

### Machine Learning Model Validation

Session 1 - Model Interpretability

Aijun Zhang, Ph.D. Corporate Model Risk, Wells Fargo

Information Sharing at GM Financial – Model Risk Management | December 4, 2023

**Disclaimer:** This material represents the views of the presenter and does not necessarily reflect those of Wells Fargo.

## Biographical Sketch



• Aijun Zhang is a senior vice president, quantitative analytics senior manager at Wells Fargo. He leads a machine learning & validation engineering team in Corporate Model Risk, responsible for PiML (Python interpretable machine learning) toolbox and VoD (Validation-on-Demand) platform. Aijun holds PhD degree in Statistics from University of Michigan at Ann Arbor, and he has 10+ years of experience working in financial risk management. Aijun was a former professor of statistics at University of Hong Kong. He has published ~40 papers in professional conferences and journals, with research topics in interpretable machine learning, data science and statistics.

### Outline

#### Introduction

- Interpretable machine learning
- PiML toolbox

### Machine Learning Interpretability

- Post-hoc explainability pitfalls
- Inherent interpretability
- FANOVA modeling framework
- GAMI-Net and Interpretation
- PiML User Guide and Examples

### Interpretable Machine Learning



Breiman (2001). Statistical modeling: The two cultures. *Statistical Science*. Gunning (2017). Explainable Artificial Intelligence (XAI). *US DARPA Report*.



Last 20 years: modeling culture shift from data hypothesis to algorithmic prediction.

Models are increasingly black box.



### Interpretable Machine Learning: A Taxonomy



### PiML Toolbox Overview



### An integrated Python toolbox for interpretable machine learning

- **PiML** (read  $\pi$ -ML) is a Python package for interpretable machine learning model development and testing.
- Installation: pip install piml
- Github repo (open access with 700+ stars):
   <a href="https://github.com/SelfExplainML/PiML-Toolbox">https://github.com/SelfExplainML/PiML-Toolbox</a>
- Comprehensive User Guide with lots of examples: <a href="https://github.wellsfargo.com/pages/Utilities-">https://github.wellsfargo.com/pages/Utilities-</a>
   CMoR/Utilities-cmor-piml/
- PiML Tutorials in Medium (recently launched): <a href="https://piml.medium.com/">https://piml.medium.com/</a>

- May 4, 2022: V0.1.0 is launched with low-code UI/UX.
- **June 26, 2022:** V0.2.0 is released with high-code APIs.
- **July 26, 2022:** V0.3.0 is released with classic statistical models.
- **October 31, 2022:** V0.4.0 is released with enriched models and enhanced diagnostics.
- May 4, 2023: V0.5.0 is released together with PiML user guide.
- December 1, 2023: V0.6.0 is released with enhanced data handling and model analytics.

# PiML Pipelines



### Outline

#### Introduction

- Interpretable machine learning
- PiML toolbox
- Machine Learning Interpretability
  - Post-hoc explainability pitfalls
  - Inherent interpretability
  - FANOVA modeling framework
  - GAMI-Net and Interpretation
- PiML User Guide and Examples

## Post-hoc Explainability Test

- **Post-hoc explainability test** is model-agnostic, i.e., it works for any pre-trained model.
  - Useful for explaining black-box models; but need to use with caution (there is no free lunch).
  - Post-hoc explainability tools sometimes have pitfalls, challenges and potential risks.
- Local explainability tools for explaining an individual prediction
  - ICE (Individual Conditional Expectation) plot
  - LIME (Local Interpretable Model-agnostic Explanations)
  - SHAP (SHapley Additive exPlanations)
- Global explainability tools for explaining the overall impact of features on model predictions
  - Examine relative importance of variables: VI (Variable Importance), PFI (Permutation Feature Importance), SHAP-FI (SHAP Feature Importance), H-statistic (Importance of two-factor interactions), etc.
  - Understand input-output relationships: 1D and 2D PDP (Partial Dependence Plot) and ALE (Accumulated Local Effects).

