(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 28 July 2005 (28.07.2005)

PCT

English

(10) International Publication Number WO 2005/067667 A2

(51) International Patent Classification: Not classified

(21) International Application Number:

PCT/US2005/000638

(22) International Filing Date: 7 January 2005 (07.01.2005)

(26) Publication Language: English

(30) Priority Data:

(25) Filing Language:

60/535,151 7 January 2004 (07.01.2004) US

(71) Applicant (for all designated States except US): BRISTOL-MYERS SQUIBB COMPANY [US/US]; Route 206 and Province Line Road, Princeton, NJ 08543-4000 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CLARK, Edwin, A. [US/US]; 133 Brandon Road, Pennington, NJ 08534 (US). FORD, Shirin, K. [IN/US]; 45 Jackson Avenue, Princeton, NJ 08540 (US). YOGANATHAN, Suganthy [LK/US]; 53 Victoria Drive, Somerset, NJ 08873 (US). **JACKSON, Donald, G.** [US/US]; 2617 Main Street, Apt. 2, Lawrenceville, NJ 08648 (US).

- (74) Agents: GOLIAN, Paul, D. et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543-4000 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: BIOMARKERS AND METHODS FOR DETERMINING SENSITIVITY TO EPIDERMAL GROWTH FACTOR RECEPTOR MODULATORS

Gene Filtering Process

number of probesets

Step 1: log-transform transcription data

Step 2: remove probesets with colon tumor Max intensity < 3.477

Step 3: remove probesets with colon tumor VARP ≤ 0.1

Step 4: remove probesets with colon cell line Max intensity < 3.477

Step 5: remove probesets with colon cell line VARP < 0.1

Step 6: perform two-sided T-test on colon cell line transcription data

(57) Abstract: EGFR biomarkers useful in a method for identifying a mammal that will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises (a) exposing the mammal to the EGFR modulator and (b) measuring in the mammal the level of the at least one biomarker, wherein a difference in the level of the at least one biomarker measured in (b) compared to the level of the biomarker in a mammal that has not been exposed to the EGFR modulator indicates that the mammal will respond therapeutically to the method of treating cancer.

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,

- HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

BIOMARKERS AND METHODS FOR DETERMINING SENSITIVITY TO EPIDERMAL GROWTH FACTOR RECEPTOR MODULATORS

5 FIELD OF THE INVENTION

The present invention relates generally to the field of pharmacogenomics, and more specifically to methods and procedures to determine sensitivity in patients to allow the development of individualized genetic profiles which aid in treating diseases and disorders based on patient response at a molecular level.

10

15

20

25

30

BACKGROUND OF THE INVENTION:

Cancer is a disease with extensive histoclinical heterogeneity. Although conventional histological and clinical features have been correlated to prognosis, the same apparent prognostic type of tumors varies widely in its responsiveness to therapy and consequent survival of the patient.

New prognostic and predictive markers, which would facilitate an individualization of therapy for each patient, are needed to accurately predict patient response to treatments, such as small molecule or biological molecule drugs, in the clinic. The problem may be solved by the identification of new parameters that could better predict the patient's sensitivity to treatment. The classification of patient samples is a crucial aspect of cancer diagnosis and treatment. The association of a patient's response to a treatment with molecular and genetic markers can open up new opportunities for treatment development in non-responding patients, or distinguish a treatment's indication among other treatment choices because of higher confidence in the efficacy. Further, the pre-selection of patients who are likely to respond well to a medicine, drug, or combination therapy may reduce the number of patients needed in a clinical study or accelerate the time needed to complete a clinical development program (M. Cockett et al., 2000, *Current Opinion in Biotechnology*, 11:602-609).

The ability to predict drug sensitivity in patients is particularly challenging because drug responses reflect not only properties intrinsic to the target cells, but also a host's metabolic properties. Efforts to use genetic information to predict drug sensitivity have primarily focused on individual genes that have broad effects, such as the multidrug resistance genes, *mdr1* and *mrp1* (P. Sonneveld, 2000, *J. Intern. Med.*, 247:521-534).

The development of microarray technologies for large scale characterization of gene mRNA expression pattern has made it possible to systematically search for molecular markers and to categorize cancers into distinct subgroups not evident by traditional histopathological methods (J. Khan et al., 1998, *Cancer Res.*, 58:5009-5013; A.A. Alizadeh et al., 2000, *Nature*, 403:503-511; M. Bittner et al., 2000, *Nature*, 406:536-540; J. Khan et al., 2001, *Nature Medicine*, 7(6):673-679; and T.R. Golub et al., 1999, *Science*, 286:531-537; U. Alon et al., 1999, *Proc. Natl. Acad. Sci. USA*, 96:6745-6750). Such technologies and molecular tools have made it possible to monitor the expression level of a large number of transcripts within a cell population at any given time (see, e.g., Schena et al., 1995, *Science*, 270:467-470; Lockhart et al., 1996, *Nature Biotechnology*, 14:1675-1680; Blanchard et al., 1996, *Nature Biotechnology*, 14:1649; U.S. Patent No. 5,569,588 to Ashby et al.).

5

10

15

20

25

30

Recent studies demonstrate that gene expression information generated by microarray analysis of human tumors can predict clinical outcome (L.J. van't Veer et al., 2002, *Nature*, 415:530-536; M. West et al., 2001, *Proc. Natl. Acad. Sci. USA*, 98:11462-11467; T. Sorlie et al., 2001, *Proc. Natl. Acad. Sci. USA*, 98:10869-10874; M. Shipp et al., 2002, *Nature Medicine*, 8(1):68-74). These findings bring hope that cancer treatment will be vastly improved by better predicting the response of individual tumors to therapy.

Needed are new and alternative methods and procedures to determine drug sensitivity in patients to allow the development of individualized genetic profiles which are necessary to treat diseases and disorders based on patient response at a molecular level.

SUMMARY OF THE INVENTION:

The invention provides methods and procedures for determining patient sensitivity to one or more Epidermal Growth Factor Receptor (EGFR) modulators. The invention also provides methods of determining or predicting whether an individual requiring therapy for a disease state such as cancer will or will not respond to treatment, prior to administration of the treatment, wherein the treatment comprises one or more EGFR modulators. The one or more EGFR modulators are compounds that can be selected from, for example, one or more EGFR specific ligands, one or

more small molecule EGFR inhibitors, or one or more EGFR binding monoclonal antibodies.

5

10

15

20

25

30

In one aspect, the invention provides a method for identifying a mammal that will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises: (a) measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1; (b) exposing the mammal to the EGFR modulator; (c) following the exposing of step (b), measuring in the mammal the level of the at least one biomarker, wherein a difference in the level of the at least one biomarker measured in step (c) compared to the level of the at least one biomarker measured in step (a) indicates that the mammal will respond therapeutically to said method of treating cancer.

As used herein, respond therapeutically refers to the alleviation or abrogation of the cancer. This means that the life expectancy of an individual affected with the cancer will be increased or that one or more of the symptoms of the cancer will be reduced or ameliorated. The term encompasses a reduction in cancerous cell growth or tumor volume. Whether a mammal responds therapeutically can be measured by many methods well known in the art, such as PET imaging.

The mammal can be, for example, a human, rat, mouse, dog rabbit, pig sheep, cow, horse, cat, primate, or monkey.

The method of the invention can be, for example, an in vitro method and wherein the at least one biomarker is measured in at least one mammalian biological sample from the mammal. The biological sample can comprise, for example, at least one of whole fresh blood, peripheral blood mononuclear cells, frozen whole blood, fresh plasma, frozen plasma, urine, saliva, skin, hair follicle, or tumor tissue.

In another aspect, the invention provides a method for identifying a mammal that will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises: (a) exposing the mammal to the EGFR modulator; (b) following the exposing of step (a), measuring in the mammal the level of the at least one biomarker selected from the biomarkers of Table 1, wherein a difference in the level of the at least one biomarker measured in step (b), compared to the level of the biomarker in a mammal that has not been

exposed to said EGFR modulator, indicates that the mammal will respond therapeutically to said method of treating cancer.

5

10

15

20

25

30

In yet another aspect, the invention provides a method for testing or predicting whether a mammal will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises: (a) measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1; (b) exposing the mammal to the EGFR modulator; (c) following the exposing of step (b), measuring in the mammal the level of the at least one biomarker, wherein a difference in the level of the at least one biomarker measured in step (c) compared to the level of the at least one biomarker measured in step (a) indicates that the mammal will respond therapeutically to said method of treating cancer.

In another aspect, the invention provides a method for determining whether a compound inhibits EGFR activity in a mammal, comprising: (a) exposing the mammal to the compound; and (b) following the exposing of step (a), measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1, wherein a difference in the level of said biomarker measured in step (b), compared to the level of the biomarker in a mammal that has not been exposed to said compound, indicates that the compound inhibits EGFR activity in the mammal.

In yet another aspect, the invention provides a method for determining whether a mammal has been exposed to a compound that inhibits EGFR activity, comprising (a) exposing the mammal to the compound; and (b) following the exposing of step (a), measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1, wherein a difference in the level of said biomarker measured in step (b), compared to the level of the biomarker in a mammal that has not been exposed to said compound, indicates that the mammal has been exposed to a compound that inhibits EGFR activity.

In another aspect, the invention provides a method for determining whether a mammal is responding to a compound that inhibits EGFR activity, comprising (a) exposing the mammal to the compound; and (b) following the exposing of step (a), measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1, wherein a difference in the level of said biomarker measured

in step (b), compared to the level of the biomarker in a mammal that has not been exposed to said compound, indicates that the mammal is responding to the compound that inhibits EGFR activity.

As used herein, "responding" encompasses responding by way of a biological and cellular response, as well as a clinical response (such as improved symptoms, a therapeutic effect, or an adverse event), in a mammal

5

10

15

20

25

30

The invention also provides an isolated biomarker selected from the biomarkers of Table 1. The biomarkers of the invention comprise sequences selected from the nucleotide and amino acid sequences provided in Table 1 and the Sequence Listing, as well as fragments and variants thereof.

The invention also provides a biomarker set comprising two or more biomarkers selected from the biomarkers of Table 1.

The invention also provides kits for determining or predicting whether a patient would be susceptible or resistant to a treatment that comprises one or more EGFR modulators. The patient may have a cancer or tumor such as, for example, a colon cancer or tumor.

In one aspect, the kit comprises a suitable container that comprises one or more specialized microarrays of the invention, one or more EGFR modulators for use in testing cells from patient tissue specimens or patient samples, and instructions for use. The kit may further comprise reagents or materials for monitoring the expression of a biomarker set at the level of mRNA or protein.

In another aspect, the invention provides a kit comprising two or more biomarkers selected from the biomarkers of Table 1.

In yet another aspect, the invention provides a kit comprising at least one of an antibody and a nucleic acid for detecting the presence of at least one of the biomarkers selected from the biomarkers of Table 1. In one aspect, the kit further comprises instructions for determining whether or not a mammal will respond therapeutically to a method of treating cancer comprising administering a compound that inhibits EGFR activity. In another aspect, the instructions comprise the steps of (a) measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1, (b) exposing the mammal to the compound, (c) following the exposing of step (b), measuring in the mammal the level of the at least one biomarker,

wherein a difference in the level of the at least one biomarker measured in step (c) compared to the level of the at least one biomarker measured in step (a) indicates that the mammal will respond therapeutically to said method of treating cancer.

The invention also provides screening assays for determining if a patient will be susceptible or resistant to treatment with one or more EGFR modulators.

The invention also provides a method of monitoring the treatment of a patient having a disease treatable by one or more EGFR modulators.

The invention also provides individualized genetic profiles which are necessary to treat diseases and disorders based on patient response at a molecular level.

The invention also provides specialized microarrays, e.g., oligonucleotide microarrays or cDNA microarrays, comprising one or more biomarkers having expression profiles that correlate with either sensitivity or resistance to one or more EGFR modulators.

The invention also provides antibodies, including polyclonal or monoclonal, directed against one or more biomarkers of the invention.

The invention will be better understood upon a reading of the detailed description of the invention when considered in connection with the accompanying figures.

20

25

5

10

BRIEF DESCRIPTION OF THE FIGURES:

FIG. 1 illustrates the gene filtering process.

FIG. 2 illustrates the cell line filtering process.

FIG. 3 illustrates the cell line IC50 data.

FIG. 4 illustrates the T-test Results I.

FIG. 5 illustrates the T-test Results II.

FIG. 6 illustrates the T-test Results III.

DETAILED DESCRIPTION OF THE INVENTION:

30 The invention provides biomarkers that respond to the modulation of a specific signal transduction pathway and also correlate with EGFR modulator sensitivity or resistance. These biomarkers can be employed for predicting response

to one or more EGFR modulators. In one aspect, the biomarkers of the invention are those provided in Table 1 and the Sequence Listing, including both polynucleotide and polypeptide sequences.

5 TABLE 1 - BIOMARKERS

Affroncing		
Unigene title and SEQ	Affymetrix Description	Affymetrix Probe Set
ID NOS:	1 HOTOCO 1 PDEE Hamon intestinal	209847_at
Cadherin 17, LI	gb:U07969.1 /DEF=Human intestinal	209047_ai
cadherin (liver-intestine)	peptide-associated transporter HPT-1	
	mRNA, complete cds. /FEA=mRNA	
SEQ ID NOS:1	/PROD=intestinal peptide-associated	
(nucleotide) and 67	transporter HPT-1 /DB_XREF=gi:483391	,
(amino acid)	/UG=Hs.89436 cadherin 17, LI cadherin	
	(liver-intestine) /FL=gb:NM_004063.1	
	gb:U07969.1	
Carcinoembryonic	gb:BC005008.1 /DEF=Homo sapiens,	203757_s_at
antigen-related cell	carcinoembryonic antigen-related cell	
adhesion molecule 6	adhesion molecule 6 (non-specific cross	
(non-specific cross	reacting antigen), clone MGC:10467,	
reacting antigen)	mRNA, complete cds. /FEA=mRNA	
	/PROD=carcinoembryonic antigen-related	
SEQ ID NOS:2	cell adhesionmolecule 6 (non-specific	
(nucleotide) and 68	cross reacting antigen)	
(amino acid)	/DB_XREF=gi:13477106 /UG=Hs.73848	
	carcinoembryonic antigen-related cell	
	adhesion molecule 6 (non-specific cross	
	reacting antigen) /FL=gb:BC005008.1	
	gb:M18216.1 gb:M29541.1	
	gb:NM_002483.1	
Carcinoembryonic	gb:M18728.1 /DEF=Human nonspecific	211657_at
antigen-related cell	crossreacting antigen mRNA, complete	
adhesion molecule 6	cds. /FEA=mRNA /GEN=NCA; NCA;	
(non-specific cross	NCA /PROD=non-specific cross reacting	
reacting antigen)	antigen /DB_XREF=gi:189084	
Touching untingenty	/FL=gb:M18728.1	
SEQ ID NOS:3		
(nucleotide) and 69		
(amino acid)		
Lectin, galactoside-	gb:NM_002305.2 /DEF=Homo sapiens	201105_at
binding, soluble, 1	lectin, galactoside-binding, soluble, 1	
(galectin 1)	(galectin 1) (LGALS1), mRNA.	
(gateetin 1)	/FEA=mRNA /GEN=LGALS1	
SEQ ID NOS:4	/PROD=beta-galactosidase binding lectin	
(nucleotide) and 70	precursor /DB_XREF=gi:6006015	
	/UG=Hs.227751 lectin, galactoside-	
(amino acid)		
	binding, soluble, 1 (galectin 1)	<u> </u>

	/FL=gb:BC001693.1 gb:J04456.1	
	gb:NM_002305.2	-
Transmembrane	gb:AF270487.1 /DEF=Homo sapiens	211689_s_at
protease, serine 2	androgen-regulated serine protease	
	TMPRSS2 precursor (TMPRSS2) mRNA,	
SEQ ID NOS:5	complete cds. /FEA=mRNA	
(nucleotide) and 71	/GEN=TMPRSS2 /PROD=androgen-	
(amino acid)	regulated serine protease	
	TMPRSS2precursor	,
	/DB_XREF=gi:13540003	
	/FL=gb:AF270487.1	
Mucin 5, subtypes A and	Consensus includes gb: AW192795	214303_x_at
C,	/FEA=EST /DB_XREF=gi:6471494	
tracheobronchial/gastric	/DB_XREF=est:xl51d08.x1	
	/CLONE=IMAGE:2678223	
SEQ ID NOS:6	/UG=Hs.103707 apomucin	
(nucleotide), 7		
(nucleotide) and 72		
(amino acid)	1 NM 005519 1 /DEE Home serions 2	204607 at
3-hydroxy-3-	gb:NM_005518.1 /DEF=Homo sapiens 3-	204007_ai
methylglutaryl-	hydroxy-3-methylglutaryl-Coenzyme A	
Coenzyme A synthase 2	synthase 2 (mitochondrial) (HMGCS2), mRNA. /FEA=mRNA /GEN=HMGCS2	
(mitochondrial)	/PROD=3-hydroxy-3-methylglutaryl-	
SEO ID NOS.º	Coenzyme A synthase 2(mitochondrial)	
SEQ ID NOS:8 (nucleotide) and 73	/DB_XREF=gi: 5031750 /UG=Hs.59889 3-	
(amino acid)	hydroxy-3-methylglutaryl-Coenzyme A	
(animo acid)	synthase 2 (mitochondrial)	
	/FL=gb:NM_005518.1	
Interferon-stimulated	gb:NM 005101.1 /DEF=Homo sapiens	205483_s_at
protein, 15 kDa	interferon-stimulated protein, 15 kDa	
protein, 12 insu	(ISG15), mRNA. /FEA=mRNA	
SEQ ID NOS:9	/GEN=ISG15 /PROD=interferon-	
(nucleotide) and 74	stimulated protein, 15 kDa	
(amino acid)	/DB_XREF=gi:4826773 /UG=Hs.833	
	interferon-stimulated protein, 15 kDa	
	/FL=gb:M13755.1 gb:NM_005101.1	
Dopa decarboxylase	gb:NM_000790.1 /DEF=Homo sapiens	205311_at
(aromatic L-amino acid	dopa decarboxylase (aromatic L-amino	
decarboxylase)	acid decarboxylase) (DDC), mRNA.	
	/FEA=mRNA /GEN=DDC /PROD=dopa	
SEQ ID NOS:10	decarboxylase (aromatic L-amino	
(nucleotide) and 75	aciddecarboxylase)	
(amino acid)	/DB_XREF=gi:4503280 /UG=Hs.150403	
	dopa decarboxylase (aromatic L-amino	
	acid decarboxylase) /FL=gb:BC000485.1	
	gb:M76180.1 gb:M88700.1	
	gb:NM_000790.1	

Serine (or cysteine)	gb:NM_000602.1 /DEF=Homo sapiens	202628_s_at
proteinase inhibitor,	serine (or cysteine) proteinase inhibitor,	
clade E (nexin,	clade E (nexin, plasminogen activator	
plasminogen activator	inhibitor type 1), member 1 (SERPINE1),	
inhibitor type 1),	mRNA. /FEA=mRNA /GEN=SERPINE1	
member 1	/PROD=serine (or cysteine) proteinase	
member 1	inhibitor, cladeE (nexin, plasminogen	
CEO ID NOC.11	activator inhibitor type 1), member1	1
SEQ ID NOS:11		
(nucleotide) and 76	/DB_XREF=gi:10835158 /UG=Hs.82085	
(amino acid)	serine (or cysteine) proteinase inhibitor,	
	clade E (nexin, plasminogen activator	
	inhibitor type 1), member 1	
	/FL=gb:NM_000602.1 gb:M16006.1	
FXYD domain-	gb:BC005238.1 /DEF=Homo sapiens,	202489_s_at
containing ion transport	FXYD domain-containing ion transport	
regulator 3	regulator 3, clone MGC:12265, mRNA,	
8	complete cds. /FEA=mRNA	
SEQ ID NOS:12	/PROD=FXYD domain-containing ion	
(nucleotide) and 77	transport regulator3	
(amino acid)	/DB_XREF=gi:13528881 /UG=Hs.301350	
(ammo acid)	FXYD domain-containing ion transport	
	regulator 3 /FL=gb:NM_005971.2	
	gb:BC005238.1	200020 a at
Putative integral	gb:NM_018407.1 /DEF=Homo sapiens	208029_s_at
membrane transporter	putative integral membrane transporter	
	(LC27), mRNA. /FEA=mRNA	
SEQ ID NOS:13	/GEN=LC27 /PROD=putative integral	
(nucleotide) and 78	membrane transporter	
(amino acid)	/DB_XREF=gi:8923827	
	/FL=gb:NM_018407.1	
Protease inhibitor 3,	gb:NM_002638.1 /DEF=Homo sapiens	203691_at
skin-derived (SKALP)	protease inhibitor 3, skin-derived (SKALP)	
	(PI3), mRNA. /FEA=mRNA /GEN=PI3	
SEO ID NOS:14	/PROD=protease inhibitor 3, skin-derived	
(nucleotide) and 79	(SKALP) /DB_XREF=gi:4505786	
(amino acid)	/UG=Hs.112341 protease inhibitor 3, skin-	
(animo acid)	derived (SKALP) /FL=gb:NM_002638.1	
Candal true hamas har	gb:U51096.1 /DEF=Human homeobox	206387_at
Caudal type homeo box	protein Cdx2 mRNA, complete cds.	200507_at
transcription factor 2		
	/FEA=mRNA /PROD=homeobox protein	
SEQ ID NOS:15	Cdx2 /DB_XREF=gi:1777773	
(nucleotide) and 80	/UG=Hs.77399 caudal type homeo box	
(amino acid)	transcription factor 2 /FL=gb:U51096.1	
	gb:NM_001265.1	
Fibroblast growth factor	gb:NM_000142.2 /DEF=Homo sapiens	204379_s_at
receptor 3	fibroblast growth factor receptor 3	
(achondroplasia,	(achondroplasia, thanatophoric dwarfism)	
thanatophoric dwarfism)	(FGFR3), transcript variant 1, mRNA.	
manacophoric awarishi)	(1 C1 10), transcript (minute 1, 11111 12 12	

	/FEA=mRNA /GEN=FGFR3	
SEQ ID NOS:16	/PROD=fibroblast growth factor receptor	
(nucleotide) and 81	3, isoform 1precursor	
(amino acid)	/DB_XREF=gi:13112046 /UG=Hs.1420	
	fibroblast growth factor receptor 3	
	(achondroplasia, thanatophoric dwarfism)	
	/FL=gb:NM_000142.2 gb:M58051.1	_
Hypothetical protein	Consensus includes gb:AL041124	213343_s_at
PP1665	/FEA=EST /DB_XREF=gi:5410060	
	/DB_XREF=est:DKFZp434D0316_s1	
SEQ ID NOS:17	/CLONE=DKFZp434D0316/UG=Hs.6748	
(nucleotide), 18	hypothetical protein PP1665	
(nucleotide) and 82	MJP over the Ferriam and the second s	
(amino acid)	1	
Protease inhibitor 3,	Cluster Incl. L10343:Huma elafin gene,	41469_at
skin-derived (SKALP)	complete cds /cds=(516,869) /gb=L10343	
skin-derived (SICIEL)	/gi=190337 /ug=Hs.112341 /len=871	
SEQ ID NOS:19	/gi=190337 /ug=115.1123 /1 /1011=071	
(nucleotide) and 83		
(amino acid)		
A kinase (PRKA)	gb:AB003476.1 /DEF=Homo sapiens	210517_s_at
, ,	mRNA for gravin, complete cds.	210317_5_40
anchor protein (gravin)	/FEA=mRNA /PROD=gravin	
12	/DB_XREF=gi:2081606 /UG=Hs.788 A	
GEO ID MOG.20	kinase (PRKA) anchor protein (gravin) 12	
SEQ ID NOS:20	, · · ·	
(nucleotide) and 84	/FL=gb:AB003476.1	
(amino acid)	-L.NIM 000240 1 /DEE_Home conjune	205668_at
Lymphocyte antigen 75	gb:NM_002349.1 /DEF=Homo sapiens lymphocyte antigen 75 (LY75), mRNA.	203000_at
GEO ID MOG A1	/FEA=mRNA /GEN=LY75	
SEQ ID NOS:21		
(nucleotide) and 85	/PROD=lymphocyte antigen 75	
(amino acid)	/DB_XREF=gi:4505052 /UG=Hs.153563	
	lymphocyte antigen 75	
	/FL=gb:AF011333.1 gb:AF064827.1	
3.5.5.5.1.	gb:NM_002349.1	214385_s_at
Mucin 5, subtypes A and	Consensus includes gb:AI521646	214303_8_at
C,	/FEA=EST /DB_XREF=gi:4435781	
tracheobronchial/gastric	/DB_XREF=est:to66a06.x1	
and the real	/CLONE=IMAGE:2183218	
SEQ ID NOS:22	/UG=Hs.102482 mucin 5, subtype B,	
(nucleotide)	tracheobronchial	204745 c+
Metallothionein 1G	gb:NM_005950.1 /DEF=Homo sapiens	204745_x_at
	metallothionein 1G (MT1G), mRNA.	
SEQ ID NOS:23	/FEA=mRNA /GEN=MT1G	
(nucleotide) and 86	/PROD=metallothionein 1G	
(amino acid)	/DB_XREF=gi:10835229 /UG=Hs.173451	
	metallothionein 1G /FL=gb:NM_005950.1	206467
Tumor necrosis factor	gb:NM_003823.1 /DEF=Homo sapiens	206467_x_at

receptor superfamily, member 6b, decoy tumor necrosis factor receptor superfamily, member 6b, decoy (TNFRSF6B), mRNA.	
/FEA=mRNA/GEN=TNFRSF6B	
SEQ ID NOS:24 /PROD=decoy receptor 3	
(nucleotide) and 87 /DB_XREF=gi:4507584 /UG=Hs.278556	
(amino acid) tumor necrosis factor receptor superfamily,	
member 6b, decoy /FL=gb:AF104419.1	
gb:NM_003823.1 gb:AF134240. 1	
gb:AF217794.1	
Mucin 3B Consensus includes gb:AB038783.1 214898	3_x_at
/DEF=Homo sapiens MUC3B mRNA for	
SEQ ID NOS:25 intestinal mucin, partial cds. /FEA=mRNA	
(nucleotide) and 88 /GEN=MUC3B /PROD=intestinal mucin	
(amino acid) /DB_XREF=gi:9929917 /UG=Hs.129782	
mucin 3A, intestinal	
Metallothionein 1X gb:NM_005952.1 /DEF=Homo sapiens 20858	1_x_at
metallothionein 1X (MT1X), mRNA.	
SEQ ID NOS:26 /FEA=CDS /GEN=MT1X	
(nucleotide) and 89 /PROD=metallothionein 1X	
(amino acid) /DB_XREF=gi:10835231 /UG=Hs.278462	
metallothionein 1X /FL=gb:NM_005952.1	
GRO3 oncogene gb:NM_002090.1 /DEF=Homo sapiens 207850)_at
GRO3 oncogene (GRO3), mRNA.	
SEQ ID NOS:27 /FEA=mRNA /GEN=GRO3	
(nucleotide) and 90 /PROD=GRO3 oncogene	
(amino acid) /DB_XREF=gi:4504156 /UG=Hs.89690	
GRO3 oncogene /FL=gb:M36821.1	
gb:NM_002090.1	
Transforming growth gb:NM_000358.1 /DEF=Homo sapiens 20150	6_at
factor, beta-induced, transforming growth factor, beta-induced,	
68kD (TGFBI), mRNA. /FEA=mRNA	
/GEN=TGFBI /PROD=transforming	
SEQ ID NOS:28 growth factor, beta-induced, 68kD	
(nucleotide) and 91 /DB_XREF=gi:4507466 /UG=Hs.118787	
(amino acid) transforming growth factor, beta-induced,	
68kD /FL=gb:BC000097.1 gb:BC004972.1	
gb:M77349.1 gb:NM_000358.1	
Boile inorphogenesis	1_s_at
protein 7 (osteogenic growth factor-beta (tgf-beta) mRNA,	
protein 1) complete cds. /FEA=mRNA /GEN=tgf-	
beta /PROD=transforming growth factor-	
SEQ ID NOS:29 beta /DB_XREF=gi:339563	
(nucleotide) and 92 /UG=Hs.170195 bone morphogenetic	
(amino acid) protein 7 (osteogenic protein 1)	
/FL=gb:M60316.1 gb:NM_001719.1	
Annexin A10 gb:AF196478.1 /DEF=Homo sapiens 21014	3_at
annexin 14 (ANX14) mRNA, complete	
SEQ ID NOS:30 cds. /FEA=mRNA /GEN=ANX14	

14
274496 /UG=Hs.188401
=gb:AF196478.1
2
es gb:M10943 217165_x_at
etallothionein-If gene
CDS
87540 /UG=Hs.203936
F (functional)
(2012032033)
/DEF=Homo sapiens 201012_at
XA1), mRNA.
EN=ANXA1
I/DB_XREF=gi:4502100
nnexin A1
75.1 gb:NM_000700.1
1 /DEF=Homo sapiens 203021_at
te protease inhibitor
ase) (SLPI), mRNA.
EN=SLPI
y leukocyte protease
coproteinase)
507064 /UG=Hs.251754
yte protease inhibitor
ase)
066.1 gb:AF114471.1
1 /DEF=Homo sapiens 204213_at
noglobulin receptor
/FEA=mRNA
OD=polymeric
receptor
1342673 /UG=Hs.288579
noglobulin receptor
2644.1
1 /DEF=Homo sapiens 201884_at
c antigen-related cell
le 5 (CEACAM5),
nRNA /GEN=CEACAM5
embryonic antigen-related
ecule 5
.1386170 /UG=Hs.220529
c antigen-related cell
le 5
363.1 gb:M29540.1
1 /DEF=Homo sapiens 203029_s_at
phosphatase, receptor type,
(PTPRN2), mRNA.

	/FEA=mRNA /GEN=PTPRN2	
SEQ ID NOS:36	/PROD=protein tyrosine phosphatase,	
(nucleotide) and 99	receptor type, Npolypeptide 2	
(amino acid)	/DB_XREF=gi:11386148 /UG=Hs.74624	
(protein tyrosine phosphatase, receptor type,	
	N polypeptide 2 /FL=gb:NM_002847.1	
	gb:U66702.1 gb:AF007555.1	
Cystic fibrosis	gb:NM_000492.2 /DEF=Homo sapiens	205043_at
transmembrane	cystic fibrosis transmembrane conductance	
conductance regulator,	regulator, ATP-binding cassette (sub-	
ATP-binding cassette	family C, member 7) (CFTR), mRNA.	
(sub-family C, member	/FEA=mRNA /GEN=CFTR /PROD=cystic	
7)	fibrosis transmembrane	
')	conductanceregulator, ATP-binding	
SEQ ID NOS:37	cassette (sub-family C, member 7)	
(nucleotide) and 100	/DB_XREF=gi:6995995 /UG=Hs.663	
, ,	cystic fibrosis transmembrane conductance	4
(amino acid)	regulator, ATP-binding cassette (sub-	•
	family C, member 7)	
DIGOZ 1 / 1	/FL=gb:NM_000492.2	2098 21_at
DVS27-related protein	gb:AB024518.1 /DEF=Homo sapiens	2098 21_ai
GEO ED MOG 40	mRNA for DVS27-related protein,	
SEQ ID NOS:38	complete cds. /FEA=mRNA	
(nucleotide) and 101	/GEN=DVS27 /PROD=DVS27-related	,
(amino acid)	protein /DB_XREF=gi:4520327	1
	/UG=Hs.58589 glycogenin 2	
	/FL=gb:AB024518.1	202719
Insulin-like growth	gb:NM_000597.1 /DEF=Homo sapiens	2027 18_at
factor binding protein 2	insulin-like growth factor binding protein 2	
(36kD)	(36kD) (IGFBP2), mRNA. /FEA=mRNA	
	/GEN=IGFBP2 /PROD=insulin-like	
SEQ ID NOS:39	growth factor binding protein 2(36kD)	
(nucleotide) and 102	/DB_XREF=gi:10835156/UG=Hs.162	
(amino acid)	insulin-like growth factor binding protein 2	
	(36kD) /FL=gb:NM_000597.1	
	gb:BC004312.1 gb:M35410.1	20702
Inhibitor of DNA	gb:NM_002167.1 /DEF=Homo sapiens	207826_s_at
binding 3, dominant	inhibitor of DNA binding 3, dominant	
negative helix-loop-	negative helix-loop-helix protein (ID3),	
helix protein	mRNA. /FEA=mRNA /GEN=ID3	
	/PROD=inhibitor of DNA binding 3,	
SEQ ID NOS:40	dominant negativehelix-loop-helix protein	
(nucleotide) and 103	/DB_XREF=gi:10835060 /UG=Hs.76884	
(amino acid)	inhibitor of DNA binding 3, dominant	
	negative helix-loop-helix protein	
	/FL=gb:NM_002167.1	
Phospholipase A2,	Consensus includes gb:X00452.1	203649_s_at
group IIA (platelets,	/DEF=Human mRNA for DC classII	
<u> </u>	<u> </u>	

synovial fluid)	histocompatibility antigen alpha-chain. /FEA=mRNA /PROD=DC classII	
SEQ ID NOS:41	histocompatibility antigenalpha-chain	
	/DB_XREF=gi:32265 /UG=Hs.198253	
(nucleotide) and 104		
(amino acid)	major histocompatibility complex, class II,	
	DQ alpha 1	
Purkinje cell protein 4	gb:NM_006198.1 /DEF=Homo sapiens	2O5549_at
,	Purkinje cell protein 4 (PCP4), mRNA.	
SEQ ID NOS:42	/FEA=mRNA /GEN=PCP4	
(nucleotide) and 105	/PROD=Purkinje cell protein 4	
(amino acid)	/DB_XREF=gi:5453857 /UG=Hs.80296	
,	Purkinje cell protein 4 /FL=gb:U52969.1	
	gb:NM_006198.1	
G protein-coupled	Consensus includes gb:AL524520	213880_at
receptor 49	/FEA=EST /DB_XREF=gi:12788013	
receptor 49	/DB_XREF=est:AL524520	
SEO ID NOS-42	/CLONE=CS0DC007YG21 (3 prime)	
SEQ ID NOS:43	/UG=Hs.285529 G protein-coupled	
(nucleotide), 44		
(nucleotide) and 106	receptor 49	
(amino acid)	- 1 1 1 1 TTT000 7 10	014000+
Fucosyltransferase 3	Consensus includes gb:AW080549	214088_s_at
(galactoside 3(4)-L-	/FEA=EST /DB_XREF=gi:6035701	
fucosyltransferase,	/DB_XREF=est:xc33a08.x1	
Lewis blood group	/CLONE=IMAGE:2586038	
included)	/UG=Hs.169238 fucosyltransferase 3	
	(galactoside 3(4)-L-fucosyltransferase,	
SEQ ID NOS:45	Lewis blood group included)	
(nucleotide), 46		
(nucleotide) and 107		
(amino acid)		
Interferon, alpha-	gb:NM_005532.1 /DEF=Homo sapiens	202411_at
inducible protein 27	interferon, alpha-inducible protein 27	
madelble protein 27	(IFI27), mRNA. /FEA=mRNA	
SEQ ID NOS:47	/GEN=IFI27 /PROD=interferon, alpha-	
(nucleotide) and 108	inducible protein 27	
1 `	/DB_XREF=gi:5031780 /UG=Hs.278613	
(amino acid)	= · · · ·	
"	interferon, alpha-inducible protein 27	
	/FL=gb:NM_005532.1	204855 at
Serine (or cysteine)	gb:NM_002639.1 /DEF=Homo sapiens	204633_ai
proteinase inhibitor,	serine (or cysteine) proteinase inhibitor,	
clade B (ovalbumin),	clade B (ovalbumin), member 5	
member 5	(SERPINB5), mRNA. /FEA=mRNA	
	/GEN=SERPINB5 /PROD=serine (or	
SEQ ID NOS:48	cysteine) proteinase inhibitor, cladeB	
(nucleotide) and 109	(ovalbumin), member 5	
(amino acid)	/DB_XREF=gi:4505788 /UG=Hs.55279	
	serine (or cysteine) proteinase inhibitor,	
	clade B (ovalbumin), member 5	
<u></u>		

	/FL=gb:NM_002639.1 gb:U04313.1	
Homo sapiens CD44	gb:AF098641.1 /DEF=Homo sapiens	210916_s_at
isoform RC (CD44)	CD44 isoform RC (CD44) mRNA,	210010_5_40
1	complete cds. /FEA=mRNA /GEN=CD44	
mRNA, complete cds	/PROD=CD44 isoform RC	
GEO ED MOG.40		
SEQ ID NOS:49	/DB_XREF=gi:3832517 /UG=Hs.306278	
(nucleotide) and 110	Homo sapiens CD44 isoform RC (CD44)	
(amino acid)	mRNA, complete cds /FL=gb:AF098641.1	202752
Solute carrier family 7	gb:NM_012244.1 /DEF=Homo sapiens	202752_x_at
(cationic amino acid	solute carrier family 7 (cationic amino acid	
transporter, y+ system),	transporter, y+ system), member 8	
member 8	(SLC7A8), mRNA. /FEA=mRNA	
	/GEN=SLC7A8 /PROD=solute carrier	
SEQ ID NOS:50	family 7 (cationic amino acidtransporter,	
(nucleotide) and 111	y+ system), member 8	
(amino acid)	/DB_XREF=gi:6912669 /UG=Hs.22891	
	solute carrier family 7 (cationic amino acid	
	transporter, y+ system), member 8	
	/FL=gb:AB037669.1 gb:AF171669.1	
	gb:NM_012244.1	
Membrane protein,	gb:NM_002436.2 /DEF=Homo sapiens	202974_at
palmitoylated 1 (55kD)	membrane protein, palmitoylated 1 (55kD)	
parintoyiated 1 (55112)	(MPP1), mRNA. /FEA=mRNA	
SEQ ID NOS:51	/GEN=MPP1 /PROD=palmitoylated	
(nucleotide) and 112	membrane protein 1	
(amino acid)	/DB_XREF=gi:6006024 /UG=Hs.1861	
(animo acia)	membrane protein, palmitoylated 1 (55kD)	
	/FL=gb:BC002392.1 gb:M64925.1	
	gb:NM_002436.2	
Tumor protein p53 (Li-	gb:K03199.1 /DEF=Human p53 cellular	211300_s_at
Fraumeni syndrome)	tumor antigen mRNA, complete cds.	
Fraumem syndrome)	/FEA=mRNA /GEN=TP53	
SEO ID NOS.52	/DB_XREF=gi:189478 /UG=Hs.1846	
SEQ ID NOS:52	tumor protein p53 (Li-Fraumeni syndrome)	
(nucleotide) and 113	/FL=gb:K03199.1	
(amino acid)		204351_at
S100 calcium-binding	gb:NM_005980.1 /DEF=Homo sapiens	204331_at
protein P	S100 calcium-binding protein P (S100P),	
270 TO 110 C 50	mRNA. /FEA=mRNA /GEN=S100P	
SEQ ID NOS:53	/PROD=\$100 calcium-binding protein P	
(nucleotide) and 114	/DB_XREF=gi:5174662 /UG=Hs.2962	
(amino acid)	S100 calcium-binding protein P	
	/FL=gb:NM_005980.1	011400 :
Serine (or cysteine)	gb:AF119873.1 /DEF=Homo sapiens	211429_s_at
proteinase inhibitor,	PRO2275 mRNA, complete cds.	
clade A (alpha-1	/FEA=mRNA /PROD=PRO2275	
antiproteinase,	/DB_XREF=gi:7770182 /UG=Hs.297681	
antitrypsin), member 1	serine (or cysteine) proteinase inhibitor,	
	clade A (alpha-1 antiproteinase,	
	serine (or cysteine) proteinase inhibitor,	

SEQ ID NOS:54	antitrypsin), member 1	
(nucleotide) and 115	/FL=gb:AF1,19873.1	ļ
(amino acid)		1
Eukaryotic translation	gb:NM_001970.1 /DEF=Homo sapiens	201123_s_at
initiation factor 5A	eukaryotic translation initiation factor 5A	
1	(EIF5A), mRNA. /FEA=mRNA	
SEQ ID NOS:55	/GEN=EIF5A /PROD=eukaryotic	
(nucleotide) and 116	translation initiation factor 5A	
(amino acid)	/DB_XREF=gi:4503544 /UG=Hs.119140	}
	eukaryotic translation initiation factor 5A	
	/FL=gb:BC000751.1 gb:BC001832.1	
}	gb:M23419.1 gb:NM_001970.1	
Old astrocyte	Consensus includes gb:AF055009.1	213059_at
specifically induced	/DEF=Homo sapiens clone 24747 mRNA	_
substance	sequence. /FEA=mRNA	
1	/DB_XREF=gi:3005731 /UG=Hs.13456	
SEQ ID NOS:56	Homo sapiens clone 24747 mRNA	
(nucleotide), 57	sequence	
(nucleotide) and 117		
(amino acid)		
UDP glycosyltransferase	gb:NM_019093.1 /DEF=Homo sapiens	208596_s_at
1 family, polypeptide	UDP glycosyltransferase 1 family,	
A3	polypeptide A3 (UGT1A3), mRNA.	
	/FEA=CDS /GEN=UGT1A3 /PROD=UDP	,
SEQ ID NOS:58	glycosyltransferase 1 family,	
(nucleotide) and 118	polypeptideA3 /DB_XREF=gi:13487899	
(amino acid)	/UG=Hs.326543 UDP glycosyltransferase	
1	1 family, polypeptide A3	
Alulu O IIG	/FL=gb:NM_019093.1	210000
Alpha-2-HS-	gb:AF130057.1 /DEF=Homo sapiens clone	210929_s_at
glycoprotein	FLB5539 PRO1454 mRNA, complete cds.	
SEQ ID NOS:59	/FEA=mRNA /PROD=PRO1454	}
(nucleotide) and 119	/DB_XREF=gi:11493420 /UG=Hs.323288 Homo sapiens clone FLB5539 PRO1454	
(amino acid)	mRNA, complete cds /FL=gb:AF130057.1	
ESTs, Highly similar to	Consensus includes gb:AV691323	215125_s_at
A39092	/FEA=EST /DB_XREF=gi:10293186	212120_s_at
glucuronosyltransferase	/DB_XREF=est:AV691323	}
[H.sapiens]	/CLONE=GKCEWF11 /UG=Hs.2056	1
	UDP glycosyltransferase 1 family,	}
SEQ ID NOS:60	polypeptide A9	
(nucleotide), 61	L VI E T	
(nucleotide) and 120		
(amino acid)		}
UDP glycosyltransferase	gb:NM_000463.1 /DEF=Homo sapiens	207126_x_at
1 family, polypeptide	UDP glycosyltransferase 1 family,	
A1	polypeptide A1 (UGT1A1), mRNA.	
· ·		

SEQ ID NOS:62	/PROD=UDP glycosyltransferase 1 family,	
(nucleotide) and 121	polypeptideA1 /DB_XREF=gi:8850235	
,	/UG=Hs.278896 UDP glycosyltransferase	
(amino acid)	1 family, polypeptide A1	
	• • • • • • •	
	/FL=gb:M57899.1 gb:NM_000463.1	202022
Serine (or cysteine)	gb:NM_000295.1 /DEF=Homo sapiens	202833_s_at
proteinase inhibitor,	serine (or cysteine) proteinase inhibitor,	
clade A (alpha-1	clade A (alpha-1 antiproteinase,	
antiproteinase,	antitrypsin), member 1 (SERPINA1),	
antitrypsin), member 1	mRNA. /FEA=mRNA /GEN=SERPINA1	
	/PROD=serine (or cysteine) proteinase	
SEQ ID NOS:63	inhibitor, cladeA (alpha-1 antiproteinase,	
(nucleotide) and 122	antitrypsin), member 1	
(amino acid)	/DB_XREF=gi:4505792 /UG=Hs.297681	
	serine (or cysteine) proteinase inhibitor,	
	clade A (alpha-1 antiproteinase,	
	antitrypsin), member 1	
	/FL=gb:AF130068.1 gb:M11465.1	
	gb:K01396.1 gb:NM_000295.1	
Nerve growth factor	gb:NM 014380.1 /DEF=Homo sapiens	217963_s_at
receptor (TNFRSF16)	p75NTR-associated cell death executor;	217703_5_4
· · · · · · · · · · · · · · · · · · ·		
associated protein 1	ovarian granulosa cell protein (13kD)	
GEO TO MOG 64	(DXS6984E), mRNA. /FEA=mRNA	
SEQ ID NOS:64	/GEN=DXS6984E /PROD=p75NTR-	
(nucleotide) and 123	associated cell death executor;	
(amino acid)	ovariangranulosa cell protein (13kD)	
	/DB_XREF=gi:7657043 /UG=Hs.17775	
	p75NTR-associated cell death executor;	
	ovarian granulosa cell protein (13kD)	
	/FL=gb:NM_014380.1 gb:AF187064.1	-00001
Collagen, type XVIII,	Consensus includes gb:NM_030582.1	209081_s_at
alpha 1	/DEF=Homo sapiens collagen, type XVIII,	
	alpha 1 (COL18A1), mRNA. /FEA=CDS	
SEQ ID NOS:65	/GEN=COL18A1 /PROD=collagen, type	
(nucleotide) and 124	XVIII, alpha 1 /DB_XREF=gi:13385619	
(amino acid)	/UG=Hs.78409 collagen, type XVIII, alpha	
<u> </u>	1 /FL:=gb:NM_030582.1 gb:AF018081.1	
	gb:AF184060.1 gb:NM_016214.1	
Collagen, type IX, alpha	gb:NM 001853.1 /DEF=Homo sapiens	204724_s_at
3	collagen, type IX, alpha 3 (COL9A3),	
	mRNA. /FEA=mRNA /GEN=COL9A3	
SEQ ID NOS:66	/PROD=collagen, type IX, alpha 3	
(nucleotide) and 125	/DB_XREF=gi:4502966 /UG=Hs.53563	
(amino acid)	collagen, type IX, alpha 3	
(allillo aciu)	/FL=gb:L41162.1 gb:NM_001853.1	
	/LT=80:T41107:1 80:1/1/1-001022:1	<u> </u>

The biomarkers have expression levels in the cells that are dependent on the activity of the EGFR signal transduction pathway and that are also highly correlated with EGFR modulator sensitivity exhibited by the cells. Biomarkers serve as useful molecular tools for predicting a response to EGFR modulators, preferably biological molecules, small molecules, and the like that affect EGFR kinase activity via direct or indirect inhibition or antagonism of EGFR kinase function or activity.

EGFR MODULATORS

5

10

15

20

25

30

As used herein, the term "EGFR modulator" is intended to mean a compound or drug that is a biological molecule or a small molecule that directly or indirectly modulates EGFR activity or the EGFR signal transduction pathway. Thus, compounds or drugs as used herein is intended to include both small molecules and biological molecules. Direct or indirect modulation includes activation or inhibition of EGFR activity or the EGFR signal transduction pathway. In one aspect, inhibition refers to inhibition of the binding of EGFR to an EGFR ligand such as, for example, EGF. In another aspect, inhibition refers to inhibition of the kinase activity of EGFR.

EGFR modulators include, for example, EGFR specific ligands, small molecule EGFR inhibitors, and EGFR monoclonal antibodies. In one aspect, the EGFR modulator inhibits EGFR activity and/or inhibits the EGFR signal transduction pathway. In another aspect, the EGFR modulator is an EGFR monoclonal antibody that inhibits EGFR activity and/or inhibits the EGFR signal transduction pathway.

EGFR modulators include biological molecules or small molecules. Biological molecules include all lipids and polymers of monosaccharides, amino acids, and nucleotides having a molecular weight greater than 450. Thus, biological molecules include, for example, oligosaccharides and polysaccharides; oligopeptides, polypeptides, peptides, and proteins; and oligonucleotides and polynucleotides. Oligonucleotides and polynucleotides include, for example, DNA and RNA.

Biological molecules further include derivatives of any of the molecules described above. For example, derivatives of biological molecules include lipid and glycosylation derivatives of oligopeptides, polypeptides, peptides, and proteins.

Derivatives of biological molecules further include lipid derivatives of oligosaccharides and polysaccharides, e.g., lipopolysaccharides. Most typically,

biological molecules are antibodies, or functional equivalents of antibodies. Functional equivalents of antibodies have binding characteristics comparable to those of antibodies, and inhibit the growth of cells that express EGFR. Such functional equivalents include, for example, chimerized, humanized, and single chain antibodies as well as fragments thereof.

5

10

15

20

25

30

Functional equivalents of antibodies also include polypeptides with amino acid sequences substantially the same as the amino acid sequence of the variable or hypervariable regions of the antibodies. An amino acid sequence that is substantially the same as another sequence, but that differs from the other sequence by means of one or more substitutions, additions, and/or deletions, is considered to be an equivalent sequence. Preferably, less than 50%, more preferably less than 25%, and still more preferably less than 10%, of the number of amino acid residues in a sequence are substituted for, added to, or deleted from the protein.

The functional equivalent of an antibody is preferably a chimerized or humanized antibody. A chimerized antibody comprises the variable region of a non-human antibody and the constant region of a human antibody. A humanized antibody comprises the hypervariable region (CDRs) of a non-human antibody. The variable region other than the hypervariable region, e.g., the framework variable region, and the constant region of a humanized antibody are those of a human antibody.

Suitable variable and hypervariable regions of non-human antibodies may be derived from antibodies produced by any non-human mammal in which monoclonal antibodies are made. Suitable examples of mammals other than humans include, for example, rabbits, rats, mice, horses, goats, or primates.

Functional equivalents further include fragments of antibodies that have binding characteristics that are the same as, or are comparable to, those of the whole antibody. Suitable fragments of the antibody include any fragment that comprises a sufficient portion of the hypervariable (i.e., complementarity determining) region to bind specifically, and with sufficient affinity, to EGFR tyrosine kinase to inhibit growth of cells that express such receptors.

Such fragments may, for example, contain one or both Fab fragments or the $F(ab')_2$ fragment. Preferably, the antibody fragments contain all six complementarity

determining regions of the whole antibody, although functional fragments containing fewer than all of such regions, such as three, four, or five CDRs, are also included.

In one aspect, the fragments are single chain antibodies, or Fv fragments. Single chain antibodies are polypeptides that comprise at least the variable region of the heavy chain of the antibody linked to the variable region of the light chain, with or without an interconnecting linker. Thus, Fv fragment comprises the entire antibody combining site. These chains may be produced in bacteria or in eukaryotic cells.

5

10

15

20

25

30

The antibodies and functional equivalents may be members of any class of immunoglobulins, such as IgG, IgM, IgA, IgD, or IgE, and the subclasses thereof. In one aspect, the antibodies are members of the IgG1 subclass. The functional equivalents may also be equivalents of combinations of any of the above classes and subclasses.

In one aspect, EGFR antibodies can be selected from chimerized, humanized, fully human, and single chain antibodies derived from the murine antibody 225 described in U.S. Patent No. 4,943,533 to Mendelsohn et al., including, for example, cetuximab.

In another aspect, the EGFR antibody can be selected from the antibodies described in U.S. Patent No. 6,235,883 to Jakobovits et al., U.S. Patent No. 5,558,864 to Bendi et al., and U.S. Patent No. 5,891,996 to Mateo de Acosta del Rio et al.

In addition to the biological molecules discussed above, the EGFR modulators useful in the invention may also be small molecules. Any molecule that is not a biological molecule is considered herein to be a small molecule. Some examples of small molecules include organic compounds, organometallic compounds, salts of organic and organometallic compounds, saccharides, amino acids, and nucleotides. Small molecules further include molecules that would otherwise be considered biological molecules, except their molecular weight is not greater than 450. Thus, small molecules may be lipids, oligosaccharides, oligopeptides, and oligonucleotides and their derivatives, having a molecular weight of 450 or less.

It is emphasized that small molecules can have any molecular weight. They are merely called small molecules because they typically have molecular weights less than 450. Small molecules include compounds that are found in nature as well as synthetic compounds. In one embodiment, the EGFR modulator is a small molecule

that inhibits the growth of tumor cells that express EGFR. In another embodiment, the EGFR modulator is a small molecule that inhibits the growth of refractory tumor cells that express EGFR. In yet another embodiment, the EGFR modulator is erlotinib HCl or gefitinib.

Numerous small molecules have been described as being useful to inhibit EGFR. For example, U.S. Patent No. 5,656,655 to Spada et al. discloses styryl substituted heteroaryl compounds that inhibit EGFR. The heteroaryl group is a monocyclic ring with one or two heteroatoms, or a bicyclic ring with 1 to about 4 heteroatoms, the compound being optionally substituted or polysubstituted.

U.S. Patent No. 5,646,153 to Spada et al. discloses bis mono and/or bicyclic aryl heteroaryl, carbocyclic, and heterocarbocyclic compounds that inhibit EGFR.

U.S. Patent No. 5,679,683 to Bridges et al. discloses tricyclic pyrimidine compounds that inhibit the EGFR. The compounds are fused heterocyclic pyrimidine derivatives described at column 3, line 35 to column 5, line 6.

U.S. Patent No. 5,616,582 to Barker discloses quinazoline derivatives that have receptor tyrosine kinase inhibitory activity.

Fry et al., Science 265, 1093-1095 (1994) in Figure 1 discloses a compound having a structure that inhibits EGFR.

Osherov et al. disclose tyrphostins that inhibit EGFR/HER1 and HER 2, particularly those in Tables I, II, III, and IV.

U.S. Patent No. 5,196,446 to Levitzki et al. discloses heteroarylethenediyl or heteroarylethendeiylaryl compounds that inhibit EGFR, particularly from column 2, line 42 to column 3, line 40.

Panek et al., Journal of Pharmacology and Experimental Therapeutics 283, 1433-1444 (1997) discloses a compound identified as PD166285 that inhibits the EGFR, PDGFR, and FGFR families of receptors. PD166285 is identified as 6-(2,6-dichlorophenyl)-2-(4-(2-diethylaminoethyoxy)phenylamino)-8-methyl-8H-pyrido(2,3-d)pyrimidin-7-one having the structure shown in Figure 1 on page 1436.

BIOMARKERS AND BIOMARKER SETS

5

10

15

20

25

30

The invention includes individdual biomarkers and biomarker sets having both diagnostic and prognostic value in disease areas in which signaling through EGFR or

the EGFR pathway is of importance, e.g., in cancers or tumors, in immunological disorders, conditions or dysfunction, or in disease states in which cell signaling and/or cellular proliferation controls are abnormal or aberrant. The biomarker sets comprise a plurality of biomarkers such as, for example, a plurality of the biomarkers provided in Table 1, that highly correlate with resistance or sensitivity to one or more EGFR modulators.

5

10

15

20

25

30

The biomarker sets of the invention enable one to predict or reasonably foretell the likely effect of one or more EGFR modulators in different biological systems or for cellular responses. The biomarker sets can be used in *in vitro* assays of EGFR modulator response by test cells to predict *in vivo* outcome. In accordance with the invention, the various biomarker sets described herein, or the combination of these biomarker sets with other biomarkers or markers, can be used, for example, to predict how patients with cancer might respond to therapeutic intervention with one or more EGFR modulators.

A biomarker set of cellular gene expression patterns correlating with sensitivity or resistance of cells following exposure of the cells to one or more EGFR modulators provides a useful tool for screening one or tumor samples before treatment with the EGFR modulator. The screening allows a prediction of cells of a tumor sample exposed to one or more EGFR modulators, based on the expression results of the biomarker set, as to whether or not the tumor, and hence a patient harboring the tumor, will or will not respond to treatment with the EGFR modulator.

The biomarker or biomarker set can also be used as described herein for monitoring the progress of disease treatment or therapy in those patients undergoing treatment for a disease involving an EGFR modulator.

The biomarkers also serve as targets for the development of therapies for disease treatment. Such targets may be particularly applicable to treatment of colon disease, such as colon cancers or tumors. Indeed, because these biomarkers are differentially expressed in sensitive and resistant cells, their expression patterns are correlated with relative intrinsic sensitivity of cells to treatment with EGFR modulators. Accordingly, the biomarkers highly expressed in resistant cells may serve as targets for the development of new therapies for the tumors which are resistant to EGFR modulators, particularly EGFR inhibitors.

MICROARRAYS

5

10

15

20

25

The invention also includes specialized microarrays, e.g., oligonucleotide microarrays or cDNA microarrays, comprising one or more biomarkers, showing expression profiles that correlate with either sensitivity or resistance to one or more EGFR modulators. Such microarrays can be employed in in vitro assays for assessing the expression level of the biomarkers in the test cells from tumor biopsies, and determining whether these test cells are likely to be resistant or sensitive to EGFR modulators. For example, a specialized microarray can be prepared using all the biomarkers, or subsets thereof, as described herein and shown in Table 1. Cells from a tissue or organ biopsy can be isolated and exposed to one or more of the EGFR modulators. Following application of nucleic acids isolated from both untreated and treated cells to one or more of the specialized microarrays, the pattern of gene expression of the tested cells can be determined and compared with that of the biomarker pattern from the control panel of cells used to create the biomarker set on the microarray. Based upon the gene expression pattern results from the cells that underwent testing, it can be determined if the cells show a resistant or a sensitive profile of gene expression. Whether or not the tested cells from a tissue or organ biopsy will respond to one or more of the EGFR modulators and the course of treatment or therapy can then be determined or evaluated based on the information gleaned from the results of the specialized microarray analysis.

ANTIBODIES

The invention also includes antibodies, including polyclonal or monoclonal, directed against one or more of the polypeptide biomarkers. Such antibodies can be used in a variety of ways, for example, to purify, detect, and target the biomarkers of the invention, including both *in vitro* and *in vivo* diagnostic, detection, screening, and/or therapeutic methods.

30 KITS

The invention also includes kits for determining or predicting whether a patient would be susceptible or resistant to a treatment that comprises one or more

EGFR modulators. The patient may have a cancer or tumor such as, for example, a colon cancer or tumor. Such kits would be useful in a clinical setting for use in testing a patient's biopsied tumor or cancer samples, for example, to determine or predict if the patient's tumor or cancer will be resistant or sensitive to a given treatment or therapy with an EGFR modulator. The kit comprises a suitable container that comprises: one or more microarrays, e.g., oligonucleotide microarrays or cDNA microarrays, that comprise those biomarkers that correlate with resistance and sensitivity to EGFR modulators, particularly EGFR inhibitors; one or more EGFR modulators for use in testing cells from patient tissue specimens or patient samples; and instructions for use. In addition, kits contemplated by the invention can further include, for example, reagents or materials for monitoring the expression of biomarkers of the invention at the level of mRNA or protein, using other techniques and systems practiced in the art such as, for example, RT-PCR assays, which employ primers designed on the basis of one or more of the biomarkers described herein, immunoassays, such as enzyme linked immunosorbent assays (ELISAs), immunoblotting, e.g., Western blots, or in situ hybridization, and the like, as further described herein.

APPLICATION OF BIOMARKERS AND BIOMARKER SETS

5

10

15

20

25

30

The biomarkers and biomarker sets may be used in different applications. Biomarker sets can be built from any combination of biomarkers listed in Table 1 to make predictions about the likely effect of any EGFR modulator in different biological systems. The various biomarkers and biomarkers sets described herein can be used, for example, as diagnostic or prognostic indicators in disease management, to predict how patients with cancer might respond to therapeutic intervention with compounds that modulate the EGFR, and to predict how patients might respond to therapeutic intervention that modulates signaling through the entire EGFR regulatory pathway.

While the data described herein were generated in cell lines that are routinely used to screen and identify compounds that have potential utility for cancer therapy, the biomarkers have both diagnostic and prognostic value in other diseases areas in which signaling through EGFR or the EGFR pathway is of importance, e.g., in

immunology, or in cancers or tumors in which cell signaling and/or proliferation controls have gone awry.

5

10

15

20

25

30

In accordance with the invention, cells from a patient tissue sample, e.g., a tumor or cancer biopsy, can be assayed to determine the expression pattern of one or more biomarkers prior to treatment with one or more EGFR modulators. Success or failure of a treatment can be determined based on the biomarker expression pattern of the cells from the test tissue (test cells), e.g., tumor or cancer biopsy, as being relatively similar or different from the expression pattern of a control set of the one or more biomarkers. Thus, if the test cells show a biomarker expression profile which corresponds to that of the biomarkers in the control panel of cells which are sensitive to the EGFR modulator, it is highly likely or predicted that the individual's cancer or tumor will respond favorably to treatment with the EGFR modulator. By contrast, if the test cells show a biomarker expression pattern corresponding to that of the biomarkers of the control panel of cells which are resistant to the EGFR modulator, it is highly likely or predicted that the individual's cancer or tumor will not respond to treatment with the EGFR modulator.

The invention also provides a method of monitoring the treatment of a patient having a disease treatable by one or more EGFR modulators. The isolated test cells from the patient's tissue sample, e.g., a tumor biopsy or tumor sample, can be assayed to determine the expression pattern of one or more biomarkers before and after exposure to an EGFR modulator wherein, preferably, the EGFR modulator is an EGFR inhibitor. The resulting biomarker expression profile of the test cells before and after treatment is compared with that of one or more biomarkers as described and shown herein to be highly expressed in the control panel of cells that are either resistant or sensitive to an EGFR modulator. Thus, if a patient's response is sensitive to treatment by an EGFR modulator, based on correlation of the expression profile of the one or biomarkers, the patient's treatment prognosis can be qualified as favorable and treatment can continue. Also, if, after treatment with an EGFR modulator, the test cells don't show a change in the biomarker expression profile corresponding to the control panel of cells that are sensitive to the EGFR modulator, it can serve as an indicator that the current treatment should be modified, changed, or even discontinued. This monitoring process can indicate success or failure of a patient's

treatment with an EGFR modulator and such monitoring processes can be repeated as necessary or desired.

The biomarkers of the invention can be used to predict an outcome prior to having any knowledge about a biological system. Essentially, a biomarker can be considered to be a statistical tool. Biomarkers are useful primarily in predicting the phenotype that is used to classify the biological system. In an embodiment of the invention, the goal of the prediction is to classify cancer cells as having an active or inactive EGFR pathway. Cancer cells with an inactive EGFR pathway can be considered resistant to treatment with an EGFR modulator. An inactive EGFR pathway is defined herein as a non-significant expression of the EGFR or by a classification as "resistant" or "sensitive" based on the IC₅₀ value of each colon cell line to EGFR inhibitor compound as exemplified herein.

However, although the complete function of all of the biomarkers are not currently known, some of the biomarkers are likely to be directly or indirectly involved in the EGFR signaling pathway. In addition, some of the biomarkers may function in the metabolic or other resistance pathways specific to the EGFR modulators tested. Notwithstanding, knowledge about the function of the biomarkers is not a requisite for determining the accuracy of a biomarker according to the practice of the invention.

20

30

15

5

10

EXAMPLES:

EXAMPLE 1 - Identification of Biomarkers

The biomarkers of Table 1 were identified as follows.

25 Colon Tumors and Patients:

Forty colon tumors collected from the University of London between 1998 and 2002. The median age of the patients was 70 years (range: 26-91 years). The patients were diagnosed as follows: 6 patients were designated as Duke's A, 14 as Duke's B, and 20 as Duke's C. None of the patients were treated pre-operatively, and 13 were treated post-operatively.

Determination of Relative Drug Sensitivity in Colon Cancer Cell Lines:

The cell line filtering process used is illustrated in FIG. 2.

5

10

15

20

The colon cancer cell lines were grown using standard cell culture conditions: RPMI 1640 supplemented to contain 10% fetal bovine serum, 100 IU/ml penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine and 10 mM Hepes (all from GibcoBRL, Rockville, MD). Twenty-one colon cancer cell lines were examined for their relative sensitivity to a pair of small molecule EGFR inhibitors, erlotinib HCl and gefitinib. Cytotoxicity was assessed in cells by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium, inner salt)assay (T.L. Riss et al., 1992, Mol. Biol. Cell, 3 (Suppl.):184a). To carry out the assays, the colon cancer cells were plated at 4,000 cells/well in 96 well microtiter plates and 24 hours later serial diluted drugs were added. The concentration range for the EGFR inhibitor compounds used in the cytotoxicity assays was 50 ug/ml to 0.0016 ug/ml (roughly 100 uM to 0.0032 uM). The cells were incubated at 37 °C for 72 hours at which time the tetrazolium dye MTS (333 ug/ml final concentration in combination with the electron coupling agent phenazine methosulfate) was added. A dehydrogenase enzyme in live cells reduces the MTS to a form that absorbs light at 492 nm that can be quantified spectrophotometrically. The greater the absorbency, the greater the number of live cells. The results, provided below in Table 2 and FIG. 3, are expressed as an IC50, which is the drug concentration required to inhibit cell proliferation to 50% of that of untreated cells.

Table 2 - Colon Cell Lines

Cell Line	ATCC No.	Avg. IC50
CaCo2	HTB-37	5.4
Colo 201	CCL-224	10+
Colo 205	CCL-222	10+
CS-1		10+
Difi		1
DLD-1		20
Geo		3.6
HCT116	CCL-247	67+
HCT116S542		53

НСТ-8	CCL-244	10+
HT-29	HTB-38	10+
Lovo	CCL-229LS174T	3
LS1034		68+
RKORM13		29
SW1116		20
SW403		6.2
SW480	CCL-228	10+
SW837	CCL-235	7
SW948		73+
T84	CCL-248	10+
WiDr		67+

Resistance/sensitivity classification:

Two separate analyses were performed using different cut-offs to define EGFR-inhibitor resistance. For the first (designated "6-15"), the 6 cell lines with an IC50 at or below 7 uM were defined as sensitive and the remaining 15 cell lines were defined as resistant. For the second (designated "3-18"), the 3 cell lines with an IC50 below 4 uM were defined as sensitive and the remaining 18 cell lines were defined as resistant.

10 Gene Expression Profiling:

5

15

20

RNA was isolated from 50-70% confluent cell lines or colon cancer tumor tissue using the Rneasy kits from Qiagen (Valencia, CA). The quality of RNA was checked by measuring the 28S:18: ribosomal RNA ratio using and Agilent 2100 bioanalyzer (Agilent Technologies, Rockville, MD). Concentration of total RNA was determined spectrophotemetrically. 10 ug of total RNA was used to prepare biotyinylated probes according to the Affymetrix Genechip Expression Analysis Technical Manual. Targets were hybridized to human HG-U133A gene chips according to the manufacturers instructions. Data were preprocessed using the MAS 5.0 software (Affymetrix, Santa Clara, CA). The trimmed mean intensity for each chip was scaled to 1,500 to account for minor differences in global chip intensity so

that the overall expression level for each sample is comparable.

Data Analysis

5

10

15

20

25

30

All 22,215 probes (gene sequences) present on the U133A chip were considered as potential predictive biomarkers. To restrict the analysis to gene sequences expressed at a moderate level in colon tumor(s), gene sequences without at least one expression value of 2X the mean value for the array (3000 expression units) were removed leaving 6988 gene sequences. Next, to identify genes with variable expression in colon tumors (and therefore more likely to be able to correlate with variability in response to treatment), gene sequences with a VARP value (using log10-transformed data) < 0.1 were removed leaving 745 gene sequences. Next, the same expression and variance filters were applied to the remaining 745 gene sequences using the colon cell line data, reducing to 332 gene sequences for analysis (FIG. 1).

The 332 gene sequences were then subjected to a two-sided T-test using the Resistance/sensitivity classifications of the cell lines described above (FIG. 3). A total of 12 gene sequences had a p-value of <0.05 for both analyses (T-test Results I, FIG. 4). For the "6-15" analysis, 19 gene sequences were found to have a p-value <0.05 (T-Test Results II, FIG. 5). For the "3-18" analysis, 29 gene sequences were found to have a p-value <0.05 (T-test Results III, FIG. 6). Table 1 provides the biomarkers identified using the two-sided T-test.

EXAMPLE 2 - Untreated Xenograph Profiles

In Example 1, biomarkers were identified using sensitivity resistance profiles of cell lines to gefitinib and erlotinib HCl. The present example provided efficacy data for cetuximab (C225) in the colon cancer xenograft models Geo (sensitive to C225) and HT29 (resistant to C225).

In Vivo Antitumor Testing

Tumors were propagated in nude mice as subcutaneous (sc) transplants using tumor fragments obtained from donor mice. Tumor passage occurred approximately every two to four weeks. Tumors were then allowed to grow to the pre-determined

size window (usually between 100-200 mg, tumors outside the range were excluded) and animals were evenly distributed to various treatment and control groups. Animals were treated with C225 (1 mg/mouse q3d X 10, 14, ip). Treated animals were checked daily for treatment related toxicity/mortality. Each group of animals was weighed before the initiation of treatment (Wt1) and then again following the last treatment dose (Wt2). The difference in body weight (Wt2-Wt1) provided a measure of treatment-related toxicity. Tumor response was determined by measurement of tumors with a caliper twice a week, until the tumors reached a predetermined target size of 1 gm or became necrotic. Tumor weights (mg) were estimated from the formula:

5

10

15

20

25

30

Tumor weight = $(length x width^2)/2$

Antitumor activity was determined in terms of primary tumor growth inhibition. This was determined in two ways: (i) calculating the relative median tumor weight (MTW) of treated (T) and control (C) mice at various time points (effects were expressed as %T/C); and (ii) calculating the tumor growth delay (T-C value), defined as the difference in time (days) required for the treated tumors (T) to reach a predetermined target size compared to those of the control group (C). Statistical evaluations of data were performed using Gehan's generalized Wilcoxon test for comparisons of time to reach tumor target size (Gehan 1965). Statistical significance was declared at p < 0.05. Antitumor activity was defined as a continuous MTW %T/C \leq 50% for at least 1 tumor volume doubling time (TVDT) any time after the start of treatment, where TVDT (tumor volume doubling time) = median time (days) for control tumors to reach target size – median time (days) for control tumors to reach half the target size. In addition, treatment groups had to be accompanied by a statistically significant tumor growth delay (T-C value) (p < 0.05) to be termed active.

Treated animals were checked daily for treatment related toxicity/mortality. When death occurred, the day of death was recorded. Treated mice dying prior to having their tumors reach target size were considered to have died from drug toxicity. No control mice died bearing tumors less than target size. Treatment groups with more than one death caused by drug toxicity were considered to have had excessively toxic treatments and their data were not included in the evaluation of the compound's antitumor efficacy.

Table 3 provides the resulting untreated xenograph profiles.

Table 3 - Untreated Xenograph Profiles

Biomarker	Probe	Differential expression in Geo (sensitive) and HT-29 (resistant) untreated	Absence and Presence of HT-29 and Geo
		xenografts	
transforming growth	201506_at	Higher 373X in Geo than	HT-29 Absent
factor, beta-induced, 68kD		HT-29 (Absent)	Geo Present
carcinoembryonic	201884_at	Higher 85X in Geo than HT-	HT-29 Absent
antigen-related cell		29 (Absent)	Geo Present
adhesion molecule 5			
nerve growth factor	217963_s_at	Higher 50X in Geo than HT-	HT-29 Absent
receptor (TNFRSF16)		29 (Absent)	Geo Present
associated protein 1			
carcinoembryonic	211657_at	Higher 23X in Geo than HT-	HT-29 Absent
antigen-related cell	_	29(Absent)	Geo Present
adhesion molecule 6			
(non-specific cross			
reacting antigen)			
annexin A1	201012_at	Higher 16X in Geo than HT-	HT-29 Absent
		29 (Absent)	Geo Present
tumor protein p53 (Li-	211300_s_at	Higher 11X in Geo than HT-	HT-29 Absent
Fraumeni syndrome)		29 (Absent)	Geo Present
DVS27-related protein	209821_at	Higher 9X in Geo than HT-	HT-29 Absent
		29 (Absent)	Geo Present
cystic fibrosis	205043_at	Higher 7X in Geo than HT-	HT-29 Absent
transmembrane		29 (Absent)	Geo Present
conductance regulator,		ı	
ATP-binding cassette			
(sub-family C,			
member 7)			
serine (or cysteine)	211429_s_at	Higher 7X in Geo than HT-	HT-29 Absent
proteinase inhibitor,		29 (Absent)	Geo Present
clade A (alpha-1			
antiproteinase,			
antitrypsin), member 1			
bone morphogenetic	209591_s_at	Higher 4X in Geo than HT-	HT-29 Absent
protein 7 (osteogenic		29 (Absent)	Geo Present
protein 1)			
interferon-stimulated	205483_s_at	Higher 3X in Geo than HT-	HT-29 Absent
protein, 15 kDa		29(Absent)	Geo Present
S100 calcium-binding	204351_at	Higher 11X in Geo than HT-	HT-29 Present
protein P		29	Geo Present
carcinoembryonic	203757_s_at	Higher 8X in Geo than HT-	HT-29 Present

antigan related as 11	<u> </u>	29	Geo Present
antigen-related cell adhesion molecule 6		29	Geo Piesem
1			
(non-specific cross	Ì		
reacting antigen)	200000		TTT 00 T
putative integral	208029_s_at	Higher 7X in Geo than HT-	HT-29 Present
membrane transporter		29	Geo Present
cadherin 17, LI	209847_at	Higher 4X in Geo than HT-	HT-29 Present
cadherin (liver-		29	Geo Present
intestine)			
FXYD domain-	202489_s_at	Higher 3X in Geo than HT-	HT-29 Present
containing ion		29	Geo Present
transport regulator 3			
insulin-like growth	202718_at	Higher 3X in Geo than HT-	HT-29 Present
factor binding protein)	29	Geo Present
2 (36kD)			
eukaryotic translation	201123 s at	Higher 3X in Geo than HT-	HT-29 Present
initiation factor 5A		29	Geo Present
3-hydroxy-3-	204607_at	Higher 2X in Geo than HT-	HT-29 Present
methylglutaryl-		29	Geo Present
Coenzyme A synthase			
2 (mitochondrial)	-		
serine (or cysteine)	202833 s at	Higher 21X in HT-29 than	HT-29 Present
proteinase inhibitor,	[2	Geo	Geo Present
clade A (alpha-1			
antiproteinase,			
antitrypsin), member 1	}		
transmembrane	211689 s at	Higher 7X in HT-29 than	HT-29 Present
protease, serine 2		Geo	Geo Present
protease inhibitor 3,	41469_at	Higher 6X in HT-29 than	HT-29 Present
skin-derived (SKALP)	11105_40	Geo	Geo Present
serine (or cysteine)	204855_at	Higher 4X in HT-29 than	HT-29 Present
proteinase inhibitor,	204033_at	Geo	Geo Present
clade B (ovalbumin),		360	Gootiesent
member 5			ļ
fibroblast growth	204379 s st	Higher 3X in HT-29 than	HT-29 Present
factor receptor 3	20-319_8_at	Geo	Geo Present
(achondroplasia,	}		Joo I Tosom
thanatophoric			
dwarfism)	1		
mucin 3B	21/808 * 04	Higher 3X in HT-29 than	HT-29 Present
mucm 5D	214030_X_al	Geo	Geo Present
fucosyltransferase 3	214000	Higher 3X in HT-29 than	HT-29 Present
	214000_s_at	1 –	Geo Present
(galactoside 3(4)-L-		Geo	Oco Ficselli
fucosyltransferase,	-		
Lewis blood group			
included)	202640	TE-1 OXC: TEN CO (1	TITE OO D
phospholipase A2,	1203049_s_at	Higher 2X in HT-29 than	HT-29 Present
group IIA (platelets,	<u></u>	Geo	Geo Present

synovial fluid)			
A kinase (PRKA)	210517 s at	Higher 339X in HT-29 than	HT-29 Present
anchor protein		Geo (Absent)	Geo Absent
(gravin) 12		(*2000225)	
serine (or cysteine)	202628 s at	Higher 280X in HT-29 than	HT-29 Present
proteinase inhibitor,	202020_5_4	Geo (Absent)	Geo Absent
clade E (nexin,		Geo (riesens)	
plasminogen activator			
inhibitor type 1),			
member 1			
ESTs, Highly similar	215125 e at	Higher 75X in HT-29 than	HT-29 Present
to A39092	215125_s_at	Geo (Absent)	Geo Absent
glucuronosyltransferas		Geo (1103ent)	Corresent
e [H.sapiens]			
	205549_at	Higher 38X in HT-29 than	HT-29 Present
Furkinje cen protein 4	203349_at	Geo (Absent)	Geo Absent
lactin coloctosido	201105_at	Higher 33X in HT-29 than	HT-29 Present
lectin, galactoside- binding, soluble, 1	201105_ai	Geo (Absent)	Geo Absent
J	ļ	Geo (Absent)	George
(galectin 1)	213059_at	Higher 29X in HT-29 than	HT-29 Present
old astrocyte	215039_at	Geo (Absent)	Geo Absent
specifically induced	,	Geo (Absent)	GCOTIOSOM
substance	200506 a at	Higher 23X in HT-29 than	HT-29 Present
UDP	208396_s_at	Geo (Absent)	Geo Absent
glycosyltransferase 1	_	Geo (Absent)	GCO Absent
family, polypeptide	ļ		
A3 hypothetical protein	213343 e at	Higher 21X in HT-29 than	HT-29 Present
PP1665	213343_8_ac	Geo (Absent)	Geo Absent
membrane protein,	202974_at	Higher 9X in HT-29 than	HT-29 Present
palmitoylated 1	202974_at	Geo (Absent)	Geo Absent
(55kD)		Geo (Absent)	George
caudal type homeo	206387_at	Higher 8X in HT-29 than	HT-29 Present
box transcription	200307_at	Geo (Absent)	Geo Absent
factor 2		Geo (Hosent)	
polymeric	204213_at	Higher 7X in HT-29 than	HT-29 Present
immunoglobulin	207213_at	Geo (Absent)	Geo Absent
receptor		Geo (Hosent)	
mucin 5, subtypes A	21/1385 s at	Higher 6X in HT-29 than	HT-29 Present
and C,	214303_8_at	Geo (Absent)	Geo Absent
tracheobronchial/gastri		Geo (Mosent)	oco i rosoni
metallothionein 1G	204745 * of	Higher 2X in HT-29 than	HT-29 Present
	20+/+J_X_al	Geo (Absent)	Geo Absent
inhibitor of TNIA	207926 2 24	Higher 2X in HT-29 than	HT-29 Present
inhibitor of DNA	20/020_s_at	Geo (Absent)	Geo Absent
binding 3, dominant		(Absent)	GOO 2 MOSCIIL
negative helix-loop-			
helix protein	205669 -4	not differentially expressed	HT-29 Present
lymphocyte antigen 75	1203008_at	inot differentially expressed	111 27 11030111

			T
			Geo Absent
secretory leukocyte	203021_at	not differentially expressed	HT-29 Present
protease inhibitor			Geo Absent
(antileukoproteinase)			
dopa decarboxylase	205311_at	not differentially expressed	HT-29 Present
(aromatic L-amino			Geo Absent
acid decarboxylase)			
G protein-coupled	213880_at	not differentially expressed	HT-29 Present
receptor 49	_		Geo Absent
interferon, alpha-	202411_at	not differentially expressed	HT-29 Present
inducible protein 27			Geo Absent
Homo sapiens CD44	210916 s at	not differentially expressed	HT-29 Present
isoform RC (CD44)	210,10_5_6		Geo Absent
mRNA, complete cds			
mucin 5, subtypes A	214303 x at	absent in HT-29 and Geo	HT-29 Absent
and C,	214303_x_ac		Geo Absent
tracheobronchial/gastri			30011350115
c			
UDP	207126 x at	absent in HT-29 and Geo	HT-29 Absent
glycosyltransferase 1	20/120_x_at	absent milli 25 and Geo	Geo Absent
family, polypeptide			Georiosent
A1			
metallothionein 1F	217165 x ot	absent in HT-29 and Geo	HT-29 Absent
(functional)	21/105_x_at	absem in 111-29 and Geo	Geo Absent
	207850_at	absent in HT-29 and Geo	HT-29 Absent
GRO3 oncogene	207630_at	absent in 111-29 and Geo	Geo Absent
mustage inhibitor 2	203691_at	absent in HT-29 and Geo	HT-29 Absent
protease inhibitor 3,	203091_at	absent in H1-29 and Geo	Geo Absent
skin-derived (SKALP)	010142 -4	absent in HT-29 and Geo	HT-29 Absent
annexin A10	210143_at	absent in H1-29 and Geo	Geo Absent
	202020	also and in HT 20 and Can	HT-29 Absent
protein tyrosine	203029_s_at	absent in HT-29 and Geo	Geo Absent
phosphatase, receptor			Geo Absent
type, N polypeptide 2	202772	1	TITE OO Aleesad
	202/52_x_at	absent in HT-29 and Geo	HT-29 Absent
(cationic amino acid		· ·	Geo Absent
transporter, y+			
system), member 8			TTT 20 A1
collagen, type XVIII,	209081_s_at	absent in HT-29 and Geo	HT-29 Absent
alpha 1			Geo Absent
collagen, type IX,	204724_s_at	absent in HT-29 and Geo	HT-29 Absent
alpha 3			Geo Absent
alpha-2-HS-	210929_s_at	?	HT-29 Absent
glycoprotein			Geo Absent
metallothionein 1X	208581_x_at	?	HT-29 Absent
			Geo Absent
tumor necrosis factor	206467_x_at	?	HT-29 Absent
receptor superfamily,			Geo Absent
	•		

			 	~
1 /1 1	1	1	1	١ ١
member 6b, decov	,	1		- 1
michibei ob. decov		1	f	
, , , , , , , , , , , , , , , , , , , ,				

EXAMPLE 3 - PRODUCTION OF ANTIBODIES AGAINST THE BIOMARKERS

5

10

15

20

25

30

Antibodies against the biomarkers can be prepared by a variety of methods. For example, cells expressing an biomarker polypeptide can be administered to an animal to induce the production of sera containing polyclonal antibodies directed to the expressed polypeptides. In one aspect, the biomarker protein is prepared and isolated or otherwise purified to render it substantially free of natural contaminants, using techniques commonly practiced in the art. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity for the expressed and isolated polypeptide.

