The BAR Element

I. Stiffness Matrix

The equations for the BAR element are

Define:
$$e_a = AE$$
, $k_t = GJ$, $\beta = BEI_{12}$

$$\begin{cases} 1 - 12 & 12 \\ 1 - 12 & 13 \end{cases}$$

$$\hat{R}_{1} = \frac{1}{4}R_{1} + \frac{EI}{L}, \hat{R}_{2} = \frac{1}{4}R_{2} + \frac{EJ}{L}, \hat{R}_{3} = \frac{1}{4}R_{1} - \frac{EJ}{L}, \hat{R}_{4} = \frac{1}{4}R_{2} - \frac{EJ}{L}$$

$$R_{2} = \frac{12EI}{2^{3}} \left(1 + \gamma_{1} \right)^{-1}$$

$$R_{2} = \frac{12EI}{2^{3}} \left(1 + \gamma_{2} \right)^{-1}$$

$$R_{3} = \frac{12EI}{2^{3}} \left(1 + \gamma_{3} \right)^{-1}$$

and

$$\gamma_{i} = \begin{cases} \frac{i \lambda E I_{1}}{K_{1} A G L^{2}} & \text{if } I_{12} = 0 \text{ and } K_{1} \neq 0 \\
0 & \text{if } I_{12} \neq 0 \text{ ove } K_{1} = 0 \end{cases}$$

$$I - (4)$$

$$K_{2} = \begin{cases} \frac{12EI_{2}}{K_{2}NEI_{2}} & \text{if } I_{12}=0 \text{ and } K_{2}=0 \end{cases}$$

$$0 \quad \text{if } I_{12}\neq 0 \text{ or } K_{2}=0$$

and K_1 , K_2 are the area factors for shear (a zero value is assigned to Y_1 , Y_2 when K_1 and K_2 are zero which is enterpreted to be the case of no shear flexibility (which is actually K_1 , $K_2 \rightarrow \infty$).

1		75	Pa	Ma	B	(I)	Kaakab	L Kas K	(9) -I %	Magazin	OK.	Oy,	926
	O.2.h		2 R.	9 mg		6 3	Je 3		74.	2007		27.8	/
	Oyle		-4B	-18 Rz		(-2)	-82 C		2000	24		12	حالة
	(G×k				ا به د		1				الإد		
	13.		- B	+ Rz		2 Ar	210		6	556 22		र्भ	212
	7		- R.	6		8	-R.		K.	8		200	St.
	V	ار						Les /			+		
	020	9	28	क राहे	3	3/10	4	10	عرابه	8	-18	ج الم	< - 5
	9 1		8	-RRy		1 23	- R. P.		200	24		ret .	222
	Oxa			0	***						- 14+		
	188		8	R	7	200	8 40		8	-12.4		-\$ P.	314
	20		R ₁	E	3	di di	AR.	4	ا گ	E , 1		22	27
	Na	as I	B	 				- Sca					

No DING lags

		Kab	= -K0	iaD					
		Kloh	? -DT	KaaD					
where D is		1)	= Duz	4,	r high	باد، ما لم	watin	_	
			v, 0 y		,	- 1			
		0		2	6	×, u, 0	L		
	2,10,				D				
		Ua		0	0	0	0	0	(u
		Va	6	١	Ó	0	0	- &	Vo
	_	Wa =	0	d	1	D	l	0	w
		Oxa	0	0	0	1	0 .	٥	θx
						0		0	1 0y

	- la	0 6	0	0	,0	1	0 0	Ø	O	0
	0	R, 19	0	- 1/2 B	٤a,	C	1 0	0	0	- l
13 2		B Rh	6	-12 12	力的	0	0 1	a	l	0
$-K_{00}$ = -	σ	0 0	kt	0	0	٥	0 0	(0	٥
	. 0	- 26 - 2 Rs	. 0	ê,	-97 (3	0	0 0	O	ı	0
	0	九年 美月	0	-13/3	È,	0	U O	0	0	\ \ \ \
	- ka	0	0		0	0	0	1		
	٥	-12,	-6		0	- 82	Ril	-Rot	12 - I	12 E12+ P
-KnaD =	0	β	- 22		0	- R21	b)	14	= K	一旦, 主
	0	0	0		h	0	O	-fe,+	R12 -	RO'EL, R
	0	26	& Rz		6	- Ra + Ral	- (6)2		= R	是一点。
	Lo	- \$1,	一支日		0	- 152	-k,+ R12			
	-lea	0	0		0	0	0	1		
	0	-R,	- M		0	- 1 1	22,			
~	0	- fr	-Rz		0	-222	2/3	3	Kab	j
	6	0	0		-ke	0	0			
	0	20	2 Rz		0	ky	-6B			
	b	- 1 R.	-12/3		O	-16	Ê3			

								1
Men	charle	K - D	K.D	-	- D	Kar	(sme	Kat = - KaaD
Prior.	MECH	100	1700			1-00		· aa · aa

	1		0 0	0	6	0]]-ka	0	0	0	0	0
	0		1 0	0	D	0	0 .	-R,	- B	0	$-\frac{2}{9}\beta$	₹a,
27.4	0		0 1	0	0	0	0	- 3	-1/2	0	-12/2	
-DTKab = -	0		0 6	1	6	0	0	0	0	-kt	0	0
	0		0 1	0	1	0	0	\$ B	1 Rz	0	ky	-1 B
	0	-). 0	0	. 0	1		- 1 R,	-12/3	0	-1° B	k3]
		le a	0	0		0	0		0			
		0	R,	b		0	2 B	1	<u>ا</u> و,	but -ky	Rell = -	Reliter P
		0	ß	R_2		0	1 R2		ا م		-	4 1
		0	0	0		k	0		0	and -ks	+ R.12 =	R. L. EI, +R.
		0	2 p	IR2		0	- Ru+ 12 R	z	- 3° B		2	RIL EI, = 3
		0	-1 R,	-126		0	$-\frac{12}{3}$	-kz	+ 22 R,			
		ka .	. 0	0		0	0		0			
		0	R,	þ		0	2/3	-	224			
Kab = DT KaaD =		0	P	R		0	L Rz	~	别为	1)	K 66	
Lab = W raa () =	Ô)	Ò	6		k	0		0		06	
		0	1 B	2 /2		0	les		36			
		0	-1 R,	-16		O	- PB		În			

Relationship Among Partitions of a Free-Free Stiffness Matrix

KU=P

Partition into 2 sets; a mil b:

For nged body motion we could take Pa = Pb = 0

subst. (2) and (3) into the 2nd of equs (1):

$$K = \begin{bmatrix} K_{aa} & K_{ab} \\ K_{ab} & K_{bb} \end{bmatrix} = \begin{bmatrix} K_{aa} & -K_{aa}D \\ -D^{T}K_{aa} & D^{T}K_{aa}D \end{bmatrix}$$
(5)

We can also show a relationship between Pa, Ph. Using (5) for Kin (1) and a rigid body displ Uat Du

Mult. by [D I] :

I. Bar Element Thornal loads and Stress Reway Matrices

In local demant acordinates the equations for the bar element in terms of degrees of freedom at the bar ends (not the gred points - possibly there are effects that make bur ends & gred points);

If there are no applied loads we can use () to determine the thornal loads. Without loss of generality we can fix one end (6 Dof) as a reference. Tay we take the displication of and b:

Than, from 1 (Uh = 0, PL = Pho = 0)

$$P_{Ta} = K_{aa} U_a , P_{T_b} = K_{ab}^T U_a$$

$$[U_a] [U(x)]_a$$

$$\begin{array}{c}
U_{\alpha} = V_{\alpha} \\
V_{\alpha} \\
V_{\alpha}
\end{array}$$

$$\begin{array}{c}
V(x) \\
V($$

Take the temperature distribution to be

$$T(x,y,z) = T_a(y,z) + \frac{T_b(y,z) - T_a(y,z)}{2} \chi$$
II-(4)

where Ta, The are temp distributions at ends a, & respectively

The displacements are free thermal expansion and are determined from:

1 Thermal Displ- x direction

Ua = U(x) | x=0 where $\frac{du}{dx} = \xi = \frac{P_T}{AE} = \frac{1}{AE} \int ExT dA$ (Rivello by 158, 176)

for-E, a unstant

$$= \frac{\alpha}{A} \int \left\{ T_{a}(y,z) + \frac{T_{b}(y,z) - T_{a}(y,z)}{2} \times - T_{ref} \right\} dA$$

$$= \frac{\alpha}{A} \int \left\{ T_{a}(y,z) + \frac{T_{b}(y,z) - T_{a}(y,z)}{2} \times - T_{ref} \right\} dA$$

$$= \frac{\alpha}{A} \int \left\{ T_{a}(y,z) dA + \frac{\alpha}{2} \int T_{b}(y,z) dA - \frac{\alpha}{2} \int T_{a}(y,z) dA - T_{ref} A \right\}$$

Define

Mon

Integrale to get U(x) noting that U(x=L)=0

(16) Displacements in Plane 1 (VIX), dV/dx)

From Revello pprot, 176: (constant E, a and M* = thought anomals and using I,= Ize, Iz= Iry, I, = Ixe)

$$\frac{d^{2}v}{dx^{2}} = \frac{1}{E} \frac{M_{27}I_{2} - M_{Y7}I_{12}}{I_{1}I_{2} - I_{12}^{2}}, \quad \begin{cases} M_{Y7} = Ex \int_{Y} z T^{2} I_{rep} dA \\ M_{27} = -Ex \int_{Y} y T^{2} T^{2} I_{rep} dA \end{cases}$$

$$I - (9)$$

Define
$$D_{i} = \frac{I_{2}}{I_{1}I_{2} - I_{12}}$$
, $D_{2} = \frac{I_{1}}{I_{1}I_{2} - I_{12}}$, $D_{12} = \frac{I_{12}}{I_{1}I_{2} - I_{12}}$ $I_{2} = \frac{I_{12}}{I_{12} - I_{12}}$

From Myz, Mez in equ (9) and the temp. distribution in equ (4):

$$M_{YT} = -E_{X} \int_{Z} \left[(1-\frac{\chi}{L}) T_{\alpha}(y,z) + \frac{\chi}{L} T_{b}(y,z) - \overline{J}_{\alpha}(y,z) \right] dA$$

$$M_{YT} = -E_{X} \left[(1-\frac{\chi}{L}) \int_{Z} T_{\alpha}(y,z) dA + \frac{\chi}{L} \int_{Z} T_{b}(y,z) dA \right]$$

$$M_{YT} = -E_{X} \left[(1-\frac{\chi}{L}) \int_{Z} T_{\alpha}(y,z) dA + \frac{\chi}{L} \int_{Z} T_{b}(y,z) dA \right]$$

$$M_{YT} = -E_{X} \left[(1-\frac{\chi}{L}) \int_{Z} T_{\alpha}(y,z) dA + \frac{\chi}{L} \int_{Z} T_{b}(y,z) dA \right]$$

$$M_{YT} = -E_{X} \left[(1-\frac{\chi}{L}) \int_{Z} T_{\alpha}(y,z) dA + \frac{\chi}{L} \int_{Z} T_{b}(y,z) dA \right]$$

and

$$M_{27} = -E_{d} \left\{ \left(1 - \frac{1}{2} \right) \int_{Y} T_{a}(Y_{1}z) dA + \frac{\chi}{2} \int_{Y} Y T_{b}(Y_{1}z) dA \right\} \qquad \qquad IJ - (12)$$

Define

$$T_{10} = \frac{1}{T_{1}} \int_{Y} Y T_{0}(y,z) dA$$

$$T_{10} = \frac{1}{T_{2}} \int_{Y} Y T_{0}(y,z) dA$$

$$T_{10} = \frac{1}{T_{2}} \int_{Z} T_{0}(y,z) dA$$

$$T_{10} = \frac{1}{T_{2}} \int_{Z} T_{0}(y,z) dA$$

$$T_{10} = \frac{1}{T_{2}} \int_{Z} T_{0}(y,z) dA$$

Then

$$M_{YT} = -E_{X}I_{x}[(1-\frac{x}{L})T_{xa}^{'} + \frac{x}{L}T_{ab}^{'}]$$

$$M_{ZT} = -E_{X}I_{x}[(1-\frac{x}{L})T_{ia}^{'} + \frac{x}{L}T_{ab}^{'}]$$

$$II_{x}(14)$$

Substitute (10) and (14) (9) for d'order squ:

$$\frac{d^{2}x}{dx^{2}} = \frac{1}{E} \left[\Delta_{1}M_{27} - \Delta_{12}M_{27} \right]$$

$$= -\alpha \left[\left(\frac{x}{L} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \frac{x}{L} \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$
Integrals and use b.c. $\int_{1}^{1} t^{2} dx = dx \int_{1}^{1} \left[(x^{2} - \frac{1}{2}) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1b} - \Delta_{12}I_{2x}T_{2b} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] + \left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{1}{2} \right) \left[\Delta_{1}I_{1}T_{1a} - \Delta_{12}I_{2x}T_{2a} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} + \frac{x^{2}}{2L} \right] \left[\Delta_{1}I_{1} - \Delta_{12}I_{2x} - \Delta_{12}I_{2x} \right] + \left(\frac{x^{2}}{2L} - \frac{x^{2}}{2L} \right) \left[\Delta_{1}I_{1} - \Delta_{12}I_{2x} - \Delta_{12}I_{2x} \right] \right]$$

$$\frac{dv}{dx} = -\alpha \left[\frac{x^{2}}{2L} + \frac{x^{2}}{2L} + \frac{x^{2}}{2L} + \frac{x^{2}}{2L} + \frac{x^{2}}{2L} + \frac{x^{2}}{2L} \right] \left[\Delta_{1}I_{1} - \Delta_{1}I_{2x$$

From which we obtain:

$$\begin{aligned} & \nabla_{a} = \nabla (\lambda) \Big|_{\lambda=0} = -\lambda \lambda^{2} \Big[\frac{1}{6} \Big[\delta_{1} J_{1} J_{1a} - \delta_{12} J_{2} J_{3a} \Big] + \frac{1}{3} \Big[\delta_{1} J_{1} J_{1b} - \delta_{12} J_{2} J_{3b} \Big] \Big] II - (18) \\ & \partial_{2a} = \frac{d \nabla}{d x} \Big|_{x \ge 0} = +\lambda \lambda^{2} \Big[\frac{1}{3} \Big[\delta_{1} J_{1} J_{1a} - \delta_{12} J_{2} J_{3a} \Big] + \frac{1}{2} \Big[\delta_{1} J_{1} J_{1b} - \delta_{1b} J_{2} J_{3b} \Big] \Big] II - (19) \end{aligned}$$

(c) Displacements in Plane 2 (W(x), dw/dx)

From Rivello pp 157, 176 (Constant E, a and M*= thermal moments)

$$\frac{d^{2}w}{dx^{2}} = \frac{1}{E} \left[\frac{M_{Y7} I_{32} - M_{27} I_{122}}{I_{1} I_{32} - J_{12}} \right], \quad (M_{Y7}, M_{Z7} \text{ qiven in eqns (9), (14)} \quad II-(20)$$

Using (10):

$$\frac{d^2w}{dx^2} = \frac{1}{E} \left[D_2 M_{H} - D_{12} M_{27} \right]$$
II- (21)

Substitute (10) and (14) into (9) for d'V/dx equation:

$$\frac{d^{2}x}{dx^{2}} = \frac{1}{E} \left(\Delta_{1} M_{24} - \Delta_{12} M_{YT} \right)$$

$$= -\alpha \left\{ \left(\left(\frac{x}{2} \right) \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{2} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} \right] \right\}$$

$$= -\alpha \left\{ \left(\left(\frac{x}{2} \right) \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{2} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} \right] \right] \right\}$$

$$= -\alpha \left\{ \left(\left(\frac{x}{2} \right) \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{2} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \pi^{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} \frac{1}{2} + \frac{\pi}{2} \left[\Delta_{2} \frac{1}{2} \Delta_{12} - \Delta_{12} + \frac{\pi}{2} \Delta_{12} \right] \right] \right\}$$

