# Who Needs Privacy?

## Analyses

## Contents

| Pata wrangling Filter defective data |    |
|--------------------------------------|----|
| Power Analyses                       | į  |
| Multivariate normal distribution     | (  |
| Measures                             | 8  |
| Need for Privacy                     |    |
| Sociability                          |    |
| Anxiety                              |    |
| Risk Avoidance                       | 5  |
| Traditionalism                       | 59 |
| Integrity                            | 6  |
| Results                              | 7. |
| Tables                               | 75 |
| Items measuring need for privacy     | 7  |
| Psychometrics                        |    |
| Results                              |    |
| Figures                              | 78 |
| Results                              | 78 |
| Additional analyses                  | 79 |
| Bi-Factor                            | 79 |
| Individual items                     |    |

## Data wrangling

#### Filter defective data

#### Empty/missing data

```
##
##
        0 0.0125
                   0.025 0.0375
                                  0.125 0.1625 0.5125
                                                        0.675
                                                                0.775
                                                                       0.875
                                                                              0.975
##
                                             2
                                                     2
                                                                           2
      266
                4
                              1
                                      1
                                                            1
                                                                    1
                                                                                  15
                       1
```

Shows that most people answered all questions. There were 15 empty data sets, and some with more than 50% missing data. These were deleted. Overall, there was just 0.002 missing data.

#### Speeder



Shows that some participants took very long to answer. Inspect regular times.



Distribution looks okay (no early peak). Also no answers faster than 5 mins.

## Response Styles



Only few participants seem to have particularly atypical data. Will filter respondents with m>.30. All of the 5% cases indeed show extreme response patterns and/or illogical data. Will be filtered.

## Power Analyses

```
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                 n = 271
##
                 r = 0.1
##
         sig.level = 0.05
##
            power = 0.377
       alternative = two.sided
##
##
##
        approximate correlation power calculation (arctangh transformation)
##
##
                 n = 271
##
                 r = 0.216
         sig.level = 0.05
##
##
            power = 0.95
##
       alternative = two.sided
```

## Multivariate normal distribution

```
## Test Statistic p value Result
## 1 Mardia Skewness 61271.4 6.1e-238 N0
## 2 Mardia Kurtosis 24.6 0.0e+00 N0
```

#### Measures

### **Need for Privacy**

#### Items



#### Correlation table



#### Kaiser-Meyer-Oltkin criterion

The Kaiser-Meyer-Oltkin criterion measures the extent to which items are suitable for being combined as a single factor.

```
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = d_tmp)
## Overall MSA = 0.84
## MSA for each item =
## N4P.BOT_1 N4P.BOT_2 N4P.BOT_3 N4P.BOT_4 N4P.SOC_1 N4P.SOC_2 N4P.SOC_3 N4P.SOC_4 N4P.SOC_5 N4P.SOC_6
##
        0.78
                  0.79
                            0.72
                                       0.69
                                                 0.87
                                                           0.90
                                                                     0.89
                                                                               0.86
                                                                                          0.90
## N4P.SOC_7 N4P.SOC_8 N4P.SOC_9 N4P.INT_1 N4P.INT_2 N4P.INT_3 N4P.INT_4 N4P.INT_5 N4P.INT_6 N4P.INT_7
##
        0.83
                  0.84
                            0.93
                                      0.82
                                                 0.88
                                                           0.69
                                                                     0.77
                                                                               0.56
                                                                                          0.80
                                                                                                    0.80
## N4P.INT_8 N4P.INT_9
##
        0.73
                  0.78
```

On the basis of the KMO, the following items should be exluded: N4P.BOT\_4, N4P.INT\_3, N4P.INT\_5.

#### Parallel analysis



## Parallel analysis suggests that the number of factors = 3 and the number of components = 3

#### **EFA**

## Factor Analysis using method = minres

```
## Call: fa(r = d_tmp, nfactors = 3, fm = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
              MR1
                    MR2
                          MR3
                                h2
                                    u2 com
## N4P.BOT_1 -0.04 0.77 0.12 0.58 0.42 1.1
## N4P.BOT_2 0.08 0.46 0.01 0.24 0.76 1.1
## N4P.BOT_3 0.16 0.46 -0.35 0.37 0.63 2.1
## N4P.BOT_4 0.03 0.42 -0.38 0.32 0.68 2.0
## N4P.SOC_1 0.78 -0.03 -0.06 0.57 0.43 1.0
## N4P.SOC 2 0.68 0.11 0.05 0.55 0.45 1.1
## N4P.SOC_3 0.73 0.11 0.00 0.59 0.41 1.0
## N4P.SOC 4 0.81 -0.09 0.01 0.63 0.37 1.0
## N4P.SOC_5 0.64 -0.06 0.02 0.40 0.60 1.0
## N4P.SOC_6 0.27 0.12 0.43 0.37 0.63 1.9
## N4P.SOC 7 0.28 -0.01 0.60 0.57 0.43 1.4
## N4P.SOC 8 0.11 0.17 0.51 0.35 0.65 1.3
## N4P.SOC_9 0.69 0.00 0.12 0.55 0.45 1.1
## N4P.INT_1 -0.01 0.13 -0.56 0.34 0.66 1.1
## N4P.INT_2 0.11 0.35 0.38 0.33 0.67 2.2
## N4P.INT_3 0.08 0.40 -0.29 0.26 0.74 1.9
## N4P.INT_4 0.19 0.27 -0.02 0.14 0.86 1.8
## N4P.INT_6 -0.11 0.40 0.39 0.26 0.74 2.1
## N4P.INT_7 -0.02 0.55 -0.12 0.31 0.69 1.1
## N4P.INT_8 -0.12 0.09 -0.27 0.11 0.89 1.6
## N4P.INT_9 0.25 0.43 -0.03 0.31 0.69 1.6
##
##
                         MR1 MR2 MR3
                        3.74 2.40 2.02
## SS loadings
## Proportion Var
                        0.18 0.11 0.10
## Cumulative Var
                        0.18 0.29 0.39
## Proportion Explained 0.46 0.29 0.25
## Cumulative Proportion 0.46 0.75 1.00
## With factor correlations of
       MR1
            MR2
## MR1 1.00 0.31 0.37
## MR2 0.31 1.00 -0.01
## MR3 0.37 -0.01 1.00
## Mean item complexity = 1.5
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the null model are 210 and the objective function was 7.11 with Chi Sq
## The degrees of freedom for the model are 150 and the objective function was 1.12
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.05
## The harmonic number of observations is 271 with the empirical chi square 232 with prob < 1.9e-05
## The total number of observations was 271 with Likelihood Chi Square = 292 with prob < 3.3e-11
## Tucker Lewis Index of factoring reliability = 0.879
```

```
## RMSEA index = 0.061 and the 90 % confidence intervals are 0.049 0.069
## BIC = -548
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
## Correlation of (regression) scores with factors 0.94 0.90 0.88
## Multiple R square of scores with factors 0.89 0.80 0.77
## Minimum correlation of possible factor scores 0.78 0.61 0.54
```

Three latent factors emerge:

- factor 1 measures need for privacy from the government (vertical)
- factor 2 measures need for privacy from other people (horizontal)
- factor 3 can be described as desire for anonymity (combined)

The following items overall contribute little:

- Communalities reveal that item INT\_4 and INT\_8 don't load sufficiently strong on latent factors. Should be excluded.
- Item INT\_1 only loads negative on factor 3 little positive contribution

The following items show double-loadings:

• BOT\_3, BOT\_4, INT\_2, INT\_6. Will be difficult to decide whether to maintain or delete.

```
## Factor Analysis using method = minres
## Call: fa(r = d_tmp, nfactors = 3, fm = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
                    MR2
              MR1
                         MR3
                                h2
                                    u2 com
## N4P.BOT_1 -0.04 0.78 0.13 0.60 0.40 1.1
## N4P.BOT 2 0.09 0.46 0.01 0.25 0.75 1.1
## N4P.BOT 3 0.16 0.45 -0.38 0.38 0.62 2.2
## N4P.BOT_4 0.03 0.43 -0.45 0.39 0.61 2.0
## N4P.SOC_1 0.78 -0.04 -0.05 0.57 0.43 1.0
## N4P.SOC_2 0.69 0.11 0.04 0.55 0.45 1.1
## N4P.SOC_3 0.74 0.10 -0.01 0.59 0.41 1.0
## N4P.SOC_4 0.81 -0.08 0.02 0.63 0.37 1.0
## N4P.SOC_5 0.65 -0.06 0.00 0.40 0.60 1.0
## N4P.SOC_6 0.30 0.11 0.39 0.35 0.65 2.0
## N4P.SOC_7 0.32 0.00 0.59 0.58 0.42 1.5
## N4P.SOC_8 0.14 0.17 0.48 0.34 0.66 1.5
## N4P.SOC_9 0.71 -0.01 0.09 0.56 0.44 1.0
## N4P.INT 2 0.14 0.36 0.35 0.33 0.67 2.3
## N4P.INT_3 0.06 0.40 -0.24 0.23 0.77 1.7
## N4P.INT 6 -0.09 0.40 0.39 0.27 0.73 2.1
## N4P.INT_7 -0.03 0.54 -0.12 0.30 0.70 1.1
## N4P.INT_9 0.28 0.41 -0.09 0.31 0.69 1.9
##
##
                         MR1 MR2 MR3
## SS loadings
                        3.75 2.28 1.58
## Proportion Var
                        0.21 0.13 0.09
## Cumulative Var
                        0.21 0.34 0.42
## Proportion Explained 0.49 0.30 0.21
## Cumulative Proportion 0.49 0.79 1.00
## With factor correlations of
##
       MR.1
             MR.2
                   MR3
## MR1 1.00 0.31 0.33
## MR2 0.31 1.00 -0.01
## MR3 0.33 -0.01 1.00
## Mean item complexity = 1.5
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the null model are 153 and the objective function was 6.36 with Chi Sq
## The degrees of freedom for the model are 102 and the objective function was 0.84
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.05
## The harmonic number of observations is 271 with the empirical chi square 158 with prob < 0.00034
## The total number of observations was 271 with Likelihood Chi Square = 220 with prob < 1.1e-10
## Tucker Lewis Index of factoring reliability = 0.882
## RMSEA index = 0.068 and the 90 % confidence intervals are 0.054 0.077
## BIC = -351
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
##
                                                    MR1 MR2 MR3
```

### CFA 1

| ##<br>## | lavaan 0.6-3 ended normally after 39 iter                    | rations        |                |       |
|----------|--------------------------------------------------------------|----------------|----------------|-------|
| ##       | Optimization method                                          | NLMINB         |                |       |
| ##       | Number of free parameters                                    | 41             |                |       |
| ##       | •                                                            |                |                |       |
| ##       | Number of observations                                       | 271            |                |       |
| ##       |                                                              |                |                |       |
| ##       | Estimator                                                    | ML             | Robust         |       |
| ##       | Model Fit Test Statistic                                     | 365.551        |                |       |
| ##       | 8                                                            | 130            | 130            |       |
| ##       | 1                                                            | 0.000          | 0.000          |       |
| ##<br>## | Scaling correction factor for the Satorra-Bentler correction |                | 1.137          |       |
| ##       | for the Satorra-Bentler Correction                           |                |                |       |
|          | Model test baseline model:                                   |                |                |       |
| ##       | noder topy published moder.                                  |                |                |       |
| ##       | Minimum Function Test Statistic                              | 1724.025       | 1532.704       |       |
| ##       | Degrees of freedom                                           | 153            | 153            |       |
| ##       | P-value                                                      | 0.000          | 0.000          |       |
| ##       |                                                              |                |                |       |
|          | User model versus baseline model:                            |                |                |       |
| ##       | (CDT)                                                        | 0.050          | 0.004          |       |
| ##<br>## | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)         | 0.850<br>0.824 | 0.861<br>0.837 |       |
| ##       | Tucker-Lewis Index (ILI)                                     | 0.024          | 0.037          |       |
| ##       | Robust Comparative Fit Index (CFI)                           |                | 0.860          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                              |                | 0.835          |       |
| ##       |                                                              |                |                |       |
| ##       | Loglikelihood and Information Criteria:                      |                |                |       |
| ##       |                                                              |                |                |       |
| ##       | Loglikelihood user model (HO)                                | -7849.114      |                |       |
| ##       | Loglikelihood unrestricted model (H1)                        | -7666.338      | -7666.338      |       |
| ##<br>## | Number of free parameters                                    | 41             | 41             |       |
| ##       | Number of free parameters Akaike (AIC)                       | 15780.227      |                |       |
| ##       | Bayesian (BIC)                                               | 15927.914      |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                          | 15797.915      |                |       |
| ##       |                                                              |                |                |       |
| ##       | Root Mean Square Error of Approximation:                     |                |                |       |
| ##       |                                                              |                |                |       |
| ##       | RMSEA                                                        | 0.082          |                |       |
| ##       | 90 Percent Confidence Interval                               | 0.072 0.092    | 0.064          | 0.083 |
| ##       | P-value RMSEA <= 0.05                                        | 0.000          | 0.000          |       |
| ##<br>## | Robust RMSEA                                                 |                | 0.079          |       |
| ##       | 90 Percent Confidence Interval                               |                | 0.068          | 0.089 |
| ##       | DO TOTOGRO CONFIGURACION INSCIVAL                            |                | 0.000          | 0.000 |
|          | Standardized Root Mean Square Residual:                      |                |                |       |
| ##       | -                                                            |                |                |       |
| ##       | SRMR                                                         | 0.083          | 0.083          |       |
| ##       | B                                                            |                |                |       |
| ##       | Parameter Estimates:                                         |                |                |       |

| ##<br>##<br>##<br>## | Information<br>Information satu<br>Standard Errors | urated (h1)    | model   | St      | Expected ructured bust.sem |                |                |
|----------------------|----------------------------------------------------|----------------|---------|---------|----------------------------|----------------|----------------|
|                      | Latent Variables:                                  |                |         |         |                            |                |                |
| ##                   |                                                    | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv         | Std.all        |
| ##                   | pri_nee_gov =~                                     |                |         |         |                            |                |                |
| ##                   | N4P.SOC_1                                          | 1.000          |         |         |                            | 1.092          | 0.750          |
| ##                   | N4P.SOC_2                                          | 0.998          | 0.091   | 11.006  | 0.000                      | 1.090          | 0.732          |
| ##                   | N4P.SOC_3                                          | 1.006          | 0.085   | 11.827  | 0.000                      | 1.098          | 0.762          |
| ##                   | N4P.SOC_4                                          | 1.128          | 0.083   | 13.577  | 0.000                      | 1.232          | 0.801          |
| ##                   | N4P.SOC_5                                          | 0.906          | 0.089   | 10.191  | 0.000                      | 0.990          | 0.623          |
| ##                   | N4P.SOC_9                                          | 1.015          | 0.088   | 11.474  | 0.000                      | 1.108          | 0.734          |
| ##                   | <pre>pri_nee_int =~</pre>                          |                |         |         |                            |                |                |
| ##                   | N4P.BOT_1                                          | 1.000          |         |         |                            | 0.948          | 0.711          |
| ##                   | N4P.BOT_2                                          | 0.752          | 0.105   | 7.185   | 0.000                      | 0.713          | 0.517          |
| ##                   | N4P.BOT_3                                          | 0.640          | 0.078   | 8.219   | 0.000                      | 0.607          | 0.538          |
| ##                   | N4P.BOT_4                                          | 0.540          | 0.080   | 6.709   | 0.000                      | 0.512          | 0.486          |
| ##                   | N4P.INT_2                                          | 0.455          | 0.127   | 3.583   | 0.000                      | 0.431          | 0.283          |
| ##                   | N4P.INT_3                                          | 0.667          | 0.105   | 6.344   | 0.000                      | 0.633          | 0.435          |
| ##                   | N4P.INT_6                                          | 0.349          | 0.103   | 3.403   | 0.001                      | 0.331          | 0.253          |
| ##                   | N4P.INT_7                                          | 0.727          | 0.092   | 7.937   |                            | 0.689          | 0.539          |
| ##                   | N4P.INT_9                                          | 0.696          | 0.088   | 7.892   | 0.000                      | 0.659          | 0.513          |
| ##                   | pri_nee_ano =~                                     | 1 000          |         |         |                            | 0.012          | 0 500          |
| ##<br>##             | N4P.SOC_6<br>N4P.SOC_7                             | 1.000<br>1.166 | 0.143   | 8.156   | 0.000                      | 0.913<br>1.065 | 0.599<br>0.762 |
| ##                   | N4P.SOC_8                                          | 0.919          | 0.143   | 7.386   | 0.000                      | 0.839          | 0.762          |
| ##                   | N4P.INT_2                                          | 0.771          | 0.124   | 6.287   | 0.000                      | 0.703          | 0.369          |
| ##                   | N4P.INT_6                                          | 0.771          | 0.123   | 4.309   | 0.000                      | 0.703          | 0.401          |
| ##                   | N4F.INI_O                                          | 0.412          | 0.030   | 4.503   | 0.000                      | 0.370          | 0.200          |
|                      | Covariances:                                       |                |         |         |                            |                |                |
| ##                   | covariances.                                       | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv         | Std.all        |
| ##                   | pri_nee_gov ~~                                     | LSCIMACE       | Dtu.LII | Z varue | 1 (>  2 )                  | bua.iv         | btu.all        |
| ##                   | pri_nee_int                                        | 0.333          | 0.084   | 3.956   | 0.000                      | 0.322          | 0.322          |
| ##                   | pri_nee_ano                                        | 0.671          | 0.103   | 6.517   | 0.000                      | 0.673          | 0.673          |
| ##                   | pri_nee_int ~~                                     | 0.0.2          | 0.100   | 0.01.   | 0.000                      | 0.0.0          | 0.0.0          |
| ##                   | pri_nee_ano                                        | 0.095          | 0.072   | 1.309   | 0.190                      | 0.109          | 0.109          |
| ##                   | 1                                                  |                |         |         |                            |                |                |
| ##                   | Variances:                                         |                |         |         |                            |                |                |
| ##                   |                                                    | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv         | Std.all        |
| ##                   | .N4P.SOC_1                                         | 0.929          | 0.094   | 9.901   | 0.000                      | 0.929          | 0.438          |
| ##                   | .N4P.SOC_2                                         | 1.029          | 0.144   | 7.160   | 0.000                      | 1.029          | 0.464          |
| ##                   | .N4P.SOC_3                                         | 0.869          | 0.121   | 7.164   | 0.000                      | 0.869          | 0.419          |
| ##                   | .N4P.SOC_4                                         | 0.849          | 0.111   | 7.671   | 0.000                      | 0.849          | 0.359          |
| ##                   | .N4P.SOC_5                                         | 1.540          | 0.152   | 10.124  | 0.000                      | 1.540          | 0.611          |
| ##                   | .N4P.SOC_9                                         | 1.052          | 0.110   | 9.582   | 0.000                      | 1.052          | 0.461          |
| ##                   | .N4P.BOT_1                                         | 0.879          | 0.113   | 7.806   | 0.000                      | 0.879          | 0.495          |
| ##                   | .N4P.BOT_2                                         | 1.394          | 0.141   | 9.911   | 0.000                      | 1.394          | 0.733          |
| ##                   | .N4P.BOT_3                                         | 0.905          | 0.090   | 10.042  | 0.000                      | 0.905          | 0.711          |
| ##                   | $.\mathtt{N4P.BOT\_4}$                             | 0.848          | 0.102   | 8.347   | 0.000                      | 0.848          | 0.764          |
| ##                   | .N4P.INT_2                                         | 1.578          | 0.149   | 10.609  | 0.000                      | 1.578          | 0.679          |
| ##                   | .N4P.INT_3                                         | 1.715          | 0.148   | 11.613  | 0.000                      | 1.715          | 0.811          |
| ##                   | .N4P.INT_6                                         | 1.428          | 0.122   | 11.662  | 0.000                      | 1.428          | 0.837          |

```
0.125
                                            9.304
                                                     0.000
##
      .N4P.INT 7
                         1.159
                                                               1.159
                                                                        0.709
##
      .N4P.INT 9
                         1.217
                                   0.137
                                            8.907
                                                     0.000
                                                               1.217
                                                                        0.737
                                   0.169
##
      .N4P.SOC 6
                         1.490
                                            8.794
                                                     0.000
                                                               1.490
                                                                        0.641
##
      .N4P.SOC_7
                         0.818
                                   0.127
                                            6.440
                                                     0.000
                                                                        0.419
                                                               0.818
##
      .N4P.SOC_8
                         1.469
                                   0.179
                                            8.213
                                                     0.000
                                                               1.469
                                                                        0.676
##
       pri_nee_gov
                         1.192
                                   0.171
                                            6.955
                                                     0.000
                                                               1.000
                                                                        1.000
##
       pri nee int
                         0.898
                                   0.136
                                            6.617
                                                     0.000
                                                               1.000
                                                                        1.000
       pri_nee_ano
                         0.833
                                   0.174
                                            4.780
                                                     0.000
                                                               1.000
                                                                        1.000
##
```

Does not yield good results. Inspect modification indices.

```
##
              lhs op
                           rhs
                                mi
                                       epc sepc.lv sepc.all sepc.nox
## 75 pri_nee_ano =~ N4P.BOT_4 34.2 -0.436 -0.398
                                                    -0.377
                                                             -0.377
## 72 pri_nee_ano =~ N4P.BOT_1 21.1 0.406
                                                              0.278
                                           0.371
                                                     0.278
       N4P.BOT_3 ~~ N4P.INT_6 20.4 -0.341 -0.341
## 190
                                                    -0.300
                                                             -0.300
## 166
        N4P.BOT_1 ~~ N4P.BOT_2 20.3 0.420
                                             0.420
                                                     0.380
                                                              0.380
## 53 pri_nee_gov =~ N4P.INT_9 16.9 0.308
                                             0.336
                                                     0.262
                                                              0.262
## 215
       N4P.INT_3 ~~ N4P.SOC_7 15.2 -0.349 -0.349
                                                    -0.295
                                                             -0.295
## 187
        N4P.BOT 3 ~~ N4P.BOT 4 13.6 0.225
                                             0.225
                                                     0.257
                                                              0.257
## 162
        N4P.SOC_9 ~~ N4P.INT_9 11.7 0.262
                                             0.262
                                                     0.232
                                                              0.232
## 78 pri_nee_ano =~ N4P.INT_9 11.1 0.301
                                             0.274
                                                     0.214
                                                              0.214
## 48 pri_nee_gov =~ N4P.BOT_4 10.8 -0.204 -0.223
                                                    -0.211
                                                             -0.211
## 102
        N4P.SOC_2 ~~ N4P.BOT_3 10.4 0.213
                                             0.213
                                                     0.220
                                                              0.220
## 167
        N4P.BOT_1 ~~ N4P.BOT_3 10.2 -0.244 -0.244
                                                     -0.274
                                                             -0.274
        N4P.BOT_1 ~~ N4P.SOC_7 10.1 0.230
## 175
                                             0.230
                                                     0.272
                                                              0.272
```

As expected, items BOT\_2, BOT\_3, & BOT\_4 cause trouble. Will delete.

## CFA 2

| ##<br>## | lavaan 0.6-3 ended normally after 37 item | ations |              |                 |       |
|----------|-------------------------------------------|--------|--------------|-----------------|-------|
| ##       | Optimization method                       |        | NLMINB       |                 |       |
| ##       | Number of free parameters                 |        | 35           |                 |       |
| ##       | Name of the first parameters              |        |              |                 |       |
| ##       | Number of observations                    |        | 271          |                 |       |
| ##       |                                           |        |              |                 |       |
| ##       | Estimator                                 |        | ML           | Robust          |       |
| ##       | Model Fit Test Statistic                  | 1      | 96.044       | 166.304         |       |
| ##       | Degrees of freedom                        |        | 85           | 85              |       |
| ##       | P-value (Chi-square)                      |        | 0.000        | 0.000           |       |
| ##       | Scaling correction factor                 |        |              | 1.179           |       |
| ##       | for the Satorra-Bentler correction        |        |              |                 |       |
| ##       |                                           |        |              |                 |       |
|          | Model test baseline model:                |        |              |                 |       |
| ##       | W                                         | 4.4    | 00 000       | 1010 700        |       |
| ##       | Minimum Function Test Statistic           | 14     | 00.662       |                 |       |
| ##       | Degrees of freedom P-value                |        | 105<br>0.000 | 105<br>0.000    |       |
| ##       | r-value                                   |        | 0.000        | 0.000           |       |
|          | User model versus baseline model:         |        |              |                 |       |
| ##       | ober moder versus buserine moder.         |        |              |                 |       |
| ##       | Comparative Fit Index (CFI)               |        | 0.914        | 0.927           |       |
| ##       | Tucker-Lewis Index (TLI)                  |        | 0.894        | 0.909           |       |
| ##       |                                           |        |              |                 |       |
| ##       | Robust Comparative Fit Index (CFI)        |        |              | 0.925           |       |
| ##       | Robust Tucker-Lewis Index (TLI)           |        |              | 0.907           |       |
| ##       |                                           |        |              |                 |       |
| ##       | Loglikelihood and Information Criteria:   |        |              |                 |       |
| ##       |                                           |        |              |                 |       |
| ##       | Loglikelihood user model (HO)             |        | 38.533       | -6638.533       |       |
| ##       | Loglikelihood unrestricted model (H1)     | -65    | 40.511       | -6540.511       |       |
| ##       | Number of force accounts                  |        | ٥٦           | 25              |       |
| ##       | Number of free parameters Akaike (AIC)    | 122    | 35<br>47.067 | 35<br>13347.067 |       |
| ##       | Bayesian (BIC)                            |        | 73.141       |                 |       |
| ##       | Sample-size adjusted Bayesian (BIC)       |        | 62.166       | 13362.166       |       |
| ##       | Sampio Sizo dajastoa Sajosian (Sio)       | 100    | 02.100       | 10002.100       |       |
|          | Root Mean Square Error of Approximation:  |        |              |                 |       |
| ##       | 1                                         |        |              |                 |       |
| ##       | RMSEA                                     |        | 0.069        | 0.059           |       |
| ##       | 90 Percent Confidence Interval            | 0.057  | 0.082        | 0.047           | 0.072 |
| ##       | P-value RMSEA <= 0.05                     |        | 0.007        | 0.103           |       |
| ##       |                                           |        |              |                 |       |
| ##       | Robust RMSEA                              |        |              | 0.065           |       |
| ##       | 90 Percent Confidence Interval            |        |              | 0.050           | 0.079 |
| ##       |                                           |        |              |                 |       |
|          | Standardized Root Mean Square Residual:   |        |              |                 |       |
| ##       | CDMD                                      |        | 0 070        | 0.070           |       |
| ##       | SRMR                                      |        | 0.070        | 0.070           |       |
|          | Parameter Estimates:                      |        |              |                 |       |
| 11.11    | 1 GI GING OOI LID OI III GOOD.            |        |              |                 |       |

| ##<br>##<br>##<br>## | Information<br>Information satu<br>Standard Errors | urated (h1)    | model   | St      | Expected ructured bust.sem |        |         |
|----------------------|----------------------------------------------------|----------------|---------|---------|----------------------------|--------|---------|
|                      | Latent Variables:                                  |                |         |         |                            |        |         |
| ##                   | Latent Variables.                                  | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | pri_nee_gov =~                                     | <u> Looima</u> | Doure   | 2 varao | 1 (* 121)                  | 504.11 | Dodiali |
| ##                   | N4P.SOC_1                                          | 1.000          |         |         |                            | 1.094  | 0.751   |
| ##                   | N4P.SOC_2                                          | 0.992          | 0.091   | 10.923  | 0.000                      | 1.085  | 0.729   |
| ##                   | N4P.SOC_3                                          | 1.003          | 0.085   | 11.780  | 0.000                      | 1.097  | 0.762   |
| ##                   | N4P.SOC_4                                          | 1.128          | 0.083   | 13.551  | 0.000                      | 1.234  | 0.802   |
| ##                   | N4P.SOC_5                                          | 0.904          | 0.089   | 10.179  | 0.000                      | 0.989  | 0.623   |
| ##                   | N4P.SOC_9                                          | 1.014          | 0.088   | 11.494  | 0.000                      | 1.109  | 0.735   |
| ##                   | <pre>pri_nee_int =~</pre>                          |                |         |         |                            |        |         |
| ##                   | N4P.BOT_1                                          | 1.000          |         |         |                            | 0.885  | 0.664   |
| ##                   | N4P.INT_2                                          | 0.540          | 0.147   | 3.674   | 0.000                      | 0.478  | 0.313   |
| ##                   | N4P.INT_3                                          | 0.733          | 0.145   | 5.065   | 0.000                      | 0.649  | 0.446   |
| ##                   | N4P.INT_6                                          | 0.526          | 0.132   | 3.995   | 0.000                      | 0.465  | 0.356   |
| ##                   | N4P.INT_7                                          | 0.842          | 0.141   | 5.976   | 0.000                      | 0.745  | 0.583   |
| ##                   | N4P.INT_9                                          | 0.757          | 0.129   | 5.847   | 0.000                      | 0.669  | 0.521   |
| ##                   | pri_nee_ano =~                                     |                |         |         |                            |        |         |
| ##                   | N4P.SOC_6                                          | 1.000          |         |         |                            | 0.914  | 0.599   |
| ##                   | N4P.SOC_7                                          | 1.162          | 0.145   | 8.019   | 0.000                      | 1.061  | 0.760   |
| ##                   | N4P.SOC_8                                          | 0.923          | 0.125   | 7.362   | 0.000                      | 0.843  | 0.572   |
| ##                   | N4P.INT_2                                          | 0.711          | 0.129   | 5.527   | 0.000                      | 0.650  | 0.426   |
| ##                   | N4P.INT_6                                          | 0.334          | 0.099   | 3.370   | 0.001                      | 0.305  | 0.234   |
| ##                   | ~ .                                                |                |         |         |                            |        |         |
|                      | Covariances:                                       |                | a       | _       | 56.1.13                    | a      | a       |
| ##                   |                                                    | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | pri_nee_gov ~~                                     | 0.004          | 0 007   | 2 000   | 0 000                      | 0.240  | 0 040   |
| ##                   | pri_nee_int                                        | 0.331          | 0.087   |         | 0.000                      | 0.342  | 0.342   |
| ##                   | pri_nee_ano                                        | 0.676          | 0.104   | 6.493   | 0.000                      | 0.676  | 0.676   |
| ##<br>##             | pri_nee_int ~~                                     | 0 164          | 0.075   | 2.186   | 0.029                      | 0.203  | 0.203   |
| ##                   | <pre>pri_nee_ano</pre>                             | 0.164          | 0.075   | 2.100   | 0.029                      | 0.203  | 0.203   |
|                      | Variances:                                         |                |         |         |                            |        |         |
| ##                   | variances.                                         | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | .N4P.SOC 1                                         | 0.925          | 0.094   | 9.825   | 0.000                      | 0.925  | 0.436   |
| ##                   | .N4P.SOC_2                                         | 1.038          | 0.145   | 7.173   | 0.000                      | 1.038  | 0.468   |
| ##                   | .N4P.SOC_3                                         | 0.870          | 0.122   | 7.130   | 0.000                      | 0.870  | 0.420   |
| ##                   | .N4P.SOC_4                                         | 0.843          | 0.111   | 7.610   | 0.000                      | 0.843  | 0.356   |
| ##                   | .N4P.SOC_5                                         | 1.541          | 0.152   | 10.140  | 0.000                      | 1.541  | 0.612   |
| ##                   | .N4P.SOC_9                                         | 1.050          | 0.109   | 9.592   | 0.000                      | 1.050  | 0.460   |
| ##                   | .N4P.BOT_1                                         | 0.995          | 0.150   | 6.646   | 0.000                      | 0.995  | 0.560   |
| ##                   | .N4P.INT_2                                         | 1.549          | 0.149   | 10.402  | 0.000                      | 1.549  | 0.666   |
| ##                   | .N4P.INT_3                                         | 1.694          | 0.143   | 11.840  | 0.000                      | 1.694  | 0.801   |
| ##                   | .N4P.INT_6                                         | 1.339          | 0.126   | 10.591  | 0.000                      | 1.339  | 0.785   |
| ##                   | .N4P.INT_7                                         | 1.079          | 0.129   | 8.376   | 0.000                      | 1.079  | 0.660   |
| ##                   | .N4P.INT_9                                         | 1.203          | 0.149   | 8.081   | 0.000                      | 1.203  | 0.729   |
| ##                   | .N4P.SOC_6                                         | 1.488          | 0.170   | 8.743   | 0.000                      | 1.488  | 0.641   |
| ##                   | .N4P.SOC_7                                         | 0.825          | 0.129   | 6.376   | 0.000                      | 0.825  | 0.423   |
| ##                   | .N4P.SOC_8                                         | 1.463          | 0.178   | 8.225   | 0.000                      | 1.463  | 0.673   |
| ##                   | <pre>pri_nee_gov</pre>                             | 1.197          | 0.172   | 6.960   | 0.000                      | 1.000  | 1.000   |

```
0.783
                                              4.791
                                                        0.000
                                                                           1.000
##
       pri_nee_int
                                    0.163
                                                                  1.000
                                                        0.000
                                                                  1.000
                                                                           1.000
##
       pri_nee_ano
                          0.835
                                    0.176
                                              4.738
```

Shows acceptable fit. Problem is, we don't want to exclude too many items and to overfit the data. Let's inspect modification indices once more to see if there's a theoretically plausible adaption.

```
##
                                        epc sepc.lv sepc.all sepc.nox
               lhs op
                            rhs
                                  mi
         N4P.INT 3 ~~ N4P.SOC 7 16.7 -0.371
## 155
                                             -0.371
                                                       -0.314
                                                                -0.314
      pri_nee_gov =~ N4P.INT_9 16.5 0.325
## 44
                                                       0.277
                                                                 0.277
                                              0.355
      pri_nee_ano =~ N4P.INT_3 15.1 -0.435
                                             -0.397
                                                       -0.273
                                                                -0.273
## 63
      pri_nee_ano =~ N4P.BOT_1 12.3 0.373
                                              0.341
                                                                 0.256
                                                       0.256
## 132
        N4P.SOC_9 ~~ N4P.INT_9 11.2 0.261
                                              0.261
                                                       0.232
                                                                 0.232
## 65 pri_nee_ano =~ N4P.INT_7 10.7 -0.322
                                             -0.294
                                                       -0.230
                                                                -0.230
```

Item INT\_3 is a troublemaker. As it's an inverted item, we have a good reason to delete it. Also, item INT\_6 doesn't really have anything to do with anonymity; we can delete it. Likewise, item SOC\_5 loads on government, while it also measure anonymity. Maybe delete.

