18.785 Analytic Number Theory Problem Set #3

Holden Lee

Problem 1 (Nonvanishing Poincaré series)

The nth Fourier coefficient of $P_n(z)$, the Poincaré series of weight k, is

$$p(n,n) = 1 + \frac{2\pi}{i^k h} \sum_{c>0} c^{-1} S_{\Gamma}(n/h, n/h; c) J_{k-1} \left(\frac{2\pi n}{ch}\right).$$

To show that the Poincaré series does not vanish, it suffices to show $p(n,n) \neq 0$. For this, it suffices to show that |A| < 1 where $A = \frac{2\pi}{i^k h} \sum_{c>0} c^{-1} S_{\Gamma}(n/h, n/h; c) J_{k-1}\left(\frac{2\pi n}{ch}\right)$. Note that any c in the sum is an integer because $\Gamma \subseteq \operatorname{SL}_2(\mathbb{Z})$.

We assume k > 4 and the smallest c is greater than 1 (so at least 2). Below C_1, C_2, \ldots will represent constants.

First, [2, 4.1] gives the bound

$$J_k(x) \le (2\pi k)^{-\frac{1}{2}} \left(\frac{ex}{2k}\right)^k.$$

Hence (noting $h \geq 1$),

$$J_{k-1}\left(\frac{4\pi n}{ch}\right) \le (2\pi(k-1))^{-\frac{1}{2}} \left(\frac{2\pi en}{(k-1)ch}\right)^{k-1} \le C_1(2\pi e)^k \frac{n^{k-1}}{(k-1)^{k-\frac{1}{2}}c^{k-1}}.$$

From Proposition 4.9.1,

$$|S_{\Gamma}(m,n;c)| \le c^2 \cdot c(s,s)^{-1}.$$

Putting these two estimates together, and letting $c_0 = c(s, s)$,

$$A \leq C_2 (2\pi e)^k \frac{n^{k-1}}{c_0 (k-1)^{k-\frac{1}{2}}} \sum_{c \geq c_0} \frac{1}{c^{k-3}}$$

$$\leq C_2 (2\pi e)^k \frac{n^{k-1}}{c_0 (k-1)^{k-\frac{1}{2}}} \int_{c_0-1}^{\infty} \frac{1}{x^{k-3}} dx$$

$$= C_2 (2\pi e)^k \frac{n^{k-1}}{c_0 (k-1)^{k-\frac{1}{2}}} \frac{(c_0-1)^{-k+4}}{k-4}.$$

$$(1)$$

Problem 2

This is at most 1 if

$$n^{k-1} \le C_3 (2\pi e)^{-k} (k-1)^{k-\frac{1}{2}} (k-4) c_0^{-1} (c_0-1)^{k-4}$$

$$\Leftarrow n \le C_4 k (c_0-1)$$

$$\Leftarrow n \le C_5 k c_0.$$

Thus if $n \leq C_5 k c_0$ then $P_n(z)$ does not vanish.

If instead $c_0 = 1$, then by letting $n \leq Ckc_0 = Ck$ with appropriate C, we may assume that term c = 1 in the sum (1) is less than a constant, say $\frac{1}{2}$, since

$$C_2(2\pi k)^k \frac{n^{k-1}}{(k-1)^{k-\frac{1}{2}}} \frac{1}{c_0^{k-4}} \le C_2(2\pi e)^k \frac{C(Ck)^{k-1}}{(k-1)^{k-\frac{1}{2}}} \le C_2(2\pi e)^k \left(\frac{k}{k-1}\right)^{k-1} \le C_2(2\pi e)^k \cdot e.$$

Then it suffices for the rest of the terms to sum to at most $\frac{1}{2}$. Replacing the lower limit in the integral estimate with c_0 , the proof goes the same as before with modified constants.

