Netwon's Law Problem #1

October 13, 2006

- 1. For the first part of this problem, this is the situation: You have N identical blocks of mass m lying on a frictionless surface. Consecutive blocks are connected by identical, massless, unstretchable strings of length L. Someone pulls the leading block with a constant force F.
 - (a) What is the tension in the string connecting the i^{th} block to the $i + 1^{th}$ block? Express your answer in terms of any/all of the following: i, N, m, F, and L.
 - (b) Okay, I lied. The blocks are not identical. Each successive block has a greater mass than the previous block by some small amount δ , and the leading block still has mass m. Now, what's the tension in the string connecting the i^{th} block to the $i+1^{th}$ block? Express your answer in terms of any/all of the following: i, N, m, F, L, and δ .
- 2. Now we consider a similar but slightly different situation. N point particles, each of mass m, are lying stationary on a frictionless vertical circular track of radius R. Successive particles are connected by identical massless, unstretchable strings of length L. Initially, this system of N particles is in an equilibrium position on the track. Then, a force F is applied to the leading block in the direction of its expected motion around the circle.
 - (a) For N odd, what is tension between the i^{th} block and the $i+1^{th}$ block immediately after the force is applied? Express your answer in terms of g, m, N, i, R, L, F, and the tension between the $i-1^{th}$ block and the i^{th} block, which we'll call T_{i-1} ?
 - (b) For N even, what is the tension (ditto parameters above)? This is not a trick question; the answers are different because the equilibrium geometries for even and odd N are different.