GITHUB REPOSITORY: https://github.com/nicovy/ecommerce

E-COMMERCE SEGMENTATION AND RECOMMENDER SYSTEM

NICOLAS VEAS

CONTEXT

- Understanding the audience of an e-commerce platform is crucial for effective marketing, as it enables the use of personalized strategies.
- Developing a customer segmentation model allows us to understand the different profiles and preferences of the ecommerce customers.
- This enhances customer engagement and supports implementing a recommender system that could help improve the shopping experience by providing personalized suggestions that a specific customer will likely purchase.
- In this project, I'll use unsupervised learning models to build a customer segmentation and a recommender system.
- The data used is from kaggle from the following link:
 - https://www.kaggle.com/datasets/shrishtimanja/ecommerce-dataset-for-data-analysis

OBJECTIVE

- To segment customers into distinct groups
- To build a recommender system that recommend products to customers

DATA INFORMATION

Contains the following Variables

- CID (Customer ID): A unique identifier for each customer.
- TID (Transaction ID): A unique identifier for each transaction.
- Gender: The gender of the customer, categorized as Male or Female.
- Age Group: Age group of the customer, divided into several ranges.
- Purchase Date: The timestamp of when the transaction took place.
- Product Category: The category of the product purchased, such as Electronics, Apparel, etc.
- Discount Availed: Indicates whether the customer availed any discount (Yes/No).
- Discount Name: Name of the discount applied (e.g., FESTIVE50).
- Discount Amount (INR): The amount of discount availed by the customer.
- Gross Amount: The total amount before applying any discount.
- Net Amount: The final amount after applying the discount.
- Purchase Method: The payment method used (e.g., Credit Card, Debit Card, etc.).
- Location: The city where the purchase took place.

55000 Observations

13 Variables

4 Numerical Variables

8 Categorical Variables

Discount name have missing values

No duplicated Values

DATA OVERVIEW

	count	unique	top	freq
Gender	55000	3	Female	18454
Age Group	55000	5	25-45	22010
Purchase Date	55000	54988	04/07/2022 11:45:29	2
Product Category	55000	9	Electronics	16574
Discount Availed	55000	2	No	27585
Discount Name	27415	5	NEWYEARS	8135
Purchase Method	55000	8	Credit Card	22096
Location	55000	14	Mumbai	11197

- Mean discount of 136.986796 vs median of 0, which suggests the data is rightskewed
- Gross Amount and Net Amount are also skewed to the right
- There are negatives in Net Amount, which probably was mistyped
- The data contains 29071 unique customers with a maximum of 8 purchases per customer
- Gender is divided into 3 categories and majority of females
- Most customers are in the age group of 25-45 y/o
- Electronics is the top category among 9 categories
- 50.15% of the purchases were made without discount
- Credit card was the preferred purchase method among 8 different methods
- Purchases were made from 14 different locations, all locations are in India

	count	mean	std	min	25%	50%	75%	max
CID	55000.0	5.512456e+05	2.606033e+05	1.000090e+05	3.237170e+05	5.500885e+05	7.769558e+05	9.999960e+05
TID	55000.0	5.504740e+09	2.594534e+09	1.000163e+09	3.252604e+09	5.498383e+09	7.747933e+09	9.999393e+09
Discount Amount (INR)	55000.0	1.369868e+02	1.653755e+02	0.000000e+00	0.000000e+00	0.000000e+00	2.741150e+02	5.000000e+02
Gross Amount	55000.0	3.012937e+03	1.718431e+03	1.364543e+02	1.562111e+03	2.954266e+03	4.342222e+03	8.394826e+03
Net Amount	55000.0	2.875950e+03	1.726128e+03	-3.511198e+02	1.429552e+03	2.814911e+03	4.211408e+03	8.394826e+03

DATA CLEANING & TRANSFORMATION

- Corrected Data types
- Handled missing values
 - Missing discount name replaced by 0
- Cleaned duplicates
- Adjusted negative net values
 - Replaced negatives by 0
- Adjusted discount amounts
 - It shouldn't be more than the gross amount
- Set purchases to 2 decimals

FEATURE ENGINEERING

For clustering purposes, we created a table in the following way

- CID: id of the customer
- gender: customer gender
- age_group: customer age group
- days_since_last_purchase: the number of days since last purchase
- total_transactions: the total number of transactions
- total_spent: the total amount spent in all transactions
- avg_spent: the average spent per transaction
- purchases_with_discount: The number of purchases with discount
- total discount: the total discounts in all transactions
- avg_discount: the average discount per transaction
- product_categories: count of unique purchased categories
- favorite_product_category: favorite product category for each customer
- avg_days_between_purchases: the average days between purchases
- purchase_method: favorite purchase method for each customer
- purchase_location: favorite purchase location

