Introduction à l'algorithmique et la complexité (et un peu de CAML) Algorithmes de Tri (et leur complexité)

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

Cours dispensés en MPSI (option Info) au CIV, depuis 2011-

http://www-sop.inria.fr/members/Nicolas.Nisse/lectures/prepa/

- Algorithme de Tri par Sélection
- 2 Algorithme de Tri par Insertion
- Algorithme de Tri à Bulles
- Algorithme de Tri Fusion
- Au delà du Tri Fusion

Tri par **selection** des éléments d'un tableau

Étant donné un tableau $T = [t_0, \cdots, t_{n-1}]$ d'éléments d'un ensemble ordonné (disons d'entiers), on veut modifier la position des éléments dans T tel, qu'à la fin, les éléments de T soient ordonnés (e.g., du plus petit au plus grand) (tri sur place).

Algorithme par Sélection: cf. Slide 12 Chap. 2

(fonction "Echange" : slide 17, Chap. 1).

```
#let triSelection t =
       let n = vect_length t in
       for i = 0 to n-2 do
              let min_courant = ref t.(i) in
              let index courant = ref i in
                                                    Complexité : Double boucles imbriquées.
              for i=(i+1) to (n-1) do
                     if t.(j)< !min_courant then
                                                                      Notons que c(Echange) = O(1). Donc,
                            min_courant := t.(j);
                                                                      c(triSelection) =
                            index courant := i;
                                                                     O(1) + \sum_{i=0}^{n-2} (O(1) + \sum_{i=i+1}^{n-1} O(1)) = O(n^2).
              Echange t i !index_courant;
      done:
triSelection : 'a vect -> 'a vect = <fun>
```

Déterminer la complexité d'un algorithme consiste à compter le nombre "d'opérations élémentaires" réalisées. Ici, on peut se dire que ce qui compte c'est le nombre de "déplacements" des éléments dans le tableau (c-à-d, le nombre d'exécutions de $Echange(t,i,!index_courant)$ lorsque $i \neq !index_courant)$.

Si une "opération élémentaire" est définie comme un tel déplacement :

- Quelle est la complexité de l'algorithme triSelection appliqué au tableau [|1,2,3,...,n|] ?
- Montrez que le pire cas a lieu pour le tableau $[|n, n-1, n-2, \cdots, 1|]$

Souvent (dans ce cours), ce qui importe pour le tri est le nombre de comparaisons effectuées.

- Algorithme de Tri par Sélection
- 2 Algorithme de Tri par Insertion
- Algorithme de Tri à Bulles
- Algorithme de Tri Fusion
- Au delà du Tri Fusion

Tri par insertion des éléments d'un tableau

Algorithme par Insertion: Initialement, vous tenez toutes vos cartes (non triées) dans votre main droite. À chaque étape, vous prenez la "première" (la plus à gauche) carte qui se trouve dans votre main droite, et l'insérez "à sa place" dans votre main gauche. À la fin, vos cartes sont triées par ordre croissant dans votre main gauche!!

```
#let triInsertion t =
        let n = vect length t in
                                                                  Rappel: fonction "Echange" (slide 17, Chap 1).
        for i = 1 to n-1 do
                 let i = ref(i-1) in
                while (!j>=0) && (t.(!j)>t.(!j+1)) do
                                                          Terminaison: preuve laissée au lecteur.
                         Echange t ! j (!j+1);
                         i := !i -1:
                                                            Correction : Un invariant de boucle est "après l'itération i, le
                 done:
                                                                          sous-tableau [|t.(0), \cdots, t.(i)|] est ordonné"
        done:
                                                                          À prouver par récurrence sur i.
triInsertion : 'a vect -> 'a vect = <fun>
                                                                          Le nombre d'applications de "Echange" est
                                                           Complexité :
#let t = [| 7;8;2;5;3;6|];;
t : int vect = [17; 8; 2; 5; 3; 6]]
                                                                          c(triInsertion) = O(\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} O(1)) = O(n^2).
#triInsertion t::
- : int vect = [|2; 3; 5; 6; 7; 8|]
                                                                          Un pire cas est t = [|n, n-1, n-2, \dots, 1|].
```


- Algorithme de Tri par Sélection
- 2 Algorithme de Tri par Insertion
- Algorithme de Tri à Bulles
- Algorithme de Tri Fusion
- Au delà du Tri Fusion

