CSC363 Tutorial #8 Nondeterministic Turing machines

March 15, 2023

Things covered in this tutorial

- * What's a nondeterministic Turing machine?
- * How do nondeterministic Turing machines accept/reject inputs?
- \star How is nondeterminism useful to the concepts we learn in this course?

Copyright infringement

I've stolen most of the images in these slides.

Nondeterminism

(Recall the difference between a DFA and an NFA, if you remember!)

Turing machines are *deterministic*: given an input, they have only one possible sequence of execution.

Nondeterministic Turing Machines (NTMs) have multiple possible sequences of execution.

I stole this image from Wikipedia. Thanks!

```
Task: Fill in . . . .
A Turing Machine is a 7-tuple (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) where:
   * Q is ...
   * Σ is ...
   * Г is . . .
   \star \delta : \ldots \to \ldots is the transition function.
   * q<sub>0</sub> is ...
   \star q_{\text{accept}} is . . .
   * q<sub>reject</sub> is ...
```

A Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- $\star Q$ is the set of states.
- $\star \Sigma$ is the input alphabet.
- \star Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- $\star \delta : (Q \times \Gamma) \to (Q \times \Gamma \times \{L, R\})$ is the transition function.
- \star q_0 is the starting state.
- \star q_{accept} is the accept state.
- \star q_{reject} is the reject state.

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \star Q is the set of states.
- \star Σ is the *input alphabet*.
- \star Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- \star $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- \star q_0 is the starting state.
- \star q_{accept} is the accept state.
- \star q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition?

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \star Q is the set of states.
- \star Σ is the *input alphabet*.
- \star Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- \star $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- \star q_0 is the starting state.
- \star q_{accept} is the accept state.
- \star q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition? **Answer:** δ is no longer a transition *function*! It is a transition *relation*.

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \star Q is the set of states.
- $\star \Sigma$ is the input alphabet.
- \star Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- \star $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- \star q_0 is the starting state.
- \star q_{accept} is the accept state.
- \star q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition?

A Nondeterministic Turing Machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ where:

- \star Q is the set of states.
- $\star \Sigma$ is the *input alphabet*.
- \star Γ is the *tape alphabet* (and satisfies $\Gamma \subseteq \Sigma$).
- \star $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.
- \star q_0 is the starting state.
- \star q_{accept} is the accept state.
- \star q_{reject} is the reject state.

Task: What changed, compared to the original Turing Machine definition? **Answer:** δ is no longer a transition *function*! It is a transition *relation*.

 $\delta: (Q \times \Gamma) \to (Q \times \Gamma \times \{L, R\})$ is the transition function.

 $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.

 $\delta: (Q \times \Gamma) \to (Q \times \Gamma \times \{L, R\})$ is the transition function.

 $\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ is the transition relation.

Multiple possible transitions!

I stole this image from Wikipedia. Thanks!

A NTM M accepts input x when M has some execution path that ends in $q_{\rm accept}$. Otherwise:

- * If all execution paths end in q_{reject} , M rejects input x.
- * Otherwise, it loops.

A NTM M accepts input x when M has some execution path that ends in $q_{\rm accept}$. Otherwise:

- * If all execution paths end in q_{reject} , M rejects input x.
- * Otherwise, it loops.

In some sense, think of NTMs like job applications. If you have one job offer, you're good! Otherwise :(

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S' sums to 24? What about 27?

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S' sums to 24? What about 27?

Answer: There is a subset that sums to 24, namely $\{5,7,12\}$. There are no subsets that sum to 27, on the other hand.

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S' sums to 24? What about 27?

Answer: There is a subset that sums to 24, namely $\{5, 7, 12\}$. There are no subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of natural numbers S and a target $t \in \mathbb{N}$, can we find a $S' \subseteq S$ such that S' sums to t?

Task: Let $S = \{5, 7, 11, 12, 14\}$. Can you find a subset $S' \subseteq S$ such that S' sums to 24? What about 27?

Answer: There is a subset that sums to 24, namely $\{5,7,12\}$. There are no subsets that sum to 27, on the other hand.

This is a specific case of the subset sum problem. Given a finite set of natural numbers S and a target $t \in \mathbb{N}$, can we find a $S' \subseteq S$ such that S' sums to t?

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode.

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode.

Answer:

```
subset_sum(S, t):
  for every subset S' of S:
    if S' sums to t:
      return True
  return False
```

What is the runtime of $subset_sum(S, t)$, in terms of |S| (the size of S)?

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode.

