PARAMETER ESTIMATION AND SIMULATION OF AROMATIC RECOVERY PROCESS USING LIQUID-LIQUID EXTRACTION AND EXTRACTIVE DISTILLATION

A Thesis submitted
In Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by

Ranjan Kumar Sahoo

to the

DEPARTMENT OF CHEMICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
August 2005

TH CE 12005/M Sa 19-8

1.3 OCT 2005 ICE

हुरबोत्तम का विच्या केलकर पुस्तकावय भारतीय व्यक्ति में विसंस्थान कानपुष सवास्त्रि कः A 153052

CERTIFICATE

It is certified that the work contained in this thesis entitled "Parameter Estimation and Simulation of Aromatic Recovery Process using Liquid-Liquid Extraction and Extractive Distillation" by Mr. Ranjan Kumar Sahoo has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

Ashok khanna

Dr. Ashok Khanna

Professor

Department of Chemical Engineering Indian Institute of technology Kanpur INDIA-208016

August 2005

* OST GRADUATE OFFICE THESIS SUBMITTED CO. 12 0 05

vii

Dedicated to....

All those who raced against time, but lost

ACKNOWLEDGMENT

I would like to express my deep gratitude towards my thesis supervisor Dr. Ashok Khanna for his excellent guidance, support and constant encouragement throughout my thesis work.

I would like to thank my labmates, Tamal Banerjee, Amit D. Saran, Swagat S. Rath, Parimal P. Kulkarni, my friends Sakuntala, Gadadhar and all for their great affection, care and timely criticism.

Finally, I am indebted to my parents who have brought me up and encouraged me all the way.

Ranjan Kumar Sahoo

Abstract

Genetic Algorithm (GA) has been applied to estimate binary interaction parameters for multicomponent liquid-liquid systems. However, these parameters are mutually interdependent through the closure equation/s. For a c component system there are $0.5 \times c(c-3)+1$ closure equations. The binary interaction parameters have been estimated using GA, with and without closure equations for 53 ternary, 9 quaternary, and 3 quinary aromatic extraction systems. Parameters that satisfy the closure equations gives approximately 12 percent better root mean square deviations (rmsds) than those that do not satisfy the closure equations. Invariably, GA gives approximately 42 percent better rmsds for NRTL and approximately 30 percent better rmsds for UNIQUAC than reported in the literature. GA has also been applied to 63 ternary and 2 quaternary hydrogen bonding systems. For these systems GA gives approximately 55 percent better rmsds for UNIQUAC than literature.

Complete aromatic recovery flowsheet has been simulated using liquid-liquid extraction and extractive distillation. Aspen Plus 10.2, a sequential modular simulation software package has been used to simulate the process flowsheet. To make the simulation realistic, murphree efficiencies calculated from ChemSep, a simulator based on non-equilibrium model, have been used as input in Aspen Plus. Simulation using extraction has also been carried out with several mixed solvents (sulfolane+co-solvent). Performance of these alternatives has been compared in terms of performance index (PI). Mixed solvents with triethylene glycol and tetraethylene glycol as co-solvent gives better performance than dimethyl sulfoxide, n-methyl-2-pyrrolidone and n-methyl formamide. PI for extractive distillation is approximately three times better than extraction.

Contents

				Page No
List of Figur	es			xix
List of Flows	sheets			xxi
List of Table	es			xxiii
Chapters				
1. INTRODU	ICTION			1
		c Recovery		1
		e of the Th		4
	-	rganizatio		4
Referen				5
2. ESTIMAT	ION OF	RINARY	INTERACTION PARAMETERS	
WITHOUT			·	7
2.1	Introduc	_		7
2.2	Theory a	ind Calcula	ation	8
	2.2.1		Algorithm (GA)	. 8
	2.2.2		Coefficient Models	10
		2.2.2.1	Non Random Two-Liquid (NRTL) model	10
		2.2.2.2	Universal Quasi-Chemical (UNIQUAC) model	11
	2.2.3	Paramete	er Estimation Procedure	.12
2.3	Results a	and Discus	sion	12
	2.3.1	Aromatic	e extraction systems	12
		2.3.1.1	Lower and Upper Bounds, $(a_i \text{ and } b_i)$	15
		2.3.1.2	Population size, P	16
		2.3.1.3	Maximum number of Generation, G_{max}	17
	2.3.2		n bonding systems	28
2.4	Conclusi			34
Referen	ces			35
3 FSTIMAT	TON OF	RINARV	INTERACTION PARAMETERS	
WITH CL				41
3.1	Introduc	-	1415	41
3.2		and Calcula	etion .	41
5.2	-	Closure		41
	5.2.1	3.2.1.1	Ternary Systems	42
			•	

	3.2.1.2	Quaternary Systems	42
	3.2.1.3	Quinary Systems	42
	3.2.2 Impler	nentation of Closure equation/s in Parameter Estimation	43
3.3	Results and Disci	•	43
3.4	Conclusions		54
Referen	es		55
A CYMIII AT		ATIC RECOVERY FLOWSHEET USING	
	QUID EXTRAC		57
4.1	Introduction	.1101	57 57
7.7	Process Descript	ion	57
4.2	4.2.1 Extrac	,	57
		nt Recovery Section	61
		onation Section	61
43	Feed composition	•	61
4.4	•	·	61
7.7	4.4.1 Input s		62
	4.4.2 Proper	-	63
	4.4.3 Efficie		63
4.5		mplete Aromatic Recovery Unit	67
	Validation	implete Monatte Receivery offic	70
4.0	4.6.1 Error A	Analysis	70
	4.6.2 Sensiti	•	75
	4.6.3 Error i	· ·	77
47	Performance Ind		90
	Conclusions	CA	90
Referen			91
		ATIC RECOVERY FLOWSHEET USING	
MIXED SO			93
	Introduction		93
5.2			94
	Results and discu	ussion	95
	Conclusions		97
Referen	ces		98
6. SIMULAT	ION OF AROM	ATIC RECOVERY FLOWSHEET USING	
EXTRACT	IVE DISTILLAT	rion ·	101
6.1	Introduction		101
6.2	Simulation of Ex	tractive Distillation Column	102
	6.2.1 Initial	input specifications	102

xvi

	6.2.2	Property method	104
	6.2.3	Efficiencies	105
	6.2.4	Simulation results	108
	6.2.5	Sensitivity Analysis	110
	6.2.6	Optimization	111
		6.2.6.1 Formulation of objective function	• 111
		6.2.6.2 Optimization results	112
	6.2.7	Discussion	112
6.3	Simulati	on of complete Aromatic Recovery Unit	116
	6.3.1	Input Specifications	116
	6.3.2	Property method	116
	6.3.3	Efficiencies	116
	6.3.4	Flowsheet connectivity and calculation sequence	116
	6.3.5	Simulation results	121
	6.3.6	Performance index	121
, 6.4	Conclus	ions	127
Referen	ices		128
7. SUGGEST	TIONS FO	OR FUTURE WORK	129
7.1	Paramete	er Estimation	129
	7.1.1	Common parameter estimation	129
	7.1.2	Estimation of UNIQUAC structural parameters	129
	7.1.3	Prediction of other properties	129
7.2	Simulati	on of aromatic recovery process	130
	7.2.1	Tuning	130
	7.2.2	Simulation with other solvents	130
	7.2.3	Optimization	130
	7.2.4	Energy integration	130
Referen	ice		131
Appendix A	-		133
Appendix B			137
Appendix C			141
Abstracts of M	(anuscrip	ts Accepted/Submitted for Publication	163

List of Figures

		Page No
Figure 2.1	Flow diagram of float genetic algorithm (FGA)	9
Figure 2.2	Effect of population size on absolute objective function value for	
77:	NRTL model	17
Figure 2.3	Effect of population size on absolute objective function value for	
Figure 2.4	UNIQUAC model	17
Figure 2.4	Absolute value of objective function versus generation number for NRTL model	1.0
Figure 2.5	Absolute value of objective function versus generation number for	18
1 1gui C 2.5	UNIQUAC model	18
	oraçone model	10
Figure 4.1	Input and output streams for combined solvent recovery column and	
	extract stripper	74
Figure 4.2	Effect of distillate rate of C203	75
Figure 4.3	Effect of boilup ratio of C204	76
Figure 4.4	Effect of boilup ratio of C205	76
TO:		0.5
Figure 5.1	Relative performance indexes without solvent loss	95 07
Figure 5.2	Relative performance indexes with solvent loss	97
Figure 6.1	Simplified diagram of extractive distillation process	102
Figure 6.2	Configuration of Extractive Distillation Column	103
Figure 6.3	Property method selection form for extractive distillation column	105
Figure 6.4	Murphree efficiency plot for extractive distillation column	108
Figure 6.5	Temperature and pressure profile in extractive distillation column	114
Figure 6.6	Vapor-composition profiles in extractive distillation column	114
Figure 6.7	Liquid-composition profiles in extractive distillation column	115
Figure 6.8	Relative volatility profiles in extractive distillation column	115
Figure B.1	Murphree efficiency plot for C203	137
Figure B.2	Murphree efficiency plot for C204	137
Figure B.3	Murphree efficiency plot for C205	138
Figure B.4	Murphree efficiency plot for C207	138
Figure B.5	Murphree efficiency plot for C208	139
Figure B.6	User defined convergence block, C-2 input form for extraction	
	aromatic recovery unit	139
Figure B.7	Convergence order input form for extraction aromatic recovery unit	140
Figure C.1	Murphree efficiency plot for solvent recovery column	160
Figure C.2	Murphree efficiency plot for benzene column	161
Figure C.3	Murphree efficiency plot for toluene column	161
Figure C.4	User defined convergence block, C-1 input form for extractive	1.00
	distillation aromatic recovery unit	162
Figure C.5	Convergence order input form for extractive distillation aromatic	1.00
	recovery unit	162

List of Flowsheets

Flowsheet 4.1	Simulation flowsheet of extraction aromatic recovery unit	Page No. 58
Flowsheet 6.1	Simulation flowsheet for extractive distillation column	108
Flowsheet 6.2	Simulation flowsheet of extractive distillation aromatic recovery unit	120

List of Tables

		Page No.
Table 2.1	Values of the parameters used in GA Toolbox of matlab	10
Table 2.2	Ternary, quaternary and quinary aromatic extraction systems at different temperatures used for parameter estimation	13
Table 2.3	UNIQUAC volume and area parameters for aromatic extraction systems	•
Table 2.4	Effect of bounds on binary interaction parameters and rmsd values	15
Table 2.5	for the system cyclohexane (1)-xylene (2)-sulfolane (3) at 35 °C Comparison of tie-lines for cyclohexane (1)-xylene (2)- sulfolane	16
Table 2.6	(3) at 35 °C [25] using NRTL model Comparison of tie-lines for cyclohexane (1)-xylene (2)- sulfolane	19
Table 2.7	(3) at 35 °C [25] using UNIQUAC model NRTL (α=0.2) binary interaction parameters without closure	19
	equation for ternary aromatic extraction systems at different temperatures	20
Table 2.8	NRTL (α=0.2) binary interaction parameters without closure equations for quaternary aromatic extraction systems at 25°C	
	(r=40°C)	22
Table 2.9	NRTL (α=0.2) binary interaction parameters without closure equations for quinary aromatic extraction systems at 25 °C	23
Table 2.10	UNIQUAC binary interaction parameters without closure equation for ternary aromatic extraction systems at different temperatures	24
Table 2.11	UNIQUAC binary interaction parameters without closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)	26
Table 2.12	UNIQUAC binary interaction parameters without closure equations	
Table 2.13	for quinary aromatic extraction systems at 25 °C Hydrogen bonding systems at different temperatures used for	27
Table 2.14	parameter estimation NRTL binary interaction parameters for ternary hydrogen bonding	28
Table 2.15	systems at different temperatures UNIQUAC binary interaction parameters for ternary hydrogen	30
Table 2.16	bonding systems at different temperatures Quaternary binary interaction parameters for hydrogen bonding	32
1 abic 2.10	systems at 25 °C	34
Table 3.1	Parameter elimination scheme	44
Table 3 2	NRTL (α =0.2) binary interaction parameters with closure equation	4.5
Table 2.2	for ternary aromatic extraction systems at different temperatures	45
Table 3.3	NRTL (α =0.2) binary interaction parameters with closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)	47
Table 3.4	NRTL (α =0.2) binary interaction parameters with closure equations	48
Table 3 5	for quinary aromatic extraction systems at 25 °C UNIQUAC binary interaction parameters with closure equation for	48
	ternary aromatic extraction systems at different temperatures	49

Table 3.6	UNIQUAC binary interaction parameters with closure equations for	
	quaternary aromatic extraction systems at 25°C (r=40°C)	51
Table 3.7	UNIQUAC binary interaction parameters with closure equations for	31
į.	quinary aromatic extraction systems at 25 °C	52
Table 3.8	Comparison of average rmsd's in terms of percentage gain	53
	i g was an ionno or porooniago gain	33
Table 4.1	Feed compositions (Naphtha)	62
Table 4.2	Design specifications of columns for extraction aromatic recovery	02
	unit	62
Table 4.3	Initial operating specifications of columns for extraction aromatic	02
	recovery unit	63
Table 4.4	Input Specifications of ChemSep individual block simulation for	03
	extraction aromatic recovery unit	64
Table 4.5	Murphree Efficiencies for C203	65
Table 4.6	Murphree Efficiencies for C204	66
Table 4.7	Murphree Efficiencies for C205	66
Table 4.8	Murphree efficiencies for C207	66
Table 4.9	Murphree efficiencies for C208	67
Table 4.10	Specifications of pumps for extraction aromatic recovery unit	68
Table 4.11	Specifications of heat exchangers for extraction aromatic recovery	
M. 1.1. 4.10	unit	68
Table 4.12	Specifications of splitters for extraction aromatic recovery unit	69
Table 4.13	Overall Flowsheet balance for extraction aromatic recovery unit	70
Table 4.14	Comparison of simulation result with plant data	71
Table 4.15	Absolute error ranges for different sections	73
Table 4.16 Table 4.17	Relative percentage error ranges for different sections	73
Table 4.17	Mass balances across solvent recovery column and extract stripper	74
1 abie 4.10	Sensitivity parameter and sensitivity index for extraction aromatic	
Table 4.19	recovery unit	77
14016 4.17	Manipulated variables after error minimization for extraction	
Table 4.20	aromatic recovery unit	78
14016 4.20	Comparison of simulation result with plant data after error minimization	
Table 4.21		78
Table 4.22	Simulation stream results for extraction aromatic recovery unit	79
Table 4.23	Products purity for extraction aromatic recovery unit	81
	Performance index of pure sulfolane for extraction aromatic recovery unit	
	receivery unit	90
Table 5.1	Reported solvents for aromatic extraction	
Table 5.2	Performance index of mixed solvents for extraction aromatic	93
	recovery unit	0.6
•	·	96
Table 6.1	Initial specifications for extractive distillation column	104
Table 6.2	Initial specifications of other blocks for extractive distillation	104
Table 6.3	ChemSep input specifications for extractive distillation column.	104
Table 6.4	Tray sizing results for extractive distillation column	105 106
	- Continuitor Column	LUD

Table 6.5	Murphree efficiencies for extractive distillation column	106
Table 6.6	Simulation stream results for extractive distillation column before	
	optimization	109
Table 6.7	Overall flowsheet balance of extractive distillation column	110
Table 6.8	Sensitivity parameter and sensitivity index for extractive distillation column	111
Table 6.9	Manipulated variables after optimization for extractive distillation column	112
Table 6.10	Simulation stream results for extractive distillation column after optimization.	113
Table 6.11	Specifications of other columns for extractive distillation aromatic	
	recovery unit	117
Table 6.12	ChemSep input specifications of other columns for extractive	
	distillation aromatic recovery unit	118
Table 6.13	Murphree efficiencies for solvent recovery column	118
Table 6.14	Murphree efficiencies for benzene column	119
Table 6.15	Murphree efficiencies for toluene column	119
Table 6.16	Product purity for extractive distillation aromatic recovery unit	121
Table 6.17	Simulation stream results for extractive distillation aromatic recovery unit	122
Table 6.18	Performance index of pure sulfolane for extractive distillation	122
	aromatic recovery unit	127
Table A.1	GA Selection function and Operators	133
Table A.2	NRTL and UNIQUAC parameters for ternary hydrogen bonding	
	systems	134
Table A.3	NRTL and UNIQUAC parameters for quaternary hydrogen bonding	
	systems	135
Appendix C.1	ASPEN PLUS input summary for extractive distillation column	141

Chapter 1

INTRODUCTION

1.1 Aromatic Recovery

Aromatic hydrocarbons such as benzene, toluene and xylenes (BTX) have wide applications and are considered essential in the modern organochemical industry. These are key petrochemical raw materials and their importance and versatility seems to increase with time. Benzene is the basic raw material for production of variety of chemicals like phenol, cyclohexane, anthraquinone, DDT, detergent alkylate, maleicanhydride and aniline. The other important uses of benzene include nylon, benzene hexachloride, 2,4-D bisphenol, dichlorobenzene, pentachlorophenol and aspirin. Toluene once thought of largely as the basis for TNT, is now finding expanding use as a solvent and as a chemical intermediate in the production of diisocynates, benzyl chloride, methyl styrene, saccharin and terphthalic acid etc. Toluene is also used as a blending stock for gasoline. Xylenes also have many uses. Oxidation of various xylenes to phthalic, isophthalic and terphthalic acids is typical of new and growing uses of aromatics. The other uses of aromatics are dehydrogenation of ethyl benzene to produce styrene monomer.

The major source of BTX aromatics is straight run or hydrogenated pyrolysis gasoline and catalytic reformates. These sources, apart from aromatics, contain large amount of other families (Paraffins, Isoparaffins, Olefins, Naphthenes, and Aromatics). Recovery and purification of the aromatic hydrocarbons from this complex mixture is therefore an important commercial process. It is impossible to obtain high purity of aromatics by classical distillation due to overlapping boiling ranges of feed components. Many homogeneous binary azeotropes exist between aliphatic and aromatic hydrocarbons. Aromatics can be purified using selective solvents that have a differential attraction to the aromatic ringed compounds. This can be done using liquid-liquid extraction (LLX) or by extractive distillation (ED). Equilibrium with the solvent in the liquid phase always has some impurities, which must be removed by other means, usually extractive stripping and water washing. LLX requires four major unit operations, a fairly

complicated process control, and is subject to solvent contamination by lighter hydrocarbons. The design calls for the removal of co-extracted light impurities in the stripper. In reality, the solvent builds up both light and heavy hydrocarbons and nonaromatic impurities in a substantial recycle. Feeds rich in naphthenes or olefins can further exacerbate the effect, increasing energy consumption significantly. The working principle of extractive distillation is the alteration of the relative volatility of components in the presence of a highly selective solvent, Conventional wisdom says that ED can only work with single carbon systems. This is true for many of the ED processes in use today. However, with the proper solvent choice and extractive distillation design, it is possible to cleanly separate BTX from a wide boiling range of feed components [1]. This technology has been commercially applied and proven in continuous operation since 2000. BTX recovery via extractive distillation is accomplished in two distillation towers. The first is an extractive distillation column, where the separation of the feed components occurs; and the second is a solvent recovery column, where the solvent is separated from the desired product. The extractive distillation column cleanly removes the non-aromatics from the aromatics and removes the aromatics and solvent from the raffinate in a single operation. Therefore, this design requires fewer pieces of equipment and a much lower capital cost than LLX system.

The economics of solvent extraction process largely depends on the choice of solvent. The solvents that are currently in use for aromatic extraction either have good selectivity for aromatics with simultaneously low solvent capacity or vice-versa. It is, therefore, imperative to search for new solvents as well as to evaluate the performance of existing solvents. The important parameters for the evaluation of solvent performance include solvent selectivity, solvent capacity, and solvent loss. Selectivity signifies the relative separation of two components. The solvent capacity signifies the amount of solvent for required separation. And the last parameter represents the solvent loss in the raffinate phase. These three parameters are defined in terms of activity coefficients of the components in both the raffinate and the extract phases. The accurate determination of liquid phase activity coefficients is usually obtained using the thermodynamic models – NRTL, UNIQUAC, or UNIFAC. These models require proper binary interaction

parameters, which represent the liquid-liquid equilibria for highly non-ideal liquid mixtures. Further, the design of equipment for solvent extraction requires accurate liquidliquid equilibria data, which are either determined experimentally or predicted theoretically. Theoretical prediction again requires the liquid phase activity coefficients which are calculated from one of the thermodynamic models mentioned earlier. This in turn again requires the binary interaction parameters. Apart from the application in evaluating the performance of solvents and the design of extraction and extractive distillation unit the binary interaction parameters are also required for molecular design of new solvents. Availability of these parameters is also a compulsion for simulation. Therefore the availability of binary interaction parameters that can predict liquid-liquid equilibria accurately is of paramount importance. These parameters are yet not entirely available for very large component systems encountered in aromatic extraction. Process simulators like ASPEN PLUS are likely to produce drastic errors if used without accurate knowledge of these parameters. One can solve this problem by estimating the binary interaction parameters separately and specify them in ASPEN PLUS as user input instead of using the default parameters.

These binary interaction parameters are generally estimated using experimental liquid-liquid equilibrium data by optimizing a suitable objective function. In case no experimental liquid-liquid equilibria data for systems of concern are available, the infinite dilution activity coefficients can be used for parameter estimation, although at the cost of accuracy [2]. The optimization problem can be either the least square objective function minimization or likelihood function maximization. In both cases the objective function is nonlinear and nonconvex in terms of optimization variables; this possesses several local minima/maxima/saddle points within the specified bounds of the variables. Therefore, it is necessary to apply a technique that results in the global optimization of the variables. Evolutionary algorithms like genetic algorithm (GA) and simulated annealing (SA) can be used for the optimization. Further the binary interaction parameters are not all independent; in fact they are related through closure equation/s. It is therefore required to have such parameters which satisfy the closure equation/s.

1.2 Objective of the Thesis

Keeping in view the above considerations this thesis has been aimed at the following objectives:

- To generate the model dependent parameters of the models appropriate for aromatic extraction systems that can be used to predict multicomponent liquidliquid equilibria.
- To simulate the aromatic recovery process using liquid-liquid extraction and extractive distillation.

1.3 Thesis Organization

The thesis is organized as follows

Chapter 2 presents the estimation of binary interaction parameters based on NRTL and UNIQUAC activity coefficient model for liquid-liquid extraction systems. A genetic algorithm, which is a structured search-based optimization method, has been used to minimize the highly nonlinear objective function encountered in liquid-liquid extraction.

Chapter 3 presents the estimation of binary interaction parameters with closure equation/s.

Chapter 4 presents the simulation and validation of complete aromatic recovery process using liquid-liquid extraction, with sulfolane as solvent.

Chapter 5 presents the comparative study of mixed solvents with sulfolane, on aromatic recovery process using liquid-liquid extraction.

Chapter 6 presents the simulation of complete aromatic recovery process using extractive distillation, with sulfolane as solvent.

Chapter 7 presents the recommendation for future work.

References

- [1] J. C. Gentry, S. Kumar, "Aromatic Design The Future is Now!", 27th Annual *PETROCHEMICAL REVIEW*, Houston, Texas, March 2002.
- [2] M. Mukhopadhyay, A. S. Pathak, "L-L-E data for aromatics extraction calculations using a modified UNIFAC model", *Industrial & Engineering Chemistry Process Design and Development* 25 (1986) 733.

Chapter 2

ESTIMATION OF BINARY INTERACTION PARAMETERS WITHOUT CLOSURE EQUATION/S

2.1 Introduction

Aromatics such as benzene, toluene, and xylene are considered essential in the chemical industry because they are the source of many organic chemicals. These aromatics are present in naphtha. High purity aromatics are difficult to be separated using ordinary distillation operation, since they form several binary azeotropes with nonaromatics. Extraction is therefore a better choice to separate the aromatics from naphtha, as they are preferentially soluble in a variety of solvents.

To predict the separation, it is necessary to know the liquid-liquid equilibrium (LLE) data for a particular system. Various activity coefficient models such as Non-Random Two Liquid (NRTL) and Universal Quasi Chemical (UNIQUAC) can be used to predict the LLE. Each of these models requires proper binary interaction parameters that can represent LLE for highly non-ideal liquid mixtures usually encountered in aromatic extraction. These parameters are usually estimated from the known experimental LLE data via optimization of a suitable objective function. The optimization problem can be either the least square objective function minimization or likelihood function maximization. In both cases the objective function is nonlinear and nonconvex in terms of optimization variables; this possesses several local minima/maxima/saddle points within the specified bounds of the variables. Therefore, it is necessary to apply a technique that results in the global optimization of the variables. Several such techniques are reported in literature, like Interval methods [1-2], Branch and Bound methods [3-6]. Despite the strong theoretical basis for these methods, the gradient evaluations and rounding off errors during computations give results that are definitely not globally optimal. Evolutionary algorithms like genetic algorithm (GA) [7, 8] and simulated annealing (SA) [8] have been rarely used for the optimization of LLE processes.

The binary interaction parameters for NRTL and UNIQUAC models are dependent on each other following a linear relationship called closure equation/s [9]. For a ternary triplet i-j-k the binary interaction parameters are related as [10],

$$(\tau_{jk} - \tau_{kj}) = (\tau_{ik} - \tau_{ki}) - (\tau_{ij} - \tau_{ji})$$
(2.1)

The number of closure equations is one for ternary, three for quaternary and six for quinary systems [9]. However, in this chapter, the binary interaction parameters based on NRTL and UNIQUAC model have been estimated using GA without closure equation/s. The results thus obtained are compared with those reported in the literature.

2.2 Theory and Calculation

2.2.1 Genetic Algorithm (GA)

GA was first proposed by Holland [11, 12] and has been widely used in the recently. It is a method that searches for the global optima of an objective function through the use of simulated evolution; the survival of the fittest strategy. Unlike most of the optimization methods, GA does not require any initial guess but only the upper and lower bounds of the variables - in our case the interaction parameters. GA explores all regions of the solution space and exponentially exploits promising areas through selection, crossover and mutation operations applied to interaction parameters in the population. Float genetic algorithm (FGA) is better than both binary genetic algorithm (BGA) and SA in terms of computational efficiency and solution quality [13]. FGA has been used for the estimation of interaction parameters [13]. Flow diagram for FGA is given in Figure 2.1. FGA starts with initial populations of fixed size. Interaction parameters in the initial populations are generated randomly. Normalized geometric ranking, a probabilistic selection method, is used for the selection of populations. This method selects populations for next generation based on their fitness to the objective function. This is the role played by the probability of selecting the best individual (q). Remainder populations are randomly generated. Size of the population remains same in each generation. In each generation, new populations are generated using genetic operators – crossover (arithmetic, heuristic, and simple) and mutation (boundary, multinon-uniform, non-uniform, and uniform). Relationships for selection function and operators are given in Table A.1 of Appendix A. GA moves from generation to generation until a termination criterion is met. The most frequently used stopping criterion is a specified maximum number of generations (G_{max}) [7, 13]. Various input parameters used for selection function and operators are given in Table 2.1. Finally GA

gives best population of interaction parameters which is available at the top of the list as organized by the ranking method from final generation as the required solution.

Figure 2.1 Flow diagram of float genetic algorithm (FGA)

Table 2.1 Values of the parameters used in GA Toolbox of matlab [13,14]

Name	Parameters
Population size, P	100
Maximum number of generations, G_{max}	200
Normalized Geometric Selection, q	[0.08]
Uniform Mutation	[4]
Non-Uniform Mutation	$[4 G_{max} 3]$
Multi-Non-Uniform Mutation	$[6 G_{max} 3]$
Boundary Mutation	[4]
Simple Crossover	[4]
Arithmetic Crossover	[4]
Heuristic Crossover	[2 3]

All crossover and mutation operators have been used for our estimation. However, on could omit any of the crossover and/or mutation operators by setting 0 in the first entry of the corresponding input matrix.

2.2.2 Activity Coefficient Models

2.2.2.1 Non Random Two-Liquid (NRTL) model

The NRTL equation developed by Renon and Prausnitz [15, 16] represents an accepted extension of Wilson's concept. The NRTL equation is applicable to multicomponent vapor-liquid, liquid-liquid, and vapor-liquid-liquid systems. For a multicomponent system, the NRTL expression for the activity coefficient is [17, 18],

$$\ln \gamma_{i} = \frac{\sum_{j=1}^{c} \tau_{ji} G_{ji} x_{j}}{\sum_{k=1}^{c} G_{ki} x_{k}} + \sum_{j=1}^{c} \frac{x_{j} G_{ij}}{\sum_{k=1}^{c} G_{kj} x_{k}} \left(\tau_{ij} - \frac{\sum_{k=1}^{c} x_{k} \tau_{kj} G_{kj}}{\sum_{k=1}^{c} G_{kj} x_{k}} \right)$$
(2.2)

where
$$G_{ii} = \exp(-\alpha_{ii}\tau_{ii})$$
 (2.3)

The coefficients
$$\tau$$
 are given by $\tau_{ji} = A_{ji}/T$ (2.4)

where A_{ji} 's are the binary interaction parameters between the component j and component i. In the above equations, $G_{ji} \neq G_{ij}$, $\tau_{ji} \neq \tau_{ij}$, $G_{ii} = G_{jj} = 1$, and $\tau_{ii} = \tau_{jj} = 0$. For ideal solutions, $\tau_{ii} = 0$.

The parameter α_{ji} characterizes the tendency of component j and component i to be distributed in a nonrandom fashion. When $\alpha_{ji} = 0$, local mole fractions are equal to overall solution mole fractions. Generally α_{ji} is independent of temperature and depends on molecule properties. Values of α_{ji} usually lie between 0.2 and 0.47. Value of 0.2 for α_{ji} has been used in our work.

2.2.2.2 Universal Quasi-Chemical (UNIQUAC) model

In an attempt to place calculations of liquid-phase activity coefficients on a simple, yet more theoretical basis, Abrams and Prausnitz [19, 20] used statistical mechanics to derive an expression for excess free energy. Their model, called UNIQUAC, uses the local area fraction θ_i as the primary concentration variable instead of local mole fraction of NRTL model. The local area fraction is determined by representing a molecule by a set of bonded segments. Each molecule is characterized by two structural parameters that are determined relative to a standard segment taken as an equivalent sphere of a mer unit of a linear, infinite-length polymethylene molecule. The two structural parameters are the relative number of segments per molecule, r_i (volume parameter), and the relative surface area of the molecule, q_i (surface parameter).

For a multicomponent system, the UNIQUAC expression for the activity coefficient is [17, 18],

$$\ln \gamma_{i} = \ln \frac{\phi_{i}}{x_{i}} + \frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}} + l_{i} - \frac{\phi_{i}}{x_{i}} \sum_{j=1}^{c} x_{j} l_{j} + q_{i} \left(1 - \ln \sum_{j=1}^{c} \theta_{j} \tau_{ji} - \sum_{j=1}^{c} \frac{\theta_{j} \tau_{ij}}{\sum_{k=1}^{c} \theta_{k} \tau_{kj}} \right)$$
(2.5)

where

$$\phi_i = \frac{r_i x_i}{\sum_{j=1}^{c} r_j x_j} = \text{segment fraction}$$
 (2.6)

$$\theta_i = \frac{q_i x_i}{\sum_{j=1}^{c} q_j x_j} = \text{ area fraction}$$
 (2.7)

$$l_i = \frac{z}{2}(r_i - q_i) + 1 - r_i \tag{2.8}$$

Where z = lattice coordination number set equal to 10, and

$$\tau_{ij} = \exp(-A_{ij}/T) \tag{2.9}$$

where A_{ji} 's are the binary interaction parameters between the component j and component i. In the above equations, $\tau_{ii} = \tau_{jj} = 0$. Volume and surface $(r_i \text{ and } q_i)$ parameters estimated from Aspen Plus 10.0 have been used for our work.

2.2.3 Parameter Estimation Procedure

Binary interaction parameters are usually obtained from experimental LLE data by minimizing a suitable objective function. The most common objective function is the sum of the square of the error between the experimental and calculated composition of all the components over the entire set of tie-lines. As GA is only for maximization, for minimizing the errors between experimental and calculated mole fractions, the objective function can be defined as,

Max.
$$F = -\sum_{i=1}^{m} \sum_{l=1}^{l} \sum_{i=1}^{c} w_{il}^{l} \left(x_{il}^{l} - \hat{x}_{il}^{l} \right)^{2}$$
 (2.10)

w.r.t.
$$A_{ij}$$
 where $i, j = 1, 2, \dots, c$ and $j \neq i$

This objective function, with unit weights i.e. $w'_{ii} = 1$, has been used in this work. The goodness of fit is usually measured by root mean square deviation (rmsd) defined as,

$$rmsd = \left(\frac{-F}{2mc}\right)^{1/2} \tag{2.11}$$

Modified Rachford Rice Algorithm [17] is used for the calculation of tie lines.

2.3 Results and Discussion

2.3.1 Aromatic extraction systems

Application of GA has been studied on 65 aromatic extraction systems; 53 ternary, 9 quaternary and 3 quinary systems as listed in Table 2.2.

(continued on next page) Reference 23,29,30 [26,27] [22,23][29,30] Table 2.2 Ternary, quaternary and quinary aromatic extraction systems at different temperatures used for parameter estimation 28] [31] 34 32 34 35 34 34 34 25, 35, 45, 50, 75, 100 25, 30, 35, 45, 50, 75, Temperature (°C) 25, 30, 50, 75, 100 25, 35, 45, 50, 75, 25, 30, 50, 75, 9 20, 30, 40, 50 25, 50, 75, 1 25 25 25 25 25, 50, 75, 29, 45, 54.5 25.5, 39, 50 17, 25, 50 17, 25, 50 25, 35, 50 25, 35, 50 17, 25, 50 10, 25, 50 25, 110 35, 50 20.5 25 20 25 20 ଅଧାଧାଧାଧ Decane(1)-Ethylbenzene(2)-Tetraethylene Glycol(3) Ternary Systems Cyclohexane(1)-Toluene(2)-Dimethyl Sulfoxide(3) Cyclohexane(1)-Benzene(2)-Triethylene Glycol(3) Heptane(1)-Ethylbenzene(2)-Ethylene Glycol(3) Decane(1)-Benzene(2)-Tetraethylene Glycol(3) Heptane(1)-Benzene(2)-Dimethyl Sulfoxide(3) Heptane(1)-Toluene(2)-Dimethyl Sulfoxide(3) Hexane(1)-Benzene(2)-Dimethyl Sulfoxide(3) Heptane(1)-Benzene(2)-Triethylene Glycol(3) Heptane(1)-Benzene(2)-Diethylene Glycol(3) Heptane(1)-Toluene(2)-Triethylene Glycol(3) Heptane(1)-Toluene(2)-Diethylene Glycol(3) Hexane(1)-Benzene(2)-Triethylene Glycol(3) 2-Methylpentane(1)-Toluene(2)-Sulfolane(3) Cyclohexane(1)-Benzene(2)-Sulfolane(3) Cyclohexane(1)-Toluene(2)-Sulfolane(3) Cyclohexane(1)-Xylene(2)-Sulfolane(3) 1-Hexene(1)-Benzene(2)-Sulfolane(3) 1-Heptene(1)-Benzene(2)-Sulfolarie(3) 1-Heptene(1)-Toluene(2)-Sulfolane(3) 1-Hexene(1)-Toluene(2)-Sulfolane(3) Pentane(1)-Benzene(2)-Sulfolane(3) Heptane(1)-Benzene(2)-Sulfolane(3) Heptane(1)-Toluene(2)-Sulfolane(3) Pentane(1)-Toluene(2)-Sulfolane(3) Hexane(1)-Benzene(2)-Sulfolane(3) Hexane(1)-Toluene(2)-Sulfolane(3) Heptane(1)-Xylene(2)-Sulfolane(3) Octane(1)-Benzene(2)-Sulfolane(3) Octane(1)-Toluene(2)-Sulfolane(3) Hexane(1)-Xylene(2)-Sulfolane(3) Octane(1)-Xylene(2)-Sulfolane(3) System Name System No. 4 9 6 2 2 23 25 25 27 28 29 30 21 22

			1703
33	Heptane(1)-Benzene(2)-Thiodiglycol(3)	50	[07]
34	Hentane (1)-Toluene (2)-Thiodiglycol (3)	50	[26].
35	Hexane(1)-Benzene(2)-N-Methyl Pyrrolidone(3)	25	[38]
36	Hentane(1)-Benzene(2)-N-Methyl Pyrrolidone(3)	25	[34]
37	Hentane(1)-Toluene(2)-N-Methyl Pyrrolidone(3)	15, 25, 40	[39]
38	Hexane(1)-Benzene(2)-N-Methylformamide(3)	20, 25	[38,34]
39	Hentane(1)-Benzene(2)-N-Methylformamide(3)	20	[34]
40	Heyane(1)-Renzene(2)-Dimethylformamide(3)	25	[38]
41	Hentane(1)-Benzene(2)-Dimethylformamide(3)	20	[34]
42	Dodecane (1-Benzene (2-Dimethylformamide (3)	20, 30, 40	[35]
43	Dodewne(1)-Ethylbenzene(2)-Dimethylformamide(3)	20, 30, 40, 50	[35]
44	Hentane(1)-Ethylbenzene(2)-Ethylene Carbonate(3)	40, 45, 50, 55, 60	[40]
45	Hentane(1)-Toluene(2)-Propylene Carbonate(3)	25	[41]
46	Hentane(1)-Xvlene(2)-Propvlene Carbonate(3)	25	[41]
47	Heptane(1)-Toluene(2)-Benzyl Alcohol(3)	25	[36]
48	Hentane(1)-Toluene(2)-3-Methyl Sulfolane(3)	25	[26]
49	Hentane(1)-Toluene(2)-Mercantoethanol(3)	25	[26]
50	Hexane(1)-Benzene(2)-Furfural(3)	25	[42]
51	Hexane(1)-Toluene(2)-Furfural(3)	25	[42]
52	Hexane(1)-Xvlene(2)-Furfural(3)	25	[42]
53	Cyclohexane(1)-Benzene(2)-Furfural(3)	25	[34]
	Ouaternary Systems		
54	Hexane(1)-Benzene(2)-Xvlene(3)-Sulfolane(4)	25	[24]
55	Heptane(1)-Behzene(2)-Toluene(3)-Sulfolane(4)	25	[43]
56		25	[24]
57	Hexane(1)-Heptane(2)-Toluene(3)-Sulfolane(4)	25	[43]
58	Hexane(1)-Octane(2)-Benzene(3)-Sulfolane(4)	25	[24]
59	Heptane(1)-Octane(2)-Xylene(1)-Sulfolane(4)	25	[43]
09	Cyclohexane(1)-1-Heptene(2)-Benzene(3)-Sulfolane(4)	25	[32]
19	Cyclohexane(1)-1-Heptene(2)-Toluene(3)-Sulfolane(4)	25	[32]
62	Heptane(1)-Toluene(2)-Triethylene Glycol(3)-Benzyl Alcohol(4)	25, 40	[36]
	Quinary Systems		
63	Hexane(1)-Heptane(2)-Toluene(3)-Xylene(4)-Sulfolane(5)	25	[43]
\$	Hexane(1)-Octane(2)-Benzene(3)-Toluene(4)-Sulfolane(5)	25	24
99	Heptane(1)-Octane(2)-Benzene(3)-Xylune(4)-Sulfolane(5)	25	[43]

UNIQUAC structural parameters as given in Table 2.3 have been estimated using Aspen Plus 10.0, a steady state simulator [44].

Table 2.3 UNIQUAC volume and area parameters for aromatic extraction systems [44]

Component Name	r_i	q_i	Component Name	r_i	q_i .
Pentane	3.82531	3.316	Dimethyl Sulfoxide	2.82663	2.472
Hexane	4.49967	3.856	Ethylene Glycol	2.40870	2.248
Heptane	5.17403	4.396	Diethylene Glycol	4.00132	3.568
Octane	5.84838	4.936	Triethylene Glycol	5.59394	4.880
Decane	7.19842	6.016	Tetraethylene Glycol	7.18655	6.208
Dodecane	8.54318	7.096	Thiodiglycol	4.53527	3.848
Cyclohexane	4.04746	3.240	N-Methyl Pyrrolidone	3.98088	3.200
2-Methylpentane	4.49901	3.852	N-Methyl Formamide	2.40277	2.192
1-Hexene	4.26961	3.644	N,N-Dimethyl Formamide	3.08570	2.736
1-Heptene	4.94397	4.184	Ethylene Carbonate	2.51945	1.972
Benzene	3.19051	2.400	Propylene Carbonate	2.97891	2.280
Toluene	3.92287	2.968	Benzyl Alcohol	4.22610	3.244
Xylene	4.65788	3.536	3-Methyl Sulfolane	4.70929	3.736
Ethylbenzene	4.59723	3.520	2-Mercaptoethanol	2.85498	2.544
Sulfolane	4.03560	3.200	Furfural	3.17205	2.500

The benchmarking system involves the predictions of LLE for cyclohexane (1)-xylene (2)-sulfolane (3) ternary system at 35 °C,

2.3.1.1 Lower and Upper Bounds, $(a_i \text{ and } b_i)$

The effect of the value of bounds on the interaction parameters and rmsd values for both NRTL and UNIQUAC model is given in Table 2.4. Minimum rmsd is observed at a bound of -1000 and +2000 for NRTL and -1000 and +1000 for UNIQUAC model. The lower values of these for both the model, estimate some of the interaction parameters at the edge of the boundary. Keeping this in mind we have chosen -1000 and +2000 for NRTL and -1000 and +1000 for UNIQUAC model as the lower and upper bounds for our estimation.

Table 2.4 Effect of bounds on binary interaction parameters and rmsd values for the

system cyclohexane (1)-xylene (2)-sulfolane (3) at 35 °C

,		Binary Interaction Parameters (K)				XX:44: D 1	
Bou	nds	A ₁₂	A_{13}	A_{23}	rmsd	Hitting Bound	
Lower	Upper	A ₂₁	A ₃₁	A ₃₂		Lower	Upper
		•	NR	TL			
-200	+200	-200.00	200.00	200.00	0.1171	Yes	Yes
-200	1200	-200.00	200.00	200.00	0.1171	103	103
-500	+500	-500.00	500.00	500.00	0.0285	Yes	Yes
-300	1300	-357.19	500.00	107.94	0.0203	103	103
-1000	+1000	-686.06	1000.00	1000.00	0.0062	No	Yes
-1000	11000	973.89	539.14	42.06	0.0002	140	103
-1000	+1500	-221.23	1500.00	806.99	0.0053	No	Yes
-1000	11300	90.94	496.30	92.04	0.0055	140	103
-1000	+2000	652.78	1382.10	1028.10	0.0049	No	No
-1000	12000	-580.17	550.55	49.327	0.0048	NO	140
-1500	+2500	-283.10	1844.90	732.09	0.0052	No	No
-1300	12300	178.21	500.89	120.88	0.0032	NO	140
-2000	+3000	-312.03	1147.20	1049.90	0.0058	Nic	No
-2000	13000	122.05	502.93	-2.92	0.0038	No No	
			UNIC	UAC			
-200	+200	-105.67	200.00	200.00	0.0172	No	Yes
-200	1200	84.29	200.00	31.12	0.0172	140	103
-500	+500	-20.93	500.00	. 229.16	0.0067	No	Yes
÷200	1300	7.78	92.78	14.92	0.0007	NO	165
-1000	+1000	-233.41	662.70	269.03	0.0056	No	No
-1000	11000	422.52	67.80	9.20	0.0056	NO	140
-1500	+1500	237.05	356.13	910.79	0.0068	No	No
-1500	11500	-229.09	127.34	-137.64	0.0068	140	140
-2000	+2000	-355.88	668.98	562.32	0.0074	No	No
-2000	12000	840.04	35.41	-98.37	0.0074	INO	INO

2.3.1.2 Population size, P

Effect of population size on absolute objective function value for NRTL and UNIQUAC model is shown in Figure 2.2 and Figure 2.3 respectively. It is observed that, for both the model population size of 100 is sufficient to give good set of parameters. Therefore, population size of 100 has been chosen for both the model.

Figure 2.2 Effect of population size on absolute objective function value for NRTL model

Figure 2.3 Effect of population size on absolute objective function value for UNIQUAC model

2.3.1.3 Maximum number of Generation, G_{max}

Variation of absolute objective function value against generation number for NRTL and UNIQUAC model is shown in Figure 2.4 and Figure 2.5 respectively. It is observed that, for both the model 200^{th} generation is sufficient to give a very good set of parameters; further generations only seem to improve marginally upon the solution obtained. Therefore, value of 200 for G_{max} has been used for both the model.

Figure 2.4 Absolute value of objective function versus generation number for NRTL model

Figure 2.5 Absolute value of objective function versus generation number for UNIQUAC model

Comparison of tie-line compositions for NRTL and UNIQUAC model are given in Table 2.5 and Table 2.6 respectively. The rmsd value thus obtained is 0.005 and 0.006 compared to 0.010 and 0.011 in the literature, respectively for NRTL and UNIQUAC model.

