Βασικές Έννοιες της Θεωρίας Γραφημάτων

Δημήτρης Φωτάκης

Τομέας Τεχνολογίας Πληφοφορικής και Υπολογιστών Σχολή Ηλεκτφολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο, 15780 Αθήνα Email: fotakis@cs.ntua.gr

1 Βασικοί Ορισμοί

Διαισθητικά, γράφημα είναι οτιδήποτε μπορεί να αναπαρασταθεί ("ζωγραφιστεί") με σημεία (πορυφές) και γραμμές (ακμές - κατευθυνόμενες ή μη) μεταξύ των σημείων.

Τυπικά, ένα μη-κατευθυνόμενο γράφημα (ή γράφος, undirected graph) G είναι ένα διατεταγμένο ζεύγος $G\equiv (V,E)$, όπου $V=\{v_1,\ldots v_n\}$ είναι το σύνολο των κορυφών του και $E=\{e_1,\ldots,e_m\}$ είναι το σύνολο των ακμών του. Κάθε ακμή είναι ένα διμελές σύνολο κορυφών, $e=\{v_1,v_2\}$, όχι απαραίτητα διαφορετικών μεταξύ τους. Στα κατευθυνόμενα γραφήματα (directed graphs), κάθε ακμή είναι ένα διατεταγμένο ζεύγος κορυφών, $e=(v_1,v_2)$. Τα μεγέθη που χαρακτηρίζουν ένα γράφημα G(V,E) είναι ο αριθμός των κορυφών του, συνήθως συμβολίζεται με m ή |E|.

Η (μη-κατευθυνόμενη) ακμή $e=\{v_1,v_2\}$ λέμε ότι συνδέει τις κορυφές v_1 και v_2 , οι οποίες ονομάζονται και άκρα της. Η κατευθυνόμενη ακμή $e=(v_1,v_2)$ λέμε ότι συνδέει την κορυφή v_1 με την v_2 . Η v_1 ονομάζεται ουρά (ή αρχή) της ακμής e και η v_2 ονομάζεται κεφαλή (ή τέλος) της e. Δύο κορυφές που συνδέονται με ακμή ονομάζονται γειτονικές. Μία ακμή που τα δύο άκρα της ταυτίζονται (ή η αρχή της ταυτίζεται με το τέλος της αν είναι κατευθυνόμενη) ονομάζεται ανακύκλωση (ή βρόχος, loop). Δύο ακμές με κοινά άκρα (ή κοινή αρχή και τέλος αν είναι κατευθυνόμενες) ονομάζονται παράλληλες.

Ένα γράφημα ονομάζεται απλό όταν δεν έχει παράλληλες ακμές και ανακυκλώσεις. Στο εξής, θα θεωρούμε πάντα απλά γραφήματα (εκτός αν σαφώς δηλώνεται κάτι διαφορετικό). Ειδικότερα, με τον όρο γράφημα θα αναφερόμαστε σε ένα απλό, μη-κατευθυνόμενο γράφημα. Επίσης, θα αναφερθούμε μόνο σε πεπερασμένα γραφήματα που ορίζονται σε πεπερασμένα σύνολα κορυφών.

Το συμπληρωματικό ενός γραφήματος G(V,E), συνήθως συμβολίζεται με \overline{G} , είναι ένα γράφημα στο ίδιο σύνολο κορυφών V που περιλαμβάνει μια ακμή αν και μόνο αν αυτή δεν ανήκει στο E. Ένα γράφημα ονομάζεται κλίκα (ή πλήρες γράφημα) αν κάθε ζευγάρι κορυφών του συνδέεται με ακμή. Η κλίκα n κορυφών συμβολίζεται με K_n και έχει ακριβώς $\frac{n(n-1)}{2}$ ακμές. Ένα σύνολο κορυφών χωρίς καμία ακμή μεταξύ τους ονομάζεται ανεξάρτητο σύνολο (independent set). Συνεπώς, το συμπληρωματικό γράφημα μιας κλίκας είναι ένα ανεξάρτητο σύνολο (στο ίδιο σύνολο κορυφών).

Ένα γράφημα ονομάζεται διμερές (ή διχοτομίσιμο, bipartite) αν οι πορυφές του μπορούν να χωριστούν σε δύο ανεξάρτητα σύνολα. Μπορεί να αποδειχθεί ότι ένα γράφημα είναι διμερές ανν δεν έχει πύπλους περιττού μήπους. Ένα διμερές γράφημα ονομάζεται πλήρες αν πάθε πορυφή στο ένα μέρος (ανεξάρτητο σύνολο) συνδέεται με πάθε πορυφή στο άλλο μέρος. Το πλήρες διμερές γράφημα με n πορυφές στο ένα μέρος παι m πορυφές στο άλλο μέρος συμβολίζεται με $K_{n,m}$ παι έχει $n \cdot m$ απμές.

Άσκηση 1. Ποιος είναι ο μέγιστος αφιθμός ακμών που μποφεί να πεφιέχει ένα απλό διμεφές γράφημα με n κοφυφές; Ισοδύναμα, να δείξετε ότι κάθε απλό γράφημα με n κοφυφές και πεφισσότεφες από $n^2/4$ ακμές δεν είναι διμεφές.

Λύση. Ο μέγιστος αφιθμός ακμών συμβαίνει όταν έχουμε το πλήφες διμεφές γφάφημα. Αφού όλες οι κοφυφές είναι n, αν το ένα σύνολο κοφυφών πεφιέχει k κοφυφές, το δεύτεφο θα πεφιέχει (n-k). Ο συνολικός αφιθμός ακμών του $K_{k,n-k}$ είναι k(n-k). Το γινόμενο μεγιστοποιείται για k=n/2 αν το n είναι άφτιος και για k=(n-1)/2 αν το n είναι πεφιττός. Συνεπώς, αν το n είναι άφτιος, ο μέγιστος αφιθμός ακμών είναι $n^2/4$, ενώ αν το n είναι πεφιττός, ο μέγιστος αφιθμός ακμών είναι $(n^2-1)/4$. Παφατηφείστε ότι οι αντίστοιχοι αφιθμοί είναι πάντα ακέφαιοι.

Μια απολουθία "διαδοχικών" απμών ονομάζεται διαδορμή (walk). Δηλαδή, διαδορμή είναι μια απολουθία απμών (e_1,\ldots,e_k) όπου για πάθε $i,\ 1\leq i\leq k-1$, το ένα άποο (το τέλος για πατευθυνόμενα γραφήματα) της απμής e_i συμπίπτει με το άλλο άποο (την αρχή) της απμής e_{i+1} . Ο αριθμός των απμών στη διαδρομή ονομάζεται μήπος της διαδρομής. Μία διαδρομή ονομάζεται μονοπόνδυλιά (trail) όταν όλες οι απμές της είναι διαφορετιπές παι ονομάζεται μονοπάτι (path) όταν όλες οι πορυφές από τις οποίες διέρχεται είναι διαφορετιπές. Μεριπές φορές, χρησιμοποιείται ο όρος μονοπάτι για τη μονοπονδυλιά (διαδρομή διαφορετιπών απμών) παι απλό μονοπάτι (simple path) για τη διαδρομή με διαφορετιπές πορυφές (παι άρα απμές).

Μία διαδορμή χαρακτηρίζεται σαν κλειστή όταν η αρχική και η τελική της κορυφή συμπίπτουν. Μια κλειστή διαδρομή ονομάζεται κύκλος (cycle ή κύκλωμα, circuit) όταν όλες οι ακμές της είναι διαφορετικές, και ονομάζεται απλός κύκλος (simple cycle) όταν όλες οι κορυφές της είναι διαφορετικές. Με άλλα λόγια, ο κύκλος (ή κύκλωμα) είναι μία κλειστή μονοκονδυλιά και ο απλός κύκλος είναι ένα κλειστό μονοπάτι.

Η απόσταση D(u,v) μεταξύ δύο κορυφών u,v είναι το μήκος του συντομότερου μονοπατιού μεταξύ τους. Η διάμετρος D(G) ενός γραφήματος G(V,E) είναι η μέγιστη απόσταση μεταξύ δύο κορυφών στο $G,D(G)\equiv\max_{u,v\in V}\{D(u,v)\}.$

Ασκηση 2. Να δείξετε ότι κάθε γράφημα περιέχει μία διαδρομή από μια κορυφή u σε μια κορυφή w αν και μόνο αν περιέχει ένα μονοπάτι από τη u στη w.

Λύση. Η μία κατεύθυνση είναι προφανής, γιατί κάθε μονοπάτι είναι εξ' ορισμού διαδρομή. Για την αντίστροφη κατεύθυνση, παρατηρούμε ότι αν η διαδρομή μεταξύ u και w δεν αντιστοιχεί σε μονοπάτι, τότε αυτή πρέπει να περιέχει κορυφές που επαναλαμβάνονται. Όμως, το τμήμα της διαδρομής ανάμεσα σε δύο διαφορετικές εμφανίσεις της ίδιας κορυφής είναι ένας κύκλος (όχι κατ' ανάγκη απλός). Αφαιρώντας όλους αυτούς τους κύκλους, καταλήγουμε σε ένα μονοπάτι από τη u στη w. Με απολύτως παρόμοιο τρόπο μπορούμε να αποδείξουμε ότι ένα γράφημα περιέχει μία κλειστή διαδρομή (ή έναν κύκλο) αν και μόνο αν περιέχει έναν απλό κύκλο.

Άσκηση 3. Να δείξετε ότι κάθε κύκλος περιέχει έναν απλό κύκλο και ότι κάθε μονοκονδυλιά περιέχει ένα απλό μονοπάτι.

Ένα (μη-κατευθυνόμενο) γράφημα είναι συνεκτικό (ή συνδεόμενο, ή συνδεδεμένο, connected) όταν υπάρχει μονοπάτι ανάμεσα σε κάθε ζευγάρι κορυφών. Δηλαδή, σε ένα συνεκτικό γράφημα μπορούμε να μεταβούμε από οποιαδήποτε κορυφή σε οποιαδήποτε άλλη ακολουθώντας τις ακμές του γραφήματος.

Συνεκτικές Συνιστώσες. Δίνεται ένα (μη-κατευθυνόμενο) γράφημα G(V, E). Θεωρώ τη διμελή σχέση $\Sigma_G \subseteq V \times V$ τέτοια ώστε $(u, v) \in \Sigma_G$ ανν υπάρχει μονοπάτι από τη u στη v.

Η σχέση Σ_G είναι σχέση ισοδυναμίας γιατί είναι ανακλαστική ($\forall u \in V, (u, u) \in \Sigma_G$ - για κάθε κορυφή υπάρχει ένα τετριμμένο μονοπάτι προς τον εαυτό της με μηδενικό μήκος), συμμετρική ($\forall u, v \in V, (u, v) \in \Sigma_G \Rightarrow (v, u) \in \Sigma_G$ - το γράφημα είναι μη κατευθυνόμενο και συνεπώς αν υπάρχει μονοπάτι από τη u στη v, θα υπάρχει και μονοπάτι από τη v στη u), και μεταβατική ($\forall u, v, w \in V, (u, w) \in \Sigma_G$ και $(w, v) \in \Sigma_G \Rightarrow (u, v) \in \Sigma_G$ - μεταβαίνουμε από τη u στη w και από εκεί στη v ακολουθώντας τα αντίστοιχα μονοπάτια).

Η σχέση Σ_G χωρίζει τις κορυφές του γραφήματος σε κλάσεις ισοδυναμίες (που αντιστοιχούν στα μεγιστοτικά (maximal) συνεκτικά υπογραφήματα του G) που ονομάζονται συνεκτικές συνιστώσες (connected components). Κάθε συνεκτική συνιστώσα είναι ένα συνεκτικό γράφημα, ενώ δεν υπάρχει μονοπάτι μεταξύ κορυφών που ανήκουν σε διαφορετικές συνεκτικές συνιστώσες. Σε πολλές κατηγορίες ασκήσεων, κάθε συνεκτική συνιστώσα μπορεί να αντιμετωπιστεί σαν ανεξάρτητο γράφημα.

Ένα κατευθυνόμενο γράφημα είναι συνεκτικό όταν για κάθε ζευγάρι κορυφών του $u,v\in V$, υπάρχει μονοπάτι (που σέβεται τις κατευθύνσεις των ακμών) είτε από τη u στη v είτε από τη v στη u. Ένα κατευθυνόμενο γράφημα είναι ισχυρά συνεκτικό (strongly connected) όταν για κάθε ζευγάρι κορυφών του $u,v\in V$, υπάρχουν μονοπάτια (που σέβονται τις κατευθύνσεις των ακμών) και από τη u στη v και από τη v στη u. Ισοδύναμα, σε ένα ισχυρά συνεκτικό γράφημα, κάθε ζευγάρι κορυφών βρίσκεται σε κατευθυνόμενο κύκλο.

Για να είναι η Σ_G σχέση ισοδυναμίας στα κατευθυνόμενα γραφήματα, πρέπει να εξασφαλίσουμε τη συμμετρική ιδιότητα (δεν ισχύει πλέον αυτονόητα, γιατί οι ακμές είναι κατευθυνόμενες). Έτσι ορίζουμε τη Σ_G ως $\Sigma_G\subseteq V\times V\colon (u,v)\in \Sigma_G$ ανν υπάρχει κατευθυνόμενο μονοπάτι τόσο από την u στην v όσο και από την v στην u. Οι κλάσεις ισοδυναμίας που ορίζονται από τη σχέση Σ_G σε κατευθυνόμενα γραφήματα ονομάζονται ισχυρά συνεκτικές συνιστώσες (strongly connected components) και αντιστοιχούν στα μεγιστοτικά ισχυρά συνεκτικά υπογραφήματα του G.

Παρατηρούμε επίσης ότι ο αριθμός των (ισχυρά) συνεκτικών συνιστωσών δεν μπορεί να μεγαλώσει αν προσθέσουμε νέες ακμές στο γράφημα αφού η προσθήκη νέων ακμών δεν μπορεί να αφαιρέσει από το γράφημα κάποιο μονοπάτι που ήδη υπήρχε.

Ασμηση 4. Να δείξετε ότι ένα γράφημα είναι συνεμτιμό ανν για μάθε διαμέριση των μορυφών του σε δύο υποσύνολα υπάρχει πάντα αμμή μεταξύ των δύο υποσυνόλων.

Αν το γράφημα είναι συνεκτικό, θα πρέπει να υπάρχει ακμή που θα επιτρέπει τη "μετάβαση" από το ένα σύνολο στο άλλο. Για το αντίστροφο, ξεκινάμε από μία οποιαδήποτε κορυφή, επεκτεινόμαστε τους γειτόνους της, στους γειτόνους των γειτόνων της, κοκ. Η ιδιότητα που υποθέσαμε εξασφαλίζει ότι αυτή η διαδικασία δεν θα τελειώσει πριν επισκεφθούμε όλες τις κορυφές του γραφήματος. Η συγκεκριμένη διαδικασία είναι μια παραλλαγή της Αναζήτησης κατά Πλάτος (Breadth First Search).

Ασκηση 5. Να δείξετε ότι το συμπληφωματικό κάθε μη συνεκτικού γραφήματος είναι συνεκτικό (και μάλιστα έχει διάμετρο το πολύ 2).

Αύση. Έστω μη συνεκτικό γράφημα G(V,E) και έστω u,w δύο οποιεσδήποτε κορυφές του G. Θα δείξω ότι στο συμπληρωματικό γράφημα του G, έστω \overline{G} , υπάρχει μονοπάτι μεταξύ των u και w. Αφού το G είναι μη συνεκτικό, θα αποτελείται από περισσότερες της μίας συνεκτικές συνιστώσες. Διακρίνω τις ακόλουθες περιπτώσεις.

Περίπτωση 1. Οι κορυφές u και w ανήκουν σε διαφορετική συνεκτική συνιστώσα του G. Τότε η ακμή $\{u,w\}$ δεν υπάρχει στο γράφημα G (αλλιώς οι δύο κορυφές θα ήταν στην ίδια συνεκτική συνιστώσα). Επομένως, η ακμή $\{u,w\}$ υπάρχει στο συμπληρωματικό γράφημα \overline{G} και η απόσταση των u,v είναι 1.

Περίπτωση 2. Οι κορυφές u και w ανήκουν στην ίδια συνεκτική συνιστώσα του G. Έστω κορυφή v που ανήκει σε διαφορετική συνεκτική συνιστώσα από αυτή που ανήκουν οι u και w (εδώ χρησιμοποιώ την υπόθεση για τη μη συνεκτικότητα του G). Όπως και στην Περίπτωση 1, οι ακμές $\{u,v\}$ και $\{v,w\}$ δεν υπάρχουν στο G, και επομένως υπάρχουν στο συμπληρωματικό γράφημα \overline{G} . Συνεπώς, στο συμπληρωματικό γράφημα \overline{G} , οι κορυφές u και w συνδέονται μέσω του μονοπατιού u v w. Η απόσταση των u, v είναι v

2 Βαθμός Κορυφής

Σε ένα μη-κατευθυνόμενο γράφημα, ο βαθμός (degree) μιας κορυφής v, που συμβολίζεται με d(v), είναι ο αριθμός των ακμών που εφάπτονται στη v. Σε ένα κατευθυνόμενο γράφημα, διακρίνουμε το βαθμό εισόδου (in-degree) της v, που συμβολίζεται με $d_{\rm in}(v)$ και είναι ο αριθμός των ακμών που καταλήγουν στη v, και το βαθμό εξόδου (out-degree) της v, που συμβολίζεται με $d_{\rm out}(v)$ και είναι ο αριθμός των ακμών που ξεκινούν από τη v.

Ο ελάχιστος βαθμός $\delta(G)$ ενός γραφήματος G(V,E) είναι ο μικρότερος βαθμός κάποιας κορυφής του, $\delta(G) \equiv \min_{v \in V} \{d(v)\}$. Ο μέγιστος βαθμός $\Delta(G)$ ενός γραφήματος G(V,E) είναι ο μεγαλύτερος βαθμός κάποιας κορυφής του, $\Delta(G) \equiv \max_{v \in V} \{d(v)\}$.

Σε κάθε μη-κατευθυνόμενο γράφημα, το άθροισμα του βαθμού όλων των κορυφών είναι διπλάσιο του αριθμού των ακμών: $\sum_{v \in V} d(v) = 2 |E|$. Ο λόγος είναι ότι κάθε ακμή συνεισφέρει 1 στο βαθμό των δύο άκρων της. Από αυτή την ισότητα προκύπτει ότι ο αριθμός των κορυφών με περιττό βαθμό σε ένα γράφημα είναι άρτιος.

Σε κάθε κατευθυνόμενο γράφημα, το άθροισμα του βαθμού εισόδου όλων των κορυφών είναι ίσο με το άθροισμα του βαθμού εξόδου και ίσο με τον αριθμό των ακμών: $\sum_{v \in V} d_{\text{in}}(v) = \sum_{v \in V} d_{\text{out}}(v) = |E|$. Ο λόγος είναι ότι κάθε ακμή συνεισφέρει 1 στο βαθμό εισόδου του τέλους της και 1 στο βαθμό εξόδου της αρχής της.

Παράδειγμα 1. Υπάρχει γράφημα με 9 πορυφές που όλες έχουν βαθμό 3^1 ; Η απάντηση είναι όχι γιατί ένα τέτοιο γράφημα θα έπρεπε να έχει $3 \times 9 = 27/2 = 13.5$ ακμές.

Άσκηση 6. Να δείξετε ότι δεν μποφεί να υπάφξει απλό γφάφημα με (α) 6 κοφυφές με βαθμό 2, 3, 3, 4, 4, και 5 αντίστοιχα, (β) 5 κοφυφές με βαθμό 2, 3, 4, 4, και 5 αντίστοιχα, (γ) 4 κοφυφές με βαθμό 1, 3, 3, και 3 αντίστοιχα, (δ) 7 κοφυφές με βαθμό 1, 3, 3, 4, 5, 6 και 6 αντίστοιχα.

Ένα γράφημα του οποίου όλες οι κορυφές έχουν τον ίδιο βαθμό ονομάζεται κανονικό (regular). Όταν ο βαθμός όλων των κορυφών είναι k, το γράφημα ονομάζεται k-κανονικό. Όταν ο βαθμός όλων των κορυφών είναι 3, το γράφημα ονομάζεται κυβικό (cubic). Ένας k-κανονικός γράφος περιέχει kn/2 ακμές.

Λύση. (α) Το άθοοισμα των βαθμών είναι περιττός. (β) Ο μέγιστος βαθμός είναι ίσος με τον αριθμό των κορυφών. (γ) Και οι τρεις κορυφές βαθμού 3 πρέπει να συνδέονται στην τέταρτη που έχει βαθμό 1. (δ) Οι δύο κορυφές βαθμού 6 πρέπει να συνδέονται σε όλες τις κορυφές, άρα και σε αυτή με βαθμό 1.

Ασκηση 7. Έστω απλό μη-κατευθυνόμενο γράφημα G(V,E) στο οποίο το άθροισμα των βαθμών κάθε ζεύγους κορυφών είναι μεγαλύτερο ή ίσο του n-1 $(n\equiv |V|)$. Να δείξετε ότι το γράφημα G είναι συνεκτικό (και μάλιστα έχει διάμετρο το πολύ 2). Το ίδιο ισχύει και αν $\delta(G)\geq \frac{n-1}{2}$.

Λύση. Έστω u, v δύο αυθαίζετα επιλεγμένες χορυφές που δεν συνδέονται με αχμή (αν συνδέονται με αχμή, προφανώς υπάρχει μονοπάτι μεταξύ τους και η απόστασή τους είναι 1). Θα δείξουμε ότι υπάρχει μονοπάτι μεταξύ των u και v αποδειχνύοντας ότι το G είναι συνεχτιχό.

Έστω $\Gamma(u)$ και $\Gamma(v)$ τα σύνολα των κορυφών που είναι γειτονικές με τις u και v αντίστοιχα. Από υπόθεση $v,u \notin \Gamma(u) \cup \Gamma(v)$. Θα δείξουμε ότι $\Gamma(u) \cap \Gamma(v) \neq \emptyset$, δηλαδή ότι οι u και v έχουν ένα κοινό γείτονα. Επομένως, υπάρχει μονοπάτι μήκους 2 μεταξύ τους.

Πράγματι, αν $\Gamma(u) \cap \Gamma(v) = \emptyset$, θα είχαμε $|\Gamma(u)| + |\Gamma(v)| = d(u) + d(v) \ge n - 1$. Αυτό είναι άτοπο επειδή $v, u \notin \Gamma(u) \cup \Gamma(v)$ και όλες οι κορυφές του γραφήματος είναι n.

Ασμηση 8. Να δείξετε ότι κάθε απλό μη-κατευθυνόμενο γράφημα με n κορυφές και περισσότερες από $\frac{1}{2}(n-1)(n-2)$ ακμές είναι συνεκτικό.

