百校联盟 2020 届 TOP300 七月尖子生联考 文科数学

注意事项:

- 2. 答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.
- 3. 全部答案写在答题卡上,写在本试卷上无效.
- 4. 本试卷满分 150 分,测试时间 120 分钟.
- 5. 考试范围:必修1,选修1-1第1章、第3章.

第 | 卷

- 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.
- (1)已知集合 $A = \{1, 2, 4\}$,集合 $B = \{x | 2 x < 1\}$,则 $A \cap B =$

 $(A)\{1,4\}$

(B) $\{2,4\}$

 $(C)\{1,2\}$

(D){4}

- (2)已知函数 $f(x) = e^x e^{-x}$,则下列说法正确的是
 - (A)函数 f(x)是偶函数,且在 R 上是减函数
- (B)函数 f(x)是偶函数,且在 R 上是增函数
- (C)函数 f(x)是奇函数,且在 R 上是减函数
- (D)函数 f(x)是奇函数,且在 R 上是增函数
- (3)函数 $y = \frac{1}{\lg(x-2)} + \sqrt{16-x^2}$ 的定义域为

(A)(2,3)

(B)(3.4]

(C)(2,4]

 $(D)(2,3) \cup (3,4]$

(4)已知命题 $p: \forall x \in \mathbb{R}, x^2 > x - 1$;命题 $q: \exists x_0 \in (0, +\infty), \ln x_0 = x_0 - 1$,下列命题为真命题的是

 $(A) h \wedge a$

(B) $p \land \neg q$

(C) $\neg p \land q$

(D) $\neg p \land \neg q$

(5)已知集合 $A = \{x \mid x^2 + 2ax + 2a \le 0\}$,若 A 中只有一个元素,则实数 a 的值为

(A)(

- (B)0 或-2
- (C)0 或 2

(D)2

(6)函数 $f(x) = (3x^2 + 4x)e^x$ 的图象大致是

(B)

(7)函数 $f(x) = \log_2(4^x + 1) - x$ 的最小值为

(A)3

(B)2

(C)1

(D)0

(8)三个数 $a=2020^{\frac{1}{2019}},b=(\frac{1}{2019})^{2020},c=\log_{2020}\frac{1}{2019}$ 的大小顺序为

(A)b < c < a

(B) $b \le a \le c$

(C)c < a < b

(D)c < b < a

(9)设命题 p:函数 $f(x) = -\frac{1}{2}x^2 + 2ax - \ln x$ 存在极值,q:函数 $g(x) = \log_a x (a > 0$,且 $a \neq 1$)在 $(0, +\infty)$ 上

是增函数,则p是q的

(A)充要条件

(B)充分而不必要条件

(C)必要而不充分条件

(D)既不充分也不必要条件

(10)已知函数 $f(x)$ =	$=-x^{2}(x^{2}+ax+b)$,且俩足	f(1-x) = f(1+x), if f(x)	x)的東入但是
(A)-2	(B)-1	(C)0	(D)1
(11)已知定义在 R 上	的偶函数 $y=f(x)$ 的导函数	数为 $f'(x)$,函数 $f(x)$ 满足:	:当 $x > 0$ 时, $x \cdot f'(x) + f(x) >$
0, 且 f(1) = 2.	J不等式 $f(x) < \frac{2}{ x }$ 的解集	是	
(A)(-1,1)		$(B)(-\infty,1)$	
$(C)(-1,0) \cup (0,1)$		$(D)(-\infty,-1)\bigcup(1,+\infty)$	
(12)已知函数 $f(x)$ =	$=ax^2+x-xe^x$,当 $x\geqslant 0$ 时,	恒有 $f(x) \leq 0$,则实数 a 的	取值范围为
$(A)[0,+\infty)$	$(B)[1,+\infty)$	$(C)(-\infty,0]$	$(D)(-\infty,1]$
		第Ⅱ卷	
二、填空题:本大题共	4 小题,每小题 5 分.		
(13)设集合 $A = \{1, a\}$	-2,a},若 3∈A,则实数 a=	=	
(14)已知命题 p:∃x	$a \in [-1,1], a^2x_0^2 + ax_0 - 2 = 0$	=0, 若命题 p 为真命题, 则 s	实数 a 的取值范围为
(15)已知函数 f(x)=	$= \begin{cases} -e^{x-1} - 2x, x \ge 0 \\ -e^{-x-1} + 2x, x < 0 \end{cases}$, 则满	足不等式 $f(x)+3>0$ 的实	数 x 的取值范围为
(16)已知函数 $f(x)$	$=3\ln x-x^2$,点A为函数	f(x)图象上一动点,则。	A 到直线 $y = x$ 距离的最小值
为			
三、解答题:解答应写	出文字说明、证明过程或演	算步骤.	
(17)(本小题满分10	分)		
已知集合 $A = \{x\}$	$ x^2 - (m+2)x + (1-m)(2)$	$(m+1) \le 0$, $(x - 1) \le 0$	$-2 \leqslant x \leqslant 4$.
(I)当 $m=1$ 时,	求 $A \cup B$;		
([])若 <i>B</i> ⊆ <i>A</i> ,求	实数 m 的取值范围.		

