Abstract Algebra

: Lecture 18

Leo

2024.12.03

Theorem 1. If char F = 0, then each finite extension of F is a simple extention.

Lemma 2. Let char F = 0, and $E = F(\alpha, \beta)$. Then there exists $\gamma \in E$ such that $E = F(\gamma)$.

证明. Let $f(x) = \operatorname{Irr}(\alpha, F)$ and $g(x) = \operatorname{Irr}(\beta, F)$. Let $\gamma = \alpha + c\beta$ where $c \in F$. And let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$. Then $h(\beta) = f(\gamma - c\beta) = f(\alpha) = 0$. So β is a common root of h(x) and g(x). Assume β is the only coomon root of h(x) and g(x). Then $x - \beta = \gcd(h(x), g(x))$ as irreducible polynomial over char = 0 field is separable. Hence there exists s(x) and t(x) s.t. $x - \beta = s(x)h(x) + t(x)g(x) \in F(\gamma)[x]$. So $\beta \in F(\gamma)$ and $\alpha = \gamma - c\beta \in F(\gamma)$, i.e. $F(\alpha, \beta) \subseteq F(\gamma)$. Conversely, $\gamma \in F(\alpha, \beta)$, so $F(\alpha, \beta) = F(\gamma)$. Suppose β' is another common root of h(x) and g(x). Then $0 = h(\beta') = f(\gamma - c\beta') = f(\alpha + c\beta - c\beta')$ hence $\alpha' := \alpha + c\beta - c\beta'$ is a root of f(x). Thus $c = \frac{\alpha' - \alpha}{\beta - \beta'} \in F$. Take $c \in F$ which is not of the form $\frac{\alpha' - \alpha}{\beta - \beta'}$ (this is due to |F| is infinity). Suppose $\deg f = m$, $\deg g = n$ then $\#\alpha' = m$, $\#\beta' = n$, $\Rightarrow \#c = \frac{\alpha' - \alpha}{\beta - \beta'} < \infty$.

证明. Let E be a finite extension of F. Then $E = F(\gamma_1, \ldots, \gamma_n)$. Then $E = F(\gamma_1, \ldots, \gamma_n) = F(\gamma_1)(\gamma_2, \ldots, \gamma_n) = E(\gamma_2, \ldots, \gamma_n) = E(\beta) = F(\gamma_1, \beta) = F(\alpha)$ is a simple extension of F for some $\alpha \in E$.

Example 3. $\mathbb{Q}(\sqrt[3]{2},\omega)$, where $\omega = \frac{-1+\sqrt{-3}}{2}$. $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}] = 6$. $\mathbb{Q}(\sqrt[3]{2},\omega) = \mathbb{Q}(\sqrt[3]{2}+\omega)$.

Proposition 4. If F is a finite field, then each finite extension is a simple extension.

证明. Let E be a finite field exteniton of $F = \mathbb{F}_{p^d}$ with p prime. Then $E = \mathbb{F}_{p^n}$ with $d \mid n$, and $E^* = \langle \alpha \rangle$. So $E = F(\alpha)$.

Example 5. Let $R = \mathbb{F}_p[t]$ and let F be the fraction field of R denoted by $\mathbb{F}_p(t)$. Then char F = p and $|F| = \infty$. Let $f(x) = x^p - t \in F[x]$. Suppose α is a root of f(x). Then $f(x) = (x - \alpha)^p$. Claim: f(x) is irreducible in F[x].

Suppose f(x) = g(x)h(x), $1 \le \deg g < \deg f$. Then $g(x) \mid f(x) = (x - \alpha)^p$, and $g(x) = (x - \aleph)^m = Ax - \alpha^m$. Thus $\alpha^m \in F$. Since $F = \mathbb{F}_p(t)$. Now $t = \alpha^p$ since $\gcd(p, m) = 1$ we have $\alpha \in F$. Contradiction.

Definition 6. If all roots of f lies in E and E is the smallest extension of F, then its called the splitting field of f.

Let f(x) be irreducible in F[x], char F = 0. Let α, β be two roots of f(x). Then $F(\alpha)$, $F(\beta)$ are isomorphic field. α, \ldots, α_n are all roots of f(x).

Let E be the splitting field then $E = F(\alpha, ..., \alpha_n)$. And $F(\alpha_i) \simeq F(\alpha_j)$.

We consider $\operatorname{Aut}_F(E)$ is transitive on $\{\alpha, \ldots, \alpha_n\}$.