

Menoufia University

Faculty of computers & Information

Computer Science Department.

Compiler Design 4 Year – first Semester Lecture 3

DR. Eman Meslhy Mohamed

Lecturer at Computer Science department 2023-2024

Phases of Compilers

Phases of Compilers

- Lexical Analysis (Scanner)
- Syntax Analysis Phase
- Global Optimization
- Code Generation
- Local Optimization

Outline

- Syntax Analysis.
- Grammar.
- Pushdown Machine.
- Parser.

The Role of a Syntax Analyzer

Syntax Analyzer is used to check for the prober syntax and generate the syntax tree.

The Role of a Syntax Analyzer

Parse (Syntax) Tree

Syntax Tree is a data structure in which the <u>interior nodes</u> represents <u>operations</u> and <u>leaves</u> represent <u>operands</u>.

$$a = b + c * d$$

Example

Before getting into syntax analysis, we need to cover the concepts of formal **grammar** and **pushdown machine** which are critical to the design of the lexical analyzer.

Outline

- Syntax Analysis.
- Grammar.
- Pushdown Machine.
- Parser.

Grammar

Grammar is a list of rules which can be used to describe the structure or syntax of a language. (i.e., The grammar of a language defines the correct form for sentences in that language.)

Example: English language:

$$\langle sentence \rangle \rightarrow \langle noun \rangle \langle verb \rangle$$
 $\langle noun \rangle \rightarrow \langle article \rangle \langle noun \rangle$
 $\langle article \rangle \rightarrow a$
 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$
 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$
 $\langle verb \rangle \rightarrow walks$

✓ Derivation of "the dog walks"

$$\langle sentence \rangle \Rightarrow \langle noun \rangle \langle verb \rangle$$

 $\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$
 $\Rightarrow the \langle noun \rangle \langle verb \rangle$

$$\Rightarrow$$
 the dog $\langle verb \rangle$

$$\Rightarrow$$
 the dog walks

Grammar

A **Grammar** is a list of rules which can be used to describes the structure or syntax of a language. (i.e., <u>The grammar of a language</u> defines the correct form for sentences in that language.)

Example: English language:

$$\langle sentence \rangle \rightarrow \langle noun \rangle \langle verb \rangle$$
 $\langle noun \rangle \rightarrow \langle article \rangle \langle noun \rangle$
 $\langle article \rangle \rightarrow a$
 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$
 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$
 $\langle verb \rangle \rightarrow walks$

✓ Derivation of "a cat runs"

$$\langle sentence \rangle \Rightarrow \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a cat \langle verb \rangle$$

$$\Rightarrow a cat runs$$

Grammar

A **Grammar** is a list of rules which can be used to describes the structure or syntax of a language. (i.e., <u>The grammar of a language</u> defines the correct form for sentences in that language.)

Example: English language:

 $\langle sentence \rangle \rightarrow \langle noun \rangle \langle verb \rangle$ $\langle noun \rangle \rightarrow \langle article \rangle \langle noun \rangle$ $\langle article \rangle \rightarrow a$ $\langle article \rangle \rightarrow the$ $\langle noun \rangle \rightarrow cat$ $\langle noun \rangle \rightarrow dog$

✓ Derivation of "dog the runs"

Error

Grammar Components

A Grammar is denoted by G and is defined as a 4-tuple i.e., G (V, T, S, P)

Where

V is non empty set of symbols called as Variables

T is non empty set of symbols called as Terminals

S ∈ **V** is a **Start Variable**

P is set of productions or production rules.

Grammar

Notation:

- Variables are denoted by only UPPER CASE letters and some special Greek letters etc. Variables are also called a Non-Terminals.
- Terminals are denoted by lower case letters i.e., a
 to z and digits 0 to 9 and some special operators
 like arithmetic operators, relational operators etc.

Production Form

Productions is defined as mapping function.

General form of Productions:

$$P: \alpha \to \beta$$

$$\alpha \in (V \cup T)^+$$

$$\beta \in (V \cup T)^*$$

Types of Grammar

Chomsky Hierarchy

the traditional Chomsky hierarchy

Examples

Example-1:

Let G = (V, T, S, P) is a grammar.

Where

V = {S, A, B}

T = {a, b}

S is a Start Variable

And Productions P are given below:

$$S \to ASB$$

$$A \to aSb \mid \varepsilon$$

$$B \to bSa \mid \varepsilon$$

ε or λ is Null String

Examples

Example-2:

```
Let G = (V, T, S, P) is a grammar.

Where

V = {S, A, B}

T = {a, b, +}

S is a Start Variable

And Productions P are given below:
```

$$Sa \rightarrow ASB$$

 $Sb \rightarrow aSb \mid \varepsilon$
 $BA \rightarrow bSB \mid A + B$

e or λ is Null String

Derivation of grammar

The grammar specifies a language in the following way:

Beginning with the starting nonterminal, any of the rewriting rules are applied repeatedly to produce a sentential form, which may contain a mix of terminals and nonterminals.

