

Today's Agenda

- 2D visualization pipeline
- 2D Transformations
- Translation / Rotation / Scaling
- Homogeneous Coordinates
- Concatenating Transformations

2D Visualization pipeline

From models to a scene viewed on screen

Modelling assets is just ONE stage

2D transformations

2D Transformations

- Position, orientation and scaling for objects in XOY
- Basic transformations
 - Translation / Displacement
 - Rotation relative to the coordinates' origin
 - Scaling relative to the coordinates' origin
- Representation using matrices
 - Homogeneous coordinates
- Complex transformations
 - **Decompose** into a sequence of basic transformations

Basic 2D transformations

The basic transformations are:

Translation / Displacement

Scaling

Rotation

Some nomenclature:

$$p = (x, y)$$

p = (x, y) \rightarrow original, given point

$$p' = (x', y')$$

 $p' = (x', y') \rightarrow transformed point$

Column vector representation

$$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Translation

To translate a point we need the displacement values in *X* and *y*

$$x' = x + t_x, \qquad y' = y + t_y$$

$$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \qquad \mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \qquad \mathbf{T} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{P} + \mathbf{T}$$

Translation

Each object is displaced without any deformation:

it is a **rigid-body** transformation

To displace a straight-line segment, apply the transformation to the **two end-points** and draw the resulting line segment.

To displace a polygon, apply the transformation to the polygon's **vertices**.

Rotation

To apply a rotation we need:

- a point: the **center of rotation** $(x_n y_n)$ (intersection point between a
- (intersection point between a perpendicular rotation axis and XOY)
- a **rotation angle** θ (positive, if counter-clockwise CCW)

Rotation around the origin

Easier to determine the transformation representing a rotation around (0,0):

$$x' = r \cos (\Phi + \theta) = r \cos \Phi \cos \theta - r \sin \Phi \sin \theta$$

 $y' = r \sin (\Phi + \theta) = r \cos \Phi \sin \theta + r \sin \Phi \cos \theta$

Original point coordinates in **polar coordinates**:

$$x = r \cos \mathbf{\Phi}$$
$$y = r \sin \mathbf{\Phi}$$

Replacing in the above equations, we get the desired result:

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Rotation around the origin

$$x' = r\cos(\phi + \theta) = r\cos\phi\cos\theta - r\sin\phi\sin\theta$$
$$y' = r\sin(\phi + \theta) = r\cos\phi\sin\theta + r\sin\phi\cos\theta$$

$$x = r \cos \phi, \qquad y = r \sin \phi$$

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$$
with
$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Matrix for rotation around the

origin, with angle θ

Rotation around an arbitrary point

Using the figure, the **rotation equations** are obtained as:

$$x' = x_r + (x - x_r) \cos \theta - (y - y_r) \sin \theta$$

$$y' = y_r + (x - x_r) \sin \theta + (y - y_r) \cos \theta$$

- Rotations are also rigid-body transformations
- To rotate a straight-line segment, transform its **end-points** and draw the line segment
- To rotate a polygon, transform its vertices

Scaling relative to the origin

The scaling transformation is applied to change the size of an object: s_x and s_y are the scaling factors.

$$x' = x \cdot s_{x}$$

$$y' = y \cdot s_{y}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_{x} & o \\ o & s_{y} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

transformation matrix

Obtaining a larger square through a scaling transformation, s_x =2, s_y =2

Scaling

Scaling factors are positive: s>0

$$x' = x \cdot s_x$$

$$y' = y \cdot s_y$$

 $s_x = s_y \rightarrow uniform scaling$

 $s_x \neq s_y \rightarrow \text{non-uniform scaling}$

Obtaining a larger square through a scaling transformation, s_X =2, s_Y =2

Transforming a square into a rectangle: the scaling has $s_X=2$, $s_Y=1$

Scaling

The scaled objects are **reposioned** if **not** originally **centered** on the origin:

 $s < 1 \rightarrow$ it will be **closer** to the origin

 $s > 1 \rightarrow$ it will be **farther** from the origin

Efficient computation of transformations

- Most graphical applications apply sequences of transformations
 - The visualization transformation corresponds to sequences of translations and rotations to display a given scene
 - An animation might require that an object be displaced and rotated between consecutive frames
- To carry out sequences of transformations in an efficient way, each transformation is represented as a matrix

