Vinh Tran

(310) 706 - 1208 Lawndale, CA - 90260 vinh.tran02@student.csulb.edu

vinh.tran02@student.csulb.edu GitHub: vinh-c-tran

EDUCATION

Master of Science in Computational Physics

○ California State University - Long Beach - GPA: 4.0/4.0

August 2020 - Current

Bachelor of Arts in Physics

○ Harvard University, Cambridge, MA - GPA: 3.5/4.0

August 2015 - May 2019

SKILLS

Density Functional Exposure to DFT calculations: ground state electronic structure, structural and surface relaxation,

Theory and phonon/perturbative calculations with Quantum Espresso with workflow automation using

Python and structure building/visualization using Atomic Simulation Environment (ASE)

Coding Comfortability with Python 3 as applied to scientific computing and data science as used in course

work and research especially with standard libraries: Numpy, Scipy, Pandas, Matplotlib, Jupyter notebook. Experience with miscellaneous languages through prior coursework: LaTeX, Mathe-

matica, Matlab, Fortran 90

Numerical Multivariable Root Finding and Optimization, Mathematical Modeling, Curve Fitting, Data Analysis

Hands On Exposure to working in a laboratory environment via laboratory courses including working with

equipment such as oscilloscopes, multimeters, and PPMS as well as automation of data collection

Communication Effective and succinct scientific writing documenting current progress/results

EXPERIENCE

Graduate Research Assistant in Astrophysics *CSULB*

December 2020 — Present

Long Beach, CA

- Collaborated on a research project with Dr. Prashanth Jaikumar that investigated g-mode stellar oscillations as a possible probe of the problem of neutron star core composition applied to the specific case of Hyperonic matter.
- Used computational physics methods in Python including: non-linear system of equations solvers, numerical differentiation, finite element methods, data analysis and visualization, and symbolic mathematical manipulation using SymPy.
- Wrote and consolidated results in presentable form for progress and communication via Jupyter notebooks and LaTeX.
- Extensively used standard python packages: NumPy, Scipy, Pandas, Matplotlib, and SymPy

Graduate Teaching Assistant *CSULB*

December 2020 - Present

Long Beach, CA

- Graduate teaching assistant in physics courses including: Graduate Quantum Mechanics I (Fall 2021), Graduate Quantum Mechanics II and Graduate Electrodynamics (Spring 2022).
- Lab teaching assistant for undergraduate physics courses: Physics 100B: General Physics II (Spring 2021).
- Responsible for educating graduate and undergraduate students in resuscitation and office hours, provided graded feedback for homework and exams, and solved and wrote complete solutions to problem sets in LaTeX.

Nanoscale Electronics Laboratory CSULB

August 2021 - December 2021

Long Beach, CA

- Developed hands on skills in laboratory methods including automating laboratory measurements via Python/LabView.
- Fabricated a graphene field effect transistor via mechanical exfoliation of graphite onto doped Silicon substrate and subsequent photolithography, gold deposition, and lift off. Measured resistivity as a function of back gate voltage and collected and analyzed data in Python using least-squared regression and wrote up results in Jupyter notebook and LaTeX.
- Wired a gold-silicon wafer to form a Schottky diode and performed measurements current as a function of temperature and applied voltage in a PPMS automated via LabView code which interfaced with laboratory equipment including power sources, multimeters, and PPMS. Analyzed resulting data in Python using curve fitting and 3D plotting for visualization.

ACTIVITIES/AWARDS

Graduate Student Research Presentation at American Physical Society (APS) Far West annual meeting

November 2021

o Awarded Kennedy Reed Award for Best Theoretical Research by a Graduate Student

CSULB CNSM - Google Summer Assistantship

May 2021 - August 2021

o Awarded a sizeable summer research grant for proposed project investigating neutron star oscillations