Lulu Wang

Data Analytics Dickinson College

2/10/2025

Introduction

CAPM

The role of outliers

LRM with multiple independent variables

Objectives

The role of outliers

- Review the Linear Regression Model (LRM)
- Discuss its estimation in Python
- Explore applications in financial data

I will review the regression model in broad terms and more details can be found in an introductory statistics/econometrics textbook, such as:

- Stock and Watson, *Introduction to Econometrics*, Pearson
- Wooldridge, Introductory Econometrics, A Modern Approach, South-Western

The Linear Regression Model (LRM)

• The linear regression model is given by:

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t,$$

where:

- Y_t: dependent variable at time t
- X_t : independent variable / factor / predictor at time t
- β_0, β_1 : coefficients to be estimated
- ε_t : error term (mean zero, variance σ^2)
- The **expected** (or average) value of Y_t given X_t is:

$$E(Y_t \mid X_t) = \beta_0 + \beta_1 X_t.$$

Application: Stock Return Risk Analysis

The role of outliers

- **Objective**: Explain excess return of a stock (risk premium) by decomposing it into different risk components (factors).
- Two type of risk
 - Systematic Risk: Market-wide influences (e.g., macroeconomic conditions).
 - Idiosyncratic Risk: Firm-specific factors (e.g., company news, management changes).

Interpretation and CAPM

- Interpretation:
 - β_0 : the expected value of Y_t when $X_t = 0$
 - β_1 : the expected change of Y_t for a unit change of X_t
- The Capital Asset Pricing Model (CAPM) is an example of an LRM:

$$R_t^i = \beta_0 + \beta_1 R_t^{\text{MKT}} + \varepsilon_t,$$

where R_t^i and R_t^{MKT} represent the excess stock and market returns, respectively.

Newey-West Example in Python

- The coefficient estimates $(\hat{\beta}_0, \hat{\beta}_1)$ remain the same.
- Standard errors and p-values change to account for heteroskedasticity and/or autocorrelation.

Understanding Outliers

- **Outliers** can be defined as those observations in a sample that are *extreme* relative to most other observations.
- When is an observation considered extreme?
 - Extremes are considered those observations that are 3/4/5 standard deviations away from the sample mean.
- These are extreme observations that arise from:
 - Exogenous (e.g., COVID-19).
 - **Endogenous** (e.g., 2008 Global Financial Crisis) to the economic and financial system.

Why Are Outliers Problematic?

- From an econometric point of view, outliers are problematic because:
 - They bias the coefficient estimates.
 - This leads to estimates deviating from their true values.

Example: Equity market neutral HF Index

- The outlier happened in November 2008
- What happened in that month to cause a drop of the EMN Index by 40.45?

Effect of outliers on OLS estimates

- What is the effect of outliers on descriptive statistics? If we dropped the observation for **November 2008**, then:
 - the mean would increase from 0.37% to 0.48%
 - the standard deviation would decline from 2.43% to 1.19%
 - the skewness would change from -12.80 to -0.61
 - the excess kurtosis would change from 211.87 to 2.72
- Outliers have large effects on these quantities; what about on the regression estimates?

Effect of outliers on OLS estimates (Cont.)

- The regression results show that by dropping the outlier:
 - the slope coefficient decreases from 0.1573 to 0.1101
 - the intercept coefficient increases from 0.2454 to 0.3898

The role of outliers

 The scatter plot excluding the extreme observation together with the regression lines estimated with/without the outlier

LRM with Multiple Independent Variables

- Typically, we have several independent variables (factors) relevant to explain the dependent variable.
- We extend the Linear Regression Model (LRM) to include independent variables denoted as $X_{k,t}$ for k = 1, ..., K:

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \dots + \beta_K X_{K,t} + \epsilon_t$$

• The model is estimated by OLS, making the formula more complex than the single regressor case.

Multicollinearity in Multiple Regression

- Before estimating the model, analyze the correlation among the $X_{k,t}$ variables:
 - **Perfect collinearity**: If two (or more) independent variables have correlation = 1, the LRM cannot be estimated.
 - Imperfect collinearity: If two (or more) independent variables have high correlation, estimates become unstable (high variance).

Multicollinearity of variables produces ill-conditioning

Under ordinary polynomials, monomials forming X are highly correlated, OLS coefficients "jump" and the iterative process fails to converge.

Consider an approximation problem $y = Xb + \varepsilon$ such that $y = (0,0)^T$ and

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+\phi & 1 \\ 1 & 1+\phi \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix}.$$

The OLS solution is

$$\hat{b}_1 = rac{1}{\phi} \left[rac{arepsilon_2 - arepsilon_1 (1 + \phi)}{2 + \phi}
ight] \quad ext{and} \quad \hat{b}_2 = rac{1}{\phi} \left[rac{arepsilon_1 - arepsilon_2 (1 + \phi)}{2 + \phi}
ight].$$

Sensitivity of \hat{b}_1 and \hat{b}_2 to perturbation in $(\varepsilon_1, \varepsilon_2)^T$ is proportional to $1/\phi$.

If $\phi \approx 0$ (multicollinearity), then a small perturbation $(\varepsilon_1, \varepsilon_2)^T$ produces large changes in \hat{b}_1 and \hat{b}_2 .

Fama-French Three-Factor Model

- In asset pricing, independent variables are typically referred to as risk factors.
- Fama and French (1993) extend CAPM with two additional factors:
 - **SMB** (Small-minus-Big): Return spread between small and large capitalization stocks.
 - **HML** (High-minus-Low): Return spread between high and low Book-to-Market ratio stocks (value vs. growth stocks).

The role of outliers

The Fama-French Three-Factor model is defined as:

$$R_t^i = \beta_0 + \beta_1 MKT_t + \beta_2 SMB_t + \beta_3 HML_t + \epsilon_t$$

- The goal is to decompose portfolio return R_t^i into exposures to:
 - Systematic risk: $\beta_1 MKT_t + \beta_2 SMB_t + \beta_3 HML_t$
 - Idiosyncratic risk: ϵ_t
 - Risk-adjusted return: β₀

Economic Interpretation of FF3 Factors

- Market Risk (MKT_t) : Captures overall market movement.
- SMB (Size Factor):
 - Small firms tend to have higher expected returns than large firms.
 - Related to firm size premium in asset pricing.
- HML (Value Factor):
 - Value stocks (high Book-to-Market) outperform growth stocks (low Book-to-Market).
 - Reflects differences in risk exposure between value and growth stocks.

A first look at FF factors

• The data for the factors are downloadable at Ken French webpage (1926-2017)

A first look at FF factors(Cont.)

• Compute summary statistics:

	Mean	Std Dev	Skewness	Kurtosis	Max	Min
MKT	0.65	5.37	0.19	7.79	38.85	-29.13
SMB	0.21	3.20	1.89	19.14	36.56	-17.20
HML	0.39	3.52	2.31	20.19	35.61	-13.11
RF	0.28	0.25	1.06	1.25	1.35	-0.06

• Correlation matrix among the Fama-French factors (including the riskfree rate):

	MKT	SMB	HML	RF
MKT	1.00	0.32	0.25	-0.07
SMB	0.32	1.00	0.12	-0.05
HML	0.25	0.12	1.00	0.02
RF	-0.07	-0.05	0.02	1.00