Professora: Luiza Maria Oliveira da Silva

Análise de sensibilidade

Na prática, é muito raro que se consiga determinar os parâmetros (c_j, a_{ij} e b_i) de determinado modelo com certeza absoluta. São simples estimativas sujeitas a certo grau de incerteza.

Análise de sensibilidade é o estudo do efeito na solução ótima de alterações efetuadas nos parâmetros de determinado modelo. Dente as alterações que podemos analisar, temos:

- a) alterações nos coeficientes da função objetivo (c_j)
- b) alterações nas constantes no lado direito (b_i) (variações nas quantidades de recursos)

A alteração resultante no valor da função objetivo devido ao incremento de 1 unidade na constante de uma restrição é denominada preço-sombra. Enquanto a restrição continuar como limitante da solução ótima, o preço-sombra permanece o mesmo, tornando-se zero quando ela deixa de ser limitante da solução ótima.

1) A indústria ABC produz dois produtos em duas máquinas. Uma unidade do produto1 requer duas horas na máquina1 e uma hora na máquina2. Para o produto2, uma unidade requer uma hora na máquina1 e três horas na máquina2. As receitas por unidade dos produtos 1 e 2 são \$30 e \$20, respectivamente. O tempo de processamento diário disponível para cada máquina é oito horas.

$$max Z = 30x1 + 20x2$$

Sujeito as restrições: $2x1 + x2 \le 8$

 $x1 + 3x2 \le 8$ $x1 \ge 0 \text{ e } x2 \ge 0$

X1 ≥ 0 € X2

Relatório do excel:

Célula do Objetivo (Máx.)

Célula	Nome	Valor Original	Valor Final	
\$E\$4	max receita	0	128	

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido
Célula	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$C\$3	quantidade de produtos x1	3,2	0	30	10	23,33333333
\$D\$3	quantidade de produtos x2	1,6	0	20	70	5

				Lateral		
Célula	Nome	Valor	Preço	R.H.	Aumentar	Reduzir
\$E\$7	restrição 1	8	14	8	8	5,333333333
\$E\$8	restrição 2	8	2	8	16	4

Perguntas:

- a) Suponha que a receita unitária do produto2 seja fixada em um valor atual c2=\$20. Qual é a faixa de variação de c1 que manterá a solução ótima inalterada?
- b) Suponha que a receita unitária do produto1 seja fixada em um valor atual c1=\$30. Qual é a faixa de variação de c2 que manterá a solução ótima inalterada?
- c) Qual é o preço sombra para a máquina2?
- d) Se a indústria ABC puder aumentar a capacidade de ambas as máquinas, qual delas deve receber maior prioridade?
- e) É dada uma sugestão para aumentar as capacidades das máquinas 1 e 2 ao custo adicional de \$10/h. Isso é aconselhável?
- f) Se a capacidade da máquina1 for aumentada das atuais 8 horas para 13 horas, qual será o impacto desse aumento na receita ótima?
- g) Supondo que a capacidade da máquina 1 seja aumentada para 20 horas, qual será o impacto desse aumento sobre a receita ótima?
- 2) Uma pequena empresa fabricante de móveis produz mesas e cadeiras, as quais são vendidas, respectivamente, por R\$ 160,00 e R\$ 200,00 a unidade. A empresa lhe contratou para determinar quanto de cada produto ela deve fabricar diariamente de forma a obter a máxima receita possível. As disponibilidades diárias dos recursos estão apresentadas na tabela abaixo:

Recurso	Mesa	Cadeira	Disponibilidade diária
Mão de obra	2h/unid	4h/unid	40h
Madeira	18m/unid	18m/unid	216m
Armazenamento	24m ²	12m ²	240m ²

max Z = 160x1 + 200x2

Sujeito as restrições: $2x1 + 4x2 \le 40$

 $18x1 + 18x2 \le 216$ $24x1 + 12x2 \le 240$ $x1 \ge 0 \text{ e } x2 \ge 0$

Relatório do excel:

Célula do Objetivo (Máx.)

Célula	Nome	Valor Original	Valor Final	
\$E\$4	max receita	0	2240	

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido
Célula	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$C\$3	quantidade de produtos x1	4	0	160	40	60
\$D\$3	quantidade de produtos x2	8	0	200	120	40

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula	No	ome Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$E\$7	restrição 1	40	20	40	8	8
\$E\$8	restrição 2	216	6,666666667	216	24	36
\$E\$9	restrição 3	192	0	240	1E+30	48

Perguntas:

- a) Qual é a solução ótima?
- b) Suponha que a receita unitária da mesa seja fixada em c1=R\$160,00. Qual é a faixa de variação de c2 que manterá a solução ótima inalterada?
- c) Se a empresa puder aumentar a disponibilidade de algum recurso, qual deles deve ser priorizado? Justifique.
- d) Se a disponibilidade de mão de obra for alterada para 45 horas, qual será o impacto na função objetivo?
- e) Se a disponibilidade de madeira for reduzida para 150 metros, qual será o impacto na função objetivo?
- 3) Um fazendeiro dispõe de 400 hectares cultiváveis com milho, trigo ou soja. Cada hectare de milho exige \$200 para preparação do terreno, 10 homens-dia de trabalho e gera um lucro de \$600. Um

hectare de trigo implica custos de \$240 para preparação do terreno, 16 homens-dia de trabalho e dá um lucro de \$700. Analogamente, um hectare de soja exige \$140, 12 homens-dia de trabalho e gera um lucro de \$550. O fazendeiro dispõe de \$80.000 para cobrir os custos de trabalho e 6.000 homens-dia de mão-de-obra.

