

Algorithmik kontinuierlicher Systeme

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen

- Viele numerische Probleme lassen sich <u>nicht</u> mit endlich vielen Schritten lösen
 - Nullstellen (von Polynomen), Eigenwerte von Matrizen
 - Optimierung (min max-Suche)

DIE SVD IST SEHR AUFWENDIG!!

- Iterativer Lösungsansatz:
 - Spezifiziere einen geschätzten Wert: Startwert x_0
 - Versuche diesen sukzessive zu verbessern $x_{i+1} = \Phi_i(x_i)$ oder mehrstufig $x_{i+1} = \Phi_i(x_i, x_{i-1}, ...)$ für i=0,1,2,3,...
- Ist die Iterationsvorschrift Φ_i nicht von i abhängig spricht man von **stationären** Verfahren
- Der iterative Ansatz ist u.U. auch für "exakt lösbare" Probleme interessant (z.B. LGS, siehe später)

Wir beschäftigen uns nur mit stationären Verfahren (meist einstufig):

Startwert x_0 ,

$$x_{i+1} = \Phi(x_i)$$
 (für $i=0,1,2,...$)

- Fragen:
 - Konvergiert die Iterationsfolge gegen die gewünschte Lösung x*?
 - Für welche Anfangswerte konvergiert die Folge?
 - Wie schnell konvergiert die Iterationsfolge?
 - Kann man den Fehler $|x_i x^*|$ abschätzen? natürlich ohne x* zu kennen

Wann soll man die Iteration abbrechen?

gleiches phi in jedem schritt

• Ist $\Phi: M \to M$ eine "Selbst"-Abbildung, dann heißt ein $m \in M$ Fixpunkt von Φ falls $\Phi(m) = m$.

- Anschaulich: Ist M=I ein Intervall, dann verläuft der Graph von Ф im Quadrat I× I und ein Fixpunkt ist ein Schnittpunkt mit der Diagonalen
- Satz: Wenn die Iterationsfolge

$$x_{i+1} = \Phi(x_i)$$
 konvergiert, $x^* = \lim_{i \to \infty} x_i$

und Φ stetig ist, dann gilt $\Phi(x^*)=x^*$!

Fixpunktiteraton (Beispiele)

$$\Phi(x) = \frac{1 + e^x}{4}, x_0 = 0.25$$

Konvergenz

$$\Phi(x) = e^{-x}, x_0 = 0.75$$

Konvergenz

Fixpunktiteraton (Beispiele)

Keine Konvergenz

$$x_0 = 0.51$$

Konvergenz (aber nicht gegen 0.5)

Banachscher Fixpunktsatz

- I sei ein abgeschlossenes Intervall und $\Phi: I \to I$ sei eine **Kontraktion**, d.h. es gibt eine Konstante L < 1 so dass $\Phi(x) - \Phi(y) \mid \leq L|x-y|$ für alle $x, y \in I$
- Dann gilt:

die funktionswerte sind näher als ihre Ursprünge.Lipschit

- Φ besitzt genau einen Fixpunkt $x^* \in I$;
- die Iterationsfolge $x_{i+1} = \Phi(x_i)$ konvergiert für jeden Startwert $x_0 \in I$;
- $|x_n x^*| \le \frac{L^n}{1 L} \cdot |x_1 x_0|$ (a priori Abschätzung); ie kleiner L, desto weniger schwankung, desto besser
- $|x_n x^*| \le \frac{1}{1 I} \cdot |x_{n+1} x_n|$

(a posteriori Abschätzung).

das priori für max iter und das a posteriori für early stopping

Der BFS gilt auch im \mathbb{R}^n

 $(I \subseteq \mathbb{R}^n \text{ abgeschlossene Teilmenge},$

$$|\Phi(x) - \Phi(y)|| \le L||x-y||$$

Beispiele:

$$f_1:[0,1] \to [0,1], \quad f_1(x) = \frac{1}{4}(1 + e^x)$$

$$f_2:[0,1] \rightarrow [0,1], \quad f_2(x) = \exp(-x)$$

Sind dies Kontraktionen?

