Seminarul 3 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Rezultate utile din cursurile sau seminariile trecute

Teorema 1.1: (de corespondență a idealelor)

Fie R, S inele și $f: R \to S$ un morfism surjectiv de inele.

Atunci există o corespondență bijectivă între idealele lui S și idealele lui R care conțin Ker f i.e. funcțiile

$$\varphi: \{I \leq R \mid I \supset \operatorname{Ker} f\} \to \{J \leq S\}, \ \varphi(I) = f(I),$$

$$\psi: \{J \leq S\} \to \{I \leq R \mid I \supset \operatorname{Ker} f\}, \ \psi(J) = f^{-1}(J).$$

sunt mutual inverse: $\varphi \circ \psi = id$, $\psi \circ \varphi = id$.

Lema 1.2: (Lema lui Krull) Orice ideal este inclus într-un ideal maximal.

2 Ideale maximale. Inele locale

Exercițiul 2.1: Fie R un inel. Demonstrați că $I \subseteq R$ este maximal dacă și numai dacă pentru orice $a \notin I$, I + (a) = R.

Exercițiul 2.2: Demonstrați că Teorema de corespondență a idealelor (Teorema 1.1) este compatibilă cu idealele maximale *i.e.* ideale maximale corespund la ideale maximale.

Redemonstrați apoi că $I \leq R$ este maximal dacă și numai dacă R_I este corp.

Exercițiul 2.3: Determinați idealele maximale ale lui \mathbb{Z} și \mathbb{Z}_n , $n \geq 2$.

Exercițiul 2.4: Pentru $n \in \mathbb{N}, n \geq 2$, când este \mathbb{Z}_n inel local?

Exercițiul 2.5:

- a) Fie $R_1, R_2, ..., R_n$ inele. Determinați forma idealelor maximale ale lui $R = R_1 \times ... \times R_n$.
- b) Determinați idealele maximale ale lui $\mathbb{Z} \times \mathbb{R} \times \mathbb{Z}_8$.

Exercițiul 2.6: Fie R un inel comutativ. Demonstrați că urmatoarele afirmații sunt echivalente:

- (i) R este inel local.
- (ii) Pentru orice $a, b \in R$, dacă $a + b \in U(R)$, atunci $a \in U(R)$ sau $b \in U(R)$.
- (iii) $R \setminus U(R)$ este ideal al lui R.

Exercițiul 2.7: Demonstrați că singurele elemente idempotente dintr-un inel local sunt 0 și 1.

Exercițiul 2.8: Fie p un număr prim şi

$$A = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ p \not\mid b \right\}$$

Demonstrați că A este inel local.

3 Corpuri. Corpul de fracții al unui domeniu

Exercițiul 3.1: Fie F un corp comutativ. Arătați că, privind F ca un domeniu de integritate, corpul său de fracții este izomorf cu F.

Exercițiul 3.2: Fie

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \text{ si } \mathbb{Q}[i] = \{a + bi \mid a, b \in \mathbb{Q}\}.$$

Arătați că $\mathbb{Z}[i]$ este subinel al lui \mathbb{C} (inelul întregilor lui Gauss), $\mathbb{Q}[i]$ este subcorp al lui \mathbb{C} , iar corpul de fracții al lui $\mathbb{Z}[i]$ este izomorf cu $\mathbb{Q}[i]$.