ПРАКТИЧЕСКАЯ РАБОТА №6

ТЕМА: «Расчет шагающего конвейера» (4 часа)

Цель работы: Изучение теоретических основ работы и методики расчета шагающих конвейеров.

6.1 Основные теоретические сведения

Шагающие конвейеры, созданные впервые в СССР, относятся к числу наиболее эффективных транспортных устройств циклического действия. Конвейер перемещает штучные крупные грузы на один шаг вперед через равные промежутки времени вдоль линии технологического процесса производства.

Они обслуживают литейные, сборочные, механические и термические цехи машиностроительной, судостроительной, авиационной и других отраслей промышленности. Шагающие конвейеры устанавливают на уровне пола цеха и легко встраивают их в автоматические линии в условиях мелкосерийного и единичного производства.

В шагающих конвейерах груз передвигается в двух плоскостях: горизонтальной — возвратно-поступательное движение рабочего органа и вертикальной — подъем и опускание. Цикл движения состоит из четырех этапов: подъем рамы с грузом, рабочий ход, опускание рамы с грузом и обратный ход рамы без груза. В качестве **привода** принимают электромеханический, гидравлический и комбинированный.

В зависимости от назначения шагающие конвейеры имеют различные конструктивные исполнения. На рисунке 6.1 приведена схема шагающего конвейера, в котором чередуются пилообразные неподвижные 1 и подвижные 2 пластины. Благодаря возвратно- поступательному движению подвижных пластин вверх и вниз изделия перемещаются относительно неподвижных пластин за каждый ход подвижных пластин.

Рисунок 6.1 – Схема шагающего конвейера

На рисунке 6.2 показан конвейер с гидравлическими механизмами подъема *13* и перемещения рамы *2* посредством рычага *7*.

					МиТОМ.ПТУМЦ.П					
Изм.	Лист	№ докум.	Подпись	Дата						
Выполнил		Тимофеев Е.С.			Практическая работа №6		Лит.	Лист	Листов	
Прове	рил	Астапенко И.В.						1	9	
					«Расчет шагающего конвейера»	ГГТУ им. П.О. Сухо гр. МЛ-41			•	

При движении поршня цилиндра 11 рейка 10, прикрепленная к штоку 9, приводит во вращение шестерню 8, на валу которой насажены шестерни 6, входящие в зацепление с рейками 5 и поднимающие раму 2 одновременно с горизонтальным перемещением по опорным роликам 4. При этом изделие 1 снимается с неподвижной рамы 3 и перемещается на один шаг вперед. От конечных выключателей хода поршня цилиндра штоковая полость подъемных цилиндров 13 переключается со слива на нагнетание жидкости, ми поршни, сжимая пружины 12, опускают раму 2 с изделием 1 на неподвижную раму 3. В конечном нижнем положении рама 2 включает конечный выключатель механизма перемещения и рабочая жидкость снова поступает в бесштоковую полость цилиндра 11. Цикл повторяется. Пружины 12 служат для подъема рамы при снятии давления в цилиндре.

Загрузка и разгрузка шагающих конвейеров осуществляются кранами, погрузчиками или роликовыми конвейерами. Длина конвейеров доходит до 100 м, масса единичного груза до 8 т, скорость перемещаемого груза до 0,1 м/с.

Рисунок 6.2 – Шагающий конвейер

Шагающие конвейеры обладают рядом **преимуществ** перед другими типами конвейеров. Например, использование их в литейном и сборочном цехах вместо тележечных способствует повышению производительности на 15...20 % при меньшей (в 1,6...2 раза) металлоемкости, резкому сокращению производственных площадей.

Лист

					МиТОМ.ПТУМЦ.Пр.№6.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	` .

Приводы механизмов шагающего конвейера работают в тяжелых динамических режимах пуска и торможения. Поэтому, кроме силовых расчетов, необходимо проверять его на быстродействие, так как продолжительность каждого этапа работы оказывает влияние на производительность конвейера.