## Post-hoc Explainability Pitfalls



**PiML Demo:** BikeSharing data fit by XGBRegressor (max depth=7, n estimators=500)

## Post-hoc Explainability vs. Inherent Interpretability

- Post-hoc explainability is model agnostic, but there is no free lunch. According to Cynthia Rudin, use of auxiliary post-hoc explainers creates "double trouble" for black-box models.
- Various post-hoc explanation methods, including VI/FI, PDP, ALE, ... (for global explainability) and LIME, SHAP, ... (for local explainability), often produce results with disagreements.
- Lots of academic discussions about pitfalls, challenges and potential risks of using post-hoc explainers.
- This echoes CFPB Circular 2022-03 (May 26, 2022):
   Adverse action notification requirements in connection with credit decisions based on complex algorithms<sup>1</sup>.

- Inherent interpretability is intrinsic to a model. It facilitates gist and intuitiveness for human insightful interpretation. It is important for evaluating a model's conceptual soundness.
- Model interpretability is a loosely defined concept and can be hardly quantified. Sudjianto and Zhang (2021)<sup>2</sup> proposed a qualitative rating assessment framework for ML model interpretability.
- Interpretable model design: a) interpretable feature selection and b) interpretable architecture constraints<sup>3</sup> such as additivity, sparsity, linearity, smoothness, monotonicity, visualizability, projection orthogonality, and segmentation degree.

<sup>&</sup>lt;sup>1</sup> CFPB Circular 2022-03 Footnote 1: While some creditors may rely upon various post-hoc explanation methods, such explanations approximate models and creditors must still be able to validate the accuracy of those approximations, which may not be possible with less interpretable models. <a href="consumerfinance.gov">consumerfinance.gov</a>
<sup>2</sup> Sudjianto and Zhang (2021): Designing Inherently Interpretable Machine Learning Models. <a href="creditors">creditors</a> must still be able to validate the accuracy of those approximations, which may not be possible with less interpretable models. <a href="consumerfinance.gov">consumerfinance.gov</a>
<sup>2</sup> Sudjianto and Zhang (2021): Designing Inherently Interpretable Machine Learning Models. <a href="creditors">creditors</a> must still be able to validate the accuracy of those approximations, which may not be possible with less interpretable models. <a href="consumerfinance.gov">consumerfinance.gov</a>

<sup>&</sup>lt;sup>3</sup> Yang, Zhang and Sudjianto (2021, IEEE TNNLS): Enhancing Explainability of Neural Networks through Architecture Constraints. arXiv: 1901.03838

# Designing Inherently Interpretable Models

| Model Characteristics | Gist for Interpretation                                                            |
|-----------------------|------------------------------------------------------------------------------------|
| Additivity            | Additive decomposition of feature effects tends to be more interpretable           |
| Sparsity              | Having fewer features or components tends to be more interpretable                 |
| Linearity             | Linear or constant feature effects are easy to interpret                           |
| Smoothness            | Continuous and smooth feature effects are relatively easy to interpret             |
| Monotonicity          | Sometimes increasing/decreasing effects are desired by expert knowledge            |
| Visualizability       | Direct visualization of feature effects facilitates diagnostics and interpretation |
| Projection            | Sparse and near-orthogonal projection tends to be more interpretable               |
| Segmentation          | Having smaller number of segments (heterogeneous data) is more interpretable       |

<sup>&</sup>lt;sup>1</sup>Sudjianto and Zhang (2021): Designing Inherently Interpretable Machine Learning Models. <u>arXiv: 2111.01743</u>

<sup>&</sup>lt;sup>2</sup> Yang, Zhang and Sudjianto (2021, IEEE TNNLS): Enhancing Explainability of Neural Networks through Architecture Constraints. <u>arXiv: 1901.03838</u>

### Inherently Interpretable FANOVA Models

• One effective way is to design inherently interpretable models by the functional ANOVA representation

$$g(\mathbb{E}(y|\mathbf{x})) = g_0 + \sum_{j} g_j(x_j) + \sum_{j < k} g_{jk}(x_j, x_k) + \sum_{j < k < l} g_{jkl}(x_j, x_k, x_l) + \cdots$$

It additively decomposes into the overall mean (i.e., intercept)  $g_0$ , main effects  $g_j(x_j)$ , two-factor interactions  $g_{jk}(x_j, x_k)$ , and higher-order interactions ...

