Universitat Autònoma de Barcelona Facultat de Ciències

LLIURAMENT EQUIP 5

Autors:

Gerard Lahuerta 1601350

Ona Sánchez 1601181

Pau Ventura 1601350

11 de Juny del 2021

Índex

1	Exe	rcici 1		4	
	1.1	Enunciat	;	4	
	1.2	Procedin	nent	5	
	1.3	Solució .		5	
2	Exercici 2				
	2.1	Enunciat	;	6	
	2.2	Procedin	nent	7	
		2.2.1 C	Calculem l'area definida sobre Ω_1	7	
		2.2.2 C	Calculem l'area definida sobre Ω_2	8	
	2.3	Solució .		9	
3	Exercici 3				
	3.1	Enunciat	;	10	
	3.2	Procediment			
		3.2.1 B	susquem els punts crítics	10	
		3.2.2 C	alculem la matriu Hessiana	11	
		3.2.3 A	valuem la matriu Hessiana en els punts crítics i calculem el determinant	11	
	3.3	Solució .		11	
4	Exe	rcici 4		12	
	4.1	Enunciat	·	12	
	4.2	Procedin	nent	12	
		4.2.1 L	'interior del conjunt	13	
		4.2.2 L	a frontera del conjunt	13	

		4.2.3 Els punts de conjunció de la frontera				
	4.3	Solució				
5	Exe	rcici 5				
	5.1	Enunciat				
	5.2	Procediment				
	5.3	Solució				
6	Exe	rcici 6				
	6.1	Enunciat				
	6.2	Procediment				
	6.3	Solució				
7	Exe	rcici 7				
	7.1	Enunciat				
	7.2	Procediment				
	7.3	Solució				
8	Exe	rcici 8				
	8.1	Enunciat				
	8.2	Procediment				
	8.3	Solució				
9	Exercici 9 25					
	9.1	Enunciat				
	9.2	Procediment				
	9.3	Solució				
10	Exe	rcici 10 27				
	10.1	Enunciat				
	10.2	Procediment				
	10.3	Solució 28				

Exercici 1

1.1 Enunciat

Trobar el polinomi de grau 3 associat a una funció $f:\mathbb{R}^2\to\mathbb{R}$ que compleix les igualtats següents:

- f(-5,3) = -24
- f(0,2) = 17
- $\bullet \ \frac{\partial f}{\partial y}(0,0) = 4$
- $\frac{\partial^2 f}{\partial y^2}(1,1) = \frac{\partial f}{\partial x \partial y}(-2,3) = 2$
- $D_{(0,-1)}f(2,2) = -12$
- $D_{(-1/\sqrt{2},-1/\sqrt{2})}f(-3,0) = \frac{-1}{\sqrt{2}}$
- $D_{(0,1)}f(3,6) = 22$
- $D_{(-1/\sqrt{2},1/\sqrt{2})}f(-4,0) = \frac{-80}{\sqrt{2}}$
- $\frac{\partial f}{\partial x}(-1,0) 2\frac{\partial f}{\partial y}(0,0) = -7$
- $D_{(1/\sqrt{2},1/\sqrt{2})}f(-2,0)=0$

1.2 Procediment

Vam utilitzar el sagemath per a interpolar el polinomi imposant totes les restriccions que ens donava l'enunciat, creant una matriu (A) amb els coeficients de les incógnites, i un vector (b) amb les solucions de les equacions.

Al final vam tenir que resoldre un sistema de la forma:

$$Ax = b$$

On x són els coeficients, és a dir, les incógnites.

1.3 Solució

$$f(x,y) = x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5$$

Exercici 2

2.1 Enunciat

Considerem les regions planes següents:

$$\Omega_1 = (x, y) : \frac{1}{2} \le x^2 + y^2 \le 5, y \ge |x|$$

$$\Omega_2 = (x, y) : 0 \le x \le 1, x \le 3y \le (x^2 + 5), 0 \le x \le 1$$

Calculeu la integral de la vostra funció sobre cadascuna d'aquestes regions. Per a la integral sobre la segona regió, calculeu la integral en els dos possibles ordres d'integració i comproveu que obteniu el mateix resultat.

