Question 1:-

a) Free body diagram of the platform is

b)Resolving tension in two mutually perpendicular directions:-

c) Equations of force equilibrium in x and y directions respectively are:-

$$\Sigma F_{\chi} = 0$$

$$\Rightarrow R_{H} - T\cos(70^{o}) = 0 \qquad \cdots (1)$$

$$\Sigma F_{Y} = 0$$

$$\Rightarrow T\sin(70^{0}) + R_{V} - 2000N = 0 \qquad \cdots (2)$$

d) Taking moment about point A:-

$$M_A = 2000X1.5 - Tsin(70^0)X2 - Tcos(70^0)X1$$

e)Finding T using $\Sigma M_A = 0$

$$\Rightarrow T = \frac{2000X1.5}{2sin70^0 + cos70^o} \Rightarrow T = 1350.49N \cdots (3)$$

$$R_H = Tcos70^o$$

 $\Rightarrow R_H = 461.89N$
Putting (3) in (2) we get :-
 $R_V = 2000 - Tsin70^o$
 $\Rightarrow R_V = 730.95N$

Question 2:-

a) Free body diagram is:-

b)Resolving T1 in two mutually perpendicular

c) Force equation for the m₁ system:-

$$\sum F_{\chi} = 0$$

$$\Rightarrow T_2 - T_1 \sin 40^\circ = 0 \qquad \cdots (1)$$

$$\sum F_{Y} = 0$$

$$\Rightarrow T_1 \cos 40^\circ - 50 = 0 \qquad \cdots (2)$$

d)From (2) we get

$$T_1 = \frac{50}{\cos 40^o} \Rightarrow T_1 = 65.27N$$

Using T₁ in (1) we get

$$T_2 = T_1 sin 40^o = 50 tan 40^o \Rightarrow T_2 = 41.95N$$

e) Resolving T₃ in two mutually perpendicular directions:-

f) Force equations for the m₂ system :-

$$\sum F_{x} = 0$$

$$\Rightarrow T_{3} \sin \theta - T_{2} = 0 \qquad \cdots (3)$$

$$\sum F_{Y} = 0$$

$$\Rightarrow T_{3} \cos \theta - 60 = 0 \qquad \cdots (4)$$

g) using (1), (3) and (4) we get

$$tan\theta = \frac{T_2}{60} = 0.6991 \implies \theta = 34.95^{\circ} \cdots (5)$$

using (5) in (4) we get

$$T_3 = \frac{60}{\cos\theta} \Rightarrow T_3 = 73.20N$$