supposition that the substance is throughout the period of heating coated with a film of water adiathermanous and the external surface of which may be considered as appreciably that of the steam. The danger then of radiation error, that is, of steam condensing elsewhere than at the surface of the substance, is small. Condensation, in short, may be considered as taking place by abstraction of the energy of the molecule on impact with the water film.

II. "On the Specific Heats of Minerals." By J. Joly, B.E., Assistant to the Professor of Civil Engineering, Trinity College, Dublin. Communicated by Professor FITZGERALD, F.R.S. Received June 28, 1886.

A number of experiments were made on minerals by the method of condensation, using the form of gravimetric calorimeter described in the beginning of the paper on calorimetry (p. 353). The condensation of steam being in all cases employed, the values recorded are the mean specific heats between atmospheric temperatures approximating to 12° C., and steam temperature, about 100° C. More exactly, the values recorded are the mean calorific capacities for a rise of one degree between the limits t_1 and t_2 , tabulated in each case. The specimens dealt with were chosen as good samples of the mineral free from visible impurities.* But before detailing the particulars of the experiments a few notes on the discriminative value and physical interest attached to this application of calorimetry may not be amiss.†

It seems probable that the neglect of the use of the specific heat constant is to be ascribed to the difficulties besetting its determination. Certainly if its determination was as easily effected as we effect the determination of the specific gravity of a body, there are on the other hand sufficient reasons to recommend its use as in general of more physical value and interest than the much used specific gravity. There are cases indeed where specific gravity, as it is possible to obtain it, is misleading, and where specific heat gives at once valuable information on the probable chemical nature of the substance. Such cases would arise with bodies of loose vesicular or hollow structure. No misleading variations need be introduced into the thermal constant by mere conditions of volume.

The method of condensation permits of the determination of this constant with very little experimental difficulty. On the whole the

^{*} I have to thank Professor Sollas for the loan of useful specimens from the Museum of Trinity College.

[†] In November, 1883, I suggested this use of calorimetry to the Experimental Science Association, Trinity College.—" On the Determination of Minerals by their Specific Heats."

process is involved with no more liability to error than the process of weighing a body in air and in water. If, however, accuracy—greater than 1 per cent.—be desired, the operation takes considerably more time, as it is necessary, in securing t_1 accurately, to leave thermometer and specimen a sufficient time together in the calorimeter. The simplicity of the method is perhaps best inferred from the fact that of over 130 experiments on minerals there were but three spoiled—due to mishaps; and it will be seen that the repetition experiments reveal in no case appreciable discrepancy.

That this specific heat constant is very sensitive to the presence of impurities or variations in the chemical nature of the substance cannot be considered a disadvantage. It is supposable that this might lead occasionally to useful enquiry. This sensitiveness is shown in the case of tourmaline. Of three specimens the specific heats were—

Hemihedral, black crystal	=	0.5000
Striated, black crystal	=	0.2008
Hemihedral, brown crystal	=	0.2111
The same, a second experiment	=	0.2112

The variation from the black to the brown is over 5 per cent. Now tourmaline experiences considerable variations in the two constituents iron and magnesium. Approximately in percentage composition according to Dana's table of analyses—

	$F \epsilon O$.	Fe_2O_3 .	MgO.
Black tourmaline contains	6	8	1
Brown tourmaline	0	1	11

which in view of the high molecular heat of magnessia and the low molecular heats of the oxides of iron would account for the differences in the experiments. It will be seen later in the particulars of these experiments that the densities of these crystals also, in a less degree, reveal the difference in composition.

Again attention is suggestively drawn by the thermal constant to the chemical compositions of the first two of these three aerolites from the Museum of Trinity College,

(1.)	Fell in Co. Limerick, September 10th, 1813	0.1787
(2.)	Fell in Maryland, U.S.A., February 10th, 1825	0.1785
(3.)	Fell in Spain, July 8th, 1811	0.1856

The specific gravities, too, of the first couple, are found to be identical, thus: (1) = 3.604; (2) = 3.601; (3) = 3.435. The experiments, in fact, evidently afford strong reasons for believing that the first two aerolites constitute a case of the strange similarity alluded to by Daubrée:—"Il y a des météorites éloignées au double point de

vue géographique et chronologique qui présentent parfois l'identité la plus complète, de telle sorte qu'il est impossible d'en distinguer les échantillons respectifs."* He adds a list of the few such occurrences known.

It is an important feature that the value of the thermal constant admits of being approximately, sometimes closely, calculated on an assumed chemical composition, and thus can be used in identification where comparative data do not exist or are not at hand. This fact rests on the experimental basis that the specific heat of the atom is preserved nearly constant through various atomic groupings. applies indeed, only so far as the specific heats of the elements have been determined in the solid state; when the generalisation is applied to molecules containing elements whose specific heats as solids have never been directly determined it ceases to be accurate, and it appears at present as if in each kind of grouping a particular thermal capacity must be assigned to the atom. Approximate values of these thermal capacities have, however, been calculated by Kopp and others, and thus it is possible in all cases to pronounce for or against an hypothesis as to the nature of a substance, and this not alone in the case of simple salts, but when dealing with the silicates where many different kinds of atoms are present.

In the case of the bisilicate beryl, for example, the most probable formula is $5\text{BeO},2\text{Al}_2\text{O}_3,\text{H}_2\text{O},11\text{SiO}_2$.† Of these molecules the specific heat of BeO has alone not been directly determined. We take for the specific heat of Be 0.430,‡ and taking the atomic heat of solid oxygen as 4.5—the value it affords approximately in compounds having the constitution RO§—we assume its sp. h. in the molecule to be 0.281. On these assumptions the sp. h. of BeO would be 0.335. The atomic weight of Be is taken as 9.1. Taking advantage, then, of direct determinations as far as possible, the data are, sp. h. of BeO 0.335, of Al₂O₃ 0.198,||| of H₂O 0.501,||| of SiO₂, 0.188.** From these, by an equation similar to Woestyn's—††

$$WS = n_1 w_1 s_1 + n_2 w_2 s_2 + \dots,$$

where s_1, s_2, \ldots are the specific heats of the several kinds of molecules as above; $n_1, w_1, n_2, w_2, \ldots$ the numbers and atomic weight of

