

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 2 ปีการศึกษา 2550

วิชา ENE 311 Physics of Electronic Materials and Devices I

ภาควิชาวิศวฯอิเล็กฯ ปีที่ 4 ปีที่ 3 (โครงการฯ)

สอบ วันศุกร์ที่ 28 ธันวาคม พ.ศ. 2550

เวลา 09:00 - 12:00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 9 หน้า (รวมใบปะหน้า) ข้อละ 20 คะแนน
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้<u>เลขนัยสำคัญ 4ตำแหน่ง</u>
- 3. ไม่อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา				
ชื่อ-สกุล				
รหัสประจำตัว	เลขที่นั่งสอบ			
อาจารย์อภิชัย ภัทรนันท์				
ผู้ออกข้อสอบ				
โทร. 0-2470-9063				

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

1	4.1.
ชื่อ	เลขที่นั่งสอบ

1. จงหาค่า conductivity ของซิลิกอนบริสุทธิ์ และแกลเลี่ยมอาร์เซไนด์บริสุทธิ์ที่อุณหภูมิห้อง Determine the conductivities of intrinsic Si and intrinsic GaAs at room temperature. 2. ในการทดลองของฮอลล์ดังแสดงในรูปข้างล่าง ได้ข้อมูลดังนี้ $L=1~{\rm cm},~d=0.1~{\rm cm},~w=0.2~{\rm cm},~I=5~{\rm mA},~B_Z=1~{\rm W/m}^2,~V=0.245~{\rm V}$ และ $|R_H|=1.18~{\rm cm}^3/{\rm C}$ ถ้าต่อโวลท์มิเตอร์วัดค่า ${\rm V_H}$ จะได้ศักย์ไฟฟ้าบวกอยู่ด้านบนดังรูป จงหา (ก) ชนิดของชิ้นสารนี้จงอธิบาย (ข) ค่าความ เข้มข้นของพาหะข้างมาก (ค) ค่าฮอลล์โวท์เตจ ${\rm V_H}$

A Hall effect experiment is shown below with d = 0.2 cm, w = 0.1 cm, l = 5 mA, $B_Z = 1$ W/m², V = 0.245 V, and $|R_H| = 1.18$ cm³/C. A voltage meter is connected to read V_H with positive charges on the top as shown in the figure. Find (a) type of this material (n- or p-type). Please explain. (b) majority carrier concentration (c) Hall voltage V_H

ชื่อเลขที่นั่งสอบ.......

3. จงหาระดับพลังงาน E_n สำหรับอิเล็กตรอนที่ถูกกักไว้ในบ่อพลังงานแบบ infinite ดังรูป Find the allowed energy levels E_n for an electron that is trapped in the infinite one-dimensional potential well as in the figure below.

à	d å
ชื่อ	เลขที่นั่งสอบ

- 4. (ก) จงคำนวณหาค่าจำนวนชิลิกอนอะตอมต่อลูกบาศก์เซนติเมตร และความหนาแน่น ho ของ ชิลิกอนที่อุณหภูมิห้อง
 - (a) Calculate the number of Si atoms per cubic centimeter and the density of Si at room temperature.

- (ฃ) ทำซ้ำข้อ (ก) ถ้าเปลี่ยนเป็นแกลเลี่ยมอาร์เซไนด์
- (b) Repeat (a) if Si is replaced by GaAs

- 5. ที่อุณหภูมิห้องซิลิกอนถูกโด๊ปด้วย 10¹⁶ โบรอนอะตอมต่อลูกบาศก์เซนติเมตร(10¹⁶ B atoms/cm³) จงหา
 - (ก) จำนวนพาหะข้างมากต่อหน่วยปริมาดรที่ภาวะสมดุล (ionized atoms)
 - (ข) จำนวนพาหะข้างน้อยต่อหน่วยปริมาตรที่ภาวะสมดุล
 - (ค) จงหาระดับพลังงาน E_A-E_v และ E_F-E_v ในหน่วยของอิเล็กดรอนโวลท์ At room temperature, a Si sample is doped with 10 16 Boron atoms/cm 3 . Find:
 - (a) the equilibrium majority carrier concentration (ionized atoms)
 - (b) the equilibrium minority carrier concentration
 - (c) $E_A E_v$ and $E_F E_V$ in eV

Properties of Si and GaAs at 300 K

Properties	Si	GaAs
Atoms/cm ³	5.02×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63
Breakdown field (V/cm)	$\sim 3 \times 10^5$	$\sim 4 \times 10^5$
Crystal structure	Diamond	Zincblende
Dielectric constant	11.9	12.4
Effective density of states in conduction band, $N_C(\text{cm}^{-3})$	2.86×10^{19}	4.7×10^{17}
Effective density of states in valence band, $N_V(\text{cm}^{-3})$	2.66×10^{19}	7.0×10^{18}
Effective mass (conductivity)		
Electrons (m_n/m_0)	0.26	0.063
Holes (m_p/m_0)	0.69	0.57
Electron affinity, $\chi(V)$	4.05	4.07
Energy gap (eV)	1.12	1.42
Index of refraction	3.42	3.3
Intrinsic carrier concentration(cm ⁻³)	9.65×10^9	$2.25 imes 10^6$
Lattice constant (Å)	5.43102	5.65325
Linear coefficient of thermal expansion, $\Delta L/L \times T (^{\circ}C^{-1})$	2.59×10^{-6}	5.75 × 10 ⁻⁶
Melting point (°C)	1412	1240
Minority-carrier lifetime (s)	3×10^{-2}	~10 ⁻⁸
Mobility (cm ² /V·s)		
μ_n (electrons)	1450	9200
μ_{n} (holes)	505	320
Specific heat (J/g -°C)	0.7	0.35
Thermal conductivity(W/cm-K)	1.31	0.46
Vapor pressure (Pa)	1 at 1650°C 10 ⁻⁶ at 900°C	100 at 1050°C 1 at 900°C

