

MONASH INFORMATION TECHNOLOGY

Machine Learning: Classification Techniques

Last week

- Data Transformer, Estimators, Pipelines
- Feature Selection and Extraction

Classification

- Predictive Data Modelling
- Training: A classifier model needs to be created using the training dataset
- Testing: After the classifier is created, classification is the process of assigning new instances from the testing dataset to predefined classes
- The label for each class is predefined

Decision Trees

- A tree-like predictive model for decision making
- In DTs, a record/sample which falls into a certain class or category is identifiable through its features/attributes.
- It splits samples (use if-then rule) into two or more homogeneous sets (leaves) based on the most significant attributes (predictors)

Homogeneous = all samples belong to same class

Samples	Feat	Features/Attributes				
	gender	age	sibsp			
Person 1	male	30	1	died		
Person 2	female	20	2	survived		

Survival of passengers on the Titanic

Example: Titanic dataset

DT: a hierarchy of conditional control statements

Decision Trees

- Each **internal node** represents a "test" on an attribute (e.g. gender)
- ☐ The first node is called a Root Node
- ☐ Each **branch** corresponds to attribute values (outcome of the test) e.g. male or female
- Each **leaf/terminal node** assigns class label (e.g., died or survived)

gender gender gender male gender gender o.73; 36% 9.5 < age age <= 9.5 died 0.17; 61% sibsp

Example: Titanic dataset

3 <= sibsp sibsp < 3

0.89: 2%

0.02: 2%

Decision Tree Algorithm (Training)

Supervised Learning – need output labels to build a DT

Constructing a DT is generally a recursive process

- ☐ Initialization: All training data at the root node
- ☐ Partition training data recursively by choosing one attribute at a time
- ☐ Repeat process for partitioned dataset
- ☐ Stopping criteria: When all training data in each partition have same target class

The most common approach in building a decision tree:

ID3 (Iterative Dichotomiser 3) \rightarrow uses *Entropy function* and *Information gain* as metrics to construct a DT.

Entropy & IG = criteria used to determine features used in splitting the data

Entropy

- Measure of uncertainty or randomness in data
- ☐ Informs the predictability of an event
 - Low value -> Less uncertainty, high value -> high uncertainty

Less homogeneous (high uncertainty)

Play Basketball				
Yes No				
9	5			

More homogeneous (less uncertainty)

Play Basketball				
Yes	No			
13	1			

$$H(S) = \sum_{i=1}^{n} p_i \log \frac{1}{p_i}$$
 p_i - Probability of event i n - Number of events

$$H(Play_basketball) = p(yes) \log \frac{1}{p(yes)} + p(no) \log \frac{1}{p(no)}$$

$$= -(\frac{9}{14} \log \frac{9}{14}) - (\frac{5}{14} \log \frac{5}{14})$$

$$= 0.2831$$

$$H(Play_basketball) = -(\frac{13}{14}\log\frac{13}{14}) - (\frac{1}{14}\log\frac{1}{14})$$

= 0.1115

If samples are completely homogeneous, the entropy is zero

Log base 10, 2 or e?

Information Gain

- ☐ IG for a set S is change in entropy after deciding on a attribute A.
- □ It computes difference between entropy before split and average entropy after split of the dataset based on an attribute A
- Used to decide which attributes are more relevant in ID3 algorithm

Weighted sum entropy given A

 S_i Subset/partition of data after splitting S

based on A

(on entire set A)

Example

 $H(S_{overcast}) = 0$

in the tree

= 0.2087

 $+\frac{5}{14}(0.2922)$

3 yes/2 no 4 yes/0 no 2 yes/3 no
$$H(S,A) = p(sunny)H(S_{sunny}) + p(overcast)H(S_{overcast}) + p(rain)H(S_{rain})$$

 $=\frac{5}{14}(0.2922) + \frac{4}{14}(0)$

 $H(S_{sunny}) = -(\frac{3}{5}\log\frac{3}{5}) - (\frac{2}{5}\log\frac{2}{5}) = 0.2922$

