

PROCESAMIENTO DE SEÑALES E IMÁGENES DIGITALES

IEE239

INGENIERÍA MECATRÓNICA

Facultad de Ciencias e Ingeniería

¿Qué es Procesamiento Digital de Imágenes?

Fotografía digital producida en 1921 por una cinta codificada para telegrafía impresa.

Tomado de: Digital Image Processing. R.C. Gonzalez y R. Woods.

¿Dónde se aplica PDI?

Agricultura

https://www.deidiagnostico.com/wp-content/uploads/2016/03/caso-66-rx-tc3b3rax-inicial.jpg

(a) Imagen microscópica de bacilos de TBC. (b) Ataque de Oidium en Mangos.

¿Dónde se aplica PDI?

Seguridad

https://www.tribunasoria.com/images/images/scanner-aeropuerto.jpg

Industria

b d f

FIGURE 1.14
Some examples of manufactured goods often checked using digital image processing. (a) A circuit board controller. (b) Packaged pills (c) Bottles. (d) Bubbles in clear-plastic

clear-plastic product. (e) Cereal. (f) Image of intraocular implant. (Fig. (f) courtesy of Mr. Pete Sites, Perceptics Corporation.)

Fuente: Digital Image Processing. R.C. Gonzalez y R. Woods.

Formación de Imagen

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Digital Image Processing. R.C. Gonzalez y R. Woods.

Fuente:

Energía Acústica

Onda Longitudinal:

https://www.lifeder.com/wp-content/uploads/2019/08/ondas-longitudinales-1.jpg

Energía Acústica

https://www.researchgate.net/profile/Angeles_Sanchez/publication/313875152/figure/fig1/AS:654071442718733@1532954192467/Intervalo-de-frecuencias-de-ondas-de-sonido-Cheng-et-al-2015.png

Energía Electromagnética

Fuente:

Digital Image Processing. R.C. Gonzalez y R. Woods.

Cuerpo Negro

Poder de emisivo espectral:

$$E(\lambda,T) = \frac{C_1}{\lambda^5 (e^{\frac{C_2}{\lambda T}}-1)};$$

donde:

•
$$C_1 = 8\pi hc$$
 y $C_2 = \frac{hc}{k}$

- h: Constante de Planck
- c: Velocidad de la luz
- k: Constante de Boltzmann
- *T*: Temperatura del cuerpo negro
- λ : Longitud de onda

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a2/Wiens_law.svg/800px-Wiens_law.svg.png

LED

• Espectro del LED blanco, rojo y ámbar.

(RELATIVE LUMINOUS INTENSITY)

RELATIVE LUMINOUS INTENSITY VS.

WAVELENGTH.

https://www.cree.com/led-components/media/documents/XLampXTE.pdf

https://www.cree.com/led-components/media/documents/C503B-RAS-RAN-AAS-AAN-RBS-RBN-ABS-ABN-RCS-RCN-ACS-ACN-1079.pdf

Objeto de Muestra

Reflactancia (ρ): Es la capacidad de reflejar la luz de las superficies. Es el cociente entre el flujo luminoso reflejado y el flujo luminoso incidente

$$\rho = \frac{\emptyset_r}{\emptyset_i}$$

<u>Transmitancia</u> (τ): Capacidad de las superficies de transmitir luz. Es el cociente entre el flujo luminoso transmitido y el flujo luminoso que incide sobre el objeto.

$$\tau = \frac{\emptyset_t}{\emptyset_i}$$

Objeto de Muestra

Absortancia (α): Es el cociente entre el flujo absorbido y el flujo incidente.

$$\alpha = \frac{\emptyset_a}{\emptyset_i}$$

Cociente de Emisividad (ϵ): Es el cociente entre el flujo luminoso emitido por el objeto y el flujo luminoso que sería emitido por un cuerpo negro a la misma temperatura y longitud de onda.

