REAL ANALYSIS QUALIFYING EXAM Fall 2001

Answer as many as possible. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- 1. (a) Does $\int_0^\infty \frac{\sin x}{x} dx$ exist as an (improper) Riemann integral? Prove your answer.
 - (b) Does $\int_0^\infty \frac{\sin x}{x} dx$ exist as a Lebesgue integral? Prove your answer.
- **2.** Suppose λ denotes Lebesgue measure on $\mathbb R$ and A is a Borel set with $\lambda(A) > 0$. Show that for every 0 < r < 1, there is a bounded open interval I with $\lambda(A \cap I) > r\lambda(I)$.
- **3.** Let μ be a complex measure on \mathcal{M} . Show that there exists a set $A \subset \mathcal{M}$ such that
 - (i) $B \subset A$ implies $Re(\mu(B)) > Im(\mu(B))$
 - (ii) $B \subset A^c$ implies $\operatorname{Im}(\mu(B)) \ge \operatorname{Re}(\mu(B))$.
- **4.** Prove that $(L^{\infty}([0,1]))^* \neq L^1([0,1])$. Hint: One way to prove this is to show there is a bounded linear functional $\Lambda \neq 0$ such that $\Lambda|_{C([0,1])} \equiv 0$. (Here, C([0,1]) denotes continuous functions on the interval [0,1].) Of course, you should explain why the existence of this functional proves that $(L^{\infty}([0,1]))^* \neq L^1([0,1])$.
- **5.** Suppose (X, \mathcal{M}, μ) is a σ -finite measure space, μ positive, and $f: X \to [0, \infty)$ an \mathcal{M} measurable function. Suppose $G: [0, \infty) \to [0, \infty)$ is increasing and absolutely continuous, G(0) = 0.

Prove that

$$\int_X G(f(x))d\mu = \int_0^\infty G'(t)\,\mu(\{x:f(x)>t\})dt.$$

- **6.** Suppose ν, μ are positive measures with ν finite. Show that the following two statements are equivalent.
 - (a) $\nu << \mu$
 - (b) For every $\varepsilon > 0$, there exists a $\delta > 0$ that $\nu(B) < \varepsilon$ whenever $B \in \mathcal{M}$ and $\mu(B) < \delta$.
- 7. Suppose $\{f_n\}$ is a sequence of nonnegative measurable functions on X such that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. and $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu < \infty$. Prove that $\lim_{n\to\infty} \int_E f_n d\mu = \int_E f d\mu$ for every measurable set $E \subseteq X$.
- 8. Suppose f is a complex measurable function on X, μ is a positive measure on X and $\varphi(p) = \int_X |f|^p d\mu$, $0 . Let <math>E = \{p : \varphi(p) < \infty\}$. Show that if $r , <math>r \in E$, $s \in E$ then $p \in E$. Show that the function $\log \varphi$ is convex on the interior of E.