Arbitrage free SABR

Patrick S. Hagan, Mathematical Institute, Oxford University
Deep Kumar, AVM, L.P., Boca Raton, FL
Andrew L. Lesniewski, Dept. of Mathematics, Baruch College
Diana E. Woodward, Gorilla Science, London, UK

pathagan1954@yahoo.com

SABR model

SABR models developed to manage skew/smile risk:

$$d\tilde{F} = \tilde{\alpha}C(\tilde{F})dW_1,$$

$$d\tilde{\alpha} = v\tilde{\alpha}dW_2,$$

with

$$dW_1dW_2 = \rho dt$$

- Asymptotic analysis yields approximate formulas for the implied normal volatility
 - several variations
 - of all the $O(\varepsilon^2)$ -accurate formulas, our favorite is

$$\sigma_N(K) = \frac{\alpha(f - K)}{\int_K^f \frac{df'}{C(f')}} \cdot \left(\frac{\zeta}{x(\zeta)}\right)$$

$$\cdot \left\{1 + \left[g\alpha^2 + \frac{1}{4}\rho\nu\alpha\frac{C(f) - C(K)}{f - K} + \frac{2 - 3\nu^2}{24}\right]\tau_{ex} + \cdots\right\}$$

with

$$\zeta = \frac{v}{\alpha} \int_{K}^{f} \frac{df'}{C(f')}, \qquad x(\zeta) = \log\left(\frac{\sqrt{1 - 2\rho\zeta + \zeta^{2}} - \rho + \zeta}{1 - \rho}\right)$$
$$g = \log\left(\frac{1}{f - K} \int_{K}^{f} \frac{\sqrt{C(f)C(K)}}{C(f')} df'\right) / \left(\int_{K}^{f} \frac{df'}{C(f')}\right)^{2}$$

not the simplest, but seems to be the most robust

CEV Backbone

- Most common case is $C(F) = F^{\beta}$
- implied normal vol:

$$\sigma_N(K) = \frac{\alpha(1-\beta)(f-K)}{f^{1-\beta} - K^{1-\beta}} \cdot \left(\frac{\zeta}{x(\zeta)}\right)$$
$$\cdot \left\{1 + \left[g\alpha^2 + \frac{1}{4}\rho\nu\alpha\frac{f^\beta - K^\beta}{f-K} + \frac{2-3\nu^2}{24}\right]\tau_{ex} + \cdots\right\}$$

with

$$\zeta = \frac{\nu}{\alpha} \frac{f^{1-\beta} - K^{1-\beta}}{1-\beta}, \qquad x(\zeta) = \log \left(\frac{\sqrt{1 - 2\rho\zeta + \zeta^2} - \rho + \zeta}{1-\rho} \right)$$

$$g = \frac{(1-\beta)^2}{(f^{1-\beta} - K^{1-\beta})^2} \log \left((fK)^{\beta/2} \frac{f^{1-\beta} - K^{1-\beta}}{(1-\beta)(f-K)} df' \right)$$

Arbitrage in the SABR model

- Explicit implied vols $\sigma_N(K)$ are usually treated as exact
- don't view $\sigma_N(K)$ as an *approximate* solution to the SABR model
- view $\sigma_N(K)$ as the *exact solution* to some *other model* which is approximated by the SABR model
 - For "other model" to be arbitrage free, need:
 put-call parity (automatic from using implied vols)
 option prices must imply positive probability densities:

$$\frac{\partial^2}{\partial K^2}V = \frac{\partial^2}{\partial K^2} \left(\int_K^\infty (F - K) p(\tau_{ex}, F) dF \right) = p(\tau_{ex}, K) \ge 0 \quad \text{for all } K$$

