CHIP ANTENNA

Publication number: JP2002319810 (A)

Publication date:

2002-10-31

Inventor(s):

SAKIDA HIROMI; SHIIBA KENGO; TATE SUMIO

Applicant(s):

MATSUSHITA ELECTRIC IND CO LTD

Classification:
- international:

H01Q1/36; H01Q1/24; H01Q1/38; H01Q9/42; H01Q1/36; H01Q1/24; H01Q1/38;

H01Q9/04; (IPC1-7): H01Q1/36; H01Q1/24; H01Q1/38; H01Q9/42

- European:

Application number: JP20010125473 20010424 **Priority number(s):** JP20010125473 20010424

Abstract of JP 2002319810 (A)

PROBLEM TO BE SOLVED: To provide a chip antenna with a small mount area and in which dispersion in an attached inductance is small. SOLUTION: The chip antenna of this invention is provided with a base 1, an antenna section provided on the front of the base 1, an inductor section that is designed to be a separate unit and provided on the front side of the base 1 and terminal electrodes 5, 6 and 7 provided on the base 1, the antenna section and the inductor section are electrically connected, one end of the inductor section is connected to the terminal electrode 5, which is used for a connection part to the circuitry of the chip antenna.

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-319810 (P2002-319810A)

(43)公開日 平成14年10月31日(2002.10.31)

(51) Int.Cl. ⁷		設別 記号	ΡI	テーマコード(参考)
H 0 1 Q	1/36		H01Q	1/36 5 J 0 4 6
	1/24			1/24 Z 5 J 0 4 7
	1/38			1/38
	9/42	9/42		
			客查請求	未請求 請求項の数7 OL (全 6 頁)
(21) 出願番号		特願2001-125473(P2001-125473)	(71)出顧人	00000:3821 松下電器産業株式会社
(22) 出顧日		平成13年4月24日(2001.4.24)		大阪府門真市大字門真1006番地
		1 Mio 17121H (BOOK 1111)	(72)発明者	
				大阪府門真市大字門真1006番地 松下電器 産業株式会社内
			(72)発明者	
				大阪府門真市大字門真1006番地 松下電器 産業株式会社内
			(74)代理人	10009/445
				弁理士 岩橋 文雄 (外2名)
				最終頁に続く

(54) 【発明の名称】 チップアンテナ

(57)【要約】

【課題】 本発明は、実装面積を小さくでき、しかも付加されるインダクタンスのバラツキが小さなチップアンテナを提供することを目的とする。

【解決手段】 本発明は、基台1と、基台1の表面部に設けられたアンテナ部と、アンテナ部とは別体で基台1の表面部に設けられたインダクタ部と、基台1に設けられた端子電極5,6,7とを備え、アンテナ部とインダクタ部は電気的に接続されているとともに、インダクタ部の一端は端子電極5に接続され、端子電極5を回路との接続部とした。

【特許請求の範囲】

【請求項1】基台と、前記基台の表面部に設けられたアンテナ部と、前記アンテナ部とは別体で前記基台の表面部に設けられたインダクタ部と、前記基台に設けられた端子電極とを備え、前記アンテナ部と前記インダクタ部は電気的に接続されているとともに、前記インダクタ部の一端は前記端子電極に接続され、前記端子電極を回路との接続部としたことを特徴とするチップアンテナ。

【請求項2】一つの基台上にアンテナ部、インダクタ部、端子部を設けたことを特徴とする請求項1記載のチップアンテナ。

【請求項3】基台の両端に第1及び第2の鍔部を設けるとともに前記第1及び第2の鍔部の間に第3の鍔部を設け、前記第1の鍔部と前記第3の鍔部の間に全周に渡って段落ちした第1の段落ち部を設け、更に、前記第2の鍔部と前記第3の鍔部との間に全周に渡って段落ちした第2の段落ち部を設け、前記第1の段落ち部内にインゲクタ部を設け、前記第1~第3の鍔部上にそれぞれ端子電極を設け、更に、前記アンテナ部の両端を前記第1の鍔部及び前記第3の鍔部上に形成された端子電極と接合すると共に、前記インダクタ部の両端を第2の鍔部及び第3の鍔部上に形成された端子電極と接合すると共に、前記インダクタ部の両端を第2の鍔部及び第3の鍔部上に形成された端子電極に接続し、前記第2の端子電極を回路との接続部としたことを特徴とする請求項2記載のチップアンテナ。

