Udowodnimy, że język

$$L = (\{a^n b^n : n \in \mathbb{Z}^+ \cup \{0\}\})^*$$

nie jest rozpoznowany przez żaden automat ze stosem pracujący w skończenie wielu fazach.

Na początek udowodnimy, że  $L \in CFL$ . Weźmy gramatykę  $\mathcal{G} = (\{a,b\},\{S,T\},P,S)$  z produkcjami:

- $S \longrightarrow SS \mid T \mid \varepsilon$ ,
- $T \longrightarrow aTb \mid \varepsilon$ .

Łatwo widać, że gramatyka  $\mathcal{G}$  opisuje język L, jednak nie będziemy zagłębiać się w szczegóły. Wynika z tego, że  $L \in CFL$ .

Przypuśćmy nie wprost, że istnieje automat ze stosem  $\mathcal{A}$  o zbiorze stanów Q i zbiorze symboli stosowych  $\Gamma$ , działający w co najwyżej k fazach, rozpoznający język L. Przez resztę rozwiązania zadania będziemy działać na słowie  $w = \left(a^X b^X\right)^Y \in L$ , gdzie  $X = 21 \cdot |Q| \cdot |\Gamma| + 37$ , a  $Y = 69 \cdot k \cdot X + 420$ .

Wprowadźmy następujące definicje:

- dlugością fazy nazwiemy liczbę przejść, które dana faza zawiera, przy czym uwzględniamy tutaj zarówno przejścia po literach czytanego słowa, jak i  $\varepsilon$ -przejścia;
- zmianą fazy nazwiemy wartość bezwzględną różnicy rozmiaru stosu na początku i na końcu fazy.

## Lemat 1

W biegu akceptującym automatu  $\mathcal{A}$  po słowie w, w ramach jednej fazy nie może być ciągu |Q| kolejnych przejść niezmieniających stosu. Zakładamy przy tym, że wspomniany bieg nie ma  $\varepsilon$ -przejść niezmieniających stanu ani stosu, ponieważ gdyby miał, to możnaby je usunąć.

## Dowód Lematu 1

Przypuśćmy nie wprost, że w pewnej fazie wystąpiło |Q| kolejnych przejść niezmieniających stosu. Wówczas z Zasady Szufladkowej Dirichleta wynika, że wśród tych przejść pewien stan q wystąpił co najmniej 2 razy, ponieważ łącznie automat przeszedł przez |Q|+1 stanów. Jeśli od pierwszego do drugiego znalezienia się w stanie q automat wykonał same  $\varepsilon$ -przejścia, to nie miały one sensu, ponieważ nie się nie zmieniło, możemy więc założyć, że słowo wczytane w tym okresie jest niepuste. Łatwo widać, że słowo to można napompować, a ponieważ ma ono długość co najwyżej |Q|, to z pewnością nie jest ono postaci  $\left(a^Xb^X\right)^m$ , dla pewnego  $m\in\mathbb{Z}^+$ , zatem na skutek tego pompowanie powstanie nowe słowo nienależące do L, po którym będzie istniał bieg akceptujący automatu  $\mathcal{A}$ . Otrzymana sprzeczność kończy dowód lematu.

## Lemat 2

Jeśli faza ma długość 
$$n$$
, to jej zmiana należy do przedziału  $\left[\left\lfloor\frac{n}{|Q|}\right\rfloor,n\right]$ .

Lemat ten jest bezpośrednim wnioskiem z lematu 1.

Zauważmy, że w biegu akceptującym automatu  $\mathcal{A}$  po słowie w musi istnieć faza push długości co najmniej 3X, co wynika z doboru stałej Y, ponieważ w przeciwnym wypadku z lematu

2 musiałby być wykonany pop na pustym stosie. W trakcie tej fazy wczytany więc zostanie pełny blok  $b^X$ . Z doboru stałej X oraz Zasady Szufladkowej Dirichleta wynika, że w trakcie przechodzenia tej fazy przez blok  $b^X$  dwa razy wystapi moment, że aktualny stan to pewne q, a aktualny symbol na szczycie stosu to pewne s. Ponownie, wczytane słowo pomiędzy tymi dwoma momentami jest niepuste, a dodatkowo ma długość co najwyżej  $|Q| \cdot |\Gamma|$ . Stos natomiast powiekszy sie o pewne słowo v długości również co najwyżej  $|Q| \cdot |\Gamma|$ , którego ostatnia litera to oczywiście s.



Chcemy teraz podwoić fragment przeczytany pomiędzy dwoma opisanymi w poprzednim akapicie momentami. Oczywiście skutkiem takiego podwojenia będzie uzyskanie nowego słowa  $w' \notin L$ . Rozważmy dwa przypadki:

- 1. Symbol s do końca biegu automatu pozostaje na stosie. Latwo wówczas zauważyć, że słowo w' zostanie zwyczajnie zaakceptowane przez automat  $\mathcal{A}$ , ponieważ podwojony fragment dopisuje tylko słowo v do stosu, a skoro litera bezpośrednio pod tym słowem nie zostanie zdjęta, to z perspektywy automatu nie będzie różnicy.
- 2. W przeciwnym wypadku, w dalszej części biegu automatu istnieje spójny fragment ciągu przejść odpowiadający za zdjecie ze stosu słowa v. Bardziej formalnie, na początku tego ciagu stos jest postaci  $pref \cdot v$ , a na koniec po prostu pref. W trakcie natomiast na stosie mogą być wykonywane zarówno operacji push, jak i pop. Zmodyfikujmy słowo w' tak, aby ten drugi fragment również był podwojony. Słowo to dalej nie należy do języka L, ponieważ nie zgadza się liczba liter b w tym pierwszym podwojonym fragmencie (w drugim może być cokolwiek, istotne jest to, że występuje on później). Tak jak w poprzednim przypadku, z perspektywy automatu nie będzie różnicy i ponownie będzie wykonywał takie przejścia jak w biegu akceptującym po słowie w, w oparciu jedynie o aktualny stan, aktualną literę i aktualny symbol na szczycie stosu.

Z powyższego wynika, że automaty ze stosem pracujące w skończenie wielu fazach nie rozpoznają wszystkich języków bezkontekstowych (w szczególności L), co kończy rozwiązanie zadania.