TinyURL Design

Functional requirements

- Create shorter and unique aliases for long URLs
- Users can be able to customize the short URL
- Users can provide an Expiration time

Nonfunctional requirements

- Security Limit the number of requests per user thus preventing users from denial of service attacks, either through User-Id for registered user or IP address for anonymous users.
- Availability TinyURLs should be available even when system is down
- Redirected with minimum latency

Estimates

- Traffic
 - We assume
 - Read : Write ration of this system is 200:1
 - 500 million new requests/month
 - o Therefore, 500 * 200 million READ requests/month

500,000,000 * 200 READ requests/month (500,000,000 * 200) / (30*24*60*60) requests/second 100,000,000,000 / 2,592,000 requests/second 38 k requests/second

- 40K KEAD QPS
- ~ 200 CREATE QPS
- Storage
 - We assume,
 - each CREATE URL request takes 500 bytes
 - each user information takes 200 bytes
 - number of users 200 million/year

User info storage

200,000,000 users/year * 200 bytes/user

40,000,000,000 bytes/year

40 TB/year

Request storage

500,000,000 requests/month * 500 bytes/request

250,000,000,000 bytes/month 250,000,000,000 *12 bytes/year 3,000,000,000,000 bytes/year

3 PB/year

Bandwidth

- We assume
 - One request per user
- We know,
 - each CREATE URL request takes 500 bytes
 - each READ URL request takes 200 bytes (Does READ actually take memory?)
 - 40k READ QPS
 - 200 CREATE QPS
- o CREATE URL requests

500 bytes/request * 200 requests/second 100,000 bytes/second 100k bytes/second 100 kbps

READ URL requests
200 bytes/request * 40k requests/second
8,000,000 bytes/second
8 Mbps

Memory

- We assume,
 - 30% READ URL requests per day are cached

30% * 40 requests/second 30% * 40,000 * 60 * 60 * 24 requests/day 1,036,800,000 requests/day ~ 1 billion READ URL requests/day are cached

1 READ URL request takes 200 bytes 1,000,000,000 requests/day * 200 bytes/request 200,000,000,000 bytes/day 200 GB/day cached for READ URL request

System APIs

- createURL(userId, longURL, <customURL>, <customExpirationTime>)
- readURL(shortURL)
- deleteURL(shortURL)

Data Model

• Availability is of higher precedence than consistency

USER
UserId
Name
Email
Last Login
Account Creation Date

Block diagram

- I use MongoDB here as it is an AP database
- MongoDB has a Master-Slave configuration with replication
- I will provide Sharding as when some of the DBs are down, the whole system doesn't crash/ will not work.
- I will have cache at the load balancer. This caches the HOT URLs. Cache eviction policy 24 hours