

Product Specification

SPECIFICATION FOR APPROVAL

()	Preliminary Specification
(•)	Final Specification

Ti	itle		23.0	O" FHD TFT LCD
BUYER	General		SUPPLIER	L&T Display Technology (Fujian) Limited.
MODEL			*MODEL	LM230WF5
			SUFFIX	TRA1

^{*}When you obtain standard approval, please use the above model name without suffix

SIGNATURE	DATE
/	
Diagram to any favorance	
Please return 1 copy for your With your signature and com	ments.

APPROVED BY J.D. Park / Director	DATE						
REVIEWED BY							
K.H. HWANG / Manager [EE]							
H.J. CHO / Manager [ME]							
Kent.Zhuang / Manager [PM]							
R&D LCM Dept. L&T Display Technology (Fujia	n) Limited.						

Ver. 0.5 Oct., 25, 2010 1 / 30

Product Specification

Contents

N	lo	ITEM	Page
		COVER	1
		CONTENTS	2
		RECORD OF REVISIONS	3
1		GENERAL DESCRIPTION	4
2		ABSOLUTE MAXIMUM RATINGS	5
3		ELECTRICAL SPECIFICATIONS	6
	1)	ELECTRICAL CHARACTERISTICS	6
	2)	INTERFACE CONNECTIONS	8
	3)	Mini-LVDS characteristics	11
	4)	SIGNAL TIMING SPECIFICATIONS	15
	5)	SIGNAL TIMING WAVEFORMS	16
	6)	COLOR INPUT DATA REFERNECE	17
	7)	POWER SEQUENCE	18
	8)	POWER DIP CONDITION	19
4		OPTICAL SFECIFICATIONS	20
5		MECHANICAL CHARACTERISTICS	26
6		INTERNATIONAL STANDARDS	28
	1)	SAFETY	28
	2)	EMC	28
	3)	Environment	28
7		Precautions	29

Ver. 0.5	Oct., 25, 2010	2 / 30
----------	----------------	--------

Product Specification

Record of revisions

			<u> </u>
Revision No	Date	Page	Description
Ver 0.1	Apr.,23,2010	-	Preliminary Specifications
Ver 0.2	Jun.,06,2010	18 20 29	Modify Power Sequence Change RGB color coordinate spec Add Precautions
Ver 0.3	Jun.,12,2010	27	Updated mechanical drawing sheet
Ver 0.4	Jul.,12,2010	11 4	Add Mini-LVDS min. frequency Add Color Gamut
Ver 0.5	Oct.,25,2010	7	Delete Notes 8.

 Ver. 0.5
 Oct., 25, 2010
 3 / 30

Product Specification

1. General description

LM230WF5-TRA1 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. It has a 23.0 inch diagonally measured active display area with Full HD resolution (1080 vertical by 1920 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors in case of using Advanced-FRC(Frame Rate Control). It has been designed to apply the interface method that enables low power, high speed, low EMI. FPD Link or compatible must be used as a mini-LVDS (Low Voltage Differential Signaling) chip. It is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LM230WF5-TRA1 characteristics provide an excellent flat panel display for office automation products such as

General features

<u>conclai icatal co</u>	
Active screen size	23 inches(58.42cm) diagonal
Outline Dimension	533.2(H) x 312.0(V) x 8.3(D) mm(Typ.)
Pixel Pitch	0.0883*RGB(H)mm x 0.265(V)mm
Pixel Format	1920 horiz. By 1080 vert. Pixels RGB stripes arrangement
Interface	Mini-LVDS 1Port
Color depth	16.7M colors (When use Advanced FRC)
Luminance, white	250 cd/m2 (Center 1Point, typ)
Viewing Angle (CR>10)	R/L 170(Typ.), U/D 160(Typ.)
Power Consumption	Total 19.2 W(Typ.), (5.4 W@VLCD, 13.8 W@W/O Driver)
Weight	1490 g (Typ.)
Display operating mode	Transmissive mode, Normally White
Surface treatments	Hard coating (3H), Anti-glare treatment of the front polarizer
Color Gamut	68%(Typ.) CIE 1931

