Chapter 5

ATOMIC PHYSICS

OBJECTIVES:

- To know about the quantum model of H-atom and its wave functions.
- To understand more about Visible and X ray spectra
- To explain basic interactions of radiation with matter.
- To understand the basic principles and requirements for working of laser.
- To recognize the various applications of laser.
- To apply and evaluate the above concepts by solving numerical problems

The Quantum Model of the Hydrogen Atom

The time-independent Schrödinger equation in 3-dimensional space is

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) + U\psi = E\psi$$

The potential energy function for the H-atom is

$$U(r) = -\frac{k_e e^2}{r}$$

Since the system is spherically symmetric, it is convenient to apply spherical coordinated system

$$\psi(r, \theta, \phi) = R(r) f(\theta) g(\phi)$$

The radial function R(r) of ψ is associated with the **principal** quantum number \mathbf{n} . Solving R(r), we get an expression for energy as,

$$E_n = -\left(\frac{k_e e^2}{2 a_o}\right) \frac{1}{n^2} = -\frac{13.606 \, eV}{n^2}, \qquad n = 1, 2, 3, \dots$$

The polar function $f(\theta)$ is associated with the **orbital** quantum number ℓ . The azimuthal function $g(\phi)$ is associated with the **orbital magnetic** quantum number m_{ℓ} .

Allowed values:

n can range from 1 to ∞ ,

 ℓ can range from o to n-1; [n allowed values].

 m_{ℓ} can range from $-\ell$ to $+\ell$; [(2 ℓ +1) allowed values].

$$n = 1$$
 \Rightarrow K shell $\ell = 0 \Rightarrow s$ subshell $n = 2$ \Rightarrow L shell $\ell = 1 \Rightarrow p$ subshell $n = 3$ \Rightarrow M shell $\ell = 2 \Rightarrow d$ subshell $n = 4$ \Rightarrow N shell $\ell = 3 \Rightarrow f$ subshell $\ell = 4 \Rightarrow g$ subshell $\ell = 6$ \Rightarrow P shell $\ell = 5 \Rightarrow h$ subshell

Wave functions for hydrogen

- H-atom can be represented by wave functions that depend only on r (spherically symmetric function).
- The simplest wave function for H-atom is the 1s-state (ground state) wave function (n = 1, l = 0):

$$\psi_{1s}(r) = \frac{1}{\sqrt{\pi a_o^3}} e^{-\frac{r}{a_o}}$$

 a_0 = Bohr radius.

$$\left|\psi_{1s}\right|^2 = \left(\frac{1}{\pi a_0^3}\right) e^{-\frac{2r}{a_0}}$$

 $|\psi_{1s}|^2$ is the probability density for H-atom in 1s-state.

The radial probability density P(r) is the probability per unit radial length of finding the electron in a spherical shell of radius r and thickness dr.

P(r) dr is the probability of finding the electron in this shell.

$$P(r) dr = |\psi|^2 dv = |\psi|^2 4\pi r^2 dr$$

$$P_{1s}(r) = \left(\frac{4r^2}{a_0^3}\right) e^{-\frac{2r}{a_0}}$$

 $P_{1s}(r)$ is maximum when $r = a_0$ (Bohr radius).

$$\psi_{2s}(r) = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{\frac{3}{2}} \left(2 - \frac{r}{a_o}\right) e^{-\frac{r}{a_o}}$$

$$\psi_{2s}$$
 is spherically symmetric (depends only on r)
$$E_2 = E_1/4 = -3.401 \text{ eV (}1^{ST} \text{ excited state)}$$

More on Atomic Spectra: Visible and X-Ray

- The frequency of this photon is $f = \Delta E/h$
- The selection rules for the allowed transitions are

$$\Delta \ell = \pm 1$$
 and $\Delta m_{\ell} = 0, \pm 1$

• The allowed energies for one-electron atoms and ions, such as hydrogen and He, are

$$E_n = -\frac{k_e e^2}{2a_0} \left(\frac{Z^2}{n^2}\right) = -\frac{(13.6 \text{ eV})Z^2}{n^2}$$

• For multi-electron atoms, the positive nuclear charge *Ze* is largely shielded by the negative charge of the inner-shell electrons.

$$E_n = -\frac{(13.6 \,\mathrm{eV})Z_{\mathrm{eff}}^2}{n^2}$$

Some allowed electronic transitions for hydrogen, represented by the colored lines

X-Ray Spectra

$$e \Delta V = h f_{MAX} = \frac{h c}{\lambda_{MIN}}$$

The x-ray spectrum of a metal target. The data shown were obtained when 37-keV electrons bombarded a molybdenum target.

X-ray spectrum has two parts:

Continuous spectrum
Characteristic spectrum

Moseley's observation on the characteristic K_{α} x-rays shows a relation between the frequency (f) of the $K\alpha$ x-rays and the atomic number (Z) of the target element in the x-ray tube:

$$\sqrt{f} = C\left(Z - 1\right)$$

C is a constant.

Note: Based on this observation, the elements are arranged according to their atomic numbers in the periodic table

Spontaneous and Stimulated transitions

Stimulated Absorption:

Spontaneous Emission:

Stimulated Emission:

Boltzmann statistics, the ratio of population of atoms in two energy states E_1 and E_2 at equilibrium temperature T is,

$$\frac{n(E_2)}{n(E_1)} = exp\left(-\frac{E_2 - E_1}{kT}\right)$$

Population inversion:

$$E_2 \qquad E_2 \qquad E_2$$
(a)
$$E_1 \qquad (b) \qquad E_1$$

LASER

(Light Amplification by Stimulated Emission of Radiation)

Essential conditions:

Population inversion: The number of photons emitted must be greater than the number absorbed. This can be achieved by population inversion.

Metastable states: The average life time of the atom is 10^{-3} s which is much longer than that of the ordinary excited state ($\approx 10^{-8}$ s). In this case, the population inversion can be established and stimulated emission is likely to occur before spontaneous emission.

The **emitted photons must be confined** in the system long enough to enable them to stimulate further emission from other excited atoms. That is achieved by using **reflecting mirrors** at the ends of the system.

Schematic diagram of a laser design.

Energy-level diagram for a neon atom in a helium–neon laser.

Applications of laser

- In investigating the basic laws of interaction of atoms and molecules with electromagnetic wave of high intensity.
- Laser is widely used in engineering applications like optical communication, micro-welding and sealing etc.
- In medical field: Bloodless and painless surgery, treating dental decay, tooth extraction, cosmetic surgery.