



| Ù&@^œ^¦ <b>£</b> \$Q}&È |                                         | G€»Á/ājoÁ, EÐ, ÁÙ^ãr{ ã&ÁÖ^•ãt} |
|-------------------------|-----------------------------------------|---------------------------------|
| PÔX                     | Ùœ) 忦åÁÚXTæ¢ÁÜæ&∖ā),*ÁÛ^•c^{            |                                 |
|                         | Ü^]¦^•^} ææãç^ÁÔæk&` ææãi}•ÁËÄŒÜÔÒÁIËF€ |                                 |

#### 1. INTRODUCTION



#### 1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

#### 1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

|             | <u>Maximum</u> |             | <u>Minimum</u> |
|-------------|----------------|-------------|----------------|
| Height =    | 1700 mm        | Height =    | 1550 mm        |
| Width =     | 1050 mm        | Width =     | 970 mm         |
| Dead Load = | 3.00 psf       | Dead Load = | 1.75 psf       |

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

#### 1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005



Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

#### 2. LOAD ACTIONS

#### 2.1 Permanent Loads

| $g_{MAX} =$        | 3.00 psf |
|--------------------|----------|
| g <sub>MIN</sub> = | 1.75 psf |

Self-weight of the PV modules.

#### 2.2 Snow Loads

| Ground Snow Load, $P_g =$      | 30.00 psf |                        |
|--------------------------------|-----------|------------------------|
| Sloped Roof Snow Load, $P_s =$ | 20.62 psf | (ASCE 7-10, Eq. 7.4-1) |
| I <sub>s</sub> =               | 1.00      |                        |
| $C_s =$                        | 0.91      |                        |
| C <sub>e</sub> =               | 0.90      |                        |

1.20

#### 2.3 Wind Loads

| Design Wind Speed, V = | 160 mph | Exposure Category = C    |
|------------------------|---------|--------------------------|
| Heiaht <               | 15 ft   | Importance Category = II |

Peak Velocity Pressure,  $q_z = 40.19 \text{ psf}$  Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

#### **Pressure Coefficients**

| Cf+ <sub>TOP</sub>    | = | 1.050                            |                                                                                                                   |
|-----------------------|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Cf+ BOTTOM            | = | 1.050<br>1.650 <i>(Pressure)</i> | Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are |
| Cf- TOP, OUTER PURLIN | = | -2.400                           | located in test report # 1127/0611-1e. Negative forces are                                                        |
| Cf- TOP, INNER PURLIN | = | -1.840 (Suction)                 | applied away from the surface.                                                                                    |
| Cf- BOTTOM            | = | -1.000                           | applied away from the danage.                                                                                     |

#### 2.4 Seismic Loads - N/A

| S <sub>S</sub> = | 0.00 | R = 1.25        | ASCE 7, Section 12.8.1.3: A maximum S of 1.5             |
|------------------|------|-----------------|----------------------------------------------------------|
| $S_{DS} =$       | 0.00 | $C_S = 0$       | may be used to calculate the base shear, $C_s$ , of      |
| $S_1 =$          | 0.00 | $\rho = 1.3$    | structures under five stories and with a period, T,      |
| $S_{D1} =$       | 0.00 | $\Omega = 1.25$ | of 0.5 or less. Therefore, a $S_{ds}$ of 1.0 was used to |
| $T_a =$          | 0.00 | $C_{d} = 1.25$  | calculate C <sub>s</sub> .                               |



#### 2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

#### Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W <sup>M</sup> 1.54D + 1.3E + 0.2S <sup>R</sup> 0.56D + 1.3E <sup>R</sup> 1.54D + 1.25E + 0.2S <sup>O</sup> 0.56D + 1.25E O

#### Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W <sup>M</sup> (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E <sup>O</sup> 1.1785D + 0.65625E + 0.75S <sup>O</sup> 0.362D + 0.875E <sup>O</sup>

#### 3. STRUCTURAL ANALYSIS

#### 3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

#### 3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

| <u>Purlins</u> | Location   | <b>Diagonal Struts</b> | Location        | Front Reactions Location |
|----------------|------------|------------------------|-----------------|--------------------------|
| M13            | Тор        | M3                     | Outer           | N7 Outer                 |
| M14            | Mid-Top    | M7                     | Inner           | N15 Inner                |
| M15            | Mid-Bottom | M11                    | Outer           | N23 Outer                |
| M16            | Bottom     |                        |                 |                          |
|                |            |                        |                 |                          |
| <u>Girders</u> | Location   | Rear Struts            | <b>Location</b> | Rear Reactions Location  |
| M1             | Outer      | M2                     | Outer           | N8 Outer                 |
| M5             | Inner      | M6                     | Inner           | N16 Inner                |
| M9             | Outer      | M10                    | Outer           | N24 Outer                |
|                |            |                        |                 |                          |
| Front Struts   | Location   |                        |                 |                          |
| M4             | Outer      |                        |                 |                          |
| M8             | Inner      |                        |                 |                          |
| M12            | Outer      |                        |                 |                          |

<sup>&</sup>lt;sup>M</sup> Uses the minimum allowable module dead load.

<sup>&</sup>lt;sup>R</sup> Include redundancy factor of 1.3.

<sup>&</sup>lt;sup>o</sup> Includes overstrength factor of 1.25. Used to check seismic drift.

#### 4. MEMBER DESIGN CALCULATIONS



#### 4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).



#### 4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).





#### 4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).



#### 4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).





#### 4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).



#### 5. FOUNDATION DESIGN CALCULATIONS

#### 5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

| <u>Maximum</u>       | <u>Front</u>   | <u>Rear</u>      |  |
|----------------------|----------------|------------------|--|
| Tensile Load =       | <u>1478.66</u> | <u>7144.22</u> k |  |
| Compressive Load =   | <u>4515.45</u> | <u>5355.74</u> k |  |
| Lateral Load =       | 8.68           | 3224.97 k        |  |
| Moment (Weak Axis) = | 0.02           | <u>0.00</u> k    |  |



#### 5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).



Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check  $M_0 =$ 172687.8 in-lbs Resisting Force Required = 2616.48 lbs A minimum 132in long x 38in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4360.80 lbs to resist overturning. Minimum Width = 38 in in Weight Provided = 7576.25 lbs Sliding Force = 744.05 lbs Use a 132in long x 38in wide x 18in tall Friction = 0.4 Weight Required = 1860.13 lbs ballast foundation to resist sliding. Resisting Weight = 7576.25 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 744.05 lbs Cohesion = 130 psf Use a 132in long x 38in wide x 18in tall 34.83 ft<sup>2</sup> Area = ballast foundation. Cohesion is OK. Resisting = 3788.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

f'c =

Length =

2500 psi

8 in

 Bearing Pressure

 Ballast Width

 38 in
 39 in
 40 in
 41 in

 Pftg = (145 pcf)(11 ft)(1.5 ft)(3.17 ft) =
 7576 lbs
 7776 lbs
 7975 lbs
 8174 lbs

| ASD LC             |             | 1.0D        | + 1.0S      |             |             | 1.0D+       | - 0.6W      |             | 1           | .0D + 0.75L + | 0.45W + 0.75 | iS          |             | 0.6D+       | - 0.6W      |             |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|--------------|-------------|-------------|-------------|-------------|-------------|
| Width              | 38 in       | 39 in       | 40 in       | 41 in       | 38 in       | 39 in       | 40 in       | 41 in       | 38 in       | 39 in         | 40 in        | 41 in       | 38 in       | 39 in       | 40 in       | 41 in       |
| FA                 | 1320 lbs    | 1320 lbs    | 1320 lbs    | 1320 lbs    | 1816 lbs    | 1816 lbs    | 1816 lbs    | 1816 lbs    | 2242 lbs    | 2242 lbs      | 2242 lbs     | 2242 lbs    | -674 lbs    | -674 lbs    | -674 lbs    | -674 lbs    |
| F <sub>B</sub>     | 1340 lbs    | 1340 lbs    | 1340 lbs    | 1340 lbs    | 2199 lbs    | 2199 lbs    | 2199 lbs    | 2199 lbs    | 2543 lbs    | 2543 lbs      | 2543 lbs     | 2543 lbs    | -3290 lbs   | -3290 lbs   | -3290 lbs   | -3290 lbs   |
| F <sub>V</sub>     | 143 lbs     | 143 lbs     | 143 lbs     | 143 lbs     | 1316 lbs    | 1316 lbs    | 1316 lbs    | 1316 lbs    | 1084 lbs    | 1084 lbs      | 1084 lbs     | 1084 lbs    | -1488 lbs   | -1488 lbs   | -1488 lbs   | -1488 lbs   |
| P <sub>total</sub> | 10236 lbs   | 10436 lbs   | 10635 lbs   | 10834 lbs   | 11591 lbs   | 11790 lbs   | 11990 lbs   | 12189 lbs   | 12361 lbs   | 12560 lbs     | 12759 lbs    | 12959 lbs   | 582 lbs     | 702 lbs     | 822 lbs     | 941 lbs     |
| M                  | 3342 lbs-ft | 3342 lbs-ft | 3342 lbs-ft | 3342 lbs-ft | 5416 lbs-ft | 5416 lbs-ft | 5416 lbs-ft | 5416 lbs-ft | 6289 lbs-ft | 6289 lbs-ft   | 6289 lbs-ft  | 6289 lbs-ft | 2518 lbs-ft | 2518 lbs-ft | 2518 lbs-ft | 2518 lbs-ft |
| е                  | 0.33 ft     | 0.32 ft     | 0.31 ft     | 0.31 ft     | 0.47 ft     | 0.46 ft     | 0.45 ft     | 0.44 ft     | 0.51 ft     | 0.50 ft       | 0.49 ft      | 0.49 ft     | 4.32 ft     | 3.59 ft     | 3.06 ft     | 2.68 ft     |
| L/6                | 1.83 ft       | 1.83 ft      | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     | 1.83 ft     |
| f <sub>min</sub>   | 241.5 psf   | 240.9 psf   | 240.3 psf   | 239.8 psf   | 247.9 psf   | 247.2 psf   | 246.4 psf   | 245.7 psf   | 256.4 psf   | 255.4 psf     | 254.4 psf    | 253.5 psf   | 0.0 psf     | 0.0 psf     | 0.0 psf     | 0.0 psf     |
| f <sub>max</sub>   | 346.2 psf   | 342.9 psf   | 339.8 psf   | 336.8 psf   | 417.6 psf   | 412.4 psf   | 407.6 psf   | 402.9 psf   | 453.3 psf   | 447.3 psf     | 441.5 psf    | 436.1 psf   | 104.3 psf   | 75.3 psf    | 67.5 psf    | 65.0 psf    |

Maximum Bearing Pressure = 453 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 38in wide x 18in tall ballast foundation for an acceptable bearing pressure.



#### Weak Side Design

#### Overturning Check

 $M_0 = 1177.3 \text{ ft-lbs}$ 

Resisting Force Required = 743.56 lbs S.F. = 1.67

Weight Required = 1239.27 lbs Minimum Width = 38 in in Weight Provided = 7576.25 lbs A minimum 132in long x 38in wide x 18in tall ballast foundation is required to resist overturning.

#### Bearing Pressure

| ASD LC             | 1         | .238D + 0.875 | 5E        | 1.1785D + 0.65625E + 0.75S |           |           | 0.362D + 0.875E |           |          |  |
|--------------------|-----------|---------------|-----------|----------------------------|-----------|-----------|-----------------|-----------|----------|--|
| Width              |           | 38 in         |           | 38 in                      |           |           | 38 in           |           |          |  |
| Support            | Outer     | Inner         | Outer     | Outer                      | Inner     | Outer     | Outer           | Inner     | Outer    |  |
| F <sub>Y</sub>     | 213 lbs   | 550 lbs       | 213 lbs   | 750 lbs                    | 2185 lbs  | 750 lbs   | 62 lbs          | 161 lbs   | 62 lbs   |  |
| F <sub>V</sub>     | 1 lbs     | 0 lbs         | 1 lbs     | 3 lbs                      | 0 lbs     | 3 lbs     | 0 lbs           | 0 lbs     | 0 lbs    |  |
| P <sub>total</sub> | 9593 lbs  | 7576 lbs      | 9593 lbs  | 9678 lbs                   | 7576 lbs  | 9678 lbs  | 2805 lbs        | 7576 lbs  | 2805 lbs |  |
| М                  | 3 lbs-ft  | 0 lbs-ft      | 3 lbs-ft  | 10 lbs-ft                  | 0 lbs-ft  | 10 lbs-ft | 0 lbs-ft        | 0 lbs-ft  | 0 lbs-ft |  |
| е                  | 0.00 ft   | 0.00 ft       | 0.00 ft   | 0.00 ft                    | 0.00 ft   | 0.00 ft   | 0.00 ft         | 0.00 ft   | 0.00 ft  |  |
| L/6                | 0.53 ft   | 0.53 ft       | 0.53 ft   | 0.53 ft                    | 0.53 ft   | 0.53 ft   | 0.53 ft         | 0.53 ft   | 0.53 ft  |  |
| f <sub>min</sub>   | 275.2 psf | 217.5 psf     | 275.2 psf | 277.3 psf                  | 217.5 psf | 277.3 psf | 80.5 psf        | 217.5 psf | 80.5 psf |  |
| f <sub>max</sub>   | 275.6 psf | 217.5 psf     | 275.6 psf | 278.4 psf                  | 217.5 psf | 278.4 psf | 80.5 psf        | 217.5 psf | 80.5 psf |  |



Maximum Bearing Pressure = 278 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 38in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 38in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

#### 5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.





#### 6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.





#### 6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

| Front Strut               |            | Rear Strut                                     |                  |
|---------------------------|------------|------------------------------------------------|------------------|
| Maximum Axial Load =      | 3.473 k    | Maximum Axial Load =                           | 4.908 k          |
| M12 Bolt Capacity =       | 12.808 k   | M12 Bolt Capacity =                            | 12.808 k         |
| Strut Bearing Capacity =  | 7.421 k    | Strut Bearing Capacity =                       | 7.421 k          |
| Utilization =             | <u>47%</u> | Utilization =                                  | <u>66%</u>       |
| Diagonal Strut            |            |                                                |                  |
| Maximum Axial Load =      | 2.228 k    |                                                |                  |
| M12 Bolt Shear Capacity = | 12.808 k   | Bolt and bearing capacities are accounting for | or double shear. |
| Strut Bearing Capacity =  | 7.421 k    | (ASCE 8-02, Eq. 5.3.4-1)                       |                  |
| Utilization =             | <u>30%</u> |                                                |                  |
|                           | 0          | Struts under compression are                   | shown to demon   |
|                           |            | transfer from the girder. Singl                |                  |

under compression are shown to demonstrate the load er from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

#### 7. SEISMIC DESIGN

#### 7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h<sub>sx</sub> = 40.12 in Allowable Story Drift for All Other Structures,  $\Delta$  = {  $0.020h_{sx}$ 0.802 in Max Drift,  $\Delta_{MAX}$  = 0.023 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.



#### APPENDIX A



#### A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5** 

#### Strong Axis:

#### 3.4.14

$$L_b = 102 \text{ in}$$

$$J = 0.432$$

$$282.18$$

$$\left(R_C - \frac{\theta_y}{2} F_{CV}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.9 \text{ ksi}$$

#### Weak Axis:

#### 3.4.14

$$L_{b} = 102$$

$$J = 0.432$$

$$179.449$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 = 1701.56  

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 29.0$$

#### 3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

#### 3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

#### 3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F Cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$ 

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$
  
2.155 in<sup>4</sup>

$$y = 41.015 \text{ mm}$$
  
 $Sx = 1.335 \text{ in}^3$ 

$$M_{max}St = 2.788 \text{ k-ft}$$

# 3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$x = 45.5 \text{ III}$$
  
Sy = 0.599 in<sup>3</sup>

$$M_{max}Wk = 1.152 k-ft$$



#### Compression

#### 3.4.9

b/t = 32.195  
S1 = 12.21 (See 3.4.16 above for formula)  
S2 = 32.70 (See 3.4.16 above for formula)  

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$
  
 $\phi F_L = 25.1 \text{ ksi}$   
b/t = 37.0588  
S1 = 12.21  
S2 = 32.70  
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$   
 $\phi F_L = 21.9 \text{ ksi}$ 

#### 3.4.10

Rb/t = 0.0  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  
 $\phi F_L = \phi y Fcy$   
 $\phi F_L = 33.25 \text{ ksi}$   
 $\phi F_L = 21.94 \text{ ksi}$   
 $\phi F_L = 1215.13 \text{ mm}^2$   
1.88 in<sup>2</sup>  
 $\phi F_L = 41.32 \text{ kips}$ 

#### A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

#### Girder = BF0

Strong Axis:

# 3.4.14 88.9 in $L_b =$ J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$φF_L = φb[Bc-1.6Dc^*ν((LbSc)/(Cb^*ν)]$$
 $φF_L = 29.4 \text{ ksi}$ 

#### Weak Axis:

$$L_b = 88.9$$
 $J = 1.08$ 
 $161.829$ 

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_1 = 29.2$ 

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

#### 3.4.16

b/t = 16.2  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

#### 3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$



3.4.16.1 Used Rb/t = 18.1 
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$
$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$ 

31.1 ksi

 $\phi F_L =$ 

3.4.16.1 N/A for Weak Direction

# 3.4.18 h/t = 7.4 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ S1 = 35.2 m = 0.68 $C_0 = 41.067$ Cc = 43.717 $S2 = \frac{k_1Bbr}{mDbr}$ S2 = 73.8

3.4.18 
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

 $\phi F_L = 1.3 \phi y F c y$ 

43.2 ksi

 $\phi F_L =$ 

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $ly = 923544 \text{ mm}^4$ 
 $2.219 \text{ in}^4$ 
 $x = 40 \text{ mm}$ 
 $Sy = 1.409 \text{ in}^3$ 
 $M_{max} W k = 3.904 \text{ k-ft}$ 

## Compression

#### 3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 =  $\phi F_L = \phi y F c y$  $\phi F_L =$ 33.3 ksi

#### 3.4.10

 $P_{max} =$ 

Rb/t = 18.1  

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87  
S2 = 131.3  

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

#### A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition



Strut = 55x55

#### Strong Axis:

#### 3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 31.4 \text{ ksi}$$

#### Weak Axis:

#### 3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

#### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

#### 3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

## 3.4.16.1

N/A for Weak Direction

#### 3.4.18

A.18  

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in<sup>3</sup>

#### 3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$ 

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$ 

Sx=

# SCHLETTER

#### Compression

3.4.7 
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

#### 3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

#### 3.4.10

28.85 kips

#### A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

#### $Strut = \underline{55x55}$

 $P_{max} =$ 

#### Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

# SCHLETTER

#### 3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

# 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

# Compression

#### 3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

#### 3.4.16

b/t = 24.5  

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$ 

0.621 in<sup>3</sup>

1.460 k-ft



#### 3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$
  
 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ 

$$\phi F_L = 28.2 \text{ ksi}$$

#### 3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$
 $P_{\text{max}} = 7.72 \text{ kips}$ 

# A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

#### Strut = 55x55

#### Strong Axis:

# 3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

# 3.4.16

Weak Axis:

55.91

0.942

30.4

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ 

$$b/t = 24.5$$

 $S2 = \left(\frac{C_c}{1.6}\right)^2$  S2 = 1701.56

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

 $\phi F_L =$ 

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{by}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$



3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F Cy$$

 $\phi F_L = 38.9 \text{ ksi}$ 

#### 3.4.16.1

N/A for Weak Direction

#### 3.4.18

h/t = 24.5  

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18  

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$ 

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

#### Compression

#### 3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.76107 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

#### 3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula)  $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70  $\phi F_L = \phi c[Bp-1.6Dp*b/t]$  $\phi F_L = 28.2 \text{ ksi}$ 

Rev. 11.05.2015



#### 3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left( \frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{$\phi$F}_L &= & \text{$\phi$F}_L \text{$\psi$F}_L \text{$\psi$F}$$

#### **APPENDIX B**

#### B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.



: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_

# **Basic Load Cases**

|   | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me. | .Surface( |
|---|----------------------|----------|-----------|-----------|-----------|-------|-------|-----------|-----------|-----------|
| 1 | Dead Load, Max       | DĽ       | •         | -1        |           |       |       | 4         | ,         | ,         |
| 2 | Dead Load, Min       | DL       |           | -1        |           |       |       | 4         |           |           |
| 3 | Snow Load            | SL       |           |           |           |       |       | 4         |           |           |
| 4 | Wind Load - Pressure | WL       |           |           |           |       |       | 4         |           |           |
| 5 | Wind Load - Suction  | WL       |           |           |           |       |       | 4         |           |           |
| 6 | Seismic - Lateral    | EL       |           |           |           |       |       |           |           |           |

# Member Distributed Loads (BLC 1 : Dead Load, Max)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 2 | M14          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 3 | M15          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |
| 4 | M16          | Υ         | -8.366                   | -8.366                 | 0                    | 0                  |

# Member Distributed Loads (BLC 2 : Dead Load, Min)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 2 | M14          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 3 | M15          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |
| 4 | M16          | Υ         | -4.45                    | -4.45                  | 0                    | 0                  |

# Member Distributed Loads (BLC 3: Snow Load)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 2 | M14          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 3 | M15          | Υ         | -54.031                  | -54.031                | 0                    | 0                  |
| 4 | M16          | V         | -54 031                  | -54 031                | 0                    | 0                  |

## Member Distributed Loads (BLC 4: Wind Load - Pressure)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | -117.695                 | -117.695               | 0                    | 0                  |
| 2 | M14          | ٧         | -117.695                 | -117.695               | 0                    | 0                  |
| 3 | M15          | ý         | -184.95                  | -184.95                | 0                    | 0                  |
| 4 | M16          | V         | -184.95                  | -184.95                | 0                    | 0                  |

# Member Distributed Loads (BLC 5: Wind Load - Suction)

|   | Member Label | Direction | Start Magnitude[lb/ft,F] | End Magnitude[lb/ft,F] | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|--------------------------|------------------------|----------------------|--------------------|
| 1 | M13          | V         | 269.018                  | 269.018                | 0                    | 0                  |
| 2 | M14          | V         | 206.247                  | 206.247                | 0                    | 0                  |
| 3 | M15          | V         | 112.091                  | 112.091                | 0                    | 0                  |
| 4 | M16          | V         | 112 091                  | 112 091                | 0                    | 0                  |

# **Load Combinations**

|   | Description                  | S    | P | S | В | Fa   | В | Fa  | В | Fa | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | . B | Fa | В | .Fa |
|---|------------------------------|------|---|---|---|------|---|-----|---|----|---|------|---|----|---|----|---|----|---|----|-----|----|---|-----|
| 1 | LRFD 1.2D + 1.6S + 0.5W      | Yes  | Υ |   | 1 | 1.2  | 3 | 1.6 | 4 | .5 |   |      |   |    |   |    |   |    |   |    |     |    |   |     |
| 2 | LRFD 1.2D + 1.0W + 0.5S      | Yes  | Υ |   | 1 | 1.2  | 3 | .5  | 4 | 1  |   |      |   |    |   |    |   |    |   |    |     |    |   |     |
| 3 | LRFD 0.9D + 1.0W             | Yes  | Υ |   | 2 | .9   |   |     |   |    | 5 | 1    |   |    |   |    |   |    |   |    |     |    |   |     |
| 4 | LATERAL - LRFD 1.54D + 1.3E  | .Yes | Υ |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |     |    |   |     |
| 5 | LATERAL - LRFD 0.56D + 1.3E  | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.3  |   |    |   |    |   |    |   |    |     |    |   |     |
| 6 | LATERAL - LRFD 1.54D + 1.25  | Yes  | Υ |   | 1 | 1.54 | 3 | .2  |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |     |    |   |     |
| 7 | LATERAL - LRFD 0.56D + 1.25E | Yes  | Υ |   | 1 | .56  |   |     |   |    | 6 | 1.25 |   |    |   |    |   |    |   |    |     |    |   |     |



Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_

# **Load Combinations (Continued)**

|    | Description                   | S   | P | S | В | Fa   | В | Fa  | В | Fa  | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|----|-------------------------------|-----|---|---|---|------|---|-----|---|-----|---|------|---|----|---|----|---|----|---|----|---|----|---|----|
| 8  |                               |     |   |   |   |      |   |     |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 9  | ASD 1.0D + 1.0S               | Yes | Υ |   | 1 | 1    | 3 | 1   |   |     |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 10 | ASD 1.0D + 0.6W               | Yes | Υ |   | 1 | 1    |   |     | 4 | .6  |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 11 | ASD 1.0D + 0.75L + 0.45W + 0  | Yes | Υ |   | 1 | 1    | 3 | .75 | 4 | .45 |   |      |   |    |   |    |   |    |   |    |   |    |   |    |
| 12 | ASD 0.6D + 0.6W               | Yes | Υ |   | 2 | .6   |   |     |   |     | 5 | .6   |   |    |   |    |   |    |   |    |   |    |   |    |
| 13 | LATERAL - ASD 1.238D + 0.875E | Yes | Υ |   | 1 | 1.2  |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |
|    | LATERAL - ASD 1.1785D + 0.65  |     |   |   | 1 | 1.1  | 3 | .75 |   |     | 6 | .656 |   |    |   |    |   |    |   |    |   |    |   |    |
| 15 | LATERAL - ASD 0.362D + 0.875E | Yes | Υ |   | 1 | .362 |   |     |   |     | 6 | .875 |   |    |   |    |   |    |   |    |   |    |   |    |

# **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]     | LC | Z [lb] | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|------------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N8      | max | 638.246   | 2  | 1290.407   | 2  | .622   | 1  | .003      | 1  | 0         | 1  | Ó         | 1  |
| 2  |         | min | -792.507  | 3  | -1702.993  | 3  | .026   | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 3  | N7      | max | .026      | 9  | 1175.424   | 1  | 254    | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 4  |         | min | 207       | 2  | -332.29    | 3  | -6.675 | 1  | 014       | 1  | 0         | 1  | 0         | 1  |
| 5  | N15     | max | .022      | 9  | 3473.421   | 2  | 0      | 2  | 0         | 2  | 0         | 1  | 0         | 1  |
| 6  |         | min | -2.317    | 2  | -1137.428  | 3  | 0      | 1  | 0         | 1  | 0         | 1  | 0         | 1  |
| 7  | N16     | max | 2245.602  | 2  | 4119.8     | 2  | 0      | 11 | 0         | 11 | 0         | 1  | 0         | 1  |
| 8  |         | min | -2480.748 | 3  | -5495.551  | 3  | 0      | 12 | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | N23     | max | .026      | 9  | 1175.424   | 1  | 6.675  | 1  | .014      | 1  | 0         | 1  | 0         | 1  |
| 10 |         | min | 207       | 2  | -332.29    | 3  | .254   | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 11 | N24     | max | 638.246   | 2  | 1290.407   | 2  | 026    | 15 | 0         | 15 | 0         | 1  | 0         | 1  |
| 12 |         | min | -792.507  | 3  | -1702.993  | 3  | 622    | 1  | 003       | 1  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 3519.363  | 2  | 12452.587  | 2  | 0      | 2  | ·         |    |           |    | ·         |    |
| 14 |         | min | -4066.824 | 3  | -10703.546 | 3  | 0      | 1  |           |    |           |    |           |    |