Tri à bulles

Algorithme de tri à bulles : comparer répétitivement les éléments consécutifs d'un tableau, et à les permuter lorsqu'ils sont mal triés. (voir animation sur Wikipedia). Intuitivement, on fait "remonter" (comme des bulles) les éléments les plus grands jusqu'à ce qu'ils atteignent leur place.

```
Rappel: fonction "Echange" (slide 17, Chap 1).
                                                          Terminaison: preuve laissée au lecteur.
#let triBulles t =
                                                            Correction : Un invariant de boucle est "après l'itération i.
        let n = vect length t in
                                                                         le sous-tableau [|t.(i), \dots, t.(n-1)|]
        for i = (n-1) downto 1 do
                                                                          contient les n-i plus grands éléments de t
                 for i=0 to (i-1) do
                         if t.(i+1)<t.(i) then Echange t i (i+1):
                                                                          qui sont ordonnés".
                 done:
                                                                          À prouver par récurrence (descendante) sur i
        done:
                                                           Complexité: Le nombre d'applications de "Echange" est
triBulles: 'a vect -> 'a vect = <fun>
                                                                          O(n^2).
                                                                          Un pire cas est t = [|n, n-1, n-2, \dots, 1|].
```


- Algorithme de Tri par Sélection
- Algorithme de Tri par Insertion
- Algorithme de Tri à Bulles
- Algorithme de Tri Fusion
- Au delà du Tri Fusion

Tri Fusion ("merge sort" en anglais)

Pour changer, nous trions ici une liste et les algorithmes sont présentés sous forme récusive.

Algorithme de tri fusion : Divisons notre liste $\ell=[u_0,\cdots,u_{n-1}]$ en deux. Trions (récursivement) les listes $\ell_1=[u_0,\cdots,u_{(n-1)/2}]$ et $\ell_2=[u_{(n-1)/2+1},\cdots,u_{n-1}]$. Fusionnons les listes triées ℓ_1 et ℓ_2 de façon à obtenir une nouvelle liste ℓ' contenant les éléments de ℓ triés.

```
#let rec divise l = match l with
        [[] \rightarrow ([],[])
        |[e]-> ([e],[])
                                                      "divise" prend une liste \ell de longueur n et crée 2 nouvelles listes de
        |a::b::r -> let (l1,l2) = divise r in
                        (a::l1,b::l2);;
                                                      longueur \lceil n/2 \rceil et \lceil n/2 \rceil contenant les éléments de \ell.
divise : 'a list -> 'a list * 'a list = <fun>
#let rec fusion l1 l2 = match (l1.l2) with
                                                      "fusion" prend 2 listes triées et rassemble leurs éléments dans une
        |l,[] -> l
        [[],l -> l
                                                      nouvelle liste triée.
        |a::r1,b::r2 -> if a<b then a::(fusion r1 l2)
                        else b::(fusion l1 r2)::
                                                      "tri fusion" prend une liste et, en utilisant les fonctions précédentes,
fusion : 'a list -> 'a list -> 'a list = <fun>
#let rec tri_fusion l = match l with
                                                      crée une nouvelle liste contenant les éléments de / triés
        10 -> 0
        ifel-> [e]
        | l -> let (l1.l2)=divise l in
                                                                  Terminaison: preuve par récurrence laissée au lecteur.
                fusion (tri fusion l1) (tri fusion l2);;
tri_fusion : 'a list -> 'a list = <fun>
                                                                   Correction : preuve par récurrence laissée au lecteur.
```

Exercices: transposez ces algorithmes: sous forme itérative, pour trier des tableaux.

Complexité du Tri Fusion

Nous nous intéressons principalement au nombre de comparaisons des éléments de la liste (i.e. "opération élémentaire" = comparaison).

Divise: Soit $c_d(n)$ la complexité de "divise" appliquée à une liste de longueur n. Alors, $c_d(0) = X$ et

 $c_d(n) = X + c_d(n-2)$ avec X = 0 si on ne compte que les comparaisons et X = O(1) si on compte aussi la création/l'ajout d'un élément dans une liste. Donc, par récurrence, $c_d(n) = 0$ ou $c_d(n) = n/2$ = O(n) selon ce que l'on compte (le choix de ce que l'on compte n'aura pas d'influence sur la suite).

