Sentiment Analysis

... reviewing machine learning literature about sentiment analysis

- · the process of detecting polarity from positive to negative in text
- · often used by businesses to detect sentiment in social data, gauge brand reputation, and understand customers
- types of sentiment analysis
 - fine-grained sentiment analysis : interpret polarity categories
 - emotion detection: aims to detect emotions (happiness, frustration, anger, sadness, etc.) and usually use lexicons (i.e. lists of words and the emotions they convey) or machine learning algorithms
 - aspect-based sentiment analysis: analysis of which particular aspects or features are mentioned i.e. The battery life of this camera is too
 short negative opinion about the feature battery life
 - multilingual sentiment analysis : difficult, need a lot of preprocessing and resources
- sentiment analysis algorithms
 - rule-based: these systems perform analysis based on a set of manually crafted rules
 - define two lists of polarised words, counts the number of positive and negative words that appear in a given text, system returns
 positive or negative by comparing the number
 - naive, don't take into account how words are combined in a sequence and don't support new vocabulary, and adding new rules
 may affect previous result
 - automatic : rely on machine learning techniques to learn from data
 - e feature extraction from text: classical approach (bag-of-words or bag-of ngrams), recently word embeddings
 - · classification algorithms: Naive Bayes, Linear Regression, Support Vector Machines, and Deep Learning
 - hybrid: systems combine both rules-based and automatic approaches
- challenges
 - subjectivity and tone
 - 'The package is nice.', 'The package is red.'
 - all predicates should not be treated the same with respect to how they create sentiment
 - · context and polarity
 - 'Everything of it.', 'Absolutely nothing!'
 - responses of the question 'What did you like about the event?' vs 'What did you dislike about the event?'
 - pre processing or post processing needed to take into account context
 - · irony and sarcasm
 - people express their negative sentiments using positive words
 - 'Did you enjoy your shopping experience with us?' 'Yeah, sure. So smooth!', 'Not one, but many!'
 - there is no textual cue that will help a machine learn
 - comparisons
 - how to treat comparisons
 - 'This product is second to none.', 'This is better than older tools.', 'This is better than nothing.'
 - emojis
 - play an important role in the sentiment of texts, particularly in tweets
 - defining neutral
 - what you mean by neutral, positive, or negative does matter when you train sentiment analysis models
 - i.e. include objective text which do not contain explicit sentiments, into the neutral category, irrelevant information tag as neutral etc.
 - · human annotator accuracy
 - sentiment analysis is difficult task even for human
 - inter-annotator agreement (a measure of how well two (or more) human labellers can make the same annotation decision) is pretty low when it comes to sentiment analysis
- https://monkeylearn.com/sentiment-analysis/
- how we do aspect-based sentiment analysis
 - there are usually two steps
 - 1. extract aspect term
 - 2. sentiment analysis for each aspect
 - using NLP tools such as spaCy library, NLTK, word2vec, gensim etc.
 - example
 - 1. https://intellica-ai.medium.com/aspect-based-sentiment-analysis-everything-you-wanted-to-know-1be41572e238
 - 2. https://aclanthology.org/S14-2004/
 - a. aspect term extraction identify all aspect terms present in each sentence i.e. I like the service and staff, but not the foo d.
 - b. aspect term polarity find sentiment polarity from given aspect term i.e. I hated their fajitas, but their salads were great. {fajitas: neg., salads: pos.}
 - c. aspect category detection detect pre-defined aspect categories such as price or food i.e. The restaurant was expensive, but the menu was great." {price, food}
 - d. aspect category polarity

Multiple Instance Learning Networks for Fine-Grained Sentiment Analysis

- . Goal: we consider the problem of segment level sentiment analysis from the perspective of Multiple Instance Learning
- Link: https://aclanthology.org/Q18-1002/ (2018)
- Code: https://github.com/stangelid/oposum
- Credible source: Transactions of the Association for Computational Linguistics (TACL)

approaches description

- document level label
 - coarse-grained
 - easy to obtain due to the widespread use of opinion grading interfaces
- · sentence or phrase level label
 - finer-grained
 - laborious and expensive work
 - as a whole, the review conveys negative sentiment, aspects of the reviewer's experience were clearly positive
 - these positive sentences are unnoticed when focusing solely on the review's overall rating

[Rating: **] I had a very mixed experience at The Stand. The burger and fries were good. The chocolate shake was divine: rich and creamy. The drive-thru was horrible. It took us at least 30 minutes to order when there were only four cars in front of us. We complained about the wait and got a half-hearted apology. I would go back because the food is good, but my only hesitation is the wait.