Λύση. Έστω ότι υπάρχει τέτοιο γράφημα που δεν είναι συνεχτικό. Θα αποτελείται από τουλάχιστον δύο συνεχτικές συνιστώσες (χωρίς βλάβη της γενικότητας, υποθέτουμε ότι οι συνεχτικές του συνιστώσες είναι αχριβώς δύο). Έστω $k,\ 1\leq k\leq n-1,$ ο αριθμός των κορυφών της μίας χαι (n-k) ο αριθμός των κορυφών της άλλης. Η πρώτη θα έχει το πολύ $\frac{k(k-1)}{2}$ αχμές και η δεύτερη το πολύ $\frac{(n-k)(n-k-1)}{2}$ αχμές. Ο συνολικός αριθμός αχμών είναι $\frac{n(n-1)-2k(n-k)}{2}$. Το κλάσμα αυτό μεγιστοποείται για k=1 και k=n-1 (Η μικρότερη και η μεγαλύτερη τιμή του k που αντιστοιχεί σε μη συνεχτικό γράφημα. Το αντίστοιχο γράφημα είναι μία κλίκα με n-1 κορυφές και μία απομονωμένη κορυφή.) Προχύπτει λοιπόν ότι το γράφημα έχει το πολύ $\frac{(n-1)(n-2)}{2}$ αχμές. Αυτό έρχεται σε αντίφαση με την υπόθεση ότι το γράφημα έχει περισσότερες από $\frac{1}{2}(n-1)(n-2)$ αχμές.

Ασκηση 9. Έστω γράφημα με ακριβώς δύο κορυφές περιττού βαθμού. Τότε αυτές ανήκουν στην ίδια συνεκτική συνιστώσα (ή ισοδύναμα, υπάρχει μονοπάτι μεταξύ τους).

 Λ ύση. Αν άνηκαν σε διαφορετική συνεκτική συνιστώσα, θα είχαμε μία συνεκτική συνιστώσα με μία κορυφή περιττού βαθμού, το οποίο είναι άτοπο.

3 Κύκλος Euler

Κύκλος Euler σε ένα γράφημα είναι κάθε κύκλος (όχι απαραίτητα απλός) που διέρχεται από κάθε ακμή ακριβώς μία φορά και από κάθε κορυφή τουλάχιστον μία φορά.

Υπάρχει ένας πολύ κομψός χαρακτηρισμός των γραφημάτων που έχουν κύκλο Euler: Ένα συνεκτικό (μη-κατευθυνόμενο) γράφημα έχει κύκλο Euler ανν όλες οι κορυφές του γραφήματος

έχουν άφτιο βαθμό. Μάλιστα, ένα συνεκτικό (μη-κατευθυνόμενο) γράφημα έχει κύκλο Euler ανν οι ακμές του γραφήματος μπορούν να διαμεριστούν σε ένα σύνολο ξένων μεταξύ τους απλών κύκλων.

Για να αντιληφθούμε διαισθητικά την ισοδυναμία μεταξύ της ύπαρξης κύκλου Euler και της απαίτησης για άρτιο βαθμό των κορυφών, ας επιστρέψουμε στον ορισμό. Ο κύκλος Euler διέρχεται από κάθε ακμή ακριβώς μία φορά και από κάθε κορυφή τουλάχιστον μία φορά. Επομένως, κάθε φορά που ο κύκλος επισκέπτεται μία κορυφή (από μία ακμή) την εγκαταλείπει από μία άλλη ακμή και στο τέλος όλες οι ακμές έχουν χρησιμοποιηθεί ακριβώς μία φορά. Αυτό σημαίνει ότι κάθε κορυφή πρέπει να έχει άρτιο βαθμό (ακριβώς διπλάσιο από τον αριθμό των φορών που την επισκέφθηκε ο κύκλος Euler). Το αντίστροφο, μπορεί να αποδειχθεί με μαθηματική επαγωγή.

Για να κατασκευάσουμε λοιπόν ένα γράφημα με κύκλο Euler, πρέπει όλες οι ακμές του να έχουν άρτιο βαθμό. Για να κατασκευάσουμε ένα γράφημα που δεν έχει κύκλο Euler, αρκεί κάποιες κορυφές του να έχουν περιττό βαθμό. Ομοίως, για να αποδείξουμε ότι ένα γράφημα έχει κύκλο Euler, αρκεί να δείξουμε ότι όλες του οι κορυφές έχουν άρτιο βαθμό. Για να αποδείξουμε ότι ένα γράφημα δεν έχει κύκλο Euler, αρκεί να αποδείξετε ότι κάποιες κορυφές του έχουν περιττό βαθμό.

Ασκηση 10. Να δείξετε ότι αν ένα γράφημα έχει k πορυφές με περιττό βαθμό (το k είναι άρτιο αναγκαστικά), το σύνολο των ακμών του μπορεί να διαμεριστεί σε k/2 μονοκονδυλιές.

Υπόδειξη: Υπάρχει μία λύση με μαθηματική επαγωγή. Μια δεύτερη λύση είναι να "ζευγαρώσουμε" τις κορυφές περιττού βαθμού χρησιμοποιώντας k/2 νέες ακμές. Τώρα όλες οι κορυφές έχουν άρτιο βαθμό και το γράφημα έχει κύκλο Euler. Αφαιρώντας τις ακμές που προσθέσαμε, ο κύκλος "διασπάται" σε k/2 μονοκονδυλιές.

Ασκηση 11. Ποιος είναι ο μέγιστος αφιθμός ακμών ενός απλού μη-κατευθυνόμενου γφαφήματος με *n* κοφυφές που έχει κύκλο Euler.

Λύση. Αν το n είναι περιττός, το n-1 είναι άρτιο. Σε αυτή την περίπτωση, το πλήρες γράφημα K_n έχει κύκλο Euler και ο μέγιστος αριθμός ακμών είναι $\frac{n(n-1)}{2}$ (αφού το γράφημα είναι απλό). Αν το n είναι άρτιος, το γράφημα όπου όλες οι ακμές έχουν βαθμό n-2 υπάρχει, είναι συνεκτικό, και συνεπώς έχει κύκλο Euler (Το γεγονός ότι ένα τέτοιο γράφημα υπάρχει αποδεικνύεται παίρνοντας το K_n , "ζευγαρώνοντας" τις κορυφές του, και αφαιρώντας την ακμή που συνδέει κάθε ζευγάρι κορυφών. Το γεγονός ότι ένα τέτοιο γράφημα είναι συνεκτικό προκύπτει από την προκύπτει από την Άσκηση 7.) Το γράφημα αυτό έχει $\frac{n(n-2)}{2}$ ακμές. Κάθε γράφημα με n κορυφές και περισσότερες ακμές, θα πρέπει να έχει μία τουλάχιστον κορυφή με βαθμό n-1 (περιττός) και συνεπώς δεν θα έχει κύκλο Euler. Αν λοιπόν το n είναι άρτιος, ο μέγιστος αριθμός ακμών είναι $\frac{n(n-2)}{2}$.

Ένα συνεκτικό κατευθυνόμενο γράφημα έχει κύκλο Euler ανν σε κάθε κορυφή, ο βαθμός εισόδου είναι ίσος με το βαθμό εξόδου. Αν λοιπόν πάρουμε ένα συνεκτικό μη-κατευθυνόμενο γράφημα και αντικαταστήσουμε κάθε ακμή του με δύο κατευθυνόμενες ακμές, μία σε κάθε κατεύθυνση, το αποτέλεσμα θα είναι ένα κατευθυνόμενο γράφημα με κύκλο Euler (Η συνεκτικότητα είναι δεδομένη. Ο βαθμός εισόδου και ο βαθμός εξόδου κάθε κορυφής στο κατευθυνόμενο γράφημα είναι ίσοι με το βαθμό της κορυφής στο αρχικό (μη-κατευθυνόμενο) γράφημα).

4 Κύκλος Hamilton

Κύκλος Hamilton σε ένα γράφημα είναι κάθε απλός κύκλος που διέρχεται από όλες τις κορυφές του γραφήματος (ισοδύναμα, κύκλος Hamilton είναι κάθε απλός κύκλος μήκους n ή κάθε κύκλος που διέρχεται από κάθε κορυφή του γραφήματος ακριβώς μία φορά). Ένα γράφημα με κύκλο Hamilton ονομάζεται και Hamiltonian γράφημα.

Δεν είναι γνωστό κανένα σύνολο ικανών και αναγκαιών συνθηκών που να χαρακτηρίζει τα γραφήματα με κύκλο Hamilton. Αρκετές αναγκαίες συνθήκες είναι γνωστές. Για παράδειγμα, κάθε Hamiltonian γράφημα είναι συνεκτικό και δεν έχει γέφυρες ούτε σημεία κοπής . Κάθε διμερές Hamiltonian γράφημα έχει τον ίδιο αριθμό κορυφών και στα δύο μέρη. Αν ένα γράφημα δεν ικανοποιεί κάποια αναγκαία συνθήκη, δεν μπορεί να έχει κύκλο Hamilton. Υπάρχουν όμως γραφήματα που ικανοποιούν τις αναγκαίες συνθήκες και δεν έχουν κύκλο Hamilton.

Οι πιο γνωστές ικανές συνθήκες είναι τα θεωρήματα του Dirac και του Ore. Το θεώρημα του Dirac είναι: Κάθε (απλό μη-κατευθυνόμενο) γράφημα με ελάχιστο βαθμό κορυφής μεγαλύτερο ή ίσο του n/2 είναι Hamiltonian. Το Θεώρημα του Ore αποτελεί γενίκευση του θεωρήματος του Dirac: Αν το άθροισμα των βαθμών κάθε ζεύγους κορυφών ενός (απλού μη-κατευθυνόμενου) γραφήματος είναι τουλάχιστον n, το γράφημα έχει κύκλο Hamilton. Κάθε γράφημα που ικανοποιεί κάποια από τις ικανές συνθήκες έχει κύκλο Hamilton. Υπάρχουν όμως γραφήματα που δεν ικανοποιούν τις ικανές συνθήκες και έχουν κύκλο Hamilton.

Επομένως, αν πρέπει να αποδείξουμε ότι κάποιο γράφημα έχει κύκλο Hamilton, η πρώτη σκέψη είναι να βρούμε έναν κύκλο Hamilton στο γράφημα. Αν αυτό δεν είναι δυνατόν (π.χ. το γράφημα είναι πολύ μεγάλο), πρέπει να δείξουμε ότι ικανοποιεί κάποια από τις ικανές συνθήκες (π.χ. θεώρημα του Dirac). Αν θέλουμε να αποδείξουμε ότι ένα γράφημα δεν έχει κύκλο Hamilton, πρέπει να βρούμε κάποια αναγκαία συνθήκη που δεν ικανοποιείται από το γράφημα (π.χ. έχει σημείο κοπής).

Άσκηση 12. Να δείξετε ότι κάθε απλό μη κατευθυνόμενο γοάφημα με 11 κοουφές και 53 ακμές δεν έχει κύκλο Euler, αλλά έχει κύκλο Hamilton.

Λύση. Το πλήφες γράφημα με 11 κορυφές έχει 55 ακμές. Συνεπώς, κάθε απλό γράφημα με 11 κορυφές και 53 ακμές προκύπτει από το K_{11} με την αφαίφεση δύο ακμών. Για να αποκλείσω την ύπαρξη κύκλου Euler, χρειάζεται να διακρίνω δύο περιπτώσεις:

Περίπτωση 1. Οι δύο ακμές που αφαιρέθηκαν από το K_{11} προσπίπτουν στην ίδια κορυφή. Αφού το γράφημα είναι απλό, οι δύο ακμές μπορούν να έχουν μόνο το ένα άκρο τους κοινό. Το γράφημα έχει μία κορυφή βαθμού 8, δύο κορυφές βαθμού 9, και 8 κορυφές με βαθμό 10. Συνεπώς, δεν μπορεί να έχει κύκλο Euler, αφού περιέχει κάποιες κορυφές με περιττό βαθμό.

Περίπτωση 2. Αν οι δύο ακμές που αφαιφέθηκαν από το K_{11} προσπίπτουν σε τέσσερις διαφορετικές κορυφές, το γράφημα με 11 κορυφές και 53 ακμές πρέπει να έχει 4 κορυφές βαθμού 9 και 7 κορυφές βαθμού 10. Και σε αυτή την περίπτωση, το γράφημα δεν μπορεί να έχει κύκλο Euler.

² Μια ακμή ενός συνεκτικού γραφήματος ονομάζεται γέφυρα αν δεν υπάρχει κύκλος που να την περιέχει. Η αφαίρεση της γέφυρας αίρει τη συνεκτικότητα του γραφήματος.

³ Μία κορυφή ενός συνεκτικού γραφήματος ονομάζεται σημείο κοπής (ή σημείο άρθρωσης) αν η αφαίρεση της αίρει τη συνεκτικότητα του γραφήματος.

Η ύπαρξη κύκλου Hamilton προκύπτει από το θεώρημα του Ore, αφού σε κάθε περίπτωση, το άθροισμα των βαθμών κάθε ζεύγους κορυφών είναι τουλάχιστον 17>11.

Ασκηση 13. Να χαρακτηρίσετε την κλάση των γραφημάτων στα οποία κάθε κύκλος Euler είναι επίσης και κύκλος Hamilton.

Λύση. Ένας κύκλος ο οποίος είναι τόσο κύκλος Euler όσο και κύκλος Hamilton πρέπει να διέρχεται από κάθε κορυφή του γραφήματος ακριβώς μία φορά (επειδή είναι κύκλος Hamilton) και από κάθε ακμή του γραφήματος ακριβώς μία φορά (επειδή είναι κύκλος Euler). Αυτό μπορεί να συμβεί μόνο αν το γράφημα είναι ένας απλός κύκλος C_n με n κορυφές και n ακμές (υπενθυμίζουμε ότι ο απλός κύκλος C_n , $n \geq 3$, αποτελείται από n κορυφές u_1, u_2, \ldots, u_n και n ακμές $\{u_1, u_2\}, \{u_2, u_3\}, \ldots, \{u_{n-1}, u_n\}, \{u_n, u_1\}$).

Συγκεκριμένα, αν το γράφημα περιείχε n+1 ή περισσότερες ακμές, ο κύκλος Euler δεν θα ήταν κύκλος Hamilton (θα περιείχε περισσότερες από n ακμές και συνεπώς θα διερχόταν από κάποια κορυφή περισσότερες από μία φορές). Αν το γράφημα περιείχε n-1 ή λιγότερες ακμές, είτε δεν θα περιείχε κανένα κύκλο (θα ήταν δέντρο) είτε δεν θα ήταν συνεκτικό, και δεν θα είχε ούτε κύκλο Euler ούτε κύκλο Hamilton. Τέλος, αν το γράφημα περιείχε n ακμές αλλά δεν ήταν το C_n , τότε θα περιείχε ένα κύκλο με μήκος μικρότερο του n και δεν θα μπορούσε να περιέχει ούτε κύκλο Euler ούτε κύκλο Hamilton.

Ασκηση 14. Μια ακμή ονομάζεται γέφυρα αν δεν υπάρχει κύκλος που την περιέχει. Δείξτε ότι αν ένα απλό γράφημα έχει κύκλο Hamilton, τότε δε μπορεί να περιέχει γέφυρα. Ισχύει το ίδιο συμπέρασμα αν αντί για κύκλο Hamilton υποθέσουμε ότι το γράφημα έχει κύκλο Euler;

Λύση. Έστω G(V,E) ένα οποιοδήποτε γράφημα με κύκλο Hamilton και $\{u,v\}\in E$ μία οποιαδήποτε ακμή του G. Αφού το γράφημα έχει κύκλο Hamilton, υπάρχει μονοπάτι π μεταξύ των u και v που δεν διέρχεται από την ακμή $\{u,v\}$. Το μονοπάτι π μαζί με την $\{u,v\}$ σχηματίζει κύκλο. Συνεπώς, καμία ακμή του γραφήματος G δεν μπορεί να είναι γέφυρα.

Με το ίδιο σκεπτικό, μια ακμή $\{u,v\}$ δεν μποφεί να είναι γέφυφα ακόμη και στην πεφίπτωση που απλώς υπάφχει κάποιος κύκλος που διέφχεται από τις u και v (ακόμη και αν αυτός ο κύκλος δεν είναι κύκλος Hamilton).

Όσο για τον κύκλο Euler, αυτός διέρχεται από όλες τις ακμές του γραφήματος. Συνεπώς, κάθε γράφημα με κύκλο Euler δεν μπορεί επίσης να περιέχει γέφυρα.

Ασκηση 15. Να δείξετε ότι σε κάθε (μη κατευθυνόμενο) γράφημα που περιέχει γέφυρα, υπάρχει κάποια κορυφή με περιττό βαθμό.

Λύση. Χωρίς βλάβη της γενικότητας, θεωρούμε συνεκτικό γράφημα G (αν το γράφημα δεν είναι συνεκτικό, τα παρακάτω ισχύουν για την συνεκτική συνιστώσα του γραφήματος που περιέχει την γέφυρα). Αν όλες οι κορυφές του G έχουν άρτιο βαθμό, το G έχει κύκλο Euler. Συνεπώς όλες οι ακμές ανήκουν σε κύκλο, άρα καμία δεν είναι γέφυρα.

Άσκηση 16. Ένα τοιμερές γράφημα είναι ένα γράφημα στο οποίο οι κόμβοι του διαμερίζονται σε τρία ανεξάρτητα σύνολα. Το $K_{m,n,k}$ είναι το τριμερές γράφημα στο οποίο τα τρία ανεξάρτητο σύνολα, έστω A, B και Γ , έχουν αντίστοιχα m, n και k κορυφές, και στο οποίο κάθε κορυφή

σε κάθε σύνολο από τα A, B και Γ είναι συνδεδεμένη με όλες τις άλλες κορυφές στα άλλα δύο σύνολα. (α) Να δείξετε ότι το $K_{2,4,6}$ είναι Hamiltonian. (β) Να δείξετε ότι το $K_{n,2n,3n}$ είναι Hamiltonian για κάθε θετικό ακέραιο n.

Αύση. Αν $A=\{\alpha_1,\ldots,\alpha_n\},\ B=\{\beta_1,\ldots,\beta_{2n},\ \text{και }\Gamma=\{\gamma_1,\ldots,\gamma_{3n}\},\ \text{ένας κύκλος Hamilton}$ είναι ο $(\alpha_1,\gamma_1,\alpha_2,\gamma_2,\ldots,\alpha_n,\gamma_n,\beta_1,\gamma_{n+1},\beta_2,\gamma_{n+2},\ldots,\beta_{2n},\gamma_{3n},\alpha_1)$ (δηλ. πρώτα έχουμε ένα μονοπάτι μήκους 2n-1 που ξεκινά από την α_1 , καταλήγει στην γ_n , και καλύπτει όλες τις κορυφές του A και τις n πρώτες κορυφές του Γ , έπειτα έχουμε ένα μονοπάτι μήκους 4n που ξεκινά από την γ_n , καταλήγει στην γ_{3n} , και καλύπτει όλες τις κορυφές του B και τις 2n κορυφές του Γ που δεν "καλύπτονται" από το πρώτο μονοπάτι, και τέλος "επιστρέφουμε" από την γ_{3n} στην α_1).

Για μια πιο απλή λύση παρατηρούμε ότι το $K_{n,2n,3n}$ περιέχει ως επικαλύπτον (spanning) υπογράφημα το $K_{3n,3n}$. Αυτό προκύπτει αν θεωρήσουμε την διαμέριση των κορυφών σε $A \cup B$ και Γ , και αγνοήσουμε τις ακμές μεταξύ των κορυφών του A και του B. Αφού το $K_{3n,3n}$ έχει κύκλο Hamilton, και το $K_{n,2n,3n}$ έχει κύκλο Hamilton (ο οποίος μάλιστα δεν χρησιμοποιεί τις ακμές μεταξύ κορυφών του A και του B).

5 Αναπαράσταση Γραφημάτων

5.1 Πίναχας Γειτνίασης

Ο Πίνακας Γειτνίασης ή Μητρώο Σύνδεσης (Adjacency Matrix) A ενός γραφήματος $G(V,E)^4$ είναι ένας τετραγωνικός πίνακας $|V| \times |V|$, οι γραμμές και οι στήλες του οποίου αριθμούνται με βάση τις κορυφές του. Τα στοιχεία του πίνακα γειτνίασης ορίζονται με βάση τις ακμές του γραφήματος από τη σχέση:

$$A[i,j] = \begin{cases} 1 & \text{an } \{v_i, v_j\} \in E \\ 0 & \text{διαφορετικά} \end{cases}$$

Είναι εύκολο να δείτε ότι για το ίδιο γράφημα, μπορούν να προκύψουν διαφορετικοί πίνακες γειτνίασης αν χρησιμοποιήσουμε διαφορετική αρίθμηση κορυφών. Βέβαια αν θεωρήσουμε δύο πίνακες που προκύπτουν από το ίδιο γράφημα και κάνουμε την αντίστροφη διαδικασία (δηλ. κατασκευάσουμε το γράφημα που αντιστοιχεί σε κάθε πίνακα), θα καταλήξουμε σε ισομορφικά γραφήματα!

Οι βασικές ιδιότητες του πίνακα γειτνίασης ενός απλού μη-κατευθυνόμενου γραφήματος G(V,E) είναι

- 1. Τα διαγώνια στοιχεία του πίνακα είναι 0 (γιατί δεν υπάρχουν ανακυκλώσεις) και ο πίνακας είναι συμμετρικός ως προς τη διαγώνιο (οι ακμές δεν έχουν κατεύθυνση).
- 2. Το άθοοισμα των στοιχείων της γραμμής ή της στήλης που αντιστοιχεί σε κάθε κορυφή v_i είναι ίσο με το βαθμό της κορυφής, δηλ. $\sum_{v_j \in V} A[v_i, v_j] = \sum_{v_j \in V} A[v_j, v_i] = \deg(v_i)$.
- 3. Το συνολικό άθροισμα των στοιχείων του πίνακα γειτνίασης είναι ίσο με το διπλάσιο του αριθμού των ακμών του γραφήματος, δηλ. $\sum_{v_i \in V} \sum_{v_i \in V} A[v_i, v_j] = 2 |E|$.

⁴ Σε αυτές τις σημειώσεις αναφερόμαστε μόνο στην αναπαράσταση απλών μη-κατευθυνόμενων γραφημάτων. Μπορούμε εύκολα να γενικεύσουμε ότι παρουσιάζεται εδώ στις περιπτώσεις των κατευθυνόμενων γραφημάτων και των γραφημάτων με ανακυκλώσεις και παράλληλες ακμές.

Μπορούμε να αποδείξουμε ότι το [i,j]-στοιχείο του πίνακα A^ℓ (δηλ. της ℓ -οστής δύναμης του πίνακα γειτνίασης) είναι ίσο με τον αριθμό των διαδρομών (μπορεί να έχουν επαναλαμβανόμενες ακμές) που συνδέουν τις κορυφές v_i και v_j . Για παράδειγμα, $A^2[i,i] = \deg(v_i)$ για κάθε κορυφή $v_i \in V$ επειδή οι μοναδικές διαδρομές μήκους 2 που ξεκινούν και τελειώνουν στην ίδια κορυφή αποτελούνται από τις ακμές που προσπίπτουν στην κορυφή, έχουν δηλαδή τη μορφή $\{v_i,u\},\{u,v_i\}$.

