Programación con Restricciones Constraint Programming [MII-771] Capítulo 3: Modelado

Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso

Solving = Modeling + Search

Ejemplo 1 - SEND+MORE=MONEY

Resolver la siguiente ecuación, reemplazando las letras por dígitos distintos.

Modelo

Variables

$$S,E,N,D,M,O,R,Y \in [0,9]$$

Restricciones

$$S \neq E$$
, $S \neq N$, $S \neq D$... $R \neq Y$

Usando Global Constraints

Variables

$$S,E,N,D,M,O,R,Y \in [0,9]$$

Restricciones

alldifferent(S, E, N, D, M, O, R, Y)

Ejemplo 2 - N-Queens

Ubicar $\mathbf n$ reinas en un tablero de ajedrez de $\mathbf n \times \mathbf n$, de manera tal que no se puedan atacar.

Modelo

Variables

$$Q_1, Q_2, Q_3, Q_4 \in [1, 4]$$

• Restricciones (para $i \in [1,3]$ y $j \in [i+1,4]$)

$$Q_i \neq Q_j$$
 (filas)

$$Q_i + i \neq Q_j + j$$
 (diagonal 1)

$$Q_i - i \neq Q_i - j$$
 (diagonal 2)

Ejercicio 1 - Packing Squares

Ubicar un conjunto de cuadrados dentro una base cuadrada de tal manera que ningún cuadrado se translape con otro.

Variables

```
egin{align*} x_1, x_2, ..., x_{squares} \in [1, \textit{sideSize}] \ y_1, y_2, ..., y_{squares} \in [1, \textit{sideSize}] \ \end{aligned}
```

Constantes

```
sideSize
squares
size<sub>1</sub>, size<sub>2</sub>, ..., size<sub>squares</sub>
```

• Restricciones (para $i \in [1, squares]$) //inside

$$x_i \leq sideSize - size_i + 1$$

 $y_i \leq sideSize - size_i + 1$

• Restricciones (para $i \in [1, squares]$ y $j \in [i + 1, squares]$) //noOverlap

$$x_i + size_i \le x_j OR$$

 $x_j + size_j \le x_i OR$
 $y_i + size_i \le y_j OR$
 $y_i + size_i \le y_i$

Ejercicio 2 - Sudoku

Completar una matriz de 9x9 de manera tal que cada fila, cada columna y cada una de las sub-matrices de 3x3 tengan dígitos distintos del 1 al 9.

4 8 3										
9 8 6 6 6 4 8 3 7 2 6 6	5	3	5			7				
8 6 6 3 4 8 3 7 7 2 0 0	6		6		1	9	5			
4 8 3 · · · · · · · · · · · · · · · · · ·		9		8					6	
7 2 (8		8			6				3
	4		4		8		3			1
6 2 8	7		7			2				6
		6						2	8	
4 1 9 8					4	1	9			5
8 7 9						8			7	9

Variables

$$x_{1,1}, x_{1,2}, ..., x_{9,9} \in [1, 9]$$

• Restricciones (para $k \in [1, n], i \in [1, n], j \in [i + 1, n]$) //differentlnRowsAndColumns

$$X_{k,i} \neq X_{k,j}$$

 $X_{i,k} \neq X_{j,k}$

• Restricciones (para $k1, j1, k2, j2, k3, j3 \in [1, 3]$ y si $(k2 \neq k3 \ AND \ j2 \neq j3))$ //differentInSubSquares

$$X(k1-1)*3+k2,(j1-1)*3+j2 \neq X(k1-1)*3+k3,(j1-1)*3+j3$$

Usando Global Constraints

Variables

$$x_{1,1}, x_{1,2}, ..., x_{9,9} \in [1, 9]$$

• Restricciones (para $i \in [1, n]$) //differentInRowsAndColumns

```
alldifferent(getColumn(x, i))
alldifferent(getRow(x, i))
```

• Restricciones (para $i, j \in [1,3]$) //differentInSubSquares

```
all different (getSubMatrix(x, (i - 1) * 3 + 1, i * 3, (j - 1) * 3 + 1, j * 3));
```

Ejercicio 3 - Stable Marriage

Considere un grupo de n hombres y n mujeres que quieren casarse. Cada mujer tiene un ranking de preferencia para su posible marido y así como también cada hombre para su posible esposa. El objetivo es formar los matrimonios de manera tal de que no haya 2 personas de sexo opuesto que se gusten más que sus respectivas parejas.

Variables

 $husband_1, husband_2, ..., husband_n \in [1, n]$ $wife_1, wife_2, ..., wife_n \in [1, n]$

Constantes

 $man_rank_{1,1}, man_rank_{1,2}, ..., man_rank_{n,n}$ $woman_rank_{1,1}, woman_rank_{1,2}, ..., woman_rank_{n,n}$

• Restricciones (para $m \in [1, n]$) //matchHusbandWife

$$husband_{wife_m} = m$$

• Restricciones (para $w \in [1, n]$)

$$wife_{husband_w} = w$$

• Restricciones (para $m \in [1, n], w \in [1, n]$)

 $man_rank_{m,w} < man_rank_{m,wife_m} \Rightarrow woman_rank_{w,husband_w} < woman_rank_{w,m}$ $woman_rank_{w,m} < woman_rank_{w,husband_w} \Rightarrow man_rank_{m,wife_m} < man_rank_{m,w}$

Ej: Tracy está casada con Richard, Tracy prefiere a Richard en 3er lugar y Richard la prefiere en 1er lugar. Si Tracy quisiese cambiar su marido no podría ya que John (su primera preferencia) prefiere a su señora (Wanda) más que a Tracy igual que Hugh (casado con Linda) que prefiere a Tracy en último lugar.

Ejercicio 4 - Social Golfers

Considere un grupo de n golfistas que juegan una vez por semana y siempre en grupos de tamaño g. El objetivo es organizar un calendario para w semanas de manera tal que 2 golfistas no juegen juntos más de una vez.

Variables

 $schedule_{1,1}, schedule_{1,2}, ..., schedule_{weeks,groups} \in set of[1, players]$

Constantes

weeks groups groupSize

• Restricciones (para $w \in [1, weeks], g \in [1, groups]$) //groupSize

 $card(schedule_{w,g}) = groupSize$

• Restricciones (para $w \in [1, weeks], g1 \in [1, groups], g2 \in [g1 + 1, groups]$) //playOncePerWeek

$$card(schedule_{w,g1} \cap schedule_{w,g2}) = \varnothing$$

• Restricciones (para $w1 \in [1, weeks], w2 \in [w1 + 1, weeks], g1 \in [1, groups], g2 \in [1, groups])$ //differentGroups

 $card(schedule_{w1,q1} \cap schedule_{w2,q2}) \leq 1$

