

Principal Component Analysis

Agenda

- □ What is PCA?
- □ Steps Involved in PCA
- □ Applications of PCA
- Mathematical Illustration
- □ Coding PCA in python

What is PCA?

- It is a dimensionality-reduction method
 - It reduces the larger data sets into smaller one by reducing the number of variables
 - Still retains most of the information.
 - Trade off for accuracy, as the no. of variables are reduced.
 - Simple to use for Machine Learning algorithms

Steps involved in PCA

- Standardization
- Covariance Matrix Computation
- Computation Of The Eigenvectors And Eigenvalues Of The Covariance Matrix
- Identification Of Principal Components
- Peature Vector
- Recast the data along the principal components axes

Standardization

- Standardize the range of the continuous initial variables so that each one of them contributes equally to the analysis.
- Why Standardization?
 - To avoid biased results
 - large differences between the ranges of initial variables will dominate over those with small ranges
 - Example a variable that ranges between 0 and 100 will dominate over a variable that ranges between 0 and 1
 - To avoid this transform the data to comparable scales

Cont...

• Tansform the data to comparable scales using the following equation

$$Z = \frac{Value - Mean}{Standard Deviation}$$

After transformation all the variables will be in the same scale

Covariance Matrix Computation

- It gives the understanding of how the variables in the input data set are varying from the mean, with respect to each other.
- Identifies the Highly redundant information Highly correlated
- To identify correlations Compute Co variance Matrix
- covariance of a variable with itself is nothing but variance
 - $\mathbf{Cov}(a,a)=Var(a)$

- What do we understand from covariance?
- Significance lies in the Sign.
 - +ve
 the two variables increase or decrease together (correlated)
 - $lue{}$ Ve \Box One increases when the other decreases (Inversely correlated)
- Covariance Matrix
 correlations between all the possible pairs of variables

- Covariance Matrix is symmetric with dimensions pxp
 - Where p is the number of variables.
- Consider a 3-Dimensional data set with vaiables (x,y,z).
- Covariance Matrix

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

```
egin{array}{ll} oldsymbol{cov}_{x,y} &= 	ext{covariance between variable a and y} \ oldsymbol{x}_i &= 	ext{data value of x} \ oldsymbol{y}_i &= 	ext{data value of y} \ oldsymbol{ar{x}} &= 	ext{mean of x} \ oldsymbol{ar{y}} &= 	ext{mean of y} \ oldsymbol{N} &= 	ext{number of data values} \ \end{array}
```


Covariance Matrix Computation (cont..)

Covariance Matrix

$$\begin{bmatrix} Cov(x,x) & Cov(x,y) & Cov(x,z) \\ Cov(y,x) & Cov(y,y) & Cov(y,z) \\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{bmatrix}$$

- ➤ covariance satisfies commutative property (Cov(a,b)=Cov(b,a)),
- ➤ Therefore with respect to main diagonal the upper and lower triangular portions are equal

$$\begin{bmatrix} Cov(x,x) & Cov(x,y) & Cov(x,z) \\ Cov(y,x) & Cov(y,y) & Cov(y,z) \\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{bmatrix}$$

COMPUTATION OF THE EIGENVECTORS AND EIGENVALUES OF THE COVARIANCE MATRIX

- Eigen vector is the projected vector from the data which is perpendicular to the data.
- They are generally projected in the direction of most significant data.
- Eigen vectors are generally column vectors
- Eigen values and Eigen vectors are computed from covariance matrix to determine the principal components.
- 1 the eigenvectors are ordered by their eigen values in descending order, -
 - this helps in find the principal components in the order of significance.
- The Eigen vector with the highest eigen value is the principle component

COMPUTATION OF THE EIGENVECTORS AND EIGENVALUES OF

THE COVARIANCE MATRIX

Constructed in such a way that the resultant is uncorrelated

- Most of the information within the initial variables is compressed into the first components.
- If a 10 dimensional data produces 10 principal components then PCA gives maximum information in the first component and remaining information in the other components and so on..

- First principal component -- largest possible variance in the data set
- Second principal component -next highest
 variance(uncorrelated with the
 first principal component) _____

| Phone : 91-7338339898, 91-6362546088

Feature vector

- From the ordered Eigen vectors choose whether to keep all these components or discard those of lesser significance (of low eigenvalues)
- The remaining matrix of Eigen vectors is called Feature Vector.
- Peature vector is simply a matrix that has as columns the eigenvectors of the components that we decide to keep.
- if we choose to keep only p eigenvectors out of n, the final data set will have only p dimensions

RECAST THE DATA ALONG THE PRINCIPAL COMPONENTS AXES

- Use the feature vectors, to reorient the data from the original axes to the ones represented by the principal components (hence the name Principal Components Analysis).
- This can be done by multiplying the transpose of the original data set by the transpose of the feature vector.

 $Final Data Set = Feature Vector^{T} * Standardized Original Data Set^{T}$

CONT..

- row feature vector data
- Row data adjust: eigen vector
- Multiply the row feature vector into the row data adjust.
- In the result each and every data is converted into the principle component.
- Getting the original data back:

Row original data = (Row feature vector T x Final Data)+ original Mean

Applications of PCA

- Data Visualization
- Speeding Machine Learning (ML) Algorithm

Consider the following data set

X	2.5	0.5	2.2	1.9	3.1	2.3	2	1	1.5	1.1
у	2.4	0.7	2.9	2.2	3	2.7	16	1.1	1.6	0.9

Shifting the data points towards origin by subtracting from mean

X	0.69	-1.31	0.39	0.09	1.29	0.49	0.19	-0.81	-0.31	-0.71
у	0.49	-1.21	0.99	0.29	1.09	0.79	-0.31	-0.81	-0.31	-1.01

[0.61655556 0.61544444] Covariance Matrix = [0.61544444 0.71655556]]

Since the non diagonal elements in this covariance matrix are positive, x and Y variables will increase together

Calculation of Eigen values and Eigen vectors

Eigen Values

[0.0490834 1.28402771]

Raw data set

Data set Translated to origin

Sorted Eigen Values and Eigen Vectors

 1.28402771
 (-.677873399 -.735178656

 .0490833989
 (-.735178656 .677873399

Feature Vector

n=1

n=2

-.677873399 -.735178656 -.735178656 .677873399

Final data

For	n=1
-----	-----

For n=1	
[0.82797019]	
[-1.77758033]	
[0.99219749]	
[0.27421042]	
[1.67580142]	
[0.9129491]	
[-0.09910944]	
[-1.14457216]	
[-0.43804614]	
[-1.22382056]	

n=2						
[0.82797019 -0.17511531]						
[-1.77758033 0.14285723]						
[0.99219749 0.38437499]						
[0.27421042 0.13041721]						
[1.67580142 -0.20949846]						
[0.9129491 0.17528244]						
[-0.09910944 -0.3498247]						
[-1.14457216 0.04641726]						
[-0.43804614 0.01776463]						

Final data