+ The burger and fries were good

- + The chocolate shake was divine
- + I would go back because the food is good
- The drive-thru was horrible
- It took us at least 30 minutes to order
- Elementary Discourse Units (EDUs)
 - adopted from Rhetorical Structure Theory's (Mann and Thompson, 1988)
 - According to RST, documents are first segmented into EDUs corresponding roughly to independent clauses which are then recursively combined into larger discourse spans.
 - This results in a tree representation of the document, where connected nodes are characterised by discourse relations.
 - We only utilise RST's segmentation, and leave the potential use of the tree structure to future work.
 - definitions for EDUs vary in the literature, we follow standard practice and take the elementary units of discourse to be clauses (Carlson et al., 2003)
 - employ a state-of-the-artdiscour se parser (Feng and Hirst, 2012) to identify them

- EDU based segmentation might be beneficial for opinion extraction.
- The second and third EDUs correspond to the sentence: I didn't enjoy most of them, but the burger
 was brilliant. Taken as a whole, the sentence conveys mixed sentiment, whereas the EDUs clearly
 convey opposing sentiment.

- Sentimental classification
 - creation of sentimental lexicons based on which the overall polarity of a text
 - SO-CAL, a state-of-the-art method that combines a rich sentiment lexicon with carefully defined rules over syntax trees
 - neural network models
 - CNN architecture for sentencelevel classification
- Hierarchical Network (HIERNET)
 - building representations of sentences and aggregating those into a document feature vector
 - given document d comprising segments s1, s2, ... sm
 - using CNN, produce segment representations v1, v2, ... vm and hidden vectors h1, h2, ... hm
 - hidden vectors are used to produce attention weight a1, a2, ... am
 - document representation Vd is the weighted average of the segments' hidden vectors

$$\mathbf{v}_d = \sum_i a_i \mathbf{h}_i$$

- final sentiment prediction is obtained using a softmax classifier
- predict document-level polarity by encoding sentences and then combining these representations into a document vector
- Multiple Instance Learning (MIL)
 - deals with problems where labels are associated with groups of instances or bags (documents in our case), while instance labels (segment-level polarities) are unobserved
 - an aggregation function is used to combine instance predictions and assign labels on the bag level
 - the goal is either to label bags or to simultaneously infer bag and instance labels
 - based on the assumption
 - each segment conveys a degree of sentiment polarity, ranging from very negative to very positive
 - segments have varying degrees of importance, in relation to the overall opinion of the author
 - the overarching polarity of a text is an aggregation of segment polarities, weighted by their importance
 - model attempts to predict the polarity of segments and decides which parts of the document are good indicators of its overall sentiment

- Multiple Instance Learning Network (MILNET)
 - segment encoding : an encoding is produced for each segment using CNN
 - segment classification: achieve individual distributions using softmax from seperate representation vi
 - document classification: document-level predictions can be produced by taking the average of segment class distributions

- polarity-based opinion extraction
 after training, model can produce segment-level sentiment predictions for unseen text in the form of class probability distributions
 polarity score: compute the polarity score of a segment as the dot-product of the probability distribution pi with vector w:

$$\text{polarity}(s_i) = \sum_{c} p_i^{(c)} w^{(c)} \quad \in [-1, 1]$$

• gated polarity: uses the attention mechanism to differentiate between segments that carry significant sentiment cues and those that do not: $gated-polarity(s_i) = a_i \cdot polarity(s_i)$

