Let the control system be characterized by the block diagram given in Fig. 1, where the reference input is r(t) and the control error is $u_e(t)$. Two versions of controllers (C) are considered:

(1)
$$C(s) = k_C (1 + \frac{1}{T_i s})$$

(2)
$$C(s) = \frac{k_C(1 + T_d s)}{1 + T_f s}$$

- 1. Considering only the controlled process, calculate the transfer functions of the controlled process $H_{y,uc}(s) = \frac{y(s)}{u_c(s)} \bigg|_{d(s)=0}$ and $H_{y,d}(s) = \frac{y(s)}{d(s)} \bigg|_{r(s)=0}$.
- 2. Calculate the transfer characteristics, i.e., the transfer function with respect to the reference input $H_{z,d}(s)$ and the transfer function $H_{z,r}(s)$ with respect to the disturbance input d(t) for:
 - Row 1: $k_c=5$, $T_i=2$ sec.
 - Row 2: k_c =5, T_d =2 sec, T_f =10 sec.
- 3. Investigate the stability of the control system considering the controller parameter values given at point 2.
- 4. For:
 - Row 1: T_i=2 sec,
 - Row 2: T_d=2 sec, T_f=10 sec,

find the values of $k_c>0$ for which the control system is stable.

- 5. For r_{∞} =6.3 and d_{∞} =1500, calculate the steady-state values { $u_{e\infty}$, $u_{c\infty}$, $u_{c1\infty}$, $u_{c2\infty}$, $u_{EE\infty}$, m_{∞} , n_{∞} , z_{∞} , $n_{y\infty}$ } considering the controller parameter values given at point 2; and accepting that the system is stable.
- 6. Find the static coefficients k_{zr} and k_{zd} which enable the following expression to be written: $z_{\infty}=k_{zr}*r_{\infty}+k_{zd}*d_{\infty}$.
- 7. Conduct the stability analysis of the discrete-time linear system with the transfer function: $H(z) = \frac{11z^2 3z + 0.5}{z^3 + 3z^2 + 4z + 0.5}.$