

Pollen Terminology

An illustrated handbook

Hesse · Halbritter · Zetter · Weber Buchner · Frosch-Radivo · Ulrich

Michael Hesse
Heidemarie Halbritter
Reinhard Zetter
Martina Weber
Ralf Buchner
Andrea Frosch-Radivo
Silvia Ulrich

Pollen Terminology

An illustrated handbook

Univ.-Prof. Dr. Michael Hesse DDr. Heidemarie Halbritter Ao.Univ.-Prof. Dr. Reinhard Zetter Ao.Univ.-Prof. Dr. Martina Weber Dipl.-Biol. Dr. Ralf Buchner Andrea Frosch-Radivo Mag. Silvia Ulrich University of Vienna, Austria

This work is subject to copyright.

All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks.

Product Liability: The publisher can give no guarantee for all the information contained in this book. This does also refer to information about drug dosage and application thereof. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

© 2009 Springer-Verlag/Wien Printed in Austria

SpringerWienNewYork is part of Springer Science+Business Media springer.at

Cover Illustrations: Agrostemma githago (SEM, HH), Pinus sp. fossil (LM, RZ), Ruellia graecicans (SEM, HH), Phyllanthus x elongatus (SEM, HH), Argyranthemum sp. (TEM, AF-R), Acacia myrtifolia (SEM, HH), Leontodon saxatilis (SEM, HH)

Layout: Dr. Ralf Buchner, Wien, Austria

Printing: Holzhausen Druck und Neue Medien GmbH, 1140 Wien, Austria

Printed on acid-free and chlorine-free bleached paper

SPIN: 12045303

With numerous (partly coloured) Figures

Library of Congress Control Number: 2008941153

ISBN 978-3-211-79893-5 SpringerWienNewYork

Pollen Terminology An illustrated Handbook

Michael HESSE, Reinhard ZETTER, Heidemarie HALBRITTER, Martina WEBER, Ralf BUCHNER, Andrea FROSCH-RADIVO, Silvia ULRICH

GENERAL CHAPTER

ILLUSTRATED GLOSSARY

ALPHABETIC GLOSSARY

ANNEX

In memory of

Jan MULLER and Wilhelm KLAUS,

who played a prominent role in the study of fossil and extant pollen.

Preface

The principal aim in compiling this book was to provide the reader with first-hand information about the structure and outlook of the extremely manifold pollen in seed plants.

Pollen Terminology. An illustrated Handbook should not be seen as a mere collection of striking and/or informative light and electron micrographs. Each of the micrographs is intended to convey a specific message related to properties and functions of the pollen grains shown. The authors hope that the book will be useful for experienced researchers as well as for beginners in palynology, but also for medicine, biochemistry, or even for lawyers and artists as an aid and guide for the evaluation and interpretation of pollen features.

Acknowledgements

Many people were involved in various aspects of this book project and the authors would like to acknowledge and thank them for their time, suggestions and encouragement during the various developmental phases of this book and/or for providing plant material.

Among the many other colleagues, who contributed substantially, the authors want to thank (in alphabetical order):

Wolfram ADLASSNIG Elisabeth ANGER Josef BOGNER Paula BOMBOSI Perica BRODARIC Thomas CROAT Bernadette DIETHART David Kay FERGUSON Manfred A. FISCHER Alfred GLASER Lynn HANNON Barbara HERMANOWSKI Anton IGERSHEIM Irmgard JÄGER-ZÜRN Christel KASSELMANN Nadja KAVCIK Alexander KOCYAN Wolfgang KOLLER Thomas LENDL Claudia LOOS Božena MITIĆ Wolfgang OBERSCHNEIDER Marianne PEROUTKA Paul RADIVO Saskia SAM-RICHTARZ Johannes SCHACHNER Ursula SCHACHNER Barbara SIMON Susanne SONTAG Robert STANGL Rupert STINGL Matthias SVOJTKA Angelika SYROVATKA Enikö TWERASER Walter TILL Stefan VOGEL Bruno WALLNÖFER Arabella WURZINGER Klaudia ZETTER

A special note of thanks is due to Mag. Franziska BRUGGER and to Mrs. Silvia SCHILGERIUS of the team at Springer Vienna for their great support and patience during the preparation of this book.

Wien_Innsbruck

The staff members of the Botanical

Garden of the University of Vienna (HBV) The staff members of the Bundesgärten

lilliam The Research TE WIGHT the proper to restance the study of naive to real the police of the plants as then polynoises and the plants of the plants on the plants of the pla wider connotation than paymot as a second will a second the cation there are springly and application there are springly consonants play the second that are second to the second that are second to the second three in most "I most of the work on humus

chairment 30, which is a pollen ons? Is polled to the spores th is medical in view of apores and in the work carrying a work would to him the call of paluno there spores there are spores and of poller is a comment of the call of poller is a comment of the carrying ale of poller is a comment of the carrying and the carrying ale of poller is a comment of the carrying and the ale, fine meal commate with a policy of policy war assisted in the land of the heave assisted in the land of the heave assisted in the land of the heave assisted in 1944. Constant of the constant of th

CONTENT

ш
1
U
ш
ш
(1)

Introduction	5
Guidelines	7
Rules for Using Prefixes	
Palynology	11
The Science of Pollen and Spores	11
A Brief History of Palynology	
A Tentative Outlook	13
Pollen Morphology	15
Polarity and Symmetry	
Apertures	17
Structure and Function	
Pollen Wall	
Structure and Sculpture	
Harmomegathy	_ 23
Why Do We Need Categories?	27
Pollen Development	35
Microsporogenesis and Microgametogenesis	35
Inherence of Misinterpretation	39
Tripartite Features	
Apertures as Pitfalls	
Pollen Features can be Ambiguous	_ 44
Controversial or Fuzzy Terms	
Acalymmate/Calymmate	
Areolae/Areolate	
Pseudocolpus	
Retipilate	
Zona-, Zono- etc	_ 48
Methods	
Scanning Electron Microscopy	
Acetolysis and Light Microscopy	
Single-Grain Technique	51
Transmission Electron Microscopy	
Acetocarmine Staining for Light Microscopy	52
How to Describe a Pollen Grain	55

Introduction

ollen Terminology. An illustrated Handbook is a collection of useful terms in palynology, well illustrated with light (LM) and electron microscope (EM) micrographs. The reader will not find an encyclopedic compilation of terms; in that respect see KREMP (1968). The focus is on the pollen of seed plants, predominantly angiosperms, while spores are considered only exceptionally. Therefore the terminology rarely includes spore or gymnosperm characteristics (e.g., leptoma, trilete mark).

Since 1994, the Glossary of Pollen and Spore Terminology, co-authored by Wim PUNT, Stephen BLACKMORE, Siwert NILSSON and Annick LE THOMAS, was the standard reference publication in palynological terminology. Then, in 1999 the online version by Peter HOEN (http://www. bio.uu.nl/~palaeo/glossary/glos-int.htm) appeared, with several additions. The online version was published by W. PUNT, P.P. HOEN, S. BLACKMORE, S. NILSSON and A. LE THOMAS in 2007 and provides informative schematic drawings containing the essentials of each term and colored to indicate the wall and aperture components, mostly using LM findings.

Although extremely useful for overview purposes, drawings cannot show the full range of features. This can be achieved only with micrographs, which demonstrate - a picture is telling more than thousand words - the often stunning diversity of features. For that reason, the explanatory power of micrographs produced with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) is used in the present volume. The numerous SEM micrographs illustrating the astonishing diversity of pollen ornamentation. Where important terms have appeared ambiguous or have been hitherto underrated, the term has been reviewed and brought into focus (e.g. harmomegathy, or pollen class versus pollen type).

It is self-evident that such a book cannot renounce the basics of palynology. In this context please consult standard textbooks in palynology, e.g., ERDTMAN (1952), FÆGRI and IVERSEN (1989) or BEUG (2004). The principles of pollen development and morphology are incorporated as separate chapters for purposes of clarity and in order to correctly interpret the detailed structures of the pollen wall and the full range of ornamentation.

Guidelines

he aim of this book is to provide a fully illustrated terminology and glossary of the most **important** palynological terms, including a substantial standardization of definitions. If terms are not considered here, then they appeared to us as insignificant, or they belong to the terminology of fern spores, which is not considered here. A comprehensive description of pollen grains with terms mentioned in "Pollen Terminology. An illustrated Handbook" is easily accomplishable.

A strict rationalization of terms on the basis of practical criteria has been attempted. For consistency, phrases are standardized as far as possible; for example, features of ornamentation are stereotypically defined as "pollen wall with", and pollen wall features (or pollen shape and size) as "pollen grain with".

Where it was necessary, definitions have been reworded, newly circumscribed, or brought into focus. In addition, consistent application of EM techniques and the nowadays better understanding of pollen features have made redefinition of some terms necessary. Moreover, we have classified terms according to applied techniques (LM, SEM, TEM) and their usage in morphological, anatomical and/or functional context. In chapter "Alphabetic Glossary" the entries are arranged alphabetically. The definitions are provided with numbers in bold referring to the respective page in chapter "Illustrated Glossary" and numbers in square brackets referring to important literature (see chapter "Bibliography").

Emphasis is given to the numerous illustrations. The worldwide largest database on pollen, PalDat (http://www.paldat.org/) is the main source of pictures. Each term is illustrated with LM or EM pictures in order to point out the character range of a term (or, more precisely, to show the full range of a single character). Brief information on the method of preparation is often provided. In preparing pollen for SEM micrographs, acetolysis was avoided as far as possible.

Underrated pollen conditions, e.g., the physical condition of the turgescent, life-like pollen, are considered. The SEM micrographs usually represent the turgescent condition, without further notice. Consequently, pollen grains are often shown in dehydrated stage, marked as "dry pollen". The deviating characters in turgescent and dry pollen grains are designated by descriptive pictorial terms such as cup-shaped, boat-shaped and aperture sunken.

Comments are provided where this may help in the application of a term or to qualify the circumstances in which it is used.

Self-explanatory general terms are usually not defined; in such cases the context is noted (e.g., circular, see outline). For more information on these see the appropriate page(s) in chapter "Illustrated Glossary".

Three categories of terms are used: important terms are printed in **bold** and are usually illustrated; terms of minor importance are printed in regular script, usually without illustrations (if necessary, terms in chapter "Alphabetic Glossary" are sometimes also illustrated in a footnote); terms printed in italics are not recommended and often provided with an explanatory comment.

The chapter "Illustrated Glossary" is subdivided into larger topics, e.g., "Shape and Size" or "Ornamentation". The terms themselves are listed according to their resemblance in order to provide the user with a side-by-side spectrum of similar characters. For a quick orientation please use the last page of "Pollen Terminology. An illustrated Handbook". It is a fold-out page with terms alphabetically arranged. Numbers indicate the page in chapter "Illustrated Glossary".

In contrast to chapter "Illustrated Glossary" the terms in chapter "Alphabetic Glossary" are throughout arranged alphabetically as the noun and the corresponding adjectival

Please note: literature references are not necessarily the earliest publication in which the term was used. The comprehensive literature list (see chapter "Bibliography") includes beside the references more and other (and preferably recent) publications which have been selected as sources of further information.

form, if appropriate. Few terms are used exclusively as nouns or exclusively as adjectives. Sometimes two adjectival variants (-ate, -ar) are used but, if so, in two different meanings. For example: from the noun granulum (sculptural or structural element of differing size and shape, less than 1 µm in diameter) derive the two adjectival forms granular and granulate (both meaning "with granules"); these are corresponding terms used in two quite different contexts: granular describes a distinct type of infratectum hence a structural feature whereas **granulate** refers to an ornamentation feature a sculpturing element.

Both the singular and the plural are given consistently for Latin terms. The English spelling of the Latin term is added (porus, pl. pori, engl. pore) if the English form is preferable.

Cross-references are given to terms that are synonyms (the preferable one is printed in bold) or that indicate the opposite condition (antonyms), e.g., homo- and heterobrochate.

Numbered literature references are given for each term in chapter "Alphabetic Glossary" and are not necessarily the earliest publication in which the term was used.

PUNT et al. (2007) provide the basis of the present terminology. Many terms in palynology were coined at a time when only LM observations were available. Mainly for historical reasons, inconsequent nomenclatural applications, enumerations of synonyms, and even differing definitions have been found for one and the same term.

During the 20th century questions of terminology became more and more problematic. The main reasons were the areatly increasing number of publications in palynology, dealing with sometimes insufficiently described or "uncommon" pollen features, and simultaneously the advent of manifold applied fields of palynology. For various reasons, nearly all authors used their own terminology. The situation became worse in the 1970s and 1980s, leading to a variety of terminological "schools"

Nonetheless, in the 1950s attempts were made to restrict the wording and to state the definitions of terms more precisely. A deserving, widely accepted but all-too restricted list of pollen morphological terms and definitions was published as early as 1950 by IVERSEN and TROELS-SMITH. Later, KREMP (1968), in his famous encyclopedia, provided a monumental enumeration of all known terms.

Being aware of the danger that pollen terminology

tends to become foggy, REITSMA (1970) took the first resolute step to overcome this problem. A concise terminology now became available, though unfortunately not taking account of the range of variation of most of the palynological features, and without drawings or micrographs. FÆGRI and IVERSEN (1989, 4th ed.) restricted their glossary to terms exclusively used in their book. MOORE et al. (1991, 2nd ed.) provided a glossary of selected terms used in their pollen and spore keys. Standardization came with the glossary by PUNT et al. (1994), updated in 2007. The main advance of their concise and comprehensive terminology is the consistent usage of drawings and the critical comments on terms and usage.

Rules for Using Prefixes

If both a Greek and a corresponding Latin form exist for a prefix, then the Greek form is used consistently: panto- (not peri-), ekto-(not ecto-), or the Greek di- (dis-), and not the Latin bi- (bis-). There are few exceptions from this rule. If the Latin form is more widely used, then the term is treated as a nomen conservandum; for example, bisaccate is found exclusively in the literature and not the Greek form disaccate.

Some prefixes need a comment. Microis used to denote features <1 µm: microreticulate, -echinate, -verrucate, -baculate, -clavate, -gemmate, -rugulate. However, some possible combinations are not applicable; for example, micro-striate or microperforate. Striae are not known to be <1 µm in length, and perforate by definition describes a feature <1 µm.

Terms not listed in the glossary belong to fern or moss spores, or are considered as obsolete, diffuse or redundant (e.g., multiplanar tetrad), superfluous (e.g., polyplicate, because plicate pollen grains are always equipped with several to many plicae), or may be a permanent source of confusion (zon-, zona-, zoni-, zono-).

"Pollen Terminology. An illustrated Handbook" aims to clearly separate the types and classes of pollen. Pollen type is a general term categorizing pollen grains by distinct combinations of characters and is often used in connection with a distinct taxon (e.g., Polygonum aviculare type).

Pollen class² is an artificial grouping of pollen grains that share a single, distinctive character. Pollen classes refer to pollen units, to aperture form and location, or to an extremely distinctive ornamentation character. Classes include the terms polyads, tetrads, dyads, saccate, inaperturate, sulcate, ulcerate, colpate, colporate, porate, synaperturate, spiraperturate, lophate, clypeate and plicate. These classes are useful in identification keys as they have a good diagnostic, although mostly no systematic, value. In general, a pollen grain may belong to more than one pollen class; in such cases the more significant feature should be ranked first (e.g., Pistia: plicate - inaperturate, Hemigraphis: plicate - colporate, Typha: tetrads - ulcerate, Rhododendron: tetrads - colporate).

² "Pollen type" is sometimes (colloquially) misused; for example, Croton type, which is a distinct feature of ornamentation and is correctly termed Croton pattern.

Palynology

The Science of Pollen and Spores

he term palynology was coined after a written discussion with Ernst ANTEVS and A. Orville DAHL in the Pollen Analysis Circular no. 8 by HYDE and WILLIAMS (1944) and is a combination of the Greek verb paluno (παλύνω, "I strew or sprinkle"), palunein (παλύνειν, "to strew or sprinkle"), the Greek noun pale (παλη, in the sense of "dust, fine meal", and very close to the Latin word pollen, meaning "fine flour, dust") and the Greek noun logos (λογος, "word, speech").

Palynology is the science of palynomorphs, a general term for all entities found in palynological samples. A dominating object of the palynomorph spectrum is the pollen grain, the point of origin and the carrier for the male gametes (sperm cells).

What makes pollen grains so unique? Pollen grains represent an extra generation in seed plants, the highly reduced male gametophyte (the enclosing sporoderm and the cellular content, consisting of two or three cells, and the pollen tube). Pollen grains are therefore not simply parts of a plant, such as leaves or seeds, but are the haploid counterpart of the much larger diploid plant body "as we see it in nature". During transport pollen grains are completely separated from the parent plant and perfectly adapted for their role – the transfer of male genetic material – and are able to resist hostile environmental stress on their way to the female flower parts. These tiny (male haploid) organisms usually have as variable parameters: the pollen shape and size, the number, type and position of apertures and the pollen wall with its extremely diverse structure and sculpture. The characters of these parameters in comparative pollen (and spore) morphology and plant systematics are at least as important as any other morphological character of the diploid generation.

The pollen grains of seed plants and the spores of mosses and ferns share many homologies. However, although probably equivalent, the terminology of spore wall strata differs, mainly for historical reasons, from the terms used for pollen grains. Some elements and/or features of spores are unknown in pollen grains, e.g., the outermost wall layer in many fern spores, called the perine or perispore.

of assistance suggestions that you might care to offer." (William W. Rubey, Chairman, Division of Geology and Geography, National Research Council, August 30, 1944)

THE RIGHT WORD. - "The question raised by Dr. Antevs: analysis the proper name for the study of pollen and its applications? and his suggestion to replace it by 'pollen science' interest us very much. We entirely agree that a new term is needed but in view of the fact that pollen analysts normally include in their counts the spores of such plants as forms and mosses we think that some word carrying a wider connotation than pollen soems to be called for. We would therefore suggest palynology (from Greek \$\Pi\)\(\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{O}\time\text{D}\time\text{O}\time\text{D}\time\text{O}\time\text{D}\time\text{O}\time\text{D}\time\text{O}\time\text{D}\t and their dispersal, and applications thereof. We venture to hope that the sequence of consonants p-l-n, (suggesting pollen, but with a difference) and the general cuphony of the new word may commend it to our follow workers in this field. We have been assisted in the to our fallow workers in this field. We have been assisted in the coining of this new word by Mr. L. J. D. Richardson, M.A., University College, Cardiff." (H.A. Hydo and D. A. Williams, July 15, 1944.

"I have been toying with the idea of 'micro-paleobotany' as including most of the work on pollen and spores and also all minor constituents of most and humus layers of vegetative remains which

HYDE and WILLIAMS (1944) The right word. Pollen Analysis Circular 8: p. 6

A Brief History of Palynology

The Very Early Beginnings

Assyrians are said to have known the principles of pollination, but it is unclear if they recognized the nature and power of pollen itself. Greeks and Romans, and the Middle Ages up to the 16th century did not contribute substantially, as far as is known.

The Era of the Light Microscope

A comprehensive historical survey is found in WODEHOUSE (1935) and especially in DUCKER and KNOX (1985). Only the most important scientists can be mentioned here: the list is not exhaustive.

It was Nehemiah GREW who as early as 1662 in his famous work "The Anatomy of Plants" described the constancy of pollen form within the same species; in other words, he founded pollen morphology and was the first to recognize that all plants have "their" pollen. Carl von LINNÉ (1751) first used the term pollen (in Latin). During the 18th and the early 19th centuries there was considerable progress on pollen and the understanding of pollination. For example, Joseph Gottlieb KOELREUTER (1766), together with Christian Konrad SPRENGEL, the founder of flower ecology, perceived the importance of insects in flower pollination and found for the first time that the pollen grain has an important part in determining the characters of the offspring.

SPRENGEL (1793) was the first to recognize pores and furrows in the pollen wall; he also demonstrated the effects of cross pollination, of dichogamy, and distinguished between entomo- and anemophily.

Johannes PURKINJE (1830) and Franz Andreas (Francis) BAUER, among others, also made substantial contributions. BAUER is famous for his fine and exact drawings and watercolors of pollen, now held in the Botanical Library of the Natural History Museum, London. Only a few facsimiles have been published, e.g., in KESSELER and HARLEY (2004). Robert BROWN (1828, 1833) reported and confirmed BAUER's earlier work, and gave the first description of the origin of the pollen tube.

New and better microscopes enabled Hugo von MOHL (1834) and Carl Julius FRITZSCHE (1837) to separate clearly the principal layers of the pollen wall and to publish surveys on pollen morphology of many angiosperm families. The terms pollenin, exine and intine go back to FRITZSCHE. Johann Heinrich Robert GÖPPERT (1837) and Christian Gottfried EHRENBERG (1838) were the first to describe and depict fossil pollen grains. Eduard STRASBURGER (1882) achieved ground-breaking insights into the development and internal structure of pollen. Hugo FISCHER (1890) was the first to summarize the arguments for the phylogenetic value of pollen characters. Pollen statistics represented a first step towards an applied field of science and in 1916 Lennart von POST published the first pollen diagram (pollen profile).

The 20th century up to ca 1960 was dominated by the skilful use of the LM, with many new findings; for example, the LO-analysis, a method for analyzing patterns of exine organization by light microscopy: focusing at different levels distinct features appear bright (L = Lux) or dark (O = Obscuritas). Textbooks by Roger WODEHOUSE (1935), Gunnar ERDTMAN (1943, 1952, 1969), or Knut FÆGRI and Johannes IVERSEN (1950) summarized the knowledge on pollen at that time and to a great extent have maintained their value.

In the first half of the 20th century palynology as a predominantly basic science "went applied", giving rise to a series of diversifications. Applied fields, worldwide in use, include aeropalynology, biostratigraphy, copropalynology, cryopalynology, forensic palynology, iatropalynology, melissopalynology, paleopalynology, pharmacopalynology, among others.

The Era of the Electron Microscope

As pointed out by KNOX (1984, p. 204): "The terminology applied to the pollen wall is daunting, especially as it has been developed from early light microscopy work, and then transposed to the images seen in the transmission and scanning electron microscopes".

Electron Microscopy with its two most important types, TEM and SEM, facilitated the major breakthrough in palynology: the ultrastructure of developing and mature pollen and the stunning visualization of pollen morphological characters.

During the 1950s and early 1960s considerable progress in TEM preparation methods (from fixation to microtomy and staining) took place. The resolving power of the TEM was the basis for new information on pollen grain ultrastructure and pollen development. Nevertheless, EM-based information on ornamentation details of pollen grains was rare up to the mid-1960s. Only TEM-based casts or replica methods were available, all of them with limited resolution and depth of focus (e.g., the single-stage carbon replica technique; ROWLEY and FLYNN 1966, FLYNN and ROWLEY 1967). The time-consuming and laborious TEM replica procedures were an obstacle to extensive surveys of pollen morphology and have now been successfully replaced by SEM (HARLEY and FERGUSON 1990).

Today barely conceivable, the introduction of SEM in palynology in the second half of the 1970s was a key innovation in the study of the fine relief of pollen surfaces. Advantages of SEM include the relatively simple and rapid preparation methods, the unsurpassed depth of focus revealing an overwhelming vividness and power. SEM was accepted in the very first moment as the quantum leap in EM (HAY and SANDBERG 1967). The first SEMs of pollen grains were published by THORNHILL et al. (1965) and ERDTMAN and DUNBAR (1966).

Since then palynologists have been provided with a plethora of beautiful micrographs. "The scanning electron microscope has provided a greater impetus to palynology than any other technical development during the history of the subject." (BLACKMORE 1992).

Nowadays the LM (with basic and advanced equipment) and the two main types of EM form an expedient combination of imaging techniques. The LM remains the workhorse method (TRAVERSE 2007; see the compendia by REILLE 1992, 1995 and 1998) but is limiting insofar as morphological and structural features at species level, not observable by LM but of diagnostic value, are routinely determinable only by SEM. The role of SEM as an essential part in illustrating exine sculpture and ornamentation cannot be overrated (HARLEY and FERGUSON 1990).

A Tentative Outlook

Nowadays, palynology, as an organismic-based science, can serve as an indispensable tool for various applied sciences, but clearly also can stand alone as one of the most developed basic sciences.

In general, compared to the diplont the male gametophyte in seed plants is yet poorly investigated. From at least 250.000 plant species onlyca 10 percent have been studied with respect to pollen grain morphology, and regarding pollen grain anatomy it is much less.

