Homework-4

Question 1

The above neural network has two inputs. It computes a selection between the two alternatives A, B in terms of two probability outputs. p_1 is the probability that A occurs, and p_2 is the probability that B occurs. The node V_0 is implemented with ReLU. The nodes V_1, V_2 are linear (ADALINE), and they are not connected to a bias. The probabilities p_1, p_2 are computed from the values of V_1, V_2 using softmax.

A.1: Compute the values of all nodes in forward propagation when the network is given the input $x_1 = 2$, $x_2 = 7$, the current weight values are: $w_0 = 0$, $w_1 = 0.2$, $w_2 = 0.1$, $w_3 = 0.1$, $w_4 = 1$, with the desired selection being **A** Use training rate $\epsilon = 0.1$. Your answer should be explicit numeric values for each node.

Answer

$$V_0 =$$

$$V_1 =$$

$$V_2 =$$

$$p_1 =$$

$$p_2 =$$

A.2: Compute explicit numeric values to the weights after they are changed by back propagation when the network is given the example above.

Show the values of the temporary "delta" variables.

Answer The values of the temporary delta variables:

```
new w_0 =
new w_1 =
new w_2 =
new w_3 =
new w_4 =
```

Question 2

Consider a deep neural net applied to decide between the following four categories:

```
cat, tiger, human face, lion
```

The neural net uses a softmax unit at the output layer. Consider the case where the values fed into the output layer are:

 $\begin{array}{ll} \text{cat} & 0.5 \\ \text{tiger} & 0.8 \\ \text{human face} & -3 \\ \text{lion} & 0.6 \end{array}$

The softmax converts these values into a probability vector.

1. Compute the probability vector.

- **2.** Which outcome is the most likely?
- **3.** Which outcome is the least likely?
- 4. What is the result of cross-entropy cost function if the target output is lion?

Question 3

The Adam technique for accelerating back propagation was specified in terms of the following parameters: λ , α , ϵ , β_1 , β_2 . The standard back propagation algorithm was specified in terms of the learning-rate parameter ϵ . Show how to select the parameters of Adam so that the result is as close approximation to standard back propagation as possible.