Random linear maps Daniel Hsu COMS 4772 JL lemma

JL lemma

Johnson and Lindenstrauss (1984) theorem. There is a constant C>0 such that the following holds. For any $\varepsilon\in(0,1/2)$, point set $S\subset\mathbb{R}^d$ of cardinality |S|=n, and $k\in\mathbb{N}$ such that $k\geq\frac{C\log n}{\varepsilon^2}$, there exists a linear map $f:\mathbb{R}^d\to\mathbb{R}^k$ such that

$$(1-\varepsilon)\|{\pmb x}-{\pmb y}\|_2^2 \, \leq \, \|f({\pmb x})-f({\pmb y})\|_2^2 \, \leq \, (1+\varepsilon)\|{\pmb x}-{\pmb y}\|_2^2 \quad \text{for all } {\pmb x},{\pmb y} \in {\mathcal S} \, .$$

- \triangleright There is a randomized procedure to efficiently construct f.
- ightharpoonup Target dimension k need not depend on original dimension d.
- Any data analysis based on Euclidean distances among n points can be approximately carried out in dimension $O(\log n)$.
 - ▶ E.g., nearest-neighbor computations, many clustering procedures

3

Proofs of JL lemma

Many ways to (randomly) construct f that proves the lemma.

1. Original construction:

$$f(x) = \sqrt{\frac{d}{k}} Ax$$

where rows of \boldsymbol{A} are orthonormal basis (ONB) for k-dimensional subspace chosen uniformly at random.

2. Simpler construction (Indyk & Motwani, 1998):

$$f(x) = \frac{1}{\sqrt{k}}Ax$$

where \boldsymbol{A} is a random matrix whose entries are iid N(0,1).

▶ Can replace N(0,1) with any subgaussian distribution with mean zero and unit variance.

Uniformly random unit vector

Pick Z_1, Z_2, \dots, Z_d iid N(0,1), and set

$$\mathbf{U} := \frac{(Z_1, Z_2, \dots, Z_d)}{\sqrt{Z_1^2 + Z_2^2 + \dots + Z_d^2}}.$$

Aside: if **U** and $W_d \sim \chi^2(d)$ are independent, then

$$\sqrt{W_d} \boldsymbol{U} \sim N(\boldsymbol{0}, \boldsymbol{I})$$
.

5

ONB for uniformly random k-dimensional subspace

- ▶ Pick U_1 uniformly at random from S^{d-1} .
 - Let columns of V₁ be ONB for subspace orthogonal to span{U₁}.
- ▶ Pick U_2 uniformly at random from V_1S^{d-2} .
 - Let columns of V_2 be ONB for subspace orthogonal to span $\{U_1, U_2\}$.
- ▶ Pick U_3 uniformly at random from V_2S^{d-3} .
 - ▶ Let columns of V_3 be ONB for subspace orthogonal to span{ U_1, U_2, U_3 }.
- Mapping is

$$f(\mathbf{x}) = \sqrt{\frac{d}{k}} \begin{bmatrix} \langle \mathbf{U}_1, \mathbf{x} \rangle \\ \langle \mathbf{U}_2, \mathbf{x} \rangle \\ \vdots \\ \langle \mathbf{U}_k, \mathbf{x} \rangle \end{bmatrix}.$$

ONB for uniformly random k-dimensional subspace

Easier method:

- ▶ Pick $k \times d$ random matrix **A** with all entries iid N(0,1).
- ▶ Run *Gram-Schmidt orthogonalization* on the rows.

7

Requirements of the randomized construction

- f is a linear map, so f(x) f(y) = f(x y).
- f "works" for all $\binom{n}{2}$ squared lengths $||f(\mathbf{x} \mathbf{y})||_2^2$:

$$(1-\varepsilon)\|x-y\|_2^2 \le \|f(x-y)\|_2^2 \le (1+\varepsilon)\|x-y\|_2^2$$
.

▶ Equivalently, ensure for each of $\binom{n}{2}$ unit vectors $\mathbf{v} := \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|_2}$,

$$1-\varepsilon \leq ||f(\mathbf{v})||_2^2 \leq 1+\varepsilon$$
.

▶ **Proof strategy**: prove that, for any such unit vector **v**,

$$\mathbb{P}\big(\|f(\mathbf{v})\|_2^2 \notin [1-\varepsilon, 1+\varepsilon]\big) \leq \frac{2}{n^2}.$$

▶ By a union bound over all $\binom{n}{2}$ choices of \mathbf{v} , we achieve the required properties with probability at least 1/n.

