Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät Institut für Informatik

Risk assessment in Machine Learning security - a framework for risk measurement

Masterthesis

for the attainment of the academic degree Master of Science (M. Sc.)

submitted by:	Jan Schröder
born on:	03.03.1996
born in:	Lemgo
Surveyor:	Martin Schneider Prof. Dr. Holger Schlingloff
submitted on:	defended on:

Contents

1	Intr	oduction	2
	1.1	Motivation for this thesis	2
	1.2	Goals of this present thesis	
2	Rela	ited Work	3
	2.1	ISO/IEC 27004:2009	3
	2.2	Approaches from Jakub Breier et. al and Paul Schwerdtner et. al	3
	2.3	Security risks in context of Machine Learning	4
	2.4	Risk assessment in context of Machine Learning	4
	2.5	Adversarial-Robustness-Toolbox	4
	2.6	Support-Vector-Machine	4
3	The	conceptual framework	6
	3.1	Risk indicators	6
	3.2	Poisoning attacks especially backdoor attacks	6
	3.3	Finding attackers effort by objective properties	6
4	The	technical framework	7
5	Eva	uation	8

Abstract

Acknowledgements

1 Introduction

Machine Learning (ML) is a constantly growing field and is essential for many innovative applications such as highly-automated and autonomous driving. Resulting from this, there is an increased need to maintain security. This thesis concentrates on risk measuring in context of ISO 27001 which will be discussed in 2. Risk measuring is a part of risk assessment to help where investments are needed to defend a system against attackers.

This thesis explains and discuss' a conceptual and technical framework to measure risks which is called Risk-Measurement-Framework (RMF).

1.1 Motivation for this thesis

1.2 Goals of this present thesis

2 Related Work

This chapter presents the relevant background knowledge and show approaches from other scientific paper.

2.1 ISO/IEC 27004:2009

This present thesis based the requirements of Risk measurement of ISO 27004, among other things. ISO 27004 is a international security standard from the ISO 27000 [5] family which guides on continious basis evaluation methods. The present ISO can be related with ISO 27001 or used as a standalone standard. In ISO 27001 it is declared as a requirement where the effectiveness must be measured of a Information Security Management System [1]. The ISO 27004 standard specifies what to be measured, when the measurement is needed and types of measurement [4]. Barabanov et al. [1] and Tarnes [10] describe in their works the different properties of ISO/IEC 27004:2009 for Risk measurement. Tarnes shows the information security measurement model which is shown in Figure 1.

Figure 1: The information security measurement model [10]

For this thesis the objects to be measured and the measurement are the important parts of the information security measurement model. The measurement method is the SMF which measure based on different properties that are derived from risk indicators that will be discussed in Subsection 3.1. The attributes in Figure 1 are the properties in the SMF.

2.2 Approaches from Jakub Breier et. al and Paul Schwerdtner et. al

This present thesis is divided into two approaches. Jakub Breier et al. [2] propose in their paper different proposals to measure risks with different aspects. Paul Schwerdtner et al. [9] is the second approach of this thesis.

2.3 Security risks in context of Machine Learning

Xiao et al. [11] evaluate the security risks in deep learning for common frameworks for example TensorFlow. Xiao et al. uses the framework sample applications along the frameworks. One statement of Xiao et. al is that the named frameworks TensorFlow, Caffe and Torch are implemented with many lines of code which make them vulnerable for many security vulnerabilities for example heap overflow or integer overflow. Xiao et. al work is only in context of deep learning e.g. only for neural networks.

2.4 Risk assessment in context of Machine Learning

Paul Schwerdtner et al. [9] present in their work a framework to evaluate ML model by input corrupted data. This thesis discuss this paper as an approach to estimate where the SMF could be used for.

2.5 Adversarial-Robustness-Toolbox

For this thesis the technical framework Adversarial-Robustness-Toolbox (ART) [7] is a main component. Nicolae et al. [6] evaluate in their work the technical framework ART. ART is a Python library that supports several ML frameworks for example TensorFlow and PyTorch to increase the defense of ML models. ART support 39 attacks and 29 defense' functions. This thesis only focuses on the attack functions for poisoning attacks which will be discussed in Subsection3.2 more detailed. The backdoor attacks in the technical framework ART are introduced by Gu et al. [3].

