Multicollinearity

The problem of multicollinearity exists when two on more sugression variables are strongly correlated on linearly debendant.

wish to fit the model Y= XB+ E suppose we

 $\hat{\beta} = (x'x)^{-1}(x'y)$

If (X'X) is singular then we can't perform the inverse dependent)
This happens when at least one column of X is LD on the other.

Effect of Multicollinearity problems due to Multicollinearity:

Consider MLR model with two regressors

Yi = 30 + BIXII + BZXIZ + €

1) Strong multicollinearity between regressons result in large variance and covariance of regression coefficients :-

Centering & Sealing Regression Data: Original data: Xi1, Xi2, Yi

We comite $x_{i1} = \frac{x_{i1} - x_{i}}{\sqrt{s_{ii}}}$, $x_{i2} = \frac{x_{i2} - x_{2}}{\sqrt{s_{22}}}$, $y_{i} = \frac{y_{i-1} - y_{i}}{\sqrt{s_{3}y_{3}}}$

where $\overline{X}_{i} = \frac{1}{\pi} \sum_{i=1}^{n} X_{ii}$, $S_{ii} = \sum_{i=1}^{n} (X_{ii} - \overline{X}_{i})^{2}$

Str =] (Y1-4) X2 = 1 Xi2 , Sp2 = 2 (Xi2-X2)2,
DATA: TRANSFORMED DATA:

ORIGINAL DATA;

Mean > (omiginal X1

y= 30 + 312, + β≥ 22+ € L data using Bo = 7 - Bixi - Bixz 3. = y- β12,- β222 = 0 [for tpan formed

The model, assuming that X1. X2 and Y are centered and scaled is 71 = Bixii + B2 xi2+ Ei [intercept = Bo = 0 always]

Example of Multicollinearty;

Compute 13 = (x'x)-1(x'Y) -> X/X is singular since Xis linearly dependent on X2 and X3 and check trat | x/x | = 0.

123 T Note that: $X_1 = \frac{X_2}{2} + \frac{X_3}{3}$

7=0 7=0 Jed Mean of transform data wine = ed

Tramance of toam form

Lentwied and scaled data, we now $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} x_{11} - \overline{X}_{1} & x_{12} - \overline{X}_{2} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \end{pmatrix}, \quad Y = \begin{pmatrix} Y_{1} - \overline{Y}_{1} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \end{pmatrix}$ $\begin{array}{c} X_{11} - \overline{X}_{1} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{22}}} \\ \overline{\sqrt{S_{22}}} & \overline{\sqrt{S_{22}}} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{11}}} \\ \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{11}}} & \overline{\sqrt{S_{$ For the centured and scaled data, we have the following X matrix for the 1012 is sample convection between 2, and 22. ry is sample competation between 21 & y. by is sample convelation between &2 & J. SII Syy = \frac{7}{5 \left(\times_{i1} - \times_{i} \right) \left(\times_{i2} - \times_{i2} \right) \left(\times_{i1} - \times_{i2} \right) \left(\times_{i2 $S_{11}S_{yy}$ $S_{22}S_{yy}$ $S_{12}=\sum_{i=1}^{N}(X_{i1}-X_{i1})(X_{i2}-X_{2}), \quad \chi'\chi=\begin{pmatrix} 1 & n_{12} \\ n_{21} & 1 \end{pmatrix} \text{ is called the connectation }$ Inverse of (x'x) is $(x'x)^{-1} = \begin{pmatrix} \frac{1}{1-n_{12}^{2}} & -\frac{n_{12}}{1-n_{12}^{2}} \\ \frac{-n_{21}}{1-n_{12}^{2}} & \frac{1}{1-n_{12}^{2}} \end{pmatrix}$ \$ = (x'x)-1 x'Y $= \begin{pmatrix} \frac{1}{1-n_{12}^{2}} & \frac{-n_{12}}{1-n_{12}^{2}} \\ \frac{-n_{21}}{1-n_{12}^{2}} & \frac{1}{1-n_{12}^{2}} \end{pmatrix} \begin{pmatrix} n_{1y} \\ n_{2y} \\ \end{pmatrix}$