Θεωρούμε τώρα τον πίνακα $Y = \sum_{\ell=1}^{n-1} A^\ell$, όπου n = |V| είναι ο αριθμός των κορυφών του γραφήματος.

Πρόταση 1. Y[i,j] > 0 ανν υπάρχει διαδρομή από την κορυφή v_i στην κορυφή v_j .

Απόδειξη. Αν υπάρχει διαδρομή από τη v_i στη v_j , τότε γνωρίζουμε ότι υπάρχει και (απλό) μονοπάτι μήκους $\ell \leq n-1$. Επομένως, θα είναι $A^\ell[i,j]>0$ που σημαίνει ότι Y[i,j]>0 (επειδή οι δυνάμεις του πίνακα A δεν έχουν αρνητικά στοιχεία). Αντίστροφα, για να είναι Y[i,j]>0, θα πρέπει να υπάρχει κάποιος απέραιος ℓ , $1\leq \ell \leq n-1$, για τον οποίο $A^\ell[i,j]>0$. Συνεπώς, υπάρχει διαδρομή μήκους ℓ τη v_i στη v_j .

Με βάση την Ποόταση 1, αν κάποιο στοιχείο του Y είναι 0, το γράφημα δεν είναι συνεκτικό. Πράγματι, αν υπάρχει μη-διαγώνιο στοιχείο Y[i,j]=0, δεν υπάρχει διαδρομή μεταξύ των αντίστοιχων κορυφών. Επίσης, αν υπάρχει διαγώνιο στοιχείο Y[i,i]=0, η αντίστοιχη κορυφή πρέπει να είναι απομονωμένη. Αντίστροφα, αν το γράφημα είναι συνεκτικό, όλα τα στοιχεία του Y είναι θετικά.

Ας θεωρήσουμε τώρα τον $n \times n$ πίνακα X που ορίζεται ως:

Σαν άσκηση, να δείξετε ότι το γράφημα G (από το οποίο προκύπτει ο πίνακας Y) είναι συνεκτικό ανν το γράφημα με πίνακα γειτνίασης τον X είναι το K_n . Επίσης να δείξετε ότι αν το γράφημα G δεν είναι συνεκτικό, τότε το γράφημα που αντιστοιχεί στον πίνακα X έχει μία κλίκα για κάθε συνεκτική συνιστώσα του G.

Ασκηση. Έστω A ο πίνακας γειτνίασης ενός απλού μη-κατευθυνόμενου γραφήματος G με n κουφές, και \overline{A} ο πίνακας γειτνίασης του συμπληφωματικού γραφήματος \overline{G} . Έστω επίσης $Y=\sum_{\ell=1}^{n-1}A^\ell$ και $\overline{Y}=\sum_{\ell=1}^{n-1}\overline{A}^\ell$. Ποιο είναι το γράφημα με πίνακα γειτνίασης τον $A+\overline{A}$ και γιατί; Υπάρχουν μηδενικά στοιχεία στον πίνακα $Y+\overline{Y}$; (Οι απαντήσεις είναι K_n και όχι αντίστοιχα. Απομένει να αιτιολογηθούν).

5.2 Πίνακας Πρόσπτωσης

Ο Πίνακας Ποόσπτωσης ή Πίνακας Εφαπτόμενων Ακμών (Incidence Matrix) M ενός γραφήματος G(V,E) είναι ένας πίνακας $|V|\times |E|$, οι γραμμές του οποίου αριθμούνται με βάση τις κορυφές και οι στήλες με βάση τις ακμές. Τα στοιχεία του πίνακα πρόσπτωσης ορίζονται από τη σχέση:

$$A[i,j] = egin{cases} 1 & \text{αν η κορυφή } v_i \text{ είναι ένα από τα άκρα της ακμής } e_j \\ 0 & \text{διαφορετικά} \end{cases}$$

Για το ίδιο γράφημα, μπορούν να προκύψουν διαφορετικοί πίνακες πρόσπτωσης για διαφορετική αρίθμηση κορυφών και ακμών. Όπως και για τους πίνακες γειτνίασης, δύο πίνακες πρόσπτωσης που προκύπτουν από το ίδιο γράφημα αντιστοιχούν σε ισομορφικά γραφήματα.

Οι βασικές ιδιότητες του πίνακα πρόσπτωσης ενός απλού μη-κατευθυνόμενου γραφήματος G(V,E) είναι

- 1. Το άθροισμα των στοιχείων κάθε γραμμής είναι ίσο με το βαθμό της αντίστοιχης κορυφής.
- 2. Το άθροισμα των στοιχείων κάθε στήλης είναι ίσο με 2.
- 3. Το συνολικό άθροισμα των στοιχείων του πίνακα πρόσπτωσης είναι ίσο με το διπλάσιο του αριθμού των ακμών του γραφήματος.

6 Ισομορφικά Γραφήματα

Δύο γραφήματα $G(V_G, E_G)$ και $H(V_H, E_H)$ είναι ισομορφικά όταν υπάρχει μία αμφιμονοσήμαντη (δηλ. 1-1 και επί) αντιστοιχία $f: V_G \mapsto V_H$ μεταξύ των κορυφών τους που διατηρεί τη γειτονικότητα (δηλ. $\{v,u\}\in E_G \Leftrightarrow \{f(v),f(u)\}\in E_H)$. Η αντιστοιχία f καλείται ισομορφισμός μεταξύ των γραφημάτων G και H. Είναι δυνατόν να υπάρχουν περισσότεροι από ένας ισομορφισμοί μεταξύ δύο γραφημάτων. Διαισθητικά, δύο γραφήματα είναι ισομορφικά αν πρόκειται ουσιαστικά για το ίδιο γράφημα "ζωγραφισμένο" με διαφορετικό τρόπο.

Η σχέση ισομορφισμού μεταξύ των γραφημάτων είναι σχέση ισοδυναμίας. Πράγματι, είναι ανακλαστική αφού κάθε γράφημα είναι ισομορφικό με τον εαυτό του, είναι συμμετρική γιατί ο ισομορφισμός είναι αμφιμονοσήμαντη συνάρτηση (άρα αντιστρέψιμη), και είναι μεταβατική γιατί η σύνθεση δύο ισομορφισμών δίνει έναν ισομορφισμό. Κάθε κλάση ισοδυναμίας που ορίζεται από τη σχέση ισομορφισμού περιλαμβάνει γραφήματα που συμφωνούν πρακτικά σε όλες τις ιδιότητές τους (και άρα ουσιαστικά ταυτίζονται).

Μια ιδιότητα ενός γραφήματος G ονομάζεται αναλλοίωτη (ως προς τη σχέση του ισομορφισμού) αν κάθε γράφημα που είναι ισομορφικό με το G έχει την ίδια ιδιότητα. Με απλά λόγια, κάθε ιδιότητα που δεν μεταβάλλεται αν "ζωγραφίσουμε" το γράφημα διαφορετικά είναι αναλλοίωτη. Τα ισομορφικά γραφήματα συμφωνούν ως προς τις αναλλοίωτες ιδιότητές τους. Η έννοια του ισομορφισμού είναι σημαντική γιατί όλες οι σημαντικές γραφοθεωρητικές ιδιότητες είναι αναλλοίωτες 5 .

Πώς αποδεικνύουμε ότι μία ιδιότητα είναι αναλλοίωτη. Για παράδειγμα, θα αποδείξουμε ότι η ιδιότητα ότι το γράφημα έχει μονοπάτι Hamilton είναι αναλλοίωτη. Παρόμοια χειριζόμαστε κάθε αναλλοίωτη ιδιότητα.

Θεωρούμε γράφημα $G(V_G, E_G)$ που έχει την ιδιότητα καθώς και μια δομή που πιστοποιεί ότι το G έχει την ιδιότητα (στο συγκεκριμένο παράδειγμα, μια τέτοια δομή είναι ένα μονοπάτι

⁵ Μια ιδιότητα που δεν είναι αναλλοίωτη πρέπει να εξαρτάται από τον τρόπο που το γράφημα είναι "ζωγραφισμένο", π.χ. δύο ακμές τέμνονται, δύο κορυφές βρίσκονται από την ίδια πλευρά σε σχέση με κάποιον άξονα συμμετρίας του επιπέδου, αριθμός κορυφών στην εξωτερική όψη ενός επίπεδου γραφήματος, κάποιες κορυφές ανήκουν στην εξωτερική όψη ενός επίπεδου γραφήματος, κλπ. Αυτές οι ιδιότητες έχουν συνήθως μικρότερη σημασία από ιδιότητες όπως ο αριθμός των κορυφών και των ακμών, αν είναι το γράφημα συνεκτικό, αν είναι k-μερές, αν περιέχει μία μεγάλη κλίκα ή ένα μεγάλο ανεξάρτητο σύνολο, αν έχει κύκλο Hamilton ή Euler, κλπ. που δεν εξαρτώνται από τον τρόπο που το γράφημα είναι "ζωγραφισμένο" και είναι αναλλοίωτες.

Hamilton). Θεωφούμε επίσης αυθαίφετα επιλεγμένο γφάφημα $H(V_H, E_H)$ που είναι ισομοφφικό με το G και έναν ισομοφφισμό $f: V_G \mapsto V_H$ μεταξύ του G και του H.

Έστω $P=(v_1,v_2,\ldots,v_{n-1},v_n)$ ένα μονοπάτι Hamilton στο G. Το P περιλαμβάνει όλες τις πορυφές του γραφήματος G απριβώς μία φορά παι πάθε ζευγάρι διαδοχιπών πορυφών στο P συνδέεται με απμή. Έστω $f(P)=(f(v_1),f(v_2),\ldots,f(v_{n-1}),f(v_n))$ η ειπόνα του P στο γράφημα H ως προς τον ισομορφισμό f. Αφού το f είναι μια αμφιμονοσήμαντη αντιστοιχία μεταξύ των πορυφών των G παι H, πάθε πορυφή του H εμφανίζεται στο f(P) απριβώς μία φορά. Αφού το f είναι ισομορφισμός παι διατηρεί τη γειτονιπότητα, πάθε ζευγάρι διαδοχιπών πορυφών στο f(P) συνδέεται με απμή (γιατί το ίδιο συμβαίνει στο P). Συνεπώς το f(P) είναι ένα μονοπάτι Hamilton στο H παι η ιδιότητα είναι αναλλοίωτη ως προς τη σχέση του ισομορφισμού.

Η ίδια αχριβώς μεθοδολογία αχολουθείται για όλες τις ιδιότητες!

Για να δείξουμε ότι μία ιδιότητα δεν είναι αναλλοίωτη, παρουσιάζουμε ένα ζευγάρι ισομορφικών γραφημάτων που το ένα έχει και το άλλο δεν έχει την ιδιότητα.

Πώς αποδειχνύουμε ότι δύο γραφήματα είναι ισομορφικά. Ο πρώτος τρόπος είναι με τον ορισμό. Δηλαδή βρίσκουμε έναν ισομορφισμό f (μια αντιστοιχία μεταξύ των κορυφών τους) που διατηρεί τη γειτονικότητα. Σε αυτή την περίπτωση πρέπει να ελέγξουμε τις αχμές των δύο γραφημάτων μία-προς-μία για να επιβεβαιώσουμε ότι κάθε αχμή $\{u,v\}$ υπάρχει στο ένα γράφημα αν και μόνο αν η αχμή $\{f(u),f(v)\}$ υπάρχει στο δεύτερο.

Αν τα γραφήματα έχουν πολλές αχμές, προσπαθούμε να δείξουμε ότι τα συμπληρωματικά γραφήματα είναι ισομορφικά (χρησιμοποιούμε πάλι τον ορισμό). Ο ισομορφισμός των αρχικών γραφημάτων έπεται εύκολα από τον ορισμό του συμπληρωματικού γραφήματος και τον ορισμό του ισομορφισμού. Το πλεονέκτημα αυτής της μεθόδου είναι ότι αν τα αρχικά γραφήματα έχουν πολλές αχμές, τα συμπληρωματικά έχουν λίγες, οπότε είναι εύκολο να δείξουμε ότι είναι ισομορφικά.

Μια τρίτη μέθοδος (με περιορισμένη όμως εφαρμογή) είναι να αναδιατάξουμε τις πορυφές / απμές του ενός γραφήματος ώστε ο πίνακας γειτονικότητας ή πρόσπτωσης να ταυτίζεται με τον αντίστοιχο πίνακα του δεύτερου γραφήματος. Για μεγάλα γραφήματα (π.χ. περισσότερες από 6 πορυφές) αυτή η μέθοδος χρειάζεται μεγάλη προσοχή και μπορεί εύκολα να οδηγήσει σε λάθη. Πώς αποδεικνύουμε ότι δύο γραφήματα δεν είναι ισομορφικά. Βρίσκουμε μια αναλλοίωτη ιδιότητα στην οποία δεν συμφωνούν. Οι πιο συνηθισμένες αναλλοίωτες ιδιότητες είναι ο αριθμός των πορυφών και των ακμών, η ακολουθία των βαθμών των πορυφών, η συνεκτικότητα, η ύπαρξη κύκλου συγκεκριμένου μήκους, κλπ.

Ένα γράφημα ονομάζεται αυτοσυμπληρωματικό όταν είναι ισομορφικό προς το συμπληρωματικό του γράφημα. Για να είναι ένα γράφημα G(V,E) αυτοσυμπληρωματικό πρέπει είτε το |V| είτε το |V|-1 να διαιρείται ακριβώς με το 4. Σαν άσκηση, βρείτε ένα αυτοσυμπληρωματικό γράφημα με 4 κορυφές και ένα αυτοσυμπληρωματικό γράφημα με 5 κορυφές. Υπάρχει αυτοσυμπληρωματικό γράφημα με 6 κορυφές;

Αυτομορφισμός πάνω σε ένα γράφημα G είναι ένας ισομορφισμός του G στον εαυτό του. Με απλά λόγια, ο αυτομορφισμός αλλάζει τα "ονόματα" αλλά διατηρεί τους "ρόλους" τον κορυφών στο γράφημα.

Διαισθητικά, ένα γράφημα είναι μεταβατικό κατά τις κορυφές του όταν όλες οι κορυφές του γραφήματος παίζουν ακριβώς τον ίδιο "ρόλο". Π.χ. ο απλός κύκλος με n κορυφές (C_n) και το πλήρες γράφημα με n κορυφές (K_n) είναι γραφήματα μεταβατικά κατά τις κορυφές τους επειδή

δεν υπάρχει τρόπος να διακρίνουμε τη μία κορυφή από την άλλη. Αντίθετα, ένα απλό μονοπάτι με n κορυφές (P_n) δεν είναι μεταβατικό κατά τις κορυφές του επειδή αποτελείται από δύο άκρα και n-2 ενδιάμεσες κορυφές.

7 Δέντοα

Ένα γράφημα χωρίς κύκλους (άκυκλο ή ακυκλικό) ονομάζεται δάσος. Ένα άκυκλο συνεκτικό γράφημα ονομάζεται δέντρο. Οι συνεκτικές συνιστώσες ενός δάσους είναι δέντρα. Οι κορυφές ενός δέντρου με βαθμό 1 ονομάζονται φύλλα, ενώ οι κορυφές με βαθμό μεγαλύτερο του 1 ονομάζονται εσωτερικές κορυφές.

Κάθε δέντρο με δύο ή περισσότερες πορυφές έχει τουλάχιστον δύο φύλλα. Ο λόγος είναι ότι ένα δέντρο δεν έχει πύπλους. Έτσι αν θεωρήσουμε ένα μεγιστοτιπό μονοπάτι (δηλαδή ένα μονοπάτι που δεν μπορεί να επεπταθεί περαιτέρω), οι άπρες του θα έχουν βαθμό 1 και θα είναι φύλλα.

Αν από ένα δέντρο αφαιρέσουμε ένα φύλλο (και την προσπίπτουσα ακμή), το αποτέλεσμα θα είναι ένα δέντρο με μία ακμή και μία κορυφή λιγότερες. Ο λόγος είναι ότι η αφαίρεση μιας κορυφής δεν μπορεί να δημιουργήσει κύκλο. Επιπλέον, η αφαίρεση μιας κορυφής με βαθμό ένα δεν μπορεί να επηρεάσει τη συνεκτικότητα του γραφήματος γιατί αυτή η κορυφή (και η προσπίπτουσα ακμή) δεν μπορεί να παρεμβάλλεται σε μονοπάτι μεταξύ δύο άλλων κορυφών.

Το παρακάτω θεώρημα απαριθμεί τους πιο γνωστούς χαρακτηρισμούς (δηλαδή ισοδύναμους ορισμούς) των δέντρων. Υπενθυμίζουμε ότι το n συμβολίζει τον αριθμό των κορυφών ενός γραφήματος και το m τον αριθμό των ακμών του.

Θεώς ημα 1. Τα παρακάτω είναι ισοδύναμα για κάθε απλό μη-κατευθυνόμενο γράφημα G με n κορυφές και m ακμές:

- 1. Το γράφημα G είναι δέντρο.
- 2. Κάθε ζευγάρι πορυφών του G ενώνεται με μοναδικό μονοπάτι.
- 3. Το G είναι ελαχιστοτικά συνεκτικό, δηλ. αν αφαιοεθεί μια ακμή, το γοάφημα παύει να είναι συνεκτικό.
- 4. Το G είναι συνεμτικό και m=n-1.
- 5. Το G είναι άχυχλο και m = n 1.
- 6. Το G είναι μεγιστοτικά άκυκλο, δηλ. αν προστεθεί μια νέα ακμή, το γράφημα αποκτά κύκλο.

Απόδειξη. Θα αποδείξουμε πρώτα ότι $1 \implies 2$. Αφού το G είναι συνεκτικό, υπάρχει τουλάχιστον ένα μονοπάτι ανάμεσα σε κάθε ζευγάρι κορυφών. Αν για κάποιο ζευγάρι κορυφών, είχαμε δύο διαφορετικά μονοπάτια, θα είχαμε κύκλο: Τα μονοπάτια κάπου θα ξεχώριζαν, αφού είχαν κοινή αρχή, και κάπου θα έσμιγαν, αφού είχαν κοινό τέλος. Τα ενδιάμεσα τμήματα των δύο μονοπατιών αποτελούν έναν κύκλο.

 $2\implies 3$ Το γράφημα είναι συνεκτικό από υπόθεση. Αφού έχουμε ένα και μοναδικό μονοπάτι μεταξύ κάθε ζεύγους κορυφών, η αφαίρεση μιας ακμής αίρει τη συνεκτικότητα μεταξύ των άκρων της.

 $^{^6}$ Σε αυτές τις σημειώσεις θεωρούμε μόνο $a\pi\lambda \dot{a}$ μονοπάτια εκτός αν αναφέρεται κάτι διαφορετικό.

- $3\implies 4$ Το γράφημα είναι συνεκτικό από υπόθεση. Η απόδειξη για τον αριθμό των ακμών είναι με επαγωγή στον αριθμό των κορυφών. Ο ισχυρισμός είναι τετριμμένος αν n=1. Υποθέτουμε επαγωγικά ότι ισχύει για γραφήματα με αριθμό κορυφών μικρότερο ή ίσο του n. Θα αποδείξουμε τον ισχυρισμό για γραφήματα με n+1 κορυφές. Αφαιρώντας μια ακμή από το γράφημα, αίρεται η συνεκτικότητα και προκύπτουν δύο συνεκτικές συνιστώσες. Έστω ότι η πρώτη έχει k κορυφές και η δεύτερη n-k+1. Και οι δύο συνιστώσες είναι ελαχιστοτικά συνεκτικές. Από επαγωγική υπόθεση, η πρώτη έχει k-1 ακμές και η δεύτερη n-k ακμές. Αν συμπεριλάβουμε και την ακμή που αφαιρέσαμε, το γράφημα είχε 1+(k-1)+(n-k)=n=(n+1)-1 ακμές.
- $4 \implies 5$ Πρέπει να δείξουμε ότι ένα συνεκτικό γράφημα με n-1 ακμές δεν έχει κύκλο. Θα χρησιμοποιήσουμε απαγωγή σε άτοπο. Ενόσω το γράφημα έχει κύκλους, αφαιρούμε μια ακμή από έναν κύκλο. Αυτό δεν επηρεάζει τη συνεκτικότητα του γραφήματος. Το αποτέλεσμα είναι ένα άκυκλο συνεκτικό γράφημα, δηλαδή ένα δέντρο με n κορυφές και λιγότερες από n-1 ακμές. Αυτό αποτελεί αντίφαση στο 4 (που έχουμε ήδη αποδείξει).
- $5 \implies 6$ Θα αποδείξουμε ότι το γράφημα είναι συνεκτικό (δηλαδή ότι κάθε ζευγάρι κορυφών συνδέεται με μονοπάτι). Αυτό αρκεί γιατί η προσθήκη μιας νέας ακμής δημιουργεί κύκλο με το μονοπάτι που συνδέει τα άκρα της.

Έστω k ο αριθμός των συνεκτικών συνιστωσών του γραφήματος. Θα δείξουμε ότι k=1. Αφού το γράφημα είναι άκυκλο (έχουμε δηλαδή δάσος), κάθε συνεκτική του συνιστώσα είναι δέντρο. Έστω n_i ο αριθμός των κορυφών της συνεκτικής συνιστώσας $i,\,i=1,\ldots,k$. Αφού πρόκειται για δέντρο, η συνεκτική συνιστώσα i έχει $m_i=n_i-1$ ακμές (από το 4 που έχουμε ήδη αποδείξει). Είναι

$$n-1 = m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = n - k \implies k = 1$$

Η πρώτη ισότητα ισχύει από την υπόθεση ότι m=n-1, και η τελευταία ισότητα πριν τη συνεπαγωγή γιατί $\sum_{i=1}^k n_i=n$.

 $6 \implies 1$ Πρέπει να δείξουμε ότι κάθε μεγιστοτικά άκυκλο γράφημα είναι συνεκτικό. Έστω δύο κορυφές u και v ενός μη συνεκτικού άκυκλου γραφήματος. Η προσθήκη της ακμής $\{u,v\}$ δεν δημιουργεί κύκλο. Συνεπώς, αν το γράφημα δεν είναι συνεκτικό δεν μπορεί να είναι μεγιστοτικά άκυκλο.

Είναι πολύ σημαντικό να κατανοήσετε το Θεώρημα 1 και την απόδειξη του γιατί ουσιαστικά εξηγούν τι είναι δέντρο και ποιες είναι οι βασικές ιδιότητές του. Επίσης, οι τεχνικές που χρησιμοποιούνται στην απόδειξη είναι ιδιαίτερα χρήσιμες στην επίλυση ασκήσεων.

Τα παρακάτω πορίσματα προκύπτουν εύκολα από το Θεώρημα 1. Αφήνεται σαν άσκηση η διατύπωση πλήρους απόδειξης για καθένα από αυτά.

