Homormophism & Coset Hold on! This is difficult!

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

March 25, 2022



Symmetric Group •000

#### Definition

Symmetric Group

Given  $n \in \mathbb{N} \setminus \{0\}$ , we have the following symmetric group of degree n,

$$\begin{split} S_n &= \{\text{All permutations on } n \text{ letters/numbers} \} \\ &= \mathsf{Sym}\{1,2,3,\ldots,n\} \\ &= \{f: [n] \to [n] \mid f \text{ bijective} \} \end{split}$$

Note that it is a finite group of order n! (the number of bijections from [n] to [n]), i.e.,  $|S_n| = n!$ .

- A subgroup of  $S_n$  is called a permutation group.
- A permutation of the form (ab) where  $a \neq b$  is called a transposition.

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 9 < 0</p>

### Permutation

A permutation that can be expressed as a product of an even/odd number of transpositions is called an even/odd permutation.

The set of even permutations in  $S_n$  forms a subgroup of  $S_n$ , denoted as  $A_n$ , is called the alternating group of degree n.

```
Permutation \rightarrow transportation: (132)(5648) = (13)(32)(56)(64)(48)
(not unique, but only can be either all odd or all even).
```

Inverse of permutation:  $\sigma = (132)(5648) \Rightarrow \sigma^{-1} = (8465)(231)$ (Separate permutations to be **disjoint** first. Since  $\sigma(a_i) = a_i$  implies  $\sigma^{-1}(a_i) = a_i$ , we only need to reverse the order of the cyclic pattern).

Composition: (12)(245)(13)(125) = (14532). (Apply the **right** permutation first. Demo!).

4 D > 4 B > 4 B > 4 B >

HamHam (UM-SJTU JI) Review V(Slides 280 - 311) March 25, 2022 2/22

## Exercise

Symmetric Group

- 1. True or false:
  - Can an abelian group have a non-abelian subgroup?
  - Can a non-abelian group have an abelian subgroup?
  - Can a non-abelian group have a non-abelian subgroup?

Answer: No: Yes: Yes.



Symmetric Group 0000

- 2. Prove the following:
  - **1**  $S_n$  is non-abelian for  $n \geq 3$ ;
  - $\bigcirc$   $A_n$  is a subgroup of  $S_n$ ;
  - $|A_n| = n!/2.$

# Homomorphism

Given groups G, G', a homomorphism is a map  $f: G \to G'$  such that for

$$f(x \cdot y) = f(x) \cdot f(y)$$

We have:

- $f(a_1 \cdots a_k) = f(a_1) \cdots f(a_k)$
- $f(1_G) = 1_{G'}$
- $f(a^{-1}) = f^{-1}(a)$

#### Compare and Contrast

Recall the concept of structure preserving

$$y \xrightarrow{f} f(y)$$

$$x \cdot \downarrow \qquad \downarrow f(x) \cdot \downarrow$$

$$x \cdot y \xleftarrow{f^{-1}} f(x \cdot y)$$



# Image & Kernel

The image of a homomorphism  $f: G \to G'$ , often denoted by im f, or f(G), is simply the image of as a map of sets:

$$\operatorname{im} f = \{x \in G' \mid x = f(a) \text{ for some } a \in G\}.$$

The kernel of f, denoted by  $\ker f$ , is the set of elements of G that are mapped to the identity in G':

$$\ker f = \left\{ a \in G \mid f(a) = 1_{G'} \right\}.$$

### Comapre and Contrast

Let U, V be real or complex vector spaces and  $L \in \mathcal{L}(U, V)$ , then we define the range and kernel of L by:

ran 
$$L := \{ v \in V : \exists_{u \in U} v = Lu \}$$
  
ker  $L := \{ u \in U : Lu = 0 \}$ 

## **Properties**

Let  $f: G \to G'$  be a group homomorphism, and let  $a, b \in G$ . Let K $= \ker f$ . The following are equivalent:

- **1** f(a) = f(b)
- **2**  $a^{-1}b$  ∈ K
- $b \in aK$
- $\bullet$  aK = bK
- ! A homomorphism  $f: G \to G'$  is injective iff  $\ker f = \{1_G\}$ .
- ! Isomorphism  $G \cong G' \Leftrightarrow f$  is bijective.
- ! How to check if a homomorphism is an isomorphism:

verify  $\ker f = \{1_G\}$  (injection) and  $\operatorname{im} f = G'$  (bijection)

4 - 1 4 - 4 - 4 - 5 + 4 - 5 +

## Exercise

3. Prove: Let a homomorphism  $f: G \to G'$ . If H is a subgroup of G, then  $f(H)^{-1}$  is a subgroup of G'.

#### Solution:

Let  $x, y, a \in H$ .

