In-house full plasmid sequencing to enable rapid synthetic biology

Daniel Giguere

PhD Candidate, Department of Biochemistry

Slides: https://github.com/dgiguer/lab_resources/presentations

We are using *Phaeodactylum tricornutum* to produce high-need proteins

Image taken by Thomas J. Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego

We are using *Phaeodactylum tricornutum* to produce high-need proteins

- Spike protein
- Nucleocapsid
- Different subunits and stabilizing mutations

Image taken by Thomas J. Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego

Synthetic biology requires rapid validation

 Ensure the plasmids don't have mutations before transformation in P. tricornutum

Modified from Cochrane et al., 2019 (bioRxiv) with permission

Synthetic biology requires rapid validation

- Ensure the plasmids don't have mutations before transformation in P. tricornutum
- Speed is highly important for this platform for SARS-CoV-2 proteins

Modified from Cochrane et al., 2019 (bioRxiv) with permission

Plasmid sequencing on Illumina is too slow

- Pre-COVID, validation done at MGH DNA core (Massachusetts)
 - CAD\$100 per plasmid + international shipping
 - 2-3 weeks from plasmid DNA to results

Plasmid sequencing on Illumina is too slow

- Pre-COVID, validation done at MGH DNA core (Massachusetts)
 - CAD\$100 per plasmid + international shipping
 - 2-3 weeks from plasmid DNA to results
- Local MiSeq run (lrgc.ca):
 - \$170 per sample
 - > \$1720 sequencing kit

Plasmid sequencing on Illumina is too slow

- Pre-COVID, validation done at MGH DNA core (Massachusetts)
 - CAD\$100 per plasmid + international shipping
 - 2-3 weeks from plasmid DNA to results
- Local MiSeq run (lrgc.ca):
 - \$170 per sample
 - > \$1720 sequencing kit
- Initial shutdown caused even further delays and uncertainty

Research objectives

• Design a cost-effective in-house sequencing pipeline for plasmids

Research objectives

• Design a cost-effective in-house sequencing pipeline for plasmids

Develop the bioinformatic infrastructure to rapidly analyze the data

Research objectives

• Design a cost-effective in-house sequencing pipeline for plasmids

Develop the bioinformatic infrastructure to rapidly analyze the data

Evaluate quality compared to Illumina sequencing

Workflow

What does the raw data actually look like?

We obtain mostly full length plasmid reads

Version 1: 12 plasmids

We obtain mostly full length plasmid reads

Weighted Histogram of read lengths bases Read length

Version 1: 12 plasmids

Version 2: 12 plasmids

N50: 10,470.0

Version 1: single plasmid

N50: 10,470.0

Version 1: single plasmid

N50: 16,682.0

Version 2: single plasmid

How rapid is the data analysis?

In initial stages, analysis would take an entire day for 12 plasmids

How rapid is the data analysis?

In initial stages, analysis would take an entire day for 12 plasmids

• Now:

```
Start of analysis: Thu Dec 3 09:02:57 EST 2020 End of analysis: Thu Dec 3 09:13:57 EST 2020
```

How rapid is the data analysis?

In initial stages, analysis would take an entire day for 12 plasmids

Now:

```
Start of analysis: Thu Dec 3 09:02:57 EST 2020 End of analysis: Thu Dec 3 09:13:57 EST 2020
```

- Less than 1 minute of analysis per plasmid
- Caveat: you need lots of RAM and a high-end graphics processing unit!

• Raw read Q-score ~ 11 = 92% accuracy

- Raw read Q-score ~ 11 = 92% accuracy
- Final Q-score of assembly after pipeline for small plasmids > 40

- Raw read Q-score ~ 11 = 92% accuracy
- Final Q-score of assembly after pipeline for small plasmids > 40

ATAATTCATTATGTGATAATGCCAATCGCTAAG-aaaaaaaaaGAGTCATCCGCTAGGTGG

• 1 homopolymer error in 21454 bases between two plasmids

Thanks Thomas and Dalton!

- Similar accuracy in larger circular assemblies of 99.96% = Q34
- All at large homopolymers

Thanks Emma!

Applying this platform for plasmid engineering for producing SARS-CoV-2 proteins

• 133 plasmids over 16 runs to date

Applying this platform for plasmid engineering for producing SARS-CoV-2 proteins

• 133 plasmids over 16 runs to date

- Deletion of His-tags from protein
- Multiple SNPs at multiple cloning site
- SNPs outside coding regions (common)
- SNPs inside promoters
- Correcting the reference sequence

Cost

MGH costs CAD\$100 per plasmid (+ shipping)

Cost

MGH costs CAD\$100 per plasmid (+ shipping)

- Average cost of CAD\$97 per plasmid
 - Includes flow cell, third party reagents, library prep kits, flow cell wash

Conclusions

- We developed and validated in-house full plasmid sequencing using the Oxford Nanopore platform for a competitive cost
- In-house sequencing enables faster iterations of design, build, test
 - Library prep and sequencing takes up to 6 hours
 - Bioinformatics pipeline takes less than 1 hour
- Final assembly Q-score of 40 or higher for 2 Illumina-sequenced plasmids

Acknowledgements

Protein production

Sam Slattery

Arina Shrestha

Emily Stuckless

Greg Gloor

David Edgell

Bogumil Karas

Martin Flatley (Suncor)

Others...

github.com/dgiguer

@DanielJGiguere

Want to quickly validate your plasmids? dgiguer@uwo.ca

Initial plasmid sequencing

Thomas Hamilton
Dalton Ham

Slides: https://github.com/dgiguer/lab_resources/presentations