In one aspect, the antibodies of the invention are monoclonal antibodies (or protein binding fragments thereof). Cells expressing the biomarker polypeptide can be cultured in any suitable tissue culture medium, however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented to contain 10% fetal bovine serum (inactivated at about 56 °C), and supplemented to contain about 10 g/l nonessential amino acids, about 1,00 U/ml penicillin, and about 100 μ g/ml streptomycin.

The splenocytes of immunized (and boosted) mice can be extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line can be employed in accordance with the invention, however, it is preferable to employ the parent myeloma cell line (SP2/0), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (1981, *Gastroenterology*, 80:225-232). The hybridoma cells obtained through such a selection are then assayed to identify those cell clones that secrete antibodies capable of binding to the polypeptide immunogen, or a portion thereof.

Alternatively, additional antibodies capable of binding to the biomarker polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens and, therefore, it is possible to obtain an antibody that binds to a second antibody. In accordance with this method, protein specific antibodies can be used to immunize an

animal, preferably a mouse. The splenocytes of such an immunized animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones that produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce the formation of further protein-specific antibodies.

EXAMPLE 4 - IMMUNOFLUORESCENCE ASSAYS

5

10

15

20

25

30

The following immunofluorescence protocol may be used, for example, to verify EGFR biomarker protein expression on cells or, for example, to check for the presence of one or more antibodies that bind EGFR biomarkers expressed on the surface of cells. Briefly, Lab-Tek II chamber slides are coated overnight at 4 °C with 10 micrograms/milliliter (μ g/ml) of bovine collagen Type II in DPBS containing calcium and magnesium (DPBS++). The slides are then washed twice with cold DPBS++ and seeded with 8000 CHO-CCR5 or CHO pC4 transfected cells in a total volume of 125 μ l and incubated at 37 °C in the presence of 95% oxygen / 5% carbon dioxide.

The culture medium is gently removed by aspiration and the adherent cells are washed twice with DPBS++ at ambient temperature. The slides are blocked with DPBS++ containing 0.2% BSA (blocker) at 0-4 °C for one hour. The blocking solution is gently removed by aspiration, and 125 μ l of antibody containing solution (an antibody containing solution may be, for example, a hybridoma culture supernatant which is usually used undiluted, or serum/plasma which is usually diluted, e.g., a dilution of about 1/100 dilution). The slides are incubated for 1 hour at 0-4 °C. Antibody solutions are then gently removed by aspiration and the cells are washed five times with 400 μ l of ice cold blocking solution. Next, 125 μ l of 1 μ g/ml rhodamine labeled secondary antibody (e.g., anti-human IgG) in blocker solution is added to the cells. Again, cells are incubated for 1 hour at 0-4 °C.

The secondary antibody solution is then gently removed by aspiration and the cells are washed three times with 400 μ l of ice cold blocking solution, and five times with cold DPBS++. The cells are then fixed with 125 μ l of 3.7% formaldehyde in DPBS++ for 15 minutes at ambient temperature. Thereafter, the cells are washed five

times with 400 μ l of DPBS++ at ambient temperature. Finally, the cells are mounted in 50% aqueous glycerol and viewed in a fluorescence microscope using rhodamine filters.

CLAIMS:

What is claimed is:

5

15

20

25

1. A method for identifying a mammal that will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises:

- (a) measuring in the mammal the level of at least one biomarker selected from the biomarkers of Table 1;
 - (b) exposing the mammal to the EGFR modulator;
- (c) following the exposing of step (b), measuring in the mammal the level of the at least one biomarker,

wherein a difference in the level of the at least one biomarker measured in step (c) compared to the level of the at least one biomarker measured in step (a) indicates that the mammal will respond therapeutically to said method of treating cancer.

- 2. The method of claim 1 wherein the method is an in vitro method, and wherein the at least one biomarker is measured in at least one mammalian biological sample from the mammal.
- 3. A method for identifying a mammal that will respond therapeutically to a method of treating cancer comprising administering an EGFR modulator, wherein the method comprises:
 - (a) exposing the mammal to the EGFR modulator;
- (b) following the exposing of step (a), measuring in the mammal the level of the at least one biomarker selected from the biomarkers of Table 1,

wherein a difference in the level of the at least one biomarker measured in step (b), compared to the level of the biomarker in a mammal that has not been exposed to said EGFR modulator, indicates that the mammal will respond therapeutically to said method of treating cancer.

FIG. 1 - Gene Filtering Process

number of probesets

Step 1: log-transform transcription data

Step 2: remove probesets with colon tumor Max intensity < 3.477

Step 3: remove probesets with colon tumor VARP < 0.1

Step 4: remove probesets with colon cell line Max intensity < 3.477

Step 5: remove probesets with colon cell line VARP < 0.1

Step 6: perform two-sided T-test on colon cell line transcription data

FIG. 2 - Cell Line Filtering Process

number of cell lines

Step 2: remove cell lines with variable response to EGFR inhibitors

Step 1: remove EGFR-negative cell lines

Step 3: calculate average IC50 value for erlotinib HCl and gefitinib

FIG. 3 - Cell Line IC50 data

Sensitive

Cell Line	Avg. IC50 (erlotinib HCl/gefitinib)
	1.0 ()
Lovo	3.0 (2.4/3.6)
Geo	3.6 (3.3/4.2)
CaCo2	5.4 (5.5/5.2)
SW403	6.2 (5.7/6.8)
SW837	7.0 (7.2/6.8)

Cell Line	Avg. IC50 (erlotinib HCl/gefitinib)	<u>l</u>
	1.0 ()	
Lovo	3.0 (2.4/3.6)	R.
Geo	3.6 (3.3/4.2)	
CaCo2	5.4 (5.5/5.2)	
SW403	6.2 (5.7/6.8)	
SW837	7.0 (7.2/6.8)	
		4

SWITT6	TKOKMI.	istant) HCT116S5	HCT116	
•IC50 < $7\mu M \text{ vs.} > 10\mu M \text{ (6 sensitive vs. 15 resistant)}$	•IC50 $< 4 \mu M \text{ vs.} > 5 \mu M \text{ (3 sensitive vs. 18 resistant*)}$	(*18 resistant is bottom 3 sensitive (CaCo2, SW403, SW837) and 15 resistant)		

	Cell Line	Avg IC50 (erlotinib HCl/gefitinib)
	Colo 201	10+ (10+/10+)
	Colo 205	10+(10+/10+)
		10+(10+/10+)
	HCT-8	10+(10+/10+)
	HT-29	10+ (10+/10+)
	SW480	10+ (10+/10+)
	T84	10+ (10+/10+)
	DLD-1	20 (20/20)
	SW1116	20 (23/17)
	RKORM13	29 (42/16)
()	HCT116S542	53 (85/20)
	HCT116	67+ (116+/18)
	MIDL	67+ (116+/18)
	LS1034	68+ (116+/19)
	SW948	73+ (116+/29)

FIG. 4 - T-test Results

Gene	T-test 6-15 T-test 3-18	T-test 3-18
cadherin 17, LI cadherin (liver-intestine)	0.0004	0.0010
CEACAM6	0.004	0.0008
CEACAM6	0.0015	0.0014
lectin, galactoside-binding, soluble, 1 (galectin 1)	0.0019	0.0017
transmembrane protease, serine 2	0.0090	0.0087
mucin 5, subtypes A and C, tracheobronchial/gastric	0.0166	0.0298
HMGCoA synthase 2 (mitochondrial)	0.0169	0.0005
interferon-stimulated protein, 15 kDa	0.0204	0.0493
dopa decarboxylase	0.0235	0.0035
SERPIN E1	0.0271	0.0313
FXYD domain-containing ion transport regulator 3	0.0271	0.0156
putative integral membrane transporter	0.0439	0.0216

12 Genes with p<0.05 for both comparisons

FIG. 5 - T-test Results II

Gene	T-test 6-15	T-test 3-18	Andrew Control of the
protease inhibitor 3, skin-derived (SKALP)	0.0011	0.1158	ALTERNATION OF THE PROPERTY OF
caudal type homeo box transcription factor 2	0.0024	0.0573	and a second sec
fibroblast grow th factor receptor 3	0.0118	0.0784	
hypothetical protein PP1665	0.0141	0.2068	- And Andrews (Andrews (Andrew
protease inhibitor 3, skin-derived (SKALP)	0.0170	0.2217	**************************************
A kinase (PRKA) anchor protein (gravin) 12	0.0217	0.0907	1
lymphocyte antigen 75	0.0234	0.1534	3
mucin 5, subtypes A and C, tracheobronchial/gastric	0.0250	0.0883	es personal de la companya del companya del companya de la company
metallothionein 1G	0.0337	0.3549	COTTO COST OF MATERIAL PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION
tumor necrosis factor receptor superfamily, member 6b, decoy	0.0357	0.0931	HA-QALI-, PARAMENTAL TARREST CONTRACTOR OF THE PARAMETER
mucin 3B	0.0384	0.3571	THE COMMUNICATION CONTRACTOR STATES
metallothionein 1X	0.0411	0.4250	Septics (Medials Medials respectively) (Medials Respectively)
GRO3 oncogene	0.0413	0.0913	
transforming grow th factor, beta-induced, 68kD	0.0420	0.3868	AMPRIANCI AMMINISTRATO (COMO AMERICA A
bone morphogenetic protein 7 (osteogenic protein 1)	0.0435	0.1995	***************************************
annexin A10	0.0437	0.1566	eracking design and the second
metallothionein 1F (functional)	0.0468	0.2643	
annexin A1	0.0494	0.5338	A.(III)(II)(A)(II)(III)(II), ***********************************
secretory leukocyte protease inhibitor	_I 0.0496	0.2271	

19 Genes with p<0.05 for 6 Sensitive vs. 15 Resistant

FIG. 6 - T-test Results III

Gene	T-test 6-15	T-test 3-18
polymeric immunoglobulin receptor	0.0535	0.0026
CEACAM 5	0.0609	0.0088
PTP, receptor type, N polypeptide 2	0.0616	0.0106
CFTR, ATP-binding cassette (sub-family C, member 7)	0.0715	0.0027
DVS27-related protein	0.1179	0.000
insulin-like growth factor binding protein 2 (36kD)	0.2513	0.0081
inhibitor of DNA binding 3	0.2622	0.0112
phospholipase A2, group IIA (platelets, synovial fluid)	0.3361	0.0277
Purkinje cell protein 4	0.4373	0.0000
G protein-coupled receptor 49	0.4415	0.0251
fucosyltransferase 3	0.4451	0.0261
interferon, alpha-inducible protein 27	0.4453	0.0103
SERPIN B5	0.4528	0.0184
Homo sapiens CD44 isoform RC	0.4653	0.0339
solute carrier family 7, member 8	0.4748	0.0309
membrane protein, palmitoylated 1 (55kD)	0.4756	0.0248
tumor protein p53 (Li-Fraumeni syndrome)	0.5178	0.0258
S100 calcium-binding protein P	0.5498	0.0423
SERPIN A1	0.5579	0.0200
eukaryotic translation initiation factor 5A	0.5974	0.0083
old astrocyte specifically induced substance	0.6224	0.0325
UDP glycosyltransferase 1 family, polypeptide A3	0.6251	0.0008
alpha-2-HS-glycoprotein	0.6449	0.0131
ESTs, Highly similar to A39092 glucuronosyltransferase	0.6587	0.0017
UDP glycosyltransferase 1 family, polypeptide A1	0.7178	0.0010
SERPIN A1	0.7266	0.0205
nerve growth factor receptor associated protein 1	0.8525	0.0033
collagen, type XVIII, alpha 1	0.9341	0.0020
collagen, type IX, alpha 3	0.9861	0.0007

29 Genes with p<0.05 for 3 Sensitive vs. 18 Resistant

SEQUENCE LISTING

<110> Clark, Edwin

Ford, Shirin Yoganathan, Suganthy Jackson, Donald <120> BIOMARKERS AND METHODS FOR DETERMINING SENSITIVITY TO EPIDERMAL GROWTH FACTOR RECEPTOR MODULATORS <130> 10159 PCT <150> US 60/535,151 <151> 2004-01-07 <160> 125 <170> PatentIn version 3.2 <210> 1 <211> 3697 <212> DNA <213> Homo sapiens <400> 1 agggagtgtt cccgggggag atactccagt cgtagcaaqa gtctcgacca ctgaatggaa 60 gaaaaggact tttaaccacc attttgtgac ttacagaaag gaatttgaat aaagaaaact 120 180 atquatacttc aggcccatct tcactccctg tgtcttctta tgctttattt ggcaactgga tatqqccaaq aqqqqaaqtt tagtqqaccc ctgaaaccca tgacattttc tatttatgaa 240 300 qqccaaqaac cqaqtcaaat tatattccaq tttaaggcca atcctcctgc tgtgactttt 360 qaactaactq qqqaqacaqa caacatattt qtqataqaac gggagggact tctgtattac 420 aacaqaqcct tggacaggga aacaagatct actcacaatc tccaggttgc agccctggac 480 gctaatggaa ttatagtgga gggtccagtc cctatcacca tagaagtgaa ggacatcaac 540 qacaatcqac ccacqtttct ccaqtcaaag tacgaaggct cagtaaggca gaactctcgc ccaggaaagc ccttcttgta tgtcaatgcc acagacctgg atgatccggc cactcccaat 600 660 qqccaqcttt attaccagat tgtcatccag cttcccatga tcaacaatgt catgtacttt caqatcaaca acaaaacggq agccatctct cttacccgag agggatctca ggaattgaat 720 cctgctaaga atccttccta taatctggtg atctcagtga aggacatggg aggccagagt 780 840 gagaattcct tcagtgatac cacatctgtg gatatcatag tgacagagaa tatttggaaa gcaccaaaac ctgtggagat ggtggaaaac tcaactgatc ctcaccccat caaaatcact 900 960 caggtgcggt ggaatgatcc cggtgcacaa tattccttag ttgacaaaga gaagctgcca agattcccat tttcaattga ccaggaagga gatatttacg tgactcagcc cttggaccga 1020 gaagaaaagg atgcatatgt tttttatgca gttgcaaagg atgagtacgg aaaaccactt 1080 tcatatccgc tggaaattca tgtaaaagtt aaagatatta atgataatcc acctacatgt 1140

1

ccgtcaccag	taaccgtatt	tgaggtccag	gagaatgaac	gactgggtaa	cagtatcggg	1200
accettactg	cacatgacag	ggatgaagaa	aatactgcca	acagttttct	aaactacagg	1260
attgtggagc	aaactcccaa	acttcccatg	gatggactct	tcctaatcca	aacctatgct	1320
ggaatgttac	agttagctaa	acagtccttg	aagaagcaag	atactcctca	gtacaactta	1380
acgatagagg	tgtctgacaa	agatttcaag	accctttgtt	ttgtgcaaat	caacgttatt	1440
gatatcaatg	atcagatccc	catctttgaa	aaatcagatt	atggaaacct	gactcttgct	1500
gaagacacaa	acattgggtc	caccatctta	accatccagg	ccactgatgc	tgatgagcca	1560
tttactggga	gttctaaaat	tctgtatcat	atcataaagg	gagacagtga	gggacgcctg	1620
ggggttgaca	cagatececa	taccaacacc	ggatatgtca	taattaaaaa	gcctcttgat	1680
tttgaaacag	cagctgtttc	caacattgtg	ttcaaagcag	aaaatcctga	gcctctagtg	1740
tttggtgtga	agtacaatgc	aagttctttt	gccaagttca	cgcttattgt	gacagatgtg	1800
aatgaagcac	ctcaattttc	ccaacacgta	ttccaagcga	aagtcagtga	ggatgtagct	1860
ataggcacta	aagtgggcaa	tgtgactgcc	aaggatccag	aaggtctgga	cataagctat	1920
tcactgaggg	gagacacaag	aggttggctt	aaaattgacc	acgtgactgg	tgagatcttt	1980
agtgtggctc	cattggacag	agaagccgga	agtccatatc	gggtacaagt	ggtggccaca	2040
gaagtagggg	ggtcttcctt	gagctctgtg	tcagagttcc	acctgatcct	tatggatgtg	2100
aatgacaacc	ctcccaggct	agccaaggac	tacacgggct	tgttcttctg	ccatcccctc	2160
agtgcacctg	gaagtctcat	tttcgaggct	actgatgatg	atcagcactt	atttcggggt	2220
ccccatttta	cattttccct	cggcagtgga	agcttacaaa	acgactggga	agtttccaaa	2280
atcaatggta	ctcatgcccg	actgtctacc	aggcacacag	agtttgagga	gagggagtat	2340
gtcgtcttga	tccgcatcaa	tgatgggggt	cggccaccct	tggaaggcat	tgtttcttta	2400
ccagttacat	tctgcagttg	tgtggaagga	agttgtttcc	ggccagcagg	tcaccagact	2460
gggataccca	ctgtgggcat	ggcagttggt	atactgctga	ccacccttct	ggtgattggt	2520
ataattttag	cagttgtgtt	tatccgcata	aagaaggata	aaggcaaaga	taatgttgaa	2580
agtgctcaag	catctgaagt	caaacctctg	agaagctgaa	tttgaaaagg	aatgtttgaa	2640
tttatatagc	aagtgctatt	tcagcaacaa	ccatctcatc	ctattacttt	tcatctaacg	2700
tgcattataa	ttttttaaac	agatattccc	tcttgtcctt	taatatttgc	taaatatttc	2760
ttttttgagg	tggagtcttg	ctctgtcgcc	caggctggag	tacagtggtg	tgatcccagc	2820
tcactgcaac	ctccgcctcc	tgggttcaca	tgattctcct	gcctcagctt	cctaagtagc	2880
tgggtttaca	ggcacccacc	accatgccca	gctaattttt	gtatttttaa	tagagacggg	2940

gtttcgccat	ttggccaggc	tggtcttgaa	ctcctgacgt	caagtgatct	gcctgccttg	3000
gtctcccaat	acaggcatga	accactgcac	ccacctactt	agatatttca	tgtgctatag	3060
acattagaga	gatttttcat	ttttccatga	catttttcct	ctctgcaaat	ggcttagcta	3120
cttgtgtttt	tacattttgg	ggcaagacag	actcattaaa	tattctgtac	attttttctt	3180
tatcaaggag	atatatcagt	gttgtctcat	agaactgcct	ggattccatt	tatgtttttt	3240
ctgattccat	cctgtgtccc	cttcatcctt	gactcctttg	gtatttcact	gaatttcaaa	3300
catttgtcag	agaagaaaaa	cgtgaggact	caggaaaaat	aaataaataa	aagaacagcc	3360
ttttccctta	gtattaacag	aaatgtttct	gtgtcattaa	ccatctttaa	tcaatgtgac	3420
atgttgctct	ttggctgaaa	ttcttcaact	tggaaatgac	acagacccac	agaaggtgtt	3480
caaacacaac	ctactctgca	aaccttggta	aaggaaccag	tcagctggcc	agatttcctc	3540
actacctgcc	atgcatacat	gctgcgcatg	ttttcttcat	togtatgtta	gtaaagtttt	3600
ggttattata	tatttaacat	gtggaagaaa	acaagacatg	aaaagagtgg	tgacaaatca	3660
agaataaaca	ctggttgtag	tcagttttgt	ttgttaa			3697

<210> 2

<211> 2249

<212> DNA

<213> Homo sapiens

<400> 2 ctcctctaca aagaggtgga cagagaagac agcagagacc atgggacccc cctcagcccc 60 tccctgcaga ttgcatgtcc cctggaagga ggtcctgctc acagcctcac ttctaacctt 120 ctggaaccca cccaccactg ccaagctcac tattgaatcc acgccattca atgtcgcaga 180 ggggaaggag gttcttctac tcgcccacaa cctgccccag aatcgtattg gttacagctg 240 gtacaaaggc gaaagagtgg atggcaacag tctaattgta ggatatgtaa taggaactca 300 acaagctacc ccagggcccg catacagtgg tcgagagaca atatacccca atgcatccct 360 gctgatccag aacgtcaccc agaatgacac aggattctat accctacaag tcataaagtc 420 agatettgtg aatgaagaag caaceggaca gttecatgta taceeggage tgeecaagee 480 ctccatctcc agcaacaact ccaaccccgt ggaggacaag gatgctgtgg ccttcacctg 540 tgaacctgag gttcagaaca caacctacct gtggtgggta aatggtcaga gcctcccggt 600 cagtcccagg ctgcagctgt ccaatggcaa catgaccctc actctactca gcgtcaaaag 660 720 qaacqatqca qqatcctatg aatgtgaaat acagaaccca gcgagtgcca accgcagtga cccagtcacc ctgaatgtcc tctatggccc agatgtcccc accatttccc cctcaaaggc 780 caattaccgt ccaggggaaa atctgaacct ctcctgccac gcagcctcta acccacctgc 840

3

acagtactct tggtttate	ca atgggacgtt	ccagcaatcc	acacaagagc	tctttatccc	900
caacatcact gtgaataa	a geggateeta	. tatgtgccaa	gcccataact	cagccactgg	960
cctcaatagg accacagt	ca cgatgatcac	agtctctgga	agtgctcctg	tcctctcagc	1020
tgtggccacc gtcggcate	ca cgattggagt	gctggccagg	gtggctctga	tatagcagcc	1080
ctggtgtatt ttcgatat	t caggaagact	ggcagattgg	accagaccct	gaattettet	1140
agctcctcca atcccatt	t atcccatgga	accactaaaa	acaaggtctg	ctctgctcct	1200
gaagccctat atgctgga	ya tggacaactc	aatgaaaatt	taaagggaaa	acceteagge	1260
ctgaggtgtg tgccactca	ag agacttcacc	taactagaga	cagtcaaact	gcaaaccatg	1320
gtgagaaatt gacgactto	ca cactatggac	agcttttccc	aagatgtcaa	aacaagactc	1380
ctcatcatga taaggctc	t accccctttt	aatttgtcct	tgcttatgcc	tgcctctttc	1440
gcttggcagg atgatgctg	ıt cattagtatt	tcacaagaag	tagcttcaga	gggtaactta	1500
acagagtgtc agatctato	t tgtcaatccc	aacgttttac	ataaaataag	agatccttta	1560
gtgcacccag tgactgaca	ıt tagcagcatc	tttaacacag	ccgtgtgttc	aaatgtacag	1620
tggtcctttt cagagttgg	ga cttctagact	cacctgttct	cactccctgt	tttaattcaa	1680
cccagccatg caatgccaagtttc tgacacttc					1740 1800
agttgtagaa attaacaaa	t gtgctgcttg	gttaaaatgg	ctacactcat	ctgactcatt	1860
ctttattcta ttttagtt	g tttgtatctt	gcctaaggtg	cgtagtccaa	ctcttggtat	1920
taccctccta atagtcata	c tagtagtcat	actccctggt	gtagtgtatt	ctctaaaagc	1980
tttaaatgtc tgcatgcag	c cagccatcaa	atagtgaatg	gtctctcttt	ggctggaatt	2040
acaaaactca gagaaatgt	g tcatcaggag	aacatcataa	cccatgaagg	ataaaagccc	2100
caaatggtgg taactgata	a tagcactaat	gctttaagat	ttggtcacac	tctcacctag	2160
gtgagcgcat tgagccagt	g gtgctaaatg	ctacatactc	caactgaaat	gttaaggaag	2220
aagatagatc caaaaaaaa	a aaaaaaaaa				2249
<210> 3 <211> 2533 <212> DNA <213> Homo sapiens					
<400> 3 ggagctcaag ctcctctac	a aagaggtgga	cagagaagac	agcagagacc	atgggacccc	60
cctcagcccc tccctgcag					120
ttctaacctt ctggaaccc					180
atgtcgcaga ggggaagga					240

4

gttacagctg	gtacaaaggc	gaaagagtgg	atggcaacag	tctaattgta	ggatatgtaa	300
taggaactca	acaagctacc	ccagggcccg	catacagtgg	tcgagagaca	atatacccca	360
atgcatccct	gctgatccag	aacgtcaccc	agaatgacac	aggattctat	accctacaag	420
tcataaagtc	agatcttgtg	aatgaagaag	caaccggaca	gttccatgta	tacccggagc	480
tgcccaagcc	ctccatctcc	agcaacaact	ccaaccccgt	ggaggacaag	gatgctgtgg	540
ccttcacctg	tgaacctgag	gttcagaaca	caacctacct	gtggtgggta	aatggtcaga	600
gcctcccggt	cagtcccagg	ctgcagctgt	ccaatggcaa	catgaccctc	actctactca	660
gcgtcaaaag	gaacgatgca	ggatcctatg	aatgtgaaat	acagaaccca	gcgagtgcca	720
accgcagtga	cccagtcacc	ctgaatgtcc	tctatggccc	agatgtcccc	accatttccc	780
cctcaaaggc	caattaccgt	ccaggggaaa	atctgaacct	ctcctgccac	gcagcctcta	840
acccacctgc	acagtactct	tggtttatca	atgggacgtt	ccagcaatcc	acacaagagc	900
tctttatccc	caacatcact	gtgaataata	gcggatccta	tatgtgccaa	gcccataact	960
cagccactgg	cctcaatagg	accacagtca	cgatgatcac	agtctctgga	agtgctcctg	1020
tcctctcagc	tgtggccacc	gtcggcatca	cgattggagt	gctggccagg	gtggctctga	1080
tatagcagcc	ctggtgtatt	ttcgatattt	caggaagact	ggcagattgg	accagaccct	1140
gaattcttct	agctcctcca	atcccatttt	atcccatgga	accactaaaa	acaaggtctg	1200
ctctgctcct	gaagccctat	atgctggaga	tggacaactc	aatgaaaatt	taaagggaaa	1260
accctcaggc	ctgaggtgtg	tgccactcag	agacttcacc	taactagaga	cagtcaaact	1320
gcaaaccatg	gtgagaaatt	gacgacttca	cactatggac	agcttttccc	aagatgtcaa	1380
aacaagactc	ctcatcatga	taaggctctt	accccctttt	aatttgtcct	tgcttatgcc	1440
tgcctctttc	gcttggcagg	atgatgctgt	cattagtatt	tcacaagaag	tagcttcaga	1500
gggtaactta	acagagtgtc	agatctatct	tgtcaatccc	aacgttttac	ataaaataag	1560
agatccttta	gtgcacccag	tgactgacat	tagcagcatc	tttaacacag	ccgtgtgttc	1620
aaatgtacag	tggtcctttt	cagagttgga	cttctagact	cacctgttct	cactccctgt	1680
tttaattcaa	cccagccatg	caatgccaaa	taatagaatt	gctccctacc	agctgaacag	1740
ggaggagtct	gtgcagtttc	tgacacttgt	tgttgaacat	ggctaaatac	aatgggtatc	1800
gctgagacta	agttgtagaa	attaacaaat	gtgctgcttg	gttaaaatgg	ctacactcat	1860
ctgactcatt	ctttattcta	ttttagttgg	tttgtatctt	gcctaaggtg	cgtagtccaa	1920
ctcttggtat	taccctccta	atagtcatac	tagtagtcat	actccctggt	gtagtgtatt	1980
ctctaaaagc	tttaaatgtc	tgcatgcagc	cagccatcaa	atagtgaatg	gtctctcttt	2040

ggctggaatt acaaaactca	gagaaatgtg	tcatcaggag	aacatcataa	cccatgaagg	2100
ataaaagccc caaatggtgg	taactgataa	tagcactaat	gctttaagat	ttggtcacac	2160
teteacetag gtgagegeat	tgagccagtg	gtgctaaatg	ctacatactc	caactgaaat	2220
gttaaggaag aagatagatç	caattaaaaa	aaattaaaac	caatttaaaa	aaaaaaaga	2280
acacaggaga ttccagtcta	cttgagttag	cataatacag	aagtcccctc	tactttaact	2340
tttacaaaaa agtaacctga	actaatctga	tgttaaccaa	tgtatttatt	tctgtggttc	2400
tgtttccttg ttccaatttg	acaaaaccca	ctgttcttgt	attgtattgc	ccagggggag	2460
ctatcactgt acttgtagag	tggtgctgct	ttaattcata	aatcacaaat	aaaagccaat	2520
tagctctata act					2533
<210> 4 <211> 543					
<212> DNA					t
<213> Homo sapiens					
<400> 4 tettetgaca getggtgege	ctgcccggga	acatcctcct	ggactcaatc	atggcttgtg	60
gtctggtcgc cagcaacctg	aatctcaaac	ctggagagtg	ccttcgagtg	cgaggcgagg	120
tggctcctga cgctaagagc	ttcgtgctga	acctgggcaa	agacagcaac	aacctgtgcc	180
tgcacttcaa ccctcgcttc	aacgcccacg	gcgacgccaa	caccatcgtg	tgcaacagca	240
aggacggcgg ggcctggggg	accgagcagc	gggaggctgt	ctttcccttc	cagcctggaa	300
gtgttgcaga ggtgtgcatc	accttcgacc	aggccaacct	gaccgtcaag	ctgccagatg	360
gatacgaatt caagttcccc	aaccgcctca	acctggaggc	catcaactac	atggcagctg	420
acggtgactt caagatcaaa	tgtgtggcct	ttgactgaaa	tcagccagcc	catggccccc	480
aataaaggca gctgcctctg	ctccctctga	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	540
aaa					543
<210> 5 <211> 1740					
<211> 1740 <212> DNA					
<213> Homo sapiens					
<400> 5	aaaaaaaaa	aaaaaaaaaaaa	cacataasaa	acaacaaata	60
gaggcggagg cggaggcgga					
atattgaaca ttccagatac					120
tgaactcagg gtcaccacca	gctattggac	cttactatga	aaaccatgga	taccaaccgg	180
aaaaccccta tcccgcacag	cccactgtgg	tccccactgt	ctacgaggtg	catccggctc	240
agtactaccc gtcccccgtg	ccccagtacg	ccccgagggt	cctgacgcag	gcttccaacc	300

ccgtcgtctg	cacgcagccc	aaatccccat	ccgggacagt	gtgcacctca	aagactaaga	360
aagcactgtg	catcaccttg	accctgggga	ccttcctcgt	gggagctgcg	ctggccgctg	420
gcctactctg	gaagttcatg	ggcagcaagt	gctccaactc	tgggatagag	tgcgactcct	480
caggtacctg	catcaacccc	tctaactggt	gtgatggcgt	gtcacactgc	cccggcgggg	540
aggacgagaa	tcggtgtgtt	cgcctctacg	gaccaaactt	catccttcag	gtgtactcat	600
ctcagaggaa	gtcctggcac	cctgtgtgcc	aagacgactg	gaacgagaac	tacgggcggg	660
cggcctgcag	ggacatgggc	tataagaata	atttttactc	tagccaagga	atagtggatg	720
acagcggatc	caccagcttt	atgaaactga	acacaagtgc	cggcaatgtc	gatatctata	780
aaaaactgta	ccacagtgat	gcctgttctt	caaaagcagt	ggtttcttta	cgctgtatag	840
cctgcggggt	caacttgaac	tcaagccgcc	agagcaggat	tgtgggcggc	gagagcgcgc	900
tcccgggggc	ctggccctgg	caggtcagcc	tgcacgtcca	gaacgtccac	gtgtgcggag	960
gctccatcat	cacccccgag	tggatcgtga	cagccgccca	ctgcgtggaa	aaacctctta	1020
acaatccatg	gcattggacg	gcatttgcgg	ggattttgag	acaatctttc	atgttctatg	1080
gagccggata	ccaagtagaa	aaagtgattt	ctcatccaaa	ttatgactcc	aagaccaaga	1140
acaatgacat	tgcgctgatg	aagctgcaga	agcctctgac	tttcaacgac	ctagtgaaac	1200
cagtgtgtct	gcccaaccca	ggcatgatgc	tgcagccaga	acagctctgc	tggatttccg	1260
ggtgggggc	caccgaggag	aaagggaaga	cctcagaagt	gctgaacgct	gccaaggtgc	1320
ttctcattga	gacacagaga	tgcaacagca	gatatgtcta	tgacaacctg	atcacaccag	1380
ccatgatctg	tgccggcttc	ctgcagggga	acgtcgattc	ttgccagggt	gacagtggag	1440
ggcctctggt	cacttcgaag	aacaatatct	ggtggctgat	aggggataca	agctggggtt	1500
ctggctgtgc	caaagcttac	agaccaggag	tgtacgggaa	tgtgatggta	ttcacggact	1560
ggatttatcg	acaaatgagg	gcagacggct	aatccacatg	gtcttcgtcc	ttgacgtcgt	1620
tttacaagaa	aacaatgggg	ctggttttgc	ttccccgtgc	atgatttact	cttagagatg	1680
attcagaggt	cacttcattt	ttattaaaca	gtgaacttgt	ctggcaaaaa	aaaaaaaaa	1740
<210> 6 <211> 713 <212> DNA <213> Hom	o sapiens					
<400> 6 tttttggggt	ttttttgcaa	aatgctcaag	ggtatttatg	caacagattg	gccgtgtact	60
gaggaggga	gcgcaggctg	agggctgagg	taggagtgag	gttetteete	ctgcagccac	120

caggcagctg atcaccatgt ccaagcgtca ttcctgagac cctcaggtga tgctcacgtc 180

cccagaacag caggctggat	gcatggccag	aggagctcgg	ccagccccgg	ggctggtcct	240
gagaggtggc tgcaggcggg	gtgggtaagg	gcccctcctc	caggcagcag	gtgacccata	300
gcccacaccc tccacaagaa	agcgggcgtg	gacagtgtgt	tcaaagctgc	agccgcctgg	360
acaggggcac aagttccact	ggccttggaa	gccgagctca	gaggacatat	gggaggttct	420
ccttggaggt caggagggcg	gcagtgctgg	tcagtgcatg	ggggacactg	ggacgcctct	480
ctcccagctc ccactctctg	cctcctggct	gggctcgggt	teegeeteet	tcgagtgctt	540
gtgttgcccg gcgcaaggca	ccgccggccc	atgcagccgc	actcttccac	ctcgtgtagc	600
tgaaaggccg ggctggagcc	gaaggaagt	gcaggggcac	aattcctaca	cgaggtccgc	660
agctccttgc aagcactgca	cctgtgcttc	caacggttgc	ccttcggcga	gta	713
<210> 7 <211> 7382 <212> DNA <213> Homo sapiens					
<400> 7 tgctgaggga cagggcactc	ttccccgccg	tccacacaat	gagtgttggc	cggaggaagc	60
tggccctgct ctgggccctg	gatatagata	tggcctgcac	ccggcacaca	ggccatgccc	120
aggatggete eteegaatee	agctacaagc	accaccctgc	cctctctcct	atcgcccggg	180
ggcccagcgg ggtcccgctc	cgtggggcga	ctgtcttccc	atctctgagg	accatccctg	240
tggtacgagc ctccaaccca	gcgcacaacg	ggcgggtgtg	cagcacctgg	ggcagcttcc	300
actacaagac cttcgacggc	gacgtcttcc	gattacaagg	cctctgcaac	tacgtgttct	360
ccgagcactg cggtgccgcc	tacgaggatt	ttaacatcca	gctacgccgc	agccaggagt	420
cageggeeee caegetgage	agggtcctca	tgaaggtgga	tggcgtggtc	atccagctga	480
ccaagggete egteetggte	aacggccacc	cggtcctgct	gcccttcagc	cagtctgggg	540
tcctcattca gcagagcagc	agctacacca	aggtggaggc	caggctgggc	cttgtcctca	600
tgtggaacca cgatgacagc	ctgctgctgg	agctggacac	caaatacgcc	aacaagacct	660
gtgggctctg tggggacttc	aacgggatgc	ccgtggtcag	cgagctcctc	tcccacaaca	720
ccaagctgac acccatggaa	ttcgggaacc	tgcagaagat	ggacgacccc	acggagcagt	780
gtcaggaccc tgtccctgaa	cccccgagga	actgctccac	tggctttggc	atctgtgagg	840
ageteetgea eggeeagetg	ttctctggct	gegtggeeet	ggtggacgtc	ggcagctacc	900
tggaggcttg caggcaagac	ctctgcttct	gtgaagacac	cgacctgctc	agctgcgtct	960
gccacaccct tgccgagtac	tcccggcagt	gcacccatgc	aggggggttg	ccccaggact	1020
ggeggggeee tgaettetge	ccccagaagt	gccccaacaa	catgcagtac	cacgagtgcc	1080

gctccccctg	cgcagacacc	tgctccaacc	aggagcactc	ccgggcctgt	gaggaccact	1140
gtgtggccgg	ctgcttctgc	cctgagggga	cggtgcttga	cgacatcggc	cagaccggct	1200
gtgtccctgt	gtcaaagtgt	gcctgcgtct	acaacggggc	tgcctatgcc	ccaggggcca	1260
cctactccac	agactgcacc	aactgcacct	gctccggagg	ccggtggagc	tgccaggagg	1320
ttccatgccc	ggatacctgc	tctgtgcttg	gaggtgccca	cttctcaacg	tttgacggga	1380
agcaatacac	ggtgcacggc	gactgcagct	atgtgctgac	caagccctgt	gacagcagtg	1440
ccttcactgt	actggctgag	ctgcgcaggt	gcgggctgac	ggacagcgag	acctgcctga	1500
agagcgtgac	actgagcctg	gatggggcgc	agacggtggt	ggtgatcaag	gccagtgggg	1560
aagtgttcct	gaaccagatc	tacacccagc	tgcccatctc	tgcagccaac	gtcaccatct	1620
tcagaccctc	aaccttcttc	atcatcgccc	agaccagcct	gggcctgcag	ctgaacctgc	1680
agccggtgcc	caccatgcag	ctgttcatgc	agctggcgcc	caagctccgt	gggcagacct	1740
geggtetetg	tgggaacttc	aacagcatcc	aggccgatga	cttccggacc	ctcagtgggg	1800
tggtggaggc	caccgctgcg	gccttcttca	acaccttcaa	gacccaggcc	gcctgcccca	1860
acatcaggaa	cagcttcgag	gacccctgct	ctctgagcgt	ggagaatgag	aagtatgctc	1920
agcactggtg	ctegeagetg	accgatgccg	acggcccctt	cggccggtgc	catgctgccg	1980
tgaagccggg	aacctactac	tcgaactgcg	tgtttgacac	ctgcaactgt	gagcggagcg	2040
aggactgcct	gtgcgccgcg	ctgtcctcct	acgtgcacgc	ctgtgccgcc	aagggcgtgc	2100
agctcggcgg	ctggagggac	ggcgtctgca	cgaagcctat	gaccacttgc	cccaagtcaa	2160
tgacgtacca	ctaccatgtc	agcacctgcc	agcccacctg	ccgctccctg	agcgaggggg	2220
acatcacctg	cagtgttggc	ttcatccccg	tggatggctg	catctgtccc	aagggcacct	2280
tcctggacga	cacgggcaag	tgtgtgcagg	ccagcaactg	tccctgctac	cacagaggct	2340
ccatgatccc	caatggggag	tcggtgcacg	acagcggggc	tatctgcacc	tgcacacatg	2400
ggaagctgag	ctgcatcgga	ggccaagccc	ccgccccagt	gtgtgctgcg	cccatggtgt	2460
tctttgactg	ccgaaatgcc	acgcccgggg	acacaggggc	tggctgtcag	aagagctgcc	2520
acacactgga	catgacctgt	tacagccccc	agtgtgtgcc	tggctgcgtg	tgccccgacg	2580
ggctggtggc atgaggccag	ggacggcgag ctaccgggcc	ggcggctgca ggccagacca	tcactgcgga tccgggtggg	ggaetgeece ctgcaacace	tgcgtgcaca tgcacctgtg	2640 2700
acagcaggat	gtggcggtgc	acagatgacc	cctgcctggc	cacctgcgcc	gtgtacgggg	2760
acggccacta	cctcaccttc	gacggacaga	gctacagctt	caacggagac	tgcgagtaca	2820
cgctggtgca	gaaccactgt	ggcgggaaag	acagcaccca	ggactccttt	cgtgttgtca	2880
ccgagaacgt	cccctgcggc	accacaggga	ccacctgctc	caaggccatc	aagattttcc	2940

tggggggctt cgagctg	aag ctaagccatg	ggaaggtgga	ggtgatcggg	acggacgaga	3000
gccaggaggt gccatac	acc atccagcaga	tgggcatcta	cctggtggtg	gacaccgaca	3060
ttggcctggt gctgctg	rtgg gacaagaaga	ccagcatctt	catcaacctc	agccccgagt	3120
tcaagggcag ggtctgc	ggc ctgtgtggga	acttcgacga	catcgccgtt	aatgactttg	3180
ccacgcggag ccggtct	gtg gtggggacg	tgctggagtt	tgggaacagc	tggaagctct	3240
cccctcctg cccagat	gcc ctggcgccca	. aggacccctg	cacggccaac	cccttccgca	3300
agtcctgggc ccagaag	cag tgcagcatco	tccacggccc	caccttcgcc	gcctgccacg	3360
cacacgtgga gccggcc	agg tactacgagg	cctgcgtgaa	cgacgcgtgc	gcctgcgact	3420
ccgggggtga ctgcgag	stgc ttctgcacgg	ctgtggccgc	ctacgcccag	gcctgccatg	3480
aagtaggcct gtgtgtg	ıtgt ctgcggacco	: cgagcatctg	ccctctgttc	tgcgactact	3540
acaaccccga aggccac	tgc gagtggcact	accagccctg	cggggtgccc	tgcctgcgca	3600
cctgccggaa cccccgt	gga gactgtctgc	gggacgtccg	ggggctggaa	ggctgctacc	3660
ccaagtgccc accagag	gget eccatettte	, atgaggacaa	gatgcagtgt	gtggccacct	3720
gcccaaccc gcctctg	gcca ccacggtgco	: acgtccatgg	gaagtcctac	cggccaggtg	3780
cagtggtgcc ctcggad	caag aactgccagt	cctgcctttg	tacggagcgc	ggcgtggagt	3840
gcacctacaa agctgag	ggcc tgtgtctgca	cctacaatgg	acagcgcttc	cacccagggg	3900
acgtcatcta ccacaco	gacg gatggcacgg	gtggctgcat	ctccgcccgc	tgcggggcca	3960
acggcaccat tgagagg	gagg gtctacccct	gcagccccac	cacccctgtc	cccccaacca	4020
ccttctcctt ctccaca	acce cegettgteg	g tgagctccac	gcacaccccc	agcaatggcc	4080
caagcagcgc gcacaca	agge ceteegagea	gegeetggee	caccacagca	ggcacttctc	4140
ccaggacgag gctgcc	caca geetetgeet	: cgctgccgcc	ggtctgtggg	gaaaagtgcc	4200
tctggtcgcc atggate	ggat gtcagccgcc	ctggacgggg	cacggacagc	ggtgacttcg	4260
acacactgga gaaccto	ecge geceatgggt	accgggtgtg	cgaatcaccc	aggtcggtgg	4320
agtgccgagc tgaggad	egee eeeggagtge	cgctccgagc	cctggggcag	cgtgtgcagt	4380
gcagcccgga tgtggg	gctg acctgtcgta	acagggagca	ggcatcgggg	ctctgctaca	4440
actaccagat cagggto	ccag tgctgcacgo	ccctaccctg	ctccacctct	agcagtccag	4500
cccagaccac tcctcca	aact acctccaaga	a ccactgaaac	ccgggcctca	ggctcctcag	4560
ctcccagcag cacacct	ggc accgtgtctc	tctccacagc	caggacgaca	cctgccccag	4620
gtaccgctac ctctgto	caaa aaaactttct	caactcccag	ccctccgcca	gtgccggcaa	4680
catcaacatc atccate	gteg accaeggeed	cggggacctc	tgtggtctcc	agcaagccca	4740

ccccacgga	gcccagcaca	tcctcctgcc	tgcaggagct	ttgcacctgg	accgagtgga	4800
tcgatggcag	ctaccctgct	cctggaataa	atggtggaga	ttttgacaca	tttcaaaatt	4860
tgagagacga	aggatacaca	ttctgtgaaa	gtcctcgaag	cgtgcagtgc	cgggcagaga	4920
gcttccccaa	cacgccgctg	gcagacctgg	ggcaggacgt	catctgcagc	cacacagagg	4980
ggctgatttg	cctgaacaag	aaccagctcc	cacccatctg	ctacaactat	gagatccgca	5040
tccagtgttg	cgagacggtg	aacgtgtgca	gagacatcac	cagactgcca	aagaccgtcg	5100
caacgacacg	gccgactcca	catccaaccg	gagctcagac	ccagaccacc	ttcaccacac	5160
acatgccctc	ggcctccaca	gagcaaccca	cggcaacctc	caggggtggg	cccacagcaa	5220
ccagcgtcac	acagggcacc	cacaccacac	tagtcaccag	aaactgtcat	ccccggtgca	5280
cctggacaaa	gtggttcgac	gtggacttcc	cgtcccccgg	accccatggt	ggagacaagg	5340
aaacctacaa	caacatcatc	aggagtgggg	aaaaaatctg	ccgccgacct	gaggagatca	5400
ccagggtcca	gtgccgagcc	aagagccacc	cagaggtgag	catcgaacac	ctgggccagg	5460
tggtgcagtg	cagccgggaa	gagggcctgg	tgtgccggaa	ccaggaccag	cagggaccct	5520
tcaagatgtg	cctcaactac	gaggtgcgtg	tgatatgatg	cgagaccccc	agaggetgee	5580
acatgacctc	cacacctggc	tccacctcta	gcagtccagc	ccagaccact	ccttcaacaa	5640
cctccaagac	cactgaaatc	caggcctcag	gctcctcagc	ccccagcagc	acacctggca	5700
ccgtgtctct	ctctacagcc	aggacgacac	ctgccccagg	taccgctacċ	tctgtcaaaa	5760
aaactttctc	aactcccagc	cctccgccag	tgccggcaac	atcaacatca	tccatgtcga	5820
ccacggcccc	ggggacctct	gtggtctcca	gcaagcccac	ccccacggag	cccagcacat	5880
cctcctgcct	gcaggagctt	tgcacctgga	ccgagtggat	tgatggcagc	taccctgctc	5940
ctggaataaa	tggtggagat	tttgacacat	ttcaaaattt	gagagacgaa	ggatacacat	6000
tctgtgaaag	tcctcgaagc	gtgcagtgcc	gggcagagag	cttccccaac	acgccgctgg	6060
gcagactggg	gcaggacgtc	atctgcagcc	acacagaggg	gctgatttgc	ctgaacaaga	6120
accagctccc	acccatctgc	tacaactatg	agatccgaat	ccagtgttgc	gagacggtga	6180
acgtgtgcag	agacatcacc	agaccgccaa	agaccgtcgc	aacgacgcgg	ccgactccac	6240
atccaaccgg	agctcagacc	cagaccacct	tcaccacaca	catgccctcg	gcctccacag	6300
agcaacccac	ggcaacctcc	aggggtgggc	ccacagcaac	cagcgtcaca	cagggcaccc	6360
acaccacacc	agtcaccaga	aactgtcatc	cccggtgcac	ctggacaacg	tggttcgacg	6420
		ccccatggtg cgccgacctg			aacatcatca tgccgagcca	6480 6540
agagccaccc	agaggtgagc	atcgaacacc	tgggccaggt	ggtgcagtgc	agccgggaag	6600

agggcctggt	gtgccggaac	caggaccagc	agggaccctt	caagatgtgc	ctcaacatcg	6660
aggtgcgtgt	gatatgatga	gagaccccca	aaggctgccc	cgtgacctcc	acacctgtga	6720
cagctcctag	cacccctagt	gggagagcca	tcagcccaac	tcagagcacc	tcctcttggc	6780
agaaatccag	gacaaccact	ttggtgacaa	ccagcacaac	ctccactcca	cagaccagta	6840
caacctatgc	ccatacaacc	agcacaacct	ctgctcctac	agccagaaca	acctctgctc	6900
ctacaaccag	cacaacttct	gtccctacaa	ccagcacaat	ctctggtcct	aaaactactc	6960
cgagccctgt	tcctaccacc	agcacaacct	ctgctgctac	aacaagcaca	atctctgctc	7020
ctacaacgag	cacaacttct	gtccctggaa	ctactcccag	ccctgttctc	accaccagca	7080
caacctctgc	tcctacaacc	agaacaacct	atgaatataa	agccggcaca	acctctggtc	7140
ctggaaatac	tcccagccct	gttcctacca	ccagcacaat	ctctgctcct	acaactagca	7200
taacctctgc	ccctacaacc	agcacaacct	ctgcccctac	aagcagcaca	acctctggtc	7260
ctggaactac	tcccagccct	gttcctacca	ccagcataac	ctctgcccct	acaaccagca	7320
caacctctgc	tcctacaacc	agcacaacct	ctgctcccac	aacgagcacg	acttctgccc	7380
ct						7382
4						

<210> 8
<211> 2058
<212> DNA

<213> Homo sapiens

<400> 8 cggtttctgc tgggtttctg aactgctggg tttctgcttg ctcctctgga gatgcagcgt 60 120 ctgttgactc cagtgaagcg cattctgcaa ctgacaagag cggtgcagga aacctccctc 180 acacctgctc gcctgctccc agtagcccac caaaggtttt ctacagcctc tgctgtcccc 240 ctggccaaaa cagatacttg gccaaaggac gtgggcatcc tggccctgga ggtctacttc 300 ccagcccaat atgtggacca aactgacctg gagaagtata acaatgtgga agcaggaaag tatacagtgg gcttgggcca gacccgtatg ggcttctgct cagtccaaga ggacatcaac 360 420 tccctgtgcc tgacggtggt gcaacggctg atggagcgca tacagctccc atgggactct 480 gtgggcaggc tggaagtagg cactgagacc atcattgaca agtccaaagc tgtcaaaaca 540 gtgctcatgg aactcttcca ggattcaggc aatactgata ttgagggcat agataccacc 600 aatgeetget aeggtggtae tgeeteette tteaatgetg eeaactggat ggagteeagt tcctgggatg gtcgttatgc catggtggtc tgtggagaca ttgccgtcta tcccagtggt 660 aatgetegte ceacaggtgg ggeeggaget gtggetatge tgattggeee aaaggeeeet 720 ctggccctgg agcgagggct gaggggaacc catatggaga atgtgtatga cttctacaaa 780

12

ccaaatttgg	cctcggagta	cccaatagtg	gatgggaagc	tttccatcca	gtgctacttg	840
cgggccttgg	atcgatgtta	cacatcatac	cgtaaaaaaa	tccagaatca	gtggaagcaa	900
gctggcagcg	atcgaccctt	cacccttgac	gatttacagt	atatgatctt	tcatacaccc	960
ttttgcaaga	tggtccagaa	gtatatggat	cgcctgatgt	tcaatgactt	cctgtcagcc	1020
agcagtgaca	cacaaaccag	cttatataag	gggctggagg	ctttcggggg	gctaaagctg	1080
gaagacacct	acaccaacaa	ggacctggat	aaagcacttc	taaaggcctc	tcaggacatg	1140
ttcgacaaga	aaaccaaggc	ttccctttac	ctctccactc	acaatgggaa	catgtacacc	1200
tcatccctgt	acgggtgcct	ggcctcgctt	ctgtcccacc	actctgccca	agaactggct	1260
ggctccagga	ttggtgcctt	ctcttatggc	tctggtttag	cagcaagttt	cttttcattt	1320
cgagtatccc	aggatgctgc	tccaggctct	cccctggaca	agttggtgtc	cagcacatca	1380
gacctgccaa	aacgcctagc	ctcccgaaag	tgtgtgtctc	ctgaggagtt	cacagaaata	1440
atgaaccaaa	gagagcaatt	ctaccataag	gtgaatttct	ccccacctgg	tgacacaaac	1500
agccttttcc	caggtacttg	gtacctggag	cgagtggacg	agcagcatcg	ccgaaagtat	1560
gacaggagta	ccgtctaaag	gtgttctgca	gatccatgga	aagcttcctg	ggaaacgtat	1620
gctagcagag	cttctccccg	tgaatcatat	ttttaagatc	ccactcttag	ctggtaaatg	1680
aatttgaatc	gacatagtag	ccccataagc	atcagccctg	tagagtgagg	agccatctct	1740
agegggeeet	tcattcctct	ccatgctgca	atcactgtcc	tgggcttatg	gtgcctatgg	1800
actaggggtc	ctttgtgaaa	gagcaagatg	gagcaatgga	gagaagacct	cttcctgaat	1860
cactggactc	cagaaatgtg	catgcagatc	agctgttgcc	ttcaagatcc	agataaactt	1920
tcctgtcatg	tgttagaact	ttattattat	taatattgtt	aaacttctgt	gctgttcctg	1980
tgaatctcca	aattttgtac	cttgttctaa	gctaatatat	agcaattaaa	aagagagaaa	2040
gagaaaaaaa	aaaaaaaa			-		2058

<210> 9

<211> 634 <212> DNA

<213> Homo sapiens

<400> 9 cggctgagag gcagcgaact catctttgcc agtacaggag cttgtgccgt ggcccacagc 60 120 ccacagccca cagccatggg ctgggacctg acggtgaaga tgctggcggg caacgaattc 180 caggtgtccc tgagcagctc catgtcggtg tcagagctga aggcgcagat cacccagaag attggcgtgc acgccttcca gcagcgtctg gctgtccacc cgagcggtgt ggcgctgcag 240 gacagggtcc cccttgccag ccagggcctg ggccctggca gcacggtcct gctggtggtg 300

gacaaatgcg	acgaacctct	gagcatcctg	gtgaggaata	acaagggccg	cagcagcacc	360
tacgaggtcc	ggctgacgca	gaccgtggcc	cacctgaagc	agcaagtgag	cgggctggag	420
ggtgtgcagg	acgacctgtt	ctggctgacc	ttcgagggga	agcccctgga	ggaccagctc	480
acgatggggg	agtacggcct	caagcccctg	agcaccgtgt	tcatgaatct	gegeetgegg	540
ggaggcggca	cagagcctgg	cgggcggagc	taagggcctc	caccagcatc	cgagcaggat	600
caagggccgg	aaataaaggc	tgttgtaaga	gaat			634
	11> 1959 sapiens					
<400> 10 gggcacgagg	gaggacagag	agcaagtcac	tacaggatga	ctttttcacc	tctgacagag	60
cccagacacc	atgaacgcaa	gtgaattccg	aaggagaggg	aaggagatgg	tggattacgt	120
ggccaactac	atggaaggca	ttgagggacg	ccaggtctac	cctgacgtgg	agcccgggta	180
cctgcggccg	ctgatccctg	ccgctgcccc	tcaggagcca	gacacgtttg	aggacatcat	240
caacgacgtt	gagaagataa	tcatgcctgg	ggtgacgcac	tggcacagcc	cctacttctt	300
cgcctacttc	cccactgcca	gctcgtaccc	ggccatgctt	gcggacatgc	tgtgcggggc	360
cattggctgc	atcggcttct	cctgggcggc	aagcccagca	tgcacagagc	tggagactgt	420
gatgatggac	tggctcggga	agatgctgga	actaccaaag	gcatttttga	atgagaaagc	480
tggagaaggg	ggaggagtga	tccagggaag	tgccagtgaa	gccaccctgg	tggccctgct	540
ggccgctcgg	accaaagtga	tccatcggct	gcaggcagcg	tccccagagc	tcacacaggc	600
cgctatcatg	gagaagctgg	tggcttactc	atccgatcag	gcacactcct	cagtggaaag	660
agctgggtta	attggtggag	tgaaattaaa	agccatcccc	tcagatggca	acttcgccat	720
gcgtgcgtct	gccctgcagg	aagccctgga	gagagacaaa	geggetggee	tgattccttt	780
ctttatggtt	gccaccctgg	ggaccacaac	atgctgctcc	tttgacaatc	tcttagaagt	840
cggtcctatc	tgcaacaagg	aagacatatg	gctgcacgtt	gatgcagcct	acgcaggcag	900
tgcattcatc	tgccctgagt	teeggeaeet	tctgaatgga	gtggagtttg	cagattcatt	960
caactttaat	ccccacaaat	ggctattggt	gaattttgac	tgttctgcca	tgtgggtgaa	1020
aaagagaaca	gacttaacgg	gagcctttag	actggacccc	acttacctga	agcacagcca	1080
tcaggattca	gggcttatca	ctgactaccg	gcattggcag	ataccactgg	gcagaagatt	1140
tegetetttg	aaaatgtggt	ttgtatttag	gatgtatgga	gtcaaaggac	tgcaggctta	1200
tatccgcaag	catgtccagc	tgtcccatga	gtttgagtca	ctggtgcgcc	aggatccccg	1260
ctttgaaatc	tgtgtggaag	tcattctggg	gcttgtctgc	tttcggctaa	agggttccaa	1320

caaagtgaat	gaagctcttc	tgcaaagaat	aaacagtgcc	aaaaaaatcc	acttggttcc	1380
atgtcacctc	agggacaagt	ttgtcctgcg	ctttgccatc	tgttctcgca	cggtggaatc	1440
tgcccatgtg	cagcgggcct	gggaacacat	caaagagctg	gcggccgacg	tgctgcgagc	1500
agagaggag	taggagtgaa	gccagctgca	ggaatcaaaa	attgaagaga	gatatatctg	1560
aaaactggaa	taagaagcaa	ataaatatca	tcctgccttc	atggaactca	gctgtctgtg	1620
gcttcccatg	tctttctcca	aagttatcca	gagggttgtg	attttgtctg	cttagtatct	1680
catcaacaaa	gaaatattat	ttgctaatta	aaaagttaat	cttcatggcc	atagctttta	1740
	gtgatttttg					1800
	aggaaagcct					1860
	tctgtggtct			tggctaaatg	cctaataaac	1920
aattcaagtg	aaatactaaa	aaaaaaaaa	aaaaaaaaa		-	1959

<210> 11

<211> 2876

<212> DNA <213> Homo sapiens

<400> 11

gaatteetge ageteageag eegeegeeag ageaggaega acegeeaate geaaggeace 60 tctgagaact tcaggatgca gatgtctcca gccctcacct gcctagtcct gggcctggcc 120 cttgtctttg gtgaagggtc tgctgtgcac catcccccat cctacgtggc ccacctggcc 180 tcagacttcg gggtgagggt gtttcagcag gtggcgcagg cctccaagga ccgcaacgtg 240 300 gttttctcac cctatgggt ggcctcggtg ttggccatgc tccagctgac aacaggagga 360 gaaacccagc agcagattca agcagctatg ggattcaaga ttgatgacaa gggcatggcc 420 cccgccctcc ggcatctgta caaggagctc atggggccat ggaacaagga tgagatcagc 480 accacagacg cgatcttcgt ccagcgggat ctgaagctgg tccagggctt catgccccac 540 ttcttcaggc tgttccggag cacggtcaag caagtggact tttcagaggt ggagagagcc 600 agattcatca tcaatgactg ggtgaagaca cacacaaaag gtatgatcag caacttgctt gggaaaggag ccgtggacca gctgacacgg ctggtgctgg tgaatgccct ctacttcaac 660 720 ggccagtgga agactccctt ccccgactcc agcacccacc gccgcctctt ccacaaatca 780 gacggcagca ctgtctctgt gcccatgatg gctcagacca acaagttcaa ctatactgag 840 ttcaccacgc ccgatggcca ttactacgac atcctggaac tgccctacca cggggacacc 900 ctcagcatgt tcattgctgc cccttatgaa aaagaggtgc ctctctctgc cctcaccaac 960 attetgagtg cecageteat cagecactgg aaaggeaaca tgaccagget geceegeete

ctggttctgc	ccaagttctc	cctggagact	gaagtcgacc	tcaggaagcc	cctagagaac	1020
ctgggaatga	ccgacatgtt	cagacagttt	caggctgact	tcacgagtct	ttcagaccaa	1080
gagcctctcc	acgtcgcgca	ggcgctgcag	aaagtgaaga	tcgaggtgaa	cgagagtggc	1140
acggtggcct	cctcatccac	agctgtcata	gtctcagccc	gcatggcccc	cgaggagatc	1200
atcatggaca	gacccttcct	ctttgtggtc	cggcacaacc	ccacaggaac	agtccttttc	1260
atgggccaag	tgatggaacc	ctgaccctgg	ggaaagacgc	cttcatctgg	gacaaaactg	1320
gagatgcatc	gggaaagaag	aaactccgaa	gaaaagaatt	ttagtgttaa	tgactctttc	1380
tgaaggaaga	gaagacattt	gccttttgtt	aaaagatggt	aaaccagatc	tgtctccaag	1440
accttggcct	ctccttggag	gacctttagg	tcaaactccc	tagtctccac	ctgagaccct	1500
gggagagaag	tttgaagcac	aactccctta	aggtctccaa	accagacggt	gacgcctgcg	1560
ggaccatctg	gggcacctgc	ttccacccgt	ctctctgccc	actcgggtct	gcagacctgg	1620
ttcccactga	ggccctttgc	aggatggaac	tacggggctt	acaggagctt	ttgtgtgcct	1680
ggtagaaact	atttctgttc	cagtcacatt	gccatcactc	ttgtactgcc	tgccaccgcg	1740
gaggaggctg	gtgacaggcc	aaaggccagt	ggaagaaaca	ccctttcatc	tcagagtcca	1800
ctgtggcact	ggccacccct	ccccagtaca	ggggtgctgc	aggtggcaga	gtgaatgtcc	1860
çccatcatgt	ggcccaactc	teetggeetg	gccatctccc	tccccagaaa	cagtgtgcat	1920
gggttatttt	ggagtgtagg	tgacttgttt	actcattgaa	gcagatttct	gcttcctttt	1980
atttttatag	gaatagagga	agaaatgtca	gatgcgtgcc	cagctcttca	cccccaatc	2040
tcttggtggg	gaggggtgta	cctaaatatt	tatcatatcc	ttgcccttga	gtgcttgtta	2100
gagagaaaga	gaactactaa	ggaaaataat	attatttaaa	ctcgctccta	gtgtttcttt	2160
gtggtctgtg	tcaccgtatc	tcaggaagtc	cagccacttg	actggcacac	acccctccgg	2220
acatccagcg	tgacggagcc	cacactgcca	ccttgtggcc	gcctgagacc	ctcgcgcccc	2280
ccgcgcccc	cgcgcccctc	tttttcccct	tgatggaaat	tgaccataca	atttcatcct	2340
ccttcagggg	atcaaaagga	cggagtgggg	ggacagagac	tcagatgagg	acagagtggt	2400
ttccaatgtg	ttcaatagat	ttaggagcag	aaatgcaagg	ggctgcatga	cctaccagga	2460
cagaactttc	cccaattaca	gggtgactca	cagccgcatt	ggtgactcac	ttcaatgtgt	2520
catttccggc	tgctgtgtgt	gagcagtgga	cacgtgaggg	gggggtgggt	gagagagaca	2580
ggcagctcgg	attcaactac	cttagataat	atttctgaaa	acctaccagc	cagagggtag	2640
ggcacaaaga	tggatgtaat	gcactttggg	aggccaaggc	gggaggattg	cttgagccca	2700
ggagttcaag	accagcctgg	gcaacatacc	aagacccccg	tctctttaaa	aatatatata	2760

accaatttat gggagaattg cacacagatg tgaaatgaat gtaatctaat agaagc 2876

<210> 12 <211> 1304 <212> DNA

<213> Homo sapiens

<400> 12

gttctccaca	actgccagca	atccttccac	caggcaaaac	acatcatcta	aggaaaagaa	60
gtgaggtttg	cttagggcgt	ggcagcttcg	gataaacgca	ggactccgcc	tggcagcccg	120
atttctcccg	gaacctctgc	tcagcctggt	gaaccacaca	ggccagcgct	ctgacatgca	180
gaaggtgacc	ctgggcctgc	ttgtgttcct	ggcaggcttt	cctgtcctgg	acgccaatga	240
cctagaagat	aaaaacagtc	ctttctacta	tgactggcac	agcctccagg	ttggcgggct	300
catctgcgct	ggggttctgt	gcgccatggg	catcatcatc	gtcatgagtg	caaaatgcaa	360
atgcaagttt	ggccagaagt	ccggtcacca	tccaggggag	actccacctc	tcatcacccc	420
aggctcagcc	caaagctgat	gaggacagac	cagctgaaat	tgggtggagg	accgttctct	480
gtccccaggt	cctgtctctg	cacagaaact	tgaactccag	gatggaattc	ttcctcctct	540
gctgggactc	ctttgcatgg	cagggcctca	tctcacctct	cgcaagaggg	tctctttgtt	600
caatttttt	taatctaaaa	tgattgtgcc	tctgcccaag	cagcctggag	acttcctatg	660
tgtgcattgg	ggtggggctt	ggggcaccat	gagaaggttg	gcgtgccctg	gaggctgaca	720
cagaggctgg	cactgagcct	gcttgttggg	aaaagcccac	aggcctgttc	ccttgtggct	780
tgggacatgg	cacaggcccg	ccctctgcct	cctcagccat	gggacctcat	atgcaatttg	840
ggatttacta	gtagccaaaa	ggaatgaaag	agagctctaa	ccagatggaa	cactggaaca	900
ttccagtgga	ccctggacca	ttccaggaaa	actgggacat	aggatcgtcc	cgctatgatg	960
gaagtgttca	gacagtttat	aatagtaagc	ccctgtgacc	ctctcactta	ccccgagacc	1020
tcactttatt	acaagatctt	tccaaatacc	caaatatccc	tgcaagcccg	ttaaataatt	1080
ccctatgcta	cccttaataa	catacaatga	ccacatagtg	tgagaacttc	caacaagcct	1140
caaagtccct	tgagactccc	caatacctaa	taaggcatgc	gaaatgttct	catgaactac	1200
cccacaacac	gcctaaaact	caaaacaccc	aaaaatatct	cctccaatgt	cctgagacat	1260
gaacccaaaa	agagacccac	aataaactcg	tgacttgtcc	cctc	r	1304

<210> 13 <211> 2245 <212> DNA

<213> Homo sapiens

<400> 13 60 gaatctcgac ccttgaatgg agttacacga acggccagat gaaagaagga aggcccggac ctccactcag ggccgactag gggactggcg gagggtgcac gctgatggat ttactcaccg 120 180 ggtgcttgga gctccagcag ctggctggag cccgcgatga cgtcacggac tcgggtcaca tggccgagtc cgcccgccc cctccccgtc cccgccgctg cagccgtcgc cttcggagcg 240 300 aagggtaccg acccggcaga agctcggagc tctcggggta tcgaggaggc aggcccgcgg gcgcacgggc gagcgggccg ggagccggag cggcggagga gccggcagca gcggcgcggc 360 gggctccagg cgaggcggtc gacgctcctg aaaacttgcg cgcgcgctcg cgccactgcg 420 480 cccggagcga tgaagatggt cgcgccctgg acgcggttct actccaacag ctgctgcttg 540 tgctgccatg teegeaeegg eaceateetg eteggegtet ggtatetgat eateaatget 600 gtggtactgt tgattttatt gagtgccctg gctgatccgg atcagtataa cttttcaagt 660 tctgaactgg gaggtgactt tgagttcatg gatgatgcca acatgtgcat tgccattgcg 720 atttctcttc tcatgatcct gatatgtgct atggctactt acggagcgta caagcaacgc 780 qcaqcctqqa tcatcccatt cttctgttac cagatctttg actttgccct gaacatgttg 840 qttqcaatca ctqtqcttat ttatccaaac tccattcagg aatacatacg gcaactgcct 900 cctaattttc cctacagaga tgatgtcatg tcagtgaatc ctacctgttt ggtccttatt attettetgt ttattageat tatettgaet tttaagggtt aettgattag etgtgtttgg 960 aactgctacc gatacatcaa tggtaggaac tcctctgatg tcctggttta tgttaccagc 1020 1080 aatqacacta cqqtqctqct accccqtat gatqatqcca ctqtqaatqq tqctqccaaq gagccaccgc caccttacgt gtctgcctaa gccttcaagt gggcggagct gagggcagca 1140 gcttgacttt gcagacatct gagcaatagt tctgttattt cacttttgcc atgagcctct 1200 1260 ctgagcttgt ttgttgctga aatgctactt tttaaaaattt agatgttaga ttgaaaactg tagttttcaa catatgcttt gctggaacac tgtgatagat taactgtaga attcttcctg 1320 tacgattggg gatataatgg gcttcactaa ccttccctag gcattgaaac ttcccccaaa 1380 tctgatggac ctagaagtct gcttttgtac ctgctgggcc ccaaagttgg gcatttttct 1440 ctctgttccc tctcttttga aaatgtaaaa taaaaccaaa aatagacaac tttttcttca 1500 gccattccag catagagaac aaaaccttat ggaaacagga atgtcaattg tgtaatcatt 1560 gttctaatta ggtaaataga agtccttatg tatgtgttac aagaatttcc cccacaacat 1620 cctttatgac tgaagttcaa tgacagtttg tgtttggtgg taaaggattt tctccatggc 1680 1740 ctgaattaag accattagaa agcaccaggc cgtgggagca gtgaccatct gctgactgtt 1800 cttgtggatc ttgtgtccag ggacatgggg tgacatgcct cgtatgtgtt agagggtgga

atggatgtgt	ttggcgctgc	atgggatctg	gtgcccctct	tctcctggat	tcacatcccc	1860
acccagggcc	cgcttttact	aagtgttctg	ccctagattg	gttcaaggag	gtcatccaac	1920
tgactttatc	gagtggaatt	gggatatatt	tgatatactt	ctgcctaaca	acatggaaaa	1980
gggttttctt	ttccctgcaa	gctacatcct	actgctttga	acttccaagt	atgtctagtc	2040
accttttaaa	atgtaaacat	tttcagaaaaa	atgaggattg	ccttccttgt	atgcgctttt	2100
taccttgact	acctgaattg	caagggattt	ttatatattc	atatgttaca	aagtcagcaa	2160
ctctcctgtt	ggttcattat	tgaatgtgct	gtaaattaag	ttgtttgcaa	ttaaaacaag	2220
gtttgcccac	aaaaaaaaa	aaaaa				2245
<210> 14 <211> 623 <212> DNA <213> Home	o sapiens					
<400> 14 aggccaagct	ggactgcata	aagattggta	tggccttagc	tcttagccaa	acaccttcct	60
gacaccatga	gggccagcag	cttcttgatc	gtggtggtgt	tcctcatcgc	tgggacgctg	120
gttctagagg	cagctgtcac	gggagttcct	gttaaaggtc	aagacactgt	caaaggccgt	180
gttccattca	atggacaaga	tcccgttaaa	ggacaagttt	cagttaaagg	tcaagataaa	240
gtcaaagcgc	aagagccagt	caaaggtcca	gtctccacta	agcctggctc	ctgccccatt	300
atcttgatcc	ggtgcgccat	gttgaatccc	cctaaccgct	gcttgaaaga	tactgactgc	360
ccaggaatca	agaagtgctg	tgaaggctct	tgcgggatgg	cctgtttcgt	tccccagtga	420
gagggagccg	gtccttgctg	cacctgtgcc	gtccccagag	ctacaggccc	catctggtcc	480
taagtccctg	ctgcccttcc	ccttcccaca	ctgtccattc	ttcctcccat	tcaggatgcc	540
cacggctgga	gctgcctctc	tcatccactt	tccaataaag	agttccttct	gctccaaaaa	600
aaaaaaaaaa	aaaaaaaaa	aaa				623
	sapiens					
<400> 15 gcgcccctgg	cagccttcaa	cgtcggtccc	caggcagcat	ggtgaggtct	gctcccggac	60
cctcgccacc	atgtacgtga	gctacctcct	ggacaaggac	gtgagcatgt	accctagctc	120
cgtgcgccac	tctggcggcc	tcaacctggc	gccgcagaac	ttcgtcagcc	ccccgcagta	180
cccggactac	ggcggttacc	acgtggcggc	cgcagctgca	gcgcagaact	tggacagcgc	240
gcagtccccg	gggccatcct	ggccggcagc	gtatggcgcc	ccactccggg	aggactggaa	300

t	tggctacgcg	cccggaggcg	cggccgccgc	caacgccgtg	gctcacgcgc	tcaacggtgg	360
(ctccccggcc	gcagccatgg	gctacagcag	ccccgcagac	taccatccgc	accaccaccc	420
ç	gcatcaccac	ccgcaccacc	cggccgccgc	gccttcctgc	gcttctgggc	tgctgcaaac	480
9	gctcaacccc	ggccctcctg	ggcccgccgc	caccgctgcc	gccgagcagc	tgtctcccgg	540
(cggccagcgg	cggaacctgt	gcgagtggat	gcggaagccg	gcgcagcagt	ccctcggcag	600
(ccaagtgaaa	accaggacga	aagacaaata	tcgagtggtg	tacacggacc	accagcggct	660
9	ggagctggag	aaggagtttc	actacagtcg	ctacatcacc	atccggagga	aagccgagct	720
ě	agccgccacg	ctggggctct	ctgagaggca	ggttaaaatc	tggtttcaga	accgcagagc	780
	aaaggagagg	aaaatcaaca	agaagaagtt	gcagcagcaa	cagcagcagc	agccaccaca	840
9	gccgcctccg	ccgccaccac	agcctcccca	gcctcagcca	ggtcctctga	gaagtgtccc	900
	agagcccttg	agtccggtgt	cttccctgca	agcctcagtg	tctggctctg	tccctggggt	960
	tctggggcca	actggggggg	tgctaaaccc	caccgtcacc	cagtgaccca	ccggggtctg	1020
	cagcggcaga	gcaattccag	gctgagccat	gaggagcgtg	gactctgcta	gactcctcag	1080
•	gagagacccc	tecectecca	cccacagcca	tagacctaca	gacctggctc	tcagaggaaa	1140
	aatgggagcc	aggagtaaga	caagtgggat	ttggggcctc	aagaaatata	ctctcccaga	1200
	tttttacttt	ttccatctgg	ctttttctgc	cactgaggag	acagaaagcc	tccgctgggc	1260
	ttcattccgg	actggcagaa	gcattgcctg	gactgaccac	accaaccagc	ttcatctatc	1320
	cgactcttct	cttcctagat	ctgcaggctg	cacctctggc	tagagccgag	gggagagagg	1380
	gactcaaggg	aaaggcaagc	ttgaggccaa	gatggctgct	gcctgctcat	ggccctcgga	1440
	ggtccagctg	ggcctcctgc	ctccgggcag	caaggtttac	actgcggaac	gcaaaggcag	1500
	ctaagataga	aagctggact	gaccaaagac	tgcagaaccc	ccaggtggcc	ctgcgtcttt	1560
	tttctcttcc	ctttcccaga	ccaggaaagg	cttggctggt	gtatgcacag	ggtgtggtat	1620
	gagggggtgg	ttattggact	ccaggcctga	ccagggggcc	cgaacaggac	ttgttagaga	1680
	gcctgtcacc	agagcttctc	tgggctgaat	gtatgtcagt	gctataaatg	ccagagccaa	1740
	aatgg						1745
	<210> 16 <211> 409 <212> DNA <213> Home						
	くせいひろ より						