- GAM main-effect models: Binning Logistic, XGB1, GAM (estimated using Splines, etc.)
- GAMI main-effect plus two-factor-interaction models:
  - EBM (Nori, et al. 2019) → explainable boosting machine with shallow trees
  - XGB2 (Lengerich, et al. 2020) → boosted trees of depth 2 with effect purification
  - GAMI-Net (Yang, Zhang and Sudjianto, 2021) → specialized neural nets
  - GAMI-Lin-Tree (Hu, et al. 2023) → specialized boosted linear model-based trees
- **PiML Toolbox** integrates GLM, GAM, XGB1, XGB2, EBM, GAMI-Net and other interpretable models, and provides each model's inherent interpretability.

## Binning Logistic vs. XGB1



```
# Register it as PiML pipeline
tmp = exp.make_pipeline(model=lr)
exp.register(tmp, "BinningLogistic")
exp.model_diagnose(model="BinningLogistic", show='accuracy_table')
```

|  |       | ACC     | AUC     | Recall  | Precision | F1     |     |
|--|-------|---------|---------|---------|-----------|--------|-----|
|  | Train | 0.6787  | 0.7374  | 0.7144  | 0.6716    | 0.6923 | 11. |
|  | Test  | 0.6760  | 0.7341  | 0.7142  | 0.6728    | 0.6929 |     |
|  | Gap   | -0.0027 | -0.0034 | -0.0002 | 0.0012    | 0.0006 |     |



- Binning Logistic is a GAM main effect model with piecewise constant basis functions (feature engineering). It performs manual binning one variable at a time.
- XGB1 is also a GAM main effect model of the same type. It performs automated binning jointly for all variables.
- Both GAM models are inherently interpretable, easy to quantify feature importance and draw main effect plots.

## XGB1, XGB2 and Beyond

- **Proposition:** A depth-K tree-ensemble can be reformulated to an FANOVA model with main effects and k-way interactions with  $k \le K$ .
- Examples: XGB1 is GAM with main effects; XGB2 is GAMI with main effects plus two-factor interactions.
- PiML team has recently developed a three-step unwrapping technique for tree ensembles (e.g., RF, GBDT, XGBoost, LightGBM, CatBoost):
  - **1.** Aggregation: all leaf nodes with the same set of k distinct split variables sum up to a raw k-way interaction.
  - **2. Purification:** recursively cascade effects from high-order interactions to lower-order ones to obtain a unique FANOVA representation subject to hierarchical orthogonality constraints (Lengerich, et al., 2020).
  - **3. Attribution:** quantify the importance of purified effects either locally (for a sample) or globally (for a dataset).
- Strategies to enhance model (e.g., XGBoost) interpretability without sacrificing model performance
  - XGB hyperparameters: max\_tree\_depth, max\_bins, candidate interactions, monotonicity, L1/L2 regularization, etc.
  - Pruning of purified effects: effect selection by L1 regularization, forward and backward selection with early stopping
  - Other strategies such as post-hoc smoothing of purified effects, local flattening, and boundary effect adjustment.

### GAMI-Net and Interpretability Constraints

• **GAMI-Net** (Yang, Zhang and Sudjianto, 2021)<sup>4</sup> considered the same FANOVA form as GA2M but used neural networks instead of tree-boosting.

### Three-stage training algorithm:

- Stage 1: train the main effect subnetworks and **prune** the trivial ones by validation performance.
- Stage 2: train pairwise interactions on residuals, by
  - Select candidate interactions by heredity constraint;
  - Evaluate their scores (by FAST) and select top-K interactions;
  - Train the selected two-way interaction subnetworks;
  - Prune trivial interactions by validation performance.
- Stage 3: retrain main effects and interactions simultaneously for fine-tuning network parameter.

$$g\big(E(y|\boldsymbol{x})\big) = \mu + \sum h_j\big(x_j\big) + \sum f_{jk}(x_j,x_k)$$



## GAMI-Net and Interpretability Constraints

GAMI-Net incorporates the following constraints inherently.

