Metodi Matematici per l'Informatica (secondo canale) — 16 Luglio 2024 Soluzioni di Andrea Princic. Cartella delle soluzioni.

$ \begin{array}{c} \square_V \ \square_J \\ \square_V \ \square_J \\ \square_V \ \square_J \end{array} $	Indichiamo con $P(A)$ l'insieme dei sottoinsiemi di un insieme A con $X, Y \in P(A)$. Allora: F A . se $\emptyset \in A$ allora $\emptyset \in P(A)$ F B . se $\emptyset \in P(A)$ allora $\emptyset \in A$ F C . $(X \cup Y) \cap X = X$ F D . $(X \cap Y) \cup X = X$ F E . se $A \subseteq P(A)$ allora $A = \emptyset$
$ \begin{array}{c} \square_V \square_J \\ \square_V \square_J \\ \square_V \square_J \end{array} $	Sia $R \subseteq A \times A$ una relazione simmetrica e antisimmetrica. Allora F A. non può esistere una tale R B. F B. F B. F C. F è necessariamente anche antiriflessiva F D. se per ogni F A esiste F tale che F che allora F è un'equivalenza
Es 3.	L'insieme $\{(x,y)\mid x\in\mathbb{Z},y\in\mathbb{Z},3x+y=4\}$ è una funzione da \mathbb{Z} in \mathbb{Z} ? Rispondere qui
Es 4.	L'unione di una quantità numerabile di insiemi numerabili è numerabile. Sostanziare questa affermazione con un esempio. Rispondere qui
Es 5.	Dimostrare usando il Principio di Induzione la seguente proposizione: per ogni $n>0,(n+1)^2-(n-1)^2=4n.$ Rispondere qui

Es 6.	Consideriamo la seguente proposizione: $p \oplus (q \to (p \otimes q))$. Per quale scelta di connettivi da sostituire a \oplus e \otimes la proposizione risultate è una tautologia?
	Rispondere qui
	La formula seguente è una tautologia? $_F$ A. $(\exists x P(x) \to \exists x Q(x)) \leftrightarrow \exists x (P(x) \to Q(x))$
Es 8.	Si esprimano le premesse: a. Tutti coloro che devono prendere il treno e sono in ritardo devono correre. b. Paolo deve prendere il treno c. Paolo non è in ritardo in un opportuno linguaggio della logica predicativa e si stabilisca se è corretto dedurne che d. Paolo non deve correre
	Rispondere qui