- * 'Géologie Expérimentale, Constitution des Météorites,' p. 507.
- † From Penfield's result that the composition is Be₅,Al₄,Si₁₁O₃₄, 'Nature,' vol. 30, 1884, p. 378. The ratio is not quite bisilicate. Mr. Penfield thinks, however, that water should be included in the formula.
 - 1 11° to 100°, Humpidge, 'Roy. Soc. Proc.,' vol. 39, 1886, p. 8.
 - § Kopp.
 - || From my own results on corundum, agreeing with Regnault's.
 - ¶ Person's result on ice, -20° to 0°. Landolt and Börnstein's 'Tabellen,'
 - ** My own result on quartz, agreeing with Neumann's.
 - †† 'Annales de Chimie,' vol. 23, 1848, p. 295.

each kind of molecule present in the substance; W the molecular weight of the entire compound $= \sum wn$; s the required specific heat—the sp. h. of beryl is found to be 0.2140. The experimental results are

α.	Transparent crystals	0.2066
β.	Clouded crystals	0.2126

With the last variety the agreement is very close, but in either case the agreement is sufficient to render the calculation strong evidence had the case been one of hypothesis as to the nature of the substance.

I proceed to quote a case where the identification of a mineral was in this way left to the calorimeter.

The mineral had been assigued a place in a small collection as cryolite, on supposition. Its sp. h. was found to be 0.2558. This at once distinguished it from gypsum—sp. h. = 0.278—which it resembled in appearance. As I knew of no experiments on cryolite it was necessary to calculate the constant. The formula of cryolite-3NaF + Al₂F₃—includes the sp. hs. of Na, F, and Al. F has not been directly determined. Its probable value was deduced from the sp. h. of fluorspar, which I had found to be 0.2118. Ascribing to the calcium in this compound the value 0.170 (Bunsen), the sp. h. of fluorine is deduced as 0.251, which agrees with Kopp's result. The other atoms in cryolite were assumed as follows: to the sodium was assigned Regnault's value 0.293, to the aluminium that obtained by myself, 0.223. On these assumptions the calculated sp. h. of cryolite is 0.2569. The experiment on the hypothetical cryolite affording 0.2558, the diagnosis was assured. A test of fusibility now confirmed the result, and subsequently an authentic specimen of cryolite gave 0.2538.

The calculation may also be effected on the percentage composition. It is a readier method but, it is remarkable, not so agreeable with the practical result. Thus in the case of cryolite, Al = 13.21, F = 53.56, Na = 32.65 in the mean analysis (Dana), and by the equation

$$S \times 100 = w_1 s_1 + w_2 s_2,$$

where w_1, w_2, \ldots are the percentages, s_1, s_2, \ldots the sp. hs. of the constituents, the result is S = 0.2591.

The specific heats of a few substances occasionally confounded are gathered here.

(Apatite, opaque	0.1920
,, translucent	0.1829
Beryl, clouded	0.2127
transparent	0.2066

(Orthoclase, transparent	0.1869
,, opaque	. 0.1890
Labradorite	. 0.1933
₹ Oligoclase, transparent	
,, sub-translucent	. 0:1997
Albite	. 0.1983
Microcline	. 0.1905
CTourmaline, black	. 0.2004
" brown	. 0.2111
$\langle Epidote, dark-green \dots$. 0.1877
Hypersthene, dark-brown	. 0.1790
Amphibole, black	. 0.1963
\(\int Quartz \cdots \	. 0.1881
Topaz	. 0.1997

Many of these substances may, of course, be also distinguished by their specific gravities. There is indeed, as might be expected, a connexion apparent between the two, the quantities tending to vary inversely, not only from one substance to another, but in the case of variations in specimens of the same species.

In its physical interest I think calorimetry deserves the attention of mineralogists. From results which came under notice in the course of the experiments on mineral crystals, I think it will be allowed that questions of interest are raised. These observations are in one direction only, and I have not had leisure to pursue them with the thoroughness they appear to me to deserve. Many questions suggest themselves on molecular freedom within the crystal which will need care and preparation to answer, and I now but give in outline an account of observations made, I may say, incidentally.

The crystallographic interest of the thermal capacity is based upon what is apparently an intimate connexion with the amount and kind of freedom possessed by the atoms of the solid. This is perhaps It is probable that calorific capacity, tending to hardly unexpected. be reciprocal to the mass of the atom, is more concerned with the intrinsic nature of the atom than with its surroundings. Still on any hypothesis of a vibratory molecule it is easy to conceive that if the surroundings are such as to hamper its freedom of motion the constraint will be revealed in its specific heat; that is, if we assume its increase of energy to be kinetic, as in increased amplitude of vibration. It might be expected then that in the crystal the atom would reveal thermally greater freedom than in the amorphous state. If, in fact crystalline arrangement be regarded as the result of harmony among molecular vibrations, we would expect for the crystal a specific heat approximating to that of the free molecule, and the more nearly approaching it the more perfectly harmony prevailed in the crystal.*

^{*} There are not many experimental data for comparing the specific heat of the

It is here assumed that in some way similar to that in which the atom passes into the compound molecule without, in general, sensible change of thermal capacity, the molecule passes into the crystal with only insignificant further change in thermal capacity; the crystal being regarded in some sense as the chemical combination of the molecule. Thus we expect the specific heat of the crystal to be lower than that of an amorphous aggregation of its atoms under the constraint of discord. This agrees with experiment, for it may be stated as true generally that in the crystal the specific heat is lower than in the amorphous state, and that the more perfect and complete the state of crystallisation the lower the observed specific heat.

This, the first fact brought to my notice as experiments multiplied, seems to hold through the nicest indications of crystalline state as facial lustre, degree of translucency, as well as through the more marked indications of cleavage and form, and is probably quite in accord with the well-known fact that rolling, hammering, and such operations as tend to increase the density, diminish the specific heat of metals. The same would, doubtless, be found to hold in the case of the crystalline polarity conferred on metals by vibration.

