

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 - 2005 certified)

WINTER-2016 EXAMINATION

Subject code: 17422

Model Answer

Page No: 01/.3.7

Important Instructions to examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding

Question and Model Answers	Marks
it Eccentric Load - A load acts away from the centroid of the section or a load whose line of action do not coincide with the axis of member is called as the eccentric load P= Applied load e = Eccentricity	mark
	n mark

ii)	The	differ	ential	eq	uation	for s	Slope -
ł	<u>.</u>	Sy	- (Mze			ľ
		<u>Sy</u> Sæ	— J -	Er	•		

Y =
$$\int \frac{dy}{\delta z} \cdot \frac{1}{EI}$$

$$Y = deflection$$

$$y = \int \int \frac{M_{\chi}}{E_{z}}$$

01 mark

iii). Consider a section X-X at a distance z

9 mark

O mark

P.C-17422 WID-2016	
iv) Macaullay's method is used for finding slope and deflection of beam as followes a use of Macaullay's method is very convenint for cases of discontinious and or discrete loading. b. Typically udl & voll over the span and no. of concentrated loads are conveniently handle using this technique.	of mark
V) Principle of Superposition -> (A) (A) (A) (B) MB (RB	
+ sagging BMD due to gravity lo MB FEM Net BMD The Sagging diagram due to gravity	ad. 01 M
load neutralized the hogging diagram due to fixed end moments to some	

Confinued

The remaining diagram indicates the nature and magnitude of net bending moment in the beam, Hence it is named as principle of Superposition

vi) Different types of portal frames can be classified as a) Symmetrical portal frames

b) Unsymmetrical portal frames.

01 m

<u>ુ 01</u> M

Unsymmetrical portal frame

P.C - 17422 Win - 2016	
Yii) Stiffness factor: > It is the moment	01 m
required to produce unit rotation at an end, without translating it.	
- Distribution factor: > It is the	o1m
ratio of relative stiffness of a	
members to the total stiffness of all the members meeting at a	
joint.	
and D. C. I C	
viii) Perfect frame: → A frame made up of just sufficient	ot w
no of members so that it can remain	
in stable equilibrium, when loaded	
at joints. $n = 2i-3 \rightarrow perfect$	
Imperfect frame:	01M
A frame made up of either more than or less than, just sufficient	
humber of members, to keep it in	
static equillibrium is realled imper-	
fect frame · n < 2j-3 Deficient n > 2j-3 Redundant	
TI Z 2 - 3 Readingain	
 	
· · · · · · · · · · · · · · · · · · ·	:

Q1 b)

Limit of eccentricity for rectangular section,

$$6min = 60 - 6b - \frac{\rho}{A} - \frac{M}{T_{b}} \times y$$

$$Ix = \frac{bd^3}{12}$$

$$Y = d/2$$

$$\frac{1.6 \text{min}}{A} = \frac{P}{A} - \frac{Pe}{(bd^3/12)} \times \frac{d}{2}$$

$$0 = \frac{P}{A} - \frac{Pe}{bd^2} \times 6$$

$$\frac{Pe}{bd^2} \times 6 = \frac{P}{A}$$

6 | Page/37

01 M

01 m

01 m

į	section (3)-(3)
	Assuming FB & BC are tensile
: -	$\sum m A = 0$
	h = 1.26 6KN Sino = h
: 	FB X1.26 -6X2 F
	FB = 9.52 KN(T)
	2MF = 0

6x2 + 2x4 + BCx1.26 c BC = -15.87 km (C)

01

ST No.	Member	Force	Nature
ł	FE	6.00 KM	Tensile
2	FB	9.52 KN	Tensile
3	CB	-15.87kN	Compressive

<u> </u>	jed code-17422 Winter 2016	mark
12. (1)	Givendata.	
(2. 4)		_
	dia = 250 mm	
	P = 200 KM	
	e = 150mm	
	E = 130103	
	W = ?	
	6min = 6d-6b	01
		01_
	For No tension, 6min = 0	
	:. 0 = 6d - 6b	
	.: 6d = 6b	
	<u>P = p.e x y</u>	01
	Where,	
	A = T/1 x d = T/1 x 250 = 49087.38	
	mm ²	
	$A = \frac{2}{11/4 \times d} = \frac{2}{11/4 \times 250 = 49087.38}$ $T = \frac{11}{11 \times 250} = \frac{49087.38}{191.747 \times 10^{6} \text{mm}^{2}}$	
	64	
	$(W+200) = 200 \times 10 \times 150$ 250	
	A 191.747×106 2	
	W=760 KN	01
	To avoid the tensile stress	_
	at the base, W = 760kN	
	au the base ye.	

