IE 684 Web Mining Project

Music Lyrics Sentiment Analysis

Martin Böckling, Chih-Yen Ou, Yi-Hsuan Peng, David Probst, Fabio Westphal

Web Mining Project 15.06.2021

Use Case

- Music has a big impact on us
- Every song conveys a certain sentiment
 - through melody & sound
 - through lyrics
- Task: predict sentiment of a song just by its lyrics
- Benefit: provide better recommendations based on mood

when song lyrics hit you so hard that you don't understand if you're listening to the song or the song is listening to you

Dataset Preparation

That lipstick on your collar, well, it ain't m...

Data Understanding (1)

Web Mining Project 15.06.2021

5

Data Understanding (2) - Keyword Extraction

First baseline approach using TF-IDF

"I miss the old Kanye, straight from the Go Kanye Chop up the soul Kanye, set on his goals Kanye I hate the new Kanye, the bad mood Kanye The always rude Kanye, spaz in the news Kanye I miss the sweet Kanye, chop up the beats Kanye..."

I love Kanye – Kanye West

seven 1.0 blah 0.963 rumour 0.997 bye 0.959 rape 0.991 amazing 0.988 infinity 0.984 scottv 0.985 thuggish 0.985 para 0.985 aight 0.984 donna 0.984 fah 0.983 molly 0.983 bah 0.982 anchor 0.982 kanye 0.982 bam 0.981 vomanizer 0.98 cabron 0.98 hosanna 0.978 funkvtown 0.977 fertilizer 0.976 superhero 0.976

Data Understanding (3) - Keyword Extraction

- Second approach using KeyBERT
 - Easy to use
 - Pretrained
 - Calculating cosine similarity between word and document embeddings created by BERT

Web Mining Project

Algorithms

Model	Model Setting
SVM	TF-IDF, Default setting with 5-fold cross validation (CV)
*Random Forest	TF-IDF, Grid search CV
BERT	Pretrained model: bert_based_uncased Max_len = 256 Batch size = 32
XLNet	Pretrained model: xlnet_based_cased Max_len = 256 Batch size = 16

^{*}SVM+Random Forest+Stochastic Gradient Descent+Multinomial Naïve Bayes+Xgboost

BERT vs. XLNet

Similarity:

- 1. Pretraining and finetuning on bidirectional language understanding
- 2. Contains Transformer encoder

Differences on XLNet:

- 1. No pretrain-finetune discrepancy problem
 - Permutation Language Modeling (PLM)
 - Remove [MASK] token
- 2. Long text understanding
 - TransformerXL
 - Accept max_len > 512
- 3. Better performance
 - Language understanding, reading comprehension, text classification tasks

Sliding Window

Model results for two class sentiment

Model	Dataset	Sliding Window	Accuracy
Baseline	All songs dataset	False	0.5419
SVM	All songs corpus	False	0.61
Random Forest		False	0.63
BERT	All songs dataset	False	0.6308
		True	0.7419
	All songs comma dataset	False	0.6393
		True	0.7307
XLNet	All songs dataset	False	0.625
		True	0.7283
	All songs comma dataset	False	0.6027
		True	0.6997

Model results for three class sentiment

Model	Dataset	Sliding Window	Accuracy
Baseline	All songs dataset	False	0.3974
SVM	All songs corpus	False	0.44
Random Forest		False	0.5
BERT	All songs dataset	False	0.4717
		True	0.5908
	All songs comma dataset	False	0.4665
		True	0.5567
XLNet	All songs dataset	False	0.4339
		True	0.593
	All songs comma dataset	False	0.4435
		True	0.5539

Conclusion & Outlook

- BERT worked best for lyrics sentiment classification
- Feature extraction with sliding window helpful
- Biggest challenge: long text with meaningless repetitive words
- Next step: extend classes to more sentiments
 - angry, happy, relaxed, sad...
- Consider acoustic data for holistic view
- Look into decline in positivity

Thank you!

References can be found in the report.