Table 2.5 Comparison of tie-lines for cyclohexane (1)-xylene (2)- sulfolane (3) at 35 °C [25] using NRTL model

		Experi	mental					Pred	icted		
solvent rich phase non-aromatic rich phase				h phase	solve	ent rich p	hase	non-aro	matic ric	h phase	
x_1	x_2	x_3	x_{i}	x_2	x_3	$\hat{x}_{_{\mathbf{l}}}$	\hat{x}_2	\hat{x}_3	\hat{x}_{l}	\hat{x}_2	\hat{x}_3
0.0241	0.0394	0.9365	0.7230	0.2710	0.0060	0.0288	0.0397	0.9316	0.7201	0.2713	0.0086
0.0225	0.0568	0.9206	0.6456	0.3457	0.0087	0.0279	0.0553	0.9168	0.6414	0.3478	0.0108
0.0312	0.1050	0.8639	0.4303	0.5520	0.0178	0.0247	0.1133	0.8620	0.4372	0.5442	0.0185
0.0316	0.1694	0.8000	0.3154	0.6658	0.0188	0.0244	0.1626	0.8131	0.3162	0.6616	0.0222
0.0259	0.1018	0.8723	0.4540	0.5276	0.0185	0.0250	0.1042	0.8708	0.4559	0.5261	0.0180
	rmsd [lit]=0.010							rmsd=	=0.005		

Table 2.6 Comparison of tie-lines for cyclohexane (1)-xylene (2)- sulfolane (3) at 35 °C [25] using UNIQUAC model

		Experi	mental					Pred	icted		
solvent rich phase			non-arc	matic ric	h phase	solve	ent rich p	hase	non-arc	matic ric	h phase
x_{l}	x_2	x_3	x_1	x_2	<i>x</i> ₃	\hat{x}_{i}	\hat{x}_2	\hat{x}_3	$\hat{x_i}$	\hat{x}_2	\hat{x}_3
0.0241	0.0394	0.9365	0.7230	0.2710	0.0060	0.0276	0.0418	0.9305	0.7250	0.2704	0.0046
0.0225	0.0568	0.9206	0.6456	0.3457	0.0087	0.0266	0.0572	0.9162	0.6456	0.3472	0.0072
0.0312	0.1050	0.8639	0.4303	0.5520	0.0178	0.0238	0.1104	0.8658	0.4352	0.5440	0.0208
0.0316	0.1694	0.8000	0.3154	0.6658	0.0188	0.0237	0.1614	0.8149	0.3128	0.6558	0.0314
0.0259	0.1018	0.8723	0.4540	0.5276	0.0185	0.0240	0.1028	0.8732	0.4551	0.5257	0.0192
	rmsd [lit]=0.011							rmsd=	=0.006		

After benchmarking with the above system, GA has been applied and verified on other ternary, quaternary and quinary systems. The rmsd values obtained using GA have been compared with the rmsd values reported in literature in terms of percentage gain,

$$gain_{lit}^{ga} = \frac{rmsd_{lit} - rmsd_{ga}}{rmsd_{lit}} \times 100$$
 (2.12)

The results of NRTL parameter estimation along with the corresponding percentage gain values for the ternary, quaternary and quinary systems are given in Table 2.7-2.9 respectively. It is seen that the rmsd values obtained using GA are less than those reported in the literature; approximately 37 percent better for ternary and 26 percent better for both quaternary and quinary systems. This clearly means that parameters obtained using GA will predict the multicomponent aromatic extraction LLE for NRTL model more accurately than those reported in the literature.

Table 2.7 NRTL (α =0.2) binary interaction parameters without closure equation for ternary aromatic extraction systems at different temperatures

extraction	n systems	at differen								
System	Temp.		Binary	Interaction				rmsd	rmsd	gain _{lii}
No.	(°C)	A_{12}	A_{21}	A_{13}	A_{31}	A ₂₃	A ₃₂	IIIISU	[lit]	(%)
	17	456.25	1022.80	921.28	671.21	696.20	638.55	0.0064	n.a.	n.a.
1	25	83.31	53.45	1381.70	961.14	574.24	-203.80	0.0037	n.a.	n.a.
	50	-120.03	1045.00	1010.50	713.04	729.20	101.57	0.0047	n.a.	n.a.
	17	383.88	-259.62	1696.70	733.14	534.54	-56.76	0.0051	n.a.	n.a.
2	25	543.26	1466.40	1719.40	547.63	434.38	1024.60	0.0041	n.a.	n.a.
	50	208.99	-118.07	1350.60	507.36	810.83	-170.13	0.0067	n.a.	n.a.
	25	-541.55	537.64	1494.40	656.85	472.60	-351.07	0.005	n.a.	n.a.
	30	877.91	467.41	1125.50	646.25	378.52	979.40	0.007	n.a.	n.a.
3	50	-93.71	-76.59	1190.90	793.17	876.38	-484.31	0.004	n.a.	n.a.
	75	-68.38	-127.15	1208.80	667.42	785.05	-407.42	0.006	n.a.	n.a.
	100	336.19	-224.50	1635.30	734.97	412.86	-49.38	0.004	n.a.	n.a.
	25	-446.11	872.28	1036.30	530.36	806.27	-198.20	0.006	0.005	-20.00
4	35	-116.83	22.63	1489.40	656.59	934.37	-73.03	0.009	0.016	43.75
*	50 ^a	28.17	3274.70	3173.50	869.69	762.29	566.98	0.005	0.015	66.67
	25	220.86	1646.80	1613.80	647.78	370.84	824.81	0.005	0.008	37.50
5	35	-105.71	-137.64	1480.90	625.47	1098.40	123.16	0.004	0.016	75.00
	50	-676.47	565.81	1384.20	706.72	1087.80	52.65	0.002	0.010	80.00
6	25	145.79	915.00	1256.50	699.26	654.81	345.11	0.0042	n.a.	n.a.
0	110	337.64	982.14	931.86	748.11	537.94	705.19	0.004	n.a.	n.a.
	25	537.47	-488.82	1388.10	1357.30	10750	-302.33	0.005	n.a.	n.a.
	30	44.76	915.48	816.51	914.38	-296.61	1234.40	0.002	n.a.	n.a.
7	50	272.97	-263.32	1470.40	912.71	615.44	-95.82	0.002	n.a.	n.a.
	75	686.47	-662.95	1464.60	924.81	1019.10	-321.48	0.004	n.a.	n.a.
	100	-384.38	317.74	1326.60	677.39	340.21	21.49	0.003	n.a.	n.a.
	17	855.25	-580.18	1274.00	1306.30	949.90	-132.91	0.013	n.a.	n.a.
8	25	-486.17	879.93	1758.80	778.21	447.20	184.19	0.005	n.a.	n.a.
	50	-235.06	519.63	1592.10	794.64	322.26	315.13	0.006	n.a.	n.a.
	25	1311.70	867.26	1022.00	883.59	855.47	1216.50	0.005	0.006	16.67
	35	267.81	1661.80	779.34	885.75	1248.80	350.50	0.006	0.009	33.33
9	45	462.14	1125.10	1037.60	986.90	646.75	721.14	0.004	0.005	20.00
,	50	-104.80	1634.10	1082.30	779.20	1003.10	186.15	0.005	0.006	16.67
	75	577.11	1209.00	1205.30	878.30	637.75	916.39	0.003	0.003	0.00
	100	470.00	626.52	1512.40	1118.70	269.02	879.40	0.004	0.009	55.56
	25	-331.83	601.35	914.09	1010.20	718.49	-48.24	0.002	0.002	0.00
	35	-258.31	300.85	1060.60	1097.00	439.97	15.20	0.002	0.002	0.00
10	45	663.27	1750.70	979.39	954.49	367.74	1231.50	0.002	0.003	33.33
10	50	361.57	1557.60	1708.20	847.26	564.96	831.47	0.006	0.007	14.29
*	75	174.36	1305.30	1470.60	927.84	455.25	769.58	0.003	0.005	40.00
	100	-425.86	481.00	1295.30	903.08	712.38	-108.57	0.003	0.004	25.00
11	25	-257.91	7.20	794.27	1054.00	935.71	-225.64	0.003	0.003	0.00
							***************************************		ued on ne	

	·	,			*					
	30	620.80	-183.17	910.55	1121.40	339.60	145.99	0.003	n.a.	n.a.
	35	426.48	1455.40	1539.10	915.95	184.01	1200.80	0.002	0.003	33.33
	45	-438.97	1198.60	872.64	819.66	601.85	128.24	0.004	0.003	-33.33
	50	-192.35	132.23	1208.50	1047.40	841.48	-40.48	0.002	0.002	0.00
	75	437.81	-415.58	1369.60	1220.30	937.89	-146.06	0.004	0.003	-33.33
	100	35.86	20.82	1271.70	1099.50	560.79	158.14	0.003	0.004	25.00
	25	-232.20	175.30	1471.30	463.15	447.11	-241.87	0.004	n.a.	n.a.
12	50	949.50	398.63	1530.00	438.72	236.62	1148.60	0.003	n.a.	n.a.
12	75	1265.30	518.21	1354.20	388.48	248.51	1594.60	0.004	n.a.	n.a.
	100	568.14	-234.82	1500.30	375.42	-34.95	586.49	0.004	n.a.	n.a.
13	25	350.31	-576.15	1286.50	856.96	986.43	-414.56	0.008	0.010	20.00
1.4	35	652.78	-580.17	1382.10	550.55	1028.10	49.33	0.005	0.010	50.00
14	50	-406.02	333.63	1430.20	403.17	799.62	67.88	0.006	0.011	45.46
15	25	-10.62	-235.08	1185.10	986.02	823.05	-386.26	0.007	0.014	50.00
	25	252.97	510.44	1274.30	468.95	299.77	546.14	0.003	n.a.	n.a.
1.0	50	1326.50	292.79	1531.90	473.39	121.89	1496.50	0.004	n.a.	n.a.
16	75	-446.44	744.16	1204.40	405.69	297.82	32.93	0.004	n.a.	n.a.
	100	1280.80	424.47	1123.40	432.65	187.93	1574.10	0.004	n.a.	n.a.
17	25	1222.30	964.25	1700.30	735.54	144.28	1643.70	0.007	0.010	30.00
18	25	335.16	-348.59	1288.20	632.34	439.42	-122.97	0.005	0.007	28.57
19	25	744.26	-569.41	1167.50	731.91	692.36	-104.11	0.004	0.006	33.33
	10	1054.80	1324.80	1469.80	626.29	587.88	1280.40	0.0048	n.a.	n.a.
20	25	1134.90	1188.00	1148.50	578.42	728.41	1248.00	0.0063	n.a.	n.a.
	50	-540.86	418.63	1016.50	677.40	332.08	-306.52	0.0035	n.a.	n.a.
21	20.5	1131.20	1348.10	961.29	576.56	583.22	1299.20	0.0046	n.a.	n.a.
22	25	572.64	1281.20	1073.30	, 818.48	213.85	1209.60	0.0066	n.a.	n.a.
23	20	556.64	1654.00	1150.40	420.72	315.62	1145.50	0.0025	n.a.	n.a.
	20	1576.10	178.20	737.53	1145.30	998.93	738.85	0.0047	n.a.	n.a.
24	30	69.73	94.76	582.85	1273.70	949.72	697.54	0.0047	n.a.	n.a.
24	40	88.82	362.60	468.37	1134.10	1329.20	747.43	0.0029	n.a.	n.a.
	50 ^b	2834.20	253.88	325.71	1241.00	2799.80	781.58	0.0088	n.a.	n.a.
25	50	-214.24	436.93	1139.80	1523.60	954.36	-54.37	0.0057	n.a.	n.a.
26	25	-472.13	783.64	1887.90	718.83	1336.10	115.03	0.0020	n.a.	n.a.
27	20	-267.01	316.95	1395.50	654.23	1649.40	-329.52	0.0039	n.a.	n.a.
28	20	-501.55	813.06	1803.30	666.13	1428.10	-288.54	0.0036	n.a.	n.a.
19	25	-106.76	331.68	1667.10	731.62	1408.80	-106.21	0.0017	n.a.	n.a.
30	20	-510.14	1019.60	1778.10	380.87	1201.60	-194.22	0.0060	n.a.	n.a.
	29	88.43	1293.90	163.38	1699.60	404.94	640.21	0.0063	n.a.	n.a.
31	45	115.67	1463.40	290.76	1413.70	389.38	734.96	0.0101	n.a.	n.a.
	54.5	-242.81	422.36	640.64	1744.00	270.92	178.81	0.0033	n.a.	n.a.
	25.5	34.47	1564.70	442.10	1689.00	723.14	590.74	0.0040	n.a.	n.a.
32	39	-713.14	402.29	965.90	1059.90	298.84	280.47	0.0071	n.a.	n.a.
	50	-386.58	1045.40	930.03	1444.70	132.96	673.73	0.0083	n.a.	n.a.
33	50	355.89	-120.76	1934.20	961.84	1198.80	85.85			n.a.
		× ×						(conti	nued on n	ext page)

34	50	-190.63	234.80	1701.80	962.08	1292.50	181.91	0.0020	n.a.	n.a.
35	25	1619.20	467.15	548.86	317.76	584.56	1490.60	0.0029	0.0077	62.34
36	25	975.74	-299.75	503.54	485.15	-211.99	723.64	0.0021	n.a.	n.a.
	15	714.87	-187.70	542.68	432.14	752.61	-109.60	0.004	0.004	0.00
37	25	1124.10	-164.57	470.13	433.38	555.05	339.72	0.002	0.004	50.00
	40	699.15	730.52	379.06	400.05	646.88	656.87	0.002	0.014	85.71
38	20	-422.00	226.74	1104.90	435.76	1482.60	-428.29	0.0059	n.a.	n.a.
36	25	130.24	-286.90	1295.40	476.59	1010.70	-284.06	0.0026	0.0096	72.92
39	20	626.46	-593.53	1786.50	802.52	1191.20	-281.04	0.0019	n.a.	n.a.
40	25	-554.39	1453.70	1311.40	389.10	829.71	-38.61	0.0036	0.007	48.57
41	20	531.63	124.83	571.12	509.84	44.70	646.23	0.0012	n.a.	n.a.
	20	783.96	1361.20	485.63	938.94	758.25	947.95	0.0032	n.a.	n.a.
42	30	205.17	-347.18	567.88	1082.70	-484.93	508.77	0.0044	n.a.	n.a.
	40	1351.60	-397.84	445.65	1019.70	-645.99	1879.80	0.0084	n.a.	n.a.
	20	374.97	1550.00	442.51	816.00	274.02	1703.50	0.0077	n.a.	n.a.
43	30	592.04	527.44	803.31	825.31	-120.73	1640.40	0.0070	n.a.	n.a.
43	40	111.70	74.00	317.07	1185.90	1143.10	-161.03	0.0080	n.a.	n.a.
	50	498.82	349.10	295.07	1104.90	638.17	309.25	0.0057	n.a.	n.a.
	40	-55.18	-223.46	1559.30	1582.60	819.27	159.02	0.0022	n.a.	n.a.
	45	-140.75	216.91	1190.60	1561.90	947.58	305.13	0.0010	n.a.	n.a.
44	50	539.84	-395.27	1326.90	1583.50	799.42	273.31	0.0008	n.a.	n.a.
	55	-166.32	-753.17	1564.60	1827.40	649.29	-49.24	0.0044	n.a.	n.a.
	60	-609.80	405.76	1335.10	1739.20	671.10	239.48	0.0013	n.a.	n.a.
45	25	-116.91	1415.90	1382.60	540.75	632.88	375.54	0.0027	n.a.	n.a.
46	25	-311.78	1438.90	1868.70	624.65	686.04	276.40	0.0022	n.a.	n.a.
47	25	-338.15	-375.15	527.68	343.86	-46.16	-511.07	0.0026	n.a.	n.a.
48	25	1059.90	1845.20	921.07	409.48	777.95	1213.00	0.0050	n.a.	n.a.
49	25	-321.49	798.45	755.75	637.61	595.92	203.04	0.0037	n.a.	n.a.
50	25	1242.20	570.05	671.59	412.15	390.42	1581.10	0.003	0.002	-50.00
51	25	674.90	898.86	544.61	497.69	257.92	1203.40	0.004	0.003	-33.33
52	25	559.16	-701.96	673.37	465.84	1584.40	-405.18	0.002	0.002	0.00
53	25	-309.24	290.41	601.88	305.36	1027.60	-521.27	0.004	n.a.	n.a.
averag		12500 81						0.0043	0.0068	36.77

^a bounds -1000 and 3500; ^b bounds -1000 and 3000; n.a.: not available/not applicable

Table 2.8 NRTL (α =0.2) binary interaction parameters without closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)

System No.		Binary	Interact	ion Param	eters (K)							
	A_{12}	. A ₁₃	A ₁₄	A_{23}	A_{24}	A_{34}	rmsd	rmsd	gain _{lu} ga			
	A ₂₁	A ₃₁	A_{41}	A_{32}	A_{42}	A_{43}		[lit]	(%)			
54	-651.35	-614.30	921.68	-745.34	592.84	1361.20	0.006	0.007	14.20			
34	540.59	179.77	650.79	292.85	-500.19	-475.80	0.006	0.007	14.29			
55	3.73	659.27	958.93	-638.35	1039.70	363.83	0.005	0.000	16.67			
	971.46	149.80	882.79	1816.70	-43.56	503.99	0.005	0.006	16.67			
	(continued on next page)											

62 ^r average rmsd	-525.90 480.25	1734.50 365.13	560.74 583.97	1861.10 154.31	-502.70 1061.30	1391.40 278.64	0.005 0.0051	n.a. 0.0069	n.a. 26.09
62	-596.17 209.67	1264.60 1162.00	567.06 342.39	951.68	648.32 -647.38	-411.23 1349.00	0.006	n.a.	n.a.
61	401.61 624.89	-238.53 905.69	650.37 748.66	1425.10 -524.34	1237.40 1118.60	691.68 -42.96	0.006	0.009	33.33
60	1278.00 1169.50	101.150 -294.43	1063.60 967.74	982.27 1309.20	1855.20 936.21	193.83 332.42	0.004	0.004	0.00
59	1814.90 -371.12	761.98 102.58	1345.40 1041.70	229.37 -93.96	1743.80 1028.00	445.87 215.15	0.004	0.007	42.86
58.	745.31 254.36	-572.39 1055.60	662.50 818.68	-295.25 235.79	809.98 1919.20	1077.10 -564.37	0.006	0.010	40.00
57	414.97 -120.76	918.21 -353.32	1063.70 1154.10	-497.92 1788.00	862.68 631.12	895.99 -89. 05	0.004	0.005	20.00
56	1315.40 919.65	-305.55 1144.30	1873.30 1121.30	1517.00 1451.00	177.70 1599.60	309.47 510.94	0.005	0.007	28.57

n.a.: not available/not applicable

Table 2.9 NRTL (α =0.2) binary interaction parameters without closure equations for quinary aromatic extraction systems at 25 °C

aromatic extraction										
	Bi	nary Inter	action Par	rameters (K)			·		
	A_{12}	A_{21}	A_{31}	A_{41}	A_{51}			gain ^{ga} (%)		
System No.	A_{13}	A ₂₃ ·	A_{32}	A_{42}	A_{52}	rmsd	rmsd [lit]			
	A ₁₄	A_{24}	A ₃₄ '	A_{43}	A_{53}		[]			
	A ₁₅	A ₂₅	A ₃₅	A_{45}	A_{54}					
63	406.83	-749.91	-345.52	277.34	525.76					
	1162.20	1131.70	-498.16	-501.77	1009.70	0.007	0.009	22.22		
03	-257.87	842.35	280.87	77.73	91.65	0.007	0.005			
	1089.80	850.84	910.38	1381.60	-164.50					
	-407.20	1143.10	440.56	403.01	988.47			-25.00		
61	-234.05	-247.28	871.27	287.48	1076.00	0.005	0.004			
64	733.82	1226.10	1687.60	-250.42	-188.67	0.005	0.004			
	1549.50	1514.80	701.46	55.49	1219.70					
,	-352.44	-913.25	129.32	416.13	364.81					
65	-567.84	-562.94	554.58	-62.22	545.43	0.005	0.010	50.00		
65	-315.21	302.24	-456.37	975.84	-379.63	0.005	0.010	30.50		
	1214.10	1044.50	776.28	527.00	394.42					
average rmsd						0.0057	0.0077	25.97		

Table 2.10 UNIQUAC binary interaction parameters without closure equation for ternary aromatic extraction systems at different temperatures

systems a	t different	temperatur							г	T
System	Temp.		Binary l	Interactio				rmsd	rmsd	gain _{lii}
No.	(°C)	A ₁₂	A_{21}	A_{13}	A_{31}	A_{23}	A_{32}	Hisa	[lit]	(%)
	17	412.47	389.67	249.81	173.43	248.82	562.69	0.0093	n.a.	n.a.
1	25	299.39	294.02	305.22	174.75	169.73	456.52	0.0059	n.a.	n.a.
	50	563.12	161.62	359.38	191.34	88.30	729.03	0.0054	n.a.	n.a.
	17	255.62	14.34	939.21	115.72	-30.60	360.30	0.0070	n.a.	n.a.
2	25	232.74	-169.78	513.61	113.05	179.43	-23.70	0.0035	n.a.	n.a.
	50	174.62	-121.38	457.64	78.69	255.78	-58.57	0.0068	n.a.	n.a.
	25	185.16	203.53	425.12	64.56	180.62	261.62	0.006	n.a.	n.a.
	30	302.37	148.87	402.28	58.89	164.53	350.75	0.009	n.a.	n.a.
3	50	-664.14	-34.40	955.72	47.84	-71.47	-544.40	0.005	n.a.	n.a.
	75	-956.98	5.92	543.36	34.64	33.54	-845.98	0.008	n.a.	n.a.
	100	194.92	273.54	449.27	57.12	140.70	401.97	0.006	n.a.	n.a.
	25	376.29	-254.21	503.51	154.16	691.71	-226.01	0.005	n.a.	n.a.
4	35	-241.63	784.76	394.88	113.61	349.78	11.88	0.010	0.020	50.00
	50	87.77	-217.21	506.97	81.15	856.47	-188.20	0.005	0.011	54.55
	25	-196.24	329.87	274.75	100.28	399.50	-108.52	0.007	n.a.	n.a.
5	35	27.70	-112.07	361.03	89.01	674.28	-93.00	0.004	0.012	66.67
	50	-441.27	580.28	499.93	94.90	392.71	-100.13	0.004	0.018	77.78
6	25	332.70	-157.97	654.05	116.48	-60.78	238.29	0.0051	n.a.	n.a.
0	110	650.76	-265.12	465.70	88.51	-91.75	347.40	0.008	n.a.	n.a.
	25	-284.26	530.78	352.56	62.75	356.88	-124.44	0.009	n.a.	n.a.
	30	-94.27	594.14	314.51	115.03	-112.89	466.29	0.002	n.a.	n.a.
7	50	-203.89	465.75	442.53	61.64	205.13	22.00	0.004	n.a.	n.a.
	75	576.39	-355.54	641.47	44.21	666.25	-230.20	0.003	n.a.	n.a.
	100	230.35	-21.09	713.01	6.48	-41.85	376.82	0.004	n.a.	n.a.
	17	-178.17	535.50	348.11	125.42	188.92	56.41	0.009	n.a.	n.a.
8	25	13.77	177.77	917.27	209.17	8.476	257.08	0.008	n.a.	n.a.
	50	-49.37	383.36	549.13	133.37	74.41	239.34	0.008	n.a.	n.a.
	25	-621.01	12.31	348.05	95.00	772.47	-861.32	0.004	0.004	0.00
	35	194.43	102.68	216.97	304.17	240.21	135.73	0.007	0.009	22.22
9	45	164.24	632.31	350.44	69.71	711.75	217.04	0.006	0.006	0.00
	50	-951.27	-16.47	423.40	271.85	-62.82	-825.94	0.008	0.005	-60.00
Y	75	93.39	76.95	500.85	46.84	137.19	129.14	0.003	0.004	25.00
	100	438.43	155.46	485.26	52.25	131.67	566.27	0.006	0.008	25.00
	25	-897.10	823.54	369.84	79.79	324.74	-675.93	0.007	0.002	-250.00
	35	-42.88	190.77	216.70	335.54	134.96	103.49	0.005	0.003	-66.67
10	45	-15.92	-28.36	152.26	544.02	366.45	-125.70	0.008	0.003	-166.67
	50	913.09	-414.59	793.50	192.49	864.51	-264.26	0.007	0.007	0.00
*	75	143.72	196.32	654.91	50.28	94.87	323.72	0.004	0.005	20.00
	100	79.63	758.91	490.89	54.93	278.26	369.28	0.003	0.005	40.00
11	25	383.47	-228.34	438.13	504.51	-39.74	202.25	0.007	0.004	-75.00
	1							(cont	inued on r	next page)

	120	1 222 51								
	30	230.54	101.22	147.10	406.52	203.13	205.09	0.009	n.a.	n.a.
,	35	-847.59	751.23	475.37	61.40	178.64	-535.67	0.008	0.004	-100.00
	45	336.22	468.06	462.55	55.56	155.68	561.39	0.004	0.005	20.00
	50	-293.35	669.26	374.99	81.69	709.46	-142.61	0.006	0.006	0.00
	75	272.59	527.99	400.27	260.62	81.04	648.09	0.008	0.004	-100.00
	100	147.38	-114.96	530.16	67.62	185.25	20.70	0.003	0.003	0.00
	25	-663.21	215.16	382.56	84.86	114.67	-539.76	0.006	n.a.	n.a.
12	50	552.94	100.53	519.99	50.47	30.27	675.56	0.005	n.a.	n.a.
12	75	408.01	356.73	426.26	51.58	140.37	651.55	0.007	n.a.	n.a.
	100	608.74	24.05	614.31	8.64	-82.61	923.88	0.004	n.a.	n.a.
13	25	241.88	-234.28	466.67	157.48	313.26	-142.11	0.008	n.a.	n.a.
14	35	-233.41	422.52	662.70	67.80	269.03	9.20	0.006	0.011	45.45
14	50	-287.95	846.14	381.20	94.80	405.77	-21.90	0.006	0.016	62.50
15	25	-98.98	772.45	282.85	112.93	395.13	50.34	0.009	n.a.	n.a.
	25	-212.97	-5.83	443.76	55.71	-14.03	-104.80	0.005	n.a.	n.a.
16	50	-695.20	220.91	356.92	49.71	162.43	-575.39	0.007	n.a.	n.a.
16	75	431.75	-281.76	495.82	21.38	473.47	-196.85	0.004	n.a.	n.a.
	100	565.15	314.56	389.22	27.96	151.16	853.04	0.005	n.a.	n.a.
17	25	128.35	179.32	391.73	162.04	-6.05	381.73	0.007	n.a.	n.a.
18	25	-477.21	334.52	401.90	25.02	127.79	-276.24	0.009	n.a.	n.a.
19	25	410.40	95.52	457.60	99.84	-58.26	651.37	0.009	n.a.	n.a.
***************************************	10	-935.82	834.51	574.56	45.96	713.18	-857.56	0.0094	n.a.	n.a.
20	25	-219.82	294.97	912.64	39.83	122.71	-74.27	0.0038	n.a.	n.a.
	50	454.12	72.82	526.45	64.57	146.93	455.64	0.0030	n.a.	n.a.
21	20.5	159.25	602.36	455.87	19.98	643.37	239.17	0.0078	n.a.	n.a.
22	25	71.25	502.62	539.10	, 66.52	237.22	273.92	0.0049	n.a.	n.a.
23	20	-64.12	98.90	567.15	49.06	127.86	36.63	0.0039	n.a.	n.a.
	20	-78.55	363.69	509.77	100.13	574.02	116.77	0.0051	n.a.	n.a.
	30	174.81	-161.98	408.57	157.39	561.63	73.87	0.0047	n.a.	n.a.
24	40	-297.99	796.27	370.60	129.65	978.93	70.91	0.0036	n.a.	n.a.
	50°	1930.80	-155.34	297.64	184.34	1546.50	60.71	0.0098	n.a.	n.a.
25	50	-45.37	83.60	159.76	341.14	294.33	-23.86	0.0074	n.a.	n.a.
26	25	625.80	-290.31	594.61	50.64	725.67	-86.69	0.0020	n.a.	n.a.
27	20	-191.13	925.92	176.31	179.25	257.45	39.55	0.0074	n.a.	n.a.
28	20	364.14	-207.26	391.16	100.55	312.70	-71.17	0.0031	n.a.	n.a
29	25	238.15	-99.42	767.47	47.36	7.87			n.a.	n.a
30	20	92.04	-5.55	379.75	94.38	28.29		0.0078	n.a.	n.a.
30	29	92.22	81.47	-89.85	358.72	-70.79		0.0087	n.a.	n.a
31	45	-118.38	126.48	-118.01	488.12	518.48	-153.88	0.0102	n.a.	n.a
٥,٠	54.5	526.94	-331.17	73.97	353.02	171.53	-100.25	+	n.a.	n.a
	25.5	-63.35	328.40	-108.21	607.41	620.45	-13.89		n.a.	n.a
32	39	-611.54	725.49	146.45	109.79	53.06			n.a.	n.a
J.	50	516.48	-286.35	69.28	234.79	16.99			n.a.	n.a
33	50	692.63	-258.14	594.04	83.39	289.33			n.a.	n.a

34	50	292.35	-196.82	618.26	81.85	285.49	57.43	0.0022	n.a.	n.a.
35	25	147.90	80.96	232.59	13.57	220.52	51.27	0.0035	0.0060	41.67
36	25	-742.16	256.83	226.43	-2.72	358.77	-838.30	0.0069	n.a.	n.a.
	15	-369.97	796.59	254.38	12.17	4.0653	-107.56	0.003	0.004	25.0 0
37	25	-348.60	-139.97	221.56	27.46	-209.41	-292.48	0.004	0.004	0.00
	40	-651.18	-376.27	205.42	23.35	-326.50	-863.38	0.003	0.014	78.57
20	20	-89.45	397.97	758.55	3.22	469.65	4.95	0.0044	n.a.	n.a.
38	25	271.53	-203.87	954.62	21.19	443.65	-121.54	0.0038	0.0124	69.35
3 9	20	112.89	965.50	915.13	-9.93	486.39	313.76	0.0025	n.a.	n.a.
40	25	483.24	-292.57	667.77	46.82	547.78	-161.42	0.0059	0.007	15.71
41	20	627.34	-15.42	333.06	10.31	101.11	513.44	0.0038	n.a.	n.a.
	20	654.91	-417.43	638.01	-28.46	231.67	-637.55	0.0065	n.a.	n.a.
42	30	-905.84	599.03	332.29	82.71	-239.02	-345.02	0.0062	n.a.	n.a.
	40	14.53	-596.59	383.38	98.85	-713.92	821.40	0.0092	n.a.	n.a.
	20	257.00	7.36	397.29	-30.35	175.55	164.65	0.0084	n.a.	n.a.
43	30	-286.77	-275.73	425.07	10.20	706.93	-730.17	0.0094	n.a.	n.a.
43	40	-166.81	631.01	336.19	23.81	221.83	57.17	0.0093	n.a.	n.a.
	50	371.38	-88.75	364.31	-4.65	664.28	-70.84	0.0080	n.a.	n.a.
	40	-863.78	250.57	917.61	177.88	599.91	-623.89	0.0024	n.a.	n.a.
	45	-960.33	709.12	811.10	163.79	697.25	-635.20	0.0030	n.a.	n.a.
44	50	-774.49	605.92	895.73	173.68	434.69	-440.50	0.0023	n.a.	n.a.
	55	227.19	-372.61	816.50	520.24	598.95	-138.87	0.0043	n.a.	n.a.
	60	-623.59	541.96	666.63	675.63	464.76	-267.26	0.0010	n.a.	n.a.
45	25	-607.03	832.04	810.14	-13.72	463.53	-415.35	0.0040	n.a.	n.a.
46	25	-427.92	490.34	890.04	-10.86	618.91	-284.37	0.0030	n.a.	n.a.
47	25	-878.57	633.02	221.97	28.01	-140.95	-139.73	0.0055	n.a.	n.a.
48	25	790.73	-232.30	506.54	53.31	-135.51	402.76	0.0096	n.a.	n.a.
49	25	81.40	806.13	578.90	62.15	155.70	388.39	0.0082	n.a.	n.a.
50	25	576.73	321.30	329.73	-2.76	558.85	760.08	0.007	0.008	12.50
51	25	-462.46	93.81	347.58	77.10	-52.74	-279.53	0.007	0.008	12.50
52	25	-486.85	154.48	370.28	19.15	137.89	-323.82	0.004	0.007	42.86
53	25	79.71	-190.39	420.98	20.11	-139.16	57.26	0.0043	n.a.	n.a.
averag					-			0.0059	0.0074	20.27
8 1 1	1000 1	0000		11./	1. 11					

a bounds -1000 and 2000; n.a.: not available/not applicable.

Table 2.11 UNIQUAC binary interaction parameters without closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)

	Binary Interaction Parameters (K)									
System No.	A_{12}	A ₁₃	A_{14}	A_{23}	A_{24}	A_{34}	rmsd			
	A ₂₁	A ₃₁	A_{41}	A ₃₂	A_{42}	A ₄₃				
54	625.32	-325.40	240.71	403.68	417.04	969.31	0.011			
24	537.36	85.26	107.30	508.71	690.34	-341.44	0.011			
55	510.57	-401.54	674.58	-345.98	29.01	161.68	0.007			
	-10.05	197.45	27.65	514.90	468.77	-245.87	0.007			
					(co	ntinued on n	ext page			

56	-288.47	203.16	145.88	3.14	980.97	-20.99	0.000
30	672.54	-25.23	822.64	-51.15	-205.62	335.28	0.008
57	-250.96	629.03	309.49	681.66	228.86	197.57	0.009
3,	701.46	822.52	185.30	579.95	523.04	940.12	0.009
58	566.93	468.94	278.19	-155.89	242.84	161.06	0.009
	-155.90	-170.99	539.31	333.30	179.71	-17.53	0.009
59	-603.58	891.13	450.30	212.63	450.82	158.20	0.007
37	-569.41	-692.55	437.84	-593.29	-275.18	17.92	0.007
60	512.60	405.78	222.07	884.19	503.49	-38.73	0.008
	-204.94	85.44	201.84	21.45	89.72	630.17	0.008
61	-389.97	57.71	281.53	-415.98	584.57	47.65	0.008
01	413.75	311.27	185.48	-73.87	-88.71	-35.51	0.008
62	-773.08	572.23	420.83	930.53	-85.617	308.86	0.006
02	30.60	426.04	-91.85	11.39	-648.63	-508.51	0.000
62 ^r	256.62	756.55	539.77	567.09	524.63	310.96	0.006
02	-198.89	734.36	-134.43	346.42	-244.97	474.00	0.000
average rmsd				,			0.0079

Table 2.12 UNIQUAC binary interaction parameters without closure equations for quinary aromatic extraction systems at 25 °C

quinary aromatic exti		inary Inter		ameters (K)	
	A ₁₂	A ₂₁	A_{31}	A_{41}	A_{51}	
System No.	A ₁₃	A ₂₃	A_{32}	A ₄₂	A_{52}	rmsd
	A ₁₄	A ₂₄	A ₃₄	A ₄₃	A_{53}	
	A ₁₅	A ₂₅	A_{35}	A_{45}	A_{54}	
	-887.07	-264.16	597.93	936.08	883.80	
63	74.69	-400.40	945.18	-427.55	-404.10	0.019
03	-266.39	321.14	47.70	246.50	-49.68	0.017
	-97.53	912.75	664.69	192.11	116.41	
	-780.64	-257.75	-137.81	-19.48	11.63	
64	-231.69	-442.54	-169.34	-187.94	-92.19	0.011
04	65.66	-90.12	-96.84	763.18	-118.00	0.011
	558.55	137.40	-76.20	241.08	40.58	
	494.50	-788.04	123.41	-72.94	892.06	
(5	894.92	378.75	932.81	197.94	109.16	0.010
65	-296.96	-75.08	173.44	951.70	592.68	0.010
-	86.66	520.22	688.35	115.58	22.09	
average rmsd						0.0133

The results of UNIQUAC parameter estimation along with the corresponding percentage gain values for the ternary systems are given in Table 2.10. It is seen that the rmsd values obtained using GA are less than those reported in the literature; approximately 20 percent better. The results of UNIQUAC parameter estimation for quaternary and quinary systems are given in Table 2.11 and Table 2.12 respectively. Good agreement between the experimental tie-line compositions and the tie-line compositions predicted by UNIQUAC model can be seen from their rmsd values. This would mean, for quaternary and quinary systems also the parameters that are obtained using GA predict the LLE more accurately for UNIQUAC model.

2.3.2 Hydrogen bonding systems

Prediction of liquid-liquid equilibria significantly affected by the hydrogen bonds in hydrogen bonding systems; predicted values of r and q for alcohols, ethers and oxygen containing systems show respectively 2.5-20 percent and 5-20 percent deviation from the literature values [45]. Hydrogen bonding systems considered for our estimation is given in Table 2.13.

Table 2.13 Hydrogen bonding systems at different temperatures used for parameter estimation

System No.	System Name	Temperature (°C)	Reference
	Ternary Systems		
1	water(1)-methanol(2)-1,4-dicyanobutane(3)	25	[46]
2	water(1)-ethanol(2)-1,4-dicyanobutane(3)	25	[46]
3	water(1)-1-propanol(2)-1,4-dicyanobutane(3)	25	[46]
4	water(1)-methanol(2)-butanenitrile(3)	25	[46]
5	water(1)-ethanol(2)-butanenitrile(3)	25	[46]
6	water(1)-1-propanol(2)-butanenitrile(3)	25	[46]
7	water(1)-methanol(2)-benzonitrile(3)	25	[46]
8	water(1)-ethanol(2)-benzonitrile(3)	25	[46]
9	water(1)-1-propanol(2)-benzonitrile(3)	25	[46]
10	furfural(1)-chlorobenzene(2)-n-hexane(3)	25	[47]
11	furfural(1)-1,2-dichlorobenzene(2)-n-hexane(3)	25	[47]
12	furfural(1)-1,3-dichlorobenzene(2)-n-hexane(3)	25	[47]
13	furfural(1)-1,2,4-trichlorobenzene(2)-n-hexane(3)	25	[47]
14	furfural(1)-chlorobenzene(2)-n-dodecane(3)	25	[47]
15	furfural(1)-chlorobenzene(2)-n-hexadecane(3)	25	[47]
16	furfural(1)-1,2-dichlorobenzene(2)-n-hexadecane(3)	25	[47]
17	furfural(1)-1,3-dichlorobenzene(2)-n-hexadecane(3)	25	[47]
18	furfural(1)-1,2,4-trichlorobenzene(2)-n-hexadecane(3)	25	[47]
		(continued o	on next page

19	furfuryl alcohol(1)-benzene(2)-hexane(3)	25	[48]
20	furfuryl alcohol(1)-methylbenzene(2)-hexane(3)	25	[48]
21	furfuryl alcohol(1)-1,2-dimethylbenzene(2)-hexane(3)	25	[48]
22	furfuryl alcohol(1)-benzene(2)-dodecane(3)	25	[48]
23	furfuryl alcohol(1)-methylbenzene(2)-dodecane(3)	25	[48]
24	furfuryl alcohol(1)-1,2-dimethylbenzene(2)-dodecane(3)	25	[48]
25	furfuryl alcohol(1)-benzene(2)-hexadecane(3)	25	
26	furfuryl alcohol(1)-methylbenzene(2)-hexadecane(3)	25	[48]
27	furfuryl alcohol(1)-1,2-dimethylbenzene(2)-hexadecane(3)	25	[48]
28	n-hexane(1)-benzene(2)-1,4-dicyanobutane(3)	25	[49]
29	n-hexane(1)-methylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
30			
31	n-hexane(1)-1,2-dimethylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
32	n-hexane(1)-1,3-dimethylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
33	n-hexane(1)-1,4-dimethylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
34	n-hexane(1)-1,3,5-trimethylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
	n-hexane(1)-ethylbenzene(2)-1,4-dicyanobutane(3)	25	[49]
35	n-nonane(1)-benzene(2)-1,4-dicyanobutane(3)	25	[49]
36 37	n-dodecane(1)-benzene(2)-1,4-dicyanobutane(3)	25	[49]
	n-hexadecane(1)-benzene(2)-1,4-dicyanobutane(3)	25	[49]
38	hexadecane(1)-benzene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
39	hexadecane(1)-toluene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
40	hexadecane(1)-o-xylene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
41	hexadecane(1)-m-xylene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
42	hexadecane(1)-p-xylene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
43	hexadecane(1)-mesitylene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
44	hexadecane(1)-ethylbenzene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
45	tetradecane(1)-benzene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
46	tetradecane(1)-toluene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
47	tetradecane(1)-mesitylene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
48	tetradecane(1)-ethylbenzene(2)-1,3-dimethyl-2-imidazolidinone(3)	25	[50]
49	methyl tert-butyl ether(1)-ethanol(2)-water(3)	15, 25	[51]
50	methyl tert-butyl ether(1)-1-hexanol(2)-water(3)	15, 25, 35	[51]
51	epichlorohydrin(1)-water(2)-methanol(3)	0	[52]
52	allyl chloride(1)-water(2)-methanol(3)	0	[52]
53	water(1)-methanol(2)-methylal(3)	0, 20, 40	[53]
54	dodecane(1)-propylbenzene(2)-N-methyl-2-pyrrolidone(3)	25, 35, 45, 55	[54]
55	tetradecane(1)-propylbenzene(2)-N-methyl-2-pyrrolidone(3)	25, 35, 45, 55	[54]
56	heptadecane(1)-propylbenzene(2)-N-methyl-2-pyrrolidone(3)	25, 35, 45, 55	[54]
57	HFE-7100®(1)-water(2)-ethanol(3)	25, 35	[55]
58	2-propanone(1)-glycerol(2)-methanol(3)	10, 20, 30	[56]
59	2-butanone(1)-glycerol(2)-ethanol(3)	10, 20, 30	[56]
60	2-butanone(1)-glycerol(2)-2-propanol(3)	10, 20, 30	[56]
61	2-methoxy-2-methylpropane(1)-ethanol(2)-water(3)	25	[57]
62	2-methoxy-2-methylpropane(1)-1-octanol(2)-water(3)	25	[57]
63	1-octanol(1)-ethanol(2)-water(3)	25	[57]
	Quaternary Systems		-
64	1-octanol(1)-2-methoxy-2-methylpropane(2)-water(3)-ethanol(4)	25	[57]
65	1-octanol(1)-2-methoxy-2-methylbutane(2)-water(3)-methanol(4)	25	[58]

The parameters α , r, and q as given in Table A.2 and A.3 of Appendix A have been taken from corresponding literature. The results of parameter estimation along with the corresponding percentage gain values are given in Table 2.14-2.16.