(18)(本小题满分 12 分)

已知命题 p:函数 $f(x) = \log_{\frac{1}{2}}(\frac{a}{x}+1)$ 在[-2,-1]上单调递增;命题 q:函数 $g(x) = -\frac{1}{3}x^3 + x^2 + ax$ 在 $[3,+\infty)$ 上单调递减.

- (I)若 q 是真命题,求实数 a 的取值范围;
- (Ⅱ)若p或q为真命题,p且q为假命题,求实数a的取值范围.

(19)(本小题满分 12 分)

已知函数 $f(x) = \log_{\frac{1}{4}}(2mx^2 - 3x + 8m)$.

- (I)当 m=1 时,求函数 f(x)在[$\frac{1}{2}$,2]上的值域;
- ([])若函数 f(x)在(4,+ ∞)上单调递减,求实数 m 的取值范围.

(20)(本小题满分 12 分)

已知函数 $f(x) = x(a-x) - \ln x(a \in \mathbf{R})$,若函数 f(x)在 $(0,+\infty)$ 上存在两个极值点 x_1,x_2 .

- (I)求实数 a 的取值范围;
- (II)证明: $f(x_1)+f(x_2)>3+\ln 2$.

(21)(本小题满分 12 分)

已知函数 $f(x) = ax^3 + (a+b)x^2 + 12bx(a>0)$ 为奇函数,且 f(x) 的极小值为-16. f'(x) 为函数 f(x) 的导函数.

- ([)求 a 和 b 的值;
- ($\|$)若关于x的方程 $f'(x)=2x^3+m$ 有三个不等的实数根,求实数m的取值范围.

(22)(本小题满分12分)

已知函数 $f(x) = a(x-1)e^x - \frac{x^2}{2}$.

- (I)若曲线 f(x)在点(1,f(1))处的切线方程为 2x+2y-1=0,求实数 a 的值;
- (Ⅱ)若函数 f(x)存在两个零点,求实数 a 的取值范围.

百校联盟 2020 届 TOP300 七月尖子生联考

文科数学

参考答案

本试卷防伪处为:

若A中只有一个元素,则实数a的值为 若 q 是真命题,求实数 a 的取值范围;

- 1. B 【解析】 $B = \{x \mid 2-x < 1\} = \{x \mid x > 1\}$,所以 $A \cap B = \{2, 4\}.$
- 2. D 【解析】因为 $f(x) = e^{x} e^{-x}$,则 $f(-x) = -(e^{x})$ $-e^{-x}$) = -f(x), 所以函数 f(x) 是奇函数, f(x) $=e^{x}-e^{-x}=e^{x}-\frac{1}{e^{x}}$,所以 f(x)在 **R** 上是增函数.
- x-2>0 3. D 【解析】由题意得 $\{\lg(x-2)\neq 0$,故所求函数的

定义域为(2,3) ∪(3,47.

- 4. A 【解析】令 $f(x) = x^2 (x-1) = (x \frac{1}{2})^2 + \frac{3}{4}$ >0,所以 p 为真命题; 当 $x_0 = 1$ 时, $\ln x_0 = x_0 - 1$, 故 q 为真命题。所以 $p \land q$ 为真命题.
- 5.C【解析】若 A 中只有一个元素,则只有一个实数 满足 $x^2+2ax+2a \le 0$,即抛物线 $y=x^2+2ax+2a$ 与x轴只有一个交点, $\therefore \Delta = 4a^2 - 8a = 0$. $\therefore a = 0$ 或 2.
- 6. A 【解析】由 f(x)的解析式知只有两个零点 $x=-\frac{4}{3}$ 与 x=0,排除 B、D;又 $f'(x)=(3x^2+10x+4)e^x$,由 f'(x)=0 根的情况知函数有两个极值点,排除 C.
- 7. C 【解析】 $f(x) = \log_2(4^x + 1) x = \log_2(4^x + 1) x$ $\log_2 2^x = \log_2 \frac{4^x + 1}{2^x}, \Leftrightarrow t = \frac{4^x + 1}{2^x} \text{ M} \ t = 2^x + \frac{1}{2^x} \geqslant 2,$ 所以 $\log_2 \frac{4^x+1}{2^x} \geqslant \log_2 2 = 1$,即函数 f(x)的最小值 为 1.
- 8. D 【解析】 $a = 2020^{\frac{1}{2019}} > 1, 0 < b = (\frac{1}{2019})^{2020} < 1,$ $c = \log_{2020} \frac{1}{2019} < 0$,所以 a > b > c.
- 9. A 【解析】p:函数 $f(x) = -\frac{1}{2}x^2 + 2ax \ln x$ 存在 极值,对函数 f(x)求导得 $f'(x) = -\frac{x^2 - 2ax + 1}{x}$.