Homogeneous Coordinates

The three basic transformations can be represented generally as:

$$P' = M_1 \cdot P + M_2$$

M₁ is a **2x2 matrix**

M₂ is a **column vector**, representing the translation vector

A more efficient representation uses **just one matrix** which can **represent all the transformations** in a sequence and is **applied just once** to every point

Such a representation uses homogeneous coordinates

homogeneous coordinates

Homogeneous Coordinates

 Every point in 2D is now represented by three coordinates:

$$(x,y) \rightarrow (x_h, y_h, h), h \neq 0$$

 $x = x_h/h \quad y = y_h/h$
 (x,h, y,h, h)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

• All transformations are represented by a 3x3 matrix

 The third matrix column represents the displacement (additive) factors

$$(x, y) \rightarrow (x_h, y_h, h), h \neq 0$$

 $x = x_h / h \qquad y = y_h / h$
 $(x.h, y.h, h)$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D transformations using homogeneous coordinates

• When using homogeneous coordinates, all transformations are carried out by matrix multiplication

• 2D translation:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

$$\mathbf{P}' = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

2D transformations using homogeneous coordinates

• 2D rotation:
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{R}(\theta) \cdot \mathbf{P}$$

$$\mathbf{P}' = \mathbf{R}(\theta) \cdot \mathbf{P}$$

• 2D scaling:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{S}(s_x, s_y) \cdot \mathbf{P}$$

Concatenation of transformations

We compute the matrix for a sequence of transformations by multiplying the matrices representing the individual transformations

The product of transformation matrices represents the concatenation or composition of transformations.

$$P' = M_2 \cdot M_1 \cdot P$$
 first transformation to be applied

The coordinates of the transformed point P' are computed with a **single matrix multiplication**

Concatenation of two translations

$$\mathbf{P}' = \mathbf{T}(t_{2x}, t_{2y}) \cdot \{ \mathbf{T}(t_{1x}, t_{1y}) \cdot \mathbf{P} \}$$
$$= \{ \mathbf{T}(t_{2x}, t_{2y}) \cdot \mathbf{T}(t_{1x}, t_{1y}) \} \cdot \mathbf{P}$$

$$\begin{bmatrix} 1 & 0 & t_{2x} \\ 0 & 1 & t_{2y} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & t_{1x} \\ 0 & 1 & t_{1y} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{1x} + t_{2x} \\ 0 & 1 & t_{1y} + t_{2y} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}(t_{2x}, t_{2y}) \cdot \mathbf{T}(t_{1x}, t_{1y}) = \mathbf{T}(t_{1x} + t_{2x}, t_{1y} + t_{2y})$$

Concatenation of two scalings

$$\begin{bmatrix} s_{2x} & 0 & 0 \\ 0 & s_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_{1x} & 0 & 0 \\ 0 & s_{1y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_{1x} \cdot s_{2x} & 0 & 0 \\ 0 & s_{1y} \cdot s_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{S}(s_{2x}, s_{2y}) \cdot \mathbf{S}(s_{1x}, s_{1y}) = \mathbf{S}(s_{1x} \cdot s_{2x}, s_{1y} \cdot s_{2y})$$

Doing the maths for the x' coordinate

$$x' = r \cos (\theta + \phi) + x_r$$
 $x = r \cos \phi + x_r$
 $y' = r \sin (\theta + \phi) + y_r$ $y = r \sin \phi + y_r$

$$x' = r \cos \theta \cos \phi - r \sin \theta \sin \phi + x_r$$

$$y' = r \cos \theta \ sen \ \phi + r sen \ \theta \ cos \ \phi + y_r$$

$$x' = (x - x_r) \cos \theta - (y - y_r) \sin \theta + x_r$$

$$x' = x_r + (x - x_r) \cos \theta - (y - y_r) \sin \theta$$

This seems to show that we first translate $-x_r$, rotate by θ , and then translate x_r

Rotation around an arbitrary point (x_r, y_r)

