Contents

I	Intr	oduction and Motivation	3
2	Rela	nted Literature	4
3	Fact	tor Strength	6
	3.1	Definition	6
	3.2	Estimation Under single factor setting	7
	3.3	Estimation Under Multi-Factor Setting	8
4	Mor	nte Carlo Design	9
	4.1	Design	9
	4.2	Experiment Setting	10
	4.3	Monte Carlo Discoveries	12
5	Emp	pirical Application	13
	5.1	Data	13
	5.2	Factor Strength Analysis	14
		5.2.1 Regression model for single security and two facotrs	14
		5.2.2 Factor Strength Finding	15
		5.2.3 Conclusion and Explanation	17
Re	eferen	ices	18
A	Sim	ulation Result Table	22
В	Con	nparison Table	25
C	Stre	ngth Comparison Figures	46

List of Figures

1	Strength Comparison	46
2	Thirty Year Decompose Comparison	52
List	of Tables	
1	Data Set Dimensions	14
2	Proportion of Strength (Excluded Market Factor)	15
3	Selected Risk Factor with Strength	16
4	Simulation result for experiment 1	22
5	Simulation result for experiment 2	23
6	Simulation result for experiment 3	24
7	Ranked Three Data Set Comparison	25
8	Three Data Set Comparison	30
9	Ten and Twenty Comparison	33
10	Ten and Thirty Comparison	36
11	Twenty and Thirty Comparison	39
12	Thirty Year Decompose	42

1 Introduction and Motivation

Capital Asset Pricing Model (CAPM) (Sharpe (1964), Lintner (1965), and Black (1972)) introduces a risk pricing paradigm. By incorporating factors, the model divided asset's risk into two parts: systematic risk and asset specified idiosyncratic risk. In general, the market factor care the systematic risk, and different risk factors price the idiosyncratic risk. Researches (see Fama and French (1992), Carhart (1997), Kelly, Pruitt, and Su (2019)) has shown that, adding different risk factors into the CAPM model can enhance the ability of risk pricing, Because of this identify risk factors has becomes an important topic in finance. Numerous of researchers are devoted into this field, Harvey and Liu (2019) had collected over 500 factors from papers published in the top financial and economic journals, and they found the growth of new factors speed up since 2008.

But we should notice that not all factors can pass the significant test comfortably every time like factors in three-factor model (Fama & French, 1992). Pesaran and Smith (2019) provide a conteria called factor strength to measure such discrepancy. In general, if a factor can generate loading significantly different from zero for all assets, then we call such factor strong factor. And the less significant loading a factor can generate, the weaker the strength it has.

In his 2011 president address Cochrane emphasis the importance of finding for which can provious independent information about average return and risk. With regard of this, a number of scholars had applied various methods to find such factor. For instance, Harvey and Liu (2017) provided a bootstrap methods to adjust the threshold of factor loading's significant test, trying to exclude some falsely significant factor caused by multiple-test problem. Some other scholars use machine learning methods to reduce the potential candidates, more precisely, a stream of them have used a shrinkage and subset selection method called Lasso (Tibshirani, 1996) and it's variations to find suitable factors. One example is Rapach, Strauss, and Zhou (2013). They applied the Lasso regression, trying to find some characteristics from a large group to predict the global stock market's return.

But an additional challenge is that factors, especially in the high-dimension, are commonly correlated. Kozak, Nagel, and Santosh (2020) point out that when facing a group of correlated factors, Lasso will only pick several highly correlated factors seemly randomly, and then ignore the other and shrink them to zero. In other word, Lasso fails to handle the writelated factor appropriately.

Therefore, the main empirical question in this project is: how to select useful factors from a large group of mgnly correlated candidates. We address this question from two different prospects.

From one side, we employs the idea of factor strength discuss above, trying to use this criteria to select those strong factors. From the other hand, we will use another variable selection method called Elastic Net (Zou & Hastie, 2005) to select factors. With regard of the first solution, Bailey, Kapetanios, and paran (2020) provides a consistent estimates method for the factor strength, and we will use such method to exam the strength of each candidate factors, and filter out those spurious factors. For the second solution, elastic net fixes the problem of Lasso can not handle correlated variables by adding extra penalty term, which makes it suitable for our purpose. And we will compare two method to use will we have a consistent selection of the risk factors. What is more, we can also use the factor strength as a standard to reduce the dimension of our candidates factor and then applied elastic net to conduct further selection.

In the rest of this thesis, we will first go through some literatures relates with CAPM model and methods about factor selection. Then in the section 3, we will provides a detailed description of the concept of factor strength and the estimation method. Also, we will introduce the elastic net. In the section 4, we set up a simple Monte Carlo simulation experiment to exam the estimation of factor strength. Section 5 includes the empirical application, we estimates the factors' strength and applied the elastic net method to select factors.

2 Related Literature

This project is builds on papers devoted on risk pricing. Formularisedd by Sharpe (1964), Lintner (1965), and Black (1972), the APM model only contains the market factor, which is denotes by the difference between market return and risk free return. Fama and French (1992) develop the model into three-factors, and then it extend it into four (Carhart, 1997), and five (Fama & French, 2015). Recent research created a six-factors model and claim it outperform all other sparse factor model. (Kelly et al., 2019). Harvey and Liu (2019)

This thesis also connects with papers about involving factors has no or weak correlation with assets' return into CAPM model. Kan and Zhang (1999) found that the test-statistic of FM two-stage regression (Fama & MacBeth, 1973) will inflate when incorporating factors which are indepen-

dent with the cross-section return. Therefore, when factors with no pricing power was involved in the model, those factors may have the chance to pass the significant test. Kleibergen and Zhan (2015) found out that even when some factor-return relationship does not exist, the r-square and the t-statistic of the FM two stage regression would become in favour of the conclusion of such structure presence. Gospodinov, Kan, and Robotti (2017) show how the involving of a spurious factor will distort the statistical inference of parameters. And, Anatolyev and Mikusheva (2018) studied the behaviours of the model with the presence of weak factors under asymptotic settings, find the regregion will lead to an inconsistent risk premia estimation result.

This project also relates to some researches effort to identify useful factors from a group of potential factors. Harvey, Liu, and Zhu (2015) examover 300 factors published on journals, presents that the traditional threshold for a significant test is too low for newly proposed factor, and they suggest to adjust the p-value threshold to around 3. Methods like a Bayesian procedure introduced by Barillas and Shanken (2018) were used to compare different factor models. Pukthuanthong, Roll, and Subrahmanyam (2019) defined praid criteria for "genuine risk factor", and base on those criteria introduced a protocol to exam does a factor associated with the risk premium.

More details about the previous effort of identifying useful factors

his thesis will attempt to address the factor selection problem by using machine learning techniques. Gu, Kelly, and Xiu (2020) elaborate the advantages of using emerging machine learning algorithms in asset pricing. Those advantages including more accurate product result, and superior efficiency. Various machine learning algorithms have been adopted on selecting factors for the factor model, especially in recent years. Lettau and Pelger (2020) applying Principle Components Analysis on nestigating the latent factor of model. Lasso method, since it's ability to select features, is popular in the field of the factor selection. Feng, Giglio, and Xiu (2019) used the double-selected Lasso method (Belloni, Chernozhukov, & Hansen, 2014),and a grouped lasso method (Huang, Horowitz, & Wei, 2010) is used by Freyberger, Neuhierl, and Weber (2020) or picking factors from a group of candidates. Kozak et al. (2020) used a Bayesian-based method, combing with both Ridge and Lasso regression, arguet that the sparse factor model is ultimately futile.

3 Factor Strength

The concept of factor strength employed by this project comes from Bailey et al. (2020), and it was first introduced by Bailey, Kapetanios, and Pesaran (2016). They defined the strength of factor from prospect of the cross-section dependences of large panel and connect it to the pervasiveness of the factor, which is captured by the factor loadings. In a latter paper, Bailey et al. (2016) extended the method by loosen some restrictions, and pred that their estimation can also be applied on the residuals or regression result. Thereafter, they focusing on the case of observed factors, and proposed the method we employed in this project (Bailey et al., 2020).

3.1 Definition

Consider the following multi-factor model for n different cross-section units and T observations with k factors.

$$x_{it} = a_t + \sum_{j=1}^k \beta_{ij} f_{jt} + \varepsilon_{it}$$
 (1)

In the left-hand side, we have x_{it} denotes the cross-section unit i at time t, where $i = 1, 2, 3, \dots, n$ and $t = 1, 2, 3, \dots T$. In the other hand, a_i is the constant term. f_{jt} of $j = 1, 2, 3 \dots k$ is factors included in the model, and β_{ij} is the corresponding factor loading. ε_{it} is the stochastic error term.

The factor strength is relates to how many non-zero dings correspond to a factor. More precisely, for a factor f_{jt} with n different factor loading β_j , we assume that:

$$|\beta_j| > 0 \quad i = 1, 2, \dots, [n^{\alpha_j}]$$

$$|\beta_j| = 0 \quad i = [n^{\alpha_j}] + 1, [n^{\alpha_j}] + 2, \dots, n$$

The α_j represents strength of factor f_{jt} and $\alpha_j \in [0,1]$. If factor has strength α_j , we will assume that the first $[n^{\alpha_j}]$ loadings are all different from zero, and here $[\cdot]$ is defined as integral operator, which will only take the integral part of inside value. The rest $n - [n^{\alpha_j}]$ terms are all equal to zero. Assume for a factor which has strength $\alpha = 1$, the factor's loadings will be non-zero for all cross-section units. We will refer such factor as strong factor. And if we have factor strength $\alpha = 0$, it means

that the factor has all factor loadings equal to zero, and we will describe such factor as weak factor (Bailey et al., 2016). For any factor with strength in [0.5, 1], we will refer such factor as semi-strong factor. In general term, the more non-zero loading a factor has, the stronger the factor's strength is.

3.2 Estimation Under single factor setting

To estimate the strength α_j , Bailey et al. (2020) provides following estimation.

To begin with, we consider a single-factor model with only factor named f_t . β_i is the factor loading of unit i. v_{it} is the stochastic error term.

$$x_{it} = a_i + \beta_i f_t + v_{it} \tag{2}$$

Assume we have n different units and T observations for each unit: $i = 1, 2, 3, \dots, n$ and $t = 1, 2, 3, \dots, T$. Running the OLS regression for each $i = 1, 2, 3, \dots, n$, we obtain:

$$x_{it} = \hat{a}_{iT} + \hat{\beta}_{iT} f_t + \hat{v}_{it}$$

For every factor loading $\hat{\beta}_{iT}$, we can examining their significance by constructing a t-test. The t-test statistic will be $t_{iT} = \frac{\hat{\beta}_{iT} - 0}{\hat{\sigma}_{iT}}$. Then the test statistic for the corresponding $\hat{\beta}_i$ will be:

$$t_{iT} = \frac{(\mathbf{f}' \mathbf{M}_{\tau} \mathbf{f})^{1/2} \hat{\boldsymbol{\beta}}_{iT}}{\hat{\boldsymbol{\sigma}}_{iT}} = \frac{(\mathbf{f}' \mathbf{M}_{\tau} \mathbf{f})^{-1/2} (\mathbf{f}' \mathbf{M}_{\tau} \mathbf{x}_i)}{\hat{\boldsymbol{\sigma}}_{iT}}$$
(3)

Here, the $\mathbf{M}_{\tau} = \mathbf{I}_{T} - T^{-1}\tau\tau'$, and the τ is a $T \times 1$ vector with every elements equals to 1. \mathbf{f} and \mathbf{x}_{i} are two vectors with: $\mathbf{f} = (f_{1}, f_{2} \cdots, f_{T})' \mathbf{x}_{i} = (x_{i1}, x_{i2}, \cdots, x_{iT})$. The denominator $\hat{\boldsymbol{\sigma}}_{iT} = \frac{\sum_{i=1}^{T} \hat{v}_{it}^{2}}{T}$.

Using this test statistic, we can then define an indicator function as: $\ell_{i,n} := \mathbf{1}[|\beta_i| > 0]$. If the factor loading is none zero, $\ell_{i,n} = 1$. In practice, we use the $\hat{\ell}_{i,nT} = := \mathbf{1}[|t_{it}| > c_p(n)]$ Here, if the t-statistic t_{iT} is greater than critical value $c_p(n)$, $\hat{\ell}_{i,n} = 1$, otherwise $\hat{\ell}_{i,n} = 0$ M other word, we are counting how many $\hat{\beta}_{iT}$ are significant. With the indicator function, we then defined $\hat{\pi}_{nT}$ as the fraction of significant factor loading amount to the total factor loadings:

$$\hat{\pi}_{nT} = \frac{\sum_{i=1}^{n} \hat{\ell}_{i,nT}}{n} \tag{4}$$

In term of the critical value $c_p(n)$, rather than use the traditional critical value from student-t

distribution $\Phi^{-1}(1-\frac{P}{2})$, we use:

$$c_p(n) = \Phi^{-1}(1 - \frac{p}{2n^{\delta}})$$
 (5)

Suggested by Bailey, Pesaran, and Smith (2019) here, $\Phi^{-1}(\cdot)$ is the inverse cumulative distribution function of a standard normal distribution, PYs the size of the test, $\blacksquare \delta$ is a non-negative value represent the critical value exponent. This adjusted critical value, adopt helps to tackle the problem of multiple-test.

