Kunal Agnihotri Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

17. Let a function $f:(0,\infty) \to (0,\infty)$ be defined by $f(x) = \left|1 - \frac{1}{x}\right|$. Then, f is [JEE - Main 2019]

(A) injective only

(B) both injective as well as surjective

(C) not injective but it is surjective

(D) neither injective nor surjective

5. If the range of function $f(x) = \frac{x^2 + 2x + c}{x^2 + 2x + c}$, $x \in R$ is $\left[\frac{3}{6}, \frac{3}{2}\right]$ then c is equal to

(A) -4

(B) 3

(C) 4

(D) 5

41 2-212

5. Let f: (-∞,2] → [6,∞) be defined as f(x) = 4x² - 16x + 22 and g(x) is a function such that graphs of f(x) and g(x) are mirror image of each other with respect to line x -y = 0, then g(10) is equal to

(A) 1

(B) 2

(C) 3

(D) 4

3 7

39. The relation R={(a, b) : gcd(a, b) = 1, 2a ≠ b, a, b ∈ Z} is :

[JEE - Main 2023]

(A) Reflexive but not symmetric

(B) Transitive but not reflexive

(C) Symmetric but not transitive

(D) Neither symmetric nor transitive

5. Let $f(x) = x^{135} + x^{125} - x^{115} + x^5 + 1$. If f(x) is divided by $x^3 - x$ then the remainder is some function of x say g(x). Find the value of g(10).

Vector:

31.	Let $\vec{a} = 2\hat{i} + \lambda_{_1}\hat{j} + 3\hat{k}$	$, \ \vec{b} = 4\hat{i} + (3 - \lambda_2)\hat{j} +$	$(\hat{j} + 6\hat{k})$ and $\vec{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ be three vectors such that		
	$\vec{b} = 2\vec{a}$ and \vec{a} is perpendicular to \vec{c} . Then a possible value of $(\lambda_1, \lambda_2, \lambda_3)$ is: [JEE (M				
			$(3)\left(-\frac{1}{2},4,0\right)$		
	-	-	-		-
3.	Let $(\vec{p} \times \vec{q}) \times \vec{r} + (\vec{q} \cdot \vec{r}) \vec{q} = (x^2 + y^2) \vec{q} + (14 - 4x - 6y) \vec{p}$ and $(\vec{r} \cdot \vec{r}) \vec{p} = \vec{r}$ where \vec{p} and \vec{q} are				
	two non-zero non-collinear vectors and x and y are scalars. Find the value of (x + y).				
				AE	AF
25.	The distance of the point having position vector $-\hat{\bf i}+2\hat{\bf j}+6\hat{\bf k}$ from the straight line passing through the point (2, 3, -4) and parallel to the vector, $6\hat{\bf i}+3\hat{\bf j}-4\hat{\bf k}$ is : [JEE (Main)-2019] (1) 6 (2) $2\sqrt{13}$ (3) 7 (4) $4\sqrt{3}$				
26	If the volume of paraminimum, then λ is of $(1) - \sqrt{3}$	equal to	y the vectors $\hat{\mathbf{i}} + \lambda \hat{\mathbf{j}} + \hat{\mathbf{i}}$ (3) $-\frac{1}{\sqrt{3}}$		is Main)-2019]
		√3	$\sqrt{3}$	(1) 45	
29.	Let S be the reflection of a point Q with respect to the plane given by $\vec{r} = -(t+p)\hat{i} + t\hat{j} + (l+p)\hat{k}$				
	where t, p are real parameters and \hat{i},\hat{j},\hat{k} are the unit vectors along the three positive coordinate				
	axes. If the position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$ respectively, then				
	which of the following is/are TRUE ? [JEE (Advanced)-2022]				

(A) $3(\alpha + \beta) = -101$ (B) $3(\beta + \gamma) = -71$

(C) $3(\gamma + \alpha) = -86$ (D) $3(\alpha + \beta + \gamma) = -121$

Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4k$, $b = \hat{i} - 2\hat{j} - 2k$ and $\vec{c} = -\hat{i} + 4\hat{j} + 3k$. If \vec{d} is a vector perpendicular to both \vec{b} 68. and \vec{c} , and $\vec{a} \cdot \vec{d} = 18$, then $[\vec{a} \times \vec{d}]^2$ is equal to: [JEE (Main)-2023]

(A) 760 (B) 640 (C) 25

(D) 41

Quadratic Equation:

The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then -18.

- (A) a > 0
- (B) b > 0, c > 0 (C) c > 0, b < 0 (D) $b^2 < 4ac$
- Let $P(x) = 4x^2 + 6x + 4$ and $Q(y) = 4y^2 12y + 25$. Find the unique pair of real numbers 3. (x, y) that satisfy $P(x) \cdot Q(y) = 28$.
- If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the 7. setoff possible values of a is [AIEEE-2007]
 - (A) (−3, ∞)
- (B)(3,∞)
- (C) $(-\infty, -3)$ (D) (-3,3)
- The sum of all the roots of the equation $|x^2 8x + 15| 2x + 7 = 0$ is: 27.

[JEE-MAIN-2023]

- (A) $11-\sqrt{3}$ (B) $9-\sqrt{3}$ (C) $9+\sqrt{3}$
- (D) 11√3

EXERCISE - 4

- If α , β are roots of the equation $ax^2 bx c = 0$, then $\alpha^2 \alpha\beta + \beta^2$ is equal to-3.
 - (A) $\frac{b^2+3ac}{a^2}$
- (B) $\frac{b^2-3ac}{a^2}$
- (C) $\frac{b^2+2ac}{a^2}$ (D) $\frac{b^2-2ac}{a^2}$