- Closure:  $f(x)^{-1}f(y)^{-1} = f(x^{-1})f(y^{-1}) = f(x^{-1}y^{-1}) =$  $f((yx)^{-1}) = f(yx)^{-1}$ .
- 2 Identity:  $1_G \in H$ ,  $1_{G'} = f(1_G) \in f(H)^{-1}$ .
- 3 Inverse:  $f(a)^{-1} = f(a^{-1}) \in f(H)^{-1}$ .



4. Let  $(G, \cdot)$  be a group. Let  $g, h \in G$  both have order n, prove that  $\langle g \rangle \cong \langle h \rangle$ .



4. Let  $(G, \cdot)$  be a group. Let  $g, h \in G$  both have order n, prove that  $\langle g \rangle \cong \langle h \rangle$ .

#### Solution:

Define  $f: \langle g \rangle \to \langle h \rangle$  by f(g) = h and for all  $0 \le k \le n, f(g^k) = f(g)^k$ . So, f is a well-defined function, and, by definition, f preserves the group product. It is clear that the function f sends  $1_G \mapsto 1_G$ ,  $g \mapsto h$ , ...,  $g^{n-1} \mapsto h^{n-1}$ , and so f is a bijection.

(Directly taken from Zach's slides)



9 / 22

# Given a group G, if H is a subgroup of G and $a \in G$ , the notation aH will stand for the set of all products ah with $h \in H$ ,

Cosets

$$aH = \{g \in G \mid g = ah \text{ for some } h \in H\}$$

This set is called a **left coset** of H in G.

The number of left cosets of a subgroup is called the index of H in G. The index is denoted by [G:H] (can be infinite, why?).

All left cosets  $\frac{\partial H}{\partial G}$  of a subgroup H of a group G have the same order.

- Counting formula:  $|G| = |H| \cdot [G : H]$ .
- Lagrange's Theorem: Let H be a subgroup of a finite group G. The order of H divides the order of G.

4□ > 4□ > 4□ > 4□ > 4□ > 9

5. Verify Lagrange's Theorem for the subgroup  $H = \{0, 3\}$  of  $\mathbb{Z}_6$ .

Cosets 000000



5. Verify Lagrange's Theorem for the subgroup  $H = \{0, 3\}$  of  $\mathbb{Z}_6$ .

Cosets 000000

#### Solution:

The cosets are

$$0 + H = \{0, 3\}, \quad 1 + H = \{1, 4\}, \quad 2 + H = \{2, 5\}.$$

Notice there are 3 cosets, each containing 2 elements, and that the cosets form a partition of the group.

# An important consequence of Lagrange's Theorem

#### **Theorem**

Let  $(G, \cdot)$  be a group and let  $g \in G$  have order n. If there exists  $m, k \in \mathbb{N} \setminus \{0\}$  with n = mk, then the order of  $g^m$  is k.

## Proof.

Let  $m, k \in \mathbb{N} \setminus \{0\}$  with n = mk. Now,  $(g^m)^k = g^{mk} = g^n = 1_G =$ . If 0 < q < k is such that  $(g^m)^q = 1_G$ , then  $g^{mq} = 1_G$ . But mq < mk = n, which is a contradiction.

#### **Theorem**

If  $(G, \cdot)$  is a finite group with order n, then for all  $g \in G$ ,  $g^n = 1_G$ .

## Proof.

Let  $(G, \cdot)$  be a finite group with order n. Let  $g \in G$ . We know that the order of g must be finite, so let k be the order of g. Now, k must divide n, so the exists  $m \in N$  such that n = mk. So  $g^n = g^{mk} = (g^k)^m = 1_G^m = 1_G$ .

6. Prove that for any subgroup  $H \leq G$ , the (left) cosets of H partition the group G.

Cosets 000000

#### Hint:

We need to show that the union of the left cosets is the whole group, and that different cosets do not overlap.



# Normal Subgroup

Given group G, and  $a, g \in G$ , the element  $gag^{-1} \in G$  is called the conjugate of a by g.

Cosets

A subgroup N of G is a normal subgroup, denoted by  $N \triangleleft G$ , if for all  $a \in N$  and  $g \in G$ ,  $gag^{-1} \in N$ .