After obtain the $\hat{\pi}_{nT}$, we can use the following formula provided by Bailey et al. (2020) to estimate our strength indicator α_i :

$$\hat{\alpha} = \begin{cases} 1 + \frac{\ln(\hat{\pi}_{nT})}{\ln n} & \text{if } \hat{\pi}_{nT} > 0, \\ 0, & \text{if } \hat{\pi}_{nT} = 0. \end{cases}$$
(6)

Whenever we have $\hat{\pi}_{nT}$, the estimated $\hat{\alpha}$ will be equal to zero. From the estimation, we can find out that $\hat{\alpha} \in [0,1]$

Estimation Under Multi-Factor Setting 3.3

This estimation can also be extended into a multi-factor set up. Consider the following multi-factor model:

$$x_{it} = a_i + \sum_{j=1}^k \beta_{ij} f_{jt} + v_{it} = a_i + \beta_i' \mathbf{f_t} + v_{it}$$

In this set up, we have $i = 1, 2, \dots, n$ units, $t = 1, 2, \dots, T$ time observations, and specially, $j = 1, 2, \dots, k$ different factors. Here $\beta_i = (\beta_{i1}, \beta_{i2}, \dots, \beta_{ij})'$ and $\mathbf{f}_t = (f_{1t}, f_{2t}, \dots, f_{jt})$. We employed the same strategy as above, after running OLS and obtain the:

$$x_{it} = \hat{a}_{iT} + \hat{\beta}_{ij}\mathbf{f}_{jt} + \hat{v}_{it}$$

 $x_{it} = \hat{a}_{iT} + \hat{\beta}_{ij}\mathbf{f}_{jt} + \hat{v}_{it}$ To conduct the significant test, we calculates the t-statistic: $t_{ijT} = \frac{\hat{\beta}_{ijT} - 0}{\hat{\sigma}_{ijT}}$. Empirically, the test

statistic can be calculated using:

$$t_{ijT} = \frac{\left(\mathbf{f}'_{j\circ}\mathbf{M}_{F_{-j}}\mathbf{f}_{j\circ}\right)^{-1/2}\left(\mathbf{f}'_{j\circ}\mathbf{M}_{F_{-j}}\mathbf{x}_{i}\right)}{\hat{\boldsymbol{\sigma}}_{iT}}$$

Here, $\mathbf{f}_{j\circ} = (f_{j1}, f_{j2}, \dots, f_{jT})', \mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iT})', \mathbf{M}_{F_{-j}} = \mathbf{I} - \mathbf{F}_{-j} (\mathbf{F}'_{-j} \mathbf{F}_{-j})^{-1} \mathbf{F}'_{-j}$, and $\mathbf{F}_{-j} = (\mathbf{f}_{1\circ}, \dots, \mathbf{f}_{j-1\circ}, \mathbf{f}_{j+1\circ}, \dots, \mathbf{f}_{m\circ})'$ For the denominator's $\hat{\sigma}_{iT}$, it was from $\hat{\sigma}_{iT}^2 = T^{-1} \sum_{t=1}^T \hat{u}_{it}^2$, the \hat{u}_{it} residuals of the model. Then, we can use the same critical value from (5). Obtaining the correspond ratio $\hat{\pi}_{nTj}$ from (4), and after that use the function:

$$\hat{lpha}_j = \left\{ egin{array}{l} 1 + rac{\ln \hat{\pi}_{nT,j}}{\ln n}, ext{ if } \hat{\pi}_{nT,j} > 0 \ 0, ext{ if } \hat{\pi}_{nT,j} = 0 \end{array}
ight.$$

to estimates the factor loading.

4 Monte Carlo Design

4.1 Design

In order to study the finite sample property of factor strength $\hat{\alpha}_j$, we designed a Monte Carlo simulation. Through the simulation, we compare the property of the factor strength in different settings. We set up the experiments to reflect the CAPM model and it's extension. Consider the following data generating process (DGP):

$$r_{it} - r_{ft} = q_1(r_{mt} - r_f) + q_2(\sum_{j=1}^{k} \beta_{ij} f_{jt}) + \varepsilon_{it}$$

In the simulation, we consider a dataset has $i=1,2,\ldots,n$ different cross-section units, with $t=1,2,\ldots,T$ different observations. r_{it} is the unit's return, and r_{ft} represent the risk free rate at time t, therefore, the left hand side term $r_{it}-r_{ft}$ is the excess return of the unit i. For simplicity, we define $x_{it}:=r_{it}-r_{ft}$. f_{jt} represents different risk factors, and the corresponding β_{ij} are the factor loadings. We use $r_{mt}-r_{ft}$ to denotes the market \square or, and here r_{mt} is the average market return. Also, we use the term $f_{mt}:=r_{mt}-r_{ft}$ to denotes the market factor. We expect the market factor

will has strength equals to one all the time, so we consider the market factor has strength $\alpha_m = 1$. ε_{it} is the stochastic error term. Therefore, the simulation model can be simplified as:

$$x_{it} = q_1(f_{mt}) + q_2(\sum_{j=1}^k \beta_{ij} f_{jt}) + \varepsilon_{it}$$

 $q_1(\cdot)$ and $q_2(\cdot)$ are two different functions represent the unknown mechanism of market factor and other risk factors in pricing asset risk. In the classical CAPM model and it's multi-factor extensions, for example the three factor model introduced by Fama and French (1992), both q_1 and q_2 are linear.

For each factor, we assume they follow a multinomial distribution with mean zero and a $k \times k$ variance-covariance matrix Σ .

$$\mathbf{f_t} = \begin{pmatrix} f_{i,t} \\ f_{2,t} \\ \vdots \\ f_{k,t} \end{pmatrix} \sim MVN(\mathbf{0}, \Sigma) \quad \Sigma := \begin{pmatrix} \sigma_{f_1}^2, & \rho_{12}\sigma_{f_1}\sigma_{f_2} & \cdots & \rho_{1k}\sigma_{f_1}\sigma_{fk} \\ \rho_{12}\sigma_{f_2}\sigma_{f_1}, & \sigma_{f_2}^2 & \cdots & \rho_{2k}\sigma_{f_2}\sigma_{fk} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1k}\sigma_{fk}\sigma_{f_1}, & \rho_{k2}\sigma_{fk}\sigma_{f_2} & \cdots & \sigma_{f_k}^2 \end{pmatrix}$$

The diagonal of matrix Σ indicates the variance of each factor, and the rest represent the covariance among all k factors.

4.2 Experiment Setting

Follow the general model above, we assume both $q_1(\cdot)$ and $q_2(\cdot)$ are linear function:

$$q_1(f_{mt}) = a_i + \beta_{im} f_{mt}$$

$$q_2(\sum_{j=1}^k \beta_{ij} f_{jt}) = \sum_{j=1}^k \beta_{ij} f_{jt}$$

To start the simulation, we consider a two factor model:

$$x_{it} = a_i + \beta_{i1} f_{1t} + \beta_{i2} f_{2t} + \varepsilon_{it} \tag{7}$$

The constant term a_i is generate from a uniform distribution, $a_{it} \sim U[-0.5, 0.5]$. For the factor loading β_{i1} and β_{i2} , we first use a uniform distribution $IIDU(\mu_{\beta} - 0.2, \mu_{\beta} + 0.2)$ to produce the values. Here we set $\mu_{beal} = 0.71$ to make sure every generated loading value is sufficiently larger than 0. Then we randomly assign $n - [n^{\alpha_1}]$ and $n - [n^{\alpha_2}]$ factor loadings as zero. α_1 and α_2 are the true factor strength of f_1 and f_2 . In this simulation, we will start the factor strength from 0.7 and increase it gradually till unity with pace 0.05, say $(\alpha_1, \alpha_2) = \{0.7, 0.75, \dots, 1\}$. [·] is the integer operator defined at section (3.2). This step reflects the fact that only $[n^{\alpha}]$ factor loadings are non-zero. In terms of the factors, they comes from a multinomial distribution $MVN(\mathbf{0}, \Sigma)$, as we discuss before.

Currently, we consider three different experiments set up:

Experiment 1 (single factor, normal error, no correlation) Set β_{i2} from (7) as 0, the error term ε_{it} and the factor f_{1t} are both standard normal.

Experiment 2 (two factors, normal error, no correlation) Both β_{i1} and β_{i2} are non-zero. Error term and both factors are standard normal. The correlation ρ_{12} between f_{1t} and f_{2t} is zero. The factor strength for the first factor $\alpha_1 = 1$ all the time, and α_2 various.

Experiment 3 (two factors, normal error, weak correlation) Both β_{i1} and β_{i2} are non-zero. Error term and both factors are standard normal. The correlation ρ_{12} between f_{1t} and f_{2t} is 0.3. The factor strength for the first factor $\alpha_1 = 1$ all the time, and α_2 various.

The factor strength in each experiment is estimated using the method discussed in section (3.2), the size of significant test is p = 0.05, and the critical value exponent σ has been set as 0.5. For each of the experiment, we calculate the bias, the RMSE and the size of the test to just by the estimation performances. The bias is calculated as the difference between the true factor strength α and the estimate factor strength $\hat{\alpha}$. The Root Square Mean Error (RMSE) comes from:

$$RMSE = \left[\frac{1}{R} \sum_{r=1}^{R} (bias_r)^2\right]^{1/2}$$

Where the R represent the total replicate times. The size of the test is under the hypothesis that $H_0: \hat{\alpha}_j = \alpha_j, \ j = 1,2$ against the alternative hypothesis $H_1: \hat{\alpha}_j \neq \alpha_j, \ j = 1,2$. Here we employed the following test statistic from Bailey et al. (2020).

$$z_{\hat{\alpha}_{j}:\alpha_{j}} = \frac{(\ln n) \left(\hat{\alpha}_{j} - \alpha_{j}\right) - p\left(n - n^{\hat{\alpha}_{j}}\right) n^{-\delta - \hat{\alpha}_{j}}}{\left[p\left(n - n^{\hat{\alpha}_{j}}\right) n^{-\delta - 2\hat{\alpha}_{j}} \left(1 - \frac{p}{n^{\delta}}\right)\right]^{1/2}} \quad j = 1, 2$$

$$(8)$$

Define a indicator function $\mathbf{1}(|z_{\hat{\alpha}_j:\alpha_j}| > c|H_0)$. For each replication, if this test statistic is greater than the critical value of standard normal distribution: c = 1.96, the indicator function will return value 1, and 0 otherwise. Therefore, we calculate the size of the test base on:

$$size = \frac{\sum_{r=1}^{R} \mathbf{1}(|z_{\hat{\alpha}_j}:\alpha_j| > 1.96|H_0)}{R} \quad j = 1, 2, \tag{9}$$

In purpose of Monte Carlo Simulation, we consider the different combinations of T and n with $T = \{120, 240, 360\}$, $n = \{100, 300, 500\}$. The market factor, if included in the experiment, will have strength $\alpha_m = 1$ all the time, and the strength of the other factor will be $\alpha_x = \{0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1\}$. For every setting, we will replicate 2000 times independently, all the constant and variables will be re-generated for each replication.

4.3 Monte Carlo Discoveries

We report the results in Table (4), (5) and (6) in Appendix A.

Table (4) provides the results under the experiment 1. The estimation method we applied tends to over-estimate the strength slightly most of the time when the true strength is relatively weak under the single factor set up. With the strength increase, the bias will turn to negative, represents a under-estimated results. Such bias, however, vanish quickly while observation t, unit amount n, and α increase. When we increase the time spam by including more data from the time dimensions, the bias, as well as the RMSE decrease significantly. Also, when including more cross-section unit n into the simulation, the performance of the estimation improves, showing by the decrease bias and RMSE values. An impressive result is that, the gap between estimation and true strength will goes to zero when we have $\alpha = 1$, the strongest strength we can have. With the strength approaching unity, the both bias and RMSE will converge to zero. We also presents the size of the test in the table. The size of the test will not variate too much when the strength increases, so as the unit increases, But we can observe that when observations for each unit increase, in other word, when t increases, the size will shrink dramatically. The size will become smaller than the 0.05 threshold after we

extend the t to 240, or empirically speaking, when we included 20 years monthly return data into estimation. Notice that, from the equation (8), when $\hat{\alpha} = \alpha = 1$, the nominator will becomes zero. Therefore, the size will collapse into zero in all settings, so we do not report the size for $\hat{\alpha} = \alpha = 1$

For the two factors scenarios, we obtain similar conclusions in both the no correlation setting and weak correlation setting. The result of no correlation settings is shown in the table (5), and the table (6) shows the result when the correlation between two factors is 0.3. The estimation results will be improved by increasing either the observations amount t, or the cross-section units amount n. We also have the same unbiased estimation when true factor strength is unity under all unit-time combination. In some cases, even when the factor strength is relatively weak, we can have unbiased estimation if the n and t are big enough. (see table (6)). However, we should also notice that when we have a imbalanced panel data, like the scenario when t > n The results of size of the test in two factors setting are performing similar to the single factor result. The size will shrink with the observation amount t increasing, and when we have t grater than 240, the size will be smaller than 0.05 threshold in all situations.

5 Empirical Application

In this section, we introduced the data prepared for the empirical application, discuss the results of factor strength estimations. Then we apply the elastic net method introduced before,

5.1 Data

In the empirical application part, we use the monthly U.S. stock return as the assets. The companies are selected from Standard Poor (S&P) 500 index component companies. We prepared three data sets for different time spams: 10 years (January 2008 to December 2017), 20 years (January 1998 to December 2017), and 30 years (January 1989 to December 2017). Because of the components companies of the index are constantly changing, bankrunt companies will be moved out, and new companies will be added in. Also, some companies does not have enough observation. Therefore, for each of the datasets, the companies amount (n) are different, the dimensions of the data set is showing in the table (1) below.

¹The data was obtained from the Global Finance Data, Osiris, and Yahoo Finance.

	Time Spam	Companies Amount (n)	Observations Amount (T)
10 Years	January 2008 - December 2017	419	120
20 Years	January 1998 - December 2017	342	240
20 Voors	January 1088 December 2017	242	260

For the risk free rate, we use the one-month LLS, treasury bill return.² For company i, we calculates the companies return at month $t(r_{it})$ use the following formula:

$$r_{it} = \frac{p_{it} - p_{it-1}}{p_{it-1}} \times 100$$

and calculate the excess return $x_{it} = r_{it} - r_{ft}$. Here the p_{it} and p_{it-1} are the company's close stock price at the first description from the tand t-1. The price is adjusted for the dividends and splits.³

With regard of the factors, we use 145 different risk factors from Feng, Giglio, and Xiu (2020). The factor set also includes one market factor, represented by the difference between the average market return and risk free return. The average market return is a weighted average return of all stocks in U.S. market, incorporated by CSRP. Each factors contains monthly value from the January 1988 to December 2017.

5.2 Factor Strength Analysis

5.2.1 Regression model for single security and two facotrs

For the first part of the empirical application, we estimates the factor strength using the method discussed in the section 3. Precisely, we set the regression model base on the discussion of section 2.2

$$x_{it} = a_i + \beta_{im}(r_{mt} - r_{ft}) + \beta_{ij}f_{jt} + v_{it}$$

where x_{it} is the excess return of asset i at time t, which is pre-defined in the section 5.1. $r_{mt} - r_{ft}$ represents the market factor, calculated by the difference between average market return and risk free return at the same time t. f_{jt} is the value of j^{th} risk factor at time t. Here $j = 1, 2, 3, \dots 145$.

