01/11/0

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

. (Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 989.6351DIV

Total Pages in this Submission 61

TO THE ASSISTANT COMMISSIONER FOR PATENTS

	, j								application D.C. 20231				
Ti	rans vent	mitte	d her	ewith for f	iling under 3	5 U.S	s.C. 111(a	a) and 37	C.F.R. 1.53	B(b) is a new utility	patent app	olication for	an
					otassium Cha	innel	s, Their (Cloning a	nd Their Use	e, Especially For Th	ie Screenin	g of Drugs	u.s. Pro 481990
ar			ed by										09/4
1.0				e, et al.	DUCATION								jce
-			inuat		PLICATION, Divisional					the requisite inform		00/540 01	1.6
Ö		h is a		.1011	Divisional		Contini	uation-in	-part (CIP)	of prior application)n NO.:	08/749,81	
5.		Cont	inuat :	ion 🗆	Divisional		Continu	uation-in	-part (CIP)	of prior application	on No.:		
	<u> </u>	Cont	inuat	ion 🗆	Divisional		Continu	uation-in	-part (CIP)	of prior application	n No.:		
∌E	nclo	sed a	are:				_						
å							Арр	lication l	Elements				
ela En	1.	\boxtimes	Filin	g fee as c	alculated and	ıl trar	nsmitted a	as descri	bed below				
	2.	X	Spe	cification l	naving		28		pages and ir	ncluding the followi	ing:		
		a.	\boxtimes	Descriptiv	ve Title of the	: Inve	∍ntion						
		b.		Cross Re	eferences to F	₹elat	ed Applic	cations <i>(it</i>	f applicable)				
		c.		Statemer	nt Regarding	Fede	rally-spo	onsored F	Research/De	velopment (if appli	icable)		
		d.		Referenc	e to Microfich	ne Ap	pendix (if applica	ble)				
		e.	X	Backgrou	ınd of the Inv	entio	n						
		f.	\boxtimes	Brief Sum	nmary of the	nver	ntion						
		g.	X	Brief Des	cription of the	∍ Dra	wings (if	f drawing:	s filed)				
		h.	X	Detailed I	Description								
		İ.	X	Claim(s)	as Classified	Belo	w						
		j.	\boxtimes	Abstract of	of the Disclos	ure							

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. 989.6351DIV

Total Pages in this Submission 61

Application Elements (Continued)

3.	X	Drawing(s) (when necessary as prescribed by 35 USC 113)								
	a.	☐ Formal b. ☒ Informal Number of Sheets								
4.	X	Oath or Declaration								
	a.	☐ Newly executed (original or copy) ☐ Unexecuted								
	b.	☐ Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional application only)								
	C.	☐ With Power of Attorney ☐ Without Power of Attorney								
	d.	☐ <u>DELETION OF INVENTOR(S)</u> Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. 1.63(d)(2) and 1.33(b).								
5.	\boxtimes	Incorporation By Reference (usable if Box 4b is checked) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.								
6.		Computer Program in Microfiche								
7.	X	Genetic Sequence Submission (if applicable, all must be included)								
	a.	☐ Paper Copy								
	b.	□ Computer Readable Copy								
	C.	☑ Statement Verifying Identical Paper and Computer Readable Copy								
		Accompanying Application Parts								
8.		Assignment Papers (cover sheet & documents)								
9.		37 CFR 3.73(b) Statement (when there is an assignee)								
10.		English Translation Document (if applicable)								
11.		Information Disclosure Statement/PTO-1449 Copies of IDS Citations								
12.	\boxtimes	Preliminary Amendment								
13.	\boxtimes	Acknowledgment postcard								
14.	X	Certificate of Mailing								
		☐ First Class ☒ Express Mail (Specify Label No.): EL525816853US								

UTILITY PATENT APPLICATION TRANSMITTAL (Small Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No. **989.6351DIV**

Total Pages in this Submission 61

	A	ccompanying A	pplication P	arts (Co	ntinued)					
15. ☐ Certified	15.									
16. Small Entity Statement(s) - Specify Number of Statements Submitted:										
17. ⊠ Additiona	Enclosures (p	lease identify bel	low):							
Associate Power of Attorney Request to Use Computer Readable Form										
		Fee Calcul	lation and Tr	ansmitta	al					
		CLAIMS	AS FILED							
For	#Filed	#Allowed	#Extra		Rate	Fee				
Total Claims	12	- 20 =	0	×	\$9.00	\$0.00				
≝ Indep. Claims	1	- 3 =	0	x	\$39.00	\$0.00				
Multiple Dependent (Claims (check	if applicable)		***************************************		\$0.00				
7.75 2.75 2.75 2.75					BASIC F	FEE \$345.00				
OTHER FEE (specif	y purpose)					\$0.00				
12 minutes					TOTAL FILING F	FEE \$345.00				
A check in the amount of \$345.00 to cover the filing fee is enclosed. The Commissioner is hereby authorized to charge and credit Deposit Account No. 13-3405 as described below. A duplicate copy of this sheet is enclosed. Charge the amount of as filing fee. Credit any overpayment. Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17. Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).										
	ated: January 11, 2000 Consider the street of the street									

cc:

ERTIFICATE OF oplicant(s): Florian L	MAILING BY "EXPRESS I esage, et al.	MAIL" (37 CFR 1.10)	Docket No. 989.6351DIV	
Serial No. Not yet known	Filing Date January 11, 2000	Examiner Not yet Assigned	Group Art Unit Not yet Assigned	
ention: Family of M	Iammalian Potassium Channels, T	heir Cloning and Their Use, Esp	ecially For The Screening	
I hereby certify that th	is Divisional Application and ac	companying documents (Identify type of correspondence)		
	is Divisional Application and ac th the United States Postal Service	(Identify type of correspondence)	Addressee" service unde	
is being deposited wit	••	(Identify type of correspondence) CE "Express Mail Post Office to A		
is being deposited wit	th the United States Postal Services of the United States Postal Services	(Identify type of correspondence) CE "Express Mail Post Office to A		
37 CFR 1.10 in an er	th the United States Postal Services of the United States Postal Services	(Identify type of correspondence) CE "Express Mail Post Office to A	Washington, D.C. 2023 Chan ling Correspondence)	

Note: Each paper must have its own certificate of mailing.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Art Unit Examiner

1600 Market Street

Suite 3600

Serial No.

: Not yet known

Filed Inventor : January 11, 2000

: Florian Lesage, et al.

Docket: 989.6351DIV

Title

: Family of Mammalian Potassium Channels, Their Cloning And

Philadelphia, PA 19103

: Their Use, Especially For The Screening of Drugs

Dated: January 11, 2000

PRELIMINARY AMENDMENT

Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to examination, please amend the application as follows:

IN THE SPECIFICATION:

Please incorporate the attached Sequence Listing into the specification of the present application. This Sequence Listing is identical with that filed in parent application Serial No. 08/749,816, filed November 15, 1996.

IN THE CLAIMS:

Delete claims 49-53 and 58-67.

Add the following claims:

--68. A method of screening for a substance capable of modulating the activity of a mammalian protein comprising 2 P domains and 4 transmembrane segments, which protein is competent to transport potassium across a membrane, comprising contacting pre-selected amounts of the substance to be tested with cells expressing the potassium transport channel, measuring the effects of said substance on the potassium transport activity of the protein, and identifying the substance that has a positive or negative effect on said transport activity.

- 69. The method of claim 68 wherein the protein which is competent to transport potassium across a membrane is human.
- 70. The method of claim 68 wherein the cell expressing the potassium transport protein is transformed with a self replicating vector comprising a nucleic acid sequence encoding a mammalian protein comprising 2 P domains and 4 transmembrane segments, which protein is competent to transport potassium across a membrane.
- 71. The method of claim 70 wherein the self replicating vector comprises a nucleic acid sequence encoding a human potassium transport protein.
 - 72. The method of claim 71 wherein the self replicating vector comprises SEQ ID. No. 1.
- 73. A substance, identified by the method of claim 68, which is capable of positively or negatively influencing the transport activity of a potassium transport channel.
- 74. The substance of claim 73 which influences the transport activity of the potassium transport channel comprising 2 P domains and 4 transmembrane segments.
- 75. The substance of claim 74 which influences the transport activity of the potassium transport channel represented by SEQ ID. No. 2.
- 76. A pharmaceutical composition for the treatment of diseases caused by the malfunction of a potassium transport channel, comprising the substance of claim 73.

77. The pharmaceutical composition of claim 76 which influences the transport activity of a potassium transport channel comprising 2 P domains and 4 transmembrane segments.

78. The pharmaceutical composition of claim 77 which influences the transport activity of the potassium transport channel represented by SEQ ID. No. 2.

79. The pharmaceutical composition of claim 76 which is useful for the treatment of diseases selected from the group consisting of epilepsy, heart arrhythmias, vascular diseases, neurodegenerative diseases, ischemia or anoxia, endocrine diseases associated with anomalies of hormone secretion, and muscle diseases. –

REMARKS

This Preliminary Amendment is being filed to add claims directed to a screening method using the potassium channels "twik" and cells expressing such channels.

Respectfully submitted,

(Mand J. Ma'san

Gerard J. Weiser Reg. No. 19,763

SCHNADER HARRISON SEGAL & LEWIS LLP

Attorneys for Applicants

NEW FAMILY OF MAMMALIAN POTASSIUM CHANNELS, THEIR CLONING AND THEIR USE, ESPECIALLY FOR THE SCREENING OF DRUGS

The present invention relates to a new family of potassium channels. More specifically, the invention relates to the cloning of a human potassium channel that constitutes the first member of a new functional and structural group of potassium channels. The abundance of this channel and its presence in a large number of tissues are such as to confer on it a fundamental role in the transport of potassium in a large number of types of cells.

