О ВОЗМОЖНОСТИ ЧЕРЕНКОВСКОГО ИЗЛУЧЕНИЯ у-КВАНТОВ ЭЛЕКТРОНАМИ

В.В.Федоров, А.И. Смирнов

Показано, что при учете резонансного рассеяния у-квантов ядрами коэффициент преломления для них может стать больше единицы, поэтому для быстрых электронов возможно монохроматическое черенковское у-излучение. Приведены оценки его интенсивности.

- 1. Известно, что отсутствие черенковского излучения в рентгеновской области связано с тем, что рентгеновские частоты лежат выше всех резонансных частот атома, поэтому коэффициент преломления для рентгеновских лучей, возникающий в результате релеевского рассеяния на атомах, всегда меньше единицы.
- 2. Ситуация изменяется, если учесть когерентное рассеяние фотонов ядрами. При этом отрицательная добавка к единице в коэффициенте преломления от релеевской амплитуды может быть скомпенсирована положительным вкладом от амплитуды резонансного рассеяния уквантов ядром. В результате для у-квантов с энергией близкой к резонансной коэффициент преломления может стать больше единицы. Поэтому при движении электрона в среде, содержащей ядра, резонансно рассеивающие у-кванты, возможно возникновение черенковского излучения у-квантов вблизи резонансной частоты, для которых коэффициент преломления больше единицы.
- 3. Как известно, коэффициент преломления для фотонов связан с амплитудой рассеяния вперед f следующим образом (см. [1]):

$$n = 1 + \frac{\lambda^2}{2\pi} Nf = 1 + F, \qquad (1)$$

где λ — длина волны фотона, N — число атомов в единице объема. Амплитуда рассеяния вперед f при учете ядерного рассеяния представляет собой сумму релеевской амплитуды f^R и когерентной амплитуды ядерного рассеяния f^N :

$$f = f^R + f^N . (2)$$

Релеевская амплитуда вдали краев поглощения определяется классическим радиусом электрона r₂:

$$f^{R} = -Zr_{e}, (3)$$

где Z — атомный номер. Когерентная ядерная амплитуда вперед для дипольных переходов имеет вид (см. например, [2]):

$$f^{N} = -\frac{2j'+1}{2j+1} \frac{\lambda}{8\pi} \frac{f^{2}(k^{2})\Gamma_{i}}{\omega - \omega_{0}' + (i\Gamma/2)}, \qquad (4)$$

где Γ_i — радиационная ширина, Γ — полная ширина уровня, связанная с Γ_i соотношением Γ = $(1+a)\Gamma_i$, a — коэффициент внутренней конверсии, $f(k^2)$ — фактор Лэмба — Мессбауэра, j и j — соответственно спины возбужденного и основного состояний ядра, ω — частота γ -кванта, ω — частота резонансного уровня. Вещественная часть амплитуды f_r , определяющая вещественную часть коэффициента преломления n_r , имеет вид 1 :

$$f_r = -Zr_e - \frac{2j'+1}{2j+1} \frac{\lambda}{8\pi} \frac{\Gamma_i \Delta}{\Delta^2 + \Gamma^2/4}$$
, (5)

где $\Delta = \omega - \omega_o$. Из (5) нетрудно видеть, что f, имеет максимум при $\Delta = -\Gamma/2$, причем

$$\max f_r = -Zr_e + \frac{2j'+1}{2j+1} \frac{\lambda}{8\pi} \frac{\Gamma_i}{\Gamma} \qquad (6)$$

Таким образом, для длин волн у-квантов $\lambda > 8\pi Zr_e$ вещественная часть коэффициента преломления может быть больше единицы в некоторой области слева от резонанса (при $\omega < \omega_o$). Поэтому при движении заряженной частицы в такой среде со скоростью $v > c/n_e$ возникнет черенковское излучение на частоте $\omega \approx \omega_o - \Gamma/2$.

