

Investor presentation for EUR25m Raise

Q3-2024

Presentation contents

Company introduction

A. Company introduction

We are a committed and experienced team dedicated to develop and scale LionVolt

Leadership & advisory team

Leadership team

Kevin Brundish | CEO

- 30 years experience inc. C-level
- Corporate, public and numerous high-tech startups & advisory boards

Sandeep Unnikrishnan | CTO

- PhD in Fuel cells & Nanotechnology
- 25 years relevant tech experience, 10 years experience in Batteries

Vivian Smetsers | CFO

 10+ years experience in investment and CFO roles with corporates and start-ups

Joris Winkelman | Head of Strategy

 10+ years experience in strategy consulting and deep tech start-up/scale-up advisory

Selected investors

Innovation Industries

Selected R&D partnerships

Senior advisor

Steven Farmer | Senior product development & battery cell advisor

40+ years experience in technology development, with 25 years in batteries, incl. COO and Head of Product Development roles

LionVolt was founded in 2020 and builds on a decade of R&D work

LionVolt is developing a unique 3D electrode architecture which enables next generation battery cells with superior performance

LIONYOLT MISSION

Accelerating electrification
with an innovative 3D
electrode architecture which
enables next generation
battery cells with superior
performance

Enabling 800

Enabling 800+ kilometre driving range

Unlocking battery powered airplanes

New applications

Allowing **Al** in **consumer wearables**

Sustainable future

Helping the world to electrify and bring down global CO2 emissions

Superior tech

Enabling fast charge <10 minutes

137

Delivering superior energy density up to 3x

Increasing battery cell safety performance

The 3D electrode architecture is unique as it simultaneously boosts energy density and power

LionVolt's 3D electrode technology

LionVolt has an R&D center in Eindhoven (HTC) and two pilot production sites in the UK and NL

LionVolt locations

HQ & Innovation center

LionVolt's HQ is based in Eindhoven in the heart of the "Brainport" region in the Netherlands, leveraging decades of experience in thin film technologies in semi-conductor and photonics applications into our battery cell designs

Cell pilot plant

LionVolt has a product development and manufacturing site with a MWh capacity in Thurso, UK (acquired in 2024)

3D anode pilot plant

LionVolt is **developing a pilot manufacturing line**, located on the Brainport Industries Campus (BIC) for the production of 3D anodes and electrolytes

B. The opportunity & our solution:3D li-metal anodes

The world is looking for next generation batteries to address the energy density limitations of conventional lithium-ion batteries

Battery cell energy density development & forecast (illustrative)

LiB players have long focused on cathode materials – The next performance boost will come from anode optimization, with Li-metal as most promising

Potential of Lithium-Metal Anodes

¹⁾ Cell specific energy is based on traditional cell design and architectures

The industry has been facing challenges to make Li-metal work – LionVolt has found a solution to address these challenges with its 3D structured anodes

LionVolt 3D Li-metal technology

Conventional Li-ion: Graphite anodes

- High volume/weight of anode resulting in sub-optimal volumetric and gravimetrical energy density
- Low cell degradation allowing for high cycle life

LIONVOLT

LionVolt's approach: 3D Li-metal anodes

- Lower volume/weight of anode resulting in improved volumetric and gravimetrical energy density
- Large surface area of 3D architecture results in lower local current density:
 - Preventing cell degradation (higher cycle life)
 - Higher power and charging speed
 - **★** Increased safety

The industry approach: Li-metal anodes

- Lower volume/weight of anode resulting in improved volumetric and gravimetrical energy density
- Industry struggles with Li-metal due to fast cell degradation (formation of dendrites leading to lower cycle life)
- Challenges related to cell safety

LionVolt's 3D electrode technology can be employed across lithium-ion chemistries and beyond that in sodium-ion and solid-state

The displacement potential of LionVolt's 3D Li-metal anodes is huge – The Limetal market is estimated at EUR 15 bn in 2030 (and EUR 130 bn in 2035)

Li-Metal market potential

Li-ion battery cell market forecast by anode chemistry (2023-2035) [EUR bn]

- The displacement potential of Li-metal cells is huge given its superior energy density performance characteristics
- Value share of li-metal is expected to overtake siliconbased anodes due to higher energy density potential of low silicon blends and high scalability cost of pure silicon options
- The li-metal anode share of the total battery market is estimated to exceed 22% by 2035 according to a BloombergNEF study
- LionVolt is one if the key players to drive the displacement of graphite anodes

