Using Deep Neural Inspector to Evaluate Predictive Embeddings in Gang-Affiliated Tweets

Alyssa Hwang

ahh2143@columbia.edu

Background

- Deep Neural Inspector (DNI): evaluates how much a machine learning model has learned by comparing hypothesis functions to the output of neuron/layer
- Use a model that classifies gang-related
 Tweets as aggression, loss, or other
- Represent each Tweet as a vector of values from the Dictionary of Affect in Language (scale of 1-3)
 - Pleasantness
 - Activation
 - Imagery

Research Questions

- How can we make the DNI work on the NLP model?
- What does the NLP model learn in relation to the pleasantness, activation, or imagery of each word in a Tweet?

Methodology

- Collect dataset: Tweets posted by affiliates of a Chicago gang
- Define four models: random/trained aggression and loss classifiers
- Write feature functions to produce vectors of DAL values for each input text
- Run DNI on first (unigrams) and second (bigrams) layers separately, measuring F1 scores with absolute correlation and logistic regression

Results

Table 1: Top F1 Scores, First Convolutional Layer (Unigrams)									
Model	Metric	Node (hypothesis)		Random	Trained				
Aggression	Absolute	21	(imagery)	0.0168	0.329				
	Correlation	10	(imagery)	0.0370	0.328				
		124	(activation)	0.164	0.311				
	Logistic	(Imagery)		0.645	0.843				
	Regression	(Pleasant)		0.587	0.836				
		(Activation)		0.543	0.832				
Loss	Absolute	155	(imagery)	0.0818	0.385				
	Correlation	96	(imagery)	0.0250	0.321				
		66	(imagery)	0.102	0.312				
	Logistic	(Imagery)		0.645	0.853				
	Regression	(Pleasant)		0.561	0.826				
		(Activation)		0.541	0.827				

	Table 2: Top F1 S	Scores, S	Second Convoluti	onal Layer (Bigran	ns)
Model	Metric	Node (hypothesis)		Random	Trained
Aggression	Absolute	28	(activation)	0.0397	0.190
	Correlation	190	(imagery)	0.0748	0.185
		124	(activation)	0.0505	0.174
	Logistic	(Imagery)		0.396	0.457
	Regression	(Pleasant)		0.398	0.444
		(Activation)		0.355	0.413
Loss	Absolute	37	(imagery)	0.0150	0.200
	Correlation	23	(imagery)	0.0193	0.193
		2	(imagery)	0.0772	0.165
	Logistic	(Imagery)		0.367	0.456
	Regression	(Pleasant)		0.370	0.450
		(Activation)		0.309	0.391

Figure 1: Absolute correlation of aggression model for neuron 60 of the first convolutional layer (unigrams)

Figure 2: Absolute correlation of aggression model, neuron 152 (activation hypothesis)

Discussion

- F1 scores were higher for trained models, as expected, confirming that DNI does work
- Model does learn, as indicated by the higher absolute correlation to the hypothesis functions
- Larger logistic regression score → layer works better as a whole than individual neurons
- The loss models showed lower scores for both layers, suggesting that their performance is lower or that it is easier to classify aggression
- The second convolutional layer showed much lower scores than the first convolutional layer, suggesting that unigrams are more advantageous for learning than bigrams

Further Studies

- Learning more about the NLP model
 - Higher performance for low pleasantness and higher activation?
 - Particular keywords or sentiment?
- Lexical Inquiry Word Count: word families
- Evaluating past ML models and building more efficient ones in the future

Literature

Detecting Gang-Involved Escalation on Social Media Using Context. For publication.

Predictive Embeddings for Hate Speech Detection on Twitter. For publication.

Langman, Peter. School Shooters: Understanding High School, College, and Adult Perpetrators. N.p.:Rowman & Littlefield, 2015. Print

Oatley G., Crick T. (2014) Changing Faces: Identifying Complex Behavioural Profiles. In: TryfonasT., Askoxylakis I. (eds) Human Aspects of Information Security, Privacy, and Trust.

HAS 2014.Lecture Notes in Computer Science, vol 8533. Springer, Cham

Oksanen, Atte, Pekka Rasanen, and James Hawdon. "Hate Groups: From Offline to Online SocialIdentifications." The Causes and Consequences of Group Violence: From Bullies to Terrorists.Lanham, MD: Lexington, 2014. N. pag. Print.

Sumner, C., Byers, A., Boochever, R., Park, G.J.: Predicting Dark Triad Personality Traits from Twitter Usage and a Linguistic Analysis of Tweets. In: Proceedings of the 11th International Conference on Machine Learning and Applications (ICMLA 2012). IEEE Press (2012)

Acknowledgments

I would like to thank Kathy McKeown, Eugene Wu, Thibault Sellam, Ruiqi Zhong, and Michelle Yang for their generous support and feedback.

