

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 3: EXTENDED BACKUS-NAUR-FORM

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 13.11.2020

EBNF und ihre Semantik

EBNF-DEFINITION

Jede **EBNF-Regel** besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein **EBNF-Term**.

Nichtterminal symbol ::= EBNF-Term

Definition (EBNF-Terme): Seien V (syntaktische Variablen) und Σ (Terminalsymbole) endliche Mengen mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die *kleinste* Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$.

1

ÜBERSETZUNG EBNF ↔ SYNTAXDIAGRAMME

$$ightharpoonup$$
 trans($\hat{[} \alpha \hat{]}$) = $\frac{\text{trans}(\alpha)}{}$

▶
$$trans(\hat{\alpha}) = trans(\alpha)$$

Seien $\alpha_1, \alpha_2 \in T(\Sigma, V)$ zwei EBNF-Terme.

SEMANTIK VON EBNF-TERMEN

Ziel: Ordne einer EBNF-Definition $\mathcal{E} = (V, \Sigma, S, R)$ ihre Sprache zu

- ▶ $W(\mathcal{E}, v)$ bezeichnet von $v \in V$ beschriebene Objektsprache
- ▶ $ρ: V \to \mathcal{P}(Σ^*)$ ordnet jeder syntaktischen Variable $v \in V$ eine Sprache zu
- ▶ Vorstellung: $\rho(v)$ ist bestes Wissen über die von v beschriebene Sprache

Problem: Wie bekomme ich aus einem EBNF-Term eine Sprache?

$$\mathsf{Semantik} \ \llbracket \cdot \rrbracket : \ \underbrace{\mathcal{T}(\Sigma, V)}_{\mathsf{EBNF-Term} \ \alpha} \to ((\underbrace{V \to \mathcal{P}(\Sigma^*)}_{\rho}) \to \mathcal{P}(\Sigma^*))$$

SEMANTIK VON EBNF-TERMEN

$$\llbracket \cdot \rrbracket : \underbrace{\mathcal{T}(\Sigma, V)}_{\mathsf{EBNF-Term} \; \alpha} \to ((\underbrace{V \to \mathcal{P}(\Sigma^*)}_{\rho}) \to \mathcal{P}(\Sigma^*))$$

Sei $\alpha \in T(\Sigma, V)$ ein EBNF-Term. Die Semantik $[\![\alpha]\!]$ (ρ) von α ist definiert als:

- ▶ Wenn $\alpha = v \in V$, dann gilt $\llbracket \alpha \rrbracket (\rho) = \rho(v)$.
- ► Wenn $\alpha = w \in \Sigma$, dann gilt $\llbracket \alpha \rrbracket (\rho) = \{w\}$.
- ▶ Wenn $\alpha = \hat{\{} \alpha_1 \hat{\}}$, dann gilt $\llbracket \alpha \rrbracket (\rho) = (\llbracket \alpha_1 \rrbracket (\rho))^*$.
- ▶ Wenn $\alpha = \hat{[}\alpha_1\hat{]}$, dann gilt $[\![\alpha]\!](\rho) = [\![\alpha_1]\!](\rho) \cup \{\varepsilon\}$.
- ▶ Wenn $\alpha = (\hat{\alpha}_1)$, dann gilt $[\alpha](\rho) = [\alpha_1](\rho)$.
- ▶ Wenn $\alpha = \alpha_1 \alpha_2$, dann gilt $\llbracket \alpha \rrbracket (\rho) = \llbracket \alpha_1 \rrbracket (\rho) \cdot \llbracket \alpha_2 \rrbracket (\rho)$.
- ▶ Wenn $\alpha = (\hat{\alpha}_1 | \hat{\alpha}_2)$, dann gilt $[\alpha](\rho) = [\alpha_1](\rho) \cup [\alpha_2](\rho)$.

FIXPUNKTITERATION - EINE ANALOGIE

Ausblick: Fixpunktiteration zur Nullstellenbestimmung

Gegeben sei eine Funktion $g: \mathbb{R} \to \mathbb{R}$, von der wir eine Nullstelle suchen, d.h. ein $\overline{x} \in \mathbb{R}$ mit $g(\overline{x}) = 0$.

Methode: Newtonverfahren — definiere $\Phi(x) := x - \frac{g(x)}{g'(x)}$.

- ▶ Starte mit "beliebigem" Startwert $x_0 \in \mathbb{R}$.
- ▶ Berechne stets $x_{i+1} = \Phi(x_i)$.

Beobachtung: x_i nähert sich der Nullstelle \overline{x} an

Ein *Fixpunkt* von Φ ist ein Punkt x mit $\Phi(x) = x$.

