(iv) $\frac{1}{z-2}$ is analytic inside and on the triangle on the triangle on the triangle of $\frac{1}{z-2}$ where $\frac{1}{z-1}$ of $\frac{1}{z-1}$ where $\frac{1}{z-1}$ is analytic and on the triangle and $\frac{1}{z-1}$ where $\frac{1}{z-1}$ is analytic and on the triangle and $\frac{1}{z-1}$ where $\frac{1}{z-1}$ is analytic and $\frac{1}{z-1}$ where $\frac{1}{z-1}$ is analytic and $\frac{1}{z-1}$ is analytic a

2) Evaluate
$$\int_{z-2}^{z}$$
 around

(i) the Circle
$$|z-2|=4$$

(iii) Rectangle with vertices
$$3\pm2i$$
, $-2\pm2i$

(ii) C:
$$|z-1|=5$$

(iii) Rectangle with vertices $3\pm2i$, $-2\pm2i$
(iv) triangle with vertice at $(0,0)$, $(1,0)$, $(0,1)$

(i)
$$f(z) = \frac{1}{z-2}$$
 is not analytic at $z=2$ which lies inside the circle $|z-2|=4$

$$|7-2|=4$$

$$\int \frac{1}{z-a} dz = \int \frac{1}{4e^{i0}} 4ie^{i0} d0 = 2\pi^{i0}$$

$$z-|=5$$

(ii)
$$\int_{c}^{1} \frac{1}{z-a} dz = \int_{c}^{2\pi} \frac{1}{(se^{i\alpha}-1)} = 5ie^{i\alpha} d0$$

$$(111) = \frac{C}{C_1}$$

$$(23,2)$$

$$(24)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$(25,2)$$

$$($$

$$z-1=5e^{iQ}$$
 $z-1=5e^{iQ}$

Let $5e^{iQ}-1=t$
 $5e^{iQ}do=dt$
 $-1e^{iQ}(5e^{iQ}-1)^{27}$
 $-1e^{iQ}(5e^{iQ}-1)=0$
 $-1e^{iQ}(5e^{iQ}-1)=0$

Along C3, X varies from 1 to -1 and y=1. Z=xtiy=x+î, dz=dx $z' = (x+i)^2 = x^2 + 2ix - 1$ $\int z^2 dz = \int (x^2 + 2ix - 1) dx = \left[\frac{x^3}{3} + ix^2 - x \right]$ $= \frac{1}{3} + 2 + 1 - \frac{1}{3} - 2 + 1 = 4/3$ 2 = -1, y varies fram 1 to 0 Along C4: Z= -1+iy, dz=idy $z^2 = (-1 + iy)^2 = 1 - 2iy - y^2$ $\int z^{2}dz = \int (i-2iy-y^{2})idy = i \left[y-iy^{2}-y^{3}\right]^{6}$ = 0 - i(1 - i - 1/3)= -1-32 $\int_{C}^{\infty} df(z)dz = \frac{3}{3} - 1 + \frac{2}{3}\hat{i} + \frac{4}{3} - 1 - \frac{2}{3}\hat{i} = 0$

Examples 1. Verity Cauchy's theorem for the function ze with C as the boundary of the rectangle with Vertices -1, 1, 1+i, -1+i.

The function $f(z) = z^q$ is analytic $\frac{(-1,0)}{(-1,0)} \in \frac{(-1,0)}{(-1,0)} \in \frac{(-1,0)}{(-1,0)}$ in the lectangle -1: By CII $\int_{C} f(z) dz = 0$. $C: c_{1}uc_{2}uc_{3}uc_{4} \int_{C} \underbrace{g(z)dz}_{c_{1}} \underbrace{\int_{C} \underbrace{f(z)dz}_{c_{2}} + \int_{C} \underbrace{f(z)dz}_{c_{4}}}_{c_{4}} \underbrace{\int_{C} \underbrace{f(z)dz}_{c_{4}} + \int_{C} \underbrace{\int_{C} \underbrace{f(z)dz}_{c_{4}}}_{c_{4}} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{f(z)dz}_{c_{4}} + \int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{f(z)dz}_{c_{4}}}_{c_{4}}}_{c_{4}} \underbrace{\int_{C} \underbrace{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_{C} \underbrace{\int_$ x varies from -1 to 1, y=0 $z^{2} = (x+iy)^{2} = x^{2}$, z = x+iy dz = dx $\int_{C_1}^{2} z^2 dz = \int_{1}^{2} \chi^2 dx = 2 \int_{0}^{2} \chi^2 dx = 2 \int_{0}^{$ $\alpha = 1$, y vanies from 0 to 1 z = x + iy = 1 + iy, dz = idyz=(1+iy)2 = 1+2iy-y2. $\int_{C_a}^{2} z dz = \int_{C_a}^{2} (1 + 2iy - y^2) dy = i(y + 2iy^2 - \frac{y^3}{3})$ = i(1+i-1/3) = -1+3i

pedz = 0 for any simple closed curve 12-41=r 2-a=reio C because e^{z} is analytic function. $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ $f(x) = \int \frac{1}{z^{2}} dz = \int \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta$ 121=1 7=e10 dz= ie do $= - \left[e^{2\pi i} - 1 \right]$ $= - \left[\cos 2\pi - i \sin 2\pi - 1\right] = 0$ $\frac{1}{2}$ is not analytic at z=0: $f(z)dz=0 \Rightarrow f(z)$ is analytic. Independence of Path det f(z) be analyte in a simply connected domain D het G and Cz be any two paths in D string any two paints z and zz and having no fuether points in Common. Then $\int f(z)dz = \int f(z)dz$

Cauchy's Integral theorem If f(z) is analytic at all points inside and on a closed curve (then $\int f(z)dz = 0$ Proof f(z)dz = Judx-vdy + i Judy+vdx Since f(z) is analytic, u and v have continuous partial derivatives. Apply Green's theorem in the plane. ie, if M(x,y) and N(x,y) are continuous in a region R of the xy-plane bounded by a closed every C, Then $\oint M dx + N dy = \iint \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dy dx$ $\iint (2) dz = \iint (2) dx + V dy + V dy + V dx$ $\iint (16) dy + V dy$ $\iint (16) dy + V dx$ $\iint (16) dy + V dx$ $= \iint_{R} \left(\frac{\partial V}{\partial x} - \frac{\partial V}{\partial y} \right) dy dx + i \iint_{R} \frac{\partial u}{\partial x} - \frac{\partial V}{\partial y} dy dx$ $= \iint \left(-\frac{3V}{3x} + \frac{3V}{3x}\right) dy dx + i \iint \left(\frac{3y}{3x} - \frac{3y}{3x}\right) dx dy$ $= 0 \qquad \text{Using } (-R)$ $= 0 \qquad \text{egns}$