# **Envelope Member Section Forces**

|    | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | <u>LC</u> |
|----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|-----------|
| 1  | M13    | 1   | max | 69.537    | 1  | 482.587     | 2  | -4.971      | 15 | 0            | 15 | .165     | 1  | 0        | 1         |
| 2  |        |     | min | 2.567     | 15 | -842.088    | 3  | -136.133    | 1  | 016          | 2  | .006     | 15 | 0        | 3         |
| 3  |        | 2   | max | 69.537    | 1  | 336.943     | 2  | -3.817      | 15 | 0            | 15 | .052     | 1  | .678     | 3         |
| 4  |        |     | min | 2.567     | 15 | -592.772    | 3  | -104.382    | 1  | 016          | 2  | .002     | 15 | 387      | 2         |
| 5  |        | 3   | max | 69.537    | 1  | 191.299     | 2  | -2.663      | 15 | 0            | 15 | .002     | 3  | 1.12     | 3         |
| 6  |        |     | min | 2.567     | 15 | -343.455    | 3  | -72.632     | 1  | 016          | 2  | 032      | 1  | 636      | 2         |
| 7  |        | 4   | max | 69.537    | 1  | 45.842      | 1  | -1.509      | 15 | 0            | 15 | 002      | 12 | 1.326    | 3         |
| 8  |        |     | min | 2.567     | 15 | -94.138     | 3  | -40.881     | 1  | 016          | 2  | 086      | 1  | 748      | 2         |
| 9  |        | 5   | max | 69.537    | 1  | 155.179     | 3  | 234         | 10 | 0            | 15 | 004      | 12 | 1.297    | 3         |
| 10 |        |     | min | 2.567     | 15 | -99.989     | 2  | -9.13       | 1  | 016          | 2  | 109      | 1  | 723      | 2         |
| 11 |        | 6   | max | 69.537    | 1  | 404.495     | 3  | 22.621      | 1  | 0            | 15 | 004      | 15 | 1.033    | 3         |
| 12 |        |     | min | 2.567     | 15 | -245.633    | 2  | 519         | 3  | 016          | 2  | 103      | 1  | 559      | 2         |
| 13 |        | 7   | max | 69.537    | 1  | 653.812     | 3  | 54.371      | 1  | 0            | 15 | 002      | 15 | .533     | 3         |
| 14 |        |     | min | 2.567     | 15 | -391.276    | 2  | .921        | 12 | 016          | 2  | 066      | 1  | 26       | 1         |
| 15 |        | 8   | max | 69.537    | 1  | 903.129     | 3  | 86.122      | 1  | 0            | 15 | .003     | 2  | .18      | 2         |
| 16 |        |     | min | 2.567     | 15 | -536.92     | 2  | 2.075       | 12 | 016          | 2  | 005      | 3  | 202      | 3         |
| 17 |        | 9   | max | 69.537    | 1  | 1152.446    | 3  | 117.873     | 1  | 0            | 15 | .096     | 1  | .755     | 2         |
| 18 |        |     | min | 2.567     | 15 | -682.564    | 2  | 3.229       | 12 | 016          | 2  | 0        | 3  | -1.172   | 3         |
| 19 |        | 10  | max | 69.537    | 1  | 1401.762    | 3  | 149.624     | 1  | .016         | 2  | .223     | 1  | 1.469    | 2         |
| 20 |        |     | min | 2.567     | 15 | -828.208    | 2  | 4.383       | 12 | 0            | 12 | .003     | 12 | -2.379   | 3         |
| 21 |        | 11  | max | 69.537    | 1  | 682.564     | 2  | -3.229      | 12 | .016         | 2  | .096     | 1  | .755     | 2         |
| 22 |        |     | min | 2.567     | 15 | -1152.446   | 3  | -117.873    | 1  | 0            | 15 | 0        | 3  | -1.172   | 3         |
| 23 |        | 12  | max | 69.537    | 1  | 536.92      | 2  | -2.075      | 12 | .016         | 2  | .003     | 2  | .18      | 2         |
| 24 |        |     | min | 2.567     | 15 | -903.129    | 3  | -86.122     | 1  | 0            | 15 | 005      | 3  | 202      | 3         |
| 25 |        | 13  | max | 69.537    | 1  | 391.276     | 2  | 921         | 12 | .016         | 2  | 002      | 15 | .533     | 3         |
| 26 |        |     | min | 2.567     | 15 | -653.812    | 3  | -54.371     | 1  | 0            | 15 | 066      | 1  | 26       | 1         |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|    | Member | Sec             |     | Axial[lb]    | LC |          | LC |          | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|----|--------|-----------------|-----|--------------|----|----------|----|----------|----|--------------|----|----------|----|----------|----|
| 27 |        | 14              | max | 69.537       | 1_ | 245.633  | 2  | .519     | 3  | .016         | 2  | 004      | 15 | 1.033    | 3  |
| 28 |        |                 | min | 2.567        | 15 | -404.495 | 3  | -22.621  | 1  | 0            | 15 | 103      | 1  | 559      | 2  |
| 29 |        | 15              | max | 69.537       | 1  | 99.989   | 2  | 9.13     | 1  | .016         | 2  | 004      | 12 | 1.297    | 3  |
| 30 |        |                 | min | 2.567        | 15 | -155.179 | 3  | .234     | 10 | 0            | 15 | 109      | 1  | 723      | 2  |
| 31 |        | 16              | max | 69.537       | 1  | 94.138   | 3  | 40.881   | 1  | .016         | 2  | 002      | 12 | 1.326    | 3  |
| 32 |        |                 | min | 2.567        | 15 | -45.842  | 1  | 1.509    | 15 | 0            | 15 | 086      | 1  | 748      | 2  |
| 33 |        | 17              | max | 69.537       | 1  | 343.455  | 3  | 72.632   | 1  | .016         | 2  | .002     | 3  | 1.12     | 3  |
| 34 |        |                 | min | 2.567        | 15 | -191.299 | 2  | 2.663    | 15 | 0            | 15 | 032      | 1  | 636      | 2  |
| 35 |        | 18              | max | 69.537       | 1  | 592.772  | 3  | 104.382  | 1  | .016         | 2  | .052     | 1  | .678     | 3  |
| 36 |        |                 | min | 2.567        | 15 | -336.943 | 2  | 3.817    | 15 | 0            | 15 | .002     | 15 | 387      | 2  |
| 37 |        | 19              | max | 69.537       | 1  | 842.088  | 3  | 136.133  | 1  | .016         | 2  | .165     | 1  | 0        | 1  |
| 38 |        |                 | min | 2.567        | 15 | -482.587 | 2  | 4.971    | 15 | 0            | 15 | .006     | 15 | 0        | 3  |
| 39 | M14    | 1               | max | 35.785       | 1  | 530.587  | 2  | -5.147   | 15 | .012         | 3  | .192     | 1  | 0        | 1  |
| 40 | IVIIT  | <u> </u>        | min | 1.32         | 15 | -670.426 | 3  | -140.945 | 1  | 014          | 2  | .007     | 15 | 0        | 3  |
| 41 |        | 2               | max | 35.785       | 1  | 384.943  | 2  | -3.993   | 15 | .012         | 3  | .074     | 1  | .543     | 3  |
| 42 |        |                 | min | 1.32         | 15 | -480.393 | 3  | -109.194 | 1  | 014          | 2  | .003     | 15 | 432      | 2  |
| 43 |        | 3               |     | 35.785       | 1  | 239.299  | 2  | -2.838   | 15 | .012         | 3  | .003     | 3  | .907     | 3  |
| 44 |        | 3               | max | 1.32         |    | -290.36  | 3  | -77.444  | 1  |              | 2  | 014      | 1  |          | 2  |
|    |        | 1               | min |              | 15 |          |    |          |    | 014          |    |          |    | 727      |    |
| 45 |        | 4               | max | 35.785       | 1  | 93.656   | 2  | -1.684   | 15 | .012         | 3  | 001      | 12 | 1.092    | 3  |
| 46 |        | -               | min | 1.32         | 15 | -100.327 | 3  | -45.693  | 1_ | 014          | 2  | 072      | 1  | 884      | 2  |
| 47 |        | 5               | max | 35.785       | 1  | 89.706   | 3  | 53       | 15 | .012         | 3  | 003      | 12 | 1.097    | 3  |
| 48 |        |                 | min | 1.32         | 15 | -53.91   | 1  | -13.942  | 1  | 014          | 2  | 1        | 1_ | 904      | 2  |
| 49 |        | 6               | max | 35.785       | 1  | 279.739  | 3  | 17.809   | 1  | .012         | 3  | 004      | 15 | .922     | 3  |
| 50 |        |                 | min | 1.32         | 15 | -197.632 | 2  | 787      | 3  | 014          | 2  | 098      | 1  | 786      | 2  |
| 51 |        | 7               | max | 35.785       | 1_ | 469.772  | 3  | 49.56    | 1  | .012         | 3  | 002      | 15 | .569     | 3  |
| 52 |        |                 | min | 1.32         | 15 | -343.276 | 2  | .743     | 12 | 014          | 2  | 067      | 1  | 531      | 2  |
| 53 |        | 8               | max | 35.785       | 1_ | 659.805  | 3  | 81.31    | 1  | .012         | 3  | .001     | 10 | .035     | 3  |
| 54 |        |                 | min | 1.32         | 15 | -488.92  | 2  | 1.897    | 12 | 014          | 2  | 005      | 1  | 138      | 2  |
| 55 |        | 9               | max | 35.785       | 1  | 849.838  | 3  | 113.061  | 1  | .012         | 3  | .087     | 1  | .407     | 1  |
| 56 |        |                 | min | 1.32         | 15 | -634.564 | 2  | 3.051    | 12 | 014          | 2  | 001      | 3  | 678      | 3  |
| 57 |        | 10              | max | 35.785       | 1  | 1039.871 | 3  | 144.812  | 1  | .014         | 2  | .209     | 1  | 1.065    | 1  |
| 58 |        |                 | min | 1.32         | 15 | -780.208 | 2  | 4.205    | 12 | 012          | 3  | .003     | 12 | -1.57    | 3  |
| 59 |        | 11              | max | 35.785       | 1  | 634.564  | 2  | -3.051   | 12 | .014         | 2  | .087     | 1  | .407     | 1  |
| 60 |        |                 | min | 1.32         | 15 | -849.838 | 3  | -113.061 | 1  | 012          | 3  | 001      | 3  | 678      | 3  |
| 61 |        | 12              | max | 35.785       | 1  | 488.92   | 2  | -1.897   | 12 | .014         | 2  | .001     | 10 | .035     | 3  |
| 62 |        |                 | min | 1.32         | 15 | -659.805 | 3  | -81.31   | 1  | 012          | 3  | 005      | 1  | 138      | 2  |
| 63 |        | 13              | max | 35.785       | 1  | 343.276  | 2  | 743      | 12 | .014         | 2  | 002      | 15 | .569     | 3  |
| 64 |        |                 | min | 1.32         | 15 | -469.772 | 3  | -49.56   | 1  | 012          | 3  | 067      | 1  | 531      | 2  |
| 65 |        | 14              | max | 35.785       | 1  | 197.632  | 2  | .787     | 3  | .014         | 2  | 004      | 15 | .922     | 3  |
| 66 |        |                 | min | 1.32         | 15 | -279.739 | 3  | -17.809  | 1  | 012          | 3  | 098      | 1  | 786      | 2  |
| 67 |        | 15              | max |              | 1  | 53.91    | 1  | 13.942   | 1  | .014         | 2  | 003      | 12 | 1.097    | 3  |
| 68 |        |                 | min | 1.32         | 15 | -89.706  | 3  | .53      | 15 | 012          | 3  | 1        | 1  | 904      | 2  |
| 69 |        | 16              | max | 35.785       | 1  | 100.327  | 3  | 45.693   | 1  | .014         | 2  | 001      | 12 | 1.092    | 3  |
| 70 |        | '               | min | 1.32         | 15 | -93.656  | 2  | 1.684    | 15 | 012          | 3  | 072      | 1  | 884      | 2  |
| 71 |        | 17              | max | 35.785       | 1  | 290.36   | 3  | 77.444   | 1  | .012         | 2  | .003     | 3  | .907     | 3  |
| 72 |        | <del>  ''</del> | min | 1.32         | 15 | -239.299 | 2  | 2.838    | 15 | 012          | 3  | 014      | 1  | 727      | 2  |
| 73 |        | 18              | max | 35.785       | 1  | 480.393  | 3  | 109.194  | 1  | .014         | 2  | .074     | 1  | .543     | 3  |
| 74 |        | 10              | min | 1.32         | 15 | -384.943 | 2  | 3.993    | 15 | 012          | 3  | .003     | 15 | 432      | 2  |
| 75 |        | 19              |     | 35.785       | 1  | 670.426  | 3  | 140.945  | 1  | .014         | 2  | .192     | 1  | 432<br>0 | 1  |
|    |        | 19              | max | 1.32         |    |          |    | 5.147    |    |              |    |          |    |          | 3  |
| 76 | N/14 E | 4               | min |              | 15 | -530.587 | 2  |          | 15 | 012          | 3  | .007     | 15 | 0        |    |
| 77 | M15    | 1               | max | -1.38        | 15 | 745.057  | 2  | -5.145   | 15 | .014         | 2  | .192     | 1_ | 0        | 2  |
| 78 |        |                 | min | -37.27       | 1_ | -370.763 | 3  | -140.947 | 1_ | 01           | 3  | .007     | 15 | 0        | 3  |
| 79 |        | 2               | max | <u>-1.38</u> | 15 | 535.895  | 2  | -3.991   | 15 | .014         | 2  | .074     | 1  | .302     | 3  |
| 80 |        |                 | min | -37.27       | 1  | -269.656 | 3  | -109.196 |    | 01           | 3  | .003     | 15 | 605      | 2  |
| 81 |        | 3               | max | <u>-1.38</u> | 15 | 326.732  | 2  | -2.837   | 15 | .014         | 2  | .003     | 3  | .509     | 3  |
| 82 |        |                 | min | -37.27       | 1  | -168.548 |    | -77.445  | 1_ | 01           | 3  | 014      | 1  | -1.012   | 2  |
| 83 |        | 4               | max | -1.38        | 15 | 117.57   | 2  | -1.683   | 15 | .014         | 2  | 001      | 12 | .621     | 3  |



Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 84  |        |     | min | -37.27    | 1  | -67.44      | 3  | -45.694     | 1  | 01           | 3  | 072      | 1  | -1.222   | 2  |
| 85  |        | 5   | max | -1.38     | 15 | 33.668      | 3  | 529         | 15 | .014         | 2  | 003      | 12 | .637     | 3  |
| 86  |        |     | min | -37.27    | 1  | -91.593     | 2  | -13.944     | 1  | 01           | 3  | 1        | 1  | -1.234   | 2  |
| 87  |        | 6   | max | -1.38     | 15 | 134.776     | 3  | 17.807      | 1  | .014         | 2  | 004      | 15 | .557     | 3  |
| 88  |        |     | min | -37.27    | 1  | -300.755    | 2  | 654         | 3  | 01           | 3  | 098      | 1  | -1.049   | 2  |
| 89  |        | 7   | max | -1.38     | 15 | 235.884     | 3  | 49.558      | 1  | .014         | 2  | 002      | 15 | .382     | 3  |
| 90  |        |     | min | -37.27    | 1  | -509.918    | 2  | .823        | 12 | 01           | 3  | 067      | 1  | 666      | 2  |
| 91  |        | 8   | max | -1.38     | 15 | 336.992     | 3  | 81.309      | 1  | .014         | 2  | .001     | 10 | .112     | 3  |
| 92  |        |     | min | -37.27    | 1  | -719.08     | 2  | 1.977       | 12 | 01           | 3  | 005      | 1  | 089      | 1  |
| 93  |        | 9   | max | -1.38     | 15 | 438.1       | 3  | 113.059     | 1  | .014         | 2  | .087     | 1  | .692     | 2  |
| 94  |        |     | min | -37.27    | 1  | -928.243    | 2  | 3.131       | 12 | 01           | 3  | 0        | 3  | 254      | 3  |
| 95  |        | 10  | max | -1.38     | 15 | 539.208     | 3  | 144.81      | 1  | .01          | 3  | .209     | 1  | 1.667    | 2  |
| 96  |        |     | min | -37.27    | 1  | -1137.405   | 2  | 4.285       | 12 | 014          | 2  | .003     | 12 | 716      | 3  |
| 97  |        | 11  | max | -1.38     | 15 | 928.243     | 2  | -3.131      | 12 | .01          | 3  | .087     | 1  | .692     | 2  |
| 98  |        |     | min | -37.27    | 1  | -438.1      | 3  | -113.059    | 1  | 014          | 2  | 0        | 3  | 254      | 3  |
| 99  |        | 12  | max | -1.38     | 15 | 719.08      | 2  | -1.977      | 12 | .01          | 3  | .001     | 10 | .112     | 3  |
| 100 |        |     | min | -37.27    | 1  | -336.992    | 3  | -81.309     | 1  | 014          | 2  | 005      | 1  | 089      | 1  |
| 101 |        | 13  | max | -1.38     | 15 | 509.918     | 2  | 823         | 12 | .01          | 3  | 002      | 15 | .382     | 3  |
| 102 |        |     | min | -37.27    | 1  | -235.884    | 3  | -49.558     | 1  | 014          | 2  | 067      | 1  | 666      | 2  |
| 103 |        | 14  | max | -1.38     | 15 | 300.755     | 2  | .654        | 3  | .01          | 3  | 004      | 15 | .557     | 3  |
| 104 |        |     | min | -37.27    | 1  | -134.776    | 3  | -17.807     | 1  | 014          | 2  | 098      | 1  | -1.049   | 2  |
| 105 |        | 15  | max | -1.38     | 15 | 91.593      | 2  | 13.944      | 1  | .01          | 3  | 003      | 12 | .637     | 3  |
| 106 |        |     | min | -37.27    | 1  | -33.668     | 3  | .529        | 15 | 014          | 2  | 1        | 1  | -1.234   | 2  |
| 107 |        | 16  | max | -1.38     | 15 | 67.44       | 3  | 45.694      | 1  | .01          | 3  | 001      | 12 | .621     | 3  |
| 108 |        |     | min | -37.27    | 1  | -117.57     | 2  | 1.683       | 15 | 014          | 2  | 072      | 1  | -1.222   | 2  |
| 109 |        | 17  | max | -1.38     | 15 | 168.548     | 3  | 77.445      | 1  | .01          | 3  | .003     | 3  | .509     | 3  |
| 110 |        |     | min | -37.27    | 1  | -326.732    | 2  | 2.837       | 15 | 014          | 2  | 014      | 1  | -1.012   | 2  |
| 111 |        | 18  | max | -1.38     | 15 | 269.656     | 3  | 109.196     | 1  | .01          | 3  | .074     | 1  | .302     | 3  |
| 112 |        |     | min | -37.27    | 1  | -535.895    | 2  | 3.991       | 15 | 014          | 2  | .003     | 15 | 605      | 2  |
| 113 |        | 19  | max | -1.38     | 15 | 370.763     | 3  | 140.947     | 1  | .01          | 3  | .192     | 1  | 0        | 2  |
| 114 |        |     | min | -37.27    | 1  | -745.057    | 2  | 5.145       | 15 | 014          | 2  | .007     | 15 | 0        | 3  |
| 115 | M16    | 1   | max | -2.734    | 15 | 699.049     | 2  | -4.977      | 15 | .011         | 1  | .167     | 1  | 0        | 2  |
| 116 |        |     | min | -74.105   | 1  | -333.417    | 3  | -136.416    |    | 013          | 3  | .006     | 15 | 0        | 3  |
| 117 |        | 2   | max | -2.734    | 15 | 489.886     | 2  | -3.823      | 15 | .011         | 1  | .053     | 1  | .267     | 3  |
| 118 |        |     | min | -74.105   | 1  | -232.309    | 3  | -104.666    |    | 013          | 3  | .002     | 15 | 561      | 2  |
| 119 |        | 3   | max | -2.734    | 15 | 280.724     | 2  | -2.669      | 15 | .011         | 1  | .001     | 3  | .439     | 3  |
| 120 |        |     | min | -74.105   | 1  | -131.201    | 3  | -72.915     | 1  | 013          | 3  | 031      | 1  | 925      | 2  |
| 121 |        | 4   | max | -2.734    | 15 | 71.562      | 2  | -1.515      | 15 | .011         | 1  | 002      | 12 | .515     | 3  |
| 122 |        |     | min | -74.105   | 1  | -30.094     | 3  | -41.164     | 1  | 013          | 3  | 085      | 1  | -1.092   | 2  |
| 123 |        | 5   | max | -2.734    | 15 | 71.014      | 3  | 36          | 15 | .011         | 1  | 004      | 12 | .496     | 3  |
| 124 |        |     |     | -74.105   | 1  | -137.601    |    | -9.413      | 1  | 013          | 3  | 109      | 1  | -1.061   | 2  |
| 125 |        | 6   | max |           | 15 | 172.122     | 3  | 22.337      | 1  | .011         | 1  | 004      | 15 | .381     | 3  |
| 126 |        | Ĭ   |     | -74.105   | 1  | -346.763    |    | 07          | 3  | 013          | 3  | 103      | 1  | 832      | 2  |
| 127 |        | 7   | max | -2.734    | 15 | 273.23      | 3  | 54.088      | 1  | .011         | 1  | 002      | 15 | .171     | 3  |
| 128 |        |     |     | -74.105   | 1  | -555.926    | 2  | 1.191       | 12 | 013          | 3  | 067      | 1  | 406      | 2  |
| 129 |        | 8   | max | -2.734    | 15 | 374.338     | 3  | 85.839      | 1  | .011         | 1  | .002     | 2  | .218     | 2  |
| 130 |        | Ĭ   |     |           | 1  | -765.088    | 2  | 2.345       | 12 | 013          | 3  | 003      | 3  | 135      | 3  |
| 131 |        | 9   | max |           | 15 | 475.446     | 3  | 117.59      | 1  | .011         | 1  | .095     | 1  | 1.04     | 2  |
| 132 |        |     |     | -74.105   | 1  | -974.251    | 2  | 3.499       | 12 | 013          | 3  | 0        | 3  | 537      | 3  |
| 133 |        | 10  | max | -2.734    | 15 | 576.554     | 3  | 149.34      | 1  | .013         | 3  | .222     | 1  | 2.059    | 2  |
| 134 |        | 10  | min | -74.105   | 1  | -1183.413   | 2  | 4.652       | 12 | 011          | 1  | .005     | 12 | -1.033   | 3  |
| 135 |        | 11  | max | -2.734    | 15 | 974.251     | 2  | -3.499      | 12 | .013         | 3  | .095     | 1  | 1.04     | 2  |
| 136 |        |     |     | -74.105   | 1  | -475.446    |    | -117.59     | 1  | 011          | 1  | 0        | 3  | 537      | 3  |
| 137 |        | 12  | max | -2.734    | 15 | 765.088     | 2  | -2.345      | 12 | .013         | 3  | .002     | 2  | .218     | 2  |
| 138 |        | 14  |     | -74.105   | 1  | -374.338    | 3  | -85.839     | 1  | 011          | 1  | 003      | 3  | 135      | 3  |
| 139 |        | 13  | max | -2.734    | 15 | 555.926     | 2  | -1.191      | 12 | .013         | 3  | 003      | 15 | .171     | 3  |
| 140 |        | 10  |     | -74.105   | 1  | -273.23     | 3  | -54.088     | 1  | 011          | 1  | 067      | 1  | 406      | 2  |
|     |        |     |     |           |    |             |    | 0 1.000     |    |              |    |          |    |          |    |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member    | Sec |     | Axial[lb] |    | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome |         | z-z Mome | LC |
|-----|-----------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|---------|----------|----|
| 141 |           | 14  | max | -2.734    | 15 | 346.763     | 2  | .07         | 3  | .013         | 3  | 004      | 15      | .381     | 3  |
| 142 |           |     | min | -74.105   | 1_ | -172.122    | 3  | -22.337     | 1  | 011          | 1  | 103      | 1_      | 832      | 2  |
| 143 |           | 15  | max | -2.734    | 15 | 137.601     | 2  | 9.413       | 1  | .013         | 3  | 004      | 12      | .496     | 3  |
| 144 |           |     | min | -74.105   | 1  | -71.014     | 3  | .36         | 15 | 011          | 1  | 109      | 1       | -1.061   | 2  |
| 145 |           | 16  | max | -2.734    | 15 | 30.094      | 3  | 41.164      | 1  | .013         | 3  | 002      | 12      | .515     | 3  |
| 146 |           |     | min | -74.105   | 1  | -71.562     | 2  | 1.515       | 15 | 011          | 1  | 085      | 1       | -1.092   | 2  |
| 147 |           | 17  | max | -2.734    | 15 | 131.201     | 3  | 72.915      | 1  | .013         | 3  | .001     | 3       | .439     | 3  |
| 148 |           |     | min | -74.105   | 1  | -280.724    | 2  | 2.669       | 15 | 011          | 1  | 031      | 1       | 925      | 2  |
| 149 |           | 18  | max | -2.734    | 15 | 232.309     | 3  | 104.666     | 1  | .013         | 3  | .053     | 1       | .267     | 3  |
| 150 |           |     | min | -74.105   | 1  | -489.886    | 2  | 3.823       | 15 | 011          | 1  | .002     | 15      | 561      | 2  |
| 151 |           | 19  | max | -2.734    | 15 | 333.417     | 3  | 136.416     | 1  | .013         | 3  | .167     | 1       | 0        | 2  |
| 152 |           |     | min | -74.105   | 1  | -699.049    | 2  | 4.977       | 15 | 011          | 1  | .006     | 15      | 0        | 3  |
| 153 | M2        | 1   |     | 1120.731  | 2  | 2.029       | 4  | .651        | 1  | 0            | 3  | 0        | 3       | 0        | 1  |
| 154 | 1412      |     | min | -1520.659 | 3  | .478        | 15 | .024        | 15 | 0            | 1  | 0        | 2       | 0        | 1  |
| 155 |           | 2   |     | 1121.111  | 2  | 1.995       | 4  | .651        | 1  | 0            | 3  | 0        | 1       | 0        | 15 |
| 156 |           | _   | min | -1520.375 | 3  | .47         | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 0        | 4  |
| 157 |           | 3   | max | 1121.49   | 2  | 1.962       | 4  | .651        | 1  | 0            | 3  | 0        | 1       | 0        | 15 |
| 158 |           | 3   |     | -1520.09  | 3  | .462        | 15 | .024        | 15 | 0            | 1  | 0        | 15      |          | 4  |
|     |           | 1   | min |           |    |             |    |             |    |              |    | _        |         | 001      | _  |
| 159 |           | 4   |     | 1121.869  | 2  | 1.928       | 4  | .651        | 1  | 0            | 3  | 0        | 1_      | 0        | 15 |
| 160 |           | _   | min | -1519.806 | 3  | .454        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 002      | 4  |
| 161 |           | 5   |     | 1122.248  | 2  | 1.895       | 4  | .651        | 1  | 0            | 3  | 0        | 1       | 0        | 15 |
| 162 |           |     | min | -1519.521 | 3  | .446        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 002      | 4  |
| 163 |           | 6   |     | 1122.628  | 2  | 1.862       | 4  | .651        | 1  | 0            | 3  | 0        | 1       | 0        | 15 |
| 164 |           |     | min | -1519.237 | 3  | .438        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 002      | 4  |
| 165 |           | 7   | max | 1123.007  | 2  | 1.828       | 4  | .651        | 1  | 0            | 3  | 0        | _1_     | 0        | 15 |
| 166 |           |     | min | -1518.952 | 3  | .431        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 003      | 4  |
| 167 |           | 8   | max | 1123.386  | 2  | 1.795       | 4  | .651        | 1  | 0            | 3  | .001     | 1       | 0        | 15 |
| 168 |           |     | min | -1518.668 | 3  | .423        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 003      | 4  |
| 169 |           | 9   | max | 1123.765  | 2  | 1.761       | 4  | .651        | 1  | 0            | 3  | .001     | 1       | 0        | 15 |
| 170 |           |     | min | -1518.384 | 3  | .415        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 004      | 4  |
| 171 |           | 10  | max | 1124.145  | 2  | 1.728       | 4  | .651        | 1  | 0            | 3  | .001     | 1       | 001      | 15 |
| 172 |           |     | min | -1518.099 | 3  | .407        | 15 | .024        | 15 | 0            | 1  | 0        | 15      | 004      | 4  |
| 173 |           | 11  |     | 1124.524  | 2  | 1.695       | 4  | .651        | 1  | 0            | 3  | .002     | 1       | 001      | 15 |
| 174 |           |     | min | -1517.815 | 3  | .398        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 005      | 4  |
| 175 |           | 12  |     | 1124.903  | 2  | 1.661       | 4  | .651        | 1  | 0            | 3  | .002     | 1       | 001      | 15 |
| 176 |           |     | min | -1517.53  | 3  | .385        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 005      | 4  |
| 177 |           | 13  |     | 1125.282  | 2  | 1.628       | 4  | .651        | 1  | 0            | 3  | .002     | 1       | 001      | 15 |
| 178 |           | 10  | min | -1517.246 | 3  | .372        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 006      | 4  |
| 179 |           | 14  |     | 1125.662  | 2  | 1.594       | 4  | .651        | 1  | 0            | 3  | .002     | 1       | 001      | 15 |
| 180 |           | 17  | min | -1516.961 | 3  | .359        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 006      | 4  |
| 181 |           | 15  |     | 1126.041  | 2  | 1.561       | 4  | .651        | 1  | 0            | 3  | .002     |         | 002      |    |
| 182 |           | 13  | min | -1516.677 | 3  | .346        | 12 | .024        | 15 | 0            | 1  | 0        | 1<br>15 | 002      | 15 |
|     |           | 16  |     | 1126.42   |    |             |    |             |    |              | _  | .002     |         |          | 15 |
| 183 |           | 10  |     |           | 2  | 1.528       | 4  | .651        | 1  | 0            | 1  |          | 1_      | 002      |    |
| 184 |           | 47  | min |           | 3  | .333        | 12 | .024        | 15 | 0            |    | 0        | 15      | 007      | 4  |
| 185 |           | 17  |     | 1126.799  | 2  | 1.494       | 4  | .651        | 1  | 0            | 3  | .003     | 1       | 002      | 15 |
| 186 |           | 40  | min | -1516.108 | 3  | .32         | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 007      | 4  |
| 187 |           | 18  |     | 1127.179  | 2  | 1.461       | 2  | .651        | 1  | 0            | 3  | .003     | 1_      | 002      | 15 |
| 188 |           |     | min | -1515.824 | 3  | .307        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 008      | 4  |
| 189 |           | 19  |     | 1127.558  | 2  | 1.435       | 2  | .651        | 1  | 0            | 3  | .003     | 1       | 002      | 15 |
| 190 |           |     | min | -1515.539 | 3  | .294        | 12 | .024        | 15 | 0            | 1  | 0        | 15      | 008      | 4  |
| 191 | <u>M3</u> | 1   | max |           | 2  | 7.983       | 4  | .066        | 1  | 0            | 3  | 0        | 1_      | .008     | 4  |
| 192 |           |     | min |           | 3  | 1.877       | 15 | .002        | 15 | 0            | 1  | 0        | 15      | .002     | 15 |
| 193 |           | 2   | max |           | 2  | 7.213       | 4  | .066        | 1  | 0            | 3  | 0        | 1       | .005     | 2  |
| 194 |           |     | min |           | 3  | 1.696       | 15 | .002        | 15 | 0            | 1  | 0        | 15      | 0        | 12 |
| 195 |           | 3   | max |           | 2  | 6.443       | 4  | .066        | 1  | 0            | 3  | 0        | 1       | .003     | 2  |
| 196 |           |     | min | -715.113  | 3  | 1.515       | 15 | .002        | 15 | 0            | 1  | 0        | 15      | 0        | 3  |
| 197 |           | 4   | max | 583.189   | 2  | 5.673       | 4  | .066        | 1  | 0            | 3  | 0        | 1       | 0        | 2  |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

| 400 | <u>Member</u> | Sec        |     | Axial[lb] |     | y Shear[lb] |    |       |    | Torque[k-ft] | LC  | _   |    |     | LC |
|-----|---------------|------------|-----|-----------|-----|-------------|----|-------|----|--------------|-----|-----|----|-----|----|
| 198 |               |            |     | -715.241  | 3   | 1.334       | 15 | .002  | 15 | 0            | 1_  | 0   | 15 | 002 | 3  |
| 199 |               | 5          | max | 583.019   | 2   | 4.903       | 4  | .066  | 1  | 0            | 3   | 0   | 1  | 0   | 15 |
| 200 |               |            |     | -715.369  | 3   | 1.153       | 15 | .002  | 15 | 0            | 1_  | 0   | 15 | 003 | 3  |
| 201 |               | 6          | max | 582.849   | 2   | 4.133       | 4  | .066  | 11 | 0            | 3   | 0   | 1  | 001 | 15 |
| 202 |               |            | min | -715.497  | 3   | .972        | 15 | .002  | 15 | 0            | 1_  | 0   | 15 | 005 | 4  |
| 203 |               | 7_         | max | 582.678   | 2   | 3.363       | 4  | .066  | 1  | 0            | 3   | 0   | 1  | 001 | 15 |
| 204 |               |            | min | -715.624  | 3   | .791        | 15 | .002  | 15 | 0            | 1   | 0   | 15 | 006 | 4  |
| 205 |               | _8_        | max | 582.508   | 2   | 2.593       | 4  | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 206 |               |            |     | -715.752  | 3   | .61         | 15 | .002  | 15 | 0            | 1   | 0   | 15 | 008 | 4  |
| 207 |               | 9_         | max | 582.338   | 2   | 1.823       | 4  | .066  | 1  | 0            | 3_  | 0   | 1  | 002 | 15 |
| 208 |               | - 10       | min | -715.88   | 3   | .429        | 15 | .002  | 15 | 0            | 1   | 0   | 15 | 009 | 4  |
| 209 |               | 10         | max | 582.167   | 2   | 1.053       | 4  | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 210 |               |            | min | -716.008  | 3_  | .248        | 15 | .002  | 15 | 0            | 1_  | 0   | 15 | 009 | 4  |
| 211 |               | 11         | max | 581.997   | 2   | .417        | 2  | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 212 |               |            | min | -716.135  | 3_  | 101         | 3  | .002  | 15 | 0            | _1_ | 0   | 15 | 009 | 4  |
| 213 |               | 12         | max | 581.827   | 2   | 114         | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 214 |               |            | min | -716.263  | 3_  | 551         | 3  | .002  | 15 | 0            | 1_  | 0   | 15 | 009 | 4  |
| 215 |               | 13         | max | 581.656   | 2   | 295         | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 216 |               |            |     | -716.391  | 3   | -1.257      | 4  | .002  | 15 | 0            | 1_  | 0   | 15 | 009 | 4  |
| 217 |               | 14         | max | 581.486   | 2   | 476         | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 218 |               |            |     | -716.519  | 3   | -2.027      | 4  | .002  | 15 | 0            | 1_  | 0   | 15 | 008 | 4  |
| 219 |               | <u> 15</u> | max | 581.316   | 2   | 657         | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 002 | 15 |
| 220 |               |            |     | -716.646  | 3   | -2.797      | 4  | .002  | 15 | 0            | 1_  | 0   | 15 | 007 | 4  |
| 221 |               | 16         | max | 581.145   | 2   | 838         | 15 | .066  | 1_ | 0            | 3   | 0   | 1  | 001 | 15 |
| 222 |               |            | min | -716.774  | 3   | -3.567      | 4  | .002  | 15 | 0            | 1   | 0   | 15 | 006 | 4  |
| 223 |               | 17         | max | 580.975   | 2   | -1.019      | 15 | .066  | 1_ | 0            | 3   | 0   | 1  | 001 | 15 |
| 224 |               |            | min | -716.902  | 3   | -4.337      | 4  | .002  | 15 | 0            | 1_  | 0   | 15 | 004 | 4  |
| 225 |               | 18         | max | 580.805   | 2   | -1.2        | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 0   | 15 |
| 226 |               |            | min | -717.03   | 3   | -5.107      | 4  | .002  | 15 | 0            | 1   | 0   | 15 | 002 | 4  |
| 227 |               | 19         | max | 580.634   | 2   | -1.381      | 15 | .066  | 1  | 0            | 3   | 0   | 1  | 0   | 1  |
| 228 |               |            | min | -717.157  | 3   | -5.877      | 4  | .002  | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 229 | M4            | 1          | max | 1172.358  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 1  | 0   | 1  |
| 230 |               |            | min | -334.59   | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 0   | 15 | 0   | 1  |
| 231 |               | 2          | max | 1172.528  | _1_ | 0           | 1  | 254   | 15 | 0            | 1_  | 0   | 12 | 0   | 1  |
| 232 |               |            | min | -334.462  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 0   | 1  | 0   | 1  |
| 233 |               | 3          | max | 1172.699  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 234 |               |            | min | -334.334  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 001 | 1  | 0   | 1  |
| 235 |               | 4          | max | 1172.869  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 236 |               |            | min | -334.206  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 002 | 1  | 0   | 1  |
| 237 |               | 5          | max | 1173.039  | 1   | 0           | 1  | 254   | 15 | 0            | 1_  | 0   | 15 | 0   | 1  |
| 238 |               |            |     | -334.079  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 003 | 1  | 0   | 1  |
| 239 |               | 6          |     | 1173.21   | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 240 |               |            |     | -333.951  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 004 | 1  | 0   | 1  |
| 241 |               | 7          | max | 1173.38   | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 242 |               |            |     | -333.823  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 004 | 1  | 0   | 1  |
| 243 |               | 8          |     | 1173.55   | _1_ | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 244 |               |            |     | -333.695  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 005 | 1  | 0   | 1  |
| 245 |               | 9          |     | 1173.721  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 246 |               |            | min | -333.568  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 006 | 1  | 0   | 1  |
| 247 |               | 10         |     | 1173.891  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 248 |               |            |     | -333.44   | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 007 | 1  | 0   | 1  |
| 249 |               | 11         |     | 1174.061  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 250 |               |            |     | -333.312  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 008 | 1  | 0   | 1  |
| 251 |               | 12         |     | 1174.232  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 252 |               |            |     | -333.184  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 008 | 1  | 0   | 1  |
| 253 |               | 13         |     | 1174.402  | 1   | 0           | 1  | 254   | 15 | 0            | 1   | 0   | 15 | 0   | 1  |
| 254 |               |            |     | -333.057  | 3   | 0           | 1  | -6.92 | 1  | 0            | 1   | 009 | 1  | 0   | 1  |



Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member    | Sec | T          | Axial[lb]             | LC       | y Shear[lb] | LC |       |    | Torque[k-ft] | LC       | y-y Mome |               | z-z Mome | LC |
|-----|-----------|-----|------------|-----------------------|----------|-------------|----|-------|----|--------------|----------|----------|---------------|----------|----|
| 255 |           | 14  |            | 1174.573              | _1_      | 0           | 1  | 254   | 15 | 0            | _1_      | 0        | <u>15</u>     | 0        | 1  |
| 256 |           |     | min        | -332.929              | 3        | 0           | 1  | -6.92 | 1  | 0            | 1_       | 01       | 1_            | 0        | 1  |
| 257 |           | 15  | max        | 1174.743              | <u>1</u> | 0           | 1  | 254   | 15 | 0            | <u>1</u> | 0        | <u>15</u>     | 0        | 1  |
| 258 |           |     | min        |                       | 3        | 0           | 1  | -6.92 | 1  | 0            | 1        | 011      | 1             | 0        | 1  |
| 259 |           | 16  | max        | 1174.913              | 1        | 0           | 1  | 254   | 15 | 0            | 1        | 0        | 15            | 0        | 1  |
| 260 |           |     | min        | -332.673              | 3        | 0           | 1  | -6.92 | 1  | 0            | 1        | 011      | 1             | 0        | 1  |
| 261 |           | 17  | max        | 1175.084              | 1        | 0           | 1  | 254   | 15 | 0            | 1        | 0        | 15            | 0        | 1  |
| 262 |           |     | min        | -332.546              | 3        | 0           | 1  | -6.92 | 1  | 0            | 1        | 012      | 1             | 0        | 1  |
| 263 |           | 18  | max        | 1175.254              | 1        | 0           | 1  | 254   | 15 | 0            | 1        | 0        | 15            | 0        | 1  |
| 264 |           |     | min        | -332.418              | 3        | 0           | 1  | -6.92 | 1  | 0            | 1        | 013      | 1             | 0        | 1  |
| 265 |           | 19  |            | 1175.424              | 1        | 0           | 1  | 254   | 15 | 0            | 1        | 0        | 15            | 0        | 1  |
| 266 |           |     | min        | -332.29               | 3        | 0           | 1  | -6.92 | 1  | 0            | 1        | 014      | 1             | 0        | 1  |
| 267 | M6        | 1   |            | 3545.989              | 2        | 2.692       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 1  |
| 268 |           |     | min        | -4908.388             | 3        | 199         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 1  |
| 269 |           | 2   |            | 3546.368              | 2        | 2.666       | 2  | 0     | 1  | 0            | 1        | 0        | <u> </u>      | 0        | 3  |
| 270 |           | _   | min        | -4908.104             | 3        | 218         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 2  |
| 271 |           | 3   |            | 3546.747              | 2        | 2.64        | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 272 |           |     | min        | -4907.819             | 3        | 238         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 001      | 2  |
| 273 |           | 4   |            | 3547.127              | 2        | 2.614       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 274 |           |     | min        | -4907.535             | 3        | 257         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 002      | 2  |
| 275 |           | 5   |            | 3547.506              | 2        | 2.588       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 276 |           | J   | min        | -4907.251             | 3        | 277         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 003      | 2  |
| 277 |           | 6   |            | 3547.885              | 2        | 2.562       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 278 |           | -   | min        | -4906.966             | 3        | 296         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 003      | 2  |
| 279 |           | 7   |            | 3548.264              | 2        | 2.536       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 280 |           | -   | min        | -4906.682             | 3        | 316         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 004      | 2  |
| 281 |           | 8   |            | 3548.644              | 2        | 2.51        | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 282 |           | 0   | min        | -4906.397             | 3        | 335         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 005      | 2  |
| 283 |           | 9   |            | 3549.023              | 2        | 2.484       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 284 |           | 9   | min        | -4906.113             | 3        | 355         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 005      | 2  |
| 285 |           | 10  |            | 3549.402              | 2        | 2.458       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 005<br>0 | 3  |
| 286 |           | 10  | min        | -4905.828             | 3        | 374         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 006      | 2  |
| 287 |           | 11  |            | 3549.781              | 2        | 2.432       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 288 |           |     | min        | -4905.544             | 3        | 394         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 007      | 2  |
| 289 |           | 12  |            | 3550.161              | 2        | 2.406       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 290 |           | 12  | min        | -4905.259             | 3        | 413         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 007      | 2  |
| 291 |           | 13  |            |                       | 2        | 2.38        | 2  | 0     | 1  | 0            | 1        | 0        | 1             | 0        | 3  |
| 292 |           | 13  | max<br>min | -4904.975             | 3        | 433         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 008      | 2  |
| 293 |           | 14  |            | 3550.919              | 2        | 2.354       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | .001     | 3  |
| 294 |           | 14  | min        | -4904.691             | 3        | 452         | 3  | 0     | 1  | 0            | 1        | 0        | 1             | 008      | 2  |
|     |           | 15  |            |                       |          |             |    |       | 1  | _            | 1        |          |               |          |    |
| 295 |           | 15  |            | 3551.299              | 2        | 2.328       | 2  | 0     | 1  | 0            |          | 0        | 1_            | .001     | 3  |
| 296 |           | 10  | min        |                       | 3        | 472         | 3  | 0     | 1  | 0            | 1        | 0        | 1_1           | 009      | 2  |
| 297 |           | 10  |            | 3551.678<br>-4904.122 | 2        | 2.302       | 2  | 0     | 1  | 0            | 1        | 0        | 1             | .001     | 3  |
| 298 |           | 17  | min        |                       | 3        | 491         | 3  | 0     | 1  | 0            |          | 0        |               | 01       | 2  |
| 299 |           | 17  |            | 3552.057<br>-4903.837 | 2        | 2.276       | 2  | 0     | 1  | 0            | 1        | 0        | <u>1</u><br>1 | .001     | 3  |
| 300 |           | 10  | min        |                       | 3        | 511         | 3  | 0     |    | 0            |          | 0        | _             | 01       | 2  |
| 301 |           | 18  |            | 3552.436              | 2        | 2.25        | 2  | 0     | 1  | 0            | 1        | 0        | 1_1           | .002     | 3  |
| 302 |           | 40  | min        |                       | 3        | 53          | 3  | 0     | 1  | 0            | 1_       | 0        | 1_            | 011      | 2  |
| 303 |           | 19  |            | 3552.816              | 2        | 2.224       | 2  | 0     | 1  | 0            | 1        | 0        | 1_            | .002     | 3  |
| 304 | N 4-7     | 4   | min        |                       | 3        | 55          | 3  | 0     | 1  | 0            | 1        | 0        | 1_            | 011      | 2  |
| 305 | <u>M7</u> | 1   |            | 2082.665              | 2        | 8.014       | 4  | 0     | 1  | 0            | 1        | 0        | 1_1           | .011     | 2  |
| 306 |           |     | min        | -2225.257             | 3        | 1.881       | 15 | 0     | 1  | 0            | 1        | 0        | 1_            | 002      | 3  |
| 307 |           | 2   |            | 2082.495              | 2        | 7.244       | 4  | 0     | 1  | 0            | 1        | 0        | 1_            | .009     | 2  |
| 308 |           |     | min        |                       | 3_       | 1.7         | 15 | 0     | 1  | 0            | 1_       | 0        | 1_            | 003      | 3  |
| 309 |           | 3   |            | 2082.325              | 2        | 6.474       | 4  | 0     | 1  | 0            | 1        | 0        | 1_1           | .006     | 2  |
| 310 |           | A   | min        |                       | 3        | 1.519       | 15 | 0     | 1  | 0            | 1        | 0        | 1_            | 005      | 3  |
| 311 |           | 4   | max        | 2082.154              | _2_      | 5.704       | 4  | 0     | 1  | 0            | _1_      | 0        | _1_           | .004     | 2  |



Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |        | Axial[lb] |   |        |    | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|--------|-----------|---|--------|----|-------------|----|--------------|----|----------|----|----------|----|
| 312 |        |     | min    | -2225.64  | 3 | 1.338  | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 006      | 3  |
| 313 |        | 5   |        | 2081.984  | 2 | 4.934  | 4  | 0           | 1_ | 0            | 1  | 0        | 1  | .002     | 2  |
| 314 |        |     | min    | -2225.768 | 3 | 1.157  | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 007      | 3  |
| 315 |        | 6   |        | 2081.814  | 2 | 4.164  | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 2  |
| 316 |        |     | min    | -2225.896 | 3 | .976   | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 007      | 3  |
| 317 |        | 7   |        | 2081.643  | 2 | 3.394  | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 318 |        |     | min    | -2226.023 | 3 | .795   | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 008      | 3  |
| 319 |        | 8   |        | 2081.473  | 2 | 2.698  | 2  | 0           | 1_ | 0            | 1  | 0        | 1_ | 002      | 15 |
| 320 |        |     | min    | -2226.151 | 3 | .504   | 12 | 0           | 1  | 0            | 1  | 0        | 1  | 008      | 3  |
| 321 |        | 9   |        | 2081.303  | 2 | 2.098  | 2  | 0           | 1_ | 0            | 1  | 0        | 1  | 002      | 15 |
| 322 |        |     | min    | -2226.279 | 3 | .204   | 12 | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 3  |
| 323 |        | 10  | max    | 2081.132  | 2 | 1.498  | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 324 |        |     | min    | -2226.407 | 3 | 228    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 325 |        | 11  | max    | 2080.962  | 2 | .898   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 326 |        |     | min    | -2226.534 | 3 | 678    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 327 |        | 12  | max    | 2080.791  | 2 | .298   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 328 |        |     | min    | -2226.662 | 3 | -1.128 | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 329 |        | 13  | max    | 2080.621  | 2 | 291    | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 330 |        |     | min    | -2226.79  | 3 | -1.578 | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 009      | 4  |
| 331 |        | 14  | max    | 2080.451  | 2 | 472    | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 332 |        |     | min    | -2226.918 | 3 | -2.028 | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 008      | 4  |
| 333 |        | 15  | max    | 2080.28   | 2 | 653    | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 15 |
| 334 |        |     | min    | -2227.045 | 3 | -2.765 | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 007      | 4  |
| 335 |        | 16  | max    | 2080.11   | 2 | 834    | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 336 |        |     | min    | -2227.173 | 3 | -3.535 | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 006      | 4  |
| 337 |        | 17  | max    | 2079.94   | 2 | -1.015 | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 001      | 15 |
| 338 |        |     | min    | -2227.301 | 3 | -4.305 | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 004      | 4  |
| 339 |        | 18  | max    | 2079.769  | 2 | -1.196 | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 15 |
| 340 |        |     | min    | -2227.429 | 3 | -5.075 | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 4  |
| 341 |        | 19  | max    | 2079.599  | 2 | -1.377 | 15 | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 342 |        |     | min    | -2227.556 | 3 | -5.845 | 4  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 343 | M8     | 1   | max    | 3470.355  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 344 |        |     | min    | -1139.728 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 345 |        | 2   | max    | 3470.525  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 346 |        |     | min    | -1139.6   | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 347 |        | 3   | max    | 3470.696  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 348 |        |     | min    | -1139.472 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 349 |        | 4   | max    | 3470.866  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 350 |        |     | min    | -1139.344 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 351 |        | 5   | max    | 3471.036  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 352 |        |     |        | -1139.217 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 353 |        | 6   |        | 3471.207  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 354 |        |     | min    |           | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 355 |        | 7   | max    | 3471.377  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 356 |        |     | min    |           | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 357 |        | 8   |        | 3471.547  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 358 |        |     | min    |           | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 359 |        | 9   |        | 3471.718  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 360 |        |     |        | -1138.706 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 361 |        | 10  |        | 3471.888  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 362 |        | · · |        | -1138.578 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 363 |        | 11  |        | 3472.058  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 364 |        |     | min    |           | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 365 |        | 12  |        | 3472.229  | 2 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 366 |        | 14  | min    |           | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 367 |        | 13  |        | 3472.399  | _ | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 368 |        | '   | min    | -1138.195 | 3 | 0      | 1  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 1  |
| 000 |        |     | 111111 |           |   |        |    |             |    |              |    | •        |    |          |    |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | Axial[lb] | LC  | y Shear[lb] | LC | z Shear[lb] | LC        | Torque[k-ft] | LC  | y-y Mome | LC | z-z Mome | LC |
|-----|--------|-----|-----|-----------|-----|-------------|----|-------------|-----------|--------------|-----|----------|----|----------|----|
| 369 |        | 14  | max | 3472.569  | 2   | 0           | 1  | 0           | _1_       | 0            | 1   | 0        | 1_ | 0        | 1  |
| 370 |        |     | min | -1138.067 | 3   | 0           | 1  | 0           | 1_        | 0            | 1   | 0        | 1  | 0        | 1  |
| 371 |        | 15  | max |           | 2   | 0           | 1  | 0           | _1_       | 0            | 1   | 0        | 1  | 0        | 1  |
| 372 |        |     | min | -1137.939 | 3   | 0           | 1  | 0           | 1         | 0            | 1   | 0        | 1  | 0        | 1  |
| 373 |        | 16  | max |           | 2   | 0           | 1  | 0           | _1_       | 0            | _1_ | 0        | 1  | 0        | 1  |
| 374 |        |     | min | -1137.811 | 3   | 0           | 1  | 0           | 1         | 0            | 1   | 0        | 1  | 0        | 1  |
| 375 |        | 17  | max |           | 2   | 0           | 1  | 0           | _1_       | 0            | _1_ | 0        | 1_ | 0        | 1  |
| 376 |        |     | min | -1137.683 | 3   | 0           | 1  | 0           | 1_        | 0            | 1_  | 0        | 1_ | 0        | 1  |
| 377 |        | 18  |     | 3473.251  | 2   | 0           | 1  | 0           | _1_       | 0            | _1_ | 0        | 1_ | 0        | 1  |
| 378 |        |     |     | -1137.556 | 3   | 0           | 1  | 0           | 1         | 0            | 1   | 0        | 1  | 0        | 1  |
| 379 |        | 19  | max | 3473.421  | 2   | 0           | 1  | 0           | _1_       | 0            | _1_ | 0        | 1_ | 0        | 1  |
| 380 |        |     | min |           | 3   | 0           | 1  | 0           | 1_        | 0            | 1_  | 0        | 1  | 0        | 1  |
| 381 | M10    | 1   | max | 1120.731  | 2   | 2.029       | 4  | 024         | 15        | 0            | _1_ | 0        | 2  | 0        | 1  |
| 382 |        |     | min | -1520.659 | 3   | .478        | 15 | 651         | 1_        | 0            | 3   | 0        | 3  | 0        | 1  |
| 383 |        | 2   |     | 1121.111  | 2   | 1.995       | 4  | 024         | 15        | 0            | _1_ | 0        | 15 | 0        | 15 |
| 384 |        |     | min | -1520.375 | 3   | .47         | 15 | 651         | 1_        | 0            | 3   | 0        | 1  | 0        | 4  |
| 385 |        | 3   | -   | 1121.49   | _2_ | 1.962       | 4  | 024         | <u>15</u> | 0            | _1_ | 0        | 15 | 0        | 15 |
| 386 |        |     |     | -1520.09  | 3   | .462        | 15 | 651         | 1_        | 0            | 3   | 0        | 1_ | 001      | 4  |
| 387 |        | 4   |     | 1121.869  | 2   | 1.928       | 4  | 024         | 15        | 0            | _1_ | 0        | 15 | 0        | 15 |
| 388 |        |     |     | -1519.806 | 3   | .454        | 15 | 651         | 1_        | 0            | 3   | 0        | 1  | 002      | 4  |
| 389 |        | 5   | max | 1122.248  | 2   | 1.895       | 4  | 024         | 15        | 0            | _1_ | 0        | 15 | 0        | 15 |
| 390 |        |     | min | -1519.521 | 3_  | .446        | 15 | 651         | <u>1</u>  | 0            | 3   | 0        | 1_ | 002      | 4  |
| 391 |        | 6   | max | 1122.628  | 2   | 1.862       | 4  | 024         | 15        | 0            | 1   | 0        | 15 | 0        | 15 |
| 392 |        |     | min | -1519.237 | 3   | .438        | 15 | 651         | 1         | 0            | 3   | 0        | 1  | 002      | 4  |
| 393 |        | 7   | max | 1123.007  | 2   | 1.828       | 4  | 024         | 15        | 0            | _1_ | 0        | 15 | 0        | 15 |
| 394 |        |     | min | -1518.952 | 3   | .431        | 15 | 651         | 1_        | 0            | 3   | 0        | 1  | 003      | 4  |
| 395 |        | 8   | -   | 1123.386  | 2   | 1.795       | 4  | 024         | <u>15</u> | 0            | _1_ | 0        | 15 | 0        | 15 |
| 396 |        |     |     | -1518.668 | 3   | .423        | 15 | 651         | 1_        | 0            | 3   | 001      | 1_ | 003      | 4  |
| 397 |        | 9   |     | 1123.765  | 2   | 1.761       | 4  | 024         | 15        | 0            | 1_  | 0        | 15 | 0        | 15 |
| 398 |        |     |     | -1518.384 | 3   | .415        | 15 | 651         | 1_        | 0            | 3   | 001      | 1  | 004      | 4  |
| 399 |        | 10  | max | 1124.145  | 2   | 1.728       | 4  | 024         | 15        | 0            | _1_ | 0        | 15 | 001      | 15 |
| 400 |        |     | min |           | 3_  | .407        | 15 | 651         | <u>1</u>  | 0            | 3   | 001      | 1  | 004      | 4  |
| 401 |        | 11  |     | 1124.524  | _2_ | 1.695       | 4  | 024         | 15        | 0            | 1   | 0        | 15 | 001      | 15 |
| 402 |        |     | min | -1517.815 | 3   | .398        | 12 | 651         | 1_        | 0            | 3   | 002      | 1  | 005      | 4  |
| 403 |        | 12  |     | 1124.903  | 2   | 1.661       | 4  | 024         | <u>15</u> | 0            | 1   | 0        | 15 | 001      | 15 |
| 404 |        |     |     | -1517.53  | 3   | .385        | 12 | 651         | 1_        | 0            | 3   | 002      | 1  | 005      | 4  |
| 405 |        | 13  |     | 1125.282  | 2   | 1.628       | 4  | 024         | <u>15</u> | 0            | 1_  | 0        | 15 | 001      | 15 |
| 406 |        |     |     | -1517.246 | 3   | .372        | 12 | 651         | _1_       | 0            | 3   | 002      | 1  | 006      | 4  |
| 407 |        | 14  |     | 1125.662  | 2   | 1.594       | 4  | 024         | 15        | 0            | 1_  | 0        | 15 | 001      | 15 |
| 408 |        | 4 - |     | -1516.961 | 3   | .359        | 12 | 651         | 1_        | 0            | 3   | 002      | 1_ | 006      | 4  |
| 409 |        | 15  |     | 1126.041  | 2   | 1.561       | 4  | 024         | <u>15</u> | 0            | 1_  | 0        | 15 | 002      | 15 |
| 410 |        | 4.0 |     | -1516.677 | 3_  | .346        | 12 | 651         | 1_        | 0            | 3   | 002      | 1_ | 006      | 4  |
| 411 |        | 16  |     | 1126.42   | 2   | 1.528       | 4  | 024         | 15        | 0            | 1_  | 0        | 15 | 002      | 15 |
| 412 |        | 4-  |     | -1516.392 | 3   | .333        | 12 | 651         | 1_        | 0            | 3   | 002      | 1_ | 007      | 4  |
| 413 |        | 17  |     | 1126.799  | 2   | 1.494       | 4  | 024         | <u>15</u> | 0            | 1_  | 0        | 15 | 002      | 15 |
| 414 |        | 40  |     | -1516.108 | 3   | .32         | 12 | 651         | 1_        | 0            | 3   | 003      | 1_ | 007      | 4  |
| 415 |        | 18  |     | 1127.179  | 2   | 1.461       | 2  | 024         | <u>15</u> | 0            | 1   | 0        | 15 | 002      | 15 |
| 416 |        | 40  |     | -1515.824 | 3   | .307        | 12 | 651         | 1_        | 0            | 3   | 003      | 1_ | 008      | 4  |
| 417 |        | 19  |     | 1127.558  | 2   | 1.435       | 2  | 024         | <u>15</u> | 0            | 1_  | 0        | 15 | 002      | 15 |
| 418 | N/4.4  | 4   |     | -1515.539 | 3   | .294        | 12 | 651         | 1_        | 0            | 3   | 003      | 1_ | 008      | 4  |
| 419 | M11    | 1   | max |           | 2   | 7.983       | 4  | 002         | <u>15</u> | 0            | 1   | 0        | 15 | .008     | 4  |
| 420 |        | _   |     | -714.858  | 3   | 1.877       | 15 | 066         | 1_        | 0            | 3   | 0        | 1_ | .002     | 15 |
| 421 |        | 2   | max |           | 2   | 7.213       | 4  | 002         | 15        | 0            | 1_  | 0        | 15 | .005     | 2  |
| 422 |        |     |     | -714.985  | 3   | 1.696       | 15 | 066         | 1_        | 0            | 3   | 0        | 1_ | 0        | 12 |
| 423 |        | 3   | max |           | 2   | 6.443       | 4  | 002         | <u>15</u> | 0            | 1_  | 0        | 15 | .003     | 2  |
| 424 |        |     |     | -715.113  | 3   | 1.515       | 15 | 066         | 1_        | 0            | 3   | 0        | 1_ | 0        | 3  |
| 425 |        | 4   | max | 583.189   | 2   | 5.673       | 4  | 002         | 15        | 0            | 1   | 0        | 15 | 0        | 2  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] |    | z Shear[lb] | LC | Torque[k-ft] |   | y-y Mome | LC | z-z Mome | <u>LC</u> |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|---|----------|----|----------|-----------|
| 426 |        |     | min | -715.241  | 3  | 1.334       | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 002      | 3         |
| 427 |        | 5   | max | 583.019   | 2  | 4.903       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 0        | 15        |
| 428 |        |     | min | -715.369  | 3  | 1.153       | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 003      | 3         |
| 429 |        | 6   | max | 582.849   | 2  | 4.133       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 001      | 15        |
| 430 |        |     | min | -715.497  | 3  | .972        | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 005      | 4         |
| 431 |        | 7   | max | 582.678   | 2  | 3.363       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 001      | 15        |
| 432 |        |     | min | -715.624  | 3  | .791        | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 006      | 4         |
| 433 |        | 8   | max | 582.508   | 2  | 2.593       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 434 |        |     | min | -715.752  | 3  | .61         | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 008      | 4         |
| 435 |        | 9   | max | 582.338   | 2  | 1.823       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 436 |        |     | min | -715.88   | 3  | .429        | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 009      | 4         |
| 437 |        | 10  | max | 582.167   | 2  | 1.053       | 4  | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 438 |        |     | min | -716.008  | 3  | .248        | 15 | 066         | 1  | 0            | 3 | 0        | 1  | 009      | 4         |
| 439 |        | 11  | max | 581.997   | 2  | .417        | 2  | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 440 |        |     | min | -716.135  | 3  | 101         | 3  | 066         | 1  | 0            | 3 | 0        | 1  | 009      | 4         |
| 441 |        | 12  | max | 581.827   | 2  | 114         | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 442 |        |     | min | -716.263  | 3  | 551         | 3  | 066         | 1  | 0            | 3 | 0        | 1  | 009      | 4         |
| 443 |        | 13  | max | 581.656   | 2  | 295         | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 444 |        |     | min | -716.391  | 3  | -1.257      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 009      | 4         |
| 445 |        | 14  | max | 581.486   | 2  | 476         | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 446 |        |     | min | -716.519  | 3  | -2.027      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 008      | 4         |
| 447 |        | 15  | max | 581.316   | 2  | 657         | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 002      | 15        |
| 448 |        |     | min | -716.646  | 3  | -2.797      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 007      | 4         |
| 449 |        | 16  | max | 581.145   | 2  | 838         | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 001      | 15        |
| 450 |        |     | min | -716.774  | 3  | -3.567      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 006      | 4         |
| 451 |        | 17  | max | 580.975   | 2  | -1.019      | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 001      | 15        |
| 452 |        |     | min | -716.902  | 3  | -4.337      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 004      | 4         |
| 453 |        | 18  | max | 580.805   | 2  | -1.2        | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 0        | 15        |
| 454 |        |     | min | -717.03   | 3  | -5.107      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 002      | 4         |
| 455 |        | 19  | max | 580.634   | 2  | -1.381      | 15 | 002         | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 456 |        |     | min | -717.157  | 3  | -5.877      | 4  | 066         | 1  | 0            | 3 | 0        | 1  | 0        | 1         |
| 457 | M12    | 1   | max | 1172.358  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | 0        | 15 | 0        | 1         |
| 458 |        |     | min | -334.59   | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 1  | 0        | 1         |
| 459 |        | 2   | max | 1172.528  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | 0        | 1  | 0        | 1         |
| 460 |        |     | min | -334.462  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 12 | 0        | 1         |
| 461 |        | 3   | max | 1172.699  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .001     | 1  | 0        | 1         |
| 462 |        |     | min | -334.334  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 463 |        | 4   | max | 1172.869  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .002     | 1  | 0        | 1         |
| 464 |        |     | min | -334.206  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 465 |        | 5   | max | 1173.039  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .003     | 1  | 0        | 1         |
| 466 |        |     | min | -334.079  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 467 |        | 6   |     | 1173.21   | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .004     | 1  | 0        | 1         |
| 468 |        |     | min |           | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 469 |        | 7   | max | 1173.38   | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .004     | 1  | 0        | 1         |
| 470 |        |     | min | -333.823  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 471 |        | 8   |     | 1173.55   | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .005     | 1  | 0        | 1         |
| 472 |        |     | min |           | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 473 |        | 9   |     | 1173.721  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .006     | 1  | 0        | 1         |
| 474 |        |     |     | -333.568  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 475 |        | 10  |     | 1173.891  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .007     | 1  | 0        | 1         |
| 476 |        |     | min |           | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 477 |        | 11  |     | 1174.061  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .008     | 1  | 0        | 1         |
| 478 |        |     |     | -333.312  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 479 |        | 12  |     | 1174.232  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .008     | 1  | 0        | 1         |
| 480 |        |     | min | -333.184  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
| 481 |        | 13  |     | 1174.402  | 1  | 0           | 1  | 6.92        | 1  | 0            | 1 | .009     | 1  | 0        | 1         |
| 482 |        |     |     | -333.057  | 3  | 0           | 1  | .254        | 15 | 0            | 1 | 0        | 15 | 0        | 1         |
|     |        |     |     |           |    | <u> </u>    |    |             |    |              |   |          |    |          |           |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec      |     | Axial[lb] | LC  | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|--------|----------|-----|-----------|-----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 483 |        | 14       | max | 1174.573  | _1_ | 0           | 1  | 6.92        | 1  | 0            | 1  | .01      | 1  | 0        | 1  |
| 484 |        |          | min | -332.929  | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 485 |        | 15       | max | 1174.743  | 1   | 0           | 1  | 6.92        | 1  | 0            | 1  | .011     | 1  | 0        | 1  |
| 486 |        |          | min | -332.801  | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 487 |        | 16       | max | 1174.913  | 1   | 0           | 1  | 6.92        | 1  | 0            | 1  | .011     | 1  | 0        | 1  |
| 488 |        |          | min | -332.673  | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 489 |        | 17       |     | 1175.084  | 1   | 0           | 1  | 6.92        | 1  | 0            | 1  | .012     | 1  | 0        | 1  |
| 490 |        |          | min | -332.546  | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 491 |        | 18       |     | 1175.254  | 1   | 0           | 1  | 6.92        | 1  | 0            | 1  | .013     | 1  | 0        | 1  |
| 492 |        |          | min | -332.418  | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 493 |        | 19       |     | 1175.424  | 1   | 0           | 1  | 6.92        | 1  | 0            | 1  | .014     | 1  | 0        | 1  |
| 494 |        | 10       | min | -332.29   | 3   | 0           | 1  | .254        | 15 | 0            | 1  | 0        | 15 | 0        | 1  |
| 495 | M1     | 1        | max | 136.138   | 1   | 842.057     | 3  | -2.567      | 15 | 0            | 1  | .165     | 1  | 0        | 15 |
| 496 | 1011   |          | min | 4.971     | 15  | -482.032    | 2  | -69.472     | 1  | 0            | 3  | .006     | 15 | 016      | 2  |
| 497 |        | 2        | max | 136.628   | 1   | 841.048     | 3  | -2.567      | 15 | 0            | 1  | .129     | 1  | .239     | 2  |
| 498 |        |          | min | 5.119     | 15  | -483.378    | 2  | -69.472     | 1  | 0            | 3  | .005     | 15 | 445      | 3  |
| 499 |        | 3        | max |           | 3   | 589.134     | 2  | -2.543      | 15 | 0            | 3  | .003     | 1  | .481     | 2  |
| 500 |        | <u> </u> | min | -254.814  |     | -624.315    | 3  | -68.965     | 1  | 0            | 2  | .003     | 15 | 87       | 3  |
|     |        | 4        |     |           | 2   |             |    |             | 15 |              |    |          |    |          |    |
| 501 |        | 4        | max | 431.787   | 3   | 587.788     | 2  | -2.543      |    | 0            | 3  | .056     | 1  | .184     | 1  |
| 502 |        | -        | min | -254.324  | 2   | -625.325    | 3  | -68.965     | 1  | 0            | 2  | .002     | 15 | 541      | 3  |
| 503 |        | 5        | max | 432.154   | 3   | 586.442     | 2  | -2.543      | 15 | 0            | 3  | .019     | 1  | 004      | 15 |
| 504 |        |          | min | -253.834  | 2   | -626.334    | 3  | -68.965     | 1_ | 0            | 2  | 0        | 15 | 21       | 3  |
| 505 |        | 6        | max | 432.522   | 3_  | 585.096     | 2  | -2.543      | 15 | 0            | 3  | 0        | 15 | .12      | 3  |
| 506 |        |          | min | -253.344  | 2   | -627.344    | 3  | -68.965     | 1_ | 0            | 2  | 017      | 1_ | 448      | 2  |
| 507 |        | 7        | max | 432.889   | 3_  | 583.75      | 2  | -2.543      | 15 | 0            | 3  | 002      | 15 | .452     | 3  |
| 508 |        |          | min | -252.854  | 2   | -628.354    | 3  | -68.965     | 1  | 0            | 2  | 054      | 1  | 757      | 2  |
| 509 |        | 8        | max |           | 3_  | 582.404     | 2  | -2.543      | 15 | 0            | 3  | 003      | 15 | .783     | 3  |
| 510 |        |          | min | -252.364  | 2   | -629.363    | 3  | -68.965     | 1  | 0            | 2  | 09       | 1  | -1.064   | 2  |
| 511 |        | 9        | max | 443.066   | _3_ | 53.513      | 2  | -3.862      | 15 | 0            | 9  | .055     | 1_ | .914     | 3  |
| 512 |        |          | min | -197.182  | 2   | .409        | 15 | -104.775    | 1  | 0            | 3  | .002     | 15 | -1.217   | 2  |
| 513 |        | 10       | max |           | 3_  | 52.167      | 2  | -3.862      | 15 | 0            | 9  | 0        | 10 | .891     | 3  |
| 514 |        |          | min | -196.692  | 2   | .003        | 15 | -104.775    | 1  | 0            | 3  | 0        | 1  | -1.245   | 2  |
| 515 |        | 11       | max |           | 3   | 50.821      | 2  | -3.862      | 15 | 0            | 9  | 002      | 15 | .869     | 3  |
| 516 |        |          | min | -196.202  | 2   | -1.668      | 4  | -104.775    | 1  | 0            | 3  | 056      | 1  | -1.273   | 2  |
| 517 |        | 12       | max | 453.478   | 3   | 414.767     | 3  | -2.483      | 15 | 0            | 2  | .089     | 1  | .759     | 3  |
| 518 |        |          | min | -140.964  | 2   | -694.034    | 2  | -67.525     | 1  | 0            | 3  | .003     | 15 | -1.128   | 2  |
| 519 |        | 13       | max | 453.845   | 3   | 413.757     | 3  | -2.483      | 15 | 0            | 2  | .053     | 1  | .54      | 3  |
| 520 |        |          | min | -140.474  | 2   | -695.38     | 2  | -67.525     | 1  | 0            | 3  | .002     | 15 | 762      | 2  |
| 521 |        | 14       | max | 454.213   | 3   | 412.748     | 3  | -2.483      | 15 | 0            | 2  | .018     | 1  | .322     | 3  |
| 522 |        |          | min | -139.984  | 2   | -696.727    | 2  | -67.525     | 1  | 0            | 3  | 0        | 15 | 395      | 2  |
| 523 |        | 15       | max | 454.58    | 3   | 411.738     | 3  | -2.483      | 15 | 0            | 2  | 0        | 15 | .105     | 3  |
| 524 |        |          | min |           | 2   | -698.073    | 2  | -67.525     | 1  | 0            | 3  | 018      | 1  | 049      | 1  |
| 525 |        | 16       | max | 454.947   | 3   | 410.729     | 3  | -2.483      | 15 | 0            | 2  | 002      | 15 | .342     | 2  |
| 526 |        |          | min | -139.004  | 2   | -699.419    | 2  | -67.525     | 1  | 0            | 3  | 054      | 1  | 112      | 3  |
| 527 |        | 17       |     | 455.315   | 3   | 409.719     | 3  | -2.483      | 15 | 0            | 2  | 003      | 15 | .712     | 2  |
| 528 |        |          | min |           | 2   | -700.765    | 2  | -67.525     | 1  | 0            | 3  | 089      | 1  | 329      | 3  |
| 529 |        | 18       | max |           | 15  | 700.877     | 2  | -2.734      | 15 | 0            | 3  | 005      | 15 | .358     | 2  |
| 530 |        |          | min |           | 1   | -332.47     | 3  | -74.168     | 1  | 0            | 2  | 127      | 1  | 162      | 3  |
| 531 |        | 19       | max |           | 15  | 699.531     | 2  | -2.734      | 15 | 0            | 3  | 006      | 15 | .013     | 3  |
| 532 |        |          | min | -136.413  | 1   | -333.48     | 3  | -74.168     | 1  | 0            | 2  | 167      | 1  | 011      | 1  |
| 533 | M5     | 1        | max |           | 1   | 2803.463    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .032     | 2  |
| 534 | IVIO   | +        | min | 8.767     | 12  | -1653.396   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 0        | 15 |
| 535 |        | 2        | max |           | 1   | 2802.453    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .905     | 2  |
| 536 |        |          | min | 9.012     | 12  | -1654.742   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -1.478   | 3  |
| 537 |        | 3        |     | 1369.719  | 3   | 1723.31     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 1.738    | _  |
| 538 |        | 3        |     | -859.383  | 2   | -1944.066   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -2.9     | 3  |
|     |        | 1        | min |           |     |             |    | -           |    |              | -  |          |    |          |    |
| 539 |        | 4        | шах | 1370.087  | 3_  | 1721.964    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .84      | 1  |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|     | Member    | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC |
|-----|-----------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|----|
| 540 |           |     | min | -858.893  | 2  | -1945.076   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -1.873   | 3  |
| 541 |           | 5   | max | 1370.454  | 3  | 1720.618    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .02      | 9  |
| 542 |           |     | min | -858.403  | 2  | -1946.085   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 847      | 3  |
| 543 |           | 6   | max | 1370.822  | 3  | 1719.272    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .18      | 3  |
| 544 |           |     | min | -857.913  | 2  | -1947.095   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 987      | 2  |
| 545 |           | 7   | max | 1371.189  | 3  | 1717.926    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 1.208    | 3  |
| 546 |           |     | min | -857.423  | 2  | -1948.104   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -1.894   | 2  |
| 547 |           | 8   | max | 1371.557  | 3  | 1716.58     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.236    | 3  |
| 548 |           |     | min | -856.933  | 2  | -1949.114   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | -2.8     | 2  |
| 549 |           | 9   | max | 1384.198  | 3  | 180.022     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.573    | 3  |
| 550 |           |     | min | -739.885  | 2  | .405        | 15 | 0           | 1  | 0            | 1  | 0        | 1  | -3.192   | 2  |
| 551 |           | 10  | max | 1384.566  | 3  | 178.676     | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.491    | 3  |
| 552 |           |     | min | -739.395  | 2  | 0           | 15 | 0           | 1  | 0            | 1  | 0        | 1  | -3.286   | 2  |
| 553 |           | 11  | max | 1384.933  | 3  | 177.33      | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 2.409    | 3  |
| 554 |           |     | min | -738.905  | 2  | -1.59       | 4  | 0           | 1  | 0            | 1  | 0        | 1  | -3.38    | 2  |
| 555 |           | 12  | max | 1397.839  | 3  | 1263.736    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 2.114    | 3  |
| 556 |           |     | min | -621.968  | 2  | -2080.155   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -3.026   | 2  |
| 557 |           | 13  | max | 1398.206  | 3  | 1262.726    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 1.447    | 3  |
| 558 |           |     | min | -621.478  | 2  | -2081.501   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -1.928   | 2  |
| 559 |           | 14  | max | 1398.574  | 3  | 1261.717    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .781     | 3  |
| 560 |           |     | min | -620.988  | 2  | -2082.847   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 83       | 2  |
| 561 |           | 15  | max | 1398.941  | 3  | 1260.707    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | .27      | 2  |
| 562 |           |     | min | -620.498  | 2  | -2084.193   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 002      | 13 |
| 563 |           | 16  | max | 1399.309  | 3  | 1259.698    | 3  | 0           | 1  | 0            | 1_ | 0        | 1  | 1.37     | 2  |
| 564 |           |     | min | -620.008  | 2  | -2085.539   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | 549      | 3  |
| 565 |           | 17  | max | 1399.676  | 3  | 1258.688    | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 2.471    | 2  |
| 566 |           |     | min | -619.518  | 2  | -2086.885   | 2  | 0           | 1  | 0            | 1  | 0        | 1  | -1.214   | 3  |
| 567 |           | 18  | max | -9.549    | 12 | 2370.599    | 2  | 0           | 1  | 0            | 1_ | 0        | 1  | 1.273    | 2  |
| 568 |           |     | min | -299.178  | 1  | -1152.377   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 635      | 3  |
| 569 |           | 19  | max | -9.304    | 12 | 2369.253    | 2  | 0           | 1  | 0            | 1  | 0        | 1  | .023     | 1  |
| 570 |           |     | min | -298.688  | 1  | -1153.387   | 3  | 0           | 1  | 0            | 1  | 0        | 1  | 027      | 3  |
| 571 | <u>M9</u> | 1   | max | 136.138   | 1_ | 842.057     | 3  | 69.472      | 1  | 0            | 3  | 006      | 15 | 0        | 15 |
| 572 |           |     | min | 4.971     | 15 | -482.032    | 2  | 2.567       | 15 | 0            | 1  | 165      | 1  | 016      | 2  |
| 573 |           | 2   | max | 136.628   | 1  | 841.048     | 3  | 69.472      | 1  | 0            | 3  | 005      | 15 | .239     | 2  |
| 574 |           |     | min | 5.119     | 15 | -483.378    | 2  | 2.567       | 15 | 0            | 1  | 129      | 1  | 445      | 3  |
| 575 |           | 3   | max | 431.42    | 3  | 589.134     | 2  | 68.965      | 1  | 0            | 2  | 003      | 15 | .481     | 2  |
| 576 |           |     | min | -254.814  | 2  | -624.315    | 3  | 2.543       | 15 | 0            | 3  | 092      | 1  | 87       | 3  |
| 577 |           | 4_  | max | 431.787   | 3  | 587.788     | 2  | 68.965      | 1  | 0            | 2  | 002      | 15 | .184     | 1  |
| 578 |           |     | min | -254.324  | 2  | -625.325    | 3  | 2.543       | 15 | 0            | 3  | 056      | 1  | 541      | 3  |
| 579 |           | 5   | max | 432.154   | 3  | 586.442     | 2  | 68.965      | 1  | 0            | 2  | 0        | 15 | 004      | 15 |
| 580 |           | _   |     |           |    | -626.334    |    | 2.543       | 15 |              | 3  | 019      | 1  | 21       | 3  |
| 581 |           | 6   |     | 432.522   | 3  | 585.096     | 2  | 68.965      | 1  | 0            | 2  | .017     | 1  | .12      | 3  |
| 582 |           |     | min |           | 2  | -627.344    | 3  | 2.543       | 15 | 0            | 3  | 0        | 15 | 448      | 2  |
| 583 |           | 7   | 1   | 432.889   | 3  | 583.75      | 2  | 68.965      | 1  | 0            | 2  | .054     | 1  | .452     | 3  |
| 584 |           |     | min | -252.854  | 2  | -628.354    | 3  | 2.543       | 15 | 0            | 3  | .002     | 15 | 757      | 2  |
| 585 |           | 8   |     | 433.257   | 3  | 582.404     | 2  | 68.965      | 1  | 0            | 2  | .09      | 1  | .783     | 3  |
| 586 |           |     | min | -252.364  | 2  | -629.363    | 3  | 2.543       | 15 | 0            | 3  | .003     | 15 | -1.064   | 2  |
| 587 |           | 9   |     | 443.066   | 3  | 53.513      | 2  | 104.775     | 1  | 0            | 3  | 002      | 15 | .914     | 3  |
| 588 |           |     |     | -197.182  | 2  | .409        | 15 | 3.862       | 15 | 0            | 9  | 055      | 1  | -1.217   | 2  |
| 589 |           | 10  | max |           | 3  | 52.167      | 2  | 104.775     | 11 | 0            | 3  | 0        | 1  | .891     | 3  |
| 590 |           |     |     | -196.692  | 2  | .003        | 15 | 3.862       | 15 | 0            | 9  | 0        | 10 | -1.245   | 2  |
| 591 |           | 11  |     | 443.801   | 3  | 50.821      | 2  | 104.775     | 1  | 0            | 3  | .056     | 1  | .869     | 3  |
| 592 |           |     |     |           | 2  | -1.668      | 4  | 3.862       | 15 | 0            | 9  | .002     | 15 | -1.273   | 2  |
| 593 |           | 12  | 1   | 453.478   | 3  | 414.767     | 3  | 67.525      | 1  | 0            | 3  | 003      | 15 | .759     | 3  |
| 594 |           |     | min | -140.964  | 2  | -694.034    | 2  | 2.483       | 15 | 0            | 2  | 089      | 1  | -1.128   | 2  |
| 595 |           | 13  |     | 453.845   | 3  | 413.757     | 3  | 67.525      | 1  | 0            | 3  | 002      | 15 | .54      | 3  |
| 596 |           |     | min | -140.474  | 2  | -695.38     | 2  | 2.483       | 15 | 0            | 2  | 053      | 1  | 762      | 2  |



Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

# **Envelope Member Section Forces (Continued)**

|     | Member | Sec |     | Axial[lb] | LC | y Shear[lb] | LC | z Shear[lb] | LC | Torque[k-ft] | LC | y-y Mome | LC | z-z Mome | LC_ |
|-----|--------|-----|-----|-----------|----|-------------|----|-------------|----|--------------|----|----------|----|----------|-----|
| 597 |        | 14  | max | 454.213   | 3  | 412.748     | 3  | 67.525      | 1  | 0            | 3  | 0        | 15 | .322     | 3   |
| 598 |        |     | min | -139.984  | 2  | -696.727    | 2  | 2.483       | 15 | 0            | 2  | 018      | 1  | 395      | 2   |
| 599 |        | 15  | max | 454.58    | 3  | 411.738     | 3  | 67.525      | 1  | 0            | 3  | .018     | 1  | .105     | 3   |
| 600 |        |     | min | -139.494  | 2  | -698.073    | 2  | 2.483       | 15 | 0            | 2  | 0        | 15 | 049      | 1   |
| 601 |        | 16  | max | 454.947   | 3  | 410.729     | 3  | 67.525      | 1  | 0            | 3  | .054     | 1  | .342     | 2   |
| 602 |        |     | min | -139.004  | 2  | -699.419    | 2  | 2.483       | 15 | 0            | 2  | .002     | 15 | 112      | 3   |
| 603 |        | 17  | max | 455.315   | 3  | 409.719     | 3  | 67.525      | 1  | 0            | 3  | .089     | 1  | .712     | 2   |
| 604 |        |     | min | -138.514  | 2  | -700.765    | 2  | 2.483       | 15 | 0            | 2  | .003     | 15 | 329      | 3   |
| 605 |        | 18  | max | -5.125    | 15 | 700.877     | 2  | 74.168      | 1  | 0            | 2  | .127     | 1  | .358     | 2   |
| 606 |        |     | min | -136.903  | 1  | -332.47     | 3  | 2.734       | 15 | 0            | 3  | .005     | 15 | 162      | 3   |
| 607 |        | 19  | max | -4.977    | 15 | 699.531     | 2  | 74.168      | 1  | 0            | 2  | .167     | 1  | .013     | 3   |
| 608 |        |     | min | -136.413  | 1  | -333.48     | 3  | 2.734       | 15 | 0            | 3  | .006     | 15 | 011      | 1   |