 $H(S_{rain}) = -(\frac{2}{5}\log\frac{2}{5}) - (\frac{3}{5}\log\frac{3}{5}) = 0.2922$

12
$$IG(S,A) = H(S) - H(S,A)$$
$$= H(S) - \sum_{i \in Values(A)} p_i H(S_i)$$

ID3 (Iterative Dichotomiser 3)

☐ It constructs DT, by finding for each node attribute that returns the highest information gain to split the data

Steps

1. Compute the entropy for dataset *S*

 \rightarrow H(S)

- 2. For every attribute/feature A:
 - 2.1. Calculate entropy for each categorical value of A
 - 2.2 Take weighted average entropy for the current attribute
 - 2.3 Calculate IG for the current attribute

- $H(S_i)$ $H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$
- IG(S,A) = H(S) H(S,A)
- 3. Pick the attribute with highest IG to be a node, and split dataset by its branch to child nodes/subsets
- 4. Repeat same process at every child node until the tree is complete

Stopping condition: when data in each partition have same target class

Decision Trees: To Jog or Not To Jog

Figure 17.10 A decision tree

ID3

Samples

Features/Attributes

Output/Target

Example:

Consider data collected over the course of 15 days

Features/Attributes: Weather, Temperature, Time, Day

Outcome variable: whether Jogging was done on the day.

Problem: to build a predictive model that takes in the above 4 parameters and predicts whether Jogging will be done on the day.

We'll build a decision tree to do that using the **ID3 algorithm**.

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

ID3 (Iterative Dichotomiser 3)

☐ It constructs DT, by finding for each node attribute that returns the highest information gain to split the data

__Steps

1. Compute the entropy for dataset *S*

- 2. For every attribute/feature A:
 - 2.1. Calculate entropy for each categorical value of A
 - 2.2 Take weighted average entropy for the current attribute
 - 2.3 Calculate IG for the current attribute

$$H(S_i) \rightarrow H(S_i) - \sum_{i=1}^{n} n_i H(S_i)$$

$$H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$$

$$IG(S,A) = H(S) - H(S,A)$$

- 3. Pick the attribute with highest IG to be a node, and split dataset by its branch to child nodes/subsets
- 4. Repeat same process at every child node until the tree is complete

Stopping condition: when data in each partition have same target class

Entropy for the given probability of the target classes, $p_1, p_2, ..., p_n$ where

$$\sum_{i=1}^{n} p_i = 1$$
, can be calculated as follows:

$$entropy(p_1, p_2, \dots, p_n) = \sum_{i=1}^{n} (p_i \log(1/p_i))$$

= 0.2764

 $entropy(Yes, No) = 5/15 \times \log(15/5) + 10/15 \times \log(15/10)$

(17.2)

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

(17.3)

• Step 1: Calculate entropy for the training dataset in Figure 17.11. The result is previously calculated as 0.2764 (see equation 17.3).

Jog				
Yes	No			
5	10			

$$H(Yes, No) = p(yes)\log \frac{1}{p(yes)} + p(no)\log \frac{1}{p(no)}$$

ID3 (Iterative Dichotomiser 3)

☐ It constructs DT, by finding for each node attribute that returns the highest information gain to split the data

Steps

1. Compute the entropy for dataset *S*

- 2. For every attribute/feature A:
 - 2.1. Calculate entropy for each categorical value of A
 - 2.2 Take weighted average entropy for the current attribute
 - 2.3 Calculate IG for the current attribute

$$\rightarrow$$
 $H(S_i)$

$$H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$$

$$IG(S,A) = H(S) - H(S,A)$$

- 3. Pick the attribute with highest IG to be a node, and split dataset by its branch to child nodes/subsets
- 4. Repeat same process at every child node until the tree is complete

Stopping condition: when data in each partition have same target class

ID3

$$H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$$

$$IG(S,A) = H(S) - H(S,A)$$

entropy(Weather=Fine) =
$$4/7 \times \log(7/4) + 3/7 \times \log(7/3)$$

= 0.2966

(17.4)

entropy(Weather=Shower) =
$$1/4 \times \log(4/1) + 3/4 \times \log(4/3)$$

= 0.2442

(17.5)

