# Computer Networks COL 334/672

**Network Security** 

Tarun Mangla

Slides adapted from KR

Sem 1, 2024-25

## Public Key Cryptography



## Prerequisite: modular arithmetic

 $\mathbf{x}$  mod  $\mathbf{n}$  = remainder of  $\mathbf{x}$  when divide by  $\mathbf{n}$ 



facts:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

- thus
  (a mod n)<sup>d</sup> mod n = a<sup>d</sup> mod n
- example: x=14, n=10, d=2:  $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$  $x^d = 14^2 = 196$   $x^d \mod 10 = 6$

## RSA: Creating public/private key pair at a theorem

1. choose two large prime numbers p, q. (e.g., 1024 bits each)

at = a mod p -> Flermatio the

- 2. compute n = pq, z = (p-1)(q-1) than in
- 3. choose e (with e < n) that has no common factors with z (e, z are "relatively prime").
- 4. choose d such that ed-1 is exactly divisible by z. (in other words: ed ed mod z = 1 or ed = 1 mod z mod z = 1).
- 5. public key is (n,e). private key is (n,d).

## RSA: encryption, decryption



- 0. given (n,e) and (n,d) as computed above
- 1. to encrypt message m (<n), compute  $m = m e \mod n$
- 2. to decrypt received bit pattern, c, compute  $m = c^d \mod n$

magic happens! 
$$m = (m^e \mod n)^d \mod n$$

## RSA example:

```
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).

d=29 (so ed-1 exactly divisible by z).

encrypting 8-bit messages.
```

ed = 2 k+1

Why does RSA work? Need and mode = m

ed = 1 mode to show the

(me mod n) mod

med mod n

- must show that  $c^d$  mod n = m, where  $c = m^e$  mod n
- fact: for any x and y:  $x^y \mod n = x^{(y \mod z)} \mod n$ 
  - where n = pq and z = (p-1)(q-1)
- thus,
  c<sup>d</sup> mod n = (m<sup>e</sup> mod n)<sup>d</sup> mod n
  - = m<sup>ed</sup> mod n
  - $= m^{(ed \mod z)} \mod n$
  - $= m^1 \mod n$
  - = m

m. m² mod n

m. (m² mod n) k mod n

m. mod n

## Why is RSA secure?



- suppose you know Bob's public key (n,e). How hard is it to determine d?
- essentially need to find factors of n without knowing the two factors p and q
  - fact: factoring a big number is hard



## RSA in practice: session keys

- exponentiation in RSA is computationally intensive
- DES is at least 100 times faster than RSA
- use public key crypto to establish secure connection, then establish second key – symmetric session key – for encrypting data

### session key, K<sub>S</sub>

- Bob and Alice use RSA to exchange a symmetric session key K<sub>S</sub>
- once both have K<sub>S</sub>, they use symmetric key cryptography

## What is network security?

confidentiality: only sender, intended receiver should "understand" message contents

- sender encrypts message
- receiver decrypts message

message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

authentication: sender, receiver want to confirm identity of each other access and availability: services must be accessible and available to users

## What about integrity and authenticity?

#### Recall

- message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- authentication: sender, receiver want to confirm identity of each other

Encryption alone can not provide integrity and authentication.

How to provide integrity and authenticity?

Introduction: 1-14

## **Providing integrity**

• Given a message m, how can you detect if this has been tampered with?

m, f(m) m, f'(m)

Checkel (m') = checksun (m, sun f'(m)) = f(m)

compulationally hard to find m' such that f'(m') = f(m)

## **Providing integrity**

• Given a message m, how can you detect if this has been tampered with?

#### Hash function properties:

- many-to-1
- produces fixed-size msg digest
- given message digest x, computationally infeasible to find m such that x = H(m)

How to provide authenticity?

## **Using Shared Secret Key**

Alico (S)

(S)

(S)

Message Authentroaton Code

Send: m, H(m+s) (MAC)

Receiver side: H(m+s) e

How do you have a shall secret key at frest place?

Sogue Router

Southentier

Router

## Using Public Key Cryptography

Public key cryplography



How to share secuto key? Rublic Keg Infrastrut Cerlificario How to securely share public key? (Bob, Public key) Kerry J (n,e) - Kpt Rob (1) Con 2 Auto NA (KIT) Expuatroit Date 3 Inleg I Friedy (9 am Rot - May be Alice knows IP addr of Bob b/w Bob or Alico (spogling) Trusted entity Certificales -> Provider x - y -> z Per- bushed × → 2

## Public key Certification Authorities (CA)

- certification authority (CA): binds public key to particular entity, E
- entity (person, website, router) registers its public key with CE provides "proof of identity" to CA
  - CA creates certificate binding identity E to E's public key
  - certificate containing E's public key digitally signed by CA: CA says "this is E's public key"



## **Revisiting Authentication**

Susceptible to replay attacks



### Authentication

Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

protocol: to prove Alice "live", Bob sends Alice nonce, R

Alice must return R, encrypted with shared secret key



requires shared symmetric key - can we authenticate using public key techniques?

## Live Authentication using Public Keys

use nonce, public key cryptography



**Bob** computes

$$K_{\Delta}^{+}(K_{\Delta}^{-}(R)) = R$$

and knows only Alice could have the private key, that encrypted R such that

$$K_A^+$$
  $(K_A^-(R)) = R$