Mhere, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Iy = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ $Iz = 6d + 6b$ $A = 250 \times 10^3 = 5 \times 10^6 \times 300$ $A = 300 \times 200 = 60000 \text{ mm}^2$	· ·	P.C - 17422 Win - 2	m m	au
$b = 300 \text{ mm}$ $d = 200 \text{ mm}$ $m = 5 \text{ kN} \cdot \text{m}$ $6 \text{max} = 9$ $6 \text{min} = 9 \text{sison}$ $m = 5 \text{kN} \cdot \text{m}$ $m = 5 \text{kN} \cdot m$	ь>	Data: → P = 250KN		
	+-+	h = 300mm		
m = 5 kn m $6 max = 9$ $6 min = 9$ $6 max = 5 kN m$ $6 max = 6 max$ $6 max$				_
6 max = ? 6 min = 9 6 min = 8:300 $P^{2} = 200$ $M^{2} = 300 \times 200 = 60000 \text{ mm}^{2}$ $M^{2} = 200 \times 300 = 450 \times 10^{6} \text{ mm}^{2}$ $M^{2} = 180 \times 250 \times 10^{6} \times 300 = 450 \times 10^{6} \times 10^{$				
6min = 9 $P = 250 \text{ kN}$ $M = 5 \text{ kN} \cdot \text{m}$ 6min 6max 01 Where, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{ mm}^2$ $Ty = 450 \times 10^6 \text{ mm}^2$ 6max = 6d + 6b $A = \frac{P}{A} + \frac{M}{I} \times \frac{M}{I}$ $A = \frac{180}{60000} \times \frac{250 \times 10^6}{450 \times 10^6} \times \frac{300}{2}$				
$\frac{3:200}{\text{MP} = 250 \text{kN}}$ $m = 5 \text{KN} \cdot \text{m}$ 6max OI $Where,$ $A = 300 \times 200 = 60000 \text{ mm}^2$ $Iy = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6 \text{max} = 6d + 6b$ $= P + M \times Y$ $A = 180 \times 250 \times 10^3 + 5 \times 10^6 \times 300$ $60000 + 450 \times 10^6 \times 300$		i e		
$\frac{P = 250 \text{kN}}{\text{m} = 5 \text{kN} \cdot \text{m}}$ $\frac{6 \text{min}}{\text{m}} = \frac{5 \text{kN} \cdot \text{m}}{6 \text{max}}$ $\frac{1}{\text{m}} = \frac{300 \times 200}{12} = \frac{60000 \text{ mm}^2}{12}$ $\frac{1}{\text{m}} = \frac{200 \times 300}{12} = \frac{450 \times 10^6 \text{ mm}^2}{12}$ $\frac{1}{\text{m}} = \frac{180 \times 250 \times 10^3}{60000} + \frac{5 \times 10^6}{450 \times 10^6} \times \frac{300}{2}$		6min = ?		
$P = 250 \text{ kN}$ $m = 5 \text{ kN} \cdot \text{m}$ 6min 6max 0I $Where,$ $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6 \text{max} = 6d + 6b$ $= P + M \times Y$ $A = 180250 \times 10^3 + 5 \times 10^6 \times 300$ $60000 + 450 \times 10^6 \times 300$		b= 300 - 1		
$P = 250 \text{ kN}$ $m = 5 \text{ kN} \cdot \text{m}$ 6min 6max 0I $Where,$ $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6 \text{max} = 6d + 6b$ $= P + M \times Y$ $A = 180250 \times 10^3 + 5 \times 10^6 \times 300$ $60000 + 450 \times 10^6 \times 300$				
$m = 5 \text{KN} \cdot \text{m}$ $m = 6 \text{Max}$ $m = $		8.7	200	
$m = 5 \text{KN} \cdot \text{m}$ $m = 6 \text{Max}$ $m = $	-			
6min 6max OI Where, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6max = 6d + 6b$ $= \frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $= 180 250 \times 10^3 + \frac{5 \times 10^6}{450 \times 10^6} \times \frac{300}{2}$		P=250kN /		
Where, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6\text{max} = 6d + 6b$ $\frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $\frac{P}{A} = \frac{1}{1}$ $\frac{180250 \times 10^3}{60000} + \frac{5 \times 10^6}{450 \times 10^6} \times \frac{300}{2}$	+	m= 5KN·m		
Mhere, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Ty = 200 \times 300 = 450 \times 10^6 \text{mm}^2$ 12 $6 \text{max} = 6d + 6b$ $P + M \times Y$ $P = 1$ $1 = 150 \times 250 \times 10^3 + 5 \times 10^6 \times 300$ $1 = 150 \times 250 \times 10^3 + 5 \times 10^6 \times 300$				
Where, $A = 300 \times 200 = 60000 \text{ mm}^2$ $Iy = 200 \times 300 = 450 \times 10^6 \text{ mm}^2$ 12 $6 \text{max} = 6d + 6b$ $= P + M \times y$ $A = 1$ $= 150 \times 250 \times 10^3 + 5 \times 10^6 \times 300$ $= 60000 + 450 \times 10^6 \times 2$		cmin 61	max	01
$A = 300 \times 200 = 60000 \text{ mm}^{2}$ $Iy = 200 \times 300^{3} = 450 \times 10^{6} \text{ mm}^{2}$ 12 $6\text{max} = 6d + 6b$ $= P + M \times y$ $= 180 \times 250 \times 10^{3} + 5 \times 10^{6} \times 300$ $= 60000 + 450 \times 10^{6}$				
$A = 300 \times 200 = 60000 \text{ mm}^{2}$ $Ty = 200 \times 300^{3} = 450 \times 10^{6} \text{ mm}^{2}$ 12 $6\text{max} = 6d + 6b$ $= \frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $= 180 \times 250 \times 10^{3} + 5 \times 10^{6} \times \frac{300}{2}$ $60000 + 450 \times 10^{6}$		- V		
$Ty = 200 \times 300^{3} = 450 \times 10^{6} \text{mm}^{2}$ 12 $6\text{max} = 6d + 6b$ $= \frac{P}{A} + \frac{M}{I} \times y$ $= 180 250 \times 10^{3} + 5 \times 10^{6} \times \frac{300}{2}$ $= 60000 + 450 \times 10^{6}$	_			
$6max = 6d + 6b$ $= \frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $= 180 \cdot 250 \times 10^{3} + \frac{5 \times 10^{6}}{450 \times 10^{6}} \times \frac{300}{2}$		A= 300 x 200 = 60000	mm	0
$6max = 6d + 6b$ $= \frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $= 180 250 \times 10^{3} + 5 \times 10^{6} \times \frac{300}{2}$ $= 60000 + 450 \times 10^{6}$		Ty = 200 x300 = 450	× 10 6 mm2	
$= \frac{P}{A} + \frac{M}{I} \times \frac{y}{A}$ $= \frac{180250 \times 10^{3}}{60000} + \frac{5 \times 10^{6}}{450 \times 10^{6}} \times \frac{300}{2}$	-			
$= 180 250 \times 10^{3} + 5 \times 10^{6} \times \frac{300}{2}$		6max = 6d + 6b		-
$= 180 250 \times 10^{3} + 5 \times 10^{6} \times \frac{300}{2}$		$= \frac{P}{A} + \frac{M}{T} \times Y$		_
		$= 180 2 \text{SOXIO}^3 + 5 \text{XIC}$	6 x 300	_
5.82 N/mm (Compressive)		_	i	-
		5.82 N/mm (Co	mpressive)	0