Πόρισμα 1. Κάθε απλό γράφημα με η κορυφές και η ακμές έχει τουλάχιστον ένα κύκλο.

Πόρισμα 2. Κάθε γράφημα με n κορυφές και λιγότερες από n-1 ακμές δεν είναι συνεκτικό.

7.1 Παραδείγματα και Ασκήσεις

Το πλήφες διμεφές γφάφημα $K_{k,\ell}$ είναι δέντφο ανν είτε k=1 είτε $\ell=1$. Το $K_{2,2}$ έχει κύκλο (είναι ουσιαστικά το C_4) και δεν είναι δέντφο.

Κάθε δέντρο είναι διμερές γράφημα. Ξεκινάμε βάζοντας μια κορυφή στη δεξιό σύνολο, τους γείτονές της στο αριστερό, τους γείτονες των γειτόνων της στο δεξιό, κοκ. Η διαδικασία είναι ισοδύναμη με την Αναζήτηση Πρώτα σε Πλάτος. Αφού το δέντρο είναι συνεκτικό όλες οι κορυφές θα μπουν σε ένα από τα δύο σύνολα. Επειδή το γράφημα είναι άκυκλο, το δεξιό και το αριστερό σύνολο είναι ανεξάρτητο σύνολο.

Κάθε δέντρο είναι επίπεδο γράφημα γιατί δεν περιέχει κύκλους. Έτσι δεν μπορεί να έχει γράφημα ομοιομορφικό με το $K_{3,3}$ ή το K_5 (τα οποία έχουν κύκλους). Τα δέντρα αποτελούν τη βασική περίπτωση στην απόδειξη του τύπου του Euler με επαγωγή στον αριθμό των όψεων. Συγκεκριμένα, ένα δέντρο με n κορυφές έχει μία όψη (την εξωτερική) και n-1 ακμές. Συνεπώς, n+1=(n-1)+2 όπως απαιτεί ο τύπος του Euler.

Μια ακμή ενός γραφήματος ονομάζεται ακμή τομής (ή γέφυρα) αν η αφαίρεσή της αίρει τη συνεκτικότητα. Όλες οι ακμές ενός δέντρου είναι ακμές τομής (γέφυρες). Η αφαίρεση μιας ακμής ενός δέντρου δημιουργεί δύο συνεκτικές συνιστώσες: η μία περιέχει το ένα άκρο της ακμής που αφαιρέθηκε και η άλλη το άλλο. Επίσης, η προσθήκη μιας ακμής σε ένα δέντρο δημιουργεί έναν απλό κύκλο αποτελούμενο από τη νέα ακμή και το μονοπάτι που συνδέει τα άκρα της.

Ασκηση 17. Ένα δέντρο έχει δύο φύλλα αν και μόνο αν είναι ένα απλό μονοπάτι.

Λύση. Κάθε απλό μονοπάτι είναι δέντρο και έχει δύο φύλλα, τα άπρα του. Αντίστροφα, αν έχουμε ένα δέντρο G(V,E) με n πορυφές, μόνο δύο από τις οποίες είναι φύλλα, πάθε εσωτεριπή πορυφή του δέντρου έχει βαθμό 2. Πράγματι, το άθροισμα των βαθμών των πορυφών είναι $\sum_{v \in V} \deg(v) = 2(n-1)$. Έστω u_1 παι u_2 τα φύλλα (τα οποία εξ' ορισμού έχουν βαθμό 1). Τότε

$$\sum_{v \in V \setminus \{u_1, u_2\}} \deg(v) = 2(n-2)$$

Αφού οι εσωτερικές κορυφές είναι n-2 και έχουν βαθμό τουλάχιστον 2, ο μόνος τρόπος να ισχύει η παραπάνω ισότητα είναι όλες οι εσωτερικές κορυφές να έχουν βαθμό 2. Συνεπώς, το γράφημα είναι ένα απλό μονοπάτι με n κορυφές.

Ασκηση 18. Ένα δέντρο με μέγιστο βαθμό k έχει τουλάχιστον k φύλλα.

Λύση. Έστω ℓ ο αριθμός των φύλλων. Έχουμε τουλάχιστον 1 κορυφή με βαθμό $k, n-\ell-1$ κορυφές με βαθμό τουλάχιστον 2, και ℓ κορυφές με βαθμό 1. Το άθροισμα των βαθμών είναι 2(n-1). Επομένως, έχουμε

$$2(n-1) \ge k + 2(n-\ell-1) + \ell = k + 2(n-1) - \ell \implies \ell \ge k$$

δηλαδή ο αριθμός των φύλλων δεν μπορεί να υπολείπεται του μέγιστου βαθμού.

Γενικότερα, αν ένα δέντρο με n κορυφές έχει μόνο φύλλα και κορυφές βαθμού δ , τότε ο αριθμός των φύλλων, έστω ℓ , είναι $\ell=\frac{(\delta-2)n+2}{\delta-1}$.

Ασκηση 19. Έστω δέντρο με 4 κορυφές βαθμού 10. Ποιος είναι ο ελάχιστος αριθμός φύλλων που υπάρχουν στο δέντρο; (Απάντηση. Τουλάχιστον 34).

Ασκηση 20. Έστω δέντρο με 2k φύλλα, 3k κορυφές βαθμού 2, και k κορυφές βαθμού 3. Πόσες κορυφές έχει το δέντρο;

Λύση. Ο συνολικός αριθμός των κορυφών είναι 6k και το άθροισμα των βαθμών είναι 11k. Ισχύει ότι $11k=2(6k-1)\implies k=2$. Δηλαδή το δέντρο έχει 12 κορυφές. Αφήνεται σαν άσκηση η απεικόνιση αυτού του δέντρου.

Ασμηση 21. Έστω γράφημα με n μορυφές, m αμμές, και k συνεκτικές συνιστώσες. Να δείξετε ότι $k \geq n-m$.

Λύση. Αφού κάθε γράφημα έχει τουλάχιστον 1 συνεκτική συνιστώσα, η ανισότητα είναι μητετριμμένη μόνο όταν $m \le n-1$. Θα χρησιμοποιήσουμε επαγωγή στον αριθμό των ακμών. Όταν δεν υπάρχει καμία ακμή και m=0, έχουμε n απομονωμένες κορυφές που καθεμία συγκροτεί μία συνεκτική συνιστώσα. Επομένως, η ανισότητα ισχύει για m=0.

Το επαγωγικό βήμα προκύπτει εύκολα από το γεγονός ότι μια νέα ακμή συνδέει κορυφές που βρίσκονται είτε στην ίδια συνεκτική συνιστώσα είτε σε δύο διαφορετικές συνεκτικές συνιστώσες. Στην πρώτη περίπτωση ο αριθμός των συνεκτικών συνιστωσών παραμένει αμετάβλητος, ενώ στη δεύτερη περίπτωση ο αριθμός των συνεκτικών συνιστωσών μειώνεται κατά 1. Έτσι η μεταβολή στο αριστερό μέλος της ανισότητας είναι μεγαλύτερη ή ίση από τη μεταβολή στο δεξιό της μέλος και η ανισότητα συνεχίζει να ισχύει. Η διατύπωση των λεπτομερειών αφήνεται ως άσκηση.

Ασκηση 22. Έστω δένδοο T με p_i κορυφές βαθμού $i, i = 1, \ldots, k$ (k είναι ο μέγιστος βαθμός του T). Να αποδείξετε ότι ο αριθμός των φύλλων δίνεται από τη σχέση $2 + p_3 + 2 p_4 + 3 p_5 + \ldots + (k-2)p_k$

Λύση. Ο αριθμός των φύλλων είναι p_1 (αριθμός των πορυφών βαθμού 1), ο συνολιπός αριθμός των πορυφών του T είναι $p_1+p_2+p_3+\ldots+p_k$, παι το άθροισμα των βαθμών τους είναι p_1+2 p_2+3 $p_3+\ldots k$ p_k . Αφού το T είναι δέντρο, ο αριθμών των απμών του είναι $p_1+p_2+p_3+\ldots+p_k-1$. Συνεπώς,

$$p_1 + 2 p_2 + 3 p_3 + \dots k p_k = 2(p_1 + p_2 + p_3 + \dots + p_k - 1) \implies p_1 = 2 + p_3 + 2 p_4 + 3 p_5 + \dots + (k-2)p_k$$
 που είναι η ζητούμενη σχέση. \square

7.2 Δέντοα με Ρίζα

Αν ορίσουμε μια πορυφή του δέντρου σαν ρίζα, τότε έχουμε ένα δέντρο με ρίζα.

Σε ένα δέντρο με ρίζα, οι πρόγονοι μιας πορυφής v είναι όλες οι πορυφές στο μονοπάτι από τη ρίζα προς τη v. Ο πατέρας της v είναι ο μοναδιπός πρόγονος που έχει αμμή προς της v. Οι απόγονοι της v είναι όλες οι πορυφές για τις οποίες η v αποτελεί πρόγονο. Τα παιδιά της v είναι όλες οι πορυφές για τις οποίες η v αποτελεί πατέρα. Τα αδέλφια της v είναι όλες οι πορυφές που έχουν ποινό πατέρα με τη v. Το βάθος της v είναι το μήπος του μονοπατιού από τη ρίζα προς τη v. Το ύψος ενός δέντρου με ρίζα είναι το μέγιστο βάθος ενός φύλλου του.

Ένα δέντρο με ρίζα ονομάζεται m-αδικό όταν κάθε κορυφή έχει το πολύ m παιδιά. Ένα m-αδικό δέντρο ονομάζεται γεμάτο (full) (ή κανονικό) όταν κάθε εσωτερική κορυφή έχει ακριβώς m παιδιά. Η ρίζα ενός κανονικού m-αδικού δέντρου έχει βαθμό m και οι υπόλοιπες εσωτερικές κορυφές έχουν βαθμό m+1. Ένα m-αδικό δέντρο ονομάζεται $\pi\lambda$ ήρες (complete) όταν είναι γεμάτο και όλα του τα φύλλα έχουν ακριβώς το ίδιο βάθος. Ένα m-αδικό δέντρο ύψους h έχει

τουλάχιστον h+1 μορυφές. Επίσης, έχει 1 μορυφή ύψους 0 (τη ρίζα), το πολύ m μορυφές ύψους 1, το πολύ m^2 μορυφές ύψους $2,\ldots$, και το πολύ m^h μορυφές ύψους h. Συνολικά, το δέντρο έχει το πολύ

$$\sum_{i=0}^h m^i = rac{m^{h+1}-1}{m-1}$$
 μορυφές.

Μάλιστα, το πλήφες m-αδικό δέντφο ύψους h έχει ακφιβώς $\frac{m^{h+1}-1}{m-1}$ κοφυφές από τις οποίες m^h είναι φύλλα.

Με βάση τα παραπάνω, κάθε δυαδικό δέντρο ύψους h έχει το πολύ 2^h φύλλα και συνολικά το πολύ $2^{h+1}-1$ κορυφές. Το πλήρες δυαδικό δέντρο ύψους h έχει ακριβώς $2^{h+1}-1$ κορυφές από τις οποίες 2^h είναι φύλλα και 2^h-1 είναι εσωτερικές. Αντίστροφα, κάθε δυαδικό δέντρο με n κορυφές έχει ύψος τουλάχιστον $\lceil \log_2(n+1) \rceil$ και το πολύ n-1.

Τα δέντρα με ρίζα δεν είναι ιδιαίτερα σημαντικά από θεωρητικής άποψης. Όμως, τα m-αδικά (και ιδιαίτερα τα δυαδικά) δέντρα με ρίζα έχουν πολύ σημαντικές πρακτικές εφαρμογές.

Δυαδικά Δέντρα Αναζήτησης. Ας θεωρήσουμε ένα δυαδικό δέντρο που οι κορυφές του περιέχουν στοιχεία για τα οποία ισχύει μια σχέση μερικής διάταξης. Τα στοιχεία μπορεί να είναι αριθμοί, γράμματα, λέξεις, ή γενικότερα να αποτελούν τους μοναδικούς κωδικούς (κλειδιά) των εγγραφών μιας σχέσης σε μια βάση δεδομένων.

Ένα τέτοιο δέντρο ονομάζεται δυαδικό δέντρο αναζήτησης όταν το στοιχείο κάθε εσωτερικής κορυφής είναι μεγαλύτερο από όλα τα στοιχεία του αριστερού της υποδέντρου (δηλ. το υποδέντρο με ρίζα το αριστερό παιδί της κορυφής) και μικρότερο από όλα τα στοιχεία στο δεξιό της υποδέντρο (δηλ. το υποδέντρο με ρίζα το δεξιό παιδί της κορυφής)

Η αποθήμευση των στοιχείων σε ένα ζυγισμένο δυαδικό δέντρο αναζήτησης επιτρέπει την εύκολη και γρήγορη αναζήτησή τους. Αν το στοιχείο που ζητάμε είναι μικρότερο από το στοιχείο μιας κορυφής, προχωρούμε στο αριστερό της παιδί. Αν είναι μεγαλύτερο προχωρούμε στο δεξιό της παιδί. Αυτή η (αναδρομική) διαδικασία ξεκινάει από τη ρίζα και συνεχίζεται μέχρι να βρούμε το στοιχείο ή να μην μπορούμε να προχωρήσουμε άλλο. Στη δεύτερη περίπτωση, συμπεραίνουμε ότι το ζητούμενο στοιχείο δεν υπάρχει στο δέντρο.

Για να κατασκευάσουμε ένα δυαδικό δέντρο αναζήτησης, εισάγουμε κάθε νέο στοιχείο (που δεν υπάρχει ήδη στο δέντρο) στο σημείο που θα περιμέναμε να το βρούμε. Με άλλα λόγια, το νέο στοιχείο εισάγεται σαν παιδί της κορυφής στην οποία μας οδήγησε η παραπάνω διαδικασία αναζήτησης. Το νέο στοιχείο γίνεται αριστερό (δεξιό) παιδί αν είναι μικρότερο (αντίστοιχα μεγαλύτερο) από το στοιχείο της συγκεκριμένης κορυφής.

Ασκηση 23. Έστω κανονικό m-αδικό δέντρο με n κορυφές, από τις οποίες οι ℓ είναι φύλλα και οι i εσωτερικές κορυφές. Να αποδείξετε ότι: (α) $n=m\,i+1$, (β) $i\,(m-1)=\ell-1$, και (γ) $m\,\ell=(m-1)\,n+1$.

Λύση. Για το (α), παρατηρούμε ότι όλες οι εσωτερικές κορυφές έχουν εξερχόμενο βαθμό m και τα φύλλα έχουν εξερχόμενο βαθμό 0. Συνεπώς, το άθροισμα των εξερχόμενων βαθμών είναι i m. Από την άλλη, το άθροισμα των εξερχόμενων βαθμών είναι ίσο με τον αριθμό των ακμών, δηλαδή με n-1. Συνεπώς, n-1=i m όπως απαιτείται.

⁷ Λέμε ότι ένα δυαδικό δέντρο αναζήτησης με n κορυφές είναι ζυγισμένο όταν το ύψος του είναι $O(\log n)$.

Το (β) προκύπτει από το (α) θέτοντας $n=i+\ell$. Το (γ) προκύπτει από το $m\,\ell=m\,n-m\,i$ αντικαθιστώντας με $m\,i=n-1$ από το (α).

Ασκηση 24. Ένα δυαδικό δέντρο αναζήτησης ονομάζεται AVL-δέντρο όταν το ύψος των δύο υποδέντρων κάθε εσωτερικής κορυφής διαφέρει το πολύ κατά 1. Να αποδείξετε ότι ο αριθμός κορυφών n ενός AVL-δέντρου με ύψος h επαληθεύει την ανισότητα:

$$F_{h+1} \le n \le 2^{h+1} - 1$$

όπου F_{h+1} είναι ο (h+1)-οστός όφος της ακολουθίας Fibonacci. Υπενθυμίζεται ότι η ακολουθία Fibonacci οφίζεται από την αναδφομική σχέση $F_k=F_{k-1}+F_{k-2}$, για κάθε φυσικό αφιθμό $k\geq 3$, με αφχικές συνθήκες $F_1=F_2=1$.

Λύση. Ο μεγαλύτερος αριθμός πορυφών συμβαίνει όταν έχουμε το πλήρες δυαδιπό δέντρο με ύψος h (το πλήρες δυαδιπό δέντρο είναι ένα AVL-δέντρο γιατί τα δύο υποδέντρα πάθε εσωτεριπής πορυφής έχουν το ίδιο ύψος). Το πλήρες δυαδιπό δέντρο έχει $2^{h+1}-1$ πορυφές. Συνεπώς, πάθε AVL-δέντρο με ύψος h έχει $n \leq 2^{h+1}-1$.

Για το κάτω φράγμα, εφαρμόζουμε μαθηματική επαγωγή στο ύψος του δέντρου. Έστω $n_{\min}(h)$ ο ελάχιστος αριθμός αριθμός κορυφών ενός AVL-δέντρου με ύψος h (παρατηρείστε ότι η ποσότητα $n_{\min}(h)$ δεν μπορεί να μειώνεται όσο αυξάνεται το ύψος του δέντρου). Θα αποδείξουμε ότι $n_{\min}(h) \geq F_{h+1}$. Όταν το ύψος είναι μικρότερο ή ίσο του 1, το δέντρο θα έχει τουλάχιστον μία κορυφή. Επομένως ισχύει ότι $n_{\min}(1) \geq F_2$ και $n_{\min}(0) \geq F_1$. Υποθέτουμε επαγωγικά ότι ισχύει το ζητούμενο για κάθε δέντρο με ύψος μικρότερο ή ίσο του h, και θεωρούμε δέντρο με ύψος $h+1\geq 2$. Πρέπει να αποδείξουμε ότι $n_{\min}(h+1)\geq F_{h+2}$.

Για να έχει η ρίζα ύψος h+1, πρέπει τουλάχιστον ένα από τα υποδέντρα της να έχει ύψος h. Από τον ορισμό των AVL-δέντρων, το άλλο υποδέντρο θα έχει ύψος τουλάχιστον h-1. Παρατηρούμε επίσης ότι τα δύο υποδέντρα επαληθεύουν τον ορισμό των AVL-δέντρων. Επομένως, ο ελάχιστος αριθμός χορυφών για ένα τέτοιο δέντρο είναι:

$$n_{\min}(h+1) \ge n_{\min}(h) + n_{\min}(h-1) + 1 \ge F_{h+1} + F_h + 1 \ge F_{h+2}$$

(δηλ. το άθοοισμα του ελάχιστου αριθμού των κορυφών των δύο υποδέντρων συν τη ρίζα). Η δεύτερη ανισότητα έπεται από την επαγωγική υπόθεση. Επομένως, κάθε AVL-δέντρο με ύψος h έχει $n \geq F_{h+1}$.

Λογαριθμώντας, προχύπτει ότι το ύψος ενός AVL-δέντρου με n χορυφές (ή n στοιχεία αφού πρόχειται για ένα δυαδιχό δέντρο αναζήτησης) είναι $\Theta(\log n)$ (για την αχρίβεια ισχύει ότι $\log_2(n+1) \le h+1 \le 1.44\log_2(n+1)$). Δηλαδή αποδείξαμε ότι τα AVL-δέντρα είναι ζυγισμένα δέντρα.

Διελεύσεις Δέντοων. Υπάρχουν (τουλάχιστον) τρεις διαφορετικοί συστηματικοί αναδρομικοί τρόποι (διελεύσεις ή διασχίσεις - traversals) να τυπώσουμε όλες τις κορυφές ενός δυαδικού δέντρου με ρίζα.

Η προ-διατεταγμένη διέλευση (preorder) λειτουργεί αναδρομικά τυπώνοντας πρώτα τη Ρίζα, μετά τα στοιχεία του Αριστερού υποδέντρου, και τέλος τα στοιχεία του Δεξιού υποδέντρου. Συμβολικά Ρίζα-Αριστερό-Δεξί.

Η ενδο-διατεταγμένη διέλευση (inorder) λειτουργεί αναδρομικά τυπώνοντας πρώτα τα στοιχεία του Αριστερού υποδέντρου, μετά τη Ρίζα, και τέλος τα στοιχεία του Δεξιού υποδέντρου. Συμβολικά Αριστερό-Ρίζα-Δεξί. Όταν έχουμε ένα δυαδικό δέντρο αναζήτησης, η ενδο-διατεταγμένη διέλευση τυπώνει τα στοιχεία του δέντρου σε αύξουσα σειρά. Η αντίστροφη ενδο-διατεταγμένη διέλευση Δεξί-Ρίζα-Αριστερό σε φθίνουσα σειρά). Αυτό μπορεί να αποδειχθεί εύκολα με επαγωγή στο ύψος του δέντρου. Η απόδειξη αφήνεται σαν άσκηση στον αναγνώστη.

Η μετά-διατεταγμένη διέλευση (postorder) λειτουργεί αναδρομικά τυπώνοντας πρώτα τα στοιχεία του Αριστερού υποδέντρου, μετά τα στοιχεία του Δεξιού υποδέντρου, και τέλος τη Ρίζα. Συμβολικά Αριστερό-Δεξί-Ρίζα.

Παρατηρείστε ότι το Αριστερό υποδέντρο προηγείται πάντα του Δεξιού. Ο μνημονικός κανόνας είναι ότι το πρόθεμα που καθορίζει το είδος της διέλευσης (προ-, ενδο-, μετά-) δείχνει πότε εξετάζουμε τη Ρίζα σε σχέση με τα στοιχεία του Αριστερού και του Δεξιού υποδέντρου (πριν, ενδιάμεσα, μετά).

8 Συνδετικά (ή Επικαλύπτοντα) Δέντρα

Κάθε υπογράφημα που είναι δέντρο και περιλαμβάνει (καλύπτει) όλες τις κορυφές ενός γραφήματος ονομάζεται συνδετικό δέντρο (ή επικαλύπτον δέντρο, spanning tree) του γραφήματος. Άλλες ελληνικές αποδόσεις του ίδιου όρου είναι: γενετικό δέντρο, γεννητορικό δέντρο, παράγον δέντρο, διανύον δέντρο και δέντρο-κάλυμμα.

Θεώρημα 2. Ένα γοάφημα είναι συνεκτικό αν και μόνο αν έχει (τουλάχιστον) ένα συνδετικό δέντρο.

Απόδειξη. Αν υπάρχει ένα υπογράφημα που καλύπτει όλες τις κορυφές του γραφήματος και είναι δέντρο (άρα συνεκτικό), τότε το γράφημα δεν μπορεί παρά να είναι συνεκτικό (αφού η προσθήκη των ακμών που λείπουν απλώς "ενισχύει" τη συνεκτικότητα).

