[86.03/66.25] Dispositivos Semiconductores

Juntura MOS

Curva Capacidad-Tensión

Una estructura MOS con *Gate* de Polisilicio N⁺⁺ y sustrato tipo P con densidad de dopantes $N_A = 10^{17}$ cm⁻³ y parámetros $V_T = 0.547$ V, $\chi^2 = 0.545$ V y $C'_{OX} = 246$ nF/cm².

• Hallar la curva de capacidad tensión del dispositivo indicando todos sus valores característicos.

Acumulación

Datos

Poly-N⁺⁺; Sust-P $N_A = 10^{17} \text{ cm}^{-3}$ $V_T = 0.547 \text{ V}$ $\mathbf{Y}^2 = 0.545 \text{ V}$ $C_{OX} = 246 \text{ nF/cm}^2$.

Del ejercicio anterior:

$$\phi_{Gate} = -0.42 V$$

$$\phi_{Bulk} = -0.42 V$$

$$V_{FB} = -0.97 \text{ V}$$

$$x_d = 0$$

$$Q'_{Bulk} = \mathbf{O}$$

 $V_{GB} < V_{FB}$

$$Q'_{acum} = -C'ox (VGB-VFB) \longrightarrow C'=C'ox$$

Vaciamiento

Datos

Poly-N⁺⁺; Sust-P $N_{A} = 10^{17} \text{ cm}^{-3}$ $V_{\tau} = 0.547 \text{ V}$ $\chi^2 = 0.545 \text{ V}$ $C_{ox} = 246 \text{ nF/cm}^2$.

Del ejercicio anterior:

$$\phi_{Gate} = -0.42 V$$

$$\phi_{Bulk} = -0.42 V$$

$$V_{FB} = -0.97 V$$

X

$$C'(V_{GB}=V_{FB})=C'_{OX}$$

 $C'_{0}(V_{GB}=0)=87.6 \text{ nF/cm}^2$

$$C'_{min}(V_{GB}=V_{T})=70.9 \text{ nF/cm}^2$$

$$x_{d} = \frac{\epsilon_{Si}}{C'_{OX}} \left[\sqrt{1 + \frac{4(\phi_{B} + v_{GB})}{y^{2}}} - 1 \right]$$

$$Q'_{Bulk} = -q N_{A} x_{d}(v_{GB})$$

 $C'(V_{GB}) = q N_A \left| \frac{\partial X_d}{\partial V_{GB}} \right| = \frac{C'_{OX}}{\sqrt{1 + \frac{4(\phi_B + V_{GB})}{y^2}}}$

 $V_{FB} < V_{GB} < V_{T}$

-tox

Cuentas auxiliares

$$\frac{\partial x_d}{\partial v_{GB}} = \frac{\partial}{\partial v_{GB}} \left[C'_{OX} \left[1 + \frac{4(\phi_B + v_{GB})}{\gamma^2} \right]^{1/2} \right]$$

$$\frac{\partial x_d}{\partial v_{GB}} = \frac{\epsilon_{Si}}{C'_{OX}} \frac{1}{2} \frac{1}{1 + \frac{4(\phi_B + v_{GB})}{\gamma^2}} \right]^{1/2} \frac{4}{\gamma^2}$$

$$C'(V_{GB} = V_{FB}) = \frac{C'_{OX}}{\sqrt{1 + \frac{4(\phi_B + V_{FB})}{y^2}}} = C'_{OX}$$

$$C'_0(V_{GB}=0) = \frac{C'_{OX}}{\sqrt{1 + \frac{4 \phi_B}{\gamma^2}}} = 87.6 \text{ nF/cm}^2$$

$$C'_{min} V_{GB} = V_T = \frac{C'_{OX}}{\sqrt{1 + \frac{4(\phi_B + V_T)}{\gamma^2}}} = 70.9 \text{ nF/cm}^2$$

$$\frac{1}{\partial v_{GB}} = \frac{1}{\sqrt{N_A}} \frac{1}{\sqrt{N_A}}$$

gamma

Inversión

Datos

Poly-N⁺⁺; Sust-P $N_{A} = 10^{17} \text{ cm}^{-3}$ $V_{\tau} = 0.547 \text{ V}$ $\chi^2 = 0.545 \text{ V}$ $C_{OX} = 246 \text{ nF/cm}^2$.

Del ejercicio anterior:

$$\phi_{Gate} = -0.42 V$$

$$\phi_{Bulk} = -0.42 V$$

$$V_{FB} = -0.97 V$$

$$V_{FB} = -0.42 \text{ V}$$

$$V_{FB} = -0.97 \text{ V}$$

$$x_{dmax} = 104 \text{ nm}$$

$$Q'_{Bulk} = -q N_A x_{d,max}$$

 $X_d = X_{d,max}$

 $V_T < V_{GB}$

$$Q'_{inv} = -C'ox (VGB - VT)$$

$$C'(V_{GB}) = \frac{\partial Q'_{Bulk}}{\partial V_{GB}} + \frac{\partial Q'_{inv}}{\partial V_{GB}} = C'ox$$

Gráfico

Bonus: ¿Cómo puedo simular/medir la curva CV?

$$i_{C}(t) = C \frac{\partial v_{C}(t)}{\partial t}$$

$$v_{C}(t) = m \ t \Rightarrow \frac{\partial v_{C}(t)}{\partial t} = m = \frac{\Delta V}{\Delta t} \ [m] = V/s$$

$$\Rightarrow C' = \frac{C}{Area} = \frac{i_{C}(t) \Delta t}{\Delta V Area}$$

Bonus: ¿Cómo puedo simular/medir la curva CV?