³The data is adjusted base on the Central for Research in Security Price (CRSP) method.

²The data was fetched from the Kenneth R. French website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

 β_{mt} and β_{ij} are the factor loadings for market factor and risk factor, respectively.

5.2.2 Factor Strength Finding

The complete results of factor strength estimation is present in the appendix B and G We estimates the factors' strength using three different data set discussed in the section 5.1, and list those strength from strong to weak, alongside the market factor strength, in the table (8). For different data sets, we obtains inconsistent factor strength estimations. In general, the ten-year data set provides a significantly weaker result, compares with the other two data sets results. Except the market factor, no factors shows strength above 0.8 from the ten-years result. The strongest factor beside the market factor is the beta factor which has strength around 0.75. The strongest risk factor in the twenty-year data set is the ndp (net debt-to-price), which has strength 0.904. In the thirty-year scenario the salecash (sales to cash) is the strongest with strength 0.857. When comparing the proportion (see table (2)), we can find that nearly 40% factors from the ten year dataset shows strength less than 0.5, which is almost three times higher than the twenty and thirty years proportion. If we use 0.8 as a threshold, we can see that there are over forty percent factors in the twenty-year results excess this threshold, and the percentage for the thirty year results is 31%.

Table 2: Proportion of Strength (Excluded Market Factor)

Strength Level	10 Year Data Proportion	20 Year Data Proportion	30 Year Data Proportion
[0.9, 1]	0%	2.07%	0%
[0.85, 0.9)	0%	24.1%	4.14%
[0.8, 0.85)	0%	16.6%	27.6%
[0.75, 0.8)	0%	8.28%	12.4%
[0.7, 0.75)	7.59%	11.7%	9.66%
[0.65, 07)	15.9%	5.52%	15.9%
[0.6, 0.65)	17.9%	8.28%	5.52%
[0.55, 0.6)	13.1%	8.97%	5.52%
[0.5, 0.55)	8.97%	2.76%	4.83%
[0, 0.5)	36.6%	11.7%	14.5%

Another important finding is that from the twenty year data set, we obtained three factors: ndq (Net debt-to-price, $\hat{\alpha} = 0.904$), salecash (sales to cash, $\hat{\alpha} = 0.902$), and quick (quick ratio, $\hat{\alpha} = 0.901$) has strength greater than 0.9. We would expected when applying the elastic net method with the twenty-year data set, those three factors with the market factors would be selected.

Table 3: Selected Risk Factor with Strength

	Ten Year			Twenty Ye	era	Thirty Year			
Rank	Factor	Strength	Rank	Factor	Strength	Rank	Factor	Strength	
1	beta	0.749	1	ndp	0.904	1	salecash	0.857	
2	baspread	0.730	2	salecash	0.902	2	ndp	0.852	
3	turn	0.728	3	quick	0.901	3	quick	0.851	
4	zerotrade	0.725	4	dy	0.897	4	age	0.851	
5	idiovol	0.723	5	lev	0.897	5	roavol	0.850	
6	retvol	0.721	6	cash	0.897	6	ep	0.849	
7	std_turn	0.719	7	ZS	0.896	7	depr	0.848	
8	HML_Devil	0.719	8	cp	0.894	8	cash	0.847	
9	maret	0.715	9	roavol	0.894	9	rds	0.843	
10	roavol	0.713	10	age	0.894	10	currat	0.840	
20	UMD	0.678	28	HML	0.874	38	HML	0.811	
24	HML	0.672	76	SMB	0.745	69	SMB	0.721	
87	SMB	0.512	88	UMD	0.703	95	UMD	0.672	

We also pay attention to some famous factors, previsely the Falva-French size factor (Small Minus Big SMB), Fama-French Value factor (High Minus Low: HML) (Fama & French, 1992) and the Momentum factor (UMD) (Carhart, 1997). It is surprise that none of these three factors enter the top ten list for each data sets. Except the HML factor from the twenty and thirty year data set has strength above 0.8, none of the other factors in any data set shows strength higher than 0.75. The value factor SMB from the ten year data set only has strength 0.512, ranked no.87.

In order to see how factor strength evolve through the time, we decompose the thirty year data set into three small subsamples. For each subsamples, it contains 242 companies (n = 242). And for each companies, we obtained 120 observations (t = 120). The results is present in the table (12) and figure (2).

In general, we can conclude that for most of the factors, their strength gradually increased from the first decade (January 1988 to December 1997) to the second decade (January 1998 to December 2007), and then decreased in the third decade (January 2008 to December 2017). This pattern can also be seen in the figure (2). The drop of factor strength in the third decades has been regards as the main reasons why the ten-years data results shows a significantly weaker results than the twenty and thirty years data set.

5.2.3 Conclusion and Explanation

From the factor strength prospect, we would expect that for different time period, we will have different candidate factors for the CAPM model. For the ten-year data set, we would expected that only the market factor be useful, and therefore the elastic net method applied latter may only select the market factor. If we use the twenty and thirty year data, we will have a longer list for potential factors, 62 factors from the twenty-year estimation and 45 from the thirty years has strength greater than 0.8. Hence, we would expect the elastic net to select a less parsimonious model.

In terms of this discrepancy, there are several potential explanation. First if we consider the structure of our data set, we will find that the longer the time span, the less companies are included. This is because the S&P index will adjust the component, remove companies with inadequate behaviours, and add in new companies to reflect the market situation. Hence, those 242 companies in the thirty year data set can be viewed as survivals after series of financial and economic crisis. We would expect those companies will have above average performances, such as better profitability and administration, comparing with other companies.

Notes: (But for how will those merits influence the factor's risk pricing ability is unclear for now)

Another possible explanation is the Global Financial Crisis in 2008. The financial market has been disturbed by this crisis, so therefore some mechanism may no longer working properly during that period.

We also need to notice that for some factors, their strength will decrease with the time. For instance, the gma (gross profitability) factor and convind (convertible debt indicator) factor (see figure 2) has consecutive strength decrease from the 1987-1997 period to 2007-2017 period. And for most of the factors, their strength will decrease significantly from the 1997-2007 period to 2007-2017 period.

⁴For instance, the dot-com bubble in the early 20th century, the 911 attack, and the 2008 Global Financial Crisis

References

- Anatolyev, S., & Mikusheva, A. (2018, 7). Factor models with many assets: strong factors, weak factors, and the two-pass procedure. *CESifo Working Paper Series*. Retrieved from http://arxiv.org/abs/1807.04094
- Bailey, N., Kapetanios, G., & Pesaran, M. H. (2016, 9). Exponent of cross-sectional dependence: Estimation and inference. *Journal of Applied Econometrics*, 31, 929-960. Retrieved from http://doi.wiley.com/10.1002/jae.2476 doi: 10.1002/jae.2476
- Bailey, N., Kapetanios, G., & Pesaran, M. H. (2020). Measurement of factor strength: Theory and practice. *CESifo Working Paper*.
- Bailey, N., Pesaran, M. H., & Smith, L. V. (2019, 2). A multiple testing approach to the regularisation of large sample correlation matrices. *Journal of Econometrics*, 208, 507-534. doi: 10.1016/j.jeconom.2018.10.006
- Barillas, F., & Shanken, J. (2018, 4). Comparing asset pricing models. *The Journal of Finance*, 73, 715-754. Retrieved from http://doi.wiley.com/10.1111/jofi.12607 doi: 10.1111/jofi.12607
- Belloni, A., Chernozhukov, V., & Hansen, C. (2014, 4). Inference on treatment effects after selection among high-dimensional controls. *The Review of Economic Studies*, 81, 608-650. doi: 10.1093/restud/rdt044
- Black, F. (1972). Capital market equilibrium with restricted borrowing. *The Journal of Business*, 45, 444-455. Retrieved from www.jstor.org/stable/2351499
- Carhart, M. M. (1997, 3). On persistence in mutual fund performance. *The Journal of Finance*, 52, 57-82. Retrieved from http://doi.wiley.com/10.1111/j.1540-6261.1997.tb03808.x doi: 10.1111/j.1540-6261.1997.tb03808.x
- Cochrane, J. H. (2011, 8). Presidential address: Discount rates. *The Journal of Finance*, 66, 1047-1108. Retrieved from http://doi.wiley.com/10.1111/j.1540-6261.2011.01671.x doi: 10.1111/j.1540-6261.2011.01671.x
- Fama, E. F., & French, K. R. (1992, 6). The cross-section of expected stock returns. *The Journal of Finance*, 47, 427-465. Retrieved from

- http://doi.wiley.com/10.1111/j.1540-6261.1992.tb04398.x doi: 10.1111/j.1540-6261.1992.tb04398.x
- Fama, E. F., & French, K. R. (2015, 4). A five-factor asset pricing model. *Journal of Financial Economics*, 116, 1-22. doi: 10.1016/j.jfineco.2014.10.010
- Fama, E. F., & MacBeth, J. D. (1973, 5). Risk, return, and equilibrium: Empirical tests. *Journal of Political Economy*, 81, 607-636. doi: 10.1086/260061
- Feng, G., Giglio, S., & Xiu, D. (2019, 1). *Taming the factor zoo: A test of new factors*. Retrieved from http://www.nber.org/papers/w25481.pdf doi: 10.3386/w25481
- Feng, G., Giglio, S., & Xiu, D. (2020, 6). Taming the factor zoo: A test of new factors. *The Journal of Finance*, 75, 1327-1370. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12883 doi: 10.1111/jofi.12883
- Freyberger, J., Neuhierl, A., & Weber, M. (2020, 4). Dissecting characteristics non-parametrically. *The Review of Financial Studies*, *33*, 2326-2377. Retrieved from https://doi.org/10.1093/rfs/hhz123 doi: 10.1093/rfs/hhz123
- Gospodinov, N., Kan, R., & Robotti, C. (2017, 9). Spurious inference in reduced-rank asset-pricing models. *Econometrica*, 85, 1613-1628. doi: 10.3982/ecta13750
- Gu, S., Kelly, B., & Xiu, D. (2020, 2). Empirical asset pricing via machine learning. *The Review of Financial Studies*, 33, 2223-2273. Retrieved from https://doi.org/10.1093/rfs/hhaa009 doi: 10.1093/rfs/hhaa009
- Harvey, C. R., & Liu, Y. (2017, 12). False (and missed) discoveries in financial economics. *SSRN Electronic Journal*. doi: 10.2139/ssrn.3073799
- Harvey, C. R., & Liu, Y. (2019, 3). A census of the factor zoo. SSRN Electronic Journal. doi: 10.2139/ssrn.3341728
- Harvey, C. R., Liu, Y., & Zhu, H. (2015, 10). ... and the cross-section of expected returns. *The Review of Financial Studies*, 29, 5-68. Retrieved from https://doi.org/10.1093/rfs/hhv059 doi: 10.1093/rfs/hhv059
- Huang, J., Horowitz, J. L., & Wei, F. (2010, 8). Variable selection in nonparametric additive models. *Annals of Statistics*, *38*, 2282-2313. doi: 10.1214/09-AOS781
- Kan, R., & Zhang, C. (1999, 2). Two-pass tests of asset pricing models with

- useless factors. *The Journal of Finance*, *54*, 203-235. Retrieved from http://doi.wiley.com/10.1111/0022-1082.00102 doi: 10.1111/0022-1082.00102
- Kelly, B. T., Pruitt, S., & Su, Y. (2019, 12). Characteristics are covariances: A unified model of risk and return. *Journal of Financial Economics*, 134, 501-524. doi: 10.1016/j.jfineco.2019.05.001
- Kleibergen, F., & Zhan, Z. (2015, 11). Unexplained factors and their effects on second pass r-squared's. *Journal of Econometrics*, 189, 101-116. doi: 10.1016/j.jeconom.2014.11.006
- Kozak, S., Nagel, S., & Santosh, S. (2020, 2). Shrinking the cross-section. *Journal of Financial Economics*, 135, 271-292. doi: 10.1016/j.jfineco.2019.06.008
- Lettau, M., & Pelger, M. (2020, 2). Estimating latent asset-pricing factors. *Journal of Econometrics*. doi: 10.1016/j.jeconom.2019.08.012
- Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. *The Review of Economics and Statistics*, 47, 13-37. doi: 10.2307/1924119
- Pesaran, M. H., & Smith, R. P. (2019). The role of factor strength and pricing errors for estimation and inference in asset pricing models. *CESifo Working Paper Series*.
- Pukthuanthong, K., Roll, R., & Subrahmanyam, A. (2019, 8). A protocol for factor identification. *Review of Financial Studies*, 32, 1573-1607. Retrieved from https://doi.org/10.1093/rfs/hhy093 doi: 10.1093/rfs/hhy093
- Rapach, D. E., Strauss, J. K., & Zhou, G. (2013, 8). International stock return predictability: What is the role of the united states? *The Journal of Finance*, 68, 1633-1662. Retrieved from http://doi.wiley.com/10.1111/jofi.12041 doi: 10.1111/jofi.12041
- Sharpe, W. F. (1964, 9). Capital asset prices: A theory of market equilibrium under conditions of risk. *The Journal of Finance*, 19, 425-442. Retrieved from http://doi.wiley.com/10.1111/j.1540-6261.1964.tb02865.x doi: 10.1111/j.1540-6261.1964.tb02865.x
- Tibshirani, R. (1996, 1). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, 58, 267-288. Retrieved from http://doi.wiley.com/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x

Zou, H., & Hastie, T. (2005, 4). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 67, 301-320. Retrieved from http://doi.wiley.com/10.1111/j.1467-9868.2005.00503.x doi: 10.1111/j.1467-9868.2005.00503.x