Ver. 0.5 Oct., 25, 2010 4 / 30

Product Specification

2. Absolute maximum ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. Absolute maximum ratings

Dawamatar	Cymphal	Val	ues	Linita	Notes	
Parameter	Symbol	Min	Max	Units	Notes	
Power Supply Input Voltage	V_{LCD}	-0.3	+6.0	Vdc	At 25℃	
Operating Temperature	T _{OP}	0	50	°C		
Storage Temperature	T _{ST}	-20	60	°C		
Operating Ambient Humidity	H _{OP}	10	90	%RH	1	
Storage Humidity	H _{ST}	10	90	%RH		

Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.

FIG. 2 Temperature and relative humidity

Ver. 0.5 Oct., 25, 2010 5 / 30

Product Specification

3. Electrical specifications

Global LCD Panel Exchange Center

3-1. Electrical characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by an LED Driver. The LED Driver is an external unit to the LCDs.

Table 2. Electrical characteristics

Parameter	Symbol		Values	Unit	Notes				
Parameter	Symbol	Min	Тур	Max	Offic	ivotes			
MODULE:									
Power Supply Input Voltage	V_{LCD}	4.5	5.0	5.5	Vdc				
Permissive Power Input Ripple	V_{LCD}	-	-	0.3	V	3			
	I _{LCD-MOSAIC} (60Hz)	-	1080	1410	mA	1			
Power Supply Input Current	I _{LCD-BLACK} (60Hz)	ı	1300	1690	mA	2			
	I _{LCD-BLACK} (75Hz)		-	1960	mA				
Power Consumption	P _{LCD}	-	5.4	7.15	Watt	1			
Inrush current	I _{RUSH}	-) -	3.0	Α	4			

Note:

- 1. The specified current and power consumption are under the V_{LCD}=5.0V, 25 ± 2 °C, f_V =60Hz condition whereas mosaic pattern(8 x 6) is displayed and f_v is the frame frequency.
- 2. The current of Black pattern is specified under the $V_{LCD}=5.0V$, $25 \pm 2^{\circ}C$, $f_{V}=60Hz$ condition.
- 3. Permissive power ripple should be measured under VCC=5.0V, 25°C, f_V (frame frequency)=75Hz condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20MHz.
- 4. The duration of rush current is about 5ms and rising time of power Input is 500us \pm 20%.

FIG.3 pattern for Electrical characteristics

6 / 30 Ver. 0.5 Oct., 25, 2010

Product Specification

Table 3. LED bar Electrical characteristics

Parameter	Cymbol	Condition	Condition			Unit	Notes
Parameter	Symbol Condition		Min.	Тур.	Max.	Unit	
LED:							1,7
LED String Current	Is		-	60	65	mA	2,7
LED String Voltage	Vs		-	57.6	59.9	V	3,7
Power Consumption	PBar		-	13.8	14.4	Watt	4,6,7
LED Life Time	LED_LT		30,000	-		Hrs	5,7

* LED driver design guide

: The design of the LED driver must have specifications for the LED in LCD Assembly. The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver.

So all the parameters of an LED driver should be carefully designed and output current should be constant current control.

Please control feedback current of each string individually to compensate the current variation among the strings of LEDs.

When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as

installed in your instrument.

- 1. Specified values are for a single LED bar.
- 2. The specified current is input LED chip 100% duty current.
- 3. The specified voltage is input LED string and Bar voltage at typical 60 mA 100% duty current.
- 4. The specified power consumption is input LED bar power consumption at typical 60 mA 100% duty current.
- 5. The life is determined as the time at which luminance of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at $25 \pm 2^{\circ}$ C.
- 6. The LED bar power consumption shown above does not include loss of external driver. The used LED bar current is the LED typical current.
 - Min Power Consumption is calculated with PBar = $Vs(Min.) \times Is(Typ.) \times Nstring$ Max Power Consumption is calculated with PBar = $Vs(Max.) \times Is(Typ) \times Nstring$
- 7. LED operating DC Forward Current and Junction Temperature must not exceed LED Max Ratings at 25 \pm 2°C.

