Here's a **comprehensive list of carbonate minerals**, organized by composition and categorized into common, rare, and metalspecific groups. Carbonates (CO_3^{2-}) are a major mineral class, forming in sedimentary, hydrothermal, and metamorphic environments.

1. Common Carbonate Minerals

A. Calcium Carbonates

Mineral	Formula	Occurrence & Notes
Calcite	CaCO ₃	Most stable polymorph; limestone, marble, shells
Aragonite	CaCO ₃	Metastable (converts to calcite); marine sediments, pearls
Vaterite CaCO ₃		Rare, unstable polymorph; biogenic/ synthetic

B. Magnesium Carbonates

Mineral	Formula	Occurrence & Notes
Magnesite	MgCO ₃	Serpentinite deposits; refractory material
Dolomite	CaMg(CO ₃) ₂	Dolostone rocks; forms via Mg replacement in limestone
Hydromagnesite	Mg5(CO3)4(OH)2·4H2O	Cave deposits, weathering product

C. Iron Carbonates

Mineral	Formula	Occurrence & Notes
Siderite	FeCO ₃	Bog iron ores, hydrothermal veins
Ankerite	$Ca(Fe,Mg)(CO_3)_2$	

Mineral	Formula	Occurrence & Notes
		Iron-rich dolomite variant

D. Sodium/Potassium Carbonates

Mineral	Formula	Occurrence & Notes	
Nahcolite	NaHCO ₃	Evaporite deposits; baking soda source	
Trona	Na ₃ (CO ₃) (HCO ₃)·2H ₂ O	Alkaline lake beds (e.g., Green River Formation)	

2. Rare & Complex Carbonates

A. Copper Carbonates (Brightly Colored)

Mineral	Formula	Color	Occurrence
Malachite	$Cu_2(CO_3)(OH)_2$	Green	Oxidized Cu zones
Azurite	$Cu_3(CO_3)_2(OH)_2$	Blue	Often with malachite

B. Lead/Zinc Carbonates

Mineral Formula		Notes	
Cerussite	PbCO ₃	Lead ore; high density	
Smithsonite	$ZnCO_3$	Zinc ore; pastel colors	

C. Rare Earth Carbonates

Mineral	Formula	Notes
Bastnäsite	(Ce,La)(CO ₃)F	Primary REE ore
Parisite	$Ca(Ce,La)_2(CO_3)_3F_2$	REE source

D. Uranium Carbonates

Mineral	Formula	Notes
Rutherfordine	UO ₂ CO ₃	Secondary U mineral

3. Carbonate Classification by Structure

A. Anhydrous Carbonates

- Calcite group (trigonal): Calcite, magnesite, siderite, rhodochrosite (MnCO₃).
- Aragonite group (orthorhombic): Aragonite, cerussite, strontianite (SrCO₃).

B. Hydrous Carbonates

• Hydromagnesite, artinite (Mg₂(CO₃)(OH)₂·3H₂O).

C. Carbonates with Additional Anions

• Hydrozincite (Zn₅(CO₃)₂(OH)₆, with OH⁻.

4. Key Geological Environments

1. **Sedimentary**:

- · Limestone (calcite), dolostone (dolomite).
- Evaporites (trona, nahcolite).

2. Hydrothermal:

· Veins (siderite, malachite).

3. Metamorphic:

Marble (recrystallized calcite/dolomite).

4. Oxidized Zones:

• Secondary Cu/Pb/Zn carbonates (malachite, cerussite).

5. Economic Uses

- Construction: Limestone for cement.
- **Metallurgy**: Flux in smelting (calcite, dolomite).
- **Pigments**: Malachite (green), azurite (blue).
- **Industrial**: Soda ash (from trona), REE extraction (bastnäsite).

Notable Facts

- Calcite vs. Aragonite: Same formula, different crystal structures (polymorphs).
- **Effervescence**: All carbonates react with HCl (diagnostic test).
- Biogenic: Shells (aragonite/calcite), coral reefs.

Need details on **specific localities** or **synthetic carbonates**? Let me know!

Here's a **detailed expansion** on carbonate minerals, including **notable localities**, **synthetic carbonates**, and **unique geological formations**:

1. World-Class Carbonate Localities

A. Calcite & Aragonite Hotspots

Mineral	Locality	Special Features
Calcite	- Elmwood Mine, Tennessee (USA)	Giant fluorescent orange calcite crystals under UV light.
	- Iceland Spar (Helgustadir, Iceland)	Transparent "optical calcite" used in Viking sunstones (polarization navigation).
Aragonite	- Agrigento, Sicily (Italy)	"Aragonite roses" – flower-like clusters in sulfur mines.
	- Cave of the Crystals, Mexico	Meter-long gypsum + aragonite beams in Naica Mine (45°C, 100% humidity).

