華中科技大學

本科生毕业设计(论文)开题报告

题目:基于 Android 的 ECG 信号监测与记录应用程序实现

院	系:	光学与电子信息学院			
专业班	班级:	在这里写下你的专业名称和班级号			
姓	名:	某某某			
学	号:	U201200000			
指导	枚师:	某某某			

2016年3月

开题报告填写要求

- 一、 开题报告主要内容:
 - 1. 课题来源、目的、意义。
 - 2. 国内外研究现况及发展趋势。
 - 3. 预计达到的目标、关键理论和技术、主要研究内容、完成课题的方案及主要措施。
 - 4. 课题研究进度安排。
 - 5. 主要参考文献。
- 二、 报告内容用小四号宋体字编辑,采用 A4 号纸双面打印,封面与 封底采用浅蓝色封面纸(卡纸)打印。要求内容明确,语句通 顺。
- 三、 指导教师评语、教研室(系、所)或开题报告答辩小组审核意见用蓝、黑钢笔手写或小四号宋体字编辑,签名必须手写。
- 四、 理、工、医类要求字数在 3000 字左右, 文、管类要求字数在 2000 字左右。
- 五、 开题报告应在第八学期第二周之前完成。

1 相关研究简介

1.1 Android 平台及 ECG 监测简介

目前,基于 Android 系统的智能设备已经广泛普及 [1][2],其内嵌的蓝牙 (Bluetooth) 通信模块、无线局域网模块(Wireless LAN, WLAN) 和进场通信模 块(Near Field Communication, NFC)等设备保证了和其他各类设备的近距离交 流,而其普遍高于一般微控制器嵌入式设备的处理性能也保证了 Android 平台进 行较为复杂运算的能力。同时,经过多年发展,Android 平台已经允许开发者方 便地通过各类应用程序接口(Application Programming Interface, API)对智能设备 的软硬件进行控制。通过 Android 平台,人们已经实现了对家用电器,个人电脑, 显示器等设备的简单控制。基于其较为强大的运算能力,一些简单数据处理应用 (如个人文档处理,面部识别,语音识别等)也选择借助 Android 平台实现。同 时,由于近年来移动终端计算能力的提高,医学设备的小型化、便携化程度逐渐 提高。更加轻便的医学设备既方便了治疗时的检测,也方便了未经医学训练的普 通人对自己身体状况的关注,在体育运动领域也体现出了潜在的应用价值[3]。在 各类受监测的体征指标中,心电图(Electrocardiograph, ECG)能够提供如心率等 主要的人体指标,也有助于对心脏疾病类型的判断和对应治疗。由于 ECG 监测仪 器要求使用者长时间佩戴,因此便携性成为该类监测设备的发展方向之一。目前, 在具备了一定的数据处理能力后,便携式 ECG 监测设备能够实时地对 ECG 信号 进行预处理、去噪和分析,从而提供更加精确的测量、更加丰富的信息和更多的 附属功能(如突发疾病预警等)。为了使被采集 ECG 数据的处理和传递更加方便, 利用智能手机平台是很自然的想法。已有研究证实了在 Android 智能设备平台上 收集 ECG 等医疗数据的可行性,一些适用于 Android 平台的 ECG 信号处理算法 也在验证后提出并应用。基于此,一些研究提出了专门处理 ECG 数据的 Android 平台应用这一构想。

1.2 相关研究现状

已有研究主要着眼于两方面:基于 Android 平台 ECG 监测应用的开发,以及 Android 平台对 ECG 信号的处理算法。

在 ECG 监测应用开发方面,利用 Android 智能设备的蓝牙设备与 ECG 设备连接来获取数据、再加以处理,最后在 Android 端绘制波形的方案成为了相关研究的普遍选择。Android 蓝牙连接较为稳定 [4],同时 Android 平台使用蓝牙的方法也较为简单,这或许是该方案广受欢迎的原因。多数研究实现了 Android 应用的 ECG 信号显示 [3] [5] [6],一些研究实现了基于 ECG 信号分析的预警功能 [6]。部分研究实现了利用 Android 智能手机通过移动网络实时传递 ECG 图像的功能,辅助医师进行紧急治疗 [5][6]。同时也有针对配套的 ECG 信号监测设备的研究,从硬件层面消除 ECG 信号中噪声和伪影的干扰 [3]。

Android 平台 ECG 信号处理方面的研究主要着眼于对信号的分析和噪声消除。 已有研究提出了 Android 平台 ECG 信号的质量评估方法 [7],以及适用于可穿戴 设备的 ECG 信号噪声分类方法 [8]。同时在 ECG 信号处理算法(如波峰检测和波 形异常检测)方面也取得了一些成果 [9]。对于 ECG 信号传输时的格式, 部分研究提出了适合蓝牙传输的 ECG 信号格式, 并与其它医疗信息格式共同构成用于传递医疗数据的协议 [4] [5]。

