Camera Calibration

What is Camera Calibration?

- · Finding quantities internal to the camera that affect the imaging process
 - Position of image center in the image (where optical axis meets image plane)
 - Focal length (Distance from camera to image plane)
 - Different scaling factors for row/column pixels
 - Skew factor
 - Lens distortion (pin-cushion effect)

Techniques

- Roger Tsai
- Linear algebra method
 - Can be used as initialization for iterative non linear methods
- Methods using vanishing points

Procedure

- Calibration target: 2 planes at right angle with checkerboard pattern (Tsai grid)
- Incomplete

Image Processing of Image of Target

- Canny Edge detection
- Straight line fitting
- Intersection of lines to obtain corners
- · Matching image corners and 3D target checkerboard corners
 - Counting if whole target is visible in image

ullet Get pairs of image points and world points $(x_i,y_i) o (X_i,Y_i,Z_i)$

Central Projection

• If world and image points are represented by homogeneous vectors, central projection is a linear transformation

$$x_i = rac{u}{w}, y_i = rac{v}{w}$$

$$egin{bmatrix} u \ v \ v' \ w' \end{bmatrix} = egin{bmatrix} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} egin{bmatrix} x_i \ y_i \ z_i \ 1 \end{bmatrix}$$

$$egin{bmatrix} u' \ v' \ v' \ w' \end{bmatrix} = egin{bmatrix} lpha_x & 0 & x_0 & 0 \ 0 & lpha_y & y_0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix} egin{bmatrix} x_s \ y_s \ z_s \end{bmatrix}$$

$$lpha_x = fk_x, lpha_y = fk_y, x_i = frac{x_s}{z_s}, y_i = frac{y_s}{z_s}$$
 image center $\implies (x_0, y_0)$ scaling factors $\implies k_x, k_y$

- lpha is the focal length in pixels in each direction
- s is skew parameter
- K is the calibration matrix

 5 degrees of freedom
 - 3x3 upper triangular matrix

$$K = egin{bmatrix} lpha_x & s & x_0 \ 0 & lpha_y & y_0 \ 0 & 0 & 1 \end{bmatrix} \ K[I_3|0_3] = egin{bmatrix} lpha_x & 0 & x_0 & 0 \ 0 & lpha_y & y_0 & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

From Camera Coordinates to World Coordinates

Some Equations omitted here

$$P = K[I_3|0_3] egin{bmatrix} R & -Rar{C} \ 0_3^T & 1 \end{bmatrix} egin{bmatrix} X_s \ Y_s \ Z_s \ 1 \end{bmatrix}$$

$$P = KR[I_3| - \bar{C}]$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- ullet P has 11 DOF
 - $\circ~$ 5 from triangular calibration K, 3 from R, 3 from C
- P is fairly general 3x4 matrix
 - \circ Left 3x3 submatrix KR is non-singular

Calibration Steps

- 1. Estimate P using scene points and their images
- 2. Estimate the interior parameters and the exterior parameters

$$P = KR[I_3| - \bar{C}]$$

 \circ Left 3x3 submatrix of P is product of upper triangular matrix and orthogonal matrix

Finding Camera Translation

- Find homogeneous coordinates of C in the scene
- ullet C is the null vector of matrix P

$$PC = 0$$

- $\bullet \ \ {\rm Find\ null\ vector}\ C\ {\rm of}\ P\ {\rm using\ SVD}$
- ullet C is the unit singular vector of P corresponding to the smallest singular value (last column of V, where $P=UDV^T$ is the SVD of P)

Finding Camera Orientation and Internal Parameters

- Left 3x3 submatrix M of P is M=KR
 - $\circ \; K$ is upper triangular
 - $\circ \,\, R$ is orthogonal rotational matrix

- ullet Any non-singular square matrix M can be decomposed into the product of an upper triangular matrix Q and an orthogonal matrix R using RQ factorization
 - Similar to QR but reversed

Improved Computation of P

- $x_i=PX_i$ involves homogeneous coordinates, thus x_i and PX_i just have to be proportional $\implies x_i imes PX_i=0$
- Let p_1^T, p_2^T, p_3^T be the 3 row vectors of ${\cal P}$
- ullet $x_i imes PX_i$ yields matrix of knowns times 12x1 matrix of unknowns (p_{1-3}) that equals 0

- Can easily solve for
$$egin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \hat{p}$$
 using SVD if A in $Aar{p} = ar{0}$

Radial Distortion Modelling

- ullet Minimize $f(\kappa_1,\kappa_2)=\sum_i (x_i'-x_{ci})^2+(y_i'-y_{ci})^2$ using lines known to be straight
- ullet (x_i',y_i') is the radial projection of (x_i,y_i) onto straight lines
- Needs precisely known 3D points
- Zhang's approach
 - Capture various positions of calibration grid
 - \circ Transformations between images are homographies o can match corners of boxes to find homography
 - Use homographies to solve for parameters
 - image point = Calibration matrix A * [R | T] * World point
 - Assume plane at z=0