Efficient Point-to-Point Shortest Path Algorithms

Andrew V. Goldberg (Microsoft Research) Chris Harrelson (Google) Haim Kaplan (Tel Aviv University) Renato F. Werneck (Princeton University)

Example Graph

Shortest Paths

- Point-to-point shortest path problem (P2P):
 - Given:
 - * directed graph with nonnegative arc lengths $\ell(v, w)$;
 - * source vertex s;
 - * target vertex t.
 - Goal: find shortest path from s to t.
- Our study:
 - Large road networks:
 - * 330K (Bay Area) to 30M (North America) vertices.
 - Algorithms work in two stages:
 - * preprocessing: may take hours, outputs linear amount of data;
 - * query: should take milliseconds, uses the preprocessed data.

2

Obvious Algorithm

- Precompute all shortest paths and store distance matrix.
- Will not work on large graphs (n = 30M).
 - $-O(n^2)$ space: \sim 26 PB.
 - $-\tilde{O}(nm)$ time: years (single Dijkstra takes \sim 10s).

(All times on a 2.4 GHz AMD Opteron with 16 GB of RAM.)

Northwest

Dijkstra's Algorithm

- Vertices processed in increasing order of distance:
 - maintains a distance label d(v) for each vertex:
 - * upper bound on dist(s, v);
 - * initially, d(s) = 0 and $d(v) = \infty$ for all other vertices.
 - In each iteration:
 - * Pick unscanned vertex v with smallest $d(\cdot)$ (use heap).
 - * Scan v:
 - · For each edge (v, w), check if $d(w) > d(v) + \ell(v, w)$.
 - · If it is, set $d(w) \leftarrow d(v) + \ell(v, w)$.
 - Stop when the target t is about to be scanned.
 - [Dijkstra'59, Dantzig'63].
- Intuition:
 - grow a ball around s and stop when t is scanned.

5

Bidirectional Dijkstra's Algorithm

- Bidirectional Dijkstra's algorithm:
 - forward search from s with labels d_f :
 - * performed on the original graph.
 - reverse search from t with labels d_r :
 - * performed on the reverse graph;
 - * same set of vertices, each arc (v, w) becomes (w, v).
 - alternate in any way.
- Intuition: grow a ball around each end (s and t) until they "meet".

Dijkstra's Algorithm

Bidirectional Dijkstra's Algorithm

Bidirectional Dijkstra's Algorithm

- Possible stopping criterion:
 - a vertex v is about to be scanned a second time:
 - * once in each direction;
 - -v may not be on the shortest path.
- ullet We must maintain the length μ of the best path seen so far:
 - initially, $\mu = \infty$;
 - when scanning an arc (v,w) in the forward search and w is scanned in the reverse search, update μ if $d_f(v) + \ell(v,w) + d_r(w) < \mu$.
 - similar procedure if scanning an arc in the reverse search.

9

Part I: A* Search

Bidirectional Dijkstra's Algorithm

- Stronger stopping condition:
 - Let top_f and top_r be the top heap values (forward and reverse).
 - Stop when $top_f + top_r \ge \mu$.
 - Previous stopping criterion is a special case.
- Why does it work?
 - Suppose there exists an s-t path P with length less than μ .
 - There must be an arc (v, w) on this path such that:
 - $* \ \operatorname{dist}(s,v) < \operatorname{top}_f \ \operatorname{and}$
 - * $\operatorname{dist}(w,t) < \operatorname{top}_r$.
 - Both v and w have been scanned already.
 - When the second of these was scanned, it would have found the P.
 - * Contradiction: P cannot exist.

10

A* Search

- ullet Define potential function $\pi(v)$ and modify lengths:
 - $-\ell_{\pi}(v, w) = \ell(v, w) \pi(v) + \pi(w)$
 - $-\ell_{\pi}(v,w)$: reduced cost of arc (v,w).
- All s-t paths change by same amount: $\pi(t) \pi(s)$.
- A* search:
 - $-\,$ Equivalent to Dijkstra on the modified graph:
 - * correct if $\ell_{\pi}(v, w) \geq 0$ (π feasible).
 - Vertices scanned in increasing order of $k(v) = d(v) + \pi(v)$:
 - * $\pi(v)$: estimate on $\operatorname{dist}(v,t)$;
 - $*\ k(v)$: estimated length of shortest s-t path through v.
 - If $\pi(t)=0$ and π feasible, $\pi(v)$ is a lower bound on $\operatorname{dist}(v,t)$.
- All we need are good feasible lower bounds (e.g., Euclidean).

