Modèle d'apprentissage PAC

Fabien Torre

GRAppA & Mostrare

Mercredi 7 et 14 octobre 2009

Modèle d'apprentissage	PAC		Fabien Torre
Introduction	Apprenabilité 0000000000	Boosting	Bibliographie
Notations			
Notations : exemples			

- \mathcal{X} : les points de \mathbb{R}^2 et $\mathcal{Y} = \{+1, -1\}$;
- x = (70, 175);
- \mathcal{H} : les rectangles de \mathbb{R}^2 parallèles aux axes;
- c un rectangle particulier :
 - ullet vue ensembliste : les points contenus dans le rectangle c;
 - vue fonctionnelle : test d'appartenance au rectangle c ;
- D: distribution poids/taille chez l'homme;
- erreur d'une hypothèse :

Notations et oracle

- ullet ${\mathcal X}$ l'espace des exemples et ${\mathcal Y}=\{+1,-1\}$ leurs classes;
- $x \in \mathcal{X}$ un exemple particulier;
- ullet une classe de concepts définis sur ${\mathcal X}$;
- ullet $c\in \mathcal{H}$ un concept particulier :
 - vue ensembliste : $c \subseteq \mathcal{X}$;
 - vue fonctionnelle : $c: \mathcal{X} \to \mathcal{Y}$;
- \mathcal{D} une distribution sur \mathcal{X} ;
- ullet erreur d'une hypothèse $h \in \mathcal{H}$ visant un concept $c \in \mathcal{H}$:

$$\operatorname{erreur}(h) = \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

• $\mathrm{EX}(c,\mathcal{D})$ un oracle qui tire un exemple de \mathcal{X} suivant \mathcal{D} et le fournit avec sa classification par le concept cible : $\langle x, c(x) \rangle$.

Définition : apprenabilité forte

 ${\cal H}$ est PAC-apprenable s'il existe un algorithme L tel que :

- ullet pour tout concept $c\in\mathcal{H}$,
- pour toute distribution \mathcal{D} sur \mathcal{X} ,
- pour tout paramètre d'erreur $0<\epsilon<\frac{1}{2}$,
- pour tout paramètre de confiance $0 < \delta < \frac{1}{2}$,

L fournit une hypothèse $h\in\mathcal{H}$ qui vérifie, avec une probabilité $1-\delta$: $\mathrm{erreur}(h)\leq\epsilon$.

Efficacement PAC-apprenable : L doit être polynomial en $\frac{1}{\epsilon}$ et $\frac{1}{\delta}$.

ntroduction Apprenabilité Boosting Bibliographie

Définition de la PAC-apprenabilité

PAC apprenabilité : commentaires et précisions

- ullet L a accès à l'oracle $\mathrm{EX}(c,\mathcal{D})$;
- L doit fonctionner quelle que soit la distribution;
- L perçoit cette distribution à travers l'oracle;
- \bullet \mathcal{D} intervient aussi dans le calcul de l'erreur;
- ϵ et δ sont fournis à L;
- ullet on peut choisir ϵ et δ aussi petits que voulus.

Remarques

- h est toujours inclus dans c, car h moindre-généralisé;
- h présente donc uniquement une erreur de type fn.

PAC-apprenabilité des rectangles

Retour aux rectangles...

- ullet \mathcal{X} : les points de \mathbb{R}^2 et $\mathcal{Y}=\{+1,-1\}$;
- ullet : les rectangles de \mathbb{R}^2 parallèles aux axes.

Est-ce que ${\mathcal H}$ est PAC-apprenable?

Proposition pour *L*

- demander n exemples à l'oracle et constituer un échantillon d'apprentissage A;
- 2 retourner h le rectangle moindre-généralisé des exemples positifs de A.
- Montrer que $\forall c, \mathcal{D}, \epsilon, \delta$ et pour n bien choisi h vérifie avec une probabilité $1 \delta : \operatorname{erreur}(h) \leq \epsilon$;
- montrer que n est un polynôme de $\frac{1}{\epsilon}$ et de $\frac{1}{\delta}$;
- ullet intuition : plus ϵ et δ sont petits, plus n sera grand.

Modèle d'apprentissage PAC

Introduction

Apprenabilité

OO

PAC-apprenabilité des rectangles

D

Apprenabilité des rectangles

D

Apprenabilité des rectangles

PAC-apprenabilité des rectangles

Démonstration (2) : borner l'erreur

Objectifs

- limiter l'erreur globale à ϵ ;
- ullet calculer la probabilité que l'une des bandes excède $rac{\epsilon}{4}$.

Introduction Apprenabilité Boosting Bibliographie

PAC-apprenabilité des rectangles

Démonstration (3) : une bande

On définit une bande b de poids $\frac{\epsilon}{4}$ en haut de c.

Cas favorable : l'échantillon A contient un exemple (positif) dans b. L'erreur de h est inférieure à $\frac{\epsilon}{4}$ sur la bande haute.

Cas défavorable : $A \cap b = \emptyset$. L'erreur de h est supérieure à $\frac{\epsilon}{4}$ sur la bande haute. Probabilité de cette situation ?

Modèle d'apprentissage PAC			Fabien Torre	
Introdu 00		Apprenabilité	Boosting	Bibliographie
PAC-a	oprenabilité des rectangles			
Dér	nonstration (5) : calcul du <i>n</i>	minimal	

()

On veut $\Pr\left[\operatorname{erreur}(h) > \epsilon\right] \leq \delta$ et on résout donc :

$$4 \times e^{-\frac{n\epsilon}{4}} \leq \delta$$

$$\Rightarrow e^{-\frac{n\epsilon}{4}} \leq \frac{\delta}{4}$$

$$\Rightarrow -\frac{n\epsilon}{4} \leq \ln(\frac{\delta}{4})$$

$$\Rightarrow -n \leq \frac{4}{\epsilon} \times \ln(\frac{\delta}{4})$$

$$\Rightarrow n \geq -\frac{4}{\epsilon} \times \ln(\frac{\delta}{4})$$

$$\Rightarrow n \geq \frac{4}{\epsilon} \times \ln(\frac{4}{\delta})$$

PAC-apprenabilité des rectangles

Démonstration (4) : probabilités

- Tirer un exemple dans $b: \frac{\epsilon}{4}$;
- tirer un exemple en dehors de $b:1-\frac{\epsilon}{4}$;
- tirer *n* exemples en dehors de $b: \left(1-\frac{\epsilon}{4}\right)^n$;
- ullet ne pas avoir d'exemple dans l'une des bandes : $\leq 4 imes \left(1-rac{\epsilon}{4}
 ight)^n$.

et on obtient finalement :

$$\Pr\left[\operatorname{erreur}(h) > \epsilon\right] \leq 4 \times \left(1 - \frac{\epsilon}{4}\right)^n \leq 4 \times \left(e^{-\frac{\epsilon}{4}}\right)^n = 4 \times e^{-\frac{n\epsilon}{4}}$$

en utilisant le fait que : $(1-x) \le e^{-x}$.

Modèle d'apprentissage PAC			Fabien Torre
	Apprenabilité	Boosting	Bibliographie

Démonstration (6) : conclusions

- L doit constituer son échantillon avec $n = \frac{4}{\epsilon} \times \ln(\frac{4}{\delta})$;
- cela garantit : $\Pr\left[\operatorname{erreur}(h) \leq \epsilon\right] \geq 1 \delta$;
- L est linéaire en $\frac{1}{\epsilon}$;
- L est logarithmique en $\frac{1}{\delta}$.

La classe des rectangles parallèles aux axes dans \mathbb{R}^2 est efficacement PAC-apprenable.

(VC dimension de cette classe?)

ntroduction Apprenabilité Boosting Bibliographie

En exercices.

Vecteurs booléens

Les exemples

- $\mathcal{X}_m = \{0,1\}^m$;
- $x \in \mathcal{X}_m$: vecteur booléen de taille $m, x = (a_1, a_2, \dots, a_m)$.

Hypothèses 1

- \mathcal{H}_m , conjonctions de littéraux;
- $h \in \mathcal{H}_m$, conjonction de variables niées ou pas, par exemple $h = a_1 \wedge \overline{a_2}$;
- \mathcal{H}_m est-il PAC apprenable?

Hypothèses 2

- \mathcal{H}_m , 3-Term DNF;
- $h \in \mathcal{H}_m$, disjonction de trois conjonctions de littéraux, par exemple $h = (a_1 \wedge \overline{a_2}) \vee (\overline{a_3} \wedge \overline{a_4}) \vee (a_1 \wedge a_3)$;

Modèle d'apprentissage PAG Introduction

<mark>Apprenabilité</mark> ooooooooo Boosting
Occooccoccoccoccoccoccocc

Fabien Torre Bibliographie

Apprenabilité faible

Apprenabilité faible [Kearns and Valiant, 1989]

Définition : apprenabilité faible

 ${\cal H}$ est PAC-apprenable s'il existe un algorithme L tel que :

- il existe $0 < \epsilon_0 < \frac{1}{2}$ et $0 < \delta_0 < \frac{1}{2}$,
- et pour tout concept $c \in \mathcal{H}$,
- \bullet et pour toute distribution \mathcal{D} sur \mathcal{X} ,

L fournit une hypothèse $h \in \mathcal{H}$ qui vérifie, avec une probabilité $1 - \delta_0 : \operatorname{erreur}(h) \leq \epsilon_0$.

On demande simplement que les hypothèses h produites par L soient meilleures qu'un étiquetage purement aléatoire.

ion Apprenabilité Boosting Bibliographie

En exercices

PAC apprenabilité et compromis biais/variance

- Dans le modèle PAC, $c \in \mathcal{H}$, donc pas d'erreur de biais;
- ullet si ${\cal H}$ est trop riche, on a par contre une erreur importante en variance, et alors ${\cal H}$ peut ne pas être PAC apprenable.

De l'apprenabilité faible à l'apprenabilité forte

On demande simplement que les hypothèses h produites par L soient meilleures qu'un étiquetage purement aléatoire.

- pour un problème à deux classes, quelle que soit la distribution, un étiquetage aléatoire a une erreur d'exactement $\frac{1}{2}$;
- les deux notions d'apprenabilité sont elles équivalentes?
- on dit que L est un apprenant faible si $\forall c \in \mathcal{H}, \forall \mathcal{D}$: erreur $(h) < \frac{1}{2}$ (avec une probabilité $1 \delta_0$);
- peut-on transformer un apprenant faible L en un apprenant fort? c'est-à-dire trouver L' qui soit un apprenant fort en faisant un nombre d'appels polynomial à L...

Comment booster (efficacement) ϵ_0 et δ_0 jusqu'à des valeurs arbitrairement petites?

Booster la confiance

Algorithme de boosting de la confiance

Objectif: obtenir une confiance δ et une erreur $\epsilon_0 + \gamma$ avec δ et γ positifs non nuls mais arbitrairement petits.

Proposition pour L'

- utiliser k fois l'algorithme faible L pour obtenir autant d'hypothèses faibles h_1, h_2, \ldots, h_k ;
- 4 demander m exemples à l'oracle pour former un échantillon A';

Les risques d'échec encourus :

- que les k hypothèses produites aient chacune une erreur supérieure à ϵ_0 ; limiter ce risque à $\frac{\delta}{2}$
- que l'hypothèse choisie à la dernière étape ait en fait une erreur réelle supérieure à $\epsilon_0 + \gamma$. limiter ce risque à $\frac{\delta}{2}$

Reste à choisir k et m en conséquence...

			Fabien Torre
Introduction	Apprenabilité		Bibliographie
00		000000000000000000000000000000000000000	
Booster la confiance			

Choix de m, le nombre d'exemples pour choisir h

Objectif : déterminer la valeur de m telle que la probabilité que certaines erreurs de h_i mesurées sur A' dévient de plus de γ par rapport aux erreurs réelles, soit inférieure à $\frac{\delta}{2}$.

Borne de Chernoff pour une hypothèse h:

$$\Pr(|\operatorname{erreur}(h) - \operatorname{erreur}_{A'}(h)| \ge \gamma) \le e^{-2m\gamma^2}$$

Pour une hypothèse, on veut borner cette probabilité par $\frac{\delta}{2k}$:

$$\begin{array}{ll} e^{-2m\gamma^2} \leq \frac{\delta}{2k} \\ \Rightarrow & -2m\gamma^2 \leq \ln(\frac{\delta}{2k}) \\ \Rightarrow & -m \leq \frac{1}{2\gamma^2}.\ln(\frac{\delta}{2k}) \\ \Rightarrow & m \geq \frac{1}{2\gamma^2}.\ln(\frac{2k}{\delta}) \end{array}$$

ion Apprenabilité Boosting Bibliographie

Booster la confiance

Choix de k, le nombre d'hypothèses produites

Objectif : déterminer la valeur de k telle que la probabilité que chacune des hypothèses h_i ait une erreur supérieure à ϵ_0 soit inférieure à $\frac{\delta}{2}$.

- Probabilité qu'une h_i ait une erreur supérieure à ϵ_0 : δ_0 ;
- probabilité que toutes les hypothèses h_i aient des erreurs supérieures à ϵ_0 : $\delta_0{}^k \leq (1-\delta_0)^k \leq e^{-k\delta_0}$;

On veut que la probabilité d'un tel événement soit inférieure à $\frac{\delta}{2}$:

$$\begin{array}{rcl} & e^{-k\delta_0} & \leq & \frac{\delta}{2} \\ \Rightarrow & -k\delta_0 & \leq & \ln(\frac{\delta}{2}) \\ \Rightarrow & -k & \leq & \frac{1}{\delta_0} \times \ln(\frac{\delta}{2}) \\ \Rightarrow & k & \geq & -\frac{1}{\delta_0} \times \ln(\frac{\delta}{2}) \\ \Rightarrow & k & \geq & \frac{1}{\delta_0} \times \ln(\frac{2}{\delta}) \end{array}$$

Modèle d'apprentissage PAC		Fabien Torre	
Introduction	Apprenabilité		Bibliographie
00		000000000000000000000000000000000000000	

Booster la confiance

Boosting de la confiance : bilan

La confiance peut-être boostée à volonté, avec un léger surcoût sur l'erreur.

 (δ_0,ϵ_0) dépendant de L, (δ,γ) étant donnés :

- **1** utiliser $k = \frac{1}{\delta_0} \times \ln \frac{2}{\delta}$ fois l'algorithme faible L pour obtenir autant d'hypothèses faibles h_1, h_2, \ldots, h_k ;
- ② demander $m=\frac{1}{2\gamma^2}.\ln(\frac{2k}{\delta})$ exemples à l'oracle pour former un échantillon A' ;
- 3 fournir $h = \operatorname{ArgMin}_{h_i \in [h_1, h_2, \dots, h_k]} (\operatorname{erreur}_{A'}(h_i)).$

Booster l'erreur est un peu plus difficile...

Algorithme de boosting de l'erreur

- $\bullet h_1 = L(\mathrm{EX}(c, \mathcal{D}));$
- 2 définir un nouvel oracle $\mathrm{EX}(c,\mathcal{D}_2)$ comme suit :
 - on tire une pièce à pile ou face;
 - 2 si pile, faire $x = \mathrm{EX}(c, \mathcal{D})$ jusqu'à $h_1(x) = c(x)$;
 - 3 si face, faire $x = EX(c, \mathcal{D})$ jusqu'à $h_1(x) \neq c(x)$;
 - o renvoyer x.
- $\bullet h_2 = L(\mathrm{EX}(c, \mathcal{D}_2));$
- 4 définir un nouvel oracle $\mathrm{EX}(c,\mathcal{D}_3)$ comme suit :
 - faire $x = \mathrm{EX}(c, \mathcal{D})$ jusqu'à $h_1(x) \neq h_2(x)$;
 - renvoyer x.
- $b_3 = L(\mathrm{EX}(c, \mathcal{D}_3));$
- o renvoyer $h = \text{VoteMajoritaire}(h_1, h_2, h_3)$.

Fabien Torre

D'une distribution à l'autre (1) : formules de passage

Considérons les exemples mal classés par h_1 :

$$\begin{array}{cccc} \mathcal{D} & \to & \mathcal{D}_2 \\ \hline \beta_1 & \to & \frac{1}{2} \\ \mathcal{D}[x] = 2.\beta_1.\mathcal{D}_2[x] & \to & \mathcal{D}_2[x] = \frac{1}{2.\beta_1}.\mathcal{D}[x] \end{array}$$

... et les exemples bien classés par h_1 :

$$\begin{array}{cccc} \mathcal{D} & \rightarrow & \mathcal{D}_2 \\ \hline 1 - \beta_1 & \rightarrow & \frac{1}{2} \\ \mathcal{D}[x] = 2.(1 - \beta_1).\mathcal{D}_2[x] & \rightarrow & \mathcal{D}_2[x] = \frac{1}{2.(1 - \beta_1)}.\mathcal{D}[x] \end{array}$$

Commentaires, objectif, notations

- ullet \mathcal{D}_2 donne un poids global de 0.5 aux exemples bien classés par h_1 et 0.5 aux mal classés:
- il s'en suit que h_1 a une erreur de 0.5 sur \mathcal{D}_2 et que L, apprenant faible, ne peut pas apprendre h_1 sur \mathcal{D}_2 ;
- par construction, chaque h; amène une information différente.

On doit montrer que l'hypothèse h fournie par L' vérifie :

$$\operatorname{erreur}(h) < \epsilon_0$$

c'est-à-dire que L' fait strictement mieux que L

Soient $\beta_1 = \operatorname{erreur}_{\mathcal{D}}(h_1), \ \beta_2 = \operatorname{erreur}_{\mathcal{D}_2}(h_2) \ \operatorname{et} \ \beta_3 = \operatorname{erreur}_{\mathcal{D}_3}(h_3).$

Fabien Torre

D'une distribution à l'autre (2) : sur un exemple

Cing exemples, distribution uniforme

$$\mathcal{D}: \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5}$$

- trois sont bien classés par h_1 , deux en erreur : $\beta_1 = \frac{2}{5}$;
- facteur multiplicateur des mal classés : $\frac{1}{2 \cdot \beta_1} = \frac{5}{4}$;
- ullet facteur multiplicateur des bien classés : $rac{1}{2.(1-eta_1)}=rac{5}{6}$;

$$\mathcal{D}_2: \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{4} \quad \frac{1}{4} \underbrace{\frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}}_{=\frac{1}{2}} \quad \underbrace{\frac{1}{4} \quad \frac{1}{4}}_{=\frac{1}{2}}$$

Booster l'erreur

D'une distribution à l'autre (3) : notations complètes

 Modèle d'apprentissage PAC
 Fabien Torre

 Introduction on the composition of the composit

Décomposition de l'erreur : cas 1

 h_1 et h_2 sont d'accord mais se trompent.

Par définition :

$$\Pr_{\mathcal{D}_2}[h_1(x) \neq c(x) \land h_2(x) \neq c(x)] = \gamma_2$$

et par application de la formule de passage de \mathcal{D}_2 vers \mathcal{D} :

$$\Pr_{\mathcal{D}}[h_1(x) \neq c(x) \land h_2(x) \neq c(x)] = 2.\beta_1.\gamma_2$$

Booster l'erreu

Décomposition de l'erreur

Si h finale se trompe c'est que l'un des deux cas est survenu :

- \bullet h_1 et h_2 sont d'accord mais se trompent;
- ② h_1 et h_2 ne sont pas d'accord et h_3 se trompe.

ce qui se traduit formellement par :

$$\operatorname{erreur}_{\mathcal{D}}(h) = \operatorname{Pr}_{\mathcal{D}}[h_1(x) \neq c(x) \land h_2(x) \neq c(x)] \\ + \operatorname{Pr}_{\mathcal{D}}[h_3(x) \neq c(x)|h_1(x) \neq h_2(x)]. \operatorname{Pr}_{\mathcal{D}}[h_1(x) \neq h_2(x)]$$

On va développer explicitement, en vue de comparer à ϵ_0 .

Décomposition de l'erreur : cas 2

 h_1 et h_2 ne sont pas d'accord et h_3 se trompe.

Par définition de \mathcal{D}_3 :

$$\Pr_{\mathcal{D}}[h_3(x) \neq c(x)|h_1(x) \neq h_2(x)] = \Pr_{\mathcal{D}_3}[h_3(x) \neq c(x)] = \beta_3$$

On décompose la situation où h_1 et h_2 diffèrent :

$$\Pr_{\mathcal{D}}[h_1(x) \neq h_2(x)] = \Pr_{\mathcal{D}}[h_1(x) = c(x) \land h_2(x) \neq c(x)] + \Pr_{\mathcal{D}}[h_1(x) \neq c(x) \land h_2(x) = c(x)]$$

Booster l'erreur

Décomposition de l'erreur : cas 2.1 et cas 2.2

Calcul exact de l'erreur

$$\Pr_{\mathcal{D}_2}[h_1(x) = c(x) \land h_2(x) \neq c(x)] = \gamma_1 \\ \Rightarrow \Pr_{\mathcal{D}}[h_1(x) = c(x) \land h_2(x) \neq c(x)] = 2.(1 - \beta_1).\gamma_1$$

$$\Pr_{\mathcal{D}_2}[h_1(x) \neq c(x) \land h_2(x) = c(x)] = \frac{1}{2} - \gamma_2 \Rightarrow \Pr_{\mathcal{D}}[h_1(x) \neq c(x) \land h_2(x) = c(x)] = 2.\beta_1.(\frac{1}{2} - \gamma_2)$$

erreur_D(h) =
$$\Pr_{\mathcal{D}}[h_1(x) \neq c(x) \land h_2(x) \neq c(x)]$$

+ $\Pr_{\mathcal{D}}[h_3(x) \neq c(x)|h_1(x) \neq h_2(x)]. \Pr_{\mathcal{D}}[h_1(x) \neq h_2(x)]$
= $2.\beta_1.\gamma_2 + \beta_3. \left[2.(1-\beta_1).\gamma_1 + 2.\beta_1.(\frac{1}{2}-\gamma_2)\right]$
= $2.\beta_1.\gamma_2 + 2.\beta_3.\gamma_1 - 2.\beta_1.\beta_3.\gamma_1 + \beta_1.\beta_3 - 2.\beta_1.\beta_3.\gamma_2$
= $\beta_1.(2.\gamma_2 - 2.\beta_3.\gamma_1 + \beta_3 - 2.\beta_3.\gamma_2) + 2.\beta_3.\gamma_1$
= $\beta_1.[2.\gamma_2 + \beta_3.(1-2.\beta_2)] + 2.\beta_3.\gamma_1$

00000000000000000

Fabien Torre

Borne sur l'erreur

erreur_D(h) =
$$\beta_1 \cdot [2 \cdot \gamma_2 + \beta_3 \cdot (1 - 2 \cdot \beta_2)] + 2 \cdot \beta_3 \cdot \gamma_1$$

 $\leq \epsilon_0 \cdot [2 \cdot \gamma_2 + \beta_3 \cdot (1 - 2 \cdot \beta_2)] + 2 \cdot \beta_3 \cdot \gamma_1$
 $\leq 2 \cdot \gamma_2 \cdot \epsilon_0 + \beta_3 \cdot \epsilon_0 \cdot (1 - 2 \cdot \beta_2) + 2 \cdot \beta_3 \cdot \gamma_1$
 $\leq \beta_3 \cdot [\epsilon_0 \cdot (1 - 2 \cdot \beta_2) + 2 \cdot \gamma_1] + 2 \cdot \gamma_2 \cdot \epsilon_0$
 $\leq \epsilon_0 [\epsilon_0 \cdot (1 - 2 \cdot \beta_2) + 2 \cdot \gamma_1] + 2 \cdot \epsilon_0 \cdot \gamma_2$
 $\leq \epsilon_0^2 - 2 \cdot \epsilon_0^2 \cdot \beta_2 + 2 \cdot \epsilon_0 \cdot (\gamma_1 + \gamma_2)$
 $\leq \epsilon_0^2 - 2 \cdot \epsilon_0^2 \cdot \beta_2 + 2 \cdot \epsilon_0 \cdot \beta_2$
 $\leq \epsilon_0^2 + 2 \cdot \beta_2 \cdot (\epsilon_0 - \epsilon_0^2)$
 $\leq \epsilon_0^2 + 2 \cdot \epsilon_0 \cdot (\epsilon_0 - \epsilon_0^2)$
 $\leq \epsilon_0^2 - 2 \cdot \epsilon_0^3 \leq \epsilon_0$

L' booste effectivement l'erreur de L!

Fabien Torre Apprenant fort

Premier algorithme de boosting [Schapire, 1990]

On note $g(\epsilon) = 3.\epsilon^2 - 2.\epsilon^3$.

ApprentissageFort(ϵ , EX(ϵ , \mathcal{D})):

- **1** si $\epsilon \geq \epsilon_0$, retourner $L(\mathrm{EX}(c,\mathcal{D}))$;
- $\epsilon' = g^{-1}(\epsilon)$;
- $h_1 = ApprentissageFort(\epsilon', EX(c, \mathcal{D}));$
- 4 définir \mathcal{D}_2 en fonction de \mathcal{D} et de h_1 , comme précédemment;
- **5** $h_2 = \text{ApprentissageFort}(\epsilon', \text{EX}(\epsilon, \mathcal{D}_2));$
- **6** définir \mathcal{D}_3 en fonction de \mathcal{D} , h_1 et h_2 , comme précédemment;
- $h_3 = \text{ApprentissageFort}(\epsilon', \text{EX}(c, \mathcal{D}_3));$
- 8 retourner $h = \text{VoteMajoritaire}(h_1, h_2, h_3)$.

troduction Apprenabilité Boosting Bibliographie

Apprenant for

Premier algorithme de boosting : bilan

Critiques

- algorithme triplement récursif;
- trois types d'hypothèses sont manipulés : les h apprises par L, les votes majoritaires de trois h et les votes majoritaires de trois votes majoritaires;
- chaque L fait appel à l'oracle et ne partage pas ses exemples.

Bibliographie II

Communications of the ACM, 27:1134–1142.

Modèle d'apprentissage PAC Fabien Torre

oduction Apprenabilité Boosting Bibliographie

Bibliographie I

Cryptographic limitations on learning Boolean formulae and finite automata.

In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 433–444.

- Kearns, M. J. and Vazirani, U. V. (1994).

 An Introduction to Computational Learning Theory.

 MIT Press.
- Schapire, R. E. (1990).
 The strength of weak learnability.

 Machine Learning, 5:197-227.

Modèle d'apprentissage PAC

Fabien Torre