Devoir Maison 6 Éléments de correction

Un traineau sur la glace

Un traîneau à chiens est un dispositif de masse totale M (le pilote, ou musher, est compris dans cette masse) qui peut glisser sur la surface de la glace avec des coefficients de glissement statique (avant le démarrage) μ_s et dynamique (en mouvement) μ_d .

1. Les chiens sont reliés au traîneau par des éléments de corde tendus, de masse négligeable et inextensibles. Appliquer le PFD à un élément de corde entre x et x + dx avec \vec{e}_x l'axe de la corde et montrer que la tension de la corde est constante le long de celle-ci.

On applique le PFD à l'équilibre à un élément infinitésimal de corde soit $-T(x)\vec{e}_x + T(x + dx)\vec{e}_x = \vec{0}$ donc \vec{T} est un vecteur constant sur toute la corde

2. De même appliquer le théorème du moment cinétique sur ce même élément de corde et montrer que la tension est colinéaire à la corde.

On applique le théorème du moment cinétique sur un élément infinitésimal de corde au point O de coordonnée x. Soit $\vec{M}_0(-\vec{T}(x)) + \vec{M}_0(\vec{T}(x+dx)) = \vec{0}$ donc $-\vec{T}(x) \wedge \overrightarrow{OO} + \vec{T}(x+dx) \wedge \overrightarrow{OA} = \vec{0}$ donc $\vec{T}(x+dx) \wedge \vec{e}_x = \vec{0}$ donc \vec{T} colinéaire à \vec{e}_x donc à la corde.

3. Le trajet se fait soit à l'horizontale, soit sur une faible pente ascendante caractérisée par l'angle α avec l'horizontale.

Appliquer le PFD au traineau à l'horizontale et projeter selon les directions de \vec{T} et de \vec{N} . En déduire une relation liant a, F, μ_d .

De même pour une faible pente d'angle α établir la même équation et montrer que tout se passe comme dans un mouvement horizontal sous réserve de remplacer μ_d par $\mu'_d = \mu_d + \alpha$.

Dans les deux cas on applique le PFD au traineau à chien $M\vec{a}=\vec{F}+\vec{N}+\vec{T}+\vec{p},$ A l'horizontale on a le schéma :

donc en projetant sur la verticale N=Mg et en projetant sur l'horizontale Ma=F-T or en glissement $T=\mu_dN$ donc $Ma=F-\mu_dMg$

Avec une pente α on a le schéma :

donc en projetant sur la normale $N=Mg\cos(\alpha)$ et en projetant sur l'horizontale $Ma=F-T-Mg\sin(\alpha)$ or en glissement $T=\mu_dN$ donc $Ma=F-\mu_dMg\cos(\alpha)-Mg\sin(\alpha)=F-(\mu_d\cos(\alpha)+\sin(\alpha))Mg$ donc $\mu_d'=\cos(\alpha)\mu_d+\sin(\alpha)$ si $\alpha\ll\frac{\pi}{2}$ alors $\mu_d'=\mu_d+\alpha$

L'intensité de la force de traction totale F exercée par l'ensemble des chiens dépend de leur vitesse v et on adoptera le modèle $F=F_0-\beta v$ où F_0 et β sont des constantes positives. On prendra les valeurs $M=5,0\times 10^2$ kg, $\alpha=0,\,\mu_d=5,0\times 10^{-2}$ et $\mu_s=8,0\times 10^{-2}$.

4. Déterminer la valeur minimale de F_0 permettant le démarrage du traı̂neau.

à $\alpha = 0$ et dans le cas de non-glissement $T < \mu_s N$ donc $T < \mu_s Mg$.

En utilisant le PFD à l'équilibre v=0 et a=0 on a $T=F=F_0$ à l'arrêt, donc $F_0<\mu_sMg$ donc $F_{0_{min}}=\mu_sMg=4,0.10^2$ N

5. La vitesse du traîneau en régime stationnaire est $v_0 = 3 \text{ m.s}^{-1}$, atteinte à 5% près au bout d'un temps $t_1 = 5 \text{ s.}$

Établir l'équation différentielle vérifiée par la vitesse du traineau, faire apparaître une constante de temps, en déduire une expression de β en fonction de M et t_1 et faire l'application numérique.

On reprend Ma=F-T donc $M\frac{dv}{dt}=F_0-\beta v-\mu_d Mg$ donc en régime transitoire $\frac{M}{\beta}\frac{dv}{dt}+v=v_0$ donc $\tau=\frac{M}{v_0}$ donc $t_1=3\tau=3\frac{M}{\beta}$ donc $\beta=3\frac{M}{t_1}=3.10^2$ kg.s⁻¹

6. En utilisant le régime stationnaire, exprimer F_0 en fonction de β , v_0 , μ_d , M et g et calculer sa valeur numérique.

en régime stationnaire $v=v_0$ donc le PFD projeté selon \vec{T} donne $0=F_0-\beta v_0-\mu_d Mg$ donc $F_0=\beta v_0+\mu_d Mg$ et $F_0=1,2.10^3$ N

Toujours à vitesse constante v_0 , le traîneau aborde une courbe à plat qu'on assimilera à un cercle de centre O et de rayon R (cf. figure). Les chiens (modélisés ici en un seul point C) doivent donc tirer vers l'intérieur du cercle.

7. Déterminer en fonction des données la tension \vec{T} de la corde et l'angle θ entre la force de traction et la trajectoire.

Figure - Trajectoire circulaire du traîneau

PFD appliqué au traineau, la projection radiale donne $-M\frac{v_0^2}{R}=-T\sin(\theta)$, la projection ortho-radiale donne $0=T\cos(\theta)-R_T$, la projection verticale donne 0=Mg-N, en glissement $R_T=\mu_d N$, donc $\tan(\theta)=\frac{v_0^2}{\mu_d Rg}$ et $T=\frac{\mu_d Mg}{\cos(\theta)}$