#	Column	Non-Null Count	Dtype
0	days_since_last_purchase	19478 non-null	int64
1	gender	19478 non-null	category
2	age_group	19478 non-null	category
3	total_transactions	19478 non-null	int64
4	total_amount_spent	19478 non-null	float64
5	average_amount_spent	19478 non-null	float64
6	purchases_with_discount	19478 non-null	int64
7	total_discount_amount	19478 non-null	float64
8	average_discount_amount	19478 non-null	float64
9	total_categories	19478 non-null	int64
10	favorite_product_category	19478 non-null	category
11	average_days_between_purchases	19478 non-null	float64
12	favorite_purchase_method	19478 non-null	category
13	favorite_location	19478 non-null	category
14	cluster	19478 non-null	int32

EXPLORATORY DATA ANALYSIS CORRELATION HEATMAP

- Gross and net are highly correlated as expected
- Discount is very low correlated to gross and net amounts

- Total categories are highly correlated with total transactions, which means that usually, customers shop from different categories
- Total transactions are highly correlated with the total amount spent
- Average discount and total discount are also highly correlated
- The total amount spent and total categories are highly correla

EXPLORATORY DATA ANALYSIS SCATTER PLOT

- Gross and Net amounts are highly correlated with a linear relationship
- For discount amount, we can identify 2 different groups, purchases with 0 discount and purchases with discount.

EXPLORATORY DATA ANALYSIS SCATTER PLOT

- People with more transactions tend to buy more often
- We can appreciate linear relation between total_amount and average_amount, and between total_discount and average_discount

EXPLORATORY DATA ANALYSIS CATEGORICAL

Most of the customers are female

- $\sim 80\%$ of customers in ages between 18-45
- Very few customers in ages above 60 and under 1

EXPLORATORY DATA ANALYSIS CATEGORICAL

- The most popular categories are Electronics, Clothing, and Beauty and Health (~ 75%)
- Pet care and toys & Games have a very few amount

- Most of the payments are made using credit cards (~74%)
- The second most popular payment method is debit card

EXPLORATORY DATA ANALYSIS CATEGORICAL

- Of the 29071 customers, ~ 57% are from Bangalore, Delhi, and Mumbai
- Dehradun, Srinagar, Varanasi, and Other have under 1% of customers each

DATA PREPARATION

- One Hot encode
 - 43 features
- PCA
 - We chose 3 as the number of components, as this explains .99 of the variance

K-MEANS MODELING DETERMINE NUMBER OF CLUSTERS

- Using elbow method
 - Suggest an optimal number of clusters of 3

K-MEANS MODELING CLUSTERING MODEL

- Clusters 0 and 2 have a balanced amount of customers
- Cluster 1 has the least customers (4638)

K-MEANS MODELING CLUSTERING MODEL

 The 3 clusters have similar distribution for gender, age group, favorite product category, favorite purchase method, and purchase location.

K-MEANS MODELING CLUSTER DESCRIPTIONS

- Cluster 0 Casual buyers:
- Customers that buys more than once
- All age ranges
- Total spend between 4000 and 9000
- They spend between 2500 to 5000 per purchase
- days between purchases is under 1000 days
- Cluster 1 Recurrent buyers:
- Customers with many purchases
- Age range from 18 to 60 years old
- They have a total spend of over 10000
- Most of the purchases are with a discount
- They spend between 2500 to 5000 per purchase
- The time between purchases is under 500 days

- Customers that are one or two-time buyers.
- All age ranges
- buy items from all of the categories
- Spend under 4000 in total
- Spend under 3500 per purchase
- Buys with the highest discount amount
- Buys from one or two product categories

RECOMMENDER SYSTEM

- Used matrix factorization
- Matrix preparation:
- Given that the amount spent was the most differentiated in the clustering, we will create the matrix in the following order
 - p_cat_1_0 -> count of purchases was more than 0 but less than 2500
 - p_cat_1_2500 -> count of purchases was more than 2500 but less than 3200
 - p_cat_1_3200 -> count of purchases was more than 3200
- In this way, our recommender system can recommend a category and a price range from that category