A Simulation Result Table

Table 4: Simulation result for experiment 1

					gle Facto						
	Е	$Bias \times 10$	0	RN	$\overline{MSE \times 1}$.00	S	$Size \times 100$			
				$\alpha_1 =$	0.7						
n\T	120	240	360	120	240	360	120	240	360		
100	0.256	0.265	0.227	0.612	0.623	0.560	7.85	7.7	5.55		
300	0.185	0.184	0.184	0.363	0.338	0.335	8.9	4.45	4.5		
500	0.107	0.124	0.109	0.259	0.248	0.234	6.9	2.5	1.6		
				$\alpha_1 =$							
100	-0.178	-0.159	-0.168	0.490	0.465	0.450	2.5	0.85	0.4		
300	0.154	0.156	0.143	0.281	0.258	0.234	9.4	3.7	3.35		
_500	0.024	0.033	0.263	0.171	0.155	0.148	7.8	2	1.25		
				$\alpha_1 =$							
100	-0.270	-0.265	-0.258	0.434	0.409	0.411	71.4	72.05	71.45		
300	-0.052	-0.044	-0.043	0.183	0.149	0.150	10.15	2.45	2.9		
500	0.045	0.068	0.067	0.136	0.126	0.121	16.6	6.4	5.9		
				$\alpha_1 =$							
100	0.053	0.062	0.058	0.253	0.228	0.221	6.05	2.95	2.5		
300	-0.012	0.009	-0.001	0.124	0.104	0.095	10.55	1.8	1.15		
500	-0.026	-0.007	-0.011	0.096	0.073	0.069	13.25	0.9	0.7		
				$\alpha_1 =$							
100	0.025	0.038	0.360	0.191	0.163	0.157	6.85	2	1.65		
300	-0.034	-0.018	-0.020	0.099	0.069	0.068	13.2	0.8	0.9		
500	-0.025	-0.001	-0.001	0.072	0.044	0.044	22.3	1.95	1.8		
				$\alpha_1 =$							
100	-0.099	-0.088	-0.090	0.156	0.125	0.126	5.6	0.3	0.55		
300	-0.046	-0.025	-0.026	0.083	0.045	0.045	22.5	2.2	2.25		
_500	-0.030	-0.006	-0.006	0.061	0.026	0.025	33.1	4.4	3.8		
				α_1			Γ				
100	0	0	0	0	0	0	-	-	-		
300	0	0	0	0	0	0	-	-	-		
_500	0	0	0	0	0	0	_	-	-		

Notes: This table shows the result of experiment 1. Factors and error are generate from standard normal distribution. Factor loadings come form uniform distribution $IIDU(\mu_{\beta}-0.2,\mu_{\beta}+0.2)$, and $\mu_{\beta}=0.71$. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j=\alpha_j$ j=1,2. Cause under the scenarios of $\alpha=1$, the size of the test will collapse, therefore the table does not report the sizes for $\alpha_1=1$.

Table 5: Simulation result for experiment 2

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					Factor wit					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Е	$Bias \times 10$						$ze \times 1$	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\alpha_1 = 1, \alpha_2$	2 = 0.7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n\T	120	240	360	120	240	360	120	240	360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	0.567	0.737	0.628	4.062	3.819	3.799	2.95	1.45	1.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	300	0.512	0.611	0.518	2.398	2.103	1.979	6.25	0.55	0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.149	0.08	-0.019	1.796	1.498	1.443	8	0.2	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.491		0.640			1.576	7.6	0.8	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.611	-0.372				1.125	11.35	0.15	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								l		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	-0.022	0.192				0.742	15.35	1.1	1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					· / -					
$\begin{array}{c c ccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_500	-0.647	-0.391				0.630	19.1	0.15	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					- , -	_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_500	-0.434	-0.168				0.368	25.2	0.4	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								
100 0 0 0 0 0 -	_500	-0.415	-0.123	-0.134			0.216	36.75	1.35	1.1
300 0 0 0 0 0		T -						Γ		
								_	-	-
500 0 0 0 0 0 0								-	-	-
	500	0	0	0	0	0	0	-	-	

Notes: This table shows the result of experiment 2. Factors and errors are generate from standard normal distribution. Between two factors, we assume they have no correlation. Factor loadings come form uniform distribution $IIDU(\mu_{\beta}-0.2,\mu_{\beta}+0.2)$, and μ_{β} is set to 0.71. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j = \alpha_j$ j = 1,2. Cause under the scenarios of $\alpha = 1$, the size of the test will collapse, therefore the table does not report the sizes for $\alpha_1 = \alpha_2 = 1$

Table 6: Simulation result for experiment 3

			ouble Fa						
	Е	$\overline{\text{Bias} \times 10}$			$\overline{MSE \times 1}$			$ze \times 10$	00
	l		α	$\alpha_1 = 1, \alpha_2$	2 = 0.7		ı		
n\T	120	240	360	120	240	360	120	240	360
100	0.038	0.064	0.072	0.421	0.382	0.389	4.6	1.75	1.95
300	0.021	0.058	0.056	0.253	0.206	0.198	9.95	0.9	0.25
500	-0.032	0.006	0	0.201	0.153	0	12.20	0.1	0.05
				$=1,\alpha_2$					
100	-0.325	-0.313	-0.310	0.488	0.419	0.420	4.75	0.1	0
300	0.028	0.063	0.065	0.253	0.157	0.159	9.95	0.55	0.5
500	-0.082	-0.037	-0.039	0.175	0.114	0.112	19.25	0.25	0.3
	-			$\alpha_1 = 1, \alpha_2$					
100	-0.393	-0.361	-0.368	0.477	0.418	0.421	85.45	85.2	86.4
300	0.029	-0.099	-0.100	0.192	0.145	0.145	12.2	0.65	0.5
500	-0.037	-0.016	0.016	0.129	0.074	0.074	27.8	0.25	1.2
				$=1,\alpha_2$					
100	-0.027	0.008	0.007	0.234	0.160	0.155	9.3	0.9	0.65
300	-0.147	-0.031	-0.037	0.219	0.079	0.077	16.75	0.3	0.2
500	-0.088	-0.039	-0.039	0.136	0.063	0.062	30.6	0.15	0
100	0.022	0.002		$\alpha_1 = 1, \alpha_2$		0.110	0.4	0.6	0.55
100	-0.033	0.003	0.002	0.173	0.111	0.110	9.4	0.6	0.55
300	-0.087	-0.040	-0.041	0.131	0.061	0.061	27.8	0.1	0.05
500	-0.070	-0.017	-0.018	0.111	0.037	0.037	41.15	0.6	0.35
100	0.124	0.101		$=1,\alpha_2$		0.122	10.15	0.1	0.15
100 300	-0.134	-0.101	-0.104	0.185	0.122 0.043	0.122 0.044	10.15	0.1	0.15
500	-0.083 -0.062	-0.034 -0.013	-0.034 -0.012	0.118 0.937	0.043	0.044	39.35 51.8	0.6 1.25	0.6 2.0
300	-0.002	-0.013		$\alpha_1 = 1, \alpha_2$		0.023	31.8	1.23	2.0
100	0	0	0	$\frac{\lambda_1=1, \epsilon}{0}$	$\frac{u_2 = 1}{0}$	0			
300	0	0	0	0	0	0	_	-	-
500	0	0	0	0	0	0		-	_
====	U	<u> </u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·			

Notes: This table shows the result of experiment 2. Factors and errors are generate from standard normal distribution. Between two factors, we assume they have correlation $\rho_{12}=0.3$ Factor loadings come form uniform distribution $IIDU(\mu_{\beta}-0.2,\mu_{\beta}+0.2)$, and μ_{β} is set to 0.71. We keep $[n^{\alpha_j}]$ amount of loadings and assign the rest as zero. For each different time-unit combinations, we replicate 2000 times. For the size of the test, we use a two-tail test, under the hypothesis of H_0 , $\hat{\alpha}_j = \alpha_j$ j = 1,2. Cause under the scenarios of $\alpha = 1$, the size of the test will collapse, therefore the table does not report the sizes when $\alpha_1 = \alpha_2 = 1$

B Comparison Table

Table 7: Ranked Three Data Set Comparison

	Г	en Year Data		Т	wenty Year Data			Thirty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	ractor	Strength	Strength	ractor	Strength	Strength	ractor	Strength	Strength
1	beta	0.976	0.749	ndp	0.960	0.904	salecash	0.905	0.857
2	baspread	0.980	0.730	salecash	0.958	0.902	ndp	0.905	0.852
3	turn	0.983	0.728	quick	0.958	0.901	quick	0.905	0.851
4	zerotrade	0.983	0.725	dy	0.957	0.897	age	0.905	0.851
5	idiovol	0.981	0.723	lev	0.959	0.897	roavol	0.904	0.850
6	retvol	0.978	0.721	cash	0.958	0.897	ер	0.905	0.849
7	std turn	0.983	0.719	ZS	0.959	0.896	depr	0.905	0.848
8	HML Devil	0.989	0.719	ср	0.960	0.894	cash	0.905	0.847
9	maxret	0.981	0.715	roavol	0.957	0.894	rds	0.905	0.843
10	roavol	0.985	0.713	age	0.959	0.894	currat	0.905	0.840
11	age	0.989	0.703	cfp	0.960	0.893	chesho	0.905	0.840
12	sp	0.985	0.699	ор	0.958	0.893	zs	0.903	0.839
13	ala	0.986	0.699	nop	0.958	0.893	nop	0.904	0.839
14	ndp	0.987	0.686	ebp	0.959	0.893	dy	0.905	0.838
15	orgcap	0.989	0.686	ep	0.958	0.891	lev	0.903	0.838
16	tang	0.990	0.683	rds	0.958	0.890	cfp	0.905	0.838
17	ebp	0.988	0.683	depr	0.958	0.889	stdacc	0.905	0.837
18	invest	0.986	0.683	sp	0.958	0.888	ср	0.905	0.836
19	dpia	0.986	0.681	currat	0.958	0.887	stdcf	0.905	0.836
20	UMD	0.989	0.678	kz	0.958	0.887	ор	0.904	0.835
21	zs	0.986	0.675	chesho	0.957	0.884	ebp	0.903	0.835
22	grltnoa	0.988	0.675	tang	0.960	0.884	tang	0.904	0.833
23	dy	0.988	0.672	ato	0.958	0.884	kz	0.903	0.831
24	HML	0.987	0.672	stdacc	0.958	0.883	ato	0.904	0.831
25	kz	0.986	0.669	adm	0.958	0.881	ww	0.904	0.827
26	ob a	0.989	0.669	cashpr	0.959	0.878	std turn	0.902	0.826
27	BAB	0.989	0.666	stdcf	0.956	0.878	adm	0.904	0.825
28	ор	0.990	0.663	HML	0.958	0.874	idiovol	0.902	0.825
29	realestate hxz	0.987	0.663	nef	0.956	0.873	maxret	0.902	0.825
30	ol	0.987	0.663	std turn	0.956	0.870	baspread	0.902	0.820

Table 7: Ranked Three Data Set Comparison (Cont.)

		Ten Year Data		Two	enty Year Data			irty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	ractor	Strength	Strength	ractor	Strength	Strength	Factor	Strength	Strength
31	adm	0.988	0.660	idiovol	0.955	0.870	IPO	0.905	0.818
32	lev	0.986	0.657	zerotrade	0.953	0.865	nef	0.902	0.818
33	nxf	0.989	0.651	turn	0.955	0.864	sp	0.903	0.817
34	nop	0.989	0.651	ww	0.959	0.863	turn	0.902	0.813
35	pm	0.986	0.648	maxret	0.956	0.863	retvol	0.902	0.813
36	pchcapx3	0.988	0.644	absacc	0.960	0.859	zerotrade	0.900	0.812
37	nef	0.988	0.644	baspread	0.955	0.854	absacc	0.905	0.812
38	cash	0.989	0.637	hire	0.959	0.851	HML	0.903	0.811
39	QMJ	0.978	0.637	IPO	0.960	0.850	lgr	0.905	0.810
40	rds	0.989	0.634	lgr	0.959	0.850	cashpr	0.903	0.808
41	LIQ_PS	0.988	0.634	nxf	0.956	0.849	dcol	0.905	0.807
42	ato	0.988	0.634	retvol	0.955	0.848	beta	0.900	0.806
43	salerec	0.992	0.630	salerec	0.957	0.847	RMW	0.904	0.806
44	currat	0.989	0.626	RMW	0.957	0.847	hire	0.905	0.805
45	acc	0.989	0.619	beta	0.954	0.846	salerec	0.905	0.803
46	stdcf	0.989	0.619	sin	0.959	0.844	nxf	0.903	0.801
47	HXZ_ROE	0.989	0.619	acc	0.960	0.843	acc	0.904	0.797
48	depr	0.988	0.615	bm_ia	0.960	0.843	dfin	0.902	0.791
49	noa	0.989	0.615	dcol	0.959	0.838	niner	0.904	0.790
50	cashpr	0.987	0.615	dfin	0.959	0.838	noa	0.902	0.787
51	absacc	0.989	0.615	HML_Devil	0.953	0.838	HML_Devil	0.902	0.781
52	gma	0.987	0.615	HXZ_IA	0.960	0.838	HXZ_IA	0.904	0.780
53	dncl	0.986	0.611	niner	0.959	0.834	rdm	0.904	0.778
54	ms	0.980	0.611	rna	0.958	0.826	rna	0.904	0.778
55	rna	0.989	0.611	noa	0.957	0.825	rd	0.903	0.774
56	STR	0.987	0.607	herf	0.957	0.824	bm_ia	0.904	0.772
57	rdm	0.988	0.607	rdm	0.958	0.823	sgr	0.904	0.769
58	chcsho	0.987	0.607	sgr	0.958	0.819	ps	0.904	0.769
59	sin	0.987	0.607	dnco	0.959	0.816	sin	0.904	0.769
60	salecash	0.989	0.602	ps	0.957	0.807	realestate_hxz	0.905	0.769
61	dnco	0.988	0.598	CMA	0.960	0.805	herf	0.902	0.766
62	quick	0.989	0.593	egr_hxz	0.958	0.803	dnco	0.904	0.761
63	stdacc	0.989	0.593	realestate_hxz	0.957	0.798	CMA	0.905	0.759
64	poa	0.988	0.593	gad	0.958	0.788	egr_hxz	0.904	0.750

Table 7: Ranked Three Data Set Comparison (Cont.)