# **Envelope Member Section Deflections**

|    | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC x Rotate [r | LC | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|----|--------|-----|-----|--------|----|--------|----|--------|----------------|----|---------------|----|---------------|----|
| 1  | M13    | 1   | max | 0      | 1  | .132   | 2  | .008   | 3 1.071e-2     | 2  | NC            | 1_ | NC            | 1  |
| 2  |        |     | min | 0      | 15 | 03     | 3  | 004    | 2 -2.427e-3    | 3  | NC            | 1  | NC            | 1  |
| 3  |        | 2   | max | 0      | 1  | .216   | 3  | .02    | 1 1.204e-2     | 2  | NC            | 4  | NC            | 1  |
| 4  |        |     | min | 0      | 15 | 007    | 9  | 001    | 10 -2.391e-3   | 3  | 830.929       | 3  | NC            | 1  |
| 5  |        | 3   | max | 0      | 1  | .415   | 3  | .047   | 1 1.338e-2     | 2  | NC            | 5  | NC            | 2  |
| 6  |        |     | min | 0      | 15 | 095    | 1  | 0      | 10 -2.354e-3   | 3  | 458.998       | 3  | 4327.056      | 1  |
| 7  |        | 4   | max | 0      | 1  | .536   | 3  | .071   | 1 1.471e-2     | 2  | NC            | 5  | NC            | 3  |
| 8  |        |     | min | 0      | 15 | 144    | 1  | .002   | 10 -2.317e-3   | 3  | 360.73        | 3  | 2898.16       | 1  |
| 9  |        | 5   | max | 0      | 1  | .564   | 3  | .082   | 1 1.605e-2     | 2  | NC            | 5  | NC            | 3  |
| 10 |        |     | min | 0      | 15 | 142    | 1  | .002   | 10 -2.281e-3   | 3  | 343.375       | 3  | 2493.026      | 1  |
| 11 |        | 6   | max | 0      | 1  | .503   | 3  | .078   | 1 1.739e-2     | 2  | NC            | 5  | NC            | 3  |
| 12 |        |     | min | 0      | 15 | 09     | 1  | .001   | 10 -2.244e-3   | 3  | 383.289       | 3  | 2611.944      | 1  |
| 13 |        | 7   | max | 0      | 1  | .369   | 3  | .06    | 1 1.872e-2     | 2  | NC            | 5  | NC            | 2  |
| 14 |        |     | min | 0      | 15 | 011    | 9  | 002    | 10 -2.208e-3   | 3  | 511.759       | 3  | 3393.274      | 1  |
| 15 |        | 8   | max | 0      | 1  | .199   | 3  | .033   | 1 2.006e-2     | 2  | NC            | 1  | NC            | 2  |
| 16 |        |     | min | 0      | 15 | .002   | 15 | 005    | 10 -2.171e-3   | 3  | 892.209       | 3  | 6172.888      | 1  |
| 17 |        | 9   | max | 0      | 1  | .237   | 2  | .024   | 3 2.139e-2     | 2  | NC            | 4  | NC            | 1  |
| 18 |        |     | min | 0      | 15 | .005   | 15 | 011    | 2 -2.134e-3    | 3  | 1929.409      | 2  | NC            | 1  |
| 19 |        | 10  | max | 0      | 1  | .281   | 2  | .024   | 3 2.273e-2     | 2  | NC            | 3  | NC            | 1  |
| 20 |        |     | min | 0      | 1  | 025    | 3  | 016    | 2 -2.098e-3    | 3  | 1366.293      | 2  | NC            | 1  |
| 21 |        | 11  | max | 0      | 15 | .237   | 2  | .024   | 3 2.139e-2     | 2  | NC            | 4  | NC            | 1  |
| 22 |        |     | min | 0      | 1  | .005   | 15 | 011    | 2 -2.134e-3    | 3  | 1929.409      | 2  | NC            | 1  |
| 23 |        | 12  | max | 0      | 15 | .199   | 3  | .033   | 1 2.006e-2     | 2  | NC            | 1  | NC            | 2  |
| 24 |        |     | min | 0      | 1  | .002   | 15 | 005    | 10 -2.171e-3   | 3  | 892.209       | 3  | 6172.888      | 1  |
| 25 |        | 13  | max | 0      | 15 | .369   | 3  | .06    | 1 1.872e-2     | 2  | NC            | 5  | NC            | 2  |
| 26 |        |     | min | 0      | 1  | 011    | 9  | 002    | 10 -2.208e-3   | 3  | 511.759       | 3  | 3393.274      | 1  |
| 27 |        | 14  | max | 0      | 15 | .503   | 3  | .078   | 1 1.739e-2     | 2  | NC            | 5  | NC            | 3  |
| 28 |        |     | min | 0      | 1  | 09     | 1  | .001   | 10 -2.244e-3   | 3  | 383.289       | 3  | 2611.944      | 1  |
| 29 |        | 15  | max | 0      | 15 | .564   | 3  | .082   | 1 1.605e-2     | 2  | NC            | 5  | NC            | 3  |
| 30 |        |     | min | 0      | 1  | 142    | 1  | .002   | 10 -2.281e-3   | 3  | 343.375       | 3  | 2493.026      | 1  |
| 31 |        | 16  | max | 0      | 15 | .536   | 3  | .071   | 1 1.471e-2     | 2  | NC            | 5  | NC            | 3  |
| 32 |        |     | min | 0      | 1  | 144    | 1  | .002   | 10 -2.317e-3   | 3  | 360.73        | 3  | 2898.16       | 1  |
| 33 |        | 17  | max | 0      | 15 | .415   | 3  | .047   | 1 1.338e-2     | 2  | NC            | 5  | NC            | 2  |
| 34 |        |     | min | 0      | 1  | 095    | 1  | 0      | 10 -2.354e-3   | 3  | 458.998       | 3  | 4327.056      | 1  |
| 35 |        | 18  | max | 0      | 15 | .216   | 3  | .02    | 1 1.204e-2     | 2  | NC            | 4  | NC            | 1  |
| 36 |        |     | min | 0      | 1  | 007    | 9  | 001    | 10 -2.391e-3   | 3  | 830.929       | 3  | NC            | 1  |
| 37 |        | 19  | max | 0      | 15 | .132   | 2  | .008   | 3 1.071e-2     | 2  | NC            | 1  | NC            | 1  |
| 38 |        |     | min | 0      | 1  | 03     | 3  | 004    | 2 -2.427e-3    | 3  | NC            | 1  | NC            | 1  |
| 39 | M14    | 1   | max | 0      | 1  | .274   | 3  | .007   | 3 6.175e-3     | 2  | NC            | 1  | NC            | 1  |
| 40 |        |     | min | 0      | 15 | 407    | 2  | 004    | 2 -4.865e-3    | 3  | NC            | 1  | NC            | 1  |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|          | Member | Sec      |     | x [in] | LC | y [in]           | LC | z [in]      | LC x Rotate [r             |    |               |               |                |   |
|----------|--------|----------|-----|--------|----|------------------|----|-------------|----------------------------|----|---------------|---------------|----------------|---|
| 41       |        | 2        | max | 0      | 1  | .538             | 3  | .014        | 1 7.299e-3                 | 2  | NC            | 5_            | NC             | 1 |
| 42       |        |          | min | 0      | 15 | 655              | 2  | 002         | 10 -5.835e-3               | 3  | 772.021       | 3             | NC             | 1 |
| 43       |        | 3        | max | 0      | 1  | .765             | 3  | .037        | 1 8.422e-3                 | 2  | NC            | 5_            | NC             | 2 |
| 44       |        |          | min | 0      | 15 | 873              | 2  | 0           | 10 -6.805e-3               | 3  | 415.414       | 3             | 5532.861       | 1 |
| 45       |        | 4        | max | 0      | 1  | .928             | 3  | .06         | 1 9.545e-3                 | 2  | NC            | 5             | NC             | 3 |
| 46       |        |          | min | 0      | 15 | -1.04            | 2  | .002        | 10 -7.775e-3               | 3  | 311.574       | 3             | 3448.599       | 1 |
| 47       |        | 5        | max | 0      | 1  | 1.016            | 3  | .072        | 1 1.067e-2                 | 2  | NC            | 15            | NC             | 3 |
| 48       |        |          | min | 0      | 15 | -1.146           | 2  | .002        | 10 -8.745e-3               | 3  | 274.867       | 3             | 2850.929       | 1 |
| 49       |        | 6        | max | 0      | 1  | 1.027            | 3  | .071        | 1 1.179e-2                 | 2  | NC            | 15            | NC             | 3 |
| 50       |        |          | min | 0      | 15 | -1.188           | 2  | 0           | 10 -9.716e-3               | 3  | 261.228       | 2             | 2911.418       | 1 |
| 51       |        | 7        | max | 0      | 1  | .973             | 3  | .055        | 1 1.291e-2                 | 2  | NC            | 15            | NC             | 2 |
| 52       |        |          | min | 0      | 15 | -1.176           | 2  | 002         | 10 -1.069e-2               | 3  | 265.47        | 2             | 3712.188       | 1 |
| 53       |        | 8        | max | 0      | 1  | .881             | 3  | .031        | 1 1.404e-2                 | 2  | NC            | 15            | NC             | 2 |
| 54       |        |          | min | 0      | 15 | -1.127           | 2  | 005         | 10 -1.166e-2               | 3  | 283.644       | 2             | 6637.229       |   |
| 55       |        | 9        | max | 0      | 1  | .787             | 3  | .021        | 3 1.516e-2                 | 2  | NC            | 5             | NC             | 1 |
| 56       |        | <b> </b> | min | 0      | 15 | -1.068           | 2  | 01          | 2 -1.263e-2                | 3  | 308.604       | 2             | NC             | 1 |
| 57       |        | 10       | max | 0      | 1  | .742             | 3  | .021        | 3 1.628e-2                 | 2  | NC            | 5             | NC             | 1 |
| 58       |        | 10       | min | 0      | 1  | -1.039           | 2  | 015         | 2 -1.36e-2                 | 3  | 323.049       | 2             | NC             | 1 |
| 59       |        | 11       | max | 0      | 15 | .787             | 3  | .021        | 3 1.516e-2                 | 2  | NC            | 5             | NC             | 1 |
| 60       |        |          | min | 0      | 1  | -1.068           | 2  | 01          | 2 -1.263e-2                | 3  | 308.604       | 2             | NC             | 1 |
| 61       |        | 12       | max | 0      | 15 | .881             | 3  | .031        | 1 1.404e-2                 | 2  | NC            | 15            | NC             | 2 |
| 62       |        | 12       | min | 0      | 1  | -1.127           | 2  | 005         | 10 -1.166e-2               | 3  | 283.644       | 2             | 6637.229       | 1 |
| 63       |        | 13       | max | 0      | 15 | .973             | 3  | .055        | 1 1.291e-2                 | 2  | NC            | 15            | NC             | 2 |
| 64       |        | 13       | min | 0      | 1  | -1.176           | 2  | 002         | 10 -1.069e-2               | 3  | 265.47        | 2             | 3712.188       |   |
| 65       |        | 14       | max | 0      | 15 | 1.027            | 3  | .071        | 1 1.179e-2                 | 2  | NC            | 15            | NC             | 3 |
| 66       |        | 14       | min | 0      | 1  | -1.188           | 2  | 0           | 10 -9.716e-3               | 3  | 261.228       | 2             | 2911.418       |   |
| 67       |        | 15       |     | 0      | 15 | 1.016            | 3  | .072        | 1 1.067e-2                 | 2  | NC            | 15            | NC             | 3 |
| 68       |        | 10       | max | 0      | 1  | -1.016<br>-1.146 | 2  | .002        | 10 -8.745e-3               | 3  | 274.867       | 3             | 2850.929       |   |
| 69       |        | 16       | min | 0      | 15 | .928             | 3  | .002        | 1 9.545e-3                 | 2  | NC            | <u>5</u>      | NC             | 3 |
| 70       |        | 10       | max | 0      | 1  | -1.04            | 2  | .002        | 10 -7.775e-3               | 3  | 311.574       | 3             | 3448.599       | 1 |
| 71       |        | 17       |     | 0      | 15 |                  | 3  | .002        | 1 8.422e-3                 | 2  | NC            | <u>5</u>      | NC             | 2 |
| 72       |        | 17       | max | -      | 1  | <u>.765</u>      |    |             |                            |    |               |               | 5532.861       | 1 |
|          |        | 10       | min | 0      | 15 | 873              | 2  | <u> </u>    |                            | 3  | 415.414<br>NC | 3             |                |   |
| 73<br>74 |        | 18       | max | 0      | 1  | .538             | 2  |             | 1 7.299e-3                 | 3  | 772.021       | 5             | NC<br>NC       | 1 |
|          |        | 10       | min | 0      |    | 655              |    | 002<br>.007 | 10 -5.835e-3<br>3 6.175e-3 | 2  |               | 3             | NC<br>NC       | 1 |
| 75       |        | 19       | max | 0      | 15 | .274             | 3  | 00 <i>1</i> |                            |    | NC<br>NC      | <u>1</u><br>1 | NC<br>NC       | 1 |
| 76       | NAC.   | 4        | min | 0      | _  | 407              | 2  |             |                            | 3  | NC<br>NC      | 1             | NC<br>NC       | • |
| 77       | M15    | 1        | max | 0      | 15 | .28<br>407       | 3  | .006<br>004 | 3 4.14e-3<br>2 -6.4e-3     | 3  | NC<br>NC      | 1             | NC<br>NC       | 1 |
| 78       |        |          | min | 0      |    |                  | 2  |             |                            | 2  |               | •             |                |   |
| 79       |        | 2        | max | 0      | 15 | .458             | 3  | .014        | 1 4.965e-3                 | 3  | NC<br>CE7 044 | 5             | NC             | 1 |
| 80       |        | 2        | min | 0      |    | 717              | 2  | 001         | 10 -7.568e-3               | 2  | 657.811       | 2             | NC<br>NC       | - |
| 81       |        | 3        | max | 0      | 15 | <u>.616</u>      | 3  | .038        | 1 5.79e-3                  | 3_ | NC<br>OFO FOO | 5_            | NC<br>FF40,404 | 2 |
| 82       |        | 4        | min | 0      | 1  | <u>985</u>       | 2  | 0           | 10 -8.735e-3               | 2  | 352.582       | 2             | 5512.484       | - |
| 83       |        | 4        | max | 0      | 15 | .738             | 3  | .06         | 1 6.615e-3                 | 3  | NC<br>202,002 | 5             | NC             | 3 |
| 84       |        | -        | min | 0      | 1  | -1.183           | 2  | .002        | 10 -9.902e-3               | 2  | 262.692       | 2             | 3437.402       |   |
| 85       |        | 5        | max | 0      | 15 | .817             | 3  | .072        | 1 7.44e-3                  | 3  | NC            | <u>15</u>     | NC             | 3 |
| 86       |        | _        | min | 0      | 1  | -1.296           | 2  | .002        | 10 -1.107e-2               | 2  | 229.413       | 2             | 2841.361       | 1 |
| 87       |        | 6        | max | 0      | 15 | .851             | 3  | .071        | 1 8.265e-3                 | 3  | NC<br>222.700 | <u>15</u>     | NC             | 3 |
| 88       |        | -        | min | 0      | 1  | -1.322           | 2  | .001        | 10 -1.224e-2               | 2  | 222.786       | 2             | 2899.792       |   |
| 89       |        | 7        | max | 0      | 15 | .847             | 3  | .056        | 1 9.09e-3                  | 3_ | NC<br>004.740 | 15            | NC             | 2 |
| 90       |        |          | min | 0      | 1  | <u>-1.276</u>    | 2  | 001         | 10 -1.34e-2                | 2  | 234.743       | 2             | 3691.205       |   |
| 91       |        | 8        | max | 0      | 15 | .816             | 3  | .032        | 1 9.915e-3                 | 3_ | NC<br>OCO 740 | <u>15</u>     | NC<br>CECE CAC | 2 |
| 92       |        |          | min | 0      | 1  | <u>-1.183</u>    | 2  | 004         | 10 -1.457e-2               | 2  | 262.749       | 2             | 6565.646       |   |
| 93       |        | 9        | max | 0      | 15 | .777             | 3  | .02         | 3 1.074e-2                 | 3_ | NC<br>000 500 | 5_            | NC<br>NC       | 1 |
| 94       |        | 40       | min | 0      | 1  | <u>-1.086</u>    | 2  | 009         | 2 -1.574e-2                | 2  | 300.503       | 2             | NC<br>NC       | 1 |
| 95       |        | 10       | max | 0      | 1  | .757             | 3  | .02         | 3 1.157e-2                 | 3_ | NC<br>200 057 | 5_            | NC<br>NC       | 1 |
| 96       |        | 4.4      | min | 0      | 1  | -1.038           | 2  | <u>014</u>  | 2 -1.691e-2                | 2  | 323.057       | 2             | NC<br>NC       | 1 |
| 97       |        | 11       | max | 0      | 1  | .777             | 3  | .02         | 3 1.074e-2                 | 3_ | NC            | 5             | NC             | 1 |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