In the 21st century, no matter what role palynology will play, being a basic field of science or more probably a bundle of applied fields, a vital issue will be the increase of our knowledge of pollen grains and in this context the enhancement of pollen terminology. Modern palynologists, making use of LM as well as EM, need for descriptive matters a clearly defined and pictorial pollen terminology, covering the richness of features and the enormous spectrum of characters.

Pollen Morphology

diagrammatic representation of the main morphological features of a palynomorph (preferably pollen grains or spores) is called palynogram. It includes parameters of symmetry, shape and size, aperture number and location, ornamentation and stratification.

Polarity and Symmetry

Mature pollen is shed in dispersal units. The post-meiotic products either remain permanently united or become partly or usually completely disintegrated. In the latter case the dispersal unit is a single pollen grain, a monad; if the post-meiotic products remain united, dyads (a rare combination), tetrads or polyads (massulae, pollinia) are the result. Pollinaria are dispersal units of two pollinia including the sterile, interconnecting appendage.

Tetrad stage orientation of microspores

distal poles shaded green

> Pollen shape and aperture location directly relate to pollen polarity, which is determined by the spatial orientation of the microspore in the meiotic tetrad and can be examined only in the tetrad stage. The polar axis of each microspore runs from the proximal pole, orientated towards the tetrad center, to the distal pole at the outer tetrad side. The equatorial plane is located at the

Polar axis and equatorial plane

microspore's center, perpendicular to the polar axis. Therefore, the equatorial plane divides the pollen grain into a proximal and a distal half.

Isopolar pollen grains have identical proximal and distal poles, thus the equatorial plane is a symmetry plane. In heteropolar pollen grains the proximal and distal halves are different.

Polarity

left: isopolar

right: heteropolar

The various arrangements of the four microspores within permanent or disintegrating tetrads depend on the simultaneous or successive type of cytokinesis and on the type of intersporal wall formation. The spatial arrangement of microspores after simultaneous cytokinesis is usually a tetrahedral tetrad. This arrangement is of systematic relevance. The spatial arrangement of microspores after successive cytokinesis leads to different tetrad types without any systematic relevance: planar (tetragonal, linear, T-shaped) or non-planar (decussate or tetrahedral).

Tetrad arrangement

tetrad tetrahedral Fagus sp. Fagaceae, fossil (exceptional finding)

tetrad planar Typha latifolia Typhaceae

> In pollen grains with three apertures, two types of aperture arrangement occur after simultaneous cytokinesis (disintegrating or permanent tetrahedral tetrads). Fischer's law refers to the most frequent arrangement where the apertures form pairs at six points in the tetrad (e.g., Ericaceae, permanent tetrads). Garside's law refers to the unusual arrangement of apertures where they form groups of three at four points in the tetrad

(probably restricted to Proteaceae, no permanent tetrads).

Pollen shape refers to the P/E-ratio: the ratio of the length of the polar axis (P) to the equatorial diameter (E). In spheroidal (or isodiametric) pollen grains the polar axis is ± equal to the equatorial diameter. Pollen grains with a polar axis longer than the equatorial diameter are called prolate; grains where the polar axis is shorter than the equatorial diameter are described as oblate.

Pollen shape

left: oblate mid: spheroidal right: prolate

Pollen size varies from less than 10 µm to more than 100 µm. To indicate the pollen size the largest diameter is used. It also depends on the degree of hydration and the preparation method. Because of this and natural variation, a bandwidth designation is recommended. A diameter indication in the range of, e.g., less than 1 µm is not recommended.

The use of the following size categories may be helpful: very small (<10 µm), small (10-25 μm), medium (26-50 μm), large $(51-100 \mu m)$ and very large (>100 μm).

Apertures

The many facets of an allegedly simple character

Nomenclature and Typology

An aperture is a region of the pollen wall that differs significantly from the rest of the wall in its morphology and/or anatomy, and is presumed to function usually as the site of germination and to play a role in harmomegathy. Pollen grains lacking an aperture are called inaperturate. The aperture definition fits both angiosperm and gymnosperm pollen, but in gymnosperms the type of aperture usually differs from that in angiosperms, since often a leptoma is present. Note: unless stated otherwise, the following sections deal with angiosperm aperture constructs only.

The polarity of the pollen determines the aperture terminology. A circular aperture is called a porus if situated equatorially or alobally; if situated distally it is called an ulcus. An elongated aperture is called a colpus if situated equatorially or globally; if situated distally it is called a sulcus. A combination of porus and colpus is termed a colporus; colpori are situated only equatorially or globally. Colpi and colpori (colpi and pori) may be present simultaneously in some taxa; this condition is called **heteroaperturate**. A circular or elliptic aperture with indistinct margins is a poroid.

The number of equatorial apertures (pori, colpi, colpori) is indicated by the prefixes di- or tri-. However, tetra-, penta- or

Pollen grain polarity dicots

Bellis perennis Asteraceae

polar view

equatorial view

hexa- are sometimes used. (Writing numbers instead of prefixes is in common use, e.g., 4-porate or tetraporate, 6-colpate or hexacolpate. "Pollen Terminology. An illustrated Handbook" prefers the use of prefixes.) Any pollen grain with more than three apertures at the equator is also called stephanoaperturate (stephanoporate, stephanocolpate, stephanocolporate). Pollen grains with globally distributed apertures are called pantoaperturate.

The polarity gives rise to the polar and the equatorial view. In dicots there is usually one polar and one equatorial view. In monocots, due to the mostly distal aperture, there are four views: a proximal polar, a distal polar, and two different equatorial views.

Proximal germination is unknown in seed plants and is restricted to spores, which germinate at the tetrad mark, the so-called laesura (extensive overview: TRYON and LUGARDON 1991).

Pre-(prae-)pollen (microspores of certain extinct seed plants) is characterized by proximal and distal apertures, and by presumed proximal germination, producing motile spermatozoids.

polar view

Apertures are normally covered by an exinous layer, the aperture membrane. Aperture membranes can be ornamented, e.g., covered with various exine elements, or can be smooth. In contrast, an operculum is a thick, coherent exine shield and covers the aperture like a lid.

In general, aperture membranes are infolded in dry pollen state; after acetolysis the aperture membrane may be lost.

Tetrad mark in spores

10 µm

Polypodium sp. Polypodiaceae, fossil

monolete tetrad mark polar view

Sphagnum sp. Sphagnaceae, fossil

trilete tetrad mark polar view

indet. Pteridaceae, fossil

trilete tetrad mark polar view

Cryptogramma crispa Pteridaceae

trilete tetrad mark

Taxoid pollen germination

Cephalotaxus sp. Cephalotaxaceae

exine shedding prior to pollen tube formation

fresh pollen in water

Instant pollen tubes

Scabiosa caucasica Dipsacaceae

Morina longifolia Morinaceae

Number, type and position of apertures are genetically determined and usually fixed within a species; however, it may sometimes vary (e.g., number of apertures in stephanoaperturate pollen grains).

Structure and Function

The aperture usually acts as the (exclusive) germination site. Pollen tubes in inaperturate angiosperm pollen are produced without a preformed exit zone. In taxoid pollen the exine ruptures during hydration at a specialized region, the tenuitas, ulcus, or papilla in the center of a circular leptoma and is subsequently shed.

The intine including the protoplast is released and a pollen tube can be formed anywhere (resembling functionally an inaperturate pollen grain). Furthermore some angiosperm taxa shed the exine before pollen tube formation, e.g., in some Annonaceae.

During germination, usually a single pollen tube is formed. However, sometimes tube-like structures ("instant pollen tubes") are simultaneously formed in the anther or very quickly in shed pollen immediately after water contact. Their production is interpreted as a pre-germinative process (BLACKMORE and CANNON 1983).

Pollen Wall

In general, the pollen wall (sporoderm) of seed plants consists of two main layers: the outer exine and the inner intine. The exine consists mainly of sporopollenins, which are acetolysis- and decay-resistant biopolymers. The intine is mainly composed of cellulose and pectin. Commonly, the pollen wall in apertural regions is characterized by the reduction of exinous structures or by a deviant exine, and a thick, often bilayered intine.

Two layers within the exine are distinguished: an inner endexine and an outer ektexine. The ektexine consists of a basal

Pollen wall stratification

pk: pollenkitt

foot layer, an infratectum and a tectum, the endexine is a mainly unstructured, single layer. There are many deviations from this principal construction: layers may be thickened, variably structured, or lacking. In apertural regions the pollen wall is characterized by a different exine construction.

The terms **sexine** for the outer, structured, and **nexine** for the inner, unstructured exine layer are widely used in light microscopy, but do not fully correspond to ekt- and endexine, respectively.

The angiosperm pollen wall

The ektexine consists in general of tectum, infratectum and foot layer. The outer layer, the more-or-less continuous tectum, can be covered by supratectal elements. The infratectum beneath is columellate or granular (a second layer of columellae may form an internal tectum). The foot layer may be either continuous, discontinuous or absent. The endexine may be characterized as continuous or discontinuous, spongy or compact, is present overall, only in apertures, or even completely absent. Some typical deviations of the wall thickness are named with special terms: arcus, annulus,

Costa

Nyssa sp. Nyssaceae, fossil

equatorial view

Austrobuxus nitidus Picrodendraceae, fossil

broken grain, thickening around the endoaperture

tenuitas (see "Illustrated Glossary") and costa (a thickening of the nexine/endexine bordering an endoaperture).

POLLEN MORPHOLOGY

Pollen terminology in saccate gymnosperm pollen

Abies sp. Pinaceae, fossil equatorial view

> left: corpus right: sacci

left: cappa right: leptoma

Pollen types in saccate Pinus pollen

Pinus sp. Pinaceae, fossil left: polar view right: equatorial view

Haploxylon-pollen-type

Diploxylon-pollen-type

Extreme examples of variable ektexine design include massive forms lacking almost any subdivision or stratification, extremely reduced forms, or even their complete absence.

The typical angiosperm aperture shows a thick, bilayered intine.

The Gymnosperm Pollen Wall

The "Gymnosperms" comprise cycads, Ginkgo, conifers and Gnetales. The gymnosperm pollen wall differs from that in angiosperms in two characters: 1. the endexine is always lamellate in mature pollen stages. 2. the infratectum is never columellate. The four gymnosperm classes exhibit diverse, special constructions of the apertures.

The principal stratification (ektexine, endexine and intine) of the gymnosperm pollen wall is identical to that of angiosperms. A tectum is present in all cycads, in Ginkgo, in all Gnetales, but not in all conifers: in some taxa the tectum is completely lacking (sculpture elements are situated on the foot layer). The infratectum is either alveolate or granular but never columellate.

special terminology is applied to saccate pollen, i.e., Pinaceae and Podocarpaceae. The saccus is a large hollow projection from the corpus, the central body of saccate pollen grains. It is a typical deviation of the pollen wall conformation, composed only by the exine with an alveolate infrastructure. Most frequently, two sacci are present, in some taxa even three, or only a single one. Saccate pollen grains show on the proximal side of the corpus a region termed cappa, and on the distal side a thinned region, the leptoma.

In Pinus two pollen types are recognized as of systematic value. The Haploxylonpollen-type is characterized by pollen grains with broadly attached half-spherical air sacs – in LM the leptoma shows remarkable thickenings (black spots). The Diploxylonpollen-type is characterized by pollen grains with narrowly attached, spherical air sacs - the leptoma does not show any thickenings.

Structure and Sculpture

The internal construction of the pollen wall is its structure; ornamenting elements on the pollen surface (ornamentation) are summarized under the term sculpture or sculpturing. However, it is not always possible to distinguish between structure and sculpture (e.g., free-standing columellae).

Ornamentation

This general term in palynology is applied to surface features. All the ornamenting features (areola, clava, echinus, foveola, fossula, granulum, gemma, plicae, reticulum, rugulae, striae, verruca) are artificial categories that mark extremes within a broad morphological series and are therefore regarded as extremely variable; nevertheless, they are important in pollen description.

For practical purposes a distinct feature can be subdivided into ornamenting elements extending 1 µm in diameter, or if smaller then marked with the prefix **micro**-.

Combinations of sculptural elements are common. Frequently a specific ornamentation is difficult to describe only in words because of the high plasticity of its ornamenting elements. A typical micrograph characterizes sculptural elements to a much higher degree.

The arrangement of ornamenting elements on the pollen surface is very often disparate, particularly in apertural regions. Pollen coatings like pollenkitt or tryphine may obscure the ornamentation.

Harmomegathy Harmomegathic Effect (Wodehouse Effect)

All living pollen grains are able to absorb and release water; thus, each living grain exists in two morphologically different states: the dry and the hydrated condition. Harmomegathic mechanisms, e.g., infolding of the pollen wall, accommodate the change of the osmotic pressure in the cytoplasm during hydration or dehydration.

Harmomegathic effect Cistus creticus Cistaceae left: spheroidal right: dry pollen prolate, lobate 10 µm 10 µm Galium rotundifolium Rubiaceae left: oblate right: dry pollen prolate, lobate 10 µm 10 µm Vriesea pabstii Bromeliaceae left: oblate right: dry pollen boat-shaped 10 µm 100 µm Lamiastrum montanum Lamiaceae left: spheroidal right: dry pollen prolate, outline elliptic 10 µm 10 µm

The main purpose of the **harmomegathic** effect is to protect the male gametophyte against desiccation during pollen presentation and dispersal, and is often related to pollination biology.

In mature anthers, pollen is turgescent before shedding. After anther dehiscence and during pollen presentation, water loss takes place and the pollen grain becomes typically infolded, depending on aperture form and/or number, and specific wall thinnings or thickenings. The pollen grain in proper dry state represents the genuine harmomegathic effect and its shape is very often typical for a family and/or genus and is therefore of systematic relevance.

The harmomegathic effect is to some degree reversible. Rehydrated pollen with water uptake at the stigma, or under laboratory conditions, is again turgescent and largely recalls the shape before shedding. A second dehydration does not necessarily result in the typical dry shape but, if pollen walls are sufficiently stable, the harmomegathic effect can be induced several times in the same way. In the case of thin walls, the susceptible internal structure may become irreversibly damaged, and the harmomegathic effect may result in differing shapes, often randomly.

The harmomegathic effect is also observed in pollen taken from herbarium material, and to some degree in fossil material (HALBRITTER and HESSE 2004).

Infolding of the pollen wall after acetolysis is mostly not comparable with that in dry state.

The harmomegathic effect depends predominantly on the various characters of the pollen wall. Several pollen features (harmomegathic factors) collectively influence the mode of infolding and cannot be considered separately:

- apertures (the most important character): their position, number and form.
- pollen wall structure: thinned or thickened regions; in particular, internal girdles or **endoapertures**. If the ektexine is considerably reduced, its role is taken over by other wall strata, namely, by a thick endexine or intine. On the other hand, if the exine is extremely rigid, then the harmomegathic effect is only marginal.
- ornamentation type.
- pollen size: small pollen grains with thin walls exhibit a lesser degree of infolding.
- pollen coatings: if abundant, pollen coatings act as an insulating layer or sheath against desiccation.

Terms used for common phenotypes of dry pollen include: apertures sunken, boatshaped, cup-shaped, interapertural area infolded, irregularly infolded, not infolded. In addition, technical terms such as, e.g., barrel-like, disk-like, or kidney-like might be helpful for an adequate description.

Why Do We Need Categories?

ature itself neither needs categorization nor has any knowledge of categories. However, for the scientist, categories are essential for classifying natural characters in their diversity, for defining their range and for placing them in systematic order. Nevertheless, categories are artificial and always delimited by an individual or collective convention, mostly not by nature.

In addition to the theoretical concept, categorization always depends on the manner in which a character is perceived: i.e. on the visibility of a character, and/ or their specific value. Categorization also greatly depends on the technical equipment and method(s) used, as well as on the subjective interpretation of character(s)1. Thus, categorization of features is difficult to standardize. A well known example is pollen size². However, depending on the preparation method(s), the pollen sample may show pollen grains of one and the same plant species fitting into more than one size category (pollen size categories: see "Pollen Morphology"). Moreover, sometimes the size of pollen grains is found just at the boundary between two adjacent pollen size categories. Placing the pollen grain in one of the size categories therefore depends entirely on the material, the preparation method(s) and the observer's evaluation.

Characterization of pollen ornamentation is even more complex, modifications of basic ornamentation characters or combinations of different characters usually giving rise to a seamless transition between neighboring characters or to a combination of characters.

Seamless transitions between related but clearly defined features exist, e.g., in gemmate pollen and its "neighbor" clavate pollen. Both types of ornamentation are very variable in shape and size and rather rare in their typical form.

Combination of ornamenting characters is very common. Often, the ornamentation is composed of two or more characters, such as reticulate and foveolate, or a combination of echinate and perforate (for examples see Illustrated Glossary). From the observer's viewpoint it is desirable to name the ornamentation characters in a defined order: in the case of two or more combined characters, the most eye-catching, prominent character (the "leading term") should be mentioned first.

For example, in Aristolochia, the pollen grain surface bears very prominent verrucae

Combination of ornamenting characters

Aristolochia arborea Aristolochiaceae

inaperturate, spheroidal verrucate, perforate

surface detail verrucae and perforations

To be successful in characterization consider the following hints: be familiar with good microscope practice. The microscope, LM or EM, should be in good order. Primary magnification should be adequately high, but any enlarging of details beyond a beneficial magnification is counterproductive. For high magnifications in SEM, the best point resolution should be achieved. Quality of sample preparation is an all-too-often underrated item.

The importance for dimension measurements is acknowledged but there is no need for decimal places, since dimensions vary considerably according to different treatments, as already shown by REITSMA (1969).

(the "leading term") combined with a great number of small perforations. Such ornamentation therefore should be called verrucate, perforate.

Sometimes it is debatable which feature represents the "leading term". As a sample, in Caryophyllaceae, there are numerous, more-or-less regularly arranged microechini

10 µm

10 µm

10 µm

and perforations. In some taxa the microechini are more prominent (microechinate, perforate), in others the perforations (perforate, microechinate). There are also taxa, where the two features are on a par (microechinate and perforate). Micrographs elucidate the actual situation at a glance.

Combination of ornamenting characters

Stellaria media Caryophyllaceae microechinate, perforate

Saponaria officinalis Caryophyllaceae microechinate and perforate

Silene succulenta Caryophyllaceae

perforate, microechinate

Distinct areas of the pollen grain surface may show different ornamentation types.

The type of ornamentation may be irregularly distributed over the pollen surface, or restricted to distinct surface regions.

Some examples may elucidate this feature:

— The polar region of Fallopia convolvulus is psilate to perforate, apertural regions are microechinate.

- In Sideritis montana polar and interapertural areas are perforate to foveolate, apertural regions are psilate.
- In Salvia austriaca the polar area is psilate to perforate, all other areas being bireticulate.
- Solandra longiflora is an example where the polar areas are reticulate, while in equatorial view the ornamentation is striato-reticulate.

Interpretation of ornamenting characters

Sanchezia nobilis Acanthaceae

oblique equatorial view

surface detail

Sometimes it depends on the individual researcher to interpret ornamenting features: for example, to call Sanchezia nobilis (Acanthaceae) plicate and striate, but also reticulate? And should the rod-like elements be termed clavae, or free-standing columellae? Moreover, is the aperture to be interpreted as a porus or a colporus?

A special case deserves attention. In heterostylous species two different pollen types occur. Size and number of apertures, e.g., in Primula, or the ornamentation e.g., in Linum, may differ.

For better illustration Linum flavum and Primula pollen of the two floral types (longstyled and short-styled, pin and thrum morphs) is shown here.

In Linum flavum the short-styled-morph pollen is baculate, and the long-styledmorph clavate.

In Primula veris the pollen of the shortstyled morph (thrum) is larger and has more apertures than the pollen of the long-styled morph (pin).

Linum flavum Linaceae

short-styled morph baculate

long-styled morph

clavate

Heterostyly

Primula veris Primulaceae

left: short-styled morph right:

Terms derived from LM level cannot always be extended and applied to SEM level.

A classical example: Ulmus pollen at LM level was described as rugulate (rugulae: elongated exine elements longer than 1 µm; irregularly arranged). In low SEM magnifications the term verrucate (verrucae: wart-like element more than 1 µm, broader than high) would describe the ornamentation in a better manner. High SEM magnifications show additional granules (structure or sculpture elements of different size and shape; smaller than 1 µm). A typical rugulate ornamentation at SEM level is present in, e.g., Sanicula, which is quite dissimilar to the ornamentation seen in *Ulmus* at SEM high resolution level.

This is a good place to mention interpretative pitfalls. The denotation of ornamentation frequently depends on the optical magnification used and particularly on the point resolution. Very many (paleo-)palynologists have relied on LM only. Even lowpower SEM may not be sufficient to distinguish pollen grains unequivocally which are in LM very similar (for examples and discussion see FERGUSON et al. 2007).

Ornamentation in LM and SEM view

Ulmus Iaevis Ulmaceae

left: rugulate (LM)

right: verrucate (SEM)

left: Ulmus laevis Ulmaceae

surface detail verrucate, granulate

Sanicula europaea Apiaceae

surface detail ruaulate

A second example is scabrate, a term used for light microscopy only, describing minute sculpture elements of undefined shape and of a size close to the resolution limit of the light microscope. As an example, Juglans pollen is scabrate in LM and (with some reservation) under low power SEM, but microechinate at high resolution SEM.

Ornamentation in LM and SEM view Jualans sp. Jualandaceae

polar view scabrate to psilate (LM)

microechinate (SEM)

Another example for different interpretations in LM and SEM is the term psilate. Many pollen grains are psilate in LM view, but show a distinct ornamentation at SEM level. For example, in LM view pollen of Allium is psilate (see "Illustrated Glossary" - psilate), in SEM view it is striate and perforate (see "Pollen Morphology").

The term granulate (describing minute sculptural elements of undefined shape and of a size close to the resolution limit of the LM) is adequate for features at low SEM magnification. At significantly higher resolution a more adequate description is often possible. The actual shape of such

"granules" depends on the much better resolution of details at high SEM magnification, where a "granulate ornamentation" emerges as, for example, a great number of very small spines (microechini), the pointed ends seen best in profile, not from top view. The allegedly granulate ornamentation of many Poaceae is in fact microechinate; see "Illustrated Glossary".

interpretative Another pitfall does not depend on optical magnification. Ornamentation sometimes depends entirely or to a high degree on the preparation **method**. A striking example is the presence or complete absence of distinct echini on pollen of many Araceae/Aroideae: fresh or dry material exhibits a distinct echinate ornamentation, whereas after acetolysis the echini are completely removed. These echini are composed of polysaccharides (singular exception) and lack sporopollenin completely. The pollen is then - correctly called psilate (WEBER et al. 1999).

An example for different possible interpretations in relation with a differing degree of hydration is Trichosanthes anguina (Cucurbitaceae), where the ornamentation reflects the differing degree of hydration. The overview micrograph on the left shows a fully turgescent pollen, and on the right a less turgescent one. The ornamentation can be described as either areolate, or verrucate or even fossulate. Perforations are clearly visible in fully turgescent pollen only. So ornamentation should better be called verrucate and perforate.

Hydration

Trichosanthes anauina Cucurbitaceae pollen grains of different state of hydration

Hydration

Trichosanthes anguina Cucurbitaceae

left: surface detail areolate

riaht: surface detail verrucate, perforate

A specific ornamentation sometimes even depends on peculiarities during pollen development. Ubisch bodies are usually found as isolated particles between pollen grains, or lining the mature locular wall (HUYSMANS et al. 1998, HALBRITTER and HESSE 2005, VINCKIER et al. 2005; equivalents are found in ferns: LUGARDON 1981). Pollen grains of Cupressaceae and Taxaceae are often equipped with adhering (adnate) Ubisch bodies, which are - strictly speaking - part of the specific pollen ornamentation (for example Chamaecyparis or Juniperus, see "Illustrated Glossary").

A complex category issue in (Paleo-) Palynology is the nomenclature question.

In **Paleopalynology**, for morphotaxa often form-generic names are used.

The nomenclature of form-genera is either "artificial" when the relationship is not known at all (e.g., Oculopollis and Trudopollis from the Normapolles group), or "half-natural", when reference to an extant taxon is suspected but not proven (e.g., Liliacidites). However, if reference to extant taxa is certain, then a "natural" nomenclature is possible (e.g., Quercus sp.).

Nomenclature in **Paleopalynology**

Oculopollis sp.