Integrate and use b.c. of w. dw/dx = o at x = l

$$\frac{dw}{dx} = -d \left((x - \frac{\chi^2}{2k} - \frac{1}{2}) \left(O_x I_y T_{2a} - A_n I_q T_{ia} \right) + \left(\frac{\chi^2}{2k} - \frac{1}{2} \right) \left(A_x I_{2a} T_{2b} - A_n I_q T_{ib} \right) \right\} I - (xy)$$

and

$$W = - \varkappa \left[\left(\frac{\chi^2 - \chi^3}{3} - \frac{l\chi}{lk} + \frac{l^2}{6} \right) \left[\Delta_2 I_{2k} T_{2a} - \Delta_{12} I_{1} T_{1a} \right] + \left(\frac{\chi^3 - l\chi}{62} + \frac{l^2}{3} \right) \left[\Delta_2 I_{2k} T_{2k} - \Delta_{12} I_{1} T_{16} \right] \right]^{\frac{\gamma}{2}}$$

From which we obtain

$$| W_{\alpha} = W(x) |_{x=0} = -x |_{0}^{2} \left[\frac{1}{6} \left[\Delta_{2} I_{2} T_{2a} - \Delta_{12} I_{3} T_{1a} \right] + \frac{1}{3} \left[\Delta_{2} I_{2} T_{2b} - \Delta_{12} I_{1} T_{1b} \right] \right] | I(b)$$

$$| \Theta_{ya} = -\frac{dw}{dx} |_{x=0} = -x |_{0}^{2} \left[\frac{1}{3} \left[\Delta_{2} I_{2} T_{2a} - \Delta_{12} I_{3} T_{1a} \right] + \frac{1}{3} \left[\Delta_{2} I_{2} T_{2b} - \Delta_{12} I_{3} T_{1b} \right] \right] | I(b)$$

Using (8), (18), (19), (20) and (27) eqn (7) can be written in matrix form as

Ua	1	0	0	0	(7
Va	Ó	PA, III	3 4, 1	- 602 14	一点 かれてる
Wa	0	- 60 m I	- 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	& D2 I2	1 02 Ig.
Oxa = -dl	0	D	0	0	0
670	0	- 1 b12 I	-1 A12 I	120212	120212
Of a Ithornal	0	- 1 1 1	-14	2012 I2	まりってる 」

Note that, when In=0 equs (10) becomes

$$\Delta_1 = \frac{1}{I_1} \quad , \quad \Delta_2 = \frac{1}{I_2} \quad , \quad \Delta_{12} = 0$$

In which case (28) becomes:

ua]	1	0	0	Ö	6
Va	0	2/6	1/3	0	0
Wal = - XI	0	Ô	6	1/6	l-/3
Oxa	0	0	0	0	0
Oya	0	O	0	1/2	1/2
Oza) thermal (In=0)	10	-1/2	-1/2	0	6

which agrees with egn (41) in Section 8.2 (Bar elew) in HASTRAN Programmers manual

1-(30)

where matrices A and T' are

	1	0	0	0	0
	0	LD,I,	& D, I,	- & D 12] 2	一まかれて
18- = A	0	- & Dn I,	- 8 A 12 I	& 42I2	見りょり
	0	0	0	0	6
	0	-12012I	-1 A12I1	まるなしょ	24212
		-1 4,7			

$$T' = \begin{bmatrix} T - T_{ref} + \delta_m \\ T'_{1a} \\ T'_{1b} \\ T'_{2a} \\ T'_{2b} \end{bmatrix}$$

Substitute (30) into (2) to get the egn for thermal loads at end a:

also, from (1) and (30)

So

$$P_{T} = \begin{cases} P_{Ta} \\ P_{Ti} \end{cases} = \begin{bmatrix} K_{aa} \overline{A} \\ K_{ab} \overline{A} \end{bmatrix} + B_{T} + B_{T}$$

when

This is the form of Pie

Regris weed in MYSTRAN.

where Kaa is the partition

of elem K madrix for boar end a.

If there are no pinflags, this

Kaa is given in the upper

Left partition of equ I-(6)

See later section on how K

changes with pinflags

Pan II-72

Multiply Kaa A to get Bra. Note, all 2; terms not explicitly shown below are zero:

1 -8

Row1; Bran = - xlka

Du 4: Hull

Multiply Kab A = Kba A to get BTb, Note, all is terms not explicitly shown are zero;

Rowl: BT = dlka

Row4: Wall

 $\frac{R_{0} \omega 5}{8} : 8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \Delta_{11} + \Omega_{2} \frac{\Omega}{12} \Delta_{12} I_{1} - \frac{1}{2} \delta_{12} I_{1} \hat{k}_{4} + \beta \frac{\Omega}{12} \Delta_{1} I_{1} \right] = \alpha \lambda \left[-R_{2} \delta_{12} \frac{I_{1} \Omega^{2}}{I_{2}} + \frac{1}{2} \delta_{12} I_{1} \hat{k}_{4} \right]$ $8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \delta_{1} I_{1} + R_{2} \frac{\Omega^{2}}{6} \delta_{12} I_{1} - \frac{1}{2} \Delta_{12} I_{1} \hat{k}_{4} + \beta \frac{\Omega^{2}}{12} \Delta_{11} I_{1} \right] = \alpha \lambda \left[-(R_{2} \delta_{12} - \frac{B\Delta}{2} \delta_{12}) \frac{I_{1} \Omega^{2}}{6} + \frac{1}{2} \delta_{12} I_{1} \hat{k}_{4} \right]$ $8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \delta_{11} I_{1} + R_{2} \frac{\Omega^{2}}{6} \delta_{2} I_{2} I_{1} + \frac{1}{2} \delta_{2} I_{2} \hat{k}_{4} - \beta \frac{\Omega}{12} \delta_{12} I_{2} \right] = \alpha \lambda \left[-R_{2} \delta_{12} - \frac{B\Delta}{2} \delta_{12} I_{2} \hat{k}_{4} \right]$ $8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \delta_{11} I_{1} + R_{2} \frac{\Omega^{2}}{6} \delta_{2} I_{2} I_{2} + \frac{1}{2} \delta_{2} I_{2} \hat{k}_{4} - \beta \frac{\Omega}{12} \delta_{12} I_{2} \right] = \alpha \lambda \left[-R_{2} \delta_{12} - \frac{1}{2} \delta_{2} I_{2} I_{2} \hat{k}_{4} \right]$ $8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \delta_{11} I_{1} + R_{2} \frac{\Omega^{2}}{6} \delta_{2} I_{2} I_{2} + \frac{1}{2} \delta_{2} I_{2} \hat{k}_{4} - \beta \frac{\Omega}{12} \delta_{12} I_{2} I_{2} - \frac{1}{2} \delta_{2} I_{2} \hat{k}_{4} \right]$ $8_{10} = -\alpha \lambda \left[-\beta \frac{\Omega}{12} \delta_{11} I_{1} + R_{2} \frac{\Omega^{2}}{6} \delta_{2} I_{2} I_{2}$

PT = BTT

T-10

The values for R. Mr, B. Ei from section I can be substituted into the Bris (in rows 2,1,5,6 and 8,9,4,17):

$$\frac{\omega_{2}!}{\delta_{12}} = \frac{1}{2} \left(R_{1} \Delta_{1} - \beta_{1} \Delta_{12} \right) \frac{1}{12} = \frac{1}{2} \left[\frac{1}{2} \left(1 + \delta_{1}^{2} \right)^{-1} \Delta_{1} - \frac{1}{2} \Delta_{12} \right] \frac{1}{12}$$

$$= \frac{1}{2} \left[\left(1 + \delta_{1}^{2} \right)^{-1} I_{1} \Delta_{1} - \frac{1}{2} \Delta_{12} \right]$$

$$= \frac{1}{2} \left[\left(1 + \delta_{1}^{2} \right)^{-1} I_{1} \Delta_{1} - \frac{1}{2} \Delta_{12} \right]$$

 $B_{\tau_{\alpha_{23}}} = -\alpha l \left(\ell_{1} L_{1} - \ell_{1} L_{1} \right)^{T_{1}} l = -\alpha E I_{1} \left[(1+1_{1})^{-1} I_{1} L_{1} - J_{12} L_{12} \right]$

By = - 22 (R, 1/2- p D2) I2 = - 28 [12EI, (1+1,) D12 - 12EI, D2] IN

= dEI2[Inda - (147,) I, D,2]

but I12 = I, 012

= KEI, I, D, 2 [1- (1+8,)]

BIE- - AL (R, D12- por) = - & EI, I2012 [1- (1+1)-1]

Bow 3: Braz - 21 (R2 Sn-B D,] II = - 28 [MEI2 (1+12) "D12 - MEI12 D,] I.d.

