Object Classification

1. Inception

Version 1

模型特点:

- 1. 采用<u>不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特</u> 征的融合;
- 2. 之所以卷积核大小采用1、3和5,主要是为了方便对齐。<u>设定卷积步长</u> stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维 度的特征,然后这些特征就可以直接拼接在一起了;
- 3. 文章说很多地方都表明pooling挺有效,所以Inception里面也嵌入了。
- 4. 网络越到后面,特征越抽象,而且每个特征所涉及的感受野也更大了,因此随着层数的增加,3x3和5x5卷积的比例也要增加。

但是,**使用5x5的卷积核仍然会带来巨大的计算量**。为此,文章借鉴NIN2,采用1x1卷积核来进行通道削减。

例如:上一层的输出为100x100x128,经过具有256个输出的5x5卷积层之后 (stride=1, padding=2),输出数据为100x100x256。其中,卷积层的参数为 128x5x5x256。假如上一层输出先经过具有32个输出的1x1卷积层,再经过具有 256个输出的5x5卷积层,那么最终的输出数据仍为为100x100x256,但卷积参数 量已经减少为128x1x1x32 + 32x5x5x256,大约减少了4倍。

Inception Block结构:

模型结构:

Version 2

模型改进:

1. 使用BN层,将每一层的输出都规范化到一个N(0,1)的正态分布,这将有助于训练,因为下一层**不必学习输入数据中的偏移,并且可以专注与如何更好地组合** 特征(也因为在v2里有较好的效果,BN层几乎是成了深度网络的必备); BN 层能够提升模型的训练速度

Inception Block结构:

Result on ImageNet:

Network	Top-1 Error	Top-5 Error	Cost Bn Ops
GoogLeNet [20]	29%	9.2%	1.5
BN-GoogLeNet	26.8%	-	1.5
BN-Inception [7]	25.2%	7.8	2.0
Inception-v2	23.4%	-	3.8
Inception-v2 RMSProp	23.1%	6.3	3.8
Inception-v2 Label Smoothing	22.8%	6.1	3.8
Inception-v2 Factorized 7 × 7	21.6%	5.8	4.8
Inception-v2 BN-auxiliary	21.2%	5.6%	4.8

Version 4

Inception Block:

Conclusion:

- Inception网络模式人工痕迹太重,模型太复杂。容易过拟合。
- 模式属于split-transform-merge模式,每一路通道进行单独转换,最后所有通道concate(级联)
- 版本越往后面参数越多,训练所花费的时间和资源越多

2. ResNet

● 模型结构

Figure 1: The architecture of ResNet-50. The convolution kernel size, output channel size and stride size (default is 1) are illustrated, similar for pooling layers.

3. ResNext

模型特点:

- 1. 在ResNet模型的基础上增加了Residual Block的宽度(通道),检验了模型 宽度所带来的精度提升。
- 2. 最后所有通道仅仅是相加起来便可以融合。符合split-transform-merge模式
- 3. 进一步验证了split-transform-merge模式的普遍性和有效性

ResNext Block:

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

左ResNet 右ResNext (32 Paths)

- a为基本的ResNext Block单元
- 如果将最后1x1的合并到一起,等价于网络b中拥有和Inception-ResNet的结构 (concate)
- 进一步将输入的1x1合并,等价于网络c中和通道分组卷积网络结构类似

Conclusion:

- ResNext-101 (32x4d) 大小和Inception v4相当, 精度略差。但是训练速度 快很多
- ResNext-101 (64x4d) 大小和Inception-ResNet大一点,精度相当或略差, 速度快非常多
- 结构简单,可以防止对特定数据集的过拟合。

4. VGG

模型特点

- 1. 整个网络都使用了同样大小的卷积核尺寸(3 x 3)和最大池化尺寸(2 x 2)
- 2. 1 x 1卷积的意义主要在于线性变换,而输入通道数和输出通道数不变,没有发生降维。
- 3. 两个3 x 3的卷积层串联相当于1个5 x 5的卷积层,即一个像素会跟周围5 x 5 的像素产生关联,可以说感受野大小为5 x 5。而3个3 x 3的卷积层串联的效果则相当于1个7 x 7的卷积层。除此之外,3个串联的3 x 3的卷积层,拥有比1个7 x 7的卷积层更少的参数量,只有后者的(3 x 3 x 3)/(7 x 7)=55%。最重要的是,3个3 x 3的卷积层拥有比1个7 x 7的卷积层更多的非线性变换(前者可以使用三次ReLU激活函数,而后者只有一次),使得CNN对特征的学习能力更强。
- 4. VGGNet在训练时有一个小技巧,先训练级别A的简单网络,再复用A网络的权重来初始化后面的几个复杂模型,这样训练收敛的速度更快。在预测时,VGG采用Multi-Scale的方法,将图像scale到一个尺寸Q,并将图片输入卷积网络计算。然后在最后一个卷积层使用滑窗的方式进行分类预测,将不同窗口的分类结果平均,再将不同尺寸Q的结果平均得到最后结果,这样可提高图片数据

