Curso de Verão UFPR 2020 - Álgebra Linear - Lista 3

Nessa lista suponha sempre que K tem produto comutativo.

1. Seja V um \mathbb{R} -espaço vetorial de dimensão finita, $\mathcal{B} = \langle v_1, ..., v_n \rangle$ uma base ordenada de V e $B: V \times V \to \mathbb{R}$ uma forma \mathbb{K} -bilinear. Mostre que para todos $v, w \in V$ vale

$$B(u,v) = [u]_{\mathcal{B}}^t \mathbf{B}[v]_{\mathcal{B}},$$

onde $\mathbf{B} := (b_{ij})$ com $b_{ij} := B(v_i, v_j)$ para $i, j \in \{1, ..., n\}$.

- a) Mostre que B é simétrica se, e somente se, \mathbf{B} é simétrica.
- b) Mostre que B é anti-simétrica se, e somente se, \mathbf{B} é anti-simétrica.
- 2. Continuando com a notação do exercício anterior, suponha que B seja simétrica ou anti-simétrica. Seja $B^{\#}:V\to V^*$ a aplicação (linear) definida por

$$[B^{\#}(u)](v) := B(u, v).$$

Definimos o núcleo da forma bilinear B como Ker $B := \text{Ker } B^{\#}$. Dizemos que B é não-degenerada se Ker $B = \{0\}$. Mostre que B é não-degenerada se, e somente se, det $\mathbf{B} \neq 0$.

3. Continuando com a notação dos problemas anteriores. Seja $\widetilde{\mathcal{B}} = \langle \widetilde{v}_1, ..., \widetilde{v}_n \rangle$ outra base de V e $\widetilde{\mathbf{B}} = (B(\widetilde{v}_i, \widetilde{v}_j))$ a matriz correspondente. Mostre que

$$\widetilde{\mathbf{B}} = \left(\mathbf{M}_{\mathcal{B}}^{\widetilde{\mathcal{B}}}\right)^{t} \cdot \mathbf{B} \cdot \mathbf{M}_{\mathcal{B}}^{\widetilde{\mathcal{B}}}.$$

4. Seja $V = \mathbb{R}^n$. Mostre que a aplicação $B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ definida por

$$B((x_1,...,x_n),(y_1,...,y_n)) = x_1y_1 + ... + x_ny_n$$

é bilinear e não-degenerada. Qual é a matriz de B com respeito a base canônica de \mathbb{R}^n ? A forma bilinear B é chamada **produto interno canônico** de \mathbb{R}^n .

5. Seja $V = \mathbb{R}^{2n}$. Mostre que a aplicação $B : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ definida por

$$B((x_1,...,x_n,y_1,...,y_n),(z_1,...,z_n,w_1,...,w_n)):=\sum_{i=1}^n x_iw_i-\sum_{i=1}^n y_iz_i.$$

é bilinear e anti-simétrica. Como é a matriz de B na base canônica de \mathbb{R}^{2n} ? A forma bilinear B é chamada de **forma simplética canônica** de \mathbb{R}^{2n} .

6. Sejam $u=(x_1,y_1,z_1),v=(x_2,y_2,z_2)\in\mathbb{R}^3$ e considere a operação de produto vetorial

$$u \times v := (y_1 z_2 - y_2 z_1, -(x_1 z_2 - x_2 z_1), x_1 y_2 - x_2 y_1).$$

Mostre que, como uma operação binária, essa aplicação é bilinear. Lembre-se que o produto vetorial pode ser visto como um determinante. Você consegue formalizar em que espaço vetorial aquele determinante ocorre?

7. Sejam V e W dois \mathbb{K} -espaços vetoriais e considere o espaço produto $V \times W$. Seja $F(V \times W)$ o \mathbb{K} -espaço vetorial livre com base $V \times W$. Seja $S \subset F(V \times W)$ o sub-espaço vetorial gerado por todos os elementos de $F(V \times W)$ dos tipos

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w) (v, w_1 + w_2) - (v, w_1) - (v, w_2) (k \cdot v, w) - (v, k \cdot w).$$

com $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$ e $k \in \mathbb{K}$. Definimos o **produto tensorial** de V e W como o espaço vetorial quociente $V \otimes W := (V \times W)/S$. Se $v \in V$ e $w \in W$, denotamos a classe de equivalência de [(v, w)] por $v \otimes w$. Pela definição do sub-espaço S, note que

$$(v_1 + kv_2) \otimes w = v_1 \otimes w + kv_2 \otimes w$$
$$v \otimes (w_1 + kw_2) = v \otimes w_1 + k \cdot v \otimes w_2$$

A definição de $V \otimes W$ é feita para formalizar um espaço vetorial em que faz sentido fazer produtos entre vetores de V com vetores de W (sem significado), e que, por definição, esse produto seja distributivo em ambas as variáveis. Seja $\pi: V \times W \to V \otimes W$ a projeção canônica $\pi(v, w) := v \otimes w$.

Seja $T:V\times W\to Z$ uma forma bilinear. Mostre que existe uma única transformação linear $\widetilde{T}:V\otimes W\to Z$ tal que $T=\widetilde{T}\circ\pi$.

8. Sejam V e W dois \mathbb{K} -espaços vetoriais de dimensão finita. Definimos $T:V^*\otimes W\to L(V,W)$ da seguinte forma: Se $f\in V^*$ e $w\in W$, colocamos para cada $v\in V$

$$T(f \otimes w)(v) := f(v) \cdot w.$$

Mostre que T está bem definida e é um isomorfismo de \mathbb{K} -espaços vetoriais.