Αν το γράφημα είναι συνεκτικό, θεωρούμε ένα υπογράφημα T που αρχικά συμπίπτει με το γράφημα. Επομένως, το T καλύπτει όλες τις κορυφές του γραφήματος. Ενόσω το T έχει κύκλους, αφαιρούμε μία ακμή που βρίσκεται σε κύκλο (δηλαδή μια ακμή που δεν είναι γέφυρα). Το T παραμένει συνεκτικό αφού η αφαίρεση μιας ακμής που βρίσκεται σε κύκλο δεν αίρει τη συνεκτικότητα. Αυτή η διαδικασία ολοκληρώνεται όταν το T γίνει άκυκλο. Σε αυτή τη φάση, το T παραμένει συνεκτικό (από την κατασκευή) και συνεχίζει να καλύπτει όλες τις κορυφές του αρχικού γραφήματος (αφού ποτέ δεν αφαιρέσαμε κάποια κορυφή). Συνεπώς, το υπογράφημα που προκύπτει από αυτή τη διαδικασία είναι ένα συνδετικό δέντρο του αρχικού γραφήματος. \Box

Κάθε συνδετικό δέντρο ενός γραφήματος με n κορυφές έχει n-1 ακμές. Με άλλα λόγια, όλα τα συνδετικά δέντρα ενός γραφήματος έχουν τον ίδιο αριθμό ακμών.

Η απόδειξη του Θεωρήματος 2 δίνει έναν τρόπο να υπολογίσουμε ένα συνδετικό δέντρο ενός συνεκτικού γραφήματος. Ένας άλλος τρόπος είναι να θεωρήσουμε τις ακμές του G μία-προς-μία σε μια (οποιαδήποτε) συγκεκριμένη σειρά και να προσθέτουμε στο δέντρο κάθε νέα ακμή που δεν σχηματίζει κύκλο με τις υπάρχουσες. Άλλοι τρόποι είναι η Αναζήτηση κατά Πλάτος (Breadth First Search, BFS) και η Αναζήτηση κατά Βάθος (Depth First Search, DFS).

8.1 Θεμελιώδεις Κύκλοι και Σύνολα Τομής

Έστω συνεκτικό γράφημα G(V,E) με n κορυφές και m ακμές, και έστω $T(V,E_T)$ ένα συνδετικό δέντρο του G.

Παρατηφούμε ότι για κάθε συνδετικό δέντφο T, κάθε κύκλος του G πρέπει να περιέχει μια ακμή που δεν ανήκει στο T (αλλιώς το T θα περιείχε κύκλο). Η προσθήκη κάθε ακμής που δεν ανήκει στο T (δηλαδή κάθε ακμής στο σύνολο $E\setminus E_T$) σχηματίζει ακριβώς έναν (απλό) κύκλο. Κάθε τέτοιος κύκλος ονομάζεται θεμελιώδης κύκλος του G ως προς το συνδετικό δέντρο T. Αφού το σύνολο $E\setminus E_T$ περιέχει m-n+1 ακμές (αυτές οι ακμές λέγονται και χορδές (chords) του T), υπάρχουν m-n+1 διαφορετικοί θεμελιώδεις κύκλοι του G ως προς κάθε συνδετικό δέντρο του.

Ορισμός 1. Ένα σύνολο ακμών των οποίων η αφαίρεση κάνει το G μη-συνεκτικό ονομάζεται σύνολο ακμών τομής (edge cut set, ή απλά σύνολο τομής).

Παρατηρούμε ότι για κάθε συνδετικό δέντρο T, κάθε σύνολο τομής του G πρέπει να περιέχει μια ακμή που δεν ανήκει στο T (αλλιώς το T δεν θα ήταν συνεκτικό). Η αφαίρεση κάθε ακμής του T δημιουργεί δύο συνεκτικές συνιστώσες. Έστω $e \in E_T$ μια ακμή του T, και έστω V_1 και V_2 οι κορυφές των δύο συνεκτικών συνιστωσών του T-e (δηλ. οι συνιστώσες που προκύπτουν από την αφαίρεση της ακμής e). Έστω $\delta(V_1,V_2)$ το σύνολο των ακμών που έχουν το ένα άκρο τους στο V_1 και το άλλο στο V_2 . Προφανώς, $e \in \delta(V_1,V_2)$ και το $\delta(V_1,V_2)$ αποτελεί ένα ελαχιστοτικό σύνολο τομής για το γράφημα G. Κάθε σύνολο τομής που προκύπτει με αυτό τον τρόπο ονομάζεται θεμελιώδες σύνολο τομής του G ως προς το συνδετικό δέντρο G. Αφού το σύνολο G προς κάθε συνδετικό δέντρο του.

Σε ένα γράφημα, το σύνολο όλων των κύκλων (συνόλων τομής) αποτελεί ένα διανυσματικό χώρο. Η σημαντική παρατήρηση είναι ότι το σύνολο των θεμελιωδών κύκλων (συνόλων τομής) ως προς ένα οποιοδήποτε συνδετικών δέντρο του G αποτελεί βάση για το διανυσματικό χώρο όλων των κύκλων (αντίστοιχα συνόλων τομής). Επομένως, η διάσταση του διανυσματικού χώρου των κύκλων (συνόλων τομής) για ένα συνεκτικό γράφημα με n κορυφές και m ακμές είναι m-n+1 (n-1 αντίστοιχα).

Θεώρημα 3. Κάθε κύκλος έχει άρτιο αριθμό κοινών ακμών με κάθε ελαχιστοτικό σύνολο τομής.

Απόδειξη. Η αφαίρεση ενός ελαχιστοτικού συνόλου τομής χωρίζει τις κορυφές ενός γραφήματος σε δύο συνεκτικές συνιστώσες. Κάθε κύκλος χρησιμοποιεί ακμές του συνόλου τομής για να "επισκεφθεί" και να "αναχωρήσει" από μια συνεκτική συνιστώσα. Επιπλέον, ο αριθμός των "επισκέψεων" ενός κύκλου σε μια συνεκτική συνιστώσα πρέπει να είναι ίσος με τον αριθμό των "αναχωρήσεων". Έστω $\varepsilon_k = \alpha_k$ ο αριθμός των "επισκέψεων" και των "αναχωρήσεων" ενός κύκλου στη μία από τις δύο συνεκτικές συνιστώσες. Ο αριθμός των κοινών ακμών του κύκλου με το αντίστοιχο ελαχιστοτικό σύνολο τομής είναι $\varepsilon_k + \alpha_k = 2\varepsilon_k$, δηλαδή άρτιος.

Ασκηση 25. Έστω T και T' δύο συνδετικά δέντρα ενός (συνεκτικού) γραφήματος G. Για κάθε ακμή $e \in T \setminus T'$, υπάρχει ακμή $e' \in T' \setminus T$, τέτοια ώστε το (T'+e)-e' είναι συνδετικό δέντρο του G.

Λύση. Αφού $e \in T \setminus T'$, το T' + e περιέχει έναν απλό κύκλο που περιλαμβάνει την e. Έστω $e' \in T'$ μια ακμή αυτού του κύκλου που δεν ανήκει στο T. Μια τέτοια ακμή e' υπάρχει γιατί το T περιέχει την e αλλά δεν περιέχει τον κύκλο. Η αφαίρεση της e' αφαιρεί τον κύκλο αλλά δεν επηρεάζει τη συνεκτικότητα. Συνεπώς, το (T' + e) - e' είναι συνδετικό δέντρο του G.

Ασκηση 26. Έστω T και T' δύο συνδετικά δέντρα ενός (συνεκτικού) γραφήματος G. Για κάθε ακμή $e \in T \setminus T'$, υπάρχει ακμή $e' \in T' \setminus T$, τέτοια ώστε το (T-e) + e' είναι συνδετικό δέντρο του G.

Λύση. Αφαιρούμε την e από το T και προκύπτουν δύο συνεκτικές συνιστώσες, έστω V_1 και V_2 . Αφού το T' δεν περιέχει την e αλλά είναι συνεκτικό, υπάρχει μια ακμή $e' \in T'$ που συνδέει κορυφή του V_1 και με κορυφή του V_2 . Η e' δεν ανήκει στο T γιατί η προσθήκη της θα σχημάτιζε κύκλο. Επομένως, η προσθήκη της e' στο T-e επαναφέρει τη συνεκτικότητα και το (T-e)+e' είναι συνδετικό δέντρο του G.

8.2 Ελάχιστα Συνδετικά Δέντρα

Σε αυτή την ενότητα, θεωφούμε συνεκτικό γράφημα G(V,E,w) με βάρη στις ακμές. Η συνάφτηση $w:E\mapsto \mathbb{R}_+^*$ δίνει το βάρος κάθε ακμής. Δεδομένου ενός γραφήματος G(V,E,w) με βάρη στις ακμές, θέλουμε να υπολογίσουμε το συνεκτικό υπογράφημα που καλύπτει όλες τις κορυφές με το ελάχιστο συνολικό βάρος. Αυτό το υπογράφημα θα είναι δέντρο, αφού είναι συνεκτικό (εξ΄ ορισμού) και άκυκλο (αν είχε κύκλους θα μπορούσαμε να μειώσουμε το βάρος του αφαιρώντας ακμές).

Το Ελάχιστο Συνδετικό Δέντοο (ΕΣΔ - Minimum Spanning Tree) ενός γραφήματος με βάρη στις ακμές είναι το συνδετικό δέντοο με το ελάχιστο συνολικό βάρος. Το πρόβλημα του υπολογισμού ενός τέτοιου δέντρου είναι γνωστό σαν πρόβλημα του Ελάχιστου Συνδετικού Δέντρου (ΕΣΔ) και αποτελεί ένα τυπικό παράδειγμα προβλήματος υπολογιστικής βελτιστοποίησης με πολλές πρακτικές εφαρμογές (π.χ. σχεδιασμός οδικών και τηλεπικοινωνιακών δικτύων).

Ασκηση 27. Έστω G(v,E,w) ένα γράφημα με διαφορετικά βάρη στις ακμές, και έστω e^* η (μοναδική) ακμή με το ελάχιστο βάρος (αφού όλα τα βάρη είναι διαφορετικά, ισχύει ότι $\forall e \in E \setminus \{e^*\}, w(e^*) < w(e)$. Να αποδείξετε ότι κάθε $E\Sigma\Delta$ του G περιέχει την e^* .

Λύση. Η απόδειξη είναι με απαγωγή σε άτοπο. Έστω T ένα ΕΣΔ του G που δεν περιέχει την e^* . Η προσθήμη της e^* στο T δημιουργεί αμριβώς ένα μύκλο. Έστω e μια οποιαδήποτε αμμή αυτού του μύκλου. Η αφαίρεσή της "σπάει" τον μύκλο δεν επηρεάζει τη συνεκτικότητα. Συνεπώς, το $(T+e^*)-e$ αποτελεί ένα συνδετικό δέντρο του G. Όμως είναι $w(e)>w(e^*)$, επειδή η e^* είναι η μοναδική ακμή ελάχιστου βάρους, και το $(T+e^*)-e$ έχει μικρότερο συνολικό βάρος από το T. Αυτό αποτελεί αντίφαση στο γεγονός ότι το T είναι ένα $E\Sigma\Delta$.

Με παρόμοιο τρόπο μπορείτε να αποδείξετε ότι το $\text{E}\Sigma\Delta$ του G είναι μοναδικό.

Στη συνέχεια της ενότητας, θα διατυπώσουμε δύο αποδοτικούς αλγόριθμους για τον υπολογισμό ενός ΕΣΔ. Οι αλγόριθμοι βασίζονται σε μια σημαντική ιδιότητα του ΕΣΔ που είναι γνωστή και σαν ιδιότητα των βέλτιστων επιμέρους λύσεων (optimal substructures).

Έστω T ένα ΕΣΔ για το γράφημα G(V,E,w) με βάρη στις αχμές, και έστω e μια οποιαδήποτε αχμή του T. Η αφαίρεση της e από το T δημιουργεί δύο συνεχτικές συνιστώσες. Έστω V_1 και V_2 τα σύνολα κορυφών των δύο συνεχτικών συνιστωσών, και έστω T_1 και T_2 τα δύο υποδέντρα του T-e. Τότε το T_1 είναι ένα ΕΣΔ του επαγόμενου υπογραφήματος $G(V_1)$, το T_2 είναι ένα ΕΣΔ του επαγόμενου υπογραφήματος $G(V_2)$, και η e είναι μια ελαφρύτερη αχμή του (θεμελιώδους ως προς T) συνόλου τομής $\delta(V_1,V_2)$. Για την απόδειξη, αν υποθέσετε ότι κάτι από τα παραπάνω δεν ισχύει, προχύπτει εύχολα ότι υπάρχει συνδετικό δέντρο του G με μικρότερο συνολικό βάρος από το T. Αυτό φυσικά είναι άτοπο.

Αυτή η ιδιότητα επιτρέπει τον υπολογισμό ενός ΕΣΔ από έναν αλγόριθμο που λειτουργεί αυξητικά και ακολουθεί τη μέθοδο της απληστίας. Ο αλγόριθμος διατηρεί ένα δάσος Δ το οποίο αποτελεί υπογράφημα ενός $ΕΣΔ^8$. Αρχικά, το δάσος είναι κενό. Σε κάθε βήμα προστίθεται στο δάσος Δ μία ακμή με την προσθήκη της οποίας το Δ παραμένει υπογράφημα ενός ΕΣΔ. Θα λέμε αυτές τις ακμές ασφαλείς για το Δ. Ο αλγόριθμος ολοκληρώνεται όταν το Δ αποκτήσει n-1 ακμές, οπότε αποτελεί ένα ΕΣΔ.

Μια αμμή e είναι ασφαλής για το Δ όταν (α) αν το Δ είναι δάσος, το $\Delta \cup \{e\}$ παραμένει δάσος (δηλαδή εξακολουθεί να είναι άκυκλο), και (β) αν το Δ είναι υπογράφημα ενός ESD, τότε και το $\Delta \cup \{e\}$ είναι υπογράφημα ενός ESD.

Η μια διατύπωση του παραπάνω γενιχού αλγορίθμου είναι:

```
\begin{aligned} \operatorname{MST}(G(V,E,w)) \\ \Delta &\leftarrow \emptyset; \\ \mathbf{while} \; |\Delta| < |V| - 1 \; \mathbf{do} \\ & \operatorname{Bres} \; \operatorname{mia} \; \operatorname{aspalm} \; \operatorname{anm} \; e \; \operatorname{gia} \; \operatorname{to} \; \Delta; \\ \Delta &\leftarrow \Delta \cup \{e\}; \\ \mathbf{return}(\Delta); \end{aligned}
```

Με βάση τον ορισμό της ασφαλούς αχμής, μπορούμε να αποδείξουμε επαγωγικά ότι ο συγκεκριμένος αλγόριθμος υπολογίζει ένα ΕΣΔ. Αρχικά το γράφημα χωρίς αχμές αποτελεί υπογράφημα κάθε ΕΣΔ του G. Αν σε κάποιο βήμα το Δ αποτελεί υπογράφημα ενός ΕΣΔ (επαγωγική υπόθεση), τότε από τον ορισμό της ασφαλούς αχμής το $Δ \cup \{e\}$ παραμένει υπογράφημα ενός ΕΣΔ. Όταν το Δ αποκτήσει |V|-1 αχμές, ταυτίζεται με κάποιο ΕΣΔ.

Αυτό που απομένει είναι να δείξουμε πως μπορούμε να υπολογίσουμε αποδοτικά μια ασφαλή ακμή σε κάθε βήμα του αλγόριθμου. Για αυτό το σκοπό, θα χρησιμοποιήσουμε την ιδιότητα των βέλτιστων επιμέρους λύσεων. Έστω μια διαμέριση των κορυφών του G στα σύνολα V_1 και V_2 , και έστω $\delta(V_1,V_2)$ το αντίστοιχο σύνολο τομής. Κάθε $E\Sigma\Delta$ πρέπει να περιέχει μια ακμή ελάχιστου βάρους από το $\delta(V_1,V_2)$. Θα αποδείξουμε ότι όλες οι ακμές ελάχιστου βάρους του συνόλου τομής $\delta(V_1,V_2)$ είναι ασφαλείς για κάθε Δ που αποτελεί υπογράφημα ενός $E\Sigma\Delta$ του G και δεν "διασχίζει" την τομή (V_1,V_2) (δηλ. δεν περιέχει άλλη ακμή του συνόλου τομής $\delta(V_1,V_2)$).

 $[\]frac{8}{8}$ Υπενθυμίζεται ότι όλα τα συνδετικά δέντρα ενός γραφήματος με n κορυφές έχουν n-1 ακμές. Παρατηρείστε ότι κάθε υπογράφημα ενός συνδετικού δέντρου είναι δάσος όταν έχει λιγότερες από n-1 ακμές και γίνεται συνδετικό δέντρο όταν αποκτήσει ακριβώς n-1 ακμές.

Σχήμα1. Υπάρχει ΕΣ Δ που περιέχει μια αμμή ελάχιστου βάρους του συνόλου τομής $\delta(V_1,V_2)$.

Θεώς ημα 4. Έστω G(V, E, w) συνεκτικό γράφημα με βάρη στις ακμές, έστω V_1, V_2 μια διαμέριση των κορυφών του G, και έστω Δ ένα υπογράφημα ενός $E\Sigma\Delta$ που δεν περιέχει καμία ακμή του συνόλου $\delta(V_1, V_2)$. Κάθε ακμή ελάχιστου βάρους του $\delta(V_1, V_2)$ αποτελεί ασφαλή ακμή για το Δ .

Απόδειξη. Έστω T ένα ESD του G του οποίο το Δ είναι υπογράφημα, και έστω $e=\{u,v\}$ μια ακμή ελάχιστου βάρους του συνόλου $\delta(V_1,v_2)$. Αν το $\Delta\cup\{e\}$ παραμένει υπογράφημα του T, η ακμή e είναι όντως ασφαλής για το Δ . Ας υποθέσουμε λοιπόν ότι η e δεν ανήκει στο T και το $\Delta\cup\{e\}$ δεν αποτελεί υπογράφημα του T. Σε αυτή την περίπτωση, θα κατασκευάσουμε ένα ESD T' του οποίου το $\Delta\cup\{e\}$ αποτελεί υπογράφημα.

Έστω p το μονοπάτι σύνδεσης των άμρων της αμμής e, δηλ. των μορυφών u μαι v, στο T. Το p+e αποτελεί μύκλο γιατί έχουμε υποθέσει ότι η e δεν ανήμει στο T. Αφού το ένα άμρο της e ανήμει στο V_1 μαι το άλλο ανήμει στο V_2 (έστω $u \in V_1$ μαι $v \in V_2$), θα πρέπει να υπάρχει μια αμμή του p που ανήμει στο $\delta(V_1,V_2)$ (διαισθητικά, το p πρέπει να "διασχίζει" την τομή V_1,V_2). Έστω $e'=\{x,y\}$ αυτή η αμμή (βλ. Σχήμα 1).

Το T'=(T+e)-e' αποτελεί ένα συνδετικό δέντρο του G επειδή η αφαίρεση της e' από το T+e "σπάει" τον κύκλο p+e χωρίς να επηρεάζει τη συνεκτικότητα. Επίσης, το Δ είναι υπογράφημα του T-e' γιατί έχουμε υποθέσει ότι το Δ δεν περιέχει καμία ακμή του συνόλου $\delta(V_1,V_2)$. Συνεπώς, το $\Delta \cup \{e\}$ αποτελεί υπογράφημα του T'.

Αφού υποθέσαμε ότι η e είναι μια ακμή ελάχιστου βάρους του $\delta(V_1,V_2)$ και ότι $e'\in\delta(V_1,V_2)$, είναι το βάρος της e είναι μικρότερο ή ίσο του βάρους της e'. Συνεπώς, το συνολικό βάρος του T' δεν ξεπερνά το συνολικό βάρος του T και το T' αποτελεί ένα $\text{E}\Sigma\Delta$ του G. Δείξαμε λοιπόν ότι το $\Delta\cup\{e\}$ αποτελεί υπογράφημα ενός $\text{E}\Sigma\Delta$ του G και επομένως η ακμή e αποτελεί μια ασφαλή ακμή για το Δ .

Αλγόριθμος Kruskal. Ο αλγόριθμος του Kruskal εξετάζει τις ακμές του γραφήματος μία-προς-μία σε αύξουσα σειρά βάρους και προσθέτει στο δάσος κάθε ακμή που δεν σχηματίζει κύκλο με τις ήδη υπάρχουσες.

```
MST-Kruskal(G(V,E,w))
Έστω ότι οι αμμές είναι ταξινομημένες σε αύξουσα σειφά βάφους, δηλ. w(e_1) \leq w(e_2) \leq \cdots \leq w(e_m). \Delta \leftarrow \emptyset; i \leftarrow 1; while |\Delta| < |V| - 1 and i \leq m do if \Delta \cup \{e_i\} δεν έχει κύκλο then \Delta \leftarrow \Delta \cup \{e_i\}; i \leftarrow i+1; return(\Delta);
```

Η υλοποίηση του αλγόριθμου απαιτεί έναν αλγόριθμο ταξινόμησης των ακμών σε αύξουσα σειρά βάρους και μια δομή διαχείρισης ξένων συνόλων που για τον έλεγχο αν η προσθήκη μιας ακμής δημιουργεί κύκλο. Ο αλγόριθμος μπορεί να υλοποιηθεί ώστε να έχει χρόνο εκτέλεσης χειρότερης περίπτωσης $\Theta(m \log m)$.

Για την ορθότητα του αλγόριθμου, παρατηρούμε ότι αν η προσθήκη της ακμής e_i δεν δημιουργεί κύκλο στο Δ , πρέπει να "διασχίζει" μια τομή την οποία δεν "διασχίζει" το Δ . Αφού εξετάζουμε τις ακμές σε αύξουσα σειρά βάρους, η ακμή e_i έχει το ελάχιστο βάρος από όλες τις ακμές που "διασχίζουν" την ίδια τομή. Σύμφωνα με το Θεώρημα 4, κάθε ακμή που προστίθεται είναι ασφαλής για το Δ . Άρα ο αλγόριθμος υπολογίζει ένα $E\Sigma\Delta$ του G.

Αλγόριθμος Prim. Ο αλγόριθμος του Prim διατηρεί ένα δέντρο που καλύπτει ένα υποσύνολο των κορυφών. Ο αλγόριθμος ξεκινάει από μια οποιαδήποτε κορυφή με ένα αρχικά κενό δέντρο. Σε κάθε επανάληψη, ο αλγόριθμος προσθέτει στο δέντρο την ελαφρύτερη ακμή που συνδέει μια κορυφή εντός με μια κορυφή εκτός του δέντρου. Ο αλγόριθμος τερματίζει έπειτα από n-1 επαναλήψεις και επιστρέφει ένα $\text{E}\Sigma\Delta$ του G.

Ο αλγόριθμος του Prim μπορεί να υλοποιηθεί ώστε να έχει χρόνο εκτέλεσης χειρότερης περίπτωσης $\Theta(m+n\log n)$. Αυτός ο χρόνος είναι ασυμπτωτικά μικρότερος από το χρόνο εκτέλεσης του αλγόριθμου του Kruskal για πυκνά γραφήματα, δηλ. γραφήματα με πολλές ακμές.

