MSAS Tutorial Sequence -Module Five-

WRITTEN BY GARRETT FOLBE

GAME TIME

Goals of Today

- 1. Data cleaning
- 2. More row operations
- 3. Getting information from your data
 - 1. Column information operations
 - 2. Data Visualizations
- 4. Ideas for the last tutorial?

Cleaning Data

WHY DO WE NEED TO DO IT?

Values Out of Range

```
# Create a copy of passing (need to use the copy function in order to create a new dataframe)
best_ratio = passing_stats.copy(deep=True)
# If we do not use the copy function, changing our new table will also change our original (which we don't want!!!)
best_ratio["TD Ratio"] = round(best_ratio["TD"] / best_ratio["Int"], 2)
best_ratio = best_ratio.sort_values("TD Ratio", ascending = False)
best_ratio.head()
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk	TD Ratio
105	106	Albert Wilson	MIA	26	wr	7	3	1	1	100.0	52	1	0	52.0	52.0	7.4	158.3	99.7	0	inf
74	75	Mohamed Sanu	ATL	29	WR	16	16	1	2	50.0	5	1	0	2.5	5.0	0.3	95.8	32.3	0	inf
84	85	Kevin Byard	TEN	25	FS	16	16	1	1	100.0	66	1	0	66.0	66.0	4.1	158.3	NaN	0	inf
81	82	Chris Boswell	PIT	27	K	15	0	1	1	100.0	2	1	0	2.0	2.0	0.1	118.7	NaN	0	inf
77	78	Danny Amendola	MIA	33	WR	15	15	1	1	100.0	28	1	0	28.0	28.0	1.9	158.3	100.0	0	inf

Invalid/Unwanted Data

```
best_completions = passing_stats.sort_values("Cmp%", ascending = False)
best_completions.head()
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
105	106	Albert Wilson	MIA	26	wr	7	3	1	1	100.0	52	1	0	52.0	52.0	7.4	158.3	99.7	0
94	95	Sam Koch	BAL	36	Р	16	0	1	1	100.0	21	0	0	21.0	21.0	1.3	118.7	11.8	0
70	71	Odell Beckham	NYG	26	WR	12	12	2	2	100.0	106	2	0	53.0	53.0	8.8	158.3	NaN	0
71	72	Julian Edelman	NWE	32	WR	12	12	2	2	100.0	43	0	0	21.5	21.5	3.6	118.7	94.3	0
76	77	Nelson Agholor	PHI	25	WR	16	16	1	1	100.0	15	0	0	15.0	15.0	0.9	118.7	100.0	0

Filtering

- Most of these cleaning operations can be taken care of simply by using inequalities
 - We learned this last module
 - Check if the position is a quarterback
 - Set a threshold for the number of passes thrown
 - Set a threshold for the number of games thrown/started
- We can exclude these rows from our dataset simply because we do not need them
- But what about the rows where values are undefined?

Missing values

In [41]: 🗡			stats = pd.read_ stats	excel	("nf]	l_stat	s.x	lsx")												
	85	86	Iarık Cohen*+	CHI	23	rb/wr	16	1	1	1	100.0	1	1	0	1.0	1.0	0.1	118./	100.0	0
	86	87	Logan Cooke	JAX	23	Р	16	0	1	1	100.0	4	0	0	4.0	4.0	0.3	83.3	NaN	0
	87	88	Eric Ebron*	IND	25	te/wr	16	8	0	1	0.0	0	0	0	0.0	NaN	0.0	39.6	0.0	0
	88	89	Bruce Ellington	2TM	27	NaN	7	3	0	1	0.0	0	0	0	0.0	NaN	0.0	39.6	NaN	0
	89	90	Larry Fitzgerald	ARI	35	WR	16	16	1	1	100.0	32	1	0	32.0	32.0	2.0	158.3	100.0	0
	90	91	Dontrell Hilliard	CLE	23	NaN	11	0	0	1	0.0	0	0	1	0.0	NaN	0.0	0.0	0.0	0
	91	92	DeAndre Hopkins*+	HOU	26	WR	16	16	0	1	0.0	0	0	0	0.0	NaN	0.0	39.6	2.9	0
	92	93	Darius Jennings	TEN	26	NaN	16	0	1	1	100.0	21	0	0	21.0	21.0	1.3	118.7	99.9	0
	93	94	Zay Jones	BUF	23	WR	16	15	0	1	0.0	0	0	0	0.0	NaN	0.0	39.6	0.0	0
	94	95	Sam Koch	BAL	36	Р	16	0	1	1	100.0	21	0	0	21.0	21.0	1.3	118.7	11.8	0
	95	96	Christian McCaffrey	CAR	22	RB	16	16	1	1	100.0	50	1	0	50.0	50.0	3.1	158.3	100.0	0
	96	97	Anthony Miller	CHI	24	wr	15	4	1	1	100.0	8	0	0	8.0	8.0	0.5	100.0	81.2	0
	97	98	Matt Prater	DET	34	K	16	0	1	1	100.0	8	1	0	8.0	8.0	0.5	139.6	NaN	0
	98	99	Emmanuel Sanders	DEN	31	WR	12	12	1	1	100.0	28	1	0	28.0	28.0	2.3	158.3	100.0	0