2.2 Procediment

2.2.1 Calculem l'area definida sobre Ω_1

Volem trobar:

$$\int \int_{\Omega_1} f(x,y) \ dxdy = \int \int_{\Omega_1} x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5 \ dxdy$$

Com que és un cercle, ens interessa fer el cànvi a coordenades polars:

$$\begin{cases} x = rcos(\theta) \\ y = rsin(\theta) \end{cases}$$

Amb $J\phi = r$

Així doncs:

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{\frac{1}{\sqrt{2}}}^{\sqrt{5}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{\frac{1}{\sqrt{2}}}^{\sqrt{5}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{\frac{1}{\sqrt{2}}}^{\frac{\pi}{4}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta) + 4(rsin(\theta)) + 5)drd\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} r((rcos(\theta))^3 + 5(rcos(\theta))^2 + 2rcos(\theta)rsin(\theta) + (rsin(\theta))^2 + 4(rcos(\theta))^2 + 3(rcos(\theta))^2 + 3(r$$

$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left({}_{297\cdot\sqrt{2^{5}\cdot\sin^{2}x + 297\cdot\sqrt{2^{7}\cdot\cos x + (\sqrt{2^{2}1\cdot5^{3}} - 512)\sin x + (\sqrt{2^{1}3\cdot5^{3}} - 32)\cos^{3}x + 1485\cdot\sqrt{2^{5}\cos^{2}x + (\sqrt{2^{1}7\cdot5^{3}} - 128)\cos x + \frac{135}{3}}} \right) d\theta = 0$$

=
$$169.12947 \Rightarrow \int \int_{\Omega_1} f(x, y) dx dy \approx 169.12947u^2$$

2.2.2 Calculem l'area definida sobre Ω_2

Volem trobar:

$$\int \int_{\Omega_2} f(x,y) \ dxdy = \int \int_{\Omega_2} x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5 \ dxdy$$

Primer ordre

Definint els límits d'integració:

$$\int_{0}^{1} \int_{\frac{x^{2}+5}{3}}^{\frac{x^{2}+5}{3}} x^{3} + 5x^{2} + 2xy + y^{2} + 4x + 4y + 5 \, dy dx =$$

$$= \int_{0}^{1} \frac{x^{6} + 36x^{5} + 141x^{4} + 188x^{3} + 939x^{2} + 630x + 1250}{81} dx =$$

$$= \left[\frac{x(5x^{6} + 210x^{5} + 987x^{4} + 1645x^{3} + 10955x^{2} + 11025x + 43750}{2835} \right]_{0}^{1} =$$

$$= \frac{22859}{945} \approx 24.18u^{2} \Rightarrow \left[\int \int_{\Omega_{2}} f(x, y) dx dy \approx 24.18u^{2} \right]$$

Segón ordre

$$\int_0^{\frac{1}{3}} \int_0^{3y} f(x,y) \ dxdy + \int_{\frac{1}{3}}^{\frac{5}{3}} \int_1^0 f(x,y) \ dxdy + \int_{\frac{3}{5}}^2 \int_{\sqrt{3y-5}}^1 f(x,y) \ dxdy$$

Calculem la primera integral:

$$\int_{0}^{\frac{1}{3}} \int_{0}^{3y} f(x,y) \, dx dy = \int_{0}^{\frac{1}{3}} \int_{0}^{3y} x^{3} + 5x^{2} + 2xy + y^{2} + 4x + 4y + 5 \, dx dy =$$

$$= \int_{0}^{\frac{1}{3}} \frac{81y^{4} + 228y^{3} + 120y^{2} + 60y}{4} dy = \left[\frac{y^{2}(81y^{3} + 285y^{2} + 200y + 150)}{20} \right]_{0}^{\frac{1}{3}} =$$

