Адюнгирани количества и поддетерминанти. Формули на Крамер.

В тази глава ще разгледаме начин за пресмятане на детерминанти чрез свеждането им към сума от детерминанти от по-нисък ред. Ще използваме обичайните вече означения за детерминанта от ред $n: \Delta = |a_{ij}|, i, j =$ $1,2\ldots,n,\ a\ \Delta=\sum (-1)^{[i_1\ i_2\ \cdots\ i_n]}a_{1i_1}a_{2i_2}\ldots a_{ni_n}$ ще бъде нейното развитие. Нека фиксираме p и q $(1 \le p, q \le n)$ и разгледаме елемента в p-тия ред и q-тия стълб на детерминантата a_{pq} . От всички членове в развитието на Δ , които съдържат така избрания елемент, изваждаме a_{pq} пред скоби. Изразът в скобите, означаваме с A_{pq} и наричаме адюнгирано коnuчество на a_{pq} . Т.к. всеки член от развитието на Δ съдържа точно по един елемент от всеки стълб и всеки ред на детерминантата, изваждайки a_{pq} пред скоби от някои от тях означава, че в A_{pq} няма елементи от p-тия ред и q-тия стълб на Δ . По-конкретно, a_{pq} се съдържа в елементите от вида $(-1)^{[i_1 \dots i_{p-1} \ q \ i_{p+1} \dots i_n]} a_{1i_1} \dots a_{p-1,i_{p-1}} a_{pq} a_{p+1,i_{p+1}} \dots a_{ni_n}$, т.е. всички членове, за които $i_p = q$. Следователно имаме, че $A_{pq} =$ $(-1)^{[i_1\ \cdots\ i_{p-1}\ q\ i_{p+1}\ \cdots\ i_n]}a_{1i_1}\ldots a_{p-1,i_{p-1}}a_{p+1,i_{p+1}}\ldots a_{ni_n},$ където $i_1\ \ldots\ i_{p-1}\ i_{p+1}\ \ldots\ i_n$ е произволна пермутация на $1, \ldots, q-1, q+1, \ldots, n$. Забележете, че така се оказва, че A_{pq} е сума на (n-1)! събираеми. И така, сумата $a_{pq}A_{pq}$ изчерпва всички членове на Δ , които съдържат елемента a_{pq} . Сега може да направим абсолютно същото за всяко $1 \le q \le n$ и да групираме всички членове в развитието по следния начин: $\Delta = a_{p1}Ap1 + a_{p2}A_{p2} + \dots a_{pn}A_{pn} =$ $\sum_{k=1}^{n} a_{pk} A_{pk}$. Това развитие на Δ се нарича развитие по адюнгираните количества на p-тия ред. По аналогичен начин, ако оставим q фиксирано, а освободим p, се вижда, че можем да развием Δ по адюнгираните количества на q-тия стълб като $\Delta = a_{1q}A_{1q} + a_{2q}A_{2q} + \cdots + a_{nq}A_{nq}$.

Нека сега

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1,q-1} & a_{1q} & a_{1,q+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{p-1,1} & a_{p-1,2} & \dots & a_{p-1,q-1} & a_{p-1,q} & a_{p-1,q+1} & \dots & a_{p-1,n} \\ a_{p1} & a_{p2} & \dots & a_{p,q-1} & a_{pq} & a_{p,q+1} & \dots & a_{pn} \\ a_{p+1,1} & a_{p+1,2} & \dots & a_{p+1,q-1} & a_{p+1,q} & a_{p+1,q+1} & \dots & a_{p+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{n,q-1} & a_{nq} & a_{n,q+1} & \dots & a_{nn} \end{vmatrix}$$

и си представим, че "зачертаваме" p-тия ред и q-тия стълб. Получаваме детерминантата от ред n-1

$$\Delta_{pq} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1,q-1} & a_{1,q+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{p-1,1} & a_{p-1,2} & \dots & a_{p-1,q-1} & a_{p-1,q+1} & \dots & a_{p-1,n} \\ a_{p+1,1} & a_{p+1,2} & \dots & a_{p+1,q-1} & a_{p+1,q+1} & \dots & a_{p+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{n,q-1} & a_{n,q+1} & \dots & a_{nn} \end{vmatrix},$$

която ще наричаме поддетерминанта на a_{pq} . Ясно е, че $\Delta_{pq} = \sum (-1)^{[i_1 \ \cdots \ i_{p-1} \ i_{p+1} \ \cdots \ i_n]} a_{1i_1} \ldots a_{p-1,i_{p-1}} a_{p+1,i_{p+1}} \ldots a_{ni_n},$ където $i_1 \ldots i_{p-1} \ i_{p+1} \ldots i_n$ е произволна пермутация на $1,\ldots,q-1,q+1,\ldots,n$ (общо (n-1)! брой събираеми).