Table 2.14 NRTL binary interaction parameters for ternary hydrogen bonding systems at different temperatures

Table 2.1	4 NRTL b	inary intera					ding systen	ns at diffe	rent temp	eratures
System	Temp.		Binary	Interactio	n Parame	ers (K)		rmsd	rmsd	gain ^{ga}
No.	(°C)	A ₁₂	A_{21}	A ₁₃	A ₃₁	A_{23}	A_{32}	rmsa	[lit]	gum _{lit}
1	25	606.12	-68.47	1501.00	196.54	97.65	733.13	0.003	0.011	72.73
2	25	250.95	68.01	1932.60	1962.10	8.99	620.33	0.004	0.007	42.86
3	25	434.87	-82.76	1225.40	185.88	-358.62	492.71	0.002	0.013	84.62
4	25	1390.70	-26.46	1442.00	524.46	59.32	1337.00	0.003	0.014	78.57
5	25	370.04	-374.48	1209.30	568.90	538.41	-690.97	0.006	0.014	57.14
6	25	986.72	-222.50	1166.40	516.39	-94.43	501.67	0.003	0.008	62.50
7	25	1064.20	705.91	1792.90	664.27	284.29	1389.70	0.006	0.010	40.00
8	25	1148.00	-7.94	1651.10	729.88	198.29	987.45	0.003	0.014	78.57
90	25	495.70	265.34	1637.20	736.98	-282.92	829.02	0.003	0.007	57.14
10	25	22.96	309.55	627.68	846.89	-159.02	256.47	0.002	0.007	71.43
11	25	1725.80	-64.95	634.17	805.71	-19.78	1623.30	0.002	0.009	77.78
12	25	1420.00	-69.04	620.37	904.21	22.28	1283.30	0.003	0.009	66.67
13	25	1032.50	-11.89	592.63	736.92	124.36	735.30	0.002	0.009	77.78
14	25	1261.10	318.56	756.76	656.42	665.30	1272.00	0.003	0.007	57.14
15	25	450.64	269.20	1201.60	725.42	543.54	150.27	0.001	0.009	88.89
16	25	1138.50	167.13	1288.30	837.75	439.26	938.02	0.002	0.006	66.67
17	25	1209.90	171.06	1155.40	846.01	657.38	856.96	0.002	0.005	60.00
18	25	1074.60	203.39	1057.10	725.48	582.95	749.49	0.001	0.006	83.33
19	25	629.47	731.48	1014.20	1110.90	931.00	486.40	0.002	0.005	60.00
20	25	630.89	760.53	1015.00	1094.40	987.51	531.28	0.003	0.003	0.00
21	25	708.25	700.75	1038.40	1138.90	1130.50	566.54	0.002	0.004	50.00
22	25	575.89	776.61	1462.30	1298.80	723.81	1312.90	0.004	0.004	0.00
23	25	692.48	746.79	1323.80	1178.90	735.67	1134.20	0.004	0.004	0.00
24	25	682.58	723.88	1273.70	1196.60	746.62	1126.40	0.004	0.004	0.00
25	25	382.47	831.51	1522.30	1425.80	835.03	1366.80	0.004	0.006	33.33
26	25	571.27	793.17	1595.50	1372.40	785.77	1336.10	0.003	0.005	40.00
27	25	541.43	838.76	1511.00	1433.70	837.77	960.20	0.003	0.005	40.00
28	25	564.10	722.24	1666.10	777.69	595.72	667.90	0.003	0.004	25.00
29	25	583.48	998.81	1731.20	786.94	564.41	798.44	0.005	0.006	16.67
30	25	505.66	1251.90	1688.30	786.03	559.16	751.49	0.004	0.005	20.00
31	25	242.03	1683.40	1440.30	711.35	645.80	586.16	0.004	0.005	20.00
32	25	-475.42	154.33	1319.10	758.54	919.46	-172.81	0.004	0.004	0.00
33 .	25	-796.38	637.89	1620.90	671.91	707.95	69.43	0.006	0.006	0.00
34	25	-421.86	929.71	1563.50	723.60	656.02	95.02	0.004	0.005	20.00
35	25	135.31	857.02	1913.40	1272.30	677.88	301.56	0.003	0.005	40.00
36	25	1283.00	870.58	1586.70	1370.20	786.04	1768.10	0.007	0.005	-40.00
37	25	1339.10	997.89	1652.50	1685.80	864.96	1731.30	0.007	0.005	-40.00
38	25	-410.43	680.97	1273.20	1536.00	771.10	-84.40	0.002	0.004	50.00
	-					***************************************	territoria de la constitución de l			next page)

39	25	215.24	844.31	1159.80	1257.40	685.32	818.63	0.003	0.009	66.67
40	25	180.61	1699.30	1744.80	1225.00	754.64	392.93	0.004	0.006	33.33
41	25	435.78	738.96	1261.00	1250.20	680.06	751.99	0.002	0.012	83.33
42	25	1905.60	-72.64	1332.30	1369.70	629.70	843.51	0.002	0.013	84.62
43	25	93.54	234.32	1161.60	1444.40	432.91	270.88	0.002	0.009	77.78
44	25	-103.60	75.73	1077.00	1429.20	391.15	274.90	0.003	0.017	82.35
45	25	649.41	676.45	1959.60	1719.10	548.97	838.56	0.008	0.013	38.46
46	25	542.58	-7.22	891.58	1966.50	1859.50	1084.20	0.010	0.018	44.44
47	25	211.27	512.38	1275.30	1957.50	490.40	518.54	0.007	0.005	-40.00
48	25	350.50	543.14	1354.80	1976.80	491.19	585.01	0.007	0.010	30.00
49	15	239.35	298.99	562.03	1052.80	-277.93	1002.50	0.0044	n.a.	n.a.
77	25	-572.88	585.61	604.10	1040.80	-278.03	342.98	0.0068	n.a.	n.a.
	15	-51.37	-56.94	626.92	1968.10	192.37	1733.30	0.0055	n.a.	n.a.
50	25	-494.29	-383.36	652.60	1814.90	256.72	1957.30	0.0032	n.a.	n.a.
	35	350.71	-991.55	552.19	1244.30	34.96	1378.50	0.0051	n.a.	n.a.
51	0	524.48	1410.30	-182.01	593.99	1373.20	-715.04	0.0075	0.0139	46.04
52	0	805.58	1693.10	816.57	280.67	351.08	1560.60	0.0065	0.0335	80.60
	0	-130.93	-38.59	669.44	-776.33	445.08	563.59	0.0038	n.a.	n.a.
53	20	-144.32	216.67	-246.41	97.10	412.10	622.80	0.0022	n.a.	n.a.
	40	1784.00	-446.74	-625.77	627.09	386.34	717.59	0.0018	n.a.	n.a.
	25	163.11	360.08	171.59	840.77	84.66	501.86	0.0020	0.0025	20.00
54	35	897.50	-31.58	120.92	944.04	-137.72	969.36	0.0016	0.0020	20.00
34	45	163.88	1208.00	181.95	770.79	-144.98	1155.40	0.0029	0.0066	56.06
	55	829.76	174.19	38.38	929.93	576.84	471.40	0.0017	0.0032	46.88
	25	213.36	75.46	121.04	1080.90	372.42	57.53	0.0024	0.0035	31.43
55	35	1504.20	146.65	66.38	1120.30	-190.37	1855.50	0.0030	0.0056	46.43
33	45	-65.79	416.19	41.33	1095.70	-305.11	690.78	0.0019	0.0048	60.42
	55	873.99	370.82	-26.67	1086.60	-61.17	1322.80	0.0018	0.0052	65.38
	25	128.76	-303.51	441.12	1044.60	1958.20	-590.90	0.0035	0.0023	-52.17
56	35	-0.84	-336.06	297.17	1252.20	-154.28	-118.80	0.0043	0.0040	-7.50
30	45	-207.76	-269.74	264.83	1201.80	1196.60	-980.54	0.0037	0.0038	2.63
,	55	-325.20	1101.90	96.83	1213.80	-430.90	975.88	0.0021	0.0022	4.55
57	25	1027.30	1892.20	541.85	547.45	-237.65	1106.30	0.009	0.015	40.00
	35	964.42	1812.30	685.32	531.52	27.12	1468.80	0.009	0.012	25.00
	10	848.02	195.05	1201.40	125.90	971.42	344.16	0.0049	n.a.	n.a.
58	20	884.60	240.74	-689.55	712.80	-204.34	-76.81	0.0020	n.a.	n.a.
	30	849.16	229.55	-560.85	786.73	-101.52	6.80	0.0024	n.a.	n.a.
	10	1085.80	413.38	489.02	189.76	891.98	-37.68	0.0026	n.a.	n.a.
59	20	1013.60	469.83	630.25	-157.80	685.54	-106.58	0.0015	n.a.	n.a.
	30	936.41	451.39	1533.50	172.34	1882.80	-40.97	0.0022	n.a.	n.a.
	10	1109.20	424.27	51.52	381.56	804.85	-85.79	0.0016	n.a.	n.a.
60	20	1025.50	436.93	687.67	-410.70	553.32	-85.36	0.0023	n.a.	n.a.
	30	1014.60	452.52	788.92	-462.23	569.46	-95.55	0.0026	n.a.	n.a.
61	25	502.83	-141.23	599. 7 7	1494.10	22.44	381.46	0.0019	0.0052	63.46
62	25	-433.94	-532.52	697.37	1929.20	238.44	1584.40	0.0045	0.0047	4.26
63	25	1192.30	683.70	344.84	1960.40	-133.50	1759.10	0.0026	0.0209	87.56
average	rmsd							0.0036	0.0078	53.85

Table 2.15 UNIQUAC binary interaction parameters for ternary hydrogen bonding systems at different temperatures

temperatur	es									1
System	Temp.		Binary	Interactio				rmsd	rmsd	gain ^{ga}
No.	(°C)	A ₁₂	A_{21}	A_{13}	A ₃₁	A_{23}	A_{32}		[lit]	Barr _{lit}
1	25	803.64	-455.85	180.83	245.49	449.52	209.27	0.005	0.016	68.75
2	25	-606.03	-286.55	160.67	272.24	-145.85	267.09	0.003	0.011	72.73
3	25	-579.49	-440.55	114.23	312.87	5.49	-445.88	0.003	0.028	89.29
4	25	428.04	-453.46	257.38	391.28	-17.66	260.60	0.004	0.013	69.23
5	25	-756.42	-51.48	191.26	438.21	-7.89	41.04	0.009	0.019	52.63
6	25	-333.82	-480.64	252.69	415.09	-227.67	-101.42	0.005	0.012	58.33
7	25	952.88	-517.56	349.97	528.30	212.57	265.08	0.006	0.019	68.42
8	25	725.68	-599.16	613.47	490.80	120.99	-82.03	0.006	0.018	66.67
9	25	-636.22	-487.27	277.43	586.34	75.38	-858.04	0.007	0.010	30.00
10	25	179.11	-66.83	11.51	541.38	-280.42	571.48	0.005	0.011	54.55
11	25	-338.94	-65.71	12.86	446.78	-179.82	-231.70	0.003	0.010	70.00
12	25	259.21	-8.82	16.59	435.97	110.16	38.89	0.004	0.012	66.67
13	25	-185.11	292.12	19.78	478.87	-272.99	387.62	0.007	0.016	56.25
14	25	175.06	263.51	-69.23	494.19	62.11	225.49	0.005	0.011	54.55
15	25	168.64	-63.12	162.62	342.73	-199.96	356.81	0.007	0.012	41.67
16	25	455.58	-148.56	203.59	349.63	-229.46	556.36	0.006	0.013	53.85
17	25	-159.29	134.88	-16.95	499.57	299.54	-303.19	0.005	0.013	61.54
18	25	905.43	549.53	-47.84	450.05	156.80	837.26	0.012	0.011	-9.09
19	25	365.45	-197.19	-14.21	815.32	-338.11	797.32	0.004	0.020	80.00
20	25	-407.42	132.12	-25.93	441.96	101.36	-521.06	0.012	0.020	40.00
21	25	622.19	-12.75	52.52	486.44	728.62	112.61	0.007	0.020	65.00
22	25	214.81	74.78	-22.05	503.85	295.43	-41.78	0.008	0.030	73.33
23	25	-104.04	435.05	-27.14	598.92	-266.77	780.13	0.011	0.020	45.00
24	25	-101.38	356.50	-35.30	734.59	-276.37	892.32	0.008	0.030	73.33
25	25	240.43	476.69	-33.07	340.47	404.74	204.25	0.011	0.030	63.33
26	25	231.90	146.22	-47.67	541.34	232.64	96.30	0.004	0.030	86.67
27	25	454.04	464.03	-68.06	453.65	474.38	189.78	0.008	0.030	73.33
28	25	302.79	370.42	601.18	5.15	166.76	472.37	0.005	0.004	-25.00
29	25	-247.88	405.74	313.64	71.19	271.49	-104.39	0.005	0.003	-66.67
30	25	376.83	-271.48	471.12	79.63	644.87	-207.79	0.006	0.004	-50.00
31	25	-308.84	527.03	577.22	2.68	319.40	-112.66	0.004	0.004	0.00
32	25	-297.87	798.99	347.56	68.59	346.04	-83.98	0.003	0.003	0.00
33	25	-65.52	-17.30	566.67	-12.54	195.14	-16.88	0.008	0.006	-33.33
34	25	-204.20	271.33	394.11	57.34	212.69	-53.36	0.004	0.003	-33.33
35	25	296.22	-214.59	493.48	88.97	331.23	-179.15	0.002	0.005	60.00
36	25	309.22	-166.67	634.78	59.28	-8.24	119.61	0.003	0.004	25.00
37	25	104.12	-79.22	301.11	179.54	163.17	-81.26	0.004	0.003	-33.33
38	25	-77.66	-285.89	931.89	104.84	-143.52	-291.18	0.007	0.012	41.67
49	25	581.27	-286.91	869.84	-79.13	594.46	-158.74	0.008	0.016	50.00
40	25	377.91	175.95	728.11	-91.84	451.53	285.32	0.008	0.016	50.00
41	25	-123.76	447.21	736.94	-109.28	546.98	-113.78	0.012	0.013	7.69
		-						The state of the s	tinued on	

42	25	-456.60	917.49	987.93	-108.38	266.36	-127.86	0.003	0.009	66.67
43	25	-557.37	578.17	805.69	-65.53	271.61	-413.61	0.004	0.014	71.43
44	25	-249.63	352.68	737.26	148.42	-108.79	334.04	0.007	0.007	0.00
45	25	428.09	-54.40	815.69	-131.20	281.95	240.10	0.020	0.019	-5.26
46	25	419.05	-225.34	798.01	-117.78	395.49	-79.31	0.018	0.016	-12.50
47	25	319.37	54.92	806.10	-136.92	479.49	217.68	0.020	0.016	-25.00
48	25	35.74	-10.76	837.99	-139.21	425.47	-145.23	0.018	0.016	-12.50
49	15	330.55	-220.90	553.97	55.96	990.45	-384.07	0.0039	n.a.	n.a.
47	25	422.89	-210.73	581.31	51.61	121.07	-103.01	0.0034	n.a.	n.a.
	15	-170.62	385.74	396.99	131.75	253.42	58.84	0.0059	n.a.	n.a.
50	25	282.91	198.49	393.20	330.71	-31.59	745.16	0.0037	n.a.	n.a.
	35	-97.04	530.80	376.74	313.58	75.32	228.59	0.0046	n.a.	n.a.
51	0	596.59	92.27	151.95	152.01	504.19	-281.72	0.0088	0.0145	39.31
52	0	502.23	514.08	815.27	-15.46	46.80	620.84	0.0042	0.0232	81.90
	0	262.76	-421.64	-192.55	-421.76	540.22	-22.62	0.0022	n.a.	n.a.
53	20	485.54	-194.84	-155.11	-108.89	519.13	-19.11	0.0020	n.a.	n.a.
,	40	-289.81	-17.04	-490.69	-12.71	434.65	36.24	0.0039	n.a.	n.a.
	25	-18.04	-27.17	236.97	-8.11	28.02	-40.06	0.0025	0.0024	-4.17
<i>5 1</i>	35	17.85	211.88	187.88	29.43	-19.40	267.93	0.0033	0.0012	-175.00
54	45	189.66	-187.72	269.48	-29.38	-132.47	108.77	0.0057	0.0046	-23.91
	55	97.83	867,57	212.46	-11.53	535.50	195.66	0.0043	0.0025	-72.00
	25	-160.40	491.57	199.58	22.09	109.93	45.42	0.0034	0.0025	-36.00
	35	-535.73	-186.21	162.00	57.79	-61.14	-706.91	0.0046	0.0055	16.36
55	45	-374.39	-72.24	249.34	-24.07	837.46	-740.97	0.0062	0.0039	-58.97
	55	125.77	473.10	211.25	-7.02	235.84	313.06	0.0047	0.0047	0.00
	25	799.34	128.13	358.93	-64.97	899.61	615.31	0.0089	0.0022	-304.55
	35	-95.08	305.43	334.01	-43.50	47.72	99.61	0.0079	0.0046	-71.74
56	45	-67.37	-186.64	338.07	-47.54	428.81	-528.79	0.0048	0.0043	-11.63
	55	344.35	-226.05	230.34	17.43	-57.98	59.68	0.0046	0.0022	-109.09
	25	822.75	362.44	489.29	-79.58	287.90	-340.65	0.008	0.021	61.90
57	35	919.16	161.21	385.41	-32.45	123.21	-548.87	0.008	0.019	57.89
	10	257.83	134.41	381.40	-231.97	282.63	-191.14	0.0034	0.0061	44.26
58	20	222.41	160.68	-699.38	267.15	-298.70	-171.40	0.0026	0.0096	72.92
	30	221.00	148.67	515.60	-96.21	686.11	-153.58	0.0037	0.0054	31.48
	10	329.68	135.12	435.80	-260.17	-0.98	65.01	0.0024	0.0091	73.63
59	20	293.24	155.04	-353.11	451.02	102.23	-96.25	0.0030	0.0062	51.61
	30	479.42	105.63	669.72	-347.69	-208.47	349.78	0.0047	0.0064	26.56
	10	350.03	120.89	-386.58	379.28	44.47	-36.93	0.0034	0.0073	53.42
60	20	307.90	148.27	-647.67	259.06	-184.93	-80.41	0.0047	0.0057	17.54
- · ·	30	334.66	135.42	595.45	-301.45	176.83	-36.05	0.0036	0.0051	29.41
61	25	531.21	-241.77	539.80	109.04	897.78	-231.59	0.0040	0.0087	54.02
62	25	355.05	-193.89	595.96	72.64	650.84		0.0046	0.0019	-142.11
63	25	353.43	108.79	311.16	101.54	-4.28		0.0049	0.0066	25.76
			,							

Table 2.16 Quaternary binary interaction parameters for hydrogen bonding systems at 25 °C

	Pa	rameters.	without c	losure equ	uations (I	K)			
System No.	A_{12}	A_{13}	A_{14}	A_{23}	A_{24}	A_{34}	rmsd	rmsd [lit]	gain _{lii}
140.	A_{21}	A_{31}	A_{41}	A_{32}	A_{42}	A_{43}		լույ	
				NRT	L				
64	1548.50	276.58	1165.50	333.82	835.51	1793.70	0.0040	0.0277	85.56
04	-595.37	1552.40	1010.70	1037.80	947.98	-77.95	0.0040	0.0277	65.50
65	-847.34	191.92	334.69	466.31	433.20	608.37	0.0058	0.0345	83.19
03	1160.20	1572.70	460.14	1186.40	326.94	99.46	0.0036	0.0343	03.17
average	rmsd						0.0049	0.0311	84.24
				UNIQU	AC				
	84.11	264.42	94.42	232.15	904.18	279.31			
64	84.48	160.02	21.47	354.28	163.43	-87.59	0.0052	0.0180	71.11
65	417.54	374.12	35.67	520.57	71.17	-10.47	0.0047	0.0106	55.66
03	-122.37	85.60	62.71	162.65	53.98	-169.42	0.0047	0.0100	33.00
average	rmsd						0.0050	0.0143	65.03

It is seen that for hydrogen bonding systems too the rmsd values obtained using GA are less than those reported in the literature; approximately 54 percent and 84 percent better using NRTL model and 45 percent and 65 percent better using UNIQUAC model, respectively for ternary and quaternary systems. This clearly means that parameters obtained using GA will predict LLE more accurately than literature for any multicomponent systems.

It has been observed that for some cases, rmsd values reported in the literature are better than GA. The expected reason could be the biased experimental error in the reported LLE.

2.4 Conclusions

A genetic algorithm, which is a structured search-based optimization method, has been applied to estimate NRTL and UNIQUAC binary interaction parameters for liquid-liquid systems. Average root mean square deviation value is approximately 46 percent better for NRTL model and 40 percent better for UNIQUAC model, which is viewed as a potentially useful improvement for the prediction of liquid-liquid equilibria. The effect of using different genetic operators and their parameters has not been studied. Genetic algorithm can be applied to predict vapor-liquid equilibria.

References

- [1] C. Gau, M. A. Stadtherr, "Reliable nonlinear parameter estimation using interval analysis: error-in-variable approach", Computers & Chemical Engineering 24 (2000) 631.
- [2] E. R. Hansen, R. I. Greenberg, "An interval Newton method", Applied Mathematics and Computation 12 (1983) 89.
- [3] W. R. Esposito, C. A. Floudas, "Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-In-Variable Approach", *Industrial & Engineering Chemistry Research* 37 (1998) 1841.
- [4] C. S. Adjiman, S. Dallwig, C. A. Floudas, A. Neumaier, "A global optimization method, αBB, for general twice-differentiable constrained NLPs I. Theoretical advances", Computers & Chemical Engineering 22 (1998) 1137.
- [5] C. S. Adjiman, I. P. Androulakis, C. A. Floudas, "A global optimization method, αBB, for general twice-differentiable constrained NLPs II. Implementation and computational results", Computers & Chemical Engineering 22 (1998) 1159.
- [6] Y. Zhu, K. Inoue, "Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation", *Chemical Engineering Science* 56 (2001) 6915.
- [7] M. K. Singh, T. Banerjee, A. Khanna, "Genetic Algorithm to Estimate Interaction Parameters of Multicomponent Systems for Liquid-Liquid Equilibria", Computers & Chemical Engineering 29 (2005) 1713.
- [8] A. I. Papadopoulos, P. Linke, "On the synthesis and optimization of liquid-liquid extraction processes using stochastic search methods", Computers & Chemical Engineering 28 (2004) 2391.
- [9] S. A. Ahmad, A. Khanna, "Closure Equations in the Estimation of Binary Interaction Parameters", Korean Journal of Chemical Engineering 20 (2003) 736.
- [10] E. Hala, "Note to Bruin-Prausnitz One-Parameter and Palmer-Smith Two-Parameter Local Composition Equation", Industrial & Engineering Chemistry Process Design and Development 11 (1972) 638.
 - [11] J. H. Holland, University of Michigan Press, Ann Arbor 1975.

- [12] J. H. Holland, "Adaption in Natural and Artificial Systems", MIT press 1975.
- [13] C. R. Houck, J. A. Joines, M. G. Kay, NCSU-IE TR 95-09, 1995. (URL:www.ie.ncsu.edu/mirage/GAToolBox/gaot/)
- [14] C. R. Houck, J. A. Joines, M. G. Kay, "Comparison of genetic algorithms, random restart and two-opt switching for solving large location allocation problems", Computers & Operations Research 23 (1996) 587.
- [15] H. Renon, J. M. Prausnitz, "Local Compositions in Thermodynamic Excess Function for Liquid Mixtures", AIChE J 14 (1968) 135.
- [16] H. Renon, J. M. Prausnitz, Industrial & Engineering Chemistry Process Design and Development 8 (1969) 413.
- [17] J. D. Seader, E. J. Henley, Separation Process Principles, John Wiley, New York, 1998.
- [18] J. M. Prausnitz, R. N. Lechtenthaler, E. G. Azevedo, *Molecular Thermodynamics of Fluid Phase Equilibria*, third ed., Prentice-Hall 1999.
- [19] D. S. Abrams, J. M. Prausnitz, "Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems", AIChE J 21 (1975) 116.
- [20] J. M. Prausnitz, T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, J. P. O'Connell, Computer calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1980.
- [21] G. W. Cassell, N. Dural, A. W. Westerberg, "Liquid-Liquid Equilibrium of Sulfolane-Benzene-Pentane and Sulfolane-Toluene-Pentane", *Industrial & Engineering Chemistry Research* 28 (1989) 1369.
- [22] R. M. D. Fré, L. A. Verhoeye, "Phase Equilibria in Systems Composed of an Aliphatic and an Aromatic Hydrocarbon and Sulfolane", Journal of Chemical Technology and Biotechnology 26 (1976) 469.
- [23] M. S. Hassan, M. A. Fahim, "Correlation of Phase Equilibria of Naphtha Reformate with Sulfolane", *Journal of Chemical & Engineering Data* 33 (1988) 162.
- [24] J. Chen, L. Duan, J. Mi, W. Fei, Z. Li, "Liquid-Liquid equilibria of multicomponent systems including n-hexane, n-octane, benzene, toluene, xylene and

- sulfolane at 198.15 K and atmospheric pressure", Fluid Phase Equilibria 173 (2000) 109.
- [25] R. Rappel, L. M. N. Góis, S. Mattedi, "Liquid-Liquid equilibria data for systems containing aromatic + nonaromatic + sulfolane at 308.15 and 323.15 K", Fluid Phase Equilibria 202 (2002) 263.
- [26] B. S. Rawat, I. B. Gulati, "Liquid-Liquid Equilibria Studies for Separation of Aromatics", Journal of Chemical Technology and Biotechnology 26 (1976) 425.
- [27] B. S. Rawat, G. Prasad, "Liquid-Liquid Equilibria for Benzene-n-Heptane Systems with Triethylene Glycol, Tetraethylene Glycol, and Sulfolane Containing Water at Elevated Temperatures", *Journal of Chemical & Engineering Data* 25 (1980) 227.
- [28] G. W. Cassell, M. M. Hassan, A. L. Hines, "Correlation of the Phase Equilibrium Data for the Heptane-Toluene-Sulfolane and Heptane-Xylene-Sulfolane Systems", Journal of Chemical & Engineering Data 34 (1989) 434.
- [29] S. Lee, H. Kim, "Liquid-Liquid Equilibria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene, and Sulfolane + Octane + p-Xylene", Journal of Chemical & Engineering Data 40 (1995) 499.
- [30] W. Lin, N. Kao, "Liquid-Liquid Equilibria of Octane + (Benzene or Toluene or m-Xylene) + Sulfolane at 323.15, 348.15, and 373.15 K", Journal of Chemical & Engineering Data 47 (2002) 1007.
- [31] M. Mondragón-Garduño, A. Romero-Martínez, A. Trejao, "Liquid-Liquid Equilibria for ternary systems. I. C₆-isomers + sulfolane + toluene at 298.15 K", Fluid Phase Equilibria 64 (1991) 291.
- [32] J. Chen, Z. Li, L. Duan, "Liquid-Liquid Equilibria of Ternary and Quaternary Systems Including Cyclohexane, 1-Heptene, Benzene, Toluene, and Sulfolane at 298.15 K", Journal of Chemical & Engineering Data 45 (2000) 689.
- [33] G. W. Cassell, M. M. Hassan, A. L. Hines, "Liquid-Liquid Equilibria for the Hexane-Benzene-Dimethyl Sulfoxide Ternary System", *Journal of Chemical & Engineering Data* 34 (1989) 328.
- [34] J. M. Sørenson, W. Arlt, Liquid-Liquid equilibrium data collection. *DECHEMA*, Chemistry Data Series V, Part 2 & 3, Frankfurt am Main, 1980.

- [35] G. M. Radwan, S. A. Al-Muhtaseb, M. A. Fahim, "Liquid-Liquid equilibria for the extraction of aromatics from naphtha reformate by dimethylformamide/ethylene glycol mixed solvent", *Fluid Phase Equilibria* 129 (1997) 175.
- [36] M. A. Hughes, Y. Haoran, "Liquid-Liquid Equilibria for Separation of Toluene from Heptane by Benzyl Alcohol Tri (ethylene glycol) Mixtures", *Journal of Chemical & Engineering Data* 35 (1990) 467.
- [37] M. A. Al-Qattan, T. A. Al-Sahhaf, M. A. Fahim, "Liquid-Liquid Equilibria in Some Binary and Ternary Mixtures with Tetraethylene Glycol", *Journal of Chemical & Engineering Data* 39 (1994) 111.
- [38] S. A. Ahmad, "LLE experimentation parameter estimation and validation for aromatic extraction systems", *PhD Thesis*, Indian Institute of Technology Kanpur, 2003.
- [39] P. O. Ferreira, J. B. Ferreira, A. G. Medina, "Liquid-Liquid Equilibria for the system N-methylpyrrolidone + Toluene + n-Heptane: UNIFAC interaction parameters for N-methylpyrrolidone", Fluid Phase Equilibria 16 (1984) 369.
- [40] G. M. Radwan, S. A. Al-Muhtaseb, A. M. Dowaidar, M. A. Fahim, "Extraction of Aromatics from Petroleum Naphtha Reformate by a 1-Cyclohexyl-2pyrrolidone/Ethylene Carbonate Mixed Solvent", *Industrial & Engineering Chemistry Research* 36 (1997) 414.
- [41] A. B. S. H. Salem, "Liquid-Liquid equilibria for the systems triethylene glycoltoluene-heptane, propylene carbonate-toluene-heptane, and propylene carbonate-o-xylene-heptane", Fluid Phase Equilibria 86 (1993) 351.
- [42] T. M. Letcher, S. Zondi, P. K. Naicker, "Liquid-Liquid equilibria for mixtures of (Furfural + an Aromatic Hydrocarbon + an Alkane) at T = 298.15 K", Journal of Chemical & Engineering Data 48 (2003) 23.
- [43] J. Chen, J. Mi, W. Fei, Z. Li, "Liquid-Liquid Equilibria of Quaternary and Quinary Systems Including Sulfolane at 298.15 K", Journal of Chemical & Engineering Data 46 (2001) 169.
- [44] Aspen plus Ver 10.0, Aspen technology Inc., Cambridge, MA, USA, 1998.

- [45] T. Banerjee, M. K. Singh, R. K. Sahoo, A. Khanna, "Volume, surface, UNIQUAC interaction parameters for imidazolium based ionic liquids via Polarizable Continuum Model", Fluid Phase Equilibria 234 (2005) 64.
- [46] T. M. Letcher, P. K. Naicker, "Liquid-Liquid Equilibria for Mixtures or Water + an Alkanol + a Nitrile Compound at T=298.15 K", Journal of Chemical & Engineering Data 46 (2001) 1436.
- [47] P. Morawski, T. M. Letcher, P. K. Naicker, "Liquid-Liquid Equilibria for Mixtures of (Furfural + a Chlorinated Aromatic Compound + an Alkane) at T = 298.15 K", Journal of Chemical & Engineering Data 48 (2003) 822.
- [48] P. Morawski, T. M. Letcher, P. K. Naicker, "Liquid-Liquid Equilibria for Mixtures of (Furfuryl Alcohol + an Aromatic Hydrocarbon + Alkane) at T=298.15 K", Journal of Chemical & Engineering Data 47 (2002) 1453.
- [49] T. M. Letcher, P. K. Naicker, "Liquid-Liquid Equilibria for Mixtures of an Alkane + an Aromatic Hydrocarbon + 1,4-Dicyanobutane at 298.15 K", Journal of Chemical & Engineering Data 45 (2000) 104.
- [50] T. M. Letcher, P. K. Naicker, "Ternary Liquid-Liquid Equilibria for Mixtures of an Alkane + an Aromatic Compound + 1,3-Dimethyl-2-imidazolidinone at 298.15 K and 1 atm", Journal of Chemical & Engineering Data 46 (2001) 177.
- [51] I. Ashour, "Liquid-Liquid equilibrium for MTBE + Ethanol + Water and MTBE + 1-Hexanol + Water over the Temperature Range of 288.15 to 308.15 K", Journal of Chemical & Engineering Data 50 (2005) 113.
- [52] P. S. Vaidya, R. V. Naik, "Liquid-Liquid Equilibria for the Epichlorohydrin + Water + Methanol and Allyl Chloride + Water + Methanol Systems", *Journal of Chemical & Engineering Data* 48 (2003) 1015.
- [53] M. Albert, I. Hahnenstein, H. Hasse, G. Maurer, "Vapor-Liquid and Liquid-Liquid Equilibria in Binary and Ternary Mixtures of Water, Methanol, and Methylal", Journal of Chemical & Engineering Data 46 (2001) 897.
- [54] A. S. Al-Jimaz, M. S. Fandary, J. A. Al-Kandary, M. A. Fahim, "Liquid-liquid equilibria for *n*-alkanes (C12, C14, C17) + propylbenzene + NMP mixtures at temperatures between 298 and 328 K", *Fluid Phase Equilibria* 231 (2005) 163.

- [55] J. A. Luckman, D. C. Conrad, B. L. Knutson, "Liquid-liquid equilibria of a hydrofluoroether +water + ethanol system", *Fluid Phase Equilibria* **201** (2002) 97.
- [56] H. Katayama, T. Hayakawa, T. Kobayashi, "Liquid-liquid equilibria of three ternary systems: 2-propanone-glycerol-methanol, 2-butanone-glycerol-ethanol, and 2-butanone-glycerol-2-propanol in the range of 283.15 to 303.15 K", Fluid Phase Equilibria 144 (1998) 157.
- [57] A. Arce, M. Blanco, A. Soto, "Quaternary liquid-liquid equilibria of systems with two partially miscible solvent pairs: 1-octanol + 2-methoxy-2-methylpropane + water + ethanol at 25 °C", Fluid Phase equilibria 146 (1998) 161.
- [58] A. Arce, M. Blanco, A. Soto, "Determination and correlation of liquid-liquid equilibrium data for the quaternary system 1-octanol + 2-methoxy-2-methylbutane + water + methanol at 25 °C", Fluid Phase equilibria 158-160 (1999) 949.

Chapter 3

ESTIMATION OF BINARY INTERACTION PARAMETERS WITH CLOSURE EQUATION/S

3.1 Introduction

The binary interaction parameters of UNIQUAC and NRTL activity coefficient models are expressed in terms of the difference of the respective interaction energies. The set of equations for ternary and higher component systems, with interaction energies as variables, is inconsistent for arbitrary values of binary interaction parameters [1]. Later Varheygi and Eon [2] stated that since the difference of energy interaction terms appears in the definition of binary interaction term used in the activity coefficient model, an addition of a constant value to each energy interaction term involved will cause no effect in the value of binary interaction parameters and hence in the calculated values of component activity coefficient. They therefore suggested that instead of estimating interaction parameters it would be better to estimate the interaction energies keeping the value of one interaction energy fixed at some arbitrary value. The interaction parameters calculated from these estimated interaction energies will not be all arbitrary but would be related to each other. Hala [1] showed that for a ternary system *i-j-k* there exist a linear relation between the binary interaction parameters and is of the form,

$$(\tau_{jk} - \tau_{kj}) = (\tau_{ik} - \tau_{ki}) - (\tau_{ij} - \tau_{ji})$$
(3.1)

This relationship is referred as "closure equation" [3]. The number of such independent relationship for a c component system is $0.5 \times c(c-3)+1$ [1]. In this chapter, the binary interaction parameters have been estimated using GA, with closure equation/s (wce). The results thus obtained are compared with those reported in chapter 2 (without implementation of closure equation/s (woce)) and reported in the literature.

3.2 Theory and Calculation

3.2.1 Closure Equation/s

Ahmad [3] derived the closure equation/s for ternary, quaternary and quinary systems. The number of closure equation is one for ternary, three for quaternary and six for quinary system.

3.2.1.1 Ternary Systems

A ternary system has the following six binary interaction parameters A_{12} , A_{21} ; A_{13} , A_{31} ; and A_{23} , A_{32} . Closure equation which describes the relationship between these six binary interaction parameters is [4],

$$A_{12} - A_{21} + A_{23} - A_{32} + A_{31} - A_{13} = 0 (3.2)$$

That is only five out of six binary interaction parameters are independent.

3.2.1.2 Quaternary Systems

For a quaternary system, the twelve binary interaction parameters are A_{12} , A_{21} ; A_{13} , A_{31} ; A_{14} , A_{41} ; A_{23} , A_{32} ; A_{24} , A_{42} ; and A_{34} , A_{43} . Three closure equations for the quaternary systems are [4],

$$A_{12} - A_{21} + A_{23} - A_{32} + A_{31} - A_{13} = 0 (3.3)$$

$$A_{12} - A_{21} + A_{24} - A_{42} + A_{41} - A_{14} = 0 (3.4)$$

$$A_{23} - A_{32} + A_{34} - A_{43} + A_{42} - A_{24} = 0 ag{3.5}$$

That is only nine out of twelve binary interaction parameters are independent.

3.2.1.3 Quinary Systems

A quinary system has the following twenty binary interaction parameters: A_{12} , A_{21} ; A_{13} , A_{31} ; A_{14} , A_{41} ; A_{15} , A_{51} ; A_{23} , A_{32} ; A_{24} , A_{42} ; A_{25} , A_{52} ; A_{34} , A_{43} ; A_{35} , A_{53} ; and A_{45} , A_{54} . Six closure equations for quinary systems are [4],

$$A_{12} - A_{21} + A_{23} - A_{32} + A_{31} - A_{13} = 0 (3.6)$$

$$A_{12} - A_{21} + A_{24} - A_{42} + A_{41} - A_{14} = 0 ag{3.7}$$

$$A_{12} - A_{21} + A_{25} - A_{52} + A_{51} - A_{15} = 0 ag{3.8}$$

$$A_{23} - A_{32} + A_{34} - A_{43} + A_{42} - A_{24} = 0 ag{3.9}$$

$$A_{23} - A_{32} + A_{35} - A_{53} + A_{52} - A_{25} = 0 ag{3.10}$$

$$A_{24} - A_{42} + A_{45} - A_{54} + A_{52} - A_{25} = 0 ag{3.11}$$

That is only fourteen out of twenty binary interaction parameters are independent.

3.2.2 Implementation of Closure equation/s in Parameter Estimation

The closure equation/s have been implemented by the elimination of the parameters, A_{ij} 's equal to the number of closure equation/s. These eliminated parameters can be obtained by the simultaneous solution of closure equation/s. There exist several possibilities of parameter elimination for ternary, quaternary and quinary systems. However, a feasible set is such that the rank of the coefficient matrix of the eliminated parameters in the closure equation/s is equal to the number of independent closure equation/s. A general expression for the number of feasible sets of parameter elimination for a c component system with c number of closure equation is given as c

$$c^{c-2} \times 2^n$$
 where $n = 0.5 \times c(c-3) + 1$ (3.12)

The following two rules of thumb must be satisfied to obtain the feasible sets of eliminated parameters [4],

- 1. Mirror images (i.e., A_{ij} and A_{ji}) cannot be eliminated simultaneously.
- 2. Same component cannot appear as subscript in all the eliminated parameters.

3.3 Results and Discussion

Implementation of closure equation/s has been studied on same 65 aromatic extraction systems as listed in Table 2.2 of chapter 2.

There exist several possibilities for parameter elimination. The number of such possibilities for ternary system is 6, for quaternary is 220 and for quinary is 38760. However, all such possibilities are not feasible. The number of feasible sets as discussed in section 3.2.2 is 6 for ternary, 128 for quaternary and 8000 for quinary systems. From parameter elimination for ternary systems, it is observed that most of the cases elimination of parameters with only *i*=nonaromatic-*j*=aromatic, *i*=nonaromatic-*j*=solvent and *i*=solvent-*j*=aromatic combination gives better rmsd values than elimination of other binary pairs. Therefore, for quaternary and quinary systems feasible sets involving parameters with only these pairings, termed as 'likely feasible sets' have been considered. The number of such likely feasible sets of parameter elimination is 3 for ternary, 8 for quaternary and 21 for quinary systems. Summary of parameter elimination scheme is given in Table 3.1.

Table 3.1 Parameter elimination scheme

Parameter elimination procedure		System	
1	Ternary	Quaternary	Quinary
number of binary interaction parameters $a = 2 \times^{c} C_{2}$	6	12	20
number of closure equation/s $n = 0.5 \times c(c - 3) + 1$	• 1	3	6
number of parameter elimination possibilities ${}^{a}C_{n}$	6	220	38760
number of feasible sets of parameter elimination $c^{c-2} \times 2^n$	6	128	8000
number of likely feasible sets of parameter elimination	3	8	21ª

^a nonaromatic-nonaromatic-aromatic-aromatic-solvent system

The rmsd values thus obtained have been compared with those reported in chapter 2 (without closure equation/s) and reported in the literature in terms of percentage gain defined as,

$$gain_{lit}^{wce} = \frac{rmsd_{lit} - rmsd_{wce}}{rmsd_{lit}} \times 100$$
(3.13)

$$gain_{woce}^{wce} = \frac{rmsd_{woce} - rmsd_{wce}}{rmsd_{wce}} \times 100$$
 (3.14)

The results of NRTL and UNIQUAC parameter estimation along with the corresponding percentage gain values for the ternary, quaternary and quinary systems are given in Table 3.2-3.7. Comparison of average rmsd's for all the systems are give in Table 3.8. It is seen that the rmsd value corresponding to the parameters with the closure equation/s taken into account is less than that without closure equation/s; approximately 12, 10 and 7 percent better using NRTL model and 12, 18, and 8 percent better using UNIQUAC model, respectively for ternary, quaternary and quinary systems. This clearly means that parameters obtained with the closure equation/s will predict the LLE more accurately than those obtained without closure equation/s. The overall percentage gain is now approximately 44, 33 and 31 percent better using NRTL model, respectively for ternary, quaternary and quinary systems and 30 percent better for ternary systems using UNIQUAC model, than literature values.

Table 3 2 NRTL (α =0.2) binary interaction parameters with closure equation for ternary aromatic extraction systems at different temperatures

System	Temp.	Binary	Interactio	n Paramete	ers, with clo	sure equat	ion (K)	ad	gain wce	gain _{lit} wce
No.	(°C)	A_{12}	A_{21}	. A ₁₃	A_{31}	A_{23}	A_{32}	rmsd	(%)	(%)
	17	22.28	498.13	935.74	866.14	575.46	30.01	0.0054	15.63	n.a.
1	25	62.89	150.48	1405.30	931.50	471.17	-90.22	0.0033	10.81	n.a.
0	50	-1.73	292.81	1208.20	1035.10	446.78	-20.86	0.0041	12.77	n.a.
	17	239.60	-78.33	1385.10	707.75	421.69	62.27	0.0052	-1.96	n.a.
2	25	319.31	-222.13	1731.90	704.12	487.78	1.44	0.0029	29.27	n.a.
	50	56.59	28.68	1360.30	473.37	728.12	-130.90	0.0064	4.48	n.a.
	25	57.18	56.05	1533.00	897.63	489.35	-144.89	0.004	20.00	n.a.
	30	1789.10	216.20	1001.20	807.95	173.99	1553.64	0.007	0.00	n.a.
3	50	242.04	-108.76	1737.40	905.99	414.67	-65.94	0.003	25.00	n.a
	75	58.19	-140.41	1541.80	632.34	513.18	-197.68	0.006	0.00	n.a
	100	88.33	-90.35	1541.70	663.58	518.36	-181.08	0.004	0.00	n.a
	25	62.05	-49.75	1698.50	700.64	676.44	-209.62	0.003	50.00	40.00
4	35	108.23	-178.38	1812.50	709.68	801.31	-14.90	0.009	0.00	43.75
	50	-367.42	-54.75	1770.00	811.60	1073.20	-197.87	0.005	0.00	66.67
	25	93.98	76.29	1177.90	682.86	548.75	71.40	0.004	20.00	50.00
5	35	-259.05	21.32	1375.90	623.33	1140.30	107.36	0.004	0.00	75.00
	50	-41.89	-179.60	1681.80	745.66	944.19	145.76	0.002	0.00	80.00
6	25	70.98	163.81	1629.20	1269.20	438.29	-14.54	0.0037	11.90	n.a
6	110	-110.58	382.52	980.28	765.35	632.49	-75.54	0.003	25.00	n.a
	25	-47.29	114.52	1301.40	902.44	535.01	-25.76	0.004	20.00	n.a
	30	1499.80	-29.95	817.79	904.63	-347.83	1268.76	0.002	0.00	n.a
7	50	141.11	-118.86	1602.80	861.54	482.38	1.09	0.002	0.00	n.a
	75	249.37	-174.81	1454.90	823.17	351.69	144.14	0.003	25.00	n.a
	100	-49.67	-77.92	1264.60	724.86	459.77	-51.72	0.003	0.00	n.a
	17	183.42	-69.21	1449.90	1020.30	369.26	192.29	0.011	15.38	n.a
8	25	147.51	-136.49	1633.30	932.09	513.19	95.98	0.005	0.00	n.a
	50	186.99	-147.46	1487.50	852.06	446.14	145.15	0.007	-16.67	n.a
	25	50.67	890.62	942.22	963.46	886.10	67.39	0.003	40.00	50.0
	35	343.33	1178.10	766.14	1191.20	868.03	458.32	0.005	16.67	44.4
9	45	67.73	639.72	1031.50	1259.50	551.67	207.68	0.003	25.00	40.0
9	50	-443.27	739.45	1025.00	1130.40	810.87	-266.45	0.004	20.00	33.3
	75	-323.95	325.02	1383.10	960.15	751.21	-320.71	0.003	0.00	0.0
	100	14.24	203.06	1377.40	1214.80	438.84	87.42	0.005	-25.00	44.4
	25	-290.79	556.16	899.19	1059.00	670.37	-16.77	0.002	0.00	0.0
	35	-333.89	288.43	1034.10	1079.70	498.44	-78.28	0.002	0.00	0.0
10	45	-428.57	518.98	865.29	1016.50	672.36	-123.98	0.002	0.00	33.3
10	50	-693.18	206.43	1243.00	969.69	752.26	-420.66	0.006	0.00	14.2
	75	-195.17	153.63	1414.80	978.95	662.36	-122.29	0.003	0.00	40.0
	100	-297.75	236.26	1311.50	910.97	773.30	-161.24	0.003	0.00	25.0
11	25	-405.38	276.52	950.11	1000.10	563.18	-68.73	0.003	0.00	0.0
1	30	327.31	392.35	804.39	958.49	344.08	433.14	0.003	0.00	n.a
						-		(cor	ntinued on i	next page

	25	107.41	02.50	1122.00	909 02	508.14	-6.74	0.002	0.00	22.22
1	35 45	-197.41	93.50	1122.00 1267.90	898.03 986.91	295.91	124.31	0.002	25.00	33.33
}	50	37.79 -82.57	-71.60 61.38	1462.30	1040.80	636.53	71.08	0.003	0.00	0.00
1	75	-93.54	171.18	1362.90	1117.80	584.36	74.54	0.002	25.00	0.00
ŀ	100	-126.24	233.03	1160.90	1139.00	556.37	175.20	0.003	0.00	25.00
	25	202.79		1892.00	577.38	564.85	-295.50	0.003	0.00	
	50	418.74	-251.48 107.14	1083.00	530.96	444.85	· 204.41	0.004	-133.33	n.a
12	75	716.38	-364.43	1501.90	466.66	185.76	231.33	0.007	25.00	n.a
ŀ	100	392.24	-398.89	1347.70	384.68	209.39	37.50	0.003	50.00	n.a n.a
13	25	-30.47	-175.02	1424.10	628.66	476.79	-174.10	0.002	-12.50	10.0
13	35	336.45	-372.93	1892.00	537.19	775.64	130.19	0.005	0.00	50.0
14	50	416.73	-433.65	1861.00	434.47	714.40	138.25	0.005	16.67	54.5
15	25	50.27	-141.13	1788.30	1000.20	462.82	-133.88	0.005	14.29	57.1
13	25	107.15	-219.85	1547.10	507.42	467.14	-245.54	0.003	0.00	n.a
	50	131.44	-67.38	1206.10	479.31	435.41	-92.56	0.003	25.00	n.a
16	75	117.60	-6.84	1119.90	439.69	478.30	-77.47	0.003	25.00	n.a
	100	482.49	107.42	1004.00	456.13	466.68	293.88	0.003	25.00	n.a
17	25	309.79	-145.39	1364.00	797.12	296.77	185.07	0.005	28.57	50.0
18	25	436.47	-330.99	1517.40	664.24	199.38	113.68	0.005	0.00	28.5
19	25	448.74	-356.04	1546.60	636.61	276.61	171.40	0.003	25.00	50.0
17	10	-246.88	341.93	1376.80	664.95	970.50	-330.16	0.0038	20.83	n.a
20	25	-91.31	184.83	1187.90	717.28	557.23	-189.53	0.0040	36.51	n.a
20	50	-119.17	315.04	913.56	704.71	529.90	-113.16	0.0032	8.57	n.a
21	20.5	63.12	-28.52	1337:40	718.56	440.82	-86.38	0.0036	21.74	n.a
22	25	-166.26	333.38	858.68	807.70	585.40	34.78	0.0044	33.33	n.a
23	20	623.30	-446.51	1538.10	494.30	196.18	222.19	0.0022	12.00.	n.a
	20	281.19	680.42	773.29	1009.50	960.05	797.03	0.0051	-8.51	n.:
<u>.</u> .	30	-262.16	660.95	578.19	1288.60	929.70	717.00	0.0046	2.13	n.a
24	40	-323.46	839.18	475.83	1094.70	1295.70	751.93	0.0031	-6.90	n.a
	50	-114.77	915.37	416.51	921.70	1272.90	747.95	0.0123	-39.77	n.a
25	50	-199.68	503.59	1520.50	1462.10	793.44	31.77	0.0055	3.51	n.
26	25	-360.95	475.02	1589.40	708.37	1808.70	91.70	0.0018	10.00	n.a
27	20	-291.05	470.90	1488.80	643.41	1341.00	-266.34	0.0036	7.69	n.a
28	20	-391.02	519.30	1614.00	746.51	1467.90	-309.91	0.0026	27.78	n.a
29	25	-77.16	304.67	1794.00	734.69	1344.40	-96.74		5.88	n.a
30	20	-452.76	636.36	1077.20	430.65	1443.50	-292.17	0.0066	-10.00	n.a
	29	110.34	1327.00	164.05	1652.00	399.13	670.42	0.0062	1.59	n.
31	45	-183.60	1002.10	307.52	1432.80	411.47	351.05		0.99	n.a
	54.5	-78.02	344.74	778.09	1629.90	41.22	470.27	0.0025	24.24	n.
	25.5	42.93	1470.20	444.47	1763.80	702.17	594.23	0.0040	0.00	n.
32	39	-380.83	-77.20	920.45	1107.00	376.52	259.44	0.0073	-2.82	n.:
	50	-42.72	183.44	903.79	1342.90	254.08	467.03	0.0081	2.41	n.
33	50	-351.40	716.79	1169.30	889.92	1416.40	68.83	0.0027	15.63	n.
34	50	-164.18	202.48	1673.30	946.85	1277.60	184.49	0.0020	0.00	n.
35	25	993.84	367.94	553.20	323.99	477.15	873.84	0.0027	6.90	64.9
36	25	501.94	-142.09	492.24	463.51	-177.53	437.77	0.0011	47.62	n.
	1								itinued on n	