#### CFA 3

| ##<br>## | lavaan 0.6-3 ended normally after 40 item                    | rations              |                |       |
|----------|--------------------------------------------------------------|----------------------|----------------|-------|
| ##       | Optimization method                                          | NLMINB               |                |       |
| ##       | Number of free parameters                                    | 28                   |                |       |
| ##       | •                                                            |                      |                |       |
| ##       | Number of observations                                       | 271                  |                |       |
| ##       |                                                              |                      |                |       |
| ##       | Estimator                                                    | ML                   | Robust         |       |
| ##       | Model Fit Test Statistic                                     | 117.092              | 97.737         |       |
| ##       | Degrees of freedom                                           | 50                   | 50             |       |
| ##       | 1                                                            | 0.000                | 0.000          |       |
| ##       | Scaling correction factor for the Satorra-Bentler correction |                      | 1.198          |       |
| ##       | for the Satorra-Bentler Correction                           |                      |                |       |
|          | Model test baseline model:                                   |                      |                |       |
| ##       |                                                              |                      |                |       |
| ##       | Minimum Function Test Statistic                              | 1123.084             | 968.042        |       |
| ##       | Degrees of freedom                                           | 66                   | 66             |       |
| ##       | P-value                                                      | 0.000                | 0.000          |       |
| ##       |                                                              |                      |                |       |
|          | User model versus baseline model:                            |                      |                |       |
| ##       | Componentiano Eit Indon (CEI)                                | 0.937                | 0.047          |       |
| ##       | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)         | 0.937                | 0.947<br>0.930 |       |
| ##       | Ideael Lewis Index (ILI)                                     | 0.510                | 0.550          |       |
| ##       | Robust Comparative Fit Index (CFI)                           |                      | 0.945          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                              |                      | 0.928          |       |
| ##       |                                                              |                      |                |       |
| ##       | Loglikelihood and Information Criteria:                      |                      |                |       |
| ##       |                                                              |                      |                |       |
| ##       | Loglikelihood user model (HO)                                | -5285.176            |                |       |
| ##       | Loglikelihood unrestricted model (H1)                        | -5226.630            | -5226.630      |       |
| ##       | Number of free parameters                                    | 28                   | 28             |       |
| ##       | Akaike (AIC)                                                 | 10626.352            |                |       |
| ##       | Bayesian (BIC)                                               | 10727.211            |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                          | 10638.431            |                |       |
| ##       |                                                              |                      |                |       |
|          | Root Mean Square Error of Approximation:                     |                      |                |       |
| ##       |                                                              |                      |                |       |
| ##       | RMSEA                                                        | 0.070                | 0.059          | 0 075 |
| ##       | 90 Percent Confidence Interval P-value RMSEA <= 0.05         | 0.054 0.087<br>0.023 | 0.043<br>0.160 | 0.075 |
| ##       | P-Value RMSEA <- 0.05                                        | 0.025                | 0.160          |       |
| ##       | Robust RMSEA                                                 |                      | 0.065          |       |
| ##       | 90 Percent Confidence Interval                               |                      | 0.046          | 0.084 |
| ##       |                                                              |                      |                |       |
| ##       | Standardized Root Mean Square Residual:                      |                      |                |       |
| ##       |                                                              |                      |                |       |
| ##       | SRMR                                                         | 0.062                | 0.062          |       |
| ##       | Domonator Estimatos.                                         |                      |                |       |
| ##       | Parameter Estimates:                                         |                      |                |       |

| ##<br>## | Information                              |            |         |         | Expected  |        |           |
|----------|------------------------------------------|------------|---------|---------|-----------|--------|-----------|
| ##       | Information satu                         | rated (h1) | model   |         | ructured  |        |           |
| ##       | Standard Errors                          |            |         | Ro      | bust.sem  |        |           |
| ##       | Latent Variables:                        |            |         |         |           |        |           |
| ##       | Latent variables.                        | Estimate   | Std Err | z-value | D(> - )   | Std.lv | Std.all   |
| ##       | pri_nee_gov =~                           | LSCIMACE   | Dtu.LII | Z varue | 1 (>  2 ) | Dua.iv | bud.all   |
| ##       | N4P.SOC_1                                | 1.000      |         |         |           | 1.082  | 0.743     |
| ##       | N4P.SOC_2                                | 0.992      | 0.091   | 10.934  | 0.000     | 1.074  | 0.721     |
| ##       | N4P.SOC_3                                | 1.021      | 0.088   | 11.575  | 0.000     | 1.105  | 0.767     |
| ##       | N4P.SOC_4                                | 1.150      | 0.088   | 13.048  | 0.000     | 1.244  | 0.809     |
| ##       | N4P.SOC_9                                | 1.025      | 0.089   | 11.459  | 0.000     | 1.109  | 0.735     |
| ##       | pri_nee_int =~                           |            |         |         |           |        |           |
| ##       | N4P.BOT_1                                | 1.000      |         |         |           | 0.897  | 0.673     |
| ##       | N4P.INT_2                                | 0.495      | 0.167   | 2.963   | 0.003     | 0.444  | 0.291     |
| ##       | N4P.INT_7                                | 0.748      | 0.138   | 5.423   | 0.000     | 0.671  | 0.525     |
| ##       | N4P.INT_9                                | 0.790      | 0.142   | 5.563   | 0.000     | 0.708  | 0.551     |
| ##       | pri_nee_ano =~                           |            |         |         |           |        |           |
| ##       | N4P.SOC_6                                | 1.000      |         |         |           | 0.919  | 0.603     |
| ##       | N4P.SOC_7                                | 1.134      | 0.149   | 7.633   | 0.000     | 1.042  | 0.746     |
| ##       | N4P.SOC_8                                | 0.921      |         | 7.376   | 0.000     | 0.846  | 0.574     |
| ##       | N4P.INT_2                                | 0.655      | 0.137   | 4.772   | 0.000     | 0.602  | 0.395     |
| ##       | ~ .                                      |            |         |         |           |        |           |
|          | Covariances:                             | Patient.   | O+ 1 E  |         | D(> I=1)  | O+ 1 1 | O+ 1 - 11 |
| ##       | nni noo morrasi                          | Estimate   | Std.Err | z-value | P(> Z )   | Sta.Iv | Std.all   |
| ##<br>## | <pre>pri_nee_gov ~~    pri_nee_int</pre> | 0.399      | 0.091   | 4.361   | 0.000     | 0.411  | 0.411     |
| ##       | pri_nee_int<br>pri_nee_ano               | 0.692      | 0.105   | 6.588   | 0.000     | 0.696  | 0.696     |
| ##       | pri_nee_int ~~                           | 0.032      | 0.100   | 0.000   | 0.000     | 0.030  | 0.030     |
| ##       | pri_nee_ano                              | 0.260      | 0.083   | 3.126   | 0.002     | 0.316  | 0.316     |
| ##       | pri_ncc_ano                              | 0.200      | 0.000   | 0.120   | 0.002     | 0.010  | 0.010     |
|          | Variances:                               |            |         |         |           |        |           |
| ##       | . 41 1411000                             | Estimate   | Std.Err | z-value | P(> z )   | Std.lv | Std.all   |
| ##       | .N4P.SOC_1                               | 0.951      | 0.099   | 9.572   | 0.000     | 0.951  | 0.448     |
| ##       | .N4P.SOC_2                               | 1.063      | 0.145   | 7.348   | 0.000     | 1.063  | 0.480     |
| ##       | .N4P.SOC_3                               | 0.854      | 0.119   | 7.187   | 0.000     | 0.854  | 0.412     |
| ##       | .N4P.SOC_4                               | 0.819      | 0.118   | 6.957   | 0.000     | 0.819  | 0.346     |
| ##       | .N4P.SOC_9                               | 1.050      | 0.109   | 9.651   | 0.000     | 1.050  | 0.460     |
| ##       | .N4P.BOT_1                               | 0.973      | 0.169   | 5.771   | 0.000     | 0.973  | 0.547     |
| ##       | .N4P.INT_2                               | 1.597      | 0.150   | 10.656  | 0.000     | 1.597  | 0.687     |
| ##       | .N4P.INT_7                               | 1.183      | 0.134   | 8.821   | 0.000     | 1.183  | 0.724     |
| ##       | .N4P.INT_9                               | 1.150      | 0.155   | 7.426   | 0.000     | 1.150  | 0.696     |
| ##       | .N4P.SOC_6                               | 1.479      | 0.173   | 8.567   | 0.000     | 1.479  | 0.637     |
| ##       | .N4P.SOC_7                               | 0.867      | 0.132   | 6.581   | 0.000     | 0.867  | 0.444     |
| ##       | .N4P.SOC_8                               | 1.458      | 0.176   | 8.283   | 0.000     | 1.458  | 0.671     |
| ##       | pri_nee_gov                              | 1.171      | 0.172   | 6.823   | 0.000     | 1.000  | 1.000     |
| ##       | pri_nee_int                              | 0.805      | 0.181   | 4.442   | 0.000     | 1.000  | 1.000     |
| ##       | <pre>pri_nee_ano</pre>                   | 0.844      | 0.180   | 4.676   | 0.000     | 1.000  | 1.000     |

Shows a satisfactory, but not ideal solution. Try bifactor next.

#### CFA bifactor

| ##<br>## | lavaan 0.6-3 ended normally after 81 item                    | rations         |                 |       |
|----------|--------------------------------------------------------------|-----------------|-----------------|-------|
| ##       | Optimization method                                          | NLMINB          |                 |       |
| ##       | Number of free parameters                                    | 37              |                 |       |
| ##       | -                                                            |                 |                 |       |
| ##       | Number of observations                                       | 271             |                 |       |
| ##       |                                                              |                 |                 |       |
| ##       | Estimator                                                    | ML              | Robust          |       |
| ##       | Model Fit Test Statistic                                     | 80.583          | 66.819          |       |
| ##       | Degrees of freedom                                           | 41              | 41              |       |
| ##       | 1                                                            | 0.000           | 0.007           |       |
| ##       | Scaling correction factor for the Satorra-Bentler correction |                 | 1.206           |       |
| ##       | Tor the Satorra-Bentler Correction                           |                 |                 |       |
|          | Model test baseline model:                                   |                 |                 |       |
| ##       |                                                              |                 |                 |       |
| ##       | Minimum Function Test Statistic                              | 1123.084        | 968.042         |       |
| ##       | Degrees of freedom                                           | 66              | 66              |       |
| ##       | P-value                                                      | 0.000           | 0.000           |       |
| ##       |                                                              |                 |                 |       |
|          | User model versus baseline model:                            |                 |                 |       |
| ##       | G (GDT)                                                      | 0.000           | 0.074           |       |
| ##       | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)         | 0.963<br>0.940  | 0.971<br>0.954  |       |
| ##       | Tucker-Lewis Index (ILI)                                     | 0.940           | 0.954           |       |
| ##       | Robust Comparative Fit Index (CFI)                           |                 | 0.970           |       |
| ##       | Robust Tucker-Lewis Index (TLI)                              |                 | 0.952           |       |
| ##       | ,                                                            |                 |                 |       |
| ##       | Loglikelihood and Information Criteria:                      |                 |                 |       |
| ##       |                                                              |                 |                 |       |
| ##       | Loglikelihood user model (HO)                                | -5266.921       | -5266.921       |       |
| ##       | Loglikelihood unrestricted model (H1)                        | -5226.630       | -5226.630       |       |
| ##       | Number of free newspapers                                    | 27              | 27              |       |
| ##       | Number of free parameters Akaike (AIC)                       | 37<br>10607.842 | 37<br>10607.842 |       |
| ##       | Bayesian (BIC)                                               | 10741.121       |                 |       |
| ##       | Sample-size adjusted Bayesian (BIC)                          | 10623.805       |                 |       |
| ##       | a. 1                                                         |                 |                 |       |
| ##       | Root Mean Square Error of Approximation:                     |                 |                 |       |
| ##       |                                                              |                 |                 |       |
| ##       | RMSEA                                                        | 0.060           | 0.048           |       |
| ##       | 90 Percent Confidence Interval                               | 0.040 0.079     | 0.028           | 0.067 |
| ##       | P-value RMSEA <= 0.05                                        | 0.192           | 0.540           |       |
| ##       | Dalacet DMCEA                                                |                 | 0.052           |       |
| ##       | Robust RMSEA 90 Percent Confidence Interval                  |                 | 0.053<br>0.028  | 0.075 |
| ##       | 90 Fercent Confidence Interval                               |                 | 0.028           | 0.075 |
|          | Standardized Root Mean Square Residual:                      |                 |                 |       |
| ##       |                                                              |                 |                 |       |
| ##       | SRMR                                                         | 0.040           | 0.040           |       |
| ##       |                                                              |                 |                 |       |
| ##       | Parameter Estimates:                                         |                 |                 |       |

| ##<br>##<br>##<br>## | Information<br>Information satu<br>Standard Errors | urated (h1) | model   | St      | Expected ructured bust.sem |        |         |
|----------------------|----------------------------------------------------|-------------|---------|---------|----------------------------|--------|---------|
|                      | Latent Variables:                                  | <b>.</b>    | Q. 1 B  | -       | D(>    )                   | 0.1.7  | Q. 1 11 |
| ##                   |                                                    | Estimate    | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | <pre>pri_nee_gen =~     N4P.SOC_1</pre>            | 1.000       |         |         |                            | 0.948  | 0.651   |
| ##                   | N4P.SOC_1<br>N4P.SOC_2                             | 1.062       | 0.108   | 9.812   | 0.000                      | 1.007  | 0.676   |
| ##                   | N4P.SOC_2<br>N4P.SOC_3                             | 1.102       | 0.108   | 9.908   | 0.000                      | 1.046  | 0.726   |
| ##                   | N4P.SOC_3                                          | 1.102       | 0.111   | 9.245   | 0.000                      | 1.000  | 0.650   |
| ##                   | N4P.SOC_4<br>N4P.SOC_9                             | 1.214       | 0.114   | 9.595   | 0.000                      | 1.152  | 0.763   |
| ##                   | N4P.BOT_1                                          | 0.407       | 0.127   | 3.911   | 0.000                      | 0.386  | 0.763   |
| ##                   | N4P.INT_2                                          | 0.680       | 0.104   | 5.419   | 0.000                      | 0.645  | 0.422   |
| ##                   | N4P.INT_7                                          | 0.128       | 0.101   | 1.273   | 0.203                      | 0.121  | 0.095   |
| ##                   | N4P.INT_9                                          | 0.565       | 0.101   | 5.472   | 0.000                      | 0.536  | 0.417   |
| ##                   | N4P.SOC_6                                          | 0.797       | 0.132   | 6.051   | 0.000                      | 0.756  | 0.496   |
| ##                   | N4P.SOC_7                                          | 0.799       | 0.132   | 6.104   | 0.000                      | 0.758  | 0.543   |
| ##                   | N4P.SOC_8                                          | 0.670       | 0.130   | 5.146   | 0.000                      | 0.635  | 0.431   |
| ##                   | pri_nee_gov =~                                     | 0.070       | 0.100   | 0.110   | 0.000                      | 0.000  | 0.101   |
| ##                   | N4P.SOC_1                                          | 1.000       |         |         |                            | 0.485  | 0.333   |
| ##                   | N4P.SOC_2                                          | 0.670       | 0.213   | 3.149   | 0.002                      | 0.325  | 0.218   |
| ##                   | N4P.SOC 3                                          | 0.719       | 0.216   | 3.329   | 0.001                      | 0.349  | 0.242   |
| ##                   | N4P.SOC_4                                          | 2.126       | 1.101   | 1.930   | 0.054                      | 1.031  | 0.670   |
| ##                   | N4P.SOC_9                                          | 0.301       | 0.272   | 1.106   | 0.269                      | 0.146  | 0.097   |
| ##                   | pri_nee_int =~                                     | 0.001       | 0.2.2   | 1.100   | 0.200                      | 0.110  | 0.001   |
| ##                   | N4P.BOT_1                                          | 1.000       |         |         |                            | 0.788  | 0.591   |
| ##                   | N4P.INT_2                                          | 0.458       | 0.173   | 2.645   | 0.008                      | 0.361  | 0.236   |
| ##                   | N4P.INT_7                                          | 1.030       | 0.252   | 4.094   | 0.000                      | 0.812  | 0.635   |
| ##                   | N4P.INT_9                                          | 0.616       | 0.156   | 3.949   | 0.000                      | 0.486  | 0.378   |
| ##                   | pri_nee_ano =~                                     |             |         |         |                            |        |         |
| ##                   | N4P.SOC_6                                          | 1.000       |         |         |                            | 0.456  | 0.299   |
| ##                   | N4P.SOC_7                                          | 1.684       | 0.719   | 2.342   | 0.019                      | 0.768  | 0.550   |
| ##                   | N4P.SOC_8                                          | 1.274       | 0.477   | 2.671   | 0.008                      | 0.581  | 0.394   |
| ##                   | N4P.INT_2                                          | 0.874       | 0.357   | 2.447   | 0.014                      | 0.399  | 0.261   |
| ##                   | _                                                  |             |         |         |                            |        |         |
| ##                   | Covariances:                                       |             |         |         |                            |        |         |
| ##                   |                                                    | Estimate    | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | pri_nee_gen ~~                                     |             |         |         |                            |        |         |
| ##                   | pri_nee_gov                                        | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   | pri_nee_int                                        | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   | <pre>pri_nee_ano</pre>                             | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   | <pre>pri_nee_gov ~~</pre>                          |             |         |         |                            |        |         |
| ##                   | <pre>pri_nee_int</pre>                             | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   | <pre>pri_nee_ano</pre>                             | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   | <pre>pri_nee_int ~~</pre>                          |             |         |         |                            |        |         |
| ##                   | <pre>pri_nee_ano</pre>                             | 0.000       |         |         |                            | 0.000  | 0.000   |
| ##                   |                                                    |             |         |         |                            |        |         |
| ##                   | Variances:                                         |             |         |         |                            |        |         |
| ##                   |                                                    | Estimate    | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | .N4P.SOC_1                                         | 0.986       | 0.112   | 8.808   | 0.000                      | 0.986  | 0.465   |
| ##                   | .N4P.SOC_2                                         | 1.097       | 0.132   | 8.297   | 0.000                      | 1.097  | 0.495   |
| ##                   | .N4P.SOC_3                                         | 0.860       | 0.116   | 7.390   | 0.000                      | 0.860  | 0.414   |

| ## | .N4P.SOC_4             | 0.304 | 0.459 | 0.663 | 0.507 | 0.304 | 0.129 |
|----|------------------------|-------|-------|-------|-------|-------|-------|
| ## | .N4P.SOC_9             | 0.932 | 0.141 | 6.633 | 0.000 | 0.932 | 0.409 |
| ## | .N4P.BOT_1             | 1.007 | 0.193 | 5.232 | 0.000 | 1.007 | 0.567 |
| ## | .N4P.INT_2             | 1.629 | 0.167 | 9.763 | 0.000 | 1.629 | 0.698 |
| ## | .N4P.INT_7             | 0.960 | 0.177 | 5.432 | 0.000 | 0.960 | 0.588 |
| ## | .N4P.INT_9             | 1.129 | 0.141 | 7.998 | 0.000 | 1.129 | 0.683 |
| ## | .N4P.SOC_6             | 1.543 | 0.170 | 9.067 | 0.000 | 1.543 | 0.664 |
| ## | .N4P.SOC_7             | 0.787 | 0.254 | 3.102 | 0.002 | 0.787 | 0.403 |
| ## | .N4P.SOC_8             | 1.432 | 0.213 | 6.709 | 0.000 | 1.432 | 0.659 |
| ## | pri_nee_gen            | 0.900 | 0.188 | 4.784 | 0.000 | 1.000 | 1.000 |
| ## | <pre>pri_nee_gov</pre> | 0.235 | 0.177 | 1.329 | 0.184 | 1.000 | 1.000 |
| ## | pri_nee_int            | 0.622 | 0.187 | 3.318 | 0.001 | 1.000 | 1.000 |
| ## | pri_nee_ano            | 0.208 | 0.133 | 1.570 | 0.116 | 1.000 | 1.000 |

Bifactor-solution fits the data best.

## CFA privacy need government

| ##<br>## | lavaan 0.6-3 ended normally after 23 item            | rations     |                |       |
|----------|------------------------------------------------------|-------------|----------------|-------|
| ##       | Optimization method                                  | NLMINB      |                |       |
| ##       | Number of free parameters                            | 10          |                |       |
| ##       | -                                                    |             |                |       |
| ##       | Number of observations                               | 271         |                |       |
| ##       |                                                      |             |                |       |
| ##       | Estimator                                            | ML          | Robust         |       |
| ##       | Model Fit Test Statistic                             | 8.257       | 6.389          |       |
| ##       | Degrees of freedom                                   | 5           | 5              |       |
| ##       | 1                                                    | 0.143       | 0.270<br>1.293 |       |
| ##       | for the Satorra-Bentler correction                   |             | 1.293          |       |
| ##       | for the Datorra Dentier Correction                   |             |                |       |
|          | Model test baseline model:                           |             |                |       |
| ##       |                                                      |             |                |       |
| ##       | Minimum Function Test Statistic                      | 607.404     | 473.712        |       |
| ##       | Degrees of freedom                                   | 10          | 10             |       |
| ##       | P-value                                              | 0.000       | 0.000          |       |
| ##       |                                                      |             |                |       |
|          | User model versus baseline model:                    |             |                |       |
| ##       | Componentiano Eit Indon (CEI)                        | 0.995       | 0 007          |       |
| ##       | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) | 0.989       | 0.997<br>0.994 |       |
| ##       | Idexel Lewis Index (ILI)                             | 0.909       | 0.334          |       |
| ##       | Robust Comparative Fit Index (CFI)                   |             | 0.997          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                      |             | 0.994          |       |
| ##       |                                                      |             |                |       |
| ##       | Loglikelihood and Information Criteria:              |             |                |       |
| ##       |                                                      |             |                |       |
| ##       | Loglikelihood user model (HO)                        | -2160.169   | -2160.169      |       |
| ##       | Loglikelihood unrestricted model (H1)                | -2156.040   | -2156.040      |       |
| ##       | Number of free parameters                            | 10          | 10             |       |
| ##       | Akaike (AIC)                                         | 4340.337    |                |       |
| ##       | Bayesian (BIC)                                       | 4376.359    |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                  | 4344.652    |                |       |
| ##       |                                                      |             |                |       |
| ##       | Root Mean Square Error of Approximation:             |             |                |       |
| ##       |                                                      |             |                |       |
| ##       | RMSEA                                                | 0.049       | 0.032          |       |
| ##       | 90 Percent Confidence Interval                       | 0.000 0.106 | 0.000          | 0.088 |
| ##       | P-value RMSEA <= 0.05                                | 0.439       | 0.634          |       |
| ##       | Robust RMSEA                                         |             | 0.036          |       |
| ##       | 90 Percent Confidence Interval                       |             | 0.000          | 0.108 |
| ##       | JO TOTOGIO CONTIGUICO INVOLVAT                       |             | 0.000          | 0.100 |
|          | Standardized Root Mean Square Residual:              |             |                |       |
| ##       | •                                                    |             |                |       |
| ##       | SRMR                                                 | 0.018       | 0.018          |       |
| ##       |                                                      |             |                |       |
| ##       | Parameter Estimates:                                 |             |                |       |

| ##<br>##<br>##<br>## | Information<br>Information satu<br>Standard Errors | urated (h1) | model   | St      | Expected ructured bust.sem |        |         |
|----------------------|----------------------------------------------------|-------------|---------|---------|----------------------------|--------|---------|
| ##                   | Latent Variables:                                  |             |         |         |                            |        |         |
| ##                   | Latent Variables:                                  | Estimate    | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | pri_nee_gov =~                                     |             |         |         |                            |        |         |
| ##                   | N4P.SOC_1                                          | 1.000       |         |         |                            | 1.102  | 0.756   |
| ##                   | N4P.SOC_2                                          | 0.959       | 0.093   | 10.286  | 0.000                      | 1.056  | 0.710   |
| ##                   | N4P.SOC_3                                          | 0.993       | 0.089   | 11.157  | 0.000                      | 1.094  | 0.759   |
| ##                   | N4P.SOC_4                                          | 1.153       | 0.088   | 13.044  | 0.000                      | 1.271  | 0.826   |
| ##                   | N4P.SOC_9                                          | 0.985       | 0.088   | 11.145  | 0.000                      | 1.086  | 0.719   |
| ##                   |                                                    |             |         |         |                            |        |         |
| ##                   | Variances:                                         |             |         |         |                            |        |         |
| ##                   |                                                    | Estimate    | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | .N4P.SOC_1                                         | 0.908       | 0.104   | 8.730   | 0.000                      | 0.908  | 0.428   |
| ##                   | $.N4P.SOC_2$                                       | 1.101       | 0.159   | 6.917   | 0.000                      | 1.101  | 0.497   |
| ##                   | .N4P.SOC_3                                         | 0.879       | 0.127   | 6.897   | 0.000                      | 0.879  | 0.424   |
| ##                   | $.\mathrm{N4P.SOC\_4}$                             | 0.753       | 0.121   | 6.235   | 0.000                      | 0.753  | 0.318   |
| ##                   | .N4P.SOC_9                                         | 1.102       | 0.112   | 9.871   | 0.000                      | 1.102  | 0.483   |
| ##                   | <pre>pri_nee_gov</pre>                             | 1.214       | 0.177   | 6.870   | 0.000                      | 1.000  | 1.000   |