El Ojo Humano

- Los bastones son fotorreceptores que funcionan mejor con poca luz y de mayor número (aproximadamente 92 millones) que lo conos.
- Los conos son los responsables de ver el color, trabajando en entornos de mucha iluminación.

https://www.blueconemonochromacy.org/wp-content/uploads/2011/02/1_ES.jpg

Adquisición de Imágenes

FIGURE 2.3

Graphical representation of the eye looking at a palm tree. Point *C* is the optical center of the lens.

Digital Image Processing. R.C. Gonzalez y R. Woods.

$$focal_length = \frac{sensor_size \times working_dist.}{field_of_view + sensor_size}$$

Adquisición de Imágenes

La Cámara Digital

Adquisición de Imágenes

Fuente:

Digital Image Processing. R.C. Gonzalez y R. Woods.

Tomado de: https://www.ptgrey.com/white-paper/id/10912

Adquisición de Imágenes

Digital Image Processing. R.C. Gonzalez y R. Woods.

- Una imagen digital es una matriz de dos dimensiones donde cada dato viene a ser un PÍXEL.
- Cada píxel tendrá una representación que dará la información de brillo y/o color.
- Son importantes : la dimensión y la cantidad de colores o tonos de gris.

Componentes de un Sistema de PDI

Adquisición de Imágenes

 $0 < f(x,y) < \infty$ Iluminación: i(x,y)Reflectancia: r(x,y)Trasmisibilidad.

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Digital Image Processing. R.C. Gonzalez y R. Woods.

Muestreo y Cuantificación

Digital Image Processing. R.C. Gonzalez y R. Woods.

Muestreo y Cuantificación

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Digital Image Processing. R.C. Gonzalez y R. Woods.

Resolución Espacial

Siglas	Nombre	Resolución	Descripción
SD	Standard Definition	640x480 px	Uno de los primeros estándares de baja resolución. También se conoce como VGA.
HD	High Definition	1280x720 px	Es el primer estándar de alta resolución, también conocido como 720p.Es la primera resolución considerada HD.
FHD	Full HD	1920x1080 px	También conocida como 1080p, es el estándar de alta definición total.
UHD	Ultra HD	3840x2160 px	Conocido como 4K o también como 2160p. Es un estándar de alta resolución muy superior al Full HD, y que poco a poco se empieza a convertir en lo normal en televisores de gamas medias y altas.

Resolución Espacial

• El muestreo determinará con que resolución se ha digitalizado la imagen.

Niveles de Gris

- La cuantificación establece cuantos niveles de gris se usan en una imagen.
- Se toma a cero como el nivel más oscuro (negro) y el nivel más alto el tono más brillante (blanco).
- Esto dependerá de cuanta información se desea almacenar.

Color en la Imagen

- Para representar colores se usa una descomposición de 3 colores básicos.
- RGB Rojo Verde Azul.
- Para cada uno se tienen 256 tonos o brillos.
- Esto significa que se necesitarán para un pixel 3 bytes. Es decir 24 bits.
- Entonces son posibles hasta 16'777,216 colores

Almacenamiento de Imágenes

a b c

- (a) Imagen a Color,
- (b) Imagen en niveles de gris y
- (c) Imagen binaria.

Geometría Primitiva: Puntos-2D

- Los puntos-2D se refiere a las coordenadas de los puntos en la imagen.
- Los puntos-2D se denotan como $x=(x,y)\in\mathbb{R}^2$, o como $x=\begin{bmatrix}x\\y\end{bmatrix}$.
- El punto también se puede representar usando coordenadas homogéneas, $\tilde{x} = (\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^2$. Donde $\mathcal{P}^2 = \mathbb{R}^3 (0,0,0)$ es la proyección del espacio en 2D.
- Un vector homogéneo \tilde{x} puede convertirse en un vector heterogéneo x, dividiendo por el último componente \tilde{w} :
- $\widetilde{\mathbf{x}} = (\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}, \widetilde{\mathbf{w}}) = \widetilde{\mathbf{w}}(\mathbf{x}, \mathbf{y}, \mathbf{1}) = \widetilde{\mathbf{w}}\overline{\mathbf{x}}$
- Donde $\overline{x} = (x, y, 1)$ es el vector aumentado. Los puntos homogéneos cuyo elemento $\widetilde{w} = 0$ son llamados puntos ideales o puntos en el infinito y no tienen representación equivalente heterogéneo.