A formulação desse problema é a seguinte:

max Z = 600x1 + 700x2 + 550x3

Sujeito as restrições: $x1 + x2 + x3 \le 400$

 $200x1 + 240x2 + 140x3 \le 80.000$ $10x1 + 16x2 + 12x3 \le 6.000$

 $x1, x2, x3 \ge 0$

Relatório do excel:

Célula do Objetivo (Máx.)

Célu	ula	Nome	Valor Original	Valor Final	
\$E\$4	ma	ax lucro	0	256000	

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido
Célula	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$C\$4	hectares de milho	0	-40	600	40	1E+30
\$D\$4	hectares de trigo	240	0	700	242,86	66,67
\$E\$4	hectares de soja	160	0	550	150	100

Restrições

		Final	Sombra	Restrição	Permitido	Permitido
Célula		Nome Valor	Preço	Lateral R.H.	Aumentar	Reduzir
\$E\$7	restrição 1	400	340	400	37,5	66,67
\$E\$8	restrição 2	80000	1,5	80000	6000	24000
\$E\$9	restrição 3	5760	0	6000	1E+30	240

- a) Qual é a solução ótima?
- b) Suponha que o lucro do milho seja fixado em c1=\$600 e do trigo em c2=\$700. Qual é a faixa de variação de c3 que manterá a solução ótima inalterada?
- c) Se o fazendeiro puder aumentar a disponibilidade de algum recurso, qual deles deve ser priorizado? Justifique.
- d) Se o custo para preparação do terreno for aumentado para \$90.000, qual será o impacto na função objetivo?
- e) Se a quantidade de hectares cultiváveis for reduzida para 350, qual será o impacto na função objetivo?
- 4) Uma fábrica descontinuou a produção de um produto que não estava dando lucro. Isso criou uma considerável capacidade de produção ociosa. A gerência está considerando em usar essa capacidade ociosa em um ou mais, de 3 produtos, os quais chamaremos de produtos 1, 2 e 3. A capacidade disponível das máquinas que poderiam limitar a produção está dada na tabela abaixo:

Tipo de máquina	Tempo disponível (em máquinas-hora por semana)
Α	500
В	350
С	150

O número de máquinas-hora necessárias para cada produto é:

Tipo de máquina	Produto 1	Produto 2	Produto 3
Α	9	3	5
В	5	4	0
С	3	0	2

O departamento de vendas indicou que o potencial de vendas para o produto 3 é de 20 unidades por semana. O lucro unitário seria de \$30, \$12 e \$15, respectivamente para os produtos 1, 2 e 3. Modele esse problema.

Relatório do excel:

Célula do Objetivo (Máx.)

Célula	Nome	Valor Original	Valor Final
\$E\$5	max lucro	0	1742,86

Células Variáveis

		Final	Reduzido	Objetivo	Permitido	Permitido
Célula	Nome	Valor	Custo	Coeficiente	Aumentar	Reduzir
\$C\$4	quantidade de prod1 (x1)	26,19	0	30	0,75	15
\$D\$4	quantidade de prod2 (x2)	54,76	0	12	12	0,6
\$E\$4	quantidade de prod3 (x3)	20	0	15	1E+30	0,71

Restrições

	Nome	Final	Sombra Preço	Restrição Lateral R.H.	Permitido Aumentar	Permitido Reduzir
Célula		Valor				
\$F\$8	restrição 1	500	2,88	500	55	137,5
\$F\$9	restrição 2	350	0,86	350	183,33	73,33
\$F\$10	restrição 3	118,57	0	150	1E+30	31,43
\$F\$11	restrição 4	20	0,71	20	27,5	20

Perguntas:

- a) Qual é a solução ótima?
- b) Suponha que o lucro do produto1 e do produto3 sejam fixados em c1=\$30 e c3=\$15, respectivamente. Qual é a faixa de variação de c2 que manterá a solução ótima inalterada?
- c) Se o gerente puder aumentar a disponibilidade de algum recurso, qual deles deve ser priorizado? Justifique.
- d) Se o número de máquinas-hora da máquina A diminuir para 250, qual será o impacto na função objetivo? Justifique.
- e) Se o número de máquinas-hora da máquina B aumentar para 420, qual será o impacto na função objetivo? Justifique.