Constructions With Monoidal Categories

The Clowder Project Authors July 29, 2025

This chapter contains some material on constructions with monoidal categories.

Contents

13.1	Moduli Categories of Monoidal Structures	1
	13.1.1 The Moduli Category of Monoidal Structures on a Category	1
	13.1.2 The Moduli Category of Braided Monoidal Structures on a	
Categ	gory	17
	13.1.3 The Moduli Category of Symmetric Monoidal Structures on	1 .
a Cat	egory	17
13.2	Moduli Categories of Closed Monoidal Structures	17
13.3	Moduli Categories of Refinements of Monoidal Structures	17
Struc	ture	17
A	Other Chapters	18
13.1	Moduli Categories of Monoidal Structures	
10.1	mount categories of Monorau structures	
13.1	.1 The Moduli Category of Monoidal Structures on a Category	ry
Let C	be a category.	

DEFINITION 13.1.1.1.1 ▶ THE MODULI CATEGORY OF MONOIDAL STRUCTURES ON A CATEGORY

The **moduli category of monoidal structures on** C is the category $\mathcal{M}_{\mathbb{E}_1}(C)$ defined by

$$\mathcal{M}_{\mathbb{E}_1}(\mathcal{C}) \stackrel{\mathrm{def}}{=} \mathsf{pt} \times_{\mathsf{Cats}} \mathsf{MonCats}, \qquad \qquad \downarrow \qquad \qquad \downarrow \bar{\Xi} \\ \mathsf{pt} \xrightarrow{[\mathcal{C}]} \mathsf{Cats}.$$

REMARK 13.1.1.1.2 ► Unwinding Definition 13.1.1.1.1, I

In detail, **the moduli category of monoidal structures on** *C* is the category $\mathcal{M}_{\mathbb{E}_1}(C)$ where:

- *Objects*. The objects of $\mathcal{M}_{\mathbb{E}_1}(C)$ are monoidal categories $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ whose underlying category is C.
- *Morphisms*. A morphism from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ is a strong monoidal functor structure

$$\operatorname{id}_{C}^{\otimes} \colon A \boxtimes_{C} B \xrightarrow{\sim} A \otimes_{C} B,$$
$$\operatorname{id}_{\mathbb{I}|C}^{\otimes} \colon \mathbb{1}'_{C} \xrightarrow{\sim} \mathbb{1}_{C}$$

on the identity functor $id_C: C \to C$ of C.

• *Identities.* For each $M \stackrel{\text{def}}{=} (C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C) \in \text{Obj}(\mathcal{M}_{\mathbb{E}_1}(C))$, the unit map

$$\mathbb{1}_{M,M}^{\mathcal{M}_{\mathbb{E}_1}(C)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathcal{M}_{\mathbb{E}_1}(C)}(M,M)$$

of $\mathcal{M}_{\mathbb{E}_1}(C)$ at M is defined by

$$\mathrm{id}_{M}^{\mathcal{M}_{\mathbb{E}_{1}}(C)}\stackrel{\mathrm{def}}{=}(\mathrm{id}_{C}^{\otimes},\mathrm{id}_{\mathbb{1}|C}^{\otimes}),$$

where $\left(id_{C}^{\otimes}, id_{1|C}^{\otimes}\right)$ is the identity monoidal functor of C of $\ref{condition}$?

• Composition. For each $M, N, P \in \text{Obj}(\mathcal{M}_{\mathbb{E}_1}(C))$, the composition map

$$\circ_{M,N,P}^{\mathcal{M}_{\mathbb{B}_{1}}(C)} \colon \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(N,P) \times \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(M,N) \to \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(M,P)$$
 of $\mathcal{M}_{\mathbb{B}_{1}}(C)$ at (M,N,P) is defined by

$$\Big(\operatorname{id}_{C}^{\otimes,\prime},\operatorname{id}_{\mathbb{1}|C}^{\otimes,\prime}\Big) \circ_{M,N,P}^{\mathcal{M}_{\mathbb{H}_{\mathbb{I}}}(C)} \Big(\operatorname{id}_{C}^{\otimes},\operatorname{id}_{\mathbb{1}|C}^{\otimes}\Big) \stackrel{\mathrm{def}}{=} \Big(\operatorname{id}_{C}^{\otimes,\prime} \circ \operatorname{id}_{C}^{\otimes},\operatorname{id}_{\mathbb{1}|C}^{\otimes,\prime} \circ \operatorname{id}_{\mathbb{I}|C}^{\otimes}\Big).$$