Paper code - 17422 Win 2016	
6min = 6d - 6b	
$= \frac{P}{P} - \frac{M}{I} \times Y$	
= 4.16 - 1.66	-
	01
= 2.49 N/mm² (compressive)	
Data,	
h = 8m	
b = 4m	
t = 1.5m	
P 10 = 2.5 KN/m2	
8 = 24 kN/m3	
Wind Pressure aching on 4mside,	
<u> </u>	
-> To find maximum & minimum stress,	
1) self wt of wall W= 8 x Volume	C
= 24 4 X 1.5 X 8]	
=1152KN	
2) Wind Force p = Cp. A rea q Wall	
$= 2.5 \times [4 \times 8]$	
= 80 KN·	
3 Area at base = $4 \times 1.5 = 6 \text{ m}^2$	
- 1x1s 1.12 Sm	
4) 1y - 4/13 = 1.123 till	
5) Shesses,	
5) Stresses, 6max = 61 + 6b	

Paper Code - 17422 Win-2016	
$6max = \frac{W}{A} + \frac{P.H/2}{I}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
= 192 + 213.33	
6max = 405.33N/mm (comp)	01
6min = W - P.H/2 xy	
= 192 - 213.33	
6min = 21.33 N/mtes2 (Tensile)	01
$ \begin{array}{c} $	
$\begin{array}{c} 2.5 \\ \text{Data:} \rightarrow \\ \text{Slope} = 1.5^{\circ} \end{array}$	
maximum deflection = y = ?	
Where,	
dy_Slope = 1.5°	
1.5 = WL ³ 24EI	
1.5 XT - W X2,5	
W = 0.040EI	02
but ymax = -5WL4 384 EI	

Paper Code - 17422 Win-2016

	3	84 EI			
	= 0.0	2045 m	<u> </u>		-
Lium	ax = 20.2	15 mm	dow	nwaid	02
	VIV.				
e) 1			12	omm	
JA —		 			
		1		200	_ -
Dala:					
	= 6 KN				
	y Slope	1 624	-3	l'arps	
	y Slope	= 1.5%	10 1 ac	uans	
1	= 100 K	Nimma			
<u> </u>					
	= 1×10	o KN/n	1		
Where	-	3			-
	_ = 120 X	200 _	80 XI	0°mme	
	1.2			10 m4	
	1	- WL ²			
<u> </u>	lope = dy	=	-		- +
	9x8	2EI	2		
	1.5×10	= 6	×L	=/	
		2 >	(1×10 8	X80×106	
	2	= 1			
		= 2m			

	Paper Code - 17422, Win 2016	mark
- 6	Clapeyrons Theorem:	
(1)		
	Let ABC be a continious beam,	_
	Selected for analysis and loaded as shown below.	1
	shown below.	
	ailaz - are the area & BMD	
	MA = MC = O	
	The supports are simple support	
	To obtain MB Clapeyron's thm.	or w
-	$\frac{MA^{LI} + 2MB}{I_{I}} = \frac{LI}{I_{2}} + \frac{L^{2}}{I_{2}} + \frac{Mc^{L^{2}}}{I_{2}}$	
	$=-6\left[\frac{\alpha_1}{\lambda_1}+\frac{\alpha_2}{\lambda_2}\right]$	01.0
	w/m, me me w/m,	
	A monday Browning C	
-	$\begin{array}{c c} \hline \\ \hline $	
	RA LI RB L2 RC	
		_ -
		oti
	21-1 K-X2->	
	DMD.	
	Sagging BMD Where,	
	MA & MC = O	
	II & Iz are the moment of Inertia	
	of beam	
	MB can be obtained from the above	
	VIB can be upituned from the contre	
	equation.	
	Li & Lz are span	
		01
	XI & 22 are distance q o CG of BMD	