A derivation is a sequence of rewriting rules, applied to the starting nonterminal, ending with a string of terminals.

Examples

Example-3:

$$S \rightarrow aSb$$

$$S \rightarrow /$$

• Derivation of string **ab**:

$$S \triangleright aSb \triangleright ab$$

$$\downarrow \qquad \qquad \downarrow$$

$$S \rightarrow aSb \quad S \rightarrow /$$

Examples

Example-3:

$$S \rightarrow aSb$$

$$S \rightarrow /$$

• Derivation of string **aabb**:

Examples: Describe the language of this grammar

Example-3:

$$S \rightarrow aSb$$

$$S \rightarrow /$$

• Derivation of string **aaabbb**:

$$S \triangleright aSb \triangleright aaSbb \triangleright aaaSbbb \triangleright aaabbb$$

• Derivation of string aaaabbbb:

Language of the grammar

$$L(G) = \{a^n b^n : n \ge 0\}$$

Examples: Describe the language of this grammar

Example-4:

$$S \to Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow /$$

Derivations:

$$S \rightarrow Ab \rightarrow b$$

$$S \rightarrow Ab \rightarrow aAbb \rightarrow abb$$

$$S \rightarrow Ab \rightarrow aAbb \rightarrow aaAbbb \rightarrow aabbb$$

Language of the grammar

$$L(G) = \{a^n b^n b : n \ge 0\}$$

Examples: Describe the language of this grammar

Example-5:

$$S \rightarrow 0S0$$

$$S \rightarrow 1S1$$

$$S \rightarrow 0$$

$$S \rightarrow 1$$

Derivations:

$$S \rightarrow 0S0 \rightarrow 000$$

$$S \rightarrow 0S0 \rightarrow 01S10 \rightarrow 01010$$

Language of the grammar

Palindromes of **odd** length over the alphabet {0,1}

Examples: Describe the language of this grammar

Example-6:

$$S \to (S) S \to \lambda$$

$$L(G) = \{(^n)^n : n \ge 0\}$$

Describes parentheses:

$$S \rightarrow (S)$$

$$S \rightarrow SS$$

$$S \to \lambda$$

Describes parentheses:

Derivation Order

There are two type of derivations which are:

- Leftmost derivation is one in which the left-most nonterminal is always the one to which a rule is applied.
- > Rightmost derivation is one in which the right-most nonterminal is always the one to which a rule is applied.

Derivation Order

Example:

$$S \rightarrow aAB$$

$$A \rightarrow bBb$$

$$B \to A \mid /$$

Leftmost derivation:

$$S \rhd aAB \rhd abBbB \rhd abAbB \rhd abbBbbB$$

$$\triangleright abbbbB \triangleright abbbb$$

Rightmost derivation:

$$S \rhd aAB \rhd aA \rhd abBb \rhd abAb$$

$$\triangleright abbBbb \triangleright abbbb$$

Review

Show three different derivations using the grammar shown below:

- 1. $S \rightarrow a S A$
- 2. $S \rightarrow B A$
- 3. $A \rightarrow a b$
- 4. $B \rightarrow b A$

Solution:

```
S \Rightarrow a \ S \ A \Rightarrow a \ B \ A \ A \Rightarrow a \ B \ a \ b \ A \Rightarrow a \ B \ a \ b \ a \ b \Rightarrow a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ A \ a \ b \Rightarrow a \ b \ A \ a \ b \Rightarrow a \ b \ A \ a \ b \Rightarrow a \ b \ A \ a \ b \Rightarrow a \ b \ A \ a \ b \Rightarrow a \ b \ A \ a \ b \Rightarrow a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \ a \ b \
```

Note that in the solution to this problem we have shown that it is possible to have more than one derivation for the same string: abababab.

Classes of Grammars

Figure 3.1: Classes of grammars

 $\begin{array}{lll} A,B,C,\dots & & \text{A single nonterminal} \\ a,b,c,\dots & & \text{A single terminal} \\ \dots,X,Y,Z & & \text{A single terminal or nonterminal} \\ \dots,x,y,z & & \text{A string of terminals} \\ \alpha,\beta,\gamma & & \text{A string of terminals and nonterminals} \end{array}$

10/29/2023

Classes of Grammars

- 0. **Unrestricted**: An unrestricted grammar is one in which there are no restrictions on the rewriting rules.
- 1. **Context-Sensitiv**e: A context-sensitive grammar is one in which each rule must be of the form:

 $\alpha A\gamma \rightarrow \alpha \beta \gamma$ where each of α , β , and γ is any string of terminals and nonterminals

• 2. **Context-Free**: A context-free grammar is one in which each rule must be of the form:

 $A \rightarrow \alpha$ where A represents a single nonterminal and α is any string of terminals and nonterminals.