10 µm

Trudopollis sp.

10 µm

Pollen Development

Microsporogenesis and **Microgametogenesis**

he unicellular pollen grain represents the microspore of seed plants, the multicellular pollen grain the male gametophytic generation of seed plants and is source and transport unit for the male gametes (or their progenitor cell). The development of a pollen grain includes (micro)sporogenesis [1-4] and (micro)gametogenesis [5-9]. Microsporogenesis starts with the differentiation of microspore mother cells (MMC) resp. pollen mother cells (PMC) [1]. These diploid cells become enclosed by a thick callose wall and undergo meiosis, forming a tetrad of four haploid microspores, each encased in a second callose wall insulating them from each other and from the surrounding diploid tapetal cells [2].

Cytokinesis following meiotic nuclear divisions is accompanied by the formation of cleavage planes determined by the configuration and orientation of the meiotic spindle axes. In the case of successive cytokinesis, planes are formed after the first and second meiotic divisions leading to the formation of various tetrad types (see "Pollen Morphology"). During simultaneous cytokinesis the cleavage planes are formed concurrently after the second meiotic division; in this case microspores are arranged in a tetrahedral tetrad.

Pollen wall formation starts when the microspores are still arranged in tetrads and encapsuled by callose [3]. The first step consists of the deposition of the primexine, a fibrillar polysaccharidic material, on the surface of the microspores. The primexine forms a template where sporopollenin precursors and finally sporopollenin are subsequently deposited, building the final pollen wall. Apertures are developed where the endoplasmic reticulum has prevented the deposition of primexine.

During pollen formation and maturation the tapetum plays an important role, usually

Scrophularia nodosa Scrophulariaceae

Microsporogenesis

tetrads

tetrad tetrahedral iodid

Spiraea sp. Rosaceae

tetrad tetrahedral

Orobanche hederae Orobanchaceae

tetrad planar KMnO,

forming a single layer of cells circumscribing the loculus. Tapetal cells are specialized and have a short lifespan; they finally lose their cellular organization and are reabsorbed. Two types of tapetum are known: the secretory (or glandular or parietal) and the amoeboid (or periplasmodial). In the secretory type (e.g., in Apiaceae) the tapetal cells remain stationary until they finish their physiological functions. In the amoeboid tapetum type (e.g., in Araceae) cells lose their individuality in an early developmental stage by degeneration of the cell walls. The protoplasts then fuse and intrude into the locule where they enclose the pollen grains.

The tapetum plays an important role during several stages of pollen development. Its main function is the nourishment of the microspores but it also synthesizes enzymes (e.g., callase), exine precursors, pollen coatings, forms Ubisch bodies and viscin threads (both equivalents to the ektexine). The most striking material produced by the tapetum is pollenkitt (and tryphine in Brassicaceae, elastoviscin in Orchidaceae), a sticky, heterogeneous material composed of neutral lipids, flavonoids, carotenoids, proteins and polysaccharides. Pollenkitt serves numerous functions: for example, keeping pollen grains together during transport; protecting pollen from water loss, ultraviolet radiation, hydrolysis and exocellular enzymes; maintaining sporophytic proteins inside exine cavities.

Microgametogenesis in angiosperms includes first and second pollen mitosis, leading to the formation of the male gametes (sperm cells). Gametogenesis starts with formation of a central vacuole within the uninucleate microspore, pushing the nucleus towards the wall [5]. As long as the nucleus is in a central position within the cytoplasm, the cell is called a **microspore** [4]. With the dislocation of the microspore nucleus the cell becomes the young pollen grain.

The first pollen mitosis is followed by an asymmetric cell division, leading to the formation of a smaller generative cell and a larger vegetative cell [6]. When the generative cell is formed it is pressed against the pollen wall; it later separates and is then located within the cytoplasm of the vegetative cell [7]. After detachment, the generative cell, which is sparse in organelles, becomes modified in shape from spherical to spindle-shaped (the shape of the generative nucleus changes correspondingly). During the second pollen mitosis, which is followed by a symmetric cell division, the generative cell is divided into two sperm cells, the final stage of gametophytic development [8]. In about 25 % of flowering plants investigated, the pollen grains are three-celled at the time of anthesis [8]; in 75% of flowering plants, pollen grains are shed from the anther at a two-celled stage. In the latter case the second pollen mitosis takes place in the pollen tube, after germination of the pollen grain onto a stigma or a corresponding structure [9].

Microgametogenesis in gymnosperms includes several mitotic divisions. Normally, pollen grains of gymnosperms are multicelled at anthesis, and comprise prothallial cell(s), a large tube cell and a small antheridial cell. The tube cell becomes a pollen tube; the antheridial cell undergoes division into the stalk cell and the spermatogenous cell, the latter finally dividing into the male gametes (sperm cells or spermatozoids).

Pollen development in angiosperms

Inherence of Misinterpretation

nvestigation of recent and fossil pollen material often reveals interesting features that in some cases may be misinterpreted. Selected examples are various tripartite surface features that may actually be or only resemble apertures. Other examples are conspicuous, even eye-catching ornamentation features that are potentially misinterpreted as apertures, while the genuine, very inconspicuous apertures might be overlooked. The study of a morphological series can be of help clarifying ambiguous features.

Tripartite Features

Mature pollen of conifers, such as Abies, Larix and Pseudotsuga, often shows proximally a Y-shaped bulge, comparable to a tetrad mark, which is called an impression mark (HARLEY 1999). The mark results from the close proximity of the four pollen grains at the post-meiotic tetrad phase and is retained afterwards. Impression marks are also found in palm pollen. Note: the term tetrad mark is restricted to spores, where it is the germination feature, the impression mark of pollen grains is no germination feature.

Superficiallysimilarfeaturesinangiosperms are not comparable to that in gymnosperms. In recent and fossil Sapindaceae a threearmed feature (more precisely a triangle) is found. Cardiospermum has a narrow triangle (tenuitas) proximally, whereas other

Abies cephalonica

Tripartite features

Pinaceae, fossil proximal polar view Y-shaped impression mark

Larix sp.

Larix sp. Pinaceae, fossil

Y-shaped impression mark

Tripartite features

Cardiospermum corindum Sapindaceae tricolporate

left: equatorial view

right: proximal pole with triangular area

Tripartite features synaperturate pollen

Melaleuca armillaris Myrtaceae syncolporate

> left: polar view

right: polar area

left: Primula denticulata Primulaceae polar view

> right: Primula farinosa Primulaceae dry pollen

Tripartite features trichotomosulcus

Dianella tasmanica Phormiaceae

dry pollen

recent and fossil Sapindaceae show such a feature at both poles.

The triangular pollen as found in Myrtaceae, some Primulaceae (Primula farinosa or P. denticulata) or in some Loranthaceae is characterized by a triangular field in both polar areas. The angles elongate to meridional rays (colpi) directed to the roundish pollen tips, the rays crossing the equator and forming an equivalent triangle on the antipodal polar area. Pollen is synaperturate (syncolpate, syncolporate).

Anothertripartite feature is the trichotomosulcus (HARLEY 2004), a three-armed sulcus found exclusively distally, as, e.g., in Dianella and Cretaceous fossils. Trichotomosulcate pollen has been discussed in relation to the evolution of the tricolpate dicot condition, but so far without success.

In contrast to the trichotomosulcus also trisulcate pollen is found. The angiospermlike pollen of the fossil genus Eucommiidites has a distal sulcus and, at angles of ca 120° seen from the sulcus, two folds on the proximal side of the pollen. This feature was erroneously misinterpreted as more-or-less tricolpate pollen (with "colpi" equatorially situated, which has proved to be incorrect). A similar arrangement of a distal sulcus and two small additional "sulci" on the proximal face was described, for example, in some species of Tulipa (Liliaceae) and Tinantia (formerly Commelinantia, Commelinaceae), but these cases were never interpreted as equivalent to a tricolpate condition (HARLEY 2004). In some cases the three sulci are of quite equal size. The aperture condition is very similar to a tricolpate one. The interpretation "trisulcate" is possible and of use only in context with a morphological series.

Tripartite features

Tulipa kaufmanniana Liliaceae trisulcate equatorial (!)

Another three-armed feature is the triradiate aperture in Thesium alpinum (Santalaceae) pollen (an additional suggestive feature is the pollen shape forming a tetrahedron, the four triangular faces showing conspicuous reticulate areas that might be misinterpreted at first sight as four apertures). In fact Thesium alpinum pollen is three-aperturate, the apertures placed in the three tapered edges of the tetrahedron. Each aperture forms a very inconspicuous triradiate figure, which is situated equatorially. Two of the arms point towards the neighboring tetrahedron edge and are rather short; the third, elongated arm is directed to the rounded edge, which is

probably the proximal pole.

Tripartite features

Thesium alpinum Santalaceae

tricolpate, heteropolar

triradiate colpus

polar view

equatorial view

polar view

Apertures as Pitfalls

Sometimes the apertures are inconspicuous and not discernible at first sight. In Pachira aquatica (Bombacaceae) pollen three large, more-or-less hemispherical areas are seen equatorially, which may at first sight be interpreted as three pores. However, a detailed observation reveals planaperturate pollen grains with three short colpi.

Apertures as pitfalls Pachira aquatica Bombacaceae 10 µm polar view 10 µm equatorial view oblique 10 µm

The monads of the Calliandra emarginata (Mimosaceae) polyad are separated by narrow groove-like depressions. At low magnification the presence and localization of the apertures remain indistinct; high SEM magnification reveals that the apertures are very inconspicuous pores, situated equatorially, usually at the conjunction of three or four monads.

massula dry state

Apertures as pitfalls

Calliandra

emarginata

Mimosaceae

apertures (pores) at the junction of four monads

The apertural condition may be hidden by prominent features. The clypeate pollen of Phyllanthus × elongatus (Euphorbiaceae) seems to be inaperturate. Only close-ups reveal the inconspicuous pores between the exine shields.

The disk-like pollen of Oryctanthus sp. (Loranthaceae) shows at both poles conspicuous circular depressions that are not apertures (FEUER and KUIJT 1985). The pollen is tricolpate with inconspicuous short slit-like colpi between the polar depressions on

equatorial view (SEM)

Apertures as pitfalls

Phyllanthus × elongatus Euphorbiaceae

left: clypeate pollen seemingly inaperturate

inconspicuous pores between the exine shields

Apertures as pitfalls

Oryctanthus alveolatus Loranthaceae acetolyzed

tricolpate (short colpi on both sides, with bridge), pollen grains in polar view

right: colpus

both sides. The colpi are interrupted by a broad exine bridge at the equator plane; thus calling the aperture condition "hexacolpate" would be a possible interpretation.

Trapa (Trapaceae) pollen is triaperturate (colpate or porate). Recent and fossil pollen grains are distinguished by unique meridional exine features (crests); these cover the apertures so that only after removal of the crest the aperture is visible.

equatorial view

crest broken

Apertures as pitfalls

Trapa sp. Trapaceae, fossil

equatorial view crest in part broken colpus visible

Trapa sp. Trapaceae, fossil

equatorial view

Pollen Features can be Ambiguous

Case studies:

- interpretation of specific aperture conditions
- classification of infratectal structure characters
- deviating pollen forms

Investigation of a morphological series within a genus can provide decisive nomenclature or at least support such a decision; studying only an isolated sample of a morphological series may easily lead to misinterpretations. Passiflora (Passifloraceae) pollen is an example of a morphological series concerning apertures. The apertures in Passiflora cf. incarnata may be interpreted as three ring-like apertures. An interpretation as porate-operculate is likewise possible, and probably more correct, if compared with pollen of other Passiflora species.

Not infrequently the apertures angiosperms show indistinct margins, or appear as thin regions in the pollen wall. The Illustrated Glossary makes use of two terms, poroid and tenuitas, in describing superficially quite similar features.

A **poroid** is a circular or elliptic aperture with indistinct margin. A tenuitas is a general term for a pollen wall thinning, which has been applied to many different features (KREMP 1968, HARLEY 2004, PUNT et al. 2007).

A **tenuitas** (in angiosperms) is normally found additional to regular apertures (e.g., in some Myosotis species, see "Illustrated Glossary").

The harmomegathic effect may cause misinterpretations. A distinct infolding type suggests or pretends an erroneous aperture condition, while the correct aperture condition is inconspicuous or even hidden.

of Sparganium erectum (Sparganiaceae) is in dry stage infolded, boat-shaped, and would be considered as sulcate. In fact Sparganium pollen is ulcerate, the ulcus is seen clearly in the hydrated, spherical pollen stage.

Nymphaea alba (Nymphaeaceae) pollen has asymmetrical halves. The features

Ambiguous features

Passiflora cf. incarnata Passifloraceae

> left: polar view

right: equatorial view

left: Passiflora citrina Passifloraceae

stephanocolpate operculate polar view

right: Passiflora suberosa Passifloraceae

stephanocolpate operculate, dry pollen

10 µm

of the smaller distal half can be interpreted either as a large ulcus with a conspicuous operculum, or as a more-or-less equatorially situated ring-like aperture surrounding the polar area. Ultrastructural characters and germination experiments support the interpretation as a ring-like aperture (HESSE and ZETTER 2005).

Ambiguous features

Myosotis palustris Boraginaceae

left: equatorial view heteroaperturate, alternating colpori and colpi

right: polar view polar area with triangular tenuitas

(pseudocolpi)

Ambiguous features

Sparganium erectum Sparganiaceae ulcerate

right: dry pollen boat-shaped

Ambiguous features

Nymphaea sp. Nymphaeaceae ring-like aperture

equatorial view

right: dry pollen cup-shaped

Infratectum is a term which includes in fact a morphological series. The classical angiosperm character states simply comprise columellar and granular. However, as, e.g., DOYLE (2005) has pointed out, intermediate conditions are not uncommon. Even the areolate infratectum, usually restricted by definition to gymnosperms, is found in some angiosperms (see "Illustrated Glossary").

Deviating pollen forms – an underrated topic.

Abnormal pollen grains occur regularly in small percentages in nearly all anthers and may vary from one individual to another (heterogeneity of pollen forms). A much higher percentage of such deviating, more precisely, malformed pollen grains are found in many cultivated plants (ornamental plants, agricultural crops) or in plants with asexual reproduction (autogamic plants, apomicts). The effect also depends on the ploidy level, hybrids may produce a series of pollen types. Pollen variation is generally underreported, because most studies focus on normal rather than abnormal pollen morphology (BANKS et al. 2007).

Aberrant pollen may occur at a high percentage within a single pollen sac, anther or flower.

These aberrant, deformed pollen grains differ from normal pollen in shape and dimension, in number and form of apertures, in type and arrangement of ornamentation. Very often in hybrids, pollen ornamentation is intermediate between the typical forms of the parent species. Some species produce only malformed pollen, a feature typical for plants with asexual reproduction (e.g., some Alchemilla spp.).

The reasons for the production of deviating pollen forms are genetically, chemically or environmentally induced. While many reports dealing with the developmental causes, a tiny minority of papers refers predominantly to the habit of the deviating pollen forms (e.g., POZHIDAEV 2000a, b, focusing on the aperture patterning). As a consequence, these outliers should neither be ignored nor overrated, but we should take notice of this issue as an ordinary feature.

Controversial or Fuzzy Terms

Sometimes terms are ambiguous in definition or application, or may be simply misleading.

Acalymmate/Calymmate

In compound pollen grains or pollen units the individual grains are held together by different physical means of the pollen wall. Van CAMPO and GUINET (1961) recognized calymmate and acalymmate types. The term calymmate denotes a feature describing a dispersal unit of two or more monads enclosed by a continuous ektexine.

Calymmate

Chlorospatha Araceae tetrads

> Acalymmate denotes a feature describina a dispersal unit of two or more monads enclosed by an exine, which is discontinuous at the junctions between the monads, and is absent from the internal walls.

> Since these basic types were described a lot of variations have been found, and the question was raised whether the basic distinction can remain (a survey and a detailed discussion was provided by KNOX and McCONCHIE 1986). The micrographs show examples for either a continuous (calymmate) or a discontinuous exine enclosure (acalymmate).

Areolae/Areolate

The term areola/areolate was originally applied to pollen grains ornamented with 100 um

Acalymmate

Annonaceae tetrad, dry pollen

Drosera sp. Droseraceae

tetrad

detail of pollen wall

small, mostly convex exine areas separated by small grooves. Later on, the term was used describing pollen with large, variably ornamented exine areas separated by grooves; this type of ornamentation is better called clypeate, a pollen wall, in which the exine is subdivided into shields. Clypeate, however, also denotes a pollen class; for examples see "Illustrated Glossary".

Pseudocolpus

A pseudocolpus is a colpus in heteroaperturate pollen grains and is presumed as non-functional. Pseudocolpi are always associated with colpori, never with colpi. Pseudocolpi mostly alternate with colpori (e.g., in Boraginaceae, Lythraceae) or are situated on both sides of a colporus (in Acanthaceae). Since germination experiments for pseudocolpi are absent, it cannot be assumed that pseudocolpi act as germination sites. Without doubt they play a role in harmomegathy, but their effects have been poorly studied; for examples see "Illustrated Glossary".

Retipilate

There are yet no known examples for retipilate, "a reticulum formed by rows of pila instead of muri". In contrast to earlier observations, investigations based on LM and SEM have revealed that the examples Callitriche (Plantaginaceae) in PUNT et al. (2007: "describing a reticulum formed by rows of pila instead of muri") and Cuscuta lupuliformis (Cuscutaceae) in ERDTMAN (1952, p. 128: "with a reticuloid pattern with pila instead of muri") do not fit their definition; in fact there are muri with prominent sculpture elements (a reticulum cristatum) but no isolated pila. Nota bene: while ERDTMAN (1952) provides a correct drawing, the diagram in PUNT et al. (2007) is erroneous.

Zona-, Zono- etc.

Terms combining the basic prefix zontogether with its linguistic derivatives are a source of endless confusion, misunderstanding and superfluous inflation of terms. The prefixes include zon- (in zonorate, for a ring-like endoaperture, the os, at the equator), the outdated, rarely used zoni-(however, with two quite different terminological applications), but especially zona-(indicating exclusively a ring-like feature situated anywhere) and zono- (indicating any feature located strictly equatorially).

A curious example deserves special attention. Terms for ring-like (aperture)

left: drawings from PUNT et al. (2007)

right: drawing from ERDTMAN (1952), p. 22, Fig. 5d

reticulum cristatum with small gemmae on thin muri

> riaht: Cuscuta Iupuliformis Cuscutaceae

reticulum cristatum with microechini

features include zona-aperturate, zona-sulculus (addressing the polarity by anazonasulculus and catazona-sulculus), zona-sulcus, zonate, zono-aperturate, and also related names (e.g., "fully zonate condition" sensu GRAYUM 1992). Even the misleading and contradictory zono-sulcus (a sulcus cannot be situated equatorially) is used instead of the correct, but phonetically confusable, zona-sulcus. The trained palynologist may be overstrained. It is proposed that all these terms should be avoided.

To avoid any confusion, not more

than two non-interchangeable terms are necessary, without combination of syllables, prefixes or suffixes. 1. any encircling aperture ("zona-aperturate"), irrespective of meridional or equatorial location, is simply called a ring-like aperture. The location or direction regarding the pollen grains polarity is not easy to address, since the orientation of the pollen grain in tetrad stage is relevant. 2. any case with more than three apertures at the equator ("zono-aperturate") is called stephanoaperturate.

A typical meeting debating controversial terms at any Thursday within the last three years

- 14:00 start of meeting, participants in time: MH, HH, SU, RB, AFR, MW
- 14:38 RZ comes delayed and wants to have "bisaccate" in the glossary
- 14:40 RZ falls into a deep sleep
- 14:50 MH wants to include "cryptoaperturate" to the glossary all others: "noooooo..."
- 15:00 RZ wakes up and again calls for "bisaccate" all others: "noooooooooo...!" RZ: "Wish to be a squirrel ... hide and find nuts ... no more pollen terminology!"
- 15:05 RB repeatedly yawns, because of low nicotin and coffeine levels

- 15:10 emotional discussion about "zona-" and "zono-aperturate"; SU resigns while writing the protocol... MH to HH: "Heidi, think faster...!"
 - MW and SU suffer from paroxysm of laughter
 - AFR asks for more discipline
- 16:00 HH: "It's time for the four o'clockcoffee!"
 - MH: "Forget about it!"
- 16:15 RZ (enervated) again calls for "bisaccate"
- 16:30 MW asks the "tool for final decisions" about "bisaccate"
- 17:00 end of meeting

tool for final decisions

frustrate

Reinhard 7etter, Ralf Buchner Heidemarie Halbritter, Andrea Frosch-Radivo Martina Weber, Silvia Ulrich, Michael Hesse

Methods

Multiple techniques and methods should be used when investigating pollen grains in order to provide comprehensive and accurate information and help to avoid misinterpretations. Good examples of such an approach are the endexine (mentioned below) and the endoaperture, the latter visible only in the light microscope (LM) and hidden in the scanning electron microscope (SEM).

The selection of micrographs in "Pollen Terminology. An illustrated Handbook" in cludes both LM and EM pictures.

Scanning Electron Microscopy

SEM techniques cannot substitute LM but they can provide a great deal more information, especially about ornamentation. Methods of sample preparation for SEM should preserve the living condition of a pollen grain as far as possible. In addition, pollen coatings should be removed from the pollen surface in such a way that no details of the pollen grain are lost. For the SEM, acetolysis is not an optimal method for cleaning the pollen surface, as it will often destroy apertural details. Pollen with fragile exines may also be destroyed.

As a routine, all pollen grains should be observed in an air-dried condition, which gives the best information about the pollen grains at anthesis and their harmomegathic situation.

The best results have been obtained using 2,2-dimethoxypropane (DMP) (HALBRITTER 1998). This method can be used for fresh material (pollen grains should be collected when anthesis starts) and for herbarium samples after short rehydration in water. Unless stated otherwise, the pollen grains shown in "Pollen Terminology. An illustrated Handbook" represent the turgescent state.

Fresh anthers are put into a pouch made of filter paper and immediately transferred into acidified 2,2-dimethoxypropane (a drop of 0.2 M HCl added to 30 ml DMP). After 20-30 min in DMP (or up to 24 h) samples are transferred to pure acetone for a few minutes and critical-point dried in CO₂ using acetone as intermediate fluid. The dried pollen samples are then mounted on stubs using double-sided adhesive tape, sputter-coated with gold and observed with the SEM.

Acetolysis and Light Microscopy

Acetolysis is an indispensable method for illustrating pollen grains with the LM. Untreated or stained pollen grains will hide much of the important information for the description of a pollen grain.

Acetolysis is a combination of chlorination and acetylation:

For chlorination, the samples are transferred to a test tube and covered with a layer (1.5 cm) of glacial acetic acid and a layer (approx. 3 cm) of a freshly prepared solution of saturated sodium chlorate. After adding 3 or 4 drops of concentrated HCI, the mixture is stirred with a glass rod, heated in a bath of boiling water for 3 min, centrifuged, and the liquid fraction decanted. The residue is carefully washed to eliminate any remaining chemicals and then finally washed in concentrated acetic acid or acetic anhydride to remove the water.

For the acetylation step, the samples are put into a mixture of 9 parts acetic anhydride and 1 part concentrated sulfuric acid and heated to 100° C for approximately 4 min. After the mixture has been centrifuged and the liquid fraction decanted, the residue is washed in acetic acid and water. Glycerine is then added to the sample to form a suspension.

Single-Grain Technique

(ZETTER 1989, FERGUSON et al. 2007)

For fossil pollen grains a combined LM/ SEM investigation should be used. After the LM investigation the same acetolyzed pollen arain is transferred to the SEM.

After extracting the pollen grains from the sediment, the samples undergo acetolysis (chlorination plus acetylation as described above). Glycerine is then added to the organic residue to form a suspension and a drop transferred to a glass slide. Using a dissecting needle to which a nasal hair has been affixed, grains of particular interest are brushed to the edge of the glycerine, where they can be picked up and transferred to another glass slide for photography under the LM. Because no cover slip is used, it is possible to photograph the same grain in various orientations. After this, the pollen is transferred to an SEM stub to which a drop of absolute ethanol has been added to remove all traces of the glycerine from the surface of the pollen grains, so that these can be examined in great detail under the SEM.

Transmission Electron Microscopy

For TEM studies of pollen from different plant species, more than one protocol for fixation and staining may be needed.