· Can be violated for low strikes, even for nice smiles:

$$\alpha = 35\%$$
, $\beta = 25\%$, $\rho = -10\%$, $\nu = 100\%$

Implied probability density

• Both $\sigma_N(K)$ lead to nearly identical prices

$$\alpha = 35\%$$
, $\beta = 25\%$, $\rho = -10\%$, $\nu = 100\%$

 Yet one leads to negative probability densities, and is not arbitrage free

$$\alpha = 35\%$$
, $\beta = 25\%$, $\rho = -10\%$, $\nu = 100\%$

Black vols

 Using log normal vols doesn't help discern which smiles are arbitrage free

$$\alpha = 35\%, \; \beta = 25\%, \; \rho = -10\%, \; \nu = 100\%$$

Arbitrage free approach

· SABR model:

$$d\tilde{F} = \varepsilon \tilde{\alpha} C(\tilde{F}) dW_1,$$

$$d\tilde{\alpha} = \varepsilon v \tilde{\alpha} dW_2,$$

$$dW_1 dW_2 = \rho dt$$

Probability density & moments

$$p(T, F, \alpha)dFd\alpha = \text{Prob}\{F < \tilde{F}(T) < F + dF, \alpha < \tilde{\alpha}(T) < \alpha + d\alpha\}$$
$$Q^{(k)}(T, F)dF = \int_{0}^{\infty} \alpha^{k} p(T, F, \alpha)d\alpha$$

· Fökker-Planck equation:

$$p_T = \frac{1}{2} \varepsilon^2 [\alpha^2 C^2(F) p]_{FF} + \varepsilon^2 \rho v [\alpha^2 C(F) p]_{F\alpha} + \frac{1}{2} \varepsilon^2 [\alpha^2 Q p]_{\alpha\alpha}$$

– integrate over all α ,

$$\int_0^\infty [\alpha^2 C(F)p]_{F\alpha} d\alpha = [\alpha^2 C(F)p]_F \Big|_0^\infty = 0,$$
$$\int_0^\infty [\alpha^2 p]_{\alpha\alpha} d\alpha = [\alpha^2 p]_\alpha \Big|_0^\infty = 0$$

· Yields conservation law:

$$Q_T^{(0)} = \frac{1}{2} \varepsilon^2 [C^2(F)Q^{(2)}]_{FF}$$

Effective forward equation

Conservation law:

$$Q_T^{(0)} = \frac{1}{2} \varepsilon^2 [C^2(F)Q^{(2)}]_{FF}$$

• Use asymptotic methods to analyze backwards equation for $Q^{(0)}$ and $Q^{(2)}$. Obtain:

$$Q^{(2)} = (\alpha^2 + 2\varepsilon\rho\nu\alpha z + \varepsilon^2\nu^2 z^2)e^{\varepsilon^2\rho\nu\alpha\Gamma T}Q^{(0)}\{1 + O(\varepsilon^3)\}$$

where

$$z(F) = \int_f^F \frac{df'}{C(f')}, \qquad \Gamma = \frac{C(F) - C(f)}{F - f}$$

Marginal density

$$Q^{(0)}(T,F)dF = \operatorname{Prob}\{F < \tilde{F}(T) < F + dF\}$$

- satisfies effective forward equation

$$Q_T^{(0)} = \frac{1}{2} \left[(\alpha^2 + 2\varepsilon \rho v \alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2 \rho v \alpha \Gamma T} C^2(F) Q^{(0)} \right]_{FF}$$

- Reduction accurate through $O(\varepsilon^2)$; same as original SABR analysis
 - No corresponsing 1-d local volatility model

Boundary conditions

Numerically solve the effective forward equation:

$$Q_T^{(0)} = \frac{1}{2} \left[(\alpha^2 + 2\varepsilon \rho v \alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2 \rho v \alpha \Gamma T} C^2(F) Q^{(0)} \right]_{FF}$$

over the domain $0 < F < F_{\text{max}}$.

- initial condition:

$$Q^{(0)}(0,F) = \delta(F-f)$$
 at $T = 0$.

• Absorbing boundary conditions are required for $\tilde{F}(T)$ to be a Martingale:

$$Q^{(0)} = 0$$
 at $F = 0$
 $Q^{(0)} = 0$ at $F = F_{\text{max}}$

Conservation requires:

$$Q(T,F) = \begin{cases} Q^{L}(T)\delta(F) & \text{at } F = 0\\ Q^{(0)}(T,F) & \text{for } 0 < F < F_{\text{max}}\\ Q^{R}(T)\delta(F - F_{\text{max}}) & \text{at } F = F_{\text{max}} \end{cases}$$

with

$$\frac{dQ^{L}}{dT} = \frac{1}{2} \left[(\alpha^{2} + 2\varepsilon\rho\nu\alpha z + \varepsilon^{2}\nu^{2}z^{2}) e^{\varepsilon^{2}\rho\nu\alpha\Gamma T} C^{2}(F) Q^{(0)} \right]_{F} \Big|_{F=0^{+}}$$

$$\frac{dQ^{R}}{dT} = -\frac{1}{2} \left[(\alpha^{2} + 2\varepsilon\rho\nu\alpha z + \varepsilon^{2}\nu^{2}z^{2}) e^{\varepsilon^{2}\rho\nu\alpha\Gamma T} C^{2}(F) Q^{(0)} \right]_{F} \Big|_{F=F_{\text{max}}}$$

Option prices

Numerically solve the PDE

$$Q_T^{(0)} = \frac{1}{2} \Big[(\alpha^2 + 2\varepsilon \rho v \alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2 \rho v \alpha \Gamma T} C^2(F) Q^{(0)} \Big]_{FF},$$

over $0 < F < F_{\text{max}}$, with

$$Q^{(0)} = 0$$
 at $F = 0$, $Q^{(0)} = 0$ at $F = F_{\text{max}}$

and

$$Q^{(0)}(0,F) = \delta(F-f)$$
 at $T = 0$

 $-\delta$ -functions at F=0 and $F=F_{\max}$:

$$\frac{dQ^L}{dT} = \frac{1}{2} \left[(\alpha^2 + 2\varepsilon\rho\nu\alpha z + \varepsilon^2\nu^2 z^2) e^{\varepsilon^2\rho\nu\alpha\Gamma T} C^2(F) Q^{(0)} \right]_F \Big|_{F=0^+}$$

$$\frac{dQ^R}{dT} = -\frac{1}{2} \left[(\alpha^2 + 2\varepsilon\rho v\alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2 \rho v\alpha \Gamma T} C^2(F) Q^{(0)} \right]_F \Big|_{F=F_{\text{max}}}$$

· Option prices:

$$V_{call}(\tau_{ex}, K) = \int_{K}^{F_{\text{max}}} (F - K) Q^{(0)}(\tau_{ex}, F) dF + (F_{\text{max}} - K) Q^{R}(\tau_{ex})$$

$$V_{put}(\tau_{ex}, K) = \int_{0}^{K} (K - F) Q^{(0)}(\tau_{ex}, F) dF + KQ^{L}(\tau_{ex})$$

- reduced problem has 1 space dimension numerical solution is essentially instantaneous!
- solving the PDE for $0 < T < \tau_{ex}$ yields option prices for all strikes K at τ_{ex}

Numerical method

$$Q_T^{(0)} = \frac{1}{2} \Big[(\alpha^2 + 2\varepsilon\rho\nu\alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2\rho\nu\alpha\Gamma T} C^2(F) Q^{(0)} \Big]_{FF}$$

$$Q^{(0)} = 0 \quad \text{at } F = 0, \qquad Q^{(0)} = 0 \quad \text{at } F = F_{\text{max}}$$

$$Q^{(0)}(0,F) = \delta(F-f) \quad \text{at } T = 0$$

$$\frac{dQ^L}{dT} = \frac{1}{2} \Big[(\alpha^2 + 2\varepsilon\rho\nu\alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2\rho\nu\alpha\Gamma T} C^2(F) Q^{(0)} \Big]_F \Big|_{F=0^+}$$

$$\frac{dQ^R}{dT} = -\frac{1}{2} \Big[(\alpha^2 + 2\varepsilon\rho\nu\alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2\rho\nu\alpha\Gamma T} C^2(F) Q^{(0)} \Big]_F \Big|_{F=F_{\text{max}}}$$

- Use moment preserving Crank-Nicholson scheme
- guarantees probability is conserved exactly, and that $\tilde{F}(T)$ is exactly a Martingale:

$$Q^{L}(T) + \int_{0}^{F_{\text{max}}} Q^{(0)}(T, F) dF + Q^{R}(T) = 1,$$
$$\int_{0}^{\infty} FQ^{(0)}(T, F) dF + F_{\text{max}} Q^{R}(T) = f.$$

Maximum principle guarantees that

$$Q^{(0)}(T,F) \geq 0$$
 for all $0 < F < F_{\max}$, all $T > 0$, $Q^L(T) \geq 0$, for all $T > 0$

– Numerical solution is an exactly arbitrage free model!

