Signal Processing Techniques to Improve Feature Space

EEG-based Epileptic Seizure Detection

for

Kalana Gayal Abeywardena 1009505867

kalana.abeywardena@mail.utoronto.ca

Overview

- Explore Signal Processing Algorithms on EEG Signals that improves the seizure detection accuracy
- Identify the most useful features extracted by signal processing algorithms that improves seizure detection

Operations to be performed

Data Preprocessing

- Signal Detrending
 - Mean reduction
 - Scaling to unit variance
- Spatial Filtering / Denoising
 - Windowed FIR Filters
 - Windowed IIR Filters
 - Alternative: Blind Source Separation
 - 1. Principal Component Analysis
 - 2. Independent Components Analysis

Feature Engineering

- **❖** Time Domain Features
 - Linear Signal Analysis (Enforcing stationarity locally)
 - Alternative: Non-Linear Signal Analysis
- Frequency Domain Features
 - PSD-based features using Welch Method
 - Alternative: *FFT*
- **❖** Time Frequency Domain Features
 - Wavelet Transformation
 - Alternatives: *empirical mode decomposition, matching pursuit*

Feature Dimensionality Reduction

- Correlation Matrix
- **❖** Feature Selection
 - Variance Thresholding
 - Mutual Information Estimation
 - ANOVA
 - Alternative: Model specific feature selectors (Embedded/Wrapper Methods)
- **❖** Feature Extraction
 - PCV
 - T-SNE
 - Alternative: *Uniform Manifold Approximation and Projection (UMAP)*

Parameters to Consider

Data Preprocessing

- Window size
- Cut-off frequencies of filter
- Type of filters
- Padding criteria for edge effect removal
- Number of Principal Components to select

Feature Engineering

- Window size to apply linear signal analysis
- Window size for Welch Method (depends on lowest frequency of interest)
- Welch scaling option
- Mother wavelet function

Feature Dimensionality Reduction

- Number of principal components
- Variance Threshold value

Evaluation Methods and Metrics

Data Preprocessing

- SNR
- Detection Accuracy
- Sensitivity
- Precision
- F1 Score
- AUC

Feature Engineering

- Sparsity
- Detection Accuracy
- Sensitivity
- Precision
- False Detection Rate (FDR/h)
- F1 Score
- AUC

Feature Dimensionality Reduction

- Detection Accuracy
- Sensitivity
- Precision
- FDR/h
- F1 Score
- AUC
- Computation Time/Complexity