Question & sub Question	Answer	Maske.
	Integrating With respect to X	
	$EI \frac{dy}{dx} = \frac{40x^2}{2} + c_1 \left[-60(x-2)^2 \right] - \text{Slope eq}^n$ x = 2m $x = 6m$	1 Mask
	Again Integrating W. r. to . x.	
	Again Integrating W. r. to ∞ . Et. $y = \frac{20 \times 3}{3} + C_1 \times + C_2 \left[-\frac{60 (x-2)^3}{6} - \text{Deflection} \right]$ 3) Calculation of Constants of Integration	1 Mack
	Boundary Condition.	
	x=0 $y=0$ putting in Deflection equation	7
	$0 = 0 + c_2 - 10(9-3)^3$ Neglecting -ve terms.	
	$\begin{bmatrix} C_2 = 0 \end{bmatrix}$	
	At x=6m y=0 putting in deflections equation	
	$EI(0) = \frac{20}{3}(6)^3 + 6c_1 + 0 - 10(6-2)^3$	
	$0 = 1440 + 6C_1 - 640$	
	$C_1 = -133.333$	1 Mark
	4) To Calculate Deflection below point load	
	At $x = 2m$, $y = yc$ putting in Deflection eq?	1
	with constants of Intervalin	
	$EI \cdot Y_{c} = \frac{20}{3} (3)^{3} - 133.333 (2) + 0 10 (7-2)^{3}$	
	yc = 53.34 - 266.66	
	EI	
	$\frac{4c}{E1} = \frac{213.32}{E1}$	1 Mask.
Q3(c)	Calculation of position of point load for fixed Beam	
	A IP	
	MA SAME DIE ME	
	₹ 7m — ₹	.
	MA = 2MB.	1 Mark
17	Page/37	17422

.......

1.	•	1
Question & sub Question	Answer	Maeks
	Fixed End moments. $MA = -\frac{Wab^2}{L^2} = \frac{-Pxxx(7-z)^2}{(7)^2}$	1 Mark
	$M_{B} = -\frac{Wa^{2}b}{L^{2}} = -\frac{P \times \chi^{2} \times (7 - \chi)}{(7)^{2}}$ Putting values of MA & MB in eq. (I)	1 Mark
•	$\frac{-\cancel{x} \times \cancel{x} \times (7-x)^{2}}{7^{2}} = 2 \left[-\cancel{y} \times \cancel{x}^{2} \times (7-x) \right]$ $(7-x) = 2x$ $3x = 7$	1 Mask
Q:3(d)	Calculation of fixed end moments. MA (16kN 2kN/m B) MB MA (3m + 8m - 8m - Fixed End moments	1 mark
•	$MA = MA_1 + MA_2 = -\frac{WL^2}{12} - \frac{Wab^2}{L^2}$ $MA = \frac{-2x8^2}{12} - \frac{16x3x5^2}{8^2}$ $MA = -10.67 - 18.75$	1 Maek
	$MB = -29.42 \text{ kN/m}$ $MB = MB_1 + MB_2 = -\frac{WL^2}{12} - \frac{Wa^2b}{L^2}$ $MB = -2\times8^2 - 16\times3^2\times5 = -10.67 - 11.25$	1 Mark.
	MB = -21.92 kN/m	1 Mark
, 18	page 37	17422
		17466

24 Page /37

1		•					17422
Question Question			Answe	<u>8</u> _			Marks
	3) Calula	h'on (f Mome	nt Dis	tribution	n Method.	
		0.5	0,2	0.5	0.5		Remakk
:	-30	+30	-58,59	+35.15		+30	
	+30 50%	+15			~15	50% -30	5.5. mmt 7400 Carryover
	٥		-5859	+35.15	6-45	0	
			+ 6.795	 ,	2+4.922		Baloncing momen
	* -			T40·0/	8 - 40.078	3 0	,
			ments.				
			·795 KN·n •0·078 KN			r	2 Masks.
Q.4(F)	Calculat	ion o	a Distri	bution	factor		
	A	د پیشد در در پیش	<u> </u>		C	D	1
	3	6m 31		3 m.		2 M	1
y 1	Joint.	Member	Fact	02	Total Stiffner	Distribution factor	
	,	ВА	KBA = 2	2 4(3EZ) 6 EZ	2 kB	DF BA = 2E1 4.667E1 DFBA = 0.428	1 Mark
	В	Вс	$k_{BC} = 46$ $k_{BC} = 2$		- 4.00/EH	DfBC = 2.667E1 4.667E1 DfBC = 0.57D	1 mark
	С	CB	$kcB = \frac{4E1}{L}$ $kcB = 2.6$	4E(2I) 67 FI	źkc I	DFCB= 2.667E1 4.167E1 DFCB = 0.64	1 mark
		CD	KcD = 3	L 2	+1.561	DF LD = 1.5EI 4.167 EI	
25	Page/37	_	Kco = 1	SEL	= 4.1675	DFC0=0:36	1 Mark

