Capítulo 1

Exercícios

Definição 1.1. Seja $f: M \to M$ um difeomorfismo parcialmente hiperbólico. Considerando $W^{ss(uu)}(x) \subseteq M$ a variedade estável (respectivamente instável) forte de x, chamamos de disco estável (respectivamente instável) forte de x de tamanho k, a bola fechada $D_k^{ss(uu)}(x) \subseteq W^{ss(uu)}(x)$ de raio k/2, pela métrica em $W^{ss(uu)}(x)$, e centrada em x.

Lema 1.2. Seja $f: M \to M$ um difeomorfismo parcialmente hiperbólico e $\varepsilon \in [0,1]$ dado, se f for ms-minimal ou mu-minimal, então para todo $\delta > 0$, existe um conjunto $W \subseteq \mathcal{X}(f)$ e K > 0 suficientemente grande tal que $D_K^{ss(uu)}(x)$ é δ -denso em M para todo $x \in W$ e $m(W) > 1 - \varepsilon$.

Demonstração. Seja $\delta > 0$, $x \in M$ um ponto qualquer e $D_k^{ss(uu)}(x)$ o disco estável (instável) forte de x de tamanho k. Como $\overline{W^{ss(uu)}(x)} = M$, pois f é ss(uu)-minimal, então existe $k_x \in \mathbb{N}$ tal que $D_k^{ss(uu)}(x)$ é δ -denso em M.

Pela continuidade das variedades estáveis (instáveis) forte, existe uma vizinhança U_x de x tal que para todo $y \in U_x$, existe $k_y \in \mathbb{N}$ tal que $D_k^{ss(uu)}(x)$ também é δ -denso em M. Como f é parcialmente hiperbólico e x é um ponto qualquer de M, então $\bigcup_{x \in M} U_x$ é uma cobertura aberta de M, e pela compacidade de M existe $n \in \mathbb{N}$ tal que $M \subseteq \bigcup_{i=1}^n U_{x_i}$. Seja $k_i \in \mathbb{N}$ tal que $D_{k_{x_i}}^{ss(uu)}(x_i)$ seja δ -denso em M, tomemos $K = \max \left\{k_{x_1}, k_{x_2}, \cdots, k_{x_n}\right\}$ e então para qualquer $x \in M$ temos que $x \in U_{x_i}$ para algum $i \in \mathbb{N}$, logo $D_K^{ss(uu)}(x)$ é δ -denso em M.

Teorema 1.3. Seja $f: M \to M$ um difeomorfismo parcialmente hiperbólico preservando a medida de Lebesgue m. Se f for ms-minimal ou mu-minimal, então f é topologicamente mixing.

Demonstração. Vamos provar para o caso mu-minimal, e para o caso ms-minimal a demonstração é análoga.

Sejam $U,V\subseteq M$ dois abertos quaisquer. Tomemos $\varepsilon>0$ tal que U contenha uma bola aberta B de raio ε , e $D^{uu}_{\varepsilon}(x)\subseteq U$ para todo ponto $x\in B$. Como B é aberto, então b=m(B)>0.

Seja $\delta > 0$ tal que V contenha uma bola de raio δ . Como f é mu-minimal, pelo Lema 1.2 existem $W \in M$ e K > 0 suficientemente grande, tal que $D_K^{uu}(x)$ é δ -denso para todo $x \in W$ e m(W) > 1 - b. Por hiperbolicidade, existe $n_0 \in \mathbb{N}$ tal que $f^n(D_{\varepsilon}^{uu}(x)) \supseteq D_K^{uu}(x)$ para todo $n > n_0$ e para todo $x \in M$. Temos também que $m(f^{-n}(W)) = m(W)$ pois f preserva a medida. Fixemos um $n \in \mathbb{N}$ onde $n > n_0$.

Afirmação: $f^{-n}(W) \cap B \neq \emptyset$. De fato, suponhamos que $f^{-n}(W) \cap B = \emptyset$. Daí, por aditividade da medida, temos que se $f^{-n}(W) \cap B = \emptyset$ então $m(f^{-n}(W) \cup B) = m(f^{-n}(W)) + m(B) > b + 1 - b = 1$. Absurdo pois $f^{-n}(W) \cup B \subseteq M$ e m(M) = 1. Logo $f^{-n}(W) \cap B \neq \emptyset$.

Tomemos $z \in f^{-n}(W) \cap B$. Como $z \in f^{-n}(W)$ temos também que $f^n(z) \in W$, logo $f^n(D^{uu}_{\varepsilon}(z)) \supseteq D^{uu}_K(f^n(z))$ é δ -denso. Por escolha de B, temos $D^{uu}_{\varepsilon}(z) \subseteq U$ e por escolha de δ , temos $f^n(D^{uu}_{\varepsilon}(z)) \cap V$ e como $n > n_0$ é um qualquer, então $f^n(U) \cup V \neq \emptyset$ para todo $n > n_0$. Como U e V foram tomados abertos quaisquer então f é topologicamente mixing.