MATH 2860 Midterm RC

MO YANG

2023/10/27

Contents

- First-Order Linear Equation
- Linear Systems of Equations
- Second-Order Linear Equation

First-Order Linear Equation

For the initial value problem:

$$y' = f(x)g(y), \quad y(\xi) = \eta$$

The necessary conditions for solving the initial value problem is:

- 1. Continuity: The function f and g are continuous in some $I_x \subset \mathbb{R}, I_y \subset \mathbb{R}$
- 2. $\xi \in I_x$ and $\eta \in I_y$

For different initial values at $g(\eta)$, we have different conditions for the answers:

1. $g(\eta) \neq 0$ Therefore, the solution to the initial value problem is obtained from

$$\int_{\eta}^{y} \frac{ds}{g(s)} = \int_{\xi}^{x} f(t)dt$$

2. $g(\eta) = 0$ Intuitive Answer: $y(x) = \eta$. Other Answers: Depends on whether the integration on the left hand side exists. You should always include the intuitive answer.

Ex1

(1 + 2x)y' = 3 + y with y(0) = -2

Ex1

$$(1 + 2x)y' = 3 + y$$
 with $y(0) = -2$

$$\int_{y}^{g} \frac{ds}{g(s)} = \int_{\xi}^{x} f(t) dt$$

$$(1+2x)\frac{dy}{dx} = 3+y$$

$$\frac{dy}{3+y} = \frac{dx}{1+2x}$$

$$\int_{-2}^{y} \frac{ds}{3+s} = \int_{0}^{x} \frac{dt}{1+2t}$$

$$\ln(3+s)\Big|_{-2}^{y} = \frac{1}{2}\ln(2x+1)\Big|_{0}^{x}$$

$$\ln(3+y) = \frac{1}{2}\ln(2x+1)$$

$$\implies y = \sqrt{2x+1} - 3$$

General Solution to Linear FODE

The solution to

$$a_1(x)y' + a_0(x)y = f(x), \quad y(\xi) = \eta$$

is given by

$$y(x) = \eta e^{-G(x)} + e^{-G(x)} \int_{\xi}^{x} \frac{f(s)}{a_1(s)} e^{G(s)} ds$$

for x in a neighborhood of ξ , where

$$G(x) = \int_{\xi}^{x} \frac{a_0(t)}{a_1(t)} dt$$

Ex2

 $y' - y\sin(x) = 2\sin(x)$ with $y(\pi 2) = -3$

Ex2

$$y' - y\sin(x) = 2\sin(x)$$
 with $y(\pi 2) = -3$

$$y-y\sin(x)=2\sin(x) ext{ with } y\left(rac{\pi}{2}
ight)=-3$$
 $a_0(x)=-\sin(x)$ $f(x)=2\sin(x)$ $a_1=1$ $y(x)=-3e^{-\int_{\pi/2}^x-\sin s\,ds}+e^{-\cos x}\int_{\pi/2}^x2\sin(s)\cdot e^{\cos s}\,ds$ $=-3e^{-\cos x}+e^{-\cos x}\left(-2e^{\cos x}\Big|_{\pi/2}^x
ight)$ $=-3e^{-\cos x}-2e^{-\cos x}(e^{\cos x}-e^0)$ $y(x)=-e^{-\cos x}-2$

Linear System of Equations

A system of first order ODE is the form

$$\dot{x_1} = F_1(x_1, x_2, \dots, x_n, t)$$
 $\dot{x_2} = F_2(x_1, x_2, \dots, x_n, t)$
 \vdots
 $\dot{x_n} = F_n(x_1, x_2, \dots, x_n, t)$

Given an explicit ODE of order n, $x^{(n)}(t) = f(t, x, \dot{x}, \dots, x^{n-1})$, we can introduce new variables $x_i = x^{(i-1)}$ $(i = 1, 2, \dots, n)$, and we will get a system of linear equation:

$$\dot{x_1} = x_2
\dot{x_2} = x_3
\vdots
\dot{x_n} = f(x_1, x_2, \dots, x_n, t)$$

A linear system of ODE is in the form of:

$$\frac{dx}{dt} = A(t)x + b(t), t \in I$$

where $A: I \to R^{n \times n}$ and $b: I \to R^n$.

- If b = 0, we call it homogeneous linear system, otherwise inhomogeneous.
- If A and b are constant functions, we call the system constant coefficients, otherwise variable coefficients.
 We basically focus on constant coefficients.

