ADMISSION TO CANDIDACY EXAMINATION

IN

REAL ANALYSIS

JANUARY 1989

Throughout the exam m will denote the Lebesgue measure on R (the real numbers). Integrals with respect to m will be denoted by $\int f(x)dx$ or $\int f(t)dt$.

- 1. State and prove Fatou's Lemma.
- 2. Let (x,A,μ) be a measure space and f a nonnegative measurable function on x. Define ν on A by

$$v(E) = \int_{R} f d\mu$$
 for $E \in A$.

Prove that

- (a) v is a measure on A.
- (b) For any nonnegative measurable function g on x

$$\int g dv = \int g f d\mu.$$

- 3. Prove that the interval [a,b] is compact.
- 4. Let E be a measurable subset of [0,1] and m(E) > 0. Prove that for every ε > 0 there exists a closed nowhere dense set K such that K ⊂ E and m(E\K) < ε.</p>
- 5. Let $\langle k_n \rangle$ be a sequence of positive integers so that $\sum_{n=1}^{\infty} \frac{1}{k_n} < \infty$.

For $t \in [0,1)$ define

$$f_n(t) = t^{k_n}, \quad n = 1, 2...$$

and let

$$f(t) = \sum_{n=1}^{\infty} f_n(t).$$

Prove that

- (a) $f \in L^1([0,1])$.
- (b) f is nondecreasing (with +∞ as a possible value).
- (c) For all $t \in [0,1)$, $f(t) < \infty$.
- 6. Let

$$F(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ g(x) & \text{if } 0 \leq x \leq 1 \\ 1 & \text{if } x \geq 1, \end{cases}$$

where g is the Cantor ternary function.

Let μ be the measure on R such that F is its cumulative distribution function, i.e. $\mu((-\infty,x]) = F(x)$.

Prove that μ is mutually singular with respect to Lebesgue measure.

7. For $f \in L^1(R)$ and $g \in L^p(R)$, $1 \le p < \infty$, let $(f * g)(t) = \int f(t-x)g(x)dx.$

Prove that (f * g)(t) exists a.e. and $||f * g||_p \le ||f||_1 ||g||_p$.

losque of de

- 8. Let f be a nonnegative integrable function on R, and let $\psi(t) = m(\{x : f(x) > t\})$. Prove that
 - (a) $m \times m(\{\langle x,y \rangle : 0 \le y \le f(x)\}) = m \times m (\{\langle x,y \rangle : 0 < y < f(x)\})$ = $\int f(x)dx$.
 - (b) ψ is a decreasing function and

$$\int_0^\infty \psi(t)dt = \int f(x)dx$$

9. True or false. Prove or give a counterexample.

- (a) If $f_n \to f$ a.e. on [0,1] then $f_n \to f$ in measure:
- (b) If $f_n \to f$ in measure then $f_n \to f$ a.e.
- (c) If $||f_n f||_1 \to 0$ then $f_n \to f$ a.e.
- (d) If $f_n \to f$ a.e. then $||f_n f||_1 \to 0$.
- (e) Let f be an integrable function on R. If $\langle E_n \rangle$ is a decreasing sequence of measurable sets and $E = \cap E_n$ then

$$\int_{E} f \ dm = \lim_{n \to \infty} \int_{E_{n}} f \ dm.$$

(f) If f is nondecreasing and continuous on [0,1] and f'(x) = 0 a.e., then f is constant.