Introduction to Electrical and Computer Engineering

Electromagnetic Signals

Building on Module 2

- Signals
- Signal Processing
- Communication Systems

Examples of Communication Systems

- Landline phones
- Cell phones
- Radio
- Broadcast TV
- Cable TV
- Internet
- Wi-Fi
- Computer Networks
- Air Traffic Systems
- Emergency Alert Systems
- Intelligent Transportation Systems

Milestones in Wireless Communications

1890's: Successful demonstrations of wireless telegraphy

1902: First transatlantic radio transmission (Marconi)

1906: First AM radio transmission

1918: Superheterodyne AM receiver invented

1920: First commercial AM radio station in the US (KDKA in Pittsburgh, PA)

1929: BBC begins experimental TV broadcasting

1939: First commercial FM radio station in the US (WHUR in 1997: 802.11 Wi-Fi standards published Washington, D.C.)

1941: First field test of color TV broadcasting

1961: Standard for stereo FM broadcasting adopted by FCC

1969: ARPANET (forerunner of internet) established

1976: Ethernet protocol for local area networks published

1979: First developmental cellular system in US

1985: 900 MHz, 2.4 GHz, and 5.8 GHz frequency bands (used for Wi-Fi) opened for public use in the US

1991: First digital cellular standard (GSM)

1999: Apple offered first laptop with Wi-Fi capability

2009: Conversion to digital TV standard completed in US

2010 - present: 3G, 4G-LTE, 5G, 6G(?)

© 2015-22 Pat Kelly and C.V. Hollot

Everyday Wireless

Arduino IDE and Wireless

ATmega328

RF 20 kHz – 300GHz Bluetooth 2.45 GHz

WiFi 2.4 GHz GSM 1900 MHz

Main Concepts

- EM Waves & Antennas
- Amplitude Modulation
- Frequency Division Multiplexing
- Frequency Selective Filtering
- Superheterodyne Receiver
- Digital Communication Systems

EM Waves and Antennas

http://www.rfwirelessworld.com/Terminology/Elect romagnetic-wave-vs-Surface-Acoustic-wave.html

Recall: information carried by oscillating (sinusoidal) components in electrical signal.

Transmit/Receive Antennas

Transmitting antenna

Receiving antenna

$c = 3 \times 10^8 \text{ m/sec}$

"antenna efficiently converts an electrical signal to propagating EM wave when L_a is a significant fraction of the wavelength λ ."

$$L_a \geq \lambda/4$$

 $L_a \geq \lambda/4$

Peak frequency less than 1 kHz.

We say that the "center" frequency is around 600 Hz.

$$\lambda = cT = \frac{3 \times 10^8}{600} = 5 \times 10^5 \text{ m}$$

$$L_a = \frac{\lambda}{4} = \frac{5 \times 10^5}{4} = 1.25 \times 10^5 \text{ m} \approx 78 \text{ miles !!!}$$

• Greatest efficiency the antenna length needs to be about

$$\frac{\lambda}{4} = \frac{cT}{4} = \frac{c}{4f}$$
 meters

where f is the center frequency of the transmission.

• Suppose f = 1 MHz:

$$\lambda = cT = \frac{3 \times 10^8}{1 \times 10^6} = 300 \text{ meters}$$

• $L_a = 300/4 = 75 \text{ m} << 125 \text{ km!}$

Amplitude Modulation (AM)

- How to increase the center frequency of the transmitted signal so that it can be recovered from the transmission?
- Amplitude Modulation (AM)
- ~ 80 AM radio stations are within listening range of Springfield,
 MA

Modulation - 1

Multiply the information signal by a high-frequency sinusoid called a carrier f_c

Modulation - 2

Information signal

Carrier signal

Amplitude modulated (AM) signal

The electromagnetic spectrum

Modulation - 3

Note: represent single sinusoidal components with **arrows** in spectrum

Spectrum ???

A little trig

$$a = 2\pi f t \cos(a)\cos(b) = \frac{1}{2} \left[\cos(b+a) + \cos(b-a)\right]$$

$$b = 2\pi f_c t$$

$$\cos(2\pi f t)\cos(2\pi f_c t) = \frac{1}{2} \left\{\cos(2\pi [f_c + f]t) + \cos(2\pi [f_c - f]t\right\}$$

One of the most important principles for communication system design:

sinusoid of frequency f multiplied by another sinusoid having frequency $f_{\mathcal{C}}$ produces 2 new frequencies

$$f_c + f$$
 and $f_c - f$

Modulation - 4

Information signal

0 0.005 0.01 0.015 0.02 0.025 0.03

Carrier signal

Amplitude modulated (AM) signal

Note: represent single sinusoidal components with **arrows** in spectrum

The AM Signal - 1

$$X_{AM}(t) = [A_x + m(t)]c(t)$$

$$m(t) = \text{message}$$

 $A_x = \text{constant:} A_x + m(t) > 0$
 $c(t) = \cos(2\pi f_c t) = \text{carrier}$

The AM Signal -2

The AM Signal - 3

$$x_{AM}(t) = [A_x + m(t)]c(t)$$

Form $A_x + m(t)$: Since A_x is a constant, it has frequency = 0 we add a frequency component at f = 0.

We have a carrier c(t) with a frequency f_c that is much larger than the highest frequency in m(t).

frequency components after amplitude modulation

Example - 1

Suppose we have an audio (speech) signal with the spectrum:

highest signal frequency is < 5 kHz.

Example - 2

Form the AM signal $x_{AM}(t) = [A_x + m(t)] \cdot c(t)$, carrier frequency of $f_c = 25$ kHz:

Main Concepts

- EM Waves & Antennas ✓
- Amplitude Modulation ✓
- Frequency Division Multiplexing
- Frequency Selective Filtering
- Superheterodyne Receiver
- Digital Communication Systems

AM Transmitter - 1

$$X_{AM}(t) = [A_x + m(t)]c(t)$$

AM Transmitter - 2

Onto the AM Receiver!

Transmitted AM Signal

$$X_{AM}(t); A_{x} = 1; f_{c} = 50kHz$$

Upper Envelope

Upper Envelope Detector

Basic AM Receiver

Sidebar:

- DC = direct current = constant signal
- AC = alternating current = sinusoidal signal

Multiple AM Transmitters

(multiple messages)

Note:

- $T_x = transmitter$
- $R_x = receiver$

Channel

Frequency Division Multiplexing -1

(multiple signals over same channel)

Channel

Frequency Division Multiplexing -2

AM spectrum for voice signal

AM Carriers Separated by 10kHz

FCC allows carrier frequencies: 530 kHz, 550 kHz, ..., 1.59 MHz, 1.70 MHz

What about the Receiver ???

Give it a Tuning Knob!

The Band Pass Filter (BPF)

output of BPF

5.5

input to BPF

Tuner: Tunable Band Pass Filter

BPF example of Frequency Selective Filter

BPF: Analog Hardware

AM Receiver (Tunable BPF)

Maxwell's Equations (1831-1879)

$$\nabla . E = \frac{\rho}{\epsilon_0}$$

$$\nabla . B = 0$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$

Marconi

Main Concepts

- EM Waves & Antennas ✓
- Amplitude Modulation ✓
- Frequency Division Multiplexing ✓
- Frequency Selective Filtering ✓
- Digital Communication Systems

Frequency Modulation (FM)

message signal

© 2015-22 Pat Kelly and C.V. Hollot

Modulation Methods

from: *Modulation Methods*, https://www.rohm.com/electronics-basics/wireless/modulation-methods

Digital Communications

Binary Phase Shift Keying (BPSK)

• Bit stream (R_B bits/sec = bit rate)

100010101011100010101...

