§ 4.3 Primes & GCD Jessica Wei

Prime

DEF | Prime

Let $p \in \mathbb{Z}^+$. We say p is a prime if it is only divisible by p (itself) and 1. i.e. 2, 3, 5, 7... Note: If an integer is not prime, then it is called composite.

THM 4.3.1 |

Every composite integer has a prime factorization.

$$a = p_1^{a_1} \cdot p_2^{a_2} \cdot ... p_k^{a_k}$$

Example 1. Find the prime factorization of 100.

$$100 = 10 \cdot 10$$

$$10 = 2 \cdot 5$$

$$\therefore 100 = 2 \cdot 2 \cdot 5 \cdot 5$$

Answer: $100 = 2^2 \cdot 5^2$

THM 4.3.2 |

If n is composite, then $\exists p \in \mathbb{Z}$ such that p is prime, $p \leq \sqrt{n}$, and p|n.

PROOF: Since n is composite, there exists $a,b \in \mathbb{Z}$ such that $n=a \cdot b$ and $a \neq n \neq b$.

Case 1: $a > \sqrt{n}$ and $b > \sqrt{n}$

Then $a \cdot b > \sqrt{n}$, $\sqrt{n} = n$

 $\therefore a \cdot b > n$

This contradicts $a \cdot b = n$

Hence, it must be true that either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

Assume $a \leq \sqrt{n}$. If this is not true, the following argument can be made for b.

Possibility #1. a is prime. Then $a \leq n$ satisfies and $n = a \cdot b \Rightarrow a | n$ satisfies.

Possibility #2. a is composite. Then by THM 4.3.1, a has a prime factorization so that $n = a \cdot b = p_1^{a_1} \dots p_x^{a_x} \cdot b$. SO any prime p_i in this factorization divides n $(p_i|n)$ and $p_i^{a_i} \dots p_x^{a_x} = a \le \sqrt{n}$ which implies $p_i \le \sqrt{n}$

Example 2. Show that 61 is prime.

Assume that 61 is composite. In such a case $\exists p \leq \sqrt{61}$ such that p|61.

$$\sqrt{61}\approx7...,\,p\leq\sqrt{61}\approx7...$$

Range of primes: 2, 3, 5, 7...

$$2 \nmid 61, 3 \nmid 61, 5 \nmid 61, 7 \nmid 61$$

 \Rightarrow Contradiction hence 61 cannot be composite. 61 must be prime.

THM 4.3.3 |

There are infinitely many primes.

PROOF: Assume that there are only k-number primes $p_1, p_2, ..., p_k$. Form the number

$$Q = p_1...p_x + 1$$

Assuming Q is composite, Q must have a prime factorization. Suppose p is a prime factor of Q (p|Q).

Notice then that $p|Q-p_1...p_k \Rightarrow p|1$, which is impossible. Hence, Q cannot be composite.

So Q is prime which is a contradiction to finite number k primes. There are indefinitely-many primes.

$$2016:2^{74207281}-1$$

$$2017:2^{7712321917}-1$$

GCD's & LCM's

DEF | GCD

Let $a, b \in \mathbb{Z}^+$, the largest integer $d \in \mathbb{Z}^+$ that divides a and b is the greatest common divider.

$$d|a\wedge d|b$$

 \mathbf{DEF} | Pairwise Relatively Prime

Two or more integers are called pairwise relatively prime if the GCD between any two such integers is 1.

$$a_1, a_2...a_k$$

$$gcd(a_i, a_j) = 1$$
$$1 < i, j < k$$
$$gcd(4, 3) = 1$$
$$i \neq j$$

Example 3. What is...

a) gcd(24, 36) = 12**Answer:** 12|24 & 12|36 b) gcd(17, 22) = 1Answer: Relatively Prime

Example 4. Determine if the integers in the list are pairwise relatively prime.

a) 10, 17, 21 gcd(10, 19) = 1, gcd(10, 24) = 1, gcd(17, 21) = 1 **Answer:** \therefore pairwise relatively prime

b) 10, 19, 24 gcd(10, 19) = 1, gcd(10, 24) = 2, gcd(19, 24) **Answer:** \therefore not pairwise relatively prime

NOTICE: In general, if we are trying to find the GCD of any two numbers and we consider their prime factorization, then..

$$a = p_1^{a_1} \dots p_k^{a_k}, b = p_1^{b_1} \dots p_k^{b_k}$$

$$24 = 2^3 \cdot 3, 10 = 2 \cdot 5$$

$$\gcd(24, 10) = 2$$

$$24 = 2^3 \cdot 3^1, 36 = 2^2 \cdot 3^2$$

$$\gcd(24, 10) = 2$$

$$24 = 2^3 \cdot 3^1 = 12$$

$$\gcd(a, b) = p_1^{\min(a_1 b_1} \dots p_k^{\min(a_k b_k)} **$$

DEF | LCM

The Least Common Multiple of $a,b\in\mathbb{Z}^+$ is the smallest integer m such that a|m and b|m.

i.e. lcm(8, 10) = 40

 $8:\ 8,\ 16,\ 24,\ 32,\ \textbf{40},\ 48...$

10: 10, 20, 30, **40**, 50...

$$8 = 2^3$$
, $10 = 2^3 \cdot 5^1$

The powers of the prime factors of the least common multiple have to be the highest power present in the prime factors for a&b.

$$LCM(a,b) = p_1^{max(a_1,b_1}...p_k^{max(a_k,b_k)}$$

NOTE: Finding the GCD by trail & error of prime factorization is very costly and slow when trying to program it.

Euclidean Algorithm

THM 4.3.4 |

Let $a, b \in \mathbb{Z}^+$ such that $a = b \cdot q + r$, r > 0. Then the gcd(a, b) = gcd(b, r)

PROOF: Idea - show that all divisors of a & b are divisors of b and r because this includes the GCD.

i.e. Show $d|a \wedge d|b$

(i)
$$d|a \Rightarrow a = d \cdot s + a_0$$

(ii)
$$b|d \Rightarrow b = d \cdot k + b_0$$

To show d|r: $a = b \cdot q + r$

$$d_s = d \cdot k \cdot q + r$$

$$\Rightarrow r = d \cdot s - d \cdot k \cdot q$$

$$\Rightarrow r = d \cdot s - d \cdot k \cdot q$$

$$\Rightarrow r = d(s - k \cdot q) \text{ where } s - k \cdot q \in \mathbb{Z}$$

$$\Rightarrow d|r$$

$$\Rightarrow d|b \text{ and } d|r$$

Now assume d|b and d|r so that $b = d \cdot k \& r = d \cdot s$

Since
$$a = b \cdot q + r$$

$$a = d \cdot k \cdot q + d \cdot s = d(k \cdot q + s) \Rightarrow d|a \text{ where } k \cdot q + s \in \mathbb{Z}$$

$$\therefore d|a \& d|b$$

Hence all divisors of a & b are divisors of b & r including GCD.

Example 5. Find the GCD(a, b) where $a = b \cdot q + r$, then we can successfully reduce the problem of finding GCD(a, b) by dividing the large number by the smaller number, then the smaller number by the remainder until r = 0.

- a) Find gcd(120, 500)
 - $500 = 4 \cdot 120 + 20 \Rightarrow \gcd(120, 20)$
 - $120 = 6 \cdot 20 + 0 \Rightarrow 20$

Answer: gcd(20, 500) = 20

- b) Find gcd(414,662)
 - $662 = 1 \cdot 414 + 248 \Rightarrow \gcd(414, 248)$
 - $414 = 1 \cdot 248 + 166 \Rightarrow \gcd(248, 166)$
 - $248 = 1 \cdot 166 + 82 \Rightarrow \gcd(166, 82)$
 - $166 = 2 \cdot 82 + 2 \Rightarrow \gcd(82, 2)$
 - $82 = 41 \cdot 2 + 0 \Rightarrow 2$

Answer: gcd(414, 662) = 2

THM 4.3.5 |

Let $a, b \in \mathbb{Z}^+$. Then $\exists s, t \in \mathbb{Z}$ such that $a \cdot s + b \cdot t = \gcd(a, b) \Rightarrow$ (Bezout Identity) where s and t are Bezout coefficients.

Example 6. Find the Bezout Coefficient for.

- a) gcd(120, 500) = 20
 - $500 = 4 \cdot 120 + 20 \Rightarrow 20 = 500 4 \cdot 20$
 - $120 = 6 \cdot 20 + 0 \Rightarrow (1, -4)$

Answer: (-4, 1)

- b) Find gcd(414,662)
 - $662 = 1 \cdot 414 + 248 \Rightarrow 248 = 662 1 \cdot 414$
 - $414 = 1 \cdot 248 + 166 \Rightarrow 166 = 414 1 \cdot 248$
 - $248 = 1 \cdot 166 + 82 \Rightarrow 82 = 2 \cdot 48 1 \cdot 116$
 - $166 = 2 \cdot 82 + 2 \Rightarrow 2 = 166 2 \cdot 82$
 - $82 = 41 \cdot 2 + 0$

$$2 = 166 - 2 \cdot 82$$

- $= 166 2 \cdot (248 166) = 3 \cdot 166 2 \cdot 248$
- $= 3(414 248) 2 \cdot 248 = 3 \cdot 414 5 \cdot 248$
- $= 3 \cdot 414 5 \cdot 248 = 3 \cdot 414 5(662 1 \cdot 414)$
- $8 \cdot 414 5 \cdot 662 \Rightarrow (-5, 8)$

Answer: (-5, 8)