Problem 5

Shashi Bhushan Singh

Problem 5: Computational Finance - Modelling Stock prices

Following piece of code download the prices of TCS since 2007

tail(TCS.NS)

```
library(quantmod)
## Warning: package 'quantmod' was built under R version 4.2.2
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 4.2.2
## Registered S3 method overwritten by 'quantmod':
##
    method
##
     as.zoo.data.frame zoo
getSymbols('TCS.NS')
## Warning: TCS.NS contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
## [1] "TCS.NS"
```

```
TCS.NS.Open TCS.NS.High TCS.NS.Low TCS.NS.Close TCS.NS.Volume
## 2022-11-04
                    3217.0
                               3220.05
                                           3166.15
                                                         3217.40
                                                                        1464013
                    3229.0
## 2022-11-07
                               3242.80
                                           3195.10
                                                         3233.70
                                                                        1474498
## 2022-11-09
                    3249.8
                               3249.80
                                           3201.65
                                                        3216.05
                                                                        1162267
## 2022-11-10
                    3170.0
                               3225.00
                                           3170.00
                                                         3205.65
                                                                        1573092
## 2022-11-11
                    3269.6
                               3341.60
                                           3255.05
                                                         3315.95
                                                                       3265394
## 2022-11-14
                    3324.0
                               3349.00
                                           3309.00
                                                         3335.50
                                                                       1342074
              TCS.NS.Adjusted
##
## 2022-11-04
                       3217.40
## 2022-11-07
                       3233.70
## 2022-11-09
                       3216.05
## 2022-11-10
                       3205.65
## 2022-11-11
                       3315.95
## 2022-11-14
                       3335.50
```

Plot the adjusted close prices of TCS

plot(TCS.NS\$TCS.NS.Adjusted)

Download the data of market index Nifty50. The Nifty 50 index indicates how the over all market has done over the similar period.

```
getSymbols('^NSEI')
```

Warning: ^NSEI contains missing values. Some functions will not work if objects

```
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
```

[1] "^NSEI"

tail(NSEI)

##		NSEI.Open	NSEI.High	NSEI.Low	NSEI.Close	NSEI.Volume	NSEI.Adjusted
##	2022-11-04	18053.40	18135.10	18017.15	18117.15	267900	18117.15
##	2022-11-07	18211.75	18255.50	18064.75	18202.80	314800	18202.80
##	2022-11-09	18288.25	18296.40	18117.50	18157.00	307200	18157.00
##	2022-11-10	18044.35	18103.10	17969.40	18028.20	256500	18028.20
##	2022-11-11	18272.35	18362.30	18259.35	18349.70	378500	18349.70
##	2022-11-14	18376.40	18399.45	18311.40	18329.15	301400	18329.15

Plot the adjusted close value of Nifty50

plot(NSEI\$NSEI.Adjusted)

Log-Return

We calculate the daily log-return, where log-return is defined as

$$r_t = \log(P_t) - \log(P_{t-1}) = \Delta \log(P_t),$$

where P_t is the closing price of the stock on t^{th} day.

• Consider the following model:

$$r_t^{TCS} = \alpha + \beta r_t^{Nifty} + \varepsilon,$$

where $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}ar(\varepsilon) = \sigma^2$.

1. Estimate the parameters of the models $\theta=(\alpha,\beta,\sigma)$ using the method of moments type plug-in estimator discussed in the class.

```
# 1.method of moment
y_mean=mean(retrn$TCS.NS.Adjusted)
x_mean=mean(retrn$NSEI.Adjusted)

xy_mean=mean(retrn$TCS.NS.Adjusted * retrn$NSEI.Adjusted)
x2_mean=mean(retrn$NSEI.Adjusted^2)

bet=((x_mean * y_mean) - xy_mean) / (x_mean^2 - x2_mean)

alpha= y_mean-bet*x_mean

sigma= sd(retrn$TCS.NS.Adjusted- alpha-bet * retrn$NSEI.Adjusted)

print(paste("for method of moment ","alpha :",alpha,"beta: ",bet, " sigma :",sigma))
```

[1] "for method of moment alpha : 0.000462822507107183 beta: 0.74368398417767 sigma : 0.0163

2. Estimate the parameters using the lm built-in function of R. Note that lm using the OLS method.

```
# 2. OLS
OLS=lm(data=retrn, TCS.NS.Adjusted ~ NSEI.Adjusted)
alpha_o= OLS$coefficients[1]
beta_o= OLS$coefficients[2]
sigma= sd(retrn$TCS.NS.Adjusted- alpha_o -beta_o * retrn$NSEI.Adjusted)
print(paste("OLS ","alpha :",alpha_o,"beta: ",beta_o," sigma :",sigma))
```

[1] "OLS alpha: 0.000462822507107183 beta: 0.74368398417767 sigma: 0.0161846554446471"

3. Fill-up the following table

Parameters	Method of Moments	OLS
α	0.000462823004746492	0.000462823004746493
β	0.743683986012229	0.74368398601223
σ	0.0161846572261074	0.0161846572261074

4. If the current value of Nifty is 18000 and it goes up to 18200. The current value of TCS is Rs. 3200/-. How much you can expect TCS price to go up?

```
Nifty_r = log(18200) - log(18000)

TCS_r = alpha + bet * Nifty_r

TCS_expected = exp(TCS_r + log(3200) )

print(paste ("The expected price rise for TCS is :", TCS_expected - 3200 ))
```

[1] "The expected price rise for TCS is : 27.8982166471305"