STAT 346

Theoretical Statistics II Spring Semester 2018

Exam 1

TN T	
Name	
manne.	

- $\bullet\,$ You have 75 min to complete this exam
- Justify your answers
- Evaluate expressions as much as you can

Note: There is a table on the last page that lists pdf/pmf, mean, variance and mgf for a few distributions.

1. (6 points) Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Show that $\overline{X} \sim N(\mu, \sigma^2/n)$. Hint: consider using mgf's.

2. (8 points) Let X_1, X_2, \ldots, X_9 be a random sample from Uniform (0, 1). Derive the pdf for the 4th order statistic, $X_{(4)}$, and identify the name and parameter values of that distribution.

3. Let X_1, X_2, X_3 , be a random sample from N(0,4) and let Y_1, Y_2, Y_3, Y_4 , be a random sample from N(2,9). Also assume that $\{X_1, X_2, X_3\}$ are independent of $\{Y_1, Y_2, Y_3, Y_4\}$. Determine the distribution of the following random variables. Remember to justify your answers.

(a) (5 points)
$$U_1 = \frac{3}{4}\overline{X}^2 + \frac{4}{9}(\overline{Y} - 2)^2$$

(b) (5 points)
$$U_2 = \frac{4(\overline{Y} - 2)}{\sqrt{3\sum_{i=1}^3 X_i^2}}$$

(c) (5 points)
$$U_3 = \frac{3\sum_{i=1}^3 X_i^2}{\sum_{i=1}^4 (Y_i - 2)^2}$$

4. (6 points) Let $X_1, X_2, ..., X_n$ be a random sample from $Gamma(\theta, 2)$. Use the Central Limit Theorem and other theorems or corollaries to find the asymptotic (limiting) distribution of the following statistic

$$\frac{\sqrt{n}(\overline{X}_n - 2\theta)}{\sqrt{\overline{X}_n}}$$

5. (6 points) Again, let X_1, X_2, \ldots, X_n be a random sample from $Gamma(\theta, 2)$. Use the Central Limit Theorem and other theorems or corollaries to find the asymptotic (limiting) distribution of the following statistic

$$\sqrt{n}(\overline{X}_n^2 - 4\theta^2)$$

- 6. (9 points) Let X be a random variable and X_1, X_2, X_3, \ldots be a sequence of random variables. Define in mathematical notation what the following statements mean.
 - (a) $X_n \xrightarrow{D} X$, i.e. X_n converges to X in distribution as $n \to \infty$

(b) $X_n \xrightarrow{P} X$, i.e. X_n converges to X in probability as $n \to \infty$

(c) $X_n \xrightarrow{\text{a.s.}} X$, i.e. X_n converges to X almost surely as $n \to \infty$

Problem	1	2	3	4	5	6	Total
Missed							
Score							
out of	6	8	15	6	6	9	50

	Name	pdf	Parameters	Mean	Variance	Mgf
	Exponential(β)	Exponential(β) $f(x) = \frac{1}{\beta}e^{-x/\beta}, x \ge 0$	$\beta > 0$	$\mathrm{E}(X)=eta$	$\operatorname{Var}(X) = \beta^2$	$M_X(t) = \frac{1}{1-\beta t}, \ t < \frac{1}{\beta}$
	$\mathrm{Gamma}(\alpha,\beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \ x \ge 0$	$\alpha, \beta > 0$	$E(X) = \alpha\beta$	$Var(X) = \alpha \beta^2$	$M_X(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha}, \ t < \frac{1}{\beta}$
	$\mathrm{N}(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, x \in \mathbb{R}$	$\mu \in \mathbb{R}, \sigma > 0$	$\mathrm{E}(X) = \mu$	$\operatorname{Var}(X) = \sigma^2$	$M_X(t) = e^{\mu t + \sigma^2 t^2/2}$
10	$\mathrm{Uniform}(a,b)$	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	$a,b \in \mathbb{R}, \ a < b$	$E(X) = \frac{b+a}{2}$	$\operatorname{Var}(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$
	$\mathrm{Beta}(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 \le x \le 1$	$\alpha, \beta > 0$	$\mathrm{E}(X) = \frac{\alpha}{\alpha + \beta}$	$\operatorname{Var}(X) = \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$	+1)
					$M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^k \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$	$\prod_{r=0}^{k} \frac{\alpha + r}{\alpha + \beta + r} \bigg) \frac{t^k}{k!}$
	$\operatorname{Binomial}(n,p)$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	$n \in \mathbb{N}, \ 0 \le p \le 1$	E(X) = np	Var(X) = np(1-p)	$Var(X) = np(1-p)$ $M_X(t) = (pe^t + (1-p))^n$
	$Poisson(\lambda)$	$f(x) = \frac{e^{-\lambda \lambda x}}{x!}, \ x = 0, 1, 2, \dots$	γ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$E(X) = \lambda$	$Var(X) = \lambda$	$M_X(t) = e^{\lambda(e^t - 1)}$