Outline

- Introduction to Signal Flow Graphs
 - Definitions
 - Terminologies
 - Examples
- Mason's Gain Formula
 - Examples
- Signal Flow Graph from Block Diagrams
- Design Examples

Introduction

- Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- Advantage: the availability of a flow graph gain formula, also called Mason's gain formula.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

Consider a simple equation below and draw its signal flow graph:

$$y = ax$$

The signal flow graph of the equation is shown below;

- Every variable in a signal flow graph is represented by a Node.
- Every transmission function in a signal flow graph is represented by a Branch.
- Branches are always unidirectional.
- The arrow in the branch denotes the direction of the signal flow.

Signal-Flow Graph Models

$$Y_1(s) = G_{11}(s) \cdot R_1(s) + G_{12}(s) \cdot R_2(s)$$

$$Y_2(s) = G_{21}(s) \cdot R_1(s) + G_{22}(s) \cdot R_2(s)$$

Signal-Flow Graph Models

 r_1 and r_2 are inputs and x_1 and x_2 are outputs

$$a_{11} \cdot x_1 + a_{12} \cdot x_2 + r_1 = x_1$$

$$a_{21} \cdot x_1 + a_{22} \cdot x_2 + r_2 = x_2$$

Signal-Flow Graph Models

 x_0 is input and x_4 is output

$$x_1 = ax_0 + bx_1 + cx_2$$

$$x_2 = dx_1 + ex_3$$

$$x_3 = fx_0 + gx_2$$

$$x_4 = hx_3$$

Terminologies

- An input node or source contain only the outgoing branches. i.e., X_1
- An output node or sink contain only the incoming branches. i.e., X_{Δ}
- A path is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e.,

$$X_1$$
 to X_2 to X_3 to X_4 X_1 to X_2 to X_4

 X_2 to X_3 to X_4

- A forward path is a path from the input node to the output node. i.e., X_1 to X_2 to X_3 to X_4 , and X_1 to X_2 to X_4 , are forward paths.
- A feedback path or feedback loop is a path which originates and terminates on the same node. i.e.; X_2 to X_3 and back to X_2 is a feedback path.

Terminologies

- A self-loop is a feedback loop consisting of a single branch. i.e.; A_{33} is a self loop.
- The gain of a branch is the transmission function of that branch.
- The path gain is the product of branch gains encountered in traversing a path. i.e. the gain of forwards path X_1 to X_2 to X_3 to X_4 is $A_{21}A_{32}A_{43}$
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain of the feedback loop from X_2 to X_3 and back to X_2 is $A_{32}A_{23}$.
- Two loops, paths, or loop and a path are said to be non-touching if they have no nodes in common.

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths (loops).
- e) Determine the loop gains of the feedback loops.
- f) Determine the path gains of the forward paths.
- g) Non-touching loops

There are two forward path gains;

- **1.** $G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_7(s)$
- **2.** $G_1(s)G_2(s)G_3(s)G_4(s)G_6(s)G_7(s)$

There are four loops

- Nontouching loop gains;
- **1.** $[G_2(s)H_1(s)][G_4(s)H_2(s)]$
- **2.** $[G_2(s)H_1(s)][G_4(s)G_5(s)H_3(s)]$
- **3.** $[G_2(s)H_1(s)][G_4(s)G_6(s)H_3(s)]$

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths.
- e) Self loop.
- f) Determine the loop gains of the feedback loops.
- g) Determine the path gains of the forward paths.

Input and output Nodes

- a) Input node X_1
- b) Output node X_8

(c) Forward Paths

 X_1 to X_2 to X_3 to X_4 to X_5 to X_6 to X_7 to X_8

 X_1 to X_2 to X_7 to X_8

 X_1 to X_2 to X_4 to X_5 to X_6 to X_7 to X_8

 X_2 to X_7 to X_5 to X_4 to X_3 to X_2

 X_2 to X_7 to X_6 to X_5 to X_4 to X_3 to X_2

(e) Self Loop(s)

(f) Loop Gains of the Feedback Loops

$$A_{32}A_{23}$$
 $A_{76}A_{67}$; $A_{72}A_{57}A_{45}A_{34}A_{23}$; $A_{43}A_{34}$ $A_{65}A_{76}A_{57}$; $A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$; $A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$; $A_{71}A_{65}A_{56}$ $A_{42}A_{34}A_{23}$

(g) Path Gains of the Forward Paths

$$A_{32}A_{43}A_{54}A_{65}A_{76}$$

 A_{72}

$$A_{42}A_{54}A_{65}A_{76}$$

Mason's Rule (Mason, 1953)

- The block diagram reduction technique requires successive application of fundamental relationships in order to arrive at the system transfer function.
- On the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.
- The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Mason's Rule:

The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is;

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$$

Where

n = number of forward paths.

 P_i = the i^{th} forward-path gain.

 Δ = Determinant of the system

 Δ_i = Determinant of the i^{th} forward path

• Δ is called the signal flow graph determinant or characteristic function.