For fixation, anthers are placed in 2% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) for 8–18 h at room temperature. After rinsing in buffer and distilled water, samples are postfixed in 2% OsO, plus 0.8% phosphate-buffered potassium ferrocyanide $K_AFe(CN)_A$ 3 H_2O (2:1) for 8 h at 6° C. Samples are then washed in distilled water, dehydrated in 2,2-DMP followed by pure acetone, and embedded in Spurr's low-viscosity epoxy resin (SPURR 1969) or Agar lowviscosity resin.

Sections of pollen grains are routinely stained using the following methods:

II+Ph

URANYL ACETATE-LEAD CITRATE STAINING

In many species investigated uranyl acetate-lead citrate staining has not proved satisfactory.

Staining is carried out in uranyl acetate solution (Leica Ultrastain-1) for 45 min followed by lead citrate (Leica Ultrastain-2) for 1 min (all steps at room temperature).

TCH+SP, PA+TCH+SP

THIOCARBOHYDRAZIDE-SILVER PROTEINATE STAINING (TCH+SP) AND PERIODIC ACID-THIOCARBOHYDRAZIDE-SILVER PROTEINATE STAINING (PA+TCH+SP)

The endexine is a frequently misinterpreted layer of the pollen wall. Using standard TEM staining techniques (uranyl acetate and lead citrate), ektexine and endexine may differ in their electron opaqueness in that the endexine is higher in electron density than the ektexine, or the situation may be reversed [1]. But in many species, especially when the endexine is thin and less compact or discontinuous, the differentiation of the two layers is insufficient.

The endexine can be differentiated

from the ektexine and the intine by thiocarbohydrazide-silver proteinate (TCH+SP) staining in osmium-fixed material and periodic acid-thiocarbohydrazide-silver proteinate (PA+TCH+SP) staining in osmium-free material. The endexine stains electron dense after TCH+SP staining [2], indicating lipidic compounds, and electron translucent after PA+TCH+SP staining [3], excluding this layer as part of the intine, as it is well known that intine reacts positively for polysaccharides.

A morphological characteristic of the endexine is its increasing thickness close to the aperture.

PA+TCH+SP staining (localization of neutral polysaccharides):

Sections (80–100 nm) from osmium-free material are placed on gold grids and treated with 1 % PA for 45 min, 0.2 % TCH for 8–15 h, and 1 % SP for 30 min (THIÉRY

TCH+SP-staining (detection of unsaturated lipids): Sections (80–100 nm) from osmified material are placed on gold grids and treated with 0.2 % TCH for 8–15 h and 1 % SP for 30 min (ROWLEY and DAHL 1977, WEBER 1992).

PA+TCH+SP (short)

MODIFIED THIÉRY TEST

The modified (short) Thiéry test (WEBER and FROSCH 1995) is especially effective after fixation of specimens with osmium and potassium ferrocyanide and is a good method for general enhancement of contrast in the cytoplasm and the pollen wall.

Sections 80–100 nm thick are collected on gold grids and stained with 1% periodic acid (PA) for 10 min, 0.2 % thiocarbohydrazide (TCH) for 15 min, and 1 % silver proteinate (SP) for 10 min (all steps at room temperature). After the staining steps with PA and SP. sections are intensively washed in distilled water; after staining with TCH, washes are in 3 % acetic acid followed by distilled water.

Acetocarmine Staining for Light Microscopy

For the detection of the generative nucleus and the sperm nuclei, fresh pollen grains are put into a drop of acetocarmine, warmed for a few seconds and observed with the LM (GERLACH 1969).

How to Describe a Pollen Grain

The minimal features for describing a pollen grain are:

size, shape, aperture condition, ornamentation, and the method, how the pollen grain was prepared for LM and EM,

respectively.

LM- and SEM-diagnosis may be different from each other, due to the methods and techniques used.

LM-diagnosis

plant name: Centaurea jacea (Asteraceae)

method: pollen grains acetolyzed size: medium (longest axis about 40 µm)

shape (determined by equatorial and polar view): prolate

aperture: tricolporate ornamentation: echinate

peculiarities: remarkable endoaperture

polar view

equatorial view

SEM-diagnosis

method: pollen grains critical-point-dried (hydrated condition) and air-dried, respectively

size: medium (longest axis about 40 µm)

shape: spheroidal (in hydrated condition); prolate, lobate (in dry condition)

aperture: tricolporate

ornamentation: echinate, perforate

peculiarities: —

GENERAL CHAPTER | 55

CONTENT

Pollen Unit	59-67	polychotom
monad		ring-like ape
dyad		margo
pseudomonad		annulus, anr
tetrad		aperture me
massula		operculum,
pollinium		pontopercu
pollinarium		bridge
Pollen Class	68-72	papilla, pap
clypeate		Ornamentati
colpate		reticulum, re
colporate		bireticulate .
dyad		homobroch
inaperturate		heterobroch
lophate		microreticul
plicate		reticulum cri
polyad		plicae, plica
porate		striae, striate
saccate		striato-reticu
spiraperturate		rugulae, rug
sulcate		granulum, g
synaperturate		psilate
tetrad		perforate_
ulcerate		foveola, fov
Shape & Size	73-100	fossula, fossu
Pollen size		lophae, lacu
spheroidal		echinus, ech
prolate		microechino
oblate		verruca, ver
outline		baculum, ba
outline, pollen infoldings		clava, clava
isopolar		free-standing
heteropolar	95-96	gemma, ge
saccus, saccate	97-99	areola, arec
arcus, arcuate		clypeate
Aperture	101-154	Pollen Wall
aperture, aperturate	101-102	pollen wall_
inaperturate	103	infratectum.
angulaperturate		internal tect
planaperturate		foot layer
stephanoaperturate		endexine
pantoaperturate		intine
brevicolpus, brevicolpate	113	semitectum,
brevicolporus, brevicolporate_		atectate
synaperturate		Miscellaneou
spiraperturate		primexine
heteroaperturate		vegtative nu
pseudocolpus		generative of
colpus, colpate		sperm cell _
porus, porate		tapetum
poroid, poroidate		pollenkitt
tenuitas		primexine m
colporus, colporate		tryphine
ulcus, ulcerate		viscin threac
		Ubisch body
sulcus, sulcate	120	2.5.0011.5001

polychotomosulcus	139
ring-like aperture	
margo	
annulus, annulate	
aperture membrane	
operculum, operculate	
pontoperculum, pontoperculo	
bridge	
papilla, papillate	
rnamentation	155-198
reticulum, reticulate	_
bireticulate	
homobrochate	
heterobrochate	
microreticulate	
reticulum cristatum	
plicae, plicate	
striae, striate	
striato-reticulate	
rugulae, rugulate	
granulum, granulate	
psilate	
perforate	
foveola, foveolate	
fossula, fossulate	
lophae, lacunae, lophate	
echinus, echinate	
microechinate	
verruca, verrucate	
baculum, baculate	
clava, clavate	
free-standing columellae	
gemma, gemmateareola, areolate	
clypeate bllen Wall	
pollen wall	
infratectum	
internal tectum	
foot layer	204
endexine	
intine	
semitectum, semitectate	
atectate	212 222
iscellaneous	
primexine	
vegtative nucleus	
generative cell	
sperm cell	
tapetum	
pollenkitt	
primexine matrix	
tryphine	218
viscin thread	
Hhisch hady	221-223

POLLEN UNIT monad

dyad POLLEN UNIT

dyad: dispersal unit of two pollen grains. 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm Polypleurum stylosum Polypleurum stylosum Podostemaceae Podostemaceae acetolyzed, pollen collapsed Zeylanidium olivaceum Zeylanidium subulatum Podostemaceae Podostemaceae Thelethylax minutiflora Thelethylax minutiflora Podostemaceae Podostemaceae acetolyzed, pollen collapsed

POLLEN UNIT pseudomonad

pseudomonad: dispersal unit of a permanent tetrad with three rudimentary pollen grains.

tetrad tetrahedral POLLEN UNIT

tetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains define a tetrahedron.

POLLEN UNIT tetrad tetrahedral

tetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains define a tetrahedron.

tetrad POLLEN UNIT

tetrad: dispersal unit of four pollen grains (spores).

POLLEN UNIT tetrad planar

tetrad planar: dispersal unit of four pollen grains arranged in one plane; can be: tetragonal, T-shaped, linear.

POLLEN UNIT massula

massula: dispersal unit of more than four pollen grains and fewer than the locular content.

pollinium: dispersal unit of a more or less interconnected loculiform pollen mass. 1 mm 1 mm 100 µm pollinarium: dispersal unit of pollinium (or pollinia) and a single interconnecting sterile appendage. 100 µm 1 mm Ophrys sphegodes Anteriorchis coriophora Orchidaceae Orchidaceae Polystachya sp. Stephanotis floribunda Orchidaceae Asclepiadaceae Vincetoxicum hirundinaria Aerides multiflora Orchidaceae Asclepiadaceae

pollen class: artificial grouping of pollen grains that share a single distinctive character. pollen class: clypeate 100 µm 10 µm pollen class: colpate 10 µm 10 µm pollen class: colporate 10 µm 10 µm Iris bucharica Ibicella lutea Iridaceae Martyniaceae Bunias orientalis Corylopsis glabrescens Brassicaceae Hamamelidaceae Viola alba Orlaya grandiflora Violaceae Apiaceae

spheroidal SHAPE & SIZE

SHAPE & SIZE spheroidal

prolate SHAPE & SIZE

prolate: pollen grain with the polar axis longer than the equatorial diameter. 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm Crossandra flava Jurinea mollis Acanthaceae Asteraceae dry pollen equatorial view Torilis arvensis Peucedanum cervaria Apiaceae Apiaceae dry pollen equatorial view Astragalus onobrychis Symphytum officinale Fabaceae Boraginaceae equatorial view dry pollen

SHAPE & SIZE prolate

prolate: pollen grain with the polar axis longer than the equatorial diameter. 10 µm 10 µm 10 µm 10 µm 10 µm Buglossoides purpurocaerulea indet. Boraginaceae Sapotaceae, fossil equatorial view equatorial view Platycodon grandiflorum Stenandriopsis guineensis Campanulaceae Acanthaceae equatorial view dry pollen Lathyrus tuberosus Salvia sclarea Fabaceae Lamiaceae dry pollen dry pollen

oblate SHAPE & SIZE

oblate: pollen grain with the polar axis shorter than the equatorial diameter. 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm Carya sp. Salvia argentea Lamiaceae Juglandaceae, fossil equatorial view equatorial view Knautia drymeia Cuphea purpurea Dipsacaceae dry pollen Lythraceae dry pollen Hakea kippistiana Corylus avellana Betulaceae dry pollen, equatorial view Proteaceae

SHAPE & SIZE oblate

oblate: pollen grain with the polar axis shorter than the equatorial diameter. 10 µm 10 µm 10 µm 100 µm 10 µm Impatiens glandulifera Aechmea caudata Balsaminaceae Bromeliaceae Vriesea neoglutinosa
Bromeliaceae Godetia purpurea Onagraceae dry pollen equatorial view Veratrum album Heliconia sp. Melanthiaceae Heliconiaceae dry pollen dry pollen

outline circular SHAPE & SIZE

SHAPE & SIZE outline elliptic

outline triangular SHAPE & SIZE

SHAPE & SIZE outline triangular

outline lobate SHAPE & SIZE

outline lobate $10 \ \mu m$ 10 µm 10 µm 10 µm 10 µm 10 µm Acer pseudoplatanus Artemisia pontica Sapindaceae dry pollen Asteraceae polar view Sanguisorba officinalis Orthilia secunda Rosaceae Ericaceae dry pollen dry pollen Gunnera chilensis Gunnera chilensis Gunneraceae Gunneraceae dry pollen, equatorial (left) and polar view polar view (right)

SHAPE & SIZE outline lobate

outline, pollen infoldings, irregular

dry pollen

outline, pollen infoldings, apertures sunken 10 µm 10 µm 10 µm 10 µm 10 µm Artemisia pontica Carex alba Asteraceae Cyperaceae tricolporate, dry pollen pseudomonads with poroids, dry pollen Lachenalia aloides Luzula sylvestris Liliaceae Juncaceae sulcate, dry pollen tetrads ulcerate, dry pollen Moehringia muscosa Anemone hortensis Caryophyllaceae pantoporate, dry pollen Ranunculaceae stephanocolpate to spiraperturate, dry

pollen

outline, pollen infoldings, interapertural area sunken

outline, pollen infoldings, cup-shaped: characteristic shape of pollen grains caused by infoldings as a consequence of harmomegathy; see "Pollen Morphology"

outline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollen grains caused by an infolding as a consequence of harmomegathy; see "Pollen Morphology".

outline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollen grains caused by an infolding as a consequence of harmomegathy; see "Pollen Morphology".

isopolar SHAPE & SIZE

isopolar: pollen grain with identical proximal and distal faces. 10 µm $10 \ \mu m$ 10 µm 10 µm 10 µm 10 µm Cerinthe minor Asperula tinctoria Boraginaceae dry pollen Rubiaceae dry pollen Viburnum tinus Myosotis palustris Boraginaceae dry pollen Viburnaceae equatorial view Aesculus flava Monotropa hypopitys Hippocastanaceae equatorial view Ericaceae equatorial view

SHAPE & SIZE heteropolar

heteropolar SHAPE & SIZE

heteropolar: pollen grain with different proximal and distal faces. 10 µm 100 µm 10 µm 10 µm Heliconia sp. Quesnelia augusto-coburgii Heliconiaceae dry pollen Bromeliaceae Erica arborea Pinus strobus Ericaceae Pinaceae tetrad Nuphar luteum Sansevieria dooneri Nymphaeaceae equatorial view Dracaenaceae dry pollen

SHAPE & SIZE saccus, saccate

SHAPE & SIZE saccus, saccate

saccus: exinous expansion forming an air sac. 10 µm 100 µm 10 µm 10 µm 100 µm 10 µm Abies cephalonica Picea abies Pinaceae Pinaceae bisaccate, distal polar view bisaccate, dry pollen Picea abies Pinus mugo Pinaceae Pinaceae bisaccate, equatorial view bisaccate, equatorial view

Picea pungens

bisaccate, distal polar view

Pinaceae

Abies nordmanniana

Pinaceae

bisaccate

SHAPE & SIZE saccus, saccate

saccus: exinous expansion forming an air sac. 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm Podocarpus sp. Podocarpus sp. Podocarpaceae Podocarpaceae bisaccate, proximal polar view bisaccate, oblique equatorial view Microstrobus niphophilus Microstrobus niphophilus Podocarpaceae Podocarpaceae trisaccate, equatorial view trisaccate, proximal polar view Dacrycarpos dacrydioides Dacrycarpos dacrydioides Podocarpaceae Podocarpaceae trisaccate, proximal polar view trisaccate, distal polar view

SHAPE & SIZE arcus, arcuate

arcus: a curved wall thickening interconnecting apertures. 10 µm 10 µm 10 µm 10 µm 10 µm Alnus glutinosa Alnus sp. Betulaceae equatorial view Betulaceae, fossil polar view Alnus glutinosa Alnus viridis Betulaceae Betulaceae polar view Alnus incana Alnus incana Betulaceae Betulaceae dry pollen polar view

aperture: region of the pollen wall which differs significantly morphologically and/or anatomically from the rest of the pollen wall, presumed to function usually as germination site and to play a role in harmomegathy.

aperture: region of the pollen wall which differs significantly morphologically and/ or anatomically from the rest of the pollen wall, presumed to function usually as germination site and to play a role in harmomegathy.

APERTURE inaperturate

APERTURE angulaperturate

angulaperturate: pollen grain with an angular outline, where the apertures are situated at the angles.

APERTURE planaperturate

planaperturate: pollen grain with an angular outline, where the apertures are situated in the middle of the sides.

pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.

pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.

pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.

brevicolpus: short colpus brevicolporus: short colpus in a compound aperture. 10 µm 10 µm 10 µm 10 µm 10 µm 10 µm Impatiens columbaria Mendoncia albida Balsaminaceae Acanthaceae brevicolpate, equatorial view brevicolpate, equatorial view Tilia americana Scabiosa ochroleuca Dipsacaceae Tiliaceae brevicolpate, equatorial view brevicolporate, equatorial view, acetolyzed Dalechampia roezliana Symphytum orientale Euphorbiaceae Boraginaceae brevicolporate, equatorial view brevicolporate, equatorial view

synaperturate: pollen grain with anastomosing apertures. 10 µm 10 µm 10 µm 10 µm 100 µm 10 µm Pedicularis verticillata Nymphoides peltata Scrophulariaceae Menyanthaceae syncolpate, dry pollen syncolpate, polar view Cuphea purpurea Onosma visianii Lythraceae Boraginaceae syncolporate, polar view syncolporate Cassia pulcherrima Callistemon coccineus Myrtaceae Caesalpiniaceae syncolporate syncolporate, equatorial view

APERTURE spiraperturate

APERTURE heteroaperturate

heteroaperturate: pollen grain with two different types of apertures; only one type presumed to function as germination site.

Comment:

the term "heterocolpate" is commonly used for pollen grains with alternating colpi and colpori but "heterocolpate" means two different types of colpi; therefore we prefer the more general term "heteroaperturate".

APERTURE pseudocolpus

pseudocolpus: colpus in heteroaperturate pollen grains, presumably non-functional. 10 µm 10 µm 10 µm 10 µm Lythrum salicaria Asperugo procumbens Lythraceae Boraginaceae equatorial view equatorial view Cynoglossum officinale Lumnitzera racemosa Combretaceae Boraginaceae equatorial view Justicia furcata Pachystachys lutea Acanthaceae Acanthaceae equatorial view, two pseudocolpi flanking equatorial view, two pseudocolpi flanking colporus colporus

APERTURE colpus, colpate

colpus: elongated aperture (length: width ratio > 2) situated at the equatorial region or regularly distributed over the pollen grain.

colpus, tricolpate APERTURE

APERTURE porus, porate

porus: more or less circular aperture situated at the equator or regularly spread over the pollen grain.

porus, diporate APERTURE

poroid, poroidate APERTURE

 $\boldsymbol{poroid:}$ circular or elliptic aperture, with indistinct margin. 10 µm 10 µm 10 µm Carex remota Cercidiphyllum japonicum Cyperaceae pseudomonad Cercidiphyllaceae triporoidate (in turgescent state) Sagittaria sagittifolia Caldesia parnassifolia Alismataceae Alismataceae Schoenoplectus lacustris Scirpus sylvaticus Cyperaceae Cyperaceae

APERTURE tenuitas

colporus: compound aperture composed of a colpus (ektoaperture) combined with an endoaperture of variable size and shape.

colporus: compound aperture composed of a colpus (ektoaperture) combined with an endoaperture of variable size and shape.

stephanocolporate stephano-: prefix meaning equatorially situated; see "Alphabetic Glossary" 10 µm 10 µm 10 µm 10 µm 10 µm 1 µm Moltkia petraea Symphytum caucasicum Boraginaceae Boraginaceae oblique polar view oblique polar view Justicia menesii Echinopepon wrightii Acanthaceae Cucurbitaceae equatorial view equatorial view Polygala major Buglossoides arvensis Polygalaceae Boraginaceae oblique polar view equatorial view

APERTURE ulcus, ulcerate

ulcus, ulcerate APERTURE

ulcus: more or less circular aperture situated distally. 10 µm 10 µm 10 µm $10 \ \mu m$ 10 µm 10 µm Heliconia sp. Cyrtosperma beccarianum Heliconiaceae Araceae equatorial view, dry pollen distal polar view Bromus erectus Neottia nidus-avis Poaceae Orchidaceae oblique distal polar view tetrad Amborella trichopoda Drimys granatensis Amborellaceae Winteraceae tetrad

APERTURE sulcus, sulcate

sulcus, sulcate APERTURE

sulcus: elongated aperture situated distally. 10 µm 10 µm 10 µm 10 µm 10 µm Lachenalia aloides Iris reichenbachii Hyacinthaceae Iridaceae oblique distal polar view Catopsis floribunda Vriesea neoglutinosa Bromeliaceae distal polar view Bromeliaceae dry pollen Paradisea liliastrum Chamaedorea microspadix Anthericaceae Arecaceae equatorial view dry pollen

APERTURE sulcus, sulcate

sulcus, disulcate APERTURE

ring-like aperture APERTURE

ring-like aperture: circumferential aperture (situated more or less equatorially or, rarely, meridionally).

ring-like aperture **APERTURE**

ring-like aperture: circumferential aperture (situated more or less equatorially or, rarely, meridionally).

APERTURE margo

margo: exine area surrounding an aperture and differentiated in ornamentation. 10 µm 10 µm 10 µm Discocleidion rufescens Medicago minima Fabaceae tricolporate Euphorbiaceae tricolporate, polar view Fatsia japonica Begonia heracleifolia Araliaceae tricolporate Begoniaceae tricolporate, equatorial view Lysimachia vulgaris Limnanthes douglasii Primulaceae Limnanthaceae tricolporate ring-like aperture, equatorial view

APERTURE annulus, annulate

annulus: ring-like thickening of the pollen wall surrounding a porus or ulcus.

Comment:

annulus, annulate APERTURE

annulus: ring-like thickening of the pollen wall surrounding a porus or ulcus.

Comment:

"anulus" orthographical variant of "annulus".

aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented.

Comment:

the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.

aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented.

Comment:

the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.

aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented.

Comment:

the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.

aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented.

Comment:

the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.

operculum: coherent exine structure covering an aperture. 10 µm 10 µm 10 µm 10 µm Knautia drymeia Tulipa sylvestris Liliaceae distal polar view Dipsacaceae Cucurbita pepo Camellia japonica Cucurbitaceae Theaceae Agrostemma githago Passiflora citrina Caryophyllaceae Passifloraceae oblique equatorial view

pontoperculum: operculum covering a colpus, not completely isolated from the remainder of the sexine.

APERTURE bridge

bridge: exine connection between the margins of a colpus in the equatorial region.

Comment:

the term is often used in a more general context, e.g., for exine connections within tetrads.

papilla, papillate APERTURE

papilla: small protuberance typical for Taxoidoideae-pollen (Cupressaceae). 10 µm 10 µm 10 µm 10 µm Cryptomeria japonica Cryptomeria sp. Cupressaceae Cupressaceae, fossil equatorial view equatorial view Metasequoia glyptostroboides Cryptomeria japonica Cupressaceae Cupressaceae dry pollen Metasequoia glyptostroboides Cunninghamia lanceolata Cupressaceae Cupressaceae oblique distal polar view

ORNAMENTATION bireticulate

bireticulate: special type of reticulate ornamentation, where the brochi of the largemeshed reticulum are filled by a small-meshed reticulum.

brochus: mesh of a reticulum consisting of one lumen and the adjoining half of the

homobrochate: reticulate pollen wall with lumina of uniform size.

Comment:

the term "homobrochate" should be used when the feature is remarkably expressed.

brochus: mesh of a reticulum consisting of one lumen and the adjoining half of the

heterobrochate: reticulate pollen wall with lumina of different sizes.

Comment:

the term "heterobrochate" should be used when the feature is remarkably expressed.

ORNAMENTATION reticulum cristatum

reticulum cristatum: special type of reticulum; muri with prominent sculpture elements.

reticulum cristatum ORNAMENTATION

reticulum cristatum: special type of reticulum; muri with prominent sculpture elements.

croton pattern: special type of reticulum cristatum formed by regularly arranged sculpture elements on muri.

plicae, plicate ORNAMENTATION

ORNAMENTATION striae, striate

striae: elongated exine elements separated by grooves predominantly parallel arranged.

Comment:

striae, striate ORNAMENTATION

striae: elongated exine elements separated by grooves predominantly parallel arranged.

Comment:

ORNAMENTATION striae, striate

striae: elongated exine elements separated by grooves predominantly parallel arranged.

Comment:

striae, striate ORNAMENTATION

striae: elongated exine elements separated by grooves predominantly parallel arranged.

