Question 1

Find I in the network shown below. (Round your answer to 2 decimal digits if necessary.)

Question 2

A 2.3-kW toaster takes roughly 5 minutes to heat four slices of bread. Find the cost of operating the toaster once per day for 1 month (30 days). Assume energy costs 10 cents/kWh. (Round your answer to 2 decimal digits if necessary.)

Cost = ____ cents

Question 3

Find v_1 , v_2 , and v_3 in the circuit shown below.

\sim		
()	uestion	· 4

For the circuit shown below find i_1 and i_2 . Round to two decimal places if necessary.

$$i_1 = \underline{\qquad} mA$$

 $i_2 = \underline{\qquad} mA$

Question 5

Three lightbulbs are connected in series to a 170-V battery as shown in the figure below. Find the current I through the bulbs. (Round your answer to 2 decimal digits if necessary.)

i = ____ A

Question 6

Let $i = 8te^{-150t}$ mA and $v = (0.006 - 0.2t)e^{-150t}$ V for the circuit element shown below. How much energy is delivered to the element in the interval $0 < t < \infty$? Round to two decimal places.

Question 7

In the circuit shown below

Calculate v_y if i_z = 14A. (Round to 2 decimal places.)

$$v_y = \underline{\hspace{1cm}} V$$

Question 8

Use Ohm's and Kirchoff's laws on the circuit shown below to find i_{in} . (Round your final answer to a whole number if necessary.)

Question 9

Using combinations of sources, compute *i* for the circuit in the figure below.

Question 10

In the circuit shown below, choose v_1 to obtain a current i_x of -3 A

Question 11

Find the power absorbed by each of the resistors in the circuit shown below. Round all calculations to two decimal places.

$$P_{20 \Omega} =$$
_____W

$$P_{15 \Omega} =$$
 W $P_{25 \Omega} =$ W

$$P_{10 \Omega}^{25 \Omega} = \underline{\qquad} W$$

$$P_{40 \Omega} =$$
_____ W