmatrix} \mathbf{W} = \begin{pmatrix} \mathbf{U}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{V}^T \end{pmatrix} \begin{pmatrix} \mathbf{P}_{11} \\ \mathbf{P}_{21} \end{pmatrix} \mathbf{W}$$

From Lemma, we have

$$egin{pmatrix} \left(\mathbf{\Sigma_A}^T & \mathbf{L}^T
ight) egin{pmatrix} \mathbf{\Sigma_A} \\ \mathbf{L} \end{pmatrix} = \mathbf{\Sigma_A}^T\mathbf{\Sigma_A} + \mathbf{L}^T\mathbf{L} = \mathbf{I}$$

Because $\Sigma_{\mathbf{B}}$ need not to be diagonal matrix, we use $\Sigma_{\mathbf{B}}$ to denote L. To simplify:

$$\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} \mathbf{Q} = \begin{pmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{P}_{11} \mathbf{R} & \mathbf{0} \\ \mathbf{P}_{21} \mathbf{R} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{U} \boldsymbol{\Sigma}_{\mathbf{A}} \mathbf{W}^T \mathbf{R} & \mathbf{0} \\ \mathbf{V} \boldsymbol{\Sigma}_{\mathbf{B}} \mathbf{W}^T \mathbf{R} & \mathbf{0} \end{pmatrix}$$

From above, we get

$$\mathbf{AQ} = [\mathbf{U}\mathbf{\Sigma}_{\mathbf{A}}\mathbf{W}^T\mathbf{R}, \mathbf{0}]$$
$$\mathbf{BQ} = [\mathbf{V}\mathbf{\Sigma}_{\mathbf{B}}\mathbf{W}^T\mathbf{R}, \mathbf{0}]$$

Change form:

$$\mathbf{U}^T \mathbf{A} \mathbf{Q} = [\mathbf{\Sigma}_{\mathbf{A}} \mathbf{W}^T \mathbf{R}, \mathbf{0}] = [\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}] \begin{pmatrix} \mathbf{W}^T \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$
 $\mathbf{V}^T \mathbf{B} \mathbf{Q} = [\mathbf{\Sigma}_{\mathbf{B}} \mathbf{W}^T \mathbf{R}, \mathbf{0}] = [\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}] \begin{pmatrix} \mathbf{W}^T \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$

Because $\mathbf{W}^T\mathbf{R}$ is invertible, we can set

$$X = Q \begin{pmatrix} R^{-1}W & 0 \\ 0 & I \end{pmatrix}$$

Then come the solution of GSVD:

$$\mathbf{U}^T \mathbf{A} \mathbf{X} = [\mathbf{\Sigma}_{\mathbf{A}}, \mathbf{0}]$$

 $\mathbf{V}^T \mathbf{B} \mathbf{X} = [\mathbf{\Sigma}_{\mathbf{B}}, \mathbf{0}]$

Example 2.1. The Step to Solve FDA.

- 1. Compute $\mathbf{S_t} = \mathbf{X}^T \mathbf{H} \mathbf{H} \mathbf{X}$, $\mathbf{S_b} = \mathbf{X}^T \mathbf{H} \mathbf{E} \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X}$.
- 2. Let $\mathbf{A} = \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X}, \mathbf{B} = \mathbf{H} \mathbf{X}$.
- 3. Let

$$\mathbf{C} = egin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}$$

4. Apply QR to \mathbf{C} , get

$$\mathbf{P}^T \mathbf{C} \mathbf{Q} = \begin{pmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

- 5. Perform the SVD of \mathbf{P}_{11} , get $\mathbf{U}^T \mathbf{P}_{11} \mathbf{W} = \mathbf{\Sigma}_{\mathbf{A}}$.
- 6. The corresponding vectors is first c-1 vectors of

$$X = \mathbf{Q} \begin{pmatrix} \mathbf{R^{-1}W} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

.