	15	1500.00	-104.59	564.52	406.79	-30.67	1416.19	0.002	50.00	50.00
37	25	1088.60	-210.32	483.67	431.10	-195.17	1051.18	0.001	50.00	75.00
	40	1890.40	144.86	389.69	407.04	141.23	1904.12	0.001	50.00	92.86
38	20	98.39	-76.12	1613.90	490.35	809.46	-139.58	0.0041	30.51	n.a.
30	25	114.65	-174.98	1749.30	478.28	800.18	-181.21	0.0013	50.00	86.46
39	20	-122.90	-43.56	1683.40	486.90	1007.10	-268.74	0.0042	-121.05	n.a.
40	25	-116.55	75.85	1246.50	456.00	803.99	-178.91	0.0017	52.78	75.71
41	20	222.93	76.90	566.74	511.82	117.83	208.94	0.0011	8.33	n.a.
	20	1778.50	979.88	491.37	949.08	630.24	1886.57	0.0028	12.5	n.a.
42	30	585.55	1811.60	405.65	962.18	1337.80	668.28	0.0030	31.82	n.a.
	40	1368.60	-618.35	477.94	1007.20	-762.94	1753.27	0.0073	13.10	n.a.
	20	701.95	672.74	401.32	827.94	359.28	815.11	0.0101	-31.17	n.a.
43	30	-578.40	-674.22	1282.80	941.34	-219.37	-465.01	0.0068	2.86	n.a.
ر ب	40	52.32	602.59	337.26	1105.60	259.32	477.39	0.0076	5.00	n.a.
	50	477.13	589.80	323.41	1037.90	216.47	818.29	0.0027	52.63	n.a.
	40	-737.16	308.24	1403.90	1508.60	896.18	-44.52	0.0022	0.00	n.a.
	45	-194.49	324.52	1341.10	1641.20	639.87	420.96	0.0009	10.00	n.a.
44	50	187.74	-119.95	1638.90	1501.80	347.73	518.32	0.0005	37.5	n.a.
	55	-586.47	-417.74	1641.60	1333.70	447.48	-29.15	0.0047	-6.82	n.a.
	60	-823.21	-66.610	1408.80	1353.90	705.96	-105.54	0.0011	15.38	n.a.
45	25	103.23	-114.70	1599.20	607.62	. 677.82	-95.83	0.0012	55.56	n.a.
46	25	-114.52	7.83	1579.00	650.22	912.91	-138.22	0.0019	13.64	n.a.
47	25	-547.99	-625.79	576.03	344.72	-432.25	-585.76	0.0019	26.92	n.a.
48	25	75.81	87.45	1162.80	514.26	557.32	-102.86	0.0026	48.00	n.a.
49	25	407.25	-111.22	1163.70	653.49	328.48	336.74	0.0039	-5.41	n.a.
50	25	788.83	27.08	737.06	529.40	108.25	662.34	0.002	33.33	0.00
51	25	526.59	-55.56	629.62	571.32	5.75	529.60	0.001	75.00	66.67
52	25	-6.94	-310.81	755.24	385.34	111.96	45.93	0.001	50.00	50.00
53	25	78.27	64.56	683.76	292.64	340.86	-36.55	0.002	50.00	n.a.
average	rmsd							0.0038	11.63	44.12

Table 3.3 NRTL (α =0.2) binary interaction parameters with closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)

_	Binary Int	eraction P	arameters	s, with clo	sure equat	tions (K)		a cine wee	· wce
System	A ₁₂	A_{13}		A_{34}	rmsd	gain wee	gain		
No.	A_{21}	A ₃₁	A_{41}	A_{32}	A ₄₂	A_{43}		(%)	(%)
5.1	169.21	-58.86	1028.33	165.14	317.52	697.07	0.005	16.67	28.57
54	213.36	417.49	990.17	597.34	235.21	182.56	0.003	10.07	20.57
5.5	423.65	-45.49	1126.24	231.54	421.79	505.43	0.005	0.00	16.67
55	317.42	253.14	1003.10	636.40	404.88	83.66	0.003	0.00	10.07
5.0	-372.04	-111.71	666.49	1058.30	1667.70	427.96	0.006	-20.00	14.29
56	1691.50	410.51	999.27	-483.02	-63.06	238.52	0.000	-20.00	14.27
							(cont	inued on n	ext page)

67	398.05	300.88	1754.91	-107.64	882.65	453.28	0.004	0.00	20.00
57	-408.55	-112.34	972.00	285.74	906.34	83.59	0.004	0.00	20.00
58	381.45	1715.20	827.56	1305.50	911.29	507.05	0.006	0.00	40.00
٥٥	35.34	890.35	794.46	826.76	1224.30	1298.80	0.000	0.00	40.00
59	-90.27	-106.64	974.01	-324.17	942.71	691.39	0.004	0.00	42.86
39	-95.63	337.23	727.41	125.06	701.47	0.92	0.004	0.00	42.00
60	1562.30	222.46	1755.28	128.93	1110.30	321.96	0.003	25.00	25.00
00	936.28	-176.86	951.43	355.63	932.47	-82.57	0.003	23.00	23.00
61	694.62	1655.24	987.72	226.10	1832.00	253.05	0.003	40.00	66.67
01	1456.20	1559.40	1044.00	-631.32	1126.70	405.17	0.003	40.00	00.07
62	1049.40	924.07	501.98	1248.70	505.32	-158.17	0.007	-16.67	n.a.
02	511.13	266.20	425.58	1129.10	967.19	423.30	0.007	-10.07	11.a.
62 ^r	1078.70	833.88	273.48	1502.70	1726.90	-928.43	0.003	-50.00	n.a.
02	1610.60	-232.40	475.68	-95.48	1397.20	340.05	0.003	-50.00	11.a.
avera	ge rmsd						0.0046	9.80	33.33

Table 3.4 NRTL (α =0.2) binary interaction parameters with closure equations for quinary aromatic extraction systems at 25 °C

	Binar	•	on Parame quations (I	ters, with clo <)	osure			
System	A_{12}	A_{21}	A_{31}	A_{41}	A_{51}		gain ^{wce}	gain _{lit}
No.	A_{13}	A ₂₃	A ₃₂	A ₄₂	A ₅₂	rmsd	(%)	(%)
	A_{14}	A ₂₄	A ₃₄	A ₄₃	A_{53}		` '	•
	A ₁₅	A ₂₅	A ₃₅	A ₄₅	A ₅₄			
	-78.52	1207.7	670.73	1272.6	1221.9			
63	2.64	544.27	-73.86	323.46	1128	0.006	14.29	33.33
03	-754.05	-416.97	-251.37	1107.19	386.08	0.000	14.23	33.33
	507.88	1700.2	340.15	1125.4	-187.23			
	-15.19	85.65	313.07	167.42	764.89			
64	58.01	107.35	261.57	144.29	1111.1	0.006	-20.00	-50.00
04	-66.33	11.38	626.78	605.47	52.35	0.000	-20.00	-50.00
	1023.05	1470.1	565.57	520.89	28.98			
	1574.5	1481.5	569.01	226.59	1503.1			
65	95.27	152.54	719.28	571.54	1527.7	0.004	20.00	60.00
0.5	-574.04	-322.09	-212.54	114.35	208.14	0.004	20.00	00.00
	1187.9	1119.5	366.68	395.01	-90.42			
averag	e rmsd					0.0053	7.02	31.17

Table 3 5 UNIQUAC binary interaction parameters with closure equation for ternary aromatic extraction systems at different temperatures

System	Temp.	nt temperat Binary		Paramete	rs, with clo	sure equat	ion (K)		a a in wee	a aimwee
No.	(°C)	A ₁₂	A_{21}	A_{13}	A_{31}	A_{23}	A_{32}	rmsd	gain ^{wce}	gain _{lit}
	17	319.87	-16.19	311.90	285.91	5.29	315.36	0.0065	(%) 30.11	(%)
1	25	42.07	101.41	257.42	241.49	134.94	59.67.	0.0005	23.73	n.a. n.a.
·	50	-14.37	-22.37	456.24	146.03	187.82	-114.39	0.0043	11.11	n.a.
	17	309.35	-174.20	618.56	123.38	75.36	63.73	0.0057	18.57	
2	25	105.54	-101.67	515.34	86.98	187.13	-34.02	0.0037	-22.86	n.a. n.a.
_	50	406.48	-214.90	670.58	198.82	21.72	171.34	0.0045	-25.00	n.a.
	25	299.75	-81.21	367.10	182.57	16.75	213.18	0.006	0.00	n.a.
	30	905.56	-50.68	367.13	99.55	13.16	701.82	0.007	22.22	n.a.
3	50	463.66	-268.49	690.30	112.75	-36.17	118.43	0.004	20.00	n.a.
_	75	288.04	-243.42	661.99	13.07	95.27	-22.19	0.007	12.50	n.a.
	100	362.39	-101.39	393.99	113.41	49.70	232.90	0.008	-33.33	n.a.
	25	241.62	-151.67	637.25	73.91	152.60	-17.45	0.003	40.00	n.a.
4	35	301.77	-210.31	697.68	60.41	165.66	40.47	0.010	0.00	50.00
	50	-328.17	153.53	517.67	61.70	697.79	-239.88	0.005	0.00	54.55
	25	459.01	-221.61	954.65	53.75	196.31	-23.97	0.004	42.86	n.a.
5	35	-191.48	158.71	353.69	98.75	530.05	-75.08	0.004	0.00	66.67
	50	-10.72	-74.13	531.68	76.47	360.05	-31.75	0.002	50.00	88.89
	25	414.62	-240.71	744.69	170.01	-7.01	73.64	0.0045	11.76	n.a.
6	110	421.53	-146.68	405.71	78.50	14.89	255.89	0.005	37.50	n.a.
	25	220.44	-64.39	357.18	234.87	28.47	190.99	0.009	0.00	n.a.
	30	702.28	-152.71	311.33	117.66	-155.37	505.95	0.002	0.00	n.a.
7	50	111.49	-106.09	479.87	51.00	182.02	-29.27	0.003	25.00	n.a.
	75	308.47	-233.72	650.05	11.46	113.05	16.65	0.002	33.33	n.a.
	100	426.60	-264.65	570.18	40.27	-5.56	155.78	0.004	0.00	n.a.
	17	154.85	-105.64	467.75	102.42	133.97	29.13	0.011	-22.22	n.a.
8	25	-75.08	19.77	376.15	78.09	304.20	-88.71	0.007	12.50	n.a.
	50	8.32	-2.83	336.65	136.19	186.98	-2.33	0.009	-12.50	n.a.
	25	522.15	-49.81	415.12	114.80	91.31	362.95	0.003	25.00	25.00
	35	386.10	-12.71	336.19	200.29	69.69	332.60	0.005	50.00	44.44
9	45	203.31	-112.49	528.51	61.14	144.60	-6.97	0.004	33.33	33.33
9	50	812.96	9.57	332.88	254.33	49.51	774.35	0.007	12.50	-40.00
	75	328.53	-29.77	334.04	187.61	71.73	283.60	0.008	-166.67	-100.00
	100	441.07	-228.79	529.93	110.82	-29.69	221.06	0.006	0.00	25.00
	25	-217.18	611.49	304.55	101.08	899.71	-132.43	0.005	28.57	-150.00
	35	-322.67	95.13	372.99	73.46	400.39	-316.94	0.005	0.00	-66.67
10	45	533.30	-295.27	667.01	90.06	-65.82	185.80	0.006	25.00	-100.00
10	50	300.64	-237.15	706.43	135.17	79.52	46.05	0.006	14.29	14.29
•	75	-65.16	1.26	461.96	48.13	336.30	-143.95	0.004	0.00	20.00
	100	-289.42	211.55	443.27	38.00	623.09	-283.15	0.006	-100.00	-20.00
11	25	-141.76	114.61	232.99	263.61	182.74	-43.01	0.006	14.29	-50.00
	30	127.64	317.93	197.47	223.97	334.58	170.79	0.008	11.11	n.a.
				-				(cor	ntinued on r	iext page)

	35	-222.17	232.77	255.01	139.22	413.57	-157.16	0.008	0.00	-100.00
	45	-34.69	-29.11	412.92	46.23	258.94	-113.33	0.004	33.33	20.00
	50	-189.22	206.87	374.46	89.48	533.62	-147.45	0.005	28.57	16.67
	75	-239.85	270.71	330.30	108.75	541.72	-190.39	0.007	12.50	-75.00
	100	154.39	-93.62	436.78	160.32	117.82	89.37	0.005	-66.67	-66.67
	25	51.34	-35.42	359.73	105.84	131.85	-35.28	0.005	16.67	n.a
10	· 50	232.91	-48.79	357.08	108.52	87.33	120.47	0.008	-60.00	n.a
12	75	730.89	-333.79	670.77	49.95	-145.16	298.70	0.006	14.29	n.a
	100	293.99	-313.01	551.58	21.09	-43.00	33.51	0.003	25.00	n.a
13	25	940.22	143.73	468.68	157.30	29.74	514.85	0.007	12.50	n.a
	35	290.88	-220.03	873.22	43.62	296.92	-21.76	0.005	16.67	54.5
14	50	380.39	-257.82	935.42	12.56	270.38	-14.27	0.005	16.67	68.7
15	25	208.69	-119.54	443.69	196.05	31.45	112.04	0.008	11.11	n.a
10	25	225.42	-191.02	508.71	35.69	58.87	2.29	0.003	40.00	n.a
	50	401.38	-196.08	439.29	58.82	-24.46	192.53	0.005	28.57	n.a
16	75	537.89	-178.78	395.61	60.43	-43.33	338.16	0.005	-50.00	
	100	379.82	-203.92	441.44	18.19	7.26	167.75	0.004	20.00	n.a
17	25	278.07		460.72	135.38	21.22	133.18	0.004	14.29	n.a
18			-159.23						22.22	n.a
	25	435.57	-315.91	889.45	-27.72	95.12	-70.57	0.007		n.a
19	25	569.50	-296.72	856.38	-6.35	55.43	58.92	0.005	44.44	n.a
00	10	127.64	-13.75	507.34	119.00	238.97	-7.98	0.0056	40.43	n.a
20	25	225.50	-184.55	974.00	49.00	337.29	-177.66	0.0038	0.00	n.a
	50	356.98	-164.27	578.78	90.10	63.93	96.50	0.0044	-46.67	n.a
21	20.5	249.94	-144.32	556.36	78.82	110.98	27.70	0.0064	17.95	n.a
22	25	5.89	9.21	498.89	57.27	361.11	-83.83	0.0044	10.20	n.a
23	20	293.47	-179.52	605.46	73.24	109.14	49.91	0.0042	-7.69	n.a
	20	84.88	146.50	495.96	119.89	551.72	114.03	0.0048	5.88	n.a
24	30	-118.39	222.34	364.45	225.71	560.90	81.43	0.0047	0.00	n.a
27	40	-167.55	308.37	372.49	129.29	794.16	75.04	0.0033	8.33	n.a
	50	-129.62	350.45	371.25	80.47	836.94	66.09	0.0126	-28.57	n.a
25	50	-74.13	146.31	221.93	294.97	190.58	43.18	0.0061	17.57	n.a
26	25	-125.22	151.41	457.13	50.15	614.26	-69.35	0.0018	10.00	n.a
27	20	23.42	18.77	364.02	93.20	239.52	-26.65	0.0029	60.81	n.a
28	20	165.80	-95.55	493.93	60.19	179.18	6.79	0.0021	32.26	n.a
29	25	-189.75	416.73	408.72	44.14	836.87	-134.19	0.0045	28.57	n.a
30	20	-181.72	247.85	390.95	52.39	613.70	-154.43	0.0074	5.13	n.a
	29	-292.60	504.47	-112.30	404.61	211.46	-68.70	0.0068	21.84	n.a
31	45	31.04	302.10	-142.80	605.15	-53.81	423.08	0.0119	-16.67	n.a
	54.5	-34.83	-9.83	2.42	259.09	-62.20	169.47	0.0085	-34.92	n.a
	25.5	-14.87	322.58	-95.56	600.55	-27.97	330.69	0.0042	31.15	n.a
32	39	-50.64	-90.25	14.25	302.79	-90.00	238.15	0.0042	-1.14	n.a
	50	88.16	-35.18	-16.26	381.14	-141.00	379.74	0.0098	9.26	n.a
33	50	-201.27	518.31						7.89	
34				201.50	195.73	719.29	-6.06	0.0035		n.:
35	50	67.62	-63.50	508.68	92.56	325.53	40.53	0.0021	4.55	n.:
22	25	402.53	12.81	229.64	19.17	121.81	301.06		20.00	53.3
36	25	-270.13	-249.12	189.28	61.48	-246.63	-395.44	0.0045	34.78	n.

37	15	676.91	-170.08	255.68	13.27	-83.86	520.72	0.002	75.00	50.00
37				233.00	13.21	-03.00	320.12	0.002	73.00	50.00
, , ,	25	577.84	-162.56	223.40	19.77	-84.55	452.22	0.002	71.43	50.00
	40	-323.12	-37.84	206.78	9.41	46.04	-436.61	0.002	33.33	85.71
38	20	-122.99	217.02	524.52	35.54	691.14	-137.85	0.0076	-72.73	n.a.
30	25	179.48	-138.68	819.03	19.96	387.11	-93.80	0.0031	18.42	75.00
39	20	29.39	-76.27	932.09	-30.03	673.43	-183.03	0.0050	-100.00	n.a.
40	25	111.00	-81.27	535.74	28.44	267.67	-47.36	0.0033	44.07	52.86
41	20	301.17	-137.39	338.43	12.34	-3.60	108.87	0.0013	65.79	n.a.
	20	682.61	233.79	402.59	-10.42	575.06	610.87	0.0030	53.85	n.a.
42	30	-149.33	349.98	399.61	-20.11	694.54	-224.49	0.0033	46.77	n.a.
	40	922.88	-502.29	419.53	-4.45	-445.78	555.41	0.0071	22.83	n.a.
	20	291.15	-14.90	299.88	39.50	149.76	195.43	0.0119	-41.67	n.a.
43	30	145.27	-354.74	739.53	-36.37	7.74	-268.15	0.0075	20.21	n.a.
43	40	112.18	76.97	257.41	82.86	218.03	78.69	0.0110	-18.28	n.a.
	50	343.47	-85.80	379.22	-6.50	114.93	158.48	0.0051	36.25	n.a.
	40	-106.85	-11.58	856.50	259.40	600.86	-91.51	0.0022	8.33	n.a.
	45	-44.07	74.60	754.06	459.33	443.93	30.53	0.0011	63.33	n.a.
44	50	-56.87	48.54	800.03	732.39	246.09	73.04	0.0011	52.17	n.a.
	55	-124.52	-157.76	855.83	187.39	483.76	-151.44	0.0047	-9.30	n.a.
	60	-100.43	-110.92	883.41	294.00	481.25	-97.67	0.0009	10.00	n.a.
45	25	56.36	-82.14	797.65	-19.69	527.16	-151.68	0.0028	30.00	n.a.
46	25	-208.67	217.76	585.50	24.58	794.49	-192.86	0.0045	-50.00	n.a.
47	25	-104.72	-278.86	297.15	-37.97	-126.45	-287.43	0.0035	36.36	n.a.
48	25	-128.37	725.69	215.30	45.63	925.42	-98.31	0.0089	7.29	n.a.
49	25	334.73	-178.31	670.65	17.03	180.72	40.14	0.0040	51.22	n.a.
50	25	892.49	-244.22	492.94	69.11	-156.12	556.76	0.005	28.57	37.50
51	25	423.57	-181.82	403.81	53.77	-37.06	218.29	0.003	57.14	62.50
52	25	320.85	-265.98	622.31	-29.41	68.92	4.03	0.003	25.00	57.14
53	25	-756.69	-41.63	339.51	26.17	168.08	-860.32	0.0038	11.63	n.a.
average	rmsd							0.0052	11.86	29.73

Table 3.6 UNIQUAC binary interaction parameters with closure equations for quaternary aromatic extraction systems at 25°C (r=40°C)

_	Binary II	iteraction	Parameter	s, with clos	sure equati	ons (K)		. Wor	
System	A_{12}	A_{13}	A_{14}	. A ₂₃	A_{24}	A_{34}	rmsd	gain woce	
No.	A ₂₁	A ₃₁	A_{41}	A ₃₂	A_{42}	A_{43}		(%)	
E 1	442.34	561.30	1417.95	67.00	445.77	374.94	0.008	27.27	
54	-272.93	-313.68	37.44	-92.11	-219.47	-131.19	0.008	21.21	
55	331.94	-108.90	304.76	-322.27	50.19	279.60	0.008	-14.29	
55	-26.62	106.45	138.00	251.64	241.99	-102.51	0.008	-14.23	
5.6	-378.95	-120.68	166.08	29.750	203.18	258.27	0.009	-12.5	
56	217.03	292.20	332.30	-153.35	-226.58	11.61	0.009	-12.5	
						(contin	ued on r	ext page)	

रुषात्म काणीनाथ केलकर पुस्तकाषण भारतीय प्रौद्योगिकी संस्थान कानपुर भवाष्टि क० △.....153052

57	-159.40	-62.05	541.02	63.82	744.02	409.92	0.009	0.00
۱ ۲	110.54	-5.67	18.20	-149.74	-48.74	-169.28	0.003	
58	-297.77	905.79	455.40	1178.50	747.86	18.70	0.007	22.22
	68.65	-68.02	51.32	-161.73	-22.64	588.43	0.007	22.22
59	-584.52	-3.01	337.46	32.49	481.34	205.66	0.005	28.57
33	-412.51	-289.26	-176.54	-425.77	-204.67	-22.09	0.005	
60	-109.07	367.92	683.13	248.22	419.32	-7.99	0.003	62.50
00	-769.98	-854.59	-470.84	-313.38	-73.74	60.55	0.003	
61	59.15	374.83	822.42	595.37	752.14	61.62	0.005	37.50
01	-165.07	-537.65	-80.92	-92.89	73.02	70.76	0.005	
62	330.10	800.34	331.17	363.21	297.55	249.91	0.005	16.67
02	10.77	225.77	-57.83	107.97	227.88	435.48	0.005	
62 ^r	836.96	812.09	-409.48	-341.99	269.19	-177.86	0.006	0.00
	-145.33	320.97	-912.76	149.18	748.20	-190.02	0.000	
averag	ge rmsd						0.0065	17.72

Table 3.7 UNIQUAC binary interaction parameters with closure equations for quinary aromatic extraction systems at 25 °C

	Binar	y Interaction					
System		e					
	A_{12}	A_{21}	A_{31}	A_{41}	A_{51}	_	gain ^{wce} (%)
No.	A_{13}	A_{23}	A_{32}	A ₄₂	A_{52}	rmsd	
	A_{14}	A ₂₄	A_{34}	A_{43}	A_{53}		
	A ₁₅	A_{25}	A ₃₅	A_{45}	A_{54}		
	-566.03	-533.46	849.10	30.10	474.46		21.05
63	160.56	-48.67	607.30	20.11	853.39	0.015	
05	-352.74	-330.16	74.06	- 231.64	174.34	0.015	
	-50.35	361.15	338.07	-36.18	105.79		
	-472.79	204.93	-198.97	375.33	503.32		-36.36
64	-144.45	380.01	-352.23	-145.81	188.57	0.015	
	220.32	376.90	199.84	409.37	248.41	0.015	
-	108.53	471.50	-200.90	122.89	362.67		
	-91.60	-803.49	-629.77	-731.26	-246.86		
65	854.41	646.35	-125.94	-173.97	76.81	0.007	30.00
	262.38	107.78	186.11	676.65	605.54	0.007	
	662.87	274.65	31.09	51.18	· 135.09		
average rmsd						0.0123	7.52

Table 3.8 Comparison of average rmsd's in terms of percentage gain

Model	Systems	average rmsd		gain ^{woce} %	gain ^{wce} %	gain ^{wce} %
		literature	0.0068			
NRTL	Ternary	woce	0.0043	36.77	11.63	44.12
		wce	0.0038			
	Quaternary	literature	0.0069			
		woce	0.0051	26.09	9.80	33.33
		wce	0.0046			
	Quinary	literature	0.0077			
		woce	0.0057	25.97	7.02	31.17
		wce	0.0053			
average rmsd gain				34.46	11.38	41.67
	Ternary	literature	0.0074			
		woce	0.0059	20.27	11.86	29.73
		wce	0.0052			
	Quaternary	literature	n.a.	·		
UNIQUAC		woce	0.0079	n.a.	17.72	n.a.
		wce	0.0065		1	
	Quinary	literature	n.a.			
(woce	0.0133	n.a.	7.52	n.a.
		wce	0.0123			
average rmsd gain				20.27	12.21	29.73

n.a.: not available/not applicable

While implementing the closure equation for ternary systems all the six possibilities of parameter elimination have been tried. It was observed that the rmsd values change significantly with the eliminated parameters. This is due to the different search path adopted by the optimization procedure for different eliminated parameter to reach the final optimum point. The interaction parameters with closure equation given in Table 3.2 and Table 3.5 correspond to the lowest rmsd for the six possibilities.

The choice of the parameters to be eliminated to implement the closure equations plays a very important role in decreasing the rmsd values for quaternary and quinary systems. All likely feasible combinations of parameter elimination have been tried; 8 for quaternary and 21 for quinary systems. The rmsd values were vary significantly with the eliminated parameters. Reasons explained for the ternary systems apply here also for this variation. Additionally, the larger deviation is due to the higher dimension of optimization problem encountered. The interaction parameters with closure equations

given in Table 3.3, Table 3.4, Table 3.6 and Table 3.7 correspond to the lowest rmsd of all likely feasible combination of parameter elimination.

It is observed that for some systems, without implementation of closure equation/s exhibit better rmsd values than with closure equation/s. It is also observed that for some systems rmsd values reported in the literature are better. The expected reason could be the biased experimental error in the reported liquid-liquid equilibrium data.

3.4 Conclusions

Genetic algorithm has been applied with closure equation/s to estimate binary interaction parameters for liquid-liquid aromatic extraction systems. Root mean square deviation values with closure equation/s are found to be better than without closure equation/s. The average root mean square deviation value with closure equation/s is approximately 12 percent better than those without closure equation/s. Overall percentage gain is approximately 42 percent better for NRTL model and 30 percent better for UNIQUAC model, than literature.

References

- [1] E. Hala, "Note to Bruin-Prausnitz One-Parameter and Palmer-Smith Two-Parameter Local Composition Equation", Industrial & Engineering Chemistry Process Design and Development 11 (1972) 638.
- [2] G. Varheygi, C. H. Eon, "Correlation of the Free Energy Equation Parameters from Ternary Liquid-Liquid Equilibria data", *Industrial and Engineering Chemistry Fundamentals* 16 (1977) 182.
- [3] S. A. Ahmad, "LLE experimentation parameter estimation and validation for aromatic extraction systems", *PhD Thesis*, Indian Institute of Technology Kanpur, 2003.
- [4] S. A. Ahmad, A. Khanna, "Closure Equations in the Estimation of Binary Interaction Parameters", Korean Journal of Chemical Engineering 20 (2003) 736.

Chapter 4

SIMULATION OF AROMATIC RECOVERY FLOWSHEET USING LIQUID-LIQUID EXTRACTION

4.1 Introduction

Aromatic Recovery Unit (ARU) of a refinery is the section which separates aromatics and non-aromatics components from naphtha with the help of a suitable solvent. Procurement of data was from Corporate BPCL R&D Centre, Noida. The simulation is basically for a 650 MT/D of naphtha feed. The flowsheet is divided into three basic sections.

Extraction section, Solvent Recovery section, and Fractionation section Extraction section and solvent recovery section s have several recycle loops but the fractionation section is separate from the other two sections and has only one input stream coming from integrated extraction and solvent recovery section. Aspen plus 10.2, a sequential modular simulation software package is used to simulate the process.

4.2 Process Description

Simulation flowsheet of aromatic recovery unit is shown in Flowsheet 4.1.

4.2.1 Extraction section

Naphtha is fed to the extraction column, C201, along with the extract recycle stream, 4A, and recycled lean solvent stream, 5C. The raffinate stream, 2, leaving from the top of C201 is cooled in exchanger E201 and mixed with stream 4C in mixer M1. The stream 2A+4C from mixer M1 is fed to the raffinate wash column, C202, to extract sulfolane from the raffinate stream, 2, with the help of water stream, 10, coming from the decanter, V203, as a solvent. It is important to state here that sulfolane is not a solvent with reference to column C202. Non-aromatics stream, 3A, from the top of C202 is pumped and mixed with stream 4D in M2; this mixed stream, NONARMTS, forms the non-aromatic products from the ARU section. The extract stream, 7, from the bottom of C201 is heated by the lean solvent stream, 5A, in heat exchanger E202. Stream 5B is the recycle solvent to C201. The heated steam 7A after mixing with secondary solvent stream, 6, in mixer M3 is fed to the extract stripper, C203, as stream 7A+6.

Flowsheet 4.1 Simulation flowsheet of extraction aromatic recovery unit

Stream 8A from bottom of C203 is pumped and fed to the solvent recovery column, C204, as stream 8. The overhead of C203 is cooled in exchanger E203 and fed to the decanter V202 to remove water. Stream 4E from V202 contains non-aromatics along with some quantity of aromatics. Part of this is pumped and recycled back to C201 as 4A.

4.2.2 Solvent Recovery Section

Water stream, 9 from V202 is pumped and mixed with extract stream, 11A from the bottom of the C202 in mixer M4. This mixed stream, 11 is fed to the water stripper, C205. Water and sulfolane mixture, 14B, from the bottom of C205 is flashed and fed to the solvent recovery column, C204. Water and aromatics mixture, 14, from top of C205 is fed to V202. Water is separated from the stream UP204A in decanter V203 and pumped back to raffinate wash column, C202. Part of the aromatics stream, 17 recovered from V203 is recycled back to C204 as external reflux, 15.

4.2.3 Fractionation Section

Major part of the stream 17 comes to the fractionation section as, EXRACT. This stream is clay treated in clay tower V204 to remove traces of olefins, naphthenes and other impurities. The clay treated extract, 16A, is directed to the aromatics fractionation section where high-purity benzene, toluene, and sometimes mixed xylenes are recovered. Aromatics fractionation section is a series of two distillation column; Benzene column, C207, and toluene column, C208. Benzene product, 19, is withdrawn from the 5th tray from top of C207. Bottom of C207, 20, is pumped and fed to C208. Toluene is recovered as overhead of the toluene column, C208.

4.3 Feed composition

The composition of the feed stream, FEED, entering the extractor, C201 is shown in Table 4.1. Feed consists of components from all Paraffin, Iso-paraffin, Olefin, Naphthene and Aromatic (PIONA) families.

4.4 Individual Column Simulation

It is always recommended to simulate the important unit blocks of a flowsheet individually before attempting complete flowsheet simulation. This approach is used to

start the simulation of ARU. Initially two extraction columns, C201 and C202 and five distillation columns, C203, C204, C205, C207 and C208 were simulated separately.

Table 4.1 Feed compositions (Naphtha)

Components	MT/D	Family
n-Pentane	29.720	n-Paraffin
n-Hexane	54.940	n-Paraffin
Iso-Pentane	25.840	Iso-paraffin
2-Methyl pentane	130.180	Iso-paraffin
Cis-2-Hexene	6.790	Olefin
Methylcyclopentane	13.450	Naphthene
Benzene	299.970	Aromatic
Toluene	85.820	Aromatic
o-Xylene	3.290	Aromatic
Sulfolane	0.000	Solvent
Total	650.000	

4.4.1 Input specifications

Design specifications for various columns are given in Table 4.2.

Table 4.2 Design specifications of columns for extraction aromatic recovery unit

Block	Diameter,	Number of actual	Feed	Product	Temper	rature, C	Pres	ssure, Kg/	sqcmg
Block	m	stages	stages	stages	Тор	Bottom	Тор	Bottom	Drop
C201	2.2	57	1,56,57	1,57	83.200	61.200	4.990	8.050	
C202	1.8	40	1,40	1,40	40.000	42.000	2.047		3.400
C203	2.0	40	1	1,40			1.488ª	1.700 ^a	
C204	2.4	35	1,16,34,34	1,35			0.564 ^a		0.053
C205	0.61	5	1	1,5			0.750	0.780	
C207	2.2	43	27	1,5,43			0.470		487.000 ^b
C208	0.8	50	22	1,50			0.200		555.000 ^b

^a Kg/sqcm: ^b mm-water

Design data are used for tuning the operating variables such as reflux rate, distillate rate, boilup ratio and reflux ratio. The prime aim of simulation at this stage is to get approximate values of these tuned variables to be used in complete flowsheet simulation. RADFRAC subroutine is used for stripper and distillation columns and EXTRACT subroutine is used for extraction columns. Initial operating variables used for different columns are given in Table 4.3.

Table 4.3 Initial operating specifications of columns for extraction aromatic recovery unit

Specification	C201	C202	C203	C204	C205	C207	C208
Reflux rate, MT/D						609.0000	75.4000
Distillate rate, MT/D			157.0000				
Boilup ratio, mole				0.1661	0.6380	7.9140	50.800
Benzene product rate, MT/D						279.0000	

4.4.2 Property method

Choice of an appropriate physical and thermodynamic property method plays an important part in simulation of process flowsheet. In the present work, different property methods have been chosen. The flowsheet has two liquid-liquid extraction columns and five distillation columns. As the liquid-liquid equilibria are important in case of liquid-liquid extraction, UNIF-LL property method has been used for C201 and C202. RK-SOAVE property method is used in all distillation columns, as vapor-liquid equilibria are important in case of distillation. UNIF-LL is used as global property method.

4.4.3. Efficiencies

ChemSep is used for estimating the murphree efficiencies for different individual column. We considered non-equilibrium model. There are few limitations in using ChemSep software for determining the efficiency. One of the most serious drawbacks is that we can take only ten components at a time in ChemSep simulation. To overcome this problem, we choose components above the light key and below the heavy key having dominant mass fractions. This can provide a good approximation for the efficiencies of the columns. ChemSep input specifications are given in Table 4.4. The supplied design data are used instead of default values in ChemSep. The data, which are not available, are taken from literature [1]. Murphree efficiency for column C203, C204, C205, C207 and C208 calculated from ChemSep are reported respectively in Table 4.5-4.9. Efficiency plot as obtained from ChemSep are shown in Appendix B. For C201 and C202 ChemSep gives efficiency of 1 for all components on all stages. This is not feasible; hence average column efficiency of 0.3 is used for both C201 and C202 [2]. These efficiencies are used as input in ASPEN PLUS simulation.

Table 4.4 Input Specifications of ChemSep individual block simulation for extraction aromatic recovery unit	ns of ChemSep	individual blo	ck simulation f	or extraction a	romatic recove	ry unit	:
Specifications	C201	C202	C203	C204	C205	C207	C208
::;;;;;;	Non	Non	Non	Non	Non	Non	Non
Operation	Equilibrium	Equilibrium	Equilibrium	Equilibrium	Equilibrium	Equilibrium	Equilibrium
É	Simple	Simple	Extractive	Simple	Reboiled	Simple	Simple
adí	Extractor	Extractor	Distillation	Distillation	Stripper	Distillation	Distillation
	Ciscio tacio			() () () () () () () () () ()	ن در	Structured	Structured
Column internals	Sieve tray	Sieve ilay	Sieve iray	Sieve tray	Sieve II ay	packing	packing
Section height, m	n.a.	n.a.	n.a.	n.a.	n.a.	19.458, 13.536	14.934, 21.222
Column diameter, m	2.200	008.1	2.000	2.400	0.610	2.200	0.800
Packing type						Sulzer BX	Sulzer BX
Tray spacing, m	0.717	0.475	508.0	0.800	0.940		
Number of flow passes	I	1	l	1	I		
Liquid flow path length, m	1.600	1.600	1.600	1.600	0.09.1		
Downcomer clearance, m	0.0381	0.0381	0.0381	0.0381	0.0381		
Deck thickness, m	0.00254	0.00254	0.00254	0.00254	0.00254		
Hole diameter, m	0.005-0.012	0.005-0.012	0.005-0.012	0.005-0.012	0.005-0.012		
Hole pitch, m	0.032	0.032	0.032	0.032	0.032		
Active area, % total	55.000	48.000	82.000	000'09	000'08		
Total hole area, % active	10.000	10.000	10.000	10.000	10.000		
Downcomer area, % total	12.000	12.000	12.000	12.000	12.000		
Weir type	Segmental	Segmental	Segmental	Segmental	Segmental		
Weir length, m	1.540	1.260	1.400	1.680	0.427		
Weir height, m	0.040	0.040	0.040	0.040	0.040		

Table 4.5 Murphree Efficiencies for C203

1 40.0			CHCICS IOI	C202						
Stage	N-P	N-H	2-MB	2-MP	C-2-HE	MCP	BE	TOL	OX	TMS
1	0.8878	0.8860	0.8855	0.8791	0.8343	0.8873	0.8988	0.8991	0.9058	0.9280
2	0.5366	0.5506	0.4964	0.4266	0.9983	0.5381	0.5744	0.5771	0.5986	0.6505
3	0.5301	0.5486	0.4919	0.3660	0.7179	0.5377	0.5708	0.5703	0.5865	0.6387
4	0.5247	0.5468	0.4878	0.1683	0.6477	0.5383	0.5692	0.5672	0.5811	0.6331
5	0.5199	0.5450	0.4841	1.0000	0.6149	0.5397	0.5687	0.5657	0.5780	0.6296
6	0.5158	0.5432	0.4808	0.8014	0.5955	0.5418	0.5687	0.5650	0.5758	0.6267
7	0.5121	0.5414	0.4777	0.6723	0.5826	0.5447	0.5692	0.5646	0.5740	0.6239
8	0.5088	0.5394	0.4750	0.6248	0.5733	0.5484	0.5701	0.5646	0.5725	0.6210
9	0.5060	0.5373	0.4725	0.5999	0.5662	0.5528	0.5715	0.5650	0.5711	0.6179
10	0.5034	0.5347	0.4703	0.5845	0.5607	0.5578	0.5733	0.5658	0.5701	0.6148
11	0.5011	0.5317	0.4682	0.5741	0.5562	0.5632	0.5756	0.5669	0.5694	0.6115
12	0.4990	0.5277	0.4663	0.5666	0.5526	0.5688	0.5782	0.5684	0.5690	0.6082
13	0.4972	0.5225	0.4645	0.5609	0.5496	0.5744	0.5812	0.5703	0.5690	0.6050
14	0.4955	0.5152	0.4629	0.5566	0.5471	0.5795	0.5844	0.5725	0.5693	0.6019
15	0.4939	0.5045	0.4613	0.5532	0.5450	0.5839	0.5875	0.5747	0.5698	0.5988
16	0.4924	0.4873	0.4599	0.5505	0.5432	0.5873	0.5903	0.5767	0.5703	0.5959
17	0.4910	0.4560	0.4584	0.5483	0.5416	0.5895	0.5926	0.5782	0.5705	0.5930
18	0.4897	0.3826	0.4570	0.5465	0.5402	0.5906	0.5940	0.5791	0.5703	0.5900
19	0.4883	0.0207	0.4554	0.5448	0.5388	0.5904	0.5945	0.5792	0.5694	0.5867
20	0.4868	1.0000	0.4538	0.5431	0.5374	0.5889	0.5939	0.5783	0.5678	0.5831
21	0.4851	0.7487	0.4520	0.5412	0.5358	0.5862	0.5923	0.5763	0.5652	0.5790
22	0.4821	0.6719	0.4499	0.5390	0.5338	0.5821	0.5896	0.5733	0.5618	0.5742
23	0.4808	0.6370	0.4474	0.5362	0.5313	0.5766	0.5858	0.5694	0.5574	0.5687
24	0.4779	0.6155	0.4446	0.5328	0.5283	0.5697	0.5811	0.5644	0.5521	0.5626
25	0.4745	0.5997	0.4412	0.5287	0.5245	0.5611	0.5756	0.5588	0.5461	0.5558
26	0.4707	0.5867	0.4375	0.5239	0.5202	0.5504	0.5695	0.5525	0.5396	0.5485
27	0.4663	0.5754	0.4333	0.5187	0.5154	0.5368	0.5631	0.5460	0.5328	0.5410
28	0.4617	0.5651	0.4289	0.5131	0.5101	0.5184	0.5567	0.5396	0.5259	0.5333
29	0.4569	0.5558	0.4244	0.5073	0.5048	0.4901	0.5505	0.5338	0.5196	0.5260
30	0.4522	0.5474	0.4199	0.5017	0.4995	0.4348	0.5449	0.5296	0.5143	0.5193
31	0.4477	0.5399	0.4156	0.4963	0.4944	0.2480	0.5401	0.5285	0.5114	0.5140
32	0.4435	0.5333	0.4117	0.4914	0.4897	1.0000	0.5361	0.5334	0.5139	0.5113
33	0.4397	0.5276	0.4081	0.4870	0.4855	0.7910	0.5326	0.5486	0.5289	0.5154
34	0.4364	0.5227	0.4050	0.4831	0.4818	0.6935	0.5283	0.5777	0.5668	0.5375
35	0.4335	0.5186	0.4022	0.4798	0.4786	0.6574	0.5191	0.6165	0.6252	0.5948
36	0.4309	0.5151	0.3998	0.4768	0.4757	0.6390	0.4908	0.6517	0.6761	0.6724
37	0.4285	0.5119	0.3976	0.4741	0.4731	0.6282	0.3516	0.6744	0.7032	0.7215
38	0.4258	0.5085	0.3950	0.4710	0.4702	0.6210	1.0000	0.6853	0.7140	0.7406
39	0.4216	0.5040	0.3910	0.4666	0.4661	0.6161	0.7924	0.6890	0.7190	0.7495
40	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
					thyl hutan	4				

N-P: n-pentane; N-H: n-hexane; 2-MB: 2-methyl butane; 2-MP: 2-methyl pentane; C-2-HE: cis-2-hexene; MCP: Methylcyclopentane; BZ: benzene; TOL: Toluene; OX: o-xylene; TMS: sulfolane

Table 4.6 Murphree Efficiencies for C204

Stage	BE	TOL	TMS	Stage	BE	TOL	TMS
1	0.3820	0.5817	0.4077	19	0.3099	0.3542	0.3225
2	0.3556	0.3812	0.3608	20	0.2991	0.3425	0.3127
3	0.3764	0.3695	0.3748	21	0.2969	0.3401	0.3119
4	0.3859	0.3700	0.3823	22	0.2965	0.3397	0.3129
5	0.3907	0.3722	0.3865	23	0.2964	0.3396	0.3143
6	0.4065	0.3859	0.4019	24	0.2964	0.3396	0.3158
7	0.4701	0.4463	0.4651	25	0.2964	0.3396	0.3173
8	0.5001	0.4843	0.4969	26	0.2964	0.3396	0.3188
9	0.5056	0.4918	0.5028	27	0.2964	0.3396	0.3204
10	0.5063	0.4928	0.5036	28	0.2964	0.3396	0.3219
11	0.5064	0.4929	0.5037	29	0.2964	0.3396	0.3233
12	0.5065	0.4930	0.5038	30	0.2964	0.3396	0.3248
13	0.5066	0.4931	0.5039	31	0.2964	0.3396	0.3261
14	0.5069	0.4934	0.5042	32	0.2964	0.3396	0.3274
15	0.5072	0.4938	0.5045	33	0.2964	0.3396	0.3286
16	0.9738	0.9602	0.9718	34	0.2964	0,3396	0.3295
17	0.4250	0.4928	0.4394	35	1.0000	1.0000	1.0000
18	0.3539	0.4015	0.3659				

Table 4.7 Murphree Efficiencies for C205

Stage	N-P	N-H	2-MB	2-MP	C-2-HE	MCP.	BE	TOL	WATER	TMS
1	0.9153	0.9133	0.9152	0.9132	0.9160	0.9129	0.8964	0.8969	0.9096	0.8016
2	0.0146	0.0112	0.0119	0.0082	0.0317	0.1006	0.3551	0.3208	0.1813	0.4732
3	0.0146	0.0111	0.0119	0.0082	0.0317	0.1005	0.3550	0.3207	0.3154	0.4709
4	0.0146	0.0111	0.0119	0.0082	0.0316	0.1005	0.3550	0.3207	0.4175	0.4704
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table 4.8 Murphree efficiencies for C207

Stage	BE	TOL	OX	Stage	BE	TOL	OX
1	1.0000	1.0000	1.0000	23	0.8130	0.8101	0.8219
2	0.8200	0.8200	0.8194	24	0.8128	0.7913	0.8219
3	0.8201	0.8201	0.8193	25	0.9989	1.0000	0.6086
4	0.8201	0.8201	0.8194	26	0.8308	0.8308	0.8262
5	0.8202	0.8202	0.8196	27	0.8286	0.8286	0.8243
6	0.8202	0.8202	0.8199	28	0.8268	0.8268	0.8227
7	0.8202	0.8202	0.8202	29	0.8256	0.8256	0.8217
8	0.8201	0.8201	0.8206	30	0.8247	0.8247	0.8212
9	0.8198	0.8198	0.8210	31	0.8242	0.8242	0.8214
10	0.8192	0.8192	0.8213	32	0.8239	0.8239	0.8233
11	0.8184	0.8184	0.8215	33	0.8238	0.8237	0.8277

(continued on next page)

12	0.8174	0.8174	0.8216	34	0.8237	0.8236	0.8323
13	0.8164	0.8164	0.8216	35	0.8236	0.8234	0.8346
14	0.8155	0.8155	0.8217	36	0.8236	0.8226	0.8354
15	0.8148	0.8148	0.8217	37	0.8236	0.8189	0.8356
16	0.8142	0.8142	0.8217	38	0.8235	1.0000	0.8357
17 .	0.8138	0.8138	0.8218	39	0.8235	0.8397	0.8357
18	0.8137	0.8137	0.8219	40	0.8235	0.8366	0.8357
19	0.8135	0.8135	0.8219	41	0.8235	0.8360	0.8358
20	0.8133	0.8133	0.8219	42	0.8236	0.8360	0.8359
21	0.8132	0.8130	0.8219	43	1.0000	1.0000	1.0000
22	0.8131	0.8124	0.8219				

Table 4.9 Murphree efficiencies for C208

Stage	TOL	OX	Stage	TOL	OX	Stage	TOL	OX
1	1.0000	1.0000	18	1.0000	0.9211	35	0.8189	0.8189
2	0.7834	0.7834	19	0.8594	0.8187	36	0.8189	0.8189
3	0.7833	0.7833	20	0.8196	0.8170	37	0.8189	0.8189
4	0.7833	0.7833	21	1.0000	1.0000	38	0.8189	0.8189
5	0.7833	0.7833	22	0.8189	0.8189	39	0.8189	0.8189
6	0.7833	0.7833	23	0.8189	0.8189	40	0.8189	0.8189
7	0.7833	0.7833	24	0.8189	0.8189	41	0.8190	0.8190
8	0.7833	0.7833	25	0.8189	0.8189	42	0.8190	0.8190
9	0.7833	0.7833	26	0.8189	0.8189	43	0.8191	0.8191
10	0.7832	0.7836	27 ·	0.8189	0.8189	44	0.8194	0.8194
11	0.7826	0.7866	28	0.8189	0.8189	45	0.8198	0.8198
12	0.7660	0.8200	29	0.8189	0.8189	46	0.8204	0.8204
13	0.6000	1.0000	30	0.8189	0.8189	47	0.8210	0.8210
14	0.0001	0.0001	31	0.8189	0.8189	48	0.8208	0.8208
15	0.0001	0.0336	32	0.8189	0.8189	49	0.8188	0.8188
16	0.0001	0.3696	33	0.8189	0.8189	50	1.0000	1.0000
17	1.0000	1.0000	34	0.8189	0.8189		<u> </u>	

4.5 Simulation of complete Aromatic Recovery Unit

After simulating each column separately, we proceed for flowsheet connectivity. Flowsheet connectivity can be done in two ways:

• Make backup file of one flowsheet using export option. Open other flowsheet and import this backup file and merge it with existing file. In that case care should be taken and one should be careful of merging common streams. The nomenclature and sequence of components must be same. Both flowsheets must have units and

properties common. Run the flow sheet every time after merging. In the same way, several flowsheets can be merged into an integrated flowsheet.