 $= \frac{dEI_{1}}{d} \left[I_{12} \Delta_{1} - (1+V_{2})^{-1} I_{2} \Delta_{12} \right] \quad \text{but} \quad I_{12} \Delta_{1} = I_{2} \Delta_{12}$ $= \frac{dEI_{1}}{d} \left[I_{12} \Delta_{12} \left[I_{12} \left(1+V_{2} \right)^{-1} \right] \right]$

Bra33 = 22 (R2012-BD) I, l = -4EI, I2012 [1- (1+1/2)]

Brage = al (R202-10012) 121 = ad [BEI3 (1+1/2) 02 - BEI2012 12/12

= dEI2[(1+1/2)"]202- Inon]

BTa35 = - 22 (Rx Dz- fidiz) [2] = - 2 [(1+ /2) " Iz Dz - Iiz Diz]

$$\begin{aligned} & R_{105} = \alpha l \left\{ (R_{2} \Delta_{1} + | \beta \Delta_{1})^{\frac{1}{2}} - \frac{1}{2} \delta_{2} I_{2} (R_{2} I_{1}^{2} + E I_{2}) \right\} = \alpha l \left\{ R_{2} \Delta_{1} I_{2} I_{1}^{2} (I_{1}^{2} - \frac{1}{2})^{\frac{1}{2}} I_{2}^{2} A_{1}^{2} - \frac{1}{2} \delta_{2} I_{1}^{2} A_{2}^{2} \right\} \\ & = \alpha l \left\{ \frac{1}{2} \left[(I_{1} + Y_{1})^{2} + I_{1}^{2} I_{1} \Delta_{1} + 2 I_{1}^{2} \Delta_{1} A_{1}^{2} \right] = -\frac{1}{2} \left[(I_{1} + I_{2})^{2} I_{1}^{2} I_{2}^{2} - 2 I_{1}^{2} \Delta_{1}^{2} \right] \\ & = \alpha l \left[R_{1} \Delta_{2} I_{2}^{2} I_{1}^{2} - \frac{1}{2} \Delta_{1} I_{1} \left(\frac{1}{2} I_{1}^{2} + E I_{2}^{2} \right) \right] = 2 l \left[R_{2} I_{1}^{2} I_{1}^{2} I_{1}^{2} - \frac{1}{2} \delta_{2} I_{1}^{2} \right] \\ & = \alpha l \left[R_{1} A_{2} I_{2}^{2} I_{1}^{2} - \frac{1}{2} \Delta_{1} I_{1} \left(\frac{1}{2} I_{1}^{2} + E I_{2}^{2} \right) \right] = 2 l \left[R_{2} I_{1}^{2} I_{1}^{2} I_{1}^{2} - \frac{1}{2} \delta_{2} I_{1}^{2} \right] \\ & = \alpha l \left[R_{1} A_{2} I_{1}^{2} I_{1}^{2} - \frac{1}{2} A_{2} I_{1}^{2} I_{1}^{2} \left(\frac{1}{2} I_{1}^{2} - \frac{1}{2} \delta_{2} I_{2}^{2} \right) \right] \\ & = -\frac{1}{2} E I_{2}^{2} \Delta_{2} \left[I_{1}^{2} - (I_{1}^{2} I_{1}^{2})^{2} - \frac{1}{2} I_{2}^{2} I_{1}^{2} I_{1}^{2} \right] \\ & = -\frac{1}{2} E I_{2}^{2} \Delta_{2} \left[I_{1}^{2} - (I_{1}^{2} I_{1}^{2})^{2} - \frac{1}{2} I_{2}^{2} I_{1}^{2} I_{1}^{2} I_{2}^{2} I_{2}^{2} \right] \end{aligned}$$

$$B_{T_{b_{23}}} = -\alpha l \left(R_{1} \Delta_{1} - h \Delta_{12} \right) \frac{I_{1}}{ir} = -B_{T_{a_{24}}} = -\frac{\alpha \mathcal{E}I_{1}}{l} \left[\left(1 + M_{1} \right)^{2} I_{1} \Delta_{1} - I_{12} \Delta_{12} \right]$$

$$B_{T_{b_{24}}} = \alpha l \left(R_{1} \Delta_{1} - h \Delta_{12} \right) \frac{I_{1} l}{lr} = -B_{T_{a_{24}}} = -\frac{\alpha \mathcal{E}I_{1}}{l} \left[\left(1 + M_{1} \right)^{-1} I_{1} \Delta_{1} - I_{12} \Delta_{12} \right]$$

$$B_{T_{b_{24}}} = \alpha l \left(R_{1} \Delta_{12} - h \Delta_{12} \right) \frac{I_{2} l}{lr} = -B_{T_{a_{24}}} = -\frac{\alpha \mathcal{E}I_{1} I_{2} \Delta_{12}}{l} \left[1 - \left(1 + M_{1} \right)^{-1} \right]$$

$$B_{T_{b_{24}}} = -\alpha l \left(R_{1} \Delta_{12} - h \Delta_{12} \right) \frac{I_{2} l}{lr} = -B_{T_{a_{24}}} = -\alpha \mathcal{E}I_{1} I_{2} \Delta_{12} \left[1 - \left(1 + M_{1} \right)^{-1} \right]$$

Row9 BTb3i

$$B_{T_{632}} = \& \& (R_{3} \delta_{12} - \beta_{01}) \frac{I_{1} \ell^{2}}{12} = -B_{T_{632}} = -\frac{\& E I_{1} J_{2} \delta_{12}}{\& I_{1} - (1+V_{2})^{-1}}$$

$$B_{T_{633}} = -\& \& (R_{2} \delta_{12} - \beta_{01}) \frac{I_{1} \ell}{12} = -B_{T_{633}} = \frac{\& E I_{1} J_{2} \delta_{12}}{\& I_{1} - (1+V_{2})^{-1}}$$

$$B_{T_{634}} = -\& \& (R_{2} \delta_{2} - \beta_{012}) \frac{I_{2} \ell}{12} = -B_{T_{634}} = -\frac{\& E I_{2}}{\& I_{1} - (1+V_{2})^{-1}} \frac{I_{2} \delta_{2} - J_{12} \delta_{12}}{\& I_{1} - (1+V_{2})^{-1}}$$

$$B_{T_{635}} = \& \& (R_{2} \delta_{2} - \beta_{012}) \frac{I_{2} \ell}{12} = -B_{T_{635}} = -\frac{\& E I_{2}}{\& I_{1} - (1+V_{2})^{-1}} \frac{I_{2} \delta_{2} - J_{12} \delta_{12}}{\& I_{1} - (1+V_{2})^{-1}}$$

