HW1

1.5-4

(a). Show that T1 and T2 are equivalent statistics if, and only if, we can write T2 = H(T1) for some 1-1 transformation H of the range of T1 into the range of T2. Which of the following statistics are equivalent? (Prove or disprove.)

If $T_2 = H(T_1)$ for some 1-1 transformation H of the range of T_1 into the range of T_2 , then

when
$$T_1(x) = T_1(y)$$
, $T_2(x) = H(T_1(x)) = H(T_1(y)) = T_2(y)$;

when
$$T_2(x) = T_2(y)$$
, $H(T_1(x)) = T_2(x) = T_2(y) = H(T_1(y))$; then T_1 and T_2 are equivalent.

If T_1 and T_2 are equivalent, then $\exists H$ make $T_2 = H(T_1)$ is a 1-1 transformation of the range of T_1 into the range of T_2 .

Therefore, T_1 and T_2 are equivalent statistics $\iff T_2 = H(T_1)$.

(b). $\prod_{i=1}^{n} x_i$ and $\sum_{i=1}^{n} \log x_i$, $x_i > 0$

 $T_2(x) = \sum_{i=1}^n \ln x_i = \ln(\prod_{i=1}^n x_i) = \ln(T_1), \ x_i > 0.$ $H(x) = \ln x$ is a 1-1 transformation of $T_1 \in (0, \infty)$ into $T_2 \in (-\infty, \infty)$.

Thus, T_1 and T_2 are equivalent.

(c). $\sum_{i=1}^{n} x_i$ and $\sum_{i=1}^{n} \log x_i$, $x_i > 0$

 $T_2(x) = \sum_{i=1}^n \ln x_i = T_1(\ln(x)) \neq T_1(x), x_i > 0$. Thus, T_1 and T_2 are not equivalent.

(d). $(\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2)$ and $(\sum_{i=1}^n x_i, \sum_{i=1}^n (x_i - \bar{x})^2)$

Let $T_1 = (T_{11} = \sum_{i=1}^n x_i, T_{12} = \sum_{i=1}^n x_i^2)$, then

$$T_{21} = \sum_{i=1}^{n} x_i = T_{11}$$

$$T_{22} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n(\bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{2}{n} (\sum_{i=1}^{n} x_i)^2 + \frac{1}{n} (\sum_{i=1}^{n} x_i)^2 = T_{12} - \frac{1}{n} T_{11}^2$$

Thus, T_1 and T_2 are equivalent.

(e).
$$(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^3)$$
 and $(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} (x_i - \bar{x})^3)$

Let
$$T_1 = (T_{11} = \sum_{i=1}^n x_i, T_{12} = \sum_{i=1}^n x_i^3)$$
, then

$$T_{21} = \sum_{i=1}^{n} x_i = T_{11}$$

$$T_{22} = \sum_{i=1}^{n} (x_i - \bar{x})^3 = \sum_{i=1}^{n} x_i^3 - 3\bar{x} \sum_{i=1}^{n} x_i^2 + 3\bar{x}^2 \sum_{i=1}^{n} x_i - n(\bar{x})^3 = \sum_$$

$$\sum_{i=1}^{n} x_i^3 - \frac{3}{n} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i^2 + \frac{3}{n^2} (\sum_{i=1}^{n} x_i)^3 - \frac{1}{n^2} (\sum_{i=1}^{n} x_i)^3 = T_{12} - \frac{3}{n} T_{11} \sum_{i=1}^{n} x_i^2 + \frac{2}{n^2} T_{11}^3$$

There is not statistics in T_1 can represent $\sum_{i=1}^n x_i^2$.

Thus, T_1 and T_2 are not equivalent.

1.5-6

Let X take on the specified values $v_1, ..., v_k$ with probabilities $\theta_1, ..., \theta_k$, respectively. Suppose that $X_1, ..., X_n$ are independently and identically distributed as X. Suppose that $\theta = (\theta_1, ..., \theta_k)$ is unknown and may range over the set $\Theta = \{(\theta_1, ..., \theta_k) : \theta_i \geq 0, 1 \leq i \leq k, \sum_{i=1}^k \theta_i = 1\}$. Let N_j be the number of X_i which equal v_j .

