Chapitre 4: Statistiques descriptives

1 Proportions et pourcentages

Définition: Population

- Une **population** est un ensemble d'éléments, appelés les **individus**.
- Une **sous-population** est une partie de la population.
- Le nombre total d'individus dans la population est appelé l'effectif total.

Remarque

Les individus d'une population ne sont pas toujours des personnes.

Par exemple, on peut parler de la *population* d'une trousse, dont les *individus* sont les stylos, et une *sous-population* est formée par les stylos rouges.

Définition: Proportion

On considère une population dont l'effectif total est ${\bf N}$, et une sous-population dont l'effectif est n.

- La **proportion** d'individus dans la sous-population est $p = \frac{n}{N}$.
- On peut exprimer cette proportion en pourcentage, en la multipliant par 100 : $\left(\frac{n}{N} \times 100\right)$ % des individus sont dans la sous-population.

Exemple

Dans la population ci-dessus, la proportion de croix est $\frac{4}{10}$ = 0,4, ou 40%.

Remarque

Prendre x% d'une valeur revient à la multiplier par $\frac{x}{100}$.

Propriété: Proportion de proportion, pourcentage de pourcentage

On considère une population A, et

- Une sous-population B de A, dont la proportion dans A est $p_{\rm B}$.
- Une sous-population C de B, dont la proportion dans B est $p_{\rm C}$.

Alors la proportion de C dans A est $p = p_{\rm R} \times p_{\rm C}$

Exemple

On considère la population des véhicules possédés par une entreprise.

- 75% de ces véhicules sont électriques.
- Parmi les véhicules électriques, 30% sont des deux-roues.

La proportion p de deux-roues électriques dans la population totale est donc

$$p = 0.75 \times 0.3 = 0.225$$

Soit 22,5%.

Variations et évolutions

Définition: Variations

Lorsqu'on passe d'une valeur V_1 à une valeur V_2 , on dit qu'il s'agit d'une **évolution**. On a alors :

- V₂ V₁ est la variation absolue.
- $\frac{V_2 V_1}{V_1}$ est la variation relative, aussi appelée le taux d'évolution.

Exemple

Une personne ayant 1 000 000 d'euros gagne 1 000 000 €.

- la variation absolue est de 1 000 000 €.
- la variation relative est de $\frac{1\ 000\ 000}{100\ 000\ 000} = 0.01$, ou 1%.

Remarque

- Si la variation absolue (ou le taux d'évolution) est positive, c'est que la valeur à augmenté. Sinon, c'est qu'elle a diminué.
- La variation absolue est dans la même unité que V_1 et V_2 .
- · Le taux d'évolution n'a pas d'unité.

Propriété

Si t est le taux d'évolution entre deux valeurs A et B, on a

$$B = A \times (1 + t)$$

Démonstration. On sait que
$$t$$
 est le taux d'évolution, donc $t = \frac{B-A}{A}$. Donc $A \times t = B-A$, et donc $B = A \times t + A = A \times (1+t)$.

Remarque

Si t est supérieur à 0, c'est une augmentation. Sinon, c'est une diminution.

Propriété: Évolutions successives et coefficient global

Lorsqu'on applique plusieurs évolutions successives, on obtient le **coefficient global** en multipliant les coefficients.

Exemple

Si on applique une augmentation de 20%, suivie d'une diminution de 20%, l'évolution a pour coefficient global

 $\left(1 + \frac{20}{100}\right) \times \left(1 - \frac{20}{100}\right) = 1.2 \times 0.8 = 0.96$

On a donc globalement une diminution.

Propriété: Évolution réciproque

Si une évolution nous fait passer d'une valeur A à une valeur B en multipliant par c, on peut revenir à A en divisant par c.

Cette nouvelle évolution est appelée l'évolution réciproque, et son coefficient est le coefficient réciproque $c_r = \frac{1}{c}$.

Exemple

Si on passe de 150€ à 240€, on doit multiplier par 1,6.

Donc pour passer de 240€ à 150€, on doit multiplier par $\frac{1}{1.6}$ = 0,625.

3 Séries statistiques

Définition : Moyenne, moyenne pondérée

Si on dispose d'une série de valeurs x_{1}, \cdots, x_{n} ,

on peut calculer leur moyenne :

$$M = \frac{x_1 + \dots + x_n}{n}$$

- La moyenne peut être pondérée, c'est-à-dire que chaque valeur est multipliée par un coefficient c_i :

$$\mathbf{M} = \frac{c_1 \times x_1 + \dots + c_n \times x_n}{c_1 + \dots + c_n}$$

Exemple

La moyenne de la série de notes 8;11;12;17 est

$$M = \frac{8 + 11 + 12 + 17}{4} = \frac{48}{4} = 12$$

Si la quatrième note (le 17) était coefficient 2, et que toutes les autres notes sont coefficient 1,

la moyenne devient

$$M = \frac{8 + 11 + 12 + 2 \times 17}{1 + 1 + 1 + 2} = \frac{65}{5} = 13$$

Propriété: Linéarité de la moyenne

- Si on ajoute le même nombre a à chaque valeur, la moyenne augmente de a.
- Si on multiplie chaque valeur par un nombre b, la moyenne est multipliée par b.

Définition : Variance, écart-type

Si on dispose d'une série de valeurs x_1, \cdots, x_n , et qu'on dispose de la moyenne \mathbf{M} , on définit

• La variance de cette série

$$V = \frac{(x_1 - M)^2 + \dots + (x_n - M)^2}{n}$$

• L'écart-type de cette série

$$\sigma = \sqrt{V}$$

Exemple

Prenons la série de notes 1;4;9;15;18;13.

La moyenne de cette série est 10. Donc on a

•
$$V = \frac{(1-10)^2 + (4-10)^2 + (9-10)^2 + (15-10)^2 + (18-10)^2 + (13-10)^2}{6}$$

$$= \frac{(-9)^2 + (-6)^2 + (-1)^2 + 5^2 + 8^2 + 3^2}{6}$$

$$= \frac{81 + 36 + 1 + 25 + 64 + 9}{6}$$

$$= \frac{216}{6} = 36$$
• $\sigma = \sqrt{V} = \sqrt{36} = 6$