Answer:

```
subset_sum(S, t):
  for every subset S' of S:
    if S' sums to t:
      return True
  return False
```

What is the runtime of subset_sum(S, t), in terms of |S| (the size of S)? $O(2^{|S|})$.

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode. This time, make sure that the algorithm runs in polynomial time!

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode. This time, make sure that the algorithm runs in polynomial time!

Answer:

(we don't know if it's possible or not)

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode. This time, make sure that the algorithm runs in polynomial time!

Task: Write a function $subset_sum(S, t)$ that returns True iff S has a subset that sums to t, using pseudocode. This time, make sure that the algorithm runs in polynomial time!

Answer:

(we don't know if it's possible or not)

Wait! What about the following code? Does this solve subset sum?

def subset_sum_2(S, t):
 randomly choose a subset S' of S
 if S' sums to t:
 return True
 return False

random number.

Wait! What about the following code? Does this solve subset sum?

def subset_sum_2(S, t):
 randomly choose a subset S' of S
 if S' sums to t:
 return True
 return False

No:(
Remember that Turing machines are deterministic: TMs can't generate a

```
def subset_sum_2(S, t):
  nondeterministically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

```
def subset_sum_2(S, t):
  nondeterministically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

But this pseudocode is valid for a *nondeterministic* Turing machine.

I stole this image from Wikipedia. Thanks!

```
def subset_sum_2(S, t):
  nondeterministically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

Note that this NTM accepts (S, t) iff there is a subset of S that sums to t.

A NTM M accepts input x when M has some execution path that ends in q_{accept} . Otherwise:

- * If all execution paths end in q_{reject}, M rejects input x.
- * Otherwise, it loops,

What is the runtime of this NTM?

The runtime of a NTM is the maximum runtime of any execution sequence.

The **runtime** of a NTM is the maximum runtime of any execution sequence.

I stole this image from Wikipedia. Thanks!

In other words, it's f(n) in the above diagram.

```
def subset_sum_2(S, t):
  nondetermistically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

Task: Does the above NTM run in polynomial time?

```
def subset_sum_2(S, t):
  nondetermistically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

Task: Does the above NTM run in polynomial time?

Answer: Yes!

```
def subset_sum_2(S, t):
  nondetermistically choose a subset S' of S
  if S' sums to t:
    return True
  return False
```

Task: Does the above NTM run in polynomial time?

Answer: Yes!

Conclusion:

- \star The subset sum problem can be solved in polynomial time by a NTM.
- \star We don't know if subset sum can be solved in polynomial time by a TM.

* P is the set of all languages decidable in polynomial time by a Turing machine.

- * P is the set of all languages decidable in polynomial time by a Turing machine.
- * NP is the set of all languages decidable in polynomial time by a nondeterministic Turing machine.

 $P \subseteq NP$ because

- * P is the set of all languages decidable in polynomial time by a Turing machine.
- * NP is the set of all languages decidable in polynomial time by a nondeterministic Turing machine.

 $P \subseteq NP$ because every Turing machine is a nondeterministic Turing machine.

- * P is the set of all languages decidable in polynomial time by a Turing machine.
- * NP is the set of all languages decidable in polynomial time by a nondeterministic Turing machine.

 $P\subseteq NP$ because every Turing machine is a nondeterministic Turing machine.

P versus NP problem: Is P = NP?

Examples of problems in NP

The following languages are in NP, but we don't know if any of them are in P.

- * Subset Sum.
- * Boolean Satisfiability Problem.
- * Graph Isomorphism Problem.
- * Vertex Cover Problem.
- * Knapsack Problem.
- * Hamiltonian Path Problem.
- * Generalized Sudoku.

Examples of problems in NP

The following languages are in NP, but we don't know if any of them are in P.

- * Subset Sum.
- * Boolean Satisfiability Problem.
- * Graph Isomorphism Problem.
- * Vertex Cover Problem.
- * Knapsack Problem.
- * Hamiltonian Path Problem.
- * Generalized Sudoku.

Showing that any one of those problems is not in P will net you \$1 million USD.

Last question of the day!

Question: Suppose L is decidable by a NTM. Is L decidable by a TM (disregarding runtime)?

Last question of the day!

```
Question: Suppose L is decidable by a NTM. Is L decidable by a TM
(disregarding runtime)?
Answer: Yes.

def simulate_NTM(ntm, input):
   while True:
    execute ntm(input) one step.
   if there are multiple possible transitions,
    spawn a thread here to simulate each possible transition
```