Product Specification

3-2. Interface connections

 $\label{eq:lcd} \mbox{LCD connector}(\mbox{CN1}): \mbox{TF19L-50S-0.5SH}(\mbox{Hirose}) \mbox{ or Equivalent}$

Mating connector : 50pin FFC locking Cable

Table 4. Module connector(CN1) pin configuration

NO.	Symbol	Description	NO.	Symbol	Description
1	GND	Ground	26	POL	Polarity Control Signal
2	GND	Ground	27	CSC	Charge Share mode Control Signal
3	LV5-	Mini LVDS Receiver Signal(5-)	28	H2DOT	Horizontal 2 Inversion Signal
4	LV5+	Mini LVDS Receiver Signal(5+)	29	GND	Ground
5	GND	Ground	30	ICLK_RESET	Vertical Start Pulse
6	LV4-	Mini LVDS Receiver Signal(4-)	31	ICLK1	GIP GATE Clock 1
7	LV4+	Mini LVDS Receiver Signal(4+)	32	ICLK2	GIP GATE Clock 2
8	GND	Ground	33	ICLK3	GIP GATE Clock 3
9	LV3-	Mini LVDS Receiver Signal(3-)	34	ICLK4	GIP GATE Clock 4
10	LV3+	Mini LVDS Receiver Signal(3+)	35	IVDD-O	GIP Panel VDD for Odd GATE TFT
11	GND	Ground	36	IVDD-E	GIP Panel VDD for Even GATE TFT
12	LVCLK-	Mini LVDS Receiver Clock Signal(-)	37	FLK2	GPM Control Clock
13	LVCLK+	Mini LVDS Receiver Clock Signal(+)	38	FLK1	GPM Control Clock
14	GND	Ground	39	GND	Ground
15	LV2-	Mini LVDS Receiver Signal(2-)	40	SDA	I2C Data
16	LV2+	Mini LVDS Receiver Signal(2+)	41	SCL	I2C Clock
17	GND	Ground	42	GND	Ground
18	LV1-	Mini LVDS Receiver Signal(1-)	43	VIN	Input Voltage
19	LV1+	Mini LVDS Receiver Signal(1+)	44	VIN	Input Voltage
20	GND	Ground	45	VIN	Input Voltage
21	LV0-	Mini LVDS Receiver Signal(0-)	46	VIN	Input Voltage
22	LV0+	Mini LVDS Receiver Signal(0+)	47	VIN	Input Voltage
23	GND	Ground	48	VIN	Input Voltage
24	SOE	Source Output Enable SIGNAL	49	GND	Ground
25	POL2	Polarity Control Signal	50	GND	Ground

Ver. 0.5 Oct., 25, 2010 8 / 30

Product Specification

FIG. 4 Connector diagram

Note:

- 1. NC: No Connection.
- 2. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame.
- 3. All V_{LCD} (power input) pins should be connected together.
- 4. Input Level of Mini-LVDS signal is based on the Source D-IC Spec

Product Specification

The LED interface connector is a model 10FH-SM1-GAN-TB manufactured by JST. The mating connector is a FFC/FPC specified in LED interface connector specification. The pin configuration for the connector is shown in the table below.

Table 5. LED connector pin configuration

Pin No.	Symbol	Description	Notes
1	FB1	Channel1 Current Feed Back	
2	FB2	Channel2 Current Feed Back	
3	X	N/C	
4	X	N/C	
5	Vled	LED Power Supply (Common Input)	
6	Vled	LED Power Supply (Common Input)	
7	X	N/C	
8	X	N/C	
9	FB3	Channel3 Current Feed Back	
10	FB4	Channel4 Current Feed Back	

