

Design and Analysis of Algorithms

Lecture - 17

Greedy Algorithms

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

- Understand the Combinatorial Optimization Problems
- General Strategy of Greedy Algorithm
- Well-Known Examples

Combinatorial Optimization Problems

- There can be many solutions to a problem instance
- Optimal Solution
 - Maximize (or) Minimize an Objective Criterion

Find the largest number containing the following set of digits {3, 9, 2, 1, 9, 6}

• Problem Instance : {3, 9, 2, 1, 9, 6}

• Feasible solution: 391296, 961293, 993126 (6!)

• Optimal Solution: 993126

Greedy Strategy

Solution is built in stages

- 1. Make a greedy choice
- 2. Reduce the problem
- 3. Iterate until the problem can directly be solved

A safe move is a move which is consistent with some optimal solution

Pause & Think

Find the largest number containing the following set of digits {3, 9, 2, 1, 9, 6}

Which Greedy Choice offers a safe move?

Possible Greedy Choice

- 1. Select the largest digit from the set
- 2. Select the smallest digit from the set
- 3. Select some random digit from the set

Function Largest Number(A, n)

```
Sort(A, n) # Sort elements in decreasing order
num = A[0]
for(int i=1; i<n; i++){
    num = num * 10 + A[i]
}</pre>
```

Time Complexity

```
Input Size: n
```

Basic Operation : Assignment (Counting sort) , Addition

$$T(n) = Sort O(n) + Addition O(n) = O(n)$$

Optimal Storage on Tapes

There are n programs to be stored on a computer tape of length l (Sequential Access). Each of these program i has a length l_i . Find a permutation of the programs such that mean retrieval time is minimized.

- Pointer in the tape will always be positioned in the front
- Access to an item depends on its position

45

30

Retrieval time for a program $R_i = \sum_{j=1}^{k} l_j$

(sum of length of all programs stored before ith program)

Mean Retrieval time = Average retrieval time of all the programs

$$=1/n\sum_{i=1}^n R_i$$

Pause & Think

• What will be the retrieval time for the program with length 45?

• Given 3 programs with length (8, 11, 13), Find the mean retrieval time for the ordering shown below

13	11	8
----	----	---

Problem Instance

$$n = 3$$
 $(l_1, l_2, l_3) = (5, 10, 3)$

Possible Orderings =

Orderings	MRT
1, 2, 3	1/3 * ((5) + (5 + 10) + (5 + 10 + 3)) = 12.67
1, 3, 2	1/3 * ((5) + (5+3) + (5+3+10)) = 10.33
2, 1, 3	1/3 * ((10) + (10 + 5) + (10 + 5 + 3)) = 14.33
2, 3, 1	1/3 * ((10) + (10 + 3) + (10 + 3 + 5)) = 13.67
3, 1, 2	1/3 * ((3) + (3 + 5) + (3 + 5 + 10)) = 9.67
3, 2, 1	1/3 * ((3) + (3 + 10) + (3 + 10 + 5)) = 11.33

Optimal Solution = 3, 1, 2

Function Storage(A, n)

Sort(A, n) # Sort elements in increasing order return index [of elements after sorting]

Time Complexity

Input Size: n

Basic Operation : Comparison (sort)

 $T(n) = O(n \log n)$

Optimal Storage on Multiple Tapes

Given multiple tapes of infinite length, Find the optimal storage of programs onto the tapes such that MRT is minimized

- We always want the programs to be present at the start of tape
 - If there are equal number of programs and tapes
 - Every program is stored onto a different tape
- Optimal Ordering in a single tape (Increasing length)

Example

if there are three programs 5, 8, 12 to be stored onto two tapes

On storing P_3 onto T_1 , retrieval time will be increased Hence, optimal strategy will be to store the program onto T_0

Approach

Let there be m tapes and n programs

Optimal Solution :

Sort the programs based on increasing order of length

Place the first m programs onto tapes $T_0, T_1, T_2 \dots T_{m-1}$

Again, Place the next m programs onto tapes $T_0, T_1, T_2 \dots T_{m-1}$

 i^{th} program will be stored onto tape $T_{i \mod m}$

Summary

Discussed general strategy of greedy algorithm

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance