Generative Modeling

Wasserstein generative adversarial networks and friends

Denis Derkach, Artem Ryzhikov, Sergei Popov

Laboratory for methods of big data analysis

In this Lecture

- f-GANs
- Wasserstein Distance
 - Kantorovich-Rubenstein Duality.
- WGAN
 - Algorithm.
 - Gradient Penalty.
 - Biased Gradients.

Reminder

JS GAN scheme

JS GAN Summary

Pros:

- Can utilize power of back-prop.
- No explicit intractable integral.
- No MCMC needed.

Cons:

- Unclear stopping criteria
- No explicit representation of PDF
- Hard to train
- No evaluation metric so hard to compare with other models
- Easy to get trapped in local optima that memorize training data
- Hard to invert generative model to get back latent z from generated x

f-GANs

Reminder: Variational Lower Bound

For convex f(.), P and Q some distributions, we define f-divergence:

$$D_f(P||Q) = \int q(x) f\left(\frac{p(x)}{q(x)}\right) dx.$$

This is bounded:

$$D_f(P||Q) \ge \max_{T(x)} \mathbb{E}_{x \sim P} T(x) - \mathbb{E}_{x \sim Q} f^*(T(x)),$$

Name	$D_f(P\ Q)$	Generator $f(u)$	$T^*(x)$
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$	$1 + \log \frac{p(x)}{q(x)}$
Reverse KL	$\int q(x) \log rac{\hat{q}(x)}{p(x)} \mathrm{d}x$	$-\log u$	$-\frac{q(x)}{p(x)}$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$	$2(\frac{p(x)}{q(x)}-1)$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)} ight)^2\mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$	$(\sqrt{rac{p(x)}{q(x)}}-1)\cdot\sqrt{rac{q(x)}{p(x)}}$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$	$\log \frac{2p(x)}{p(x)+q(x)}$

Variational Divergence Minimization

$$D_f(P||Q) \ge \max_{T(x)} \mathbb{E}_{x \sim P} T(x) - \mathbb{E}_{x \sim Q} f^*(T(x)),$$

- Work in GAN paradigm:
 - generator $x \sim Q$: $x = G_{\theta}(z)$;
 - test function T(x).

$$\min_{\theta} \max_{\omega} F(\omega, \theta) = \mathbb{E}_{x \sim P} T_{\omega}(x) - \mathbb{E}_{x \sim G_{\theta}(z)} f^* (T_{\omega}(x))$$

To have wider range of functions:

$$T_{\omega}(x) = g_f(V_{\omega}(x)),$$

here $g_f: \mathbb{R} \to dom_{f*}$ is output activation function for f-divergence used

S. Nowozin et al. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

Output activation function

$$F(\omega, \theta) = \mathbb{E}_{x \sim P} g_f(V_{\omega}(x)) - \mathbb{E}_{x \sim G_{\theta}(z)} f^* (g_f(V_{\omega}(x)))$$

choice of output activation function is somewhat arbitrary.

Name	Output activation g_f
Kullback-Leibler (KL)	v
Reverse KL	$-\exp(-v)$
Pearson χ^2	v
Squared Hellinger	$1 - \exp(-v)$
Jensen-Shannon	$\log(2) - \log(1 + \exp(-v))$
GAN	$-\log(1+\exp(-v))$

Example: GAN objective

$$F(\omega, \theta) = \mathbb{E}_{x \sim P} g_f(V_{\omega}(x)) - \mathbb{E}_{x \sim G_{\theta}(z)} f^* (g_f(V_{\omega}(x)))$$

$$F(\omega, \theta) = \mathbb{E}_{x \sim P} \log D_{\omega}(x) - \mathbb{E}_{x \sim G_{\theta}(z)} \log(1 - D_{\omega}(x)),$$

for the last nonlinearity in the discriminator taken as the sigmoid

$$D_{\omega}(x) = 1/(1 + e^{-V_{\omega}(x)})$$

Variational Divergence Minimization

$$\min_{\theta} \max_{\omega} F(\omega, \theta) = \mathbb{E}_{x \sim P} g_f(V_{\omega}(x)) - \mathbb{E}_{x \sim G_{\theta}(z)} f^* (g_f(V_{\omega}(x)))$$

11

f-GAN results

Training divergence	KDE $\langle LL \rangle$ (nats)	\pm SEM
Kullback-Leibler	416	5.62
Reverse Kullback-Leibler	319	8.36
Pearson χ^2	429	5.53
Neyman χ^2	300	8.33
Squared Hellinger	-708	18.1
Jeffrey	-2101	29.9
Jensen-Shannon	367	8.19
GAN	305	8.97
Variational Autoencoder [18]	445	5.36
KDE MNIST train (60k)	502	5.99

Table 4: Kernel Density Estimation evaluation on the MNIST test data set. Each KDE model is build from 16,384 samples from the learned generative model. We report the mean log-likelihood on the MNIST test set (n = 10,000) and the standard error of the mean. The KDE MNIST result is using 60,000 MNIST training images to fit a single KDE model.