因为 f(x)存在极值,所以 $f'(x) = -\frac{x^2 - 2ax + 1}{x}$ $(0,+\infty)$ 上有解,即 $\Delta=4a^2-4 \ge 0$, 显然当 $\Delta=0$ 时,f(x)无极值,不合题意,所以方程 $x^2-2ax+1$

=0 必有两个不等正根,所以 $\begin{cases} a > 0 \\ \Lambda = 4a^2 - 4 > 0 \end{cases}$,解得

a > 1. 函数 $g(x) = \log_a x$ 在 $(0, +\infty)$ 上是增函数, 则a>1. 故 $p \neq q$ 的充要条件.

- 10. C 【解析】: f(1-x) = f(1+x), : f(x) = $-x^2(x^2+ax+b)$ 的图像关于直线 x=1 对称,因 为 x=0 是 f(x)=0 的二重根,所以 x=2 也是方 程 f(x) = 0 的二重根,则 $f(x) = -x^2(x-2)^2$,所 以 $f(x) \leq 0$,所以 f(x)的最大值是 0.
- 11. C 【解析】当 x > 0 时, $x \cdot f'(x) + f(x) > 0$, 令 $F(x) = x \cdot f(x), \text{ M} F'(x) = x \cdot f'(x) + f(x) >$ 0,即当 x>0 时,F(x)单调递增. 又 f(x)为 R 上的偶函数, : F(x)为 R 上的奇函 数且 F(0) = 0,则当 x < 0 时,F(x)单调递增. f(1)=2,所以F(1)=2,∴F(-1)=-2,当x>0时,不等式 $f(x) < \frac{2}{|x|}$ 等价于 $x \cdot f(x) < 2$,即 F(x) < F(1), : 0 < x < 1, 当 x < 0 时, 不等式 $f(x) < \frac{2}{|x|}$ 等价于 $x \cdot f(x) > -2$,即 F(x) >F(-1), : -1 < x < 0, 综上, 不等式 $f(x) < \frac{2}{|x|}$

的解集为(-1,0) $\bigcup (0,1)$.

12. D 【解析】 $f(x) = x(ax+1-e^x)$. 令 g(x) = ax $e^{x}+1$, $\mathbb{N}|g'(x)=a-e^{x}$.

若 $a \le 1$,则当 $x \in (0, +\infty)$ 时,g'(x) < 0,g(x)为 减函数,而g(0)=0,

从而当 $x \ge 0$ 时, $g(x) \le 0$,即 $f(x) \le 0$,

若 a > 1,则当 $x \in (0, \ln a)$ 时,g'(x) > 0,

g(x)为增函数,而 g(0)=0,从而当 $x \in (0, \ln a)$ 时 g(x)>0,即 f(x)>0,不合题意.

综上可得,a 的取值范围为($-\infty$,1].

13.5 【解析】a-2=3,解得 a=5;当 a=3 时,a-2=1,不满足互异性,舍去.