Potassium channels are ubiquitous in eukaryote and prokaryote cells. Their exceptional functional diversity make them ideal candidates for a large number of biological processes in living cells (Rudy, B., 1988, Neurosciences, 25, 729-749; Hille, B., 1992, "Ionic Channels of Excitable Membrane", 2nd edition, Sinauer, Sunderland, Massachusetts). In excitable cells, the K⁺ channels define the form of the action potentials and the frequency of the electric activity, and play a major role in neuronal integration, muscle contraction or hormonal secretion. In nonexcitable cells, their expression appears to be correlated with specific stages of the development of the cell (Barres, B. A. et al., 1990, Annu. Rev. Neurosci., 13, 441-474). In most cells, specific types of K⁺ channels play a vital role in determining the electrical potential of the membrane at rest by regulating the membrane permeability to K⁺ ions. These channels exhibit the characteristic of being instantaneous and open in a large range of membrane potentials.

Recent cloning studies have resulted in the identification of a large number of subunits capable of forming potassium channels (Betz, H., 1990, Biochemistry, 29, 3591-3599; Pongs, O., 1992, Physiol. Rev., 72, S69-88; Salkoff, L. et

al., 1992, Trends Neurosci., 15, 161-166; Jan, L. Y. and Y. N. Jan, 1994, Nature, 371, 199-122; Doupnik, C. A. et al., 1995, Curr. Opin. Neurobiol., 5, 268-277) which could be regulated by other types of subunits (Aldrich, R. W., 1994, Curr. Biol., 4, 839-840; Isom, L. L. et al., 1994, Neuron, 12, 1183-1194; Rettig, J. et al., 1994, Nature, 369, 289-294; Attali, B. et al., 1995, Proc. Natl. Acad. Sci. USA, 92, 6092-6096).

The subunits of the voltage-dependent K⁺ channels activated by depolarization (Kv families) and the calcium-dependent K⁺ channels exhibit six hydrophobic transmembranal domains, one of which (S4) contains repeated positive charges which confer on these channels their sensitivity to voltage and, consequently, in their functional outward rectification (Logothetis, D. E. et al., 1992, *Neuron*, 8, 531-540; Bezanilla, F. and Stefani, E., 1994, *Annu. Rev. Biophys. Biomol. Struct.*, 23, 819-846).

The K⁺ channels with inward rectification (Kir families) have only two transmembranal domains. They do not have the S4 segment and the inward rectification results from a voltage-dependent blockade by cytoplasmic magnesium (Matsuda, H., 1991, *Annu. Rev. Physiol.*, 53, 289-298; Lu, Z. and Mackinnon, R., 1994, *Nature*, 371, 243-246; Nichols, C. G. et al., 1994, *J. Physiol. London*, 476, 399-409).

A common structural unit, called the P domain, is found in both groups, and constitutes an essential element of the structure of the K⁺-permeable pore. The presence of this unit in a membrane protein is considered to be the signature of the structure of a K⁺ channel (Pongs, O., 1993, *J. Membrane Biol.*, 136, 1-8; Heginbotham, L. et al., 1994, *Biophys. J.*, 66, 1061-1067; Mackinnon, R., 1995, *Neuron*, 14, 889-892; Pascual, J. M. et al., 1995, *Neuron*, 14, 1055-1063).

The present invention is based on the cloning of a K⁺ channel which is the first member of a new structural and functional group of potassium channels.

This new K⁺ channel has a novel molecular architecture with four transmembranal segments and two P domains. From a functional point of view, this channel is remarkable in that it exhibits weak inward rectification properties. This new channel is referred to below as TWIK-1 following the Englishlanguage term "Tandem of P domains in a Weak Inward rectifying K⁺ channel". Its abundance and its presence in a large number of tissues are such as to confer on it a fundamental role in the transport of potassium in a large number of types of cells.

The discovery of this new family of potassium channels and the cloning of a member of this family provides, notably, new means for screening drugs capable of modulating the activity of these new potassium channels and thus of preventing or treating the diseases in which these channels are involved.

The research activities that led to the cloning of the TWIK-1 channel were carried out in the manner described below with reference to the attached sequences and drawings in which:

- SEQ ID NO: 1 represents the nucleotide sequence of the cDNA of TWIK-1 and the amino acid sequences of the coding sequence.
 - SEQ ID NO: 2 represents the amino acid sequence of the TWIK-1 protein.
- Figure 1 represents the Northern blot analysis, the nucleotide sequences and the deduced amino acid sequence, as well as the hydrophobicity profile of TWIK-1. (a): expression of TWIK-1 mRNA in human tissues; each track contains 5 µg of poly(A)⁺; the autoradiograph was exposed for 24 hours. (b) cDNA sequence of TWIK-1 and the amino acid sequences of the coding sequence. The supposed transmembranal segments are circled and the P domains are underlined; o represents a potential glycosylation site and represents the threonine residue in the consensus recognition site of protein kinase C. (c): the hydrophobicity analysis and the topology of TWIK-1 deduced from it; the

hydrophobicity values were calculated according to the method of Kyte and Doolittle (window size of 11 amino acids) and are presented in relation to the position of the amino acid; the shaded hydrophobic peaks correspond to the transmembranal segments.

- Figure 2 represents the sequence alignments. (a): alignment of the P domains of TWIK-1, TOC/YORK and other representative K⁺ channel families; the identical and conserved residues are circled in black and in gray, respectively. (b): alignment of TWIK-1 with potential homologues of *C. elegans*; the sequences M110.2 and F17C8.5 were deduced from the gene sequences (respective access numbers Z49968 and Z35719); the computerized splicing of the other genomic sequences of *C. elegans* (respective access numbers Z49889, P34411 and Z22180) is not sufficiently precise to allow their perfect alignment and is therefore not shown.
- Figure 3 shows the biophysical and pharmacological properties of K^+ currents recorded by the imposed voltage technique on Xenope oocytes that had received an injection of TWIK-1 cRNA; (a): the oocyte was maintained at a holding potential (HP) of -80 mV and the currents were recorded at the end of 1-s voltage jumps from -120 to +60 mV in 20 mV increments. (b): regular current-voltage relationship using the same technique as in (a). (c): potential reversal of the TWIK-1 currents (E_{rev}) as a function of the external K^+ concentration. (d) current tracings linked to +30 mV depolarizations starting at a holding potential (HP) of -80 mV in the absence (top tracing) and in the presence (bottom tracing) of 1 mM of Ba²⁺. (e): blocking effect of 100 μ M of quinine, same protocol as in (d). (f) dose-response relationship of the blocking of the TWIK-1 currents by quinine.
- Figure 4 shows the influence of the expression of TWIK-1 on the membrane potential. (a): dose-response relationships of the cRNA; top row =

equilibrium state of the outward currents measured at +30 mV; bottom row = membrane potentials associated with the resting state. (b): effect of $100 \,\mu\text{M}$ of quinine on the membrane potential of an oocyte which did not receive an injection (left tracing) and that of an oocyte that received 20 ng of TWIK-1 cRNA. (c): statistical evaluation of the depolarizing effects of $100 \,\mu\text{M}$ of quinine on oocytes that did not receive injections (left bars) and on oocytes that received injections of 20 ng of TWIK-1 cRNA (right bars); control (unfilled bar), + quinine (solid bars); each bar represents the mean \pm SD of 5 oocytes.

- Figure 5 shows the properties of the single TWIK-1 channel. (a): current tracings recording in the input-output configuration to the membrane potentials indicated in the absence (m) or in the presence (·) of internal M^{2+} (3 mM) and in symmetry with 140 mM of K^+ . (b): mean of curves I-V (n = 10). (c and d): open time of distribution obtained at +80 mV (top histograms) and at -80 mV (bottom histograms) in the presence of 3 mM Mg^{2+} (c) or in the absence of Mg^{2+} (d).

- Figure 6 shows the blocking of the TWIK-1 channels by the internal pH. (a and b): blocking effect of the internal acidification on the TWIK-1 currents, induced by perfusion of CO₂; (a) tracings of superimposed currents induced by a depolarization phase at -30 mV starting at HP = -80 mV, control (top tracing), effect when equilibrium is reached in the presence of CO₂ (bottom tracing); (b): graph (n = 5) showing the almost complete blockade of the TWIK-1 currents induced by CO₂; (c and d): internal acidification induced by the application of DNP (1 mM). (c): same protocol as in (a), control (top tracing) and after 5 minutes of application of DNP (bottom tracing); (d): graph (n = 4) indicating the percentage of TWIK-1 current remaining after treatment with DNP. (e and f): imposed voltage (method: attached patch) under symmetrical conditions of K* concentration (140 mM) maintained at +80 mV. (e) course over

time of the effect of 1 mM of DNP (marked with arrow) on the activities of the single TWIK-1 channel. (f): graph (n = 4) showing the effect of DNP on the mean probability of opening NP $_{o}$ calculated during 1 minute of recording starting at the equilibrium state. (g): activities measured in the "inside-out-patch" state at 80 mV at different internal pH values. Bar graph (n = 10) of NP $_{o}$ in relation to the internal pH.

- Figure 7 shows the activation of the TWIK-1 channels by PMA, activator of protein kinase C. (a): perfusion of PMA (30 nM) for 10 minutes increases the TWIK-1 current (top tracing) induced by a depolarization phase at +30 mV starting at HP = -80 mV, control current (top tracing). (b): graph (n = 5) showing the activation effect of PMA on the TWIK-1 currents. (c and d): attached patch configuration under symmetrical K⁺ concentration conditions maintained at +60 mV; (c): course over time of the effect of 30 nM of PMA on the single channel activities; the recordings of the channel activity were performed with a rapid scanning before and after the application of PMA; (d): bar graph (n = 5) showing the activation effect of PMA on NP_o.

The P domains of K⁺ channels were used to determine the corresponding sequences in the GenBank data base by means of the BLAST sequence alignment program (Altschul, S. F. et al., 1990, J. Mol. Biol., 215, 403-410). There was thus identified a 298 pb human Tag expressed sequence (EST, HSC3AH031), the deduced amino acid sequence of which includes a nonconventional "P-like" domain sequence: GLG in place of GYG as shown in figure 2a. It was then envisaged that this EST sequence was a partial copy of a mRNA coding a new type of K⁺ channel subunit. A DNA probe was prepared from this sequence in order to carry out hybridization with a Northern blot (Clontech) of multiple human tissues. A 1.9 kb transcript was thereby found in abundance, as shown in figure 1a, in the heart and the brain and, at lower

levels, in the placenta, the lung, the liver and the kidney. The DNA probe was used to screen a bank of kidney cDNA and four independent clones were obtained. The cDNA inserts of 1.8 to 1.9 kb of these clones all have the same open reading frame (ORF) containing a regio identical to the 298 pb sequence of HSC3AH031 and differing solely in the length of their noncoding 5' sequences.