Boundary layer

• Arbitrage free approach yields nearly the same values as the explicit SABR formulas $\sigma_N(K)$, except for low strikes and forwards

$$\alpha = 35\%$$
, $\beta = 25\%$, $\rho = -10\%$, $\nu = 100\%$

· Effective forward equation:

$$Q_T^{(0)} = \frac{1}{2} \left[(\alpha^2 + 2\varepsilon \rho v \alpha z + \varepsilon^2 v^2 z^2) e^{\varepsilon^2 \rho v \alpha \Gamma T} C^2(F) Q^{(0)} \right]_{FF}$$

- using asymptotic methods to solve the effective forward equation leads to the *same explicit formulas* for $\sigma_N(K)$ as in the original analysis, unless the forward or strike is near zero
- Explicit formulas for $\sigma_N(K)$ do not hold in a boundary layer around zero
- boundary layer occurs where a significant fraction of the paths get absorbed at 0 before expiry

Boundary layer effects

At the money vols decrease linearly for small rates

$$\alpha = 35\%$$
, $\beta = 0\%$, $\rho = 0\%$, $\nu = 100\%$

- Knee is often incorrectly ascribed to market switching from normal to log normal behavior in ultra-low rate environments
- this leads to mispricing *high* strike options in low rate environments

$$\alpha = 35\%$$
, $\beta = 0\%$, $\rho = 0\%$, $\nu = 100\%$

Historical market data

Arbitrage free SABR closely matches market data

Historic swaption vols for 2002 through 2012

Calibrating the SABR model

- α controls the at-the-money vol, ν controls the smile, but both ρ and β control the skew
- SABR model calibrated to same market data with β chosen to be $0,\,\frac{1}{2},$ and 1

SABR model calibrated with β of 0, $\frac{1}{2}$, and 1.

– calibrated parameters:

$$\alpha$$
 31.8% 32.9% 35.1% β 0 0.5 1 ρ -18.3% -45.5% -64.4% ρ 0.777 0.867 0.985

- although tails are somewhat different, all three sets of parameters fit the actual market data well within market noise
 - $-\rho$ can largely compensate for β

Conventional hedging

• Conventional delta, $\partial V/\partial F$, based on the scenario

$$\tilde{F} \to \tilde{F} + \Delta F, \qquad \tilde{\alpha} \to \tilde{\alpha}$$

conventional delta for the same three sets of SABR parameters

 $\partial V/\partial F$ against the strike K for β of 0, $\frac{1}{2}$, and 1.

- Even though all three sets of parameters closely fit the market smile, they lead to different conventional hedges, even near the money
- choosing the incorrect beta can lead to good fits of the smile, but relatively poor delta hedges

Alternative delta hedges

$$d\tilde{F} = \tilde{\alpha}C(\tilde{F})dW_1,$$

$$d\tilde{\alpha} = v\tilde{\alpha}dW_2,$$

$$dW_1dW_2 = \rho dt.$$

• When \tilde{F} changes, $\tilde{\alpha}$ should also change, at least on average

$$d\tilde{\alpha} = v\tilde{\alpha} \left\{ \rho dW_1 + \sqrt{1 - \rho^2} dW_\perp \right\} = \left\{ \rho v \frac{d\tilde{F}}{C(\tilde{F})} + \sqrt{1 - \rho^2} v\tilde{\alpha} dW_\perp \right\}$$

Alternative delta based on scenario:

$$\tilde{F} \to \tilde{F} + \Delta F, \quad \tilde{\alpha} \to \tilde{\alpha} + \rho v \frac{\Delta F}{C(\tilde{F})}$$

- alternative delta for the same three sets of parameters

Alternative delta, $\partial V/\partial f + [\rho v/C(f)]\partial V/\partial \alpha$

- Alternative delta is nearly independent of β . It depends mainly on the actual market skew/smile, and not on how the smile is parameterized
- alternative deltas are believed to provide much better hedges