Foice - 01

Felipe Ribeiro

Janeiro 2021

Introdução

Essa é minha primeira lista de um curso intensivo de termodinâmica que vou ministrar, visando a fase final da seletiva de física. Para quem não está acostumado as questões têm alguns asteriscos ao lado do nome, quanto mais asteriscos mais difícil é a questão.

1 - Tanque infectado **

Um tanque longo e cilíndrico está coronado e precisa ser transportado sem que alguém efetivamente entre nele. Para isso ele é colocado sob uma carcaça onde passa a deslizar sem atrito sob trilhos (ohserve a Figura 8). A massa do tanque vazio é de M. Inicialmente o tanque é preenchido com um gás ideal de massa \mathbf{m} a uma pressão P_0 e uma temperatura ambiente T_0 . Então uma das extremidades do tanque é aquecida até $T_0 + \Delta T$, onde $\Delta T << T_0$, enquanto a outra é mantida fixa em T_0 . Ache a pressão no tanque e a nova posição do centro de massa do mesmo quando o sistema atinge o equilíbrio.

Figure 1: Problema 1

2 - Caixa preta **

Considere um cubo negro que é feito de um material perfeitamente condutor de calor. Um feixe paralelo de intensidade I $(\frac{W}{m^2})$ é direcionado ao cubo. A temperatura de equilíbrio T do cubo depende da orientação desse feixe. Ache as temperaturas máximas e mínimas $(T_{max} \ e \ T_{min} \ respectivamente)$ para esse sistema.

3 - Ciclando que cresce ***

Calcule o rendimento do ciclo termodinâmico dado na figura, considerando um gás monoatômico.

Figure 2: Problema 3

4 - Agitado **

Determine ou estime o fluxo de calor resultante P entre duas placas paralelas a uma distância L uma da outra, elas têm temperaturas T_1 e T_2 , respectivamente. O espaço entre as placas está preenchido com um gás monoatômico de densidade molar n e massa molar μ . Você deve usar as seguintes aproximações:

- (i) a densidade do gás é tão baixa que o caminho livre médio $\lambda \gg L$;
- (ii) $T_1 \gg T_2$;
- (iii) quando as moléculas de gás colidem com as placas elas obtêm a temperatura da respectiva placa (como se elas fosse "absorvidas" e em um diferencial de tempo se equilibrassem termicamente com a placa, por fim sendo jogada de novo no sistema);
 - (iv) você deve negligenciar a radiação de corpo negro

5 - Pegou ar **

Considere um balão com paredes grossas e rígidas o qual foi retirado todo o ar. Então, a válvula do balão é minimamente aberta e então o balão é preenchido com o ar vindo de fora. Ache a temperatura do gás dentro do balão após o término do fluxo de ar (a partir do momento em que o equilíbrio mecânico é atingido). A temperatura ambiente é ${\bf T}$ e o fluxo térmico pelas paredes do balão deve ser negligenciado.

6 - Devia ter parado em Bernoulli *

Para um fluxo estacionário gasoso, mostre que nas linhas de fluxo a relação: $\frac{v^2}{2}+{\rm gh}+c_PT={\rm constante}$ é válida.

7 - Química é física aplicada **

Derive a tão conhecida equação de Clausius-Clapeyron, relacionando a derivada da pressão de saturação de uma substância, $\frac{dp_s}{dT}$, com o calor latente de evaporação, λ , a temperatura T, a pressão de saturação p_s e a massa molar da substância μ .

8 - Por isso uso o paint **

Um vendedor faz a propaganda de uma tinta especial da seguinte maneira: "Essa tinta irá refletir mais de 90% de toda a radiação incidente, mas irradiará em todas as frequências, assim como um corpo negro, removendo assim uma enorme quantidade de calor dos satélites. Essa tinta então, manteria o satélite o mais gelado o possível". Poderia certa tinta existir? Por que sim, ou por que não?

