INTEGRATION

Area Problem
Derivative of a Function

DEFINITE INTEGRAL

If a function f is contunuous on an interval [a, b], then f is integrable on [a, b], and the net area A between the graph of f and the interval [a, b] is

$$A = \int_{a}^{b} f(x) dx$$

THEOREM

If f and g are integrable on [a,b] and if c is a constant, then cf, f+g and f-g are also integrable on [a,b] and

(a)
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

(b)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

How to put the upper and lower LIMIT AFTER INTEGRATION Or

HOW TO GET DEFINITE VALUE

$$A = \int_{a}^{b} f(x)dx$$

= $[I(x)]_a^b$ [By considering the result of integration is I(x)]

$$= I(b) - I(a)$$

EXAMPLE

$$A = \int_{1}^{2} x dx = \left[\frac{x^{2}}{2} \right]_{1}^{2} = \frac{2^{2}}{2} - \frac{1^{2}}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}$$

PROBLEMS

1.
$$\int_{-1}^{3} (x-5) dx$$

2.
$$\int_0^{\pi} \sin 2x dx$$

HOME-WORK

Evaluate the followings.

1.
$$\int_0^{1/2} e^{2x} dx$$

2.
$$\int_{-\pi/2}^{\pi/2} \cos x dx$$

PROPERTY OF DEFINITE INTEGRAL

If f is continuous and nonnegative on the interval [a, b], and if c is a point between a and b, then the area under y = f(x) over the interval

[a,b] can be split into two parts and expressed as the area under the graph from a to c plus the area under the graph from c to b, that is,

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

PROBLEM

Evaluate
$$\int_0^3 f(x) dx$$
 if $(x) = \begin{cases} x^2, & x < 2 \\ 3x - 2, & x \ge 2 \end{cases}$.

THEOREM

(a)

If f is integrable on [a, b] and $f(x) \ge 0$ for all x in [a, b], then

$$\int_{a}^{b} f(x)dx \ge 0$$

(b)

If f and g are integrable on [a,b] and $f(x) \ge g(x)$ for all x in [a,b], then

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$$

AREA BETWEEN CURVES

Area =
$$\int_{x=a}^{x=b} (d-c)dx$$

Area =
$$\int_{y=c}^{y=d} (b-a) dy$$

$$y = m_1 x + c_1 \qquad \Rightarrow x = \frac{1}{m_1} (y - c_1)$$

$$y = m_2 x + c_2$$
 $\Rightarrow x = \frac{1}{m_2} (y - c_2)$

Area =
$$\int_{y=c}^{y=d} \left[\frac{1}{m_2} (y - c_2) - \frac{1}{m_1} (y - c_1) \right] dy$$

Area =
$$\int_{x=a}^{x=b} [(m_1x + c_1) - (m_2x + c_2)]dx$$

$$y = m_1 x + c_1 \qquad \Rightarrow x = \frac{1}{m_1} (y - c_1)$$

$$y = m_2 x + c_2$$
 $\Rightarrow x = \frac{1}{m_2} (y - c_2)$

Area =
$$\int_{y=c}^{y=d} \left[\frac{1}{m_1} (y - c_1) - \frac{1}{m_2} (y - c_2) \right] dy$$

$$y^2 = ax + b$$
 $\Rightarrow x = \frac{1}{a}(y^2 - b)$

$$y = m_1 x + c_1$$
 $\Rightarrow x = \frac{1}{m_1} (y - c_1)$

Area =
$$\int_{y=c}^{y=d} \left[\frac{1}{m_1} (y - c_1) - \frac{1}{a} (y^2 - b) \right] dy$$

$$y^2 = ax + b$$
 $\Rightarrow y = \sqrt{ax + b}$

Area =
$$\int_{x=c}^{x=d} [\sqrt{ax+b} - (m_1x+c_1)]dx$$

Problems

Find the area of the region bounded by the following curves:

a)
$$x = -3, x = 2, y = 0$$
 and $y = 4$

Result: 20

b)
$$x = 5, y = 0, y = 4$$
 and $y = 2x$

Result: 16

c)
$$x = 0, y = 1, y = 4$$
 and $x + y = 5$

Result: 15/2

d)
$$x = 0, x - 3y = 0$$
 and $2x + 3y = 9$

Result: 9/2

e)
$$y = x + 1$$
 and $y = x^2 - 1$

f)
$$x^2 + y^2 = 4$$
, $x = -1$ and $x = 1$

g)
$$y^2 = x$$
 and $x^2 = y$

Home-Works

Find the area of the region bounded by the following curves:

1.
$$x = \frac{1}{2}$$
, $x = 4$, $y = -1$ and $y = 1$ Result: 7

Result:
$$\frac{3}{2}$$

2.
$$x = 0$$
, $x = 1$, $y = x$ and $y = 2$

3.
$$x = 0$$
, $y = x$, and $y = 2$

4.
$$x = -3, x = 0, y = 0 \text{ and } y = 3x - 1$$
 Result: $\frac{33}{2}$

5.
$$x = -2$$
, $x = 4$, $y = x - 2$ and $x^2 = 4y$ Result: 12

$$3. \quad \lambda = 2, \lambda = 1, y = \lambda$$

6.
$$y = x$$
 and $y = x^2 - 2x$

7.
$$x^2 + y^2 = 1$$
, $x = -1$ and $x = 0$

8.
$$x = -\sqrt{1 - y^2}$$
 and $x = 0$

Result:
$$\frac{\pi}{2}$$
Result: $\frac{\pi}{2}$

$$y = 1$$
 Result: 7

- - Result: 2

Result: $\frac{9}{2}$