Thus, β_1 and β_2 are estimated using the sample connelation (LSES on the transformed data)

$$V(\beta_1) = G^2(X/X)_{-1}^{-1} = \frac{G^2}{1-n_1 2} \rightarrow \text{or as } | n_1 2 \rightarrow 1 \text{ [From } \bigcirc$$

$$V(\beta_1) = G^2(X/X)_{-1}^{-1} = \frac{G^2}{1-n_1 2} \rightarrow \text{or as } | n_1 2 \rightarrow 1 \text{ [From } \bigcirc$$

$$V(\beta_2) = G^2(X/X)_{-1}^{-1} = \frac{G^2}{1-n_1 2} \rightarrow \text{or as } | n_1 2 \rightarrow 1 \text{ [From } \bigcirc$$

$$V(\beta_2) = G^2(X/X)_{-1}^{-1} = \frac{G^2}{1-n_1 2} \rightarrow \text{or as } | n_1 2 \rightarrow 1 \text{ [From } \bigcirc$$

$$V(\beta_1, \beta_2) = G^2(X/X)_{-1}^{-1} = \frac{G^2}{1-n_1 2} \rightarrow \text{or as } | n_1 2 \rightarrow 1 \text{ or an } | n_2 2 \rightarrow 1 \text{ or an } | n_1 2 \rightarrow 1 \text{ or an } | n_2 2$$

- (3) Model coefficient with '-'ve sign when '+'ve sign is expected.
- 4) High significance in a GLOBAL F-test but in which none of the regranois avre significant in partial F-test.

 [Example of Multiple Linear Regranion in chapter 2].
- (5) Different model selection procedures yield different models.

TECHNIQUES FOR DETECTING MULTICOLLINEARITY:

- Examination of connelation Matrix (X'X):
- A simple measure of multicollinearity is the inspection of off-diagonal elements by in X'X;
 - Suppose prij 1 >0.9 indécates the multicollinearity problem.
 - Examining the commitation matrix (x'x) is helpful in detecting linear dépendence between paions of regressons.
 - However, examining the connectation matrix (x'x) is not helpful in detecting muticollinearity problem arising from linear dependence more than two negremons.

Unstandandized negrenons and nesponse variable from Webster, Gunst () and Mason (1974):

	1	Webs	sten, G	unst U a	Na Haso	• (11.9	
Χı	X2	×3	,	x4 X5	Χg	Υ	
			1	0 .541	-0.099	10.006	
8	١	1	,	0.130	0.040	9. 737	_This data has the
8	ı	1	Ö	2.116	0.115	15.087	problem of
8	1)	ı	-2:397	0.252	8.422	MULTICOLLINEARTY.
0	0	9		-0.046	~ . ~	8.625	
0	0	9	(6.369	1	16. 289	- However, X'X
0	0	9	1	1.996		5.958	examination is
2 2	দ	Ò	1			9.313	unable to find it
2	7	Ó	1	0.228	4 600		J .
2	7	0	ĺ	1.38	0		(SINCE IT IS)
0	0	0	10	-0.79		8.426	more than two
0	0	0	10	0.25		222	regrumons)
0	D	0	10	0.44	0 0.432		U
	'X=	1	0.052	-0.843	-0 110		192 Since 1011/0.9

$$X'X = \begin{bmatrix} 1 & 0.052 & -0.843 & -0.498 & 0.417 & -0.192 \\ 1 & -0.432 & -0.371 & 0.485 & -0.317 \\ 1 & -0.357 & -0.505 & -0.087 \\ 1 & -0.215 & -0.123 \\ 1 & 1 & 1 \end{bmatrix}$$

indicates thulticolling. -0.352 -0.505 -0.687 problem. Here, none of the pairwise -0.215 _0.123 connitations are susficiously large, and one have no indication of near linear defendence. Thes, X'X fails to detect multicollinearity

