CPSC 313 Spring 2016

Regular languages

For some of the problems below, we have a regular language L and we want to prove that a language L' obtained from L by some operation is also regular. One approach is to take a DFA for L and to show that there exists an NFA which recognizes L'. We do not need to construct explicitly the new NFA – it is enough to show that it exists.

- **1.** Let $L \subseteq \Sigma^*$ be an arbitrary regular language. Prove that the following languages are regular.
 - a) prefmax(L) = { $x \in L | xy \in L \iff y = \epsilon$ }.
 - b) sufmin $(L) = \{xy \in L | y \in L \iff x = \epsilon\}.$
 - c) left(L) = { $x \in \Sigma^* | xy \in L$ for some $y \in \Sigma^*$ where |x| = |y| }.
 - d) right(L) = { $y \in \Sigma^* | xy \in L$ for some $x \in \Sigma^*$ where |x| = |y| }.
 - e) everyother(L) = {everyother(w)| $w \in L$ }, where everyother(w) is the subsequence of w containing every other symbol. For example, everyother(EVERYOTHER) = VROHR.
 - f) $\operatorname{cycle}(L) = \{xy | x, y \in \Sigma^* \text{ and } yx \in L\}.$
- **2.** Let $A/B = \{w \in B | wx \in A \text{ for some } x \in B\}$. Show that if A is regular and B is any language, then A/B is regular.
- **3.** Let *B* and *C* be languages over $\Sigma = \{0, 1\}$. Define
 - $B \xleftarrow{1} C = \{w \in B | \text{for some } y \in C, \text{ strings } w \text{ and } y \text{ contain equal numbers of 1s} \}.$

Prove that the class of regular languages is closed under the $\stackrel{1}{\leftarrow}$ operation.