• Simulate one column, then add other column in the same flowsheet and run each time.

The main drawback in the first method is that it makes flowsheet more complex, which is hard to understand. Nomenclature of design spec and sensitivity analysis should not be the same i.e. if DS1 is defined in the first flowsheet, this should not be defined in other flowsheet. Here the other method is used for connectivity of flowsheets in which the error probability is far less than the first method. In this method, we add the block one by one and see the effect of each block. We solve different recycles in different flowsheets and after successful simulation; we include them in our integrated flowsheet. Specifications of other blocks are given in Table 4.10-4.12.

Table 4.10 Specifications of pumps for extraction aromatic recovery unit

Block	Specification	Stream	Value
P201	Discharge pressure	F	7.000 bar
P203	Discharge pressure	3	5.000 kg/sqcm
P204	Discharge pressure	4	5.000 kg/sqcm
P205	Discharge pressure	11B	6.500 kg/sqcm
P206	Discharge pressure	8	5.000 kg/sqcmg
P207	Discharge pressure	5D	5.000 kg/sqcm
P208	Discharge pressure	10	2.500 kg/sqcm
P209	Discharge pressure	17	1.610 kg/sqcm
P210	Discharge pressure	EXTRACT	13.529 kg/sqcmg
P212	Discharge pressure	20A	6.000 kg/sqcmg

Table 4.11 Specifications of heat exchangers for extraction aromatic recovery unit

Block	Specification	Stream	Value
E201	Hot stream outlet temperature	2A	40.8000 C
E202	Cold stream outlet temperature	7A	79.3000 C
E203	Hot stream outlet vapor fraction	4+9	0.000
E205	Hot stream outlet vapor fraction	UP204A	0.000
E207	Hot stream outlet temperature	5	126.800 C
E212	Hot stream outlet temperature	5C	64.700 C
E215	Hot stream outlet temperature	BENZENE	38.300 C
E216	Hot stream outlet temperature	TOLUENE	44.700 C
E217	Hot stream outlet temperature	XYLENE	40.000 C

Table 4.12 Specifications of splitters for extraction aromatic recovery unit

Splitter		Stream	Specifica	ition
	Inlet	Outlets	Split fraction	Stream
S1	4	4A,4B	0.9327	4A
S2	4B	4C,4D	0.5000	4C
S3	5	5A,6	0.8131	5A
S4 .	17	15,16	0.8269	16

ARU flowsheet consists of five recycle streams; 4, 5, 9, 10 and 15. Sensitivity analysis shows that recycle stream 5, 10 and 15 are not affected by the other recycle streams. While stream 4 and 9 affects each other. User defined convergence blocks are defined to converge these recycle streams. Since stream 4 and 9 affect one another they put together in a single user defined convergence block. Then we tried to simulate the integrated flowsheet with different convergence order but without success. Since recycle stream 5, 10 and 15 are independent they must be used to define user defined convergence block. Since recycle stream 4 and 9 are affected by one another, we start searching for other streams which affect stream 4 and 9. In can be easily seen from sensitivity analysis that stream 4 is directly affected by stream 7 and stream 9 is affected by 14. Now we used stream 7 and 14 instead of stream 4 and 9 to define user defined convergence block. Again we tried to simulate the integrated flowsheet with different convergence order. Convergence order can be easily determined from the simulation flowsheet. Finally integrated flowsheet was converged with the convergence order given below,

Where,

C-1: User defined convergence block used stream 15 as tear stream.

C-2: User defined convergence block used stream 7 and 14 as tear streams.

C-3: User defined convergence block used stream 5 as tear stream.

C-4: User defined convergence block used stream 10 as tear stream.

Broyden method is used for tear convergence. User defined convergence block input for C-2 and convergence order form are shown in Appendix B. Overall flowsheet balance of integrated flowsheet is given in Table 4.13.

Table 4.13 Overall Flowsheet balance for extraction aromatic recovery unit

	Mass and	Energy balance	
	In	Out	Relative difference
Mole, kmol/sec	6.32148	6.32148	-0.543388E-07
Mass, tonne/day	10346.1	10346.1	-0.968335E-06
Enthalpy, Watt	-0.178406E+10	-0.177634E+10	-0.432380E-02

4.6 Validation

Before using simulation program of a flowsheet for troubleshooting, debottlenecking and other major purposes, it should be validated. The prime aim of validation of a simulation is to judge how well the simulation is reflecting the real world. A simulation that does not reflect the real world may result in a wrong diagnosis during troubleshooting. This may led to incorrect solutions.

4.6.1 Error Analysis

Simulation results are compared with plant data in terms of absolute error and relative percentage error.

Absolute error=
$$|(\text{simulation result-plant data})|$$
 (4.1)

Relative percentage error =
$$\frac{\left| (\text{simulation result-plant data}) \right|}{\text{plant data}} \times 100$$
 (4.2)

In some cases relative percentage error reflects large error even if the absolute error is not significant and vice versa. For example absolute error and relative percentage error for stream 14 is, respectively 2.4 MT/D and 27.907, where as for stream 2 is 15.921 MT/D and 5.789. Therefore both the errors have been used to analyze the simulation results. Comparison of simulation result with the plant data is given in Table 4.14.

(continued on next page)

instrument Remarks Faulty 23.718 0.000 2.046 0.782 5.789 0.888 0.245 1.156 2.100 1.873 7.084 4.233 percentage Relative error 1.215 0.007 0.900 0.000 0.100 8.649 5.599 1.000 6.400 15.921 91.124 1.937 2.577 Absolute error 259.079 20.700 40,700 293.076 157.000 85.500 262.730 101.463 125.277 156.515 100.500 144.800 Simulation 275.007 268.001 113.451 result 273.600 NONARMTS Simulation tag number 122.100 | C203/24 C203/39 40.800 2A+4C 103.400 C203/2 86.500 7A+6 Faulty | 4+9 74 5B 151.200 8A 10 9 Faulty Faulty 384.200 20.700 122.700 275.000 275.000 155.300 101.400 Plant value Table 4.14 Comparison of simulation result with plant data Unit MT/D MT/D MT/D MT/D MT/D MT/D MT/D MT/D MT/D O Ö C E. Solvent Recovery Column (C204) Lean Solvent to extraction Column C. Raffinate wash column (C202) Rich Solvent to Extract Stripper B. Extraction Section (C201) Reflux to Extraction Column D. Extract Stripper (C203) Description Raffinate to wash column Lean Solvent exit E202 Raffinate exit RWC Lean Solvent to ES Raffinate to RWC 2. Temperatures 2. Temperatures 2. Temperature Water to RWC ES bottom Tray 38 ES Feed Fray 16 1. Flow ES Top I. Flow Reflux Tray 1

1. Flows							
SRC Feed	MT/D	1936.000	8	1947.977	11.977	0.619	
Reflux	MT/D	80.000	15	79.981	0.019	0.024	
Extract to Storage	MT/D	375.000	16	382.078	7.078	1.887	
2. Temperatures							
Top	S	65.500	UP204	006.99	1.400	2.137	
Bottom	C	129.800	C204/34	126.041	3.759	2.896	
F. Water Stripper (C205)							
1. Flows							
WS feed	MT/D	51.200	11	33.804	17.396	33.977	
WS top	MT/D	8.600	14	11.000	2.400	27.907	
Vapor to SRC	MT/D	Faulty	12	8.442			
2. Temperatures							
Vapors to SRC	ပ	117.600	12	116.500	1.100	0.935	edi,
Lean solvent exit WS reboiler	၁	125.800	5	126.800	1.000	0.795	
H. Benzene Column (C207)							
1. Flows							
Feed to benzene column	MT/D	360.000	16A	361.231	1.231	0.342	
Benzene Drag	MT/D	0000	18	0.043	0.043		
2. Temperatures							
Top Temperature	C	90.600	C207/2	93.355	2.755	3.041	
Bottom Temperature	၁	124.400	C207/42	127.521	3.121	2.509	
Draw tray temperature	၁	93.700	C207/5	93.441	0.259	0.276	
I. Toluene Column (C208)							
1. Flows							
Feed to Toluene Column	MT/D	82.800	20A	82.188	0.612	0.739	
Toluene to Storage	D/TM	80.000	TOLUENE	79.188	0.812	1.015	
Toluene Column bottom to storage	MT/D	3.000	XYLENE	3.000	0.000	0.000	
2. Temperatures							
Top temperature	၁	117.500	C208/2	118.824	1.324	1.127	
Bottom Temperature	၁	136.200	C208/50	131.536	4.664	3.424	

C203/2: 2nd tray from top, of block C203

Section wise absolute error and relative percentage error ranges are respectively given in Table 4.15 and Table 4.16.

Table 4.15 Absolute error ranges for different sections

				Simula	tion tag nui	nber		
			Extraction secti	ion	SR sec	tion	Fraction	ation section
Error range	Block →	C201	C202	C203	C204	C205	C207	C208
<1	Flow, MT/D	5A	10		15		18	20A, TOLUENE, XYLENE
	Temperature, C	5B	2A+4C				C207/5	
	Flow, MT/D	4	NONARMTS		16	14	16A	
1 – 10	Temperature, C			7A+6, 8A, C203/2, C203/24, C203/39	UP204, C204/34	12, 5	C207/2, C207/42	C208/2, C208/50
10 – 20	Flow, MT/D	2			8	11		
10 – 20	Temperature, C							
20 – 100	Flow, MT/D			6				
20 - 100	Temperature, C							

Table 4.16 Relative percentage error ranges for different sections

14010 1110 11	The post of the po	BO OII	of fallges for dis					
				Simulat	ion tag nur	nber		
			Extraction secti	ion	SR sec	tion	Fractiona	tion section
Error range	Block	C201	C202	C203	C204	C205	C207	C208
< 1 %	Flow	5A, 4	10		8 , 15		16A	20A, XYLENE
	Temperature	5B	2A+4C			12, 5	C207/5	
	Flow	2	NONARMTS		16			TOLUENE
(1 – 10) %	Temperature			7A+6, 8A, C203/2, C203/24, C203/39	UP204, C204/34		C207/2, C207/42	C208/2, C208/50
(10 – 50) %	Flow			6		11, 14		
,	Temperature							<u> </u>

Absolute error for stream 6, 8, and 11 are more than 10, with stream 6 having highest absolute error of 91.124 MT/D, where as absolute percentage error for stream 6, 11 and 14 are greater than 10. Absolute error for stream 6 is too high, which is not permissible. Therefore we have done the mass balance across solvent recovery column and water stripper.

Figure 4.1 Input and output streams for combined solvent recovery column and extract stripper

	Input	nO	Output
Stream	Plant data, MT/D	Stream	Plant Data
8	1936.000 14	14	8.600
11	51.200 16	91	375.000
-		9	X
		5A	1275.000
		10	20.700
Total, MT/D	1987.200	Total, MT/D	1679.300+X
		Value of stream 6, X=(1987.200-1679.300)=307.900	-1679.300)=307.900

Input and output streams for combined solvent recovery column and extract stripper are shown in Figure 4.1. Mass balance across these two columns is shown in Table 4.17. It is found that actual value of stream 6 flow rate could be 307.900 MT/D as compared to 384.200 MT/D of given data. This is may be due to faulty flow rate measurement instrument. Therefore we marked it as faulty instrument. For further calculations we used the calculated value of stream 6 flow rate, 307.900 MT/D, instead of given data. Since stream 6, 8, 11, and 14 associated with high error, absolute error or relative percentage error, these streams must be considered for error minimization.

4.6.2 Sensitivity Analysis

To investigate the other possible stream flow rates affected by stream flow rates of 6, 8, 11, and 14, and to get the manipulated variables which affects theses stream flow rates, we have done the sensitivity analysis with respect to different variables. It is found that distillate rate of C203, boilup ratio of C204 and C205 are most responsible manipulated variable for variation of these stream flow rates. Effect of C203 distillate rate is shown in Figure 4.2.

Figure 4.2 Effect of distillate rate of C203.

Flow rates of stream 4 and 8 are affected by distillate rate of C203. Hence, flow rate of stream 4 must be taken into account while error minimization by optimization. Effect of boilup ratio of C204 and C205 is respectively shown in Figure 4.3 and 4.4.

Figure 4.3 Effect of boilup ratio of C204.

Figure 4.4 Effect of boilup ratio of C205.

The other stream flow rate which is affected by boilup ratio of C203 is flow rate of stream 16. Thus, flow rate of stream 4, 6, 8, 11, 14 and 16 are considered for error minimization by optimization.

Sensitivity parameter s can be defined as,

$$s_{ij} = \left| \left(\frac{\partial y_i}{\partial x_j} \right) \times \left(\frac{x_j}{y_i} \right) \right| \text{ at operating point}$$
 (4.3)

Where, x_j and y_i are respectively manipulated variables and dependent variables.

Sensitivity parameters for same stream flow rate and different manipulated variable are added to get sensitivity index, W_i . Sensitivity parameter and sensitivity index for different dependent variables are given in Table 4.18. These sensitivity indexes are used in error minimization by optimization.

Table 4.18 Sensitivity parameter and sensitivity index for extraction aromatic recovery unit

				Depender	it variable		
Manin	ulated variable	4	6	8	11	14	16
Wiamp	urated variable	Flow, MT/D	Flow, MT/D	Flow, MT/D	Flow, MT/D	Flow, MT/D	Flow, MT/D
Block	Variable	s_{lj}	S2j	· S3j	S4j	\$5j	S6j
C203	Distillate rate, MT/D	1.0054	0.0136	0.0186	0.0162	0.0021	0.0392
C204	Boilup ratio, mole	0.0447	0.0607	0.0307	0.3438	0.3181	0.0701
C205	Boilup ratio, mole	0.0007	0.0000	0.0000	0.3844	1.1903	0.0000
Sensiti $W_i = \sum_{i=1}^{n} X_i$	vity index, $S_{ij} \longrightarrow \blacktriangleright$	1.0507	0.0743	0.0494	0.7444	1.5105	0.1093

4.6.3 Error minimization

Optimization tool in ASPEN PLUS is used to minimize the gap between plant data and the simulation results. An objective function F is formulated and minimized using optimization tool.

$$F = \sum W_i \times \left(\frac{plant \ data_i - simulated \ data_i}{plant \ data_i}\right)^2$$
 (4.4)

For our case the objective function, OED used for minimizing the gap between the flow rate of stream 4, 6, 8, 11, 14 and 16 and the respective plant data is as follows:

O1=1.050746009*((155.300-F4)/155.300)*((155.300-F4)/155.300)

O2=0.074303828*((307.900-F6)/307.900)*((307.900-F6)/307.900)

O3=0.049359673*((1936.000-F8)/1936.000)*((1936.000-F8)/1936.000)

O4=0.744412593*((51.200-F11)/51.2)*((51.200-F11)/51.2)

O5=1.510530204*((8.600-F14)/8.600)*((8.600-F14)/8.600)

O6=0.109332429*((375.000-F16)/375.000)*((375.000-F16)/375.000)

OED=O1+O2+O3+O4+O5+O6

Where F stands for flow rate and the number following F is stream number, for example F4 is the flow rate of stream 4. Final values of manipulated variables are given in Table 4.19.

Table 4.19 Manipulated variables after error minimization for extraction aromatic recovery unit

	J			
	Mani	pulated variable		
Block	Variable	Lin	nits	Final value
DIOCK	Variable	Lower	Upper	Tillal value
	Extraction and	Solvent recovery	y section	
C203	Distillate rate, MT/D	156.0000	158.0000	156.9389
C204	Boilup ratio, mole	0.1658	0.1664	0.1661
C205	Boilup ratio, mole	0.5000	1.5000	0.5379

Comparison of simulation result and plant data after error minimization is given in Table 4.20. Even after the error minimization both absolute error and relative percentage error for flow rate of stream 11 is too high. This is may be due to the faulty flow rate measuring instrument. Therefore we marked it as faulty instrument. Stream results after error minimization is given in Table 4.21. End products purity is given in Table 4.22.

Table 4.22 Products purity for extraction aromatic recovery unit

Description	Stream	Simulation result
Aromatics in non aromatics product	NONARMTS	3.900 %
Non aromatics in benzene product	BENZENE	3.750 PPM
Toluene in benzene product	BENZENE	214.000 PPM
Benzene in toluene product	TOLUENE	257.000 PPM

(continued on next page)

instrument Remarks Faulty 0.000 0.725 5.789 0.888 0.005 2.048 0.245 1.156 4.881 1.878 7.093 2.098 4.233 percentage Relative error 0.000 1.126 15.919 0.900 0.100 1.000 2.574 6.400 5.603 15.030 1.942 0.001 8.661 Absolute error 262.730 267.997 40.700 85.500 101.458 125.274 144.800 275.000 156.426 100.500 20.701 292.870 156.939 113.439 Simulation 811.802 259.081 result Table 4.20 Comparison of simulation result with plant data after error minimization 273,600 NONARMTS Simulation tag number 122.700 C203/39 151.200 8A C203/24 2A+4C 03.400 C203/2 7A+6 4+9 SB 275.000 SA 9 9 40.800 22.100 Faulty 20.700 Faulty 86.500 Faulty 275.000 101.400 155.300 307.900 Plant-value Unit MT/D MT/D MT/D MT/D MT/D MT/D MT/D MT/D Ü \mathbf{c} S O C C E. Solvent Recovery Column (C204) C. Raffinate wash column (C202) Lean Solvent to extraction Column Rich Solvent to Extract Stripper B. Extraction Section (C201) Reflux to Extraction Column D. Extract Stripper (C203) Description Raffinate to wash column Lean Solvent exit E202 Raffinate exit RWC Lean Solvent to ES Raffinate to RWC 2. Temperatures 2. Temperatures 2. Temperature Water to RWC ES bottom Tray 16 ES Feed Tray 38 I. Flow 1. Flow ES Top I. Flow Reflux Tray 1

I. Flows							
SRC Feed	MT/D	1936.000	8	1947.734	11.734	0.606	
Reflux	MT/D	80.000	15	19.980	0.020	0.025	
Extract to Storage	MT/D	375.000	16	382.075	7.075	1.887	
2. Temperatures		*					
Top	2	65.500	UP204	006.99	1.400	2.137	
Bottom	С	129.800	C204/34	126.030	3.770	2.904	
F. Water Stripper (C205)							
1. Flows							
WS feed	MT/D	51.200	11	31.772	19.428	37.945	Faulty instrument
WS top	MT/D	8.600	14	8.940	0.340	3.953	
Vapor to SRC	MT/D	Faulty	12	8.444			
2. Temperatures							
Vapors to SRC	C	117.600	12	116.500	1.100	0.935	
Lean solvent exit WS reboiler	C	125.800	5	126.800	1.000	0.795	
H. Benzene Column (C207)							
1. Flows							
Feed to benzene column	MT/D	360.000	16A	361.227	1.227	0.341	
Benzene Drag	MT/D	0.000	18	0.040	0.040		
2. Temperatures							
Top Temperature	C	90.600	C207/2	93.355	2.755	3.041	
Bottom Temperature	C	124.400	C207/42	127.519	3.119	2.507	
Draw tray temperature	၁	93.700	C207/5	93.440	0.260	0.277	
I. Toluene Column (C208)							
1. Flows							
Feed to Toluene Column	MT/D	82.800	20A	82.187	0.613	0.740	
Toluene to Storage	MT/D	80.000	TOLUENE	79.187	0.813	1.016	
Toluene Column bottom to storage	MT/D	3.000	XYLENE	3.000	0.000	0.000	
2. Temperatures							
Top temperature	С	117.500	C208/2	118.823	1.323	1.126	
Dottom Tomporofiles	ر	136.200	C208/50	131.526	4.674	3.432	

Table 4.21 Simulation stream results for extraction aromatic recovery unit

To P201 E	E201 C201 LIQUID 28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	M1 E201 LIQUID 28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	M1 LIQUID 29.185 54.422 25.372 128.958 5.594 10.675	M2 P203 LIQUID 29.182 25.369 128.954 5.590 10.674 1.818	P203 C202 LIQUID 29.182 54.420 25.369 128.954 5.590 10.674 1.818	S1 P204 LIQUID 15.984 15.267 13.987	V202 E203 LIQUID
V201 LIQUID LIQ	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	E201 LIQUID 28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	M1: LIQUID 29.185 54.422 25.372 128.958 5.594 10.675 1.819	P203 LIQUID 29.182 54.420 25.369 128.954 5.590 10.674 1.818 1.818	29.182 29.182 54.420 25.369 128.954 10.674 1.818	P204 LIQUID 15.984 15.267 13.987	E203 LIQUID
Elow tonne/day Cane Cane	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	29.185 54.422 25.372 128.958 5.594 10.675 1.819	29.182 24.420 25.369 128.954 5.590 10.674 1.818	29.182 54.420 25.369 128.954 5.590 10.674 4.767	15.984 15.267 13.987	LIQUID 15.981
tonne/day 29.720 29.720 54.940 entane 25.840 entane 130.180 cne 6.790 lopentane 13.450 lopentane 299.970 85.820 3.290 0.000 character 0.0921 character conne/day 650.000	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	29.185 54.422 25.372 128.958 5.594 10.675 1.819	29.182 54.420 25.369 128.954 5.590 10.674 1.818 1.818	29.182 54.420 25.369 128.954 5.590 10.674 1.818	15.984	15.981
re	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	28.647 53.908 24.902 127.732 5.095 10.631 0.082 4.548	29.185 54.422 25.372 128.958 5.594 10.675	29.182 54.420 25.369 128.954 5.590 10.674 1.818 1.818	29.182 54.420 25.369 128.954 5.590 10.674 1.818	15.984	15 981
24.940 10.180 130.18	53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	53.908 24.902 127.732 5.095 10.631 0.082 4.548 1.891	24.422 25.372 128.958 5.594 10.675 1,819	54.420 25.369 128.954 5.590 10.674 1.818 4.767	54.420 25.369 128.954 5.590 10.674 1.818	15.267	101/01
25.840 25.840 25.840 25.840 25.840 25.840 25.820	24.902 127.732 5.095 10.631 0.082 4.548 1.891	24.902 127.732 5.095 10.631 0.082 4.548 1.891	25.372 128.958 5.594 10.675 1,819	25.369 128.954 5.590 10.674 1.818 1.894	25.369 128.954 5.590 10.674 1.818	13.987	15.265
130.180 6.790 6.790 13.450 299.970 85.820 85.820 3.290 0.000 6.000 85cc 0.000 650.000	127.732 5.095 10.631 0.082 4.548 1.891	127.732 5.095 10.631 0.082 4.548 1.891	128.958 5.594 10.675 1.819	128.954 5.590 10.674 1.818 4.767	128.954 5.590 10.674 1.818	007 75	13,984
6.790 Ine 13.450 299.970 85.820 3.290 0.000 (sec 0.0921 3,/day 650.000	5.095 10.631 0.082 4.548 1.891	5.095 10.631 0.082 4.548 1.891	5.594 10.675 1.819	5.590 10.674 1.818 4.767 1.894	5.590 10.674 1.818	36.478	36.423
entane 13.450 299.970 85.820 3.290 0.000 mol/sec 0.0921 onne/day 650.000	10.631 0.082 4.548 1.891	10.631 0.082 4.548 1.891	10.675	10.674 1.818 4.767 1.894	10.674	14.826	14.822
299.970 85.820 3.290 0.000 0.000 c 0.0921 c 0.0921 3y 650.000	0.082 4.548 1.891	0.082	1,819	1.818 4.767 1.894	1.818	1.307	1.306
85.820 e 3.290 e 0.000 ow kmol/sec 0.0921 ow tonne/day 650.000	1.891	1.891		4.767	777	51.584	51.583
ene 3.290 ane 0.000 Flow kmol/sec 0.0921 Flow tonne/day 650.000	1.891	1.891	4.767	1.894	- >>:F	6.496	6.496
ane 0.000 Flow kmol/sec 0.0921 Flow tonne/day 650.000	1 643		1.894		1.894	0.086	0.085
Flow kmol/sec 0.0921 Flow tonne/day 650.000	7	1.043	1.656	0.000	0.000	0.380	0.160
Flow kmol/sec 0.0921 Flow tonne/day 650.000	0.004	0.004	900'0	0.063	0.063	0.081	0.833
0 650.000	0.0361	0.0361	0.0369	0.0367	0.0367	0.0225	0.0230
0 075E-03	259.081	259.081	264.349	262.730	262.730	156.426	156.939
- CO-CC - C	5.003E-03	4.657E-03	4.741E-03	4.724E-03	4.723E-03	2.577E-03	2.683E-03
39.964	83.200	40.800	40.661	40.181	40.000	40.305	006:99
dem	6.023	6.023	5.000	5.000	3.080	2.000	1.488
0.00	0.000	0.000	0.000	000'0	0000	0.000	0.000
	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1/kg -5.891E+05	-2.121E+06	-2.227E+06	-2.205E+06	-2.200E+06	-2.201E+06	-1.126E+06	-1.129E+06
Watt -4.432E+06	-6.360E+06	-6.677E+06	-6.745E+06	-6.691E+06	-6.692E+06	-2.039E+06	-2.050E+06
1/ko-K -4784.172	-6861.041	-7174.453	-7139.254	-7161.192	-7162.094	-5580.711	-5400.957
ko/cum 754.23	599.426	643.955	645.301	643.654	643.835	702.585	676.940
MW 81.64	83.069	83.069	83.014	82.788	82.788	80.371	79.023
9.723E-03	4.536E-03	4.536E-03	4.620E-03	4.605E-03	4.605E-03	2.501E-03	2.507E-03

Stream	4A	4B	4	4D	4E	4P9	.5	5A
To	C201	SZ	M	M2	P204	E203	S3	E202
From	SI	S1	S2	S2	V202	C203	E207	S3
State	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	VAPOR	LIQUID	LIQUID
Mass Flow tonne/day								
n-Pentane	14.908	920'1	0.538	0.538	15.984	186'51	0.000	0.000
n-Hexane	14.239	1.028	0.514	0.514	15.267	15.265	0.000	0.000
Iso-Pentane	13.045	0.942	0.471	0.471	13.987	13,984	0.000	0.000
2-Methyl pentane	33.975	2.453	1.227	1.227	36.428	36.423	0.000	0.000
Cis-2-Hexene	13.827	866'0	0.499	0.499	14.826	14.822	000'0	0000
Methylcyclopentane	1.219	880'0	0.044	0.044	1.307	1.306	0.000	0.000
Benzene	48.110	3.474	1.737	1.737	51.584	51.583	0.241	0.196
Toluene	6:029	0.437	0.219	0.219	6.496	6.496	7.789	6.333
o-Xylene	0.080	900'0	0.003	0.003	980.0	0.085	1.825	1.484
Sulfolane	0.355	0.026	0.013	0.013	0.380	0.160	1554.846	1264.419
water	0.075	\$00.0	0.003	0.003	0.081	0.833	3.156	2.567
Total Flow kmol/sec	0.0210	5100.0	0.0008	0.0008	0.0225	0.0230	0.1530	0.1244
Total Flow tonne/day	145.891	10.535	5.267	5.267	156.426	156.939	1567.858	1275.000
Total Flow cum/sec	2.403E-03	1.735E-04	8.677E-05	8.677E-05	2.576E-03	4.692E-01	1.553E-02	1.263E-02
Temperature C	40.305	40.305	40.305	40.305	40.000	98.965	126.800	126.800
Pressure kg/sqcm	5.000	2.000	5.000	5.000	2.521	.1.488	5.000	2.000
Vapor Frac	0.000	0000	0.000	0.000	0.000	-1.000	0000	0.000
Liquid Frac	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000
Enthalpy J/kg	-1.126E+06	-1.126E+06	-1.126E+06	-1.126E+06	-1.127E+06	-7.151E+05	-3.511E+06	-3.511E+06
Enthalpy Watt	-1.902E+06	-1.373E+05	-6.865E+04	-6.865E+04	-2.040E+06	-1.299E+06	-6.371E+07	-5.181E+07
Entropy J/kg-K	-5580.711	-5580.711	-5580.711	-5580.711	-5582.289	-4211.790	-4240.265	-4240.262
1	702.585	702.585	702.585	702.585	702.892	3.871	1168.321	1168.319
Average MW	80.371	80.371	80.371	80.371	80.371	79.023	118.611	118.611
Liq Vol 60F cum/sec	2.332E-03	1.684E-04	8.420E-05	8.420E-05	2.501E-03	2.507E-03	1.443E-02	1.174E-02
							(continued o	(continued on next page)

Stream	5B	SC	SD	9	7	7A	7A+6	8
To	E212	C201	E207	M3	E202	M3	C203	C204
From	E202	E212	P207	S3	C201	E202	M3	P206
State	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIOUID	LIOUID
Mass Flow tonne/day								
n-Pentane	0000	000.0	0.000	0.000	15.981	15.981	15.981	0.000
n-Hexane	0.000	0.000	0.000	0.000	15.271	15.271	15.271	9000
Iso-Pentane	0000	0.000	0.000	000'0	13.984	13.984	13.984	0.000
2-Methyl pentane	0000	0.000	000.0	0.000	36.423	36.423	36.423	0.000
Cis-2-Hexene	0000	0.000	0.000	0.000	15.520	15.520	15.520	0.699
Methylcyclopentane	0.000	0000	0.000	000'0	4.038	4.038	4.038	2.732
Benzene	0.196	0.196	0.241	0.045	348.190	348.190	348.235	296.651
Toluene	6.333	6.333	7.789	1.455	93.663	93.663	95.117	88.622
o-Xylene	1.484	1.484	1.825	0.341	2.963	2.963	3.304	3.219
Sulfolane	1264.419	1264.419	1554.846	290.440	1263.131	1263.131	1553,571	1553.411
water	2.567	2.567	3.156	0.590	2.638	2.638	3.228	2.395
Total Flow kmol/sec	0.1244	0.1244	0.1530	0.0286	0.2015	0.2015	0.2300	0.2071
Total Flow tonne/day	1275.000	1275.000	1567.858	292.870	1811.802	1811.802	2104.673	1947.734
Total Flow cum/sec	1.239E-02	1.208E-02	1.660E-02	2.901E-03	1.995E-02	2.026E-02	2.318E-02	2.148E-02
Temperature C	100.511	64.700	208.754	126.800	61.200	79.300	85.483	138.205
Pressure kg/sqcm	5.000	5.000	5.000	5.000	9.083	9.083	5.000	6.033
l €	0000	0.000	0.000	0000	0.000	0.000	0000	0.000
Liquid Frac	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Enthalpy J/kg	-3.554E+06	-3.608E+06	-3.365E+06	-3.511E+06	-2.508E+06	-2.478E+06	-2.622E+06	-2.657E+06
1	-5.244E+07	-5.324E+07	-6.106E+07	-1.190E+07	-5.258E+07	-5.196E+07	-6.386E+07	-5.991E+07
Entropy J/kg-K	-4348.302	-4496.379	-3909.527	-4240.262	-4244.299	-4159.727	-4165.657	-3857.178
	1191.312	1221.892	1093.134	1168.319	1051.167	1035.100	1050.779	1049.537
12	118.611	118.611	118.611	118.611	104.085	104.085	105.890	108.872
Liq Vol 60F cum/sec	1.174E-02	1.174E-02	1.443E-02	2.696E-03	1.926E-02	1.926E-02	2.195E-02	1.945E-02
							(continued on next page)	ı next page)

Stream	8A	6	10	10A	=	11A	11B	12
To	P206	P205	C202	MS	C205	M4	M4	C204
From	C203	V202	P208	V203	M4	C202	P205	F205
State	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	רוסחום	VAPOR
Mass Flow tonne/day								2
n-Pentane	0000	0.001	0000	00000	0.005	0.004	0.001	0.000
n-Hexane	900'0	0.000	0.000	0000	0.002	0.002	0.000	0.000
Iso-Pentane	0.000	0.001	0.000	0000	0.004	0.003	0.001	0.000
2-Methyl pentane	0000	0.001	0.000	0.000	900'0	0.005	0.001	0.000
Cis-2-Hexene	669'0	0.005	0000	00000	0.009	0.004	0.005	0.000
Methylcyclopentane	2.732	0.000	0000	0000	0.001	0.001	0.000	0.000
Benzene	296.651	800.0	0.000	0000	0.008	0.001	0.008	0.000
Toluene	88.622	0.000	0.000	0000	0.001	0.000	000'0	0.000
o-Xylene	3.219	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sulfolane	1553.411	0.258	0000	0000	1.914	1.656	0.258	0.019
water	2.395	9.179	20.701	20.632	29.822	20.644	9.179	8.426
Total Flow kmol/sec	0.2071	0.0059	0.0133	0.0133	0.0193	0.0134	0.0059	0.0054
Total Flow tonne/day	1947.734	9.454	20.701	20.632	31.772	22.319	9.454	8.444
Total Flow cum/sec	2.161E-02	1.114E-04	2.448E-04	2.439E-04	3.729E-04	2.615E-04	1.114E-04	9.921E-02
Temperature C	144.822	40.000	40.056	40.000	41.472	42.000	40.262	116.499
Pressure kg/sqcm	1.700	2.521	2.500	1.500	6.480	6.480	6.500	1.783
Vapor Frac	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
Liquid Frac	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
Enthalpy J/kg	-2.658E+06	-1.544E+07	-1.580E+07	-1.580E+07	-1.504E+07	-1.488E+07	-1.544E+07	-1.323E+07
Enthalpy Watt	-5.992E+07	-1.689E+06	-3.785E+06	-3.773E+06	-5.532E+06	-3.843E+06	-1.689E+06	-1.293E+06
Entropy J/kg-K	-3851.059	-8709.524	-8840.321	-8840.965	-8550.271	-8484.575	-8706.509	-2220.953
	1043.383	982.558	978.879	978.933	986.203	.987.893	982.300	0.985
Average MW	108.872	18.470	18.015	18.015	19.005	19.242	18.470	18.049
Liq Vol 60F cum/sec	1.945E-02	1.091E-04	2.401E-04	2.393E-04	3.640E-04	2.549E-04	1.091E-04	9.788E-05
							(continued on next page)	n next page)

	14	14B	15	16	16A	17	18
C204	V202	F205	C204	P210	C207	S4	
F205	C205	C205	S4	S4	V204	P209	C207
LIQUID	VAPOR	LIQUID	LIQUID	רוסתום	רולחום	מוחטוז	TIQUID
0.000	0.005	000.0	0.000	0.000	000.0	0.000	0.000
0.000	0.002	000'0	0.001	900'0	000'0	0.007	0.000
0.000	0.004	000'0	0.000	0.000	0.000	0.000	0.000
0.000	900'0	0000	0.000	0.000	0.000	0.000	0.000
0.000	0000	0000	0.146	0.699	0.000	0.845	0.000
0.000	0.001	000'0	0.572	2.732	0.001	3.304	0.000
0.000		0.000	62.048	296.410	279.000	358.458	0.040
0.000	0.001	0000	16.921	80.833	80.833	97.754	0.000
0.000		0000	0.292	1.393	1.393	1.685	0.000
1.417	0.479	1.435	0.000	0.000	0.000	0.000	0.000
12.971	8.426	21.396	0.001	0.003	0.000	0.003	0.000
0.0085	0.0055	0.0139	0.0115	0.0547	0.0516	0.0661	0.0000
14.387	8,940	22.832	79.980	382.075	361.227	462.056	0.040
1.820E-04	1.003E-01	2.914E-04	1.084E-03	5.178E-03	5.310E-03	6.262E-03	5.831E-07
116.499	118.305	118.838	40.009	40:009	104.100	40.009	93.328
1.783	1.783	1.813	1.610	1.610	12.773	1.610	1.503
0.000	1.000	0.000	0.000	0.000	0.000	0.000	0000
1.000	0000	1.000	1.000	1.000	1.000	1.000	1.000
-1.430E+07	-1.266E+07	-1.480E+07	5.263E+05	5.263E+05	6.619E+05	5.263E+05	7.500E+05
-2.381E+06	L	-3.911E+06	4.872E+05	2.327E+06	2.767E+06	2.814E+06	3.504E+02
-7546.892	╀	-7854.530	-3230.351	-3230.351	-2859.356	-3230.351	-2867.958
914.888	_	906.792	854.035	854.035	787.410	854.035	801.249
19.61		19.032	80.846	80.846	80.954	80.846	78.114
1.634E-04	1.027E-04	2.613E-04	1.054E-03	5.035E-03	4.753E-03	6.089E-03	5.294E-07

		70	20A	22	23	24	36	37
	E215	P212	C208	E216	E217	P209		E215
	C207	C207	P212	C208	C208	V203	E215	
	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	רוסתום	LIQUID	LIQUID
Mass Flow tonne/day								
	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.000
	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000
2-Methyl pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0000	0.000	0.000	0.000	0.000	:0.845	0000	0.000
Methylcyclopentane	0.001	0.000	0.000	0.000	0000	3.304	0000	0000
	278.939	0.020	0.020	0.020	0.000	358,458	0.000	0.000
	090'0	80.773	80.773	79.162	1.612	97.754	0000	0.000
	0000	1.393	1.393	0.005	1.388	1.685	0.000	0.000
4	0000	0.000	0.000	0.000	0000	0.000	.0000	0000
	000'0	0.000	0.000	0.000	0.000	0.003	350,000	350,000
Total Flow kmiol/sec	0.0413	0.0103	0.0103	0.0099	0.0004	- 0.0661	0.2249	0.2249
Total Flow tonne/day	279.000	82.187	82.187	79.187	3.000	462.056	350.000	350.000
Total Flow cum/sec	4.031E-03	1.250E-03	1.245E-03	1.190E-03	4.515E-05	6.262E-03	4.158E-03	4.077E-03
Temperature C	93.440	127.738	125.192	118.780	131.526	40.000	44.816	25.000
kg/sdcm	1.508	1.552	7.033	1.233	1.289	1.500	1.033	1.033
	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1.000	1.000	1.000	1.000	1.000	٠٠٠٠٠ اندية	1.000	1.000
J/kg	7.501E+05	3.144E+05	3.167E+05	3.019E+05	1.637E+05	5.262E+05	-1.578E+07	-1.586E+07
Watt	2.422E+06	2.990E+05	3.013E+05	2.767E+05	5.684E+03	2.814E+06	-6.393E+07	-6.424E+07
J/kg-K	-2867.262	-3166.107	-3166.238	-3210.364	-3332.016	-3230.385	-8780.748	-9030.871
kg/cum	801.122	761.033	763.808	770.302	768.931	854.044	974.200	993.515
	78.116	92.343	92.343	92.137	98.140	80.846	18.015	18.015
Lio Vol 60F cum/sec	3.659E-03	1.093E-03	1.093E-03	1.054E-03	3.964E-05	6.089E-03	4.059E-03	4.059E-03

						-	- 07100	
		E216		E217	P208		P207	
	E216		E217		MS	E215	C204	E203
	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Mass Flow tonne/day								
n-Pentane	00000	0.000	0.000	0.000	0.000	000'0	000'0	0.000
n-Hexane	0000	0.000	0.000	0000	0000	0.000	0.000	0.000
Iso-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2-Methyl pentane	0000	0.000	0.000	0.000	0.000	0.000	0.000	0000
Cis-2-Hexene	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000
Methylcyclopentane	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Benzene	0.000	0.000	0.000	0.000	0000	278.939	0.241	0.000
	00000	0.000	0.000	0.000	0.000	090'0	7.789	0.000
o-Xylene	0.000	0000	0.000	0.000	0.000	0.000	1.825	0.000
Sulfolane	0000	0.000	0.000	0.000	0.000	0.000	1554.846	0.000
	140.000	140.000	6.000	000'9	20.701	0.000	3,156	900,000
Total Flow kmol/sec	6680'0	0.0899	0.0039	0.0039	0.0133	0,0413	0.1530	0.5782
Total Flow tonne/day	140.000	140.000	9.000	000.9	20.701	279.000	1567.858	900.000
Total Flow cum/sec	1.664E-03	1.631E-03	7.147E-05	6.990E-05	2.447E-04	3.753E-03	1.666E-02	1.068E-02
Temperature C	45.029	25.000	47.386	25.000	39.960	38.300	212.720	43.462
Pressure kg/sqcm	1.033	1.033	1.033	1.033	1.033	1.508	0.617	1.033
Vapor Frac	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Liquid Frac	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Enthalov J/kg	-1.578E+07	-1.586E+07	-1.577E+07	-1.586E+07	-1.580E+07	6.529E+05	-3.365E+06	-1.579E+07
	-2.557E+07	-2.570E+07	-1.095E+06	-1.101E+06	-3.786E+06	2.108E+06	-6.107E+07	-1.644E+08
1	-8778.097	-9030.871	-8748.783	-9030.871	-8841.437	-3154.119	-3905.579	-8797.631
1	973.990	993.515	971.663	993.515	978.972	860.385	1089.339	975.533
12	18.015	18.015	18.015	18.015	18.015	78.116	118.611	18.015
Lia Vol 60F cum/sec	1.624E-03	1.624E-03	6.958E-05	6.958E-05	2.401E-04	3.659E-03	1.443E-02	1.044E-02

	E212 LIQUID 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	E205 LIQUID	E201	E212	E205	E201	V204
Flow tonne/day tane tane tane tane thyl pentane Hexene Ityclopentane the the ane ane Flow kmol/sec C	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LIQUID		E212	E205	E201	P210
Flow tonne/day tane tane tane tane that pentane thyl pentane thyl pentane thyl pentane theche level	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LIQUID	40000		2603		
tane tane tane tane tane tane tane thyl pentane thyl pent	0.000 0	0000	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
tane antane antane thyl pentane /lcyclopentane ne ne ene ane Yew kmol/sec C	0.000 0	0000					
ane Intane Ityl pentane Hexene Icyclopentane Inc	0.000 0	255.5	0000	0.000	0000	00000	0.000
thyl pentane Hexene Icyclopentane The chee The c	0.000 0	0.000	0.000	0000	0.000	00000	900'0
Hyl pentane Hexene Icyclopentane Ine Icyclopentane Ine Ine Ine Ine Ine Ine Ine Ine Ine I	0.000	0.000	0.000	0.000	0.000	0000	0.000
Hexene /lcyclopentane ne ne ene ane 90 Flow kmol/sec	0.000	0.000	0000	0000	0.000	0000	000'0
lcyclopentane ne ne ene ane 90 Flow kmol/sec	0.000	0.000	0.000	0.000	0.000	0.000	0.699
ne ene ane 90 Flow kmol/sec C	0.000	0.000	0000	0000	0000	000'0	2.732
ene ane Slow kmol/sec	00000	0.000	0.000	0000	0.000	0.000	296.410
ane 90 Flow kmol/sec C	0.000	0.000	0.000	.0000	-0.000	0.000	80.833
ane Flow kmol/sec		0.000	0.000	0.000	0000	0000	1.393
Flow kmol/sec	0.000	0.000	0000	0000	0000	0000	000'0
	1000.000	3000.000	300.000	1000.000	3000.000	300.000	0.003
	0.6425	1.9274	0.1927	0.6425	1.9274	0.1927	0.0547
Total Flow tonne/day 900.000	1000.000	3000,000	300.000	1000.000	3000.000	300.000	382.075
Total Flow cum/sec 1.048E-02	1.165E-02	3.495E-02	3.495E-03	1.186E-02	3.565E-02	3.577E-03	5.185E-03
Temperature C 25.000	25.000	25.000	25.000	42.798	45.057	48.253	41.140
Pressure kg/sqcm 1.033	1.000	1.033	1.033	1.000	1.033	1.033	14.562
Vapor Frac 0.000	0.000	0.000	0.000	0.000	0000	00000	0.000
Liquid Frac 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1/kg -1.586E+07	-1.586E+07	-1.586E+07	-1.586E+07	-1.579E+07	-1.578E+07	-1.577E+07	5.292E+05
t -1.652E+08	-1.835E+08	-5.506E+08	-5.506E+07	-1.827E+08	-5.479E+08	-5.475E+07	2.340E+06
Entropy J/kg-K -9030.871	-9030.869	-9030.871	-9030.871	-8805.920	-8777.745	-8738.022	-3225.807
kg/cum	993.515	993.515	993.515	976.186	. 973.962	970.805	852.901
Average MW 18.015	18.015	18.015	18.015	18.015	18.015	18,015	80.846
Lia Vol 60F cum/sec 1.044E-02	1.160E-02	3.479E-02	3.479E-03	1.160E-02	3.479E-02	3.479E-03	5.035E-03

Stream	H	FEED	NONARMTS	N+O	TOLUENE	UP204	UP204A	XYLENE
To	C201	V201				E205	V203	
From	P201		M2	V204	E216	C204	E205	E217
State	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	VAPOR	LIQUID	LIQUID
Mass Flow tonne/day								
n-Pentane	29.720	29.720	29.720	0.000	0.000	0.000	0.000	0.000
n-Hexane	54.940	54.940	54.934	900'0	0.000	0.007	0.007	0.000
Iso-Pentane	25.840	25.840	25.840	0.000	0.000	0.000	0.000	0.000
2-Methyl pentane	130.180	130.180	130.180	0.000	0.000	0.000	0.000	0.000
Cis-2-Hexene	6.790	6.790	680.9	869.0	0000	0.845	0.845	0.000
Methykyclopentane	13.450	13.450	10.718	2.731	0.000	3.304	3.304	0.000
Benzene	299.970	299.970	3.555	17.410	0.020	358.458	358.458	0.000
Toluene	85.820	85.820	4.985	00000	79.162	97.754	97.754	1.612
o-Xvlene	3.290	3.290	1.897	0.000	0.005	1.685	1.685	1.388
Sulfolane	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000
water	000'0	0.000	. 0.065	0.003	0.000	20.635	20.635	0.000
Total Flow kmol/sec	0.0921	0.0921	0.0375	0.0031	0.0099	0.0794	0.0794	0.0004
Total Flow tonne/day	650.000	650.000	267.997	20.848	79.187	482.687	482.687	3.000
Total Flow cum/sec	9.979E-03	9.975E-03	4.811E-03	2.910E-04	1.085E-03	3.995E+00	6.591E-03	4.050E-05
Temperature C	40.335	40.000	40.188	41.140	44.700	098'99	58.939	40.000
Pressure kg/socm	7.138	1.033	5.000	14.562	1.233	0.564	0.564	1.289
Vapor Frac	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
Liquid Frac	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000
Enthalov I/kg	-5.879E+05	-5.891E+05	-2.179E+06	3.026E+05	1.634E+05	3.633E+05	-1.244E+05	-1.181E+04
1	-4.423E+06	-4.432E+06	-6.759E+06	7.302E+04	1.498E+05	2.030E+06	-6.947E+05	-4.099E+02
1	4782.719	-4783.777	-7127.970	-3659.782	-3600.943	-1853.407	-3310.393	-3821.611
	753.866	754.202	644.708	829.295	844.444	1.399	847.624	857.308
≥	81.645	81.645	82.739	79.014	92.137	70.357	70.357	98.140
Lia Vol 60F cum/sec	9.723E-03	9.723E-03	4.689E-03	2.822E-04	1.054E-03	6.328E-03	6.328E-03	3.964E-05
,								4

4.7 Performance Index

Performance of complete aromatic recovery unit with liquid-liquid extraction can be can be evaluated by Performance Index (PI). PI can be defined as the product of solvent selectivity, S_c and solvent capacity, S_c

$$PI = S_s \times S_c \tag{4.5}$$

$$S_{s} = \begin{pmatrix} x_{a}^{\epsilon} / \\ \frac{X_{a}^{r}}{x_{n}^{\epsilon} / \\ X_{n}^{r} \end{pmatrix}$$

$$\tag{4.6}$$

$$S_c = \begin{pmatrix} x_a^{\epsilon} \\ x_a^{\epsilon} \end{pmatrix}. \tag{4.7}$$

Where,

 x_a^e : is the mole fraction of aromatics in the extract phase, stream EXTRACT.

 x_a' : is the mole fraction of aromatics in the raffinate phase, stream NONARMTS.

 x_n^e : is the mole fraction of non-aromatics in the extract phase, stream EXTRACT.

 x_n^e : is the mole fraction of non-aromatics in the raffinate phase, stream NONARMTS.