"NaN" Values

- An "NaN" value is a value that is undefined
- Stands for "Not a Number"
 - Usually placeholders for cells that were left empty in the original DataFrame
 - Can also be used to represent division by zero in some cases
- Why do we care about NaN values?
 - Disruptive to our DataFrame
 - Messes up operations on a series we want to do

Why are NaN values so bad???

```
# fails because NaN values exist
all qbs = passing stats[passing stats["Pos"].str.contains("qb")]
ValueError
                                          Traceback (most recent call las
<ipython-input-94-47b7ff64c0cb> in <module>
     1 # fails because NaN values exist
----> 2 all qbs = passing stats[passing stats["Pos"].str.contains("qb")]
~\Anaconda3\lib\site-packages\pandas\core\frame.py in getitem (self, k
ey)
   2915
   2916
                # Do we have a (boolean) 1d indexer?
                if com.is bool indexer(key):
-> 2917
                    return self. getitem bool array(key)
   2918
   2919
~\Anaconda3\lib\site-packages\pandas\core\common.py in is bool indexer(ke
y)
                    if not lib.is bool array(key):
    122
                        if isna(key).any():
    123
                            raise ValueError(na msg)
--> 124
                        return False
    125
    126
                    return True
ValueError: cannot index with vector containing NA / NaN values
```

Locate rows with NaN values

```
# Find the rows that have missing values
# Allows you to get a better feel for the types of errors that are ocurring
nan_rows = passing_stats[passing_stats.isnull().any(axis=1)]
nan_rows.head(10)
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
50	51	DeShone Kizer	GNB	22	NaN	3	0	20	42	47.6	187	0	2	4.5	9.4	62.3	40.5	25.2	4
55	56	Mike Glennon	ARI	29	NaN	2	0	15	21	71.4	174	1	0	8.3	11.6	87.0	112.0	77.7	1
56	57	Matt Cassel	DET	36	NaN	2	0	7	17	41.2	59	0	1	3.5	8.4	29.5	26.3	8.8	1
57	58	Joshua Dobbs	PIT	23	NaN	5	0	6	12	50.0	43	0	1	3.6	7.2	8.6	24.0	58.0	0
59	60	Matt Schaub	ATL	37	NaN	3	0	5	7	71.4	20	0	0	2.9	4.0	6.7	74.1	60.6	0
60	61	Robert Griffin	BAL	28	NaN	3	0	2	6	33.3	21	0	0	3.5	10.5	7.0	44.4	2.1	0
61	62	Kyle Lauletta	NYG	23	NaN	2	0	0	5	0.0	0	0	1	0.0	NaN	0.0	0.0	0.1	0
62	63	Jacoby Brissett	IND	26	NaN	4	0	2	4	50.0	2	0	0	0.5	1.0	0.5	56.2	100.0	0
63	64	Johnny Hekker	LAR	28	Р	16	0	2	4	50.0	19	0	0	4.8	9.5	1.2	63.5	NaN	0
64	65	Geno Smith	LAC	28	NaN	5	0	1	4	25.0	8	0	0	2.0	8.0	1.6	39.6	0.7	1

Fill all NaN values

```
# Fill all NaN values with the same value
# Look at the 50th row (as seen in the previous cell) to see the effective changes
fill_zeros = passing_stats.fillna(0)
fill_zeros.loc[[50]]
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
50	51	DeShone Kizer	GNB	22	0	3	0	20	42	47.6	187	0	2	4.5	9.4	62.3	40.5	25.2	4

- When would filling all values with the same value be useful
 - If the entire table is comprised of strings, we can fill an NaN cell with an empty string
 - If the entire table is filled with integers, we can fill with a -1 and only check values that are positive
- Other than this, there aren't many use cases
 - It is better to be more specific in the ways you want to deal with NaN values
 - How can we do this?