【請求項4】アンテナ部を基台上に設けられたヘリカル 状の導電膜で構成したことを特徴とする請求項1~3い ずれか1記載のチップアンテナ。

【請求項5】アンテナ部を基台上に巻回した線状の導電線としたことを特徴とする請求項1~3いずれか1記載のチップアンテナ。

【請求項6】インダクタ部を基台上に設けられたヘリカル状の導電膜で構成したことを特徴とする請求項1~3いずれか1記載のチップアンテナ。

【請求項7】インダクタ部を基台上に巻回した線状の導電線としたことを特徴とする請求項1~3いずれか1記載のチップアンテナ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、移動体通信などの 無線通信を行う電子機器等に好適に用いられるチップア ンテナに関するものである。

[0002]

【従来の技術】ロッド型のアンテナや平面アンテナは、 無線通信用のアンテナとして一般的に用いられている が、近年、チップ型のアンテナが注目されてきている。 このようなチップアンテナは、携帯電話などの基板に直 接実装でき、外部に大きく突出せず、装置の小型化を実 現できる。

ンテナの共振周波数を調整する目的などで、別途チップ インダクタやチップコンデンサなどを回路基板に設ける ことも考えられている。

【0004】先行例としては、特開平10-20973 3号公報,特開平11-312919号公報等がある。 【0005】

【発明が解決しようとする課題】しかしながら以上のような構成では、別途チップインダクタを設けたり、或いはチップアンテナを実装する基板にインダクタを印刷などで形成しているために、それらチップアンテナ、チップインダクタ、チップコンデンサの実装面積が大きくなり、実装基板を大きくしなければならず、例えば携帯電話などの携帯端末装置の小型化が行い難いという問題点があった。

【0006】更に、別途チップインダクタをチップアンテナに接続する際に、接続のための基板上に形成された配線線路の長短により、インダクタンスにバラツキが生じたり、或いはチップインダクタを実装する際の実装の状態などでもインダクタンス値のバラツキが生じているので、携帯端末装置等の送受信特性のバラツキが生じるという課題があった。

【 O O O 7 】本発明は、上記従来の課題を解決するもので、実装面積を小さくでき、しかも付加されるインダクタンスのバラツキが小さなチップアンテナを提供することを目的とする。

[8000]

【課題を解決するための手段】本発明は、基台と、基台の表面部に設けられたアンテナ部と、アンテナ部とは別体で基台の表面部に設けられたインダクタ部と、基台に設けられた端子電極とを備え、アンテナ部とインダクタ部は電気的に接続されているとともに、インダクタ部の一端は端子電極に接続され、端子電極を回路との接続部とした。

[0009]

【発明の実施の形態】請求項1記載の発明は、基台と、前記基台の表面部に設けられたアンテナ部と、前記アンテナ部とは別体で前記基台の表面部に設けられたインダクタ部と、前記基台に設けられた端子電極とを備え、前記アンテナ部と前記インダクタ部は電気的に接続されているとともに、前記インダクタ部の一端は前記端子電極に接続され、前記端子電極を回路との接続部としたことを特徴とするチップアンテナとしたことで、アンテナ部とインダクタ部を一体に形成したことで、回路基板上に別体の少なくとも一つのチップインダクタは不要となり実装面積を小さくできると共に、アンテナ部とインダクタ部の距離の精度を非常に高くできるので、特性のバラッキを抑えることができる。

【0010】請求項2記載の発明は、一つの基台上にアンテナ部、インダクタ部、端子部を設けたことを特徴とする請求項1記載のチップアンテナとすることで 更に

各部間の距離を精度良くできるので、特性のバラツキを 押さえ、しかも小型化を更に促進でき、基台も一つでよ いので生産性も良くなる。

【0011】請求項3記載の発明は、基台の両端に第1 及び第2の鍔部を設けるとともに前記第1及び第2の鍔 部の間に第3の鍔部を設け、前記第1の鍔部と前記第3 の鍔部の間に全周に渡って段落ちした第1の段落ち部を 設け、更に、前記第2の鍔部と前記第3の鍔部との間に 全周に渡って段落ちした第2の段落ち部を設け、前記第 1の段落ち部内にアンテナ部を設けると共に、前記第2 の段落ち部内にアンテナ部を設け、前記第1~第3の 鍔部上にそれぞれ端子電極を設け、更に、前記アンテナ 部の両端を前記第1の鍔部及び前記第3の鍔部上に形成 された端子電極と接合すると共に、前記インダクタ部の 両端を第2の鍔部及び第3の鍔部上に形成された端子電 極に接続し、前記第2の端子電極を回路との接続部とし たことを特徴とする請求項2記載のチップアンテナとす ることで、実装性良く、しかも狭い実装面積で済む。

