1 Introduction

1. History

(a)stochastic optimization(SP):

$$\max_{\mathbf{x}\in X}\mathbf{E}_{F_{\epsilon}}[h(\mathbf{x},\epsilon)]$$

- $-F_{\epsilon}$ (distribution function) need to be exact, otherwise result in sub-optimal solutions
- -no robustness in the error of distribution; need to much computation
- (b)(static) robust optimization:

$$\max_{\mathbf{x} \in X} \min_{\epsilon \in support} h(\mathbf{x}, \epsilon)$$

- -intractable: include too much unrealistic distribution(single point) on support set(the solution may not be realistic to worst case)
- -classes:
- (1) without recourse, the static settings;
- (2) with recourse, the dynamic settings;
- (3)connection with stochastic optimization and risk theory, distributionally robust optimization
- -applications: inventory and logistics, finance, revenue mangement, queueing networks, machine learning, energy systems, public good
- -static: one stage, decide at once

(c)distributional robust optimization(DRO):

- -also named as DRSP(distributional robust stochastic programming) or DRSO(distributional robust stochastic optimization)
- -an intermediate approach between SP and robust optimization, i.e.,"robustifying" stochastic optimization
- -SP with uncertainty, a chosen set of distributions
- -semidefinite optimization model with known 1st and 2nd moments, proof tractable approximation; directly on distributions, "well structured" with high probability to contain the distribution

2. Model

(a)composition:

$$\max_{\mathbf{x}\in X}\min_{F_{\epsilon}\in D}\mathbf{E}_{F_{\epsilon}}[h(\mathbf{x},\epsilon)]$$

Here, D is uncertain set, a set of distributions, and the purpose is to give best $\mathbf{x} \in X$. In order to choose a proper D, following things need to be taken into account:

- -tractability
- -practical (statistical) meanings
- -performance (eg: the potential loss comparing to the benchmark cases)

(b)ways to choose D

-known certain observed samples

eg: sum-of-squares polynomial density functions of known degrees/ a fixed distance, which measured by KL divergence, from a nominal distribution

- -known certain training data
- (1) robust optimization directly on the probability distributions
- eg: data-driven sets with statistical hypothesis tests
- (2) robust optimization using moment information

eg: other statistical information: higher-order moments; conditional probabilities; conditional moments; marginal distributions

(c)properties:

-uncertain (exact distribution is unknown), fictitious, decision-making problems, datadriven optimization, apply to worst case

 $\begin{cases} pros: uncertain, fictitious \\ cons: pathological discrete distribution \end{cases}$

(d)classes:

#1 : decision making problems: likelihood robust optimization(LRO);continuous action space; learn optimal strategy(make decision)

#2: Find distributional function: data-driven optimization, under Wasserstein metric, change to finite convex programs(eg tractable linear programs/ conic program)

#3: Classify problems: DRO be used in Logistic Regression

3. Software

ROME

4. Comparison with other methods

(a) exist method

By the use of several carefully designed data structures, DRO provides at little extra cost compared to empirical risk minimization & stochastic gradient methods

(b) exist function

data-driven function is resonable and tractable than exist popular function

5. Theorem related

(a) existence for worst-case

Conditions for worst-case to exist

(b) tractability for data-driven DRSO

Conditions for tractable; approximate for violate conditions

(c) duality problem

By using Wasserstein Distance, duality problem can be translated

(d) problem related

eg: infinite dimensional process, worst-case in risk managment

(e)asymptotic behavior

2 Application

management science, system design, optimal control

1. Finance

(a)data source:

```
portfolio optimization problem (insurance company);
```

risk aggregation problem (insurance company);

price-post learning

Nash equilibrium problem

public good

(b)origin:

DRO method comes from risk-managing decision-make optimization with portfolio problem

2. Engineering

(a)purpose:

- -give out power generation solution by minimizing cost
- -using wind power (partial information) to give out wind power probability distribution

(b)energy systems:

3. Traffic

(a) on-line signal control:

4. Classify

(a)Logistic Regression:

using DRO to define upper and lower confidence bounds and giving classifier

5. newsvendor

3 Basic definition

from(WIKI)

1. Wasserstein metric

The Wasserstein or Kantorovich-Rubinstein metric or distance is a distance function defined between probability distributions on a given metric space M.

$$W_p(\mu, \nu) := \left(\inf_{\gamma \in \Gamma(\mu, \nu)} \int_{M \times M} d(x, y)^p \, d\gamma(x, y)\right)^{1/p},$$

or

$$W_p(\mu,\nu)^p = \inf \mathbf{E} [d(X,Y)^p]$$

- -measurement
- -distance
- -ball

2. worst-case analysis

a solution is evaluated using the realization of the uncertainty that is most unfavorable The following linear programming problem

$$\max_{x,y} \{3x + 2y\} \text{ subject to } x, y \ge 0; cx + dy \le 10, \forall (c,d) \in P$$

where P is a given subset of \mathbb{R}^2 .

Satisfy the worst $(c,d) \in P$ pertaining to (x,y), namely the pair $(c,d) \in P$ that maximizes the value of cx + dy for the given value of (x,y).

If P is not a finite set, then this problem is a linear semi-infinite programming problem, namely a linear programming problem with finitely many decision variables and infinitely many constraints.

3. tractable

Namely, Computational complexity theory

4. asymptotic

5. portfolio problem

The term portfolio refers to any combination of financial assets such as stocks, bonds and cash.

4 Problems last time

- examples and difference between RO and DRO classic RO: minimax or maximini optimization problem(wiki), infinite constrains DRO: data-driven, finite constrains
- 2. way to construct data-driven distributionally function sets By moments.
- 3. risk managment area(finance/security/health/supply chain) undo
- 4. game theory: difference between definition of continuity undo

Main point

1. 2018_Klerk_SIAM

- (a)introduce a sets(sum-of-squares polynomial density functions of known degrees) instead of pathological distribution
- (b)apply to portfolio optimization problem and risk aggregation problem

2. **2018**_Gao_book

- (a) give method to choose distributional function
- (b) give simple algorithms for local optima
- (c) extend to optimization problems: orthogonal constraints and coupled constraints over simplex set and polytopes
- (d)explain by convergence rate and examples

3. 2018_Esfahani_MP

- (a) under Wasserstein metric and ball, change DOR to finite convex programs(eg: tractable linear programs)
- (b)global optimization techniques
- (c) apply to mean-risk portfolio optimization

4. 2018_Bertsimas_MP

- (a)data-driven distributionally function
- (b)apply to portfolio management

5. **2017_Ye_ppt**

(a)stochastic optimization

$$\max_{\mathbf{x} \in X} \mathbf{E}_{F_{\epsilon}}[h(\mathbf{x}, \epsilon)]$$

 F_{ϵ} (distribution function) need to be exact, otherwise result in sub-optimal solutions

(b)(static)robust optimization

$$\max_{\mathbf{x} \in X} \min_{\epsilon \in support} h(\mathbf{x}, \epsilon)$$

Robust to any distribution, but may make bad decision in worst-case

(c)DRO

intermediate approach: robustness in the error of distribution; provide realistic nonsingle-point distribution on the support

6. **2017_Chen_IEEE**

- (a) distance-based distributionally robust unit commitment (DB-DRUC)
- (b)apply to wind power generation
- (c)minimize the expected cost under the worst case wind distributions (fixed distance from a nominal distribution)

$7. 2017_{\text{Wang_arXiv}}$

- (a) optimal power flow
- (b)risk term(objective function): penalties for load shedding, wind generation curtailment and line overload
- (b) ambiguity set: second-order moment and Wasserstein distance (change to conic program)
- (c)test systems: 5-bus/IEEE 118-bus/ Polish 2736-bus

8. 2016_Namkoong_AINIP

- (a) give calibrated confidence intervals on performance
- (b) weight more on observations (loss)
- (c)stochastic gradient method is a little better than DRO

9. **2016_Liu_IEEE**

- (a)SP model with uncertainty
- (b)two-stage power system
- (c) unit commitment: effectiveness

10. **2016**_Gao_arXiv

- (a) Wasserstein Distance: an empirical distribution resulting from available data; advantage of it:one—reasonable than functions at hand; two—tractability
- (b) the way to choose distributional function set; popular functions but not appropriate
- (c)proof:
- -conditions for the existence of worst-case distribution
- -worst-case can have concise and clear structure
- -data-driven DRSO tractable with tools in RO
- -strong duality
- -can be used to infinite dimensional process and worst-case
- (d)note: a hedge is a risk management technique used to reduce any substantial losses or gains suffered by an individual or an organization

11. **2015_Sun_MOOR**

- (a) construct data-driven distribution functions
- (b) apply to Nash equilibrium problem (one-stage problem)

12. **2015_Liu_TRP**

- (a) on-line signal control (two-stage problem) traffic problem
- (b) linear decision rule(LDR)
- (c) DRO: guarantee performance by off-line computation and improve traffic

13. **2015_Bian_IEEE**

- (a) using partial information of wind power to find wind power probability distribution
- (b) SP change into BMI(bilinear matrix inequality problem)

14. 2015_Abadeh_AINIP

- (a) apply distributionally robust method to logistic regression problem
- (b) operate within Wasserstein ball under worst-case

15. 2014_Wiesemann_OR

- (a) solve DRO problems
- (b) domain: standardized ambiguity sets
- (c) conditions for computationally tractable; approximations for violate conditions

16. **2014**_Wang_arXiv

- (a) propose LRO (likelihood robust optimization) for optimal decision-making problems
- (b)data-driven distributional function
- (c) analyses model by Bayesian statistics and empirical likelihood theory
- (d)proof for asymptotic behavior
- (e)apply to newsvendor problem and portfolio selection problem

17. 2014_Gabrel_EJOOR

- (a) overview of RO in theory and practice
- (b)classes:
- -without recourse, the static settings;
- -with recourse, the dynamic settings;
- -connection with stochastic optimization and risk theory, distributionally robust optimization

- (c) applications: inventory and logistics, finance, revenue mangement, queueing networks, machine learning, energy systems, public good
- (d) DRO: linking uncertainty sets to risk theory; application in public good and energy systems