- 14. $(-\infty, -1] \cup [1, +\infty)$ 【解析】当命题 p 为真命题,即方程 $a^2x^2 + ax 2 = 0$ 在[-1, 1]上有解,由 $a^2x^2 + ax 2 = 0$,得 (ax + 2)(ax 1) = 0,显然 $a \neq 0$ ∴ $x = -\frac{2}{a}$ 或 $x = \frac{1}{a}$, ∴ $x \in [-1, 1]$, 故 $|\frac{2}{a}|$ $\leqslant 1$ 或 $|\frac{1}{a}| \leqslant 1$, ∴ $|a| \geqslant 1$, 即实数 a 的取值范围为 $(-\infty, -1] \cup [1, +\infty)$.
- 15. (-1,1) 【解析】函数 f(x) 的定义域关于原点对称,:x>0 时,-x<0, $f(-x)=-e^{x-1}-2x=f(x)$,x<0 同理:f(-x)=f(x),... f(x) 为偶函数. 易知 f(x)在 $(0,+\infty)$ 上为减函数,且 $f(1)=-e^0-2=-3$,f(x)+3>0 即 f(x)>-3,即 f(x)>f(1),根据偶函数的性质知当 |x|<1 时,得-1<x<1.
- 16. $\sqrt{2}$ 【解析】 $f'(x) = \frac{3}{x} 2x$, (x > 0) 与直线 y = x 平行的切线斜率 $k = 1 = \frac{3}{x} 2x$, 解得 x = 1 或 $x = -\frac{3}{2}$ (含去),又 f(1) = -1,即切点(1,-1),则切点到直线 y = x 的距离为 $d = \frac{|1+1|}{\sqrt{2}} = \sqrt{2}$, A 到直线 y = x 距离的最小值为 $\sqrt{2}$.
- - $:B\subseteq A$, $::\begin{cases} 2m+1\leqslant -2\\ 1-m\geqslant 4 \end{cases}$,解得 $m\leqslant -3$, … 9 分 :m 的取值范围为 $(-\infty,-3]\cup[3,+\infty)$. ……
- 18.【解析】(I)当命题 q为真命题时,

函数 $g(x) = -\frac{1}{3}x^3 + x^2 + ax$ 在[3,+∞)上单调 递减,

所以 $g'(x) = -x^2 + 2x + a \le 0$ 在[3,+∞)上恒成立, 2 分 $g'(x) = -x^2 + 2x + a = -(x-1)^2 + 1 + a$ 所以 g'(x)在[3,+∞)上单调递减,故 $g'(3) \le 0$,解得 $a \le 3$,

所以 q 是真命题,实数 a 的取值范围为 $(-\infty,3]$. ····· 4 分 (II)命题 p 为真命题时,函数 $y = \log_{\frac{1}{2}}(\frac{a}{r} + 1)$ 在 $\lceil -2, -1 \rceil$ 上单调递增, $\stackrel{\centerdot}{\iota}_{0} < a < 1$. …… 6 分 因为p或q为真命题,p且q为假命题,所以p与 q 的真值相反. ······ 7 分 (i)当p真且q假时,有 $\begin{cases} 0 < a < 1 \\ a > 3 \end{cases}$ 此不等式无解. ……… (ii)当p假且q真时,有 $\begin{cases} a \leq 0 \text{ 或 } a \geq 1 \\ a \leq 3 \end{cases}$ 解得 $a \le 0$ 或 $1 \le a \le 3$, ………………… 11 分 综上可得,实数 a 的取值范围为 $(-\infty,0]$ U[1,3]. ····· 12 分 19.【解析】([]) 当 m=1 时, $f(x) = \log_{\frac{1}{2}}(2x^2 - 3x + 8)$, 此时函数 f(x)的定义域为 **R**; 因为函数 $y = 2x^2 - 3x + 8$ 的最小值为 $\frac{4 \times 2 \times 8 - 3^2}{8} = \frac{55}{8}$ 最大值为 $2\times2^2-3\times2+8=10$,故函数 f(x)在 $[\frac{1}{2},2]$ 上的值域为 $[\log_{\frac{1}{4}}10,\log_{\frac{1}{4}}\frac{55}{9}];$ …… 6分 (Ⅱ)因为函数 $y = \log_{\frac{1}{2}} x$ 在(0,+∞)上单调递减, 故 $g(x) = 2mx^2 - 3x + 8m$ 在 $(4, +\infty)$ 上单调递 增,则 $\left|\frac{3}{4m} \leqslant 4\right|$ 解得 $m \ge \frac{3}{10}$,综上所述,实数 m 的取值范围 20.【解析】(「) $f(x) = x(a-x) - \ln x = -x^2 + ax - \ln x$ 对函数 f(x)求导得 $f'(x) = -\frac{2x^2 - ax + 1}{x}$ ······ 1 分 函数 f(x)在(0,+ ∞)上存在两个极值点 x_1,x_2 , 所以 $f'(x) = -\frac{2x^2 - ax + 1}{x} = 0$ 在 $(0, +\infty)$ 上有