In particular, a morphism in $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ satisfies the following conditions:

1. *Naturality*. For each pair $f: A \to X$ and $g: B \to Y$ of morphisms of C, the diagram

commutes.

2. Monoidality. For each $A, B, C \in Obj(C)$, the diagram

commutes.

3. *Left Monoidal Unity.* For each $A \in Obj(C)$, the diagram

$$\mathbb{1}_{C}\boxtimes_{C}A \xrightarrow{\operatorname{id}_{\mathbb{1}_{C}^{\prime},A}^{\otimes}} \mathbb{1}_{C}\otimes_{C}A$$

$$\operatorname{id}_{\mathbb{1}}^{\otimes}\boxtimes_{C}\operatorname{id}_{A} \xrightarrow{\lambda_{A}^{C}} A$$

$$\mathbb{1}_{C}^{\prime}\boxtimes_{C}A \xrightarrow{\lambda_{A}^{C,\prime}} A$$

commutes.

4. Right Monoidal Unity. For each $A \in Obj(C)$, the diagram

$$A \boxtimes_{C} \mathbb{1}_{C} \xrightarrow{\operatorname{id}_{A,\mathbb{1}'_{C}}^{\otimes}} A \otimes_{C} \mathbb{1}_{C}$$

$$\operatorname{id}_{A} \boxtimes_{C} \operatorname{id}_{\mathbb{1}}^{\otimes} / \longrightarrow A$$

$$A \boxtimes_{C} \mathbb{1}'_{C} \xrightarrow{\rho_{A}^{C,'}} A \otimes_{C} \mathbb{1}_{C}$$

commutes.

PROPOSITION 13.1.1.1.4 ► PROPERTIES OF THE MODULI CATEGORY OF MONOIDAL STRUCTURES ON A CATEGORY

Let *C* be a category.

- 1. Extra Monoidality Conditions. Let $(\mathrm{id}_C^\otimes,\mathrm{id}_{\mathbb{1}|C}^\otimes)$ be a morphism of $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C,\otimes_C,\mathbb{1}_C,\alpha^C,\lambda^C,\rho^C)$ to $(C,\boxtimes_C,\mathbb{1}_C',\alpha^{C,\prime},\lambda^{C,\prime},\rho^{C,\prime})$.
 - (a) The diagram

commutes.

(b) The diagram

$$A \boxtimes_{C} (B \boxtimes_{C} C) \xrightarrow{\operatorname{id}_{A} \boxtimes_{C} \operatorname{id}_{B,C}^{\otimes}} A \boxtimes_{C} (B \otimes_{C} C)$$

$$\operatorname{id}_{A,B\boxtimes_{C} C}^{\otimes} \downarrow \qquad \qquad \downarrow \operatorname{id}_{A,B\otimes_{C} C}^{\otimes}$$

$$A \otimes_{C} (B \boxtimes_{C} C) \xrightarrow{\operatorname{id}_{A} \otimes_{C} \operatorname{id}_{B,C}^{\otimes}} A \otimes_{C} (B \otimes_{C} C)$$

commutes.

2. Extra Monoidal Unity Constraints. Let $(id_C^{\otimes}, id_{1|C}^{\otimes})$ be a morphism of $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$.

(a) The diagram

commutes.

(b) The diagram

commutes.

(c) The diagram

commutes.

(d) The diagram

commutes.

