半导体中载流子的统计分布

复旦大学 微电子学系

13307130163

李琛

June 10, 2015

Contents

1	状态密度		
	1.1	三维情况下的自由电子气	3
	1.2	状态密度	3
2	费米	能级与载流子的统计分布	3
	2.1	费米分布函数	3
	2.2	导带电子和价带空穴浓度	3
3	本征半导体的载流子分布		
	3.1	本征载流子浓度	3
	3.2	本征载流子的费米能级	3
4	杂质半导体的载流子分布		
	4.1	非补偿情形	3
	4.2	补偿情形	3

5	简并半导体		
	5.1	简并的出现	3
	5.2	简并半导体的载流子浓度	3
	5.3	简并条件	3

1 状态密度

1.1 三维情况下的自由电子气

$$\varepsilon_{\vec{k}} = \frac{\hbar^2}{2m} k^2 = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2), k_x, k_y, k_z = 0; \pm \frac{2\pi}{L}; ...; \pm \frac{2n\pi}{L}$$
 每个量子态占据体积为 $\frac{(2\pi)^3}{V}$: 再考虑自旋,k空间能量状态密度为 $\frac{2V}{(2\pi)^3}$

- 1.2 状态密度
- 2 费米能级与载流子的统计分布
- 2.1 费米分布函数
- 2.2 导带电子和价带空穴浓度
- 3 本征半导体的载流子分布
- 3.1 本征载流子浓度
- 3.2 本征载流子的费米能级
- 4 杂质半导体的载流子分布
- 4.1 非补偿情形
- 4.2 补偿情形
- 5 简并半导体
- 5.1 简并的出现
- 5.2 简并半导体的载流子浓度
- 5.3 简并条件