

A System for measuring Temperature dependent Surface Photovoltage by Timo Bretten

Radboud Universiteit Nijmegen

M.Sc. Final Presentation December 10th 2015

Outline

Introduction

Theory

The Systems

Experimental

Discussion & Conclusion

Motivation

The goal of this project is to...

- Use a new experimental Kelvin Probe (KP) system
- Add illumination to 'new' KP
- Compare results from 'new' KP to established, 'old' KPs
 - → Does 'old' & 'new' Contact Potential Difference (CPD) agree?
 - → Does 'old' & 'new' Surface Photovoltage (SPV) agree?
- Ultimately measure temperature dependent Surface Photovoltage (SPV(T)) with the new system

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

$$\label{eq:cpd} \begin{split} \text{CPD} &\equiv \phi_{\text{Probe}} - \phi_{\text{Sample}}, \\ \text{where } \phi \text{ is Work function} \end{split}$$

Semiconductor-Metal:

[1]

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

 $CPD \equiv \phi_{Probe} - \phi_{Sample}$ where ϕ is Work function

Semiconductor-Metal:

[1]

Physical Causes of CPD

The CPD is the difference in local vacuum levels, here defined as:

$$\label{eq:cpd} \begin{split} \text{CPD} &\equiv \phi_{\text{Probe}} - \phi_{\text{Sample}}, \\ \text{where } \phi \text{ is Work function} \end{split}$$

Semiconductor-Metal:

Measuring CPD: The Kelvin Probe (KP)

$$I(t) = \frac{dQ}{dt} = (CPD + V_b)\frac{dC}{dt}$$

$$I(t) = 0$$
 iff $V_b = -CPD$

Physical Causes of Surface Photovoltage (SPV)

SPV: CPD in the dark dark vs. light

Different surface potentials in light and dark yield SPV:

$$\begin{array}{ll} \mathsf{SPV} & \equiv \mathsf{CPD}_{\mathsf{I}} - \mathsf{CPD}_{\mathsf{d}} \\ & \equiv \phi_{\mathsf{s},\mathsf{d}} - \phi_{\mathsf{s},\mathsf{I}} \\ \mathsf{SPV}_{\mathsf{n}} & > 0 \\ \mathsf{SPV}_{\mathsf{p}} & < 0 \end{array}$$

Established, 'old' KP Systems

Ambient & Glovebox KPs

- Besocke KP head & controller
- Humidity controlled ambient
- Glovebox (< 5ppm O₂ & H₂O)
- Xenon lamp & VariAC (∼80 W)
- Illumination is source of heat!

[2]

'New' System: Cryostat with a KP

Lakeshore Cryostat with Mc Allister KP & LED illumination

Checking against Established Systems

Behaviour at Room Temperature

'Jumps' probably due to movement of probe head Excellent agreement between systems

Checking against Established Systems

Behaviour at lower temperatures and SPV

30 nm AlO₃ on Si, by plasma-enhanced atomic layer deposition [5]

- $\phi_{\text{Si/Alumina}}$ at 300 K: $(4.42 \pm 0.03) \, \text{eV}$
- $\phi_{\text{Si/Alumina}}$ at 250 K: $(4.44 \pm 0.04) \, \text{eV}$

Probably no ice, even on very hydrophilic surface SPV $\sim\!12\,\%$ too low compared to other system and literature ([5]). Shadows on the sample?

Intermission: Choosing a Model System for SPV(T)

Metal Insulator (MI) Transition in VO₂

- metal at T > T_{MI}
- semiconductor at T < T_{MI}
- insulator at $T \ll T_{MI}$
- $T_{MI} \approx 270 \,\mathrm{K}$ [6] (W-doped)
- $\varphi \approx 5.15 \,\text{eV}$ [7] (at RT)
- $\Delta \phi_{MI} \approx -0.15 \, \mathrm{eV}$ [7]
- $\Delta \phi_{MI} \approx 0.45 \, \text{eV}$ [8] (W-doped)

Temperature Dependent CPD in W:VO₂

Curious behaviour in the range 120 K to 160 K, far below T_{MI} Effect of substrate?

Temperature Dependent SPV in W:VO₂

and SPV(T)

 $\rho(T)$ magnitude and T_{MI} -range agrees with literature ([7],[10]) $\Delta \varphi_{MI}$ observed before; direction & magnitude unclear ([6],[8]) Gradual gap opening process → appearance of SPV Sign of SPV identifies sample as n-type \rightarrow W-doping

Discussion & Conclusion

We showed that...

- CPD is in excellent agreement with established systems
- SPV \sim 12 % too low. Shadowing?
- CPD(T) reproducible and interesting
- CPD(T) & SPV(T) reasonable
- \rightarrow Lakeshore + Mc Allister + LED is a viable experimental system for SPV(T)
 - System has successfully been used in that configuration since 2014, publication forthcoming [11]

List of References

Literature and links

- [1] L. Kronik & Y. Shapira *Surf. Sci. Rep.*, **37(1-5)**, 1999
- [2] Besocke Website
- [3] Lakeshore Website
- [4] LEDengin Website
- [5] D. Cahen et al. Appl. Phys. Lett., 101, 2012
- [6] K. Shibuya et al. Phys Rev. B, 82(20), 2010
- [7] C. Ko et al. ACS Appl. Mater. Interfaces, 3(9), 2011
- [8] H. Yin et al. ACS Appl. Mater. Interfaces, 3(6), 2011
- [9] M. Nakano et al. Nature, 487(7408), 2012
- [10] K. Shibuya et al. Appl. Phys. Lett., 96, 2010
- [11] D. Cahen et al. J. Phys. Chem. Lett., forthcoming

Some more background...

...about my M.Sc. project

- Research carried out in 13/14 at The Weizmann Institute of Science
- Project had two parts: P(VDF) & SPV(T)
- Only part two was presented

Acknowledgements

Thanks! to...

Prof. David Cahen

Dr. Hugo Meekes

Igal Levine

Nir Kedem

for his supervision

for his spontaneous support

for keeping me (somewhat) on track

for always having an answer