<400> 16
cgcgcgctgc ctgaggacgc cgcggccccc gccccgcca tgggcgccc tgcctgcgcc 60
ctcgcgctct gcgtggccgt ggccatcgtg gccggcgcct cctcggagtc cttggggacg 120

gagcagcgcg	tcgtggggcg	agcggcagaa	gtcccgggcc	cagagcccgg	ccagcaggag	180	
cagttggtct	tcggcagcgg	ggatgctgtg	gagctgagct	gtacacagaa	cgggggtggt	240	
cccatggggc	ccactgtctg	ggtcaaggat	ggcacagggc	tggtgccctc	ggagcgtgtc	300	
ctggtggggc	cccagcggct	gcaggtgctg	aatgcctccc	acgaggactc	cggggcctac	360	
agctgccggc	agcggctcac	gcagcgcgta	ctgtgccact	tcagtgtgcg	ggtgacagac	420	
gctccatcct	cgggagatga	cgaagacggg	gaggacgagg	ctgaggacac	aggtgtggac	480	
acaggggccc	cttactggac	acggcccgag	cggatggaca	agaagctgct	ggccgtgccg	540	
gccgccaaca	ccgtccgctt	ccgctgccca	gccgctggca	accccactcc	ctccatctcc	600	
tggctgaaga	acggcaggga	gttccgcggc	gagcaccgca	ttggaggcat	caagctgcgg	660	
catcagdagt	ggagcctggt	catggaaagc	gtggtgccct	cggaccgcgg	caactacacc	720	
tgcgtcgtgg	agaacaagtt	tggcagcatc	cggcagacgt	acacgctgga	cgtgctggag	780	
cgctccccgc	accggcccat	cctgcaggcg	gggctgccgg	ccaaccagac	ggcggtgctg	840	
ggcagcgacg	tggagttcca	ctgcaaggtg	tacagtgacg	cacagcccca	catccagtgg	900	
ctcaagcacg	tggaggtgaa	cggcagcaag	gtgggcccgg	acggcacacc	ctacgttacc	960	
gtgctcaaga	cggcgggcgc	taacaccacc	gacaaggagc	tagaggttct	ctccttgcac	1020	
aacgtcacct	ttgaggacgc	cggggagtac	acctgcctgg	cgggcaattc	tattgggttt	1080	
tctcatcact	ctgcgtggct	ggtggtgctg	ccagccgagg	aggagctggt	ggaggctgac	1140	
gaggcgggca	gtgtgtatgc	aggcatcctc	agctacgggg	tgggcttctt	cctgttcatc	1200	
ctggtggtgg	cggctgtgac	gctctgccgc	ctgcgcagcc	cccccaagaa	aggcctgggc	1260	
tccccaccg	tgcacaagat	ctcccgcttc	ccgctcaagc	gacaggtgtc	cctggagtcc	1320	
aacgcgtcca	tgagctccaa	cacaccactg	gtgcgcatcg	caaggctgtc	ctcaggggag	1380	
ggccccacgc	tggccaatgt	ctccgagctc	gagctgcctg	ccgaccccaa	atgggagctg	1440	
tatagggaaa	ggctgaccct	gggcaagccc	cttggggagg	gatgattagg	ccaggtggtc	1500	
atggcggagg	ccatcggcat	tgacaaggac	cgggccgcca	agcctgtcac	cgtagccgtg	1560	
aagatgctga	aagacgatg c	cactgacaag	gacctgtcgg	acctggtgtc	tgagatggag	1620	
atgatgaaga	tgatcgggaa	acacaaaac	atcatcaacc	tgatgggaga	ctgcacgcag	1680	
ggcgggcccc	tgtacgtgct	ggtggagtac	gcggccaagg	gtaacctgcg	ggagtttctg	1740	
cgggcgcggc	agacacagaa	cctggactac	tccttcgaca	cctgcaagcc	gcccgaggag	1800	
cagctcacct	tcaaggacct	ggtgtcctgt	gcctaccagg	tggcccgggg	catggagtac	1860	
ttggcctccc	agaagtgcat	ccacagggac	ctggctgccc	gcaatgtgct	ggtgaccgag	1920	

gacaacgtga	tgaagatcgc	agacttcggg	ctggcccggg	acgtgcacaa	cctcgactac	1980
tacaagaaga	caaccaacgg	ccggctgccc	gtgaagtgga	tggcgcctga	ggccttgttt	2040
gaccgagtct	acactcacca	gagtgacgtc	tggtcctttg	gggtcctgct	ctgggagatc	2100
ttcacgctgg	ggggctcccc	gtaccccggc	atccctgtgg	aggagetett	caagctgctg	2160
aaggagggcc	accgcatgga	caagcccgcc	aactgcacac	acgacctgta	catgatcatg	2220
cgggagtgct	ggcatgccgc	gccctcccag	aggcccacct	tcaagcagct	ggtggaggac	2280
ctggaccgtg	teettacegt	gacgtccacc	gacgagtacc	tggacctgtc	ggcgcctttc	2340
gagcagtact	ccccgggtgg	ccaggacacc	cccagçtcca	gctcctcagg	ggacgactcc	2400
gtgtttgccc	acgacctgct	gcccccggcc	ccacccagca	gtgggggctc	gcggacgtga	2460
agggccactg	gtccccaaca	atgtgagggg	tccctagcag	acatacatga	tgctggtgca	2520
cagccactcc	ccggcatgag	actcagtgca	gatggagaga	cagctacaca	gagctttggt	2580
ctgtgtgtgt gcgcatcttg	gtgtgtgcgt cctccaggtg	gtgtgtgtgt cagaggtacc	gtgtgcacat ctgggtgtcc	ccgcgtgtgc ccgctgctgt	ctgtgtgcgt gcaacggtct	2640 2700
cctgactggt	gctgcagcac	cgaggggcct	ttgttctggg	gggacccagt	gcagaatgta	2760
agtgggccca	cccggtggga	ccccgtgggg	cagggagctg	ggcccgacat	ggctcggcct	2820
ctgcctttgc	accacgggac	atcacagggt	gegeteggee	cctcccacac	ccaaagctga	2880
gcctgcaggg	aagccccaca	tgtccagcac	cttgtgcctg	gggtgttagt	ggcaccgcct	2940
ccccacctcc	aggettteee	acttcccacc	ctgcccctca	gagactgaaa	ttacgggtac	3000
ctgaagatgg	gagcctttac	cttttatgca	aaaggtttat	tccggaaact	agtgtacatt	3060
tctataaata	gatgctgtgt	atatggtata	tatacatata	tatatataac	atatatggaa	3120
gaggaaaagg	ctggtacaac	ggaggcctgc	gaccctgggg	gcacaggagg	caggcatggc	3180
cctgggcggg	gcgtggggg	gcgtggaggg	aggccccagg	ggtctcaccc	atgcaagcag	3240
aggaccaggg	ctttttctgg	caccgcagtt	ttgttttaaa	actggacctg	tatatttgta	3300
aagctattta	tgggcccctg	gcactcttgt	tcccacaccc	caacacttcc	agcatttagc	3360
tggccacatg	gcggagagtt	ttaattttta	acttattgac	aaccgagaag	gtttatcccg	3420
ccgatagagg	gacggccaag	aatgtacgtc	cagcctgccc	cggagctgga	ggatcccctc	3480
caagcctaaa	aggttgttaa	tagttggagg	tgattccagt	gaagatattt	tatttgcttt	3540
gtactttta	aggagaatta	gatttctata	ggatttttct	ttaggagatt	tattttttgg	3600
acttcaaagc	aagctggtat	tttcatacaa	attcttctaa	ttgctgtgtg	teccaggeag	3660
ggagacggtt	tccagggagg	ggccggccct	gtgtgcaggt	tccgatgtta	ttagatgtta	3720
caagtttata	tatatctata	tatataattt	attgagtttt	tacaagatgt	atttgttgta	3780

gacttaacac ttcttac	gca atgettetag	agttttatag	cctggactgc	tacctttcaa	3840
agcttggagg gaagccg	ıtga attcagttgg	ttcgttctgt	actgttactg	ggccctgagt	3900
ctgggcagct gtccctt	get tgeetgeagg	gccatggctc	agggtggtct	cttcttgggg	3960
cccagtgcat ggtggcc	aga ggtgtcaccc	aaaccggcag	gtgcgatttt	gttaacccag	4020
cgacgaactt tccgaaa	aat aaagacacct	ggttgctaac	ctgaaaaaaa	aaaaaaaaa	4080
aaaaaaaaaa aaa					4093
<210> 17 <211> 719 <212> DNA <213> Homo sapier	ns	,			
<400> 17 ttttttttt tttttt	ttc aagatggcag	ctttaatcac	attggccaag	ggccctaggt	60
tccctctgtt caggcc	cact tagccacaca	cccaccctgg	ccatatccag	aacacttcta	120
ccaggtgggc cctgcc	etgt ggccactgat	gtgggaacct	gaggtcacat	cagtctgtgg	180
actcctgggt taggtga	accc ttctgccttg	aggtctgctg	gacacctggg	catgggatcc	240
agtagtcctg agctcac	ctct tttggccatc	tccagctgct	cctaggggac	gtggctcagg	300
cccgctcctg gggcagg	gggg ttggcggtgg	catgaggtgg	gttggggagg	aggacgtgtc	360
tccacattgc agctgg	cttc ctcctgggct	gaacctcctt	gtgctttgag	actgacagga	420
agagcagagt tgcttca	aggt agaggctcgg	cccaggccct	tggggcagga	taacagcaga	480
gaactcaggt gcctcc	ggc acagacagga	ggacagatgg	cacaggtgag	catccacaca	540
ctccattgcc acaggg	ggta tggcatggco	catgacccat	caaagcttcc	aggtcgggat	600
acaggagagg gcctcag	gaag agggggacca	agccctaggc	cccatacttc	ccagagggag	660
ccccaggcct gcaggg	gcat ctgaaaggat	ggagtcctgg	cccagctggg	cctcagggg [']	719
<210> 18 <211> 3503 <212> DNA <213> Homo sapie:	as				
<400> 18 ggccgggagc tcggga	gtag gaagaagaga	cgaggttcgc	cccgttttgc	agagagagcc	60
gagtcgggac ctggaa	agac gtccccgcgg	ggeteeggee	gccgcgcctc	cccgccggcg	120
cctgccctgc cctgcc	egte ceageceege	ggttcggggc	gtgcggccgg	gacgcgcgga	180
geeeeggeee tgaeee	gctg cgccgggacg	ggacgctcct	aacgccgccg	taccggtccg	240
tggttgcagg gtcgct	caga gaatttaagt	cagtgagggt	cggaacccca	gctccagggc	300
tagcgcagtg tggccc	cagg ccctcgcctc	cggtgcacgg	gaccccggac	cccccaagc	360

ctctggcttc	acgagacccc	aaccttcagt	tggaacagct	tggaacagcg	cgagcgcccg	420
ggaagccctg	gccgggtcgt	gcgctccgtg	aggggtccta	ggcgggcagg	acagtcggac	480
cgaaccgccg	ggctggtgcc	gcgagcccag	gctgtcacct	tegteeegee	tcaggcgagg	540
ggttcagcgc	ctgccccgaa	gataacacag	gggtcccctt	ctgtcccggc	ggcccgcgag	600
agccaaggct	gcagctctcc	cagtgaagtg	atatcactgc	ctctgtggac	aagacacctc	660
caggagccca	gctcacagcc	accggtacct	tcttccagga	caagctgggg	gcctccatgg	720
gcgcctgagg	gccaggcgcc	agggccgtgg	gcacgagtat	ggtgagacac	cagcccctgc	780
agtactacga	gccacagctg	tgcctctcct	gcctcacggg	catctacggc	tgccgttgga	840
agcgctacca	gcgctcccat	gatgatacca	caccgtggga	gcgcctctgg	ttcctgctcc	900
tcaccttcac	ctttggcctc	acgctcacct	ggctttactt	ctggtgggaa	gtccacaatg	960
actatgatga	attcaactgg	tacctctaca	accgcatggg	ctactggagc	gactggcccg	1020
tacccatcct	tgtgaccaca	gatgatgaat	tcgcatacat	cgctggcctc	ctggtcctgg	1080
cactatgtca	cattgccgtg	gggcagcaga	tgaacctgca	ctggctgcac	aagatcgggc	1140
tggtggtcat	cctggcttcc	acggtggtgg	ccatgtcggc	cgtggcccag	ctgtgggagg	1200
acgagtggga	ggtgctgctg	atctccctgc	agggcacagc	gccattcctg	catgtggggg	1260
ctgtggcagc	agtcaccatg	ctctcctgga	tcgtggcagg	acagttcgcc	cgtgcagagc	1320
ggacctcctc	ccaggtgacc	attctctgta	ccttcttcac	cgtggtgttt	gccctctacc	1380
tggcccctct	caccatctcc	teteeetgea	tcatggagaa	gaaagacctc	ggccccaagc	1440
ctgctctcat	tggccaccgc	ggggccccca	tgctggctcc	agagcacacg	ctcatgtcct	1500
tccggaaggc	cctcgagcag	aagctgtacg	ggctccaggc	tgacattacc	atcagcctgg	1560
acggcgtgcc	cttcctcatg	catgacacca	ccctgcggcg	caccaccaac	gtggaggagg	1620
agttcccgga	gctggcccgc	aggcctgcct	ccatgcttaa	ctggaccacc	ctgcagagac	1680
tcaacgctgg	ccagtggttc	ctgaagactg	accccttctg	gacagccagc	tccctgtcac	1740
cctccgacca	cagagaggcc	cagaaccagt	ccatctgcag	cctggcagag	ctcctggagc	1800
tggccaaggg	caatgccaca	ctgctgctca	acctgcgtga	cccgccccgg	gagcacccct	1860
accgcagcag	ttttatcaac	gtgactctgg	aggccgtgct	gcactccggc	ttcccccagc	1920
accaggtcat	gtggctgcct	agcaggcaga	ggcccctggt	gcggaaggtg	gctcccggct	1980
tccaacagac	atcaggctcc	aaggaggcag	tcgccagcct	gcggagaggc	cacatccagc	2040
ggctgaacct	gcgctacact	caggtgtccc	gccaggagct	cagggactac	gcgtcctgga	2100
acctgagtgt	gaacctctac	acagtcaacg	caccgtggct	cttctccctg	ctgtggtgtg	2160

cgggggtccc atccgtcacc	tctgacaact	cccacaccct	gtcccaggtg	ccttcccccc	2220
tctggatcat gcccccggac	gagtactgtc	tcatgtgggt	cactgccgac	ctggtctcct	2280
tcaccctcat cgtgggcatc	ttcgtgctcc	agaagtggcg	cctgggtggc	atacggagct	2340
acaaccctga gcagatcatg	ctgagtgctg	cggtgcgccg	gaccagccgg	gacgtcagca	2400
tcatgaagga gaagcttatt	ttctcagaga	tcagcgatgg	tgtagaggtc	tccgatgtgc	2460
tctccgtatg ttcagacaac	agttatgaca	catatgccaa	cagcaccgcc	acccctgtgg	2520
gcccccgagg gggtggcagc	cacaccaaga	ccctcataga	gcggagtggg	cgttagctga	2580
agacatgtct gtcccacctg	tacctgacac	agaagctggg	gagcctagga	gagctggtgg	2640
aagtgtgtct gaactcggag	tgctctggga	gegggeteca	cagcctcctt	gtgggctcca	2700
gccccttgtc agccgcagcc	tctcttgagg	gggactccct	gtctcctgag	gcccagctgg	2760
gccaggactc catcctttca	gatgcccctg	caggcctggg	gctccttctg	ggaagtatgg	2820
ggcctagggc ttggtccccc	tettetgagg	acatatactg	tatcccgacc	tggaagcttt	2880
gatgggtcat gggccatgcc	ataccccctg	tggcaatgga	gtgtgtggat	gctcacctgt	2940
gccatctgtc ctcctgtctg	tgccaggagg	cacctgagtt	ctctgctgtt	atcctgcccc	3000
aagggcctgg gccgagcctc	tacctgaagc	aactctgctc	ttcctgtcag	tctcaaagca	3060
caaggaggtt cagcccagga	ggaagccagc	tgcaatgtgg	agacacgtcc	tcctccccaa	3120
cccacctcat gccaccgcca	accccctgcc	ccaggagcgg	gcctgagcca	cgtcccctag	3180
gagcagctgg agatggccaa	aagagtgagc	tcaggactac	tggatcccat	gcccaggtgt	3240
ccagcagacc tcaaggcaga	agggtcacct	aacccaggag	tccacagact	gatgtgacct	3300
caggttccca catcagtggc	cacagggcag	ggcccacctg	gtagaagtgt	tctggatatg	3360
gccagggtgg gtgtgtggct	aagtgggcct	gaacagaggg	aacctagggc	ccttggcaat	3420
gtgatttaaa gctgccatct	tgcggaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaai	3480
aaaaaaaaaa aaaaaaaaaa	aaa				3503

```
<210> 19
<211> 2309
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (2255)..(2256)
```

<223> n is a, c, g, or t

tttgtcttca agagtttttc gagaccaggg aagaaggaag gaaatgccca gtttgatcgt 60

gggagtggta	aaatgataaa	gtagatctgg	gtggggtttg	tagcaccaga	gcataatgga	120
gaaacacctt	ggttttgtaa	tcaagactgg	atctaccagt	gacttgctga	ataacttcgg	180
tgattccttt	ctcttcttgg	gtctcactgt	atttcaaaac	atgaagaatt	tcattgtaat	240
gttacctaat	aagtgagcca	gcacttctac	tctgtgagaa	agtaggaaaa	ctcttgggac	300
aatcagagat	gatgtgatgt	aatgtccatt	agttcttcct	gtgaataatc	ctgagggaaa	360
gcccccaggt	ccctcccaga	atggggtgga	tatttcccaa	tacagctaag	gaattatccc	420
ttgtaaatac	cacagacccg	ccctggagcc	aggccaagct	ggactgcata	aagattggta	480
tggccttagc	tcttagccaa	acaccttcct	gacaccatga	gggccagcag	cttcttgatc	540
gtggtggtgt	tcctcatcgc	tgggacgctg	gttctagagg	cagctgtcac	gggaggtgag	600
tgaacaggtg	acctgctggg	ctgggttgga	ctaaggggag	accctctgga	caccctgggc	660
caggacaggg	agcactactg	aagcagtagg	cagcactgga	gcccagattt	cagctttctg	720
ttctttgcca	tcatattcag	aaaaaatagg	actttggctg	gtggactcca	cgtgctttcc	780
acctcagtga	ctgagatatc	aggactgttt	gtggaagtaa	tgttggtatg	tggccttggc	840
ctcagatgtc	aatacctgtg	cagaatgtgc	aataaaataa	tgaactccag	gattttaaac	900
cttgggtgtg	gacacagtcc	ccgtttctct	gccccataaa	agcactggag	taatcagtac	960
tctaaaagga	ggttaagaaa	caacaagcct	tcaggaatca	tgttgtttga	ggacccccat	1020
tttataagga	gggaaccaaa	aatgtagaaa	tgagtgagca	attgccaagg	taattcccag	1080
agccaggatg	gggctcaagt	ctcctagtat	gtggctcagg	gttctttcct	actccaatgc	1140
acttcctaac	aaatgacaat	gtgtcctctt	cactgctggg	tgtcacccca	gtctgaccac	1200
tgctcctgag	agacttggag	tggaggaagg	gggaagaaac	aaatactcaa	gggaactctg	1260
gtcctgtaga	ccaccccaaa	aaaggaagag	ccttccaaga	gtgtagctcc	cagaggtgta	1320
ccttccctac	tcaggccatg	gtttgaggat	gctgcagtaa	gcagtggatg	gacccagacc	1380
cagaggaaag	acatggcagc	tgaagcagag	gcttactggg	tataaatgtg	ggctcgtttc	·1440
ttcttttaac	agttcctgtt	aaaggtcaag	acactgtcaa	aggccgtgtt	ccattcaatg	1500
gacaagatcc	cgttaaagga	caagtttcag	ttaaaggtca	agataaagtc	aaagcgcaag	1560
agccagtcaa	aggtccagtc	tccactaagc	ctggctcctg	cccattatc	ttgatccggt	1620
gcgccatgtt	gaatccccct	aaccgctgct	tgaaagatac	tgactgccca	ggaatcaaga	1680
agtgctgtga	aggctcttgc	gggatggcct	gtttcgttcc	ccagtgaggt	gagcactagc	1740
tggagaacga	ggagacccct	gaagacacaa	aagaaggctg	agcggtgggg	aagcatccca	1800
ggttggtggg	agggaggttg	tgggaggtga	cagaaagact	gggagactga	ggggtctgag	1860
aggctataac	cagagtgcct	agaaggatga	tatgtattaa	tcactgcctc	tgagtgcttt	1920

gatgtgctga ctctcacctc	tgatactctt	ctcttccaca	gagggagccg	gtccttgctg	1980
cacctgtgcc gtccccagag	ctacaggccc	catctggtcc	taagtccctg	ctgcccttcc	2040
ccttcccaca ctgtccattc	ttcctcccat	tcaggatgcc	cacggctgga	gctgcctctc	2100
tcatccactt tccaataaag	acttccttct	gctccacttg	tttctggttc	ctatgacttc	2160
tgggctcctg gatgctttgg	ggaaatggat	gtagaattgg	gacttcttct	ctccagtgaa	2220
gaggggaaac ggtcccatgg	tgaaagagag	caggnnggag	gaaacaagga	ggcacatgct	2280
agggcttcat attacaatcc	aataatcag				2309
<210> 20 <211> 6287 <212> DNA <213> Homo sapiens					,
<400> 20 ggcagctccg agggcacctc	cggttctccc	ccatcctccg	ggagtgtctg	ggcgctcagt	60
ccgctctgat cccgccgaaa	ccacctgcgg	ttggcaggca	ggagactagg	cgtctgccgg	120
ggagggcagg gacccgctaa	gctgatctcc	tgtacagtag	tgctacttaa	aatatgctgg	180
ggaccatcac catcacagtt	ggacagagag	actctgaaga	tgtgagcaaa	agagactccg	240
ataaagagat ggctactaag	tcagcggttg	ttcacgacat	cacagatgat	gggcaggagg	300
agacacccga aataatcgaa	cagattcctt	cttcagaaag	caatttagaa	gagctaacac	360
aacccactga gtcccaggct	aatgatattg	gatttaagaa	ggtgtttaag	tttgttggct	420
ttaaattcac tgtgaaaaag	gataagacag	agaagcctga	cactgtccag	ctactcactg	480
tgaagaaaga tgaaggggag	ggagcagcag	gggctggcga	ccacaaggac	cccagccttg	540
gggctggaga agcagcatcc	aaagaaagcg	aacccaaaca	atctacagag	aaacccgaag	600
agaccctgaa gcgtgagcaa	agccacgcag	aaatttctcc	cccagccgaa	tctggccaag	660
cagtggagga atgcaaagag	gaaggagaag	agaaacaaga	aaaagaacct	agcaagtctg	720
cagaatctcc gactagtccc	gtgaccagtg	aaacaggatc	aaccttcaaa	aaattcttca	780
ctcaaggttg ggccggctgg	cgcaaaaaga	ccagtttcag	gaagccgaag	gaggatgaag	840
tggaagcttc agagaagaaa	aaggaacaag	agccagaaaa	agtagacaca	gaagaagacg	900
gaaaggcaga ggttgcctcc	gagaaactga	ccgcctccga	gcaagcccac	ccacaggagc	960
cggcagaaag tgcccacgag	ccccggttat	cagctgaata	tgagaaagtt	gagctgccct	1020
cagaggagca agtcagtggc	tegeagggae	cttctgaaga	gaaacctgct	ccgttggcga	1080
cagaagtgtt tgatgagaaa	atagaagtcc	accaagaaga	ggttgtggcc	gaagtccacg	1140
tcagcaccgt ggaggagaga	accgaagagc	agaaaacgga	ggtggaagaa	acagcagggt	1200

ctgtgccagc	tgaagaattg	gttgaaatgg	atgcagaacc	tcaggaagct	gaacctgcca	1260
aggagctggt	gaagctcaaa	gaaacgtgtg	tttccggaga	ggaccctaca	cagggagctg	1320
acctcagtcc	tgatgagaag	gtgctgtcca	aaccccccga	aggcgttgtg	agtgaggtgg	1380
aaatgctgtc	atcacaggag	agaatgaagg	tgcagggaag	tccactaaag	aagcttttta	1440
ccagcactgg	cttaaaaaag	ctttctggaa	agaaacagaa	agggaaaaga	ggaggaggag	1500
acgaggaatc	aggggagcac	actcaggttc	cagccgattc	tccggacagc	caggaggagc	1560
aaaagggcga	gagctctgcc	tcatcccctg	aggagcccga	ggagatcacg	tgtctggaaa	1620
agggcttagc	cgaggtgcag	caggatgggg	aagctgaaga	aggagctact	tccgatggag	1680
agaaaaaaag	agaaggtgtc	actccctggg	catcattcaa	aaagatggtg	acgcccaaga	1740
agcgtgttag	acggccttcg	gaaagtgata	aagaagatga	gctggacaag	gtcaagagcg	1800
ctaccttgtc	ttccaccgag	agcacagcct	ctgaaatgca	agaagaaatg	aaagggagcg	1860
tggaagagcc	aaagccggaa	gaaccaaagc	gcaaggtgga	tacctcagta	tcttgggaag	1920
ctttaatttg	tgtgggatca	tccaagaaaa	gagcaaggag	agggtcctct	tctgatgagg	1980
aagggggacc	aaaagcaatg	ggaggagacc	accagaaagc	tgatgaggcc	ggaaaagaca	2040
aagagacggg	gacagacggg	atccttgctg	gttcccaaga	acatgatcca	gggcagggaa	2100
gttcctcccc	ggagcaagct	ggaagcccta	ccgaagggga	gggcgtttcc	acctgggagt	2160
catttaaaag	gttagtcacg	ccaagaaaaa	aatcaaagtc	caagctggaa	gagaaaagcg	2220
aagactccat	agctgggtct	ggtgtagaac	attccactcc	agacactgaa	cccggtaaag	2280
aagaatcctg	ggtctcaatc	aagaagttta	ttcctggacg	aaggaagaaa	aggccagatg	2340
ggaaacaaga	acaagcccct	gttgaagacg	cagggccaac	aggggccaac	gaagatgact	2400
ctgatgtccc	ggccgtggtc	cctctgtctg	agtatgatgc	tgtagaaagg	gagaaaatgg	2460
aggcacagca	agcccaaaaa	agcgcagagc	agcccgagca	gaaggcagcc	actgaggtgt	2520
ccaaggagct	cagcgagagt	caggttcata	tgatggcagc	agctgtcgct	gacgggacga	2580
gggcagctac	cattattgaa	gaaaggtctc	cttcttggat	atctgcttca	gtgacagaac	2640
ctcttgaaca	agtagaagct	gaagccgcac	tgttaactga	ggaggtattg	gaaagagaag	2700
taattgcaga	agaagaaccc	cccacggtta	ctgaacctct	gccagagaac	agagaggccc	2760
ggggcgacac	ggtcgttagt	gaggcggaat	tgacccccga	agctgtgaca	gctgcagaaa	2820
ctgcagggcc	attgggtgcc	gaagaaggaa	ccgaagcatc	tgctgctgaa	gagaccacag	2880
aaatggtgtc	agcagtctcc	cagttaaccg	actccccaga	caccacagag	gaggccactc	2940
cggtgcagga	ggtggaaggt	ggcgtacctg	acatagaaga	gcaagagagg	cggactcaag	3000

aggtcctcca	ggcagtggca	gaaaaagtga	aagaggaatc	ccagctgcct	ggcaccggtg	3060
ggccagaaga	tgtgcttcag	cctgtgcaga	gagcagaggc	agaaagacca	gaagagcagg	3120
ctgaagcgtc	gggtctgaag	aaagagacgg	atgtagtgtt	gaaagtagat	gctcaggagg	3180
caaaaactga	gccttttaca	caagggaagg	tggtggggca	gaccacccca	gaaagctttg	3240
aaaaagctcc	tcaagtcaca	gagagcatag	agtccagtga	gcttgtaacc	acttgtcaag	3300
ccgaaacctt	agctggggta	aaatcacagg	agatggtgat	ggaacaggct	atccccctg	3360
actcggtgga	aacccctaca	gacagtgaga	ctgatggaag	cacccccgta	gccgactttg	3420
acgcaccagg	cacaacccag	aaagacgaga	ttgtggaaat	ccatgaggag	aatgaggtcg	3480
catctggtac	ccagtcaggg	ggcacagaag	cagaggcagt	tcctgcacag	aaagagaggc	3540
ctccagcacc	ttccagtttt	gtgttccagg	aagaaactaa	agaacaatca	aagatggaag	3600
acactctaga	gcatacagat	aaagaggtgt	cagtggaaac	tgtatccatt	ctgtcaaaga	3660
ctgaggggac	tcaagaggct	gaccagtatg	ctgatgagaa	aaccaaagac	gtaccatttt	3720
tcgaaggact	tgaggggtct	atagacacag	gcataacagt	cagtcgggaa	aaggtcactg	3780
aagttgccct	taaaggtgaa	gggacagaag	aagctgaatg	taaaaaggat	gatgctcttg	3840
aactgcagag	tcacgctaag	tctcctccat	ccccgtgga	gagagagatg	gtagttcaag	3900
tcgaaaggga	gaaaacagaa	gcagagccaa	cccatgtgaa	tgaagagaag	cttgagcacg	3960
aaacagctgt	taccgtatct	gaagaggtca	gtaagcagct	cctccagaca	gtgaatgtgc	4020
ccatcataga	tggagcaaag	gaagtcagca	gtttggaagg	aagccctcct	ccctgcctag	4080
gtcaagagga	ggcagtatgc	accaaaattc	aagttcagag	ctctgaggca	tcattcactc	4140
taacagcggc	tgcagaggag	gaaaaggtct	taggagaaac	tgccaacatt	ttagaaacag	4200
gtgaaacgtt	ggagcctgca	ggtgcacatt	tagttctgga	agagaaatcc	tctgaaaaaa	4260
atgaagactt	tgccgctcat	ccaggggaag	atgctgtgcc	cacagggccc	gactgtcagg	4320
caaaatcgac	accagtgata	gtatctgcta	ctaccaagaa	aggcttaagt	tecgacetgg	4380
aaggagagaa	aaccacatca	ctgaagtgga	agtcagatga	agtcgatgag	caggttgctt	4440
gccaggaggt	caaagtgagt	gtagcaattg	aggatttaga	gcctgaaaat	gggattttgg	4500
aacttgagac	caaaagcagt	aaacttgtcc	aaaacatcat	ccagacagcc	gttgaccagt	4560
ttgtacgtac	agaagaaaca	gccaccgaaa	tgttgacgtc	tgagttacag	acacaagctc	4620
acgtgataaa	agctgacagc	caggacgctg	gacaggaaac	ggagaaagaa	ggagaggaac	4680
ctctggcctc	tgcacaggat	gaaacaccaa	ttacttcagc	caaagaggag	tcagagtcaa	4740
ccgcagtggg	acaagcacat	tctgatattt	ccaaagacat	gagtgaagcc	tcagaaaaga	4800
ccatgactgt	tgaggtagaa	ggttccactg	taaatgatca	gcagctggaa	gaggtcgtcc	4860

tcccatctga	ggaagaggga	ggtggagctg	gaacaaagtc	tgtgccagaa	gatgatggtc	4920
atgccttgtt	agcagaaaga	atagagaagt	cactagttga	accgaaagaa	gatgaaaaag	4980
gtgatgatgt	tgatgaccct	gaaaaccaga	actcagccct	ggctgatact	gatgcctcag	5040
gaggcttaac	caaagagtcc	ccagatacaa	atggaccaaa	acaaaaagag	aaggaggatg	5100
cccaggaagt	agaattgcag	gaaggaaaag	tgcacagtga	atcagataaa	gcgatcacac	5160
cccaagcaca	ggaggagtta	cagaaacaag	agagagaatc	tgcaaagtca	gaacttacag	5220
aatcttaaaa	catcatgcag	ttaaactcat	tgtctgtttg	gaagaccaga	atgtgaagac	5280
aagtagtaga	agaaaatgaa	tgctgctgct	gagactgaag	accagtattt	cagaactttg	5340
agaattggag	agcaggcaca	tcaactgatc	tcatttctag	agagcccctg	acaatcctga	5400
ggcttcatca	ggagctagag	ccatttaaca	tttcctcttt	ccaagaccaa	cctacaattt	5460
tcccttgata	accatataaa	ttctgattta	aggtcctaaa	ttcttaacct	ggaactggag	5520
ttggcaatac	ctagttctgc	ttctgaaact	ggagtatcat	tctttacata	tttatatgta	5580
tgttttaagt	agtcctcctg	tatctattgt	atatttttt	cttaatgttt	aaggaaatgt	5640
gcaggatact	acatgctttt	tgtatcacac	agtatatgat	ggggcatgtg	ccatagtgca	5700
ggcttgggga	gctttaagcc	tcagttatat	aacccacgaa	aaacagagcc	tcctagatgt	5760
aacattcctg	atcaaggtac	aattctttaa	aattcactaa	tgattgaggt	ccatatttag	5820
tggtactctg	aaattggtca	ctttcctatt	acacggagtg	tgctaaaact	aaaaagcatt	5880
ttgaaacata	cagaatgttc	tattgtcatt	gggaaatttt	tctttctaac	ccagtggagg	5940
ttagaaagaa	gttatattct	ggtagcaaat	taactttaca	tcctttttcc	tacttgttat	6000
ggttgtttgg	accgataagt	gtgcttaatc	ctgaggcaaa	gtagtgaata	tgttttatat	6060
gttatgaaga	aaagaattgt	tgtaagtttt	tgattctact	cttatatgct	ggactgcatt	6120
cacacatggc	atgaaataag	tcaggttctt	tacaaatggt	attttgatag	atactggatt	6180
gtgtttgtgc	catatttgtg	ccattctttt	aagaacaatg	ttgcaacaca	ttcatttgga	6240
taagttgtga	tttgacgact	gatttaaata	aaatatttgc	ttcactt		6287
	-					
<400> 21 ggcgggagcg	cgtgcgcccg	aggacccggc	cggaaggctt	gcgccagctc	aggatgagga	60
caggctgggc	gacccctcgc	cgcccggcgg	ggctcctcat	gctgctcttc	tggttcttcg	120
atctcgcgga	gacatatgga	cgcgcagcta	atgacccctt	caccatcgtc	catggaaata	180

cgggcaagtg	catcaagcca	gtgtatggct	ggatagtagc	agacgactgt	gatgaaactg	24-0	
aggacaagtt	atggaagtgg	gtgtcccagc	atcggctctt	tcatttgcac	tcccaaaagt	300	
gccttggcct	cgatattacc	aaatcggtaa	atgagctgag	aatgttcagc	tgtgactcca	360	
gtgccatgct	gtggtggaaa	tgtgagcacc	actctctgta	cggagctgcc	cggtaccggc	420	
tggctctgaa	ggatggacat	ggcacagcaa	tctcaaatgc	atctgatgtc	tggaagaaag	480	
gaggctcaga	ggaaagcctt	tgtgaccagc	cttatcatga	gatctatacc	agagatggga	5 4 0	
actcttatgg	gagaccttgt	gaatttccat	tcttaattga	tgggacctgg	catcatgatt	600	
gcattcttga	tgaagatcat	agtgggccat	ggtgtgccac	caccttaaat	tatgaatatg	660	
accgaaagtg	gggcatctgc	ttaaagcctg	aaaacggttg	tgaagataat	tgggaaaaga	720	
acgagcagtt	tggaagttgc	taccaattta	atactcagac	ggctctttct	tggaaagaag	780	
cttatgtttc	atgtcagaat	caaggagctg	atttactgag	catcaacagt	gctgctgaat	8 4 0	
taacttacct	taaagaaaaa	gaaggcattg	Ctaagatttt	ctggattggt	ttaaatcagc	900	
tatactctgc	tagaggctgg	gaatggtcag	accacaaacc	attaaacttt	ctcaactggg	960	
atccagacag	gcccagtgca	cctactatag	gtggctccag	ctgtgcaaga	atggatgctg	1020	
agtctggtct	gtggcagagc	ttttcctgtg	aagctcaact	gccctatgtc	tgcaggaaac	1080	
cattaaataa	tacagtggag	ttaacagatg	tctggacata	ctcagatacc	cgctgtgatg	11 4 0	
caggetgget	gccaaataat	ggattttgct	atctgctggt	aaatgaaagt	aattcctggg	1200	
ataaggcaca	tgcgaaatgc	aaagccttca	gtagtgacct	aatcagcatt	cattctctag	1260	
cagatgtgga	ggtggttgtc	acaaaactcc	ataatgagga	tatcaaagaa	gaagtgtgga	1320	
taggccttaa	gaacataaac	ataccaactt	t atttcagtg	gtcagatggt	actgaagtta	1380	
ctctaacata	ttgggatgag	aatgagccaa	atgttcccta	caataagacg	cccaactgtg	14 4 0	
tttcctactt	aggagagcta	ggtcagtgga	aagtccaatc	atgtgaggag	aaactaaaat	1500	
atgtatgcaa	gagaaaggga	gaaaaactga	atgacgcaag	ttctgataag	atgtgtcctc	1560	
cagatgaggg	ctggaagaga	catggagaaa	cctgttacaa	gatttatgag	gatgaggtcc	1620	
cttttggaac	aaactgcaat	ctgactatca	Ctagcagatt	tgagcaagaa	tacctaaatg	1680	
atttgatgaa	aaagtatgat	aaatctctaa	gaaaatactt	ctggactggc	ctgagagatg	17 4 0	
tagattcttg	tggagagtat	aactgggcaa	ctgttggtgg	aagaaggcgg	gctgtaacct	1800	
tttccaactg	gaattttctt	gagccagctt	acccgggcgg	ctgcgtggct	atgtctactg	1860	
gaaagtctgt	tggaaagtgg	gaggtgaagg	actgcagaag	cttcaaagca	ctttcaattt	1920	
gcaagaaaat	gagtggaccc	cttgggcctg	aagaagcatc	ccctaagcct	gatgacccct	1980	

gtcctgaagg	ctggcagagt	ttccccgcaa	gtctttcttg	ttataaggta	ttccatgcag	2040
aaagaattgt	aagaaagagg	aactgggaag	aagctgaacg	attctgccaa	gcccttggag	2100
cacacctttc	tagcttcagc	catgtggatg	aaataaagga	atttcttcac	tttttaacgg	2160
accagttcag	tggccagcat	tggctgtgga	ttggtttgaa	taaaaggagc	ccagatttac	2220
aaggatcctg	gcaatggagt	gatcgtacac	cagtgtctac	tattatcatg	ccaaatgagt	2280
ttcagcagga	ttatgacatc	agagactgtg	ctgctgtcaa	ggtatttcat	aggccatggc	2340
gaagaggctg	gcatttctat	gatgatagag	aatttattta	tttgaggcct	tttgcttgtg	240O
atacaaaact	tgaatgggtg	tgccaaattc	caaaaggccg	tactccaaaa	acaccagact	2 4 60
ggtacaatcc	agaccgtgct	ggaattcatg	gacctccact	tataattgaa	ggaagtgaat	252 0
attggtttgt	tgctgatctt	cacctaaact	atgaagaagc	cgtcctgtac	tgtgccagca	2580
atcacagctt	tcttgcgact	ataacatctt	ttgtgggact	aaaagccatc	aaaaacaaaa	26 4 O
tagcaaatat	atctggtgat	ggacagaagt	ggtggataag	aattagcgag	tggccaatag	270 0
atgatcattt	tacatactca	cgatatccat	ggcaccgctt	tcctgtgaca	tttggagagg	276 0
aatgcttgta	catgtctgcc	aagacttggc	ttatcgactt	aggtaaacca	acagactgta	282 0
gtaccaagtt	gcccttcatc	tgtgaaaaat	ataatgtttc	ttcgttagag	aaatacagcc	2880
cagattctgc	agctaaagtg	caatgttctg	agcaatggat	tccttttcag	aataagtgtt	29 4 0
ttctaaagat	caaacccgtg	tctctcacat	tttctcaagc	aagcgatacc	tgtcactcct	300 0
atggtggcac	ccttccttca	gtgttgagcc	agattgaaca	agactttatt	acatccttgc	3060
ttccggatat	ggaagctact	ttatggattg	gtttgcgctg	gactgcctat	gaaaagataa	3120
acaaatggac	agataacaga	gagctgacgt	acagtaactt	tcacccatta	ttggttagtg	3180
ggaggctgag	aataccagaa	aatttttttg	aggaagagtc	togotaccac	tgtgccctaa	3240
tactcaacct	ccaaaaatca	ccgtttactg	ggacgtggaa	ttttacatcc	tgcagtgaac	3300
gccactttgt	gtatatatgt	cagaaatatt	cagaagttaa	aagcagacag	acgttgcaga	3360
atgcttcaga	aactgtaaag	tatctaaata	atctgtacaa	aataatccca	aagactctga	3420
cttggcacag	tgctaaaagg	gagtgtctga	aaagtaacat	gcagctggtg	agcatcacgg	3480
accettacea	gcaggcattc	ctcagtgtgc	aggcgctcct	tcacaactct	tccttatgga	3540
teggaetett	cagtcaagat	gatgaactca	actttggttg	gtcagatggg	aaacgtcttc	3600
attttagtcg	ctgggctgaa	actaatgggc	aactcgaaga	ctgtgtagta	ttagacactg	3660
atggattctg	gaaaacagtt	gattgcaatg	acaatcaacc	aggtgctatt	tgctactatt	3720
caggaaatga	gactgaaaaa	gaggtcaaac	cagttgacag	tgttaaatgt	ccatctcctg	3780
ttctaaatac	tccgtggata	ccatttcaga	actgttgcta	caatttcata	ataacaaaga	3840

	,					
ataggcatat	ggcaacaaca	caggatgaag	ttcatactaa	atgccagaaa	ctgaatccaa	3900
aatcacatat	tctgagtatt	cgagatgaaa	aggagaataa	ctttgttctt	gagcaactgc	3960
tgtacttcaa	ttatatggct	tcatgggtca	tgttaggaat	aacttataga	aataattctc	4020
ttatgtggtt	tgataagacc	ccactgtcat	atacacattg	gagagcagga	agaccaacta	4080
taaaaaatga	gaagtttttg	gctggtttaa	gtactgacgg	cttctgggat	attcaaacct	4140
ttaaagttat	tgaagaagca	gtttatttc	accagcacag	cattcttgct	tgtaaaattg	4200
aaatggttga	ctacaaagaa	gaacataata	ctacactgcc	acagtttatg	ccatatgaag	4260
atggtattta	cagtgttatt	caaaaaaagg	taacatggta	tgaagcatta	aacatgtgtt	4320
ctcaaagtgg	aggtcacttg	gcaagcgttc	acaaccaaaa	tggccagctc	tttctggaag	4380
atattgtaaa	acgtgatgga	tttccactat	gggttgggct	ctcaagtcat	gatggaagtg	4440
aatcaagttt	tgaatggtct	gatggtagta	catttgacta	tatcccatgg	aaaggccaaa	4500
catctcctgg	aaattgtgtt	ctcttggatc	caaaaggaac	ttggaaacat	gaaaaatgca	4560
actctgttaa	ggatggtgct	atttgttata	aacctacaaa	atctaaaaag	ctgtcccgtc	4620
ttacatattc	atcaagatgt	ccagcagcaa	aagagaatgg	gtcacggtgg	atccagtaca	4680
agggtcactg	ttacaagtct	gatcaggcat	tgcacagttt	ttcagaggcc	aaaaaattgt	4740
gttcaaaaca	tgatcactct	gcaactatcg	tttccataaa	agatgaagat	gagaataaat	4800
ttgtgagcag	actgatgagg	gaaaataata	acattaccat	gagagtttgg	cttggattat	4860
ctcaacattc	tgttgaccag	tcttggagtt	ggttagatgg	atcagaagtg	acatttgtca	4920
aatgggaaaa	taaaagtaag	agtggtgttg	gaagatgtag	catgttgata	gcttcaaatg	4980
aaacttggaa	aaaagttgaa	tgtgaacatg	gttttggaag	agttgtctgc	aaagtgcctc	5040
tgggccctga	ttacacagca	atagctatca	tagttgccac	actaagtatc	ttagttctca	5100
tgggcggact	gatttggttc	ctcttccaaa	ggcaccgttt	gcacctggcg	ggtttctcat	5160
cagttcgata	tgcacaagga	gtgaatgaag	atgagattat	gcttccttct	ttccatgact	5220
aaattcttct	aaaagttttc	taatttgcac	taatgtggtt	atggagaaat	tagtcactta	5280
aaatgtccca	gtgtcagtat	ttactctgct	ccaaagtaga	actcttaaat	actttttcag	5340
ttgtttagat	cttaggcatg	tgctggtatc	cacagttaat	tccctgctaa	atgccatgtt	5400
tatcacccta	attaatagaa	tggaggggac	tccaaagctg	gaactgaagt	ccaaattgtt	5460
tgtacagtaa	tatgtttaat	gttcattttc	tctgtatgaa	tgtgattggt	aactaggata	5520
tgtatatttt	aatagaattt	ttaacaaaac	ttcttagaaa	attaaaatag	gcatattact	5580
aggtgacatg	tctacttttt	aatttttaag	agcatccggc	caaatgcaaa	attagtacct	5640

caaagtaaaa	attgaactgt	aaactctatc	agcattgttt	caaaatagtc	atttttagca	5700
ctggggaaaa	ataaacaata	agacatgctt	actttttaat	ttttatttt	ttgagactga	5760
gtatatatat	gttgcccagg	ctggagtaca	atggcgtgat	ctcggctcac	tgcaaatctc	5820
cgcctcccag	gttcaagcga	ttataatgaa	tcagcctcct	gagtagctgg	gattacaggc	5880
aactgccacc	atgcccggct	aatttttgta	tttttagtag	agatggggtt	tcaccatgtt	5940
ggccaggctg	gtctcgaact	cgtgaccgca	gtgatcctcc	cgcctcggcc	tcccaaagtg	6000
ctgggattac	aggcatgagc	caccgcgcct	ggcctctgct	tactttttat	atagcaaaat	6060
gattcccctt	ggcaagatgt	ttcttatatt	attccaaagt	tatttcatac	cattattatg	6120
taaatatgaa	gagtttttt	ctgtttataa	ttgtttataa	aacaatgact	tttaaagatt	6180
tagtgcttaa	cattttccca	agtgtgggaa	cattatttt	agattgagta	ggtaccttgt	6240
agcagtgtgc	tttgcatttt	ctgatgtatt	acatgactgt	ttcttttgta	aagagaatca	6300
actaggťatt	taagactgat	aattttacaa	tttatatgct	tcacatagca	tgtcaacttt	6360
tgactaagaa	ttttgtttta	cttttttaac	atgtgttaaa	cagagaaagg	gtccatgaag	6420
gaaagtgtat	gagttgcatt	tgtaaaaatg	agacttttc	agtggaactc	taaaccttgt	6480
gatgactact	aacaaatgta	aaattatgag	tgattaagaa	aacattgctt	tgtggttatc	6540
actttaagtt	ttgacaccta	gattatagtc	ttagtaatag	catccactgg	aaaaggtgaa	6600
aatgttttat	tcagcattta	acttacattt	gtactttaga	gtatttttgt	ataaaatcca	6660
tagatttatt	ttacatttag	agtatttaca	ctatgataaa	gttgtaaata	attttctaag	6720
acagttttta	tatagtctac	agttgtcctg	atttcttatt	gaatttgtta	gactagttct	6780
cttgtcttgt	gatctgtgta	caattttagt	cactaagact	ttcctccaag	aactaagcca	6840
acttgatgtg	aaaagcacgg	ctgtatataa	tggtgatgtc	ataataaagt	tgttttatct	6900
tttaagtaaa	aaaaaaaaa	aaaaaaaa				6928

```
<210> 22
<211> 579
```

ttttgcaaaa tgctcaagtg tatttatgca acagactggc catgtactga ggaggggagc 60 gcaggctgag ggctgaagta ggagtgaggg tcttcctcct gcagccacca agcaaatgat 120

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (459)..(459)

<223> n is a, c, g, or t

<400> 22

caccatgtcc aagcgtcatt co	ctgagaccc	tgaggtgatg	ctcacgtccc	cagaacagca	180
tgctggatgc atggccagag ga	agctcggcc	agccccggcg	ctggtcctga	gaggtggctg	240
caggcggaga gggtaagggc cc	cctcctcca	ggcagcatgt	gacccatagc	ccacaccctc	300
cacaagaaag cggacgtgga ca	agtgtgttc	aaagctgcag	ccgcctgaac	aggggcacaa	360
gttccactgt ccttgtaagc ca	aagctcaga	ggacatatgg	gaggttctcc	ttggaggtca	420
ggagggggg agtgctggtc ag	gagcatgaa	ggacactgng	acgcctctct	ctcagatccc	480
actatgtgac teetggetgg ge	ctcgggata	cgcctccttc	gagtgctggg	tgtcgcacgg	540
cgcagggcac cagcggacca tg	gcagccgga	ctcttgcaa			579
<210> 23 <211> 396 <212> DNA <213> Homo sapiens					
<400> 23 actccgcctt ccacgtgcac co	cactgcctc	ttacattata	gcttgggaac	tctagtctcg	60
cctcgggttg caatggaccc ca	aactgctcc	tgtgccgctg	gtgtctcctg	cacctgcgcc	120
ageteetgea agtgeaaaga gt	tgcaaatgc	acctcctgca	agaagagctg	ctgctcctgc	180
tgccctgtgg gctgtgccaa gt	tgtgcccaa	ggctgcatct	gcaaaggggc	atcggagaag	240
tgcagctgct gcgcctgatg to	cgggacagc	cctgctccca	agtacaaata	gagtgacccg	300
taaaatctag gattttttgt tt	ttttgctac	aatcttgacc	cctttgctac	attccctttt	360
ttctgtgaaa tatgtgaata at	taattaaac	acttag			396
<210> 24 <211> 1114 <212> DNA <213> Homo sapiens					
<400> 24 tccgcaggcg gaccggggc aa	aaggaggtg	gcatgtcggt	caggcacagc	agggtcctgt	60
gteegegetg ageegegete to	ccctgctcc	agcaaggacc	atgagggcgc	tggaggggcc	120
aggcetgteg etgetgtgee te	ggtgttggc	gctgcctgcc	ctgctgccgg	tgccggctgt	180
acgcggagtg gcagaaacac co	cacctaccc	ctggcgggac	gcagagacag	gggagcggct	240
ggtgtgcgcc cagtgccccc ca	aggcacctt	tgtgcagcgg	ccgtgccgcc	gagacagccc	300
cacgacgtgt ggcccgtgtc ca	accgcgcca	ctacacgcag	ttctggaact	acctggagcg	360
ctgccgctac tgcaacgtcc to	ctgcgggga	gcgtgaggag	gaggcacggg	cttgccacgc	420
cacccacaac cgtgcctgcc go	ctgccgcac	cggcttcttc	gcgcacgctg	gtttctgctt	480
ggagcacgca tcgtgtccac ct	tggtgccgg	cgtgattgcc	ccgggcaccc	ccagccagaa	540

cacgcagtgc cagccgtgcc c	cccaggcac	cttctcagcc	agcagctcca	gctcagagca	600
gtgccagccc caccgcaact g	gcacggccct	gggcctggcc	ctcaatgtgc	caggctcttc	660
ctcccatgac accctgtgca c	ccagctgcac	tggcttcccc	ctcagcacca	gggtaccagg	720
agctgaggag tgtgagcgtg c	ccgtcatcga	ctttgtggct	ttccaggaca	tctccatcaa	780
gaggetgeag eggetgetge a	aggccctcga	ggccccggag	ggctggggtc	cgacaccaag	840
ggcgggccgc gcggccttgc a	agctgaagct	gcgtcggcgg	ctcacggagc	tcctgggggc	900
gcaggacggg gcgctgctgg t	geggetget	gcaggcgctg	cgcgtggcca	ggatgcccgg	960
gctggagcgg agcgtccgtg a	agcgcttcct	ccctgtgcac	tgatcctggc	cccctcttat	1020
ttattctaca tccttggcac c	cccacttgca	ctgaaagagg	ctttttttta	aatagaagaa	1080
atgaggtttc ttaaaaaaaa a	aaaaaaaaa	aaaa			1114
<210> 25 <211> 3941 <212> DNA <213> Homo sapiens					
<400> 25 accatctact ccacagtcag c	ctcatccaca	actgccatca	cctcaccttt	cactaccgca	60
gagactgggg tgacttccac a	accttcatcc	ccatcttctc	tgagtacaga	catcccgacc	120
acatecetaa gaacteteae e	cccattatct	ttgagcacca	gcacttcatt	gactacaacc	180
acagacette cetetatace e	cactgatatc	agtagcttac	caaccccaat	acacatcatt	240
tcatcttctc cctccatcca a	aagtacagaa	acctcatccc	ttgtgggcac	cacctctccc	300
accatgtcca ctgtgagagc g	gaccctcaga	agtactgaga	acaccccaat	cagttccttt	360
agcacaagta ttgttgttac a	acctgaaacc	ccaacaacac	aggcccctcc	tgtactgatg	420
tctgccactg ggacccaaac a	atcccctgta	cctactactg	tcacctttgg	aagtatggat	480
tortotacgt coactottoa t	tactcttact	ccatcaacag	ccttgagcaa	gatcatgtca	540
acatcacagt ttcctattcc t	tagcacacat	tcctccaccc	ttcaaacaac	tccttcaatc	600
ccctctttgc aaacttcact c	cacatctaca	agtgagttca	ctacagaatc	tttcactagg	660
ggaagtacgt ctacaaatgc a	aatcttgact	tcttttagta	ccatcatctg	gtcctcaaca	720
cccactatta tcatgtcctc t	ttctccatct	tctgccagca	taactccagt	gttcgctact	780
accattcatt ctgttccttc c	gtcaccatac	attttcagta	cagaaaatgt	gggctccgct	840
tctatcacag cctttcctag t	tctctcttcc	tcttcaacta	ccagcacttc	tccaaccagc	900
tectetetga ecacagetet e	cactgaaata	accccctttt	cttatatttc	ccttccctcc	960
accacaccct gtccaggaac t	tataacaatt	accatagtcc	ctgcctcccc	cactgatcca	1020

tgtgttgaaa	tggatcccag	cactgaagct	acttctcctc	ccaccactcc	attaacagtc	1080
tttcccttta	ctactgaaat	ggtcacctgt	cctagctcca	tcagtatgca	aactactctt	1140
gctacacata	tggacacttc	ttccatgacg	ccagaaagtg	agtccagcat	catacctaat	1200
gcttccagtt	ccactggcac	tgggactgta	cccacaaaca	cagttttcac	aagtactcga	1260
ctgcccacca	gtgagacctg	gctgagcaac	aactctgtga	tccccacacc	tcttcctggc	1320
gtctctacca	tcccgctcac	catgaaacca	agcagtagcc	tcccgaccat	cctgaggact	1380
tcaagcaagt	caacacaccc	atccccaccc	accgccagga	cttcagagac	atcagtggcc	1440
actacccaga	ctcctaccac	ccttacaacg	cgcaggacaa	ctcccatcac	ttcttggatg	1500
accacacagt	ccacgttgac	caccactgca	ggcacctgtg	acaatggtgg	cacctgggaa	1560
cagggccagt	gtgcttgcct	tccggggttt	tctggggacc	gctgtcagct	ccagaccaga	1620
tgccagaacg	ggggccagtg	ggatggcctc	aagtgccagt	gccccagcac	cttctatggt	1680
tccagttgtg	agtttgctgt	ggaacaggtg	gatctagatg	tagtggagac	cgaggtgggc	1740
atggaagtgt	ctgtggatca	gcagttctcg	ccggacctca	atgacaacac	ttcccaggcc	1800
tacagggatt	tcaacaagac	cttctggaat	cagatgcaga	agatttttgc	agacatgcag	1860
ggcttcacct	tcaagggtgt	ggagatcctg	tccctgagga	atggcagcat	cgtggtggac	1920
tacctggtcc	tgctggagat	gcccttcagc	ccccagctgg	agagcgagta	tgagcaggtg	1980
aagaccacgc	tgaaggaggg	gctccagaac	gccagccagg	atgcgaacag	ctgccaggac	2040
tcccagaccc	tgtgttttaa	gcctgactcc	atcaaggtga	acaacaacag	caagacagag	2100
ctgaccccgg	aagccatctg	ccgccgcgcc	gctcccacgg	gctatgaaga	gttctacttc	2160
cctctggtgg	aggccacccg	gataagatgt	gtcaccaaat	gcacgtcggg	cgtggacaac	2220
gccatcgact	gtcaccaggg	ccagtgcgtt	ctagagacga	geggteeege	gtgtcgctgc	2280
tactccaccg	acacgcactg	gttctctggc	ccgcgctgcg	aggtggccgt	ccactggagg	2340
gcgctggtcg	ggggcctgac	ggccggcgcc	gcgctgctgg	tgctgctgct	gctggcgctg	2400
ggcgtccggg	cggtgcgctc	cggatggtgg	ggcggccagc	gccgaggccg	gtcctgggac	2460
caggacagga	aatggttcga	gacctgggat	gaggaagtcg	tgggcacttt	ttcaaactgg	2520
ggtttcgagg	acgacggaac	agacaaggat	acaaatttcc	atgtggcctt	ggagaacgtg	2580
gacaccacta	tgaaggtgca	catcaagaga	cccgagatga	cctcgtcctc	agtgtgagcc	2640
ctgcggggcc	ccttcaccac	cccctccgcc	ctgccccgga	cacaagggtc	tgcattgcgt	2700
ccatttcaag	aggtggcccc	aggacgcggg	cagcccaggc	tactgatgtt	cttgggcaag	2760
atgagactgt	tcccccaaat	cccatccttc	tccttccaac	ttggctgaaa	cccacctgga	2820

gacgcagttc	acgtccaggc	tcttccactg	tggaatcttg	ggcaagtcag	taacgagcct	2880
cagtttcctc	acctgcaaaa	cgggtacagc	attcctgtat	gatagctcac	gccgttgttg	2940
tgaaaaccac	atagacttgg	tcaattctcg	gtcctactct	gccctcccgt	ctcagccctc	3000
gtgttgccat	tgcctctctc	ggatcctcca	atcctcacgt	ccttcacctg	gtatatggaa	3060
ctggttctta	ttttctctca	attccctact	gcctgtttct	tactttgaac	ctggaggcag	3120
cctgcagccc	catcccatct	cctgccctct	cctgatctaa	ctccctgctg	catctcttgc	3180
tctcattcct	tagacgtcct	ccccttttga	ccccgttcct	tcatccatcc	tgcaccccag	3240
tcccccagcc	ctaaatcctc	cctcctctcc	tcacatcctg	gtccctagca	aggtatagat	3300
agcctctgtg	tcttaggata	ccccgggtgc	tgttccctcg	gtcaccctgt	tgcccagttc	3360
cccgtttctc	ttgctctcat	tccttgtatc	ttctcccctt	ctgagcccgt	ccattcatcg	3420
gttatgacaa	cgactccccc	agccctaaat	accccagctc	ctaattcccc	cctcaccccg	3480
ttgctcaatt	ccccgtttct	cttgctctca	ttccttgtat	cttctcccct	tctgagcctg	3540
tccattcatc	ggtggttctg	cccctactcc	cccagcccta	aataccccag	ctgctgttcc	3600
tccccatcac	ccagccaccg	gattctccat	tcaccccttt	ctctcacccc	tggagccccg	3660
tgggtggggg	cagggcatga	gttccccagt	ccccaaggaa	aggcagcccc	ctcagtctcc	3720
ctcctcctca	ttcccttcca	tataaataaa	ctctgccttt	taaacccatc	ccctccgatt	3780
accetactac	cccctctctc	cctggtgtca	actcgattcc	tgcggtaact	ctgagccctg	3840
aaatcctcag	tctccttggc	ggggaagatt	ggctttgggg	acaggaagtc	ggcacatctc	3900
caggtctcca	tgtgcacaat	atagagttta	ttgtaaaaag	С		3941
	o sapiens					
<400> 26 tatgtaaaga	tgcgtgtttt	cctcttgatc	gggaactcct	gcttctcctt	gcctcgaaat	60
ggaccccaac caaagagtgc	tggtcctgct aaatgcacct	cgcctgttgg cctgcaagaa	ctcctgtgcc gagctgctgc	tgtgccggct tcctgctgcc	cctgcaaatg ctgtgggctg	120 180
tgccaagtgt	gcccagggct	gcatctgcaa	agggacgtca	gacaagtgca	gatgatgtga	240
ctgatgccag	gacagctgtg	ctctcagatg	taaatagagc	aacctatata	aacctggatt	300
tttttttt	tttttttgta	caaccctgac	ccgtttgcta	catcttttt	tctatgaaat	360
atgtgaatgg	caataaattc	atctagacta	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	420
						454

aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaa

```
<210> 27
<211> 1064
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (27)..(27)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (766)..(766)
<223> n is a, c, g, or t
<400>
                                                                      60
cacagooggg togoaggcac otocoongco agototocog cattotgcac agottocoga
cgcgtctgct gagcccatg gcccacgcca cgctctccgc cgccccagc aatccccggc
                                                                     120
teetgegggt ggegetgetg eteetgetee tggtgggeag eeggegegea geaggagegt
                                                                     180
ccgtggtcac tgaactgcgc tgccagtgct tgcagacact gcagggaatt cacctcaaga
                                                                     240
                                                                     300
acatccaaaq tqtqaatqta aggtcccccg gaccccactg cgcccaaacc gaagtcatag
                                                                     360
ccacactcaa qaatqqqaaq aaaqcttqtc tcaaccccgc atcccccatg gttcagaaaa
                                                                     420
tcatcgaaaa gatactgaac aaggggagca ccaactgaca ggagagaagt aagaagctta
tcagcgtatc attgacactt cctgcagggt ggtccctgcc cttaccagag ctgaaaatga
                                                                     480
aaaagagaac agcagctttc tagggacagc tggaaaggga cttaatgtgt ttgactattt
                                                                     540
                                                                     600
cttacqaqqq ttctacttat ttatqtattt atttttgaaa gcttgtattt taatatttta
                                                                     660
catgctgtta tttaaagatg tgagtgtgtt tcatcaaaca tagctcagtc ctgattattt
aattggaata tgatgggttt taaatgtgtc attaaactaa tatttagtgg gagaccataa
                                                                     720
tqtqtcaqcc accttgataa atgacagggt ggggaactgg agggtngggg gattgaaatg
                                                                     780
                                                                     840
caaqcaatta qtqqatcact gttagggtaa gggaatgtat gtacacatct atttttata
ctttttttt taaaaaagaa tgtcagttgt tatttattca aattatctca cattatgtgt
                                                                     900
tcaacatttt tatgctgaag tttcccttag acattttatg tcttgcttgt agggcataat
                                                                     960
gccttgttta atgtccattc tgcagcgttt ctctttccct tggaaaagag aatttatcat
                                                                    1020
                                                                     1064
tactgttaca tttgtacaaa tgacatgata ataaaagttt tatg
<210> 28
<211> 2716
<212> DNA
<213> Homo sapiens
<400>
geogeoeget tgecegtegg tegetagete geteggtgeg egtegteeeg etceatggeg
                                                                       60
```

ctcttcgtgc	ggctgctggc	tctcgccctg	gctctggccc	tgggccccgc	cgcgaccctg	120
gegggteeeg	ccaagtcgcc	ctaccagctg	gtgctgcagc	acagcaggct	ccggggccgc	180
cagcacggcc	ccaacgtgtg	tgctgtgcag	aaggttattg	gcactaatag	gaagtacttc	240
accaactgca	agcagtggta	ccaaaggaaa	atctgtggca	aatcaacagt	catcagctac	300
gagtgctgtc	ctggatatga	aaaggtccct	ggggagaagg	gctgtccagc	agccctacca	360
ctctcaaacc	tttacgagac	cctgggagtc	gttggatcca	ccaccactca	gctgtacacg	420
gaccgcacgg	agaagctgag	gcctgagatg	gaggggcccg	gcagcttcac	catcttcgcc	480
cctagcaacg	aggcctgggc	ctccttgcca	gctgaagtgc	tggactccct	ggtcagcaat	540
gtcaacattg	agctgctcaa	tgacataaga	taccatatgg	tgggcaggcg	agtcctgact	600
gatgagctga	aacacggcat	gaccctcacc	tctatgtacc	agaattccaa	catccagatc	660
caccactatc	ctaatgggat	tgtaactgtg	aactgtgccc	ggctgctgaa	agccgaccac	720
catgcaacca	acggggtggt	gcacctcatc	gataaggtca	tctccaccat	caccaacaac	780
atccagcaga	tcattgagat	cgaggacacc	tttgagaccc	ttagggatga	tgtggctgca	840
tcagggctca	acacgatgct	tgaaggtaac	ggccagtaca	cgcttttggc	cccgaccaat	900
gaggccttcg	agaagatccc	tagtgagact	ttgaaccgta	tcctgggcga	cccagaagcc	960
ctgagagacc	tgctgaacaa	ccacatcttg	aagtcagcta	tgtgtgctga	agccatcgtt	1020
gcggggctgt	ctgtggagac	cctggagggc	acgacactgg	aggtgggctg	cagcggggac	1080
atgctcacta	tcaacgggaa	ggcgatcatc	tccaataaag	acatcctagc	caccaacggg	1140
gtgatccact	acattgatga	gctactcatc	ccagactcag	ccaagacact	atttgaattg	1200
gctgcagagt	ctgatgtgtc	cacagccatt	gaccttttca	gacaagccgg	cctcggcaat	1260
catctctctg	gaagtgagcg	gttgaccctc	ctggctcccc	tgaattctgt	attcaaagat	1320
ggaacccctc	caattgatgc	ccatacaagg	aatttgcttc	ggaaccacat	aattaaagac	1380
cagctggcct	ctaagtatct	gtaccatgga	cagaccctgg	aaactctggg	cggcaaaaaa	1440
ctgagagttt	ttgtttatcg	taatagcctt	tgcattgaga	acagctgcat	cgcggcccac	1500
gacaagaggg	ggaggtacgg	gaccctgttc	acgatggacc	gggtgctgac	cccccaatg	1560
gggactgtca	tggatgtcct	gaagggagac	aatcgcttta	gcatgctggt	agctgccatc	1620
cagtctgcag	gactgacgga	gaccctcaac	cgggaaggag	tctacacagt	cttcgctccc	1680
acaaatgaag	ccttccgagc	cctgccacca	agagaacgga	gcagactctt	gggagatgcc	1740
aaggaacttg	ccaacatcct	gaaataccac	attggtgatg	aaatcctggt	tagcggaggc	1800
atcggggccc	tggtgcggct	aaagtctctc	caaggtgaca	agctggaagt	cagcttgaaa	1860

aacaatgtgg	tgagtgtcaa	caaggagcct	gttgccgagc	ctgacatcat	ggccacaaat	1920
ggagtggtaa	atgtcatcac	caatgttctg	cagcctccag	ccaacagacc	tcaggaaaga	1980
ggggatgaac	ttgcagactc	tgcgcttgag	atcttcaaac	aagcatcagc	gttttccagg	2040
gcttcccaga	ggtctgtgcg	actagcccct	gtctatcaaa	agttattaga	gaggatgaag	2100
cattagcttg	aagcactaca	ggaggaatgc	accacggcag	ctctccgcca	atttctctca	2160
gatttccaca	gagactgttt	gaatgttttc	aaaaccaagt	atcacacttt	aatgtacatg	2220
ggccgcacca	taatgagatg	tgagccttgt	gcatgtgggg	gaggagggag	agagatgtac	2280
tttttaaatc	atgttccccc	taaacatggc	tgttaaccca	ctgcatgcag	aaacttggat	2340
gtcactgcct	gacattcact	tccagagagg	acctatccca	aatgtggaat	tgactgccta	2400
tgccaagtcc	ctggaaaagg	agcttcagta	ttgtggggct	cataaaacat	gaatcaagca	2460
atccagcctc	atgggaagtc	ctggcacagt	ttttgtaaag	cccttgcaca	gctggagaaa	2520
tggcatcatt	ataagctatg	agttgaaatg	ttctgtcaaa	tgtgtctcac	atctacacgt	2580
ggcttggagg	cttttatggg	gccctgtcca	ggtagaaaag	aaatggtatg	tagagcttag	2640
atgtccctat	tgtgacagag	ccatggtgtg	tttgtaataa	taaaaccaaa	gaaacataaa	2700
aaaaaaaaa	aaaaaa					2716

<210> 29

<211> 1448

<212> DNA

<213> Homo sapiens

<400> 60 gtgaccgagc ggcgcggacg gccgcctgcc ccctctgcca cctggggcgg tgcgggcccg gagcccggag cccgggtagc gcgtagagcc ggcgcgatgc acgtgcgctc actgcgagct 120 geggegeege acagettegt ggegetetgg geacceetgt teetgetgeg eteegeeetg 180 240 gccgacttca gcctggacaa cgaggtgcac tcgagcttca tccaccggcg cctccgcagc caggagegge gggagatgea gegegagate etetecattt tgggettgee ecaeegeeeg 300 cgcccgcacc tccagggcaa gcacaactcg gcacccatgt tcatgctgga cctgtacaac 360 gccatggcgg tggaggaggg cggcgggccc ggcggccagg gcttctccta cccctacaag 420 480 gccgtcttca gtacccaggg ccccctctg gccagcctgc aagatagcca tttcctcacc gacgccgaca tggtcatgag cttcgtcaac ctcgtggaac atgacaagga attcttccac 540 ccacgctacc accatcgaga gttccggttt gatctttcca agatcccaga aggggaagct 600 660 gtcacggcag ccgaattccg gatctacaag gactacatcc gggaacgctt cgacaatgag acgttccgga tcagcgttta tcaggtgctc caggagcact tgggcaggga atcggatctc 720

ttaatgatag	acagccgtac	cctctgggcc	tcggaggagg	gctggctggt	gtttgacatc	780
acagccacca	gcaaccactg	ggtggtcaat	ccgcggcaca	acctgggcct	gcagctctcg	840
gtggagacgc	tggatgggca	gagcatcaac	cccaagttgg	cgggcctgat	tgggcggcac	900
gggccccaga	acaagcagcc	cttcatggtg	gctttcttca	aggccacgga	ggtccacttc	960
cgcagcatcc	ggtccacggg	gagcaaacag	cgcagccaga	accgctccaa	gacgcccaag	1020
aaccaggaag	ccctgcggat	ggccaacgtg	gcagagaaca	gcagcagcga	ccagaggcag	1080
gcctgtaaga	agcacgagct	gtatgtcagc	ttccgagacc	tgggctggca	ggactggatc	1140
atcgcgcctg	aaggctacgc	cgcctactac	tgtgaggggg	agtgtgcctt	ccctctgaac	1200
tcctacatga	acgccaccaa	ccacgccatc	gtgcagacgc	tggtccactt	catcaacccg	1260
gaaacggtgc	ccaagccctg	ctgtgcgccc	acgcagctca	atgccatctc	cgtcctctac	1320
ttcgatgaca	gctccaacgt	catcctgaag	aaatacagaa	acatggtggt	ccgggcctgt	1380
ggctgccact	agctcctccg	agaattcaga	ccctttgggg	ccaagttttt	ctggatcctc	1440
cattgctc						1448