3. *Mixed Associators*. Let $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ and $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ be monoidal structures on C and let

$$id^{\otimes}_{-1,-2} \colon -_1 \boxtimes_{\mathcal{C}} -_2 \to -_1 \otimes_{\mathcal{C}} -_2$$

be a natural transformation.

(a) If there exists a natural transformation

$$\alpha_{A,B,C}^{\otimes} \colon (A \otimes_C B) \boxtimes_C C \to A \otimes_C (B \boxtimes_C C)$$

making the diagrams

$$(A \otimes_{C} B) \boxtimes_{C} C \xrightarrow{\alpha_{A,B,C}^{\otimes}} A \otimes_{C} (B \boxtimes_{C} C)$$

$$\operatorname{id}_{A \otimes_{C} B,C}^{\otimes} \downarrow \qquad \qquad \qquad \operatorname{id}_{A} \otimes_{C} \operatorname{id}_{B,C}^{\otimes}$$

$$(A \otimes_{C} B) \otimes_{C} C \xrightarrow{\alpha_{A,B,C}^{C}} A \otimes_{C} (B \otimes_{C} C)$$

and

$$\begin{array}{ccc} (A \boxtimes_C B) \boxtimes_C C & \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A \boxtimes_C (B \boxtimes_C C) \\ \operatorname{id}_{A,B}^{\otimes} \boxtimes_C \operatorname{id}_C & & & & & & & & & \\ (A \otimes_C B) \boxtimes_C C & \xrightarrow{\alpha_{A,B,C}^{\otimes}} A \otimes_C (B \boxtimes_C C) \\ \end{array}$$

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

(b) If there exists a natural transformation

$$\alpha_{A.B.C}^{\boxtimes} : (A \boxtimes_C B) \otimes_C C \to A \boxtimes_C (B \otimes_C C)$$

making the diagrams

$$(A \boxtimes_{C} B) \otimes_{C} C \xrightarrow{\alpha_{A,B,C}^{\boxtimes}} A \boxtimes_{C} (B \otimes_{C} C)$$

$$\operatorname{id}_{A,B}^{\otimes} \otimes_{C} \operatorname{id}_{C} \downarrow \qquad \qquad \qquad \operatorname{id}_{A,B \otimes_{C} C}^{\otimes}$$

$$(A \otimes_{C} B) \otimes_{C} C \xrightarrow{\alpha_{A,B,C}^{C}} A \otimes_{C} (B \otimes_{C} C)$$

and

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

(c) If there exists a natural transformation

$$\alpha_{A.B.C}^{\boxtimes,\otimes} \colon (A \boxtimes_C B) \otimes_C C \to A \otimes_C (B \boxtimes_C C)$$

making the diagrams

$$\begin{array}{cccc} (A\boxtimes_C B)\otimes_C C & \xrightarrow{\alpha_{A,B,C}^{\boxtimes,\otimes}} A\otimes_C (B\boxtimes_C C) \\ \operatorname{id}_{A,B}^{\otimes}\otimes_C \operatorname{id}_C & & & & & & & & & & \\ (A\otimes_C B)\otimes_C C & \xrightarrow{\alpha_{A,B,C}^C} A\otimes_C (B\otimes_C C) & & & & & \end{array}$$

and

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

PROOF 13.1.1.1.5 ► PROOF OF PROPOSITION 13.1.1.1.4

Item 1: Extra Monoidality Conditions

We claim that Items 1a and 1b are indeed true:

- 1. *Proof of Item 1a*: This follows from the naturality of id^{\otimes} with respect to the morphisms $id_{A,B}^{\otimes}$ and id_{C} .
- 2. *Proof of Item 1b*: This follows from the naturality of id^{\otimes} with respect to the morphisms id_A and $id_{B,C}^{\otimes}$.

This finishes the proof.