Primary Structure of TWIK-1

The following characteristics were demonstrated:

- The sequences of the cDNA clones contain an ORF of 1011 nucleotides coding for a polypeptide of 336 amino acids shown in figure 1b.
 - This protein has two P domains.
- Other than the P domains, no significant alignment was seen between TWIK-1 and a K^+ channel recently cloned in yeast and which also has two P domains (Ketchum, K. A. et al., 1995, *Nature*, 376, 690-695).
- Analysis of the hydrophobicity of TWIK-1, shown in figure 1c, reveals the presence of four transmembranal domains, designated T1 to T4.
- By placing the NH2 end on the cytoplasmic surface, in accordance with the absence of signal peptide, one obtains the topology model shown in figure 1c.
- In this model, the two P domains are inserted in the membrane from the exterior in accordance with the known orientation of these loops in the K⁺ channels.
- In addition, the general structural unit of TWIK-1 is similar to the unit that one would obtain by making a tandem of two classical subunits rectifying the entry of a potassium channel. Like a classical inward rectifier, TWIK-1 does not exhibit the highly conserved segment S4 which is responsible for the

sensitivity to the membrane potential of the inward rectification of the K^* channels of the Kv family.

- A nonusual large loop of 59 amino acids is present between M1 and P1, such as to extend the length of the linker M1-P1 of the extracellular side of the membrane.
 - A potential site of N-glycosylation is present in this loop.
- Three consensus sites of phosphorylation are present at the N-terminal (Ser 19 for calcium calmodulin kinase II) and C-terminal (Ser 303 for casein kinase II) ends of the cytoplasmic domains, and in the M2-M3 linker (Thr161 for protein kinase II).
- The alignment of the P domains of an important group of K⁺ channels is presented in figure 2a. It shows that the regions constituting the pore selective for K⁺ are well conserved including the G residues in position 16 and 18 and three other residues indicating practically exclusively conservative changes in positions 7, 14 and 17. It is of interest to note that a leucine residue is present in the place of a tyrosine conserved in position 18 in the P2 domain of TWIK-1, or of a phenylalanine in position 17 of the P domain of the K⁺ channel of type eag.

The homologues of TWIK-1

Comparison of the complete sequence of TWIK-1 with the sequences of the Genbank data base allowed identification of at least five genes of *Caenorhabditis elegans* which had been characterized in the context of the Nematode Sequencing project, and which potentially code for structural homologues of TWIK-1. The alignment of two of these homologues with TWIK-1 is shown in figure 2b. The homologies of total sequences between the deduced proteins of *C. elegans* and TWIK-1 are circa 55 to 60% and circa 25

to 28% of identity. The homologies among sequences of *C. elegans* are not higher.

Functional expression of TWIK-1

For the functional study, the coding sequence of TWIK-1 was inserted between the noncoding sequences 5' and 3' of Xenopus globin in the vector pEXO (Lingueglia, E. et al., 1993, J. Biol. Chem., 269, 13736-13739). A complementary RNA (cRNA) was transcribed of this construction and injected in the oocytes of X. laevis. A noninactivating current, free from noninjected cells, was measured by the imposed voltage technique, as shown in figure 3a. Kinetic activation of the current is usually instantaneous and cannot be resolved because it is masked by the capacitive discharge of the current recorded at the beginning of the impulse. The current-voltage relationship is linear above 0 mV and then saturates for a stronger depolarization of the membrane, as shown in figure 3b. TWIK-1 is therefore K⁺ selective. In the case of a replacement of the external K⁺ by Na⁺ or N-methyl-D-gluconate, the reversal of the potential of the currents follows the K^+ equilibrium potential (E_K) , as shown in figure 3c. In addition, a change by 10 in the concentration [(K)], leads to a change of 56 ± 2 mV in the inversion value of the potential, in accordance with Nernst's equation.

As shown in figure 3, the K⁺ currents of TWIK-1 are inhibited by Ba²⁺ (figure 3d) with an IC₅₀ value of 100 μ M, by quinine (figure 3e and 3f) and by quinidine (not shown) with respective IC₅₀ values of 50 and 95 μ M. The TWIK-1 currents are slightly sensitive to TEA and to the class III antiarrhythmic agent tedisamil (30% inhibition for each, at 20 mM and 100 μ M, respectively). Less than 10% inhibition was seen after application of 4-aminopyridine (1 mM), apamin (0.3 μ M), charybdotoxine (3 nM), dedrotoxine (0.1 μ M),

clofilium (30 μ M), amiodarone (100 μ M) and glibenclamide (30 μ M). The TWIK-1 channel is not sensitive to the K⁺ channel openers cromakaline (100 μ M) and pinacidil (100 μ M).

Figure 4 shows the effect of increasing the doses of injected TWIK-1 cRNA on the independent expression of the time of the K⁺ currents and on the resting state of the membrane potential (E_m). As soon as the current appears, the oocytes become increasingly polarized, reaching a value of E_m close to E_k . The amplitude of the TWIK-1 current reaches values of 0.6 to 0.8 μ M with the injection of 20 ng per oocyte. Higher doses of TWIK-1 cRNA are toxic, leading to a reduction in expression. In oocytes that received 20 ng of cRNA, quinine is the best blocker of TWIK-1, inducing a noteworthy reversible depolarization (73 \pm 6 mV, n = 5) as shown in figures 4b and 4c.

The unitary properties of the TWIK-1 channel

Single channel current recordings, shown in figure 5, in an inside-out patch configuration or in a whole cell configuration show that the TWIK-1 channels assure the passage of influx or exit currents as a function, respectively, of a depolarization or a hyperpolarization (figure 5a). The current-voltage relationship of the single channel, shown in figure 5 b, shows a barely accentuated inward rectification in the presence of 3 mM (figure 5) and 10 mM (not shown) of Mg^{2+} on the cytoplasmic side. As shown in figure 5b, this rectification disappears in the absence of internal M^{2+} . With 3 mM of internal Mg^{2+} , the mean duration of opening at +80 mV is 1.9 ms and the unitary conductance is 19 ± 1 pS (figure 5c). At -80 mV, the channels are oscillating with a mean duration of opening of 0.3 ms, and a conductance value increasing to $34 \pm p$ S. The withdrawal of the internal Mg^{2+} ions does not influence the kinetic parameters under either polarized or depolarized conditions,

but the unitary conductance measured at -80 mV reaches 35 ± 4 pS. This apparent increase in conductance in the single channel suggests that it is the extremely rapid oscillation induced by Mg^{2+} that results in an underestimation of the real value of conductance. The same properties were observed in the fixed cell configuration, showing that the channel behavior is not modified by the excision of the patch. The TWIK-1 channels in the excised patches do not discharge and do not appear to be deficient in intracellular constituents. In contrast to numerous channels which require the presence of ATP for their activity in the excised patch configuration, ATP is not required for the expression of TWIK-1. In addition, perfusion of the patch with a solution containing 10 mM of ATP does not induce any effect on the activity of the TWIK-1 channel.

The activity regulation properties of the TWIK-1 channel.

The intracellular pH (Ph_i) is involved in the control of numerous cellular processes, and in cells such as the hepatic cells, the change in Ph₁ regulates the membrane potential (Bear, C. E. et al., 1988, *Biochim. Biophys. Acta*, 944, 113-120).

Intracellular acidification of the oocytes was produced using two methods:

- superfusion with a solution enriched in CO₂ which produces acidification by a mechanism involving the bicarbonate transport system (Guillemare, E. et al., 1995, *Mol. Pharmacol.*, 47, 588-594);
- treatment with dinitrophenol (DNP), which is a metabolic inhibitor that decouples the H⁺ gradient in mitochondria and induces internal acidity (Pedersen, P. L. and Carafoli, E., 1987, *Trends Biol. Sci.*, 12, 146-189).

Both of these experimental methods resulted in a significant reduction in the TWIK-1 currents, greater than 95% in the case of CO_2 and 80% in the case

of DNP of the control amplitude values, as shown in figures 6a to 6d. The inhibition induced by DNP on the activity of the single K⁺ channel was again observed under the attached patch conditions, as shown in figures 6e to 6f. However, after excision of the patch, the activity of the channel became insensitive to the acidification of the internal solution produced either by modifying the Na₂HPO₄/NaH₂PO₄ buffer ratio (figures 6g and 6h) or by bubbling of CO₂ (not shown). Thus, the effect of the pH value on the activity of the TWIK-1 channel is probably indirect.

Phosphorylation or dephosphorylation of specific amino acid residues is an important mechanism of regulation of the ionic channels (Levitan, I. B., 1994, *Annu. Rev. Physiol.*, 56, 193-212). As shown in figure 7, activation of protein kinase C by phorbol-12 myristate acetate (PMA, 30 nM) increases the TWIK-1 currents. The inactive phorbol ester 4α-phorbol-12, 13 didecanoate (PDA, 1 μM) has no effect. In an attached patch which initially expressed solely a single channel, application of PMA ... the presence of at least five channels (figure 7c and 7d). This experiment shows that at least four channels are silently present in the patch before the application of PMA. Since the TWIK-1 sequence contains a consensus phosphorylation site for protein kinase C (PKC), located at the level of the threonine in position 161 (figure 1b), the effect of PMA suggests regulation under the control of PKC. However, the mutation of the threonine 161 into alanine leads to a muted channel which remains functional and conserves the capacity to be activated by PMA.

Activation of protein kinase A by application of 8-Cl-AMPc (300 μ M) or forskolin (10 μ M) does not affect the activity of TWIK-1. Elevation of the cytoplasmic Ca²⁺ concentration by application of A23187 (1 μ M) which could be activated by Ca²⁺-calmodulin kinase II and/or reveal the presence of a channel

activated by the Ca²⁺, is also without effect on the properties of the TWIK-1 channel.