- superposition Principle: Assume x_1 and x_2 are two solutions of homogeneous linear equation $\frac{dx}{dt} = A(t)x$, then $\lambda x_1 + \mu x_2$ is also a solution.
- solution space: all solution of $\frac{dx}{dt} = A(t)x$ forms a linear space. It's basis is called fundamental system of solutions.
- For a basis $\mathscr{B} = \{b_1, b_2, \dots, b_n\}$ of R^n , denote x_i to be the unique solution of equation $\frac{dx}{dt} = A(t)x, x(0) = b_i$, then $\mathscr{F} = \{x_1, x_2, \dots, x_n\}$ is a fundamental system.

For the linear system

$$\frac{dx}{dt} = Ax, x(0) = x_0, x : R \to R^n$$

The solution is $x(t) = e^{At}x_0$. Here A is the $n \times n$ matrix, so we need to define the matrix exponential function.

The matrix exponential is defined as

$$e^{At} := I + \sum_{k=1}^{\infty} \frac{A^k t^k}{k!}$$

If A is diagonalizable, then $A = UDU^{-1}$, $D = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ and we have

$$e^{At} = Ue^{Dt}U^{-1}$$

and $e^{Dt} = diag(e^{\lambda_1 t}, \dots, e^{\lambda_n t})$

Ex3

Exercise 9.

Consider the initial value problem

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Calculate $e^{\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} t}$ and use this to solve the above initial value problem. (4 Marks)

Solution 9.

We first calculate the eigenvalues from the characteristic polynomial:

$$p(\lambda) = \det \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 4 - \lambda \end{pmatrix} = (2 - \lambda)(4 - \lambda) - 1 = \lambda^2 - 6\lambda + 7,$$

so $p(\lambda) = 0$ if

$$\lambda = 3 \pm \sqrt{9 - 7} = 3 \pm \sqrt{2}$$
.

Thus the eigenvalues are $\lambda_1 = 3 + \sqrt{2}$ and $\lambda_2 = 3 - \sqrt{2}$. We now the corresponding eigenvectors:

$$\lambda_1$$
: We solve

$$\begin{pmatrix} -1 - \sqrt{2} & 1 \\ 1 & 1 - \sqrt{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

which gives

$$v_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 + \sqrt{2} \end{pmatrix}$$

 λ_2 : We solve

$$\begin{pmatrix} -1+\sqrt{2} & 1\\ 1 & 1+\sqrt{2} \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = 0$$

which gives

$$v_2 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \alpha \begin{pmatrix} 1 + \sqrt{2} \\ -1 \end{pmatrix}$$

Choosing in both cases $\alpha = 1/\sqrt{(1+\sqrt{2})^2+1}$ we see that v_1 and v_2 are orthonormal.

Set
$$U = \alpha \begin{pmatrix} 1 & 1 + \sqrt{2} \\ 1 + \sqrt{2} & -1 \end{pmatrix}.$$

Then $U = U^* = U^{-1}$.

$$\begin{split} e^{\left(\frac{2}{1}\frac{1}{4}\right)t} &= U\left(\frac{e^{\lambda_{1}t}}{0} \frac{0}{e^{\lambda_{2}t}}\right)U \\ &= \alpha^{2} \begin{pmatrix} 1 & 1+\sqrt{2} \\ 1+\sqrt{2} & -1 \end{pmatrix} \begin{pmatrix} e^{\lambda_{1}t} & 0 \\ 0 & e^{\lambda_{2}t} \end{pmatrix} \begin{pmatrix} 1 & 1+\sqrt{2} \\ 1+\sqrt{2} & -1 \end{pmatrix} \\ &= \alpha^{2} \begin{pmatrix} 1 & 1+\sqrt{2} \\ 1+\sqrt{2} & -1 \end{pmatrix} \begin{pmatrix} e^{\lambda_{1}t} & (1+\sqrt{2})e^{\lambda_{1}t} \\ (1+\sqrt{2})e^{\lambda_{2}t} & -e^{\lambda_{2}t} \end{pmatrix} \\ &= \alpha^{2} \begin{pmatrix} e^{\lambda_{1}t} + (1+\sqrt{2})^{2}e^{\lambda_{2}t} & (1+\sqrt{2})(e^{\lambda_{1}t} - e^{\lambda_{2}t}) \\ (1+\sqrt{2})(e^{\lambda_{1}t} - e^{\lambda_{2}t}) & e^{\lambda_{2}t} + (1+\sqrt{2})^{2}e^{\lambda_{1}t} \end{pmatrix} \\ &= \frac{e^{3t}}{(1+\sqrt{2})^{2}+1} \begin{pmatrix} e^{\sqrt{2}t} + (1+\sqrt{2})^{2}e^{-\sqrt{2}t} & (1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) \\ (1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) & e^{-\sqrt{2}t} + (1+\sqrt{2})^{2}e^{\sqrt{2}t} \end{pmatrix} \end{split}$$

