Chapter 9 Section 2

TOPICS

- UNDERSTAND THE DEFINITION OF A CONVERGENT INFINITE SERIES
- USE PROPERTIES OF INFINITE GEOMETRIC SERIES
- USE THE Nth TERM TEST FOR DIVERGENCE OF AN INFINITE SERIES

TEXT READING ASSIGNMENT FOR 9.2

PAGE 606,607,608,609,610,611

TEXT HOMEWORK EXCERCISES FOR 9.2

PAGE 612# 1,7,11,15,23,25,27,35 PAGE 613# 39,45,51,53,57,59,63,67,79,81,83

• UNDERSTAND THE DEFINITION OF A CONVERGENT INFINITE SERIES

An *infinite series* $\sum_{n=1}^{\infty} a_n$ is written as a sum $a_1 + a_2 + a_3 + L$. Addition is only defined for a finite number of summands, so we need an alternative definition for sum of an infinite series. Consider the following sequence defined below.

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
M-M

This infinite sequence S_1, S_2, S_3, K is called the *sequence of partial sums* for the series $\sum_{n=1}^{\infty} a_n$.

Student Exercise: Write the first five terms of the sequence of partial sums S_1, S_2, S_3, S_4, S_5 for the series $\sum_{n=1}^{\infty} \frac{3}{10^n}$.

Student Exercise Solution 9.2.1

Remark It may seem odd and maybe a little bit confusing to start with a series and then create a sequence. The reason why we do this is it gives us the definition of sum for a series that we needed.

Definition The *sum of an infinite series* $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + L$ is the limit of the sequence of partial sums $\lim_{n \to \infty} S_n$. An infinite series *converges* if and only if its sequence of partial sums converges. Likewise, an infinite series *diverges* if and only if its sequence of partial sums diverges.

Example In student Exercise 9.2.1 we showed the series $\sum_{n=1}^{\infty} \frac{3}{10^n}$ has a sequence of partial sums

.3, .33, .333, .3333, .3333, K. Clearly, the limit of this sequence is .333L = $\frac{1}{3}$.

Therefore, we say the infinite series $\sum_{n=1}^{\infty} \frac{3}{10^n}$ converges to the sum $\frac{1}{3}$.

Worked Example 9.2.2

• USE PROPERTIES OF INFINITE GEOMETRIC SERIES

A *geometric series* has the form $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + L$, where $a \neq 0$ and |r| < 1.

Remark You can see why we need r to satisfy |r| < 1.

If r = 1 the series $\sum_{n=0}^{\infty} ar^n = a + a + a + L$ would have an n th partial sum $S_n = na$ which would diverge as $n \to \infty$.

If r = -1 the series $\sum_{n=0}^{\infty} ar^n = a - a + a - L$ would have an n th partial sum $S_n = \begin{cases} 0, & n \text{ even} \\ a, & n \text{ odd} \end{cases}$ which also diverges as $n \to \infty$.

Let's find a formula for the n th partial sum S_n of a geometric series. By definition,

 $S_n = a + ar + ar^2 + L + ar^{n-1}$ (notice that we stop at the exponent n-1 because this gives us n terms on the right)

$$S_n = a + r(a + r + ar^2 + L + ar^{n-2})$$
 (factor out r)

$$S_n = a + r(S_n - ar^{n-1})$$
 (substitute)

$$(1-r)S_n = a(1-r^{n-1})$$
 (distribute and regroup)

$$S_n = \frac{a(1-r^{n-1})}{(1-r)}$$
 (Divide).

Since
$$0 < |r| < 1$$
, $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - r^{n-1})}{(1 - r)} = \frac{a}{1 - r}$. Therefore, $\sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r}$.

Worked Example 9.2.3

Remark The series $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + L$ with |r| > 1 clearly diverges.

Student Exercise: The decimal $.\overline{45} = .454545L$ can be written as an infinite

series
$$\frac{45}{100} + \frac{45}{100^2} + \frac{45}{100^3} + L = \frac{45}{100} \left(1 + \frac{1}{100} + \frac{1}{100^2} + L \right) = \sum_{n=0}^{\infty} \frac{45}{100} \left(\frac{1}{100} \right)^n$$
. Write this number in fraction form.

Student Exercise Solution 9.2.4

The following facts on series correspond directly to facts on sequences discussed in section 9.1.

If
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$ then 1) $\sum_{n=1}^{\infty} ca_n = cA$ 2) $\sum_{n=1}^{\infty} (a_n \pm b_n) = A \pm B$.

USE THE Nth TERM TEST FOR DIVERGENCE OF AN INFINITE SERIES

A series $\sum_{n=1}^{\infty} a_n = L$ if and only if $\lim_{n \to \infty} S_n = L$, where S_n is the n th partial sum of the series. Suppose $\sum_{n=1}^{\infty} a_n = L$ then $a_n = S_n - S_{n-1}$ so $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(S_n - S_{n-1} \right) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = L - L = 0$.

Theorem If $\sum_{n=1}^{\infty} a_n$ is a convergent series then $\lim_{n\to\infty} a_n = 0$.

Remark Be careful how you use this theorem! It only says $\lim_{n\to\infty} a_n = 0$ is a <u>necessary</u> condition for convergence.

This theorem does not say if $\lim_{n\to\infty} a_n = 0$ then the series $\sum_{n=1}^{\infty} a_n$ converges, this is not always true!!! The correct interpretation is that the terms of every convergent series must go to 0. If the terms in a series do not go to 0, the series itself cannot converge.

Worked Example 9.2.5