臺北區 109 學年度第二學期 指定科目第二次模擬考試

化學考科

--作答注意事項--

考試範圍:高一~高三(下)

考試時間:80分鐘

作答方式:

選擇題用 2B 鉛筆在「答案卡」上作答;更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」 上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

參考資料

說明:下列資料,可供回答問題之參考

元素週期表(1~36號元素)

1																	2
H 1.0																	He 4.0
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	C1	Ar
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	64.0	65.4	69.7	72.6	74.9	79.0	79.9	83.8

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占80分)

一、單選題(占48分)

說明:第1.題至第16.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 常溫、常壓下,將 1 滴溴水加入裝有 5 毫升下列純有機溶劑的試管中,輕微搖晃使溴水與 有機溶劑混合均勻,則盛裝哪一種有機溶劑之試管,其顏色不會褪色?
 - (A) 2-己炔
- (B)環己烯
- (C) 1,4-戊二烯
- (D) 1-戊烯
- (E)甲苯
- 2. 已知視黃醛的結構式如圖 1,則下列關於視黃醛的敘述,哪一項正確?

- (A)水溶性佳
- (B)此分子的所有碳原子共平面
- (C)可被還原成視黃醇
- (D)和多侖試劑反應可產生紅色沉澱
- (E)以金屬鉑與金屬鎳為催化劑,一分子視黃醛最多可與四分子的 H2產生反應
- 3. 下列常見的液態有機化合物,哪一項無法與水等體積均勻混合?

(A)甘油

(B)丙酮

(C)乙二醇

(D) 乙醚

(E)乙酸

- 4. 依據民國 108 年 12 月 31 日《藥學雜誌》刊載,治療三 陰性乳癌的化療藥物中,有一為太平洋紫杉醇,其結構 式如圖 2 所示,下列哪一項不是太平洋紫杉醇的官能基?
 - (A)胺基
 - (B)羥基
 - (C)烯基
 - (D)酬基
 - (E)酯基

- 5. 塑膠材料常用以製作日常生活用品,圖3為某種常見塑膠材料之局部結構,已知此塑膠材料為一種單體分子聚合而得,關於此塑膠材料之敘述,哪一項正確?

- (A)此塑膠材料的分子量為86
- (B)因聚合物中的氧原子可與水形成氫鍵,故此塑膠材料具有高親水性
- (C)此塑膠材料的酯基可發生水解反應,產生較高親水性的聚合物
- (D)此聚合物常用來作為輪胎橡膠之替代品
- (E)此聚合物之耐熱性佳,為熱固性材料

6. 晶態矽具有鑽石的晶格,但晶體硬而脆,具金屬光澤,為常用的半導體材料。晶態矽的單位晶格如圖 4 所示,該正立方體的每一邊上皆無矽原子,每個角落與每一面的正中央皆有 1 個矽原子,其餘的矽原子均整顆在單位晶格內,試問此單位晶格內,共有幾個矽原子?

- (A) 6
- (B) 8
- (C) 10
- (D) 12
- (E) 18
- 7. 圖 5 為化學反應用 → 肉之反應途徑與能量之關係圖,下列關於此反應之敘述,哪一項正確?
 - (A)甲為反應物, <a>乙為活化複合體,
 - (B)甲)→ 例反應為單步驟的化學反應
 - (C)甲) \rightarrow 肉為放熱反應, $\Delta H < 0$
 - (D)溫度上升,不利於正反應進行,所以產生例的速率會變慢
 - (E) A 為正反應活化能, B 為逆反應活化能
- 8. 在 25 ℃下,水的飽和蒸氣壓 24.0 mmHg,在 1 大氣壓下以排水集氣法收集氧氣(如圖 6 所示),已知水與汞的密度依序為1.0 g/cm³、13.6 g/cm³,欲使集氣瓶中的氧氣分壓恰為 740 mmHg,又要水盆的深度 h (cm) 能愈淺愈好,則要挑選下列哪一個深度(h)的水盆最恰當?

- (A) $0 \le h < 5$
- (B) $5 \le h < 10$
- (C) $10 \le h < 15$
- (D) $15 \le h < 20$
- (E) $20 \le h < 25$
- 9. 血紅素(Hb)在血液中扮演輸送氧氣的重要角色,其與氧氣的結合會受血液中 pH 值與 溶氧量的影響。下兩式為攜氧血紅素、氧氣及氫離子,以及攜氧血紅素與一氧化碳間的平 衡關係:

$$HbH^+(aq) + O_2(aq) \rightleftharpoons HbO_2(aq) + H^+(aq) \cdots (1)$$

$$HbO_2(aq) + CO(aq) \rightleftharpoons HbCO(aq) + O_2(aq) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

關於血紅素與血紅素攜氧量的敘述,哪一項正確?

(A)呼吸時,當血液中血紅素攜氧量上升,血液之 pH 值亦會上升

- (B)治療輕微一氧化碳中毒患者,常使患者進入低壓艙中,幫助體內一氧化碳排出而獲得治療
- (C)攀登高山時,血液中攜氧血紅素的比例會比在平地時高,故容易罹患高山症
- (D)一般人於高山上長期生活,會因氧氣分壓較低,故身體會增加血紅素的數量
- (E)運動時,血液中的二氧化碳會增加,此時攜氧血紅素的比例,會比運動前高

- 10. 比較等重的丙烯 (C_3H_6) 與環丁烷 (C_4H_8) ,下列相關敘述,哪一項正確?
 - (A)兩者所含的原子數不相同
 - (B)兩者含有相同數目的分子
 - (C)兩者完全燃燒時,所消耗的氧氣分子數不同
 - (D)兩者完全燃燒時,所釋放的熱能相同
 - (E)兩者完全燃燒後,所生成的水分子數相同
- 11. 下列關於硬水之描述與相關處理程序, 哪一項正確?
 - (A)地層中含石灰岩地形者,其天然水中 $Ca^{2+} \cdot Mg^{2+}$ 含量較低
 - (B)自來水中加入氯氣,可與硬水產生白 色沉澱使硬水軟化
 - (C)硬水會導致 pH 值上升,故將硬水酸 化處理可使其軟化

- (D)工業上為避免硬水對鍋爐造成影響,常於使用前先添加 NaHCO3 使硬水軟化
- (E)硬水會使圖7甲之清潔劑失效,但乙則不受影響
- 12. 某實驗室藥品架上有四瓶藥品:

第 1 瓶:含結晶水的草酸鈣($CaC_2O_4 \cdot xH_2O$),是 混合物,x 可能是 $0 \cdot 1 \cdot 2$ 或 $3 \cdot$ (CaC_2O_4 式量為 128)

第2瓶:尿酸(分子量168)結構式如圖8所示。

第3瓶:胱胺酸(分子量240)結構式如圖9所示。

第4瓶:六水合磷酸銨鎂

(MgNH₄PO₄·6H₂O,式量 245)。

藥品架旁有一包未知試藥,來自上述四瓶藥品中的某一瓶,除了從結晶外觀、味道分辨外,應以下列哪一元素的重量百分率為依據,以確定該包試藥是來自第幾瓶?