Fusion: Soit $c_1(n_1, n_2)$ la complexité de "fusion" appliquée à 2 listes de longueur n_1 et n_2 . Alors,

 $c_f(0,0) = c_f(n_1,0) = c_f(0,n_2) = O(1) \text{ et } c_f(n_1,n_2) \le O(1) + \max\{c_f(n_1-1,n_2); c_f(n_1,n_2-1)\}.$

On en déduit, par récurrence, $c_f(n_1, n_2) = O(n_1 + n_2)$.

Tri fusion: Soit c(n) la complexité de "tri_fusion" appliquée à une liste de longueur n. Alors c(0) = c(1) = O(1)

et $c(n) = c_d(n) + c(\lceil n/2 \rceil) + c(\lceil n/2 \rceil) + c_f(\lceil n/2 \rceil, \lceil n/2 \rceil)$ (application de "divise" à ℓ , puis 2 applications de "tri_fusion" aux listes ℓ_1 et ℓ_2 résultantes, de longueur $\lceil n/2 \rceil$ et $\lceil n/2 \rceil$ respectivement, et enfin "fusion" des 2 listes triées obtenues). La facon de résoudre une telle suite est présentée

ci-dessous.

Posons $u_k = c(2^k)$. On a $u_0 = O(1)$ et $u_k = 2u_{k-1} + O(2^k)$. Soit $v_k = \frac{u_k}{2^k}$. Alors, $v_0 = O(1)$ et $v_k = v_{k-1} + O(1)$. Donc, par récurrence, $v_k = O(k)$. On en déduit $u_k = O(k2^k)$. Pour conclure, pour tout $n \in \mathbb{N}$, soit $k \in \mathbb{N}$ tel que $2^{k-1} < n \le 2^k$. Alors, prouvez que $c(n) \le u_k = O(k2^k)$. Ainsi, $c(n) = O(k2^k) = O(n\log n)$.

L'algorithme de Tri_fusion réalise $O(n \log n)$ comparaisons pour trier une liste de longueur n.

Peut on faire mieux ?

- Algorithme de Tri par Sélection
- 2 Algorithme de Tri par Insertion
- Algorithme de Tri à Bulles
- Algorithme de Tri Fusion
- Au delà du Tri Fusion

Faire mieux que le Tri Fusion?

Soit *tab* un tableau de *n* entiers à trier. Supposons que les éléments de *tab* sont $\leq k \in \mathbb{N}$.

Les peuves de terminaison et de correction de cet algorithme sont laissées au lecteur.

Sa complexité est O(n+k). Il a donc une meilleure complexité que Ti-fusion si $k=o(n\log n)$, mais il demande la connaissance d'une borne supérieure sur les éléments de t.

De plus, en espace, il crée un tableau de taille k qui, si n=o(k), est plus coûteux que l'espace nécessaire à Tri_fusion.

Sans information sur les éléments de tab, l'algorithme de Tri_fusion est optimal dans le pire cas.

Intuition de Preuve : On suppose que $tab = [[t_1, \cdots, t_n]]$ contient des éléments distincts deux-à-deux. Trier tab revient à trouver la permutation $\pi: [1, n] \to [1, n]$ telle que le tableau $tab' = [[t_{\pi(1)}, t_{\pi(2)}, \cdots, t_{\pi(n)}]]$ est trié, i.e., pour tout $1 \le i < j \le n$, $t_{\pi(i)} < t_{\pi(j)}$.

Le nombre de permutations $\pi: [1, n] \rightarrow [1, n]$ est $n! \approx n^n$.

Soient $1 \le i < j \le n$ et soient Π_1 l'ensemble des permutations telles que $t_{\pi(i)} < t_{\pi(j)}$ et Π_2 l'ensemble des permutations telles que $t_{\pi(i)} > t_{\pi(j)}$. Il y a une bijection (laissée au lecteur) de Π_1 vers Π_2 . Donc $|\Pi_1| = |\Pi_2| = (n-1)!/2$. Autrement dit, effectuer une comparaison permet donc de diviser le nombre de permutations candidates par 2.

Trier notre tableau revient à faire des comparaisons jusqu'à ne laisser qu'une unique permutation candidate. Soit x le nombre minimum de comparaisons, il doit satisfaire : $n!/2^x \le 1$. Donc, à la louche, $n^n \le 2^x$. En prenant le logarithme, on a donc

 $n \log n \le x = \# min de comparaisons.$