3 Method 3: Regularized Discriminant Analysis

If \mathbf{S}_t is singular, we can add perturbation to \mathbf{S}_t , the problem then change to the following form.

$$(\mathbf{S}_t + \sigma^2 \mathbf{I}_p)^{-1} \mathbf{S}_b \mathbf{A} = \mathbf{A} \mathbf{\Lambda}$$
$$(\mathbf{X}^T \mathbf{H} \mathbf{X} + \sigma^2 \mathbf{I}_p)^{-1} \mathbf{X}^T \mathbf{H} \mathbf{E} \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X} \mathbf{A} = \mathbf{A} \mathbf{\Lambda}$$

For computation efficiency, If $n \gg p$, let $\Phi = (\mathbf{X}^T \mathbf{H} \mathbf{X} + \sigma^2 \mathbf{I}_p)^{-1} \mathbf{X}^T \mathbf{H} \mathbf{E} \mathbf{\Pi}^{-\frac{1}{2}}$. If $p \gg n$, change it to $\Phi = \mathbf{X}^T \mathbf{H} (\mathbf{H} \mathbf{X} \mathbf{X}^T \mathbf{H} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{E} \mathbf{\Pi}^{-\frac{1}{2}}$. The equation can be rewrite to $\Phi \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X} \mathbf{A} = \mathbf{A} \mathbf{\Lambda}$. Let $\Psi = \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X} \Phi$, $\mathbf{B} = \mathbf{\Pi}^{-\frac{1}{2}} \mathbf{E}^T \mathbf{H} \mathbf{X}$.

Proposition 3.1. The eigenvectors \mathbf{A} in $\Phi \mathbf{B} \mathbf{A} = \mathbf{A} \boldsymbol{\Lambda}$ is $\Phi \mathbf{V}_{\Psi} \Gamma_{\Psi}^{-\frac{1}{2}}$, and the eigenvalues are Γ_{Ψ} . Where $\Psi = \mathbf{V}_{\Psi} \Gamma_{\Psi} \mathbf{V}_{\Psi}^{T}$.

Proof:

$$\begin{split} & \Psi = \mathbf{B}\Phi = \mathbf{V}_{\Psi}\Gamma_{\Psi}\mathbf{V}_{\Psi}^{T} \\ & \Longrightarrow \Phi \mathbf{B}\Phi = \Phi \mathbf{V}_{\Psi}\Gamma_{\Psi}\mathbf{V}_{\Psi}^{T} \\ & \Longrightarrow \Phi \mathbf{B}\Phi\mathbf{V}_{\Psi}\Gamma_{\Psi}^{-\frac{1}{2}} = \Phi \mathbf{V}_{\Psi}\Gamma_{\Psi}^{-\frac{1}{2}}\Gamma_{\Psi} \\ & \Longrightarrow (\Phi \mathbf{B})(\Phi \mathbf{V}_{\Psi}\Gamma_{\Psi}^{-\frac{1}{2}}) = (\Phi \mathbf{V}_{\Psi}\Gamma_{\Psi}^{-\frac{1}{2}})\Gamma_{\Psi} \\ & \Longrightarrow \mathbf{A} = \Phi \mathbf{V}_{\Psi}\Gamma_{\Psi}^{-\frac{1}{2}}, \Lambda = \Gamma_{\Psi} \end{split}$$

Example 3.1. The Step to Solve FDA.

- 1. Compute Φ, Ψ .
- 2. Perform the SVD of Ψ . Get $\Psi = \mathbf{V}_{\Psi} \mathbf{\Gamma}_{\Psi} \mathbf{V}_{\Psi}^T$.
- 3. $\mathbf{G} = \mathbf{\Phi} \mathbf{V}_{\mathbf{\Psi}} \mathbf{\Gamma}_{\mathbf{\Psi}}^{-\frac{1}{2}}$.

4 RFDA and Rigne Regression

Let $\mathbf{Y} = [\mathbf{y}_i, \mathbf{y}_2, \cdots, \mathbf{y}_n]^T = \mathbf{E} \mathbf{\Pi}^{-1/2} \mathbf{H}_{\boldsymbol{\pi}}$, where $\mathbf{H}_{\boldsymbol{\pi}} = \mathbf{I}_c - \frac{1}{n} \sqrt{\boldsymbol{\pi}} \sqrt{\boldsymbol{\pi}}^T$ and $\sqrt{\boldsymbol{\pi}} = (\sqrt{n_1}, \sqrt{n_2}, \cdots, \sqrt{n_c})^T$ be a vector associated with the square root of number of nodes in each cluster.

