Obfuscation code¹

Anae Sobhani

Postdoc Research Fellow

TLO

2018-06-08

 $^{^{1}}$ (based on Caspar Chorus "A Simple Model of Obfuscation-based Decision-making by Human and 1 Artificial agents" paper)

1. Agent Decision Process (one rule):

- A= Action set= $\{a_1, a_2, ..., a_i\}$
 - J=J= # actions
- R= Rule set= $\{r_1, r_2, ..., r_k\}$
 - K=K= # rules
- S_{ki} = Score matrix $\in \{+, 0, -\}$
 - L= #/size of "0" in each row of the S_{kj} matrix
- P $(a_i|r_k)$ = probability of S_{kj} matrix elements (i.e. action-rule probability)
- P (r_k) = prosecutor rule probability
- P $(r_k|a_i)$ = prosecutor rule posterior probability
- H_j = Agent action entropy
- C_i= Agent choice

1) Set the random score matrix = S_{kj}

- Assign (+, 0, –) to each element randomly

restrictions:

- if there is one element in the row is (+), then the rest must be (-) in that row: strong rule
- if there is no (+), then that rule (that matrix row) is called weak rule

e.g.

	a_1	a_2	a_3	
r_1	+	_	_	Strong rule
r_2	0	0	_	Weak rule
r_3	_	0	0	Weak rule
r_4	-	+	-	Weak rule

2) Calculate $P(a_i|r_k)$ matrix (action and rule probability for each of the matrix elements):

- If "+", then P $(a_i|r_k)$ = 1.
- If "0", then P $(a_j|r_k)$ =1/L. (L= size/# of "0" in the row)
- If "-", then P $(a_j|r_k)$ ~0. (since for latter calculations we would need t

(since for latter calculations we would need to compute the log(P $(a_j|r_k)$), we have to set the P $(a_j|r_k)$ of the "-" elements as **close to 0**.

e.g.

	a_1	a_2	a_3	
r_1	1	0	0	$\sum_{j=1}^{J} P(a_j r_1) = 1$
r_2	1/2	1/2	0	$\sum_{j=1}^{J} P(a_j r_2) = 1$
r_3	0	1/2	1/2	$\sum_{j=1}^{J} P\left(a_j r_3\right) = 1$
r_4	0	0	0	$\int_{j=1}^{J} P(a_j r_4) = 1$

3) Calculate $P(r_k)$ (rule probability):

-
$$P(r_k) = \frac{1}{K}$$

(K= number of rules)

e.g.
$${\rm P} \; (r_k) {\rm = 1/4}$$

4) Calculate $P(r_k|a_j)$ matrix (posterior probability) for each element:

-
$$P(r_k|a_j) = \frac{P(a_j|r_k) \cdot P(r_k)}{\sum_{k=1}^{K} (P(a_j|r_k) \cdot P(r_k))}$$
 e.g.

	a_1	a_2	a_3
r_1	$\frac{1 * \frac{1}{4}}{\left(1 * \frac{1}{4}\right) + \left(\frac{1}{2} * \frac{1}{4}\right) + \left(0 * \frac{1}{4}\right) + \left(0 * \frac{1}{4}\right)}$	0	0
r_2	1/3	1/4	0
r_3	0	1/4	1
r ₄	0	1/2	0

$$\sum_{k=1}^{K} P(a_1|r_k) = 1 \qquad \sum_{k=1}^{K} P(a_2|r_k) = 1 \qquad \sum_{k=1}^{K} P(a_3|r_k) = 1$$

5) Calculate H_i action matrix for the agent:

-
$$H_j = -\sum_{k=1}^{k} [P(r_k|a_j) \cdot log(P(r_k|a_j))]$$

e.g.

a_1	a_2	a_3
(/3)) + (1/3 * 0 * log(~0)) + (0 *	0.452	0

6) Generate the choice (C_i)) (or selected action) for the agent:

 $C = a_j$ with $Max (H_j)$

e.g.

Max (H_1 , H_2 , H_3) = 0.452, so C_i = agent choice= a_2

2. Naïve onlooker Decision Process (one rule):

1) Set the random score matrix = S_{kj}

- Assign (+, 0, –) to each element randomly

Note: Same restrictions as previous code (agent decision making code)

e.g:

	a_1	a_2	a_3
r_1	0	0	_
r_2	0	0	-
r_3	_	0	0

2) Compute all possible binary choice sets based on actions (a_j): C_n

•
$$C_1 = \{a_1, a_2\}$$

	a_1	a_2
r_1	0	0
r_2	0	0
r_3	-	0

•
$$C_2 = \{a_2, a_3\}$$

	a_1	a_3
r_1	0	_
r_2	0	_
r_3	_	0

•
$$C_3 = \{a_1, a_3\}$$

	a_2	a_3
r_1	0	-
r_2	0	-
r_3	0	0

- 3) Calculate H_j action matrix for the agent for each choice set (C_n): H_{j|Cn} matrix
 - 3.1: For each $C_{n,}$ do steps 2 to 5 from the agent Decision Process (one rule) and compute the $H_{\rm j}$
 - 3.1.1.: Calculate $P(a_{i|Cn}|r_k)$ matrix

Note: there is no restrictions in here and $\sum_{j=1}^{J} P\left(a_j | r_j\right)$ in each row can be less than 1.

- 3.1.2. : Calculate $P(r_k)$ (rule probability)
- 3.1.3.: Calculate $P(r_k|a_{j|Cn})$ matrix (posterior probability) for each element:

Note: there is no restrictions in here and $\sum_{k=1}^{K} P(a_j|r_k) = 1$ in each column can be less than 1.

- 3.1.4.: Calculate Hilch action matrix for the agent
- 3.2: Repeat 3.1.1 to 3.1.4 for rest of the choice sets (C_n)
- 4) Compute expected entropy for the Naïve onlooker for each choice set (C_n): E(H_{i|Cn})

$$\text{E(H}_{j|\text{Cn}}) = \sum_{j=1}^{J} \left[H_{j|C} \cdot \sum_{k=1}^{K} \frac{P(a_{j|C}|r_k)}{K} \right]$$

e.g.

• for C_{1:}

$$E(H_{i|C1}) = 0.3*((0.5+0.5)/3)+.45*((.5+.5+1)/3)=0.4$$

for C_{2:}

$$E(H_{i|C2})=0.38$$

for C_{3:}

$$E(H_{i|C3})=0.20$$

5) Sort the E(H_{i|Cn}) smallest to larges

1)
$$E(H_{j|C3}) = 0.20$$

2)
$$E(H_{j|C2})=0.38$$

3)
$$E(H_{i|C1}) = 0.4$$

6) Choose the selected naïve onlooker choice set: Naïve onlooker chosen choice set (C_n))

Naïve onlooker choice set $(C_n) = C_n \mid min(E(H_{j|Cn}))$

e.g.

Chosen set= min (E(H_{j|C3}), E(H_{j|C2}), E(H_{j|C1})) = E(H_{j|C3})= 0.20

**At the end print the outputs of these steps:

- 1) score matrix = S_{kj}
- **2)** binary choice sets based on actions (a_j) : C_n
- 3) Only Final H_{i|Cn} matrices
- 5) Sort the naïve onlooker E(H_{j|Cn}) smallest to larges
- 6) Naïve onlooker chosen choice set (C_n))

3. Cynical onlooker Decision Process (one rule):

1) Set the random score matrix = Skj

- Assign (+, 0, –) to each element randomly

Note: Same restrictions as previous code (agent decision making code)

e.g:

	a_1	a_2	a_3
r_1	0	0	_
r_2	0	0	-
r_3	_	0	0

2) Compute all possible binary choice sets based on actions (a_j): C_n

•
$$C_1 = \{a_1, a_2\}$$

	a_1	a_2
r_1	0	0
r_2	0	0
r_3	_	0

•
$$C_2 = \{a_2, a_3\}$$

	a_1	a_3
r_1	0	_
r_2	0	_
r_3	_	0

•
$$C_3 = \{a_1, a_3\}$$

	a_2	a_3
r_1	0	-
r_2	0	-
r_3	0	0

- 3) Calculate H_j action matrix for the agent for each choice set (C_n): H_{j|Cn} matrix
 - 3.1: For each $C_{n,}$ do steps 2 to 5 from the agent Decision Process (one rule) and compute the $H_{\rm j}$
 - 3.1.1.: Calculate $\frac{\mathsf{P}\left(a_{j|Cn}|r_{k}\right)}{\mathsf{matrix}}$

Note: there is no restrictions in here and $\sum_{j=1}^{J} P\left(a_j | r_j\right)$ in each row can be less than 1.

