Devoir surveillé n°10

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Dans tout l'énoncé, n désigne un entier naturel supérieur ou égal à 2. On note T l'application qui à tout poynôme $P \in \mathbb{R}[X]$ associe le polynôme T(P) = P(X+1). On note Δ l'application qui à tout polynôme $P \in \mathbb{R}[X]$ associe le polynôme $\Delta(P) = P(X+1) - P(X)$. On note \widetilde{T} l'application qui à toute fonction $f \in \mathbb{R}^{\mathbb{R}}$ associe la fonction $\widetilde{T}(f)$ définie par

$$\forall x \in \mathbb{R}, \ \widetilde{\mathrm{T}}(f)(x) = f(x+1)$$

On note $\widetilde{\Delta}$ l'application qui à toute fonction $f \in \mathbb{R}^{\mathbb{R}}$ associe la fonction $\widetilde{\Delta}(f)$ définie par

$$\forall x \in \mathbb{R}, \ \widetilde{\Delta}(f)(x) = f(x+1) - f(x)$$

Partie I -

- **1.** Montrer que T et Δ sont des endomorphismes de $\mathbb{R}[X]$.
- **2. a.** Montrer que $\mathbb{R}_n[X]$ est stable par Δ . On note alors Δ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Δ .
 - **b.** Déterminer Ker Δ_n .
 - **c.** Déterminer le rang de Δ_n . En déduire Im Δ_n .
- **3.** On pose $N_0 = 1$ et pour $k \in \mathbb{N}^*$, $N_k = \frac{1}{k!} \prod_{j=0}^{k-1} (X j)$.
 - **a.** Soit $k \in \mathbb{N}^*$. Déterminer $\Delta(N_k)$ en fonction des polynômes N_i .
 - **b.** Soit $(j, k) \in \mathbb{N}^2$. Déterminer $\Delta^j(N_k)$ puis $\Delta^j(N_k)(0)$.
 - **c.** Montrer que $(N_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
 - **d.** Soit $P \in \mathbb{R}_n[X]$. Déterminer les coordonnées de P dans la base $(N_k)_{0 \le k \le n}$ en fonction des $\Delta^j(P)(0)$.
- **4. a.** Montrer que \widetilde{T} et $\widetilde{\Delta}$ sont des endomorphismes de $\mathbb{R}^{\mathbb{R}}$.
 - **b.** Soient $k \in \mathbb{N}$ et $f \in \mathbb{R}^{\mathbb{R}}$. Déterminer $\widetilde{T}^k(f)(x)$ pour tout $x \in \mathbb{R}$.
 - **c.** Soit $j \in \mathbb{N}$. Exprimer $\widetilde{\Delta}^j$ en fonction des $\widetilde{\mathbf{T}}^k$ pour $k \in [0, j]$. On pourra remarquer que $\widetilde{\Delta} = \widetilde{\mathbf{T}} \mathrm{Id}_{\mathbb{R}^{\mathbb{R}}}$.
 - **d.** Soient $j \in \mathbb{N}$ et $f \in \mathbb{R}^{\mathbb{R}}$. Exprimer $\widetilde{\Delta}^{j}(f)(0)$ en fonction des f(k) pour $k \in [0, j]$.

Partie II -

On se donne $f \in \mathbb{R}^{\mathbb{R}}$. On cherche les polynômes $P \in \mathbb{R}[X]$ solutions du problème (\mathcal{P}) suivant :

$$(\mathcal{P}) \qquad \begin{cases} \deg \mathbf{P} \leq n \\ \forall k \in [0, n], \ \mathbf{P}(k) = f(k) \end{cases}$$

On pose
$$N = \prod_{j=0}^{n} (X - j)$$
.

- **1.** Soit Φ : $\begin{cases} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}^{n+1} \\ P & \longmapsto & (P(k))_{0 \le k \le n} \end{cases}$.
 - a. Montrer que Φ est un isomorphisme.
 - **b.** En déduire que le problème (\mathcal{P}) admet une unique solution que l'on notera P_f .
- **2. a.** Soit $j \in [0, n]$. Comparer $\widetilde{\Delta}^j(f)(0)$ et $\Delta^j(P_f)(0)$.
 - **b.** En déduire l'expression de P_f en fonction des $\widetilde{\Delta}^j(f)(0)$ et des polynômes N_j pour $j \in [0, n]$.
- 3. Dans cette question, on suppose que f est de classe \mathscr{C}^{n+1} sur \mathbb{R} . On note $\mathbf{M}_n = \sup_{t \in [0,n]} |f^{(n+1)}(t)|$.
 - a. Soit $x \in [0, n]$ non entier. Montrer qu'il existe $c \in]0$, n[tel que $f(x) P_f(x) = \frac{f^{(n+1)}(c)}{(n+1)!}N(x)$. On pourra appliquer le théorème de Rolle par récurrence à la fonction $\phi: t \mapsto f(t) P_f(t) KN(t)$ où K est choisi tel que $\phi(x) = 0$.
 - **b.** En déduire que pour tout $x \in [0, n]$ (entier ou non), $|f(x) P_f(x)| \le \frac{M_n}{n+1}$.

Problème 2 —

Pour $t \in \mathbb{R}_+^*$, on définit $f(t) = \exp\left(-\frac{1}{t}\right)$ et $g(t) = \frac{f(t)}{t}$.

Partie I - Etude de deux suites implicites

- **1.** Prouver que f et g sont de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .
- **2.** Montrer que g peut se prolonger en 0 en une fonction de classe \mathscr{C}^1 sur \mathbb{R}_+ . On notera encore g ce prolongement.
- **3.** Faire un tableau de variations de g sur \mathbb{R}_+ puis en faire un graphe.
- **4.** Soit H la primitive sur \mathbb{R}_+^* de $t\mapsto g\left(\frac{1}{t}\right)$ s'annulant en 1.
 - a. Calculer H.
 - **b.** En donner un développement limité à l'ordre 3 au voisinage de 1.
- **5.** Soit $n \ge 3$ un entier naturel. On introduit l'équation (E_n) : $f(t) = \frac{t}{n}$ d'inconnue $t \in \mathbb{R}_+^*$.
 - **a.** En utilisant la question **I.3**, montrer que (E_n) a une unique solution dans]0,1[, que l'on notera α_n . Montrer que (E_n) admet également une unique solution dans $]1,+\infty[$ que l'on notera β_n .
 - **b.** Montrer que les suites $(\alpha_n)_{n\geqslant 3}$ et $(\beta_n)_{n\geqslant 3}$ sont monotones.
 - **c.** Est-il possible que l'une des deux suites converge vers une limite l > 0? En déduire leurs limites.

Partie II - Etude d'une équation différentielle

On considère une application y solution de l'équation différentielle (E) : $x^2y'+y=x^2$ sur \mathbb{R}_+ de classe \mathscr{C}^{∞} sur \mathbb{R}_+ . Nous allons, sans aucun calcul explicite de y, déterminer entièrement la suite de terme général $u_n=y^{(n)}(0)$ à partir de l'équation (E).

- **1.** Que vaut u_0 ?
- **2.** Calculer u_1 et u_2 .
- **3.** *y* peut-elle être une application polynomiale de degré inférieur ou égal à 2?
- **4.** Soit $n \in \mathbb{N}$.
 - **a.** On suppose $n \ge 3$. Prouver que pour tout $x \in \mathbb{R}_+$:

$$x^{2}y^{(n+1)}(x) + (1+2nx)y^{(n)}(x) + n(n-1)y^{(n-1)}(x) = 0$$

En déduire une relation de récurrence entre u_n et u_{n-1} .

b. Donner une expression de u_n utilisant une factorielle valable pour tout $n \ge 2$. En déduire un développement limité (dont on justifiera l'existence) de y à tout ordre au voisinage de 0.