Nanyang Technological University

School of Computer Science and Engineering

CZ 2003 - Lab 5: Morphing

Phua Jia Sheng Lab Group: SSR1 Attendance list number = 81
Formula_number_1 = 81mod26 = 3
Formula_number_2 = (81+1)mod26 = 4

Shape	Formula	Surface Displayed
Number		
3	$x = b\cos(a)$ $y = b\sin(a)$ $z = b\sin(2b\pi)\sin(a)$ $0 \le a \le 2\pi, 0 \le b \le 1$	
4	$x = \cos(\varphi)\sin(\varphi)$ $y = \cos(a\pi)\sin(\varphi)$ $z = \sin(a\pi)\sin(\varphi)$ $0 \le a \le 2, 0 \le \varphi \le \pi$	

Normalizing Parameters

Shape 3:

$$u = \frac{a-0}{2\pi - 0} = \frac{a}{2\pi} = a = 2\pi u$$

$$v = b \text{ since } b \text{ already in } [0,1]$$

New Equations:

$$x = v\cos(2\pi u)$$

$$y = v\sin(2\pi u)$$

$$z = v\sin(2v\pi)\sin(2\pi u)$$

$$u, v \in [0,1]$$

Shape 4:

$$u = \frac{a-0}{2-0} = \frac{a}{2} \Longrightarrow a = 2u$$
$$v = \frac{\varphi-0}{\pi-0} = \frac{\varphi}{\pi} \Longrightarrow \varphi = v\pi$$

New Equations:

$$x = \cos(v\pi)\sin(v\pi)$$
$$y = \cos(2u\pi)\sin(v\pi)$$
$$z = \sin(2u\pi)\sin(v\pi)$$
$$u, v \in [0,1]$$

Morphing

Figure 1: Still of morphing.

Figure 2: Gif of morphing, embedded using Giphy.com

Note: The hi-def version of the original gif is available in the lab5 folder as morphing.gif.