Introdução a linguagem Stan (*rstan*), um software para modelos bayesianos.

Universidade Federal do Oeste do Pará (UFOPA) Campus de Monte Alegre – Engenharia de Aquicultura

Universidade Federal de Lavras (UFLA) PPG – Estatística e Experimentação Agropecuária

Professor: Carlos Antônio Zarzar

E-mail: carloszarzar_@hotmail.com

carlos.zarzar@ufopa.edu.br

Data: 09/03/2022

AGRADECIMENTO E COLABORADORES:

> Sumário

- Estatística Bayesiana;
- Modelos Hierárquicos;
- Método computacional de integração MCMC;
- Algoritmo de amostragem;
 - Gibbs;
 - Metropolis-Hasting;
 - Hamiltoniano Monte Carlo;
 - NUTS;

Modelos Hierárquicos

- Ilustração dos modelos Hierárquicos;
 - Conceito e definição;
 - Modelos Hierárquicos Bayesianos.

- Várias nomes representam os Modelos Hierárquicos ou casos especiais dele:
 - Modelos hierárquicos;
 - Modelo multinível;
 - Modelo de efeitos aleatórios;
 - Modelo de efeitos mistos;
 - Bayes empírico;
 - Regressão regularizada / penalizada / reduzida;
 - Determinação automática de relevância (ARD) em processos gaussianos (GP);
 - Adaptação de domínio;
 - Modelo de componentes de variância;
 - Modelo transversal;
 - Modelo de dados aninhados, design de gráfico dividido, coeficiente aleatório.

00

Modelo Hierárquico:

• Modelo Hierárquico:

Modelo Hierárquico:

00

Modelo Hierárquico:

n 09/03/2022

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
 para todo $j = 1, \dots, J$

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$Y_{11},\ldots,Y_{n_11},\ldots,Y_{1J},\ldots,Y_{n_JJ}\perp \perp \mid \theta$$

$$\theta_1, \ldots, \theta_J \perp \perp \mid \phi,$$

Modelo Hierárquica

J grupos diferentes e
$$n_1, ..., n_J$$
 observações $p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j) \text{ para todo } i = 1, ..., n_j \qquad p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi) \text{ para todo } j = 1, ..., J$$

$$Y_{11},\ldots,Y_{n_11},\ldots,Y_{1J},\ldots,Y_{n_JJ}\perp \perp \mid \theta$$

$$D_1$$
 D_2 ... D_{J-1} D_J θ_1 θ_2 ... θ_{J-1} θ_J

$$\theta_1,\ldots,\theta_J\perp\perp\mid\phi,$$

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$\phi \sim p(\phi)$$

entes e
$$n_1, \ldots, n_J$$
 observações $p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$

$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

φ

Modelo Hierárquica

 ${\bf J}$ grupos diferentes e n_1,\ldots,n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

carloszarzar_@hotmail.com

$$\phi \sim p(\phi)$$

 θ_{J-1} $heta_1$ θ_2 θ_{J}

1. Fixa-los a alguns valores constantes;

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

$$\phi \sim p(\phi)$$

- 1. Fixa-los a alguns valores constantes;
- Usar estimativas pontuais estimadas a partir dos dados;

Modelo Hierárquica

 ${\bf J}$ grupos diferentes e n_1,\ldots,n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

carloszarzar_@hotmail.com

$$\phi \sim p(\phi)$$

- 1. Fixa-los a alguns valores constantes;
- 2. Usar estimativas pontuais estimadas a partir dos dados;
- 3. Definir uma distribuição de probabilidade sobre eles.

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

$$\phi \sim p(\phi)$$

- 1. Fixa-los a alguns valores constantes;
- 2. Usar estimativas pontuais estimadas a partir dos dados;
- 3. Definir uma distribuição de probabilidade sobre eles.

Modelo Hierárquico totalmente Bayesiano

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
 para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

$$\phi \sim p(\phi)$$

$$\mathbf{Y} \perp \!\!\!\perp \phi \mid \theta$$

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi) \mathbf{para}$$
todo $j = 1, \dots, J$

$$\phi \sim p(\phi)$$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

Modelo Hierárquica

J grupos diferentes e n_1, \ldots, n_J observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi) \mathbf{para}$$
todo $j = 1, \dots, J$

$$\phi \sim p(\phi)$$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^J p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^J p(\theta_j \mid \phi).$$

carloszarzar_@hotmail.com

$$p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta, \phi) p(\theta, \phi)$$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

