Розподіли випадкових величин

1. Дискретні розподіли

1.1. Розподіл Бернулі

$$\frac{\xi \mid 0 \mid 1}{\mathbb{P} \mid q \mid p} \qquad \mathbb{E}_{\xi} = p; \quad \mathbb{D}_{\xi} = p \cdot q$$

1.2. Біноміальний розподіл

$$\xi \sim Bin(n,p)$$

$$\mathbb{E}_{\xi} = np; \quad \mathbb{D}_{\xi} = npq; \quad G_{\xi}(z) = (pz + q)^n$$

 $Bin(1,p) \sim$ Розподіл Бернулі

1.3. Геометричний розподіл

$$\xi \sim Geom_0(p)$$

$$\mathbb{E}_{\xi} = \frac{q}{p}; \quad \mathbb{D}_{\xi} = \frac{q}{p^2}; \quad G_{\xi}(z) = \frac{p}{1 - qz}$$

$$\eta \sim Geom_1(p); \quad \eta = \xi + 1$$

$$\mathbb{E}_{\eta} = \frac{1}{p}; \quad \mathbb{D}_{\eta} = \frac{q}{p^2}$$

1.4. Розподіл Пуасона

$$\xi \sim Pois(\lambda), \lambda > 0$$

$$\mathbb{E}_{\xi} = \mathbb{D}_{\xi} = \lambda; \quad G_{\xi}(z) = \exp(\lambda(z-1))$$

$$\mathbb{P}\{\xi = k\} = \frac{\exp(-\lambda)\lambda^k}{k!}$$

$$\frac{\xi \mid 0 \mid 1 \mid 2 \mid \cdots \mid k \mid \cdots}{\mathbb{P} \mid e^{-\lambda} \mid \lambda e^{-\lambda} \mid \frac{\lambda^2 \exp(-\lambda)}{2} \mid \cdots \mid \frac{\exp(-\lambda)\lambda^k}{k!} \mid \cdots}$$

2. Абсолютно неперервні розподіли

2.1. Теорія ймовірностей

Розподіл	$F_{\xi}(x)$	$f_{\xi}(x)$	\mathbb{E}_{ξ}	\mathbb{D}_{ξ}
U(a,b)	$\begin{cases} 0, & x \le a; \\ \frac{x-a}{b-a}, & x \in (a,b); \\ 1, & x \ge b. \end{cases}$	$\frac{1}{b-a} \cdot \mathbb{I}\{x \in (a,b)\}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Exp(\lambda)$	$(1 - \exp(-\lambda x)) \cdot \mathbb{I}\{x \ge 0\}$	$\lambda \exp(-\lambda x) \cdot \mathbb{I}\{x \ge 0\}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\aleph(0,1)$	$\frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \exp\left(-\frac{t^{2}}{2}\right) dt = \frac{1}{2} + \Phi(x)$	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$	0	1
$\aleph(a,\sigma^2)$	$\frac{1}{2} + \Phi(\frac{x-a}{\sigma})$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$	a	σ^2

2.2. Математична статистика

Розподіл	$f_{\xi}(x)$	\mathbb{E}_{ξ}	\mathbb{D}_{ξ}
$\Gamma(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} \cdot \mathbb{I}\{x > 0\}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
χ_n^2	$f_{\Gamma(rac{n}{2},rac{1}{2})}$	n	2n
St_n, t_n	$\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{x^2}{n})^{-\frac{n+1}{2}}$	0 (n > 1)	$\left \frac{n}{n-2} (n > 2); \infty (1 < n \le 2) \right $
$F_{m,n}$	$\frac{1}{B(\frac{m}{2},\frac{n}{2})} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, x > 0$	$\frac{n}{n-2} (n > 2)$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}(n>4)$

$$\chi_n^2$$
 — Розподіл суми квадратів п незалежних $\xi_i \sim \aleph(0,1): \xi_1^2 + \dots + \xi_n^2;$
$$St_n - \text{Розподіл} \ \frac{\xi_0}{\sqrt{(\xi_1^2 + \dots + \xi_n^2)/n}}, \ \text{де } \xi_i \sim \aleph(0,1), i = \overline{0,n};$$

$$St_n - \text{Розподіл} \ \frac{(\xi_1^2 + \dots + \xi_m^2)/m}{(\eta_1^2 + \dots + \eta_n^2)/n}, \ \text{де } \xi_i \sim \aleph(0,1), \eta_j \sim \aleph(0,1), i = \overline{1,m}, j = \overline{1,n}$$