Complemento Teorico ed Esercizi Svolti Laboratorio Circuiti 3

Spiegazioni dettagliate sulla base della scheda di laboratorio

8 aprile 2025

Sommario

Questo documento fornisce una spiegazione teorica dettagliata e lo svolgimento dei calcoli preliminari richiesti per l'esperienza di laboratorio "Circuiti 3", focalizzata sull'analisi in frequenza di circuiti RC, RL ed RLC. L'obiettivo è offrire una comprensione intuitiva e rigorosa dei concetti, integrando le informazioni presenti nella scheda di laboratorio originale. Vengono inoltre affrontate le domande guida proposte nella scheda.

Indice

1	\mathbf{Stu}	dio di circuiti RC e RL in corrente alternata	3
	1.1	Prima di arrivare in laboratorio: Funzioni di Trasferimento	3
		1.1.1 Caso $Z = C$ (Circuito RC)	4
		1.1.2 Caso $Z = L$ (Circuito RL)	5
	1.2	Procedimento: Misure e Analisi	
		Note (Approfondimenti)	
		Domande e considerazioni guida	
2	Fun	azioni di trasferimento nei circuiti RLC	10
	2.1	Prima di arrivare in laboratorio: Calcoli Preliminari	10
	2.2	Procedimento	11
	2.3	Domande e considerazioni guida	11
		Tips and Tricks	

Introduzione: Corrente Alternata e Fasori

Prima di addentrarci nei circuiti specifici, è fondamentale comprendere come analizzare circuiti elettrici quando le tensioni e le correnti variano sinusoidalmente nel tempo. Questa è la base dell'analisi in corrente alternata (AC).

Segnali Sinusoidali

Un segnale sinusoidale (tensione o corrente) può essere descritto matematicamente come:

$$v(t) = V_0 \cos(\omega t + \phi) \tag{1}$$

dove:

- V_0 è l'ampiezza (il valore massimo del segnale). A volte si usa l'ampiezza picco-picco $(V_{pp} = 2V_0)$ o il valore efficace (*Root Mean Square*, RMS), $V_{rms} = V_0/\sqrt{2}$. È importante essere consistenti!
- ω è la **pulsazione** (o frequenza angolare), legata alla frequenza f dalla relazione $\omega = 2\pi f$. Si misura in radianti al secondo (rad/s). La frequenza f si misura in Hertz (Hz).
- ϕ è la **fase** iniziale (o semplicemente fase), che indica lo sfasamento temporale della sinusoide rispetto a un riferimento (solitamente $\cos(\omega t)$). Si misura in radianti o gradi.

Il Metodo dei Fasori (Impedenze Complesse)

Analizzare circuiti con segnali sinusoidali usando direttamente le equazioni differenziali che li governano può essere complesso. Il **metodo dei fasori** semplifica enormemente l'analisi trasformando le equazioni differenziali lineari in equazioni algebriche nel dominio dei numeri complessi.

L'idea chiave si basa sulla formula di Eulero: $e^{j\theta} = \cos(\theta) + j\sin(\theta)$, dove $j = \sqrt{-1}$ è l'unità immaginaria. Un segnale sinusoidale $v(t) = V_0\cos(\omega t + \phi)$ può essere visto come la parte reale di un segnale complesso:

$$v(t) = \operatorname{Re}\left[V_0 e^{\mathrm{j}(\omega t + \phi)}\right] = \operatorname{Re}\left[(V_0 e^{\mathrm{j}\phi}) e^{\mathrm{j}\omega t}\right]$$
 (2)

Il termine complesso $\tilde{V}=V_0\mathrm{e}^{\mathrm{j}\phi}$ è chiamato **fasore** associato al segnale v(t). Il fasore è un numero complesso la cui ampiezza ($\left|\tilde{V}\right|=V_0$) rappresenta l'ampiezza del segnale sinusoidale e il cui argomento ($\mathrm{arg}\left(\tilde{V}\right)=\phi$) rappresenta la fase del segnale. Il fasore "congela" il segnale all'istante t=0, mantenendo le informazioni su ampiezza e fase.

Perché funziona? Nei circuiti lineari, se l'ingresso è una sinusoide di pulsazione ω , tutte le tensioni e correnti nel circuito saranno sinusoidi alla *stessa* pulsazione ω , ma con ampiezze e fasi diverse. Lavorando con i fasori (che non dipendono dal tempo), possiamo usare regole simili a quelle della corrente continua (DC), ma sostituendo le resistenze con le **impedenze complesse**.

Impedenze Complesse (Z)

L'impedenza \tilde{Z} è l'analogo della resistenza per i circuiti AC. È definita come il rapporto tra il fasore della tensione ai capi di un componente e il fasore della corrente che lo attraversa: $\tilde{Z} = \tilde{V}/\tilde{I}$.

• Resistore (R): La legge di Ohm vale istante per istante: v(t) = Ri(t). Passando ai fasori, $\tilde{V} = R\tilde{I}$. L'impedenza del resistore è semplicemente:

$$\tilde{Z}_R = R \tag{3}$$

È un numero reale, quindi tensione e corrente sono in fase.

• Induttore (L): La relazione tensione-corrente è $v(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t}$. Se $i(t) = \mathrm{Re}[\tilde{I}\mathrm{e}^{\mathrm{j}\omega t}]$, allora $v(t) = \mathrm{Re}[L(\mathrm{j}\omega\tilde{I})\mathrm{e}^{\mathrm{j}\omega t}]$. Quindi, $\tilde{V} = \mathrm{j}\omega L\tilde{I}$. L'impedenza dell'induttore è:

$$\tilde{Z}_L = j\omega L \tag{4}$$

È un numero immaginario puro positivo. La sua ampiezza (reattanza induttiva) $X_L = \omega L$ aumenta con la frequenza. La tensione sull'induttore è in anticipo di fase di 90° $(\pi/2)$ rispetto alla corrente. *Intuizione*: L'induttore si oppone alle variazioni di corrente (di/dt). Maggiore la frequenza, più rapida la variazione, maggiore l'opposizione $(\tilde{Z}_L$ aumenta con ω). A $\omega \to 0$ (DC), $\tilde{Z}_L \to 0$ (corto circuito). A $\omega \to \infty$, $\tilde{Z}_L \to \infty$ (circuito aperto).