## Properties:

- $f: G \to G'$  a homomorphism, then  $\ker f \triangleleft G$ .
- Every subgroup of an abelian group is normal.
- The center is always a normal subgroup.
- gH = Hg for all  $g \in G$  iff  $H \subseteq G$ .
- $A_n \triangleleft S_n$

## Try your best! Remember them!



nomorphism Cosets
0000 00000

## Exercise

## Important result:

7. Show that any subgroup of index 2 in a group is a normal subgroup.



# Exercise

### Important result:

7. Show that any subgroup of index 2 in a group is a normal subgroup.

#### Solution:

Denote the subgroup as H. Obviously, the left cosets of a subgroup of index 2 are  $1_H H = H$  and aH, where  $a \notin H$ ; (why?) the right cosets are  $H1_H = H$  and Ha. Since the cosets form a partition of the origin group, and  $1_H H = H1_H = H$ , so the remaining is another coset, namely aH = Ha. (left=right) So H is normal.

University of zhilu: https://zhuanlan.zhihu.com/p/163543084



# Distribution of Primes (Part I)

## **Proposition**

Let K be any positive integer larger than 2, then there exists two adjacent primes p and p' (p' < p), such that  $p - p' \ge K$ .

#### Proof:

Let K! + 2 = M, then  $2 \mid M, 2 + 1 \mid M + 1, \dots, K \mid M + K - 2$ . Since M > 2, we conclude that  $M, M + 1, \dots, M + K - 2$  are all composite. Let p' be the largest prime that is smaller than M, but the next prime p is denifitely larger than M + K - 2, namely

$$p - p' \ge (M + K - 1) - (M - 1) = K.$$

# Distribution of Primes (Part I)

#### Definition

We denote  $\pi(x)$  as the number of primes no larger than x. Namely

$$\pi(x) = \sum_{p \le x} 1.$$

We already know that as  $x \to \infty$ ,  $\pi(x) \to \infty$ . But how fast it grows? Here, we're going to prove that  $\pi(x) = \Theta(x/\ln x)$ . Namely, there exists two positive numbers  $A_1$  and  $A_2$ , such that

$$A_1 \frac{x}{\ln x} < \pi(x) < A_2 \frac{x}{\ln x} \quad (x \ge 2)$$

This is so called Чебышев (Chebyshev) inequality in number theory.

◆ロト ◆回 ト ◆ 差 ト ◆ 差 ・ か へ ②

# Distribution of Primes (Part I)

Before prove the above inequality, we need to prove the following two lemmas.

#### Lemma 1

Let n be any positive integer, set

$$N = \frac{(2n)!}{(n!)^2}$$

then

$$(\pi(2n) - \pi(n)) \ln n \le \ln N \le \pi(2n) \ln(2n).$$

## Proof of Lemma 1

Let

$$N = \prod_{p \le 2n} p_p^{\alpha}$$

to be the standard decomposition of N, we have

$$\alpha_{p} = \sum_{r=1}^{\infty} \left[ \frac{2n}{p^{r}} \right] - 2 \sum_{r=1}^{\infty} \left[ \frac{n}{p^{r}} \right] = \sum_{r=1}^{\left[ \frac{\ln(2n)}{\ln p} \right]} \left( \left[ \frac{2n}{p^{r}} \right] - 2 \left[ \frac{n}{p^{r}} \right] \right),$$

(this is because when  $r > \lfloor \ln(2n)/\ln(p) \rfloor$ ,  $p^r > 2n > n$ ). Obviously,

$$\alpha_p \le \sum_{r=1}^{\left\lfloor \frac{\ln(2n)}{\ln p} \right\rfloor} 1 = \left\lceil \frac{\ln(2n)}{\ln p} \right\rceil \le \frac{\ln(2n)}{\ln p}.$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Therefore

$$\ln N = \sum_{p \le 2n} \alpha_p \ln p \le \sum_{p \le 2n} \ln(2n) = \pi(2n) \ln(2n).$$

On the other hand, if  $n , then <math>p \mid (2n)!, (p, (n!)^2) = 1$ , so  $p \mid N$ . We have

$$N \ge \prod_{n .$$

Take logrithm on both side,

$$\ln N \ge \sum_{n \ln n \sum_{n$$

this complete our proof.



## Esitimation of In N

Now it's time to esitimate how large  $\ln N$  is.

#### Lemma 2

For the same n, N defined in Lemma 1, we have

$$n \ln 2 \le \ln N \le 2n \ln 2$$
.

#### Proof:

Considering that N is the coefficient of term  $x^n$  when expanding  $(1+x)^{2n}$ , so

$$N \le (1+1)^{2n} = 2^{2n}$$

On the other hand,

$$N = \frac{2n(2n-1)\cdots(n+1)}{n!} = 2\left(2+\frac{1}{n-1}\right)\cdots(2+\frac{n-1}{1}) \geq 2^n.$$

## Reference

- Examples From Zach's Slides (P196)
- Exercises from 2021-Fall-Ve203 TA Zhao Jiayuan
- Yan Shijian, etc. Basic Number Theory, fourth edition. Beijing: Higher Education Press, 2020.5 print.