Курузов Илья, 678 Задание 1

1.

Далее используются обозначения ρ_i - приблизительное расстояние от путешественника до i-ого объекта, a_i - радиус-вектор i-ого объекта, x - искомый радиус-вектор путешественника

Оптимизационная задача:

$$\underset{x}{\operatorname{argmin}} \sum_{i=1}^{m} |\rho_i - ||x - a_i||_2 |,$$

$$x \in \mathbb{R}^3.$$

Решением будет точка в \mathbb{R}^3 , расстояния до которой от объектов "близки" к заданным. Для i-ого объекта степенью такой близости будет являться разница $|\rho_i - \|x - a_i\|_2$. Для того чтобы учесть разницу между всеми расстояниями, была выбрана целевая функция равная сумме этих разностей (т. е. l_1 норму вектора разностей).

2.

Характеристикой поселения будет вектор x, в котором x_i - номер комнаты i-ого студента. В этой задаче рассмотрим функцию выгоды от данного поселения. Она вычисляется следующим образом: изначально она равна нулю, если студенты i и j живет в одной комнате, т.е. $x_i = x_j$, то она увеличивается на p_{ij} , если студент i живет в комнате k, то значение функции увеличивается на b_{ij} . Тогда выражение ждя функции выгоды:

$$f(x) = \left(\sum_{x_i = x_j} p_{ij} + \sum_{x_i = j} b_{ij}\right)$$

и наша задача ее макисимизировать. Тогда как целевую функцию будем использовать -f(x) и минизировать её.

При построении считается, что удовлетворить желание жить вместе каких-то двух студентов в данной системе так же важно, как и удовлетворить желание жить в определнной комнате. В случае если не так,

то предлагается использовать поправочные коэффициенты для b_{ij} и p_{ij} , зависящие от уточнений к задаче.

В случае если нет некоторых значений p_{ij} , предлагается считать данные значения равными нулю. Т.е. если их поселить вместе, поселяющий ничего не выигрывает.

Оптимизационная задача:

$$\underset{x}{\operatorname{argmin}} \left(-\sum_{x_i = x_j} p_{ij} - \sum_{x_i = j} b_{ij} \right), \tag{1}$$

$$x \in \mathbb{N}^n,$$
 (2)

$$\forall i = \overline{1, n} \, x_i \le m,\tag{3}$$

$$\max_{j} \sum_{x_i = j} 1 \le 3 \tag{4}$$

Ограничения 2 и 3 связаны с тем, что номера комнат, которыми и являются элементы вектора x, есть натуральные числа, не превышающие m. Ограничение 4 есть следствие того, что в одной комнате не может жить больше трех человек.

3.

Далее количество магазином переобозначено как M (вместо m).

Рассмотрим вектор $x \in \mathbb{R}^{M\hat{N}}$, в котором на месте координаты (n-1)M+k стоит количество единиц товара, доставленное с n-ого склада в k-ый магазин. Для описания целевой функции будем использовать ещё два вектора из \mathbb{R}^{MN} : вектор c, в котором на месте (n-1)M+k стоит c_{nk} , и t, в котором на месте (n-1)M+k стоит t_{nk} .

Функция денежных расходов определяется, как $\sum_{i=1}^{MN} x_i c_i = (x,c)$. Аналогично, функция временных расходов определяется как (x,t). Считая, что потери денег и времени в данных единицах одинаково плохо, будем использовать как целевую функцию следующее скалярное произведение: (x,c+t).

Оптимизационная задача:

$$\underset{x}{\operatorname{argmin}}(x, c+t),\tag{1}$$

$$x \in \mathbb{R}^{MN},\tag{2}$$

$$\forall n = \overline{1, N} \sum_{i=1}^{M} x_{(n-1)M+i} \le a_i,$$
(3)

$$\forall m = \overline{1, M} \sum_{i=1}^{N} x_{(i-1)M+m} = b_i.$$
 (4)

Ограничение 3 появилось из-за ограниченности товара на складе, ограничение 4 есть выражение необходимости доставить всем магазинам требуемое количество товара.

4.

І.Нормой вектора называется функция $\|.\|:\mathbb{R}^n\to\mathbb{R},$ удовлетворяющая следующим условиям:

- 1. $||x|| = 0 \leftrightarrow x = 0$.
- $2. ||x|| \ge 0$
- $3. ||x + y|| \le ||x|| + ||y||$
- 4. $\forall \alpha \in \mathbb{R} \ \|\alpha x\| = |\alpha| \|x\|$

Две нормы p(x) и q(x) называются эквивалентными, если

$$\exists C_1, C_2 \neq 0, \, \forall x \in \mathbb{R}^n \, C_1 p(x) \leq q(x) \leq C_2 p(x)$$

Доказательство эквивалентности l_1 и l_∞ норм:

$$||x||_{\infty} = \max_{i} |x_i| \le \sum_{i=1}^{n} |x_i| = ||x||_1$$

$$\|x\|_{\infty} = n \max_{i} |x_{i}| \ge \sum_{i=1}^{n} |x_{i}| = \|x\|_{1}$$

$$\|x\|_{\infty} \le \|x\|_1 \le n \|x\|_{\infty}$$

Доказательство эквивалентности l_{∞} и l_2 норм:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \le \sqrt{n \max_i |x_i|^2} = \sqrt{n} ||x||_{\infty}$$

$$||x||_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \ge \sqrt{\max_{i} |x_{i}|^{2}} = ||x||_{\infty}$$
$$||x||_{\infty} \le ||x||_{1} \le \sqrt{n} ||x||_{\infty}$$

Эквивалентность l_1 и l_2 норм следует из доказанного и из того, что эквивалентность норм - это отношение эквивалентности.

