CS180 Discussion

Week 9

Lecture Recap

- Edge disjoint paths
 - Menger's Theorem
- Supply and demand (already seen)
- NP Completeness
- Reductions

Final is on March 17 11:30am-2:30pm

Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value. Pf. \leq

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value. Pf. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Network Connectivity

Network Connectivity

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least on edge in F.

Menger's Theorem (1927). The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Network Connectivity

Edge Disjoint Paths and Network Connectivity

Menger's Theorem (1927). The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- All s-t paths use at least one edge of F. Hence, the number of edgedisjoint paths is at most k.

Disjoint Paths and Network Connectivity

Menger's Theorem (1927). The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s. ■

NP-Completeness

P is the class of decision problems which can be solved in polynomial time by a deterministic Turing machine.

NP is the class of decision problems which can be solved in polynomial time by a non-deterministic Turing machine. Equivalently, it is the class of problems which can be verified in polynomial time by a deterministic Turing machine.

NP-hard is the class of decision problems to which all problems in NP can be reduced to in polynomial time by a deterministic Turing machine.

NP-complete is the intersection of NP-hard and NP. Equivalently, NP-complete is the class of decision problems in NP to which all other problems in NP can be reduced to in polynomial time by a deterministic Turing machine.

NP-Completeness

Reduction

What is reduction

- Problem A is reducible to problem B if an algorithm for solving problem B
 efficiently (if it existed) could also be used as a subroutine to solve problem A
 efficiently.
- When this is true, solving A cannot be harder than solving B.

Example:

Polynomial Problems

Suppose: $Y \le PX$, and there is an polynomial time algorithm for X. Then, there is a polynomial time algorithm for Y.

NP completeness

If Y is NP-complete, and

- 1. X is in NP
- $2. Y \leq X$
- 3. then X is NP-complete.

Practice

Vertex Cover - Given a graph G and a number k, does G contain a vertex cover of size at most k.

Set Cover - Given a set U of elements and a collection S1,...,Sm of subsets of U, is there a collection of at most k of these sets whose union equals U?

We want to show that Set Cover is NP-complete.

Practice

Vertex Cover - Given a graph G and a number k, does G contain a vertex cover of size at most k (find at most k vertices that are neighbors of all other vertices).

Set Cover - Given a set U of elements and a collection S1,...,Sm of subsets of U, is there a collection of at most k of these sets whose union equals U?

We want to show that Set Cover is NP-complete.

- 1. Choose an NP-complete problem, for example Vertex Cover.
- 2. Show that Set Cover ∈ NP
- 3. Vertex Cover ≤P Set Cover, and therefore that Set Cover is NP-complete.

Practice

Thm. Vertex Cover \leq_P Set Cover

Proof. Let G = (V, E) and k be an instance of VERTEX COVER. Create an instance of SET COVER:

- U = E
- Create a S_u for for each $u \in V$, where S_u contains the edges adjacent to u.

U can be covered by $\leq k$ sets iff G has a vertex cover of size $\leq k$.

Why? If k sets S_{u_1}, \ldots, S_{u_k} cover U then every edge is adjacent to at least one of the vertices u_1, \ldots, u_k , yielding a vertex cover of size k.

If u_1, \ldots, u_k is a vertex cover, then sets S_{u_1}, \ldots, S_{u_k} cover U. \square

Not done yet

We still have to show that Set Cover is in **NP**!

The certificate is a list of k sets from the given collection. We can check in polytime whether they cover all of U. Since we have a certificate that can be checked in polynomial time, Set Cover is in **NP**.

ilisuolie mo melule Ritarian Ouestions!!!

Trapping Rain

Trapping Rain Water or Water collected between towers: Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

```
Input - {1,5,2,3,1,7,2}
Output - 9

|
|---|
|---|
|-|-|
|||||||
1 5 2 3 1 7 2
```

Maximum water in above land can be 9 se - lines between buildings

Trapping Rain Solution

Algorithm:

1: With given towerHeight array, create 2 arrays, maxSeenRight and maxSeenLeft.

maxLeft[i] - max height on left side of Tower[i].

maxRight[i] – max height on right side of Tower[i].

2: Calculate for each tower:

rainwater[i] = rainwater[i] + Max(Min(maxLeft[i], maxRight[i]) - towerHeight[i], 0);