Maximum Likelihood Estimation and Bayesian Statistics

Rebecca C. Steorts

Agenda

- ► Maximum Likelihood Esimation
- ▶ Unbiased Estimators

Traditional inference

You are given data X and there is an **unknown parameter** you wish to estimate θ

How would you estimate θ ?

- \triangleright Find an unbiased estimator of θ .
- Find the maximum likelihood estimate (MLE) of θ by looking at the likelihood of the data.
- Suppose that $\hat{\theta}$ estimates θ . Note: $\hat{\theta}$ may depend on the data $x_{1:n} = x_1, \dots x_n$.

Unbiased Estimator

Recall that $\hat{\theta}$ is an unbiased estimator of θ if

$$E[\hat{\theta}] = \theta. \tag{1}$$

.

Maximum Likelihood Estimation

For each sample point $x_{1:n}$, let $\hat{\theta}$ be a parameter value at which $p(x_{1:n} \mid \theta)$ attains it's maximum as a function of θ , with $x_{1:n}$ held fixed. A maximum likelihood esimator (MLE) of the parameter θ based on a sample $x_{1:n}$ is $\hat{\theta}$.

Find the MLE

The solution to the MLE are the possible candidates (θ) that solve

$$\frac{\partial p(x_{1:n} \mid \theta)}{\partial \theta} = 0. \tag{2}$$

Solution to the above equation are only possible candidates for the MLE since the first derivative being 0 is a necessary condition for a maximum (but not a sufficient one).

Our job is to find a global maximum. Thus, we need to ensure that we haven't found a local one.

Consider

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Normal}(\theta, 1).$$

Show that the MLE is $\hat{\theta} = \bar{x}$.

$$p(x_{1:n} \mid \theta) = (2\pi)^{-n/2} \times \exp\{\frac{-1}{2} \sum_{i} (x_i - \theta)^2\}$$
 (3)

Consider

$$\log p(x_{1:n}) = -n/2\log(2\pi) - \frac{1}{2}\sum_{i}(x_i - \theta)^2$$
 (4)

$$\frac{\partial p(x_{1:n} \mid \theta)}{\partial \theta} = \sum_{i} (x_i - \theta)$$
 (5)

This implies that

$$\sum_{i}(x_{i}-\theta)=0 \implies \hat{\theta}=\bar{x}.$$

Consider

$$\frac{\partial^2 p(x_{1:n} \mid \theta)}{\partial \theta^2} = -n < 0.$$

Thus, our solution is unique.

Exercise

Show that

$$\hat{\theta} = \bar{x}$$

is an unbiased estimator for θ .

Proof.

$$E[\hat{\theta}] = E[\bar{x}] = \frac{1}{n} \sum_{i} E[x_i] = \frac{1}{n} \sum_{i} \theta = \theta.$$

Thus, we have showed that the MLE is an unbiased estimator for θ .

Normal-Normal model

Suppose that

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Normal}(\theta, 1),$$

where we now consider

$$\theta \stackrel{ind}{\sim} \text{Normal}(\mu, \tau^2).$$

Let $\lambda = 1$ and $\lambda_o = 1/\tau^2$.

Recall that from module 3,

$$\theta \mid x_{1:n} \sim N(M, L^{-1}),$$

where

$$L = n\lambda + \lambda_o$$

and

$$M = \frac{n\lambda \bar{x} + \lambda_o \mu}{n\lambda + \lambda_o}.$$

Normal-Normal model

Observe that

$$M = \frac{n\lambda \bar{x} + \lambda_o \mu}{n\lambda + \lambda_o} = \frac{n\lambda \hat{\theta} + \lambda_o \mu}{n\lambda + \lambda_o} = \frac{n\lambda}{n\lambda + \lambda_o} \hat{\theta} + \frac{\lambda_o}{n\lambda + \lambda_o} \mu.$$

Thus, we can write the posterior mean as a function of the MLE and the prior mean μ .