• Condensatore (C): La relazione corrente-tensione è $i(t) = C \frac{dv(t)}{dt}$. Se $v(t) = \text{Re}[\tilde{V}e^{j\omega t}]$, allora $i(t) = \text{Re}[C(j\omega\tilde{V})e^{j\omega t}]$. Quindi, $\tilde{I} = j\omega C\tilde{V}$. L'impedenza del condensatore è:

$$\tilde{Z}_C = \frac{\tilde{V}}{\tilde{I}} = \frac{1}{j\omega C} = -\frac{j}{\omega C} \tag{5}$$

È un numero immaginario puro negativo. La sua ampiezza (reattanza capacitiva) $X_C = 1/(\omega C)$ diminuisce con la frequenza. La tensione sul condensatore è in ritardo di fase di $90^{\circ}~(-\pi/2)$ rispetto alla corrente. *Intuizione*: Il condensatore si oppone alle variazioni di tensione $(\mathrm{d}v/\mathrm{d}t)$. A bassa frequenza, ha molto tempo per caricarsi e si oppone al passaggio di corrente (sembra un circuito aperto, $\tilde{Z}_C \to \infty$ per $\omega \to 0$). Ad alta frequenza, la tensione cambia così rapidamente che il condensatore non fa in tempo a caricarsi significativamente e la corrente passa facilmente (sembra un corto circuito, $\tilde{Z}_C \to 0$ per $\omega \to \infty$).

Con le impedenze complesse, possiamo analizzare i circuiti AC usando le stesse regole delle reti resistive in DC:

- Impedenze in Serie: $\tilde{Z}_{eq} = \tilde{Z}_1 + \tilde{Z}_2 + \dots$
- Impedenze in Parallelo: $1/\tilde{Z}_{eq} = 1/\tilde{Z}_1 + 1/\tilde{Z}_2 + \dots$
- Partitore di Tensione: Per due impedenze \tilde{Z}_1, \tilde{Z}_2 in serie con tensione totale \tilde{V}_{in} , la tensione ai capi di \tilde{Z}_2 è $\tilde{V}_2 = \tilde{V}_{in} \frac{\tilde{Z}_2}{\tilde{Z}_1 + \tilde{Z}_2}$.
- Legge di Ohm Generalizzata: $\tilde{V} = \tilde{Z}\tilde{I}$.

1 Studio di circuiti RC e RL in corrente alternata

1.1 Prima di arrivare in laboratorio: Funzioni di Trasferimento

La funzione di trasferimento $\tilde{H}(\omega)$ descrive come un circuito modifica l'ampiezza e la fase di un segnale di ingresso sinusoidale per produrre un segnale di uscita, in funzione della pulsazione ω . È definita come il rapporto tra il fasore del segnale di uscita \tilde{V}_{out} e il fasore del segnale di ingresso \tilde{V}_{in} :

$$\tilde{H}(\omega) = \frac{\tilde{V}_{out}(\omega)}{\tilde{V}_{in}(\omega)} \tag{6}$$

Essendo un numero complesso, $\tilde{H}(\omega)$ ha un'ampiezza (o modulo) e una fase (o argomento):

- Guadagno di Ampiezza: $G(\omega) = \left| \tilde{H}(\omega) \right| = \frac{\left| \tilde{V}_{out} \right|}{\left| \tilde{V}_{in} \right|} = \frac{V_{out,0}}{V_{in,0}}$. Indica di quanto l'ampiezza del segnale viene modificata.
- Sfasamento: $\phi(\omega) = \arg\left(\tilde{H}(\omega)\right) = \arg\left(\tilde{V}_{out}\right) \arg\left(\tilde{V}_{in}\right)$. Indica la differenza di fase tra uscita e ingresso.

La funzione di trasferimento caratterizza completamente la risposta in frequenza del circuito lineare.

Consideriamo il circuito in Figura 1 della scheda. \tilde{V}_A è la tensione di ingresso (dopo la resistenza interna del generatore R_g) e \tilde{V}_B è la tensione ai capi di R. La tensione ai capi di Z è $\tilde{V}_{A-B} = \tilde{V}_A - \tilde{V}_B$. Useremo il partitore di tensione nel dominio dei fasori. L'impedenza totale vista da V_A è $\tilde{Z}_{tot} = \tilde{Z} + R$.

1.1.1 Caso Z = C (Circuito RC)

L'impedenza del condensatore è $\tilde{Z}_C = 1/(\mathrm{j}\omega C)$.

• Funzione di trasferimento $\tilde{H}_{B/A}(\omega) = \tilde{V}_B/\tilde{V}_A$: \tilde{V}_B è la tensione ai capi di R. Usando il partitore di tensione:

$$\tilde{V}_B = \tilde{V}_A \frac{R}{\tilde{Z}_C + R} = \tilde{V}_A \frac{R}{\frac{1}{\mathrm{i}\omega C} + R} = \tilde{V}_A \frac{\mathrm{j}\omega RC}{1 + \mathrm{j}\omega RC}$$
(7)

Quindi:

$$\tilde{H}_{B/A}(\omega) = \frac{j\omega RC}{1 + j\omega RC} \tag{8}$$

Modulo (Guadagno):

$$\left| \tilde{H}_{B/A}(\omega) \right| = \frac{|j\omega RC|}{|1 + j\omega RC|} = \frac{\omega RC}{\sqrt{1^2 + (\omega RC)^2}}$$
(9)

Fase:

$$\arg\left(\tilde{H}_{B/A}(\omega)\right) = \arg\left(j\omega RC\right) - \arg\left(1 + j\omega RC\right) = \frac{\pi}{2} - \arctan(\omega RC) \tag{10}$$

Questa è una funzione di trasferimento **passa-alto**. Per $\omega \to 0$, $|H| \to 0$. Per $\omega \to \infty$, $|H| \to 1$. La frequenza di taglio $\omega_c = 1/(RC)$ è dove $|H| = 1/\sqrt{2}$.

