BALANCED SLIDING WINDOW PROTOCOL

	m f. Astro							
3	its a packet transmission method used for reliable in-order delivery. ex-TCP PQ channel							
PS	1234567	$]\longrightarrow$	123	-	→	1	QR	
PR	8 Car-5 0022			+	_	Al	QS	
1.18	QP channel							
		,			•	~	<u> </u>	
	P process Q process							
	(transmitter) (reciever)							
	1	-50 8						
. /	in think of P trying to send a file to Q in parts (1-7). a acknowledges the reciept of a part with an acknowledgement packet. (AI).							
	THE CHANNELS							
	2 separate channels are PQ and QP.							
	- they can drop packets - they can't corrupt packets							
	- they can	reorder	tr.	Ceve	an co	they use		
	40 TZ				grow II.			

THE PROCESSES

- 2 separate processes P and Q.
- each sends packets through a channel
- each recieves packets through another channel.
 each only sends packet within a "window".
- position of "window" is determined by the packets recieved by each-

here, P = transmitter process
Q = reciever process

REQUIRED PROPERTIES

1 Safe delivery

packets recieved at Q are the ones cent by P. packets recieved at P are the ones sent by Q.

(2) eventual delivery

eventually all packets sent by P are recieveth

eventually all packets sent by a are recieved but P.

MODELLING AS SYSTEM

consider process P:

State

functions

constant & Pro

pr

ps 1 - packets to send to Q

packets recieved from @ Cack.)

psn - no. of contiguous packets sent by P

no of contiguous packets recieved by P

window size of P

PSn

think of this Pas

as a file

(prn prn +w window of P =

trivial conditions: prn & psn

note: P can send any packet in its window,

but for determinism, we can add a state variable Pt (turn) indicating which one to send.

Sìr	nilarly for process Q, we have:
qs	qr, qs , qr , qw . Cqt
qr qs	vemember, we are acknow. reciept here
ω	indow of Q = (grn-qw, grn]
+	rivial conditions:
11	s _n s qr _n
n	ote: in general, com
u	sindow of P = [Cprn-Pwsprn] of psn < prn
	[(prn, prn+Pw] othéwise
CP	ote: with trivial conditions for P and Q are 4 cases: crecievers) crecievers) son & pr, gs, & qr, both acknowledgers valid.
2. P	Sn & prn, gsn / grn p= reciever, q= transmitter
3 5	osn & prn, qsn & qrn p=transmitter, q=reciever
F	isn & prn, asn & arn both transmitters
	Cant guarientee eventeual
	delivery for both without
-	acknowledgement)

$$S = \{X_s, X_s^\circ, U_s, \frac{1}{s}, \frac{1}{s$$

array of size n (packets)
$$X_{s}^{o} = \{ ps = [1, 2, 3, 4, 5, 6, 7] \}$$

or it can
$$qp(i) = \phi$$
 $\forall i$, e just ϕ

Us = & psend (i), precv (i),

gsend (i), greav (i) }

Eps, pq,...} $\xrightarrow{psend(i)}$ \Rightarrow Eps', pq',...}

ibb $pq' = Ei \rightarrow psci)$ pq, and $i \in Cpr_n$, $pr_n + p_{\omega} I$, and $i \in Cpr_n$, $pr_n + p_{\omega} I$, and

q. S ci) ≠ φ

if you set

qs(i) = \$\psi\$ \$\psi\$ initially

Classmate,
Date 4.5.2020
Page 7

ie [o,n)

Eqp, pr,...}

Precv(i) > Eqp, pr',...}

off $pr' = \{i \rightarrow qp(i)\} pr$, and $qp(i) \neq \emptyset$, and

SAFE DELIVERY

ie [o, n)

e. qr(i) = ps(i) or ϕ +i required to prove

2 pr(i) = qs(i) or ϕ +i

coe can prove this in 4 steps:

1.1 pq(i) = ps(i) or \$\phi \tau' \rightarrow \tau.

(2 gr (i) = pq (i) or \$\phi +i

 $21 | qp(i) = qs(i) \text{ or } \phi + i$ \rightarrow \rightarrow \infty

22 prai) = 2pai) or \$ +i

1.1 BASE CASE

paci) = \$ +i (trivially true)

INDUCTIVE CASE

the only action Us that changes pg is

the only action Us that changes pop is psend (i).

Eps, pq, ... 3 Psend(i) & ps, pq', ... 3

iff pq' = &i -> ps(i) & pq, and

ie Cprn, prn+Po], and

ie ([0, n)

> pq'(i) = ps(i) for some i

similarly (12), (2.1), (2.2) can be proved.

3) our system guarentees safe delivery.

Counich means no packet is modified in between or reordered).

EVENTUAL DELIVERY

Pro Psn

2 10 12
 think of this

3 as a file

9 n

9 n

here an example file delivery from P to Q

 $pr_n = 2$ $ps_n = 10$ $p_w = 10$ (window = (2, 12.]

= qsn=8 qrn=10 qw=4 window=(6, 10]

so, P has sent to packets

Q has recieved all 10 packets

Q has sent ACK for 8 packets

P has recieved ACK for 8 packets

now, what if channel QP drops any packet 2-6, since Q's window

is (6, 10] it wont resend those ACK

but, Pant slide into window forward.

without recieveing ACK for packet 2.

Pound Q can stay stuck on channel loss.

Codeadlock).

now, for P's window to slide forward by 1 step, P has to recieve packet as Cpr,) from QP.

since we proved that pro lies in window of Q, we can say when Q sends qs (pro) P eventually recieves it.

similar argument can be made of sliding of O's window by 1 step.

since we can guarentee sliding of window by 1 step at each sotep, and that is equivalent to packet reception and its acknowledgement, we can thus say that eventual delivery is guarenteed.