•

Subject lode: 17429

	Jest Code:		and Model Answers	Marks
Q.5	Attempt	Any TWO) 2×8	(16)
(a)			Where h= 32m	
ı			8m = 18 KW/m3	
		el)	C = 0.6	
			Pd = 1.75 KN/102	
			Smare ?	
	*	D=1.6d X	fmin=9	
*			Notension at base	
h			by a	
Pirect stoers due to self neight (fd):- fd = \frac{8m Kh}{R} = 18 \times 32 = 576 kW/m^2			(1 M)	
Bend	ing Stres	s due to	Wind load (5b):-	
B	ending K	10 ment de	ue to wind force (M)	

Subject code: 17422 W16

$M = P \times h/2$ $M = (0.6 \times 1.75) (D \times 33) (32/2)$ $M = 860.16 d kl.m D = 1.6 d$ $Monneut of Inertia (I) about bending this F = \frac{m(D^4 - d^4)}{64} = \frac{m((1.6d)^4 - d^4)}{64} F = 0.273 d^4 m^4 F Distance of extreme fibre from N.A. F = \frac{D}{2} = \frac{1.6 d}{2} = 0.8 D. F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{1.6 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{1.6 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{1.6 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{1.6 d}{0.273 d^4} \times 0.8 d F = \frac{M}{2} \cdot y = \frac{1.6 d}{0.273 d^4} \times 0.8 d F = \frac{1.6 d}{0.2$	Subject Code: 17422	
$M = (0.6 \times 1.75) (D \times 32) (32/2)$ $M = 860.16 d \text{ kl.m}$ $D = 1.6 d$ Monieut of Inertia (I) about bending this $G = \frac{M(0^4 - d^4)}{64} = \frac{M(1.6d)^4 - d^4}{64}$ $G = \frac{M}{64} = \frac$	Question and Model Answers	Marks
M = 860.16 d kll.m $D = 1.6d$ Money of Inertia (I) about bending this $T = \frac{m(0^4 - d^4)}{64} = \frac{m(1.6d)^4 - d^4}{64}$ $T = 0.273 d^4 m^4$ Poistance of extreme fibre from N.A. $T = \frac{d}{d} = \frac{d}{d} = 0.8D$. $T = \frac{d}{d} = \frac{d}{d} = 0.8D$. $T = \frac{d}{d} = \frac{d}{d} = 0.8D$. Thermal at base of Chinamey, $T = \frac{d}{d} = \frac{d}$		(2M)
$F = \frac{110 - a}{64} = \frac{110 - a}{64}$ $F = 0.273 d^4 m^4$ $F = \frac{1}{2} = \frac{1.6 d}{2} = 0.8 D.$ $F = \frac$	M = 860.16 d klim D=1.6d	
Postance of extreme fibre from N.A. $y = \frac{D}{2} = \frac{1.6d}{2} = 0.8D.$ $y = \frac{M}{2} = \frac{860.16d}{2} \times 0.8d$ $\therefore f_b = \frac{M}{I} \cdot y = \frac{860.16d}{0.273d^4} \times 0.8d$ $\therefore Sb = 2520.62/d^2 \text{ kN/m}^2$ To avoid tension at base of chineney, $f_d = f_b$ $576 = \frac{2520.62}{d^2}$ Internal = $d = 2.092m$ & External = $D = 3.344m$ (17) Extreme fibre stress at the base of chimeny $\Rightarrow D = 3.344m \text{ fuin} = f_d - f_b$ $\Rightarrow f_d + f_b = f_{min}$ $\Rightarrow f_{min} = 0 \times N/m^2$ of the wind ward side	Monieut of Inertia (I) about bending Axis $\pi(0^4 - d^4) = \pi((1.6d)^4 - d^4)$	
Postance of extreme fibre from Nin. $y = \frac{D}{2} = \frac{1.6 d}{2} = 0.8 D.$ $f_b = \frac{M}{I} \cdot y = \frac{860.16 d}{0.273 d^4} \times 0.8 d$ $\therefore Sb = 2520.62 / d^2 \text{ kN/m}^2$ For avoid tension at base of Chineney, $f_d = f_b$ $576 = \frac{2520.62}{d^2}$ Internal = $\frac{d}{d} = 2.092 \text{m}$ external = $D = 3.34 \text{m}$ (1°) Extreme fibre stores at the base of chimeny Fatorene fibre stores at the base of chimeny $f_d + f_b = f_{\text{min}} = 0 \text{kN/m}^2$ of the wind ward side		(1M)
$f_{b} = \frac{D}{I} \cdot y = \frac{860.16 \text{ d.} \times 0.8 \text{ d}}{0.273 \text{ d}4}$ $\therefore \frac{Sb}{b} = \frac{2520.62}{2520.62} \cdot \frac{1}{4^{2}} \times \frac{1}{1} $	R Distance of extreme tibre toom N.A.	
To avoid tension at base of chinemey,	$A = \frac{D}{2} = \frac{1.6d}{2} = 0.8D.$	(1M)
To avoid tension at base of chinney, $f_d = f_b$ $576 = \frac{2520.62}{d^2}$ Internal = $d = 2.092m$ & External = $D = 3.344m$ (1°) Diameter Extrema fibre stores at the base of chimeny $\frac{D = 3.347m}{A(576) = 1152} + \frac{D = 3.347m}{A(576) = 1152}$ at the wind ward side (1m)	$f_{b} = \frac{M}{I} \cdot y = \frac{860.70 \text{ d}}{0.273 \text{ d}^{4}}$	
Internal = $\frac{d}{dz} = \frac{2520.62}{dz}$ Internal = $\frac{d}{dz} = \frac{2.092m}{Dianuter}$ Extremal = $\frac{D}{3.347m}$ (1°) Extremal fibre stocks at the base of chimeny February of the fibre $\frac{D}{3.347m}$ of the fibre of the fibre of the $\frac{D}{3.347m}$ of the wind word side (1°)		(1 m)
Internal = $d = 2.092m$ & External = $D = 3.347m$ (17) Diameter Extreme fibre stores at the base of chimeny $fd + fb = f_{min}$ $fd + fb = f_{min}$ $f(576) = 1152$ $f(57$		
Fetrenu fibre stocks at the base of chimeny fet f b = fmin = 0 kN/m² at the wind ward side (1m)	576 = 2520.62	
$fd+fb = f_{min} = \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{4} \frac{1}{10} \frac{1}{$: Internal = $d = 2.092m$ & External = $D = 3.34$ Diameter Diameter	fm (g sm
2(576)=1152 at the wind word side side	+ D=313471) + thun=td-76	
a) the Lee ward side.	2(576)=1152 at the wind word side	(tm)
	a) the leeward side.	