LionVolt 14

¹⁾ High-silicon refers to silicon-graphite composite anodes using more than 50% silicon; 2) Market share of Li-Metal in BEV based on BNEF analysis and taken as a proxy for Li-Me share in other applications; 3) Li-ion value chain revenue in '30 based on McKinsey estimate and 80% Cell value share of pack [%]; 2035 market estimate based on a 15% CAGR in the period '30-'35

The first focus is to develop a 3D li-metal anode which can be used as a drop-in solution to increase conventional li-ion battery performance

LionVolt's 3D Li-metal anodes – target application impact¹⁾ [illustrative]

¹⁾ Application impact based on same cell dimensions

Next generation cells which contain LionVolt's 3D electrodes will be highly competitive from a cost perspective

Scalable manufacturing (illustrative)

Cell level energy density performance [index]

Cell level cost – at scale [index]

¹⁾ At scale, we believe that cells containing LV's 3D anodes will cost 5-10% less per kWh vs. conventional cells. Cost estimate includes anode and cell material and manufacturing costs and is based on initial cost modelling

Key competitive advantages of LionVolt's Li-metal product are the ability to leverage existing infrastructure and the low-cost roll-to-roll method

Competitive landscape – selected companies (simplified and illustrative)

Key LionVolt competitive advantages technology **Unique 3D technology** avoids dendrite formation in Li-metal cells improving cycle Fast charge rates driven by 3D architecture Drop-in solution: High ability to leverage existing LiB production infrastructure Low-cost roll-to-roll manufacturing approach No reliance on solid state electrolyte technology to make li-metal work

C. Roadmap to mass production

The main focus of LionVolt is to produce and supply 3D li-metal anodes to battery cell manufacturers

Business model & value chain focus

LionVolt value chain focus Cell Cell **Battery Pack Battery Driven** Raw materials Recycling **Products** components manufacturing production BASE LionVolt will produce cells at low volumes for entry market 3D Li-Metal customers to open up the market for its Li-metal anodes The main focus will be to produce and supply 3D Li-metal anodes CASE anodes to battery cell producers – first at MWh scale then scaling up to GWh capacity in a supply or license model As an upside scenario, LionVolt can focus on manufacturing and **UPSIDE** supplying battery full cells to customers for its 3D Na-metal cells 3D Na-Metal & and solid-state cells – both based on its 3D electrode architecture Solid-state cells

Base case value chain focus

Upside potential value chain focus

LionVolt's roadmap is anchored around reaching a 5 GWh capacity by end of 2030

Roadmap

- Single layer protypes in place
- Cell pilot line operational

- Model A cells in place with customers
- 3D anode pilot line operational

The next key milestone for LV's 3D Li-metal product is reaching 1,000 cycles at 3C and having model A customer cells in place (end of 2026)

Product 1 (3D Li-metal) roadmap & key milestones

¹⁾ Energy density performance compared to conventional lithium-ion and sodium-ion technology and various cathode chemistries (incl. LFP/NMC/NCA/LCO);

²⁾ Cycle life defined as the number of cycles until 80% state of health is reached; 3) Model-based energy density improvement vs. conventional Li-ion;

⁴⁾ Energy density performance improvement demonstrated at multi-layer pouch cell level

The pre-pilot line supports research activities – The 3D anode and cell pilot lines support product development activities with customers

Overview of LV (pilot) production facilities

Production facility	Opera- tional	Illustration	Location	Key function	Start of operations	Selected capabilities	Production capacity
Pre-pilot line (HTC)	\rightarrow		High Tech Campus, Eindhoven (NL)	 Production of 3D anodes at small scale for research Manufacturing of coin cells & single-layer cells 	Start of 2024	 3D technology capabilities for 3D anode and solid electrolyte (research scale) Coin cell production 	kWhs/year
Cell pilot line (Thurso)			Thurso Business Park, Thuso (UK)	Production of multi- layer (sample) cells for technology demonstration and entry market cell sales	Operational since 1990s (acquired in January 2024)	 Full scope of wet end (mixing/coating) Full scope dry end Pouch cells and cylindrical cells (various formats) 	MWhs/year
3D anode			Brainport Industries	Production of 3D anodes and solid	2025 (phase 1) 2026 (phase 2)	3D technology capabilities for anode and	MWhs/year

pilot line (BIC)

Campus, Eindhoven (NL)

electrolyte at larger scale for customer samples and cells

electrolyte (large scale)

