MAT1100 - Grublegruppe Oppgavesett 3

Jørgen O. Lye

Oppgaver fra Kalkulus

4.3.5

Disse ligner på oppgave 4.3.4.

5.1.13

Denne er ikke på langt nær så ille som den kanskje ser ut.

Limelemma

Dette er et nyttig resultat for kontinuerlige funksjoner. En ganske abstrakt formulering er som følger. Anta $f:U\to\mathbb{R}$ og $g:V\to\mathbb{R}$ er 2 kontinuerlige funksjoner definert på åpne delmengder (intervaller eller unioner av intervaller) som er slik at f(x)=g(x) for alle $x\in U\cap V$. Dvs funksjonene sammenfaller når de begge er definert. Da er

$$F(x) = \begin{cases} f(x) & \text{for } x \in U \\ g(x) & \text{for } x \in V \end{cases}$$

en kontinurlig funksjon fra $F:U\cup V\to\mathbb{R}$. Hvis dere vil kan dere prøve å bevise dette. Hvis ikke, bevis en lettere, relatert variant som sier dette:

Enklere tilfelle

La $F(x):[a,b]\to\mathbb{R}$ være gitt ved

$$F(x) = \begin{cases} f(x) & \text{for } x \in [a, c) \\ g(x) & \text{for } x \in [c, b] \end{cases}$$

hvor f og g er kontinuerlige funksjoner.

Vis at F er kontinuerlig på [a, b] hvis og bare hvis $\lim_{x\to c} f(x) = g(c)$.

Anvendelse

$$F(x) = \begin{cases} \frac{\sin(x)}{x} & \text{for } x \in [-1, 0) \\ 1 & \text{for } x \in [0, 1] \end{cases}$$

Bruk resultatet over til å vise at at $F:[-1,1]\to\mathbb{R}$ er kontinuerlig. Analogt, bruk resultatet til å vise at

$$F(x) = \begin{cases} \frac{1}{x} & \text{for } x \in [-1, 0) \\ a & \text{for } x \in [0, 1] \end{cases}$$

ikke er kontinuerlig uansett valg av $a \in \mathbb{R}$.