Swaject Code \$1+422 W10 Question and Model Answers	Marks
Question and infonct Auswers	Marks
95 Braw BMD from Mordand Distribution	***************************************
15 kN/m (MB) 30 KN (MC) 15 KW	TO THE PARKAGE TO THE TAXABLE TO THE
4 (4) 4 0	
A de	
- (m) (m) (m)	
Distribution factors Al jt B DF	
JI-B- BA Relative = 3EI/6 0.4 Stiffness 3ET 0.6	
$\frac{BC}{24} = \frac{3EI}{4} = \frac{0.6}{2}$	(1m)
Potal = 1:25 Et. Z=10 Striftnes	
staffness	
fixed End moments (FEM)	!
MAB = $\frac{15\times(6)^2}{12}$ = 45 kN·m (axticlockwise)	(1/2M)
$MBA = \frac{15 \times (6)^2}{18} = +45 \text{ kWm} (clockwise)$	(KM)
TA = 12 Continuos	(L W)
$M_{BC} = \frac{30 \times 1 \times (3)^2}{(4)^2} = -16.875 \text{ kN·m Canticlack Nise}$	(82,141)
MeB = $\frac{30 \times (1)^{\frac{1}{2}} \times 3}{(4)^{\frac{1}{2}}} = +7.5 \text{ kN.m (clockwise)}$	(Km)
(4)2	(izm)
MeD = 15×1.5 = -22.5 kNim (awi dock wise)	
eggaine BM. for (s/s for every span)	The state of the s
$M_{AB}^{+} = \frac{15 \times (6)^2}{8} = +67.5 \text{ kN} \cdot \text{m}$	/ 1. ma 1
MATS = +64.5 KI	(.tzm)
MBC = 30x1x9 = +22.5 KN.m	
. 100 - 4	

Subject Code = 17422 Question and Model Answers Marks Moment Distribution Table Joint 0 D.F. 0.4 0.6 10 **LEM** -45 -16.875 +45 +7.5 -22.5 Release A & 4150 +45 +22.5 +7.50 Balance C Initial Monas +22-5-22-5-+67.50 -9.375 0 Distribute B' -23.25 - 34.875 Final Moment +44.25 -44.25 +22.5-225 Release A : Because of S/s end. Balance C: Because of overhang +67.5 -44·25 +82·5 -22.5 (2 M 6m 3121 BMD (KD·m)

> # 146

30| Page/37

: FEF = + 23.34 kN : Assumed direction is OK. (Onepressive) Taking moment @ A ZMA = + (50x3) - (FEC x 4.24) - (23.34x3) = 0 : FEC = +18.86 kN : Assumed direction is ob. : Compressive ! At joint @ for equilibrium, b FBE = 0 B FBC Result in Tabulate form SR MEMBER MAGNITUDE NATURE (KN) 1 BC 26.67 Tension 2. BE 0 3. EF 23.34 Compressive 4. EC 18.86 Compressive	(12M)
EMA = + (50x3) - (FECX 4.24) - (23.34x3) = 0 FEC = +18.86 KN . Assumed direction is 0k. : Compression. At joint B for equilibrium, FBE = 0 B FBC Result in Tabulate form SR MEMBER MAGNITUDE NATURE (KN) 1 BC 26.67 Tension 2. BE 0 3. EF 23.34 Compressive 4. T.C.	
FEC = +18.86 KN . Assumed direction is 0k. : Compression. At joint B for equilibrium, B FBE = 0 B Result in Tabulate form SR MEMBER MAGNITUDE NATURE (KN) 1. BC 26.67 Tension 2. BE 0 — 3. EF 23.34 Compressive 4. TC	,
RESULT IN Tabulate form SR MEMBER MAGNITUDE NATURE (4N) 1. BC 26.67 Tension 2. BE 0 3. EF 23.34 Compressive 4. TC	(1 M)
SR MEMBER MAGNITUDE NATURE (4N) 1. BC 26.67 Tension 2. BE 0 3. EF 23.34 Compressive	(1/2 M)
1. BC 26.67 Tonston 2. BE 0 3. EF 23.34 Compressive	
2. BE 0 3. EF 23.34 Compressive	
3. EF 23.34 Compressive	:
4. To	(2m
4. EC 18.86 Compressive	
.	
•	
	The state of the s

