Лабораторная работа 1.2.5.

ИССЛЕДОВАНИЕ ВЫНУЖДЕННОЙ РЕГУЛЯРНОЙ ПРЕЦЕССИИ ГИРОСКОПА

Попова Софья Б04-401

October 2024

Цель работы

Исследовать вынужденную прецессию гироскопа. Установить зависимость скорости вынужденной прецессии от величины момента силы, действующей на ось гироскопа, и сравнить ее со скоростью, рассчитанной по скорости прецессии.

Оборудование

Гироскоп в кардановом подвесе, набор грузов разной массы, секундомер, линейка с транспортиром, осциллограф.

Теоретическая часть

Измерение частоты вращения ротора

Гироскоп - быстро вращающееся твердое тело, для которого момент импульса относительно одной оси значительно больше момента импульса относительно других осей. Гироскоп уравновешен если его центр масс неподвижен.

Устойчивость вращения гироскопа связана с тем, что приращение момента импульса при действии внешних сил в течение короткого промежутка времени много меньше самого момента импульса и практически не изменяет его.

Рассмотрим гироскоп, вращающийся относительно оси OZ со скоростью ω . Для того чтобы гироскоп начал совершать регулярную прецессию вокруг оси OY с угловой скоростью Ω необходимо приложить к нему момент внешних сил \bar{M} , направленный вдоль оси OX. При этом, если выполнено условие $\bar{L}_{\Omega} \ll \bar{L}_{\omega}$, то момент импульса гироскопа относительно главной оси \bar{L} практически не меняется со временем по модулю и связан с моментом приложенных сил \bar{M} и скоростью прецессии Ω следующим соотношением:

$$\bar{M} = \frac{d \cdot \bar{L}}{d \cdot t} = \bar{\Omega} \cdot \bar{L} \tag{1}$$

Для изучения регулярной прецессии уравновешенного гироскопа подвесим к нему дополнительные грузы. Это смещает общий центр масс и создает момент силы тяжести, вызывающий прецессию. Тогда скорость вращения ротора гироскопа равна:

$$\omega = \frac{L}{I_z} = \frac{M}{I_z \cdot \Omega} \tag{2}$$

где M=mgl

Измерение момента инерции ротора

Момент инерции ротора измеряем по периоду крутильных колебаний на жесткой проволоке. Чтобы исключить модуль кручения проволоки f, подвешиваем цилиндр правильной формы с известным моментом инерции I

$$T = 2\pi \sqrt{\frac{I}{f}}, \qquad I = I_{\mathfrak{I}} \frac{T^2}{T_{\mathfrak{I}}^2} \tag{3}$$

Измерение момента сил трения

Так как силы трения имеют составляющую, не лежащую в плоскости осей вращения, они меняют момент импульса и по направлению, и по величине. Для ротора гироскопа действие сил трения скомпенсированно электромотором, для карданова подвеса компенсации нет. В результате чего ось гироскопа будет опускаться в направлении действия груза. Момент сил трения $M_{\rm TP}$ может быть вычислен по формуле:

$$M_{\rm TP} = \frac{\Delta \alpha}{t} L \tag{4}$$

Экспериментальная часть

Измерение периода прецессии

Для измерения периода прецессии гироскопа даем ротору гироскопа раскрутиться и подвещиваем различные по массе грузы на рычаг, укрепленный на оси гироскопа. Полученные данные представлены в таблице:

	т, г	77					Ω , рад/с
1	t, c	263,98	263,25	263,68	264,68	264,65	0,047
	n, обороты	2	2	2	2	2	0,041
	т, г		Ω, рад/с				
2	t, c	231,56	232,11	232,77	233,75	232,50	0,11
	n, обороты	4	4	4	4	4	0,11
	т, г	218					Ω, рад/с
3	t, c	139,87	139,80	139,63	139,30	138,69	0,135
	n, обороты	3	3	3	3	3	0,133
	т, г		Ω, рад/с				
4	t, c	149,43	149,53	149,18	149,21	148,34	0,168
	n, обороты	4	4	4	4	4	
	т, г		Ω, рад/с				
5	t, c	184,26	153,12	152,28	153,76	152,47	0,204
	n, обороты	6	5	5	5	5	0,204

Для вычисления Ω используется формула $\Omega = \frac{2\pi n \pm \Delta \varphi}{t}$, где n - количество оборотов, $\Delta \varphi$ - угол, на который опустилась ось ($20^{\circ} \approx 0,349$ рад), t - время оборотов.

