Digital Media

Conor Keighrey

Office: U214

Email: ckeighrey@ait.ie

What is a Number Base?

"A number base is a way of representing a numerical value..."

- What is a number base?
- A number base is a way of representing a numerical value.
- •Information in a computer is best visualized as a string of 1's and 0's. If the information is a number, it is natural to store the number using (perhaps a small modification of) base 2.

- The most important number bases are:
 - Base₂ Binary Numeral System
 - Base₈ Octal Numeral System
 - Base₁₀ Decimal Numeral System
 - Base₁₆ Hexadecimal Numeral System

You have to be able to use binary and decimal number bases along with hexadecimal, so it is necessary to have the knowledge required to change between these number bases.

- Where are these numbers used?
 - Base₂ Binary Numeral System
 - Used internally by all computers the two digits in base 2 are "0" and "1" came from switches from on to off status!
 - Base₈ Octal Numeral System
 - Occasionally used by computers often used to represent imaging

• Where are these numbers used?

- Base₁₀ Decimal Numeral System
 - Used by humans daily!
- Base₁₆ Hexadecimal Numeral System
 - Often used in addressing or in HTML used to identify colours (RRGGBB)

Lets Examine Each Base

- The most important number bases are:
 - Base₂ Binary Numeral System
 - Base₈ Octal Numeral System
 - Base₁₀ Decimal Numeral System
 - Base₁₆ Hexadecimal Numeral System

$$\frac{(4+4)}{4^{3}} \left(\frac{4(4+4+4)^{4}}{4^{3}} \right) = \frac{(4+4)}{4^{3}} \left(\frac{4(4+4)^{4}}{4^{3}} \right) = \frac{(4+4)}{4^{3}} \left(\frac{4(4+4)^{4}}{$$

Decimal 10 is familiar to us all, we use it everyday.

- 10 possible digits
 - 0,1,2,3,4,5,6,7,8,9,

Thousand	hundred	ten	unit
		4	5
	2	3	4
3	4	5	9

- We calculate place value automatically
- 45, 234, 3459

 Reminder re: exponents, power to which number is raised

exponent	0	1	2	3
10	1	10	100 (10 X10)	1000 (10X10X10)
2	1	2	4 (2x2)	8 (2x2x2)
8	1	8	64 (8x8)	512 (8x8x8)
16	1	16	256 (16x16)	4098 (16x16x16)

 Decimal numbers: place value of each digit expressed as power of 10

10 ³	10 ²	10 ¹	10 ⁰
		4	5
	2	3	4
3	4	5	9

Numbers:
$$45 = 4 \times 10^{1} + 5 \times 10^{0}$$

= $4 \times 10 + 5 \times 1$
= $40 + 5 = 45$

- **▶**1234
- $= (1 * 10^3) + (2 * 10^2) + (3 * 10^1) + (4 * 10^0)$
- = 1000 + 200 + 30 + 4 = 1234

- Write the following decimal numbers in expanded form:
 - 1024, 20480, 10

Grouping Binary Numbers

Name	Size	Visually
Bit	A "1" or "0"	0
Nibble	Four Bits	0000
Byte	Eight Bits	0000000
Word	Two Bytes	0000000 0000000
Long Word	Four Bytes	?

- Computers do not use numbers in the form 2,
 4, 6, 8, etc. to do mathematical calculations.
- Instead they use groups of 1's or 0's.
- So why is Binary Base₂?
- It uses just two values "0" or "1"
 - When reading binary numbers you must consider the entire number starting from the right.
 - A binary number is either proceeded by a % or followed by the letter "b" or in Java has prefix "0b"

- Computers do not use numbers in the form 2,
 4, 6, 8, etc. to do mathematical calculations.
- Instead they use groups of 1's or 0's.
- So why is Binary Base₂?
- It uses just two values "0" or "1"
 - When reading binary numbers you must consider the entire number starting from the right.
 - A binary number is either proceeded by a "%" or followed by the letter "b" – otherwise what is it?

• In Binary, the use of the number "1" in a particular location represents a "value", the use of the number "0" represents no value in this location.

Place values in binary are powers of 2

Consider: Table shown

- Consider the following 4 bits:
 - •1111

$$\begin{bmatrix} 2^{3} & 2^{2} & 2^{1} & 2^{0} \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$[(1) \times 2^{3}] + [(1) \times 2^{2}] + [(1) \times 2^{1}] + [(1) \times 2^{0}] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$[1 \times 8] + [1 \times 4] + [1 \times 2] + [1 \times 1] = 15$$

- Consider the following 4 bits:
 - •1010

2 ³	2 ²	2 ¹	2 ⁰		
1	1	1	1		
8	4	2	1		
8 +	8 + 4 + 2 + 1 = 15				

- Consider the following 8 bits:
 - •00111111

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1	1	1	1	1

- Consider the following 8 bits:
 - •00111111

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1	1	1	1	1
0	0	32	16	8	4	2	1
	0+0+32+16+8+4+2+1=63						

◆ 100101 in Binary – what is this in decimal or how do we convert.