№ варианта	Масса поднимаемого груза <i>т</i> 1, т	Масса подвижной рамы <i>т</i> 2, т	h_1 , M	h2,м	h, M	$l=0,5~\mathrm{M}$	a,M/c	a_0 , M/c
12	11	18	0,3	0,3	0,6	1	2	5

Первый этап – подъем рамы. Определяют эффективную подъемную силу:

$$F_{\mathcal{I}} = k(m_1g + m_2g) = 1,3.9,81(11000+18000) = 369\,837\,\mathrm{H}$$
 (6.1)

где $k = 1,2...1,5; m_1; m_2$ – масса груза и подвижной рамы соответственно.

Величина ускорения

$$a_1 = \frac{F_9}{m_2} = \frac{369837}{18000} = 20 \,\text{M/}_{\text{C}^2}$$
 (6.2)

Время движение рамы t_1 до соприкосновения с грузом при высоте подъема h_1 определяется как

$$t_1 = \sqrt{\frac{2 \cdot h_1}{a_1}} = \sqrt{\frac{2 \cdot 0.3}{20}} = 0.17c \tag{6.3}$$

К концу соприкосновения с грузом скорость рамы равна

$$v_1 = a_1 \cdot t_1 = 20 \cdot 0.17 = 3.4 \text{ M/c}$$
 (6.4)

При соприкосновении рамы с грузом происходят удары. Начальная скорость определяется по формуле

$$v_2 = v_1 \sqrt{\frac{m_2}{m_1 + m_2}} = 3.4 \sqrt{\frac{18000}{11000 + 18000}} = 2.67 \,\text{M/c}$$
 (6.5)

Конечная скорость v_3 подъема рамы с грузом определяется как

$$v_3 = \sqrt{v_2^2 + 2(k-1)gh_2} = \sqrt{2,67^2 + 2(1,3-1)9,81 \cdot 0,3} = 2,98 \,^{\text{M}}/_{\text{C}}$$
 (6.6)

где h_2 – высота подъема рамы вместе с грузом.

Время движения t^{1}_{1} рамы с грузом будет

					МиТОМ.ПТУМЦ.Пр.№6.2022.Отчет
Изм	Лист	Ио чокум	Полпись	Лата	, ,

$$t_1^1 = \frac{2 \cdot h_2}{\nu_2 + \nu_3} = \frac{2 \cdot 0.3}{2.67 + 2.98} = 0.1c \tag{6.7}$$

Второй этап: минимальное время рабочего хода определяется предельными ускорениями при разгоне и торможении:

$$t_p = \sqrt{\frac{2l}{a_p(1 + a_p / a_T)}},$$
(6.7)

при одинаковых ускорениях разгона и торможения

$$a_P = a_T = a,$$
 $t_2 = 2\sqrt{\frac{l}{a}} = 2\sqrt{\frac{1}{2}} = 1,41 c$

Третий этап — опускание рамы при равнозамедленном движении. Ускорение должно быть меньше ускорения свободного падения a_0 . Время опускания

$$t_3 = \sqrt{\frac{2h}{a_0}} = \sqrt{\frac{2 \cdot 0.6}{5}} = 0.5 \text{ c}$$
 (6.8)

где h — высота подъема.

Четвертый этап — обратный ход рамы при равнопеременном и равнозамедленном движении:

$$t_4 = 2\sqrt{\frac{l}{ng}} = 2\sqrt{\frac{1}{2,5 \cdot 9,81}} = 0.4 \text{ c}$$
 (6.9)

Лист

где n — допустимый коэффициент инерционных перегрузок (n = 1,75...4). Время цикла

$$T_{\mu} = t_1 + t_1^1 + t_2 + t_3 + t_4 = 0.2 + 0.1 + 1.41 + 0.5 + 0.4 = 2.61 c$$
 (6.10)

не должно быть больше времени, заданного технологическими условиями.

Определяем мощность привода

$$N = F_{3} \cdot \nu_{max} = 369 \, 837 \cdot 2,67 = 987,46 \, \text{кВт.}$$

					МиТОМ.ПТУМЦ.Пр.№6.2022.Отчет
140	Пист	No source	Поляце	Пото	, .