FIG. 5 Backlight connector view

Ver. 0.5 Oct., 25, 2010

Product Specification

3-3. Mini-LVDS characteristics

3-3-1. Signal Timing Specifications

Table 6. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Note
Mini-LVDS Clock frequency	CLK	3.0V≤VCC ≤3.6V	160		290	MHz	
mini-LVDS input Voltage (Center)	VIB		0.9		(VCC-1.2) - VID / 2	V	
mini-LVDS input Voltage Distortion (Center)	ΔVів	Mini-LVDS Clock			0.8	V	
mini-LVDS differential Voltage range	VID	and Data	0.2		0.7	V	5
mini-LVDS differential Voltage range Dip	ΔVID	. (0.025		0.7	V	

FIG. 6 Description of VID, \triangle VIB, \triangle VID

Product Specification

3-3-1. Signal Timing Specifications

Table 7. Timing Requirements

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Mini Clock pulse period	T1		3.45	-		ns	
Mini Clock pulse low period	T2		1.6	-		ns	
Mini Clock pulse high period	Тз		1.6	-	-	ns	1
Mini Data setup time	Т6		0.7	-	<u>.</u>	ns	
Mini Data hold time	Т7		0.7	-	-	ns	
Reset low to SOE rising time	Т8		0	-	-	ns	
SOE to Reset input time	T9		200	-	-	ns	
Receiver off to SOE timing	T10		5	-	-	CLK cycle	
POL signal to SOE setup time	T11		-5	-	-	ns	
POL signal to SOE hold time	T12		6	-	-	ns	
Reset High Period	T13		3			CLK cycle	
SOE signal Pulse Width	T14		200			ns	

Note: 1. 290 MHz Clock Frequency @ 3.0<VCC<3.6,

2. Setup time and hold time couldn't be satisfied at the same time

FIG. 7 Source D-IC Input Data Latch Timing Waveform

Product Specification

3-3-1. Signal Timing Specifications

FIG. 8 Input Data Timing for 1st Source D-IC Chip

FIG. 9 Last Data Latch to SOE Timing

Ver. 0.5 Oct., 25, 2010

Product Specification

3-3-1. Signal Timing Specifications

FIG. 10 POL and SOE Timing Waveform

3-3-2. Data Mapping and Timing

Display data and control signal (RESET) are input to LV0 to LV5.

1) Control signal input mode

FIG. 11 Mini-LVDS Data

2) Display data input mode

FIG 12. Mini-LVDS Data

Ver. 0.5 Oct., 25, 2010 14 / 30

Product Specification

3-4. Signal timing specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

Table 8. Timing table

Pa	rameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
	Period	t _{CLK}	11.43	13.89	16.7	ns	Pixel frequency	
D _{CLK}	Frequency	f _{CLK}	60	72	87.5	MHz	: Typ.144MHz	
	Horizontal Valid	t _{HV}	960	960	960	+		
Horizontal	H Period Total	t _{HP}	1024	1088	1120	t _{CLK}		
	Hsync Frequency	f _H	64	66	83	kHz		
	Vertical Valid	t _{vv}	1080	1080	1080			
Vertical	V Period Total	t _{VP}	1090	1100	1160	t _{HP}		
	Vsync Frequency	f _V	50	60	75	Hz		
DE	DE Setup Time	t _{SI}	4	-	-		For D _{CLK}	
(Data Enable)	DE Hold Time	t _{HI}	4	-	-	ns		
Data	Data Setup Time	t _{SD}	4	-	-	nc	For D	
Data	Data Hold Time	t _{HD}	4	-	-	ns	For D _{CLK}	

Note:

- 1. DE Only mode operation. The input of Hsync & Vsync signal does not have an effect on LCD normal operation.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3. Horizontal period should be even.

