

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Lab 11 due on 4/15
 - Homework 12 due on 4/18
 - Assignment 3 and 4 due on 4/18
 - Lab 12 due on 4/22
 - Bonus Lab due on 5/2
 - Assignment 5 due on 5/2
 - Bonus Homework due on 5/2

Previous lecture ...

- Cryptography
 - Caesar Cipher
 - One-Time Pads
 - Symmetric Encryption
 - Asymmetric Encryption
 - RSA

RSA keypair example notes

- p and q must be prime
- n = p * q
- $\varphi(n) = (p 1) * (q 1)$
- Choose e such that
 - \bigcirc 1 < e < φ (n) and GCD(e, φ (n)) = 1
- Solve XGCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- Compute the ciphertext c as:
 - \bigcirc c = m^e (mod n)
- Recover m as:
 - \bigcirc m = c^d (mod n)

Implementation concerns

- Encryption/decryption:
 - O How can we perform efficient exponentiations?
- Key generation:
 - O We can do multiplication, XGCD for large integers
 - O What about finding large prime numbers?

Exponentiation

- Xy
- Can easily compute with a simple algorithm:

```
ans = 1
i = y
while i > 0:
    ans = ans * x
i--
```

• Runtime?

Just like with multiplication, let's consider large integers...

- Runtime = # of iterations * cost to multiply
- So how many iterations?
 - O Single loop from 1 to y, so linear, right?
 - What is the size of our input?
 - n
 - O The *bitlength* of y...
 - So, linear in the *value* of y...
 - But, increasing n by 1 doubles the number of iterations
 - \bigcirc $\Theta(2^n)$
 - Exponential in the bitlength of y

Runtime Analysis

This is RIDICULOUSLY BAD

- Assuming 512 bit operands, 2⁵¹²:
 - 134078079299425970995740249982058461274793658205923933777 235614437217640300735469768018742981669034276900318581864 86050853753882811946569946433649006084096
- Assuming we can do mults in 1 cycle...
 - O Which we can't as we learned last lecture
- And further that these operations are completely parallelizable
- 16 4GHz cores = 64,000,000,000 cycles/second
 - \bigcirc (2⁵¹² / 64000000000) / (3600 * 24 * 365) =
 - \blacksquare 6.64 * 10¹³⁵ years to compute

This is way too long to do exponentiations!

- So how do we do better?
- Let's try divide and conquer!
- $x^y = (x^{(y/2)})^2$
 - O When y is even, $(x^{(y/2)})^2 * x$ when y is odd
- Analyzing a recursive approach:
 - O Base case?
 - When y is 1, x^y is x; when y is 0, x^y is 1
 - O Runtime?

Runtime Analysis

But we need to do expensive mult in each call

- We need to do $\Theta((2^{(n-1)} * n)^2)$ work in just the root call!
 - Our runtime is dominated by multiplication time
 - Exponentiation quickly generates HUGE numbers
 - Time to multiply them quickly becomes impractical

Can we do better?

- We go "top-down" in the recursive approach
 - O Start with y
 - O Halve y until we reach the base case
 - O Square base case result
 - O Continue combining until we arrive at the solution
- What about a "bottom-up" approach?
 - O Start with our base case
 - Operate on it until we reach a solution

A bottom-up approach

• To calculate x^y

```
ans = 1
foreach bit in y:

ans = ans²
if bit == 1:
    ans = ans * x
From most to least significant
```

Bottom-up exponentiation example

- Consider x^y where y is 43 (computing x^{43})
- Iterate through the bits of y (43 in binary: 101011)
- \bullet ans = 1

ans =
$$1^2$$
 = 1
ans = $1 * x$ = x
ans = x^2 = x^2
ans = $(x^2)^2$ = x^4
ans = $x^4 * x$ = x^5
ans = $(x^5)^2$ = x^{10}
ans = $(x^{10})^2$ = x^{20}
ans = $x^{20} * x$ = x^{21}
ans = $(x^{21})^2$ = x^{42}
ans = $x^{42} * x$ = x^{43}

Bottom-up Exponentiation Example 1

$$7 = 17$$

$$17 : |000|$$

$$16$$

$$16$$

$$17 : |000|$$

$$16$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 : |000|$$

$$17 :$$

Bottom-up Exponentiation Example 2

Bottom-up Exponentiation

Does this solve our problem with mult times?