• Funzione di trasferimento $\tilde{H}_{(A-B)/A}(\omega) = \tilde{V}_{A-B}/\tilde{V}_A$: \tilde{V}_{A-B} è la tensione ai capi di Z=C. Usando il partitore di tensione:

$$\tilde{V}_{A-B} = \tilde{V}_A \frac{\tilde{Z}_C}{\tilde{Z}_C + R} = \tilde{V}_A \frac{\frac{1}{\mathrm{j}\omega C}}{\frac{1}{\mathrm{j}\omega C} + R} = \tilde{V}_A \frac{1}{1 + \mathrm{j}\omega RC}$$

$$\tag{11}$$

Quindi:

$$\tilde{H}_{(A-B)/A}(\omega) = \frac{1}{1 + j\omega RC} \tag{12}$$

Modulo (Guadagno):

$$\left| \tilde{H}_{(A-B)/A}(\omega) \right| = \frac{1}{|1 + j\omega RC|} = \frac{1}{\sqrt{1^2 + (\omega RC)^2}}$$
 (13)

Fase:

$$\arg\left(\tilde{H}_{(A-B)/A}(\omega)\right) = \arg\left(1\right) - \arg\left(1 + j\omega RC\right) = 0 - \arctan(\omega RC) = -\arctan(\omega RC)$$
(14)

Questa è una funzione di trasferimento **passa-basso**. Per $\omega \to 0$, $|H| \to 1$. Per $\omega \to \infty$, $|H| \to 0$. La frequenza di taglio è sempre $\omega_c = 1/(RC)$, dove $|H| = 1/\sqrt{2}$.

1.1.2 Caso Z = L (Circuito RL)

L'impedenza dell'induttore è $\tilde{Z}_L = \mathrm{j}\omega L$

• Funzione di trasferimento $\tilde{H}_{B/A}(\omega) = \tilde{V}_B/\tilde{V}_A$: \tilde{V}_B è la tensione ai capi di R. Usando il partitore di tensione:

$$\tilde{V}_B = \tilde{V}_A \frac{R}{\tilde{Z}_L + R} = \tilde{V}_A \frac{R}{j\omega L + R} = \tilde{V}_A \frac{R}{R + j\omega L}$$
(15)

Quindi:

$$\tilde{H}_{B/A}(\omega) = \frac{R}{R + j\omega L} = \frac{1}{1 + j\omega L/R}$$
(16)

Modulo (Guadagno):

$$\left| \tilde{H}_{B/A}(\omega) \right| = \frac{R}{|R + j\omega L|} = \frac{R}{\sqrt{R^2 + (\omega L)^2}} = \frac{1}{\sqrt{1 + (\omega L/R)^2}}$$
 (17)

Fase:

$$\arg\left(\tilde{H}_{B/A}(\omega)\right) = \arg\left(R\right) - \arg\left(R + \mathrm{j}\omega L\right) = 0 - \arctan(\omega L/R) = -\arctan(\omega L/R) \quad (18)$$

Questa è una funzione di trasferimento **passa-basso**. Per $\omega \to 0$, $|H| \to 1$. Per $\omega \to \infty$, $|H| \to 0$. La frequenza di taglio $\omega_c = R/L$ è dove $|H| = 1/\sqrt{2}$.

• Funzione di trasferimento $\tilde{H}_{(A-B)/A}(\omega) = \tilde{V}_{A-B}/\tilde{V}_A$: \tilde{V}_{A-B} è la tensione ai capi di Z = L. Usando il partitore di tensione:

$$\tilde{V}_{A-B} = \tilde{V}_A \frac{\tilde{Z}_L}{\tilde{Z}_L + R} = \tilde{V}_A \frac{j\omega L}{R + j\omega L}$$
(19)

Quindi:

$$\tilde{H}_{(A-B)/A}(\omega) = \frac{j\omega L/R}{1 + j\omega L/R}$$
(20)

Modulo (Guadagno):

$$\left| \tilde{H}_{(A-B)/A}(\omega) \right| = \frac{|j\omega L|}{|R + j\omega L|} = \frac{\omega L}{\sqrt{R^2 + (\omega L)^2}} = \frac{\omega L/R}{\sqrt{1 + (\omega L/R)^2}}$$
(21)

Fase:

$$\arg\left(\tilde{H}_{(A-B)/A}(\omega)\right) = \arg\left(j\omega L\right) - \arg\left(R + j\omega L\right) = \frac{\pi}{2} - \arctan(\omega L/R)$$
 (22)

Questa è una funzione di trasferimento **passa-alto**. Per $\omega \to 0$, $|H| \to 0$. Per $\omega \to \infty$, $|H| \to 1$. La frequenza di taglio è sempre $\omega_c = R/L$, dove $|H| = 1/\sqrt{2}$.