【0012】請求項4記載の発明は、アンテナ部を基台上に設けられたヘリカル状の導電膜で構成したことを特徴とする請求項1~3いずれか1記載のチップアンテナとすることで、非常に精度良くアンテナ部を形成できるので、特性のバラツキを抑えることができる。

【0013】請求項5記載の発明は、アンテナ部を基台上に巻回した線状の導電線としたことを特徴とする請求項1~3いずれか1記載のチップアンテナとすることで、損失が少なく導体線を用いているので、アンテナの利得が非常に高くなる。

【0014】請求項6記載の発明は、インダクタ部を基 台上に設けられたヘリカル状の導電膜で構成したことを 特徴とする請求項1~3いずれか1記載のチップアンテ ナとすることで、非常に精度良くインダクタ部を形成で きるので、特性、特に共振周波数のバラツキを抑えるこ とができる。

【0015】請求項7記載の発明は、インダクタ部を基 台上に巻回した線状の導電線としたことを特徴とする請 求項1~3いずれか1記載のチップアンテナとすること で、Q値を非常に大きくすることができ、特性を向上さ せることができる。

【0016】以下、本発明におけるチップアンテナ及び 無線端末装置の実施の形態について説明する。

【0017】図1,図2はそれぞれ本発明の一実施の形態におけるチップアンテナを示す斜視図及び側断面図である。

【0018】図1において、1は絶縁材料や誘電体材料などをプレス加工、押し出し加工、切削加工等を施して構成されている基台で、基台1には両端に鍔部2、3が設けられており、しかも鍔部2、3の間に鍔部4が設けられている。鍔部2~4上には端子電極5~7が形成され端子電極5~7は単層或いは複数層の金属連電層を

少なくとも含む構成となっている。また、本実施の形態では、実装性を良くする様に、鍔部2~4は断面正方形状としたが、この鍔部2~4の断面形状は、楕円形、円形、5角形以上の多角形としても良く、或いは長方形状としても良い。更に、端子電極5~7は実装性を良くするために鍔部2~4の少なくとも全側面に設けた(鍔部2、3の端面にも設けた)が、例えば図1に示す実施の形態の場合であれば、断面が正方形状の鍔部2~4であるので、対向する2つの側面に端子電極5~7を設けたり、更には一つの側面にのみ設けても良い。

【0019】また、鍔部2、鍔部4間あるいは鍔部4、 鍔部3間には、鍔部2~4からは全周に渡って段落ちした段落ち部8、9が設けられており、この段落ち部8、 9の断面は正方形状となっている。前述の通り、段落ち部8、9の断面は楕円形、円形、5角形以上の多角形としても良く、或いは長方形状としても良い。更には、鍔部2~4と段落ち部8、9の断面形状を異なるように構成しても良い。例えば、鍔部を断面方形状とし、段落ち部8、9の断面形状を円形としても良い。

【0020】基台1における段落ち部9内の全側面には 導電材料で構成されたスパイラル状 (ヘリカル状) の導 電膜10が設けられ、アンテナ部が形成されている。

【0021】導電膜10の形成方法としては、少なくと も段落ち部9内に無電界鍍金法,電界鍍金法,スパッタ 法、蒸着法などの薄膜形性技術を用いて導体膜を形成 し、その導体膜に本実施の形態の様に、ラバー加工、レ ーザー加工などの切削加工を用いて端面に交わるような 巻軸を有するようにスパイラル状の溝11を形成する方 法がある。この場合、好ましくは基台11の一部をも切 削することが確実に導体膜を取り除くので好ましい。 又、他の方法としては、切削加工を用いずに、スパイラ ル状のレジスト膜を導体膜の上に形成し、化学的エッチ ングや逆スパッタなどでレジストが設けられた部分以外 の導体膜を除去し、ヘリカル状の導電膜10を形成す る。さらに、導体膜を形成する前に、基台1上にスパイ ラル状のレジスト膜を形成した後に、導体膜を形成し、 その後に前記レジスト膜を取り除く方法などがある。 【0022】なお、好ましくは導電膜10は鍔部3,4 上まで一体に形成し、導電膜10の上に端子電極6,7 をメッキや蒸着などで形成することが好ましい。