Figure 2: MNIST model samples trained using KL, reverse KL, Hellinger, Jensen from top to bottom.

f-GAN Discussion

- Using f-GAN approach, one can estimate any f-divergence.
- Construction has some freedom in choice of function.
- Using different f-divergence leads to very different learning dynamics.
- Does not solve mode collapse problem.
- We need a better way to train GANs.

Parisian Bakeries

Problem Statement

Delivery Optimization

given a set of N bakeries and M cafes, what is the optimal way to transport loaves of bread between them?

G. Peyre web-site

D.. Derkach Generative Modeling Spring 2023

Delivery Solutions

We can estimate different possibilities, using the same matrix of costs.

Optimal Delivery

Price =
$$10+7+15+10+14+9=65$$
 min

Problem Statement: Monge

We thus need to solve a problem:

$$\min_{\sigma \in \mathsf{P}erm_n} \sum_{i=1}^n C_{i,\sigma(i)}$$

The number of calculations rises as factorial.

Kantorovich: Add Bread Masses

- ▶ p_i , $i \in 1...N$ the mass of bread held by each bakery;
- $price q_j, j \in 1...M$ the mass of bread desired by each cafe;
- $\sum p_i = \sum q_j$, bread produced = bread needed
- \triangleright x_i , y_j the positions of bakeries and cafes;
- $ightharpoonup P_{i,j}$ transport of mass from i to j.
- $p_i = \sum_j P_{i,j}$; $q_j = \sum_i P_{i,j}$ limiting capacity exists.

Paris deliveries

Deliver the bread to the café, which needs it

	3	23	18	26	16	14
24	1	7	0	0	16	0
9	0	0	0	0	0	9
3	0	0	0	0	0	3
16	0	16	0	0	0	0
21	2	0	18	1	0	0
27	0	0	0	25	0	2

Optimal plan for minimal efforts needed.

Kantorovich: Add Bread Masses

- ▶ p_i , $i \in 1...N$ the mass of bread held by each bakery;
- ▶ q_j , $j \in 1 ...M$ the mass of bread desired by each cafe;
- $\sum p_i = \sum q_j$, bread produced = bread needed
- \triangleright x_i , y_j the positions of bakeries and cafes;
- $ightharpoonup P_{i,j}$ transport of mass from i to j.
- $p_i = \sum_j P_{i,j}$; $q_j = \sum_i P_{i,j}$ limiting capacity exists.
- Need to solve a problem:

$$\min \sum P_{i,j}c_{i,j}$$

Wasserstein Distance

Wasserstein distance

Also called "Earth mover's distance" (EMD)

- Distributions P(x) and Q(x) are viewed as describing the amounts of "dirt" at point x
- We want to convert one distribution into the other by moving around some amounts of dirt

- ▶ The cost of moving an amount m from x_1 to x_2 is $m \times ||x_2 x_1||$
- ightharpoonup EMD(P,Q) = minimum total cost of converting P into Q

Idea of definition

Say, we have a moving plan $\gamma(x_1, x_2) \ge 0$:

$$\gamma(x_1, x_2)dx_1dx_2$$
 – how much dirt we're moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$

▶ Then, the cost of moving from $[x_1, x_1 + dx_1]$ to $[x_2, x_2 + dx_2]$ is:

$$||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2$$

and the total cost is:

$$C = \int_{x_1, x_2} ||x_2 - x_1|| \cdot \gamma(x_1, x_2) dx_1 dx_2 = \mathbb{E}_{x_1, x_2 \sim \gamma(x_1, x_2)} ||x_2 - x_1||$$

ightharpoonup Since we want to convert P to Q, the plan has to satisfy:

$$\int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \qquad \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1)$$

Idea of Definition

Let π be the set of all plans that convert P to Q, i.e.:

$$\pi = \left\{ \gamma: \quad \gamma \ge 0, \quad \int_{x_1} \gamma(x_1, x_2) dx_1 = Q(x_2), \quad \int_{x_2} \gamma(x_1, x_2) dx_2 = P(x_1) \right\}$$

ightharpoonup Then, the Wasserstein distance between P and Q is:

$$\mathrm{EMD}(P,Q) = \inf_{\gamma \in \pi} \mathbb{E}_{x_1, x_2 \sim \gamma} ||x_2 - x_1||$$

Optimization over all transport plans - not too friendly

Wasserstein Distance

For continuous case, there are a set of p-Wasserstein distances, with $W_p(p_x, q_y)$ defined with $x \in M$, $y \in M$ and a distance D on x, y:

$$W_p(p_x, q_y) = \inf_{\gamma \in \Pi(x,y)} \int_{M \times M} D(x, y)^p d\gamma(x, y),$$

where $\Pi(x,y)$ is a set of all joint distributions having p_x,q_y as their marginals.