Mason's Rule:

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$$

 Δ = 1- (sum of all individual loop gains) + (sum of the products of the gains of all possible two loops that do not touch each other) – (sum of the products of the gains of all possible three loops that do not touch each other) + ... and so forth with sums of higher number of non-touching loop gains

 Δ_i = value of Δ for the part of the block diagram that does not touch the i-th forward path (Δ_i = 1 if there are no non-touching loops to the i-th path.)

Or

 Δ_i is obtained from Δ by removing the loops that are touching the i^{th} forward path.

Systematic approach

- 1. Calculate forward path gain P_i for each forward path i.
- 2. Calculate all loop transfer functions
- 3. Consider non-touching loops 2 at a time
- 4. Consider non-touching loops 3 at a time
- 5. etc
- 6. Calculate Δ from steps 2,3,4 and 5
- 7. Calculate Δ_i as portion of Δ not touching forward path Pi

Example#1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

There are two forward paths:

$$P_1 = G_1 G_2 G_4$$
 $P_2 = G_1 G_3 G_4$

Therefore,

$$\frac{C}{R} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

There are three feedback loops

$$L_1 = G_1 G_4 H_1$$
, $L_2 = -G_1 G_2 G_4 H_2$, $L_3 = -G_1 G_3 G_4 H_2$

Example#1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

There are no non-touching loops, therefore

 Δ = 1- (sum of all individual loop gains)

$$\Delta = 1 - (L_1 + L_2 + L_3)$$

$$\Delta = 1 - (G_1G_4H_1 - G_1G_2G_4H_2 - G_1G_3G_4H_2)$$

Example#1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

Eliminate forward path-1

$$\Delta_1$$
 = 1- (sum of all individual loop gains)+...

$$\Delta_1 = 1$$

Eliminate forward path-2

$$\Delta_2$$
 = 1- (sum of all individual loop gains)+...

$$\Delta_2 = 1$$

Example#1: Continue

$$\frac{C}{R} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} = \frac{G_1 G_2 G_4 + G_1 G_3 G_4}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$$

$$= \frac{G_1 G_4 (G_2 + G_3)}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$$

Example#2: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

1. Calculate forward path gains for each forward path.

$$P_1 = G_1G_2G_3G_4$$
 (path 1) and $P_2 = G_5G_6G_7G_8$ (path 2)

2. Calculate all loop gains.

$$L_1 = G_2H_2$$
, $L_2 = H_3G_3$, $L_3 = G_6H_6$, $L_4 = G_7H_7$

3. Consider two non-touching loops.

$$L_1L_3$$
 L_1L_4 L_2L_4

Example#2: continue

- Consider three non-touching loops.
 None.
- 5. Calculate Δ from steps 2,3,4.

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1L_3 + L_1L_4 + L_2L_3 + L_2L_4)$$

$$\Delta = 1 - (G_2H_2 + H_3G_3 + G_6H_6 + G_7H_7) + (G_2H_2G_6H_6 + G_2H_2G_7H_7 + H_3G_3G_6H_6 + H_3G_3G_7H_7)$$

Example#2: continue

Eliminate forward path-1

$$\Delta_1 = 1 - (L_3 + L_4)$$

$$\Delta_1 = 1 - (G_6 H_6 + G_7 H_7)$$

Eliminate forward path-2

$$\Delta_2 = 1 - (L_1 + L_2)$$

$$\Delta_2 = 1 - (G_2 H_2 + G_3 H_3)$$

Example#2: continue

$$\frac{Y(s)}{R(s)} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

$$\frac{Y(s)}{R(s)} = \frac{G_1G_2G_3G_4\left[1 - \left(G_6H_6 + G_7H_7\right)\right] + G_5G_6G_7G_8\left[1 - \left(G_2H_2 + G_3H_3\right)\right]}{1 - \left(G_2H_2 + H_3G_3 + G_6H_6 + G_7H_7\right) + \left(G_2H_2G_6H_6 + G_2H_2G_7H_7 + H_3G_3G_6H_6 + H_3G_3G_7H_7\right)}$$

Example#3

 Find the transfer function, C(s)/R(s), for the signal-flow graph in figure below.

Example#3

There is only one forward Path.

$$P_1 = G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)$$

There are four feedback loops.

- L1. $G_2(s)H_1(s)$
- L3. $G_7(s)H_4(s)$
- L2. $G_4(s)H_2(s)$ L4. $G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)$

Non-touching loops taken two at a time.

L1 and L2: $G_2(s)H_1(s)G_4(s)H_2(s)$ L2 and L3: $G_4(s)H_2(s)G_7(s)H_4(s)$ L1 and L3: $G_2(s)H_1(s)G_7(s)H_4(s)$

Non-touching loops taken three at a time.

L1, L2, L3:
$$G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)$$

$$\begin{split} \Delta = & 1 - [G_2(s)H_1(s) + G_4(s)H_2(s) \\ & + G_7(s)H_4(s) + G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)] \\ & + [G_2(s)H_1(s)G_4(s)H_2(s) + G_2(s)H_1(s)G_7(s)H_4(s) \\ & + G_4(s)H_2(s)G_7(s)H_4(s)] \\ & - [G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)] \end{split}$$

Eliminate forward path-1

$$\Delta_1 = 1 - G_7(s)H_4(s)$$

Example#4: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

There are three forward paths, therefore n=3.