Option #1 – Delete all rows with NaN values

```
# remove all rows with NaN values
removed_NaN = passing_stats[~passing_stats.isnull().any(axis=1)]
removed_NaN.head()
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
0	1	Ben Roethlisberger	PIT	36	QB	16	16	452	675	67.0	5129	34	16	7.6	11.3	320.6	96.5	71.0	24
1	2	Andrew Luck*	IND	29	QB	16	16	430	639	67.3	4593	39	15	7.2	10.7	287.1	98.7	69.4	18
2	3	Matt Ryan	ATL	33	QB	16	16	422	608	69.4	4924	35	7	8.1	11.7	307.8	108.1	68.5	42
3	4	Kirk Cousins	MIN	30	QB	16	16	425	606	70.1	4298	30	10	7.1	10.1	268.6	99.7	58.2	40
4	5	Aaron Rodgers*	GNB	35	QB	16	16	372	597	62.3	4442	25	2	7.4	11.9	277.6	97.6	54.4	49

removed_NaN.shape

(69, 19)

Make sure to restart the index!

removed_NaN.loc[50:60]

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
51	52	Mark Sanchez	WAS	32	qb	2	1	19	35	54.3	138	0	3	3.9	7.3	69.0	28.0	4.4	7
52	53	Kyle Allen	CAR	22	qb	2	1	20	31	64.5	266	2	0	8.6	13.3	133.0	113.1	96.4	0
53	54	Matt Barkley	BUF	28	qb	1	1	15	25	60.0	232	2	0	9.3	15.5	232.0	117.4	83.4	1
54	55	Teddy Bridgewater	NOR	26	qb	5	1	14	23	60.9	118	1	1	5.1	8.4	23.6	70.6	39.8	2
58	59	Taysom Hill	NOR	28	te/wr	16	4	3	7	42.9	64	0	1	9.1	21.3	4.0	36.3	41.1	1

Make sure to restart the index!

removed_NaN = removed_NaN.reset_index(drop=True)
removed_NaN.loc[50:60]

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
50	52	Mark Sanchez	WAS	32	qb	2	1	19	35	54.3	138	0	3	3.9	7.3	69.0	28.0	4.4	7
51	53	Kyle Allen	CAR	22	qb	2	1	20	31	64.5	266	2	0	8.6	13.3	133.0	113.1	96.4	0
52	54	Matt Barkley	BUF	28	qb	1	1	15	25	60.0	232	2	0	9.3	15.5	232.0	117.4	83.4	1
53	55	Teddy Bridgewater	NOR	26	qb	5	1	14	23	60.9	118	1	1	5.1	8.4	23.6	70.6	39.8	2
54	59	Taysom Hill	NOR	28	te/wr	16	4	3	7	42.9	64	0	1	9.1	21.3	4.0	36.3	41.1	1
55	68	Derrick Henry	TEN	24	RB	16	12	2	3	66.7	14	0	0	4.7	7.0	0.9	77.1	59.3	0
56	72	Julian Edelman	NWE	32	WR	12	12	2	2	100.0	43	0	0	21.5	21.5	3.6	118.7	94.3	0
57	74	Jarvis Landry*	CLE	26	WR	16	14	1	2	50.0	63	0	0	31.5	63.0	3.9	95.8	100.0	0
58	75	Mohamed Sanu	ATL	29	WR	16	16	1	2	50.0	5	1	0	2.5	5.0	0.3	95.8	32.3	0
59	77	Nelson Agholor	PHI	25	WR	16	16	1	1	100.0	15	0	0	15.0	15.0	0.9	118.7	100.0	0
60	78	Danny Amendola	MIA	33	WR	15	15	1	1	100.0	28	1	0	28.0	28.0	1.9	158.3	100.0	0
60	78	Danny Amendola	MIA	33	WR	15	15	1	1	100.0	28	1	0	28.0	28.0	1.9	158.3	100.0	0

Option #2, Fill each column differently

• The first step in this is to determine which columns have NaN values. This is done pretty easily using the following function

