A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 6EQ

Bookmark

Show all steps: ON

Problem

As a provisional definition, let us call a finite abelian group "decomposable" if there are elements $a_1, ..., a_n \in G$ such that:

(DI) For every $x \in G$, there are integers $k_1, ..., k_n$ such that $x = a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n}$ (D₂) If there are integers $l_1, ..., l_n$ such that

$$a_1^{l_1}a_2^{l_2}\cdots a_n^{l_n}=e^{\text{then }}a_1^{l_1}=a_2^{l_2}=\cdots=a_n^{l_n}=e^{-\frac{1}{n}}$$

If (D_1) and (D_2) hold, we will write $G = [a_1, a_2, ..., a_n]$. Assume this in parts 1 and 2.

Use Exercise P5, together with parts 2 and 5 above, to prove: Every finite abelian group G is a direct product of cyclic groups of prime power order. (This is called the basis theorem of finite abelian groups.)

It can be proved that the above decomposition of a finite abelian group into cyclic p-groups is unique, except for the order of the factors. We leave it to the ambitious reader to supply the proof of uniqueness.

Step-by-step solution

Step 1 of 3

Objective is to prove that every finite abelian group G is a direct product of cyclic groups of prime power order. Also this decomposition is unique, except for the order of the factors.

If a_1 , $a_n \in G$ and both the conditions D1, D2 holds, then $G = [a_1, a_2, a_n]$. And $G\cong \langle a_1\rangle \times G'$, then $G\cong \langle a_1\rangle \times \langle a_2\rangle \times \cdots \times \langle a_n\rangle$. That is, every finite abelian group is an inner direct product of p-Sylow subgroups. Also every p-group has a basis.

The intersection of any p-Sylow subgroups is trivial and the union of their basis elements is a basis for the complete (or whole) group.

Comment

Step 2 of 3

For uniqueness of basis: let P and Q be the products of p -cyclic groups. Then $P \cong Q$ only when they are the same powers of same primes.
If p^k is a factor of P and not Q then P has an element of order p^k (by Cauchy theorem) but Q does not. So, they are not isomorphic.
If P has more factors of p^k than Q. Then P has more elements of order p^k without p th roots.
Comment
Step 3 of 3
Hence, every finite abelian group G can be written, in a unique way, as a direct product of cyclic groups of prime power order.

Comment