Key lemma

Key lemma: for any fixed $v \in S^{d-1}$,

$$\mathbb{P}\Big(\|f(\mathbf{v})\|_2^2\notin [1-\varepsilon,1+\varepsilon]\Big) \leq \frac{2}{n^2}.$$

- ▶ Simple construction: $f(\mathbf{v}) = \frac{1}{\sqrt{k}} \mathbf{A} \mathbf{v}$, where \mathbf{A} is $k \times d$ random matrix with iid N(0,1) entries.
- ▶ Each entry of Av is a linear combination of iid N(0,1) random variables: for $Z \sim N(0,1)$,

$$\sum_{j=1}^d A_{i,j} v_j \stackrel{\text{dist}}{=} \left(\sum_{j=1}^d v_j^2\right)^{1/2} Z = Z.$$

- So distribution of $\|\mathbf{A}\mathbf{v}\|_2^2$ is same as that of $\sum_{i=1}^k Z_i^2$, where Z_1, Z_2, \dots, Z_k are iid N(0,1).
- I.e., $Y := \|\mathbf{A}\mathbf{v}\|_2^2 \sim \chi^2(k)$.

9

Proof of key lemma

To prove: for $Y \sim \chi^2(k)$,

$$\mathbb{P}(Y \notin k [1-\varepsilon, 1+\varepsilon]) \leq \frac{2}{n^2}.$$

▶ Recall: Y is (4k, 4)-subexponential, so

$$\mathbb{P}(Y \ge k + t) \le \exp\left(-\min\left\{t^2/k, t\right\}/8\right).$$

 \blacktriangleright Also can show that -Y is 2k-subgaussian, so

$$\mathbb{P}(Y \leq k - t) = \mathbb{P}(-Y \geq -k + t) \leq \exp(-t^2/(4k)).$$

- ▶ For $t := k\varepsilon$, each bound is at most $\exp(-k\varepsilon^2/8)$.
- ▶ Proof follows by using assumption $k \ge \frac{16 \ln(n)}{\varepsilon^2}$.

Finishing the proof of JL lemma

▶ For any pair of distinct points $x, y \in S$,

$$\mathbb{P}\left(\frac{\|f(\boldsymbol{x}) - f(\boldsymbol{y})\|_2^2}{\|\boldsymbol{x} - \boldsymbol{y}\|_2^2} \notin [1 - \varepsilon, 1 + \varepsilon]\right) \leq 2\exp\left(-k\varepsilon^2/8\right) \leq \frac{2}{n^2}.$$

▶ Union bound over all $\binom{n}{2}$ pairs:

$$\mathbb{P}\bigg(\exists \boldsymbol{x}, \boldsymbol{y} \in S \cdot \frac{\|f(\boldsymbol{x}) - f(\boldsymbol{y})\|_2^2}{\|\boldsymbol{x} - \boldsymbol{y}\|_2^2} \notin [1 - \varepsilon, 1 + \varepsilon]\bigg) \leq \binom{n}{2} \frac{2}{n^2}.$$

▶ Therefore, with probability at least 1/n,

$$\frac{\|f(\boldsymbol{x}) - f(\boldsymbol{y})\|_2^2}{\|\boldsymbol{x} - \boldsymbol{y}\|_2^2} \in [1 - \varepsilon, 1 + \varepsilon] \quad \text{for all } \boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}. \quad \Box$$

▶ *Note*: success probability is $1 - \delta$ if $k \ge \frac{16 \ln(n) + 8 \ln(1/\delta)}{\varepsilon^2}$.

11

Original construction

Original construction:

$$f(x) = \sqrt{\frac{d}{k}} Ax$$

where rows of \boldsymbol{A} are ONB for k-dimensional subspace chosen uniformly at random.

▶ Elementary proof by Dasgupta and Gupta (2002) also reduces to similar key lemma: for any fixed $\mathbf{v} \in S^{d-1}$,

$$\mathbb{P} \Big(\| f(\mathbf{v}) \|_2^2 \notin [1 - \varepsilon, 1 + \varepsilon] \Big) \ \leq \ 2 \exp \Big(- \Omega(k \varepsilon^2) \Big) \,.$$

▶ Key insight: Distribution of $\|\mathbf{A}\mathbf{v}\|_2^2$ is the same as $\|\mathbf{R}\mathbf{U}\|_2^2$, where \mathbf{R} 's rows are ONB for fixed k-dimensional subspace, and \mathbf{U} is a uniformly random unit vector in S^{d-1} .

Fast JL transform

13

Computational issues

- d = original dimension; k = target dimension.
- ▶ Time to apply $f: \mathbb{R}^d \to \mathbb{R}^k$ is O(kd).
 - ▶ Due to matrix-vector multiplication.
 - ▶ Not obvious how to speed-up this up because matrix is mostly unstructured.

Using a structured random matrix

- ▶ Simple idea: suppose M is sparse, i.e., $nnz(M) \ll kd$.
 - ▶ Can multiply vector by M in time O(nnz(M)).
 - ▶ Still want M to satisfy "JL property": for any fixed $x \in S^{d-1}$,

$$\mathbb{P}\Big(\|\boldsymbol{M}\boldsymbol{x}\|_2^2\notin[1-\varepsilon,1+\varepsilon]\Big) \leq 2\exp\Big(-\Omega(k\varepsilon^2)\Big).$$

15

Sparse random matrix

Define **M** to be $k \times d$ random matrix with iid entries

$$M_{i,j} := \frac{1}{\sqrt{\theta k}} A_{i,j} B_{i,j},$$

where $A_{i,j} \sim N(0,1)$ and $B_{i,j} \sim \text{Bern}(\theta)$, which are also independent of each other.

- Write as $\mathbf{M} = \frac{1}{\sqrt{\theta k}} (\mathbf{A} \odot \mathbf{B})$.
- Scaling ensures $\mathbb{E} \| \boldsymbol{M} \boldsymbol{x} \|_2^2 = 1$ for every $\boldsymbol{x} \in S^{d-1}$.
- $\blacktriangleright \mathbb{E}(\mathsf{nnz}(\boldsymbol{M})) = \theta kd.$
- ▶ Great if we can use $\theta = O(1/d + 1/k)$, which would give $\mathbb{E}(\operatorname{nnz}(\boldsymbol{M})) = O(k+d)$.
- But does it satisfy JL property?
 - Depends on x ...

JL property for sparse random matrix

$$\|\mathbf{M}\mathbf{x}\|_{2}^{2} = \sum_{i=1}^{k} \left(\sum_{j=1}^{d} \frac{1}{\sqrt{\theta k}} A_{i,j} B_{i,j} x_{j} \right)^{2} \stackrel{\text{dist}}{=} \frac{1}{\theta k} \sum_{i=1}^{k} \left(\sum_{j=1}^{d} B_{i,j} x_{j}^{2} \right) Z_{i}^{2}$$

where Z_1, Z_2, \ldots, Z_k are iid N(0, 1).

- Suppose x = (1, 0, ..., 0).
 - ▶ $\|\mathbf{M}\mathbf{x}\|_2^2$ depends only on first column of \mathbf{M} :

$$\|\boldsymbol{M}\boldsymbol{x}\|_2^2 \stackrel{\text{dist}}{=} \frac{1}{\theta k} \sum_{i=1}^k B_{i,1} Z_i^2.$$

▶ Variance is $\approx 3/(\theta k)$, which is $O(\varepsilon^2)$ only if $\theta = \Omega(1/(k\varepsilon^2))$.

JL property for sparse random matrix

$$\|\mathbf{M}\mathbf{x}\|_{2}^{2} = \sum_{i=1}^{k} \left(\sum_{j=1}^{d} \frac{1}{\sqrt{\theta k}} A_{i,j} B_{i,j} x_{j} \right)^{2} \stackrel{\text{dist}}{=} \frac{1}{\theta k} \sum_{i=1}^{k} \left(\sum_{j=1}^{d} B_{i,j} x_{j}^{2} \right) Z_{i}^{2}$$

where Z_1, Z_2, \ldots, Z_k are iid N(0, 1).

- Suppose instead $\mathbf{x} = (d^{-1/2}, d^{-1/2}, \dots, d^{-1/2}).$
 - Averaging effect: with high probability,

$$\sum_{j=1}^{d} B_{i,j} x_{j}^{2} = \frac{1}{d} \sum_{j=1}^{d} B_{i,j} = \theta \pm O\left(\sqrt{\frac{\theta}{d}} + \frac{1}{d}\right).$$

▶ Just need $\theta = \Omega(1/d)$. In general, just need $\theta = \Omega(\|\boldsymbol{x}\|_{\infty}^2)$.

17

Densification

► Sparse random matrix not great for *sparse unit vectors*, but great for *dense unit vectors*, which have

$$\|\boldsymbol{x}\|_{\infty}^2 = \max_{i \in [d]} x_i^2 \approx \frac{1}{d}.$$

- ▶ Idea: compose two linear maps.
 - 1. "Densifying" orthogonal transformation:

(maybe sparse)
$$x \mapsto Qx$$
 (likely dense).

2. Sparse linear map:

$$Qx \mapsto \frac{1}{\sqrt{\theta k}}(A \odot B)(Qx).$$

19

Simple densification (picture)

Figure 1: Densifying orthogonal transformation

Simple densification

- ▶ Let **Q** be uniformly random $d \times d$ orthogonal matrix.
 - ▶ *i*-th row $oldsymbol{Q}_i^ op$ of $oldsymbol{Q}$ is a uniformly random unit vector.
 - *i*-th entry of Qx is $\langle Q_i, x \rangle$.
- Can show that

$$\mathbb{P}(|\langle \boldsymbol{Q}_i, \boldsymbol{x} \rangle| \geq \varepsilon) \leq 2e^{-\varepsilon^2(d-1)/2}$$
.

