

Algorithmen und Datenstrukturen

Wintersemester 2018/19
3. Vorlesung

Laufzeitanalyse

Recap: Diskutieren Sie mit Ihrer Nachbarln!

- 1. Was sind die zwei (oder drei?) entscheidensten Fragen, die wir uns über einen Algorithmus stellen?
- Warum eigentlich interessieren wir uns fürs Sortieren?
- Welche Entwurfstechniken für Algorithmen kennen wir schon? Heute schon implementiert?
- Wie beweisen wir die Korrektheit
 - a) einer Schleife?
 - robieren Sie's selbst! b) eines inkrementellen Algorithmus?
 - c) eines rekursiven Algorithmus?

Laufzeit analysieren: InsertionSort

```
InsertionSort(int[] A)

for j=2 to A.length do

key=A[j]

i=j-1

while i>0 and A[i]>key do

A[i+1]=A[i]

i=i-1

A[i+1]=key
```

Zwei Konventionen:

- 1) $n := Gr\"{o}Be der Eingabe$ = hier A.length
- 2) Wir zählen nur Vergleiche!(zwischen Elementen der Eingabe)

Gesucht: Maß für die Laufzeit, das nur von *n* abhängt.

Problem: Tatsächliche Laufzeit hängt stark von Eingabe ab.

Lösung(?): Betrachte Extremfälle!

Bester Fall: A vorsortiert $\Rightarrow n-1$ Vergleiche

Schlechtester Fall: A absteigend sortiert

$$\Rightarrow 1 + 2 + \dots + (n-1) = \frac{n^2 - n}{2} \text{ Vgl.}$$

Laufzeit von MergeSort

Korrekt?

Effizient?

Sei $V_{MS}(n)$ die maximale Anzahl von Vergleichen, die MergeSort zum Sortieren von n Zahlen benötigt.

Dann gilt
$$V_{\text{MS}}(n) = \begin{cases} 0 & \text{falls } n = 1, \\ 2V_{\text{MS}}(n/2) + n & \text{sonst.} \end{cases} = n \log_2 n$$
Zweierpotenz

Vergleich InsertionSort vs. MergeSort

Vergleich InsertionSort vs. MergeSort

Ein Klassifikationsschema für Funktionen (I)

Definition.

Sei $g:\mathbb{N}\to\mathbb{R}$ eine Funktion. Dann ist "Groß-Oh von g"

$$O(g) = \left\{ f : \mathbb{N} \to \mathbb{R} \;\middle|\; egin{array}{l} ext{es gibt positive Konstanten c und n_0,} \\ ext{so dass für alle $n \geq n_0$ gilt:} \\ ext{} f(n) \leq c \cdot g(n) \end{array}
ight\}$$

die Klasse der Fkt., die höchstens so schnell wachsen wie g.

Beispiel.
$$f(n) = 2n^2 + 4n - 20$$

Behaupt.: $f \in O(n^2)$; m.a.W. f wächst höchstens quadratisch.

Beweis. Wähle positive
$$c$$
 und n_0 , so dass für alle $n \ge n_0$ gilt: $f(n) \le c \cdot n^2$.
$$f(n) = 2n^2 + 4n - 20 \le 6n^2 \implies \text{wähle } c = 6.$$

Welches n_0 ? Aussage gilt für jedes $n \ge 0$. Nimm z.B. $n_0 = 1$.

Ein Klassifikationsschema für Funktionen (I)

Definition.

Sei $g: \mathbb{N} \to \mathbb{R}$ eine Funktion. Dann ist "Groß-Oh von g"

$$O(g) = \left\{ f : \mathbb{N} \to \mathbb{R} \mid \begin{array}{c} ext{es gibt positive Konstanten } c \text{ und } n_0, \\ ext{so dass für alle } n \geq n_0 \text{ gilt:} \\ ext{} f(n) \leq c \cdot g(n) \end{array} \right\}$$

die Klasse der Fkt., die *höchstens* so schnell wachsen wie g.

Beispiel.
$$f(n) = 2n^2 + 4n - 20$$
 negiere! (\neg)

Behaupt.: $f \notin O(n)$; m.a.W. f wächst schneller als linear.