(a). What is the distribution of $(N_1, ..., N_k)$?

 $(N_1,..,N_k) \sim$ Multinomial Distribution

 $f_{\vec{\theta}}(\vec{n}) = n! \prod_{i=1}^k \frac{\theta_i^{n_i}}{n_i!} \mathbf{1}_{\{\sum n_i = n\}}$, where n_i =the number of times we get outcome i = 1, ..., k

(b). Show that $\mathbf{N} = (N_1, ..., N_{k-1})$ is sufficient for θ .

$$f_{\vec{\theta}}(\vec{n}) = n! \prod_{i=1}^{k} (n_i!)^{-1} \exp[\sum_{i=1}^{k} n_i \ln \theta_i] \mathbf{1}_{\{\sum n_i = n\}} = h(\vec{n}) \exp[\sum_{i=1}^{k} \eta_i(\vec{\theta}) T_i(\vec{n}) - B(\vec{\theta})], \text{ where } \chi = \{\vec{x} \in \{0,...,n\}^k | \sum x_i = n\}$$

$$h(\vec{n}) = n! \prod_{i=1}^{k} (n_i!)^{-1}, B(\vec{\theta}) = 0$$

$$\eta_i(\vec{\theta}) = (\ln \theta_1, .., \ln \theta_k),$$

 $T(\vec{n}) = (n_1, ..., n_k)$ is a n.s.s of the family.

 $T(\vec{n}) = (n_1, ..., n_{k-1}, n - \sum_{i=1}^{k-1} n_i)$ is equivalent with $(N_1, ..., N_{k-1})$. Therefore **N** is sufficient for θ .

1.5-7

Let $X_1, ..., X_n$ be a sample from a population with density $p(x, \theta)$ given by $p(x, \theta) = \begin{cases} \frac{1}{\sigma} \exp\{-\frac{x-\mu}{\sigma}\} & if x \ge \mu \\ 0 & o.w. \end{cases}$ Here $\theta = (\mu, \sigma)$ with $-\infty < \mu < \infty, \sigma > 0$.

(a) Show that $\min(X_1,..,X_n)$ is sufficient for μ when σ is fixed.

When σ is fixed, $p(x_{1:n}, \mu) = \sigma^{-n} \exp[-\sum_{i=1}^n x/\sigma] \exp[n\mu/\sigma] \prod_{i=1}^n \mathbf{1}_{\{x \ge \mu\}}$, where

$$h(x)=\sigma^{-n}\exp[-\sum_{i=1}^n x/\sigma],\,g(T(x),\mu)=\exp[n\mu/\sigma]\prod_{i=1}^n \mathbf{1}_{\{x_i\geq \mu\}}$$

 $\mathbf{1}_{\{x_{(1)} \geq \mu\}}$ contains all the information about μ , then

 $T(x) = \min(X_1, ..., X_n)$ is sufficient for μ when σ is fixed.

• Another method is that $p(x_{1:n}|t)$ is free of μ

$$X \sim Expo(\mu, 1/\sigma), \ F_{\mu,\sigma}(x) = 1 - e^{-(x-\mu)/\sigma},$$

$$\min(X_1, ..., X_n) = X_{(1)} = n\frac{1}{\sigma}e^{-(x-\mu)/\sigma}[1 - (1 - e^{-(x-\mu)/\sigma})]^{n-1} = \frac{n}{\sigma}e^{-n(x-\mu)/\sigma}$$

$$p(x_{1:n}|t) = \frac{1}{n\sigma^{n-1}}e^{\frac{1}{\sigma}(\sum x_i - nx)} \text{ is free of } \mu$$

(b) Find a one-dimensional sufficient statistic for σ when μ is fixed.

