

Índice

- 1. Regresión
 - 1.1 Regresión Simple vs Regresión Multiple
 - 1.2 Regresión Lineal vs Regresión No Lineal
 - 1.2 Regresión Lineal Simple

2. Prophet

- ×
- 3. Neural Prophet

Clasificación

La regresión modela la relación entre una variable independiente (Y) y una o más variables independientes (X)

Y es una variable cualitativa.

Regresión vs Clasificación: En clasificación Y es nominal u ordinal (NO importa la escala)

En regresión Y es continua o discreta. (SÍ importa la escala

Clasificación

Ejemplos:

- Transacciones online (Fraudulentas o no)
- Hipotecas (Aprobadas o no)
- Tipo de cliente (Alto, medio y bajo potencial)
- Predicción de enfermedades (Riesgo alto, medio, bajo e inexistente)

Clasificación

Modelos de clasificación:

- LPM
- Regresión logística
- KNN
- SVM
- Decission Tree
- Random Forest

Para variables de 2 categorías (0 y 1).

Podemos usar una regresión lineal para calcular la probabilidad de que pertenezca a cada grupo.

Para variables de 2 categorías (0 y 1).

Podemos usar una regresión lineal para calcular la probabilidad de que pertenezca a cada grupo.

Definimos una probabilidad límite.

Para variables de 2 categorías (0 y 1).

Podemos usar una regresión lineal para calcular la probabilidad de que pertenezca a cada grupo.

Definimos una probabilidad límite.

PROBLEMAS:

Difícil decidir dónde ajustar la probabilidad límite.

Para variables de 2 categorías (0 y 1).

Podemos usar una regresión lineal para calcular la probabilidad de que pertenezca a cada grupo.

Definimos una probabilidad límite.

PROBLEMAS:

Difícil decidir dónde ajustar la probabilidad límite.

Predicciones por fuera del [0,1]

Para variables de 2 categorías (0 y 1).

Podemos usar una regresión lineal para calcular la probabilidad de que pertenezca a cada grupo.

Definimos una probabilidad límite.

PROBLEMAS:

Difícil decidir dónde ajustar la probabilidad límite.

Predicciones por encima del [0,1]

Sensible a la cantidad de datos

Por los anteriores motivos el modelo de probabilidad lineal no se utiliza.

El modelo de Regresión Logística es mucho más efectivo.

Clasificación (Regresión Logísitca)

$$Min_{w,b} MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_{w,b}(X_i))^2 \qquad f_{w,b}(X) = \frac{1}{1 + e^{-(WX + b)}}$$

Clasificación (KNN)

Modelo sencillo pero realmente potente

Se puede modificar K y la métrica utilizada.

Se puede emplear para regresión

Clasificación (KNN)

Frontera de clasificación (Decision Boundary)

Clasificación (KNN)

Frontera de clasificación (Decision Boundary)

Regresión (KNN)

Valor en función de los K más cercanos:

- Media
- Media penalizada por distancia
- Mediana

Regresión (KNN)

La importancia de la K

Underfitting vs Overfitting

SVM

¿Que es un hiperplano?

SVM

CLASIFICACIÓN: El hiperplano mantiene la máxima distancia posible

REGRESIÓN: El hiperplano incluye a los puntos en la mínima distancia posible

Clasificación (SVM)

¿Qué hiperplano es mejor?

Contacto:

luis@lubay.es

"El FSE invierte en tu futuro"

Fondo Social Europeo

