

Task-Level Modeling Case study: Continuous Vision Applications

Presenter: Yiming Gan

Application Domain

Continuous Vision

Bottlenecks

- Long Latency
 - 100 ms per frame
 - A. Censi, "Low-latency event-based visual odometry"
 ", ICRA 2014.
- High Energy Consumptions
 - Drain battery in one hour using camera on iPhone 6s
 - Apple technique report, 2016
- High Memory Bandwidth Requirements
 - 1M Pixels image sensor running at 30 FPS needs16 GB/s
 - Raj Parihar, "Frame Buffer Design For Image Sensor Array".

Sensing

Imaging

Vision

Platform Architect Modeling

Sensor	AR 1335 Sensor, 30 FPS AR1335 Datasheet	
ISP	Nvidia TX2 ISP, 30 FPS	
DNN Accelerator	20x20 Systolic Array 1.5 MB SRAM, 500 MHz	
Bus	AMBA4 AXI4, 32 GB/s	

Platform Architect Modeling

Different Vision Algorithms

YOLOv2: 448x448 Input 36 Billion MAC Ops

Different Vision Algorithms

YOLOv2: 448x448 Input 36 Billion MAC Ops

TinyYOLO: 448x448 Input 7 Billion MAC Ops

Task Modeling for YOLOv2

Task	Sensing	Imaging	Vision
Latency (ms)	34	34	102

Frame Numbers

Conclusion 1: When the front-end is faster than the back-end, pending time is the bottleneck. Reducing pending time can significantly reduce the per frame latency.

Task Modeling for TinyYOLO

Task	Sensing	Imaging	Vision
Latency (ms)	34	34	19.6

Conclusion 2: When the front-end is slower than the back-end, NPU is not fully utilized. The front-end is the bottleneck and optimizing the vision stage has marginal effect.

YOLOv2

Conclusion 3: Frame latency is not proportional to back-end latency, even with the same front-end. We have to focus on end-to-end latency not just vision stage.