Memoria Cache Optimizaciones

Tipos de misses

- Compulsivos: son los que se ocasionan en la primera vez que un bloque es referenciado.
- Capacitivos: son los que se producen si la cache no puede contener a todos los bloques que se necesitan para la ejecución de un programa.
- Conflictivos: si se utiliza mapeo directo o set asociativo, se producen (además) misses debido a que muchos bloques mapean al mismo set, lo que genera que se descarten bloques que son requeridos posteriormente.

¿Cómo podemos reducir el tiempo promedio de acceso a memoria caché?

Average Memory Access time = Hit time + Miss rate*Miss penalty

¿Cómo podemos reducir el tiempo promedio de acceso a memoria caché?

A) Reducir el Miss Rate

- Mayor Tamaño de Cache
- Mayor Tamaño de Bloque
- Mayor Asociatividad
- Victim Caches

B) Reducir el Miss Penalty

- Caches Multinivel
- Prioridad a los reads miss
- > ER y CWF
- Prefetching de información

C) Reducir el Hit Time

- Caches Simples
- > Way Prediction

D) Aumentar el Ancho de Banda

- Non Blocking Caches
- Multibancked Caches
- Pipelined Caches

- Mayor tamaño de cache para reducir el miss rate
 - ¿Qué tipos de misses estamos reduciendo?
 - Capacitivos
 - ¿Qué desventaja presenta?
 - Mayor hit time
 - Mayor costo y consumo

- Bloques más grandes para reducir el miss rate
 - ¿Qué tipos de misses reducimos y que localidad favorecemos?
 - Misses compulsivos (localidad espacial)

- Bloques más grandes para reducir el miss rate
 - ¿Qué tipos de misses reducimos y que localidad favorecemos?
 - Misses compulsivos (localidad espacial)
 - ¿Qué sucede con el Miss Penalty?

- Bloques más grandes para reducir el miss rate
 - ¿Qué tipos de misses reducimos y que localidad favorecemos?
 - Misses compulsivos (localidad espacial)
 - ¿Que sucede con el Miss Penalty?
 - ↑ Miss penalty
 - ¿Qué tipo de misses puede empeorar y porqué?
 - † Conflict misses

• *Tamaño de bloque* y Miss rate

Manteniendo el tamaño de cache

A medida que pasamos de bloques pequeños a bloques grandes aprovechamos la **localidad espacial**, el miss rate disminuye.

Miss rate

Tamaño de bloque

Cuanto más grande es el bloque, menos bloques entran en cache. Aumentarán los conflictos (los bloques serán reemplazados con más frecuencia) comprometiendo la **localidad temporal**.

Polution point

Tamaño de bloque y Average access time

Average Memory Access time = Hit time + Miss rate*Miss penalty

- Mayor asociatividad para reducir el miss rate
 - ¿Qué tipos de Misses estamos reduciendo?
 - Conflictivos
 - Dos reglas empíricas:
 - 8-way ~ full asociativo
 - Regla 2:1
 - ¿Qué desventajas podemos observar?
 - ↑ Hit Time

Miss rate components (relative percent)
(sum = 100% of total miss rate)

	Dagge	Totalmica	(sum = 100% of total miss rate)						
Cache size (KB)	Degree associative	Total miss rate		Comp	ulsory	Capa	city	Conflict	
4	1-way	0.098		0.0001	0.1%	0.070	72%	0.027	28%
4	2-way	0.076		0.0001	0.1%	0.070	93%	0.005	7%
4	4-way	0.071		0.0001	0.1%	0.070	99%	0.001	1%
4	8-way	0.071		0.0001	0.1%	0.070	100%	0.000	0%
8	1-way	0.068		0.0001	0.1%	0.044	65%	0.024	35%
8	2-way	0.049		0.0001	0.1%	0.044	90%	0.005	10%
8	4-way	0.044		0.0001	0.1%	0.044	99%	0.000	1%
8	8-way	0.044		0.0001	0.1%	0.044	100%	0.000	0%
16	1-way	0.049		0.0001	0.1%	0.040	82%	0.009	17%
16	2-way	0.041		0.0001	0.2%	0.040	98%	0.001	2%
16	4-way	0.041		0.0001	0.2%	0.040	99%	0.000	0%
16	8-way	0.041		0.0001	0.2%	0.040	100%	0.000	0%
32	1-way	0.042		0.0001	0.2%	0.037	89%	0.005	11%
32	2-way	0.038		0.0001	0.2%	0.037	99%	0.000	0%
32	4-way	0.037		0.0001	0.2%	0.037	100%	0.000	0%
32	8-way	0.037		0.0001	0.2%	0.037	100%	0.000	0%
64	1-way	0.037		0.0001	0.2%	0.028	77%	0.008	23%