Geometría Primitiva: Líneas-2D

- Líneas en 2D también se pueden representar con coordenadas homogéneas $\hat{\ell}=(a,b,c)$.
- La ecuación de la línea es:
- \overline{x} . $\tilde{\ell} = ax + by + c = 0$
- Se puede normalizar el vector de la ecuación de línea $\ell = (\hat{n}_x, \hat{n}_y, d) = (\hat{n}, d)$, con $||\hat{n}|| = 1$. En este caso, \hat{n} es el vector normal perpendicular a la línea y d es la distancia al origen.
- "La excepción a la normalización es la línea en el infinito $\tilde{\ell}=(0,0,1)$, que incluye todos (ideal) los puntos en el infinito".
- También se puede expresar \hat{n} como una función de rotación con ángulo θ , $\hat{n} = (\hat{n}_x, \hat{n}_y) = (cos\theta, sen\theta)$. θ y d son conocidos como coordenadas polares.

Tomado de: Computer Vision: Algorithms and Applications. R. Szeliski.

2D Transformations

Tomado de: Computer Vision: Algorithms and Applications. R. Szeliski.

2D Transformations

Traslation

2D translations can be written as x' = x + t, where $x = \begin{bmatrix} x \\ y \end{bmatrix}$. Also $x' = \begin{bmatrix} I & t \end{bmatrix} \overline{x}$

Where I is the (2x2) identity matrix or

$$\overline{x}' = \begin{bmatrix} I & t \\ \mathbf{0}^T & 1 \end{bmatrix} \overline{x}$$

Where 0 is the zero vector.

2D Transformations

• Rotation + translation: x' = Rx + t or $x' = [R \ t]\overline{x}$

Where

$$\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

• Scaled Rotation: x' = sRx + t. It can also be written as $x' = [sR \ t]\overline{x}$

Relaciones Básicas entre Píxeles

Vecindad de un píxel

• Un píxel p en las coordenadas (x, y) tiene 4 vecinos horizontales y verticales, $N_4(p)$, cuyas coordenadas están dadas por:

$$(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$$

• Los 4 vecinos diagonales de p, $N_D(p)$, tienen las coordenadas:

$$(x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1)$$

Adyacencia, Conectividad, Regiones y Fronteras

- Sea V el conjunto de valores de intensidad usado para definir la adyacencia.
- Adyancia-4. 2 Píxeles, p y q, con valores de V son adyacente-4 si q está dentro de $N_4(p)$.

Relaciones Básicas entre Píxeles

Conectividad

• Un camino (digital) desde el píxel p, con coordenadas (x, y), al píxel q, con coordenadas (s, t), es una secuencia de distintos píxeles con coordenadas

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

• Sea S el subconjunto de píxeles de una imagen. Dos píxeles p y q se dicen que están conectados dentro de S si existe un camino entre ellos que pertenecen enteramente de píxeles en S. Para cualquier píxel en S, al conjunto de píxeles que están conectado a dicho píxel en S se le llama un componentes conectado en S.

Regiones

• Sea R un subconjunto de píxeles en una imagen. A R le llamamos una región si R es un conjunto conectado.

Frontera

• La frontera de una región (también llamado borde o contorno) es el conjunto de puntos que son adyacentes a los puntos del complemento de R, R^c .

Relaciones Básicas entre Píxeles

Medida de Distancia

• Para los píxeles p, q y z, con coordenadas (x,y), (s,t) y (v,w), respectivamente, D es la distancia o métrica si:

$$D(p,q) \ge 0 \quad (D(p,q) = 0 \text{ si } p = q)$$

$$D(p,q) = D(q,p)$$

$$D(p,z) \le D(p,q) + D(q,z)$$

Distancia Euclidiana:

Distancia D_4 (city-block)

Distancia D_8 (chessboard)

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

$$D_4(p,q) = |x - s| + |y - t|$$

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