Mittelwertsatz!

ableitung<1

Banachscher Fixpunktsatz

$$f_1:[0,1] \to [0,1], \quad f_1(x) = \frac{1}{4}(1+e^x)$$

L = 0.78

mittelwertsatz zwischen 0,1

n	X _n	a priori	a posteriori
0	0.5		
1	0.662180	0.344633	
2	0.734754	0.234351	0.154219
3	0.771242	0.159358	0.077538
4	0.790613	0.108364	0.041162
5	0.801187	0.073687	0.022470
10	0.813773	0.010714	0.001238
15	0.814483	0.001558	0.000071
20	0.814524	0.000226	0.000004
25	0.814526	0.000048	0.000000

$$f_2(x) = \exp(-x)$$

geht noch, aber nicht wegen fixp

n	X _n	$f(x_n)$
0	0.500000	0.606531
1	0.606531	0.545239
2	0.545239	0.579703
3	0.579703	0.560065
4	0.560065	0.571172
5	0.571172	0.564863
10	0.566907	0.567277
15	0.567157	0.567135
20	0.567142	0.567144
25	0.567143	0.567143

Nullstellenbestimmung: Newton-Verfahren

- Iteratives Verfahren zur Bestimmung der Nullstelle der Funktion f(x)
 - Startwert x_0 :
 - Iterationsschritt: Linearisiere f(x) in x_i
 - d.h. bestimme die Tangente an $(x_i, f(x_i))$ und
 - bestimme die Nullstelle der Linearisierung.
 - Linearisierung (z.B. mit Taylor):

$$f(x) \approx f(x_i) + f'(x_i) \cdot (x - x_i) =: Lin(x)$$

möglichst gute lipschitzkonstante

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Nullstellenbestimmung: Newton-Verfahren

- Iteratives Verfahren zur Bestimmung der Nullstelle der Funktion f(x)
 - Startwert x_0 :

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Dies ist eine Fixpunkt-Iteration für

$$\Phi(x) = x - \frac{f(x)}{f'(x)}$$

Das Verfahren konvergiert falls x_0 "nahe" bei der **Nullstelle liegt!**

Heron-Verfahren oder Babylonisches Wurzelziehen

• Iteratives Verfahren zur Bestimmung von \sqrt{a} :

$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right)$$

$$0 \le x_i - \sqrt{a} \le \frac{1}{2\sqrt{a}} (x_{i-1} - \sqrt{a})^2$$
 (quadratische Konvergenz)

• Newton-Verfahren für $f(x) = x^2 - a$

Heron von Alexandria

1. Jahrhundert n. Chr

Beispiel: Heron Verfahren

- Iterative Bestimmung von $\sqrt{2}$ nach Heron mit Startwert $x_0 = 2.0$
- bzw. Newton-Verfahren für $f(x) = x^2 a$

n	X _n
1	1.5
2	1.416666667
3	1.414215686
4	1.414213562
5	1.414213562

n	$\mathbf{X}_{\mathbf{n}}$
1	1.5
2	1. 4166666666666666666666666666666666666
3	1.414215686274509804
4	1.414213562374689911
5	1.414213562373095049
6	1.414213562373095049

Beobachtung: Die Anzahl der korrekten Stellen verdoppelt sich in jedem Iterationsschritt

Nullstellenbestimmung: Sekanten-Verfahren

- Zweistufiges iteratives Verfahren ohne Kenntnis der Ableitung;
- Zwei Startwerte x_0 und x_1 nötig;
- Iterationschritt: Bestimme den Schnittpunkt der Sekante durch $(x_0, f(x_0))$ und $(x_1, f(x_1))$ mit der x-Achse (Nullstelle der Sekante)

$$x_{i+1} = \frac{x_{i-1} \cdot f(x_i) - x_i \cdot f(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

Modifikation: Regula falsi (s.u.)