Experiment

training data	experiment	evaluation					out	tput
two large- scale sentiment classification	• train MILNE T	, , ,		Method	Yelp' Sent	13 _{seg} EDU	IMD Sent	B _{sey} EDU
collections	model,	 such that all document-level classes are represented 		Majority	19.02 [†]	17.03^{\dagger}	18.32 [†]	21,52 [†]
	HIERN ET model 2 5 e p o c hs in ii- b a ttc h e e s o f 2 0 0 d o c u m e n ts ,	and the document lengths are representative of the recorpus documents are segmented into two segment-level data sentences and EDUs each review was presented to three Amazon Mechanical Ti (AMT) Amazon Mechanical Turk (AMT) a crowdsourcing website for businesses to hire remot crowd workers to perform discrete on demand tasks the computers are currently unable to do https://en.wikipedia.org/wiki/Amazon_Mechanical_Turell-level-	asets, urk ositive ely nat k sks	HIERNET and HIERNET HIERNET HIERNET HIERNET MILNET MILNET MILNET MILNET MILNET MILNET SO-CAL Scg-CNN • second block : mo segments using its • third block : segme • three levels of atte model trained with • MILNET with gate	54.21 55.33 56.64 58.43 52.73 61.41 63.35 56.53 56.18 61.41 63.35 66.53	50.90° 51.43° 58.75 48.63° 59.47 46.77° 59.58 59.85 58.16° 59.96 do not utilise intelevel predictions gration: m tition mechant specific intelevel predictions gration: m titon mechant specific intelevel.	46.99 [†] 48.47 [†] 62.12 53.40 [†] 48.75 [†] 61.83 [†] 45.69 [†] 59.99 [†] 63.97 53.21 [†] 58.32 [†] se segment dictions applications of the two first	49.02 49.70 57.38 57.38 51.81 47.18 58.24 38.37 57.71 59.87 60.40 62.95 att-level pre att-leve

1. The Yelp 13	• 3	• d	
Yelp	0	0	
13	0	С	
corpus	di	u	
a. c	m	m	
0	e n	e	
n t	Si	n ts	
ai	0	W	
n	n	it	
s	al	h	
С	р	р	
u	r	0	
st	е	si ti	
0		TI V	
m e	tr ai	v e	
r	n n	la	
r	e	b	
е	d	el	
vi	w	S	
е	0	С	
W	r	0	
s 0	d 2	n t	
f	V	ai	
lo	e	n	
С	С	а	
al	e	la	
b	m	r	
u si	b e	g e	
n	d	n	
e	di	u	
S	ng	m	
S	• W	b	
es b. e	in d	e r	
a a	0	0	
c	w	f	
h	si		
а	z	p o	
S	e	si ti	
S	3	ti V	
o ci	4	e	
a	in	s	
t	in C N	е	
e d	N	g m	
d	N	m	
w it	s e	e n	
h	a	ts	
h	g m	С	
u	e	0	
m	n •	m	
a n	t e	p a	
r	n	r	
а	С	е	
ti	o d	d t	
n	d	t	
g	er	o n	
g s o		e	
n		e g a ti	
а		ā	
n a s c al e fr o m 1		ti	
C		v e	
al e		la	
fr		b	
0		el	
m		le	
1		d	
0		la b el le d d o	
t o 5		c	
		u	
		m	
		e	
		nt	

2 The	• 5	• n	
2. The IMDB	w	• n e	
corpus a. c	0	u	
a. c	r	tr	
o n	d s	al s	
t	w	e	
ai	it	g m	
n	h		
s m	1 0	e n	
0	0	ts	
vi	f	а	
e r	e	r	
e	a t	e di	
vi	u	st	
е	r	ri	
ws b. e	e m	b u	
a a	a	t	
С	р	е	
h	S	d	
r e	p e	in a	
vi	r	n	
е	w	а	
w is	in d	p p	
a	0	r	
S	w	0	
s	si	xi	
0	ze • hi	m	
ci a	d	a t	
t	d	el	
e	е	y u	
d w	n V	u ni	
it	e	f"	
h	ct	0	
u	0	r	
s e	r di	m m	
r	m	a	
r	е	n	
a	n	n	
ti n	si o	e r	
g	n	а	
S	S	cr	
r	f	0	
a n	o r	s s	
gi	е	s d	
n	а	0	
g fr	c h	c u	
0	di	m	
m	r	е	
1	e ct	n	
t o	io	t cl	
10	n	а	
hatt	is	s	
both are	50	s es	
split into training (80%), validation		• t	
(80%),		h	
validation		e	
(10%), and test(10%) sets		p r	
sets		0	
		p o	
		o rti	
		0	
		n	
		0	
		f n	
		e	
		u	
		tr	
		al E	
		E D	
		U	

