Intro Day: What does Algebraic Topology do for us?
The primary question in AT is are spaces "the same?
The most stringent definition of the same: A homeomorphism
$f \circ f^{-1} = Id_{X} \qquad f \circ f = Id_{Y}$
W/ f and f both continuous functions. Allows for streckes, flips, etc. This in practice is too strong of an equivalence, What we are interested in is called Homotopy equivalence. This allows to deform one space to another. Example/ take the letters X and Y. We can deform
X to Y in the Following way
EX R VS D VS pt tan Pt The Prospects for Commutative Algebra OSAKA 2017

\mathcal{A}
Defin Rabible If X is a set, B is called a basis for a topology on X if
1) For each XEX, there is XXEB S.t. XEXX
The topology generated by \$\mathbb{B}\$ is the smallest \$\mathcal{C}\$ containing \$\mathbb{B}\$. [V,d) [Ex/ Metric spaces are topological spaces: \$\mathbb{B} = \mathbb{E} \mathbb{B} \mathbb{E}(\mathbb{X}) \mathbb{X} \mathbb{E} \mathbb{V}, \mathbb{E} > 0 \mathbb{S}\$. Elements of \$\mathcal{C}\$ generated by \$\mathbb{B}\$ are the usual open sets from real analysis.
Set um Topological Spaces EmMetric Spaces
$E_{\times}/$ A B $\{\phi\}, \{A\}, \{A,B\}$
Juppes Whisalstalle Whitaloode.
Sept 13: Building * Topological Spaces From others I
Rodulish Subspace topology: Let (X, Y) be a topological space, and $Y \subseteq X$ we create the subspace sub-topological space as follows. Let
TX={YnMU UET}
Then (Y, Ty) is a topological space.

Ex/ Give IR the standard topology (i.e. the metric topology, or the one with basis (a,b) for a < b) Consider [0,1] = R w/ subspace topology. What are all the opensets?

Modul A Topology $Ex/Give R^2$ the metric topology (a basis given by $B_{a}(x,E)$, or $S(a,b) \times (c,d)$ $S(a,b) \times (c,d)$ S(a

Product Topology: Given (X, X) and (Y, o) two topological spaces, one can create a withird topo space "XXX":

 $X \times Y = \{(x,y) \mid x \in X, y \in Y \}$ What Topology generated by $U \times V = U$ $U \in \mathcal{T}$, At $V \in \mathcal{T}$

Note: This is NOT exclusively given by products

EX/
Not a product

Ex/ R2 w/ it's usual metric topology is
the same as RXR with the product topology: metric metric
Product Metric
(Real analysis Fact: all metrics Norms are equivalent)
Quotient Topology: Equivalence Relations ~ on a topological space
X/~ is the set of equivalence classes
We give X/~ the quotient topology defined as follows:
$U = X/N$ is open (i.e. $U \in Y$)
$p^{-1}(\mathcal{U}) = X$ is open, $p: X \longrightarrow X/N$ is the quotient map
Ex/Let 51 be parameterized by [0,1].
2 0=1
There is a natural map IR > 52: the total ie give yout to a decimal expansion and Forget the integer part. This is an equivalence
Forget the integer part. This is an equivalence
The Prospects for Commutative Algebra OSAKA 2017

Endowing SI w/ the quotient topology is equivalent to the subspace topo from 12.
to the subspace topo from 12.
Sept 15: Continuous Functions The main way of transfering inforfrom one topo space to another is a continuous function:
Desn: $f: X \mapsto Y$ is said to be continuous if for every $W \in Y$, $f^{-1}(W) = \{x \in X \mid f(x) \in W \} \in Y_X$
Note: this is a natural generalization of continuity of Innetric spaces: at x f: X->Y is continuous if for every \$>0,350
Such that $M_{\times}(x,x_0) < S \Rightarrow M_{\times}(f(x),f(x_0)) < E$ Such that $M_{\times}(x,x_0) < S \Rightarrow M_{\times}(f(x),f(x_0)) < E$ (har of open sets in topology: $\forall x \in M$ $\exists E > 0 \text{ s.t. } B_{E}(x) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$ $\exists E > 0 \text{ s.t. } B_{E}(S(x)) \in M$
Idx: X > X Continuous The Continuous
Idx: X -> X Continuous What about Alipside?

Topological spaces with continuous maps form a category Composition of continuous functions is continuous Associative, Id. Algebraic Topology: Maps into products: If f: X > Y x Z, then f is continuous (=) fy and fz are continuous
=> " easy direction
(since U×V form a basis for the product to pology)
but $f'(U \times V) = f'_{Y}(U) \cap f'_{Z}(U)$ which is open by definition of a topology
One Continuous map of interest later on is
Defn: A continuous map [0,1] BX is palled a path in X. P(0) P(0)
Sept 18 Pay of Groups
Algebraic Topology in a nutshell Topological Topological The Prospects for Commutative Algebra OSAKA 2017