<210> 30 <211> 1379

<212> DNA <213> Homo sapiens

<400> 30

60 ggtgaacagt gaacatattt acatttgatt taacagtgaa ccttaattct ttctggcttc acagtgaaac aagtttatgc aatcgatcaa atattttcat ccctgaggtt aacaattacc 120 180 atcaaaatgt tttgtggaga ctatgtgcaa ggaaccatct tcccagctcc caatttcaat 240 cccataatgg atgcccaaat gctaggagga gcactccaag gatttgactg tgacaaagac 300 . atgctgatca acattctgac tcagcgctgc aatgcacaaa ggatgatgat tgcagaggca taccagagca tgtatggccg ggacctgatt ggggatatga agggagcagc tttcggatca 360 420 cttccaagat gtgatggctg gctcatgtac ccaccaccac tgtatgatgc tcatgagctc tggcatgcca tgaagggagt aggcactgat gagaattgcc tcattgaaat actagcttca 480 agaacaaatg gagaaatttt ccagatgcga gaagcctact gcttgcaata cagcaataac 540 600 ctccaagagg acatttattc agagacctca ggacacttca gagatactct catgaacttg gtccagggga ccagagagga aggatataca gaccctgcga tggctgctca ggatgcaatg 660 720 gtcctatggg aagcctgtca gcagaagacg ggggagcaca aaaccatgct gcaaatgatc ctgtgcaaca agagctacca gcagctgcgg ctggttttcc aggaatttca aaatatttct 780 gggcaagata tggtagatgc cattaatgaa tgttatgatg gatactttca ggagctgctg 840

gttgcaattg ttctctgtgt	tcgagacaaa	ccagcctatt	ttgcttatag	attatatagt	900
gcaattcatg actttggttt	ccataataaa	actgtaatca	ggattctcat	tgccagaagt	960
gaaatagacc tgctgaccat	aaggaaacga	tacaaagagc	gatatggaaa	atccctattt	1020
catgatatca gaaattttgc	ttcagggcat	tataagaaag	cactgcttgc	catctgtgct	1080
ggtgatgctg aggactacta	aaatgaagag	gacttggagt	actgtgcact	cctctttcta	1140
gacacttcca aatagagatt	ttctcacaaa	tttgtactgt	tcatggcact	attaacaaaa	1200
ctatacaatc atatttcctc	ttctatcctt	gaaattattc	taagccaaag	aaaactatga	1260
atgaaagtat atgatactga	atttgcctac	tatcctgaat	ttgcctacta	tctaatcagc	1320
aattaaataa attgtgcatg	atggaataat	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaa	1379
<210> 31 <211> 1935 <212> DNA <213> Homo sapiens <400> 31					
tctagacagt ggcgcaagag	actggggttg	cactgggact	ccaggaaagg	cttagctgtt	60
gacgaaggac cggggcgggg	ccggggggcg	gggcgaaggc	caggatetee	aggtacccgg	120
aaccccaagg ggcgggtgta	gcaggcaatc	ttggcgaaac	tgggaagggc	gggcaggagg	180
gcagggaagc cgctcaccca	ggcacaaagc	gaataaagat	tgagcggact	ccaaagggac	240
ggtccgcggt gtgcagcgag	ctgcgctcag	gggaccttgc	gcccggccct	tctgctgcac	300
acageceace caggacetee	cgcagcgctg	acaggcgggg	cgggtgcaaa	gacggggcgg	360
ggtctctgcg cccggccccc	tcccctgact	atcaaagcag	cggccggctg	tttgggtcca	420
ccacgccttc cacctgcccc	actgcttctt	cgcttctctc	ttggaaagtc	cagtctctcc	480
teggettgea atggaeecea	actgctcctg	cgccgctggt	aaggaacgcc	gggttccgtg	540
cctggggatg ctcgattccc	agacaccata	gagagtgttc	ctgggtttga	gaaggtcgta	600
ttttgagatc tcaactgtag	gggactcctt	gacttagtcc	agtgctttcc	tcttggccaa	660
gatcctgaga gcatttcctt	cctctctgtg	cctctgtgtc	agcgttgagg	gtactgaggc	720
tcaaggctgt cctgctccac	gtcatgcggt	ttgtcccagg	gctgttggct	gagccccagt	780
gctctgacca ggctttgagc	agcaggatta	gataggaggc	aggggacatt	gaatattagg	840
ggttcaggab agaaagtcga	agtegeegte	ttcccaggct	gtgcctggag	cctgggactt	900
tcctttggag tgcaaacagg	aggctgcttg	gccttcccag	catgaaggga	gaggacatgg	960

ggcttctctt cctctgctct gagtgggaaa ggagctctga gggctggccc cgcacagagg 1020

agggggcaat ggagactcat taactcactg ctgtacctcc tgcaggtcac tcgccgctca 1080

ctggcttttt	tttctctttc	tcgcaggtgt	ctcctgcacc	tgcgctggtt	cctgcaagtg	1140
caaagagtgc	aaatgcacct	cctgcaagaa	gagtgagtgt	gaggccatct	ccatggtctg	1200
gggctgtggc	taaggttggg	atggaaccca	aggctggccc	tgagtgcatg	cttctgggga	1260
actggccttc	ctttgtcccc	gtaggttgtc	actgcctttc	tagtcttctg	ccctgtgcag	1320
ggcgcctggg	cagctttctc	ataggaagac	ccaccccaga	tatttcccag	ttgtctcctg	1380
acaaagccat	accctcctga	actgagggtc	ctttgtggct	ggaggctctg	ttgggggcct	1440
ctgttgggga	gggaggtccc	tgggcaagtt	ggctgtgacc	tctcatgctc	ctcttcttcc	1500
ccaggctgct	gatactgatg	ccccgtgggc	tgtagcaagt	gtgcccaggg	ctgtgtttgc	1560
aaaggggcgt	cagagaagtg	cagctgctgc	gactgatgcc	aggacaacct	ttctcccaga	1620
tgtaaacaga	gagacatgta	caaacctgga	tttttttt	ataccacctt	gacccatttg	1680
ctacattcct	tttcctgtga	aatatgtgag	tgataattaa	acactttaga	cctgattctg	1740
acttcagttt	cccttatgtg	cttcagaaat	cagagactgg	ggtgggggat	cgaactaggg	1800
ttgcagactc	ctgggctcta	aatggaaatc	tgagtcccta	acaatcagag	tgcattaagg	1860
caagccaggc	tgcctcactg	tgcttcctct	tctgtagaat	ggaataacac	ttcatcaggt	1920
cattggtggg	gatcc					1935

<210> 32

<211> 1408

<212> DNA

<213> Homo sapiens

<400> 60 atttctcttt agttctttgc aagaaggtag agataaagac actttttcaa aaatggcaat 120 ggtatcagaa ttcctcaagc aggcctggtt tattgaaaat gaagagcagg aatatgttca aactgtgaag tcatccaaag gtggtcccgg atcagcggtg agcccctatc ctaccttcaa 180 240 tccatcctcg gatgtcgctg ccttgcataa ggccataatg gttaaaggtg tggatgaagc 300 aaccatcatt gacattctaa ctaagcgaaa caatgcacag cgtcaacaga tcaaagcagc atatctccag gaaacaggaa agcccctgga tgaaacactg aagaaagccc ttacaggtca 360 ccttgaggag gttgttttag ctctgctaaa aactccagcg caatttgatg ctgatgaact 420 tcgtgctgcc atgaagggcc ttggaactga tgaagatact ctaattgaga ttttggcatc 480 aagaactaac aaagaaatca gagacattaa cagggtctac agagaggaac tgaagagaga 540 600 tctggccaaa gacataacct cagacacatc tggagatttt cggaacgctt tgctttctct 660 tgctaagggt gaccgatctg aggactttgg tgtgaatgaa gacttggctg attcagatgc cagggccttg tatgaagcag gagaaaggag aaaggggaca gacgtaaacg tgttcaatac 720

catcettace accagaaget atecacaact tegeagagtg ttteagaaat acaccaagta	780
cagtaagcat gacatgaaca aagttctgga cctggagttg aaaggtgaca ttgagaaatg	840
cctcacaget ategtgaagt gegecacaag caaaccaget ttetttgeag agaagettea	900
tcaagccatg aaaggtgttg gaactcgcca taaggcattg atcaggatta tggtttcccg	960
ttctgaaatt gacatgaatg atatcaaagc attctatcag aagatgtatg gtatctccct	1020
ttgccaagcc atcctggatg aaaccaaagg agattatgag aaaatcctgg tggctctttg	1080
tggaggaaac taaacattcc cttgatggtc tcaagctatg atcagaagac tttaattata	1140
tattttcatc ctataagctt aaataggaaa gtttcttcaa caggattaca gtgtagctac	1200
ctacatgctg aaaaatatag cctttaaatc atttttatat tataactctg tataatagag	1260
ataagtccat tttttaaaaa tgttttcccc aaaccataaa accctataca agttgttcta	1320
gtaacaatac atgagaaaga tgtctatgta gctgaaaata aaatgacgtc acaagacaaa	1380
aaaaaaaaaa aaaaaaaaa	1408
<210> 33 <211> 399 <212> DNA <213> Homo sapiens	
<400> 33 atgaagteca geggeetett cecetteetg gtgetgettg eeetgggaae tetggeaeet	. 60
	60 120
atgaagteca geggeetett eccetteetg gtgetgettg eeetgggaae tetggeaeet	
atgaagteea geggeetett eccetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet	120
atgaagteea geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geeeagtgee ttagatacaa gaaacetgag tgeeagagtg aetggeagtg teeagggaag	120 180
atgaagteea geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geecagtgee ttagatacaa gaaacetgag tgeeagagtg aetggeagtg teeagggaag aagagtgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga eaceceaaac	120 180 240
atgaagteea geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet teggeetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geecagtgee ttagatacaa gaaacetgag tgeeagagtg aetggeagtg teeagggaag aagagatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga eaceecaaac eeaacaagga ggaageetgg gaagtgeeca gtgaettatg geeaatgttt gatgettaac	120 180 240 300
atgaagteca geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geecagtgee ttagatacaa gaaacetgag tgeeagagtg actggeagtg teeagggaag aagagatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga eaceceaaac ceaacaagga ggaageetgg gaagtgeeca gtgaettatg geeaatgttt gatgettaae eeeeecaatt tetgtgagat ggatggeeag tgeaagegtg acttgaagtg ttgeatggge atgtgtggga aateetgegt tteeeetgtg aaagettga <210> 34 <211> 4266 <212> DNA <213> Homo sapiens	120 180 240 300 360
atgaagtcca geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geeeagtgee ttagatacaa gaaacetgag tgeeagagtg aetggeagtg teeagggaag aagagatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga eaceceaaac ceaacaagga ggaageetgg gaagtgeeea gtgaettatg geeaatgttt gatgettaac eeeeeaatt tetgtgagat ggatggeeag tgeaagegtg aettgaagtg ttgeatggge atgtgtggga aateetgegt tteeeetgtg aaagettga <210> 34 <211> 4266 <212> DNA	120 180 240 300 360
atgaagtcca geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geecagtgee ttagatacaa gaaacetgag tgecagagtg actggeagtg tecagggaag aagagatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga caceccaaac ccaacaagga ggaageetgg gaagtgeeca gtgaettatg geeaatgttt gatgettaac ccecccaatt tetgtgagat ggatggeeag tgeaagegtg acttgaagtg ttgeatggge atgtgtggga aateetgegt tteecetgtg aaagettga <210> 34 <211> 4266 <212> DNA <213> Homo sapiens <400> 34	120 180 240 300 360 399
atgaagtcca geggeetett eeeetteetg gtgetgettg eeetgggaac tetggeacet tgggetgtgg aaggetetgg aaagteette aaagetggag tetgteetee taagaaatet geecagtgee ttagatacaa gaaacetgag tgeeagagtg aetggeagtg teeagggaag aagagatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga eaececaaace ecaacaagga ggaageetgg gaagtgeeca gtgaettatg geeaatgttt gatgettaace ecececaatt tetgtgagat ggatggeeag tgeaagegtg aettgaagtg ttgeatggge atgtgtggga aateetgegt tteeeetgtg aaagettga <210> 34 <211> 4266 <212> DNA <213> Homo sapiens <400> 34 agagttteag ttttggeage agegteeagt geeetgeeag tageteetag agaggeaggg	120 180 240 300 360 399
tggactgtgg aaggetetg aaagteette aaagetggag tetgteete taagaaatet geecagtgee ttagatacaa gaaacetgag tgecagagtg aetggeagtg tecagggaag aaggatgtt gteetgacae ttgtggeate aaatgeetgg ateetgttga caceccaaace ccaacaagga ggaageetgg gaagtgeeca gtgacttatg geeaatgttt gatgettaac eececcaatt tetgtgagat ggatggeeag tgeaagegtg aettgaagtg ttgeatggge atgtgtggga aateetgttga eaceccaaace eececcaatt tetgtgagat ggatggeeag tgeaagegtg aettgaagtg ttgeatggge atgtgtggga aateetggtg aateetgttga eececcaate eececcaatt tetgtgagat ggatggeeag tgeaagegtg aettgaagtg ttgeatggge atgtgtggga aateetgegt tteecetgtg aaagettga <210 > 34 <211 > 4266 <212 > DNA <213 > Homo sapiens <400 > 34 agagttteag ttttggeage agegteeagt geeetgeeag tageteetag agaggeaggg gttaccaact ggeeageagg etgtgteeet gaagteagat caacgggaga gaaggaagtg	120 180 240 300 360 399

tactacccac	ccacctctgt	caaccggcac	acccggaagt	actggtgccg	gcagggagct	360
agaggtggct	gcataaccct	catctcctcg	gagggctacg	tctccagcaa	atatgcaggc	420
agggctaacc	tcaccaactt	cccggagaac	ggcacatttg	tggtgaacat	tgcccagctg	480
agccaggatg	actccgggcg	ctacaagtgt	ggcctgggca	tcaatagccg	aggcctgtcc	540
tttgatgtca	gcctggaggt	cagccagggt	cctgggctcc	taaatgacac	taaagtctac	600
acagtggacc	tgggcagaac	ggtgaccatc	aactgccctt	tcaagactga	gaatgctcaa	660
aagaggaagt	ccttgtacaa	gcagataggc	ctgtaccctg	tgctggtcat	cgactccagt	720
ggttatgtaa	atcccaacta	tacaggaaga	atacgccttg	atattcaggg	tactggccag	780
ttactgttca	gcgttgtcat	caaccaactc	aggeteageg	atgctgggca	gtatctctgc	840
caggctgggg	atgattccaa	tagtaataag	aagaatgctg	acctccaagt	gctaaagccc	900
gagcccgagc	tggtttatga	agacctgagg	ggctcagtga	ccttccactg	tgccctgggc	960
cctgaggtgg	caaacgtggc	caaatttctg	tgccgacaga	gcagtgggga	aaactgtgac	1020
gtggtcgtca	acaccctggg	gaagagggcc	ccagcctttg	agggcaggat	cctgctcaac	1080
ccccaggaca	aggatggctc	attcagtgtg	gtgatcacag	gcctgaggaa	ggaggatgca	1140
gggcgctacc	tgtgtggagc	ccattcggat	ggtcagctgc	aggaaggctc	gcctatccag	1200
gcctggcaac	tcttcgtcaa	tgaggagtcc	acgattcccc	gcagccccac	tgtggtgaag	1260
ggggtggcag	gaggctctgt	ggccgtgctc	tgcccctaca	accgtaagga	aagcaaaagc	1320
atcaagtact	ggtgtctctg	ggaaggggcc	cagaatggcc	gatgacaaat	gctggtggac	1380
agcgaggggt	gggttaaggc	ccagtacgag	ggccgcctct	ccctgctgga	ggagccaggc	1440
aacggcacct	tcactgtcat	cctcaaccag	ctcaccagcc	gggacgccgg	cttctactgg	1500
tgtctgacca	acggcgatac	tctctggagg	accaccgtgg	agatcaagat	tatcgaagga	1560
gaaccaaacc	tcaaggtacc	agggaatgtc	acggctgtgc	tgggagagac	tctcaaggtc	1620
ccctgtcact	ttccatgcaa	attctcctcg	tacgagaaat	actggtgcaa	gtggaataac	1680
acgggctgcc	aggccctgcc	cagccaagac	gaaggcccca	gcaaggcctt	cgtgaactgt	1740
gacgagaaca	gccggcttgt	ctccctgacc	ctgaacctgg	tgaccagggc	tgatgagggc	1800
tggtactggt	gtggagtgaa	gcagggccac	ttctatggag	agactgcagc	cgtctatgtg	1860
gcagttgaag	agaggaaggc	agcggggtcc	cgcgatgtca	gcctagcgaa	ggcagacgct	1920
gctcctgatg	agaaggtgct	agactctggt	tttcgggaga	ttgagaacaa	agccattcag	1980
gatcccaggc	tttttgcaga	ggaaaaggcg	gtggcagata	caagagatca	agccgatggg	2040
agcagagcat	ctgtggattc	cggcagctct	gaggaacaag	gtggaagctc	cagagcgctg	2100

gtctccaccc	tggtgcccct	gggcctggtg	ctggcagtgg	gagccgtggc	tgtgggggtg	2160
gccagagccc	ggcacaggaa	gaacgtcgac	cgagtttcaa	tcagaagcta	caggacagac	2220
attagcatgt	cagacttcga	gaactccagg	gaatttggag	ccaatgacaa	catgggagcc	2280
tcttcgatca	ctcaggagac	atccctcgga	ggaaaagaag	agtttgttgc	caccactgag	2340
agcaccacag	agaccaaaga	acccaagaag	gcaaaaaggt	catccaagga	ggaagccgag	2400
atggcctaca	aagacttcct	gctccagtcc	agcaccgtgg	ccgccgaggc	ccaggacggc	2460
ccccaggaag	cctagacggt	gtcgccgcct	gctccctgca	cccatgacaa	tcaccttcag	2520
aatcatgtcg	atcctggggc	cctcagctcc	tggggacccc	actccctgct	ctaacacctg	2580
cctaggtttt	tcctactgtc	ctcagaggcg	tgctggtccc	ctcctcagtg	acatcaaagc	2640
ctggcctaat	tgttcctatt	ggggatgagg	gtggcatgag	gaggtcccac	ttgcaacttc	2700
tttctgttga	gagaacctca	ggtacggaga	agaatagagg	tcctcatggg	tecettgaag	2760
gaagagggac	cagggtggga	gagctgattg	cagaaaggag	agacgtgcag	agacactatg	2820
cacccttatc	atgggatgtc	aacagaattt	ttccctccac	tccatccctc	cctcccgtcc	2880
ttcccctctt	cttctttcct	tccatcaaaa	gatgtatttg	aattcatact	agaattcagg	2940
tgctttgcta	gatgctgtga	caggtatgcc	accaacactg	ctcacagcct	ttctgaggac	3000
accagtgaaa	gaagccacag	ctcttcttgg	cgtatttata	ctcactgagt	cttaactttt	3060
caccaggggt	gctcacctct	gcccctattg	ggagaggtca	taaaatgtct	cgagtcctaa	3120
ggccttaggg	gtcatgtatg	atgagcatac	acacaggtaa	ttataaaccc	acattcttac	3180
catttcacac	ataagaaaat	tgaggtttgg	aagagtgaag	cgtttttctt	tttcttttt	3240
ttttttgaga	cggagtctct	cactgtcgcc	caggctggag	tgcagtggcg	caatctcggc	3300
tcactgcaac	ctccgcctcc	caggttgaca	ccattctcct	gcctcaccct	cccaagtagc	3360
tgggactaca	ggcgcctgcc	agcacgcctg	gctaattttt	tgtattttta	gtagagacag	3420
ggtttcaccg	tgttagccag	gatggtctcg	arctcctgac	ctcgtgatcc	gcctgcctct	3480
gcctcccaaa	gtgctgggat	tacaggcgtg	agccaccgcg	teeggeetet	ttttttcttt	3540
tcttttttt	gagacaaagt	ctcactgtgt	cacccagact	ggaatgcagt	gacacaatct	3600
cggctcactg	aaacctctgc	cttccaggtt	caagctattc	tcatgcctca	gcctctcaag	3660
taģctgggac	tacagatgtg	ggccaccatg	tctggctaat	tttttttt	tttttttt	3720
tttgtagaga	cagggtttcg	ccatgttgac	gagactggtc	tcgaactcct	ggcctcaagt	3780
gatctgccgc	ctcagcttct	caaagtactg	ggattatata	ggcatgagcc	actgagcctg	3840
gccctgaagc	gtttttctca	aaggccctca	gtgagataaa	ttagatttgg	catctcctgt	3900
cctgggccag	ggatctctct	acaagagccc	ctgcccctct	gttggaggca	cagttttaga	3960

	ataaggagga	ggagggagaa	gagaaaatgt	aaaggaggga	gatctttccc	aggccgcacc	4020
	atttctgtca	ctcacatgga	cccaagataa	aagaatggcc	aaaccctcac	aacccctgat	4080
	gtttgaagag	ttccaagttg	aagggaaaca	aagaagtgtt	tgatggtgcc	agagagggc	4140
	tgctctccag	aaagctaaaa	tttaatttct	tttttcctct	gagttctgta	cttcaaccag	4200
	cctacaagct	ggcacttgct	aacaaatcag	aaatatgaca	attaatgatt	aaagactgtg	4260
	attgcc						4266
		sapiens					
	<400> 35 ctcagggcag	agggaggaag	gacagcagac	cagacagtca	cagcagcctt	gacaaaacgt	60
	tcctggaact	caagctcttc	tccacagagg	aggacagagc	agacagcaga	gaccatggag	120
	tataaatagg	cccctcccca	cagatggtgc	atcccctggc	agaggctcct	gctcacagcc	180
	tcacttctaa	ccttctggaa	cccgcccacc	actgccaagc	tcactattga	atccacgccg	240
	ttcaatgtcg	cagaggggaa	ggaggtgctt	ctacttgtcc	acaatctgcc	ccagcatctt	300
	tttggctaca	gctggtacaa	aggtgaaaga	gtggatggca	accgtcaaat	tataggatat	360
	gtaataggaa	ctcaacaagc	taccccaggg	cccgcataca	gtggtcgaga	gataatatac	420
\	cccaatgcat	ccctgctgat	ccagaacatc	atccagaatg	acacaggatt	ctacacccta	480
	cacgtcataa	agtcagatct	tgtgaatgaa	gaagcaactg	gccagttccg	ggtatacccg	540
	gagctgccca	agccctccat	ctccagcaac	aactccaaac	ccgtggagga	caaggatgct	600
	gtggccttca	cctgtgaacc	tgagactcag	gacgcaacct	acctgtggtg	ggtaaacaat	660
	cagagcctcc	cggtcagtcc	caggetgeag	ctgtccaatg	gcaacaggac	cctcactcta	720
	ttcaatgtca	caagaaatga	cacagcaagc	tacaaatgtg	aaacccagaa	cccagtgagt	780
	gccaggcgca	gtgattcagt	catcctgaat	gtcctctatg	gcccggatgc	ccccaccatt	840
	tcccctctaa	acacatctta	cagatcaggg	gaaaatctga	acctctcctg	ccacgcagcc	900
	tctaacccac	ctgcacagta	ctcttggttt	gtcaatggga	ctttccagca	atccacccaa	960
	gagctcttta	tccccaacat	cactgtgaat	aatagtggat	cctatacgtg	ccaagcccat	1020
	aactcagaca	ctggcctcaa	taggaccaca	gtcacgacga	tcacagtcta	tgcagagcca	1080
	cccaaaccct	tcatcaccag	caacaactcc	aaccccgtgg	aggatgagga	tgctgtagcc	1140
	ttaacctgtg	aacctgagat	tcagaacaca	acctacctgt	ggtgggtaaa	taatcagagc	1200
	ctcccggtca	gtcccaggct	gcagctgtcc	aatgacaaca	ggaccctcac	tctactcagt	1260

gtcacaagga	atgatgtagg	accctatgag	tgtggaatcc	agaacgaatt	aagtgttgac	1320
cacagcgacc	cagtcatcct	gaatgtcctc	tatggcccag	acgaccccac	catttccccc	1380
tcatacacct	attaccgtcc	aggggtgaac	ctcagcctct	cctgccatgc	agcctctaac	1440
ccacctgcac	agtattcttg	gctgattgat	gggaacatcc	agcaacacac	acaagagctc	1500
tttatctcca	acatcactga	gaagaacagc	ggactctata	cctgccaggc	caataactca	1560
gccagtggcc	acagcaggac	tacagtcaag	acaatcacag	tctctgcgga	gctgcccaag	1620
ccctccatct	ccagcaacaa	ctccaaaccc	gtggaggaca	aggatgctgt	ggccttcacc	1680
tgtgaacctg	aggctcagaa	cacaacctac	ctgtggtggg	taaatggtca	gagcctccca	1740
gtcagtccca	ggctgcagct	gtccaatggc	aacaggaccc	tcactctatt	caatgtcaca	1800
agaaatgacg	caagagccta	tgtatgtgga	atccagaact	cagtgagtgc	aaaccgcagt	1860
gacccagtca	ccctggatgt	cctctatggg	ccggacaccc	ccatcátttc	cccccagac	1920
tcgtcttacc	tttcgggagc	gaacctcaac	ctctcctgcc	acteggeete	taacccatcc	1980
ccgcagtatt	cttggcgtat	caatgggata	ccgcagcaac	acacacaagt	tctctttatc	2040
gccaaaatca	cgccaaataa	taacgggacc	tatgcctgtt	ttgtctctaa	cttggctact	2100
ggccgcaata	attccatagt	caagagcatc	acagtetetg	catctggaac	ttataatggt	2160
ctctcagctg	gggccactgt	cggcatcatg	attggagtgc	tggttggggt	tgctctgata	2220
tagcagccct	ggtgtagttt	cttcatttca	ggaagactga	cagttgtttt	gcttcttcct	2280
taaagcattt	gcaacagcta	cagtctaaaa	ttgcttcttt	accaaggata	tttacagaaa	2340
agactctgac	cagagatcga	gaccatccta	gccaacatcg	tgaaacccca	tctctactaa	2400
aaatacaaaa	atgagctggg	cttggtggcg	cgcacctgta	gtcccagtta	ctcgggaggc	2460
tgaggcagga	gaatcgcttg	aacccgggag	gtggagattg	cagtgagccc	agatcgcacc	2520
actgcactcc	agtictggcaa	cagagcaaga	ctccatctca	aaaagaaaag	aaaagaagac	2580
tctgacctgt	actcttgaat	acaagtttct	gataccactg	cactgtctga	gaatttccaa	2640
aactttaatg	aactaactga	cagcttcatg	aaactgtcca	ccaagatcaa	gcagagaaaa	2700
taattaattt	catgggacta	aatgaactaa	tgaggattgc	tgattcttta	aatgtcttgt	2760
ttcccagatt	tcaggaaact	ttttttttt	taagctatcc	actcttacag	caatttgata	2820
aaatatactt	ttgtgaacaa	aaattgagac	atttacattt	tctccctatg	tggtcgctcc	2880
agacttggga	aactattcat	gaatatttat	attgtatggt	aatatagtta	ttgcacaagt	2940
tcaataaaaa	tctgctcttt	gtataacaga	aaaa			2974

<211> 4767 <212> DNA

<213> Homo sapiens

<400> 36 gcctcccgcc gcctcccgcg cggccatgga ctgagcgccg ccggccaggc cgcggggatg 60 gggccgccgc tcccgctgct gctgctgcta ctgctgctgc tgccgccacg cgtcctgcct 120 qccqcccctt cqtccqtccc ccqcggccgg caqctcccgg ggcgtctggg ctgcctgctc 180 gaggagggcc tctgcggagc gtccgaggcc tgtgtgaacg atggagtgtt tggaaggtgc 240 300 cagaaggttc cggcaatgga cttttaccgc tacgaggtgt cgcccgtggc cctgcagcgc 360 ctgcgcgtgg cgttgcagaa gctttccggc acaggtttca cgtggcagga tgactatact cagtatgtga tggaccagga acttgcagac ctcccgaaaa cctacctgag gcgtcctgaa 420 gcatccagcc cagccaggcc ctcaaaacac agcgttggca gcgagaggag gtacagtcgg 480 gagggcggtg ctgccctggc caacgccctc cgacgccacc tgcccttcct ggaggccctg 540 tcccaggccc cagcctcaga cgtgctcgcc aggacccata cggcgcagga cagacccccc 600 getgagggtg atgacegett eteegagage atectgaeet atgtggeeea eaegtetgeg 660 ctgacctacc ctcccgggcc ccggacccag ctccgcgagg acctcctgcc gcggaccctc 720 780 qqccaqctcc aqccaqatqa qctcagccct aaggtggaca gtggtgtgga cagacaccat 840 ctgatggcgg ccctcagtgc ctatgctgcc cagaggcccc cagctccccc cggggagggc agectggage cacagtacet tetgegtgea ceetcaagaa tgeecaggee tttgetggea 900 ccagccgccc cccagaagtg gccttcacct ctgggagatt ccgaagaccc ctccagcaca 960 ggcgatggag cacggattca taccctcctg aaggacctgc agaggcagcc ggctgaggtg 1020 aggggcctga gtggcctgga gctggacggc atggctgagc tgatggctgg cctgatgcaa 1080 ggcgtggacc atggagtagc tcgaggcagc cctgggagag cggccctggg agagtctgga 1140 gaacaggegg atggccccaa ggccaccctc cgtggagaca gctttccaga tgacggagtg 1200 caggacgacg atgatagact ttaccaagag gtccatcgtc tgagtgccac actcgggggc 1260 ctcctgcagg accacgggtc tcgactctta cctggagccc tcccctttgc aaggcccctc 1320 gacatggaga ggaagaagte cgagcaceet gagtetteee tgtetteaga agaggagaet 1380 1440 gccggagtgg agaacgtcaa gagccagacg tattccaaag atctgctggg gcagcagccg 1500 catteggage eeggggeege tgegtttggg gageteeaaa accagatgee tgggeeeteg aaggaggagc agagcettee agegggtget caggaggeec teagegaegg cetgeaattg 1560 1620 qaqqtccaqc cttccqagga agaqqcqcqq qqctacatcg tgacagacag agaccccctg 1680

cgccccgagg aaggaaggcg gctggtggag gacgtcgccc gcctcctgca ggtgcccagc

agtgcgttcg	ctgacgtgga	ggttctcgga	ccagcagtga	ccttcaaagt	gagcgccaat	1740
gtccaaaacg	tgaccactga	ggatgtggag	aaggccacag	ttgacaacaa	agacaaactg	1800
gaggaaacct	ctggactgaa	aattcttcaa	accggagtcg	ggtcgaaaag	caaactcaag	1860
tteetgeete	ctcaggcgga	gcaagaagac	tccaccaagt	tcatcgcgct	caccctggtc	1920
tecetegeet	gcatcctggg	cgtcctcctg	gcctctggcc	tcatctactg	cctccgccat	1980
agctctcagc	acaggctgaa	ggagaagctc	tcgggactag	ggggcgaccc	aggtgcagat	2040
gccactgccg	cctaccagga	gatgtgaaga	cagcgtatgg	ccacgcggcc	accagaccga	2100
cctgagggcc	cgcacacgtc	acgcatcagc	agcgtctcat	cccagttcag	cgacgggccg	2160
atccccagcc	cctccgcacg	cagcagcgcc	tcatcctggt	ccgaggagcc	tgtgcagtcc	2220
aacatggaca	tctccaccgg	ccacatgatc	ctgtcctaca	tggaggacca	cctgaagaac	2280
aagaaccggc	tggagaagga	gtgggaagcg	ctgtgcgcct	accaggcgga	gcccaacagc	2340
tcgttcgtgg	cccagaggga	ggagaacgtg	cccaagaacc	gctccctggc	tgtgctgacc	2400
tatgaccact	cccgggtcct	gctgaaggcg	gagaacagcc	acagccactc	agactacatc	2460
aacgctagcc	ccatcatgga	tcacgacccg	aggaaccccg	cgtacatcgc	cacccaggga	2520
ccgctgcccg	ccaccgtggc	tgacttttgg	cagatggtgt	gggagagcgg	ctgcgtggtg	2580
atcgtcatgc	tgacacccct	cgcggagaac	ggcgtccggc	agtgctacca	ctactggccg	2640
gatgaaggct	ccaatctcta	ccacatctat	gaggtgaacc	tggtctccga	gcacatctgg	2700
tgtgaggact	tcctggtgag	gagcttctat	ctgaagaacc	tgcagaccaa	cgagacgcgc	2760
accgtgacgc	agttccactt	cctgagttgg	tatgaccgag	gagtcccttc	ctcctcaagg	2820
tccctcctgg	acttccgcag	aaaagtaaac	aagtgctaca	ggggccgttc	ttgtccaata	2880
attgttcatt	gcagtgacgg	tgcaggccgg	agcggcacct	acgtcctgat	cgacatggtt	2940
ctcaacaaga	tggccaaagg	tgctaaagag	attgatatcg	cagcgaccct	ggagcacttg	3000
agggaccaga	gacccggcat	ggtccagacg	aaggagcagt	ttgagttcgc	gctgacagcc	3060
gtggctgagg	aggtgaacgc	catcctcaag	gcccttcccc	agtgagcggc	agcctcaggg	3120
gcctcagggg	agcccccacc	ccacggatgt	tgtcaggaat	catgatctga	ctttaattgt	3180
gtgtcttcta	ttataactgc	atagtaatag	ggcccttagc	tctcccgtag	tcagcgcagt	3240
ttagcagtta	aaagtgtatt	tttgtttaat	caaacaataa	taaagagaga	tttgtggaaa	3300
aatccagtta	cgggtggagg	ggaatcggtt	catcaatttt	cacttgctta	aaaaaaatac	3360
tttttcttaa	agcacccgtt	caccttcttg	gttgaagttg	tgttaacaat	gcagtagcca	3420
gcacgttcga	ggcggtttcc	aggaagagtg	tgcttgtcat	ctgccacttt	cgggagggtg	3480
gatccactgt	gcaggagtgg	ccggggaagc	tggcagcact	cagtgaggcc	gcccggcaca	3540

caaggcacgt ttggcatttc	tctttgagag	agtttatcat	tgggagaagc	cgcggggaca	3600
gaactgaacg teetgeaget	tcggggcaag	tgagacaatc	acagctcctc	gctgcgtctc	3660
catcaacact gcgccgggta	ccatggacgg	ccccgtcagc	cacacctgtc	agcccaagca	3720
gagtgattca ggggctcccc	gggggcagac	acctgtgcac	cccatgagta	gtgcccactt	3780
gaggetggea eteccetgae	ctcacctttg	caaagttaca	gatgcacccc	aacattgaga	3840
tgtgttttta atgttaaaat	attgatttct	acgttatgaa	aacagatgcc	cccgtgaatg	3900
cttacctgtg agataaccac	aaccaggaag	aacaaatctg	ggcattgagc	aagctatgag	3960
ggtccccggg agcacacgaa	ccctgccagg	cccccgctgg	ctcctccagg	cacgtcccgg	4020
acctgtgggg ccccagagag	gggacatttc	cctcctggga	gagaaggaga	tcagggcaac	4080
teggagaggg etgegageat	ttccctcccg	ggagaggaga	tcagggcgac	ctgcacgcac	4140
tgcgtagagc ctggaaggga	agtgagaaac	cagccgaccg	gccctgcccc	tetteeeggg	4200
atcacttaat gaaccacgtg	ttttgacatc	atgtaaacct	aagcacgtag	agatgattcg	4260
gatttgacaa aataacattt	gagtatccga	ttcgccatca	cccctaccc	cagaaatagg	4320
acaattcact tcattgacca	ggatgatcac	atggaaggcg	gcgcagaggc	agctgtgtgg	4380
gctgcagatt tcctgtgtgg	ggttcagcgt	agaaaacgca	cctccatccc	gcccttccca	4440
cagcattcct ccatcttaga	tagatggtac	tctccaaagg	ccctaccaga	gggaacacgg	4500
cctactgagc ggacagaatg	atgccaaaat	attgcttatg	tctctacatg	gtattgtaat	4560
gaatatctgc tttaatatag	ctatcatttc	ttttccaaaa	ttacttctct	ctatctggaa	4620
tttaattaat cgaaatgaat	ttatctgaat	ataggaagca	tatgcctact	tgtaatttct	4680
aactccttat gtttgaagag	aaacctccgg	tgtgagatat	acaaatatat	ttaattgtgt	4740
catattaaac ttctgattca	aaaaaaa				4767
<210> 37 <211> 6129 <212> DNA <213> Homo sapiens			·		
<400> 37 aattggaagc aaatgacatc	acagcaggtc	agagaaaaag	ggttgagcgg	caggcaccca	60
gagtagtagg tetttggeat	taggagcttg	agcccagacg	gccctagcag	ggaccccagc	120
gcccgagaga ccatgcagag	gtcgcctctg	gaaaaggcca	gcgttgtctc	caaacttttt	180
ttcagctgga ccagaccaat	tttgaggaaa	ggatacagac	agcgcctgga	attgtcagac	240
atataccaaa tcccttctgt	tgattctgct	gacaatctat	ctgaaaaatt	ggaaagagaa	300
tgggatagag agctggcttc	aaagaaaaat	cctaaactca	ttaatgccct	teggegatgt	360

tttttctgga	gatttatgtt	ctatggaatc	tttttatatt	taggggaagt	caccaaagca	420	
gtacagcctc	tcttactggg	aagaatcata	gcttcctatg	acccggataa	caaggaggaa	480	
cgctctatcg	cgatttatct	aggcataggc	ttatgccttc	tctttattgt	gaggacactg	540	
ctcctacacc	cagccatttt	tggccttcat	cacattggaa	tgcagatgag	aatagctatg	600	
tttagtttga	tttataagaa	gactttaaag	ctgtcaagcc	gtgttctaga	taaaataagt	660	
attggacaac	ttgttagtct	cctttccaac	aacctgaaca	aatttgatga	aggacttgca	720	
ttggcacatt	togtgtggat	cgctcctttg	caagtggcac	tcctcatggg	gctaatctgg	780	
gagttgttac	aggcgtctgc	cttctgtgga	cttggtttcc	tgatagtcct	tgcccttttt	840	
caggctgggc	tagggagaat	gatgatgaag	tacagagatc	agagagctgg	gaagatcagt	900	
gaaagacttg	tgattacctc	agaaatgatt	gaaaatatcc	aatctgttaa	ggcatactgc	960	
tgggaagaag	caatggaaaa	aatgattgaa	aacttaagac	aaacagaact	gaaactgact	1020	
cggaaggcag	cctatgtgag	atacttcaat	agctcagcct	tattattata	agggttcttt	1080	
gtggtgttt	tatctgtgct	tccctatgca	ctaatcaaag	gaatcatcct	ccggaaaata	1140	
ttcaccacca	. tctcattctg	cattgttctg	cgcatggcgg	tcactcggca	atttccctgg	1200	
gctgtacaaa	. catggtatga	ctctcttgga	gcaataaaca	aaatacagga	tttcttacaa	1260	
aagcaagaat	ataagacatt	ggaatataac	ttaacgacta	cagaagtagt	gatggagaat	1320	
gtaacagcct	tctgggagga	gggatttggg	gaattatttg	agaaagcaaa	acaaaacaat	1380	
aacaatagaa	. aaacttctaa	tggtgatgac	agcctcttct	tcagtaattt	ctcacttctt	1440	
ggtactcctg	tcctgaaaga	tattaatttc	aagatagaaa	gaggacagtt	gttggcggtt	1500	
gctggatcca	. ctggagcagg	caagacttca	cttctaatga	tgattatggg	agaactggag	1560	
ccttcagagg	gtaaaattaa	gcacagtgga	agaatttcat	tctgttctca	gttttcctgg	1620	
attatgcctg	gcaccattaa	agaaaatatc	atctttggtg	tttcctatga	tgaatataga	1680	
tacagaagcg	tcatcaaagc	atgccaacta	gaagaggaca	tctccaagtt	tgcagagaaa	1740	
gacaatatag	ttcttggaga	aggtggaatc	acactgagtg	gaggtcaacg	agcaagaatt	1800	
tctttagcaa	. gagcagtata	caaagatgct	gatttgtatt	tattagactc	tccttttgga	1860	
tacctagatg	ttttaacaga	aaaagaaata	tttgaaagct	gtgtctgtaa	actgatggct	1920	
aacaaaacta	. ggattttggt	cacttctaaa	atggaacatt	taaagaaagc	tgacaaaata	1980	
ttaattttga	. atgaaggtag	cagctatttt	tatgggacat	tttcagaact	ccaaaatcta	2040	
cagccagact	ttagctcaaa	actcatggga	tgtgattctt	tcgaccaatt	tagtgcagaa	2100	
agaagaaatt	caatcctaac	tgagacctta	caccgtttct	cattagaagg	agatgctcct	2160	

gtctcctgga	cagaaacaaa	aaaacaatct	tttaaacaga	ctggagagtt	tggggaaaaa	2220
aggaagaatt	ctattctcaa	tccaatcaac	tctatacgaa	aattttccat	tgtgcaaaag	2280
actcccttac	aaatgaatgg	catcgaagag	gattctgatg	agcctttaga	gagaaggctg	2340
tccttagtac	cagattctga	gcagggagag	gcgatactgc	ctcgcatcag	cgtgatcagc	2400
actggcccca	cgcttcaggc	acgaaggagg	cagtctgtcc	tgaacctgat	gacacactca	2460
gttaaccaag	gtcagaacat	tcaccgaaag	acaacagcat	ccacacgaaa	agtgtcactg	2520
gcccctcagg	caaacttgac	tgaactggat	atatattcaa	gaaggttatc	tcaagaaact	2580
ggcttggaaa	taagtgaaga	aattaacgaa	gaagacttaa	aggagtgcct	ttttgatgat	2640
atggagagca	taccagcagt	gactacatgg	aacacatacc	ttcgatatat	tactgtccac	2700
aagagcttaa	tttttgtgct	aatttggtgc	ttagtaattt	ttctggcaga	ggtggctgct	2760
tctttggttg	tgctgtggct	ccttggaaac	actcctcttc	aagacaaagg	gaatagtact	2820
catagtagaa	ataacagcta	tgcagtgatt	atcaccagca	ccagttcgta	ttatgtgttt	2880
tacatttacg	tgggagtagc	cgacactttg	cttgctatgg	gattcttcag	aggtctacca	2940
ctggtgcata	ctctaatcac	agtgtcgaaa	attttacacc	acaaaatgtt	acattctgtt	3000
cttcaagcac	ctatgtcaac	cctcaacacg	ttgaaagcag	gtgggattct	taatagattc	3060
tccaaagata	tagcaatttt	ggatgacctt	ctgcctctta	ccatatttga	cttcatccag	3120
ttgttattaa	ttgtgattgg	agctatagca	gttgtcgcag	ttttacaacc	ctacatcttt	3180
gttgcaacag	tgccagtgat	agtggctttt	attatgttga	gagcatattt	cctccaaacc	3240
tcacagcaac	tcaaacaact	ggaatctgaa	ggcaggagtc	caattttcac	tcatcttgtt	3300
acaagcttaa	aaggactatg	gacacttcgt	gccttcggac	ggcagcctta	ctttgaaact	3360
ctgttccaca	aagctctgaa	tttacatact	gccaactggt	tcttgtacct	gtcaacactg	3420
cgctggttcc	aaatgagaat	agaaatgatt	tttgtcatct	tcttcattgc	tgttaccttc	3480
atttccattt	taacaacagg	agaaggagaa	ggaagagttg	gtattatcct	gactttagcc	3540
atgaatatca	tgagtacatt	gcagtgggct	gtaaactcca	gcatagatgt	ggatagcttg	3600
atgcgatctg	tgagccgagt	ctttaagttc	attgacatgc	caacagaagg	taaacctacc	3660
aagtcaacca	aaccatacaa	gaatggccaa	ctctcgaaag	ttatgattat	tgagaattca	3720
cacgtgaaga	aagatgacat	ctggccctca	gggggccaaa	tgactgtcaa	agatctcaca	3780
gcaaaataca	cagaaggtgg	aaatgccata	ttagagaaca	tttccttctc	aataagtcct	3840
ggccagaggg	tgggcctctt	gggaagaact	ggatcaggga	agagtacttt	gttatcagct	3900
tttttgagac	tactgaacac	tgaaggagaa	atccagatcg	atggtgtgtc	ttgggattca	3960
ataactttgc	aacagtggag	gaaagccttt	ggagtgatac	cacagaaagt	atttatttt	4020

tctggaacat	ttagaaaaaa	cttggatccc	tatgaacagt	ggagtgatca	agaaatatgg	4080	
aaagttgcag	atgaggttgg	gctcagatct	gtgatagaac	agtttcctgg	gaagcttgac	4140	
tttgtccttg	tggatggggg	ctgtgtccta	agccatggcc	acaagcagtt	gatgtgcttg	4200	
gctagatctg	ttctcagtaa	ggcgaagatc	ttgctgcttg	atgaacccag	tgctcatttg	4260	
gatccagtaa	cataccaaat	aattagaaga	actctaaaac	aagcatttgc	tgattgcaca	4320	
gtaattctct	gtgaacacag	gatagaagca	atgctggaat	gccaacaatt	tttggtcata	4380	
gaagagaaca	aagtgcggca	gtacgattcc	atccagaaac	tgctgaacga	gaggagcctc	4440	
ttccggcaag	ccatcagccc	ctccgacagg	gtgaagctct	ttccccaccg	gaactcaagc	4500	
aagtgcaagt	ctaagcccca	gattgctgct	ctgaaagagg	agacagaaga	agaggtgcaa	4560	
gatacaaggc	tttagagagc	agcataaatg	ttgacatggg	acatttgctc	atggaattgg	4620	
agctcgtggg	acagtcacct	catggaattg	gagctcgtgg	aacagttacc	tctgcctcag	4680	
aaaacaagga	tgaattaagt	tttttttaa	aaaagaaaca	tttggtaagg	ggaattgagg	4740	
acactgatat	gggtcttgat	aaatggcttc	ctggcaatag	tcaaattgtg	tgaaaggtac	4800	
ttcaaatcct	tgaagattta	ccacttgtgt	tttgcaagcc	agattttcct	gaaaaccctt	4860	
gccatgtgct	agtaattgga	aaggcagctc	taaatgtcaa	tcagcctagt	tgatcagctt	4920	
attgtctagt	gaaactcgtt	aatttgtagt	gttggagaag	aactgaaatc	atacttctta	4980	
gggttatgat	taagtaatga	taactggaaa	cttcagcggt	ttatataagc	ttgtattcct	5040	
ttttctctcc	tctccccatg	atgtttagaa	acacaactat	attgtttgct	aagcattcca	5100	
actatctcat	ttccaagcaa	gtattagaat	accacaggaa	ccacaagact	gcacatcaaa	5160	
atatgcccca	ttcaacatct	agtgagcagt	caggaaagag	aacttccaga	tcctggaaat	5220	
cagggttagt	attgtccagg	tctaccaaaa	atctcaatat	ttcagataat	cacaatacat	5280	
cccttacctg	ggaaagggct	gttataatct	ttcacagggg	acaggatggt	tcccttgatg	5340	
aagaagttga	tatgcctttt	cccaactcca	gaaagtgaca	agctcacaga	cctttgaact	5400	
agagtttagc	tggaaaagta	tgttagtgca	aattgtcaca	ggacagccct	tctttccaca	5460	
gaagctccag	gtagagggtg	tgtaagtaga	taggccatgg	gcactgtggg	tagacacaca	5520	
tgaagtccaa	gcatttagat	gtataggttg	atggtggtat	gttttcaggc	tagatgtatg	5580	
tacttcatgc	tgtctacact	aagagagaat	gagagacaca	ctgaagaagc	accaatcatg	5640	
aattagtttt	atatgcttct	gttttataat	tttgtgaagc	aaaattttt	ctctaggaaa	5700	
tatttatttt	aataatgttt	caaacatata	ttacaatgct	gtattttaaa	agaatgatta	5760	
tgaattacat	ttgtataaaa	taatttttat	atttgaaata	ttgacttttt	atggcactag	5820	

tatttttatg	aaatattatg	ttaaaactgg	gacaggggag	aacctagggt	gatattaacc	5880
aggggccatg	aatcaccttt	tggtctggag	ggaagccttg	gggctgatcg	agttgttgcc	5940
cacagctgta	tgattcccag	ccagacacag	cctcttagat	gcagttctga	agaagatggt	6000
accaccagtc	tgactgtttc	catcaagggt	acactgcctt	ctcaactcca	aactgactct	6060
taagaagact	gcattatatt	tattactgta	agaaaatatc	acttgtcaat	aaaatccata	6120
catttgtgt						6129

<210> 38

<211> 2645

<212> DNA

<213> Homo sapiens

<400> 38

60 cacaagaata ctgaaaaatg aagcctaaaa tgaagtattc aaccaacaaa atttccacag 120 caaagtggaa gaacacagca agcaaagcct tgtgtttcaa gctgggaaaa tcccaacaga 180 aggccaaaga agtttgcccc atgtacttta tgaagctccg ctctggcctt atgataaaaa aggaggeetg ttaetttagg agagaaacca ccaaaaggee tteactgaaa acaggtagaa 240 300 agcacaaaag acatctggta ctcgctgcct gtcaacagca gtctactgtg gagtgctttg 360 cctttggtat atcaggggtc cagaaatata ctagagcact tcatgattca agtatcacag gaatttcacc tattacagag tatcttgctt ctctaagcac atacaatgat caatccatta 420 cttttgcttt ggaggatgaa agttatgaga tatatgttga agacttgaaa aaagatgaaa 480 agaaagataa ggtgttactg agttactatg agtctcaaca cccctcaaat gaatcaggtg 540 600 acggtgttga tggtaagatg ttaatggtaa ccctgagtcc tacaaaagac ttctggttgc 660 atgccaacaa caaggaacac tctgtggagc tccataagtg tgaaaaacca ctgccagacc 720 aggeettett tgteetteat aatatgeact ecaactgtgt tteatttgaa tgeaagaetg 780 atcctggagt gtttataggt gtaaaggata atcatcttgc tctgattaaa gtagactctt ctgagaattt gtgtactgaa aatatcttgt ttaagctctc tgaaacttag ttgatggaaa 840 900 cctgtgagtc ttgggttgag tacccaaatg ctaccactgg agaaggaatg agagataaag aaagagacag gtgacatcta agggaaatga agagtgctta gcatgtgtgg aatgttttcc 960 atattatgta taaaaatatt ttttctaatc ctccagttat tcttttattt ccctctgtat 1020 1080 aactgcatct tcaatacaag tatcagtata ttaaataggg tattggtaaa gaaacggtca acattctaaa gagatacagt ctgaccttta cttttctcta gtttcagtcc agaaagaact 1140 tcatatttag agctaaggcc actgaggaaa gagccatagc ttaagtctct atgtagacag 1200 ggatccattt taaagagcta cttagagaaa taattttcca cagttccaaa cgataggctc 1260

aaacactaga	gctgctagta	aaaagaagac	cagatgcttc	acagaattat	cattttttca	1320
actggaataa	aacaccaggt	ttgtttgtag	atgtcttagg	caacactcag	agcagatete	1380
ccttactgtc	aggggatatg	gaacttcaaa	ggcccacatg	gcaagccagg	taacataaat	1440
gtgtgaaaaa	gtaaagataa	ctaaaaaatt	tagaaaaata	aatccagtat	ttgtaaagtg	1500
aataacttca	tttctaattg	tttaattttt	aaaattctga	tttttatata	ttgagtttaa	1560
gcaaggcatt	cttacacgag	gaagtgaagt	aaattttagt	tcagacataa	aatttcactt	1620
attaggaata	tgtaacatgc	taaaactttt	tttttttaa	agagtactga	gtcacaacat	1680
gttttagagc	atccaagtac	catataatcc	aactatcatg	gtaaggccag	aaatcttcta	1740
acctaccaga	gcctagatga	gacaccgaat	taacattaaa	atttcagtaa	ctgactgtcc	1800
ctcatgtcca	tggcctacca	tcccttctga	ccctggcttc	cagggaccta	tgtcttttaa	1860
tactcactgt	cacattgggc	aaagttgctt	ctaatcctta	tttcccatgt	gcacaagtct	1920
ttttgtattc	cagcttcctg	ataacactgc	ttactgtgga	atattcattt	gacatctgtc	1980
tcttttcatt	tcttttaact	accatgccct	tgatatatct	tttgcacctg	ctgaacttca	2040
tttctgtatc	acctgacctc	tggatgccaa	aacgtttatt	ctgctttgtc	tgttgtagaa	2100
ttttagataa	agctattaat	ggcaatattt	ttttgctaaa	cgtttttgtt	ttttactgtc	2160
actagggcaa	taaaatttat	actcaaccat	ataataacat	tttttaacta	cataaaggag	2220
tagtttttat	tttaaagtct	tagcaatttc	tattacaact	tttcttagac	ttaacactta	2280
tgataaatga	ctaacatagt	aacagaatct	ttatgaaata	tgaccttttc	tgaaaataca	2340
tacttttaca	tttctacttt	attgagacct	attagatgta	agtgctagta	gaatataaga	2400
taaaagaggc	tgagaattac	catacaaggg	tattacaact	gtaaaacaat	ttatctttgt	2460
ttcattgttc	tgtcaataat	tgttaccaaa	gagataaaaa	taaaagcaga	atgtatatca	2520
tcccatctga	aaaacactaa	ttattgacat	gtgcatctgt	acaataaact	taaaatgatt	2580
attaaataat	caaatatatc	tactacattg	tttatattat	tgaataaagt	atattttcca	2640
aatgt						2645
<210> 39						
	_					

<211> 1433 <212> DNA

<400> 39

atteggggeg agggaggagg aagaagegga ggaggegget ceegetegea gggeegtgea 60 cetgecegee egecegeteg etegetegee egecgegeeg egetgeegae egecageatg 120 ctgccgagag tgggctgccc cgcgctgccg ctgccgccgc cgccgctgct gccgctgctg 180

<213> Homo sapiens

ccgctgctgc	tgctgctact	gggcgcgagt	ggcggcggcg	gcggggcgcg	cgcggaggtg	240
ctgttccgct	gaaagaaatg	cacacccgag	cgcctggccg	cctgcgggcc	cccgccggtt	300
gcgccgcccg	ccgcggtggc	cgcagtggcc	ggaggcgccc	gcatgccatg	cgcggagctc	360
gtccgggagc	cgggctgcgg	ctgctgctcg	gtgtgcgccc	ggctggaggg	cgaggcgtgc	420
ggcgtctaca	ccccgcgctg	cggccagggg	ctgcgctgct	atccccaccc	gggctccgag	480
ctgcccctgc	aggcgctggt	catgggcgag	ggcacttgtg	agaagcgccg	ggacgccgag	540
tatggcgcca	gcccggagca	ggttgcagac	aatggcgatg	accactcaga	aggaggcctg	600
gtggagaacc	acgtggacag	caccatgaac	atgttgggcg	ggggaggcag	tgctggccgg	660
aagcccctca	agtcgggtat	gaaggagctg	gccgtgttcc	gggagaaggt	cactgagcag	720
caccggcaga	tgggcaaggg	tggcaagcat	caccttggcc	tggaggagcc	caagaagctg	780
cgaccacccc	ctgccaggac	tccctgccaa	caggaactgg	accaggtcct	ggagcggatc	840
tccaccatgc	gccttccgga	tgagcggggc	cctctggagc	acctctactc	cctgcacatc	, 900
cccaactgtg	acaagcatgg	cctgtacaac	ctcaaacagt	gcaagatgtc	tctgaacggg	960
cagcgtgggg	agtgctggtg	tgtgaacccc	aacaccggga	agctgatcca	gggagccccc	1020
accatccggg	gggaccccga	gtgtcatctc	ttctacaatg	agcagcagga	ggcttgcggg	1080
gtgcacaccc	agcggatgca	gtagaccgca	gccagccggt	gcctggcgcc	cctgccccc	1140
gacatataa	aaacaccggc	agaaaacgga	gagtgcttgg	gtggtgggtg	ctggaggatt	1200
ttccagttct	gacacacgta	tttatatttg	gaaagagacc	agcaccgagc	teggeacete	1260
cccggcctct	ctcttcccag	ctgcagatgc	cacacctgct	cattattgat	ttccccgggg	1320
gaggaagggg	gttgtggtcg	gggagctggg	gtacaggttt	ggggagggg	aagagaaatt	1380
tttatttttg	aacccctgtg	tecettttge	ataagattaa	aggaaggaaa	agt	1433
<210> 40						

<210> 40 <211> 1203 <212> DNA

<400> 40

<213> Homo sapiens

gatctggggt gctgccagga aaaagcaaat tctggaagtt aatggttttg agtgattttt 60 120 aaatccttgc tggcggagag gcccgcctct ccccggtatc agcgcttcct cattctttga atccgcggct ccgcggtctt cggcgtcaga ccagccggag gaagcctgtt tgcaatttaa 180 gegggetgtg aaegeeeagg geeggeggg geggggeega ggegggeeat tttgaataaa 240 300 gaggegtgee ttecaggeag getetataag tgacegeege ggegagegtg egegegttge

aggtcactgt agcggacttc ttttggtttt ctttctcttt ggggcacctc tggactcact

ccccagcatg aaggcgctga	gcccggtgcg	cggctgctac	gaggcggtgt	gatgaatgta	420
ggaacgcagt ctggccatcg	cccggggccg	agggaagggc	ccggcagctg	aggagccgct	480
gagettgetg gaegaeatga	accactgcta	ctcccgcctg	cgggaactgg	tacccggagt	540
cccgagaggc actcagctta	gccaggtgga	aatcctacag	cgcgtcatcg	actacattct	600
cgacctgcag gtagtcctgg	ccgagccagc	ccctggaccc	cctgatggcc	cccaccttcc	660
catccagaca gccgagctcg	ctccggaact	tgtcatctcc	aacgacaaaa	ggagcttttg	720
ccactgactc ggccgtgtcc	tgacacctcc	agaacgcagg	tgatggagaa	cgttctgcct	780
gggaccccgg gaacctctcc	tgccggaagc	cggacggcag	ggatgggccc	caacttcgcc	840
ctgcccactt gacttcacca	aatcccttcc	tggagactaa	acctggtgct	caggagcgaa	900
ggactgtgaa cttgtagcct	gaagagccag	agctagctct	ggccaccagc	tgggcgacgt	960
caccctgctc ccaccccacc	cccaagttct	aaggtctttt	cagagcgtgg	aggtgtggaa	1020
ggagtggctg ctctccaaac	tatgccaagg	cggcggcaga	gctggtcttc	tggtctcctt	1080
ggagaaaggt tetgttgeed	tgatttatga	actctataat	agagtatata	ggttttgtac	1140
cttttttaca ggaaggtgac	tttctgtaac	aatgcgatgt	atattaaact	ttttataaaa	1200
gtt					1203

<210> 41 <211> 1116

<212> DNA

<213> Homo sapiens

<400> 41

60 ctgaggctgc cttgggaaga agatgatect aaacaaaget ctgctgetgg gggeeetege 120 tctgaccacc gtgatgagcc cctgtggagg tgaagacatt gtggctgacc acgttgcctc 180 ttgtggtgta aacttgtacc agttttacgg tccctctggc cagtacaccc atgaatttga tggagatgag cagttctacg tggacctgga gaggaaggag actgcctggc ggtggcctga 240 300 gttcagcaaa tttggaggtt ttgacccgca gggtgcactg agaaacatgg ctgtggcaaa 360 acacaacttg aacatcatga ttaaacgcta caactctacc gctgctacca atgaggttcc 420 tgaggtcaca gtgttttcca agtctcccgt gacactgggt cagcccaaca ccctcatttg 480 tcttgtggac aacatctttc ctcctgtggt caacatcaca tggctgagca atgggcagtc 540 agtcacagaa gatgtttctg agaccagctt cctctccaag agtgatcatt ccttcttcaa gatcagttac ctcaccttcc ttccctctgc tgatgagatt tatgactgca aggtggagca 600 660 ctggggcctg gaccagcctc ttctgaaaca ctgggagcct gagattccag cccctatgtc agageteaca gagaetgtgg tetgtgeeet ggggttgtet gtgggeetea tgggeattgt 720

ggtgggcact gtcttcatca	tccaaggcct	gcgttcagtt	ggtgcttcca	gacaccaagg	780
gccattgtga atcccatcct	ggaagggaag	gtgcatcgcc	atctacagga	gcagaagaat	840
ggacttgcta aatgacctag	cactattctc	tggcccggtt	tatcatatcc	cttttctcct	900
ccaaatattt ctcctctcac	cttttctctg	ggacttaagc	tgctatatcc	cctcagagct	960
cacaaatgcc tttacattct	ttccctgacc	tcctgatttt	tttttcttt	ctcaaatgtt	1020
acctacacag acatgcctgg	ggtaagccac	ccggctacct	aattcctcag	taacctccat	1080
ctaaaatctc caaggaagca	ataaattcct	tttatg			1116
<210> 42 <211> 554 <212> DNA <213> Homo sapiens					
<400> 42 gccagaaccg gtggagcagc	gacccctgag	cagtgttctc	tgtgctgagc	ggcgggactg	60
agctgttgag ttagagccaa	catgagtgag	cgacaaggtg	ctggggcaac	caatggaaaa	120
gacaagacat ctggtgaaaa	tgatggacag	aagaaagttc	aagaagaatt	tgacattgac	180
atggatgcac cagagacaga	acgtgcagcg	gtggccattc	agtctcagtt	cagaaaattc	240
cagaagaaga aggctgggtc	tcagtcctag	tgggagaacc	ccctcctagt	ccacctgaaa	300
acaccaaatt caaccatcat	ctgtcaagaa	attaaaagaa	caacacccta	gagagaagtc	360
atccacacac aatccacaca	cgcatagcaa	acctccaatg	catgtacaga	aacctgtgat	420
atttataccc ttgtaggaag	gtatagacaa	tggaattgtg	agtagcttaa	tctctatgtt	480
tctctccatt ttcattcctc	ctgcaactat	tttccttgat	gttgtaataa	aatgaagtta	540
cgatgagtga aaaa					554
<210> 43 <211> 1201 <212> DNA <213> Homo sapiens					
<400> 43 wttatwahaa atttattttt	aacccaatag	aaaagcaaat	ttggaatcta	tttacaagta	60
ctatatattt acatatatac	agttagagtg	ggagatttaa	agaaaatggg	cagagaaaca	120
caatataaat caaagaatat	gccactgtac	aaggcattat	tatcattatc	atggtcctta	180
atgttactga acctttacta	tagtaataaa	tacagttcta	tatttacaca	tcttataaaa	240
catctcataa atgtattttt	tcaaatccaa	gthaaaacat	ctgatcaaaa	taaacatgct	300
tatataaaaa taaatctacc	taacagccat	ttggtttgga	tgtattgarg	ctaatatagg	360
ataatagagg gtaagrbtta	atactttgac	ttttcttatt	taataacttg	cttcttaaaa	420

tacctaacac agtattaata	tggaatargc	rgagargtaa	tgttcctaac	atcaagtggg	480
ttatccagag agaacacagc	taaaaccaag	ctaaataaac	aggataatac	gttactgagt	540
ctcttgagtc caaagtggtg	tcagatattg	ggtttgccag	agctactaga	gatacatgtg	600
tgagaggttg tatcagtgga	cttaatttat	gtgatgtgca	catttgatca	ttaagatgca	660
catcagtttg aatcaactga	taaaacttat	tgcaaaaatt	ctttactaac	ccagaaaaaa	720
aatcccagat tgcttacttt	cttttccagg	tatgtycatt	gctggcagtg	gaattccctt	780
ctgagctttg ggcmcaagga	gttaaaaaca	aatcagataa	gacatacgtc	acctgtscat	840
gattscctta gtaacaattt	aagaattttg	gtcagttttt	ctttcaaaat	acttgtaagc	900
agttttatcc catgakggtg	gaccatctag	tgctgataca	taaamctggt	atctctaaaa	960
wtgatctcaa tatgagtgag	taacaatacy	twacattacc	ayctaaggga	ttgtscttag	1020
aaggatcttt cysmkkaags	aaasgwggat	haaaathtca	awkktattwt	attwatccaw	1080
ttwaaaychm haaaataaat	ttttattwaa	ccawatttcy	aatcccmaaa	ccytttttt	1140
tttttaaaaa aattttatat	tamcbkktcm	tkyyktaaam	dttttttaaa	atttaaattw	1200
a					1201

<210> 44

<211> 2880

<212> DNA

<213> Homo sapiens

<400> 44 tgctgctctc cgcccgcgtc cggctcgtgg ccccctactt cgggcaccat ggacacctcc 60 cggctcggtg tgctcctgtc cttgcctgtg ctgctgcagc tggcgaccgg gggcagctct 120 cccaggtctg gtgtgttgct gaggggctgc cccacacact gtcattgcga gcccgacggc 180 aggatgttgc tcagggtgga ctgctccgac ctggggctct cggagctgcc ttccaacctc 240 agegtettea cetectacet agaceteagt atgaacaaca teagteaget getecegaat 300 cccctgccca gtctccgctt cctggaggag ttacgtcttg cgggaaacgc tctgacatac 360 attcccaagg gagcattcac tggcctttac agtcttaaag ttcttatgct gcagaataat 420 cagctaagac acgtacccac agaagctctg cagaatttgc gaagccttca atccctgcgt 480 540 ctqqatgcta accacatcag ctatgtgccc ccaagetgtt tcagtggcct gcattccctg aggcacctgt ggctggatga caatgcgtta acagaaatcc ccgtccaggc ttttagaagt 600 ttatcggcat tgcaagccat gaccttggcc ctgaacaaaa tacaccacat accagactat 660 720 qcctttqqaa acctctccaq cttqqtaqtt ctacatctcc ataacaatag aatccactcc 780 ctgggaaaga aatgctttga tgggctccac agcctagaga ctttagattt aaattacaat

aaccttgatg	aattccccac	tgcaattagg	acactctcca	accttaaaga	actaggattt	840
catagcaaca	atatcaggtc	gatacctgag	aaagcatttg	taggcaaccc	ttctcttatt	900
acaatacatt	tctatgacaa	tcccatccaa	tttgttggga	gatctgcttt	tcaacattta	960
cctgaactaa	gaacactgac	tctgaatggt	gcctcacaaa	taactgaatt	tcctgattta	1020
actggaactg	caaacctgga	gagtctgact	ttaactggag	cacagatctc	atctcttcct	1080
caaaccgtct	gcaatcagtt	acctaatctc	caagtgctag	atctgtctta	caacctatta	1140
gaagatttac	ccagtttttc	agtctgccaa	aagcttcaga	aaattgacct	aagacataat	1200
gaaatctacg	aaattaaagt	tgacactttc	cagcagttgc	ttagcctccg	atcgctgaat	1260
ttggcttgga	acaaaattgc	tattattcac	cccaatgcat	tttccacttt	gccatcccta	1320
ataaagctgg	acctatcgtc	caacctcctg	tcgtctttc	ctataactgg	gttacatggt	1380
ttaactcact	taaaattaac	aggaaatcat	gccttacaga	gcttgatatc	atctgaaaac	1440
tttccagaac	tcaaggttat	agaaatgcct	tatgcttacc	agtgctgtgc	atttggagtg	1500
tgtgagaatg	cctataagat	ttctaatcaa	tggaataaag	gtgacaacag	cagtatggac	1560
gaccttcata	agaaagatgc	tggaatgttt	caggctcaag	atgaacgtga	ccttgaagat	1620
ttcctgcttg	actttgagga	agacctgaaa	gcccttcatt	cagtgcagtg	ttcaccttcc	1680
ccaggcccct	tcaaaccctg	tgaacacctg	cttgatggct	ggctgatcag	aattggagtg	1740
tggaccatag	cagttctggc	acttacttgt	aatgctttgg	tgacttcaac	agttttcaga	1800
		cattaaactg cgtgctggct				1860 1920
		ggagaatggg				1980
		tgttttcctg				2040
		atttgaaacg				2100
		ggccttgacc				2160
		ctgcctgcct				2220
		gctcaattcc				2280
		ggacaaggga				2340
		gctcttcacc				2400
		aaaccttaca				2460
		tcctgcatgt				2520
		ggtgagcctg				2580
						2640
aaacacccaa	gorrgatgte	aattaactct	gatgatgteg	aaaaacaytc	cigigacica	20-20

actcaagcct tggtaacctt	taccagctcc	agcatcactt	atgacctgcc	tcccagttcc	2700
gtgccatcac cagcttatcc	agtgactgag	agctgccatc	tttcctctgt	ggcatttgtc	2760
ccatgtctct aattaatatg	tgaaggaaaa	tgttttcaaa	ggttgagaac	ctgaaaatgt	2820
gagattgagt atatcagagc	agtaattaat	aagaagagct	gaggtgaaac	tcggtttaaa	2880
<210> 45 <211> 441 <212> DNA <213> Homo sapiens					ı
<400> 45 tttttgcctg gccggcctat	tatttttat	ttagagacgt	ggtcttgcta	tattgaccag	60
gctggtcttt aactcttggc	ctcaatcaat	cctcctacct	cagcctccca	aagtgctggg	120
attacaggcg tgagccacag	cgcctgtcca	cccttggcat	tttgtagaca	gcagcaattt	180
ccctcaaccc cagaatattt	ggaatgttcc	agaagtcctc	atttacagtc	gatcccacct	240
gtaccctata agtggtggtc	ctgggcttga	acttggacct	gtctgaactc	tgagctctta	300
acccctgagg taagaacctg	gggtgagctc	ttaacccatg	ggaccaaccc	ctctagagtg	360
aggagacacg tcatcatttt	tccttgcagt	attacatctg	gaaaccgtgc	cgtgatgatc	420
tctctgcacc cctcacaggc	g				441
<210> 46 <211> 2583 <212> DNA <213> Homo sapiens					
<211> 2583 <212> DNA <213> Homo sapiens <400> 46	caggaaacct	gccatggcct	cctqqtqaqc	tgtcctcatc	60
<211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc					60 120
<211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca	gatcttcagt	tgcttcaggc	cactttgaat	gtatatgagc	
<211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat	gatcttcagt	tgcttcaggc gggctcagag	cactttgaat	gtatatgagc cgccccacc	120
<211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat	gatcttcagt ggcttagctt ctaccctcct	tgcttcaggc gggctcagag , gaaggtcact	cactttgaat gcctgaaaat gacaaagact	gtatatgagc cgccccacc tcattgtctc	120 180
<211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat	gatcttcagt ggcttagctt ctaccctcct tcagggctga	tgcttcaggc gggctcagag gaaggtcact cgtaattcca	cactttgaat gcctgaaaat gacaaagact tcttaatatc	gtatatgagc cgccccacc tcattgtctc agttacatta	120 180 240
<pre><211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat ctaggagagg ctgccatata</pre>	gatcttcagt ggcttagctt ctaccctcct tcagggctga gaggccccag	tgcttcaggc gggctcagag gaaggtcact cgtaattcca agcccaaggg	cactttgaat gcctgaaaat gacaaagact tcttaatatc tgcaaagcag	gtatatgagc cgccccacc tcattgtctc agttacatta taattagtca	120 180 240 300
<pre><211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat ctaggagagg ctgccatata taaaaattta cctcgtgcct</pre>	gatcttcagt ggcttagctt ctaccctcct tcagggctga gaggccccag ctctgggctc	tgcttcaggc gggctcagag gaaggtcact cgtaattcca agcccaaggg aggctgtccc	cactttgaat gcctgaaaat gacaaagact tcttaatatc tgcaaagcag tgagggcctg	gtatatgagc cgccccacc tcattgtctc agttacatta taattagtca tgttttgagt	120 180 240 300 360
<pre><211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat ctaggagagg ctgccatata taaaaattta cctcgtgcct aagttcaact tcccctcca</pre>	gatcttcagt ggcttagctt ctaccctcct tcagggctga gaggccccag ctctgggctc tgaacttagg	tgcttcaggc gggctcagag gaaggtcact cgtaattcca agcccaaggg aggctgtccc tcttggcgtc	cactttgaat gcctgaaaat gacaaagact tcttaatatc tgcaaagcag tgagggcctg gggatccctt	gtatatgagc cgccccacc tcattgtctc agttacatta taattagtca tgttttgagt ttcgtcacac	120 180 240 300 360 420
<pre><211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat ctaggagagg ctgccatata taaaaattta cctcgtgcct aagttcaact tcccctccca ctctttccag aaccttggtg</pre>	gatcttcagt ggcttagctt ctaccctcct tcagggctga gaggccccag ctctgggctc tgaacttagg gctcgacact	tgcttcaggc gggctcagag gaaggtcact cgtaattcca agcccaaggg aggctgtccc tcttggcgtc gcaaggctta	cactttgaat gcctgaaaat gacaaagact tcttaatatc tgcaaagcag tgagggcctg gggatccctt gaccagttcg	gtatatgage egececeace teattgtete agttacatta taattagtea tgttttgagt ttegteacae gtecaacaga	120 180 240 300 360 420 480
<pre><211> 2583 <212> DNA <213> Homo sapiens <400> 46 gttcccactt cctcccgccc cactgctcgc tgcctctcca cggtcgtagg ggatatcgat aatcacctgt ttcccccaat ctaggagagg ctgccatata taaaaattta cctcgtgcct aagttcaact tcccctccca ctctttccag aaccttggtg tcaggtgacc tacaggctcc</pre>	gatcttcagt ggcttagctt ctaccctcct tcagggctga gaggccccag ctctgggctc tgaacttagg gctcgacact tcatttgaaa	tgcttcaggc gggctcagag gaaggtcact cgtaattcca agcccaaggg aggctgtccc tcttggcgtc gcaaggctta acagtttcat	cactttgaat gcctgaaaat gacaaagact tcttaatatc tgcaaagcag tgagggcctg gggatccctt gaccagttcg cgggatataa	gtatatgage cgccccace tcattgtctc agttacatta taattagtca tgttttgagt ttcgtcacac gtccaacaga ttcgcaaccc	120 180 240 300 360 420 480 540

tcttctccta	cctgcgtgtg	tcccgagacg	atgccactgg	atcccctagg	gctcccagtg	780
ggtactacag	acaggacacc	actcccaccc	gccccaccct	cctgatcctg	ctatggacat	840
ggcctttcca	catccctgtg	gctctgtccc	gctgttcaga	gatggtgccc	ggcacagccg	900
actgccacat	cactgccgac	cgcaaggtgt	acccacaggc	agacacggtc	atcgtgcacc	960
actgggatat	catgtccaac	cctaagtcac	gcctcccacc	ttccccgagg	ccgcaggggc	1020
agegetggat	ctggttcaac	ttggagccac	cccctaactg	ccagcacctg	gaagccctgg	1080
acagatactt	caatctcacc	atgtcctacc	gcagcgactc	cgacatcttc	acgccctacg	1140
gctggctgga	gccgtggtcc	ggccagcctg	cccacccacc	gctcaacctc	tcggccaaga	1200
ccgagctggt	ggcctgggcg	gtgtccaact	ggaagccgga	ctcagccagg	gtgcgctact	1260
accagagcct	gcaggctcat	ctcaaggtgg	acgtgtacgg	acgctcccac	aagcccctgc	1320
ccaaggggac	catgatggag	acgctgtccc	ggtacaagtt	ctacctggcc	ttcgagaact	1380
ccttgcaccc	cgactacatc	accgagaagc	tgtggaggaa	cgccctggag	gcctgggccg	1440
tgcccgtggt	gatgggaaca	agcagaagca	actacgagag	gttcctgcca	cccgacgcct	1500
tcatccacgt	ggacgacttc	cagagcccca	aggacctggc	ccggtacctg	caggagctgg	1560
acaaggacca	cgcccgctac	ctgagctact	ttegetggeg	ggagacgctg	cggcctcgct	1620
ccttcagctg	ggcactggat	ttctgcaagg	cctgctggaa	actgcagcag	gaatccaggt	1680
accagacggt	gcgcagcata	gcggcttggt	tcacctgaga	ggccggcatg	gtgcctgggc	1740
tgccgggaac	ctcatctgcc	tggggcctca	cctgctggag	tcctttgtgg	ccaaccctct	1800
ctcttacctg	ggacctcaca	cgctgggctt	cacggctgcc	aggagcctct	cccctccaga	1860
agacttgcct	gctagggacc	tegeetgetg	gggacctcgc	ctgttgggga	cctcacctgc	1920
tggggacctc	acctgctggg	gaccttggct	gctggaggct	gcacctactg	aggatgtcgg	1980
cggtcgggga	ctttacctgc	tgggacctgc	tcccagagac	cttgccacac	tgaatctcac	2040
ctgctgggga	cctcaccctg	gagggccctg	ggccctgggg	aactggctta	cttggggccc	2100
cacccgggag	tgatggttct	ggctgatttg	tttgtgatgt	tgttagccgc	ctgtgagggg	2160
tgcagagaga	tcatcacggc	acggtttcca	gatgtaatac	tgcaaggaaa	aatgatgacg	2220
tgtctcctca	ctctagaggg	gttggtccca	tgggttaaga	gctcacccca	ggttctcacc	2280
tcaggggtta	agagctcaga	gttcagacag	gtccaagttc	aagcccagga	ccaccactta	2340
tagggtacag	gtgggatcga	ctgtaaatga	ggacttctgg	aacattccaa	atattctggg	2400
gttgagggaa	attgctgctg	tctacaaaat	gccaagggtg	gacaggcgct	gtggctcacg	2460
cctgtaattc	cagcactttg	ggaggctgag	gtaggaggat	tgattgaggc	caagagttaa	2520

agaccagoos ggoodasaas	gcaagaccac	gtctctaaat	aaaaaataat	aggccggcca	2580
gça					2583
<210> 47 <211> 597 <212> DNA <213> Homo sapiens	,				
<400> 47 agctgaagtt gaggatctct	tactctctaa	gccacggaat	taacccgagc	aggcatggag	60
gcctctgctc tcacctcatc	agcagtgacc	agtgtggcca	aagtggtcag	ggtggcctct	120
ggctctgccg tagttttgcc	cctggccagg	attgctacag	ttgtgattgg	aggagttgtg	180
gccatggcgg ctgtgcccat	ggtgctcagt	gccatgggct	tcactgcggc	gggaatcgcc	240
tegteeteea tageageeaa	gatgatgtcc	geggeggeea	ttgccaatgg	gggtggagtt	300
geetegggea geettgtggg	tactctgcag	tcactgggag	caactggact	ctccggattg	360
accaagttca tcctgggctc	cattgggtct	gccattgcgg	ctgtcattgc	gaggttctac	420
tageteeetg ceeetegeee	tgcagagaag	agaaccatgc	caggggagaa	ggcacccagc	480
catcctgacc cagcgaggag ctgcatctcc agaggaaaat	ccaactatcc aagaaataaa	caaatatacc gatgaattgt	tgggtgaaat tgcaactctt	ataccaaatt aaaaaaa	540 597
			•		
<210> 48 <211> 2566 <212> DNA <213> Homo sapiens			·		
<211> 2566 <212> DNA	cttgcctgtt	ccttttccac	gcattttcca	ggataactgt	60
<211> 2566 <212> DNA <213> Homo sapiens <400> 48					60 120
<211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg	tgccctgcaa	ctagcaaatt	cggcttttgc	cgttgatctg	
<211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga	tgccctgcaa	ctagcaaatt	cggcttttgc	cgttgatctg aatctgtctc	120
<211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa	tgccctgcaa ggagccactg tcaagtgggt	ctagcaaatt ggcaatgtcc gctaaaggtg	cggcttttgc tcttctctcc acactgcaaa	cgttgatctg aatctgtctc tgaaattgga	120 180
<211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat	ctagcaaatt ggcaatgtcc gctaaaggtg ataccctttg	cggcttttgc tcttctctcc acactgcaaa gatttcaaac	cgttgatctg aatctgtctc tgaaattgga agtaacatcg	120 180 240
<211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc caggttcttc attttgaaaa	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat cttttactca	ctagcaaatt ggcaatgtcc gctaaaggtg ataccctttg ctgaaactaa	cggcttttgc tcttctctcc acactgcaaa gatttcaaac tcaagcggct	cgttgatctg aatctgtctc tgaaattgga agtaacatcg ctacgtagac	120 180 240 300
<pre><211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc caggttcttc attttgaaaa gatgtaaaca aacttagttc</pre>	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat cttttactca agagttcatc	ctagcaaatt ggcaatgtcc gctaaaggtg ataccctttg ctgaaactaa agctctacga	cggcttttgc tcttctctcc acactgcaaa gatttcaaac tcaagcggct agagacccta	cgttgatctg aatctgtctc tgaaattgga agtaacatcg ctacgtagac tgcaaaggaa	120 180 240 300 360
<pre><211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc caggttcttc attttgaaaa gatgtaaaca aacttagttc aaatctctga atctttctac</pre>	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat cttttactca agagttcatc agataaattg	ctagcaaatt ggcaatgtcc gctaaaggtg ataccctttg ctgaaactaa agctctacga gaagaaacga	cggcttttgc tcttctctcc acactgcaaa gatttcaaac tcaagcggct agagacccta aaggtcagat	cgttgatctg aatctgtctc tgaaattgga agtaacatcg ctacgtagac tgcaaaggaa caacaactca	120 180 240 300 360 420
<pre><211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc caggttcttc attttgaaaa gatgtaaaca aacttagttc aaatctctga atctttctac ttggaaactg ttgacttcaa</pre>	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat cttttactca agagttcatc agataaattg ccactttgag	ctagcaaatt ggcaatgtcc gctaaaggtg ataccetttg ctgaaactaa agctctacga gaagaaacga aacattttag	cggcttttgc tcttctctcc acactgcaaa gatttcaaac tcaagcggct agagacccta aaggtcagat ctgacaacag	cgttgatctg aatctgtctc tgaaattgga agtaacatcg ctacgtagac tgcaaaggaa caacaactca tgtgaacgac	120 180 240 300 360 420 480
<pre><211> 2566 <212> DNA <213> Homo sapiens <400> 48 ggcacgagtt gtgctcctcg gactccaggc ccgcaatgga ttcaaacaac tatgtgaaaa tccacctctc tgtcacttgc caggttcttc attttgaaaa gatgtaaaca aacttagttc aaatctctga atcttctac ttggaaactg ttgacttcaa attaaggatc tcacagatgg</pre>	tgccctgcaa ggagccactg tcaagtgggt tgtcaaagat cttttactca agagttcatc agataaattg ccactttgag taatgctgcc	ctagcaaatt ggcaatgtcc gctaaaggtg ataccetttg ctgaaactaa agctctacga gaagaaacga aacattttag tactttgttg	cggcttttgc tcttctctcc acactgcaaa gatttcaaac tcaagcggct agagacccta aaggtcagat ctgacaacag gcaagtggat	cgttgatctg aatctgtctc tgaaattgga agtaacatcg ctacgtagac tgcaaaggaa caacaactca tgtgaacgac gaagaaattt	120 180 240 300 360 420 480 540

