

Exercise 4D

Question 22:

Given : In \triangle ABC, bisectors of \angle B and \angle C meet at O and \angle A = 70° In \triangle BOC, we have,

⇒
$$\angle BOC + \frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^{\circ}$$

⇒ $\angle BOC = 180^{\circ} - \frac{1}{2} \angle B - \frac{1}{2} \angle C$
= $180^{\circ} - \frac{1}{2} (\angle B + \angle C)$
= $180^{\circ} - \frac{1}{2} [180^{\circ} - \angle A]$
[∴ $\angle A + \angle B + \angle C = 180^{\circ}$]
= $180^{\circ} - \frac{1}{2} [180^{\circ} - 70^{\circ}]$
= $180^{\circ} - \frac{1}{2} \times 110^{\circ}$
 $\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$
∴ $\angle BOC = 125^{\circ}$
∴ $\angle BOC = 125^{\circ}$

Question 23:

We have a \triangle ABC whose sides AB and AC have been procued to D and E. A = 40° and bisectors of \angle CBD and \angle BCE meet at O.

In $\triangle ABC$, we have,

Exterior ∠CBD = C + 40°

$$\angle CBO = \frac{1}{2} Ext. \angle CBD$$

$$= \frac{1}{2} \left(\angle C + 40^{\circ} \right)$$

$$= \frac{1}{2} \angle C + 20^{\circ}$$

And exterior ∠BCE = B + 40°

$$\angle BCO = \frac{1}{2} Ext. \angle BCE$$

$$= \frac{1}{2} \left(\angle B + 40^{\circ} \right)$$

$$= \frac{1}{2} \angle B + 20^{\circ}.$$

Now, in ΔBCO , we have,

$$\angle B \text{ OC} = 180^{\circ} - \angle CBO - \angle BCO$$

$$= 180^{\circ} - \frac{1}{2} \angle C - 20^{\circ} - \frac{1}{2} \angle B - 20^{\circ}$$

$$= 180^{\circ} - \frac{1}{2} \angle C - \frac{1}{2} \angle B - 20^{\circ} - 20^{\circ}$$

$$= 180^{\circ} - \frac{1}{2} (\angle B + \angle C) - 40^{\circ}$$

$$= 140^{\circ} - \frac{1}{2} (\angle B + \angle C)$$

$$= 140^{\circ} - \frac{1}{2} [180^{\circ} - \angle A]$$

$$= 140^{\circ} - 90^{\circ} + \frac{1}{2} \angle A$$

$$= 50^{\circ} + \frac{1}{2} \angle A$$

$$=50^{\circ} + \frac{1}{2} \times 40^{\circ}$$

$$= 50^{\circ} + 20^{\circ}$$

$$= 70^{\circ}$$

******* END *******