High-Dimensional Gaussian Sampling

Yuejia Zhang

April 7, 2023

Problem Definition

Sampling from a d-dimensional Gaussian distribution $\mathcal{N}(\mu, \Sigma)$, where d may be large.

$$\pi(oldsymbol{ heta}) = rac{1}{(2\pi)^{d/2} ext{det}(oldsymbol{\Sigma})^{1/2}} \exp\left(-rac{1}{2}(oldsymbol{ heta} - oldsymbol{\mu})^{ op} oldsymbol{\Sigma}^{-1}(oldsymbol{ heta} - oldsymbol{\mu})
ight).$$

Covariance matrix ${\bf \Sigma}$ positive definite. Precision matrix ${\bf Q}={\bf \Sigma}^{-1}$ exists and also positive definite.

Special Cases

•
$$d = 1$$

Algorithm 1 Box–Muller sampler

1: Draw u_1 , $u_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}((0,1])$.

2: Set $\tilde{u}_1 = \sqrt{-2\log(u_1)}$.

3: Set $\tilde{u}_2 = 2\pi u_2$.

4: **return** $(\theta_1, \theta_2) = \left(\mu + \frac{\tilde{u}_1}{\sqrt{q}}\sin(\tilde{u}_2), \mu + \frac{\tilde{u}_1}{\sqrt{q}}\cos(\tilde{u}_2)\right)$.

Special Cases

Algorithm 2 Sampler when Q is a diagonal matrix

- 1: **for** $i \in [d]$ **do** \triangleright In some programming languages, this loop can be vectorized.
- 2: Draw $\theta_i \sim \mathcal{N}(\mu_i, 1/q_i)$.
- 3: end for
- 4: **return** $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d)^{\top}$.

General Cases

Algorithm 3 Cholesky sampler

1: Set $\mathbf{C} = \operatorname{chol}(\mathbf{Q})$.

 $\triangleright \mathbf{Q} = \mathbf{C}\mathbf{C}^{\top}$

- 2: Draw $\mathbf{z} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$.
- 3: Solve $\mathbf{C}^{\top}\mathbf{w} = \mathbf{z} \text{ w.r.t. } \mathbf{w}$.
- 4: return $\theta = \mu + w$.

Problem:

- Storage requirement $\Theta(d^2)$.
- Computational cost $\mathcal{O}(d^3 + d^2T)$ (T is the number of samples), only when \mathbf{Q} is unchanged.

More Efficient Solutions

- Square Root approximation: Approximate $\mathbf{Q}^{1/2}$.
- Conjugate Gradient: Solve a linear system w.r.t. **Q**.
- Matrix Splitting: A generalization of Gibbs Sampler.
- Data Augmentation: Introduce auxiliary variable.

Improvement: computational cost $\mathcal{O}(d^2T)$ and storage requirement $\Theta(d)$.

How to Choose the Sampler

Polynomial Approximation

Matrix Splitting

Data Augmentation

PPA

1