MAL7080 Mathematical Modeling and Simulations

10 marks Tutorial 3 Due date: 1 May, 2024

- You need to submit this tutorial in Jupyter notebook form.
- Late submissions will not be considered.
- 1. Implement the following numerical differentiation and numerical integration methods: [6]
 - (a) First order forward finite difference approximation for y'
 - (b) Second order central finite difference approximation for y'
 - (c) First order forward finite difference approximation for y''
 - (d) Second order central finite difference approximation for y''
 - (e) Composite Trapezoidal rule for integration
 - (f) Composite Simpson's 1/3 rule
- 2. Consider the following data of a distance travelled by a vehicle:

 t [s]
 0
 2
 4
 6
 8
 10
 12
 14
 16

 x [m]
 0
 0.7
 1.8
 3.4
 5.1
 6.3
 7.3
 8.0
 8.4

[1]

- (a) Find the velocity and the acceleration at t = 10 s.
- (b) Find the velocity and the acceleration at t = 5 s.
- 3. Write a code to obtain first derivative estimates for the following unequally paced data: [1]

x [s]	0.6	1.5	1.6	2.5	3.5
f(x) [m]	0.9036	0.3734	0.3261	0.08422	0.01596

where $f(x) = 5xe^{-2x}$. Compare your results with the true derivatives.

4. The amount of mass transported via a pipe over a period of time can be computed as [1]

$$M = \int_{t_1}^{t_2} Q(t)c(t) dt$$

where M= mass (mg), t_1 = the initial time (min), t_2 = the final time (min), Q(t)= flow rate (m³/min), and c(t)= concentration (mg/m³). Suppose that the temporal variation in flow and concentration are defined as:

$$Q(t) = 9 + 5\cos^{2}(0.4t),$$

$$c(t) = 5e^{-0.5t} + 2e^{0.15t}$$

Determine the mass transported between $t_1=2$ and $t_2=8$ min with (a) Composite Trapezoidal rule for integration, (b) composite Simpson's 1/3 rule, (c) composite Simpson's 3/8 rule. Compare your results with the in-built function quad.

5. Find the value of $\int_0^1 xe^{-x} dx$ using the above discussed numerical integration methods. Play with the number of sub-intervals. Compare your answer with the exact answer $1 - \frac{2}{e}$. [1]

__*__ __*____*___