Widerlegungs-Vollständigkeit des Gentzen-Kalküls

Gegeben: $M \subseteq \mathcal{F}$ und $f \in \mathcal{F}$

Gesucht: Verfahren, um $M \models f$ zu entscheiden.

Bekannte Verfahren: Sei $M = \{g_1, \dots, g_n\}$. Dann gilt

$$M \models f$$
 g.d.w. $\models g_1 \wedge \cdots \wedge g_n \rightarrow f$

Entscheidung, ob Tautologie durch

- 1. Werte-Tabelle oder
- 2. Konjunktive Normalform

Beide Verfahren sind ineffizient:

- 1. Werte-Tabelle: Bei n Aussage-Variablen hat Tabelle 2^n Zeilen.
- 2. KNF: Sei g_i Klausel mit m_i Literalen. Dann hat KNF von $g_1 \wedge \cdots \wedge g_n \to f$ mindestens $m_1 * \cdots * m_n$ Klauseln.

Andere Möglichkeit:

$$M \models f$$
 g.d.w. $M \cup \{\neg f\} \models \bot$ g.d.w. $M \cup \{\neg f\} \vdash_G \bot$

Sei $M \subseteq \mathcal{F}$ und $f \in \mathcal{F}$.

Korrektheit:

$$M \vdash_G f \implies M \models f$$

Widerlegungs-Vollständigkeit:

$$M \models \bot \quad \Rightarrow \quad M \vdash_G \bot$$

Zusammen: $M \models \bot$ g.d.w. $M \vdash_G \bot$

Definition: Sei $k \in \mathcal{K}$, $M \subseteq \mathcal{K}$ und $l \in \mathcal{L}$.

$$\mathit{redukt}(k,l) := \left\{ \begin{array}{ll} \top & \mathsf{falls}\ l \in k; \\ k \backslash \{\overline{l}\} & \mathsf{falls}\ l \not \in k \ \mathsf{und}\ \overline{l} \in k; \\ k & \mathsf{sonst.} \end{array} \right.$$

 $Redukt(M, l) := \{ redukt(k, l) \mid k \in M \}.$

Beispiel:

$$M = \left\{ \{\neg r, p, q\}, \{\neg r, \neg p, \neg o\}, \{r, q\}, \{\neg q, p\}, \{\neg p, o\}, \{\neg p, q\}, \{\neg q, r, \neg o\} \right\}$$

$$\textit{Redukt}(M,p) = \Big\{ \top, \{ \neg r, \neg o \}, \{ r, q \}, \{ o \}, \{ q \}, \{ \neg q, r, \neg o \} \Big\}$$

$$\textit{Redukt}(M, \neg p) = \Big\{ \{\neg r, q\}, \top, \{r, q\}, \{\neg q\}, \{\neg q, r, \neg o\} \Big\}$$

Eigenschaften von Redukt(M, l)

Beobachtung:

p tritt weder in Redukt(M,p) noch in $Redukt(M,\neg p)$ auf.

Satz: Ist $M \subseteq \mathcal{K}$ und $l \in \mathcal{L}$, so gilt $M \models \bot \Rightarrow Redukt(M, l) \models \bot$.

Satz: Ist $M \subseteq \mathcal{K}$, $f \in \mathcal{K}$ und $l \in \mathcal{L}$, so gilt: $Redukt(M, l) \vdash_G f \Rightarrow M \vdash_G f \text{ oder } M \vdash_G f \cup \{\overline{l}\}.$

Aufgabe: Zeigen Sie

1.
$$\{ \{\neg r, \neg o\}, \{r, q\}, \{o\}, \{q\}, \{\neg q, r, \neg o\} \} \vdash_G \bot$$

2.
$$\{ \{\neg r, q\}, \{r, q\}, \{\neg q\}, \{\neg q, r, \neg o\} \} \vdash_G \bot$$

3.
$$\left\{ \{\neg r, p, q\}, \{\neg r, \neg p, \neg o\}, \{r, q\}, \{\neg q, p\}, \{\neg p, o\}, \{\neg p, q\}, \{\neg q, r, \neg o\} \right\} \vdash_{G} \bot$$

Widerlegungs-Vollständigkeit des Gentzen-Kalküls

Theorem: (Widerlegungs-Vollständigkeit von G)

Sei $M \subseteq \mathcal{K}$. Dann gilt

$$M \models \bot \implies M \vdash_G \bot.$$

Beweis: Induktion über Anzahl n der Aussage-Variablen in M.