Subject Code = 17422 Question and Model Answers	Marks
Q.B AHPRIPH ANY THO 2X8	16
Q.6. @ Slope & deflection by Macaulay's method.	
0 = 8 YD = 8 EI = 40,000 KN·m2.	
25KN 1× 10KN/m	
A mmonomy B	
RA T T C D X RB	
Using Conditions of Equilibrium, -	
EMODA = 0 = +(25×1) + (10×2×(2+2)-(RBX4)	
: RB = 21.25 KN	(m)
Efy=0 =-25 - (10x2) + (21.25) + RA	(4 2)
: [RA = 23.75 KN]	(IM)
for Macquay's Method, section x-x as shown in	
fig with oxigin a A.	(A.)
$M_{XX} = 23.75x \left[-(25)(2-1) \right] - 10(2-2)$	(IM)
tiesna Maraulauls Methodi	
EI $\frac{d^2y}{dz^2} = M_{xx} = 23.75 \chi - 25(x-1) - 5(x-1)$	2) ² (IM)
Integrating on both side,	
ET $\frac{dy}{dz} = \frac{23.75 \times 2}{2} + C_1 - \frac{25(2-1)^2}{2} - \frac{5(2-2)}{3}$	(im)
Integrations on both side, - Ef y = $\frac{23.75}{6}$ 23 + Cix + Ca $\left[-\frac{25(x-1)^3}{6}\right] - \frac{5(x-2)^3}{12}$	CIMI
Efy = 23+020+42+02 56 12	

Subject code: 17422

Subject code: 17422	
Question and Model Answers	Marks
using boundary condition, -	
i) at x=0, y=0	
$EIY = 0 = C_2 = 0$	The second secon
(i) 2 2=4 , y=0	
$0=EIY=\frac{23.75(4)^3}{6}+6(4)+0\left -\frac{25(4-1)^3}{6}\right -\frac{5(4-2)^4}{12}$	THE
$\frac{6}{6\pi} = +33.54$ for stope, at end span 0.00 ET $\frac{dy}{dz} = \frac{28.75 \times 2}{2} - 33.54 - \frac{25(x-1)^2}{2} - \frac{5(x-2)^3}{3}$	
EION = -33.54	
$\sqrt{Q_{A} = \frac{-33.54}{40.000} = 0.8385 \times 10^{3} \text{ sad}}$	(1)
For displacement at mid span a x=2m	:
ET $Y = \frac{23.75x^3}{6} - 33.54(x) - \frac{25(x-1)^3}{6} - \frac{5(x-2)}{12}$)
ET $y_0 = \frac{23.75(2)^3}{6} - 33.54(2) \left -\frac{25(2-1)^3}{6} \right - \frac{5(2-2)^4}{12}$:
1. ET yD = -39.58	
$40 = \frac{-39.58}{40,000} = -0.9885 \times 10^{-3} \text{m}$	
You = -0.9895 mm -re sign indicated vertically downwood	(1)
displacement	

Subject code: 17422

Subject code: 17422	
Question and Model Answers	Marks
span cb = $\frac{16 \times 6^2}{8} = 45 \text{ kN-m}$	(12 m)
Area of Moment diagram:	(k.M)
for span $AB = a_1 = \frac{1}{2} \times 6 \times 60 = 180$	Chami
for span BC = 92 = \$x8x93-75=375	(1/2 Pl)
for span $cD = a_3 = 3 \times 6 \times 45 = 160$	
Using Three Moment Theorem for	distribution of the state of th
$\frac{ Pair-ABC }{(M_{1}x_{6}) + 2M_{1}(6+8) + (M_{1}x_{8}) = \frac{-6(180x_{3})}{6}}$	
As $M_A = 0$, (s/s at end) $-\frac{6(375)(4.33)}{8}$	ا
28MB +8Mc = -1757.82 1	(1m)
Pair B.C.D -6 (375) (3.67)	
$\frac{Pair B \cdot C \cdot D}{(MBX8) + AMC(8+6) + (MDX6) = \frac{-6(375)(3.67)}{8}}$	-
6	
As Mp = 0, (s/s at end)	(IM)
8MB+28MC = -137210	
solving egh (1) & (Hassing) MB = -50.89 KN.m] (Hassing)	(12 m)
& Mc = -41.61 KNm (Hassim)	(1/2 M)
3	***************************************

