Контролна работа №1 по Аналитична Геометрия I курс, Информатика 13.11.2021 г.

Вариант 1

1 зад. Дадени са векторите
$$\vec{a}$$
 и \vec{b} , за които $|\vec{a}| = 3$, $|\vec{b}| = 4$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{6}$.

Нека ABCD е успоредник и $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AD} = \overrightarrow{b}$.

Нека точката M е среда на AB, а точката F е среда на BC.

Нека точката E е такава, че $\overrightarrow{ME} = \frac{1}{3} \overrightarrow{MC}$.

- а) (4т.) Да се докаже, че точките A, E, F са колинеарни;
- b) (4т.) Да се намери лицето на ΔEFC ;
- с) (4т.) Ако точката Р е медицентър на ΔAED , да се изрази векторът \overrightarrow{AP} като линейна комбинация на \vec{a} и \vec{b} ;
- 2 зад. Спрямо ОКС K = Oxyz в пространството са дадени точките A(-1,0,4), B(1,1,6) и C(2,0,7).
 - а) (4т.) Да се намери периметъра на ΔABC ;
 - b) (4т.) Да се определи вида на ΔABC според ъглите;
 - с) (8т.) Да се намерят координатите на точка H, която е пета на височината AH на ΔABC .
- 3 зад. Дадени са векторите \vec{a} и \vec{b} , за които $|\vec{a}|=2, |\vec{b}|=\sqrt{2}, \sphericalangle(\vec{a},\vec{b})=\frac{3\pi}{4}$.

Нека
$$\overrightarrow{OA} = \vec{a} + \vec{b}$$
, $\overrightarrow{OB} = (\vec{a} \times \vec{b}) \times \vec{a} + \lambda \vec{a}$ и $\overrightarrow{OC} = \vec{a} \times \vec{b} + (\vec{a} \times \vec{b}) \times \vec{b}$.

- а) (4т.) Да се определи λ така, че векторите \overrightarrow{OA} и \overrightarrow{OB} да са колинеарни;
- b) (8т.) Ако $\lambda = -1$, да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} , и \overrightarrow{OC} са линейно независими и да се намери обема на тетраедъра OABC.