Bayesian Nonparametrics

Christof Seiler

Stanford University, Spring 2016, STATS 205

Overview

Last week:

Estimating functions frequentist style

Today:

▶ The Bayesian approach

Introduction

- ▶ In the Bayesian approach,
 - ightharpoonup the true parameter θ is believed to be random variable
- In the Frequentist approach,
 - the true parameter θ is believed to be one value,
 - the randomness comes from sampling error

Parametric Bayesian

▶ In parametric Bayesian inference we have a model

$$M = \{ f(y|\theta) : \theta \in \Theta \}$$

and data

$$Y_1, \ldots, Y_n \sim f(y|\theta)$$

• We put a **prior** distribution $\pi(\theta)$ on the parameter θ and compute the **posterior** distribution using Bayes' rule

$$\pi(\theta|y) = \frac{\prod_{i=1}^{n} f(y_i|\theta)\pi(\theta)}{m(y)}$$

with marginal distribution

$$m(y) = m(y_1, ..., y_n) = \int f(y_1, ..., y_n | \theta) \pi(\theta) d\theta$$
$$= \int \prod_{i=1}^n f(y_i | \theta) \pi(\theta) d\theta$$

Parametric Bayesian

We can write a generative model as sampling parameters from the prior

$$\theta \sim \pi$$

And then sampling data from the likelihood function

$$Y_1, \ldots, Y_n | \theta \sim f(y | \theta)$$

 \blacktriangleright We can use the posterior distribution to compute the posterior mean of θ

$$ar{ heta} = \mathsf{E}(heta|y) = \int heta \pi(heta|y) d heta$$

Also we can summarize the posterior by drawing a large sample

$$\theta_1, \ldots, \theta_N \sim \pi(\theta|y)$$

and plotting the samples

Parametric Bayesian

Posterior distribution

$$\pi(\theta|y) = \frac{\prod_{i=1}^{n} f(y_i|\theta)\pi(\theta)}{m(y)}$$

- Even if we don't know m(y), we can use tools like Markov chain Monte Carlo (MCMC) to draw samples from the posterior and plot them
- So even without being able to evaluate the posterior distribution, through sampling we know the posterior if we sample infinitly many times
- And approximately if we get a finite amount of samples

Nonparametric Bayesian

We replace the finite dimensional model

$$\{f(y|\theta):\theta\in\Theta\}$$

with an infinite dimensional model such as

$$\mathcal{F} = \left\{ f : \int (f''(y))^2 dy < \infty \right\}$$

- Surprisingly, sometimes neither the prior nor the posterior have a density function
- But the posterior is still defined

Nonparametric Bayesian

Some questions:

- 1. How do we construct a prior π on an infinite dimensional set \mathcal{F} ?
- 2. How do we compute the posterior?
- 3. How do we draw random samples from the posterior?

Distributions on Infinite Dimensional Spaces

- lacktriangle We will need to put a prior π on an infinite dimensional space
- ▶ For example, suppose we observe

$$X_1,\ldots,X_n\sim F$$

with unkown distribution F

- We put prior π on set of all distributions \mathcal{F}
- ightharpoonup In many cases, we cannot explicitly write down a formula for π
- ▶ How can we describe a distribution π in another way than writing it down?
- If we know how to draw from π we can get many samples and then even without knowing the formula for π we can plot it

Distributions on Infinite Dimensional Spaces

The idea: find an algorithm to sample from this model

$$F \sim \pi$$
 $X_1, \ldots, X_n | F \sim F$

- ▶ If we have such an algorithms then it is like being able to actually write down an explicit formula
- After we observe the data $X = (X_1, \dots, X_n)$, we are interested in the posterior distribution
- ► The same idea here, instead of writing down a forumla we describe an algorithm to sample for the posterior distribution

- Suppose we observe X_1, \ldots, X_n from an unkown distribution F $(X_i \in \mathbb{R})$
- ► The usual frequentist estimate of *F* is the empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

- ▶ To estimate F from a Bayesian perspective we put a prior on π on the set of all $\mathcal F$
- ▶ Compute the posterior on \mathcal{F} given $X = \{X_1, \dots, X_n\}$
- Such a prior was invented by Thomas Ferguson in 1973

- ▶ The prior has two parameter: F_0 and α denoted by $DP(\alpha, F_0)$
- ▶ F₀ is a distribution function and should be thought of as a prior guess of F
- ▶ The number α controls how tightly concentrated the prior is around F_0
- ► The model is

$$F \sim \mathsf{DP}(lpha, F_0)$$
 $X_1, \dots, X_n | F \sim F$

But how to draw samples from this model?