1.3 相关研究的不足

大部分有关 ECG 监测应用中,ECG 波形在小尺寸屏幕(比如大多数 Android 智能手机)上的显示不尽人意。由于手机屏幕无法完全显示标准的 ECG 波形信号,大部分现有研究均选择了等比例缩小 ECG 波形后显示。这样一来,ECG 波形的细节就无法方便观察。同时,大部分研究在显示 ECG 波形时模拟了 ECG 定走纸的样式,这妨碍了数据的快速读取。

同时,现有的算法着重解决某些疾病的自动检测及预警问题,已经能够有效检测出某些特定的异常情况。另一些算法着重于实现移动设备或可穿戴设备上ECG 信号的质量检测以及噪声消除 [8]。但是现有的 ECG 监测应用并没有很好地将 ECG 信号的重要特征提取并表示出来,而是在后台获取 ECG 特征后判断是否需要发出预警。造成的结果是对于临床应用来说,现有 ECG 监测应用的并不能有效地减少医护人员在分析 ECG 信号时的负担。

2 相关概念介绍

2.1 Android 平台的蓝牙技术

蓝牙(Bluetooth)是一种短距离无线通信标准,支持频率为 2.4GHz 左右的短距通信。Android 平台一直以来都对蓝牙技术保持着良好的支持,使用一系列 API 可以在 Android 平台上实现简单的蓝牙操作。通过使用系统提供的BluetoothAdapter 类和 BluetoothDevice 类,Android 应用能够扫描附近的蓝牙设备、列出已经配对的蓝牙设备、建立 RFCOMM 通道、连接其他设备并传递数据 [10]。在进行蓝牙连接前,在应用的 Manifest 文件中需要申请蓝牙控制权限。之后,使用 BluetoothAdapter 类中的方法可以开启蓝牙适配器并搜索设备,搜索到的设备将会返回其蓝牙地址,通过获取到的蓝牙地址就能建立连接。

在建立蓝牙连接后,使用 BluetoothSocket 类的方法可以建立作为客户端的连接。使用客户端方式连接的蓝牙设备可以收取服务器端设备传递的信息。通过验证 UUID,两个设备能够正确建立连接。最终,使用 InputStream 类可以获取服务端传递的信息,该信息被存储在 byte 类型的变量中,并等待处理。Android 平台蓝牙连接的过程可见图1。

2.2 ECG 简介

构成人体心脏肌肉的心肌细胞保持着细胞膜内外的离子浓度差异,因而造成了细胞膜内外存在电势差。记录这种电势差随细胞状态的变动,并将这种电活动曲线记录所得的图形被称为心电图(Electrocardiogram, ECG)。单个心肌细胞的膜内外电位变化过程可视为一对电偶的移动。如图2所示,除极过程和复极过程的电位

图 1: Android API 蓝牙连接过程

是相反的。因此,除极和复极过程所形成的电位变化波形方向相反,心电图因此 包含正负两个方向的电位变化[11]。

从整体来看,心脏电偶的位移局限在心肌内,可近似看作电偶固定在心脏中 心,心脏中不同部位的心肌组织除极时间存在差异,从而造成了心脏电偶的方向 变动。同时,电偶电力的强度也随心肌大小、薄厚的改变而改变。因此,将电极 (被称为心电图的导联)放置在身体的不同位置时,检测到的心脏电偶变化是不同 的。常规的导联体系包含肢导联和胸导联,不同的导联放置位置不同,代表的心 脏状态也不同。在临床实践中通常综合 12 个导联的 ECG 波形来判断心脏状态。

图 2: 心肌细胞的除极与复极过程: (a) 为除极过程, 图 3: ECG 信号波形示意图 (b) 为复极过程

单幅的心电图通常包含 P 波、QRS 波群和 T 波,这是根据波的大小和形态划 分的(见图3)。通过观察一副 ECG 图像的 PORST 波及其特点,能够了解心脏某 部分或整体的搏动状况。在医学生的训练中,以下 ECG 图像特征的观察备受强 调:

两个P波或R波的间隔时间(被称为PP间期或RR间期);

- PP 或 RR 间期的离散程度;
- P 波持续时间;
- P 波振幅;
- P波与 R波的间隔时间(被称为 PR间期);
- QRS 波群的间隔时间(被称为 QRS 间期);
- S 波结束与 T 波开始之间的间隔时间(被称为 ST 段);
- 经过矫正的 QT 间期(即 QT_c,可通过 QT_c = $\frac{QT}{\sqrt{RR}}$ 计算,其中 QT 表示实际 QT 间期,RR 表示 RR 间期);