【0023】鍔部2,4の間にある段落ち部8内には、線状の導体線12がヘリカル状(スパイラル状)に巻回されており、導体線12の端部はそれぞれ端子電極5,7上に接合或いは端子電極5,7中に埋設されている。導体線12の端部を端子電極5,7中に埋設する場合には、まず、導電膜10の上に導体線12を接合し、その導電膜10の上に端子電極5,7を形成する方法や、或いは端子電極5,7を複数層で構成し、その層間に導体線12の端部を挟み込ませる方法などがある。この巻回された導体線12でインダクタ部が形成される。

【0024】この様に、一体化された基台1上にアンテ ナ部とインダクタ部を形成することで、従来の様に回路 基板上に別部品として実装されていた部品の少なくとも 一つを削減でき、しかもアンテナ部とインダクタ部の間 隔は、基台1上で決まってしまうので、非常にアンテナ 部とインダクタ部の間隔精度を向上させることができる ので、従来の様に、回路基板の線路の長短によるインダ クタンスのバラツキを抑えることができる。また、イン ダクタ部を非常に導電性の高い導体線12で構成するこ とによって、インダクタ部のQ値を大きくすることがで き、損失を小さくしアンテナ利得を向上させることがで きる。また、機器製造メーカーにとっても、インダクタ 部をアンテナ部と一体に設けることで、共振周波数の調 整の際に、チップインダクタなどを回路基板に実装する 必要がないので、機器の生産性が向上し、有用である。 【〇〇25】また、例えばアンテナ部自体の共振周波数 が2、4GHzである場合に、インダクタ部を設け、し かもそのインダクタンスを調整することで、例えば80 OMHzの共振周波数を得ることができるので、例え

することで、実装面積も小さくなる。 【0026】また、図1の様な構成では、鍔部3側を回路との接続部とすることが好ましい。この様な構成とすることで、アンテナの利得に影響を及ぼす電流分布でアンテナ部に大きな電流が流れる部分を配置できるためである。又、鍔部2は開放された電極或いは固定用電極に半田などで接続される。さらに鍔部2~4におけるどの側面においても特性のバラツキはほとんどないので、軸方向において方向性無く実装させることができる。

ば、インダクタ部の巻数等を変更することで、様々な共 振周波数を有するチップアンテナを得ることができ、部

品の共用化などを行うことができる。800MHz対応

が、上述の様にインダクタ部とアンテナ部を一体に構成

のアンテナは非常に大きくなり、実装面積が広くなる

【0027】また、本実施の形態では、鍔部4上に形成された端子電極7は回路基板上の回路とは隔絶された電極に接合されて、チップアンテナと回路基板間の接合強度を向上させている。また、全く回路基板と端子電極7は接合していない状態としても良い。

【0028】さらに、鍔部4を設けずに、すなわち、段落ち部8,9を一体となるように構成し、その一体化された段落ち部内で、インダクタ部とアンテナ部を電気的に接続しても良い。

【0029】更に、鍔部2及びその上に形成された端子電極5は、省略することができる。すなわち、チップアンテナと回路基板との接合強度が十分な場合、回路との接続部となる端子電極6のみで回路基板に接続することで十分に回路基板との接合強度が得られる場合には、端子電極5を回路基板に接続する必要がないので、端子電極5もしくは鍔部2は設けなくても良い。

【0030】また アンテナ部及びインダクタ部を覆う

ように工ポキシ樹脂やレジストなどを塗布して形成された樹脂製保護材や電着法による樹脂製保護材を設けても良く、更には、管状の絶縁チューブ(好ましくは熱収縮性のチューブ)をはめ込んでも良い。また、アンテナ部は金属材料を加工した導電膜10で構成されているので、表面にメッキなどで金層などを施しても良い。また、この金層は少なくとも端子電極5,6として形成することで鉛フリーのチップアンテナを得ることができる。