• a		c
• a tt e n		s is si g ni fi
e		si g
ti		ni
o n		fi c
V		a
e	·	n ti
e c o		y
r		hi a
n	n	c a n tl y hi g h e
e		e r
n s o	i	t
O		h a
n a it		a n
ıt V		C O
is		m
1 0	0	o m p a r
• [r
2		e d
y is 1 0 • L 2 - n o		t
0		o n
n	n	e
n a is a ti	3	u tr al s
a		al
ti	n	s e
o • d		n
r		t e
p		e n
r o p o u		c e s
t		S
t		t h e o b
r		e
e g u a ri s e t		b
u		s e rv a ti o n
ri	i	rv
s e		a ti
t		0
		n r
S		ei n
e s o ft		n f
n	n	0 0
a x c		O rc e s o
C		S
a s s fi e		u r
S		r a
e	ır	r
		g u m
		m
		e n
		t
		in f
		a v
		0
		u r
		0
		o f E D U s
		D
		S

• compa	е	
re MILNE	g m	
T	e n	
against followi	t	
ng metho	a ti	
ds	0	
(baseli	n	
Majorit	a	
ne): Majorit y, SO- CAL, Seg- CNN,	s it	
Seg-	s u	
GICF, HIERN	g	
HIERN ET +	g e	
produc	st	
e finer- graine	s t	
d polarity	h a	
distinct	t	
ions via	a s	
gating,	е	
gating, using the	n t	
model'	е	
s attenti	n C	
on weights	e w	
n o.g.n.o	it	
	h p	
	o si	
	ti	
	v e	
	0	
	r n	
	e g	
	a	
	ti V	
	e o	
	V	
	e r	
	al I	
	p ol	
	ol a	
	rit	
	y m	
	а	
	y st	
	ill C	
	o n	
	t	
	ai n	
	n e	
	u	
	tr al	
	al E D	
	Us	

	• di s c	
	C	
	a	
	r di	
	n n	
	g n e	
	"	
	tr	
	u tr al E D U s, c o ul d t	
	E	
	D	
	U	
	s,	
	С	
	e	
	e	
	f	
	0	
	o r	
	e	
	e le a d	
	a	
	d	
	o m	
	o r	
	e	
	c o n	
	ci	
	ci s	
	e	
	e o pi ni	
	pi	
	ni	
	0	
	n	
	e	
	xt	
	a ct io	
	"c	
	0	
	P	
	p a	
	r	
	e d	
	d	
	O r	
	el	
	Vi Vi	
	yi n	
	g o	
	n	
	e	
	n tir	
	tir	
	e	
	S	
	e	
	n	
	t	
	e n	
	es	

- macro-averaged F1
 - used to assess the quality of problems with multiple binary labels or multiple classes
 - · defined as the mean of class-wise/label-wise
- evaluate 2 points
 - assess models' ability to classify segment polarity in reviews using the newly created SPOT dataset
 - focused on opinion extraction: conduct a judgment elicitation study to determine whether extracts produced by MILNET are useful and of higher quality compared to HIERNET and other baselines

Data

Repository

Sentiment Analysis Based on Deep Learning: A Comparative Study

- · Goal: reviews the latest studies that have employed deep learning to solve sentiment analysis problems, such as sentiment polarity
- Link: https://arxiv.org/abs/2006.03541 (06/2020)
- Code:
- Credible source : -

A Unified Generative Framework for Aspect-Based Sentiment Analysis

- Goal: redefine every subtask target as a sequence mixed by pointer indexes and sentiment class indexes, which converts all ABSA subtasks into
 a unified generative formulation, exploiting the pre-training sequence-to-sequence model BART to solve all ABSA subtasks in an end-to-end
 framework
- Link: https://arxiv.org/abs/2106.04300 (06/2021)
- Code: https://github.com/yhcc/BARTABSA
- Credible source: -