Row 11 Btbs;

$$B_{T_{0}S_{2}} = \alpha \left[-R_{2}\Delta_{12} \frac{1}{12} + \Delta_{12} \frac{1}{12} (R_{2}l^{2} - EI_{2}) \right] = \alpha \left[-R_{2}\Delta_{12} I_{1} I_{1} \left(-\frac{1}{12} + \frac{1}{8} \right) - \frac{1}{21} E \Delta_{12} I_{1} I_{2} \right]$$

$$= \alpha \left[\frac{R_{2}EI_{2}(1+K_{2})}{2} \Delta_{12} I_{1} I_{1} \left(\frac{1}{24} \right) - \frac{1}{21} E \Delta_{12} I_{1} I_{2} \right]$$

$$= -\frac{R_{2}EI_{1}I_{2}\Delta_{12}}{2} \left[1 - (1+K_{2})^{-1} \right]$$

$$B_{T_{0}} = \alpha \left\{ \left[-(R_{2}A_{12} - \frac{b_{A_{1}}}{2})^{\frac{1}{2}} \right]^{\frac{1}{2}} + \frac{1}{2}A_{12}I_{1} \left(\frac{R_{2}R^{2}}{4} - \frac{EI_{2}}{R^{2}} \right) \right\} = \alpha \left\{ \left[\frac{2}{2}A_{12}I_{1}R^{2} \left(-\frac{1}{6} + \frac{1}{6} \right) + \frac{1}{6}A_{12}I_{1}^{2} \right] - \frac{E}{2}A_{12}I_{1}^{2}I_{2}^{2} \right\}$$

$$= \alpha \left\{ \left[\frac{2}{2}EI_{2} \left(1 + V_{2} \right)^{-1}A_{12}I_{1}R^{2} \left(-\frac{1}{2} + \frac{1}{4} \right) + \frac{WEI_{12}}{WQ^{2}}A_{12}I_{1}^{2}I_{2}^{2} \right\}$$

$$= \alpha \left\{ \left[-\frac{1}{2} \left(1 + V_{2} \right)^{-1}I_{1}I_{2}A_{12} + I_{1}I_{12}A_{1} - \frac{1}{2}A_{12}I_{1}I_{2}^{2} \right] \right\}$$

$$= \alpha \left\{ I_{1}I_{2}A_{12} \left[-\frac{1}{2} \left(1 + V_{2} \right)^{-1} + I_{1} - \frac{1}{2} \right] \right\}$$

$$= \alpha \left\{ I_{1}I_{2}A_{12} \left[-\frac{1}{2} \left(1 + V_{2} \right)^{-1} + I_{1} - \frac{1}{2} \right]$$

$$= \alpha \left\{ I_{1}I_{2}A_{12} \left[-\frac{1}{2} \left(1 + V_{2} \right)^{-1} + I_{1} - \frac{1}{2} \right] \right\}$$

$$\begin{split} B_{T_{k,gq}} &= \kappa \left\{ \left[\frac{R_{k} N_{k}}{12} - \frac{\delta_{k} J_{k}}{2} \left(\frac{R_{k} N_{k}}{4} - \frac{E J_{k}}{2} \right) \right] = \kappa \left\{ \left[\frac{1}{2} \delta_{k} J_{k} J_{k} \left(\frac{1}{12} - \frac{1}{6} \right) + \frac{E J_{k} J_{k}}{2} J_{k} \right] \right. \\ &= \kappa \left\{ \left[\frac{1}{2} J_{k}^{2} \left(\frac{1}{12} J_{k} J_{k} \right) + \frac{E J_{k} J_{k}}{2} J_{k} \right] \right. \\ &= \kappa \left\{ \left[\frac{1}{2} J_{k}^{2} \left(\frac{1}{12} J_{k} J_{k} \right) + \frac{E J_{k} J_{k}}{2} J_{k} \right] \right. \\ &= \kappa \left\{ \left[\frac{1}{2} J_{k}^{2} J_{k} J_{k}$$

=- REJ, I, Dn [1 - (1+1)]

					24	1					
0	- I, I, A, L 1- (1+8,)-1]	-In[(1+84) Ind India]	0	[-+In-1-1] 1- [1-(1+12)]	-+ I, I, Dalab[1- (1+1,)-1]	0	(2 - 18, 25)	(=-Br35)	0	1 2 1 2 [[+(1+4]-]] 1,0x-3 X 1,0 1,	
0	I,T,D,1 [1-(1+4,1"]	In[(1+12,1-12,0,-13,012)]	0	-1 Ira [[+(1+12)"] Iran-1Iran -1 Iran [1- (1+12)]		0	(= - Bray)	(=-Br34)	0	- I 202 [1- (1+42)-1]	LITA 6 12 [1- (1+11,)-1]
0	-I,[(1+8,]-1, A, -I, A, 12,]	- [T 7 7 1] - [1-(1+1/2)] -1	0	[1[201] -1] Raidal, I.	- T'-(1+4)-1]	Q	(Br 23)	(=-By33)	0	- 1, 1, 20 p. 1 [1-(1+1/2)-1]	-11,0[[1+(1+4;1"]],6,-11,0h)
0	I,[(1+4,1,1,0,-1,0,1,1)],I	I, I, D, [1-(1+12)-1]	0		1 12 [[+(1+0;1]] 1 a - 2 [1-0,2]	0	(= -Br2h)	(= - Brgz)	0	- II, Lydinl[1-(1+17,1"]	- 11, 0, 2[1-(1+11,)-1]
14-	0	D	0	0	a a a a a a a a a a a a a a a a a a a	A	0	0	0	0	0

Substitute the Brazis Brazis on previous spages into egn I-ze to get

This is the final form of Explicit Br when there are no pintlogs and is used only in checkent of Pr.

The form used in Mystran is equ. If-72 since Kaa, if there are pintlogs, is not what worked to get equ I-34 above

		- in				. 4	1	17	Ly	
		1							-)	
		(-) ²	The state of the s				1-1			
	<u> </u>				-	H				<u>الم</u>
	Ħ			I,0	1, -	H				
1 A 2					AA					

and want (I, D, - I, D, ; ;)

B1= 8/E

As a temp. distribution, T, we will assume T varies linearly along the length

$$T(x,y,\bar{z}) = \left(1 - \frac{\chi}{\lambda}\right) T_{\alpha}(y,\bar{z}) + \frac{\chi}{\lambda} T_{\alpha}(y,\bar{z}) \tag{4}$$

where

Ta(y, z) = variation in temp, at end a in y, z directions

histe Taly, 2) and To (4, 2) as a constant plus linear variations plus higher order terms

Substitute (5) into (4)

where

$$T(x,y,z) = \left[(1-\frac{x}{2})T_{0} + \frac{x}{2}T_{1} \right] + \left(1-\frac{x}{2} \right) \left(T_{1} + \frac{y}{2} + T_{1} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + T_{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{y}{2} + \frac{z}{2} \right) + \frac{x}{2} \left(T_{1} + \frac{z}{2} \right) + \frac$$

(8)

substitute (1) into (3)

M, = - Ex { [(1-2) Ta+2 Ti]-Treefydd - Ex ((1-2)(T, yay + T, 2) + x (T, yby + T, zb)} ydd
- Ex [(1-x) & Ta(y,z) + x & Tb(y,z) ydd
- Ex [(1-x) & Ta(y,z) + x & Tb(y,z) ydd

M27 = -EX [[(1-x)Ta+xTb]-Tree] = dA - EX [(1-x)(Tyay+Treat)+ 2(Tryby+Trebz)] = dA
- Ex [(1-x)(Ta+xTb]-Tree] = dA - Ex [(1-x)(Tyay+Treat)+ 2(Tryby+Trebz)] = dA
- Ex [(1-x)(Ta+xTb]-Tree] = dA - Ex [(1-x)(Tyay+Treat)+ 2(Tryby+Trebz)] = dA

Since the axes are centroidal Sydd= Jah = 0. Heo Joh = A 50:

 $F_{XY} = AE + \left\{ \left[(1 - \frac{x}{\lambda}) T_{\alpha} + \frac{x}{2} T_{\alpha} \right] - T_{ref} \right\} + E_{X} \int_{A} \left\{ (1 - \frac{x}{\lambda}) \delta T_{\alpha}(y, z) + \frac{x}{\lambda} \delta T_{\alpha}(y, z) dA \right\}$ $M_{1T} = -E_{X} \left[(1 - \frac{x}{\lambda}) T_{y\alpha} \right] y^{2} dA + T_{y2} \int_{A} y^{2$