W_1 distance

In particular, W_1 distance with Euclidean norm is:

$$W(p_x, q_y) = \inf_{\gamma \in \Pi(x, y)} \int_{M \times M} D(x, y) d\gamma(x, y) = \inf_{\gamma \in \Pi(x, y)} \mathbb{E}(||x - y||)$$

Which brings an evident connection to EMD.

Two dimensional representation of the transport plan between horizontal (μ) and vertical ν pdfs. Note, that this is not unique plan. The inf must be taken over all possible plans.

Convergence Example

Mass Attention

W takes into account the distance at which the differences in the distributions are located.

This is exactly what we need to take into account multiple solutions!

W properties hints

P – true PDF, Q – fitted PDF.

For a sequence of distributions Q_n :

$$KL(P||Q_n) \rightarrow 0 \rightarrow JS(P;Q_n) \rightarrow 0 \rightarrow W(P;Q_n) \rightarrow 0, Q_n \stackrel{\mathrm{D}}{\rightarrow} P$$

For $Q_{\theta} \sim g_{\theta}(z)$, $g_{\theta}(z)$ continuos $W(Q_{\theta}; Q)$ is continuous and can be restricted to differentiable almost everywhere.

Should we use directly in GAN?

Reminder: Noisy Supports

Let's make the problem harder: introduce random noise $\varepsilon \sim N(0; \sigma^2 I)$:

$$\mathbb{P}_{x+\varepsilon(x)} = \mathbb{E}_{y\sim P(x)}\mathbb{P}_{\varepsilon}(x-y).$$

This will make noisy supports, that makes it difficult for discriminator.

For $V = \mathbb{E}||\epsilon||^2$

$$W(P,Q) \le 2\sqrt{V} + \sqrt{JS(P,Q)}.$$

ightharpoonup We thus approximated W with JS

Lipschitz continuity

- f is Lipschitz-k continuous if
- there exists a constant $k \ge 0$, such that for all x_1 and x_2 :

$$|f(x_1) - f(x_2)| \le k \cdot ||x_1 - x_2||$$

img from https://en.wikipedia.org/wiki/Lipschitz continuity

Kantorovich-Rubinstein Duality

P – true PDF, Q – fitted PDF.

$$W(P;Q) = \sup_{f \in Lip_1} (\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x)),$$

where Lip_1 is 1-Lipshitz condition.

Back to Bakeries

In fact, the duality works also for EMD, we can say:

$$EMD = \sup_{||f||_L \le 1} \sum_i f_i q_i - \sum_j f_j p_j$$

For example of bakeries, f can be interpreted as a price of buying or selling at points x_i and y_i .

Integral Probability Metrics

$$p(x)$$
, $q(x)$ – PDF.

$$\gamma_{\mathcal{F}}(P,Q) = \sup \left\{ \left| \int f \, dp(x) - \int f \, dq(x) \right| : f \in \mathcal{F} \right\}$$

 \mathcal{F} is a class of real-valued bounded measurable functions on S.

For $\mathcal{F} = \{f: ||f||_L \le 1\}$, with 1-Lipschitz condition:

 W_1 is **IPM** but **not** f-divergence

B. Sriperumbudur et al. On the empirical estimation of integral probability metrics

S. Nowozin, NIPS2016 workshop talk

Conclusions

- Wasserstein-1 is a distance with desired properties.
- Kantorovich-Rubinstein duality connects Wasserstein-1 distance to IPM.
- Lipschitzeness is needed for above to work.
- \triangleright Wasserstein-1 distance cannot directly be inserted into f-GAN style*.

Wasserstein GAN

Lipschitz-1 Condition and Neural Networks

$$W(P;Q) = \sup_{f \in Lip_1} \left(\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right),$$

Lipschitz-1 Condition and Neural Networks

$$W(P;Q) = \sup_{f \in Lip_1} (\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x)),$$

- ightharpoonup f is a neural net **discriminator** ('**critic**' in the original paper).
- The expectations is estimated from samples.
- Lipschitz-1 continuity can be replaced with Lipschitz-k continuity
 - estimate $k \times W(P, Q)$
 - achieved by clipping the weights of the critic: $w \to \text{clip}(w, -c, c)$ with some constant c.

WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

Require: α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: w_0 , initial critic parameters. θ_0 , initial generator's parameters.

1: while θ has not converged do

- 2: **for** $t = 0, ..., n_{\text{critic}}$ **do**
- 3: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data.
- 4: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples.
- 5: $g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$
- 6: $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)$
- 7: $w \leftarrow \text{clip}(w, -c, c)$
- 8: end for
- 9: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples.
- 10: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))$
- 11: $\theta \leftarrow \theta \alpha \cdot \text{RMSProp}(\theta, g_{\theta})$
- 12: end while

WGAN: problems solved

- the vanishing gradient problem is solved;
- mode collapse problem is addressed;
- rom authors: Weight clipping is a clearly terrible way to enforce a Lipschitz constraint.:

WGAN: results

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN formulation. The WGAN method still was able to produce samples, lower quality than the DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant degree of mode collapse in the GAN MLP.

WGAN-GP

- Weight clipping makes the critic less expressive and the training harder to converge
- ▶ Optimal f should satisfy $\|\nabla f\| = 1$ almost everywhere under P and Q
- ► Also: $||f||_L \le 1 \iff ||\nabla f|| \le 1$
- Can replace weight clipping with a gradient penalty term:

$$GP = \lambda \int \max[(\|\nabla_{\tilde{x}} f(\tilde{x})\| - 1)^{2}] dx$$

$$GP = \lambda \mathbb{E}_{\tilde{x} \sim \mathbb{P}_{\tilde{x}}}[(\|\nabla_{\tilde{x}} f(\tilde{x})\| - 1)^{2}]$$

Largest gradient constrained here

$$\mathbb{P}_{\tilde{x}}: \begin{bmatrix} \tilde{x} = \alpha x_1 + (1-\alpha)x_2 \\ \alpha \sim \text{Uniform}(0,1) \\ x_1 \sim P \\ x_2 \sim Q \end{bmatrix}$$

Ishaan Gulrajani**Improved Training of Wasserstein GANs**Spring 2023
44

WGAN-GP

- Weight clipping makes the critic less expressive and the training harder to converge
- ▶ Optimal f should satisfy $\|\nabla f\| = 1$ almost everywhere under P and Q
- ► Also: $||f||_L \le 1 \iff ||\nabla f|| \le 1$
- Can replace weight clipping with a gradient penalty term:

$$GP = \lambda \mathbb{E}_{\tilde{\chi} \sim \mathbb{P}_{\tilde{\chi}}} [(\|\nabla_{\tilde{\chi}} f(\tilde{\chi})\| - 1)^2]$$

or alternatively ('one-sided' penalty):

$$GP = \lambda \mathbb{E}_{\widetilde{x} \sim \mathbb{P}_{\widetilde{x}}} [\max(0, \|\nabla_{\widetilde{x}} f(\widetilde{x})\| - 1)^2]$$

$$\mathbb{P}_{\tilde{x}}: \begin{bmatrix} \tilde{x} = \alpha x_1 + (1-\alpha)x_2 \\ \alpha \sim \text{Uniform}(0,1) \\ x_1 \sim P \\ x_2 \sim Q \end{bmatrix}$$

Ishaan GulrajaniImproved Training of Wasserstein GANs Spring 2023

WGAN: spectral normalization

 Spectral normalisation proposes to use normalised weights:

$$W_{SN} = \frac{W}{\sigma(W)}$$

where:

$$\sigma(W) = \max_{h:h \neq 0} \frac{||Wh||_2}{||h||_2}$$

> this gives constraints on gradient:

$$||f||_{Lip} \le \prod_{i=1}^{l} \sigma(W_l).$$

Figure 6: Generated images on different methods: WGAN-GP, weight normalization, and spectral normalization on CIFAR-10 and STL-10.

Miyato et al. Spectral Normalization for Generative Adversarial Networks, ICLR 2018

WGAN: problems

- > The expected EMD gradients can differ from the true gradients.
- > This leads to problems even for Bernoulli distribution.

Red for sample gradient expectation, blue is for real gradients solution. Left to right $\theta^* = 0.6; 0.6; 0.9$.

M. Bellemare et al. The Cramer Distance as a Solution to Biased Wasserstein Gradients

Conclusions

- WGAN is a power generative model.
- Simpler training procedure but need to control Lipschitz continuity
- Several ideas how do this.
- Still problems:
 - Kantorovich-Rubinstein duality only mimicked;
 - gradient is stuck near solutions.