Product Specification

3-5. Signal timing waveforms

Product Specification

3-6. Color input data reference

The brightness of each primary color (red,green and blue) is based on the 8bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 9. Color data reference

Input Color Data																									
					Re	ed					-11		Gre								BI	ue			
	Color	М	SB					LS	SB	М	SB					LS	SB	М	SB					LS	ВВ
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	В3	B2	В1	В0
Basic Color	Black Red (255) Green (255) Blue (255) Cyan Magenta Yellow White	0 1 0 0 1 1	0 1 0 0 1 1	0 1 0 0 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1 1	0 1 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0	0 0 1 1 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0 1	0 0 1 1 1 0	0 0 1 1 0 1	0 0 1 1 1 0
Red	Red(000) Dark Red(001) Red(002) Red(253) Red(254) Red(255) Bright	0 0 0 - 1 1 1	0 0 - - 1 1	0 0 0 - 1 1 1	0 0 0 - 1 1 1	000111	000-1111	0 0 1 - 0 1 1	0 1 0 - 1 0 1	00011000	000 000	000 000	000 000	000 000	000 000	000 000	000000	000000	0 0 0 - 0 0	000000	000000	00011000	0 0 0 - 0 0 0	000 000	000000
Green	Green(000) Dark Green(001) Green(002) Green(253) Green(254) Green(255)Bright	00011000	000 000	000 - 1000	000 - 1000	000 000	0 0 0 - 0 0 0	0 0 0 - 0 0	0 0 0 0 0 0	0 0 - - 1 1	0 0 - - 1 1	0 0 - - 1 1	0 0 - - 1 1	0 0 - - 1 1	0 0 - 1 1	0 1 - 0 1 1	0 1 0 - 1 0 1	0 0 0 - 0 0 0	0 0 0 - 0 0	0 0 0 - 0 0 0	0 0 0 - 0 0 0	000 000	0 0 0 - 0 0	000 000	0 0 0 - 0 0 0
Blue	Blue(000) Dark Blue(001) Blue(002) Blue(253) Blue(254) Blue(255) Bright	000 000	000 000	000 000	000 000	000 000	0 0 0 0 0 0	0 0 0 - 0 0 0	000000	000000	0 0 0 0 0 0	0 0 0 - 0 0 0	000 000	000 000	000 000	000 000	000000	0 0 - - 1 1	0 0 0 - - 1 1 1	0 0 0 - - 1 1	0 0 - - 1 1	0 0 - - 1 1 1	0 0 0 - - 1 1	0 0 1 - 0 1 1	0 1 0 - 1 0 1

Ver. 0.5 Oct., 25, 2010 17 / 30

Product Specification

3-7. Power sequence

Table 10. POWER SEQUENCE

		11. 2	N		
Parameter	Min	Unit	Notes		
T1	0	-	500	ms	
T2	30	-	500	ms	
ТЗ	0	-	30	ms	
T4	60	-	-	ms	
T5	0	-	60	ms	
Т6	500	-	-	ms	
Т7	200	-	-	ms	
Т8	0.01	-	-	S	
Т9	0.01	-	-	S	
T10	1	-	-	S	

The Source D-IC power on sequence must be VCC, logic input, VDD, Gamma ref.
 IVDD Even signal should be started "High" status.
 IVDD even & odd can not be "High at the same time.
 ICLK On Sequence: ICLK1 → ICLK2 → ICLK3 → ICLK4

- 5. Power Off Sequence order is reverse of Power On Condition including Source D-IC and ILCK.

18 / 30 Ver. 0.5 Oct., 25, 2010

Product Specification

3-8. V_{LCD} Power dip condition

FIG. 13 Power dip condition

1) Dip condition

 $3.5V \le VLCD < 4.5V$, $td \le 20ms$

2) VLCD < 3.5V

VLCD-dip conditions should also follow the Power On/Off conditions for supply voltage.

Product Specification

4. Optical specification

Optical characteristics are determined after the unit has been 'ON' for 30 minutes in a dark environment at 25° C.

