Advanced Linear Algebra: Quiz 1 Solutions, Spring 2017

Problem 1. True or False:

(a) Any set containing a zero vector is linearly dependent.

Solution. True: 0 can always be written as a linear combination of any other vectors.

(b) A basis must contain **0**.

Solution. False. In fact, a basis can never contain $\mathbf{0}$ for the above reason.

(c) Subsets of linearly dependent sets are linearly dependent.

Solution. False. For instance $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a linearly independent subset of the dependent set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_1 + \mathbf{e}_2\}$.

(d) Subsets of linearly independent sets are linearly independent.

Solution. True. \Box

(e) If $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$ then all the scalars α_k are zero.

Solution. False in general, e.g. if $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ are dependent.

Problem 2. Assuming only the axioms for a vector space, prove that the zero vector $\mathbf{0}$ is unique. In other words, if $\mathbf{0}$ and $\mathbf{0}'$ satisfy $\mathbf{0} + \mathbf{v} = \mathbf{v}$ and $\mathbf{0}' + \mathbf{v} = \mathbf{v}$ for all vectors \mathbf{v} , then $\mathbf{0} = \mathbf{0}'$.

Solution. By the identity axiom, $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all \mathbf{v} , including the case $\mathbf{v} = \mathbf{0}'$, and likewise $\mathbf{0}' + \mathbf{v} = \mathbf{v}$ for all \mathbf{v} including $\mathbf{v} = \mathbf{0}$. Thus

$$0' = 0 + 0' = 0' + 0 = 0.$$

Problem 3. Assuming the axioms for a vector space, the identity $0\mathbf{v} = \mathbf{0}$ for all \mathbf{v} , and uniqueness of additive inverses (which both follow from the axioms), prove that $-\mathbf{v} = (-1)\mathbf{v}$, i.e., that the additive inverse of \mathbf{v} is obtained by scalar multiplication by -1.

Solution. We have

$$0\mathbf{v} = (1-1)\mathbf{v}$$
$$= 1\mathbf{v} + (-1)\mathbf{v}$$
$$= \mathbf{v} - \mathbf{v}$$
$$= \mathbf{0}.$$