(A)氩

(B)氦

(C)鎂

(D)硫

(E)磷

- 13. 常溫、常壓時,金剛烷是化學性質相當穩定之無色晶體, 其結構如圖 10 所示。下列關於金剛烷之敘述,哪一項正確? (A)分子式為 $C_{10}H_{10}$
 - (B)分子內碳原子混成軌域與碳-碳鍵的鍵級皆與鑽石相同, 可推論熔點與鑽石相近
 - (C)每個碳原子均為 sp^3 混成,結構中 $\mathrm{C-C-C}$ 之鍵角均約為 109.5°
 - (D)金剛烷分子為極性分子,易溶於水
 - (E)金剛烷分子與巴克球 (C₆₀)的碳原子混成軌域相同,結構相似

14. 摘譯自 2011 年美國 地質調查局(https://pubs.er.usgs.gov/publication/70036840)網站發表的 內容:「氫、鋰、硼、碳、氦、氧、矽、硫、氯及鉈是主要反應自然界原子量定位的基礎 元素,此十種元素有兩種或更多種的穩定同位素。為了反應自然界地表物質中,這些元素 的同位素比例變動會導致其原子平均質量數值跟著改變,其原子量已被修訂。這些元素修 訂後的原子量 $A_r(E)$,以數字區間 [a;b]表示,例如:

修訂後的氫原子量 A_r (H): A_r (H)=[1.00784; 1.00811], 在 1.00784 ~ 1.00811 之間,不再是舊值的 1.00794 (7); …… A_r (C)=[12.0096; 12.0116], 不再是舊值的 12.0107 (8); ……」根據上述的內容,下列哪一項敘述正確?

- (A)原子量標準不變
- (B)氣體的莫耳體積改變
- (C)亞佛加厥數變大
- (D)以往有機汙染物重量莫耳濃度(C_m)超標的廢水,不可能因此變合格
- (E) ¹²C 原子的質量不再是定值,而是一個範圍
- 15. 圖 11 為某化合物之相圖(未按照比例繪製),其中橫坐標 為溫度(℃),縱坐標為壓力(atm)。下列關於此化合物 相圖的敘述,哪一項正確?
 - (A)此化合物於 1 atm、25 ℃時應為氣態
 - (B)固定溫度時,由甲直接轉變為丙之相態變化,為放熱反應
 - (C)固定溫度時,由丙直接轉變為乙之相態變化,為吸熱反應
 - (D)丁為超臨界流體,為固體與液體共存的狀態
 - (E) x 稱為臨界點,是固體、液體及氣體共存的狀態

16. 有原子序小於 36 的同族金屬元素甲、乙、丙,其第一、第二及第三游離能列表如表 1:

表1

	第一游離能(kJ/mol)	第二游離能(kJ/mol)	第三游離能(kJ/mol)
金屬元素甲	520	7297	11810
金屬元素乙	496	4563	6913
金屬元素丙	419	3069	4600

下列相關敘述,何者正確?

- (A)甲、乙、丙皆有 3 個價電子
- (B)元素丙的價電子數是元素甲的三倍
- (C)常温、常壓下元素甲可形成穩定的+2 價陽離子
- (D)常溫、常壓下元素甲形成穩定的陽離子時,其基態電子組態填入 2 個主殼層
- (E)元素甲的基態電子組態中,含有2個s軌域,低能量的s軌域全滿,高能量的s軌域半滿

二、多選題(占32分)

說明:第17.題至第24.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得4分; 答錯1個選項者,得2.4分;答錯2個選項者,得0.8分;答錯多於2個選項或所有選 項均未作答者,該題以零分計算。

- 17. 甲生於測量週期表中某一系列元素之特定性質的能量後,整理實驗數據時標註了縱坐標為能量,但卻忘了標註橫坐標之意義(如圖 12 所示)。關於圖 12 之敘述,下列哪些正確?
 - (A)此折線圖為第一 \sim 第四週期(甲 \sim 丁)主族元素(第 1、 $2 \cdot 13 \sim$ 第 17 族)第一游離能之關係
 - (B)此折線圖為第 16 族第一 ~ 第四週期元素 (甲 ~ 丁)的第一 ~ 第七游離能關係
 - (C)折線甲之能量變化較折線丁劇烈,甲之原子(離子)半徑 小於丁

- (D)分析圖中甲 ~ 丁四條折線可發現,橫坐標7之位置能量劇烈上升,代表此四個元素均具有7個價電子
- (E)由圖可知,甲~丁四個元素具有大量價電子,均為金屬元素
- 18. 為量測 $2NO(g) + O_2(g) \to 2NO_2(g)$ 之反應級數,定溫下,做了系列 1 與系列 2 的實驗,各包含三個獨立實驗之數據:
 - 系列 1: 將 O_2 初始濃度固定為 1.1×10^{-2} M,改變 NO 的濃度,量測 NO_2 的初始生成速率,數據如圖 13。
 - 系列 2:將 NO 初始濃度固定為 1.3×10^{-2} M,改變 O_2 的濃度,量測 NO_2 的初始生成速率,數據如圖 14。

依此結果推算,下列相關敘述,哪些正確?

- (A)該反應中氧氣是1級反應
- (B)該反應中一氧化氮是1級反應
- (C)該反應的總反應級數是2級
- (D)該反應的速率常數單位為 M^{-1} s^{-1}
- (E)當濃度以 M 為單位時,該反應速率常數的大小介於 1500 ~ 2000 之間

19. 65 ℃時,填充足量 SO₃(g) 於某體積可變之密閉容器中,使其發生下列反應:

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g) \quad \Delta H > 0$$

下列關於該反應平衡移動之敘述,哪些正確?