The solution to the IVP is given by

$$\begin{split} e^{\left(\frac{2}{1}\frac{1}{4}\right)t} \begin{pmatrix} 3\\2 \end{pmatrix} &= \frac{e^{3t}}{(1+\sqrt{2})^2+1} \begin{pmatrix} e^{\sqrt{2}t} + (1+\sqrt{2})^2 e^{-\sqrt{2}t} & (1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) \\ (1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) & e^{-\sqrt{2}t} + (1+\sqrt{2})^2 e^{\sqrt{2}t} \end{pmatrix} \begin{pmatrix} 3\\2 \end{pmatrix} \\ &= \frac{e^{3t}}{(1+\sqrt{2})^2+1} \begin{pmatrix} 3e^{\sqrt{2}t} + 3(1+\sqrt{2})^2 e^{-\sqrt{2}t} + 2(1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) \\ 3(1+\sqrt{2})(e^{\sqrt{2}t} - e^{-\sqrt{2}t}) + 2e^{-\sqrt{2}t} + 2(1+\sqrt{2})^2 e^{\sqrt{2}t} \end{pmatrix} \end{split}$$

On the other hand, if A is not diagonalizable, then assume $A = UJU^{-1}$, J is the corresponding Jordan normal form and we have

$$e^{At} = Ue^{Jt}U^{-1}$$

Since J = D + N, N is a nilpotent matrix, this can be done easily.

Refer to exercise 10 in sample to explore more.

We need to find a particular solution for the equation $\frac{dx}{dt} = Ax + b(t)$. The particular solution is given by $x_{part}(t) = e^{At} \int_{t_0}^t e^{-As} b(s) ds$. Then the solution to the initial value problem $(x(t_0) = x_0)$ is

$$x(t) = e^{A(t-t_0)}x_0 + e^{At} \int_{t_0}^t e^{-As}b(s)ds$$

The general solution is the general solution for homogeneous equation plus the x_part , i.e.,

$$\sum_{k=1}^{n} c_k x_k + x_{part}(t)$$

 $\{x_1, x_2, \dots, x_n\}$ is a fundamental system for the homogeneous part.

▶ The Wronskian of n solutions of a system. $x^{(1)}, \ldots, x^{(n)}$ are n arbitrary solutions of the homogeneous system

$$\frac{dx}{dt} = A(t)x.$$

Then the Wronskian is given by

$$W_{x_1,...,x_n}(t) := \det(x^{(1)}(t),...,x^{(n)}(t)).$$

▶ 1.10.8. Lemma and Abel's equation.

$$\frac{dW}{dt}=a(t)W,\quad a(t)=\operatorname{tr} A(t),\quad W(t)=W(t_0)e^{-\int_{t_0}^t a(s)ds}.$$

W (t) is non-zero if and only if the functions are linearly independent.

Second Order Linear Equations

$$y'' + p(t)y' + q(t)y = g(t), \qquad t \in I.$$

- ► Constant coefficients: ay'' + by' + cy = g(t).
 - ► Homogeneous: ay'' + by' + cy = 0.
 - 1. $b^2 \neq 4ac, \lambda_1, \lambda_2 \in \mathbb{R}$.

$$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}, \qquad c_1, c_2 \in \mathbb{R}.$$

2. $b^2 \neq 4ac, \lambda_1, \lambda_2 \in \mathbb{C}$.

$$y(t) = c_1 e^{\operatorname{Re}\lambda_i t} \sin\left(\operatorname{Im}\lambda_i t\right) + c_2 e^{\operatorname{Re}\lambda_i t} \cos\left(\operatorname{Im}\lambda_i t\right), \ c_1, c_2 \in \mathbb{R}.$$

3. $b^2 = 4ac$, $\lambda_1 = \lambda_2 \in \mathbb{R}$.

$$y(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y'' + p(t)y' + q(t)y = g(t), \qquad t \in I.$$

$$W(t) = \left| \begin{array}{cc} y_1 & y_2 \\ y_1' & y_2' \end{array} \right|$$

- ▶ Constant coefficients: ay'' + by' + cy = g(t).
 - ▶ Inhomogeneous: ay'' + by' + cy = g(t).
 - Find two independent solutions y₁, y₂ of the homogeneous equation.
 - 2. Find particular solution ay'' + by' + cy = 0.

$$y_{\text{part}}(t) = -y^{(1)}(t) \int \frac{g(t)y^{(2)}(t)}{W(y^{(1)}(t), y^{(2)}(t))} dt + y^{(2)}(t) \int \frac{g(t)y^{(1)}(t)}{W(y^{(1)}(t), y^{(2)}(t))} dt.$$

3. $y_{\text{inhom}}(t; c_1, c_2) = y_{\text{hom}}(t; c_1, c_2) + y_{\text{part}}(t)$.