		Ten Year Data			Twenty Year Data			Thirty Year Data	
	Factor	Market Factor Strength	Risk Factor Strength	Factor	Market Factor Strength	Risk Factor Strength	Factor	Market Factor Strength	Risk Factor Strength
65	ср	0.988	0.589	rd	0.958	0.787	ob a	0.903	0.745
66	tb	0.988	0.589	ol	0.954	0.787	ol	0.902	0.741
67	HXZ IA	0.987	0.584	cinvest_a	0.959	0.784	cinvest_a	0.903	0.739
68	saleinv	0.987	0.579	dolvol	0.960	0.774	gad	0.902	0.723
69	cfp	0.988	0.579	ob a	0.955	0.764	SMB	0.902	0.721
70	egr	0.987	0.579	ala	0.958	0.762	dolvol	0.904	0.715
71	dnca	0.986	0.579	pchdepr	0.959	0.761	gma	0.902	0.715
72	egr_hxz	0.988	0.579	BAB	0.960	0.757	ala	0.904	0.715
73	os	0.984	0.569	gma	0.955	0.756	cto	0.902	0.710
74	pps	0.983	0.563	pchcapx3	0.957	0.752	aeavol	0.905	0.710
75	cto	0.987	0.563	dnca	0.958	0.747	BAB	0.905	0.710
76	grltnoa hxz	0.986	0.563	SMB	0.957	0.745	convind	0.904	0.710
77	cei	0.988	0.563	poa	0.957	0.739	tb	0.902	0.708
78	CMA	0.988	0.563	aeavol	0.961	0.737	QMJ	0.903	0.708
79	em	0.989	0.552	tb	0.953	0.732	pricedelay	0.904	0.701
80	ww	0.990	0.546	grltnoa_hxz	0.958	0.730	egr	0.902	0.699
81	std_dolvol	0.987	0.539	cei	0.953	0.730	orgcap	0.902	0.699
82	grcapx	0.986	0.539	indmom	0.956	0.725	pchdepr	0.903	0.696
83	pctacc	0.989	0.539	egr	0.958	0.725	indmom	0.902	0.696
84	ep	0.989	0.533	moms12m	0.957	0.725	dcoa	0.902	0.696
85	pricedelay	0.989	0.533	dsti	0.957	0.723	moms12m	0.903	0.694
86	hire	0.988	0.519	orgcap	0.956	0.715	pchcapx3	0.902	0.691
87	SMB	0.987	0.512	pchcurrat	0.958	0.710	cei	0.902	0.691
88	pchcapx_ia	0.989	0.512	UMD	0.951	0.706	roic	0.902	0.691
89	aeavol	0.988	0.512	dcoa	0.959	0.706	pm	0.903	0.691
90	moms12m	0.987	0.512	roic	0.951	0.703	dnca	0.902	0.689
91	cashdebt	0.984	0.504	QMJ	0.951	0.703	saleinv	0.903	0.686
92	lgr	0.987	0.504	cinvest	0.958	0.701	grltnoa_hxz	0.903	0.683
93	cinvest	0.988	0.496	HXZ_ROE	0.957	0.699	poa	0.903	0.681
94	herf	0.987	0.496	cto	0.955	0.694	HXZ_ROE	0.905	0.678
95	bm_ia	0.988	0.487	pctacc	0.954	0.694	UMD	0.902	0.672
96	cfp_ia	0.987	0.479	pricedelay	0.958	0.691	petace	0.902	0.672
97	cinvest_a	0.989	0.479	pchcapx_ia	0.957	0.681	cinvest	0.903	0.660
98	chmom	0.989	0.469	convind	0.955	0.669	dsti	0.902	0.660

Table 7: Ranked Three Data Set Comparison (Cont.)

	Те	en Year Data		Twe	enty Year Data			irty Year Data	
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	ractor	Strength	Strength	ractor	Strength	Strength	ractor	Strength	Strength
99	RMW	0.987	0.469	cdi	0.958	0.654	em	0.902	0.657
100	sue	0.987	0.459	rsup	0.957	0.651	pchcurrat	0.902	0.654
101	mom36m	0.986	0.459	chtx	0.958	0.644	ms	0.902	0.648
102	indmom	0.987	0.459	invest	0.957	0.644	invest	0.902	0.641
103	dcoa	0.988	0.459	em	0.952	0.644	pchcapx_ia	0.902	0.630
104	etr	0.986	0.448	pm	0.957	0.641	os	0.900	0.623
105	chinv	0.988	0.448	saleinv	0.955	0.637	chtx	0.902	0.623
106	ill	0.988	0.448	ta	0.958	0.634	dpia	0.902	0.623
107	roic	0.986	0.448	dpia	0.957	0.634	cdi	0.903	0.623
	convind	0.988	0.448	pchquick	0.957	0.626	pps	0.902	0.611
109		0.988	0.437	os	0.948	0.626	roaq	0.900	0.602
110	IPO	0.989	0.437	ms	0.950	0.619	rs	0.902	0.584
	dolvol	0.989	0.437	roaq	0.953	0.607	rsup	0.902	0.579
112	dcol	0.987	0.425	grcapx	0.955	0.593	chinv	0.902	0.569
113	niner	0.989	0.411	pps	0.952	0.589	cfp_ia	0.902	0.563
	chempia	0.987	0.411	ndf	0.957	0.589	ta	0.903	0.563
115		0.988	0.411	cfp_ia	0.957	0.584	cashdebt	0.900	0.557
116	pchcapx	0.988	0.411	dncl	0.957	0.584	ndf	0.902	0.557
		0.988	0.397	pchsale_pchrect	0.955	0.574	grcapx	0.902	0.552
	ivg	0.988	0.381	mom6m	0.958	0.569	STR	0.902	0.546
119	LTR	0.985	0.364	rs	0.955	0.563	pchcapx	0.902	0.546
120	mom6m	0.987	0.364	pchcapx	0.958	0.563	pchquick	0.902	0.539
121		0.987	0.364	cashdebt	0.951	0.557	grltnoa	0.902	0.539
	chatoia	0.987	0.364	pchsaleinv	0.955	0.557	pchsaleinv	0.902	0.519
	gad	0.985	0.364	chempia	0.958	0.557	dncl	0.902	0.519
	pchcurrat	0.988	0.297	LIQ_PS	0.956	0.557	ivg	0.902	0.504
	pchgm_pchsale	0.988	0.297	dwc	0.955	0.546	mom6m	0.902	0.496
126		0.986	0.297	grltnoa	0.956	0.533	chempia	0.902	0.496
	dsti	0.989	0.297	STR	0.956	0.526	LIQ_PS	0.902	0.496
	dfnl	0.987	0.297	dfnl	0.955	0.519	mom36m	0.902	0.479
	roaq	0.986	0.297	mom36m	0.957	0.496	std_dolvol	0.903	0.459
	pchdepr	0.988	0.266	std_dolvol	0.955	0.496	pchsale_pchinvt	0.902	0.448
	dnoa	0.988	0.230	sue	0.956	0.487	pchsale_pchxsga		0.448
132	ta	0.988	0.230	LTR	0.954	0.487	dwc	0.902	0.448

Table 7: Ranked Three Data Set Comparison (Cont.)

	Ten Year Data			Twenty Year Data			Thirty Year Data		
	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor	Factor	Market Factor	Risk Factor
	racioi	Strength	Strength	racioi	Strength	Strength	racioi	Strength	Strength
133	chpmia	0.987	0.230	chmom	0.953	0.479	dfnl	0.902	0.437
134	pchquick	0.987	0.182	pchsale_pchinvt	0.955	0.448	chmom	0.902	0.437
135	dfin	0.988	0.182	chatoia	0.957	0.437	pchsale_pchrect	0.902	0.425
136	rsup	0.988	0.182	pchsale_pchxsga	0.957	0.425	sue	0.902	0.397
137	pchsaleinv	0.988	0.115	lfe	0.956	0.425	LTR	0.902	0.381
	pchsale_pchinvt	0.988	0.115	chinv	0.956	0.397	pchgm_pchsale	0.902	0.322
139	pchsale_pchrect	0.988	0.115	ivg	0.957	0.397	lfe	0.902	0.297
140	ps	0.990	0.115	pchgm_pchsale	0.957	0.381	ill	0.902	0.297
141	dwc	0.989	0.115	etr	0.955	0.344	dnoa	0.902	0.182
142	pchsale_pchxsga	0.989	0.000	chpmia	0.957	0.344	ear	0.903	0.182
143	lfe	0.988	0.000	ill	0.955	0.266	chatoia	0.902	0.182
144	ndf	0.986	0.000	dnoa	0.955	0.266	chpmia	0.902	0.182
145	ear	0.988	0.000	ear	0.958	0.266	etr	0.902	0.115

Notes: This table presents the estimation results of factors' strength, ordered decreasingly by risk factor strength. For the estimation, we use the method from Section 3.3, with one market factor and one risk factor. The three data set is describe in the section 5.1

Table 8: Three Data Set Comparison

Factor					Standard Deviation
1 ps	0.115	0.807	0.769	0.564	0.318
2 dfin	0.182	0.838	0.791	0.604	0.299
3 ndf	0.000	0.589	0.557	0.382	0.270
4 rd	0.297	0.787	0.774	0.619	0.228
5 pchdepr	0.266	0.761	0.696	0.574	0.219
6 rsup	0.182	0.651	0.579	0.471	0.206
7 pchsale_pchxsga	0.000	0.425	0.448	0.291	0.206
8 pchsaleinv	0.115	0.557	0.519	0.397	0.200
9 pchquick	0.182	0.626	0.539	0.449	0.192
10 pchsale_pchrect	0.115	0.574	0.425	0.371	0.191
11 nincr	0.411	0.834	0.790	0.678	0.190
12 dsti	0.297	0.723	0.660	0.560	0.188
13 dcol	0.425	0.838	0.807	0.690	0.188
14 IPO	0.437	0.850	0.818	0.702	0.188
15 gad	0.364	0.788	0.723	0.625	0.187
16 dwc	0.115	0.546	0.448	0.370	0.185
17 pchcurrat	0.297	0.710	0.654	0.554	0.183
18 lfe	0.000	0.425	0.297	0.240	0.178
19 ta	0.230	0.634	0.563	0.475	0.176
20 sgr	0.437	0.819	0.769	0.675	0.170
21 RMW	0.469	0.847	0.806	0.707	0.169
22 ep	0.533	0.891	0.849	0.758	0.160
23 pchsale pchinvt	0.115	0.448	0.448	0.337	0.157
24 lgr	0.504	0.850	0.810	0.721	0.155
25 bm_ia	0.487	0.843	0.772	0.701	0.154
26 dolvol	0.437	0.774	0.715	0.642	0.147
27 hire	0.519	0.851	0.805	0.725	0.147
28 roaq	0.297	0.607	0.602	0.502	0.145
29 herf	0.496	0.824	0.766	0.695	0.143
30 ww	0.546	0.863	0.827	0.745	0.142
31 etr	0.448	0.344	0.115	0.302	0.139
32 cfp	0.579	0.893	0.838	0.770	0.137
33 quick	0.593	0.901	0.851	0.782	0.135
34 cinvest a	0.479	0.784	0.739	0.667	0.135
35 cp	0.589	0.894	0.836	0.773	0.133
36 salecash	0.602	0.902	0.857	0.787	0.132
37 cdi	0.364	0.654	0.623	0.547	0.130
38 stdacc	0.593	0.883	0.837	0.771	0.127
39 chcsho	0.607	0.884	0.840	0.777	0.122
40 depr	0.615	0.889	0.848	0.784	0.121
41 indmom	0.459	0.725	0.696	0.627	0.119
42 roic	0.448	0.703	0.691	0.614	0.117
				I	
				ı	
				ı	
				ı	
				ı	
				ı	
-				ı	
43 convind 44 dcoa 45 stdcf 46 currat 47 cash 48 chtx 49 rds 50 cashpr 51 ear	0.448 0.459 0.619 0.626 0.637 0.397 0.634 0.615 0.000	0.669 0.706 0.878 0.887 0.897 0.644 0.890 0.878 0.266	0.710 0.696 0.836 0.840 0.847 0.623 0.843 0.808 0.182	0.609 0.620 0.778 0.785 0.794 0.555 0.789 0.767 0.149	0.115 0.114 0.114 0.113 0.113 0.112 0.111 0.111

Table 8: Three Data Set Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	30 Year Strength	Mean	Standard Deviation
52 HXZ_IA	0.584	0.838	0.780	0.734	0.109
53 ato	0.634	0.884	0.831	0.783	0.107
54 chatoia	0.364	0.437	0.182	0.328	0.107
55 absacc	0.615	0.859	0.812	0.762	0.106
56 SMB	0.512	0.745	0.721	0.659	0.105
57 CMA	0.563	0.805	0.759	0.709	0.105
58 nop	0.651	0.893	0.839	0.794	0.104
59 lev	0.657	0.897	0.838	0.798	0.102
60 aeavol	0.512	0.737	0.710	0.653	0.101
61 sin	0.607	0.844	0.769	0.740	0.099
62 nef	0.644	0.873	0.818	0.778	0.097
63 op	0.663	0.893	0.835	0.797	0.097
64 acc	0.619	0.843	0.797	0.753	0.097
65 egr_hxz	0.579	0.803	0.750	0.711	0.096
66 dy	0.672	0.897	0.838	0.803	0.095
67 moms12m	0.512	0.725	0.694	0.644	0.094
68 adm	0.660	0.881	0.825	0.789	0.094
69 salerec	0.630	0.847	0.803	0.760	0.094
70 zs	0.675	0.896	0.839	0.803	0.094
71 rdm	0.607	0.823	0.778	0.736	0.093
72 ndp	0.686	0.904	0.852	0.814	0.093
73 dnco	0.598	0.816	0.761	0.725	0.093
74 rna	0.611	0.826	0.778	0.738	0.092
75 kz	0.669	0.820	0.831	0.796	0.092
76 dfnl	0.009	0.519	0.437	0.790	0.092
77 noa	0.615	0.825	0.787	0.742	0.091
78 cinvest	0.496	0.823	0.660	0.742	0.089
79 ebp	0.490	0.893	0.835	0.819	0.089
80 tang	0.683	0.884	0.833	0.804	0.085
_		0.569	0.833	0.476	0.085
81 mom6m 82 nxf	0.364	0.849	0.801	0.767	0.083
82 HML	0.651			0.786	
	0.672	0.874	0.811 0.851		0.084
84 age	0.703	0.894		0.816	0.082
85 ill	0.448 0.699	0.266	0.297	0.337	0.080
86 sp 87 roavol	0.699	0.888	0.817	0.801 0.819	0.078
		0.894	0.850		0.077
88 pricedelay	0.533	0.691	0.701	0.642	0.077
89 rs	0.411	0.563	0.584	0.519	0.077
90 chiny	0.448	0.397	0.569	0.471	0.072
91 cei	0.563	0.730	0.691	0.661	0.071
92 pchcapx_ia	0.512	0.681	0.630	0.608	0.071
93 grltnoa_hxz	0.563	0.730	0.683	0.659	0.070
94 dnca	0.579	0.747	0.689	0.671	0.070
95 petace	0.539	0.694	0.672	0.635	0.068
96 chpmia	0.230	0.344	0.182	0.252	0.068
97 pchcapx	0.411	0.563	0.546	0.507	0.068
98 cto	0.563	0.694	0.710	0.656	0.066
99 grltnoa	0.675	0.533	0.539	0.582	0.066
100 egr	0.579	0.725	0.699	0.668	0.064
101 std_turn	0.719	0.870	0.826	0.805	0.064
102 maxret	0.715	0.863	0.825	0.801	0.063

