

University of New South Wales

Stroot of Gomputer Science and EngineeringFoundations of Computer Science (COMP9020)

FINAL EXAM — Session 1, 2017 Assignment Project Exam Help

This paper must be submitted and cannot be retained by the student

Instruction mail: tutorcs@163.com

- Ensure you enter your correct name and student number above!
- This exam paper contains 10 multiple-choice questions (pages 1-3) plus 5 open questions (pages 4-8).
 Each multiple-choice question is worth 4 marks (10 × 4 = 40).
 Each open question is worth 12 marks (5 × 12 = 60).

Total exittips://tutorcs.com

- Only use a blue or black pen. All answers must be recorded in this paper.
- For the multiple-choice questions, tick **one** box for your answer directly (each multiple-choice question has only one correct answer).

 To make a correction, tick *all* boxes, then *circle* one box for your answer.
- For the open questions, write your answer in the space provided (if you need more space, you can write on the back of the sheet).
- A separate white booklet is provided for scratch work only. **Do not write** your answers in the Examination Answer Book, it will not be marked.
- Time allowed 120 minutes + 10 minutes reading time.
- The exam is *closed book*. Reference materials are not allowed, apart from one A4-sized sheet (double-sided is ok) of your own notes.
- Number of pages in this exam paper: 8 (in addition to this cover sheet).

- \blacksquare nterval [-100, 100] are divisible by 5 or 7 (or 1. How n both)?

 $(7] - [100/35] + 1 = 2 \cdot (20 + 14 - 2) + 1 = 65$

□ 68

- **WeChat: cstutorcs**2. Consider the alphabets $\Sigma = \{s, e, a\}$ and $\Psi = \{a, r, t\}$. How many words are in the set $\{\omega \in (\Sigma \setminus \Psi)^* : \text{length}(\omega) \leq 2\}$?
 - □ 2Assignment Project Exam Help
 - \Box 4
 - □ ⁶ Email: tutorcs@163.com
- 3. Which of the following is not schreet equivalence?

 - $\Box \underset{A \Rightarrow \neg B}{\sqcap} \overset{A}{\text{https://tultores.com}}$
- 4. Consider the functions $f: \mathbb{N} \longrightarrow \{0,1,2\}$ and $g: \{0,1,2\} \longrightarrow \{0,1,2\}$ defined by

$$f(x) = x \mod 3$$
$$g(x) = |x - 2|$$

Which of the following statements is true?

- \Box $f \circ f \neq f$
- \Box $f \circ g$ is **not** onto
- \square $g \circ f$ is **not** onto

5.	Consid on $S = \{1, 2, 3, 4, 6, 12\}$ defined by
	y if $x \mid y$ (i.e., x is a divisor of y)
	Which true?
	glb($\{4, 6, 12\}$) = 1 correct is glb($\{4, 6, 12\}$) = 2
	□ (S, \(\sigma\) is a Chat: cstutorcs
6.	Assignment Project Exam Help All connected graphs with <i>n</i> vertices and <i>k</i> eages satisfy
	$\prod_{n=1}^{n} E_{n}^{k+1}$ ail: tutorcs@163.com
	$ \boxtimes_{\substack{n \text{ op. } 749389476}} $
7.	We would like to prove that $P(n)$ for all $n \ge 0$. Which of the following conditions imply this conclusion?
	\square $P(0)$ and $\forall n \ge 1 (P(n) \Rightarrow P(n+1))$
	\square $P(0)$ and $P(1)$ and $\forall n \ge 1 (P(n) \land P(n+1) \Rightarrow P(n+2))$
	$P(0)$ and $P(1)$ and $\forall n \ge 0 (P(n) \land P(n+1) \Rightarrow P(n+2))$ True
	\square $P(0)$ and $P(1)$ and $\forall n > 1 (P(n) \Rightarrow P(n+2))$

8. Co	nsid nsid nsid nsid $T(n) = 4 \cdot T(\frac{n}{2}) + n$.
	master theorem
	$O(2^n)$
0 1	WeChat: cstutorcs
Но	t $S = \{1, 2, 3\}$ and $\mathbb{B} = \{0, 1\}$. we many different <i>onto</i> functions $f: S \longrightarrow \mathbb{B}$ are there?
	3 Assignment Project Exam Help
Þ	_ `
	2^3 = 6 since there are $ \mathbb{B} ^{ S } = 2^3$ functions in total, and two of them are not beauty as 2^3 functions in total, and two of them
	3 8
	¹ °QQ: 749389476
10. Wł	nich of the following is true for all A, B ?
×	a phttps://atjutores.com
	$P(A \cap B) = P(B) \cdot P(B A)$
	$P(A \cup B) \ge P(A) + P(B)$
	$P(A B) + P(A \bar{B}) = 1$

11. Consid **I** formulae:

$$\neg (A \Rightarrow (B \land C))$$
$$\neg A \lor C$$

- (a) The contractive normal form (DNF).
- (b) Pi .e., $\neg B$ is a logical consequence of ϕ and ψ).
- (c) Is $\phi \lor \psi$ a tautology (i.e., always true)? **Explain your answer.**

(a) A We a brata ostotores

(b) From ψ it follows that $\neg (A \land \neg C)$.