65

atcatagagc	ttccttttca	aaataagcat	ctcagcatgt	tcatcctact	acccaaggat	780
gtggaggatg	agtccacagg	cttggagaag	attgaaaaac	aactcaactc	agagtcactg	840
tcacagtgga	ctaatcccag	caccatggcc	aatgccaagg	tcaaactctc	cattccaaaa	900
tttaaggtgg	aaaagatgat	tgatcccaag	gcttgtctgg	aaaatctagg	gctgaaacat	960
atcttcagtg	aagacacatc	tgatttctct	ggaatgtcag	agaccaaggg	agtggcccta	1020
tcaaatgtta	tccacaaagt	gtgcttagaa	ataactgaag	atggtgggga	ttccatagag	1080
gtgccaggag	cacggatect	gcagcacaag	gatgaattga	atgctgacca	tccctttatt	1140
tacatcatca	ggcacaacaa	aactcgaaac	atcattttct	ttggcaaatt	ctgttctcct	1200
taagtggcat	agcccatgtt	aagtcctccc	tgacttttct	gtggatgccg	atttctgtaa	1260
actctgcatc	cagagattca	ttttctagat	acaataaatt	gctaatgttg	ctggatcagg	1320
aagccgccag	tacttgtcat	atgtagcctt	cacacagata	gaccttttt	tttttccaat	1380
tctatctttt	gtttcctttt	ttcccataag	acaatgacat	acgcttttaa	tgaaaaggaa	1440
	ggaaaaatat tccacaaaga					1500 1560
actatgcttt	ccttctttgg	gatagagaat	gttccagaca	ttctcgcttc	cctgaaagac	1620
tgaagaaagt	gtagtgcatg	ggacccacga	aactgccctg	gctccagtga	aacttgggca	1680
catgctcagg	ctactatagg	tccagaagtc	cttatgttaa	gccctggcag	gcaggtgttt	1740
attaaaattc	tgaattttgg	ggattttcaa	aagataatat	tttacataca	ctgtatgtta	1800
tagaacttca	tggatcagat	ctggggcagc	aacctataaa	tcaacacctt	aatatgctgc	1860
aacaaaatgt	agaatattca	gacaaaatgg	atacataaag	actaagtagc	ccataagggg	1920
tcaaaatttg	ctgccaaatg	cgtatgccac	caacttacaa	aaacacttcg	ttcgcagagc	1980
ttttcagatt	gtggaatgtt	ggataaggaa	ttatagacct	ctagtagctg	aaatgcaaga	2040
ccccaagagg	aagttcagat	cttaatataa	attcactttc	atttttgata	gctgtcccat	2100
ctggtcatgt	ggttggcact	agactggtgg	caggggcttc	tagctgactc	gcacagggat	2160
tctcacaata	gccgatatca	gaatttgtgt	tgaaggaact	tgtctcttca	tctaatatga	2220
tagcgggaaa	aggagaggaa	actactgcct	ttagaaaata	taagtaaagt	gattaaagtg	2280
ctcacgttac	cttgacacat	agtttttcag	tctatgggtt	tagttacttt	agatggcaag	2340
catgtaactt	atattaatag	taatttgtaa	agttgggtgg	ataagctatc	cctgttgccg	2400
gttcatggat	tacttctcta	taaaaaatat	atatttacca	aaaaattttg	tgacattcct	2460
tctcccatct	cttccttgac	atgcattgta	aataggttct	tcttgttctg	agattcaata	2520
ttgaatttct	cctatgctat	tgacaataaa	atattattga	actacc		2566

<210> 49 <211> 484						
<212> DNA <213> Hom	o sapiens					
<400> 49						
ccgttcgctc	cggacaccat	ggacaagttt	tggtggcacg	cagcctgggg	actctgcctc	60
gtgccgctga	gcctggcgca	gatcgatttg	aatataacct	gccgctttgc	aggtgtattc	120
cacgtggaga	aaaatggtcg	ctacagcatc	tctcggacgg	aggccgctga	cctctgcaag	180
gctttcaata	gcaccttgcc	cacaatggcc	cagatggaga	aagctctgag	catcggattt	240
gagacctgca	gtttgcattg	cagtcaacag	tcgaagaagg	tgtgggcaga	agaaaaagct	300
agtgatcaac	agtggcaatg	gagctgtgga	ggacagaaag	ccaagtggac	tcaacggaga	360
ggccagcaag	tctcaggaaa	tggtgcattt	ggtgaacaag	gagtcgtcag	aaactccaga	420
ccagtttatg	acagctgatg	agacaaggaa	cctgcagaat	gtggacatga	agattggggt	480
gtaa						484
<210> 50 <211> 421 <212> DNA <213> Hom	_					
<400> 50 gccggctgtg	cagtagaacg	gggatcgaaa	agaggaaaac	aagggcacga	agaccagcga	60
gaaagaagag	gacacctggg	aaaggcggaa	gcagaagacg	gggaagggaa	aagaaaccca	120
tagcaggtgg	aaaccagatc	tagagcaaca	ccgtcaggtt	cacagtttgt	ttttctagaa	180
gagaagaaag	tacctgagga	ttgctctttt	ttcctaccgt	taatgaaaac	tacttttgtc	240
ttcatcataa	aagaaaaaac	taaggggagg	taaaggcagt	ctcctgtttt	attaggggga	300
gaggtgaagg	gaaatccagg	ctcactttct	gaataagcca	ctgcctggtg	cacagagcag	360
aaccatcctg	gtttctgaag	acacatccct	ttcagcagaa	ttccagccgg	agtcgctggc	420
acagttctat	ttttatattt	aaatgtatgt	ctcccctggc	cttttttt	tttttttt	480
ttttttagca	acacttttct	tgtttgtaaa	cgcgagtgac	cagaaagtgt	gaatgcggag	540
taggaatatt	tttcgtgttc	tcttttatct	gcttgccttt	tttagagagt	agcagtggtt	600
cctatttcgg	aaaaggacgt	tctaattcaa	agctctctcc	caatatattt	acacgaatac	660
gcatttagaa	agggaggcag	cttttgaggt	tgcaatccta	ctgagaagga	tggaagaagg	720
agccaggcac	cgaaacaaca	ccgaaaagaa	acacccaggt	gggggcgagt	cggacgccag	780
ccccgaggct	ggttccggag	ggggcggagt	agccctgaag	aaagagatcg	gattggtcag	840
tgcctgtggt	atcatcgtag	ggaacatcat	cggctctgga	atctttqtct	cgccaaaggq	900

agtgctggag	aatgctggtt	ctgtgggcct	tgctctcatc	gtctggattg	tgacgggctt	960
catcacagtt	gtgggagccc	tctgctatgc	tgaactcggg	gtcaccatcc	ccaaatctgg	1020
aggtgactac	tcctatgtca	aggacatctt	cggaggactg	gctgggttcc	tgaggctgtg	1080
gattgctgtg	ctggtgatct	accccaccaa	ccaggctgtc	atcgccctca	ccttctccaa	1140
ctacgtgctg	cagccgctct	tccccacctg	cttcccccca	gagtctggcc	ttcggctcct	1200
ggctgccatc	tgcttattgc	tcctcacatg	ggtcaactgt	tccagtgtgc	ggtgggccac	1260
ccgggttcaa	gacatcttca	cagctgggaa	gctcctggcc	ttggccctga	ttatcatcat	1320
ggggattgta	cagatatgca	aaggagagta	cttctggctg	gagccaaaga	atgcatttga	1380
gaatttccag	gaacctgaca	taggaatagt	cgcactggct	ttccttcagg	gctcctttgc	1440
ctatggaggc	tggaactttc	tgaattacgt	gactgaggag	cttgttgatc	cctacaagaa	1500
ccttcccaga	gccatcttca	tctccatccc	actggtcaca	tttgtgtatg	tetttgccaa	1560
tgtcgcttat	gtcactgcaa	tgtcccccca	ggagctgctg	gcatccaacg	ccgtcgctgt	1620
gacttttgga	gagaagctcc	taggagtcat	ggcctggatc	atgcccattt	ctgttgccct	1680
gtccacattt	ggaggagtta	atgggtctct	cttcacctcc	tctcggctgt	tettegetgg	1740
agcccgagag	ggccaccttc	ccagtgtgtt	ggccatgatc	cacgtgaagc	gctgcacccc	1800
aatcccagcc	ctgctcttca	catgcatctc	caccctgctg	atgctggtca	ccagcgacat	1860
gtacacactc	atcaactacg	tgggcttcat	caactacctc	ttctatgggg	tcacggttgc	1920
tggacagata	gtaattagat	ggaagaagcc	tgatatcccc	cgccccatca	agatcaacct	1980
gctgttcccc	atcatctact	tgctgttctg	ggccttcctg	ctggtcttca	gcctgtggtc	2040
agagccggtg	gtgtgtggca	ttggcctggc	catcatgctg	acaggagtgc	ctgtctattt	2100
cctgggtgtt	tactggcaac	acaagcccaa	gtgtttcagt	gacttcattg	agctgctaac	2160
cctggtgagc	cagaagatgt	gtgtggtcgt	gtaccccgag	gtggagcggg	gctcagggac	2220
agaggaggct	aatgaggaca	tggaggagca	gcagcagccc	atgtaccaac	ccactcccac	2280
gaaggacaag	gacgtggcgg	ggcagcccca	gccctgagga	ccaccattcc	ctggctactc	2340
tctccttcct	cccctttta	toctacctcc	ctgccttggt	cccgccaaca	catgcgagta	2400
cacacacacc	cctctctctg	cttttgtcag	gcagtggtag	gactttggtg	tgggtggtgt	2460
gagaaattgt	aaacaaaaac	tgacattcat	acccaaagaa	ccagcctctc	accccagggt	2520
ccatgtccca	ggccccactc	cagtgctgcc	cacactccca	gctgctggag	gagagggag	2580
atgccaaggt	gccctgcagg	acctccctcc	gggccacacc	ctcagctgcc	tcttcaggaa	2640
ccggagctca	ttactgcctt	ccctcccagg	gaggcccctt	cagagaggag	aggccacagg	2700

agctgcattg	tggggggaca	ggctcaagca	attctgtccc	catcaagggg	tcagctggag	2760
agacccaaga	ccctatctgt	tcaccaggga	cccaaaatcc	aaggggatgc	ttccctctgc	2820
cctctttcct	gaaaataaaa	atcatacctg	cacccacccc	agccagggct	ccctgtccag	2880
aattcggttc	tcctcaggac	gccaactccc	agagctaagg	accaaggaga	agaacagcct	2940
ctccaccccc	aagccaggcg	gttgaggaac	atattgagaa	aggttcagat	tgcagaaacc	3000
cagccctgcc	actgactact	gcatccagcc	cccaacatgg	tgccaaagct	tccagaagcc	3060
aaaaagcttc	tgatttttaa	ggtagtgggc	atctctctcc	taatgacgaa	gctgctcagc	3120
aactccacct	gcccgccgca	ggaaggagca	gtcccctgct	atccctgcag	ccactcccag	3180
cacacccgca	cacagccagc	accaccgccc	ccaccgtgca	cttctcctct	ctgggccttg	3240
gcttgggacc	aggtacgaag	gatccccaag	cccttcaggc	ctgagatcag	agccagatca	3300
gccttaagtc	acctcccatc	caagaacttg	gcctaaaaat	actcccctat	ttctaaccct	3360
caggacggat	ctgatattaa	atgccttccc	tgggaggaag	ggtgctttcc	ccctccctag	3420
aggtgcccat	tccataccct	gggagactga	ggagagcatt	ggctgaagcc	cagttccttt	3480
cccatccatc	cccaactcca	ataatccccc	actcctcgca	ggtctcagtg	tcatgctgtc	3540
ttggggcagg	gtgaaagggt	agtggcagca	gggcgcccac	tctggagatc	ctcaaaaaag	3600
gccctcctct	gtggctggca	gcctctgacc	tttccctggg	cttcaaagga	aggctatgga	3660
gtttgctgtg	ggccctgcaa	ccttcccagc	cactcctgct	gcactaagga	cttaggatcc	3720
ttttatcaca	aatcgggatt	ctctccccca	ccccgaattc	tgtctgctta	aactggaata	3780
cacaggagcc	cttcctggcc	tggatggtgt	ctcccagctt	ccccgcccag	cttgcccacc	3840
ccatagttgg	tgagatgcca	agtttggtct	gagttgtgac	cccttcagag	tagatgcccg	3900
gcaggctggg	gttggcccct	ggagggtcag	gggaccatct	tcttattccc	tcttttctca	3960
ttcctccaac	ttcctcccct	ccttcaatta	tttttttgta	aagttgatgc	cttacttttt	4020
ggataaatat	ttttgaagct	ggtatttcta	tttcttttgg	attttttta	atgtaaggtt	4080
gttttggggg	atggagttag	aaccttaatg	ataatttctt	tcgtttggtg	taggttttag	4140
agatttgttt	tgtggagagg	tttttttctt	ttgatgtaat	aaaatttaaa	atggaaaaaa	4200
aaaaaaaaa	a					4211

<210> 51 <211> 1952 <212> DNA

<213> Homo sapiens

<400> 51

ggcacgaggc ttgcgttcca gtgttccagc ttctgcgaga tgaccctcaa ggcgagcgag 60

ggcgagagtg	ggggcagcat	gcacacggcg	ctctccgacc	tctacctgga	gcatttgctg	120
cagaagcgta	gtcggccaga	ggctgtatcg	catccattga	atactgigac	cgaggacatg	180
tacaccaacg	ggtataatga	cccaggtagc	cctgcccagg	tcaagggaca	ggaggtgcgg	240
aaagtgcgac	tcatacagtt	tgagaaggtc	acagaagagc	ccatgggaat	cacgctgaag	300
ctgaatgaaa	aacagtcctg	tacggtggcc	agaattcttc	atggtggcat	gatccataga	360
caaggctccc	ttcacgtggg	ggatgagatc	ctagaaatca	atggcacaaa	tgtgacaaat	420
cattcagtgg	atcagctgca	gaaggcgatg	aaagaaacca	aaggaatgat	ctcattaaaa	480
gtaattccca	accagcaaag	acgtattact	gcactacaga	tgttcatgag	agcgcagttt	540
gactatgatc	ccaaaaagga	caatctgatc	ccttgcaagg	aggcgggact	gaagtttgct	600
actggggaca	ttatccagat	tatcaacaag	gatgacagca	attggtggca	gggacgggtg	660
gaaggctcct	ccaaggagtc	agcaggattg	atcccttccc	ctgagctgca	ggaatggcga	720
gtggcaagta	tggctcagtc	agctcctagc	gaagccccga	gctgcagtcc	ctttgggaag	780
aagaagaagt	acaaagacaa	atatctggcc	aagcacagct	cgatttttga	tcagttggat	840
gttgtttcct	acgaggaagt	cgttcggctc	cctgcattca	agaggaagac	cctggtgctg	900
atcggagcca	gtggggtggg	tegeageeae	attaagaatg	ccctgctcag	ccagaatccg	960
gagaagtttg	tgtaccctgt	cccatataca	acacggccgc	caaggaagag	tgaggaagat	1020
gggaaggagt	accactttat	ctcaacggag	gagatgacga	ggaacatctc	tgccaatgag	1080
ttcttggagt	ttggcagcta	ccaaggcaac	atgtttggca	ccaaatttga	aacagtgcac	1140
cagatccata	agcagaacaa	gattgccatc	cttgacattg	agccccagac	cctgaaaatt	1200
gttcggacag	cagaactttc	gcctttcatt	gtgttcattg	cacctactga	ccagggcact	1260
cagacagaag	ccctgcagca	gctgcagaag	gactctgagg	ccatccgcag	ccagtacgct	1320
cactactttg	acctctcact	ggtcaataat	ggtgttgatg	aaacccttaa	gaaattacaa	1380
gaagccttcg	accaagcgtg	cagttctcca	cagtgggtgc	ctgtctcctg	ggtttactaa	1440
gcttgtagaa	tgggggaacc	cactgtatgc	ccctctccag	catttggaat	tccacccgcc	1500
ttgctttaag	acaaacaggg	ctgctccaac	tagttttgtg	tcagcttcca	gctctctgca	1560
gctatcctaa	ttcagccagt	aaggttcagt	cttcttgctc	aggctcctga	agggttgatt	1620
ctcctgatag	atggggccc	actgatctgg	atttgaaaag	gatttctaga	aattgggggt	1680
aagaagtact	accaaaatgt	aactgctaat	caagggtgat	gcacagcaaa	agcaatggac	1740
cccatccctc	taaagcctgc	cctcctttgc	cttcaactgt	atatgctggg	tatttcattt	1800
gtctttttat	tttggagaaa	gcgtttttaa	ctgcaacttt	ctataatgcc	aaaatgacac	1860
atctgtgcaa	tagaatgatg	tctgctctag	ggaaaccttc	aaaagcaata	aaaatgctgt	1920

gttgaaatgc caaaaaaaaa aaaaaaaaaa aa

1952

1560

<210> 52 <211> 1760 DNA <213> Homo sapiens <400> 52 60 qtcqaccctt tccacccctg gaagatggaa ataaacctgc gtgtgggtgg agtgttagga caaaaaaaaa aaaaaaaaag tctagagcca ccgtccaggg agcaggtagc tgctgggctc 120 180 cqqqqacact ttgcgttcgg gctgggagcg tgctttccac gacggtgaca cgcttccctg 240 gattggcagc cagactgcct tccgggtcac tgccatggag gagccgcagt cagatcctag cgtcgagccc cctctgagtc aggaaacatt ttcagaccta tggaaactac ttcctgaaaa 300 360 caacgttctg tcccccttgc cgtcccaagc aatggatgat ttgatgctgt ccccggacga tattgaacaa tggttcactg aagacccagg tccagatgaa gctcccagaa tgccagaggc 420 480 tgctccccc qtqqcccctg caccagcagc tcctacaccg gcggcccctg caccagcccc 540 ctcctqqccc ctqtcatctt ctqtcccttc ccagaaaacc taccagggca gctacggttt 600 ccqtctqqqc ttcttqcatt ctqqqacagc caagtctqtq acttqcacqt actcccctqc cctcaacaag atgttttgcc aactggccaa gacctgccct gtgcagctgt gggttgattc 660 720 cacacccccq cccqqcaccc gcgtccqcqc catgqccatc tacaaqcagt cacaqcacat 780 qacqqaqqtt qtqaqqcqct gccccacca tgagcgctgc tcagatagcg atggtctggc 840 ccctcctcaq catcttatcc qagtggaagg aaatttgcgt gtggagtatt tggatgacag 900 aaacactttt cqacataqtq tqqtqqtqcc ctatgagccg cctgaggttg gctctgactg 960 taccaccatc cactacaact acatgtgtaa cagttcctgc atgggcggca tgaaccggag 1020 gcccatcctc accatcatca cactggaaga ctccagtggt aatctactgg gacggaacag 1080 ctttgaggtg catgtttgtg cctgtcctgg gagagaccgg cgcacagagg aagagaatct 1140 ccgcaagaaa ggggagcctc accacgagct gcccccaggg agcactaagc gagcactgcc 1200 caacaacacc ageteetete eecagecaaa gaagaaacca etggatggag aatattteae 1260 cetteaqate eqtqqeett ageqettega gatgtteega gagetgaatg aggeettgga actcaaggat gcccaggctg ggaaggagcc aggggggagc agggctcact ccagccacct 1320 1380 gaagtccaaa aagggtcagt ctacctcccg ccataaaaaa ctcatgttca agacagaagg gcctgactca gactgacatt ctccacttct tgttccccac tgacagcctc ccaccccat 1440 1500 ctctccctcc cctgccattt tgggttttgg gtctttgaac ccttgcttgc aataggtgtg

cgtcagaagc acccaggact tccatttgct ttgtcccggg gctccactga acaagttggc

ctgcactggt gttttgttgt	ggggaggagg	atggggagta	ggacatacca	gcttagattt	1620
taaggttttt actgtgaggg	atgtttggga	gatgtaagaa	atgttcttgc	agttaagggt	1680
tagtttacaa tcagccacat	tctaggtagg	gacccacttc	accgtactaa	ccagggaagc	1740
tgtccctcac tgttgaattc					1760
<210> 53 <211> 439 <212> DNA <213> Homo sapiens					
<400> 53 ggtgggtetg aatetageae	catgacggaa	ctagagacag	ccatgggcat	gatcatagac	60
gtcttttccc gatattcggg	cagcgagggc	agcacgcaga	ccctgaccaa	gggggagctc	120
aaggtgctga tggagaagga	gctaccaggd	ttcctgcaga	gtggaaaaga	caaggatgcc	180
gtggataaat tgctcaagga	cctggacgcc	aatggagatg	cccaggtgga	cttcagtgag	240
ttcatcgtgt tcgtggctgc	aatcacgtct	gcctgtcaca	agtactttga	gaaggcagga	300
ctcaaatgat gccctggaga	tgtcacagat	tcctgcagag	ccatggtccc	aggcttccca	360
aaagtgtttg ttggcaatta	ttcccctagg	ctgagcctgc	tcatgtacct	ctgattaata	420
aatgettatg aaaaaaaaa					439
<210> 54					
<211> 1564 <212> DNA <213> Homo sapiens					
<212> DNA	agagagaagt	cagtcaataa	atgtttgcta	aataaagaat	60
<212> DNA <213> Homo sapiens <400> 54					60 120
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc	ttaatattaa	agaaggtata	tatcatcata	cacatatgct	
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta	ttaatattaa	agaaggtata gtatgcagaa	tatcatcata gctaatcacc	cacatatgct tccattgttt	120
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac	ttaatattaa ttccaattct atttttagtc	agaaggtata gtatgcagaa ttcacaataa	tatcatcata gctaatcacc tcatgtatag	cacatatgct tccattgttt . attggggatg	120 180
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac tttacttaaa aaagggagac	ttaatattaa ttccaattct atttttagtc tatatataaa	agaaggtata gtatgcagaa ttcacaataa gccactgagc	tatcatcata gctaatcacc tcatgtatag agtaactttt	cacatatgct tccattgttt . attggggatg ttatttcata	120 180 240
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac tttacttaaa aaagggagac aaataattta agtttcctac	ttaatattaa ttccaattct atttttagtc tatatataaa cattaagtat	agaaggtata gtatgcagaa ttcacaataa gccactgagc ccctttgtat	tatcatcata gctaatcacc tcatgtatag agtaactttt ccaccacctt	cacatatgct tccattgttt . attggggatg ttatttcata ttagaaagtc	120 180 240 300
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac tttacttaaa aaagggagac aaataattta agtttcctac aaaatcataa tttttttaat	ttaatattaa ttccaattct attttagtc tatatataaa cattaagtat ctctgagaat	agaaggtata gtatgcagaa ttcacaataa gccactgagc ccctttgtat tgtatgtcct	tatcatcata gctaatcacc tcatgtatag agtaactttt ccaccacctt gtatcattcc	cacatatgct tccattgttt . attggggatg ttatttcata ttagaaagtc ccttccataa	120 180 240 300 360
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac tttacttaaa aaagggagac aaataattta agtttcctac aaaatcataa ttttttaat tatttaccta cacacctatc	ttaatattaa ttccaattct attttagtc tatatataaa cattaagtat ctctgagaat gtttatgaa	agaaggtata gtatgcagaa ttcacaataa gccactgagc ccctttgtat tgtatgtcct cctttggctt	tatcatcata gctaatcacc tcatgtatag agtaactttt ccaccacctt gtatcattcc catcggccac	cacatatgct tccattgttt . attggggatg ttatttcata ttagaaagtc ccttccataa agttgattag	120 180 240 300 360 420
<212> DNA <213> Homo sapiens <400> 54 gttttagcat actccctggc gatgtgatgt attaatggta cataaaataa tgactcaaac tttacttaaa aaagggagac aaataattta agtttcctac aaaatcataa ttttttaat tatttaccta cacacctatc aaattgggcc tgaaagccat	ttaatattaa ttccaattct attttagtc tatatataaa cattaagtat ctctgagaat gttttatgaa tcagactcaa	agaaggtata gtatgcagaa ttcacaataa gccactgagc ccctttgtat tgtatgtcct cctttggctt ttttctccca	tatcatcata gctaatcacc tcatgtatag agtaactttt ccaccacctt gtatcattcc catcggccac gaggttcaga	cacatatgct tccattgttt . attggggatg ttatttcata ttagaaagtc ccttccataa agttgattag atgaaatcac	120 180 240 300 360 420 480

tcatgctacc ccagggtagt	aagaaaatag	ctgcatgggg	ctgggcacgg	tggcctgtaa	720
tcccagcaag ttggaaggac	gaggcaggag	gatcacttga	ggccaggagt	tcgaggccag	780
cctggacaac acggtgaaac ggcatgtgcc tgtaatccca					840 900
ggaagcggag gatgctgtga	gctgagatag	caccactgca	ctccagcctg	ggcgacagag	960
taagacgctg tctcaaaata	aagaaagaaa	aaaagaaaat	agctgcctgg	gttataaatt	1020
tccagttcct ggtttccctt	ccccttcatg	agtcttggct	gtacttctat	catcgggtac	1080
tgtgaaaact ccagcatctt	tgcctaatgg	gaactaattt	ccctttttgg	gtaagccagc	1140
ttacattttt taaattgtcc	attactggaa	cctatgatct	gaagagcgtc	ctgggtcaac	1200
tgggcatcac taaggtcttc	agcaatgģgg	ctgacctctc	cggggtcaca	gaggaggcac	1260
ccctgaagct ctccaaggcc	gtgcataagg	ctgtgctgac	catcgacgag	aaagggactg	1320
aagetgetgg ggeeatgttt	ttagaggcca	tacccatgtc	tatcccccc	gaggtcaagt	1380
tcaacaaacc ctttgtcttc	ttaatgattg	aacaaaatac	caagtctccc	ctcttcatgg	1440
gaaaagtggt gaatcccacc	caaaaataac	tgeetetege	tcctcaaccc	ctcccctcca	1500
tecetggeee ceteeetgga	tgacattaaa	gaagggttga	gctggaaaaa	aaaaaaaaa	1560
aaaa					1564

<210> 55 <211> 1290 <212> DNA

<213> Homo sapiens

<400> 55 60 gcggcggcgg cggtagaggc ggcggcggcg gcggcagcgg gctcggaggc agcggttggg 120 ctcgcggcga gcggacgggg tcgagtcagt gcgttcgcgc gagttggaat cgaagcctct 180 taaaatggca gatgacttgg acttcgagac aggagatgca ggggcctcag ccaccttccc 240 aatgcagtgc tcagcattac gtaagaatgg ctttgtggtg ctcaaaggcc ggccatgtaa gategtegag atgtetaett egaagaetgg caageaegge caegecaagg tecatetggt 300 360 tggtattgac atctttactg ggaagaaata tgaagatatc tgcccgtcaa ctcataatat ggatgtcccc aacatcaaaa ggaatgactt ccagctgatt ggcatccagg atgggtacct 420 atcactgctc caggacagcg gggaggtacg agaggacctt cgtctccctg agggagacct 480 540 tggcaaggag attgagcaga agtacgactg tggagaagag atcctgatca cggtgctgtc 600 tgccatgaca gaggaggcag ctgttgcaat caaggccatg gcaaaataac tggctcccag gatggcggtg gtggcagcag tgatcctctg aacctgcaga ggccccctcc ccgagcctgg 660 720 cctggctctg gcccggtcct aagctggact cctcctacac aatttatttg acgttttatt

73

ttggttttcc ccacccctc gccaggagcg agcgaagctg					780 840
acagccctgg tgggggagaa	gggggtgggt	gctgcttgtg	gtttagtctt	tttttttt	900
ttttttttt ttttaaattc	aatctggaat	cagaaagcgg	tggattctgg	caaatggtcc	960
ttgtgccctc cccactcatc	cctggtctgg	teceetgttg	cccatagccc	tttaccctga	1020
gcaccacccc aacagactgg	ggaccagccc	cctcgcctgc	ctgtgtctct	ccccaaaccc	1080
ctttagatgg ggagggaaga	ggaggagagg	ggagggacc	tgacacataa	tcaggcatct	1140
gggagggccc tgcccccatg	ggctttaccc	ttccctgcgg	gatatataaa	cgacacattt	1200
gttaaaatca aacctgaata	aaactacaag	tttaatatga	aaaaaaaaa	aaaaaaaaa	1260
aaaaaaaaaa aaaaaaaaaa	aaaaaaaaa				1290
<210> 56 <211> 1821 <212> DNA <213> Homo sapiens					
<400> 56 aaaaatacaa aaattagccg	gcatggtggc	gcacgcctgt	agtctcagct	agtcaggagg	60
ctaaggcagg agaatcactt	gaacctcgga	ggcggaggtt	gcagtgagtc	gcaaacgcac	120
cactgcactc cagcctgggt	gaaagagcga	gactctgtct	caaaacaaaa	caaaacaaaa	180
aacctaacaa aaacaatagc	taccatttac	tagacactca	ctacatacca	ggcactgtgc	240
caaacagctc cttcttatca	gctcagggtg	ctgggggtgc	cagggaggga	aggtcagtga	300
aactgtggca ggtgtcggtt	aagcaaaaga	aggctggcat	ctgtgcagct	gggggcaggc	360
cttccctcct ccaaccccct	tggccaggag	catcacaggg	caggcctgag	cttccacaag	420
gtgacccagc cagtcaccat	gaggcaggcc	ccaggcgcca	ggccactctg	cagaggagcc	480
acgcaggagg tgacctttcc	tatcttgact	gaaacgggca	cctggcgtgg	aggccaagtc	540
tggagccagc cccctaggag	agctccagga	ggcagacatg	cctgcggggt	caaagcctgc	600
cagctgactg ctgtgccctc	ctcaggaccc	tgctccagca	gctgcagaaa	ctccagactc	660
tggtcaccaa caagatctcc	agaccttaca	agatggccgc	cacccagact	gggacctgcc	720
tcatggtggc agccttgtgc	tttgttctgg	tgatgggata	cctcgtgccc	tgccttcccg	780
agttctcctc cggctcccag	actgtgaagg	aagaccccct	ggccgcagac	ggcgtctaca	840
cggccagcca gatgccctcc	cgaagcctcc	tattctacga	tgacggggca	ggcttatggg	900
aagatggccg cagcaccctg	ctgcccatgg	agcccccaga	tggctgggaa	atcaaccccg	960
gggggccggc agagcagcgg acgagaccac caagtacctg					1020 1080

cogacttoto coactocaag gagtggttoo acgacaggga totgggooco aacaccacca	1140
tcaaactctc ctaggccatg ccaagaccca ggacatagga cggacccctg gtacccagaa	1200
gaggagttct tgctcactaa cccggatccg cctcgtgccc ctgcctcctg gagcttccca	1260
ttccaggaga aaaggctcca cttcccagcc cttccttgcc cctgacattt ggactcttcc	1320
cttgggccga ccactctgtt ctcattctcc ttcccaccaa catccatccg tccttctcag	1380
acaaaccact cactgggtac cccacctcct ctctcatatg cccaacacga ccactgcctc	1440
cctgccccca cacctgcacc caaacagaca catcaacgca ccccactcac agacacccct	1500
taccccaccc ccactgtaca gagaccaaga acagaaattg tttgtaaata atgaacctta	1560
ttttttatta ttgccaatcc cctaagatat tgtattttac aaatctccct cttcccttcg	1620
cccctccctt gttttatatt ttatgaagtt agtgcgggct ttgctgctcc ctggcccagg	1680
aaagagggac tacctgaccc tcacctggca ccccctgct gctgcccaag ccgctgggcc	1740
tttttaattg ccaaactgct ctcttcatca gctcagcaca tgctttaaga aagcaaaacc	1800
aaaaaaaaa aaaaaaaaa a	1821
<210> 57 <211> 2370 <212> DNA	
<213> Homo sapiens	
<213> Homo sapiens <400> 57 ccccgcccgt ttgccagcgc tcaggcagga gctctggact gggcgcgccg ccgccctgga	60
<400> 57	60 120
<400> 57 ccccgcccgt ttgccagcgc tcaggcagga gctctggact gggcgcgccg ccgccctgga	
<400> 57 ccccgcccgt ttgccagcgc tcaggcagga gctctggact gggcgcgccg ccgcctgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga	120
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcgcgcg ccgccttgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa</pre>	120 180
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcgcgcg ccgccttgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa</pre>	120 180 240
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcgcgcg ccgccttgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga</pre>	120 180 240 300
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcgcgcg ccgcctgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga gaagagccct ctattggaca tggaactgga ctcccctacg ccaggcatcc aggcggagca</pre>	120 180 240 300 360
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcgcgcg ccgcctgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga gaagagccct ctattggaca tggaactgga ctcccctacg ccaggcatcc aggcggagca cagctactcc ctgagcggcg actcagcgcc ccagagcccc cttgtgccca tcaagatgga</pre>	120 180 240 300 360 420
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcggcgg ccgccttgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga gaagagccct ctattggaca tggaactgga ctcccctacg ccaggcatcc aggcggagca cagctactcc ctgagcggcg actcagcgcc ccagagcccc cttgtgccca tcaagatgga ggacaccacc caagatgcag agcatggagc atgggcgctg ggacacaaac tgtgctccat</pre>	120 180 240 300 360 420 480
<pre><400> 57 ccccgcccgt ttgccagcgc tcaggcagga gctctggact gggcgccgg ccgccttgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga gaagagccct ctattggaca tggaactgga ctcccctacg ccaggcatcc aggcggagca cagctactcc ctgagcggcg actcagcgcc ccagagcccc cttgtgccca tcaagatgga ggacaccacc caagatgcag agcatggagc atgggcgctg ggacacaaac tgtgctccat catggtgaag caggagcaga gcccggagct gcccgtggac cctctggctg ccccctcggc</pre>	120 180 240 300 360 420 480 540
<pre><400> 57 ccccgccgt ttgccagcgc tcaggcagga gctctggact gggcggcgg ccgcctgga gtgagggaag cccagtggaa gggggtcccg ggagccggct gcgatggacg ccgtcttgga acccttcccg gccgacaggc tgttccccgg atccagcttc ctggacttgg gggatctgaa cgagtcggac ttcctcaaca atgcgcactt tcctgagcac ctggaccact ttacggagaa catggaggac ttctccaatg acctgttcag cagcttcttt gatgaccctg tgctggatga gaagagccct ctattggaca tggaactgga ctcccctacg ccaggcatcc aggcggagca cagctactcc ctgagcggcg actcagcgc ccagagcccc cttgtgccca tcaagatgga ggacaccacc caagatgcag agcatggagc atgggcgctg ggacacaaac tgtgctccat catggtgaag caggagcaga gcccggagct gcccgtggac cctctggctg ccccctcggc catggctgcc gcggccgcca tggccaccac cccgctgctg ggactcagcc ccttgtccagc</pre>	120 180 240 300 360 420 480 540

cctcactgcc	cctcacaaat	tacaggggac	atcagggcca	ctgctcctga	cagaggagga	900
gaagcggacc	ctgattgctg	agggctaccc	catccccaca	aaactccccc	tcaccaaagc	960
cgaggagaag	gccttgaaga	gagtccggag	gaaaatcaag	aacaagatct	cagcccagga	1020
gagccgtcgt	aagaagaagg	agtatgtgga	gtgtctagaa	aagaaggtgg	agacatttac	1080
atctgagaac	aatgaactgt	ggaagaaggt	ggagaccctg	gagaatgcca	acaggaccct	1140
gctccagcag	ctgcagaaac	tccagactct	ggtcaccaac	aagatctcca	gaccttacaa	1200
gatggccgcc	acccagactg	ggacctgcct	catggtggca	gaattgtgat	ttgttctggt	1260
gctgggctcc	ctcgtgccct	gccttcccga	gttctcctcc	ggctcccaga	ctgtgaagga	1320
agaccccctg	gccgcagacg	gcgtctacac	ggccagccag	atgccctccc	gaagcctcct	1380
attctacgat	gacggggcag	gcttatggga	agatggccgc	agcaccctgc	tgcccatgga	1440
gcccccagat	ggctgggaaa	tcaaccccgg	ggggccggca	gagcagcggc	cccgggacca	1500
cctgcagcat	gatcacctgg	acagcaccca	cgagaccacc	aagtacctga	gtgaggcctg	1560
gcctaaagac	ggtggaaacg	gcaccagccc	cgacttctcc	cactccaagg	agtggttcca	1620
cgacagggat	ctgggcccca	acaccaccat	caaactctcc	taggccatgc	caagacccag	1680
gacataggac	ggacccctgg	tacccagaag	aggagttctt	gctcactaac	ccggatccgc	1740
ctcgtgcccc	tgcctcctgg	agcttcccat	tccaggagaa	aaggctccac	ttcccagccc	1800
ttccttgccc	ctgacatttg	gactcttccc	ttgggccgac	cactctgttc	tcattctcct	1860
tcccaccaac	atccatccgt	ccttctcaga	caaaccactc	actgggtacc	ccacctcctc	1920
tctcatatgc	ccaacacgac	cactgcctcc	ctgccccac	acctgcaccc	aaacagacac	1980
atcaacgcac	cccactcaca	gacacccctt	accccacccc	cactgtacag	agaccaagaa	2040
cagaaattgt	ttgtaaataa	tgaaccttat	tttttattat	tgccaatccc	ctaagatatt	2100
gtattttaca	aatctccctc	ttaaattaga	acatacattg	ttttatattt	tatgaagtta	2160
gtgcgggctt	tgctgctccc	tggcccagga	aagagggact	acctgaccct	cacctggcac	2220
ccccctgctg	ctgcccaagc	cgctgggcct	ttttaattgc	caaactgctc	tcttcatcag	2280
ctcagcacat	gctttaagaa	agcaaaccca	aaaaaaaaaa	aaaaaagatg	cagcatcaaa	2340
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa				2370

<210> 58 <211> 1605

<212> DNA <213> Homo sapiens

<400> 58

atggccacag gactccaggt tecectgccg tggctggcca caggactgct gcttctcctc 60

agtgtccagc	cctgggctga	gagtggaaag	gtgttggtgg	tgcccattga	tggcagccac	120
tggctcagca	tgcgggaggt	cttgcgggag	ctccatgcca	gaggccacca	ggcagtggtc	180
ctcaccccag	aggtgaatat	gcacatcaaa	gaagagaact	ttttcaccct	gacaacctat	240
gccatttcgt	ggacccagga	tgaatttgat	cgccatgtgc	tgggccacac	tcaactgtac	300
tttgaaacag	aacattttct	gaagaaattt	ttcagaagta	tggcaatgtt	gaacaatatg	360
tctttggtct	atcataggtc	ttgtgtggag	ctactacata	atgaggccct	gatcaggcac	420
ctgaatgcta	cttcctttga	tgtggtttta	acagaccccg	ttaacctctg	cgcggcagtg	480
ctggctaagt	acctgtcgat	tcctactgtg	tttttttga	ggaacattcc	atgtgattta	540
gactttaagg	gcacacagtg	tccaaaccct	tcctcctata	ttcctagatt	actaacaacc	600
aattcagacc	acatgacatt	catgcaaagg	gtcaagaaca	tgctctaccc	tatggaaatg	660
tcctacattt	gccatgcttt	ttatgataat	tatgcaagcc	ttgcctctga	gctttttcag	720
agagaggtgt	cagtggtgga	tattctcagt	catgcatctg	tgtggctgtt	ccgaggggac	780
tttgtgatgg	actaccccag	gccaatcatg	cccaacatgg	tcttcattgg	gggcatcaac	840
tgtgccaaca	ggaagccact	atctcaggaa	tttgaagcct	acattaatgc	ttctggagaa	900
catggaattg	tggttttctc	tttgggatca	atggtctcag	aaattccaga	gaagaaagct	960
atggcaattg	ctgatgcttt	gggcaaaatc	cctcagacag	tcctgtggcg	gtacactgga	1020
acccgaccat	cgaatcttgc	gaacaacacg	atacttgtta	agtggctacc	ccaaaacgat	1080
ctgcttggtc	acccgatgac	ccgtgccttt	atcacccatg	ctggttccca	tggtgtttat	1140
gaaagcatat	gcaatggcgt	tcccatggtg	atgatgccct	tgtttggtga	tcagatggac	1200
aatgcaaagc	gcatggagac	taagggagct	ggagtgaccc	tgaatgttct	ggaaatgact	1260
tctgaagatt	tagaaaatgc	tctaaaagca	gtcatcaatg	acaaaagtta	caaggagaac	1320
atcatgcgcc	tctccagcct	tcacaaggac	cgcccggtgg	agccgctgga	cctggccgtg	1380
ttctgggtgg	agtttgtgat	gaggcacaag	ggcgcgccac	acctgcgccc	cgcagcccac	1440
gacctcacct	ggtaccagta	ccattccttg	gacgtgattg	gtttcctctt	ggccgtcgtg	1500
ctgacagtgg	ccttcatcac	ctttaaatgt	tgtgcttatg	gctaccggaa	atgcttgggg	1560
aaaaaagggc	gagttaagaa	agcccacaaa	tccaagaccc	attga		1605

<210> 59

<211> 2879

<212> DNA

<213> Homo sapiens

<400> 59

ggcacccaat aaatacataa ttattagaat gaatacattc tatcacaatg tcttaattca 60

acagattctt	ggcacctgtg	gatttaacac	tggtagtttc	tactatgtac	aaatggcttt	120
ctagggtcat	ggcattcagg	tatcaaagaa	actgatgttt	tcagctcatg	ttcacatagt	180
tactcttaca	aagtaatata	atcctggttc	tactacttac	aatctgtgta	accttgaaca	240
aattccttaa	actcttgtgg	agctgctgtg	aaggttaaat	gagttaattc	acataaatac	300
ttaaaatcgc	atctgataca	cagtagataa	tattcaataa	atattagctc	tgtgtgtgtg	360
tgtgtgcgtg	tgtcatactt	atgaaaagaa	agccaacagg	tggtaccaaa	agtgaagata	420
aaataagata	gtctaatcaa	gtgatggttt	tcacacacac	aaaaaggatg	ttttatggtg	480
gaaaatgtta	ttctatagct	gtgttcttga	actttaaaag	tagcaatgat	cttgaaataa	540
atctctcaga	aatgtgaaga	ctgtacttct	tgctgaaatc	aatataacag	cctaacaggt	600
gtctcctgtc	ttgataaagt	aggccattcc	taaatctatc	ccatgctgtg	gatgttattc	660
ccactgctaa	aacaacttta	ctcacagtct	gttcaatgct	aatctcaaat	ataatctcat	720
cagtaaattc	ttttcctaat	cattttccaa	gatacctgat	tactcctgtc	tttgaaatat	780
ccaaatagtc	tacagccgta	ccatcctgaa	tgtgccctat	ctcgtctgaa	acatccaaat	840
aacctcgaac	ttcttattct	actacatagt	aaaatcattt	gtgtacttat	cctactagat	900
tatatgagac	tgcttcttgt	tcatcatgca	ttcaagattt	actgagtgct	tgtcatatgc	960
gaggtacaga	ggatacaaag	gcaatgagga	catgcaataa	ataatgcagc	aacaccatag	1020
cagtaggtac	actatgcaga	gatggcataa	atgaggatga	tctcttctac	cacacatctg	1080
cagtatctag	aatggcacaa	catgtatggt	agggacccat	aagtatttgt	caactttaat	1140
tcctacctgc	tttttgaagt	ttttccatac	cactatagct	tcccttttt	tttggttctc	1200
ctcaaggaga	atggtataga	cagaatttgc	tccctaaaag	tctgtctaca	ccattctgca	1260
catggtatct	tttaatctat	gtgttagcat	cacaggctgt	tatttaatat	tttacatata	1320
aatatgtcct	atcttcccca	actataaaac	atgtgttcaa	aagagcaaga	aatcctagag	1380
cactctgtac	ttattactaa	gcatttagta	tctgttcaat	ggtcctacaa	tttccgaaag	1440
caaccaaaat	atgtcatgca	cctatttaca	tagctgatag	catcacttct	gaaccacccc	1500
acctgtgctc	tgggttctct	atgaaacaag	tagctttcac	ataggtgttc	ttaaagcagg	1560
aggccaaaga	aatgtctgct	ggaagcatga	gactatgtca	ttgttctcaa	gctaggagtc	1620
cagaacttag	aaattctgac	agatttagct	cttcttccat	ctagatgcct	gggtcctctg	1680
agaattcaga	cacaaatttg	tataatgaat	tcacccagat	attttgctaa	gctaggtgcc	1740
tataagataa	tatgcacaca	gaaagcactc	agtaaatgac	agtttccttt	ttctccaatc	1800
ttacaaggtc	ctagatcctg	ttggtaacta	agaaaaggta	aatgcaacta	tcaaccactt	1860
aattccaatg	ctttgactat	ccaggagaaa	ttaattcctg	gttccctgtt	gattctaatc	1920

78

1980

353

```
taggaqacaq cttaagggag ctcatgggtc ttgaagctta taaggtgtac agtaagtctt
cacttaatqc cactqatcat tcttqqaaac tqtqatttca qqcaaaaata catacaqcaq
                                                                 2040
gtccttgaat agtgttgttt cattcaactt cattccattg taatgttgat gagaacaaaa
                                                                 2100
aattggtttt gttatatgta gttttgcttc aagtcgcagt ttcaaaaaac ttatgttaag
                                                                 2160
tgaggactta attcacctga aagcttatca cacactcaaa tataacaaat aggaaacatt
                                                                 2220
atgcaacttg aatacaagag tatgttcatt ggtttctata gttatcattc catgtacagt
                                                                 2280
attcacgtga attattggat gaaaagtcca attatttaca tatttggata caatcatact
                                                                 2340
atactagaac tgaagaccat acaggtctct gttccagcat tttctggcta cctcatggca
                                                                 2400
ctgcataatc acttccaccc aaatctagcc aaatctaagt ttaagcactt ctgtatctat
                                                                 2460
tocaagacaa actocottto ttqtttaato toaqtqacto ttacttotag agagggcact
                                                                 2520
cttccttcta tatctcttcc acctctaacc tttctaacca tcaagaacat acaatagata
                                                                 2580
gtagatetea cattaatate aagtettgae teectaette cegteattee teacaggaea
                                                                 2640
gaagcagagt gggtggtggt tatgtttgac agaaggcatt aggttgacaa cttgtcatga
                                                                 2700
ttttgacggt aagccaccat gattgtgttc tctgcctctg gttgacctta caaaaaccat
                                                                 2760
tggaactgtg actttgaaag gtgctcttgc taagcttata tgtgcctgtt aatgaaagtg
                                                                 2820
2879
<210> 60
<211>
     353
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (218)..(218)
<223> n is a, c, q, or t
<220>
<221> misc feature
<222>
      (353)..(353)
<223> n is a, c, g, or t
<400>
      60
                                                                   60
cttattaagg aaatactttg cataaattaa tcagccccag agtgctttaa ttctcttaaa
taccggtgtc tttgatcagg atgacatgtg ccatttttca gaggacgtgc agacaggctg
                                                                  120
gcattctaga ttacttttct tactctgaaa catggcctgt ttgggagtgc gggattcaaa
                                                                  180
ggtggtccca ccgctgcccc tactgcaaat ggcagttnta atcttatctt ttggcttctg
                                                                  240
cagatggttg caattgatcc ttaaccaata atggtcagtc ctcatctctg tcctgcttca
                                                                  300
```

taggtgccac cttgtgtgtt tgaaggggct ttgtaccttt agagtgtagg tgn

<210> 61 <211> 2423 <212> DNA

<213> Homo sapiens

<400> 61 60 gtacttcttc cgcctactgt atcatagcag cttagaatcc cagctgctgg ctcgggctgc agttetetea tggetegege agggtggace ageceegtte etttatgtgt gtgtetaetg 120 180 ctgacctgtg gctttgccga ggcagggaag ctgctggtag tgcccatgga tgggagtcac tggttcacca tgcagtcggt ggtggagaaa cttatcctca gggggcatga ggtggttgta 240 300 gtcatgccag aggtgagttg gcaactggaa agatcactga attgcacagt gaagacttac 360 tcaacctcgt acactctgga agatcagaac cgggaattca tggttttcgc ccatgctcaa tggaaagcac aggcacaaag tatattttct ctattaatga gttcatccag tggttttctt 420 480 gacttatttt tttcgcattg caggagtttg tttaatgacc gaaaattagt agaatactta aaggagagtt cttttgatgc agtgtttctg gatccttttg atacctgtgg cttaattgtt 540 gctaaatatt tetecetece etetgtggte tteaccaggg gaatattttg ceaccatett 600 gaagaaggtg cacagtgccc tgctcctctt tcctatgtcc ccaatgatct cttagggttc 660 tcagatgcca tgactttcaa ggagagagta tggaaccaca tcgtgcactt ggaggaccat 720 ttattttgcc agtatctttt tagaaatgcc ctagaaatag cctctgaaat tctccaaacc 780 cctqtcacqq catatqatct ctacaqtcac acatcaattt ggttgttgcg aacggacttt 840 gttttggact atcccaaacc cgtgatgccc aacatgatct tcattggtgg tatcaactgt 900 960 catcagggaa agccattgcc tatggaattt gaagcctaca ttaatgcttc tggagaacat ggaattgtgg ttttctcttt gggatcaatg gtctcagaaa ttccagagaa gaaagctatg 1020 gcaattgctg atgctttggg caaaatccct cagacagtcc tgtggcggta cactggaacc 1080 1140 cgaccatcga atcttgcgaa caacacgata cttgttaagt ggctacccca aaacgatctg 1200 cttggtcacc cgatgacccg tgcctttatc acccatgctg gttcccatgg tgtttatgaa 1260 agcatatgca atggcgttcc catggtgatg atgcccttgt ttggtgatca gatggacaat gcaaagcgca tggagactaa gggagctgga gtgaccctga atgttctgga aatgacttct 1320 1380 gaagatttag aaaatgetet aaaageagte ateaatgaca aaagttacaa ggagaacate atgcgcctct ccagccttca caaggaccgc ccggtggagc cgctggacct ggccgtgttc 1440 tgggtggagt ttgtgatgag gcacaagggc gcgccacacc tgcgccccgc agcccacgac 1500 1560 ctcacctggt accagtacca ttccttggac gtgattggtt tcctcttggc cgtcgtgctg

1620

acagtggcct tcatcacctt taaatgttgt gcttatggct accggaaatg cttggggaaa

aaagggcgag	ttaagaaagc	ccacaaatcc	aagacccatt	gagaagtggg	tgggaaataa	1680
ggtaaaattt	tgaaccattc	cctagtcatt	tccaaacttg	aaaacagaat	cagtgttaaa	1740
ttcattttat	tcttattaag	gaaatacttt	gcataaatta	atcagcccca	gagtgcttta	1800
aaaaaattct	cttaaataaa	aataatagac	tcgctagtca	gtaaagatat	ttgaatatgt	1860
atcgtgcccc	ctccggtgtc	tttgatcagg	atgacatgtg	ccatttttca	gaggacgtgc	1920
agacaggctg	gcattctaga	ttacttttct	tactctgaaa	catggcctgt	ttgggagtgc	1980
gggattcaaa	ggtggtccca	ccgctgcccc	tactgcaaat	ggcagtttta	atcttatctt	2040
ttggcttctg	cagatggttg	caattgatcc	ttaaccaata	atggtcagtc	ctcatctctg	2100
tcctgcttca	taggtgccac	cttgtgtgtt	taaagaaggg	aagctttgta	cctttagagt	2160
gtaggtgaaa	tgaatgaatg	gcttggagtg	cactgagaac	agcatatgat	ttcttgcttt	2220
ggggaaaaag	aatgatgcta	tgaaattggt	gggtggtgta	tttgagaaga	taatcattgc	2280
ttatgtcaaa	tggagctgaa	tttgataaaa	acccaaaata	cagctatgaa	gtgctgggca	2340
agtttacttt	ttttctgatg	tttcctacaa	ctaaaaataa	attaataaat	ttatataaat	2400
tctatttaaa	aaaaaaaaa	aaa				2423

<210> 62

<211> 2351

<212> DNA

<213> Homo sapiens

<400> 62 aggagcaaag gcgccatggc tgtggagtcc cagggcggac gcccacttgt cctgggcctg 60 120 ctgctgtgtg tgctgggccc agtggtgtcc catgctggga agatactgtt gatcccagtg gatggcagcc actggctgag catgcttggg gccatccagc agctgcagca gaggggacat 180 gaaatagttg teetageace tgacgeeteg ttgtacatea gagaeggage attttacace 240 ttgaagacgt accetgtgce attecaaagg gaggatgtga aagagtettt tgttagtete 300 gggcataatg tttttgagaa tgattctttc ctgcagcgtg tgatcaaaac atacaagaaa 360 ataaaaaagg actctgctat gcttttgtct ggctgttccc acttactgca caacaaggag 420 ctcatggcct ccctggcaga aagcagcttt gatgtcatgc tgacggaccc tttccttcct 480 tgcagcccca tcgtggccca gtacctgtct ctgcccactg tattcttctt gcatgcactg 540 ccatgcagcc tggaatttga ggctacccag tgccccaacc cattctccta cgtgcccagg 600 cctctctcct ctcattcaga tcacatgacc ttcctgcagc gggtgaagaa catgctcatt 660 gccttttcac agaactttct gtgcgacgtg gtttattccc cgtatgcaac ccttgcctca 720 780 gaatteette agagagaggt gaetgteeag gaeetattga getetgeate tgtetggetg

tttagaagtg	actttgtgaa	ggattaccct	aggcccatca	tgcccaatat	ggtttttgtt	840
ggtggaatca	actgccttca	ccaaaatcca	ctatcccagg	aatttgaagc	ctacattaat	900
gcttctggag	aacatggaat	tgtggttttc	tctttgggat	caatggtctc	agaaattcca	960
gagaagaaag	ctatggcaat	tgctgatgct	ttgggcaaaa	tccctcagac	agtcctgtgg	1020
cggtacactg	gaacccgacc	atcgaatctt	gcgaacaaca	cgatacttgt	taagtggcta	1080
ccccaaaacg	atctgcttgg	tcacccgatg	acccgtgcct	ttatcaccca	tgctggttcc	1140
catggtgttt	atgaaagcat	atgcaatggc	gttcccatgg	tgatgatgcc	cttgtttggt	1200
gatcagatgg	acaatgcaaa	gcgcatggag	actaagggag	ctggagtgac	cctgaatgtt	1260
ctggaaatga	cttctgaaga	tttagaaaat	gctctaaaag	cagtcatcaa	tgacaaaagt	1320
tacaaggaga	acatcatgcg	cctctccagc	cttcacaagg	accgcccggt	ggagccgctg	1380
gacctggccg	tgttctgggt	ggagtttgtg	atgaggcaca	agggcgcgcc	acacctgcgc	1440
cccgcagccc	acgacctcac	ctggtaccag	taccattcct	tggacgtgat	tggtttcctc	1500
ttggccgtcg	tgctgacagt	ggccttcatc	acctttaaat	gttgtgctta	tggctaccgg	1560
aaatgcttgg	ggaaaaaagg	gcgagttaag	aaagcccaca	aatccaagac	ccattgagaa	1620
gtgggtggga	aataaggtaa	aattttgaac	cattccctag	tcatttccaa	acttgaaaac	1680
agaatcagtg	ttaaattcat	tttattctta	ttaaggaaat	actttgcata	aattaatcag	1740
ccccagagtg	ctttaaaaaa	ttctcttaaa	taaaaataat	agactcgcta	gtcagtaaag	1800
atatttgaat	atgtatcgtg	cccctccgg	tgtctttgat	caggatgaca	tgtgccattt	1860
ttcagaggac	gtgcagacag	gctggcattc	tagattactt	ttcttactct	gaaacatggc	1920
ctgtttggga	gtgcgggatt	caaaggtggt	cccaccgctg	cccctactgc	aaatggcagt	1980
tttaatctta	tattttggat	tctgcagatg	gttgcaattg	atccttaacc	aataatggtc	2040
agtcctcatc	tatgtaatga	ttcataggtg	ccaccttgtg	tgtttaaaga	agggaagctt	2100
tgtaccttta	gagtgtaggt	gaaatgaatg	aatggcttgg	agtgcactga	gaacagcata	2160
tgatttcttg	ctttggggaa	aaagaatgat	gctatgaaat	tggtgggtgg	tgtatttgag	2220
aagataatca	ttgcttatgt	caaatggagc	tgaatttgat	aaaaacccaa	aatacagcta	2280
tgaagtgctg	ggcaagttta	cttttttct	gatgtttcct	acaactaaaa	ataaattaat	2340
aaatttataa	a					2351

<210> 63 <211> 2478

<212> DNA

<213> Homo sapiens

<400> 63 ctqqaqatac cqgggctgaa gcatatggag tcacccagcc cggtgtccat gtccttqqat 60 aggecattge ttttagaget ggagatgggt geacaggetg atgtggetag ggatggeeac 120 tttcctggga ctttgatggt agatgtccga aggtcaatct cttttttatg aatattcttc 180 atataatcac ctaagcttga ataataggtg agcacgccat cggaacacag ggtgacgtat 240 ttctttttcc atgtcttcag ccattttcca cttcgcttta agagcatgcc ctgtttaatg 300 gggatggctc tgccgctccc gatggtgtca gcatgattct ccggggcttt cctctctttg 360 tctgggtcac tccctttctc agatgtaaac aggttggacc agcgcatgga ccgcttgcaa 420 acgggggtgg gtgtgttggc agtgggagga acactgaact gagggtcctc ctggctggtg 480 ctgggagtcg gtggaatgga ggaggaatag ttatttaaac tcccacctcc atttcttttc 540 ttcataatgt gcacggtgga aaccgcaaat gagtgtaact gttcatcagg tatgctcaaa 600 660 gatetatetg catetetttg tgtgatatga tgaggtatet ccaaggteac agatattatt gtcattgtaa gataatgctg gatggctgtg ctgtcatcaa ggaatattgt cgaacacgag 720 ctgtattgtt gactgaaacg ctcagtagat acatggtttg tacagttgct tcttcttatt 780 tctacaacat ctgtttgaga gttcctctgg aatattgtgc ttgcctctgg attggcagaa 840 900 gagttaaact ccaaagcatc tgtttgagag ttcctctgga atattgtgct tgcctctgga 960 ttggcagaaa ggttaaactc caaagcttca ggcatctccc ggtcacgaac ctggtgcatg 1020 tggaggtcct caccaacttc aacagtcacc tcagcaggct gtacagcagc agccatgggc gctcctgcca tcctgtcctc agcttcaggc accaccactg acctgggaca gtgaatcgac 1080 aatgeegtet tetgtetegt ggggeateet eetgetggea ggeetgtget geetggteee 1140 tgtctccctg gctgaggatc cccagggaga tgctgcccag aagacagata catcccacca 1200 tgatcaggat cacccaacct tcaacaagat caccccaac ctggctgagt tcgccttcag 1260 1320 cctataccgc cagctggcac accagtccaa cagcaccaat atcttcttct ccccagtgag categetaca geetttgeaa tgeteteeet ggggaecaag getgaeacte acgatgaaat 1380 cctggagggc ctgaatttca acctcacgga gattccggag gctcagatcc atgaaggctt 1440 ccaggaactc ctccgtaccc tcaaccagcc agacagccag ctccagctga ccaccggcaa 1500 tggcctgttc ctcagcgagg gcctgaagct agtggataag tttttggagg atgttaaaaa 1560 gttgtaccac tcagaagcct tcactgtcaa cttcggggac accgaagagg ccaagaaaca 1620 1680 gatcaacgat tacgtggaga agggtactca agggaaaatt gtggatttgg tcaaggagct 1740 tgacagagac acagtttttg ctctggtgaa ttacatcttc tttaaaggca aatgggagag accetttgaa gteaaggaea eegaggaaga ggaetteeae gtggaeeagg tgaeeaeegt 1800

83

gaaggtgcct	atgatgaagc	gtttaggcat	gtttaacatc	cagcactgta	agaagctgtc	1860
cagctgggtg	ctgctgatga	aatacctggg	caatgccacc	gccatcttct	tcctgcctga	1920
tgaggggaaa	ctacagcacc	tggaaaatga	actcacccac	gatatcatca	ccaagttcct	1980
ggaaaatgaa	gacagaaggt	ctgccagctt	acatttaccc	aaactgtcca	ttactggaac	2040
ctatgatctg	aagagcgtcc	tgggtcaact	gggcatcact	aaggtcttca	gcaatggggc	2100
tgacctctcc	ggggtcacag	aggaggcacc	cctgaagctc	tccaaggccg	tgcataaggc	2160
tgtgctgacc	atcgacgaga	aagggactga	agctgctggg	gccatgtttt	tagaggccat	2220
acccatgtct	atcccccccg	aggtcaagtt	caacaaaccc	tttgtcttct	taatgattga	2280
acaaaatacc	aagtctcccc	tcttcatggg	aaaagtggtg	aatcccaccc	aaaaataact	2340
gcctctcgct	cctcaacccc	tcccctccat	ccctggcccc	ctccctggat	gacattaaag	2400
aagggttgag	ctggaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2460
aaaaaaaaa	aaaaaaaa		·			2478

<210> 64

<211> 891

<212> DNA

<213> Homo sapiens

<400> 64

accocatece ceaetectat accggteete cattttggtg cetgeaaage tetgggaaag 60 aatcccggga aacgaaaaat ggtgggtttg ggggaaggga ggtaagggga gaaagctgga 120 gggaggggct ttaattggag gccccgtaga ggacgcgcgg aacttctaag gtgggaaaaa 180 acgaaattaa aaaatccttt gatatcaggg ctctgaatcc tgctggtcag agcaccaagc 240 atteagtete teteettgee tttgtettae ttgtgtteaa agaaaaacaa ccagaaaaaa 300 aaaatctcat catggcaaat attcaccagg aaaacgaaga gatggagcag cctatgcaga 360 atggagagga agaccgccct ttgggaggag gtgaaggcca ccagcctgca ggaaatcgac 420 ggggacaggc tcgccgactt gcccctaatt ttcgatgggc catacccaat aggcagatca 480 atgatgggat gggtggagat ggagatgata tggaaatatt catggaggag atgagagaaa 540 tcagaagaaa acttagggag ctgcagttga ggaattgtct gcgtatcctt atgggggagc 600 tetetaatea eeatgaeeat eatgatgaat titigeettat geettgaete etgeeattta 660 tcatgagatt aatactgtga ttcccgctgt tttctttttc cttqcatttt cctaatatgc 720 ctttactgat ccgtttgctg tgaaccctat gttatttcca tgtgtcaagt gggtcttgtg 780 ttgccagctt ctatttgaag attgcctttg cactcagtgt aagtttctgt cagcagtagt 840 ttcacccatt tgcatggaaa aatttaaaqc taataaaqca atttaaaaaq c 891

84

<210> 65 <211> 5910 <212> DNA <213> Homo sapiens

65

<400>

agetecagee geactgeece gatggetece tacceetgtg getgecacat cetgetgetg 60 ctettetget geetggegge tgeeegggee aacetgetga acetgaactg getttggtte 120 180 aataatgagg acaccagcca cgcagctacc acgatccctg agccccaggg gcccctgcct gtgcagccca cagcagatac caccacacac gtgacccccc ggaatggttc cacagagcca 240 gegacageec etggeageec tgagecacec teagagetge tggaagatgg ecaggacace 300 360 cccacttctg ccgagagecc ggacgegeca gaggagaaca ttgccggtgt cggagecgag atcctgaacg tggccaaagg catccggagc ttcgtccagc tgtggaatga cactgtcccc 420 actgagaget tggccagggc ggaaaccetg gteetggaga eteetgtggg eeceettgee 480 ctcgctgggc cttccagcac cccccaggag aatgggacca ctctctggcc cagccgtggc 540 attectaget etcegggege ccacacaace gaggetggea cettgeetge acceacecea 600 tegeeteegt eeetgggeag geeetgggea eeacteaegg ggeeeteagt geeaceaeea 660 tetteagage geateagega ggaggtgggg etgetgeage teettgggga eeceeegeee 720 cagcaggtca cccagacgga tgaccccgac gtcgggctgg cctacgtctt tgggccagat 780 gccaacagtg gccaagtggc ccggtaccac ttccccagcc tcttcttccg tgacttctca 840 ctgctgttcc acatccggcc agccacagag ggcccagggg tgctgttcgc catcacggac 900 teggegeagg ceatggtett getgggegtg aagetetetg gggtgeagga egggeaceag 960 gacatetece tgetetacae agaacetggt geaggeeaga eccaeaage egecagette 1020 cggctccccg ccttcgtcgg ccagtggaca cacttagccc tcagtgtggc aggtggcttt 1080 qtqqccctct acqtqqactq tqaqqaqttc caqaqaatqc cqcttqctcq gtcctcacqq 1140 ggcctggagc tggagcctgg cgccgggctc ttcgtggctc aggcgggggg agcggaccct 1200 gacaagttcc agggggtgat cgctgagctg aaggtgcgca gggaccccca ggtgagcccc 1260 atgcactgcc tggacgagga aggcgatgac tcagatgggg cattcggaga ctctggcagc 1320 gggctcgggg acgcccggga gcttctcagg gaggagacgg gcgcggccct aaaacccagg 1380 ctccccgcgc cacccccgt caccacgcca cccttggctg gaggcagcag cacggaagat 1440 tccagaagtg aagaagtcga ggagcagacc acggtggctt cgttaggagc tcagacactt 1500 cctggctcag attctgtctc cacgtgggac gggagtgtcc ggacccctgg gggccgcgtg 1560 aaagagggeg geetgaaggg geagaaaggg gagceaggtg tteegggeee acetggeegg 1620

gcaggccccc	caggatcccc	atgcctacct	ggtcccccgg	gtctcccgtg	cccagtgagt	1680
cccctgggtc	ctgcaggccc	agcgttgcaa	actgtccccg	gaccacaagg	acccccaggg	1740
cctccgggga	gggacggcac	ccctggaagg	gacggcgagc	cgggcgaccc	cggtgaagac	1800
ggaaagccgg	gcgacaccgg	gccacaaggc	ttccctggga	ctccagggga	tgtaggtccc	1860
aagggagaca	agggagaccc	tggggttgga	gagagagggc	ccccaggacc	ccaagggcct	1920
ccagggcccc	caggaccctc	cttcagacac	gacaagctga	ccttcattga	catggaggga	1980
tctggctttg	ggggcgatct	ggaggccctg	cggggtcctc	gaggetteee	tggacctccc	2040
ggaccccccg	gtgtcccagg	cctgcccggc	gagccaggcc	gctttggggt	gaacagctcc	2100
gacgtcccag	gacccgccgg	ccttcctggt	gtgcctgggc	gcgagggtcc	ccccgggttt	2160
cctggcctcc	cgggaccccc	aggccctccg	ggaagagagg	ggcccccagg	aaggactggg	2220
cagaaaggca	gcctgggtga	agcaggcgcc	ccaggacata	aggggagcaa	gggagccccc	2280
ggtcctgctg	gtgctcgtgg	ggagagcggc	ctggcaggag	cccccggacc	tgctggacca	2340
ccaggccccc	ctgggccccc	tgggccccca	ggaccaggac	teccegetgg	atttgatgac	2400
atggaaggct	ccggggggcc	cttctggtca	acagcccgaa	gcgctgatgg	gccacaggga	2460
cctcccggcc	tgccgggact	taagggggat	cctggcgtgc	ctgggctgcc	gggggcgaag	2520
ggagaagttg	gagcagatgg	aatccccggg	ttccccggcc	tccctggcag	agagggcatt	2580
gctgggcccc	aggggccaaa	gggagacaga	ggcagccggg	gagaaaaggg	agatccaggg	2640
aaggacggag	tegggeagee	gggcctccct	ggcccccccg	gacccccggg	acctgtggtc	2700
tacgtgtcgg	agcaggacgg	atccgtcctg	agcgtgccgg	gacctgaggg	ccggccgggt	2760
ttcgcaggct	ttcccggacc	tgcaggaccc	aagggcaacc	tgggctctaa	gggcgaacga	2820
ggctccccgg	gacccaaggg	tgagaagggt	gaaccgggca	gcatcttcag	ccccgacggc	2880
ggtgccctgg	gccctgccca	gaaaggagcc	aagggagagc	cgggcttccg	aggacccccg	2940
ggtccatacg	gacggccggg	gtacaaggga	gagattggct	ttcctggacg	geegggtege	3000
cccgggatga	acggattgaa	aggagagaaa	ggggagccgg	gagatgccag	ccttggattt	3060
ggcatgaggg	gaatgcccgg	cccccagga	cctccagggc	ccccaggccc	tccagggact	3120
cctgtttacg	acagcaatgt	gtttgctgag	tccagccgcc	ccgggcctcc	aggattgcca	3180
gggaatcagg	gccctccagg	acccaagggc	gccaaaggag	aagtgggccc	ccccggacca	3240
ccagggcagt	ttccgtttga	ctttcttcag	ttggaggctg	aaatgaaggg	ggagaaggga	3300
gaccgaggtg	atgcaggaca	gaaaggcgaa	aggggggagc	ccgggggcgg	cggtttcttc	3360
ggctccagcc	tgcccggccc	ccccggcccc	ccaggcccac	gtggctaccc	tgggattcca	3420
ggtcccaagg	gagagagcat	ccggggccag	cccggcccac	ctggacctca	gggacccccc	3480

