Jacobian and Vector Fields

Lecture for 7/1

Jacobian General Idea

- Suppose x = f(u, v), y = g(u, v)
- Can we make the substitution and convert dx dy?
- Yes, provided the substitution is invertible
- Cylindrical, spherical, polar become special cases of Jacobian

Jacobian

Suppose $\mathbf{x} = (x_1, x_2, ..., x_n)$ in \mathbf{R}^n and each x_i depends on $t_1, ..., t_m$

- Define J to be n x m matrix with (i, j) entry $\partial x_i / \partial t_j$
- Suppose n = m and $M(t) := det(J(t)) \neq 0$
- Then $d\mathbf{x} = d\mathbf{x}_1 \dots d\mathbf{x}_n = M(\mathbf{t}) d\mathbf{t}_1 \dots d\mathbf{t}_n$
- Thus, $\int_{\Delta} f(x_1, ...) dx = \int_{\Delta} f(x_1(t_1, ...), ...) M(t) dt$

Jacobian Derivation

Vector Fields

A vector field on S assigns a vector to each point in S

- Any f: $R^n \to R^n$ can be considered a vector field for R^n
- We've already seen the field $\nabla f = \langle f_x, f_y, f_z \rangle$
- Recall ∇ f is perpendicular to the graph of any cross section f = c

Is there anything the gradient can't do?

• Call **F** conservative if $\mathbf{F} = \nabla f$ for some function f

Line Integrals

We've integrated over intervals, rectangles, prisms, and general solids. What if we stretch an interval inside higher dimensions?

- Let $\mathbf{r}(t)$ with $a \le t \le b$ parametrize a curve C
- Can define ∫_C f(x) ds to be integral of f along C
 The previous integral expands to ∫_a^b f(r(t)) ||r'(t)|| dt
- Note: Value of integral depends on orientation of C

More Line Integrals

What if we only care about x or y when traveling along the curve?

- Let $\mathbf{r}(t) = \langle \mathbf{x}(t), \mathbf{y}(t) \rangle$, $a \le t \le b$ parametrize C
- $\int_C f(x, y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$
- Similarly for y, similarly for more variables

What if we want to mix line integrals and vector fields?

- Consider $\int_C (\mathbf{F} \cdot d\mathbf{r}) = \int_C (\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)) dt$ We have $\int_C (\mathbf{F} \cdot d\mathbf{r}) = \int_C (\mathbf{F} \cdot \mathbf{T}) ds$

Practice Problems

Evaluate \int_C f ds for the following functions and curves:

- $f(x, y) = 3x^2-2y$, C is line segment from (3, 6) to (1,-1)
- f(x, y) = 6x, C is portion of $y = x^2$ from x = -1 to x = 2
- $f(x, y) = 16y^5$, C is $x = y^4$ from y = 0 to y = 1, followed by segment from (1,1) to (1, -2), followed by segment from (1, -2) to (2,0)

Evaluate $\int_C (x^2 dy - yz dz)$ where C is segment from (4, -1, 2) to (1, 7, -1)

Scratchwork