Tarea

• Implementar un método de super-resolución a partir de una sola imagen. Basadoe en el art.

http://openaccess.thecvf.com/content_CVPRW_2019/papers/WiCV/Hu_RU_Net_A_Robust_UNet_Architecture_for_Image_Super-Resolution_CVPRW_2019_paper.pdf

Primera parte de la tarea (Unet):

- Usar para entrenar muestras (parches) de imágenes de 32x32x3. (y) pixeles y submuestrearlos a 16x16x3 (x).
- Usar la version Unet de la red (sin capas residuales).
- Se recomienda dar como entrada los bloques de 16x16x3 y luego usar una capa con un resize (interpolacion lineal) para ponerlos a 32x32x3 y continuar con la Unet.
- Como función de costo usar MAE o MSE, el art. Usa una mas sofisticada, que para la tarea no la usaremos.

Segunda parte. RUnet

- Implementar los bloques down con bloques residuales. Al menos dos residuales por down.
- Comparar con la red UNet simple
- Usar mse y mae como función de costo

Entrenamiento

- Un lugar para obtener images es usar las imágenes izquierdas de http://vision.middlebury.edu/stereo/data/
- Al menos usar 50 imágenes para definir el conjunto entrenamiento (unos 10 mil parches), y 10 de prueba.

• Inferencia.

 Para reconstrucción genere un modelo con una entrada igual las dimensiones de la imagen a reconstruir al cual le transfiere los pesos del modelo entrenado