Formula sheet (1/2)

 $N_A = Avogadro's number = 6.02 \times 10^{23} atoms/mole$

 $k = Boltzmann's constant = 1.38 \times 10^{-23} J/K$

e = electronic charge = 1.6×10^{-19} C

 $eV = electronvolt = 1.6 \times 10^{-19} J$

 m_0 = free electron mass = 9.11 x 10^{-31} kg.

 ε_0 = permittivity of free space = 8.85 x 10^{-12} F/m = 8.85 x 10^{-14} F/cm

 μ_0 = permeability of free space = 1.26 x 10⁻⁶ H/m

 $h = Planck's constant = 6.63 \times 10^{-34} J.s$

 $c = light velocity (speed) = 3 \times 10^8 \text{ m/s}$

 $1G = 1x10^{-4} \text{ Wb/m}^2$

$$R = \frac{\rho l}{A} = \frac{1}{\sigma} \cdot \frac{l}{A}$$
 $J = \sigma E$ $v_D = \mu_e E$ $J = N_e \cdot e \cdot v_D$

$$\sigma = \sigma_e + \sigma_h$$
 $\rho = \frac{1}{qn\mu_e + qp\mu_h}$

$$\frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_L}$$
 $R_H = -\frac{1}{qN_e} = \frac{1}{N_e e}$ $V_H = E_H W$

$$J_e = -eF = eD_n \frac{dn}{dx}$$
 $D_n = \left(\frac{kT}{e}\right)\mu_e$ $\lambda = \frac{h}{p}$

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - V)\psi = 0$$

$$T \cong \exp\left\{-2d\sqrt{\frac{2m_e^*(eV_0 - E)}{\hbar^2}}\right\} \qquad E = \frac{n^2h^2}{8mL^2} \qquad \rho = \left(\frac{nM}{N_A}\right) \cdot \frac{1}{a^3}$$

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \cdot \frac{1}{n^2} = -\frac{13.6 \text{ eV}}{n^2} \qquad n = \int_0^\infty n(E)d(E) = \int_0^\infty N(E)F(E)dE$$

$$N(E) = 4\pi \left(\frac{2m}{h^2}\right)^{3/2} E^{1/2} \qquad F(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

$$n = N_C \exp\left[-(E_C - E_F)/kT\right]$$

$$p = N_V \exp\left[-(E_F - E_V)/kT\right]$$

$$n_i = \sqrt{N_C N_V} \exp\left(-E_g/2kT\right)$$

Formula sheet (2/2)

$$\begin{split} N_{C} &= 2 \Big(2 \pi m_{e}^{*} k T / h^{2} \Big)^{3/2} & n.p = n_{i}^{2} & N_{V} = 2 \Big(2 \pi m_{h}^{*} k T / h^{2} \Big)^{3/2} \\ E_{F} &= E_{i} = \Big(E_{C} + E_{V} \Big) / 2 + \Big(k T / 2 \Big) \ln \Big(N_{V} / N_{C} \Big) \\ E &= \frac{-m^{*} e^{4}}{8 \big(\varepsilon_{0} \varepsilon_{r} \big)^{2} h^{2}} & N_{D}^{+} = N_{D} \Big[1 - F \big(E_{D} \big) \Big] & N_{A}^{-} = N_{A} F \big(E_{A} \big) \\ E_{F} &= \Big(\frac{E_{C} + E_{D}}{2} \Big) + \frac{kT}{2} \ln \Big(\frac{N_{D}}{N_{C}} \Big) & E_{F} = E_{C} - \frac{kT}{e} \ln \Big(\frac{N_{C}}{N_{D}} \Big) \\ n &= n_{i} \exp \Big[\big(E_{F} - E_{i} \big) / kT \Big] & p = n_{i} \exp \Big[\big(E_{i} - E_{F} \big) / kT \Big] \end{split}$$

$$Si = \begin{bmatrix} Sb & P & As & Ti & C & Pt & Au & O \\ \hline 0.039 & 0.045 & 0.054 & 0.21 & 0.25 & 0.25 & 0.38 \\ & & & & & & & & & \\ \hline 1.12 & & & & & & & & \\ \hline 0.045 & 0.067 & 0.072 & 0.16 & & & & & & \\ \hline B & Al & Ga & In & Pd & & & & & \\ \hline \end{bmatrix} \begin{array}{c} C & Pt & Au & O \\ \hline 0.25 & 0.25 & 0.16 & 0.16 \\ \hline 0.25 & 0.25 & 0.25 & 0.38 \\ \hline 0.38 & 0.51 & 0.31 \\ \hline 0.39 & 0.39 & 0.29 \\ \hline D & & & & \\ \hline \end{array}$$