【0031】また、本実施の形態の変更例として、図2に示すように、インダクタ部をアンテナ部と同様にヘリカル状の導電膜を設けて構成しても良い。この変形例では、製造が非常に簡単になるという効果を奏する。すなわち、基台1全体に導体膜を形成し、その導体膜にラバー加工やレーザー加工によって、溝を形成することによってアンテナ部を形成し、更に別な部分に溝加工を施してインダクタ部分を形成する。その後に端子電極を形成すればよいので、生産性が飛躍的に向上する。

【0032】また、別な方法として、基台1全体に導体膜を形成し、その導体膜の上にヘリカル状のレジスト膜を非連続に2つ形成し、その後に化学的エッチングなどを用いて、レジスト膜が形成された部分とは別の部分の導体膜を除去し、電気的に接続されたヘリカル状の導電膜を一対構成し、一方をアンテナ部とすると共に、他方をインダクタ部とする。その後に端子電極などを形成すれば良い。更に別な方法として、一対の非連続であるスパイラル状のレジスト膜を基台1上に形成し、その後に基台1全体に導体膜を形成し、その後にレジスト膜を取り除くことで、電気的に接続されたヘリカル状の導電膜を一対構成し、一方をアンテナ部とすると共に、他方をインダクタ部とする。その後に端子電極などを形成すれば良い。

【0033】また、他の変形例として、図3に示すように、アンテナ部及びインダクタ部の双方とも基台に導体線をヘリカル状に巻き付けて構成しても良い。この場合、アンテナ部及びインダクタ部においては、低損失の導体線を用いることができるので、利得が向上し、特性が向上する。更に、アンテナ部とインダクタ部の双方に連続して導体線を基台に巻き付けることができるので、生産性も良くなる。すなわち、アンテナ部として導体線を基台に巻き付けて構成した後に、鍔部4上を引き回して、連続してインダクタ部を形成することができる。

【0034】更に他の変形例として図4に示すように、アンテナ部を導体線で構成し、インダクタ部を導体膜に 清などを形成した構成とした。この構成によって、アン テナ部においては、導電性の高い導体線で構成している ので、利得を大きく取ることができ、しかもインダクタ 部を導体膜にレーザー加工を施したインダクタを構成し ているので、非常に精度良くインダクタンスのバラツキ がないインダクタ部を構成できるので、特件バラツキを 抑えることができる。

【0035】また、図5に示すように、アンテナ部を形 成したチップアンテナ14の一方の端子部にチップイン ダクタ13を取り付けた構成でも良い。すなわち、別部 品であるチップインダクタ13を取り付けることで、非 常に精度の良いインダクタンスを得ることができるの で、特性バラツキを抑えることができる。この場合には 回路との接続部はチップインダクタ13の端子部15と なる。

[0036]

【発明の効果】本発明は、基台と、基台の表面部に設け られたアンテナ部と、アンテナ部とは別体で基台の表面 部に設けられたインダクタ部と、基台に設けられた端子 電極とを備え、アンテナ部とインダクタ部は電気的に接 続されているとともに、インダクタ部の一端は端子電極 に接続され、端子電極を回路との接続部としたことで、 アンテナ部とインダクタ部を一体に形成したことで、回 路基板上に別体の少なくとも一つのチップインダクタは 不要となり実装面積を小さくできると共に、アンテナ部 とインダクタ部の距離の精度を非常に高くできるので、

インダクタ部

特性のバラツキを抑えることができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態におけるチップアンテナ を示す斜視図

【図2】本発明の一実施の形態におけるチップアンテナ を示す斜視図

【図3】本発明の一実施の形態におけるチップアンテナ を示す斜視図

【図4】本発明の一実施の形態におけるチップアンテナ を示す斜視図

【図5】本発明の一実施の形態におけるチップアンテナ を示す斜視図

【符号の説明】

1 基台

2, 3, 4 鍔部

5, 6, 7 端子電極

8,9 段落ち部

10 導電膜

11 溝

12 導体線

【図5】

フロントページの続き

(72)発明者 楯 純生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 F ターム(参考) 5J046 AA02 AA04 AA07 AB12 PA04 5J047 AA02 AA04 AA07 AB12 FD01