		*					
	ggcatcggct	acgaggggcg	ccagggccct	acaggaacaa	caggcccccc	agggccccct	3540
			gcagactatc catgggcgcc				3600 3660
	caggccatgc	tgggccaggt	gcacgaggtt	cccgagggct	ggctcatctt	cgtggccgag	3720
,	caggaggagc	tctacgtccg	cgtgcagaac	gggttccgga	aggtccagct	ggaggcccgg	3780
	acaccactcc	cacgagggac	ggacaatgaa	gtggccgcct	tgcagccccc	cgtggtgcag	3840
	ctgcacgaca	gcaaccccta	cccgcggcgg	gagcaccccc	accccaccgc	gcggccctgg	3900
	cgggcagatg	acatcctggc	cagcccccct	egeetgeeeg	agccccagcc	ctaccccgga	3960.
	gccccgcacc	acagctccta	cgtgcacctg	eggeeggege	gacccacaag	cccacccgcc	4020
	cacagccacc	gcgacttcca	gccggtgctc	cacctggttg	cgctcaacag	cccctgtca	4080
	ggcggcatgc	ggggcatccg	cggggccgac	ttccagtgct	tccagcaggc	gcgggccgtg	4140
	gggctggcgg	gcaccttccg	cgccttcctg	teetegegee	tgcaggacct	gtacagcatc	4200
	gtgcgccgtg	ccgaccgcgc	agccgtgccc	atcgtcaacc	tcaaggacga	gctgctgttt	4260
	cccagctggg	aggctctgtt	ctcaggctct	gagggtccgc	tgaagcccgg	ggcacgcatc	4320
	ttataatttg	acggcaagga	cgtcctgagg	caccccacct	ggccccagaa	gagcgtgtgg	4380
	catggctcgg	accccaacgg	gcgcaggctg	accgagagct	actgtgagac	gtggcggacg	4440
	gaggctccct	cggccacggg	ccaggcctcc	tegetgetgg	ggggcaggct	cctggggcag	4500
	agtgccgcga	gctgccatca	cgcctacatc	gtgctctgca	ttgagaacag	cttcatgact	4560
	gcctccaagt	agccaccgcc	tggatgcgga	tggccggaga	ggaccggcgg	ctcggaggaa	4620
-	gcccccaccg	tgggcaggga	geggeeggee	agcccctggc	cccaggacct	ggctgccata	4680
	ctttcctgta	tagttcacgt	ttcatgtaat	cctcaagaaa	taaaaggaag	ccaaagagtg	4740
	tatttttta	aaagtttaaa	acagaagcct	gatgctgaca	ttcacctgcc	ccaactctcc	4800
	cctgacctgt	gagcccagct	gggtcaggca	gggtgcagta	tcatgccctg	tgcaacctct	4860
	tggcctgatc	agaccacggc	tcgatttctc	caggatttcc	tgctttggga	agccgtgctc	4920
	gccccagcag	gtgctgactt	catctcccac	ctagcagcac	cgttctgtgc	acaaaaccca	4980
	gacctgttag	cagacaggcc	ccgtgaggca	atgggagctg	aggccacact	cagcacaagg	5040
	ccatctgggc	tcctccaggg	tgtgtgctcg	ccctgcggta	gatgggaggg	aggctcaggt	5100
	ccctggggct	agggggagcc	cattatgata	agctctgggc	cattctccac	agcaacccca	5160
	ggctgaagca	ggttcccaag	ctcagaggcg	cactgtgacc	cccagctccg	gcctgtcctc	5220
	caacaccaag	cacagcagcc	tggggctggc	ctcccaaatg	agccatgaga	tgatacatcc	5280
	aaagcagaca	gctccaccct	ggccgagtcc	aagctgggag	attcaaggga	cccatgagtt	5340

ggggtctggc agcctcccat	ccagggcccc	catctcatgc	ccctggctgg	gacgtggctc	5400
agccagcact tgtccagctg	agcgccagga	tggaacacgg	ccacatcaaa	gaggctgagg	5460
ctggcacagg acatgcggta	gccagcacac	agggcagtga	gggagggctg	tcatctgtgc	5520
actgcccatg gacaggctgg	ctccagatgc	agggcagtca	ttggctgtct	cctaggaaac	5580
ccatatectt accetecttg	ggactgaagg	ggaaccccgg	ggtgcccaca	ggccgccctg	5640
cgggtgaaca aagcagccac	gaggtgcaac	aaggtcctct	gtcagtcaca	gccacccctg	5700
agatccggca acatcaaccc	gagtcattcg	ttctgtggag	ggacaagtgg	actcagggca	5760
gcgccaggct gaccacagca	cagccaacac	gcacctgcct	caggactgcg	acgaaaccgg	5820
tggggctggt tctgtaattg	tgtgtgatgt	gaagccaatt	cagacaggca	aataaaagtg	5880
accttttaca ctgaaaaaaa	aaaaaaaaa				5910
<210> 66 <211> 2480 <212> DNA <213> Homo sapiens <400> 66					
atggccgggc cgcgcgcgtg	cgcgccgctc	ctgctcctgc	taataatagg	gcagcttctg	60
gcggccgccg gggcgcagag	agtgggactc	cccaaccccc	aaggaaaaaa	agggcgccct	120
gggaagcccg gccaggacgg	cattgacgga	gaagctggtc	ctccaggtct	gcctggtccc	180
ccgggaccaa agggggcccc	aggaaagccg	gggaaaccag	gagaggctgg	gctgccggga	240
ctgccgggtg tggatggtct	gactggacga	gatggacccc	ctggacccaa	gggtgcccct	300
ggggaacggg gaagtctggg	acccccgggg	ccgcccgggc	tggggggcaa	aggcctccct	360
ggaccccccg gagaggcagg	agtgagcggc	cccccaggtg	ggatcggcct	aagaggaaaa	420
ccgggacctc ctggactccc	cggcctccct	ggtccccag	gacctcccgg	accccctgga	480
cacccaggag tectecetga	aggcgctact	gaccttcagt	gcccaagtat	ctgcccgcca	540
ggtcccccag ggccccctgg	aatgccaggg	ttcaagggac	ccactggcta	caaaggcgag	600
cagggggaag tcggcaagga	cggcgagaag	ggtgaccctg	gacacaatgg	gaaagaagga	660
ctcccgggca gcgtggggct	gcagggcccc	cggggattac	gaggactgcc	agggccactc	720
gggccccctg gggaccgggg	tcccattggg	ttccgagggc	cgcctgggat	cccaggagcg	780
cctgggaaag cgggtgaccg	aggcgagagg	ggcccagaag	ggttccgcgg	ccccaagggt	840
gacctcggca gacctggtcc	caagggaacc	cccggagtgg	ccgggccaag	cggagagccg	900
ggcatgccag gcaaggacgg	ccagaatggc	gtgccaggac	tcgatggcca	gaagggagag	960
gctggtcgca acggtgctcc	gggagagaag	ggccccaacg	ggctgccggg	cctccctgga	1020

cgagcggggt	ccaaaggcga	gaagggagaa	cggggcagag	ctggggagct	gggtgaggcc	1080
ggcccctctg	gagagccagg	cgtccctgga	gatgctggca	tgcctgggga	gcgcggtgag	1140
gctggccacc	ggggctcagc	gggggccctc	ggcccacaag	gccctcccgg	agcccctggt	1200
gtccgaggct	tccagggcca	gaagggcagc	atgggagacc	ccggccttcc	aggcccccag	1260
ggcctccgag	gtgacgtggg	cgaccggggt	ccgggaggtg	ccgaaggccc	taagggagac	1320
cagggtattg	caggttccga	aggtattaat	ggggataaag	gagaactggg	tcccagcggc	1380
ctggtcggac	ccaaaggaga	gtctggcagt	cgaggggagc	tgggccccaa	aggcacccag	1440
ggtcccaacg	gcaccagcgg	tgttcagggt	gtccccgggc	cccccggtcc	tctgggcctg	1500
cagggcgtcc	cgggtgttcc	tggcatcacg	gggaagccgg	gagttccggg	gaaggaggcc	1560
agcgagcagc	gcatcaggga	gctgtgtggg	gggatgatca	gcgaacaaat	tgcacagtta	1620
gccgcgcacc	taaggaagcc	tttggcaccc	gggtccattg	gtcggcccgg	tccagctggc	1680
cccctgggc	ccccaggacc	cccaggctcc	attggtcacc	ctggcgctcg	aggacccccc	1740
ggataccgcg	gtcccactgg	ggagctggga	gaccccgggc	ccagaggaaa	ccagggtgac	1800
agaggagaca	aaggcgcggc	aggagcaggg	ctggacgggc	ctgaaggaga	ccaggggccc	1860
caaggacccc	aaggcgtgcc	cggcaccagc	aaggacggcc	aggacggtgc	tcccggcgag	1920
cctgggcctc	ccggagatcc	tgggcttcca	ggtgccattg	gggcccaggg	gacaccgggg	1980
atctgcgaca	cctcagcctg	ccaaggagcc	gtgttaggag	gggtcgggga	gaaatcaggc	2040
tctcgaagct	cataaaattc	aacgtgagga	agcaagtgac	aaggacgccc	gaagcacagt	2100
ggacggtcat	gaaggagcgg	gggtgtggca	ggcgggtgac	gtccaggaga ,	gggagcgccc	2160
ctggctgccc	ctaggaagaa	gactggacgc	gtgggccttg	ccagcgagca	ccctcattgg	2220
gctgtcgcct	gacagcatac	ctcaaaaggc	cctagctaat	aaacctgtaa	gcccagcatt	2280
tgagagaagg	tagggtgtgt	atatataaaa	ggttgtgtac	aactccacga	ggtgaaaaat	2340
attcagtaac	ttgtttgcat	agcatttgtg	taaagactat	gatctcatcc	caataaaatg	2400
atatattaaa	tcttcagatt	aatgactggc	tacagagtaa	caaaaaataa	acaatttaat	2460
gtacagtaaa	ttctctccca					2480

<210> 67 <211> 832 <212> PRT <213> Homo sapiens

<400> 67

Met Ile Leu Gln Ala His Leu His Ser Leu Cys Leu Leu Met Leu Tyr 1 5 10 15

Leu Ala Thr Gly Tyr Gly Gln Glu Gly Lys Phe Ser Gly Pro Leu Lys 2.0 Pro Met Thr Phe Ser Ile Tyr Glu Gly Gln Glu Pro Ser Gln Ile Ile 40 Phe Gln Phe Lys Ala Asn Pro Pro Ala Val Thr Phe Glu Leu Thr Gly 55 Glu Thr Asp Asn Ile Phe Val Ile Glu Arg Glu Gly Leu Leu Tyr Tyr Asn Arg Ala Leu Asp Arg Glu Thr Arg Ser Thr His Asn Leu Gln Val Ala Ala Leu Asp Ala Asn Gly Ile Ile Val Glu Gly Pro Val Pro Ile 100 105 Thr Ile Glu Val Lys Asp Ile Asn Asp Asn Arg Pro Thr Phe Leu Gln 115 120 Ser Lys Tyr Glu Gly Ser Val Arg Gln Asn Ser Arg Pro Gly Lys Pro 130 Phe Leu Tyr Val Asn Ala Thr Asp Leu Asp Asp Pro Ala Thr Pro Asn 155 Gly Gln Leu Tyr Tyr Gln Ile Val Ile Gln Leu Pro Met Ile Asn Asn 165 170 175 Val Met Tyr Phe Gln Ile Asn Asn Lys Thr Gly Ala Ile Ser Leu Thr 180 185 Arg Glu Gly Ser Gln Glu Leu Asn Pro Ala Lys Asn Pro Ser Tyr Asn 195 200 205 Leu Val Ile Ser Val Lys Asp Met Gly Gly Gln Ser Glu Asn Ser Phe 210 215 220 Ser Asp Thr Thr Ser Val Asp Ile Ile Val Thr Glu Asn Ile Trp Lys Ala Pro Lys Pro Val Glu Met Val Glu Asn Ser Thr Asp Pro His Pro 250

Ile Lys Ile Thr Gln Val Arg Trp Asn Asp Pro Gly Ala Gln Tyr Ser Leu Val Asp Lys Glu Lys Leu Pro Arg Phe Pro Phe Ser Ile Asp Gln 280 Glu Gly Asp Ile Tyr Val Thr Gln Pro Leu Asp Arg Glu Glu Lys Asp 295 Ala Tyr Val Phe Tyr Ala Val Ala Lys Asp Glu Tyr Gly Lys Pro Leu 310 Ser Tyr Pro Leu Glu Ile His Val Lys Val Lys Asp Ile Asn Asp Asn 330 Pro Pro Thr Cys Pro Ser Pro Val Thr Val Phe Glu Val Gln Glu Asn 345 Glu Arg Leu Gly Asn Ser Ile Gly Thr Leu Thr Ala His Asp Arg Asp 360 Glu Glu Asn Thr Ala Asn Ser Phe Leu Asn Tyr Arg Ile Val Glu Gln 375 Thr Pro Lys Leu Pro Met Asp Gly Leu Phe Leu Ile Gln Thr Tyr Ala 390 395 Gly Met Leu Gln Leu Ala Lys Gln Ser Leu Lys Lys Gln Asp Thr Pro 410 Gln Tyr Asn Leu Thr Ile Glu Val Ser Asp Lys Asp Phe Lys Thr Leu 420 425 Cys Phe Val Gln Ile Asn Val Ile Asp Ile Asn Asp Gln Ile Pro Ile 435 440 445 Phe Glu Lys Ser Asp Tyr Gly Asn Leu Thr Leu Ala Glu Asp Thr Asn 455 460 Ile Gly Ser Thr Ile Leu Thr Ile Gln Ala Thr Asp Ala Asp Glu Pro 470 475 Phe Thr Gly Ser Ser Lys Ile Leu Tyr His Ile Ile Lys Gly Asp Ser 485 490

Glu Gly Arg Leu Gly Val Asp Thr Asp Pro His Thr Asn Thr Gly Tyr Val Ile Ile Lys Lys Pro Leu Asp Phe Glu Thr Ala Ala Val Ser Asn Ile Val Phe Lys Ala Glu Asn Pro Glu Pro Leu Val Phe Gly Val Lys Tyr Asn Ala Ser Ser Phe Ala Lys Phe Thr Leu Ile Val Thr Asp Val Asn Glu Ala Pro Gln Phe Ser Gln His Val Phe Gln Ala Lys Val Ser Glu Asp Val Ala Ile Gly Thr Lys Val Gly Asn Val Thr Ala Lys Asp Pro Glu Gly Leu Asp Ile Ser Tyr Ser Leu Arg Gly Asp Thr Arg Gly Trp Leu Lys Ile Asp His Val Thr Gly Glu Ile Phe Ser Val Ala Pro Leu Asp Arg Glu Ala Gly Ser Pro Tyr Arg Val Gln Val Val Ala Thr Glu Val Gly Ser Ser Leu Ser Ser Val Ser Glu Phe His Leu Ile Leu Met Asp Val Asn Asp Asn Pro Pro Arg Leu Ala Lys Asp Tyr Thr Gly Leu Phe Phe Cys His Pro Leu Ser Ala Pro Gly Ser Leu Ile Phe Glu Ala Thr Asp Asp Asp Gln His Leu Phe Arg Gly Pro His Phe Thr Phe Ser Leu Gly Ser Gly Ser Leu Gln Asn Asp Trp Glu Val Ser Lys Ile Asn Gly Thr His Ala Arg Leu Ser Thr Arg His Thr Glu Phe Glu

Glu Arg Glu Tyr Val Val Leu Ile Arg Ile Asn Asp Gly Gly Arg Pro

740 745 750

Pro Leu Glu Gly Ile Val Ser Leu Pro Val Thr Phe Cys Ser Cys Val 755 760 765

Glu Gly Ser Cys Phe Arg Pro Ala Gly His Gln Thr Gly Ile Pro Thr 770 780

Val Gly Met Ala Val Gly Ile Leu Leu Thr Thr Leu Leu Val Ile Gly 785 790 795 800

Ile Ile Leu Ala Val Val Phe Ile Arg Ile Lys Lys Asp Lys Gly Lys 805 810 815

Asp Asn Val Glu Ser Ala Gln Ala Ser Glu Val Lys Pro Leu Arg Ser 820 825 830

<210> 68

<211> 344

<212> PRT

<213> Homo sapiens

<400> 68

Met Gly Pro Pro Ser Ala Pro Pro Cys Arg Leu His Val Pro Trp Lys 1 5 10 15

Glu Val Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr 20 25 30

Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly 35 40 45

Lys Glu Val Leu Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly 50 55 60

Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val 65 70 75 80

Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser 85 90 95

Gly Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val

Thr Gln Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp 115 120 125

93

Leu Val Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr Pro Glu Leu 130 135 140

Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys 145 150 155 160

Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Val Gln Asn Thr Tyr
165 170 175

Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190

Leu Ser Asn Gly Asn Met Thr Leu Thr Leu Leu Ser Val Lys Arg Asn 195 200 205

Asp Ala Gly Ser Tyr Glu Cys Glu Ile Gln Asn Pro Ala Ser Ala Asn 210 215 220

Arg Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp Val Pro 225 230 235 240

Thr Ile Ser Pro Ser Lys Ala Asn Tyr Arg Pro Gly Glu Asn Leu Asn 245 250 255

Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Phe 260 265 270

Ile Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn 275 280 285

Ile Thr Val Asn Asn Ser Gly Ser Tyr Met Cys Gln Ala His Asn Ser 290 295 300

Ala Thr Gly Leu Asn Arg Thr Thr Val Thr Met Ile Thr Val Ser Gly 305 310 315

Ser Ala Pro Val Leu Ser Ala Val Ala Thr Val Gly Ile Thr Ile Gly 325 330 335

Val Leu Ala Arg Val Ala Leu Ile 340

<210> 69

<211> 100

<212> PRT

<213> Homo sapiens

<400> 69

Met Asp Ser Phe Ser Gln Asp Val Lys Thr Arg Leu Leu Ile Met Ile 1 5 10 15

Arg Leu Leu Pro Pro Phe Asn Leu Ser Leu Leu Met Pro Ala Ser Phe 20 25 30

Ala Trp Gln Asp Asp Ala Val Ile Ser Ile Ser Gln Glu Val Ala Ser 35 40 45

Glu Gly Asn Leu Thr Glu Cys Gln Ile Tyr Leu Val Asn Pro Asn Val 50 60

Leu His Lys Ile Arg Asp Pro Leu Val His Pro Val Thr Asp Ile Ser 65 70 75 80

Ser Ile Phe Asn Thr Ala Val Cys Ser Asn Val Gln Trp Ser Phe Ser 85 90 95

Glu Leu Asp Phe 100

<210> 70

<211> 135

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Cys Gly Leu Val Ala Ser Asn Leu Asn Leu Lys Pro Gly Glu 1 5 10 15

Cys Leu Arg Val Arg Gly Glu Val Ala Pro Asp Ala Lys Ser Phe Val 20 25 30

Leu Asn Leu Gly Lys Asp Ser Asn Asn Leu Cys Leu His Phe Asn Pro 35 40 45

Arg Phe Asn Ala His Gly Asp Ala Asn Thr Ile Val Cys Asn Ser Lys 50 55 60

Asp Gly Gly Ala Trp Gly Thr Glu Gln Arg Glu Ala Val Phe Pro Phe 65 70 75 80

Gln Pro Gly Ser Val Ala Glu Val Cys Ile Thr Phe Asp Gln Ala Asn 85 90 95

Leu Thr Val Lys Leu Pro Asp Gly Tyr Glu Phe Lys Phe Pro Asn Arg 100 105 110

Leu Asn Leu Glu Ala Ile Asn Tyr Met Ala Ala Asp Gly Asp Phe Lys 115 120 125

Ile Lys Cys Val Ala Phe Asp 130 135

<210> 71

<211> 492

<212> PRT

<213> Homo sapiens

<400> 71

Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu 1 5 10 15

Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val 20 25 30

Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro 35 40 45

Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val 50 60

Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys 65 70 75 80

Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val 85 90 95

Gly Ala Ala Leu Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
100 105 110

Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn 115 120 125

Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Glu Asp 130 135 140

Glu Asn Arg Cys Val Arg Leu Tyr Gly Pro Asn Phe Ile Leu Gln Val 145 150 155 160

Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp

165 170 175

Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn 180 185 190

Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser 195 200 205

Phe Met Lys Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys 210 215 220

Leu Tyr His Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg 225 230 235 240

Cys Ile Ala Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile 245 250 255

Val Gly Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser 260 265 270

Leu His Val Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro 275 280 285

Glu Trp Ile Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn 290 295 300

Pro Trp His Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met 305 310 315 320

Phe Tyr Gly Ala Gly Tyr Gln Val Glu Lys Val Ile Ser His Pro Asn 325 330 335

Tyr Asp Ser Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln 340 345 350

Lys Pro Leu Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn 355 360 365

Pro Gly Met Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp 370 375 380

Gly Ala Thr Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala 385 390 395 400

Lys Val Leu Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr 405 410 415

Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gl
n Gly 420 425 430

Asn Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser 435 440 445

Lys Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly 450 455 460

Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe 465 470 475 480

Thr Asp Trp Ile Tyr Arg Gln Met Arg Ala Asp Gly
485 490

<210> 72

<211> 2448

<212> PRT

<213> Homo sapiens

<400> 72

Met Ser Val Gly Arg Arg Lys Leu Ala Leu Leu Trp Ala Leu Ala Leu 1 5 10 15

Ala Leu Ala Cys Thr Arg His Thr Gly His Ala Gln Asp Gly Ser Ser 20 25 30

Glu Ser Ser Tyr Lys His His Pro Ala Leu Ser Pro Ile Ala Arg Gly 35 40 45

Pro Ser Gly Val Pro Leu Arg Gly Ala Thr Val Phe Pro Ser Leu Arg 50 55 60

Thr Ile Pro Val Val Arg Ala Ser Asn Pro Ala His Asn Gly Arg Val 65 70 75 80

Cys Ser Thr Trp Gly Ser Phe His Tyr Lys Thr Phe Asp Gly Asp Val 85 90 95

Phe Arg Phe Pro Gly Leu Cys Asn Tyr Val Phe Ser Glu His Cys Gly
100 105 110

Ala Ala Tyr Glu Asp Phe Asn Ile Gln Leu Arg Arg Ser Gln Glu Ser 115 120 125

Ala	Ala 130	Pro	Thr	Leu	Ser	Arg 135	Val	Leu	Met	Lys	Val 140	Asp	Gly	Val	Val
Ile 145	Gln	Leu	Thr	Lys	Gly 150	Ser	Val	Leu	Val	Asn 155	Gly	His	Pro	Val	,Leu 160
Leu	Pro	Phe	Ser	Gln 165	Ser	Gly	Val	Leu	Ile 170	Gln	Gln	Ser	Ser	Ser 175	Туг
Thr	Lys	Val	Glu 180	Ala	Arg	Leu	Gly	Leu 185	Val	Leu	Met	Trp	Asn 190	His	Asp
Asp	Ser	Leu 195	Leu	Leu	Glu	Leu	Asp 200	Thr	Lys	Tyr	Ala	Asn 205	Lys	Thr	Сує
Gly	Leu 210	Cys	Gly	Asp	Phe	Asn 215	Gly	Met	Pro	Val	Val 220	Ser	Glu	Leu	Leu
Ser 225	His	Asn	Thr	Lys	Leu 230	Thr	Pro	Met	Glu	Phe 235	Gly	Asn	Leu	Gln	Lуя 240
Met	Asp	Asp	Pro	Thr 245	Glu	Gln	Cys	Gln	Asp 250	Pro	Val	Pro	Glu	Pro 255	Pro
Arg	Asn	Cys	Ser 260	Thr	Gly	Phe	Gly	Ile 265	Cys	Glu	Glu	Leu	Leu 270	His	GlΣ
Gln	Leu	Phe 275	Ser	Gly	Cys	Val	Ala 280	Leu	Val	Asp	Val	Gly 285	Ser	Tyr	Leu
Glu	Ala 290	Cys	Arg	Gln	Asp	Leu 295	Cys	Phe	Cys	Glu	Asp 300	Thr	Asp	Leu	Let
Ser 305	Cys	Val	Cys	His	Thr 310	Leu	Ala	Glu	Tyr	Ser 315	Arg	Gln	Cys	Thr	His 320
Ala	Gly	Gly	Leu	Pro 325	Gln	Asp	Trp	Arg	Gly 330	Pro	Asp	Phe	Cys	Pro 335	Glr
Lys	Cys	Pro	Asn 340	Asn	Met	Gln	Tyr	His 345	Glu	Cys	Arg	Ser	Pro 350	Cys	Ala
Asp	Thr	Сув 355	Ser	Asn	Gln	Glu	His 360	Ser	Arg	Ala	Cys	Glu 365	Asp	His	Суя
Val	Ala	Gly	Cys	Phe	Cys	Pro	Glu	Gly	Thr	Val	Leu	Asp	Asp	Ile	Gly

370 375 380

Gln Thr Gly Cys Val Pro Val Ser Lys Cys Ala Cys Val Tyr Asn Gly 385 390 395 400

Ala Ala Tyr Ala Pro Gly Ala Thr Tyr Ser Thr Asp Cys Thr Asn Cys 405 410 415

Thr Cys Ser Gly Gly Arg Trp Ser Cys Gln Glu Val Pro Cys Pro Asp 420 425 430

Thr Cys Ser Val Leu Gly Gly Ala His Phe Ser Thr Phe Asp Gly Lys
435
440
445

Gln Tyr Thr Val His Gly Asp Cys Ser Tyr Val Leu Thr Lys Pro Cys 450 455 460

Asp Ser Ser Ala Phe Thr Val Leu Ala Glu Leu Arg Arg Cys Gly Leu 465 470 475 480

Thr Asp Ser Glu Thr Cys Leu Lys Ser Val Thr Leu Ser Leu Asp Gly 485 490 495

Ala Gln Thr Val Val Val Ile Lys Ala Ser Gly Glu Val Phe Leu Asn 500 505 510

Gln Ile Tyr Thr Gln Leu Pro Ile Ser Ala Ala Asn Val Thr Ile Phe 515 520 525

Arg Pro Ser Thr Phe Phe Ile Ile Ala Gln Thr Ser Leu Gly Leu Gln 530 540

Leu Asn Leu Gln Pro Val Pro Thr Met Gln Leu Phe Met Gln Leu Ala 545 550 555 560

Pro Lys Leu Arg Gly Gln Thr Cys Gly Leu Cys Gly Asn Phe Asn Ser 565 570 575

Ile Gln Ala Asp Asp Phe Arg Thr Leu Ser Gly Val Val Glu Ala Thr 580 585 590

Ala Ala Phe Phe Asn Thr Phe Lys Thr Gln Ala Ala Cys Pro Asn 595 600 605

Ile Arg Asn Ser Phe Glu Asp Pro Cys Ser Leu Ser Val Glu Asn Glu 610 615 620

Lys Tyr Ala Gln His Trp Cys Ser Gln Leu Thr Asp Ala Asp Gly Pro Phe Gly Arg Cys His Ala Ala Val Lys Pro Gly Thr Tyr Tyr Ser Asn Cys Val Phe Asp Thr Cys Asn Cys Glu Arg Ser Glu Asp Cys Leu Cys Ala Ala Leu Ser Ser Tyr Val His Ala Cys Ala Ala Lys Gly Val Gln Leu Gly Gly Trp Arg Asp Gly Val Cys Thr Lys Pro Met Thr Thr Cys Pro Lys Ser Met Thr Tyr His Tyr His Val Ser Thr Cys Gln Pro Thr Cys Arg Ser Leu Ser Glu Gly Asp Ile Thr Cys Ser Val Gly Phe Ile Pro Val Asp Gly Cys Ile Cys Pro Lys Gly Thr Phe Leu Asp Asp Thr Gly Lys Cys Val Gln Ala Ser Asn Cys Pro Cys Tyr His Arg Gly Ser Met Ile Pro Asn Gly Glu Ser Val His Asp Ser Gly Ala Ile Cys Thr Cys Thr His Gly Lys Leu Ser Cys Ile Gly Gly Gln Ala Pro Ala Pro Val Cys Ala Ala Pro Met Val Phe Phe Asp Cys Arg Asn Ala Thr Pro Gly Asp Thr Gly Ala Gly Cys Gln Lys Ser Cys His Thr Leu Asp Met Thr Cys Tyr Ser Pro Gln Cys Val Pro Gly Cys Val Cys Pro Asp Gly Leu Val Ala Asp Gly Glu Gly Gly Cys Ile Thr Ala Glu Asp Cys Pro

Cys Val His Asn Glu Ala Ser Tyr Arg Ala Gly Gln Thr Ile Arg Val Gly Cys Asn Thr Cys Thr Cys Asp Ser Arg Met Trp Arg Cys Thr Asp Asp Pro Cys Leu Ala Thr Cys Ala Val Tyr Gly Asp Gly His Tyr Leu Thr Phe Asp Gly Gln Ser Tyr Ser Phe Asn Gly Asp Cys Glu Tyr Thr Leu Val Gln Asn His Cys Gly Gly Lys Asp Ser Thr Gln Asp Ser Phe Arg Val Val Thr Glu Asn Val Pro Cys Gly Thr Thr Gly Thr Thr Cys Ser Lys Ala Ile Lys Ile Phe Leu Gly Gly Phe Glu Leu Lys Leu Ser His Gly Lys Val Glu Val Ile Gly Thr Asp Glu Ser Gln Glu Val Pro Tyr Thr Ile Gln Gln Met Gly Ile Tyr Leu Val Val Asp Thr Asp Ile Gly Leu Val Leu Leu Trp Asp Lys Lys Thr Ser Ile Phe Ile Asn 1010 Leu Ser Pro Glu Phe Lys Gly Arg Val Cys Gly Leu Cys Gly Asn Phe Asp Asp Ile Ala Val Asn Asp Phe Ala Thr Arg Ser Arg Ser Val Val Gly Asp Val Leu Glu Phe Gly Asn Ser Trp Lys Leu Ser Pro Ser Cys Pro Asp Ala Leu Ala Pro Lys Asp Pro Cys Thr Ala Asn Pro Phe Arg Lys Ser Trp Ala Gln Lys Gln Cys Ser Ile Leu

His	Gly 1100	Pro	Thr	Phe	Ala	Ala 1105	Cys	His	Ala	His	Val 1110	Glu	Pro	Ala
Arg	Tyr 1115	Tyr	Glu	Ala	Cys	Val 1120	Asn	Asp		Cys	Ala 1125	Cys	Asp	Ser
Gly	Gly 1130	Asp	Cys	Glu	Cys	Phe 1135	Cys	Thr	Ala	Val	Ala 1140	Ala	Tyr	Ala
Gln	Ala 1145	Cys	His	Glu	Val	Gly 1150	Leu	Cys	Val	Cys	Leu 1155	Arg	Thr	Pro
Ser	Ile 1160	Cys	Pro	Leu	Phe	Cys 1165	Asp	Tyr	Tyr	Asn	Pro 1170	Glu	Gly	Gln
Cys	Glu 1175	Trp	His	Tyr	Gln	Pro 1180	Cys	Gly	Val	Pro	Cys 1185	Leµ	Arg	Thr
Cys	Arg 1190	Asn'	Pro	Arg	Gly	Asp 1195	Cys	Leu	Arg	Asp	Val 1200	Arg	Gly	Leu
Glu	Gly 1205	Cys	Tyr	Pro	Lys	Cys 1210	Pro	Pro	Glu	Ala	Pro 1215	Ile	Phe	Asp
Glu	Asp 1220	Lys	Met	Gln	Сув	Val 1225	Ala	Thr	Cys	Pro	Thr 1230	Pro	Pro	Leu
Pro	Pro 1235	Arg	Cys	His	Val	His 1240	Gly	Lys	Ser		Arg 1245	Pro	Gly	Ala
Val	Val 1250			_	_	Asn 1255	_			_		_	Thr	Glu
Arg	Gly 1265	Val	Glu	Cys	Thr	Tyr 1270	Lys	Ala	Glu	Ala	Cys 1275	Val	Cys	Thr
Tyr	Asn 1280	Gly	Gln	Arg	Phe	His 1285	Pro	Gly	Asp	Val	Ile 1290	Tyr	His	Thr
Thr	Asp 1295	Gly	Thr	Gly	Gly	Cys 1300	Ile	Ser	Ala	Arg	Cys 1305	Gly	Ala	Asn
Gly	Thr 1310	Ile	Glu	Arg	Arg	Val 1315	Tyr	Pro	Cys	Ser	Pro 1320	Thr	Thr	Pro
Val	Pro	Pro	Thr	Thr	Phe	Ser	Phe	Ser	Thr	Pro	Pro	Leu	Val	Val

1325	1330	1335

Ser	Ser 1340		His	Thr	Pro	Ser 1345		Gly	Pro	Ser	Ser 1350	Ala	His	Thr
Gly	Pro 1355		Ser	Ser	Ala	Trp 1360		Thr	Thr	Ala	Gly 1365		Ser	Pro
Arg	Thr 1370	Arg	Leu	Pro	Thr	Ala 1375	Ser	Ala	Ser	Leu	Pro 1380	Pro	Val	Cys
Gly	Glu 1385	Lys	Cys	Leu	Trp	Ser 1390		Trp	Met	Asp	Val 1395	Ser	Arg	Pro
Gly	Arg 1400	Gly	Thr	Asp	Ser	Gly 1405	Asp	Phe	Asp	Thr	Leu 1410	Glu	Asn	Leu
Arg	Ala 1415		Gly	Tyr	Arg	Val 1420	_	Glu	Ser	Pro	Arg 1425		Val	Glu
Cys	Arg 1430	Ala	Glu	Asp	Ala	Pro 1435	Gly	Val	Pro	Leu	Arg 1440	Ala	Leu	Gly
Gln	Arg 1445	Val	Gln	Cys	Ser	Pro 1450		Val	Gly	Leu	Thr 1455		Arg	Asn
Arg	Glu 1460	Gln	Ala	Ser	Gly	Leu 1465	Cys	Tyr	Asn	Tyr	Gln 1470	Ile	Arg	Val
Gln	Cys 1475	_	Thr	Pro	Leu	Pro 1480	_	Ser	Thr	Ser	Ser 1485	Ser	Pro	Ala
Gln	Thr 1490	Thr	Pro	Pro	Thr	Thr 1495	Ser	Lys	Thr	Thr	Glu 1500	Thr	Arg	Ala
Ser	Gly 1505	Ser	Ser	Ala	Pro	Ser 1510		Thr	Pro	Gly	Thr 1515		ser	Leu
Ser	Thr 1520	Ala	Arg	Thr	Thr	Pro 1525	Ala	Pro	Gly	Thr	Ala 1530	Thr	Ser	Val
Lys	Lys 1535	Thr	Phe	Ser	Thr	Pro 1540	Ser	Pro	Pro	Pro	Val 1545	Pro	Ala	Thr
Ser	Thr 1550	Ser	Ser	Met	Ser	Thr 1555	Thr	Ala	Pro	Gly	Thr 1560	Ser	Val	Val

Ser	Ser 1565		Pro	Thr	Pro	Thr 1570		Pro	Ser	Thr	Ser 1575		Cys	Leu
Gln	Glu 1580		Cys	Thr	Trp	Thr 1585		Trp	Ile	Asp	Gly 1590	Ser	Tyr	Pro
Ala	Pro 1595		Ile	Asn	Gly	Gly 1600	_	Phe	Asp	Thr	Phe 1605		Asn	Leu
Arg	Asp 1610		Gly	Tyr	Thr	Phe 1615	_	Glu	Ser	Pro	Arg 1620	Ser	Val	Gln
Cys	Arg 1625		Glu	Ser	Phe	Pro 1630		Thr	Pro	Leu	Ala 1635	Asp	Leu	Gly
Gln	Asp 1640		Ile	Cys	Ser	His 1645		Glu	Gly	Leu	Ile 1650	Cys	Leu	Asn
Lys	Asn 1655		Leu	Pro	Pro	Ile 1660	Cys	Tyr	Asn	Tyr	Glu 1665	Ile	Arg	Ile
Gln	Cys 1670		Glu	Thr	Val	Asn 1675		Cys	Arg	Asp	Ile 1680	Thr	Arg	Leu
Pro	Lys 1685	Thr	Val	Ala	Thr	Thr 1690	Arg	Pro	Thr	Pro	His 1695	Pro	Thr	Gly
Ala	Gln 1700	Thr	Gln	Thr	Thr	Phe 1705	Thr	Thr	His	Met	Pro 1710	Ser	Ala	Ser
									_	-	Pro 1725		Ala	Thr
Ser	Val 1730	Thr	Gln	Gly	Thr	His 1735	Thr	Thr	Leu	Val	Thr 1740	Arg	Asn	Cys
His	Pro 1745	Arg	Cys	Thr	Trp	Thr 1750	Lys	Trp	Phe	Asp	Val 1755	Asp	Phe	Pro
Ser	Pro 1760	Gly	Pro	His	Gly	Gly 1765	Asp	Lys	Glu	Thr	Tyr 1770	Asn	Asn	Ile
Ile	Arg 1775	Ser	Gly	Glu	Lys	Ile 1780	Cys	Arg	Arg	Pro	Glu 1785	Glu	Ile	Thr

Arg	Val 1790		Cys	Arg	Ala	Lys 1795		His	Pro	Glu	Val 1800		Ile	Glu
His	Leu 1805		Gln	Val	Val	Gln 1810		Ser	Arg	Glu	Glu 1815	_	Leu	Val
Cys	Arg 1820		Gln	Asp	Gln	Gln 1825		Pro	Phe	Lys	Met 1830	_	Ļeu	Asn
Tyr	Glu 1835		Arg	Val	Leu	Cys 1840	_	Glu	Thr	Pro	Arg 1845	_	Cys	His
Met	Thr 1850	Ser	Thr	Pro	Gly	Ser 1855		Ser	Ser	Ser	Pro 1860	Ala	Gln	Thr
Thr	Pro 1865	Ser	Thr	Thr	Ser	Lys 1870		Thr	Glu	Ile	Gln 1875	Ala	Ser	Gly
Ser	Ser 1880	Ala	Pro	Ser	Ser	Thr 1885	Pro	Gly	Thr	Val	Ser 1890	Leu	Ser	Thr
Ala	Arg 1895	Thr	Thr	Pro	Ala	Pro 1900	Gly	Thr	Ala		Ser 1905	Val	Lys	Lys
Thr	Phe 1910	Ser	Thr	Pro	Ser	Pro 1915	Pro	Pro	Val	Pro	Ala 1920	Thr	Ser	Thr
Ser	Ser 1925	Met	Ser	Thr		Ala 1930	Pro	Gly	Thr	Ser	Val 1935	Val	Ser	Ser
Lys	Pro 1940										Cys 1950		Gln	Glu
Leu	Cys 1955	Thr	Trp		Glu	Trp 1960	Ile	Asp	Gly	Ser	Tyr 1965	Pro	Ala	Pro
Gly	Ile 1970	Asn	Gly	Gly	Asp	Phe 1975	Asp	Thr	Phe	Gln	Asn 1980	Leu	Arg	Asp
Glu	Gly 1985	Tyr	Thr	Phe	Cys	Glu 1990	Ser	Pro	Arg	Ser	Val 1995	Gln	Cys	Arg
Ala	Glu 2000	Ser	Phe	Pro	Asn	Thr 2005	Pro	Leu	Gly	_	Leu 2010	Gly	Gln	Asp

Val	Ile 2015		Ser	His	Thr	Glu 2020		Leu	Ile	Cys	Leu 2025	Asn	Lys	Asn
Gln	Leu 2030	Pro	Pro	Ile	Cys	Tyr 2035	Asn	Tyr	Glu	Ile	Arg 2040	Ile	Gln	Cys
Cys	Glu 2045		Val	Asn	Val	Cys 2050		Asp	Ile	Thr	Arg 2055	Pro	Pro	Lys
Thr	Val 2060	Ala	Thr	Thr	Arg	Pro 2065		Pro	His	Pro	Thr 2070	Gly	Ala	Gln
Thr	Gln 2075		Thr	Phe	Thr	Thr 2080	His	Met	Pro	Ser	Ala 2085	Ser	Thr	Glu
Gln	Pro 2090		Ala	Thr	Ser	Arg 2095	_	Gly	Pro	Thr	Ala 2100	Thr	Ser	Val
Thr	Gln 2105	Gly	Thr	His	Thr	Thr 2110	Pro	Val	Thr	Arg	Asn 2115	Cys	His	Pro
Arg	Cys 2120		Trp	Thr	Thr	Trp 2125	Phe	Asp	Val	Asp	Phe 2130	Pro	Ser	Pro
Gly	Pro 2135	His	Gly	Gly	Asp	Lys 2140	Glu	Thr	Tyr	Asn	Asn 2145	Ile	Ile	Arg
Ser	Gly 2150	Glu	Lys	Ile	Cys	Arg 2155	Arg	Pro	Glu	Glu	Ile 2160	Thr	Arg	Leu
	Cys 2165	_		_								Glu	His	Leu
Gly	Gln 2180	Val	Val	Gln	Cys	Ser 2185	Arg	Glu	Glu	Gly	Leu 2190	Val	Cys	Arg
Asn	Gln 2195	Asp	Gln	Gln	Gly	Pro 2200	Phe	Lys	Met	Cys	Leu 2205	Asn	Ile	Glu
Val	Arg 2210	Val	Leu	Cys	Cys	Glu 2215	Thr	Pro	Lys	Gly	Cys 2220	Pro	Val	Thr
Ser	Thr 2225	Pro	Val	Thr	Ala	Pro 2230	Ser	Thr	Pro	Ser	Gly 2235	Arg	Ala	Ile
Ser	Pro	Thr	Gln	Ser	Thr	Ser	Ser	Trp	Gln	Lys	Ser	Arg	Thr	Thr

2240 2245 2250

Thr Leu Val Thr Thr Ser Thr Thr Ser Thr Pro Gln Thr Ser Thr 2255 2260 2265

Thr Tyr Ala His Thr Thr Ser Thr Thr Ser Ala Pro Thr Ala Arg 2270 2275 2280

Thr Thr Ser Ala Pro Thr Thr Ser Thr Thr Ser Val Pro Thr Thr 2285 2290 2295

Ser Thr Ile Ser Gly Pro Lys Thr Thr Pro Ser Pro Val Pro Thr 2300 2305 2310

Thr Ser Thr Thr Ser Ala Ala Thr Thr Ser Thr Ile Ser Ala Pro 2315 2320 2325

Thr Thr Ser Thr Thr Ser Val Pro Gly Thr Thr Pro Ser Pro Val 2330 2335 2340

Leu Thr Thr Ser Thr Thr Ser Ala Pro Thr Thr Arg Thr Thr Ser 2345 2350 2355

Ala Ser Pro Ala Gly Thr Thr Ser Gly Pro Gly Asn Thr Pro Ser 2360 2365 2370

Pro Val Pro Thr Thr Ser Thr Ile Ser Ala Pro Thr Thr Ser Ile 2375 2380 2385

Thr Ser Ala Pro Thr Thr Ser Thr Thr Ser Ala Pro Thr Ser Ser 2390 2395 2400

Thr Thr Ser Gly Pro Gly Thr Thr Pro Ser Pro Val Pro Thr Thr 2405 2410 2415

Ser Ile Thr Ser Ala Pro Thr Thr Ser Thr Thr Ser Ala Pro Thr 2420 2425 2430

Thr Ser Thr Thr Ser Ala Pro Thr Thr Ser Thr Thr Ser Ala Pro 2435 2440 2445

<210> 73

<211> 508

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Arq Leu Leu Thr Pro Val Lys Arg Ile Leu Gln Leu Thr Arq Ala Val Gln Glu Thr Ser Leu Thr Pro Ala Arg Leu Leu Pro Val Ala His Gln Arg Phe Ser Thr Ala Ser Ala Val Pro Leu Ala Lys Thr Asp Thr Trp Pro Lys Asp Val Gly Ile Leu Ala Leu Glu Val Tyr Phe Pro 55 Ala Gln Tyr Val Asp Gln Thr Asp Leu Glu Lys Tyr Asn Asn Val Glu 75 Ala Gly Lys Tyr Thr Val Gly Leu Gly Gln Thr Arg Met Gly Phe Cys Ser Val Gln Glu Asp Ile Asn Ser Leu Cys Leu Thr Val Val Gln Arg 100 105 Leu Met Glu Arg Ile Gln Leu Pro Trp Asp Ser Val Gly Arg Leu Glu 120 Val Gly Thr Glu Thr Ile Ile Asp Lys Ser Lys Ala Val Lys Thr Val 135 Leu Met Glu Leu Phe Gln Asp Ser Gly Asn Thr Asp Ile Glu Gly Ile 150 155 Asp Thr Thr Asn Ala Cys Tyr Gly Gly Thr Ala Ser Leu Phe Asn Ala 165 170 Ala Asn Trp Met Glu Ser Ser Trp Asp Gly Arg Tyr Ala Met Val 180 185 Val Cys Gly Asp Ile Ala Val Tyr Pro Ser Gly Asn Ala Arg Pro Thr 195 Gly Gly Ala Gly Ala Val Ala Met Leu Ile Gly Pro Lys Ala Pro Leu 210 215 220 Ala Leu Glu Arg Gly Leu Arg Gly Thr His Met Glu Asn Val Tyr Asp 225 230 235

Phe Tyr Lys Pro Asn Leu Ala Ser Glu Tyr Pro Ile Val Asp Gly Lys 245 250 Leu Ser Ile Gln Cys Tyr Leu Arg Ala Leu Asp Arg Cys Tyr Thr Ser Tyr Arg Lys Lys Ile Gln Asn Gln Trp Lys Gln Ala Gly Ser Asp Arg 275 Pro Phe Thr Leu Asp Asp Leu Gln Tyr Met Ile Phe His Thr Pro Phe 290 295 Cys Lys Met Val Gln Lys Ser Leu Ala Arg Leu Met Phe Asn Asp Phe 305 310 Leu Ser Ala Ser Ser Asp Thr Gln Thr Ser Leu Tyr Lys Gly Leu Glu Ala Phe Gly Gly Leu Lys Leu Glu Asp Thr Tyr Thr Asn Lys Asp Leu 340 Asp Lys Ala Leu Leu Lys Ala Ser Gln Asp Met Phe Asp Lys Lys Thr 355 Lys Ala Ser Leu Tyr Leu Ser Thr His Asn Gly Asn Met Tyr Thr Ser 370 375 Ser Leu Tyr Gly Cys Leu Ala Ser Leu Leu Ser His His Ser Ala Gln 385 390 Glu Leu Ala Gly Ser Arg Ile Gly Ala Phe Ser Tyr Gly Ser Gly Leu 415 Ala Ala Ser Phe Phe Ser Phe Arq Val Ser Gln Asp Ala Ala Pro Gly 420 Ser Pro Leu Asp Lys Leu Val Ser Ser Thr Ser Asp Leu Pro Lys Arg 435 440 Leu Ala Ser Arg Lys Cys Val Ser Pro Glu Glu Phe Thr Glu Ile Met 450 Asn Gln Arg Glu Gln Phe Tyr His Lys Val Asn Phe Ser Pro Pro Gly 465 470 480 Asp Thr Asn Ser Leu Phe Pro Gly Thr Trp Tyr Leu Glu Arq Val Asp

> 485 490 495

Glu Gln His Arg Arg Lys Tyr Ala Arg Arg Pro Val 500 505

<210> 74 <211> 165 <212> PRT <213> Homo sapiens

<400> 74

Met Gly Trp Asp Leu Thr Val Lys Met Leu Ala Gly Asn Glu Phe Gln

Val Ser Leu Ser Ser Ser Met Ser Val Ser Glu Leu Lys Ala Gln Ile 25 20

Thr Gln Lys Ile Gly Val His Ala Phe Gln Gln Arg Leu Ala Val His 4.0

Pro Ser Gly Val Ala Leu Gln Asp Arg Val Pro Leu Ala Ser Gln Gly 60

Leu Gly Pro Gly Ser Thr Val Leu Leu Val Val Asp Lys Cys Asp Glu 70

Pro Leu Ser Ile Leu Val Arg Asn Asn Lys Gly Arg Ser Ser Thr Tyr 85 9.0

Glu Val Arg Leu Thr Gln Thr Val Ala His Leu Lys Gln Gln Val Ser 1.00

Gly Leu Glu Gly Val Gln Asp Asp Leu Phe Trp Leu Thr Phe Glu Gly 115 120 125

Lys Pro Leu Glu Asp Gln Leu Pro Leu Gly Glu Tyr Gly Leu Lys Pro 130 135

Leu Ser Thr Val Phe Met Asn Leu Arg Leu Arg Gly Gly Gly Thr Glu 145 155 150

Pro Gly Gly Arg Ser 165

<210> 75

<211> 480

<212> PRT

<213> Homo sapiens

<400> 75

Met Asn Ala Ser Glu Phe Arg Arg Gly Lys Glu Met Val Asp Tyr 1 5 10 15

Val Ala Asn Tyr Met Glu Gly Ile Glu Gly Arg Gln Val Tyr Pro Asp 20 25 30

Val Glu Pro Gly Tyr Leu Arg Pro Leu Ile Pro Ala Ala Pro Gln 35 40 45

Glu Pro Asp Thr Phe Glu Asp Ile Ile Asn Asp Val Glu Lys Ile Ile 50 55 60

Met Pro Gly Val Thr His Trp His Ser Pro Tyr Phe Phe Ala Tyr Phe 65 70 75 80

Pro Thr Ala Ser Ser Tyr Pro Ala Met Leu Ala Asp Met Leu Cys Gly 85 90 95

Ala Ile Gly Cys Ile Gly Phe Ser Trp Ala Ala Ser Pro Ala Cys Thr 100 105 110

Glu Leu Glu Thr Val Met Met Asp Trp Leu Gly Lys Met Leu Glu Leu 115 120 125

Pro Lys Ala Phe Leu Asn Glu Lys Ala Gly Glu Gly Gly Val Ile 130 135 140

Gln Gly Ser Ala Ser Glu Ala Thr Leu Val Ala Leu Leu Ala Ala Arg 145 150 155 160

Thr Lys Val Ile His Arg Leu Gln Ala Ala Ser Pro Glu Leu Thr Gln
165 170 175

Ala Ala Ile Met Glu Lys Leu Val Ala Tyr Ser Ser Asp Gln Ala His 180 185 190

Ser Ser Val Glu Arg Ala Gly Leu Ile Gly Gly Val Lys Leu Lys Ala 195 200 205

Ile Pro Ser Asp Gly Asn Phe Ala Met Arg Ala Ser Ala Leu Gln Glu 210 215 220

Ala Leu Glu Arg Asp Lys Ala Ala Gly Leu Ile Pro Phe Phe Met Val

225					230					235					240
Ala	Thr	Leu	Gly	Thr 245	Thr	Thr	Cys	Cys	Ser 250	Phe	Asp	Asn	Leu	Leu 255	Glu
Val	Gly	Pro	Ile 260	Cys	Asn	Lys	Glu	Asp 265	Ile	Trp	Leu	His	Val 270	Asp	Ala
Ala	Tyr	Ala 275	Gly	Ser	Ala	Phe	Ile 280	Cys	Pro	Glu	Phe	Arg 285	His	Leu	Leu
Asn	Gly 290	Val	Glu	Phe	Ala	Asp 295	Ser	Phe	Asn	Phe	Asn 300	Pro	His	Lys	Trp
Leu 305	Leu	Val	Asn	Phe	Asp 310	Сув	Ser	Ala	Met	Trp 315	Val	Lys	Lys	Arg	Thr 320
Asp	Leu	Thr	Gly	Ala 325	Phe	Arg	Leu	Asp	Pro 330	Thr	Tyr	Leu	Lys	His 335	Ser
His	Gln	Asp	Ser 340	Gly	Leu	Ile	Thr	Asp 345	Tyr	Arg	His	Trp	Gln 350	Ile	Pro
Leu	Gly	Arg 355	Arg	Phe	Arg	Ser	Leu 360	Lys	Met	Trp	Phe	Val 365	Phe	Arg	Met
Tyr	Gly 370	V al	Lys	Gly	Leu	Gln 375	Ala	Tyr	Ile	Arg	Lys 380	His	Val	Gln	Leu
Ser 385	His	Glu	Phe	Glu	Ser 390	Leu	Val	Arg	Gln	Asp 395	Pro	Arg	Phe	Glu	Ile 400
Cys	Val	Glu	Val	Ile 405	Leu	Gly	Leu	Val	Cys 410	Phe	Arg	Leu	Lys	Gly 415	Ser
Asn	Lys	Val	Asn 420	Glu	Ala	Leu	Leu	Gln 425	Arg	Ile	Asn	Ser	Ala 430	Lys	Lys
Ile	His	Leu 435	Val	Pro	Cys	His	Leu 440	Arg	Asp	Lys	Phe	Val 445	Leu	Arg	Phe
Ala	Ile 450	Cys	Ser	Arg	Thr	Val 455	Glu	Ser	Ala	His	Val 460	Gln	Arg	Ala	Trp
Glu 465	His	Ile	Lys	Glu	Leu 470	Ala	Ala	Asp	Val	Leu 475	Arg	Ala	Glu	Arg	Glu 480

<210> 76

<211> 402

<212> PRT

<213> Homo sapiens

<400> 76

Met Gln Met Ser Pro Ala Leu Thr Cys Leu Val Leu Gly Leu Ala Leu 1 5 10 15

Val Phe Gly Glu Gly Ser Ala Val His His Pro Pro Ser Tyr Val Ala 20 25 30

His Leu Ala Ser Asp Phe Gly Val Arg Val Phe Gln Gln Val Ala Gln 35 40 45

· Ala Ser Lys Asp Arg Asn Val Val Phe Ser Pro Tyr Gly Val Ala Ser 50 55 60

Val Leu Ala Met Leu Gln Leu Thr Thr Gly Gly Glu Thr Gln Gln 65 70 75 80

Ile Gln Ala Ala Met Gly Phe Lys Ile Asp Asp Lys Gly Met Ala Pro 85 90 95

Ala Leu Arg His Leu Tyr Lys Glu Leu Met Gly Pro Trp Asn Lys Asp 100 105 110

Glu Ile Ser Thr Thr Asp Ala Ile Phe Val Gln Arg Asp Leu Lys Leu 115 120 125

Val Gln Gly Phe Met Pro His Phe Phe Arg Leu Phe Arg Ser Thr Val 130 135 140

Lys Gln Val Asp Phe Ser Glu Val Glu Arg Ala Arg Phe Ile Ile Asn 145 150 155 160

Asp Trp Val Lys Thr His Thr Lys Gly Met Ile Ser Asn Leu Leu Gly
165 170 175

Lys Gly Ala Val Asp Gln Leu Thr Arg Leu Val Leu Val Asn Ala Leu 180 185 190

Tyr Phe Asn Gly Gln Trp Lys Thr Pro Phe Pro Asp Ser Ser Thr His
195 200 205

Arg Arg Leu Phe His Lys Ser Asp Gly Ser Thr Val Ser Val Pro Met

210 215 220

Met Ala Gln Thr Asn Lys Phe Asn Tyr Thr Glu Phe Thr Thr Pro Asp 225 230 230 235 240

Gly His Tyr Tyr Asp Ile Leu Glu Leu Pro Tyr His Gly Asp Thr Leu 245 250 255

Ser Met Phe Ile Ala Ala Pro Tyr Glu Lys Glu Val Pro Leu Ser Ala 260 265 270

Leu Thr Asn Ile Leu Ser Ala Gln Leu Ile Ser His Trp Lys Gly Asn 275 280 285

Met Thr Arg Leu Pro Arg Leu Leu Val Leu Pro Lys Phe Ser Leu Glu 290 295 300

Thr Glu Val Asp Leu Arg Lys Pro Leu Glu Asn Leu Gly Met Thr Asp 305 310 315 320

Met Phe Arg Gln Phe Gln Ala Asp Phe Thr Ser Leu Ser Asp Gln Glu 325 330 335

Pro Leu His Val Ala Gln Ala Leu Gln Lys Val Lys Ile Glu Val Asn 340 345 350

Glu Ser Gly Thr Val Ala Ser Ser Ser Thr Ala Val Ile Val Ser Ala 355 360 365

Arg Met Ala Pro Glu Glu Ile Ile Met Asp Arg Pro Phe Leu Phe Val 370 380

Val Arg His Asn Pro Thr Gly Thr Val Leu Phe Met Gly Gln Val Met 385 390 395 400

Glu Pro

<210> 77

<211> 87

<212> PRT

<213> Homo sapiens

<400> 77

Met Gln Lys Val Thr Leu Gly Leu Leu Val Phe Leu Ala Gly Phe Pro 1 10 15

Val Leu Asp Ala Asn Asp Leu Glu Asp Lys Asn Ser Pro Phe Tyr Tyr 20 25 30

Asp Trp His Ser Leu Gln Val Gly Gly Leu Ile Cys Ala Gly Val Leu 35 40 45

Cys Ala Met Gly Ile Ile Ile Val Met Ser Ala Lys Cys Lys 50 55 60

Phe Gly Gln Lys Ser Gly His His Pro Gly Glu Thr Pro Pro Leu Ile 65 70 75 80

Thr Pro Gly Ser Ala Gln Ser 85

<210> 78

<211> 317

<212> PRT

<213> Homo sapiens

<400> 78

Met Thr Ser Arg Thr Arg Val Thr Trp Pro Ser Pro Pro Arg Pro Leu 1 5 10 15

Pro Val Pro Ala Ala Ala Ala Val Ala Phe Gly Ala Lys Gly Thr Asp 20 25 30

Pro Ala Glu Ala Arg Ser Ser Arg Gly Ile Glu Glu Ala Gly Pro Arg 35 40 45

Ala His Gly Arg Ala Gly Arg Glu Pro Glu Arg Arg Arg Ser Arg Gln 50 55

Gln Arg Arg Gly Gly Leu Gln Ala Arg Arg Ser Thr Leu Leu Lys Thr 65 70 75 80

Cys Ala Arg Ala Thr Ala Pro Gly Ala Met Lys Met Val Ala

Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys His Val

Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile Asn Ala 115 120 125

Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala Asp Pro Asp Gln Tyr

130 135 140

Asn Phe Ser Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met Asp Asp 145 150 155 160

Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu Leu Met Ile Leu Ile 165 170 175

Cys Ala Met Ala Thr Tyr Gly Ala Tyr Lys Gln Arg Ala Ala Trp Ile 180 185 190

Ile Pro Phe Phe Cys Tyr Gln Ile Phe Asp Phe Ala Leu Asn Met Leu 195 200 205

Val Ala Ile Thr Val Leu Ile Tyr Pro Asn Ser Ile Gln Glu Tyr Ile 210 215 220

Arg Gln Leu Pro Pro Asn Phe Pro Tyr Arg Asp Asp Val Met Ser Val 225 230 235 240

Asn Pro Thr Cys Leu Val Leu Ile Ile Leu Leu Phe Ile Ser Ile Ile 245 250 255

Leu Thr Phe Lys Gly Tyr Leu Ile Ser Cys Val Trp Asn Cys Tyr Arg 260 265 270

Tyr Ile Asn Gly Arg Asn Ser Ser Asp Val Leu Val Tyr Val Thr Ser 275 280 285

Asn Asp Thr Thr Val Leu Leu Pro Pro Tyr Asp Asp Ala Thr Val Asn 290 295 300

Gly Ala Ala Lys Glu Pro Pro Pro Pro Tyr Val Ser Ala 305 310 315

<210> 79

<211> 117

<212> PRT

<213> Homo sapiens

<400> 79

Met Arg Ala Ser Ser Phe Leu Ile Val Val Phe Leu Ile Ala Gly 1 5 10 15

Thr Leu Val Leu Glu Ala Ala Val Thr Gly Val Pro Val Lys Gly Gln 20 25 30

Asp Thr Val Lys Gly Arg Val Pro Phe Asn Gly Gln Asp Pro Val Lys 35 40 45

Gly Gln Val Ser Val Lys Gly Gln Asp Lys Val Lys Ala Gln Glu Pro 50 55 60

Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys Pro Ile Ile Leu 65 70 75 80

Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys Leu Lys Asp Thr 85 90 95

Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser Cys Gly Met Ala 100 105 110

Cys Phe Val Pro Gln 115

<210> 80

<211> 364

<212> PRT

<213> Homo sapiens

<400> 80

Met Val Val Pro Ser Leu Lys Leu Gln Asp Leu Ile Glu Glu Ile Arg 1 5 10 15

Gly Ala Lys Thr Gln Ala Gln Glu Arg Glu Val Ile Gln Lys Glu Cys 20 25 30

Ala His Ile Arg Ala Ser Phe Arg Asp Gly Asp Pro Val His Arg His 35 40 45

Arg Gln Leu Ala Lys Leu Leu Tyr Val His Met Leu Gly Tyr Pro Ala 50 55 60 .

His Phe Gly Gln Met Glu Cys Leu Lys Leu Ile Ala Ser Ser Arg Phe 65 70 75 80

Thr Asp Lys Arg Val Gly Tyr Leu Gly Ala Met Leu Leu Leu Asp Glu 85 90 95

Arg His Asp Ala His Leu Leu Ile Thr Asn Ser Ile Lys Asn Asp Leu 100 105 110

Ser Gln Gly Ile Gln Pro Val Gln Gly Leu Ala Leu Cys Thr Leu Ser 115 120 125

Thr Met Gly Ser Ala Glu Met Cys Arg Asp Leu Ala Pro Glu Val Glu 130 135 Lys Leu Leu Gln Pro Ser Pro Tyr Val Arg Lys Lys Ala Ile Leu 145 150 155 Thr Ala Val His Met Ile Arg Lys Val Pro Glu Leu Ser Ser Val Phe 170 Leu Pro Pro Cys Ala Gln Leu Leu His Glu Arg His His Gly Ile Leu 180 Leu Gly Thr Ile Thr Leu Ile Thr Glu Leu Cys Glu Arg Ser Pro Ala 200 195 Ala Leu Arg His Phe Arg Lys Val Val Pro Gln Leu Val His Ile Leu 210 215 220 Arg Thr Leu Val Thr Met Gly Tyr Ser Thr Glu His Ser Ile Ser Gly 225 230 235 240 Val Ser Asp Pro Phe Leu Gln Val Gln Ile Leu Arg Leu Leu Arg Ile 250 245 Leu Gly Arg Asn His Glu Glu Ser Ser Glu Thr Met Asn Asp Leu Leu 260 265 270 Ala Gln Val Ala Thr Asn Thr Asp Thr Ser Arg Asn Ala Gly Asn Ala 275 280 Val Leu Phe Glu Thr Val Leu Thr Ile Met Asp Ile Arg Ser Ala Ala 290 295 300 Gly Leu Arg Val Leu Ala Val Asn Ile Leu Gly Arg Phe Leu Leu Asn 305 310 315 320 Ser Asp Arg Asn Ile Arg Tyr Val Ala Leu Thr Ser Leu Leu Arg Leu 325 330 335 Val Gln Ser Asp His Ser Ala Val Gln Arg His Arg Pro Thr Val Val 340 Glu Cys Leu Arg Glu Thr Asp Ala Ser Leu Ser Arg

<210> 81

<211> 806

<212> PRT

<213> Homo sapiens

<400> 81

Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile 1 5 10 15

Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val 20 25 30

Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45

Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro 50 55 60

Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly 65 70 75 80

Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val 85 90 95

Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
100 105 110

Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 115 120 125

Pro Ser Ser Gly Asp Asp Glu Asp Glu Asp Glu Ala Glu Asp Thr 130 135 140

Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 145 150 155 160

Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
165 170 175

Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly 180 185 190

Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His 195 200 205

Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly

210 215 220

Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240

Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
245 250 255

Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270

Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280 285

Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300

Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu 305 310 315 320

Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu 325 330 335

Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser Ala 340 345 350

Trp Leu Val Val Leu Pro Ala Glu Glu Glu Leu Val Glu Ala Asp Glu 355 360 365

Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly Phe Phe 370 380

Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu Arg Ser 385 390 395 400

Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile Ser Arg 405 410 415

Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser Met Ser 420 425 430

Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly 435 440 445

Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys 450 455 460

Trp 465	Glu	Leu	Ser	Arg	Ala 470	Arg	Leu	Thr	Leu	Gly 475	Lys	Pro	Leu	Gly	Glu 480
Gly	Cys	Phe	Gly	Gln 485	Val	Val	Met	Ala	Glu 490	Ala	Ile	Gly	Ile	Asp 495	Lys
Asp	Arg	Ala	Ala 500	Lys	Pro	Val	Thr	Val 505	Ala	Val	Lys	Met	Leu 510	Lys	Asp
Asp	Ala	Thr 515	Asp	Lys	Asp	Leu	Ser 520	Asp	Leu	Val	Ser	Glu 525	Met	Glu	Met
Met	Lys 530	Met	Ile	Gly	Lys	His 535	Lys	Asn	Ile	Ile	Asn 540	Leu	Leu	Gly	Ala
Cys 545	Thr	Gln	Gly	Gly	Pro 550	Leu	Tyr	Val	Leu	Val 555	Glu	Tyr	Ala	Ala	Lys 560
Gly	Asn	Leu	Arg	Glu 565	Phe	Leu	Arg	Ala	Arg 570	Arg	Pro	Pro	Gly	Leu 575	Asp
Tyr	Ser	Phe	Asp 580	Thr	Cys	Lys	Pro	Pro 585	Glu	Glu	Gln	Leu	Thr 590	Phe	Lys
Asp	Leu	Val 595	Ser	Cys	Ala	Tyr	Gln 600	Val	Ala	Arg	Gly	Met 605	Glu	Tyr	Leu
Ala	Ser 610	Gln	Lys	Cys	Ile	His 615	Arg	Asp	Leu	Ala	Ala 620	Arg	Asn	Val	Leu
Val 625	Thr	Glu	Asp	Asn	Val 630	Met	Lys	Ile	Ala	Asp 635	Phe	Gly	Leu	Ala	Arg 640
Asp	Val	His	Asn	Leu 645	Asp	Tyr	Tyr	Lys	Lys 650	Thr	Thr	Asn	Gly	Arg 655	Leu
Pro	Val	Lys	Trp 660	Met	Ala	Pro	Glu	Ala 665	Leu	Phe	Asp	Arg '	Val 670	Tyr	Thr
His	Gln	Ser 675	Asp	Val	Trp	Ser	Phe 680	Gly	Val	Leu	Leu	Trp 685	Glu	Ile	Phe
Thr	Leu 690	Gly	Gly	Ser	Pro	Tyr 695	Pro	Gly	Ile	Pro	Val 700	Glu	Glu	Leu	Phe

Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr 705 710 715

His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser 725 730

Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu 745

Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu 760

Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly 775

Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser 795

Ser Gly Gly Ser Arg Thr

<210> 82 <211> 387 <212> PRT <213> Homo sapiens

<400> 82

Met Glu Lys Lys Asp Leu Gly Pro' Lys Pro Ala Leu Ile Gly His Arg 5

Gly Ala Pro Met Leu Ala Pro Glu His Thr Leu Met Ser Phe Arg Lys 20

Ala Leu Glu Gln Lys Leu Tyr Gly Leu Gln Ala Asp Ile Thr Ile Ser 35 40

Leu Asp Gly Val Pro Phe Leu Met His Asp Thr Thr Leu Arg Arg Thr 50 55

Thr Asn Val Glu Glu Phe Pro Glu Leu Ala Arg Arg Pro Ala Ser 65 70 80

Met Leu Asn Trp Thr Thr Leu Gln Arg Leu Asn Ala Gly Gln Trp Phe 90 85 95

Leu Lys Thr Asp Pro Phe Trp Thr Ala Ser Ser Leu Ser Pro Ser Asp

100 105 110

His Arg Glu Ala Gln Asn Gln Ser Ile Cys Ser Leu Ala Glu Leu Leu 115 120 125

Glu Leu Ala Lys Gly Asn Ala Thr Leu Leu Leu Asn Leu Arg Asp Pro 130 135 140

Pro Arg Glu His Pro Tyr Arg Ser Ser Phe Ile Asn Val Thr Leu Glu 145 150 155 160

Ala Val Leu His Ser Gly Phe Pro Gln His Gln Val Met Trp Leu Pro 165 170 175

Ser Arg Gln Arg Pro Leu Val Arg Lys Val Ala Pro Gly Phe Gln Gln 180 185 190

Thr Ser Gly Ser Lys Glu Ala Val Ala Ser Leu Arg Arg Gly His Ile 195 200 205

Gln Arg Leu Asn Leu Arg Tyr Thr Gln Val Ser Arg Gln Glu Leu Arg 210 215 220

Asp Tyr Ala Ser Trp Asn Leu Ser Val Asn Leu Tyr Thr Val Asn Ala 225 230 235 240

Pro Trp Leu Phe Ser Leu Leu Trp Cys Ala Gly Val Pro Ser Val Thr 245 250 255

Ser Asp Asn Ser His Thr Leu Ser Gln Val Pro Ser Pro Leu Trp Ile 260 265 270

Met Pro Pro Asp Glu Tyr Cys Leu Met Trp Val Thr Ala Asp Leu Val 275 280 285

Ser Phe Thr Leu Ile Val Gly Ile Phe Val Leu Gln Lys Trp Arg Leu 290 295 300

Gly Gly Ile Arg Ser Tyr Asn Pro Glu Gln Ile Met Leu Ser Ala Ala 305 310 315 320

Val Arg Arg Thr Ser Arg Asp Val Ser Ile Met Lys Glu Lys Leu Ile 325 330 335

Phe Ser Glu Ile Ser Asp Gly Val Glu Val Ser Asp Val Leu Ser Val 340 345 350

Cys Ser Asp Asn Ser Tyr Asp Thr Tyr Ala Asn Ser Thr Ala Thr Pro 355 360

Val Gly Pro Arg Gly Gly Ser His Thr Lys Thr Leu Ile Glu Arg 375

Ser Gly Arg 385

<210> 83

<211> 117 <212> PRT

<213> Homo sapiens

<400> 83

Met Arg Ala Ser Ser Phe Leu Ile Val Val Phe Leu Ile Ala Gly

Thr Leu Val Leu Glu Ala Ala Val Thr Gly Val Pro Val Lys Gly Gln 25

Asp Thr Val Lys Gly Arg Val Pro Phe Asn Gly Gln Asp Pro Val Lys 40

Gly Gln Val Ser Val Lys Gly Gln Asp Lys Val Lys Ala Gln Glu Pro 55

Val Lys Gly Pro Val Ser Thr Lys Pro Gly Ser Cys Pro Ile Ile Leu 75

Ile Arg Cys Ala Met Leu Asn Pro Pro Asn Arg Cys Leu Lys Asp Thr 85 90

Asp Cys Pro Gly Ile Lys Lys Cys Cys Glu Gly Ser Cys Gly Met Ala 100 105

Cys Phe Val Pro Gln 115

<210> 84

<211> 1684

<212> PRT

<213> Homo sapiens

<400> 84

Met Leu Gly Thr Ile Thr Ile Thr Val Gly Gln Arg Asp Ser Glu Asp

10 15 1 5 Val Ser Lys Arg Asp Ser Asp Lys Glu Met Ala Thr Lys Ser Ala Val 25 Val His Asp Ile Thr Asp Asp Gly Glu Glu Thr Pro Glu Ile Ile Glu Gln Ile Pro Ser Ser Glu Ser Asn Leu Glu Glu Leu Thr Gln Pro Thr Glu Ser Gln Ala Asn Asp Ile Gly Phe Lys Lys Val Phe Lys Phe Val Gly Phe Lys Phe Thr Val Lys Lys Asp Lys Thr Glu Lys Pro Asp 90 Thr Val Gln Leu Leu Thr Val Lys Lys Asp Glu Gly Glu Gly Ala Ala 105 Gly Ala Gly Asp His Lys Asp Pro Ser Leu Gly Ala Gly Glu Ala Ala 115 120 Ser Lys Glu Ser Glu Pro Lys Gln Ser Thr Glu Lys Pro Glu Glu Thr 135 Leu Lys Arg Glu Gln Ser His Ala Glu Ile Ser Pro Pro Ala Glu Ser 150 155 Gly Gln Ala Val Glu Glu Cys Lys Glu Glu Glu Glu Lys Gln Glu 165 170 Lys Glu Pro Ser Lys Ser Ala Glu Ser Pro Thr Ser Pro Val Thr Ser 180 185 Glu Thr Gly Ser Thr Phe Lys Lys Phe Phe Thr Gln Gly Trp Ala Gly 195 200 205

Trp Arg Lys Lys Thr Ser Phe Arg Lys Pro Lys Glu Asp Glu Val Glu 210 215 220

Ala Ser Glu Lys Lys Lys Glu Gln Glu Pro Glu Lys Val Asp Thr Glu 225 230 235 240

Glu Asp Gly Lys Ala Glu Val Ala Ser Glu Lys Leu Thr Ala Ser Glu 245 250 255

Gln Ala His Pro Gln Glu Pro Ala Glu Ser Ala His Glu Pro Arg Leu 260 265 Ser Ala Glu Tyr Glu Lys Val Glu Leu Pro Ser Glu Glu Gln Val Ser 280 Gly Ser Gln Gly Pro Ser Glu Glu Lys Pro Ala Pro Leu Ala Thr Glu Val Phe Asp Glu Lys Ile Glu Val His Gln Glu Glu Val Val Ala Glu 305 310 315 Val His Val Ser Thr Val Glu Glu Arg Thr Glu Glu Gln Lys Thr Glu 325 330 335 Val Glu Glu Thr Ala Gly Ser Val Pro Ala Glu Glu Leu Val Glu Met 340 . 345 . 350 Asp Ala Glu Pro Gln Glu Ala Glu Pro Ala Lys Glu Leu Val Lys Leu 355 360 365 Lys Glu Thr Cys Val Ser Gly Glu Asp Pro Thr Gln Gly Ala Asp Leu 370 375 380 Ser Pro Asp Glu Lys Val Leu Ser Lys Pro Pro Glu Gly Val Val Ser 390 395 Glu Val Glu Met Leu Ser Ser Gln Glu Arg Met Lys Val Gln Gly Ser 405 Pro Leu Lys Lys Leu Phe Thr Ser Thr Gly Leu Lys Lys Leu Ser Gly 420 425 Lys Lys Gln Lys Gly Lys Arg Gly Gly Gly Asp Glu Glu Ser Gly Glu 435 440 His Thr Gln Val Pro Ala Asp Ser Pro Asp Ser Gln Glu Glu Gln Lys

Leu Glu Lys Gly Leu Ala Glu Val Gln Gln Asp Gly Glu Ala Glu Glu 485 490 495

Gly Glu Ser Ser Ala Ser Ser Pro Glu Glu Pro Glu Glu Ile Thr Cys

455

450

465 470

Gly Ala Thr Ser Asp Gly Glu Lys Lys Arg Glu Gly Val Thr Pro Trp Ala Ser Phe Lys Lys Met Val Thr Pro Lys Lys Arg Val Arg Arg Pro Ser Glu Ser Asp Lys Glu Asp Glu Leu Asp Lys Val Lys Ser Ala Thr Leu Ser Ser Thr Glu Ser Thr Ala Ser Glu Met Gln Glu Glu Met Lys Gly Ser Val Glu Glu Pro Lys Pro Glu Glu Pro Lys Arg Lys Val Asp Thr Ser Val Ser Trp Glu Ala Leu Ile Cys Val Gly Ser Ser Lys Lys Arg Ala Arg Arg Gly Ser Ser Ser Asp Glu Glu Gly Pro Lys Ala Met Gly Gly Asp His Gln Lys Ala Asp Glu Ala Gly Lys Asp Lys Glu Thr Gly Thr Asp Gly Ile Leu Ala Gly Ser Gln Glu His Asp Pro Gly Gln Gly Ser Ser Pro Glu Gln Ala Gly Ser Pro Thr Glu Gly Glu Gly Val Ser Thr Trp Glu Ser Phe Lys Arg Leu Val Thr Pro Arg Lys Lys Ser Lys Ser Lys Leu Glu Glu Lys Ser Glu Asp Ser Ile Ala Gly Ser Gly Val Glu His Ser Thr Pro Asp Thr Glu Pro Gly Lys Glu Glu Ser Trp Val Ser Ile Lys Lys Phe Ile Pro Gly Arg Arg Lys Lys Arg Pro Asp Gly Lys Gln Glu Gln Ala Pro Val Glu Asp Ala Gly Pro Thr

Gly Ala Asn Glu Asp Asp Ser Asp Val Pro Ala Val Val Pro Leu Ser 740 745 750

- Glu Tyr Asp Ala Val Glu Arg Glu Lys Met Glu Ala Gln Gln Ala Gln
 755 760 765
- Lys Ser Ala Glu Gln Pro Glu Gln Lys Ala Ala Thr Glu Val Ser Lys 770 775 780
- Glu Leu Ser Glu Ser Gln Val His Met Met Ala Ala Ala Val Ala Asp 785 790 795 800
- Gly Thr Arg Ala Ala Thr Ile Ile Glu Glu Arg Ser Pro Ser Trp Ile 805 810 815
- Ser Ala Ser Val Thr Glu Pro Leu Glu Glu Val Glu Ala Glu Ala Ala 820 825 830
- Leu Leu Thr Glu Glu Val Leu Glu Arg Glu Val Ile Ala Glu Glu Glu 835 840 845
- Pro Pro Thr Val Thr Glu Pro Leu Pro Glu Asn Arg Glu Ala Arg Gly 850 855 860
- Asp Thr Val Val Ser Glu Ala Glu Leu Thr Pro Glu Ala Val Thr Ala 865 870 880
- Ala Glu Thr Ala Gly Pro Leu Gly Ala Glu Glu Gly Thr Glu Ala Ser 885 890 895
- Ala Ala Glu Glu Thr Thr Glu Met Val Ser Ala Val Ser Gln Leu Thr 900 905 910
- Asp Ser Pro Asp Thr Thr Glu Glu Ala Thr Pro Val Gln Glu Val Glu 915 920 925
- Gly Val Pro Asp Ile Glu Glu Glu Glu Arg Arg Thr Gln Glu Val 930 935 940
- Leu Gln Ala Val Ala Glu Lys Val Lys Glu Glu Ser Gln Leu Pro Gly 945 950 955 960
- Thr Gly Gly Pro Glu Asp Val Leu Gln Pro Val Gln Arg Ala Glu Ala 965 970 975
- Glu Arg Pro Glu Glu Gln Ala Glu Ala Ser Gly Leu Lys Lys Glu Thr

980 985 990

qaA	Val	Val	Leu	Lys	Val	Asp	Ala	Gln	Glu	Ala	Lys	\mathtt{Thr}	Glu	Pro	Phe
_		995		_		-	1000					1005			

- Thr Gln Gly Lys Val Val Gly Gln Thr Thr Pro Glu Ser Phe Glu 1010 1015 1020
- Lys Ala Pro Gln Val Thr Glu Ser Ile Glu Ser Ser Glu Leu Val 1025 1030 1035
- Thr Thr Cys Gln Ala Glu Thr Leu Ala Gly Val Lys Ser Gln Glu 1040 1045 1050
- Met Val Met Glu Gln Ala Ile Pro Pro Asp Ser Val Glu Thr Pro 1055 1060 1065
- Thr Asp Ser Glu Thr Asp Gly Ser Thr Pro Val Ala Asp Phe Asp 1070 1075 1080
- Ala Pro Gly Thr Thr Gln Lys Asp Glu Ile Val Glu Ile His Glu 1085 1090 1095
- Glu Asn Glu Val Ala Ser Gly Thr Gln Ser Gly Gly Thr Glu Ala 1100 1105 1110
- Glu Ala Val Pro Ala Gln Lys Glu Arg Pro Pro Ala Pro Ser Ser 1115 1120 1125
- Phe Val Phe Gln Glu Glu Thr Lys Glu Gln Ser Lys Met Glu Asp 1130 1135 1140
- Thr Leu Glu His Thr Asp Lys Glu Val Ser Val Glu Thr Val Ser 1145 1150 1155
- Ile Leu Ser Lys Thr Glu Gly Thr Gln Glu Ala Asp Gln Tyr Ala 1160 1165 1170
- Asp Glu Lys Thr Lys Asp Val Pro Phe Phe Glu Gly Leu Glu Gly 1175 1180 1185
- Ser Ile Asp Thr Gly Ile Thr Val Ser Arg Glu Lys Val Thr Glu 1190 1195 1200
- Val Ala Leu Lys Gly Glu Gly Thr Glu Glu Ala Glu Cys Lys 1205 1210 1215