Nullstellenbestimmung: Bisektionsverfahren

- Zweistufiges Verfahren, führt sicher zum Ziel, aber konvergiert sehr langsam;
 - 1. Zwei Startwerte $x_0 < x_1$ so dass $f(x_0) \cdot f(x_1) < 0$ Der Vorzeichenwechsel im Intervall $[x_0, x_1]$, dies garantiert dass es mind. eine Nullstelle gibt sofern f(x) stetig ist.
 - **2. Iterationsschritt**: binärsuche konvergiert langsam
 Bestimme den Mittelpunkt $x_2 = (x_0 + x_1)/2$,
 betrachte das Intervall $[x_0, x_2]$ falls $f(x_0) \cdot f(x_2) < 0$ bzw.
 betrachte das Intervall $[x_2, x_1]$ falls $f(x_1) \cdot f(x_2) < 0$ (im Falle von $f(x_1) \cdot f(x_2) = 0$ ist x_2 eine Nullstelle!
 - 3. Das Bisektionsverfahren konvergiert stets, jedoch relativ langsam: nach i Schritten $|x_{i+1} x_i| \le 2^{-i} |x_1 x_0|$

Nullstellenbestimmung: Bisektionsverfahren

nach i Schritten:

$$|x_{i+1} - x_i| \le 2^{-i} |x_1 - x_0|$$

$$| \frac{1}{2} (x_{i+1} + x_i) - x^* | \le 2^{-(i+1)} | x_1 - x_0 |$$

Nullstellenbestimmung: Regula falsi

- Kombination von Sekanten- und Bisektionsverfahren
 - Man startet wie beim Bisektionsverfahren mit zwei Punkten

$$x_0$$
 und x_1 so dass $f(x_0) \cdot f(x_1) < 0$

- Man bestimmt den Schnittpunkt der Sekante mit der x-Achse
- Falls $f(x_2) \cdot f(x_1) < 0$ fährt man mit x_1 und x_2 fort andernfalls mit x_0 und x_2 sprich man wählt adaptiv die bereichsgröße aus
- regula falsi konvergiert garantiert gegen eine Nullstelle, meist langsam.

- Problem:
 - Bestimme die Nullstelle einer Funktion $F: \mathbb{R}^n \to \mathbb{R}^n$
- Beispiel:

$$F(x,y) = \begin{bmatrix} 1 + xy^2 - x^2y \\ 2x^2 - 3y^2 \end{bmatrix} \qquad \begin{aligned} 1 + xy^2 - x^2y &= 0 \\ 2x^2 - 3y^2 &= 0 \end{aligned}$$

$$1 + xy^{2} - x^{2}y = 0$$
 (nicht lineares)

$$2x^{2} - 3y^{2} = 0$$
 Gleichungssystem

- Iteratives Vorgehen wie im eindimensionalen Fall: Linearisieren und Nullstelle der Linearisierung ermitteln.
- Linearisierung mit Taylor:

$$F(x) \approx F(x_i) + J_F(x_i) \cdot (x - x_i) =: Lin_i(x)$$

dabei ist $J_F(x)$ die **Jacobi-Matrix** von F an der Stelle x.

Bestimmung der Nullstelle der Linearisierung:

$$Lin_i(x) = 0$$
 oder

$$Lin_i(x) = 0$$
 oder $x_{i+1} = x_i - [J_F(x_i)]^{-1} F(x_i)$

also genau das gleiche, nur mit Jacobi, statt ableitung.Pro

Iterationsschritt

$$x_{i+1} = x_i - [J_F(x_i)]^{-1} F(x_i)$$

- zur praktischen Durchführung:
- Die Berechnung der Inversen sollte vermieden werden. Anstelle dessen:
- Im Allgemeinen muss man in jedem Iterationsschritt ein lineares Gleichungssystem mit $A = J_F(x_i)$ lösen:
 - löse

$$[J_F(x_i)]z = -F(x_i)$$

setze

$$x_{i+1} = x_i + z$$

das z entspricht also dem -f/f'Spric

Maß für die Geschwindigkeit der Konvergenz

- Die (Iterations-)Folge (x_i) konvergiere gegen x^* :
 - Konvergenzordnung p=1 (lineare Konvergenz):

Es gibt eine Konstante C < 1 so dass

desto kleiner C, desto besser!

$$|x_{i+1} - x^*| \le C \cdot |x_i - x^*|$$
 für alle (großen) i

Konvergenzordnung p > 1 :es gibt eine Konstante so dass

$$|x_{i+1} - x^*| \le C \cdot |x_i - x^*|^p$$
 für alle (großen) *i*

- Im Fall p=2 spricht man von quadratischer Konvergenz;
- superlineare Konvergenz :

 $\lim_{i \to \infty} \frac{\left| x_{i+1} - x^* \right|}{\left| x_i - x^* \right|} = 0$

sprich C geht gegen Null!

- Fixpunktiterationen mit Voraussetzungen des BFS konvergieren (mindestens) linear
- Newtonverfahren:
 - einfache Nullstelle: quadratische Konvergenz
 - mehrfache Nullstelle: lineare Konvergenz man wird "in beide Richtungen" gezogen
 - Newtonverfahren im \mathbb{R}^n konvergiert quadratisch sofern einfache Nullstelle vorliegt (d.h. die Jacobimatrix in der Nullstelle invertierbar ist).
- Sekantenverfahren: Konvergenzordnung

besser als linear (aber nur ein bisschen)

$$p = \frac{\sqrt{5}+1}{2} \approx 1.618...$$

Bisektion und regula falsi "in etwa" linear

Beispiel Bisektionsverfahren

Konvergenzordnung: "in etwa linear"

$$f(x) = x^3 - 3$$
, $x^* = \sqrt[3]{3} = 1.4422495703$
Anfangsintervall [1.0,1.5]

x_i	$ x_i - x^* $	$ x_i - x^* / x_{i-1} - x^* $
1.250000	0.1922495	
1.375000	0.0672495	0.349803487
1.437500	0.0047495	0.070626028
1.468750	0.0265004	5.579542990
1.453125	0.0108754	0.410386925
1.445312	0.0030629	0.281637599
1.441406	0.0008433	0.275331137
1.443359	0.0011098	1.315995115

Beispiel Newtonverfahren

Konvergenzordnung: quadratisch (p=2)

$$f(x) = x^3 - 3$$
, $x^* = \sqrt[3]{3} = 1.4422495703$
Startpunkt $x_0 = 1.5$

x_i	$ x_i - x^* $	$ x_i - x^* / x_{i-1} - x^* ^2$
1.5	0.057750430	
1.44444444	0.002194874	0.6581109994
1.442252904	0.000003334	0.6920642374
1.442249570	0.0	0.0
1.442249570	0.0	undefined

Beispiel Newtonverfahren

Erhöhte Genauigkeit (30 Dezimalstellen)

$$f(x) = x^3 - 3$$
, $x^* = \sqrt[3]{3} = 1.44224957030740838232163831078$

x_i	$ x_i - x^* $	$ x_i - x^* / x_{i-1} - x^* ^2$
1.5	0.05775042969259161767	
1.4444444444444444444444444444444444444	0.00219487413703606212	0.658111047452949
1.442252903791365329	0.00000333348395694750	0.691957031942603
1.4422495703151130689	0.77046866751 10-11	0.693359137594228
1.4422495703074083823	0.4115945 10-22	0.693361301378699
1.4422495703074083823	0.0	0.0
1.4422495703074083823	0.0	undefined

Beispiel Sekantenverfahren

Konvergenzordnung: $p = \frac{1}{2}(1 + \sqrt{5}) = 1.618...$ erhöhte Genauigkeit

$$f(x) = x^3 - 3$$
, $x^* = \sqrt[3]{3} = 1.44224957030740838232163831078$
Anfangswerte $x_0 = 1.0$, $x_1 = 1.5$

x_i	$ x_i - x^* $	$ x_i - x^* / x_{i-1} - x^* ^{1.618}$
1.5	0.05775042969259161767	
1.4210526315789473684	0.02119693872846101390	2.1385474547129
1.4414151249594287568	0.00083444534797962542	0.4261326766406
1.4422619601527410463	0.00001238984533266404	1.1867212636286
1.4422495631362650002	0.7171143382064 10-11	0.6239856249190
1.4422495703073467779	0.6160435103571 10-13	0.9279961284195
1.4422495703074083823	0.30630873 10-21	0.7261346402066
1.4422495703074083823	0.0	0.0

Beispiel Regula Falsi

Konvergenzordnung: linear

$$f(x) = x^3 - 3$$
, $x^* = \sqrt[3]{3} = 1.4422495703$
Anfangsintervall [1.0,1.5]

x_i	$ x_i - x^* $	$ x_i - x^* / x_{i-1} - x^* $
1.5	0.057750430	
1.421052632	0.021196938	0.3670438
1.441415125	0.000834445	0.0393663
1.442217020	0.000032550	0.0390080
<u>1.44224</u> 8301	0.000001269	0.0389862
1.442249521	0.49 107	0.0386131
<u>1.4422495</u> 68	0.2 108	0.0408163
1 442249570	0.0	0.0