B. Malachite & Azurite Treasures

Mineral	Locality	Significance
Malachite	- Ural Mountains (Russia)	Historic source for tsarist art (e.g., Malachite Room in Winter Palace).
	- Katanga, DR Congo	Banded malachite ("peacock ore") with chrysocolla.
Azurite	- Tsumeb Mine (Namibia)	Deep-blue crystals up to 25 cm long.
	- Bisbee, Arizona (USA)	"Azurite suns" – radial crystal aggregates.

C. Rare Carbonate Localities

Mineral	Locality	Notes
Rhodochrosite		

Mineral	Locality	Notes	
	Sweet Home Mine, Colorado (USA)	"Alma King" - famous 14-cm red rhodochrosite crystal (Denver Museum of Nature & Science).	
Smithsonite	Kelly Mine, New Mexico (USA)	Pastel-blue "turquoise-like" zinc carbonate.	
Cerussite	Tsumeb Mine (Namibia)	Glassy, twinned "arrowhead" crystals (collector's favorite).	

2. Synthetic Carbonates & Industrial Production

A. Lab-Created Carbonates

Compound	Synthesis Method	Applications
Synthetic Calcite	Precipitation from CaCl ₂ + Na ₂ CO ₃	Paper coating, pharmaceuticals (antacids).
Sodium Carbonate (Soda Ash)	Solvay Process: NaCl + NH ₃ + CO ₂	Glass manufacturing (70% of global use).
Lithium Carbonate	Brine evaporation (e.g., Salar de Atacama)	Lithium-ion batteries, bipolar disorder medication.

B. Carbonate Nanomaterials

- Nano-calcite: Used in drug delivery (pH-sensitive coatings).
- MgCO₃ nanoparticles: Flame retardants in plastics.

3. Unique Geological Formations

A. Natural Wonders

- 1. **Pamukkale Travertines (Turkey)**: White calcite terraces from hot springs (UNESCO site).
- 2. **Great Salt Lake (USA)**: Microbialites (living carbonate mounds built by cyanobacteria).
- 3. **Bahama Banks**: Modern carbonate platform (oolitic sand + aragonite mud).

B. Extreme Environments

- **Serpentinite-hosted carbonates**: Subsea hydrothermal vents (e.g., Lost City, Mid-Atlantic Ridge).
- Mars Rover Findings: Carbonate nodules ("blueberries") in Gale Crater hint at ancient water.

4. How to Collect Carbonates

- Field Guide Tips:
 - Test with **dilute HCl** (fizz = carbonate).
 - UV light: Some calcites fluoresce **red/orange**.
- **Ethical Mining**: Avoid buying from conflict zones (e.g., artisanal Congolese malachite funds militias).

5. Did You Know?

- Vaterite: Rare in nature but synthesized for **bone graft** substitutes (biocompatible).
- **Dolomite Problem**: No modern dolomite forms naturally—its origin remains a geological mystery!

Need **high-resolution images** of these localities or **synthesis protocols**? Let me know!

Here's a **comprehensive list of metal carbonates**, categorized by metal type (alkali, alkaline earth, transition, and post-transition metals), including natural minerals and synthetic compounds. Each entry includes the **chemical formula**, **occurrence** (if natural), and key **uses/properties**.

1. Alkali Metal Carbonates

Compound	Formula	Occurrence/Uses	
Lithium carbonate	Li ₂ CO ₃	Lithium-ion batteries, bipolar disorder medication	
Sodium carbonate (Soda ash)	Na ₂ CO ₃	Natural: Trona (Na ₃ (CO ₃) (HCO ₃)·2H ₂ O). Uses: Glass, detergents	
Potassium carbonate	K ₂ CO ₃	Potash fertilizer, soap production	
Rubidium carbonate	Rb ₂ CO ₃	Laboratory reagent	
Cesium carbonate	Cs ₂ CO ₃	Organic synthesis, atomic clocks	

2. Alkaline Earth Metal Carbonates

Compound	Formula	Occurrence/Uses	
Beryllium carbonate	BeCO ₃	Rare; toxic, lab-only	
Magnesium carbonate	MgCO ₃	Mineral: Magnesite. Uses: Refractory materials, supplements	
Calcium carbonate	CaCO ₃	Minerals: Calcite, aragonite, vaterite. Uses: Cement, antacids, chalk	
Strontium carbonate	SrCO ₃	Mineral: Strontianite. Uses: Fireworks (red flames), CRT glass	
Barium carbonate	BaCO ₃	Mineral: Witherite. Uses: Rat poison, ceramics	
Radium carbonate	RaCO ₃	Radioactive; no natural deposits	

3. Transition Metal Carbonates

Compound Formula		Occurrence/Uses
Manganese(II) carbonate	MnCO ₃	Mineral: Rhodochrosite (pink). Uses: Mn source, ceramics
Iron(II) carbonate	FeCO ₃	Mineral: Siderite. Uses: Iron ore (historically)
Cobalt(II) carbonate	CoCO ₃	Mineral: Spherocobaltite. Uses: Pigments (blue glass)
Nickel(II) carbonate	NiCO ₃	Mineral: Rare (gaspeite). Uses: Ni refining, catalysts
Copper(II) carbonate	CuCO ₃ ·Cu(OH) ₂	Minerals: Malachite (green), azurite (blue). Uses: Pigments, jewelry
Zinc carbonate	ZnCO ₃	Mineral: Smithsonite. Uses: Zn ore, gemstones
Silver carbonate	Ag ₂ CO ₃	Synthetic: Light-sensitive (turns black). Uses: Lab reagent
Cadmium carbonate	CdCO ₃	Toxic; rare in nature. Uses: Cd plating (phased out)
Mercury(II) carbonate	HgCO₃	Unstable; decomposes to HgO + CO ₂

4. Post-Transition & Other Metal Carbonates

Formula	Occurrence/Uses	
Al ₂ (CO ₃) ₃	Does not exist in pure form (forms hydroxycarbonates like dawsonite)	
PbCO ₃	Mineral: Cerussite. Uses: Lead ore (historically, now restricted)	
Bi ₂ (CO ₃) ₃	Synthetic; used in pepto-bismol analogs	
UO_2CO_3	Mineral: Rutherfordine. Uses: Nuclear fuel cycles	
$Ln_2(CO_3)_3$	Minerals: Bastnäsite, parisite (REE ores). Uses: Magnets, catalysts	
	Al ₂ (CO ₃) ₃ PbCO ₃ Bi ₂ (CO ₃) ₃ UO ₂ CO ₃	

5. Mixed & Complex Carbonates

Compound	Formula	Notes	
Dolomite	CaMg(CO ₃) ₂	Rock-forming mineral; steel flux, construction	
Ankerite	Ca(Fe,Mg) (CO ₃) ₂	Fe-rich dolomite variant	
Huntite	Mg ₃ Ca(CO ₃) ₄	Fire retardant, rare mineral	
Hydrozincite	Zn ₅ (CO ₃) ₂ (OH) ₆	Secondary Zn mineral; pastel colors	

Key Observations:

1. Natural Abundance:

- Alkali/alkaline earth carbonates (e.g., calcite, dolomite) dominate Earth's crust.
- Transition metal carbonates (e.g., malachite, siderite) are rarer and often form in oxidized ore zones.

2. **Stability**:

- Most carbonates decompose when heated (e.g., CaCO₃ → CaO + CO₂ at ~900°C).
- Heavy metal carbonates (Pb, Cd) are toxic and environmentally restricted.

3. Industrial Uses:

- Construction: Limestone (CaCO₃), dolomite.
- **Batteries**: Li₂CO₃ (lithium), Na₂CO₃ (sodium-ion).
- Pigments: Malachite (green), azurite (blue).

Did You Know?

- Vaterite (CaCO₃) is **metastable** and rare in nature but synthesized for biomedical implants.
- **Sodium carbonate** was historically extracted from **burned seaweed ash** ("soda").

Need **synthesis methods** or **crystal structure diagrams** for any of these? Let me know!

Here's a **comprehensive list of all known metal carbonates**, including natural minerals and synthetic compounds, organized by periodic group with key details:

1. Alkali Metal Carbonates (Group 1)

Name	Formula	Natural?	Key Properties/Uses
Lithium carbonate	Li ₂ CO ₃	Synthetic	Essential for lithium-ion batteries, mood stabilizer
Sodium carbonate	Na ₂ CO ₃	Yes (trona)	Glass manufacturing (soda ash), water softener
Potassium carbonate	K_2CO_3	Yes (potash)	Fertilizer, soap production
Rubidium carbonate	Rb ₂ CO ₃	Synthetic	Specialty glass, research
Cesium carbonate	Cs_2CO_3	Synthetic	Organic synthesis, atomic clocks
Francium carbonate	Fr ₂ CO ₃	Theoretical	Radioactive (no practical use)

2. Alkaline Earth Metal Carbonates (Group 2)

Name	Formula	Natural?	Key Properties/Uses
Beryllium carbonate	BeCO ₃	No	Highly toxic, decomposes at RT
Magnesium carbonate	MgCO ₃	Yes (magnesite)	Refractory bricks, antacids
Calcium carbonate	CaCO ₃	Yes (calcite/ aragonite)	Cement, chalk, dietary supplements
Strontium carbonate	SrCO ₃	Yes (strontianite)	CRT glass, red fireworks
Barium carbonate	BaCO ₃	Yes (witherite)	Rat poison, ceramic glazes

Name	Formula	Natural?	Key Properties/Uses
Radium carbonate	RaCO₃	No	Radioactive (historical medical use)

3. Transition Metal Carbonates

Name	Formula	Natural?	Key Properties/ Uses
Titanium(IV) carbonate	Ti(CO ₃) ₂	No	Unstable, lab curiosity
Vanadium carbonate	$V(CO_3)_2$	No	Theoretical only
Chromium carbonate	CrCO ₃	No	Decomposes rapidly
Manganese(II) carbonate	MnCO ₃	Yes (rhodochrosite)	Steel alloy additive, pink pigment
Iron(II) carbonate	FeCO ₃	Yes (siderite)	Historical iron ore, jewelry
Cobalt(II) carbonate	CoCO ₃	Yes (spherocobaltite)	Blue ceramics, catalysts
Nickel(II) carbonate	NiCO ₃	Rare (gaspeite)	Nickel refining, batteries
Copper(II) carbonate	CuCO ₃ ·Cu(OH) ₂	Yes (malachite/ azurite)	Pigments, gemstones
Zinc carbonate	$ZnCO_3$	Yes (smithsonite)	Zinc ore, turquoise- like gems
Silver carbonate	Ag ₂ CO ₃	No	Light- sensitive (turns black), lab reagent
Cadmium carbonate	CdCO₃	Rare	Toxic (banned in most applications)
Mercury(II) carbonate	HgCO ₃	No	Decomposes to HgO + CO ₂

4. Post-Transition Metal Carbonates

Formula	Natural?	Key Properties/Uses
Al ₂ (CO ₃) ₃	No	Forms hydrated hydroxycarbonates instead
Ga ₂ (CO ₃) ₃	No	Lab curiosity
$In_2(CO_3)_3$	No	Electronics research
SnCO ₃	No	Unstable
PbCO₃	Yes (cerussite)	Historical lead ore, now restricted
Bi ₂ (CO ₃) ₃	No	Pepto-Bismol analogs
	Al ₂ (CO ₃) ₃ Ga ₂ (CO ₃) ₃ In ₂ (CO ₃) ₃ SnCO ₃	Al ₂ (CO ₃) ₃ No Ga ₂ (CO ₃) ₃ No In ₂ (CO ₃) ₃ No SnCO ₃ No PbCO ₃ Yes (cerussite)

5. Lanthanide & Actinide Carbonates

Formula	Natural?	Key Properties/ Uses
La ₂ (CO ₃) ₃	No	Phosphors, optical glass
Ce ₂ (CO ₃) ₃	No	Catalysts, polishing compounds
UO_2CO_3	Yes (rutherfordine)	Nuclear fuel processing
Pu(CO ₃) ₂	No	Nuclear research (highly regulated)
	La ₂ (CO ₃) ₃ Ce ₂ (CO ₃) ₃ UO ₂ CO ₃	(rutherfordine)

6. Mixed & Complex Carbonates

Name	Formula	Туре	Significance
Dolomite	CaMg(CO ₃) ₂	Mineral	Rock-forming, steel flux
Ankerite	Ca(Fe,Mg) (CO ₃) ₂	Mineral	Iron-rich dolomite variant
Huntite	$Mg_3Ca(CO_3)_4$	Mineral	Flame retardant
Hydrozincite	$Zn_5(CO_3)_2(OH)_6$	Mineral	Secondary zinc deposit

Name	Formula	Туре	Significance
Bastnäsite	(Ce,La)(CO ₃)F	Mineral	Primary rare earth ore

Key Notes:

- 1. **Stability**: Most carbonates decompose when heated (e.g., CaCO₃ → CaO + CO₂ at 900°C).
- 2. **Natural Abundance**: Alkali/alkaline earth carbonates dominate; transition metal carbonates are rarer.
- 3. **Toxicity**: Heavy metal carbonates (Pb, Cd, Hg) are restricted due to toxicity.

Synthetic Carbonates of Interest

- Lithium nickel cobalt aluminum oxide (NCA): LiNiCoAlO₂ (battery cathodes)
- Synthetic malachite: Used for art restoration
- Nano-calcite: Drug delivery systems

Would you like **crystal structures** or **industrial synthesis methods** for any specific carbonate?