Computer Systems Summary

Contents

Consensus	2
Impossibility of Consensus	2
Byzantine Agreement	2
Byzantine	2
Validity	2
Consistency	2
Overview	2
Sequential Execution	2
Restricted Execution	2
Composability	2
Semantic Equivalence	3
Linearizability	3
Sequential Consistency	3
Quiescent Consistency	3
Happened-Before Consistency	3
Quorum Systems	3
Access Strategy	3
Load	3
Work	3
Resilience	4
Game Theory	4
Social Optimum	4
Dominant Strategy	4
Nash Equilibrium	4
Mixed Nash Equilibrium	4
Price of Anarchy	4
Optimistic Price of Anarchy	4
File System	4

Consensus

There are n nodes, of which at most f might crash. Node i starts with input v_i . The nodes must decide for one of those values, statisfying the following properties:

- 1. Agreement: All correct nodes decide for the same value.
- 2. **Termination**: All correct nodes terminate in finite time.
- 3. Validity: The decision value must be the input value of a node.

Impossibility of Consensus

There is no deterministic algorithm which always achieves consensus in the asynchronous model with f > 0.

Byzantine Agreement

Finding consensus in a system with byzatine nodes is called byzantine agreement. An algorithm is f-resilient if it still works with f byzantine nodes.

Byzantine

A node which can have arbitrary behavior is called byzantine.

Validity

Any-Input Validity The decision value must be the input value of any node.

Correct-Input Validity The decision value must be the input value of a correct node.

All-Same Validity If all correct nodes start with the same input v, the decision value must be v.

Median Validity If the input values are orderable, byzantine outliers can be prevented by agreeing on a value close to the median of the correct input values.

Consistency

Overview

Consistency Model	Implies	Composable
Linearizability	Sequential Consistency, Quiescent Consistency	yes
Sequential Consistency	Happened-Before Consistency	no
Happened-Before Consistency	Sequential Consistency	no
Quiescent Consistency		

Sequential Execution

No two operations are concurrent, we have either f < g or g < f.

Restricted Execution

For some object o and some execution E, the restricted execution E|o is E filtered to only contain operations involving the o.

Composability

A consistency model is composable if for every object o in the restricted execution E|o is consistent, then also E is consistent.

Semantic Equivalence

Executions contain exactly the same operations and each pair of operations has the same effect in both executions.

Linearizability

An execution E is linearizable if there exists a sequential execution S such that:

- 1. S is correct and sematically equivalent to E.
- 2. Whenever f < g in E, then f < g in S.

Linearizability is composable.

A system is linearizable if every possible execution is linearizable.

Sequential Consistency

An execution E is sequentially consistent if there exists a sequential execution S such that:

- 1. S is correct and sematically equivalent to E.
- 2. Whenever f < g on the same node in E, then f < g in S.

Every linearizable execution is sequentially consistent.

Sequential consistency is not composable.

Quiescent Consistency

An execution E is quiescently consistent if there exists a sequential execution S such that:

- 1. S is correct and sematically equivalent to E.
- 2. Let t be some quiescent point, meaning for all operations f we have $f_{\uparrow} < t$ or $f_* > t$. Then for every t and every pair of operations where $g_{\uparrow} < t$ and $h_* > t$, we have g < h.

Every linearizable execution is quiescently consistent.

Happened-Before Consistency

Same as sequential consistency.

Quorum Systems

Access Strategy

An access strategy Z defines the probability $P_Z(Q)$ of accessing a quorum $Q \in S$ such that $\sum_{Q \in S} P_Z(Q) = 1$.

Load

The load of access strategy Z on a node v_i is $L_Z(v_i) = \sum_{Q \in S_i, v_i \in Q} P_Z(Q)$.

The load induced by access strategy Z on a quorum system S is the maximal load induced by Z on any node in S, which is $L_Z(S) = \max_{v_i \in S} L_Z(v_i)$.

The load of a quorum system S is $L(S) = \min_{Z} L_{Z}(S)$.

Work

The work of a quorum $Q \in S$ is the number of nodes in Q, W(Q) = |Q|.

The work induced by access strategy Z on a quorum system S is the expected number of nodes accessed, which is $W_Z(S) = \sum_{Q \in S} P_Z(Q)W(Q)$.

The work of a quorum system S is $W(S) = \min_Z W_Z(S)$.

Resilience

If any f nodes from a quorum system S can fail such that there is still a quorum $Q \in S$ without failed nodes, then S is f-resilient.

Game Theory

Social Optimum

A strategy which minimizes the sum of all costs.

Dominant Strategy

A strategy is dominant if a player is never worse of by playing this strategy.

Nash Equilibrium

A strategy in which no player can improve by unilaterally changinh its strategy.

Mixed Nash Equilibrium

A strategy in which at least one player is playing a randomized strategy, and no player can improve their expected payoff by unilaterally changing their strategy.

Price of Anarchy

Let NE_{-} denote the Nash Equilibrium with the highest cost. The price of anarchy is defined as $PoA = \frac{\cot(NE_{-})}{\cot(SO)}$.

Optimistic Price of Anarchy

Let NE_+ denote the Nash Equilibrium with the smallest cost. The optimistic price of anarchy is defined as $OPoA = \frac{\cos(NE_+)}{\cos(SO)}$.

File System

The filing system virtualizes the collection of storage devices in the system:

- Multiplexing: Sharing the storage between applications and users.
- Abstraction: Making the devices appear as a more convenient collection of files with consistency properties.
- Emulation: Creating this illusion over an arbitrary set of storage devices.