I might illustrate the fact by a considerable number of cases where it happened that the specimens dealt with showed differences in crystalline state. I will only quote a few, referring to the tables for other cases. It is apparent in the case of *Barite*:—

Limpid crystal	0.1092
Sub-transparent crystal	0.1105
Opaque, lamellar	0.1116
In the case of Gypsum:—	
Transparent	0.2726
Opaque, rough	0.2737
Sphalerite:—	
Crystal, high lustre	0.1144
Crystalline, divergent	0.1155
,, massive	0.1162
Orthoclase:	
Limpid	0.1869
Opaque, well-formed crystals	0.1886
Massive, cleavable	0.1899

Fluorspar, cryolite, calcite, and quartz-opal are also examples. The case of opal is, however, uncertain, owing to probable presence of molecule in crystalline freedom with the specific heat of the molecule in gaseous freedom. In the case of ice and steam, they are the same nearly; (Regnault) ice $(-78^{\circ}$ to $0^{\circ}) = 0.474$; steam $(128^{\circ}$ to $220^{\circ}) = 0.480^{\circ}$.

water. I came on no exceptions. There is, indeed, a more conspicuous kind of variation shown in the specific heats of minerals not always determinable by external appearances, but this cannot, I think, be classed with the foregoing. It is, however, difficult at present to draw the line between them. But so far it seems highly probable that in slight differences of thermal capacity may be recognised a molecular restraint or discord or whatever molecular condition results in opacity, roughness, incompleteness, formlessness.

That other kind of variation to which I allude is of a different order of magnitude, and, I venture to suggest, points to causes of It suggests the possibility that more than one different order. molecular arrangement may obtain in bodies chemically and crystallographically, to all appearance, identical. For example, in hexagonal prisms of beryl two very different degrees of molecular freedom would appear to be possible. Certainly two very different thermal capacities obtain, unexplained by chemical differences or crystallographic form, so far as I can ascertain. The variation, too, seems in no way connected with the density of the substance, for this may be invariable from one specimen to another, while the difference of specific heat is remarkable. In many cases this difference of structure, if such it be, is revealed in the behaviour of the substance to light, in the opacity or transparency of the crystal. So marked is this that specific heats may be at once assigned with certainty to different crystals of known minerals on their opacity or transparency. In some cases again the substances present no differences whatever in appearance. of beryl stands thus:-

	Sp. h.	Sp. gr.
Transparent, blue, six small crystals	0.20587	2.676
$\alpha \langle$,, blue crystal	0.20705	2.666
" greenish crystal	0.20636	2.660
(Sub-translucent, green crystal	0.21257	2.706
β , , , ,	0.21236	2.706
Opaque, dull-greenish crystal	0.21306	2.644

Between the α and β specimens above there is no difference apparent in crystallographic development save in the case of a couple of the small α crystals of the first experiment, which show pyramidal as well as the basal and prismatic faces common to all the specimens. Examination of the twenty analyses collected by Dana ('Mineralogy') suggests no explanation on chemical grounds. The percentages throughout vary in no adequate degree, ascribing to the molecules the thermal values recorded previously in arriving at a result by calculation agreeing with the β specific heat. I do not think, too, that results independent, as they constantly seem, of density can with probability be ascribed to differences in the amounts of the constituent

atoms. There is more probably some difference in constraint, of a structural kind, affecting the freedom of the molecules. Des Cloizeaux is of opinion that the optical examination of emerald, "and above all of beryl," points to a biaxial constitution.* In recently noting on these same clouded green β -beryls from our Dublin granite, I had occasion to remark on their optical heterogeneousness.† The extinction of basal sections is not uniform between crossed Nicols; pale grey cross-hatching is apparent, and as the mineral is rotated extinguishes capriciously over the field. In these patches the restoration of illumination is feeble and suggests imperfect coincidence of optic and crystallographic axes.

A still greater variation appears in the sp. h. of corundum from the clouded to the limpid variety, basing the sp. h. of the latter on Regnault's result on sapphire. It is remarkable, however, that the variation is in the opposite direction—the limpid variety exhibits the higher, the clouded the lower sp. h. Thus:—

а	∫ Corundum	0.197.	$\mathbf{R}.$
	Clouded crystal of corundum	0.198.	J.
	Sapphire		

This is a variation of 10 per cent. about. Now the analyses given in Dana's 'Mineralogy' of sapphire and corundum, although variable and pointing sometimes perhaps in the direction of the calorimetric result, certainly warrant no such difference, while on the other hand the sp. gr. of the two varieties are invariably opposed to the result being lower in the common variety than in the gem. It is perhaps remarkable that both these minerals, beryl and corundum, are hexagonal. A third case occurs in the case of calcite. I experimented on Iceland spar and on a clouded milk-white rhombohedron, and also on a specimen consisting of an aggregation of dihexagonal prisms. Adding the observations of others an α and β variety of calcite is suggested.

	Sp. h.	Sp. gr.	Observer.
	0.2036	2.713	J.
α Clouded rhombohedron	0.2044	2.702	J.
Iceland spar			N.
A Translucent di-hexagonal prisms	0.2091	2.658	J.
β { Iceland spar, two specimens	0.2086		R.

In addition there is an observation of Kopp's 0.206; it is highly probable, however, from a consideration of Kopp's general results, his method of working, and, indeed, his own acknowledgement, that this is too low. It is likely he was dealing with β -calcite. It is to be remembered that Iceland spar is chemically a very pure form of the mineral.

^{* &#}x27;Minéralogie,' vol. 1, p. 366. † [1885] 'Roy. Dublin Soc. Proc.,' vol. 5, p. 49.

The case of aragonite is unexpected. Its specific heat has been obtained by Regnault, Kopp, Neumann, and myself. The experiments fall into α - and β -groups, having values identical with those of calcite, and the remarkable fact appears that although the minerals differ in crystalline symmetry and specific gravity, the evidence is in favour of ascribing the same thermal capacities to both. The experiments are—

	Sp. h.	Sp. gr.	Observer.
(Two transparent crystals (Bohemia)	$0.\overline{2040}$	2.955	J.
$\alpha \langle ,, ,, ,, \rangle$, (Auvergne)	0.2039	2.955	J.
$\alpha \left\{ \begin{array}{ll} ,, & ,, & , & (\text{Auvergne}) \\ \text{Aragonite} & & \end{array} \right.$	0.2030		K.
β ,,	0.2085	-	$\mathbf{R}.$

Neumann's result, 0.2018, probably comes under the α variety. A coincidence of error adequate to account for this nearly unanimous agreement between the two forms of calcite is improbable. The inference would appear to be that in both forms the molecules possess nearly equal freedom. From my own results on transparent crystals of both forms the molecular restraint seems perhaps greater in aragonite. This is probable, too, from the phenomena attending the heating of aragonite. The crystals spontaneously break and develope cracks even at the low temperature of the steam; a phenomenon which, be it observed, probably in some slight degree falsifies the results.