Table 8: Three Data Set Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	30 Year Strength	Mean	Standard Deviation
103 tb	0.589	0.732	0.708	0.676	0.063
104 idiovol	0.723	0.870	0.825	0.806	0.061
105 poa	0.593	0.739	0.681	0.671	0.060
106 chempia	0.411	0.557	0.496	0.488	0.060
107 gma	0.615	0.756	0.715	0.695	0.059
108 realestate hxz	0.663	0.798	0.769	0.743	0.058
109 zerotrade	0.725	0.865	0.812	0.801	0.058
110 turn	0.728	0.864	0.813	0.802	0.056
111 LIQ_PS	0.634	0.557	0.496	0.562	0.056
112 LTR	0.364	0.487	0.381	0.411	0.055
113 ivg	0.381	0.397	0.504	0.427	0.055
114 retvol	0.721	0.848	0.813	0.794	0.054
115 baspread	0.730	0.854	0.820	0.801	0.053
116 ol	0.663	0.787	0.741	0.731	0.051
117 HML Devil	0.719	0.838	0.781	0.779	0.049
118 em	0.552	0.644	0.657	0.618	0.047
119 cfp ia	0.479	0.584	0.563	0.542	0.046
120 pchcapx3	0.644	0.752	0.691	0.696	0.044
121 saleinv	0.579	0.637	0.686	0.634	0.044
122 ob_a	0.669	0.764	0.745	0.726	0.041
123 beta	0.749	0.846	0.806	0.800	0.040
124 dncl	0.611	0.584	0.519	0.571	0.038
125 sue	0.459	0.487	0.397	0.448	0.038
126 BAB	0.666	0.757	0.710	0.711	0.037
127 pchgm_pchsale	0.297	0.381	0.322	0.333	0.035
128 dnoa	0.230	0.266	0.182	0.226	0.035
129 STR	0.607	0.526	0.546	0.559	0.034
130 HXZ_ROE	0.619	0.699	0.678	0.665	0.034
131 std_dolvol	0.539	0.496	0.459	0.498	0.033
132 QMJ	0.637	0.703	0.708	0.683	0.032
133 ala	0.699	0.762	0.715	0.725	0.027
134 os	0.569	0.626	0.623	0.606	0.026
135 cashdebt	0.504	0.557	0.557	0.540	0.025
136 dpia	0.681	0.634	0.623	0.646	0.025
137 greapx	0.539	0.593	0.552	0.561	0.023
138 pm	0.648	0.641	0.691	0.660	0.022
139 pps	0.563	0.589	0.611	0.587	0.019
140 invest	0.683	0.644	0.641	0.656	0.019
141 chmom	0.469	0.479	0.437	0.461	0.018
142 ms	0.611	0.619	0.648	0.626	0.016
143 mom36m	0.459	0.496	0.479	0.478	0.015
144 UMD	0.678	0.706	0.672	0.685	0.015
145 orgcap	0.686	0.715	0.699	0.700	0.012

Notes: This table presents the estimated factor strength, using data from three different data set. For the data description see Section 5.1. The table also presents the calculated mean and standard deviation of each factors. The table is ordered decreasingly by the standard deviation.

Table 9: Ten and Twenty Comparison

Factor	10 Year Strength	20 Year Strength	Difference
1 ps	0.115	0.807	0.692
2 dfin	0.182	0.838	0.656
3 ndf	0.000	0.589	0.589
4 pchdepr	0.266	0.761	0.494
5 rd	0.297	0.787	0.490
6 rsup	0.182	0.651	0.469
7 pchsale pchrect	0.115	0.574	0.459
8 pchquick	0.182	0.626	0.445
9 pchsaleinv	0.115	0.557	0.443
10 dwc	0.115	0.546	0.431
11 dsti	0.297	0.723	0.427
12 pchsale_pchxsga	0.000	0.425	0.425
13 lfe	0.000	0.425	0.425
14 gad	0.364	0.788	0.425
15 niner	0.411	0.834	0.423
16 pchcurrat	0.297	0.710	0.414
17 dcol	0.425	0.838	0.414
18 IPO	0.437	0.850	0.413
19 ta	0.230	0.634	0.404
20 sgr	0.437	0.819	0.382
21 RMW	0.469	0.847	0.378
22 ep	0.533	0.891	0.358
23 bm ia	0.487	0.843	0.356
24 lgr	0.504	0.850	0.346
25 dolvol	0.437	0.774	0.337
26 pchsale pchinvt	0.115	0.448	0.334
27 hire	0.519	0.851	0.332
28 herf	0.496	0.824	0.328
29 ww	0.546	0.863	0.318
30 cfp	0.579	0.893	0.314
31 roaq	0.297	0.607	0.310
32 quick	0.593	0.901	0.308
33 cp	0.589	0.894	0.306
34 cinvest_a	0.479	0.784	0.306
35 salecash	0.602	0.902	0.300
36 cdi	0.364	0.654	0.290
37 stdacc	0.593	0.883	0.290
38 chesho	0.607	0.884	0.278
39 depr	0.615	0.889	0.274
40 indmom	0.459	0.725	0.266
41 ear	0.000	0.266	0.266
42 cashpr	0.615	0.878	0.263
43 currat	0.626	0.887	0.260
44 cash	0.637	0.897	0.260
45 stdcf	0.619	0.878	0.259
46 rds	0.634	0.878	0.259
47 roic	0.448	0.703	0.255
48 HXZ IA	0.584	0.703	0.253
49 ato	0.634	0.884	0.254
50 chtx	0.397	0.644	0.230
51 dcoa	0.459	0.706	0.247
JI ucua	0.439	0.700	0.24/

Table 9: Ten and Twenty Comparison (Cont.)

Factor	10 Year Strength	20 Year Strength	Difference
52 absacc	0.615	0.859	0.244
53 nop	0.651	0.893	0.242
54 CMA	0.563	0.805	0.241
55 lev	0.657	0.897	0.240
56 sin	0.607	0.844	0.238
57 SMB	0.512	0.745	0.233
58 op	0.663	0.893	0.230
59 nef	0.644	0.873	0.229
60 aeavol	0.512	0.737	0.226
61 dy	0.672	0.897	0.225
62 acc	0.619	0.843	0.225
63 egr hxz	0.579	0.803	0.224
64 dfnl	0.297	0.519	0.222
65 convind	0.448	0.669	0.221
66 zs	0.675	0.896	0.221
67 adm	0.660	0.881	0.221
68 ndp	0.686	0.904	0.218
69 dnco	0.598	0.816	0.218
70 kz	0.669	0.887	0.217
71 salerec	0.630	0.847	0.217
72 rdm	0.607	0.823	0.216
73 rna	0.611	0.826	0.215
74 moms12m	0.512	0.725	0.214
75 noa	0.615	0.825	0.210
76 ebp	0.683	0.893	0.210
77 cinvest	0.496	0.701	0.205
78 mom6m	0.364	0.569	0.205
79 HML	0.672	0.874	0.202
80 tang	0.683	0.884	0.200
81 nxf	0.651	0.849	0.198
82 age	0.703	0.894	0.191
83 sp	0.699	0.888	0.189
84 roavol	0.713	0.894	0.182
85 ill	0.448	0.266	0.182
86 pchcapx_ia	0.512	0.681	0.169
87 dnca	0.579	0.747	0.168
88 grltnoa_hxz	0.563	0.730	0.166
89 cei	0.563	0.730	0.166
90 pricedelay	0.533	0.691	0.158
91 pctacc	0.539	0.694	0.154
92 rs	0.411	0.563	0.152
93 pchcapx	0.411	0.563	0.152
94 std turn	0.719	0.870	0.151
95 maxret	0.715	0.863	0.149
96 idiovol	0.723	0.870	0.147
97 egr	0.579	0.725	0.147
98 poa	0.593	0.739	0.146
99 chempia	0.411	0.557	0.146
100 tb	0.589	0.732	0.143
101 grltnoa	0.675	0.533	0.142
102 gma	0.615	0.756	0.141

Table 9: Ten and Twenty Comparison (Cont.)

103 zerotrade 0.725 0.865 0.140 104 turn 0.728 0.864 0.137 105 realestate_hxz 0.663 0.798 0.135 106 cto 0.563 0.694 0.131 107 retvol 0.721 0.848 0.127 108 baspread 0.730 0.854 0.125 109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757	Factor	10 Year Strength	20 Year Strength	Difference
104 turn 0.728 0.864 0.137 105 realestate_hxz 0.663 0.798 0.135 106 cto 0.563 0.694 0.131 107 retvol 0.721 0.848 0.127 108 baspread 0.730 0.854 0.125 109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 Ool 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 </td <td></td> <td></td> <td></td> <td></td>				
106 cto 0.563 0.694 0.131 107 retvol 0.721 0.848 0.127 108 baspread 0.730 0.854 0.125 109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557			0.864	0.137
106 cto 0.563 0.694 0.131 107 retvol 0.721 0.848 0.127 108 baspread 0.730 0.854 0.125 109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557	105 realestate hxz	0.663	0.798	0.135
107 retvol 0.721 0.848 0.127 108 baspread 0.730 0.854 0.125 109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 <td>_</td> <td>0.563</td> <td>0.694</td> <td>0.131</td>	_	0.563	0.694	0.131
109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637	107 retvol	0.721		0.127
109 LTR 0.364 0.487 0.124 110 ol 0.663 0.787 0.124 111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637	108 baspread	0.730	0.854	0.125
111 HML_Devil 0.719 0.838 0.119 112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 <td></td> <td>0.364</td> <td>0.487</td> <td>0.124</td>		0.364	0.487	0.124
112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557	110 ol	0.663	0.787	0.124
112 chpmia 0.230 0.344 0.115 113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557	111 HML Devil	0.719	0.838	0.119
113 pchcapx3 0.644 0.752 0.108 114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397		0.230	0.344	0.115
114 cfp_ia 0.479 0.584 0.105 115 etr 0.448 0.344 0.104 116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397	113 pchcapx3	0.644	0.752	
116 beta 0.749 0.846 0.098 117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.037 135 mom36m 0.459 0.496 <td></td> <td>0.479</td> <td>0.584</td> <td>0.105</td>		0.479	0.584	0.105
117 ob_a 0.669 0.764 0.095 118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 <td>115 etr</td> <td>0.448</td> <td>0.344</td> <td>0.104</td>	115 etr	0.448	0.344	0.104
118 em 0.552 0.644 0.093 119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 </td <td>116 beta</td> <td>0.749</td> <td>0.846</td> <td>0.098</td>	116 beta	0.749	0.846	0.098
119 BAB 0.666 0.757 0.091 120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266	117 ob a	0.669	0.764	0.095
120 pchgm_pchsale 0.297 0.381 0.085 121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.	118 em	0.552	0.644	0.093
121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487	119 BAB	0.666	0.757	0.091
121 STR 0.607 0.526 0.080 122 HXZ_ROE 0.619 0.699 0.080 123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487	120 pchgm pchsale	0.297	0.381	0.085
123 LIQ_PS 0.634 0.557 0.076 124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	121 STR	0.607	0.526	0.080
124 chatoia 0.364 0.437 0.073 125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	122 HXZ ROE	0.619	0.699	0.080
125 QMJ 0.637 0.703 0.066 126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	123 LIQ PS	0.634	0.557	0.076
126 ala 0.699 0.762 0.064 127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	124 chatoia	0.364	0.437	0.073
127 saleinv 0.579 0.637 0.059 128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	125 QMJ	0.637	0.703	0.066
128 os 0.569 0.626 0.058 129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	126 ala	0.699	0.762	0.064
129 grcapx 0.539 0.593 0.054 130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	127 saleinv	0.579	0.637	0.059
130 cashdebt 0.504 0.557 0.053 131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	128 os	0.569	0.626	0.058
131 chinv 0.448 0.397 0.051 132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	129 greapx	0.539	0.593	0.054
132 dpia 0.681 0.634 0.047 133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	130 cashdebt	0.504	0.557	0.053
133 std_dolvol 0.539 0.496 0.043 134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	131 chinv	0.448	0.397	0.051
134 invest 0.683 0.644 0.039 135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	132 dpia	0.681	0.634	0.047
135 mom36m 0.459 0.496 0.037 136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	133 std_dolvol	0.539	0.496	0.043
136 dnoa 0.230 0.266 0.037 137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	134 invest	0.683	0.644	0.039
137 orgcap 0.686 0.715 0.029 138 sue 0.459 0.487 0.028	135 mom36m	0.459	0.496	0.037
138 sue 0.459 0.487 0.028	136 dnoa	0.230	0.266	0.037
	137 orgcap	0.686	0.715	0.029
139 IJMD 0 678 0 706 0 028	138 sue	0.459	0.487	0.028
0.070 0.700 0.700	139 UMD	0.678	0.706	0.028
140 dncl 0.611 0.584 0.027	140 dncl	0.611	0.584	0.027
141 pps 0.563 0.589 0.026		0.563		
142 ivg 0.381 0.397 0.016	142 ivg	0.381	0.397	
143 chmom 0.469 0.479 0.009		0.469		
144 ms 0.611 0.619 0.008				
145 pm 0.648 0.641 0.007	145 pm	0.648	0.641	0.007