- 3.1.2. : Calculate $P(r_k)$ (rule probability)
- 3.1.3.: Calculate $P(r_k|a_{j|Cn})$ matrix (posterior probability) for each element:

Note: there is no restrictions in here and $\sum_{k=1}^{K} P(a_j|r_k) = 1$ in each column can be less than 1.

- 3.1.4.: Calculate Hilch action matrix for the agent
- 3.2: Repeat 3.1.1 to 3.1.4 for rest of the choice sets (C_n)
- 4) Compute entropy for the Cynical onlooker for each choice set (C_n): E(H_{i|Cn})

$$E(H_{j|Cn}) = \max_{j=1...J} \{H_{j|C}\}$$

e.g.

• for C_{1:}

$$E(H_{i|C1}) = 0.45$$

for C_{2:}

$$E(H_{i|C2})=0.30$$

for C_{3:}

$$E(H_{i|C3})=0.46$$

5) Sort the E(H_{i|Cn}) smallest to larges

1)
$$E(H_{j|C2}) = 0.30$$

2)
$$E(H_{j|C1})=0.45$$

3)
$$E(H_{i|C3}) = 0.46$$

6) Choose the selected naïve onlooker choice set: Cynical onlooker chosen choice set (C_n))

Cynical onlooker choice set $(C_n)=C_n \mid min(E(H_j\mid C_n))$

e.g.

Chosen set= min (E(H_{j|C3}), E(H_{j|C2}), E(H_{j|C1})) = E(H_{j|C2})= 0.30

**At the end print the outputs of these steps:

- 1) score matrix = S_{kj}
- **2)** binary choice sets based on actions (a_j) : C_n
- 3) Only Final H_{i|Cn} matrices
- 5) Sort the Cynical onlooker E(H_{j|Cn}) smallest to larges
- 6) Cynical onlooker chosen choice set (C_n))

4. Agent Hybrid (one rule):

1) Set the random score matrix = S_{ki}

- Assign (+, 0, –) to each element randomly

restrictions:

- if there is one element in the row is (+), then the rest must be (-) in that row: strong rule
- if there is no (+), then that rule (that matrix row) is called weak rule

e.g.

	a_1	a ₂	a_3	
r_1	+	_	_	Strong rule
r_2	0	0	_	Weak rule
r_3	_	0	0	Weak rule
r ₄	-	+	-	Weak rule

2) Calculate $P(a_i|r_k)$ matrix (action and rule probability for each of the matrix elements):

- If "+", then P $(a_i|r_k)$ = 1.
- If "0", then P $(a_j|r_k)=1/L$. (L= size/# of "0" in the row)
- If "-", then P $(a_j|r_k)$ ~0. (since for latter calculations we would need to compute the log(P $(a_j|r_k)$), we have to set the P $(a_j|r_k)$ of the "-" elements as **close to 0**.

e.g.

	a_1	a_2	a_3	
r_1	1	0	0	$\sum_{j=1}^{J} P\left(a_j r_1\right) = 1$
r ₂	1/2	1/2	0	$\sum_{j=1}^{J} P\left(a_j r_2\right) = 1$
r_3	0	1/2	1/2	$\sum_{j=1}^{J} P\left(a_j r_3\right) = 1$
r_4	0	0	0	$\sum_{j=1}^{J} P(a_j r_4) = 1$

3) Calculate $P(r_k)$ (rule probability):

-
$$P(r_k) = \frac{1}{K}$$

(K= number of rules)

e.g.
$${\rm P} \; (r_k) {\rm = 1/4}$$

4) Calculate $P(r_k|a_j)$ matrix (posterior probability) for each element:

-
$$P(r_k|a_j) = \frac{P(a_j|r_k) \cdot P(r_k)}{\sum_{k=1}^{K} (P(a_j|r_k) \cdot P(r_k))}$$
 e.g.

	a_1	a_2	a_3
r_1	$\frac{1 * \frac{1}{4}}{\left(1 * \frac{1}{4}\right) + \left(\frac{1}{2} * \frac{1}{4}\right) + \left(0 * \frac{1}{4}\right) + \left(0 * \frac{1}{4}\right)}$	0	0
r_2	1/3	1/4	0
r_3	0	1/4	1
r ₄	0	1/2	0

$$\sum_{k=1}^{K} P(a_1|r_k) = 1 \qquad \sum_{k=1}^{K} P(a_2|r_k) = 1 \qquad \sum_{k=1}^{K} P(a_3|r_k) = 1$$

5) Calculate H_j action matrix for the agent:

-
$$H_j = -\sum_{k=1}^{k} [P(r_k|a_j) \cdot log(P(r_k|a_j))]$$

e.g.

a_1	a_2	a_3
$-[(2/3 * \log(2/3)) + (1/3 * \log(1/3)) + (0 * \log(\sim0)) + (0 * \log(\sim0))]$	0.452	0

6) Choose one rule (row) = Chosen K

e.g chosen rule (row)=3

- 7) Set gamma between 0 and 1
 - 0< γ<1

- 1) Set S'kj matrix
- If "+ or 0", then $S'_{kj}=1$.
- If "-", then $S'_{kj}=0$.

e.g for the chosen rule 3:

r_3	0	1	1

8) Calculate the action utility for the chosen row= U'j

$$U_j = (1 - \gamma) \cdot \mathbf{1}(s_{kj} \neq -) + \gamma \cdot \frac{H_j - H_{\min}}{H_{\max} - H_{\min}}$$

e.g.

for rule 3:

- O U'1= (1-0.3)*0+0.3*[(0.276-0)/(0.452-0)]
- o U'2= (1-0.3)*1+0.3*[(0.452-0)/(0.452-0)]
 - O U'3= (1-0.3)*1+0.3*[(0-0)/(0.452-0)]
- 9) Generate the choice (C_i)) (or elected action) for the agent:

 $C=a_j$ with max (U'_j)

e.g. C= Choice = action 2

5. Agent Decision Process (Multi rule):

1) Set the random score matrix = S_{kj}

- Assign (+, 0, –) to each element randomly

e.g.

	a1	a2	a3
r1	0	1	0
r2	-	0	0

2) Set S'_{kj} matrix

- If "+ or 0", then $S'_{kj}=1$.
- If "-", then $S'_{kj}=0$.

e.g

	a1	a2	a3
r1	1	0	1
r2	0	1	1

3) Set Stkn matrix and n: (k * n matrix size)

- Since B_k (for each rule) can only be 0 or 1, generate all potential combination of 0 and 1 for the rules

e.g

	St1	St2	St3	St4
r1	1	1	0	0
r2	1	0	1	0

n= potential states of B_k combinations= 4

4) Onlooker prior probabilistic belief about the weights attached by the agent to different rule= f(B)

- F(B)= 1/n
 - o (n= potential states of B_k combinations)

e.g

5) Generate action utility action= U_{jk} and U_j matrix for each St_{kn} matrix

- For each St_{kn} matrix:
 - <u>U_{ik} (in row k)= B_k * S'_{kj}</u>
 - $\circ \quad \underline{u_j} = \mu * \sum_{k=1}^K \underline{u_{jk}}$

o ____µ= 1 or manually defined

- Do that for all St_{kn} matrix

e.g.

