ESTRUTURA ATÔMICA

ESTRUTURA ATÔMICA

- 1) Partículas dos átomos Carga Elétrica
- 2) Tamanho do átomo

PROFESSOR: THÉ

LICÃO: 180

1) Partículas do átomo: Carga Elétrica

As partículas do átomo são dotadas de eletricidade:

- Prótons apresentam carga elétrica positiva
- Elétrons apresentam carga elétrica negativa
- Nêutrons apresentam carga elétrica nula

O átomo é nêutro, isto é, o número de prótons é igual ao de elétrons.

Contudo é possível retirar ou colocar elétrons em um átomo, tornando-o um átomo eletricamente carregado.

PERGUNTA

Um átomo com 4 prótons, 5 nêutrons e 3 elétrons terá carga elétrica resultante igual a quanto?

CARGA **PARTÍCULA ELÉTRICA**

QTD **OPERAÇÃO**

- próton (p)
- 4(+1) = +4

- nêutron (n)

- 5(0) = 0
- elétron (e-)
- 3e⁻

A carga resultante do átomo será +1, pois o átomo tem um próton a mais que o número de elétrons

Resumindo...

N° de prótons (p) e n° de elétrons (e-)

CARGA **ELÉTRICA**

Átomo neutro

Átomo positivo (cátion)

Átomo negativo (ânion)

EXEMPLO - 1

Um átomo constituído de 11 prótons, 12 nêutrons e 9 elétrons. Qual é a carga elétrica resultante?

RESOLUÇÃO

11 prótons = +11

9 elétrons

Soma algébrica = +2

Representação do **ânion cloreto** sabendo que essa espécie é constituída de 17 prótons, 20 nêutrons e 18 elétrons.

- 1) Símbolo do cloro: \rightarrow Cl
- 2) Número atômico (Z) n° de prótons: 17 \rightarrow 17 Cl
- 3) Número de massa (A) soma entre prótons e nêutrons

$$A = Z + N$$

$$A = 17 + 20$$
 : $A = 37 \rightarrow \frac{37}{17}$ CI

4) Carga elétrica, que é igual a soma algébrica de prótons e elétrons.

17 prótons \rightarrow 17 +

18 elétrons \rightarrow 18 -

Soma algébrica = 1 -

Representação: $\frac{37}{17}$ CI¹⁻

Representação do átomo neutro, cátion e ânion.

Xº ou X átomo neutro

X²⁺ cátion

X3ânion

A carga do átomo é representada "como expoente", escrito à direita do símbolo.

Analise agora estes casos:

Nitrogênio

Oxigênio

Flúor

As espécies químicas apresentadas, nitrogênio, oxigênio e flúor são partículas isoeletrônicas.

Partículas isoeletrônicas

Duas ou mais partículas com o mesmo número de elétrons

EXEMPLO - 2

Identifique aquelas partículas isoeletrônicas do criptônio

criptônio (30 °C)

a) Br
$$\begin{cases} 35 \text{ P} \\ 35 \text{ e}^- \end{cases}$$
 c) Br $= \begin{cases} 35 \text{ P} \\ 36 \text{ e}^- \end{cases}$ e) Y⁺³ $= \begin{cases} 39 \text{ P} \\ 36 \text{ e}^- \end{cases}$

b) Rb $= \begin{cases} 37 \text{ P} \\ 37 \text{ e}^- \end{cases}$ d) Kr⁺¹ $= \begin{cases} 36 \text{ P} \\ 35 \text{ e}^- \end{cases}$

RESOLUÇÃO

Resposta: C e E

EXEMPLO - 3

Entre os átomos apresentados a seguir:

- 1° átomo) 40 prótons e 40 elétrons
- 2° átomo) 42 prótons e 42 elétrons
- 3° átomo) 40 prótons e 39 elétrons
- 4° átomo) 30 prótons e 28 elétrons
- 5° **átomo**) 15 **prótons e** 15 **elétrons**
- a) Qual o átomo de maior número atômico?
- b) Qual o cátion de carga +1?

RESOLUÇÃO

- a) 2° átomo : aquele de maior número de prótons (Z=42)
- **b)** 3° **átomo** : aquele que possui um próton a mais que o número de elétrons.

2) Átomo: Dimensão

Sabemos que o átomo é muito pequeno – tão pequeno que é impossível enxerga-lo até mesmo com o melhor microscópio do mundo.

Afinal, de que tamanho é um átomo? Quantos átomos caberiam em 1 centímetro?

R: Em um centímetro poderíamos colocar, lado a lado, **cem** milhões de átomos.

100 milhões de átomos

Medindo o átomo:

O diâmetro médio (d) aproximado do átomo é de 1Å

(1 Ångstrom)

O Angstrom é uma unidade de comprimento usada para medir distâncias muito pequenas.

A relação entre o Angstrom e o centímetro é a seguinte:

O núcleo está dentro do átomo, logo é menor que o átomo

Quantas vezes o núcleo é menor que o átomo?

O diâmetro do átomo é de 10 000 a 100 000 vezes maior que o diâmetro do núcleo (varia de acordo com o tamanho do átomo, naturalmente).

O raio do átomo é também de 10 000 a 100 000 vezes maior que o raio do núcleo.