Die Nullstelle \bar{x} ist ein Fixpunkt von Φ, da

$$\Phi(\overline{x}) = \overline{x} - \frac{g(\overline{x})}{g'(\overline{x})} = \overline{x}.$$

FIXPUNKTITERATION FÜR EBNF

Ziel: berechne Sprache $W(\mathcal{E}, v)$ für alle $v \in V$ einer EBNF-Definition $\mathcal{E} = (V, \Sigma, S, R)$.

Iterierende Funktion:

$$f: \underbrace{\left(V \to \mathcal{P}\left(\Sigma^*\right)\right)}_{\rho} \to \left(V \to \mathcal{P}\left(\Sigma^*\right)\right)$$

- ► Starte mit bisherigen Kenntnis $\rho(v) = \emptyset$ für alle $v \in V$. (Nichtswissen)
- ► Berechne stets neues Wissen $\rho_{\text{neu}} = f(\rho_{\text{alt}})$. (Generiere neues Wissen)

Ende: erreiche einen Fixpunkt ρ mit $f(\rho) = \rho$

Dann gilt $\rho(v) = W(\mathcal{E}, v)$ für alle $v \in V$.

FIXPUNKTITERATION FÜR EBNF

Da V endlich ist, ist $f(\rho) \colon V \to \mathcal{P}(\Sigma^*)$ nur auf endlich vielen Argumenten definiert, deren Bilder wir nun als Spaltenvektor schreiben:

$$\begin{pmatrix} f(\rho)(v_1) \\ f(\rho)(v_2) \\ \vdots \\ f(\rho)(v_n) \end{pmatrix} \in \mathcal{P}(\Sigma^*)$$

$$\in \mathcal{P}(\Sigma^*)$$

Ein Iterationsprozess lässt sich dann wie folgt notieren:

$$\begin{pmatrix} \emptyset \\ \emptyset \end{pmatrix} \stackrel{f}{\mapsto}^{1} \begin{pmatrix} f(\rho)(v_{1}) \\ f(\rho)(v_{2}) \end{pmatrix} \stackrel{f}{\mapsto}^{2} \begin{pmatrix} f(f(\rho))(v_{1}) \\ f(f(\rho))(v_{2}) \end{pmatrix} \stackrel{f}{\mapsto}^{3} \dots$$

$$\stackrel{f}{\mapsto}^{n} \begin{pmatrix} f^{n}(\rho)(v_{1}) \\ f^{n}(\rho)(v_{2}) \end{pmatrix} \stackrel{f}{\mapsto}^{n+1} \dots$$

Übungsblatt 3

AUFGABE 1 — TEIL (A)

Gesucht ist eine EBNF-Definition $\mathcal{E} = (V, \Sigma, S, R)$ mit $\Sigma = \{a, b, c, d\}$, sodass

$$W(\mathcal{E},S) = \left\{ a^k b^\ell c^{2k} c^m : k \ge 1, \ell \ge m \ge 0 \right\}$$

Methode: Zerlegung der Sprache und Anwendung der Grundkonstruktionen als Syntaxdiagramm, Übersetzung als EBNF

$$V = \{S, A\}$$
 und $R = \{S := (aScc | aAcc),$
 $A := (bAc | (b | b))$

AUFGABE 1 — TEIL (B)

Sei $\Sigma'=\{a,b\}$ und $\mathcal{E}'=(\Sigma',V',X,R')$ eine EBNF-Definition mit $V'=\{X,Y\}$ sowie

$$R = \left\{ X ::= \hat{(} aXa \hat{)} Y \hat{)}, \quad Y ::= \hat{[} bY \hat{]} \right\}.$$

AUFGABE 1 — TEIL (C)

Sei $\Sigma'=\{a,b\}$ und $\mathcal{E}'=(\Sigma',V',X,R')$ eine EBNF-Definition mit $V'=\{X,Y\}$ sowie

$$R = \left\{ \ X ::= \hat{\left(\right.} aXa \, \hat{\left.\right|} \, Y \, \hat{\left.\right)}, \quad Y ::= \hat{\left[\right.} bY \, \hat{\left.\right|} \, \right\}.$$

Die syntaktische Kategorie von X ist gegeben durch

$$W(\mathcal{E}',X) = \left\{ a^n b^j a^n : n \ge 0, j \ge 0 \right\}$$

AUFGABE 2

Sei
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $V = \{S\}$, $\Sigma = \{a, b\}$ und $R = \{S ::= (aSa | [b])\}$. Außerdem sei $\rho \colon V \to \mathcal{P}(\Sigma^*)$ mit
$$\rho(S) = \{a^n w a^n : n \ge 0, w \in \{\varepsilon, b\}\}.$$
 zu zeigen: $[(aSa | [b])] = \rho(S)$