Subject code: 17422

for Support Reaction () Pake section at B & moment at left side of 13 (RAX6) - (40×3) = -50.89 (RAX6) - (40×3) = -50.89 (RAX6) - (10×6×½) = -41.61 (RD = +23.07 kN) () Pake section at C & moment at Right Side C (RDX6) - (10×6×½) = -41.61 (RD = +23.07 kN) (NM) (NM) (NM) (NM) (NM) (NM) (VM) (VM) (NM) (Subject Cole: 17422	
(Rax6) - (40x3) = -50.89 (Rax6) - (40x3) = -50.89 (Rax6) - (40x3) = -50.89 (Rax6) - (10x6x \frac{6}{2}) = -41.61 (Rox6) - (10x6x \frac{6}{2}) = -41.61 (Ro = +23.07 kN) (Ro = +23.07 kN) (Ro = +23.07 kN) (Ro = +23.07 kN) (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) +	Question and Model Answers N	/arks
(Rax6) - (40x3) = -50.89 (Rax6) - (40x3) = -50.89 (Rax6) - (40x3) = -50.89 (Rax6) - (10x6x \frac{6}{2}) = -41.61 (Rox6) - (10x6x \frac{6}{2}) = -41.61 (Ro = +23.07 kN) (Ro = +23.07 kN) (Ro = +23.07 kN) (Ro = +23.07 kN) (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (Rox8) - (50x6) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) + (80x8) + (80x8) = -41.61 (Rox6) - (40x11) +	for support Reaction	
RA = +11.52 kN (RA = +11.52 kN) (Rox6) - (10×6× $\frac{6}{2}$) = -41.61 (RD = +23.07 kN) (RD = +23.07		
② Take section a) C & moment at Right STOCC $(RD \times 6) - (10 \times 6 \times \frac{6}{2}) = -41.61$ $RD = +23.07 \text{ kN}$ ③ Take section a) C & moment at Left side of C $(11.52 \times 14) - (40 \times 11) + (RB \times 8) - (50 \times 6) = -41.61$ $RB = +60.89 \text{ kN}$ ④ Using $EFY = 0$ for overall beam, $RA + RB + RL + RO = 40 + 50 + (10 \times 6)$ $RC = 54.52 \text{ kN}$ $RC = 54.52 \text{ kN}$	(RAX6) - (40X3) = -50.89	
$(RD \times 6) - (10 \times 6 \times \frac{6}{2}) = -41.61$ $(RD = +23.07 \text{ kN})$ (B) Take section & C & moment at left side of C $(11.52 \times 14) - (40 \times 11) + (RB \times 8) - (50 \times 5) = -41.61$ $[RB = +60.89 \text{ kN}]$ (4) Using $EFY = 0$ for overall beam, $RA + RB + RE + RO = 40 + 50 + (10 \times 6)$ $[RC = 54.52 \text{ kN}]$: [RA = +11.52 KN]	
(11.52×14) - (40×11) + ($R_B \times 8$) - (50×5) = -41.61 [RB = + 60.89 kN] (4) Using $E = 60.89 \text{ kN}$ (4) Using $E = 60.89 \text{ kN}$ (8) RA + RB + Rc + Ro = 40 +50 + (10×6) [Rc = 54.52 kN]	@ Pake section a C & moment at Right STORC	
(11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN] (4) Using Efy=0 for overall beam, RA + RB + Re + Ro = 40 +50 + (10×6) [Re = 54.52 kN] (11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN] (12.54.52 kN) [Re = 54.52 kN]	$(RDX6) - (10X6X\frac{6}{2}) = -41.61$	
(11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN] (4) Using \mathbb{Z} Fy = 0 for overall beam, RA + RB + RL + Ro = 40 + 50 + (10×6) [Rc = 54.52 kN] (11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN]	$R_D = +23.07 \text{kN}$ (%)	2M)
(11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN] (4) Using \mathbb{Z} Fy = 0 for overall beam, RA + RB + RL + Ro = 40 + 50 + (10×6) [Rc = 54.52 kN] (11.52×14) - (40×11) + (RB×8) - (50×5) = -41.61 [RB = +60.89 kN]	3 Take section a C 1 moment at left side	Andrew Commercial Company
4) Using Efy=0 for overall beam, RA + RB + RE + R0 = 40 +50 + (10×6) [Re=54.52 KN] X		
$R_A + R_B + R_C + R_0 = 40 + 50 + (10 \times 6)$ $R_C = 54.52 \text{ (10 \times 6)}$ $R_C = 54.52 \text{ (N)}$	[RB=+60.89 KN]	
$R_A + R_B + R_C + R_0 = 40 + 50 + (10 \times 6)$ $R_C = 54.52 \text{ (10 \times 6)}$ $R_C = 54.52 \text{ (N)}$	(4) Using Efy=0 for overall beam,	***************************************
$\frac{1}{Rc} = 54.52 (cN)$	RA+ RB + Rc+ Ro = 40+50+(10×6)	M)
2411116	1. Rc = 54.52 KN	
24/11/16	χ	- Callander Callander
	24/11/16	