

- glucagon-like peptide 1(7-36)amide; and
- (c) an effective fragment or analogue of (a) or (b) and a pharmaceutically acceptable carrier.

In accordance with a further embodiment of the invention, a method is provided for treating Type I diabetes in a mammal comprising administering to the mammal an effective amount of a peptide comprising a peptide selected from the group consisting of

- glucagon-like peptide 1(7-37); (a)
- glucagon-like peptide 1(7-36) amide; and -(b)
- an effective fragment or analogue of (a) or (c) (b).

In accordance with a further embodiment of the invention, a peptide comprising a peptide selected from the group consisting of

- (a) glucagon-like peptide 1(7-37);
- (b) glucagon-like peptide 1(7-36) amide; and
- an effective fragment or analogue of (a) or (b) is used for the preparation of a medicament for use in the treatment of Type I diabetes.

Summary of Drawings

Figure 1A shows blood levels of glucose, Figure 1B shows C-peptide, Figure 10 shows human pancreatic polypeptide (HPP), Figure 1D shows glucagon and Figure 1E shows gastrin in Type I diabetic subjects after Sustacal meal alone (0) or Sustacal meal with GLIP infusion (•).

Figure 2A shows blood levels of glucose and Figure 2B C-peptide in Type I diabetic subjects during glucose infusion alone (0) or along with IV GLIP(•).

Figure 3A shows blood levels of glucose (expressed as the change (Δ) from baseline values at time zero) and Figure 3B shows C-peptide (expressed as the change (Δ) from baseline values at time zero) in Type I diabetic subjects after Sustacal meal and saline infusion (0) or Sustacal meal with infusion of 0.75 pm GLIP/kg/min (A).

20

10

15

30

35