Classification d'images satellite

ALLAIRE Floriane, SABBAGH Guillaume, SUN Jian

Plan

- Présentation des données
- Analyse exploratoire
- Apprentissage non-supervisé
- Apprentissage supervisé
- Conclusion

Le jeu de donnée

Séries temporelles de mesures NDVI sur plusieurs parcelles de terrain

Permet de quantifier la végétation à distance

Classes: eau, verger, herbe, ferme, forêt et imperméable

Données récoltées de 2014 à 2015 à intervalle d'environ 16 jours

Analyse exploratoire

Répartition des valeurs NDVI max par classe

ACP des séries temporelles brutes sur deux axes

Analyse spectrale

Approximations de la série temporelle avec des filtres passe-bas

ACP après analyse spectrale

Variance expliquée

Classification ascendante hiérarchique

- Hyper-paramètres
 - Distance inter-classe
- Preformance ARI
 - 13% avec méthode de Ward
- Causes
 - L'inertie faible inter-classe

Classification K-means

- Nombre de classe pré-définie k=6
- Preformance ARI
 - Comparaison des partitions : 33%
- Causes
 - Des formes géométriques peu distinctres
 - Des classes avec des points qui se superposent

Les K plus proches voisins (K-PPV)

- Choix de K:
 - Trop petit : sur-apprentissage
 - Trop grand : trop grande généralisation
- Preformance
 - k=9 avec une performance de 62.3%
 - o Distance euclidienne
- Causes
 - o Le fléau de la dimension
 - Les classes sont asymétriques (classes n'ayant pas toutes les mêmes proportions)
 - Correction envisageable avec pondération

Analyse discriminante

- Analyse Discriminante Linéaire
 - o 59.33%
 - Hyper-paramètre: solveur svd
 - Réduction des dimensions
- Analyse Discriminante Quadratique
 - 0 44.33%
- Naïve Bayésienne
 - 0 70.00%
 - Minimiser les probabilités d'erreurs
 - Suppose que les variables sont indépendantes

Arbre

- Arbre de décision
 - Hyperparamètre
 - Rapport coût-complexité λ
 - Performance de prédiction
 - 56% avec λ=0.00024
 - Inconvénient
 - Sur-apprentissage
- Forêt aléatoire
 - Performance de prédiction
 - **63**%
 - Inconvénient
 - Informations partiellement aprises
- 1000 x Forêts aléatoires
 - 1000 x retraits aléatoires et de nombre identique d'idividus dans des classes
 - o 1000 x votes
 - Performance de prédiction
 - 72%

Figure 17 – Erreurs de validation en fonction des $\bar{\lambda_k}$

TABLE 2 – Matrice de confusion d'une forêt aléatoire sur les données brutes

	E	F	I	A	P	V
Eau	34	2	3	6	1	0
Forêt	0	69	1	6	2	0
Imper	0	1	36	2	1	0
Agri	0	11	0	42	0	0
Prairie	0	19	3	6	8	0
Verger	0	43	0	4	0	0

Table 3 – Matrice de confusion de 1000 répétition de forêt aléatoire sur les données brutes

	Fa.	Fo.	Gr.	Im.	Or.	Wa.
Farm	46	5	2	0	0	0
Forest	5	51	21	0	1	0
Grass	11	3	19	1	2	0
Impervious	1	1	0	38	0	0
Orchard	2	23	1	0	20	1
Water	3	1	2	2	0	38

SVM

- Normalisation
 - o Z-score
 - o Min-max
- Hyper-paramètres
 - o régularisation C
- Performance de prédiction
 - o 60% avec C= 50

Min-max:

$$value^* = \frac{value - min}{max - min}$$

Z-score:

value* =
$$\frac{\text{value} - \mu}{\sigma}$$

$$\text{Minimiser } \frac{1}{2}||w||^2 + C\sum_{k=1}^p \xi_k \quad , \quad C > 0$$

Conclusion

- Comparaison à une recherche similaire : "Land Cover Classification of Landsat Data"
- Difficultés
 - o Bruit de donnée
 - Rapports temporels intervariables
 - o Déséquilibre de classe
- Classifieurs
 - 70% avec Gaussian NaiveBayes
 - o 72% avec **Random Forest**
 - o 72% > 16% (choix aléatoire = 1/6)

Merci pour votre attention!

Plan

[10 min] => 3 min 30 par personne

- Présentation des données + Analyse Exploratoire [2min] ~ 2 Slides Guillaume
- Coefficient de Fourrier [1min30] ~ 1 Slide Guillaume
- Apprentissage non-supervisé [1min30]
 - CAH ~ 1 Slide Sun
 - K-Means ~ 1 Slide Floriane
- Apprentissage supervisé [2min 30]
 - K-PPV ~ 1 Slide Floriane
 - Analyse Discr ~ 1 Slide Floriane
 - Support Vector Machine ~ 1 Slide Sun
 - Arbre ~ 1 Slide - Sun
- Overture [30 sec] + Conclusion [1min] ~ 1 Slide Floriane & Sun