Sample Size (7.4),
Confidence Intervals for Variance and Standard Deviation

Stat 400 - April 1, 2021

Today's topics

Review:

Chi Squared Distribution, t distribution, CI for mean

New:

- Confidence Interval for variance (or sd)
- Required Sample Size

Chi-squared distribution (review) χ^2

The Chi-Squared distribution is a special case of the Gamma distribution where $\theta = 2$.

Also, sum of squares of normal distributions

https://homepage.divms.uiowa.edu/~mbognar/applets/chisq.html

t distribution:

If σ is unknown: Use \boldsymbol{s} instead of σ

$$T = \sqrt{\frac{\bar{X} - \mu}{s / \sqrt{n}}} \sim t_{n-1}$$

if I "standardize" the sample mean using 's' instead of 'o'.

t distribution

Theorem 5.5-3

(Student's t distribution) Let

$$T = \frac{Z}{\sqrt{U/r}},$$

where Z is a random variable that is N(0,1), U is a random variable that is $\chi^2(r)$, and Z and U are independent. Then T has a t distribution with pdf

$$f(t) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \frac{1}{(1+t^2/r)^{(r+1)/2}}, \quad -\infty < t < \infty.$$

If interested, please refer to textbook for proof. (You are not expected to know how to do it).

α₂ 1-α α₂ α₂ -t α/2

Review: CI for mean

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 92% confidence interval for the true mean.

$$\bar{x}=15$$
,

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{112}{7} = 16,$$

$$\alpha = 0.08, \alpha/2 = 0.04$$

df = n -1 = 7,
$$t_{7,0.04} = 2.046$$

CI: **15**
$$\pm$$
 2.046 $\cdot \frac{4}{\sqrt{8}}$ = (12.107, 17.893)

$$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
.

x	$x-\overline{x}$	$(x-\overline{x})^2$
16	1	1
12	-3	9
18	3	9
13	-2 6	4
21	6	36
15	0	0
8	-7	49
17	2	4
	0	112

General Form of Confidence Interval

Estimate ± (Critical Value * SE of estimate)

e.g. if σ is known:

$$\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

if σ is unknown:

$$\bar{x} \pm t_{n-1,\alpha/2} * \frac{s}{\sqrt{n}}$$

Required Sample Size

$$\bar{x} \pm z_{\alpha/2} * \frac{\sigma}{\sqrt{n}}$$

$$n = \left[\frac{z_{\alpha/2} * \sigma}{\varepsilon}\right]^2$$

Required Sample Size

How many test runs of an automobile are required for determining its average miles-per-gallon rating on the highway to within 0.5 miles per gallon with 99% confidence? Suppose that the variance of the population in mpg² is 6.25.

$$n = \left[\frac{z_{\alpha/2} * \sigma}{\varepsilon}\right]^{2}$$

$$\alpha = 0.01 \quad z_{\alpha/2} = 2.576$$

$$= 165.89 \quad n = 166$$

Confidence Interval for σ^2

Now we want to make a confidence interval for σ^2 based on s^2 .

The distribution of s² is not Normal.

It can be shown that $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{(n-1)}$ will not need to prove this

Proof of
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (\chi_i \cdot \bar{\chi})^2$$

- Assume $\int_{2. \text{ If } Z}^{1. \bar{X} \text{ (th)}}$
 - 1. $ar{X}$ (the sample mean) and S^2 are independent.
 - 2. If $Z \sim N(0,1)$ then $Z^2 \sim \chi^2(1)$.
 - 3. If $X_i \sim \chi^2(1)$ and the X_i are independent then $\sum_{i=1}^n X_i \sim \chi^2(n)$.

4. A
$$\chi^2(n)$$
 random variable has the moment generating function $(1-2t)^{-n/2}$.

With some algebra, you can show, by adding $-\bar{X} + \bar{X}$ inside the parentheses and grouping appropriately, that $\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2$. Then, dividing through by σ^2 yields

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma} \right)^2 + \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \right)^2.$$

Denote these expressions by U,V, and W, respectively, so that the formula reads U=V+W. By facts (2) and (3) above, $U\sim \chi^2(n)$ and $W\sim \chi^2(1)$. Also, $V=\frac{(n-1)S^2}{\sigma^2}$.

Since \bar{X} and S^2 are independent, so are V and W. Thus $M_U(t) = M_V(t)M_W(t)$, where $M_X(t)$ denotes the moment generating function of the random variable X. By fact (4) above, this says that

$$\frac{1}{(1-2t)^{n/2}} = M_V(t) \frac{1}{(1-2t)^{1/2}}.$$

$$M_{\nu}(t) = \frac{1}{(1-2t)^{(n-1)/2}}$$

$$\frac{(n-1)5^2}{\sigma^2} \sim \chi^2_{(n-1)} e.g. \chi^2_{(10)}$$

Derivation of CI for Variance

$$\frac{(h-1)5^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

$$f(x)$$

$$P\left[\chi_{n-1, |-1/2}^{2} \subset \frac{(n-1)^{\frac{2}{5}}}{\sigma^{2}} \subset \chi_{n-1, |-1/2}^{2}\right] = |-1|$$

$$P\left[\frac{\chi^{2}_{n-1,1-d/2}}{(n-1)}\right]^{2} \leq \frac{\chi^{2}_{n-1,d/2}}{(n-1)} = |-d| \Rightarrow P\left[\frac{(n-1)}{\chi^{2}_{n-1,d/2}}\right]^{2} = |-d| \Rightarrow P\left[\frac{(n-1)}{\chi^{2}_{n-1,d/2}}\right]^{2}$$

Confidence Interval for σ^2

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

Confidence Interval for σ^2 :

$$\left(\frac{(n-1)\cdot s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)\cdot s^2}{\chi_{1-\alpha/2}^2}\right)$$

CI for Variance

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 95% CI for the true variance.

$$s^2=16$$
 $\alpha = 0.05$ $\alpha/2 = 0.025$ $1-\alpha/2 = 0.975$ $df = 7$

$$\chi^2_{(7, 0.025)} = 16.013 \ \chi^2_{(7, 0.975)} = 1.690$$

$$\left(\frac{(8-1)16}{16.013}, \frac{(8-1)16}{16.013}\right) = (6.996, 66.272)$$

1-sided Confidence Intervals for σ^2

95% confidence lower bound:

$$\left(\frac{(n-1)s^2}{\chi^2_{(df,\alpha)}},\infty\right)$$

95% confidence upper bound:

$$\left(-\infty, \frac{(n-1)s^2}{\chi^2_{(df,1-\alpha)}}\right)$$