Ende

AUFGABE 1 — TEIL (B)

Wir wollen eine EBNF-Definition $\mathcal{E}' = (V, \Sigma, S, R)$ finden, sodass

$$W(\mathcal{E}') = \left\{ a^{n+\ell} cb^n (cd)^\ell \mid n,\ell \in \mathbb{N}, n \geq 1
ight\}$$

gilt. Wir zerlegen wie üblich die Sprache in unabhängige Teile:

$$L = \left\{ a^{\ell} \ a^{n} \ c \ b^{n} \ (cd)^{\ell} \mid n, \ell \in \mathbb{N}, n \ge 1 \right\}$$

Dann ergibt sich also nach dem Grundschema

$$V = \{S, A\}$$

$$R = \{S ::= (aScd | A), A ::= a(A | c) b\}$$

SEMANTIK VON EBNF-TERMEN

- ► Sei $\mathcal{E} = (V, \Sigma, S, R)$ eine EBNF-Definition.
- ▶ $v \in V \leadsto W(\mathcal{E}, v) = \rho(v)$ (syntaktische Kategorie)
- ► Semantik $\llbracket \cdot \rrbracket : \underbrace{T(\Sigma, V)}_{\alpha} \to ((\underbrace{V \to \mathcal{P}(\Sigma^*)}_{\rho}) \to \mathcal{P}(\Sigma^*))$

Definiere $\llbracket \alpha \rrbracket(\rho)$ wie folgt:

- Wenn $\alpha = v \in V$, dann gilt $\llbracket \alpha \rrbracket(\rho) = \rho(v)$.
- Wenn $\alpha \in \Sigma$, dann gilt $[\![\alpha]\!](\rho) = {\{\alpha\}}$.
- Wenn $\alpha = \alpha_1 \alpha_2$, dann gilt $[\![\alpha]\!](\rho) = [\![\alpha_1]\!](\rho) \cdot [\![\alpha_2]\!](\rho)$.
- Wenn $\alpha = (\alpha_1 | \alpha_2)$, dann gilt $[\alpha](\rho) = [\alpha_1](\rho) \cup [\alpha_2](\rho)$.
- Wenn $\alpha = \hat{\alpha}_1$, dann gilt $[\alpha](\rho) = ([\alpha_1](\rho))^*$.
- Wenn $\alpha = [\alpha_1]$, dann gilt $[\alpha](\rho) = [\alpha_1](\rho) \cup \{\varepsilon\}$.
- Wenn $\alpha = (\alpha_1)$, dann gilt $[\alpha](\rho) = [\alpha_1](\rho)$.

AUFGABE 2 — TEIL (A)

- $ightharpoonup
 ho \colon V
 ightharpoonup \mathcal{P}\left(\Sigma^*\right)$
- $\blacktriangleright \ f: \left(V \to \mathcal{P}\left(\Sigma^*\right)\right) \to \left(V \to \mathcal{P}\left(\Sigma^*\right)\right)$

$$f(\rho) = \begin{pmatrix} f(\rho)(S) \\ f(\rho)(A) \end{pmatrix} = \begin{pmatrix} \llbracket ddAc \rrbracket (\rho) \\ \llbracket [S] a \rrbracket (\rho) \end{pmatrix} = \begin{pmatrix} \{dd\} \cdot \rho(A) \cdot \{c\} \\ (\rho(S) \cup \{\varepsilon\}) \cdot \{a\} \end{pmatrix}$$
$$= \begin{pmatrix} \{dd\} \cdot \rho(A) \cdot \{c\} \\ \rho(S) \cdot \{a\} \cup \{a\} \end{pmatrix}$$

AUFGABE 2 — TEIL (B)

$$f(\rho) = \begin{pmatrix} \{dd\} \cdot \rho(A) \cdot \{c\} \\ \rho(S) \cdot \{a\} \cup \{a\} \end{pmatrix}$$

$$\begin{pmatrix} \emptyset \\ \emptyset \end{pmatrix} \mapsto^{1} \begin{pmatrix} \emptyset \\ \{a\} \end{pmatrix} \mapsto^{2} \begin{pmatrix} \{ddac\} \\ \{a\} \end{pmatrix} \mapsto^{3} \begin{pmatrix} \{ddac\} \\ \{ddaca, a\} \end{pmatrix} \\
\mapsto^{4} \begin{pmatrix} \{(dd)^{2}(ac)^{2}, ddac\} \\ \{ddaca, a\} \end{pmatrix} \\
\mapsto^{5} \begin{pmatrix} \{(dd)^{2}(ac)^{2}, ddac\} \\ \{(dd)^{2}(ac)^{2}a, ddaca, a\} \end{pmatrix}$$