Για την ορθότητα του αλγόριθμου του Prim, παρατηρούμε ότι η ακμή που προστίθεται σε κάθε επανάληψη (α) δεν δημιουργεί κύκλο γιατί συνδέει μια κορυφή εντός με μια κορυφή εκτός του δέντρου, και (β) είναι μια ακμή ελάχιστου βάρους που "διασχίζει" την τομή που δημιουργείται από τις κορυφές εντός του δέντρου και τις κορυφές εκτός του δέντρου. Από το Θεώρημα 4, η ακμή που προστίθεται είναι ασφαλής για το δέντρο και ο αλγόριθμος υπολογίζει ένα ΕΣΔ.

9 Διμερή Γραφήματα

Ένα γράφημα ονομάζεται k-μερές (k-partite) αν οι κορυφές του μπορούν να διαμεριστούν σε k ανεξάρτητα σύνολα¹⁰.

Στη συνέχεια εστιάζουμε στην (σημαντική) ειδική περίπτωση k-μερών γραφημάτων για k=2. Ένα γράφημα ονομάζεται διμερές (bipartite) αν οι κορυφές του μπορούν να χωριστούν σε δύο ανεξάρτητα σύνολα. Ένα διμερές γράφημα είναι πλήρες όταν κάθε κορυφή στο ένα μέρος

 $^{^{9}}$ Τα υποσύνολα X_1,\ldots,X_k αποτελούν μια διαμέριση του συνόλου X όταν είναι ξένα μεταξύ τους ανά δύο $(\forall i\neq j,X_i\cap X_j=\emptyset)$ και η ένωσή τους είναι το X $(\bigcup_{i=1}^k X_i=X)$.

¹⁰ Ένα σύνολο κορυφών αποτελεί ανεξάρτητο σύνολο (independent set) αν δεν υπάρχουν ακμές μεταξύ τους.

(ανεξάρτητο σύνολο) συνδέεται με κάθε κορυφή στο άλλο μέρος. Το πλήρες διμερές γράφημα με n κορυφές στο ένα μέρος και m κορυφές στο άλλο μέρος συμβολίζεται με $K_{n,m}$ και έχει $n \cdot m$ αχμές.

Ασκηση 28. Ποιος είναι ο μέγιστος αριθμός ακμών που μπορεί να περιέχει ένα απλό διμερές γράφημα με n κορυφές; Ισοδύναμα, να δείξετε ότι κάθε απλό γράφημα με n κορυφές και περισσότερες από $n^2/4$ ακμές δεν είναι διμερές.

Λύση. Ο μέγιστος αφιθμός αμμών συμβαίνει όταν έχουμε το πλήφες διμεφές γφάφημα. Αφού όλες οι μοφυφές είναι n, αν το ένα σύνολο μοφυφών πεφιέχει k μοφυφές, το δεύτεφο θα πεφιέχει (n-k). Ο συνολιμός αφιθμός αμμών του $K_{k,n-k}$ είναι k(n-k). Το γινόμενο μεγιστοποιείται για k=n/2 αν το n είναι άφτιος μαι για k=(n-1)/2 αν το n είναι πεφιττός. Συνεπώς, αν το n είναι άφτιος, ο μέγιστος αφιθμός αμμών είναι $n^2/4$, ενώ αν το n είναι πεφιττός, ο μέγιστος αφιθμός αμμών είναι $(n^2-1)/4$. Παρατηρείστε ότι οι αντίστοιχοι αφιθμοί είναι πάντα αμέφαιοι.

Συμβολίζουμε συνήθως με G(X,Y,E) ένα διμερές γράφημα G του οποίου οι κορυφές διαμερίζονται σε ανεξάρτητα σύνολα (μέρη) X και Y.

Θεώρημα 5. Ένα γράφημα είναι διμερές αν και μόνο αν δεν έχει κύκλους περιττού μήκους.

Απόδειξη. Έστω διμεφές γράφημα $G(\cdot,E)$. Σε κάθε διαδρομή (ανοικτή ή κλειστή), οι κορυφές του X πρέπει να ακολουθούνται από κορυφές του Y, και οι κορυφές του Y πρέπει να ακολουθούνται από κορυφές του Y (επειδή τα X και Y είναι ανεξάρτητα σύνολα). Επομένως, κάθε κύκλος είναι της μορφής $x_1y_1x_2y_2\dots x_\ell y_\ell x_1$ με τις κορυφές $x_1,x_2\dots x_\ell\in X$ και τις κορυφές $y_1,y_2,\dots,y_\ell\in Y$. Το μήκος του κύκλου είναι 2ℓ , δηλαδή άρτιο. Άρα, αν ένα γράφημα είναι διμεφές, έχει κύκλους μόνο άρτιου μήκους.

Για να αποδείξουμε το αντίστροφο, θεωρούμε ένα οποιοδήποτε συνεχτικό γράφημα G(V,E) χωρίς κύκλους περιττού μήκους. Η υπόθεση ότι το γράφημα είναι συνεχτικό γίνεται χωρίς βλάβη της γενικότητας. Αν το γράφημα δεν είναι συνεχτικό, το ζητούμενο ισχύει για κάθε συνεχτική συνιστώσα του γραφήματος, και άρα για όλο το γράφημα. Θα δείξουμε πως κατασκευάζουμε τα δύο ανεξάρτητα σύνολα του G.

Θεωφούμε μια οποιαδήποτε κοφυφή $v \in V$ και τις αποστάσεις της από όλες τις κοφυφές του γραφήματος 11 . Στο X τοποθετούμε τη v και όλες τις κοφυφές που βρίσκονται σε άφτια απόσταση από αυτή, και στο Y όλες τις κοφυφές που βρίσκονται σε περιττή απόσταση από τη v. Τυπικά, $X = \{u \in V : d(v,u) \text{ άφτιος}\}$ και $Y = \{u \in V : d(v,u) \text{ περιττός}\}$. Τα σύνολα X και Y είναι ανεξάρτητα σύνολα επειδή το γράφημα δεν έχει κύκλους περιττού μήκους. Πράγματι, αν υπήρχε ακμή μεταξύ δύο κοφυφών $u,w \in X$ (ή του Y), η ένωση των συντομότερων μονοπατιών από τη v στη v και από τη v στην w με την ακμή $\{u,w\}$ δημιουργεί κύκλο περιττού μήκους.

Πιο αναλυτικά, έστω ότι υπάρχει ακμή μεταξύ δύο κορυφών $u,w\in X$. Θεωρούμε ένα συντομότερο μονοπάτι από τη u στη v, έστω p και ένα συντομότερο μονοπάτι από τη w στη v, έστω q. Εξ' ορισμού το μήκος του p είναι d(v,u) και το μήκος του q είναι d(v,w). Επίσης, οι αποστάσεις d(v,u) και d(v,w) είναι άρτιες γιατί οι κορυφές $u,w\in X$.

Έστω v_1 το πρώτο κοινό σημείο (πλησιέστερο προς τις u, w) των μονοπατιών p και q (τα p και q έχουν τουλάχιστον ένα κοινό σημείο επειδή καταλήγουν στην ίδια κορυφή). Γνωρίζουμε

 $[\]overline{^{11}}$ Η απόσταση δυο κορυφών v,u, συμβολίζεται με d(v,u), είναι το μήκος του συντομότερου μονοπατιού μεταξύ τους.

ότι κάθε τμήμα ενός συντομότερου μονοπατιού είναι επίσης συντομότερο μονοπάτι. Συνεπώς, τα τμήματα των p και q από τη v μέχρι τη v_1 αποτελούν συντομότερα μονοπάτια μεταξύ αυτών των κορυφών και πρέπει να έχουν (το ίδιο) μήκος ίσο με την απόσταση $d(v,v_1)$. Το τμήμα του p από v_1 μέχρι u, η (υποτιθέμενη) ακμή $\{u,w\}$, και το τμήμα του q από w μέχρι v_1 δημιουργούν ένα (απλό) κύκλο με μήκος

$$[d(u,v)-d(v,v_1)]+[d(w,v)-d(v,v_1)]+1=d(u,v)+d(w,v)+1-2d(v,v_1)$$

Ο αριθμός αυτός είναι περιττός γιατί τα d(u,v) + d(w,v) (άθροισμα άρτιων) και $2 d(v,v_1)$ είναι άρτιοι αριθμοί. Αυτό αντιβαίνει στην υπόθεση ότι το γράφημα δεν έχει κύκλο περιττού μήκους.

Αν θεωρήσουμε κορυφές $u, w \in Y$, το d(u, v) + d(w, v) είναι επίσης άρτιος (σαν άθροισμα δύο περιττών) και καταλήγουμε σε άτοπο με τον ίδιο ακριβώς τρόπο.

Παρατηρείστε ότι η παραπάνω απόδειξη είναι κατασκευαστική και μας επιτρέπει να ελέγξουμε αν ένα γράφημα είναι διμερές και να πιστοποιήσουμε την απάντησή μας. Ξεκινώντας από μια οποιαδήποτε κορυφή, κατασκευάζουμε τα σύνολα X και Y όπως στην απόδειξη. Αν τα X και Y είναι ανεξάρτητα σύνολα, γνωρίζουμε ότι το γράφημα είναι διμερές. Έχουμε μάλιστα υπολογίσει μια διαμέριση των κορυφών του σε δύο ανεξάρτητα σύνολα, έχουμε δηλαδή ένα "πιστοποιητικό" για το γεγονός ότι το γράφημα είναι διμερές. Αν το X (ή το Y) δεν είναι ανεξάρτητο σύνολο, βρίσκουμε έναν κύκλο περιττού μήκους όπως περιγράφεται στην απόδειξη του Θεωρήματος X0 κύκλος περιττού μήκους αποτελεί ένα "πιστοποιητικό" ότι το γράφημα δεν είναι διμερές.

10 Ταιοιάσματα

Έστω γράφημα G(V, E). Ένα επικαλύπτον (ή συνδετικό, spanning) υπογράφημα όπου όλες οι κορυφές έχουν βαθμό μικρότερο ή ίσο του k ονομάζεται k-παράγοντας του G(k-factor). Ένας k-παράγοντας ονομάζεται τέλειος (perfect) όταν όλες οι κορυφές έχουν βαθμό ακριβώς k. Οι πιο σημαντικοί παράγοντες ενός γραφήματος είναι οι 1-παράγοντες και οι 2-παράγοντες.

Μια διαμέριση των πορυφών του G σε απλούς πύπλους παι απλά μονοπάτια συνιστά έναν 2-παράγοντα. Μια διαμέριση των πορυφών του G σε πύπλους συνιστά έναν τέλειο 2-παράγοντα. Ένας πύπλος Hamilton αποτελεί έναν τέλειο 2-παράγοντα (παι μάλιστα συνεπτιπό). Αντίστροφα, πάθε συνεπτιπός τέλειος 2-παράγοντας ενός γραφήματος είναι πύπλος Hamilton. Επομένως, ο υπολογισμός του τέλειου 2-παράγοντα με τον ελάχιστο αριθμό πύπλων/συνεπτιπών συνιστωσών αποτελεί ισοδύναμο πρόβλημα με το να αποφανθούμε αν ένα γράφημα έχει πύπλο Hamilton.

Οι 1-παράγοντες του G ονομάζονται ταιριάσματα (matchings). Ισοδύναμα, ένα υποσύνολο ακμών $M\subseteq E$ ονομάζεται ταίριασμα του G όταν κάθε κορυφή εφάπτεται σε μία το πολύ ακμή του M (με απλά λόγια, οι ακμές του M δεν έχουν κοινά άκρα). Θα λέμε ότι μια κορυφή που εφάπτεται σε ακμή του M έχει ταίρι ή είναι ταιριασμένη (matched) στο M. Μια κορυφή που δεν έχει ταίρι θα λέμε ότι είναι ελεύθερη (free) στο M.

Τέλεια, Μέγιστα, και Μεγιστοτικά Ταιριάσματα. Ένα ταίριασμα ονομάζεται τέλειο (perfect matching) όταν όλες οι κορυφές έχουν ταίρι στο M. Ένα ταίριασμα ονομάζεται μέγιστο (maximum matching) αν δεν υπάρχει ταίριασμα με μεγαλύτερο αριθμό ακμών. Κάθε τέλειο ταίριασμα

είναι μέγιστο, αλλά το αντίστροφο δεν ισχύει (να δώσετε συγκεκριμένα παραδείγματα). Ένα ταίριασμα M ονομάζεται μεγιστοτικό (maximal) αν δεν υπάρχει ακμή στο $E\setminus M$ (δηλ. εκτός M) που να έχει ελεύθερες κορυφές σαν άκρα. Η παρακάτω πρόταση είναι άμεση συνέπεια του ορισμού του μεγιστοτικού ταιριάσματος.

Πρόταση 2. Ένα ταίριασμα M είναι μεγιστοτικό αν και μόνο αν οι ελεύθερες κορυφές στο M αποτελούν ένα ανεξάρτητο σύνολο.

Η Πρόταση 2 προτείνει τον ακόλουθο απλό αλγόριθμο για τον υπολογισμό ενός μεγιστοτικού ταιριάσματος. Ξεκινάμε με ένα οποιοδήποτε ταίριασμα (π.χ. κενό σύνολο ακμών). Ενόσω οι ελεύθερες κορυφές του τρέχοντος ταιριάσματος δεν αποτελούν ανεξάρτητο σύνολο, προσθέτουμε μια ακμή με ελεύθερα άκρα στο ταίριασμα. Όταν ολοκληρωθεί ο αλγόριθμος, έχουμε ένα μεγιστοτικό ταίριασμα.

Εναλλακτικά και Επαυξητικά Μονοπάτια. Έστω M ταίριασμα στο γράφημα G(V,E). Ένα μονοπάτι του G του οποίου οι ακμές εναλλάσσονται στα σύνολα $E\setminus M$ και M ονομάζεται εναλλακτικό (alternating) μονοπάτι για το M. Ένα εναλλακτικό μονοπάτι με άκρα ελεύθερες κορυφές ονομάζεται επαυξητικό (augmenting) μονοπάτι για το M.

Έστω p ένα επαυξητικό μονοπάτι για το M. οι ακμές του p που δεν ανήκουν στο M δεν έχουν κοινά άκρα, γιατί οι ακμές του $p\setminus M$ και του M εναλλάσσονται. Επομένως, οι ακμές του $p\setminus M$ αποτελούν ταίριασμα και καλύπτουν όλες τις κορυφές του p. Οι ακμές του $p\setminus M$ είναι κατά μία περισσότερες από τις ακμές του $p\cap M$, γιατί τα δύο άκρα του p είναι ελεύθερες κορυφές. Οι ταιριασμένες κορυφές στο $M\setminus (p\cap M)$ είναι διαφορετικές από τις ταιριασμένες κορυφές στο $p\setminus M$, αφού το $M\setminus (p\cap M)$ αποτελείται από τις ακμές του M που δεν ανήκουν στο p. Συνεπώς, το σύνολο $(M\setminus (p\cap M))\cup (p\setminus M)$ αποτελεί ταίριασμα στο G και έχει |M|+1 ακμές (δηλαδή μία ακμή περισσότερη από το M). Από το γεγονός αυτό προέρχεται η ονομασία του επαυξητικού μονοπατιού.

Παρατηρούμε ότι το σύνολο $(M\setminus (p\cap M))\cup (p\setminus M)$ ταυτίζεται με το σύνολο $(M\cup p)\setminus (M\cap p)$. Το τελευταίο αποτελεί τη λεγόμενη συμμετοική διαφορά των συνόλων M και p. Υπενθυμίζουμε ότι η συμμετοική διαφορά των συνόλων M και p συμβολίζεται με $M\oplus p$ και αποτελείται από όλα τα διαφορετικά στοιχεία των δύο συνόλων. Καταλήγουμε λοιπόν στο ακόλουθο συμπέρασμα.

Πρόταση 3. Για κάθε ταίριασμα M και κάθε επαυξητικό μονοπάτι p για το M, το $M \oplus p$ αποτελεί ταίριασμα με |M| + 1 ακμές.

10.1 Χαρακτηρισμός Μέγιστων Ταιριασμάτων

Θεώρημα 6 (**Θεώρημα του Berge**). Ένα ταίριασμα M είναι μέγιστο αν και μόνο αν δεν υπάρχει επαυξητικό μονοπάτι για το M.

Απόδειξη. Έστω M ταίριασμα στο γράφημα G(V,E). Ισοδύναμα, θα αποδείξουμε ότι το M δεν είναι μέγιστο αν και μόνο αν υπάρχει επαυξητικό μονοπάτι για το M (αντιθετο-αντιστροφή).

Αν υπάρχει επαυξητικό μονοπάτι p για το M, έχουμε ήδη αποδείξει (Πρόταση 3) ότι το $M \oplus p$ αποτελεί ταίριασμα με μια ακμή περισσότερη από το M. Συνεπώς, το M δεν είναι μέγιστο.

Για το αντίστροφο, έστω ότι το M δεν είναι μέγιστο και έστω ένα μέγιστο ταίριασμα M' για το γράφημα G(V,E). Εξ' ορισμού είναι |M'|>|M| (δηλ. το M' έχει περισσότερες ακμές από το M). Στο υπογράφημα $G(V,M\cup M')$, κάθε κορυφή έχει βαθμό μικρότερο ή ίσο του 2. Δηλαδή, το $M\cup M'$ είναι ένας 2-παράγοντας του G. Άρα το $G(V,M\cup M')$ αποτελείται από (απλούς) κύκλους και (απλά) μονοπάτια στα οποία οι ακμές του M' εναλλάσσονται με τις ακμές του M (επειδή και τα M' και M είναι ταιριάσματα).

Παρατηρούμε ότι κάθε κύκλος στο $G(V,M\cup M')$ έχει ίδιο αριθμό ακμών από το M και το M' και ότι μόνο ένα μονοπάτι μπορεί να έχει περισσότερες ακμές από κάποιο από τα δύο ταιριάσματα. Επειδή λοιπόν το M' έχει περισσότερες ακμές από το M, το $G(V,M\cup M')$ πρέπει να περιέχει μονοπάτι p στο οποίο οι ακμές του M' να είναι περισσότερες από τις ακμές του M. Αφού στο p εναλλάσσονται οι ακμές των M' και M, ο μόνος τρόπος να συμβεί αυτό είναι οι αρχική και τελική ακμή του p να ανήκουν στο M'.

Επομένως, οι αχμές του p εναλλάσσονται στα $E\setminus M$ και M, και τα άκρα του p είναι ελεύθερα στο M. Άρα το p είναι επαυξητικό μονοπάτι για το M στο γράφημα G.

Το Θεώρημα του Berge προτείνει την ακόλουθη μεθοδολογία υπολογισμού ενός μέγιστου ταιριάσματος: Ξεκινάμε με ένα οποιοδήποτε ταίριασμα (π.χ. το κενό σύνολο ακμών ή ένα μεγιστοτικό ταίριασμα). Έστω M το τρέχον ταίριασμα σε κάθε βήμα του αλγόριθμου. Ενόσω το M δεν είναι μέγιστο ταίριασμα, βρίσκουμε ένα επαυξητικό μονοπάτι p (το Θεώρημα 6 εγγυάται την ύπαρξη επαυξητικού μονοπατιού). Αντικαθιστούμε το τρέχον ταίριασμα με το $M\oplus p$, που είναι ταίριασμα και έχει μια ακμή παραπάνω. Όταν η παραπάνω διαδικασία ολοκληρωθεί, έχουμε ένα μέγιστο ταίριασμα.

Δυστυχώς, η απόδειξη του Θεωρήματος του Berge δεν είναι κατασκευαστική αφού δεν περιγράφει πως μπορούμε να υπολογίσουμε ένα επαυξητικό μονοπάτι για ένα ταίριασμα που δεν είναι μέγιστο.

10.2 Τέλεια Ταιριάσματα σε Διμερή Γραφήματα

Σε αυτή την ενότητα, θα αποδείξουμε το Θεώρημα του Hall που χαρακτηρίζει τα τέλεια ταιριάσματα σε διμερή γραφήματα με ίδιο αριθμό κορυφών στα δύο μέρη. Η απόδειξη του Θεωρήματος του Hall είναι κατασκευαστική και επιτρέπει να υπολογίσουμε ένα τέλειο ταίριασμα ή να πιστοποιήσουμε ότι δεν υπάρχει.

Για τη διατύπωση του Θεωρήματος του Hall, χρειαζόμαστε τον ακόλουθο συμβολισμό. Έστω γράφημα G(V,E), και έστω $S\subseteq V$ ένα υποσύνολο κορυφών του. Συμβολίζουμε με $\Gamma(S)$ το σύνολο των κορυφών που συνδέονται με κορυφές στο S. Τυπικά, $\Gamma(S)=\{v\in V:\exists u\in S,\{u,v\}\in E\}$. Το σύνολο $\Gamma(S)$ ονομάζεται γειτονιά του S. Έστω M ένα ταίριασμα στο διμερές γράφημα G(X,Y,E), και έστω S ένα υποσύνολο κορυφών του X (αντίστοιχα του Y) που είναι ταιριασμένες στο M. Συμβολίζουμε με M(S) το σύνολο των κορυφών του Y (αντίστοιχα του X) που συνδέονται με τις κορυφές του S από τις ακμές του M (δηλ. τα "ταίρια" των κορυφών του S στο M). Αφού κάθε κορυφή του S έχει ταίρι στο M, είναι |M(S)|=|S|.

Θεώρημα 7 (Θεώρημα του Hall). Έστω διμερές γράφημα G(X,Y,E) με |X|=|Y|. Το γράφημα G έχει τέλειο ταίριασμα αν και μόνο αν για κάθε $S\subseteq X$, $|\Gamma(S)|\geq |S|$.

Απόδειξη. Έστω M τέλειο ταίριασμα στο G. Για κάθε $S\subseteq X$, είναι |M(S)|=|S| επειδή το M είναι τέλειο και όλες οι κορυφές του S είναι ταιριασμένες. Ο αριθμός όλων των γειτόνων του S δεν μπορεί να είναι μικρότερος από |M(S)|. Τυπικά, $|F(S)|\geq |S|$ όπως απαιτεί το θεώρημα.

Για το αντίστροφο, έστω διμερές γράφημα G(X,Y,E) με |X|=|Y| για το οποίο ισχύει ότι $\forall S\subseteq X,\ |\Gamma(S)|\geq |S|$. Για να καταλήξουμε σε άτοπο, υποθέτουμε ότι το G δεν έχει τέλειο ταίριασμα. Έστω λοιπόν M ένα μέγιστο ταίριασμα του G, το οποίο από την υπόθεση που κάναμε δεν είναι τέλειο. Έστω $w\in X$ μια ελεύθερη κορυφή στο M. Αφού |X|=|Y|, υπάρχει τουλάχιστον μία ελεύθερη κορυφή στο Y. Θα καταλήξουμε σε άτοπο κατασκευάζοντας επαυξητικό μονοπάτι για το M που ξεκινάει από τη w και καταλήγει σε ελεύθερη κορυφή του Y. Αυτό βρίσκεται σε αντίφαση με την υπόθεση ότι το M είναι μέγιστο (βλ. Θεώρημα 6).