$$= \frac{377}{270} \approx 1.39$$

Calculem la segona integral:

$$\int_{\frac{1}{3}}^{\frac{5}{3}} \int_{1}^{0} f(x,y) \, dx dy = \int_{\frac{1}{3}}^{\frac{5}{3}} \int_{1}^{0} x^{3} + 5x^{2} + 2xy + y^{2} + 4x + 4y + 5 \, dx dy =$$

$$= \int_{\frac{1}{3}}^{\frac{5}{3}} \frac{12y^{2} + 60y + 107}{12} dy = \left[\frac{y(4y^{2} + 30y + 107)}{12} \right]_{\frac{1}{3}}^{\frac{5}{3}} = \frac{1627}{81} \approx 20.08$$

Calculem la tercera integral:

$$\int_{\frac{5}{3}}^{2} \int_{\sqrt{3y-5}}^{1} f(x,y) \, dx dy = \int_{\frac{5}{3}}^{2} \int_{\sqrt{3y-5}}^{1} x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5 \, dx dy =$$

$$= \int_{\frac{5}{3}}^{2} -\frac{\sqrt{3y-5}(12y^2 + 108y - 40) + 51y^2 - 138y - 152}{12} dy = \frac{15347}{5670} \approx 2.70$$

Així doncs, en total:

$$\int_{0}^{\frac{1}{3}} \int_{0}^{3y} f(x,y) \, dx dy + \int_{\frac{1}{3}}^{\frac{5}{3}} \int_{1}^{0} f(x,y) \, dx dy + \int_{\frac{3}{5}}^{2} \int_{\sqrt{3y-5}}^{1} f(x,y) \, dx dy =$$

$$= 1.39 + 20.08 + 2.7 \approx 24.18 \Rightarrow \boxed{\int \int_{\Omega_{2}} f(x,y) \, dx dy \approx 24.18u^{2}}$$

2.3 Solució

El resultat de la funció definida sobre Ω_1 és 756.42 u^2 .

El resultat de la funció definida sobre Ω_2 és $24.18u^2$, i s'ha corroborat mitjançant el càlcul amb diversos mètodes.

Exercici 3

3.1 Enunciat

Determineu els extrems relatius de f i classifiqueu-los.

3.2 Procediment

3.2.1 Busquem els punts crítics

Els punts crítics són:

$$\{(a,b): \nabla f(a,b) = 0\}$$

Calculem el gradient en un punt general:

$$\nabla f(x,y) = (3x^2 + 10x + 2y + 4, 2x + 2y + 4)$$

Llavors només cal resoldre el sístema:

$$3x^2 + 10x + 2y + 4 = 0$$
$$2x + 2y + 4 = 0$$

On les solucions són:

$$(x,y) = (0,-2)$$

$$(x,y) = \left(\frac{-8}{3}, \frac{2}{3}\right)$$

3.2.2 Calculem la matriu Hessiana

$$H(x,y) = \begin{pmatrix} 6x+10 & 2\\ 2 & 2 \end{pmatrix}$$

3.2.3 Avaluem la matriu Hessiana en els punts crítics i calculem el determinant

$$H(0,-2) = \begin{pmatrix} 10 & 2 \\ 2 & 2 \end{pmatrix} \Rightarrow |H(0,-2)| = 16$$

$$H\left(\frac{-8}{3},\frac{2}{3}\right) = \begin{pmatrix} -6 & 2 \\ 2 & 2 \end{pmatrix} \Rightarrow |H\left(\frac{-8}{3},\frac{2}{3}\right)| = -16$$

$$El \text{ mínim relatiu és } (0,-2).$$

$$El \text{ punt de sella és } \left(\frac{-8}{3},\frac{2}{3}\right).$$

3.3 Solució

Per al punt (x,y) = (0,-2), com que el determinant és positiu i el terme $A_1(10)$ també ho és, el punt es tractarà d'un **mínim** (representat en roig).

Per al punt $(x,y) = \left(\frac{-8}{3}, \frac{2}{3}\right)$, com que el determinant és negatiu, el punt es tractarà d'un **punt de sella** (representat en verd).

Exercici 4

4.1 Enunciat

Sigui K el quadrilàter (amb interior) limitat per les rectes $-4y + 2x = \pm 1$ i $3x + 2y = \pm 4$. Quin és el valor més gran que pren f sobre K? I el més petit?

4.2 Procediment

Fem la representació del quadrilàter:

Al ser un conjunt plè, cal fer l'estudi de:

1. L'interior del conjunt.

- 2. La frontera del conjunt.
- 3. Els punts de conjunció de la frontera.

4.2.1 L'interior del conjunt

Com hem vist a l'apartat 3, els punts crítics corresponents als extrems relatius de la funció es troben fora del conjunt que estem tractant, així que si hi ha mínims i màxims es trobaran a la frontera.

4.2.2 La frontera del conjunt

Per a estudiar la frontera del conjunt estudiarem per separat els punts crítics de les rectes mitjançant el teorema de Multiplicadors de Lagrange.

Així doncs, per a cada recta g(x,y), hem de trobar els punts (a,b) que compleixin:

$$\nabla f(a,b) = \lambda \nabla g(a,b)$$

$$g(a,b) = 0$$

Les posibles solucions resultants són:

Recta 1:

$$x = \frac{1}{12}\sqrt{301} - \frac{25}{12}$$
 ; $y = \frac{1}{24}\sqrt{301} - \frac{19}{24}$

$$x = \frac{-1}{12}\sqrt{301} - \frac{25}{12}$$
 ; $y = \frac{-1}{24}\sqrt{301} - \frac{19}{24}$

Recta 2:

$$x = \frac{1}{12}\sqrt{373} - \frac{25}{12}$$
 ; $y = \frac{1}{24}\sqrt{373} - \frac{31}{24}$

$$x = \frac{-1}{12}\sqrt{373} - \frac{25}{12}$$
 ; $y = \frac{-1}{24}\sqrt{373} - \frac{31}{24}$

Recta 3:

$$x = \frac{1}{12}\sqrt{481} - \frac{17}{12}$$
 ; $y = \frac{-1}{8}\sqrt{481} - \frac{33}{8}$

$$x = \frac{-1}{12}\sqrt{481} - \frac{17}{12}$$
 ; $y = \frac{1}{8}\sqrt{481} - \frac{33}{8}$

Recta $\bar{4}$:

$$x = 0 \quad ; \quad y = -2$$

$$x = \frac{-17}{6}$$
 ; $y = \frac{9}{4}$

D'aquestes possibles solucions, pertanyen al quadrilàter només:

$$x = \frac{1}{12} \sqrt{301}$$
 - $\frac{25}{12}$; $y = \frac{1}{24} \sqrt{301}$ - $\frac{19}{24}$

$$x = \frac{1}{12}\sqrt{373} - \frac{25}{12}$$
; $y = \frac{1}{24}\sqrt{373} - \frac{31}{24}$

Amb imàtges:

$$f\left(\frac{1}{12}\sqrt{301} - \frac{25}{12}, \frac{1}{24}\sqrt{301} - \frac{19}{24}\right) = 4.04$$
$$f\left(\frac{1}{12}\sqrt{373} - \frac{25}{12}, \frac{1}{24}\sqrt{373} - \frac{31}{24}\right) = 2.87$$

Així doncs, podem concloure que el primer punt és el màxim dels punts de la frontera i el segón és el mínim.