<u>St1</u>	a1	a2	a3
r1	(1*1)	(1*0)	(1*1)
r2	(1*0)	(1*1)	(1*1)
Uj	(1+0)=1	(0+1)=1	2

St2	a1	a2	a3
r1	(1*1)	(1*0)	(1*1)
r2	(0*0)	(0*1)	(0*1)
Uj	(1+0)=1	(0+0)=0	1

<u>St3</u>	a1	a2	a3
r1	(0*1)	(0*0)	(0*1)
r2	(1*0)	(1*1)	(1*1)
Uj	(0+0)=0	(0+1)=1	1

<u>St4</u>	a1	a2	a3
r1	(0*1)	(0*0)	(0*1)
r2	(0*0)	(0*1)	(0*1)
Uj	(0+0)=0	(0+0)=0	0

6) Generate the probability that a particular action is chosen given a vector of rule-weights= $\frac{P}{(a_j|B)}$ for each St_{kn} matrix

$$P(a_j|\boldsymbol{\beta}) = \frac{\exp(\sum_{k=1}^K u_{jk})}{\sum_{m=1}^J \exp(\sum_{k=1}^K u_{mk})}$$

Eg.

	a1	a2	a3
<u>St1</u>	[Exp (1)]/[exp(1)+ exp(1)+exp(2)] =0.21	0.21	0.58

$$\sum_{j=1}^{J} P\left(a_{j}|B\right) = 1$$

<u>St2</u>	[Exp (1)]/[exp(1)+ exp(0)+exp(1)] =0.42	0.16	0.42	
<u>St3</u>	0.16	0.42	0.42	
<u>St4</u>	0.33	0.33	0.33	

$$\sum_{j=1}^{J} P(a_j|B) = 1$$

$$\sum_{j=1}^{J} P(a_j|B) = 1$$

$$\sum_{j=1}^{J} P(a_j|B) = 1$$

7) Onlooker posterior probabilities matrix= f(B|a_i) matrix

$$f(\boldsymbol{\beta}|a_j) = \frac{P(a_j|\boldsymbol{\beta}) \cdot f(\boldsymbol{\beta})}{\int_{\boldsymbol{\beta}} [P(a_j|\boldsymbol{\beta}) \cdot f(\boldsymbol{\beta})] d\boldsymbol{\beta}}$$

Eg.

	a1	a2	a3
<u>St1</u>	(0.21*0.25)/(0.21*0.25+0.16*0.25+0.42*0.25+0.33*0.25)=0.19		
St2	(0.16*0.25)/(0.21*0.25+0.16*0.25+0.42*0.25+0.33*0.25)=0.38		
St3	0.14		
St4	0.30		

$$\sum_{-1} = 1 \qquad \sum_{-1} = 1$$

8) Calculate H_j action matrix for the agent

-

$$H_j = -\int_{\boldsymbol{B}} \left[f(\boldsymbol{\beta}|a_j) \cdot \log \left(f(\boldsymbol{\beta}|a_j) \right) \right] d\boldsymbol{\beta}$$

a1	a2	a3
-		
$[0.19*\log(0.19)]/[0.19*\log(0.19)+0.38*\log(0.38)+0.14*\log(0.14)+0.3*\log(0.3)] = 0.19*\log(0.19)$		
1.32		

- 9) Generate the choice (C_i)) (or selected action) for the agent:
 - $C = a_j$ with Max (H_j)

6. Agent Hybrid (Multi rule):

1) Set the random score matrix = S_{kj}

- Assign (+, 0, –) to each element randomly

e.g.

	a1	a2	a3
r1	0	-	0
r2	-	0	0

2) Set S'_{kj} matrix

- If "+ or 0", then $S'_{kj}=1$.
- If "-", then $S'_{kj=0}$.

e.g

	a1	a2	a3
r1	1	0	1
r2	0	1	1

3) Set St_{kn} matrix and n: (k * n matrix)

Since B_k (for each rule) can only be 0 or 1, generate all potential combination of 0 and 1 for the rules

e.g

	St1	St2	St3	St4
B1	1	1	0	0
B2	1	0	1	0

n= potential states of B_k combinations= 4

4) Onlooker prior probabilistic belief about the weights attached by the agent to different rule= f(B)

- F(B) = 1/n
 - o (n= potential states of B_k combinations)

e.g

- 5) Generate action utility action= U_{jk} and U_j matrix for each St_{kn} matrix
 - For each Stkn matrix:
 - $\bigcirc \quad \underline{U_{jk} \text{ (in row k)= } B_k * S'_{kj}}$

$$\circ \quad \underline{u_j} = \mu * \sum_{k=1}^K \underline{u_{jk}}$$

- o _____µ= 1 or manually defined
- Do that for all St_{kn} matrix

e.g.