Thus, the object of the present invention is an isolated, purified nucleic acid molecule that codes for a protein constituting a TWIK-1 potassium channel or exhibiting the properties and structure of the type of the TWIK-1 channel described above.

More specifically, the said nucleic acid molecule codes for the TWIK-1 protein, the amino acid sequence of which is represented in the attached sequence list as number SEQ ID NO: 2, or a functionally equivalent derivative of this sequence. Such derivatives can be obtained by modifying and or suppressing one or more amino acid residues of this sequence, as long as this modification and/or suppression does not modify the functional properties of the TWIK-1 potassium channel of the resultant protein.

The sequence of a DNA molecule coding for this protein is more specifically the molecule coding for TWIK-1 represented in the attached sequence list as number SEQ ID NO: 1.

The invention also relates to a vector containing a molecule of the aforementioned nucleic acid, as well as a procedure for production or expression in a cellular host of a protein constituting a TWIK-1 potassium channel or a channel of the same family as TWIK-1.

A procedure for production of a protein constituting a TWIK-1 potassium channel or exhibiting the properties and structure of the type of the TWIK-1 channel consists of:

- transferring a nucleic acid molecule of the invention or a vector containing the said molecule into a cellular host,

- culturing the cellular host obtained in the preceding step under conditions enabling the production of potassium channels exhibiting the properties of TWIK-1,
- isolating by any suitable method the proteins constituting the potassium channels of the TWIK-1 family.

A procedure for expression of a TWIK-1 potassium channel or a potassium channel of the same family as TWIK-1 consist of:

- transferring a nucleic acid molecule of the invention or a vector containing the said molecule into a cellular host,
- culturing the cellular host obtained in the preceding step under conditions enabling the expression of potassium channels of the TWIK-1 family.

The cellular host employed in the preceding procedures can be selected from among the prokaryotes or the eukaryotes, and notably from among the bacteria, the yeasts, mammal cells, plant cells or insect cells.

The vector used is selected in relation to the host into which it will be transferred; it can be any vector such as a plasmid.

The invention thus also relates to the transferred cells expressing the potassium channels exhibiting the properties and structure of the type of the TWIK-1 channel obtained in accordance with the preceding procedures.

The cells expressing TWIK-1 potassium channels or channels exhibiting the properties and structure of the type of the TWIK-1 channels obtained in accordance with the preceding procedures are useful for the screening of substances capable of modulating the activity of the TWIK-1 potassium channels. This screening is carried out by bringing into contact variable amounts of a substance to be tested with cells expressing the TWIK-1 channel or potassium channels exhibiting the properties and structure of the type of the TWIK-1

channels, then measuring, by any suitable means, the possible effects of said substance on the currents of the potassium channels of these channels.

This screening procedure makes it possible to identify drugs that useful in the treatment of diseases of the heart or of the nervous system. Diseases involving the potassium channels and thus likely to involve the channels of the TWIK-1 family are, for example, epilepsy, heart (arrhythmias) and vascular diseases, neurodegenerative diseases, especially those associated with ischemia or anoxia, the endocrine diseases associated with anomalies of hormone secretion, muscle diseases.

An isolated, purified nucleic acid molecule coding for a protein constituting a TWIK-1 potassium channel or a vector including this nucleic acid molecule or a cell expressing the TWIK-1 potassium channels, are also useful for the preparation of transgenetic animals. These can be animals supra-expressing the said channels, but especially so-called knock-out animals, i.e., animals presenting a deficiency of these channels; these transgenetic animals are prepared by methods known to the experts in the field, and enable the preparation of live models for studying animal diseases associated with the TWIK-1 channels.

The nucleic acid molecules of the invention or the cells transformed by said molecule can also be used in genetic therapy strategies for compensating for a deficiency in the potassium channels at the level of one or more tissues of a patient. The invention thus also relates to a medication containing nucleic acid molecules of the invention or cells transformed by said molecule for the treatment of disease involving the potassium channels.

In addition, the gene of the TWIK-1 channel has been located on chromosome 1 at position q42-q43. The chromosomal localization of this gene constitutes a determinant result for the identification of genetic diseases associated

with this new family of potassium channels; thus, the knowledge of the structure of the TWIK-1 family of channels is such as to allow performance of a prenatal diagnosis of such diseases.

The present invention also has as its object a new family of K⁺ channels, of which TWIK-1 is a member, which are present in most human tissues and especially abundant in the brain and the heart, and which exhibit the properties and structure of the type of those of the TWIK-1 channels described above. Thus it relates to an isolated, purified protein whose amino acid sequence is represented in the attached sequence list as number SEQ ID NO: 2, or a functionally equivalent derivative of this sequence.

Such derivatives can be obtained by modifying and/or suppressing one or more amino acid residues of this sequence or by segmenting this sequence, as long as this modification and/or suppression or deletion of a fragment does not modify the functional properties of the TWIK-1 type potassium channel of the resultant protein.

A protein constituting a TWIK-1 type potassium channel is useful for the manufacture of medications intended for the treatment or prevention of diseases involving dysfunction of the potassium channels.

Polyclonal or monoclonal antibodies directed against a protein constituting a TWIK-1 type potassium channel can be prepared by the conventional methods described in the literature.

These antibodies are useful for investigating the presence of potassium channels of the TWIK-1 family in different human or animal tissues, but they can also find applications in the therapeutic domain, due to their specificity, for the *in vivo* inhibition or activation of TWIK-1 type potassium channels.

Other advantages and characteristics of the invention will be made obvious from the examples below which are nonlimitative examples related to the cloning and expression of TWIK-1.

Identification of the HSC3AH031 EST sequence and analysis of the RNA

The P domains of the cloned channels were used to investigate homologues in the NCBI (National Center of Biotechnology) data bases using the sequence alignment program tBLASTn. Translation of an EST sequence (HSC3AH031, Genbank access number: F12504) presented a significant sequence similarity (P = 1.2 x 10⁻³) with the second P domain of a yeast K⁺ channel. This 298 pb sequence was originally obtained from a human brain cDNA bank in the context of the Genexpress cDNA program (Auffray, C. et al., 1995, C. R. Acad. Sci., III, Sci. Vie, 318, 263-272). A 255 pb DNA fragment corresponding to HSC3AH031 was amplified by PCR from cDNA derived from human brain poly(A)⁺ and subcloned in pBluescript (Stratagene) to yield pBS-HSC3A.

For the RNA analysis, a Northern blot of multiple human tissues (Clontech) was screened with the pBS-HSCA insert tagged with P^{32} in 50% formamide, 5 x SSPE (0.9 M NaCl; 50 mM sodium phosphate; pH 7.4; 5 m M EDTA), 0.1% SDS, 5 x Denhardts, 20 mM potassium phosphate, pH 6.5 and 250 μ g of salmon sperm DNA denatured at 55°C for 18 hours. The blots were washed to a final stringency of 0.1 SSC (3 M NaCl; 0.3 M sodium citrate; pH 7.0), 0.3% SDS at 65°C.

Isolation of the cDNA cloning TWIK-1

An oligo(dT) cDNA bank stemming from $poly(A)^+$ RNA isolated from human adult kidney was screened with the pBS-HSCA insert tagged with P^{32} .

The filters were hybridized in 50% formamide, 5 x SSC, 4 x Denhardt, 0.1% SDS and 100 μ g of salmon sperm DNA denatured at 50°C for 18 hours. Four positive hybridization clones were isolated from circa 5 x 10⁵ clones. The λ ZAPII phages containing the cDNA inserts were converted into cDNA plasmids (Stratagene). The DNA inserts were characterized by restriction enzyme analysis and by total or partial DNA sequencing on both strands using the dideoxy nucleotide method on an automated sequencer (Applied Biosystems 373A).

Mutations, cRNA synthesis and oocyte injection.

The TWIK-1 coding sequence was amplified using a low-error rate DNA polymerase (Pwo DNA pol, Boehringer) and subcloned in the plasmid pEXO so as to yield pEXO-TWIK-1. Mutations were performed using the whole plasmid pEXO-TWIK-1 with a highly reliable PCR extension kit (Boehringer) and two adjacent primers. One of these introduced a punctiform mutation in the TWIK-1 coding sequence, changing the 161 Thr codon into a codon for alanine. The product of the PCR was linearized by the enzyme BamHI and the cRNA were synthesized using a T7 RNA polymerase (Stratagene). Preparation of the *X. laevis* oocytes and cRNA injection were carried out in accordance with the literature (Guillemare, E. et al., 1992, *Biochemistry*, 31, 12463-12468.

Electrophysiological measurements.

In a 0.3-ml perfusion chamber, a single oocyte was impaled on two standard glass microelectrodes (0.5 - 2.0 MW) charged with 3 M KCl and maintained under voltage-clamp with a Dagan TEV200 amplifier. The bath solution contained 98 mM KCl, 1.8 mM CaCl₂, 2 mM MgCl₂ and 5 mM HEPES at

pH 7.4 with KOH. Stimulation of the preparation, data acquisition and analyses were carried out with the pClamp program (Axon Instruments, USA).

For the patch-clamp experiments, the vitelline membrane was removed from the oocytes as described in the literature (Duprat, F. et al., 1995, *Biochem*. *Biophys. Res. Commun.*, 212, 657-663); the oocytes were then placed in a bath solution containing 140 mM KCl, 1.8 mM CaCl₂, 2 mM MgCl₂ and 5 mM HEPES at pH 7.4 with KOH. The pipettes were filled with a strong K⁺ solution (40 mM KCl, 100 mM of potassium methane sulfonate, 1.8 mM CaCl₂, 2 mM MgCl₂ and 5 mM HEPES adjusted to pH 7.4 with KOH). 100 μM of GdCl₃ was added to the pipette solution to inhibit the action of the activated channels. The inside-out patches were perfused with a solution containing 140 mM KCl, 10 mM CaCl₂, 5 mM HEPES adjusted to pH 7.2 with KOH and 5 mM EGTA added daily. The single channel signals were filtered at 3.5 kHz and analyzed with the Biopatch program (Bio-Logic, Grenoble, France).