Step 2: Process attribute Weather

Calculate weighted sum entropy of attribute *Weather*:

$$entropy(Fine) = 0.2966$$

 $entropy(Shower) = 0.2442$
 $entropy(Thunderstorm) = 0 + 4/4 \times \log(4/4) = 0$
 $weighted sum \ entropy(Weather) = 0.2035$

Calculate information gain for attribute *Weather*: gain (Weather) = 0.0729

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

<i>zr</i> .	Figure 17.11. Training dataset				
			Jog		
		Yes	No		
	Fine	4	3	7	
Weather	Shower	1	3	4	
	Thunderstorm	0	4	4	
				15	

Weighted sum entropy (Weather) = p(fine) H(fine) + p(shower) H(shower) + p(storm) H(storm)

$$H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$$

$$IG(S,A) = H(S) - H(S,A)$$

Weighted sum entropy (Weather) = Weighted entropy (Fine)
+ Weighted entropy (Shower)
+ Weighted entropy (Thunderstorm)
=
$$7/15 \times 0.2966 + 4/15 \times 0.2442 + 4/15 \times 0$$

= 0.2035 (17.6)

• Step 2: Process attribute *Weather*

Calculate weighted sum entropy of attribute *Weather*:

$$entropy(Fine) = 0.2966$$

 $entropy(Shower) = 0.2442$
 $entropy(Thunderstorm) = 0 + 4/4 \times \log(4/4) = 0$
 $weighted sum \ entropy(Weather) = 0.2035$

• Calculate information gain for attribute *Weather*: gain (Weather) = 0.0729

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

			Jo	g	
			Yes	No	
		Fine	4	3	7
	Weather	Shower	1	3	4
		Thunderstorm	0	4	4
)					15

ID3

$$H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$$

$$IG(S,A) = H(S) - H(S,A)$$

$$gain(Weather) = entropy(training dataset D) - entropy(attribute Weather)$$

= 0.2764 - 0.2035
= 0.0729 (17.7)

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

- Step 2: Process attribute *Weather*
 - Calculate weighted sum entropy of attribute *Weather*:

entropy(Fine) = 0.2966 (equation 17.4) entropy(Shower) = 0.2442 (equation 17.5) $entropy(Thunderstorm) = 0 + 4/4 \times \log(4/4) = 0$ $weighted sum \ entropy(Weather) = 0.2035$ (equation 17.6)

• Calculate information gain for attribute *Weather*: gain (Weather) = 0.0729

(equation 17.7)

- Step 3: Process attribute *Temperature*
 - Calculate weighted sum entropy of attribute *Temperature*: entropy(Hot) = $2/5 \times \log(5/2) + 3/5 \times \log(5/3) = 0.2923$ entropy(Mild) = entropy(Hot) entropy(Cool) = $1/5 \times \log(5/1) + 4/5 \times \log(5/4) = 0.2173$ weighted sum entropy(Temperature) = $5/15 \times 0.2923 + 5/15 \times 0.2173$

$$= 0.2674$$

• Calculate information gain for attribute *Temperature*: gain (Temperature) = 0.2764 - 0.2674 = 0.009

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

3/13×0.21/3				
		Jo	Jog	
		Yes	No	
Temperature	Hot	2	3	5
	Mild	3	2	5
	Cool	1	4	5
				15

- Step 4: Process attribute *Time*
 - Calculate weighted sum entropy of attribute *Time*: $entropy(Dawn) = 0 + 5/5 \times \log(5/5) = 0$

$$entropy(Midday) = 2/6 \times \log(6/2) + 4/6 \times \log(6/4) = 0.2764$$

 $entropy(Sunset) = 3/4 \times \log(4/3) + 1/4 \times \log(4/1) = 0.2443$

weighted sum entropy (Time) = $0 + 6/15 \times 0.2764 + 4/15 \times 0.2443 =$

0.1757

• Calculate information gain for attribute *Time*: gain (Time) = 0.2764 - 0.1757 = 0.1007