•
$$[(1) \times 2^5] + [(0) \times 2^4] + [(0) \times 2^3] + [(1) \times 2^2] + [(0) \times 2^1] + [(1) \times 2^0] =$$

◆100101 in Binary – what is this in decimal or how do we convert.

•
$$[(1) \times 2^5] + [(0) \times 2^4] + [(0) \times 2^3] + [(1) \times 2^2] + [(0) \times 2^1] + [(1) \times 2^0] =$$

◆ 100101 in Binary – what is this in decimal or how do we convert.

•
$$[(1) \times 2^5] + [(0) \times 2^4] + [(0) \times 2^3] + [(1) \times 2^2] + [(0) \times 2^1] + [(1) \times 2^0] =$$

•
$$[1 \times 32] + [0 \times 16] + [0 \times 8] + [1 \times 4] + [0 \times 2] + [1 \times 1] = 37$$

- Lets try some ourselves & do not use a calculator or go online for this — Do this on paper!
 - Determine 11101 in Decimal
 - Determine 000000001 in Decimal
 - Determine 1110000010 in Decimal
 - Determine 120000111 in Decimal

Binary Addition

Binary Addition Rules: 4 rules!

A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	10—	
			2 in decimal

Binary Addition

- Follow 4 rules!
- Add individual bits
- Carry "1" if applicable

1 1	
10101	21
<u>+ 11001</u>	+ 25
101110	46

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

Binary Addition for 3 binary numbers!

- Follow 4 rules!
- Add individual bits
- Carry "1" if applicable

1	1^{1}	11,	1
1	10	10	10
-	+11	01	1
10	0	1	1

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

Binary Addition for 2 & 3 binary numbers!

Les Try Some

Binary Addition Rules: 4 rules!

Α	В	A - B
0	0	0
0	1	1*
1	0	1
1	1	0

Binary Addition Rules: 4 rules!

Α	В	A - B	
0	0	0	
0	1	1*	
1	0	1	
1	1	0	Borrow from the
			next more significant bit
			lit

ckeighrey@ait.ie

- Subtract individual bits!
- Follow 4 rules!
- Remember to borrow from the next most significant bit!

Α	В	A - B
0	0	0
0	1	1*
1	0	1
1	1	0

- Subtract individual bits!
- Follow 4 rules!
- Remember to borrow from the next most significant bit!

	0	0	1	0
_	1	0	1	1
	1	1	0	1
		0	10	

Α	В	A - B
0	0	0
0	1	1*
1	0	1
1	1	0

Decimal to Binary

- This involves a dividing by two, keeping track of the remainder.
- First remainder is "bit 0"
 - (LSB, least-significant bit)
- Second remainder is bit 1 and so on.....

Decimal to Binary

Decimal to Binary

Octal Numbers: Base₈

- Octal numbers are Base₈
- Considering why Base₂ is called Base₂, why Base₁₀ is called Base₁₀, it becomes obvious then that Base₈ is called Base₈ because there are how many values used?
- Generally a Octal number is either proceeded by a 0 (in Java) or followed by a o

Octal Numbers: Base₈

- Octal numbers are Base₈
- Considering why Base₂ is called Base₂, why Base₁₀ is called Base₁₀, it becomes obvious then that Base₈ is called Base₈ because there are how many values used?
- Because there are 8 possible symbols used:
 - 0, 1, 2, 3, 4, 5, 6, 7

HEXADEXIMAL

Uses of Hexadecimal

- Computer operations are done by binary systems.
- One and Zero or on and off or yes and no.
- Because of the large nature of binary numbers, when talking computer code, they are normally represented in hexadecimal format.

Uses of Hexadecimal

- These can be addresses of RAM.
- The hexadecimal notation is often used in error messages.
- Sometimes it is used in obscure web addresses.
- Also used in HTML code to convey the background colour required.

- The background colour of a webpage is made up of a combination of three colours:
 - Red, Green and Blue.
 - Note the background can also be a picture.
- Each colour is represented by two hexadecimal digits

- Example: A4 5F 2D
 - This is known as the RGB color code.
- For each hexadecimal digit there is a choice of 16 values
- 1.6 million colours
 - $16^6 = 1.6$ million colours

- Go to START, All Programs, Accessories and Notepad
- Type in the following code:
 - <BODY BGCOLOR=#A45F2D></BODY>
 - Save the file as color.html
- Open the file in a web browser
- Change the hex colour code in your Notepad program
- Save and refresh to see new colours.

