≡ Комментарии к тесту

В множественном выборе есть хотя бы один правильный ответ. Их может быть как один, так и несколько. Полный балл будет ставиться только в том случае, если выбраны все верные ответы и не выбраны все неверные ответы.

В заданиях, где нужно ввести число, в данном тесте, ответ всегда целочисленный. Засчитываться будет только точное совпадение

- При подсчете разбиений на тестовую и обучающую выборки порядок объектов не
- Метод ближайших центроидов осуществляет классификацию, в которой усреднением по объектам класса вычисляется центроид каждого класса, а для нового объекта назначается тот класс, центроид которого ближе.
- В метрических методах используется Евклидова ф-ция расстояния, если не оговорено иначе.
- Обозначим N число объектов обучающей выборки, D-число признаков, C-число классов.
- Под "простотой" и "сложностью" моделей понимается не сложность алгоритма или вычислений, а ее негибкость и гибкость соответственно, т.е. способность адаптироваться к данным обучающей выборки. Если речь идет о сложности вычислений, то это называется "вычислительной простотой" и "вычислительной сложностью".
- Критерий качества функция, максимизируя которую выбирается наилучшая модель. Функция потерь - функция, минимизируя которую выбирается наилучшая модель.
- Отличие функции близости и функции расстояния на примере метода K ближайших соседей: ближайшие соседи сортируются по возрастанию ф-ции расстояния либо сортируются по убыванию ф-ции близости.
- $x^{(i)}, z^{(i)}$ -- i-й признак объекта x(z).

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

 При взвешенном обобщении метода К ближайших соседей более близким объектам нужно сопоставлять
более высокий вес
□ □ более низкий вес
Балл: 2.0

Комментарий к правильному ответу:

2. Будем судить о похожести/непохожести объектов по косинусу угла между их векторами признаковых представлений (косинусная мера). Эта мера будет показывать...

степень близости между объектами (больше-ближе)

=

степень расстояния (непохожести) между объектами (больше-дальше)

Балл: 2.0

Комментарий к правильному ответу:

3. Нам нужно получить оценку эмпирического риска на тестовой выборке. Сравните подход кросс-валидации и отдельной валидационной выборки, полученной как фрагмент обучающей. Какой метод ближе оценит качество итоговой модели на тестовой выборке, обученной по всей обучающей выборке?

Оценка по валидационной выборке

Оценка кросс-валидации

Балл: 2.0

Комментарий к правильному ответу:

4. Рассмотрим многоклассовую классификацию методом K ближайших соседей с равномерными весами. Может ли возникать ситуация, что два класса набирают одинаковый рейтинг (равные дискриминантные функции)?

✓ Может даже для нечетного К

Не может

■ Не может для нечетного К

Балл: 2.0

Комментарий к правильному ответу:

5. Выбор параметров для методов машинного обучения достигается минимизацией...

эмпирического риска

теоретического риска

Балл: 2.0

Комментарий к правильному ответу:

6. Дана выборка из 10 объектов. Сколькими способами её можно разбить на две непустые выборки, обучающую и тестовую? (порядок следования объектов не важен)

Ответ: 1022

=

Правильный ответ: 1022.0

Погрешность: 0.0

Балл: 2.0

Комментарий к правильному ответу:

Комментарий к правильному ответу:

 $2^{10}-2$. Это количество всевозможных последовательностей из 0 и 1 длины 10 (например, 0 - принадлежность объекта обучающей выборке, 1 - тестовой). И вычитаем две последовательности (из всех 0 и всех 1), так как мы хотим учитывать только непустые разбиения

7.	В машинном обучении решается задача предсказать
	по откликам признаки
	по признакам отклики (целевую переменную)
	признаки и отклики (целевые переменные)
	при ничего из перечисленного
	Балл: 0 Комментарий к правильному ответу:
8.	Если в качестве оценки ожидаемого эмпирического риска на тестовой выборке использовать эмпирический риск на обучающей выборке, то в большинстве случаев получим
	пессимистическую оценку (хуже, чем на самом деле)
	оптимистическую оценку (лучше, чем на самом деле)
	реальную оценку
	Балл: 2.0