的利用率并提升预测准确率。在训练中,VGGNet还使用了Multi-Scale的方法做数据增强,将原始图像缩放到不同尺寸S,然后再随机裁切224x224的图片,这样能增加很多数据量,对于防止模型过拟合有很不错的效果。

模型结构

4		ConvNet C	onfiguration	- 0	
A	A-LRN	В	С	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB image	e)	/
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
	,	max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
	htti	://blomax	pool net/ma	rs jhao	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
ART SAN WARREST CO.			pool	200-700-200-0	AAA-20-AAA
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		30-60-60-60-60-60-60-60-60-60-60-60-60-60
			4096		
		(And 1-1)	4096		
			1000		
		soft-	-max		

5. ZFNet & AlexNet

6. SE-Net

模型特点:

 通过feature recalibration (重校正) 给channel增加权重,提升每个channel 的表征特性 (channel和feature map之间的明确关系)

•

模型结构:

- 通过Global Pooling将输出的feature map pooling 至 $1 \times 1 \times C$
- 将其映射至FC layer 至 $1 \times 1 \times \frac{C}{r}$ 并通过非线性激活函数Relu
- 将上一步输出映射至 $1 \times 1 \times C$ 的FC layer。两次FC的操作是为了
 - 。 具有更多非线性,更好拟合通道间相关性
 - 降低参数量和
- 通过sigmoid之后将 $1 \times 1 \times C$ 的权重与 $H \times W \times C$ ——相乘得到结果

模型变体:

TABLE 11
Effect of using different squeeze operators in SE-ResNet-50 on ImageNet (%).

Squeeze	top-1 err.	top-5 err.
Max	22.57	6.09
Avg	22.28	6.03

TABLE 12
Effect of using different non-linearities for the excitation operator in SE-ResNet-50 on ImageNet (%).

Excitation	top-1 err.	top-5 err.
ReLU	23.47	6.98
Tanh	23.00	6.38
Sigmoid	22.28	6.03

TABLE 14
Effect of different SE block integration strategies with ResNet-50 on ImageNet (%).

	. ,	
Design	top-1 err.	top-5 err.
SE	22.28	6.03
SE-PRE	22.23	6.00
SE-POST	22.78	6.35
SE-Identity	22.20	6.15

TABLE 15
Effect of integrating SE blocks at the 3x3 convolutional layer of each residual branch in ResNet-50 on ImageNet (%).

Design	top-1 err.	top-5 err.	GFLOPs	Params
SE	22.28	6.03	3.87	28.1M
$SE_3 \times 3$	22.48	6.02	3.86	25.8M

7. Shuffle Net

模型特点:

• 轻便, shuffle operation help information flowing across feature channel

Group Convolution:

is now exactly half the depth, i.e. half the parameters and half the compute as the original filter.

- 将channel数 c 分成g各组,每个组的channel数量为c/g
- 每个组的输出结果进行concatenate组合恢复到原来的channel数量
 - e.g. 假设原来输入通道数: 256, 输出通道数: 256, kernal size: 3x3, overall parameter: 256x3x3x256 = 589824
 - 使用group channel之后: 假设group = 8, 每个group通道: 256/8 = 32, overall parameter: 8x32x3x3x32 = 73728

Channel Shuffle Operation:

- a: 两个conv之间没有交流,每个output channel只与input channels 相关
- b: input channel 和 output channel之间充分交流
- c: 使用shuffle操作达到 b 的效果

ShuffleNet Unit

Figure 2. ShuffleNet Units. a) bottleneck unit [9] with depthwise convolution (DWConv) [3, 12]; b) ShuffleNet unit with pointwise group convolution (GConv) and channel shuffle; c) ShuffleNet unit with stride = 2.

- a: vanilla ResNext
- b: 使用1x1 group conv替代1x1 conv 并加入了channel shuffle
- c: ShuffleNet with stride enlarge channel size with little extra computation cost

8. Xception

• Deepwise Convolution Block:

```
class SeparableConv2d(nn.Module):
    def
init (self, in channels, out channels, kernel size
=1, stride=1, padding=0, dilation=1, bias=False):
        super(SeparableConv2d, self). init ()
        self.conv1 =
nn.Conv2d(in channels,in channels,kernel size,stri
de,padding,dilation,groups=in channels,bias=bias)
        self.pointwise =
nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=
bias)
    def forward(self,x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x
```

○ 先经过一个group为 in channel 的conv2d, 再经过1x1 conv

9. Octave Convolution

10. Siamese Network

- 模型作用: **少样本**图像分类,图像匹配,目标追踪
- 模型特点:
 - 相似性度量,淡化label作用

。 步骤:

- 1. 输入为一对图片,不需要label;若来自同一class,则为1,反之为0。
- 2. 两张图片经过同一个共享参数的神经网络
- 3. 将最后一层的输出作为encoding, 度量两个encoding的相似性(欧式距离)
- 4. 输出为score, 越高代表越相似。