## CFA privacy need interpersonal

| ##<br>## | lavaan 0.6-3 ended normally after 27 item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rations        |               |       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|-------|
| ##       | Optimization method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLMINB         |               |       |
| ##       | Number of free parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8              |               |       |
| ##       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |       |
| ##       | Number of observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271            |               |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
| ##       | Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ML             | Robust        |       |
| ##       | Model Fit Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.236         | 10.606        |       |
| ##       | Degrees of freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2              | 2             |       |
| ##       | P-value (Chi-square)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004          | 0.005         |       |
| ##       | Scaling correction factor for the Satorra-Bentler correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1.059         |       |
| ##       | for the Satorra-Bentler Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |               |       |
|          | Model test baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |       |
| ##       | noder vebt buberine moder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               |       |
| ##       | Minimum Function Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.455        | 113.497       |       |
| ##       | Degrees of freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6              | 6             |       |
| ##       | P-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000          | 0.000         |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
|          | User model versus baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |       |
| ##       | g (GDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005          | 0.000         |       |
| ##       | Comparative Fit Index (CFI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.925<br>0.774 | 0.920         |       |
| ##       | Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.774          | 0.760         |       |
| ##       | Robust Comparative Fit Index (CFI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 0.925         |       |
| ##       | Robust Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.775         |       |
| ##       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               |       |
| ##       | Loglikelihood and Information Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
| ##       | Loglikelihood user model (HO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1806.252      | -1806.252     |       |
| ##       | Loglikelihood unrestricted model (H1) -1800.634 -1800.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |               |       |
| ##       | Now house of forces and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0              | 0             |       |
| ##<br>## | Number of free parameters Akaike (AIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>3628.504  | 8<br>3628.504 |       |
| ##       | Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3657.321       |               |       |
| ##       | Sample-size adjusted Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3631.955       | 3631.955      |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
| ##       | Root Mean Square Error of Approximation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
| ##       | RMSEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.131          | 0.126         |       |
| ##       | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.064 0.209    | 0.061         | 0.203 |
| ##       | P-value RMSEA <= 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.026          | 0.030         |       |
| ##       | Robust RMSEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 0.130         |       |
| ##       | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 0.130         | 0.211 |
| ##       | 90 refeelt confidence interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 0.001         | 0.211 |
|          | Standardized Root Mean Square Residual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |               |       |
| ##       | and the second s |                |               |       |
| ##       | SRMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.046          | 0.046         |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |       |
| ##       | Parameter Estimates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |       |

| ## |                           |             |         |         |          |        |         |
|----|---------------------------|-------------|---------|---------|----------|--------|---------|
| ## | Information               |             |         |         | Expected |        |         |
| ## | Information sat           | urated (h1) | model   | St      | ructured |        |         |
| ## | Standard Errors           |             |         | Ro      | bust.sem |        |         |
| ## |                           |             |         |         |          |        |         |
| ## | Latent Variables:         |             |         |         |          |        |         |
| ## |                           | Estimate    | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | <pre>pri_nee_int =~</pre> |             |         |         |          |        |         |
| ## | N4P.BOT_1                 | 1.000       |         |         |          | 0.953  | 0.715   |
| ## | N4P.INT_2                 | 0.656       | 0.154   | 4.267   | 0.000    | 0.625  | 0.410   |
| ## | N4P.INT_7                 | 0.727       | 0.138   | 5.266   | 0.000    | 0.693  | 0.543   |
| ## | N4P.INT_9                 | 0.664       | 0.126   | 5.272   | 0.000    | 0.633  | 0.493   |
| ## |                           |             |         |         |          |        |         |
| ## | Variances:                |             |         |         |          |        |         |
| ## |                           | Estimate    | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | .N4P.BOT_1                | 0.869       | 0.190   | 4.579   | 0.000    | 0.869  | 0.489   |
| ## | $.N4P.INT_2$              | 1.934       | 0.162   | 11.913  | 0.000    | 1.934  | 0.832   |
| ## | $.\mathtt{N4P.INT}_{-7}$  | 1.153       | 0.134   | 8.634   | 0.000    | 1.153  | 0.706   |
| ## | .N4P.INT_9                | 1.251       | 0.151   | 8.281   | 0.000    | 1.251  | 0.757   |
| ## | <pre>pri_nee_int</pre>    | 0.909       | 0.199   | 4.574   | 0.000    | 1.000  | 1.000   |

## CFA privacy need anonymity

| ##<br>## | lavaan 0.6-3 ended normally after 30 item                    | rations       |               |       |
|----------|--------------------------------------------------------------|---------------|---------------|-------|
| ##       | Optimization method                                          | NLMINB        |               |       |
| ##       | Number of free parameters                                    | 8             |               |       |
| ##       | •                                                            |               |               |       |
| ##       | Number of observations                                       | 271           |               |       |
| ##       |                                                              |               |               |       |
| ##       | Estimator                                                    | ML            | Robust        |       |
| ##       | Model Fit Test Statistic                                     | 4.998         | 3.105         |       |
| ##       | Degrees of freedom                                           | 2             | 2             |       |
| ##       | 1                                                            | 0.082         | 0.212         |       |
| ##       | Scaling correction factor for the Satorra-Bentler correction |               | 1.610         |       |
| ##       | for the Satorra-Bentler correction                           |               |               |       |
|          | Model test baseline model:                                   |               |               |       |
| ##       | noder test baserine moder.                                   |               |               |       |
| ##       | Minimum Function Test Statistic                              | 180.279       | 156.543       |       |
| ##       | Degrees of freedom                                           | 6             | 6             |       |
| ##       | P-value                                                      | 0.000         | 0.000         |       |
| ##       |                                                              |               |               |       |
| ##       | User model versus baseline model:                            |               |               |       |
| ##       |                                                              |               |               |       |
| ##       | Comparative Fit Index (CFI)                                  | 0.983         | 0.993         |       |
| ##       |                                                              |               |               |       |
| ##       | Robust Comparative Fit Index (CFI)                           |               | 0.990         |       |
| ##       | Robust Tucker-Lewis Index (TLI)                              |               | 0.969         |       |
| ##       |                                                              |               | 0.000         |       |
| ##       | Loglikelihood and Information Criteria:                      |               |               |       |
| ##       |                                                              |               |               |       |
| ##       | Loglikelihood user model (HO)                                |               | -1874.773     |       |
| ##       | Loglikelihood unrestricted model (H1)                        | -1872.274     | -1872.274     |       |
| ##       | N 1 C C                                                      | 0             | 0             |       |
| ##<br>## | Number of free parameters Akaike (AIC)                       | 8<br>3765.546 | 8<br>3765.546 |       |
| ##       | Bayesian (BIC)                                               | 3794.363      |               |       |
| ##       | Sample-size adjusted Bayesian (BIC)                          |               |               |       |
| ##       | Dampie Dize dajabeta Dajebian (Die)                          | 0,00.000      | 3768.998      |       |
| ##       | Root Mean Square Error of Approximation:                     |               |               |       |
| ##       | -                                                            |               |               |       |
| ##       | RMSEA                                                        | 0.074         | 0.045         |       |
| ##       | 90 Percent Confidence Interval                               | 0.000 0.159   | 0.000         | 0.118 |
| ##       | P-value RMSEA <= 0.05                                        | 0.229         | 0.450         |       |
| ##       | D. I DWGEA                                                   |               | 0.057         |       |
| ##       | Robust RMSEA                                                 |               | 0.057         | 0 174 |
| ##       | 90 Percent Confidence Interval                               |               | 0.000         | 0.174 |
|          | Standardized Root Mean Square Residual:                      |               |               |       |
| ##       | Standard 1000 Hour byuare hebruar.                           |               |               |       |
| ##       | SRMR                                                         | 0.029         | 0.029         |       |
| ##       |                                                              |               |               |       |
| ##       | Parameter Estimates:                                         |               |               |       |

| ## |                          |             |         |         |          |        |         |
|----|--------------------------|-------------|---------|---------|----------|--------|---------|
| ## | Information              |             |         |         | Expected |        |         |
| ## | Information satu         | irated (h1) | model   | St      | ructured |        |         |
| ## | Standard Errors          |             |         | Ro      | bust.sem |        |         |
| ## |                          |             |         |         |          |        |         |
| ## | Latent Variables:        |             |         |         |          |        |         |
| ## |                          | Estimate    | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | pri_nee_ano =~           |             |         |         |          |        |         |
| ## | N4P.SOC_6                | 1.000       |         |         |          | 0.894  | 0.587   |
| ## | N4P.SOC_7                | 1.160       | 0.171   | 6.779   | 0.000    | 1.037  | 0.742   |
| ## | N4P.SOC_8                | 0.971       | 0.145   | 6.683   | 0.000    | 0.869  | 0.589   |
| ## | N4P.INT_2                | 0.843       | 0.131   | 6.451   | 0.000    | 0.754  | 0.495   |
| ## |                          |             |         |         |          |        |         |
| ## | Variances:               |             |         |         |          |        |         |
| ## |                          | Estimate    | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | .N4P.SOC_6               | 1.523       | 0.194   | 7.869   | 0.000    | 1.523  | 0.656   |
| ## | .N4P.SOC_7               | 0.876       | 0.182   | 4.801   | 0.000    | 0.876  | 0.449   |
| ## | $.\mathrm{N4P.SOC}_{-8}$ | 1.419       | 0.199   | 7.135   | 0.000    | 1.419  | 0.653   |
| ## | .N4P.INT_2               | 1.756       | 0.208   | 8.457   | 0.000    | 1.756  | 0.755   |
| ## | <pre>pri_nee_ano</pre>   | 0.800       | 0.185   | 4.316   | 0.000    | 1.000  | 1.000   |

## Sociability

#### Items



#### Parallel analysis



## Parallel analysis suggests that the number of factors = 3 and the number of components = 2

#### EFA 1

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 3, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
                     ML1
          ML2
                ML3
                           h2
                                  u2 com
## SOC_1 0.53 0.35 -0.14 0.52 0.480 1.9
## SOC_2 0.53 0.14 0.28 0.54 0.457 1.7
## SOC_3 0.04 0.62 0.09 0.43 0.567 1.1
## SOC_4 0.00 0.01 1.00 1.00 0.005 1.0
## SOC_5 -0.03 0.75 -0.01 0.55 0.452 1.0
## SOC_6 0.47 -0.18 0.11 0.21 0.786 1.4
## SOC_7 0.53 0.23 0.02 0.45 0.547 1.4
## SOC 8 0.85 -0.09 -0.01 0.65 0.345 1.0
##
##
                         ML2 ML3 ML1
## SS loadings
                        1.91 1.29 1.16
## Proportion Var
                        0.24 0.16 0.14
## Cumulative Var
                        0.24 0.40 0.54
## Proportion Explained 0.44 0.30 0.27
## Cumulative Proportion 0.44 0.73 1.00
## With factor correlations of
##
       ML2 ML3 ML1
## ML2 1.00 0.44 0.29
## ML3 0.44 1.00 0.12
## ML1 0.29 0.12 1.00
## Mean item complexity = 1.3
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the null model are 28 and the objective function was 2.18 with Chi Squ
## The degrees of freedom for the model are 7 and the objective function was 0.07
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.05
## The harmonic number of observations is 271 with the empirical chi square 10.5 with prob < 0.16
## The total number of observations was 271 with Likelihood Chi Square = 18.1 with prob < 0.012
## Tucker Lewis Index of factoring reliability = 0.919
## RMSEA index = 0.078 and the 90 % confidence intervals are 0.034 0.121
## BIC = -21.1
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
                                                    ML2 ML3 ML1
##
## Correlation of (regression) scores with factors 0.90 0.85 1.00
## Multiple R square of scores with factors
                                                   0.81 0.72 0.99
## Minimum correlation of possible factor scores
                                                   0.63 0.45 0.99
```

#### EFA 2

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 2, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
          ML1
                ML2
                     h2
                           u2 com
## SOC_1 0.46 0.34 0.46 0.54 1.8
## SOC_2 0.70 0.07 0.54 0.46 1.0
## SOC_3 0.13 0.56 0.40 0.60 1.1
## SOC_4 0.43 -0.08 0.16 0.84 1.1
## SOC_5 -0.03 0.78 0.60 0.40 1.0
## SOC_6 0.54 -0.21 0.24 0.76 1.3
## SOC_7 0.52 0.24 0.44 0.56 1.4
## SOC_8 0.78 -0.05 0.58 0.42 1.0
##
##
                         ML1 ML2
## SS loadings
                        2.16 1.25
## Proportion Var
                        0.27 0.16
## Cumulative Var
                        0.27 0.43
## Proportion Explained 0.63 0.37
## Cumulative Proportion 0.63 1.00
## With factor correlations of
##
       ML1 ML2
## ML1 1.00 0.43
## ML2 0.43 1.00
## Mean item complexity = 1.2
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the null model are 28 and the objective function was 2.18 with Chi Squ
## The degrees of freedom for the model are 13 and the objective function was 0.25
## The root mean square of the residuals (RMSR) is 0.06
## The df corrected root mean square of the residuals is 0.08
## The harmonic number of observations is 271 with the empirical chi square 49.9 with prob < 3.1e-0
## The total number of observations was 271 with Likelihood Chi Square = 65.8 with prob < 4.6e-09
## Tucker Lewis Index of factoring reliability = 0.793
## RMSEA index = 0.124 and the 90 % confidence intervals are 0.094 0.153
## BIC = -6.99
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
                                                     ML1 ML2
## Correlation of (regression) scores with factors
                                                    0.90 0.85
## Multiple R square of scores with factors
                                                    0.81 0.73
## Minimum correlation of possible factor scores
                                                    0.62 0.46
```

| ##<br>## | lavaan 0.6-3 ended normally after 48 item            | rations        |                |       |
|----------|------------------------------------------------------|----------------|----------------|-------|
| ##       | Optimization method                                  | NLMINB         |                |       |
| ##       | Number of free parameters                            | 18             |                |       |
| ##       | -                                                    |                |                |       |
| ##       | Number of observations                               | 271            |                |       |
| ##       |                                                      |                |                |       |
| ##       | Estimator                                            | ML             | Robust         |       |
| ##       | Model Fit Test Statistic                             | 77.016         | 67.623         |       |
| ##       | 8                                                    | 18             | 18             |       |
| ##       | 1                                                    | 0.000          | 0.000<br>1.139 |       |
| ##       | for the Satorra-Bentler correction                   |                | 1.139          |       |
| ##       | for the Satoria-Bentler Correction                   |                |                |       |
|          | Model test baseline model:                           |                |                |       |
| ##       |                                                      |                |                |       |
| ##       | Minimum Function Test Statistic                      | 591.662        | 499.927        |       |
| ##       | Degrees of freedom                                   | 28             | 28             |       |
| ##       | P-value                                              | 0.000          | 0.000          |       |
| ##       |                                                      |                |                |       |
|          | User model versus baseline model:                    |                |                |       |
| ##       | G (GDT)                                              | 0.005          | 0.005          |       |
| ##       | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) | 0.895<br>0.837 | 0.895          |       |
| ##<br>## | Tucker-Lewis Index (ILI)                             | 0.837          | 0.836          |       |
| ##       | Robust Comparative Fit Index (CFI)                   |                | 0.899          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                      |                | 0.843          |       |
| ##       |                                                      |                |                |       |
| ##       | Loglikelihood and Information Criteria:              |                |                |       |
| ##       |                                                      |                |                |       |
| ##       | 6                                                    | -3621.144      | -3621.144      |       |
| ##       | Loglikelihood unrestricted model (H1)                | -3582.636      | -3582.636      |       |
| ##       | N                                                    | 10             | 10             |       |
| ##       | Number of free parameters Akaike (AIC)               | 18<br>7278.288 | 18<br>7278.288 |       |
| ##       | Bayesian (BIC)                                       | 7343.126       |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                  | 7286.054       | 7286.054       |       |
| ##       | 20mp 10 2120 day 22004 2ay 021411 (210)              | , 200, 00 1    | . 2001001      |       |
| ##       | Root Mean Square Error of Approximation:             |                |                |       |
| ##       | -                                                    |                |                |       |
| ##       | RMSEA                                                | 0.110          | 0.101          |       |
| ##       | 90 Percent Confidence Interval                       | 0.085 0.136    | 0.077          | 0.125 |
| ##       | P-value RMSEA <= 0.05                                | 0.000          | 0.000          |       |
| ##       | D. I DWGEA                                           |                | 0.100          |       |
| ##       | Robust RMSEA                                         |                | 0.108          | 0 126 |
| ##<br>## | 90 Percent Confidence Interval                       |                | 0.081          | 0.136 |
|          | Standardized Root Mean Square Residual:              |                |                |       |
| ##       | Daniel Marie Marie Mobiletti.                        |                |                |       |
| ##       | SRMR                                                 | 0.082          | 0.082          |       |
| ##       |                                                      |                |                |       |
| ##       | Parameter Estimates:                                 |                |                |       |

| ##<br>##<br>##<br>## | Information<br>Information<br>Standard Er | satu       | rated (h1)     | model   | St      | Expected ructured bust.sem |                |         |
|----------------------|-------------------------------------------|------------|----------------|---------|---------|----------------------------|----------------|---------|
| ##                   |                                           |            |                |         |         |                            |                |         |
|                      | Latent Variab                             | les:       |                | a       | _       | 54.1.13                    | a              | a       |
| ##                   | 4                                         |            | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv         | Std.all |
| ##                   | soc_1 =~                                  | (-)        | 1 000          |         |         |                            | 0 664          | 0 420   |
| ##<br>##             | SOC_1                                     | (a)<br>(a) | 1.000<br>1.000 |         |         |                            | 0.664          | 0.430   |
| ##                   | SOC_3<br>SOC_5                            | (a)        | 1.000          |         |         |                            | 0.664<br>0.664 |         |
| ##                   | SOC_5                                     | (a)        | 1.000          |         |         |                            | 0.664          | 0.433   |
| ##                   | soc_2 =~                                  | (a)        | 1.000          |         |         |                            | 0.004          | 0.022   |
| ##                   | SOC_1                                     | (b)        | 1.000          |         |         |                            | 0.712          | 0.461   |
| ##                   | SOC_2                                     | (b)        | 1.000          |         |         |                            | 0.712          |         |
| ##                   | SOC_4                                     | (b)        | 1.000          |         |         |                            | 0.712          |         |
| ##                   | SOC_6                                     | (b)        | 1.000          |         |         |                            | 0.712          |         |
| ##                   | SOC_7                                     | (b)        | 1.000          |         |         |                            | 0.712          |         |
| ##                   | SOC_8                                     | (b)        | 1.000          |         |         |                            | 0.712          | 0.510   |
| ##                   | soc_gen =~                                |            |                |         |         |                            |                |         |
| ##                   | SOC_1                                     |            | 1.000          |         |         |                            | 0.531          | 0.344   |
| ##                   | SOC_2                                     |            | 1.725          | 0.429   | 4.022   | 0.000                      | 0.916          | 0.676   |
| ##                   | SOC_3                                     |            | 1.444          | 0.351   | 4.114   | 0.000                      | 0.767          | 0.545   |
| ##                   | SOC_4                                     |            | 1.022          | 0.344   | 2.973   | 0.003                      | 0.543          | 0.327   |
| ##                   | SOC_5                                     |            | 1.259          | 0.299   | 4.207   | 0.000                      | 0.668          | 0.456   |
| ##                   | SOC_6                                     |            | 0.496          | 0.247   |         |                            | 0.264          | 0.168   |
| ##                   | SOC_7                                     |            | 0.417          | 0.178   |         | 0.019                      | 0.222          | 0.174   |
| ##                   | SOC_8                                     |            | 0.918          | 0.197   | 4.652   | 0.000                      | 0.487          | 0.349   |
| ##                   | ~ .                                       |            |                |         |         |                            |                |         |
|                      | Covariances:                              |            | <b>.</b>       | Q. 1 B  | -       | D(>    )                   | 0.1.7          | Q. 1 77 |
| ##                   | 1                                         |            | Estimate       | Sta.Err | z-value | P(> z )                    | Std.lv         | Std.all |
| ##<br>##             | soc_1 ~~<br>soc 2                         |            | 0.000          |         |         |                            | 0.000          | 0.000   |
| ##                   | soc_z<br>soc_gen                          |            | 0.000          |         |         |                            | 0.000          | 0.000   |
| ##                   | soc_gen                                   |            | 0.000          |         |         |                            | 0.000          | 0.000   |
| ##                   | soc_gen                                   |            | 0.000          |         |         |                            | 0.000          | 0.000   |
| ##                   |                                           |            |                |         |         |                            |                |         |
| ##                   | Variances:                                |            |                |         |         |                            |                |         |
| ##                   |                                           |            | Estimate       | Std.Err | z-value | P(> z )                    | Std.lv         | Std.all |
| ##                   | .SOC_1                                    |            | 1.156          | 0.115   | 10.025  | 0.000                      | 1.156          | 0.484   |
| ##                   | .SOC_3                                    |            | 0.953          | 0.142   | 6.729   | 0.000                      | 0.953          | 0.481   |
| ##                   | .SOC_5                                    |            | 1.258          | 0.143   | 8.821   | 0.000                      | 1.258          | 0.586   |
| ##                   | .SOC_7                                    |            | 0.622          | 0.117   | 5.331   | 0.000                      | 0.622          | 0.384   |
| ##                   | .SOC_2                                    |            | 0.490          | 0.156   | 3.138   | 0.002                      | 0.490          | 0.267   |
| ##                   | .SOC_4                                    |            | 1.957          | 0.188   | 10.428  | 0.000                      | 1.957          | 0.709   |
| ##                   | .SOC_6                                    |            | 1.890          | 0.153   | 12.326  | 0.000                      | 1.890          | 0.766   |
| ##                   | .SOC_8                                    |            | 1.208          | 0.132   | 9.145   | 0.000                      | 1.208          | 0.618   |
| ##                   | soc_1                                     |            | 0.440          | 0.088   | 5.009   | 0.000                      | 1.000          | 1.000   |
| ##                   | soc_2                                     |            | 0.508          | 0.086   | 5.928   | 0.000                      | 1.000          | 1.000   |
| ##                   | soc_gen                                   |            | 0.282          | 0.129   | 2.189   | 0.029                      | 1.000          | 1.000   |
|                      |                                           |            |                |         |         |                            |                |         |

Shows no solution for two factors.

| ##<br>## | lavaan 0.6-3 ended normally after 28 item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rations        |                |       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------|
| ##       | Optimization method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLMINB         |                |       |
| ##       | Number of free parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12             |                |       |
| ##       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | Number of observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271            |                |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ML             | Robust         |       |
| ##       | Model Fit Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.206         | 56.836         |       |
| ##       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9              | 9              |       |
| ##       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000          | 0.000<br>1.270 |       |
| ##       | for the Satorra-Bentler correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1.270          |       |
| ##       | for the Satoria Dentier Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                |       |
|          | Model test baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |       |
| ##       | THE STATE OF THE S |                |                |       |
| ##       | Minimum Function Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 432.469        | 343.913        |       |
| ##       | Degrees of freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15             | 15             |       |
| ##       | P-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000          | 0.000          |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
|          | User model versus baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | g (GDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040          | 0.055          |       |
| ##       | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.849<br>0.748 | 0.855<br>0.758 |       |
| ##       | Tucker-Lewis Index (ILI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.748          | 0.758          |       |
| ##       | Robust Comparative Fit Index (CFI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 0.853          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.755          |       |
| ##       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | Loglikelihood and Information Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Loglikelihood user model (HO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2728.562      |                |       |
| ##       | Loglikelihood unrestricted model (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2692.459      | -2692.459      |       |
| ##       | N 1 C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40             | 4.0            |       |
| ##       | Number of free parameters Akaike (AIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12<br>5481.124 | 12<br>5481.124 |       |
| ##       | Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5524.350       |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5486.301       |                |       |
| ##       | 24mp10 2120 daja2004 24j02141 (210)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 100 100 1    | 01001001       |       |
| ##       | Root Mean Square Error of Approximation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |       |
| ##       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | RMSEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.161          | 0.140          |       |
| ##       | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.128 0.196    | 0.110          | 0.172 |
| ##       | P-value RMSEA <= 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000          | 0.000          |       |
| ##       | D. I DMGEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0.450          |       |
| ##       | Robust RMSEA 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 0.158          | 0 100 |
| ##       | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 0.120          | 0.198 |
|          | Standardized Root Mean Square Residual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |       |
| ##       | 2 canada a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |       |
| ##       | SRMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.072          | 0.072          |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Parameter Estimates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |       |

| ## |                   |            |         |         |          |        |         |
|----|-------------------|------------|---------|---------|----------|--------|---------|
| ## | Information       |            |         |         | Expected |        |         |
| ## | Information satu  | rated (h1) | model   | St      | ructured |        |         |
| ## | Standard Errors   |            |         | Ro      | bust.sem |        |         |
| ## |                   |            |         |         |          |        |         |
| ## | Latent Variables: |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | soc_gen =~        |            |         |         |          |        |         |
| ## | SOC_1             | 1.000      |         |         |          | 0.939  | 0.630   |
| ## | SOC_2             | 1.055      | 0.113   | 9.344   | 0.000    | 0.991  | 0.726   |
| ## | SOC_4             | 0.634      | 0.127   | 5.011   | 0.000    | 0.596  | 0.376   |
| ## | SOC_6             | 0.667      | 0.118   | 5.646   | 0.000    | 0.626  | 0.408   |
| ## | SOC_7             | 0.875      | 0.094   | 9.269   | 0.000    | 0.822  | 0.650   |
| ## | SOC_8             | 1.177      | 0.116   | 10.161  | 0.000    | 1.105  | 0.752   |
| ## |                   |            |         |         |          |        |         |
| ## | Variances:        |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | .SOC_1            | 1.337      | 0.136   | 9.840   | 0.000    | 1.337  | 0.603   |
| ## | .SOC_2            | 0.883      | 0.124   | 7.133   | 0.000    | 0.883  | 0.473   |
| ## | .SOC_4            | 2.155      | 0.174   | 12.356  | 0.000    | 2.155  | 0.859   |
| ## | .SOC_6            | 1.968      | 0.155   | 12.676  | 0.000    | 1.968  | 0.834   |
| ## | .SOC_7            | 0.921      | 0.131   | 7.020   | 0.000    | 0.921  | 0.577   |
| ## | .SOC_8            | 0.939      | 0.146   | 6.435   | 0.000    | 0.939  | 0.435   |
| ## | soc_gen           | 0.882      | 0.162   | 5.459   | 0.000    | 1.000  | 1.000   |

Uni-dimensional solution with 6 items not feasible; need to reduce to 4.

| ##<br>## | lavaan 0.6-3 ended normally after 23 item | rations     |           |       |
|----------|-------------------------------------------|-------------|-----------|-------|
| ##       | Optimization method                       | NLMINB      |           |       |
| ##       | Number of free parameters                 | 8           |           |       |
| ##       | •                                         |             |           |       |
| ##       | Number of observations                    | 271         |           |       |
| ##       |                                           |             |           |       |
| ##       | Estimator                                 | ML          | Robust    |       |
| ##       | Model Fit Test Statistic                  | 7.689       | 5.941     |       |
| ##       | 8                                         | 2           | 2         |       |
| ##       | 1                                         | 0.021       | 0.051     |       |
| ##       | 8                                         |             | 1.294     |       |
| ##       | for the Satorra-Bentler correction        |             |           |       |
|          | Model test baseline model:                |             |           |       |
| ##       | model test baseline model.                |             |           |       |
| ##       | Minimum Function Test Statistic           | 302.882     | 226.845   |       |
| ##       |                                           | 6           | 6         |       |
| ##       | P-value                                   | 0.000       | 0.000     |       |
| ##       |                                           |             |           |       |
| ##       | User model versus baseline model:         |             |           |       |
| ##       |                                           |             |           |       |
| ##       | Comparative Fit Index (CFI)               | 0.981       | 0.982     |       |
| ##       | Tucker-Lewis Index (TLI)                  | 0.943       | 0.946     |       |
| ##       |                                           |             |           |       |
| ##       | 1                                         |             | 0.983     |       |
| ##       | Robust Tucker-Lewis Index (TLI)           |             | 0.948     |       |
|          | Loglikelihood and Information Criteria:   |             |           |       |
| ##       | Logitkorinood dha information officera.   |             |           |       |
| ##       | Loglikelihood user model (HO)             | -1750.928   | -1750.928 |       |
| ##       | Loglikelihood unrestricted model (H1)     | -1747.083   | -1747.083 |       |
| ##       |                                           |             |           |       |
| ##       | Number of free parameters                 | 8           | 8         |       |
| ##       | Akaike (AIC)                              | 3517.856    |           |       |
| ##       | Bayesian (BIC)                            | 3546.673    |           |       |
| ##       | Sample-size adjusted Bayesian (BIC)       | 3521.307    | 3521.307  |       |
| ##       | Doot Moon Course Error of Annovirontion.  |             |           |       |
| ##       | Root Mean Square Error of Approximation:  |             |           |       |
| ##       | RMSEA                                     | 0.102       | 0.085     |       |
| ##       | 90 Percent Confidence Interval            | 0.034 0.183 | 0.018     | 0.158 |
| ##       | P-value RMSEA <= 0.05                     | 0.093       | 0.152     |       |
| ##       |                                           |             |           |       |
| ##       | Robust RMSEA                              |             | 0.097     |       |
| ##       | 90 Percent Confidence Interval            |             | NA        | 0.192 |
| ##       |                                           |             |           |       |
|          | Standardized Root Mean Square Residual:   |             |           |       |
| ##       | anun                                      | 2 22-       |           |       |
| ##       | SRMR                                      | 0.027       | 0.027     |       |
| ##<br>## | Parameter Estimates:                      |             |           |       |
| иπ       | raramouti indumator.                      |             |           |       |

| ## |                   |            |         |         |          |        |         |
|----|-------------------|------------|---------|---------|----------|--------|---------|
| ## | Information       |            |         |         | Expected |        |         |
| ## | Information satu  | rated (h1) | model   | St      | ructured |        |         |
| ## | Standard Errors   |            |         | Ro      | bust.sem |        |         |
| ## |                   |            |         |         |          |        |         |
| ## | Latent Variables: |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | soc_gen =~        |            |         |         |          |        |         |
| ## | SOC_1             | 1.000      |         |         |          | 1.025  | 0.688   |
| ## | SOC_2             | 0.891      | 0.102   | 8.697   | 0.000    | 0.913  | 0.669   |
| ## | SOC_7             | 0.845      | 0.092   | 9.214   | 0.000    | 0.867  | 0.686   |
| ## | SOC_8             | 1.058      | 0.106   | 9.983   | 0.000    | 1.085  | 0.738   |
| ## |                   |            |         |         |          |        |         |
| ## | Variances:        |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | .SOC_1            | 1.169      | 0.132   | 8.829   | 0.000    | 1.169  | 0.527   |
| ## | .SOC_2            | 1.031      | 0.132   | 7.797   | 0.000    | 1.031  | 0.553   |
| ## | .SOC_7            | 0.846      | 0.126   | 6.718   | 0.000    | 0.846  | 0.530   |
| ## | .SOC_8            | 0.984      | 0.169   | 5.841   | 0.000    | 0.984  | 0.455   |
| ## | soc_gen           | 1.051      | 0.170   | 6.176   | 0.000    | 1.000  | 1.000   |
|    |                   |            |         |         |          |        |         |

Shows adequate fit.