Comment:

ORNAMENTATION striato-reticulate

striato-reticulate ORNAMENTATION

striato-reticulate: ornamentation intermediate between striate and reticulate. 10 µm Ailanthus altissima Gentiana acaulis Simaroubaceae Gentianaceae polar view Pelargonium carnosum Ptelea trifoliata Geraniaceae Rutaceae striato-microreticulate Veronica prostrata Campanula persicifolia Scrophulariaceae Campanulaceae striato-microreticulate microechinate, striato-microreticulate ORNAMENTATION rugulae, rugulate

 $\textbf{rugulae:} \ elongated \ exine \ elements \ longer \ than \ 1 \ \mu m; \ irregularly \ arranged.$ Acer negundo Carpinus betulus Betulaceae rugulate, granulate Sapindaceae rugulate, perforate Nymphoides peltata Leucadendron discolor Menyanthaceae Proteaceae rugulate, perforate Nicotiana tabacum Myrrhis odorata Solanaceae Apiaceae rugulate, perforate

granulum: structure- or sculpture element of different size and shape; smaller than 1 µm. Larix decidua Humulus lupulus Pinaceae Cannabaceae Rhaphidophora africana Clarkia pulchella Onagraceae Araceae Quercus robur Luzula campestris Juncaceae Fagaceae

psilate ORNAMENTATION

psilate: pollen wall with smooth surface. 10 µm 10 µm 1 µm 10 µm Anthyllis vulneraria Hedychium gardnerianum Zingiberaceae inaperturate Fabaceae Lithospermum officinale Vinca minor Boraginaceae Apocynaceae equatorial view oblique polar view Dorycnium germanicum Jovibarba hirta Fabaceae Crassulaceae oblique view dry pollen

ORNAMENTATION psilate

perforate ORNAMENTATION

perforate: pollen wall with holes less than 1 µm in diameter. 10 µm Gonatopus angustus Araceae Colutea arborescens Fabaceae equatorial view Myosotis arvensis Euphorbia palustris Boraginaceae Euphorbiaceae Lysimachia nemorum Cucumis sativa Primulaceae Cucurbitaceae

ORNAMENTATION perforate

foveola, foveolate ORNAMENTATION

 $\textbf{foveola:} \ \text{round} \text{ish lumen more than 1} \ \mu \text{m in diameter; distance between two adjacent}$ lumina larger than their diameter.

ORNAMENTATION fossula, fossulate

lophae: a network-like pattern of ridges (= lophae) formed by the outer exine surrounding window-like spaces or depressions (= lacunae).

lophae: a network-like pattern of ridges (= lophae) formed by the outer exine surrounding window-like spaces or depressions (= lacunae).

echinus, echinate ORNAMENTATION

 $\mbox{\it echinus:}$ pointed ornamentation element longer and/or wider than 1 $\mu\mbox{\it m}.$ Galinsoga ciliata Carduus acanthoides Asteraceae Asteraceae Hibiscus trionum Pinellia ternata Malvaceae Araceae Lavatera thuringiaca Pinellia ternata Araceae Malvaceae

PA+TCH+SP (short)

ORNAMENTATION echinus, echinate

echinus, echinate ORNAMENTATION

 $\mbox{\it echinus:}$ pointed ornamentation element longer and/or wider than 1 $\mu\mbox{\it m}.$ 10 µm Patrinia gibbosa Hieracium hoppeanum Valerianaceae Asteraceae Ambrosia artemisiifolia Aster amellus Asteraceae Asteraceae Portulaca grandiflora Nuphar luteum Portulacaceae Nymphaeaceae

 $\mbox{\it echinus:}$ pointed ornamentation element longer and/or wider than 1 $\mu m.$

microechinate, perforate

microechinate, perforate

ORNAMENTATION verruca, verrucate

baculum, baculate ORNAMENTATION

baculum: rod-like, free standing element, more than 1 µm in height and never pointed.

ORNAMENTATION clava, clavate

clava, clavate ORNAMENTATION

clava: club-shaped element, higher than 1 µm.

 $\textbf{free-standing columellae:} \ columellae \ in \ the \ infratectal \ layer \ not \ covered \ by \ a \ tectum$ in semitectate pollen grains.

gemma: globular exine element more than 1 µm in diameter. Cephalopentandra ecirrhosa Dionaea muscipula Droseraceae Cucurbitaceae gemmate, clavate gemmate, reticulate, polar view Stenandrium dulce Asarum europaeum Acanthaceae Aristolochiaceae large and small gemmae and granules gemmate, microgemmate Fatsia japonica Hakea kippistiana Proteaceae Araliaceae gemmate, reticulate gemmate, microreticulate

ORNAMENTATION areola, areolate

clypeate ORNAMENTATION

clypeate: pollen wall where the exine is subdivided into shields. 100 µm $10 \ \mu m$ 100 µm 10 µm 10 µm Corydalis lutea Ibicella lutea Martyniaceae inaperturate Fumariaceae pantocolpate, syncolpate Phyllanthus sp. Iris bucharica Euphorbiaceae Iridaceae pantoporate inaperturate Banisteria argentea Catalpa bignonioides Malpighiaceae Bignoniaceae

tetrads, inaperturate, dry pollen

pantocolporate

POLLEN WALL pollen wall

infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be **alveolate**, columellate, granular or absent.

infratectum: layer between tectum and foot layer or endexine (if foot layer is missing);

infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, **granular** or absent.

infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent.

POLLEN WALL internal tectum

internal tectum: a \pm continuous layer between foot layer and tectum, separated from them by columellae. 10 µm Argyranthemum sp. Asteraceae U+Pb Agrimonia eupatoria Rosaceae PA+TCH+SP (short) Centaurea cyanus Asteraceae PA+TCH+SP (short)

foot layer POLLEN WALL

foot layer: inner layer of the ektexine; foot layer can be continuous, discontinuous, perforated or **absent**.

POLLEN WALL endexine

endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only.

endexine POLLEN WALL

endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, **spongy** or **lamellar** as well as **continuous**, discontinuous, absent or in aperture only.

POLLEN WALL endexine

endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only

endexine POLLEN WALL

endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, **absent** or **in** aperture only.

intine POLLEN WALL

intine: part of the pollen wall next to the cytoplasm, mainly consisting of polysaccharides. 1 µm

Apium nodiflorum Apiaceae U+Pb ektintine (electron dense) endintine (electron transparent)

Apium nodiflorum Apiaceae PA+TCH+SP

Quercus robur Fagaceae TCH+SP

semitectum: discontinuous tectum, covering less than 50 % of pollen grain surface.

POLLEN WALL atectate

primexine MISCELLANEOUS

primexine: polysaccharidic layer formed during early developmental stage wherein the later exine structures are preformed.

generative cell MISCELLANEOUS

MISCELLANEOUS sperm cell

tapetum MISCELLANEOUS

tapetum: specialized layer of cells lining the locule and participating in the nourishment of pollen grains, pollen wall formation and synthesis of pollen coatings.

pollenkitt: pollen coating consisting of sticky substances, mainly lipids. 10 µm Salvia nemorosa Ambrosia artemisiifolia Lamiaceae Asteraceae unstained acetocarmine Jasminum nudiflorum Nigella arvensis Oleaceae Ranunculaceae TCH+SP PA+TCH+SP Melampyrum nemorosum Betonica officinalis Scrophulariaceae Lamiaceae PA+TCH+SP (short) PA+TCH+SP (short)

primexine matrix: pollen coating consisting of primexine remnants in mature pollen grains.

tryphine: pollen coating consisting mainly of lipids mixed with membrane remnants.

MISCELLANEOUS viscin thread

viscin thread MISCELLANEOUS

viscin thread: acetolysis resistant thread arising from the exine. 100 µm 10 µm 10 µm 1 µm

- Epilobium parviflorum
 - Onagraceae tetrads
- Ledum palustre Ericaceae tetrad
- Epilobium dodonaei Onagraceae
- Circaea lutetiana
 Onagraceae
- Clarkia pulchella Onagraceae equatorial view
- Rhododendron hirsutum
- Ericaceae

MISCELLANEOUS Ubisch body

Ubisch body: sporopolleninous element produced by the tapetum.

Comment:

the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for the first time.

Ubisch body MISCELLANEOUS

Ubisch body: sporopolleninous element produced by the tapetum.

Comment:

the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for the first time.

MISCELLANEOUS Ubisch body

Ubisch body: sporopolleninous element produced by the tapetum.

Comment:

the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for the first time.


```
a- | acalymmate | acetolysis | actuopalynology | aeropalynology
turate | aperture | aperture membrane | apocolpium | apoporium
baculate | baculum | bi- | biporate | bireticulate | bisaccate | bisul
| brevicolporus | brevicolpus | bridge | brochus | calymmate | cap
| clavate | clypeate | colpate | colporate | colporoidate | colporu
compact | compound aperture | copropalynology | corpus | costa
di- | diaperturate | dicolpate | dicolporate | diploxylon-pollentype |
| echinolophate | echinus | ektexine | ektintine | ekto- | ektoapert
| endoplica | equator | equatorial | equatorial diameter | equatoria
| Fischer's rule | foot layer | forensic palynology | fossula | fossulate
| Garside's rule | gemma | gemmate | generative cell | geniculum
harmomegathy | hetero- | heteroaperturate | heterobrochate | hete
| impression mark | in- | inaperturate | infoldings | infra- | infratect
internal tectum | interporium | interstitium | intine | intra- | irregular |
| lamellar | leptoma | LO-analysis | lobate | lolongate | LO-pattern
lynology | melittopalynology | meridian | meridional | meso- | mes
monad | mono- | monoaperturate | monocolpate | monolete | mo
Normapolles | oblate | oblique view | omniaperturate | oncus | op
| outline in equatorial view | outline in polar view | P/E-ratio | palae
panto- | pantoaperturate | pantocolpate | pantoporate | papilla |
| pilate | pilum | planaperturate | plicae | plicate | pluricolumella
pollen | pollen analysis | pollen class | pollen coatings | pollen gro
wall | pollenkitt | pollinarium | pollination | pollinium | poly- | poly-
| polyplicate | pontoperculate | pontoperculum | porate | poroid
prae(pre)-pollen | primexine | primexine matrix | prolate | proximal
drangular | reticulate | reticulum | reticulum cristatum | retipilate |
| scabrate | sculpture | semi- | semitectate | semitectum | sexine
spiraperturate | spongy | spore | sporoderm | sporopollenin | stenop
nocolporate | stephanoporate | stephano- | striae | striate | striate
| syn- | synaperturate | syncolpate | syncolporate | tapetum | tec
| tetrad mark | tetrad planar | tetrad stage | tetrad tetrahedral | tr
mosulcus | tricolpate | tricolporate | trilete | triporate | tryphine | U
nucleus | verruca | verrucate | vesiculate | vestibulum | viscin thr
```

| alveolate | angulaperturate | annulate | annulus | aper-| arcuate | arcus | areola | areolate | atectate | atrium | cate | boat-shaped | brevi- | brevicolpate | brevicolporate pa | cappula | caput | cavea | caveate | circular | clava ıs | colpus | colpus membrane | columella | columellate | | costate | croton pattern | cryopalynology | cup-shaped | diporate | dispersal unit | distal | disulcate | dyad | echinate ure | elliptic | endexine | endintine | endo- | endoaperture al view | eu- | eurypalynous | eutectate | exine | fenestrate e | foveola | foveolate | free-standing columellae | frustrate | granular | granulate | granulum | haploxylon-pollentype | eropolar | hexa- | homo- | homobrochate | iatropalynology um | intectate | inter- | interapertural area | intercolpium | iso- | isodiametric | isopolar | lacuna | laesura | lalongate | lophae | lophate | lumen | margo | massula | melissopasocolpium | micro- | microspore | microspore mother cell | onoporate | monosaccate | monosulcate | muri | nexine | perculate | operculum | orbicule | ornamentation | outline eopalynology | palynogram | palynology | palynomorph | pedium | penta- | perforate | peri- | pharmacopalynology te | polar area | polar axis | polar view | polarity | pole | ain | pollen mother cell | pollen tube | pollen type | pollen ad | polychotomosulcate | polychotomosulcus | polygonal | poroidate | pororate | porus | porus membrane | prae- | | pseudocolpus | pseudomonad | psilate | punctate | quaring-like aperture | rugulae | rugulate | saccate | saccus | shape | size | sperm cell | spheroidal | spine | spinose | palynous | stephanoaperturate | stephanocolpate | stephao-reticulate | structure | sub- | sulcate | sulcus | symmetry tate | tectum | tenuitas | tetra- | tetrad | tetrad decussate i- | triangular | triaperturate | trichotomosulcate | trichotobisch body | ulcerate | ulcus | vegetative cell | vegetative ead | zona-aperturate | zono-aperturate | Zwischenkörper

A strict rationalization of terms on the basis of practical criteria has been attempted. For consistency, phrases are standardized as far as possible; for example, features of ornamentation are stereotypically defined as "pollen wall with", and pollen wall features (or pollen shape and size) as "pollen grain with".

Three categories of terms are used: **important terms** are printed in **bold** and are usually illustrated; terms of **minor importance** are printed in **regular** script, usually without illustrations; terms printed in **italics** are **not recommended** and often provided with an explanatory comment.

Numbers in square brackets referring to important literature (see "Bibliography").

boat-shaped a-

α-	feature is remarkably expressed.	
prefix meaning absent.	apocolpium, see polar area	
acalymmate47	Comment: "polar area" is the more	
feature describing a dispersal unit of two	general term independent of the aper-	
or more monads enclosed by an exine,	ture type	
which is discontinuous at the junctions	apoporium, see polar area	
between the monads, and is absent from	Comment: "polar area" is the more	
the internal walls.	general term independent of the aper-	
Antonym: calymmate	ture type.	
acetolysis 7, 19-20, 25, 32, 51	arcuate100	
widely used technique for preparing	pollen grain with curved wall thickenings	
pollen and spore exines especially for	interconnecting apertures. [18]	
light microscopy. [23]	arcus (lat., pl. arcus)21, 100	
actuopalynology	a curved wall thickening interconnect-	
the study of pollen grains and spores of	ing apertures. [18]	
extant plants.	areola (lat., pl. areolae)23, 47, 197	
aeropalynology12	small, mostly convex exine island.	
the study of palynomorphs found in the	areolate 32-33, 46-47, 197	
atmosphere. [24]	pollen wall with areolae.	
alveolate 23, 200-202	atectate211	
infratectum with compartments of irreg-	pollen grain lacking a tectum. [128]	
ular size and shape. [122]	Antonym: tectate	
angulaperturate104	atrium (lat., pl. atria)	
pollen grain with an angular outline	space between diverging exine layers	
where the apertures are situated at the	within the aperture. [115]	
angles. [21]	baculate 8, 30, 192	
Antonym: planaperturate	pollen wall with bacula. [64]	
annulate143-144	baculum (lat., pl. bacula)192	
pollen grain with an annulus or annuli.	rod-like, free standing element, more	
annulus (lat., pl. annuli) 21, 143-144	than 1 µm in height and never pointed. [83]	
ring-like thickening of the pollen wall sur-	bi-	
rounding a porus or ulcus. [4]	prefix for two.	
Comment: "anulus" is an orthographical	biporate, see diporate	
variant of "annulus".	Comment: "diporate" is the more	
aperturate 41, 49	common term.	
pollen grain with one or more apertures.	bireticulate29, 160-161	
[20]	special type of reticulate ornamentation,	
Antonym: inaperturate.	where the brochi of the large-meshed	
aperture15-17, 19-20, 23, 25, 101-154	reticulum are filled by a small-meshed	
region of the pollen wall which differs sig-	reticulum.	
nificantly morphologically and/or ana-	bisaccate8, 49, 59, 97-99	
tomically from the rest of the pollen wall,	pollen grain with two sacci. [84]	
presumed to function usually as germina-	Comment: nomen conservandum	
tion site and to play a role in harmome-	bisulcate, see disulcate [20]	
gathy. [20]	Comment: "disulcate" is the more	
aperture membrane 19, 145-148	common term.	
exine layer covering an aperture; aper-	boat-shaped 7, 24-25, 44-45, 92-93	
ture membrane can be smooth or orna-	characteristic shape of sulcate pollen	
mented. [21]	grains caused by an infolding as a con-	
Comment: the terms "smooth" and "or-	sequence of harmomegathy; see "Pollen	
namented" should be used when the	Morphology".	

brevi corpus

brevi-	circular, see outline
prefix meaning short.	clava (lat., pl. clavae) 23, 30, 193-194
brevicolpate113	club-shaped element, higher than 1 µm.
pollen grain with brevicolpi. [21]	[20, 64, 83]
brevicolporate113	clavate8, 27, 30, 193-194
pollen grain with brevicolpori.	pollen wall with clavae. [20, 64]
brevicolporus (lat., pl. brevicolpori)113	clypeate9, 42-43, 47, 68, 198
short colpus in a compound aperture.	pollen wall, in which the exine is subdi-
brevicolpus (lat., pl. brevicolpi)113	vided into shields.
short colpus. [21]	colpate9, 19, 43, 68, 118
bridge43, 153	pollen grain with colpi.
exine connection between the margins	colporate9, 68, 128-132
of a colpus in the equatorial region. [30]	pollen grain with colpori.
Comment: the term is often used in a	colporoidate
more general context, e.g., for exine	pollen grain with compound apertures
connections within tetrads.	composed of a colpus (ektoaperture)
brochus (lat., pl. brochi)162-163	with an indistinct endoaperture. [21]
mesh of a reticulum consisting of one	Comment: a rare character, e.g., for de-
lumen and the adjoining half of the muri.	ciduous Quercus pollen.
[21]	colporus (lat., pl. colpori) 17, 30, 45, 48,
calymmate 47	128-132
feature describing a dispersal unit of two	compound aperture composed of c
or more monads enclosed by a continu-	colpus (ektoaperture) combined with
ous ektexine.	an endoaperture of variable size and
Antonym: acalymmate	shape.
cappa (lat., pl. cappae)22-23	colpus (lat., pl. colpi) 17, 41, 43, 48, 113
the thick-walled proximal side of the	118-120
corpus of a saccate pollen grain. [22]	elongated aperture (length/width ratio
cappula, see leptoma [22]	> 2) situated at the equatorial region
Comment: may be confused with	or regularly distributed over the pollen
"cappa" which points to the proximal	grain. [18]
side, while "cappula" refers to distal.	colpus membrane
caput (lat., pl. capita)	aperture membrane of a colpus; see
apex of a clava. [21]	aperture membrane.
cavea (lat., pl. caveae)	columella (pl. columellae) 21, 23, 30
infratectal cavity in the interapertural	200-202
area. [109]	rod-like structure element, supporting o
caveate	tectum. [64]
pollen wall with caveae.	columellate21, 23, 200-202
	infratectum with rod-like elements. [117]
	compact, see endexine
	compound aperture 113, 128-129
	aperture with two or more components
	that are situated in more than one wall
	layer, e.g., colporus. [24]
10 μ	copropalynology the study of palynomorphs in coprolites
caput colporoidate Iris alata Eucommia sp.	or faeces. [24] corpus (lat., pl. corpora) 22-23
Iridaceae Eucommiaceae, fossil	
pollen surface with clavae equatorial view	body of a saccate pollen grain. [22]

costa exine

costa (lat., pl. costae)21	ektintine209	
thickening of the nexine/endexine bor-	the outer layer of a two-layered intine	
dering an endoaperture. [64]	which is adjacent to the exine. [72]	
costate	ekto-	
pollen grain with costae.	prefix meaning outer.	
croton pattern 8, 166-167	ektoaperture128-129	
special type of reticulum cristatum	outer part of a compound aperture.	
formed by regularly arranged sculpture	[121]	
elements on muri.	elliptic, see outline	
cryopalynology12	endexine20-21, 23, 25, 51-52, 205-208	
the study of palynomorphs found in ice.	distinct exine layer between ektexine	
cup-shaped7, 25, 45, 91	and intine; endexine can be compact,	
characteristic shape of pollen grains	spongy or lamellar as well as continuous,	
caused by infoldings as a consequence of	discontinuous, absent or in aperture only.	
harmomegathy; see "Pollen Morphology".	[83, 107]	
di-	endintine209	
prefix meaning two.	inner layer of a two-layered intine which	
diaperturate	is adjacent to the cytoplasm. [72]	
pollen grain with two apertures.	endo-	
dicolpate118	prefix meaning inner.	
pollen grains with two colpi. [107]	endoaperture 21, 48, 51, 55, 128-129	
dicolporate	inner part of a compound aperture.	
pollen grain with two colpori. [107]	[121]	
diploxylon-pollen-type 22-23	endoplica	
bisaccate pollen grain with balloon-like	fold of the inner exine layer. [115]	
Sacci.	equator15-19	
diporate 121-122, 145	imaginary line around a pollen grain	
pollen grains with two pori.	at the distance half-way between the	
dispersal unit15, 47, 59-67	(proximal and distal) poles. [134]	
unit in which pollen is shed (monad,	equatorial15-19	
dyad, tetrad, polyad, massula, pollinium,	preposition indicating a direction on the	
pollinarium). distal 15, 18-19, 23, 40-41, 44	pollen surface; see equator . equatorial diameter 16	
pollen features that face or are directed	diameter of a pollen grain or spore in the	
outwards in the tetrad. [65]	equatorial plane. [18]	
Antonym: proximal	equatorial view 15-19	
disulcate138	the view of a pollen grain or spore per-	
pollen grain with two sulci. [20, 107]	pendicular to the polar axis. [18]	
dyad60, 69	eu-	
dispersal unit of two pollen grains.	prefix meaning true.	
echinate 8, 27, 32, 55, 186-189	eurypalynous	
pollen wall with echini. [133]	plant taxa characterized by a significant	
echinolophate	variation in pollen (or spore) morphol-	
lophate pollen grains with echinate	ogy. [21]	
ridges. [133]	Antonym: stenopalynous	
echinus (lat., pl. echini)23, 28, 32, 186-189	eutectate	
pointed ornamentation element longer	pollen grain with a continuous tectum.	
and/or wider than 1 µm. [133]	exine 12-13, 19-21, 23, 25, 205-208, 210	
ektexine 20-21, 23, 25, 36, 47, 52	outer layer of the pollen wall which is	
the outer layer of the exine. [18]	usually resistant to acetolysis. [36]	

fenestrate heteropolar

fenestrate, see lophate
Comment: as there is no corresponding
substantive to "fenestrate", we prefer the
terms "lophate" and "lophae".
Fischer's law/rule12, 16
see "Pollen Morphology". [21]
foot layer21, 23, 200-204
inner layer of the ektexine; foot layer can
be continuous, discontinuous, perforated
or absent. [29]
forensic palynology12
the study of palynomorphs found in fo-
rensic samples.
fossula (lat., pl. fossulae)23, 183
irregularly shaped groove in the surface
of a pollen wall. [30]
fossulate32, 183
pollen wall with fossulae. [30]
foveola (lat., pl. foveolae)23, 182
roundish lumen more than 1 µm in diam-
eter; distance between two adjacent
lumina larger than their diameter. [21]
foveolate 27, 29, 182
pollen wall with foveolae. [21]
free-standing columellae23, 30
columellae in the infratectal layer not
covered by a tectum in semitectate
•
covered by a tectum in semitectate
covered by a tectum in semitectate pollen grains.
covered by a tectum in semitectate pollen grains. frustrate49
covered by a tectum in semitectate pollen grains. frustrate49 special mental condition of palynolo-
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate
covered by a tectum in semitectate pollen grains. frustrate

10 µm geniculum

heterobrochate _ ferent sizes. [21] Antonym: homobrochate heteropolar distal faces. [21] Quercus sp. Antonym: isopolar Fagaceae, fossil eauatorial view

lobate hexa-

hexa-	interporium, see interapertural area	
prefix meaning six.	Comment: "interapertural area" is the	
homo-	more general term independently from	
prefix meaning equal.	the aperture type	
homobrochate162	interstitium, see infratectum	
reticulate pollen wall with lumina of	Comment: outdated term	
uniform size. [21]	intine	
Comment: the term should be used when	part of the pollen wall next to the cyto-	
the feature is remarkably expressed	plasm, mainly consisting of polysaccha-	
Antonym: heterobrochate	rides. [36]	
iatropalynology12	intra-	
the study of palynomorphs causing	prefix for within.	
human allergies.	irregular, see outline	
impression mark39	iso-	
a linear or Y-shaped mark on the proxi-	prefix meaning identical.	
mal polar area of a pollen grain retained	isodiametric , see shape	
from the tetrad stage.	isopolar15, 94	
in-	pollen grain with identical proximal and	
prefix meaning absent.	distal faces. [20]	
inaperturate17, 103	Antonym: heteropolar.	
pollen grain without distinct aperture(s).	lacuna (lat., pl. lacunae)184-185	
[64, 113]	depressed area surrounded by ridges	
Antonym: aperturate.	(lophae) in lophate pollen grains. [133]	
infoldings 88-93	laesura (lat., pl. laesurae)19	
a consequence of harmomegathy (ap-	a single arm of a tetrad mark; abbrevia-	
erture sunken, interapertural area sunken,	tion is "-lete" (see also: "tetrad mark", "mo-	
irregularly infolded).	nolete", "trilete").	
infra-	lalongate	
prefix meaning beneath.	endoaperture elongated equatorially.	
infratectum21, 23, 200-202	lamellar, see endexine	
layer between tectum and foot layer or	leptoma (gr., pl. leptomata) 17, 20, 22-23	
endexine (if foot layer is missing); infra-	thinning of the pollen wall at the distal	
tectum can be alveolate, columellate,	pole (of a pollen grain) in conifers, pre-	
granular or absent. [1]	sumed to function as germination area;	
intectate, see atectate	special case of tenuitas. [22, 27]	
Comment: "atectate" is the more	LO-analysis12	
common term	light microscopical method for analysing	
inter-	pollen surfaces; see "Palynology".	
prefix for in between.	lobate, see outline	
interapertural area25, 29		
region between apertures.		
intercolpium, see interapertural area		
Comment: "interapertural area" is the		
more general term independently from	C (73)33	
the aperture type.		
internal tectum21, 203	40	
a ± continuous layer between foot layer	<u>10 μm</u>	
and tectum, separated from them by	lalongate	
columellae. [109]	Symplocos sp. Symplocaceae, fossil	
	equatorial view	

lolongate nexine

lolongate endoaperture elongated meridionally. LO-pattern ornamentation identified by LO-analysis; see "Palynology". lophae (lat., sing. lopha) ___ a network-like pattern of ridges (=lophae) formed by the outer exine surrounding window-like spaces or depressions (=lacunae). 184-185 lophate pollen wall with lophae. [133] lumen (lat., pl. lumina) _ general term for the space enclosed by e.g., muri. [83] margo (lat., pl. margines) __ exine area surrounding an aperture and differentiated in ornamentation. [64] massula (lat., pl. massulae) __15, 42, 66, 179 dispersal unit of more than four pollen grains and fewer than the locular content. [83] melissopalynology _ the study of palynomorphs found in honey. [21] melittopalynology, see melissopalynology Comment: the term melittopalynology is the Greek variant of the Latin "melissopalynology". meridian imaginary line on the pollen surface connecting proximal and distal poles. [64] meridional preposition indicating a direction on the pollen surface; see meridian. [64] mesoprefix meaning middle.

lolonaate Rumex sp Polygonaceae, fossil equatorial view

mesocolpium, see interapertural area

Comment: "interapertural area" is the more general term independent of the aperture type.

micro-

prefix for small; features smaller as 1 µm: -baculate, -clavate, -echinate, -gemmate, -pilate, -rugulate, -reticulate, -verrucate; not used in combination with striate, foveolate, perforate.

