





PH451, PH551 Mar 19, 2025

### **Announcements**

Hackathon # 2 due on Friday

Midterm on Thursday, April 10

- Extra Credit Opportunity:
  - 5 minute videos

## **Final Projects**

- Semester long activity (40% of grade)
- Team activity
  - Self-designed project in consultation with instructor
  - Has to include an ML component
  - Can pick any topic you feel passionate about
  - Graduate students can pick something from your specific field or research area

## **Final Projects**

Pre-proposal 5%

due 03/25

Proposal 10%

due 04/03

- Project Outline and Demo 25% due 04/17
- Presentation 10%
- Peer Evaluation 10%
- Final Project Submission (write-up, code) 40%
   due 05/01

### **Pre-Proposals**

- Should establish:
  - Your team
  - 3 possible ideas for your project in your order of preference
- Pick potential problems that
  - You have an idea how to solve
  - Relevant to someone
  - Not yet solved (or provide a different solution)

### **Hackathon #1 results**

| Group <b>▼</b> | AUC -1 | Score < |
|----------------|--------|---------|
| 16             | 0.897  | 3       |
| 12             | 0.865  | 3       |
| 4              | 0.854  | 3       |
| 7              | 0.847  | 3       |
| 15             | 0.845  | 3       |
| 3              | 0.841  | 3       |
| 8              | 0.838  | 2.5     |
| 2              | 0.837  | 2.5     |
| 10             | 0.837  | 2.5     |
| 6              | 0.829  | 2.5     |
| 9              | 0.812  | 2.5     |
| 14             | 0.809  | 2.5     |
| 13             | 0.787  | 2       |
| 1              | 0.786  | 2       |
| 5              | 0.742  | 1.5     |
| 11             | 0.695  | 1.5     |

### **Convolutional Networks**



### **Convolutional Networks**



### **Convolutional NN**



Input (Image) → Convolution → Activation (Non-Linear) → Spatial Pooling → Feature Maps

## **Convolution Example**



#### Same convolutional filter (set of weights) is applied to each element

- An element in a single 2-D location can only receive input from elements in similar location from previous layers (locality)
- Same weights for each feature map (and different across maps)
- Exploit structure, neighboring pixel dependence

## **Pooling**

## Down-sampling: shrink the size of the feature map

Lower resolution that still contains important information



- Usually added after convolution and non-linearity (i.e. activation like ReLU) have been applied
- take the average (average-pooling) or maximum activity (max pooling) to represent the whole area
- Filter size is smaller than original feature map
- Helps model invariance to small local translations

## **Training**

# CNNs compute the stacked sequence of layers

usually ending with a Fully-Connected Layer

The FCN is the same as a regular neural

networks



Train with back-propagation

### Some Well-known Architectures

- LeNet5 (1990s)
  - Early CNN used to read digits
     LeNet 5



- Y. LeCun et al., 1998
- Average pooling, sigmoid, trained on MNIST

### **AlexNet**

### **AlexNet (2012)**

 Similar to LeNet but bigger and deeper model (8 layers, 60M params)



- ReLU activations, max pooling, dropout and data augmentation trained on GPUs on ImageNet
- Krizhevsky et al., 2012 (Imagenet 2012 winner)

## **Data Augmentation**

- Useful technique for increasing training dataset size
  - Apply rotations, shifts and re-sizing to make as many realistic training images as possible
  - Helps in training and to reduce overfitting



## GoogleNet

- Szegedy et al., 2014
  - Much deeper than previous CNNs
  - Inception modules





- Multiple kernels stacked at same level
  - Concatenated along the depth dimension
  - Serve to capture information along the depth dimension across scales, bottlenecks to reduce dimensionality and behave like multi-dimensional layers

### **VGGNet**

- Simonyan and Zisserman, 2014
  - Stacked smaller kernel-sized filters (3x3)



 16 layers: 2/3 convolutional, 1 max pool and repeat

### ResNet

- He et al., 2015 (Imagenet 2015 winner)
  - Residual network with skip connections



- 152 layers similar to VGG with skip connections (gated units) and batch normalization
- Residual learning: h(x) x
- Helps propagate your signal across the whole network