Decision Tree

Classification

Random Forest

Classification

id	x_0	x_1	x_2	x_3	x_4	y
0	4.3	4.9	4.1	4.7	5.5	0
1	3.9	6.1	5.9	5.5	5.9	0
2	2.7	4.8	4.1	5.0	5.6	0
3	6.6	4.4	4.5	3.9	5.9	1
4	6.5	2.9	4.7	4.6	6.1	1
5	2.7	6.7	4.2	5.3	4.8	1

id	x_0	x_1	x_2	x_3	x_4	y
0	4.3	4.9	4.1	4.7	5.5	0
1	6.5	4.1	5.9	5.5	5.9	0
2	2.7	4.8	4.1	5.0	5.6	0
3	6.6	4.4	4.5	3.9	5.9	1
4	6.5	2.9	4.7	4.6	6.1	1
5	2.7	6.7	4.2	5.3	4.8	1

id	x_0	x_1	x_2	x_3	x_4	y
0	4.3	4.9	4.1	4.7	5.5	0
1	3.9	6.1	5.9	5.5	5.9	0
2	2.7	4.8	4.1	5.0	5.6	0
3	6.6	4.4	4.5	3.9	5.9	1
4	6.5	2.9	4.7	4.6	6.1	1
5	2.7	6.7	4.2	5.3	4.8	1

id	id	
<i>id</i> 2	$\frac{id}{2}$	
0	1	
2	3	
4	1	
5 5	4	
5	4	

Bootstrapped Datasets

						n	1			T
id	x_0	x_1	x_2	x_3	x_4	y	id	id	id	id
0	4.3	4.9	4.1	4.7	5.5	0	2	2	4	3
1	3.9	6.1	5.9	5.5	5.9	0	0	1	1	3
2	2.7	4.8	4.1	5.0	5.6	0	2	3	3	2
3	6.6	4.4	4.5	3.9	5.9	1	4	1	0	5
4	6.5	2.9	4.7	4.6	6.1	1	5	4	0	1
5	2.7	6.7	4.2	5.3	4.8	1	5	4	2	2
							x_0, x_1	x_{2}, x_{3}	x_2, x_4	x_1, x_3
							$x_1 \le 4.9$ $x_0 \le 4.3$	$x_3 \le 4.6$	$x_2 \le 4.1$ $0 \qquad x_2 \le 4.7$	$x_1 \le 4.4$ $1 \qquad x_1 \le 6.1$

 $\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$

EJ.							~ ~			
id	x_0	x_1	x_2	x_3	x_4	y	id	id	id	id
0	4.3	4.9	4.1	4.7	5.5	0	2	2	4	3
1	3.9	6.1	5.9	5.5	5.9	0	0	1	1	3
2	2.7	4.8	4.1	5.0	5.6	0	2	3	3	2
3	6.6	4.4	4.5	3.9	5.9	1	4	1	0	5
4	6.5	2.9	4.7	4.6	6.1	1	5	4	0	1
5	2.7	6.7	4.2	5.3	4.8	1	5	4	2	2
							x_0, x_1	x_{2}, x_{3}	x_2, x_4	x_1, x_3
	2.8	6.2	4.3	5.3	5.5					
							$x_1 \le 4.9$	$x_3 \le 4.6$	$x_2 \le 4.1$	$x_1 \leq 4.4$
	Boot	strap	+ A	ggrega	ating		\sim	\sim	\sim	\sim
					~~0			\star	\star	\star
		(В	Baggin	ıg)			$x_0 \le 4.3$ (1)	(1) (0)	$\begin{pmatrix} 0 \end{pmatrix} x_2 \leq 4.7$	$\begin{pmatrix} 1 \end{pmatrix} \qquad x_1 \leq 6.1$
								~ ~		
							\star			5 🔥 💍
							(0) (1)			

Why is it called random?

Why Bootstrapping and Feature Selection?

How many features to consider?

How to use this for regression?

Sensitivity and Specificity

SENSITIVITY AND SPECIFICITY

What are they?

How are they calculated?

DISEASE

SENSITIVITY =
$$\frac{TP}{TP+FN} = \frac{90}{100} = 0.9 (90\%)$$

$$SPECIFICITY = \frac{TN}{FP+TN} = \frac{400}{500} = 0.8 (80\%)$$

High sensitivity screening tests (low false negatives)

High specificity confirmatory tests (low false positives)

ROC and AUC

We would like to **classify** based on a **screening**, whether a person **has cancer** or **not**.

For this, we get **data from 10 people** about how high the **blood level** is and whether there is a **disease or not**.

This value is called the **True Positive Rate (TPR)** and is equal to the **sensitivity.**

So, we correctly classified 4 out of 5 as "diseased".

And it is precisely these **two values** that are then plotted on the **ROC Curve**.

So, we misclassified **2 out of 5 as "diseased".**This value is called the **False Positive Rate (FPR)**and is 1 - specificity.

So, for a **threshold of 45**, we get a **True Positive Rate** of **4/5** i.e. **0.8** and a **False Positive Rate** of **3/5** i.e. **0.6**.

We can now calculate for **each threshold**,

the **True Positive Rate** and the **False Positive Rate**.

If we choose the **threshold value** to be very small,
i.e., pushed all the way to the **left**,

With that, we have the **first point**.

Here we still **correctly classify** all **5 diseased** people as **"diseased"**.

However, of the **5 healthy individuals**, we now **misclassify only 4 out of 5** as "diseased."

At the next **threshold**, we still have a **True Positive Rate of 1**.

All **5 diseased** people are correctly classified.

At this point, for example

80% of the diseased individuals were correctly classified as "diseased"

and **20%** of the healthy individuals were incorrectly assigned "diseased".

A **classification model** is better the **higher** the **curve**.

Hyperparameter Tuning

GridSearchCV

RandomSearchCV

Types of Parameters

Parameters

Model Parameters

These are the parameters of the model that can be determined by training with training data. These can be considered as internal Parameters.

- > Weights
- > Bias

$$Y = w*X + b$$

Hyperparameters

Hyperparameters are parameters whose values control the learning process. These are adjustable parameters used to obtain an optimal model. External Parameters.

- Learning rate
- Number of Epochs
- n_estimators

Hyperparameter Tuning

Hyperparameter Tuning refers to the process of choosing the optimum set of hyperparameters for a Machine Learning model. This process is also called **Hyperparameter Optimization**.

Hyperparameter Tuning Types:

Support Vector Classifier:

C: [1,5,10]

kernel: ('linear', 'poly', 'rbf', 'sigmoid')

sklearn iris flower dataset

ta										
sepal width (cm)	petal length (cm)	petal width (cm)	flower							
3.2	1.4	0.2	setosa							
3.7	1.5	0.2	setosa							
3.3	1.4	0.2	setosa							
3.2	4.7	1.4	versicolor							
3.2	4.5	1.5	versicolor							
	3.2 3.7 3.3 3.2	3.2 1.4 3.7 1.5 3.3 1.4 3.2 4.7	sepal width (cm) petal length (cm) petal width (cm) 3.2 1.4 0.2 3.7 1.5 0.2 3.3 1.4 0.2 3.2 4.7 1.4							

Model selection

5 fold cross validation