15-16, 19, 35-36 microspore see "Pollen Development".

microspore mother cell, see pollen mother cell and "Pollen Development".

dispersal unit consisting of a single pollen grain. [107]

mono-

prefix meaning one.

monoaperturate

pollen grain with a single aperture. [80] monocolpate, see sulcate [134]

Comment: superfluous term; as far as known there is no example of a pollen grain with a single colpus (situated equatorially); in all pollen grains with a single elongated aperture the latter is situated distally (sulcus).

monolete, see laesura and tetrad mark monoporate, see ulcerate

Comment: superfluous term; as far as known there is no example of a pollen grain with a single porus (situated equatorially); in all pollen grains with a single porus the latter is situated distally (ulcus).

97

monosaccate_ pollen grain with a single saccus. [84] monosulcate, see sulcate [20]

Comment: superfluous term, because "sulcate" implies a single elongated aperture (sulcus).

muri (lat., sing. murus)___ 48, **155-167** exine elements forming the meshes in a reticulum. [18]

nexine term used for light microscopy, describing the inner, unstructured layer/part of

the exine. [21, 30]

Normapolles polar axis

Norma an all as	la sia al fa adomas af a la alumana amala (01)	
Normapolles 33 group of Cretaceous and Lower Paleo-	logical features of a palynomorph. [21]	
gene pollen, usually triaperturate, with a	palynology11-1 the study of palynomorphs.	
complex pore apparatus.	palynomorph11, 15	
oblate 16, 24, 78-79	general term for all entities found in paly-	
pollen grain with a polar axis shorter than	nological preparations.	
the equatorial diameter. [21]	panto-	
Antonym: prolate	prefix for global.	
oblique view	pantoaperturate 19, 110-112	
view of a pollen grain neither in polar nor	pollen grain with apertures distributed	
in equatorial view.	more or less regularly over the whole	
omniaperturate, see inaperturate	surface.	
Comment: the term refers to the func-	pantocolpate, see pantoaperturate	
tional aspect only, therefore we prefer	pantoporate, see pantoaperturate	
"inaperturate".	papilla (lat., pl. papillae)20, 154	
oncus (lat., pl. onci)	small protuberance typical for Taxodioi-	
lens-shaped body located in the aper-	deae-pollen (Cupressaceae). [134]	
tural region. [62]	pedium, see foot layer	
operculate149-152	Comment: outdated term	
aperture with an operculum. [89]	penta-	
operculum (lat., pl. opercula) 19, 44,	prefix meaning five.	
149-152	perforate 27-29, 180-181	
coherent exine structure covering an ap-	pollen wall with holes less than 1 µm in	
erture. [89]	diameter. [64, 83]	
orbicule, see Ubisch body [25]	peri-, see panto-	
Comment: "orbicule" implies a globular	pharmacopalynology12	
element, a too restrictive term; we rec-	the study of palynomorphs in drugs.	
ommend "Ubisch body" because they	pilate, see clavate [20]	
are polymorphic.	Comment: see pilum	
ornamentation 23, 155-198	pilum (lat., pl. pila), see clava [83]	
general term, applied in palynology to	Comment: the term "pilum" does not	
surface features. [89]	refer to the palynological feature; "pilum"	
outline24, 80-93	means "dart" or "javelin".	
general term used to describe the	planaperturate42, 105	
contour of pollen grains in polar and/or equatorial view (can be circular, elliptic,	pollen grain with an angular outline,	
triangular, quadrangular, polygonal, ir-	where the apertures are situated in the middle of the sides. [21]	
regular, lobate). [70]	Antonym: angulaperturate	
outline in equatorial view	plicae (lat., sing. plica)23, 168	
outline of a pollen grain formed by two	cirumferential, parallel ridge-like folds.	
opposite meridians.	[21]	
outline in polar view	plicate 30, 70 , 168	
outline of a pollen grain formed by the	pollen wall with plicae. [21]	
equator.	pluricolumellate	
P/E-ratio 16	reticulate pollen wall with more than one	
ratio of the length of the polar axis to the	row of columellae beneath a murus.	
equatorial diameter.	polar area	
palaeopalynology	region at and around the pole(s).	
the study of fossil palynomorphs.	polar axis 15-16	
palynogram15	imaginary line between the proximal and	
diagram summarising the main morpho-	the distal pole of a pollen grain. [134]	

polar view pororate

polar view view of a pollen grain in which the polar axis is directed towards the observer. 15, 17-19, 35, 49 orientation of a pollen grain in tetrad stage. pole outermost proximal and/or distal point of a pollen grain. [20] pollen, see pollen grain pollen analysis _ study of assemblages of dispersed palynomorphs. Comment: it does not mean the morphological description of a pollen grain; see palynogram. pollen class __ 8-9, **68-72** artificial grouping of pollen grains that share a single distinctive character. pollen coatings_____23, 25, 36, **217-218** generic term applied to organic compounds usually produced by the tapetum, located on the exine and/or in exine cavities. pollen grain (pl. pollen grains or pollen) the male gametophyte of seed plants; the point of origin and the carrier for the male gametes (spermatozoids or sperm cells). pollen mother cell see "Pollen Development". pollen tube see "Pollen Development". pollen type______ 5, 8, 22-23, 30, 46 a general term categorising pollen grains; often used in connection with a distinct taxon.

pororate Corylus sp. Betulaceae, fossil polar view

equatorial view

pollen wall 20-21, 23, 199-211
layer(s) enclosing the cytoplasm of c
pollen grain.
pollenkitt21, 23, 36, 217
pollen coating consisting of sticky sub-
stances, mainly lipids.
pollinarium (lat., pl. pollinaria)15, 67
dispersal unit of pollinium (or pollinia) and
a single interconnecting sterile append-
age.
pollination12, 25
transfer of pollen from the male to the
female reproductive organs in seed
plants.
pollinium (lat., pl. pollinia)15, 67
dispersal unit of a more or less intercon-
nected loculiform pollen mass. [65]
poly- prefix for many.
polyad 42, 70
dispersal unit of more than four united
pollen grains. [64]
polychotomosulcate
pollen grain with a polychotomosulcus.
polychotomosulcus
sulcus with more than three arms.
polygonal, see outline
polyplicate, see plicate
Comment: a "plicate" pollen grain has
always more than one plica, therefore
the term "polyplicate" is superfluous.
pontoperculate152
aperture with a pontoperculum.
pontoperculum (lat., pl. pontopercula) _152
operculum covering a colpus, not com-
pletely isolated from the remainder of
the sexine.
porate17, 43-44, 70 , 121-125
pollen grain with pori. [21]
poroid 17, 44, 126-127
circular or elliptic aperture, with indistinct
margin. [20]
poroidate
pollen grain with poroid aperture(s).
pororate pollen grain with compound apertures
composed of a circular ekto- (porus)
Composed of a checker one (polos)

and endoaperture. [21]

10 µm

semitectum porus

porus (lat., pl. pori; engl. pore, pl. pores)8,	punctate, see perforate [83] Comment: "punctum" [21] does not describe the three dimensional character of a perforation. quadrangular, see outline reticulate 27, 29-30, 155-167 pollen wall with reticulum. [134] reticulum (lat., pl. reticula) 155-167 network like pattern formed by exine elements (muri), where the lumina are wider than 1 µm. [134]
microspores of certain extinct seed plants characterised by proximal and distal apertures, and presumed proximal germination.	reticulum cristatum 48, 165-167 special type of reticulum; muri with prominent sculpture elements. [84] retipilate [21] 48
primexine35, 212, 218 polysaccharidic layer formed during early developmental stage wherein the later exine structures are preformed.	Comment: to the best of our know- ledge there is no example of a reticulum formed by rows of pila instead of muri. Earlier observations where based on light
primexine matrix218 pollen coating consisting of primexine remnants in mature pollen grains. prolate16, 24, 55, 76-77 pollen grain with a polar axis longer than	microscopy, SEM-investigations reveal that the given examples of Cuscuta and Callitriche do not fit the definition. ring-like aperture 44-45, 49, 140-141 circumferential aperture (situated more
the equatorial diameter. [18] Antonym: oblate proximal	or less equatorially or, rarely, meridionally). rugulae (lat., sing. rugula) 23, 31, 175-176 elongated exine elements longer than
towards the centre of the tetrad. [83] Antonym: distal pseudocolpus48, 117	1 μm; irregularly arranged. rugulate8, 31, 175-176 pollen wall with rugulae.
colpus in heteroaperturate pollen grains, presumably non-functional. [64] pseudomonad61 dispersal unit of a permanent tetrad with	pollen grain with one or more air sacs. saccus (lat., pl. sacci) 22-23, 97-99 exinous expansion forming an air sac.
three rudimentary pollen grains. [107] psilate 29, 32, 178-179 pollen wall with smooth surface. [134]	a term used for light microscopy only, describing minute sculpture elements of undefined shape and of a size close to the resolution limit of the light microscope. sculpture 23
	sculpture23 elements of ornamentation on the pollen surface. semi- prefix for half.
10 µm scabrate Fagus sp.	semitectate210 pollen grain with a semitectum. semitectum210
Fagaceae, fossil polar view	discontinuous tectum, covering less than 50 % of pollen grain surface.

sexine tetrad

sexine21, 152	Comment: the term "striae" is used incon-		
term used for light microscopy, describ-	sistently in the literature. We use the term		
ing the structured/sculptured outer layer	for the elevated elements and not fo		
of the exine.	the grooves.		
shape15-16, 25, 74-100	striate30, 32, 169-13		
see "Pollen Morphology".	pollen wall with striae. [64]		
size74	striato-reticulate 29, 173-174		
see "Pollen Morphology".	ornamentation intermediate between		
sperm cell 11, 36, 215	striate and reticulate. [21]		
male gamete; see "Pollen Develop-	structure 20, 23, 25, 199		
ment".	the construction of a pollen wall.		
spheroidal, see shape	sub-		
spine, see echinus	prefix for less than.		
Comment: the terms "spine", "spinulate",	sulcate44, 71, 135-137		
"spinus", "spinous" and "spinose" are lin-	pollen grain with a sulcus. [20, 134]		
guistically inconsequent.	sulcus (lat., pl. sulci)17, 40-41, 49, 135-139		
spinose, see echinate	elongated aperture situated distally. [20,		
Comment: see spine	134]		
spiraperturate 71, 115	symmetry 15, 35		
pollen grain with one or more spiral	see "Pollen Morphology".		
aperture(s).	syn-		
spongy, see endexine	prefix for together.		
spore	synaperturate 9, 40, 72, 114		
general term for a reproductive unit	pollen grain with anastomosing aper-		
(sexual, asexual) of cryptogams and	tures.		
fungi.	syncolpate40, 114		
sporoderm11, 20	pollen grain with anastomosing colpi.		
general term for the wall of spores and/	syncolporate40, 114		
or pollen.	pollen grain with anastomosing colpori.		
sporopollenin35	tapetum35-36, 216		
the main component of the exine, con- sisting of acetolysis-resistant biopolymers.	specialized layer of cells lining the locule and participating in the nourishment of		
stenopalynous	pollen grains, pollen wall formation and		
plant taxa characterised by only slight	synthesis of pollen coatings.		
variation in pollen (or spore) morphol-	tectate		
ogy. [21]	pollen grain with a tectum. [30]		
Antonym: eurypalynous	Antonym: atectate		
stephanoaperturate 19-20, 49, 106-109	tectum (lat., pl. tecta)		
apertures situated at the equator (term	outer more or less continuous ektexine		
usually used for more than three aper-	layer; tectum condition can be eutec-		
tures).	tate, semitectate or atectate. [30]		
stephanocolpate, see stephanoaperturate	tenuitas (lat., pl. tenuitates)20-21, 127		
stephanocolporate, see stephanoaperturate	general term for a thinning of the pollen		
stephanoporate, see stephanoaperturate	wall. [84]		
stephano-	tetra-		
prefix meaning equatorially situated.	prefix meaning four.		
striae (lat., sing. stria) 23, 169-174	tetrad15-16, 35, 39, 62-65, 72		
elongated exine elements separated	dispersal unit of four pollen grains (spores).		
by grooves predominantly parallel ar-	[83, 128]		
ranged. [64]			

tetrad decussate Zwischenkörper

tetrad decussate	Ubisch body 33, 36, 221-223	
dispersal unit of four pollen grains ar-	sporopolleninous elements produced by	
ranged in two planes with two pairs at	the tapetum. [25]	
right angles.	Comment: the "Ubisch body" is named	
tetrad mark18, 39	after Gerta von Ubisch, who described	
a mark on the proximal face of a spore	these bodies for the first time.	
retained from the postmeiotic stage	ulcerate 72, 133-134	
functioning as germination area (linear =	pollen grain with an ulcus. [21]	
monolete, y-shaped = trilete).	ulcus (lat., pl. ulci) 17, 20, 133-13 4	
tetrad planar16	more or less circular aperture situated	
dispersal unit of four pollen grains ar-	distally. [21]	
ranged in one plane; can be: tetrago-	vegetative cell	
nal, T-shaped, linear.	see "Pollen Development".	
tetrad stage	vegetative nucleus213	
see "Pollen Morphology" and "Pollen De-	see "Pollen Development".	
velopment".	verruca (lat., pl. verrucae)23, 191	
tetrad tetrahedral16	wart-like element more than 1 µm,	
dispersal unit of four pollen grains in	broader than high. [64]	
which the centers of the grains define a	verrucate 27-28, 31-33, 191	
tetrahedron.	pollen wall with verrucae. [64]	
tri-	vesiculate, see saccate	
prefix meaning three.	Comment: "saccate" is the more general	
triangular, see outline	term.	
triaperturate	vestibulum (lat., pl. vestibula), see atrium	
pollen grain with three apertures.	Comment: "atrium" is the more common	
trichotomosulcate40, 139	term.	
pollen grain with a trichotomosulcus.	viscin thread219-220	
[21]	acetolysis resistant thread arising from	
trichotomosulcus40, 139	the exine. [65]	
three-radiate sulcus. [21]	zona-aperturate, see ring-like aperture	
tricolpate	Comment: source of constant confusion.	
pollen grain with three colpi. [64]	zono-aperturate, see stephanoaperturate	
tricolporate	Comment: source of constant confusion.	
pollen grain with three colpori. [64]	Zwischenkörper, see oncus	
trilete 19	Comment: "oncus" is the more common	
see "laesura" and "tetrad mark".	term.	
triporate		
pollen grain with three pori. [30]		
tryphine 23, 36, 218		
pollen coating consisting mainly of lipids		
mixed with membrane remnants. [24]		

ANNEX

APLF ERDTMAN

BIBLIOGRAPHY REFERENCES AND SUGGESTIONS FOR FURTHER READING

- APLF (1975) Morphologie pollinique: problèmes de terminologie, taxonsguides et pollens périporés. Bull Soc Bot France 122: 1-272
- BANKS H (2003) Structure of pollen apertures in the Detarieae sensu stricto (Leguminosae: Caesalpinioideae), with particular reference to underlying structures (Zwischenkörper). Ann Bot 92: 425-435
- BANKS H, STAFFORD P, CRANE PR (2007)
 Aperture variation in the pollen of Nelumbo (Nelumbonaceae). Grana 46: 157–163
- 4. **BEUG HJ** (1961) Leitfaden der Pollenbestimmung. Lief. 1. Gustav Fischer, Stuttgart
- 5. **BEUG HJ** (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München
- BLACKMORE S (1992) Scanning electron microscopy in palynology. In: Nilsson S, Praglowski J (eds) Erdtman's Handbook of Palynology. 2nd ed. Munksgaard, Copenhagen, pp 403-431
- 7. **BLACKMORE S** (2000) The palynological compass: the contribution of palynology to systematics. In: Nordenstam B, El-Ghazaly G, Kassas M (eds) Plant Systematics for the 21st Century. Portland Press, London, pp 161-177
- 8. BLACKMORE S, BARNES SH (1995)
 Garside's rule and the microspore tetrads of Grevillea rosmarinifolia A.
 Cunningham and Dryandra polycephala Bentham (Proteaceae). Rev Palaeobot Palynol 85: 111-121
- BLACKMORE S, CANNON MJ (1983/84)
 Palynology and systematics of Morinaceae. Rev Palaeobot Palynol 40: 207-226
- BLACKMORE S, CRANE PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In:

- Owens SJ, Rudall PJ (eds) Reproductive Biology. Royal Botanic Gardens, Kew
- BLACKMORE S, WORTLEY A, SKVARLA JJ, ROWLEY JR (2007) Pollen wall development in flowering plants. New Phytol 174: 483-498
- 12. BOR J (1979) Pollen morphology and the bi-reticulate exine of the Phyllanthus species (Euphorbiaceae) from Mauritius and Réunion. Rev Palaeobot Palynol 27: 149-172
- BUCHNER R, WEBER M (2000 onwards)
 PalDat a palynological database:
 Descriptions, illustrations, identification, and information retrieval. http://www.paldat.org/
- DICKINSON HG, ELLEMAN CJ, DOUGHTY J (2000) Pollen coatings - chimaeric genetics and new functions. Sex Pl Reprod 12: 302-309
- DOYLE J (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227-251
- DUCKER S, KNOX B (1985) Pollen and pollination: a historical review. Taxon 34: 401-419
- EHRENBERG CG (1838) Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abh Kgl Akademie Wiss Berlin: 59-147
- ERDTMAN G (1943) An introduction to pollen analysis. Chronica Botanica, Waltham, Massachusetts
- ERDTMAN G (1945) Pollen morphology and plant taxonomy. Vol. 3 Morina L. Svensk Bot Tidskr 39: 187-191
- 20. **ERDTMAN G** (1947) Suggestions for the classification of fossil and recent pollen grains and spores. Svensk Bot Tidskr 41: 104-114
- 21. **ERDTMAN G** (1952) Pollen Morphology and Plant Taxonomy. Angiosperms. Almqvist & Wiksell, Stockholm

ERDTMAN HALBRITTER

 ERDTMAN G (1957) Pollen and Spore Morphology. Plant Taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Almqvist & Wiksell, Stockholm

- ERDTMAN G (1960) The acetolysis method. Svensk Bot Tidskr 54: 561-564
- 24. ERDTMAN G (1969) Handbook of Palynology - An Introduction to the Study of Polllen Grains and Spores. Munksgaard, Copenhagen
- ERDTMAN G, BERGLUND B, PRAGLOWSKI
 L, NILSSON S (1961) An Introduction to
 a Scandinavian pollen flora. Almqvist &
 Wiksell, Stockholm
- ERDTMAN G, DUNBAR A (1966) Notes on electron micrographs illustrating the pollen morphology in Armeria maritima and Armeria sibirica. Grana Palynol 6: 338-354
- 27. **ERDTMAN G, STRAKA H** (1961) Cormophyte spore classification. Geol Fören Förenhandl 83: 65-78
- ERDTMAN G, VISHNU-MITTRE (1956)
 On terminology in pollen and spore morphology. The Palaeobotanist 5: 109-111 (reprinted in Grana Palynologica 1: 6-9, 1958)
- FÆGRI K (1956) Recent trends in palynology. Bot Rev 22: 639-664
- FÆGRI K, IVERSEN J (1950) Textbook of modern pollen analysis. Munksgaard, Copenhagen
- FÆGRI K, IVERSEN J (1989) Textbook of Pollen analysis. 4th ed. John Wiley & Sons, Chichester
- 32. **FERGUSON DF, ZETTER R, PAUDAYAL KN** (2007) The need for the SEM in paleopalynology. C R Palevol 6: 423-430
- 33. **FEUER SM, KUIJT J** (1985) Fine structure of mistletoe pollen VI. Small flowered neotropical Loranthaceae. Ann Missouri Bot Gard 72: 187-212
- FISCHER H (1890) Beiträge zur vergleichenden Morphologie der Pollenkörner. Thesis, Berlin
- FLYNN JJ, ROWLEY JR (1967) Methods for direct observation and single-stage surface replication of pollen exines. Rev Palaeobot Palynol 3: 227-236

- 36. **FRITZSCHE J** (1837) Über den Pollen. Mém Sav Étrang Acad Sci Pétersbourg 3: 649-672
- FUJIKIT, ZHOU Z, YASUDA Y (2005) Asian environmental history 1. The Pollen Flora of Yunnan, China. Vol. I. Lustre Press/ Roli Books
- FURNESS CA (2007) Why does some pollen lack apertures? A review of inaperturate pollen in eudicots. Bot J Linn Soc 155: 29-48
- FURNESS CA, RUDALL PJ (1999) Microsporogenesis in Monocotyledons. Ann Bot 84: 475-499
- FURNESS CA, RUDALL PJ (2003) Apertures with lids: distribution and significance of operculate pollen in Monocotyledons. Int J Plant Sci 164: 835-854
- 41. FURNESS CA, RUDALL PJ, SAMPSON FB (2002) Evolution of microsporogenesis in angiosperms. Int J Plant Sci 163: 235-260
- 42. **GARSIDE S** (1946) The developmental morphology of the pollen of Proteaceae. J S African Botany 11: 27-34
- GERLACH D (1969) Botanische Mikrotechnik. Georg Thieme Verlag, Stuttgart
- 44. **GÖPPERT HR** (1837) De floribus in statu fossili, commentatio botanica. Grass, Bart & Co, Vratislaviae (Thesis of University)
- 45. **GRAYUM MH** (1992) Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Monogr Syst Bot Missouri Bot Gard 43
- GUPTA A, UDAR R (1986) Palyno-Taxonomy of Selected Indian Liverworts. J. Cramer, Berlin-Stuttgart
- 47. HALBRITTER H (1998) Preparing living pollen material for scanning electron microscopy using 2,2-dimethoxypropane (DMP) and critical-point drying. Biotech Histochem 73: 137-143
- HALBRITTER H, HESSE M (1995) The convergent evolution of exine shields in Angiosperm pollen. Grana 34: 108-119
- HALBRITTER H, HESSE M (2004) Principal modes of infoldings in tricolp(or)ate Angiosperm pollen. Grana 43: 1-14

HALBRITTER KRESS

 HALBRITTER H, HESSE M (2005) Specific ornamentation of orbicular walls and pollen grains, as exemplified by Acanthaceae. Grana 44: 308-313

- HALBRITTER H, WEBER M, ZETTER R, FROSCH-RADIVO A, BUCHNER R, HESSE M (2008) PalDat - Illustrated Handbook on Pollen Terminology. http://www. paldat.org/, Wien
- 52. HARLEY MM (1999) Tetrad variation: its influence on pollen form and systematics in the Palmae. In: Kurmann MH, Hemsley AR (eds) The Evolution of Plant Architecture. Royal Botanic Gardens, Kew, pp 289-304
- HARLEY MM (2004) Triaperturate pollen in the monocotyledons: configuration and conjecture. Pl Syst Evol 247: 75-122
- 54. HARLEY MM, FERGUSON IK (1990) The role of the SEM in pollen morphology and plant systematics. In: Claugher D (ed) Scanning Electron Microscopy in Taxonomy and Functional Morphology. Syst Ass Special Volume 41: 45-68. Clarendon Press, Oxford
- 55. HARRIS WF (1955) A manual of the spores of New Zealand Pteridophyta. A discussion of spore morphology and dispersal with reference to the identification of the spores in surface samples and as microfossils. New Zealand Dept Sci Industr Res Bull 116: 1-186. R.E. Owen, Government Printer, Wellington.
- 56. **HAY WW, SANDBERG PA** (1967) The Scanning Electron Microscope, a major break-through for micropaleon-tology. Micropaleontology 13: 407-418
- 57. HESLOP-HARRISON J, HESLOP-HARRISON Y (1980) Cytochemistry and function of the Zwischenkörper in grass pollens. Pollen Spores 22: 5-10
- HESSE M, HALBRITTER H, WEBER M, BUCHNER R, FROSCH-RADIVO A, ULRICH
 (1999) Frustrate. In: Buchner R, Weber M (2000 onwards) PalDat - a palynological database: Descriptions, illustrations, identification, and information retrieval. http://www.paldat.org/
- 59. **HESSE M, ZETTER R** (2005) Ultrastructure and diversity of recent and fossil-zona-

- aperturate pollen grains. Pl Syst Evol 255: 145-176
- 60. HUYSMANS S, EL-GHAZALY G, SMETS E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64: 240-272
- 61. **HYDE HA** (1944) Pollen analysis and the museums. Mus J 44: 145-149
- 62. **HYDE HA** (1955) Oncus, a new term in pollen morphology. New Phytologist 54: 255
- 63. **HYDE HA, WILLIAMS DW** (1944) The right word. Pollen Analysis Circular 8: 6
- 64. **IVERSEN J, TROELS-SMITH J** (1950) Pollenmorphologische Definitionen und Typen. Danm Geol Unders, ser 4, 3: 1-54
- 65. **JACKSON DD** (1928) A glossary of botanic terms. 4th ed. Duckworth, London
- 66. **KESSELER R, HARLEY MM** (2004) Pollen. The hidden sexuality of flowers. Papadakis Publisher, London
- 67. **KLAUS W** (1987) Einführung in die Paläobotanik. Fossile Pflanzenwelt und Rohstoffbildung, Band I. Grundlagen Kohlebildung Arbeitsmethoden/Palynologie. Franz Deuticke, Wien
- 68. **KNOX RB** (1984) The pollen grain. In: Johri BM (ed) Embryology of Angiosperms. Springer, Berlin, pp 197-271
- 69. KNOX RB, McCONCHIE CA (1986) Structure and function of compound pollen. In: Blackmore S, Ferguson IK (eds) Pollen and Spores, Form and Function. Linnean Society of London, London, pp 265-282
- KOSANKE RM (1950) Pennsylvanian spores of Illinois and their use in correlation. Illinois State Geol Survey Bull 74: 1-128
- 71. **KREMP GOW** (1968) Morphologic Encyclopedia of Palynology. 2nd ed. Arizona Press, Tucson
- 72. **KRESS WJ, STONE DE** (1982) Nature of the sporoderm in monocotyledons, with special reference to the pollen grains of Canna and Heliconia. Grana 21: 129-148

KUPRIYANOVA REITSMA

73. **KUPRIYANOVA LA** (1956) K voprosu o stroenii obolochki pyl'tsevykh zeren [The structure of the membrane of the pollen grains]. Bot Zhurn 41: 1212-1216

- 74. LUGARDON B (1981) Les globules des Filicinées, homologues des corps d'Ubisch des Spermatophytes. Pollen Spores 23: 93-124
- MOAR NT (1993) Pollen Grains of New Zealand Dicotyledonous Plants. Lincoln, Canterbury, New Zealand
- 76. MOHL H (1834) Über den Bau und die Formen der Pollenkörner. Beiträge zur Anatomie und Physiologie der Gewächse. Erstes Heft. Chr. Fischer und Comp., Bern
- 77. MOON H-K, VINCKIER S, SMETS E, HUYS-MANS S (2008) Comparative pollen morphology and ultrastructure of Mentheae subtribe Nepetinae (Lamiaceae). Rev Palaeobot Palynol: 149: 174-186
- MOORE PD, WEBB JA, COLLINSON ME (1991) Pollen analysis. 2nd ed. Blackwell, Oxford
- 79. NADOT S, FORCHIONI A, PENET L, SANNIER J, RESSAYRE A (2006) Links between early pollen development and aperture pattern in monocots. Protoplasma 228: 55-64
- NOREM WL (1958) Keys for the classification of spores and pollen. J Paleontol 32: 666-676
- 81. **PACINI E** (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75: 1448-1459
- PACINI E, HESSE M (2005) Pollenkitt its composition, forms and functions. Flora 200: 399-415
- 83. **POTONIÉ R** (1934) I. Zur Morphologie der fossilen Pollen und Sporen. Arb Inst Paläobotanik Petrographie Brennsteine 4: 5-24
- 84. **POTONIÉ R, KREMP GOW** (1954) Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geol Jahrb 69: 111-194
- 85. **POTONIÉ R, KREMP GOW** (1955) Die Sporae dispersae des Ruhrkarbons,

- ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte. Palaeontographica Abt B 98: 1-136
- 86. POZHIDAEV AE (2000a) Pollen variety and aperture patterning. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and Spores: Morphology and Biology. Royal Botanic Gardens, Kew, pp 205-225
- 87. POZHIDAEV AE (2000b) Hypothetical way of pollen aperture patterning. 2: Formation of polycolpate patterns and pseudoaperture geometry. Rev Palaeobot Palynol 109: 235-254
- PRAGLOWSKI J, PUNT W (1973) An elucidation of the micro-reticulate structure of the exine. Grana 13: 45-50
- 89. PUNT W, BLACKMORE S, NILSSON S, LE THOMAS A (1994) Glossary of Pollen and Spore Terminology. LPP Contributions Series 1, LPP Foundation, Laboratory of Palaeobotany and Palynology, University of Utrecht, Utrecht
- PUNT W, HOEN PP, BLACKMORE S, NILSSON S, Le THOMAS A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143: 1-81
- PURKINJE J (1830) De cellulis antherarum fibrosis nec non de granorum pollinarium formis commentatio phytotomica. Accedunt Tabulae Lithographicae XVIII. Vratislaviae
- 92. **REILLE M** (1992) Pollen et Spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille
- 93. REILLE M (1995) Pollen et Spores d'Europe et d'Afrique du Nord, Supplement 1. Laboratoire de Botanique Historique et Palynologie, Marseille
- 94. REILLE M (1998) Pollen et Spores d'Europe et d'Afrique du Nord, Supplement 2. Laboratoire de Botanique Historique et Palynologie, Marseille
- 95. **REITSMA TJ** (1969) Size modification of recent pollen grains under different treatments. Rev Palaeobot Palynol 9: 175-202

REITSMA TRYON

 REITSMA TJ (1970) Suggestions towards unification of descriptive terminology of Angiosperm pollen grains. Rev Palaeobot Palynol 10: 39-60

- RESSAYRE A, DREYER L, TRIKI-TEURTROY

 FORCHIONI A, NADOT S (2005) Postmeiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. Am J Bot 92: 576-583
- 98. RODRÍGUEZ-GARCÍA MI, FERNÁNDEZ MC (1988) A review of the terminology applied to apertural thickenings of the pollen grain: Zwischenkörper or oncus? Rev Palaeobot Palynol 54: 159-163
- ROWLEY JR, DAHL AO (1977) Pollen development in Artemisia vulgaris with special reference to Glycocalyx material. Pollen Spores 19: 169-284
- 100. ROWLEY JR, FLYNN JJ (1966) Singlestage carbon replicas of microspores. Stain Technol 41: 287-290
- ROWLEY JR, SKVARLA JJ (2000) The elasticity of the exine. Grana 37: 1-7
- 102. ROWLEY JR, SKVARLA JJ (2006) Pollen development in *Epilobium* (Onagraceae): Late microspore stages (a review). Rev Palaeobot Palynol 140: 91-112
- 103. SAMPSON FB (2000) Pollen diversity in some modern Magnoliids. Int J Plant Sci, Suppl 6: \$193-\$210
- 104. **SAMPSON FB** (2007) Variation and similarities in pollen features in some basal angiosperms, with some taxonomic implications. Pl Syst Evol 263: 59-75
- 105. SCHOLS P, FURNESS CA, MERCKX V, WILKIN P, SMETS E (2005) Comparative pollen development in Dioscoreales. Int J Plant Sci 166: 909-924
- 106. SCHWENDEMANN AB, WANG G, MERTZ ML, MCWILLIAMS RT, THATCHER SL, OSBORN JM (2007) Aerodynamics of saccate pollen and its implications for wind pollination. Am J Bot 94: 1371-1381
- 107. SELLING O (1947) Studies in Hawaiian pollen statistics. Bernice P Bishop Mus, Spec Publ 38: 1-430

- 108. SKVARLA JJ, DEVORE ML, CHISSOE WF (2004) Lophate sculpturing of Vernonieae (Compositae) pollen. Rev Palaeobot Palynol 133: 51-68
- 109. SKVARLA JJ, LARSON DA (1965) An electron microscopic study of pollen in the Compositae with special reference to the Ambrosieae. Grana Palynol 6: 210-269
- 110. SPURR AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31-43
- 111. TAKAHASHI M (1989) Pattern determination of the exine in Caesalpinia japonica (Leguminosae: Caesalpinioideae). Am J Bot 76: 1615-1626
- 112. **THANIKAIMONI G** (1980 «1978»)

 Complexities of aperture, columella and tectum. Proc IVth Intern Palynol Conf I., Lucknow, p. 228-239
- 113. THANIKAIMONI G, CARATINI C, NILSSON S, GRAFSTRÖM E (1984) Omniaperturate Euphorbiaceae pollen with striate spines. Bull Jard Bot Belg 54: 105-125
- 114. **THIÉRY J-P** (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microscopie 6: 987-1018
- 115. **THOMSON PW, PFLUG H** (1953) Pollen und Sporen der mittel-europäischen Tertiärs. Palaeontographica, Abt B 94: 1-138
- 116. **THORNHILL JW, MATTA RK, WOOD WH** (1965) Examining three-dimensional microstructures with the scanning electron microscope. Grana Palynol 6: 3-6
- 117. TRAVERSE A (1955) Pollen analysis of the Brandon Lignite of Vermont. US Dept Interior Washington, Washington
- 118. **TRAVERSE A** (1988) Paleopalynology. Unwin Hyman, Boston
- 119. **TRAVERSE A** (2007) Paleopalynology. 2nd ed., Springer, Dordrecht
- 120. TRYON AF, LUGARDON B (1991) Spores of the Pteridophyta: Surface, wall structure and diversity based on electron microscopy studies. Springer, New York

Van CAMPO ZETTER

 Van CAMPO M (1958) Palynologie africaine. 2 Bull IFAN (A) 20: 753-759

- 122. Van CAMPO M (1971) Palynologie et evolution - Précisions nouvelles sur les structures comparées des pollen de Gymnospermes et d'Angiospermes. C Rend Acad Sci Paris, sér D 272: 2071-2074
- 123. Van CAMPO M, GUINET P (1961) Les pollens composés. L'exemple des Mimosacées. Pollen Spores 3: 201-218
- 124. Van CAMPO M, LUGARDON B (1973) Structure grenue infratectal de l'ectexine des pollens de quelques Gymnospermes et Angiospermes. Pollen Spores 15: 171-189
- 125. Van der HAM R, GROB G, HETTER-SCHEID W, STAR W, Van HEUVEN BJ (2005) Notes on the genus Amorphophallus (Araceae) 13. Evolution of pollen ornamentation and ultrastructure in Amorphophallus and Pseudodracontium. Grana 44: 252-265
- 126. VINCKIER S, SMETS E (2002) Morphological and ultrastructural diversity of orbicules in relation to evolutionary tendencies in Apocynaceae s. I. Ann Bot 90: 647-662
- 127. VINCKIER S, CADOT P, SMETS E (2005)
 The manifold characters of orbicules:
 structural diversity, systematic significance, and vectors for allergens.
 Grana 44: 300-307
- 128. WALKER JW, DOYLE JA (1975) The bases of angiosperm phylogeny: palynology. Ann Missouri Bot Garden 62: 664-723

- 129. WALKER JW, WALKER AG (1981)
 Comparative pollen morphology of the Madagascan genera of Myristicaceae (Maloutchia, Brochneura, Haematodendron). Grana 20: 1-17
- 130. **WEBER M** (1992) Nature and distribution of the exine-held material in mature pollen grains of Apium nodiflorum L. (Apiaceae). Grana 31:17-24
- 131. **WEBER M, FROSCH A** (1995) The development of the transmitting tract in the pistil of *Hacquetia epipactis* (Apiaceae). Int J Plant Sci 156: 615-621
- 132. **WEBER M, HALBRITTER H, HESSE M** (1999) The basic pollen wall types in Araceae. Int J Plant Sci 160: 415-423
- 133. WODEHOUSE RP (1928) The phylogenetic value of pollen grain characters. Ann Bot 42: 891-934
- 134. WODEHOUSE RP (1935) Pollen grains. Their structure, identification and significance in science and medicine. McGraw-Hill, New York
- 135. WORTLEY AH, FUNK VA, ROBINSON H, SKVARLA JJ, BLACKMORE S (2007) A search for pollen morphological synapomorphies to classify rogue genera in Compositae (Asteraceae). Rev Palaeobot Palynol 146: 169-181
- 136. ZETTER R (1989) Methodik und Bedeutung einer routinemäßig kombinierten lichtmikroskopischen und rasterelektronenmikroskopischen Untersuchung fossiler Mikrofloren. Cour Forsch-Inst Senckenberg 109: 41-50

INDEX TO PLANT TAXA

A	
Abeliophyllum distichum18	52
	39
Abies cephalonica 39, 71, 9	
Abies nordmanniana9	
Abies sp	nn
Acacia binerva66, 22) 1
Acacia myrtifolia66, 7	
Acanthaceae30, 48, 71, 75, 76, 7	
84, 105, 108, 113, 115, 116, 117, 12	
129, 132, 155, 156, 160, 161, 162, 16	
179, 183, 195, 196, 197, 221, 222, 22	
Acantholimon glumaceum16	
Acca sellowiana7	
Acer negundo17	<u>۔</u> 72
Acer pseudoplatanus 86, 16	٥
Acer sp11	رر ۱۵
Acinos alpinus 204, 213, 21	
Aconitum lycoctonum 12	12
Adansonia gregorii7	
Adenia fruticosa15	59
Adhatoda schimperiana 12))
Aechmea allenii121, 15	- <i>'</i> 59
Aechmea azurea 125, 15	55
Aechmea caesia12	15
Aechmea caudata7	
Aechmea dealbata 8	
Aechmea drakeana 12	22
Aerides multiflora	57
Aesculus carnea14	18
Aesculus flava9	74
Aesculus hippocastanum 146, 17	70
Agapetes variegata12	27
Agavaceae 135, 14	15
Aglaodorum griffithii10)3
Agrimonia eupatoria20)3
Agrostemma githago15	50
Ailanthus altissima 174, 20)5
Ajuga genevensis15	58
Ajuga reptans21	
Alangium sp21	
Alchemilla	16
Alisma plantago-aquatica10)1
Alismataceae75, 101, 124, 12	26
Alkanna orientalis7	73
Alliaceae 18, 81, 135, 170, 17	79

Allium	32
Allium flavum	170
	81
Allium paradoxum	18
Allium ursinum	135, 179
Alnus glutinosa	
Alnus incana	
Alnus sp	100
Alnus viridis	
Amaranthaceae	184
Amaryllidaceae92, 101,	135, 138
Amborella trichopoda	
Amborellaceae	
Ambrosia artemisiifolia 188,	
Amydrium medium	
Anaphyllopsis americana	
Anchusa officinalis	
Anemone hortensis	
Annona muricata	
Annonaceae	
Antennaria dioica	
Anteriorchis coriophora	
Anthericaceae	
Anthericum ramosum	
Anthurium radicans	
Anthurium trisulcatum	
Anthyllis vulneraria	
Apiaceae_31, 35, 68, 76, 84, 85, 87	
131, 175, 176, 209, 212, 215,	
Apium nodiflorum 102,	
Apocynaceae 70,	
Aponogeton masoalaensis	
Aponogetonaceae	
Aquifoliaceae	
Aquifoliaceae, fossil	
	32, 36
47, 64, 69, 74, 80, 88, 93, 103,	
141, 168, 177, 180, 182, 186,	
200, 202, 206, 211, 213, 215,	
Araliaceae130, 142,	
Aratitiyopea lopezii	193
Arbutus unedo	
Arecaceae	
Arenaria ciliata	
Arenaria pungens	
Arenaria serpyllifolia	
	203

ARISTOLOCHIA CARDAMINE

Aristolochia arborea27	Boraginaceae 45, 48, 73, 76, 77
Aristolochia manshuriensis183	82, 94, 95, 106, 108, 113, 114, 116, 128
Aristolochia salvadorensis191	129, 130, 132, 146, 178, 180, 181, 205
Aristolochia tricaudata191	Borago officinalis106
Aristolochia27	
Aristolochiaceae27, 183, 191, 196	
Aroideae32	Brassica nigra218
Arophyton buchetii206	
Artemisia pontica86, 89	
Asarum europaeum196	Bromeliaceae24
Asclepiadaceae67	79, 81, 92, 95, 96, 121, 122, 125, 136
Asperugo procumbens117	
Asperula tinctoria94, 107	
Asphodelaceae92	
Asphodeline lutea92, 135	
Aster amellus188	
Asteraceae _ 17, 55, 59, 69, 74, 76, 84, 86, 87,	
89, 101, 105, 128, 129, 131, 145, 184,	·
185, 186, 188, 189, 199, 201, 203, 217	
Asteraceae, fossil185	
Astragalus onobrychis76	
Atriplex sagittata221	
Austrobuxus nitidus21	
_	
В	Cabomba palaeformis 135, 171
	Cabombaceae 135, 171
Babiana velutina 149, 190	
Balsaminaceae 79, 81, 82, 107,	
113, 156, 195	
Banisteria argentea110, 198	
Bassia scoparia 124, 201	
Begonia heracleifolia 142, 171	
Begoniaceae 142, 171	
Bellis perennis17, 87	•
Beloperone guttata105, 156, 197, 221	
Berberidaceae71, 115, 120, 202	
Berberis thunbergii71	
Berberis vulgaris115	
Betonica officinalis 214, 217	
Betula humilis143	Campanula persicifolia174
Betula pendula	
176, 202, 208, 221	
Betulaceae, fossil	
Bignoniaceae64, 198	Canadacaeae 182
Billbergia macrocalyx146	
Billbergia seidelii 92, 95, 163 Bombacaceae 42, 75, 105, 165	Caprifoliaceae 119, 189, 195
42, 75, 105, 165	
	Cardamine pratensis158

CARDIOSPERMUM CYCLANTHERA

Cardiospermum	_39	Clematis heracleifolia	87
Cardiospermum corindum	_39	Clinopodium vulgare1	01, 118, 204
Carduus acanthoides1	186	Cobaea scandens	124
Carex alba89, 1	101	Colchicaceae	71, 122
Carex atrata	_61	Colchicum autumnale	122
Carex distans	_61	Colutea arborescens	
Carex remota1	126	Combretaceae	
Carex sp.	_61	Commelinaceae	
Carpinus betulus1	176	Commelinantia	4
Carpinus sp	109	Consolida regalis	213
Carya sp78, 1	123	Convallariaceae	138, 182
Caryophyllaceae 28, 70, 74,	75,	Convolvulaceae 12	24, 146, 185
82, 83, 89, 112, 121, 123, 1	25,	1	87, 189, 218
146, 149, 150, 190, 2	221	Convolvulus tricolor	146, 218
Caryophyllaceae, fossil	121	Coriaria sinica	88
Cassia pulcherrima	114	Coriariaceae	88
Catalpa bignonioides1	198	Cornaceae, fossil	210
Catalpa bungei	64	Corydalis cava	111, 19
Catopsis floribunda	136	Corydalis Iutea	198
Centaurea cyanus 105, 2	203	Corylopsis glabrescens	
Centaurea scabiosa1	129	Corylopsis platypetala	
Cephalanthera longifolia 133, 1	156	Corylus avellana	
Cephalopentandra ecirrhosa	196	Corylus colurna	202
Cephalostemon riedelianus	140	Corylus sp	234
Cephalotaxaceae	_20	Costus barbatus	
Cephalotaxus sp	_20	Costus speciosus	179
Cercidiphyllaceae	126	Crassulaceae85,	87, 175, 178
Cercidiphyllum japonicum1	126	Crataegus laevigata	17
Cereus sp	208	Crepis biennis	185
Cerinthe minor94, 1	128	Crinum augustum	138
Chamaecyparis lawsoniana2		Crocus speciosus	
Chamaecyparis	_33	Crossandra flava	76
Chamaedorea microspadix1	136	Croton triqueter	
Chenopodiaceae112, 121, 124, 1	48,	Cruciata laevipes	
201, 208, 2	221	Cryptogramma crispa	19
Chenopodium album2		Cryptomeria japonica	
Chenopodium glaucum1		Cryptomeria sp	
Chenopodium hybridum 112, 1	148	Cucumis sativa	180
Chimonanthus praecox		Cucurbita pepo	
Chloranthaceae		Cucurbitaceae 32, 73, 74, 10	06, 112, 132
Chlorospatha ceronii		143, 150, 155, 158, 160, 172, 1	80, 195, 196
Chlorospatha dodsonii64, 1		Cunninghamia lanceolata	
Chlorospatha kolbii47,		Cunonia capensis	85, 153
Cichorium intybus1		Cunoniaceae	85, 153
Circaea lutetiana85, 143, 175, 2	220	Cuphea purpurea	78, 114
Cirsium oleraceum74, 1		Cupressaceae33, 1	33, 154, 222
Cistaceae24, 75, 165, 1		Cupressaceae, fossil	
Cistus creticus24,	. 75	Cuscuta Iupuliformis	
Clarkia pulchella147, 177, 2		Cuscutaceae	
Claytonia perfoliata 115, 1		Cyclanthera pedata	106