Performance index calculation for complete aromatic recovery unit with pure sulfolane as solvent is given in Table 4.23.

Table 4.23 Performance index of pure sulfolane for extraction aromatic recovery unit

x_a^e	x_a^r	x_n^e	X_n^r	S_c	S_s	PI
0.9913	0.0363	0.0086	0.9626	27.3309	3044.8713	83218.9269

4.8 Conclusions

Aromatic recovery unit with liquid-liquid extraction has been simulated with ASPEN PLUS 10.2 a sequential modular simulation package. RK-SOAVE property method is used for vapor-liquid calculations in all distillation columns and UNIF-LL property method is used for liquid-liquid calculations in all extraction columns. For the simulation to reflect real world, validation with plant data was taken up. This simulation can be used for troubleshooting, de-bottlenecking and revamping studies after modifying it for the corresponding throughputs.

References

- [1] R. Krishna, R. Taylor, Multicomponent mass transfer, Table 14.2, 1993.
- [2] D. Sanpui, "Multicomponent non-equilibrium non-isothermal LLX modeling, simulation, experimentation and validation", *PhD Thesis*, Indian Institute of Technology Kanpur, 2003.

Chapter 5

SIMULATION OF AROMATIC RECOVERY FLOWSHEET USING MIXED SOLVENTS

5.1 Introduction

A variety of solvents for the extraction of aromatics have been described and tested by various investigators. A comprehensive list of these solvents is given in Table 5.1.

Table 5.1 Reported solvents for aromatic extraction

	Reported solvents for aromatic extraction	
Sl. No.	Solvent	Reference
l	Sulfolane	[1-9]
2	3-methyl sulfolane	[10]
3	2-mercaptoethanol	[10]
4	Dimethyl sulfoxide	[1]
5	N-methyl-2-pyrrolidone	[1, 2, 7, 8, 11, 12, 17]
6	Ethylene carbonate	[2, 13]
7	Propylene carbonate	[2, 14]
8	N-methyl formamide	[15]
9	N,N-dimethyl formamide	[1, 2, 7, 13, 16, 17]
10	Furfural	[1, 2]
11	Morpholine	[15]
12	N-formyl morpholine	[18]
13	Phenol	[1, 2, 19]
14	Furfuryl alcohol	[20]
15	Benzyl alcohol	[21]
16	Isophorone	[15]
17	Thiodiglycol	[10]
18	Ethylene glycol	[2, 12, 16]
19	Diethylene glycol	[1, 2, 5, 9, 21]
20	Triethylene glycol	[1, 2, 7, 8, 14]
21	Tetraethylene glycol	[5, 22]
22	Dipropylene glycol	[5]
23	Hexylene glycol	[15]
24	Diethanol amine	[5]
25	Triethylene glycol dimethyl ether	[15]
26	Triethylene glycol ethyl ether	[15]
27	Triethylene glycol butyl ether	[15]
28	Tetraethylene glycol dimethyl ether	[15]
29	Diethylene glycol dimethyl ether	[15]
30	Diethylene glycol propyl ether	[15]
31	Diethylene glycol diethyl ether	[15]
32	Diethylene glycol monobutyl ether	[15]
33	Diethylene glycol di-n-butyl ether	[15]
NY 75 XXX		

N.B.: Water can be used as co solvent

Some investigators have examined the mixed solvents i.e., the mixture of any two of those solvents [2, 13, 16] which are also used for effective separation of aromatics.

5.2 Simulation using mixed solvents

The simulation programme developed for sulfolane (TMS) as described in chapter 4 has been used to get the performance of mixed solvents. The solvent input stream, 5C to extraction column, C201 was detached to introduce co solvent into the flowsheet with all the other input specifications remains unchanged. We started with pure sulfolane (100 % TMS) and gradually increasing the amount (1mass %) of the other solvents and reducing the amount of TMS (i.e., 99 mass % TMS +1 mass % other solvent then in the next step 98 mass % TMS + 2 mass % other solvent). Simulations have been done until any serious error encountered in the convergence of flowsheet, it means flowsheet required major modifications. Out of 33 solvent listed in Table 5.1 we have chosen N-methyl-2-pyrrolidone (NMP), Triethylene glycol (TEG), Tetraethylene glycol (TeEG), Dimethyl sulfoxide (DMSO), and N-methyl formamide (NMF) as co solvent with sulfolane (TMS) to test the performance of mixed solvents. Performance index (PI) as defined in chapter 4 can be used to compare the mixed solvent performance. Relative performance index (RPI) can be defined as,

$$RPI = \left(\frac{PI_{MIXED}}{PI_{TMS}}\right) \tag{5.1}$$

Since we detached the solvent input stream, 5C to extraction column, C201 we may likely to loose solvents in extract stream, EXTRACT and non aromatic product stream, NONARMTS. So, we also compared performance of mixed solvents in terms of performance index without solvent loss (PI'),

$$PI^{I} = \left[\frac{PI}{S_{in}}\right] \tag{5.2}$$

$$S' = \left[S_{in} - \left(E \times x_s^e + N \times x_s^n \right) \right]$$
 (5.3)

Relative performance index with solvent loss (RPI') can be defined as,

$$RPI^{l} = \left(\frac{PI_{MIXED}^{l}}{PI_{TMS}^{l}}\right) \tag{5.3}$$

Where,

 S_{in} : Amount of solvent entering the extraction column, C201 i.e., mole flow rate of stream 5C.

E: Molar flow rate of extract phase, stream EXTRACT.

 x_s^e : Mole fraction of solvent in extract phase, stream EXTRACT.

N: Molar flow rate of non-aromatic product, stream NONARMTS.

 x_s'' : Mole fraction of solvent in non-aromatic product, stream NONARMTS.

 PI_{TMS} : Performance index of pure sulfolane without solvent loss.

 $PI_{\textit{MIXED}}$: Performance index of mixed solvent without solvent loss.

 PI'_{TMS} : Performance index of pure sulfolane with solvent loss.

 PI'_{MIXED} : Performance index of mixed solvent with solvent loss.

5.3 Results and discussion

Performance index of mixed solvents both with and without solvent loss are given in Table 5.2. Relative performance index without and with solvent loss against solvent increment in TMS are respectively shown in Figure 5.1 and 5.2.

Figure 5.1 Relative performance indexes without solvent loss.

Table 5.2 Performance index of mixed solv	erformance	index of	mixed so	lvents for	r extractic	ents for extraction aromatic recovery unit	covery unit				1	
Mixed solvent, mass %	nt, mass %	۷,	*3	33	*	10	C	٥	10	Jaa	21/	p D I
TMS	NMP	°~	<i>"</i>	" _~	₹	a	ິ	້	ΓI	. 170	FI	M.F.1
100	0	0.9913	0.0363	0.0086	0.9626	1.1960E-03	27.3309	3044.8713	83218.9269	1.0000	6.9582E+07	1.0000
66	1	0.9935	0.0396	0.0062	0.9590	1.6317E-03	25.0844	3863.9085	96923.8129	1.1647	5.9399E+07	0.8537
86	2	0.9925	0.0399	0.0066	0.9587	2.3661E-03	24.8982	3622.4264	90191.8457	1.0838	3.8118E+07	0.5478
64	3	0.9915	0.0402	0.0070	0.9582	3.1116E-03	24.6815	3396.5534	83832.1014	1.0074	2.6942E+07	0.3872
TMS	TEG											
66	1	0.9943	0.0390	0.0057	0.9597	1.2681E-03	25.4777	4311.4413	109845.6852	1.3200	8.6622E+07	1.2449
86	2	0.9945	0.0388	0.0055	0.9600	1.2665E-03	25.6557	4498.6594	115416.0929	1.3869	9.1128E+07	1.3096
97	3	0.9947	0.0385	0.0053	0.9602	1.2651E-03	25.8177	4692,0505	121137.8942	1.4557	9.5757E+07	1.3762
96	4	0.9949	0.0383	0.0051	0.9605	1.2637E-03	25.9686	4883.4861	126817.4448	1.5239	1.0036E+08	1.4423
95	5	0.9950	0.0381	0.0049	0.9607	1.2624E-03	26.1057	5078.1030	132567.5897	1.5930	1.0501E+08	1.5092
94	9	0.9952	0.0379	0.0048	0.9608	1.2611E-03	26.2379	5275.9688	138430.3243	1.6634	1.0977E+08	1.5776
93	7	0.9953	0.0377	0.0046	0.9610	1.2599E-03	26.3789	5479.8616	144552.7605	1.7370	1.1474E+08	1.6490
TMS	TeEG											
66	1	0.9943	0.0391	0.0057	0.9597	1.2687E-03	25.4382	4272.6073	108687.4760	1.3060	8.5668E+07	1.2312
86	2	0.9944	0.0389	0.0056	0.9599	1.2678E-03	25.5698	4415.3611	112900.0759	1.3567	8.9055E+07	1.2799
26	3	0.9946	0.0387	0.0054	0.9600	1.2669E-03	25.6809	4553.5749	116939.9882	1.4052	9.2302E+07	1.3265
96	4	0.9947	0.0386	0.0053	0.9602	1.2661E-03	25.7884	4694.5567	121065.0451	1.4548	9.5619E+07	1.3742
95	5	0.9948	0.0384	0.0052	0.9603	1.2653E-03	25.8929	4825.4872	124946.0712	1.5014	9.8745E+07	1.4191
94	9	0.9949	0.0383	0.0050	0.9605	1.2645E-03	25.9952	4959.2627	128916.8208	1.5491	1.0195E+08	1.4652
93	7	0.9950	0.0382	0.0049	0.9606	1.2639E-03	26.0771	5086.0041	132628.1126	1.5937	1.0494E+08	1.5081
92	8	0.9951	0.0381	0.0048	0.9607	1.2634E-03	26.1376	5212.0942	136231.4359	1.6370	1.0783E+08	1.5497
91	6	0.9952	0.0380	0.0047	0.9608	1.2628E-03	26.2016	5329.4126	139639.0549	1.6780	1.1058E+08	1.5892
06	10	0.9953	0.0379	0.0046	0.9609	1.2623E-03	26.2617	5441.4599	142901.7796	1.7172	1.1321E+08	1.6270
TMS	DMSO											
66	-	0.9926	0.0389	0.0059	0.9599	2.7153E-03	25.5031	4147.9457	105785.3628	1.2712	3.8959E+07	0.5599
TMS	NMF											
66	1	0.9933	0.0390	0.0059	0.9598	1.9872E-03	25.4564	4133.5552	105225.5913	1.2644	5.2952E+07	0.7610
86	2	0.9921	0,0389	0.0059	0.9599	3.1591E-03	25.4992	4129.8454	105307.8895	1.2654	3.3334E+07	0.4791
26	3	0.9909	0.0388	0.0059	0.9600	4.3316E-03	25.5352	4120.3155	105213.2791	1.2643	2.4290E+07	0.3491

Figure 5.2 Relative performance indexes with solvent loss.

Both relative performance index, without and with solvent loss for TEG and TeEG is increasing with increasing mass percent of these solvent in TMS. Thus we will get more aromatics in the extract stream, EXTRACT. Where as, in the case of mixed solvents with NMP we are getting decreasing performances with increasing TMS in NMP. This is because of the low boiling point of NMP, 477.42 °K as compared to 560.45 °K of sulfolane.

5.5 Conclusions

N-methyl-2-pyrrolidone, Triethylene glycol, Tetraethylene glycol, Dimethyl sulfoxide, and N-methyl formamide have been chosen as co solvent with sulfolane to study the performance of mixed solvents. It is found that triethylene glycol and tetraethylene glycol as a co solvent gives better performance than other three co solvents.

References

- [1] J. C. Bastos, M. E. Sores, A. G. Medina, "Infinite dilution activity coefficients predicted by UNIFAC group contribution", *Industrial & Engineering Chemistry Research* 27 (1988) 1269.
- [2] C. H. Deal, E. L. Derr, "Selectivity and solvency in aromatics recovery", *Industrial & Engineering Chemistry Process Design and Development* 3 (1964) 394.
- [3] A. Masohan, S. M. Nanoti, K. G. Sharma, S. N. Puri, P. Gupta, B. S. Rawat, "Liquid-Liquid equilibrium studies on hydrocarbon (C10 C20) sulfolane systems", Fluid Phase equilibria 61 (1990) 89.
- [4] R. Mehrotra, M. O. Garg, S. J. Chopra, B. S. Rawat, M. K. Khanna, "Liquid-liquid phase equilibria for de-aromatization of ATF fraction", *Fluid Phase Equilibria* 32 (1986) 17.
- [5] M. Mukhopadhyay, "A thermodynamic method based upon the theory of regular solution for selection of solvents and process conditions for aromatics extraction", Journal of Chemical Technology and Biotechnology 29 (1979) 634.
- [6] M. Mukhopadhyay, K. R. Dongaonkar, "prediction of liquid-liquid equilibria in multicomponent aromatics extraction systems by use of UNIFAC group contribution model", Industrial & Engineering Chemistry Process Design and Development 22 (1983) 521.
- [7] M. Mukhopadhyay, B. D. Malleshwara Rao, "Studies on selectivities of solvents for liquid-liquid extraction C7 C10 aromatics", *Ind. Chem. Engr.* XXIX(4) T89 (1987).
- [8] M. Mukhopadhyay, Y. S. N. Malleshwara Rao, "Solvency selectivity behavior of a mixed (NMP+TEG) solvent for aromatics extraction", *Ind. Chem. Engr.* XXXIII(4) T141 (1991).
- [9] Y. Yorulmaz, F. Karpuzera, "Sulfolane versus Diethylene glycol in recovery of aromatics", Chemical Engineering Research and Design 63 (1985) 184.
- [10] B. S. Rawat, I. B. Gulati, "Liquid-Liquid Equilibria Studies for Separation of Aromatics", Journal of Chemical Technology and Biotechnology 26 (1976) 425-435.

- [11] T. A. Al-Zayied, T. A. Al-Sahhaf, M. A. Faheem, "Measurement of phase equilibrium in multicomponent systems of aromatics with n-methyl pyrrolidone and prediction with UNIFAC", Fluid Phase equilibria 61 (1990) 131.
- [12] P. O. Ferreira, J. C. Bastos, A. G. Medina, "Infinite dilution activity coefficients for aromatic and non aromatic compounds in n-methyl pyrrolidone", *Journal of Chemical & Engineering Data* 32 (1987) 25.
- [13] G. M. Radwan, S. A. Al-Muhtaseb, A. M. Dowaidar, M. A. Fahim, "Extraction of Aromatics from Petroleum Naphtha Reformate by a 1-Cyclohexyl-2pyrrolidone/Ethylene Carbonate Mixed Solvent", Industrial & Engineering Chemistry Research 36 (1997) 414-418.
- [14] A. B. S. H. Salem, "Liquid-Liquid equilibria for the systems triethylene glycol-toluene-heptane, propylene carbonate-toluene-heptane, and propylene carbonate-o-xylene-heptane", Fluid Phase Equilibria 86 (1993) 351-361.
- [15] D. Sanpui, "Multicomponent non-equilibrium non-isothermal LLX modeling, simulation, experimentation and validation", PhD Thesis, Indian Institute of Technology Kanpur, 2003.
- [16] G. M. Radwan, S. A. Al-Muhtaseb, M. A. Fahim, "Liquid-Liquid equilibria for the extraction of aromatics from naphtha reformate by dimethylformamide/ethylene glycol mixed solvent", Fluid Phase Equilibria 129 (1997) 175-186.
- [17] A. F. Vega, Diez, R. Esteben, J. Coca, "Solvent selection for cyclohexane, cyclohexene, benzene separation by extractive distillation using non-steady state gas chromatography", *Industrial & Engineering Chemistry Research* 36 (1997) 803.
- [18] K. MinSu, N. Sangyoup, C. Jungho, K. Hwayong, "Simulation of Aromatic recovery Process by Extractive Distillation", *Korean Journal of Chemical Engineering* 19 (2002) 1-5.
- [19] H. H. Hooper, S. Michel, J. M. Prausnitz, "Correlation of liquid-liquid equilibria for some water-organic liquid systems in the region 20-250 C", *Industrial & Engineering Chemistry Research* 27 (1988) 2182.

- [20] P. Morawski, T. M. Letcher, P. K. Naicker, "Liquid-Liquid Equilibria for Mixtures of (Furfuryl Alcohol + an Aromatic Hydrocarbon + Alkane) at T=298.15 K", Journal of Chemical & Engineering Data 47 (2002) 1453-1456.
- [21] M. A. Hughes, Y. Haoran, "Liquid-Liquid Equilibria for Separation of Toluene from Heptane by Benzyl Alcohol Tri (ethylene glycol) Mixtures", Journal of Chemical & Engineering Data 35 (1990) 467-471.
- [22] T. A. Al-Sahhaf, E. Kapetanovic, "Measurement and prediction of phase equilibria in the extraction of aromatics from naphtha reformate by tetraethylene glycol", Fluid Phase Equilibria 118 (1996) 271.

Chapter 6

SIMULATION OF AROMATIC RECOVERY FLOWSHEET USING EXTRACTIVE DISTILLATION

6.1 Introduction

Extractive distillation (ED) is a vapor-liquid process operation that uses a third component, or solvent, to effect a chemical separation. The extractive agent creates or enhances the volatility difference between the components to be separated. The extractive agent and the less volatile component flow to the bottom of the distillation column, where the extracted component is recovered by a subsequent distillation. The non-extracted species are distilled to the top of the extractive distillation tower.

ED has many applications within the refining and petrochemical industries for the recovery of high-purity products. Some of the well-known applications include aromatics such as benzene, toluene and xylene (BTX), butadiene, isoprene, and styrene recovery. ED is a very efficient processing technique because of its low capital and operating costs, and operational ease and flexibility. Its application is notable in BTX recovery [1, 2], where it has become the preferred method for producing high-purity products.

The key feature of an ED process is the solvent, which enhances the relative volatility of certain feed components or breaks azeotropes among components, leading to their separation as the desired product in a distillation operation. The purpose of this work was to simulate extractive distillation process, using sulfolane for the same naphtha and solvent feed as used for BTX recovery by liquid-liquid extraction (LLE) process in chapter 4.

Figure 6.1 shows the simplified diagram of extractive distillation process. The extractive distillation process separates aromatics from naphtha. It minimizes aromatic content in gasoline and refines extracted aromatics to be used as raw materials of petrochemical products. Many solvents such as sulfolane, N-Methyl Pyrrolidone [1], N-Formyl Morpholine [3], and certain Glycol blends [1] are used to extract BTX by extractive distillation. For our case sulfolane is used as solvent. Injection of solvent that have good affinity with aromatics and less affinity with non-aromatics reduces the relative volatility of aromatics.

Figure 6.1 Simplified diagram of extractive distillation process

This causes the collection of aromatics and solvent at the bottom of extractive distillation column. Aromatics gather at the top and sulfolane at the bottom in subsequent stripper column, which is connected with the bottom of the extractive distillation column. Then sulfolane is recycled to the extractive distillation column.

6.2 Simulation of Extractive Distillation Column

6.2.1 Initial input specifications

Simulation of the extractive distillation column is performed by using the rigorous distillation model RADFRAC from ASPEN PLUS simulator [4]. Figure 6.2 shows the column configuration for simulation of extractive distillation, and Table 6.1 and Table 6.2 shows initial simulation input data. Shortcut design model DSTWU from ASPEN PLUS simulator has been used to calculate initial input specification for number of stages, distillate rate and reboiler duty. Other specifications such as streams, pressure, reboiler, flash, and splitter specifications are taken from literature [3].

Figure 6.2 Configuration of Extractive Distillation Column

Table 6.1 Initial specifications for extractive distillation column [3]

Column Speci		Column Specifications		
Configuration		Block options		
Number of stages	60	Property method	RK-SOAVE	
Condenser	Partial vapor	Properties		
Reboiler	Thermosyphon	1 to 60	RK-SOAVE	
Valid phases	Vapor-liquid-liquid	4 to 19	NRTL-2	
Convergence	Standard	Pressure, kg/sqcm		
Distillate rate, MT/D 1600		Top pressure	1.4	
Reboiler duty, MMkcal/hr	20	Pressure drop	0.5	
Streams		Reboiler		
Reflux	2	Outlet	162	
		temperature, C	102	
Solvent Feed	4	Reboiler pressure,	1.9	
		kg/sqcm		
Liquid Naphtha Feed	20	3-phase		
Vapor-Naphtha-Feed	33	Stages	2 to 59	
Top Vapor Product	1	Key components,	Non-aromatics	
		2 nd liquid phase	and water	
Bottom Product	60	Convergence		
Column type		Algorithm	Standard	
2 to 59	Sieve Trays	Tears	Broyden	

Table 6.2 Initial specifications of other blocks for extractive distillation [3]

Block	Specifications	Value
Flash	Pressure	2 kg/sqcm
	Vapor fraction	0.2
Heat Exchanger	Hot stream outlet vapor fraction	0
Pump	Discharge pressure	2 kg/sqcm
Splitter	Split fraction, Reflux	0.82816

6.2.2 Property method

Since extractive distillation require vapor-liquid-liquid calculations, it is necessary to use a property method which is equally applicable to both vapor-liquid and liquid-liquid calculations or different property method for vapor-liquid and liquid-liquid calculations. For our case NRTL-2 is used for liquid-liquid and RK-SOAVE is used for vapor-liquid calculations. Property method selection form is shown in Figure 6.3. The valid phases from introduction stage of lean solvent, 4, to one stage above the liquid naphtha feed stage, 19, are vapor-liquid-liquid phases. Thus, for stage 1-60 RK-SOAVE and for stage 4-19 NRTL-2 is used. RK-SOAVE is used as base/global property method.

Figure 6.3 Property method selection form for extractive distillation column.

6.2.3 Efficiencies

ChemSep software is used to get murphree efficiencies for extractive distillation column. Input specifications for ChemSep simulation is given in Table 6.3.

Table 6.3 ChemSep input specifications for extractive distillation column.

Specifications			
Operation	NonEquilibrium Column	Hole diameter, m	0.005-0.012
Туре	Extractive Distillation	Hole pitch, m	0.032
Column internals	Sieve tray	Active area, % total	60.000
Column diameter, m	5.300	Total hole area, % active	12.000
Tray spacing, m	0.800	Downcomer area, % total	12.000
Number of flow passes	1	Weir type	Segmental
Liquid flow path length, m	1.600	Weir length, m	4.018
Downcomer clearance, m	0.0381	Weir height, m	0.0508
Deck thickness, m	0.003404		

Column diameter, active area and weir length are calculated from tray sizing calculations in ASPEN PLUS. Tray sizing result is given in Table 6.4. Specifications corresponding to tray with maximum diameter from ASPEN PLUS tray sizing calculations are used as input in ChemSep.

Table 6.4 Tray sizing results for extractive distillation column

Stage Range	Diameter ^a ,	Side downcomer velocity ^b , m/s	Side weir length ^b , m	Total area ^b , sqm	Active area ^b , sqm	Side downcomer area ^b , sqm
2-3	4.991	0.0395	3.814	19.561	14.867	2.347
4-19	5.257	0.0434	4.018	21.705	16.496	2.605
20 - 32	5.119	0.0467	3.912	20.584	15.644	2.470
33 – 59	4.835	0.0479	3.695	18.363	13.956	2.204

^aDiameter of stage with maximum diameter: ^bCorresponding to stage with maximum diameter

Other specifications such as downcomer clearance, deck thickness, hole diameter, hole pitch and weir height are taken from literature [5]. Murphree efficiencies obtained from ChemSep are reported in Table 6.5. Efficiency plot is shown in Figure 6.4.

Table 6.5 Murphree efficiencies for extractive distillation column

Stage	N-P	N-H	2-MB	2-MP	C-2-HE	MCP	BZ	TOL	OX	TMS
1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	0.6706	0.6644	0.6439	0.6600	0.6762	0.8426	0.5881	0.7425	0.7476	0.7553
3	0.6613	0.6564	0.6355	0.6556	0.6667	0.7485	1.0000	0.7443	0.7500	0.7578
4	0.6670	0.7184	0.6401	0.6111	0.6806	0.7817	0.7549	0.7701	0.7748	0.9930
5	0.6524	0.7017	0.6200	0.5447	0.6663	0.6922	0.7596	0.7846	0.7920	0.6959
6	0.6485	0.7074	0.6160	0.0001	0.6621	0.6941	0.7616	0.7861	0.7936	0.6651
7	0.6469	0.7127	0.6150	0.8198	0.6603	0.7039	0.7626	0.7864	0.7939	0.6639
8	0.6463	0.7159	0.6154	0.7561	0.6595	0.7116	0.7629	0.7864	0.7940	0.6652
9	0.6466	0.7174	0.6172	0.7375	0.6596	0.7163	0.7630	0.7864	0.7940	0.6633
10	0.6480	0.7176	0.6216	0.7297	0.6607	0.7185	0.7628	0.7863	0.7940	0.6562
11	0.6513	0.7170	0.6303	0.7260	0.6633	0.7188	0.7625	0.7860	0.7938	0.6416
12	0.6576	0.7156	0.6458	0.7242	0.6683	0.7176	0.7620	0.7858	0.7936	0.6158
-13	0.6681	0.7133	0.6687	0.7232	0.6768	0.7150	0.7614	0.7854	0.7933	0.5704
14	0.6835	0.7098	0.6955	0.7229	0.6899	0.7105	0.7606	0.7849	0.7929	0.4831
15	0.7028	0.7042	0.7201	0.7229	0.7079	0.7031	0.7596	0.7842	0.7924	0.2804
16	0.7229	0.6946	0.7390	0.7231	0.7298	0.6899	0.7581	0.7833	0.7916	0.0001
17	0.7407	0.6748	0.7525	0.7234	0.7531	0.6623	0.7562	0.7820	0.7905	1.0000
								(contin	ued on ne	ext page)

18	0.7552	0.6132	0.7633	0.7237	0.7751	0.5757	0.7533	0.7801	0.7890	1.0000
19	0.9515	0.6948	0.9769	0.7028	0.9631	0.3652	0.7200	0.7498	0.7596	1.0000
20	0.6533	0.7130	0.6192	0.7516	0.6664	0.7025	0.7012	0.6841	0.6753	0.6604
21	0.6524	0.7165	0.6188	0.7362	0.6651	0.7093	0.7099	0.6917	0.6824	0.6635
22	0.6518	0.7179	0.6187	0.7286	0.6639	0.7133	0.7162	0.6970	0.6874	0.6652
23	0.6520	0.7182	0.6199	0.7244	0.6632	0.7152	0.7209	0.7000	0.6903	0.6650
24	0.6534	0.7177	0.6232	0.7216	0.6630	0.7157	0.7248	0.7016	0.6913	0.6628
25	0.6562	0.7167	0.6299	0.7196	0.6633	0.7151	0.7286	0.7026	0.6910	0.6583
26	0.6612	0.7152	0.6414	0.7179	0.6644	0.7137	0.7328	0.7045	0.6902	0.6509
27	0.6685	0.7131	0.6578	0.7165	0.6667	0.7113	0.7373	0.7099	0.6904	0.6390
28	0.6783	0.7102	0.6770	0.7153	0.6706	0.7075	0.7420	0.7220	0.6959	0.6194
29	0.6899	0.7059	0.6950	0.7142	0.6766	0.7009	0.7463	0.7413	0.7164	0.5846
30	0.7018	0.6989	0.7084	0.7133	0.6852	0.6885	0.7498	0.7615	0.7523	0.5047
31	0.7117	0.6849	0.7141	0.7124	0.6963	0.6589	0.7520	0.7754	0.7808	0.0001
32	0.9957	0.8939	0.9980	0.7339	0.9922	0.9009	0.0001	0.0001	0.0001	0.9985
33	0.6409	0.7013	0.6070	0.7140	0.6563	0.6965	0.6909	0.6776	0.6693	0.6495
34	0.6396	0.7035	0.6058	0.7109	0.6550	0.7012	0.6951	0.6817	0.6732	0.6511
35	0.6386	0.7046	0.6048	0.7088	0.6541	0.7045	0.6977	0.6844	0.6760	0.6522
36	0.6378	0.7049	0.6040	0.7074	0.6533	0.7071	0.6991	0.6859	0.6775	0.6524
37	0.6371	0.7048	0.6033	0.7062	0.6526	0.7094	0.6998	0.6865	0.6781	0.6519
38	0.6365	0.7043	0.6027	0.7053	0.6520	0.7118	0.7002	0.6865	0.6780	0.6508
39	0.6360	0.7037	0.6021	0.7045	0.6515	0.7144	0.7005	0.6861	0.6776	0.6491
40	0.6355	0.7029	0.6017	0.7038	0.6511	0.7173	0.7012	0.6855	0.6770	0.6467
41	0.6351	0.7019	0.6012	0.7032	0.6507	0.7205	0.7024	0.6848	0.6761	0.6433
42	0.6347	0.7007	0.6008	0.7027	0.6503	0.7238	0.7046	0.6840	0.6749	0.6384
43	0.6343	0.6990	0.6005	0.7022	0.6500	0.7271	0.7082	0.6830	0.6734	0.6309
44	0.6340	0.6966	0.6001	0.7018	0.6497	0.7300	0.7132	0.6819	0.6715	0.6192
45	0.6337	0.6928	0.5998	0.7014	0.6494	0.7326	0.7198	0.6806	0.6689	0.5996
46	0.6334	0.6862	0.5995	0.7011	0.6491	0.7346	0.7173	0.6793	0.6654	0.5647
47	0.6331	0.6730	0.5992	0.7008	0.6489	0.7362	0.7349	0.6783	0.6607	0.4945
48	0.6328	0.6379	0.5989	0.7005	0.6486	0.7372	0.7416	0.6789	0.6549	0.3152
49	0.6325	0.3765	0.5986	0.7002	0.6483	0.7378	0.7468	0.6830	0.6485	0.0001
50	0.6321	0.8940	0.5981	0.7000	0.6480	0.7379	0.7507	0.6935	0.6432	1.0000
51	0.6317	0.7960	0.5976	0.6997	0.6476	0.7376	0.7532	0.7108	0.6427	1.0000
52	0.6311	0.7725	0.5970	0.6994	0.6471	0.7368	0.7546	0.7317	0.6531	1.0000
53	0.6303	0.7625	0.5961	0.6991	0.6465	0.7354	0.7553	0.7508	0.6799	1.0000
54	0.6292	0.7572	0.5949	0.6986	0.6456	0.7332	0.7551	0.7648	0.7188	1.0000
55	0.6278	0.7538	0.5932	0.6980	0.6444	0.7299	0.7542	0.7737	0.7542	1.0000
56	0.6257	0.7511	0.5908	0.6970	0.6426	0.7246	0.7522	0.7785	0.7762	0.0001
57	0.6224	0.7481	0.5870	0.6953	0.6399	0.7154	0.7487	0.7802	0.7863	0.7064
58	0.6167	0.7440	0.5805	0.6921	0.6352	0.6970	0.7423	0.7795	0.7895	0.7724
59	0.6055	0.7367	0.5678	0.6850	0.6258	0.6458	0.7296	0.7764	0.7891	0.7889
60	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
					ethyl hutar			nentane:	C-2-HE	cis-2-

N-P: n-pentane; N-H: n-hexane; 2-MB: 2-methyl butane; 2-MP: 2-methyl pentane; C-2-HE: cis-2-hexene; MCP: Methylcyclopentane; BZ: benzene; TOL: Toluene; OX: o-xylene; TMS: sulfolane

Now murphree efficiencies obtained from ChemSep are incorporated in ASPEN PLUS flow sheet extractive distillation column.

Figure 6.4 Murphree efficiency plot for extractive distillation column.

6.2.4 Simulation results

Flowsheet 6.1 shows the simulation flowsheet for extractive distillation column in ASPEN PLUS. Table 6.6 shows the simulation stream results and Table 6.7 shows the overall mass and energy balance results.

Flowsheet 6.1 Simulation flowsheet for extractive distillation column

33.515 91.229 11.410 1.424 2.499 48.256 5.859 0.088 66.344 2.000 1.000 0.000 -1.0057.285 12.320 12.552 0.000 0.000 127.922 968.968 -147.290 -0.7855.501 80.341 VAPOR VAPOR FLASH EDC 150,254 0.000 0.000 0.000 0.000 1.400 1.000 4.169 39.513 0.000 -408.002 82.336 172.949 319.595 757.554 71.528 88.608 1600,000 15989.510 69.278 -1.399 100.255 809.691 -27.201 VAPOR EDC HE 42.596 0.000 40.000 2.000 000'0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 442.075 42.115 1275.000 1.000 -46.465 -1.1131247.198 120.172 1275.000 -874.620 SOLVENT LIOUID EDC 73.380 63.450 59.238 0.000 0.000 0.000 88.535 2.000 0.000 1.000 82.336 264.675 32.723 0.000 -27.098 623.605 83.027 143.229 124.434 627.374 325.052 -1.642670.551 -490.811SPLITTER REFLUX LIOUID Table 6.6 Simulation stream results for extractive distillation column before optimization 54.920 0.000 6.790 0.000 0.000 0.000 2.000 1.000 82.336 RAFINATE 25.820 30.180 12.292 15.227 139.139 274.948 63.450 0.000 -490.810 -5.623 -1.642623.605 17.228 18.371 SPLITTER LIQUID 35.004 NAPHTHA 7.138 1.000 6.790 3.290 0.000 0.000 733.756 29.720 54.920 25.820 13.490 299.970 85.820 0.000 331.718 60.000 -130.062-3.523 -1.111 81.646 30.180 650.000 36.911 LIOUID FLASH 27.719 LIQUID 96.665 5.366 3.202 0.000 0.000 91.229 2.000 1.000 -1.886 81.972 14.410 251.714 265.374 0.000 522.078 30.599 -86.682 710.920 17.400 42.368 -1.02779.961 10.991 LIOUID FLASH EDC BOTTOM 66.885 0.000 3.290 1.900 1.000 0.000 0.000 0.000 1.200 0.000 -0.906 634.653 48.038 -603.379 41.484 1027.920 59.891 284.742 85.820 275.000 0.000 1650.052 108.331 LIQUID EDC Enthalpy MMkcal/hr Mass Flow tonne/day Total Flow tonne/day cal/gm-K Liq Vol 60F cum/hr Methylcyclopentane Total Flow kmol/hr Total Flow cum/hr Pressure kg/sqcm Enthalpy kcal/kg Density kg/cum 2-Methyl pentane Temperature C Cis-2-Hexene Average MW Liquid Frac Iso-Pentane Vapor Frac n-Pentane n-Hexane Sulfolane o-Xylene Entropy Benzene Toluene Stream water From State To

Table 6.7 Overall flowsheet balance of extractive distillation column

Mass and Energy balance								
In Out Relative difference								
Mole, kmol/hr	12384.300	12384.300	0.465738E-08					
Mass, tonne/day 6945.000 6945.000 0.331334E-								
Enthalpy, MMkcal/hr	-851.310	-842.907	-0.987080E-02					

It has been observed that rich solvent stream, BOTTOM, contains 1.2 MT/D of methylcyclopentane and non-aromatic stream, RAFINATE, contains 15.227 MT/D of benzene, both of which should be minimized.

6.2.5 Sensitivity Analysis

Sensitivity analysis for dependent variables such as component flow rates in raffinate and rich solvent stream has been carried out with respect to most sensitive manipulated variables, distillate rate, reboiler duty and split fraction for the determination of sensitivity parameter s, where s is defined as,

$$s_{ij} = \left| \left(\frac{\partial y_i}{\partial x_j} \right) \times \left(\frac{x_j}{y_i} \right) \right| \text{ at operating point}$$
 (6.1)

Where, x_i and y_i are respectively manipulated variables and dependent variables.

Table 6.8 Sensitivity parameter and sensitivity index for extractive distillation column

Component	flow rate, MT.	/D	Ma	able		
Block —			EDC	EDC	SPLIT	Sensitivity
Component	Stream	Sensitivity parameter	Distillate rate, MT/D	Reboiler duty, MMkcal/hr	Split fraction, REFLUX	index, $W_i = \sum S_{ij}$
n-Pentane	RAFINATE	Sij -	0.00000	0.00000	0.00593	0.00593
n-Hexane	RAFINATE	S _{2j}	0.00004	0.00000	0.00599	0.00603
Iso-Pentane	RAFINATE	S3j	0.00000	0.00000	0.00593	0.00593
2-Methyl pentane	RAFINATE	S4j	0.00000	0.00000	0.00593	0.00593
Cis-2-Hexene	RAFINATE	S5j	0.00438	0.00003	0.01398	0.01840
Methylcyclopentane	RAFINATE	S6j	10.29122	0.63933	42.17447	53.10503
Benzene	BOTTOM	S7j	0.52088	0.02763	2.83001	3.37852
Toluene	BOTTOM	S8j	0.00000	0.00000	0.00000	0.00000
o-Xylene	BOTTOM	Syj	0.00000	0.00000	0.00000	0.00000
Sulfolane	BOTTOM	S 10j	0.00000	0.00000	0.00000	0.00000

Sensitivity parameters for same component flow and different manipulated variable are added to get sensitivity index, W_i . Sensitivity parameter and sensitivity index for different dependent variables are given in Table 6.8. These sensitivity indexes are used in optimization. It is found that methylcyclopentane flow in raffinate and benzene in rich solvent stream are highly sensitive to manipulated variables.

6.2.6 Optimization

6.2.6.1 Formulation of objective function

Optimization tool is used to minimize aromatics in raffinate and non-aromatics in rich solvent stream. An objective function, OBJ, is formulated and minimized using optimization tool. Objective function as used is as follows,

P1=0.0059269*((NPF-NPN)/NPF)*((NPF-NPN)/NPF)

P2=0.006031045*((NHF-NHN)/NHF)*((NHF-NHN)/NHF)

I1=0.005926656*((MB2F-MB2N)/MB2F)*((MB2F-MB2N)/MB2F)

I2=0.005926471*((MP2F-MP2N)/MP2F)*((MP2F-MP2N)/MP2F)

O=0.018401121*((C2HF-C2HN)/C2HF)*((C2HF-C2HN)/C2HF)

N=53.10502772*((MCPF-MCPN)/MCPF)*((MCPF-MCPN)/MCPF)

A1=3.378518693*((BZF-BZB)/BZF)*((BZF-BZB)/BZF)

A2=0.000000441581039955857*((TOLF-TOLB)/TOLF)*((TOLF-TOLB)/TOLF)

A3=0*((OXF-OXB)/OXF)*((OXF-OXB)/OXF)

S=0*((TMSF-TMSB)/TMSF)*((TMSF-TMSB)/TMSF)

P=P1+P2

I = I1 + I2

A = A1 + A2 + A3

OBJ=P+I+O+N+A+S

Where NPF, NHF, MB2F, MP2F, C2HF, MCPF, BZF, TOLF, OXF respectively stands for n-pentane, n-hexane, 2-methyl butane, 2-methyl pentane, cis-2-hexene, methylcyclopentane, benzene, toluene and o-xylene flow rate in naphtha feed, TMSF stands for sulfolane flow rate in solvent feed, NPN, NHN, MB2N, MP2N, C2HN, MCPN respectively stands for n-pentane, n-hexane, 2-methyl butane, 2-methyl pentane, cis-2-

hexene and methylcyclopentane flow rate in raffinate and BZB, TOLB, OXB and TMSB respectively stands for benzene, toluene and sulfolane flow rate in rich solvent stream. FORTRAN statement has been used for above formulation. Distillate rate and reboiler duty of extractive distillation column, EDC, and split fraction of splitter, SPLIT, are used as manipulated variable. Sequential Quadratic Programming (SQP) algorithm is used for optimization. ASPEN PLUS input summary is given in Appendix C.1.