# Anxiety

#### Items



### Parallel analysis



## Parallel analysis suggests that the number of factors = 3 and the number of components = 1 Implies one dimension.

| ##<br>## | lavaan 0.6-3 ended normally after 30 item          | ations |                  |                      |       |
|----------|----------------------------------------------------|--------|------------------|----------------------|-------|
| ##       | Optimization method                                |        | NLMINB           |                      |       |
| ##       | Number of free parameters                          |        | 16               |                      |       |
| ##       | amsor or 2200 paramotors                           |        |                  |                      |       |
| ##       | Number of observations                             |        | 271              |                      |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Estimator                                          |        | ML               | Robust               |       |
| ##       | Model Fit Test Statistic                           | 1      | 01.511           | 73.802               |       |
| ##       | Degrees of freedom                                 |        | 20               | 20                   |       |
| ##       | P-value (Chi-square)                               |        | 0.000            | 0.000                |       |
| ##       | Scaling correction factor                          |        |                  | 1.375                |       |
| ##       | for the Satorra-Bentler correction                 |        |                  |                      |       |
| ##       | Madal tast baseline madal.                         |        |                  |                      |       |
| ##       | Model test baseline model:                         |        |                  |                      |       |
| ##       | Minimum Function Test Statistic                    | 5      | 56.196           | 454.497              |       |
| ##       | Degrees of freedom                                 | 5      | 28               | 454.497<br>28        |       |
| ##       | P-value                                            |        | 0.000            | 0.000                |       |
| ##       | 1 value                                            |        | 0.000            | 0.000                |       |
|          | User model versus baseline model:                  |        |                  |                      |       |
| ##       | obol model verbab baboline model.                  |        |                  |                      |       |
| ##       | Comparative Fit Index (CFI)                        |        | 0.846            | 0.874                |       |
| ##       | Tucker-Lewis Index (TLI)                           |        | 0.784            | 0.823                |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Robust Comparative Fit Index (CFI)                 |        |                  | 0.858                |       |
| ##       | Robust Tucker-Lewis Index (TLI)                    |        |                  | 0.802                |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Loglikelihood and Information Criteria:            |        |                  |                      |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Loglikelihood user model (HO)                      |        | 82.499           | -3682.499            |       |
| ##       | Loglikelihood unrestricted model (H1)              | -36    | 31.743           | -3631.743            |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Number of free parameters                          | 70     | 16               | 16                   |       |
| ##       | Akaike (AIC)                                       |        | 96.998<br>54.632 | 7396.998<br>7454.632 |       |
| ##<br>## | Bayesian (BIC) Sample-size adjusted Bayesian (BIC) |        | 03.900           | 7403.900             |       |
| ##       | Sample Size adjusted Dayesian (Dic)                | 14     | 03.300           | 7403.900             |       |
|          | Root Mean Square Error of Approximation:           |        |                  |                      |       |
| ##       | noor nour square siror or approximation.           |        |                  |                      |       |
| ##       | RMSEA                                              |        | 0.123            | 0.100                |       |
| ##       | 90 Percent Confidence Interval                     | 0.100  | 0.147            | 0.079                | 0.121 |
| ##       | P-value RMSEA <= 0.05                              |        | 0.000            | 0.000                |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Robust RMSEA                                       |        |                  | 0.117                |       |
| ##       | 90 Percent Confidence Interval                     |        |                  | 0.089                | 0.146 |
| ##       |                                                    |        |                  |                      |       |
| ##       | Standardized Root Mean Square Residual:            |        |                  |                      |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | SRMR                                               |        | 0.069            | 0.069                |       |
| ##       |                                                    |        |                  |                      |       |
| ##       | Parameter Estimates:                               |        |                  |                      |       |

| ## |                   |            |         |         |          |        |         |
|----|-------------------|------------|---------|---------|----------|--------|---------|
| ## | Information       |            |         |         | Expected |        |         |
| ## | Information satu  | rated (h1) | model   | St      | ructured |        |         |
| ## | Standard Errors   |            |         | Ro      | bust.sem |        |         |
| ## |                   |            |         |         |          |        |         |
| ## | Latent Variables: |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | fea_gen =~        |            |         |         |          |        |         |
| ## | FEA_2             | 1.000      |         |         |          | 0.914  | 0.584   |
| ## | FEA_4             | 0.861      | 0.129   |         | 0.000    | 0.788  | 0.570   |
| ## | FEA_7             | 1.003      | 0.138   | 7.289   | 0.000    | 0.917  | 0.618   |
| ## | FEA_8             | 0.992      | 0.132   | 7.489   | 0.000    | 0.907  | 0.615   |
| ## | FEA_1             | 1.060      | 0.151   | 7.041   | 0.000    | 0.969  | 0.644   |
| ## | FEA_3             | 0.928      | 0.156   | 5.930   | 0.000    | 0.848  | 0.571   |
| ## | FEA_5             | 0.570      | 0.124   | 4.581   | 0.000    | 0.521  | 0.362   |
| ## | FEA_6             | 0.969      | 0.141   | 6.852   | 0.000    | 0.886  | 0.621   |
| ## |                   |            |         |         |          |        |         |
| ## | Variances:        |            |         |         |          |        |         |
| ## |                   | Estimate   | Std.Err | z-value | P(> z )  | Std.lv | Std.all |
| ## | .FEA_2            | 1.614      | 0.185   | 8.715   | 0.000    | 1.614  | 0.659   |
| ## | .FEA_4            | 1.288      | 0.125   | 10.312  | 0.000    | 1.288  | 0.675   |
| ## | .FEA_7            | 1.361      | 0.152   | 8.946   | 0.000    | 1.361  | 0.618   |
| ## | .FEA_8            | 1.349      | 0.140   | 9.604   | 0.000    | 1.349  | 0.621   |
| ## | .FEA_1            | 1.326      | 0.164   | 8.090   | 0.000    | 1.326  | 0.585   |
| ## | .FEA_3            | 1.487      | 0.198   | 7.496   | 0.000    | 1.487  | 0.674   |
| ## | .FEA_5            | 1.796      | 0.149   | 12.030  | 0.000    | 1.796  | 0.869   |
| ## | .FEA_6            | 1.248      | 0.158   | 7.905   | 0.000    | 1.248  | 0.614   |
| ## | fea_gen           | 0.836      | 0.186   | 4.487   | 0.000    | 1.000  | 1.000   |

Doesn't fit. Instead, try two dimensions.

#### **EFA**

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 2, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
                     h2
                           u2 com
          ML2
                ML1
## FEA_1 -0.03 0.83 0.65 0.35 1.0
## FEA_2 0.62 0.03 0.41 0.59 1.0
## FEA_3 0.04 0.62 0.42 0.58 1.0
## FEA_4 0.53 0.10 0.35 0.65 1.1
## FEA_5 0.00 0.41 0.16 0.84 1.0
## FEA_6 0.47 0.24 0.40 0.60 1.5
## FEA_7 0.27 0.41 0.37 0.63 1.7
## FEA 8 0.79 -0.07 0.57 0.43 1.0
##
##
                         ML2 ML1
## SS loadings
                        1.73 1.61
## Proportion Var
                        0.22 0.20
## Cumulative Var
                        0.22 0.42
## Proportion Explained 0.52 0.48
## Cumulative Proportion 0.52 1.00
## With factor correlations of
##
       ML2 ML1
## ML2 1.00 0.57
## ML1 0.57 1.00
## Mean item complexity = 1.2
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the null model are 28 and the objective function was 2.05 with Chi Squ
## The degrees of freedom for the model are 13 and the objective function was 0.15
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.06
## The harmonic number of observations is 271 with the empirical chi square 29.4 with prob < 0.0058
## The total number of observations was 271 with Likelihood Chi Square = 39.6 with prob < 0.00016
## Tucker Lewis Index of factoring reliability = 0.889
## RMSEA index = 0.088 and the 90 % confidence intervals are 0.057 0.119
## BIC = -33.2
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy
                                                     ML2 ML1
## Correlation of (regression) scores with factors
                                                    0.88 0.89
## Multiple R square of scores with factors
                                                    0.77 0.78
## Minimum correlation of possible factor scores
                                                    0.55 0.57
```

# Omega



Seems appropriate.

| ##<br>## | lavaan 0.6-3 ended normally after 36 item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rations        |                |       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------|
| ##       | Optimization method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NLMINB         |                |       |
| ##       | Number of free parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18             |                |       |
| ##       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | Number of observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271            |                |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Estimator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ML             | Robust         |       |
| ##       | Model Fit Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.934         | 38.047         |       |
| ##       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18             | 18             |       |
| ##       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000          | 0.004<br>1.312 |       |
| ##<br>## | Scaling correction factor for the Satorra-Bentler correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1.312          |       |
| ##       | Tor the Satorra-Bentler Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                |       |
|          | Model test baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |       |
| ##       | THE STATE OF THE S |                |                |       |
| ##       | Minimum Function Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 556.196        | 454.497        |       |
| ##       | Degrees of freedom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28             | 28             |       |
| ##       | P-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000          | 0.000          |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
|          | User model versus baseline model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | g (GDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040          | 0.050          |       |
| ##<br>## | Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.940<br>0.906 | 0.953<br>0.927 |       |
| ##       | Tucker-Lewis Index (ILI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.906          | 0.927          |       |
| ##       | Robust Comparative Fit Index (CFI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 0.950          |       |
| ##       | Robust Tucker-Lewis Index (TLI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0.922          |       |
| ##       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | Loglikelihood and Information Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Loglikelihood user model (HO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3656.710      | -3656.710      |       |
| ##       | Loglikelihood unrestricted model (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3631.743      | -3631.743      |       |
| ##       | Number of force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | 10             |       |
| ##       | Number of free parameters Akaike (AIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18<br>7349.421 | 18<br>7349.421 |       |
| ##       | Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7414.259       |                |       |
| ##       | Sample-size adjusted Bayesian (BIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7357.186       | 7357.186       |       |
| ##       | 24mp10 2120 daja2004 24j02141 (210)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 55, , 1255   |                |       |
| ##       | Root Mean Square Error of Approximation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |       |
| ##       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |       |
| ##       | RMSEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.081          | 0.064          |       |
| ##       | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.055 0.108    | 0.039          | 0.089 |
| ##       | P-value RMSEA <= 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.028          | 0.162          |       |
| ##       | D. I DMGEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0.070          |       |
| ##       | Robust RMSEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 0.073          | 0 106 |
| ##<br>## | 90 Percent Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 0.040          | 0.106 |
|          | Standardized Root Mean Square Residual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |       |
| ##       | 2 canada a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |       |
| ##       | SRMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.042          | 0.042          |       |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |       |
| ##       | Parameter Estimates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |       |

| ##<br>##<br>##<br>## | Information<br>Information<br>Standard Err |      | rated (h1) | model   | St      | Expected ructured bust.sem |        |         |
|----------------------|--------------------------------------------|------|------------|---------|---------|----------------------------|--------|---------|
| ##                   | Latent Variabl                             | les: |            |         |         |                            |        |         |
| ##                   |                                            |      | Estimate   | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | fea_1 =~                                   |      |            |         |         |                            |        |         |
| ##                   | FEA_2                                      | (a)  | 1.000      |         |         |                            | 0.477  | 0.303   |
| ##                   | FEA_4                                      | (a)  | 1.000      |         |         |                            | 0.477  | 0.346   |
| ##                   | FEA_6                                      | (a)  | 1.000      |         |         |                            | 0.477  | 0.333   |
| ##                   | FEA_8                                      | (a)  | 1.000      |         |         |                            | 0.477  | 0.326   |
| ##                   | fea_2 =~                                   |      |            |         |         |                            |        |         |
| ##                   | FEA_1                                      | (b)  | 1.000      |         |         |                            | 0.562  | 0.374   |
| ##                   | FEA_3                                      | (b)  | 1.000      |         |         |                            | 0.562  | 0.380   |
| ##                   | FEA_5                                      | (b)  | 1.000      |         |         |                            | 0.562  | 0.390   |
| ##                   | FEA_7                                      | (b)  | 1.000      |         |         |                            | 0.562  | 0.375   |
| ##                   | fea_gen =~                                 |      |            |         |         |                            |        |         |
| ##                   | FEA_2                                      |      | 1.000      |         |         |                            | 0.866  | 0.551   |
| ##                   | FEA_4                                      |      | 0.834      | 0.143   | 5.841   | 0.000                      | 0.722  | 0.523   |
| ##                   | FEA_7                                      |      | 0.958      | 0.284   | 3.368   | 0.001                      | 0.829  | 0.554   |
| ##                   | FEA_8                                      |      | 0.992      | 0.152   | 6.542   | 0.000                      | 0.859  | 0.587   |
| ##                   | FEA_1                                      |      | 1.043      | 0.299   | 3.489   | 0.000                      | 0.904  | 0.602   |
| ##                   | FEA_3                                      |      | 0.893      | 0.276   | 3.238   | 0.001                      | 0.773  | 0.524   |
| ##                   | FEA_5                                      |      | 0.455      | 0.202   | 2.251   | 0.024                      | 0.394  | 0.274   |
| ##                   | FEA_6                                      |      | 0.958      | 0.158   | 6.056   | 0.000                      | 0.830  | 0.579   |
| ##                   |                                            |      |            |         |         |                            |        |         |
| ##                   | Covariances:                               |      |            |         |         |                            |        |         |
| ##                   |                                            |      | Estimate   | Std.Err | z-value | P(> z )                    | Std.lv | Std.all |
| ##                   | fea_1 ~~                                   |      |            |         |         |                            |        |         |
| ##                   | fea_2                                      |      | 0.000      |         |         |                            | 0.000  | 0.000   |
| ##                   | fea_gen                                    |      | 0.000      |         |         |                            | 0.000  | 0.000   |
| ##                   | fea_2 ~~                                   |      |            |         |         |                            |        |         |
| ##                   | fea_gen                                    |      | 0.000      |         |         |                            | 0.000  | 0.000   |
| ##                   |                                            |      |            |         |         |                            |        |         |
|                      | Variances:                                 |      |            | a       | _       | 54.1.13                    | a      | a       |
| ##                   |                                            |      | Estimate   |         |         |                            |        |         |
| ##                   | .FEA_2                                     |      | 1.493      |         |         |                            |        |         |
| ##                   | .FEA_4                                     |      | 1.156      | 0.118   | 9.802   | 0.000                      | 1.156  | 0.607   |
| ##                   | .FEA_6                                     |      | 1.135      | 0.152   | 7.475   | 0.000                      | 1.135  | 0.553   |
| ##                   | .FEA_8                                     |      | 1.174      | 0.129   | 9.103   | 0.000                      | 1.174  | 0.549   |
| ##                   | .FEA_1                                     |      | 1.121      | 0.152   | 7.398   | 0.000                      | 1.121  | 0.498   |
| ##                   | .FEA_3                                     |      | 1.266      | 0.190   | 6.655   | 0.000                      | 1.266  | 0.581   |
| ##                   | .FEA_5                                     |      | 1.601      | 0.159   | 10.086  | 0.000                      | 1.601  | 0.773   |
| ##                   | .FEA_7                                     |      | 1.236      | 0.152   | 8.151   | 0.000                      | 1.236  | 0.552   |
| ##                   | fea_1                                      |      | 0.227      | 0.193   | 1.177   | 0.239                      | 1.000  | 1.000   |
| ##                   | fea_2                                      |      | 0.315      | 0.178   | 1.773   | 0.076                      | 1.000  | 1.000   |
| ##                   | fea_gen                                    |      | 0.750      | 0.253   | 2.968   | 0.003                      | 1.000  | 1.000   |

Shows an adequate solution.

### Risk Avoidance

#### Items



### Parallel analysis



## Parallel analysis suggests that the number of factors = 2 and the number of components = 2

#### **EFA**

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 2, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
          ML2
                ML1
                     h2
                           u2 com
## RIT_1 0.00 0.47 0.22 0.78 1.0
## RIT_2 0.75 -0.04 0.55 0.45 1.0
## RIT_3 -0.01 0.90 0.80 0.20 1.0
## RIT_4 0.68 0.12 0.54 0.46 1.1
## RIT_5 0.20 0.48 0.35 0.65 1.3
## RIT_6 0.55 0.10 0.35 0.65 1.1
## RIT_7 0.65 -0.16 0.36 0.64 1.1
## RIT_8 0.61 0.07 0.42 0.58 1.0
##
##
                         ML2 ML1
## SS loadings
                        2.21 1.37
## Proportion Var
                        0.28 0.17
## Cumulative Var
                        0.28 0.45
## Proportion Explained 0.62 0.38
## Cumulative Proportion 0.62 1.00
## With factor correlations of
##
       ML2 ML1
## ML2 1.00 0.42
## ML1 0.42 1.00
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the null model are 28 and the objective function was 2.09 with Chi Squ
## The degrees of freedom for the model are 13 and the objective function was 0.08
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.05
## The harmonic number of observations is 271 with the empirical chi square 15.1 with prob < 0.3
## The total number of observations was 271 with Likelihood Chi Square = 21.7 with prob < 0.06
## Tucker Lewis Index of factoring reliability = 0.964
## RMSEA index = 0.051 and the 90 % confidence intervals are 0.085
## BIC = -51.1
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
                                                     ML2 ML1
## Correlation of (regression) scores with factors
                                                    0.90 0.91
## Multiple R square of scores with factors
                                                    0.81 0.83
## Minimum correlation of possible factor scores
                                                    0.62 0.66
```

# Omega



Produces a fitting solution.

```
## lavaan 0.6-3 did NOT end normally after 2845 iterations
## ** WARNING ** Estimates below are most likely unreliable
##
     Optimization method
                                                    NLMINB
##
     Number of free parameters
                                                         24
##
##
     Number of observations
                                                        271
##
##
     Estimator
                                                         ML
    Model Fit Test Statistic
##
                                                         NA
##
    Degrees of freedom
                                                         NΑ
##
     P-value
                                                         NA
##
## Parameter Estimates:
##
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
     Standard Errors
                                                Robust.sem
##
## Latent Variables:
                      Estimate Std.Err z-value P(>|z|)
##
                                                              Std.lv Std.all
     rit_1 =~
##
##
       RIT_2
                  (a)
                         1.000
                                                               0.973
                                                                        0.868
##
       RIT_4
                  (a)
                         1.000
                                                               0.973
                                                                        0.770
                        19.704
##
       RIT_5
                                      NA
                                                              19.178
                                                                       13.559
##
       RIT_6
                  (a)
                         1.000
                                                               0.973
                                                                        0.739
                                                               0.973
##
       RIT 7
                  (a)
                         1.000
                                                                        0.713
##
       RIT_8
                  (a)
                         1.000
                                                               0.973
                                                                        0.779
##
     rit_2 =~
##
       RIT_1
                         1.000
                                                               0.232
                                                                        0.165
##
       RIT 3
                         2.156
                                      NA
                                                               0.499
                                                                        0.329
##
       RIT_5
                       355.275
                                      NA
                                                              82.251
                                                                       58.151
##
    rit_gen =~
##
       RIT_1
                         1.000
                                                               0.899
                                                                        0.640
##
       RIT_2
                         1.161
                                      NA
                                                               1.044
                                                                        0.931
##
       RIT_3
                         2.005
                                      NA
                                                               1.803
                                                                        1.187
       RIT_4
                         1.364
                                      NA
                                                               1.227
                                                                        0.970
##
##
       RIT_5
                       103.308
                                      NA
                                                              92.890
                                                                       65.672
##
       RIT_6
                         1.108
                                      NA
                                                               0.996
                                                                        0.757
       RIT_7
                                                               0.895
##
                         0.995
                                      NA
                                                                        0.656
##
       RIT_8
                         1.256
                                      NA
                                                               1.129
                                                                        0.904
##
## Covariances:
                      Estimate Std.Err z-value P(>|z|)
                                                             Std.lv Std.all
##
##
    rit_1 ~~
                                                               0.537
##
       rit 2
                         0.121
                                      NA
                                                                        0.537
##
       rit_gen
                        -0.592
                                      NA
                                                              -0.677
                                                                       -0.677
##
    rit_2 ~~
##
                        -0.202
                                                                       -0.972
       rit_gen
                                      NA
                                                              -0.972
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|) Std.lv Std.all
```

| ## | .RIT_2  | 0.594    | NA | 0.594    | 0.473   |
|----|---------|----------|----|----------|---------|
| ## | .RIT_4  | 0.763    | NA | 0.763    | 0.477   |
| ## | .RIT_5  | -192.914 | NA | -192.914 | -96.426 |
| ## | .RIT_6  | 1.105    | NA | 1.105    | 0.638   |
| ## | .RIT_7  | 1.294    | NA | 1.294    | 0.694   |
| ## | .RIT_8  | 0.825    | NA | 0.825    | 0.529   |
| ## | .RIT_1  | 1.516    | NA | 1.516    | 0.768   |
| ## | .RIT_3  | 0.556    | NA | 0.556    | 0.241   |
| ## | rit_1   | 0.947    | NA | 1.000    | 1.000   |
| ## | rit_2   | 0.054    | NA | 1.000    | 1.000   |
| ## | rit_gen | 0.808    | NA | 1.000    | 1.000   |

Does not produce a good-fitting model.

| ##<br>## | lavaan 0.6-3 ended normally after 24 item | ations      |             |             |       |
|----------|-------------------------------------------|-------------|-------------|-------------|-------|
| ##       | Optimization method                       |             | NLMINB      |             |       |
| ##       | Number of free parameters                 |             | 10          |             |       |
| ##       | 1                                         |             |             |             |       |
| ##       | Number of observations                    |             | 271         |             |       |
| ##       |                                           |             |             |             |       |
| ##       | Estimator                                 |             | ML          | Robust      |       |
| ##       | Model Fit Test Statistic                  |             | 6.550       | 5.158       |       |
| ##       | Degrees of freedom                        |             | 5           | 5           |       |
| ##       | P-value (Chi-square)                      |             | 0.256       | 0.397       |       |
| ##       | Scaling correction factor                 |             |             | 1.270       |       |
| ##       | for the Satorra-Bentler correction        |             |             |             |       |
| ##       |                                           |             |             |             |       |
|          | Model test baseline model:                |             |             |             |       |
| ##       | Minimum Franchism Track Obsticki          | 2           | FO 404      | 010 216     |       |
| ##       | Minimum Function Test Statistic           | 3           | 52.404      | 212.316     |       |
| ##       | Degrees of freedom<br>P-value             |             | 10<br>0.000 | 10<br>0.000 |       |
| ##       | 1 value                                   |             | 0.000       | 0.000       |       |
|          | User model versus baseline model:         |             |             |             |       |
| ##       | obol model versus subeline medel.         |             |             |             |       |
| ##       | Comparative Fit Index (CFI)               |             | 0.995       | 0.999       |       |
| ##       | Tucker-Lewis Index (TLI)                  |             | 0.991       | 0.998       |       |
| ##       |                                           |             |             |             |       |
| ##       | Robust Comparative Fit Index (CFI)        |             |             | 0.999       |       |
| ##       | Robust Tucker-Lewis Index (TLI)           |             |             | 0.999       |       |
| ##       |                                           |             |             |             |       |
| ##       | Loglikelihood and Information Criteria:   |             |             |             |       |
| ##       | 4-1                                       |             |             |             |       |
| ##       | Loglikelihood user model (HO)             |             | 63.329      | -2063.329   |       |
| ##       | Loglikelihood unrestricted model (H1)     | -20         | 60.054      | -2060.054   |       |
| ##       | Number of free personators                |             | 10          | 10          |       |
| ##       | Number of free parameters Akaike (AIC)    | <i>/</i> 11 | 46.658      |             |       |
| ##       | Bayesian (BIC)                            |             | 82.679      |             |       |
| ##       | Sample-size adjusted Bayesian (BIC)       |             | 50.972      | 4150.972    |       |
| ##       | 24mp10 2120 daja2004 24j02141 (210)       |             |             | 11001012    |       |
| ##       | Root Mean Square Error of Approximation:  |             |             |             |       |
| ##       |                                           |             |             |             |       |
| ##       | RMSEA                                     |             | 0.034       | 0.011       |       |
| ##       | 90 Percent Confidence Interval            | 0.000       | 0.096       | 0.000       | 0.079 |
| ##       | P-value RMSEA <= 0.05                     |             | 0.587       | 0.756       |       |
| ##       |                                           |             |             |             |       |
| ##       | Robust RMSEA                              |             |             | 0.012       |       |
| ##       | 90 Percent Confidence Interval            |             |             | 0.000       | 0.097 |
| ##       | Ottom developed Devet May Co. D. 11. 3    |             |             |             |       |
|          | Standardized Root Mean Square Residual:   |             |             |             |       |
| ##       | SRMR                                      |             | 0.023       | 0.023       |       |
| ##       | SIGIR                                     |             | 0.023       | 0.023       |       |
|          | Parameter Estimates:                      |             |             |             |       |
|          |                                           |             |             |             |       |

| ##<br>##<br>##<br>## | Information Information saturated (h1) model Standard Errors |          |         | Expected<br>Structured<br>Robust.sem |         |        |         |
|----------------------|--------------------------------------------------------------|----------|---------|--------------------------------------|---------|--------|---------|
| ##                   | Latent Variables:                                            |          |         |                                      |         |        |         |
| ##                   |                                                              | Estimate | Std.Err | z-value                              | P(> z ) | Std.lv | Std.all |
| ##                   | rit_gen =~                                                   |          |         |                                      |         |        |         |
| ##                   | RIT_2                                                        | 1.000    |         |                                      |         | 0.820  | 0.733   |
| ##                   | RIT_4                                                        | 1.150    | 0.128   | 8.983                                | 0.000   | 0.943  | 0.735   |
| ##                   | RIT_6                                                        | 0.942    | 0.115   | 8.196                                | 0.000   | 0.773  | 0.584   |
| ##                   | RIT_7                                                        | 0.940    | 0.097   | 9.723                                | 0.000   | 0.771  | 0.561   |
| ##                   | RIT_8                                                        | 0.968    | 0.093   | 10.406                               | 0.000   | 0.794  | 0.652   |
| ##                   |                                                              |          |         |                                      |         |        |         |
| ##                   | Variances:                                                   |          |         |                                      |         |        |         |
| ##                   |                                                              | Estimate | Std.Err | z-value                              | P(> z ) | Std.lv | Std.all |
| ##                   | .RIT_2                                                       | 0.580    | 0.078   | 7.394                                | 0.000   | 0.580  | 0.463   |
| ##                   | .RIT_4                                                       | 0.758    | 0.109   | 6.976                                | 0.000   | 0.758  | 0.460   |
| ##                   | .RIT_6                                                       | 1.152    | 0.112   | 10.271                               | 0.000   | 1.152  | 0.659   |
| ##                   | .RIT_7                                                       | 1.294    | 0.167   | 7.730                                | 0.000   | 1.294  | 0.685   |
| ##                   | .RIT_8                                                       | 0.853    | 0.101   | 8.449                                | 0.000   | 0.853  | 0.575   |
| ##                   | rit_gen                                                      | 0.673    | 0.133   | 5.045                                | 0.000   | 1.000  | 1.000   |

### Traditionalism

#### Items



### Parallel analysis



## Parallel analysis suggests that the number of factors = 3 and the number of components = 2

#### **EFA**

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 2, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
          ML2
                ML1
                       h2
                             u2 com
## TRA_1 0.69 0.07 0.476 0.524 1.0
## TRA_2 -0.01 1.00 0.995 0.005 1.0
## TRA_3 0.64 -0.06 0.413 0.587 1.0
## TRA_4 0.13 0.25 0.079 0.921 1.5
## TRA_5 0.69 0.01 0.472 0.528 1.0
## TRA_6 0.06 0.44 0.197 0.803 1.0
## TRA_7 0.47 0.08 0.223 0.777 1.1
## TRA 8 0.57 -0.12 0.339 0.661 1.1
##
##
                         ML2 ML1
## SS loadings
                        1.91 1.28
## Proportion Var
                        0.24 0.16
## Cumulative Var
                        0.24 0.40
## Proportion Explained 0.60 0.40
## Cumulative Proportion 0.60 1.00
## With factor correlations of
##
        ML2
## ML2 1.00 -0.02
## ML1 -0.02 1.00
## Mean item complexity = 1.1
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the null model are 28 and the objective function was 1.43 with Chi Squ
## The degrees of freedom for the model are 13 and the objective function was 0.1
## The root mean square of the residuals (RMSR) is 0.04
## The df corrected root mean square of the residuals is 0.06
## The harmonic number of observations is 271 with the empirical chi square 28.2 with prob < 0.0086
## The total number of observations was 271 with Likelihood Chi Square = 26.5 with prob < 0.014
## Tucker Lewis Index of factoring reliability = 0.917
## RMSEA index = 0.063 and the 90 % confidence intervals are 0.027 0.096
## BIC = -46.3
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
                                                     ML2 ML1
## Correlation of (regression) scores with factors
                                                    0.88 1.00
## Multiple R square of scores with factors
                                                    0.77 0.99
## Minimum correlation of possible factor scores
                                                    0.53 0.99
```

# Omega



Implies a single dimension, as on factor 2 there is only one significant loading.