Backdoor Attacks

Due to the rising amount of training data, human supervision to check trustworthiness is less possible. That exposes vulnerabilites in training datasets like backdoors. Backdoor attacks can cause far- reaching consequences for example bypass critical authentication. In [8] Salem et al. introduces dynamic backdoors to trigger (a secret pattern of neighboring pixels) random patterns and locations to reduce the efficacy on identifying backdoors. Salem et al. discuss in their work three backdoors, Random Backdoor, Backdoor Generating Network and Conditional Backdoor Generating Network. Gu et al. show in their paper different backdoor attacks and do a case study with a traffic sign detection attack. The evaluated backdoors are a single pixel backdoor and a pattern backdoor. The single pixel backdoor changes a pixel to a bright pixel and the pattern backdoor adds a pattern of bright pixels in an image. The implemented attacks from Gu et al. are single target attack and an all-to-all attack.

2.6 Support-Vector-Machine

Support-Vector-Machine (SVM) is a supervised ML algorithm which classifies a set of objects (splitted in two groups) between a hyperplane in an *N-dimensional* coordinate system. The goal is to find the maximum distance between the objects in both classes.

As the name SVM says, this ML algorithm uses Support Vectors. That are the objects close to the hyperplane. The most maximized margin between the sets of objects is the best hyperplane. When the set of objects are more complex the SVM needs a higher dimensional hyperplane. The following Figure ... and Figure ... show an example of a two and a three dimensional hyperplane.

Hyperplane

Support Vector

Hinge loss

The kernel trick

3 The conceptual framework

- 3.1 Risk indicators
- 3.2 Poisoning attacks especially backdoor attacks
- 3.3 Finding attackers effort by objective properties

4 The technical framework

Evaluation

Test

References

- [1] Rostyslav Barabanov, Stewart Kowalski, and Louise Yngström. Information security metrics: State of the art: State of the art. 2011.
- [2] Jakub Breier, Adrian Baldwin, Helen Balinsky, and Yang Liu. Risk management framework for machine learning security. *CoRR*, abs/2012.04884, 2020.
- [3] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. *CoRR*, abs/1708.06733, 2017.
- [4] Kristoffer Lundholm, Jonas Hallberg, and Helena Granlund. Design and use of information security metrics. FOI, Swedish Def. Res. Agency, p. ISSN, pages 1650–1942, 2011.
- [5] Ines Meriah and Latifa Ben Arfa Rabai. Comparative study of ontologies based ISO 27000 series security standards. In Elhadi M. Shakshuki, Ansar-Ul-Haque Yasar, and Haroon Malik, editors, The 10th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2019) / The 9th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2019) / Affiliated Workshops, Coimbra, Portugal, November 4-7, 2019, volume 160 of Procedia Computer Science, pages 85–92. Elsevier, 2019.
- [6] Maria-Irina Nicolae, Mathieu Sinn, Tran Ngoc Minh, Ambrish Rawat, Martin Wistuba, Valentina Zantedeschi, Ian M. Molloy, and Benjamin Edwards. Adversarial robustness toolbox v1.0.0. *CoRR*, abs/1807.01069, 2019.
- [7] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. Adversarial robustness toolbox v1.2.0. *CoRR*, 1807.01069, 2018.
- [8] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks against machine learning models. *CoRR*, abs/2003.03675, 2020.
- [9] Paul Schwerdtner, Florens Greßner, Nikhil Kapoor, Felix Assion, René Sass, Wiebke Günther, Fabian Hüger, and Peter Schlicht. Risk assessment for machine learning models. CoRR, abs/2011.04328, 2020.
- [10] Marte Tarnes. Information security metrics: An empirical study of current practice. Specialization Project, Trondheim, 17th December, 2012.
- [11] Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu. Security risks in deep learning implementations. In 2018 IEEE Security and Privacy Workshops, SP Workshops 2018, San Francisco, CA, USA, May 24, 2018, pages 123–128. IEEE Computer Society, 2018.

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen, die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt, dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw. Täuschung eingeleitet wird.

Berlin, den December 16, 2021	