LISTA DE EXERCÍCIOS

3.2 - Testes de hipóteses para médias – Lista β

- 1. Para a comparação entre as médias de duas populações pode-se utilizar a estatística T, onde a variância utilizada é a variância combinada das duas amostras. Indique as pressuposições que deverão ser válidas para que essa metodologia seja adequada.
- 2. Uma cadeia de lojas recebeu um novo modelo de aparelho som. Para determinar um processo adequado de promoção dos novos aparelhos, estudou-se a sua performance em termos de potência. O fabricante especificou que, em média, os aparelhos atingem 65 watts a 8 ohms. Obtida uma amostra de 8 aparelhos, verificou-se que a potência média foi de 63,1 watts com desvio padrão de 1,7 watts. Verifique se a informação do fabricante está condizente com os resultados amostrais, utilizando nível de significância de 5%.
- **3.** Sabe-se que certa raça de bovinos em confinamento, alimentada com uma ração padrão, tem um aumento médio de peso igual a 60 kg durante os três primeiros meses de idade. Um lote de 10 novilhos, dessa mesma raça, recebeu um novo tipo de alimentação com novos concentrados. Mantendo-se as mesmas condições de manejo, os aumentos de peso foram

55; 62; 54; 58; 65; 65; 60; 62; 59; 67.

Fixando o nível de significância em 1%, conclua sobre o novo tipo de alimentação. Estime a média por intervalo e relacione o resultado com o teste de hipótese.

- **4.** Diante de uma equipe de fiscais, a nutricionista responsável pelo cardápio de um restaurante declarou que o peso médio de uma determinada vitamina por bandeja de refeição é de 5,5 g. Foi retirada uma amostra de 25 bandejas do fornecimento diário de refeições desse restaurante, encontrando-se uma média de 5,2 g da vitamina e um desvio padrão de 1,2 g. Verifique a veracidade da informação da nutricionista, utilizando nível de significância de 5%.
- **5.** O Instituto de Nutrição da América Central e Panamá fez um estudo intensivo de resultados de dietas publicados em revistas científicas. Uma dieta aplicada a 15 pessoas produziu os seguintes níveis de colesterol (em mg/l):

204; 108; 140; 152; 158; 129; 175; 146; 157; 174; 192; 194; 144; 152; 135.

Sabendo-se que o nível médio normal de colesterol é de 190 mg/l, verifique se a redução no teor médio de colesterol das pessoas submetidas a essa dieta foi significativa, com α =0,05.

6. Para testar a performance em termos de consumo de combustível de um novo carro compacto, o fabricante sorteou seis motoristas profissionais que dirigiram o automóvel de Pelotas a Porto Alegre. O consumo do carro (em litros) para cada um dos seis motoristas foi de

27,2; 29,3; 31,5; 28,7; 30,2; 29,6.

Baseado nesses dados e utilizando nível de significância de 5%, o fabricante pode indicar que o consumo médio do novo carro é de 30 litros para viagens nesse percurso?

7. Vinte observações de um tipo de matriz indicaram um tempo de vida média de 217 minutos desvio padrão de 20 minutos. Teste a hipótese de que o tempo de vida é inferior a 250 minutos, conforme atestam alguns engenheiros. Use $\alpha = 0.05$.

8. Os dados a seguir representam o ganho obtido em um processo químico. Use $\alpha = 0.05$ e teste a hipótese de que nas condições atuais o ganho seja superior a 1,5.

- **9.** Dois tipos de combustíveis estão sendo testados. A hipótese é que eles tenham o mesmo desempenho. Teste essa hipótese, sabendo que os resultados de testes feitos com 10 automóveis usando cada tipo combustível indicaram $s_1 = 0.63 \, \text{km/l}$ e $s_2 = 0.88 \, \text{km/l}$ e $\overline{x}_1 = 13.3 \, \text{km/l}$ e $\overline{x}_2 = 13.9 \, \text{km/l}$. (Suponha $\sigma_1^2 = \sigma_2^2$ e use $\alpha = 0.05$).
- **10.** Para investigar se o treinamento é ou não transferido pelo ácido nucléico, 10 ratos foram treinados em discriminar se havia luz ou escuridão. Posteriormente esses ratos foram mortos, o ácido nucléico extraído e injetados em 10 ratos. Simultaneamente o ácido nucléico de 10 ratos não treinados foram injetados em outros 10. Os 20 ratos foram observados durante um período e o número de erros relativos a cada rato está na tabela abaixo.

Treinado	7	9	6	11	13	8	7	13	12	9
Não treinado	12	8	9	13	14	9	8	10	7	15

Verifique se, em média, os ratos treinados erram tanto quanto os ratos não treinados. (Suponha $\sigma_1^2 = \sigma_2^2$ e use $\alpha = 0.05$).

11. Em uma indústria química, os engenheiros desejam saber se o alongamento (cm) de um composto de borracha permanece inalterado ao passar por uma máquina extrusora. Como o alongamento do composto depende do lote de matéria-prima usado na sua confecção, os dados foram coletados aos pares. A que conclusão se pode chegar a partir desses dados, com $\alpha = 0.05$?