For variable coefficient homogeneous second-order linear equation y'' + p(t)y' + q(t)y = 0, it's hard to solve in general. However, if we know one of its solution somehow, we can get the other one, and form a fundamental system.

If we know a solution $y_1(t)$. Set $y_2 = v(t)y_1(t)$, and plug into the equation, we get

$$y_1v'' + (2y_1' + py_1)v' = 0$$

Which is a first-order linear equation with respect to v'

Ex4

Exercise 11.

Find the general solution of

$$y'' - 4y' + 4y = te^{2t}$$

Solution 11.

We transform into a system by setting $x_1 = y$, $x_2 = y'$. Then

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix}}_{=:A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ te^{2t} \end{pmatrix}$$

The eigenvalues of A are determined from

$$-\lambda(4-\lambda)+4=\lambda^2-4\lambda+4=0$$

giving $\lambda = 2$. Computing eigenvectors,

$$\begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

gives -2u + v = 0, so

$$u_1 = \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

for $\alpha \in \mathbb{R}$. We choose an independent eigenvector from

$$\ker(A - \lambda)^2 = \ker\begin{pmatrix} -2 & 1\\ -4 & 2 \end{pmatrix}^2 = \mathbb{R}^2,$$

taking

$$u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2 \end{pmatrix}, \qquad u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1 \end{pmatrix}.$$

The vectors are orthonormal, so

$$U = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2\\ 2 & 1 \end{pmatrix}$$

is orthogonal, $U^{-1} = U^T$. Then

$$J = U^T A U = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 0 & 2 \end{pmatrix}$$

We can obtain a fundamental solution of the associated homogeneous equation from

$$e^{At}U = Ue^{Jt} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} e^{2t} & 5te^{2t} \\ 0 & e^{2t} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} e^{2t} & (5t-2)e^{2t} \\ 2e^{2t} & (10t+1)e^{2t} \end{pmatrix}$$

The Wronskian of this solution is

$$W(t) = \frac{1}{5}e^{4t} \det \begin{pmatrix} 1 & (5t-2) \\ 2 & (1+10t) \end{pmatrix} = e^{4t}$$

We obtain a particular solution of the inhomogeneous equation by replacing columns in the Wronskian with the inhomogeneity, i.e., we calculate

$$c_1'(t)\frac{1}{\sqrt{5}W(t)}\det\begin{pmatrix}0&(5t-2)e^{2t}\\te^{2t}&(1+10t)e^{2t}\end{pmatrix}=\frac{1}{\sqrt{5}}\det\begin{pmatrix}0&5t-2\\t&1+10t\end{pmatrix}=(-5t^2+2t)/\sqrt{5}$$

so

$$c_1(t) = \frac{1}{\sqrt{5}}(t^2 - 5t^3/3)$$

and

$$\frac{1}{\sqrt{5}W(t)} \det \begin{pmatrix} e^{2t} & 0\\ 2e^{2t} & te^{2t} \end{pmatrix} = t/\sqrt{5}.$$

so

$$c_2(t) = \frac{1}{\sqrt{5}}(t^2/2)$$

Hence a particular solution of the inhomogeneous system of ODEs is given by

$$y_{\text{part}}(t) = \frac{t^2 - 5t^3/3}{5} \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix} + \frac{t^2/2}{5} \begin{pmatrix} (5t - 2)e^{2t} \\ (1 + 10t)e^{2t} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} t^3e^{2t} \\ (2t^3 + 3t^2)e^{2t} \end{pmatrix} = \begin{pmatrix} x_{\text{part}}(t) \\ \dot{x}_{\text{part}}(t) \end{pmatrix}.$$

Hence a particular solution of the 2nd order ODE is

$$x_{\text{part}}(t) = \frac{1}{6}t^3e^{2t}.$$

We obtain two homogneous solutions of the second order ODE from the system, namely

$$x_{\text{hom}}(t) = \frac{1}{\sqrt{5}}e^{2t}$$
 and $x_{\text{hom}}(t) = \frac{1}{\sqrt{5}}(5t - 2)e^{2t}$

Thus the general solution of the 2nd order ODE is

$$x_{\text{inhom}}(t) = \frac{1}{6}t^3e^{2t} + c_1e^{2t} + c_2te^{2t}$$

The meaning of the world, is outside the world By Wittgenstein

The meaning of math, is outside of mathematics

By Mo Yang

Good Luck!