Defn: A group is a set & with an operation . DJEEG st. g.e=e.g=4 Ygeg 2) \ \ g ∈ G , \ ∃ g ' ∈ G st. g · g ' = g ' · g = e 3) \(\forall g, h, f \in \textit{g} \), \((g \cdot h) \cdot f = g \cdot (h \cdot f) \) 4) # tg, hef, goheg If in addition, 5) geh=h.g, G is called abelian Examples: $(\mathbb{Z},+),(\mathbb{Q}^{\times},\cdot),(\mathbb{S}_{n},o),(\text{continuous}_{\text{functions}},o)$ (Rigid motions of a regular n-gon, o), etc... Defn & H=G W (H,·) itself a group, is called a subgroup of G. H is called normal if for every geg, g.H.g-1 = H. > Normal Subgroups form an important class of subgroups, as one can use them to form Quotient Groups G/H = {g:H | gef}. A4 = S4 is normal (even permutations) Examples $\{e, (12)_{5}(34), (13)(24), (14)(23)\}$ = $k_{4} \in S_{4}$ is normal All other proper subgroups of S_{4} are not! (there are so in total) Products: If (G, .) and (H, x) are groups, one can form (GxH,x) where (g,h) x (g',h') = (g,h'x,h'). This is the standard product

One can also form a "non-abelian" persion of this, the free product *:
Defn: If & G and H are groups, G*H is the group composed of expressions (words) and or Thologing by groups and for Thologing high groups and for
Multiplication is performed by concatenating the 2 expressions gigg-ge gn . hi-gz-hz gm
If 2 elements of the same group meet, multiply them together eg. g, h, gz*g', h' = g, h, (gz'g',) h'
and any time we be of en appear, remove them. Ex / Z7/ex ZZ/27 {0,13* {e,f}
elements: E, e, f, ef, fe, efe, fef, As sets, this has the same cardinality as the integers.
Abelianization: Let G be a group. Consider the subgroup [G,G] = [g.h.g].h [g,h eg] This is a northal subgroup: In hog his
UE [G,G], then God g. u.g = 1.1gug = u. (ug ng) E G G Commutative Algebra OSAKA 2017

 $G/[G,G] = G^{ab}$ is the largest Quotient of G which is abelian. $G \to G^{ab}$ is called the abelianization of G.

Relation: If G and H are the abelian groups how is $(G*H)^{ab}$ related to GXH?

Sept 20 Connectedness & Path Connectedness (and local variants)

Defn: A topological Space (X, Y) is called connected if $U, V \in X$ are open, and UUV = X, then $UN \neq \Phi$. Otherwise, X is called disconnected.

Cantor Set

Examples and Non-examples: [R, Z], Image of connected set is connected. Defin: (X,Y) is called path-connected if for every $X,y \in X$ there exists $X:[0,1] \to X$ continuous such that f(0)=X and f(1)=y.

W How do these related?

Thm: If X is path connected, then X is connected

Q: Proof Suppose not. Let $X = U_{Y}V$, $w/U_{1}V = \phi$ Choose $X \in U$, $y \in V$, and $X : [0,1] \to X$ as above. X'(U) is open and X'(V) is open, by t $X'(U_{1}V) = X^{-1}(U_{1}V) \cap Y'(V) = \phi$. So But [0,1]is Connected &

What about Connected \Rightarrow Path Connected \Rightarrow Consider $\Gamma_f = \frac{1}{2}(x, \sin(\frac{1}{x})) \in \mathbb{R}^2 / 0 < x < 13$

and let $X = \{0\} \times \mathbb{R} \times \mathbb{R}^2$

This set is connected, because any open sett containing (0,1x) must contain some (E,y), and since 0 × [0,1] and I's are both connected, must be all of X

On the other hand, there is no path from

a compact set is compact, and It is not

There are also local versions of these notions.
II P is a properlyty of topological spaces, we
If P is a propertyly of topological spaces, we say (Xx) is "locally D" if YXEX & # UEX
WI XEU, Such that Wis PANEU
So. Locally - Connected and Locally Path Connected
The Direct of the State of the
Ex/ Dis connected but locally connected
X = U U V
Same for path connected.
Locally Path connected => Locally Connected
EX/ Path Connected but not Locally (Path)-Connected
Consider X=R2
$X = \left(\begin{bmatrix} 0,1 \end{bmatrix} \times \{0\} \right) \cup \left(\{0\} \times [0,1] \right) \cup \bigcup_{\substack{n \geq 1 \\ n \in \mathbb{Z}}} \{ \begin{bmatrix} -1 \end{bmatrix} \times [0,1] \right)$
Comb space
Path connected
x = (0,1) Not path connected and not connected
1 - (-)

Start of Hatcher X/X-/X ?
Sept 22 Homotopy and Homotopy Type Concise, VLearn, A couple
I dea of Homotopy: We want to classify spaces up to continuous deformation. Can we say Objects have the same shape. B (10,0)
$f(\vec{x}) = \vec{\chi} \qquad f(\vec{x}) = \frac{3}{3}\vec{x} g(\vec{x}) = 0$
Explanation It what we do is adjoin an extru parameter to the CostEI, which allows us to startly deform a space Homotory over time.
Formally: If X is a topological space, then a deformation retract of X onto a subspace A=X is a map.
Continuous $F: X \times I \longrightarrow X$ $F(x,t) = f_t(x)$
$F(x,0) = x \qquad (f_0 = Id_x)$ $F(x,0) = x \qquad (f_t _A = Id_A)$ $F(x,1) = A \qquad (f_1(x) = A)$
EX/Disc Defretract to a point EX/Disc pt Defrectracts to 51
An easy way to create such # def retracts is the mapping cylinder
The Prospects for Commutative Algebra OSAKA 2017

