MetaPhlAn2

Konur Bayrak & Qiulin Zhang

- Metagenomic shotgun sequencing provides a uniquely rich profile of microbial communities
 - Each data set yields billions of short reads sampled from DNA in the community
- Taxonomic composition can be estimated from such data by assigning each read to the most plausible microbial lineage (better taxonomic resolution than profiling 16S ribosomal RNA marker gene)
- Existing taxonomic profiling methods are inefficient for increasingly large data sets

Introduction

- Both alignment and composition based approaches (and hybrids) have been developed for this task of taxonomic classification
- None of these methods achieve both the efficiency and species level accuracy required by high complexity data sets due to computational limitations:
 - Weak accuracy for short reads (<400 nucleotides)
 - Need for clade-specific normalization
- These existing taxonomic profiling methods are inefficient for increasingly large and complex data sets

MetaPhlAn - An Overview

- Estimates microbial relative abundances by mapping metagenomic reads against a catalog of clade specific marker sequences
 - These clades can be species specific or as broad as phyla
 - The clade specific markers are coding sequences that must satisfy the stringent conditions:
 - Being strongly conserved within the clade's genomes
 - Not possessing substantial local similarity with an sequence outside the clade

The Reference Marker Catalog

- The marker catalog spans 1,221 species with an average of 231 markers per species (2012)
- In total, 375 of 652 genera, 80 of 278 families, and 22 of 130 orders have >250 markers
 - This allows MetaPhIAn to recover relative abundances within broader clades even in the absence of sequenced genomes for all organisms in a community
- The catalog culmination process is an offline procedure and is updated regularly as newly sequenced microbial genomes become available
- The catalog downloads automatically with the associated classifier

- The classifier compares metagenomic reads against the marker catalog using nucleotide BLAST searches
 - Provides clade abundances for one or more sequenced metagenomes
 - This achieves a 2-fold speedup compared to applying BLAST to the full catalog of microbial genomes
 - Because of the reduce reference catalog size
 - To estimate clade relative abundance in terms of cell counts, the classifier normalizes the total number of reads in each clade by the nucleotide length of its markers

Installation

1. Through Bioconda:

\$ conda install metaphlan2

OR

2. Through Docker:

\$ hg clone https://bitbucket.org/biobakery/metaphlan2

\$ docker pull segatalab/metaphlan2

Using MetaPhlAn

Metaphlan2.py <options> [arguments] [input file]

options:

--input_type {fastq,fasta,multifastq,bowtie2out,sam}

--bowtie2db The BowTie2 database file of the MetaPhlAn database.

Used if --input_type is fastq, fasta, multifasta, or multifastq

Using MetaPhlAn (Cout.)

- --bowtie2out FILE_NAME The file for saving the output of BowTie2
- --no_map Avoid storing the --bowtie2out map file
- --nproc N The number of CPUs to use for parallelizing the mapping
- -o output file The output file

#id body_	site sex	
SRS014477	subgingival_plaque	female
SRS019129	subgingival_plaque	male
SRS063215	subgingival_plaque	female
SRS013950	subgingival_plaque	male
SRS097871	subgingival_plaque	female
SRS148290	subgingival_plaque	male
SRS015064	subgingival_plaque	female
SRS143036	subgingival_plaque	male
SRS148157	subgingival_plaque	female
SRS104521	subgingival_plaque	male
SRS011098	supragingival_plaque	female
SRS011152	supragingival_plaque	male
SRS011343	supragingival_plaque	female
SRS013723	supragingival_plaque	male
SRS015044	supragingival_plaque	female
SRS015215	supragingival_plaque	male
SRS015378	supragingival_plaque	female
SRS015574	supragingival_plaque	male
SRS015803	supragingival_plaque	female
SRS016575	supragingival_plaque	male
SRS011086	tongue_dorsum female	
SRS014124	tongue_dorsum male	
SRS014271	tongue_dorsum female	
SRS015038	tongue_dorsum male	
SRS015057	tongue_dorsum female	
SRS015537	tongue_dorsum male	
SRS015893	tongue_dorsum female	
SRS016037	tongue_dorsum male	
SRS016501	tongue_dorsum female	
SRS016740	tongue_dorsum male	

Data

- 1. Fastq files from 30 samples
- 2. Metadata

Downloaded from Human Microbiome Project

https://www.hmpdacc.org/HMIWGS/all/

A		A	В
1 #	#SampleID		Metaphlan2_Analysis
2	kBacteria		100
3	kBacteria p_	Firmicutes	34.30017
4	kBacteria p_	_Actinobacteria	22.24445
5	kBacteria p_	Bacteroidetes	18.44939
6	kBacteria p_	Proteobacteria	14.83141
7	kBacteria p_	_Fusobacteria_	10.17458
8	kBacteria p_	Firmicutes c Negativicutes	26.12938
9	kBacteria p_	Actinobacteria c Actinobacteria	22.24445
10	kBacteria p_	Bacteroidetes c Bacteroidia	17.1887
11	kBacteria p_	Proteobacteria cBetaproteobacteria	11.99782
12	kBacteria p_	Fusobacteria c Fusobacteriia	10.17458
13	kBacteria p_	_Firmicutes cBacilli	6.70536
14	kBacteria p_	Proteobacteria cEpsilonproteobacteria	2.61599
15	kBacteria p_	_Firmicutes cClostridia	1.46543
16	kBacteria p_	Bacteroidetes c Flavobacteriia	1.26069
17	kBacteria p_	_Proteobacteria cGammaproteobacteria	0.2176
18	kBacteria p_	_Firmicutes cNegativicutes oSelenomonadales	26.12938
19	kBacteria p_	_Actinobacteria cActinobacteria oActinomycetales	21.60231
20	kBacteria p_	Bacteroidetes c_Bacteroidia o_Bacteroidales	17.1887
21	kBacteria p_	Proteobacteria c Betaproteobacteria o Neisseriales	11.99782
22	kBacteria p_	Fusobacteria c Fusobacteriia o Fusobacteriales	10.17458
23	k Bacteria p	Firmicutes c Bacilli o Lactobacillales	6.70536

 $/mnt/HA/groups/rosenclassGrp/Students_SP19/metaphlan2_tutorial.tgz$

Actinobacteria

Actinobacterialc

ID

Bacteria

Bacterialp

Bacterialp

\$ python ./utils/merge_metaphlan_tables.py [outputs] > [merged file]

Actinobacterialo

Bacterialp Actinobacterialc Actinobacterialo Actinomycetales|f Actinomycetaceae|g

66.0395
66.0395
1 21.1444
1 21.1444
0
1

Actinomycetales|f Actinomycetaceae|g

SRS015 SRS015 SRS0978

32.3771 22.2445 66.0395

0 4.23309

100

100

0 12.3113

100

Actine

Actine 0.81029

Heat map

Based on the Euclidian
Distance of the abundance

STAMP(Statistical Analysis of Metagenomic Profiles)

Website:

http://kiwi.cs.dal.ca/Softwar e/STAMP

STAMP(Statistical Analysis of Metagenomic Profiles)

Bar chart of the Granulicatella genus abundance

References

https://www.nature.com/articles/nmeth.2066

https://bitbucket.org/biobakery/metaphlan2/src/default/

http://kiwi.cs.dal.ca/Software/STAMP