Fro Assily follows that Project iExam Help

Alternative solution using a truth table:

Email: tutores@153.com

FFFFFFTTT

FFTFTTT

CQ: 749389475 F

TFFTTTT

https://tutorescom

TTTTTFTFTFT

- (c) $\phi \lor \psi$ is always true:
 - Case 1: A is false or C is true. Then ψ is true.

Case 2: Case 1 is false, then $A \wedge \neg C$, hence ϕ is true according to (a).

Alternative solution extends the truth table from above by $\phi \lor \psi$.

12. Prove t tions $\mathcal{R}_1 \subseteq S \times S$ and $\mathcal{R}_2 \subseteq S \times S$ the following holds: mmetric, then $\mathcal{R}_1 \setminus \mathcal{R}_2$ is symmetric.

 $(x, y) \in \mathcal{R}_1 \text{ and } (x, y) \notin \mathcal{R}_2.$

By symmetry of $\overline{\mathcal{R}}_1$ and $\overline{\mathcal{R}}_2$ it follows that $(y, x) \in \mathcal{R}_1$ and $(y, x) \notin \mathcal{R}_2$.

Hence We Chat: cstutorcs

Alternative proof by contradiction: Assignment Project Exam Help If $\mathcal{R}_1 \setminus \mathcal{R}_2$ is not symmetric, then there exist $x, y \in S$ such that $(x, y) \in \mathcal{R}_1$

and $(x, y) \notin \mathcal{R}_2$ but $(y, x) \notin \mathcal{R}_1 \setminus \mathcal{R}_2$.

From Email: itutores, @ 1,63,com

But $(y, x) \notin \mathcal{R}_1$ contradicts $(x, y) \in \mathcal{R}_1$ given that \mathcal{R}_1 is symmetric, and $(y(x) \notin \mathcal{B}_2)$ contradicts $(y(x) \notin \mathcal{B}_2)$ given that \mathcal{R}_2 is symmetric.

https://tutorcs.com

13. The Fil defined as follows:

$$= 1; F_i = F_{i-1} + F_{i-2} \text{ for } i \ge 3$$

Write a Liver cs. ber (th:

or the statement that every *third* Fibonacci numis even (i.e., divisible by 2).

Base case n = 3:

$$F_1 = 1$$
; $F_2 = 1$; $F_3 = 2$. Hence, $2 \mid F_3$.

We Chat: cstutorcs Inductive step $n \rightarrow n+3$: By definition,

Assign $F_{n+3} = F_{n+1} + F_{n+1}$ est Exam Help

From the induction hypothesis $2 \mid F_n$ it follows that $2 \mid (2F_n) + F_n$).

QQ: 749389476

https://tutorcs.com

14. Consid

- (a) Give all 3-cliques of G.
- (b) What is the chromatic number $\chi(G)$ of G^2 Explain your answer. (c) What is the maximal number of edges that can be added to G such that G remains planar? Explain your answer.

(a) {a, A, S, S, S, ignment Project Exam Help

- (b) $\chi(G) = 3$.
 - 3 chtyrna idcesstyrteoreccoairs 6-3iceom
 - 3 colours are also sufficient:

https://tutorcs.com

(c) A maximum of 2 edges can be added, for example:

3 edges cannot be added since this would result in K_5 , which is not planar.

15. Consid s containing 2 jacks and 4 aces. One card is randon ck at a time. Calculate the expected number of drawin ce is drawn:

- a) if **the land of the land of**
- o) if **14.1.5** back into the deck after each drawing.

Briefly rs

- (a) Each drawing event has the probability $p=\frac{4}{6}=\frac{2}{3}$. Hence the expected number of drawing attempts is $\frac{1}{p}=1.5$
- (b) $1 \cdot \frac{4}{6} + 2 \cdot \frac{2}{6} \cdot \frac{4}{5} + 3 \cdot \frac{2}{6} \cdot \frac{1}{5} \cdot 1 = \frac{2}{3} + \frac{8}{15} + \frac{1}{5} = \frac{21}{15} = \frac{7}{5} = 1.4$

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com