Miss rate components (relative percent) (sum = 100% of total miss rate)

	Degree	Total miss —					1							
Cache size (KB)	associative	rate	Compulsory		Compulsory		Compulsory		Compulsory		Capa	city	Conflict	
4	1-way	0.098	0.0001	0.1%	0.070	72%	0.027	28%						
4	2-way	0.076	0.0001	0.1%	0.070	93%	0.005	7%						
4	4-way	0.071	0.0001	0.1%	0.070	99%	0.001	1%						
4	8-way	0.071	0.0001	0.1%	0.070	100%	0.000	0%						
8	1-way	0.068	0.0001	0.1%	0.044	65%	0.024	35%						
8	2-way	0.049	0.0001	0.1%	0.044	90%	0.005	10%						
8	4-way	0.044	0.0001	0.1%	0.044	99%	0.000	1%						
8	8-way	0.044	0.0001	0.1%	0.044	100%	0.000	0%						
16	1-way	0.049	0.0001	0.1%	0.040	82%	0.009	17%						
16	2-way	0.041	0.0001	0.2%	0.040	98%	0.001	2%						
16	4-way	0.041	0.0001	0.2%	0.040	99%	0.000	0%						
16	8-way	0.041	0.0001	0.2%	0.040	100%	0.000	0%						
32	1-way	0.042	0.0001	0.2%	0.037	89%	0.005	11%						
32	2-way	0.038	0.0001	0.2%	0.037	99%	0.000	0%						
32	4-way	0.037	0.0001	0.2%	0.037	100%	0.000	0%						
32	8-way	0.037	0.0001	0.2%	0.037	100%	0.000	0%						
64	1-way	0.037	0.0001	0.2%	0.028	77%	0.008	23%						

Miss rate components (relative percent) (sum = 100% of total miss rate)

	Degree	Total miss -	(Sum = 100% of total miss rate)					
Cache size (KB)	associative	rate	Compulsory		Capacity		Conflict	
4	1-way	0.098	0.0001	0.1%	0.070	72%	0.027	28%
4	2-way	0.076	0.0001	0.1%	0.070	93%	0.005	7%
4	4-way	0.071	0.0001	0.1%	0.070	99%	0.001	1%
4	8-way	0.071	0.0001	0.1%	0.070	100%	0.000	0%
8	1-way	0.068	0.0001	0.1%	0.044	65%	0.024	35%
8	2-way	0.049	0.0001	0.1%	0.044	90%	0.005	10%
8	4-way	0.044	0.0001	0.1%	0.044	99%	0.000	1%
8	8-way	0.044	0.0001	0.1%	0.044	100%	0.000	0%
16	1-way	0.049	0.0001	0.1%	0.040	82%	0.009	17%
16	2-way	0.041	0.0001	0.2%	0.040	98%	0.001	2%
16	4-way	0.041	0.0001	0.2%	0.040	99%	0.000	0%
16	8-way	0.041	0.0001	0.2%	0.040	100%	0.000	0%
32	1-way	0.042	0.0001	0.2%	0.037	89%	0.005	11%
32	2-way	0.038	0.0001	0.2%	0.037	99%	0.000	0%
32	4-way	0.037	0.0001	0.2%	0.037	100%	0.000	0%
32	8-way	0.037	0.0001	0.2%	0.037	100%	0.000	0%
64	1-way	0.037	0.0001	0.2%	0.028	77%	0.008	23%