1.2 Procedimento: Misure e Analisi

- Realizzazione del circuito: Seguire lo schema. Prestare attenzione ai collegamenti di massa. L'oscilloscopio misura sempre tensioni rispetto a massa. Per misurare $V_A(t)$, collegare la sonda del Canale 1 (CH1) al nodo A e la sua massa al nodo di massa del circuito. Per misurare $V_B(t)$, collegare la sonda del Canale 2 (CH2) al nodo B e la sua massa al nodo di massa del circuito.
- Misure con Oscilloscopio:

- Ampiezze V_A , V_B : Leggere i valori di ampiezza (Vpp o Vmax) dai canali CH1 e CH2. Assicurarsi che la scala verticale sia adeguata per una buona lettura. Convertire a V_0 se necessario ($V_0 = V_{pp}/2 = V_{max}$).
- **Ampiezza** V_{A-B} : Usare la funzione MATH dell'oscilloscopio per calcolare la differenza CH1 - CH2. Leggere l'ampiezza di questo segnale differenza. Rappresenta l'ampiezza della tensione ai capi dell'impedenza Z.
- **Differenza di Fase** $\Delta \phi'$ (tra V_{A-B} e V_A): L'oscilloscopio ha funzioni per misurare la differenza di fase tra due canali. Misurare la fase tra il segnale MATH (CH1-CH2) e il segnale CH1 (V_A). Questo corrisponde a arg $(\tilde{H}_{(A-B)/A}(\omega))$.
- **Differenza di Fase** $\Delta \phi''$ (tra V_A e V_B): Misurare la differenza di fase tra CH1 (V_A) e CH2 (V_B) . Attenzione al segno: la misura dell'oscilloscopio potrebbe dare $\arg(V_B) \arg(V_A)$ o viceversa. Confrontare con la teoria: $\Delta \phi''$ dovrebbe corrispondere a $\arg(\tilde{H}_{B/A}(\omega))$.
- Raccolta Dati: Variare la frequenza f del generatore di segnale in un intervallo ampio (es. 100 Hz 150 kHz o più, a seconda dei valori di R, L, C). Raccogliere i dati di ampiezza e fase in una tabella. È utile usare una spaziatura logaritmica delle frequenze (es. 5-10 punti per decade). Associare un errore a ciascuna misura (errore di lettura sullo schermo, fluttuazioni).
- Analisi Grafica (Bode Plot):
 - Grafico del Modulo $|H(\omega)|$: Riportare $|H(\omega)|$ (calcolato dai rapporti di ampiezze misurate, es. $|V_B|/|V_A|$) in funzione della frequenza f (o pulsazione $\omega = 2\pi f$). È molto istruttivo usare una scala log-log (logaritmo del modulo vs logaritmo della frequenza). In questa scala:
 - * Le regioni passa-basso/passa-alto appaiono come rette orizzontali.
 - * Le regioni di transizione (attorno alla frequenza di taglio) appaiono come rette con pendenza. Per filtri RC/RL del primo ordine, la pendenza è di ± 20 dB/decade (± 6 dB/ottava). (Nota: $G_{dB} = 20 \log_{10}(|H|)$).
 - * La frequenza di taglio f_c si individua come l'incrocio tra le asymptoti delle due rette.
 - Grafico della Fase $\arg(H(\omega))$: Riportare $\Delta \phi'$ o $\Delta \phi''$ in funzione della frequenza f (o ω) su scala log-lin (fase lineare vs logaritmo della frequenza).
- Fit dei Dati: Usare un software di analisi dati (es. Python con SciPy, Origin, QtiPlot) per eseguire un fit non lineare delle formule teoriche di $|H(\omega)|$ (es. Eq. 8-20) ai dati sperimentali.
 - Per il fit di $|\tilde{H}_{B/A}(\omega)|$ nel caso RC (Eq. 8), i parametri del fit sono R e C. Se R è noto da misura indipendente (con multimetro), si può fissare R e ricavare C.
 - Similmente per gli altri casi, si ricava C o L.
 - L'incertezza sul valore fittato di C o L viene fornita dal software di fit.
- Identificazione Filtro e Frequenza di Taglio: Dal grafico $|H(\omega)|$ vs f, identificare se il comportamento è passa-basso (guadagno alto a basse frequenze, basso ad alte frequenze) o passa-alto (viceversa). La frequenza di taglio f_c sperimentale può essere stimata come la frequenza alla quale il guadagno scende a $1/\sqrt{2}\approx 0.707$ del suo valore massimo, oppure dal grafico log-log come punto di ginocchio. Confrontare f_c sperimentale con quella teorica attesa $(f_c=1/(2\pi RC)$ o $f_c=R/(2\pi L))$ usando i valori noti/misurati/fittati di R,C,L. Verificare la coerenza.

1.3 Note (Approfondimenti)

• Coerenza Ampiezza Generatore-Oscilloscopio: Verificare che l'ampiezza V_A misurata dall'oscilloscopio sia ragionevole rispetto a quella impostata sul generatore (V_g) . Non saranno identiche a causa della resistenza interna del generatore R_g (tipicamente $50\,\Omega$). V_A è la tensione effettiva all'ingresso del nostro circuito (R-Z), data da $V_A = V_g \frac{\tilde{Z}_{in}}{R_g + \tilde{Z}_{in}}$, dove $\tilde{Z}_{in} = R + \tilde{Z}$ è l'impedenza del nostro circuito. Poiché \tilde{Z}_{in} dipende dalla frequenza, anche V_A dipenderà leggermente dalla frequenza, anche se V_g è costante. Per questo è importante misurare V_A direttamente con CH1.

