Embedding Ultrametrics Into Low-Dimensional Spaces

Anastasios Sidiropoulos

Joint work with: Mihai Badoiu, Julia Chuzhoy, Piotr Indyk

Embeddings of Metric Spaces

- Given finite metric space (X, D)
 - $D(p,q)=0 \Leftrightarrow p=q$
 - D(p,q)=D(q,p)
 - $D(p,q) \leq D(p,r) + D(r,q)$
- Mapping $f: X \rightarrow Y$
- Distortion of f is:

$$\max_{x_1, x_2} \frac{D'(f(x_1), f(x_2))}{D(x_1, x_2)} \times \max_{y_1, y_2} \frac{D(y_1, y_2)}{D'(f(y_1), f(y_2))}$$

GOAL: Minimize distrotion

Metric Embedding - Example

distortion =
$$5 \cdot (1/3) = 5/3$$

Ultrametrics

- An ultrametric is a metric space (X, D)
 - $D(p,q)=0 \Leftrightarrow p=q$
 - D(p,q)=D(q,p)
 - $D(p,q) \le \max\{D(p,r), D(r,q)\}$
- Ideal clustering

Motivation

- Why Embeddings?
 - Compact data representation
 - Embedding into algorithmically nice spaces (e.g.Euclidean spaces, trees)
 - Visualization
 - Characterization of metric properties
- Why Ultrametrics?
 - Computational Biology
 - Clustering

Results on Worst-Case Embeddings

From	Into	Upper Bound	Lower Bound	ref
general	ℓ_2^d	$\tilde{O}(n^{2/d})$	$\Omega(n^{1/\lfloor (d+1)/2\rfloor})$	[Matousek 90]
trees	ℓ_2^d	$\tilde{O}(n^{1/(d-1)})$	$\Omega(n^{1/d})$	[Gupta 99]
weighted stars	ℓ_2^d	$O(n^{1/d})$	$\Omega(n^{1/d})$	[Gupta 2000]
unweighted trees	plane	$O(n^{1/2})$	$\Omega(n^{1/2})$	[Babilon,Matousek Maxova,Valtr 02]
planar graphs	plane	O(n)	$\Omega(n^{2/3})$	[Betani,Demaine,Haj iaghayi,Moharrami 061
unweighted outerplanar	plane	$O(n^{1/2})$	$\Omega(n^{1/2})$	[Betani,Demaine,Haj iaghayi,Moharrami 061
ultrametrics	ℓ_2^d	$O(n^{1/d})$	$\Omega(n^{1/d})$	[Badoiu,Chyzhoy, Indyk,S. 06]

Results on Approximate Embeddings

From	Into	Upper Bound	Lower Bound	ref
general	ℓ_2	c		[Linial,London, Rabinovich 94]
unweighted graphs	subtrees	$O(c \log n)$	$\Omega(c)$	[Emek, Peleg 04]
general	trees	$(c\log n)^{O(\sqrt{\log \Delta})}$		[Badoiu, Indyk, S]
unweighted graphs	line	$O(c^2)$	1.01c	[BDGRRRS 05]
unweighted trees	line	$O(c^{3/2})$		[BDGRRRS 05]
general metrics	line	$O(\Delta^{3/4}c^{11/4})$		[Badoiu,Chyzhoy, Indyk, S. 05]
trees	line	$c^{O(1)}$	$\Omega(n^{1/12}c)$	[Badoiu,Chyzhoy, Indyk, S. 05]
ultrametrics	ℓ_2^d	$c^{O(d)}$	NP-complete	[Badoiu,Chyzhoy, Indyk, S. 06]

Ultrametrics Into Plane: Worst Case

Given ultrametric M=(X,D)

Ultrametrics Into Plane: Worst Case

- Xu: Set of points with ancestor u
- I(u): label of u
- Compute f inductively on the HST
- For each node u of the HST:
 - f has contraction O(I)
 - $f(X_u)$ is contained in a square of side $|l(u)\sqrt{|X_u|}|$

Ultrametrics Into Plane: Worst Case

Approximation: A lower bound

- Observation: In a non-contracting embedding, there are many disjoint "areas"
- If the distortion is small, the total "area" should be small

Approximation: A lower bound

ullet [Brunn-Minkowski inequality] For any $A,B\subset {f R}^2$

$$\sqrt{Vol(A \oplus B)} \ge \sqrt{Vol(A)} + \sqrt{Vol(B)}$$

Let $V(r)=\pi r^2$, and $\rho(\alpha)=V^{-1}(\alpha)$

For each leaf u, define C(u) = V(1/2)

For each non-leaf u, define:

$$C(u) = \sum_{i=1}^{k} \left(\sqrt{C(u_i)} + \sqrt{V(l(u)/4)} \right)^2$$

Lemma: For each u,

$$c \ge \rho(C(v))/l(v) - 1$$

- We will try to match the lower bound
- It suffices to embed each X_u inside a square with side length $\sqrt{C(u)}$
- We can do that if we stretch each square by a factor of c
- PROBLEM: The streching accumulates!

• We need to "synchronize" the rotations:

In this case rotation does NOT help!

Solution: Top-down preprocessing for calculation of the rotations

- The final algorithm:
- Bottom-up: Compute the "volumes" C(u)
- Top-down: Compute the "rotations"
- Bottom-up: Compute the embedding
- Resulting distortion $O(c^3)$

THE END

Questions?