4.2.3 Els punts de conjunció de la frontera.

Primer cal trobar els punts de la frontera, és a dir, els punts on es tallen les rectes. Aquests punts són:

$$(x,y) = \left(\frac{7}{8}, \frac{11}{16}\right)$$
$$(x,y) = \left(\frac{-9}{8}, \frac{-5}{16}\right)$$
$$(x,y) = \left(\frac{9}{8}, \frac{5}{16}\right)$$
$$(x,y) = \left(\frac{-7}{8}, \frac{-11}{16}\right)$$

On, si els evaluem, ens dona que el màxim d'aquests punts és:

$$(x,y) = \left(\frac{-7}{8}, \frac{-11}{16}\right) \Rightarrow f\left(\frac{-7}{8}, \frac{-11}{16}\right) = 3.58$$

 $(x,y) = \left(\frac{9}{8}, \frac{5}{16}\right) \Rightarrow f\left(\frac{9}{8}, \frac{5}{16}\right) = 19.3$

On el primer punt és el mínim dels punts i el segón punt és el màxim.

4.3 Solució

Comparant tots els punts crítics que hem trobat, podem arribar a la conclusió que el màxim serà:

$$(x,y) = \left(\frac{9}{8}, \frac{5}{16}\right) \Rightarrow f\left(\frac{9}{8}, \frac{5}{16}\right) = 19.3$$

I el mínim serà:

$$(x,y) = \left(\frac{1}{12}\sqrt{373} - \frac{25}{12}, \frac{1}{24}\sqrt{373} - \frac{31}{24}\right) \Rightarrow f\left(\frac{1}{12}\sqrt{373} - \frac{25}{12}, \frac{1}{24}\sqrt{373} - \frac{31}{24}\right) = 2.87$$

Exercici 5

5.1 Enunciat

Descrivui (si cal, amb ajut d'un ordinador), els conjunts de nivell L_0 , L_5 i L_{-6} .

5.2 Procediment

Codi SageMath per a mostrar el conjunt de nivell L_0 :

```
f(x,y)=x^3+5*x^2+2*x*y+y^2+4*x+4*y+5 a=0 implicit_plot(f(x,y)==a,(x,-10,10),(y,-10,10),fill=False,axes=True)
```

Codi SageMath per a mostrar el conjunt de nivell L_5 :

```
b=5 implicit_plot(f(x,y)==b,(x,-10,10),(y,-10,10),fill=False,axes=True)
```

Codi SageMath per a mostrar el conjunt de nivell L_{-6} :

```
c=-6 implicit_plot(f(x,y)==c,(x,-10,10),(y,-10,10),fill=False,axes=True)
```

5.3 Solució

Conjunt L_0

Conjunt L_5

Conjunt L_{-6}

Exercici 6

6.1 Enunciat

Considerem la funció que a cada punt de la circumferència centrada a l'origen i de radi 2 li assigna $\|\nabla f\|^2$. On es troba el màxim? I el mínim?

6.2 Procediment

Considerem la circumferència centrada a l'origen i de radi 2:

$$\Omega := x^2 + y^2 = 4$$

Calculem el gradient de la funció $f(x,y) = x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5$:

$$\nabla f = (3x^2 + 10x + 2y + 4, 2x + 2y + 4)^2$$

$$\|\nabla f\| = \sqrt{(3x^2 + 10x + 2y + 4)^2 + (2x + 2y + 4)^2}$$

Definim com $h(x,y) := \|\nabla f\|^2 = (3x^2 + 10x + 2y + 4)^2 + (2x + 2y + 4)^2$

Calculem el gradient de la funció Ω : $\nabla\Omega=(2x,2y)$

Calculem el gradient de $h: \nabla h(x,y)$

$$\nabla h(x,y) = (4(3x^2 + 10x + 2y + 4)(3x + 5) + 8x + 8y + 16, 12x^2 + 48 + 16y + 32)$$

Trobem les possibles solucions a partir del sistema format per Ω i $\nabla h = \nabla \Omega$:

$$4(3x^{2} + 10x + 2y + 4)(3x + 5) + 8x + 8y + 16 = 2x\lambda$$

$$12x^{2} + 48 + 16y + 32 = 2y\lambda$$

$$x^{2} + y^{2} = 4$$

Les solucions del sistema són:

•
$$(x,y) = (0,-2) \longrightarrow h(x,y) = 0$$

$$\bullet \ (x,y) = (1.987989886219975, 0.2188507944092701) \longrightarrow h(x,y) = 1379.341929987197$$

$$\bullet \ (x,y) = (-1.362133112856552, -1.464443045940843) \longrightarrow h(x,y) = 51.50913183573622$$

Finalment, el màxim i el mínim, respectivament, són:

$$(x,y) = (1.987989886219975, 0.2188507944092701) \ \mathrm{i} \ (x,y) = (0,-2)$$

6.3 Solució

El màxim és el punt (x,y)=(1.987989886219975,0.2188507944092701). El mínim és el punt (x,y)=(0,-2).

Exercici 7

7.1 Enunciat

Si considerem la funció $h(x,y) = \frac{f(x,y)}{1-xy}$, determineu quin és el valor de $\frac{\partial^{17}h}{\partial x^9\partial y^8}(0,0)$, $\frac{\partial^{18}h}{\partial x^{10}\partial y^8}(0,0)$ i $\frac{\partial^{17}h}{\partial x^8\partial y^9}(0,0)$

7.2 Procediment

$$h(x,y) = \frac{x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5}{1 - xy}$$

Desenvolupament per Taylor:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

$$\frac{1}{1 - xy} = 1 + xy + xy^2 + xy^3 + \dots$$

Com f(x,y) és un polinomi, el polinomi de Taylor al punt (0,0) és:

$$(x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5) \cdot (1 + xy + xy^2 + xy^3 + \cdots)$$

Calculem el valor de $\frac{\partial^{17}h}{\partial x^9\partial y^8}(0,0)$ sabent que:

$$\frac{1}{17!} \cdot \frac{17!}{9!8!} \cdot \frac{\partial^{17}h}{\partial x^9 \partial y^8}(0,0) = \frac{1}{9!8!} \cdot \frac{\partial^{17}h}{\partial x^9 \partial y^8}(0,0)$$

Trobem ara el valor del coeficient del polinomi de taylor que té desembolupat x^9y^8 ja que sabem que el valor de l'expressió anterior serà la d'aquest coeficient.

Per tant ens interesa el producte següent:

$$(x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5)(x^8y^8)$$

Ja que d'aquí obtindrem $4x(x^8y^8)=4x^9y^8$, per tant el valor del coeficient és 4. Calculem ara el valor de $\frac{\partial^{17}h}{\partial x^9\partial y^8}(0,0)$

$$\frac{1}{9!8!} \cdot \frac{\partial^{17}h}{\partial x^9 \partial y^8}(0,0) = 4 \Rightarrow \frac{\partial^{17}h}{\partial x^9 \partial y^8}(0,0) = 4\left(\frac{1}{9!8!}\right)^{-1} = 4 \cdot 9! \cdot 8! \Rightarrow$$

$$\Rightarrow \left[\frac{\partial^{17}h}{\partial x^9 \partial y^8}(0,0) = 4 \cdot 9! \cdot 8!\right] \tag{7.1}$$

Analogament, calculem els següents valors.

Valor de $\frac{\partial^{18}h}{\partial x^{10}\partial y^8}(0,0)$:

$$\frac{1}{18!} \frac{18!}{10!8!} \frac{\partial^1 8h}{\partial x^1 0 \partial y^8} (0,0) = \frac{1}{10!8!} \frac{\partial^{18}h}{\partial x^{10} \partial y^8} (0,0)$$

El valor del coeficient del polinomi de Taylor és 5 ja que s'obté del producte següent:

$$(x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5)(x^8y^8) \to 5x^2(x^8y^8) = 5x^{10}y^8$$

Per tant,

$$\frac{\partial^{17}h}{\partial x^{10}\partial y^8}(0,0) = 5\left(\frac{1}{10!8!}\right)^{-1} = 5 \cdot 10! \cdot 8! \Rightarrow$$

$$\Rightarrow \left[\frac{\partial^{17}h}{\partial x^{10}\partial y^8}(0,0) = 5 \cdot 10! \cdot 8!\right] \tag{7.2}$$

