Discrete Relations

Period

Each set of ordered pairs represents a relation. Represent the relation as a table.

1)
$$\{(-7, 1), (-3, 0), (-2, -1), (4, 7), (6, 4)\}$$

1)
$$\{(-7, 1), (-3, 0), (-2, -1), (4, 7), (6, 4)\}$$
 2) $\{(-1, -2), (0, -3), (0, 2), (6, -2), (7, -7)\}$

Each set of ordered pairs represents a relation. Represent the relation as a graph.

3)
$$\{(-3, -6), (-1, 6), (0, 4), (5, 3), (7, 1)\}$$

4)
$$\{(-2, 7), (0, 1), (3, -7), (7, -2), (7, 0)\}$$

Each set of ordered pairs represents a relation. Represent the relation as a mapping diagram.

5)
$$\{(-6, -7), (-6, 3), (0, -7), (3, -4), (5, 6)\}$$
 6) $\{(-6, 7), (-5, 6), (3, 5), (3, -4), (6, 4)\}$

6)
$$\{(-6, 7), (-5, 6), (3, 5), (3, -4), (6, 4)\}$$

Each graph represents a relation. Represent the relation as a table, a set of ordered pairs, and a mapping diagram. Then determine the domain/range and if the relation is a function.

7)

8)

Discrete Relations

Period

Each set of ordered pairs represents a relation. Represent the relation as a table.

1)
$$\{(-7, 1), (-3, 0), (-2, -1), (4, 7), (6, 4)\}$$

х	y
-7	1
-3	0
-2	-1
4	7
6	4

1)
$$\{(-7, 1), (-3, 0), (-2, -1), (4, 7), (6, 4)\}$$
 2) $\{(-1, -2), (0, -3), (0, 2), (6, -2), (7, -7)\}$

х	y		
-1	-2		
0	-3		
0	2		
6	-2		
7	-7		

Each set of ordered pairs represents a relation. Represent the relation as a graph.

3)
$$\{(-3, -6), (-1, 6), (0, 4), (5, 3), (7, 1)\}$$

4)
$$\{(-2, 7), (0, 1), (3, -7), (7, -2), (7, 0)\}$$

Each set of ordered pairs represents a relation. Represent the relation as a mapping diagram.

5)
$$\{(-6, -7), (-6, 3), (0, -7), (3, -4), (5, 6)\}$$

$$6) \ \{(-6,7),(-5,6),(3,5),(3,-4),(6,4)\}$$

Each graph represents a relation. Represent the relation as a table, a set of ordered pairs, and a mapping diagram. Then determine the domain/range and if the relation is a function.

7)

х	-7	-1	1	6	6	7
у	1	-3	7	1	-7	2

Domain

Range

 $\{(-7, 1), (-1, -3), (1, 7), (6, 1), (6, -7), (7, 2)\}$

Domain: $\{-7, -1, 1, 6, 7\}$

Range: $\{-7, -3, 1, 2, 7\}$

The relation is not a function.

8)

х	-7	-6	-3	-1	2	5
y	6	5	-2	0	7	1

Domain

Range

 $\{(-7, 6), (-6, 5), (-3, -2), (-1, 0), (2, 7), (5, 1)\}$

Domain: $\{-7, -6, -3, -1, 2, 5\}$

Range: $\{-2, 0, 1, 5, 6, 7\}$

The relation is a function.