LIST OF SEQUENCES.

[Key: See Pages 21-24]

INFORMATION REGARDING SEQ ID NO: 1

- I CHARACTERISTIC OF THE SEQUENCE:
- A) LENGTH:
- B) TYPE
- C) STRAND NUMBER:
- D CONFIGURATION:
- II TYPE OF MOLECULE:
- XI SEQUENCE DESCRIPTION: SEQ ID NO: 1

INFORMATION REGARDING SEQ ID NO: 2

- I CHARACTERISTIC OF THE SEQUENCE:
- A) LENGTH:
- B) TYPE
- C) STRAND NUMBER:
- D CONFIGURATION:
- II TYPE OF MOLECULE:
- XI SEQUENCE DESCRIPTION: SEQ ID NO: 21

LISTE DE SÉQUENCES.

INFORMATION CONCERNANT LA SEQ ID NO:1 :

- I CARACTRERISTIQUE DE LA SEQUENCE :
- A) LONGUEUR :
- B) TYPE :
- C) NOMBRE DE BRIN :
- D) CONFIGURATION:
- II TYPE DE MOLECULE :
- XI DESCRIPTION DE SEQUENCE : SEQ ID NO:1 :

GGGCAGGAAG ACGGCGCTGC CC	GGAGGAGC GGGGCGGGC	eg ggcgcgcggg ggagcgggcg	60
GCGGGCGGA GCCAGGCCCG GG	ceeeecc eeececc	G GGCCAGAAGA GGCGGCGGGC	120
CGCGCTCCGG CCGGTCTGCG GC	GTTGGCCT TGGCTTTGG	SC TTTGGCGGCG GCGGTGGAGA	180
		GTG CGC CTG GTG GAG CGG Val Arg Leu Val Glu Arg 15	230
CAC CGC TCG GCC TGG TGC His Arg Ser Ala Trp Cys 20			278
TAC CTG GTC TTC GGC GCA Tyr Leu Val Phe Gly Ala 35			326
GAG GAC CTG CTG CGC CAG Glu Asp Leu Leu Arg Gln 50			374
GAG GAG CAC GAG TGC CTG Glu Glu His Glu Cys Leu 65 70		eu Glu Gln Phe Leu Gly	422
CGG GTG CTG GAG GCC AGC Arg Val Leu Glu Ala Ser 85			470
TCG GGC AAC TGG AAC TGG Ser Gly Asn Trp Asn Trp 100			518
ACC GTG CTC TCC ACC ACA Thr Val Leu Ser Thr Thr 115			566
GGA GGT AAG GCC TTC TGC Gly Gly Lys Ala Phe Cys 130			614

		CTG Leu														662
		AGG Arg														710
		GTG Val														758
		TTC Phe 195									_					806
		AAC Asn														854
		GGC Gly							-							902
		GAG Glu														950
		GCC Ala														998
		AAA Lys 275														1046
		GTG Val														1094
		CAG Gln														1142
TTT Phe	GTG Val	GCC Ala	ACC Thr	CAG Gln 325	TCA Ser	TCT Ser	GCC Ala	TGC Cys	GTG Val 330	GAT Asp	GGC Gly	CCT Pro	GCA Ala	AAC Asn	CAT His 336	1190
TGA *	GCG	ragg2	ATT 1	rgtto	GCAT'	Y AT	GCTA(GAGC	A CC	AGGG'	rcag	GGT	GCAA	GGA		1243
AGA	GGCT	AA1	GTAT	GTTC	AT T	rtta:	rcag:	A AT	GCAA	AAGC	GAA	AATT.	ATG '	TCAC	TTTAAG	1303
AAA!	rage	rac :	rgtt:	rgca.	AT G	rctt/	ATTA	A AA.	AACA	ACAA	AAA	AAGA	CAC .	ATGG.	AACAAA	1363
GAA	GCTG!	rga (ccc	AGCA(GG A	rgtc:	TAAT	A TG	rgag	GAAA	TGA	GATG	TCC	ACCT.	TTAAAA	1423

CATATGTGAC	AAAATTATCT	CGACCTTACA	TAGGAGGAGA	ATACTTGAAG	CAGTATGCTG	1483
CTGTGGTTAG	AAGCAGATTT	TATACTTTTA	ACTGGAAACT	TTGGGGTTTG	CATTTAGATC	1543
ATTTAGCTGA	TGGCTAAATA	GCAAAATTTA	TATTTAGAAG	СУУУУУУУУУ	AAGCATAGAG	1603
	TAAATAGGTT TCTAAGTCAA					1663 1723
CATATAAAGT	ATAAATATGT	TTATATTCTG	TACATATGGT	TTAGGTCACC	AGATCCTAGT	1783
GTAGTTCTGA	AACTAAGACT	ATAGATATTT	TGTTTCTTTT	GATTTCTCTT	TATACTAAAG	1843
AATCCAGAGT	TGCTACAATA	AAATAAGGGG	AAAATAATAA	ΑΑΑΑΑΑΑΑ	A	1894

INFORMATION CONCERNANT LA SEO ID NO :2

+	0303000	OTTO T COUT OFFI	DD 13	OPOMBAGO
1 .	- CARACTI	RERISTIOUE	DE LA	SECUENCE

- A) LONGUEUR :
- B) TYPE :
- C) NOMBRE DE BRIN :
- D) CONFIGURATION:
- II TYPE DE MOLECULE :
- XI DESCRIPTION DE LA SEQUENCE : SEQ ID NO:2 :
- Met Leu Gln Ser Leu Ala Gly Ser Ser Cys Val Arg Leu Val Glu Arg

 1 10 15
- His Arg Ser Ala Trp Cys Phe Gly Phe Leu Val Leu Gly Tyr Leu Leu 20 25 30
- Tyr Leu Val Phe Gly Ala Val Val Phe Ser Ser Val Glu Leu Pro Tyr 35 40 45
- Glu Asp Leu Leu Arg Gln Glu Leu Arg Lys Leu Lys Arg Arg Phe Leu 50 55 60
- Glu Glu His Glu Cys Leu Ser Glu Gln Gln Leu Glu Gln Phe Leu Gly 65 70 75 80
- Arg Val Leu Glu Ala Ser Asn Tyr Gly Val Ser Val Leu Ser Asn Ala 85 90 95
- Ser Gly Asn Trp Asn Trp Asp Phe Thr Ser Ala Leu Phe Phe Ala Ser 100 105 110
- Thr Val Leu Ser Thr Thr Gly Tyr Gly His Thr Val Pro Leu Ser Asp 115 120 125
- Gly Gly Lys Ala Phe Cys Ile Ile Tyr Ser Val Ile Gly Ile Pro Phe 130 140
- Thr Leu Leu Phe Leu Thr Ala Val Val Gln Arg Ile Thr Val His Val 145 150 155 160

- Thr Arg Arg Pro Val Leu Tyr Phe His Ile Arg Trp Gly Phe Ser Lys 165 170 175
- Gln Val Val Ala Ile Val His Ala Val Leu Leu Gly Phe Val Thr Val 180 185 190
- Ser Cys Phe Phe Phe Ile Pro Ala Ala Val Phe Ser Val Leu Glu Asp 195 200 205
- Asp Trp Asn Phe Leu Glu Ser Phe Tyr Phe Cys Phe Ile Ser Leu Ser 210 215 220
- Thr Ile Gly Leu Gly Asp Tyr Val Pro Gly Glu Gly Tyr Asn Gln Lys 225 230 235 240
- Phe Arg Glu Leu Tyr Lys Ile Gly Ile Thr Cys Tyr Leu Leu Gly 245 250 255
- Leu Ile Ala Met Leu Val Val Leu Glu Thr Phe Cys Glu Leu His Glu 260 265 270
- Leu Lys Lys Phe Arg Lys Met Phe Tyr Val Lys Lys Asp Lys Asp Glu 275 280 285
- Asp Gln Val His Ile Ile Glu His Asp Gln Leu Ser Phe Ser Ser Ile 290 395 300
- Thr Asp Gln Ala Ala Gly Met Lys Glu Asp Gln Lys Gln Asn Glu Pro 305 310 315 320
- Phe Val Ala Thr Gln Ser Ser Ala Cys Val Asp Gly Pro Ala Asn His 325 330 336

CLAIMS

- 1) Isolated and purified nucleic acid molecule coding for a protein constituting a protein channel exhibiting the properties and structure of the TWIK-1 type channel.
- 2) Isolated and purified nucleic acid molecule coding for a protein constituting a potassium channel, characterized in that it codes for the protein the amino acid sequence of which is represented in the attached sequence list as number SEQ ID NO: 2 or a functionally equivalent derivative of this sequence.
- 3) Nucleic acid molecule according to claim 2, the sequence of which is represented in the attached sequence list as number SEQ ID NO: 1.
- 4) Vector containing a nucleic acid molecule according to one of claims 1 to 3.
- 5) Procedure for the production of a protein constituting a potassium channel exhibiting the properties and structure of the TWIK-1 type channel consisting of:
- transferring a nucleic acid molecule according to one of claims 1 to 3 or a vector according to claim 4, into a cellular host,
- culturing the cellular host obtained in the preceding step under conditions allowing the production of potassium channels exhibiting the properties of TWIK-1,
- isolating, by any suitable means, the proteins constituting the potassium channels exhibiting the properties and structure of the TWIK-1 type channel.

- 6) Procedure for the expression of a potassium channel exhibiting the properties and structure of the TWIK-1 type channel consisting of:
- transferring a nucleic acid molecule according to one of claims 1 to 3 or a vector according to claim 4, into a cellular host,
- culturing the cellular host obtained in the preceding step under conditions allowing the expression of potassium channels exhibiting the properties and structure of the TWIK-1 type channel.
- 7) Procedure according to one of claims 5 or 6, characterized in that the cellular host is selected from among the prokaryotes or the eukaryotes and, particularly, from among the bacteria, the yeasts, mammal cells, plant cells or insect cells.
- 8) Cell expressing the potassium channels exhibiting the properties and structure of the TWIK-1 type channel obtained by the procedure according to claim 6 or 7.
- 9) Procedure for screening substances capable of modulating the activity of the potassium channels of the TWIK-1 type channel, characterized in that:
- one brings into contact variable amounts of a substance to be tested with the cells expressing the potassium channels exhibiting the properties and structure of the TWIK-1 type channel according to claim 8, then
- one measures, by any suitable means, the possible effects of said substance on the currents of the potassium channels exhibiting the properties and structure of the TWIK-1 type channel.
- (10) Pharmaceutical composition for the compensation of a deficiency in the potassium channels at the level of one or more tissues, characterized in

that it comprises nucleic acid molecules according to one of claims 1 to 3, or a vector according to claim 4, or cells according to claim 8.

- 11) Isolated and purified protein constituting a potassium channel exhibiting the properties and structure of the TWIK-1 type channel.
- 12) Protein according to claim 11, the amino acid sequence of which is represented in the attached sequence list as number SEQ ID NO: 2, or a functionally equivalent derivative of this sequence.
- 13) Pharmaceutical composition for the compensation of a deficiency in the potassium channels at the level of one or more tissues, characterized in that it comprises a protein according to claim 11 or 12.
- 14) Monoclonal or polyclonal antibody directed against a protein according to claim 11 or 12.

NEW FAMILY OF MAMMALIAN POTASSIUM CHANNELS, THEIR CLONING AND THEIR USE, ESPECIALLY FOR THE SCREENING OF DRUGS

The present invention relates to the cloning of a member of a new potassium channel named TWIK-1. More specifically, it relates to an isolated and purified nucleic acid molecule coding for a protein constituting a potassium channel exhibiting the properties and structure of the TWIK-1 type channel, as well as the protein coded by this nucleic acid molecule.

The invention also relates to the use of this nucleic acid molecule to transform cells, and the use of these cells expressing the potassium channels exhibiting the properties and structure of the TWIK-1 type channel for the screening of drugs.

FIG. 1A

and the second s

gggcaggaagacggcgctgcccggaggagc -77 -1 ATG CTG CAG TCC CTG GCC GGC AGC TCG TGC GTG CGC CTG GTG GAG CGG CAC CGC TCG 57 19 SL S V R L E S A G S C GCC TGG TGC TTC GGC TTC CTG GTG CTG GGC TAC TTG CTC TAC CTG GTC TTC GGC GCA 114 Y 38 F L V L G L Γ Λ L V F G C F GTG GTC TTC TCC TCG GTG GAG CTG CCC TAT GAG GAC CTG CTG CGC CAG GAG CTG CGC 171 57 VE L P Y E D L L R F S S AAG CTG AAG CGA CGC TTC TTG GAG GAG CAC GAG TGC CTG TCT GAG CAG CAG CTG GAG 228 E H Ε C L 76 F Ε S E R L K R CAG TTC CTG GGC CGG GTG CTG GAG GCC AGC AAC TAC GGC GTG TCG GTG CTC AGC AAC 285 95 G R V L E A S N Y G V S S N F L GCC TCG GGC AAC TGG AAC TGG GAC TTC ACC TCC GCG CTC TTC TTC GCC AGC ACC GTG 342 T V 114 G N D T S A L F F W CTC TCC ACC ACA GGT TAT GGC CAC ACC GTG CCC TTG TCA GAT GGA GGT AAG GCC TTC 399 Y H T S G 133 S G G L 456 TGC ATC ATC TAC TCC GTC ATT GGC ATT CCC TTC ACC CTC CTG TTC CTG ACG GCT GTG G P F T L 152 S V Ι GTC CAG CGC ATC ACC GTG CAC GTC ACC CGC AGG CCG GTC CTC TAC TTC CAC ATC CGC 513 R R P V L Y 171 VQ R T V H V T TGG GGC TTC TCC AAG CAG GTG GTG GCC ATC GTC CAT GCC GTG CTC CTT GGG TTT GTC 570 190 K V V Ι V H A V $\mathbf{L} \quad \mathbf{L}$ G S Q A ACT GTG TCC TGC TTC TTC TTC ATC CCG GCC GCT GTC TTC TCA GTC CTG GAG GAT GAC 627 F F I P A A V F S V L E 209 V S C F

FIG. 1B

				GAA E	TCC S	TTT F	TAT Y	TTT F	TGT C	TTT F	ATT I	TCC S	CTG L	AGC S	ACC	ATT I	GGC G	CTG L	68 4 228
W	N	F	L	E.	<u> </u>	<u>e</u>	1		<u> </u>	Τ		<u> </u>	П	<u> </u>	1	1	G	Ti .	220
GGG	GAT	TAT	GTG	CCT	GGG	GAA	GGC	TAC	AAT	CAA	AAA	TTC	AGA	GAG	CTC	TAT	AAG	ATT	741
G	D	Y	V	P	G	Ε	G	Y	N	Q	K	F	R	E	L	Y	K	I	247
		-																	
GGG	ATC	ACG	TGT	TAC	CTG	CTA	CTT	GGC	CTT	ATT	GCC	ATG	TTG	GTA	GTT	CTG	GAA	ACC	798
G	I	T	С	Y	L	L	L	G	L	Ι	A	M	L	V	V	L	E	T	266
																•••			255
		1												TAT					855
F	C	E	L	H	Ε	L	K	K	F	R	K	M	F	Y	V	K	K	D	285
* * * *	CZC	CAC	CAM	CAC	ር ጥር	ርአር	አ መር	አመአ	ር እ C	ሮአጥ	CAC	ር እ አ	ርመር	TCC	መመረ	መርር	መሮር	አጥሶ	912
														S	F	S	S	I	
K	D	E	D	Q	V	H	Ι	I	E	H	D	Q	L	J	2	3	J	ī	304
ልሮል	GAC	CAG	GCA	GCT	GGC	ATG	AAA	GAG	GAC	CAG	AAG	CAA	ААТ	GAG	CCT	ግግ ግ	GTG	GCC	969
T	D	Q	A	A	G	M	K	E	D	Q	K	Q	N	E	P	F	V	A	323
•	-	Ł	••	••		••	••		_	L		£			-	-			
ACC	CAG	TCA	TCT	GCC	TGC	GTG	GAT	GGC	CCT	GCA	AAC	CAT	TGA	gco	gtag	gatti	tgtt	gcatt	1030
T	0	S	S	A	C	V	D	G	P	A	N	H	*		,	•	•	•	337
atq	ctaga	agca	ccaq	qtca	pppr	tgcaa	aqqa	agago	getta	agta	atqt	tcat	tttt	atca	gaato	gcaa	aagc	gaaaa	1106
																		caaag	
																		aatta	
																		taact	
	-						•	•			-		-	-				aaaaa	
aaa	gcata	agaga	atgto	gttti	tata	ata	ggtti	tatgi	tgta	ctgg	tttg	catg	tacc	cacc	caaa	atga	ttat	ttttg	1486
	-		-	-				-	_									atgtt	
tata	attc	tgta	cata	tggti	ttag	gtca	ccag	atcci	tagt	gtag	ttct	gaaa	ctaa	gact	atag	atat	tttg	tttct	
ttte	atti	tctc	tttai	tact	aaaq	aatc	caga	atta	ctac	aata	aaat	aaqq	ggaa	taat	aaaa	aaaa	aaaa	aaa	1712

FIG. 1B

FIG. 1C

FIG. 1C

FIG. 2A

```
1 MLOSLAGS SCYREVE-----RHRSAWCF--GE------LVLGY
TWIK-1
            1 MYTDEGEY SCOTT DHE GET MOKENS PNTRON FRON VNVV CS ANTILL -
f17c8
            1 MTVSMEENSKIOMESATSKOKKVATORSLLNKYHLGPTALHTGIVISC
M110-2
           31 LEYLVFGAVVF65VELPYEDLLROE----LRKLKRRFTEEHEC---L
TWIK-1
           f17c8
M110-2
           71 SEDOLEOFLGRVL------EASNYGVSVLSNASGNWNW-DFTSALE
69 LNEWSEV--SKCLHNLPIGGKITAEMKSKLGKCTTKSSRIDGFGKAIT
TWIK-1
f17c8
           96 SEOSTETTIKKET MLEDAHNAHATEY FFLNEE TOKOMWI-TESSATY
M110-2
          110 FASTVESTTGYGHTVPLSDGGKAFCIT-YSVIGIPFTLEFLTAVVORI
115 FEWTLYSTVGYGSLYPHSTLGRYLTIF-YSLLMIPVFIAFKFEFGTFL
142 FTTTVIPVGYGYLFPVSAYGR-MCLIAYALLGIPLTLVTMADTGKFA
TWIK-1
f17c8
M110-2
          157 EVH---VERRPVE-----VEHERWGESKOVVALYHAVLLGEVIVSGIF
162 AHFLVVVSNRTRLAVKKAYYKLS-ONPENAETPSNSLOHDYLIFLSSI
TWIK-1
f17c8
          189 AQL---VIR------WEGONGAIPAALV-----CLI
M110-2
          197 FT-PANVFS---VL--EDDWNELESFYFCFISESTIGEGDYVPGEGYN
209 LCSESLSSAEFSSTENISYLSSVYFCITMFLIGTGDTVPTN---
TWIK-1
f17c8
          213 FAYPUVGF--- TCSTSNITYLDSVYFSLTSTFTIGFGDLTPY----
M110-2
          239 OKFRETYKIGETCYLELGLIAMEVVLETEC----ELHELKKER--
TWIK-1
          254 ----- WYFSGVCMLFLISDV SNOTFYFCOARVEYFFEILEREIL
f17c8
          253 ----DMNVIHMVLELAVGVILVITILDIVA---AEMIORVEYMGRHVG
M110-2
          278 -----KMEYKKDKDEDOKHITEHDOD----SESSITDOAAGNKED
295 LLRE-EDDGFOLETTVSLOHEPITNSQCMPSL----VLDCEKEELDND
294 KAKELAGKMFOLAQSLNIKQGLVSGVGQLHALARFGRUVGREEYDKIQ
TWIK-1
f17c8
M110-2
          315 OKONEPFVAT ------Q$$ACVOGPANH----
TWIK-1
          338 EKLESSLEST-----
f17c8
          342 EDGILAFSPDVMDGLEFMDTLSIYSRR$RRSAENSARNLFLS
M110-2
```