Problem 2 (Kloosterman sums)

(A) S(m, n; c) = S(n, m; c)

The definition of S(m, n; c) is symmetric in both m and n:

$$S(n, m; c) = \sum_{d_1 d_2 \equiv 1 \pmod{c}} e\left(\frac{nd_1 + md_2}{c}\right).$$

(B) S(an, m; c) = S(n, am; c) **if** gcd(a, c) = 1

$$S(an, m; c) = \sum_{d_1 d_2 \equiv 1 \, (\text{mod } c)} e\left(\frac{and_1 + md_2}{c}\right)$$

$$= \sum_{d \, (\text{mod}^{\times} c)} e\left(\frac{and + m\overline{d}}{c}\right)$$

$$= \sum_{d \, (\text{mod}^{\times} c)} e\left(\frac{an(\overline{a}d) + m\overline{a}\overline{d}}{c}\right)$$

$$= \sum_{d \, (\text{mod}^{\times} c)} e\left(\frac{nd + am\overline{d}}{c}\right)$$

$$= \sum_{d_1 d_2 \equiv 1 \, (\text{mod } c)} e\left(\frac{nd_1 + amd_2}{c}\right)$$

$$= S(n, am; c)$$

$$(2)$$

In (2), we replaced d with $\overline{a}d$; this is legitimate since $\gcd(a,c)=1$ and as d ranges over the units modulo c, so does $\overline{a}d$.

(C) $S(n, m, c) = \sum_{d \mid \gcd(c, m, n)} dS(mnd^{-2}, 1; cd^{-1})$ We prove this for $c = p^r$ a prime power.

Problem 2 3

Lemma 2.1:

$$\sum_{d \, (\mathrm{mod}^{\times} p^r)} e\left(\frac{d}{p^r}\right) = \begin{cases} -1, & r > 1 \\ 0, & r = 1. \end{cases}$$

Proof. For r = 1, just note that the sum of roots of unity $\sum_{d \pmod{p}} e\left(\frac{d}{p}\right) = 0$. For r > 1, using the fact that the sum of kth roots of unity is 0 for any k > 1,

$$\sum_{d \, (\operatorname{mod}^{\times} p^{r})} e\left(\frac{d}{p^{r}}\right) = \sum_{d \, (\operatorname{mod} p^{r})} e\left(\frac{d}{p^{r}}\right) - \sum_{d \, (\operatorname{mod} p^{r-1})} e\left(\frac{d}{p^{r-1}}\right) = 0 - 0 = 0.$$

Lemma 2.2: Suppose p|m and $r \ge 2$. Then $S(m, 1; p^r) = 0$.

Proof. Write $m = p^k l$ with $p \nmid l$. Consider two cases.

1. k < r: Then

$$S(m, 1; p^{r}) = \sum_{d \pmod{p^{r}}} e\left(\frac{p^{k}ld + \overline{d}}{p^{r}}\right)$$

$$= \sum_{x \pmod{p^{k}}} \sum_{a \pmod{p^{r-k}}} e\left(\frac{p^{k}l(p^{r-k}x + a) + \overline{p^{r-k}x + a}}{p^{r}}\right)$$

$$= \sum_{a \pmod{p^{r-k}}} \sum_{x \pmod{p^{k}}} e\left(\frac{p^{k}la + \overline{p^{r-k}x + a}}{p^{r}}\right)$$
(3)

As x ranges from 1 to p^k , $\overline{p^{r-k}x+a}$ attains the values $\overline{a}+p^{r-k}b$ for all $b \pmod{p^k}$. Now the $e\left(\frac{p^k la+\overline{a}+p^{r-k}b}{p^r}\right)$ for a fixed and b varying modulo p^k are equally spaced on the unit circle so sum to 0. Hence the inner sum in (3) is 0.

2. $k \ge r$: Then

$$S(m, 1; p^r) = \sum_{d \pmod{\times} p^r} e\left(\frac{p^k l \overline{d} + d}{p^r}\right)$$
$$= \sum_{d \pmod{\times} p^r} e\left(\frac{d}{p^r}\right)$$
$$= 0$$

by Lemma 2.1.

Problem 2

Let $gcd(n, m, c) = p^k$. Write $n = p^k n'$ and $m = p^k m'$; note that p does not divide both m' and n'.

Then

$$\sum_{d|\gcd(c,m,n)} dS(mnd^{-2},1;cd^{-1}) = \sum_{d|p^k} dS(m'n'p^{2k}d^{-2},1;p^rd^{-1})$$
$$= \sum_{i=0}^k p^i S(m'n'p^{2k-2i},1;p^{r-i})$$

If k < r then all terms except the last are 0 by Lemma 2.2, so this equals

$$p^{k}S(m'n', 1; p^{r-k}) = p^{k}S(m', n'; p^{r-k})$$

$$= p^{k} \sum_{d \pmod{\times} p^{r-k}} e\left(\frac{m'd + n'\overline{d}}{p^{r-k}}\right)$$

$$= \sum_{d \pmod{\times} p^{r}} e\left(\frac{p^{k}m'd + p^{k}n'\overline{d}}{p^{r}}\right)$$

$$= S(m, n; c)$$

$$(4)$$

In (4) we used (B), noting that one of m', n' is relatively prime to p, and in (5) we note that the invertible residues modulo p^r cover the invertible residues modulo p^{r-k} , p^k times.

If instead k = r then all terms except the last two are 0 by Lemma 2.2, and the sum equals

$$p^{r}S(m'n', 1; 1) + p^{r-1}S(m'n'p^{2}, 1; p) = p^{r} - p^{r-1}$$
$$= \varphi(p^{r})$$
$$= S(p^{r}m', p^{r}n'; p^{r}).$$

Note we used $S(m'n', 1; p) = \sum_{d \pmod{p}} e\left(\frac{d}{p}\right) = -1$ by Lemma 2.1.

(D) $S(m, n; c) = S(\overline{d_1}m, \overline{d_1}n; d_2)S(\overline{d_2}m, \overline{d_2}n; d_1)$

Denote by $f(r_1, r_2)$ the unique residue modulo d_1d_2 which is congruent to r_1 modulo d_2 and r_2 modulo d_1 . (It's well defined by the Chinese Remainder Theorem.)

$$S(\overline{d_1}m, \overline{d_1}n; d_2)S(\overline{d_2}m, \overline{d_2}n; d_1) = \sum_{\substack{a_1 \pmod{\times} d_2) \\ a_2 \pmod{\times} d_2}} e\left(\frac{m\overline{d_1}a_1 + n\overline{d_1}\overline{a_1}}{d_2}\right) \sum_{\substack{a_2 \pmod{\times} d_1) \\ a_2 \pmod{\times} d_1}} e\left(\frac{m\overline{d_2}a_2 + n\overline{d_2}\overline{a_2}}{d_1}\right)$$

$$= \sum_{\substack{a_1 \pmod{\times} d_2 \\ a_2 \pmod{\times} d_1) \\ a_2 \pmod{\times} d_1}} e\left(\frac{(m\overline{d_1}a_1d_1 + m\overline{d_2}a_2d_2) + (n\overline{d_1}\overline{a_1}d_1 + m\overline{d_2}\overline{a_2}d_2)}{d_1d_2}\right)$$

$$= \sum_{\substack{a_1 \pmod{\times} d_2 \\ a_2 \pmod{\times} d_1) \\ a_2 \pmod{\times} d_1}} e\left(\frac{f(ma_1, ma_2) + f(n\overline{a_1}, n\overline{a_2})}{d_1d_2}\right).$$

Problem 3 5

$$= \sum_{\substack{a_1 \pmod^{\times} d_2 \\ a_2 \pmod^{\times} d_1}} e\left(\frac{mf(a_1, a_2) + n\overline{f(a_1, a_2)}}{d_1 d_2}\right)$$
$$= \sum_{\substack{a \pmod^{\times} d_1 d_2 \\ = S(m, n; c).}} e\left(\frac{ma + n\overline{a}}{d_1 d_2}\right)$$

We used the fact that the units modulo d_1d_2 are exactly the residues which are units both modulo d_1 and modulo d_2 , by the Chinese Remainder Theorem.

Problem 3 (Salié sum)

(A)

Lemma 3.1: Suppose 2m is relatively prime to c. Then

$$\left(\frac{m}{c}\right)g(n,c) = g(mn,c).$$

Proof. From [1, 4.8], $g(n,c) = \varepsilon_c \left(\frac{n}{c}\right) \sqrt{c}$ where

$$\varepsilon_c = \begin{cases} 1, & c \equiv 1 \pmod{4} \\ i, & c \equiv 3 \pmod{4}. \end{cases}$$

Hence

$$\left(\frac{m}{c}\right)g(n,c) = \varepsilon_c\left(\frac{m}{c}\right)\left(\frac{n}{c}\right)\sqrt{c} = \varepsilon_c\left(\frac{mn}{c}\right)\sqrt{c} = g(mn,c).$$

Lemma 3.2 (Ramanujan sum): Let ζ_q be a primitive qth root of unity, and let

$$c_q(n) = \sum_{\substack{a \, (\text{mod}^{\times} q)}} \zeta_q^{an}.$$

Then

$$c_q(n) = \sum_{d \mid \gcd(q,n)} d\mu \left(\frac{q}{d}\right).$$

Proof. Let $\eta_q(n) = \sum_{k=1}^q \zeta_q^{kn}$. Since all qth roots of unity are primitive dth roots of unity for exactly one d|q,

$$\eta_q(n) = \sum_{d|q} c_d(n).$$

By Möbius inversion,

$$c_q(n) = \sum_{d|q} \mu\left(\frac{q}{d}\right) \eta_d(n).$$

But the sum $\eta_q(n) = \sum_{k=1}^d \zeta_d^{nk}$ is 0 unless d|n, in which case it equals d (each term being 1). This gives the lemma.

Problem 3 6

$$\hat{F}(y) = \sum_{x \pmod{c}} \sum_{d \pmod{c}} \left(\frac{d}{c}\right) e\left(\frac{m\overline{d} + ndx^{2}}{c}\right) e\left(\frac{-yx}{c}\right)$$

$$= \sum_{d \pmod{c}} \sum_{x \pmod{c}} \left(\frac{d}{c}\right) e\left(\frac{nd\left(x - \frac{y}{2nd}\right)^{2} - \frac{y^{2} - 4mn}{4nd}}{c}\right)$$

$$= \sum_{d \pmod{c}} \sum_{t \pmod{c}} \left(\frac{d}{c}\right) e\left(\frac{ndt^{2} - \frac{y^{2} - 4mn}{4nd}}{c}\right)$$

$$= \sum_{d \pmod{c}} \left(\frac{d}{c}\right) g(nd, c) e\left(\frac{-\frac{y^{2} - 4mn}{4nd}}{c}\right)$$

$$= \sum_{d \pmod{c}} g(nd^{2}, c) e\left(\frac{-(y^{2} - 4mn)}{c} \cdot \frac{1}{4n} \cdot \frac{1}{d}\right) \qquad \text{by Lemma 3.1}$$

$$= g(n, c) \sum_{d \pmod{c}} e\left(\frac{\gcd(4mn - y^{2}, c)d}{c}\right)$$

$$= g(n, c) \sum_{d \pmod{c}} d\mu\left(\frac{c}{d}\right).$$
(6)

In (6) we replaced $\frac{1}{d}$ by $4nd \cdot \frac{\gcd(4mn-y^2,c)}{c}$, which is legit since $4n \cdot \frac{\gcd(4mn-y^2,c)}{c}$ is a unit modulo c. We used $g(nd^2,c) = \sum_{t \pmod{c}} e\left(\frac{n(dt)^2}{c}\right) = \sum_{t \pmod{c}} e\left(\frac{nt^2}{c}\right) = g(n,c)$, since as t ranges over units modulo c so does dt.

(B) Taking the inverse Fourier Transform of (A) gives

$$F(x) = \frac{1}{c} \sum_{y \pmod{c}} \left(e\left(\frac{xy}{c}\right) g(n, c) \sum_{d \mid \gcd(4mn - y^2, c)} d\mu\left(\frac{c}{d}\right) \right)$$

$$= g(n, c) \frac{1}{c} \sum_{d \mid c} \left[d\mu\left(\frac{c}{d}\right) \sum_{y \pmod{c}, d \mid 4mn - y^2} e\left(\frac{xy}{c}\right) \right]$$

$$= g(n, c) \frac{1}{c} \sum_{y^2 \equiv 4mn \pmod{c}} ce\left(\frac{xy}{c}\right)$$

$$= g(n, c) \sum_{y^2 \equiv mn \pmod{c}} e\left(\frac{2xy}{c}\right)$$

$$= g(n, c) \sum_{y^2 \equiv mn \pmod{c}} e\left(\frac{2xy}{c}\right)$$
(7)

Note that in (7) the inner sum for $d \neq c$ is 0, because a solution y to $d|4mn - y^2$ can be grouped with the solutions y + dk for $0 \leq k < \frac{c}{d}$, and the resulting $e\left(\frac{xy}{c}\right)$ are evenly spaced around the unit circle (for x invertible modulo c) and sum to 0.

Problem 4 7

In particular, putting in x = 1 gives

$$T(m, n; c) = g(n, c) \sum_{y^2 \equiv mn \pmod{c}} e\left(\frac{2y}{c}\right).$$

Problem 4 (Line bundles)

(A)

Let $K = \mathbb{R}$ or \mathbb{C} .

The trivial line bundle $\pi': M \times K \to M$ has the nonvanishing section g defined by

$$q(m) = (m, 1).$$

Conversely suppose there is a nonvanishing section $f: M \to L$. Let $\pi: L \to M$ be the projection map. We find a way to identify L with $M \times K$ so that f is identified with the map $m \mapsto (m, 1)$ given above. Define $h: L \to M \times K$ as follows:

$$h(l) = \left(\pi(l), \frac{l}{f(\pi(l))}\right).$$

Since the fiber above $\pi(l)$ is a one-dimensional vector space and $f(\pi(l))$ does not correspond to the zero vector (as f is nonvanishing), the division is well-defined. We claim that the following commutes:

$$L \xrightarrow{h} M \times K$$

$$f \downarrow g \qquad \qquad M$$

Indeed, $h(f(m)) = \left(m, \frac{f(m)}{f(m)}\right) = (m, 1) = g(m)$. Note h is a diffeomorphism: given $l \in L$, we can choose an open neighborhood U around $\pi(l)$ so that $\pi^{-1}(U) = U \times K$; then the map from $U \times K \to M \times K$ induced by $h: L \to M \times K$ is clearly a diffeomorphism. It remains to note that h carries $\pi^{-1}(l)$ bijectively to $\pi'^{-1}(l)$, and it is a linear transformation here, for each l.

(B)

The Möbius strip is not isomorphic to $S^1 \times \mathbb{R}$.

We identify S^1 with the reals modulo 1. Let $U_1 = (0,1)$ and $U_2 = (.9,1) \cup [0,.1)$. As a set, let L be a copy of $S^1 \times \mathbb{R}$. Let $\pi : L \to S^1$ be the projection map. Give $\pi^{-1}(U_1)$ the same topology as the usual topology $U_1 \times \mathbb{R} \subseteq L$. However, define the topology on U_2 as follows: Let $h : \pi^{-1}(U_2) \to U_2 \times \mathbb{R}$ be the map defined by

$$h((x,y)) = \begin{cases} (x,y), & x \in (.9,1) \\ (x,-y), & x \in [0,.1) \end{cases}$$

Problem 4 8

and topologize $\pi^{-1}(U_2)$ so that h is a homeomorphism. Note the topology on $U_1 \cap U_2$ is consistent in both cases: on the component (.9,1) h is simply the identity map on sets, while on the component (0,1) h is the map $(a,b) \to (a,-b)$ which is a automorphism of $(0,1) \times \mathbb{R}$. L is known as the Möbius strip.

Now let f be any section $\hat{S}^1 \to L$. Write f as $f(x) = (x, f_1(x))$. Then from the topology on L, in order for f to be continuous,

$$f(0) = -\lim_{x \to 1^{-}} f(x).$$

If $f_1(0) = 0$ then f vanishes, else, $f_1(0)$ and $f_1(1 - \varepsilon)$ are of different sign for small ε , so f_1 vanishes somewhere on (0, 1) and again f vanishes. Thus by (A), $L \ncong S^1 \times \mathbb{R}$.

References

- [1] Iwaniec, H.: "Topics in Classical Automorphic Forms," AMS, 1997.
- [2] Rankin, R.: "The Vanishing of Poincaré Series," Proceedings of the Edinburgh Mathematical Society (1980), 23, 151-161.