- (A) 65 °C、定容下,加入 O₂(g),則平衡朝逆反應方向移動,平衡常數變小
- (B) 65 ℃、定容下,移除 SO₃(g),則平衡朝正反應方向移動,平衡常數不變
- (C) 65 $^{\circ}$ $^{\circ}$ 、定壓下,於系統中添加 Ar(g) 使容器體積增為原本的 1.5 倍,則平衡朝正反應方向移動,平衡常數不變
- (D) 65 °C、定容下,於系統中添加固態催化劑,則平衡朝正反應方向移動,平衡常數變大
- (E)定容下,將溫度由 65 ℃提高至 75 ℃,則平衡朝正反應方向移動,平衡常數變大
- 20. 合成銀奈米粒子方法的步驟如下:

步驟 1:將 30 毫升、 $0.0020 \,\mathrm{M}$ 硼氫化鈉溶液($\mathrm{NaBH_4(aq)}$)盛裝於 125 毫升錐形瓶內,浸泡 於冰水浴中。

步驟 2:於上述錐形瓶內,以每秒 1 滴的速率,逐滴滴入 10 毫升、0.0010 M 硝酸銀溶液 (AgNO₃(aq)),並於滴加的過程中充分攪拌使兩溶液均勻混合。

其反應式:2AgNO₃+2NaBH₄ → H₂+B₂H₆+2NaNO₃+2Ag

將上述步驟2中整個滴加過程與滴加完畢後的變化,分①~ ④四個時期觀察,記錄如下:

時期①:滴加 AgNO₃(aq) 達 2 毫升時,錐形瓶內溶液呈亮黃色,溶液具廷得耳效應。

時期②:滴加 AgNO3(aq) 達 10 毫升的當下,錐形瓶內的溶液呈更深的黃色。

時期③:AgNO₃(aq) 滴加完畢,繼續攪拌,隨著攪拌時間加長,錐形瓶內的溶液顏色加深。

時期④:攪拌達20分鐘時,錐形瓶內的溶液變成灰黑色。

依上述反應與實驗紀錄,下列敘述哪些正確?

- (A) 反應前、後, 硼原子的氧化數變大
- (B)反應試劑中,NaBH4是還原劑
- (C)反應試劑中,AgNO3是限量試劑
- (D)時期① ~ ④,錐形瓶中膠體粒子粒徑逐漸變小
- (E)時期① ~ ④,錐形瓶中膠體粒子是奈米銀

21. 維生素 $C(C_6H_8O_6)$ 可用於秒錶反應,反應系統含反應速率慢的反應式(1)與反應速率快的反應式(2):

$$I_3^-(aq) + C_6H_8O_6(aq) \rightarrow 2H^+(aq) + 3I^-(aq) + C_6H_6O_6(aq)$$
(反應速率快) ·····(2)

當式(1)中的 $H_2O_2(aq)$ 和 $I^-(aq)$ 反應生成 $I_3^-(aq)$, $I_3^-(aq)$ 會很快地和維生素 C 反應,並生成 $I^-(aq)$,溶液維持無色的狀態。當式(2)溶液中的維生素 C 被耗盡時, $I_3^-(aq)$ 無法繼續被消耗,而迅速與溶液中的澱粉反應,使溶液呈藍黑色。

實驗前,如表2配製A溶液與B溶液,每一溶液各裝入一150 mL的燒杯內:

表 2

		A溶液	B溶液				
	維生素 C 溶液	複方碘溶液	去離子	$H_2O_2(aq)$	澱粉溶液	去離子水	
	(0.012 M)	(含2% I ₃ -(aq))	水	(3%)	/ / / / / / / / / / / / / / / / / / /		
實驗 1	25.0 mL	5.0 mL	20.0 mL	10.0 mL	1.0 mL	39.0 mL	
實驗 2	25.0 mL	2.5 mL	22.5 mL	10.0 mL	1.0 mL	39.0 mL	
實驗 3	25.0 mL	5.0 mL	20.0 mL	5.0 mL	1.0 mL	44.0 mL	

操作各實驗時,備妥計時用碼錶,將 A 溶液倒入 250 mL 的錐形瓶中,再將 B 溶液倒入該 錐形瓶中並立即開始計時,當溶液「變色」瞬間,停止計時並記錄時間。已知複方碘溶液 含 2% I_3 $^-$ (aq),假設實驗中所有水溶液之比重均為 1.0。

本系列實驗中,下列相關敘述哪些正確? (原子量:I=127)

- (A)本系列實驗主要是量測反應式(1)的反應速率
- (B)本系列實驗中,溶液的「變色」,是指由澱粉溶液的混濁白色轉變為藍黑色
- (C)由實驗 1,可知反應式(1)與反應式(2)的反應物中,莫耳數最多的是碘離子 (I^{-})
- (D)由實驗 1 與實驗 2,可知碘分子 (I_2) 的反應級數
- (E)由實驗 1 與實驗 3,可知過氧化氫 (H₂O₂)的反應級數
- 22. 以 0.10 M 鹽酸滴定 50 毫升 0.10 M $\text{Na}_2\text{CO}_3(\text{aq})$,其滴定曲線 如圖 15 所示,關於下列選項之敘述,哪些正確?

 $(H_2CO_3$ 的酸解離常數: $K_{a_1}=5\times10^{-7}$, $K_{a_2}=5\times10^{-11}$)

- (A)在位置① ~ ⑤中,位置③水溶液為中性
- (B)在位置① ~ ⑤中,位置②③④具有緩衝溶液的特性
- (C)① → ③與③ → ⑤所需鹽酸體積相同
- (D)水溶液中位置③僅含有 Na⁺、HCO₃⁻ 兩種離子
- (E)滴定曲線中的任何一點均遵守下列等式:

 $[Na^{+}]+[H^{+}]=[Cl^{-}]+[HCO_{3}^{-}]+2\times[CO_{3}^{2-}]+[OH^{-}]$

23. 已知表 3 為四個還原半反應式與其標準還原電位:

表 3

還原半反應式	標準還原電位
$SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons H_2SO_3 + H_2O$	$E^{\circ} = +0.172 \text{ V}$
$I_2 + 2e^- \rightleftharpoons 2I^- (I_3^- + 2e^- \rightleftharpoons 3I^-)$	$E^{\circ} = +0.536 \text{ V}$
$IO_3^- + 6H^+ + 6e^- \rightleftharpoons I^- + 3H_2O$	$E^{\circ} = +1.085 \text{ V}$
$2IO_3^- + 12H^+ + 10e^- \rightleftharpoons I_2 + 6H_2O$	$E^{\circ} = +1.195 \text{ V}$

於標準狀態下,根據上述標準還原電位判斷,下列選項之敘述,哪些正確?

