Estimating a Model of Assortative Matching with Large Firms

With German and Spanish data

Part I: The Model & Estimation Strategy

Model

- The economy consists of workers with different skill x, and firms with different managerial skill y. Both are characterised by cumulative density functions $H_w(x)$, $H_f(y)$.
- They both match and produce output according to a production technology $F(x, y, l_x, r_x)$
- Which depends on their skills, the l_x number of workers of type x the firm type y employs, and the managerial resources r_x (time the manager can spend supervising her workers of skill x). $\int r_x dx = 1$ (resources of the firm are normalized to one)
- ► Total output of the firm is the sum of output across worker types:

$$\int F(x,y,l_x,r_x) \ dx$$

Model

► The optimization problem of the firm is therefore

$$\max_{l_x,r_x} \int [F(x,y,l_x,r_x) - w(x)] dx$$

- ▶ Dividing by r_x and denoting $\theta = l_x/r_x$, the problem becomes $\max_{x,\theta} f(x,y,\theta) \theta w(x)$
- Where $f(x, y, \theta) = F(x, y, l_x/r_x, 1)$ is the production function in intensive form.

This means that optimally firms only hire one type of worker, and they have to decide which type and how many to hire.

Assortative Matching

- ► An equilibrium is therefore a feasible allocation $R(x, y, \theta)$ and a strictly positive wage w(x) that solves the firms problem.
- We focus on assortative matching, that is, monotonic allocations that are monotonic in x, y. That is:
 - Positive Assortative Matching (PAM): High x matches with high y.
 - Negative Assortative Matching (NAM): High x matches with low y.
- Here is when the complementarities of the different inputs become important

Input Complementarities

Denote F_{ij} the cross partial derivate w.r.t inputs I and j:

- $ightharpoonup F_{xy}$ is type complementarity good firms do better with good workers.
- $ightharpoonup F_{lr}$ is *quantities complementarity* always positive with constant returns to scale.
- $ightharpoonup F_{yl}$ is span of control complementarity good firms do better with more workers.
- $ightharpoonup F_{xr}$ is managerial resource complementarity if positive (and large) more time spent with good workers is more productive than time spent with *bad* workers

Input Complementarities

Why are the cross-derivatives important?

► A necessary condition for PAM is:

$$F_{xy}F_{lr} \geq F_{yl}F_{xr}$$

- ► The opposite inequality is necessary and sufficient condition for NAM.
- The interpretation of the input complementarities relates to questions of skill-bias technological change vs quantity-bias technological change (or increases in F_{xy} vs increases in F_{yl}).

Solving the Model

The solution to the model is given by solving a system of two differential equations:

► Under PAM:
$$\theta'(x) = \frac{H(x)F_{yl} - F_{xr}}{F_{lr}}; \mu'(x) = \frac{H(x)}{\theta(x)};$$

Under NAM:
$$\theta'(x) = \frac{H(x)F_{yl} + F_{xr}}{F_{lr}}; \mu'(x) = -\frac{H(x)}{\theta(x)};$$

Where $\mu(x)$ is the map $y^*(x)$.

► This system can be solved using numerical methods.

Choice of Function

A very nice special case arises when the production function F is multiplicative separable. In particular, the function we use is:

$$F(x, y, l, r) = A(x, y) * B(l, r)$$

Where:

$$A(x,y) = \left(\omega_A * x^{\frac{(\sigma-1)}{\sigma}} + (1 - \omega_A) * y^{\frac{(\sigma-1)}{\sigma}}\right)^{\frac{\sigma}{(\sigma-1)}}$$
$$B(l,r) = l^{\omega_B} * r^{(1-\omega_B)}$$

▶ Our goal is to estimate ω_B , ω_B and σ using real world data.

Targets for estimation

- ➤ That means that we have 3 unknown parameters. What can we target to get them?
- ▶ The solver takes as inputs the distributions of $H_w(x)$ and $H_f(y)$.
- The solver delivers matched vectors of $(x, \mu(x), \theta(x, \mu(x), w(x)))$, which in turn can be used to calculate moments of the distributions of θ and w.

Estimation Strategy

- ➤ The idea is to estimate a distribution of worker skill and firm skill from the data, and get a distribution of firm size, wages and profits.
- The solver takes as inputs $\widehat{H}_w(x)$ and $\widehat{H}_f(y)$, calculates the moments and the distributions of $\widehat{\theta}$ and $\widehat{w}(x)$, and then calculates the distance between the actual firm size and wage distribution and the one implied by the model.
- ➤ An optimization routine does this over and over until it finds the parameter combo that produces the result that best fits the data.

