Regresión Avanzada Proyecto Final

Dante Ruiz 11/24/2018

Contents

1	Introducción 1.1 Problema 1.2 Objetivo 1.3 Hipótesis	2 2 2 2						
2	Datos2.1 Descripción de los datos2.2 Análisis exploratorio de los datos	2 2 2						
3	MRLMN							
4	GLM Estático	4						
se	etwd("~/Documents/ITAM_Maestria/03_Otono_2018/01_Regresion_Avanzda/05 Proyecto Final")							
li li li	Cargamos librerias Lbrary(R2jags) Lbrary(tidyverse) Lbrary(gridExtra) Lbrary(xtable)							
pr	<pre>Probabilidad cob<-function(x){ out<-min(length(x[x>0])/length(x),length(x[x<0])/length(x)) out</pre>							
ge }	<pre>etmode <- function(v) { uniqv <- unique(v) uniqv[which.max(tabulate(match(v, uniqv)))]</pre>							
pl	<pre>cot_RegvsWTI<-function(x.name,out.yp,pos_leg){</pre>							
	<pre>col_reg<-match(x.name,colnames(datos_train)) x<-unlist(datos_train[,col_reg]) y<-datos_train\$WTI</pre>							
	<pre>ymin<-min(y,out.yp[,c(1,3,7)]) ymax<-max(y,out.yp[,c(1,3,7)]) xmin<-min(x) xmax<-max(x)</pre>							
	<pre>plot(x,y,type="p",pch=16,col="grey50",ylim=c(ymin,ymax), main=paste(x.name." vs WTI").xlab=x.name.ylab='WTI')</pre>							

```
points(x,out.yp[,1],col='firebrick1',pch=16,cex=0.8)

segments(x,out.yp[,3],x,out.yp[,7],col=2)

legend(pos_leg,legend=c('Observado','Ajustado'),pch=16,col=c('grey50','firebrick1'))
}

plot_tsWTI<-function(out.yp,out.yf,pos_leg){
    xmin<-1
    xmax<-n+m
    ymin<-min(c(datos$WTI,out.yp[,1],out.yf[,1]))
    ymax<-max(c(datos$WTI,out.yp[,1],out.yf[,1]))

plot(1:(n+m),datos$WTI,type="l",lwd=2,col="grey80",xaxt='n',ylim=c(ymin,ymax),xlim=c(xmin,xmax),xlab=lines(1:(n+m),c(out.yp[,1],out.yf[1,1],rep(NA,m-1)),lty=2,col='firebrick1')
    lines(1:(n+m),c(rep(NA,n-1),out.yp[,1],out.yf[,1]),lty=1,lwd=2,col='royalblue1')
    axis(1,at=1:(n+m),labels=Fecha,hadj=0.5)
    legend(pos_leg,legend=c('Observado','Ajustado','Pronosticado'),lty=c(1,2,1),lwd=c(2,1,2),col=c('grey5)}</pre>
```

1 Introducción

- 1.1 Problema
- 1.2 Objetivo
- 1.3 Hipótesis

2 Datos

2.1 Descripción de los datos

Variable: Unidades WTI: dólares por barril JPM_Dollar_Index: unidades VIX_Index: unidades OPEP_TOTPROD: millones de barriles por día OPEP_TOTDEM: millones de barriles por día TBILL 10YR: porciento TBILL 1YR: porciento

```
source('01_Clean_Data_Petroleo.R')
```

2.2 Análisis exploratorio de los datos

```
datos_1
## # A tibble: 225 x 8
##
      Fecha
             WTI JPM_Dollar_Index VIX_Index OPEP_TOTPROD OPEP_TOTDEM
      <chr> <dbl>
                              <dbl>
                                                     <dbl>
                                                                  <dbl>
##
                                        <dbl>
   1 ene-~ 30.4
                             107.
                                         23.4
                                                      26.7
                                                                   77
                                                      26.5
## 2 feb-~ 26.9
                             107.
                                         24.1
                                                                   76.1
## 3 mar-~ 25.7
                             105.
                                         26.2
                                                      27.7
                                                                   73.8
```

```
27.6
                                                                     74.3
##
    4 abr-~
             29.0
                              104.
                                          23.6
             32.5
                               104.
                                          19.5
                                                        28.1
                                                                     75.8
##
    5 may-~
             27.4
                               103.
                                          20.7
                                                        28.3
                                                                     74.4
             33.1
                               102.
                                          16.8
                                                        28.8
                                                                     77.9
      jul-~
##
    8 ago-~
##
            30.8
                               101.
                                          20.6
                                                        29.1
                                                                     77.2
             32.7
                               99.3
                                          23.6
                                                        29.5
                                                                     76.3
##
    9 sep-~
## 10 oct-~ 33.8
                               99.0
                                          29.6
                                                        29.5
                                                                     77.2
## # ... with 215 more rows, and 2 more variables: TBILL_10YR <dbl>,
       TBILL_1YR <dbl>
# Seleccioanmos el set de datos a usar
datos<-datos_1
# Extraemos las fechas
Fecha<-datos$Fecha
# Eliminamos la fecha de los datos
datos <- select(datos, -Fecha)</pre>
# Grafiamos los datos.
plot(ts(datos, start = c(2000,1), frequency = 12))
```

