PHOTOSYNTHESIS

PHOTOSYNTHESIS

- The process by which plants make their food/energy (glucose) from sunlight.
- Stored as carbohydrate in their bodies.
- $6CO_2 + 6H_2O + sunlight <math> C_6H_{12}O_6 + 6O_2$

Why is Photosynthesis important?

- Makes organic molecules (glucose) out of inorganic materials (carbon dioxide and water).
- It begins all food chains/webs. Thus all life is supported by this process.
- <u>Autotrophs</u> make glucose and <u>heterotrophs</u> are <u>consumers</u> of it.
- It also makes oxygen gas!!

Where Photosynthesis takes place?

Chloroplast contain chlorophylls as the key energy trapping molecule

Chlorophyll: A Light Absorbing Pigment The Solar Panel Chemical!

INTERACTION OF LIGHT WITH MATTER IN CHLOROPLAST; LIGHT DIVIDED INTO THREE PARTS

Red and Blue

2 PROCESSES OF PHOTOSYNTHESIS

- Photosynthesis is actually 2 processes:
 - <u>light reactions</u> convert solar energy (sunlight) to chemical energy (ATP & NADPH)
 - dark reactions (Calvin cycle) light independent reactions;
 use energy produced & stored
 during light reactions (ATP &
 NADPH) & incorporates CO₂
 from air into organic
 molecules (PGAL), which are
 converted to sugar (glucose)

Light Reaction

Reactants:

- · H2O
- · Light Energy

Energy Products:

- · ATP
- NADPH

LR: $8 \text{ hv} + 2H_2O + 3 \text{ ADP} + 2 \text{ NADP}^+ ? O_2 + 3 \text{ ATP} + 2 \text{ NADPH}$

LIGHT-INDEPENDENT REACTIONS THE CALVIN CYCLE

- ATP & NADPH can only store the chemical energy for a few minutes
- The Calvin cycle uses the energy from ATP & NADPH to make high-energy compounds that can store the energy longer (sugars)
- Light independent reaction = does NOT require light

DARK REACTIONS

- <u>Calvin cycle</u> name given to the cycle of dark reactions in photosynthesis
- Inorganic molecule CO₂ is used to make a complex organic molecules (i.e. glucose).
- enzyme (rubisco) speeds up this reaction.
- this complex organic molecule can be considered a building block that can be used to make other biologically important molecules, including glucose

@2004 MGS Studio

The purpose of the Carbon-fixation (Calvin Cycle) Reactions

Note: synthesis of carbohydrate from CO₂ is favorable only because coupled to very favorable reactions

NADPH to NADP⁺

And ATP to ADP + P_i
energy released is greater than it costs to make carbohydrate

The Calvin cycle has three phases

- Carbon fixation
- Reduction (energy input, reducing equiv input)
- Regeneration of the CO₂ acceptor
 (energy input "priming step")

DR: $6 CO_2 + 6H_2O + 18 ATP + 12 NADPH ? C_6H_{12}O_6 + 18 ADP + 12 NADP^+$

LR: 8 hv + 2H₂O + 3 ADP + 2 NADP⁺ \bigcirc O₂ + 3 ATP + 2 NADPH

DR: $6 CO_2 + 6H_2O + 18 ATP + 12 NADPH ② <math>C_6H_{12}O_6 + 18 ADP + 12 NADP^+$

Net Photosynthetic Rn: $\frac{48 \text{ hv} + 12 \text{H}_2\text{O}}{48 \text{ hv} + 12 \text{H}_2\text{O}} + \frac{6 \text{ CO}_2 + 6 \text{H}_2\text{O}}{6 \text{ C}_6 \text{H}_{12} \text{O}_6} + \frac{6 \text{ O}_2}{6 \text{ C}_6 \text{H}_{12} \text{O}_6} + \frac{6 \text{ O}_2}{6 \text{ C}_6 \text{ C}_6} + \frac{6 \text{ O}_2}{6 \text{ C}_6} + \frac{6 \text$