```
## lavaan 0.6-3 ended normally after 25 iterations
##
##
     Optimization method
                                                    NLMINB
     Number of free parameters
##
                                                        10
##
##
     Number of observations
                                                        271
##
##
     Estimator
                                                        ML
                                                                 Robust
##
     Model Fit Test Statistic
                                                    12.360
                                                                 10.707
     Degrees of freedom
##
                                                         5
##
     P-value (Chi-square)
                                                     0.030
                                                                  0.058
     Scaling correction factor
                                                                  1.154
##
       for the Satorra-Bentler correction
##
##
## Model test baseline model:
##
##
     Minimum Function Test Statistic
                                                   279.937
                                                                239.185
##
     Degrees of freedom
                                                        10
                                                                     10
##
     P-value
                                                     0.000
                                                                  0.000
##
## User model versus baseline model:
##
##
     Comparative Fit Index (CFI)
                                                     0.973
                                                                  0.975
##
     Tucker-Lewis Index (TLI)
                                                     0.945
                                                                  0.950
##
##
     Robust Comparative Fit Index (CFI)
                                                                  0.975
     Robust Tucker-Lewis Index (TLI)
                                                                  0.951
##
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -2135.614
                                                              -2135.614
     Loglikelihood unrestricted model (H1)
##
                                                 -2129.434
                                                              -2129.434
##
                                                                     10
##
    Number of free parameters
                                                        10
##
     Akaike (AIC)
                                                  4291.228
                                                               4291.228
##
     Bayesian (BIC)
                                                  4327.250
                                                               4327.250
##
     Sample-size adjusted Bayesian (BIC)
                                                  4295.543
                                                               4295.543
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.074
                                                                  0.065
     90 Percent Confidence Interval
                                              0.021 0.127
                                                                  0.006 0.115
##
##
     P-value RMSEA <= 0.05
                                                     0.186
                                                                  0.262
##
##
     Robust RMSEA
                                                                  0.070
     90 Percent Confidence Interval
##
                                                                     NA 0.128
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.035
                                                                  0.035
##
## Parameter Estimates:
```

| ## |                   |                                  |         |            |          |        |         |
|----|-------------------|----------------------------------|---------|------------|----------|--------|---------|
| ## | Information       |                                  |         |            | Expected |        |         |
| ## | Information satu  | Information saturated (h1) model |         |            |          |        |         |
| ## | Standard Errors   |                                  |         | Robust.sem |          |        |         |
| ## |                   |                                  |         |            |          |        |         |
| ## | Latent Variables: |                                  |         |            |          |        |         |
| ## |                   | Estimate                         | Std.Err | z-value    | P(> z )  | Std.lv | Std.all |
| ## | tra_gen =~        |                                  |         |            |          |        |         |
| ## | TRA_1             | 1.000                            |         |            |          | 0.920  | 0.691   |
| ## | TRA_5             | 0.925                            | 0.107   | 8.650      | 0.000    | 0.851  | 0.681   |
| ## | TRA_3             | 0.797                            | 0.100   | 8.000      | 0.000    | 0.733  | 0.643   |
| ## | TRA_8             | 0.825                            | 0.116   | 7.110      | 0.000    | 0.759  | 0.562   |
| ## | TRA_7             | 0.707                            | 0.109   | 6.477      | 0.000    | 0.650  | 0.463   |
| ## |                   |                                  |         |            |          |        |         |
| ## | Variances:        |                                  |         |            |          |        |         |
| ## |                   | Estimate                         | Std.Err | z-value    | P(> z )  | Std.lv | Std.all |
| ## | .TRA_1            | 0.925                            | 0.130   | 7.132      | 0.000    | 0.925  | 0.522   |
| ## | .TRA_5            | 0.837                            | 0.114   | 7.370      | 0.000    | 0.837  | 0.536   |
| ## | .TRA_3            | 0.764                            | 0.094   | 8.098      | 0.000    | 0.764  | 0.587   |
| ## | .TRA_8            | 1.247                            | 0.136   | 9.146      | 0.000    | 1.247  | 0.684   |
| ## | .TRA_7            | 1.548                            | 0.125   | 12.363     | 0.000    | 1.548  | 0.785   |
| ## | tra_gen           | 0.846                            | 0.148   | 5.730      | 0.000    | 1.000  | 1.000   |
|    |                   |                                  |         |            |          |        |         |

Shows adequate fit.

# Integrity

#### Items



### Parallel analysis



## Parallel analysis suggests that the number of factors = 3 and the number of components = 2

#### **EFA**

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 3, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
           ML2
                 ML3
                       ML1
                             h2
                                   u2 com
## INT 1
          0.75 -0.04 0.02 0.55 0.455 1.0
## INT_2
          0.58 0.07 0.04 0.38 0.619 1.0
## INT_3
          0.00 0.00 1.00 1.00 0.005 1.0
## INT_4
          0.22 -0.06 0.27 0.13 0.875 2.1
## INT_5
          0.68 -0.08 0.01 0.42 0.577 1.0
          0.66 0.12 -0.04 0.51 0.486 1.1
## INT 6
## INT_7
          0.62 0.04 -0.05 0.40 0.597 1.0
## INT 8
          0.32 0.36 0.05 0.34 0.663 2.0
## INT_9
          0.15  0.60  0.02  0.47  0.531  1.1
## INT_10 -0.17 0.59 0.01 0.29 0.711 1.2
## INT 11 0.08 0.48 -0.11 0.29 0.713 1.2
##
##
                         ML2 ML3 ML1
## SS loadings
                        2.48 1.19 1.10
## Proportion Var
                        0.23 0.11 0.10
## Cumulative Var
                        0.23 0.33 0.43
## Proportion Explained 0.52 0.25 0.23
## Cumulative Proportion 0.52 0.77 1.00
##
##
  With factor correlations of
##
       ML2
             ML3 ML1
## ML2 1.00 0.46 0.05
## ML3 0.46 1.00 -0.07
## ML1 0.05 -0.07 1.00
## Mean item complexity = 1.2
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the null model are 55 and the objective function was 2.48 with Chi Squ
## The degrees of freedom for the model are 25 and the objective function was 0.16
## The root mean square of the residuals (RMSR) is 0.03
## The df corrected root mean square of the residuals is 0.05
## The harmonic number of observations is 271 with the empirical chi square 32.5 with prob < 0.14
## The total number of observations was 271 with Likelihood Chi Square = 43.3 with prob < 0.013
## Tucker Lewis Index of factoring reliability = 0.933
## RMSEA index = 0.054 and the 90 % confidence intervals are 0.024 0.078
## BIC = -96.8
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy
                                                     ML2 ML3 ML1
## Correlation of (regression) scores with factors
                                                    0.91 0.82 1.00
## Multiple R square of scores with factors
                                                    0.82 0.67 1.00
## Minimum correlation of possible factor scores
                                                    0.65 0.34 0.99
```

Two factors don't really convince, as factor 3 consists of one item only. Will try two-factor solution.

```
## Factor Analysis using method = ml
## Call: fa(r = d_tmp, nfactors = 2, fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
           ML1
                 ML2
                            u2 com
                        h2
## INT 1
          0.74 -0.03 0.537 0.46 1.0
## INT 2
          0.60 0.05 0.385 0.61 1.0
## INT 3
          0.17 -0.21 0.040 0.96 1.9
## INT 4
          0.30 -0.16 0.073 0.93 1.5
## INT_5
          0.70 -0.10 0.432 0.57 1.0
## INT_6
          0.65 0.13 0.511 0.49 1.1
## INT_7
          0.60 0.06 0.393 0.61 1.0
## INT 8
          0.33 0.35 0.335 0.66 2.0
## INT_9
          0.18 0.56 0.436 0.56 1.2
## INT_10 -0.15 0.57 0.264 0.74 1.1
## INT_11 0.04 0.53 0.307 0.69 1.0
##
##
                         ML1 ML2
## SS loadings
                        2.51 1.21
## Proportion Var
                        0.23 0.11
## Cumulative Var
                        0.23 0.34
## Proportion Explained 0.68 0.32
## Cumulative Proportion 0.68 1.00
##
## With factor correlations of
##
       ML1 ML2
## ML1 1.00 0.46
## ML2 0.46 1.00
## Mean item complexity = 1.3
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the null model are 55 and the objective function was 2.48 with Chi Squ
## The degrees of freedom for the model are 34 and the objective function was 0.27
## The root mean square of the residuals (RMSR) is 0.05
## The df corrected root mean square of the residuals is 0.06
## The harmonic number of observations is 271 with the empirical chi square 76.1 with prob < 4.6e-0
## The total number of observations was 271 with Likelihood Chi Square = 71.1 with prob < 2e-04
## Tucker Lewis Index of factoring reliability = 0.9
## RMSEA index = 0.065 and the 90 % confidence intervals are 0.043 0.084
## BIC = -119
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
##
                                                     ML1 ML2
## Correlation of (regression) scores with factors
                                                    0.91 0.82
## Multiple R square of scores with factors
                                                    0.82 0.66
## Minimum correlation of possible factor scores
                                                    0.65 0.33
```

```
## lavaan 0.6-3 ended normally after 37 iterations
##
##
     Optimization method
                                                     NLMINB
     Number of free parameters
##
                                                         20
##
##
     Number of observations
                                                        271
##
##
     Estimator
                                                         ML
                                                                 Robust
##
     Model Fit Test Statistic
                                                    52.182
                                                                 47.928
     Degrees of freedom
##
                                                         25
                                                                     25
##
     P-value (Chi-square)
                                                     0.001
                                                                  0.004
     Scaling correction factor
##
                                                                  1.089
       for the Satorra-Bentler correction
##
##
## Model test baseline model:
##
##
     Minimum Function Test Statistic
                                                   622.929
                                                                591.109
##
     Degrees of freedom
                                                         36
                                                                     36
##
     P-value
                                                     0.000
                                                                  0.000
##
## User model versus baseline model:
##
                                                     0.954
##
     Comparative Fit Index (CFI)
                                                                  0.959
##
     Tucker-Lewis Index (TLI)
                                                     0.933
                                                                  0.941
##
##
     Robust Comparative Fit Index (CFI)
                                                                  0.957
     Robust Tucker-Lewis Index (TLI)
                                                                  0.939
##
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                 -4307.386
                                                              -4307.386
     Loglikelihood unrestricted model (H1)
##
                                                 -4281.295
                                                              -4281.295
##
##
    Number of free parameters
                                                         20
                                                                     20
##
     Akaike (AIC)
                                                  8654.773
                                                               8654.773
##
     Bayesian (BIC)
                                                               8726.815
                                                  8726.815
##
     Sample-size adjusted Bayesian (BIC)
                                                  8663.401
                                                               8663.401
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.063
                                                                  0.058
     90 Percent Confidence Interval
                                              0.039 0.088
                                                                  0.034 0.082
##
##
     P-value RMSEA <= 0.05
                                                     0.169
                                                                  0.265
##
##
     Robust RMSEA
                                                                  0.061
     90 Percent Confidence Interval
                                                                  0.034 0.086
##
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.045
                                                                  0.045
##
## Parameter Estimates:
```

| ##    |                            |      |                |                  |                |          |                |                |  |
|-------|----------------------------|------|----------------|------------------|----------------|----------|----------------|----------------|--|
| ##    | Information                |      |                |                  |                | Expected |                |                |  |
| ##    | Information                | satu | rated (h1)     | Structured       |                |          |                |                |  |
| ##    | Standard Errors Robust.sem |      |                |                  |                |          |                |                |  |
| ##    |                            |      |                |                  |                |          |                |                |  |
| ##    | Latent Variab              | les: |                |                  |                |          |                |                |  |
| ##    |                            |      | Estimate       | Std.Err          | z-value        | P(> z )  | Std.lv         | Std.all        |  |
| ##    | int_1 =~                   |      |                |                  |                |          |                |                |  |
| ##    | INT_1                      | (a)  | 1.000          |                  |                |          | 0.558          | 0.385          |  |
| ##    | INT_2                      | (a)  | 1.000          |                  |                |          | 0.558          | 0.383          |  |
| ##    | INT_5                      | (a)  | 1.000          |                  |                |          | 0.558          | 0.373          |  |
| ##    | INT_6                      | (a)  | 1.000          |                  |                |          | 0.558          | 0.350          |  |
| ##    | INT_7                      | (a)  | 1.000          |                  |                |          | 0.558          |                |  |
| ##    | INT_8                      | (a)  | 1.000          |                  |                |          | 0.558          | 0.338          |  |
| ##    | int_2 =~                   |      |                |                  |                |          |                |                |  |
| ##    | INT_8                      | (b)  | 1.000          |                  |                |          | 0.696          | 0.422          |  |
| ##    | INT_9                      | (b)  | 1.000          |                  |                |          | 0.696          | 0.380          |  |
| ##    | INT_10                     | (b)  | 1.000          |                  |                |          | 0.696          | 0.448          |  |
| ##    | INT_11                     | (b)  | 1.000          |                  |                |          | 0.696          | 0.388          |  |
| ##    | int_gen =~                 |      |                |                  |                |          |                |                |  |
| ##    | INT_1                      |      | 1.000          |                  |                |          | 0.874          | 0.603          |  |
| ##    | INT_2                      |      | 0.807          | 0.129            | 6.236          |          | 0.705          |                |  |
| ##    | INT_5                      |      | 0.873          | 0.140            | 6.220          |          | 0.763          |                |  |
| ##    | INT_6                      |      | 1.163          | 0.146            | 7.961          |          | 1.016          | 0.638          |  |
| ##    | INT_7                      |      | 0.943          | 0.126            | 7.497          |          | 0.824          |                |  |
| ##    | INT_8                      |      | 0.714          | 0.150            | 4.756          |          | 0.624          |                |  |
| ##    | INT_9                      |      | 1.150          | 0.283            |                |          |                |                |  |
| ##    | INT_10                     |      | 0.365          | 0.162            |                |          |                |                |  |
| ##    | INT_11                     |      | 0.731          | 0.214            | 3.407          | 0.001    | 0.638          | 0.356          |  |
| ##    |                            |      |                |                  |                |          |                |                |  |
|       | Covariances:               |      |                | a =              | _              | 56.1.15  | a              | a              |  |
| ##    |                            |      | Estimate       | Std.Err          | z-value        | P(> z )  | Std.lv         | Std.all        |  |
| ##    | int_1 ~~                   |      |                |                  |                |          |                |                |  |
| ##    | int_2                      |      | 0.000          |                  |                |          | 0.000          | 0.000          |  |
| ##    | int_gen                    |      | 0.000          |                  |                |          | 0.000          | 0.000          |  |
| ##    | int_2 ~~                   |      | 0.000          |                  |                |          | 0 000          | 0 000          |  |
| ##    | int_gen                    |      | 0.000          |                  |                |          | 0.000          | 0.000          |  |
| ##    | Vaniana.                   |      |                |                  |                |          |                |                |  |
| ##    | Variances:                 |      | Estimata       | C+d Enn          | <b></b> 1      | P(> z )  | Std.lv         | C+4 ~11        |  |
| ##    | TNT 1                      |      | Estimate       | Std.Err<br>0.147 | z-value        |          |                | Std.all        |  |
| ##    | .INT_1<br>.INT_2           |      | 1.024<br>1.313 | 0.147            | 6.963<br>7.731 | 0.000    | 1.024<br>1.313 | 0.488<br>0.619 |  |
| ##    | .INT_5                     |      | 1.352          | 0.170            | 8.634          | 0.000    | 1.352          | 0.602          |  |
| ##    | .INT_6                     |      | 1.196          | 0.185            | 6.474          | 0.000    | 1.196          | 0.602          |  |
| ##    | .INT_7                     |      | 1.394          | 0.181            | 7.719          | 0.000    | 1.394          | 0.584          |  |
| ##    | .INT_8                     |      | 1.540          | 0.180            | 8.565          | 0.000    | 1.540          | 0.565          |  |
| ##    | .INT_0                     |      | 1.857          | 0.160            | 6.958          | 0.000    | 1.857          | 0.554          |  |
| ##    | .INT_10                    |      | 1.828          | 0.189            | 9.675          | 0.000    | 1.828          | 0.757          |  |
| ##    | .INT_10                    |      | 2.323          | 0.189            | 10.088         | 0.000    | 2.323          | 0.737          |  |
| ##    | int_1                      |      | 0.312          | 0.230            | 1.864          | 0.062    | 1.000          | 1.000          |  |
| ##    | int_1                      |      | 0.485          | 0.107            | 5.309          | 0.002    | 1.000          | 1.000          |  |
| ##    | int_gen                    |      | 0.764          | 0.031            | 3.411          | 0.000    | 1.000          | 1.000          |  |
| ir m' | 1110_8CII                  |      | 0.104          | V.ZZ-T           | 0.411          | 0.001    | 1.000          | 1.000          |  |

Bifactor model fits the date well.

### Results

```
## lavaan 0.6-3 ended normally after 49 iterations
##
##
     Optimization method
                                                    NLMINB
##
     Number of free parameters
                                                         67
##
##
     Number of observations
                                                        271
##
##
    Estimator
                                                        ML
                                                                 Robust
##
    Model Fit Test Statistic
                                                   231.753
                                                                218.679
##
    Degrees of freedom
                                                       137
                                                                    137
     P-value (Chi-square)
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  1.060
##
       for the Satorra-Bentler correction
##
##
## Model test baseline model:
##
     Minimum Function Test Statistic
##
                                                  1393.228
                                                               1311.548
##
     Degrees of freedom
                                                        187
                                                                    187
##
     P-value
                                                     0.000
                                                                  0.000
##
## User model versus baseline model:
##
##
     Comparative Fit Index (CFI)
                                                     0.921
                                                                  0.927
##
     Tucker-Lewis Index (TLI)
                                                     0.893
                                                                  0.901
##
##
     Robust Comparative Fit Index (CFI)
                                                                  0.928
     Robust Tucker-Lewis Index (TLI)
                                                                  0.901
##
##
## Loglikelihood and Information Criteria:
##
     Loglikelihood user model (HO)
##
                                                 -6777.457
                                                              -6777.457
##
     Loglikelihood unrestricted model (H1)
                                                 -6661.581
                                                              -6661.581
##
##
     Number of free parameters
                                                         67
                                                                     67
##
     Akaike (AIC)
                                                 13688.914
                                                              13688.914
##
     Bayesian (BIC)
                                                 13930.256
                                                              13930.256
##
     Sample-size adjusted Bayesian (BIC)
                                                 13717.819
                                                              13717.819
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                     0.051
                                                                  0.047
     90 Percent Confidence Interval
                                              0.039 0.062
                                                                  0.035 0.058
##
##
     P-value RMSEA <= 0.05
                                                     0.456
                                                                  0.665
##
##
     Robust RMSEA
                                                                  0.048
##
     90 Percent Confidence Interval
                                                                  0.036 0.060
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.055
                                                                  0.055
##
## Parameter Estimates:
```

| ##<br>##<br>##<br>## | Information<br>Information satu<br>Standard Errors | ırated (h1)    | model          | St      | Expected ructured bust.sem |                |                |
|----------------------|----------------------------------------------------|----------------|----------------|---------|----------------------------|----------------|----------------|
|                      | Latent Variables:                                  |                | ~              | _       | 54.1.13                    | a              | a              |
| ##                   |                                                    | Estimate       | Std.Err        | z-value | P(> z )                    | Std.lv         | Std.all        |
| ##                   | pri_nee_gov =~                                     | 4 000          |                |         |                            | 4 070          | 0 740          |
| ##                   | N4P.SOC_1                                          | 1.000          | 0 001          | 10 056  | 0 000                      | 1.073          |                |
| ##                   | N4P.SOC_2                                          | 0.993          | 0.091          |         |                            | 1.065          |                |
| ##                   | N4P.SOC_3                                          | 1.021          |                |         |                            | 1.096          |                |
| ##                   | N4P.SOC_4                                          | 1.152          |                |         |                            | 1.236          |                |
| ##<br>##             | N4P.SOC_9                                          | 1.022          | 0.091          | 11.177  | 0.000                      | 1.097          | 0.730          |
| ##                   | pri_nee_int =~                                     | 1 000          |                |         |                            | 0 049          | 0.710          |
| ##                   | N4P.BOT_1                                          | 1.000          | 0 146          | 2 015   | 0.004                      | 0.948          | 0.710<br>0.265 |
| ##                   | N4P.INT_2<br>N4P.INT_7                             | 0.425<br>0.718 | 0.146<br>0.115 |         |                            | 0.403<br>0.680 |                |
| ##                   | N4P.INT_9                                          | 0.718          | 0.113          |         |                            | 0.673          | 0.532          |
| ##                   | pri_nee_ano =~                                     | 0.710          | 0.110          | 0.404   | 0.000                      | 0.073          | 0.023          |
| ##                   | N4P.SOC_6                                          | 1.000          |                |         |                            | 0.905          | 0.595          |
| ##                   | N4P.SOC_7                                          | 1.158          | 0.150          | 7.732   | 0.000                      | 1.048          |                |
| ##                   | N4P.SOC_7                                          | 0.929          |                |         |                            | 0.841          |                |
| ##                   | N4P.INT_2                                          | 0.668          | 0.136          |         |                            | 0.605          | 0.372          |
| ##                   | SOC =~                                             | 0.000          | 0.100          | 4.300   | 0.000                      | 0.000          | 0.001          |
| ##                   | soc_gen                                            | 1.000          |                |         |                            | 0.809          | 0.887          |
| ##                   | fea =~                                             | 1.000          |                |         |                            | 0.003          | 0.007          |
| ##                   | fea_gen                                            | 1.000          |                |         |                            | 0.643          | 0.892          |
| ##                   | tra =~                                             | 1.000          |                |         |                            | 0.010          | 0.002          |
| ##                   | tra_gen                                            | 1.000          |                |         |                            | 0.690          | 0.859          |
| ##                   | rit =~                                             | 1.000          |                |         |                            | 0.000          | 0.000          |
| ##                   | rit_gen                                            | 1.000          |                |         |                            | 0.649          | 0.884          |
| ##                   | int =~                                             | 2.000          |                |         |                            | 0.010          | 0.001          |
| ##                   | int_gen                                            | 1.000          |                |         |                            | 0.624          | 0.888          |
| ##                   | 22.0_002                                           | 21000          |                |         |                            | 0.021          | 0.000          |
|                      | Regressions:                                       |                |                |         |                            |                |                |
| ##                   | 0                                                  | Estimate       | Std.Err        | z-value | P(> z )                    | Std.lv         | Std.all        |
| ##                   | pri_nee_gov ~                                      |                |                |         | ,                          |                |                |
| ##                   | soc                                                | -0.226         | 0.108          | -2.089  | 0.037                      | -0.170         | -0.170         |
| ##                   | fea                                                | -0.305         | 0.140          | -2.186  | 0.029                      | -0.183         | -0.183         |
| ##                   | tra                                                | 0.161          | 0.142          | 1.133   | 0.257                      | 0.104          | 0.104          |
| ##                   | rit                                                | 0.201          | 0.156          | 1.289   | 0.197                      | 0.121          | 0.121          |
| ##                   | int                                                | -0.074         | 0.149          | -0.493  | 0.622                      | -0.043         | -0.043         |
| ##                   | male                                               | 0.384          | 0.153          | 2.514   | 0.012                      | 0.358          | 0.158          |
| ##                   | age                                                | 0.026          | 0.013          | 1.952   | 0.051                      | 0.024          | 0.062          |
| ##                   | inc                                                | 0.073          | 0.067          | 1.090   | 0.276                      | 0.068          | 0.067          |
| ##                   | pri_nee_int ~                                      |                |                |         |                            |                |                |
| ##                   | soc                                                | -0.387         | 0.099          | -3.911  | 0.000                      | -0.330         | -0.330         |
| ##                   | fea                                                | -0.001         | 0.122          | -0.011  | 0.991                      | -0.001         | -0.001         |
| ##                   | tra                                                | 0.188          | 0.151          | 1.246   | 0.213                      | 0.137          | 0.137          |
| ##                   | rit                                                | 0.397          | 0.141          | 2.821   | 0.005                      | 0.272          | 0.272          |
| ##                   | int                                                | 0.011          | 0.129          | 0.088   | 0.930                      | 0.007          | 0.007          |
| ##                   | male                                               | 0.280          | 0.145          | 1.938   | 0.053                      | 0.296          | 0.131          |
| ##                   | age                                                | 0.017          | 0.013          | 1.259   | 0.208                      | 0.018          | 0.045          |
| ##                   | inc                                                | 0.032          | 0.080          | 0.405   | 0.686                      | 0.034          | 0.034          |
|                      |                                                    |                |                |         |                            |                |                |

| ##       | pri_nee_ano ~                 |          |         |         |           |        |         |
|----------|-------------------------------|----------|---------|---------|-----------|--------|---------|
| ##       | SOC                           | -0.221   | 0.094   | -2.366  | 0.018     | -0.198 | -0.198  |
| ##       | fea                           | -0.162   | 0.117   | -1.383  | 0.167     | -0.115 | -0.115  |
| ##       | tra                           | -0.031   | 0.131   | -0.235  | 0.814     | -0.023 | -0.023  |
| ##       | rit                           | 0.036    | 0.123   | 0.293   | 0.770     | 0.026  | 0.026   |
| ##       | int                           | -0.405   | 0.134   | -3.015  | 0.003     | -0.279 | -0.279  |
| ##       | male                          | 0.294    | 0.144   | 2.044   | 0.041     | 0.325  | 0.144   |
| ##       | age                           | 0.035    | 0.016   | 2.160   | 0.031     | 0.039  | 0.100   |
| ##       | inc                           | 0.136    | 0.074   | 1.845   | 0.065     | 0.150  | 0.149   |
| ##       |                               |          |         |         |           |        |         |
| ##       | Covariances:                  |          |         |         |           |        |         |
| ##       |                               | Estimate | Std.Err | z-value | P(> z )   | Std.lv | Std.all |
| ##       | soc ~~                        |          |         |         |           |        |         |
| ##       | fea                           | -0.137   | 0.041   | -3.361  | 0.001     | -0.264 | -0.264  |
| ##       | tra                           | -0.086   | 0.044   | -1.952  | 0.051     | -0.153 | -0.153  |
| ##       | rit                           | -0.040   | 0.047   | -0.853  | 0.394     | -0.076 | -0.076  |
| ##       | int                           | 0.044    | 0.041   | 1.073   | 0.283     | 0.087  | 0.087   |
| ##       | fea ~~                        |          |         |         |           |        |         |
| ##       | tra                           | 0.073    | 0.038   | 1.892   | 0.058     | 0.164  | 0.164   |
| ##       | rit                           | 0.021    | 0.036   | 0.593   | 0.553     | 0.051  | 0.051   |
| ##       | int                           | -0.012   | 0.031   | -0.381  | 0.703     | -0.030 | -0.030  |
| ##       | tra ~~                        |          |         |         |           |        |         |
| ##       | rit                           | 0.179    | 0.040   | 4.523   | 0.000     | 0.400  | 0.400   |
| ##       | int                           | -0.009   | 0.036   | -0.260  | 0.795     | -0.022 | -0.022  |
| ##       | rit ~~                        |          |         |         |           |        |         |
| ##       | int                           | 0.118    | 0.030   | 3.909   | 0.000     | 0.291  | 0.291   |
| ##       | .pri_nee_gov ~~               | 0.050    | 0 004   | 0 400   | 0 001     | 0.040  | 0.040   |
| ##       | .pri_nee_int                  | 0.258    | 0.081   | 3.183   | 0.001     | 0.319  | 0.319   |
| ##       | .pri_nee_ano                  | 0.579    | 0.103   | 5.641   | 0.000     | 0.704  | 0.704   |
| ##<br>## | .pri_nee_int ~~               | 0 202    | 0 076   | 2.668   | 0.008     | 0.308  | 0.308   |
| ##       | .pri_nee_ano                  | 0.202    | 0.076   | 2.000   | 0.000     | 0.306  | 0.306   |
|          | Variances:                    |          |         |         |           |        |         |
| ##       | variances.                    | Estimate | Std.Err | z-value | P(> z )   | Std.lv | Std.all |
| ##       | .soc_gen                      | 0.177    | Dourer  | 2 varao | 1 (* 121) | 0.177  | 0.213   |
| ##       | .fea_gen                      | 0.106    |         |         |           | 0.106  | 0.204   |
| ##       | .tra_gen                      | 0.169    |         |         |           | 0.169  | 0.262   |
| ##       | .rit_gen                      | 0.118    |         |         |           | 0.118  | 0.219   |
| ##       | .int_gen                      | 0.104    |         |         |           | 0.104  | 0.211   |
| ##       | .N4P.SOC_1                    | 0.950    | 0.100   | 9.531   | 0.000     | 0.950  | 0.452   |
| ##       | .N4P.SOC_2                    | 1.063    | 0.141   | 7.561   | 0.000     | 1.063  | 0.484   |
| ##       | .N4P.SOC_3                    | 0.853    | 0.119   | 7.140   | 0.000     | 0.853  | 0.415   |
| ##       | .N4P.SOC_4                    | 0.814    | 0.117   | 6.973   | 0.000     | 0.814  | 0.348   |
| ##       | .N4P.SOC_9                    | 1.057    | 0.108   | 9.785   | 0.000     | 1.057  | 0.468   |
| ##       | .N4P.BOT_1                    | 0.884    | 0.141   | 6.286   | 0.000     | 0.884  | 0.496   |
| ##       | .N4P.INT_2                    | 1.639    | 0.155   | 10.563  | 0.000     | 1.639  | 0.706   |
| ##       | .N4P.INT_7                    | 1.173    | 0.127   | 9.249   | 0.000     | 1.173  | 0.717   |
| ##       | .N4P.INT_9                    | 1.200    | 0.153   | 7.871   | 0.000     | 1.200  | 0.726   |
| ##       | .N4P.SOC_6                    | 1.496    | 0.172   | 8.682   | 0.000     | 1.496  | 0.646   |
| ##       | $.\mathtt{N4P.SOC}_{-7}^{-7}$ | 0.843    | 0.127   | 6.647   | 0.000     | 0.843  | 0.434   |
| ##       | .N4P.SOC_8                    | 1.459    | 0.177   | 8.261   | 0.000     | 1.459  | 0.673   |
| ##       | .pri_nee_gov                  | 1.013    | 0.161   | 6.294   | 0.000     | 0.880  | 0.880   |
| ##       | .pri_nee_int                  | 0.644    | 0.144   | 4.478   | 0.000     | 0.717  | 0.717   |
| ##       | .pri_nee_ano                  | 0.667    | 0.156   | 4.271   | 0.000     | 0.814  | 0.814   |
|          |                               |          |         |         |           |        |         |

| ## | soc | 0.655 | 0.074 | 8.883  | 0.000 | 1.000 | 1.000 |
|----|-----|-------|-------|--------|-------|-------|-------|
| ## | fea | 0.413 | 0.040 | 10.456 | 0.000 | 1.000 | 1.000 |
| ## | tra | 0.476 | 0.053 | 8.945  | 0.000 | 1.000 | 1.000 |
| ## | rit | 0.422 | 0.061 | 6.909  | 0.000 | 1.000 | 1.000 |
| ## | int | 0.389 | 0.036 | 10.843 | 0.000 | 1.000 | 1.000 |

## Tables

## Items measuring need for privacy

| name      | included | content                                                                            |
|-----------|----------|------------------------------------------------------------------------------------|
| N4P.SOC_1 | yes      | I need government agencies to respect my privacy, even if that hinders a greater   |
|           |          | societal cause.                                                                    |
| N4P.SOC_2 | yes      | I need the information that companies (e.g., Amazon, Facebook, or Google) have     |
|           |          | about me to stay private so that the government can never access it.               |
| N4P.SOC_3 | yes      | I don't want the government to gather information about me, even if that makes     |
|           |          | it more difficult for them to spend tax income efficiently.                        |
| N4P.SOC_4 | yes      | I don't want government agencies to monitor my personal communication, even if     |
|           |          | doing so prevents future terrorist attacks.                                        |
| N4P.SOC_5 | no       | I need to be able to surf online anonymously.                                      |
| N4P.SOC_6 | yes      | I need to be able to use a fake name on social network sites to preserve my        |
|           |          | privacy.                                                                           |
| N4P.SOC_7 | yes      | I feel the need to avoid places with video surveillance.                           |
| N4P.SOC_8 | yes      | I prefer not to carry my ID with me all the time to preserve my privacy.           |
| N4P.SOC_9 | yes      | I feel the need to protect my privacy from government agencies.                    |
| N4P.INT_1 | no       | I feel the need to disclose personal information about me on social network sites. |
| N4P.INT_2 | yes      | My need for privacy is so strong that it prevents me from using Facebook           |
|           |          | actively.                                                                          |
| N4P.INT_3 | no       | I don't feel the need to be able to communicate about very personal things with    |
|           |          | others online.                                                                     |
| N4P.INT_4 | no       | I need to know that my boss or future employers cannot find information about      |
|           |          | me online that they might disapprove of.                                           |
| N4P.INT_5 | no       | I always need a person to talk about personal things.                              |
| N4P.INT_6 | no       | I don't need to know a lot of things about people I interact with, as that might   |
|           |          | cause problems.                                                                    |
| N4P.INT_7 | yes      | I don't feel the need to tell my friends all my secrets.                           |
| N4P.INT_8 | no       | I sometimes feel the need to share my personal point of view with someone I        |
|           |          | don't know that well.                                                              |
| N4P.INT_9 | yes      | I feel the need to protect my privacy from other people.                           |
| N4P.BOT_1 | yes      | I prefer it when other people do not know much about me.                           |
| N4P.BOT_2 | no       | When given the chance, I prefer being incognito.                                   |
| N4P.BOT_3 | no       | I don't want personal information about me being publicly available.               |
| N4P.BOT_4 | no       | Not everybody needs to know everything about me.                                   |