- Nope, still squaring ans everytime
 - We'll have to live with huge output sizes
- This does, however, save us recursive call overhead
 - O Practical savings in runtime

Efficient exponentiation for RSA

```
Does this solve our problems?

ans = 1

foreach bit in y:

ans = (ans<sup>2</sup> mod n)

if bit == 1:

ans = (ans**xx mod n)
```

- How can we improve runtime for RSA exponentiations?
 - O Don't actually need xy
 - Just need (x^y mod n)

)
$$P = 7$$

 $9 = 11$
2) $M = P \times 9 = 77$
3) $P(N) = (P-1)(9-1)=60$
4) $e = 13$
5) $V \times XGCD$ to compart $d = 2 \rightarrow 7$
 $1 = y \times 60 + d \times 13$

$$60 = 4 \times 13 + 8 \qquad = 8 - 60 - 4 \times 13$$

$$G(D(S_1)^8) = 1 \times 8 + 5 \iff 5 = 13 - 1 \times 8$$

$$G(D(S_1)^8) = 1 \times 5 + 3 \iff 3 = 8 - 1 \times 5$$

$$G(D(S_2)^8) = 1 \times 3 + 2 \iff 2 = 5 - 1 \times 3$$

$$G(D(S_1)^2) = 1 = 3 - 1 \times 2 + 1 \iff 3 - 1 \times 2 + 1 \implies 3 - 1 \times 3 + 1 \implies 3 + 1 \times 3 + 1 \implies 3 + 1 \times 3 + 1 \implies 3 + 1 \times 3 + 1 \times 3 + 1 \implies 3 + 1 \times 3 + 1$$

$$P = 5$$

$$Q = 13$$

$$M = P \times Q = 65$$

$$D(N) = (P-1) \times (Q-1) = 4 \times 12 = 98$$

$$1 < Q(N) \qquad G(D(e, d(N) = 1) = 1$$

$$e = 7$$

$$1 = x \cdot D(N) + d \cdot e$$

$$= x \cdot 48 + d \cdot 7$$

$$G(D(46, 7) \qquad 6 = 48 - 6 \times 7$$

$$G(D(7, 6) \qquad 7 = 1 \times 6 + 1 < 1 = 7 - 1 \times 6$$

$$G(D(6, 1) \qquad = 7 - 1 \times (46 - 6) = 7$$

$$G(D(1, 0) = 1) \qquad 1 = 7 \times 7 - 1 \times 98$$

$$d = 7$$

1)
$$P = 13$$
 $Q = 7$
2) $M = P. Q = 13.7 = 91$
3) $P = 13$ $P = 7$
Left $P = 13$ $P = 7$
2) $P = 13$ $P = 7$
2) $P = 13$ $P = 7$
3) $P = 13$ $P = 7$
4) $P = 13$ $P = 7$
2) $P = 13$ $P = 7$
3) $P = 13$ $P = 7$
4) $P = 13$ $P = 13$

RSA Example 3 (contd.)

$$GCD(72, 11) = GCD(11, 727.11)$$

$$72 = 6 \times 11 + 6 \times 6 = 72 - 6 \times 11$$

$$GCD(11, 6) = GCD(6, 117.6)$$

$$11 = 1 \times 6 + 5 \times 5 = 11 - 1 \times 6$$

$$GCD(6, 5) = GCD(5, 67.5)$$

$$6 = 1 \times 5 + 1 \times 6$$

$$GCD(5, 1) = GCD(1, 57.1)$$

$$= GCD(1, 0) = 1$$

$$1 = 6 - 1 \times 5$$

$$= 6 - 1 \times (11 - 1 \times 6)$$

$$= 2 \times 6 + 1 \times 11$$

$$= 2 \times 72 - 13 \times 11$$

$$\times -143 + 144$$

$$d = -13 = -13 \mod 72$$

$$= 59$$

1)
$$P = 17$$
 $9 = 31$
2) $n = P \cdot 9 = 527$
3) $\phi(n) = \phi(p) \cdot \phi(9) = (P-1)(1.)$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30 = 480$
 $= 16.30$

5) Compute dusing
$$\times$$
 GCD

$$d = \frac{1}{e} \mod \phi(n)$$

$$ed = 1 \mod \phi(n)$$

$$= 2 \phi(n) + 1$$

$$1 = ed + (-7) \phi(n)$$

$$GCD(\phi(n), e) = ed + (-7) \phi(n)$$

$$\times GCD(\phi(n), e) \qquad \forall \chi$$

$$GCD(\phi(n), e) \qquad \forall \chi$$

$$GCD(\phi(n), e) \qquad \forall \chi$$

RSA Example 4 (contd.)

