

Interval scheduling

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

مند زمان بنری بازهای یا

"Activity Selection

سله اسماب معالس

• Job j starts at s_j and finishes at f_j .

Two jobs compatible if they don't overlap.

· Goal: find maximum subset of mutually compatible jobs.

منول جاهنی مالار معزانی: لسی از تعاها برای برلزاری معزای داره سره

Interval scheduling: greedy algorithms

feasibility

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

ها ما بررسی

- [Earliest start time] Consider jobs in ascending order of s_j .
- [Earliest finish time] Consider jobs in ascending order of f_j .
- [Shortest interval] Consider jobs in ascending order of $f_j s_j$
- [Fewest conflicts] For each job j, count the number of conflicting jobs c_j . Schedule in ascending order of c_j .

ما عره كومًا هرين زمان

أعده لم تداخل ترين

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

Interval scheduling: earliest-finish-time-first algorithm

Proposition. Can implement earliest-finish-time first in $O(n \log n)$ time.

- Keep track of job j^* that was added last to A.
- Job j is compatible with A iff $s_i \ge f_{i^*}$.
- Sorting by finish time takes $O(n \log n)$ time.

 $T(n) = O(n \lg n) + O(n) = O(n \lg n)$

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]

- Assume greedy is not optimal, and let's see what happens.
- Let i₁, i₂, ... i_k denote set of jobs selected by greedy.
 Let j₁, j₂, ... j_m denote set of jobs in an optimal solution with i₁ = j₁, i₂ = j₂, ..., i_r = j_r for the largest possible value of r. (r<m)

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]

- Assume greedy is not optimal, and let's see what happens.
- Let i_1 , i_2 , ... i_k denote set of jobs selected by greedy.
- Let $j_1, j_2, ..., j_m$ denote set of jobs in an optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r.

عبرسله قبل ۱۹ سمزای،

Interval partitioning.

- " سند کمینه سازی با لارهای مغزان "
- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

n=10С d g b h a 4:30 9:30 10 10:30 11:30 12 12:30 1:30 2:30 3:30 time

Interval partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to an available classroom (which one?); allocate a new classroom if none are available.

- [Earliest start time] Consider lectures in ascending order of s_j .
- أور المركن
- 2 [Earliest finish time] Consider lectures in ascending order of f_j . أور طابان كرس
- [Shortest interval] Consider lectures in ascending order of $f_j s_j$. وأن من يازه المنافعة المن
- [Fewest conflicts] For each lecture j, count the number of conflicting lectures c_j . Schedule in ascending order of c_j .

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to an available classroom (which one?); allocate a new classroom if none are available.

Interval partitioning: earliest-start-time-first algorithm

RETURN schedule.

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).

- To determine whether lecture j is compatible with some classroom, compare s_j to key of min classroom k in priority queue.
- To add lecture j to classroom k, increase key of classroom k to f_j .
- Total number of priority queue operations is O(n).
- Sorting by start time takes *O*(*n* log *n*) time. ■

Remark. This implementation chooses the classroom k whose finish time of its last lecture is the earliest.

Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

- Q. Does number of classrooms needed always equal depth?
- A. Yes! Moreover, earliest-start-time-first algorithm finds one.

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal. Pf.

- Let d = number of classrooms that the algorithm allocates.
- Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with all d-1 other classrooms.
- These d lectures each end after s_i .
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_i .
- Thus, we have d lectures overlapping at time $s_j + \varepsilon$.
- Key observation \Rightarrow all schedules use $\ge d$ classrooms. \blacksquare