|            | Member | Sec |            | x [in]       | LC | y [in]             | LC | z [in]       | LC x Rotate [r             |   |               |               |                | LC |
|------------|--------|-----|------------|--------------|----|--------------------|----|--------------|----------------------------|---|---------------|---------------|----------------|----|
| 98         |        |     | min        | 0            | 15 | -1.086             | 2  | 009          | 2 -1.574e-2                |   | 300.503       | 2             | NC             | 1  |
| 99         |        | 12  | max        | 0            | 1  | .816               | 3  | .032         | 1 9.915e-3                 | 3 | NC            | <u>15</u>     | NC             | 2  |
| 100        |        |     | min        | 0            | 15 | -1.183             | 2  | 004          | 10 -1.457e-2               |   | 262.749       | 2             | 6565.646       |    |
| 101        |        | 13  | max        | 0            | 1  | .847               | 3  | .056         | 1 9.09e-3                  | 3 | NC            | 15            | NC             | 2  |
| 102        |        |     | min        | 0            | 15 | -1.276             | 2  | 001          | 10 -1.34e-2                | 2 | 234.743       | 2             | 3691.205       | 1  |
| 103        |        | 14  | max        | 0            | 1  | .851               | 3  | .071         | 1 8.265e-3                 |   | NC            | <u>15</u>     | NC             | 3  |
| 104        |        | 4.5 | min        | 0            | 15 | -1.322             | 2  | .001         | 10 -1.224e-2               |   | 222.786       | 2             | 2899.792       | 1  |
| 105        |        | 15  | max        | 0            | 1  | .817               | 3  | .072         | 1 7.44e-3                  | 3 | NC<br>000 440 | 15            | NC<br>0044 004 | 3  |
| 106        |        | 4.0 | min        | 0            | 15 | <u>-1.296</u>      | 2  | .002         | 10 -1.107e-2               |   | 229.413       | 2             | 2841.361       | 1  |
| 107        |        | 16  | max        | 0            | 1  | .738               | 3  | .06          | 1 6.615e-3                 |   | NC<br>aca coa | 5             | NC             | 3  |
| 108<br>109 |        | 17  | min        | 0            | 15 | <u>-1.183</u>      | 2  | .002<br>.038 | 10 -9.902e-3               |   | 262.692<br>NC | <u>2</u><br>5 | 3437.402<br>NC | 2  |
| 110        |        | 11/ | max        | <u>0</u><br> | 15 | <u>.616</u><br>985 | 3  | <u>.036</u>  | 1 5.79e-3<br>10 -8.735e-3  | 3 | 352.582       | 2             | 5512.484       |    |
| 111        |        | 18  |            | 0            | 1  | <u>965</u><br>.458 | 3  | .014         | 1 4.965e-3                 |   | NC            | 5             | NC             | 1  |
| 112        |        | 10  | max<br>min | 0            | 15 | 717                | 2  | 001          | 10 -7.568e-3               |   | 657.811       | 2             | NC<br>NC       | 1  |
| 113        |        | 19  | max        | 0            | 1  | .28                | 3  | .006         | 3 4.14e-3                  | 3 | NC            | 1             | NC             | 1  |
| 114        |        | 13  | min        | 0            | 15 | 407                | 2  | 004          | 2 -6.4e-3                  | 2 | NC            | 1             | NC             | 1  |
| 115        | M16    | 1   | max        | 0            | 15 | .116               | 2  | .006         | 3 7.503e-3                 |   | NC            | 1             | NC             | 1  |
| 116        | WITO   |     | min        | 0            | 1  | 094                | 3  | 003          | 2 -8.963e-3                |   | NC            | 1             | NC             | 1  |
| 117        |        | 2   | max        | 0            | 15 | .002               | 13 | .02          | 1 8.61e-3                  | 3 | NC            | 4             | NC             | 1  |
| 118        |        | _   | min        | 0            | 1  | 07                 | 2  | 0            | 10 -9.897e-3               |   | 1097.027      | 2             | NC             | 1  |
| 119        |        | 3   | max        | 0            | 15 | .043               | 3  | .048         | 1 9.717e-3                 |   | NC            | 5             | NC             | 2  |
| 120        |        |     | min        | 0            | 1  | 217                | 2  | .002         | 10 -1.083e-2               |   | 611.988       | 2             | 4327.942       | 1  |
| 121        |        | 4   | max        | 0            | 15 | .072               | 3  | .071         | 1 1.082e-2                 |   | NC            | 5             | NC             | 3  |
| 122        |        |     | min        | 0            | 1  | 3                  | 2  | .003         | 15 -1.176e-2               |   | 489.924       | 2             | 2890.954       | 1  |
| 123        |        | 5   | max        | 0            | 15 | .065               | 3  | .083         | 1 1.193e-2                 |   | NC            | 5             | NC             | 3  |
| 124        |        |     | min        | 0            | 1  | 307                | 2  | .003         | 15 -1.27e-2                | 2 | 481.889       | 2             | 2479.797       | 1  |
| 125        |        | 6   | max        | 0            | 15 | .023               | 3  | .079         | 1 1.304e-2                 | 3 | NC            | 5             | NC             | 3  |
| 126        |        |     | min        | 0            | 1  | 24                 | 2  | .003         | 10 -1.363e-2               | 2 | 572.426       | 2             | 2587.577       | 1  |
| 127        |        | 7   | max        | 0            | 15 | .001               | 13 | .062         | 1 1.415e-2                 | 3 | NC            | 4             | NC             | 2  |
| 128        |        |     | min        | 0            | 1  | 116                | 2  | 0            | 10 -1.457e-2               | 2 | 880.405       | 2             | 3335.878       |    |
| 129        |        | 8   | max        | 0            | 15 | .061               | 1  | .035         | 1 1.525e-2                 | 3 | NC            | 4             | NC             | 2  |
| 130        |        |     | min        | 0            | 1  | 124                | 3  | 003          | 10 -1.55e-2                |   | 2565.796      | 2             | 5940.096       | 1  |
| 131        |        | 9   | max        | 0            | 15 | .176               | 1  | .018         | 3 1.636e-2                 |   | NC            | 4_            | NC             | 1  |
| 132        |        |     | min        | 0            | 1  | 193                | 3  | 007          | 2 -1.643e-2                |   | 2061.174      | 3             | NC             | 1  |
| 133        |        | 10  | max        | 0            | 1  | .233               | 2  | .017         | 3 1.747e-2                 |   | NC            | 4             | NC             | 1  |
| 134        |        |     | min        | 0            | 1  | 224                | 3  | <u>013</u>   | 2 -1.737e-2                |   | 1572.955      | 3             | NC<br>NC       | 1  |
| 135        |        | 11  | max        | 0            | 1  | .176               | 1  | .018         | 3 1.636e-2                 |   | NC            | 4             | NC<br>NC       | 1  |
| 136        |        | 40  | min        | 0            | 15 | <u>193</u>         | 3  | 007          | 2 -1.643e-2                |   | 2061.174      | 3             | NC<br>NC       | 1  |
| 137        |        | 12  | max        | 0            | 1  | .061               | 1  | .035         | 1 1.525e-2                 |   | NC            | 4_            | NC<br>F040,000 | 2  |
| 138        |        | 40  | min        | 0            | 15 | 124                | 3  | 003          | 10 -1.55e-2                |   |               |               | 5940.096       |    |
| 139        |        | 13  | max        | 0            | 1  | .001               | 13 | .062         | 1 1.415e-2                 |   | NC<br>990 405 | 4             | NC             | 2  |
| 140        |        | 1.1 | min        | 0            | 15 | 116                | 3  | 070          | 10 -1.457e-2               |   | 880.405       | 2             | 3335.878       |    |
| 141<br>142 |        | 14  | max        | 0<br>0       |    | .023               |    | .079         | 1 1.304e-2                 |   | NC<br>572.426 | 5             | NC             | 3  |
| 143        |        | 15  | min<br>max | 0            | 15 | 24<br>.065         | 3  | .003<br>.083 | 10 -1.363e-2<br>1 1.193e-2 |   | 572.426<br>NC | <u>2</u><br>5 | 2587.577<br>NC | 3  |
| 144        |        | 10  | min        | 0            | 15 | 307                | 2  | .003         | 15 -1.27e-2                | 2 | 481.889       | 2             | 2479.797       | 1  |
| 145        |        | 16  | max        | 0            | 1  | .072               | 3  | .003<br>.071 | 1 1.082e-2                 |   | NC            | 5             | NC             | 3  |
| 146        |        | 10  | min        | 0            | 15 |                    | 2  | .003         | 15 -1.176e-2               |   | 489.924       | 2             | 2890.954       |    |
| 147        |        | 17  | max        | 0            | 1  | 3<br>.043          | 3  | .003         | 1 9.717e-3                 |   | NC            | 5             | NC             | 2  |
| 148        |        | 17  | min        | 0            | 15 | 217                | 2  | .002         | 10 -1.083e-2               |   | 611.988       | 2             | 4327.942       |    |
| 149        |        | 18  | max        | 0            | 1  | .002               | 13 | .002         | 1 8.61e-3                  | 3 | NC            | 4             | NC             | 1  |
| 150        |        | 10  | min        | 0            | 15 | 002                | 2  | 0            | 10 -9.897e-3               |   | 1097.027      | 2             | NC             | 1  |
| 151        |        | 19  | max        | 0            | 1  | .116               | 2  | .006         | 3 7.503e-3                 |   | NC            | 1             | NC             | 1  |
| 152        |        | 1.5 | min        | 0            | 15 | 094                | 3  | 003          | 2 -8.963e-3                |   | NC            | 1             | NC             | 1  |
| 153        | M2     | 1   | max        | .006         | 2  | .006               | 2  | .005         | 1 -5.108e-6                |   | NC            | 1             | NC             | 1  |
| 154        |        |     | min        | 008          | 3  | 01                 | 3  | 0            | 15 -1.384e-4               |   | 9024.487      | 2             | NC             | 1  |
|            |        |     |            |              |    |                    |    |              | 10 1100 10 1               |   | 50E 11 101    | _             |                |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |            | x [in]      | LC | y [in]            | LC | z [in]      | LC |                        |                | (n) L/y Ratio  |               | · ,      |   |
|------------|-----------|-----|------------|-------------|----|-------------------|----|-------------|----|------------------------|----------------|----------------|---------------|----------|---|
| 155        |           | 2   | max        | .006        | 2  | .005              | 2  | .005        | 1  | -4.768e-6              | <u>15</u>      | NC             | _1_           | NC       | 1 |
| 156        |           |     | min        | 008         | 3  | 01                | 3  | 0           | 15 | -1.292e-4              | _1_            | NC             | 1_            | NC       | 1 |
| 157        |           | 3   | max        | .005        | 2  | .005              | 2  | .004        | 1  | -4.428e-6              |                | NC             | 1             | NC       | 1 |
| 158        |           | 4   | min        | 007         | 3  | 009               | 3  | 0           | 15 | -1.2e-4                | 1_             | NC<br>NC       | 1_            | NC<br>NC | 1 |
| 159        |           | 4   | max        | .005        | 3  | .004              | 3  | <u>.004</u> | 15 | -4.088e-6              | <u>15</u><br>1 | NC<br>NC       | 1             | NC<br>NC | 1 |
| 160<br>161 |           | 5   | min        | 007<br>.005 | 2  | 009<br>.003       | 2  | .004        | 1  | -1.108e-4<br>-3.748e-6 | _              | NC<br>NC       | 1             | NC<br>NC | 1 |
| 162        |           | 5   | max        | 005<br>006  | 3  | 009               | 3  | 0 <u></u>   | 15 | -1.015e-4              | 1              | NC<br>NC       | 1             | NC<br>NC | 1 |
| 163        |           | 6   | max        | .004        | 2  | .003              | 2  | .003        | 1  | -3.408e-6              | •              | NC             | 1             | NC       | 1 |
| 164        |           |     | min        | 006         | 3  | 008               | 3  | 0           | 15 | -9.229e-5              | 1              | NC             | 1             | NC       | 1 |
| 165        |           | 7   | max        | .004        | 2  | .002              | 2  | .003        | 1  | -3.068e-6              | 15             | NC             | 1             | NC       | 1 |
| 166        |           |     | min        | 005         | 3  | 008               | 3  | 0           | 15 | -8.306e-5              | 1              | NC             | 1             | NC       | 1 |
| 167        |           | 8   | max        | .004        | 2  | .001              | 2  | .002        | 1  | -2.728e-6              | 15             | NC             | 1             | NC       | 1 |
| 168        |           |     | min        | 005         | 3  | 007               | 3  | 0           | 15 | -7.383e-5              | 1              | NC             | 1             | NC       | 1 |
| 169        |           | 9   | max        | .003        | 2  | 0                 | 2  | .002        | 1  | -2.388e-6              | 15             | NC             | 1             | NC       | 1 |
| 170        |           |     | min        | 004         | 3  | 007               | 3  | 0           | 15 | -6.46e-5               | 1_             | NC             | 1             | NC       | 1 |
| 171        |           | 10  | max        | .003        | 2  | 0                 | 2  | .002        | 1  | -2.048e-6              | 15             | NC             | _1_           | NC       | 1 |
| 172        |           |     | min        | 004         | 3  | 006               | 3  | 0           | 15 | -5.536e-5              | _1_            | NC             | 1_            | NC       | 1 |
| 173        |           | 11  | max        | .003        | 2  | 0                 | 2  | .001        | 1_ | -1.708e-6              |                | NC             | 1_            | NC       | 1 |
| 174        |           | 40  | min        | 004         | 3  | 006               | 3  | 0           | 15 | -4.613e-5              | 1_             | NC<br>NC       | 1_            | NC<br>NC | 1 |
| 175        |           | 12  | max        | .002        | 2  | 0                 | 2  | .001        | 1  | -1.368e-6              | <u>15</u>      | NC<br>NC       | 1_            | NC<br>NC | 1 |
| 176        |           | 13  | min        | 003<br>.002 | 2  | 005<br>0          | 2  | 0           | 15 | -3.69e-5<br>-1.028e-6  | 1_             | NC<br>NC       | <u>1</u><br>1 | NC<br>NC | 1 |
| 177<br>178 |           | 13  | max        | 003         | 3  | 004               | 3  | <u> </u>    | 15 | -1.026e-6              | <u>15</u>      | NC<br>NC       | 1             | NC<br>NC | 1 |
| 179        |           | 14  | max        | .002        | 2  | - <u>004</u><br>0 | 15 | 0           | 1  | -6.884e-7              | 15             | NC             | 1             | NC       | 1 |
| 180        |           | 17  | min        | 002         | 3  | 004               | 3  | 0           | 15 | -1.844e-5              | 1              | NC             | 1             | NC       | 1 |
| 181        |           | 15  | max        | .001        | 2  | <u>.00-</u>       | 15 | 0           | 1  | -3.484e-7              | 15             | NC             | 1             | NC       | 1 |
| 182        |           |     | min        | 002         | 3  | 003               | 3  | 0           | 15 | -9.208e-6              | 1              | NC             | 1             | NC       | 1 |
| 183        |           | 16  | max        | 0           | 2  | 0                 | 15 | 0           | 1  | 3.362e-7               | 2              | NC             | 1             | NC       | 1 |
| 184        |           |     | min        | 001         | 3  | 002               | 3  | 0           | 15 | -7.796e-7              | 3              | NC             | 1             | NC       | 1 |
| 185        |           | 17  | max        | 0           | 2  | 0                 | 15 | 0           | 1  | 9.255e-6               | 1              | NC             | 1             | NC       | 1 |
| 186        |           |     | min        | 0           | 3  | 002               | 3  | 0           | 15 | 1.141e-7               | 12             | NC             | 1             | NC       | 1 |
| 187        |           | 18  | max        | 0           | 2  | 0                 | 15 | 0           | 1  | 1.849e-5               | 1              | NC             | 1_            | NC       | 1 |
| 188        |           |     | min        | 0           | 3  | 0                 | 3  | 0           | 15 | 6.715e-7               | 15             | NC             | 1_            | NC       | 1 |
| 189        |           | 19  | max        | 0           | 1  | 0                 | 1  | 0           | 1  | 2.772e-5               | _1_            | NC             | 1             | NC       | 1 |
| 190        | 140       |     | min        | 0           | 1  | 0                 | 1  | 0           | 1  | 1.012e-6               | 15             | NC<br>NC       | 1_            | NC       | 1 |
| 191        | <u>M3</u> | 1   | max        | 0           | 1  | 0                 | 1  | 0           | 1  | -3.225e-7              | <u>15</u>      | NC<br>NC       | 1_            | NC<br>NC | 1 |
| 192        |           | 2   | min        | 0           | 1  | <u> </u>          | 1  | 0           | 1  | -8.824e-6              | 1_             | NC<br>NC       | <u>1</u><br>1 | NC<br>NC | 1 |
| 193<br>194 |           |     | max        | <u> </u>    | 3  | 002               | 15 | <u> </u>    | 15 | 7.504e-6<br>2.764e-7   | 15             | NC<br>NC       | 1             | NC<br>NC | 1 |
| 195        |           | 3   | max        | 0           | 3  | 0                 | 15 | 0           | 1  | 2.764e-7<br>2.383e-5   |                | NC             | 1             | NC       | 1 |
| 196        |           |     | min        | 0           | 2  | 003               | 4  | 0           |    | 8.753e-7               |                | NC             | 1             | NC       | 1 |
| 197        |           | 4   | max        | .001        | 3  | 001               | 15 | 0           | 1  | 4.016e-5               | 1              | NC             | 1             | NC       | 1 |
| 198        |           |     | min        | 0           | 2  | 005               | 4  | 0           | 15 | 1.474e-6               | 15             | NC             | 1             | NC       | 1 |
| 199        |           | 5   | max        | .001        | 3  | 002               | 15 | 0           | 1  | 5.649e-5               | 1              | NC             | 1             | NC       | 1 |
| 200        |           |     | min        | 001         | 2  | 007               | 4  | 0           | 15 | 2.073e-6               | 15             | NC             | 1             | NC       | 1 |
| 201        |           | 6   | max        | .002        | 3  | 002               | 15 | 0           | 1  | 7.282e-5               | 1_             | NC             | 1_            | NC       | 1 |
| 202        |           |     | min        | 001         | 2  | 009               | 4  | 0           | 15 | 2.672e-6               | 15             | NC             | 1_            | NC       | 1 |
| 203        |           | 7   | max        | .002        | 3  | 002               | 15 | .001        | 1  | 8.914e-5               | _1_            | NC             | 1_            | NC       | 1 |
| 204        |           |     | min        | 002         | 2  | 01                | 4  | 0           | 15 | 3.271e-6               |                | 8934.464       | 4             | NC       | 1 |
| 205        |           | 8   | max        | .002        | 3  | 003               | 15 | .001        | 1  | 1.055e-4               | _1_            | NC             | _1_           | NC       | 1 |
| 206        |           |     | min        | 002         | 2  | 012               | 4  | 0           | 15 | 3.87e-6                | -              | 7993.303       | 4             | NC<br>NC | 1 |
| 207        |           | 9   | max        | .003        | 3  | 003               | 15 | .001        | 1  | 1.218e-4               | 1_             | NC 7422 696    | 1_1           | NC<br>NC | 1 |
| 208        |           | 10  | min        | 002         | 2  | 013               | 4  | 0           | 15 | 4.469e-6               |                | 7433.686       | 4             | NC<br>NC | 1 |
| 209        |           | 10  | max<br>min | .003<br>003 | 3  | 003<br>013        | 15 | .002<br>0   | 15 | 1.381e-4<br>5.068e-6   | 15             | NC<br>7157.235 | 4             | NC<br>NC | 1 |
| 211        |           | 11  | max        | .003        | 3  | 013<br>003        | 15 | .002        | 1  | 1.545e-4               | <u>15</u><br>1 | NC             | 2             | NC<br>NC | 1 |
|            |           | 111 | πιαλ       | .003        | J  | 003               | IJ | .002        |    | 1.0406-4               |                | INC            |               | INC      |   |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec |            | x [in]      | LC | y [in]          | LC | z [in]   |       |                      |                | (n) L/y Ratio  | LC            |          | LC |
|------------|--------|-----|------------|-------------|----|-----------------|----|----------|-------|----------------------|----------------|----------------|---------------|----------|----|
| 212        |        |     | min        | 003         | 2  | 013             | 4  | 0        | 15    | 5.667e-6             | 15             | 7122.904       | 4             | NC       | 1  |
| 213        |        | 12  | max        | .004        | 3  | 003             | 15 | .002     | 1     | 1.708e-4             | _1_            | NC             | 2             | NC       | 1  |
| 214        |        |     | min        | 003         | 2  | 013             | 4  | 0        | 15    | 6.265e-6             | 15             | 7331.199       | 4             | NC       | 1  |
| 215        |        | 13  | max        | .004        | 3  | 003             | 15 | .003     | 1     | 1.871e-4             | _1_            | NC             | _1_           | NC       | 1  |
| 216        |        |     | min        | 003         | 2  | 012             | 4  | 0        | 15    | 6.864e-6             | 15             | 7826.347       | 4_            | NC       | 1  |
| 217        |        | 14  | max        | .005        | 3  | 003             | 15 | .003     | 1     | 2.034e-4             | 1_             | NC<br>0740 544 | 1             | NC       | 1  |
| 218        |        | 45  | min        | 004         | 2  | 011             | 4  | 0        | 15    | 7.463e-6             |                | 8719.541       | 4             | NC       | 1  |
| 219        |        | 15  | max        | .005        | 3  | 002             | 15 | .003     | 1     | 2.198e-4             | 1_             | NC<br>NC       | 1_            | NC       | 1  |
| 220        |        | 10  | min        | 004         | 2  | 009             | 4  | 0        | 15    | 8.062e-6             | <u>15</u>      | NC<br>NC       | 1_            | NC<br>NC | 1  |
| 221        |        | 16  | max        | .005        | 3  | 002<br>008      | 15 | 004      | 15    | 2.361e-4             | 1_             | NC<br>NC       | <u>1</u><br>1 | NC<br>NC | 1  |
| 223        |        | 17  | min        | 004<br>.006 | 3  | 008<br>001      | 15 | <u> </u> |       | 8.661e-6<br>2.524e-4 | <u>15</u>      | NC<br>NC       | 1             | NC<br>NC | 1  |
| 224        |        | 17  | max        | 005         | 2  | 001<br>006      | 1  | 004<br>0 | 1 15  | 9.26e-6              | <u>1</u><br>15 | NC<br>NC       | 1             | NC<br>NC | 1  |
| 225        |        | 18  | min<br>max | .005        | 3  | <u>006</u><br>0 | 15 | .005     | 1     | 2.688e-4             | 1<br>1         | NC<br>NC       | 1             | NC<br>NC | 1  |
| 226        |        | 10  | min        | 005         | 2  | 004             | 1  | 0        | 15    | 9.859e-6             | 15             | NC             | 1             | NC       | 1  |
| 227        |        | 19  | max        | .006        | 3  | 004<br>0        | 15 | .005     | 1     | 2.851e-4             | 1 <u>15</u>    | NC             | 1             | NC       | 1  |
| 228        |        | 13  | min        | 005         | 2  | 003             | 1  | 0        | 15    | 1.046e-5             | 15             | NC             | 1             | NC       | 1  |
| 229        | M4     | 1   | max        | .003        | 1  | .005            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 230        | IVIT   |     | min        | 0           | 3  | 006             | 3  | 005      | 1     | 7.17e-7              | 15             | NC             | 1             | 4802.781 | 1  |
| 231        |        | 2   | max        | .003        | 1  | .004            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 232        |        | _   | min        | 0           | 3  | 006             | 3  | 005      | 1     | 7.17e-7              | 15             | NC             | 1             | 5226.424 | 1  |
| 233        |        | 3   | max        | .002        | 1  | .004            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 234        |        |     | min        | 0           | 3  | 006             | 3  | 004      | 1     | 7.17e-7              | 15             | NC             | 1             | 5730.413 | 1  |
| 235        |        | 4   | max        | .002        | 1  | .004            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 236        |        |     | min        | 0           | 3  | 005             | 3  | 004      | 1     | 7.17e-7              | 15             | NC             | 1             | 6335.655 | 1  |
| 237        |        | 5   | max        | .002        | 1  | .004            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 238        |        |     | min        | 0           | 3  | 005             | 3  | 004      | 1     | 7.17e-7              | 15             | NC             | 1             | 7070.567 | 1  |
| 239        |        | 6   | max        | .002        | 1  | .003            | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 2  |
| 240        |        |     | min        | 0           | 3  | 005             | 3  | 003      | 1     | 7.17e-7              | 15             | NC             | 1             | 7974.553 | 1  |
| 241        |        | 7   | max        | .002        | 1  | .003            | 2  | 0        | 15    | 1.924e-5             | 1_             | NC             | 1_            | NC       | 2  |
| 242        |        |     | min        | 0           | 3  | 004             | 3  | 003      | 1     | 7.17e-7              | 15             | NC             | 1             | 9103.551 | 1  |
| 243        |        | 8   | max        | .002        | 1  | .003            | 2  | 0        | 15    | 1.924e-5             | _1_            | NC             | _1_           | NC       | 1  |
| 244        |        |     | min        | 0           | 3  | 004             | 3  | 002      | 1     | 7.17e-7              | 15             | NC             | 1_            | NC       | 1  |
| 245        |        | 9   | max        | .002        | 1  | .003            | 2  | 0        | 15    | 1.924e-5             | _1_            | NC             | _1_           | NC       | 1  |
| 246        |        |     | min        | 0           | 3  | 003             | 3  | 002      | 1     | 7.17e-7              | 15             | NC             | _1_           | NC       | 1  |
| 247        |        | 10  | max        | .001        | 1  | .002            | 2  | 0        | 15    | 1.924e-5             | _1_            | NC             | _1_           | NC       | 1  |
| 248        |        |     | min        | 0           | 3  | 003             | 3  | 002      | 1     | 7.17e-7              | <u>15</u>      | NC             | 1_            | NC       | 1  |
| 249        |        | 11  | max        | .001        | 1  | .002            | 2  | 0        | 15    | 1.924e-5             | _1_            | NC             | 1_            | NC<br>NC | 1  |
| 250        |        | 40  | min        | 0           | 3  | 003             | 3  | 001      | 1_    | 7.17e-7              | 15             | NC             | _1_           | NC       | 1  |
| 251        |        | 12  | max        | .001        | 1  | .002            | 2  | 0        | 15    | 1.924e-5             | 1_             | NC<br>NC       | 1_            | NC<br>NC | 1  |
| 252        |        | 40  | min        |             | 3  | 002             | 3  | 001      |       | 7.17e-7              |                |                | 1             | NC<br>NC | 1  |
| 253        |        | 13  | max        | 0           | 1  | .002            | 2  | 0        | 15    |                      | 1_             | NC             | 1             | NC       | 1  |
| 254        |        | 1.1 | min        | 0           | 3  | 002             | 2  | 0        | 1 1 5 | 7.17e-7              | <u>15</u>      | NC<br>NC       | <u>1</u><br>1 | NC<br>NC | 1  |
| 255        |        | 14  | max        | 0<br>0      | 3  | .001            | 3  | 0        | 15    | 1.924e-5<br>7.17e-7  | 1_             |                | 1             | NC<br>NC | 1  |
| 256<br>257 |        | 15  | min        | 0           | 1  | 002<br>.001     | 2  | <u> </u> | 15    | 1.924e-5             | <u>15</u><br>1 | NC<br>NC       | 1             | NC<br>NC | 1  |
| 258        |        | 13  | max        | 0           | 3  | 001             | 3  | 0        | 1     | 7.17e-7              | 15             | NC             | 1             | NC       | 1  |
| 259        |        | 16  |            | 0           | 1  | <u>001</u><br>0 | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 1  |
| 260        |        | 10  | max        | 0           | 3  | 001             | 3  | 0        | 1     | 7.17e-7              | 15             | NC             | 1             | NC       | 1  |
| 261        |        | 17  |            | 0           | 1  | <u>001</u><br>0 | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 1  |
| 262        |        | 17  | max<br>min | 0           | 3  | 0               | 3  | 0        | 1     | 7.17e-7              | 15             | NC<br>NC       | 1             | NC<br>NC | 1  |
| 263        |        | 18  | max        | 0           | 1  | 0               | 2  | 0        | 15    | 1.924e-5             | 1              | NC             | 1             | NC       | 1  |
| 264        |        | 10  | min        | 0           | 3  | 0               | 3  | 0        | 1     | 7.17e-7              | 15             | NC             | 1             | NC       | 1  |
| 265        |        | 19  | max        | 0           | 1  | 0               | 1  | 0        | 1     | 1.924e-5             | 1              | NC             | 1             | NC       | 1  |
| 266        |        | '   | min        | 0           | 1  | 0               | 1  | 0        | 1     | 7.17e-7              | 15             | NC             | 1             | NC       | 1  |
| 267        | M6     | 1   | max        | .019        | 2  | .022            | 2  | 0        | 1     | 0                    | 1              | NC             | 4             | NC       | 1  |
| 268        |        |     | min        | 026         | 3  | 032             | 3  | 0        | 1     | 0                    | 1              | 1712.415       | 3             | NC       | 1  |
|            |        |     | 1111111    | .020        | _  | .002            | _  |          |       | •                    | -              |                |               |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec |            | x [in]      | LC | y [in]            | LC | z [in]        | LC | x Rotate [r | LC | (n) L/y Ratio  | LC            |          | LC |
|------------|-----------|-----|------------|-------------|----|-------------------|----|---------------|----|-------------|----|----------------|---------------|----------|----|
| 269        |           | 2   | max        | .018        | 2  | .02               | 2  | 0             | 1  | 0           | 1  | NC             | 4             | NC       | 1  |
| 270        |           |     | min        | 025         | 3  | 03                | 3  | 0             | 1  | 0           | 1  | 1817.093       | 3             | NC       | 1  |
| 271        |           | 3   | max        | .017        | 2  | .019              | 2  | 0             | 1  | 0           | 1_ | NC             | 4_            | NC       | 1  |
| 272        |           |     | min        | 023         | 3  | 029               | 3  | 0             | 1  | 0           | 1  | 1935.341       | 3             | NC       | 1  |
| 273        |           | 4   | max        | .016        | 2  | .017              | 2  | 0             | 1  | 0           | 1  | NC<br>2000 004 | 4_            | NC       | 1  |
| 274        |           | _   | min        | 022         | 3  | 027               | 3  | 0             | 1  | 0           | 1  | 2069.904       | 3             | NC<br>NC | 1  |
| 275        |           | 5   | max        | .015        | 2  | .015              | 2  | 0             | 1  | 0           | 1  | NC<br>OCCA CAA | 4             | NC<br>NC | 1  |
| 276        |           |     | min        | 02          | 3  | 025               | 3  | 0             | 1  | 0           | 1_ | 2224.314       | 3             | NC<br>NC | 1  |
| 277        |           | 6   | max        | .014        | 2  | .013              | 2  | 0             | 1  | 0           | 1  | NC             | 4             | NC<br>NC | 1  |
| 278<br>279 |           | 7   | min        | 019         | 2  | 023<br>.012       | 2  | 0             | 1  | 0           | 1  | 2403.191<br>NC | <u>3</u>      | NC<br>NC | 1  |
| 280        |           |     | max        | .013<br>017 | 3  | 021               | 3  | 0             | 1  | 0           | 1  | 2612.699       | 3             | NC<br>NC | 1  |
| 281        |           | 8   | min        | .012        | 2  | <u>021</u><br>.01 | 2  | 0             | 1  |             | 1  | NC             | <u>3</u><br>1 | NC<br>NC | 1  |
| 282        |           | 0   | max        | 016         | 3  | 019               | 3  | 0             | 1  | 0           | 1  | 2861.242       | 3             | NC<br>NC | 1  |
| 283        |           | 9   | max        | .011        | 2  | .009              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC<br>NC | 1  |
| 284        |           | -   | min        | 015         | 3  | 018               | 3  | 0             | 1  | 0           | 1  | 3160.594       | 3             | NC       | 1  |
| 285        |           | 10  | max        | .009        | 2  | .007              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 286        |           | 10  | min        | 013         | 3  | 016               | 3  | 0             | 1  | 0           | 1  | 3527.761       | 3             | NC       | 1  |
| 287        |           | 11  | max        | .008        | 2  | .006              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 288        |           |     | min        | 012         | 3  | 014               | 3  | 0             | 1  | 0           | 1  | 3988.26        | 3             | NC       | 1  |
| 289        |           | 12  | max        | .007        | 2  | .005              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 290        |           |     | min        | 01          | 3  | 012               | 3  | 0             | 1  | 0           | 1  | 4582.198       | 3             | NC       | 1  |
| 291        |           | 13  | max        | .006        | 2  | .003              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 292        |           |     | min        | 009         | 3  | 01                | 3  | 0             | 1  | 0           | 1  | 5376.423       | 3             | NC       | 1  |
| 293        |           | 14  | max        | .005        | 2  | .003              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 294        |           |     | min        | 007         | 3  | 009               | 3  | 0             | 1  | 0           | 1  | 6491.277       | 3             | NC       | 1  |
| 295        |           | 15  | max        | .004        | 2  | .002              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 296        |           |     | min        | 006         | 3  | 007               | 3  | 0             | 1  | 0           | 1  | 8167.458       | 3             | NC       | 1  |
| 297        |           | 16  | max        | .003        | 2  | .001              | 2  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 298        |           |     | min        | 004         | 3  | 005               | 3  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 299        |           | 17  | max        | .002        | 2  | 0                 | 2  | 0             | 1  | 0           | 1  | NC             | 1_            | NC       | 1  |
| 300        |           |     | min        | 003         | 3  | 003               | 3  | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 301        |           | 18  | max        | .001        | 2  | 00                | 2  | 0             | 1  | 00          | 1  | NC             | 1_            | NC       | 1  |
| 302        |           |     | min        | 001         | 3  | 002               | 3  | 0             | 1  | 0           | 1  | NC             | 1_            | NC       | 1  |
| 303        |           | 19  | max        | 0           | 1  | 0                 | 1  | 0             | 1  | 0           | 1  | NC             | 1_            | NC       | 1  |
| 304        |           |     | min        | 0           | 1  | 0                 | 1  | 0             | 1  | 0           | 1  | NC             | 1_            | NC       | 1  |
| 305        | <u>M7</u> | 1_  | max        | 0           | 1  | 0                 | 1  | 0             | 1  | 0           | 1  | NC             | 1_            | NC NC    | 1  |
| 306        |           |     | min        | 0           | 1  | 0                 | 1  | 0             | 1  | 0           | 1_ | NC             | 1_            | NC NC    | 1  |
| 307        |           | 2   | max        | .001        | 3  | 0                 | 2  | 0             | 1  | 0           | 1  | NC             | 1_            | NC<br>NC | 1  |
| 308        |           |     | min        | 001         | 2  | 003               | 3  | 0             | 1  | 0           | 1  | NC<br>NC       | 1_            | NC<br>NC | 1  |
| 309        |           | 3   | max        | .002        | 3  | 0                 | 2  | 0             | 1  | 0           | 1  | NC<br>NC       | 1_            | NC<br>NC | 1  |
| 310        |           | 1   | min        | 002         | 2  | 005               | 3  | 0             | 1  | 0           | 1  | NC<br>NC       | 1_            | NC<br>NC | 1  |
| 311        |           | 4   | max        | .003        | 3  | 001               | 15 | 0             | 1  | 0           | 1  | NC<br>NC       | 1             | NC<br>NC | 1  |
| 312        |           | E   | min        | 003         | 2  | 007               | 3  | 0             | 1  | 0           | 1  | NC<br>NC       | 1             | NC<br>NC | 1  |
| 313        |           | 5   | max<br>min | .004<br>004 | 3  | 002<br>009        | 15 | <u>0</u><br>0 | 1  | 0           | 1  | NC<br>NC       | 1             | NC<br>NC | 1  |
| 315        |           | 6   | max        | .005        | 3  | 009               | 15 | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 316        |           | -   | min        | 005         | 2  | 011               | 3  | 0             | 1  | 0           | 1  | 8689.371       | 3             | NC       | 1  |
| 317        |           | 7   | max        | .006        | 3  | 002               | 15 | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 318        |           |     | min        | 006         | 2  | 002               | 3  | 0             | 1  | 0           | 1  | 7759.186       | 3             | NC<br>NC | 1  |
| 319        |           | 8   | max        | .008        | 3  | 003               | 15 | 0             | 1  | 0           | 1  | NC             | <u>3</u><br>1 | NC<br>NC | 1  |
| 320        |           |     | min        | 007         | 2  | 003<br>014        | 3  | 0             | 1  | 0           | 1  | 7208.44        | 3             | NC       | 1  |
| 321        |           | 9   | max        | .009        | 3  | 003               | 15 | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 322        |           |     | min        | 008         | 2  | 014               | 3  | 0             | 1  | 0           | 1  | 6923.482       | 3             | NC       | 1  |
| 323        |           | 10  | max        | .01         | 3  | 003               | 15 | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
| 324        |           | 1.0 | min        | 009         | 2  | 015               | 3  | 0             | 1  | 0           | 1  | 6853.291       | 3             | NC       | 1  |
| 325        |           | 11  | max        | .011        | 3  | 003               | 15 | 0             | 1  | 0           | 1  | NC             | 1             | NC       | 1  |
|            |           |     |            |             |    |                   |    |               |    |             |    |                |               |          |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member | Sec      |            | x [in]       | LC | y [in] | LC | z [in]   | LC | x Rotate [r | LC            | (n) L/y Ratio |               |          | LC_ |
|------------|--------|----------|------------|--------------|----|--------|----|----------|----|-------------|---------------|---------------|---------------|----------|-----|
| 326        |        |          | min        | 01           | 2  | 015    | 3  | 0        | 1  | 0           | 1             | 6984.956      | 3             | NC       | 1   |
| 327        |        | 12       | max        | .012         | 3  | 003    | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 328        |        |          | min        | 011          | 2  | 014    | 3  | 0        | 1  | 0           | 1             | 7337.874      | 3             | NC       | 1   |
| 329        |        | 13       | max        | .013         | 3  | 003    | 15 | 0        | 1  | 0           | 1             | NC            | 1_            | NC       | 1   |
| 330        |        |          | min        | 012          | 2  | 013    | 3  | 0        | 1  | 0           | 1             | 7943.312      | 4             | NC       | 1   |
| 331        |        | 14       | max        | .014         | 3  | 003    | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 332        |        |          | min        | 013          | 2  | 012    | 3  | 0        | 1  | 0           | 1             | 8845.083      | 4             | NC       | 1   |
| 333        |        | 15       | max        | .015         | 3  | 002    | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 334        |        |          | min        | 014          | 2  | 011    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 335        |        | 16       | max        | .016         | 3  | 002    | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 336        |        |          | min        | 015          | 2  | 009    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 337        |        | 17       | max        | .017         | 3  | 001    | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 338        |        |          | min        | 016          | 2  | 008    | 1  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 339        |        | 18       | max        | .018         | 3  | 0      | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 340        |        |          | min        | 017          | 2  | 007    | 1  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 341        |        | 19       | max        | .019         | 3  | 0      | 15 | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 342        |        |          | min        | 018          | 2  | 006    | 1  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 343        | M8     | 1        | max        | .008         | 2  | .017   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 344        |        |          | min        | 003          | 3  | 019    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 345        |        | 2        | max        | .008         | 2  | .016   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 346        |        |          | min        | 003          | 3  | 018    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 347        |        | 3        | max        | .007         | 2  | .015   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 348        |        |          | min        | 002          | 3  | 017    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 349        |        | 4        | max        | .007         | 2  | .014   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 350        |        |          | min        | 002          | 3  | 016    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 351        |        | 5        | max        | .006         | 2  | .013   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 352        |        |          | min        | 002          | 3  | 015    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 353        |        | 6        | max        | .006         | 2  | .012   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 354        |        |          | min        | 002          | 3  | 014    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 355        |        | 7        | max        | .006         | 2  | .011   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 356        |        | <u> </u> | min        | 002          | 3  | 013    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 357        |        | 8        | max        | .005         | 2  | .01    | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 358        |        |          | min        | 002          | 3  | 012    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 359        |        | 9        | max        | .005         | 2  | .009   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 360        |        |          | min        | 002          | 3  | 011    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 361        |        | 10       | max        | .002         | 2  | .008   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 362        |        | 10       | min        | 001          | 3  | 01     | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 363        |        | 11       | max        | .004         | 2  | .007   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 364        |        |          | min        | 001          | 3  | 009    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 365        |        | 12       | max        | .003         | 2  | .006   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 366        |        | 14       | min        | 001          | 3  | 008    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC | 1   |
| 367        |        | 13       | max        | .003         | 2  | .006   | 2  | 0        | 1  | 0           | 1             | NC            | 1             | NC       | 1   |
| 368        |        | 13       | min        | 0            | 3  | 006    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC | 1   |
| 369        |        | 14       | max        | .002         | 2  | .005   | 2  | 0        | 1  | 0           | +             | NC            | 1             | NC<br>NC | 1   |
| 370        |        | 14       | min        | 0            | 3  | 005    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC | 1   |
| 371        |        | 15       | max        | .002         | 2  | .004   | 2  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
| 372        |        | 13       | min        | 0            | 3  | 004    | 3  | 0        | 1  | 0           | 1             | NC            | 1             | NC<br>NC | 1   |
| 373        |        | 16       | max        | .001         | 2  | .003   | 2  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
|            |        | 10       | min        | 0            | 3  | 003    | 3  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
| 374        |        | 17       |            |              | 2  | .002   | 2  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
| 375<br>376 |        | 17       | max<br>min | <u>0</u><br> | 3  | 002    | 3  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
| 377        |        | 18       |            |              | 2  |        |    | 0        | 1  |             | _             | NC<br>NC      | 1             | NC<br>NC | 1   |
|            |        | 10       | max        | 0<br>0       | 3  | 0      | 2  | 0        | 1  | 0           | <u>1</u><br>1 | NC<br>NC      | 1             | NC<br>NC | _   |
| 378        |        | 10       | min        |              | 1  | 001    | 1  |          | 1  | 0           | <u>1</u><br>1 |               | <u>1</u><br>1 |          | 1   |
| 379        |        | 19       | max        | 0            | 1  | 0<br>0 | 1  | 0        | 1  | 0           | 1             | NC<br>NC      | 1             | NC<br>NC | 1   |
| 380        | M40    | 1        | min        | 0            | 2  |        | 2  | <u> </u> | 15 |             | <u>1</u><br>1 | NC<br>NC      | <u>1</u><br>1 | NC<br>NC |     |
| 381        | M10    |          | max        | .006         | 3  | .006   | 3  |          | 15 | 1.384e-4    |               |               | 2             |          | 1   |
| 382        |        |          | min        | 008          | 3  | 01     | 3  | 005      |    | 5.108e-6    | 15            | 9024.487      |               | NC       |     |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_