FIG. 2B

an in the control of the second of the

FIG. 7a

FIG. 7b

FIG. 7c

ASSOCIATE POWER OF ATTORNEY

Assistant Commissioner for Patents Washington, D.C. 20231

1/05/00

Date:

Sir:

The undersigned hereby appoints Austin R. Miller, Reg. No. 16,602; James A. Drobile Reg. No. 19,690; T. Daniel Christenbury, Reg. No. 31,750; Joan T. Kluger, Reg. No. 38,940; Patrick J. Farley, Reg. No. 42,524; Michael Patene, Ref. No. 42,982; David A. Sasso, Reg. No. 43,084; Kim R. Jessum, Reg. No. 43,694; Sharon Fenick, Reg. No. 45,269; Robert A. McKinley, Reg. No 43,793, as associate attorneys to prosecute the captioned application and to transact business in the Patent and Trademark Office connected therewith. All further correspondence should be sent to:

Gerard J. Weiser
The Intellectual Property Department
Schnader Harrison Segal & Lewis, LLP
36th Floor
1600 Market Street
Philadelphia, Pa 19103
Telephone: (215)563-1810

Respectfully submitted,

Gerard J. Weiser Reg. No. 19,763

Attorney for Applicant

(1) GENERAL INFORMATION:

- (i) APPLICANT: Lesage, Florian
 Guillemare, Eric
 Fink, Michel
 Duprat, Fabrice
 Lazdunki, Michel
 Romey, Georges
 Barhanin, Jacques
- (ii) TITLE OF INVENTION: FAMILY OF MAMMALIAN POTASSIUM CHANNELS,
 THEIR CLONING AND THEIR USE ESPECIALLY FOR THE SCREENING
 OF DRUGS
- (iii) NUMBER OF SEQUENCES: 19
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: WEISER & ASSOCIATES
 - (B) STREET: 230 South Fifteenth Street, Suite 500
 - (C) CITY: Philadelphia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19102
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/749,816
 - (B) FILING DATE: 15-NOV-1996
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Weiser, Gerard J.
 - (B) REGISTRATION NUMBER: 19,763
 - (C) REFERENCE/DOCKET NUMBER: 989.6351P
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-875-8383
 - (B) TELEFAX: 215-875-8394
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS

(B) LOCATION: 183..1190

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGGCAGGAAG ACGGCGCT	GC CCGGAGGAGC	c ggggggggg	GGCGCGCGGG GGA	GCGGGCG 60
GCGGGCGGGA GCCAGGCC	ca accaeacaca	GGGGCGGCGG	GGCCAGAAGA GGC	GGCGGGC 120
CGCGCTCCGG CCGGTCTG	CG GCGTTGGCCT	TGGCTTTGGC	TTTGGCGGCG GCG	GTGGAGA 180
AG ATG CTG CAG TCC 0 Met Leu Gln Ser 1				
CGG CAC CGC TCG GCC Arg His Arg Ser Ala 20				r Leu
CTC TAC CTG GTC TTC Leu Tyr Leu Val Phe 35		•		
TAT GAG GAC CTG CTG Tyr Glu Asp Leu Leu 50				
TTG GAG GAG CAC GAG Leu Glu Glu His Glu 65				
GGC CGG GTG CTG GAG Gly Arg Val Leu Glu 80				
GCC TCG GGC AAC TGG Ala Ser Gly Asn Trp 100				e Ala
AGC ACC GTG CTC TCC Ser Thr Val Leu Ser 115				
GAT GGA GGT AAG GCC Asp Gly Gly Lys Ala 130				
TTC ACC CTC CTG TTC Phe Thr Leu Leu Phe 145				
GTC ACC CGC AGG CCG Val Thr Arg Arg Pro 160				
AAG CAG GTG GTG GCC Lys Gln Val Val Ala 180				l Thr

GTG TCC TGC TTC TTC ATC CCG GCC GCT GTC TTC TCA GTC CTG GAG Val Ser Cys Phe Phe Phe Ile Pro Ala Ala Val Phe Ser Val Leu Glu 195 200 205	803
GAT GAC TGG AAC TTC CTG GAA TCC TTT TAT TTT TGT TTT ATT TCC CTG Asp Asp Trp Asn Phe Leu Glu Ser Phe Tyr Phe Cys Phe Ile Ser Leu 210 215 220	851
AGC ACC ATT GGC CTG GGG GAT TAT GTG CCT GGG GAA GGC TAC AAT CAA Ser Thr Ile Gly Leu Gly Asp Tyr Val Pro Gly Glu Gly Tyr Asn Gln 225 230 235	899
AAA TTC AGA GAG CTC TAT AAG ATT GGG ATC ACG TGT TAC CTG CTA CTT Lys Phe Arg Glu Leu Tyr Lys Ile Gly Ile Thr Cys Tyr Leu Leu Leu 240 245 250 255	947
GGC CTT ATT GCC ATG TTG GTA GTT CTG GAA ACC TTC TGT GAA CTC CAT Gly Leu Ile Ala Met Leu Val Val Leu Glu Thr Phe Cys Glu Leu His 260 265 270	995
GAG CTG AAA AAA TTC AGA AAA ATG TTC TAT GTG AAG AAG GAC AAG GAC Glu Leu Lys Lys Phe Arg Lys Met Phe Tyr Val Lys Lys Asp Lys Asp 275 280 285	1043
GAG GAT CAG GTG CAC ATC ATA GAG CAT GAC CAA CTG TCC TCC TCC GG Glu Asp Gln Val His Ile Ile Glu His Asp Gln Leu Ser Phe Ser Ser 290 295 300	1091
ATC ACA GAC CAG GCA GCT GGC ATG AAA GAG GAC CAG AAG CAA AAT GAG Ile Thr Asp Gln Ala Ala Gly Met Lys Glu Asp Gln Lys Gln Asn Glu 305 310 315	1139
CCT TTT GTG GCC ACC CAG TCA TCT GCC TGC GTG GAT GGC CCT GCA AAC Pro Phe Val Ala Thr Gln Ser Ser Ala Cys Val Asp Gly Pro Ala Asn 320 335 330 335	1187
CAT TGAGCGTAGG ATTTGTTGCA TTATGCTAGA GCACCAGGGT CAGGGTGCAA His	1240
GGAAGAGGCT TAAGTATGTT CATTTTTATC AGAATGCAAA AGCGAAAATT ATGTCACTTT	1300
AAGAAATAGC TACTGTTTGC AATGTCTTAT TAAAAAACAA CAAAAAAAGA CACATGGAAC	1360
AAAGAAGCTG TGACCCCAGC AGGATGTCTA ATATGTGAGG AAATGAGATG TCCACCTAAA	1420
ATTCATATGT GACAAAATTA TCTCGACCTT ACATAGGAGG AGAATACTTG AAGCAGTATG	1480
CTGCTGTGGT TAGAAGCAGA TTTTATACTT TTAACTGGAA ACTTTGGGGT TTGCATTTAG	1540
ATCATTTAGC TGATGGCTAA ATAGCAAAAT TTATATTTAG AAGCAAAAAA AAAAAGCATA GAGATGTGTT TTATAAATAG GTTTATGTGT ACTGGTTTGC ATGTACCCAC CCAAAATGAT	1600
TATTTTTGGA GAATCTAAGT CAAACTCACT ATTTATAATG CATAGGTAAC CATTAACTAT	1720
GTACATATAA AGTATAAATA TGTTTATATT CTGTACATAT GGTTTAGGTC ACCAGATCCT	1780
AGTGTAGTTC TGAAACTAAG ACTATAGATA TTTTGTTTCT TTTGATTTCT CTTTATACTA	1840
AAGAATCCAG AGTTGCTACA ATAAAATAAG GGGAATAATA AAAAAAAAA AAAA	1894

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Leu Gln Ser Leu Ala Gly Ser Ser Cys Val Arg Leu Val Glu Arg

1 10 15

His Arg Ser Ala Trp Cys Phe Gly Phe Leu Val Leu Gly Tyr Leu Leu 20 25 30

Tyr Leu Val Phe Gly Ala Val Val Phe Ser Ser Val Glu Leu Pro Tyr 35 40 45

Glu Asp Leu Leu Arg Gln Glu Leu Arg Lys Leu Lys Arg Arg Phe Leu 50 60

Glu Glu His Glu Cys Leu Ser Glu Gln Gln Leu Glu Gln Phe Leu Gly 65 70 75 80

Arg Val Leu Glu Ala Ser Asn Tyr Gly Val Ser Val Leu Ser Asn Ala 85 90 95

Ser Gly Asn Trp Asn Trp Asp Phe Thr Ser Ala Leu Phe Phe Ala Ser 100 105 110

Thr Val Leu Ser Thr Thr Gly Tyr Gly His Thr Val Pro Leu Ser Asp 115 120 125

Gly Gly Lys Ala Phe Cys Ile Ile Tyr Ser Val Ile Gly Ile Pro Phe 130 135 140

Thr Leu Leu Phe Leu Thr Ala Val Val Gln Arg Ile Thr Val His Val 145 150 155 160

Thr Arg Arg Pro Val Leu Tyr Phe His Ile Arg Trp Gly Phe Ser Lys 165 170 175

Gln Val Val Ala Ile Val His Ala Val Leu Leu Gly Phe Val Thr Val 180 185 190

Ser Cys Phe Phe Phe Ile Pro Ala Ala Val Phe Ser Val Leu Glu Asp 195 200 205

Asp Trp Asn Phe Leu Glu Ser Phe Tyr Phe Cys Phe Ile Ser Leu Ser 210 215 220

Thr Ile Gly Leu Gly Asp Tyr Val Pro Gly Glu Gly Tyr Asn Gln Lys 225 230 235 240

Phe Arg Glu Leu Tyr Lys Ile Gly Ile Thr Cys Tyr Leu Leu Gly 245 250 255

Leu Ile Ala Met Leu Val Val Leu Glu Thr Phe Cys Glu Leu His Glu 260 265 270

Leu Lys Lys Phe Arg Lys Met Phe Tyr Val Lys Lys Asp Lys Asp Glu 275 280 285

Asp Gln Val His Ile Ile Glu His Asp Gln Leu Ser Phe Ser Ser Ile 290 295 300

Thr Asp Gln Ala Ala Gly Met Lys Glu Asp Gln Lys Gln Asn Glu Pro 305 310 315 320

Phe Val Ala Thr Gln Ser Ser Ala Cys Val Asp Gly Pro Ala Asn His
325 330 335

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 347 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Tyr Thr Asp Glu Gly Glu Tyr Ser Gly Asp Thr Asp His Gly Gly 1 5 10