Table 11. Optical characteristics

Ta=25 °C, V_{LCD} =5.0V, f_{V} =60Hz, D_{CLK} =72MHz, Is=60mA

Tubic 111	Ори	cai characte	i istics		14 25		, I _V =60H2, L	T	2, 13 001117		
Pa	arame	ter	Symb	ool		Values	T	Units	Notes		
			,		Min	Тур	Max				
Contrast Ratio		CR		700	1000	-		1 (PR-880)			
Surface Lum	inance	, white	L _W	ł	200	250	- (cd/m ²	2 (PR-880)		
Luminance V	/ariatio	n	δ white	9P	75	-		%	3 (PR-880)		
Doonanaa Tir		Rise Time	Tr _R		-	1.3	2.6	ms	4		
Response Tir	ne	Decay Time	Tr _D)	-	3.7	7.4	ms	(RD80S)		
		RED	Rx			0.627					
		KEU	Ry			0.347					
		CDEEN	Gx			0.338					
Color Coordii	nates	GREEN	Gy		Тур	0.620	Тур		(PR-650)		
[CIE1931]		BLUE	Bx		-0.03	0.155	+0.03		(PK-650)		
		BLUE	Ву			0.049					
		WHITE	Wx			0.313					
	WHITE		Wy			0.329					
Viewing Ang	gle (CR	.>5)									
x a	axis, ri	ght(?=0°)	?r		75	88		Degree			
x a	axis, le	ft (?=180°)	?!		75	88					
y a	axis, up	o (?=90°)	?u		70	85					
	axis, d :270°)	own	?d		70	85			6		
Viewing Ang	gle (CR	>10)							(PR-880)		
x a	axis, ri	ght(?=0°)	?r		70	85		Degree			
x a	axis, le	ft (?=180°)	?1		70	85					
y a	y axis, up (?=90°) y axis, down (?=270°)		?u		60	75					
y a			?d		70	85					
Crosstalk						1.5	%	7 (PR880)			
Luminance uniformity - Angular dependence (TCO'03)		LR		-	-	1.7		8 (PR880)			
Color grayscale linearity		r grayscale linearity		olor grayscale linearity $\Delta u'v'$		<i>'</i>		0.018			10 (PR-650)

Ver. 0.5 Oct., 25, 2010 20 / 30

Product Specification

The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 $^{\circ}.$

FIG. 14 presents additional information concerning the measurement equipment and method.

FIG. 14 Optical characteristic measurement equipment and method

Notes:

1. Contrast ratio(CR) is defined mathematically as :It is measured at center point(1)

- Surface luminance is the luminance value at center 1 point(1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 15.
- 3. The variation in surface luminance , δ $_{\text{WHITE}}$ is defined as

$$\delta_{\text{ WHITE}} = \begin{array}{c} \text{Minimum (P1,P2P9)} \\ \text{Maximum (P1,P2P9)} \end{array}$$

For more information see Figure 8.

FIG. 15 Luminance measuring point

Ver. 0.5 Oct., 25, 2010 21 / 30

Product Specification

Notes:

4. Response time is the time required for the display to transition from black to white (Decay Time, Tr_D) and from white to black (Rise Time, Tr_R)

The sampling rate is 2,500 sample/sec. For additional information see FIG. 16.

The response time is defined as the following figure and shall be measured by switching the input signal for each gray to gray.

FIG. 16 Response time

5. Viewing angle is the angle at which the contrast ratio is greater than 10 or 5. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG. 17.

FIG. 17 Viewing angle

Ver. 0.5 Oct., 25, 2010 22 / 30

Product Specification

Notes:

6. Crosstalk is defined as

The equation of crosstalk : (
$$|L_{A[or\ C]2}-L_{A[or\ C]1}|/L_{A[or\ C]1}$$
) ×100(%) [Vertical], ($|L_{B[or\ D]2}-L_{B[or\ D]1}|/L_{B[or\ D]1}$) ×100(%) [Horizontal]

For more information see Figure 18.

FIG. 18 Crosstalk measuring point

Ver. 0.5 Oct., 25, 2010 23 / 30

Product Specification

Notes:

7. Luminance Uniformity - angular - dependence (LR& TB)

TCO '03 Luminance uniformity = angular dependence, is the capacity of the VDU to present the same Luminance level independently of the viewing direction. The angular-dependent luminance uniformity is calculated as the ratio of maximum luminance to minimum luminance in the specified measurement areas.

- Test pattern : 80% white pattern

- Test point : 2-point

- Test distance : D * 1.5 = 87.63

- Test method: LR = ((Lmax.+30deg. / Lmin. +30deg.) + (Lmax. -30deg. / Lmin.