- (A) IO₃ 為最強氧化劑, H₂SO₃ 為最強還原劑
- (B) H₂SO₃ 與 I₃ 無法產生自發性的氧化還原反應
- (C) IO₃ 可與 I 發生自發性的氧化還原反應
- (D) H₂SO₃ 與 IO₃ 反應時,其產物必為 I₂
- (E)於酸性條件下, I2 可發生自身氧化還原反應,產生 I 與 IO3
- 24. 圖 16 為代糖——阿斯巴甜的結構式,阿斯巴甜可取代葡萄糖作為糖尿病患者的甜味劑,關於阿斯巴甜之敘述,哪些正確?

- (A)於適當條件下,阿斯巴甜與葡萄糖均可與斐林試液、多侖試劑反應
- (B)於適當條件下,阿斯巴甜可發生水解反應
- (C)其結構式具有二級胺的胺基
- (D)於適當條件下,阿斯巴甜可與甲醇發生酯化反應
- (E)阿斯巴甜結構式中共有2個N、5個O及18個H

第貳部分:非選擇題(占20分)

說明:本部分共有三大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二、三)與子題號(1.、2.、……),作答時不必抄題,若因字跡潦草、未標示題號、標錯題號等原因,致評閱人員無法清楚辨識,其後果由考生自行承擔。計算題必須寫出計算過程,最後答案應連同單位劃線標出。作答使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

一、哈柏法合成氨的化學反應式(未平衡)如下:

$$N_{2}(g) + H_{2}(g) \xrightarrow{Fe(s), Al_{2}O_{3}/K_{2}O/CaO} NH_{3}(g)$$

取 84 公噸氦氣與 22 公噸氫氣,置於 630 \mathbb{C} 、500 atm 的 1000 立方公尺化學反應槽中反應,產生氨氣後,可將產物從反應槽中移走。已知 1 莫耳氦氣反應生成氨會放熱 92 千焦,請回答下列問題:(1 公噸= 10^6 克,1 立方公尺=1000 升)

- 1. 請計算出氨的莫耳生成熱。(2分)
- 2. 請寫出氨標準莫耳生成熱的熱化學反應式。(2分)
- 3. 如果完全反應,預計最多可收集到多少公噸的產物?(2分)
- 4. 當 50% 的氦氣恰被消耗掉時,將產物全數移空並密閉反應槽,使反應重新達平衡後,經量測得知氨的濃度 1.0 M,此時<u>哈柏</u>法合成氨的化學反應式之濃度平衡常數(K_c)之數值為多少?(反應式的平衡係數以最簡單整數表示; 2 分)
- 二、已知 35 ℃下,氯仿(CHCl₃)與丙酮(CH₃COCH₃)的 飽和蒸氣壓分別為 300 mmHg 與 360 mmHg,如圖 17 所示。將兩液體以一定比例混合達平衡後,測得混合液 上方蒸氣中,氯仿蒸氣的莫耳分率為 0.2,氯仿分壓為 60 mmHg,試回答下列問題:

- 1. 混合液上方蒸氣中,丙酮蒸氣壓為多少mmHg?(2分)
- 已知氯仿與丙酮可形成氫鍵,請畫出一分子氯仿與
 一分子丙酮的結構式,並標出兩分子間所形成的氫鍵。(2分)
- 3. 該混合液屬於(a)理想溶液、(b)理想溶液正偏差、(c)理想溶液負偏差?(1分)請選出 正確選項並說明為什麼?(1分)

三、苯(如圖 18 所示)為芳香族化合物基本的結構,苯環間的組合可構成不同的芳香族化合物,例如:兩個苯環相接稱為萘(如圖 19 所示),三個苯環相接可構成蔥或菲,蔥與菲之熔點相差近 100 ℃。

苯 圖 18

禁 圖 19

- 1. 請參照圖 18、19 苯、萘之結構畫法,畫出蔥與菲中熔點較低之結構。(2分)
- 2. 圖 20 為三亞苯 (Triphenylene) 之結構,今欲使三亞苯發生溴化反應產生一溴化合物, 請畫出此一溴化合物的所有異構物。(2分)

3. 苯之結構中,若將分子中所有的氫原子標示出來,可如圖 21 所示。請仿照圖 21 中苯 之畫法,將萉分子(如圖 22 所示)中所有氫原子的位置畫出。(2 分)

圖 22

化學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(E)	(C)	(D)	(A)	(C)	(B)	(C)	(B)	(D)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(E)	(E)	(B)	(C)	(A)	(A)	(E)	(B)(C)	(A)(E)
題號	19.	20.	21.	22.	23.	24.			
答案	(C)(E)	(B)(C)(E)	(A)(B)(E)	(C)(E)	(A)(C)	(B)(D)(E)			

第壹部分:選擇題

一、單選題

1. (E)

出處:選修化學(下) 有機化學

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;化學實驗之觀察、記錄、 分析及解釋能力

內容:了解不飽和烴之檢驗,並能區別脂肪烴與芳香烴反應的相異處

解析: 溴水為檢驗不飽和烴的方法之一,利用溴水 與多重鍵(雙鍵或參鍵)發生加成反應,產 生二溴化合物,可使原本溴水之暗紅色褪色。 但因甲苯為芳香烴,其苯環部分會有共振結 構,無法與溴水發生對稱加成反應。

(A)(B)(C)(D) 有非苯環的 π 鍵。

(E) 苯環不會使溴水褪色。

2. (C)

出處:選修化學(下) 有機化學

目標:基本的化學規則、學說及定律;理解化學資 料的能力;分析、歸納、演繹及創造的能力

內容:碳鍵線式的解讀、醛的檢驗與反應、從分子 結構看脂溶性、烯和醛與氫的加成反應

解析:(A) 脂溶性。

(B) 有四個碳原子與其他碳原子不共平面。

(D) 產生銀鏡反應,不是紅色沉澱。

(E) 因為有五個雙鍵,且有一個-CHO 官能基,所以至多可和六分子 H₂ 反應。

3. (D)

出處:選修化學(上) 化學鍵結 選修化學(下) 有機化學

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;化學實驗之觀察、記錄、 分析及解釋能力

內容:了解常見有機溶劑的特性,並能藉由實驗過程推測與水的互溶性

解析:甘油(丙三醇)、乙二醇此兩種化合物為多 元醇類化合物且為短碳鏈有機化合物,其經 基可與水形成氫鍵,可與水任意比例互溶。 丙酮為高極性分子,其羰基亦可與水形成 氫鍵,可與水任意比例互溶。乙酸為短碳鏈 羧酸化合物,其羧基具有高極性且與水可形 成氫鍵,可與水任意比例互溶。乙醚為低極 性分子,乙醚與水不可任意比例互溶(對水 溶解度 6.05 g/100 mL)。

4. (A)

出處:選修化學(下) 有機化學

目標:基本的化學名詞、定義及現象;理解化學資

料的能力;了解化學與生活之關係

內容:認識原子團與官能基

解析:沒有胺基。

5. (C)

出處:選修化學(下) 化學的應用與發展

目標:基本的化學名詞、定義及現象;理解化學資料的能力;了解化學與生活之關係

內容:藉由聚合物的部分結構與簡單的有機化學反 應判讀聚合物的特性

解析:(A) 此材料為聚醋酸乙烯酯的結構,單體為 醋酸乙烯酯,分子量為86,但聚合物分 子量應為86xn(n為聚合度),故錯誤。

(B) 其中聚合物之結構為酯類,非高親水性。

(C) 發生水解反應後會轉變為聚乙烯醇之結構,為帶有羥基(-OH)之結構,親水 性變佳。

(D) 此聚合物為白膠之成分,非輪胎橡膠之替 代品。

(E) 此為線性(熱塑性)塑膠材料,非網狀 (熱固性)塑膠材料。

6. (B)

出處:基礎化學(二) 物質的構造與特性 選修化學(上) 化學鍵結 選修化學(下) 無機化合物

目標:基本的化學名詞、定義及現象;理解化學資 料的能力;化學計算的能力;分析、歸納、 演繹及創造的能力 內容: 晶體的堆積、晶格中原子個數的計算

解析:題圖中共有 18 個矽原子,8 個在角落,6 個在面正中央,格內有完整的矽原子 18-8-6 =4 (個),角落格內的有 $8 \times \frac{1}{8} = 1$ (個),

面正中央的有 $6 \times \frac{1}{2} = 3$ (個) ,故單位晶格 內共有 4+1+3=8 (個) 。

7. (C)

出處:基礎化學(三) 化學反應速率

目標:基本的化學規則、學說及定律;理解化學資 料的能力;分析、歸納、演繹及創造的能力

內容:了解化學反應途徑與能量關係圖之意義

解析:題圖為反應途徑與能量之關係圖,其中闸應為反應物,②應為中間產物,阀應為產物。 從題圖中判讀,因有中間產物,故應為二步 驟的化學反應,且為放熱反應(ΔH<0)。 溫度上升無論吸熱反應或放熱反應之反應速 率均會增加,A與B均非活化能。

8. (B)

出處:基礎化學(三) 氣 體 選修化學(上) 液體與溶液

目標:化學實驗儀器、裝置的認識及操作;分析、 歸納、演繹及創造的能力;了解化學與其他 學科的關係

內容:飽和水蒸氣壓、<u>道耳頓</u>分壓定律、壓力的單 位換算

解析:假設內外水面差為d(cm),則:

760 mmHg+ $\frac{d\times10}{13.6}$ mmHg=瓶外氣壓+水壓

=740 mmHg+24.0 mmHg

=瓶內氧氣分壓+飽和水 蒸氣壓

 \Rightarrow d=4×1.36=5.44 (cm) 因h>d=5.44 cm,又h要

愈淺愈好,故選(B)。

9. (D)

出處:基礎化學(三) 氣 體、化學平衡 選修化學(上) 液體與溶液

目標:理解化學資料的能力;分析、歸納、演繹及 創造的能力;了解化學與生活之關係

內容:藉由化學平衡的觀點,測驗學生是否能將平 衡融會貫通於日常生活中

解析:(A) 式(1)中,當血紅素攜氧量上升時,血液中之 H⁺ 會釋放出來,故血液 pH 值應稍微下降。

(B) 治療輕微一氧化碳中毒患者,會以高壓氧的方式治療,迫使血紅素攜氧量增加,置 換出一氧化碳。

(C) 攀登高山時,因高山環境中氣壓較低, 氧氣的分壓也較低,導致血紅素攜氧量 下降,此為高山症之主要原因。 (D) 一般人於高山長期生活,會因為高山上氣 壓較低(氧氣分壓亦較低),故身體會增 加血紅素的含量,使細胞能擁有足夠的氧 氣進行新陳代謝反應。

(E) 運動時因氧氣被消耗且血液中二氧化碳濃度上升,使平衡式(1)中的平衡向左,故攜 氧血紅素的比例會下降。

10. (E)

出處:基礎化學(一) 物質的組成、化學反應、化學 與能源

基礎化學(二) 常見的化學反應、有機化合物

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;理解化學資料的能力; 化學計算的能力;分析、歸納、演繹及創造 的能力

內容:限量試劑、反應熱、化學計量、化學反應式 解析:假設丙烯與丁烷皆重 W 克,且丙烯分子量 42,環丁烷分子量 56

> (A) $\frac{W}{42} \times 9 = \frac{W}{56} \times 12 = \frac{3W}{14}$,所含的原子數相 同。

(B) $\frac{W}{42} > \frac{W}{56}$,分子的莫耳數不同。

(C) : 等重兩者之碳數與氫數皆相同 : . 耗氧量也相同

(D) : 燃燒後兩者皆產生同莫耳數的二氧化碳 與同莫耳數的水,但燃燒前鍵結不同

∴ ΔH 不同

(E) H 的莫耳數:

$$\frac{W}{42}$$
x6= $\frac{W}{7}$, $\frac{W}{56}$ x8= $\frac{W}{7}$
皆生成水分子 $\frac{W}{2}$ = $\frac{W}{14}$ (莫耳),相同。

11. (E)

出處:基礎化學(二) 化學與化工

目標:基本的化學名詞、定義及現象;理解化學資 料的能力;分析、歸納、演繹及創造的能力; 了解化學與生活之關係

內容:藉由硬水為主題,測驗學生是否能了解硬水 力意義與硬水的影響

解析:(A) 石灰岩地形(含碳酸鈣成分較高),其天 然水中的 Ca^{2+} 、 Mg^{2+} 濃度相對會較高。

(B) 自來水中加入氯氣是為了殺菌,非軟化硬水。

(C) 酸化硬水無法使 Ca^{2+} 、 Mg^{2+} 沉澱,無法 達到軟化的目的。

(D) 工業上為避免硬水於加熱過程中產生鍋垢 影響鍋爐的效率,常於水中添加 Na₂CO₃, 使 Ca²⁺、Mg²⁺ 產生碳酸鹽類沉澱(即硬 水軟化)後,再加以使用。 (E) 甲為脂肪酸鹽類清潔劑,遇 Ca²⁺、Mg²⁺ 會產生脂肪酸鈣或脂肪酸鎂沉澱,乙為長 碳鏈硫酸鹽類合成清潔劑,遇 Ca²⁺、Mg²⁺ 不會產生沉澱,保有清潔劑的去汗能力。

12. (B)

出處:基礎化學(二) 有機化合物 選修化學(下) 有機化學

目標:基本的化學名詞、定義及現象;分析、歸納、 演繹及創造的能力;了解化學與生活之關係; 了解化學與其他學科的關係;應用化學原理 解決問題的能力

內容:元素分析、元素種類及化學推理

解析:氫的重量百分率(氫%):

第1瓶:
$$x=0$$
,氫%= $\frac{0}{128}=0$ %; $x=3$,

第 2 瓶: $\frac{4}{168}$ = 2.38%

故氫之重量百分率無法確定第 1、2 瓶。 氦的重量百分率(氦%):

第1瓶:0%

第 2 瓶: $\frac{14\times4}{168}$ =33%

第 3 瓶: $\frac{14\times2}{240}$ =11.7%

第4瓶: $\frac{14}{245}$ = 5.7%

鎂的重量百分率(鎂%):第1、2、3瓶皆0%,無以分辨,不可確定。

硫的重量百分率(硫%):第 $1 \cdot 2 \cdot 4$ 瓶皆 0%,無以分辨,不可確定。

磷的重量百分率(磷%):第1、2、3瓶皆0%,無以分辨,不可確定。

13. (C)

出處: 選修化學(上) 化學鍵結

目標:基本的化學名詞、定義及現象;理解化學資 料的能力;分析、歸納、演繹及創造的能力

內容:藉由簡單的有機化合物測驗學生理解判讀分 子與化學鍵結的能力

解析: (A) C₁₀H₁₆。

- (B) 金剛烷熔點與分子的對稱性(堆積)和分子間作用力有關,與分子內碳-碳鍵無關, 鑽石為共價網狀固體,其熔點與碳-碳鍵 有關,兩者不能類比近似。
- (D) 金剛烷為非極性。
- (E) C_{60} 中每個碳原子的混成軌域為 sp^2 ,與 金剛烷的混成軌域 sp^3 不同。

14. (A)

出處:基礎化學(一) 物質的組成

目標:基本的化學名詞、定義及現象;理解化學資 料的能力 內容:週期表中的原子量、原子量標準、原子質量、 原子平均質量

解析:(A) 題幹所提是同位素比例變動,原子量標準 $(^{12}C=12)$ 未變。

- (B) 氣體的莫耳體積是1莫耳氣體分子所占的 體積,1莫耳的數量沒變,各氣體的莫耳 體積不變。
- (C) 原子量標準未變,亞佛加厥數未變。
- (D) C_m 的單位是每公斤溶劑(水)中所溶的 有機汙染物,依該篇內容,因碳的莫耳質 量已是個範圍,故廢水中有機汙染物的 C_m 也是個範圍,該範圍可能跨越某界限 濃度而合格。
- (E) 12 C 原子的質量是定值,被定為 12,不是 -個範圍。

15. (A)

出處:選修化學(上) 液體與溶液

目標:基本的化學規則、學說及定律;理解化學資料的能力;分析、歸納、演繹及創造的能力

解析:(B) 相態甲(固態)轉變為相態丙(氣態)為 昇華,昇華為吸熱反應。

- (C) 相態丙(氣態)轉變為相態乙(液態)為 凝結,凝結為放熱反應。
- (D) 相態丁為超臨界流體,非固體與液體共存。
- (E) x 為三相點,非臨界點。

16. (E)

出處:選修化學(上) 原子構造

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;理解化學資料的能力; 化學計算的能力;分析、歸納、演繹及創造 的能力

內容:週期表與價電子、同族元素的游離能往下遞減,由 IE_1 、 IE_2 、 IE_3 判斷價電子數、電子組態

解析:因三者由 IE_1 變 IE_2 ,產生接近 10 倍之能量 變化,故皆具有 1 個價電子,屬鹼金屬;三者原子序皆小於 36,為 Li、Na 或 K。

甲 IE₁ 最大 ⇒ 甲: Li, 1s²2s¹

 \angle IE₁ 次之 \Rightarrow \angle : Na , 1s²2s²2p⁶3s¹

丙 IE_1 最小 \Rightarrow 丙 : K , $1s^22s^22p^63s^23p^64s^1$

- (A) 皆有 1 個價電子。
- (B) 一倍。
- (C) +1 價陽離子。
- (D) 基態電子組態, Li⁺: 1s², 僅填入 1 個主 殼層。
- (E) 基態電子組態, Li: 1s²2s¹。

二、多選題

17. (B)(C)

出處:選修化學(上) 原子構造

目標:基本的化學名詞、定義及現象;理解化學資料的能力;分析、歸納、演繹及創造的能力;應用化學原理解決問題的能力

內容:測驗學生對原子相關性質的認識,並藉由相 關性質判讀圖形所代表的意義

解析: (A) 第一週期僅有 2 個元素,且第二週期元素 之第一游離能呈鋸齒狀上升,故題圖非第 一 ~ 第四週期第一游離能大小關係。

- (B) 由題圖觀察可知橫坐標 6→7時,能量劇 烈上升,可知此類元素應有6個價電子, 故為第16族元素,而橫坐標可能為第一~ 第七游離能之大小。
- (C) 因折線甲之變化較為劇烈,故可知甲之原子半徑較小,丁之原子半徑較大。
- (D) 第 16 族元素具有 6 個價電子。
- (E) 第 16 族元素前四週期為氧、硫、硒及銻, 其中前三週期為非金屬,第四週期為類金 屬。

18. (A)(E)

出處:基礎化學(三) 化學反應速率

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;化學實驗之觀察、記錄、 分析及解釋能力;理解化學資料的能力;化 學計算的能力;分析、歸納、演繹及創造的 能力