$$\begin{split} M &= mgl = m[\text{kg}] \cdot 9,815[\text{m/c*c}] \cdot 0,12[\text{m}] = m \cdot 0,0011778 \\ \frac{\sigma_M}{M} &= \sqrt{(\frac{\sigma_m}{m})^2 + (\frac{\sigma_l}{l})^2} \\ \sigma_M &= M \cdot \sqrt{(\frac{0,001}{\text{or } 0,077 \text{ до } 0,329})^2 + (\frac{0,001}{0,12})^2} \approx M \cdot 0,01 \text{ - относительная погрешность} \approx 1\% \\ \frac{\sigma_\Omega}{\Omega} &= \sqrt{(\frac{\sigma_t}{t})^2 + (\frac{\sigma_{\Delta\varphi}}{\Delta\varphi})^2} \\ \sigma_\Omega &= \Omega \cdot \sqrt{(\frac{0,5}{\text{or } 138,69 \text{ до } 264,68})^2 + (\frac{0,05}{0,349})^2} \approx \Omega \cdot 0,14 \text{ - относительная погрешность} \approx 14\% \end{split}$$

Зависимость Ω от M представлена в графике:

Рис. 1: График Ω (угловая скорость регулярной прецессии) в зависимости от M (момент силы тяжести)

Измерение момента инерции

Для измерения момента инерции ротора гироскопа относительно оси симметрии I_0 его подвесили к концу вертикально висящей проволоки так, чтобы ось ротора была вертикальна и измерили период крутильных колебаний получившегося маятника. После, ротор заменили цилиндром и определили период крутильных колебаний для него.

Полученные данные представлены в таблице:

	n	t, c	T, c
		61	3,05
Ротор	20	63	3,15
		64	3,2
		79	3,95
Цилиндр	20	79	3,95
		80	4

n - количество колебаний, t - время колебаний, T - период колебаний

Эталонный цилиндр

• Macca: 1616,3г

• Диаметр (5 измерений): 7,80см, 7,77см, 7,83см, 7,81см, 7,80см

Период крутильных колебаний цилинда вычисляется по формуле: $I = \frac{m \cdot r^2}{2}$

Примем период колебаний цилиндра за среднее из трех измерений, т.е. $T_{\rm u}=3,96{\rm c}~(T=3,13{\rm c})$. Диаметр цилиндра - за среднее из пяти измерениий, т.е. $d=7,802{\rm cm}$, т.е. $r=3,901{\rm cm}=0,03901{\rm m}$ $\approx 0.04{\rm m}$

 \sim 0,04м Тогда $I_{\text{ц}} \approx 1, 3 \cdot 10^{-3}$. По формуле (3): $I = 1, 3 \cdot 10^{-3} \cdot \frac{3,13^2}{3,96^2} = 0,812 \cdot 10^{-3}$.

$$I = \frac{m \cdot r^2}{2} \cdot \frac{T^2}{T_c^2} \Rightarrow \frac{\sigma_I}{I} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{T_{\rm II}}}{T_{\rm II}}\right)^2 + \left(\frac{\sigma_T}{T}\right)^2}$$

$$\sigma_I = I \cdot \sqrt{(\frac{0.05}{1616.3})^2 + (\frac{0.0005}{0.04})^2 + (\frac{0.0245}{3.96})^2 + (\frac{0.0625}{3.13})^2} \approx 0,024 \cdot I$$
 - отн. погрешность $\approx 2,4\%$ (Для определения $\sigma_T,\sigma_{T\mathfrak{l}}$ используется формула $\sigma_{\text{отд}} = \sqrt{\frac{1}{n-1}\Sigma(x_i-x_{cp})^2}$)

По формуле (2) определим угловую скорость вращения ротора гироскопа:

$$\omega = \frac{mgl}{I \cdot \Omega} \approx \frac{9,815 \cdot 0,12}{0,62 \cdot 0,812 \cdot 10^{-3}} \approx 2339,5c^{-1}$$

$$\sigma_{\omega} = \omega \cdot \sqrt{\left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2 + \left(\frac{\sigma_{\Omega}}{\Omega}\right)^2} = \omega \cdot \sqrt{0,01 + 0,024 + 0,14} \approx 0,42\omega$$

Используя полученную угловую скорость можно определить частоту вращения ротора гироскопа:

$$v = \frac{\omega}{2\pi} \approx 372,34\Gamma$$
ц

С помощью осциллографа получено значение частоты вращения ротора 378Гц

Вывод

Значения частоты вращения ротора, полученные разными методами отличаются на $5,66\Gamma$ ц, что составляет погрешность 1,5%