Current $I = \frac{dQ}{dt} \mid n = N/V = e^{-}$ density

Ohm's Law

V=IR | define Resistivity : how much a material resists | $[
ho]=\Omega m$ | $R=rac{
ho L}{A}$

Power

$$P = IV = I^2 R = \frac{V^2}{R}$$

Circuits

Electrostatics

Net charge of system is conserved

Coulomb's Law

Charged objects repel and attract \therefore \exists force between charged obj. $\vec{F} = \frac{|q_1q_2|}{4\pi\varepsilon_0 r^2}$ $\varepsilon_0 = 8.85 \times 10^- 12 \frac{C^2}{Nm^2}$

Electric Fields

Points radially away from + and towards - $\vec{E} \equiv \frac{\vec{F}}{Q} \mid [\vec{E}] = \frac{N}{C} = \frac{V}{m} \vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r}$ $\vec{E} = \sum \vec{E}_i = \frac{q}{4\pi\varepsilon_0 r_i^2} \hat{r}_i$

Continuous Charge Distributions

$$\vec{E} = \int d\vec{E} = \int \frac{dq}{4\pi\varepsilon_0 r^2} \hat{r}$$