Kec	weather	1 cmperature	Time	Day	Jug (Turger Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Dov

Ing (Target Class)

Tomporature Time

Doc# Weather

Figure 17.11. Training dataset

		Jog		
		Yes	No	
	Dawn	0	5	5
Time	Midday	2	4	6
	Sunset	3	1	4

Step 5: Process attribute *Day*

• Calculate weighted sum entropy of attribute *Day*:

$$entropy(Weekday) = 4/10 \times \log(10/4) + 6/10 \times \log(10/6)$$

$$= 0.2923$$

$$entropy(Weekend) = 1/5 \times \log(5/1) + 4/5 \times \log(5/4)$$

$$= 0.2173$$

weighted sum entropy (Day) =
$$10/15 \times 0.2923 + 5/15$$

$$\times$$
 0.2173 = 0.2674

• Calculate information gain for attribute *Day*:

$$gain(1 Day) = 0.2764 - 0.2674 = 0.009$$

Corrections: IG(day) = 0.0341

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

		Jog		
		Yes	No	
Day	Weekday	4	6	10
	Weekend	1	4	5
				15

ID3 (Iterative Dichotomiser 3)

☐ It constructs DT, by finding for each node attribute that returns the highest information gain to split the data

Steps

1. Compute the entropy for dataset *S*

 \rightarrow H(S)

- 2. For every attribute/feature A:
 - 2.1. Calculate entropy for each categorical value of A
 - 2.2 Take weighted average entropy for the current attribute
 - 2.3 Calculate IG for the current attribute

- \rightarrow $H(S_i)$
- $H(S,A) = \sum_{i \in Values(A)} p_i H(S_i)$
- \longrightarrow IG(S,A) = H(S) H(S,A)
- 3. Pick the attribute with highest IG to be a node, and split dataset by its branch to child nodes/subsets
- 4. Repeat same process at every child node until the tree is complete

Stopping condition: when data in each partition have same target class

ID3

gain(whether) = 0.0729 gain(Temperature) = 0.009 gain(Time) = 0.1007 gain(Day) = 0.0341

Figure 17.13 Attribute *Time* as the root node

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

Comparing equations 17.7, 17.8, 17.9, and 17.10 and 17.10 for the gain of each other attributes (Weather, Temperature, Time, and Day), the biggest gain is *Time*, with gain value = 0.1007 (see equation 17.9), and as a result, attribute *Time* is chosen as the first splitting attribute. A partial decision tree with the root node *Time* is shown in Figure 17.13.

Yes
2

No

Jog

Day

Weekend Weekday

Fine

Chause

Yes

0 2

Yes

Jog

0 4

No

2

No

No

6

6

2

- The next stage is to process partition D_1 consisting of records with Time=Midday.
- Training dataset partition D₁ consists of 6 records with record#: 3, 6, 8, 9, 10, and 15.
- The next task is to determine the splitting attribute for partition D_1 , whether it is Weather, Temperature, or Day.

	_
Temperature	

Weather

ature	

	Snower	U	
Th	understorm	0	
		Yes	
	Hot	0	
ıre	Mild	1	
	Cool	1	

Step 1: Calculate entropy for the training dataset partition D_1 .

$$entropy(D_1) = 2/6\log(6/2) + 4/6\log(6/4) = 0.2764$$
 (17.11)

Step 2: Process attribute Weather

- Calculate weighted sum entropy of attribute Weather
 entropy(Fine) = 2/3 × log(6/2) + 1/3 × log(3/1) = 0.2764
 entropy(Shower) = entropy(Thunderstorm) = 0
 weighted sum entropy (Weather) = 3/6 x 0.2764 = 0.1382
- Calculate information gain for attribute Weather:

$$gain(Weather) = 0.2764 - 0.1382 = 0.1382$$
 (17.12)