- ▶ First to draw samples from the prior $DP(\alpha, F_0)$, we follow four steps
- 1. Draw s_1, s_2, \ldots independently from F_0
- 2. Draw $V_1, V_2, \cdots \sim \text{Beta}(1, \alpha)$
- 3. Stick breaking process: Let $w_1 = V_1$ and $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$ for j = 2, 3, ...

- Stick breaking process:
- Imagine a stick of unit length
- ▶ Then w_1 is obtained by breaking the stick at the random point V_1
- ▶ The stick has now length $1 V_1$
- ▶ The second weight w_2 is obtained by breaking a proportion V_2 from the remaining stick
- ▶ The process continues and generates the whole sequence of weights $w_1, w_2, ...$

4. Let F be the discrete distribution that puts mass w_j at s_j , that is, $F = \sum_{j=1}^{\infty} w_j \delta_{s_j}$ where δ_{s_j} is a point mass at s_j

Source: Wasserman (left: weights; right: F_0 and random draw)

- F is a discrete distribution
- ► The Dirichlet process is a generalization of the Dirichlet distribution

- ▶ To sample from the posterior, we need the following theorem
- Let F_n be the empirical distribution
- ▶ **Theorem:** Let $X_1, ..., X_n \sim F$. Let F have prior $\pi = \mathsf{DP}(\alpha, F_0)$. Then the posterior π for F given $X_1, ..., X_n$ is $\mathsf{DP}(\alpha + n, \bar{F}_n)$ where

$$\bar{F}_n = \frac{n}{n+\alpha} F_n + \frac{\alpha}{n+\alpha} F_0.$$

- ► Since the posterior is again a Dirichlet process, we can sample from it as we did the prior
- We only replace α with $\alpha + n$ and we replace F_0 with \bar{F}_n
- ▶ Thus the posterior mean is \bar{F}_n is a convex combination of the empirical distribution and the prior guess F_0
- ➤ To explore the posterior distribution, we could draw many random distribution functions form the posterior
- \blacktriangleright We could then numerically construct two functions L_n and U_n such that

$$\pi(L_n(x) \le F(x) \le U_n(x)$$
 for all $x|X_1,\ldots,X_n) = 1-\alpha$

- ▶ This is a Bayesian credible interval for F
- ▶ When *n* is large then $\bar{F}_n \approx F_n$

Density Estimation

- ▶ Let $X_1, ..., X_n \sim F$ where F has density f and $X_i \in \mathbb{R}$
- Our goal is to estimate f
- ► The Dirichlet process is not useful prior for this because it produces discrete distributions
- But we can make a modification
- The most popular frequentist estimator is the kernel estimator

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

with kernel K and bandwith h

▶ A related method is the mixture model

$$f(x) = \sum_{j=1}^{k} w_j f(x; \theta_j)$$

Density Estimation

- ▶ For example, if $f(x;\theta)$ is normal then $\theta = (\mu, \sigma^2)$
- ► The kernel estimator can be thought of as a mixture with *k* components
- ▶ In the Bayesian approach we would put a prior on $\theta_1, \ldots, \theta_k$, on w_1, \ldots, w_k , and on k
- Recently, it became more popular to use an infinite mixture model

$$f(x) = \sum_{j=1}^{\infty} w_j f(x; \theta_j)$$

- As prior for the paramters we could take $\theta_1, \theta_2, ...$ to be drawn from some F_0 and
- ▶ We could take $w_1, w_2, ...$ to be drawn from the stick breaking prior
- ► This is known as the **Dirichlet process mixture model**

Density Estimation

- ▶ This is the same as the random distribution $F \sim \mathsf{DP}(\alpha, F_0)$ which had the form $F = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$
- ▶ Except that the point mass distribution δ_{θ_j} are replaced by smooth densities $f(x|\theta_j)$
- ▶ The model is

$$F \sim \mathsf{DP}(lpha, F_0)$$
 $heta_1, \dots, heta_n | F \sim F$ $X_j | heta_j \sim f(x | heta_j), \quad j = 1, \dots, n$

- The beauty of this model is that the discreteness of F automatically creates a clustering of the θ_i's
- In other words, we have implicitly created a prior on k, the number of distinct θ_j's

References

- Wasserman Lecture Notes
- van der Vaart Lecture Notes
- Müller, Quintana, Jara, and Hanson (2015). Bayesian Nonparametric Data Analysis