Теорема. В сила е равенството $A_{pq} = (-1)^{p+q} \Delta_{pq} \ \forall p,q = 1,2,\ldots,n.$

Доказателсво. Както A_{pq} , така и Δ_{pq} е сума на всевъзможните събираеми от вида

$$a_{1i_1} \dots a_{p-1,i_{p-1}} a_{p+1,i_{p+1}} \dots a_{n,i_n},$$
 (1)

където $i_1 \dots i_{p-1} \ i_{p+1} \dots i_n$ е произволна пермутация на $1,\dots,q-1,$ $q+1,\dots,n$. Нека разгледаме пермутациите $\tau=i_1 \dots i_{p-1} \ i_{p+1} \dots i_n$ и $\sigma=i_1 \dots i_{p-1} \ q \ i_{p+1} \dots i_n$. (1) участва в поддетерминантата Δ_{pq} със знак $(-1)^{[\tau]},$ а в адюнгираното количество A_{pq} със знак $(-1)^{[\sigma]}$. Ясно е, че всяка инверсия в τ е инверсия и в σ . Остава да проверим колко нови инверсии има в σ поради наличието на допълнителния елемент q. Нека от числата i_1,\dots,i_{p-1} m на брой $(0 \le m \le p-1)$ са по-големи от q. Тогава те образуват m на брой инверсии с q. Останалите p-1-m числа са по-малки от q. Естествените числа, които са по-малки от q са

q-1 на брой и сега p-1-m от тях стоят пред q в σ . Тогава остават q-1-(p-1-m)=q-p+m числа, по-малки от q, които стоят след него в разглежданата пермутация и, естествено, образуват q-p+m на брой инверсии с q. Следователно общият брой на новите инверсии в σ , "причинени" от q е m+(q-p+m)=q-p+2m или еквивалентно $[\sigma]=[\tau]+p-q+2m$. Тогава имаме

$$(-1)^{[\sigma]} = (-1)^{[\tau]+p-q+2m} = (-1)^{[\tau]+p+q+2(m-p)} = (-1)^{[\tau]}(-1)^{p+q}.$$

Така имаме, че (1) участва в Δ_{pq} със знак $(-1)^{[\tau]}$, а в A_{pq} със знак $(-1)^{[\tau]}(-1)^{p+q}$. Следователно равенството $A_{pq}=(-1)^{p+q}\Delta_{pq}$ е изпълнено дори почленно.

Имайки предвид, че $\Delta = \sum_{k=1}^n a_{pk} A_{pk}$ и $A_{pk} = (-1)^{p+k} \Delta_{pk}$ получаваме:

$$\Delta = \sum_{k=1}^{n} (-1)^{p+k} a_{pk} \Delta_{pk}.$$

От това равенство става ясно как детерминантата Δ от ред n се изразява чрез n на брой детерминанти от ред n-1 ($\Delta_{pq}, \Delta_{p2}, \ldots, \Delta_{pn}$). Това развитие се нарича развитие на детерминанта по поддетерминантите на p-тия ред. Аналогичен резултат е валиден и за развитие на детерминанта по поддетерминантите на q-тия стълб:

$$\Delta = \sum_{k=1}^{n} (-1)^{k+q} a_{kq} \Delta_{kq}.$$

Дефиниция. Нека $i, j \in \mathbb{N}$. Символ на Кронекер наричаме

$$\delta_{ij} = \begin{cases} 1, & \text{ako } i = j \\ 0, & \text{ako } i \neq j \end{cases}.$$

В сила е следното

Твърдение.

$$\sum_{k=1}^{n} a_{pk} A_{qk} = \delta_{pq} \Delta.$$

Доказателство. При p = q просто получаваме дефиницията за развитие на детерминанта по адюнгираните количества на p-тия ред:

$$\Delta = \delta_{pp}\Delta = \sum_{k=1}^{n} a_{pk} A_{pk}.$$

Нека сега $p \neq q$. Да разлгедаме детерминантата Δ_1 от ред n, чиито p-ти и q-ти редове са едни и същи:

$$\Delta_{1} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

От свойствата на детерминантите имаме, че $\Delta_1=0$. Развиваме Δ_1 по адюнгираните количества на q-тия ред. Тези адюнгирани количества са същите, както за q-тия ред на Δ , т.е. са $A_{q1}, A_{q2}, \ldots, A_{qn}$. Следователно

$$\delta_{pq}\Delta = 0 = \Delta_1 = a_{p1}A_{q1} + \dots + a_{pn}A_{qn} = \sum_{k=1}^n a_{pk}A_{qk}.$$

С това твърдението е доказано.