| 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC 1         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC 1         |
| 387         4         max         .005         2         .004         2         0         15         1.108e-4         1         NC         1           388         min        007         3        009         3        004         1         4.088e-6         15         NC         1           389         5         max         .005         2         .003         2         0         15         1.015e-4         1         NC         1           390         min        006         3        009         3        004         1         3.748e-6         15         NC         1           391         6         max         .004         2         .003         2         0         15         9.229e-5         1         NC         1           392         min        006         3        008         3        003         1         3.408e-6         15         NC         1           393         7         max         .004         2         .001         2         0         15         7.383e-5         1         NC         1           395         8         max         .003 </td <td>NC 1</td>  | NC 1         |
| 388         min        007         3        009         3        004         1         4.088e-6         15         NC         1           389         5         max         .005         2         .003         2         0         15         1.015e-4         1         NC         1           390         min        006         3        009         3        004         1         3.748e-6         15         NC         1           391         6         max         .004         2         .003         2         0         15         9.229e-5         1         NC         1           392         min        006         3        008         3        003         1         3.408e-6         15         NC         1           393         7         max         .004         2         .002         2         0         15         8.306e-5         1         NC         1           394         min        005         3        008         3        003         1         3.068e-6         15         NC         1           395         8         max         .004         <                        | VC 1         |
| 389         5         max         .005         2         .003         2         0         15         1.015e-4         1         NC         1           390         min        006         3        009         3        004         1         3.748e-6         15         NC         1           391         6         max         .004         2         .003         2         0         15         9.229e-5         1         NC         1           392         min        006         3        008         3        003         1         3.408e-6         15         NC         1           393         7         max         .004         2         .002         2         0         15         8.306e-5         1         NC         1           394         min        005         3        008         3        003         1         3.068e-6         15         NC         1           395         8         max         .004         2         .001         2         0         15         6.46e-5         1         NC         1           397         9         max         .003 <td><u>VC 1</u></td> | <u>VC 1</u>  |
| 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>VC 1</u>  |
| 391         6         max         .004         2         .003         2         0         15         9.229e-5         1         NC         1           392         min        006         3        008         3        003         1         3.408e-6         15         NC         1           393         7         max         .004         2         .002         2         0         15         8.306e-5         1         NC         1           394         min        005         3        008         3        003         1         3.068e-6         15         NC         1           395         8         max         .004         2         .001         2         0         15         7.383e-5         1         NC         1           396         min        005         3        007         3        002         1         2.728e-6         15         NC         1           397         9         max         .003         2         0         2         0         15         5.536e-5         1         NC         1           399         10         max         .003 <td><u>VC 1</u></td>  | <u>VC 1</u>  |
| 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>VC 1</u>  |
| 393         7         max         .004         2         .002         2         0         15         8.306e-5         1         NC         1           394         min        005         3        008         3        003         1         3.068e-6         15         NC         1           395         8         max         .004         2         .001         2         0         15         7.383e-5         1         NC         1           396         min        005         3        007         3        002         1         2.728e-6         15         NC         1           397         9         max         .003         2         0         2         0         15         6.46e-5         1         NC         1           398         min        004         3        007         3        002         1         2.388e-6         15         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003                                     | NC 1         |
| 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NC 1<br>NC 1 |
| 395         8         max         .004         2         .001         2         0         15         7.383e-5         1         NC         1           396         min        005         3        007         3        002         1         2.728e-6         15         NC         1           397         9         max         .003         2         0         2         0         15         6.46e-5         1         NC         1           398         min        004         3        007         3        002         1         2.388e-6         15         NC         1           399         10         max         .003         2         0         2         0         15         5.536e-5         1         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003         2         0         2         0         15         4.613e-5         1         NC         1           402         min        004         3                               | NC 1         |
| 396         min        005         3        007         3        002         1         2.728e-6         15         NC         1           397         9         max         .003         2         0         2         0         15         6.46e-5         1         NC         1           398         min        004         3        007         3        002         1         2.388e-6         15         NC         1           399         10         max         .003         2         0         2         0         15         5.536e-5         1         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003         2         0         2         0         15         4.613e-5         1         NC         1           402         min        004         3        006         3        001         1         1.708e-6         15         NC         1           403         12         max         .002         2 <td>NC 1</td>                 | NC 1         |
| 397         9 max         .003         2         0         2         0         15 6.46e-5         1         NC         1           398         min        004         3        007         3        002         1         2.388e-6         15 NC         1           399         10 max         .003         2         0         2         0         15 5.536e-5         1         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15 NC         1           401         11 max         .003         2         0         2         0         15 4.613e-5         1 NC         1           402         min        004         3        006         3        001         1 1.708e-6         15 NC         1           403         12 max         .002         2         0         2         0         15 3.69e-5         1 NC         1           404         min        003         3        005         3        001         1 1.368e-6         15 NC         1           405         13 max         .002         2                   | NC 1         |
| 398         min        004         3        007         3        002         1         2.388e-6         15         NC         1           399         10         max         .003         2         0         2         0         15         5.536e-5         1         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003         2         0         2         0         15         4.613e-5         1         NC         1           402         min        004         3        006         3        001         1         1.708e-6         15         NC         1           403         12         max         .002         2         0         2         0         15         3.69e-5         1         NC         1           404         min        003         3        005         3        001         1         1.368e-6         15         NC         1           405         13         max         .002         2 </td <td>NC 1</td>           | NC 1         |
| 399         10         max         .003         2         0         2         0         15         5.536e-5         1         NC         1           400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003         2         0         2         0         15         4.613e-5         1         NC         1           402         min        004         3        006         3        001         1         1.708e-6         15         NC         1           403         12         max         .002         2         0         2         0         15         3.69e-5         1         NC         1           404         min        003         3        005         3        001         1         1.368e-6         15         NC         1           405         13         max         .002         2         0         2         0         15         2.767e-5         1         NC         1           406         min        003         3                                | NC 1         |
| 400         min        004         3        006         3        002         1         2.048e-6         15         NC         1           401         11         max         .003         2         0         2         0         15         4.613e-5         1         NC         1           402         min        004         3        006         3        001         1         1.708e-6         15         NC         1           403         12         max         .002         2         0         2         0         15         3.69e-5         1         NC         1           404         min        003         3        005         3        001         1         1.368e-6         15         NC         1           405         13         max         .002         2         0         2         0         15         2.767e-5         1         NC         1           406         min        003         3        004         3         0         1         1.028e-6         15         NC         1           407         14         max         .002         2                               | NC 1         |
| 401       11       max       .003       2       0       2       0       15       4.613e-5       1       NC       1         402       min      004       3      006       3      001       1       1.708e-6       15       NC       1         403       12       max       .002       2       0       2       0       15       3.69e-5       1       NC       1         404       min      003       3      005       3      001       1       1.368e-6       15       NC       1         405       13       max       .002       2       0       2       0       15       2.767e-5       1       NC       1         406       min      003       3      004       3       0       1       1.028e-6       15       NC       1         407       14       max       .002       2       0       15       0       15       1.844e-5       1       NC       1         408       min      002       3      004       3       0       1       6.884e-7       15       NC       1         409                                                                                                                                | NC 1         |
| 402         min        004         3        006         3        001         1         1.708e-6         15         NC         1           403         12         max         .002         2         0         2         0         15         3.69e-5         1         NC         1           404         min        003         3        005         3        001         1         1.368e-6         15         NC         1           405         13         max         .002         2         0         2         0         15         2.767e-5         1         NC         1           406         min        003         3        004         3         0         1         1.028e-6         15         NC         1           407         14         max         .002         2         0         15         0         15         1.844e-5         1         NC         1           408         min        002         3        004         3         0         1         6.884e-7         15         NC         1           409         15         max         .001         2                               | NC 1         |
| 403       12 max       .002       2       0       2       0       15 3.69e-5       1       NC       1         404       min      003       3      005       3      001       1       1.368e-6       15       NC       1         405       13 max       .002       2       0       2       0       15 2.767e-5       1       NC       1         406       min      003       3      004       3       0       1       1.028e-6       15       NC       1         407       14 max       .002       2       0       15       0       15 1.844e-5       1       NC       1         408       min      002       3      004       3       0       1       6.884e-7       15       NC       1         409       15 max       .001       2       0       15       0       15 9.208e-6       1       NC       1         410       min      002       3      003       3       0       1       3.484e-7       15       NC       1                                                                                                                                                                                            | NC 1         |
| 404         min        003         3        005         3        001         1         1.368e-6         15         NC         1           405         13         max         .002         2         0         2         0         15         2.767e-5         1         NC         1           406         min        003         3        004         3         0         1         1.028e-6         15         NC         1           407         14         max         .002         2         0         15         0         15         1.844e-5         1         NC         1           408         min        002         3        004         3         0         1         6.884e-7         15         NC         1           409         15         max         .001         2         0         15         0         15         9.208e-6         1         NC         1           410         min        002         3        003         3         0         1         3.484e-7         15         NC         1                                                                                          | VC 1         |
| 405     13     max     .002     2     0     2     0     15     2.767e-5     1     NC     1       406     min    003     3    004     3     0     1     1.028e-6     15     NC     1       407     14     max     .002     2     0     15     0     15     1.844e-5     1     NC     1       408     min    002     3    004     3     0     1     6.884e-7     15     NC     1       409     15     max     .001     2     0     15     0     15     9.208e-6     1     NC     1       410     min    002     3    003     3     0     1     3.484e-7     15     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC 1         |
| 406     min    003     3    004     3     0     1     1.028e-6     15     NC     1       407     14     max     .002     2     0     15     0     15     1.844e-5     1     NC     1       408     min    002     3    004     3     0     1     6.884e-7     15     NC     1       409     15     max     .001     2     0     15     0     15     9.208e-6     1     NC     1       410     min    002     3    003     3     0     1     3.484e-7     15     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VC 1         |
| 407     14 max     .002     2     0     15     0     15 1.844e-5     1     NC     1       408     min    002     3    004     3     0     1 6.884e-7     15     NC     1       409     15 max     .001     2     0     15     0     15     9.208e-6     1     NC     1       410     min    002     3    003     3     0     1     3.484e-7     15     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VC 1         |
| 408     min    002     3    004     3     0     1     6.884e-7     15     NC     1       409     15     max     .001     2     0     15     0     15     9.208e-6     1     NC     1       410     min    002     3    003     3     0     1     3.484e-7     15     NC     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VC 1         |
| 410 min002 3003 3 0 1 3.484e-7 15 NC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
| 411   16 max   0   2   0   15   0   15   7.796e-7   3   NC   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>VC 1</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>VC 1</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>VC 1</u>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1<br>NC 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NC 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VC 1         |
| 439 11 max .003 3003 15 0 15 -5.667e-6 15 NC 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |



Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |       | x [in] | LC | y [in] | LC | z [in]   | LC   | x Rotate [r           | LC        |          | LC  |                | LC |
|-----|--------|-----|-------|--------|----|--------|----|----------|------|-----------------------|-----------|----------|-----|----------------|----|
| 440 |        |     | min   | 003    | 2  | 013    | 4  | 002      | 1    | -1.545e-4             | 1_        | 7122.904 | 4   | NC             | 1  |
| 441 |        | 12  | max   | .004   | 3  | 003    | 15 | 0        | 15   | -6.265e-6             | <u>15</u> | NC       | 2   | NC             | 1_ |
| 442 |        |     | min   | 003    | 2  | 013    | 4  | 002      | 1    | -1.708e-4             | 1         | 7331.199 | 4   | NC             | 1  |
| 443 |        | 13  | max   | .004   | 3  | 003    | 15 | 0        | 15   | -6.864e-6             | 15        | NC       | 1   | NC             | 1  |
| 444 |        |     | min   | 003    | 2  | 012    | 4  | 003      | 1    | -1.871e-4             | 1         | 7826.347 | 4   | NC             | 1  |
| 445 |        | 14  | max   | .005   | 3  | 003    | 15 | 0        | 15   | -7.463e-6             | 15        | NC       | 1   | NC             | 1  |
| 446 |        |     | min   | 004    | 2  | 011    | 4  | 003      | 1    | -2.034e-4             | 1         | 8719.541 | 4   | NC             | 1  |
| 447 |        | 15  | max   | .005   | 3  | 002    | 15 | 0        | 15   | -8.062e-6             | 15        | NC       | 1   | NC             | 1  |
| 448 |        |     | min   | 004    | 2  | 009    | 4  | 003      | 1    | -2.198e-4             | 1         | NC       | 1   | NC             | 1  |
| 449 |        | 16  | max   | .005   | 3  | 002    | 15 | 0        | 15   | -8.661e-6             | 15        | NC       | 1   | NC             | 1  |
| 450 |        |     | min   | 004    | 2  | 008    | 4  | 004      | 1    | -2.361e-4             | 1         | NC       | 1   | NC             | 1  |
| 451 |        | 17  | max   | .006   | 3  | 001    | 15 | 0        | 15   | -9.26e-6              | 15        | NC       | 1   | NC             | 1  |
| 452 |        |     | min   | 005    | 2  | 006    | 1  | 004      | 1    | -2.524e-4             | 1         | NC       | 1   | NC             | 1  |
| 453 |        | 18  | max   | .006   | 3  | 0      | 15 | 0        | 15   |                       | 15        | NC       | 1   | NC             | 1  |
| 454 |        | 1.0 | min   | 005    | 2  | 004    | 1  | 005      | 1    | -2.688e-4             | 1         | NC       | 1   | NC             | 1  |
| 455 |        | 19  | max   | .006   | 3  | 0      | 15 | 0        | 15   | -1.046e-5             | 15        | NC       | 1   | NC             | 1  |
| 456 |        | 1.0 | min   | 005    | 2  | 003    | 1  | 005      | 1    | -2.851e-4             | 1         | NC       | 1   | NC             | 1  |
| 457 | M12    | 1   | max   | .003   | 1  | .005   | 2  | .005     | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 2  |
| 458 | IVIIZ  |     | min   | 0      | 3  | 006    | 3  | 0        | 15   |                       | 1         | NC       | 1   | 4802.781       | 1  |
| 459 |        | 2   | max   | .003   | 1  | .004   | 2  | .005     | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 2  |
| 460 |        |     | min   | 0      | 3  | 006    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | 5226.424       | 1  |
| 461 |        | 3   | max   | .002   | 1  | .004   | 2  | .004     | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 2  |
| 462 |        | -   | min   | 0      | 3  | 006    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | 5730.413       |    |
| 463 |        | 4   |       | .002   | 1  | .004   | 2  | .004     | 1    | -7.17e-7              | 15        | NC<br>NC | 1   | NC             | 2  |
|     |        | 4   | max   | .002   | 3  | 005    | 3  | 004<br>0 | 15   | -7.17e-7<br>-1.924e-5 | 1         | NC<br>NC | 1   |                | 1  |
| 464 |        | E   | min   | _      |    |        |    |          |      |                       | •         |          | _   | 6335.655       |    |
| 465 |        | 5   | max   | .002   | 1  | .004   | 2  | .004     | 1    | -7.17e-7              | <u>15</u> | NC       | 1_  | NC<br>7070 F07 | 2  |
| 466 |        |     | min   | 0      | 3  | 005    | 3  | 0        | 15   | -1.924e-5             | 1_        | NC       | 1_  | 7070.567       | 1  |
| 467 |        | 6   | max   | .002   | 1  | .003   | 2  | .003     | 1    | -7.17e-7              | <u>15</u> | NC       | 1   | NC<br>7074 FF0 | 2  |
| 468 |        | _   | min   | 0      | 3  | 005    | 3  | 0        | 15   | -1.924e-5             | 1_        | NC       | 1_  | 7974.553       |    |
| 469 |        | 7   | max   | .002   | 1  | .003   | 2  | .003     | 1    | -7.17e-7              | <u>15</u> | NC       | 1   | NC<br>2400 FF4 | 2  |
| 470 |        |     | min   | 0      | 3  | 004    | 3  | 0        | 15   | -1.924e-5             | 1_        | NC       | 1_  | 9103.551       | 1  |
| 471 |        | 8   | max   | .002   | 1  | .003   | 2  | .002     | 1    | -7.17e-7              | <u>15</u> | NC       | 1   | NC<br>NC       | 1  |
| 472 |        |     | min   | 0      | 3  | 004    | 3  | 0        | 15   | -1.924e-5             | 1_        | NC       | 1_  | NC             | 1  |
| 473 |        | 9   | max   | .002   | 1  | .003   | 2  | .002     | 1    | -7.17e-7              | 15        | NC       | 1_  | NC             | 1  |
| 474 |        |     | min   | 0      | 3  | 003    | 3  | 0        | 15   | -1.924e-5             | 1_        | NC       | _1_ | NC             | 1  |
| 475 |        | 10  | max   | .001   | 1  | .002   | 2  | .002     | 1    | -7.17e-7              | <u>15</u> | NC       | 1   | NC             | 1  |
| 476 |        |     | min   | 0      | 3  | 003    | 3  | 0        | 15   | -1.924e-5             | _1_       | NC       | _1_ | NC             | 1  |
| 477 |        | 11  | max   | .001   | 1  | .002   | 2  | .001     | 1    | -7.17e-7              | <u>15</u> | NC       | _1_ | NC             | 1_ |
| 478 |        |     | min   | 0      | 3  | 003    | 3  | 0        | 15   |                       | 1_        | NC       | 1   | NC             | 1  |
| 479 |        | 12  | max   | .001   | 1  | .002   | 2  | .001     | 1    | -7.17e-7              | <u>15</u> | NC       | 1_  | NC             | 1_ |
| 480 |        |     | min   |        | 3  | 002    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 481 |        | 13  | max   | 0      | 1  | .002   | 2  | 0        | 1    | -7.17e-7              | <u>15</u> | NC       | _1_ | NC             | 1_ |
| 482 |        |     | min   | 0      | 3  | 002    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 483 |        | 14  | max   | 0      | 1  | .001   | 2  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 484 |        |     | min   | 0      | 3  | 002    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 485 |        | 15  | max   | 0      | 1  | .001   | 2  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 486 |        |     | min   | 0      | 3  | 001    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 487 |        | 16  | max   | 0      | 1  | 0      | 2  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 488 |        |     | min   | 0      | 3  | 001    | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 489 |        | 17  | max   | 0      | 1  | 0      | 2  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 490 |        |     | min   | 0      | 3  | 0      | 3  | 0        | 15   |                       | 1         | NC       | 1   | NC             | 1  |
| 491 |        | 18  | max   | 0      | 1  | 0      | 2  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 492 |        | T.  | min   | 0      | 3  | 0      | 3  | 0        | 15   | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 493 |        | 19  | max   | 0      | 1  | 0      | 1  | 0        | 1    | -7.17e-7              | 15        | NC       | 1   | NC             | 1  |
| 494 |        | '   | min   | 0      | 1  | 0      | 1  | 0        | 1    | -1.924e-5             | 1         | NC       | 1   | NC             | 1  |
| 495 | M1     | 1   | max   | .008   | 3  | .132   | 2  | 0        | 1    | 1.095e-2              | 1         | NC       | 1   | NC             | 1  |
| 496 | 1711   |     | min   | 004    | 2  | 03     | 3  | 0        |      | -2.249e-2             | 3         | NC       | 1   | NC             | 1  |
| roo |        |     | 1.000 | .007   |    | .00    |    |          | - 10 | 2.2700 2              |           |          |     |                |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|            | Member    | Sec      |            | x [in]      | LC | y [in]                | LC | z [in]     | LC |                       | LC        | (n) L/y Ratio | LC      | (n) L/z Ratio | LC |
|------------|-----------|----------|------------|-------------|----|-----------------------|----|------------|----|-----------------------|-----------|---------------|---------|---------------|----|
| 497        |           | 2        | max        | .008        | 3  | .064                  | 2  | 0          | 15 | 5.357e-3              | 2         | NC            | 4       | NC            | 1  |
| 498        |           |          | min        | 004         | 2  | 014                   | 3  | 004        | 1  | -1.112e-2             | 3         | 1696.353      | 2       | NC            | 1  |
| 499        |           | 3        | max        | .008        | 3  | .011                  | 3  | 0          | 15 | 3.496e-5              | <u>10</u> | NC            | 5       | NC            | 1  |
| 500        |           |          | min        | 004         | 2  | 009                   | 2  | 005        | 1  | -1.191e-4             | 3         | 818.966       | 2       | NC            | 1  |
| 501        |           | 4        | max        | .008        | 3  | .053                  | 3  | 0          | 15 | 4.167e-3              | 2         | NC<br>540.054 | 5       | NC<br>NC      | 1  |
| 502        |           | -        | min        | 004         | 2  | 091                   | 2  | 005        | 1  | -4.536e-3             | 3         | 518.254       | 2       | NC<br>NC      | 1  |
| 503        |           | 5        | max        | .007        | 3  | .105                  | 3  | 0          | 15 | 8.306e-3              | 2         | NC<br>074 044 | 5       | NC<br>NC      | 1  |
| 504        |           |          | min        | 004         | 2  | 176                   | 2  | 003        | 1  | -8.953e-3             | 3         | 374.814       | 2       | NC<br>NC      | 1  |
| 505        |           | 6        | max        | .007        | 3  | .161                  | 3  | 0          | 15 | 1.244e-2              | 2         | NC            | 15      | NC<br>NC      | 1  |
| 506        |           | 7        | min        | 004         | 2  | 258                   | 3  | <u>001</u> | 1  | -1.337e-2             | 3         | 295.678<br>NC | 2<br>15 | NC<br>NC      | 1  |
| 507        |           |          | max        | .007        | 3  | .215<br>331           |    | 0          | 3  | 1.658e-2<br>-1.779e-2 | 3         | 248.907       |         | NC<br>NC      | 1  |
| 508<br>509 |           | 8        | min        | 004<br>.007 | 3  | <u>331</u><br>.26     | 3  | <u> </u>   | 1  | 2.072e-2              | 2         | 9703.718      | 2<br>15 | NC<br>NC      | 1  |
| 510        |           | 0        | max        | 004         | 2  | 39                    | 2  | 0          | 15 | -2.22e-2              | 3         | 221.216       | 2       | NC            | 1  |
| 511        |           | 9        | max        | .007        | 3  | .289                  | 3  | 0          | 15 | 2.345e-2              | 2         | 9077.337      | 15      | NC            | 1  |
| 512        |           | 1 3      | min        | 004         | 2  | 426                   | 2  | 0          | 1  | -2.249e-2             | 3         | 206.791       | 2       | NC            | 1  |
| 513        |           | 10       | max        | .007        | 3  | .299                  | 3  | 0          | 1  | 2.523e-2              | 2         |               | 15      | NC            | 1  |
| 514        |           | 10       | min        | 004         | 2  | 439                   | 2  | 0          | 15 | -2.004e-2             | 3         | 202.56        | 2       | NC            | 1  |
| 515        |           | 11       | max        | .007        | 3  | .292                  | 3  | 0          | 1  | 2.701e-2              | 2         | 9077.01       | 15      | NC            | 1  |
| 516        |           |          | min        | 004         | 2  | 426                   | 2  | 0          | 15 | -1.759e-2             | 3         | 207.489       | 2       | NC            | 1  |
| 517        |           | 12       | max        | .006        | 3  | .268                  | 3  | 0          | 15 | 2.603e-2              | 2         | 9703.016      | 15      | NC            | 1  |
| 518        |           | <u> </u> | min        | 004         | 2  | 388                   | 2  | 0          | 1  | -1.492e-2             | 3         | 223.323       | 2       | NC            | 1  |
| 519        |           | 13       | max        | .006        | 3  | .228                  | 3  | 0          | 15 | 2.087e-2              | 2         | NC            | 15      | NC            | 1  |
| 520        |           |          | min        | 004         | 2  | 328                   | 2  | 0          | 1  | -1.195e-2             | 3         | 253.999       | 2       | NC            | 1  |
| 521        |           | 14       | max        | .006        | 3  | .177                  | 3  | .001       | 1  | 1.571e-2              | 2         | NC            | 15      | NC            | 1  |
| 522        |           |          | min        | 003         | 2  | 252                   | 2  | 0          | 15 | -8.971e-3             | 3         | 306.495       | 2       | NC            | 1  |
| 523        |           | 15       | max        | .006        | 3  | .12                   | 3  | .003       | 1  | 1.055e-2              | 2         | NC            | 5       | NC            | 1  |
| 524        |           |          | min        | 003         | 2  | 168                   | 2  | 0          | 15 | -5.996e-3             | 3         | 396.946       | 2       | NC            | 1  |
| 525        |           | 16       | max        | .006        | 3  | .061                  | 3  | .005       | 1  | 5.387e-3              | 2         | NC            | 5       | NC            | 1  |
| 526        |           |          | min        | 003         | 2  | 083                   | 2  | 0          | 15 | -3.02e-3              | 3         | 564.618       | 2       | NC            | 1  |
| 527        |           | 17       | max        | .006        | 3  | .004                  | 3  | .005       | 1  | 3.902e-4              | 1_        | NC            | 5       | NC            | 1  |
| 528        |           |          | min        | 003         | 2  | 006                   | 2  | 0          | 15 | -4.359e-5             | 3         | 923.363       | 2       | NC            | 1  |
| 529        |           | 18       | max        | .006        | 3  | .059                  | 2  | .004       | 1  | 8.504e-3              | 2         | NC            | 4       | NC            | 1  |
| 530        |           |          | min        | 003         | 2  | 047                   | 3  | 0          | 15 | -3.541e-3             | 3         | 1960.948      | 2       | NC            | 1  |
| 531        |           | 19       | max        | .006        | 3  | .116                  | 2  | 0          | 15 | 1.709e-2              | 2         | NC            | 1       | NC            | 1  |
| 532        |           |          | min        | 003         | 2  | 094                   | 3  | 0          | 1  | -7.189e-3             | 3         | NC            | 1       | NC            | 1  |
| 533        | <u>M5</u> | 1        | max        | .024        | 3  | .281                  | 2  | 0          | 1  | 0                     | 1         | NC            | 1       | NC NC         | 1  |
| 534        |           |          | min        | 016         | 2  | 02 <u>5</u>           | 3  | 0          | 1  | 0                     | 1_        | NC            | 1       | NC NC         | 1  |
| 535        |           | 2        | max        | .024        | 3  | .135                  | 2  | 0          | 1  | 0                     | 1_        | NC<br>707.405 | 5       | NC            | 1  |
| 536        |           |          | min        | 016         | 2  | 01                    | 3  | 0          | 1  | 0                     | 1_        | 797.105       | 2       | NC<br>NC      | 1  |
| 537        |           | 3        | max        | .024        | 3  | .036                  | 3  | 0          | 1  | 0                     | 11        | NC            | 5       | NC<br>NC      | 1  |
| 538        |           | 1        | min        | 016         | 2  | 028                   | 2  | 0          | 1  | 0                     | 1_        | 374.759       | 2       | NC<br>NC      | 1  |
| 539        |           | 4        | max        | .023        | 3  | .135                  | 2  | <u> </u>   | 1  | 0                     | 1         | NC<br>229.168 | 15      | NC<br>NC      | 1  |
| 540<br>541 |           | 5        | min        | 016<br>.023 | 3  | - <u>.224</u><br>.272 | 3  | 0          | 1  | 0                     | 1         |               | 2<br>15 | NC<br>NC      | 1  |
| 542        |           | 5        | max<br>min | 016         | 2  | 437                   | 2  | 0          | 1  | 0                     | 1         | 161.181       | 2       | NC            | 1  |
| 543        |           | 6        | max        | .022        | 3  | .426                  | 3  | 0          | 1  | 0                     | 1         | 6209.25       | 15      | NC            | 1  |
| 544        |           | -        | min        | 015         | 2  | 648                   | 2  | 0          | 1  | 0                     | 1         | 124.52        | 2       | NC            | 1  |
| 545        |           | 7        | max        | .022        | 3  | <u>046</u><br>.577    | 3  | 0          | 1  | 0                     | 1         | 5133.237      | 15      | NC            | 1  |
| 546        |           |          | min        | 015         | 2  | 839                   | 2  | 0          | 1  | 0                     | 1         | 103.257       | 2       | NC            | 1  |
| 547        |           | 8        | max        | .022        | 3  | .703                  | 3  | 0          | 1  | 0                     | 1         |               | 15      | NC            | 1  |
| 548        |           |          | min        | 015         | 2  | 992                   | 2  | 0          | 1  | 0                     | 1         | 90.857        | 2       | NC            | 1  |
| 549        |           | 9        | max        | .021        | 3  | .784                  | 3  | 0          | 1  | 0                     | 1         |               | 15      | NC            | 1  |
| 550        |           |          | min        | 014         | 2  | -1.089                | 2  | 0          | 1  | 0                     | 1         | 84.485        | 2       | NC            | 1  |
| 551        |           | 10       | max        | .021        | 3  | .813                  | 3  | 0          | 1  | 0                     | 1         |               | 15      | NC<br>NC      | 1  |
| 552        |           |          | min        | 014         | 2  | -1.123                | 2  | 0          | 1  | 0                     | 1         | 82.621        | 2       | NC            | 1  |
| 553        |           | 11       | max        | .02         | 3  | .793                  | 3  | 0          | 1  | 0                     | 1         |               | 15      | NC            | 1  |
|            |           |          | max        | .52         |    |                       |    |            |    |                       |           | ,             |         |               |    |



Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:\_\_\_\_

|     | Member | Sec |     | x [in] | LC | y [in] | LC | z [in] | LC | x Rotate [r | LC  | (n) L/y Ratio | LC | (n) L/z Ratio | LC |
|-----|--------|-----|-----|--------|----|--------|----|--------|----|-------------|-----|---------------|----|---------------|----|
| 554 |        |     | min | 014    | 2  | -1.09  | 2  | 0      | 1  | 0           | 1   | 84.785        | 2  | NC            | 1  |
| 555 |        | 12  | max | .02    | 3  | .724   | 3  | 0      | 1  | 0           | 1_  | 4508.601      | 15 | NC            | 1  |
| 556 |        |     | min | 014    | 2  | 989    | 2  | 0      | 1  | 0           | 1   | 91.844        | 2  | NC            | 1  |
| 557 |        | 13  | max | .019   | 3  | .613   | 3  | 0      | 1  | 0           | 1_  | 5133.881      | 15 | NC            | 1  |
| 558 |        |     | min | 014    | 2  | 828    | 2  | 0      | 1  | 0           | 1   | 105.829       | 2  | NC            | 1  |
| 559 |        | 14  | max | .019   | 3  | .473   | 3  | 0      | 1_ | 0           | _1_ |               | 15 | NC            | 1  |
| 560 |        |     | min | 013    | 2  | 628    | 2  | 0      | 1  | 0           | 1   | 130.336       | 2  | NC            | 1  |
| 561 |        | 15  | max | .018   | 3  | .317   | 3  | 0      | 1  | 0           | 1_  | 8077.62       | 15 | NC            | 1  |
| 562 |        |     | min | 013    | 2  | 412    | 2  | 0      | 1  | 0           | 1   | 173.904       | 2  | NC            | 1  |
| 563 |        | 16  | max | .018   | 3  | .159   | 3  | 0      | 1  | 0           | 1   | NC            | 15 | NC            | 1  |
| 564 |        |     | min | 013    | 2  | 201    | 2  | 0      | 1  | 0           | 1   | 258.042       | 2  | NC            | 1  |
| 565 |        | 17  | max | .017   | 3  | .012   | 3  | 0      | 1  | 0           | 1   | NC            | 5  | NC            | 1  |
| 566 |        |     | min | 013    | 2  | 017    | 2  | 0      | 1  | 0           | 1   | 446.307       | 2  | NC            | 1  |
| 567 |        | 18  | max | .017   | 3  | .121   | 2  | 0      | 1  | 0           | 1   | NC            | 5  | NC            | 1  |
| 568 |        |     | min | 013    | 2  | 112    | 3  | 0      | 1  | 0           | 1   | 991.783       | 2  | NC            | 1  |
| 569 |        | 19  | max | .017   | 3  | .233   | 2  | 0      | 1  | 0           | 1   | NC            | 1  | NC            | 1  |
| 570 |        |     | min | 013    | 2  | 224    | 3  | 0      | 1  | 0           | 1   | NC            | 1  | NC            | 1  |
| 571 | M9     | 1   | max | .008   | 3  | .132   | 2  | 0      | 15 | 2.249e-2    | 3   | NC            | 1  | NC            | 1  |
| 572 |        |     | min | 004    | 2  | 03     | 3  | 0      | 1  | -1.095e-2   | 1   | NC            | 1  | NC            | 1  |
| 573 |        | 2   | max | .008   | 3  | .064   | 2  | .004   | 1  | 1.112e-2    | 3   | NC            | 4  | NC            | 1  |
| 574 |        |     | min | 004    | 2  | 014    | 3  | 0      | 15 | -5.357e-3   | 2   | 1696.353      | 2  | NC            | 1  |
| 575 |        | 3   | max | .008   | 3  | .011   | 3  | .005   | 1  | 1.191e-4    | 3   | NC            | 5  | NC            | 1  |
| 576 |        |     | min | 004    | 2  | 009    | 2  | 0      | 15 | -3.496e-5   | 10  | 818.966       | 2  | NC            | 1  |
| 577 |        | 4   | max | .008   | 3  | .053   | 3  | .005   | 1  | 4.536e-3    | 3   | NC            | 5  | NC            | 1  |
| 578 |        |     | min | 004    | 2  | 091    | 2  | 0      | 15 | -4.167e-3   | 2   | 518.254       | 2  | NC            | 1  |
| 579 |        | 5   | max | .007   | 3  | .105   | 3  | .003   | 1  | 8.953e-3    | 3   | NC            | 5  | NC            | 1  |
| 580 |        |     | min | 004    | 2  | 176    | 2  | 0      | 15 | -8.306e-3   | 2   | 374.814       | 2  | NC            | 1  |
| 581 |        | 6   | max | .007   | 3  | .161   | 3  | .001   | 1  | 1.337e-2    | 3   | NC            | 15 | NC            | 1  |
| 582 |        |     | min | 004    | 2  | 258    | 2  | 0      | 15 | -1.244e-2   | 2   | 295.678       | 2  | NC            | 1  |
| 583 |        | 7   | max | .007   | 3  | .215   | 3  | 0      | 3  | 1.779e-2    | 3   | NC            | 15 | NC            | 1  |
| 584 |        |     | min | 004    | 2  | 331    | 2  | 0      | 1  | -1.658e-2   | 2   | 248.907       | 2  | NC            | 1  |
| 585 |        | 8   | max | .007   | 3  | .26    | 3  | 0      | 15 | 2.22e-2     | 3   | 9703.718      | 15 | NC            | 1  |
| 586 |        |     | min | 004    | 2  | 39     | 2  | 0      | 1  | -2.072e-2   | 2   | 221.216       | 2  | NC            | 1  |
| 587 |        | 9   | max | .007   | 3  | .289   | 3  | 0      | 1  | 2.249e-2    | 3   | 9077.337      | 15 | NC            | 1  |
| 588 |        |     | min | 004    | 2  | 426    | 2  | 0      | 15 | -2.345e-2   | 2   | 206.791       | 2  | NC            | 1  |
| 589 |        | 10  | max | .007   | 3  | .299   | 3  | 0      | 15 | 2.004e-2    | 3   |               | 15 | NC            | 1  |
| 590 |        |     | min | 004    | 2  | 439    | 2  | 0      | 1  | -2.523e-2   | 2   | 202.56        | 2  | NC            | 1  |
| 591 |        | 11  | max | .007   | 3  | .292   | 3  | 0      | 15 | 1.759e-2    | 3   | 9077.01       | 15 | NC            | 1  |
| 592 |        |     | min | 004    | 2  | 426    | 2  | 0      | 1  | -2.701e-2   | 2   | 207.489       | 2  | NC            | 1  |
| 593 |        | 12  | max | .006   | 3  | .268   | 3  | 0      | 1  | 1.492e-2    | 3   |               | 15 | NC            | 1  |
| 594 |        |     | min | 004    | 2  | 388    | 2  | 0      | 15 | -2.603e-2   | 2   | 223.323       | 2  | NC            | 1  |
| 595 |        | 13  | max | .006   | 3  | .228   | 3  | 0      | 1  | 1.195e-2    | 3   | NC            | 15 | NC            | 1  |
| 596 |        |     | min | 004    | 2  | 328    | 2  | 0      | 15 | -2.087e-2   | 2   | 253.999       | 2  | NC            | 1  |
| 597 |        | 14  | max | .006   | 3  | .177   | 3  | 0      |    |             | 3   | NC            | 15 | NC            | 1  |
| 598 |        |     | min | 003    | 2  | 252    | 2  | 001    | 1  | -1.571e-2   | 2   | 306.495       | 2  | NC            | 1  |
| 599 |        | 15  | max | .006   | 3  | .12    | 3  | 0      | 15 | 5.996e-3    | 3   | NC            | 5  | NC            | 1  |
| 600 |        |     | min | 003    | 2  | 168    | 2  | 003    | 1  | -1.055e-2   | 2   | 396.946       | 2  | NC            | 1  |
| 601 |        | 16  | max | .006   | 3  | .061   | 3  | 0      | 15 | 3.02e-3     | 3   | NC            | 5  | NC            | 1  |
| 602 |        |     | min | 003    | 2  | 083    | 2  | 005    | 1  | -5.387e-3   | 2   | 564.618       | 2  | NC            | 1  |
| 603 |        | 17  | max | .006   | 3  | .004   | 3  | 0      | 15 | 4.359e-5    | 3   | NC            | 5  | NC            | 1  |
| 604 |        |     | min | 003    | 2  | 006    | 2  | 005    | 1  | -3.902e-4   | 1   | 923.363       | 2  | NC            | 1  |
| 605 |        | 18  | max | .006   | 3  | .059   | 2  | 0      | 15 | 3.541e-3    | 3   | NC            | 4  | NC            | 1  |
| 606 |        |     | min | 003    | 2  | 047    | 3  | 004    | 1  | -8.504e-3   | 2   | 1960.948      | 2  | NC            | 1  |
| 607 |        | 19  | max | .006   | 3  | .116   | 2  | 0      | 1  | 7.189e-3    | 3   | NC            | 1  | NC            | 1  |
| 608 |        |     | min | 003    | 2  | 094    | 3  | 0      |    | -1.709e-2   | 2   | NC            | 1  | NC            | 1  |
|     |        |     |     |        |    |        |    |        |    |             |     |               |    |               |    |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 1/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

# **Load and Geometry**

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$ 

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 2/5        |
| Project:  | Standard PVMax - Worst Case, 14 | -42 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                  | Date:   | 11/17/2015 |
|-----------|----------------------------------|---------|------------|
| Engineer: | HCV                              | Page:   | 3/5        |
| Project:  | Standard PVMax - Worst Case, 14- | 42 Inch | Width      |
| Address:  |                                  |         |            |
| Phone:    |                                  |         |            |
| E-mail:   |                                  |         |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |  |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|--|
| 1      | 1723.0                                | 23.0                                   | 593.0                                  | 593.4                                                      |  |
| Sum    | 1723 0                                | 23.0                                   | 593.0                                  | 593 4                                                      |  |

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'<sub>Nx</sub> (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>



### 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

# 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$  (Eq. D-7)

| Kc                          | λ                                                | $f'_c$ (psi)                 | h <sub>ef</sub> (in) | $N_b$ (lb)    |            |        |                    |
|-----------------------------|--------------------------------------------------|------------------------------|----------------------|---------------|------------|--------|--------------------|
| 17.0                        | 1.00                                             | 2500                         | 5.247                | 10215         |            |        |                    |
| $\phi N_{cb} = \phi (A_N$   | $_{lc}$ / $A_{Nco}$ ) $\Psi_{ed,N}$ $\Psi_{c,N}$ | $_{N}\Psi_{cp,N}N_{b}$ (Sec. | D.4.1 & Eq. D-4      | )             |            |        |                    |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                     | $\Psi_{ed,N}$                | $arPsi_{c,N}$        | $\Psi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cb}$ (lb) |
| 220.36                      | 247 75                                           | 0.967                        | 1.00                 | 1 000         | 10215      | 0.65   | 5710               |

### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| $	au_{k,cr}$ (psi)             | <b>f</b> <sub>short-term</sub>                                  | $K_{sat}$            | $	au_{k,cr}$ (psi)             |                      |        |                 |
|--------------------------------|-----------------------------------------------------------------|----------------------|--------------------------------|----------------------|--------|-----------------|
| 1035                           | 1.00                                                            | 1.00                 | 1035                           |                      |        |                 |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | h <sub>ef</sub> (Eq. D-16f)                                     |                      |                                |                      |        |                 |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                                             | h <sub>ef</sub> (in) | $N_{a0}$ (lb)                  |                      |        |                 |
| 1035                           | 0.50                                                            | 6.000                | 9755                           |                      |        |                 |
| $\phi N_a = \phi (A_{Na})$     | / <b>A</b> <sub>Na0</sub> ) Ψ <sub>ed,Na</sub> Ψ <sub>p,i</sub> | NaNa0 (Sec. D.4      | I.1 & Eq. D-16a)               |                      |        |                 |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                                    | $\Psi_{\sf ed,Na}$   | $arPsi_{	extsf{p},	extsf{Na}}$ | N <sub>a0</sub> (lb) | $\phi$ | $\phi N_a$ (lb) |
| 109.66                         | 109.66                                                          | 1.000                | 1.000                          | 9755                 | 0.55   | 5365            |



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|--|
| Engineer: | HCV                                           | Page: | 4/5        |  |  |  |
| Project:  | Standard PVMax - Worst Case, 14-42 Inch Width |       |            |  |  |  |
| Address:  |                                               |       |            |  |  |  |
| Phone:    |                                               |       |            |  |  |  |
| E-mail:   |                                               |       |            |  |  |  |

### 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

# 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

# Shear perpendicular to edge in y-direction:

| $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. | . D-24) |
|------------------------------------------------------------------------------|---------|
|------------------------------------------------------------------------------|---------|

| le (in)                     | da (in)                                                    | λ                            | f'c (psi)       | Ca1 (in)     | V <sub>by</sub> (lb) |        |                     |
|-----------------------------|------------------------------------------------------------|------------------------------|-----------------|--------------|----------------------|--------|---------------------|
| 4.00                        | 0.50                                                       | 1.00                         | 2500            | 7.00         | 6947                 |        |                     |
| $\phi V_{cby} = \phi (A_1)$ | $_{ m Vc}$ / $A_{ m Vco}$ ) $\Psi_{ m ed,V}$ $\Psi_{ m c}$ | $_{V}\Psi_{h,V}V_{by}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |                      |        |                     |
| Avc (in <sup>2</sup> )      | $A_{Vco}$ (in <sup>2</sup> )                               | $\Psi_{\sf ed,V}$            | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{by}$ (lb)        | $\phi$ | $\phi V_{cby}$ (lb) |
| 192.89                      | 220.50                                                     | 0.925                        | 1.000           | 1.000        | 6947                 | 0.70   | 3934                |

### Shear perpendicular to edge in x-direction:

| V <sub>bv</sub> = ' | 7(1,/  | $d_{a})^{0.2}$ | Vd-22  | f'cCa1 1.5 | (Fa  | D-24) |
|---------------------|--------|----------------|--------|------------|------|-------|
| <b>v</b> bx -       | / Vie/ | uai            | VUaz V | I cLai     | ıLu. | D-241 |

| l <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                            | f'c (psi)       | Ca1 (in)     | $V_{bx}$ (lb) |        |                     |
|-----------------------------|------------------------------|------------------------------|-----------------|--------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                         | 2500            | 7.87         | 8282          |        |                     |
| $\phi V_{cbx} = \phi (A_1)$ | vc / A vco) Ψed, v Ψc,       | $_{V}\Psi_{h,V}V_{bx}$ (Sec. | D.4.1 & Eq. D-2 | 1)           |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{ed,V}$                | $\Psi_{c,V}$    | $\Psi_{h,V}$ | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 165.27                      | 278.72                       | 0.878                        | 1.000           | 1.000        | 8282          | 0.70   | 3018                |

### Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$  (Eq. D-24)

| I <sub>e</sub> (in)         | d <sub>a</sub> (in)          | λ                                | f'c (psi)         | <i>c</i> <sub>a1</sub> (in) | $V_{by}$ (lb) |        |                     |
|-----------------------------|------------------------------|----------------------------------|-------------------|-----------------------------|---------------|--------|---------------------|
| 4.00                        | 0.50                         | 1.00                             | 2500              | 7.00                        | 6947          |        |                     |
| $\phi V_{cbx} = \phi (2)$   | (Avc/Avco) $\Psi_{ed,V}$     | $\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21)             |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> ) | $\Psi_{\sf ed,V}$                | $\varPsi_{c,V}$   | $\Psi_{h,V}$                | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 192.89                      | 220.50                       | 1.000                            | 1.000             | 1.000                       | 6947          | 0.70   | 8508                |

# Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$  (Eq. D-24)

|                           | u)                            | (-4)                             |                   |                 |               |        |                     |  |
|---------------------------|-------------------------------|----------------------------------|-------------------|-----------------|---------------|--------|---------------------|--|
| le (in)                   | da (in)                       | λ                                | f'c (psi)         | Ca1 (in)        | $V_{bx}$ (lb) |        |                     |  |
| 4.00                      | 0.50                          | 1.00                             | 2500              | 7.87            | 8282          |        |                     |  |
| $\phi V_{cby} = \phi (2)$ | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$ | $\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |               |        |                     |  |
| Avc (in <sup>2</sup> )    | Avco (in <sup>2</sup> )       | $\Psi_{ed,V}$                    | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cby}$ (lb) |  |
| 165.27                    | 278.72                        | 1.000                            | 1.000             | 1.000           | 8282          | 0.70   | 6875                |  |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$ 

| Kcp                         | A <sub>Na</sub> (In²)        | A <sub>Na0</sub> (In²) | $arPsi_{\sf ed,Na}$ | $arPsi_{ m 	extsf{p},Na}$ | Na0 (ID)   | Na (ID)       |        |                    |  |
|-----------------------------|------------------------------|------------------------|---------------------|---------------------------|------------|---------------|--------|--------------------|--|
| 2.0                         | 109.66                       | 109.66                 | 1.000               | 1.000                     | 9755       | 9755          |        |                    |  |
|                             |                              |                        |                     |                           |            |               |        |                    |  |
| 4 (:-2)                     | A (:2)                       | 177                    | 177                 | 177                       | A / /II- \ | A / /II- \    | ,      |                    |  |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> ) | $arPsi_{ed,N}$         | $arPsi_{c,N}$       | $arPsi_{cp,N}$            | $N_b$ (lb) | $N_{cb}$ (lb) | $\phi$ | $\phi V_{cp}$ (lb) |  |
| 220.36                      | 247.75                       | 0.967                  | 1.000               | 1.000                     | 10215      | 8785          | 0.70   | 12298              |  |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 5/5        |
| Project:  | Standard PVMax - Worst Case, 14- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

# 11. Results

# Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                     | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|-----------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                       | 1723                                | 6071                      | 0.28          | Pass           |
| Concrete breakout           | 1723                                | 5710                      | 0.30          | Pass           |
| Adhesive                    | 1723                                | 5365                      | 0.32          | Pass (Governs) |
| Shear                       | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                       | 593                                 | 3156                      | 0.19          | Pass (Governs) |
| T Concrete breakout y+      | 593                                 | 3934                      | 0.15          | Pass           |
| T Concrete breakout x+      | 23                                  | 3018                      | 0.01          | Pass           |
| Concrete breakout y+        | 23                                  | 8508                      | 0.00          | Pass           |
| Concrete breakout x+        | 593                                 | 6875                      | 0.09          | Pass           |
| Concrete breakout, combined | -                                   | -                         | 0.15          | Pass           |
| Pryout                      | 593                                 | 12298                     | 0.05          | Pass           |
| Interaction check Nu        | a/φNn Vua/φVn                       | Combined Rat              | o Permissible | Status         |
| Sec. D.7.1 0.3              | 32 0.00                             | 32.1 %                    | 1.0           | Pass           |

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|--|
| Engineer: | HCV                                           | Page: | 1/5        |  |  |  |
| Project:  | Standard PVMax - Worst Case, 37-42 Inch Width |       |            |  |  |  |
| Address:  |                                               |       |            |  |  |  |
| Phone:    |                                               |       |            |  |  |  |
| E-mail:   |                                               |       |            |  |  |  |

### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

### 2. Input Data & Anchor Parameters

#### General

Design method:ACI 318-05 Units: Imperial units

#### **Anchor Information:**

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C<sub>min</sub> (inch): 1.75 Smin (inch): 3.00

#### **Base Material**

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$ : 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

# **Load and Geometry**

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

#### **Base Plate**

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28





| Company:  | Schletter, Inc.                 | Date:                                         | 11/17/2015 |  |  |  |  |  |
|-----------|---------------------------------|-----------------------------------------------|------------|--|--|--|--|--|
| Engineer: | HCV                             | Page:                                         | 2/5        |  |  |  |  |  |
| Project:  | Standard PVMax - Worst Case, 37 | Standard PVMax - Worst Case, 37-42 Inch Width |            |  |  |  |  |  |
| Address:  |                                 |                                               |            |  |  |  |  |  |
| Phone:    |                                 |                                               |            |  |  |  |  |  |
| E-mail:   |                                 |                                               |            |  |  |  |  |  |

<Figure 2>



#### **Recommended Anchor**

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263





| Company:  | Schletter, Inc.                 | Date:    | 11/17/2015 |
|-----------|---------------------------------|----------|------------|
| Engineer: | HCV                             | Page:    | 3/5        |
| Project:  | Standard PVMax - Worst Case, 37 | -42 Inch | Width      |
| Address:  |                                 |          |            |
| Phone:    |                                 |          |            |
| E-mail:   |                                 |          |            |

### 3. Resulting Anchor Forces

| Anchor | Tension load,<br>N <sub>ua</sub> (lb) | Shear load x,<br>V <sub>uax</sub> (lb) | Shear load y,<br>V <sub>uay</sub> (lb) | Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb) |
|--------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------|
| 1      | 2915.5                                | 1524.0                                 | 0.0                                    | 1524.0                                                     |
| 2      | 2915.5                                | 1524.0                                 | 0.0                                    | 1524.0                                                     |
| Sum    | 5831.0                                | 3048.0                                 | 0.0                                    | 3048.0                                                     |

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis,  $e'_{Vy}$  (inch): 0.00

<Figure 3>



# 4. Steel Strength of Anchor in Tension(Sec. D.5.1)

| N <sub>sa</sub> (lb) | $\phi$ | $\phi N_{sa}$ (lb) |
|----------------------|--------|--------------------|
| 8095                 | 0.75   | 6071               |

### 5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$  (Eq. D-7)

| Kc                          | λ                                                         | f'c (psi)                          | h <sub>ef</sub> (in) | $N_b$ (lb)   |                |            |        |                     |
|-----------------------------|-----------------------------------------------------------|------------------------------------|----------------------|--------------|----------------|------------|--------|---------------------|
| 17.0                        | 1.00                                                      | 2500                               | 6.000                | 12492        |                |            |        |                     |
| $\phi N_{cbg} = \phi (A_N$  | lc / A <sub>Nco</sub> ) Ψ <sub>ec,N</sub> Ψ <sub>ea</sub> | $_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ ( | Sec. D.4.1 & Eq      | . D-5)       |                |            |        |                     |
| $A_{Nc}$ (in <sup>2</sup> ) | $A_{Nco}$ (in <sup>2</sup> )                              | $\Psi_{ec,N}$                      | $\Psi_{\sf ed,N}$    | $\Psi_{c,N}$ | $arPsi_{cp,N}$ | $N_b$ (lb) | $\phi$ | $\phi N_{cbg}$ (lb) |
| 408 24                      | 324 00                                                    | 1 000                              | 1 000                | 1.00         | 1 000          | 12492      | 0.65   | 10231               |

#### 6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$ 

| τ <sub>k,cr</sub> (psi)        | f <sub>short-term</sub>                               | K <sub>sat</sub>                                                         | τ <sub>k,cr</sub> (psi)       |                |                                                 |              |        |                    |
|--------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------|-------------------------------------------------|--------------|--------|--------------------|
| 1035                           | 1.00                                                  | 1.00                                                                     | 1035                          |                |                                                 |              |        |                    |
| $N_{a0} = \tau_{k,cr} \pi d_a$ | hef (Eq. D-16f)                                       |                                                                          |                               |                |                                                 |              |        |                    |
| $\tau_{k,cr}$ (psi)            | d <sub>a</sub> (in)                                   | h <sub>ef</sub> (in)                                                     | N <sub>a0</sub> (lb)          |                |                                                 |              |        |                    |
| 1035                           | 0.50                                                  | 6.000                                                                    | 9755                          |                |                                                 |              |        |                    |
| $\phi N_{ag} = \phi (A_N$      | a / $A_{Na0}$ ) $\Psi_{	ext{ed},Na}$ $\Psi_{	ext{g}}$ | $_{	extstyle I,Na}arPsi_{	extstyle ec,Na}arPsi_{	extstyle p,Na} \Lambda$ | I <sub>a0</sub> (Sec. D.4.1 & | Eq. D-16b)     |                                                 |              |        |                    |
| $A_{Na}$ (in <sup>2</sup> )    | $A_{Na0}$ (in <sup>2</sup> )                          | $\Psi_{\sf ed,Na}$                                                       | $arPsi_{g,Na}$                | $\Psi_{ec,Na}$ | $\mathscr{\Psi}_{	extsf{	extsf{p}},	extsf{Na}}$ | $N_{a0}(lb)$ | $\phi$ | $\phi N_{ag}$ (lb) |
| 158.66                         | 109.66                                                | 1.000                                                                    | 1.043                         | 1.000          | 1.000                                           | 9755         | 0.55   | 8093               |



| Company:  | Schletter, Inc.                  | Date:    | 11/17/2015 |
|-----------|----------------------------------|----------|------------|
| Engineer: | HCV                              | Page:    | 4/5        |
| Project:  | Standard PVMax - Worst Case, 37- | -42 Inch | Width      |
| Address:  |                                  |          |            |
| Phone:    |                                  |          |            |
| E-mail:   |                                  |          |            |

# 8. Steel Strength of Anchor in Shear (Sec. D.6.1)

| $V_{sa}$ (lb) | $\phi_{	extit{grout}}$ | $\phi$ | $\phi_{	extit{grout}} \phi V_{	ext{sa}}$ (lb) |  |
|---------------|------------------------|--------|-----------------------------------------------|--|
| 4855          | 1.0                    | 0.65   | 3156                                          |  |

# 9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

# Shear perpendicular to edge in x-direction:

| $V_{bx} = 7(I_e/d$          | $_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$ | ° (Eq. D-24)                           |                   |              |               |               |        |                      |
|-----------------------------|-----------------------------------------------------------|----------------------------------------|-------------------|--------------|---------------|---------------|--------|----------------------|
| le (in)                     | da (in)                                                   | λ                                      | $f'_c$ (psi)      | Ca1 (in)     | $V_{bx}$ (lb) |               |        |                      |
| 4.00                        | 0.50                                                      | 1.00                                   | 2500              | 12.00        | 15593         |               |        |                      |
| $\phi V_{cbgx} = \phi (A$   | Vc / Avco) Yec, v Ye                                      | $_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ | (Sec. D.4.1 & Ed  | դ. D-22)     |               |               |        |                      |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                              | $\Psi_{ec,V}$                          | $\Psi_{\sf ed,V}$ | $\Psi_{c,V}$ | $\Psi_{h,V}$  | $V_{bx}$ (lb) | $\phi$ | $\phi V_{cbgx}$ (lb) |
| 666.00                      | 648.00                                                    | 1.000                                  | 0.969             | 1.000        | 1.000         | 15593         | 0.70   | 10875                |

# Shear parallel to edge in x-direction:

| $V_{by} = 7(I_e/d$          | $_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$ | <sup>5</sup> (Eq. D-24)            |                   |                 |               |        |                     |
|-----------------------------|----------------------------------------------------------|------------------------------------|-------------------|-----------------|---------------|--------|---------------------|
| I <sub>e</sub> (in)         | da (in)                                                  | λ                                  | f'c (psi)         | Ca1 (in)        | $V_{by}$ (lb) |        |                     |
| 4.00                        | 0.50                                                     | 1.00                               | 2500              | 16.16           | 24369         |        |                     |
| $\phi V_{cbx} = \phi (2)$   | $(A_{Vc}/A_{Vco})\Psi_{ed,V}$                            | $\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se | c. D.4.1, D.6.2.1 | (c) & Eq. D-21) |               |        |                     |
| $A_{Vc}$ (in <sup>2</sup> ) | $A_{Vco}$ (in <sup>2</sup> )                             | $\Psi_{\sf ed,V}$                  | $\Psi_{c,V}$      | $\Psi_{h,V}$    | $V_{by}$ (lb) | $\phi$ | $\phi V_{cbx}$ (lb) |
| 872.64                      | 1175.16                                                  | 1.000                              | 1.000             | 1.000           | 24369         | 0.70   | 25334               |

### 10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

| $\phi V_{cpg} = \phi  \text{mi}$ | n kcpNag; kcpN              | $ c_{bg}  = \phi \min  k_{cp} $ | (ANa/ANa0)Ψe       | $_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$ | Ψ <sub>p,Na</sub> Na0 ; Kcp(A | Nc / $A$ Nco) $\Psi$ ec,N $\Psi$ | $\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$ | (Eq. D-30b)         |
|----------------------------------|-----------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------------------------|---------------------|
| <i>k</i> <sub>cp</sub>           | $A_{Na}$ (in <sup>2</sup> ) | $A_{Na0}$ (in <sup>2</sup> )    | $\Psi_{\sf ed,Na}$ | $\varPsi_{g,Na}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Psi_{\sf ec,Na}$            | $\varPsi_{ ho,Na}$               | N <sub>a0</sub> (lb)                                  | N <sub>a</sub> (lb) |
| 2.0                              | 158.66                      | 109.66                          | 1.000              | 1.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                         | 1.000                            | 9755                                                  | 14715               |
| Anc (in²)                        | Anco (in²)                  | $\Psi_{ec,N}$                   | $\Psi_{ed,N}$      | $\Psi_{c,N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Psi_{cp,N}$                 | $N_b$ (lb)                       | Ncb (lb)                                              | $\phi$              |
| 408.24                           | 324.00                      | 1.000                           | 1.000              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                         | 12492                            | 15740                                                 | 0.70                |

φV<sub>cpg</sub> (lb) 20601

# 11. Results

### Interaction of Tensile and Shear Forces (Sec. D.7)

| Tension                | Factored Load, Nua (lb)             | Design Strength, øNn (lb) | Ratio         | Status         |
|------------------------|-------------------------------------|---------------------------|---------------|----------------|
| Steel                  | 2916                                | 6071                      | 0.48          | Pass           |
| Concrete breakout      | 5831                                | 10231                     | 0.57          | Pass           |
| Adhesive               | 5831                                | 8093                      | 0.72          | Pass (Governs) |
| Shear                  | Factored Load, V <sub>ua</sub> (lb) | Design Strength, øVn (lb) | Ratio         | Status         |
| Steel                  | 1524                                | 3156                      | 0.48          | Pass (Governs) |
| T Concrete breakout x+ | 3048                                | 10875                     | 0.28          | Pass           |
| Concrete breakout y-   | 1524                                | 25334                     | 0.06          | Pass           |
| Pryout                 | 3048                                | 20601                     | 0.15          | Pass           |
| Interaction check Nua  | /φNn Vua/φVn                        | Combined Rati             | o Permissible | Status         |



| Company:  | Schletter, Inc.                               | Date: | 11/17/2015 |  |  |
|-----------|-----------------------------------------------|-------|------------|--|--|
| Engineer: | HCV                                           | Page: | 5/5        |  |  |
| Project:  | Standard PVMax - Worst Case, 37-42 Inch Width |       |            |  |  |
| Address:  |                                               |       |            |  |  |
| Phone:    |                                               |       |            |  |  |
| E-mail:   |                                               |       |            |  |  |

| Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa | 3C. D.7.3 | 0.72 | 0.48 | 120.3 % | 1.2 | Pas |
|-------------------------------------|-----------|------|------|---------|-----|-----|
|-------------------------------------|-----------|------|------|---------|-----|-----|

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

### 12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.