• Scelta di R e C:

- R: Deve essere molto maggiore di R_g (es. $R \ge 10R_g = 500 \,\Omega$) per minimizzare l'effetto di R_g su V_A . Deve essere molto minore della resistenza di ingresso dell'oscilloscopio R_{scope} (tipicamente 1 M Ω) per evitare che l'oscilloscopio "carichi" il circuito e alteri V_B . Una scelta comune è R nell'ordine dei k Ω (es. 1 k Ω 10 k Ω).
- C: La capacità di ingresso dell'oscilloscopio C_{scope} (tipicamente 10 pF 20 pF) si somma in parallelo alla capacità del nostro componente Z = C (se misuriamo ai capi di C) o influenza il nodo B. Per rendere trascurabile C_{scope} , scegliere $C \gg C_{scope}$ (es. C nell'ordine dei nF o μ F).
- Intervallo di Frequenze: Scegliere l'intervallo in modo da coprire almeno una decade sotto e una decade sopra la frequenza di taglio f_c attesa, per visualizzare bene sia la banda passante che la banda attenuata e la transizione. $f_c = 1/(2\pi RC)$ o $R/(2\pi L)$. Esempio: se $R = 1 \text{ k}\Omega$ e C = 100 nF, $f_c \approx 1.6 \text{ kHz}$. Un intervallo da 100 Hz a 100 kHz sarebbe adeguato.
- Resistenza Interna Generatore (R_g) : Come detto, R_g forma un partitore con Z_{in} . L'analisi fatta finora assume \tilde{V}_A come ingresso. Se si volesse la funzione di trasferimento rispetto a \tilde{V}_g , sarebbe $\tilde{H}_{B/g} = \frac{\tilde{V}_B}{\tilde{V}_g} = \frac{\tilde{V}_A}{\tilde{V}_g} \frac{\tilde{V}_B}{\tilde{V}_A} = \frac{\tilde{Z}_{in}}{R_g + \tilde{Z}_{in}} \tilde{H}_{B/A}(\omega)$. Per minimizzare questo effetto, si usa $R \gg R_g$.
- Pulsazione ω vs Frequenza f: Scegliere cosa riportare nei grafici (di solito f è più pratico), ma indicarlo chiaramente sull'asse. Ricordare $\omega = 2\pi f$. Le formule teoriche sono spesso più compatte con ω .
- Problemi Misure di Fase: Se la fase misurata non corrisponde a quella attesa: 1. Collegamenti: Controllare che le sonde siano collegate correttamente e che le masse siano comuni e collegate al punto giusto. 2. Ordine Segnali: Assicurarsi che l'oscilloscopio calcoli la fase nell'ordine corretto (es. fase di CH2 fase di CH1). Potrebbe essere necessario invertire il segno del risultato. 3. Valori Componenti: R, L, C potrebbero avere valori diversi da quelli nominali. La resistenza interna dell'induttore può influenzare significativamente la fase, specialmente a basse frequenze o vicino alla risonanza. 4. Triggering Oscilloscopio: Assicurarsi che il trigger sia stabile e impostato sul canale di riferimento (di solito CH1, V_A).
- Resistenza Interna Induttore (r_L) : Un induttore reale non è ideale, possiede sempre una resistenza dovuta al filo avvolto. Si modella come un induttore ideale L in serie con una resistenza r_L . L'impedenza diventa $\tilde{Z}_{L,real} = r_L + \mathrm{j}\omega L$. Questo termine resistivo addizionale modifica le funzioni di trasferimento calcolate. Ad esempio, per il circuito RL, $\tilde{Z}_{tot} = (r_L + R) + \mathrm{j}\omega L$. Le nuove funzioni di trasferimento si ottengono sostituendo \tilde{Z}_L con $\tilde{Z}_{L,real}$ e R (nei denominatori) con $(R+r_L)$. L'effetto di r_L è più marcato quando ωL è piccolo (basse frequenze) o quando r_L è paragonabile a R. Si può misurare r_L con un multimetro in modalità ohmmetro.