-30deg.)) / 2

TB = ((Lmax.+15deg. / Lmin. +15deg.)

FIG. 19 Luminance Uniformity angular dependence

8. Gray scale specification

Table 12. Gray scale

Gray level	Luminance [%] (Typ)
L0	0.1
L31	1.23
L63	4.98
L95	12.30
L127	23.58
L159	40.03
L191	61.30
L223	84.03
L255	100

Ver. 0.5 Oct., 25, 2010 24 / 30

Product Specification

Notes:

9. Color grayscale linearity , $\Delta u'v'$ is defined as

$$\sqrt{(u'_A - u'_B)^2 + (v'_A - v'_B)^2}$$

Where indices A and B are the two gray levels found to have the largest color differences between them.

i.e. get the largest $\Delta u'$ and $\Delta v'$ of each 6pairs of u' and v' and calculate $\Delta u'v'$.

-Test pattern:

100% full white pattern with a test pattern as shown FIG.20 Squares of 40mm by 40mm in size, filled with 255, 225, 195, 165, 135 and 105 grayscale steps should be arranged in the center of the screen.

-Test method:

First gray step:

Move a square of 255 gray level should be moved into the center of the screen and measure luminance and u' and v' coordinates.

Next gray step:

Move a 255 gray square into the center and measure both luminance and u^{\prime} and v^{\prime} coordinates.

The same procedure shall then be repeated for gray steps 195, 165, 135 and 105.

FIG. 20 Color grayscale linearity

Ver. 0.5 Oct., 25, 2010 25 / 30

Product Specification

5. Mechanical characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

Table 13. Mechanical characteristics

	Horizontal	533.2 mm			
Outline dimension	Vertical	312 mm			
	Depth	8.3 mm			
Bezel area	Horizontal	513.8 mm			
Dezei area	Vertical	291 mm			
Active display area	Horizontal	509.2mm			
Active display area	Vertical	286.4mm			
Weight	1490 g (Typ.) 1565g (Max.)				
Surface treatment	Hard coating(3H) Anti-glare treatment of the front polarizer				

Notes: Please refer to a mechanic drawing in terms of tolerance at the next page.

Product Specification

5. Unspecified tolerances to be $\pm 0.5 mm$ 6. The COF area is weak & sensitive, So, please don't press the COF area.

Ver. 0.5 Oct., 25, 2010 27 / 30

Product Specification

6. International Standards

6-1. Safety

- a) UL 60950-1, Second Edition, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1: General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Second Edition, Canadian Standards Association. Information Technology Equipment Safety Part 1 : General Requirements.
- c) EN 60950-1:2006 + A11:2009, European Committee for Electrotechnical Standardization (CENELEC).
 - Information Technology Equipment Safety Part 1: General Requirements.

6-2. EMC

- a) ANSI C63.4 "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz." American National Standards Institute (ANSI), 2003.
- b) CISPR 22 "Information technology equipment Radio disturbance characteristics Limit and methods of measurement." International Special Committee on Radio Interference (CISPR), 2005.
- c) CISPR 13 "Sound and television broadcast receivers and associated equipment Radio disturbance characteristics Limits and method of measurement." International Special Committee on Radio Interference (CISPR), 2006.

6-3. Environment

a) RoHS, Directive 2002/95/EC of the European Parliament and of the council of 27 January 2003

Ver. 0.5 Oct., 25, 2010 28 / 30

Product Specification

7. Precautions

Please pay attention to the followings when you use this TFT LCD module.

7-1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the Module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

7-2. Operating precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can not be operated its full characteristics perfectly.
- (8) A screw which is fastened up the steels should be a machine screw (if not, it causes metal foreign material and deal LCM a fatal blow)
- (9) Please do not set LCD on its edge.

Product Specification

7-3. Electrostatic discharge control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

7-4. Precautions for strong light exposure

Strong light exposure causes degradation of polarizer and color filter.

7-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

7-6. Handling precautions for protection film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.