

- aiida-aimall: A Python package for automating
- workflows for AIMAII software
- Kevin M. Lefrancois-Gagnon 10 1* and Robert C. Mawhinney 10 1*
- 1 Lakehead University, Thunder Bay, ON, Canada * These authors contributed equally.

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive ♂

Editor: Open Journals 2

@openjournals

Submitted: 01 January 1970 Published: unpublished

License

Reviewers:

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0),

Summary

Since its introduction by Richard Bader, the Quantum Theory of Atoms in Molecules (QTAIM) has become a useful tool for computational chemists. This Python package provides plugins for a common QTAIM software, AIMAII, for the AiiDA Python infrastructure. aiida-aimall is an essential tool for ensuring reproducible calculations, with full generation history. Workflows are also provided to interface AIMAll software with any quantum chemistry package that can be run through the command line, so long as it generates the input files required by AIMAll.

Statement of need

aiida-aimall is a Python package based on the AiiDA (Talirz et al., 2020) infrastructure designed to assist users with generating inputs for AIMAII software (Keith, 2019). The goal of the AiiDA infrastructure is, in part, to ensure data provenance and calculation reproducibility. While aiida-aimall has been developed primarily for interface with Gaussian software outputs (Frisch et al., 2016), a versatile workflow enabling interface with other quantum chemistry packages is also made available. To the best of the authors' knowledge, no tool for automatically linking the output of quantum chemistry packages with AIMAII while tracking data provenance exists. Before this tool, individuals would manually provide output files from one software to the other. This tool significantly simplifies complex multi-step workflows such as substituent parameter generation into one simple step, easing the burden on the end user and allowing for high-throughput calculations.

Through a variety of workflows that can start with an .xyz file, AiiDA StructureData, or even with a SMILES string of a molecule, aiida-aimall provides a variety of use cases for automating complex workflows. Additionally, tools to ensure that computers are not overloaded through too many simultaneous processes are made availabe through classes of FromGroupSubmissionControllers from aiida-submission-controller to limit active processes.

Features

- aiida-aimall contains many different classes from aiida tailored to ensure ease of use of AIMAII calculations. Numerous features provided by aiida-aimall are described in full on the documentation webpage hosted on ReadTheDocs. A brief description of main features is
- provided here.

Running Simple AIMAII Calculations

- The simplest functionality provided by aiida-aimall is running AIMAII calculations. All AIMAII calculations utilize the AimgbParameters datatype provided by aiida-aimall. The
- Lefrancois-Gagnon, & Mawhinney. (2025). aiida-aimall: A Python package for automating workflows for AIMAll software. Journal of Open Source 1 Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxx/draft.

- AimqbParameters datatype is a validator for AIMAll command line input. Command line parameters are to be provided as a dictionary, then AimqbParameters ensures that the parameters match options available for AIMAll software as defined on the software website, and that the correct data type is provided for each parameter. In this way, AimqbParameters verifies the provided input to AIMAll calculations prior to launch of the calculation. These parameters, along with SinglefileData of a valid AIMAll input file, a Code object for AIMAll software, and relevant metadata are provided to an AimqbCalculation.
- This functionality in itself is an overcomplication of the simple process of running the software normally. However, it does have some benefits. The output is already extracted and stored in the database in a readily usable manner through the use of the AimqbBaseParser. It is now simple to see the history of the calculation.

Substituent Properties

Some of the workflows in aiida-aimall automate calculation of substituent properties from AIMAII output. These substituent properties have been developed by the authors. (Lefrancois-Gagnon & Mawhinney, 2023) The SubstituentParameterWorkChain does this automatically, and any routine AIMAII calculation can make use of this by using the AimqbGroupParser, which can be provided in metadata input to AimqbCalculation as an entry in the metadata dictionary: metadata.options.parser_name:'aimall.group'. A detailed description of the calculated substituent properties is available in a tutorial in the documentation. AIMAII integrated and graph properties are obtained.

Integrations with Computational Chemistry Software

aiida-aimall's main draw is that it enables automation to link the outputs of standard computational chemistry software directly to an AlMAII calculation. A list of provided workflows is shown in Table 1. The software with the most robust implementation is Gaussian software, (Frisch et al., 2016) as Gaussian already has an implemented aiida package. Other computational chemistry software like ORCA can be run through the QMToAIMWorkchain, which uses aiida-shell to run software than can be run through the command line. If .molden or .cp2k.out output formats are available, one could alternatively use these to generate the needed .wfx files for AlMAII, and automatically run AlMAII through the GenerateWFXToAIMWorkchain.

Table 1: Main workflows provided by aiida-aimall, their aiida entry points that can be used to load them by aiida.plugins.WorkflowFactory, and a brief description. These workflows all end with the output of an AimqbCalculation as their main output.

Workflow	Entry Point	Purpose
QMToAIMWorkchain	aimall.qmtoaim	Run a general computational chemistry software and link it to an AIMAII calculation
GenerateWFXToAIMWorkchain	aimall.wfxtoaim	Take non-standard AIMAIII input files, and run AIMAII
GaussianToAIMWorkChain	aimall.g16toaim	Run a Gaussian calculationl and automatically run an AIMAII calculation on its outputs
SubstituentParameterWorkChain	aimall.subparam	Compute substituent properties defined by the authors automatically

Controllers to limit computer burden when running large numbers of jobs

The last main contribution of aiida-aimall is through the definition of controllers from the aiida-submission-controller package. These controllers limit active processes and can be used together as demonstrated in a tutorial notebook to automate the entire SubstituentParameterWorkchain. These use a number of Workchains developed just for their use in these controllers. The process flows as SmilesToGaussianController -> AIMAllReorController -> GaussianController -> AIMAllController. The latter two controllers can also be seen and used as general use controllers wrapping GaussianCalculations and AimqbCalculations

79 Acknowledgements

We acknowledge the National Science and Engineering Research Council of Canada (grant RGPIN-2022-05060), and the Northern Ontario Heritage Fund Corporation (grant 7401278) for financial support.

References

- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R.,
 Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich,
 A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J.
 V., ... Fox, D. J. (2016). *Gaussian~16 Revision C.01*.
- 88 Keith, T. A. (2019). AIMAII (Version 19.10.12). TK Gristmill Software. aim.tkgristmill.com
- Lefrancois-Gagnon, K. M., & Mawhinney, R. C. (2023). Toward Universal Substituent
 Constants: Relating QTAIM Functional Group Descriptors to Substituent Effect Proxies.

 Journal of Chemical Information and Modeling, 63. https://doi.org/10.1021/acs.jcim.
 3c00987
- Talirz, L., Kahle, L., Häuselmann, R., Gresch, D., Müller, T., Yakutovich, A. V., Andersen, C. W., Ramirez, F. F., Adorf, C. S., Gargiulo, F., Kumbhar, S., Passaro, E., Johnston, C., Merkys, A., Cepellotti, A., Mounet, N., Marzari, N., Kozinsky, B., & Pizzi, G. (2020). AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. *Scientific Data*, 7. https://doi.org/10.1038/s41597-020-00638-4