 $M_{27} = -Ed_{2}(1-\frac{x}{2})[T, y_{a}] y_{2}dA + T, z_{a}]z^{2}dA + \frac{x}{2}[T, y_{6}]y_{2}dA + T, z_{6}]z^{2}dA$ $+(1-\frac{x}{2})\int_{A}^{2} \delta T_{a}(y_{1}z)dA + \frac{x}{2}\int_{A}^{2} \delta T_{b}(y_{1}z)dA$

(10)

where

$$\int_{\Lambda} g^2 dA = I, \qquad (I_1 \otimes I_{22})$$

$$\int_{\Lambda} g^2 dA = I_{12} \qquad (I_2 \otimes I_{22})$$

$$\int_{\Lambda} g^2 dA = I_{12} \qquad (G)$$

define

$$\delta T = (c - \frac{\chi}{2}) \delta T_{\alpha}(y, z) + \frac{\chi}{2} \delta T_{\alpha}(y, z) - h_{\alpha}h_{\alpha} \text{ or Ler temp. terms}$$
(higher than linear)

Substitute (9), (10) mto (8)

$$F_{XT} = AEL\left[\left(1-\frac{X}{2}\right)\overline{T}_{\alpha} + \frac{X}{2}\overline{T}_{b}\right] - T_{ref} + EL\left[8TdA\right]$$
(11)

$$M_{17} = -EL \left((1-\frac{x}{L}) (I, T_{ya} + I_{12}T_{za}) + \frac{x}{L} (I, T_{y1} + I_{12}T_{2b}) \right) - EL \left[y \delta T dA (12) \right]$$

Equation (1) can be written as

(15)

Evaluate the parts of (16)

(17)

and

$$\begin{split} \frac{M_{17}I_{2}-M_{27}I_{17}}{I_{1}I_{2}-I_{17}} &= -\frac{\varepsilon_{d}}{I_{1}I_{2}-I_{17}} \int (1-\frac{\chi}{\lambda}) \Big[(I_{1}T_{3}_{44}+I_{17}T_{320})I_{2} - (I_{12}T_{3}y_{4}+I_{2}T_{320})I_{17} \Big] \\ &+ \frac{\chi}{\lambda} \Big[(I_{1}T_{3}y_{6}+I_{17}T_{320})I_{2} - (I_{12}T_{3}y_{6}+I_{2}T_{3}^{2})I_{17} \Big] \\ &+ I_{2} \int y \delta T dA - I_{12} \int \varepsilon \delta T dA \Big\} \\ &= -\frac{\varepsilon_{d}}{I_{1}I_{2}-I_{17}} \Big[(1-\frac{\chi}{\lambda}) \Big[I_{1}I_{2}T_{1}y_{6}+I_{2}I_{2}T_{320} - I_{17}^{\gamma}T_{1}y_{6} - I_{2}I_{2}T_{3}T_{320} \Big] \\ &+ \frac{\chi}{\lambda} \Big[I_{1}I_{2}T_{3}y_{6}+I_{2}I_{17}T_{320} - I_{17}^{\gamma}T_{1}y_{6} - I_{2}I_{2}T_{1}T_{3}T_{3} \Big] \\ &+ I_{2} \int y \delta T dA - I_{12} \int \varepsilon \delta T dA \Big\} \\ &+ I_{3} \int y \delta T dA - I_{17} \int \varepsilon \delta T dA \Big\} \\ &+ I_{4} \int y \delta T dA - I_{17} \int \varepsilon \delta T dA \Big\} \\ &+ I_{5} \int y \delta T dA - I_{17} \int \varepsilon \delta$$

and

$$\frac{M_{27}I - M_{17}I_{12}}{I_{1}I_{2}I_{12}} = -\frac{E_{4}}{I_{1}I_{2}-I_{12}} \left(1 - \frac{\chi}{2}\right) \left[\left(I_{12}I_{3y_{0}} + I_{2}I_{3z_{0}}\right)I_{1} - \left(I_{2}I_{3y_{0}} + I_{11}I_{3z_{0}}\right)I_{12}\right] \\
+ \frac{\chi}{2} \left[\left(I_{12}I_{3y_{0}} + I_{2}I_{3z_{0}}\right)I_{1} - \left(I_{2}I_{3y_{0}} + I_{11}I_{3z_{0}}\right)I_{12}\right] \\
+ I_{1} \int_{2} \Delta I dA - I_{12} \int_{4} \Delta I dA - I_{12} \int_$$

Substitute (9) and (17)-(19) into (16)

$$\Delta T_{x} = E \alpha \left\{ \left[(1 - \frac{x}{2}) + \frac{x}{2} + \frac{x}{2} + \frac{1}{2} + \frac{x}{2} + \frac{x}{2}$$

$$\Delta U_{X} = \frac{E_{X}}{A} \left\{ 8 + \frac{E_{X}}{I_{1}I_{2}I_{1}} \left[I_{2} \int_{Y} \delta T dA - I_{2} \int_{Z} \delta T dA \right] Y + \left[I_{3} \int_{Z} \delta T dA - I_{22} \int_{Y} \delta T dA \right] \right\}$$

$$- E_{X} \delta T$$

$$- E_{X} \delta T$$

$$(20)$$

Dox is not the thermal stress. It is the portion of the total thornal stress due to temperature that is higher order than linear.

The integral terms will be ignored in (19) and we will approximate:

DEX = - EXST

(2)

(22)

hus in summary

The output from MYSTRAN is for stresses at ends a (x=0) and b (x=1) denoted as Ta and Ti;

$$\int_{a} = \int_{x} (\chi_{0}) = \frac{F_{x}}{A} - \frac{M_{10}I_{2} - M_{20}I_{17}}{I_{1}I_{2} - I_{17}} y - \frac{M_{20}I_{1} - M_{10}I_{17}}{I_{1}I_{2} - I_{17}} - E_{x} \delta I_{0}$$

$$\int_{b} = \int_{x} (\chi_{0}) = \frac{F_{x}}{A} - \frac{M_{10}I_{2} - M_{20}I_{17}}{I_{1}I_{2} - I_{17}} y - \frac{M_{20}I_{1} - M_{10}I_{17}}{I_{1}I_{2} - I_{17}} - E_{x} \delta I_{0}$$
(23)

We need to relate Fx, Mia, Mza, Mib, Mz, to element notal forces. Comparing figure below

with one on page II-1:

plane 15
$$V_1 = \overline{P}_{b2}$$

plane 26 $V_2 = \overline{P}_{b6}$

P= P- Pre

Substitute (24) into (23) and use

$$\Delta_1 = \frac{I_2}{I_1 I_2 - I_{12}^{2}}, \quad \Delta_2 = \frac{I_1}{I_1 I_2 - I_{12}^{2}}, \quad \Delta_{12} = \frac{I_{12}}{I_1 I_2 - I_{12}^{2}}$$
(20)

to get:

$$\begin{aligned}
\overline{C}_{a} &= -\frac{P_{a_{1}}}{A} - \left[-\Delta_{1}P_{a_{6}} - \Delta_{12}P_{a_{5}}\right]y - \left[\Delta_{2}P_{a_{5}} + \Delta_{12}P_{a_{6}}\right] - EddT_{a}(y,z) \\
\overline{C}_{b} &= -\frac{P_{a_{1}}}{A} - \left[\Delta_{1}\left(-P_{a_{6}} + P_{a_{7}}L\right) - \Delta_{12}\left(P_{a_{5}} + P_{a_{7}}L\right)\right]y \\
&= \left[\Delta_{2}\left(P_{a_{5}} + P_{a_{3}}L\right) - \Delta_{12}\left(-P_{a_{6}} + P_{a_{7}}L\right)\right]z - EddT_{b}(y,z)
\end{aligned}$$