除此以外,还有一些基于波形形态的观测(如 QRS 波的主波方向)在诊断中也十分重要。这些波形形态能够反映心脏房室肥大情况、心肌缺血情况、心肌是否坏死等。

3 研究方案及研究计划

3.1 研究目的与方案

本研究以实现 Android 平台的 ECG 监测和记录应用作为主要方向,意在于开发一个与 ECG 信号采集设备通过蓝牙连接,收取数据并且进行实时显示的 Android 平台应用。同时实现 ECG 中某些重要特征的提取算法,并将这些特征通过数据标签的形式显示出来,方便临床观察。同时,构建本地数据库存储接收到的 ECG 信号,方便查找与分析。

本研究计划实现 Android 智能设备与基于 RFCOMM 标准的蓝牙设备间传递数据的方法,并尝试将该方法应用于一种 16-bit ECG 数据的传递。之后,尝试构建一种数据类,在类中实现基于 Android 平台的 SQLite 数据库管理方法。在实现 ECG 数据的管理后尝试构建一种基于 SurfaceView 类的波形显示类,对存储的数据进行显示。同时探索基于数据库的 ECG 分析方法,其中着重探索 ECG 信号特征提取算法,并尝试将适用于 Android 平台的算法作为方法嵌入数据库类中。最后,尝试提出一种友好的 ECG 特征显示方法,并通过之前提出的波形显示类实现。

3.2 研究计划

本研究计划按四个主要研究方向划分,根据四个方向预计花费的时间安排计划 表。项目的计划表见表1。 表 1: 研究计划表

时间	研究内容
第1周第3周	查找 ECG 信号处理、Android 应用开发
	资料,翻译英文资料,撰写开题报告
第4周第5周	熟悉 Android Studio 开发环境,熟悉各种
	ECG 信号特征
第6周	设计、构建应用的 UI Activity
第7周第8周	设计数据库与存储方法,构建蓝牙连接
	环境
第 9 周 第 11 周	构建波形显示类,实现 ECG 信号特征提
	取并显示
第 12 周 第 14 周	撰写毕业论文
第 15 周	答辩

参考文献

- [1] IDC Research Inc. Smartphone os market share, 2015 q2. http://www.idc.com/prodserv/smartphone-os-market-share.jsp#.
- [2] Statista Inc. Android version market share 2015. http://www.statista.com/statistics/271774/ share-of-android-platforms-on-mobile-devices-with-android-os/.
- [3] Marco Antonio Moreno. An android hosted bluetooth ecg monitoring device. Master's thesis, University of Texas at Austin, 2012.
- [4] Xiaojing Tang, Chao Hu, and Weixing Lin. Android bluetooth multi-source signal acquisition for multi-parameter health monitoring devices. In *Information and Automation*, 2015 IEEE International Conference on, pages 1790--1794, Aug 2015.
- [5] Dongdong Lou, Xianxiang Chen, Zhan Zhao, Yundong Xuan, Zhihong Xu, Huan Jin, Xingzu Guo, and Zhen Fang. A wireless health monitoring system based on android operating system. *{IERI} Procedia*, 4:208 -- 215, 2013. 2013 International Conference on Electronic Engineering and Computer Science (EECS 2013).
- [6] Xiaoqiang Guo, Xiaohui Duan, Hongqiao Gao, Anpeng Huang, and Bingli Jiao. An ecg monitoring and alarming system based on android smart phone. *Communications and Network*, 05, 2013.
- [7] V. Chudáček, L. Zach, J. Kužílek, J. Spilka, and L. Lhotská. Simple scoring system for ecg quality assessment on android platform. In *Computing in Cardiology*, 2011, pages 449--451, Sept 2011.
- [8] U. Satija, B. Ramkumar, and M. S. Manikandan. A simple method for detection and classification of ecg noises for wearable ecg monitoring devices. In *Signal Process*-

- ing and Integrated Networks (SPIN), 2015 2nd International Conference on, pages 164--169, Feb 2015.
- [9] J. Oster, J. Behar, R. Colloca, Qichen Li, Qiao Li, and G. D. Clifford. Open source java-based ecg analysis software and android app for atrial fibrillation screening. In *Computing in Cardiology Conference (CinC)*, 2013, pages 731--734, Sept 2013.
- [10] Google Inc. Bluetooth|android developers. http://developer.android.com/guide/topics/connectivity/bluetooth.html.
- [11] 卢雪峰, 万学红. 诊断学 (第八版). 人民卫生出版社, 3 2013.

华中科技大学本科生毕业设计(论文)开题报告评审表

姓名		学号		指导教师					
院(系) 专业								
指导教师评语 1. 学生前期表现情况。 2. 是否具备开始设计(论文)条件?是否同意开始设计(论文)? 3. 不足及建议。									
指导教师(签名):									
				年	月	日			
教研室(系、所)或开题报告答辩小组审核意见									
	教硕	开室(系、)	所)或开题报告答辩小组负	表人(签名):					
				年	月	日			