ECON 711 - PS 5

Alex von Hafften*

10/12/2020

Question 1. The Consumer Problem

Solve the Consumer Problem and state the Marshallian demand x(p, w) and indirect utility v(p, w) for the following utility functions:¹

(a)
$$u(x) = x_1^{\alpha} + x_2^{\alpha}$$
 for $\alpha < 1^2$

The consumer problem is $\max\{x_1^{\alpha} + x_2^{\alpha}\}$ subject to $p_1x_1 + p_2x_2 \leq w$, $x_1 \geq 0$, and $x_2 \geq 0$. Based on the utility function, it is clear that $x_1^* = x_2^* = 0$ is impossible because the consumer's utility is zero and they would be infinitely better off if they consume ε of either x_1 or x_2 . Thus, let us assume $x_1^* > 0$. Notice that u is differentiable and concave in x_i : $\frac{\partial^2 u}{\partial^2 x_i} = \alpha(\alpha - 1)x_i^{\alpha - 2} < 0$. So, by Theorem 2 in lecture 10 notes, if (x^*, λ^*, μ^*) satisfies the Kuhn-Tucker conditions, x^* solves the consumer problem. The Legrangian is $\mathcal{L}(x, \lambda, \mu) = (x_1^{\alpha} + x_2^{\alpha}) + \lambda(w - p_1x_1 - p_2x_2) + \mu_1x_1 + \mu_2x_2$. The Kuhn-Tucker FOC are

$$\frac{\partial \mathcal{L}}{\partial x_i} = 0 \implies \alpha(x_i^*)^{\alpha - 1} - \lambda^* p_i + \mu_i^* = 0 \implies x_i^* = \left(\frac{\lambda^* p_i - \mu_i^*}{\alpha}\right)^{\frac{1}{\alpha - 1}}$$

Since $x_1^* > 0$, the above equation implies that $\lambda^* > 0$. By complementary slackness, $\lambda^* > 0 \implies w = p_1 x_1^* + p_2 x_2^* \implies x_2^* = \frac{p_1}{p_2} x_1^* > 0$. Thus, again by complementary slackness, $x_1^* > 0$ and $x_2^* > 0 \implies \mu_1^* = \mu_2^* = 0$.

$$\left(\frac{\lambda^* p_1}{\alpha}\right)^{\frac{1}{\alpha-1}} + \frac{p_1}{p_2} \left(\frac{\lambda^* p_1}{\alpha}\right)^{\frac{1}{\alpha-1}} = w \implies \lambda^* = \frac{\alpha}{p_1} \left(\frac{p_2 w}{p_1 + p_2}\right)^{(\alpha-1)}$$

$$x_1^* = \left(\frac{\frac{\alpha}{p_1} \left(\frac{p_2 w}{p_1 + p_2}\right)^{(\alpha - 1)} p_1}{\alpha}\right)^{\frac{1}{\alpha - 1}} = \frac{p_2}{p_1 + p_2} w \implies x_2^* = \frac{p_1}{p_2} \frac{p_2}{p_1 + p_2} w = \frac{p_1}{p_1 + p_2} w$$

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹For parts (e) and (f), you may describe the Marshallian demand in words rather than giving mathematical formulas if you prefer, and you can ignore the "knife-edge" cases where two prices or sums of prices are exactly equal, but you should still give formulas for the indirect utility function.

²This answer assumes $\alpha > 0$.

³This assumption is for expositional clarity. Since the utility function is symmetric, results do not change if we had assumed $x_2^* > 0$.

Thus, the Marshallian demand and the indirect utility are

$$x(p,w) = \left(\frac{p_2}{p_1 + p_2}w, \frac{p_1}{p_1 + p_2}w\right)$$
$$v(p,w) = \left(\frac{p_2}{p_1 + p_2}w\right)^{\alpha} + \left(\frac{p_1}{p_1 + p_2}w\right)^{\alpha} = \frac{(p_1^{\alpha} + p_2^{\alpha})w^{\alpha}}{(p_1 + p_2)^{\alpha}}$$

(b)
$$u(x) = x_1 + x_2$$

The consumer problem is $\max\{x_1+x_2\}$ subject to $p_1x_1+p_2x_2\leq w,\ x_1\geq 0,\$ and $x_2\geq 0.$ Notice that although u is differentiable, it is not concave in x_i : $\frac{\partial^2 u}{\partial^2 x_i}=0.$ Thus, (x^*,λ^*,μ^*) satisfying the Kuhn-Tucker conditions do not guarantee a solution to the consumer problem. The linear utility function can be represented as straight indifference lines with slopes of -1 (see figure for examples with blue indifference curves, green budget constraints, and red solutions). Since the budget constraint is also a straight line, the consumer chooses corner solutions when $p_1\neq p_2$. When $p_1< p_2$, the consumer can afford more of x_1 , so she buys $x_1=\frac{w}{p_1}$ and none of x_2 . When $x_1>x_2$, the consumer can afford more of x_2 , so she buys $x_2=\frac{w}{p_2}$ and none of x_1 . When $x_1>x_2$, there is a continuum of solutions along the overlaid indifference curve and budget constraint.