两个解,即方程 $2x^2 - ax + 1 = 0$ 必有两个不等正

根, ………………………………………… 3分

解得 $a > 2\sqrt{2}$,所以实数 a 的取值范围为
$(2\sqrt{2},+\infty)$
(II)由题意知 $f(x_1)+f(x_2)=a(x_1+x_2)-(x_1^2)$
$+x_2^2$) $-(\ln x_1 + \ln x_2)$
$= \frac{a^2}{2} - \frac{a^2}{4} + 1 - \ln \frac{1}{2} = \frac{a^2}{4} + 1 + \ln 2, \dots 9 $ $\%$
由 $a > 2\sqrt{2}$ 得 $f(x_1) + f(x_2) > 2 + 1 + \ln 2 = 3 + 1$
$\ln 2$,即 $f(x_1)+f(x_2)>3+\ln 2$ 12 分
1.【解析】([)因为 $f(x)$ 是奇函数,所以 $f(x)$ +
$f(-x) = 0$ 恒成立,则 $2(a+b)x^2 = 0$.
所以 $b=-a$,所以 $f(x)=ax^3-12ax$, 1分
则 $f'(x) = 3ax^2 - 12a = 3a(x+2)(x-2)$
令 $f'(x) = 0$,解得 $x = -2$ 或 $x = 2$.
当 $x \in (-2,2)$ 时, $f'(x) < 0$, 当 $x \in (2,+\infty)$ 时,
f'(x) > 0.
$f(x)$ 在 $(-2,2)$ 单调递减,在 $(2,+\infty)$ 单调递增,
所以 $f(x)$ 的极小值为 $f(2)$, 3 分
由 $f(2) = 8a - 24a = -16a = -16$,解得 $a = 1$.
所以 a=1,b=-1. ····· 5 分
(II)由(I)可知 $f(x) = x^3 - 12x, f'(x) = 3x^2 - 12x$
12, 6 分
方程 $f'(x) = 2x^3 + m$ 即为 $3x^2 - 12 = 2x^3 + m$
即方程 $2x^3 - 3x^2 + m + 12 = 0$ 有三个不等的实数
根, 7分
设 $g(x) = 2x^3 - 3x^2 + m + 12$, 只要使曲线有 3 个
零点即可 8分
设 $g'(x) = 6x^2 - 6x = 0$, $\therefore x = 0$ 或 $x = 1$ 分别为
g(x)的极值点,
当 $x \in (-\infty,0)$ 和 $(1,+\infty)$ 时 $g'(x) > 0, g(x)$ 在
$(-\infty,0)$ 和 $(1,+\infty)$ 上单调递增,
当 $x \in (0,1)$ 时 $g'(x) < 0, g(x)$ 在 $(0,1)$ 上单调
递减,
所以, $x=0$ 为极大值点, $x=1$ 为极小值点

2

所以要使曲线与x轴有3个交点,当且仅当 解得-12 < m < -11. 即实数 m 的取值范围为(-12,-11). …… 12 分 22.【解析】([])因为 $f(x) = a(x-1)e^x - \frac{x^2}{2}$, 得 $f'(x) = axe^x - x = x(ae^x - 1)$, ………… 2 分 所以 f'(1) = ae - 1. 因为曲线在点(1, f(1))处的切线方程为2x+2y-1 = 0. 所以 f'(1) = ae - 1 = -1,即 a = 0. 5 分 ($\| f(x) = a(x-1)e^x - \frac{x^2}{2}$ 存在两个零点,即方 程 $a(x-1) = \frac{x^2}{2e^x}$ 有两个根,也即直线 y = a(x-1)与函数 $y=\frac{x^2}{2a^x}$ 的图像有两个交点,…… 7分 $\oplus h'(x) > 0 \Rightarrow x(2-x) > 0 \Rightarrow 0 < x < 2, \oplus h'(x) < 0$ $0 \Rightarrow x(2-x) < 0 \Rightarrow x < 0, \text{ if } x > 2,$ 故 h(x)在 $(-\infty,0)$ 上单调递减,在(0,2)上单调 递增, $\Phi(2,+\infty)$ 上单调递减, 9分 目 h(0)=0,x>0 时 h(x)>0, 又直线 y=a(x-1)过(1,0),斜率为 a, 由图象观察知: 当 a < 0 时直线 y = a(x-1) 与 $h(x) = \frac{x^2}{2e^x}$ 的图象必有两个交点, …… 10 分 当 $a \ge 0$ 时直线 y = a(x-1) 与 $h(x) = \frac{x^2}{2e^x}$ 的图象 只有一个交点, ………………… 11 分 综上,函数 f(x)存在两个零点,实数 a 的取值范