Lezione 9 - Database

Contenuti

- 1. Introduzione
 - Basi di dati
 - Modello relazionale
- 2. Entità
 - Modello Entità-Relazione
 - Istanze
 - Attributi
 - Attributi chiave
 - Chiavi artificiali
 - Chiavi esterne
 - Esempio di diagramma E-R (schema concettuale)
- 3. Schema logico
 - Realizzazione dello schema logico
 - Schema logico del database ospedaliero

Introduzione

Basi di dati

Nelle applicazioni informatiche sono presenti informazioni che è necessario memorizzare in modo permanente per renderle utilizzabili per elaborazioni. Inoltre, quando molti utenti lavorano su un insieme di dati, è necessario avere una sola copia dei dati, sempre aggiornata, che consenta l'accesso simultaneo a più utenti. Questo compito è svolto dai **database** (basi di dati).

Le basi di dati sono raccolte di dati progettati in modo tale da poter essere utilizzati in maniera ottimizzata da diverse applicazioni e diversi utenti.

Il sistema che gestisce i dati e la loro organizzazione è detto **DBMS** (DataBase Management System).

Un DBMS deve:

- gestire grandi quantità di dati, senza essere un "collo di bottiglia";
- garantire la condivisione dei dati, ad esempio coordinando gli accessi;
- garantire la persistenza dei dati e la loro integrità, controllando gli accessi;
- avere un'interfaccia grafica per l'amministrazione dei dati.

Modello relazionale

Il modello maggiormente utilizzato per rappresentare i dati è il modello relazionale, introdotto da E.Codd nel 1970, che si realizza mediante **tabelle**.

Le colonne delle tabelle rappresentano **campi** o proprietà, le righe rappresentano i diversi **record**.

Nr. fatt.	Data	Nome	Cognome	Nr. cliente	Via	Nr. civico	CAP	Città	Nr. pos.	Articolo	Nr. Articolo	Quantità	Prezzo in €
123	29.01.2018	Gero nimo	Scatandro	11	Piazza Roma	1	00188	Roma	1	Monitor	2-0023-D	10	200
123	29.01.2018	Gero nimo	Scatandro	11	Piazza Roma	1	00188	Roma	2	Tappetino per il mouse	4-0023-D	12	0,50
123	29.01.2018	Gero nimo	Scatandro	11	Piazza Roma	1	00188	Roma	3	Sedia da ufficio	5-0023-D	1	120
124	30.01.2018	Gioia	Rinace	12	Via Roma	2	00188	Roma	1	Computer portatile	1-0023-D	2	1200
124	30.01.2018	Gioia	Rinace	12	Via Roma	2	00188	Roma	2	Cuffie	3-0023-D	2	75

Entità

Modello Entità-Relazione

Il modello E-R permette di modellare graficamente il mondo reale sotto forma di **entità** e **relazioni** tra esse.

Le entità sono gli oggetti principali su cui vengono raccolte le informazioni. Ogni entità rappresenta graficamente un oggetto, concreto o astratto, del mondo reale.

Ogni entità avrà un nome, che permette di identificare ogni **istanza** (ogni "esemplare") di quella classe.

Le relazioni tra entità verranno rappresentate mediante linee che collegano le entità.

Istanze

Ogni istanza di una certa entità è caratterizzato da un insieme di valori che descrivono le sue proprietà.

Tutte le istanze di una certa entità hanno gli stessi attributi, ma con valori diversi per poterle distinguere.

Ad esempio, per l'entità "Studente", gli attributi possono essere "Nome", "Cognome", "Codice fiscale", "Data di nascita", "Sezione", ecc.

Attributi

I tipi di attributi sono mostrati in figura.

