Thuan L Nguyen, PhD

AI Deep Learning: Convolutional Neural Networks (CNN)

- 1. Recurrent Neural Networks: Overview: Sequence Data
- 2. Recurrent Neural Networks : Overview: Sequence Data: Properties
- 3. Recurrent Neural Networks: Overview
- 4. Recurrent Neural Networks: Overview: Memory
- 5. Recurrent Neural Networks: Overview: Memory: Folding and Unfolding
- 6. Recurrent Neural Networks: Overview: Examples and Applications

RNN: Overview: Sequence Data

- Persistence is a quality that makes humans different from machines.
 - Persistence in the sense that people never start thinking from scratch.
 - A person uses his/her previous **memory** to understand the current learning and makes decisions accordingly.
- For example:
 - Language is an instance of persistence.
 - When a person is talking or writing, the choice of one word is determined both by the words coming before it and those coming after it.

RNN: Sequence Data: Properties

- Data inside a sequence are non identically, independently distributed (IID)
 - The next "word" depends on the previous "words"
 - Ideally on all of them
- We need context, and we need memory!
- Big question: How to model context and memory?

RNN: Sequence Data: One-Hot Vectors

- Data A vector with all zeros except for the active dimension
 - For example: 12 words in a sequence → 12 One-hot vectors

<u>Vocabulary</u>	One-hot vectors							
1	1	1	1	0		0	1	0
am	am	0	am	1	am	0	am	0
Bond	Bond	0	Bond	0	Bond	1	Bond	0
James	James	0	James	0	James	0	James	1
tired	tired	0	tired	0	tired	0	tired	0
,	,	0	,	0	,	0	,	0
McGuire	McGuire	0	McGuire	0	McGuire	0	McGuire	0
!	!	0	1	0	[0	Į.	0

RNN: Overview: Sequence Data

- Feed-forward neural networks:
 - The output is a function between the inputs and a set of weights.
 - The information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes.
 - There are no cycles or loops in the network.
- These networks are primarily used for pattern recognition:
 - It is not efficient to use them for handling sequence data

Feed-Forward Neural Network

- Recurrent neural network (RNN) can handle sequential data successfully.
 - Previous network state also influences the output
 - The network has a "notion of time".
 - This effect by a **loop** on the layer output to it's input.
 - It is able to 'memorize' parts of the inputs and use them to make accurate predictions.
 - RNN's are at the heart of speech recognition, translation and more.

- The chain-like nature of the recurrent neural network:
 - Reveals that recurrent neural networks are intimately related to sequences and lists.
 - They're the natural architecture of neural network to use for such data.

RNN: Overview: Memory

- Memory is a mechanism that learns a representation of the past
- \circ At timestep t project all previous information 1, ..., t onto a latent space c_t
 - ullet Memory controlled by a neural network $h_{ heta}$ with shared parameters heta
- \circ Then, at timestep t+1 re-use the parameters heta and the previous c_t

$$c_{t+1} = h_{\theta}(x_{t+1}, c_t)$$

...

$$c_{t+1} = h_{\theta}(x_{t+1}, h_{\theta}(x_t, h_{\theta}(x_{t-1}, \dots h_{\theta}(x_1, c_0))))$$

RNN: Overview: Memory: A Graphical Representation

- Data In the simplest case, what are the Inputs/Outputs of our system
- Sequence inputs → we model them with parameters U
- Sequence outputs → we model them with parameters V
- Memory I/O → we model it with parameters W

RNN: Overview: Memory: A Graphical Representation

- Data In the simplest case, what are the Inputs/Outputs of our system
- Sequence inputs → we model them with parameters U
- Sequence outputs → we model them with parameters V
- Memory I/O → we model it with parameters W

RNN: Overview: Memory: Folding Memory & Unfolding Memory

- The fundamental feature of a Recurrent Neural Network (RNN):
 - The network contains at least one feed-back connection,
 - So the activations can flow round in a loop.
 - That enables the networks to do temporal processing and learn sequences,
 - For example, perform sequence recognition/reproduction or temporal association or prediction.
- Recurrent neural network architectures can have many different forms.
 - One common type consists of a standard Multi-Layer Perceptron (MLP) plus added loops.
 - These can exploit the powerful non-linear mapping capabilities of the MLP, and also have some form of memory.
 - Others have more uniform structures:
 - Potentially with every neuron connected to all the others
 - And may also have stochastic activation functions.

- For simple architectures and deterministic activation functions:
 - Learning can be achieved using similar gradient descent procedures to those leading to the back-propagation algorithm for feedforward networks.
 - When the activations are stochastic, simulated annealing approaches may be more appropriate.
 - The following will look at a few of the most important types and features of recurrent networks.

RNN: Fully Recurrent Neural Networks

- The simplest form of fully recurrent neural network:
 - An MLP with the previous set of hidden unit activations feeding back into the network along with the inputs as shown in the figure to the right.

• NOTES

- The time t has to be discretized, with the activations updated at each time step.
- The time scale might correspond to the operation of real neurons, or for artificial systems any time step size appropriate for the given problem can be used.
 - A delay unit needs to be introduced to hold activations until they are processed at the next time step.

RNN: Some Examples and Applications

Examples:

- Videos
- Time series data
- Stock exchange
- Biological measurements
- Climate measurements
- Market analysis
- Speech/Music
- User behavior in websites

Applications:

- Machine translation
- Image captioning
- Question answering
- Video generation
- Speech synthesis
- Speech recognition