$$GOD(480,7) = GCD(7,460\%7)$$

$$480 = 68 \times 7 + 9 \implies 4 = 480 - 68 \times 7$$

$$GCD(7,4) = GCD(4,7\%9)$$

$$7 = 1 \times 1 + 3 \implies 3 = 7 - 1 \times 4$$

$$GCD(3,1) = GCD(3,1\%3)$$

$$4 = 1 \times 3 + 1 \implies 6$$

$$GCD(3,1) = GCD(1,3\%1)$$

$$= GCD(1,0) = 1$$

$$1 = 4 - 1 \times 3$$

$$= 4 - 1 \times (7 - 1 \times 4)$$

$$= 2 \times 4 - 1 \times 7$$

$$= 2 \times (480 - 68 \times 7) - 1 \times 7$$

$$= 2 \times (480 - 68 \times 7) - 1 \times 7$$

$$1 = 2 \times 480 - 137 \times 7$$

$$4 = -137 / 400 - 137 = 48$$

$$m \mod n = m \mod 527$$

$$106^{7} \mod 527 = |15|$$

$$d \mod n = |5| \mod 527 = 106$$

OK, but how does $m^{ed} = m \mod n$?

- Feel free to look up the proof using Fermat's little theorem
 - O Knowing this proof is **NOT** required for the course
 - Knowing how to generate RSA keys and encrypt/decrypt IS
- For this course, we'll settle with our example showing that it does work

Why is RSA secure?

- 4 avenues of attack on the math of RSA were identified in the original paper:
 - O Factoring n to find p and q
 - O Determining $\varphi(n)$ without factoring n
 - O Determining d without factoring n or learning $\varphi(n)$
 - O Learning to take eth roots modulo n

Factoring n

- To the best of our knowledge, this is *hard*
 - A 768 bit RSA key was factored one time using the best currently known algorithm
 - Took 1500 CPU years
 - 2 years of real time on hundreds of computers
 - Hence, large keys are pretty safe
 - 2048 bit keys are a pretty good bet for now

What about determining $\varphi(n)$ without factoring n?

- Would allow us to easily compute d because ed = 1 mod $\varphi(n)$
- Note:

$$Q(n) = (1-1)(9-1)$$

$$= Pq - 9 - P + 1$$

$$= n - 9 - P + 1$$

O Now we just need (p - q)...

$$(p - q)^2 = p^2 - 2pq + q^2$$

$$(p - q)^2 = p^2 + 2pq + q^2 - 4pq$$

$$(p - q)^2 = (p + q)^2 - 4pq$$

$$(p - q)^2 = (p + q)^2 - 4n$$

$$(p - q) = \sqrt{((p + q)^2 - 4n)}$$

If we can figure out φ(n) efficiently, we could factor n efficiently!

Reduction and RSA Security

Problem A reduces to Problem B o solution for A leads to a solution for B RSA Attack = Integer
Factorization

imput: large:integer n

autput: prime factors

Believed to be hard > factor or efficiently

Determining d without factoring n or learning $\varphi(n)$?

- If we know, d, we can get a multiple of $\varphi(n)$
 - \bigcirc ed = 1 mod $\varphi(n)$
 - \bigcirc ed = k ϕ (n) + 1
 - For some k
 - \bigcirc ed 1 = k ϕ (n)
- It has been shown that n can be efficiently factored using any multiple of $\phi(n)$
 - O Hence, this would provide another efficient solution to factoring!

Learning to take eth roots modulo n

- Conjecture was made in 1978 that breaking RSA would yield an efficient factoring algorithm
 - O To date, it has been not been proven or disproven

This all leads to the following conclusion

- Odds are that breaking RSA efficiently implies that factoring can be done efficiently.
- Since factoring is probably hard, RSA is probably safe to use.

RSA Implementation concerns

- Encryption/decryption:
 - O How can we perform efficient exponentiations?
- Key generation:
 - O We can do multiplication, XGCD for large integers
 - O What about finding large prime numbers?