• Empleo de *Victim cache* para reducir el Miss Rate

Empleo de Victim cache para reducir el Miss Rate

Empleo de Victim cache para reducir el Miss Rate

Empleo de Victim cache para reducir el Miss Rate

Empleo de Victim cache para reducir el Miss Rate

- L1 con MD + Victim cache Full asociativa
- → Misses por conflicto

A) Reducir el Miss Rate

- Mayor Tamaño de Cache
- Mayor Tamaño de Bloque
- Mayor Asociatividad
- Victim Caches

B) Reducir el *Miss Penalty*

- Caches Multinivel
- Prioridad a los reads miss
- ER y CWF
- Prefetching de información

C) Reducir el Hit Time

- Caches Simples
- > Way Prediction

D) Aumentar el Ancho de Banda

- Non Blocking Caches
- Multibancked Caches
- Pipelined Caches

Caches Multi-nivel para reducir el Miss Penalty

```
\begin{split} AMAT &= Hit \ time_{L1} + Miss \ rate_{L1} * Miss \ penalty_{L1} \\ &= Hit \ time_{L1} + Miss \ rate_{L1} * (Hit \ time_{L2} + Miss \ rate_{L2} * Miss \ penalty_{L2}) \end{split}
```

- *Miss Rate Local* a L_i : número de misses en L_i dividido por el número de accesos a L_i . Equivale al Miss Rate de L_i .
- *Miss Rate Global* para L_i : número de misses en L_i dividido por el total de accesos. Para dos niveles: *Miss Rate* L_1 x *Miss Rate* L_2 .

- ¿Cuál será el Average Memory Access Time? Si:
 - Cada 1000 referencias a memoria hay 40 misses en L1 y 20 misses en L2
 - Hit Time_{1,1} = 1 ciclo
 - Hit Time_{1,2} = **10** ciclos
 - Miss Penalty₁₂ = 200 ciclos

```
AMAT_{2niveles} = Hit \ time_{L1} + Miss \ rate_{L1} *Miss \ penalty_{L1}
= 1 + (40/1000) *(Hit \ time_{L2} + Miss \ rate_{L2} *Miss \ penalty_{L2})
= 1 + 0.04 *(10 + (20/40) *200)
= 1 + 0.04 *110 = 5.4 \ ciclos
```

$$AMAT_{sin L2} = 1 + (40/1000)*200$$

= $1 + 0.04*200 = 9$ ciclos

- ¿Cuál será el Average Memory Access Time? Si:
 - Cada 1000 referencias a memoria hay 40 misses en L1 y 20 misses en L2
 Miss Rate_{1,1} = 4%
 - Hit Time_{1,1} = 1 ciclo
 - Hit Time_{L2} = **10** ciclos
 - Miss Penalty_{1,2} = 200 ciclos

Miss Rate $Local_{L2} = 50\%$

Miss Rate Global_{1,2} = 2%

$$AMAT_{2niveles} = Hit \ time_{L1} + Miss \ rate_{L1} * Miss \ penalty_{L1}$$

$$= 1 + (40/1000) * (Hit \ time_{L2} + Miss \ rate_{L2} * Miss \ penalty_{L2})$$

$$= 1 + 0.04 * (10 + (20/40) * 200)$$

$$= 1 + 0.04 * 110 = 5.4 \ ciclos$$

$$AMAT_{sin L2} = 1 + (40/1000)*200$$

= $1 + 0.04*200 = 9$ ciclos

Caches Multi-nivel para reducir el Miss Penalty

- Caches Multi-nivel para reducir el Miss Penalty
 - Inclusión/Exclusión Multinivel:
 - *Inclusión Multinivel*: Todo dato en L_1 siempre se encuentra en L_2 .
 - Reemplazo de un bloque de L1 por uno de L2.
 - *Exclusión Multinivel*: Todo dato en L₁ nunca se encuentra en L₂.
 - Swap de bloques entre L1 y L2.
 - AMD Opteron

- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer
 - ¿Qué inconveniente se puede presentar?

```
Si 512 y 1024 mapean al 0:
M[512] ← R3
R1 ← M[1024]
R2 ← M[512]
```


- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer

- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer
 - ¿Qué inconveniente se puede presentar?