Beweis. Zeige: für alle pos. Konst. c und n_0 gibt es ein $n \ge n_0$, so dass $f(n) > c \cdot n$.

Ein Klassifikationsschema für Funktionen (I)

Definition.

Sei $g:\mathbb{N}\to\mathbb{R}$ eine Funktion. Dann ist "Groß-Oh von g"

$$O(g) = \left\{ f \colon \mathbb{N} \to \mathbb{R} \;\middle|\; egin{array}{l} ext{es gibt positive Konstanten c und n_0,} \\ ext{so dass für alle $n \geq n_0$ gilt:} \\ ext{} f(n) \leq c \cdot g(n) \end{array}
ight\}$$

die Klasse der Fkt., die höchstens so schnell wachsen wie g.

Beispiel.
$$f(n) = 2n^2 + 4n - 20$$

Behaupt.: $f \notin O(n)$; m.a.W. f wächst schneller als linear.

Beweis. Zeige: für alle pos. Konst. c und n_0 gibt es ein $n \ge n_0$, so dass $f(n) > c \cdot n$.

Also: bestimme n in Abh. von c und n_0 , so dass $n \ge n_0$ und $f(n) = 2n^2 + 4n - 20 > c \cdot n$.

Fortsetzung des Beweises $f \notin O(n)$

Bestimme n in Abh. von c und n_0 , so dass $n \geq n_0$ und

$$f(n) = 2n^2 + 4n - 20 > c \cdot n.$$

Problem: Die "-20" stört.

Aber wenn $n \geq 5$, dann gilt $4n - 20 \geq 0$.

D.h. wenn $n \ge 5$ und $2n^2 \ge cn$, dann f(n) > cn.

Wie wär's mit n = c?

Gut, aber wir müssen sicherstellen, dass auch $n \geq 5$ und $n \geq n_0$ gilt.

Also nehmen wir $n = \lceil \max(c, 5, n_0) \rceil$.

Für dieses n gilt $n \ge n_0$ und f(n) > cn. Also gilt $f \not\in O(n)$. \square

Ein Klassifikationsschema für Funktionen (II)

Definition.

Sei $g:\mathbb{N}\to\mathbb{R}$ eine Funktion. Dann ist "Groß-Omega von g"

$$\Omega(g) = \left\{ f : \mathbb{N} \to \mathbb{R} \;\middle|\; egin{array}{l} ext{es gibt positive Konstanten c und n_0,} \\ ext{so dass für alle $n \geq n_0$ gilt:} \\ ext{$c \cdot g(n) \leq f(n)$} \end{array}
ight\}$$

die Klasse der Fkt., die *mindestens* so schnell wachsen wie *g*.

Beispiel.
$$f(n) = 2n^2 + 4n - 20$$

Bewiesen:
$$f \notin O(n)$$
, $f \in O(n^2)$, $f \in O(n^3)$

Entsprechend:
$$f \in \Omega(n)$$
, $f \notin \Omega(n^2)$, $f \notin \Omega(n^3)$

Zusammen: $f \in$

$$f \in \Theta(n^2)$$

d.h. es gibt pos. Konst. c_1 , c_2 , n_0 , so dass für alle $n \ge n_0$ gilt: $c_1 \cdot n^2 \le f(n) \le c_2 \cdot n^2$.

Das Klassifikationsschema – intuitiv

```
f \in O(n^2) bedeutet f wächst h\"{o}chstens quadratisch. f \in \Omega(n^2) mindestens f \in O(n^2) genau echt langsamer als echt schneller als
```

Genaue Definition für "klein-Oh" und "klein-Omega" s. Kap. 3, [CLRS].

Übung.

Gegeben folgende Funktionen $\mathbb{N} \to \mathbb{R}$ mit $n \mapsto \dots$:

$$n^2$$
, $\log_2 n$, $\sqrt{n \log_2 n}$, 1.01^n , $n^{\log_3 4}$, $\log_2(n \cdot 2^n)$, $4^{\log_3 n}$.

Sortieren Sie nach Geschwindigkeit des asymptotischen Wachstums, also so, dass danach gilt: $O(...) \subseteq O(...) \subseteq \cdots \subseteq O(...)$.