Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Compiler Theory: CS31003 3rd year CSE, 5th Semester

Theory Quiz Date: September 24, 2020	Marks: 25
1. Identify the number of tokens in the following C statement.	[2]
printf("k = %d, &k = %d", k, &k);	
a) 3	
b) 10	
c) 22	
d) 26	
Answer: b)	
printf ("k = %d, &k = %d"	
, k	
, &	
k	
)	
;	
2. Select the attributes which define Python Typing.	[1]
a) Strong	
b) Weak	
c) Dynamic	
d) Static	
Answer : a), c)	

optimised version?

3. How many minimum registers are required to convert the following intermediate code to its

[2]

```
t8 = floattoint(60.5)

t7 = id1 * t8

t4 = id3 + t7

id4 = t4

a) 2

b) 1

c) 0
```

d) Not possible to produce any optimised version by reducing temporary registers

Answer: b)

```
t7 = id1 * 60
id4 = id3 + t7
```

4. The _____ Analyzer phase parses the tokens to create intermediate tree representations. (one word answer, write in small letters, do not capitalise the first letter also) [2]

Answer: syntax

5. Consider the intermediate code below

```
R1 = y
R2 = z
R1 = R1 - R2
x = R1
```

The target code for the above is given below. Fill in the blank with the correct instruction (s).

```
LD R1, y
LD R2, z
------ST x, R1
```

a) SUB R2, R1, R2

b) SUB R1, R2 LD R1

c) SUB R2, R1

d) SUB R1, R1, R2

Answer: d)

6. Consider the following flex specification

What is the output for input string cbbbbac?

[2]

- a) 32
- b) 322223
- c) 32a3
- d) 323

Answer: c)

The result is 32a3. The tokenization is c bbbb a c, where the single character 'a' does not match any regular expression and is thus echoed back to the console.

7. Consider the following DFA

Which of the strings can be accepted by the DFA?

[1]

- a) aab*a
- b) aaabbaa
- c) aaba
- d) aaabaaa

Answer: a), c)

8. Consider the two NFA's below

The corresponding DFA's are provided below

DFA-1:

Identify the correct statement.

[2]

- (a) NFA-1 is equivalent to DFA-1, NFA-2 is not equivalent to DFA-2
- (b) NFA-1 is not equivalent DFA-1, NFA-2 is equivalent to DFA-2
- (c) NFA-1 is not equivalent DFA-1, NFA-2 is not equivalent DFA-2
- (d) NFA-1 is equivalent to DFA-1, NFA-2 is equivalent to DFA-2

Answer: d)

9. Identify correct regular expression for a C identifier.

[2]

- a) [a-z_A-Z][0-9a-z_A-Z]*
- b) $[0-9a-z_A-Z]^+$
- c) [a-zA-Z][0-9a-zA-Z]*
- $d) [a-z_A-Z]^+$

Answer: a)

- 10. We need to write a flex program which will tokenize keyword, identifier and integer literal present in a C program. Select the order in which we need to place the three flex rules so that tokenization can be done correctly, without any conflict. [2]
 - a) integer literal, identifier, keyword
 - b) integer literal, keyword, identifier
 - c) keyword, identifier, integer literal

d) identifier, keyword, integer literal

Answer: b), c)

11. Select the grammar which is not left recursive.

[2]

d) $B \rightarrow Ae \mid \varepsilon$

Answer: b)

12. Is the following grammar ambiguous?

 $S ext{ -> } SS|AB \ , \ A ext{ -> } Aa|a \ , \ B ext{ -> } Bb|b$

- (a) TRUE
- (b) FALSE

Answer: a)

13. consider the following grammar

$$E \rightarrow E * F \mid F+E \mid F$$

 $F \rightarrow F-F \mid id$
Identify the correct statement

[2]

[1]

- (a) * has higher precedence than +
- (b) has higher precedence than *
- (c) + and have same precedence
- (d) + has higher precedence than *

Answer: b)

14. A shift reduce parsing table and the corresponding grammar is given below.

- 1) E -> E + T 2) E -> T 3) T -> (E) 4) T -> id

State on	Action					Goto	
top of stack	id	+	()	\$	E	Т
0	s4		s 3			1	2
1		s 5			accept		
2	r2	r2	r2	r2	r2		
3	54		s 3			6	2
4	r4	r4	r4	r4	r4		
5	s4		s 3				8
6		s 5		s7			
7	r3	r3	r3	r3	r3		
8	r1	r1	r1	r1	r1		

Check whether the below mentioned strings can be parsed by this parser.

[2]

- i) id + (id + id)
- ii) (id + id + id)
- (a) i) Accept, ii) Error
- (b) i) Error, ii) Error
- (c) i) Accept, ii) Accept
- (d) i) Error, ii) Accept

Answer: c)