Product Category	Beauty and Health_0	Beauty and Health_2500	Beauty and Health_3200	Books_0	Books_2500	Books_3200	Clothing_0	Clothing_2500	Clothing_3200	Electronics_0	Electronics_2500	Electronics_3200	Home & Kitchen_0	Κi
CID														
100009	0	0	0	0	0	0	0	0	0	0	0	1	0	
100037	0	0	0	0	0	0	0	0	0	0	1	0	0	
100063	0	0	0	1	0	0	0	0	0	0	0	0	0	
100089	0	0	1	0	0	0	0	0	0	1	0	0	0	
100096	0	0	0	0	0	0	0	0	0	0	0	0	0	

RECOMMENDER SYSTEM

- Started with 10 components
- Root mean square error : 0.1079

```
from sklearn.decomposition import NMF

# Create an NMF model
nmf = NMF(n_components=10, init="random", random_state=0)
W = nmf.fit_transform(matrix)
H = nmf.components_
V = W @ H
```

```
from sklearn.metrics import root_mean_squared_error

rmse = root_mean_squared_error(matrix, V)
print("RMSE:", rmse)
```

RMSE: 0.10788207134618165

RECOMMENDER SYSTEM

- Finding the best parameters
- 34 is the optimal for n_components
- Giving a RMSE of 0.0000503

```
# lets try different parameters
best_model = None
best_rmse = 999.0
for i in range(1, 40):
    try:
        nmf = NMF(n_components=i, init="random", random_state=0)
        W = nmf.fit_transform(matrix)
        H = nmf.components_
        V = W @ H
        RMSE = root_mean_squared_error(matrix, V)
        if RMSE < best_rmse:</pre>
            best_rmse = RMSE
            best model = W
            print("Best RSME so far: ", RMSE, "n_components:", i)
    except Exception as e:
        continue
```


RECOMMENDER SYSTEM - TESTING

- We can appreciate the top 5 recommendations for the first 10 users.
- the _0, _2500, and _3200 represent the price range that the user is likely to purchase
- When a user logs in to the e-commerce platform we can check this matrix and recommend to the user products in these categories and in the price range.

```
# Print the top 3 recommendations for the first 5 users
for i in range(10):
    print(f"Recommendations for user {V_optimal.index[i]}: {V_optimal.iloc[i].sort_values(ascending=False).head(5).index.tolist()}")

Recommendations for user 100009: ['Electronics_3200', 'Clothing_3200', 'Pet Care_2500', 'Toys & Games_0', 'Sports & Fitness_2500']
Recommendations for user 100037: ['Electronics_2500', 'Home & Kitchen_3200', 'Sports & Fitness_2500', 'Beauty and Health_0', 'Home & Kitchen_3200', 'Toys & Games_0']
Recommendations for user 100063: ['Books_0', 'Toys & Games_2500', 'Beauty and Health_0', 'Electronics_0', 'Other_0', 'Toys & Games_2500']
Recommendations for user 100089: ['Home & Kitchen_3200', 'Beauty and Health_3200', 'Electronics_3200', 'Books_3200', 'Sports & Fitness_2500']
Recommendations for user 100097: ['Clothing_3200', 'Home & Kitchen_3200', 'Beauty and Health_3200', 'Sports & Fitness_2500']
Recommendations for user 100139: ['Electronics_3200', 'Clothing_3200', 'Pet Care_2500', 'Toys & Games_0', 'Sports & Fitness_2500']
Recommendations for user 100177: ['Other_3200', 'Home & Kitchen_3200', 'Toys & Games_0', 'Sports & Fitness_2500']
Recommendations for user 100193: ['Pet Care_2500', 'Home & Kitchen_0', 'Beauty and Health_3200', 'Pet Care_2500', 'Beauty and Health_0']
Recommendations for user 100193: ['Pet Care_2500', 'Home & Kitchen_0', 'Beauty and Health_3200', 'Pet Care_3200', 'Beauty and Health_0']
Recommendations for user 100205: ['Beauty and Health_0', 'Electronics_3200', 'Pet Care_0', 'Clothing_0', 'Electronics_0']
```

CONCLUSIONS

- We analyzed the data of an e-commerce platform with 55000 entries (purchases)
- We treated missing values, wrong data types, negative values, and adjusted discounts for proper data analysis and modeling
- We had to transform the data before implementing any model to get meaningful insight into each segment
- We implemented unsupervised models for an e-commerce platform
- We implemented k-means for clustering and identified 3 different segments of users with different preferences and behaviors
 - one-time buyers
 - casual buyers
 - recurrent buyers
- We used Non-Negative Matrix Factorization to implement a recommender system that is able to suggest the top
 categories for each user and the price range that they are likely to purchase.