- $T_B = 1/R_B \sec = \text{bit interval} = \text{time to transmit one bit}$
- carrier

$$c(t) = A\cos(2\pi f_c t)$$

• BPSK:

```
bit = 1, transmit c(t) for T_B sec
bit = 0; transmit -c(t) for T_B sec
```

BPSK Example

 $R_B = 10$ kbits/sec; $T_B = 0.1$ msec; $f_c = 20$ kHz; $1/f_c = 0.05$ msec

Receiving a BPSK Signal

Correlation Receiver - 1

(operation over one-bit interval, T_B sec)

Correlation Receiver - 2

(operation over one-bit interval, T_B sec)

$$c(t) \cdot c(t) = \left[A\cos(2\pi f_c t)\right]^2 = \frac{A^2}{2} + \frac{A^2}{2}\cos(4\pi f_c t) ; \quad r_B > 0 \text{ when received bit} = 1$$

$$r_B = \text{ average over bit interval} = \frac{A^2 T_B}{2} > 0$$

$$-c(t) \cdot c(t) = -\left[A\cos(2\pi f_c t)\right]^2 = -\left(\frac{A^2}{2} + \frac{A^2}{2}\cos(4\pi f_c t)\right); \quad r_B < 0 \text{ when received bit } = 0$$

$$r_B = \text{anverage Rowerebit interval } + \cos(4\pi f_c t)$$

Correlation Receiver - 3

(operation over one-bit interval, T_B sec)

Threshold:

recovered bit = 1 when $r_B > 0$;

recovered bit = 0 when $r_B < 0$

Noisy Channel

Bit Errors - 1

BPSK signal + noise

Bit Errors - 2

BPSK signal + noise

- bit error rate (ber) = (#bit errors)/(#transmitted bits)
- ber is a function of the signal-to-noise ratio (SNR)
- BPSK: SNR = $\frac{A^2T_B}{2}$ /noisey

Example (like Question 6 in Homework 4)

- Transmit the set of bits 10110 using BPSK
- Bit interval $T_B = 1 \times 10^{-5}$ sec (bit rate $R_B = 100$ kbits/sec).
- Carrier frequency $f_c = 1 \text{ MHz} = 10 R_B$
- Simulate the operation of a correlation receiver in MATLAB for different values of SNR:

Case 1: Noise Power = 0 (SNR = ∞)

Received signal

Bits recovered by receiver: 10110 (no bit errors)

Case 2: SNR = 5; $(SNR)_{dB} = 10log_{10}(5) = 7 dB$

Received signal

Bits recovered by receiver: 10110 (no bit errors)

Case 3: SNR = 1; $(SNR)_{dB} = 10log_{10}(1) = 0 dB$

Bits recovered by receiver: 10110 (no bit errors) !!!

Case 4: SNR = 0.2; $(SNR)_{dB} = -7 dB$

Bits recovered by receiver: 10111 ← Bit error

 $(r_B: 1.8, -2.54, 2.31, 0.88, 0.23)$ © 2015-22 Pat Kelly and C.V. Hollot

Correlation receiver is "optimal"

- Correlation receiver optimal the receiver having the highest probability of recovering the correct bits !!! $SNR = \frac{A^2T_B}{2 \text{ noisey}}$
- To decrease ber, increase
 - increase A
 - increase T_B ; decrease R_B

Real Estate

Spectral Real Estate for AM

© 2015-22 Pat Kelly and C.V. Hollot

Spectral Real Estate for BPSK?

$$c(t) = \pm A \cos(2\pi f_c t)$$
, $0 \le t \le T_B$
$$R_B = 1/T_B$$

BPSK Spectrum

Example: $R_B = 100 \text{ kbits/sec}$ and $f_c = 1 \text{ MHz}$

Transmission bandwidth = $200 \text{ kHz} = 2 \text{ R}_{\text{B}}$

AM

WiFi

$$f_c = 2.4$$
 GHz, $R_B > 150$ Mbits / sec

Main Concepts

- EM Waves & Antennas ✓
- Amplitude Modulation ✓
- Frequency Division Multiplexing ✓
- Frequency Selective Filtering ✓
- Digital Communication Systems ✓

© 2015-22 Pat Kelly and C.V. Hollot

© 2015-22 Pat Kelly and C.V. Hollot

 $\ensuremath{\text{@}}$ 2015-22 Pat Kelly and C.V. Hollot