Valor de $\frac{\partial^{17}h}{\partial x^8\partial y^9}(0,0)$:

$$\frac{1}{17!} \frac{17!}{8!9!} \frac{\partial^{17}h}{\partial x^8 \partial y^9} (0,0) = \frac{1}{8!9!} \frac{\partial^{17}h}{\partial x^8 \partial y^9} (0,0)$$

El valor del coeficient del polinomi de Taylor és 4 ja que s'obté del producte següent:

$$(x^3 + 5x^2 + 2xy + y^2 + 4x + 4y + 5)(x^8y^8) \to 4y(x^8y^8) = 4x^8y^9$$

Finalment

$$\frac{1}{8!9!} \frac{\partial^{17}h}{\partial x^8 \partial y^9}(0,0) = 4 \left(\frac{1}{8!9!}\right)^{-1} = 4 \cdot 8! \cdot 9! \Rightarrow$$

$$\Rightarrow \left[\frac{\partial^{17}h}{\partial x^8 \partial y^9}(0,0) = 4 \cdot 8! \cdot 9!\right] \tag{7.3}$$

7.3 Solució

El valor de $\frac{\partial^{17}h}{\partial x^9\partial y^8}(0,0)$ és $4\cdot 9!\cdot 8!$.

El valor de $\frac{\partial^{17}h}{\partial x^{10}\partial y^8}(0,0)$ és $5 \cdot 10! \cdot 8!$. El valor dede $\frac{\partial^{17}h}{\partial x^8\partial y^9}(0,0)$ és $4 \cdot 8! \cdot 9!$.

Exercici 8

8.1 Enunciat

Si considerem la funció $g(x, y, z) = f(3x^2 - y^2 + z^2, x + 4y - z)$, quant val el gradient de g en el punt (2, -1, 1)?

8.2 Procediment

Calculem $f(3x^2 - y^2 + z^2, x + 4y - z)$:

$$f(3x^2 - y^2 + z^2, x + 4y - z) = (3x^2 - y^2 + z^2)^3 + 5(3x^2 - y^2 + z^2)^2 + 2(3x^2 - y^2 + z^2)(x + 4y - z) + (x + 4y - z)^2 + 12x^2 - 4y^2 + 4z^2 + 4x + 16y - 4z + 5$$

Calculem el gradient de g(x, y, z): $\nabla g(x, y, z)$

$$\nabla g(x,y,z) = \begin{pmatrix} 18(3x^2 - y^2 + z^2)^2x + 60(3x^2 - y^2 + z^2)x + 12(x + 4y - z)x + 6x^2 - 2y^2 + 2z^2 + 26x + 8y - 2z + 4 \\ -6(3x^2 - y^2 + z^2)^2y + 24x^2 - 20(3x^2 - y^2 + z^2)y - 4(x + 4y - z)y - 8y^2 + 8z^2 + 8x + 24y - 8z + 16 \\ (3x^2 - y^2 + z^2)^2z - 6x^2 + 2y^2 + 20(3x^2 - y^2 + z^2)z + 4(x + 4y - z)z - 2z^2 - 2x - 8y + 10z - 4 \end{pmatrix}$$

Per últim, substituix (x, y, z) per (2, -1, 1): (6622, 1188, 1078)

També vam fer el càlcul amb SageMath:

$$g(x,y,z) = f(3x^2 - y^2 + z^2, x + 4y - z)$$

g.gradient()(2, -1, 1)

8.3 Solució

El gradient de g(x,y,z) en el punt (2,1,-1) és (6622,1188,1078).

Exercici 9

9.1 Enunciat

Considereu ara el conjunt de punts on el vostre polinomi és igual a $x^3 + 12$. Parametritzeu aquesta corba i calculeu, aproximadament, la seva longitud.