```
# Find out which columns have NaN values
passing_stats.columns[passing_stats.isna().any()].tolist()
['Pos', 'Y/C', 'QBR']
```

Option #2, Fill each column differently

```
# Set up a dictionary to hold the deafult values to fill NaN values
defaults = {
    "Pos" : "NA",
    "Y/C" : 0,
    "QBR" : 0
}
# Fill these values in the table
cleaned = passing_stats.fillna(defaults)
cleaned.loc[[50]]
```

	Rk	Player	Tm	Age	Pos	G	GS	Cmp	Att	Cmp%	Yds	TD	Int	Y/A	Y/C	Y/G	Rate	QBR	Sk
50	51	DeShone Kizer	GNB	22	NA	3	0	20	42	47.6	187	0	2	4.5	9.4	62.3	40.5	25.2	4

.

Final tips for data cleaning

- Always be sure to clean your data before doing any analysis
- Be mindful of the values you are removing from the table
 - Make sure you are aware of the consequences of removing or changing values
 - Excluding values that you should not be excluding can have adverse effects on your final analysis

Getting information from the table

- The next section of this module will focus on trends and visualizations
 - Not designed to be exhaustive, but rather point you in the right direction
- A lot of analysis is designed for you to determine what is important and what isn't
- Think about your goals before you start cleaning and visualizing!

Let's transition to a new dataset

- Every game log of the 2018 season for every player
- Open up a new jupyter notebook and read in the new file

```
import pandas as pd

df = pd.read_excel("nba_stats.xlsx")

df.head()
```

	Name	Player_Game_Number	Date	Age	Team	Location	Opponent	Result	GS	TP	 ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS	Plus
0	Álex Abrines	1	2018- 10-16	25- 076	OKC	Away	GSW	L (-8)	0	23:28	 0	2	2	0	0	0	0	2	8	
1	Álex Abrines	2	2018- 10-19	25- 079	OKC	Away	LAC	L (-16)	0	32:06	 1	1	2	1	1	0	2	0	10	
2	Álex Abrines	3	2018- 10-21	25- 081	OKC	Home	SAC	L (-11)	0	5:20	 0	1	1	2	0	0	0	0	0	
3	Álex Abrines	4	2018- 10-25	25- 085	OKC	Home	BOS	L (-6)	0	18:33	 0	1	1	1	0	0	0	2	6	
4	Álex Abrines	5	2018- 10-28	25- 088	OKC	Home	PHO	W (+7)	0	24:20	 0	1	1	0	2	0	0	2	2	

Let's understand the dataset

- What do the columns mean?
- What are the types of each column?
- What is the dataset telling me?
- What possible trends could I visualize?

Get information about a column

```
df["AST"].max()
24
```

```
df["AST"].describe()
count
         26101.000000
             2.317268
mean
std
             2,525151
min
             0.000000
25%
             0.000000
50%
             2.000000
75%
             3.000000
            24,000000
max
Name: AST, dtype: float64
```

```
        Mame
        Player_Game_Number
        Date
        Age
        Team
        Location
        Opponent
        Result
        GS
        TP
        ORB
        DRB
        TRB
        AST
        STL
        BLK
        TOV
        PF
        PT

        24962
        Russell Westbrook
        33
        2019- 059
        OKC
        Away
        SAS
        L (-7)
        1
        49:35
        ...
        2
        11
        13
        24
        2
        0
        3
        4
        2

        1 rows × 29 columns
```

Plotting

- At the top of your jupyter notebook, we will need to import a new library that allows you to plot data
 - import matplotlib.pyplot as plt
- This is not included in the pandas library
- Why are data visualizations important?
- Good tutorial: http://queirozf.com/entries/pandas-dataframe-plot-examples-with-matplotlib-pyplot

Bar Graphs

- Provide an x axis, y axis, and the type of graph you want to see
 In this case, the kind is "bar"
- What are bar graphs good for?
 - This example might not be the best idea for a bar graph
 - How can we make it better?