The sp. h. of a specimen of massive rough barites from Glendalough, co. Wicklow, is sufficiently remarkable to justify notice. In this case the nearly pure nature of the specimen was placed beyond doubt by analysis. The sp. h. obtained was—

my other observations on this mineral ranging from 0 1092 to 0 1117. Neumann records 0 1088; Regnault, 0 1128. As the specimen was unaffected by acids, the presence of PbSO₄ was suggested as the only likely admixture competent to lower the sp. h. On this account I analysed the substance. The result is—

BaSO ₄	99.1
MnO_2	0.3
$CuFeS_2$	0.2
Pb	trace
Ca	trace
$\mathrm{Fe_2O_3}$	0.6
	100.2

The specific gravity, it will be seen, is also abnormal for barites (4·3-4·7, Dana). The sp. gr. of the other specimens examined by

me approximate to 4.4. It is certain that the small quantities of impurities present, acting merely by their atomic heats, would not suffice appreciably to alter the sp. h., and would rather tend to elevate it.

To these cases may, perhaps, be added those of apatite and oligoclase. I examined but two specimens of each.

Apatite.		
Translucent hexagonal prism, high lustre, brittle	Sp. h. 0·1826	Sp. gr. 3·166
Opaque, dull compact crystal	0.1920	3.089
Opaque, dun compact crystal	0 1920	3 00 3
${\it Oligoclase}.$		
	Sp. h.	Sp. gr.
Sub-translucent, milk-white (Ytterby)	0.1997	2.621
Transparent crystal	0.2059	2.605

It remains to notice the cases of three chemically and crystallographically related minerals where the variations obtaining in each case would appear to stand in a numerical relation from one substance to another. The minerals are iron pyrites (isometric disulphide of iron); galenite (isometric sulphide of lead); sphalerite (isometric sulphide of zinc). The orthorhombic disulphide of iron, marcasite, seems also to fall into the relationship.

The specific heat of pyrites is, according to Regnault, 0·13009. Operating on a large bright cube, I obtained the same number exactly, 0·13009. Neumann's result is 0·127, Kopp's 0·126. The specific heat of galena is given differently by Regnault, Kopp, and Neumann. The value given by Kopp, 0·0490, closely agrees with an observation of my own, 0·0492. I also obtained 0·0504 and 0·0522 on well crystallised specimens. The last number is probably a little excessive, as there was just a trace of a white substance—the carbonate—present. There are found finally for pyrites and galena the numbers—

		Pyrites.			
N	0.127	• • • • • •		R	0.130
K	0.126		• '-	J	0.130
		Galena.			
K 0.0490	R	0.0508	J	0.0522	N 0.053
J 0.0492	J	0.0504			

Taking the means of the first two vertical colums in each case, the proportion holds very closely

Pyrites. Galena. 126.5 : 130 :: 491 : 506.

The experiments are so close that any of the recorded values are fairly in the proportion, and some evidently better than the means; thus if my own results and Neumann's be alone considered, it will be found that the ratio is almost absolute. As it stands, on the mean values, the products are as 638 to 640.

If Neumann's result for marcasite, 0.133, be included, we find the more extended proportion—

Pyrites. Galena. 126:5: 130: 133:: 491: 506: 522.

But in this the last number is a little excessive, which, as observed, is probably due to impurity.

Two distinct values, very different, are on record for sphalerite:-

N	0.114	 $R.\dots$	0.123
J	0.115	 K	0.120

and finally the proportion with the extreme values of pyrites and galena obtains.

If this proportion be examined by products of consequent and antecedent of first term with sum of antecedents and consequents, the products obtained are as 88,938 to 88,909. One value only, it will be seen, is omitted from the ratios, that of Neumann, for galena. It appears to lie outside the proportion, and may either be erroneous or simply indicative of corresponding terms not yet found for the other sulphides.

In conclusion, I would ask in reference to the foregoing remarks, if in the present state of our knowledge there is anything à priori improbable in different molecular arrangements or orientations obtaining under the same crystalline form and affecting to definite extents the thermal freedom of the molecule. Such differences of arrangement, hardly detectable perhaps by any other means of investigation, might exist unnoticed except when, as possibly occurs in the case of marcasite, prevailing to a degree competent to determine a different symmetry for the aggregate.

Regarding the experiments which follow, I have only now to observe on the precautions observed in effecting them.

The thermometers, certified at Kew, read directly to 0.1° C.; the place of hundredths being obtained by estimation.

The balance used was trustworthy to 0 0005 gram. To secure t_1 accurately indicating the temperature of the substance, thermometer and specimen were left together in the calorimeter—starting at air temperature—never less than one and a half hour; large specimens,

two to three hours; and the largest were reserved for leaving in all night.

Specimens presenting at all a porous or loose surface were carefully dried, often for many days, in an oven, and subsequently preserved over calcium chloride. Porous or loose substances, not of special value, were, for greater surety in drying, broken into small bits—as in the case of the few rock specimens investigated. To preserve these dry in the calorimeter, while acquiring air temperature, calcium chloride was in some cases placed in the little chamber projecting from the lower part of the sphere. If counterpoised immediately on being placed in the calorimeter absorption of moisture may evidently be detected, weighed, and its thermal capacity allowed for. This plan was on a couple of occasions resorted to. In any cases observed, however, entire neglect of this absorption would have produced but small error.

Supposing errors of the same sign to accumulate through an experiment, I do not think they can have in any case falsified the value of the sp. h. above 0.4 per cent. This seems probable, too, from the agreement observed on repetition.

Allowance has in all cases been made for the variation of λ with t_2 , according to Appendix of last paper. The effect of the low specific gravity of steam on the apparent weight of condensation has been allowed for, as $\frac{W}{\text{Sp. gr.}} \times 0.62$ gram. With these deductions and allowance for the precipitation on the carrier and bucket according to range of temperature obtaining, the value of w is deduced as recorded in the tables.

The specific gravities recorded have been reduced to water at 4° C.

Specific Heats of some Minerals.

	W.	t_1 .	25.	w.	Sp. h.	Sp. gr.
Galenite, PbS. Isometric:— Four well-formed crystals—cubo-octahedral. Close grained fragments Very cleavable fragments Another experiment.	62.964 87.840 56.967 56.951 56.951	13.27 13.27 10.50 10.98 11.77	89.20 89.20 89.46 89.46 89.46	0.5105 0.6955 0.496 0.493 0.487	0.05406 0.04921 0.05234 0.05232 0.05232	7.323 7.562 7.365 "
Other observers B. = 0.05086; N. = 0.053; K. = 0.0490.	86; N.=0.	053 ; K.=	0.0490.			
Sphalerite, ZnS. Isometric:— Clearable, high resinous lustre, dark brown 45.765 11.80 100. Fibrous, divergent, dark brown 31.893 9.90 99.40 Compact, crystalline, dark brown Other observers R. = 0.1230; N. = 0.1145; K. = 0.120.	45.765 80.520 31.893 0.5 N.=0.1	11.80 11.40 9.90 1145; K.=	100 18 100 30 99 90 = 0 120.	0.863 1.610 0.622	0·11445 0·11553 0·11625	4 · 082 4 · 039 4 · 020
Parite, FeS2. Isometric:— Large bright cube 12.23 Cubes stained with limonite. 73.309 12.40 Cubes and pyritohedrons, bright, pale. 46.710 10.50 Two interpenetrated cubes, bright, pale. 0ther observers. 8.=0.126; K.=0.126	55 ·890 73 ·309 57 ·671 46 ·710 9 ; N · = 0 ·1	12 · 23 12 · 40 12 · 30 10 · 50 1275; K.=	99·70 99·40 99·70 99·90	$\begin{array}{c} 1.1785 \\ 1.597 \\ 1.2265 \\ 1.016 \end{array}$	0.13009 0.13443 0.13059 0.13111	4.938 4.882 4.808 4.808
Chalcopyrite, CuFeS ₂ . Dimetric:— Crystalline fragment, bright, iridescent	48.687	11 40 12 55	100.00	1.0225	$0.12717 \\ 0.12708$	4.143

Specific Heats of some Minerals—continued.

	Š.	t_1 .	t_2 .	w.	Sp. h.	Sp. gr.
Fluorite, CaF. Isometric :			The san Spinister and Spiniste			
Clear green cube Crystalline, translucent, green.	32 ·957 31 ·275	$10.40 \\ 9.75$	100.00	1.166	0.21180	3·172 3·171
Other observers, $R_* = 0.2149$; $N_* = 0.2082$; $K_* = 0.209$.	; N.=0.208	32; K.=0	.209.	*		
Cryolite, 3NaF + Al ₂ F ₃ . Trimetric (?):-	*					
White, subtransparent	58 · 438 43 · 060	13 ·00 11 ·50	100·25 99·70	2.480 1.8105	0.25385	2 ·963 2 ·961
Other observers $K = 0.238$	K.=0.	238.				:
Corundum, Al ₂ O ₃ . Hexagonal:—					-	
Hexagonal prism, clouded, pale blue	$\frac{102.820}{102.820}$	12 ·56 12 ·62	08.66	3 ·314 3 ·3135	$\begin{bmatrix} 0.19800 \\ 0.19820 \end{bmatrix}$	3 .963
Other observers $R_{\rm c} = 0.19762$, and sapphire 0.21732.	.9762, and s	apphire 0.	21732.			
Hematite, F2O3, Rhombohedral:-						
Botryoidal, divergent	61.175 67.604	$\frac{13.50}{7.80}$	99.80	$1.6495 \\ 1.976$	0.16766	4·644 4·923
Other observersSpecular iron, R. = 0.1670; N. = 0.1692; K. = 0.154.	.=0.1670;	N.=0·169	2; K.=0	154.		
Limonite, $F_2O_3 + 3H_2O$:—	Accommons					
Divergent, brown, silky. Pseudomorphous after pyrites, brown	58.990 26.492	13·27 13·63	99 ·78	$2.107 \\ 0.961$	0 ·22632 0 ·22155	4.037 3.886
	-					

VOL. XLI.

 \mathbf{T}

Specific Heats of some Minerals—continued.

	₩.	t_1 .	t ₂ ,	w.	8р. ћ.	Sp. gr.
Quartz, SiO ₂ . Bhombohedral:— Ten small crystals, limpid, B, i, -1 Smoky crystal, trapezohedral (left, tetartohedral) with B, i, -1 Clear limpid, B, i, -1 Clear, B, i, -1	32 ·921 29 ·743 17 ·572 14 ·686	11.95 13.10 11.83 16.50	99.75 99.60 99.30 100.22	1 ·0125 0 ·9025 0 ·539 0 ·4305	0.18800 0.18828 0.18827 0.18780	2 ·649 2 ·652 2 ·652 2 ·652
Other observers R. = 0.1913; N. = 0.1883; K. = 0.186, Opal, SiO ₂ . Amorphous:—	13; N.=0.	1883 ; K.	=0.186.			
Hyalite, limpid, spheroid aggregations White, nearly opaque Another experiment	28.468 22.456 22.437	13 ·25 8 ·20 13 ·20	99 ·60 99 ·90 99 ·40	0.931 0.913 0.855	0 · 20330 0 · 23785 0 · 23733	2·168 2·106
Uther observers	Hyame); b	0.208	(noble opal)		:	
Crystalline, massive, dark brown	69 .398	13.55 13.25	100.08	$\frac{2.0045}{2.001}$	$0.17900\\0.17891$	3.819
Amphibole, Bisilicate of Protox. and Sesquiox. bases. Monoclinic:—				-		
Five black crystals, O.I. \hat{u} , -1 . Two largest of the five. Three largest of the five	57·192 45·133 51·309	$12.00 \\ 12.94 \\ 12.90$	99.72 100.30 100.30	1 ·8355 1 · 4435 1 · 6405	$ \begin{vmatrix} 0.19634 \\ 0.19635 \\ 0.19619 \end{vmatrix} $	3.183
Probably aluminous magnesia-lime-iron hornblende	ia-lime-iron	hornblend	le.			
AND AND ADDRESS OF THE PROPERTY OF THE PROPERT						

Specific Heats of some Minerals—continued.

Sp. gr.	2 .666 2 .660 2 .706 2 .708 2 .644	3.978 3.757	3.353	3 · 430
Sp. h.	0 -20587 0 -20707 0 -20703 0 -20636 0 -21257 0 -21236	0 ·17813 0 ·17792 0 ·17934 0 ·17929	0·19529 0·19457	0.18740
w.	0.865 0.475 0.4885 1.591 1.371 1.7145 0.431	1.5095 1.474 1.145 1.141	764·0 0-797	0.639
t_2 .	99 · 10 99 · 91 100 · 00 99 · 80 100 · 10 99 · 45 100 · 07	06.66 06.66	99.78	99.45
<i>t</i> ₁ .	12.47 11.72 9.75 12.40 6.80 11.90 16.69	10.65 12.65 12.30 12.60 nd FeO.	12.53 12.00	13.50 13.45
.W	26 050 13 966 13 986 47 388 47 495 13 016	$\begin{array}{c} 50.940 \\ 50.940 \\ 39.094 \\ 39.094 \\ 39.094 \\ \end{array}$	24·879 24·879	21·300 21·300
	Beryl, 3BeO + Al ₂ O ₃ + 6SiO ₂ . Hexagonal:— Six small crystals of clear blue aquamarine Transparent blue aquamarine Another experiment Transparent pale green. Clouded green, well crystallised, high lustre. Clouded green prism (Glencullen, Co. Dublin) Clouded greenish-white, radiating (Glencullen)	Garnet, Rolling 50.940 10.6 Two dark red crystals 50.940 12.6 Another experiment 39.094 12.8 Another experiment 89.094 12.3 Another experiment 89.094 12.3 Another experiment 89.094 12.6	Vesuvianite,(3°Ca ₃ + 3 ⁴ 4 ¹) ₂ Si ₃ . Dimetric:— Two translucent dark green crystals, high lustre Another experiment	Epidote, Ĉa ₆ (Æi, Fē) Ŝi ₉ . Monoclinic:— Two crystals, fine lustre, black-green. Another experiment

Specific Heats of some Minerals—continued.

			The state of the s			
	W.	t_1 .	t_2 .	·m·	Sp. h.	Sp. gr.
Biotile, Magnesia-iron Mica:— Black, opaque flakes (Perth, Canada)	20·291 17·809	12·63 12·70	100 ·30 99 ·95	0.685	0·20651 0·20491	2.841
Muscovite, Potash Mica:—Silvery-white crystals (Beleek, Co. Fermanagh)	23 ·735 20 ·541	13·80 12·40	99·75 99·90	0.778 0.6875	0.20519	2 .725
Lepidolite, Potash, Lithia Mica:— Massive, scaly-granular, fine lilac Another sample of same	42·726 48·823	12·20 12·38	100 ·20 100 ·20	1.4705 1.6760	0·20978 0·20967	2 .833
Wernerite, Ca ₃ Ar Si. Dimetric:— Two interpenetrating prisms, opaque, rough, grey Another experiment	34·156 34·156	$10.55 \\ 12.10$	100.00	1.141	0.20036	2.590
Lewcife, KO,Al ₂ O ₃ ,4SiO ₃ . Isometric:— Two trapezohedral crystals, grey Another experiment	15·937 15·937	12·00 12·84	96 66 98 90	0.4995	0.19119	2 .454

Specific Heats of some Minerals—continued.

Sp. h. Sp. gr.	0.19320 2.691 0.19348 2.693 0.19351 2.693	0.20580 2.605 0.20600 ". 0.19974 2.621 0.19967 ".	0·19846 2·630 0·19840 ", 0·19828 ",	0.18688 2.561 0.18702 2.561 0.18865 2.445 0.18877 2.551 0.18992 2.546
w.	1.3705 0. 1.3975 0. 1.2625 0. 1.386 0.	1.3255 0.1.3335 0.1.5465 0.1.366 0.	0.8395 0.7765 0.7758	
<i>t</i> ₂ .	99.72 100.05 100.20 100.18	99.45 100.05 99.10 99.40	100.20 100.18 100.19	100 20 99 76 99 90 99 85 99 80 99 50 99 50
t_1 .	13.50 12.29 12.25 12.60	12 00 12 20 12 60 11 60	12.50 12.63 12.71	190. 10.88 13.20 14.37 11.03 11.80 hoclase); ii
W.	44·155 44·155 39·790 43·946	39·534 39·534 48·074 41·829	23 ·991 23 ·979 23 ·978	69 893 69 887 66 632 23 359 27 490 48 279 0 1911 (ort
	Labradorite, Lime-soda felspar. Triclinic:— Chatoyant polished specimen Another experiment. Rough, chatoyant (Labrador) A similar specimen ,,	Oligoclase, Soda-lime felspar, Triclinie:— Subtransparent crystal Another experiment Milk-white, subtranslucent (Ytterby) Another sample of same	Albite, Soda felspar. Triclinic:— Group of limpid twinned crystals, composition on it (Tyrol) Another experiment ,,	Orthoclase, Potash felspar. Monoclinie:— 69.893 10.88 100.20 2.175 Transparent adularia 48.87 13.20 99.76 2.175 Another experiment 66.632 13.10 99.76 2.108 Green-blue amazon stome, cleavable 28.359 14.37 99.90 2.0155 Two crystals, a Carlsbad and a Baveno twin, opaque white 27.490 11.03 99.85 0.6975 White, nearly opaque, cleavable (Co. Dublin) 48.279 11.80 99.50 1.502 Red, very cleavable, subtranslucent (Castlecaldwell) 48.279 11.80 99.50 1.502 Other observers N.=0.1861 (adularia); 0.1911 (orthoclase); K.=0.183 (orthoclase)

Specific Heats of some Minerals—continued.

Sp. gr.	2 · 471 2 · 471 2 · 531 2 · 565 2 · 559	3 · 139 3 · 104 3 · 010 3 · 010	3 · 568 3 · 541	2 .908
Sp. h.	0.18916 0.19219 0.19302 0.19915 0.19084	0.20005 0.20082 0.21114 0.21126	0 · 19989 0 · 19965 0 · 19958	0 ·20057 0 ·20008
w.	0 ·981 1 ·0745 2 · 242 1 ·031 0 · 9065	1.0025 0.846 0.8425 0.8425	1.2445 1.179 0.621	1.276 1.2845
<i>t</i> 3.	99·10 99·35 99·95 100·19	99·50 100·10 99·50 100·00 gnesian.	99.40 99.80 99.42	99.45 100.00
t_1 .	13 ·45 14 ·84 12 · 90 12 · 37 12 · 50	11.78 9.08 12.90 12.57 brown mag	10.60 15.40 11.38	12 ·12 11 ·90
W.	30.863 35.519 71.588 33.124 29.052	30.588 24.919 24.747 24.747 naline; the	37 ·571 37 ·571 18 ·852	39 ·105 39 ·096
	Mievoeline, Potash felspar. Triclinic:— Well-marked pink, clearable (Glencullen, Co. Dublin) Another specimen from same locality Large crystal, pink (Glenmalure, Co. Wicklow) Fawn-coloured, cleavable (Arendal) Another sample of same	Tourmaline, Subsilicate of MgO, BO, Al ₂ O ₉ , Fe ₂ O ₃ . Rhombohedral:— Hemihedral crystal, fine black lustre	Topax, Al ₂ O ₃ {½SiO ₃ +½SiF ₃ }. Trimetric:— Limpid fragment A second experiment. Colourless, hemihedral. Prehalte. Co. H. Ki., + H. Trimetric:—	Globular crystalline surface, translucent, green (Dumbartonahire). Another experiment

Specific Heats of some Minerals—continued.

	W.	<i>t</i> ₁ .	t ₂ ;	w.	Sp. h.	Sp. gr.
Natrolite, NaAtO ₁₀ Si ₃ + 2H ₂ O. Trimetric:— Radiating group of white translucent crystals (Auvergne)	13.660	11.70	06.66	0.532	0.23689	2.244
Another similar specimen (Auvergne)	792.47	79. ZT	06. 66	Res. O	0.23819	2.743
Stubote, Ca. H. U. 1836 + 0 H. O. Trimetric: — Pearl-white radiating (Iceland)	28.583	11.25	99 • 40	1.230	0 -26207	2.158
Dried at 100° (about) for some days before experiment.	me days bef	ore experin	hent.			
Tale, 6MgO,5SiO ₂ + 2H ₂ O. Trimetrie:—	. -				4	
Pale green soapstone	47 .445	12.32 13.30	100 ·25 100 ·20	1.6855 1.568	0.21671 0.21686	2.769
Serpentine, 3MgO,2SiO ₂ + 2H ₂ O. Trimetrie (?):-						
Green, translucent (Galway)	31.014	11.20	08.66	1.295	0.25288	2 .549
Apatite, 3CaOPO, + \(\frac{1}{2} \)Ca(CIF). Hexagonal:-						
Green-brown prism, high lustre, subtranslucent, brittle	76.287	11.20	99 ·90 100 ·30	2.3035	0.18263	3.166
Opaque pink white prism, dull surface (Krageröe) A second experiment.	22.870 22.870	12.45 12.10	99 ·73 100 ·10	0.714	0.19196 0.19217	3.089
)))		1 2 3	: :	

Specific Heats of some Minerals—continued.

	W.	.t.	t2.	w.	Sp. h.	Sp. gr.
Barite, BaSO4. Trimetrie:-						
Limpid crystal. O.I. if and brachvdome: strige on O	601.92	9.65	100 30	1.405	0.10923	4.475
Same in small pieces.	65.143	09.6	08.66	1.195	0.10910	
Yellow crystal, subtransparent	20.717	12.83	99.23	0.3685	0.11054	4.474
Opaque white, lamellar	48.103	12.60 9.80	99 :20	0.8665	0.11169	4.324
9 9 10 20 20 20 20 20 20 20 20 20 20 20 20 20	N N N	1088 · K	, 201.0=		0	! ; ;
Gypsum, $CaSO_4 + 2H_2O$. Monoclinic:—					waterin.	
Transparent erystal of selenite	21.048	10.00	100.10	0 -965	0.27264	2.311
Four transparent crystals of selenite	13.204	7.24	100.40	0.623	0.27164	2.313
Aggregate of acicular crystals	30.150	6.50	100.40	1.393	0 .27167	2.399
Rough gypsum, white	31 . 547	86.6	100.40	1.456	0.27374	2 :310
Other observers, N.=0.2728; K.=0.259.	=0.2728;	K = 0.259				
Calcite CaCO. Rhombohedral :-			- 1			
Time of Colons and	100.00	10.01	94,00	2 .	60606.0	
Came autold religious Blatter	99 .050	19:94	99.70	1.070	0.50575	01/.7
Three slender hexagonal prisms, limnid	10.044	13.04	09.66	0.3295	0.20340	2.710
Translucent white rhombohedron	35.815	16.75	99.93	1.135	0.20439	2.702
Group of tapering prisms, some dihexagonal, translucent	31.524	11.90	99.50	1.0755	0.20908	2.658
Chalk, white (Newhaven) well dried	22.454	12.30	08.66	0.7475	0 .20415	1
Another specimen of same	21 .737	13.77	99.35	9904-0	0.50390	1
This chalk dissolves in HCl with very little residue. Heat of humectation may lower result	lue. Heat	of humect	ation may le	wer result.		
Other Observers M.= 0 2000 (accustu spar); N.= 0 2020; M.= 0 200	inu spar) j	FO 0 0 - N	o; A.=∪ 4	.00		

* For analysis, see ante, p. 255.

Specific Heats of some Minerals—continued.

	₩.	t_1 .	W. t_1 . t_2 .	w.	Sp. h.	Sp. gr.
Aragonite, CaCOs. Trimetric:— 24.331 12.45 99.6 Two transparent prisms, yellow (Bohemia) 28.161 11.60 99.6 ". colourless (Auvergne) 28.161 11.60 99.6 Other observers R.=0.2085; N.=0.2018; K.=0.2038	24·331 28·161 85; N.=0	12 ·45 11 ·60 2018; K.=	99.65 99.00 =0.203.	0.9345	0.20401	2 .955 2 .955
Witherite, BaCO3. Trimetric:— Translucent crystal, white 41.407 13.68 "." 64.172 12.90 Other observers R.=0.1104; N.=0.1078.	41.407 13.68 64.172 12.90 = 0.1104; N.=0.10	13.68 12.90 N.=0.107	99.25	0.716	0.10850	4.288
Malachite, CuCO ₃ + CuOH ₂ O. Monoclinic:— Botryoidal, divergent, banded, compact A similar specimen	37 ·438 49 ·265	10.20 11.60	99·40 99·80	99·40 1·095 99·80 1·430	0·17653 0·17659	3.801 3.831

On some Rocks.

	W.	£1.	t2.	w.	Sp. h.	Sp. gr.
Fine-grained Aberdeen granite, contains a black mica and pink felspar Coarse-grained, Ballyknockin (Co. Wexford), white felspar, alloway mica wilvery mica. M. Silvery mica Weilinger (Co. Duhlin) white felspar, alloway mica.	31 ·253 42 · 105 41 · 200	10 ·98 13 ·50 13 ·34	99.85 ($0.998 \\ 1.312 \\ 1.2725$	$\begin{array}{c} 0.18921 \\ 0.19404 \\ 0.19269 \end{array}$	2·625 2·605 2·645
Owing to the close agreement between the sp. heats of quartz and orthoclase (0.188), orthoclase granites will not probably vary much in sp. heat.	hoclase (0°1	188), ortho	clase granite	s will not p	robably vary	much in
Basalt:— Fine-grained, black (Giant's Causeway)	24.400	10.17	99.85	0.814	0 · 19961	2 .883
Hornblende Diorite:— Coarse, fibrous, actinolite trap, dark green (Glendalough, Co. Wicklow)	40.265	12.25	06.66	1.409	0 21135	2 .996
State:— Fine green slate (Bray Head, Co. Dublin)	32.874	10.54	06.66	1 ·133	0.20695	2.722

On three Aerolites. Group—Sporadosiderites; sub-group—Oligosiderites; (Daubrée).

	W.	£1.	<i>t</i> ₂ .	w.	Sp. h. Sp. gr.	Sp. gr.
Fell at Adare, Co. Limerick, Sept. 10, 1813 67 095 88 865 38 865 38 865 38 865 38 865 38 865 89 805 805 805 805 805 805 805 805 805 805	67 ·095 38 ·865 21 ·664	12.52 12.25 12.67	100 ·18 100 ·18 100 ·18	1 ·9595 1 ·1375 0 ·656	0.17875 3 0.17854 3 0.18566 3	3.604 3.601 3.435
The three are similar in appearance, rough, grey, with small grains of nickeliferous iron and magnetic pyrites. Analysis of the first (Apjohn): Iron and nickel=23.07, magnetic pyrites=4.38, chrome-iron=3.34, earthy matrix=68.47, alkalies and loss=0.74.	of nickelife ne-iron = 3·3	rous iron 4, earthy n	and magnet natrix=68.4	ic pyrites. 7, alkalies a	Analysis of and loss=0.74.	the first

Alphabetical List of the Specific Heats of some Minerals. Temperature limits about 12° C. to 100° C.

1	0 1		Cl., 1,
	Sp. h.		Sp. h.
Aerolite, a	0 1787	Hornblende, trap-rock, fibrous,	
$,, b. \ldots \ldots \ldots$	0 1785	green	0.2113
,, c	0.1856	Hypersthene, massive, crystal-	
Albite, transparent crystals	0.1983	line	0.1790
Amphibole, black crystals	0.1963	Labradorite, grey, chatoyant.	0.1933
Apatite, translucent, green	0 1829	Lepidolite, massive, crystal-	
" opaque white-pink	0.1920	_ line	0.2097
Aragonite, transparent crystals	0.2036	Leucite, crystals	0.1912
Barite, transparent crystals	0.1096	Limonite, crystalline, massive	0.2215
" opaque lamellar	0.1117	,, fibrous, divergent	0.2263
", opaque, massive	0.1032	Malachite, botryoidal	0.1766
Basalt, fine black	0.1996	Microcline, cross hatched	0.1915
Beryl, transparent crystals	0.2066	", fawn-coloured	0 1905
", subtranslucent	0.2127	Muscovite, silvery	0.2049
Biotite, black	0.2057	Natrolite, translucent crystals	0.2375
Calcite, Iceland spar	0.5036	Oligoclase, subtransparent	0.2059
,, translucent rhombohe-		" white, subtranslu-	
dron	0 · 2044	cent	0.1997
", hexagonal prisms	0 . 2034	Orthoclase, transparent adu-	
", chalk	0.2091	laria	0.1869
	0.2040	" subtranslucent,	
Chalcopyrite, bright, iridescent	0.1271	opaque	0.1890
Corundum, clouded	0.1981	Phrenite, botryoidal, green	0.2003
Cryolite, translucent	0.2548	Pyrites, cubes	0.1306
Epidote, crystals, dark green	0.1877	Quartz, limpid	0.1881
Fluorite, transparent crystal	0.2118	" transparent, hyalite	0.2033
,, translucent	0 2126	white opal	0.2375
Galenite, crystals	0.0505	Serpentine, green	0.2529
" crystalline	0.0492	Slate, fine green	0.2069
o ,, , , , ,	0.0522	Sphalerite, well crystallised	0.1144
Garnet, red crystals	0.1780	" crystalline	0.1159
", a red crystal	0 1793	Stilbite, white radiating (dry)	0.2621
Granite, Aberdeen	0.1892	Talc, greenish-white soapstone	0.2168
" Wexford	0.1940	Topaz, transparent, colourless	0.1997
", Killiney	0 1927	Tourmaline, black crystals	0 2004
Gypsum, rough, white	0.2737	brown crystals	0.2111
" acicular	0.2717	Vesuvianite, green crystals	0.1949
" selenite	0.2721	Wernerite, opaque crystals	0.2003
Hematite, botryoidal, diver-	0.1000	Witherite, translucent	0.1086
gent	0.1683	. **	

III. "Note on a paper entitled 'On a New Form of Stereoscope' ('Roy. Soc. Proc.,' vol. 40, p. 317)." By A. STROH. Communicated by Lord RAYLEIGH. Received September 28, 1886.

Since the reading of my paper on "A New Form of Stereoscope" ('Roy. Soc. Proc.,' vol. 40, p. 317) my attention has been called to a paper read by Mr. Howard Grubb, F.R.A.S., at the Royal Dublin Society, 20th January, 1879.

I find that this paper describes the essential points of the apparatus, and I therefore desire to acknowledge the prior publication by Mr. Grubb.