A* Search

- Why is A* equivalent to Dijkstra on the modified graph?
 - Dijkstra picks vertices with increasing (modified) distance from s:
 - $* \operatorname{\mathsf{dist}}_{\pi}(s, v) = \operatorname{\mathsf{dist}}(s, v) \pi(s) + \pi(v)$
 - $-A^*$ search picks vertices with increasing key:
 - $* \ k(v) = \mathsf{dist}(s, v) + \pi(v)$
 - $-\pi(s)$ is constant: these orders are the same.
- Why is $\pi(v)$ a lower bound on $\operatorname{dist}(v,t)$ when π is feasible and $\pi(t)=0$?
 - Take the shortest path from v to t.
 - Two ways of computing its reduced cost:
 - 1. $dist(v, t) \pi(v) + \pi(t) = dist(v, t) \pi(v)$ (since $\pi(t) = 0$);
 - 2. sum of the reduced costs of all arcs:
 - * must be nonnegative, since π is feasible.
 - Combining them: $\operatorname{dist}(v,t) \pi(v) \ge 0 \Rightarrow \pi(v) \le \operatorname{dist}(v,t)$.

13

Bidirectional A* Search

- Must use consistent potential functions.
- In general, two arbitrary feasible functions π_f and π_r are not consistent.
- Their average is both feasible and consistent [Ikeda et al. 94]:

$$- p_f(v) = \frac{1}{2}(\pi_f(v) - \pi_r(v))$$

$$-p_r(v) = \frac{1}{2}(\pi_r(v) - \pi_f(v)) = -p_f(v)$$

- To make the algorithm more intuitive, we make:
 - $-p_f(v) = \frac{1}{2}(\pi_f(v) \pi_r(v)) + \frac{\pi_r(t)}{2}$
 - $-p_r(v) = \frac{1}{2}(\pi_r(v) \pi_f(v)) + \frac{\pi_f(s)}{2}$
 - Added terms are constant: functions still feasible and consistent.
 - When π_f and π_r are lower bounds, $p_f(t) = 0$ and $p_r(s) = 0$.
- p usually provides worse bounds than π :
 - still worth it in practice.

Bidirectional A* Search

- Bidirectional search needs two potential functions:
 - $-\pi_f(v)$: estimate on dist(v,t).
 - $-\pi_r(v)$: estimate on dist(s,v).
- Reduced cost of arc (v, w):
 - Forward: $\ell_f(v, w) = \ell(v, w) \pi_f(v) + \pi_f(w)$.
 - Reverse: $\ell_r(w,v) = \ell(v,w) \pi_r(w) + \pi_r(v)$.
 - * the arc appears as (w, v) in the reverse graph.
- These values must be consistent:

$$\ell_f(v, w) = \ell_r(w, v) \ell(v, w) - \pi_f(v) + \pi_f(w) = \ell(v, w) - \pi_r(w) + \pi_r(v) \pi_f(w) + \pi_r(w) = \pi_f(v) + \pi_r(v)$$

• This must be true for all pairs (v, w), i.e., $(\pi_f + \pi_r) = \text{constant}$.

14

Bidirectional A* Search

- Standard bidirectional Dijkstra:
 - $\ \mathsf{stop} \ \mathsf{when} \ \mathsf{top}_f + \mathsf{top}_r \geq \mu.$
 - * top $_f$: length of the path from s to top element of forward heap.
 - * top_r : length of (reverse) path from t to top element of reverse heap.
 - $*~\mu$: best s-t path seen so far.
- Bidirectional A* search: same, but on the modified graph:
 - Let $\ensuremath{v_f}$ and $\ensuremath{v_r}$ be the top elements in each heap;
 - Length of path s- v_f is $d_f(v_f) + p_f(v_f) p_f(s) = top_f p_f(s)$.
 - Length of reverse path t- v_r is $d_r(v_r) + p_r(v_r) p_r(t) = \mathsf{top}_r p_r(t)$.
 - Stopping criterion:

$$[\mathsf{top}_f - p_f(s)] + [\mathsf{top}_r - p_r(t)] \ge [\mu - p_f(s) + p_f(t)]$$

- Simplifying and using $p_f(t) = 0$:

$$\mathsf{top}_f + \mathsf{top}_r \ge \mu + p_r(t).$$

Lower Bounds

- Preprocessing:
- select a constant number of landmarks (we use 16);
- for each landmark, precompute distance to and from every vertex.
- Lower bounds use the triangle inequality:

- \bullet A good landmark appears "before" v or "after" w.
- More than one landmark: pick maximum (still feasible).