1.4 Domande e considerazioni guida

- 1. Misura Fase (Massimi vs Zero-Crossing): * Metodi: La fase $\Delta \phi$ tra due sinusoidi $V_1(t) = A\cos(\omega t)$ e $V_2(t) = B\cos(\omega t + \Delta \phi)$ si può misurare dal ritardo temporale Δt tra eventi corrispondenti (es. passaggi per lo zero con stessa pendenza, o picchi massimi): $\Delta \phi = \omega \Delta t = 2\pi f \Delta t$. * Precisione: Il passaggio per lo zero è spesso più ripido del picco (dove la derivata è zero), rendendo la determinazione del tempo Δt potenzialmente più precisa, se il segnale è privo di rumore e centrato su zero volt. I picchi sono meno sensibili a piccoli offset DC ma più sensibili al rumore che può spostare la posizione del massimo. Gli oscilloscopi digitali moderni usano algoritmi sofisticati per entrambe le misure, ma il rumore e la risoluzione temporale limitano sempre la precisione. * Relazione Rumore/Risoluzione: Il rumore in tensione (σ_n) sovrapposto al segnale causa incertezza nella determinazione del livello (es. zero volt o picco). La risoluzione temporale (σ_T) , limitata dal campionamento e dalla banda passante dello strumento) limita la precisione con cui si può determinare l'istante Δt . L'incertezza sulla fase $\sigma_{\Delta \phi}$ dipenderà da entrambi: $\sigma_{\Delta \phi} \approx \omega \sigma_{\Delta t}$. L'incertezza $\sigma_{\Delta t}$ nel passaggio per lo zero dipende da σ_n e dalla pendenza del segnale (dV/dt); l'incertezza nel picco dipende da σ_n e dalla curvatura (d^2V/dt^2) . A parità di condizioni, il metodo più robusto dipende dalle specifiche caratteristiche del segnale e del rumore.
- 2. Relazione V_A vs V_g : Come discusso nella Nota 1.3, V_A è la tensione all'ingresso del circuito R-Z, mentre V_g è la tensione ideale (a vuoto) del generatore. Sono legate dalla relazione $V_A = V_g \frac{\tilde{Z}_{in}}{R_g + \tilde{Z}_{in}}$, dove $\tilde{Z}_{in} = R + \tilde{Z}$ e R_g è la resistenza interna del generatore (solitamente 50 Ω). Poiché \tilde{Z}_{in} dipende dalla frequenza (attraverso \tilde{Z}), V_A sarà generalmente minore di V_g (specialmente se $\left|\tilde{Z}_{in}\right|$ non è $\gg R_g$) e avrà una fase diversa rispetto a V_g . L'esperimento misura la risposta del circuito R-Z rispetto all'ingresso effettivo V_A , non rispetto a V_g .
- 3. Scambio R e C (o R e L): Consideriamo il circuito RC (Z=C). Originariamente V_B è ai capi di R (passa-alto) e V_{A-B} ai capi di C (passa-basso). Se scambiamo R e C, la nuova impedenza Z' è R e il resistore R' è C. La tensione V'_B sarà ai capi di C e V'_{A-B} ai capi di R. Le funzioni di trasferimento si scambiano: la tensione ai capi del componente che ora è al posto di R (cioè C) avrà la funzione di trasferimento che prima aveva V_B (passa-alto), e la tensione ai capi del componente che ora è al posto di Z (cioè R) avrà la funzione di trasferimento che prima aveva V_{A-B} (passa-basso). In pratica, scambiare R e C (o R e L) inverte il tipo di filtro osservato ai capi di ciascun componente. * Intuizione: Se l'uscita è presa sul condensatore, alle basse frequenze $Z_C \to \infty$, il condensatore blocca la corrente, quasi tutta la tensione cade su di esso (passa-basso). Se l'uscita è sul resistore, alle basse frequenze $Z_C \to \infty$, non passa corrente, la caduta su R è zero (passa-alto). Ad alte frequenze, $Z_C \to 0$, la tensione cade quasi tutta su R (passa-alto per V su R), mentre la tensione su C tende a zero (passa-basso per V su C).
- 4. Importanza Resistenza Induttore (r_L) : Sì, r_L va considerata. Come visto nella Nota 1.3, modifica l'impedenza dell'induttore a $\tilde{Z}_{L,real} = r_L + \mathrm{j}\omega L$. Questo è importante: * A basse frequenze: ωL può essere piccolo, e r_L può diventare una parte significativa dell'impedenza totale, alterando il comportamento atteso (es. un filtro passa-alto RL potrebbe non raggiungere guadagno zero a $\omega = 0$). * Nei circuiti RLC (Sezione 2): r_L si somma a R, modificando la resistenza totale $R_{tot} = R + r_L$. Questo influenza direttamente il fattore di qualità $Q = \omega_0 L/R_{tot}$ e quindi la larghezza e l'altezza della risonanza. Se r_L non è trascurabile rispetto a R, ignorarla porta a stime errate di Q e della risposta del circuito. * Nelle misure: Misurare r_L con un multimetro è una buona pratica.
- 5. Interpretazione Risposta Onda Quadra (Circuiti 2): Un'onda quadra può essere vista come la somma di infinite sinusoidi (serie di Fourier): una fondamentale alla frequenza dell'onda quadra e armoniche dispari a frequenze multiple (3f, 5f, 7f...). * Il transiente veloce (salita/discesa) corrisponde alle componenti ad alta frequenza. * La parte costante nel tempo corrisponde alla componente a frequenza zero (DC) e alle basse frequenze. * La funzione di trasferimento $\tilde{H}_{(A-B)/A}(\omega)$ rappresenta la risposta della tensione ai capi del primo elemento (Z nel nostro schema). * RC: V_{A-B} su C (Passa-basso): Questo filtro attenua le alte frequenze.

Quando un'onda quadra attraversa un passa-basso, i fronti ripidi (alte freq.) vengono smussati, la salita/discesa diventa più lenta (esponenziale). La parte costante (basse freq.) passa bene. Vedremo un'onda "arrotondata". * RL: V_{A-B} su L (Passa-alto): Questo filtro attenua le basse frequenze e la DC, lasciando passare le alte frequenze. Quando un'onda quadra attraversa un passa-alto, la componente costante viene bloccata. I fronti ripidi (alte freq.) passano, generando dei picchi ("spike") all'inizio della salita/discesa. Durante la parte costante dell'ingresso, l'uscita decade esponenzialmente verso zero. Vedremo dei picchi seguiti da un decadimento. * Relazione col grafico $\tilde{H}_{(A-B)/A}(\omega)$: Il grafico mostra quali frequenze sono "tagliate" e quali "fatte passare". Se il grafico mostra un passa-basso, significa che le armoniche ad alta frequenza dell'onda quadra saranno attenuate, risultando in un segnale smussato. Se mostra un passa-alto, le armoniche a bassa frequenza (inclusa la DC) sono attenuate, portando a un segnale con picchi e decadimenti. L'analisi in frequenza (funzione di trasferimento) predice il comportamento nel dominio del tempo.

2 Funzioni di trasferimento nei circuiti RLC

2.1 Prima di arrivare in laboratorio: Calcoli Preliminari

Consideriamo il circuito RLC serie di Figura 5. La tensione di ingresso \tilde{V}_A è applicata all'intera serie RLC. La corrente \tilde{I} è la stessa in tutti i componenti. L'impedenza totale è:

$$\tilde{Z}_{tot}(\omega) = R + \tilde{Z}_L + \tilde{Z}_C = R + j\omega L + \frac{1}{j\omega C} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$
 (23)

La corrente nel circuito è $\tilde{I}(\omega) = \tilde{V}_A/\tilde{Z}_{tot}(\omega)$. Le tensioni ai capi dei singoli componenti sono:

- $\tilde{V}_R = \tilde{I}R = \tilde{V}_A \frac{R}{\tilde{Z}_{tot}}$
- $\tilde{V}_L = \tilde{I}\tilde{Z}_L = \tilde{V}_A \frac{\mathrm{j}\omega L}{\tilde{Z}_{tot}}$
- $\tilde{V}_C = \tilde{I}\tilde{Z}_C = \tilde{V}_A \frac{1/(\mathrm{j}\omega C)}{\tilde{Z}_{tot}}$

Le funzioni di trasferimento richieste sono quindi:

 \bullet Funzione di trasferimento $\tilde{H}_{R/A}(\omega) = \tilde{V}_R/\tilde{V}_A$ (uscita su R):

$$\tilde{H}_{R/A}(\omega) = \frac{R}{R + j(\omega L - 1/(\omega C))}$$
(24)