Notes: This table presents the estimated factor strength, using data from the ten year data and twenty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 10: Ten and Thirty Comparison

Factor	10 Year Strength	30 Year Strength	Difference
1 ps	0.115	0.769	0.654
2 dfin	0.182	0.791	0.609
3 ndf	0.000	0.557	0.557
4 rd	0.297	0.774	0.477
5 pchsale_pchxsga	0.000	0.448	0.448
6 pchdepr	0.266	0.696	0.430
7 pchsaleinv	0.115	0.519	0.404
8 rsup	0.182	0.579	0.397
9 dcol	0.425	0.807	0.382
10 IPO	0.437	0.818	0.381
11 nincr	0.411	0.790	0.378
12 dsti	0.297	0.660	0.364
13 gad	0.364	0.723	0.360
14 pchquick	0.182	0.539	0.358
15 pchcurrat	0.297	0.654	0.358
16 RMW	0.469	0.806	0.337
17 pchsale pchinvt	0.115	0.448	0.334
18 etr	0.448	0.115	0.334
19 dwc	0.115	0.448	0.334
20 ta	0.230	0.563	0.334
21 sgr	0.437	0.769	0.332
22 ep	0.533	0.849	0.316
23 pchsale pchrect	0.115	0.425	0.310
24 roaq	0.297	0.602	0.306
25 lgr	0.504	0.810	0.306
26 lfe	0.000	0.297	0.297
27 hire	0.519	0.805	0.285
28 bm ia	0.487	0.772	0.285
29 ww	0.546	0.827	0.282
30 dolvol	0.437	0.715	0.278
31 herf	0.496	0.766	0.270
32 convind	0.448	0.710	0.262
33 cinvest a	0.479	0.739	0.261
34 cfp	0.579	0.838	0.259
35 cdi	0.364	0.623	0.259
36 quick	0.593	0.851	0.258
37 salecash	0.602	0.857	0.255
38 cp	0.589	0.836	0.247
39 stdacc	0.593	0.837	0.244
40 roic	0.448	0.691	0.243
41 indmom	0.459	0.696	0.237
42 dcoa	0.459	0.696	0.237
43 chcsho	0.607	0.840	0.234
44 depr	0.615	0.848	0.233
45 chtx	0.397	0.623	0.226
46 stdcf	0.619	0.836	0.217
47 currat	0.626	0.840	0.217
48 cash	0.637	0.847	0.210
49 SMB	0.512	0.721	0.210
50 rds	0.634	0.843	0.209
51 aeavol	0.512	0.710	0.199
51 deavel	0.312	0.710	0.177

Table 10: Ten and Thirty Comparison (Cont.)

Factor		30 Year Strength	
52 absacc	0.615	0.812	0.197
53 ato	0.634	0.831	0.197
54 CMA	0.563	0.759	0.196
55 HXZ_IA	0.584	0.780	0.196
56 cashpr	0.615	0.808	0.194
57 nop	0.651	0.839	0.188
58 moms12m	0.512	0.694	0.182
59 chatoia	0.364	0.182	0.182
60 ear	0.000	0.182	0.182
61 lev	0.657	0.838	0.181
62 acc	0.619	0.797	0.178
63 nef	0.644	0.818	0.174
64 salerec	0.630	0.803	0.173
65 rs	0.411	0.584	0.172
66 noa	0.615	0.787	0.172
67 rdm	0.607	0.778	0.172
68 op	0.663	0.835	0.172
69 egr hxz	0.579	0.750	0.172
70 pricedelay	0.533	0.701	0.168
71 rna	0.611	0.778	0.167
72 ndp	0.686	0.852	0.166
73 dy	0.672	0.838	0.166
74 adm	0.660	0.825	0.165
75 cinvest	0.496	0.660	0.164
76 zs	0.675	0.839	0.164
77 dnco	0.598	0.761	0.163
78 sin	0.607	0.769	0.162
79 kz	0.669	0.831	0.161
80 ill	0.448	0.297	0.152
81 ebp	0.683	0.835	0.152
82 nxf	0.651	0.801	0.150
83 tang	0.683	0.833	0.150
84 age	0.703	0.851	0.148
85 cto	0.563	0.710	0.147
86 dfnl	0.297	0.437	0.140
87 HML	0.672	0.811	0.139
88 LIQ PS	0.634	0.496	0.138
89 roavol	0.713	0.850	0.138
90 grltnoa	0.675	0.539	0.136
91 pchcapx	0.411	0.546	0.134
92 pctacc	0.539	0.672	0.133
93 mom6m	0.364	0.496	0.132
94 cei	0.563	0.691	0.128
95 ivg	0.381	0.504	0.123
96 chiny	0.448	0.569	0.120
97 grltnoa hxz	0.563	0.683	0.120
98 egr	0.579	0.699	0.120
99 tb	0.589	0.708	0.120
100 pchcapx_ia	0.512	0.630	0.119
100 peneapx_ia 101 sp	0.699	0.817	0.118
101 sp 102 maxret	0.715	0.817	0.110

Table 10: Ten and Thirty Comparison (Cont.)

Factor	10 Year Strength	30 Year Strength	Difference
103 dnca	0.579	0.689	0.110
104 saleinv	0.579	0.686	0.107
105 std_turn	0.719	0.826	0.107
106 em	0.552	0.657	0.106
107 realestate_hxz	0.663	0.769	0.105
108 idiovol	0.723	0.825	0.102
109 gma	0.615	0.715	0.100
110 retvol	0.721	0.813	0.092
111 dncl	0.611	0.519	0.092
112 baspread	0.730	0.820	0.091
113 poa	0.593	0.681	0.087
114 zerotrade	0.725	0.812	0.087
115 turn	0.728	0.813	0.086
116 cfp_ia	0.479	0.563	0.085
117 chempia	0.411	0.496	0.085
118 std_dolvol	0.539	0.459	0.080
119 ol	0.663	0.741	0.078
120 ob_a	0.669	0.745	0.076
121 QMJ	0.637	0.708	0.071
122 sue	0.459	0.397	0.062
123 HML_Devil	0.719	0.781	0.062
124 STR	0.607	0.546	0.061
125 HXZ_ROE	0.619	0.678	0.059
126 dpia	0.681	0.623	0.058
127 beta	0.749	0.806	0.057
128 os	0.569	0.623	0.054
129 cashdebt	0.504	0.557	0.053
130 dnoa	0.230	0.182	0.048
131 chpmia	0.230	0.182	0.048
132 pps	0.563	0.611	0.048
133 pchcapx3	0.644	0.691	0.047
134 BAB	0.666	0.710	0.044
135 pm	0.648	0.691	0.043
136 invest	0.683	0.641	0.042
137 ms	0.611	0.648	0.037
138 chmom	0.469	0.437	0.032
139 pchgm_pchsale	0.297	0.322	0.026
140 mom36m	0.459	0.479	0.019
141 LTR	0.364	0.381	0.017
142 ala	0.699	0.715	0.016
143 orgcap	0.686	0.699	0.013
144 grcapx	0.539	0.552	0.012
145 UMD	0.678	0.672	0.006

Notes: This table presents the estimated factor strength, using data from the ten year data and thirty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 11: Twenty and Thirty Comparison

Factor	20 Year Strength	30 Year Strength	Difference
1 chatoia	0.437	0.182	0.255
2 etr	0.344	0.115	0.230
3 chinv	0.397	0.569	0.172
4 chpmia	0.344	0.182	0.162
5 pchsale_pchrect	0.574	0.425	0.149
6 lfe	0.425	0.297	0.128
7 ivg	0.397	0.504	0.107
8 LTR	0.487	0.381	0.106
9 dwc	0.546	0.448	0.097
10 sue	0.487	0.397	0.090
11 pchquick	0.626	0.539	0.087
12 dnoa	0.266	0.182	0.085
13 ear	0.266	0.182	0.085
14 dfnl	0.519	0.182	0.083
15 sin	0.844	0.769	0.082
16 mom6m	0.569	0.496	0.073
17 rsup	0.651	0.579	0.072
18 bm_ia	0.843	0.772	0.071
19 ta	0.634	0.563	0.071
20 sp	0.888	0.817	0.071
21 cashpr	0.878	0.808	0.070
22 gad	0.788	0.723	0.065
23 dncl	0.584	0.519	0.065
24 pchdepr	0.761	0.696	0.065
25 dsti	0.723	0.660	0.063
26 HML	0.874	0.811	0.063
27 chempia	0.557	0.496	0.062
28 LIQ_PS	0.557	0.496	0.062
29 pchcapx3	0.752	0.691	0.061
30 dy	0.897	0.838	0.059
31 lev	0.897	0.838	0.059
32 pchgm_pchsale	0.381	0.322	0.059
33 dolvol	0.774	0.715	0.059
34 poa	0.739	0.681	0.059
35 HXZ IA	0.838	0.780	0.058
36 cp	0.894	0.836	0.058
37 dnca	0.747	0.689	0.058
38 herf	0.824	0.766	0.058
39 op	0.893	0.835	0.058
40 ebp	0.893	0.835	0.058
41 HML Devil	0.838	0.781	0.057
42 zs	0.896	0.839	0.057
43 adm	0.881	0.825	0.056
44 kz	0.887	0.831	0.056
45 pehcurrat	0.710	0.654	0.056
46 dnco	0.816	0.761	0.055
47 nef	0.873	0.818	0.055
48 cfp	0.893	0.838	0.055
49 nop	0.893	0.839	0.054
50 zerotrade	0.865	0.812	0.053
51 ato	0.884	0.831	0.053

Table 11: Twenty and Thirty Comparison (Cont.)

Factor	20 Year Strength	30 Year Strength	Difference
52 egr_hxz	0.803	0.750	0.053
53 ndp	0.904	0.852	0.052
54 turn	0.864	0.813	0.051
55 tang	0.884	0.833	0.051
56 sgr	0.819	0.769	0.050
57 pchcapx_ia	0.681	0.630	0.050
58 pm	0.641	0.691	0.050
59 cash	0.897	0.847	0.050
60 quick	0.901	0.851	0.050
61 nxf	0.849	0.801	0.049
62 saleinv	0.637	0.686	0.049
63 rna	0.826	0.778	0.048
64 ala	0.762	0.715	0.048
65 BAB	0.757	0.710	0.047
66 dfin	0.838	0.791	0.047
67 absacc	0.859	0.812	0.047
68 hire	0.851	0.805	0.047
69 acc	0.843	0.797	0.047
70 rds	0.890	0.843	0.047
71 currat	0.887	0.840	0.047
72 grltnoa hxz	0.730	0.683	0.046
73 stdacc	0.883	0.837	0.046
74 ol	0.787	0.741	0.046
75 CMA	0.805	0.759	0.046
76 idiovol	0.870	0.825	0.045
77 salecash	0.902	0.857	0.045
78 cinvest a	0.784	0.739	0.045
79 rdm	0.823	0.778	0.045
80 chcsho	0.884	0.840	0.044
81 std turn	0.870	0.826	0.044
82 roavol	0.894	0.850	0.044
83 niner	0.834	0.790	0.044
84 salerec	0.847	0.803	0.044
85 age	0.894	0.851	0.043
86 stdcf	0.878	0.836	0.043
87 chmom	0.479	0.437	0.042
88 greapx	0.593	0.552	0.042
89 RMW	0.847	0.806	0.042
90 ep	0.891	0.849	0.041
91 convind	0.669	0.710	0.041
92 gma	0.756	0.715	0.041
93 depr	0.730	0.713	0.041
94 lgr	0.850	0.810	0.041
94 igi 95 cinvest	0.830	0.810	0.041
96 beta	0.846	0.806	0.041
97 cei	0.846	0.691	0.040
	0.730	0.691	0.038
98 pchsaleinv 99 maxret		0.825	0.038
100 ps	0.863	0.823	
100 ps 101 noa	0.807 0.825	0.789	0.038 0.038
101 noa 102 std dolvol	0.823	0.787	l .
102 Stu_u01V01	0.490	0.439	0.037

Table 11: Twenty and Thirty Comparison (Cont.)

103 ww	Factor	20 Year Strength	30 Year Strength	Difference
104 retvol 0.848 0.813 0.035 105 baspread 0.854 0.820 0.034 106 UMD 0.706 0.672 0.033 107 IPO 0.850 0.818 0.032 108 moms12m 0.725 0.694 0.032 109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 115 ms 0.619 0.644 0.021				
105 baspread 0.854 0.820 0.034 106 UMD 0.706 0.672 0.033 107 IPO 0.850 0.818 0.032 108 moms12m 0.725 0.694 0.032 109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 115 ms 0.619 0.644 0.027 118 SMB 0.745 0.721 0.024				
106 UMD 0.706 0.672 0.033 107 IPO 0.850 0.818 0.032 108 moms12m 0.725 0.694 0.032 109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 121 pps 0.589 0.611 0.022 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.021 124 cfp_ia 0.584 0.563				
107 IPO 0.850 0.818 0.032 108 moms12m 0.725 0.694 0.032 109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022				
108 moms12m 0.725 0.694 0.032 109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 125 rs 0.563 0.584				
109 cdi 0.654 0.623 0.031 110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.584 0.52 0.546 0.017				
110 ndf 0.589 0.557 0.031 111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745				
111 dcol 0.838 0.807 0.031 112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.017 130 mom36m 0.496 0.479				
112 ill 0.266 0.297 0.030 113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546				
113 indmom 0.725 0.696 0.029 114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 131 cto 0.694 0.710				
114 realestate_hxz 0.798 0.769 0.029 115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 132 orgcap 0.715 0.699				
115 ms 0.619 0.648 0.029 116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.				
116 aeavol 0.737 0.710 0.027 117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 <	<u>—</u>			
117 egr 0.725 0.699 0.027 118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.01				
118 SMB 0.745 0.721 0.024 119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012				
119 pchsale_pchxsga 0.425 0.448 0.024 120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctace 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 135 roic 0.703 0.691				
120 tb 0.732 0.708 0.024 121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 125 rs 0.563 0.584 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 <td></td> <td></td> <td></td> <td></td>				
121 pps 0.589 0.611 0.022 122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.			0.708	
122 chtx 0.644 0.623 0.022 123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 <t< td=""><td></td><td></td><td>0.611</td><td>0.022</td></t<>			0.611	0.022
123 pctacc 0.694 0.672 0.021 124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 <td< td=""><td></td><td></td><td></td><td></td></td<>				
124 cfp_ia 0.584 0.563 0.021 125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0				
125 rs 0.563 0.584 0.021 126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004				
126 HXZ_ROE 0.699 0.678 0.021 127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004				
127 STR 0.526 0.546 0.019 128 ob_a 0.764 0.745 0.019 129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	126 HXZ ROE	0.699	0.678	0.021
129 pchcapx 0.563 0.546 0.017 130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	_	0.526	0.546	0.019
130 mom36m 0.496 0.479 0.017 131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	128 ob a	0.764	0.745	0.019
131 cto 0.694 0.710 0.017 132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	129 pchcapx	0.563	0.546	0.017
132 orgcap 0.715 0.699 0.016 133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	130 mom36m	0.496	0.479	0.017
133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	131 cto	0.694	0.710	0.017
133 rd 0.787 0.774 0.013 134 em 0.644 0.657 0.013 135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	132 orgcap	0.715	0.699	0.016
135 roic 0.703 0.691 0.012 136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	133 rd	0.787	0.774	0.013
136 dpia 0.634 0.623 0.011 137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	134 em	0.644	0.657	0.013
137 pricedelay 0.691 0.701 0.010 138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	135 roic	0.703	0.691	0.012
138 dcoa 0.706 0.696 0.010 139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	136 dpia	0.634	0.623	0.011
139 grltnoa 0.533 0.539 0.006 140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	137 pricedelay	0.691	0.701	0.010
140 QMJ 0.703 0.708 0.005 141 roaq 0.607 0.602 0.004	138 dcoa	0.706	0.696	0.010
141 roaq 0.607 0.602 0.004	139 grltnoa	0.533	0.539	0.006
-	140 QMJ	0.703	0.708	0.005
-	141 roaq	0.607	0.602	0.004
142 OS 0.020 0.023 0.004	142 os	0.626	0.623	0.004
143 invest 0.644 0.641 0.003	143 invest	0.644	0.641	0.003
144 cashdebt 0.557 0.557 0.000	144 cashdebt	0.557	0.557	0.000
145 pchsale_pchinvt 0.448 0.448 0.000	145 pchsale_pchinvt	0.448	0.448	0.000