TIPO	DESCRIZIONE	ESEMPI					
Semplice (atomico)	Non è ulteriormente scomponibile, elementare.	Progressivo, Cognome, Età, Peso					
Composto	È costituito da un insieme di componenti.	Telefono, Indirizzo, Data					
Opzionale (parziale)	È possibile la sua assenza, cioè potrebbe non esistere in qualche istanza.	Telefono, Coniugato, Interesse					
Obbligatorio (totale)	È l'opposto di opzionale e deve sempre essere presente un suo valore in ogni istanza.	Codice_Fiscale, Cognome, Data_Nascita					
Costante (statico)	I valori non possono essere cambiati per tutto il "ciclo di vita" dell'attributo.	Codice_Fiscale, Cognome, Nome					
Modificabile (dinamico)	È l'opposto di costante, cioè i suoi valori possono venire modificati.	Età, Peso, Indirizzo					
Calcolato	Il valore è calcolato con un algoritmo.	Stipendio, Importo_Fattura, Età					
Esplicito	È l'opposto di calcolato.	Data_Nascita, Prezzo, Peso					
Unico (univoco)	Tutte le istanze della classe hanno valore diverso.	Codice_Fiscale, Partita_IVA					
Generico (multivalore)	È l'opposto di unico.	Materie_Insegnate, Lingue_Parlate, Colore					
Temporale	Alcuni attributi hanno una validità temporale, cioè dopo un certo tempo non hanno più significatività se non per l'archivio storico.	Stipendio, Giacenza, Prezzo, Mansione, Scadenza					

Ad esempio, per l'entità "Persona":

- Nome stringa(20), obbligatorio, non NULL
- Cognome stringa(20), obbligatorio, non NULL

- **CodFiscale** stringa(16)
- TitoloStudio stringa(50)
- DataNascita giorno mese anno
- Peso numerico
- AnniServizio numerico

Attributi chiave

Attributo fondamentale di ogni istanza è il suo identificatore univoco, detto chiave primaria.

Gli attributi chiave sono degli identificatori univoci (ID) di un'istanza di un'entità.

Ogni attributo chiave (primary key):

- deve essere obbligatorio, unico, esplicito (vedi tabella precedente);
- non deve essere modificabile;
- non può avere valore NULL.

Nell'esempio precedente, la chiave primaria potrebbe essere il codice fiscale.

Chiavi artificiali

Una chiave artificiale è un attributo che assegna un codice univoco ad ogni istanza.

Esempio: la numerazione sequenziale delle tessere rilasciate da una associazione.

La maggior parte dei DBMS ammette il tipo contatore: gli attributi definiti come contatore si autoincrementano di 1 per ogni record che viene aggiunto.

Alle chiavi artificiali viene solitamente dato un nome che inizia con ID_ (ID_Studente, ID_Auto).

Chiavi esterne

Le chiavi esterne (*foreign keys*) sono utilizzate per **realizzare i collegamenti** tra entità, risolvendo quindi i collegamenti uno-a-molti.

Se le chiavi esterne sono chiavi artificiali, vengono nominate in modo simile a quanto si fa per le chiavi primarie, con il prefisso id_(minuscolo).

Esempio di diagramma E-R (schema concettuale)

Schema logico

Realizzazione dello schema logico

Il modello (o schema) logico viene utilizzato come input per la progettazione vera e propria del database: deve avere quindi il massimo livello di dettaglio e precisione possibile.

Deve contenere tutte le informazioni necessarie per definire le tabelle, riportando la descrizione puntuale e completa del significato di ogni dato memorizzato.

Lo schema logico trasforma le informazioni del modello concettuale in un formato efficiente.

Ad esempio, se nello schema concettuale abbiamo:

nello schema logico otteniamo:

```
Clienti (ID_Cliente(pk), Ragione_Sociale, Indirizzo, Partita_IVA)
Fatture (Numero(pk), Data, Importo, id_Cliente(fk))
```

Schema logico del database ospedaliero

- Medico: ID Medico (pk), Cognome Med, Nome Med, DataN Med, Telefono Med, NomeReparto (fk);
- Paziente: ID_Paziente (pk), Cognome_Paz, Nome_Paz, DataN_Paz, LuogoN_Paz, Sesso_Paz, CF_Paz;
 Reparto: Nome (pk), Capienza, Primario (fk);
- Ricovero: id_Paziente (pk), NomeReparto (pk), DataInizio, DataFine;
- Visita: ID Visita (pk), Data, Orario, Ambulatorio, Esito, id Paziente (fk), id Medico (fk);
- EsameLab: ID Esame (pk), Tipo, Data, Orario, Esito, id Paziente (fk), id Tecnico (fk);
- TecnicoLab: ID Tecnico (pk), Cognome Tec, Nome Tec, DataN Tec, Telefono Tec.