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{3} P_i \Delta_i}{\Delta} = \frac{P_1 \Delta_1 + P_2 \Delta_2 + P_3 \Delta_3}{\Delta}$$

Example#4: Forward Paths

Example#4: Loop Gains of the Feedback Loops

$$L_1 = A_{32}A_{23}$$

$$L_2 = A_{43}A_{34}$$

$$L_3 = A_{54} A_{45}$$

$$L_4 = A_{65}A_{56}$$

$$L_5 = A_{76}A_{67}$$

$$L_6 = A_{77}$$

$$L_7 = A_{42} A_{34} A_{23}$$

$$L_8 = A_{65} A_{76} A_{67}$$

$$L_9 = A_{72} A_{57} A_{45} A_{34} A_{23}$$

$$L_{10} = A_{72}A_{67}A_{56}A_{45}A_{34}A_{23}$$

Example#4: two non-touching loops

Example#4: Three non-touching loops

From Block Diagram to Signal-Flow Graph Models Example#5

From Block Diagram to Signal-Flow Graph Models Example#5

Find the gain of the given signal flow graph.

Solution

Forward Paths

$$P_{1} = G_{2}G_{4}G_{6}$$

$$P_{2} = G_{3}G_{5}G_{3}$$

$$P_{3} = G_{2}G_{1}G_{7}$$

$$P_{4} = G_{3}G_{8}G_{6}$$

$$P_{5} = -G_{2}G_{1}H_{2}G_{8}G_{6}$$

$$P_{6} = -G_{3}G_{8}H_{1}G_{1}G_{7}$$

Loops

$$L_{1} = -G_{4}H_{1}$$

$$L_{2} = -G_{5}H_{2}$$

$$L_{3} = G_{1}H_{2}G_{8}H_{1}$$

Nontouching Loops There is one pair having gain product

$$= G_4 H_1 G_5 H_2$$

$$\Delta = 1 + G_4 H_1 + G_5 H_2 - G_1 H_2 G_8 H_1 + G_4 H_1 G_5 H_2$$

$$\Delta_1 = 1 + G_5 H_2$$

$$\Delta_2$$
 1 + G_4H_1

$$\Delta_3 = \Delta_4 = \Delta_5 = \Delta_6 = 1$$

$$T = \frac{P_1 \Delta_1 + P_2 \Delta_2 + P_3 \Delta_3 + P_4 \Delta_4 + P_5 \Delta_5 + P_6 \Delta_6}{\Delta}$$

$$= \frac{G_2G_4G_6(1 + G_5H_2) + G_3G_5G_7(1 + G_4H_1)}{G_2G_1G_7 + G_3G_8G_6}$$

$$= \frac{-G_2G_6G_8G_1H_2 - G_3G_7G_8G_1H_1}{1 + G_5H_2 + G_4G_5H_1H_2 - G_1G_8H_1H_2}$$

7 loops:

$$[G_1 \cdot (-1)]; \quad [G_2 \cdot (-1)]; \quad [G_1 \cdot (-1) \cdot G_2 \cdot 1]; \quad [(-1) \cdot G_1 \cdot 1 \cdot (-1)];$$
$$[(-1) \cdot G_1 \cdot (-1) \cdot G_2 \cdot 1 \cdot (-1)]; \quad [1 \cdot G_2 \cdot 1 \cdot (-1)]; \quad [1 \cdot G_2 \cdot 1 \cdot G_1 \cdot 1 \cdot (-1)].$$

3 '2 non-touching loops':

$$[G_1 \cdot (-1)] \cdot [G_2 \cdot (-1)];$$
 $[(-1) \cdot G_1 \cdot 1 \cdot (-1)] \cdot [G_2 \cdot (-1)];$ $[1 \cdot G_2 \cdot 1 \cdot (-1)] \cdot [G_1 \cdot (-1)].$

Then:
$$\Delta = 1 + 2G_2 + 4G_1G_2$$

4 forward paths:
$$p_1=(-1)\cdot G_1\cdot 1 \qquad \Delta_1=1+G_2$$

$$p_2=(-1)\cdot G_1\cdot (-1)\cdot G_2\cdot 1 \qquad \Delta_2=1$$

$$p_3=1\cdot G_2\cdot 1 \qquad \Delta_3=1+G_1$$

$$p_4=1\cdot G_2\cdot 1\cdot G_1\cdot 1 \qquad \Delta_4=1$$

 $p_4 = 1 \cdot G_2 \cdot 1 \cdot G_1 \cdot 1$

We have

$$\frac{C(s)}{R(s)} = \frac{\sum p_k \Delta_k}{\Delta}$$

$$= \frac{G_2 - G_1 + 2G_1G_2}{1 + 2G_2 + 4G_1G_2}$$