內容: 反應速率、反應級數、速率常數及速率常數 的單位

解析:(A) 由實驗系列 2 可知,(NO) 固定, (O_2) 變 2 倍,初始反應速率變 2 倍,為 O_2 的 1 級反應。

- (B) 由實驗系列 1 可知, [O₂] 固定, [NO] 變 2 倍,初始反應速率變 4 倍,為 NO 的 2 級反應。
- (C) 由實驗系列 1、2 可知,應為 3級。
- (D) 由(C)可知,總級數 3 級,速率常數的單位 應為 M^{-2} s^{-1} 。
- (E) $3.2 \times 10^{-3} = k \times (13 \times 10^{-3})^2 \times (1.1 \times 10^{-2})^1$ ⇒ 速率常數 k = 1721

19. (C)(E)

出處:基礎化學(三) 化學平衡

目標:基本的化學規則、學說及定律;理解化學資料的能力;分析、歸納、演繹及創造的能力

內容:藉由簡單的化學反應測驗學生是否理解勒沙 特列原理

解析: (A) 65 ℃、定容的條件下,O₂(g) 的濃度上升 會使平衡朝逆反應方向移動,但不影響平 衡常數的大小。

> (B) 65 ℃、定容的條件下,移除 SO₃(g) 使 SO₃(g) 濃度降低,朝逆反應方向移動, 不影響平衡常數的大小。

(C) 定溫、定壓條件下,添加 Ar(g) 使系統體 積增大,反應物與產物的濃度均下降,平 衡會向粒子數變多的正反應方向移動,但 不影響平衡常數。

- (D) 系統中添加催化劑並不影響平衡常數的大 小,亦不影響平衡移動。
- (E) 因為反應為吸熱反應,故當溫度提高時,平 衡會朝向正反應方向移動,平衡常數變大。

20. (B)(C)(E)

出處:選修化學(上) 氧化還原反應

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;化學實驗儀器、裝置的 認識及操作;理解化學資料的能力;化學計 算的能力;分析、歸納、演繹及創造的能力; 了解化學與其他學科的關係;應用化學原理 解決問題的能力

內容:氧化數、氧化還原反應式的平衡、奈米相關 實驗現象之思考與解釋

解析:(A) B 的氧化數沒變。

- (B) $NaBH_4$ 中 H 的氧化數由-1,變成產物 H_2 中的 0,失電子, $NaBH_4$ 是還原劑。
- (C) AgNO₃ 的毫莫耳數 0.010; NaBH₄ 的毫莫 耳數 0.060; 反應係數 1:1, 故 AgNO₃ 為限量試劑。
- (D)(E) 由時期①的<u>廷得耳</u>效應可知溶液呈亮黃色,應為奈米銀粒子。生成奈米粒子由黃色變深、漸漸轉變為灰黑色,可知奈米粒子的濃度漸變濃,奈米粒子的粒徑變大。反應式的產物中,銀的奈米粒子會呈灰黑色,故(D)錯誤,(E)正確。

21. (A)(B)(E)

出處:基礎化學(三) 化學反應速率

目標:基本的化學名詞、定義及現象;化學實驗之 觀察、記錄、分析及解釋能力;理解化學資 料的能力;化學計算的能力;分析、歸納、 演繹及創造的能力

內容: 秒錶反應、測量反應速率的實驗設計及測量 反應級數的實驗設計

解析:(C) 過氧化氫(H_2O_2): $\frac{10.0\times1\times3\%}{34} = \frac{3}{340}$ (莫耳)⇒ 莫耳數最多 碘離子(I^-)少於 $\frac{5.0\times1\times2\%\times3}{127\times3} = \frac{1}{1270}$ (莫耳), I_3^- 少於 $\frac{5.0\times1\times2\%}{127\times3} = \frac{1}{3810}$ (莫耳)

維生素 C: $\frac{0.012 \times 25.0}{1000} = \frac{3}{10000}$ (莫耳)

(D) 碘離子(I⁻)的反應級數。

22. (C)(E)

出處: 選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:基本的化學規則、學說及定律;化學實驗之 觀察、記錄、分析及解釋能力;理解化學資 料的能力;分析、歸納、演繹及創造的能力 內容:藉由強酸滴定二元弱鹼的滴定趨向測驗學生 對於滴定曲線的了解程度

解析:(A) 題圖位置③為第一當量點,此溶液相當於 NaHCO₃(aq),故為鹼性。

- (B) 題圖位置②與④具有緩衝能力(共軛酸鹼對同時存在),③不具有緩衝能力。
- (D) 題圖位置③雖可視同為 $NaHCO_3(aq)$,但 水溶液中亦含有其他的陰、陽離子,如 $H^+ \cdot Cl^- \cdot CO_3^{2-} \cdot OH^-$ 。
- (E) 水溶液中陰、陽離子總電荷量相等,故此 式正確。

23. (A)(C)

出處:選修化學(上) 氧化還原反應

目標:基本的化學規則、學說及定律;化學實驗之 觀察、記錄、分析及解釋能力;理解化學資 料的能力;分析、歸納、演繹及創造的能力

內容:藉由還原電位測驗學生對氧化還原反應的了解

解析:(A) 由題表標準還原電位可知此選項敘述正 確。

- (B) $H_2SO_3 + I_3^- + H_2O \rightleftharpoons SO_4^{2^-} + 4H^+ + 3I^ \Delta E^{\circ} > 0$ 為自發性反應。
- (C) $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ $\Delta E^{\circ} > 0$ 為自發性反應。
- (D) H₂SO₃ 可將 I₂ 還原成 I⁻。
- (E) 於酸性標準狀態下 $3I_2 + 3H_2O \rightarrow IO_3^- + 5I^- + 6H^+ \quad \Delta E^\circ < 0$ 非自發性反應。

24. (B)(D)(E)

出處:選修化學(下) 有機化學

目標:基本的化學規則、學說及定律;理解化學資 料的能力;分析、歸納、演繹及創造的能力; 應用化學原理解決問題的能力

內容:藉由簡單的有機化合物測驗學生對官能基的 判讀與其相關反應的了解

解析: (A) 阿斯巴甜雖為代糖,但其結構式與葡萄糖 (醛醣)完全不同,故葡萄糖可與<u>斐林</u>試 液、<u>多侖</u>試劑反應,阿斯巴甜無醛基,故 不會發生上述反應。

- (B) 阿斯巴甜具有醯胺基與酯基,兩者可發生 水解反應。
- (C) 阿斯巴甜結構式中僅具有一級胺而沒有二級胺的結構。
- (D) 阿斯巴甜具有羧基可與甲醇發生酯化反應。
- (E) 阿斯巴甜分子式為 $C_{14}H_{18}N_2O_5$ 。

第貳部分:非選擇題

一、1. -46 千焦

2.
$$\frac{1}{2}$$
 N₂(g) + $\frac{3}{2}$ H₂(g) \rightarrow NH₃(g) Δ H° = -46 千焦

3. 102

4. 8.0×10^{-3}

出處:基礎化學(一) 物質的組成、化學反應 基礎化學(三) 化學平衡

目標:基本的化學名詞、定義及現象;基本的化學規則、學說及定律;理解化學資料的能力; 化學計算的能力;分析、歸納、演繹及創造的能力

內容:限量試劑、反應熱、化學計量及化學反應式

解析:1. 、2.
$$\frac{1}{2}$$
 N₂(g) + $\frac{3}{2}$ H₂(g) → NH₃(g)
 $\Delta H^{\circ} = -\frac{92}{2} = -46$ (千焦)

3.
$$N_2$$
: $\frac{84 \times 10^6}{28} = 3 \times 10^6$ (莫耳) H_2 : $\frac{22 \times 10^6}{2} = 11 \times 10^6$ (莫耳)

 $\overrightarrow{\text{m}} \text{ N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3$

: 消耗 3×10^6 莫耳 N_2 需 9×10^6 莫耳 H_2 , 11×10^6 莫耳 H_2 足以將 N_2 完全耗盡

∴N₂ 為限量試劑,最多可收集到產物 NH₃: 3×10⁶×2×(14+1×3)=102×10⁶ (克)=102(公噸)

4. 50%的 N₂ 反應掉時

剩餘
$$N_2$$
 的濃度: $\frac{3\times10^6}{2}$ 莫耳 $=1.5 \text{ M}$

剩餘 H₂ 的濃度:

$$\frac{(11\times10^6 - \frac{3}{2}\times10^6\times3)}{10^6 \text{ ft}} = 6.5 \text{ M}$$

達平衡時, $[NH_3]=1.0 M$,假設達平衡時 氦氣的移動量為 x M,則:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

初 1.5 6.5 0
反應 $-x$ $-3x$ $+2x$
平衡 1.5 $-x$ 6.5 $-3x$ $2x$
則: $2x=1.0$, $x=0.5$
平衡濃度 $[N_2]=1.0$ M、 $[H_2]=5.0$ M
 $\Rightarrow K_c = \frac{1.0^2}{1.0 \times 5.0^3} = \frac{1}{125} = 0.0080 = 8.0 \times 10^{-3}$

二、1. 240 2. 見解析 3. (c), 見解析

出處:基礎化學(三) 氣 體 選修化學(上) 化學鍵結、液體與溶液

目標:基本的化學名詞、定義及現象;基本的化學 規則、學說及定律;理解化學資料的能力; 化學計算的能力;分析、歸納、演繹及創造 的能力 內容:<u>道耳頓</u>分壓定律、飽和蒸氣壓、理想溶液、 路易斯結構式及氫鍵

解析: 1. 總壓:
$$\frac{60}{0.2}$$
 = 300 (mmHg)
300-60=240 (mmHg)
:Cl:
2. :Cl-C-H········O CH₃
:Cl: 180° C

3. (c)理想溶液負偏差。

說明 1: 假設溶液中氯仿和丙酮所占的莫耳分率分別為 $X_{\text{M/f}}$ 和 X_{PM} ,則 $X_{\text{M/f}}+X_{\text{PM}}=1$

$$rac{P_{\text{氯(f)}}}{P_{\text{য়(f)}}}^{\circ} + rac{P_{|
abla | 0}}{P_{|
abla | 0}}^{\circ} = rac{60}{300} + rac{240}{360} = rac{13}{15} < 1 = X_{\text{য়(f)}} + X_{|
abla | 0} \Rightarrow 負偏差$$

或

說明 2:因氯仿與丙酮可形成氫鍵,強於 氯仿-氯仿間的分子間作用力、 丙酮-丙酮間的分子間作用力 ⇒ 負偏差

出處:選修化學(下) 有機化學

目標:基本的化學名詞、定義及現象;理解化學資料的能力;應用化學原理解決問題的能力 中京: 茶中等胃的有機化合物測驗關化素出有機化

內容:藉由簡單的有機化合物測驗學生畫出有機化 合物結構式的能力、異構物與混成軌域的判

讀能力

解析:1. 菲

蔥與菲為同分異構物,其中蔥與菲比較, 蔥之對稱性較高(熔點:216℃),菲之 對稱性較低(熔點:99℃),故所畫的 答案為菲的結構式。

 可產生一溴取代的位置有兩種,分別標示 為圓圈 ○ 與正方 □ ,如下圖。

※非選擇題評分標準

答案正確,但有以下情形者各扣1分,直至扣完該小題題分為止。

- 一、1. (1)平衡哈柏法合成氨的化學反應式係數有錯扣1分;(2)答案寫成+46扣1分。
 - 2. (1)氦氣、氫氣、氨氣的狀態有一未標示或標示錯誤扣 1 分;(2)三平衡係數中有一錯誤扣 1 分;(3)未寫 Δ H 扣 1 分;(4)其他未寫出完整熱化學反應式扣 1 分。
 - 3. (1)未求出限量試劑扣 1 分;(2)答案寫 102000000 或 1.02×10^8 「克」扣 1 分。
 - 4. (1)未算出 $[N_2]$ 與 $[H_2]$ 的平衡濃度扣 1 分;(2)已算出 $[N_2]$ 與 $[H_2]$ 的平衡濃度,但平衡常數表示式錯誤扣 1 分。
- 二、1. (1)未算出蒸氣總壓扣 1 分;(2)蒸氣總壓減去氯仿分壓(60 mmHg),列式正確($\frac{60}{0.2}$ -60),但算錯 扣 1 分。
 - 2. (1)氯仿結構式畫錯或孤對電子(lp)未畫出扣 1 分;(2)丙酮結構式畫錯或孤對電子(lp)未畫出扣 1 分;(3)氫鍵未用虛線標示扣 1 分。
 - 3. 無說明或說明錯誤扣1分。
- 三、1. 畫出菲的結構式,但結構式僅有1處錯者得1分。
 - 2. (1)每多畫一個結構式扣1分;(2)每少畫一個結構式扣1分;(3)結構式有錯扣1分。
 - 3. (1)每多書一個氫原子扣1分;(2)每少書一個氫原子扣1分;(3)結構式有錯扣1分。