Asp	Asp 1220		Leu	Glu	Leu	Gln 1225		His	Ala	Lys	Ser 1230		Pro	Ser
Pro	Val 1235		Arg	Glu	Met	Val 1240		Gln	Val	Glu	Arg 1245		Lys	Thr
Glu	Ala 1250		Pro	Thr	His	Val 1255		Glu	Glu	Lys	Leu 1260		His	Glu
Thr	Ala 1265		Thr	Val	Ser	Glu 1270		Val	Ser	Lys	Gln 1275	Leu	Leu	Gln
Thr	Val 1280		Val	Pro	Ile	Ile 1285	Asp	Gly	Ala	Lys	Glu 1290	Val	Ser	Ser
Leu	Glu 1295		Ser	Pro	Pro	Pro 1300		Leu	Gly	Gln	Glu 1305	Ģlu	Ala	Val
Cys	Thr 1310		Ile	Gln	Val	Gln 1315	Ser	Ser	Glu	Ala	Ser 1320	Phe	Thr	Leu
Thr	Ala 1325		Ala	Glu	Glu	Glu 1330	Lys	Val	Leu	Gly	Glu 1335	Thr	Ala	Asn
Ile	Leu 1340	Glu	Thr	Gly	Glu	Thr 1345	Leu	Glu	Pro	Ala	Gly 1350	Ala	His	Leu
Val	Leu 1355		Glu	Lys	Ser	Ser 1360	Glu	Lys	Asn	Glu	Asp 1365	Phe	Ala	Ala
						Val 1375		Thr	Gly	Pro	Asp 1380	Cys	Gln	Ala
Lys	Ser 1385	Thr	Pro	Val	Ile	Val 1390	Ser	Ala	Thr	Thr	Lys 1395	Lys	Gly	Leu
Ser	Ser 1400	Asp	Leu	Glu	Gly	Glu 1405	Lys	Thr	Thr	Ser	Leu 1410	Lys	Trp	Lys
Ser	Asp 1415	Glu	Val	Asp	Glu	Gln 1420	Val	Ala	Cys	Gln	Glu 1425	Val	Lys	Val
Ser	Val 1430	Ala	Ile	Glu	Asp	Leu 1435	Glu	Pro	Glu	Asn	Gly 1440	Ile	Leu	Glu

Leu	Glu 1445		Lys	Ser	Ser	Lys 1450		Val	Gln	Asn	Ile 1455		Gln	Thr
Ala	Val 1460	Asp	Gln	Phe	Val	Arg 1465	Thr	Glu	Glu	Thr	Ala 1470	Thr	Glu	Met
Leu	Thr 1475	Ser	Glu	Leu	Gln	Thr 1480	Gln	Ala	His	Val	Ile 1485	Lys	Ala	Asp
Ser	Gln 1490	Asp	Ala	Gly	Gln	Glu 1495	Thr	Glu	Lys	Glu	Gly 1500	Glu	Glu	Pro
Leu	Ala 1505	Ser	Ala	Gln	Asp	Glu 1510		Pro	Ile	Thr	Ser 1515	Ala	Lys	Glu
Glu	Ser 1520	Glu	Ser	Thr	Ala	Val 1525	Gly	Gln	Ala	His	Ser 1530	Asp	Ile	Ser
Lys	Asp 1535		Ser	Glu	Ala	Ser 1540	Glu	Lys	Thr	Met	Thr 1545	Val	Glu	Val
Glu	Gly 1550	Ser	Thr	Val	Asn	Asp 1555	Gln	Gln	Leu	Glu	Glu 1560	Val	Val	Leu
Pro	Ser 1565	Glu	Glu	Glu	Gly	Gly 1570	Gly	Ala	Gly	Thr	Lys 1575	Ser	Val	Pro
Glu	Asp 1580	Asp	Gly	His	Ala	Leu 1585	Leu	Ala	Glu	Arg	Ile 1590		Lys	Ser
Leu	Val 1595	Glu	Pro	Lys	Glu	Asp 1600		Lys		Asp	Asp 1605	Val	Asp	Asp
Pro	Glu 1610	Asn	Gln	Asn	Ser	Ala 1615	Leu	Ala	Asp	Thr	Asp 1620	Ala	Ser	Gly
Gly	Leu 1625	Thr	Lys	Glu	Ser	Pro 1630	Asp	Thr	Asn	Gly	Pro 1635	Lys	Gln	Lys
Glu	Lys 1640	Glu	Asp	Ala	Gln	Glu 1645	Val	Glu	Leu	Gln	Glu 1650	Gly	Lys	Val
His	Ser 1655	Glu	Ser	Asp	Lys	Ala 1660	Ile	Thr	Pro	Gln	Ala 1665	Gln	Glu	Glu

Leu Gln Lys Gln Glu Arg Glu Ser Ala Lys Ser Glu Leu Thr Glu 1670 1680

Ser

<210> 85

<211> 1722

<212> PRT

<213> Homo sapiens

<400> 85

Met Arg Thr Gly Trp Ala Thr Pro Arg Arg Pro Ala Gly Leu Leu Met 1 5 10 15

Leu Leu Phe Trp Phe Phe Asp Leu Ala Glu Pro Ser Gly Arg Ala Ala 20 25 30

Asn Asp Pro Phe Thr Ile Val His Gly Asn Thr Gly Lys Cys Ile Lys 35 40 45

Pro Val Tyr Gly Trp Ile Val Ala Asp Asp Cys Asp Glu Thr Glu Asp 50 55 60

Lys Leu Trp Lys Trp Val Ser Gln His Arg Leu Phe His Leu His Ser 65 70 75 80

Gln Lys Cys Leu Gly Leu Asp Ile Thr Lys Ser Val Asn Glu Leu Arg 85 90 95

Met Phe Ser Cys Asp Ser Ser Ala Met Leu Trp Trp Lys Cys Glu His
100 105 110

His Ser Leu Tyr Gly Ala Ala Arg Tyr Arg Leu Ala Leu Lys Asp Gly 115 120 125

His Gly Thr Ala Ile Ser Asn Ala Ser Asp Val Trp Lys Lys Gly Gly 130 135 140

Ser Glu Glu Ser Leu Cys Asp Gln Pro Tyr His Glu Ile Tyr Thr Arg 145 150 155 160

Asp Gly Asn Ser Tyr Gly Arg Pro Cys Glu Phe Pro Phe Leu Ile Asp 165 170 175

Gly Thr Trp His His Asp Cys Ile Leu Asp Glu Asp His Ser Gly Pro 180 185 190

Trp Cys Ala Thr Thr Leu Asn Tyr Glu Tyr Asp Arg Lys Trp Gly Ile 200 195 205 Cys Leu Lys Pro Glu Asn Gly Cys Glu Asp Asn Trp Glu Lys Asn Glu 220 215 Gln Phe Gly Ser Cys Tyr Gln Phe Asn Thr Gln Thr Ala Leu Ser Trp 230 235 Lys Glu Ala Tyr Val Ser Cys Gln Asn Gln Gly Ala Asp Leu Leu Ser 245 Ile Asn Ser Ala Ala Glu Leu Thr Tyr Leu Lys Glu Lys Glu Gly Ile 265 Ala Lys Ile Phe Trp Ile Gly Leu Asn Gln Leu Tyr Ser Ala Arg Gly 275 280 Trp Glu Trp Ser Asp His Lys Pro Leu Asn Phe Leu Asn Trp Asp Pro 290 295 300 Asp Arg Pro Ser Ala Pro Thr Ile Gly Gly Ser Ser Cys Ala Arg Met 305 310 Asp Ala Glu Ser Gly Leu Trp Gln Ser Phe Ser Cys Glu Ala Gln Leu 325 330 335 Pro Tyr Val Cys Arg Lys Pro Leu Asn Asn Thr Val Glu Leu Thr Asp 340 345 350 Val Trp Thr Tyr Ser Asp Thr Arg Cys Asp Ala Gly Trp Leu Pro Asn 355 360 365 Asn Gly Phe Cys Tyr Leu Leu Val Asn Glu Ser Asn Ser Trp Asp Lys 370 375 380 Ala His Ala Lys Cys Lys Ala Phe Ser Ser Asp Leu Ile Ser Ile His 385 390 395 400 Ser Leu Ala Asp Val Glu Val Val Val Thr Lys Leu His Asn Glu Asp 405 410 415 Ile Lys Glu Glu Val Trp Ile Gly Leu Lys Asn Ile Asn Ile Pro Thr 420

Leu Phe Gln Trp Ser Asp Gly Thr Glu Val Thr Leu Thr Tyr Trp Asp Glu Asn Glu Pro Asn Val Pro Tyr Asn Lys Thr Pro Asn Cys Val Ser Tyr Leu Gly Glu Leu Gly Gln Trp Lys Val Gln Ser Cys Glu Glu Lys Leu Lys Tyr Val Cys Lys Arg Lys Gly Glu Lys Leu Asn Asp Ala Ser Ser Asp Lys Met Cys Pro Pro Asp Glu Gly Trp Lys Arg His Gly Glu Thr Cys Tyr Lys Ile Tyr Glu Asp Glu Val Pro Phe Gly Thr Asn Cys Asn Leu Thr Ile Thr Ser Arg Phe Glu Glu Tyr Leu Asn Asp Leu Met Lys Lys Tyr Asp Lys Ser Leu Arg Lys Tyr Phe Trp Thr Gly Leu Arg Asp Val Asp Ser Cys Gly Glu Tyr Asn Trp Ala Thr Val Gly Gly Arg Arg Arg Ala Val Thr Phe Ser Asn Trp Asn Phe Leu Glu Pro Ala Ser Pro Gly Gly Cys Val Ala Met Ser Thr Gly Lys Ser Val Gly Lys Trp Glu Val Lys Asp Cys Arq Ser Phe Lys Ala Leu Ser Ile Cys Lys Lys Met Ser Gly Pro Leu Gly Pro Glu Glu Ala Ser Pro Lys Pro Asp Asp Pro Cys Pro Glu Gly Trp Gln Ser Phe Pro Ala Ser Leu Ser Cys Tyr Lys Val Phe His Ala Glu Arg Ile Val Arg Lys Arg Asn Trp Glu

Glu Ala Glu Arg Phe Cys Gln Ala Leu Gly Ala His Leu Ser Ser Phe 675 680 685

Ser His Val Asp Glu Ile Lys Glu Phe Leu His Phe Leu Thr Asp Gln 690 695 700

Phe Ser Gly Gln His Trp Leu Trp Ile Gly Leu Asn Lys Arg Ser Pro 705 710 715 720

Asp Leu Gln Gly Ser Trp Gln Trp Ser Asp Arg Thr Pro Val Ser Thr
725 730 735

Ile Ile Met Pro Asn Glu Phe Gln Gln Asp Tyr Asp Ile Arg Asp Cys
740 745 750

Ala Ala Val Lys Val Phe His Arg Pro Trp Arg Arg Gly Trp His Phe 755 760 765

Tyr Asp Asp Arg Glu Phe Ile Tyr Leu Arg Pro Phe Ala Cys Asp Thr 770 780

Lys Leu Glu Trp Val Cys Gln Ile Pro Lys Gly Arg Thr Pro Lys Thr 785 790 795 800

Pro Asp Trp Tyr Asn Pro Asp Arg Ala Gly Ile His Gly Pro Pro Leu 805 810 815

Ile Ile Glu Gly Ser Glu Tyr Trp Phe Val Ala Asp Leu His Leu Asn 820 825 830

Tyr Glu Glu Ala Val Leu Tyr Cys Ala Ser Asn His Ser Phe Leu Ala 835 840 845

Thr Ile Thr Ser Phe Val Gly Leu Lys Ala Ile Lys Asn Lys Ile Ala 850 855 860

Asn Ile Ser Gly Asp Gly Gln Lys Trp Trp Ile Arg Ile Ser Glu Trp 865 870 875 886

Pro Ile Asp Asp His Phe Thr Tyr Ser Arg Tyr Pro Trp His Arg Phe 885 890 895

Pro Val Thr Phe Gly Glu Glu Cys Leu Tyr Met Ser Ala Lys Thr Trp 900 905 910

Leu Ile Asp Leu Gly Lys Pro Thr Asp Cys Ser Thr Lys Leu Pro Phe

915 920 925

Ile Cys Glu Lys Tyr Asn Val Ser Ser Leu Glu Lys Tyr Ser Pro Asp 930 935 940

Ser Ala Ala Lys Val Gln Cys Ser Glu Gln Trp Ile Pro Phe Gln Asn 945 950 955 960

Lys Cys Phe Leu Lys Ile Lys Pro Val Ser Leu Thr Phe Ser Gln Ala 965 970 975

Ser Asp Thr Cys His Ser Tyr Gly Gly Thr Leu Pro Ser Val Leu Ser 980 985 990

Gln Ile Glu Gln Asp Phe Ile Thr Ser Leu Leu Pro Asp Met Glu Ala 995 1000 1005

Thr Leu Trp Ile Gly Leu Arg Trp Thr Ala Tyr Glu Lys Ile Asn 1010 1015 1020

Lys Trp Thr Asp Asn Arg Glu Leu Thr Tyr Ser Asn Phe His Pro 1025 1030 1035

Leu Leu Val Ser Gly Arg Leu Arg Ile Pro Glu Asn Phe Phe Glu 1040 1045 1050

Glu Glu Ser Arg Tyr His Cys Ala Leu Ile Leu Asn Leu Gln Lys 1055 1060 1065

Ser Pro Phe Thr Gly Thr Trp Asn Phe Thr Ser Cys Ser Glu Arg 1070 1075 1080

His Phe Val Ser Leu Cys Gln Lys Tyr Ser Glu Val Lys Ser Arg 1085 1090 1095

Gln Thr Leu Gln Asn Ala Ser Glu Thr Val Lys Tyr Leu Asn Asn 1100 1105 1110

Leu Tyr Lys Ile Ile Pro Lys Thr Leu Thr Trp His Ser Ala Lys 1115 1120 1125

Arg Glu Cys Leu Lys Ser Asn Met Gln Leu Val Ser Ile Thr Asp 1130 1135 1140

Pro Tyr Gln Gln Ala Phe Leu Ser Val Gln Ala Leu Leu His Asn 1145 1150 1155

Ser	Ser 1160	Leu	Trp	Ile	Gly	Leu 1165		Ser	Gln	Asp	Asp 1170		Leu	Asn
Phe	Gly 1175		Ser	Asp	Gly	Lys 1180		Leu	His	Phe	Ser 1185	Arg	Trp	Ala
Glu	Thr 1190		Gly	Gln	Leu	Glu 1195		Сув	Val	Val	Leu 1200		Thr	Asp
Gly	Phe 1205	Trp	Lys	Thr	Val	Asp 1210	Cys	Asn	Asp	Asn	Gln 1215	Pro	Gly	Ala
Ile	Cys 1220	Tyr	Tyr	Ser	Gly	Asn 1225		Thr	Glu	Lys	Glu 1230	Val	Lys	Pro
Val	Asp 1235	Ser	Val	Lys	Cys	Pro 1240	Ser	Pro	Val	Leu	Asn 1245	Thr	Pro	Trp
Ile	Pro 1250	Phe	Gln	Asn	Cys	Cys 1255	Tyr	Asn	Phe	Ile	Ile 1260	Thr	Lys	Asn
Arg	His 1265	Met	Ala	Thr	Thr	Gln 1270	Asp	Glu	Val	His	Thr 1275	Lys	Cys	Gln
Lys	Leu 1280	Asn	Pro	Lys	Ser	His 1285	Ile	Leu	Ser	Ile	Arg 1290	Asp	Glu	Lys
Glu	Asn 1295	Asn	Phe	Val	Leu	Glu 1300	Gln	Leu	Leu	Tyr	Phe 1305	Asn	Tyr	Met
Ala	Ser 1310	Trp	Val	Met	Leu	Gly 1315	Ile	Thr	Tyr	Arg	Asn 1320	Asn	Ser	Leu
Met	Trp 1325	Phe	Asp	Lys	Thr	Pro 1330	Leu	Ser	Tyr	Thr	His 1335	Trp	Arg	Ala
Gly	Arg 1340	Pro	Thr	Ile	Lys	Asn 1345	Glu	Lys	Phe	Leu	Ala 1350	Gly	Leu	Ser
Thr	Asp 1355	Gly	Phe	Trp	Asp	Ile 1360	Gln	Thr	Phe	Lys	Val 1365	Ile	Glu	Glu
Ala	Val 1370	Tyr	Phe	His	Gln	His 1375	Ser	Ile	Leu	Ala	Cys 1380	Lys	Ile	Glu

Met	Val 1385		Tyr	Lys	Glu	Glu 1390		Asn	Thr	Thr	Leu 1395		Gln	Phe
Met	Pro 1400		Glu	Asp	Gly	Ile 1405		Ser	Val	Ile	Gln 1410	_	Lys	Val
Thr	Trp 1415		Glu	Ala	Leu	Asn 1420		Cys	Ser	Gln	Ser 1425	_	Gly	His
Leu	Ala 1430		Val	His	Asn	Gln 1435		Gly	Gln	Leu	Phe 1440		Glu	Asp
Ile	Val 1445		Arg	Asp	Gly	Phe 1450		Leu	Trp	Val	Gly 1455	Leu	Ser	Ser
His	Asp 1460		Ser	Glu	Ser	Ser 1465		Glu	Trp	Ser	Asp 1470	Gly	Ser	Thr
Phe	Asp 1475		Ile	Pro	Trp	Lys 1480		Gln	Thr	Ser	Pro 1485	Gly	Asn	Cys
Val	Leu 1490	Leu	Asp	Pro	Lys	Gly 1495		Trp	Lys	His	Glu 1500	Lys	Cys	Asn
Ser	Val 1505	Lys	Asp	Gly	Ala	Ile 1510	Cys	Tyr	Lys	Pro	Thr 1515	Lys	Ser	Lys
Lys	Leu 1520	Ser	Arg	Leu	Thr	Tyr 1525		Ser	Arg	Cys	Pro 1530	Ala	Ala	Lys
Glu	Asn 1535	Gly	Ser	Arg	Trp	1540	Gln		_	_	His 1545	Cys	Tyr	Lys
Ser	Asp 1550	Gln	Ala	Leu	His	Ser 1555	Phe	Ser	Glu	Ala	Lys 1560	Lys	Leu	Cys
Ser	Lys 1565	His	Asp	His	Ser	Ala 1570	Thr	Ile	Val	Ser	Ile 1575	Lys	Asp	Glu
Asp	Glu 1580	Asn	Lys	Phe	Val	Ser 1585	Arg	Leu	Met	Arg	Glu 1590	Asn	Asn	Asn
Ile	Thr 1595	Meť		Val		Leu 1600	Gly	Leu	Ser	Gln	His 1605	Ser	Val	Asp

Gln Ser Trp Ser Trp Leu Asp Gly Ser Glu Val Thr Phe Val Lys 1610 1615 1620

- Trp Glu Asn Lys Ser Lys Ser Gly Val Gly Arg Cys Ser Met Leu 1625 1630 1635
- Ile Ala Ser Asn Glu Thr Trp Lys Lys Val Glu Cys Glu His Gly 1640 1645 1650
- Phe Gly Arg Val Val Cys Lys Val Pro Leu Gly Pro Asp Tyr Thr 1655 1660 1665
- Ala Ile Ala Ile Val Ala Thr Leu Ser Ile Leu Val Leu Met 1670 1675 1680
- Gly Gly Leu Ile Trp Phe Leu Phe Gln Arg His Arg Leu His Leu 1685 1690 1695
- Ala Gly Phe Ser Ser Val Arg Tyr Ala Gln Gly Val Asn Glu Asp 1700 1705 1710
- Glu Ile Met Leu Pro Ser Phe His Asp 1715 1720
- <210> 86
- <211> 61
- <212> PRT
- <213> Homo sapiens
- <400> 86
- Met Asp Pro Asn Cys Ser Cys Ala Ala Gly Val Ser Cys Thr Cys Ala 1 $$ 10 $$ 15
- Ser Ser Cys Lys Cys Lys Glu Cys Lys Cys Thr Ser Cys Lys Lys Ser 20 25 30
- Cys Cys Ser Cys Cys Pro Val Gly Cys Ala Lys Cys Ala Gln Gly Cys 35 40 45
- Ile Cys Lys Gly Ala Ser Glu Lys Cys Ser Cys Cys Ala 50 55 60
- <210> 87
- <211> 300
- <212> PRT
- <213> Homo sapiens
- <400> 87

Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr Cys Asn Val Leu Cys Gly 90 Glu Arg Glu Glu Gla Arg Ala Cys His Ala Thr His Asn Arg Ala 105 Cys Arg Cys Arg Thr Gly Phe Phe Ala His Ala Gly Phe Cys Leu Glu 120 His Ala Ser Cys Pro Pro Gly Ala Gly Val Ile Ala Pro Gly Thr Pro 135 Ser Gln Asn Thr Gln Cys Gln Pro Cys Pro Pro Gly Thr Phe Ser Ala 150 155 Ser Ser Ser Ser Glu Gln Cys Gln Pro His Arg Asn Cys Thr Ala 1.65 170 Leu Gly Leu Ala Leu Asn Val Pro Gly Ser Ser Ser His Asp Thr Leu 180 185 190 Cys Thr Ser Cys Thr Gly Phe Pro Leu Ser Thr Arg Val Pro Gly Ala 195 200 205 Glu Glu Cys Glu Arg Ala Val Ile Asp Phe Val Ala Phe Gln Asp Ile 210 215 Ser Ile Lys Arg Leu Gln Arg Leu Gln Ala Leu Glu Ala Pro Glu 225 230 235

Gly Trp Gly Pro Thr Pro Arg Ala Gly Arg Ala Ala Leu Gln Leu Lys 245 250

Leu Arg Arg Arg Leu Thr Glu Leu Leu Gly Ala Gln Asp Gly Ala Leu 260 265

Leu Val Arg Leu Leu Gln Ala Leu Arg Val Ala Arg Met Pro Gly Leu 275 280

Glu Arg Ser Val Arg Glu Arg Phe Leu Pro Val His 295

<210> 88

<211> 878 <212> PRT <213> Homo sapiens

<400> 88

Thr Ile Tyr Ser Thr Val Ser Ser Ser Thr Thr Ala Ile Thr Ser Pro 1.0

Phe Thr Thr Ala Glu Thr Gly Val Thr Ser Thr Pro Ser Ser Pro Ser 25

Ser Leu Ser Thr Asp Ile Pro Thr Thr Ser Leu Arg Thr Leu Thr Pro 40

Leu Ser Leu Ser Thr Ser Thr Ser Leu Thr Thr Thr Asp Leu Pro

Ser Ile Pro Thr Asp Ile Ser Ser Leu Pro Thr Pro Ile His Ile Ile 75

Ser Ser Ser Pro Ser Ile Gln Ser Thr Glu Thr Ser Ser Leu Val Gly 90

Thr Thr Ser Pro Thr Met Ser Thr Val Arg Ala Thr Leu Arg Ser Thr 105

Glu Asn Thr Pro Ile Ser Ser Phe Ser Thr Ser Ile Val Val Thr Pro 120

Glu Thr Pro Thr Thr Gln Ala Pro Pro Val Leu Met Ser Ala Thr Gly 130 135

Thr Gln Thr Ser Pro Val Pro Thr Thr Val Thr Phe Gly Ser Met Asp 145 150 155

	Ser	Ser	Thr	Ser	Thr 165	Leu	His	Thr	Leu	Thr 170	Pro	Ser	Thr	Ala	Leu 175	Ser
	Lys	Ile	Met	Ser 180	Thr	Ser	Gln	Phe	Pro 185	Ile	Pro	Ser	Thr	His 190	Ser	Ser
	Thr	Leu	Gln 195	Thr	Thr	Pro	Ser	Ile 200	Pro	Ser	Leu	Gln	Thr 205	Ser	Leu	Thr
	Ser	Thr 210	Ser	Glu	Phe	Thr	Thr 215	Glu	Ser	Phe	Thr	Arg 220	Gly	Ser	Thr	Ser
1	Thr 225	Asn	Ala	Ile	Leu	Thr 230	Ser	Phe	Ser	Thr	Ile 235	Ile	Trp	Ser	Ser	Thr 240
	Pro	Thr	Ile	Ile	Met 245	Ser	Ser	Ser	Pro	Ser 250	Ser	Ala	Ser	Ile	Thr 255	Pro
	Val	Phe	Ala	Thr 260	Thr	Ile	His	Ser	Val 265	Pro	Ser	Ser	Pro	Tyr 270	Ile	Phe
	Ser	Thr	Glu 275	Asn	Val	Gly	Ser	Ala 280	Ser	Ile	Thr	Ala	Phe 285	Pro	Ser	Leu
	Ser	Ser 290	Ser	Ser	Thr	Thr	Ser 295	Thr	Ser	Pro	Thr	Ser 300	Ser	Ser	Leu	Thr
	Thr 305	Ala	Leu	Thr	Glu	Ile 310	Thr	Pro	Phe	Ser	Tyr 315	Ile	Ser	Leu	Pro	Ser 320
	Thr	Thr	Pro	Cys	Pro 325	Gly	Thr	Ile	Thr	Ile 330	Thr	Ile	Val	Pro	Ala 335	Ser
	Pro	Thr	Asp	Pro 340	Cys	Val	Glu	Met	Asp 345	Pro	Ser	Thr	Glu	Ala 350	Thr	Ser
	Pro	Pro	Thr 355	Thr	Pro	Leu	Thr	Val 360	Phe	Pro	Phe	Thr	Thr 365	Glu	Met	Val
	Thr	Cys 370	Pro	Ser	Ser	Ile	Ser 375	Met	Gln	Thr	Thr	Leu 380	Ala	Thr	His	Met
	Asp 385	Thr	Ser	Ser	Met	Thr 390	Pro	Glu	Ser	Glu	Ser 395	Ser	Ile	Ile	Pro	Asn 400

Ala Ser Ser Ser Thr Gly Thr Gly Thr Val Pro Thr Asn Thr Val Phe Thr Ser Thr Arg Leu Pro Thr Ser Glu Thr Trp Leu Ser Asn Asn Ser Val Ile Pro Thr Pro Leu Pro Gly Val Ser Thr Ile Pro Leu Thr Met Lys Pro Ser Ser Ser Leu Pro Thr Ile Leu Arg Thr Ser Ser Lys Ser Thr His Pro Ser Pro Pro Thr Ala Arg Thr Ser Glu Thr Ser Val Ala Thr Thr Gln Thr Pro Thr Leu Thr Thr Arg Arg Thr Thr Pro Ile Thr Ser Trp Met Thr Thr Gln Ser Thr Leu Thr Thr Ala Gly Thr Cys Asp Asn Gly Gly Thr Trp Glu Gln Gly Gln Cys Ala Cys Leu Pro Gly Phe Ser Gly Asp Arg Cys Gln Leu Gln Thr Arg Cys Gln Asn Gly Gly Gln Trp Asp Gly Leu Lys Cys Gln Cys Pro Ser Thr Phe Tyr Gly Ser Ser Cys Glu Phe Ala Val Glu Gln Val Asp Leu Asp Val Val Glu Thr Glu Val Gly Met Glu Val Ser Val Asp Gln Gln Phe Ser Pro Asp Leu Asn Asp Asn Thr Ser Gln Ala Tyr Arg Asp Phe Asn Lys Thr Phe Trp Asn Gln Met Gln Lys Ile Phe Ala Asp Met Gln Gly Phe Thr Phe Lys Gly Val Glu Ile Leu Ser Leu Arg Asn Gly Ser Ile Val Val Asp

Tyr Leu Val Leu Leu Glu Met Pro Phe Ser Pro Gln Leu Glu Ser Glu 645 650 655

Tyr Glu Gln Val Lys Thr Thr Leu Lys Glu Gly Leu Gln Asn Ala Ser 660 665 670

Gln Asp Ala Asn Ser Cys Gln Asp Ser Gln Thr Leu Cys Phe Lys Pro 675 680 685

Asp Ser Ile Lys Val Asn Asn Asn Ser Lys Thr Glu Leu Thr Pro Glu 690 695 700

Ala Ile Cys Arg Arg Ala Ala Pro Thr Gly Tyr Glu Glu Phe Tyr Phe 705 710 715 720

Pro Leu Val Glu Ala Thr Arg Leu Arg Cys Val Thr Lys Cys Thr Ser 725 730 735

Gly Val Asp Asn Ala Ile Asp Cys His Gln Gly Gln Cys Val Leu Glu
740 745 750

Thr Ser Gly Pro Ala Cys Arg Cys Tyr Ser Thr Asp Thr His Trp Phe 755 760 765

Ser Gly Pro Arg Cys Glu Val Ala Val His Trp Arg Ala Leu Val Gly 770 780

Gly Leu Thr Ala Gly Ala Ala Leu Leu Val Leu Leu Leu Leu Ala Leu 785 790 795 800

Gly Val Arg Ala Val Arg Ser Gly Trp Trp Gly Gly Gln Arg Arg Gly 805 810 815

Arg Ser Trp Asp Gln Asp Arg Lys Trp Phe Glu Thr Trp Asp Glu Glu 820 825 830

Val Val Gly Thr Phe Ser Asn Trp Gly Phe Glu Asp Asp Gly Thr Asp 835 840 845

Lys Asp Thr Asn Phe His Val Ala Leu Glu Asn Val Asp Thr Thr Met 850 855 860

Lys Val His Ile Lys Arg Pro Glu Met Thr Ser Ser Val 865 870 875

<210> 89

<211> 61

<212> PRT

<213> Homo sapiens

<400> 89

Met Asp Pro Asn Cys Ser Cys Ser Pro Val Gly Ser Cys Ala Cys Ala 1 5 10 15

Gly Ser Cys Lys Cys Lys Glu Cys Lys Cys Thr Ser Cys Lys Lys Ser 20 25 30

Cys Cys Ser Cys Cys Pro Val Gly Cys Ala Lys Cys Ala Gln Gly Cys 35 40 45

Ile Cys Lys Gly Thr Ser Asp Lys Cys Ser Cys Cys Ala 50 55 60

<210> 90

<211> 106

<212> PRT

<213> Homo sapiens

<400> 90

Met Ala His Ala Thr Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu 1 5 10 15

Arg Val Ala Leu Leu Leu Leu Leu Val Gly Ser Arg Ala Ala 20 25 30

Gly Ala Ser Val Val Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gln Gly Ile His Leu Lys Asn Ile Gln Ser Val Asn Val Arg Ser Pro 50 55 60

Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly 65 70 75 80

Lys Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Gln Lys Ile Ile 85 90 95

Glu Lys Ile Leu Asn Lys Gly Ser Thr Asn 100 105

<210> 91

<211> 683

<212> PRT

<213> Homo sapiens

<400> 91

Met Ala Leu Phe Val Arg Leu Leu Ala Leu Ala Leu Ala Leu 1 5 10 15

Gly Pro Ala Ala Thr Leu Ala Gly Pro Ala Lys Ser Pro Tyr Gln Leu 20 25 30

Val Leu Gln His Ser Arg Leu Arg Gly Arg Gln His Gly Pro Asn Val 35 40 45

Cys Ala Val Gln Lys Val Ile Gly Thr Asn Arg Lys Tyr Phe Thr Asn 50 55 60

Cys Lys Gln Trp Tyr Gln Arg Lys Ile Cys Gly Lys Ser Thr Val Ile 65 70 75 80

Ser Tyr Glu Cys Cys Pro Gly Tyr Glu Lys Val Pro Gly Glu Lys Gly 85 90 95

Cys Pro Ala Ala Leu Pro Leu Ser Asn Leu Tyr Glu Thr Leu Gly Val

Val Gly Ser Thr Thr Thr Gln Leu Tyr Thr Asp Arg Thr Glu Lys Leu 115 120 125

Arg Pro Glu Met Glu Gly Pro Gly Ser Phe Thr Ile Phe Ala Pro Ser 130 135 140

Asn Glu Ala Trp Ala Ser Leu Pro Ala Glu Val Leu Asp Ser Leu Val 145 150 155 160

Ser Asn Val Asn Ile Glu Leu Leu Asn Ala Leu Arg Tyr His Met Val 165 170 175

Gly Arg Arg Val Leu Thr Asp Glu Leu Lys His Gly Met Thr Leu Thr 180 185 190

Ser Met Tyr Gln Asn Ser Asn Ile Gln Ile His His Tyr Pro Asn Gly
195 200 205

Ile Val Thr Val Asn Cys Ala Arg Leu Leu Lys Ala Asp His His Ala 210 215 220

Thr Asn Gly Val Val His Leu Ile Asp Lys Val Ile Ser Thr Ile Thr 225 230 235 240

Asn Asn Ile Gln Gln Ile Ile Glu Ile Glu Asp Thr Phe Glu Thr Leu Arg Ala Ala Val Ala Ala Ser Gly Leu Asn Thr Met Leu Glu Gly Asn Gly Gln Tyr Thr Leu Leu Ala Pro Thr Asn Glu Ala Phe Glu Lys Ile Pro Ser Glu Thr Leu Asn Arg Ile Leu Gly Asp Pro Glu Ala Leu Arg Asp Leu Leu Asn Asn His Ile Leu Lys Ser Ala Met Cys Ala Glu Ala Ile Val Ala Gly Leu Ser Val Glu Thr Leu Glu Gly Thr Thr Leu Glu Val Gly Cys Ser Gly Asp Met Leu Thr Ile Asn Gly Lys Ala Ile Ile Ser Asn Lys Asp Ile Leu Ala Thr Asn Gly Val Ile His Tyr Ile Asp Glu Leu Leu Ile Pro Asp Ser Ala Lys Thr Leu Phe Glu Leu Ala Ala Glu Ser Asp Val Ser Thr Ala Ile Asp Leu Phe Arg Gln Ala Gly Leu Gly Asn His Leu Ser Gly Ser Glu Arg Leu Thr Leu Leu Ala Pro Leu Asn Ser Val Phe Lys Asp Gly Thr Pro Pro Ile Asp Ala His Thr Arg Asn Leu Leu Arg Asn His Ile Ile Lys Asp Gln Leu Ala Ser Lys Tyr Leu Tyr His Gly Gln Thr Leu Glu Thr Leu Gly Gly Lys Lys Leu Arg Val Phe Val Tyr Arg Asn Ser Leu Cys Ile Glu Asn Ser Cys Ile Ala

Ala His Asp Lys Arg Gly Arg Tyr Gly Thr Leu Phe Thr Met Asp Arg 485 490 495

Val Leu Thr Pro Pro Met Gly Thr Val Met Asp Val Leu Lys Gly Asp 500 505 510

Asn Arg Phe Ser Met Leu Val Ala Ala Ile Gln Ser Ala Gly Leu Thr 515 520 525

Glu Thr Leu Asn Arg Glu Gly Val Tyr Thr Val Phe Ala Pro Thr Asn 530 540

Glu Ala Phe Arg Ala Leu Pro Pro Arg Glu Arg Ser Arg Leu Leu Gly 545 550 555 560

Asp Ala Lys Glu Leu Ala Asn Ile Leu Lys Tyr His Ile Gly Asp Glu 565 570 575

Ile Leu Val Ser Gly Gly Ile Gly Ala Leu Val Arg Leu Lys Ser Leu 580 585 590

Gln Gly Asp Lys Leu Glu Val Ser Leu Lys Asn Asn Val Val Ser Val
595 600 605

Asn Lys Glu Pro Val Ala Glu Pro Asp Ile Met Ala Thr Asn Gly Val 610 620

Val His Val Ile Thr Asn Val Leu Gln Pro Pro Ala Asn Arg Pro Gln 625 630 635 640

Glu Arg Gly Asp Glu Leu Ala Asp Ser Ala Leu Glu Ile Phe Lys Gln 645 650 655

Ala Ser Ala Phe Ser Arg Ala Ser Gln Arg Ser Val Arg Leu Ala Pro 660 665 670

Val Tyr Gln Lys Leu Leu Glu Arg Met Lys His 675 680

<210> 92

<211> 431

<212> PRT

<213> Homo sapiens

<400> 92

Met His Val Arg Ser Leu Arg Ala Ala Pro His Ser Phe Val Ala

Leu Trp Ala Pro Leu Phe Leu Leu Arg Ser Ala Leu Ala Asp Phe Ser Leu Asp Asn Glu Val His Ser Ser Phe Ile His Arg Arg Leu Arg Ser Gln Glu Arg Arg Glu Met Gln Arg Glu Ile Leu Ser Ile Leu Gly Leu Pro His Arg Pro Arg Pro His Leu Gln Gly Lys His Asn Ser Ala Pro Met Phe Met Leu Asp Leu Tyr Asn. Ala Met Ala Val Glu Glu Gly Gly Gly Pro Gly Gly Gln Gly Phe Ser Tyr Pro Tyr Lys Ala Val Phe Ser Thr Gln Gly Pro Pro Leu Ala Ser Leu Gln Asp Ser His Phe Leu Thr Asp Ala Asp Met Val Met Ser Phe Val Asn Leu Val Glu His Asp Lys Glu Phe Phe His Pro Arg Tyr His His Arg Glu Phe Arg Phe Asp Leu Ser Lys Ile Pro Glu Gly Glu Ala Val Thr Ala Ala Glu Phe Arg Ile Tyr Lys Asp Tyr Ile Arg Glu Arg Phe Asp Asn Glu Thr Phe Arg Ile Ser Val Tyr Gln Val Leu Gln Glu His Leu Gly Arg Glu Ser Asp Leu Phe Leu Leu Asp Ser Arg Thr Leu Trp Ala Ser Glu Glu Gly Trp Leu Val Phe Asp Ile Thr Ala Thr Ser Asn His Trp Val Val Asn Pro Arg His Asn Leu Gly Leu Gln Leu Ser Val Glu Thr Leu Asp Gly Gln Ser

Ile Asn Pro Lys Leu Ala Gly Leu Ile Gly Arg His Gly Pro Gln Asn 260 Lys Gln Pro Phe Met Val Ala Phe Phe Lys Ala Thr Glu Val His Phe 275 280 Arg Ser Ile Arg Ser Thr Gly Ser Lys Gln Arg Ser Gln Asn Arg Ser 290 295 Lys Thr Pro Lys Asn Gln Glu Ala Leu Arg Met Ala Asn Val Ala Glu 305 310 315 Asn Ser Ser Ser Asp Gln Arg Gln Ala Cys Lys Lys His Glu Leu Tyr 325 330 Val Ser Phe Arg Asp Leu Gly Trp Gln Asp Trp Ile Ile Ala Pro Glu 340 345 Gly Tyr Ala Ala Tyr Tyr Cys Glu Gly Glu Cys Ala Phe Pro Leu Asn 355 360 Ser Tyr Met Asn Ala Thr Asn His Ala Ile Val Gln Thr Leu Val His 370 375 Phe Ile Asn Pro Glu Thr Val Pro Lys Pro Cys Cys Ala Pro Thr Gln 385 390 395 Leu Asn Ala Ile Ser Val Leu Tyr Phe Asp Asp Ser Ser Asn Val Ile 405 410 Leu Lys Lys Tyr Arg Asn Met Val Val Arg Ala Cys Gly Cys His 420 <210> 93 <211> 324 <212> PRT <213> Homo sapiens <400> 93 Met Phe Cys Gly Asp Tyr Val Gln Gly Thr Ile Phe Pro Ala Pro Asn 10 Phe Asn Pro Ile Met Asp Ala Gln Met Leu Gly Gly Ala Leu Gln Gly 20 25 30

Phe Asp Cys Asp Lys Asp Met Leu Ile Asn Ile Leu Thr Gln Arg Cys 35 40 45

Asn Ala Gln Arg Met Met Ile Ala Glu Ala Tyr Gln Ser Met Tyr Gly 50 55 60

Arg Asp Leu Ile Gly Asp Met Lys Gly Ala Ala Phe Gly Ser Leu Pro 65 70 75 80

Arg Cys Asp Gly Trp Leu Met Tyr Pro Pro Pro Leu Tyr Asp Ala His
85 90 95

Glu Leu Trp His Ala Met Lys Gly Val Gly Thr Asp Glu Asn Cys Leu 100 105 110

Ile Glu Ile Leu Ala Ser Arg Thr Asn Gly Glu Ile Phe Gln Met Arg
115 120 125

Glu Ala Tyr Cys Leu Gln Tyr Ser Asn Asn Leu Gln Glu Asp Ile Tyr 130 135 140

Ser Glu Thr Ser Gly His Phe Arg Asp Thr Leu Met Asn Leu Val Gln 145 150 155 160

Gly Thr Arg Glu Glu Gly Tyr Thr Asp Pro Ala Met Ala Ala Gln Asp 165 170 175

Ala Met Val Leu Trp Glu Ala Cys Gln Gln Lys Thr Gly Glu His Lys 180 185 190

Thr Met Leu Gln Met Ile Leu Cys Asn Lys Ser Tyr Gln Gln Leu Arg 195 200 205

Leu Val Phe Gln Glu Phe Gln Asn Ile Ser Gly Gln Asp Met Val Asp 210 215 220

Ala Ile Asn Glu Cys Tyr Asp Gly Tyr Phe Gln Glu Leu Leu Val Ala 225 230 235 240

Ile Val Leu Cys Val Arg Asp Lys Pro Ala Tyr Phe Ala Tyr Arg Leu 245 250 255

Tyr Ser Ala Ile His Asp Phe Gly Phe His Asn Lys Thr Val Ile Arg 260 265 270

Ile Leu Ile Ala Arg Ser Glu Ile Asp Leu Leu Thr Ile Arg Lys Arg

152

275 280 285

Tyr Lys Glu Arg Tyr Gly Lys Ser Leu Phe His Asp Ile Arg Asn Phe 295

Ala Ser Gly His Tyr Lys Lys Ala Leu Leu Ala Ile Cys Ala Gly Asp 310 315

Ala Glu Asp Tyr

<210> 94

<211> 61 <212> PRT <213> Homo sapiens

<400> 94

Met Asp Pro Asn Cys Ser Cys Ala Ala Gly Val Ser Cys Thr Cys Ala

Gly Ser Cys Lys Cys Lys Glu Cys Lys Cys Thr Ser Cys Lys Lys Ser 20 25

Cys Cys Ser Cys Cys Pro Val Gly Cys Ser Lys Cys Ala Gln Gly Cys 40

Val Cys Lys Gly Ala Ser Glu Lys Cys Ser Cys Cys Asp

<210> 95 <211> 346 <212> PRT <213> Homo sapiens

<400> 95

Met Ala Met Val Ser Glu Phe Leu Lys Gln Ala Trp Phe Ile Glu Asn 10

Glu Glu Glu Tyr Val Gln Thr Val Lys Ser Ser Lys Gly Pro 25

Gly Ser Ala Val Ser Pro Tyr Pro Thr Phe Asn Pro Ser Ser Asp Val 40

Ala Ala Leu His Lys Ala Ile Met Val Lys Gly Val Asp Glu Ala Thr 50 55

Ile 65	Ile	Asp	Ile	Leu	Thr 70	Lys	Arg	Asn	Asn	Ala 75	Gln	Arg	Gln	Gln	Ile 80	
Lys	Ala	Ala	Tyr	Leu 85	Gln	Glu	Thr	Gly	Lys 90	Pro	Leu	Asp	Glu	Thr 95	Leu	
Lys	Lys	Ala	Leu 100	Thr	Gly	His	Leu	Glu 105	Glu	Val	Val	Leu	Ala 110	Leu	Leu	
Lys	Thr	Pro 115	Ala	Gln	Phe	Asp	Ala 120	Asp	Glu	Leu	Arg	Ala 125	Ala	Met	Lys	
Gly	Leu 130	Gly	Thr	Asp	Glu	Asp 135	Thr	Leu	Ile	Glu	Ile 140	Leu	Ala	Ser	Arg	
Thr 145	Asn	Lys	Glu	Ile	Arg 150	Asp	Ile	Asn	Arg	Val 155	Tyr	Arg	Glu	Glu	Leu 160	
Lys	Arg	Asp	Leu	Ala 165	Lys	Asp	Ile	Thr	Ser 170	Asp	Thr	Ser	Gly	Asp 175	Phe	
Arg	Asn	Ala	Leu 180	Leu	Ser	Leu	Ala	Lys 185	Gly	Asp	Arg	Ser	Glu 190	Asp	Phe	f
Gly	Val	Asn 195	Glu	Asp	Leu	Ala	Asp 200	Ser	Asp	Ala	Arg	Ala 205	Leu	Tyr	Glu	
Ala	Gly 210	Glu	Arg	Arg	Lys	Gly 215	Thr	Asp	Val	Asn	Val 220	Phe	Asn	Thr	Ile	
Leu 225	Thr	Thr	Arg	Ser	Tyr 230	Pro	Gln	Leu	Arg	Arg 235	Val	Phe	Gln	Lys	Tyr 240	
Thr	Lys	Tyr	Ser	Lys 245	His	Asp	Met	Asn	Lys 250	Val	Leu	Asp	Leu	Glu 255	Leu	
Lys	Gly	Asp	Ile 260	Glu	Lys	Cys	Leu	Thr 265	Ala	Ile	Val	Lys	Cys 270	Ala	Thr	
Ser	Lys	Pro 275	Ala	Phe	Phe	Ala	Glu 280	Lys	Leu	His	Gln	Ala 285	Met	Lys	Gly	
Val	Gly 290	Thr	Arg	His	Lys	Ala 295	Leu	Ile	Arg	Ile	Met 300	Val	Ser	Arg	Ser	
Glu 305	Ile	Asp	Met	Asn	Asp 310	Ile	Lys	Ala	Phe	Tyr 315	Gln	Lys	Met	Tyr	Gly 320	

Ile Ser Leu Cys Gln Ala Ile Leu Asp Glu Thr Lys Gly Asp Tyr Glu 325 330

Lys Ile Leu Val Ala Leu Cys Gly Gly Asn 340

<210> 96 <211> 132 <212> PRT <213> Homo sapiens

<400> 96

Met Lys Ser Ser Gly Leu Phe Pro Phe Leu Val Leu Leu Ala Leu Gly 10

Thr Leu Ala Pro Trp Ala Val Glu Gly Ser Gly Lys Ser Phe Lys Ala 25

Gly Val Cys Pro Pro Lys Lys Ser Ala Gln Cys Leu Arg Tyr Lys Lys 40

Pro Glu Cys Gln Ser Asp Trp Gln Cys Pro Gly Lys Lys Arg Cys Cys 55

Pro Asp Thr Cys Gly Ile Lys Cys Leu Asp Pro Val Asp Thr Pro Asn 70 75

Pro Thr Arg Arg Lys Pro Gly Lys Cys Pro Val Thr Tyr Gly Gln Cys 90

Leu Met Leu Asn Pro Pro Asn Phe Cys Glu Met Asp Gly Gln Cys Lys 100 105

Arg Asp Leu Lys Cys Cys Met Gly Met Cys Gly Lys Ser Cys Val Ser 115 120

Pro Val Lys Ala 130

<210> 97

<211> 764

<212> PRT

<213> Homo sapiens

<400> 97

Met Leu Leu Phe Val Leu Thr Cys Leu Leu Ala Val Phe Pro Ala Ile

1 5 10 15

Ser Thr Lys Ser Pro Ile Phe Gly Pro Glu Glu Val Asn Ser Val Glu 20 25 30

Gly Asn Ser Val Ser Ile Thr Cys Tyr Tyr Pro Pro Thr Ser Val Asn 35 40 45

Arg His Thr Arg Lys Tyr Trp Cys Arg Gln Gly Ala Arg Gly Gly Cys 50 55

Ile Thr Leu Ile Ser Ser Glu Gly Tyr Val Ser Ser Lys Tyr Ala Gly 65 70 75 80

Arg Ala Asn Leu Thr Asn Phe Pro Glu Asn Gly Thr Phe Val Val Asn 85 90 95

Ile Ala Gln Leu Ser Gln Asp Asp Ser Gly Arg Tyr Lys Cys Gly Leu
100 105 110

Gly Ile Asn Ser Arg Gly Leu Ser Phe Asp Val Ser Leu Glu Val Ser 115 120 125

Gln Gly Pro Gly Leu Leu Asn Asp Thr Lys Val Tyr Thr Val Asp Leu 130 140

Gly Arg Thr Val Thr Ile Asn Cys Pro Phe Lys Thr Glu Asn Ala Gln 145 150 155 160

Lys Arg Lys Ser Leu Tyr Lys Gln Ile Gly Leu Tyr Pro Val Leu Val 165 170 175

Ile Asp Ser Ser Gly Tyr Val Asn Pro Asn Tyr Thr Gly Arg Ile Arg
180 185 190

Leu Asp Ile Gln Gly Thr Gly Gln Leu Leu Phe Ser Val Val Ile Asn 195 200 205

Gln Leu Arg Leu Ser Asp Ala Gly Gln Tyr Leu Cys Gln Ala Gly Asp 210 215 220

Asp Ser Asn Ser Asn Lys Lys Asn Ala Asp Leu Gln Val Leu Lys Pro 225 230 235 240

Glu Pro Glu Leu Val Tyr Glu Asp Leu Arg Gly Ser Val Thr Phe His 245 250 255

156

Cys Ala Leu Gly Pro Glu Val Ala Asn Val Ala Lys Phe Leu Cys Arq Gln Ser Ser Gly Glu Asn Cys Asp Val Val Val Asn Thr Leu Gly Lys Arg Ala Pro Ala Phe Glu Gly Arg Ile Leu Leu Asn Pro Gln Asp Lys Asp Gly Ser Phe Ser Val Val Ile Thr Gly Leu Arg Lys Glu Asp Ala Gly Arg Tyr Leu Cys Gly Ala His Ser Asp Gly Gln Leu Gln Glu Gly Ser Pro Ile Gln Ala Trp Gln Leu Phe Val Asn Glu Glu Ser Thr Ile Pro Arg Ser Pro Thr Val Val Lys Gly Val Ala Gly Gly Ser Val Ala Val Leu Cys Pro Tyr Asn Arg Lys Glu Ser Lys Ser Ile Lys Tyr Trp Cys Leu Trp Glu Gly Ala Gln Asn Gly Arg Cys Pro Leu Leu Val Asp Ser Glu Gly Trp Val Lys Ala Gln Tyr Glu Gly Arg Leu Ser Leu Leu Glu Glu Pro Gly Asn Gly Thr Phe Thr Val Ile Leu Asn Gln Leu Thr Ser Arg Asp Ala Gly Phe Tyr Trp Cys Leu Thr Asn Gly Asp Thr Leu Trp Arg Thr Thr Val Glu Ile Lys Ile Ile Glu Gly Glu Pro Asn Leu Lys Val Pro Gly Asn Val Thr Ala Val Leu Gly Glu Thr Leu Lys Val Pro Cys His Phe Pro Cys Lys Phe Ser Ser Tyr Glu Lys Tyr Trp Cys

Lys Trp Asn Asn Thr Gly Cys Gln Ala Leu Pro Ser Gln Asp Glu Gly 500 505 Pro Ser Lys Ala Phe Val Asn Cys Asp Glu Asn Ser Arg Leu Val Ser Leu Thr Leu Asn Leu Val Thr Arg Ala Asp Glu Gly Trp Tyr Trp Cys 530 535 Gly Val Lys Gln Gly His Phe Tyr Gly Glu Thr Ala Ala Val Tyr Val 550 555 Ala Val Glu Glu Arg Lys Ala Ala Gly Ser Arg Asp Val Ser Leu Ala 565 570 Lys Ala Asp Ala Ala Pro Asp Glu Lys Val Leu Asp Ser Gly Phe Arq 580 585 Glu Ile Glu Asn Lys Ala Ile Gln Asp Pro Arg Leu Phe Ala Glu Glu 595 Lys Ala Val Ala Asp Thr Arg Asp Gln Ala Asp Gly Ser Arg Ala Ser 610 615 Val Asp Ser Gly Ser Ser Glu Glu Gln Gly Gly Ser Ser Arg Ala Leu 625 635 Val Ser Thr Leu Val Pro Leu Gly Leu Val Leu Ala Val Gly Ala Val Ala Val Gly Val Ala Arg Ala Arg His Arg Lys Asn Val Asp Arg Val 660 Ser Ile Arg Ser Tyr Arg Thr Asp Ile Ser Met Ser Asp Phe Glu Asn 675 680 Ser Arg Glu Phe Gly Ala Asn Asp Asn Met Gly Ala Ser Ser Ile Thr 690 695

740 745 750

730

Gln Glu Thr Ser Leu Gly Gly Lys Glu Glu Phe Val Ala Thr Thr Glu

Ser Thr Thr Glu Thr Lys Glu Pro Lys Lys Ala Lys Arg Ser Ser Lys

Glu Glu Ala Glu Met Ala Tyr Lys Asp Phe Leu Leu Gln Ser Ser Thr

710

705

Val Ala Ala Glu Ala Gln Asp Gly Pro Gln Glu Ala 755 760

<210> 98

<211> 702

<212> PRT

<213> Homo sapiens

<400> 98

Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln 1 5 10 15

Arg Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr 20 25 30

Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly 35 40 45

Lys Glu Val Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly 50 55 60

Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile 65 70 75 80

Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser 85 90 95

Gly Arg Glu Ile Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Ile 100 105 110

Ile Gln Asn Asp Thr Gly Phe Tyr Thr Leu His Val Ile Lys Ser Asp 115 120 125

Leu Val Asn Glu Glu Ala Thr Gly Gln Phe Arg Val Tyr Pro Glu Leu 130 135 140

Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro Val Glu Asp Lys 145 150 155 160

Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asp Ala Thr Tyr 165 170 175

Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190

Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn Val Thr Arg Asn 195 200 205

Asp Thr Ala Ser Tyr Lys Cys Glu Thr Gln Asn Pro Val Ser Ala Arg 210 215 220

Arg Ser Asp Ser Val Ile Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro 225 230 235 240

Thr Ile Ser Pro Leu Asn Thr Ser Tyr Arg Ser Gly Glu Asn Leu Asn 245 250 255

Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Phe . 260 265 270

Val Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn 275 280 285

Ile Thr Val Asn Asn Ser Gly Ser Tyr Thr Cys Gln Ala His Asn Ser 290 295 300

Asp Thr Gly Leu Asn Arg Thr Thr Val Thr Thr Ile Thr Val Tyr Ala 305 310 315 320

Glu Pro Pro Lys Pro Phe Ile Thr Ser Asn Asn Ser Asn Pro Val Glu
325 330 335

Asp Glu Asp Ala Val Ala Leu Thr Cys Glu Pro Glu Ile Gln Asn Thr 340 345 350

Thr Tyr Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg 355 360 365

Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu Thr Leu Leu Ser Val Thr 370 375 380

Arg Asn Asp Val Gly Pro Tyr Glu Cys Gly Ile Gln Asn Glu Leu Ser 385 390 395 400

Val Asp His Ser Asp Pro Val Ile Leu Asn Val Leu Tyr Gly Pro Asp
405 410 415

Asp Pro Thr Ile Ser Pro Ser Tyr Thr Tyr Tyr Arg Pro Gly Val Asn 420 425 430

Leu Ser Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser

160

435 440 445

Trp Leu Ile Asp Gly Asn Ile Gln Gln His Thr Gln Glu Leu Phe Ile 450 455 460

Ser Asn Ile Thr Glu Lys Asn Ser Gly Leu Tyr Thr Cys Gln Ala Asn 465 470 475 480

Asn Ser Ala Ser Gly His Ser Arg Thr Thr Val Lys Thr Ile Thr Val 485 490 495

Ser Ala Glu Leu Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro 500 505 510

Val Glu Asp Lys Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Ala Gln 515 520 525

Asn Thr Thr Tyr Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser 530 540

Pro Arg Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn 545 550 550 560

Val Thr Arg Asn Asp Ala Arg Ala Tyr Val Cys Gly Ile Gln Asn Ser 565 570 575

Val Ser Ala Asn Arg Ser Asp Pro Val Thr Leu Asp Val Leu Tyr Gly 580 585 590

Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp Ser Ser Tyr Leu Ser Gly 595 600 605

Ala Asn Leu Asn Leu Ser Cys His Ser Ala Ser Asn Pro Ser Pro Gln 610 615 620

Tyr Ser Trp Arg Ile Asn Gly Ile Pro Gln Gln His Thr Gln Val Leu 625 630 635 640

Phe Ile Ala Lys Ile Thr Pro Asn Asn Gly Thr Tyr Ala Cys Phe 645 650 655

Val Ser Asn Leu Ala Thr Gly Arg Asn Asn Ser Ile Val Lys Ser Ile 660 665 670

Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu Ser Ala Gly Ala Thr 675 680 685

161

Val Gly Ile Met Ile Gly Val Leu Val Gly Val Ala Leu Ile 690 695

<210> 99

<211> 1015 <212> PRT

<213> Homo sapiens

<400> 99

Met Gly Pro Pro Leu Pro Leu Leu Leu Leu Leu Leu Leu Leu Pro ' 10

Pro Arg Val Leu Pro Ala Ala Pro Ser Ser Val Pro Arg Gly Arg Gln 25

Leu Pro Gly Arg Leu Gly Cys Leu Leu Glu Glu Gly Leu Cys Gly Ala 35 40

Ser Glu Ala Cys Val Asn Asp Gly Val Phe Gly Arg Cys Gln Lys Val 55

Pro Ala Met Asp Phe Tyr Arg Tyr Glu Val Ser Pro Val Ala Leu Gln

Arg Leu Arg Val Ala Leu Gln Lys Leu Ser Gly Thr Gly Phe Thr Trp

Gln Asp Asp Tyr Thr Gln Tyr Val Met Asp Gln Glu Leu Ala Asp Leu 100 105

Pro Lys Thr Tyr Leu Arg Arg Pro Glu Ala Ser Ser Pro Ala Arg Pro 115 120

Ser Lys His Ser Val Gly Ser Glu Arg Arg Tyr Ser Arg Glu Gly Gly 130 135

Ala Ala Leu Ala Asn Ala Leu Arg Arg His Leu Pro Phe Leu Glu Ala 145 155

Leu Ser Gln Ala Pro Ala Ser Asp Val Leu Ala Arg Thr His Thr Ala 165 170 175

Gln Asp Arg Pro Pro Ala Glu Gly Asp Asp Arg Phe Ser Glu Ser Ile 180 185 190

Leu Thr Tyr Val Ala His Thr Ser Ala Leu Thr Tyr Pro Pro Gly Pro Arg Thr Gln Leu Arg Glu Asp Leu Leu Pro Arg Thr Leu Gly Gln Leu Gln Pro Asp Glu Leu Ser Pro Lys Val Asp Ser Gly Val Asp Arq His His Leu Met Ala Ala Leu Ser Ala Tyr Ala Ala Gln Arg Pro Pro Ala Pro Pro Gly Glu Gly Ser Leu Glu Pro Gln Tyr Leu Leu Arq Ala Pro Ser Arg Met Pro Arg Pro Leu Leu Ala Pro Ala Ala Pro Gln Lys Trp Pro Ser Pro Leu Gly Asp Ser Glu Asp Pro Ser Ser Thr Gly Asp Gly Ala Arg Ile His Thr Leu Leu Lys Asp Leu Gln Arg Gln Pro Ala Glu Val Arg Gly Leu Ser Gly Leu Glu Leu Asp Gly Met Ala Glu Leu Met Ala Gly Leu Met Gln Gly Val Asp His Gly Val Ala Arg Gly Ser Pro Gly Arg Ala Ala Leu Gly Glu Ser Gly Glu Gln Ala Asp Gly Pro Lys Ala Thr Leu Arg Gly Asp Ser Phe Pro Asp Asp Gly Val Gln Asp Asp Asp Asp Arg Leu Tyr Gln Glu Val His Arg Leu Ser Ala Thr Leu Gly Gly Leu Leu Gln Asp His Gly Ser Arg Leu Leu Pro Gly Ala Leu Pro Phe Ala Arg Pro Leu Asp Met Glu Arg Lys Lys Ser Glu His Pro Glu

Ser Ser Leu Ser Ser Glu Glu Glu Thr Ala Gly Val Glu Asn Val Lys

435 440 445

Ser Gln Thr Tyr Ser Lys Asp Leu Leu Gly Gln Gln Pro His Ser Glu 450 455 460

Pro Gly Ala Ala Ala Phe Gly Glu Leu Gln Asn Gln Met Pro Gly Pro 465 470 475 480

Ser Lys Glu Glu Gln Ser Leu Pro Ala Gly Ala Gln Glu Ala Leu Ser 485 490 495

Asp Gly Leu Gln Leu Glu Val Gln Pro Ser Glu Glu Glu Ala Arg Gly 500 505 510

Tyr Ile Val Thr Asp Arg Asp Pro Leu Arg Pro Glu Glu Gly Arg Arg 515 520 . 525

Leu Val Glu Asp Val Ala Arg Leu Leu Gln Val Pro Ser Ser Ala Phe 530 535 540

Ala Asp Val Glu Val Leu Gly Pro Ala Val Thr Phe Lys Val Ser Ala 545 550 555 560

Asn Val Gln Asn Val Thr Thr Glu Asp Val Glu Lys Ala Thr Val Asp 565 570 575

Asn Lys Asp Lys Leu Glu Glu Thr Ser Gly Leu Lys Ile Leu Gln Thr 580 585 590

Gly Val Gly Ser Lys Ser Lys Leu Lys Phe Leu Pro Pro Gln Ala Glu 595 600 605

Gln Glu Asp Ser Thr Lys Phe Ile Ala Leu Thr Leu Val Ser Leu Ala 610 620

Cys Ile Leu Gly Val Leu Leu Ala Ser Gly Leu Ile Tyr Cys Leu Arg 625 630 635

His Ser Ser Gln His Arg Leu Lys Glu Lys Leu Ser Gly Leu Gly Gly 645 650 655

Asp Pro Gly Ala Asp Ala Thr Ala Ala Tyr Gln Glu Leu Cys Arg Gln 660 665 670

Arg Met Ala Thr Arg Pro Pro Asp Arg Pro Glu Gly Pro His Thr Ser 675 680 685

Arg Ile Ser Ser Val Ser Ser Gln Phe Ser Asp Gly Pro Ile Pro Ser Pro Ser Ala Arg Ser Ser Ala Ser Ser Trp Ser Glu Glu Pro Val Gln Ser Asn Met Asp Ile Ser Thr Gly His Met Ile Leu Ser Tyr Met Glu Asp His Leu Lys Asn Lys Asn Arg Leu Glu Lys Glu Trp Glu Ala Leu Cys Ala Tyr Gln Ala Glu Pro Asn Ser Ser Phe Val Ala Gln Arq Glu Glu Asn Val Pro Lys Asn Arg Ser Leu Ala Val Leu Thr Tyr Asp His Ser Arg Val Leu Leu Lys Ala Glu Asn Ser His Ser His Ser Asp Tyr Ile Asn Ala Ser Pro Ile Met Asp His Asp Pro Arg Asn Pro Ala Tyr Ile Ala Thr Gln Gly Pro Leu Pro Ala Thr Val Ala Asp Phe Trp Gln Met Val Trp Glu Ser Gly Cys Val Val Ile Val Met Leu Thr Pro Leu Ala Glu Asn Gly Val Arg Gln Cys Tyr His Tyr Trp Pro Asp Glu Gly Ser Asn Leu Tyr His Ile Tyr Glu Val Asn Leu Val Ser Glu His Ile Trp Cys Glu Asp Phe Leu Val Arg Ser Phe Tyr Leu Lys Asn Leu Gln Thr Asn Glu Thr Arg Thr Val Thr Gln Phe His Phe Leu Ser Trp Tyr Asp Arg Gly Val Pro Ser Ser Ser Arg Ser Leu Leu Asp Phe Arg Arg

Lys Val Asn Lys Cys Tyr Arg Gly Arg Ser Cys Pro Ile Ile Val His 930 935 940

Cys Ser Asp Gly Ala Gly Arg Ser Gly Thr Tyr Val Leu Ile Asp Met 945 950 955 960

Val Leu Asn Lys Met Ala Lys Gly Ala Lys Glu Ile Asp Ile Ala Ala 965 970 975

Thr Leu Glu His Leu Arg Asp Gln Arg Pro Gly Met Val Gln Thr Lys 980 985 990

Glu Gln Phe Glu Phe Ala Leu Thr Ala Val Ala Glu Glu Val Asn Ala 995 1000 1005

Ile Leu Lys Ala Leu Pro Gln 1010 1015

<210> 100

<211> 1480

<212> PRT

<213> Homo sapiens

<400> 100

Met Gln Arg Ser Pro Leu Glu Lys Ala Ser Val Val Ser Lys Leu Phe 1 5 10 15

Phe Ser Trp Thr Arg Pro Ile Leu Arg Lys Gly Tyr Arg Gln Arg Leu 20 25 30

Glu Leu Ser Asp Ile Tyr Gln Ile Pro Ser Val Asp Ser Ala Asp Asn 35 40 45

Leu Ser Glu Lys Leu Glu Arg Glu Trp Asp Arg Glu Leu Ala Ser Lys 50 55 60

Lys Asn Pro Lys Leu Ile Asn Ala Leu Arg Arg Cys Phe Phe Trp Arg 65 70 75 80

Phe Met Phe Tyr Gly Ile Phe Leu Tyr Leu Gly Glu Val Thr Lys Ala 85 90 95

Val Gln Pro Leu Leu Gly Arg Ile Ile Ala Ser Tyr Asp Pro Asp 100 105 110

Asn Lys Glu Glu Arg Ser Ile Ala Ile Tyr Leu Gly Ile Gly Leu Cys

115 120 125

Leu Leu Phe Ile Val Arg Thr Leu Leu Leu His Pro Ala Ile Phe Gly 130 135 140

Leu His His Ile Gly Met Gln Met Arg Ile Ala Met Phe Ser Leu Ile 145 150 155 160

Tyr Lys Lys Thr Leu Lys Leu Ser Ser Arg Val Leu Asp Lys Ile Ser 165 170 175

Ile Gly Gln Leu Val Ser Leu Leu Ser Asn Asn Leu Asn Lys Phe Asp 180 185 190

Glu Gly Leu Ala Leu Ala His Phe Val Trp Ile Ala Pro Leu Gln Val 195 200 205

Ala Leu Leu Met Gly Leu Ile Trp Glu Leu Leu Gln Ala Ser Ala Phe 210 215 220

Cys Gly Leu Gly Phe Leu Ile Val Leu Ala Leu Phe Gln Ala Gly Leu 225 230 235 240

Gly Arg Met Met Lys Tyr Arg Asp Gln Arg Ala Gly Lys Ile Ser 245 250 255

Glu Arg Leu Val Ile Thr Ser Glu Met Ile Glu Asn Ile Gln Ser Val 260 265 270

Lys Ala Tyr Cys Trp Glu Glu Ala Met Glu Lys Met Ile Glu Asn Leu 275 280 285

Arg Gln Thr Glu Leu Lys Leu Thr Arg Lys Ala Ala Tyr Val Arg Tyr 290 295 300

Phe Asn Ser Ser Ala Phe Phe Phe Ser Gly Phe Phe Val Val Phe Leu 305 310 315 320

Ser Val Leu Pro Tyr Ala Leu Ile Lys Gly Ile Ile Leu Arg Lys Ile 325 330 335

Phe Thr Thr Ile Ser Phe Cys Ile Val Leu Arg Met Ala Val Thr Arg 340 345 350

Gln Phe Pro Trp Ala Val Gln Thr Trp Tyr Asp Ser Leu Gly Ala Ile 355 360 365

Asn Lys Ile Gln Asp Phe Leu Gln Lys Gln Glu Tyr Lys Thr Leu Glu 370 375 Tyr Asn Leu Thr Thr Glu Val Val Met Glu Asn Val Thr Ala Phe 385 390 395 Trp Glu Glu Gly Phe Gly Glu Leu Phe Glu Lys Ala Lys Gln Asn Asn Asn Asn Arg Lys Thr Ser Asn Gly Asp Asp Ser Leu Phe Phe Ser Asn 425 Phe Ser Leu Leu Gly Thr Pro Val Leu Lys Asp Ile Asn Phe Lys Ile Glu Arg Gly Gln Leu Leu Ala Val Ala Gly Ser Thr Gly Ala Gly Lys Thr Ser Leu Met Met Ile Met Gly Glu Leu Glu Pro Ser Glu Gly 470 Lys Ile Lys His Ser Gly Arg Ile Ser Phe Cys Ser Gln Phe Ser Trp Ile Met Pro Gly Thr Ile Lys Glu Asn Ile Ile Phe Gly Val Ser Tyr 500 505 Asp Glu Tyr Arg Tyr Arg Ser Val Ile Lys Ala Cys Gln Leu Glu Glu 515 520 Asp Ile Ser Lys Phe Ala Glu Lys Asp Asn Ile Val Leu Gly Glu Gly 530 535 540 Gly Ile Thr Leu Ser Gly Gly Gln Arg Ala Arg Ile Ser Leu Ala Arg 545 550 Ala Val Tyr Lys Asp Ala Asp Leu Tyr Leu Leu Asp Ser Pro Phe Gly 565 570 Tyr Leu Asp Val Leu Thr Glu Lys Glu Ile Phe Glu Ser Cys Val Cys 580 Lys Leu Met Ala Asn Lys Thr Arg Ile Leu Val Thr Ser Lys Met Glu 595

His Leu Lys Lys Ala Asp Lys Ile Leu Ile Leu Asn Glu Gly Ser Ser Tyr Phe Tyr Gly Thr Phe Ser Glu Leu Gln Asn Leu Gln Pro Asp Phe 635 Ser Ser Lys Leu Met Gly Cys Asp Ser Phe Asp Gln Phe Ser Ala Glu 650 Arg Arg Asn Ser Ile Leu Thr Glu Thr Leu His Arg Phe Ser Leu Glu 665 Gly Asp Ala Pro Val Ser Trp Thr Glu Thr Lys Lys Gln Ser Phe Lys 680 Gln Thr Gly Glu Phe Gly Glu Lys Arg Lys Asn Ser Ile Leu Asn Pro 695 Ile Asn Ser Ile Arg Lys Phe Ser Ile Val Gln Lys Thr Pro Leu Gln 710 Met Asn Gly Ile Glu Glu Asp Ser Asp Glu Pro Leu Glu Arg Arg Leu Ser Leu Val Pro Asp Ser Glu Gln Gly Glu Ala Ile Leu Pro Arg Ile 740 Ser Val Ile Ser Thr Gly Pro Thr Leu Gln Ala Arg Arg Arg Gln Ser 760 Val Leu Asn Leu Met Thr His Ser Val Asn Gln Gly Gln Asn Ile His Arg Lys Thr Thr Ala Ser Thr Arg Lys Val Ser Leu Ala Pro Gln Ala 795 Asn Leu Thr Glu Leu Asp Ile Tyr Ser Arg Arg Leu Ser Gln Glu Thr 805 810 Gly Leu Glu Ile Ser Glu Glu Ile Asn Glu Glu Asp Leu Lys Glu Cys

830

845

825

Leu Phe Asp Asp Met Glu Ser Ile Pro Ala Val Thr Thr Trp Asn Thr 840

Tyr Leu Arg Tyr Ile Thr Val His Lys Ser Leu Ile Phe Val Leu Ile 850 855 860

- Trp Cys Leu Val Ile Phe Leu Ala Glu Val Ala Ala Ser Leu Val Val 865 870 875 880
- Leu Trp Leu Leu Gly Asn Thr Pro Leu Gln Asp Lys Gly Asn Ser Thr 885 890 895
- His Ser Arg Asn Asn Ser Tyr Ala Val Ile Ile Thr Ser Thr Ser Ser 900 905 910
- Tyr Tyr Val Phe Tyr Ile Tyr Val Gly Val Ala Asp Thr Leu Leu Ala 915 920 925
- Met Gly Phe Phe Arg Gly Leu Pro Leu Val His Thr Leu Ile Thr Val 930 935 940
- Ser Lys Ile Leu His His Lys Met Leu His Ser Val Leu Gln Ala Pro 945 950 955 960
- Met Ser Thr Leu Asn Thr Leu Lys Ala Gly Gly Ile Leu Asn Arg Phe 965 970 975
- Ser Lys Asp Ile Ala Ile Leu Asp Asp Leu Leu Pro Leu Thr Ile Phe 980 985 990
- Asp Phe Ile Gln Leu Leu Ile Val Ile Gly Ala Ile Ala Val Val 995 1000 1005
- Ala Val Leu Gln Pro Tyr Ile Phe Val Ala Thr Val Pro Val Ile 1010 1015 1020
- Val Ala Phe Ile Met Leu Arg Ala Tyr Phe Leu Gln Thr Ser Gln 1025 1035
- Gln Leu Lys Gln Leu Glu Ser Glu Gly Arg Ser Pro Ile Phe Thr 1040 1045 1050
- His Leu Val Thr Ser Leu Lys Gly Leu Trp Thr Leu Arg Ala Phe 1055 1060 1065
- Gly Arg Gln Pro Tyr Phe Glu Thr Leu Phe His Lys Ala Leu Asn 1070 1075 1080
- Leu His Thr Ala Asn Trp Phe Leu Tyr Leu Ser Thr Leu Arg Trp

WO 2005/067667	PCT/US2005/000638
----------------	-------------------

1085 1090 1095

Phe	Gln 1100		Arg	Ile	Glu	Met 1105		Phe	Val	Ile	Phe 1110	Phe	Ile	Ala
Val	Thr 1115	Phe	Ile	Ser	Ile	Leu 1120	Thr	Thr	Gly	Glu	Gly 1125	Glu	Gly	Arg
Val	Gly 1130	Ile	Ile	Leu	Thr	Leu 1135	Ala	Met	Asn	Ile	Met 1140	Ser	Thr	Leu
Gln	Trp 1145	Ala	Val	Asn	Ser	Ser 1150	Ile	Asp	Val	Asp	Ser 1155	Leu	Met	Arg
Ser	Val 1160	Ser	Arg	val	Phe	Lys 1165	Phe	Ile	Asp	Met	Pro 1170	Thr	Glu	Gly
Lys	Pro 1175	Thr	Lys	Ser	Thr	Lys 1180	Pro	Tyr	Lys	Asn	Gly 1185	Gln	Leu	Ser
Lys	Val 1190	Met	Ile	Ile	Glu	Asn 1195	Ser	His	Val	Lys	Lys 1200	Asp	Asp	Ile
Trp	Pro 1205	Ser	Gly	Gly	Gln	Met 1210	Thr	Val	Lys	Asp	Leu 1215	Thr	Ala	Lys
Tyr	Thr 1220	Glu	Gly	Gly	Asn	Ala 1225	Ile	Leu	Glu	Asn	Ile 1230	Ser	Phe	Ser
Ile	Ser 1235	Pro	Gly	Gln	Arg	Val 1240	Gly	Leu	Leu	Gly	Arg (1245	Thr	Gly	Ser
Gly	Lys 1250	Ser	Thr	Leu	Leu	Ser 1255	Ala	Phe	Leu	Arg	Leu 1260	Leu	Asn	Thr
Glu	Gly 1265	Glu	Ile	Gln	Ile	Asp 1270	Gly	Val	Ser	Trp	Asp 1275	Ser	Ile	Thr
Leu	Gln 1280	Gln	Trp	Arg	Lys	Ala 1285	Phe	Gly	Val	Ile	Pro 1290	Gln	Lys	Val
Phe	Ile 1295	Phe	Ser	Gly	Thr	Phe 1300	Arg	Lys	Asn	Leu	Asp 1305	Pro	Tyr	Glu
Gln	Trp 1310	Ser	Asp	Gln	Glu	Ile 1315	Trp	Lys	Val	Ala	Asp 1320	Glu	Val	Gly

1325 1330 1335 Leu Val Asp Gly Gly Cys Val Leu Ser His Gly His Lys Gln Leu 1340 1345 1350 Met Cys Leu Ala Arg Ser Val Leu Ser Lys Ala Lys Ile Leu Leu 1355 1360 1365 Leu Asp Glu Pro Ser Ala His Leu Asp Pro Val Thr Tyr Gln Ile 1370 1375 Ile Arg Arg Thr Leu Lys Gln Ala Phe Ala Asp Cys Thr Val Ile 1385 1390 1395 Leu Cys Glu His Arg Ile Glu Ala Met Leu Glu Cys Gln Gln Phe 1400 1405 1410 Leu Val Ile Glu Glu Asn Lys Val Arg Gln Tyr Asp Ser Ile Gln 1415 1420 1425 Lys Leu Leu Asn Glu Arg Ser Leu Phe Arg Gln Ala Ile Ser Pro 1430 1435 1440 Ser Asp Arg Val Lys Leu Phe Pro His Arg Asn Ser Ser Lys Cys 1445 1450 1455 Lys Ser Lys Pro Gln Ile Ala Ala Leu Lys Glu Glu Thr Glu Glu 1460 1465 1470 Glu Val Gln Asp Thr Arg Leu 1475 1480 <210> 101 <211> 270 <212> PRT <213> Homo sapiens <400> 101 Met Lys Pro Lys Met Lys Tyr Ser Thr Asn Lys Ile Ser Thr Ala Lys 5