- **Sparsity**: select only the most important main effects and pairwise interactions.
- **Heredity**: a pairwise interaction is selected only if at least one (or both) of its parent main effects is selected.
- **Marginal Clarity**: enforce the pairwise interactions to be nearly orthogonal to the main effects, by imposing penalty

$$\Omega(h_j, f_{jk}) = \left| \frac{1}{n} \sum h_j(x_j) f_{jk}(x_j, x_k) \right|$$

• **Monotonicity**: certain features can be constrained to be monotonic increasing or decreasing, by imposing penalty

$$\Omega(x_j) = \max\left\{-\frac{\partial g}{\partial x_j}, 0\right\}$$
 (if inceasing) or  $\max\left\{\frac{\partial g}{\partial x_j}, 0\right\}$  (if deceasing)

$$g(E(y|x)) = \mu + \sum h_j(x_j) + \sum f_{jk}(x_j, x_k)$$



### Effect Importance and Feature Importance

• In GAMI-Net, each **effect importance** (before normalization) is given by

$$D(h_j) = \frac{1}{n-1} \sum_{i=1}^{n} h_j^2(x_{ij}), \qquad D(f_{jk}) = \frac{1}{n-1} \sum_{i=1}^{n} f_{jk}^2(x_{ij}, x_{ik})$$

• For prediction at  $x_i$ , the **local feature importance** is given by

$$\phi_j(x_{ij}) = h_j(x_{ij}) + \frac{1}{2} \sum_{j \neq k} f_{jk}(x_{ij}, x_{ik})$$

For GAMI-Net (or EBM), the global feature importance is given by

$$FI(x_j) = \frac{1}{n-1} \sum_{i=1}^{n} (\phi_j(x_{ij}) - \overline{\phi_j})^2$$

• The effect can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

### Outline

#### Introduction

- Interpretable machine learning
- PiML toolbox

### Machine Learning Interpretability

- Post-hoc explainability pitfalls
- Inherent interpretability
- FANOVA modeling framework
- GAMI-Net and Interpretation
- PiML User Guide and Examples

### PiML Docs and Examples



### SimuCredit Data from PiML

An educational synthetic credit decisioning dataset with

#### Credit features

- Mortgage size
- Balance of credit account.
- Amount Past Due
- # Credit Inquiry
- # Open Trade
- Delinquency status
- Utilization rate

#### Demographic features

- Race
- Gender

#### Binary Response

- 0/1 approved



20000 rows × 10 columns

## SimuCredit Data Exploration by PiML



• Prepare data by removal of "Gender" and "Race" and train-test split (various split methods) ...

### FANOVA Models: Performance Leaderboard

# Choose Models: GAM, EBM, XGB1, XGB2, GAMI-Net (default config)
exp.model\_train()



#### Leaderboard

| 1 EBM 0.6933 0.7555 0.7194 0.6995 0.7670 0.7229      | 15.0 |
|------------------------------------------------------|------|
| 4 GAMI-Net 0.6893 0.7549 0.7170 0.6939 0.7568 0.7193 | 79.2 |
| 3 XGB2 0.6845 0.7546 0.7091 0.7037 0.7741 0.7246     | 1.5  |
| 0 GAM 0.6910 0.7465 0.7086 0.6877 0.7489 0.7011      | 4.2  |
| 2 XGB1 0.6883 0.7465 0.7055 0.6940 0.7531 0.7075     | 4.1  |

# FANOVA Models: Model Interpretability



### Monotone Constraints

Rerun "exp.model\_train()" for XGB2 with monotone constraints:

```
# Increasing = "Mortgage", "Balance"]
# Decreasing = "Utilization", "Delinquency", "Credit Inquiry", "Open Trade", "Amount Past Due"
```

• Prediction performance may not sacrifice, while model interpretability gets enhanced.

#### Effect Plot:







# Thank you

Aijun Zhang, Ph.D.

Email: Aijun.Zhang@wellsfargo.com

LinkedIn: <a href="https://www.linkedin.com/in/ajzhang/">https://www.linkedin.com/in/ajzhang/</a>