Construction ongoing

Consumer wearables & electronics are prioritized as early adopter markets, after which the high-volume mobility market will be targeted

Go to market approach (illustrative)

Go-to-market approach

Consumer

electronics and **UAV/drones** are prioritized as early adopter markets. These markets are

- · High demand for improved
- performance · Relative ease of market access
- Higher margins

After LionVolt has proven its technology in early adopter markets, the company will enter the high volume / high growth mobility

This market demands larger capacities, faster charging and safety at the right price

Limited / slow High / fast

LionVolt experiences high traction from potential customers

Commercial opportunity overview **Entry markets** Volume markets -Original Equipment 3x opportunities 3x opportunities 1x opportunity **6x opportunities** 2x opportunities Manufacturer (OEM) Battery cell 4x opportunities manufacturer **Mobility & Battery Battery electric Unmanned arial** electric vehicles (BEV) aircrafts wearables electronics vehicles (drones)

LionVolt is targeting a funding round of EUR 25 m – Main uses are pilot line CAPEX and personnel cost

P&L, cash flow and cash balance forecast (2025-2026) [EUR m]

Sources & uses (2025-2026)

Remarks

Sources

- EUR 25 m equity fundraise
- EUR 2.8 m in non-dilutive funding (incl. GFII and GFIII)
- EUR 5.5 m additional targeted non-dilutive funding

Uses (selection)

- CAPEX to finalize the 3D anode pilot line
- Ramping up personnel base (product development and pilot manufacturing team)

Follow-up funding

 A next funding round of EUR 50 m is foreseen in 2027 to support further scale-up and preparations for the GWh-facility

Revenue of LionVolt is forecasted to reach EUR 800 m by 2034 in the base case scenario at ~30% EBIT margin – Upside potential is substantial

- Base case: Fast penetration of 3D Li-metal anode (product 1) only
- Upside Na-metal: Base case + Scale-up of 3D Na-metal cell capacity (product 2)
- Upside solid-state: Base case + Upside Na-metal + Scale-up of 3D Solid-state Li-sulfur cell capacity (product 3)

Scale-up assumptions: Base case scenario is based on scaling up capacity in 5 tranches of 5/5/5/10 GWh, operational in the period 2030-2034. Upside potential Na-metal is based on scaling up capacity of Na-metal cells in 4 tranches of 1/1/2/2 GWh, operational in the period 2031-2034. Upside potential solid-state is based on scaling up capacity of solid-state cells in 3 tranches of 1/1/2 GWh, operational in the period 2032-2034.

Revenue of LionVolt is forecasted to reach EUR 800 m by 2034 in the base case scenario at ~30% EBIT margin – Upside potential is substantial

- Base case: Fast penetration of 3D Li-metal anode (product 1) only
- Upside Na-metal: Base case + Scale-up of 3D Na-metal cell capacity (product 2)
- Upside solid-state: Base case + Upside Na-metal + Scale-up of 3D Solid-state Li-sulfur cell capacity (product 3)

Scale-up assumptions: Base case scenario is based on scaling up capacity in 5 tranches of 5/5/5/10 GWh, operational in the period 2030-2034. Upside potential Na-metal is based on scaling up capacity of Na-metal cells in 4 tranches of 1/1/2/2 GWh, operational in the period 2031-2034. Upside potential solid-state is based on scaling up capacity of solid-state cells in 3 tranches of 1/1/2 GWh, operational in the period 2032-2034.

Revenue of LionVolt is forecasted to reach EUR 800 m by 2034 in the base case scenario at ~30% EBIT margin – Upside potential is substantial

- Base case: Fast penetration of 3D Li-metal anode (product 1) only
- Upside Na-metal: Base case + Scale-up of 3D Na-metal cell capacity (product 2)
- Upside solid-state: Base case + Upside Na-metal + Scale-up of 3D Solid-state Li-sulfur cell capacity (product 3)

Scale-up assumptions: Base case scenario is based on scaling up capacity in 5 tranches of 5/5/5/10 GWh, operational in the period 2030-2034. Upside potential Na-metal is based on scaling up capacity of Na-metal cells in 4 tranches of 1/1/2/2 GWh, operational in the period 2031-2034. Upside potential solid-state is based on scaling up capacity of solid-state cells in 3 tranches of 1/1/2 GWh, operational in the period 2032-2034.

LIONYOLT

Thank you

website: <u>www.lionvolt.com</u>