► Union bound ⇒ with high probability,

$$\langle \boldsymbol{Q}_i, \boldsymbol{x} \rangle^2 \leq O\!\left(\frac{\log d}{d}\right) \quad \text{for all } i = 1, 2, \dots, d.$$

21

Faster densification

- ▶ Unfortunately, uniformly random orthogonal matrix also mostly unstructured; time to apply is $O(d^2)$.
- ▶ Insight of (Ailon and Chazelle, 2006): can use highly structured "densifying" orthogonal matrix:

$$x \mapsto \frac{1}{\sqrt{d}}HDx$$
.

- ▶ $\mathbf{H} = \mathbf{H}_d$ is the $d \times d$ Hadamard matrix (not random).
- ▶ **D** is random diagonal matrix where diagonal entries are iid Rademacher.

Hadamard matrices

▶ Recursive definition (for *d* a power of two):

$$m{H}_1 \; := \; +1 \, , \qquad m{H}_d \; := \; egin{bmatrix} +m{H}_{d/2} & +m{H}_{d/2} \ +m{H}_{d/2} & -m{H}_{d/2} \end{bmatrix} \, .$$

 \triangleright Example: d=4

$$m{H}_4 = egin{bmatrix} +1 & +1 & +1 & +1 \ +1 & -1 & +1 & -1 \ +1 & +1 & -1 & -1 \ +1 & -1 & -1 & +1 \end{bmatrix}.$$

- ▶ Fact 1: $\frac{1}{\sqrt{d}} H_d$ is orthogonal, and so is $\frac{1}{\sqrt{d}} H_d D$.
- **Fact 2**: Multiplication by **D** requires O(d) time.
- ▶ **Fact 3**: Multiplication by H_d requires $O(d \log d)$ time!

23

Hadamard transform via divide-and-conquer

- ▶ To compute H_dx :
 - Partition $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$, so $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{d/2}$.
 - ▶ Recursively compute $H_{d/2}x_1$ and $H_{d/2}x_2$.
 - lacksquare Compute $m{H}_{d/2}m{x}_1 + m{H}_{d/2}m{x}_2$ and $m{H}_{d/2}m{x}_1 m{H}_{d/2}m{x}_2$.
 - Return $\mathbf{H}_d \mathbf{x} = \begin{bmatrix} \mathbf{H}_{d/2} \mathbf{x}_1 + \mathbf{H}_{d/2} \mathbf{x}_2 \\ \mathbf{H}_{d/2} \mathbf{x}_1 \mathbf{H}_{d/2} \mathbf{x}_2 \end{bmatrix}$.
- ▶ Total time: $O(d \log d)$.

Analysis of randomized Hadamard transform

- ▶ Let $\mathbf{Y} := \frac{1}{\sqrt{d}} \mathbf{HDx}$ for *fixed* unit vector $\mathbf{x} \in S^{d-1}$.
- Want to show that $\| \boldsymbol{Y} \|_{\infty}^2 = O\Big(\frac{\log d}{d}\Big)$ with high probability.
- For each $i = 1, 2, \ldots, d$,

$$Y_i = \frac{1}{\sqrt{d}} \sum_{j=1}^d H_{i,j} \sigma_j x_j \stackrel{\text{dist}}{=} \frac{1}{\sqrt{d}} \sum_{j=1}^d x_j \sigma_j,$$

where $\sigma_1, \sigma_2, \dots, \sigma_d$ are iid Rademacher.

▶ Each Y_i has mean zero and is 1-subgaussian, so with high probability,

$$Y_i^2 \leq O\left(\frac{\log d}{d}\right)$$
 for all $i=1,2,\ldots,d$.

25

Overall random linear map (picture)

Figure 2: Randomized Hadamard transform + sparse random linear map

Overall random linear map

- ▶ Overall linear map from \mathbb{R}^d to \mathbb{R}^k :
 - 1. Densification (randomized Hadamard transform):

$$x \mapsto y := \frac{1}{\sqrt{d}}HDx$$
.

2. Dimension reduction (sparse random linear map):

$$y \mapsto \frac{1}{\sqrt{\theta k}} (\mathbf{A} \odot \mathbf{B}) y$$
.

- Overall running time: $O(d \log d + \theta kd)$.
- ► Can use $\theta \approx \frac{\log d}{d}$, so running time is $O((d+k)\log d)$.