Homework 2B

1. Traffic flows (a) $t_1 = 10 =$ $t_2 = 10$

(b) $\begin{cases} +3 + 1 - 14 = 0 \\ +4 - 15 = 0 \\ +5 - 13 - 12 = 0 \\ +2 - 1 = 0 \end{cases}$

Free runiable. +3, +5 -> it's possible to determine all traffic flows with the Berkeley student's suggestion. eaused voitageers I Enshitz bretinots ent visin stdissagni &tT 43, 74, 45 are lin dep.

 $N(B) = spen \begin{cases} -1 \\ -1 \\ 0 \\ 0 \end{cases}$ dim (N(B)) = 2 $M_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

(t)

No. We have to measure the free-rariable flows along k rouls. counter example. Stumport Student's suggestion.

No If $(\vec{x} - \vec{t})$ is in the null space of Mr, it means Ms $(\vec{v} - \vec{t}) = \vec{\delta}$. In other words, Ms $\vec{v} = M_1 \vec{t}$. This means those prodifferent flows

will give us the same measurement, so the true flow on not be recovered.

- 2. Noisy Images
 - (A) $\vec{\zeta} = H\vec{1} + \vec{w}$ $\vec{z} = H^{-1}(\vec{z} - \vec{w})$
 - (b) We have $H\overrightarrow{J} = \lambda\overrightarrow{J}$ $H^{-1}H\overrightarrow{J} = \lambda H^{-1}\overrightarrow{J}$ $\overrightarrow{L}\overrightarrow{J} = \lambda H^{-1}\overrightarrow{J}$ ($\lambda \neq 0$ due to H is invertible)
 - (c) Matrix H, performs best in reconstructing original image. His the identity matrix. At the abs value of the smallest eigenvalue of H decreases, the absolute value of largest eigenvalue of H-1 moveases, being the wise in the result increases.
 - (d) For eigenvectors with large eigenvalues, the noise cignal will be attenuated. On the other hand, the noise cignal will be complified for eigenvectors with small eigenvectues.
- 3. The Pyramics of Romeo and Juliet's love affair

 (a) $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ a+b=c+d
- (i) $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ c \\ d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a + b \\ c + d \end{bmatrix} = (a + b) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

We have: $\lambda n + \lambda 2 = a + \lambda$ $A - \lambda_1 I I O = \begin{bmatrix} 1 & c & b & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\lambda_2 = d - b \qquad V^2 = \begin{bmatrix} b & 0 & 0 \\ -c & 0 & 0 \end{bmatrix}$

(i)
$$A = \begin{bmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{bmatrix}$$

(i) $(\lambda - 0.75)^{n} - 0.15^{2} = 0$
 $(\lambda - 1)(\lambda - 0.5) = 0$
 $\lambda_{1} = 1, \lambda_{2} = 0.5$
Case 1: $\lambda_{1} = 1$
 $[A - \lambda_{1} \pm 10] = \begin{bmatrix} -0.25 & 0.25 & 0 \\ 0.25 & -0.25 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $V_{1}^{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Case 2: $\lambda_{2} = 0.5$.

$$\overrightarrow{V}_{1}^{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$And: \quad \lambda_{1} = 1, \quad \overrightarrow{V}_{1}^{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\overrightarrow{V} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\overrightarrow{V} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -1\overrightarrow{V}_{1}^{2}$$

$$\overrightarrow{V} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -1\overrightarrow{V}_{1}^{2}$$

 $\vec{s}(n) = \frac{1}{2}i^{n} [1] + \frac{1}{2}(-i)^{n} [1]$

$$\begin{bmatrix} A - \lambda_1 I \mid O \end{bmatrix} = \begin{bmatrix} 0.15 & 0.15 \mid O \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0.15 & 0.25 \mid O \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 \mid O \end{bmatrix}$$

$$V^2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$Anb: \quad \lambda_1 = 1, \quad V^2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \lambda_2 = 0.5, \quad V^2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$V^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$V^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$3(N) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ if } N \ge 0 \text{ and } n \pmod 4 = 0$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \text{ if } n \ge 0 \text{ and } n \pmod 4 = 2$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ if } n \ge 0 \text{ and } n \pmod 4 = 3$$

4. Inmo to aracits

Vs - Vely - Vel4 - Vel5 - Velz = 0

(a) 5 rodes (c)

Vel, = U, - Uz Velz = U2 - N3

Vel4 = U2 - W4 Vels - W4-43 Ve/6 = U2-U4