$$\begin{aligned}
\overline{C}_{b} &= -\frac{P_{a_{1}}}{A} - \left[\Delta_{1}\left(-P_{a_{6}} + P_{a_{7}}L\right) - \Delta_{12}\left(P_{a_{5}} + P_{a_{7}}L\right)\right]y \\
&= \left[\Delta_{2}\left(P_{a_{5}} + P_{a_{3}}L\right) - \Delta_{12}\left(-P_{a_{6}} + P_{a_{7}}L\right)\right]z - EddT_{b}(y,z)
\end{aligned}$$

define

$$\begin{aligned}
\mathcal{L}_{1a} &= -\Delta_{1} \tilde{P}_{a} - \Delta_{n} \tilde{P}_{a} &= \frac{\tilde{M}_{1a} I_{2} - \tilde{M}_{2a} I_{1r}}{I_{1} I_{2} - I_{1r}^{r}} \\
\tilde{k}_{1a} &= \Delta_{1} \tilde{P}_{a} + \Delta_{n} \tilde{P}_{a} &= \frac{\tilde{M}_{2a} I_{2} - \tilde{M}_{1a} I_{1r}}{I_{1} I_{2} - I_{1r}^{r}} \\
\tilde{k}_{1b} &= \Delta_{1} (\tilde{P}_{a} + \tilde{P}_{a} I) - \Delta_{n} (\tilde{P}_{a} + \tilde{P}_{a} I) &= \frac{\tilde{M}_{1a} I_{2} - \tilde{M}_{1b} I_{1r}}{I_{1} I_{2} - I_{1r}^{r}} \\
\tilde{k}_{2b} &= \Delta_{2} (\tilde{P}_{a} + \tilde{P}_{a} I) - \Delta_{1c} (\tilde{P}_{a} + \tilde{P}_{a} I) &= \frac{\tilde{M}_{2b} I_{2} - \tilde{M}_{1b} I_{1r}}{I_{1} I_{2} - I_{1r}^{r}}
\end{aligned}$$

Thom

In addition we can also calculate a torrional stress, T:

$$\gamma = \frac{C}{J}M_{T} = -\frac{C}{J}P_{\alpha +} \tag{14}$$

Egns (27) and (29) can be put into matrix form.

Taxial	-1/A	0	o	0	0	0	[Pai
kla	0	6	0	0	- A 12	-Δ,	Paz
lera (0	0	0	۰	٨	Δ12	P _{a3}
Pe'lls	0	۵,2	-012)	0	-012	- 72	Pay [
hi _{2b}	0	-And	Dal	- 0	42	Δ12:	Par
[7]	0	0	9	-c/3	0	0	t Fas

$$B_{2} = \begin{bmatrix} 0 & | \Delta_{1} 2 & | -\Delta_{12} 2 & | 0 & | -\Delta_{12} & | -\Delta_{1} \\ 0 & | -\Delta_{12} 2 & | \Delta_{2} 2 & | 0 & | \Delta_{2} & | \Delta_{12} \\ 0 & 0 & 0 & | -C/J & 0 & 0 \end{bmatrix}$$

(30)

(31)

(32)

(33)

Then

$$C_1 = \begin{cases} C_{1\alpha} \\ C_{1\alpha} \\ C_{2\alpha} \end{cases} = C_{1\alpha}$$

$$C_2 = \begin{cases} C_{1\alpha} \\ C_{1\alpha} \\ C_{2\alpha} \\ C_{2\alpha} \end{cases} = C_{1\alpha}$$

$$C_3 + C_{1\alpha}$$

$$C_4 = C_{1\alpha}$$

$$C_5 = C_{1\alpha}$$

$$C_7 = C_{1\alpha}$$

The element force displ relationship, partitioned into a, & are:

$$\begin{bmatrix} K_{aa} & K_{ab} \end{bmatrix} U_a \end{bmatrix} = \begin{bmatrix} P_a \\ P_b \end{bmatrix} = \begin{bmatrix} \overline{P}_a \\ P_{7a} \end{bmatrix} + \begin{bmatrix} P_{7a} \\ P_{7b} \end{bmatrix}$$

$$\begin{bmatrix} K_{ab} & K_{bb} \end{bmatrix} U_b \begin{bmatrix} V_b \\ V_{7b} \end{bmatrix}$$

where PTa, PTb are the equivalent thornul bads from Section II. Thus

(36)

(31)

Substitute this into (34):

but from Section I :

Thus, using (38) we can write (37) as

(37)

(38)

$ \mathcal{T}_{1} = S_{e_{1}} \mathcal{U} - S_{Te_{2}} = \begin{cases} \mathcal{T}_{a \times val} \\ \mathcal{E}_{1a} \end{cases} $ $ \begin{cases} \mathbf{k}'_{1a} = \frac{M_{1a}\mathbf{I}_{2} - M_{2a}\mathbf{I}_{2a}}{\mathbf{I}_{1}\mathbf{I}_{2} - \mathbf{I}_{1a}\mathbf{I}_{2a}} \end{cases} $ $ \begin{cases} \mathbf{k}'_{1a} = \frac{M_{1a}\mathbf{I}_{1} - M_{1a}\mathbf{I}_{1a}}{\mathbf{I}_{1}\mathbf{I}_{2} - \mathbf{I}_{1a}\mathbf{I}_{2a}} \end{cases} $	(33)
12 = Ser U - Ster = [foith] [foith] [Mills-Misher] [1, In - I, 2] [foith] [fo	(40)
where $S_{e_1} = [B, K_{aa} \mid B, K_{ab}]$ I, I, I, Jy JA	(41)
Sez = [BzKan; BzKan] Is JzidA	(42)
STE, = Br, T', BT, = B, Kaa A	(F4)
Stor BIT' By By Kaa A	(44)
with A defined in Section I and Unil	(41)
Using (39) we can calc. actual stresses at y, 2 as (eqn(28)):	
enda: Ta = Taxial - le'ay - le'za = - ExaTa(y, z)	(46)
endb: Tb = Taxid - le'16 y - lezot - Ed STh (4,2)	(47)

TV Effect of Offsets on K, Py (No proflags, global coord sys = local coord sys)

When the global coard sys is same as local, the element global Stiffness matrix

out the thermal looks are the same as those developed in Sections I and I.

Panlition the K, Pt (prior to offeels):

The effect of offsets are

Kna offert Ea Kna Ea, Kab offert = Ea Kab Eb, Kab offert = ETK ble Eb

Pra = Ea Pra , Prooffert = Ea Pra

where

I	1	0	0	0	az	-ay			-1	0	Ø	0	62	-67
	ð	1	0	-02	0	Q×			0	1	0	-62	0	bx
	0	0	1	ay	- Q ₁	0		4	U	0	1	by	-px	0
Ea=	0	0	0	1	0	0	J	王」二	0	0	0	1	0	0
	G.	0	0	D	ſ	D			6	0	0	0	(0
	U	0	ò	0	0	1			0	0	0	0	0	1

where a, a, a, az are the offerts of the bar from the grid point at end a and br, by, bz

		(T-Tree) + dm				24	2			- Leet + 600	- N	9	t ta	126
	1	0	-188/2	-Par/n	0	(元)	0		000					_
foct		0	02/2	24	0	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	087		0	-128/12	-Ras/12	(-R204+Baz) /12	Ry Caxt 2 12 - EIT	-par/2
Matrix Bre, but one offset	a	0	-R.2/12	-81/12	0	0	(是, 是) -(24, 年)	-5	9	BMz	Rayla	(Raay - 602) 8/m	- Rylaxt 3 12 - Elz	B(ax+2) 2
Mad		0	8,8/12	1/20)	0	- 18272	म्यार केर	matrix Brafter effect		7				
	0	1 8 P	0	0	0	0	٥	matri	0	-R.1/12	-(82/n	(R, az - Bay) / 2	Bax 8/12	-R, (0,+ 2) 1 + ET,
		0	0	0	0	0						1/2/12	=1/2	
		0	9	0	0	0	0		0	R, 2/12	B2/12	(-Riaz+Bay) Mr.	- plax+2/2	R. Co. + 2 1 4
		0	0		S,	3	0				-			
	6	>	-	0	93	0	o x		الم	D	0	O	- Le 0 22	0
	-		0	0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	- 92		1		at the			
				7	78									