For each row in \mathbf{Y} , $\mathbf{y}_i = (y_{i1}, y_{i2}, \cdots, y_{ic})$ where

$$y_{ij} = \begin{cases} \frac{n - n_j}{n\sqrt{n_j}} & \text{if } i \in V_j\\ \frac{\sqrt{n_j}}{n} & \text{if otherwise} \end{cases}$$

The goal is to minimize the following Lagrangian function:

$$\min_{\mathbf{w}_0, \mathbf{W}} L(\mathbf{w}_0, \mathbf{W}) = \frac{1}{2} ||\mathbf{Y} - \mathbf{1}_n \mathbf{w}_0^T - \mathbf{X} \mathbf{W}||_F^2 + \frac{\sigma^2}{2} \text{tr}(\mathbf{W}^T \mathbf{W})$$

$$= \frac{1}{2} \sum_{i=1}^n ||\mathbf{y}_i - \mathbf{w}_0 - \mathbf{W}^T \mathbf{x}_i||^2 + \frac{\sigma^2}{2} \text{tr}(\mathbf{W}^T \mathbf{W})$$

By taking partial derivatives, we have

$$\frac{\partial L}{\mathbf{w}_0} = n\mathbf{w}_0 + \mathbf{W}^T \mathbf{X}^T \mathbf{1}_n - \mathbf{Y}^T \mathbf{1}_n = 0$$
 (2)

$$\frac{\partial L}{\mathbf{W}} = (\mathbf{X}^T \mathbf{X} + \sigma^2 \mathbf{I}_p) \mathbf{W} + \mathbf{X}^T \mathbf{1}_n \mathbf{w}_0^T - \mathbf{X}^T \mathbf{Y} = 0$$
(3)

By solving equation (2), we have

$$\mathbf{w}_0 = -\mathbf{W}^T \mathbf{m}$$

where $\mathbf{m} = \frac{1}{n} \mathbf{X}^T \mathbf{1}_n$. Then in equation (3), we have

$$(\mathbf{X}^{T}\mathbf{X} + \sigma^{2} + \mathbf{I}_{p})\mathbf{W} = \mathbf{X}^{T}\mathbf{1}_{n}\mathbf{m}^{T}\mathbf{W} + \mathbf{X}^{T}\mathbf{Y}$$

$$\Longrightarrow (\mathbf{X}_{T}\mathbf{X} - n\mathbf{m}\mathbf{m}^{T} + \sigma^{2}\mathbf{I}_{p})\mathbf{W} = \mathbf{X}^{T}\mathbf{Y}$$

$$\Longrightarrow (\mathbf{X}^{T}\mathbf{H}\mathbf{X} - \sigma^{2}\mathbf{I}_{p})\mathbf{W} = \mathbf{X}^{T}\mathbf{Y}$$

$$\Longrightarrow \mathbf{W} = (\mathbf{X}^{T}\mathbf{H}\mathbf{X} - \sigma^{2}\mathbf{I}_{p})^{-1}\mathbf{X}^{T}\mathbf{Y}$$

Notice that $\mathbf{Y} = \mathbf{E}\mathbf{\Pi}^{-1/2}\mathbf{H}_{\pi} = \mathbf{E}\mathbf{\Pi}^{-1/2}(\mathbf{I}_c - \frac{1}{n}\sqrt{\pi}\sqrt{\pi}^T) = (\mathbf{I}_p - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T)\mathbf{E}\mathbf{\Pi}^{-1/2}$, we have

$$\mathbf{W} = (\mathbf{X}^T \mathbf{H} \mathbf{X} + \sigma^2 \mathbf{I}_p)^{-1} \mathbf{H} \mathbf{E} \mathbf{\Pi}^{1/2}$$
(4)

The result in equation (4) is exactly the same as Φ .