Tutorial 1

Last date of submission: 9th September 2021 (midnight)

- 1. For positive integers a and b, prove that if $a^3 \mid b^2$ then $a \mid b$.
- 2. For primes p and q prove that if $q \mid 2^p 1$, then p < q.
- 3. Show that if n > 1 is an odd integer, then $\phi(2n) = \phi(n)$.
- 4. Find all integers a such that $a^2 + 2$ is divisible by 2a 1.
- 5. For integer n > 0 and a > 1, prove that

$$\gcd\left(\frac{a^n-1}{a-1},a-1\right)=\gcd(a-1,n)$$

- 6. Prove that if p be a prime, then \sqrt{p} is irrational.
- 7. Solve the congruence $42x \equiv 12 \pmod{90}$.
- 8. Find the number of solutions in ordered pairs of positive integers (x, y) of the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$, where *n* is a positive integer.
- 9. Find the number of solutions in ordered pairs of positive integers (x, y) of the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{84}$.
- 10. Solve the following system of linear congruence equations,
 - $x \equiv 3 \mod 7$

 $x \equiv 11 \mod 18$

 $x \equiv 5 \mod 24$

11. Carmichael number is a composite number n which satisfies the congruence relation:

 $a^{n-1} \equiv 1 \pmod{n}$ for all integers a which are relatively prime to n.

Prove that *n* is Carmichael number iff $\lambda(n) \mid (n-1)$.

12. Prove that for $n = \prod_{i=1}^{m} p_i$ where p_i , $i = 1 \dots m$ are primes

$$\lambda(n) = \min \{k_1(p_1-1): k_i(p_i-1) = k_1(p_1-1), i = 1, 2, \dots, m\}$$

- 13. Prove that for any prime p = 4k + 1, (2k)! is square root of -1 modulo p.
- 14. Decrypt the following ciphertext (assuming that it is encrypted using affine cipher):

ZRCIPZAHOPWZWVMUCSPCZQCUUIMCUORWSRWUWVZCLLWMWNLCZAZRAUCORAI PCWVFAUUCUUWAVAHZRCGCYIVXEVWVZCLLWMWNLCZAILLAZRCPUZRCEUCHEL VCUUAHUESRQCUUIMCUCUFCSWILLYWVZWQCAHOIPWUANJWAEURAVZRCAZRCPR IVXZRCWPUALEZWAVQIYNCIQIZZCPAHMPCIZWQFAPZIVSCZAZRAUCHPAQORAQZR CGCYWUSAVSCILCX

15. Decrypt the following ciphertext (assuming that it is encrypted using simple substitution cipher):

BMJJADAJGCAGQZPAKZPIZEJAZLRAQQALSGZJSGKAGLZNAPQMLJGCAZLRAU APXMLAQFMTJRALHMXGSBMJJADAJGCASAZBFAQTQKZLXSFGLDQZLRETGJR QMTPBMLCGRALBASMCZBASFALAVBFZJJALDAQZLRQSPTDDJAQGLMTPCTST PAGLQSAZRMCHTQSCMBTQQGLDMLSFAQSTRXZNAPQMLKTQSNZPSGBGNZS AGLMSFAPZBSGUGSGAQZLRQMBGZJGQAZQKTBFZQNMQQGEJAZQZJJSFAQAS FGLDQFAJNGLSFAMUAPZJJRAUAJMNKALSMCZNAPQML