Satz: Sei
$$M\subseteq\mathcal{K}$$
, $f\in\mathcal{K}$ und $p\in\mathcal{P}$ $M\models\bot$

g.d.w.

$$Redukt(M,p) \vdash_G \bot$$
 und $Redukt(M,\neg p) \vdash_G \bot$

Aufgabe: Zeigen Sie

$$\left\{ \{t, \neg s, q\}, \{\neg t, q, p\}, \{t, s, \neg r\}, \{\neg t, s, \neg r\}, \{s, p\}, \{t, p\}, \{\neg t, \neg q, p\}, \{\neg s, \neg p\}, \{u, r, \neg p\}, \{\neg u, \neg p\} \right\} \models \bot$$

$$M = \left\{ \{\neg r, p, q\}, \{\neg r, \neg p, \neg o\}, \{r, q\}, \{\neg q, p\}, \{\neg p, o\}, \{\neg p, q\}, \{\neg q, r, \neg o\} \right\}$$

$$\textit{Redukt}(M, \neg p) = \Big\{ \{ \neg r, q, \underline{p} \}, \top, \{ r, q \}, \{ \neg q, \underline{p} \}, \{ \neg q, r, \neg o \} \Big\}$$

Es gilt $Redukt(M,p) \vdash_G \bot$ wegen

1.
$$\{o, \underline{\neg p}\}$$
, $\{\neg r, \neg o, \underline{\neg p}\} \vdash_G \{\neg r, \underline{\neg p}\}$

2.
$$\{\neg r, \underline{\neg p}\}$$
, $\{\neg q, r, \neg o\} \vdash_G \{\neg q, \neg o, \underline{\neg p}\}$

3.
$$\{o, \neg p\}$$
, $\{\neg q, \neg o, \neg p\}$, $\vdash_G \{\neg q, \neg p\}$

4.
$$\{\neg q, \underline{\neg p}\}, \{q, \underline{\neg p}\}, \vdash_G \{\underline{\neg p}\}$$

Es gilt $Redukt(M, \neg p) \vdash_G \bot$ wegen

1.
$$\{\neg q, \underline{p}\}$$
, $\{\neg r, q, \underline{p}\} \vdash_G \{\neg r, \underline{p}\}$

2.
$$\{\neg r, \underline{p}\}$$
, $\{r, q\} \vdash_G \{q, \underline{p}\}$

3.
$$\{q,\underline{p}\}$$
, $\{\neg q,\underline{p}\} \vdash_G \{\underline{p}\}$

Also gilt: $M \vdash_G \{\neg p\}$ und $M \vdash_G \{p\}$

Mit Schnitt folgt: $M \vdash_G \bot$

Davis-Putnam Verfahren

 $\operatorname{Geg.}: K$ Menge von Klauseln

Ges.: \mathcal{I} aussagenlogische Belegung mit

$$\forall k \in K : \mathcal{I}(k) = \text{true}$$

Davis-Putnam Verfahren

1. Führe alle Schnitte mit Unit-Klauseln durch:

$$\frac{\{p\} \qquad \{\neg p\} \cup k}{k} \qquad \frac{k \cup \{p\} \qquad \{\neg p\}}{k}$$

2. Vereinfache mit Subsumption

$$K \cup \{\{l\}, \{l, l_1, \dots, l_m\}, k_1, \dots, k_n\} \leadsto \{\{l\}, k_1, \dots, k_n\}$$

- 3. Wähle aussagenlogische Variable p aus K.
 - (a) Suche rekursiv Lösung für \mathcal{I} für $K \cup \{\{p\}\}$.
 - (b) Falls (a) erfolglos ist: Suche rekursiv Lösung für \mathcal{I} für $K \cup \big\{ \{ \neg p \} \big\}$

Davis-Putnam Verfahren

Berechnung von Unit-Schnitten:

$$\mathtt{unitCut}: 2^\mathcal{K} \times \mathcal{L} \rightarrow 2^\mathcal{K}$$

unitCut(K, l): bilde alle Unit-Schnitte mit Klausel $\{l\}$.

$$unitCut(K, l) =$$

$$\{k - \{\neg l\} \mid k \in K \land (\neg l) \in k\} \cup \{k \mid k \in K \land (\neg l) \not\in k\}$$

Subsumption:

unitSubsumption: $2^{\mathcal{K}} \times \mathcal{L} \rightarrow 2^{\mathcal{K}}$.

unitSubsumption(K, l): Entferne alle Klauseln aus K, die von der Klausel $\{l\}$ subsumiert werden.

unitSubsumption $(K, l) = \{ k \mid k \in K \land l \not\in k \}.$