17

Experimental Results

Northwest (1649045 vertices), 1000 random pairs:

	PREPROCESSING	SSING		QUERY	
МЕТНОБ	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518723	1 197 607	340.74
Landmarks	4	132	16276	150 389	12.05

 \bullet Vertices scanned: ${\sim}1\%$ on average, ${\sim}10\%$ on bad cases.

Landmark Selection

- Landmark selection happens in two stages.
- Preprocessing:
- Pick a small number of landmarks (we use 16).
- * more landmarks: better queries, more space.
- Store on disk distances to and from each landmark.
- ullet Query (s and t known):
- using all available landmarks is expensive;
- pick a small subset (2 to 6) that is good for the search.

Landmark Selection during Preprocessing

- Ultimate goal:
- There should be a landmark "behind" every $s{ ext{-}}t$ pair.
- Graphs are big, cannot evaluate this exactly: use heuristics.
- * All methods are quasi-linear.
- Algorithms:
- Simple methods: random, farthest, planar;
- avoid: adds landmarks "behind" regions not currently covered;
- maxcover: avoid + local search:
- * goal: maximize #arcs with zero reduced cost.
- Best in practice is maxcover:
- queries ~ 3 times as fast as random;
- preprocessing ${\sim}15$ times slower.

21

21

Part II: Reach

Landmark Selection at Query Time

- Use only an active subset:
- prefer landmarks that give the best lower bound on dist(s,t).
- We use dynamic selection:
- start with two landmarks (best forward + best reverse);
- periodically check if a new landmark would help;
- heaps rebuilt when landmarks added.
- Performance in practice:
- picks only $\sim\!\!3$ landmarks;
- fewer nodes visited than with any fixed number of landmarks.

22

Reaches

 \bullet Let v be a vertex on the shortest path P between s and t.

ullet Reach of v with respect to P:

$$\mathsf{reach}(v,P) = \min\{\mathsf{dist}(s,v),\mathsf{dist}(t,v)\}$$

 \bullet Reach of v with respect to the whole graph:

$$\mathsf{reach}(v) = \mathsf{max}_P\{\mathsf{reach}(v,P)\},$$

over all shortest paths P that contain v [Gutman'04].

- Intuition:
- vertices on highways have high reach;
- vertices on local roads have low reach.

Using Reaches

- ullet Reaches can be used to prune the search during an s-t query.
- \bullet While scanning an edge $(v,w)\colon$
- If $\operatorname{reach}(w) < \min\{d(s,v) + \ell(v,w), \operatorname{LB}(w,t)\}$, then w can be pruned.

- How do we obtain lower bounds?
- Explicitly: Euclidean distances (Gutman's suggestion), landmarks.
- Implicitly: make the search bidirectional.

25

Queries with Reaches

Implicit Bounds: Bidirectional Search

- \bullet Let R_{t} be the radius of the reverse search:
- $-\ R_t$ is the value of the top element in the reverse heap;
- if w not labeled in the reverse direction, then $d(w,t) \geq R_t.$

- \bullet Pruning test: $\operatorname{reach}(w) < \min\{d(s,v) + \ell(v,w), R_t\}$
- for best results, balance the forward and reverse searches by radius.

56

Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:

	PREPROCESSING	SSING		QUERY	
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra		28	518723	518723 1197607	340.74
Landmarks	4	132	16276	150389	12.05
Reaches	1100	34	53 888	106 288	30.61

Computing Reaches

- Trivial algorithm:
- compute every s-t path;
- determine reach of each vertex on each path.
- Implementation:
- Build shortest path tree T_r from each vertex r;
- Determine reach of each vertex v within the tree:

$$\mathsf{reach}(v, T_r) = \mathsf{min}\{\mathsf{depth}(v), \mathsf{height}(v)\}$$

- Take maximum over all $\it r$.
- \bullet Runs in $\tilde{O}(nm)$ time:
- overnight on Bay Area, years on North America.