	(T-Tree) + Sm	P - 1-1	9-	1	138		(T - lireg) + 0m	a -	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0	B11/12	Rallin	0	(R21" + E12)	- BLT/12		Ė		यद व्यस
0	-81/12	-Ral/12	0	- (Rall - ETz) (Rall + ETz)	0	0	Mila	Rasher	(Rzby-6bz) & -Rz(bz-2) & +Etz p(bx-2) &
0	R.L.	21/19	0	11/26	一年十年	0	-B1/n	-Rahla	(-R26+1862 / R. R. Ch 2) 2 + ET2 -862 R.
0	-R18/17	-BX/12	0	٥	(大学)		1	3-	
द्ध	0	0	0	0	0	0	R.1/12	(BL/12	(-R, b2+Bby)2 -p(b2-2)2-EI, R, (b2-2)2-EI
0	0	0	0	0					五五
0	0	0	0	-	0	0	-Ril/12	-(32/12	(Ribz-pby/12)
60	0	0	-	0	0		12	6	(R.162)
0	0		2	9.	0				
0	-	0	رم	0	4	8	0	0	kaby kaby
-	0	0	0	-611	3				
		9	200					20	

-04	ax x	0	0	٥	-	- Rady	R, (ax+2/2)	B(ax1 2/2)	0	東中 Rach 一個一個	CROTHOL - ALOUTH & + PO D.
0	0	7	0	-	0	25	R			- 6 (a,	1 d
0	-07	ay	-	0	0	20 g	- (4+x) d-	-18, (ax+ 94)	0	24	3/1/4
0	0	-	0	0	0	حود				+4	100
0	-	0	0	0	0		-Raz+Bay	Paly- Paz		180g	An Id
-	0	3	0	0	0	Đ	04	Pagy	حق	(-Ragy+Bag) &	+ 0 0-
0	R. P.	36	0	13.8	<~2°	0		22			24
0	-18 4. R.4.	-R. 2	0	Par - 18 27	2/10	3	8	(2	0	-P. R.	3
0	0	0	2	0	0					100	70
0	2	Ry	0	- R. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	19/2	0	X	8	0	1	U
0	8	B	0	34	2	8					
s s	0	0	0	0	9	ಈ	0	0	0	0	0
0	0	5	0	0	-	0	0	0	0	0	_
0	0	0	0	-	٥	0	D	0	٥	-	0
5	0	0	-	0	0	0	0	0	-	0	6
0	0	-	ć	0,	0	0	0	_	3	o x	0
0	-	0	01	0	×	0	-	0	0-	0	0
_	٥	2	0	0	-0,	-	0	0	0	5	3

11

-toay	R, (ax+22)	p (axt 9/2)	(-1902+ Baylax+2)	- ka a, a, 102, 12, 1	Pe, + lea ay + P. (ax + 2)
J. C. O. C.	-B (ax+2)	-R.(ax+2)	(-Ragy+19a) (ax+2) (-Raz+bay) (ax+2)		(-Raz+hay)(ax+2) - Rayaz - Renta ay + 2] + Raz (ax+2)
0	-Riazthay	Roay-bas	Re+R, az+Rzay	(- Ray + hay lay + 1 } tr + kade + 1) + Ray (ax + 1)	(- Raz+ Pay)(ax+2)
0	0	&	Rray-faz	-R. (ant P.)	(Card My)
0	a a	00-	-K, Og + fraz	- Blax+ Dz	R1(ax+2/2)
4	0	0	0	1900 B	18 A. C.

(provided that global = basic).

79- 29	o ×	0 *9-	0	0	9	Raby	R, (bx - 1)	9 (bx-2)	٥	3162-26 12	18. 6. L
	4	~		0	•					حرابه	201
0	,		0	0	0	Loby	-491g-	-R2(6x-2)	0	Ry-Rybyl	B(4-21)2
0	-	0	0	0	0			42		232	1199-
-	0	0		0	0	9	-R, 62 + 6 by	R. by - 662	the training of training of the training of th	(Ryby	(R.b.
0	27	217	0	3100	< 			۸			
0	e din	2	0	(a)	Sim	0	02	R	0	of the	18
0	۵	0	ته	0	0					-084	25
0	8	ď	0	27	30	0	2	0,	0	8	5
0	Ä	a	٥	214	Z'm	2					
48	0	0	0	0	0	des	0	٥	0	8	C
0	0	0	0	0	-	0	0	0	0	0	-
0	0	٥	0	-	٥	0	0	0	0	-	0
0	0	0	-	0	0	0	0	0	-	0	٥
0	0	-	γq		0	0	0		ā.	-6×	C
0	-	0	-01	0	4	0	_	0	-0°10	0	_
_	9	0	0	-0	2	-	0	0	0	-Sta	-

74 4

	-42.by	(g-x 9) 3	(g - × 9) y	(3-x0)(104+50,S)	- 6 [6 (1 / 2 - 1) + 12] -	1, + 1co by (bx - 2)
	fcabz	(g - x 9) & -	(= -xq)===	(g- 49) [394+ 1009-)	12-4 to 62 + 42-63	-6.6462 × -6.6462 × -6.6462
= 93 49 7 9	Q	194 + 394 -	394-49es	- + B162+R267	(- K2 by+ 13 b 2 (16 x - 2)	
7 112	0	y	-53	Rzbx-60z	- K=(px-x)	(- x q) y
	0	'Y'	g	-Kops + 6 Px	(st - xd) g -	B' (Px- \$)
	70-74	0	0	0	2 9 0 J	Lgog-
1						

Raby	- R (bx- 2)	- b (bx - g)	(Riaz-Bay)(bx-2)	4 6 (6 (8x+ 2)- (ax+ 3) 2)	12-1200 by (12/2)]
Se de la se	18 Cbx-2	Ralby 2)	aray-pas/6x-2)	2, - kadzbz + Rzazz - Rzbx(ax+z)	16 ay 6 2 - (a, - 8) 2]
0	R, b2- 19 by	-R26x+662	-kt-(R, bz-18 by)az	(Raby-Abe)(ax+2) - Rabx(ax+2) + P[bx(ax+2)-(ax+2)2]	(R. 42) (Q+8)
0	9-	£	- Ray+ bas	Relax+2	- p(ax+2)
. 0	-R	8	Ria-Bay	(8(ax+ 2)	-R, (ax + 2)
مع مع	0	0	O	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	re ay

THE SEE THE

70-	× _0	0	0	- 0	-	70	2146	21d	0	2/4	2
647	۵	×	0	-	0	lea by	-R(6-12)	- 16 (bx-2)		8 (bx - xd) 8	te,-Riber
0	41 0	49	-	٥	0	+2	- WARP	22	0	La-Roy	8100
0	٥	-	0	0.	0	مهم	8(bx-12)	Rylbx-	0	100 × 000	0
Q	-	٥	0	0	0		Ribz-fiby	1893	ىي	(Raby- pp 2	(R, 6-9b)
-	0	0	0	0	0	0	2012	-R. 6+10 bz	المح	(R. by	A, A
0	مر مربع	60 = 11g	0	وايم	<4x					حاط	
0	210	1 3 cm	0	<- P	3	0	2	N. A.	0	2 th	5
б	D	0	لمح	0	0						06)1
0	-(3	2	0	216	214	D	4	6	0	214	4
0	Q.	e;	0	2100	2100	2					
20	40	Q	0	0	0	3	0	0	0	0	0
0	0	9	0	0		0	0	0	0	0	-
0	٥	0	0	-	0	0	0	0	0	_	0
9	0	0	-	9	0	0	0	0	_	0	0
٥	0	-	ć	0 ×	0	0	0	-	5	-Q*	0
0	_	0	0-	0	8×	0	-	0	9	0	d
_	0	0	0	m	By	-	0	0	0	0	9