Mathematicsl Foundations-I

Time: Three Hours

Maximum Marks: 80

Note: Total *five* questions are to be attempted. Selection question from each section. Question No. 1 is compulsory.

Compulsory Question

1. (a) Differentiate xx w.r.t. x.

3

	12	
(b)	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0.$	3
(0)	Prove that f is a subset of every set.	3
(d)	Find the complement of each element of the lattice D ₃₀ .	3.
e	Write down all subset {a, b, c}.	2
W	Define Permutation and Combination.	2
	SECTION-I	
(12)	Prove that $A - (B \cap C) = (A - B) \cup (A - C)$.	8
(10)	Which of the following lattices are Boolean algebra?	
	(i) D_{20} (ii) D_{30} (iii) D_{6} (iv) D_{210}	
سلقك	In how many ways can 5 boys and 5 girls be seated at a round tal	ble
	? So that no two girls are set together.	8
LOT	Find the numbers of arrangements that can be made out of the let	ter
	of the word "MATHEMATICS". In how many of these vow	
76.5	occure together.	8
(b)	Using t-d definition, prove that x is a continuous function. SECTION-II	0
	$e^{i/x} + 1$	
(a)	Show that $\lim_{x\to 0} \frac{e^{1/x} + 1}{e^{1/x} - 1}$ does not exist.	8
	dv	
(b)	If $x^y + y^x = 0$. Find $\frac{dy}{dx}$.	8
(a)	If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, $x \neq y$. Find $\frac{dy}{dx}$.	8
(b)	Using t-d difinition, prove that x is a continuous function. SECTION-III	8
(a)	Find the differential equation of the system of circles touching	gy-
(12)	axis at the origin.	8
	dy	0
(b)	Solve $\cos^2 x \frac{dy}{dx} + y = \tan x$.	8
(a)	Solve $(x^3+3xy^2) dx + (3x^2y+y^3) dy = 0$.	8
(b)	Solve $(y \log x - 1)y dx = dy$.	8
	SECTION-IV	

5.

6.

7.

8. (a) Solve
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x$$
.
(b) Solve $\frac{d^2 y}{dx^2} + y = xe^x \sin x$.

(a) Solve
$$\frac{d^2y}{dx^2} + y = \csc x$$
.

Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = xe^{4x}$