

Time Series Sales Prediction For Walmart

Tiffany Chen, Amy Chiu, Mandy Liu, Hyemin Yu 01

Business Problem

Accurate Prediction for Daily Sales in next 28 days

02

Solution Map

Executive Summary

03

Exploratory Data Analysis

Finding Trends

04

Data Preparation

Preprocess Data for Model Building

05

Model Summary

LightGBM+LSTM

06

Business Value

Inventory Management, Resource Allocation

Business Problems (SCKQ)

Situation:

Predict most accurate daily sales of the next 28 days for Walmart.

Complication:

The Large Scale of Processing Data
Feature Engineering and Feature Importance for Prediction
Different Prediction Strategy By State, Category, Department, Store

Key Question:

How can we develop forecasting methods that not only accurately predict 28-day ahead point and probabilistic forecasts for a extensive and hierarchical set of time series, but also ensure these methods are reproducible and scalable.

Exploratory Data Analysis

Finding Trends for Data Preparation and Model Building

Data Preparation

Merging data

Downcasting data

Model

LightGBM

LSTM Network

Build a model and conduct predictive analysis

Predictive Analysis

- Review model performance
- Important features

Insights & Recommendation

 Extract business insights and recommendations from our final model

EDA - Upward Trends in Overall Sales, Emphasized by Seasonal Patterns

Models should incorporate sales seasonality

Sales by Date From 2011-2016

EDA - Upward Trends in Overall Sales, Emphasized by Seasonal Patterns

Models should incorporate sales seasonality

Sales by Date From 2011-2016

Weekly Seasonality Patterns

EDA - Sales Trends Vary Across States Over Time in Different Categories

Models need to adapt to capture distinct patterns in various categories

cat_id

EDA - Noticeable Variations in Weekday Sales, Particularly Higher on Weekends

Relative Difference = (Weekday Sales - Week Average) / Week Average

Relative Difference of Sales Across Weekdays and States

Exploratory Data Analysis

Data Preparation

Predictive Analysis

Insights & Recommendation

Finding Trends for
 Data Preparation and
 Model Building

Merging data

Downcasting data

Model

LightGBM

LSTM Network

- Build models and conduct predictive analysis
- Review model performance
- Important features

 Extract business insights and recommendations from our final model

Insights & **Exploratory Data Data Preparation Predictive Analysis** Recommendation Analysis **LSTM Network** Extract business insights Finding Trends for Merging data Model and recommendations from Data Preparation and Downcasting data LightGBM our final model Model Building Build models and conduct predictive analysis Review model performance Important features

Model Summary

Goal

Multivariate Time Series
Handling

Deal with complicated relationships

Ensemble Learning

Model Selection

Model 1: LSTM Network

Model 2: LightGBM

Model Building

 Extract business insights and recommendations from our final model

Insights &

Recommendation

• Build models and conduct predictive analysis

LightGBM

- Review model performance
- Important features

Model Summary - LSTM Network

LSTM: Capture long-term dependencies on sequential data where various factors such as Weekend and Event affect prediction

Structure

- 1. Define time range and start day based on trends analysis
- 2. Create feature to include impact of event and normalization
- 3. Hyper parameter tuning within various hidden layers
- 4. Use past 7 days (defined time range) to forecast the sales of the first unknown upcoming day

Scoring

Private: 0.6919; Public: 0.5461

D1908	D1909	D1910	D1911	D1912	D1913	D1914	D1915	D1916	D1917
	Use	these 7	days for	predicti	on		Predicted value		
		Use these 7 days for prediction						Predicted value	
				U:	se these	7 days f	or prediction		Predicted value

Model Summary - LightGBM

LightGBM: Tree-based model for capturing complex interactions in sales data. It supports ensemble learning for enhancing the robustness and accuracy

Structure

- 1. Create features for capturing seasonal patterns based on trends analysis
- 2. Train separate models for different sets of store, category, department
- 3. Predict sales in 2-day intervals
- 4. Ensemble multiple models prediction results

Scoring

Private: 0.53199; Public: 2.56272

Why did we use Feature Engineering?

In Order To	Used Features					
Capture Seasonal Patterns	Time Based	day of week, month, quarter, or yearsales lag: 7/14/30 days				
Smoothen Fluctuations	Rolling Statistics	 sales: rolling mean, exponential moving averages, rolling std. price: rolling mean, rolling std. 				
Impact from Events	Time Since Last Event	days elapsed since the last occurrence of SNAP event				
Impact from Holidays	Label Encoding	assigning a unique numerical value to each holiday				
Stores / States / Category Differences	Mean Encoding	average sales group by states / stores / categories / department / items				

Model Summary

Goal

Multivariate Time Series
Handling

Deal with complicated relationships

Ensemble Learning

Model Selection

Model 1: LSTM Network

Model 2: LightGBM

Scoring

0.6919

0.53199

Model Summary

Goal

Multivariate Time Series Handling

Deal with complicated relationships

Ensemble Learning

Model Selection Scoring Model 1: LSTM 0.6919 Network Model 2: LightGBM 0.53199

Exploratory Data Analysis

Finding Trends for Data Preparation and Model Building Data Preparation

- Merging data
- Downcasting data

Predictive Analysis

Model

LightGBM

LSTM Network

- Build models and conduct predictive analysis
- Review model performance
- Important features

Insights & Recommendation

 Extract business insights and recommendations from our final model

Based on our prediction, we can extract item sold distribution by categories in each state for the following 28 days

Identify number of sales by store in each state to optimize inventory allocation and streamline logistics management

State	Store (Order by # of sold)	Percentage
CA	CA_3	30.53%
	CA_2	25.45%
	CA_1	25.24%
	CA_4	18.78%
TX	TX_2	34.56%
	TX_3	34.19%
	TX_1	31.25%
WI	WI_2	37.47%
	WI_1	31.29%
	WI_3	31.24%

We can also analyze the patterns and peak of items sold by category over the next 28 days

We can also analyze the patterns and peak of items sold by category over the next 28 days

Thank You!