Rotation around an arbitrary point (x_p, y_r)

translation so that the arbitrary point moves to the origin

rotation around the origin

inverse translation to move the rotation center back to its original position

Inverse translation
$$\theta$$
 degrees rotation Moving to the origin
$$\begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & x_r (1 - \cos \theta) + y_r \sin \theta \\ \sin \theta & \cos \theta & y_r (1 - \cos \theta) - x_r \sin \theta \\ 0 & 0 & 1 \end{bmatrix}$$

$$T(x_r, y_r) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-x_r, -y_r) = \mathbf{R}(x_r, y_r, \theta)$$

Scaling relative to a fixed point (x_p, y_p)

Concatenation of transformations Properties

- Matrix multiplication is associative
- Given any three matrices M_1 , M_2 , M_3 , their product can be computed multiplying first M_3 by M_2 , or multiplying first M_2 by M_1

$$M_3 . M_2 . M_1 = (M_3 . M_2) . M_1 = M_3 . (M_2 . M_1)$$

• In general, matrix multiplication is **not commutative**:

• For instance, to apply a **rotation and a translation** to an object, care is needed to carry out the multiplication in the **appropriate order**

Concatenation of transformations Order is Important

Changing the order of a transformation sequence might affect the final result.

In **particular cases**, matrix **multiplication is commutative**, e.g., two successive rotations, or two successive scalings, or two successive translations.

Concatenation of transformations Efficiency

A 2D transformation representing a concatenation of transformations (translations, rotations, scalings) can be expressed as:

Concatenation of transformations Efficiency

Example: **scaling** followed by a **rotation**, both relative to an object's **center** (x_c, y_c) , followed by **translation**:

$$\mathbf{T}(t_x, t_y) \cdot \mathbf{R}(x_c, y_c, \theta) \cdot \mathbf{S}(x_c, y_c, s_x, s_y)$$

$$= \begin{bmatrix} s_x \cos \theta & -s_y \sin \theta & x_c (1 - s_x \cos \theta) + y_c s_y \sin \theta + t_x \\ s_x \sin \theta & s_y \cos \theta & y_c (1 - s_y \cos \theta) - x_c s_x \sin \theta + t_y \\ 0 & 0 & 1 \end{bmatrix}$$

The transformed coordinates are given by:

$$x' = x \cdot rs_{xx} + y \cdot rs_{xy} + trs_{x}, \qquad y' = x \cdot rs_{yx} + y \cdot rs_{yy} + trs_{y}$$

Concatenation of transformations Efficiency

- For any sequence of transformations, represented by one **global transformation matrix**, we need only:
 - 4 multiplications
 - 4 additions
- If each transformation was independently applied, the number of multiplications and additions would be larger
- Use the single, global transformation matrix resulting from the concatenation of the individual transformation

Model Transform

Defining where the objects are in the world

View Transform

• Define where the eye (i.e., the camera) is.

Projection Transform

How much of the world do I see? And how do I

Frustum

Frustum

Projection
Transform

Clip Coordinates

Normalized Device Coordinates

Coordinates of objects in normalized 2D screen

Viewport Transform

Scene is adjusted to the viewing window

Model, View, Projection

Graphics Pipeline

 Transformations are applied on the vertex shader

Applying the transformations

In the **vertex shader**, we need to transform the vertex coordinates from local coordinates (model) to clip coordinates (projection):

Vfinal = Mproj * Mview * Mmodel * Vinicial

Pay attention to the order!

The first applied is the one closest to Vinicial

Note that **Mproj** and **Mview** are the same for the whole world.

Only **Mmodel** may vary with different models.

Hands On 02

Bibliography

- S Marschner, P Shirley, Fundamentals of Computer Graphics, , A K Peters / CRC Press, 4th ed., 2018
 https://learning.oreilly.com/library/view/fundamentals-of-computer/9781482229417/
- D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd Ed., Addison-Wesley, 2004
- Coordinate Systems, in https://learnopengl.com/Getting-started/Coordinate-Systems

pyGLM

pyGLM methods translate, rotate, and scale, apply the transformation by right-multiplying

glm.translate(myMatrix, glm.vec3(tx,ty,tz))

= myMatrix * T

SO, the last transformation to be applied is the first to be coded... T R S * P => glm.translate ... glm.rotate... glm.scale