Finite Group Theory

IKHAN CHOI

Contents

1.	Sylow game	1
2.	Simple groups	3
2.1.	Symmetric groups	3
2.2.	Linear groups	3
3.	Extensions	:

1. Sylow game

Definition 1.1 (Sylow *p*-subgroup). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. A $Sylow \ p$ -subgroup is a subgroup of order p^a . We are going to denote the set of Sylow p-subgroups by $Syl_p(G)$ and the number of Sylow p-subgroups by $n_p(G)$.

Theorem 1.1 (The Sylow theorem). Let G be a finite group of order $n = p^a m$ for a prime $p \nmid m$. Then,

$$p \mid n_p - 1, \qquad n_p \mid m$$

for some $k \in \mathbb{N}$.

Proof. Step 1: Sylow p-subgroups exist. We apply mathematical induction. The base step is trivial. Suppose every finite group of order less than n possesses a Sylow p-subgroup.

By applying the orbit-stabilizer theorem for the action $G \curvearrowright G$ by conjugation, build the class equation

$$|G| = |Z(G)| + \sum_{i} |G : C_G(g_i)|.$$

There are two cases: $p \mid |Z(G)|$ or $p \nmid |Z(G)|$.

Case 1: $p \mid |Z(G)|$. The group G has a normal subgroup of order p by applying Cauchy's theorem for abelian groups on the center. Then, the inverse image of a Sylow p-subgroup of the quotient group is also a Sylow p-subgroup of G.

Case 2: $p \nmid |Z(G)|$. Since $p \mid n$, we have $p \nmid |G|$: $C_G(g)$ for some $g \in G$. Then, a Sylow p-subgroup of the centralizer is also a Sylow p-subgroup of G.

Therefore, we are done for Step 1.

First Written: November 4, 2019. Last Updated: November 4, 2019.

- Step 2: Sylow p-subgroup that is normal is unique. Note that p does not divide the order of the quotient group. Every p-subgroup should be contained in the Sylow p-subgroup, the kernel of the quotient map. The Sylow p-subgroup is clearly unique.
- Step 3: Sylow p-subgroups get action by conjugation. Let P be a Sylow p-subgroup of G. We construct class equations via the orbit-stabilizer theorm for various actions to extract information on n_p . Note that stabilizers in any setwise conjugation action is exactly normalizers.
 - (1) The action $P \curvearrowright \operatorname{Syl}_p(G)$ gives

$$n_p = 1 + \sum_{i} |P: N_P(P_i)|$$

since $P = N_P(P_i)$ implies $P \leq N_G(P_i)$ and $P = P_i$.

(2) Suppose the action $G \curvearrowright \operatorname{Syl}_p(G)$ is not transitive. Take another Sylow p-subgroup P' is not conjugate with P in G. The two actions $P \curvearrowright \operatorname{Orb}_G(P)$ and $P' \curvearrowright \operatorname{Orb}_G(P)$ gives

$$|\operatorname{Orb}_G(P)| = 1 + \sum_i |P : N_P(P_i)| = \sum_i |P' : N_{P'}(P_i)|.$$

It deduces $|\operatorname{Orb}_G(P)| \equiv 0, 1 \pmod{p}$ simultaneously, which leas a contradiction.

(3) The action $G \curvearrowright \operatorname{Syl}_n(G)$ gives

$$n_p = |G: N_G(P_i)|$$

for all $P_i \in \text{Syl}_p(G)$ because the action is transitive.

Then, (1) proves $p \mid n_p - 1$, and (3) proves $n_p \mid m$.

Corollary 1.2. Let G be a finite group. Then,

- (1) every pair of two Sylow p-subgroup is conjugate.
- (2) every p-subgroup is contained in a Sylow p-subgroup.
- (3) a Sylow p-subgroup is normal if and only if $n_p = 1$.

Theorem 1.3. Alternative proof for existence of p-groups.

Proof. Let $|G| = p^{a+b}m$. Let \mathcal{P}_{p^a} be the set of all p^a -sets in G. Give $G \curvearrowright \mathcal{P}_{p^a}$ by left multiplication. Since $v_p(|\mathcal{P}_{p^a}|) = v_p(\binom{p^a(p^bm)}{p^a}) = b$, there is an orbit \mathcal{O} such that $v_p(|\mathcal{O}|) \leq b$. We have transitive action $G \curvearrowright \mathcal{O}$ and the stabilizer H satisfies $p^a \mid |G|/|\mathcal{O}| = |H|$. Since $H \curvearrowright \mathcal{O}$ trivially, $H \curvearrowright A$ for $A \in \mathcal{O} \subset \mathcal{P}_{p^a}$. It is only possible when $H \subset A$, hence $|H| = p^a$.

By Hölder program, normal subgroups always benefit:

- (1) existence of subgroup of particular order(by extension),
- (2) contradiction by n_p element counting

A normal subgroup of a subgroup makes normalizer lifting that results in:

- (1) existence of subgroup of particular order(by normalizer),
- (2) existence of normal subgroup,
- (3) constraint of n_p by normalizer of Sylow subgroup.

Find a subgroup of nice order

What we want to find is the *distribution of subgroups* such as their orders, numbers, itersections, normality, and isomorphic types.

In order to show the existence of subgroups of paricular orders:

- (1) use induction and expand class equation
- (2) extend subgroups of a quotient group
- (3) get normalizers of Sylow *p*-subgroups
- (1) get a permutation representation by left multiplication
- (2) get normalizers or centralizers by class equation
- (1) count elements
- (2) compare Sylow p-subgroups of prime dominating subgroups

2. Simple groups

- 2.1. Symmetric groups.
- 2.2. Linear groups.

3. Extensions

outer semidirect product and inner semidirect product

Proposition 3.1. Let N be a normal subgroup of G.

- (1) there is H < G such that G = NH and $N \cap H = 1$,
- (2)
- (3)