CACHE

- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer
 - ¿Qué inconveniente se puede presentar?

CACHE

- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer

- Dar Prioridad a los Read Miss frente a los Writes
 - Mejora para writes con write-through → write buffer

- Ante un miss: ¿Debo esperar a todo el bloque para entregar la palabra al procesador?
 - Hay dos posibles esquemas:

 Gano dependiendo de dónde se encuentra la palabra solicitada.

- Ante un miss: ¿Debo esperar a todo el bloque para entregar la palabra al procesador?
 - Hay dos posibles esquemas:

- Ante un miss: ¿Debo esperar a todo el bloque para entregar la palabra al procesador?
 - Hay dos posibles esquemas:
 - Early Restart: Entregar la palabra a penas esté disponible.
 - Critical word first: Entregar la palabra requerida al instante.
 - Mejor si bloques grandes.
 - La cache atiende accesos sucesivos a otros bloques.
 - Localidad espacial requerirá al resto del bloque.
 - Miss Penalty no es trivial.

- Prefetching de información
 - Disponer de la información con antelación.

A) Reducir el Miss Rate

- Mayor Tamaño de Cache
- Mayor Tamaño de Bloque
- Mayor Asociatividad
- Victim Caches

B) Reducir el Miss Penalty

- Caches Multinivel
- Prioridad a los reads miss
- > ER y CWF
- Prefetching de información

C) Reducir el *Hit Time*

- Caches Simples
- Way Prediction

D) Aumentar el Ancho de Banda

- Non Blocking Caches
- Multibancked Caches
- Pipelined Caches

Optimizaciones: Reduciendo el Hit Time

- Caches pequeñas y simples para reducir el Hit time
 - Pequeñas:
 - ↓ Tiempo de indexado
 - L2 en chip
 - Simples:
 - Ej: usar mapeo directo
 - (-) ↑ Misses capacitivos y conflictivos
 - Caches multi-nivel
 - Victim Caches

Optimizaciones: Reduciendo el Hit Time

- Way Prediction para reducir el Hit time
 - ¿Cómo se puede combinar un Hit time veloz como el de mapeo directo con menos cantidad de conflictos como en set-asociativo?
 - Way Prediction:
 - Bits extras para predecir
 - Una comparación de TAG // lectura del dato
 - ¿Qué pasa si miss?
 - 85% de acierto

A) Reducir el Miss Rate

- Mayor Tamaño de Cache
- Mayor Tamaño de Bloque
- Mayor Asociatividad
- Victim Caches

B) Reducir el Miss Penalty

- Caches Multinivel
- Prioridad a los reads miss
- > ER y CWF
- Prefetching de información

C) Reducir el Hit Time

- Caches Simples
- > Way Prediction

D) Aumentar el *Ancho de Banda*

- Non Blocking Caches
- Multibancked Caches
- Pipelined Caches

Optimizaciones: aumentando el Ancho de Banda

Cache No bloqueante:

- Solapar trabajo de CPU con resolución de misses
- Atender Read Hits luego de un Miss
- Mejora el Miss Penalty efectivo
- "Miss under Miss" o "Hit under multiple Miss"

Multibanked caches

Optimizaciones: aumentando el Ancho de Banda

Cache No bloqueante:

- Solapar trabajo de CPU con resolución de misses
- Atender Read Hits luego de un Miss
- Mejora el Miss Penalty efectivo
- "Miss under Miss" o "Hit under multiple Miss"

Multibanked caches

Pipelined Caches

- + mayor throughput
- latencia individual para un hit
- + Hit Time

Referencias

Hennessy, J., and Patterson, D. Computer Architecture, second ed. Morgan Kaufmann, 1996. (Capítulo 5)

Hennessy, J., and Patterson, D. Computer Architecture, fourth ed. Morgan Kaufmann, 2006. (Capítulo 5 y Apéndice C)