Linear System Theory Solution Set

Yize Wang

October 24, 2019

Contents

1	Introduction	1
2	Introduction to Algebra	5
3	Introduction to Analysis	7
4	Time Varying Linear Systems: Solutions	9
5	First Meeting Discussion	11

iv CONTENTS

Introduction

Exercise 1.1

Exercise 1.2

Exercise 1.3

statement $p: \sqrt{2} \in \mathbb{R}$

statement q: $\sqrt{2}$ is not rational

statement r: m and n have no common divisor

Exercise 1.4

$$f \circ (g \circ h)(w) = f \circ g(h(w)) = f(g(h(w))) = (f \circ g)(h(w)) = (f \circ g) \circ h(w)$$

Exercise 1.5

identity map definition: $\forall x \in \mathcal{X}, 1_X(x) = x$

injective: $1_X(x_1) = 1_X(x_2) \Rightarrow x_1 = x_2$

surjective: $\forall y \in \mathcal{X}, \exists x = y \in \mathcal{X}, 1_X(x) = y$

injective \land surjective \Rightarrow bijective

Problem 1.1

Assume, for the sake of contradiction, $\exists n \in \mathbb{N}$, such that n is both odd and even. According to the definitions of even and odd numbers, we know that $\exists p \in \mathbb{N}, n = 2p + 1$ and $\exists q \in \mathbb{N}, n = 2q$. Thus, 2p + 1 = 2q and hence q = p + 0.5. Since $p \in \mathbb{N}$, $q = p + 0.5 \notin \mathbb{N}$, which leads to the contradiction with $q \in \mathbb{N}$. Therefore, n cannot be both odd and even.

Problem 1.2

- 1. f has a left inverse if and only if it is injective:
 - Suppose f has a left inverse g_L , $g_L: \mathcal{Y} \to \mathcal{X}$ such that $\forall x \in \mathcal{X}, g_L \circ f(x) = x$ $f(x_1) = f(x_2) \Rightarrow g_L(f(x_1)) = g_L(f(x_2)) \Rightarrow x_1 = x_2 \Rightarrow \text{injective}$
 - Suppose f is injective, $\forall y \in \text{RANGE}(f)$, $\exists ! x \in \mathcal{X}, f(x) = y$.

 Construct $g_L(y) = \begin{cases} x & y \in \text{RANGE}(f) \\ 0 & otherwise \end{cases}$

Then $g_L(y)$ defines the left inverse function of f.

2. f has a right inverse if and only if it is surjective:

- Suppose f has a right inverse g_R , $\forall y \in \mathcal{Y}$, $f \circ g_R(y) = y$. $\forall y \in \mathcal{Y}, \exists x = g(y) \in \mathcal{X}$, such that $f(x) = y \Rightarrow$ surjective
- Suppose f is surjective, $\forall y \in \mathcal{Y}, \exists x \in \mathcal{X}, f(x) = y$. Let $g_R(y) = x$. If multiple x exist, choose one of them. $f \circ g_R(y) = f(g_R(y)) = f(x) = y = 1_{\mathcal{Y}}(y)$ Therefore $g_R(y)$ defines the right inverse function of f.
- 3. f is invertible if and only if it is bijective:
 - Suppose f is invertible, there exist left and right inverse of f. Then f is both injective and surjective, which implies f is bijective.
 - Suppose f is bijective, we only need to prove $g = g_L = g_R$. $g_L(y) = g_L \circ 1_{\mathcal{Y}}(y) = g_L(1_{\mathcal{Y}}(y)) = g_L(f \circ g_R(y)) = (g_L \circ f) \circ g_R(y) = 1_{\mathcal{X}} \circ g_R(y) = g_R(y) \Rightarrow g_L = g_R$

Introduction to Algebra

Exercise 2.1

Exercise 2.2

Chapter 3 Introduction to Analysis

Time Varying Linear Systems: Solutions

Tutorial Exercise 4.1

Given the system dynamics $\dot{x}(t) = A(t)x(t)$ and let $\Phi(t, t_0)$ be the transition matrix. Show that

$$\frac{\partial}{\partial t}\Phi(t_0,t) = -\Phi(t_0,t)A(t) .$$

Tutorial Exercise Solution 4.1

$$\begin{split} \Phi(t,t_0)\Phi(t_0,t) &= \mathbb{I} \\ \frac{\partial}{\partial t}\Phi(t,t_0)\Phi(t_0,t) + \Phi(t,t_0)\frac{\partial}{\partial t}\Phi(t_0,t) &= 0 \\ A\Phi(t,t_0)\Phi(t_0,t) + \Phi(t,t_0)\frac{\partial}{\partial t}\Phi(t_0,t) &= 0 \\ \Phi(t,t_0)\frac{\partial}{\partial t}\Phi(t_0,t) &= -A \\ \frac{\partial}{\partial t}\Phi(t_0,t) &= -\Phi(t_0,t)A(t) \end{split}$$

Tutorial Exercise 4.2

Given the system dynamics $\dot{x}(t) = A(t)x(t)$ and let $\Phi(t,t_0)$ be the transition matrix. Prove that if $\mathcal{X}_0 \subseteq \mathbb{R}^n$ is convex, then $\forall t \geq 0$, the set $\mathcal{X}(t) = \{s(t,t_0,x_0,0) : x \in \mathcal{X}_0\}$ is convex.

Tutorial Exercise Solution 4.2

$$\begin{aligned} \forall s_1, s_2 \in \mathcal{X}, \exists x_0^1, x_0^2 \in \mathcal{X}_0, \text{such that } s_1 &= s(t, t_0, x_0^1, 0), s_2 = s(t, t_0, x_0^2, 0) \\ \forall \lambda \in [0, 1], \lambda s_1 + (1 - \lambda) s_2 &= \lambda s(t, t_0, x_0^1, 0) + (1 - \lambda) s(t, t_0, x_0^2, 0) \\ &= s(t, t_0, \lambda x_0^1 + (1 - \lambda) x_0^2, 0) \\ \mathcal{X}_0 \text{ is convex} \Rightarrow \lambda x_0^1 + (1 - \lambda) x_0^2 \in \mathcal{X}_0 \Rightarrow \lambda s_1 + (1 - \lambda) s_2 \in \mathcal{X} \end{aligned}$$

Therefore, $\mathcal{X}(t)$ is a convex set.

First Meeting Discussion

Work Package

- Exercises
- Problems
- Tutorial
- Appendix
- Correction (Suggestion)

Discussion

- At the beginning, we first meet several times to agree on the style (format). For the next phase, I will discuss with PhD students to make sure the solutions are correct and elegant.
- For the first edition, I will simply write down the exercise index without exercise statement. After finishing the main part, let's consider whether to state the exercises again in the solution set.
- In the LATEX homework, commands of LATEX and TEX are mixed. Maybe we should consider renewing the template.
- Maybe we can add a Theorem collection or index as an appendix.
- In Page 71, I think it's better to write B instead of $B(\tau)$ because it is not the standard form of convolution, although they lead to the same result.

- In Page 71, I think you mean "In some cases this can be done directly from the **finite** series".
- In Page 74, maybe we should use symmetric instead of diagnoal?
- Is Definition 5.1 rigorous?

Questions

- Am I going to have a position in the office?
- You corrected typos with an additional document instead of fixing them in the lecture notes. Is there something wrong with the source file?
- What is the difference between "linear in u and x" and "linear jointly in u and x"?
- When does the system diverge exponentially?
- Is the script your work or a student's work?
- What does $\{u_j\}_{j=1}^n \xrightarrow{A \in F^{m \times n}} \{v_i\}_{i=1}^m$ mean?