Notes: This table presents the estimated factor strength, using data from the twenty year data and thirty year data. For the data description see Section 5.1. The table also presents the difference between the two estimated strengths. The table is ordered decreasingly by the difference.

Table 12: Thirty Year Decompose

		Factor	Strength â		
Factor	Full Sample				Standard Deviation of
	-		December 2007		Three sub-samples
1 salecash	0.857	0.539	0.823	0.519	0.139
2 ndp	0.852	0.574	0.823	0.557	0.121
3 quick	0.851	0.607	0.819	0.512	0.129
4 age	0.851	0.546	0.817	0.630	0.113
5 ep	0.850	0.504	0.826	0.425	0.174
6 roavol	0.850	0.593	0.826	0.654	0.099
7 depr	0.848	0.637	0.820	0.533	0.119
8 cash	0.847	0.584	0.819	0.552	0.119
9 rds	0.843	0.437	0.810	0.546	0.156
10 currat	0.840	0.626	0.810	0.574	0.101
11 chesho	0.840	0.504	0.808	0.526	0.139
12 dy	0.839	0.634	0.820	0.626	0.090
13 zs	0.839	0.519	0.813	0.539	0.134
14 nop	0.839	0.615	0.824	0.598	0.103
15 lev	0.838	0.504	0.817	0.539	0.140
16 cfp	0.838	0.512	0.816	0.487	0.149
17 stdacc	0.838	0.322	0.803	0.526	0.197
18 stdcf	0.837	0.381	0.805	0.546	0.174
19 cp	0.836	0.557	0.820	0.512	0.136
20 op	0.835	0.626	0.819	0.615	0.094
21 ebp	0.835	0.557	0.816	0.557	0.122
22 tang	0.833	0.615	0.793	0.626	0.081
23 kz	0.831	0.519	0.813	0.539	0.134
24 ato	0.831	0.364	0.797	0.533	0.178
25 ww	0.827	0.397	0.791	0.496	0.167
26 std_turn	0.826	0.637	0.799	0.657	0.072
27 idiovol	0.826	0.644	0.799	0.657	0.070
28 adm	0.825	0.297	0.786	0.552	0.200
29 maxret	0.825	0.615	0.803	0.654	0.081
30 baspread	0.822	0.630	0.808	0.663	0.077
31 nef	0.819	0.657	0.799	0.589	0.088
32 IPO	0.818	0.230	0.777	0.364	0.233
33 sp	0.817	0.593	0.805	0.630	0.092
34 turn	0.815	0.666	0.798	0.663	0.063
35 retvol	0.815	0.634	0.801	0.660	0.073
36 absacc	0.813	0.469	0.756	0.579	0.118
37 zerotrade	0.812	0.651	0.803	0.663	0.069
38 HML	0.811	0.539	0.815	0.589	0.120
39 lgr	0.810	0.496	0.752	0.397	0.150
40 cashpr	0.808	0.557	0.790	0.519	0.120
41 beta	0.807	0.660	0.807	0.696	0.062
42 dcol	0.807	0.526	0.752	0.266	0.198
43 RMW	0.807	0.448	0.774	0.425	0.159
44 hire	0.805	0.569	0.749	0.448	0.123
45 salerec	0.803	0.557	0.754	0.557	0.093
46 nxf	0.802	0.623	0.762	0.584	0.077
47 acc	0.797	0.519	0.764	0.574	0.105
48 dfin	0.791	0.266	0.772	0.374	0.103
TO WILL	0.771	0.200	0.772	0.113	0.201

Table 12: Thirty Year Decompose (Cont.)

			Strength â		
Factor	Full Sample				Standard Deviation of
racioi	•		December 2007		Three sub-samples
49 nincr	0.790	0.519	0.736	0.364	0.152
50 noa	0.787	0.297	0.741	0.519	0.182
51 HML_Devil	0.781	0.557	0.774	0.619	0.091
52 HXZ_IA	0.780	0.563	0.713	0.519	0.083
53 rdm	0.778	0.519	0.725	0.512	0.099
54 rna	0.778	0.266	0.686	0.519	0.172
55 rd	0.774	0.364	0.715	0.115	0.246
56 bm_ia	0.772	0.584	0.756	0.364	0.160
57 ps	0.770	0.425	0.715	0.000	0.294
58 realestate_hxz	0.770	0.479	0.696	0.611	0.090
59 sgr	0.769	0.546	0.703	0.344	0.147
60 sin	0.769	0.182	0.770	0.469	0.240
61 herf	0.766	0.689	0.728	0.411	0.141
62 dnco	0.761	0.557	0.736	0.512	0.097
63 CMA	0.759	0.496	0.678	0.448	0.099
64 egr hxz	0.750	0.563	0.666	0.512	0.064
65 ob_a	0.745	0.437	0.637	0.598	0.087
66 ol	0.743	0.644	0.657	0.619	0.016
67 cinvest_a	0.739	0.266	0.708	0.364	0.189
	0.733	0.200	0.584	0.364	0.189
68 gad 69 SMB	0.723	0.607	0.699	0.182	0.108
					l e e e e e e e e e e e e e e e e e e e
70 ala	0.717	0.651	0.728	0.615	0.047
71 dolvol	0.715	0.397	0.703	0.397	0.144
72 gma	0.715	0.637	0.619	0.519	0.052
73 convind	0.713	0.589	0.563	0.297	0.132
74 cto	0.710	0.657	0.539	0.519	0.061
75 tb	0.710	0.115	0.651	0.448	0.221
76 aeavol	0.710	0.589	0.615	0.425	0.084
77 BAB	0.710	0.425	0.706	0.598	0.116
78 QMJ	0.710	0.546	0.660	0.552	0.053
79 pricedelay	0.699	0.593	0.563	0.411	0.080
80 egr	0.699	0.539	0.563	0.496	0.028
81 orgcap	0.699	0.611	0.615	0.607	0.003
82 pchdepr	0.696	0.000	0.666	0.182	0.281
83 indmom	0.696	0.479	0.630	0.364	0.109
84 dcoa	0.696	0.557	0.546	0.411	0.066
85 roic	0.694	0.563	0.641	0.364	0.117
86 moms12m	0.694	0.411	0.657	0.381	0.124
87 pm	0.694	0.611	0.479	0.602	0.060
88 pchcapx3	0.691	0.539	0.598	0.574	0.024
89 cei	0.691	0.487	0.666	0.448	0.095
90 dnca	0.689	0.487	0.584	0.487	0.045
91 saleinv	0.686	0.663	0.425	0.533	0.098
92 grltnoa_hxz	0.683	0.512	0.602	0.487	0.049
93 poa	0.681	0.552	0.660	0.533	0.056
94 HXZ_ROE	0.681	0.364	0.623	0.519	0.106
95 UMD	0.672	0.496	0.607	0.579	0.047
96 pctacc	0.672	0.512	0.593	0.469	0.052
97 cinvest	0.660	0.397	0.602	0.397	0.097

Table 12: Thirty Year Decompose (Cont.)

	Factor Strength α̂				
Easter	E-11 Cample	January 1988 to	January 1998 to	January 2008 to	Standard Deviation of
Factor	Full Sample	December 1997	December 2007	December 2017	Three sub-samples
98 dsti	0.660	0.115	0.563	0.115	0.211
99 em	0.660	0.546	0.504	0.411	0.056
100 pchcurrat	0.654	0.000	0.593	0.182	0.248
101 ms	0.651	0.437	0.557	0.512	0.050
102 invest	0.641	0.557	0.000	0.607	0.275
103 pchcapx_ia	0.630	0.000	0.589	0.437	0.250
104 os	0.626	0.437	0.469	0.469	0.015
105 chtx	0.623	0.364	0.504	0.266	0.098
106 dpia	0.623	0.546	0.000	0.607	0.273
107 cdi	0.623	0.546	0.552	0.266	0.133
108 pps	0.611	0.512	0.344	0.496	0.076
109 roaq	0.607	0.425	0.533	0.115	0.177
110 rs	0.584	0.411	0.344	0.381	0.027
111 rsup	0.579	0.519	0.611	0.115	0.215
112 chiny	0.569	0.557	0.266	0.397	0.119
113 cfp_ia	0.563	0.266	0.569	0.425	0.113
113 cip_ia 114 ta	0.563	0.344	0.533	0.000	0.123
114 ta 115 cashdebt	0.557	0.344	0.533	0.344	0.089
116 ndf	0.557	0.230	0.678	0.000	0.281
	0.552	0.230	0.078	0.448	0.281
117 greapx					
118 STR	0.546	0.469	0.230	0.533	0.131
119 pchcapx	0.546	0.322	0.448	0.230	0.090
120 pchquick	0.539	0.000	0.569	0.000	0.268
121 grltnoa	0.539	0.425	0.182	0.593	0.169
122 pchsaleinv	0.519	0.182	0.519	0.000	0.215
123 dncl	0.519	0.115	0.546	0.563	0.207
124 ivg	0.504	0.569	0.115	0.297	0.186
125 mom6m	0.496	0.182	0.479	0.230	0.130
126 chempia	0.496	0.437	0.437	0.364	0.034
127 LIQ_PS	0.496	0.115	0.397	0.552	0.181
128 mom36m	0.479	0.397	0.574	0.381	0.087
129 std_dolvol	0.459	0.381	0.297	0.437	0.058
130 pchsale_pchinvt	0.448	0.266	0.496	0.000	0.203
131 pchsale_pchxsga		0.230	0.469	0.000	0.192
132 dwc	0.448	0.479	0.437	0.182	0.131
133 dfnl	0.437	0.344	0.589	0.230	0.150
134 chmom	0.437	0.487	0.266	0.322	0.094
135 pchsale_pchrect	0.425	0.115	0.519	0.000	0.223
136 sue	0.397	0.230	0.182	0.230	0.022
137 LTR	0.381	0.182	0.297	0.364	0.075
138 pchgm pchsale	0.322	0.000	0.381	0.266	0.160
139 lfe	0.297	0.230	0.322	0.000	0.135
140 ill	0.297	0.182	0.230	0.322	0.058
141 dnoa	0.182	0.000	0.182	0.115	0.075
142 ear	0.182	0.115	0.182	0.000	0.075
143 chatoia	0.182	0.411	0.182	0.230	0.099
144 chpmia	0.182	0.000	0.230	0.182	0.099
			!	I	
145 etr	0.115	0.230	0.115	0.297	0.075

Notes: This table presents the estimated factor strength, using the decomposed thirty years data. The thirty year data set is decomposed into three subsets: January 1988 to December 1997, January 1998 to December 2007, and January 2008 to December 2017. For each data set, it contains 120 observations (t = 120), and 242 units (n = 242) The table also contains the full sample estimation results of factor strength, and the standard deviation among the three sub samples results. The table is ordered decreasingly base on the full sample factor strength.

period

ten

Figure 1: Strength Comparison

Notes: The figure compare the strength of every factor's strength in different data set. The x-axis indicates the data set: thirty is thirty years data set (January 1987 to December 2017), twenty is twenty year data set (January 1997 to December 2017), and ten is ten year data set (January 2007 to December 2017). The red dash line and blue dash line represent 0.5 and 0.75 threshold value respectively.

baspread cashdebt depr beta currat 0.8 -_ 0.6 -0.4 -0.2 -0.0 -HML LTR dy lev ер 0.8 -0.6 -0.4 -0.2 -0.0 mom36m pchquick mom6m pchcurrat pchdepr 0.8 strength 0.4 -0.2 -0.0 pchsaleinv quick saleinv salecash pps 0.8 -0.6 -0.4 -0.2 -0.0 salerec SMB STR sgr sue 0.8 -0.6 -0.4 -0.2 -0.0 one three three two one three three two three one two two one two one period

Figure 2: Thirty Year Decompose Comparison

Notes: The figure compare the strength of factor using subsample from the thirty year data. The x-axis indicates the subsample data set: three is third decade (January 2007 to December 2017), two is second decade (January 1997 to December 2007), and one is the first decade (January 1987 to December 1997). The red dash line and blue dash line represent 0.5 and 0.75 threshold value respectively.