# Psychometrics

|                | m    | sd   | chisq | df | pvalue | cfi  | tli  | rmsea | srmr | omega | alpha | ave |
|----------------|------|------|-------|----|--------|------|------|-------|------|-------|-------|-----|
| (Combined)     | 4.17 | 1.62 | 97.74 | 50 | < .001 | .95  | .93  | .06   | .06  | .84   | .88   | .46 |
| Government     | 4.12 | 1.49 | 6.39  | 5  | .270   | 1.00 | .99  | .03   | .02  | .87   | .87   | .57 |
| Interpersonal  | 4.21 | 1.59 | 10.61 | 2  | .005   | .92  | .76  | .13   | .05  | .61   | .62   | .30 |
| Anonymity      | 2.90 | 1.50 | 3.11  | 2  | .212   | .99  | .98  | .05   | .03  | .69   | .69   | .36 |
| Sociability    | 4.70 | 1.50 | 5.94  | 2  | .051   | .98  | .95  | .09   | .03  | .79   | .79   | .49 |
| Anxiety        | 4.42 | 1.52 | 38.05 | 18 | .004   | .95  | .93  | .06   | .04  | .80   | .82   | .41 |
| Risk aversion  | 4.32 | 1.55 | 5.16  | 5  | .397   | 1.00 | 1.00 | .01   | .02  | .78   | .78   | .42 |
| Traditionality | 3.90 | 1.60 | 10.71 | 5  | .058   | .98  | .95  | .06   | .03  | .74   | .74   | .37 |
| Integrity      | 4.56 | 1.83 | 47.93 | 25 | .004   | .96  | .94  | .06   | .04  | .79   | .82   | .40 |

## Results

| Outcome                    | Predictor      | b       | 11      | ul    | beta | p      |
|----------------------------|----------------|---------|---------|-------|------|--------|
| Privacy need government    | Sociability    | -0.23   | -0.44   | -0.01 | 17   | .037   |
| Privacy need government    | Anxiety        | -0.31   | -0.58   | -0.03 | 18   | .029   |
| Privacy need government    | Traditionalism | 0.16    | -0.12   | 0.44  | .10  | .257   |
| Privacy need government    | Risk avoidance | 0.20    | -0.10   | 0.51  | .12  | .197   |
| Privacy need government    | Integrity      | -0.07   | -0.37   | 0.22  | 04   | .622   |
| Privacy need government    | Male           | 0.38    | 0.08    | 0.68  | .16  | .012   |
| Privacy need government    | Age            | 0.03    | > -0.01 | 0.05  | .06  | .051   |
| Privacy need government    | Income         | 0.07    | -0.06   | 0.20  | .07  | .276   |
| Privacy need interpersonal | Sociability    | -0.39   | -0.58   | -0.19 | 33   | < .001 |
| Privacy need interpersonal | Anxiety        | > -0.01 | -0.24   | 0.24  | >01  | .991   |
| Privacy need interpersonal | Traditionalism | 0.19    | -0.11   | 0.48  | .14  | .213   |
| Privacy need interpersonal | Risk avoidance | 0.40    | 0.12    | 0.67  | .27  | .005   |
| Privacy need interpersonal | Integrity      | 0.01    | -0.24   | 0.26  | .01  | .930   |
| Privacy need interpersonal | Male           | 0.28    | > -0.01 | 0.56  | .13  | .053   |
| Privacy need interpersonal | Age            | 0.02    | -0.01   | 0.04  | .05  | .208   |
| Privacy need interpersonal | Income         | 0.03    | -0.12   | 0.19  | .03  | .686   |
| Privacy need anonymity     | Sociability    | -0.22   | -0.40   | -0.04 | 20   | .018   |
| Privacy need anonymity     | Anxiety        | -0.16   | -0.39   | 0.07  | 11   | .167   |
| Privacy need anonymity     | Traditionalism | -0.03   | -0.29   | 0.23  | 02   | .814   |
| Privacy need anonymity     | Risk avoidance | 0.04    | -0.21   | 0.28  | .03  | .770   |
| Privacy need anonymity     | Integrity      | -0.40   | -0.67   | -0.14 | 28   | .003   |
| Privacy need anonymity     | Male           | 0.29    | 0.01    | 0.58  | .14  | .041   |
| Privacy need anonymity     | Age            | 0.03    | < 0.01  | 0.07  | .10  | .031   |
| Privacy need anonymity     | Income         | 0.14    | -0.01   | 0.28  | .15  | .065   |

## Figures

#### Results



# Additional analyses

#### **Bi-Factor**

| ##<br>## | lavaan 0.6-3 ended normally after 99 iter | ations |        |           |       |
|----------|-------------------------------------------|--------|--------|-----------|-------|
| ##       | Optimization method                       | 1      | NLMINB |           |       |
| ##       | Number of free parameters                 |        | 84     |           |       |
| ##       | Number of fice parameters                 |        | 04     |           |       |
| ##       | Number of observations                    |        | 271    |           |       |
| ##       | Number of observations                    |        | 2.1    |           |       |
| ##       | Estimator                                 |        | ML     | Robust    |       |
| ##       | Model Fit Test Statistic                  | 18     | 30.457 | 169.888   |       |
| ##       | Degrees of freedom                        |        | 120    | 120       |       |
| ##       | P-value (Chi-square)                      |        | 0.000  | 0.002     |       |
| ##       | Scaling correction factor                 |        |        | 1.062     |       |
| ##       | for the Satorra-Bentler correction        |        |        | 1.002     |       |
| ##       | 101 010 0400114 20110101 0011000101       |        |        |           |       |
| ##       | Model test baseline model:                |        |        |           |       |
| ##       |                                           |        |        |           |       |
| ##       | Minimum Function Test Statistic           | 139    | 93.228 | 1311.548  |       |
| ##       | Degrees of freedom                        |        | 187    | 187       |       |
| ##       | P-value                                   |        | 0.000  | 0.000     |       |
| ##       |                                           |        |        |           |       |
| ##       | User model versus baseline model:         |        |        |           |       |
| ##       |                                           |        |        |           |       |
| ##       | Comparative Fit Index (CFI)               |        | 0.950  | 0.956     |       |
| ##       | Tucker-Lewis Index (TLI)                  |        | 0.922  | 0.931     |       |
| ##       |                                           |        |        |           |       |
| ##       | Robust Comparative Fit Index (CFI)        |        |        | 0.956     |       |
| ##       | Robust Tucker-Lewis Index (TLI)           |        |        | 0.931     |       |
| ##       |                                           |        |        |           |       |
|          | Loglikelihood and Information Criteria:   |        |        |           |       |
| ##       |                                           | 071    | -4 000 | 6754 000  |       |
| ##       | Loglikelihood user model (HO)             |        | 51.809 | -6751.809 |       |
| ##<br>## | Loglikelihood unrestricted model (H1)     | -006   | 51.581 | -6661.581 |       |
| ##       | Number of free parameters                 |        | 84     | 84        |       |
| ##       | Number of free parameters Akaike (AIC)    | 136    | 71.618 |           |       |
| ##       | Bayesian (BIC)                            |        | 74.196 |           |       |
| ##       | Sample-size adjusted Bayesian (BIC)       |        | 07.857 |           |       |
| ##       | bampic bize adjusted bayesian (bio)       | 101    | 31.001 | 10707.007 |       |
|          | Root Mean Square Error of Approximation:  |        |        |           |       |
| ##       |                                           |        |        |           |       |
| ##       | RMSEA                                     |        | 0.043  | 0.039     |       |
| ##       | 90 Percent Confidence Interval            | 0.029  | 0.056  | 0.025     | 0.052 |
| ##       | P-value RMSEA <= 0.05                     |        | 0.808  | 0.919     |       |
| ##       |                                           |        |        |           |       |
| ##       | Robust RMSEA                              |        |        | 0.040     |       |
| ##       | 90 Percent Confidence Interval            |        |        | 0.025     | 0.054 |
| ##       |                                           |        |        |           |       |
| ##       | Standardized Root Mean Square Residual:   |        |        |           |       |
| ##       |                                           |        |        |           |       |

| ##       | SRMR                   |                |                |                | 0.045          | 0.0            | 45             |  |
|----------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| ##       |                        |                |                |                |                |                |                |  |
| ##       | Parameter Estimate     | es:            |                |                |                |                |                |  |
| ##       | Information            |                |                |                | Expected       |                |                |  |
| ##       | Information satu       | rated (h1)     | model          | Structured     |                |                |                |  |
| ##       | Standard Errors        | modol          |                | bust.sem       |                |                |                |  |
| ##       |                        |                |                |                |                |                |                |  |
| ##       | Latent Variables:      |                |                |                |                |                |                |  |
| ##       |                        | Estimate       | Std.Err        | z-value        | P(> z )        | Std.lv         | Std.all        |  |
| ##       | pri_nee_gen =~         |                |                |                |                |                |                |  |
| ##       | N4P.SOC_1              | 1.000          |                |                |                | 0.841          | 0.581          |  |
| ##       | N4P.SOC_2              | 1.155          | 0.130          | 8.913          | 0.000          | 0.972          | 0.655          |  |
| ##       | N4P.SOC_3              | 1.118          | 0.116          | 9.618          | 0.000          | 0.941          | 0.656          |  |
| ##<br>## | N4P.SOC_4<br>N4P.SOC_9 | 1.127          | 0.113<br>0.148 | 9.935          | 0.000<br>0.000 | 0.948<br>1.100 | 0.621<br>0.729 |  |
| ##       | N4P.BOT_1              | 1.308<br>0.388 | 0.148          | 8.809<br>3.061 | 0.000          | 0.326          | 0.729          |  |
| ##       | N4P.INT_2              | 0.844          | 0.127          | 4.880          | 0.002          | 0.710          | 0.465          |  |
| ##       | N4P.INT_7              | 0.026          | 0.173          | 0.206          | 0.837          | 0.710          | 0.403          |  |
| ##       | N4P.INT_9              | 0.626          | 0.128          | 4.874          | 0.000          | 0.527          | 0.409          |  |
| ##       | N4P.SOC_6              | 1.010          | 0.182          | 5.552          | 0.000          | 0.850          | 0.558          |  |
| ##       | N4P.SOC_7              | 0.971          | 0.201          | 4.826          | 0.000          | 0.817          | 0.588          |  |
| ##       | N4P.SOC_8              | 0.900          | 0.174          | 5.175          | 0.000          | 0.757          | 0.514          |  |
| ##       | pri_nee_gov =~         |                |                |                |                |                |                |  |
| ##       | N4P.SOC_1              | 1.000          |                |                |                | 0.828          | 0.572          |  |
| ##       | N4P.SOC_2              | 0.731          | 0.152          | 4.804          | 0.000          | 0.605          | 0.408          |  |
| ##       | N4P.SOC_3              | 0.865          | 0.141          | 6.129          | 0.000          | 0.716          | 0.499          |  |
| ##       | N4P.SOC_4              | 1.218          | 0.157          | 7.769          | 0.000          | 1.008          | 0.660          |  |
| ##       | N4P.SOC_9              | 0.606          | 0.163          | 3.709          | 0.000          | 0.502          | 0.332          |  |
| ##       | pri_nee_int =~         | 4 000          |                |                |                | 0.040          | 0.000          |  |
| ##       | N4P.BOT_1              | 1.000<br>0.379 | 0 147          | 0 570          | 0.010          | 0.848<br>0.321 | 0.636<br>0.210 |  |
| ##<br>## | N4P.INT_2<br>N4P.INT_7 | 0.379          | 0.147<br>0.169 | 2.570<br>5.634 | 0.010          | 0.321          | 0.632          |  |
| ##       | N4P.INT_9              | 0.562          | 0.103          | 4.568          | 0.000          | 0.477          | 0.370          |  |
| ##       | pri_nee_ano =~         | 0.002          | 0.120          | 1.000          | 0.000          | 0.111          | 0.010          |  |
| ##       | N4P.SOC 6              | 1.000          |                |                |                | 0.402          | 0.264          |  |
| ##       | N4P.SOC_7              | 2.078          | 0.734          | 2.830          | 0.005          | 0.836          | 0.602          |  |
| ##       | N4P.SOC_8              | 1.191          | 0.444          |                | 0.007          | 0.479          | 0.325          |  |
| ##       | N4P.INT_2              | 0.775          | 0.375          | 2.068          | 0.039          | 0.312          | 0.204          |  |
| ##       | int =~                 |                |                |                |                |                |                |  |
| ##       | ${	t int\_gen}$        | 1.000          |                |                |                | 0.624          | 0.888          |  |
| ##       | soc =~                 |                |                |                |                |                |                |  |
| ##       | soc_gen                | 1.000          |                |                |                | 0.809          | 0.887          |  |
| ##       | fea =~                 | 1 000          |                |                |                | 0.643          | 0 900          |  |
| ##<br>## | fea_gen<br>tra =~      | 1.000          |                |                |                | 0.043          | 0.892          |  |
| ##       | tra_gen                | 1.000          |                |                |                | 0.690          | 0.859          |  |
| ##       | rit =~                 | 1.000          |                |                |                | 0.000          | 0.003          |  |
| ##       | rit_gen                | 1.000          |                |                |                | 0.649          | 0.884          |  |
| ##       |                        |                |                |                |                |                | · · · ·        |  |
| ##       | Regressions:           |                |                |                |                |                |                |  |
| ##       |                        | Estimate       | Std.Err        | z-value        | P(> z )        | Std.lv         | Std.all        |  |
| ##       | pri_nee_gen ~          |                |                |                |                |                |                |  |
| ##       | int                    | -0.141         | 0.163          | -0.868         | 0.385          | -0.105         | -0.105         |  |

| ## | soc             | -0.125   | 0.115   | -1.084  | 0.279   | -0.120 | -0.120  |
|----|-----------------|----------|---------|---------|---------|--------|---------|
| ## | fea             | 0.156    | 0.165   | 0.942   | 0.346   | 0.119  | 0.119   |
| ## | tra             | -0.330   | 0.203   | -1.626  | 0.104   | -0.270 | -0.270  |
| ## | rit             | 0.400    | 0.188   | 2.132   | 0.033   | 0.309  | 0.309   |
| ## | male            | 0.298    | 0.187   | 1.596   | 0.111   | 0.354  | 0.156   |
| ## | age             | 0.048    | 0.023   | 2.143   | 0.032   | 0.058  | 0.149   |
| ## | inc             | 0.087    | 0.078   | 1.119   | 0.263   | 0.104  | 0.103   |
| ## | pri_nee_gov ~   |          |         |         |         |        |         |
| ## | int             | 0.089    | 0.182   | 0.487   | 0.626   | 0.067  | 0.067   |
| ## | SOC             | -0.102   | 0.139   | -0.738  | 0.460   | -0.100 | -0.100  |
| ## | fea             | -0.538   | 0.197   | -2.737  | 0.006   | -0.418 | -0.418  |
| ## | tra             | 0.598    | 0.255   | 2.350   | 0.019   | 0.499  | 0.499   |
| ## | rit             | -0.279   | 0.193   | -1.443  | 0.149   | -0.218 | -0.218  |
| ## | male            | 0.057    | 0.216   | 0.265   | 0.791   | 0.069  | 0.030   |
| ## | age             | -0.029   | 0.025   | -1.183  | 0.237   | -0.035 | -0.091  |
| ## | inc             | -0.022   | 0.083   | -0.266  | 0.790   | -0.027 | -0.027  |
| ## | pri_nee_int ~   |          |         |         |         |        |         |
| ## | int             | 0.070    | 0.128   | 0.548   | 0.584   | 0.052  | 0.052   |
| ## | soc             | -0.319   | 0.094   | -3.416  | 0.001   | -0.305 | -0.305  |
| ## | fea             | -0.073   | 0.118   | -0.619  | 0.536   | -0.055 | -0.055  |
| ## | tra             | 0.300    | 0.154   | 1.950   | 0.051   | 0.244  | 0.244   |
| ## | rit             | 0.245    | 0.150   | 1.631   | 0.103   | 0.188  | 0.188   |
| ## | male            | 0.153    | 0.143   | 1.071   | 0.284   | 0.181  | 0.080   |
| ## | age             | -0.004   | 0.012   | -0.354  | 0.724   | -0.005 | -0.013  |
| ## | inc             | -0.013   | 0.070   | -0.184  | 0.854   | -0.015 | -0.015  |
| ## | pri_nee_ano ~   |          |         |         |         |        |         |
| ## | int             | -0.181   | 0.108   | -1.680  | 0.093   | -0.281 | -0.281  |
| ## | soc             | -0.071   | 0.072   | -0.990  | 0.322   | -0.144 | -0.144  |
| ## | fea             | -0.210   | 0.126   | -1.673  | 0.094   | -0.336 | -0.336  |
| ## | tra             | 0.183    | 0.138   | 1.327   | 0.185   | 0.314  | 0.314   |
| ## | rit             | -0.224   | 0.140   | -1.596  | 0.111   | -0.361 | -0.361  |
| ## | male            | 0.031    | 0.109   | 0.289   | 0.773   | 0.078  | 0.035   |
| ## | age             | -0.007   | 0.011   | -0.643  | 0.520   | -0.017 | -0.044  |
| ## | inc             | 0.035    | 0.053   | 0.666   | 0.505   | 0.087  | 0.086   |
| ## |                 |          |         |         |         |        |         |
| ## | Covariances:    |          |         |         |         |        |         |
| ## |                 | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
| ## | .pri_nee_gen ~~ |          |         |         |         |        |         |
| ## | .pri_nee_gov    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | .pri_nee_int    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | .pri_nee_ano    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | .pri_nee_gov ~~ |          |         |         |         |        |         |
| ## | .pri_nee_int    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | .pri_nee_ano    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | .pri_nee_int ~~ |          |         |         |         |        |         |
| ## | .pri_nee_ano    | 0.000    |         |         |         | 0.000  | 0.000   |
| ## | int ~~          |          |         |         |         |        |         |
| ## | soc             | 0.044    | 0.041   | 1.075   | 0.282   | 0.087  | 0.087   |
| ## | fea             | -0.012   | 0.031   | -0.383  | 0.701   | -0.030 | -0.030  |
| ## | tra             | -0.009   | 0.036   | -0.258  | 0.796   | -0.022 | -0.022  |
| ## | rit             | 0.118    | 0.030   | 3.906   | 0.000   | 0.291  | 0.291   |
| ## | soc ~~          |          |         |         |         |        |         |
| ## | fea             | -0.137   | 0.041   | -3.358  | 0.001   | -0.263 | -0.263  |
| ## | tra             | -0.086   | 0.044   | -1.953  | 0.051   | -0.154 | -0.154  |
|    |                 |          |         |         |         |        |         |

| ##<br>## | rit<br>fea ~~                 | -0.040         | 0.047          | -0.852         | 0.394   | -0.076         | -0.076         |
|----------|-------------------------------|----------------|----------------|----------------|---------|----------------|----------------|
| ##       | tra                           | 0.073          | 0.038          | 1.895          | 0.058   | 0.164          | 0.164          |
| ##       | rit                           | 0.021          | 0.036          | 0.586          | 0.558   | 0.051          | 0.051          |
| ##       | tra ~~                        |                |                |                |         |                |                |
| ##       | rit                           | 0.180          | 0.040          | 4.532          | 0.000   | 0.401          | 0.401          |
| ##       |                               |                |                |                |         |                |                |
| ##       | Variances:                    |                |                |                |         |                |                |
| ##       |                               | Estimate       | Std.Err        | z-value        | P(> z ) | Std.lv         | Std.all        |
| ##       | .int_gen                      | 0.104          |                |                |         | 0.104          | 0.211          |
| ##       | .soc_gen                      | 0.177          |                |                |         | 0.177          | 0.213          |
| ##       | .fea_gen                      | 0.106          |                |                |         | 0.106          | 0.204          |
| ##       | .tra_gen                      | 0.169          |                |                |         | 0.169          | 0.262          |
| ##       | $.\mathtt{rit}\_\mathtt{gen}$ | 0.118          |                |                |         | 0.118          | 0.219          |
| ##       | $.{\tt N4P.SOC\_1}$           | 0.911          | 0.108          | 8.440          | 0.000   | 0.911          | 0.434          |
| ##       | .N4P.SOC_2                    | 1.068          | 0.132          | 8.094          | 0.000   | 1.068          | 0.484          |
| ##       | .N4P.SOC_3                    | 0.858          | 0.118          | 7.292          | 0.000   | 0.858          | 0.417          |
| ##       | $.\mathtt{N4P.SOC\_4}$        | 0.701          | 0.128          | 5.469          | 0.000   | 0.701          | 0.300          |
| ##       | .N4P.SOC_9                    | 0.977          | 0.114          | 8.608          | 0.000   | 0.977          | 0.429          |
| ##       | .N4P.BOT_1                    | 0.925          | 0.143          | 6.472          | 0.000   | 0.925          | 0.519          |
| ##       | .N4P.INT_2                    | 1.646          | 0.154          | 10.704         | 0.000   | 1.646          | 0.707          |
| ##       | .N4P.INT_7                    | 0.978          | 0.144          | 6.805          | 0.000   | 0.978          | 0.599          |
| ##       | .N4P.INT_9                    | 1.126          | 0.139          | 8.118          | 0.000   | 1.126          | 0.679          |
| ##       | .N4P.SOC_6                    | 1.512          | 0.165          | 9.156          | 0.000   | 1.512          | 0.651          |
| ##       | .N4P.SOC_7                    | 0.710          | 0.192          | 3.693          | 0.000   | 0.710          | 0.367          |
| ##       | .N4P.SOC_8                    | 1.444          | 0.171          | 8.423          | 0.000   | 1.444          | 0.666          |
| ##       | .pri_nee_gen                  | 0.572          | 0.155          | 3.700          | 0.000   | 0.808          | 0.808          |
| ##       | .pri_nee_gov                  | 0.460          | 0.153          | 3.001          | 0.003   | 0.671          | 0.671<br>0.744 |
| ##<br>## | .pri_nee_int<br>.pri_nee_ano  | 0.535<br>0.100 | 0.132<br>0.072 | 4.051<br>1.393 | 0.000   | 0.744<br>0.618 | 0.744          |
| ##       | .pri_nee_ano<br>int           | 0.100          | 0.072          | 10.843         | 0.000   | 1.000          | 1.000          |
| ##       | SOC                           | 0.655          | 0.030          | 8.884          | 0.000   | 1.000          | 1.000          |
| ##       | fea                           | 0.413          | 0.040          | 10.454         | 0.000   | 1.000          | 1.000          |
| ##       | tra                           | 0.476          | 0.053          | 8.957          | 0.000   | 1.000          | 1.000          |
| ##       | rit                           | 0.421          | 0.061          | 6.903          | 0.000   | 1.000          | 1.000          |
| ##       |                               |                |                |                |         |                |                |
| ##       | R-Square:                     |                |                |                |         |                |                |
| ##       | -                             | Estimate       |                |                |         |                |                |
| ##       | int_gen                       | 0.789          |                |                |         |                |                |
| ##       | soc_gen                       | 0.787          |                |                |         |                |                |
| ##       | fea_gen                       | 0.796          |                |                |         |                |                |
| ##       | tra_gen                       | 0.738          |                |                |         |                |                |
| ##       | rit_gen                       | 0.781          |                |                |         |                |                |
| ##       | N4P.SOC_1                     | 0.566          |                |                |         |                |                |
| ##       | N4P.SOC_2                     | 0.516          |                |                |         |                |                |
| ##       | N4P.SOC_3                     | 0.583          |                |                |         |                |                |
| ##       | N4P.SOC_4                     | 0.700          |                |                |         |                |                |
| ##       | N4P.SOC_9                     | 0.571          |                |                |         |                |                |
| ##       | N4P.BOT_1                     | 0.481          |                |                |         |                |                |
| ##       | N4P.INT_2                     | 0.293          |                |                |         |                |                |
| ##       | N4P.INT_7                     | 0.401          |                |                |         |                |                |
| ##       | N4P.INT_9<br>N4P.SOC_6        | 0.321<br>0.349 |                |                |         |                |                |
| ##       | N4P.SOC_6<br>N4P.SOC_7        | 0.633          |                |                |         |                |                |
| ##       | M-1. 1000_1                   | 0.033          |                |                |         |                |                |

| ## | N4P.SOC_8   | 0.334 |
|----|-------------|-------|
| ## | pri_nee_gen | 0.192 |
| ## | pri_nee_gov | 0.329 |
| ## | pri_nee_int | 0.256 |
| ## | pri nee ano | 0.382 |



#### Individual items

```
## lavaan 0.6-3 ended normally after 126 iterations
##
##
     Optimization method
                                                    NLMINB
     Number of free parameters
##
                                                       465
##
##
     Number of observations
                                                       271
##
##
     Estimator
                                                        ML
                                                                 Robust
##
     Model Fit Test Statistic
                                                     0.000
                                                                 0.000
     Degrees of freedom
                                                                      0
##
                                           0.000000000000
##
    Minimum Function Value
     Scaling correction factor
##
                                                                     NA
##
       for the Satorra-Bentler correction
##
## Model test baseline model:
##
     Minimum Function Test Statistic
                                                  2421.261
##
                                                              2110.595
##
     Degrees of freedom
                                                       435
                                                                    435
##
     P-value
                                                     0.000
                                                                  0.000
##
## User model versus baseline model:
##
                                                     1.000
##
     Comparative Fit Index (CFI)
                                                                  1.000
                                                     1.000
##
     Tucker-Lewis Index (TLI)
                                                                  1.000
##
##
     Robust Comparative Fit Index (CFI)
                                                                     NA
     Robust Tucker-Lewis Index (TLI)
##
                                                                     NA
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (HO)
                                                -11987.491 -11987.491
     Loglikelihood unrestricted model (H1)
                                                -11987.491 -11987.491
##
##
##
    Number of free parameters
                                                       465
                                                                    465
##
     Akaike (AIC)
                                                 24904.982
                                                             24904.982
##
     Bayesian (BIC)
                                                 26579.968
                                                             26579.968
##
     Sample-size adjusted Bayesian (BIC)
                                                 25105.592
                                                             25105.592
##
## Root Mean Square Error of Approximation:
##
                                                     0.000
                                                                  0.000
##
     RMSEA
                                                                  0.000 0.000
     90 Percent Confidence Interval
                                              0.000 0.000
##
     P-value RMSEA <= 0.05
##
                                                        NA
                                                                     NA
##
                                                                  0.000
##
     Robust RMSEA
     90 Percent Confidence Interval
                                                                  0.000 0.000
##
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.000
                                                                  0.000
##
## Parameter Estimates:
```

| ##<br>##<br>##<br>## | Information<br>Information sa<br>Standard Error | St             | Expected ructured bust.sem |         |                |        |         |
|----------------------|-------------------------------------------------|----------------|----------------------------|---------|----------------|--------|---------|
| ##<br>##             | Regressions:                                    | Estimate       | Std.Err                    | z-value | P(> z )        | Std.lv | Std.all |
| ##                   | N4P.BOT_1 ~                                     |                |                            |         |                |        |         |
| ##                   | int_gen                                         | -0.101         | 0.115                      | -0.881  | 0.378          | -0.101 | -0.053  |
| ##                   | soc_gen                                         | -0.359         | 0.085                      | -4.207  | 0.000          | -0.359 | -0.245  |
| ##                   | fea_gen                                         | -0.019         | 0.110                      | -0.174  | 0.862          | -0.019 | -0.010  |
| ##                   | tra_gen                                         | 0.208          | 0.114                      | 1.830   | 0.067          | 0.208  | 0.125   |
| ##                   | rit_gen                                         | 0.317          | 0.112                      | 2.845   | 0.004          | 0.317  | 0.175   |
| ##                   | male                                            | 0.213          | 0.171                      | 1.246   | 0.213          | 0.213  | 0.071   |
| ##                   | age                                             | 0.007          | 0.016                      | 0.458   | 0.647          | 0.007  | 0.014   |
| ##                   | inc                                             | 0.116          | 0.081                      | 1.444   | 0.149          | 0.116  | 0.087   |
| ##                   | N4P.BOT_2 ~                                     |                |                            |         |                |        |         |
| ##                   | int_gen                                         | -0.006         | 0.124                      | -0.051  | 0.959          | -0.006 | -0.003  |
| ##                   | soc_gen                                         | -0.323         | 0.092                      | -3.510  | 0.000          | -0.323 | -0.214  |
| ##                   | fea_gen                                         | 0.086          | 0.126                      | 0.681   | 0.496          | 0.086  | 0.045   |
| ##                   | tra_gen                                         | 0.123          | 0.126                      | 0.976   | 0.329          | 0.123  | 0.072   |
| ##                   | rit_gen                                         | 0.152          | 0.114                      | 1.338   | 0.181          | 0.152  | 0.081   |
| ##                   | male                                            | 0.617          | 0.196                      | 3.154   | 0.002          | 0.617  | 0.198   |
| ##                   | age                                             | 0.025          | 0.018                      | 1.362   | 0.173          | 0.025  | 0.047   |
| ##                   | inc                                             | -0.026         | 0.087                      | -0.299  | 0.765          | -0.026 | -0.019  |
| ##                   | N4P.BOT_3 ~                                     | 0 206          | 0 100                      | 3.870   | 0 000          | 0.386  | 0.240   |
| ##                   | int_gen                                         | 0.386          | 0.100                      | 0.675   | 0.000<br>0.500 | 0.052  | 0.240   |
| ##<br>##             | soc_gen                                         | 0.052<br>0.141 | 0.078<br>0.099             | 1.430   | 0.500          | 0.052  | 0.042   |
| ##                   | fea_gen                                         | 0.141          | 0.099                      | 1.450   | 0.153          | 0.141  | 0.090   |
| ##                   | tra_gen<br>rit_gen                              | 0.111          | 0.093                      | 1.138   | 0.247          | 0.111  | 0.079   |
| ##                   | male                                            | 0.189          | 0.057                      | 0.845   | 0.030          | 0.103  | 0.120   |
| ##                   |                                                 | 0.129          | 0.132                      | 0.845   | 0.382          | 0.129  | 0.030   |
| ##                   | age<br>inc                                      | -0.069         | 0.021                      | -0.874  | 0.382          | -0.069 | -0.042  |
| ##                   | N4P.BOT_4 ~                                     | 0.003          | 0.013                      | 0.074   | 0.302          | 0.003  | 0.001   |
| ##                   | int_gen                                         | 0.168          | 0.083                      | 2.033   | 0.042          | 0.168  | 0.112   |
| ##                   | soc_gen                                         | 0.154          | 0.080                      | 1.926   | 0.054          | 0.154  | 0.133   |
| ##                   | fea_gen                                         | 0.142          | 0.080                      | 1.787   | 0.074          | 0.142  | 0.097   |
| ##                   | tra_gen                                         | 0.227          | 0.084                      | 2.693   | 0.007          | 0.227  | 0.173   |
| ##                   | rit_gen                                         | 0.204          | 0.087                      | 2.356   | 0.018          | 0.204  | 0.142   |
| ##                   | male                                            | 0.091          | 0.141                      | 0.646   | 0.518          | 0.091  | 0.038   |
| ##                   | age                                             | -0.015         | 0.015                      | -1.048  | 0.295          | -0.015 | -0.038  |
| ##                   | inc                                             | -0.048         | 0.068                      | -0.700  | 0.484          | -0.048 | -0.045  |
| ##                   | N4P.SOC_1 ~                                     |                |                            |         |                |        |         |
| ##                   | int_gen                                         | -0.009         | 0.133                      | -0.066  | 0.947          | -0.009 | -0.004  |
| ##                   | soc_gen                                         | -0.146         | 0.101                      | -1.436  | 0.151          | -0.146 | -0.091  |
| ##                   | fea_gen                                         | -0.272         | 0.142                      | -1.917  | 0.055          | -0.272 | -0.135  |
| ##                   | tra_gen                                         | 0.182          | 0.128                      | 1.425   | 0.154          | 0.182  | 0.101   |
| ##                   | rit_gen                                         | 0.158          | 0.120                      | 1.324   | 0.185          | 0.158  | 0.080   |
| ##                   | male                                            | 0.246          | 0.201                      | 1.224   | 0.221          | 0.246  | 0.075   |
| ##                   | age                                             | 0.016          | 0.020                      | 0.779   | 0.436          | 0.016  | 0.028   |
| ##                   | inc                                             | 0.058          | 0.083                      | 0.698   | 0.485          | 0.058  | 0.040   |
| ##                   | N4P.SOC_2 ~                                     |                |                            |         |                |        |         |
| ##                   | int_gen                                         | 0.008          | 0.139                      | 0.056   | 0.955          | 0.008  | 0.004   |