Lote	1	2	3	4	5	6	7	8	9	10
Antes	360	370	380	345	365	380	390	395	385	410
Depois	360	365	355	340	350	370	390	375	375	395

12. Os dados abaixo dão os acertos obtidos por oito soldados num experimento destinado a determinar se a precisão do tiro é afetada pela maneira de dispor os olhos: com o olho direito aberto ou com o olho esquerdo aberto

Soldado	1	2	3	4	5	6	7	8
Direito	44	39	33	56	43	56	47	58
Esquerdo	40	37	28	53	48	51	45	60

Que conclusão você poderia tirar, com $\alpha = 0.05$?

- **13.** Cinco medidas do conteúdo de alcatrão em um cigarro X acusaram: 14,5, 14,2, 14,4, 14,8, e 14,1 miligramas por cigarro. Este conjunto de cinco valores tem média 14,4 e desvio padrão 0,274. O leitor pretende testar a hipótese nula H_0 : $\mu = 14,1$ (conforme declarado no maço) ao nível de 0,05 de significância.
- a) H_0 seria aceita, contra a alternativa H_A : $\mu \neq 14,1$?
- **b)** H_0 seria aceita, contra a alternativa H_A : μ < 14,1?
- c) H_0 seria aceita, contra a alternativa H_A : $\mu > 14,1$?
- d) Que suposições são necessárias para fazer o teste de hipóteses?

- **14.** Suponha que um fabricante sem escrúpulos deseje uma "prova científica" de que um aditivo químico totalmente inócuo melhora o rendimento.
- a) Se um grupo de pesquisa analisa esse aditivo com um experimento, qual é a probabilidade de chegar a um "resultado significativo" com α = 0,05 (para promover o aditivo com "afirmações científicas") mesmo que o aditivo seja totalmente inócuo?
- **b)** Se dois grupos independentes de pesquisa analisam o aditivo, qual é a probabilidade de que pelo menos um deles chegue a um "resultado significativo", mesmo que o aditivo seja totalmente inócuo?
- c) Se 32 grupos independentes de pesquisa analisam o aditivo, qual é a probabilidade de que pelo menos um deles chegue a um "resultado significativo", mesmo que o aditivo seja totalmente inócuo?
- **15.** Suponha que um farmacêutico pretenda achar um novo unguento para reduzir inchação. Para tanto, ele fabrica 20 medicamentos diferentes e testa cada um deles, ao nível de 0,10 de significância, quanto a finalidade em vista. Qual a probabilidade de ao menos um deles "se revelar" eficaz mesmo que todos sejam totalmente inócuos?
- **16.** Um médico está estudando o crescimento de dois tipos de bactérias. Como pode haver um efeito significativo do substrato, os dois tipos de bactérias foram cultivados em cada uma das oito amostras de substrato. Use α = 0,01 e teste a hipótese de que a bactéria 1 cresce mais que a bactéria 2.

Substrato	1	2	3	4	5	6	7	8
Bactéria 1	3,0	3,2	2,7	2,5	3,8	4,3	3,5	4,8
Bactéria 2	3,2	3,1	2,4	2,1	3,2	3,7	3,2	4,0

RESPOSTAS

- 1. Pressupõe-se que a variável em estudo tem distribuição normal e que as amostras retiradas das populações são independentes nos casos em que as variâncias Var1 e Var2 são conhecidas, mas supostas iguais ou ainda desconhecidas e desiguais.
- **2.** $t_{0,025} = 2,365$ $t_c = -3,161$ Rejeita-se H_0 .
- **3.** $t_{0,005} = 3,250$ $t_c = 0,5121$ Não se rejeita H_0 . Intervalo para a média - (56,26; 65,14).
 - Como o valor 60 está contido no intervalo, chega-se a mesma conclusão do teste.
- **4.** $t_{0,025} = 2,064$ $t_c = -1,25$ Não se rejeita H_0 .
- 5. $t_{0.05} =$ -1,761 $t_c =$ -4,803 (teste unilateral) Rejeita-se H_0 .
- **6.** $t_{0,025} = 2,571$ $t_c = -0,989$ Não se rejeita H_0 .
- 7. $t_{0,25} = -1,729$ $t_c = -7,379$ (teste unilateral) Rejeita-se H_0 .
- **8.** $t_{0.25} = 1,753$ $t_c = 2,909$ (teste unilateral)
- **9.** $t_{0,025} = -2,101$ $t_c = -1,753$ Não se rejeita H_0 .
- **10.** $t_{0,025} = 2,101$ $t_c = -0,829$ Não se rejeita H_0 .
- **11.** $t_{0,025} = 2,262$ $t_c = 3,9925$ Rejeita se H_0 . (TH para amostras pareadas)
- **12.** $t_{0,025} = 2,365$ $t_c = 7,03$ Rejeita se H_0 . (TH para amostras pareadas)
- **13. a)** $t_{0,025} = 2,776 \Rightarrow H_0$ é aceita, a média não é significativamente diferente de 14,1.
 - **b)** $t_{0.05} = -2,132 \Rightarrow H_0$ é aceita, não é possível afirmar que a média é menor que 14,1.
 - c) $t_{0.05} = 2.132 \Rightarrow H_0$ é rejeitada, a média deve ser maior que 14,1.
 - d) A variável em estudo tem distribuição normal
- **14. a)** 5% = P (erro Tipo I)
 - **b)** 0,0975
 - **c)** 0,8063
- **15.** 0,8784
- **16.** $t_{0,005} = 2,998$ $t_{calc} = 0,9534$ (teste unilateral) Não se rejeita H_0 .