ts(datos, start = c(2000, 1), frequency = 12)

cor(datos)

```
##
                           WTI JPM_Dollar_Index VIX_Index OPEP_TOTPROD
## WTI
                     1.0000000
                                      0.3823844 -0.1392221
                                                               0.4564846
## JPM_Dollar_Index 0.3823844
                                      1.0000000 0.1875011
                                                              -0.3436043
## VIX Index
                    -0.1392221
                                      0.1875011 1.0000000
                                                              -0.3405942
## OPEP_TOTPROD
                     0.4564846
                                     -0.3436043 -0.3405942
                                                               1.0000000
## OPEP_TOTDEM
                     0.4431912
                                     -0.5643289 -0.3741664
                                                               0.8152014
```

```
## TBILL_10YR
                    -0.4230761
                                      0.4964129 0.1646906
                                                              -0.6151291
## TBILL 1YR
                    -0.3541499
                                      0.3422069 -0.0396239
                                                              -0.2346858
##
                    OPEP_TOTDEM TBILL_10YR TBILL_1YR
                      0.4431912 -0.4230761 -0.3541499
## WTI
## JPM_Dollar_Index -0.5643289 0.4964129 0.3422069
## VIX Index
                    -0.3741664 0.1646906 -0.0396239
## OPEP TOTPROD
                    0.8152014 -0.6151291 -0.2346858
## OPEP_TOTDEM
                     1.0000000 -0.8352266 -0.5557927
## TBILL_10YR
                     -0.8352266 1.0000000 0.8376589
## TBILL_1YR
                     -0.5557927 0.8376589 1.0000000
#-Dividing data-
datos_train <- datos[1:222,]</pre>
datos_test <- datos[223:225,]</pre>
# No. obs predicción
n <- nrow(datos_train)</pre>
# No. obs pronosticos
m <- nrow(datos_test)</pre>
# No. regresores
k<- 6
```

3 MRLMN

PENDIENTE....

4 GLM Estático

Table 1: Coeficientes Estimados para el Modelo Est<U+00E1>tico

	Media	Mediana	Moda	2.5%	97.5%	Prob.
Intercepto	-183.08	-183.36	-199.75	-230.61	-133.62	0.00
JPM Dollar Ind.	1.84	1.84	1.76	1.67	2.00	0.00
VIX Ind	-0.29	-0.29	-0.07	-0.52	-0.06	0.01
Prod. OPEP	0.52	0.53	1.98	-1.15	2.18	0.27
Dem. OPEP	1.26	1.26	0.97	0.64	1.86	0.00
T-Bill 10YR	-10.75	-10.74	-10.43	-14.74	-6.92	0.00
T-Bill 1YR	-0.83	-0.84	-1.00	-2.90	1.29	0.22

Figure 1: Regresores vs WTI: Modelo Esttico

```
#Imprimir DIC
print(out_estat.dic)
## [1] 1807.16
#Predictions
par(mfrow=c(3,2))
# JPM_Dollar_Index vs. WTI
plot_RegvsWTI(x.name='JPM_Dollar_Index',out.yp=out_estat.yp,pos_leg='topleft')
# VIX Index vs. WTI
plot_RegvsWTI(x.name='VIX_Index',out.yp=out_estat.yp,pos_leg='topleft')
# OPEP TOTPROD vs. WTI
plot_RegvsWTI(x.name='OPEP_TOTPROD',out.yp=out_estat.yp,pos_leg='topleft')
# OPEP_TOTDEM vs. WTI
plot_RegvsWTI(x.name='OPEP_TOTDEM',out.yp=out_estat.yp,pos_leg='topleft')
# TBILL_10YR vs. WTI
plot_RegvsWTI(x.name='TBILL_10YR',out.yp=out_estat.yp,pos_leg='topright')
# TBILL_1YR vs. WTI
plot_RegvsWTI(x.name='TBILL_1YR',out.yp=out_estat.yp,pos_leg='topright')
#t vs y
par(mfrow=c(1,1))
plot_tsWTI(out.yp=out_estat.yp,out.yf=out_estat.yf,pos_leg='topleft')
```