Vor- und Nachteile

- Newton
 - + konvergiert sehr schnell (p=2)
 - benötigt Werte der <mark>Ableitungen</mark>

wegen BFS ist in einem intervall gültig (i.a.)oft mis

- konvergiert nur für Startwerte nahe bei der Nullstelle
- Sekanten
 - + konvergiert ziemlich schnell (p=1.62)
 - + benötigt keine Werte der Ableitungen
 - konvergiert nur für Startwerte nahe bei der Nullstelle
- Bisektion und regula falsi
 - konvergiert langsam (p=1)
 - + benötigt <mark>keine Werte der Ableitungen</mark>
 - + sicher konvergent

stetig und ns muss existieren (+/- über z.b. interv

Wann soll die Iteration abgebrochen werden?

- 1. Gibt es eine Fehlerabschätzung (z.B. BFS) nutze diese.
- 2. Erreichen einer maximalen Iterationszahl MAX_ITER
- 3. $||x_{i+1} x_i|| < \varepsilon$ für eine kleine Schranke ε .

problem; monotonie!!

4. $||F(x_i)|| < \varepsilon$ (bei Nullstellensuche) bzw.

also der echte abstand soll kleiner epsilon sein

- $\| \Phi(x_i) x_i \| < \varepsilon$ (bei Fixpunktiteration)
- 5. $||x_i|| > M$ für eine (große) Schranke M (\rightarrow nicht konv.)

system divergiert

In der Praxis: Eine Kombination mehrerer dieser Kriterien, z.B. 2. und 4. und 5.

Nullstellen von spez. Polynomen

Für spezielle Polynome kann man sukzessive sämtliche Nullstellen mit dem Newton-Verfahren bestimmen:

• Annahme: Das Polynom $p(x) = a_0 + a_1 x + ... + a_n x^n$ habe n reelle Nullstellen $\xi_1 \ge \xi_2 \ge ... \ge \xi_{n-1} \ge \xi_n$ (zB char. Polynom einer symmetrischen Matrix)

in vielen fällen besser polynomlösen umgehen, spez bei char.polynom (nur bei symmetrischen!!!!)

• die Theorie sagt dann $p(x) = a_n (x - \xi_1)(x - \xi_2) \dots (x - \xi_n)$

• Startet man das Newton-Verfahren für p(x) mit einem hinreichend großen x_0 (zB $x_0 \ge \frac{1}{|a_n|} \sum_{i=0}^n |a_i|$), dann konvergiert die Iterations-Folge gegen ξ_1 .

Nullstellen von spez. Polynomen

• ξ_2 ist größte Nullstelle von $p_1(x) = \frac{p(x)}{x - \xi_1}$

jede gefundene NS rauskicken

- Diese kann iterativ mit Newton-Verfahren zum Startwert $x_0 = \xi_1 + \varepsilon$ bestimmt werden
 - Beachte, dass $p_1'(x) = \frac{p'(x)}{x \xi_1} \frac{p(x)}{(x \xi_1)^2} \Rightarrow \frac{p_1(x)}{p_1'(x)} = \frac{p(x)}{p'(x) \frac{p(x)}{x \xi_1}}$ deshalb müssen p_1 und p_1' nicht explizit bestimmt werden!
- ξ_{k+1} ist größte Nullstelle von $p_k(x) = \frac{p(x)}{(x-\xi_1)(x-\xi_2)\cdots(x-\xi_k)}$
 - Beachte, dass $\frac{p_k(x)}{p_k'(x)} = \frac{p(x)}{p'(x) p(x) \cdot \sum_{i=1}^k \frac{1}{x \xi_i}}$

- Fixpunkt-Iteration: Banachscher Fixpunktsatz
 - Konvergenz und Eindeutigkeit
 - Fehlerabschätzungen
- Verfahren zur Nullstellenbestimmung
 - Newton-V.
 - Bisektions-V.
 - Sekanten-V.
 - regula falsi
 - Vergleich der Verfahren
- Konvergenzordnung
 - Definition und Beispiele (Nullstellenverfahren)
- Abbruchkriterien
- Nullstellen von (speziellen) Polynomen