<u>St1</u>	a1	a2	a3
r1	(1*1)	(1*0)	(1*1)
r2	(1*0)	(1*1)	(1*1)
Uj	(1+0)=1	(0+1)=1	2

<u>St2</u>	a1	a2	a3
r1	(1*1)	(1*0)	(1*1)
r2	(0*0)	(0*1)	(0*1)
Uj	(1+0)=1	(0+0)=0	1

<u>St3</u>	a1	a2	a3
r1	(0*1)	(0*0)	(0*1)
r2	(1*0)	(1*1)	(1*1)
Uj	(0+0)=0	(0+1)=1	1

<u>St4</u>	a1	a2	a3
r1	(0*1)	(0*0)	(0*1)
r2	(0*0)	(0*1)	(0*1)
Uj	(0+0)=0	(0+0)=0	0

6) Generate the probability that a particular action is chosen given a vector of rule-weights= $\frac{P}{(a_j|B)}$ for each St_{kn} matrix

$$P(a_j|\boldsymbol{\beta}) = \frac{\exp(\sum_{k=1}^K u_{jk})}{\sum_{m=1}^J \exp(\sum_{k=1}^K u_{mk})}$$

- For each St_{kn} matrix

Eg.

a1	a2	a3

<u>St1</u>	[Exp (1)]/[exp(1)+ exp(1)+exp(2)] =0.21	0.21	0.58	$\sum_{j=1}^{J} P\left(a_{j} B\right) = 1$
<u>St2</u>	[Exp (1)]/[exp(1)+ exp(0)+exp(1)] =0.42	0.16	0.42	$\sum_{j=1}^{J} P\left(a_{j} B\right) = 1$
St3	0.16	0.42	0.42	$\sum_{j=1}^{J} P\left(a_{j} B\right) = 1$
<u>St4</u>	0.33	0.33	0.33	$\sum_{j=1}^{J} P(a_j B) = 1$

7) Onlooker posterior probabilities matrix = $\frac{f(B|a_i)}{f(B|a_i)}$ matrix for each For each $f(B|a_i)$ matrix

$$f(\boldsymbol{\beta}|a_j) = \frac{P(a_j|\boldsymbol{\beta}) \cdot f(\boldsymbol{\beta})}{\int_{\boldsymbol{\beta}} [P(a_j|\boldsymbol{\beta}) \cdot f(\boldsymbol{\beta})] d\boldsymbol{\beta}}$$

- For each St_{kn} matrix

Eg.

	a1	a2	a3
<u>St1</u>	(0.21*0.25)/(0.21*0.25+0.16*0.25+0.42*0.25+0.33*0.25)=0.19		
St2	(0.16*0.25)/(0.21*0.25+0.16*0.25+0.42*0.25+0.33*0.25)=0.38		
St3	0.14		
St4	0.30		

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

8) Calculate H_j action matrix for the agent

$$H_j = -\int_{\boldsymbol{B}} \left[f(\boldsymbol{\beta}|a_j) \cdot \log \left(f(\boldsymbol{\beta}|a_j) \right) \right] d\boldsymbol{\beta}$$

a1	a2	a3
-		
[0.19*log(0.19)]/[0.19*log(0.19)+0.38*log(0.38)+0.14*log(0.14)+0.3*log(0.3)]=		
1.32		

9) Choose one of the Stkn from step 3 randomly or manually

10) Set gamma between 0 and 1

11) Calculate the action utility for the chosen $\underline{St_{kn}} = \underline{U'j}$ for each

$$U_j = (1 - \gamma) \cdot \frac{u_j - u_{\min}}{u_{\max} - u_{\min}} + \gamma \cdot \frac{H_j - H_{\min}}{H_{\max} - H_{\min}}$$

12) Generate the choice (C_i)) (or elected action) for the agent:

$$C = a_i$$
 with max (U'_i)