- Black 000000
- White FFFFF
- Red FF0000
- Green 00FF00
- Blue 0000FF
- Gray 505050
 - i.e. the same amount of each colour.
- Yellow F0F0000
- Orange FF7000
- Brown 905030

- Hexadecimal numbers are Base₁₆
- Considering why Base₂ is called Base₂, why Base10 is called Base 10, why Base₈ is called Base₈...... because there are how many symbols used?
- Generally a hex number is either proceeded by a "\$" or followed by a "h" or in Java proceeded by a: 0x
- Because there are 16 possible symbols used:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9

Dec	Hex
10	Α
11	В
12	С
13	D
14	Е
15	F
16	10
17	11
18	12
19	13

- Lets see how this is the case:
 - 2AF3 is a number in Hexadecimal format
 - Again each place, means a value!

```
• 2AF3-
```

```
= (2 * 16^3) + (10 * 16^2) + (15 * 16^1) + (3 * 16^0)
```

$$= (2 * 4096) + (10 * 256) + (15 * 16) + (3 * 1)$$

- = (8192) + (2560) + (240) + (3)
- = 10995 in decimal!

- Lets try some ourselves & do not use a calculator or go online for this — Do this on paper!
 - Determine 2AF3h in decimal
 - Determine 107h in decimal
 - Determine 2BC3h in decimal
 - Determine 7F6h in decimal

System	Base	Symbols	Used by humans?
Decimal	10	0, 1, 9	Yes
Binary	2	0, 1	No
Octal	8	0, 1, 7	No
Hexa- decimal	16	0, 1, 9, A, B, F	No

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Number Base Conversion & Arithmetic

- Number Base Arithmetic:
 - Addition, Multiplication, Division
- Number Base Conversion

Number Base Conversion

$$\bullet$$
 25₁₀ = 11001₂ = 31₈ = 19₁₆

Decimal to Decimal

$$• 13610 = (1*102) + (3*101) + (6*100)$$

$$= (100) + (30) + (6)$$

$$= (136)$$

Binary to Hexadecimal

Starting with LSB (the right most), each group of 4 binary digits is replaced by one hexadecimal digit, pad fill the left most bits with zeros if necessary.

•
$$1111_2$$

= $(1X 2^3) + (1X 2^2) + (1X 2^1) + (1X 2^0)$
= $8 + 4 + 2 + 1$
= 15 in decimal = **F** in Hexadecimal

Binary to Hexadecimal

binary	1	1	0	1	0	0	1	1	1	1	1	1
hex	D				3				F			

Hexadecimal to Binary

- Convert each digit in the hexadecimal number into its 4-bit equivalent binary representation
- Convert (10AB)₁₆ into its binary equivalent.
- Solution:

$$=> (10AB)_{16} = 0001000010101011_{2}$$

Hexadecimal to Binary

hex	1			0	0			A			В					
В	0	0	0	1	0	0	0	0	1	0	1	0	1	0	1	1
I																
N																
Α																
R																
У																

Hexadecimal to Binary

Lets try AOABH in Binary?

Decimal to Hexadecimal

- 2546852 → 26DCA4
 - Perform the following conversion:
 - Decimal to Binary
 - ◆ 2546852 → 1001101101110010100100
 - Binary to Hexadecimal
 - ◆ 1001101101110010100100 → 26DCA4

Conversion Table

http://www.dewasso
 c.com/support/msdo
 s/decimal hexadecim
 al.htm

_	Hor	Rin	Dec Hex Bin	Dec Hex
0 1 2 3 4 5 6 7 8	6 7 8 8 9 9 10 a 11 b 12 c 13 d 14 e	00000000 00000001 00000010 00000011 00000101 00000110 0000111 00001000 00001010 00001101 00001101 00001110	64 40 01000000 65 41 01000001 66 42 01000010 67 43 01000011 68 44 01000100 70 46 01000110 71 47 01000111 72 48 0100100 73 49 0100100 74 4a 0100101 75 4b 0100101 76 4c 0100110 77 4d 0100111 78 4e 010011 79 4f 010011	131 83 132 84 133 85 134 86 1 135 87 0 136 88 1 137 89 0 138 8a 11 139 88 10 140 86 01 141 86 10 142 8
	15 f 16 1 17 1 18		79 4f 010011 0 80 50 010100 1 81 51 010100 0 82 52 010100 11 83 53 01010 00 84 54 01010 01 85 55 01010	000 144 9 001 145 9 010 146 9 011 147 9 100 148 0101 149

Questions