| ##       | soc_gen            | -0.126 | 0.100          | -1.254         | 0.210          | -0.126         | -0.077         |
|----------|--------------------|--------|----------------|----------------|----------------|----------------|----------------|
| ##       | fea_gen            | 0.013  | 0.149          | 0.088          | 0.930          | 0.013          | 0.006          |
| ##       | tra_gen            | 0.190  | 0.117          | 1.627          | 0.104          | 0.190          | 0.102          |
| ##       | rit_gen            | 0.237  | 0.139          | 1.713          | 0.087          | 0.237          | 0.117          |
| ##       | male               | 0.481  | 0.196          | 2.450          | 0.014          | 0.481          | 0.143          |
| ##       | age                | 0.015  | 0.023          | 0.646          | 0.518          | 0.015          | 0.026          |
| ##       | inc                | 0.074  | 0.090          | 0.821          | 0.411          | 0.074          | 0.049          |
| ##       | N4P.SOC_3 ~        |        |                |                |                |                |                |
| ##       | int_gen            | -0.046 | 0.136          | -0.337         | 0.736          | -0.046         | -0.022         |
| ##       | soc_gen            | -0.257 | 0.099          | -2.592         | 0.010          | -0.257         | -0.163         |
| ##       | fea_gen            | -0.270 | 0.132          | -2.046         | 0.041          | -0.270         | -0.135         |
| ##       | tra_gen            | 0.209  | 0.124          | 1.691          | 0.091          | 0.209          | 0.117          |
| ##       | rit_gen            | 0.108  | 0.131          | 0.822          | 0.411          | 0.108          | 0.055          |
| ##       | male               | 0.413  | 0.189          | 2.181          | 0.029          | 0.413          | 0.127          |
| ##       | age                | 0.032  | 0.018          | 1.793          | 0.073          | 0.032          | 0.057          |
| ##       | inc                | 0.059  | 0.095          | 0.619          | 0.536          | 0.059          | 0.041          |
| ##       | N4P.SOC_4 ~        |        |                |                |                |                |                |
| ##       | ${\tt int\_gen}$   | -0.081 | 0.144          | -0.561         | 0.575          | -0.081         | -0.037         |
| ##       | soc_gen            | -0.185 | 0.109          | -1.698         | 0.090          | -0.185         | -0.110         |
| ##       | fea_gen            | -0.319 | 0.142          | -2.248         | 0.025          | -0.319         | -0.150         |
| ##       | tra_gen            | 0.209  | 0.130          | 1.609          | 0.108          | 0.209          | 0.109          |
| ##       | rit_gen            | 0.108  | 0.131          | 0.820          | 0.412          | 0.108          | 0.051          |
| ##       | male               | 0.408  | 0.210          | 1.941          | 0.052          | 0.408          | 0.117          |
| ##       | age                | 0.029  | 0.016          | 1.741          | 0.082          | 0.029          | 0.048          |
| ##       | inc                | 0.096  | 0.093          | 1.033          | 0.302          | 0.096          | 0.062          |
| ##       | N4P.SOC_5 ~        | 0.004  | 0 440          | 0 007          | 0.004          | 0 004          | 0 000          |
| ##       | int_gen            | 0.001  | 0.140          | 0.007          | 0.994          | 0.001          | 0.000          |
| ##       | soc_gen            | -0.133 | 0.110          | -1.204         | 0.229          | -0.133         | -0.076         |
| ##       | fea_gen            | -0.199 | 0.150          | -1.333         | 0.183          | -0.199         | -0.091         |
| ##       | tra_gen            | 0.110  | 0.132          | 0.836          | 0.403          | 0.110          | 0.056          |
| ##       | rit_gen            | 0.112  | 0.162          | 0.695          | 0.487          | 0.112          | 0.052          |
| ##<br>## | male               | 0.531  | 0.231<br>0.023 | 2.302<br>1.851 | 0.021<br>0.064 | 0.531<br>0.043 | 0.148<br>0.070 |
| ##       | age                | 0.043  |                | -0.615         |                | -0.057         | -0.036         |
| ##       | inc<br>N4P.SOC_6 ~ | -0.057 | 0.093          | -0.015         | 0.538          | -0.057         | -0.036         |
| ##       | int_gen            | -0.281 | 0.139          | -2.028         | 0.043          | -0.281         | -0.129         |
| ##       | soc_gen            | -0.106 | 0.107          | -0.988         | 0.323          | -0.106         | -0.063         |
| ##       | fea_gen            | -0.018 | 0.139          | -0.131         | 0.896          | -0.018         | -0.009         |
| ##       | tra_gen            | 0.013  | 0.125          | 0.085          | 0.933          | 0.010          | 0.006          |
| ##       | rit_gen            | 0.035  | 0.130          | 0.273          | 0.785          | 0.035          | 0.017          |
| ##       | male               | 0.103  | 0.202          | 0.509          | 0.611          | 0.103          | 0.030          |
| ##       | age                | 0.051  | 0.021          | 2.419          | 0.016          | 0.051          | 0.086          |
| ##       | inc                | 0.171  | 0.110          | 1.547          | 0.122          | 0.171          | 0.111          |
| ##       | N4P.SOC_7 ~        | 0.111  | 0.110          | 1.01           | 0.122          | 0.111          | 0.111          |
| ##       | int_gen            | -0.392 | 0.125          | -3.138         | 0.002          | -0.392         | -0.197         |
| ##       | soc_gen            | -0.189 | 0.088          | -2.147         | 0.032          | -0.189         | -0.124         |
| ##       | fea_gen            | -0.208 | 0.133          | -1.570         | 0.117          | -0.208         | -0.107         |
| ##       | tra_gen            | 0.031  | 0.110          | 0.284          | 0.776          | 0.031          | 0.018          |
| ##       | rit_gen            | -0.074 | 0.111          | -0.667         | 0.505          | -0.074         | -0.039         |
| ##       | male               | 0.419  | 0.208          | 2.010          | 0.044          | 0.419          | 0.132          |
| ##       | age                | 0.031  | 0.018          | 1.696          | 0.090          | 0.031          | 0.057          |
| ##       | inc                | 0.146  | 0.091          | 1.614          | 0.106          | 0.146          | 0.104          |
| ##       | N4P.SOC_8 ~        |        |                |                |                |                |                |
| ##       | int_gen            | -0.360 | 0.128          | -2.818         | 0.005          | -0.360         | -0.171         |
|          |                    |        |                |                |                |                |                |

| ##       | soc_gen          | -0.269           | 0.103          | -2.618           | 0.009          | -0.269           | -0.166           |
|----------|------------------|------------------|----------------|------------------|----------------|------------------|------------------|
| ##       | fea_gen          | -0.070           | 0.123          | -0.573           | 0.567          | -0.070           | -0.034           |
| ##       | tra_gen          | -0.030           | 0.124          | -0.243           | 0.808          | -0.030           | -0.016           |
| ##       | rit_gen          | 0.201            | 0.112          | 1.799            | 0.072          | 0.201            | 0.100            |
| ##       | male             | 0.097            | 0.198          | 0.489            | 0.625          | 0.097            | 0.029            |
| ##       | age              | 0.049            | 0.020          | 2.390            | 0.017          | 0.049            | 0.086            |
| ##       | inc              | 0.173            | 0.097          | 1.786            | 0.074          | 0.173            | 0.117            |
| ##       | N4P.SOC_9 ~      |                  |                |                  |                |                  |                  |
| ##       | int_gen          | -0.142           | 0.138          | -1.029           | 0.303          | -0.142           | -0.066           |
| ##       | soc_gen          | -0.154           | 0.110          | -1.399           | 0.162          | -0.154           | -0.093           |
| ##       | fea_gen          | -0.247           | 0.157          | -1.580           | 0.114          | -0.247           | -0.118           |
| ##       | tra_gen          | -0.180           | 0.130          | -1.384           | 0.166          | -0.180           | -0.096           |
| ##       | rit_gen          | 0.297            | 0.138          | 2.158            | 0.031          | 0.297            | 0.144            |
| ##       | male             | 0.469            | 0.219          | 2.146            | 0.032          | 0.469            | 0.137            |
| ##       | age              | 0.043            | 0.021          | 2.035            | 0.042          | 0.043            | 0.073            |
| ##       | inc              | 0.088            | 0.088          | 0.997            | 0.319          | 0.088            | 0.058            |
| ##       | N4P.INT_1 ~      |                  |                |                  |                |                  |                  |
| ##       | int_gen          | 0.241            | 0.134          | 1.797            | 0.072          | 0.241            | 0.117            |
| ##       | soc_gen          | -0.067           | 0.102          | -0.657           | 0.511          | -0.067           | -0.042           |
| ##       | fea_gen          | -0.186           | 0.134          | -1.390           | 0.164          | -0.186           | -0.093           |
| ##       | tra_gen          | -0.015           | 0.121          | -0.126           | 0.900          | -0.015           | -0.008           |
| ##       | rit_gen          | 0.316            | 0.131          | 2.409            | 0.016          | 0.316            | 0.160            |
| ##<br>## | male             | -0.213<br>-0.042 | 0.209<br>0.028 | -1.018<br>-1.493 | 0.309<br>0.135 | -0.213<br>-0.042 | -0.065<br>-0.075 |
| ##       | age<br>inc       | -0.042           | 0.028          | -0.923           | 0.135          | -0.042           | -0.075           |
| ##       | N4P.INT_2 ~      | 0.000            | 0.034          | 0.323            | 0.550          | 0.000            | 0.033            |
| ##       | int_gen          | -0.057           | 0.142          | -0.404           | 0.686          | -0.057           | -0.026           |
| ##       | soc_gen          | -0.206           | 0.100          | -2.069           | 0.039          | -0.206           | -0.123           |
| ##       | fea_gen          | -0.028           | 0.145          | -0.190           | 0.850          | -0.028           | -0.013           |
| ##       | tra_gen          | -0.088           | 0.127          | -0.689           | 0.491          | -0.088           | -0.046           |
| ##       | rit_gen          | 0.043            | 0.128          | 0.338            | 0.735          | 0.043            | 0.021            |
| ##       | male             | 0.642            | 0.213          | 3.010            | 0.003          | 0.642            | 0.186            |
| ##       | age              | 0.011            | 0.032          | 0.348            | 0.728          | 0.011            | 0.019            |
| ##       | inc              | 0.011            | 0.092          | 0.117            | 0.907          | 0.011            | 0.007            |
| ##       | N4P.INT_3 ~      |                  |                |                  |                |                  |                  |
| ##       | ${\tt int\_gen}$ | 0.211            | 0.121          | 1.741            | 0.082          | 0.211            | 0.102            |
| ##       | soc_gen          | -0.169           | 0.097          | -1.736           | 0.082          | -0.169           | -0.106           |
| ##       | fea_gen          | -0.127           | 0.128          | -0.995           | 0.320          | -0.127           | -0.063           |
| ##       | tra_gen          | 0.213            | 0.119          | 1.795            | 0.073          | 0.213            | 0.118            |
| ##       | rit_gen          | 0.374            | 0.124          | 3.012            | 0.003          | 0.374            | 0.189            |
| ##       | male             | -0.011           | 0.188          | -0.060           | 0.952          | -0.011           | -0.003           |
| ##       | age              | 0.030            | 0.018          | 1.679            | 0.093          | 0.030            | 0.054            |
| ##       | inc              | -0.009           | 0.096          | -0.093           | 0.926          | -0.009           | -0.006           |
| ##       | N4P.INT_4 ~      |                  |                |                  |                |                  |                  |
| ##       | int_gen          | -0.213           | 0.112          | -1.893           | 0.058          | -0.213           | -0.112           |
| ##       | soc_gen          | 0.070            | 0.080          | 0.872            | 0.383          | 0.070            | 0.048            |
| ##       | fea_gen          | 0.264            | 0.116          | 2.282            | 0.023          | 0.264            | 0.143            |
| ##       | tra_gen          | 0.284            | 0.114          | 2.496            | 0.013          | 0.284            | 0.171            |
| ##       | rit_gen          | 0.155            | 0.108          | 1.434            | 0.152          | 0.155            | 0.086            |
| ##<br>## | male             | -0.237           | 0.172          | -1.377           | 0.168          | -0.237           | -0.079           |
| ##       | age<br>inc       | 0.024<br>0.174   | 0.032<br>0.067 | 0.757<br>2.604   | 0.449<br>0.009 | 0.024<br>0.174   | 0.047<br>0.130   |
| ##       | N4P.INT_5 ~      | 0.174            | 0.001          | 2.004            | 0.003          | 0.114            | 0.130            |
| ##       | int_gen          | 0.174            | 0.129          | 1.349            | 0.177          | 0.174            | 0.085            |
|          |                  | J.111            | 0.120          | 1.010            | V.111          | V.11 1           | 0.000            |

| ##       | soc_gen          | -0.206   | 0.094   | -2.186  | 0.029   | -0.206 | -0.130         |
|----------|------------------|----------|---------|---------|---------|--------|----------------|
| ##       | fea_gen          | -0.163   | 0.147   | -1.116  | 0.265   | -0.163 | -0.082         |
| ##       | tra_gen          | -0.226   | 0.123   | -1.838  | 0.066   | -0.226 | -0.126         |
| ##       | rit_gen          | -0.098   | 0.139   | -0.705  | 0.481   | -0.098 | -0.050         |
| ##       | male             | 0.724    | 0.206   | 3.514   | 0.000   | 0.724  | 0.222          |
| ##       | age              | 0.005    | 0.021   | 0.214   | 0.830   | 0.005  | 0.008          |
| ##       | inc              | -0.134   | 0.080   | -1.669  | 0.095   | -0.134 | -0.092         |
| ##       | N4P.INT_6 ~      |          |         |         |         |        |                |
| ##       | int_gen          | -0.096   | 0.116   | -0.831  | 0.406   | -0.096 | -0.052         |
| ##       | soc_gen          | -0.269   | 0.095   | -2.841  | 0.004   | -0.269 | -0.188         |
| ##       | fea_gen          | 0.129    | 0.123   | 1.048   | 0.295   | 0.129  | 0.071          |
| ##       | tra_gen          | 0.085    | 0.107   | 0.792   | 0.428   | 0.085  | 0.052          |
| ##       | rit_gen          | -0.074   | 0.128   | -0.578  | 0.563   | -0.074 | -0.042         |
| ##       | male             | 0.635    | 0.181   | 3.513   | 0.000   | 0.635  | 0.215          |
| ##       | age              | 0.033    | 0.030   | 1.105   | 0.269   | 0.033  | 0.066          |
| ##       | inc              | 0.081    | 0.079   | 1.028   | 0.304   | 0.081  | 0.062          |
| ##       | N4P.INT_7 ~      |          |         |         |         |        |                |
| ##       | ${\tt int\_gen}$ | 0.102    | 0.108   | 0.947   | 0.343   | 0.102  | 0.056          |
| ##       | soc_gen          | -0.204   | 0.085   | -2.392  | 0.017   | -0.204 | -0.145         |
| ##       | fea_gen          | -0.070   | 0.118   | -0.595  | 0.552   | -0.070 | -0.039         |
| ##       | tra_gen          | 0.191    | 0.118   | 1.619   | 0.105   | 0.191  | 0.120          |
| ##       | rit_gen          | 0.250    | 0.115   | 2.173   | 0.030   | 0.250  | 0.143          |
| ##       | male             | 0.150    | 0.174   | 0.859   | 0.391   | 0.150  | 0.052          |
| ##       | age              | -0.002   | 0.015   | -0.150  | 0.881   | -0.002 | -0.005         |
| ##       | inc              | -0.078   | 0.088   | -0.880  | 0.379   | -0.078 | -0.060         |
| ##       | N4P.INT_8 ~      |          |         |         |         |        |                |
| ##       | int_gen          | 0.263    | 0.135   | 1.951   | 0.051   | 0.263  | 0.129          |
| ##       | soc_gen          | -0.112   | 0.093   | -1.211  | 0.226   | -0.112 | -0.072         |
| ##       | fea_gen          | -0.057   | 0.133   | -0.430  | 0.667   | -0.057 | -0.029         |
| ##       | tra_gen          | 0.185    | 0.125   | 1.484   | 0.138   | 0.185  | 0.104          |
| ##       | rit_gen          | 0.117    | 0.133   | 0.881   | 0.378   | 0.117  | 0.060          |
| ##       | male             | -0.243   | 0.206   | -1.182  | 0.237   | -0.243 | -0.075         |
| ##       | age              | -0.045   | 0.020   | -2.228  | 0.026   | -0.045 | -0.081         |
| ##       | inc              | -0.066   | 0.090   | -0.742  | 0.458   | -0.066 | -0.046         |
| ##       | N4P.INT_9 ~      | 0.004    | 0 100   | 0 004   | 0.000   | 0 004  | 0 054          |
| ##       | int_gen          | 0.094    | 0.109   | 0.861   | 0.389   | 0.094  | 0.051          |
| ##       | soc_gen          | -0.150   | 0.083   | -1.802  | 0.072   | -0.150 | -0.106         |
| ##       | fea_gen          | 0.181    | 0.122   | 1.486   | 0.137   | 0.181  | 0.102          |
| ##       | tra_gen          | 0.035    | 0.112   | 0.312   | 0.755   | 0.035  | 0.022          |
| ##       | rit_gen          | 0.253    | 0.118   | 2.149   | 0.032   | 0.253  | 0.145          |
| ##       | male             | 0.237    | 0.178   | 1.333   | 0.182   | 0.237  | 0.081          |
| ##       | age              | 0.053    | 0.022   | 2.353   | 0.019   | 0.053  | 0.106<br>0.006 |
| ##<br>## | inc              | 0.007    | 0.084   | 0.086   | 0.932   | 0.007  | 0.006          |
| ##       | Covariances:     |          |         |         |         |        |                |
| ##       | Covariances.     | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all        |
| ##       | int_gen ~~       | Escimace | Stu.EII | Z varue | F(> Z ) | btu.iv | btu.all        |
| ##       | soc_gen          | 0.044    | 0.041   | 1.073   | 0.283   | 0.044  | 0.069          |
| ##       | fea_gen          | -0.012   | 0.041   | -0.382  | 0.703   | -0.012 | -0.024         |
| ##       | tra_gen          | -0.009   | 0.031   | -0.259  | 0.795   | -0.009 | -0.017         |
| ##       | rit_gen          | 0.118    | 0.030   | 3.904   | 0.000   | 0.118  | 0.017          |
| ##       | male             | -0.023   | 0.030   | -1.146  | 0.252   | -0.023 | -0.073         |
| ##       | age              | -0.049   | 0.199   | -0.247  | 0.805   | -0.049 | -0.027         |
| ##       | inc              | 0.004    | 0.043   | 0.093   | 0.926   | 0.004  | 0.006          |
|          |                  | 0.001    | 0.010   | 0.000   | 0.020   | 0.001  | 0.000          |

| ##       | soc_gen ~~                  |        |       |                |       |                |        |
|----------|-----------------------------|--------|-------|----------------|-------|----------------|--------|
| ##       | fea_gen                     | -0.137 | 0.041 | -3.357         | 0.001 | -0.137         | -0.209 |
| ##       | tra_gen                     | -0.086 | 0.044 | -1.949         | 0.051 | -0.086         | -0.117 |
| ##       | rit_gen                     | -0.040 | 0.047 | -0.852         | 0.394 | -0.040         | -0.060 |
| ##       | male                        | 0.040  | 0.023 | 1.689          | 0.091 | 0.040          | 0.098  |
| ##       | age                         | -0.024 | 0.121 | -0.197         | 0.843 | -0.024         | -0.010 |
| ##       | inc                         | 0.050  | 0.055 | 0.923          | 0.356 | 0.050          | 0.056  |
| ##       | fea_gen ~~                  | 0.000  | 0.000 | 0.020          | 0.000 | 0.000          | 0.000  |
| ##       | tra_gen                     | 0.073  | 0.038 | 1.895          | 0.058 | 0.073          | 0.126  |
| ##       | rit_gen                     | 0.021  | 0.036 | 0.593          | 0.553 | 0.021          | 0.040  |
| ##       | male                        | -0.093 | 0.019 | -4.911         | 0.000 | -0.093         | -0.293 |
| ##       | age                         | -0.206 | 0.069 | -2.996         | 0.003 | -0.206         | -0.110 |
| ##       | inc                         | -0.038 | 0.042 | -0.904         | 0.366 | -0.038         | -0.053 |
| ##       | tra_gen ~~                  |        |       |                |       |                |        |
| ##       | rit_gen                     | 0.179  | 0.040 | 4.517          | 0.000 | 0.179          | 0.304  |
| ##       | male                        | 0.031  | 0.023 | 1.349          | 0.177 | 0.031          | 0.086  |
| ##       | age                         | 0.110  | 0.169 | 0.653          | 0.514 | 0.110          | 0.053  |
| ##       | inc                         | 0.056  | 0.046 | 1.204          | 0.229 | 0.056          | 0.070  |
| ##       | rit_gen ~~                  |        |       |                |       |                |        |
| ##       | male                        | 0.006  | 0.021 | 0.278          | 0.781 | 0.006          | 0.018  |
| ##       | age                         | 0.082  | 0.110 | 0.745          | 0.456 | 0.082          | 0.043  |
| ##       | inc                         | -0.032 | 0.040 | -0.811         | 0.418 | -0.032         | -0.044 |
| ##       | male ~~                     |        |       |                |       |                |        |
| ##       | age                         | 0.212  | 0.107 | 1.978          | 0.048 | 0.212          | 0.185  |
| ##       | inc                         | 0.015  | 0.027 | 0.572          | 0.568 | 0.015          | 0.035  |
| ##       | age ~~                      |        |       |                |       |                |        |
| ##       | inc                         | 0.380  | 0.314 | 1.211          | 0.226 | 0.380          | 0.148  |
| ##       | .N4P.BOT_1 ~~               |        |       |                |       |                |        |
| ##       | $.N4P.BOT\_2$               | 0.698  | 0.116 | 6.018          | 0.000 | 0.698          | 0.435  |
| ##       | .N4P.BOT_3                  | 0.412  | 0.088 | 4.679          | 0.000 | 0.412          | 0.313  |
| ##       | .N4P.BOT_4                  | 0.455  | 0.080 | 5.713          | 0.000 | 0.455          | 0.370  |
| ##       | $.N4P.SOC_1$                | 0.264  | 0.116 | 2.275          | 0.023 | 0.264          | 0.151  |
| ##       | .N4P.SOC_2                  | 0.309  | 0.116 | 2.665          | 0.008 | 0.309          | 0.174  |
| ##       | .N4P.SOC_3                  | 0.246  | 0.113 | 2.184          | 0.029 | 0.246          | 0.145  |
| ##       | .N4P.SOC_4                  | 0.215  | 0.119 | 1.810          | 0.070 | 0.215          | 0.118  |
| ##       | .N4P.SOC_5                  | 0.160  | 0.118 | 1.361          | 0.173 | 0.160          | 0.084  |
| ##       | .N4P.SOC_6                  | 0.308  | 0.120 | 2.565          | 0.010 | 0.308          | 0.167  |
| ##       | .N4P.SOC_7                  | 0.252  | 0.096 | 2.609          | 0.009 | 0.252          | 0.155  |
| ##       | .N4P.SOC_8                  | 0.220  | 0.111 | 1.978          | 0.048 | 0.220          | 0.126  |
| ##       | .N4P.SOC_9                  | 0.193  | 0.116 | 1.657          | 0.097 | 0.193          | 0.108  |
| ##       | .N4P.INT_1                  | 0.122  | 0.103 | 1.189          | 0.235 | 0.122          | 0.071  |
| ##       | .N4P.INT_2                  | 0.562  | 0.127 | 4.419          | 0.000 | 0.562          | 0.306  |
| ##       | .N4P.INT_3                  | 0.304  | 0.111 | 2.747          | 0.006 | 0.304          | 0.179  |
| ##       | .N4P.INT_4                  | 0.258  | 0.097 | 2.670          | 0.008 | 0.258          | 0.166  |
| ##       | .N4P.INT_5                  | 0.343  | 0.104 | 3.311          | 0.001 | 0.343          | 0.203  |
| ##       | .N4P.INT_6                  | 0.445  | 0.101 | 4.403          | 0.000 | 0.445          | 0.291  |
| ##       | .N4P.INT_7                  | 0.542  | 0.100 | 5.446          | 0.000 | 0.542          | 0.359  |
| ##       | .N4P.INT_8                  | 0.046  | 0.106 | 0.430          | 0.667 | 0.046          | 0.027  |
| ##       | .N4P.INT_9                  | 0.396  | 0.100 | 3.946          | 0.000 | 0.396          | 0.259  |
| ##<br>## | .N4P.BOT_2 ~~<br>.N4P.BOT_3 | 0.458  | 0.087 | E 240          | 0.000 | 0 450          | U 331  |
| ##<br>## | .N4P.BUI_3<br>.N4P.BOT_4    | 0.458  | 0.087 | 5.240<br>3.329 | 0.000 | 0.458<br>0.270 | 0.331  |
| ##       | .N4P.SOC_1                  | 0.270  | 0.081 | 1.512          | 0.001 | 0.270          | 0.209  |
| ##       | .N4P.SOC_1                  | 0.180  | 0.119 | 3.794          | 0.130 | 0.180          | 0.098  |
| ##       | .™±r.,₽∩∩_7                 | 0.443  | 0.110 | 0.134          | 0.000 | 0.443          | 0.240  |