9 - Fogo no **

Algo está queimando na altura do chão. Sete metros acima do chão, a fumaça está a uma temperatura $t_7 = 40^{\rm o}{\rm C}$. Despreze a troca de calor com o ambiente e assuma que a pressão atmosférica no chão é constante e igual a $p_0 = 1000{\rm hPa}$; a temperatura do ar é $t_0 = 20^{\rm o}{\rm C}$ independentemente da altura. Assuma que a fumaça representa um gás ideal de massa molar $\mu = 29$ g/mol (ou seja, igual a massa molar do ar), e de um calor específico molar a volume constante $c_v = 2.5{\rm R}$; a constante universal é R = 8.31 J/kg.K. Quão alta a coluna de fumaça se erguirá?

10 - Foguete de hidrogênio *

A câmera de reação do motoor de um foguete é alimentada com um fluxo de massa \mathbf{m} de hidrogênio e oxigênio o suficiente para que haja a combustão completa do combustível. A área de secção da câmara vale A e a pressão na área de secção é \mathbf{P} a uma temperatura \mathbf{T} . Calcule a força que essa câmera pode proporcionar.

11 - Termômetro ***

A metade inferior selada de um tubo de vidro, de altura 152cm, é preenchida com ar. A metade superior contém mercúrio e o topo do tubo está aberto. O ar é aquecido lentamente. Quanto calor foi transferido para o ar no momento em que todo o mercúrio deixou o tubo. Considere a pressão atmosférica igual a 760mm Hg.

12 - Termomecânica **

Duas esferas pequenas estão presas a uma barra horizontal sem atrito que se sobressai de uma parede vertical. A bola mais leve, com massa \mathbf{m} , está inicialmente em repouso, distanciada de \mathbf{L} da parede, enquanto a segunda bola, muito mais pesada, de massa \mathbf{M} ($\mathbf{M} >> \mathbf{m}$), se aproxima dada parede a partir de uma distância muito maior que \mathbf{L} . Após a colisão elástica entre eles, a bola de massa \mathbf{m} desliza em direção à parede, colide de volta elasticamente e depois colide novamente com a bola mais pesada. Esse processo então se repete continuamente. Descubra a distância final entre a bola de massa \mathbf{M} e a parede.

Figure 3: Problema 13

13 - Vazando *

Um contâiner é divididoem duas partes, I e II, por uma interface com um pequeno buraco de diâmetro d. Cada um dos lados está preenchido com gás hélio, mantendo-se a temperaturas $T_1=150{\rm K}$ e $T_2=300{\rm K}$, respectivamente, através de aquecedores nas paredes

Figure 4: Problema 14

Qual a razão dos caminhos livres médios $\frac{\lambda_1}{\lambda_2}$ dos gases das duas metades, quando $d << \lambda_1$ e $d << \lambda_2$? E quando $d >> \lambda_1$ e $d >> \lambda_2$?

14 - Diesel *

Considere o ciclo termodinâmico conhecido como Ciclo Diesel mostrado na Figura 5. Todos os processos são quase estáticos e o gás é monoatômico. Os processos $1 \to 2$ e $3 \to 4$ são adiabáticos. Determine a eficiência do ciclo em função dos parâmetros $\alpha = \frac{V_3}{V_2}$ e $\beta = \frac{V_1}{V_2}$

Figure 5: Problema 15

Gabarito

Problema 1)
$$P \approx P_0(1 + \frac{\Delta T}{2T_0})$$
 e
$$\Delta X = \frac{m\Delta TL}{12(m+M)T_0}$$

Problema 2)
$$T_{max} = \frac{I\sqrt{3}}{6\sigma}$$

Problema 3)
$$\eta = \frac{16}{97}$$

Problema 4)
$$\Phi = \frac{3}{2} nRT_1 \sqrt{\frac{RT_2}{M}}$$

Problema 5)
$$T = 1.4T_0$$

Problema 6) Demonstração

Problema 7) Demonstração

Problema 8) Demonstração

Problema 9) 1900m

Problema 10) F =
$$\frac{81m^2RT}{P\mu_aA}$$
 + PA

Problema 11)
$$\frac{27}{16}nR$$

Problema 12)
$$2\sqrt{\frac{m}{M}}$$

Problema 13)
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_1}{T_2}}ou = \frac{T_1}{T_2}$$

Problema 14)
$$\eta = 1 - \frac{1}{\gamma} \frac{\alpha^{\gamma} - \beta^{\gamma}}{\alpha - \beta}$$