• 3. **Right Linear**: A right linear grammar is one in which each rule is of the form:

Classify each of the following grammar rules according to Chomsky's classification of grammars (in each case give the largest - i.e. most restricted - classification type that applies):

- 1. $aSb \rightarrow aAcBb$
- 2. $B \rightarrow aA$
- 3. $S \rightarrow aBc$
- 4. $S \rightarrow aBc$
- 5. $Ab \rightarrow b$
- 6. $AB \rightarrow BA$

- 1. Type 1, Context-Sensitive
- 2. Type 3, Right Linear
- 3. Type 0, Unrestricted
- 4. Type 2, Context-Free
- 5. Type 1, Context-Sensitive
- Type 0, Unrestricted

Give a right linear grammar for each of the languages of Sample Problem

- Strings over {0,1} containing an odd number of 0's.
- 1. $S \rightarrow 0$
- 2. $S \rightarrow 1S$
- 3. $S \rightarrow 0A$
- 4. A \rightarrow 1
- 5. A → 1A
- 6. A \rightarrow 0S

- Strings over {0,1} which contain exactly three 0's.
- 1. $S \rightarrow 1S$
- 2. S \rightarrow 0A
- 3. A \rightarrow 1A
- 4. A \rightarrow 0B
- 5. B \rightarrow 1B
- 6. B \rightarrow 0C
- 7. B \rightarrow 0
- 8. $C \rightarrow 1C$
- 9. $C \rightarrow 1$

Derivation Tree

Derivation Tree is a tree in which each **node** corresponds to a **nonterminal** in a sentential form and each **leaf node** corresponds to a **terminal** symbol in the derived string.

Derivation Tree for aab

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid / \qquad B \rightarrow Bb \mid /$$

$$B \rightarrow Bb \mid A$$

Derivation Tree for aab

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid / \qquad B \rightarrow Bb \mid /$$

$$B \rightarrow Bb \mid /$$

$$S \bowtie AB \bowtie aaAB$$

Derivation Tree for aab

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid /$ $B \rightarrow Bb \mid /$

$$B \rightarrow Bb \mid /$$

$$S \rhd AB \rhd aaAB \rhd aaABb$$

Derivation Tree for aab

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid /$ $B \rightarrow Bb \mid /$

$$B \rightarrow Bb \mid A$$

 $S \rhd AB \rhd aaAB \rhd aaABb \rhd aaBb$

Derivation Tree for aab

 $S \rightarrow AB$ $A \rightarrow aaA \mid /$ $B \rightarrow Bb \mid /$ $S \triangleright AB \triangleright aaAB \triangleright aaABb \triangleright aaBb \triangleright aab$

Derivation Tree for aab

 $S \rightarrow AB$ $A \rightarrow aaA \mid /$ $B \rightarrow Bb \mid /$ $S \triangleright AB \triangleright aaAB \triangleright aaABb \triangleright aaBb \triangleright aab$

Derivation Tree for aab

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid / \qquad B \rightarrow Bb \mid /$$

$$B \rightarrow Bb \mid /$$

Derivation Tree

Leftmost:

$$S \triangleright AB \triangleright aaAB \triangleright aaB \triangleright aaBb \triangleright aab$$

Rightmost:

$$S \bowtie AB \bowtie ABb \bowtie Ab \bowtie aaAb \bowtie aab$$

Ambiguous Grammar

A context-free grammar G is ambiguous if there is a string $w \in L(G)$ which has:

two different derivation trees or two leftmost derivations

(Two different derivation trees give two different leftmost derivations and vice-versa)

Ambiguity

A context-free grammar is said to be **ambiguous** if there is **more than one derivation tree for a particular string**.

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

A leftmost derivation for

$$a + a * a$$

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Ambiguity

A context-free grammar is said to be **ambiguous** if there is **more than one derivation tree for a particular string**.

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

Another leftmost derivation for

$$a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

Ambiguity

take
$$a=2$$

$$a + a * a = 2 + 2 * 2$$

Ambiguity

Good Tree

$$2 + 2 * 2 = 6$$

Compute expression result using the tree

Bad Tree

$$2 + 2 * 2 = 8$$

Ambiguity

A successful example:

Ambiguous

Grammar

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow a$$

Grammar

Equivalent
$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

Non-Ambiguous

Ambiguity

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid a$$

Unique derivation tree for

$$a + a * a$$

Example

Determine whether the following grammar is ambiguous. If so, show two different derivation trees for the same string of terminals, and show a left-most derivation corresponding to each tree.

$$S \to aSbS$$

$$S \to aS$$

$$S \to c$$

$$S \Rightarrow aSbS \Rightarrow aaSbS \Rightarrow aacbS \Rightarrow aacbc$$

$$S \Rightarrow aS \Rightarrow aaSbS \Rightarrow aacbS \Rightarrow aacbc$$

Outline

- Syntax Analysis
- Grammar
- Pushdown Machine
- Parser

Pushdown Machine

A **Pushdown machines** can be used for syntax analysis, just as finite state machines are used for lexical analysis.

A pushdown machine consists of:

- ✓ A finite set of states
- **✓** A finite set of input symbols
- **✓** An infinite stack
- **✓** A state transition function

Pushdown Machine

- Rows are labeled by stack symbols and the columns are labeled by input symbols.
- ← character is used as an endmarker, indicating the end of the input string,
- ∇ symbol is a stack symbol which we are using to mark the bottom of the stack so that we can test for the **empty stack** condition.
- Each cell of those tables shows a stack operation (push() or pop), an input pointer function (advance or retain), and the next state. Accept and Reject are exits from the machine.
- A state transition function which takes as arguments the current state, the current input symbol, and the symbol currently on top of the stack; its result is the new state of the machine.
- On each state transition the machine may perform one of the stack operations,
 push(X) or pop, where X is one of the stack symbols.
- A state transition may include an exit from the machine labeled either Accept or Reject

Example

S1	a	b	
Х	Push (X) Advance S1	Pop Advance S2	Reject
∇	Push (X) Advance S1	Reject	Accept
S2	a	b	٦
X Reject		Pop Advance S2	Reject
	1		

Show the sequence of stacks for the input string aabb ←

Example

S1	a	b	4
Х	Push (X) Advance S1	Pop Advance S2	Reject
∇	Push (X) Advance S1	Reject	Accept
S2	a	b	ل _م
Х	Reject	Pop Advance S2	Reject
∇	Reject	Reject	Accept

9		$\mathrm{S} o \mathrm{J}$	ASI
		$S \rightarrow \epsilon$	E
	∇	$\mathrm{A} ightarrow \epsilon$	a
	Initial Stack	$\mathrm{B} \to 1$	b

Show the sequence of stacks for the input string aba ←

Exercise

 pushdown machine to accept any string of well-balanced parentheses

S1	()	4		
Х	Push (X) Advance S1	Pop Advance S1	Reject		$S \to (S$
∇	Push (X) Advance S1	Reject	Accept	∇	$S \to \lambda$
		'	•	Initial Stack	

Show the sequence of stacks for the input string (()

Outline

- Syntax Analysis
- Grammar
- Pushdown Machine
- Parser

Parser

Parser

A parser knows the grammar of the programming language

```
PROGRAM → STMT_LIST
STMT_LIST → STMT; STMT_LIST | STMT;
STMT - EXPR | IF STMT | WHILE STMT
              {STMT_LIST}
EXPR \rightarrow EXPR + EXPR | EXPR - EXPR | ID
IF_STMT→ if (EXPR) then STMT
         if (EXPR) then STMT else STMT
WHILE_STMT→ while (EXPR) do STMT
```


Parser

Parser

Pushdown Translator

- An infix expression is one in which the operation is placed between the two operands.
- A postfix expression is one in which the two operands precede the operation:

Infix	Postfix
2 + 3	23+
2 + 3 * 5	235*+
2 * 3 + 5	23*5+
(2 + 3) * 5	23+5*

Pushdown Translator

S1	a	+	*	()	\leftrightarrow
ы	Reject	push(+)	push(*)	Reject	pop retain S3	pop retain
Ep	Reject	pop out(+)	push(*)	Reject	pop retain S2	pop retain S2
L	push(E) out(a)	Reject	Reject	push(L)	Reject	Reject
L _p	push(E) out(a)	Reject	Reject	push(L)	Reject	Reject
Ls	push(E) out(a)	Reject	Reject	push(L)	Reject	Reject
+	push(E _p) out(a)	Reject	Reject	push(L _p)	Reject	Reject
*	pop out(a*)	Reject	Reject	push(L _s)	Reject	Reject
∇	push(E) out(a)	Reject	Reject	push(L)	Reject	Accept

S1

S1

S1

S1

S2)	\leftarrow
	pop	pop
+	out(+)	out(+)
	retain,S3	retain,Sl
	pop	
*	out(*)	Reject
	S1	

S3)
L	Rep(E) Sl
L _p	Rep(Ep) S1
E	pop retain
Ls	pop retain S2
▽	Reject

• Show the sequence of stacks and states which the pushdown machine of Figure would go through if the input were: $a+(\bar{a}*a)$

S1

53

S1

S1

S1

THANKS for your attention