| ## | .N4P.SOC_3             | 0.160  | 0.120 | 1.334  | 0.182 | 0.160  | 0.090  |
|----|------------------------|--------|-------|--------|-------|--------|--------|
| ## | $.N4P.SOC\_4$          | 0.161  | 0.128 | 1.263  | 0.207 | 0.161  | 0.084  |
| ## | $.N4P.SOC_5$           | 0.261  | 0.128 | 2.039  | 0.041 | 0.261  | 0.130  |
| ## | $.\mathtt{N4P.SOC\_6}$ | 0.138  | 0.122 | 1.131  | 0.258 | 0.138  | 0.071  |
| ## | $.\mathtt{N4P.SOC\_7}$ | 0.126  | 0.103 | 1.220  | 0.223 | 0.126  | 0.074  |
| ## | .N4P.SOC_8             | 0.213  | 0.132 | 1.615  | 0.106 | 0.213  | 0.116  |
| ## | .N4P.SOC_9             | 0.212  | 0.124 | 1.710  | 0.087 | 0.212  | 0.113  |
| ## | .N4P.INT_1             | 0.071  | 0.109 | 0.649  | 0.516 | 0.071  | 0.039  |
| ## | .N4P.INT_2             | 0.288  | 0.128 | 2.245  | 0.025 | 0.288  | 0.149  |
| ## | .N4P.INT_3             | 0.171  | 0.118 | 1.444  | 0.149 | 0.171  | 0.095  |
| ## | .N4P.INT_4             | 0.184  | 0.098 | 1.880  | 0.060 | 0.184  | 0.112  |
| ## | .N4P.INT_5             | 0.247  | 0.106 | 2.333  | 0.020 | 0.247  | 0.139  |
| ## | .N4P.INT_6             | 0.111  | 0.111 | 1.001  | 0.317 | 0.111  | 0.069  |
| ## | .N4P.INT_7             | 0.162  | 0.099 | 1.630  | 0.103 | 0.162  | 0.102  |
| ## | .N4P.INT_8             | 0.131  | 0.122 | 1.072  | 0.284 | 0.131  | 0.072  |
| ## | .N4P.INT_9             | 0.210  | 0.105 | 1.993  | 0.046 | 0.210  | 0.130  |
| ## | .N4P.BOT_3 ~~          |        |       |        |       |        |        |
| ## | .N4P.BOT_4             | 0.372  | 0.069 | 5.416  | 0.000 | 0.372  | 0.352  |
| ## | .N4P.SOC_1             | 0.065  | 0.097 | 0.676  | 0.499 | 0.065  | 0.044  |
| ## | .N4P.SOC_2             | 0.325  | 0.098 | 3.322  | 0.001 | 0.325  | 0.212  |
| ## | .N4P.SOC_3             | 0.255  | 0.094 | 2.716  | 0.007 | 0.255  | 0.175  |
| ## | .N4P.SOC_4             | 0.074  | 0.100 | 0.739  | 0.460 | 0.074  | 0.047  |
| ## | .N4P.SOC_5             | 0.053  | 0.098 | 0.538  | 0.590 | 0.053  | 0.032  |
| ## | .N4P.SOC_6             | 0.057  | 0.099 | 0.576  | 0.564 | 0.057  | 0.036  |
| ## | .N4P.SOC_7             | -0.038 | 0.090 | -0.421 | 0.674 | -0.038 | -0.027 |
| ## | .N4P.SOC_8             | 0.036  | 0.096 | 0.371  | 0.711 | 0.036  | 0.024  |
| ## | .N4P.SOC_9             | 0.153  | 0.090 | 1.713  | 0.087 | 0.153  | 0.100  |
| ## | .N4P.INT_1             | 0.248  | 0.094 | 2.634  | 0.008 | 0.248  | 0.167  |
| ## | .N4P.INT_2             | 0.203  | 0.099 | 2.047  | 0.041 | 0.203  | 0.128  |
| ## | .N4P.INT_3             | 0.360  | 0.092 | 3.899  | 0.000 | 0.360  | 0.245  |
| ## | .N4P.INT_4             | 0.319  | 0.083 | 3.840  | 0.000 | 0.319  | 0.238  |
| ## | .N4P.INT_5             | 0.032  | 0.100 | 0.325  | 0.745 | 0.032  | 0.022  |
| ## | .N4P.INT_6             | -0.088 | 0.079 | -1.120 | 0.263 | -0.088 | -0.067 |
| ## | .N4P.INT_7             | 0.236  | 0.092 | 2.574  | 0.010 | 0.236  | 0.181  |
| ## | .N4P.INT_8             | 0.070  | 0.032 | 0.782  | 0.434 | 0.230  | 0.047  |
| ## | .N4P.INT_9             | 0.479  | 0.087 | 5.480  | 0.000 | 0.479  | 0.364  |
| ## | .N4P.BOT_4 ~~          | 0.170  | 0.001 | 0.100  | 0.000 | 0.110  | 0.001  |
| ## | .N4P.SOC_1             | -0.014 | 0.080 | -0.181 | 0.856 | -0.014 | -0.010 |
| ## | .N4P.SOC_2             | -0.026 | 0.086 | -0.303 | 0.762 | -0.026 | -0.018 |
| ## | .N4P.SOC_3             | 0.020  | 0.089 | 1.047  | 0.295 | 0.020  | 0.069  |
| ## | .N4P.SOC_4             | -0.013 | 0.087 | -0.154 | 0.878 | -0.013 | -0.009 |
| ## | .N4P.SOC_5             | -0.005 | 0.090 | -0.052 | 0.958 | -0.005 | -0.003 |
| ## | .N4P.SOC_6             | -0.202 | 0.083 | -2.435 | 0.015 | -0.202 | -0.136 |
| ## | .N4P.SOC_7             | -0.269 | 0.079 | -3.423 | 0.001 | -0.269 | -0.206 |
| ## | .N4P.SOC_8             | -0.194 | 0.073 | -2.230 | 0.001 | -0.194 | -0.139 |
| ## | .N4P.SOC_9             | -0.008 | 0.089 | -0.086 | 0.020 | -0.008 | -0.005 |
| ## | .N4P.INT_1             | 0.259  | 0.081 | 3.197  | 0.001 | 0.259  | 0.186  |
| ## | .N4P.INT_2             | 0.239  | 0.031 | 0.103  | 0.001 | 0.239  | 0.006  |
| ## | .N4P.INT_3             | 0.165  | 0.073 | 2.015  | 0.918 | 0.165  | 0.120  |
| ## | .N4P.INT_4             | 0.165  | 0.082 | 1.662  | 0.044 | 0.165  | 0.120  |
| ## | .N4P.INT_5             | 0.119  | 0.072 | 1.656  | 0.098 | 0.119  | 0.095  |
| ## | .N4P.INT_6             | 0.122  | 0.074 | 0.245  | 0.098 | 0.122  | 0.090  |
| ## | .N4P.INT_7             | 0.017  | 0.070 | 5.143  | 0.000 | 0.017  | 0.014  |
|    | _                      |        |       |        |       |        |        |
| ## | .N4P.INT_8             | -0.069 | 0.079 | -0.875 | 0.382 | -0.069 | -0.050 |

| ##       | .N4P.INT_9               | 0.180           | 0.069          | 2.604          | 0.009          | 0.180           | 0.146           |
|----------|--------------------------|-----------------|----------------|----------------|----------------|-----------------|-----------------|
| ##       | .N4P.SOC_1 ~~            |                 |                |                |                |                 |                 |
| ##       | .N4P.SOC_2               | 1.058           | 0.140          | 7.584          | 0.000          | 1.058           | 0.521           |
| ##       | .N4P.SOC_3               | 0.970           | 0.137          | 7.065          | 0.000          | 0.970           | 0.501           |
| ##       | $.\mathtt{N4P.SOC\_4}$   | 1.295           | 0.156          | 8.313          | 0.000          | 1.295           | 0.622           |
| ##       | .N4P.SOC_5               | 1.045           | 0.152          | 6.876          | 0.000          | 1.045           | 0.480           |
| ##       | .N4P.SOC_6               | 0.602           | 0.145          | 4.153          | 0.000          | 0.602           | 0.286           |
| ##       | .N4P.SOC_7               | 0.653           | 0.123          | 5.319          | 0.000          | 0.653           | 0.352           |
| ##       | .N4P.SOC_8               | 0.303           | 0.127          | 2.384          | 0.017          | 0.303           | 0.152           |
| ##       | .N4P.SOC_9               | 1.107           | 0.144          | 7.662          | 0.000          | 1.107           | 0.541           |
| ##       | .N4P.INT_1               | -0.275          | 0.133          | -2.065         | 0.039          | -0.275          | -0.140          |
| ##       | .N4P.INT_2               | 0.420           | 0.144          | 2.922          | 0.003          | 0.420           | 0.200           |
| ##       | .N4P.INT_3               | 0.134           | 0.132          | 1.015          | 0.310          | 0.134           | 0.069           |
| ##       | .N4P.INT_4               | 0.346           | 0.109          | 3.174          | 0.002          | 0.346           | 0.195           |
| ##       | .N4P.INT_5               | 0.005           | 0.131          | 0.039          | 0.969          | 0.005           | 0.003           |
| ##       | .N4P.INT_6               | 0.200           | 0.112          | 1.778          | 0.075          | 0.200           | 0.114           |
| ##       | .N4P.INT_7               | 0.050           | 0.125          | 0.395          | 0.693          | 0.050           | 0.029           |
| ##       | .N4P.INT_8               | -0.212          | 0.130          | -1.629         | 0.103          | -0.212          | -0.108          |
| ##       | .N4P.INT_9               | 0.480           | 0.135          | 3.556          | 0.000          | 0.480           | 0.274           |
| ##       | .N4P.SOC_2 ~~            |                 |                |                |                |                 |                 |
| ##       | .N4P.SOC_3               | 0.996           | 0.132          | 7.546          | 0.000          | 0.996           | 0.505           |
| ##       | .N4P.SOC_4               | 1.201           | 0.142          | 8.448          | 0.000          | 1.201           | 0.567           |
| ##       | .N4P.SOC_5               | 1.048           | 0.144          | 7.281          | 0.000          | 1.048           | 0.473           |
| ##       | .N4P.SOC_6               | 0.800           | 0.136          | 5.895          | 0.000          | 0.800           | 0.374           |
| ##       | .N4P.SOC_7               | 0.742           | 0.119          | 6.252          | 0.000          | 0.742           | 0.393           |
| ##       | .N4P.SOC_8               | 0.603           | 0.134          | 4.503          | 0.000          | 0.603           | 0.298           |
| ##       | .N4P.SOC_9               | 1.066           | 0.141          | 7.545          | 0.000          | 1.066           | 0.512           |
| ##       | .N4P.INT_1               | -0.289          | 0.131          | -2.200         | 0.028          | -0.289          | -0.144          |
| ##       | .N4P.INT_2               | 0.650           | 0.149          | 4.355          | 0.000          | 0.650           | 0.304           |
| ##       | .N4P.INT_3               | 0.143           | 0.120          | 1.192          | 0.233          | 0.143           | 0.072           |
| ##       | .N4P.INT_4               | 0.413<br>0.024  | 0.106<br>0.130 | 3.877          | 0.000<br>0.852 | 0.413<br>0.024  | 0.228<br>0.012  |
| ##       | .N4P.INT_5               | 0.024           | 0.130          | 0.186<br>1.448 | 0.652          | 0.024           | 0.012           |
| ##       | .N4P.INT_6<br>.N4P.INT_7 |                 | 0.119          | 0.520          | 0.148          |                 |                 |
| ##<br>## | .N4P.INT_8               | 0.056<br>-0.277 | 0.108          | -2.196         | 0.003          | 0.056<br>-0.277 | 0.032<br>-0.139 |
| ##       | .N4P.INT_9               | 0.321           | 0.126          | -2.190 $2.797$ | 0.028          | 0.321           | 0.180           |
| ##       | .N4P.SOC_3 ~~            | 0.521           | 0.113          | 2.131          | 0.005          | 0.021           | 0.100           |
| ##       | .N4P.SOC_4               | 1.221           | 0.144          | 8.454          | 0.000          | 1.221           | 0.605           |
| ##       | .N4P.SOC_5               | 0.881           | 0.139          | 6.347          | 0.000          | 0.881           | 0.418           |
| ##       | .N4P.SOC_6               | 0.686           | 0.139          | 4.949          | 0.000          | 0.686           | 0.336           |
| ##       | .N4P.SOC_7               | 0.627           | 0.117          | 5.379          | 0.000          | 0.627           | 0.348           |
| ##       | .N4P.SOC_8               | 0.484           | 0.134          | 3.608          | 0.000          | 0.484           | 0.251           |
| ##       | .N4P.SOC_9               | 1.127           | 0.138          | 8.186          | 0.000          | 1.127           | 0.568           |
| ##       | .N4P.INT_1               | -0.233          | 0.131          | -1.780         | 0.075          | -0.233          | -0.122          |
| ##       | .N4P.INT_2               | 0.630           | 0.126          | 5.008          | 0.000          | 0.630           | 0.309           |
| ##       | .N4P.INT_3               | 0.268           | 0.124          | 2.170          | 0.030          | 0.268           | 0.142           |
| ##       | .N4P.INT_4               | 0.470           | 0.097          | 4.821          | 0.000          | 0.470           | 0.272           |
| ##       | .N4P.INT_5               | 0.081           | 0.116          | 0.703          | 0.482          | 0.081           | 0.043           |
| ##       | .N4P.INT_6               | 0.182           | 0.110          | 1.658          | 0.097          | 0.182           | 0.107           |
| ##       | .N4P.INT_7               | 0.113           | 0.114          | 0.993          | 0.321          | 0.113           | 0.067           |
| ##       | .N4P.INT_8               | -0.260          | 0.126          | -2.063         | 0.039          | -0.260          | -0.137          |
| ##       | .N4P.INT_9               | 0.606           | 0.110          | 5.522          | 0.000          | 0.606           | 0.357           |
| ##       | .N4P.SOC_4 ~~            | ,               |                |                |                |                 |                 |
| ##       | .N4P.SOC_5               | 1.000           | 0.150          | 6.674          | 0.000          | 1.000           | 0.441           |

| ##       | .N4P.SOC_6                  | 0.723          | 0.152          | 4.769          | 0.000 | 0.723           | 0.329          |
|----------|-----------------------------|----------------|----------------|----------------|-------|-----------------|----------------|
| ##       | $.N4P.SOC_7$                | 0.708          | 0.130          | 5.440          | 0.000 | 0.708           | 0.366          |
| ##       | .N4P.SOC_8                  | 0.515          | 0.139          | 3.703          | 0.000 | 0.515           | 0.248          |
| ##       | .N4P.SOC_9                  | 1.150          | 0.147          | 7.805          | 0.000 | 1.150           | 0.540          |
| ##       | $.N4P.INT_1$                | -0.249         | 0.135          | -1.840         | 0.066 | -0.249          | -0.121         |
| ##       | $.N4P.INT_2$                | 0.521          | 0.134          | 3.881          | 0.000 | 0.521           | 0.238          |
| ##       | .N4P.INT_3                  | -0.065         | 0.133          | -0.492         | 0.623 | -0.065          | -0.032         |
| ##       | $.\mathtt{N4P.INT\_4}$      | 0.220          | 0.112          | 1.971          | 0.049 | 0.220           | 0.119          |
| ##       | .N4P.INT_5                  | -0.033         | 0.129          | -0.256         | 0.798 | -0.033          | -0.016         |
| ##       | .N4P.INT_6                  | 0.145          | 0.123          | 1.183          | 0.237 | 0.145           | 0.080          |
| ##       | .N4P.INT_7                  | -0.008         | 0.121          | -0.067         | 0.947 | -0.008          | -0.004         |
| ##       | .N4P.INT_8                  | -0.326         | 0.137          | -2.378         | 0.017 | -0.326          | -0.159         |
| ##       | .N4P.INT_9                  | 0.332          | 0.126          | 2.630          | 0.009 | 0.332           | 0.182          |
| ##       | .N4P.SOC_5 ~~               |                |                |                |       |                 |                |
| ##       | $.\mathtt{N4P.SOC\_6}$      | 0.733          | 0.155          | 4.728          | 0.000 | 0.733           | 0.320          |
| ##       | $.N4P.SOC_7$                | 0.659          | 0.124          | 5.298          | 0.000 | 0.659           | 0.326          |
| ##       | .N4P.SOC_8                  | 0.238          | 0.136          | 1.750          | 0.080 | 0.238           | 0.110          |
| ##       | .N4P.SOC_9                  | 0.978          | 0.149          | 6.577          | 0.000 | 0.978           | 0.439          |
| ##       | $.N4P.INT_1$                | -0.322         | 0.143          | -2.263         | 0.024 | -0.322          | -0.150         |
| ##       | .N4P.INT_2                  | 0.398          | 0.142          | 2.807          | 0.005 | 0.398           | 0.174          |
| ##       | .N4P.INT_3                  | -0.183         | 0.139          | -1.316         | 0.188 | -0.183          | -0.086         |
| ##       | .N4P.INT_4                  | 0.455          | 0.122          | 3.730          | 0.000 | 0.455           | 0.235          |
| ##       | .N4P.INT_5                  | -0.046         | 0.130          | -0.356         | 0.722 | -0.046          | -0.022         |
| ##       | .N4P.INT_6                  | 0.062          | 0.119          | 0.526          | 0.599 | 0.062           | 0.033          |
| ##       | .N4P.INT_7                  | 0.048          | 0.119          | 0.407          | 0.684 | 0.048           | 0.026          |
| ##       | .N4P.INT_8                  | -0.459         | 0.139          | -3.315         | 0.001 | -0.459          | -0.215         |
| ##       | .N4P.INT_9                  | 0.306          | 0.131          | 2.328          | 0.020 | 0.306           | 0.160          |
| ##       | .N4P.SOC_6 ~~               |                |                |                |       |                 |                |
| ##       | .N4P.SOC_7                  | 0.749          | 0.135          | 5.535          | 0.000 | 0.749           | 0.383          |
| ##       | .N4P.SOC_8                  | 0.620          | 0.138          | 4.505          | 0.000 | 0.620           | 0.296          |
| ##       | .N4P.SOC_9                  | 0.726          | 0.147          | 4.954          | 0.000 | 0.726           | 0.337          |
| ##       | .N4P.INT_1                  | -0.522         | 0.138          | -3.787         | 0.000 | -0.522          | -0.251         |
| ##       | .N4P.INT_2                  | 0.777          | 0.147          | 5.284          | 0.000 | 0.777           | 0.351          |
| ##       | .N4P.INT_3                  | -0.058         | 0.132          | -0.438         | 0.661 | -0.058          | -0.028         |
| ##       | .N4P.INT_4                  | 0.355          | 0.110          | 3.245          | 0.001 | 0.355           | 0.190          |
| ##       | .N4P.INT_5                  | -0.091         | 0.130          | -0.700         | 0.484 | -0.091          | -0.045         |
| ##       | .N4P.INT_6                  | 0.322          | 0.123          | 2.627          | 0.009 | 0.322           | 0.175          |
| ##       | .N4P.INT_7                  | 0.031          | 0.112          | 0.274          | 0.784 | 0.031           | 0.017          |
| ##       | .N4P.INT_8<br>.N4P.INT_9    | -0.412         | 0.135          | -3.047         | 0.002 | -0.412<br>0.426 | -0.199         |
| ##       | <del>-</del>                | 0.426          | 0.117          | 3.636          | 0.000 | 0.426           | 0.231          |
| ##       | .N4P.SOC_7 ~~<br>.N4P.SOC_8 | 0.700          | 0 107          | 6 057          | 0.000 | 0.700           | 0 400          |
| ##<br>## | .N4P.SOC_8                  | 0.792<br>0.791 | 0.127<br>0.130 | 6.257<br>6.106 | 0.000 | 0.792<br>0.791  | 0.428<br>0.416 |
| ##       | .N4P.INT_1                  | -0.665         | 0.130          | -5.638         | 0.000 | -0.665          | -0.363         |
| ##       | .N4P.INT_2                  | 0.651          | 0.110          | 5.938          | 0.000 | 0.651           | 0.333          |
| ##       | .N4P.INT_3                  | -0.379         | 0.110          | -3.310         | 0.000 | -0.379          | -0.209         |
| ##       | .N4P.INT_4                  | 0.039          | 0.114          | 0.403          | 0.687 | 0.039           | 0.024          |
| ##       | .N4P.INT_5                  | 0.080          | 0.108          | 0.738          | 0.460 | 0.080           | 0.044          |
| ##       | .N4P.INT_6                  | 0.234          | 0.106          | 2.208          | 0.400 | 0.000           | 0.144          |
| ##       | .N4P.INT_7                  | -0.085         | 0.100          | -0.852         | 0.394 | -0.085          | -0.053         |
| ##       | .N4P.INT_8                  | -0.333         | 0.120          | -2.781         | 0.005 | -0.333          | -0.183         |
| ##       | .N4P.INT_9                  | 0.092          | 0.120          | 0.913          | 0.361 | 0.092           | 0.056          |
| ##       | .N4P.SOC_8 ~~               | 0.002          |                | 3.010          | 3.301 | 3.002           | 2.300          |
| ##       | .N4P.SOC_9                  | 0.671          | 0.136          | 4.947          | 0.000 | 0.671           | 0.330          |
|          | ·                           |                |                |                |       |                 |                |

| ## | .N4P.INT_1             | -0.529 | 0.123 | -4.295 | 0.000 | -0.529 | -0.269 |
|----|------------------------|--------|-------|--------|-------|--------|--------|
| ## | .N4P.INT_2             | 0.456  | 0.139 | 3.286  | 0.001 | 0.456  | 0.218  |
| ## | .N4P.INT_3             | -0.152 | 0.122 | -1.243 | 0.214 | -0.152 | -0.078 |
| ## | .N4P.INT_4             | 0.165  | 0.101 | 1.642  | 0.101 | 0.165  | 0.093  |
| ## | .N4P.INT_5             | 0.007  | 0.117 | 0.062  | 0.951 | 0.007  | 0.004  |
| ## | .N4P.INT_6             | 0.364  | 0.125 | 2.910  | 0.004 | 0.364  | 0.209  |
| ## | $.N4P.INT_7$           | 0.017  | 0.110 | 0.157  | 0.875 | 0.017  | 0.010  |
| ## | .N4P.INT_8             | -0.386 | 0.135 | -2.868 | 0.004 | -0.386 | -0.198 |
| ## | .N4P.INT_9             | 0.345  | 0.107 | 3.212  | 0.001 | 0.345  | 0.198  |
| ## | .N4P.SOC_9 ~~          |        |       |        |       |        |        |
| ## | $.N4P.INT_1$           | -0.440 | 0.127 | -3.457 | 0.001 | -0.440 | -0.218 |
| ## | $.N4P.INT_2$           | 0.536  | 0.141 | 3.804  | 0.000 | 0.536  | 0.249  |
| ## | .N4P.INT_3             | -0.002 | 0.123 | -0.017 | 0.987 | -0.002 | -0.001 |
| ## | $.N4P.INT_4$           | 0.397  | 0.105 | 3.786  | 0.000 | 0.397  | 0.218  |
| ## | .N4P.INT_5             | 0.073  | 0.128 | 0.571  | 0.568 | 0.073  | 0.037  |
| ## | .N4P.INT_6             | 0.170  | 0.121 | 1.399  | 0.162 | 0.170  | 0.095  |
| ## | .N4P.INT_7             | 0.065  | 0.116 | 0.563  | 0.574 | 0.065  | 0.037  |
| ## | .N4P.INT_8             | -0.288 | 0.134 | -2.158 | 0.031 | -0.288 | -0.144 |
| ## | .N4P.INT_9             | 0.611  | 0.115 | 5.312  | 0.000 | 0.611  | 0.341  |
| ## | .N4P.INT_1 ~~          |        |       |        |       |        |        |
| ## | .N4P.INT_2             | -0.432 | 0.136 | -3.169 | 0.002 | -0.432 | -0.208 |
| ## | .N4P.INT_3             | 0.466  | 0.123 | 3.791  | 0.000 | 0.466  | 0.242  |
| ## | .N4P.INT_4             | -0.088 | 0.110 | -0.799 | 0.424 | -0.088 | -0.050 |
| ## | .N4P.INT_5             | 0.200  | 0.115 | 1.728  | 0.084 | 0.200  | 0.104  |
| ## | .N4P.INT_6             | -0.200 | 0.104 | -1.916 | 0.055 | -0.200 | -0.116 |
| ## | .N4P.INT_7             | 0.210  | 0.111 | 1.901  | 0.057 | 0.210  | 0.123  |
| ## | .N4P.INT_8             | 0.470  | 0.122 | 3.852  | 0.000 | 0.470  | 0.242  |
| ## | .N4P.INT_9             | -0.108 | 0.106 | -1.026 | 0.305 | -0.108 | -0.063 |
| ## | .N4P.INT_2 ~~          |        |       |        |       |        |        |
| ## | .N4P.INT_3             | 0.245  | 0.115 | 2.137  | 0.033 | 0.245  | 0.120  |
| ## | $.{\tt N4P.INT\_4}$    | 0.250  | 0.110 | 2.277  | 0.023 | 0.250  | 0.134  |
| ## | .N4P.INT_5             | 0.088  | 0.138 | 0.636  | 0.525 | 0.088  | 0.043  |
| ## | .N4P.INT_6             | 0.546  | 0.122 | 4.457  | 0.000 | 0.546  | 0.297  |
| ## | $.N4P.INT_7$           | 0.177  | 0.118 | 1.504  | 0.133 | 0.177  | 0.097  |
| ## | .N4P.INT_8             | -0.178 | 0.135 | -1.314 | 0.189 | -0.178 | -0.086 |
| ## | .N4P.INT_9             | 0.484  | 0.111 | 4.345  | 0.000 | 0.484  | 0.263  |
| ## | .N4P.INT_3 ~~          |        |       |        |       |        |        |
| ## | $.\mathtt{N4P.INT\_4}$ | 0.114  | 0.100 | 1.143  | 0.253 | 0.114  | 0.066  |
| ## | .N4P.INT_5             | 0.021  | 0.119 | 0.180  | 0.857 | 0.021  | 0.011  |
| ## | .N4P.INT_6             | 0.216  | 0.108 | 2.012  | 0.044 | 0.216  | 0.127  |
| ## | $.N4P.INT_7$           | 0.449  | 0.112 | 4.003  | 0.000 | 0.449  | 0.266  |
| ## | .N4P.INT_8             | 0.193  | 0.123 | 1.563  | 0.118 | 0.193  | 0.101  |
| ## | .N4P.INT_9             | 0.342  | 0.114 | 3.005  | 0.003 | 0.342  | 0.200  |
| ## | .N4P.INT_4 ~~          |        |       |        |       |        |        |
| ## | .N4P.INT_5             | -0.088 | 0.123 | -0.711 | 0.477 | -0.088 | -0.051 |
| ## | .N4P.INT_6             | 0.236  | 0.089 | 2.644  | 0.008 | 0.236  | 0.152  |
| ## | .N4P.INT_7             | 0.312  | 0.093 | 3.344  | 0.001 | 0.312  | 0.203  |
| ## | .N4P.INT_8             | 0.001  | 0.112 | 0.007  | 0.994 | 0.001  | 0.000  |
| ## | .N4P.INT_9             | 0.442  | 0.118 | 3.734  | 0.000 | 0.442  | 0.284  |
| ## | .N4P.INT_5 ~~          |        |       |        |       |        |        |
| ## | .N4P.INT_6             | 0.070  | 0.111 | 0.632  | 0.527 | 0.070  | 0.041  |
| ## | .N4P.INT_7             | 0.179  | 0.117 | 1.535  | 0.125 | 0.179  | 0.107  |
| ## | .N4P.INT_8             | 0.373  | 0.128 | 2.915  | 0.004 | 0.373  | 0.196  |
| ## | .N4P.INT_9             | 0.130  | 0.111 | 1.173  | 0.241 | 0.130  | 0.077  |
|    |                        |        |       |        |       |        |        |

| ##       | .N4P.INT_6 ~~      |                |         |                  |         |                |         |
|----------|--------------------|----------------|---------|------------------|---------|----------------|---------|
| ##       | .N4P.INT 7         | 0.306          | 0.094   | 3.250            | 0.001   | 0.306          | 0.202   |
| ##       | .N4P.INT_8         | -0.083         | 0.113   | -0.734           | 0.463   | -0.083         | -0.048  |
| ##       | .N4P.INT_9         | 0.172          | 0.105   | 1.633            | 0.102   | 0.172          | 0.113   |
| ##       | .N4P.INT_7 ~~      |                |         |                  |         |                |         |
| ##       | .N4P.INT_8         | 0.010          | 0.104   | 0.095            | 0.924   | 0.010          | 0.006   |
| ##       | .N4P.INT_9         | 0.403          | 0.105   | 3.844            | 0.000   | 0.403          | 0.266   |
| ##       | .N4P.INT_8 ~~      |                |         |                  |         |                |         |
| ##       | .N4P.INT_9         | -0.222         | 0.115   | -1.933           | 0.053   | -0.222         | -0.129  |
| ##       |                    |                |         |                  |         |                |         |
| ##       | Variances:         |                |         |                  |         |                |         |
| ##       |                    | Estimate       | Std.Err | z-value          | P(> z ) | Std.lv         | Std.all |
| ##       | .N4P.BOT_1         | 1.523          | 0.112   | 13.658           | 0.000   | 1.523          | 0.857   |
| ##       | .N4P.BOT_2         | 1.695          | 0.129   | 13.099           | 0.000   | 1.695          | 0.891   |
| ##       | .N4P.BOT_3         | 1.132          | 0.097   | 11.623           | 0.000   | 1.132          | 0.889   |
| ##       | .N4P.BOT_4         | 0.989          | 0.098   | 10.105           | 0.000   | 0.989          | 0.891   |
| ##       | .N4P.SOC_1         | 1.997          | 0.162   | 12.310           | 0.000   | 1.997          | 0.941   |
| ##       | $.N4P.SOC_2$       | 2.067          | 0.149   | 13.832           | 0.000   | 2.067          | 0.933   |
| ##       | .N4P.SOC_3         | 1.878          | 0.144   | 13.086           | 0.000   | 1.878          | 0.905   |
| ##       | .N4P.SOC_4         | 2.171          | 0.165   | 13.141           | 0.000   | 2.171          | 0.917   |
| ##       | .N4P.SOC_5         | 2.371          | 0.160   | 14.827           | 0.000   | 2.371          | 0.941   |
| ##       | .N4P.SOC_6         | 2.215          | 0.162   | 13.654           | 0.000   | 2.215          | 0.954   |
| ##       | .N4P.SOC_7         | 1.726          | 0.141   | 12.209           | 0.000   | 1.726          | 0.884   |
| ##       | .N4P.SOC_8         | 1.983          | 0.167   | 11.840           | 0.000   | 1.983          | 0.913   |
| ##       | .N4P.SOC_9         | 2.094          | 0.158   | 13.268           | 0.000   | 2.094          | 0.918   |
| ##       | .N4P.INT_1         | 1.948          | 0.144   | 13.519           | 0.000   | 1.948          | 0.932   |
| ##       | .N4P.INT_2         | 2.210          | 0.172   | 12.818           | 0.000   | 2.210          | 0.951   |
| ##       | .N4P.INT_3         | 1.903          | 0.154   | 12.378           | 0.000   | 1.903          | 0.900   |
| ##       | .N4P.INT_4         | 1.586          | 0.136   | 11.687           | 0.000   | 1.586          | 0.893   |
| ##       | .N4P.INT_5         | 1.873          | 0.140   | 13.333           | 0.000   | 1.873          | 0.901   |
| ##       | .N4P.INT_6         | 1.531          | 0.115   | 13.325           | 0.000   | 1.531          | 0.897   |
| ##       | .N4P.INT_7         | 1.498          | 0.130   | 11.527           | 0.000   | 1.498          | 0.917   |
| ##       | .N4P.INT_8         | 1.930          | 0.123   | 15.714           | 0.000   | 1.930          | 0.941   |
| ##       | .N4P.INT_9         | 1.532          | 0.139   | 11.020           | 0.000   | 1.532          | 0.928   |
| ##<br>## | int_gen            | 0.493          | 0.036   | 13.727<br>11.288 | 0.000   | 0.493          | 1.000   |
| ##       | soc_gen            | 0.832          | 0.074   | 13.202           | 0.000   | 0.832<br>0.519 | 1.000   |
| ##       | fea_gen<br>tra_gen | 0.519          | 0.059   | 12.100           | 0.000   | 0.645          | 1.000   |
| ##       |                    | 0.645          | 0.053   |                  | 0.000   |                |         |
| ##       | rit_gen<br>male    | 0.540<br>0.195 | 0.001   | 8.846<br>15.516  | 0.000   | 0.540<br>0.195 | 1.000   |
| ##       |                    | 6.678          | 4.886   | 1.367            | 0.000   | 6.678          | 1.000   |
| ##       | age<br>inc         | 0.984          | 0.113   | 8.672            | 0.172   | 0.078          | 1.000   |
| ##       | IIIC               | 0.304          | 0.113   | 0.012            | 0.000   | 0.304          | 1.000   |

