CURSO DE SIMULACIÓN NUMÉRICA DE MAREMOTOS LAB. N° 3: DEFORMACIÓN POR UNA FUENTE SÍSMICA COMPUESTA

Una fuente sísmica compuesta representa un caso más real. La geometría de ruptura se divide en varias subfuentes, cada una con similar o diferente mecanismo focal. La distribución de la fuente sísmica se obtiene a partir de inversión de señales sísmicas, mareográficas, geodésicas o una combinación de estas. Existen muchas publicaciones y grupos de investigación que reportan los modelos de fuente sísmica de grandes terremotos:

http://www.tectonics.caltech.edu/slip_history/index.html http://iisee.kenken.go.jp/staff/fujii/TsunamiTop.html

En este laboratorio se tomará como referencia el modelo de fuente sísmica del terremoto de Pisco 2007 (https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/8687), que consta de 8 subfuentes cuadradas de dimensiones: L = 45 km y W = 45 km, obtenidos a partir de la inversión de señales mareográficas.

N°	Lat (°)	Lon (°)	Hj (km)	Slip (m)
1	-14.750	-76.300	14.00	2.3
2	-14.533	-75.983	27.91	5.7
3	-14.417	-76.533	14.00	0.8
4	-14.200	-76.217	27.91	7.0
5	-14.083	-76.767	14.00	1.7
6	-13.867	-76.450	27.91	3.1
7	-13.758	-77.000	14.00	4.1
8	-13.533	-76.683	27.91	0.1

Tabla I. Distribución de la fuente sísmica. Las coordenadas espaciales corresponden a la esquina inferior izquierda de cada subfuente.

Fig. 1 Distribución de la fuente sísmica para el sismo de Pisco 2007 (Jimenez et al., 2012).

Strike angle	$\theta = 325^{\circ}$
Dip angle	$\delta = 18^{\circ}$
Rake angle	$\lambda = 63^{\circ}$

Tabla II. Mecanismo focal utilizado para el sismo de Pisco 2007.

Procedimiento

- 1) Ubicarse en el directorio de trabajo donde se encuentre el archivo de batimetría grid_a.grd, el archivo de coordenadas geográficas xya.mat y xyo.mat. Abrir Matlab en este directorio.
- 2) A partir de los datos de la Tabla I y II, hacer una matriz de datos con el siguiente formato (8 filas por 9 columnas):

Longitud latitud slip (m) largo (m) ancho (m) strike dip rake profundidad (m) -76.3000 -14.750 2.3 45000 45000 325 18 63 14000

- 3) Hacer un cambio de formato, utilice el archivo "fuji2oka.m", la salida (pfalla_inv.inp) tendrá un formato en el que se toman en cuenta las coordenadas de grilla (formato 5: Fault).
- 4) Editar el archivo de código en Fortran def_oka.f:

En la línea 36, cambiar los valores de IDS, IDE, JDS, JDE

En la línea 38, cambiar la resolución de la grilla DX y DY (en metros)

En la línea 39, cambiar el número de subfuentes NP.

Compilar en Linux mediante: ./gfortran def_oka.f

Ejecutar en Linux: ./a.out

La salida será el archivo de deformación: deform_a.grd

- 5) Visualizar el archivo de deformación mediante: dib_fuente.m
- 6) Calcular la máxima deformación cosísmica inicial.

Tarea

- 1) Obtener la deformación para el terremoto de Huacho de 1966, los datos se puede obtener del artículo: https://doi.org/10.15381/rif.v19i1.13549
- 2) Obtener la deformación para el terremoto de Chile 2010 de la inversión conjunta tsunami+geodésico, los datos se pueden obtener de: https://doi.org/10.1007/s00024-012-0524-2

Nota: La dirección del drive es:

Los datos y programas se pueden descargar del Drive:

 $https://drive.google.com/drive/folders/1_pa5pstXN4x0ftaeN16_5FZk8pVdDKeU?usp=sharing$

Prof. Cesar Jimenez cjimenezt@unmsm.edu.pe