Θα περιγράψουμε τη διαδικασία κατασκευής του επαυξητικού μονοπατιού. Αρχικά έστω $Y_0=\emptyset$. Η διαδικασία εξελίσσεται σε φάσεις που αριθμούνται με το δείκτη $i=0,1,2,\ldots$ Η διαδικασία ολοκληρώνεται στη φάση i αν το Y_i περιέχει ελεύθερη κορυφή. Διαφορετικά συνεχίζει στην επόμενη φάση θέτοντας $X_{i+1}=M(Y_i)\cup\{w\}$ και $Y_{i+1}=\Gamma(X_{i+1})$.

Παρατηρούμε ότι για να δημιουργήσουμε το X_{i+1} χρησιμοποιούμε αχμές του M και ότι οι κορυφές που εμφανίζονται πρώτη φορά στο Y_{i+1} συνδέονται με αυτές του X_{i+1} με αχμές εκτός του M. Παρατηρούμε επίσης ότι ο μοναδικός τρόπος να ολοκληρωθεί αυτή η διαδικασία είναι να καταλήξουμε σε ελεύθερη κορυφή του Y.

Θα δείξουμε ότι αυτή η διαδικασία δεν μπορεί να συνεχίζεται για πάντα. Έστω $y_i=|Y_i|$ και $x_i=|X_i|$ οι πληθικοί αριθμοί των συνόλων Y_i και X_i σε κάθε φάση. Αρχικά είναι $y_0=0$ και $x_1=1$. Ο πληθάριθμος του συνόλου Y_i αυξάνεται όταν το Y_i δεν περιέχει ελεύθερες κορυφές. Αρχικά, $y_0=0$. Για κάθε φάση $i,\ i=0,1,\ldots$, είναι $x_{i+1}=y_i+1$ επειδή $X_{i+1}=M(Y_i)\cup\{w\}$. Υπενθυμίζουμε ότι $|M(Y_i)|=|Y_i|$ επειδή το Y_i δεν περιέχει ελεύθερες κορυφές και ότι το w είναι ελεύθερη κορυφή (άρα δεν ανήκει στο $M(Y_i)$). Επίσης, είναι $y_{i+1}\geq x_{i+1}=y_i+1>y_i$ γιατί $Y_{i+1}=\Gamma(X_{i+1})$ και ισχύει ότι $|\Gamma(S)|\geq |S|$ για κάθε $S\subseteq X$.

Αφού το σύνολο Y_i μεγαλώνει σε κάθε φάση και το |Y| είναι πεπερασμένο, η παραπάνω διαδικασία θα ολοκληρωθεί καταλήγοντας σε μια ελεύθερη κορυφή $v \in Y$. Ολοκληρώνουμε την απόδειξη δείχνοντας ότι το μονοπάτι από την w στη v αποτελεί ένα εναλλακτικό μονοπάτι, άρα και ένα επαυξητικό μονοπάτι αφού έχει δύο ελεύθερα άκρα.

Η παραπάνω διαδικασία δημιουργεί ένα δέντρο εναλλακτικών μονοπατιών 12 με ρίζα (επίπεδο 0) την κορυφή w, στο πρώτο επίπεδο τις κορυφές του Y_1 , στο δεύτερο επίπεδο τις κορυφές του $M(Y_1)$, στο τρίτο επίπεδο τις κορυφές του $Y_2 \setminus Y_1$, στο τέταρτο επίπεδο της κορυφές του $M(Y_2 \setminus Y_1)$, και γενικά, στο επίπεδο 2i-1 τις κορυφές του $Y_i \setminus (\bigcup_{j=1}^{i-1} Y_j)$ (δηλαδή τις κορυφές του Y που εμφανίστηκαν για πρώτη φορά στο Y_i) και στο επίπεδο 2i τις κορυφές του $M(Y_i(\bigcup_{j=1}^{i-1} Y_j))$ (δηλαδή τα "ταίρια" των νέων κορυφών του Y_i). Όλα τα μονοπάτια σε αυτό το δέντρο είναι εναλλακτικά γιατί οι ακμές από το επίπεδο 2(i-1) στο επίπεδο 2i-1 δεν ανήκουν στο M και οι ακμές από το επίπεδο 2i-1 στο επίπεδο 2i ανήκουν στο M. Έχουμε αποδείξει ότι το δέντρο αυτό συνεχίζει να μεγαλώνει (δηλ. σε κάθε φάση προστίθενται νέες κορυφές στο Y_i) μέχρι να φτάσουμε σε μια ελεύθερη κορυφή $v \in Y$.

Το δέντρο αυτό είναι γνωστό και σαν δέντρο εναλλακτικών μονοπατιών του M με ρίζα το w. Κατασκευάζεται με Αναζήτηση κατά Πλάτος (ξεκινώντας από ελεύθερη κορυφή $w \in X$) στο κατευθυνόμενο γράφημα που προκύπτει αν προσανατολίσουμε τις ακμές που δεν είναι στο M από το X στο X, και τις ακμές στο M από το Y στο X.

Όμως το μονοπάτι από τη $w\in X$ στη $v\in Y$ είναι εναλλακτικό και έχει ελεύθερα άκρα. Αρα είναι επαυξητικό μονοπάτι για το M. Αυτό είναι άτοπο αφού υποθέσαμε ότι το M είναι ένα μέγιστο ταίριασμα.

Επισήμανση. Με τον ίδιο ακριβώς τρόπο, μπορούμε να αποδείξουμε την ακόλουθη πιο γενική μορφή του Θεωρήματος του Hall που ισχύει για διμερή γραφήματα με διαφορετικό αριθμό κορυφών στα δύο μέρη. Έστω διμερές γράφημα G(X,Y,E). Ένα ταίριασμα ονομάζεται X-τέλειο (X-perfect) αν δεν αφήνει καμία κορυφή του X ελεύθερη. Η γενική μορφή του Θεωρήματος του Hall είναι: Ένα διμερές γράφημα G(X,Y,E) έχει X-τέλειο ταίριασμα αν και μόνο αν για κάθε $S\subseteq X$, $|\Gamma(S)|\geq |S|$.

Παρατηρούμε ότι η απόδειξη του Θεωρήματος του Hall είναι κατασκευαστική. Έστω G(X,Y,E) διμερές με |X|=|Y|. Ξεκινάμε με ένα οποιαδήποτε ταίριασμα στο G(X,Y,E) (π.χ. ένα μεγιστοτικό ταίριασμα). Έστω M το τρέχον ταίριασμα. Ενόσω το M δεν είναι τέλειο, εφαρμόζουμε την παραπάνω διαδικασία ξεκινώντας από ελεύθερη κορυφή $w\in X$. Αν βρούμε ένα επαυξητικό μονοπάτι p, αντικαθιστούμε το τρέχον ταίριασμα με το $M\oplus p$, το οποίο έχει μια ακμή παραπάνω, και συνεχίζουμε. Αν σε κάθε φάση βρίσκουμε επαυξητικό μονοπάτι, θα καταλήξουμε σε ένα τέλειο ταίριασμα. Αυτό φυσικά "πιστοποιεί" την ιδιότητα ότι το γράφημα έχει τέλειο ταίριασμα.

Αν σε κάποια δεν βοούμε επαυξητικό μονοπάτι, καταλήγουμε σε σύνολο Y_i που δεν περιέχει ελεύθερη κορυφή και έχει $\Gamma(M(Y_i) \cup \{w\}) = Y_i$ (οπότε δεν εμφανίζονται νέες κορυφές στην επόμενη φάση). Εντοπίζουμε λοιπόν ένα σύνολο $S = M(Y_i) \cup \{w\}$ με $|\Gamma(S)| < |S|$. Από το Θεώρημα του Hall, το σύνολο αυτό αποτελεί "πιστοποιητικό" ότι το γράφημα δεν έχει τέλειο ταίριασμα.

11 Επίπεδα Γραφήματα

Ένα γράφημα είναι επίπεδο (planar) αν μπορεί να αποτυπωθεί / "ζωγραφιστεί" στο επίπεδο χωρίς να διασταυρώνονται οι αχμές του. Κάθε επίπεδη αποτύπωση ενός (επίπεδου) γραφήματος ορίζει "κλειστές περιοχές" που ονομάζονται όψεις (faces) του γραφήματος. Τυπικά, δεδομένης μιας επίπεδης αποτύπωσης ενός γραφήματος, όψη ονομάζεται κάθε περιοχή του επιπέδου που περιορίζεται από αχμές και δεν μπορεί να χωριστεί σε μικρότερες όψεις. Οι εσωτερικές όψεις (interior faces) του γραφήματος είναι πεπερασμένες. Η εξωτερική όψη (exterior face) είναι απεριόριστη και περιλαμβάνει ολόκληρη την περιοχή του επιπέδου που εκτείνεται εκτός της αποτύπωσης του γραφήματος.

Κάθε ακμή ενός επίπεδου γραφήματος συμμετέχει σε δύο το πολύ όψεις. Αν μία ακμή ανήκει σε κύκλο, αυτή αποτελεί σύνορο / συμμετέχει σε δύο όψεις. Αν μία ακμή δεν ανήκει σε κύκλο, αυτή συμμετέχει σε μία όψη. Κάθε άκυκλο επίπεδο γράφημα έχει μόνο μία όψη, την εξωτερική. Παρατηρείστε επίσης ότι αν ένα γράφημα είναι επίπεδο, κάθε υπογράφημα του είναι επίσης επίπεδο.

11.1 Τύπος του Euler

Έστω συνεκτικό επίπεδο γράφημα G (όχι απαραίτητα απλό) με n κορυφές, m ακμές, και f όψεις. Ο τύπος του Euler συνδέει αυτές τις τρεις ποσότητες:

$$n+f=m+2$$

Μια σημαντική συνέπεια του τύπου του Euler (από τις πολλές) είναι ότι ο αφιθμός των όψεων ενός επίπεδου γραφήματος είναι χαφακτηριστικό του γραφήματος και δεν εξαφτάται από την αποτύπωση του γραφήματος στο επίπεδο (για συνεκτικά γραφήματα, ο αφιθμός των όψεων είναι πάντα f=m-n+2 ανεξάφτητα της αποτύπωσης).

Ένας τρόπος να αποδειχθεί ο τύπος του Euler είναι με επαγωγή στον αριθμό των αχμών ενός συνεκτικού γραφήματος με n κορυφές. Για να είναι το γράφημα συνεκτικό, πρέπει να έχει $m \geq n-1$ αχμές. Αν m=n-1 και το γράφημα είναι συνεκτικό, τότε είναι δέντρο. Σε αυτή την περίπτωση το γράφημα έχει μόνο 1 όψη. Συνεπώς, σε αυτή την περίπτωση ισχύει ότι m+2=n+1 (αφού m+1=n). Για το επαγωγικό βήμα, παρατηρούμε ότι κάθε φορά που προσθέτουμε μία αχμή (χωρίς να παραβιάζεται η επιπεδότητα του γραφήματος) δημιουργούμε μια νέα όψη (η νέα αχμή διαιρεί μία υπάρχουσα όψη σε δύο). Συνεπώς, αν υποθέσουμε επαγωγικά ότι ισχύει ο τύπος n+f=m+2 για κάθε συνεκτικό επίπεδο γράφημα με n και m αχμές, τότε θα συνεχίζει να ισχύει ότι n+(f+1)=(m+1)+2, μετά την προσθήχη μιας νέας αχμής (και την αναγκαστική δημιουργία μιας νέας όψης).

Ο τύπος του Euler γενικεύεται σε γραφήματα με k συνεκτικές συνιστώσες. Σε κάθε επίπεδο γράφημα με n κορυφές, m ακμές, f όψεις, και k συνεκτικές συνιστώσες, ισχύει ότι

$$n + f = m + k + 1$$

Η απόδειξη του γενικευμένου τύπου γίνεται ακριβώς με τον ίδιο τρόπο. Η ειδική περίπτωση του τύπου του Euler για τα συνεκτικά γραφήματα προκύπτει θέτοντας k=1 (κάθε συνεκτικό γράφημα έχει μία μόνο συνεκτική συνιστώσα).

Χρησιμοποιώντας τον τύπο του Euler, μπορούμε να δείξουμε ότι κάθε απλό επίπεδο γράφημα G με $n \geq 3$ κορυφές και m ακμές έχει $m \leq 3n-6$ ακμές. Χωρίς βλάβη της γενικότητας υποθέτουμε ότι το γράφημα G είναι συνεκτικό (αν δεν είναι μπορούμε να προσθέσουμε ακμές ώστε να γίνει συνεκτικό παραμένοντας απλό και επίπεδο).

Έστω f ο αριθμός των όψεων του G. Αφού το γράφημα είναι απλό, ο μικρότερος κύκλος έχει μήκος 3. Κάθε όψη περιλαμβάνει λοιπόν τουλάχιστον 3 ακμές. Επομένως, το άθροισμα των ακμών όλων των όψεων είναι τουλάχιστον 3f. Από την άλλη πλευρά, κάθε ακμή συμμετέχει το πολύ σε δύο όψεις. Επομένως, το άθροισμα των ακμών όλων των όψεων είναι το πολύ 2m. Συνδυάζοντας τις δύο ανισότητες, έχουμε

$$3f \leq \text{άθροισμα}$$
 ακμών όλων των όψεων $\leq 2m \Rightarrow f \leq \frac{2}{3}m$

Συνδυάζοντας τον τύπο του Euler με την παραπάνω ανισότητα, έχουμε

$$m+2=n+f \le n+\frac{2}{3}m \Rightarrow \frac{1}{3}m \le n-2 \Rightarrow m \le 3n-6$$

Η ανισότητα αυτή είναι ακριβής αφού κάθε απλό επίπεδο γράφημα με n κορυφές και όλες του τις όψεις τρίγωνα (δηλ. αποτελούμενες από ακριβώς 3 ακμές την καθεμία) έχει ακριβώς 3n-6 ακμές.

Χρησιμοποιώντας την ίδια μεθοδολογία, μπορούμε να αποδείξουμε ότι κάθε απλό διμερές επίπεδο γράφημα με $n \geq 2$ κορυφές και m ακμές έχει $m \leq 2n-4$ ακμές. Η μόνη διαφοροποίηση είναι ότι αφού το γράφημα είναι απλό και διμερές, ο μικρότερος κύκλος του έχει μήκος 4 (υπενθυμίζεται ότι τα διμερή γραφήματα δεν έχουν κύκλους περιττού μήκους και συνεπώς δεν έχουν τρίγωνα). Έτσι κάθε όψη ενός τέτοιου γραφήματος περιλαμβάνει τουλάχιστον 4 ακμές και $f \leq m/2$. Αντικαθιστώντας στον τύπο του Euler, παίρνουμε το ζητούμενο.

Άσκηση. Κατασκευάστε απλά επίπεδα γραφήματα με 6 κορυφές και 12 ακμές, και με 7 κορυφές και 15 ακμές. Επίσης κατασκευάστε απλό επίπεδο διμερές γράφημα με 8 κορυφές και 12 ακμές. **Άσκηση.** Να δείξετε ότι κάθε απλό επίπεδο γράφημα έχει τουλάχιστον μια κορυφή με βαθμό μικρότερο ή ίσο του 5.

Λύση. Αφού ο αριθμός των ακμών του γραφήματος είναι το πολύ 3n-6, το άθροισμα του βαθμού όλων των κορυφών δεν μπορεί να ξεπερνά το 6n-12. Από την αρχή του περιστερώνα, πρέπει να υπάρχει μία κορυφή με βαθμό που δεν ξεπερνά το 5. (Διαφορετικά, υποθέστε ότι όλες οι κορυφές έχουν βαθμό μεγαλύτερο ή ίσο του 6. Το γράφημα θα πρέπει να έχει τουλάχιστον 6n/2=3n ακμές. Αυτό είναι αντίφαση, αφού κάθε απλό επίπεδο γράφημα έχει το πολύ 3n-6 ακμές).

Άσμηση. Να δείξετε ότι το K_5 και το $K_{3,3}$ δεν είναι επίπεδα.

Λύση. Το K_5 δεν είναι επίπεδο γιατί είναι απλό γράφημα και έχει 10 ακμές, αριθμός που ξεπερνά το $3 \times 5 - 6 = 9$. Το $K_{3,3}$ δεν είναι επίπεδο, γιατί είναι ένα απλό διμερές γράφημα με 9 ακμές, αριθμός που ξεπερνά το $2 \times 6 - 4 = 8$.

11.2 Το Θεώρημα του Kuratowski

Απλοποίηση σειράς σε ένα γράφημα είναι η "παράλειψη" μιας πορυφής βαθμού 2 (δηλ. οι δύο απμές ανάμεσα στις οποίες παρεμβάλλεται μία πορυφή βαθμού 2 αντιπαθίστανται από μία απμή). Παρατηρείστε ότι η απλοποίηση σειράς δεν επηρεάζει την επιπεδότητα του γραφήματος (δηλ. μια απλοποίηση σειράς δεν μπορεί να πάνει επίπεδο ένα γράφημα που δεν είναι ή το αντίστροφο). Δύο γραφήματα είναι ομοιομορφιπά (homeomorphic) αν μπορούν να απλοποιηθούν σε δύο ισομορφιπά γραφήματα διενεργώντας μόνο απλοποιήσεις σειράς. Διαισθητιπά, τα ομοιομορφιπά γραφήματα είναι "τοπολογιπά ισοδύναμα".

Το Θεώρημα του Kuratowski είναι ιδιαίτερα σημαντικό γιατί χαρακτηρίζει την κλάση των επίπεδων γραφημάτων με βάση τα δύο απλούστερα μη-επίπεδα γραφήματα. Συγκεκριμένα, το Θεώρημα του Kuratowski λέει ότι ένα γράφημα είναι επίπεδο αν και μόνο αν δεν περιέχει υπογράφημα ομοιομορφικό με το K_5 ή το $K_{3,3}$. Με απλά λόγια, κάθε μη-επίπεδο γράφημα πρέπει να περιέχει ένα υπογράφημα "τοπολογικά ισοδύναμο" με ένα από τα δύο απλούστερα μη-επίπεδα γραφήματα.

Για να δείξουμε ότι ένα γράφημα είναι επίπεδο, αποτυπώνουμε / "ζωγραφίζουμε" το γράφημα στο επίπεδο χωρίς να διασταυρώνονται οι αχμές του. Για να δείξουμε ότι ένα γράφημα δεν είναι επίπεδο, μπορούμε είτε να δείξουμε ότι έχει πολλές αχμές και παραβιάζει κάποιο πόρισμα του τύπου του Euler (αν είναι απλό, βλ. πως αποδείξαμε ότι τα K_5 και $K_{3,3}$ δεν είναι επίπεδα), είτε να χρησιμοποιήσουμε το Θεώρημα του Kuratowski.

Άσμηση. Να δείξετε ότι το συμπληφωματικό του γραφήματος Petersen δεν είναι επίπεδο.

Λύση. Το γράφημα Petersen έχει 10 κορυφές και 15 ακμές. Το συμπληρωματικό του έχει επίσης 10 κορυφές και $\frac{10\times9}{2}-15=45-15=30$ ακμές. Όμως $30>3\times10-6=24$ όπως απαιτείται.

Άσκηση. Να δείξετε ότι το γράφημα Petersen δεν είναι επίπεδο.

Λύση. Το γράφημα Petersen έχει $15 \le 24$ αχμές και άρα δεν μπορούμε να χρησιμοποιήσουμε τον τύπο του Euler και ή κάποιο πόρισμά του. Θα πρέπει να χρησιμοποιήσουμε το Θεώρημα του Kuratowski.

Παρατηρείστε ότι δύο ομοιομορφικά γραφήματα μπορεί να έχουν διαφορετικό αριθμό κορυφών και ακμών. Όμως ισχύει το ακόλουθο:

Άσκηση. Έστω γραφήματα G_1 με n_1 κορυφές και m_1 ακμές και G_2 με n_2 κορυφές και m_2 ακμές. Αν τα G_1 και G_2 είναι ομοιομορφικά, να δείξετε ότι $n_1+m_2=n_2+m_1$.

Λύση. Αφού τα G_1 και G_2 είναι ομοιομορφικά, μετά από τις κατάλληλες απλοποιήσεις σειράς θα πρέπει να καταλήξουν να είναι ισομορφικά με το ίδιο γράφημα G. Έστω ότι το G έχει n κορυφές και m ακμές. Παρατηρώ ότι κάθε απλοποίηση σειράς μειώνει τόσο τον αριθμό των κορυφών όσο και τον αριθμό των ακμών κατά 1. Επομένως, οι απλοποιήσεις σειράς δεν μεταβάλουν τη διαφορά του αριθμού των ακμών από τον αριθμό των κορυφών του γραφήματος. Αφού το G προκύπτει από το G_1 με απλοποιήσεις σειράς, είναι $m-n=m_1-n_1$. Ομοίως για το G_2 , $n-m=m_2-n_2$. Εξισώνοντας τα δύο μέλη, έχουμε

$$m_1 - n_1 = m_2 - n_2 \Rightarrow n_1 + m_2 = n_2 + m_1$$

Άσκηση. Έστω απλό μη-κατευθυνόμενο γράφημα με n κορυφές και m ακμές που αποτελείται από n_1 κορυφές με βαθμό k και n_2 κορυφές με βαθμό k+1. Να δείξετε ότι $n_1=n(k+1)-2m$ και $n_2=2m-nk$.

Λύση. Από την εμφώνηση, $n_1+n_2=n \Rightarrow n_1=n-n_2$. Επίσης, αφού το άθροισμα του βαθμού των μορυφών ισούται με το διπλάσιο των αμμών, έχουμε $n_1k+n_2(k+1)=2m$. Αντιμαθιστώντας $n_1k=nk-n_2k$, παίρνουμε

$$nk - n_2k + n_2(k+1) = 2m \Rightarrow n_2 = 2m - nk$$

Χρησιμοποιώντας το γεγονός ότι $n_1=n-n_2$ και την παραπάνω ισότητα, παίρνουμε

$$n_1 = n - n_2 = n - (2m - nk) \Rightarrow n_1 = n(k+1) - 2m$$

12 Χοωματικός Αοιθμός Γραφημάτων

(Έγκυρος) χρωματισμός ενός γραφήματος είναι μια ανάθεση χρωμάτων στις κορυφές του ώστε κάθε ζευγάρι κορυφών που συνδέεται με ακμή να έχει διαφορετικό χρώμα. Ο χρωματικός αριθμός ενός γραφήματος είναι ο ελάχιστος αριθμός χρωμάτων για τον οποίο υπάρχει ένας (έγκυρος) χρωματισμός του. Ο χρωματικός αριθμός ενός γραφήματος G συμβολίζεται με $\chi(G)$.

Σε έναν έγχυρο χρωματισμό, οι κορυφές με το ίδιο χρώμα συγκροτούν ένα ανεξάρτητο σύνολο (independent set) αφού δεν υπάρχει καμία ακμή μεταξύ τους. Κάθε έγχυρος χρωματισμός διαμερίζει τις κορυφές του γραφήματος σε τόσα ανεξάρτητα σύνολα (independent sets) όσα και

Σχήμα2. Η κορυφή v βαθμού 5 και οι γειτονικές της κορυφές.

τα χρώματα που χρησιμοποιεί. Επομένως, ο χρωματικός αριθμός ενός γραφήματος είναι ο μικρότερος ακέραιος για τον οποίο οι κορυφές του μπορούν να διαμεριστούν σε ανεξάρτητα σύνολα. Ένα γράφημα με χρωματικό αριθμό k είναι δηλαδή ένα k-μερές (k-partite) γράφημα.

Τα διμερή γραφήματα έχουν χρωματικό αριθμό 2. Επομένως, ένα γράφημα έχει χρωματικό αριθμό 2 αν και μόνο αν δεν έχει κύκλους με περιττό μήκος. Επίσης είναι $\chi(K_n)=n, \chi(K_n-v)=1$

$$n-1$$
 για κάθε κορυφή $v,\,\chi(\overline{K_n})=1,$ και $\chi(C_n)=egin{cases}2$ αν n άρτιος 3 αν n περιπός

Αποδεικνύεται εύκολα ότι κάθε γράφημα G με μέγιστο βαθμό $\Delta(G)$ έχει χρωματικό αριθμό το πολύ $\Delta(G)+1$. Η ιδέα είναι ότι τα $\Delta(G)+1$ χρώματα είναι αρκετά για να χρωματίσουμε μια κορυφή και τους γείτονες της με διαφορετικά χρώματα. Επομένως, ο αλγόριθμος που εξετάζει τις κορυφές μία-προς-μία και χρωματίζει κάθε κορυφή με το μικρότερο διαθέσιμο χρώμα υπολογίζει ένα (έγκυρο) χρωματισμό των κορυφών με όχι περισσότερα από $\Delta(G)+1$ χρώματα. Από την άλλη μεριά, κάθε γράφημα που περιέχει μια κλίκα μεγέθους k σαν υπογράφημα έχει χρωματικό αριθμό τουλάχιστον k.

12.1 Χρωματικός Αριθμός Επίπεδου Γραφήματος

Ποόσφατα αποδείχτηκε η διάσημη εικασία ότι κάθε επίπεδο γράφημα (ισοδύναμα επίπεδος χάρτης) μπορεί να χρωματιστεί με 4 χρώματα (4-color theorem). Εδώ θα αποδείξουμε ότι κάθε επίπεδο γράφημα μπορεί να χρωματιστεί με 5 το πολύ χρώματα.

Θεώρημα 8. Κάθε επίπεδο γράφημα μπορεί να χρωματιστεί με 5 το πολύ χρώματα.

Απόδειξη. Θα χρησιμοποιήσουμε μαθηματική επαγωγή στον αριθμό των κορυφών του γραφήματος. Ο ισχυρισμός είναι τετριμμένα αληθής αν το γράφημα έχει μέχρι 5 κορυφές. Επαγωγικά υποθέτουμε ότι ο ισχυρισμός είναι αληθής για κάθε επίπεδο γράφημα με n-1 το πολύ κορυφές. Θα δείξουμε ότι ο ισχυρισμός είναι αληθής και κάθε επίπεδο γράφημα με n κορυφές.

Έστω G(V,E) απλό επίπεδο γράφημα με n κορυφές (αν το γράφημα δεν είναι απλό, μπορούμε να αγνοήσουμε τις παράλληλες ακμές και τους βρόγχους γιατί δεν παίζουν κανένα ρόλο στο χρωματισμό γραφημάτων). Γνωρίζουμε ότι κάθε απλό γράφημα έχει μια κορυφή με βαθμό μικρότερο ή ίσο του 5. Έστω v μια κορυφή του G με βαθμό μικρότερο ή ίσο του 5, και v_1, v_2, \ldots, v_5

οι γείτονες του v (η αφίθμηση γίνεται στη φοφά των δεικτών του φολογιού, βλ. Σχήμα 2). Αφαιφώντας τη v προκύπτει ένα επίπεδο γφάφημα με n-1 κοφυφές που μποφεί να χρωματιστεί με 5 χρώματα από την επαγωγική υπόθεση. Θεωρούμε έναν τέτοιο χρωματισμό του γραφήματος $G\setminus v$.

Αν υπάρχουν δύο γείτονες της v με το ίδιο χρώμα, τότε χρωματίζουμε τη v με το χρώμα που δεν χρησιμοποιείται από τους γείτονες της και ολοκληρώνω το χρωματισμό του G με 5 χρώματα. Έστω λοιπόν ότι όλοι οι γείτονες της v έχουν διαφορετικά χρώματα (υποθέτουμε ότι η κορυφή v_i έχει το χρώμα $i, i = 1, \dots, 5$).

Αν οι κορυφές v_1 και v_3 δεν συνδέονται με μονοπάτι στο επαγόμενο υπογράφημα $G_{1,3}$ που ορίζεται από τις κορυφές με χρώματα 1 και 3, τότε μπορούμε να αλλάξουμε αμοιβαία τα χρώματα των κορυφών στη συνεκτική συνιστώσα του $G_{1,3}$ που ανήκει η κορυφή v_1 (δηλ. κάθε κορυφή της συγκεκριμένης συνεκτικής συνιστώσας του $G_{1,3}$ που έχει χρώμα 1 χρωματίζεται με το χρώμα 3, και κάθε κορυφή χρώματος 3 χρωματίζεται 1). Τώρα η κορυφή v_1 έχει χρώματα 3 και μπορούμε να χρωματίσουμε την κορυφή v_1 με το χρώμα 1.

Έστω λοιπόν ότι οι κορυφές v_1 και v_3 συνδέονται με μονοπάτι στο $G_{1,3}$. Λόγω της επιπεδότητας του G, οι κορυφές v_2 και v_4 δεν συνδέονται με μονοπάτι στο επαγόμενο υπογράφημα $G_{2,4}$ που ορίζεται από τις κορυφές με χρώματα 2 και 4. Επομένως, μπορούμε να αλλάξουμε αμοιβαία τα χρώματα των κορυφών στη συνεκτική συνιστώσα του $G_{2,4}$ που ανήκει η κορυφή v_2 και να χρωματίσουμε την κορυφή v_2 με το χρώμα 2.

13 Ανεξάςτητα Σύνολα και Καλύμματα Κοςυφών

Έστω γράφημα G(V,E). Ένα σύνολο κορυφών $S\subseteq V$ ονομάζεται ανεξάρτητο σύνολο (independent set) αν δεν υπάρχουν ακμές μεταξύ αυτών των κορυφών. Ένα ανεξάρτητο σύνολο είναι μέγιστο (Maximum Independent Set - MIS) όταν δεν υπάρχει μεγαλύτερο ανεξάρτητο σύνολο στο γράφημα. Ο αριθμός των κορυφών (ή το μέγεθος) του μεγαλύτερου ανεξάρτητου συνόλου ονομάζεται αριθμός ανεξαρτησίας (independence number) του γραφήματος G και συμβολίζεται με $\alpha(G)$. Ένα σύνολο κορυφών S είναι ανεξάρτητο σύνολο στο G αν και μόνο αν το S είναι κλίκα (clique), δηλαδή πλήρες υπογράφημα, στο συμπληρωματικό γράφημα \overline{G} .

Ένα σύνολο πορυφών $C\subseteq V$ ονομάζεται πάλυμμα πορυφών (vertex cover) όταν πάθε απμή του γραφήματος έχει τουλάχιστον ένα από τα άπρα της στο C. Ένα πάλυμμα πορυφών είναι ελάχιστο (Minimum Vertex Cover - MVC) όταν δεν υπάρχει άλλο μιπρότερο πάλυμμα πορυφών στο γράφημα. Ο αριθμός των πορυφών (ή το μέγεθος) του μιπρότερου παλύμματος πορυφών ονομάζεται αριθμός πάλυψης (covering number) του γραφήματος παι συμβολίζεται με $\beta(G)$.

Πρόταση 4. Έστω γράφημα G(V, E). Ένα σύνολο κορυφών $S \subseteq V$ είναι ανεξάρτητο σύνολο του G αν και μόνο αν το σύνολο $V \setminus S$ είναι κάλυμμα κορυφών.

Απόδειξη. Εξ' ορισμού, το S είναι ανεξάρτητο σύνολο αν και μόνο αν δεν υπάρχει καμία ακμή που έχει και τα δύο άκρα της στο S. Αυτό συμβαίνει αν και μόνο αν κάθε ακμή έχει τουλάχιστον ένα από τα άκρα της στο $V \setminus S$, δηλαδή αν και μόνο αν το $V \setminus S$ είναι κάλυμμα κορυφών. \Box

Πρόταση 5. Σε κάθε γράφημα G(V, E), $\alpha(G) + \beta(G) = |V|$.

Απόδειξη. Έστω S ένα μέγιστο ανεξάρτητο σύνολο του G. Εξ' ορισμού είναι $|S|=\alpha(G)$. Από την Πρόταση 4, το $V\setminus S$ είναι ένα κάλυμμα κορυφών, και επομένως $\beta(G)\leq n-\alpha(G)\Longrightarrow \alpha(G)< n-\beta(G)$.

Έστω C ένα ελάχιστο χάλυμμα χορυφών του G. Εξ' ορισμού είναι $|C|=\beta(G)$. Από την Πρόταση 4, το $V\setminus C$ είναι ένα ανεξάρτητο σύνολο, χαι επομένως $\alpha(G)\geq n-\beta(G)$. Το ζητούμενο προχύπτει συνδυάζοντας τις δύο ανισότητες.

Μια άμεση συνέπεια της Ποότασης 5 είναι ότι ένα ανεξάρτητο σύνολο S είναι μέγιστο αν και μόνο αν το κάλυμμα κορυφών $V\setminus S$ είναι ελάχιστο.

Ο υπολογισμός ενός μέγιστου ανεξάρτητου συνόλου σε γενικά γραφήματα είναι ένα πολύ δύσκολο πρόβλημα (από άποψη υπολογιστικής πολυπλοκότητας). Ένα μεγιστοτικό ανεξάρτητο σύνολο προκύπτει εύκολα αν ξεκινήσουμε με ένα ανεξάρτητο σύνολο S (π.χ. αρχικά το κενό σύνολο). Ενόσω υπάρχει κορυφή $v \in V \setminus S$ που δεν συνδέεται με καμία κορυφή του S, αντικαθιστούμε το S με το $S \cup \{v\}$ και συνεχίζουμε. Αυτή η επαναληπτική διαδικασία τερματίζει με ένα μεγιστοτικό ανεξάρτητο σύνολο S (αν προσθέσω οποιαδήποτε κορυφή στο S, αυτό παύει να είναι ανεξάρτητο σύνολο).

Κατ' αναλογία, ο υπολογισμός ενός ελάχιστου καλύμματος κορυφών είναι ένα πολύ δύσκολο πρόβλημα (από άποψη υπολογιστικής πολυπλοκότητας). Είναι όμως σχετικά απλό να υπολογίσουμε ένα κάλυμμα κορυφών που έχει το πολύ $2\beta(G)$ κορυφές.

Υπολογίζουμε ένα μεγιστοτικό ταίριασμα M. Γνωρίζουμε ότι οι ελεύθερες κορυφές του M αποτελούν ένα ανεξάρτητο σύνολο. Συνεπώς, οι κορυφές που είναι ταιριασμένες στο M αποτελούν ένα κάλυμμα κορυφών. Έστω λοιπόν C το κάλυμμα κορυφών που αποτελείται από τις ταιριασμένες κορυφές στο M. Είναι $|C|=2\,|M|$ (για κάθε ακμή του M έχουμε τα δύο άκρα της στο C). Όμως είναι $\beta(G)\geq |M|$ γιατί κάθε κάλυμμα κορυφών (του ελάχιστου συμπεριλαμβανομένου) περιλαμβάνει τουλάχιστον ένα από τα δύο άκρα κάθε ακμής του M. Διαφορετικά, θα η συγκεκριμένη ακμή του M θα ήταν ακάλυπτη. Συνεπώς, $|C|=2|M|\leq 2\beta(G)$.

Είδαμε λοιπόν ότι για κάθε ταίριασμα M και κάθε κάλυμμα κορυφών C, ισχύει ότι $|M| \leq |C|$. Ο λόγος είναι ότι το κάλυμμα κορυφών πρέπει να περιέχει τουλάχιστον ένα από τα δύο άκρα κάθε ακμής του ταιριάσματος. Μάλιστα η ισότητα αποτελεί κριτήριο βελτιστότητας (optimality criterion) τόσο για ένα ταίριασμα όσο και για το αντίστοιχο κάλυμμα κορυφών.

Πρόταση 6. Έστω ένα ταίριασμα M και κάλυμμα κορυφών C τέτοια ώστε |M| = |C|. Τότε το M αποτελεί ένα μέγιστο ταίριασμα και το C αποτελεί ένα ελάχιστο κάλυμμα κορυφών.

Aπόδειξη. Έστω M^* ένα μέγιστο ταίριασμα και C^* ένα ελάχιστο κάλυμμα κορυφών. Ισχύει ότι

$$|M| < |M^*| < |C^*| < |C|$$

Η πρώτη ανισότητα ισχύει γιατί το M^* είναι ένα μέγιστο ταίριασμα, η δεύτερη γιατί το μέγεθος κάθε κάλυμμα κορυφών είναι μεγαλύτερο ή ίσο από το μέγεθος κάθε ταιριάσματος, και η τρίτη ανισότητα γιατί το C^* είναι ένα ελάχιστο κάλυμμα κορυφών. Αφού υποθέσαμε ότι |M|=|C|, όλες οι παραπάνω ανισότητες πρέπει να είναι ισότητες. Έτσι $|M|=|M^*|$ και $|C^*|=|C|$.

Η παραπάνω πρόταση λέει ότι όταν ένα ταίριασμα έχει το ίδιο μέγεθος με ένα κάλυμμα κορυφών, τότε και τα δύο είναι βέλτιστα (δηλ. το ταίριασμα είναι μέγιστο και το κάλυμμα κο-

ουφών ελάχιστο). Όμως υπάρχουν πολλά γραφήματα που το ελάχιστο κάλυμμα κορυφών είναι μεγαλύτερο από το μέγιστο ταίριασμα.

13.1 Καλύμματα Κορυφών σε Διμερή Γραφήματα

Στη συνέχεια θα αποδείξουμε ότι στα διμερή γραφήματα το μέγεθος του μέγιστου ταιριάσματος είναι πάντα ίσο με το μέγεθος του ελάχιστου καλύμματος κορυφών. Αυτό το αποτέλεσμα είναι γνωστό σαν Θεώρημα του König και αποτελεί ουσιαστικά μια εναλλακτική διατύπωση του Θεωρήματος του Hall (συχνά τα δύο Θεωρήματα αναφέρονται σαν Θεώρημα König-Hall).

Θεώρημα 9 (**Θεώρημα του König**). Σε ένα διμερές γράφημα, ο αριθμός των ακμών στο μέγιστο ταίριασμα είναι ίσος με τον αριθμό των κορυφών στο ελάχιστο κάλυμμα κορυφών.

Απόδειξη. Έστω G(X,Y,E) διμερές γράφημα, και έστω M ένα μέγιστο ταίριασμα στο G. Χωρίς βλάβη της γενικότητας, υποθέτουμε ότι το M δεν είναι X-τέλειο 13 . Έστω $W\subseteq X$ το σύνολο των ελεύθερων κορυφών του X.

Εφαρμόζουμε τη διαδικασία κατασκευής δέντρων εναλλακτικών μονοπατιών που περιγράφηκε στην απόδειξη του Θεωρήματος του Hall. Αυτή τη φορά ξεκινάμε από το σύνολο W των ελεύθερων κορυφών του X. Αρχικά $Y_0=\emptyset$. Σε κάθε φάση $i,\ i=0,1,2,\ldots$, θέτουμε $X_{i+1}=M(Y_i)\cup W$ και $Y_{i+1}=\Gamma(X_{i+1})$.

Αφού το M είναι μέγιστο ταίριασμα, δεν υπάρχει επαυξητικό μονοπάτι για το M (βλ. Θεώρημα του Berge). Συνεπώς, αυτή η διαδικασία δεν μπορεί να καταλήξει σε σύνολο Y_i που περιέχει ελεύθερη κορυφή του Y (βλ. επίσης απόδειξη του Θεωρήματος του Hall). Αφού δεν είναι δυνατόν να προστίθενται συνεχώς νέες κορυφές στο σύνολο Y_i , σε κάποια φάση καταλήγουμε σε ένα Y_i με όλες τις κορυφές του ταιριασμένες και $\Gamma(M(Y_i) \cup W) = Y_i$. Είναι $X_i = M(Y_i) \cup W$.

Θεωρώ το σύνολο πορυφών $C=Y_i\cup (X\setminus X_i)$. Παρατηρούμε ότι το σύνολο $X\setminus X_i$ περιέχει μόνο ταιριασμένες πορυφές (όλες οι ελεύθερες πορυφές ανήπουν στο W παι έχουν συμπεριληφθεί στο X_i). Μάλιστα τα "ταίρια" των πορυφών του $X\setminus X_i$ είναι οι ταιριασμένες πορυφές του Y που δεν ανήπουν στο Y_i . Πράγματι, μια ταιριασμένη πορυφή του X ανήπει στο X_i αν παι μόνο αν το ταίρι της ανήπει στο Y_i . Ισοδύναμα, μια ταιριασμένη πορυφή του X δεν ανήπει στο X_i αν παι μόνο αν το ταίρι της δεν ανήπει στο Y_i . Συνεπώς, ο αριθμός των πορυφών του C είναι ίσος με τον αριθμό των ταιριασμένων πορυφών στο X_i (ή ισοδύναμα στο X_i), δηλαδή ο αριθμός των πορυφών του X_i είναι ίσος με τον αριθμό των απμών του X_i 0 (τυπιπά, X_i 1).

Χρειάζεται απόμη να δείξουμε ότι το C είναι ένα πάλυμμα πορυφών. Αφού $\Gamma(X_i)=Y_i$, δεν υπάρχει παμία απμή μεταξύ των πορυφών του X_i παι των πορυφών του $Y\setminus Y_i$. Με άλλα λόγια, το $(Y\setminus Y_i)\cup X_i$ είναι ένα ανεξάρτητο σύνολο. Επομένως, το $C=Y_i\cup (X\setminus X_i)$ είναι ένα πάλυμμα πορυφών.

Αφού το C είναι κάλυμμα κορυφών και |C|=|M|, το C είναι ένα ελάχιστο κάλυμμα κορυφών λόγω της Πρότασης 6. Άρα το μέγεθος του ελάχιστου καλύμματος κορυφών είναι ίσο με το μέγεθος του μέγιστου ταιριάσματος.

 $[\]overline{^{13}}$ Αφού το γράφημα είναι διμερές, το X αποτελεί κάλυμμα κορυφών γιατί το Y αποτελεί ανεξάρτητο σύνολο. Αν το M ήταν X-τέλειο, θα είχαμε |M| = |X| και το ζητούμενο έπεται ευθέως από την Πρόταση 6.

Το Θεώρημα του Hall υποδειχνύει έναν αποδοτιχό αλγόριθμο για τον υπολογισμό ενός μέγιστου ταιριάσματος σε ένα διμερές γράφημα. Σε ένα διμερές γράφημα, ένα ελάχιστο χάλυμμα κορυφών μπορεί να υπολογισθεί από ένα μέγιστο ταίριασμα με βάση το Θεώρημα του König. Επιπλέον, ένα μέγιστο ανεξάρτητο σύνολο μπορεί να υπολογισθεί παίρνοντας τις κορυφές που δεν ανήκουν στο ελάχιστο χάλυμμα κορυφών. Επομένως, τα προβλήματα του υπολογισμού ενός ελάχιστου χαλύμματος κορυφών και ενός μέγιστου ανεξάρτητου συνόλου λύνονται αποδοτικά σε διμερή γραφήματα (αν και αποτελούν δυσεπίλυτα προβλήματα για γενικά γραφήματα).

14 Αφιθμοί Ramsey

Μπορεί να αποδειχθεί ότι για κάθε ζευγάρι ακεραίων n,m, υπάρχει ένας ελάχιστος αριθμός r(n,m) τέτοιος ώστε κάθε γράφημα με τουλάχιστον r(n,m) κορυφές περιέχει είτε το K_n (κλίκα με n κορυφές) είτε το \overline{K}_m (ανεξάρτητο σύνολο με m κορυφές). Οι αριθμοί αυτοί συμβολίζονται με r(n,m) και ονομάζονται αριθμοί Ramsey. Ο αριθμός Ramsey r(n,m) είναι ο ελάχιστος που εξασφαλίζει την παραπάνω ιδιότητα με την έννοια ότι υπάρχει τουλάχιστον ένα γράφημα με r(n,m)-1 κορυφές που δεν περιέχει είτε το K_n είτε το \overline{K}_m . Ο ακριβής υπολογισμός των αριθμών Ramsey για μεγάλες τιμές των n,m αποτελεί ένα εξαιρετικά δύσκολο πρόβλημα για το οποίο δεν γνωρίζουμε μια γενική μέθοδο επίλυσης.

Στη συνέχεια θα αποδείξουμε ότι r(3,3)=6. Παρατηρούμε αρχικά ότι $r(3,3)\geq 6$ επειδή ο κύκλος με 5 κορυφές έχει μέγιστη κλίκα και μέγιστο ανεξάρτητο σύνολο μεγέθους 2. Για να δείξουμε την ισότητα, πρέπει να δείξουμε ότι κάθε γράφημα με 6 κορυφές περιέχει είτε κλίκα είτε ανεξάρτητο σύνολο με 3 κορυφές. Η προσθήκη και άλλων κορυφών δεν μπορεί να επηρεάσει αυτή την ιδιότητα.

Πρόταση 7. Κάθε γράφημα με 6 κορυφές περιέχει είτε το K_3 είτε το \overline{K}_3 .

Απόδειξη. Έστω ότι στο γράφημα υπάρχει κορυφή v με βαθμό μεγαλύτερο ή ίσο του 3, και έστω u_1,u_2,u_3 τρεις γείτονες της v. Αν δύο από τις u_1,u_2,u_3 συνδέονται με ακμή (π.χ. η u_1 με τη u_2), το τρίγωνο v,u_1,u_2 αποτελεί κλίκα με 3 κορυφές. Διαφορετικά, οι u_1,u_2,u_3 αποτελούν ανεξάρτητο σύνολο με 3 κορυφές.

Αν όλες οι πορυφές του γραφήματος έχουν βαθμό μιπρότερο ή ίσο του 2, θεωρούμε το συμπληρωματικό γράφημα. Αυτό περιέχει πορυφή με βαθμό μεγαλύτερο ή ίσο του 3, και επομένως περιέχει είτε το το K_3 είτε το \overline{K}_3 . Αν το συμπληρωματικό γράφημα περιέχει το K_3 (αντίστοιχα, το \overline{K}_3), το αρχικό γράφημα περιέχει το \overline{K}_3 (αντίστοιχα, το K_3).