29

Shortcuts

• Consider a sequence of vertices of degree two on the path below:

Computing Reaches

- Query still correct with upper bounds on reaches.
- We use iterative algorithm:
- 1. find vertices with reach at most ϵ ;
- look only at partial shortest path trees (depth $\sim 2\epsilon).$
- 2. eliminate vertices with small reach;
- if no vertices remain, stop;
- otherwise, increase ϵ and start another iteration.
- Use penalties to account for vertices already eliminated:
- reaches no longer exact, but valid upper bounds
- Works well if many vertices are eliminated between iterations.

30

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
- they all have high reach;

31

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
- they all have high reach.
- Add a shortcut:
- single edge bypassing a path (with same length).
- assume ties are broken by taking path with fewer nodes.

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
- they all have high reach.
- Add a shortcut:
- single edge bypassing a path (with same length).
- assume ties are broken by taking path with fewer nodes.
- More shortcuts can be added recursively.

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
- they all have high reach.
- Add a shortcut:
- single edge bypassing a path (with same length).
- assume ties are broken by taking path with fewer nodes.

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
- they all have high reach.
- Add a shortcut:
- single edge bypassing a path (with same length).
- assume ties are broken by taking path with fewer nodes.
- More shortcuts can be added recursively.

Shortcuts

- Adding shortcuts during preprocessing:
- speeds up queries (pruning more effective);
- speeds up preprocessing (graph shrinks faster); $\,$
- requires slightly more space (graph has more arcs).
- Shortcuts bypass vertices of degree two:
- some have degree two in the original graph;
- some acquire degree two as other vertices are eliminated.
- Sanders and Schultes [ESA'05]:
- similar idea for hierarchy-based algorithm.

37

Experimental Results

• Northwest (1649 045 vertices), 1000 random pairs:

	PREPROCESSING	SSING		QUERY	
МЕТНОD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	1	28	518723	1 197 607	340.74
Landmarks	4	132	16276	150389	12.05
Reaches	1100	34	53 888	106 288	30.61
Reaches+Shortcuts	17	100	2804	5877	2.39

Reaches with Shortcuts

Reaches and Landmarks

- A* search with landmarks can use reaches:
- A* gives the search a sense of direction.
- Reaches make the search sparser.
- Landmarks have dual purpose:
- 1. guide the search;
- 2. provide lower bounds for reach-based pruning.

Reaches and Landmarks (with Shortcuts)

Summary of Results

• North America (29883886 vertices), 1000 random pairs:

	PREPROCESS	CESS		QUERY	
METHOD	hours	GB	avgscan	maxscan	ms
Bidirectional Dijkstra		0.5	0.5 10 255 356	27 166 866	7 633.9
Landmarks	1.6	2.3	250381	3 584 377	393.4
Reaches+Shortcuts	11.3	1.8	14 684	24 618	17.4
Reaches+Shortcuts+Landmarks	12.9	3.6	1 595	7 450	3.7

Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:

	PREPROCESSING	SSING		QUERY	
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518 723	1 197 607	340.74
Landmarks	4	132	16 276	150389	12.05
Reaches	1100	34	53888	106 288	30.61
Reaches+Shortcuts	17	100	2 804	5877	2.39
Reaches+Shortcuts+Landmarks	21	204	367	1513	0.73

42

Future Directions

Theory:

For which classes of graphs does each algorithm work?

How to find a good set of landmarks?

 $-\ \mbox{What}$ is the best set of shortcuts for a given graph?

Is there a faster algorithm for computing exact reaches?

- Is there a better algorithm for computing approximate reaches?

Practice:

Reduce size of preprocessed data.

- Make queries more cache-efficient.

References

- Goldberg, Harrelson, and Werneck (in preparation):
- Goldberg and Harrelson (SODA'05):
- * "ALT algorithm" (A* search + Landmarks + Triangle inequality).
- Goldberg and Werneck (Alenex'05):
- * improved preprocessing and queries;
 - * Pocket PC implementation.
- Goldberg, Kaplan, and Werneck (2005):
- reach with shortcuts + A^* search.

http://www.cs.princeton.edu/~rwerneck/public.htm