Нека сега да разгледаме системата от n линейну уравнения с n неизвестни

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{vmatrix}$$

където коефициентите a_{ij}, b_k принадлежат на дадено числово поле F за $\forall i, j, k = 1, \ldots, n$. С $\Delta = |a_{ij}|$ означаваме детерминантата, която съответства на тази система. Нека фиксираме индекса k. Тогава A_{1k}, \ldots, A_{nk} са адюнгираните количества, които съответстват на k-кия стълб на Δ . Умножаваме първия ред на системата с A_{1k} , втория с A_{2k}, \ldots, k —тия с

 A_{kk}, \ldots, n -тия ред с A_{nk} след което ги събираме. Получаваме израза

$$x_{1}(\underbrace{a_{11}A_{1k} + a_{21}A_{2k} + \dots + a_{n1}A_{nk}}_{=0}) + \dots$$

$$+ x_{k}(\underbrace{a_{1k}A_{1k} + a_{2k}A_{2k} + \dots + a_{kk}A_{kk} + \dots + a_{nk}A_{nk}}_{=\Delta}) + \dots$$

$$+ x_{n}(\underbrace{a_{1n}A_{1k} + a_{2n}A_{2k} + \dots + a_{nn}A_{nk}}_{=0}) = b_{1}A_{1k} + b_{2}a_{2k} + \dots + b_{n}A_{nk}.$$

Забележете, че всички изрази в скобите, с изключение на k-тия са равни на нула а k-тият е равен на детерминантата Δ , съгласно последното твърдение. В такъв случай окончателно имаме

$$\Delta x_k = b_1 A_{1k} + b_2 a_{2k} + \dots + b_n A_{nk}. \tag{2}$$

Нека сега разгледаме детерминантата от ред n

$$\Delta_k = \begin{vmatrix} a_{11} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & \dots & b_2 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & b_n & \dots & a_{nn} \end{vmatrix},$$

чийто k-ти стълб се състои от числата b_1, b_2, \ldots, b_n . Тя се различава от Δ само по k-тия си стълб и следователно адюнгираните й количества по него са същите, както за k-тия стълб на Δ , т.е. $A_{1k}, A_{2k}, \ldots, A_{nk}$. Следователно $\Delta_k = b_1 A_{1k} + b_2 a_{2k} + \cdots + b_n A_{nk}$ и уравнение (2) може да се запише във вида

$$\Delta x_k = \Delta_k$$

където Δ_k е детерминантата от ред n, като k-тия стълб на Δ се замени със стълба от свободните членове на системата b_1, b_2, \ldots, b_n . Тези разсъждения са в сила за всяко $k=1,2,\ldots,n$. Сега, ако предположим, че $\Delta \neq 0$ получаваме равенствата

$$x_1 = \frac{\Delta_1}{\Delta}, x_2 = \frac{\Delta_2}{\Delta}, \dots, x_n = \frac{\Delta_n}{\Delta}$$

като единствено решение на системата линейни уравнения. Горните формули се наричат *формули на Крамер*. Ще извършим проверка, с която

ще установим, че тези формули наистина дават решение на системата. Нека вземем i-тото уравнение на системата

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$$

или записано по друг начин

$$\sum_{k=1}^{n} a_{ik} x_k = b_i.$$

Имаме още, че

$$x_k = \frac{\Delta_k}{\Delta} = \frac{1}{\Delta}(b_1 A_{1k} + b_2 A_{2k} + \dots + b_n A_{nk}) = \frac{1}{\Delta} \sum_{j=1}^n b_j A_{jk}.$$

Заместваме този израз за x_k в i-тото уравнение и получаваме

$$\sum_{k=1}^{n} \left(\frac{1}{\Delta} \sum_{j=1}^{n} b_{j} A_{jk} \right) = \frac{1}{\Delta} \sum_{k=1}^{n} \sum_{j=1}^{n} a_{ik} b_{j} A_{jk}$$
$$= \frac{1}{\Delta} \sum_{j=1}^{n} b_{j} \left(\sum_{k=1}^{n} a_{ik} A_{jk} \right) = \frac{1}{\Delta} \sum_{j=1}^{n} b_{j} \Delta \delta_{ij} = \frac{1}{\Delta} \Delta b_{i} = b_{i}.$$

По този начин проверихме, че x_1, x_2, \ldots, x_n , зададени с формулите на Крамер удовлетворяват произволно уравнение на системата линейни уравнения. В случаят, когато $b_1 = b_2 = \cdots = b_n = 0$ системата се нарича хомогенна. Тогава тя винаги има решение и то е $x_1 = x_2 = \cdots = x_n = 0$. Ако $\Delta \neq 0$, то това решение е единствено.