CYDONIA FUMARIACEAE

Cydonia sinensis	170	Ephedraceae	70, 168
Cynodon dactylon	197	Ephedraceae, fossil	168
Cynoglossum officinale	116, 117	Epilobium angustifolium	144, 219
Cyperaceae 61, 89, 101,		Epilobium dodonaei	
Cyperus longus	61, 222	Epilobium fleischeri	219
Cyrtosperma beccarianum	134, 182	Epilobium hirsutum	
Cytisus nigricans		Epilobium montanum	
		Epilobium parviflorum	
		Epipactis helleborine	
\cup		Eranthemum wattii	
Dacrycarpos dacrydioides	99	Erdtmanipollis sp	166
Dactylis glomerata		Erica arborea	90, 96, 131
Dalechampia roezliana		Erica herbacea	62, 128, 183
Daphne cneorum		Ericaceae 16, 62, 63, 72	
Daphne laureola		96, 127, 128, 129, 13	1, 183, 219, 220
Datura suaveolens		Erodium cicutarium	173
Delphinium elatum		Erophila verna	
Dianella intermedia		Erysimum odoratum	119
Dianella tasmanica40,		Erythrochiton brasiliensis	
Dianella		Eucharis grandiflora	
Dianthus carthusianorum		Eucommia sp	
Dieffenbachia humilis		Eucommiaceae, fossil	
Dionaea muscipula63,	149, 196	Eucommiidites	
Dioon edule	93	Eupatorium cannabinum	
Dipsacaceae 78, 85, 113,	150, 187	Euphorbia helioscopia	
Dipsacus fullonum		Euphorbia palustris	180
Dipteracanthus devosianus		Euphorbiaceae	42, 43, 105, 113,
Discocleidion rufescens		142, 148, 165, 166, 16	
Doryanthes palmeri	135, 145	Exacum affine	
Dorycnium germanicum	178		
Dracaenaceae		Г	
Dracocephalum austriacum		Г	
Dracunculus vulgaris		Fabaceae7	76, 77, 104, 128,
Drimys granatensis	62, 134	142, 157, 158, 159, 16	
Drosera sp.		Fabaceae, fossil	
Droseraceae47, 63,		Fagaceae	177, 209, 222
		Fagaceae, fossil 16, 13	0, 175, 230, 235
		Fagus sp1	6, 130, 175, 235
		Fallopia convolvulus	
Ecballium elaterium	158	Fatsia japonica	130, 142, 196
Echinodorus quadricostatus		Fraxinus excelsior	
Echinopepon wrightii		Fraxinus ornus	
Echinops ritro		Fritillaria meleagris	
Echium vulgare		Fumana procumbens	
Eichhornia crassipes		Fumaria officinalis	
Elaeagnaceae91		Fumaria vaillantii	
Elaeagnus angustifolia91		Fumariaceae 111, 11	
Ephedra distachya		·	
Ephedra sp			

GAGEA JUNCUS

	Heliconiaceae79, 91, 96, 134
G	Hemigraphis primulaefolia168
Gagea lutea93	HemigraphisS
Gagea villosa71, 147	Hepatica transsylvanica11
Galanthus nivalis92, 135	Herniaria glabra82
Galeopsis tetrahit81, 147	Hibiscus trionum186
Galinsoga ciliata186	Hieracium hoppeanum 128, 184, 188
Galium glaucum107	Himantoglossum adriaticum70
Galium lucidum 80, 107, 190	Hippocastanaceae94, 146, 148, 170
Galium mollugo 106, 215	Hippocrepis emerus18
Galium rotundifolium24	Hohenbergia stellata182
Garcia nutans166	Humulus Iupulus177
Gazania sp69, 184	Hyacinthaceae 136, 163
Gentiana acaulis174	Hydrocharitaceae187
Gentiana lutea169	Hydrophyllaceae11d
Gentianaceae 59, 169, 173, 174, 210	Hypoestes phyllostachya84
Gentianella austriaca173	
Geraniaceae 102, 166, 173, 174, 194	
Geranium canariense166	
Geranium pratense194	Ibicella lutea 68, 157, 198
Geranium robertianum 102, 194	llex aquifolium193
Geranium sibiricum194	llex sp193
Geum reptans172	Impatiens columbaria113
Ginkgo biloba80, 92	Impatiens glandulifera 79, 82, 150
Ginkgo23	Impatiens parviflora81, 107, 195
Ginkgoaceae80, 92	Ipomoea batatas 124, 187
Gladiolus illyricus 201, 222	Ipomoea caerulea185
Glaucium flavum207	Iridaceae 59, 68, 115, 136, 140, 149
Globba schomburgkii211	190, 193, 198, 201, 213, 222, 228
Godetia purpurea79, 219	Iris alata 193, 228
Gonatopus angustus 141, 180, 200	Iris bucharica68, 198
Grossulariaceae112	Iris histrioides140
Gunnera chilensis86	Iris pumila59, 213
Gunneraceae86	Iris reichenbachii13e
	Isopogon dawsonii104
Ц	
11	
Hacquetia epipactis216	J
Hakea kippistiana78, 196	Jasminum nudiflorum 215, 217
Haloragaceae 109, 144	Jatropha podagrica167
Hamamelidaceae 68, 120, 162	Jovibarba hirta85, 178
Hamamelidaceae, fossil125	Juglandaceae 32, 121, 202
Harpochilus neesianus160	Juglandaceae, fossil 78, 109, 123
Hedera helix163	Juglans regia 121, 202
Hedychium gardnerianum69, 178	Juglans sp32
Hedyosmum goudotianum139	Juglans32
Helianthemum nummularium172	Juncaceae 63, 89, 91, 133, 177
Heliconia sp79, 91, 96, 134	Juncus effusus63

JUNIPERUS MERCURIALIS

Juniperus communis	133	3 Linum flavum30,	. 193
Juniperus	33	3 Linum	_ 30
Jurinea mollis	7	6 Liquidambar sp	125
Justicia furcata	117	7 Liriodendron tulipifera	137
Justicia menesii	_ 108, 132		
Justicia xylosteoides	129	.9 Lithospermum officinale82,	178
		Lomatogonium carinthiacum	_210
K		Lonicera fragrantissima 119,	189
		Loranthaceae 40, 42	2, 43
Kalmia latifolia	219	9 Luffa cylindrica74,	155
Kickxia spuria	_ 145, 164		
Knautia drymeia78			
Kraussia floribunda	128	8 Luzula campestris 63, 91,	177
		Luzula luzuloides	_133
		Luzula sylvestris	_ 89
L		Lychnis flos-cuculi	_ 70
Lachenalia aloides89	9, 136, 160	3 Lycium barbarum 131,	170
Lamiaceae 24,	29, 77, 78	, , ,	
81, 101, 102, 106, 107, 110	, 118, 119	7, Lysichiton americanus	_ 93
147, 148, 149, 158, 159, 160	, 161, 164		
182, 191, 201, 204, 206, 213	3, 214, 217	7 Lysimachia vulgaris	142
Lamiastrum montanum	24, 148	8 Lythraceae 48, 78, 114, 116,	. 117
Lamium maculatum	119	9 Lythrum hyssopifolia	_116
Lamium purpureum	164	4 Lythrum salicaria	_117
Larix decidua	177	7	
Larix sp	39	9	
Larix	39	¹ / ₉ M	
Lathyrus niger	179		
Lathyrus tuberosus	7	7 Mahonia aquifolium	202
Lathyrus vernus	_ 128, 157		
Lauraceae	103	Malus sylvestris	172
Lavandula angustifolia	182	Malva moschata	125
Lavatera thuringiaca	74, 186		
Ledum palustre	_ 183, 220	0 Malvaceae74, 125, 186,	189
Legousia speculum-veneris	_ 109, 123		198
Lentibulariaceae87	7, 106, 160	.0 Maxillaria densa	179
Leontodon saxatilis	184	4 Medicago minima	142
Leucadendron brunoides	104	4 Melaleuca armillaris	_ 40
Leucadendron discolor			
Leuchtenbergia principis	59	Melampyrum nemorosum 214,	217
Ligustrum sp	80		
Liliaceae			
89, 92, 93, 135, 147,150, 158	3, 163, 16		
Liliacidites	33		
Lilium candidum			
Lilium martagon			
Limnanthaceae95			
Limnanthes douglasii95			
Limodorum abortivum			
Linaceae			

METASEQUOIA PELARGONIUM

Metasequoia glyptostroboides15	54 Oenothera biennis 104, 219
Microrrhinum minus95, 201, 204, 20	
Microstrobus niphophilus	99 Oleaceae, fossil80
Mimosa pudica62, 19	
Mimosaceae42, 62, 66, 70, 191, 197, 22	21 143, 144, 147, 153, 175, 177, 219, 220
Mimulus guttatus1	15 Onosma visianii95, 114
Moehringia muscosa8	
Moltkia petraea 132, 14	
Moneses uniflora 62, 72, 18	33 Opuntia basilaris 83, 110, 184
Monotropa hypopitys	Opuntia paraguayensis157
Monstera deliciosa1	
Moraceae12	22 Opuntia sp111
Morina longifolia20, 14	43 Orchidaceae36, 64, 66,
Morinaceae20, 14	43 67, 70, 72, 133, 134, 156, 159, 163, 179
Myosotis arvensis18	
Myosotis palustris 45, 73, 9	Orobanchaceae35, 88, 206, 211
Myosotis ramosissima1	Orobanche hederae35, 88, 206, 211
Myosotis	44 Orthilia secunda86
Myriophyllum spicatum 109, 14	44 Oryctanthus alveolatus43
Myrrhis odorata 131, 17	76 Oryctanthus sp42
Myrtaceae40, 72, 84, 1	14 Oxalidaceae75
	Oxalis acetosella75
N	Oxyanthus subpunctatus63
Nandina demostica	
Nandina domestica12	
Napoleonaea imperialis18	
Napoleonaeaceae18 Nelumbo nucifera1	
Nelumbonaceae1	
Neoalsomitra sarcophylla17	
Neottia nidus-avis13	
Nicotiana tabacum 108, 17	
Nigella arvensis 217, 22	
Nigritella rhellicani 8	
Nuphar luteum 92, 96, 137, 147, 18	
Nyctaginaceae 91, 19	
Nymphaea alba44, 19	
Nymphaea sp	
Nymphaeaceae44, 4	
92, 96, 137, 147, 188, 19	
Nymphoides peltata114, 17	
Nyssa sp	
Nyssaceae, fossil	
	Pedicularis rostrato-capitata140
()	Pedicularis verticillata114
Oculopollis	Pedilanthus smallii
Odontites luteus 120, 205, 22	
	•
Odontites vulgaris 127, 20	Pelargonium tetragonum173

PEPEROMIA PTERIDACEAE

Peperomia rubella	197	Plumbago auriculata	73, 193
Persicaria bistorta		Poa angustifolia	
Persicaria mitis		Poa annua	
Persicaria sp		Poa pratensis	
Petasites albus		Poaceae32, 59, 72, 80, 88,	
Petrorhagia prolifera		134, 143, 144, 149, 151, 197,	
Peucedanum cervaria		Podocarpaceae	
Pfaffia tuberosa		Podocarpus sp	99
Phacelia tanacetifolia		Podostemaceae	
Phaleria capitata		Poikilacanthus macranthus	
Pharbitis purpurea		Polemoniaceae74,	
Phleum pratense		Polemonium caeruleum	
Phlox paniculata	 74, 161	Polygala chamaebuxus	
Phoebe sheareri		Polygala major	132, 155
Phormiaceae	40, 139, 164	Polygalaceae	108, 132, 155
Phyllanthus sp		Polygonaceae 29, 105,	
Phyllanthus x elongatus	42, 43	Polygonaceae, fossil	
Physostegia virginiana		Polygonum aviculare	
Phytolaccaceae		Polypleurum munnarense	
Picea abies		Polypleurum stylosum	
Picea pungens		Polypodiaceae, fossil	
Picrodendraceae, fossil	21	Polypodium sp	
Pinaceae 23, 39		Polystachya sp	
	, 97, 98, 177	Poncirus trifoliata	128, 157
Pinaceae, fossil22		Pontederiaceae	
Pinellia ternata		Populus alba	
Pinguicula alpina		Portulaca grandiflora	
Pinguicula ehlersiae		Portulacaceae83, 110, 115,	
Pinus heldreichii		Posidonia sp.	
Pinus mugo	71. 98	Posidoniaceae	
Pinus nigra		Potentilla arenaria	
Pinus sp	22, 97, 200	Potentilla erecta	
Pinus strobus		Potentilla inclinata	
Pinus		Prenanthes purpurea	
Piper nigrum		Primula denticulata	
Piperaceae		Primula farinosa	
Pistia stratiotes		Primula veris	
Pistia		Primula	
Pisum sativum		Primulaceae31, 40, 72, 84,	
Pittosporaceae		Proteaceae16, 78, 90,	
Plantaginaceae 48, 125, 1		Prunella grandiflora	
Plantago lanceolata		Prunus avium	
Plantago major		Prunus laurocerasus	
Plantago maritima		Pseudodracontium siamense _	
Plantago media		Pseudolysimachion barrelieri	
Platanthera bifolia		Pseudolysimachion longifolium _	
Platycodon grandiflorum		Pseudotsuga	
Plectranthus ornatus		Ptelea trifoliata	
Plumbaginaceae		Pteridaceae	

PTERIDACEAE, FOSSIL SIDERITIS

Pteridaceae, fossil	19	Salix alba	146
Pterocarya sp		Salix daphnoides	
Pulmonaria mollissima		Salix fragilis	
Pulmonaria officinalis 18	31, 205	Salvia argentea	
Pulsatilla pratensis	190	Salvia austriaca	29
Pyrolaceae		Salvia coccinea	
		Salvia glutinosa	
\bigcirc		Salvia nemorosa	
Q		Salvia sclarea	
Quercus robur 177, 20	9, 222	Sambucaceae	
Quercus sp3	3, 230	Sambucus nigra	
Quesnelia augusto-coburgii	96	Sanchezia nobilis	
Quesnelia lateralis 12		Sandersonia aurantiaca	
		Sanguisorba cretica	
D		Sanguisorba minor	
R		Sanguisorba officinalis	
Ranunculaceae87, 89, 110, 11	1, 120,	Sanicula europaea	
124, 148, 190, 206, 207, 213, 21	7, 223	Sanicula	
Ranunculus ficaria	223	Sansevieria dooneri	96, 133
Ranunculus lanuginosus		Santalaceae	
Ranunculus trichophyllos		Sapindaceae 39	
Rapateaceae		Sapindaceae, fossil	
Razisea citrina		Saponaria officinalis	
Rehderodendron sp		Sapotaceae, fossil	
Reseda luteola		Sauromatum venosum	
Resedaceae		Saxifraga rotundifolia	
Rhaphidophora africana 17		Saxifraga tridactylites	
Rhododendron hirsutum63, 129, 18		Saxifraga vandellii	
Rhododendron		Saxifragaceae	
Ribes aureum		Scabiosa caucasica	
Rosa pendulina		Scabiosa ochroleuca	
Rosaceae35, 85, 86, 108		Schoenoplectus lacustris	
149, 151, 152, 169, 170, 171, 17		Scirpus sylvaticus	
Rubiaceae 24, c		Scorzonera cana	
94, 102, 106, 107, 118, 128, 19	0, 215	Scrophularia nodosa	
Rubus caesius		Scrophularia vernalis	
Ruellia brevifolia		Scrophulariaceae	
Ruellia graecizans			18, 120, 127, 140,
Ruellia macrantha			69, 174, 199, 201,
Rumex acetosa 13		204, 205, 207, 2	14, 217, 218, 223
Rumex sp		Secale cereale	143
Ruspolia seticalyx 22		Securigera varia	
Ruta graveolens		Sedum acre	175
Rutaceae 128, 157, 172, 17	4, 192	Sedum rupestre	
		Sesleria albicans	
C		Sesleria sadleriana	
J		Sesleria uliginosa	
Sagittaria sagittifolia7	75, 126	Sherardia arvensis	
Salicaceae 88, 103, 146, 15	8, 210	Sideritis montana	29

SIDERITIS ULMACEAE

Sideritis syriaca	110	Thalictrum minus	124
Silene alba		Theaceae	150
Silene nutans		Thelethylax minutiflora	
Silene succulenta	28	Thesium alpinum	41
Simaroubaceae	174, 205	Thladiantha hookeri	
Sinapis alba		Thlaspi montanum	
Smilacina stellata		Thunbergia alata	
Smyrnium perfoliatum	212, 215	Thymelaea passerina	
Solanaceae_ 29, 108, 131, 1	69, 170, 173, 176	Thymelaeaceae	
Solandra longiflora	29, 173	Tilia americana	113
Sollya heterophylla	157	Tilia euchlora	
Sparganiaceae		Tilia platyphyllos	
Sparganium erectum		Tiliaceae	91, 113, 223
Sparganium		Tinantia	
Spathiphyllum blandum		Tofieldia calyculata	
Sphagnaceae, fossil		Tofieldiaceae	
Sphagnum sp.		Torilis arvensis	
Spiraea sp.		Tragopogon dubius	
Stachys palustris		Tragopogon orientalis	
Stellaria graminea		Trapa sp	
Stellaria holostea		Trapaceae	
Stellaria media		Trapaceae, fossil	
Stenandriopsis guineensis		Trichosanthes anguina	
Stenandrium dulce		Trichostigma peruvianum	
Stephanotis floribunda		Tricolporopollenites wacke	
Stratiotes aloides		Trifolium montanum	
Streptocalyx poeppigii		Trifolium rubens	
Strobilanthes roseus		Trigonia nivea	
Styracaceae, fossil		Trigoniaceae	
Symphytum caucasicum		Trisetum flavescens	
Symphytum officinale		Triticum aestivum	144, 151, 215
Symphytum orientale		Trollius europaeus	
Symplocaceae, fossil		Tropaeolaceae	
Symplocarpus foetidus		Tropaeolum majus	
Symplocos sp.		Trudopollis	
Syringa vulgaris		Tsuga canadensis	
,		Tsuga sp	97, 200
Т		Tulipa sylvestris	
1		Tulipa kaufmanniana	
Talinum paniculatum	83, 110, 118	Typha latifolia	
Tanacetum corymbosum		Typha minima	
Taraxacum sp		Typha	9
Taxaceae	33	Typhaceae	16, 65, 72, 153
Tetramerium nervosum		· · · · · · · · · · · · · · · · · · ·	
Teucrium chamaedrys		1.1	
Teucrium pyrenaicum		U	
Thadiantha hookeri		Ulearum sagittatum	187
Thalictrum flavum		Ulmaceae	

ULMACEAE, FOSSIL ZOMICARPA

Ulmaceae, fossil		Viscum album	
Ulmus laevis		Viscum laxum	
Ulmus minor	109, 148	Vriesea neoglutinosa	
Ulmus	31	Vriesea pabstii	24
Urtica dioica	88, 121		
Urticaceae	88, 121	\	
Uvularia grandiflora	138	V V	
		Welwitschia mirabilis	70
\/		Welwitschiaceae	70
V		Werauhia tarmaensis	160
Valerianaceae	188	Whitfieldia lateralis	122, 179
Veratrum album	79, 155	Winteraceae	62, 134
Veratrum nigrum	152		
Verbena officinalis		V	
Verbenaceae	90, 130	\wedge	
Veronica cinerea	147, 169	Xyridaceae	193
Veronica prostrata	174		
Veronica serpyllifolia	120	7	
Viburnaceae	94	L	
Viburnum opulus	195	Zamiaceae	93
Viburnum tinus	94	Zamioculcas zamiifolia	141, 200
Vinca minor	178	Zantedeschia aethiopica	_213, 215, 216
Vincetoxicum hirundinaria	67	Zea mays	144, 149
Viola alba	68, 87	Zelkova sp	175
Viola arvensis		Zeylanidium olivaceum	
Viola tricolor		Zeylanidium subulatum	
Violaceae68, 82, 83, 8		Zingiberaceae 69, 111	, 178, 179, 211
Viscaceae	192	Zomicarpa riedeliana	187

PICTURE CREDITS

Except the below mentioned micrographs, all pictures in "Pollen Terminology. An illustrated Handbook" are courtesy of PalDat (http://www.paldat.org/) and the Society for the Promotion of Palynological Research in Austria (http://www.autpal.at/), respectively.

The picture of Apium nodiflorum in chapter "Illustrated Terminology – aperture, aperturate" is from Weber M (1992), Fig. 1B.

The two pictures of Cistus creticus in chapter "General Chapter - Pollen

Morphology – Harmomegathy" are from HALBRITTER and HESSE (2004), Figs. 2C, D.

The two pictures of *Iris histrioides* in chapter "Illustrated Terminology – ring-like aperture" are from HESSE and ZETTER (2005), Figs. 6B, D.

The picture of *Ruspolia seticalyx* in chapter "Illustrated Terminology – Ubisch body" is from HALBRITTER and HESSE (2005), Fig. 1A.

Drawings by Heidemarie HALBRITTER and Ralf BUCHNER.

Prefixes, Abbreviations and Icons

Prefixes

a- _____ prefix meaning absent bi-____prefix for two brevi- _____prefix meaning short di-____prefix meaning two eu- _____ prefix meaning true hetero- _____ prefix meaning different hexa-_____ prefix meaning six homo-____prefix meaning equal in-_____ prefix meaning absent infra-____prefix meaning beneath inter-_____ prefix for in between intra-____prefix for within iso- _____prefix meaning identical meso- _____ prefix meaning middle micro- _____ prefix for small; features smaller as 1 µm: -baculate, -clavate, -echinate, -gemmate, -pilate, -rugulate, -reticulate, -verrucate; not used in combination with striate, foveolate, perforate mono- _____ prefix meaning one panto-_____ prefix for global penta-_____prefix meaning five peri-, see pantopoly-____prefix for many prae-_____prefix for before semi-____prefix for half stephano-____prefix meaning equatorially situated sub-_____ prefix for less than syn-_____prefix for together tetra- _____ prefix meaning four tri-_____prefix meaning three

Abbreviations

DMP		2,2-dimethoxypropane
KMnO ₄	po	tassium permanganate
LM		Light Microscope
PA		periodic acid
PA+TCH+S	SP	Thiéry test
PA+TCH+S	SP (short)	modified Thiéry test
Pb		lead citrate
SEM	Scanni	ng Electron Microscope
SP		silver proteinate
TCH		thiocarbohydrazide
TEM	_ Transmissi	on Electron Microscope
U		uranyl acetate

Icons

term used in LM observations

term NOT used in LM observations

term used in SEM observations

term NOT used in SEM observations

term used in TEM observations

term NOT used in TEM observations

term used in morphological context

term NOT used in morphological context

term used in anatomical context

term NOT used in anatomical context

term implies functional relevance

term implies NO functional relevance

Illustrated Terms

alveolate	200-202
angulaperturate	104
annulate	
aperture	
aperture membrane	
arcuate	
arcus	
areola	
areolate	
atectate	
baculate	
baculum	
bireticulate	
bisaccate	
boat-shaped	
brevicolpate	
brevicolporate	
brevicolporus	
brevicolpus	
bridge	
brochus	
clava	
clavate	
clypeate	
colpate	
colporate	
colporus	
colpus 1	
columella	
columellate	
compound aperture1	
croton pattern	
cup-shaped	
dicolpate	
diporate1	
dispersal unit	
disulcate	
dyad	
echinate	
echinus	
ektintine	
ektoaperture	
endexine	
endintineendoaperture	
foot layer	
fossulate	
fossulate	
foveola	
foveolate	
gemma	
gemmate	196

generative cell	213-214
granular	200-202
granulate	177
granulum	
narmomegathy	91-93
neteroaperturate	
neterobrochate	163
neteropolar	95-96
nomobrochate	162
naperturate	103
nfoldings	88-93
nfratectum	
nternal tectum	203
sopolar	94
acuna	
ophae	184-185
ophate	
umen	182
margo	142
massula	
monad	
monosaccate	
muri	
oblate	
perculate	
perculum	
ornamentation	
outline	80-93
pantoaperturate	
papilla	154
perforate	180-181
olanaperturate	105
olicae	168
olicate	
oollen class	68-72
oollen coatings	217-218
oollen wall	199-211
oollenkitt	217
oollinarium	67
oollinium	67
oolyad	70
oontoperculate	152
oontoperculum	152
oorate	70, 121-125
ooroid	
oorus	
orimexine	
orimexine matrix	218
orolate	
oseudocolpus	
oseudomonad	
osilate	

reticulum	
reticulum cristatum	165-167
ring-like aperture	140-141
rugulae	
rugulate	
saccate	
saccus	97-99
semitectate	210
semitectum	210
sexine	152
shape	74-100
size	74
sperm cell	215
spiraperturate	71, 115
stephanoaperturate	106-109
striae	169-174
striate	169-172
striato-reticulate	173-174
structure	199
sulcate	_ 71, 135-137
sulcus	135-139
synaperturate	72, 114
syncolpate	114
syncolporate	114
tapetum	216
tenuitas	127
tetrad	62-65, 72
trichotomosulcate	139
trichotomosulcus	139
tryphine	218
Ubisch body	221-223
ulcerate	_ 72, 133-134
ulcus	133-134
vegetative nucleus	213
verruca	191
verrucate	
viscin thread	219-220

OUCK REFE