```
# This plot shows how many points he scored in each game
# It looks super congested!
plt = harden.plot(x="Date", y="PTS", kind="bar")
```


Bar Graph Part 2, Creating a smaller range

- Looking at every date in the season was too much. How about we narrow down our range to be smaller?
- Let's look at the first two weeks of December (arbitrary)
- Is there a way we can easily take our DataFrame to slice out this region?
 - Because the dates are stored as strings, it makes it difficult to compare using inequalities
 - How do we know if a date is in that range?
- We know the dates that we want are in the format: YYYY-MM-DD
 - We also know we want the dates of 2018-12-01 to 2018-12-14
 - How can we do this? For loop!

What is missing here?

```
# Let's look at a specific range of dates (first two weeks of decem
# Date format in the table is YYYY-MM-DD

dates = []
for day in range(14):
    date = "2018-12-" + str(day)
    dates.append(date)
print(dates)

[2018-12-0', '2018-12-1', '2018-12-2', '2018-12-3', '2018-12-4',
'2018-12-5', '2018-12-6', '2018-12-7', '2018-12-8', '2018-12-9',
'2018-12-10', '2018-12-11', '2018-12-12', '2018-12-13']
```

Fixed Code

```
# Lets fix the code in the previous cell
dates = []
for day in range(14):
    if day < 10:
        str_day = "0" + str(day + 1)
    else:
        str_day = str(day + 1)
    date = "2018-12-" + str_day
    dates.append(date)
print(dates)</pre>
```

```
['2018-12-01', '2018-12-02', '2018-12-03', '2018-12-04', '2018-12-05', '2018-12-06', '2018-12-07', '2018-12-08', '2018-12-0 9', '2018-12-010', '2018-12-11', '2018-12-12', '2018-12-13', '2018-12-14']
```

Fixed Bar Graph

```
# Lets replot our histogram
small_harden = harden[harden["Date"].isin(dates)]
small_harden
```

	Name	Player_Game_Number	Date	Age	Team	Location	Opponent	Result	GS	TP
18	James Harden	19	2018- 12-01	29- 097	HOU	Home	CHI	W (+16)	1	30:22
19	James Harden	20	2018- 12-03	29- 099	HOU	Away	MIN	L (-12)	1	37:01
20	James Harden	21	2018- 12-06	29- 102	HOU	Away	UTA	L (-27)	1	27:58
21	James Harden	22	2018- 12-08	29- 104	HOU	Away	DAL	L (-3)	1	36:39
22	James Harden	23	2018- 12-11	29- 107	HOU	Home	POR	W (+7)	1	32:28
23	James Harden	24	2018- 12-13	29- 109	HOU	Home	LAL	W (+15)	1	35:28

plt = small_harden.plot(x="Date", y="PTS", kind="bar")

Histograms

- Histograms look similar to bar graphs but show groupings of data instead of individual values
 - When creating a histogram, determine the column you want to analyze and the "bins" you want to use
- What are histograms good for?
 - Determining which values are the most common
 - Examining distributions

```
plt = allstars_df[["PTS"]].plot(
    kind="hist",
    bins = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65],
    rwidth=0.8
)
```


Same Histogram, different bin size!

```
# Histogram displying frequency of scoring grouped in bins of 10
plt = allstars_df[["PTS"]].plot(
    kind="hist",
    bins = [0, 10, 20, 30, 40, 50, 60, 70],
    rwidth=0.8
)
```


Scatter Plots

- Scatter plots attempt to display the relationship between two variables
 Why is this useful?
- Provide two variables you want to see and plot!

```
# Scatter plot between Points and Assists
plt = allstars_df.plot(x="PTS", y = "AST", kind="scatter")
```


Further applications for you to explore

- Improving your visualizations
 - Adding titles, axis labels
 - Using different colors
 - Exploring different types of visualizations
- Linear regression
 - Too long for this tutorial
- Graphing multiple trends on the same plot
 - Use different colors to display multiple trends

Any Questions?

What do you want to see in the last module?

Options

- Webscraping live demo
- Linear regression tutorial
- More visualization help
- General live coding demo
- •Any other options?