Leu Arg Ser Val Ile Glu Gln Phe Pro Gly Lys Leu Asp Phe Val

30

10

Trp Lys Asn Thr Ala Ser Lys Ala Leu Cys Phe Lys Leu Gly Lys Ser

25

Gln Gln Lys Ala Lys Glu Val Cys Pro Met Tyr Phe Met Lys Leu Arg 35 40 45

Ser Gly Leu Met Ile Lys Lys Glu Ala Cys Tyr Phe Arg Arg Glu Thr 50 55 60

Thr Lys Arg Pro Ser Leu Lys Thr Gly Arg Lys His Lys Arg His Leu 65 70 75 80

Val Leu Ala Ala Cys Gln Gln Gln Ser Thr Val Glu Cys Phe Ala Phe 85 90 95

Gly Ile Ser Gly Val Gln Lys Tyr Thr Arg Ala Leu His Asp Ser Ser 100 105 110

Ile Thr Gly Ile Ser Pro Ile Thr Glu Tyr Leu Ala Ser Leu Ser Thr
115 120 125

Tyr Asn Asp Gln Ser Ile Thr Phe Ala Leu Glu Asp Glu Ser Tyr Glu 130 135 140

Ile Tyr Val Glu Asp Leu Lys Lys Asp Glu Lys Lys Asp Lys Val Leu 145 150 155 160

Leu Ser Tyr Tyr Glu Ser Gln His Pro Ser Asn Glu Ser Gly Asp Gly 165 170 175

Val Asp Gly Lys Met Leu Met Val Thr Leu Ser Pro Thr Lys Asp Phe 180 185 190

Trp Leu His Ala Asn Asn Lys Glu His Ser Val Glu Leu His Lys Cys 195 200 205

Glu Lys Pro Leu Pro Asp Gln Ala Phe Phe Val Leu His Asn Met His 210 215 220

Ser Asn Cys Val Ser Phe Glu Cys Lys Thr Asp Pro Gly Val Phe Ile 225 230 235 240

Gly Val Lys Asp Asn His Leu Ala Leu Ile Lys Val Asp Ser Ser Glu 245 250 255

Asn Leu Cys Thr Glu Asn Ile Leu Phe Lys Leu Ser Glu Thr 260 265 270

<210> 102 <211> 328 <212> PRT

<213> Homo sapiens

<400> 102

Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro 1 5 10 15

Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly 20 25 30

Gly Gly Gly Ala Arg Ala Glu Val Leu Phe Arg Cys Pro Pro Cys 35 40 45

Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro 50 55 60

Ala Ala Val Ala Ala Gly Gly Ala Arg Met Pro Cys Ala Glu 65 70 75 80

Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu 85 90 95

Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val 115 120 125

Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala 130 135 140

Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly 145 150 155 160

Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly 165 170 175

Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala 180 185 190

Val Phe Arg Glu Lys Val Thr Glu Gln His Arg Gln Met Gly Lys Gly
195 200 205

Gly Lys His His Leu Gly Leu Glu Glu Pro Lys Lys Leu Arg Pro Pro 210 215 220

Pro Ala Arg Thr Pro Cys Gln Gln Glu Leu Asp Gln Val Leu Glu Arg 225 230 235 240

Ile Ser Thr Met Arg Leu Pro Asp Glu Arg Gly Pro Leu Glu His Leu 245 250 255

Tyr Ser Leu His Ile Pro Asn Cys Asp Lys His Gly Leu Tyr Asn Leu 260 265 270

Lys Gln Cys Lys Met Ser Leu Asn Gly Gln Arg Gly Glu Cys Trp Cys 275 280 285

Val Asn Pro Asn Thr Gly Lys Leu Ile Gln Gly Ala Pro Thr Ile Arg 290 295 300

Gly Asp Pro Glu Cys His Leu Phe Tyr Asn Glu Gln Gln Glu Ala Cys 305 310 315 320

Gly Val His Thr Gln Arg Met Gln 325

<210> 103

<211> 148

<212> PRT

<213> Homo sapiens

<400> 103

Met Asp Pro Ala Pro Arg Glu Pro His Ser Thr Ser Leu Leu Val 5 10 15

Phe Phe Leu Phe Gly Ala Pro Leu Asp Ser Leu Pro Ser Met Lys Ala 20 25 30

Leu Ser Pro Val Arg Gly Cys Tyr Glu Ala Val Cys Cys Leu Ser Glu 35 40 45

Arg Ser Leu Ala Ile Ala Arg Gly Arg Gly Lys Gly Pro Ala Ala Glu 50 55 60

Glu Pro Leu Ser Leu Leu Asp Asp Met Asn His Cys Tyr Ser Arg Leu 65 70 75 80

Arg Glu Leu Val Pro Gly Val Pro Arg Gly Thr Gln Leu Ser Gln Val 85 90 95

Glu Ile Leu Gln Arg Val Ile Asp Tyr Ile Leu Asp Leu Gln Val Val 100 \$105\$

Leu Ala Glu Pro Ala Pro Gly Pro Pro Asp Gly Pro His Leu Pro Ile 115 120 125

Gln Thr Ala Glu Leu Ala Pro Glu Leu Val Ile Ser Asn Asp Lys Arg 130 135 140

Ser Phe Cys His 145

<210> 104

<211> 255

<212> PRT

<213 > Homo sapiens

<400> 104

Met Ile Leu Asn Lys Ala Leu Leu Leu Gly Ala Leu Ala Leu Thr Thr 1 5 10 15

Val Met Ser Pro Cys Gly Gly Glu Asp Ile Val Ala Asp His Val Ala 20 25 30

Ser Cys Gly Val Asn Leu Tyr Gln Phe Tyr Gly Pro Ser Gly Gln Tyr 35 40 45

Thr His Glu Phe Asp Gly Asp Glu Gln Phe Tyr Val Asp Leu Glu Arg 50 55 60

Lys Glu Thr Ala Trp Arg Trp Pro Glu Phe Ser Lys Phe Gly Gly Phe 65 70 75 80

Asp Pro Gln Gly Ala Leu Arg Asn Met Ala Val Ala Lys His Asn Leu 85 90 95

Asn Ile Met Ile Lys Arg Tyr Asn Ser Thr Ala Ala Thr Asn Glu Val 100 105 110

Pro Glu Val Thr Val Phe Ser Lys Ser Pro Val Thr Leu Gly Gln Pro 115 120 125

Asn Thr Leu Ile Cys Leu Val Asp Asn Ile Phe Pro Pro Val Val Asn 130 135 140

Ile Thr Trp Leu Ser Asn Gly Gln Ser Val Thr Glu Asp Val Ser Glu
145 150 155 160

Thr Ser Phe Leu Ser Lys Ser Asp His Ser Phe Phe Lys Ile Ser Tyr 165 170 Leu Thr Phe Leu Pro Ser Ala Asp Glu Ile Tyr Asp Cys Lys Val Glu 180 190 185 His Trp Gly Leu Asp Gln Pro Leu Leu Lys His Trp Glu Pro Glu Ile 195 200 205 Pro Ala Pro Met Ser Glu Leu Thr Glu Thr Val Val Cys Ala Leu Gly 210 215 Leu Ser Val Gly Leu Met Gly Ile Val Val Gly Thr Val Phe Ile Ile 225 235 Gln Gly Leu Arg Ser Val Gly Ala Ser Arg His Gln Gly Pro Leu <210> 105 <211> 265 <212> PRT <213> Homo sapiens <220> <221> misc feature <222> (6)..(6) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (12)..(12) <223> Xaa can be any naturally occurring amino acid <220> <221> misc feature <222> (21)..(21)<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (23)..(23) <223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (27)..(27) <223> Xaa can be any naturally occurring amino acid <220> <221> misc feature <222> (33)..(33) <223> Xaa can be any naturally occurring amino acid <220>

```
<221> misc feature<222> (55)..(55)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (73)..(73)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (97)..(97)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (99)..(99)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (111)..(111)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (115)..(115)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (148)..(148)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (156)..(156)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (163)..(163)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (176)..(176)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (215)..(215)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc feature
<222> (217)..(217)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (219)..(219)
```

<223> Xaa can be any naturally occurring amino acid <220> <221> misc_feature <222> (256).. (256) <223> Xaa can be any naturally occurring amino acid <400> 105 Asn His Leu Gln Leu Xaa Arg Met Met Val Pro Xaa Ser Pro Pro Ala 10 Cys Arg Pro Arg Xaa Pro Xaa Cys Asn Lys Xaa Cys Cys Ser Pro Ser 25 Xaa Leu Ser Thr Arg Pro Thr Thr Tyr Thr Gly Gly Thr Pro Arg Glu Pro His Leu Gly Lys Pro Xaa Gly His Gln Ser Ser Thr Cys Thr Lys His Val Pro Leu Arg Gly Cys His Xaa Pro Pro Gln Thr Pro Lys Pro Pro Pro Ala Cys Arg Ala His Gln Ser Met Ser Arg Asn Lys Trp Arg Xaa Arg Xaa Ser Gln Arg Asp Ala Thr Ser Pro Pro Thr Pro Xaa Pro Glu Leu Xaa Pro Ser Asp Trp Ala Cys Thr Gly Thr Asp Lys Arg His 120 Pro Glu Leu Thr Leu Gln Arg Cys Arg Gly His Pro Glu Ser Ser Phe 135

Gln Leu Ser Xaa Ser Pro Lys Val Gly Lys Leu Xaa Ile Leu Gly Ala

Tyr Gly Xaa Phe Trp Arg Arg Lys Pro Leu Ala Trp Ser Gln Lys Xaa 165 170

Lys Glu Leu Pro Val Pro Trp Leu Phe Cys Pro Ala Ser Pro Pro Arg 180 185 190

Glu Ala Asn Gln Trp Pro Met Trp Arg Arg Ser Pro Cys Cys Arg Ile 195 200 205

Gln Arg Leu Leu Gly Ala Xaa Leu Xaa Leu Xaa Pro Gly Asn Arg Ser 210 215 220

Ser His Glu Thr Ser Ser Arg Leu Pro Phe Ser Gly Gln Pro Gln Arg 225 230 235 240

Gln Pro His Asn Ala Cys His Thr Ser Tyr His Pro Ser Arg Leu Xaa 245 250 250

Pro Ser Arg Pro Leu Ser Gly Leu Ile 260 265

<210> 106

<211> 907

<212> PRT

<213> Homo sapiens

<400> 106

Met Asp Thr Ser Arg Leu Gly Val Leu Leu Ser Leu Pro Val Leu Leu 1 5 10 15

Gln Leu Ala Thr Gly Gly Ser Ser Pro Arg Ser Gly Val Leu Leu Arg
20 25 30

Gly Cys Pro Thr His Cys His Cys Glu Pro Asp Gly Arg Met Leu Leu 35 40 45

Arg Val Asp Cys Ser Asp Leu Gly Leu Ser Glu Leu Pro Ser Asn Leu 50 55 60

Ser Val Phe Thr Ser Tyr Leu Asp Leu Ser Met Asn Asn Ile Ser Gln 65 70 75 80

Leu Leu Pro Asn Pro Leu Pro Ser Leu Arg Phe Leu Glu Glu Leu Arg 85 90 95

Leu Ala Gly Asn Ala Leu Thr Tyr Ile Pro Lys Gly Ala Phe Thr Gly 100 105 110

Leu Tyr Ser Leu Lys Val Leu Met Leu Gln Asn Asn Gln Leu Arg His
115 120 125

Val Pro Thr Glu Ala Leu Gln Asn Leu Arg Ser Leu Gln Ser Leu Arg 130 135 140

Leu Asp Ala Asn His Ile Ser Tyr Val Pro Pro Ser Cys Phe Ser Gly 145 150 155 160

Leu His Ser Leu Arg His Leu Trp Leu Asp Asp Asn Ala Leu Thr Glu Ile Pro Val Gln Ala Phe Arg Ser Leu Ser Ala Leu Gln Ala Met Thr Leu Ala Leu Asn Lys Ile His His Ile Pro Asp Tyr Ala Phe Gly Asn Leu Ser Ser Leu Val Val Leu His Leu His Asn Asn Arq Ile His Ser Leu Gly Lys Lys Cys Phe Asp Gly Leu His Ser Leu Glu Thr Leu Asp Leu Asn Tyr Asn Asn Leu Asp Glu Phe Pro Thr Ala Ile Arg Thr Leu Ser Asn Leu Lys Glu Leu Gly Phe His Ser Asn Asn Ile Arg Ser Ile Pro Glu Lys Ala Phe Val Gly Asn Pro Ser Leu Ile Thr Ile His Phe Tyr Asp Asn Pro Ile Gln Phe Val Gly Arg Ser Ala Phe Gln His Leu Pro Glu Leu Arg Thr Leu Thr Leu Asn Gly Ala Ser Gln Ile Thr Glu Phe Pro Asp Leu Thr Gly Thr Ala Asn Leu Glu Ser Leu Thr Leu Thr Gly Ala Gln Ile Ser Ser Leu Pro Gln Thr Val Cys Asn Gln Leu Pro Asn Leu Gln Val Leu Asp Leu Ser Tyr Asn Leu Leu Glu Asp Leu Pro Ser Phe Ser Val Cys Gln Lys Leu Gln Lys Ile Asp Leu Arg His Asn Glu Ile Tyr Glu Ile Lys Val Asp Thr Phe Gln Gln Leu Leu Ser Leu

Arg Ser Leu Asn Leu Ala Trp Asn Lys Ile Ala Ile Ile His Pro Asn 405 Ala Phe Ser Thr Leu Pro Ser Leu Ile Lys Leu Asp Leu Ser Ser Asn 425 Leu Leu Ser Ser Phe Pro Ile Thr Gly Leu His Gly Leu Thr His Leu Lys Leu Thr Gly Asn His Ala Leu Gln Ser Leu Ile Ser Ser Glu Asn Phe Pro Glu Leu Lys Val Ile Glu Met Pro Tyr Ala Tyr Gln Cys Cys 470 Ala Phe Gly Val Cys Glu Asn Ala Tyr Lys Ile Ser Asn Gln Trp Asn 490 Lys Gly Asp Asn Ser Ser Met Asp Asp Leu His Lys Lys Asp Ala Gly 505 Met Phe Gln Ala Gln Asp Glu Arg Asp Leu Glu Asp Phe Leu Leu Asp 515 520 Phe Glu Glu Asp Leu Lys Ala Leu His Ser Val Gln Cys Ser Pro Ser 535 Pro Gly Pro Phe Lys Pro Cys Glu His Leu Leu Asp Gly Trp Leu Ile 550 Arg Ile Gly Val Trp Thr Ile Ala Val Leu Ala Leu Thr Cys Asn Ala 570 565 Leu Val Thr Ser Thr Val Phe Arg Ser Pro Leu Tyr Ile Ser Pro Ile 580 585 Lys Leu Leu Ile Gly Val Ile Ala Ala Val Asn Met Leu Thr Gly Val 595 605 600 Ser Ser Ala Val Leu Ala Gly Val Asp Ala Phe Thr Phe Gly Ser Phe 610 615 620 Ala Arg His Gly Ala Trp Trp Glu Asn Gly Val Gly Cys His Val Ile 625 630 635

Gly Phe Leu Ser Ile Phe Ala Ser Glu Ser Ser Val Phe Leu Leu Thr 645 650 Leu Ala Ala Leu Glu Arg Gly Phe Ser Val Lys Tyr Ser Ala Lys Phe 660 665 Glu Thr Lys Ala Pro Phe Ser Ser Leu Lys Val Ile Ile Leu Leu Cys 680 Ala Leu Leu Ala Leu Thr Met Ala Ala Val Pro Leu Gly Gly Ser Lys Tyr Gly Ala Ser Pro Leu Cys Leu Pro Leu Pro Phe Gly Glu Pro Ser Thr Met Gly Tyr Met Val Ala Leu Ile Leu Leu Asn Ser Leu Cys 725 Phe Leu Met Met Thr Ile Ala Tyr Thr Lys Leu Tyr Cys Asn Leu Asp 745 Lys Gly Asp Leu Glu Asn Ile Trp Asp Cys Ser Met Val Lys His Ile 755 Ala Leu Leu Phe Thr Asn Cys Ile Leu Asn Cys Pro Val Ala Phe 770 775 . 780 Leu Ser Phe Ser Ser Leu Ile Asn Leu Thr Phe Ile Ser Pro Glu Val 785 790 Ile Lys Phe Ile Leu Leu Val Val Pro Leu Pro Ala Cys Leu Asn 805 810 Pro Leu Leu Tyr Ile Leu Phe Asn Pro His Phe Lys Glu Asp Leu Val 820 825 Ser Leu Arg Lys Gln Thr Tyr Val Trp Thr Arg Ser Lys His Pro Ser 835 840 845 Leu Met Ser Ile Asn Ser Asp Asp Val Glu Lys Gln Ser Cys Asp Ser 850 Thr Gln Ala Leu Val Thr Phe Thr Ser Ser Ser Ile Thr Tyr Asp Leu 865 Pro Pro Ser Ser Val Pro Ser Pro Ala Tyr Pro Val Thr Glu Ser Cys

885 890 895

His Leu Ser Ser Val Ala Phe Val Pro Cys Leu 900

<210> 107 <211> 361 <212> PRT

<213> Homo sapiens

<400> 107

Met Asp Pro Leu Gly Ala Ala Lys Pro Gln Trp Pro Trp Arg Arg Cys 5 10

Leu Ala Ala Leu Leu Phe Gln Leu Leu Val Ala Val Cys Phe Phe Ser 20 25

Tyr Leu Arg Val Ser Arg Asp Asp Ala Thr Gly Ser Pro Arg Ala Pro 35 40

Ser Gly Ser Ser Arg Gln Asp Thr Thr Pro Thr Arg Pro Thr Leu Leu 50 55

Ile Leu Leu Trp Thr Trp Pro Phe His Ile Pro Val Ala Leu Ser Arg 70 75

Cys Ser Glu Met Val Pro Gly Thr Ala Asp Cys His Ile Thr Ala Asp 90 85

Arg Lys Val Tyr Pro Gln Ala Asp Thr Val Ile Val His His Trp Asp 100 105 110

Ile Met Ser Asn Pro Lys Ser Arg Leu Pro Pro Ser Pro Arg Pro Gln 115 120 125

Gly Gln Arg Trp Ile Trp Phe Asn Leu Glu Pro Pro Pro Asn Cys Gln 130 135 140

His Leu Glu Ala Leu Asp Arg Tyr Phe Asn Leu Thr Met Ser Tyr Arg 145 150

Ser Asp Ser Asp Ile Phe Thr Pro Tyr Gly Trp Leu Glu Pro Trp Ser 170

Gly Gln Pro Ala His Pro Pro Leu Asn Leu Ser Ala Lys Thr Glu Leu 185 190

Val Ala Trp Ala Val Ser Asn Trp Lys Pro Asp Ser Ala Arg Val Arg 195 200 Tyr Tyr Gln Ser Leu Gln Ala His Leu Lys Val Asp Val Tyr Gly Arg 220 Ser His Lys Pro Leu Pro Lys Gly Thr Met Met Glu Thr Leu Ser Arg Tyr Lys Phe Tyr Leu Ala Phe Glu Asn Ser Leu His Pro Asp Tyr Ile 245 250 Thr Glu Lys Leu Trp Arg Asn Ala Leu Glu Ala Trp Ala Val Pro Val Val Leu Gly Pro Ser Arg Ser Asn Tyr Glu Arg Phe Leu Pro Pro Asp 275 280 Ala Phe Ile His Val Asp Asp Phe Gln Ser Pro Lys Asp Leu Ala Arg 290 295 300 Tyr Leu Gln Glu Leu Asp Lys Asp His Ala Arg Tyr Leu Ser Tyr Phe 305 310 315 Arg Trp Arg Glu Thr Leu Arg Pro Arg Ser Phe Ser Trp Ala Leu Asp Phe Cys Lys Ala Cys Trp Lys Leu Gln Glu Ser Arg Tyr Gln Thr 340 345 350 Val Arg Ser Ile Ala Ala Trp Phe Thr 360 355 <210> 108 <211> 122 <212> PRT <213> Homo sapiens <400> 108 Met Glu Ala Ser Ala Leu Thr Ser Ser Ala Val Thr Ser Val Ala Lys 5 Val Val Arg Val Ala Ser Gly Ser Ala Val Val Leu Pro Leu Ala Arg Ile Ala Thr Val Val Ile Gly Gly Val Val Ala Met Ala Ala Val Pro

40

Met Val Leu Ser Ala Met Gly Phe Thr Ala Ala Gly Ile Ala Ser Ser 50 55 60

Ser Ile Ala Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly 65 70 75 80

Gly Val Ala Ser Gly Ser Leu Val Gly Thr Leu Gln Ser Leu Gly Ala 85 90 95

Thr Gly Leu Ser Gly Leu Thr Lys Phe Ile Leu Gly Ser Ile Gly Ser 100 105 110

Ala Ile Ala Ala Val Ile Ala Arg Phe Tyr 115 120

<210> 109

<211> 375

<212> PRT

<213> Homo sapiens

<400> 109

Met Asp Ala Leu Gln Leu Ala Asn Ser Ala Phe Ala Val Asp Leu Phe 1 5 10 15

Lys Gln Leu Cys Glu Lys Glu Pro Leu Gly Asn Val Leu Phe Ser Pro 20 25 30

Ile Cys Leu Ser Thr Ser Leu Ser Leu Ala Gln Val Gly Ala Lys Gly 35 40 45

Asp Thr Ala Asn Glu Ile Gly Gln Val Leu His Phe Glu Asn Val Lys 50 55 60

Asp Ile Pro Phe Gly Phe Gln Thr Val Thr Ser Asp Val Asn Lys Leu 65 70 75 80

Ser Ser Phe Tyr Ser Leu Lys Leu Ile Lys Arg Leu Tyr Val Asp Lys 85 90 95

Ser Leu Asn Leu Ser Thr Glu Phe Ile Ser Ser Thr Lys Arg Pro Tyr 100 105 110

Ala Lys Glu Leu Glu Thr Val Asp Phe Lys Asp Lys Leu Glu Glu Thr
115 120 125

Lys Gly Gln Ile Asn Asn Ser Ile Lys Asp Leu Thr Asp Gly His Phe

130 135 140

Val Val Asn Ala Ala Tyr Phe Val Gly Lys Trp Met Lys Lys Phe Pro 165 170 175

Glu Ser Glu Thr Lys Glu Cys Pro Phe Arg Leu Asn Lys Thr Asp Thr 180 185 190

Lys Pro Val Gln Met Met Asn Met Glu Ala Thr Phe Cys Met Gly Asn 195 200 205

Ile Asp Ser Ile Asn Cys Lys Ile Ile Glu Leu Pro Phe Gln Asn Lys 210 215 220

His Leu Ser Met Phe Ile Leu Leu Pro Lys Asp Val Glu Asp Glu Ser 225 230 235 240

Thr Gly Leu Glu Lys Ile Glu Lys Gln Leu Asn Ser Glu Ser Leu Ser 245 250 255

Gln Trp Thr Asn Pro Ser Thr Met Ala Asn Ala Lys Val Lys Leu Ser 260 265 270

Ile Pro Lys Phe Lys Val Glu Lys Met Ile Asp Pro Lys Ala Cys Leu 275 280 285

Glu Asn Leu Gly Leu Lys His Ile Phe Ser Glu Asp Thr Ser Asp Phe 290 295 300

Ser Gly Met Ser Glu Thr Lys Gly Val Ala Leu Ser Asn Val Ile His 305 310 315

Lys Val Cys Leu Glu Ile Thr Glu Asp Gly Gly Asp Ser Ile Glu Val 325 330 335

Pro Gly Ala Arg Ile Leu Gln His Lys Asp Glu Leu Asn Ala Asp His 340 345 350

Pro Phe Ile Tyr Ile Ile Arg His Asn Lys Thr Arg Asn Ile Ile Phe 355 360 365

Phe Gly Lys Phe Cys Ser Pro 370 375

<210> 110

<211> 139

<212> PRT <213> Homo sapiens

<400> 110

Met Asp Lys Phe Trp Trp His Ala Ala Trp Gly Leu Cys Leu Val Pro

Leu Ser Leu Ala Gln Ile Asp Leu Asn Ile Thr Cys Arg Phe Ala Gly 25

Val Phe His Val Glu Lys Asn Gly Arg Tyr Ser Ile Ser Arg Thr Glu 40

Ala Ala Asp Leu Cys Lys Ala Phe Asn Ser Thr Leu Pro Thr Met Ala 55 50

Gln Met Glu Lys Ala Leu Ser Ile Gly Phe Glu Thr Cys Ser Leu His 70

Cys Ser Gln Gln Ser Lys Lys Val Trp Ala Glu Glu Lys Ala Ser Asp 85

Gln Gln Trp Gln Trp Ser Cys Gly Gln Lys Ala Lys Trp Thr Gln 100 105

Arg Arg Gly Gln Gln Val Ser Gly Asn Gly Ala Phe Gly Glu Gln Gly 115 120

Val Val Arg Asn Ser Arg Pro Val Tyr Asp Ser 130 135

<210> 111

<211> 535

<212> PRT

<213> Homo sapiens

<400> 111

Met Glu Glu Gly Ala Arg His Arg Asn Asn Thr Glu Lys Lys His Pro

Gly Gly Glu Ser Asp Ala Ser Pro Glu Ala Gly Ser Gly Gly Gly

Gly Val Ala Leu Lys Lys Glu Ile Gly Leu Val Ser Ala Cys Gly Ile 35 40 45

Ile Val Gly Asn Ile Ile Gly Ser Gly Ile Phe Val Ser Pro Lys Gly 55 Val Leu Glu Asn Ala Gly Ser Val Gly Leu Ala Leu Ile Val Trp Ile 70 Val Thr Gly Phe Ile Thr Val Val Gly Ala Leu Cys Tyr Ala Glu Leu 90 Gly Val Thr Ile Pro Lys Ser Gly Gly Asp Tyr Ser Tyr Val Lys Asp 105 Ile Phe Gly Gly Leu Ala Gly Phe Leu Arg Leu Trp Ile Ala Val Leu 115 120 · 125 Val Ile Tyr Pro Thr Asn Gln Ala Val Ile Ala Leu Thr Phe Ser Asn 135 130 Tyr Val Leu Gln Pro Leu Phe Pro Thr Cys Phe Pro Pro Glu Ser Gly 155 145 150 Leu Arg Leu Leu Ala Ala Ile Cys Leu Leu Leu Leu Thr Trp Val Asn Cys Ser Ser Val Arg Trp Ala Thr Arg Val Gln Asp Ile Phe Thr Ala 180 185 Gly Lys Leu Leu Ala Leu Ala Leu Ile Ile Met Gly Ile Val Gln 195 200 Ile Cys Lys Gly Glu Tyr Phe Trp Leu Glu Pro Lys Asn Ala Phe Glu 210 Asn Phe Gln Glu Pro Asp Ile Gly Leu Val Ala Leu Ala Phe Leu Gln Gly Ser Phe Ala Tyr Gly Gly Trp Asn Phe Leu Asn Tyr Val Thr Glu 245 Glu Leu Val Asp Pro Tyr Lys Asn Leu Pro Arg Ala Ile Phe Ile Ser 260 265 Ile Pro Leu Val Thr Phe Val Tyr Val Phe Ala Asn Val Ala Tyr Val 275 280 285

Thr Ala Met Ser Pro Gln Glu Leu Leu Ala Ser Asn Ala Val Ala Val Thr Phe Gly Glu Lys Leu Leu Gly Val Met Ala Trp Ile Met Pro Ile 310 315 Ser Val Ala Leu Ser Thr Phe Gly Gly Val Asn Gly Ser Leu Phe Thr 325 330 Ser Ser Arg Leu Phe Phe Ala Gly Ala Arg Glu Gly His Leu Pro Ser 345 Val Leu Ala Met Ile His Val Lys Arg Cys Thr Pro Ile Pro Ala Leu 360 Leu Phe Thr Cys Ile Ser Thr Leu Leu Met Leu Val Thr Ser Asp Met Tyr Thr Leu Ile Asn Tyr Val Gly Phe Ile Asn Tyr Leu Phe Tyr Gly 390 Val Thr Val Ala Gly Gln Ile Val Leu Arg Trp Lys Lys Pro Asp Ile 410 Pro Arg Pro Ile Lys Ile Asn Leu Phe Pro Ile Ile Tyr Leu Leu 425 Phe Trp Ala Phe Leu Leu Val Phe Ser Leu Trp Ser Glu Pro Val Val 435 440 Cys Gly Ile Gly Leu Ala Ile Met Leu Thr Gly Val Pro Val Tyr Phe 455 Leu Gly Val Tyr Trp Gln His Lys Pro Lys Cys Phe Ser Asp Phe Ile 470 Glu Leu Leu Thr Leu Val Ser Gln Lys Met Cys Val Val Val Tyr Pro 485 490 Glu Val Glu Arg Gly Ser Gly Thr Glu Glu Ala Asn Glu Asp Met Glu 500 505 510 Glu Gln Gln Pro Met Tyr Gln Pro Thr Pro Thr Lys Asp Lys Asp 515 520 525

Val Ala Gly Gln Pro Gln Pro 530

<210> 112 <211> 466 <212> PRT <213> Homo sapiens

<400> 112

Met Thr Leu Lys Ala Ser Glu Gly Glu Ser Gly Gly Ser Met His Thr

Ala Leu Ser Asp Leu Tyr Leu Glu His Leu Leu Gln Lys Arg Ser Arg 25

Pro Glu Ala Val Ser His Pro Leu Asn Thr Val Thr Glu Asp Met Tyr <u>/4</u> 0

Thr Asn Gly Ser Pro Ala Pro Gly Ser Pro Ala Gln Val Lys Gly Gln 55

Glu Val Arg Lys Val Arg Leu Ile Gln Phe Glu Lys Val Thr Glu Glu 75

Pro Met Gly Ile Thr Leu Lys Leu Asn Glu Lys Gln Ser Cys Thr Val 85 90

Ala Arg Ile Leu His Gly Gly Met Ile His Arg Gln Gly Ser Leu His 100 105

Val Gly Asp Glu Ile Leu Glu Ile Asn Gly Thr Asn Val Thr Asn His 115 120 125

Ser Val Asp Gln Leu Gln Lys Ala Met Lys Glu Thr Lys Gly Met Ile 135

Ser Leu Lys Val Ile Pro Asn Gln Gln Ser Arg Leu Pro Ala Leu Gln 145 150 155

Met Phe Met Arg Ala Gln Phe Asp Tyr Asp Pro Lys Lys Asp Asn Leu 165 170

Ile Pro Cys Lys Glu Ala Gly Leu Lys Phe Ala Thr Gly Asp Ile Ile 180 185 190

Gln Ile Ile Asn Lys Asp Asp Ser Asn Trp Trp Gln Gly Arg Val Glu 195 200 205

Gly Ser Ser Lys Glu Ser Ala Gly Leu Ile Pro Ser Pro Glu Leu Gln 215 Glu Trp Arg Val Ala Ser Met Ala Gln Ser Ala Pro Ser Glu Ala Pro 230 Ser Cys Ser Pro Phe Gly Lys Lys Lys Lys Tyr Lys Asp Lys Tyr Leu 250 245 Ala Lys His Ser Ser Ile Phe Asp Gln Leu Asp Val Val Ser Tyr Glu 260 265 270 Glu Val Val Arg Leu Pro Ala Phe Lys Arg Lys Thr Leu Val Leu Ile 275 280 285 Gly Ala Ser Gly Val Gly Arg Ser His Ile Lys Asn Ala Leu Leu Ser 290 295 300 Gln Asn Pro Glu Lys Phe Val Tyr Pro Val Pro Tyr Thr Thr Arg Pro 310 315 305 Pro Arg Lys Ser Glu Glu Asp Gly Lys Glu Tyr His Phe Ile Ser Thr 325 330 Glu Glu Met Thr Arg Asn Ile Ser Ala Asn Glu Phe Leu Glu Phe Gly Ser Tyr Gln Gly Asn Met Phe Gly Thr Lys Phe Glu Thr Val His Gln 355 360 Ile His Lys Gln Asn Lys Ile Ala Ile Leu Asp Ile Glu Pro Gln Thr 370 375 Leu Lys Ile Val Arg Thr Ala Glu Leu Ser Pro Phe Ile Val Phe Ile 385 390 Ala Pro Thr Asp Gln Gly Thr Gln Thr Glu Ala Leu Gln Gln Leu Gln Lys Asp Ser Glu Ala Ile Arg Ser Gln Tyr Ala His Tyr Phe Asp Leu 420 425 Ser Leu Val Asn Asn Gly Val Asp Glu Thr Leu Lys Lys Leu Gln Glu 435 440 445

Ala Phe Asp Gln Ala Cys Ser Ser Pro Gln Trp Val Pro Val Ser Trp 450 455 460

Val Tyr 465

<210> 113

<211> 393

<212> PRT

<213> Homo sapiens

<400> 113

Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln 1 5 10 15

Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu 20 25 30

Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp 35 40 45

Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro 50 55 60

Arg Met Pro Glu Ala Ala Pro Pro Val Ala Pro Ala Pro Ala Ala Pro 65 70 75 80

Thr Pro Ala Ala Pro Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser 90 95

Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly
100 105 110

Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro 115 120 125

Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln 130 135 140

Leu Trp Val Asp Ser Thr Pro Pro Pro Gly Thr Arg Val Arg Ala Met 145 150 155 160

Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys
165 170 175

Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln

180 185 190

His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp 195 200 205

Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu 210 215 220

Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser 225 230 235 240

Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr 245 250 255

Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val260 265 270

His Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Asn 275 280 285

Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr 290 295 300

Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Pro Gln Pro Lys Lys 305 310 315 320

Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu 325 330 335

Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp 340 345 350

Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser Ser His 355 360 365

Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met 370 375 380

Phe Lys Thr Glu Gly Pro Asp Ser Asp 385

<210> 114

<211> 95

<212> PRT

<213> Homo sapiens

<400> 114

Met Thr Glu Leu Glu Thr Ala Met Gly Met Ile Ile Asp Val Phe Ser 1 5 10 15

Arg Tyr Ser Gly Ser Glu Gly Ser Thr Gln Thr Leu Thr Lys Gly Glu 20 25 30

Leu Lys Val Leu Met Glu Lys Glu Leu Pro Gly Phe Leu Gln Ser Gly 35 40 45

Lys Asp Lys Asp Ala Val Asp Lys Leu Lys Asp Leu Asp Ala Asn 50 60

Gly Asp Ala Gln Val Asp Phe Ser Glu Phe Ile Val Phe Val Ala Ala 65 70 75 80

Ile Thr Ser Ala Cys His Lys Tyr Phe Glu Lys Ala Gly Leu Lys 85 90 95

<210> 115

<211> 120

<212> PRT

<213> Homo sapiens

<400> 115

Met Gly Thr Asn Phe Pro Phe Trp Val Ser Gln Leu Thr Phe Phe Lys

1 10 15

Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu 20 25 30

Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr 35 40 45

Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu 50 55 60

Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu 65 70 75 80

Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe 85 90 95

Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly
100 105 110

Lys Val Val Asn Pro Thr Gln Lys 115 120

<210> 116

<211> 154

<212> PRT

<213> Homo sapiens

<400> 116

Met Ala Asp Asp Leu Asp Phe Glu Thr Gly Asp Ala Gly Ala Ser Ala 1 5 10 15

Thr Phe Pro Met Gln Cys Ser Ala Leu Arg Lys Asn GL y Phe Val Val 20 25 30

Leu Lys Gly Arg Pro Cys Lys Ile Val Glu Met Ser Thir Ser Lys Thr 35 40 45

Gly Lys His Gly His Ala Lys Val His Leu Val Gly Ile Asp Ile Phe 50 55 60°

Thr Gly Lys Lys Tyr Glu Asp Ile Cys Pro Ser Thr His Asn Met Asp 65 70 75 80

Val Pro Asn Ile Lys Arg Asn Asp Phe Gln Leu Ile Gly Ile Gln Asp 85 90 95

Gly Tyr Leu Ser Leu Leu Gln Asp Ser Gly Glu Val Arg Glu Asp Leu 100 105 110

Arg Leu Pro Glu Gly Asp Leu Gly Lys Glu Ile Glu Gln Lys Tyr Asp 115 120 125

Cys Gly Glu Glu Ile Leu Ile Thr Val Leu Ser Ala Met Thr Glu Glu 130 135 140

Ala Ala Val Ala Ile Lys Ala Met Ala Lys 145 150

<210> 117

<211> 519

<212> PRT

<213> Homo sapiens

<400> 117

Met Asp Ala Val Leu Glu Pro Phe Pro Ala Asp Arg Leu Phe Pro Gly
1 10 15

Ser Ser Phe Leu Asp Leu Gly Asp Leu Asn Glu Ser Asp Phe Leu Asn

20 25 30

Asn Ala His Phe Pro Glu His Leu Asp His Phe Thr Glu Asn Met Glu 35 40 45

Asp Phe Ser Asn Asp Leu Phe Ser Ser Phe Phe Asp Asp Pro Val Leu 50 55 60

Asp Glu Lys Ser Pro Leu Leu Asp Met Glu Leu Asp Ser Pro Thr Pro 65 70 75 80

Gly Ile Gln Ala Glu His Ser Tyr Ser Leu Ser Gly Asp Ser Ala Pro 85 90 95

Gln Ser Pro Leu Val Pro Ile Lys Met Glu Asp Thr Thr Gln Asp Ala 100 \$105\$

Glu His Gly Ala Trp Ala Leu Gly His Lys Leu Cys Ser Ile Met Val 115 120 125

Lys Gln Glu Gln Ser Pro Glu Leu Pro Val Asp Pro Leu Ala Ala Pro 130 135 140

Ser Ala Met Ala Ala Ala Ala Ala Met Ala Thr Thr Pro Leu Gly 145 150 155 160

Leu Ser Pro Leu Ser Arg Leu Pro Ile Pro His Gln Ala Pro Gly Glu 165 170 175

Met Thr Gln Leu Pro Val Ile Lys Ala Glu Pro Leu Glu Val Asn Gln 180 185 190

Phe Leu Lys Val Thr Pro Glu Asp Leu Val Gln Met Pro Pro Thr Pro
195 200 205

Pro Ser Ser His Gly Ser Asp Ser Asp Gly Ser Gln Ser Pro Arg Ser 210 215 220

Leu Pro Pro Ser Ser Pro Val Arg Pro Met Ala Arg Ser Ser Thr Ala 225 230 235 240

Ile Ser Thr Ser Pro Leu Leu Thr Ala Pro His Lys Leu Gln Gly Thr 245 250 255

Ser Gly Pro Leu Leu Thr Glu Glu Glu Lys Arg Thr Leu Ile Ala 260 265 270

Glu Gly Tyr Pro Ile Pro Thr Lys Leu Pro Leu Thr Lys Ala Glu Glu 275 280 Lys Ala Leu Lys Arg Val Arg Lys Ile Lys Asn Lys Ile Ser Ala 290 295 300 Gln Glu Ser Arg Arg Lys Lys Glu Tyr Val Glu Cys Leu Glu Lys 310 Lys Val Glu Thr Phe Thr Ser Glu Asn Asn Glu Leu Trp Lys Lys Val 325 330 Glu Thr Leu Glu Asn Ala Asn Arg Thr Leu Leu Gln Gln Leu Gln Lys 340 345 Leu Gln Thr Leu Val Thr Asn Lys Ile Ser Arg Pro Tyr Lys Met Ala 360 Ala Thr Gln Thr Gly Thr Cys Leu Met Val Ala Ala Leu Cys Phe Val 370 375 380 Leu Val Leu Gly Ser Leu Val Pro Cys Leu Pro Glu Phe Ser Ser Gly 390 395 400 Ser Gln Thr Val Lys Glu Asp Pro Leu Ala Ala Asp Gly Val Tyr Thr 405 410 Ala Ser Gln Met Pro Ser Arg Ser Leu Leu Phe Tyr Asp Asp Gly Ala 420 425 430 Gly Leu Trp Glu Asp Gly Arg Ser Thr Leu Leu Pro Met Glu Pro Pro 435 440 445 Asp Gly Trp Glu Ile Asn Pro Gly Gly Pro Ala Glu Gln Arg Pro Arg 450 455 460 Asp His Leu Gln His Asp His Leu Asp Ser Thr His Glu Thr Thr Lys 465 Tyr Leu Ser Glu Ala Trp Pro Lys Asp Gly Gly Asn Gly Thr Ser Pro Asp Phe Ser His Ser Lys Glu Trp Phe His Asp Arg Asp Leu Gly Pro

Asn Thr Thr Ile Lys Leu Ser 515

<210> 118

<211> 534

<212> PRT

<213> Homo sapiens

<400> 118

Met Ala Thr Gly Leu Gln Val Pro Leu Pro Trp Leu Ala Thr Gly Leu 1 5 10 15

Leu Leu Leu Ser Val Gln Pro Trp Ala Glu Ser Gly Lys Val Leu 20 25 30

Val Val Pro Ile Asp Gly Ser His Trp Leu Ser Met Arg Glu Val Leu 35 40 45

Arg Glu Leu His Ala Arg Gly His Gln Ala Val Val Leu Thr Pro Glu 50 55 60

Val Asn Met His Ile Lys Glu Glu Asn Phe Phe Thr Leu Thr Tyr 65 70 75 80

Ala Ile Ser Trp Thr Gln Asp Glu Phe Asp Arg His Val Leu Gly His
85 90 95

Thr Gln Leu Tyr Phe Glu Thr Glu His Phe Leu Lys Lys Phe Phe Arg 100 105 110

Ser Met Ala Met Leu Asn Asn Met Ser Leu Val Tyr His Arg Ser Cys 115 120 125

Val Glu Leu Leu His Asn Glu Ala Leu Ile Arg His Leu Asn Ala Thr 130 135 140

Ser Phe Asp Val Val Leu Thr Asp Pro Val Asn Leu Cys Ala Ala Val 145 150 155 160

Leu Ala Lys Tyr Leu Ser Ile Pro Thr Val Phe Phe Leu Arg Asn Ile 165 170 175

Pro Cys Asp Leu Asp Phe Lys Gly Thr Gln Cys Pro Asn Pro Ser Ser 180 185 190

Tyr Ile Pro Arg Leu Leu Thr Thr Asn Ser Asp His Met Thr Phe Met

195 200 205

Gln Arg Val Lys Asn Met Leu Tyr Pro Leu Ala Leu Ser Tyr Ile Cys 210 215 220

His Ala Phe Ser Ala Pro Tyr Ala Ser Leu Ala Ser Glu Leu Phe Gln 225 230 235 240

Arg Glu Val Ser Val Val Asp Ile Leu Ser His Ala Ser Val Trp Leu 245 250 255

Phe Arg Gly Asp Phe Val Met Asp Tyr Pro Arg Pro Ile Met Pro Asn 260 265 270

Met Val Phe Ile Gly Gly Ile Asn Cys Ala Asn Arg Lys Pro Leu Ser 275 280 285

Gln Glu Phe Glu Ala Tyr Ile Asn Ala Ser Gly Glu His Gly Ile Val 290 295 300

Val Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu Lys Lys Ala 305 310 315 320

Met Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr Val Leu Trp 325 330 335

Arg Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn Thr Ile Leu 340 345 350

Val Lys Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro Met Thr Arg 355 360 365

Ala Phe Ile Thr His Ala Gly Ser His Gly Val Tyr Glu Ser Ile Cys 370 375 380

Asn Gly Val Pro Met Val Met Met Pro Leu Phe Gly Asp Gln Met Asp 385 390 395

Asn Ala Lys Arg Met Glu Thr Lys Gly Ala Gly Val Thr Leu Asn Val 405 410 415

Leu Glu Met Thr Ser Glu Asp Leu Glu Asn Ala Leu Lys Ala Val Ile 420 425 430

Asn Asp Lys Ser Tyr Lys Glu Asn Ile Met Arg Leu Ser Ser Leu His
435 440 445

Lys Asp Arg Pro Val Glu Pro Leu Asp Leu Ala Val Phe Trp Val Glu 450 455 460

Phe Val Met Arg His Lys Gly Ala Pro His Leu Arg Pro Ala Ala His 465 470 475 480

Asp Leu Thr Trp Tyr Gln Tyr His Ser Leu Asp Val Ile Gly Phe Leu 485 490 495

Leu Ala Val Val Leu Thr Val Ala Phe Ile Thr Phe Lys Cys Cys Ala 500 505 510

Tyr Gly Tyr Arg Lys Cys Leu Gly Lys Lys Gly Arg Val Lys Lys Ala 515 520 525

His Lys Ser Lys Thr His 530

<210> 119

<211> 185

<212> PRT

<213> Homo sapiens

<400> 119

Met Ala Met Glu Met Ile Gly Phe Phe Val Arg Leu Ser Ser Leu 1 5 10 15

Leu Trp Phe Gln Ile Tyr Arg Leu Gly Ala Ala Ile Val Asp Thr Ser 20 25 30

Leu Pro Arg Glu Thr Asp Ser Asp Leu Arg Asn Ser Phe Leu Asn Pro 35 40 45

Pro Thr Pro Ala Ile Ala Arg Gln Cys Ser Gly Ala Glu Glu Ile Leu 50 55 60

Gly Gly Ser Ile Tyr Asp Pro Ala Tyr Tyr Thr Ser Leu Phe Glu Glu 65 70 75 80

Ser Gln Thr Asn Ile Asn Ser Pro Lys Ala Thr Gln Asp Val His Lys 85 90 95

Thr Val Arg Ser Asp His Asn Val Val Ile Asn Asp Met Glu Val 100 105 110

Thr His Pro Met Gln Ile Leu Ser Pro Leu Cys Pro Leu Val Lys Arq

115 120 125

Ser Gly His Val Thr Lys Trp Asp Cys Ser Asn Thr Val Thr Thr Ser 130 135 140

Arg Ala Val His Glu Ile Pro Val Val Glu Phe Ile Arg Asn Phe Asn 145 150 155 160

Lys Thr Pro Tyr Ile Leu Asp Asp Leu Glu Arg Ala Pro Leu Trp Thr 165 170 175

Met Leu Phe Phe Gly Gly Asn His Lys 180 185

<210> 120

<211> 530

<212> PRT

<213> Homo sapiens

<400> 120

Met Ala Arg Ala Gly Trp Thr Ser Pro Val Pro Leu Cys Val Cys Leu 1 5 10 15

Leu Leu Thr Cys Gly Phe Ala Glu Ala Gly Lys Leu Leu Val Val Pro 20 25 30

Met Asp Gly Ser His Trp Phe Thr Met Gln Ser Val Val Glu Lys Leu 35 40 45

Ile Leu Arg Gly His Glu Val Val Val Val Met Pro Glu Val Ser Trp 50 55 60

Gln Leu Glu Arg Ser Leu Asn Cys Thr Val Lys Thr Tyr Ser Thr Ser 65 70 75 80

Tyr Thr Leu Glu Asp Gln Asn Arg Glu Phe Met Val Phe Ala His Ala 85 90 95

Gln Trp Lys Ala Gln Ala Gln Ser Ile Phe Ser Leu Leu Met Ser Ser 100 105 110

Ser Ser Gly Phe Leu Asp Leu Phe Phe Ser His Cys Arg Ser Leu Phe 115 120 125

Asn Asp Arg Lys Leu Val Glu Tyr Leu Lys Glu Ser Ser Phe Asp Ala 130 135 140

Val Phe Leu Asp Pro Phe Asp Thr Cys Gly Leu Ile Val Ala Lys Tyr Phe Ser Leu Pro Ser Val Val Phe Thr Arg Gly Ile Phe Cys His His Leu Glu Glu Gly Ala Gln Cys Pro Ala Pro Leu Ser Tyr Val Pro Asn Asp Leu Leu Gly Phe Ser Asp Ala Met Thr Phe Lys Glu Arg Val Trp Asn His Ile Val His Leu Glu Asp His Leu Phe Cys Gln Tyr Leu Phe Arg Asn Ala Leu Glu Ile Ala Ser Glu Ile Leu Gln Thr Pro Val Thr Ala Tyr Asp Leu Tyr Ser His Thr Ser Ile Trp Leu Leu Arg Thr Asp Phe Val Leu Asp Tyr Pro Lys Pro Val Met Pro Asn Met Ile Phe Ile Gly Gly Ile Asn Cys His Gln Gly Lys Pro Leu Pro Met Glu Phe Glu Ala Tyr Ile Asn Ala Ser Gly Glu His Gly Ile Val Val Phe Ser Leu Gly Ser Met Val Ser Glu Ile Pro Glu Lys Lys Ala Met Ala Ile Ala Asp Ala Leu Gly Lys Ile Pro Gln Thr Val Leu Trp Arg Tyr Thr Gly Thr Arg Pro Ser Asn Leu Ala Asn Asn Thr Ile Leu Val Lys Trp Leu Pro Gln Asn Asp Leu Leu Gly His Pro Met Thr Arg Ala Phe Ile Thr His Ala Gly Ser His Gly Val Tyr Glu Ser Ile Cys Asn Gly Val Pro

Met Val Met Met Pro Leu Phe Gly Asp Gln Met Asp Asn Ala Lys Arg 385 390 395 400

Ser Glu Asp Leu Glu Asn Ala Leu Lys Ala Val Ile Asn Asp Lys Ser 420 425 430

Tyr Lys Glu Asn Ile Met Arg Leu Ser Ser Leu His Lys Asp Arg Pro 435 440 445

Val Glu Pro Leu Asp Leu Ala Val Phe Trp Val Glu Phe Val Met Arg 450 455 460

His Lys Gly Ala Pro His Leu Arg Pro Ala Ala His Asp Leu Thr Trp 465 470 475 480

Tyr Gln Tyr His Ser Leu Asp Val Ile Gly Phe Leu Leu Ala Val Val 485 490 495

Leu Thr Val Ala Phe Ile Thr Phe Lys Cys Cys Ala Tyr Gly Tyr Arg 500 505 510

Lys Cys Leu Gly Lys Lys Gly Arg Val Lys Lys Ala His Lys Ser Lys 515 520 525

Thr His

<210> 121

<211> 533

<212> PRT

<213> Homo sapiens

<400> 121

Met Ala Val Glu Ser Gln Gly Gly Arg Pro Leu Val Leu Gly Leu Leu 1 5 10 15

Leu Cys Val Leu Gly Pro Val Val Ser His Ala Gly Lys Ile Leu Leu 20 25 30

Ile Pro Val Asp Gly Ser His Trp Leu Ser Met Leu Gly Ala Ile Gln 35 40 45

Gln Leu Gln Gln Arg Gly His Glu Ile Val Val Leu Ala Pro Asp Ala 50 55 60

Ser Leu Tyr Ile Arg Asp Gly Ala Phe Tyr Thr Leu Lys Thr Tyr Pro Val Pro Phe Gln Arg Glu Asp Val Lys Glu Ser Phe Val Ser Leu Gly His Asn Val Phe Glu Asn Asp Ser Phe Leu Gln Arg Val Ile Lys Thr Tyr Lys Lys Ile Lys Lys Asp Ser Ala Met Leu Leu Ser Gly Cys Ser His Leu Leu His Asn Lys Glu Leu Met Ala Ser Leu Ala Glu Ser Ser Phe Asp Val Met Leu Thr Asp Pro Phe Leu Pro Cys Ser Pro Ile Val Ala Gln Tyr Leu Ser Leu Pro Thr Val Phe Phe Leu His Ala Leu Pro Cys Ser Leu Glu Phe Glu Ala Thr Gln Cys Pro Asn Pro Phe Ser Tyr Val Pro Arg Pro Leu Ser Ser His Ser Asp His Met Thr Phe Leu Gln Arg Val Lys Asn Met Leu Ile Ala Phe Ser Gln Asn Phe Leu Cys Asp Val Val Tyr Ser Pro Tyr Ala Thr Leu Ala Ser Glu Phe Leu Gln Arg Glu Val Thr Val Gln Asp Leu Leu Ser Ser Ala Ser Val Trp Leu Phe Arg Ser Asp Phe Val Lys Asp Tyr Pro Arg Pro Ile Met Pro Asn Met Val Phe Val Gly Gly Ile Asn Cys Leu His Gln Asn Pro Leu Ser Gln Glu Phe Glu Ala Tyr Ile Asn Ala Ser Gly Glu His Gly Ile Val Val

Phe 305	Ser	Leu	Gly	Ser	Met 310	Val	Ser	Glu	Ile	Pro 315	Glu	Lys	Lys	Ala	Met 320
Ala	Ile	Ala	Asp	Ala 325	Leu	Gly	Lys	Ile	Pro 330	Gln	Thr	Val	Leu	Trp 335	Arg
Tyr	Thr	Gly	Thr 340	Arg	Pro	Ser	Asn	Leu 345	Ala	Asn	Asn	Thr	Ile 350	Leu [.]	Val
Lys	Trp	Leu 355	Pro	Gln	Asn	Asp	Leu 360	Leu	Gly	His	Pro	Met 365	Thr	Arg	Ala
Phe	Ile 370	Thr	His	Ala	Gly	Ser 375	His	Gly	Val	Tyr	Glu 380	Ser	Ile	Cys	Asn
Gly 385	Val	Pro	Met	Val	Met 390	Met	Pro	Leu	Phe	Gly 395	Asp	Gln	Met	Asp	Asn 400
Ala	Lys	Arg	Met	Glu 405	Thr	Lys	Gly	Ala	Gly 410	Val	Thr	Leu	Asn	Val 415	Leu
Glu	Met	Thr	Ser 420	Glu	Asp	Leu	Glu	Asn 425	Ala	Leu	Lys	Ala	Val 430	Ile	Asn
Asp	Lys	Ser 435	Tyr	Lys	Glu	Asn	Ile 440	Met	Arg	Leu	Ser	Ser 445	Leu	His	Lys
Asp	Arg 450	Pro	Val	Glu	Pro	Leu 455	Asp	Leu	Ala	Val	Phe 460	Trp	Val	Glu	Phe
Val 465	Met	Arg	His	Lys	Gly 470	Ala	Pro	His	Leu	Arg 475	Pro	Ala	Ala	His	Asp 480
Leu	Thr	Trp	Tyr	Gln 485	Tyr	His	Ser	Leu	Asp 490	Val	Ile	Gly	Phe	Leu 495	Leu
Ala	Val	Val	Leu 500	Thr	Val	Ala	Phe	Ile 505	Thr	Phe	Lys	Cys	Cys 510	Ala	Tyr
Gly	Tyr	Arg 515	Lys	Cys	Leu	Gly	Lуs 520	Lys	Gly	Arg	Val	Lys 525	Lys	Ala	His
Lys	Ser 530	Lys	Thr	His											

<210> 122

<211> 318

<212> PRT <213> Homo sapiens

<400> 122

Met Thr Ile Ser Val Glu Lys Pro Ile Phe Glu Glu Glu Val Ser Ala

Phe Glu Lys Ser Gly Asp Asn Ile Gly Glu Leu Lys Leu Asp Gly Gly

Phe Ser Met Pro Lys Met Asp Thr Asn Asp Asp Glu Ala Phe Leu Ala 40

Pro Glu Met Asn Ala Phe Gly Arg Gln Phe Arg Asp Tyr Asp Val Glu 55

Ser Glu Arg Gln Lys Gly Val Glu Glu Phe Tyr Arg Leu Gln His Ile 70

Asn Gln Thr Val Asp Phe Val Lys Lys Met Arg Ala Glu Tyr Gly Lys 85 90

Leu Asp Lys Met Val Met Ser Ile Trp Glu Cys Cys Glu Leu Leu Asn 100 105

Glu Val Val Asp Glu Ser Asp Pro Asp Leu Asp Glu Pro Gln Ile Gln 115 120

His Leu Leu Gln Ser Ala Glu Ala Ile Arg Lys Asp Tyr Pro Asn Glu 135 140

Asp Trp Leu His Leu Thr Ala Leu Ile His Asp Leu Gly Lys Val Ile 145 150 155

Thr Leu Pro Gln Phe Gly Gly Leu Pro Gln Trp Ala Val Val Gly Asp 165 170

Thr Phe Pro Val Gly Cys Ala Phe Asp Glu Ser Asn Val His His Lys 180 185

Tyr Phe Val Glu Asn Pro Asp Phe His Asn Glu Thr Tyr Asn Thr Lys 195 200 205

Asn Gly Ile Tyr Ser Glu Gly Cys Gly Leu Asn Asn Val Met Met Ser 210 215 220

Trp Gly His Asp Asp Tyr Met Tyr Leu Val Ala Lys Glu Asn Gly Ser 225 230 235 240

Thr Leu Pro Ser Ala Gly Gln Phe Ile Ile Arg Tyr His Ser Phe Tyr 245 250 255

Pro Leu His Thr Ala Gly Glu Tyr Thr His Leu Met Asn Glu Glu Asp 260 265 270

Lys Glu Asn Leu Lys Trp Leu His Val Phe Asn Lys Tyr Asp Leu Tyr 275 280 285

Ser Lys Ser Lys Val His Val Asp Val Glu Lys Val Lys Pro Tyr Tyr 290 295 300

Met Ser Leu Ile Lys Lys Tyr Phe Pro Glu Asn Leu Arg Trp 305 310 315

<210> 123

<211> 111

<212> PRT

<213> Homo sapiens

<400> 123

Met Ala Asn Ile His Gln Glu Asn Glu Glu Met Glu Gln Pro Met Gln 1 5 10 15

Asn Gly Glu Glu Asp Arg Pro Leu Gly Gly Glu Gly His Gln Pro 20 25 30

Ala Gly Asn Arg Arg Gly Gln Ala Arg Arg Leu Ala Pro Asn Phe Arg 35 40 45

Trp Ala Ile Pro Asn Arg Gln Ile Asn Asp Gly Met Gly Gly Asp Gly 50 60

Asp Asp Met Glu Ile Phe Met Glu Glu Met Arg Glu Ile Arg Arg Lys 70 75 80

Leu Arg Glu Leu Gln Leu Arg Asn Cys Leu Arg Ile Leu Met Gly Glu 85 90 95

Leu Ser Asn His His Asp His His Asp Glu Phe Cys Leu Met Pro 100 105 110

<210> 124

<211> 1516 <212> PRT <213> Homo sapiens

<400> 124

Met Ala Pro Tyr Pro Cys Gly Cys His Ile Leu Leu Leu Leu Phe Cys

Cys Leu Ala Ala Arg Ala Asn Leu Leu Asn Leu Asn Trp Leu Trp 25

Phe Asn Asn Glu Asp Thr Ser His Ala Ala Thr Thr Ile Pro Glu Pro 40

Gln Gly Pro Leu Pro Val Gln Pro Thr Ala Asp Thr Thr His Val 55

Thr Pro Arg Asn Gly Ser Thr Glu Pro Ala Thr Ala Pro Gly Ser Pro 70

Glu Pro Pro Ser Glu Leu Leu Glu Asp Gly Gln Asp Thr Pro Thr Ser 85

Ala Glu Ser Pro Asp Ala Pro Glu Glu Asn Ile Ala Gly Val Gly Ala 100 105

Glu Ile Leu Asn Val Ala Lys Gly Ile Arg Ser Phe Val Gln Leu Trp 115 120

Asn Asp Thr Val Pro Thr Glu Ser Leu Ala Arg Ala Glu Thr Leu Val 135

Leu Glu Thr Pro Val Gly Pro Leu Ala Leu Ala Gly Pro Ser Ser Thr 145 150 155

Pro Gln Glu Asn Gly Thr Thr Leu Trp Pro Ser Arg Gly Ile Pro Ser 165

Ser Pro Gly Ala His Thr Thr Glu Ala Gly Thr Leu Pro Ala Pro Thr 180 185

Pro Ser Pro Pro Ser Leu Gly Arg Pro Trp Ala Pro Leu Thr Gly Pro 195 200 205

Ser Val Pro Pro Pro Ser Ser Glu Arg Ile Ser Glu Glu Val Gly Leu 210 215 220

Leu Gln Leu Leu Gly Asp Pro Pro Pro Gln Gln Val Thr Gln Thr Asp 225 230 235 Asp Pro Asp Val Gly Leu Ala Tyr Val Phe Gly Pro Asp Ala Asn Ser 245 Gly Gln Val Ala Arg Tyr His Phe Pro Ser Leu Phe Phe Arg Asp Phe 260 265 Ser Leu Leu Phe His Ile Arg Pro Ala Thr Glu Gly Pro Gly Val Leu 280 275 Phe Ala Ile Thr Asp Ser Ala Gln Ala Met Val Leu Leu Gly Val Lys 290 295 300 Leu Ser Gly Val Gln Asp Gly His Gln Asp Ile Ser Leu Leu Tyr Thr 305 310 315 Glu Pro Gly Ala Gly Gln Thr His Thr Ala Ala Ser Phe Arg Leu Pro 325 330 Ala Phe Val Gly Gln Trp Thr His Leu Ala Leu Ser Val Ala Gly Gly 340 Phe Val Ala Leu Tyr Val Asp Cys Glu Glu Phe Gln Arg Met Pro Leu 355 360 Ala Arg Ser Ser Arg Gly Leu Glu Leu Glu Pro Gly Ala Gly Leu Phe 370 375 Val Ala Gln Ala Gly Gly Ala Asp Pro Asp Lys Phe Gln Gly Val Ile 385 390 Ala Glu Leu Lys Val Arg Arg Asp Pro Gln Val Ser Pro Met His Cys 405 410 Leu Asp Glu Glu Gly Asp Asp Ser Asp Gly Ala Phe Gly Asp Ser Gly 420 Ser Gly Leu Gly Asp Ala Arg Glu Leu Leu Arg Glu Glu Thr Gly Ala Ala Leu Lys Pro Arg Leu Pro Ala Pro Pro Pro Val Thr Thr Pro Pro 450 455 460

Leu Ala Gly Gly Ser Ser Thr Glu Asp Ser Arg Ser Glu Glu Val Glu 470 Glu Gln Thr Thr Val Ala Ser Leu Gly Ala Gln Thr Leu Pro Gly Ser Asp Ser Val Ser Thr Trp Asp Gly Ser Val Arg Thr Pro Gly Gly Arg Val Lys Glu Gly Gly Leu Lys Gly Gln Lys Gly Glu Pro Gly Val Pro 520 Gly Pro Pro Gly Arg Ala Gly Pro Pro Gly Ser Pro Cys Leu Pro Gly 535 Pro Pro Gly Leu Pro Cys Pro Val Ser Pro Leu Gly Pro Ala Gly Pro 550 555 Ala Leu Gln Thr Val Pro Gly Pro Gln Gly Pro Pro Gly Pro Pro Gly 565 570 Arg Asp Gly Thr Pro Gly Arg Asp Gly Glu Pro Gly Asp Pro Gly Glu 580 585 Asp Gly Lys Pro Gly Asp Thr Gly Pro Gln Gly Phe Pro Gly Thr Pro 595 600 Gly Asp Val Gly Pro Lys Gly Asp Lys Gly Asp Pro Gly Val Gly Glu 615 620 Arg Gly Pro Pro Gly Pro Gln Gly Pro Pro Gly Pro Pro Gly Pro Ser 630 635 Phe Arg His Asp Lys Leu Thr Phe Ile Asp Met Glu Gly Ser Gly Phe 645 650 Gly Gly Asp Leu Glu Ala Leu Arg Gly Pro Arg Gly Phe Pro Gly Pro 660 665 Pro Gly Pro Pro Gly Val Pro Gly Leu Pro Gly Glu Pro Gly Arg Phe 680 685 Gly Val Asn Ser Ser Asp Val Pro Gly Pro Ala Gly Leu Pro Gly Val 695 700

Pro 705	Gly	Arg	Glu	Gly	Pro 710	Pro	Gly	Phe	Pro	Gly 715	Leu	Pro	Gly	Pro	Pro 720
Gly	Pro	Pro	Gly	Arg 725	Glu	Gly	Pro	Pro	Gly 730	Arg	Thr	Gly	Gln	Lys 735	Gly
Ser	Leu	Gly	Glu 740	Ala	Gly	Ala	Pro	Gly 745	His	Lys	['] Gly	Ser	Lys 750	Gly	Ala
Pro	Gly	Pro 755	Ala	Gly	Ala	Arg	Gly 760	Glu	Ser	Gly	Leu	Ala 765	Gly	Ala	Pro
Gly	Pro 770	Ala	Gly	Pro	Pro	Gly 775	Pro	Pro	Gly	Pro	Pro 780	Gly	Pro	Pro	Gly
Pro 785	Gly	Leu	Pro	Ala	Gly 790	Phe	Asp	Asp	Met	Glu 795	Gly	Ser	Gly	Gly	Pro 800
Phe	Trp	Ser	Thr	Ala 805	Arg	Ser	Ala	Asp	Gly 810	Pro	Gln	Gly	Pro	Pro 815	Gly
Leu	Pro	Gly	Leu 820	Lys	Gly	Asp	Pro	Gly 825	Val	Pro	Gly	Leu	Pro 830	Gly	Ala
Lys	Gly	Glu 835	Val	Gly	Ala	Asp	Gly 840	Ile	Pro	Gly	Phe	Pro 845	Gly	Leu	Pro
Gly	Arg 850	Glu	Gly	Ile	Ala	Gly 855	Pro	Gln	Gly	Pro	Lys 860	Gly	Asp	Arg	Gly
Ser 865	Arg	Gly	Glu	Lys	Gly 870	Asp	Pro	Gly	Lys	Asp 875	Gly	Val	Gly	Gln	Pro 880
Gly	Leu	Pro	Gly	Pro 885	Pro	Gly	Pro	Pro	Gly 890	Pro	Val	Val	Tyr	Val 895	Ser
Glu	Gln	Asp	Gly 900	Ser	Val	Leu	Ser	Val 905	Pro	Gly	Pro	Glu	Gly 910	Arg	Pro
Gly	Phe	Ala 915	Gly	Phe	Pro	Gly	Pro 920	Ala	Gly	Pro	Lys	Gly 925	Asn	Leu	Gly
Ser	Lys 930	Gly	Glu	Arg	Gly	Ser 935	Pro	Gly	Pro	Lys	Gly 940	Glu	Lys	Gly	Glu
Pro	Gly	Ser	Ile	Phe	Ser	Pro	Asp	Gly	Gly	Ala	Leu	Gly	Pro	Ala	Gln

945 950 955 960

Lys Gly Ala Lys Gly Glu Pro Gly Phe Arg Gly Pro Pro Gly Pro Tyr 965 970 975

Gly Arg Pro Gly Tyr Lys Gly Glu Ile Gly Phe Pro Gly Arg Pro Gly 980 985 990

Arg Pro Gly Met Asn Gly Leu Lys Gly Glu Lys Gly Glu Pro Gly Asp 995 1000 1005

Ala Ser Leu Gly Phe Gly Met Arg Gly Met Pro Gly Pro Pro Gly 1010 1015 1020

Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Pro Val Tyr Asp Ser 1025 1030 1035

Asn Val Phe Ala Glu Ser Ser Arg Pro Gly Pro Pro Gly Leu Pro 1040 1045 1050

Gly Asn Gln Gly Pro Pro Gly Pro Lys Gly Ala Lys Gly Glu Val 1055 1060 1065

Gly Pro Pro Gly Pro Pro Gly Gln Phe Pro Phe Asp Phe Leu Gln 1070 1075 1080

Leu Glu Ala Glu Met Lys Gly Glu Lys Gly Asp Arg Gly Asp Ala 1085 1090 1095

Gly Gln Lys Gly Glu Arg Gly Glu Pro Gly Gly Gly Phe Phe 1100 1105 1110

Gly Ser Ser Leu Pro Gly Pro Pro Gly Pro Pro Gly Pro Arg Gly 1115 1120 1125

Tyr Pro Gly Ile Pro Gly Pro Lys Gly Glu Ser Ile Arg Gly Gln 1130 1135 1140

Pro Gly Pro Pro Gly Pro Gln Gly Pro Pro Gly Ile Gly Tyr Glu 1145 1150 1155

Gly Arg Gln Gly Pro Pro Gly Pro Pro Gly Pro Pro 1160 1165 1170

Ser Phe Pro Gly Pro His Arg Gln Thr Ile Ser Val Pro Gly Pro 1175 1180 1185

Pro	Gly 1190		Pro	Gly	Pro	Pro 1195		Pro	Pro	Gly	Thr 1200		Gly	Ala
Ser	Ser 1205		Val	Arg	Leu	Trp 1210		Thr	Arg	Gln	Ala 1215		Leu	Gly
Gln	Val 1220		Glu	Val	Pro	Glu 1225		Trp	Leu	Ile	Phe 1230		Ala	Glu
Gln	Glu 1235		Leu	Tyr	Val	Arg 1240		Gln	Asn	Gly	Phe 1245	_	Lys	Val
Gln	Leu 1250		Ala	Arg	Thr	Pro 1255	Leu	Pro	Arg	Gly	Thr 1260		Asn	Glu
Val	Ala 1265		Leu	Gln	Pro	Pro 1270		Val	Gln	Leu	His 1275		Ser	Asn
Pro	Tyr 1280		Arg	Arg	Glu	His 1285		His	Pro	Thr	Ala 1290	_	Pro	Trp
Arg	Ala 1295		Asp	Ile	Leu	Ala 1300	Ser	Pro	Pro	Arg	Leu 1305		Glu	Pro
Gln	Pro 1310		Pro	Gly	Ala	Pro 1315	His	His	Ser	Ser	Tyr 1320	Val	His	Leu
Arg	Pro 1325		Arg	Pro	Thr	Ser 1330	Pro	Pro	Ala	His	Ser 1335	His	Arg	Asp
Phe	Gln 1340		Val	Leu	His						Ser 1350	Pro	Leu	Ser
Gly	Gly 1355	Met	Arg	Gly	Ile	Arg 1360	Gly	Ala	Asp	Phe	Gln 1365	Cys	Phe	Gln
Gln	Ala 1370	Arg	Ala	Val	Gly	Leu 1375	Ala	Gly	Thr	Phe	Arg 1380	Ala	Phe	Leu
Ser	Ser 1385	Arg	Leu	Gln	Asp	Leu 1390	Tyr	Ser	Ile	Val	Arg 1395	Arg	Ala	Asp
Arg	Ala 1400	Ala	Val	Pro	Ile	Val 1405	Asn	Leu	Lys	Asp	Glu 1410	Leu	Leu	Phe

Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys 1415 1420 1425

Pro Gly Ala Arg Ile Phe Ser Phe Asp Gly Lys Asp Val Leu Arg 1430 1435 1440

His Pro Thr Trp Pro Gln Lys Ser Val Trp His Gly Ser Asp Pro 1445 1450 1455

Asn Gly $\mbox{Arg Arg Leu Thr}$ Glu $\mbox{Ser Tyr Cys Glu Thr}$ $\mbox{Trp Arg Thr}$ $\mbox{1460}$ $\mbox{1465}$ $\mbox{1470}$

Glu Ala Pro Ser Ala Thr Gly Gln Ala Ser Ser Leu Leu Gly Gly 1475 1480 1485

Arg Leu Leu Gly Gln Ser Ala Ala Ser Cys His His Ala Tyr Ile 1490 1495 1500

Val Leu Cys Ile Glu Asn Ser Phe Met Thr Ala Ser Lys 1505 1510 1515

<210> 125

<211> 684

<212> PRT

<213> Homo sapiens

<400> 125

Met Ala Gly Pro Arg Ala Cys Ala Pro Leu Leu Leu Leu Leu Leu Leu 1 5 10 15

Gly Gln Leu Leu Ala Ala Gly Ala Gln Arg Val Gly Leu Pro Gly
20 25 30

Pro Pro Gly Pro Pro Gly Arg Pro Gly Lys Pro Gly Gln Asp Gly Ile 35 40 45

Asp Gly Glu Ala Gly Pro Pro Gly Leu Pro Gly Pro Pro Gly Pro Lys
50 60

Gly Ala Pro Gly Lys Pro Gly Lys Pro Gly Glu Ala Gly Leu Pro Gly 65 70 75 80

Leu Pro Gly Val Asp Gly Leu Thr Gly Arg Asp Gly Pro Pro Gly Pro 85 90 95

Lys Gly Ala Pro Gly Glu Arg Gly Ser Leu Gly Pro Pro Gly Pro Pro

100 105 110

Gly Leu Gly Gly Lys Gly Leu Pro Gly Pro Pro Gly Glu Ala Gly Val 115 120 125

Ser Gly Pro Pro Gly Gly Ile Gly Leu Arg Gly Pro Pro Gly Pro Pro 130 135 140

Gly Leu Pro Gly Leu Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly 145 150 155 160

His Pro Gly Val Leu Pro Glu Gly Ala Thr Asp Leu Gln Cys Pro Ser 165 170 175

Ile Cys Pro Pro Gly Pro Pro Gly Pro Pro Gly Met Pro Gly Phe Lys
180 185 190

Gly Pro Thr Gly Tyr Lys Gly Glu Gln Gly Glu Val Gly Lys Asp Gly
195 200 205

Glu Lys Gly Asp Pro Gly Pro Pro Gly Pro Ala Gly Leu Pro Gly Ser 210 215 220

Val Gly Leu Gln Gly Pro Arg Gly Leu Arg Gly Leu Pro Gly Pro Leu 225 230 230 235

Gly Pro Pro Gly Asp Arg Gly Pro Ile Gly Phe Arg Gly Pro Pro Gly 245 250 255

Ile Pro Gly Ala Pro Gly Lys Ala Gly Asp Arg Gly Glu Arg Gly Pro 260 265 270

Glu Gly Phe Arg Gly Pro Lys Gly Asp Leu Gly Arg Pro Gly Pro Lys 275 280 285

Gly Thr Pro Gly Val Ala Gly Pro Ser Gly Glu Pro Gly Met Pro Gly 290 295 300

Lys Asp Gly Gln Asn Gly Val Pro Gly Leu Asp Gly Gln Lys Gly Glu 305 310 315 320

Ala Gly Arg Asn Gly Ala Pro Gly Glu Lys Gly Pro Asn Gly Leu Pro 325 330 335

Gly Leu Pro Gly Arg Ala Gly Ser Lys Gly Glu Lys Gly Glu Arg Gly 340 345 350

216

Arg Ala Gly Glu Leu Gly Glu Ala Gly Pro Ser Gly Glu Pro Gly Val Pro Gly Asp Ala Gly Met Pro Gly Glu Arg Gly Glu Ala Gly His Arg Gly Ser Ala Gly Ala Leu Gly Pro Gln Gly Pro Pro Gly Ala Pro Gly Val Arg Gly Phe Gln Gly Gln Lys Gly Ser Met Gly Asp Pro Gly Leu Pro Gly Pro Gln Gly Leu Arg Gly Asp Val Gly Asp Arg Gly Pro Gly Gly Ala Glu Gly Pro Lys Gly Asp Gln Gly Ile Ala Gly Ser Asp Gly Leu Pro Gly Asp Lys Gly Glu Leu Gly Pro Ser Gly Leu Val Gly Pro Lys Gly Glu Ser Gly Ser Arg Gly Glu Leu Gly Pro Lys Gly Thr Gln Gly Pro Asn Gly Thr Ser Gly Val Gln Gly Val Pro Gly Pro Pro Gly . 485 Pro Leu Gly Leu Gln Gly Val Pro Gly Val Pro Gly Ile Thr Gly Lys Pro Gly Val Pro Gly Lys Glu Ala Ser Glu Gln Arg Ile Arg Glu Leu Cys Gly Gly Met Ile Ser Glu Gln Ile Ala Gln Leu Ala Ala His Leu Arg Lys Pro Leu Ala Pro Gly Ser Ile Gly Arg Pro Gly Pro Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Ser Ile Gly His Pro Gly Ala Arg Gly Pro Pro Gly Tyr Arg Gly Pro Thr Gly Glu Leu Gly Asp Pro

Gly Pro Arg Gly Asn Gln Gly Asp Arg Gly Asp Lys Gly Ala Ala Gly 595 600 605

- Ala Gly Leu Asp Gly Pro Glu Gly Asp Gln Gly Pro Gln Gly Pro Gln 610 615 620
- Gly Val Pro Gly Thr Ser Lys Asp Gly Gln Asp Gly Ala Pro Gly Glu 625 630 635 640
- Pro Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Ala Ile Gly Ala Gln 645 650 655
- Gly Thr Pro Gly Ile Cys Asp Thr Ser Ala Cys Gln Gly Ala Val Leu 660 665 670
- Gly Gly Val Gly Glu Lys Ser Gly Ser Arg Ser Ser 675 680