6.2.6.2 Optimization results

Final value of manipulated variables is given in Table 6.9.

Table 6.9 Manipulated variables after optimization for extractive distillation column

Block	Variable	Initial value	Lin	Final	
DIOCK	variable	illitiai value	Lower	Upper	value
EDC	Distillate rate, MT/D	1600.0000	1570.0000	1630.0000	1620.0224
EDC	Reboiler duty, MMkcal/hr	20.0000	17.0000	23.0000	18.8131
SPLIT	Split fraction, REFLUX	0.82816	0.80000	0.84000	0.82845

Optimization stream results are given in Table 6.10. Now methylcyclopentane in solvent rich stream, BOTTOM, is reduced from 1.2 MT/D to 0.308 MT/D and flow rate of benzene in raffinate, RAFINATE, is increased from 15.227 MT/D to 17.296 MT/D. Thus we will get more pure aromatics at the cost some production loss.

6.2.7 Discussion

As shown in Figure 6.5, the temperature changes most rapidly at the very top, at the bottom of the column, and in the vicinity of the lean solvent point and the feed point of the extractive distillation. The temperature profiles inside the column, the temperatures at the reboiler and condenser, are 148.42 °C and 69.43 °C, respectively. The pressure increases gradually toward bottom of the column. Considering Figure 6.6 and Figure 6.7, above the feed benzene in both liquid and vapor dies out rapidly. Because of low relative volatility with response to all other components present, this component does not enter the up flowing vapor on the stages above the feed to any large extent. While above the feed n-hexane and 2-methyl pentane in both liquid and vapor increases rapidly till feed stage of lean solvent. In 1 to 3 stages occurs vapor-2nd liquid phase, 4 to 19 vapor-1st liquid-2nd liquid and 20-60 stages vapor-1st liquid phase. The 1st liquid phase contains sulfolane and aromatics to be highly soluble in sulfolane. The 2nd liquid contains non-aromatics.

11.410 33,515 48.256 5.859 0.000 1.424 2.499 0.088 0.000 66.344 127.922 91.229 2.000 1.000 0.000 -0.785-1.005968,968 -147.290 5.501 VAPOR 80.341 VAPOR FLASH EDC 820.096 .-1.390 4.166 82.309 76.852 0.000 0.00 69.435 1.400 1.000 0.000 320.146 0.000 -402.540 101.285 173.247 16204.340 150.513 100.822 1620.022 -27.172 39.581 758.861 VAPOR EDC TOP HE 1275.000 42.115 0.000 0.000 40.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 42.596 2.000 0.000 -874.620 442.075 1275.000 1.000 -46,465 1247.198 0.000 120.172 -1.113 SOLVENT LIQUID EDC 63.596 83.910 82.309 0.000 0.000 0.000 0.000 89.492 2.000 0.000 1.000 -1.634 -485.428 -27.146 265.226 63.670 679,409 1342,109 624.873 143.527 124,693 628.681 32.791 83.521 SPLITTER REFLUX LIOUID EDC Table 6.10 Simulation stream results for extractive distillation column after optimization. 17.375 17.296 0.000 -1.634 54.920 25.820 13.184 0.000 0.000 0.000 2.000 1.000 RAFINATE 6.790 63.596 -485.426 29,720 130,180 140.685 82.309 277.909 18.531 -5.621 624.873 SPLITTER LIQUID 13.490 NAPHTHA 29.720 54.920 25.820 6.790 3.290 0.000 0.000 7.138 0.000 1.000 733.756 81.646 130.180 85.820 331.718 60.000 -130.062 -3.523 35.004 299.970 650.000 36.911 -1:1 LIOUID FLASH 81.972 42.368 14.410 96,665 196.61 0.000 1.000 -1.886 LIOUID 5.366 3.202 0.000 0.000 2.000 -86.682 27.719 251.714 265.374 522.078 30.599 -1.027 710.920 17.400 10.991 91.229 LIQUID FLASH EDC 0.000 0.000 0.000 0.000 0.000 0.308 3.290 0.00 66.736 1.900 0.000 1.000 59.744 282.669 85.820 275.000 633.105 647.086 148.423 -41.478 -0.906 108.400 BOTTOM 028.361 -604.381 LIQUID EDC Enthalpy MMkcal/hr Mass Flow tonne/day Total Flow tonne/day Methylcyclopentane Total Flow kmol/hr cal/gm-K Liq Vol 60F cum/hr Total Flow cum/hr Pressure kg/sqcm Enthalpy kcal/kg kg/cnm 2-Methyl pentane Temperature C Cis-2-Hexene Average MW Liquid Frac Iso-Pentane Vapor Frac n-Pentane n-Hexane o-Xylene Sulfolane Entropy Density Benzene Toluene Stream water From State

Figure 6.5 Temperature and pressure profile in extractive distillation column.

Figure 6.6 Vapor-composition profiles in extractive distillation column.

Figure 6.7 Liquid-composition profiles in extractive distillation column.

Figure 6.8 Relative volatility profiles in extractive distillation column.

Figure 6.8 shows the relative volatility on the basis of the benzene. The relative volatility is less for the benzene than for non-aromatics and more than for other aromatics and sulfolane, because of the difference of the mutual solubility among aromatics, non-aromatics and sulfolane.

6.3 Simulation of complete Aromatic Recovery Unit

6.3.1 Input Specifications

Solvent recovery column, benzene column and toluene column are simulated individually before attempt was made to complete the whole flowsheet. Input specifications for solvent recovery column, benzene column and toluene column are given in Table 6.11. Same specifications as used in chapter 4 have been used, except streams and distillate to feed ratio of solvent recovery column, which is modified according to present feed to the column.

6.3.2 Property method

RK-SOAVE property method is used in solvent recovery column, benzene column and toluene column.

6.3.3 Efficiencies

Input Specifications for ChemSep simulation is given in Table 6.12. Murphree efficiency for solvent recovery column, benzene column and toluene column calculated from ChemSep are reported respectively in Table 6.13-6-15. Efficiency plot as obtained from ChemSep are shown in Figure C.1-C.3 of Appendix C.

6.3.4 Flowsheet connectivity and calculation sequence

After changing the distillate rate and reboiler duty of extractive distillation column, EDC, and split fraction of splitter, SPLIT, to its optimum value we starts adding solvent recovery column, benzene column and toluene column one by one. Complete aromatic recovery unit (ARU) flowsheet is shown in Flowsheet 6.2. Recycle streams in the complete ARU flow sheet are external reflux stream, REFLUX, to extractive distillation column, EDC, external reflux stream, RFLX, to solvent recovery column, SRC, and lean recycle solvent stream, SOLVENT, to extractive distillation column. Both the external reflux recycle streams are independent and are nested to lean solvent recycle stream.

Structured packing^a Structured packing 0.20 kg/sqcmg 555 mm-water Vapor-Liquid RK-SOAVE Standard Standard Broyden 50.2700 Toluene Column 75.400 Kettle Total 20 22 Reflux rate, MT/D Boilup ratio, mole Number of Stages Property method Toluene Product **Bottom Product** Configuration Block options Column type Convergence Pressure drop Convergence Top pressure Valid phases Condenser Algorithm Pressure Streams Reboiler 22 to 49 2 to 21 Tears Feed Table 6.11 Specifications of other columns for extractive distillation aromatic recovery unit Structured packing^a Structured packing 0.47 kg/sqcmg 487 mm-water Vapor-Liquid RK-SOAVE Column Specifications Standard Standard Broyden 609,000 Benzene Column Kettle 7.3831 Total 43 43 27 Reflux rate, MT/D Number of Stages Boilup ratio, mole Benzene Product Property method **Bottom Product** Configuration Benzene Drag **Block options** Column type Pressure drop Convergence Convergence Top pressure Valid phases Condenser Algorithm Pressure Reboiler Streams 27 to 42 Type: MELLAPAK, Vendor: SULZER, Size: 250X 2 to 26 Tears Feed Vapor-liquid RK-SOAVE Sieve Trays Standard Standard Broyden Solvent Recovery Column 0.3659 Kettle None 0.56 0.07 35 7 4 Distillate to feed ratio **Fop Vapor Product** Pressure, kg/sqcm Number of stages Property method, Solvent Product Configuration Block options Column type Convergence Pressure drop Convergence Top pressure Valid phases **Bottom Feed** Water Feed Algorithm Condenser Reboiler Streams to 34 Reflux Tears

Table 6.12 ChemSep input specifications of other columns for extractive distillation aromatic

recovery unit

Specifications	Solvent Recovery Column	Benzene Column	Toluene Column	
Operation	NonEquilibrium	NonEquilibrium	NonEquilibrium	
Туре	Simple Distillation	Simple Distillation	Simple Distillation	
Column internals	Sieve tray	Structured packing	Structured packing	
Section height, m	n.a.	19.458, 13.536	14.934, 21.222	
Column diameter, m	3.000	2.200	0.800	
Packing type	n.a.	Sulzer BX	Sulzer BX	
Tray spacing, m	0.800		*	
Number of flow passes	1			
Liquid flow path length, m	1.600			
Downcomer clearance, m	0.0381			
Deck thickness, m	0.00254			
Hole diameter, m	0.005-0.012			
Hole pitch, m	0.032			
Active area, % total	60.000			
Total hole area, % active	10.000			
Downcomer area, % total	12.000			
Weir type	Segmental			
Weir length, m	2.100			
Weir height, m	0.040			

Table 6.13 Murphree efficiencies for solvent recovery column

Stage	BE	TOL	OX	TMS	Stage	BE	TOL	OX	TMS
1	0.5414	0.5462	0.5149	0.5095	19	0.4816	0.4659	0.4419	0.4784
2	0.4431	0.7336	0.4843	0.4938	20	0.4816	0.4660	0.4420	0.4784
3	0.5106	0.5076	0.5022	0.4939	21	0.9914	1.0000	1.0000	0.8672
4	0.4848	0.4851	0.4848	0.4859	22	0.5842	0.5669	0.6173	0.6549
5	0.4164	0.4398	0.4441	0.4616	23	0.5847	0.5426	0.6126	0.6571
6	0.3345	0.4520	0.4458	0.4631	24	0.5872	0.3979	0.5958	0.6581
7	0.4509	0.4447	0.4478	0.4236	25	0.5792	0.8188	0.4950	0.6475
8	0.4802	0.4706	1.0000	0.4785	26	0.5078	0.6107	0.9448	0.5729
9	0.4814	0.4664	0.4582	0.4779	27	0.3360	0.3999	0.5158	0.3910
10	0.4814	0.4664	0.4602	0.4777	28	0.2262	0.2734	0.3615	0.2747
11	0.4812	0.4673	0.4671	0.4754	29	0.1952	0.2373	0.3171	0.2444
12	0.4816	0.4653	0.5334	0.4789	30	0.1894	0.2303	0.3083	0.2423
13	0.4815	0.4658	0.4194	0.4785	31	0.1883	0.2290	0.3067	0.2464
14	0.4815	0.4659	0.4353	0.4785	32	0.1881	0.2287	0.3064	0.2517
15	0.4815	0.4659	0.4392	0.4784	33	0.1880	0.2287	0.3063	0.2573
16	0.4815	0.4659	0.4407	0.4784	34	0.1880	0.2287	0.3063	0.2629
17	0.4815	0.4659	0.4414	0.4784	35	1.0000	1.0000	1.0000	1.0000
18	0.4816	0.4659	0.4417	0.4784					

Table 6.14 Murphree efficiencies for benzene column

Stage	BE	TOL	OX	Stage	BE	TOL	OX
1	1.0000	1.0000	1.0000	23	0.8130	0.8101	0.8219
2	0.8200	0.8200	0.8194	24	0.8128	0.7913	0.8219
3	0.8201	0.8201	0.8193	25	0.9989	1.0000	0.6086
4	0.8201	0.8201	0.8194	26	0.8308	0.8308	0.8262
5	0.8202	0.8202	0.8196	27	0.8286	0.8286	0.8243
6	0.8202	0.8202	0.8199	28	0.8268	0.8268	0.8227
7	0.8202	0.8202	0.8202	29	0.8256	0.8256	0.8217
8	0.8201	0.8201	0.8206	30	0.8247	0.8247	0.8212
9	0.8198	0.8198	0.8210	31	0.8242	0.8242	0.8214
10	0.8192	0.8192	0.8213	32	0.8239	0.8239	0.8233
11	0.8184	0.8184	0.8215	33	0.8238	0.8237	0.8277
12	0.8174	0.8174	0.8216	34	0.8237	0.8236	0.8323
13	0.8164	0.8164	0.8216	35	0.8236	0.8234	0.8346
14	0.8155	0.8155	0.8217	36	0.8236	0.8226	0.8354
15	0.8148	0.8148	0.8217	37	0.8236	0.8189	0.8356
16	0.8142	0.8142	0.8217	38	0.8235	1.0000	0.8357
17	0.8138	0.8138	0.8218	39	0.8235	0.8397	0.8357
18	0.8137	0.8137	0.8219	40	0.8235	0.8366	0.8357
19	0.8135	0.8135	0.8219	41	0.8235	0.8360	0.8358
20	0.8133	0.8133	0.8219	42	0.8236	0.8360	0.8359
21	0.8132	0.8130	0.8219	43	1.0000	1.0000	1.0000
22	0.8131	0.8124	0.8219				

Table 6.15 Murphree efficiencies for toluene column

Stage	TOL	OX	Stage	TOL	OX	Stage	TOL	OX
1	1.0000	1.0000	18	1.0000	0.9211	35 -	0.8189	0.8189
2	0.7834	0.7834	19	0.8594	0.8187	36	0.8189	0.8189
3	0.7833	0.7833	20	0.8196	0.8170	37	0.8189	0.8189
4	0.7833	0.7833	21	1.0000	1.0000	38	0.8189	0.8189
5	0.7833	0.7833	22	0.8189	0.8189	39	0.8189	0.8189
6	0.7833	0.7833	23	0.8189	0.8189	40	0.8189	0.8189
7	0.7833	0.7833	24	0.8189	0.8189	41	0.8190	0.8190
8	0.7833	0.7833	25	0.8189	0.8189	42	0.8190	0.8190
9	0.7833	0.7833	26	0.8189	0.8189	43	0.8191	0.8191
10	0.7832	0.7836	27	0.8189	0.8189	44	0.8194	0.8194
11	0.7826	0.7866	28	0.8189	0.8189	45	0.8198	0.8198
12	0.7660	0.8200	29	0.8189	0.8189	46	0.8204	0.8204
13	0.6000	1.0000	30	0.8189	0.8189	47	0.8210	0.8210
14	0.0001	0.0001	31	0.8189	0.8189	48	0.8208	0.8208
15	0.0001	0.0336	32	0.8189	0.8189	49	0.8188	0.8188
16	0.0001	0.3696	33	0.8189	0.8189	50	1.0000	1.0000
17	1.0000	1.0000	34	0.8189	0.8189			

Flowsheet 6.2 Simulation flowsheet of extractive distillation aromatic recovery unit

Convergence sequence used for complete ARU flowsheet simulation is given below,

FLASH
C-3
| C-1 EDC EDCH PUMP SPLIT
| (RETURN C-1)
| C-2 SRC SRCH DECANTER SPLT
| (RETURN C-2)
| SRCP RECLH
(RETURN C-3)
CLAYTOWR BP BC TP TC TH XH BH

Where C-1, C-2 and C-3 are user defined convergence block respectively used external reflux stream, REFLUX, to extractive distillation column, EDC, external reflux stream, RLFX, to solvent recovery column, SRC, and lean solvent recycle stream ,SOLVENT, to extractive distillation column as tear stream. User defined convergence block input and convergence order form are shown respectively in Figure C.4 and Figure C.5 of Appendix C.

6.3.5 Simulation results

End products purity is given in Table 6.16. Simulation stream results of complete aromatic recovery unit are reported in Table 6.17.

Table 6.16 Product purity for extractive distillation aromatic recovery unit.

Description	Stream	Simulation result
Aromatics in non aromatics product	NONARMTS	6.200 %, Mass
Non aromatics in benzene product	BENZENE	3.000 PPM
Toluene in benzene product	BENZENE	255.000 PPM
Xylene in benzene product	BENZENE	0.000 PPM
Non aromatics in toluene product	TOLUENE	0.000 PPM
Benzene in toluene product	TOLUENE	266.000 PPM
Xylene in toluene product	TOLUENE	298.000 PPM
Non aromatics in Xylene	XYLENE	0.000 PPM
Benzene in Xylene product	XYLENE	0.000 PPM
Toluene in Xylene	XYLENE	263.000 PPM

6.3.6 Performance index

Performance index (PI) as defined in Chapter 4 has been used to evaluate the performance of complete aromatic recovery unit with extractive distillation.

(continued on next page)

189.456 9.441E+06 787.377 0.000 0.000 85.820 3.290 0.000 0.000 19.533 1.600 0.000 00.1 154.694 -0.687 81.178 17.485 0.000 0.000 0.000 0.001 280.000 369.111 104.153 LIOUID 16A BC BP 787.437 0.000 0.000 85.820 9.439E+06 -0.687 0.000 3.290 0.000 0.000 1.033 0.000 1.000 81.178 17.485 0.000 280.000 189.456 104.100 CLAYTOWR 0.001 154.661 19.531 369.111 LIQUID 13 40.000 1.033 0.000 -0.768 21.419 0.000 0.000 0.000 0.000 0.003 1.000 9.456E+06 81.156 0.000 0.372 0.000 22.026 855.234 343.449 3.997 232.113 104.271 452.093 DECANTER 126.501 LIQUID SPLT 75.436 21.836 54.158 0.000 0.000 22.749 0.000 0.000 0.000 0.560 0.000 1.000 846.349 0.000 255.235 4.138E+06 0.372 343.449 104.271 3.997 10.001 462.091 59.227 -0.757DECANTER LIQUID SRCH Table 6.17 Simulation stream results for extractive distillation aromatic recovery unit 0.250 6.000 18.015 0.000 0.000 0.000 6.000 0.258 50.433 0.000 1.000 -2.175 968.645 00000 0.000 0.000 0.000 0.000 0.000 13.877 1.033 -3.773E+06 -3802.777 LIQUID XH -3.802E+06 25.000 -3832.114 -2.270 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 6.000 0.252 0.000 993.515 18.015 1.033 1.000 13.877 LIQUID X -1.300E+08 -1.300E+08 -1.634 101.285 150.506 100.848 63.596 82.309 173.244 758.836 39.573 76.880 0.000 0.000 0.000 0.000 2.000 0.000 1.000 -485.413 624.877 320.136 1620.022 820.097 108.023 LIQUID SPLIT **PUMP** 150.506 -1.634 82.309 173.244 0.000 0.000 63.557 0.000 1.000 -485.445 0.000 0.000 1.400 624.918 320,136 758.836 39.573 76.880 100.848 1620.022 108.016 101.285 820.097 LIQUID **PUMP** EDCH Mass Flow tonne/day Total Flow tonne/day Methylcyclopentane Total Flow kmol/hr Liq Vol 60F cum/hr cal/gm-K Total Flow cum/hr Pressure kg/sqcm Enthalpy kcal/kg Enthalpy Btu/hr Density kg/cum 2-Methyl pentane Temperature C Cis-2-Hexene Average MW Iso-Pentane iquid Frac Vapor Frac n-Pentane n-Hexane o-Xylene Sulfolane Benzene Toluene Entropy Stream From water State ဂ္

	18	61	20	20A	21	22	23	25
		ВН	TP	CC	BH	TH	XH	TH
	BC	BC	BC	TP		TC	TC	
	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	TIQUID	LIQUID
Mass Flow tonne/day								
	0.000	0.000	0.000	0.000	0.000	0000	000'0	0.000
	0.000	0.000	0.000	0.000	0.000	0000	0.000	0000
	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000
2-Methyl pentane	0.000	0.000	0.000	0.000	0000	0000	0.000	0.000
	0000	0.000	0.000	0.000	0000	0.000	0.000	0.000
Methylcyclopentane	00000	0.001	0.000	0.000	0.000	0.000	0.000	0000
	0.049	279.928	0.023	0.023	0.000	0.023	0.000	0.000
	000'0	0.071	85.749	85.749	0.000	85.748	100.0	0.000
	0.000	0.000	3.290	3.290	0.000	0.026	3.264	0000
	0000	0.000	0.000	0.000	0.000	0.000	00000	0.000
	0.000	0.000	0.000	0.000	250.000	0.000	000'0	110.000
Total Flow kmol/hr	0.026	149.350	40.080	40.080	578.214	38.798	1.281	254.414
Total Flow tonne/day	0.049	280.000	89.061	89.061	250.000	85.796	3.265	110.000
Total Flow cum/hr	0.003	14.563	4.876	4.882	10.485	4.641	0.179	4.613
	93.328	93.441	128.148	129.098	25.000	118.784	153.045	25.000
Pressure kg/sqcm	1.503	1.508	1.552	7.033	1.033	1.233	1.289	1.033
	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Enthalov kcal/kg	179.132	179.160	73.588	74.137	-3832.114	72.099	4.772	-3832.114
Btu/hr	1.463E+03	8.295E+06	1.084E+06	1.092E+06	-1.584E+08	1.023E+06	2.576E+03	-6.970E+07
cal/em-K	-0.685	-0.685	-0.757	-0.756	-2.270	-0.767	-0.850	-2.270
ko/cıım	801.251	801.121	761.113	760.074	993.515	770.303	762.126	993.515
	78.114	78.117	92.588	92.588	18.015	92.140	106.163	18.015
I is Vol 60F cum/hr		13.219	4.263	4.263	10.437	4.109	0.154	4.592
	4						(continued on next page)	n next page)

Stream	26	27	BENZENE	BOTTOM	CWI	CWO	EXTRACT	FEED
То				SRC	EDCH		CLAYTOWR	FLASH
From	TH	ВН	ВН	EDC		EDCH	SPLT	
State	LIQUID	רוסחום	LIQUID	TIQUID	TIQUID	LIQUID	GINÒIT	LIQUID
Mass Flow tonne/day								
n-Pentane	0000	0.000	0.000	0.000	0.000	0.000	0000	29.720
n-Hexane	0000	0.000	0.000	0000	0.000	0.000	0000	54.920
Iso-Pentane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	25.820
2-Methyl pentane	0000	0.000	0.000	0.000	0.000	0000	0000	130.180
Cis-2-Hexene	0000	0.000	0.000	0.000	0.000	0.000	0.000	6.790
Methylcyclopentane	0000	0.000	0.001	0.306	0.000	0.000	0.306	13.490
Benzene	0000	0.000	279.928	282.675	0.000	0.000	282.674	299.970
Toluene	0000	0.000	0.071	85.825	0.000	0.000	85.820	85.820
o-Xylene	0000	0.000	0.000	3,909	0.000	0.000	3.290	3.290
Sulfolane	0000	0.000	0.000	1275.000	0.000	0.000	0000	0000
water	110.000	250.000	0.000	000.0	5020.000	5020.000	0.003	0000
Total Flow kmol/hr	254.414	578.214	149.350	633.353	11610.540	11610.540	191.040	331.718
Total Flow tonne/day	110.000	250.000	280.000	1647.714	5020.000	5020.000	372.093	650.000
Total Flow cum/hr	4.717	10.722	13.560	66.770	210.737	215.665	18.128	36.911
Temperature C	47.372	47.548	38.300	148.435	26.000	49.198	40.000	60.000
Pressure kg/sqcm	1.033	1.033	1.508	1.900	1.033	1.033	1.033	7.138
Vapor Frac	0.000	0.000	0.000	000'0	000'0	0.000	000'0	0.000
Liquid Frac	1.000	1.000	1.000	1.000	1.000	1.000	000'1	1.000
Enthalpy kcal/kg	-3806.306	-3806.103	155.936	-604.141	-3830.959	-3804.201	126.501	-130.062
Enthalpy Btu/hr	-6.923E+07	-1.573E+08	7.219E+06	-1.646E+08	-3.180E+09	-3.158E+09	7.783E+06	-1.398E+07
Entropy cal/gm-K	-2.186	-2.186	-0.753	906.0-	-2.266	-2.180	-0.768	-1.111
Density kg/cum	971.676	971.502	860.384	1028.227	992.550	969.869	855.234	733.756
Average MW	18.015	18.015	78.117	108.399	18.015	18.015	81.156	81.646
Liq Vol 60F cum/hr	4.592	10.437	13.219	59.773	209.570	209.570	17.628	35.004
							(continued on next page)	n next page)

To EDC From FLASH SPLIT C State LIQUID LIQUID LIQUID Mass Flow tonne/day 17.400 29.719 n-Pentane 42.368 54.918 Iso-Pentane 96.665 130.176 Cis-2-Hexene 5.366 6.789 Cis-2-Hexene 5.366 6.789 Methylcyclopentane 10.991 13.188 Benzene 79.961 0.000 O-Xylene 33.202 0.000 Sulfolane 0.000 0.000 water 0.000 0.000 Total Flow kmol/hr 265.374 140.685 Total Flow cum/hr 30.599 18.531 Temperature C 91.229 63.596	CLAYT	SRCP LIQUID 0.000	EDC SPLIT	SRC SPLT	EDC	SRCP
FLASH SPLIT LIQUID LIQUID Flow tonne/day 17.400 29.719 rane 42.368 54.918 intane 14.410 25.819 hyl pentane 96.665 130.176 Hexene 5.366 6.789 Icyclopentane 251.714 17.300 ne 79.961 0.000 ene 0.000 0.000 ene 0.000 0.000 Flow kmol/hr 265.374 140.685 Flow tonne/day 522.078 277.909 Flow cum/hr 30.599 18.531 Flow cum/hr 91.229 63.596	LIQU	SRCP LIQUID 0.000	SPLIT	SPLT		
LIQUID L	TIÓN	0.000 0.000	מווסו		RECLH	SRC
Flow tonne/day 17.400 17.400 17.400 17.400 17.400 14.410 14		0.000	こうとに	LIQUID	LIOUID	LIOUID
ane 17.400 ane 42.368 ane 42.368 hyl pentane 96.665 1 leyclopentane 5.366 leyclopentane 10.991 ne 79.961 ne 79.961 ane 0.000 Thou kmol/hr 265.374 1 Flow kmol/hr 265.374 1 Flow cum/hr 30.599		0.000				
ane 42.368 Intane 14.410 hyl pentane 96.665 1 Hexene 5.366 Icyclopentane 10.991 ne 251.714 ne 79.961 ne 3.202 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 Flow cum/hr 30.599		0.000	143.524	0.000	0.000	0.000
Intane 14.410 hyl pentane 96.665 1 Hexene 5.366 1 Icyclopentane 10.991 1 ne 79.961 1 ene 79.961 1 ene 0.000 1 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599 2 enature C 91.229			265.216	0.000	0.000	0.000
hyl pentane 96.665 1 Hexene 5.366 Icyclopentane 10.991 ne 251.714 ne 79.961 ene 0.000 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599		0.000	124.686	0.000	0.000	0.000
Hexene 5.366 leyclopentane 10.991 ne 251.714 ne 79.961 ene 3.202 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cun/hr 30.599 neature C 91.229		0.000	628.656	0.000	0.000	0.000
leyclopentane 10.991 ne 251.714 ne 79.961 ene 3.202 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cun/hr 30.599		0.000	32.783	0000	0000	0000
ne 251.714 ne 79.961 ene 3.202 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599		0.000	969.69	990'0	0.000	0.000
ne 79.961 ene 3.202 ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599		0.000	83.552	60.775	0.000	0.000
ane 0.000 Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599		0.005	0.000	18.451	0.005	0.005
0.000 0.00	00000	0.619	0.000	0.707	0.619	0.619
0.000 Compared to the comp		1275.000	0.000	0.000	1275.000	1275.000
Flow kmol/hr 265.374 1 Flow tonne/day 522.078 2 Flow cum/hr 30.599 91.229	0.003	0.000	000'0	0.001	0.000	0.000
30.599 91.229	1.584	442.320	679.412	41.073	442.320	442.320
30.599		1275.624	1342.113	80.000	1275.624	1275.624
91.229	0.147	50.999	89.492	3.898	42.625	50.996
	96 40.000	265.254	63.296	40.000	40.000	265.199
qcm 2.000	1.033	2.000	2.000	1.033	2.000	0.630
Vapor Frac 0.000 0.000	000.0	0.000	0000	0.000	0.000	0.000
Liquid Frac 1.000 1.000	1.000	1.000	1.000	1.000	1.000	1.000
Enthalpy kcal/kg -86.682 -485.413	13 97.906	-778.804	-485.411	126.501	-874.213	-778.853
1	77 4.828E+04	-1.643E+08	-1.077E+08	1.673E+06	-1.844E+08	-1.643E+08
cal/em-K	34 -0.830	-0.887	-1.634	-0.768	-1.113	-0.887
kg/cum 710.920 6	∞	1042.209	624.877	855.234	1246.949	1042.265
12	9 78.452	120.165	82.309	81.156	120.165	120.165
nm/hr	75 0.143	42.145	83.910	3.790	42.145	42.145

XVIENE		XH	LIQUID		0.000	000'0	000'0	0.000	0.000	0.000	0.000	0.001	3.264	0.000	0.000	1.281	3.265	0.157	40.000	1.289	0.000	1.000	-49.139	-2.653E+04	-0.997	868.175	106.163	0.154
X OSTW	-	DECANTER			0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	266.6	23.122	6.697	0.426	40.000	1.033	0.000	1.000	-3773.637	_	-2.112	978.933	18.015	0.417
WTR	SRC		LIQUID		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.000	23.129	10.000	0.419	25.000	1.000	0.000	1.000	-3832.115	-6.336E+06	-2.270	993.515	18.015	0.417
^	EDC	FLASH	VAPOR		12.320	12.552	11.410	33.515	1.424	2.499	48.256	5.859	0.088	0.000	0.000	66.344	127.922	896.896	91.229	2.000	1.000	0000	-147.290	-3.115E+06	-1.005	5.501	80.341	7.285
TOP	ЕДСН	EDC	VAPOR		173.244	320.136	150.506	758.836	. 39.573	76.880	100.848	0.000	0.000	000.0	0.000	820.097	1620.022	16204.380	69.435	1.400	1.000	0.000	-402.527	-1.078E+08	-1.390	4.166	82.309	101.285
TOLLIENE		TH	LIQUID		0.000	0.000	000'0	0.000	0.000	0.000	0.023	85.748	0.026	0000	0.000	38.798	85.796	4.233	44.700	1.233	0.000	1.000	39.010	5.534E+05	-0.860	844.448	92.140	4.109
SRT	SRCH	SRC	VAPOR		0000	0000	0000	0.000	0.000	0.372	343.449	104.271	3.997	0.000	100.01	255.235	462.091	12987.540	68.640	0.560	1.000	0.000	160.319	1.225E+07	-0.443	1.482	75.436	21.836
Stream	To	From	State	Mass Flow tonne/day	n-Pentane	n-Hexane	Iso-Pentane	2-Methyl pentane	Cis-2-Hexene	Methylcyclopentane	Benzene	Toluene	o-Xylene	Sulfolane	water	Total Flow kmol/hr	Total Flow tonne/day	Total Flow cum/hr	Temperature C	Pressure kg/sqcm	Vapor Frac	ğ	Enthalpy kcal/kg	Enthalpy Btu/hr	Entropy cal/gm-K	Density kg/cum	Average MW	Lig Vol 60F cum/hr

Performance index calculation for complete aromatic recovery unit with pure sulfolane as solvent is given in Table 6.18.

Table 6.18 Performance index of pure sulfolane for extractive distillation aromatic recovery unit

x_a^e	x_a^r	x_n^e	x_n^r	S_c	S_{s}	PI
0.9992	0.0656	0.0008	0.9344	15.2327	17924.5022	273038.3772

Performance index for complete aromatic recovery unit with extractive distillation is approximately 3 times better than that of with simple liquid-liquid extraction discussed in chapter 4.

6.4 Conclusions

Aromatic recovery unit with extractive distillation has been simulated with ASPEN PLUS 10.2 a sequential modular simulation package. RK-SOAVE property method is used for vapor-liquid and NRTL-2 property method is used for liquid-liquid calculations in extractive distillation column. Performance index for complete aromatic recovery unit with extractive distillation is approximately 3 times better than conventional aromatic unit with liquid-liquid extraction.

References

- [1] J. C. gentry, C. S. Kumar, H. M. Lee, Y. H. Lee, "Operational Experience with GT-BTXsm Aromatics Recovery Technology", *GTC Technology Corporation*, USA and *Lg-Caltex oil Corporation*, Korea.
- [2] J. C. Gentry, C. S. Kumar, R. Wright-Wytcherley, "Extractive Distillation applied", AIChE Spring Meeting 7e, New Orleans, LA, 2003.
- [3] K. MinSu, N. Sangyoup, C. Jungho, K. Hwayong, "Simulation of Aromatic recovery Process by Extractive Distillation", Korean Journal of Chemical Engineering 19 (2002) 1-5.
- [4] ASPEN Plus, Release 10.2.1, Aspen technology Inc., Cambridge, MA, USA, 2000.
- [5] R. Krishna, R. Taylor, Multicomponent mass transfer, Table 14.2, 1993.

Chapter 7

SUGGESTIONS FOR FUTURE WORK

7.1 Parameter Estimation

7.1.1 Common parameter estimation

It has been observed that the binary interaction parameters are different for a common binary pair appearing in two different multicomponent systems. This means that these parameters are applicable to that particular system and conditions and can not be used for other systems. Therefore, to overcome this problem one has to go for simultaneous parameter estimation to estimate the common parameters that are applicable to other multicomponent systems at other conditions. For this the objective function can be defined as the summation of objective function of individual systems.

7.1.2 Estimation of UNIQUAC structural parameters

For binary interaction parameters estimation for UNIQUAC model, we have taken the structural parameters either from literature or calculated from Aspen Plus. For more accurate predictions one could use these parameters calculated using polarizable continuum model [1].

7.1.3. Prediction of other properties

Binary interaction parameters of activity coefficient models are important in predicting liquid-liquid equilibrium, vapor liquid equilibrium, heat of mixing, and activity coefficient at infinite dilution. The present thesis was based only on the parameters for liquid-liquid equilibrium data. However the work can be extended for estimation of interaction parameters that are also applicable for prediction of vapor-liquid equilibrium, heat of mixing and activity coefficient at infinite dilution.

7.2 Simulation of aromatic recovery flowsheet

7.2.1 Tuning

Tuning in the present work was taken up with the use of parameters like boilup ratio, reflux ratio, split ratio, condenser and reboiler duty etc. These are all macro tunings. This exercise can bring down the gap between the plant data and aspen plus simulation results to certain extent. But after this stage it is very difficult to reduce the gap further. Micro tuning using user defined binary interaction parameters can be studied from this stage to further reduce the gap. That is, binary interaction parameters obtained by simultaneous parameter estimation (as suggested in section 7.1.1) should be used as user-defined input instead of the default values existing in aspen plus databank.

7.2.2 Simulation with other solvents

The present simulation of aromatic recovery process is carried out with pure sulfolane and mixed solvents upto 10 percent co-solvent in sulfolane. The same simulation programme can be extended to other pure solvents and mixed solvents covering 0-100 percent co-solvent in sulfolane. We can also search for mixed solvents involving other pairs better than sulfolane.

7.2.3 Optimization

The present simulation flowsheet can be used for optimization. Optimization module needs to be acquired for aspen plus. The objective function can be formulated for total heat requirement with product purities as constraints.

7.2.4 Energy integration

The major part of the utility requirement is in the fractionation section. The benzene and toluene column of fractionation section can be put to heat integration studies for reducing the utility costs. Adjusting the pressure and splitting the column in two parts can reduce the utility requirements in condensers and reboilers. Heat exchanger network analysis can also save a significant part of utility requirement in heat exchangers, reboilers and condensers.

Reference

[1] T. Banerjee, M. K. Singh, R. K. Sahoo, A. Khanna, "Volume, surface, UNIQUAC interaction parameters for imidazolium based ionic liquids via Polarizable Continuum Model", Fluid Phase Equilibria 234 (2005) 64.

Appendix A

Table A.2	NRTL a	nd UNIQU	JAC paran	neters for t	ernary hy	drogen bo	onding sys	stems
System	α		r			q		Reference
No.	u	1	2	3	1	2	3	Reference
1	0.30	0.92	1.43	3.91	1.40	0.96	3.91	[46]
2	0.30	0.92	1.97	3.91	1.40	0.92	3.91	[46]
3	0.30	0.92	2.51	3.91	1.40	0.89	3.91	[46]
4	0.30	0.92	1.43	2.80	1.40	0.96	2.80	[46]
5	0.30	0.92	1.97	2.80	1.40	0.92	2.80	[46]
6	0.30	0.92	2.51	2.80	1.40	0.89	2.80	[46]
7	0.30	0.92	1.43	3.01	1.40	0.96	3.01	[46]
8.	0.30	0.92	1.97	3.01	1.40	0.92	3.01	[46]
9	0.30	0.92	2.51	3.01	1.40	0.89	3.01	[46]
10	0.30	3.17	3.81	4.50	2.48	2.84	3.86	[47]
11	0.30	3.17	4.44	4.50	2.48	3.29	3.86	[47]
12	0.30	3.17	4.44	4.50	2.48	3.29	3.86	[47]
13	0.30	3.17	5.06	4.50	2.48	3.73	3.86	[47]
14	0.30	3.17	3.81	8.55	2.48	2.84	7.10	[47]
15	0.30	3.17	3.81	11.24	2.48	2.84	8.26	[47]
16	0.30	3.17	4.44	11.24	2.48	3.29	8.26	[47]
17	0.30	3.17	4.44	11.24	2.48	3.29	8.26	[47]
18	0.30	3.17	5.06	11.24	2.48	3.73	8.26	[47]
19	0.45	3.84	3.19	4.50	3.27	2.40	3.86	[48]
20	0.45	3.84	3.92	4.50	3.27	2.98	3.86	[48]
21	0.45	3.84	4.66	4.50	3.27	3.54	3.86	[48]
22	0.45	3.84	3.19	8.55	3.27	2.40	7.10	[48]
23	0.45	3.84	3.92	8.55	3.27	2.98	7.10	[48]
24	0.45	3.84	4.66	8.55	3.27	3.54	7.10	[48]
25	0.45	3.84	3.19	11.24	3.27	2.40	8.26	[48]
26	0.45	3.84	3.92	11.24	3.27	2.98	8.26	[48]
27	0.45	3.84	4.66	11.24	3.27	3.54	8.26	[48]
28	0.30	4.50	3.19	4.64	3.86	2.40	3.91	[49]
29	0.30	4.50	3.92	4.64	3.86	2.98	3.91	[49]
30	0.30	4.50	4.66	4.64	3.86	3.54	3.91	[49]
31	0.30	4.50	4.66	4.64	3.86	3.54	3.91	[49]
32	0.30	4.50	4.66	4.64	3.86	3.54	3.91	[49]
33	0.30	4.50	5.39	4.64	3.86	4.10	3.91	[49]
34	0.30	4.50	4.60	4.64	3.86	3.52	3.91	[49]
35	0.30	6.52	3.19	4.64	5.48	2.40	3.91	[49]
36	0.30	8.55	3.19	4.64	7.10	2.40	3.91	[49]
37	0.30	11.24	3.19	4.64	9.26	2.40	3.91	[49]
38	0.43	11.2432	3.1879	2.6908	9.256	2.400	1.904	[50]
39	0.43	11.2432	3.9229	2.6908	9.256	3.816	1.904	[50].
40	0.43	11.2432	3.3395	2.6908	9.256	3.536	1.904	[50]
41	0.43	11.2432	3.3395	2.6908	9.256	3.536	1.904	[50]
								n next page)

42	0.43	11.2432	3.3395	2.6908	9.256	3.536	1.904	[50]
43	0.35	11.2432	5.3929	2.6908	9.256	4.104	1.904	[50]
44	0.35	11.2432	4.5972	2.6908	9.256	3.508	1.904	[50]
45	0.35	9.8945	3.1879	2.6908	8.176	2.400	1.904	[50]
46	0.35	9.8945	3.9229	2.6908	8.176	3.816	1.904	[50]
47	0.35	9.8945	5.3929	2.6908	8.176	4.104	1.904	[50]
48	0.35	9.8945	4.5972	2.6908	8.176	3.508	1.904	[50]
49	0.30	4.06790	2.10547	0.92000	3.632	1.972	1.400	[51]
50	0.30	4.06790	4.80300	0.92000	3.632	4.132	1.400	[51]
51	0.20	2.8306	0.9200	1.4311	2.272	1.400	1.432	[52]
52	0.30	2.8108	0.9200	1.4311	2.440	1.400	1.432	[52]
53	0.30	1.4311	2.9644	0.9200	1.432	2.716	1.400	[53]
54	0.20	8.5462	5.4983	3.9810	7.096	4.356	3.200	[54]
55	0.20	9.8950	5.4983	3.9810	8.176	4.356	3.200	[54]
56	0.20	11.9182	5.4983	3.9810	9.796	4.356	3.200	[54]
57	0.35	5.5825	0.9200	2.1055	5.228	1.400	1.972	[55]
58	0.20	2.5735	3.5857	1.4311	2.336	3.060	1.432	[56]
59	0.20	3.2479	3.5857	2.1055	2.876	3.060	1.972	[56]
60	0.20	3.2479	3.5857	2.7791	2.876	3.060	2.508	[56]
61	0.30	4.0678	2.5755	0.9200	3.632	2.588	1.400	[57]
62	0.30	4.0678	6.6219	0.9200	3.632	5.828	1.400	[57]
63	0.30	6.6219	2.5755	0.9200	5.828	2.588	1.400	[57]

Table A.3 NRTL and UNIQUAC parameters for quaternary hydrogen bonding systems

System		r				q				Reference
No.	α	1	2	3	4	1	2	3	4	Reference
64	0.30	6.6219	4.0678	0.9200	2.5755	5.828	3.632	1.400	2.588	[57]
65	0.30	6.6219	4.7422	0.9200	1.4310	5.828	4.712	1.400	1.432	[58]

For reference please see chapter 2

Appendix B

Figure B.1 Murphree efficiency plot for C203

Figure B.2 Murphree efficiency plot for C204

Figure B.3 Murphree efficiency plot for C205

Figure B.4 Murphree efficiency plot for C207

Figure B.5 Murphree efficiency plot for C208

Figure B.6 User defined convergence block, C-2 input form for extraction aromatic recovery unit

Figure B.7 Convergence order input form for extraction aromatic recovery unit

Appendix C

Appendix C.1 ASPEN PLUS input summary for extractive distillation column

Input Summary created by Aspen Plus Rel. 10.2.1 at 02:53:47 Mon Aug 8, 2005

IN-UNITS MET MASS-FLOW='tonne/day' VOLUME-FLOW='cum/hr' & ENTHALPY-FLO='MMkcal/hr' HEAT-TRANS-C='kcal/hr-sqm-K' & PRESSURE='kg/sqcm' TEMPERATURE=C VOLUME=cum DELTA-T=C & HEAD=meter MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP-PER-HT='mbar/m' PDROP='kg/sqcm'

DEF-STREAMS CONVEN ALL

DESCRIPTION "

General Simulation with English Units: F, psi, lb/hr, lbmol/hr, Btu/hr, cuft/hr.

