1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	1	공학	226	198
2022	1	공학	193	168
2023	1	공학	199	185
2024	1	자연과학	1	1
2024	1	공학	183	164
2025	1	공학	185	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	50.75	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5	45	
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17	63	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	1	3.44	3.02	3.58	3.38	
2016	1	3.52	3.29	3.61	3.56	
2015	1	3.49	2.94	3.64	3.37	

비율

0.54 32.73 16.36 23.03

12.73 10.91 4.24

교과목 포트폴리오 (MEE3002 열역학2)

4. 성적부여현황(등급)

1

1

C+

C0

11

20

2023

2023

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2021	1	Α+	76	38.38	2023	1	D0	1
2021	1	A0	40	20.2	2024	1	Α+	54
2021	1	B+	38	19.19	2024	1	Α0	27
2021	1	ВО	22	11.11	2024	1	B+	38
2021	1	C+	17	8.59	2024	1	ВО	21
2021	1	C0	5	2.53	2024	1	C+	18
2022	1	A+	51	30.36	2024	1	C0	7
2022	1	A0	33	19.64	00			
2022	1	B+	40	23.81				
2022	1	В0	23	13.69	_			
2022	1	C+	9	5.36	_			
2022	1	C0	5	2.98	_			
2022	1	D+	2	1.19	_			
2022	1	D0	5	2.98	_			
2023	1	Α+	57	30.65	_			
2023	1	A0	30	16.13	_			
2023	1	B+	49	26.34	_			
2023	1	В0	18	9.68	_			

5.91

10.75

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	92.67	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	95	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	89.8	

6. 강의평가 문항별 현황

		이교					점수별 인원분포			
번호	평가문항	본인평 균 (가중 치적용)	, z	대학평균과의 나이 ·,-:미달)	매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다	
		5점	학과	대학	- 1점	2점	3점	4점	5점	
	교강사:	미만	차이 평균	차이 평균	178	42	28	42	24	

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	2021/1
기계공학부	2강좌(6학점)	3강좌(9학점)	2강좌(6학점)	5강좌(15학점)	3강좌(9학점)

8. 강좌유형별 현황

강좌유형	2021/1	2022/1	2023/1	2024/1	2025/1
일반	3강좌(226)	5강좌(193)	2강좌(200)	3강좌(184)	2강좌(185)

9. 교과목개요

교육과정 관장학	감과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정 기계공학	마대학 학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, non-reacting gas mixtures, psychomeetric chart, and cycle analysis of the air-conditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties,	

교육과정	관장학과	국문개요	영문개요	수업목표
			one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 2020 - 2023 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, nonreacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties, one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 2016 - 2019 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, non-reacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties, one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and	

교육과정	관장학과	국문개요	영문개요	수업목표
			behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, non-reacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties, one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, nonreacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties, one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기사이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과내용으로 한다.	MEE302 Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, nonreacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties,	

교육과정	관장학과	국문개요	영문개요	수업목표
			one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 1997 - 2000 교육과 정	서울 공과대학 기계공학부	열에너지와 물질 사이의 성질, 열역학 제1법칙, 이상 기체의 상태 변화, 제2법칙 및 엔트로피에 관한 이론 등을 기초로 하여 가스 동력 사이클, 증기 동력 사이클, 냉동 사이클, 가스 압축기 사 이클, 열역학의 일반 관계식, 혼합물 및 습공기 이론, 반응 혼합물 이론 등을 주요 학습 교과 내 용으로 한다.	MEE302 Thermodynamics2 Emphasis on the thermodynamic analysis of an engineering cycle: gas power cycles, vapor and combined power cycles, refrigeration cycles, air cinditioning systems, and gas turbine and jet engine cycles. Thermodynamic property relation, and behaviors of real gases: the Maxwell relation and the Joule-Thomson coefficient, general equation for specific heats, and dome applications of thermodynamics of reactive systems: chemical and phase equilibrium, nonreacting gas mixtures, psychomeetric chart, and cycle analysis of the airconditioning process. The analysis of gas flow and thermidynamics of compressilbe flow: stagnation properties, one-dimensinal isentropic flow, normal shocks in nozzle flow, and shock waves in convergent-divergent passages.	
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학			
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학			
	서울 공과대학 기계공학 정밀 기계			

10. CQI 등록내역	
	No data have been found.

