On the relationships between QoS and software adaptability at the architectural level

Daniel Schmidt

17.02.2015

Inhalt

- Einleitung
- 2 Anpassungsfähigkeit
- 3 Metriken
 - AAS und RAS
 - MAAS und MRAS
 - LSA
- 4 Adapt + und Adapt +
- 5 Beispiel
- 6 Analyse des Ansatzes
- 7 Beschränkungen
- 8 TODOs

Einleitung Anpassungsfähigkeit Metriken Adapt ⁺ und Adapt ⁺ Beispiel Analyse des Ansatzes Beschränkungen Literatur TO

Einleitung

Abbildung: Zusammenhang zwischen Anpassungsfähigkeit und QoS

Anpassungsfähigkeit

Definition (Anpassungsfähiges Software System)

Ein anpassungsfähiges Software System kann Änderungen in der Umwelt ohne einen externen Eingriff vertragen.

Lawrence Chung Nary Subramanian. *Metrics for Software Adaptability*. URL: https://www.utdallas.edu/~chung/ftp/sqm.pdf

Beispiel

Abbildung: Beispiel Component-and-Connector Ansicht

Metriken

Definition (UC_i)

Komponenten, die den Dienst i bereitstellen

Definition (C_i)

Komponenten, die den Dienst i bereitstellen können

Metriken

Abbildung : Beispielarchitektur

Metriken

- AAS und RAS
- MAAS und MRAS
- LSA

AAS

Definition (Absolute adaptability of a service)

$$AAS_i = |UC_i|$$

RAS

Definition (Relative adaptability of a service)

$$RAS_i = \frac{|UC_i|}{|C_i|}$$

MAAS

Definition (Mean of absolute adaptability of service)

$$MAAS = \frac{\sum_{i=1}^{n} AAS_i}{n}$$

MRAS

Definition (Mean of relative adaptability of service)

$$MAAS = \frac{\sum_{i=1}^{n} RAS_i}{n}$$

Definition (Level of system adaptability)

$$LSA = \frac{\sum_{i=1}^{n} AAS_i}{\sum_{i=1}^{n} |C|}$$

Definition (Adapt⁻)

Das niedrigste A_i für welches man eine Architektur finden kann, welche die Anforderungen erfüllt.

Adapt - und Adapt +

Definition (*Adapt*⁺)

Das niedrigste A_i für dessen Grenzen Q_{A_iU} und Q_{A_iL} die Anforderungen erfüllen.

Daniel Schmidt

Daniel Schmidt

Daniel Schmidt

Mehrere Anforderungen

Mehrere Anforderungen

Beziehungen der QoS zur Anpassungsfähigkeit

Einleitung Anpassungsfähigkeit Metriken Adapt ⁺ und Adapt ⁺ Beispiel Analyse des Ansatzes Beschränkungen Literatur TO

Vorteile

- hilft die Architekturentscheidung zu rechtfertigen.
- dauert länger als bisherige Verfahren, aber das Resultat ist auch bei Änderungen weiterhin nutzbar.

Einleitung Anpassungsfähigkeit Metriken Adapt ⁺ und Adapt ⁺ Beispiel Analyse des Ansatzes Beschränkungen Literatur TO

Beschränkungen

- Weicher Erfüllungsgrad kann mit dem aktuellen Ansatz nicht vereint werden, da Adapt+ und Adapt- in einem durchgehenden Erfüllbarkeitsschema nicht existieren würden
- Keine Gewichtung von Komponenten & Services
- Fehlendes Wissen über die tatsächliche Umgebung und die Schwierigkeit bei der Definition architektureller Parameter

Literatur

José Merseguer Diego Perez-Palacin Raffaela Mirandola. "On the relationships between QoS and software adpatability at the architectural level". In: *The Journal of Systems and Software* (2013).

Lawrence Chung Nary Subramanian. *Metrics for Software Adaptability*. URL:

https://www.utdallas.edu/~chung/ftp/sqm.pdf.