Prüfung

- 1. (5 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind. (In dieser Aufgabe brauchen Sie Ihre Antworten *nicht* zu begründen.)
 - (a) Der Körper der komplexen Zahlen kann nicht angeordnet werden.
 - (b) Jede beschränkte Folge in einem metrischen Raum enthält eine konvergente Teilfolge.
 - (c) Ist die Reihe $\sum_{k=0}^{\infty} a_k$ konvergent in \mathbb{R} , dann auch die Reihe $\sum_{k=0}^{\infty} |a_k|$.
 - (d) Jede differenzierbare Funktion $f \colon [0,1] \to [0,1]$ ist gleichmässig stetig.
 - (e) Hat ein Polynom $f: \mathbb{R} \to \mathbb{R}$ eine lokale Extremstelle in $c \in \mathbb{R}$, so gilt f'(c) = 0.
- 2. (4 Punkte)
 - (a) Definieren Sie: eine Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} konvergiert gegen $a\in\mathbb{R}$.
 - (b) Beweisen Sie: sind $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen in \mathbb{R} , so auch $(a_n+b_n)_{n\in\mathbb{N}}$ mit

$$\lim_{n\to\infty}(a_n+b_n) = \lim_{n\to\infty}a_n + \lim_{n\to\infty}b_n.$$

- 3. (6 Punkte) Untersuchen Sie die Konvergenz folgender Reihen (mit $z \in \mathbb{C}$):
 - (a) $\sum_{k=1}^{\infty} \frac{2^k}{2^{k+1}+1}$
 - (b) $\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{\ln(k+1)}$
 - (c) $\sum_{k=1}^{\infty} \frac{k^3}{2^k}$
 - (d) $\sum_{k=1}^{\infty} (2z-1)^{2k}$.

4. (6 Punkte)

- (a) Definieren Sie: eine Funktion $f\colon \mathbb{C} \to \mathbb{C}$ ist stetig in einem Punkt $a\in \mathbb{C}$.
- (b) Zeigen Sie: die folgende komplexe Funktion ist überall stetig, aber nirgends differenzierbar:

$$g: \mathbb{C} \to \mathbb{C}; \quad z \mapsto \bar{z}.$$

(c) Zeigen Sie: die folgende reelle Funktion hat genau eine Nullstelle:

$$h \colon \mathbb{R} \to \mathbb{R}; \quad x \mapsto 2x + \sin(x) + 3.$$

Hinweis: Benutzen Sie den Zwischenwertsatz und den Satz von Rolle.

5. (4 Punkte) Bestimmen Sie:

(a)
$$\int_{0}^{1} x \sin(\pi x^{2}) \, \mathrm{d}x$$

(b)
$$\int_{0}^{\pi} x^2 \sin(2x) \, \mathrm{d}x.$$