Ser Thr Met Gln Lys Met Ser Pro Asn Thr Arg Gln Asn Phe Arg Gln 20 25 30

Asn Val Asn Val Val Cys Leu Ser Ala Ala Ile Thr Leu Leu Val 35 40 45

Phe Asn Leu Ile Gly Ala Gly Ile Phe Tyr Leu Ala Glu Thr Gln Asn 50 60

Ser Ser Glu Ser Leu Asn Glu Asn Ser Glu Val Ser Lys Cys Leu His 65 70 75 80

Asn Leu Pro Ile Gly Gly Lys Ile Thr Ala Glu Met Lys Ser Lys Leu 85 90 95

Gly Lys Cys Leu Thr Lys Ser Ser Arg Ile Asp Gly Phe Gly Lys Ala 100 105 110

Ile Phe Phe Ser Trp Thr Leu Tyr Ser Thr Val Gly Tyr Gly Ser Leu 115 120 125

Tyr Pro His Ser Thr Leu Gly Arg Tyr Leu Thr Ile Phe Tyr Ser Leu 130 135 140

Leu Met Ile Pro Val Phe Ile Ala Phe Lys Phe Glu Phe Gly Thr Phe 145 150 155 160

Leu Ala His Phe Leu Val Val Val Ser Asn Arg Thr Arg Leu Ala Val 165 170 175

Lys Lys Ala Tyr Tyr Lys Leu Ser Gln Asn Pro Glu Asn Ala Glu Thr 180 185 190

Pro Ser Asn Ser Leu Gln His Asp Tyr Leu Ile Phe Leu Ser Ser Leu 195 200 205

Leu Leu Cys Ser Ile Ser Leu Leu Ser Ser Ser Ala Leu Phe Ser Ser 210 215 220

Ile Glu Asn Ile Ser Tyr Leu Ser Ser Val Tyr Phe Gly Ile Ile Thr 225 230 235 240

Met Phe Leu Ile Gly Ile Gly Asp Ile Val Pro Thr Asn Leu Val Trp 245 250 255

Phe Ser Gly Tyr Cys Met Leu Phe Leu Ile Ser Asp Val Leu Ser Asn 260 265 270

Gln Ile Phe Tyr Phe Cys Gln Ala Arg Val Arg Tyr Phe Phe His Ile 275 280 285

Leu Ala Arg Lys Ile Leu Leu Arg Glu Glu Asp Asp Gly Phe Gln 290 295 300

Leu Glu Thr Thr Val Ser Leu Gln His Ile Pro Ile Ile Asn Ser Gln 305 310 315 320

Cys Met Pro Ser Leu Val Leu Asp Cys Glu Lys Glu Glu Leu Asp Asn 325 330 335

Asp Glu Lys Leu Ile Ser Ser Leu Thr Ser Thr 340 345

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Thr Val Ser Met Glu Glu Asn Ser Lys Ile Gln Met Leu Ser Ala 1 5 10 15

Thr Ser Lys Asp Lys Lys Val Ala Thr Asp Arg Ser Leu Leu Asn Lys 20 25 30

Tyr His Leu Gly Pro Leu Ala Leu His Thr Gly Leu Val Leu Ser Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Thr Tyr Ala Leu Gly Gly Ala Tyr Leu Phe Leu Ser Ile Glu His 50 55 60

Pro Glu Glu Leu Lys Arg Glu Lys Ala Ile Arg Glu Phe Gln Asp Leu Lys Gln Gln Phe Met Gly Asn Ile Thr Ser Gly Ile Glu Asn Ser Glu Gln Ser Ile Glu Ile Tyr Thr Lys Lys Leu Ile Leu Met Leu Glu Asp Ala His Asn Ala His Ala Phe Glu Tyr Phe Phe Leu Asn His Glu 120 Ile Pro Lys Asp Met Trp Thr Phe Ser Ser Ala Leu Val Phe Thr Thr 130 135 Thr Thr Val Ile Pro Val Gly Tyr Gly Tyr Ile Phe Pro Val Ser Ala 155 Tyr Gly Arg Met Cys Leu Ile Ala Tyr Ala Leu Leu Gly Ile Pro Leu 165 170 Thr Leu Val Thr Met Ala Asp Thr Gly Lys Phe Ala Ala Gln Leu Val 185 Thr Arg Trp Phe Gly Asp Asn Asn Met Ala Ile Pro Ala Ala Ile Phe 195 Val Cys Leu Leu Phe Ala Tyr Pro Leu Val Val Gly Phe Ile Leu Cys 215 Ser Thr Ser Asn Ile Thr Tyr Leu Asp Ser Val Tyr Phe Ser Leu Thr 225 230 235 Ser Ile Phe Thr Ile Gly Phe Gly Asp Leu Thr Pro Asp Met Asn Val 245 Ile His Met Val Leu Phe Leu Ala Val Gly Val Ile Leu Val Thr Ile 260 Thr Leu Asp Ile Val Ala Ala Glu Met Ile Asp Arg Val His Tyr Met Gly Arg His Val Gly Lys Ala Lys Glu Leu Ala Gly Lys Met Phe Gln 290 295 Leu Ala Gln Ser Leu Asn Met Lys Gln Gly Leu Val Ser Gly Val Gly Gln Leu His Ala Leu Ala Arg Phe Gly Met Leu Val Gly Arg Glu Glu Val Asp Lys Thr Gln Glu Asp Gly Ile Ile Ala Phe Ser Pro Asp Val 345 Met Asp Gly Leu Glu Phe Met Asp Thr Leu Ser Ile Tyr Ser Arg Arg Ser Arg Arg Ser Ala Glu Asn Ser Ala Arg Asn Leu Phe Leu Ser

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Phe Thr Ser Ala Leu Phe Phe Ala Ser Thr Val Leu Ser Thr Thr Gly $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Tyr Gly His Thr Val Pro Leu Ser Asp Gly Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Phe Leu Glu Ser Phe Tyr Phe Cys Phe Ile Ser Leu Ser Thr Ile Gly $\stackrel{1}{1}$ $\stackrel{5}{1}$ 10 15

Leu Gly Asp Tyr Val Pro Gly Glu Gly Tyr Asn 20 25

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Tyr Phe Asn Cys Ile Tyr Phe Cys Phe Leu Cys Leu Leu Thr Ile Gly 1 $$ 5 $$ 10 $$ 15

Tyr Gly Asp Tyr Ala Pro Arg Thr Gly Ala Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Tyr Gly Asn Ala Leu Tyr Phe Cys Thr Val Ser Leu Leu Thr Val Gly 1 $$ 5 $$ 10 $$ 15

Leu Gly Asp Ile Leu Pro Lys Ser Val Gly Ala 20 25

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Tyr Trp Thr Cys Val Tyr Phe Leu Ile Val Thr Met Ser Thr Val Gly 1 5 10 15

Tyr Gly Asp Val Tyr Cys Glu Thr Val Leu Gly
20 25

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Pro Asp Ala Phe Trp Trp Ala Val Val Thr Met Thr Thr Val Gly 1 $$ 5 $$ 10 $$ 15

Tyr Gly Asp Met Thr Pro Val Gly Phe Trp Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ile Pro Glu Ala Phe Trp Trp Ala Gly Ile Thr Met Thr Thr Val Gly
1 5 10 15

Tyr Gly Asp Ile Cys Pro Thr Thr Ala Leu Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ile Pro Ala Ala Phe Trp Tyr Thr Ile Val Thr Met Thr Thr Leu Gly 1 5 10 15

Tyr Gly Asp Met Val Pro Glu Thr Ile Ala Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ile Pro Leu Gly Leu Trp Trp Ala Leu Val Thr Met Thr Thr Val Gly
1 5 10 15

Tyr Gly Asp Met Ala Pro Lys Thr Tyr Ile Gly 20 25

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Tyr Val Thr Ala Leu Tyr Trp Ser Ile Thr Thr Leu Thr Thr Gly 1 5 10 15

Tyr Gly Asp Phe His Ala Glu Asn Pro Arg Glu 20 25

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Tyr Gly Asp Leu His Pro Val Asn Thr Lys Glu 20 25

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Phe Gly Asn Val Ala Ala Glu Thr Asp Asn Glu 20 25

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Thr Ser Ala Phe Leu Phe Ser Leu Glu Thr Gln Val Thr Ile Gly 1 $$ 5 $$ 10 $$ 15

Tyr Gly Phe Arg Phe Val Thr Glu Gln Cys Ala 20 25

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Phe Thr Ala Ala Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly
1 5 10 15

Tyr Gly Phe Arg Cys Val Thr Asp Glu Cys Pro 20 25

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Phe Pro Ser Ala Phe Leu Phe Phe Ile Glu Thr Glu Ala Thr Ile Gly 1 5 10 15

Tyr Gly Tyr Arg Tyr Ile Thr Asp Lys Cys Pro 20 25

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

application deficienc	ies were jound during sca	nning:	
☐ Page(s) for scanning.	of Declaration (Docume	MU ent title)	were not present
☐ Page(s) for scanning.	of(Docume	ent title)	were not present
□ Scanned copy i	s best available.		