Solution Overview

Adaptive Filter Used: Recursive Least Squares (RLS)

- RLS is an adaptive filter that minimizes mean square error using an exponentially weighted least squares criterion.
- Well-suited for noise cancellation in dynamic environments due to its fast convergence and precision.

Property	Advantage	Disadvantage
Convergence	Fast, near-instantaneous adaptation	Computationally expensive
Tracking Ability	Performs well in time-varying noise	High sensitivity to numerical errors
Memory Requirements	Uses inverse correlation matrix for updates	Consumes more memory than LMS

Processing Pipeline & Implementation Details

The cost function:

$$J(n) = \sum_{k=0}^{n} \lambda^{n-k} e^{2}(k)$$

Where e(n) = estimated true signal and λ is the *forgetting factor*.

The weights are updated every 32,768 samples.

Update Algorithm

- x(n), d(n), w(n) are n^{th} sequence component of noisy signal, true signal and weights of the filter resp.
- $P(k) = R_{xx}^{-1}(k)$ is the inverse-correlation matrix (to be initialized)
- Define X(n) as the column vector containing the last buffered samples of x(n).
- The algorithm is then as follows:

Gain vector:
$$g(n) = \frac{P(n-1)X(n)}{\lambda + X^T(n)P(n-1)X(n)}$$

Noise Estimate:
$$\hat{v}(n) = X^T(n)w(n-1)$$

True Signal Estimate:
$$e(n) = d(n) - \hat{v}(n)$$

Weight Update:
$$w(n) = w(n-1) + g(n)e(n)$$

Inverse-Correlation Matrix Update:
$$\frac{1}{\lambda}(P(n-1)-g(n)X^T(n)P(n-1))$$

Computational Complexity (per iteration)

Step	Complexity
Gain Vector	$O(N^2)$
Noise Estimate	O(N)
True Signal Estimate	0(1)
Weight Update	O(N)
Inverse-Correlation Matrix Update	$O(N^2)$

Results

Performance Metrics for Full Suppression:

Pre-Cancellation SNR: -16.77 dB

Post-Cancellation SNR: 33.19 dB

Design Trade-offs & Justifications

Parameter	Choice	Justification
Update Rate (number of samples)	32768	Best performance (highest SNR for full_suppression)
Filter Order	16	Balances latency vs. performance
Forgetting Factor	0.99999	Balance between filter performance vs. no. of past errors
Initialization $P(0)$	$\frac{I}{0.001}$	Prevents numerical instability

Partial Suppression Approach under Consideration

- Continuously apply a notch filter across the *external_noise* that removes the tonal frequency from reference.
- The algorithm will thus never learn to adapt to the tone and it will be retained in the output.

References

- 1. Paulo S. R. Diniz, "Adaptive Filtering: Algorithms and Practical Implementation" (Chapter 5)
- 2. Ali, F., Rawat, P., & Malvia, S. (2017). Comparative analysis and survey of LMS and RLS adaptive algorithms. International Journal of Computer Applications, 161(3), 26–29. https://doi.org/10.5120/ijca2017913136
- 3. S. Haykin, "Adaptive Filter Theory", 3rd Edition, Prentice Hall, N.J., 1996 (Chapter 13)
- 4. M. H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons, 1996 (Chapter 9)