4. Для оценки интенсивности излучения можно воспользоваться формулой Будини [3] для числа фотонов, излучаемых в единицу времени при движении заряженной частицы в среде с комплексным показателем преломления. При $|n_r - 1| << 1$ имеем:

$$\frac{dN}{dt} = \frac{e^2}{\hbar c} \int \left[1 - \frac{1}{\beta^2 n_r^2(\omega)}\right] d\omega , \qquad (7)$$

¹⁾ Фактор Лэмба - Мессбауэра полагаем равным единице.

тще $\beta=v/c$, а интегрирование по области βn , > 1. Использук (1) и то, что $\beta^2=1-(1/\epsilon^2)$, где $\epsilon=mc^2/m_{_0}c^2$ — полная энергия частицы в единицах массы покоя, получим:

$$\frac{dN}{dt} = \frac{e^2}{\hbar c} \int \left[F_r(\omega) - \frac{1}{\epsilon^2} \right] d\omega . \qquad (8)$$

Интегрируя (8), окончательно будем иметь:

$$\frac{dN}{dt} = \frac{e^2}{\hbar c} \left(\frac{1}{\epsilon^2} - F^R \right) \frac{\Gamma}{2} \left[\gamma \ln \frac{\delta_-^2 + 1}{\delta_+^2 + 1} - (\delta_+ - \delta_-) \right], \qquad (9)$$

rge
$$\gamma = \max F_r^N / [(1/\epsilon^2) - F^R], \quad \delta_{\pm} = -\gamma \pm \sqrt{\gamma^2 - 1}.$$

5. В качестве примера рассмотрим изотоп германия Ge^{73} с мессбауэровским переходом $7/2^+ o 9/2^+$ (энергия перехода $\sim 67 \ \kappa \mathfrak{s}\mathfrak{s}$). Для него a=0,2, $\Gamma\approx 10^8$ гц [4]. Используя (3), (5) будем иметь $|F^R|\approx 3\cdot 10^{-7}$. $maxF_r^N\approx 18\cdot 10^{-7}$. Т. е. максимум ядерной амплитуды в шесть раз превосходит релеевскую. Для энергии электронов $\sim 3\ F\mathfrak{s}\mathfrak{s}$ ($\epsilon\approx 6\cdot 10^3$) имеем $\gamma\approx 6$, $\delta_+\approx -0$,1, $\delta_-\approx -11$,9, так что для числа излученных электроном
в единицу времени фотонов получим величину $dN/dt\approx 4\ ce\kappa^{-1}$. При токе $\sim 10\ m\kappa a$, от мишени толшиной $\sim 10^{-3}\ cm$ (максимальная длина
поглошения у-квантов в резонансе $\sim 10^{-3}\ cm$) будем иметь $\sim 10\ \phi$ отонов/сек
При использовании электронного накопителя эта величина возрастет по крайней мере на три порядка, т. е. будет составлять $\sim 10^4\ \phi$ отонов/сек.

Отметим, что фотоны будут испускаться практически вперед под углом $\theta=\sqrt{2\ F_r}-1/\epsilon^2 < 10^{-3}\ \kappa$ направлению движения электрона. Энергии
излучаемых фотонов будут лежать в очень узком интервале порядка
нескольких ширин линии, что составляет величину $\sim 10^{-6}\ \mathfrak{s}\mathfrak{s}$, при энергии самих γ -квантов $\sim 67\ \kappa\mathfrak{s}\mathfrak{s}$.

В заключение авторы выражают глубокую благодарность Ю.С.Грушко, В.А.Рубану, О.И.Сумбаеву за полезные обсуждения.

Институт ядерной физики им. Б.П.Константинова Академии наук СССР

Поступила в редакцию 22 ноября 1975 г.

Литература

- [1] Р.Ньютон. Теория рассеяния волн и частиц, М., изд. Мир, 1969.
- [2] В.А.Беляков. УФН, 115, 553, 1975.
- [3] P.Budini. Nuovo cim. 10, 236, 1953.
- [4] Mössbauer effect data index 1969, edited by J.G.Stevens and V.E.Stevens, IFI/Plenum, New-York Washington, 1969.