Thesis Outline

Title

Investigation of complex liquid-gas turbulent interfacial flows: A numerical study

Introduction

Multiphase Flows

- Brief description of multiphase flows in nature
- · Surface tension dominated flows

Fragmentation

- · Brief description of fragmentation
- · Importance of drop size distributions

Numerical Platforms

- PARIS Simulator
- Basilisk

Part A: Numerical Development

Chapter 1: Methodology

- 1. Governing Equations
 - Conservative vs. Non-Conservative Formulations
 - Description of Operators
 - Evolution of phase-characteristic function
 - Material Properties
- 2. Interface Tracking
 - Volume-of-Fluid + PLIC reconstruction
 - Flux Computation : CIAM and WY
- 3. Time Marching
 - · Spatio-Temporal Discretization
 - · Pressure-Projection Algorithm

Chapter 2: Artificial Atomization: The Falling Raindrop

- 1. Computational Setup
 - o Parameterization: Reynolds, Weber, Bond
- 2. Exploration of Blowups
 - Combinations of Advection Scheme + Flux Limiter
- 3. Origin of Numerical Instabilities

• Un-physical Stagnation Pressures

Chapter 3: Consistent Mass-Momentum Transport

- 1. Principles of Momentum Consistent Schemes
 - Major Iterations in Literature
 - Overview of Methods
 - Our Strategies
- 2. Consistent Flux Computation
 - Schematic
 - Numerical Stencils
- 3. Reconstruction on Staggered Cells
 - Half-Fractions Method
 - Sub-Grid Method
- 4. Sub-Grid Strategy
 - Consistency and Conservation
 - Restriction & Prolongation Operators
- 5. Summary of Methods
 - Flowchart : Half-Fractions Method
 - Flowchart : Sub-Grid Method

Chapter 4: Numerical Benchmarks

- 1. Static Droplet
 - Setup
 - Decay of Spurious Currents
 - Spatial Convergence
- 2. Moving Droplet
 - Setup
 - Evolution of Spurious Currents
 - Spatial Convergence
 - Error Dependence : Laplace & Weber numbers
- 3. Capillary Wave
 - Setup
 - Comparison with Prosperetti Solution
 - Spatial Convergence
- 4. Falling Raindrop
 - Setup
 - Temporal Evolution : KE, Mass, MOI
 - Convergence of Velocity & Acceleration

Part B: Physics of Fragmentation

Chapter 5: Ligament Mediated Paradigm

1. Mechanism of Drop Formation

- Disintegration of Jets & Shear Layers
- Expansion of Sheets
- Effervescent Atomization
- Drop Impacts
- 2. Theories of Fragmentation
 - Cascade Mechanism : Log-Normal
 - Corrugation-Coalescence Mechanism: Gamma

Chapter 6: Droplet Generation in Corrugated Ligaments

- 1. Numerical Setup
 - o Platform: Basilisk
 - Computational Schematic
 - Random Surface Generation
 - Parameterization
- 2. Ligament Breakup
 - 3D vs 2D Axisymmetric
 - Effect of Spatial Resolution
 - · Effect of Droplet Removal
 - Effect of Corrugation Amplitude
 - Effect of Ohnesorge Number
 - Effect of Cut-Off Wavenumber
 - Quantization of Unstable Wavenumbers

Chapter 7: Statistics of Drop Sizes

- 1. Monte Carlo Approach to DNS
 - · Characterization of Ligament Ensembles
- 2. Millimeter Scale Ensembles
 - Diameter Distributions
 - Mass Distributions
 - · Equivalent Diameters
 - PDF of Large Drop Sizes
- 3. Exploration of Parameter Space
 - Bifurcation Parameter: Corrugation Amplitude
 - Scaling of D/W: Function of Parameter Space
 - To be added

Conclusions & Perspectives

Appendix

Bibliography