II. Норма матрицы ||A|| называется порожденной векторной нормой ||x||, если она определена как

$$||A|| = \max_{||x||=1} ||Ax||$$

.

 L_{∞} норма:

$$||A|| = \max_{||x||=1} max_i \left| \sum_{j=1}^n a_{ij} x_j \right| \le \max_j |x_j| \max_i \sum_{j=1}^n |a_{ij}| = \max_i \sum_{j=1}^n |a_{ij}|$$

Данная оценка достигается при $x=\{x_i=\mathrm{sign}(a_{ji})\}$, где j - номер строки, на которой достигается максимум $\sum\limits_{i=1}^n |a_{ij}|$.

$$||A|| = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

 L_1 норма:

$$||A|| = \max_{\|x\|=1} ||Ax||_1 = \max_{\|x\|=1} \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} x_j \right| \le \max_{\|x\|=1} \sum_{i=1}^n \sum_{j=1}^n |a_{ij} x_j| \le \max_{\|x\|=1} \sum_{i=1}^n \left(\max_j |a_{ij}| \sum_{j=1}^n |x_j| \right)$$

$$||A|| \le \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Это оценка достигается, если взять такой вектор x, что на i-ой позиции стоит 1, а на остальных нули, где i - номер, на котором достигается максимум $\sum_{i=1}^{n} |a_{ij}|$.

$$||A|| = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Норма Фробениуса(аналог векторной l_2 нормы):

$$||A|| = \left(\sum_{i,j=1}^{n} a_{ij}^{2}\right)^{1/2}$$

I. Пусть x, y - элементы линейного простанства L со скалярным произведением (x,y) и с нормой $x=\sqrt{(x,x)}$, тогда верно неравенство Коши-Буняковского-Шварца:

$$|(x,y)| \le ||x|| \, ||y||$$

Доказательство:

$$(\alpha x - y, \alpha x - y) = \alpha^2 \|x\|^2 - 2\alpha(x, y) + \|y\|^2 \ge 0$$

В случае, если x=0, неравенство верно. Иначе положим $\alpha=\frac{(x,y)}{\|x\|^2}$. Тогда получим неравенство, эквивалентное неравенству Коши-Буняковского-Шварца. \square

II. SVD разложение матрицы A - представление матрицы в виде произведения трех матриц:

$$A = U\Sigma V^T,$$

где U и V - ортогональные матрицы состоящие из левых и правых сингулярных векторов, Σ - матрица, на диагонали которой стоят соответствующие сингулярные числа.

 ${
m QR}$ разложение матрицы A - представление матрицы в виде произведения двух матриц:

$$A = QR$$

где Q - ортогольная матрица, R - треугольная матрица.

Для решения данной системы Ax = b можно использовать SVD разложение для матрицы A и умножать обе части на обратные матрицы для матриц в умножении (для ортогональной и диагональной нахождение обратной занимает $O(n^2)$). И далее сложность зависит от способа умножения матриц(к примеру, при помощи алогоритма Штрассена сложность $O(n^{\log_2 7})$). Таким образом, без учета сложности вычислений

SVD разложения, решение линейных систем данным методом быстрее, чем методом Гаусса(кубическое время).

При применении QR разложения умножим обе части на Q^T (умножение матрицы на вектор и вычисление транспонированной матрицы - $O(n^2)$) и используем метод Гаусса для R (поскольку матрица треугольная - $O(n^2)$). Значит, использование QR разложения, без учета времени на нахождение этого разложения, требует $O(n^2)$.

III. Разреженная матрица - матрица, большАя часть элементов которой равны нулю. Точная граница между разреженными и неразреженными матрицами отсутствует.

Способ хранения: хранение по строкам пар (значение элемента, индекс стобца). Способ нахождения элемента с данным индексом может осущетвляться с помощью бинарного поиска по строке. Аналогично можно хранить по столбцам пар.

IV. Доказательство ассоциативности матричного умножения. Далее используется обозначение $[A]_{ij}$, a_{ij} - элемент матрицы A с индексами i и j. Рассмотрим три матрицы $A_{m,n}$, $B_{n,k}$, $C_{k,l}$ и два их произведения (AB)C и A(BC).

$$[(AB)C]_{ij} = \sum_{p=1}^{k} [AB]_{ip} c_{pj} = \sum_{p=1}^{k} \left(\sum_{d=1}^{n} a_{id} b_{dp}\right) c_{pj} = \sum_{d=1}^{n} a_{id} \sum_{p=1}^{k} b_{dp} c_{pj} =$$

$$= \sum_{d=1}^{n} a_{id} [BC]_{dj} = [A(BC)]_{ij}$$

Из выше написанного покомпонентного равенства следует ассоциативность матричного умножения.