The Marshallian demand and the indirect utility are

$$x(p,w) = \begin{cases} (w/p_1,0) & \text{if } p_1 < p_2\\ (0,w/p_2) & \text{if } p_1 > p_2\\ \{(tw/p_1,(t-1)w/p_1) \ \forall t \in [0,1]\} & \text{if } p_1 = p_2 \end{cases}$$

$$v(p, w) = \begin{cases} w/p_1 & \text{if } p_1 \le p_2 \\ w/p_2 & \text{if } p_1 > p_2 \end{cases}$$

(c)
$$u(x) = x_1^{\alpha} + x_2^{\alpha}$$
 for $\alpha > 1$

The consumer problem is $\max\{x_1^{\alpha}+x_2^{\alpha}\}$ subject to $p_1x_1+p_2x_2\leq w,\ x_1\geq 0$, and $x_2\geq 0$. Notice that although u is differentiable, it is not concave in x_i : $\frac{\partial^2 u}{\partial^2 x_i}=\alpha(\alpha-1)x_i^{\alpha-2}\geq 0$. Thus, (x^*,λ^*,μ^*) satisfying the Kuhn-Tucker conditions do not guarantee a solution to the consumer problem.

- (d) $u(x) = \min\{x_1, x_2\}$ (Leontief utility)
- (e) $u(x) = \min\{x_1 + x_2, x_3 + x_4\}$
- (f) $u(x) = \min\{x_1, x_2\} + \min\{x_3, x_4\}$

Question 2. CES Utility

Throughout this problem, let $X = \mathbb{R}_+^k$, and let $(a_1, a_2, ..., a_k)$ be a set of strictly positive coefficients which sum to 1. You may assume prices and wealth are strictly positive, and ignore cases where two or more prices are identical.

- (a) For each of the following utility functions, solve the consumer problem and state x(p, w):
- i. linear utility $u(x) = x_1 + x_2 + \dots + x_k$
- ii. Cobb-Douglas utility $u(x) = x_1^{a_1} x_2^{a_2} ... x_k^{a_k}$ iii. Leontief utility $u(x) = \min\{\frac{x_1}{a_1}, \frac{x_2}{a_2}, ..., \frac{x_k}{a_k}\}$
- (b) Consider the Constant Elasticity of Substitution (CES) utility function $u(x) = \left(\sum_{i=1}^{k} a_i^{\frac{1}{s}} x_i^{\frac{s-1}{s}}\right)^{\frac{s}{s-1}}$ with $s \in (0,1) \cup (1,+\infty)$. Solve the consumer problem and state x(p,w).
- (c) Show that CES utility gives the same demand as linear utility in the limit $s \to +\infty$, as Cobb-Douglas utility in the limit $s \to 1$, and as Leontief utility in the limit $s \to 0$.
- (d) The Elasticity of Substitution between goods 1 and 2 is defined as $\xi_{1,2} = -\frac{\partial \log \left(\frac{x_1(p,w)}{x_2(p,w)}\right)}{\partial \log \left(\frac{p_1}{p_2}\right)} =$
 - $-\frac{\partial \left(\frac{x_1(p,w)}{x_2(p,w)}\right)}{\partial \left(\frac{p_1}{p_2}\right)} \frac{\frac{p_1}{p_2}}{\frac{x_1(p,w)}{x_2(p,w)}}$ While this looks complicated, in the case of CES demand, we can write the ratio $\frac{x_1}{x_2}$

as a relatively simple function of the price ratio $\frac{p_1}{p_2}$, and calculate this elasticity without much difficulty. Calculate the elasticity of substitution for CES demand, note its value as $s \to +\infty$, $s \to 1$, and $s \to 0$.

⁴Recall that maximizing a function $(f(x))^{\frac{s}{s-1}}$ is the same as maximizing f(x) when s>1, and the same as minimizing f(x)when s < 1.

Question 3. Exchange Economies

We've been considering the problem facing a consumer with wealth w at prices p. An "exchange economy" is different model where instead of money, each consumer is endowed with an initial bundle of goods $e \in \mathbb{R}^k_+$, and can either buy or sell any quantity of the goods at market prices p. The consumer's problem is then $\max_{x \in \mathbb{R}^k_+} u(x)$ subject to $p \cdot x \geq p \cdot e$ (i.e., the consumer's "budget" is the market value of the goods they start with). Assume preferences are locally non-satiated and the consumer's problem has a unique solution x(p, e). We'll say the consumer is a net buyer of good i if $x_i(p, e) > e_i$ and a net seller if $x_i(p, e) < e_i$.

- (a) Show that if p_i increases, the consumer cannot switch from being a net seller to a net buyer.
- (b) Suppose u is differentiable and concave. Use the Legrangian and the envelope theorem to show that $\frac{\partial v}{\partial p_i}$ is negative if the consumer is a net buyer of good i, and positive if the consumer is a net seller.
- (c) Consider the following statement. "If the consumer is a net buyer of good i and its price goes up, the consumer must be worse off." True or false? Explain.