Questa funzione descrive la risposta della corrente (dato che $\tilde{I} = \tilde{V}_R/R$), normalizzata rispetto a \tilde{V}_A/R . Ha un comportamento **passa-banda**. Il modulo è massimo quando il termine immaginario al denominatore è zero, cioè $\omega L = 1/(\omega C)$. Questa è la **pulsazione** di risonanza ω_0 :

$$\omega_0 = \frac{1}{\sqrt{LC}} \implies f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 (25)

Alla risonanza ($\omega = \omega_0$), $\tilde{Z}_{tot}(\omega_0) = R$, l'impedenza è minima e reale. La corrente è massima e in fase con \tilde{V}_A . Il guadagno $\left|\tilde{H}_{R/A}(\omega_0)\right| = R/R = 1$. Lontano dalla risonanza ($\omega \to 0$ o $\omega \to \infty$), il termine immaginario domina, $\left|\tilde{Z}_{tot}\right| \to \infty$, e $\left|\tilde{H}_{R/A}(\omega)\right| \to 0$.

• Funzione di trasferimento $\tilde{H}_{L/A}(\omega) = \tilde{V}_L/\tilde{V}_A$ (uscita su L):

$$\tilde{H}_{L/A}(\omega) = \frac{j\omega L}{R + j(\omega L - 1/(\omega C))}$$
(26)

Questa funzione ha un comportamento **passa-alto risonante**. Per $\omega \to 0$, $\tilde{H}_{L/A} \to 0$. Per $\omega \to \infty$, il termine $1/(\omega C)$ diventa trascurabile. $\tilde{H}_{L/A} \approx \frac{\mathrm{j}\omega L}{R+\mathrm{j}\omega L} = \frac{\mathrm{j}\omega L/R}{1+\mathrm{j}\omega L/R}$. Il modulo tende a 1. Attorno a ω_0 , può mostrare un picco di risonanza se il circuito è sottosmorzato.

• Funzione di trasferimento $\tilde{H}_{C/A}(\omega) = \tilde{V}_C/\tilde{V}_A$ (uscita su C):

$$\tilde{H}_{C/A}(\omega) = \frac{1/(j\omega C)}{R + i(\omega L - 1/(\omega C))} = \frac{1}{1 - \omega^2 L C + i\omega R C}$$
(27)

(Moltiplicando numeratore e denominatore per $j\omega C$). Questa funzione ha un comportamento **passa-basso risonante**. Per $\omega \to 0$, $\tilde{H}_{C/A} \to 1/(1-0+0) = 1$. Per $\omega \to \infty$, il termine $\omega^2 LC$ domina al denominatore, $\left|\tilde{H}_{C/A}\right| \to 0$. Attorno a ω_0 , può mostrare un picco di risonanza se il circuito è sottosmorzato.

Fattore di Qualità (Q): Un parametro importante per i circuiti RLC è il fattore di qualità Q, che misura la "nitidezza" della risonanza. È definito come:

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (28)

Un Q alto significa una risonanza stretta e alta (circuito poco smorzato). Un Q basso significa una risonanza larga e bassa (circuito molto smorzato). La larghezza di banda a metà potenza $(\Delta\omega)$ della risonanza della corrente (e quindi di \tilde{V}_R) è legata a Q:

$$\Delta\omega = \omega_0/Q = R/L \tag{29}$$

2.2 Procedimento

Simile a RC/RL, ma ora si misurano le tensioni ai capi di R, L, C (sempre rispetto a massa). Se R, L, C sono in serie come in Figura 5:

- V_A : Tra l'inizio della serie e massa.
- $V_{puntotraLeC}$: Rispetto a massa.
- V_B (punto tra R e massa, se R è l'ultimo elemento verso massa): V_B è la tensione su R.

Attenzione a come misurare le tensioni ai capi di L e C, poiché l'oscilloscopio misura rispetto a massa. Se R non è a massa, misurare V_R richiede la funzione MATH (tensione a un capotensione all'altro capo). Stessa cosa per L e C se non sono collegate direttamente a massa. Lo schema in Figura 5 sembra avere R connesso a massa, quindi V_B è la tensione su R, $V_R = V_B$. La tensione su C è quella nel nodo tra L e C. La tensione su L è $V_A - V_{nodoLC}$.

Si raccolgono dati di ampiezza e fase per V_R/V_A , V_L/V_A , V_C/V_A al variare della frequenza. Si fittano i moduli e le fasi con le formule teoriche (24, 26, 27), includendo eventualmente la resistenza r_L dell'induttore ($R_{tot} = R + r_L$). Il fit permette di stimare L e C (assumendo R e r_L noti). Il fit è più robusto se si usano simultaneamente i dati di modulo e fase. Confrontare i valori ottenuti con quelli attesi.