· Eigen System Analysis on X1X:
- Multicollinearity can also be detected from the eigenvalues of the corrulation matrix, X'X.
- For a (K-1) regression, model, there will be (K-1) eigenvalues
- If there are one on more linear dependences in the data. then
- Define the condition number of (X'X) as
$K = \frac{\lambda_{max}}{\lambda_{min}} = condition number (cn).$
_ As a general toule,
K < 100 indicates no serious problem co'th multicollinearity. 100 ≤ K ≤ 1000 indicates moderate to strong multicollinearity.
K>1000 indicates severe problem with multicollinearity.
- The condition indices of the (x'x) matrix are Detection multicollinear
CI = Kj = Mmax, j=1(1)K-1. Thear defendences. Adentify the nature of linker debendences.
- Clearly the largest condition index is the condition number.
- The number of him an debendance in X'X.
the number of man (x/x) may be decomposed as
The convidation matrix (X/X) may be decomposed as
KINTHIED OUT DULY ILLOW I
where , D = diag (\(\lambda_1, \lambda_2, \taken \take \ta
$\frac{1}{\sqrt{k-1}} = (t_1, t_2, \dots, t_{K-1})$; where
ti = (a) is the eigen ventor associated with eigen value si.
ax-1)
The eigenvalue λ : is close to zero, the elements of the associated eigenvector λ : describe the nature of linear associated eigenvector λ :
associated eigenvictor 11
depolicity of the state of the
Example of webster i=1 Data: $\lambda_1 = 2.4288$, $\lambda_2 = 1.5462$, $\lambda_3 = 0.9221$, $\lambda_4 = 0.794$, $\lambda_3 = 0.9221$, $\lambda_4 = 0.794$, $\lambda_5 = 0.3079$, $\lambda_6 = 0.0011$.
15 (and High number) = 2.4288 = 2188.11 25 = 0.3079, 26 = 0.0011
Compute kj's too j=1(1)6. 0.0011 > 1000 There is only multicollinearity.
Data: The eigen value $\lambda_3 = 0.9221$, $\lambda_4 = 0.0011$. K(condition number) = $\frac{2.4288}{0.0011} = \frac{218811}{0.0011}$ Thuse is only one small eigenvalue. Compute k_1 's tom $j=1(1)6$. which indicates severe problem with multicollinearity. Cheek $k_6 = \frac{2.4288}{0.0011} > 1000$ implies there is only one near linear dependence (in the examination) of χ/χ took here.

. 0
· Vaniance Inflation Facton: (VIF):-
Variance of the its requessor coefficient
$V(\hat{\beta}_{i}) = C^{2}(X'X)^{-1}_{ii} = \frac{C^{2}}{1-Ri^{2}}$
- Ri2 is the coefficient of multiple determination when 2:
is regressed on the remaining regoussons.
_ If ai is nearly onthogonal to the remaining regressions, then
Ri 2 is small and I-Ri2 is close to unity. I sumaining regressions!
- If x; is meanly linearly dependent on some subset of the semaining regressions, Ri2 is near unity & 1 is very large.
bemaining registers ons, Ri 1-Riz
()) and he victored as factors by which the Y (13)
compaced due to literat dependence among
- The YIF associated with regionals to
VIF = -1-0:2
large value of VIF; indicates possible muticollinearity
associated with xi. — In general. VIFi ≥ 5 indicates possible multicollinearity multicollinearity
- In general. VIFi > 5 indicates almost certainly multicollinearity VIFi > 10 indicates almost certainly multicollinearity
La Hameron, VIE cond : Water Brook Em.
Dealing with Multicollinearity: multicollinearity the nature of Multicollinearity. Collecting additional data has been Collecting additional data has been of dealing with multicollinearity.
· Collect Additional data: Collecting additional data than seen of dealing with multicollinearity of dealing with multicollinearity of X, X, Y, Y, Y, X, Y, X, Y, X, Y, X, Y, X, X, Y, X,
suggested as the
Additional data Mould to
Additional data should be explicated in manner to break up the meticollinearity
in the existing data
Ch. 1 h
The smallest eigenvalue is $\lambda_6 = 0.0011$ and $t_6 = \begin{pmatrix}447 \\421 \\541 \\573 \end{pmatrix}$
\ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Jaixi=0 - 447x1-421x2-541x3-1573x4-1006x5-1002x6
$\alpha_1 = -0.941 \alpha_2 - 1.28 \alpha_4$
This linear dependence is associated with λ_6 . thus ignoring x_5 and x_6

- · Remove negressons from the model:
- If two regressors are linearly dependent then it means that either of them contain redundant information. Thus, we can pick one regressors to keep in the model and discard the other one.
- If x_1, x_2 , and x_3 are linearly dependent, then eliminating one regressors may be helpful to reduce the effect of multicallinearity.
- However, elimination of regressors (s) from the data may damage the predictive power of the model.
- · Collapse Variables: Combine two or more variables that are linearly dependent into single composite variables.
- · Ridge Regression: To be discussed in the next chapter.

TIPS FOR MODELLERS:

Commonly used Multicollinearity detection tools in Analytics :

- 1. High R2 but few significant
- 2. High baiswise consolation among regressons.
- 3. Examination of partial connection.
- 4. Figen value method and cN, calculation of c1 and cN, (Higher C1 & Multicollinearity)
- 5. YIF (most commonly used).
- Commonly used techniques to deal with Muticollinearity in Buriness analytics
- 1. Dropping variables.
 2. Using (Principal components Commo
- 3. Ridge Regression
- 4. collection of additional data
- S, collabsing variables.