Project Development

Delivery Of Sprint-2

Date	October 2022
Team ID	PNT2022TMID06047
Project Name	Project - Corporate Employee Attrition Analytics

DATA UNDERSTANDING, DATA PREPARATION & EDA

DIVIDING CATEGORICAL COLUMNS INTO ORDINAL_COLUMNS AND NOMINAL_COLUMNS AND PROCEDDING UNIVARIANT ANALYSIS FOR THEM


```
#Divide into CategoricalColumns
num attrition=num col eda+['Attrition']
Education=['Below-College', 'College', 'Bachelor', 'Master', 'Doctor']
EnvironmentSatisfaction=['Low','Medium','High','Very High']
JobInvolvement=['Low','Medium','High','Very High']
JobSatisfaction=['Low','Medium','High','Very High']
RelationshipSatisfaction=['Low','Medium','High','Very High']
PerformanceRating=['Low','Good','Excellent','Outstanding']
WorkLifeBalance=['Bad','Good','Better','Best']
val=[Education,EnvironmentSatisfaction,JobInvolvement,JobSatisfaction,Perfor
manceRating,WorkLifeBalance]
cat1=['Education','EnvironmentSatisfaction','JobInvolvement','JobSatisfaction','P
erformanceRating','WorkLifeBalance']
cat_col_eda=set(columns) -
set(num_col_eda)
cat_col_eda=set(cat_col_eda) - set(cat1) fig =
plt.figure(figsize=(16,20))
```

FOR ORDINAL COLUMNS UNIVARIANT ANALYSIS

```
#2. chaning nums as x_ticks to categorys as
x_ticks fig = plt.figure(figsize=(30,28)) for idx,i in
enumerate(zip(cat1,val)):
    #crosstab = pd.crosstab(index=final_df[i[0]], columns=final_df["Attrition"])
ax=plt.subplot(6,4,idx+1)
    #crosstab.plot(kind="bar",stacked=True,ax=ax)
#sns.countplot(x=i[0],data=final_df,ax=ax)
    sns.countplot(final_df[i[0]],hue=final_df['Attrition'],ax=ax)
ax.set(xticks=range(len(i[1])), xticklabels=[j for j in i[1]]) plt.show()
```


INFERENCES:

FOR NOMINAL_COLUMN DOING UNIVARIANT ANALYSIS CODING:


```
#Divide into CategoricalColumns
#1. with categorys as x_ticks fig =
plt.figure(figsize=(20,26)) for idx,i
in enumerate(cat_col_eda):
    crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])
ax=plt.subplot(6,4,idx+1)
    crosstab.plot(kind="bar",stacked=True,ax=ax)
```

#sns.countplot(x=i[0],data=final_df,ax=ax)
#ax.set(xticks=range(len(i[1])), xticklabels=[j for j in i[1]])
plt.show()

OUTPUT:

CODING:

#for i in num_attrition:

#crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])

```
#num_attrition=num_col_eda+['Attrition'
] fig = plt.figure(figsize=(20,26)) for idx,i in
enumerate(num_attrition):
    crosstab = pd.crosstab(index=final_df[i], columns=final_df["Attrition"])
ax=plt.subplot(6,4,idx+1)
    #sns.boxplot(x=i,data=final_df,ax=ax)
crosstab.plot(kind="bar",stacked=True,ax=ax)
```


FINDING OUTLIER IN NUMERICAL DATA

#Box Plot for finding "Outiler" in our
data fig = plt.figure(figsize=(20,26)) for
idx,i in enumerate(num_col_eda):
ax=plt.subplot(6,4,idx+1)
sns.boxplot(x=i,data=final_df,ax=ax)

RESULTS FROM ABOVE GRAPH:

- from above Boxplots, we are trying to find is there any outliers in Numerical columns
- We can Observe outliers on Monthly Income, Total Working Years and Years at Company Columns that those columns don't outliers Because there is highly possibilities on occurring

PAIR-PLOT

CODING:

#Pair-Plot

sns.pairplot(final_df[num_attrition], hue = 'Attrition')

 By Observing above plot, for any considering any two columns we cannot get any conclusion on Attrition feature

for i in num_attrition:

sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,i).add_l
e gend() plt.show()

		۸٦	ГΙ	ID	F	FY	TC	Λ	CT	O	N
г	Έ.	А	L	ıκ	С.	LA	Г	ſН	l.I	11	IΝ

final df.head()

🃤 ibm corporate employee attrition analysis.ipynb 🔯

Age	Attritio	n	BusinessTravel Department				Distanc	eFromH	lome	Education		
	EducationField Emp			EmployeeCount EmployeeID				JobLeve	el	JobRole		
MaritalStatus MonthlyIncome NumCompaniesWorked Over18 PercentSalary									tSalaryH	ike		
StandardHours StockOptionLevel TotalWorkingYears TrainingTime										gTimesL	astYear	
	YearsA	tCompa	ny	YearsSi	Promotion YearsW			VithCurrManager				
Enviro	nmentSa	atisfactio	on JobSa	tisfactio	n WorkL	.ifeBalan	ce JobIn	volveme	ent Perf	ormance	Rating	
age_fs	age_fs1											
0	51	No	Travel	Raroly	Sales	6	2	Life Sci	ancas	1	1	
Fema				_Rarely Sales care Representat			Married		131160	_	Y	11
	8	0	1.0	6	1	0	0	3.0	4.0	2.0	3	3
	50	40-60	1.0	U	1	U	U	3.0	4.0	2.0	3	3
	50	40-00										
1	31 Yes Travel_F		_Frequently Research			ch & Dev	h & Development			1	Life	
Sciences 1		1	2	Female	1	Research Scientist			Single	41890 (0.0	Υ
	23	8	1	6.0	3	5	1	4	3.0	2.0	4.0	2
4	30	20-40										
2	32	No	Travel	Frequer	ntly	Researc	ch & Dev	velopme	nt	17	4	
	Other	1			4	Sales Executive Marrie				193280 1.0		Υ
	15	8	3	5.0	2	5	0	3	2.0	2.0	1.0	3
3	30	20-40										
3	38	No	Non-Travel Researc		ch & Development			2	5	Life		
Sciences		1	4	Male	3	Human Resources			– Marrie		83210 3.0	
30.0	Y	11	8	3	13.0	5	8	7	5	4.0	4.0	3.0
2	3	30	20-40	3	13.0	3	Ü	,	3	1.0	1.0	3.0
_	J		20 .0									
4	32	No	Travel_Rarely Researc			•			10	1	Medical 1	
5	Male	1	Sales Executive Single			23420 4.0 Y			12	8	2	
	9.0	2	6	0	4	4.0	1.0	3.0	3	3	30	20-
40												

#lambda x: x*10 if x<2 else (x**2 if x<4 else x+10)

#final_df['age_fs']=final_df['Age'].map(lambda x: "20" if(x<30) else ("30" if(30<= x<40) else ("40" if(40<=x<50) else "50")))

final_df['age_fs1']=final_df['Age'].map(lambda x: "20-40" if(x<40) else "40-60")

#sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,'age_fs').add_le
gend()

#plt.show()

#sns.FacetGrid(final_df,hue="Attrition",size=3).map(sns.distplot,'Age').add_lege nd()

OUTPUT:

FINDING CORRELATION

CORRELATION ON NUMERICAL FEATURES

CODING:

fig, ax = plt.subplots(figsize=(10,7)) # Sample figsize in inches

sns.heatmap(final_df_numerical_data.corr(),cmap='YlOrRd',linewidths=.5,ax
=ax)

INFERENCES:

☐ There is no higher dependency between column to columns from above heat Map Plot