

TREES

Algorithms and Data Structures 1 Exercise – 2023S Markus Jäger (Computer Science) Florian Beck (Artificial Intelligence) Bernhard Anzengruber (Artificial Intelligence)

Institute of Pervasive Computing Johannes Kepler University Linz

markus.jaeger@jku.at florian.beck@jku.at bernhard.anzengruber-tanase@jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

BINARY TREE :: REVIEW

A root

B is parent of D and E

C is sibling of B

D and E are children of B

D, E, F, H are external nodes or leaves

A, B, C, G are internal nodes

The depth of E is 2.

The height of the tree is 3.

The order of B is 2, the order of G is 1.

Number of edges is always equal to the number of nodes-1

BINARY TREE :: REVIEW

A tree in which each node has a maximum of 2 subtrees

Each node has 0, 1 or 2 child nodes

A binary tree of height h is **complete**, if it contains $2^{h+1} - 1$ nodes (all leaves have the same depth): e.g.: $h=3 \rightarrow 2^{3+1} - 1 = 16 - 1 = 15$

A binary tree of height *h* is **almost complete**, if it contains the maximum number of nodes on level 0 to *h*-1 and if all leaves at level *h* are placed in the leftmost position

BINARY SEARCH TREE :: PROPERTIES

A binary search tree is a binary tree T in which

- each node contains a key
- keys in the left sub-tree of a node *n* are **smaller than** (or equal to) the key stored in *n*
- keys in the right sub-tree of a node n are greater than the key stored in n
- external nodes have no child branches

BINARY SEARCH TREE :: STRUCTURE

Link structure of a binary search tree

BINARY SEARCH TREE :: TRAVERSAL

Systematically processing all nodes in a tree

postOrder traversal

- left, right, root
- · 2-3-1-4-6-8-7-5

preOrder traversal

- root, left, right
- 5-4-1-3-2-7-6-8

inOrder traversal

- left, root, right
- $\cdot 1 2 3 4 5 6 7 8$

BINARY SEARCH TREE:: INSERT

Greater elements on the right side

Smaller (or equal) elements on the left side

tree.insert(5)

tree.insert(18)

tree.insert(1)

tree.insert(8)

tree.insert(14)

tree.insert(16)

tree.insert(13)

tree.insert(3)

BINARY SEARCH TREE:: SEARCH

Termination criteria

- key is found
- search terminates in a leaf

BINARY SEARCH TREE:: SEARCH

Termination criteria

- key is found
- search terminates in a leaf

Iterative

```
def find(key, n):
    while n!=None and n.key!=key:
        if key < n.key:
            n = n.left
        else:
            n = n.right
    return n</pre>
```

Recursive

```
def find(key, n):
   if n==None:
     return None
   if n.key==key:
     return n
   if key < n.key:
     return find(key, n.left)
   return find(key, n.right)</pre>
```

 When searching for a non-existent element, we discover exactly where the element should be inserted → Reuse code!

Different cases with different solutions

Case 1: If node has no child node, it can simply be removed

- Search node *n*
- Store parent node p_n of n
- If $n < p_n \to (p_n)$. left = None
- If $n > p_n \to (p_n)$. right = None

Different cases with different solutions

Case 1: If node has no child node, it can simply be removed

- Search node *n*
- Store parent node p_n of n
- If $n < p_n \rightarrow (p_n)$. left = None
- If $n > p_n \to (p_n)$. right = None

Different cases with different solutions

Case 1: If node has no child node, it can simply be removed

Case 2: If node has only one child node, replace it by child node

- Search node *n*
- Store parent node p_n of n
- Store child node c_n of n
- If $n < p_n \rightarrow (p_n)$. left = c_n
- If $n > p_n \to (p_n)$. right = c_n

Different cases with different solutions

Case 1: If node has no child node, it can simply be removed

Case 2: If node has only one child node, replace it by child node

- Store parent node p_n of n
- Store child node c_n of n
- If $n < p_n \rightarrow (p_n)$. left = c_n
- If $n > p_n \to (p_n)$. $right = c_n$

Different cases with different solutions

Case 1: If node has no child node, it can simply be removed

Case 2: If node has only one child node, replace it by child node

Case 3: If node has two child nodes, we have to distinguish further cases

Different cases with different solutions

Case 3a: Node has two child nodes, optimizable

lf

- rc_n or lc_n has no child,
- *lc_n* has no right child,
- rc_n has no left child,

n can be efficiently replaced by this child without violating the order relation

Different cases with different solutions

Case 3a: Node has two child nodes, optimizable

lf

- rc_n or lc_n has no child,
- *lc_n* has no right child,
- rc_n has no left child,

n can be efficiently replaced by this child without violating the order relation

Different cases with different solutions

Case 3a: Node has two child nodes, optimizable

lf

- rc_n or lc_n has no child,
- *lc_n* has no right child,
- rc_n has no left child,

n can be efficiently replaced by this child without violating the order relation

Different cases with different solutions

Case 3a: Node has two child nodes, optimizable

lf

- rc_n or lc_n has no child,
- *lc_n* has no right child,
- rc_n has no left child,

n can be efficiently replaced by this child without violating the order relation

Different cases with different solutions

Case 3b: Node has two child nodes, not optimizable

- Search n, p_n, rc_n, lc_n
- Search InOrder-successor n_{+1}
 - > right-left-left-...-None
 - > The left child node of n_{+1} is None
- Store parent node $p_{n_{+1}}$
- Store right child node $rc_{n_{+1}}$ of n_{+1}
- $(p_{n+1}).left = rc_{n+1}$
- Swap n, n_{+1} and correct Parent-Child-Relation

Different cases with different solutions

Case 3b: Node has two child nodes, not optimizable

- Search n, p_n, rc_n, lc_n
- Search InOrder-successor n_{+1}
 - > right-left-left-...-None
 - > The left child node of n_{+1} is None
- Store parent node $p_{n_{+1}}$
- Store right child node $rc_{n_{+1}}$ of n_{+1}
- $(p_{n+1}).left = rc_{n+1}$
- Swap n, n_{+1} and correct Parent-Child-Relation

Different cases with different solutions

• Case 1: node has no child node

→ node can simply be removed

Case 2: node has only one child node

→ replace node by child node

• Case 3a: node has two child nodes, optimizable

• Case 3b: node has two child nodes, not optimizable

Special case

- What happens if the element to be removed is the root?
- What happens if the tree is empty?

TREES

Algorithms and Data Structures 1 Exercise – 2023S Markus Jäger (Computer Science) Florian Beck (Artificial Intelligence) Bernhard Anzengruber (Artificial Intelligence)

Institute of Pervasive Computing Johannes Kepler University Linz

markus.jaeger@jku.at florian.beck@jku.at bernhard.anzengruber-tanase@jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at