AUFGABE 2 — TEIL (C)

Die ersten Schritte zeigten

$$\begin{pmatrix} \emptyset \\ \emptyset \end{pmatrix} \mapsto^{1} \cdots \mapsto^{5} \begin{pmatrix} \{(dd)^{2}(ac)^{2}, ddac\} \\ \{(dd)^{2}(ac)^{2}a, ddaca, a\} \end{pmatrix}$$

Führen wir diese Iteration nur "bis ins Unendliche" fort, so erhalten wir

$$W(\mathcal{E}, S) = \{ (dd)^n (ac)^n : n \ge 1 \}$$

$$W(\mathcal{E}, A) = \{ (dd)^n (ac)^n a : n \ge 0 \}$$

AUFGABE 3 — TEIL (A)

$$\begin{split} \left[\left[\hat{a} (Sb \mid Sbb) \right] \right] (\rho) &= \{ \varepsilon \} \cup \left[\left[a (Sb \mid Sbb) \right] \right] (\rho) \\ &= \{ \varepsilon \} \cup \{ a \} \cdot \left[\left[(Sb \mid Sbb) \right] \right] (\rho) \\ &= \{ \varepsilon \} \cup \{ a \} \cdot (\left[(Sb) \right] (\rho) \cup \left[(Sbb) \right] (\rho)) \\ &= \{ \varepsilon \} \cup \{ a \} \cdot (\rho(S) \cdot \{ b \} \cup \rho(S) \cdot \{ bb \}) \\ &= \{ \varepsilon \} \cup \{ a \} \cdot \rho(S) \cdot \{ b \} \cup \{ a \} \cdot \rho(S) \cdot \{ bb \} \end{split}$$

Damit können wir die Iterationsfunktion aufstellen:

$$f(\rho) = (f(\rho)(S)) = ([[\hat{a}(Sb | Sbb)]](\rho))$$
$$= (\{\varepsilon\} \cup \{a\} \cdot \rho(S) \cdot \{b\} \cup \{a\} \cdot \rho(S) \cdot \{bb\})$$

AUFGABE 3 — TEIL (A)

$$f(\rho) = \Big(\{\varepsilon\} \cup \{a\} \cdot \rho(S) \cdot \{b\} \cup \{a\} \cdot \rho(S) \cdot \{bb\}\Big)$$

3 Iterationen:

$$\begin{pmatrix} \emptyset \end{pmatrix} \mapsto^1 \Big(\{ \varepsilon \} \Big) \mapsto^2 \Big(\{ \varepsilon, ab, abb \} \Big)$$
$$\mapsto^3 \Big(\{ \varepsilon, ab, abb, aabb, aabbb, aabbbb \} \Big)$$

AUFGABE 3 — TEIL (B)

Sei
$$\rho \colon V \to \mathcal{P}\left(\Sigma^*\right)$$
 mit $\rho(S) = \{a^nb^n \mid 2n \geq m \geq n \geq 0\}$.
Zu zeigen: $\left[\left[\hat{l} \ a \left(Sb \ \hat{l} \ Sbb \ \hat{l} \ \right)\right]\right] (\rho) = \rho(S)$.

$$\begin{split} & \left[\hat{[} \ a\hat{(} \ Sb \ \hat{]} \ Sbb \ \hat{)} \ \hat{]} \right] (\rho) \\ & = \ \{ \varepsilon \} \cup \{ a \} \cdot \rho(S) \cdot \{ b \} \cup \{ a \} \cdot \rho(S) \cdot \{ bb \} \\ & = \ \{ \varepsilon \} \cup \{ a \} \cdot \{ a^n b^n \ | \ 2n \ge m \ge n \ge 0 \} \cdot \{ b \} \cup \{ a \} \cdot \{ a^n b^n \ | \ 2n \ge m \ge n \ge 0 \} \cdot \{ bb \} \\ & = \ \{ \varepsilon \} \cup \{ a a^n b^n b \ | \ 2n \ge m \ge n \ge 0 \} \cup \{ a a^n b^m b b \ | \ 2n \ge m \ge n \ge 0 \} \\ & = \ \{ a^n b^m \ | \ 2n \ge m \ge n \ge 0 \} \\ & = \ \{ \rho(S) \end{split}$$