Notes on Type Theory

Aresh Pourkavoos

February 24, 2022

Base types, sum/product/function types, dependent types, inductive types, universes Base types: \bot AKA false, \top AKA true, bool #: \top , 0:bool, 1:bool (\bot has no terms), \bot :Type, \top :Type, bool:Type

Dependent types: \sum AKA \exists , \prod AKA \forall

 $A + B A \vee B (1)$

$$A \times B$$
 $A \wedge B$ (2)

$$B^A$$
 $A \to B$ (3)

- (1): The union type of types A and B has terms which are either of type A or of type B. For example, if A had 2 terms (and thus stored one bit of information) and B had 3 terms (one trit), there would be 2+3=5 possible values of the union.
- (2): The pair type of A and B has terms which contain both a term of type A and a term of type B. Using the previous examples of A and B, there would be $2 \times 3 = 6$ possible pairs.
- (3): The function type that goes from A to B has terms which associate exactly one (non-unique) element of B with each element of A. Since for each of the 2 terms of A (input), there are 3 choices for the corresponding element of B (output), there would be $3^2 = 9$ possible functions.

$$A \times (B+C) = (A \times B) + (A \times C) \qquad A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C) \tag{4}$$

$$C^{A+B} = C^A \times C^B \qquad (A \lor B) \to C \equiv (A \to C) \land (B \to C) \qquad (5)$$

$$(B \times C)^A = B^A \times C^A \qquad A \to (B \wedge C) \equiv (A \to B) \wedge (A \to C) \tag{6}$$

$$C^{A \times B} = (C^B)^A \qquad (A \wedge B) \to C \equiv A \to (B \to C) \tag{7}$$

$$A + 0 = A (8)$$

$$A \times 1 = A \tag{9}$$

4