Prime testing option 1: BRUTE FORCE

- Try all possible factors of x
 - 1 .. sqrt(x)
 - \blacksquare aka 1 .. sqrt($2^{\text{size}(x)}$)
 - For a total of $2^{(\text{size}(x)/2)}$ factor checks
- A factor check should take about the same amount of time as

$$\bigcirc$$
 size(x)²

$$\sqrt{2} = \sqrt{2} = 2$$

• So our runtime is $\Theta(2^{(\text{size}(x)/2)} * \text{size}(x)^2)$

Option 2: A probabilistic approach

- Need a method test : $Z \times Z \rightarrow \{T, F\}$
 - \bigcirc If test(x, a) = F, x is composite based on the witness a
 - \bigcirc If test(x, a) = T, x is probably prime based on the witness a
- To test a number x for primality:
 - O Randomly choose a witness a
 - if test(x, a) = F, x is composite
 - \blacksquare if test(x, a) = T, loop
- Possible implementations of test(x, a):
 - Miller-Rabin, Fermat's, Solovay–Strassen

often probability $\approx 1/2$

k repetitions leads to probability that x is composite $\approx 1/2^k$

RSA still slower (generally) than symmetric encryption

- If only we could have the speed of symmetric encryption without the key distribution woes!
 - O What if we transmitted symmetric crypto keys with RSA?
 - RSA Envelopes!
- Going back to Alice and Bob
 - Alice generates a random AES key
 - Alice encrypts her message using AES with this key
 - Alice encrypts the key using Bob's RSA public key
 - Alice sends the encrypted message and encrypted key to Bob
 - O Bob decrypts the AES key using his RSA private key
 - O Bob decrypts the message using the AES key

RSA Envelope example

Another fun use of RSA...

- Notice that encrypting and decrypting are inverses
 - \bigcirc m^{ed} = m^{de} (mod n)
- We can "decrypt" the message first with a private key
- Then recover the message by "encrypting" with a public key
- Note that anyone can recover the message
 - However, they know the message must have come from the owner of the private key
 - Using RSA this way creates a digital signature

Do RSA signatures need to be slow?

- We encrypted symmetric crypto keys before to speed things up...
 - O We'll need another crypto primitive to help out here
 - O Cryptographically secure hash functions

Hashing for security (similarities)

- Cryptographically secure hash functions share properties with the hash functions we've already talked about in recitations:
 - Map from some input domain to a limited output range
 - Though output ranges are much larger here
 - For modern algorithms 224-512 bit output sizes
 - O Time required to compute the hash is proportional to the size of the item being hashed
 - Though, practically, cryptographic hash functions are more expensive

Now just sign a hash of the message!

Why does it work?

What about collisions?

- If Bob signs a hash of the message "I'll see you at 7"
- It could appear that Bob signed any message whose hash collides with "I'll see you at 7"...
- If h("I'll see you at 7") == h("I'll see you after I rob the bank"),
 Bob could be in alot of trouble
- An attack like this helped the Flame malware to spread
- This is also the reason Google is aiming to deprecate SHA-1

Hashing for security (differences)

- This is why cryptographically secure hash functions must support additional properties:
 - It should be infeasible to find two different messages with the same hash value
 - It should be infeasible to recover a message from its hash
 - Should require a brute force approach
 - Small changes to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public key isn't perfect

What do you do when a private key is compromised?

Final note about crypto

NEVER IMPLEMENT YOUR OWN CRYPTO

Use a trusted and tested library.

Master Method

- How can we analyze the runtime of a recursive algorithm?
 - O Master Method!

So what's the runtime???

- Recursion really complicates our analysis...
- We'll use a recurrence relation to analyze the recursive runtime
 - O Goal is to determine:
 - How much work is done in the current recursive call?
 - How much work is passed on to future recursive calls?
 - All in terms of input size

Recurrence relation for divide and conquer multiplication

- Assuming we cut integers exactly in half at each call
 - O I.e., input bit lengths are a power of 2
- Work in the current call:
 - \bigcirc Shifts and additions are $\Theta(n)$
- Work left to future calls:
 - 4 more multiplications on half of the input size

• $T(n) = 4T(n/2) + \Theta(n)$

Soooo... what's the runtime?

- Need to solve the recurrence relation
 - O Remove the recursive component and express it purely in terms of n
 - A "cookbook" approach to solving recurrence relations:
 - The master theorem

The master theorem

• Usable on recurrence relations of the following form:

$$T(n) = aT(n/b) + f(n)$$

- Where:
 - O a is a constant >= 1
 - O b is a constant > 1
 - O and f(n) is an asymptotically positive function

Recursion Tree

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