2.3 Domande e considerazioni guida

- 1. Forma Risonanza su R (V_R/V_A) : La risposta in frequenza $\left|\tilde{H}_{R/A}(\omega)\right| = \left|\tilde{V}_R/\tilde{V}_A\right|$ ha la forma di una "campana" (curva di Lorentz o di risonanza). * Altezza: Il picco della campana si trova a $\omega = \omega_0 = 1/\sqrt{LC}$. L'altezza del picco è $\left|\tilde{H}_{R/A}(\omega_0)\right| = 1$. L'altezza è indipendente dai valori RLC (è sempre 1 alla risonanza). (Nota: se si includesse R_g , l'altezza sarebbe $R/(R+R_g)$). Se si considera r_L , $R_{tot} = R + r_L$, l'altezza a ω_0 è R/R_{tot} . * Larghezza: La larghezza della campana è inversamente proporzionale al fattore di qualità Q. La larghezza a metà potenza (dove $|H|^2 = 1/2$, quindi $|H| = 1/\sqrt{2} \approx 0.707$) è $\Delta \omega = \omega_0/Q = R_{tot}/L$. Una Q alta (bassa R_{tot} , alta L) dà una risonanza stretta. Una Q bassa (alta R_{tot} , bassa L) dà una risonanza larga.
- 2. Comportamento Frequenza/Tempo e Smorzamento (misura su R): Il comportamento in frequenza (forma della risonanza) e nel dominio del tempo (risposta a un gradino o a un impulso) sono due facce della stessa medaglia, entrambe determinate dai parametri R, L, C e in particolare dal fattore di smorzamento $\zeta = \frac{R_{tot}}{2} \sqrt{\frac{C}{L}} = \frac{1}{2Q}$. * Sottosmorzato ($\zeta < 1$ o Q > 1/2): Corrisponde a $R_{tot} < 2\sqrt{L/C}$. * Frequenza: Si osserva un chiaro picco di risonanza in $|H_{R/A}(\omega)|$ a ω_0 . Più Q è alto (più ζ è piccolo), più il picco è stretto e alto (relativamente alla larghezza). * Tempo (risposta a gradino): L'uscita $V_R(t)$ (proporzionale alla corrente) mostra oscillazioni smorzate attorno al valore finale. La frequenza di queste oscillazioni è $\omega_d = \omega_0 \sqrt{1-\zeta^2}$, leggermente inferiore a ω_0 . Il decadimento è più lento per Q alto. * Smorzamento Critico

 $(\zeta = 1 \text{ o } Q = 1/2)$: Corrisponde a $R_{tot} = 2\sqrt{L/C}$. * Frequenza: La risposta $|H_{R/A}(\omega)|$ è la più larga possibile senza diventare monotona. Il picco a ω_0 è appena accennato. * Tempo: La risposta a gradino raggiunge il valore finale nel modo più rapido possibile senza overshoot (sovraelongazione). * Sovrasmorzato ($\zeta > 1 \text{ o } Q < 1/2$): Corrisponde a $R_{tot} > 2\sqrt{L/C}$. * Frequenza: La risposta $|H_{R/A}(\omega)|$ non ha un vero picco a ω_0 ; il massimo è a $\omega = 0$ (se non fosse per C) o comunque la curva è molto larga e piatta, decrescendo monotonicamente dopo una certa frequenza. * Tempo: La risposta a gradino è lenta, senza oscillazioni, e raggiunge il valore finale in modo esponenziale (combinazione di due esponenziali reali).

2.4 Tips and Tricks

1. Forma Risonanza su R: (Vedi risposta 2.3.1). Larghezza determinata da $\Delta\omega=R_{tot}/L=\omega_0/Q$. Altezza (picco) normalizzata a 1 (o R/R_{tot} se si misura V_R e si considera r_L). 2. Frequenza/Tempo e Smorzamento: (Vedi risposta 2.3.2). Collega Q e ζ alla forma della risonanza (frequenza) e alle oscillazioni/velocità di risposta (tempo). 3. Capire Intuitivamente la Risposta in Frequenza (Asintoti): Analizzare il comportamento del circuito per $\omega \to 0$ (DC) e $\omega \to \infty$ è estremamente utile per capire il tipo di filtro. Si usano le impedenze limite (vedi Figura 6): * $\omega \to 0$ (Bassa Frequenza): *Resistore: $Z_R = R$ (costante) *Induttore: $Z_L = j\omega L \to 0$ (si comporta come un corto circuito) *Condensatore: $Z_C = 1/(j\omega C) \to \infty$ (si comporta come un circuito aperto) * $\omega \to \infty$ (Alta Frequenza): *Resistore: $Z_R = R$ (costante) *Induttore: $Z_L = j\omega L \to \infty$ (si comporta come un circuito aperto) *Condensatore: $Z_C = 1/(j\omega C) \to 0$ (si comporta come un corto circuito)

Esempio: Circuito RC Passa-Basso (uscita su C, Figura 7): * $\omega \to 0$: C è aperto. Non scorre corrente in R. La tensione ai capi di R è zero. Tutta la tensione V_{in} cade ai capi di C. $V_{out} = V_{in}$. Quindi |H(0)| = 1. * $\omega \to \infty$: C è un corto circuito. Collega direttamente V_{out} a massa. $V_{out} = 0$. Quindi $|H(\infty)| = 0$. * Conclusione: Guadagno 1 a basse frequenze, 0 ad alte frequenze \Longrightarrow Filtro Passa-Basso. Questo conferma l'analisi asintotica mostrata in Figura 7.

Applichiamo all'RLC (uscita su R): * $\omega \to 0$: L è corto, C è aperto. Il circuito è interrotto da C. Non passa corrente. $V_R = IR = 0$. $|H_{R/A}(0)| = 0$. * $\omega \to \infty$: L è aperto, C è corto. Il circuito è interrotto da L. Non passa corrente. $V_R = IR = 0$. $|H_{R/A}(\infty)| = 0$. * $\omega = \omega_0$: Z_L e Z_C si cancellano $(Z_L + Z_C = 0)$. $Z_{tot} = R$. $V_R = V_A(R/R) = V_A$. $|H_{R/A}(\omega_0)| = 1$. * Conclusione: Guadagno zero a frequenze molto basse e molto alte, guadagno massimo a ω_0 . \Longrightarrow Filtro Passa-Banda.

Questo approccio asintotico è potente per una comprensione qualitativa rapida del comportamento in frequenza di qualsiasi rete RLC.

Riferimenti Bibliografici

I riferimenti indicati nella scheda [1-4] sono standard e appropriati per approfondire la teoria dei circuiti AC, l'uso dell'oscilloscopio e le analisi di Fourier.

Questo documento complementare ha lo scopo di chiarire e approfondire i concetti necessari per l'esperienza "Circuiti 3". Si raccomanda di studiare questi concetti parallelamente all'esecuzione pratica dell'esperimento e all'analisi dei dati.