Step 3: Process attribute *Temperature*

- Calculate weighted sum entropy of attribute Temperature
 entropy(Hot) = 0
 entropy(Mild) = entropy(Cool) = 1/2 × log(2/1) + 1/2
 × log(2/1) = 0.3010
 weighted sum entropy (Temperature) = 2/6 × 0.3010 + 2/6
 × 0.3010 = 0.2006
- · Calculate information gain for attribute Temperature:

$$gain(Temperature) = 0.2764 - 0.2006 = 0.0758$$
 (17.13)

Step 4: Process attribute *Day*

- \circ Calculate weighted sum entropy of attribute Day: $entropy(Weekday) = 2/6 \times \log(6/2) + 4/6 \times \log(6/4) = 0.2764$ entropy(Weekend) = 0weighted sum entropy (Day) = 0.2764
- Calculate information gain for attribute Day:

$$gain(Temperature) = 0.2764 - 0.2764 = 0$$
 (17.14)

The best splitting node for partition *D*1 is attribute Weather with information gain value of 0.1382 (see equation 17.12).

ID3

Figure 17.14 Attribute *Weather* as next splitting attribute

Rec#	Weather	Temperature	Time	Day	Jog (Target Class)
1	Fine	Mild	Sunset	Weekend	Yes
2	Fine	Hot	Sunset	Weekday	Yes
3	Shower	Mild	Midday	Weekday	No
4	Thunderstorm	Cool	Dawn	Weekend	No
5	Shower	Hot	Sunset	Weekday	Yes
6	Fine	Hot	Midday	Weekday	No
7	Fine	Cool	Dawn	Weekend	No
8	Thunderstorm	Cool	Midday	Weekday	No
9	Fine	Cool	Midday	Weekday	Yes
10	Fine	Mild	Midday	Weekday	Yes
11	Shower	Hot	Dawn	Weekend	No
12	Shower	Mild	Dawn	Weekday	No
13	Fine	Cool	Dawn	Weekday	No
14	Thunderstorm	Mild	Sunset	Weekend	No
15	Thunderstorm	Hot	Midday	Weekday	No

Figure 17.11. Training dataset

ID3

Maximum Depth of DT

maxDepth: the largest possible length between the root to a leaf (or maximum level of the tree).

Question: What is the potential problem if a DT is built to maximum depth on training data?

Maximum depth of a decision tree

Hyperparameter: A parameter whose value is used to control the learning process and whose value cannot be estimated from data.

Decision Tree Algorithm

Advantages:

- Easy to understand.
- Easy to generate rules.
- There are almost null hyper-parameters to be tuned.
- Complex Decision Tree models can be significantly simplified by its visualizations.

Disadvantages:

- Might suffer from overfitting.
- Does not easily work with non-numerical data.
- Low prediction accuracy for a dataset in comparison with other machine learning classification algorithms.
- When there are many class labels, calculations can be complex.

Pruning

https://kaumadiechamalka100.medium.com/decision-tree-in-machine-learning-c610ef087260

Ensemble methods

- A single decision tree have the tendency to overfit
- But it is super fast
- How about multiple trees at once?

Make sure they do not all just learn the same!

Random Forest Algorithm

 Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees.

Randomness is introduced into dataset to produce different trees

Optimisations

1. Bagging: Bootstrap **agg**regat**ing** is a method that result in low variance – used to reduce variance of DTs

Rather than training each tree on all the inputs in the training set (producing multiple identical trees), each tree is trained on different set of sample data

Bootstrap: use **random sampling** in terms of features or examples/records to create different subsets of data

Image source:

https://www.sciencedirect.com/topics/engineering/random-forest

Optimisations

- 2. Gradient boosting: selecting best classifiers to improve prediction accuracy with each new tree.
- □ It works by combining several weak learners (typically high bias, low variance models) to produce an overall strong model.
- □ It builds one tree at a time, works in a forward stagewise manner, - adding a classifier at a time, so that the next classifier is trained to improve the already trained ensemble.