When
$$\mu$$
 is fixed, $p(x_{1:n}, \sigma) = \sigma^{-n} \exp[-(\sum_{i=1}^n x - n\mu)/\sigma] \prod_{i=1}^n \mathbf{1}_{\{x_i \geq \mu\}}$, where $h(x) = \prod_{i=1}^n \mathbf{1}_{\{x \geq \mu\}}$, $g(T(x), \sigma) = \sigma^{-n} \exp[-(\sum_{i=1}^n x_i - n\mu)/\sigma]$, then $T(x) = \sum_{i=1}^n x_i$ is sufficient for μ when σ is fixed.

• Another method is that $p(x_{1:n}|t)$ is free of σ

$$X \sim Expo(\mu, 1/\sigma), F_{\mu,\sigma}(x) = 1 - e^{-(x-\mu)/\sigma},$$

 $Y = X - \mu \sim Exp(1/\sigma), T = \sum Y_i \sim Gamma(n, \sigma)$
 $p(x_{1:n}|t) = \Gamma(n)t^{1-n}$ is free of σ

(c) Exhibit a two-dimensional sufficient statistic for θ .

$$\begin{split} p(x_{1:n}, \mu, \sigma) &= \sigma^{-n} \exp[-(\sum_{i=1}^n x - n\mu)/\sigma] \prod_{i=1}^n \mathbf{1}_{\{x_i \geq \mu\}}, \text{ where} \\ h(x) &= 1, \ g(T(x), \mu, \sigma) = \sigma^{-n} \exp[-(\sum_{i=1}^n x_i - n\mu)/\sigma] \prod_{i=1}^n \mathbf{1}_{\{x_{(1)} \geq \mu\}}, \text{ then} \\ T(x) &= (x_{(1)}, \sum_{i=1}^n x_i) \text{ is a two-dimensional sufficient statistic for } \theta. \end{split}$$

1.5-9

Let
$$X_1,..,X_n$$
 be a sample from a population with density $f_{\theta}(x) = \begin{cases} a(\theta)h(x) & if \theta_1 \leq x \leq \theta_2 \\ 0 & o.w. \end{cases}$ where $h(x) \geq 0$,

 $\theta = (\theta_1, \theta_2)$ with $-\infty < \theta_1 \le \theta_2 < \infty$, and $a(\theta) = [\int_{\theta_1}^{\theta_2} h(x) dx]^{-1}$ is assumed to exist. Find a two-dimensional sufficient statistic for this problem and apply your result to the $U[\theta_1, \theta_2]$ family of distributions.

Let
$$H'(x) = h(x)$$
, $a(\theta) = [\int_{\theta_1}^{\theta_2} h(x) dx]^{-1} = [H(\theta_2) - H(\theta_1)]^{-1}$
 $f_{\theta_1,\theta_2}(x_{1:n}) = \prod_{i=1}^n a(\theta)h(x) = \mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}[H(\theta_2) - H(\theta_1)]^{-n} \prod_{i=1}^n h(x)$, where $g(T(x),\theta_1,\theta_2) = \mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}[H(\theta_2) - H(\theta_1)]^{-n}$, $h'(x) = \prod_{i=1}^n h(x)$

 $\mathbf{1}_{\{x_{(n)} \leq \theta_2\}} \mathbf{1}_{\{x_{(1)} \geq \theta_2\}}$ contains all the information about μ , then

 $T(x) = (x_{(1)}, x_{(n)})$ is a two-dimensional sufficient statistic for θ .

For
$$U[\theta_1, \theta_2]$$
, let $h(x) = 1$, $a(\theta) = (\theta_2 - \theta_1)^{-1}$

$$f_{\theta_1,\theta_2}(x_{1:n}) = \prod_{i=1}^n a(\theta)h(x) = \mathbf{1}_{\{x \in [\theta_1,\theta_2]\}}[\theta_2 - \theta_1]^{-n} \prod_{i=1}^n 1$$
, where

$$g(T(x), \theta_1, \theta_2) = \mathbf{1}_{\{x \in [\theta_1, \theta_2]\}} [\theta_2 - \theta_1]^{-n}, h'(x) = 1$$

 $T(x)=(x_{(1)},x_{(n)})$ is a two-dimensional sufficient statistic for θ in the $U[\theta_1,\theta_2]$ family.