9.2 Procediment

Escribim la equació en forma d'elipse:

$$5x^{2} + 2xy + y^{2} + 4x + 4y - 7 = 0 \Rightarrow \frac{(x+y+2)^{2}}{(\sqrt{11})^{2}} + \frac{(x)^{2}}{(\frac{\sqrt{11}}{2})^{2}} = 1$$

Parametrizem la corba de la forma:

$$\gamma(t) = (x(t), y(t))$$

On:

$$\begin{aligned} x(t) &= a \cos t \\ y(t) &= b \sin t \end{aligned} \Longrightarrow \begin{aligned} x(t) &= \frac{\sqrt{11}}{2} \cos t \\ x(t) + y(t) + 2 &= \sqrt{11} \sin t \end{aligned} \Longrightarrow$$

$$\Longrightarrow \begin{aligned} x(t) &= \frac{\sqrt{11}}{2} \cos t \\ y(t) &= \sqrt{11} \sin t - 2 - \frac{\sqrt{11}}{2} \cos t \end{aligned} \Longrightarrow$$

$$\Longrightarrow \gamma(t) = \left(\frac{\sqrt{11}}{2} \cos t, -2 + \sqrt{11} \sin t - \frac{\sqrt{11}}{2} \cos t\right)$$

Calculem la longitud:

$$L(\gamma(t)) = \int_0^{2\pi} \sqrt{||\gamma'(t)||} dt$$

$$L(\gamma(t)) = \int_0^{2\pi} \sqrt{\left(-\frac{\sqrt{11}}{2}\sin t\right)^2 + \left(\sqrt{11}\cos t + \frac{\sqrt{11}}{2}\sin t\right)^2} dt \approx 17.3092395644920u$$

$$L(\gamma(t)) = 17.3092395644920u$$

9.3 Solució

La Longitud de la corba és 17.3092395644920 unitats.

Exercici 10

10.1 Enunciat

Determineu, fent servir el teorema de Green, l'àrea de la regió limitada per la corba anterior.

10.2 Procediment

Sigui $\overrightarrow{F}(x,y) = (-y,x)$ la funció del camps vectorial i Ω la regió delimitada per la corba φ , essent aquesta l'el·lipse de l'exercici anterior, $\varphi(t) = \left(\frac{\sqrt{11}}{2}\cos t, -2 + \sqrt{11}\sin t - \frac{\sqrt{11}}{2}\cos t\right)$, podem calcular l'àrea mitjançant la fórmula:

$$\dot{A}rea(\Lambda) = \frac{1}{2} \oint_{\gamma} \overrightarrow{F}, \text{ sabent que: } \oint_{C} \overrightarrow{F} = \int_{a}^{b} \overrightarrow{F}(\gamma(t)) \cdot \gamma'(t) dt ; \text{ on } t \in [a, b]$$

Per tant, en el nostre cas, calculem la integral de linia del camp vectorial F sobre la corba φ per a $t \in [0, 2\pi]$

$$\int_0^{2\pi} \left(2 - \sqrt{11} \sin t + \frac{\sqrt{11}}{2} \cos t, \frac{\sqrt{11}}{2} \cos t \right) \left(-\frac{\sqrt{11}}{2} \sin t, \sqrt{11} \cos t + \frac{\sqrt{11}}{2} \sin t \right) dt =$$

$$= \int_0^{2\pi} \left(\frac{1}{4} \sqrt{11} \left(2\sqrt{11} \cos t + \sqrt{11} \sin t \right) \cos t - \frac{1}{4} \sqrt{11} \left(\sqrt{11} \cos t - 2\sqrt{11} \sin t + 4 \right) \sin t \right) dt =$$

$$= 11\pi \Rightarrow \oint^{2\pi} \overrightarrow{F} = 11\pi \Rightarrow \boxed{Area(\Omega) = \frac{11\pi}{2} u^2}.$$

10.3 Solució

L'àrea de la regió limitada per la corba anterior és $\frac{11\pi}{2}u^2$.