Ensemble Method as a Defense Against Adversarial Examples

By: Cale Harms, Colton Harper, Krishnamohan Sunkara

Introduction

- Power of deep learning algorithms
- Examples: Autonomous vehicles, image classification, security
- Deep neural networks are vulnerable to small perturbations to images, resulting in a significant decrease in performance.

Motivation

OM SIMONITE BUSINESS 03.09.18 07:00 AM

AI HAS A HALLUCINATION PROBLEM THAT'S PROVING TOUGH TO FIX

(MAI SCHOTZ

TECH COMPANIES ARE rushing to infuse everything with artificial intelligence, driven by big leaps in the power of machine learning software. But the deep-neural-network software fueling the excitement has a troubling weakness: Making subtle changes to images, text, or audio can fool these systems into perceiving things that aren't there.

That could be a big problem for products dependent on machine learning, particularly for vision, such as self-driving cars. Leading researchers are trying to develop defenses against such attacks—but that's proving to be a challenge.

Outline

- Introduction
- Outline
- Generating Adversarial Examples
- Defense Strategies
- Ensemble Method
- Results
- Conclusions
- Future Works

- Targeted an attack intentionally trying to perturb images to a specific class when misclassified.
- Non-targeted an attack to simply have images misclassified.
- White Box an attack that uses the specifications of a model to generate adversarial examples.
- Black Box Only inputs and outputs are known to generate an adversarial example.

Adversarial Attacks

- Fast Gradient Sign Method (FGSM)
 - $\circ \quad x_{FGSM} = x + \varepsilon \cdot sign[\nabla_x J(\Theta, x, y)]$
- Basic Iterative Method (BIM)
 - $\circ x_0 = x$,
 - $\circ \quad x_i = clip_{x,\varepsilon}(x_{i-1} + \alpha \, sign[\nabla_{i-1} J(\Theta, x_{i-1}, y)])$
 - $\circ X_{BIM} = X_n$
- Limited Memory BFGS (L-BFGS)
 - \circ minimize $c \cdot ||x x'||^2$
 - such that $x' \in [0,1]^n$

Defense Strategies: Adversarial Training

- Model trains on an image from the training set
- Generates adversarial example
- Trains on correctly labeled adversarial example
- Repeat

- Given training data T with m data points
- Draw m samples (w/ replacement) from T
- Ensemble

Defense Strategies: Ensemble

- Set of classifiers
- Majority vote of classifiers

- Datasets:
 - MNIST, CIFAR-10 & Tiny-ImageNet
- MNIST Model, CIFAR-10 Model, Inception V3
- Majority Vote Ensemble
- Generating Adversarial Attacks:
 - Cleverhans A Python library using TensorFlow

Ensemble Implementation

• MNIST Architecture:

.1.
↔
┰

2D Convolution Layer 32 filters 2D Convolution Layer 64 filters Max Pooling (2,2) Dropout 0.25 Flatten Dense Layer 128 units	
Max Pooling (2,2) Dropout 0.25 Flatten	
Dropout 0.25 Flatten	
Flatten	
Dense Layer 128 units	
Dropout 0.5	
Dense 10 units	

Implementation Continued

• CIFAR-10 Architecture:

		à	L		
á	ü	3	Е	×	
3	г	1	г	7	•

Layer Type	Parameters	
2D Convolution Layer	32 filters	
2D Convolution Layer	32 filters	
Max Pooling	(2,2)	
Dropout	0.25	
2D Convolution Layer	64 filters	
2D Convolution Layer	64 filters	
Max Pooling	(2,2)	
Dropout	0.25	
Flatten		
Dense Layer	512 units	
Dropout	0.5	
Dense Layer	10 units	

Implementation Continued

Inception Architecture

Results

Original Image, Prediction:0

FGSM, Prediction: 3

Results Continued

BIM, Prediction: 2

LBFGS, Target:6, Prediction:6

Results Continued

Original Image, Prediction:Building

FGSM, Prediction:Bookcase

MNIST Results

Ensemble models accuracy

Ensemble models accuracy on adversarial images of 6th model.

MNIST Results Continued

Accuracy on different attacks

Accuracy after adversarial training

CIFAR-10 Results

Ensemble models accuracy

Ensemble models accuracy on adversarial images of 3rd model.

CIFAR-10 Results Continued

Accuracy on different attacks

Adversarial Retraining	FGSM	BIM
Normal data	74.56	73.65
Adversarial data	66.78	58.97

Accuracy after adversarial training

Conclusions

- DNN's are highly vulnerable to adversarial examples
- Defending against adversarial examples is challenging
- Adversarial training makes the network more robust and is better compared to Ensemble methods.
- Ensemble methods like bagging + noise can provide
 - Increased accuracies on test data
 - Increase classifier robustness on these attacks

Future Work

- Successfully train the Inception model on HCC.
- Test on a wide variety of models and datasets.
- Combine Adversarial training with an ensemble.
- Test our network on different attacks.
- Apply Boosting on the ensemble.
- Test the L-BFGS attack on different target values.

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, Dec. 2014.

[2] T. Strauss, M. Hanselmann, A. Junginger, H. Ulmer, Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks, arXiv preprint arXiv:1709.03423, 2017.

Thanks for your attention!

Cale Harms, Colton Harper, Krishna Sunkara

Department of Computer Science and Engineering
University of Nebraska-Lincoln
CSCE 496/896 Deep Learning