Item 2: Extra Monoidal Unity Constraints

We claim that Items 2a and 2b are indeed true:

1. Proof of Item 1a: Indeed, consider the diagram

whose boundary diagram is the diagram whose commutativity we wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $\mathrm{id}_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;

- Subdiagram (3) commutes by the naturality of λ^C, where the equality ρ^C_{1C} = λ^C_{1C} comes from ??;
 Subdiagram (4) commutes by the right monoidal unity of (id_C, id[⊗]_C, id[⊗]_{C|1});

so does the boundary diagram, and we are done.

2. *Proof of Item 1b*: Indeed, consider the diagram

whose boundary diagram is the diagram whose commutativity we wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $\mathrm{id}_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;

- Subdiagram (3) commutes by the naturality of ρ^C , where the equality $\rho_{\mathbb{1}_C}^C = \lambda_{\mathbb{1}_C}^C$ comes from ??;
- Subdiagram (4) commutes by the left monoidal unity of $(id_C, id_C^{\otimes}, id_{C|1}^{\otimes});$

so does the boundary diagram, and we are done.

3. Proof of Item 2c: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1b;

it follows that the diagram

commutes. But since $id_{\mathbb{1}_C,\mathbb{1}_C'}^{\otimes,-1}$ is an isomorphism, it follows that the diagram (†) also commutes, and we are done.

4. Proof of Item 2d: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1a;

it follows that the diagram

$$\mathbb{1}_{C} \otimes_{C} \mathbb{1}'_{C} \xrightarrow{\operatorname{id}_{\mathbb{1}_{C},\mathbb{1}'_{C}}^{\otimes,-1}} \mathbb{1}_{C} \boxtimes_{C} \mathbb{1}'_{C} \xrightarrow{\operatorname{id}_{\mathbb{1}_{C},\mathbb{1}'_{C}}^{\otimes,-1}} \mathbb{1}_{C} \otimes_{C} \mathbb{1}'_{C}$$

$$\downarrow \qquad \qquad \downarrow^{\rho_{\mathbb{1}_{C}}^{C,'}} \qquad (\dagger) \qquad \downarrow^{\lambda_{\mathbb{1}'_{C}}^{C}}$$

$$\downarrow \qquad \qquad \downarrow^{\lambda_{\mathbb{1}'_{C}}^{C}}$$

$$\downarrow \qquad \qquad \downarrow^{\lambda_{\mathbb{1}'_{C}}^{C}}$$

$$\downarrow \qquad \qquad \downarrow^{\lambda_{\mathbb{1}'_{C}}^{C}}$$

$$\downarrow \qquad \qquad \downarrow^{\lambda_{\mathbb{1}'_{C}}^{C}}$$

commutes. But since $id_1^{\otimes,-1}$ is an isomorphism, it follows that the diagram (\dagger) also commutes, and we are done.

This finishes the proof.

Item 3: Mixed Associators

We claim that Items 3a to 3c are indeed true:

1. *Proof of Item 3a*: We may partition the monoidality diagram for id[⊗]

of Item 2 of Remark 13.1.1.1.3 as follows:

Since:

- Subdiagram (1) commutes by Item 1a of Item 1.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by assumption.

it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

2. *Proof of Item 3b*: We may partition the monoidality diagram for id[⊗]

of Item 2 of Remark 13.1.1.1.3 as follows:

Since:

- Subdiagram (1) commutes by assumption.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by Item 1b of Item 1.

it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

3. Proof of Item 3c: We may partition the monoidality diagram for id^{\otimes} of

Item 2 of Remark 13.1.1.1.3 as follows:

Since subdiagrams (1) and (2) commute by assumption, it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

This finishes the proof.

- 13.1.2 The Moduli Category of Braided Monoidal Structures on a Category
- 13.1.3 The Moduli Category of Symmetric Monoidal Structures on a Category
- 13.2 Moduli Categories of Closed Monoidal Structures
- 13.3 Moduli Categories of Refinements of Monoidal Structures
- 13.3.1 The Moduli Category of Braided Refinements of a Monoidal Structure

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes