

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina de Arquitetura e Projeto de Sistemas II Gabarito da AP1 – 2° semestre de 2012

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1 (2 pontos)

Para as heurísticas a seguir, diga com suas palavras o raciocínio que as embasa:

(a) "Uma classe deve representar um e somente um elemento chave de abstração"

Resposta: Quando uma classe representa mais de um elemento chave de abstração (entidade do domínio), a sua coesão fica comprometida. Assim, ao ter cada entidade do domínio representada individualmente por uma classe, o sistema fará um mapeamento direto entre as entidades do mundo real e as suas representações computacionais. Consequentemente, distribuirá responsabilidades de forma uniforme, sem sobrecarregar determinadas classes.

(b) "Tome cuidado com classes que têm muitos métodos que não se comunicam".

Resposta: Quando uma classe tem muitos métodos que não se comunicam, seja via chamada direta ou via atributos, é sinal de que a coesão da classe está comprometida. Ou seja, a classe provavelmente poderia ser dividida em duas ou mais por ter conjuntos de métodos independentes, beneficiando a atribuição de responsabilidades do sistema.

Questão 2 (3 pontos)

Relacione cada elemento da coluna da esquerda com um e somente um elemento da coluna da direita.

(a) Interface com estados ilegais	(1) Falta de comportamento que possibilite transição de estado válida
(b) Interface com estados incompletos	(2) Não possibilita alcançar todos os estados válidos do espaço-estado
(c) Interface com comportamento perigoso	(3) Exibe métodos privados como públicos
(d) Interface com comportamento irrelevante	(4) Necessita que estados não apropriados temporários sejam atingidos para fornecer um comportamento por inteiro
(e) Interface com comportamento incompleto	(5) Permite acesso a estados que não fazem parte da abstração do objeto
(f) Interface com comportamento inábil	(6) Contém método não prejudicial que não faz sentido para a classe
	(7) Possibilita uma troca de estado não esperada na abstração da classe
	(8) Oferece mais de uma forma de se obter o mesmo comportamento
	(9) Um objeto consegue atingir qualquer estado válido da classe, mas somente os estados válidos
	(10) Necessita que estados ilegais temporários sejam atingidos para fornecer um comportamento por inteiro

Resposta: $a \rightarrow 3$; $b \rightarrow 2$; $c \rightarrow 10$; $d \rightarrow 6$; $e \rightarrow 1$; $f \rightarrow 4$

Questão 3 (3 pontos)

A modelagem de sistemas de software tem como premissa a utilização de alguns conceitos básicos. Descreva estes conceitos com suas palavras e dê exemplos de utilização:

a) Abstração (1,0 ponto):

Permite revelar características essenciais de um projeto, filtrando (escondendo) detalhes de implementação que são irrelevantes para o entendimento do sistema. Ex: Um Caso de Uso apresenta a visão de uma funcionalidade sob a ótica do usuário do

Ex: Um Caso de Uso apresenta a visao de uma funcionalidade sob a ófica do usuário o sistema, e não entra em detalhes (abstrai) como tal funcionalidade é implementada.

b) Encapsulamento (1,0 ponto):

Restringe o escopo de uma informação dentro de uma unidade lógica (classe, método, biblioteca, etc), para facilitar a legibilidade e manutenibilidade.

Ex: Uma Classe Pessoa contem (encapsula) as informações relevantes de uma pessoa como nome, endereço, telefone, sexo, etc.

c) Decomposição (1,0 ponto):

Técnica que induz a quebra de um problema grande em sub-problemas menores que podem ser resolvidos de forma mais eficaz.

Ex: A modelagem de um sistema bancário que envolve várias funcionalidades como saque, depósito, pagamentos, extrato e saldo, deve ser conduzida de modo a resolver cada funcionalidade isoladamente para facilitar sua compreensão.

Questão 4 (2 pontos)

Relacione os itens abaixo:

- (a) Diagrama de Caso de Uso
- (b) Diagrama de Classe
- (c) Relacionamento de Include (inclusão) em Diagrama de Caso de Uso
- (d) Relacionamento de Herança em Diagrama de Classes
- (e) Diagrama de Sequência

- (1) Representa a interação entre objetos.
- (2) Permite que uma subclasse reutilize informação de uma superclasse.
- (3) Modela a interação entre ator e sistema.
- (4) Promove a representação de informações estruturais de um sistema.
- (5) Permite indicar que um Caso de Uso A utiliza um Caso de Uso B.

Respostas: $a\rightarrow 3$, $b\rightarrow 4$, $c\rightarrow 5$, $d\rightarrow 2$, $e\rightarrow 1$