Property Method: None

Flow basis for input: Mole

Stream report composition: Mole flow "

DATABANKS PURE 10 / AQUEOUS / SOLIDS / INORGANIC / &

NOASPENPCD

PROP-SOURCES PURE 10 / AQUEOUS / SOLIDS / INORGANIC

COMPONENTS

N-PEN-01 C5H12-1/

N-HEX-01 C6H14-1/

2-MET-01 C5H12-2 /

2-MET-02 C6H14-2/

CIS-2-01 C6H12-4/

METHY-01 C6H12-2/

BENZE-01 C6H6/

TOLUE-01 C7H8/

O-XYL-01 C8H10-1/

SULFO-01 C4H8O2S /

WATER H2O

FLOWSHEET

BLOCK FLASH IN=FEED OUT=V L

BLOCK EDC IN=L V REFLUX SOLVENT OUT=TOP BOTTOM

BLOCK PUMP IN=1 OUT=2

BLOCK SPLIT IN=2 OUT=REFLUX NONARMTS

BLOCK HEX IN=TOP CWI OUT=1 CWO

PROPERTIES RK-SOAVE

PROPERTIES NRTL-2

PROP-DATA RKSKIJ-1

IN-UNITS ENG

PROP-LIST RKSKIJ

BPVAL N-PEN-01 2-MET-01 0.0

BPVAL N-PEN-01 BENZE-01 .0222000000

BPVAL 2-MET-01 N-PEN-01 0.0

BPVAL N-HEX-01 BENZE-01 .0141000000

BPVAL BENZE-01 N-PEN-01 .0222000000

PROP-DATA NRTL-2

- IN-UNITS MET MASS-FLOW='tonne/day' VOLUME-FLOW='cum/hr' & ENTHALPY-FLO='MMkcal/hr' HEAT-TRANS-C='kcal/hr-sqm-K' & PRESSURE='kg/sqcm' TEMPERATURE=C VOLUME=cum DELTA-T=C & HEAD=meter MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP-PER-HT='mbar/m' PDROP='kg/sqcm' PROP-LIST NRTL 2
- BPVAL N-PEN-01 N-HEX-01 0.0 188.9527000 .3000000000 0.0 & 0.0 0.0 25.00000000 68.20000000
- BPVAL N-HEX-01 N-PEN-01 0.0 -180.4249000 .3000000000 0.0 & 0.0 0.0 25.00000000 68.20000000
- BPVAL N-PEN-01 METHY-01 0.0 98.90430000 .3000000000 0.0 & 0.0 0.0 36.05000000 71.80000000
- BPVAL METHY-01 N-PEN-01 0.0 -73.47240000 .3000000000 0.0 & 0.0 0.0 36.05000000 71.80000000
- BPVAL N-PEN-01 BENZE-01 0.0 2.125100000 .3000000000 0.0 & 0.0 0.0 35.00000000 40.00000000
- BPVAL BENZE-01 N-PEN-01 0.0 199.0059000 .3000000000 0.0 & 0.0 0.0 35.00000000 40.00000000
- BPVAL N-PEN-01 TOLUE-01 0.0 592.6941000 .3000000000 0.0 & 0.0 0.0 36.03000000 110.5600000
- BPVAL TOLUE-01 N-PEN-01 0.0 -222.3469000 .3000000000 0.0 & 0.0 0.0 36.03000000 110.5600000
- BPVAL N-PEN-01 WATER -10.68920000 5051.727500 .2000000000 & 0.0 0.0 0.0 30.00000000
- BPVAL WATER N-PEN-01 12.38660000 -791.7913000 .2000000000 & 0.0 0.0 0.0 30.00000000
- BPVAL N-HEX-01 2-MET-01 0.0 -57.69500000 .3000000000 0.0 &

- 0.0 0.0 27,77000000 68.60000000
- BPVAL 2-MET-01 N-HEX-01 0.0 52.83600000 .3000000000 0.0 & 0.0 0.0 27.77000000 68.60000000
- BPVAL N-HEX-01 2-MET-02 0.0 -199.6220000 .3000000000 0.0 & 0.0 0.0 10.00000000 40.00000000
- BPVAL 2-MET-02 N-HEX-01 0.0 261.1496000 .3000000000 0.0 & 0.0 0.0 10.00000000 40.00000000
- BPVAL N-HEX-01 METHY-01 0.0 -153.9573000 .3000000000 0.0 & 0.0 0.0 31.68000000 71.85000000
- BPVAL METHY-01 N-HEX-01 0.0 190.1605000 .3000000000 0.0 & 0.0 0.0 31.68000000 71.85000000
- BPVAL N-HEX-01 BENZE-01 .4066000000 -213.7349000 .3000000000 & 0.0 0.0 25.00000000 79.60000000
- BPVAL BENZE-01 N-HEX-01 -1.554000000 797.5720000 .3000000000 & 0.0 0.0 0.0 25.000000000 79.60000000
- BPVAL N-HEX-01 TOLUE-01 1.518200000 -595.6702000 .3000000000 & 0.0 0.0 24.80000000 110.6500000
- BPVAL TOLUE-01 N-HEX-01 -2.948300000 1259.245800 .3000000000 & 0.0 0.0 0.0 24.80000000 110.6500000
- BPVAL N-HEX-01 WATER -9.827300000 4815.058600 .20000000000 & 0.0 0.0 0.0 55.00000000
- BPVAL WATER N-HEX-01 7.649700000 962.7409000 .2000000000 & 0.0 0.0 0.0 55.00000000
- BPVAL 2-MET-01 TOLUE-01 -16.13200000 5828.759300 .3000000000 & 0.0 0.0 0.0 27.90000000 110.7000000
- BPVAL TOLUE-01 2-MET-01 9.727800000 -3434.109100 .3000000000 & 0.0 0.0 0.0 27.90000000 110.7000000
- BPVAL 2-MET-01 WATER -7.640300000 4148.017100 .2000000000 & 0.0 0.0 0.0 0.0 25.00000000
- BPVAL WATER 2-MET-01 12.67300000 -934.1636000 .2000000000 & 0.0 0.0 0.0 0.0 25,00000000

- BPVAL 2-MET-02 BENZE-01 0.0 -3.466500000 .3000000000 0.0 & 0.0 0.0 10.000000000 50.000000000
- BPVAL BENZE-01 2-MET-02 0.0 239.1201000 .3000000000 0.0 & 0.0 0.0 10.00000000 50.00000000
- BPVAL 2-MET-02 WATER -5.412000000 3565.592300 .2000000000 & 0.0 0.0 0.0 25.000000000
- BPVAL WATER 2-MET-02 12.88480000 -577.0172000 .2000000000 & 0.0 0.0 0.0 0.0 25.00000000
- BPVAL METHY-01 BENZE-01 0.0 -7.786200000 .3000000000 0.0 & 0.0 0.0 55.00000000 80.15000000
- BPVAL BENZE-01 METHY-01 0.0 151.2524000 .3000000000 0.0 & 0.0 0.0 55.00000000 80.15000000
- BPVAL METHY-01 TOLUE-01 0.0 345.8701000 .3000000000 0.0 & 0.0 0.0 71.80000000 110.6500000
- BPVAL TOLUE-01 METHY-01 0.0 -186.4291000 .3000000000 0.0 & 0.0 0.0 71.80000000 110.6500000
- BPVAL METHY-01 WATER -8.947000000 4405.205600 .2000000000 & 0.0 0.0 10.00000000 30.00000000
- BPVAL WATER METHY-01 8.807000000 296.7077000 .2000000000 & 0.0 0.0 10.00000000 30.00000000
- BPVAL BENZE-01 TOLUE-01 -2.885200000 1123.950100 .3000000000 & 0.0 0.0 40.00000000 110.7500000
- BPVAL TOLUE-01 BENZE-01 2.191100000 -863.7308000 .3000000000 & 0.0 0.0 40.00000000 110.7500000
- BPVAL BENZE-01 SULFO-01 0.0 498.8326000 .3000000000 0.0 & 0.0 0.0 30.00000000 139.5000000
- BPVAL SULFO-01 BENZE-01 0.0 -50.44760000 .3000000000 0.0 & 0.0 0.0 30.00000000 139.5000000
- BPVAL BENZE-01 WATER 45.19050000 591.3676000 .2000000000 & 0.0 -7.562900000 0.0 .8000000000 77.00000000
- BPVAL WATER BENZE-01 140.0874000 -5954.307100 .2000000000 &

- $0.0 \ \hbox{-} 20.02540000 \ 0.0 \ .80000000000 \ 77.00000000$
- BPVAL TOLUE-01 SULFO-01 1.398400000 71.40790000 .3000000000 & 0.0 0.0 0.0 30.00000000 166.0000000
- BPVAL SULFO-01 TOLUE-01 -.3310000000 223.1410000 .3000000000 & 0.0 0.0 0.0 30.00000000 166.0000000
- BPVAL TOLUE-01 WATER -247.8792000 14759.75980 .2000000000 & 0.0 35.58200000 0.0 -9.000000000 93.00000000
- BPVAL WATER TOLUE-01 627.0528000 -27269.35550 .2000000000 & 0.0 -92.71820000 0.0 -9.0000000000 93.00000000
- BPVAL O-XYL-01 WATER -5.627500000 2996.678700 .2000000000 & 0.0 0.0 0.0 25.00000000
- BPVAL WATER O-XYL-01 4.238800000 1246.887600 .2000000000 & 0.0 0.0 0.0 25.000000000
- BPVAL O-XYL-01 SULFO-01 0.0 692.5672000 .3000000000 0.0 & 0.0 0.0 60.00000000 60.00000000
- BPVAL SULFO-01 O-XYL-01 0.0 94.18210000 .3000000000 0.0 & 0.0 0.0 60.00000000 60.00000000
- BPVAL SULFO-01 WATER 0.0 333.4163000 .6000000000 0.0 0.0 & 0.0 15.00000000 50.00000000
- BPVAL WATER SULFO-01 0.0 432.7332000 .6000000000 0.0 0.0 & 0.0 15.00000000 50.00000000

PROP-SET VLLE

IN-UNITS ENG

PROPNAME-LIS PHIMX GAMMA PL SUBSTREAM=MIXED PHASE=V L1 L2; "Fugacity, activity, and vapor pressure"

STREAM CWI

SUBSTREAM MIXED TEMP=26. PRES=1. <atm> MASS-FLOW=5020. MASS-FRAC WATER 1.

STREAM FEED

IN-UNITS ENG

SUBSTREAM MIXED TEMP=60. <C> PRES=7. <bar>
MASS-FLOW N-PEN-01 29.72 <tonne/day> / N-HEX-01 &

54.92 <tonne/day> / 2-MET-01 25.82 <tonne/day> / &

2-MET-02 130.18 <tonne/day> / CIS-2-01 6.79 <tonne/day> &

/METHY-01 13.49 <tonne/day> / BENZE-01 &

299.97 <tonne/day> / TOLUE-01 85.82 <tonne/day> / &

O-XYL-01 3.29 <tonne/day>

STREAM REFLUX

SUBSTREAM MIXED TEMP=55.1789128 PRES=1.96133

MASS-FLOW N-PEN-01 143.228916 / N-HEX-01 264.674696 / &

2-MET-01 124.433735 / 2-MET-02 627.373494 / CIS-2-01 &

32.7227966 / METHY-01 28.4267209 / BENZE-01 0.67173207 &

/ TOLUE-01 3.8681E-007 / O-XYL-01 1.226E-012 / &

SULFO-01 1.2466E-008 / WATER 0.

STREAM SOLVENT

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSÜRE='kg/sqcm' & TEMPERATURE=C VOLUME=cum DELTA-T=C HEAD=meter & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP-PER-HT='mbar/m' PDROP='kg/sqcm' SUBSTREAM MIXED TEMP=40. PRES=2.

MASS-FLOW SULFO-01 1275. <tonne/day>

BLOCK SPLIT FSPLIT FRAC REFLUX 0.82815735

BLOCK FLASH FLASH2

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE='kg/sqcm' & TEMPERATURE=C VOLUME=cum DELTA-T=C HEAD=meter & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP-PER-HT='mbar/m' PDROP='kg/sqcm' PARAM PRES=2. VFRAC=0.2

BLOCK HEX HEATX
PARAM VFRAC-HOT=0.
FEEDS HOT=TOP COLD=CWI
PRODUCTS HOT=1 COLD=CWO

BLOCK EDC RADFRAC

IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE='kg/sqcm' & TEMPERATURE=C VOLUME=cum DELTA-T=C HEAD=meter & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP-PER-HT='mbar/m' PDROP='kg/sqcm' PARAM NSTAGE=60 EFF=MURPHREE ABSORBER=NO NPHASE=3 COL-CONFIG CONDENSER=PARTIAL-V REBOILER=THERMOSYPHON PROP-SECTION 1 60 RK-SOAVE PHASE-EQM=VL1 / 4 19 NRTL-2 & PHASE-EQM=LL

FEEDS L 20 / V 33 / REFLUX 2 / SOLVENT 4

PRODUCTS TOP 1 V / BOTTOM 60 L

P-SPEC 1 1.4

COL-SPECS QN=20. DP-COL=0.5 MASS-D=1600. <tonne/day>

THERMOSYPHON PRES=1.9 TEMP=162.

COMP-EFF 1 N-PEN-01 1. / 1 N-HEX-01 1. / 1 2-MET-01 &

1./12-MET-021./1CIS-2-011./1METHY-01 &

1./1 BENZE-01 1./1 TOLUE-01 1./1 O-XYL-01 &

1./1 SULFO-01 1./2 N-PEN-01 0.6656/2 & N-HEX-01 0.6588 / 2 2-MET-01 0.6474 / 2 2-MET-02 & 0.6589 / 2 CIS-2-01 0.6702 / 2 METHY-01 0.7588 / 2 & BENZE-01 0.6337 / 2 TOLUE-01 0.7104 / 2 O-XYI -01 & 0.7096 / 2 SULFO-01 0.7149 / 3 N-PEN-01 0.6614 / 3 & N-HEX-01 0.6526 / 3 2-MET-01 0.6437 / 3 2-MET-02 & 0.6584 / 3 CIS-2-01 0.6659 / 3 METHY-01 0.7134 / 3 & BENZE-01 1./3 TOLUE-01 0.7134/3 O-XYL-01 0.7129 & /3 SULFO-01 0.7183 /4 N-PEN-01 0.655 /4 & N-HEX-01 0.6932 / 4 2-MET-01 0.6351 / 4 2-MET-02 & 0.6196 / 4 CIS-2-01 0.6659 / 4 METHY-01 0.7472 / 4 & BENZE-01 0.7197 / 4 TOLUE-01 0.7254 / 4 O-XYL-01 & 0.7251 / 4 SULFO-01 0.8408 / 5 N-PEN-01 0.6535 / 5 & N-HEX-01 0.6859 / 5 2-MET-01 0.6283 / 5 2-MET-02 & 0.5995 / 5 CIS-2-01 0.6649 / 5 METHY-01 0.6796 / 5 & BENZE-01 0.7342 / 5 TOLUE-01-0.7477 / 5 O-XYL-01 & 0.7493 / 5 SULFO-01 0.6779 / 6 N-PEN-01 0.6515 / 6 & N-HEX-01 0.6913 / 6 2-MET-01 0.6262 / 6 2-MET-02 & 0.4032 / 6 CIS-2-01 0.6626 / 6 METHY-01 0.682 / 6 & BENZE-01 0.7364 / 6 TOLUE-01 0.7495 / 6 O-XYL-01 & 0.7513 / 6 SULFO-01 0.6591 / 7 N-PEN-01 0.6505 / 7 & N-HEX-01 0.6959 / 7 2-MET-01 0.6257 / 7 2-MET-02 & 0.8246 / 7 CIS-2-01 0.6614 / 7 METHY-01 0.6897 / 7 & BENZE-01 0.7373 / 7 TOLUE-01 0.7499 / 7 O-XYL-01 & 0.7517 / 7 SULFO-01 0.6586 / 8 N-PEN-01 0.6501 / 8 & N-HEX-01 0.6987 / 8 2-MET-01 0.626 / 8 2-MET-02 & 0.7376 / 8 CIS-2-01 0.6609 / 8 METHY-01 0.6959 / 8 & BENZE-01 0.7376 / 8 TOLUE-01 0.7501 / 8 O-XYL-01 & 0.7519 / 8 SULFO-01 0.6586 / 9 N-PEN-01 0.6503 / 9 & N-HEX-01 0.7001 / 9 2-MET-01 0.6274 / 9 2-MET-02 & 0.7186 / 9 CIS-2-01 0.6609 / 9 METHY-01 0.6997 / 9 &

BENZE-01 0.7377 / 9 TOLUE-01 0.7501 / 9 O-XYL-01 & 0.7519 / 9 SULFO-01 0.6558 / 10 N-PEN-01 0.6513 / & 10 N-HEX-01 0.7004 / 10 2-MET-01 0.6307 / 10 & 2-MET-02 0.7115 / 10 CIS-2-01 0.6617 / 10 METHY-01 & 0.7016 / 10 BENZE-01 0.7376 / 10 TOLUE-01 0.75 / & 10 O-XYL-01 0.7519 / 10 SULFO-01 0.648 / 11 & N-PEN-01 0.6537 / 11 N-HEX-01 0.7001 / 11 2-MET-01 & 0.6374 / 11 2-MET-02 0.7085 / 11 CIS-2-01 0.6635 / & 11 METHY-01 0.7019 / 11 BENZE-01 0.7374 / 11 & TOLUE-01 0.7499 / 11 O-XYL-01 0.7518 / 11 SULFO-01 & 0.6328 / 12 N-PEN-01 0.6584 / 12 N-HEX-01 0.699 / & 12 2-MET-01 0.6498 / 12 2-MET-02 0.7071 / 12 & CIS-2-01 0.6672 / 12 METHY-01 0.7009 / 12 BENZE-01 & 0.7371 / 12 TOLUE-01 0.7497 / 12 O-XYL-01 0.7516 / & 12 SULFO-01 0.6054 / 13 N-PEN-01 0.6667 / 13 & N-HEX-01 0.6973 / 13 2-MET-01 0.6691 / 13 2-MET-02 & 0.7067 / 13 CIS-2-01 0.6738 / 13 METHY-01 0.6988 / & 13 BENZE-01 0.7367 / 13 TOLUE-01 0.7494 / 13 & O-XYL-01 0.7514 / 13 SULFO-01 0.5536 / 14 N-PEN-01 & 0.6796 / 14 N-HEX-01 0.6946 / 14 2-MET-01 0.6932 / & 14 2-MET-02 0.7068 / 14 CIS-2-01 0.6845 / 14 & METHY-01 0.6952 / 14 BENZE-01 0.7361 / 14 TOLUE-01 & 0.749 / 14 O-XYL-01 0.7511 / 14 SULFO-01 0.4373 / & 15 N-PEN-01 0.6966 / 15 N-HEX-01 0.6901 / 15 & 2-MET-01 0.7167 / 15 2-MET-02 0.7073 / 15 CIS-2-01 & 0.6999 / 15 METHY-01 0.6891 / 15 BENZE-01 0.7354 / & 15 TOLUE-01 0.7485 / 15 O-XYL-01 0.7506 / 15 & SULFO-01 0.0242 / 16 N-PEN-01 0.7152 / 16 N-HEX-01 & 0.6823 / 16 2-MET-01 0.736 / 16 2-MET-02 0.7079 / & 16 CIS-2-01 0.7194 / 16 METHY-01 0.6784 / 16 & BENZE-01 0.7343 / 16 TOLUE-01 0.7478 / 16 O-XYL-01 &

0.75 / 16 SULFO-01 1. / 17 N-PEN-01 0.7322 / 17 & N-HEX-01 0.6661 / 17 2-MET-01 0.7508 / 17 2-MET-02 & 0.7086 / 17 CIS-2-01 0.7407 / 17 METHY-01 0.6558 / & 17 BENZE-01 0.7328 / 17 TOLUE-01 0.7467 / 17 & · O-XYL-01 0.7491 / 17 SULFO-01 1. / 18 N-PEN-01 & 0.7457 / 18 N-HEX-01 0.6136 / 18 2-MET-01 0.7622 / & 18 2-MET-02 0.7093 / 18 CIS-2-01 0.7603 / 18 & METHY-01 0.5833 / 18 BENZE-01 0.7306 / 18 TOLUE-01 & 0.7453 / 18 O-XYL-01 0.7478 / 18 SULFO-01 1. / 19 & N-PEN-01 0.949 / 19 N-HEX-01 0.7912 / 19 2-MET-01 & 0.977 / 19 2-MET-02 0.6821 / 19 CIS-2-01 0.96 / 19 & METHY-01 0.4745 / 19 BENZE-01 0.6949 / 19 TOLUE-01 & 0.7103 / 19 O-XYL-01 0.7127 / 19 SULFO-01 0.8753 / & 20 N-PEN-01 0.6547 / 20 N-HEX-01 0.6975 / 20 & 2-MET-01 0.6278 / 20 2-MET-02 0.7346 / 20 CIS-2-01 & 0.6655 / 20 METHY-01 0.6897 / 20 BENZE-01 0.6926 / & 20 TOLUE-01 0.6775 / 20 O-XYL-01 0.6685 / 20 & SULFO-01 0.6579 / 21 N-PEN-01 0.6536 / 21 N-HEX-01 & 0.7002 / 21 2-MET-01 0.627 / 21 2-MET-02 0.7183 / & 21 CIS-2-01 0.6642 / 21 METHY-01 0.6949 / 21 & BENZE-01 0.6989 / 21 TOLUE-01 0.682 / 21 O-XYL-01 & 0.6724 / 21 SULFO-01 0.6587 / 22 N-PEN-01 0.6536 / & 22 N-HEX-01 0.7018 / 22 2-MET-01 0.6275 / 22 & 2-MET-02 0.7115 / 22 CIS-2-01 0.6638 / 22 METHY-01 & 0.6986 / 22 BENZE-01 0.7045 / 22 TOLUE-01 0.6866 / & 22 O-XYL-01 0.6767 / 22 SULFO-01 0.6603 / 23 & N-PEN-01 0.6538 / 23 N-HEX-01 0.7022 / 23 2-MET-01 & 0.6284 / 23 2-MET-02 0.7078 / 23 CIS-2-01 0.6633 / & 23 METHY-01 0.7003 / 23 BENZE-01 0.7084 / 23 & TOLUE-01 0.6893 / 23 O-XYL-01 0.679 / 23 SULFO-01 & 0.6602 / 24 N-PEN-01 0.6549 / 24 N-HEX-01 0.702 / &

24 2-MET-01 0.631 / 24 2-MET-02 0.7055 / 24 & CIS-2-01 0.6632 / 24 METHY-01 0.7008 / 24 BENZE-01 & 0.7115 / 24 TOLUE-01 0.6908 / 24 O-XYL-01 0.68 / & 24 SULFO-01 0.6585 / 25 N-PEN-01 0.6571 / 25 & N-HEX-01 0.7012 / 25 2-MET-01 0.6363 / 25 2-MET-02 & 0.7039 / 25 CIS-2-01 0.6635 / 25 METHY-01 0.7004 / & 25 BENZE-01 0.7143 / 25 TOLUE-01 0.6919 / 25 & O-XYL-01 0.68 / 25 SULFO-01 0.655 / 26 N-PEN-01 & 0.6609 / 26 N-HEX-01 0.7002 / 26 2-MET-01 0.6456 / & 26 2-MET-02 0.7027 / 26 CIS-2-01 0.6644 / 26 & METHY-01 0.6994 / 26 BENZE-01 0.7171 / 26 TOLUE-01 & 0.694 / 26 O-XYL-0! 0.6799 / 26 SULFO-01 0.6493 / & 27 N-PEN-01 0.6668 / 27 N-HEX-01 0.6987 / 27 & 2-MET-01 0.6592 / 27 2-MET-02 0.7017 / 27 CIS-2-01 & 0.6661 / 27 METHY-01 0.6975 / 27 BENZE-01 0.72 / & 27 TOLUE-01 0.6986 / 27 O-XYL-01 0.6812 / 27 & SULFO-01 0.6401 / 28 N-PEN-01 0.6749 / 28 N-HEX-01 & 0.6966 / 28 2-MET-01 0.6754 / 28 2-MET-02 0.7008 / & 28 CIS-2-01 0.6692 / 28 METHY-01 0.6946 / 28 & BENZE-01 0.723 / 28 TOLUE-01 0.7077 / 28 O-XYL-01 & 0.6876 / 28 SULFO-01 0.6252 / 29 N-PEN-01 0.6846 / & 29 N-HEX-01 0.6936 / 29 2-MET-01 0.6909 / 29 & 2-MET-02 0.7 / 29 CIS-2-01 0.674 / 29 METHY-01 & 0.6898 / 29 BENZE-01 0.7257 / 29 TOLUE-01 0.7206 / & 29 O-XYL-01 0.704 / 29 SULFO-01 0.5982 / 30 & N-PEN-01 0.6947 / 30 N-HEX-01 0.6889 / 30 2-MET-01 & 0.703 / 30 2-MET-02 0.6994 / 30 CIS-2-01 0.6811 / & 30 METHY-01 0.6811/30 BENZE-01 0.7279/30 & TOLUE-01 0.7335 / 30 O-XYL-01 0.7269 / 30 SULFO-01 & 0.532 / 31 N-PEN-01 0.7038 / 31 N-HEX-01 0.6803 / & 31 2-MET-01 0.7101 / 31 2-MET-02 0.6988 / 31 &

CIS-2-01 0.6904 / 31 METHY-01 0.6619 / 31 BENZE-01 & 0.7292 / 31 TOLUE-01 0.7425 / 31 O-XYL-01 0.744 / & 31 SULFO-01 0.0001 / 32 N-PEN-01 0.995 / 32 & N-HEX-01 0.8707 / 32 2-MET-01 0.9978 / 32 2-MET-02 & 0.6982 / 32 CIS-2-01 0.9908 / 32 METHY-01 0.8872 / & 32 BENZE-01 0.0001 / 32 TOLUE-01 0.0001 / 32 & O-XYL-01 0.0001 / 32 SULFO-01 1. / 33 N-PEN-01 & 0.6447 / 33 N-HEX-01 0.6896 / 33 2-MET-01 0.6177 / & 33 2-MET-02 0.6989 / 33 CIS-2-01 0.6574 / 33 & METHY-01 0.6864 / 33 BENZE-01 0.686 / 33 TOLUE-01 & 0.6728 / 33 O-XYL-01 0.6638 / 33 SULFO-01 0.6489 / & 34 N-PEN-01 0.6436 / 34 N-HEX-01 0.6909 / 34 & 2-MET-01 0.6167 / 34 2-MET-02 0.6963 / 34 CIS-2-01 & 0.6564 / 34 METHY-01 0.6895 / 34 BENZE-01 0.6888 / & 34 TOLUE-01 0.6756 / 34 O-XYL-01 0.6665 / 34 & SULFO-01 0.6501 / 35 N-PEN-01 0.6428 / 35 N-HEX-01 & 0.6914 / 35 2-MET-01 0.6158 / 35 2-MET-02 0.6946 / & 35 CIS-2-01 0.6556 / 35 METHY-01 0.6915 / 35 & BENZE-01 0.6904 / 35 TOLUE-01 0.6773 / 35 O-XYL-01 & 0.6682 / 35 SULFO-01 0.6507 / 36 N-PEN-01 0.6421 / & 36 N-HEX-01 0.6914 / 36 2-MET-01 0.6151 / 36 & 2-MET-02 0.6933 / 36 CIS-2-01 0.6549 / 36 METHY-01 & 0.6929 / 36 BENZE-01 0.6911 / 36 TOLUE-01 0.678 / & 36 O-XYL-01 0.669 / 36 SULFO-01 0.6507 / 37 & N-PEN-01 0.6415 / 37 N-HEX-01 0.6911 / 37 2-MET-01 & 0.6145 / 37 2-MET-02 0.6923 / 37 CIS-2-01 0.6543 / & 37 METHY-01 0.6941 / 37 BENZE-01 0.6913 / 37 & TOLUE-01 0.6781 / 37 O-XYL-01 0.6691 / 37 SULFO-01 & 0.6501 / 38 N-PEN-01 0.6409 / 38 N-HEX-01 0.6906 / & 38 2-MET-01 0.6139 / 38 2-MET-02 0.6915 / 38 & CIS-2-01 0.6538 / 38 METHY-01 0.6953 / 38 BENZE-01 &

0.6913 / 38 TOLUE-01 0.6779 / 38 O-XYL-01 0.6689 / & 38 SULFO-01 0.6492 / 39 N-PEN-01 0.6404 / 39 & N-HEX-01 0.69 / 39 2-MET-01 0.6134 / 39 2-MET-02 & 0.6907 / 39 CIS-2-01 0.6533 / 39 METHY-01 0.6968 / & 39 BENZE-01 0.6913 / 39 TOLUE-01 0.6774 / 39 & O-XYL-01 0.6684 / 39 SULFO-01 0.6479 / 40 N-PEN-01 & 0.6399 / 40 N-HEX-01 0.6893 / 40 2-MET-01 0.6129 / & 40 2-MET-02 0.6901 / 40 CIS-2-01 0.6529 / 40 & METHY-01 0.6985 / 40 BENZE-01 0.6915 / 40 TOLUE-01 & . 0.6768 / 40 O-XYL-01 0.6677 / 40 SULFO-01 0.6461 / & 41 N-PEN-01 0.6395 / 41 N-HEX-01 0.6885 / 41 & 2-MET-01 0.6124 / 41 2-MET-02 0.6895 / 41 CIS-2-01 & 0.6525 / 41 METHY-01 0.7004 / 41 BENZE-01 0.692 / & 41 TOLUE-01 0.6761 / 41 O-XYL-01 0.6669 / 41 & SULFO-01 0.6438 / 42 N-PEN-01 0.6391 / 42 N-HEX-01 & 0.6876 / 42 2-MET-01 0.612 / 42 2-MET-02 0.689 / & 42 CIS-2-01 0.6521 / 42 METHY-01 0.7026 / 42 & BENZE-01 0.6932 / 42 TOLUE-01 0.6753 / 42 O-XYL-01 & 0.666 / 42 SULFO-01 0.6407 / 43 N-PEN-01 0.6388 / & 43 N-HEX-01 0.6865 / 43 2-MET-01 0.6117 / 43 & 2-MET-02 0.6885 / 43 CIS-2-01 0.6518 / 43 METHY-01 & 0.7048 / 43 BENZE-01 0.6952 / 43 TOLUE-01 0.6745 / & 43 O-XYL-01 0.6649 / 43 SULFO-01 0.636 / 44 & N-PEN-01 0.6385 / 44 N-HEX-01 0.685 / 44 2-MET-01 & 0.6113 / 44 2-MET-02 0.6881 / 44 CIS-2-01 0.6515 / & 44 METHY-01 0.707 / 44 BENZE-01 0.6983 / 44 & TOLUE-01 0.6736 / 44 O-XYL-01 0.6635 / 44 SULFO-01 & 0.629 / 45 N-PEN-01 0.6382 / 45 N-HEX-01 0.6828 / & 45 2-MET-01 0.611 / 45 2-MET-02 0.6878 / 45 & CIS-2-01 0.6512 / 45 METHY-01 0.709 / 45 BENZE-01 & 0.7025 / 45 TOLUE-01 0.6727 / 45 O-XYL-01 0.6617 / &

45 SULFO-01 0.6178 / 46 N-PEN-01 0.6379 / 46 & N-HEX-01 0.6793 / 46 2-MET-01 0.6107 / 46 2-MET-02 & 0.6874 / 46 CIS-2-01 0.651 / 46 METHY-01 0.7107 / & 46 BENZE-01 0.7075 / 46 TOLUE-01 0.6718 / 46 & O-XYL-01 0.6593 / 46 SULFO-01 0.5988 / 47 N-PEN-01 & 0.6376 / 47 N-HEX-01 0.6731 / 47 2-MET-01 0.6104 / & 47 2-MET-02 0.6871 / 47 CIS-2-01 0.6507 / 47 & METHY-01 0.712 / 47 BENZE-01 0.713 / 47 TOLUE-01 & 0.6715 / 47 O-XYL-01 0.6562 / 47 SULFO-01 0.5634 / & 48 N-PEN-01 0.6373 / 48 N-HEX-01 0.6604 / 48 & 2-MET-01 0.6101 / 48 2-MET-02 0.6868 / 48 CIS-2-01 & 0.6504 / 48 METHY-01 0.7129 / 48 BENZE-01 0.7181 / & 48 TOLUE-01 0.6725 / 48 O-XYL-01 0.6525 / 48 & SULFO-01 0.486 / 49 N-PEN-01 0.637 / 49 N-HEX-01 & 0.6225 / 49 2-MET-01 0.6098 / 49 2-MET-02 0.6866 / & 49 CIS-2-01 0.6502 / 49 METHY-01 0.7135 / 49 & BENZE-01 0.7223 / 49 TOLUE-01 0.6766 / 49 O-XYL-01 & 0.6484 / 49 SULFO-01 0.241 / 50 N-PEN-01 0.6367 / & 50 N-HEX-01 0.0001 / 50 2-MET-01 0.6094 / 50 & 2-MET-02 0.6864 / 50 CIS-2-01 0.6499 / 50 METHY-01 & 0.7137 / 50 BENZE-01 0.7256 / 50 TOLUE-01 0.6856 / & 50 O-XYL-01 0.6458 / 50 SULFO-01 0.0001 / 51 & N-PEN-01 0.6363 / 51 N-HEX-01 0.8092 / 51 2-MET-01 & 0.609 / 51 2-MET-02 0.6861 / 51 CIS-2-01 0.6496 / & 51 METHY-01 0.7135 / 51 BENZE-01 0.7278 / 51 & TOLUE-01 0.6991 / 51 O-XYL-01 0.6481 / 51 SULFO-01 & 1. / 52 N-PEN-01 0.6358 / 52 N-HEX-01 0.7568 / 52 & 2-MET-01 0.6085 / 52 2-MET-02 0.6859 / 52 CIS-2-01 & 0.6492 / 52 METHY-01 0.7129 / 52 BENZE-01 0.7292 / & 52 TOLUE-01 0.7139 / 52 O-XYL-01 0.6604 / 52 & SULFO-01 1. / 53 N-PEN-01 0.6353 / 53 N-HEX-01 &

0.7414 / 53 2-МЕТ-01 0.6078 / 53 2-МЕТ-02 0.6856 / & 53 CIS-2-01 0.6487 / 53 METHY-01 0.7118 / 53 & BENZE-01 0.7298 / 53 TOLUE-01 0.7266 / 53 O-XYL-01 & 0.6837 / 53 SULFO-01 1. / 54 N-PEN-01 0.6345 / 54 & N-HEX-01 0.7344 / 54 2-MET-01 0.6069 / 54 2-MET-02 & 0.6853 / 54 CIS-2-01 0.648 / 54 METHY-01 0.7101 / & 54 BENZE-01 0.7297 / 54 TOLUE-01 0.7355 / 54 & O-XYL-01 0.71 / 54 SULFO-01 1, / 55 N-PEN-01 0.6334 & /55 N-HEX-01 0.7303 / 55 2-MET-01 0.6056 / 55 & 2-MET-02 0.6849 / 55 CIS-2-01 0.6472 / 55 METHY-01 & 0.7074 / 55 BENZE-01 0.729 / 55 TOLUE-01 0.7409 / & 55 O-XYL-01 0.73 / 55 SULFO-01 1. / 56 N-PEN-01 & 0.6318 / 56 N-HEX-01 0.7274 / 56 2-MET-01 0.6038 / & 56 2-MET-02 0.6842 / 56 CIS-2-01 0.6459 / 56 & METHY-01 0.7031 / 56 BENZE-01 0.7275 / 56 TOLUE-01 & 0.7438 / 56 O-XYL-01 0.7414 / 56 SULFO-01 0.5339 / & 57 N-PEN-01 0.6295 / 57 N-HEX-01 0.7246 / 57 & 2-MET-01 0.6011 / 57 2-MET-02 0.6831 / 57 CIS-2-01 & 0.644 / 57 METHY-01 0.696 / 57 BENZE-01 0.7249 / & 57 TOLUE-01 0.7448 / 57 O-XYL-01 0.7466 / 57 & SULFO-01 0.7064 / 58 N-PEN-01 0.6258 / 58 N-HEX-01 & 0.7213 / 58 2-MET-01 0.5967 / 58 2-MET-02 0.6812 / & 58 CIS-2-01 0.641 / 58 METHY-01 0.6823 / 58 & BENZE-01 0.7204 / 58 TOLUE-01 0.7443 / 58 O-XYL-01 & 0.7482 / 58 SULFO-01 0.7384 / 59 N-PEN-01 0.6193 / & 59 N-HEX-01 0.7168 / 59 2-MET-01 0.589 / 59 & 2-MET-02 0.6776 / 59 CIS-2-01 0.6359 / 59 METHY-01 & 0.6468 / 59 BENZE-01 0.7127 / 59 TOLUE-01 0.7428 / & 59 O-XYL-01 0.7483 / 59 SULFO-01 0.7484 / 60 & N-PEN-01 1. / 60 N-HEX-01 1. / 60 2-MET-01 1. / & 60 2-MET-02 1. / 60 CIS-2-01 1. / 60 METHY-01 1. / &

60 BENZE-01 1. / 60 TOLUE-01 1. / 60 O-XYL-01 1. / & 60 SULFO-01 1.

L2-COMPS N-HEX-01 2-MET-01 2-MET-02 CIS-2-01 METHY-01 WATER & N-PEN-01

L2-STAGES 2 59

TRAY-REPORT PROPERTIES=VLLE

TRAY-SIZE 1 2 3 SIEVE TRAY-SPACE=0.8 <meter> & MIN-DCAREA=0.12

TRAY-SIZE 2 4 19 SIEVE TRAY-SPACE=0.8 <meter> & MIN-DCAREA=0.12

TRAY-SIZE 3 20 32 SIEVE TRAY-SPACE=0.8 <meter> & MIN-DCAREA=0.12

TRAY-SIZE 4 33 59 SIEVE TRAY-SPACE=0.8 <meter> & MIN-DCAREA=0.12

TRAY-RATE 1 2 3 SIEVE TRAY-SPACE=0.8 <meter> &
DIAM=5.3 <meter> EFF=0.6984 DC-CLEAR-SID=0.0381 <meter> &
HOLE-DIAM=0.012 <meter> P-UPDATE=NO

TRAY-RATE 2 4 19 SIEVE TRAY-SPACE=0.8 <meter> &
DIAM=5.3 <meter> EFF=0.7038 DC-CLEAR-SID=0.0381 <meter> &
HOLE-DIAM=0.012 <meter> P-UPDATE=NO

TRAY-RATE 3 20 32 SIEVE TRAY-SPACE=0.8 <meter> &
DIAM=5.3 <meter> EFF=0.6751 DC-CLEAR-SID=0.0381 <meter> &
HOLE-DIAM=0.012 <meter> P-UPDATE=NO

TRAY-RATE 4 33 59 SIEVE TRAY-SPACE=0.8 <meter> &
DIAM=5.3 <meter> EFF=0.671 DC-CLEAR-SID=0.0381 <meter> &
HOLE-DIAM=0.012 <meter> P-UPDATE=NO
BLOCK-OPTION FREE-WATER=NO

BLOCK PUMP PUMP PARAM PRES=2.

OPTIMIZATION 0-1

- DEFINE NPF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=N-PEN-01
- DEFINE NHF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=N-HEX-01
- DEFINE MB2F MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=2-MET-01
- DEFINE MP2F MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=2-MET-02
- DEFINE C2HF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=CIS-2-01
- DEFINE MCPF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=METHY-01
- DEFINE BZF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=BENZE-01
- DEFINE TOLF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=TOLUE-01
- DEFINE OXF MASS-FLOW STREAM=FEED SUBSTREAM=MIXED & COMPONENT=O-XYL-01
- DEFINE TMSF MASS-FLOW STREAM=SOLVENT SUBSTREAM=MIXED & COMPONENT=SULFO-01
- DEFINE NPN MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=N-PEN-01
- DEFINE NHN MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=N-HEX-01
- DEFINE MB2N MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=2-MET-01
- DEFINE MP2N MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=2-MET-02
- DEFINE C2HN MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=CIS-2-01

- DEFINE MCPN MASS-FLOW STREAM=NONARMTS SUBSTREAM=MIXED & COMPONENT=METHY-01
- DEFINE BZB MASS-FLOW STREAM=BOTTOM SUBSTREAM=MIXED & COMPONENT=BENZE-01
- DEFINE TOLB MASS-FLOW STREAM=BOTTOM SUBSTREAM=MIXED & COMPONENT=TOLUE-01
- DEFINE OXB MASS-FLOW STREAM=BOTTOM SUBSTREAM=MIXED & COMPONENT=O-XYL-01
- DEFINE TMSB MASS-FLOW STREAM=BOTTOM SUBSTREAM=MIXED & COMPONENT=SULFO-01
- F P1=0.0059269*((NPF-NPN)/NPF)*((NPF-NPN)/NPF)
- F P2=0.006031045*((NHF-NHN)/NHF)*((NHF-NHN)/NHF)
- F I1=0.005926656*((MB2F-MB2N)/MB2F)*((MB2F-MB2N)/MB2F)
- F I2=0.005926471*((MP2F-MP2N)/MP2F)*((MP2F-MP2N)/MP2F)
- F O=0.018401121*((C2HF-C2HN)/C2HF)*((C2HF-C2HN)/C2HF)
- F N=53.10502772*((MCPF-MCPN)/MCPF)*((MCPF-MCPN)/MCPF)
- F A1=3.378518693*((BZF-BZB)/BZF)*((BZF-BZB)/BZF)
- F A2=0.000000441581039955857*((TOLF-TOLB)/TOLF)*((TOLF-TOLB)/TOLF)
- F = A3=0*((OXF-OXB)/OXF)*((OXF-OXB)/OXF)
- F S=0*((TMSF-TMSB)/TMSF)*((TMSF-TMSB)/TMSF)
- F P=P1+P2
- F I=I1+I2
- F A=A1+A2+A3
- F OBJ=P+I+O+N+A+S

MINIMIZE "OBJ"

VARY BLOCK-VAR BLOCK=EDC VARIABLE=QN SENTENCE=COL-SPECS LIMITS "17" "23"

VARY BLOCK-VAR BLOCK=EDC VARIABLE=MASS-D SENTENCE=COL-SPECS

LIMITS "1570" "1630"

VARY BLOCK-VAR BLOCK=SPLIT SENTENCE=FRAC VARIABLE=FRAC &

ID1=REFLUX LIMITS "0.8" "0.84"

CONV-OPTIONS

PARAM TEAR-METHOD=BROYDEN TOL=0.0001
WEGSTEIN MAXIT=500
BROYDEN MAXIT=30
NEWTON MAXIT=200 XTOL=0.01

TEAR REFLUX

STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC

Figure C.1 Murphree efficiency plot for solvent recovery column.

Figure C.2 Murphree efficiency plot for benzene column.

Figure C.3 Murphree efficiency plot for toluene column

Figure C.4 User defined convergence block, C-1 input form for extractive distillation aromatic recovery unit

Figure C.5 Convergence order input form for extractive distillation aromatic recovery unit

Abstracts of Manuscripts Accepted/Submitted for Publication

Volume, surface and UNIQUAC interaction parameters for imidazolium based ionic liquids via Polarizable Continuum Model

Tamal Banerjee, Manish K. Singh, Ranjan Kumar Sahoo, Ashok Khanna Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

(Fluid Phase Equilibria 234 (2005) 64)

Abstract

Ionic liquids (ILs) have shown great potential as solvent/media for reactions and separations. However, the physico-chemical characteristics of ILs are scarce and the limitless different combinations of cations and anions further complicate the matter. The ternary tie line data along with the binodal curve gives a fair indication regarding the feasibility of the ILs as solvents. Most of the ternary (with ILs) liquid-liquid equilibrium data available in literature has been correlated through the NRTL model as r and q are not available. The absence of the volume and surface parameters poses a hindrance in calculation of the binary interaction parameters for UNIQUAC and UNIFAC models. A novel method has been developed for deriving these volume and surface parameters from the Polarizable Continuum Model (PCM). PCM is widely used for studying solvation effects. Here, the solute is represented by a charge distribution in a molecular shaped cavity embedded in an infinite polarizable dielectric medium. GEnerating POLyhedra (GEPOL), which is based on the concept of solvent excluding surface, is used for calculating this cavity. This novel approach for volume and surface parameters has been verified initially for 71 compounds belonging to several homologous series (paraffins, isoparaffins, olefins, naphthenes, aromatics, alkynes, alcohols, ketones, aldehydes, acids, esters and amines) and 24 solvents. The predicted values of r and q for alcohols, ethers and oxygen containing systems showed significant deviations (2.5–20% for r and 5–25% for q) from the literature values. The values of r and q obtained by PCM method have been applied to 17 ternary systems and 1 quaternary system belonging to these deviant components. The PCM method gives a significantly better fit (average of 60% improvement in rmsd) for all the systems studied. This approach has been used to estimate the structural parameters for 25 dialkylimidazolium based ILs. Subsequently, these values have been used to estimate the UNIQUAC interaction parameters for seven IL based ternary systems, giving a 40% improvement in rmsd over NRTL.

Keywords: Polarizable Continuum Model; Volume and surface parameters; Solute cavity; Gaussian 98; Imidazolium based ionic liquids

Improved Binary Parameters using GA for Multi-Component Aromatic Extraction

UNIQUAC Model without and with Closure Equation/s

Ranjan Kumar Sahoo ^a, Tamal Banerjee ^a, Syed Akhlaq Ahmad ^b, Ashok Khanna ^a Department of Chemical Engineering, Indian Institute of Technology Kanpur, INDIA-208016 ^b Department of Chemical Engineering, Aligarh Muslim University, Aligarh, INDIA-202002

(Journal of Chemical Thermodynamics, Submitted)

Abstract

Application of Genetic Algorithm (GA) which leads to globally optimal binary interaction parameters from multi-component liquid-liquid equilibrium data has been recently demonstrated for some ternary, quaternary and quinary systems [M. K. Singh, T. Banerjee, A. Khanna, Computers & Chemical Eng. 29 (2005) 1712-1719]. The binary interaction parameters are related to each other through the closure equation/s [S. A. Ahmad, A. Khanna, Korean J. Chem. Eng. 20 (2003) 736-744]. In this work, the binary interaction parameters based on UNIQUAC activity coefficient model have been estimated using GA without and with closure equation/s for 65 multicomponent aromatic extraction systems; 53 ternary, 9 quaternary, and 3 quinary systems. Parameters that satisfy the closure equation/s exhibit better root mean square deviations than those that do not satisfy the closure equations/s. Average root mean square deviation (rmsd) value without implementation of closure equation/s is approximately 20 percent better than literature as compared to 30 percent better with implementation of closure equation/s.

Keywords: Aromatic extraction; Liquid-liquid equilibria; UNIQUAC; Binary interaction parameters; Closure equation/s; GA

Improved Binary Parameters using GA for Multi-Component **Aromatic Extraction**

NRTL Model without and with Closure Equation/s

Ranjan Kumar Sahoo ^a, Tamal Banerjee ^a, Syed Akhlaq Ahmad ^b, Ashok Khanna ^a

"Department of Chemical Engineering, Indian Institute of Technology Kanpur, INDIA-208016

"Department of Chemical Engineering, Aligarh Muslim University, Aligarh, INDIA-202002

(Fluid Phase Equlilibria, Submitted)

Abstract

Application of Genetic Algorithm (GA) which leads to globally optimal binary interaction parameters from multi-component liquid-liquid equilibrium data has been recently demonstrated for some ternary, quaternary and quinary systems [M. K. Singh, T. Banerjee, A. Khanna, Computers & Chemical Eng. 29 (2005) 1712-1719]. The binary interaction parameters are related to each other through the closure equation/s [S. A. Ahmad, A. Khanna, Korean J. Chem. Eng. 20 (2003) 736-744]. In this work, the binary interaction parameters based on NRTL activity coefficient model have been estimated using GA without and with closure equation/s for 65 multicomponent aromatic extraction systems; 53 ternary, 9 quaternary, and 3 quinary systems. Parameters that satisfy the closure equation/s exhibit better root mean square deviations than those that do not satisfy the closure equations/s. Average root mean square deviation (rmsd) value without implementation of closure equation/s is approximately 36 percent better than literature as compared to 43 percent better with implementation of closure equation/s.

Keywords: Aromatic extraction; Liquid-liquid equilibria; NRTL; Binary interaction parameters; Closure equation/s; GA

This is not the end.....

This is the beginning of another end