Estimation Strategy

Some pending questions:

- Should it be best to target distribution moments of firm size and wages, or distance between distributions? → if using distance, we would need the distribution of profits as well: 3 parameters to estimate need 3 equations to solve.
- What is the best proxy for firm and worker skill? → This depends on the data...

(GERMAN DATA STARTS HERE)

(Chop this slide off)

Part III: Spain

Data Source

- Data comes from the Muestra Contínua de Vidas Laborales elaborated by the Spanish Social Security.
- ▶ It is an administrative dataset that comprises a panel of a representative sample of the Spanish workforce.
- ▶ It also includes matched records form Income Tax declarations of workers – so we can observe their wages and profits.
- ➤ Currently it covers the years 2005-2013.

Data Source

- ► This is not an employer-employee matched data set by construction.
- ➤ But the unique identifiers for firms and workers allow us to build it that way and add information about firm size, age, location, sector.
- ► This means that, unfortunately, we have to drop unmatched workers and firms.
- Good news is that the data set is already very big, so even when dropping unmatched data, it is still a big sample.

Descriptive statistics – by worker

	Mean	Standard Deviation	Min	Max	Median	90th percentile	Obs
Education	2.166434	1.017146	0	6	2	3	552,364
Av wage	15,519.59	16,691.64	.01	1,733,613	12,988.59	30,602.05	374,717
Av wage (daily)	58.06863	249.641	0.00003	68,373.84	43.39396	91.57422	319,919
Av profit	7,187.25	27,099.97	.01	3,005,061	1,829.724	17,724.17	27,225

Descriptive statistics – by firm

	Mean	Standard Deviation	Min	Max	Median	90th percentile	Obs
Number of workers	19.10815	255.9593	0	96,402	5	37	376,891
Firm age	9.262611	9.61008	0	105.737	6.00274	21.51233	353,072
Av profit	3,601.598	16,809.16	.01	3,005,061	761.25	8,235.29	64,817
Av wage	8,865.947	10,613.06	.01	733,636.4	6,552.8	18,487.82	255,872
Av wage (daily)	41.5741	92.41269	.0001111	26,461.27	35.97185	63.53	250,344
Av worker education	1.987123	.87669	0	6	2	3	342,023
Number of	Number of firms with some income information			403,372			

Choice of variables

Model variable	Data variable	Alternatives
Worker Skill	Education level (0 to 6) (illiterate to PhD)	Log Wages + experience Wage regression residual
Manager Skill	Log Average Reported Profits (assumes same distribution as profits)	Profit regression residual Profit per worker
Firm Size	Firm size (in workers)	
Wages (return to worker skill)	Average Daily Wages	
Profits (return to manager skill)	Average Reported Profits	Average Reported Profits per worker

Average Daily Wage distribution by firm

Firm Size Distribution

Firm Size Distribution (all)

Profit distribution

Matched data

➤ For the estimation, we can only take in observations that have everything:

Firm size – av. Wage – av.profit – av education

► This leaves us with around 20,000 observations:

Source SS df Number of obs = 21925 F(3, 21921) =40.79 3.6716e+10 Prob > F Model 3 1.2239e+10 = 0.00006.5770e+12 21921 R-squared Residual 300034139 = 0.0056Adj R-squared = 0.00546.6138e+12 21924 301667757 Root MSE = 17321 Total

. reg profit av firm nwrks educ av firm wage av firm if firmID[n]!=firmID[n+1

profit_av_~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
nwrks	.7055322	.3788993	1.86	0.063	0371378	1.448202
educ_av_firm	355.0792	136.6959	2.60	0.009	87.14528	623.013
wage_av_firm	.0856381	.0093068	9.20	0.000	.0673961	.1038801
_cons	2976.042	329.3207	9.04	0.000	2330.549	3621.534

Fitted distributions: Average Wage by firm

Fitted distributions: Firm Size

Fitted distributions: Profits

Fitted distributions: Average Worker Education by firm

Fitted distributions: Average Worker Education by firm

Appendix: More Graphs

Number of observations per firm (>1)

Education Coding

0	Illiterate
1	Primary Education Completed
2	Secondary Education Completed
3	Pre-university Education (Bachillerato and equivalent) Completed
4	Short University Diploma (Diplomatura and Technical School equivalent)
5	Graduate (Licenciado)
6	Postgraduate