2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

The Standard Turing Machine

Combining Turing Machines for Complicated Tasks

Turing's Thesis

Turing Machines

- Developed by Alan Turing in 1936
- More than just recognizing languages
- Foundation for modern theory of computation
 - Alan Turing
 - 1912 1954
 - b. London, England.
 - PhD Princeton (1938)
 - Research
 - Cambridge and Manchester U.
 - National Physical Lab, UK

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 ww^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Time 0

Time 1

- 1. Reads \mathcal{Q}
- 2. Writes k
- 3. Moves Left

Time 1

Time 2

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

Remark: the input string is never empty

Turing Machine:

States & Transitions

Transition Function (program)

$$q_1$$
 a,b,R q_2

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Time 1

Time 1

Time 2

$$q_1$$
 a,b,R q_2

Time 1

Time 2

Time 1

Time 2

Determinism

Turing Machines are deterministic

No lambda transitions allowed

Transition Function Is Partial

Example:

Allowed:

Halting

The machine *halts* if there are no possible transitions to follow

Final States

- Final states have no outgoing transitions
- In a final state the machine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an *infinite loop*

Turing Machine Example

A Turing machine that accepts the language:

aa*

$$\Sigma = \{a, b\}$$

$$q_0$$

$$Q_1$$

Time 0

Time 1

Time 2

Time 3

Time 4

Rejection Example

Time 0

Time 1

No possible Transition

Infinite Loop Example

Time 0

Time 1

Time 2

Because of the infinite loop:

The final state cannot be reached

The machine never halts

The input is not accepted

Example 9.7

Turing machine for the language $\{a^nb^n\}$

Time 1 $\Diamond x a b b \Diamond \zeta$

Time 2

Time 6 $\Diamond x x y b \Diamond \zeta$

Time 7

Time 8

Time 9 $\Diamond x x y y \Diamond$

Time 10

Time 11

Time 12

Time 13

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can also construct a machine for the language $\{a^nb^nc^n\}$

Configuration

Instantaneous description:

 $ca q_1 ba$

A Move:

$$q_2 xayb \vdash x q_0 ayb$$

$$q_2 xayb \vdash x q_0 ayb \vdash xx q_1 yb \vdash xxy q_1 b$$

$$q_2 xayb \vdash x q_0 ayb \vdash xx q_1 yb \vdash xxy q_1 b$$

Equivalent notation:

$$q_2 xayb \vdash xxy q_1 b$$

Infinite loop (TM never halt): $x_1qx_2 \vdash \infty$

Initial configuration:

 $q_0 w$

Input string

The Accepted Language

For any Turing Machine M

The sequence of configurations leading to a halt state will be called a **computation**.

Standard Turing Machine

Main features of the standard Turing machine:

- Deterministic
- Infinite tape in both directions
- Tape is the input/output file

Computing Functions with Turing Machines

A function f(w) has:

"Transducer"

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

: easier to manipulate with Turing machines

Definition:

A function f is computable (Turing Computable) if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable (Turing Computable) if there is a Turing Machine M such that:

For all $w \in D$ Domain

Example 9.9

The function
$$f(x,y) = x + y$$
 is computable

 \mathcal{X},\mathcal{Y}

are integers

Turing Machine:

Input string:

x0y

unary

Output string:

xy0

unary

The 0 is the delimiter that separates the two numbers

The 0 helps when we use the result for other operations

73

Turing machine for function f(x, y) = x + y

Ch 9

Execution Example:

Time 0

$$x = 11$$
 (2)

$$y = 11$$
 (2)

Final Result

$$\begin{array}{c|c|c} x + y \\ \hline & \Diamond & 1 & 1 & 1 & 0 & \Diamond \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Time 1 \Diamond 1 1 0 1 1 \Diamond q_0

Time 2

Time 3

Time 4

Time 5 \Diamond 1 1 1 1 \Diamond

Time 6 \Diamond 1 1 1 1 1 \Diamond q_2

Time 7

Time 8 \Diamond 1 1 1 0 \Diamond

Time 12 \Diamond 1 1 1 0 \Diamond 94

Example 9.10

The function

$$f(x) = 2x$$

f(x) = 2x is computable

is integer

Turing Machine:

Input string:

 χ

unary

Output string:

 $\chi\chi$

unary

Start

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- Repeat:
 - Find rightmost \$, replace it with 1
 - Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Ch 9

Example

Start Finish \Diamond \Diamond \Diamond q_0 q_3 1, 1, *R* 1, \$, *R* 1, 1, *L* \Diamond, \Diamond, L \$, 1, *R* q_2 q_1 q_0 \Diamond, \Diamond, R \Diamond , 1, L q_3 Ch 9

Example 9.11

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 is computable

Turing Machine for

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Input: x0y

Output: 1 or 0

Ch 9

Turing Machine Pseudocode:

Repeat

Match a 1 from x with a 1 from yUntil all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else erase tape, write 0 $(x \le y)$

Outline

The Standard Turing Machine

Combining Turing Machines for Complicated Tasks

Turing's Thesis

Combining Turing Machines

Block Diagram

Example 9.12:

9.12:
$$f(x,y) = \begin{cases} x+y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

$$q_{C,0}w(x)0w(y) \stackrel{*}{\vdash} q_{A,0}w(x)0w(y) \quad \text{If } x \ge y \qquad \Longrightarrow \qquad q_{A,0}w(x)0w(y) \stackrel{*}{\vdash} q_{A,f}w(x+y)0$$

$$q_{C,0}w(x)0w(y) \stackrel{*}{\vdash} q_{E,0}w(x)0w(y) \quad \text{If } x < y \qquad \Longrightarrow \qquad q_{E,0}w(x)0w(y) \stackrel{*}{\vdash} q_{E,f}0$$

Ch 9

Example 9.13

Consider the macroinstruction

if a then q_j else q_k ,

$$\delta(q_i, a) = (q_{j0}, a, R)$$
 for all $q_i \in Q$
 $\delta(q_i, b) = (q_{k0}, b, R)$ for all $q_i \in Q$, and all $b \in \Gamma - \{a\}$
 $\delta(q_{j0}, c) = (q_j, c, L)$ for all $c \in \Gamma$
 $\delta(q_{k0}, c) = (q_k, c, L)$ for all $c \in \Gamma$

Example 9.14

- Design a Turing machine that multiplies two positive integers in unary notation
- Repeat the following steps until x contains no more 1's
 Find a 1 in x and replace it with another symbol a
 Replace the leftmost 0 by 0y
- 2. Replace all a's with 1's

Outline

The Standard Turing Machine

Combining Turing Machines for Complicated Tasks

Turing's Thesis

Turing's thesis:

Any computation carried out by mechanical means can be performed by a Turing Machine (1930)

Computer Science Law:

A computation is mechanical if and only if it can be performed by a Turing Machine

There is no known model of computation more powerful than Turing Machines

Definition of Algorithm:

An algorithm for function f(w) is a Turing Machine which computes f(w)

Algorithms are Turing Machines

When we say:

There exists an algorithm

We mean:

There exists a Turing Machine that executes the algorithm

Turing Thesis

- Anything that can be done on any existing digital computer can also be done by a Turing machine
- No one has yet been able to suggest a problem, solvable by what we intuitively consider an algorithm, for which a Turing machine program cannot be written
- Alternative models have been proposed for mechanical computation, but none of them is more powerful than the Turing machine model

Short Quiz

Construct Turing machines that will accept the following languages

- L={ $a^nb^nc^n$: $n \ge 0$ }
- Even-length binary palindromes