Modelo Hierárquica

J grupos diferentes e
$$n_1, \ldots, n_J$$
 observações
$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j) \text{para todo } i = 1, \ldots, n_j$$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi) \text{para todo } j = 1, \ldots, J$$

$$p(\theta \mid \phi) = \prod_{j=1}^{n_j} p(\theta_j \mid \phi).$$

$$\phi \sim p(\phi)$$

Distribuição condicional

Verossimilhança

$$p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta, \phi) p(\theta, \phi)$$

 $p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta) p(\theta | \phi) p(\phi)$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

Modelo Hierárquica

J grupos diferentes e
$$n_1, \ldots, n_J$$
 observações
$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j) \text{para todo } i = 1, \ldots, n_j$$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi) \text{para todo } j = 1, \ldots, J$$

$$p(\theta \mid \phi) = \prod_{j=1}^{n_j} p(\theta_j \mid \phi).$$

$$\phi \sim p(\phi)$$

Distribuição conjunta

A priori

$$p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta, \phi) p(\theta, \phi)$$

 $p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta) p(\theta | \phi) p(\phi)$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

 $p(\mathbf{y}_j \mid \theta_j)$

Modelo Hierárquica

J grupos diferentes e
$$n_1, \ldots, n_J$$
 observações

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
 para todo $j = 1, \dots, J$

$$\phi \sim p(\phi)$$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\theta}, \boldsymbol{\phi}) p(\boldsymbol{\theta}, \boldsymbol{\phi})$$
$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto \underline{p(\mathbf{y} | \boldsymbol{\theta})} \underline{p(\boldsymbol{\theta} | \boldsymbol{\phi})} p(\boldsymbol{\phi})$$
$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto \underline{p(\mathbf{y} | \boldsymbol{\theta})} \underline{p(\boldsymbol{\theta} | \boldsymbol{\phi})} p(\boldsymbol{\phi})$$
$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\boldsymbol{\phi}) \prod_{j=1}^{J} \underline{p(\mathbf{y}_{j} | \boldsymbol{\theta}_{j})} p(\boldsymbol{\theta}_{j} | \boldsymbol{\phi}).$$

Modelo Hierárquica

J grupos diferentes e
$$n_1, \dots, n_J$$
 observações p

$$Y_{ij} \mid \theta_j \sim p(y_{ij} \mid \theta_j)$$
para todo $i = 1, \dots, n_j$

$$\theta_j \mid \phi \sim p(\theta_j \mid \phi)$$
para todo $j = 1, \dots, J$

 $\phi \sim p(\phi)$

$$p(\mathbf{y}_j \mid \theta_j) = \prod_{i=1}^{n_j} p(y_{ij} \mid \theta_j).$$
$$p(\theta \mid \phi) = \prod_{j=1}^{J} p(\theta_j \mid \phi).$$

$$p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta, \phi) \ p(\theta, \phi)$$

 $p(\theta, \phi, | \mathbf{y}) \propto p(\mathbf{y} | \theta) \ p(\theta | \phi) \ p(\phi)$

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\boldsymbol{\phi}) \prod_{j=1}^{J} p(\mathbf{y}_j | \boldsymbol{\theta}_j) \ p(\boldsymbol{\theta}_j | \boldsymbol{\phi}).$$

$$\mathbf{Y} \perp \perp \phi \mid \theta \longrightarrow p(\mathbf{y} \mid \theta, \phi) = p(\mathbf{y} \mid \theta),$$

$$p(\boldsymbol{\theta}|\mathbf{y}) = \int p(\boldsymbol{\theta}, \boldsymbol{\phi}|\mathbf{y}) d\boldsymbol{\phi} = \int p(\boldsymbol{\theta}|\boldsymbol{\phi}, \mathbf{y}) p(\boldsymbol{\phi}|\mathbf{y}) d\boldsymbol{\phi}$$

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\theta}, \boldsymbol{\phi}) p(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\theta}) \ p(\boldsymbol{\theta} | \boldsymbol{\phi}) \ p(\boldsymbol{\phi})$$

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}, | \mathbf{y}) \propto p(\boldsymbol{\phi}) \prod_{j=1}^{J} p(\mathbf{y}_j | \boldsymbol{\theta}_j) \ p(\boldsymbol{\theta}_j | \boldsymbol{\phi}).$$

Distribuição marginal a posteriori dos θ a nível de grupo

A posteriori Modelos Hierárquicos Bayesianos;

Introdução a linguagem Stan (*rstan*), um software para modelos bayesianos.

Universidade Federal do Oeste do Pará (UFOPA) Campus de Monte Alegre – Engenharia de Aquicultura

Obrigado !!!

Professor: Carlos Antônio Zarzar

E-mail: carloszarzar_@hotmail.com

carlos.zarzar@ufopa.edu.br

Data: 09/03/2022

AGRADECIMENTO E COLABORADORES:

