1 Introduction to Galois theory assignmens 1

Problem 1.1 Consider polynomial $P(X) = X^4 + X^3 + 1$. Is it true P

- (a) irreducible over \mathbb{F}_2
- (b) has a root in \mathbb{F}_4
- (c) irred. over \mathbb{F}_4
- (d) irred. over \mathbb{F}_8
- (e) has a root in \mathbb{F}_{16}
- (f) has a root in \mathbb{F}_{32}
- (g) has a root in \mathbb{F}_{64}
- (h) irred. over \mathbb{F}_{64}

Solution: For (a), True. Because if not it can be factored as polynomial with degree 1 and 3 or degree 2 and degree 2.

All possible linear factor are only X and X+1, but $P=X(X^3+X^2)+1$ and $P=(X+1)X^3+1$ hence not factorable by degree 1×3 . All possible quadratic polynomials are X^2,X^2+1,X^2+X,X^2+X+1 , but $P=X^2(X^2+X)+1$ and $P=(X^2+1)(X^2+X+1)+X$ hence can not be factored as 2×2 .

For (b), False. Because $\mathbb{F}_4 = \mathbb{F}_2/(X^2 + X + 1) = \mathbb{F}_2[\alpha] = \{0, 1, \alpha, 1 - \alpha\}$ and $\alpha(1 - \alpha) = 1$, hence $P(\alpha) = \alpha \neq 0$ and $P(1 - \alpha) = 1 - \alpha \neq 0$.

For (c), False. Although it doesn't have root, and having no linear factor. But note in $\mathbb{F}_4 = \mathbb{F}_2[\alpha]$, $\alpha^2 = 1 - \alpha = 1 + \alpha$ and $(1 + \alpha)^2 = \alpha$, and $\alpha^3 = \alpha(1 - \alpha) = 1$. And it's easy to see

$$P = (X^2 + \alpha X + \alpha) \cdot (X^2 + \alpha^2 X + \alpha^2)$$

For (d), True. Because P is irred. on \mathbb{F}_2 , any field containing one root must be at least of dimension 4. Hence no linear factor.

Let $\mathbb{F}_8 = \mathbb{F}_{2^3} = \mathbb{F}[\alpha]$ where α is a root of $X^3 + X^2 + 1$. Because $(\mathbb{F}_8)^*$ is cyclic, it is generated by α . But the additive group structure is generate by base vector

$$(1,0,0) = 1$$

 $(0,1,0) = \alpha$
 $(0,0,1) = \alpha^2$

And more over we have,

$$\begin{array}{rclrcl} \alpha^3 & = & 1 + \alpha^2 & = & (1,0,1) \\ \alpha^4 & = & 1 + \alpha + \alpha^2 & = & (1,1,1) \\ \alpha^5 & = & 1 + \alpha & = & (1,1,0) \\ \alpha^6 & = & \alpha + \alpha^2 & = & (0,1,1) \end{array}$$

If
$$P = (X^2 + AX + C)(X^2 + BX + D)$$
 then we have

$$CD = 1, (AD + BC) = 0, (D + C + AB) = 0, (A + B) = 1$$

Because any quadratic with two terms is reducible, we assume $ABCD \neq 0$ and Let $A = \alpha^a, B = \alpha^b, C = \alpha^c, D = \alpha^d$, using the above lookup table it's easy to enumerate all possible $a, b, c, d \in \{0, ..., 6\}$ and confirm there is no such satisfying the required relation.

- For (e), True. \mathbb{F}_{2^4} is stem and splittig field of any irred. polynomial of degree 4.
 - For (f), False. Because $4 \nmid 5$ hence $\mathbb{F}_{2^4} \not\subseteq \mathbb{F}_{2^5}$.
 - For (g), False. Because $4 \nmid 6$ hence $\mathbb{F}_{2^4} \nsubseteq \mathbb{F}_{2^6}$.
 - For (h), False. Because $2 \mid 6$ hence $\mathbb{F}_{2^2} \subset \mathbb{F}_{2^6}$. And P factors over \mathbb{F}_4 . \square

Problem 1.2 Set $\zeta = e^{\frac{2i\pi}{7}}$ and let $L = \mathbb{Q}(\zeta)$. Let $M = L \cap \mathbb{R}$.

- (a) Let p be prime. Prove $X^{p-1} + X^{p-2} + \cdots + X + 1 = \frac{X^p 1}{X 1}$ is irreducible over \mathbb{Q} (hint: Eisenstein)
- (b) Find the minimal polynomial of ζ over \mathbb{Q} and the degree of L over \mathbb{Q} .
- (c) Find the minimal polynomial of ζ over M (hint: $\zeta + \frac{1}{\zeta}$) and the degree $[L:M], [M:\mathbb{Q}].$
- (d) Let f be an automorphism of L over \mathbb{Q} . List all possibilities for $f(\zeta)$ then for $f(\cos(2\pi/7))$.

Solution: For (a), Let X = y + 1, then the polynomial is

$$\frac{(1+y)^p-1}{1+y-1} = \frac{y^p+py^{p-1}+\dots+py+1-1}{y} = y^{p-1}+py^{p-2}+\dots+p$$

Using Eisenstein criterion, it's irreducible, hence original polynomial must be irreducible.

For (b), it's a root of $X^7-1=0$, using (a), we know the minimal polynomial is $X^6+X^5+\cdots+1$. And $[L:\mathbb{Q}]=6$.

For (c), Because two dimension space need at most two independent vectors to generate. ζ have only degree 2 over \mathbb{R} . Actually because $\zeta + \frac{1}{\zeta} = \gamma \in L \cap \mathbb{R}$ we have $\zeta^2 + 1 = \gamma \zeta$ which means it's a minimal polynomial over $M = L \cap \mathbb{R}$. Then $[M:\mathbb{Q}] = 2$ and [L:M] = 3.

For (d), $f(\zeta)$ must be a root of $X^6 + X^5 + \cdots + 1$. And using stem field structure, any $\zeta \mapsto \zeta^i, i = 1, \dots, 6$ exists. So all possible $f(\zeta)$ are $\zeta^i, i = 1, \dots, 6$ And $f(\cos(2\pi/7)) = f(\frac{\zeta + \zeta^{-1}}{2})$, hence all possibilities are $\cos(2k\pi/7), k = 1, \dots, 6$.

Problem 1.3 Which of the following algebras are fields? Products of fields? Describe these fields.

(a)
$$\mathbb{Q}(\sqrt[3]{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2})$$

(b)
$$\mathbb{Q}(\sqrt[4]{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2})$$

(c)
$$\mathbb{F}_2(\sqrt{T}) \otimes_{\mathbb{F}_2(T)} \mathbb{F}_2(\sqrt{T})$$

(d)
$$\mathbb{F}_4(\sqrt[3]{T}) \otimes_{\mathbb{F}_4(T)} \mathbb{F}_4(\sqrt[3]{T})$$

Solution: For (a), it's field, equal to $\mathbb{Q}(\sqrt[3]{2}, \sqrt{2})$.

For (b), it's product of fields, equal to $\mathbb{Q}(\sqrt{2})[X]/(X^2-\sqrt{2})\times\mathbb{Q}(\sqrt{2})[X]/(X^2+\sqrt{2})$. This is from

$$\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}[X] / (X^4 - 2) = \mathbb{Q}(\sqrt{2})[X] / (X^4 - 2) = \mathbb{Q}(\sqrt{2})[X] / (X^2 - \sqrt{2}) \times \mathbb{Q}(\sqrt{2})[X] / (X^2 + \sqrt{2})$$

For (c), it's neither field nor product of field. Actually it's

$$\mathbb{F}_{2}(\sqrt{T}) \otimes_{\mathbb{F}_{2}(T)} \mathbb{F}_{2}(\sqrt{T})$$

$$= \mathbb{F}_{2}(\sqrt{T}) \otimes_{\mathbb{F}_{2}(T)} \mathbb{F}_{2}(T)[X]/(X^{2} - T)$$

$$= \mathbb{F}_{2}(\sqrt{T})[X]/(X^{2} - T)$$

$$= \mathbb{F}_{2}(\sqrt{T})[X]/(X - \sqrt{T})^{2}$$

having nilpotents

For (d), it's product of fields, actually

$$\mathbb{F}_{4}(\sqrt[3]{T}) \otimes_{\mathbb{F}_{4}(T)} \mathbb{F}_{4}(\sqrt[3]{T}) \\
= \mathbb{F}_{4}(\sqrt[3]{T}) \otimes_{\mathbb{F}_{4}(T)} \mathbb{F}_{4}(T)[X]/(X^{3} - T) \\
= \mathbb{F}_{4}(\sqrt[3]{T})[X]/(X^{3} - T) \\
= \mathbb{F}_{4}(\sqrt[3]{T})[X]/((X - \sqrt[3]{T}) \cdot (X^{2} + \sqrt[3]{T}X + \sqrt[3]{T^{2}})) \\
= \mathbb{F}_{4}(\sqrt[3]{T})[X]/((X - \sqrt[3]{T}) \times \mathbb{F}_{4}(\sqrt[3]{T})[X]/(X^{2} + \sqrt[3]{T}X + \sqrt[3]{T^{2}}))$$