Sumas de Riemann e integrales

Jonatan Ahumada Fernández

March 19, 2019

Outline

- sumatorias y propiedades
- ¿de qué nos sirven las sumatorias al integrar?
- ejemplo de una integral por sumas

Video1 : notación sigma y sus propiedades:

Sintaxis

Consideremos:

$$\sum_{i=k}^{n} a_i = a_k + a_{k+1} + \cdots + a_n$$

- Σ = notación sigma
- k = límite inferior
- n = límite superior
- ▶ i = índice de la sumatoria
- ightharpoonup $a_i = formas que toman los sumandos$

Tener en cuenta

- es la representación de una suma
- cantidades pueden ser finitas o infinitas

Propiedades

Las propiedades van a permitir manipular las sumatorias con mayor facilidad. Por ejemplo, expresar una sumatoria en términos de otras más sencillas.

Las propiedades enunciadas en el video son:

1) Número de términos de una sumatoria

Para

$$\sum_{i=k}^{n} a_i = a_k + a_{k+1} + \cdots + a_n$$

 $Nmero\ de\ trminos = n - k + 1$

Ejemplo

$$\sum_{i=3}^{7} i = 3 + 4 + 5 + 6 + 7$$

2) Para sumas y diferencias de dos o más variables:

 Se puede reescribir la sumatoria como varias sumatorias distintas

$$\sum_{i=n}^{k} (a_i + b_i - c_i) = \sum_{i=n}^{k} a_i + \sum_{i=n}^{k} b_i - \sum_{i=n}^{k} c_i$$

3) Sumatoria de una constante:

 Se multiplica la constante por el numero de términos de la sumatoria

$$\sum_{i=n}^{k} c = c * nmero de trminos$$

Ejemplo

No confundir con:

$$\sum_{i=2}^{8} i + 3$$

aquí sí está en función de una variable, no es constante

4) Una sumatoria se puede descomponer en dos o más sumatorias parciales

$$\sum_{i=1}^{k} x_i = \sum_{i=1}^{n} x_i + \sum_{i=n+1}^{k} x_i$$

5) Sumatoria de una constante y una o más variables

$$\sum_{i=1}^{n} (ax_{i} \pm by_{i}) = a \sum_{i=1}^{n} x_{i} \pm b \sum_{i=1}^{n} y_{i}$$

Mezcla de dos propiedades anteriores

Ejemplo

¿Cuánto da esto?

$$\sum_{i=1}^{10} 3i + 2 = \sum_{i=1}^{10} 3i + \sum_{i=1}^{10} 2$$

recordar $Sn = \frac{(t1+t2)}{2} * (nmero de trminos)$

$$S_{n} = \left(\frac{t_{1}+t_{n}}{2}\right)^{n}$$

$$3 \cdot \sum_{i=1}^{n} (i+2(10-1/4))^{n}$$

$$3 \cdot \left(\frac{1}{2}+3+...+\frac{1}{2}\right) + 2(10)$$

$$3 \cdot \left(\frac{1+10}{2}\right) \cdot 10 + 20$$

$$16 \cdot S + 20$$

Video 2:

Gráficamente, la integral describe el área bajo la curva. Por lo tanto, puede ser escrita:

Una aproximación

$$A \approx \sum_{i=1}^n f(x_i) \Delta x$$

Una igualdad

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

¿Qué elementos de la interpretación geométrica correponden a $f(x_y)$ y Δx ?

$$f(x_i) = altura \Delta x = ancho$$

Video 3: resolver una integral paso a paso

Evalúe la suma de Riemann para

$$f(x) = x^3 - 6x$$

tomando los puntos extremos de la derecha con: a = 0, b = 3 y n = 6

Entonces:

- 1. lo expresamos como integral
- 2. lo expresamos como suma de Riemann

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

y sabemos que

$$\Delta x = \frac{b-a}{n}$$

Si evaluamos:

$$\Delta x = \frac{3-0}{6} = \frac{3}{6} = 0.5$$

Para este ejercicio en particular, nos dan la condición de que n=6. Son 6 particiones únicamente, no tienden a infinito.

$$\int_0^3 f(x)dx = \sum_{i=1}^6 f(x_i) * \Delta x$$

evaluamos cada una de los rectángulos

Como el delta nos dio 0.5

$$x_1 = 0.5$$

 $x_2 = 1.0$
 $x_3 = 1.5$
 $x_4 = 2.0$
 $x_5 = 2.5$
 $x_6 = 3.0$ (1)

Entonces, si evaluamos $f(x) = x^3 - 6x$

$$f(0.5) = (0.5)^{3} - 6(0.5) = -2.875$$

$$f(1.0) = (1.0)^{3} - 6(1.0) = -5$$

$$f(1.5) = (1.5)^{3} - 6(1.5) = -5.625$$

$$f(2.0) = (2.0)^{3} - 6(2.0) = -4$$

$$f(2.5) = (2.5)^{3} - 6(2.5) = 0.625$$

$$f(3.0) = (3.0)^{3} - 6(3.0) = 9$$
(2)

Ahora sólo nos queda reemplazar estos valores en la sumatoria. Recordemos las propiedades de la sumatoria y nos queda:

$$\sum_{i=1}^{6} f(x_i) * \Delta x = (-2.87 - 5 - 5.625 - 4 + 0.625 + 9)(0.5)$$

 ≈ 3.9375

¿Por qué da un valor negativo?

Porque la curva está por debajo del eje de las x. \bigcirc

¿Cómo se dibujan los rectángulos?

En el ejemplo anterior cada valor marcaba su punta del lado derecho.

Gracias..