WiFi-based Indoor Localization

LOCALIZATION BASED ON FINGERPRINTING

RADAR:

An In-Building RF-based User Location and Tracking System

Main Goal

Leverage the existing infrastructure of an indoor RF wireless LAN to build applications that take advantage of location information

Main Premise

There is a correlation between signal strength and location/distance

Experimental Testbed

- Black Dots = locations where signal strength info was collected
- Large Stars = Base Stations (BS)

How good an indicator of location is signal strength?

- User walks along the outer hallway of the floor in a counter-clockwise direction
- The walk begins and terminates close to BS1

General Approach

- Key Idea: Map signal strengths to physical locations (Radio Fingerprinting)
- Inputs: Building geometry
- Training (Off-line) Phase: Construct a Radio Map
 - <location, Signal Strength (ss)> records in a database
- Operating Phase:
 - Extract SS from base station beacons
 - Transmit a location request to AP with SS as input
 - Find Radio Map entry that best matches the measured SS

Radio Map Construction (Off-Line)

Empirical Method

- Base Station emit beacons periodically: Measure
 SS based on beacons at various locations
- Record SS along with corresponding coordinates
 - User orientation needs to be included too
 - Tuples of the form $(x,y,z,d,s_1,...,s_n)$
- Accurate but laborious

Mathematical Method

- Compute SS using a simple propagation model
 - Factor in path loss and wall attenuation
- More convenient but less accurate

Empirical Radio Map Construction

Measurement Based Map Construction

- Synchronize clocks on mobile host & base station
- Mobile hosts (it could have been the base station) broadcasts UDP packets
- Data are collected from 70 locations and 4 directions
- Each base station records SS at (t, x, y, d)
 - Time stamp (t)
 - Direction, d, user is facing (north, south, east, west)
 - User indicates location by clicking map on floor
- The data is combined in a common database where every entry is of the form (x,y,d,ss_i)
 - $i \in \{1,2,3\}$ corresponding to the three base stations

Operating Phase

Input: The Radio Map and an observed signal strength (ss)

Output: Location (x,y)

Challenge: searching the radio map database for the best fit given a signal strength value

Mapping Signal Strength to Location

- Need a metric and a search methodology to compare multiple locations and pick the one that best matches the observed signal strength
- Approach: nearest neighbor(s) in signal space (NNSS)
 - Compute the distance (in signal space) between the observed set of SS measurements, (ss₁,ss₂,ss₃), and the SS, (ss'₁,ss'₂,ss'₃), at a fixed set of locations recorded in the radio map
 - Use the Euclidean distance measure $sqrt((ss_1-ss'_1)^2+(ss_2-ss'_2)^2+(ss_3-ss'_3)^2)$
 - Search linearly the radio map database and return the (x,y,d) for which the Euclidian is minimized

Performance Evaluation

- Select at random one of the 70 locations in the radio map database
 - Remove it from the database
- Try to locate it using the rest of the entries in the database
- Compare with two simplistic schemes to quantify how worthwhile the increased sophistication of Radar is
 - Random Selection of a point in the radio map
 - Strongest Base Station Selection: same location as the base station with the strongest signal

Location Estimate Error

Median error distance is 2.94 meters

Multiple Nearest Neighbors

- Do not limit to just nearest data point (neighbor)
 - Average the coordinates of k nearest neighbors

T: true location, G: guess

Performance with Averaging

Median error distance is 2.13 meters when averaging is done over 3 neighbors

How Extensive Does the Radio Map Have to Be?

Diminishing returns as the number of physical points mapped increases

Tracking a Mobile User

- Reduce the problem of tracking the mobile user to a sequence of location determination problems for a (nearly stationary) user
- 4 SS samples/second
- Use a sliding window of 10 samples to compute the mean signal strength on a continuous basis
- The median error distance observed was 3.5 meters, about 19% worse than that for a stationary user

Summary of the Empirical Method

- □ The empirical method is able to estimate user location with a high degree of accuracy
 - The median error distance is 2 to 3 meters, about the size of a typical office room
 - Much of the accuracy can be achieved with an empirical data set of about 40 physical points and about 3 real-time signal strength samples
- Long time to gather all the empirical data
- □ If BS moves, have to recollect all the data

LOCALIZATION BASED ON TIME OF FLIGHT (TOF)

ToF-Based Localization

The localization problem is reduced to a problem of computing the distance between the target a node and a set of anchor points whose coordinates are known

- Computing the distance between two devices
 - Equivalent to computing how long it takes for a wireless signals to travel the direct path between the devices - the Time of Flight (ToF)

Computing Time of Flight (ToF)

Simplest approach

Any challenges ?

Computing Time of Flight (ToF)

Two-way ranging (TWR)

Why is ACK, necessary?

WIFI FTM (IEEE 802.11AC)

IEEE Fine Time Measurement

- Standardized as part of the IEEE 802.11-2016
 - Included as part of the 802.11mc amendment
- It enables a WiFi station to compute the distance to an access point in range without having to associate to the particular access point
 - It promises meter-level accuracy
- A standardized and native firmware implementation using clocks with picosecond resolution
- Supported by major WiFi manufacturers and it is adopted by the Android operating system
 - Google Pixel 2 and 3 phones, for example, are 802.11mccompliant

IEEE Fine Time Measurement

- The process starts with a WiFi station (called initiator) which scans for access points supporting FTM
- If an FTM-capable access point is detected, the initiator sends to the latter an FTM request frame
- Upon the reception that request, the access point can choose to ignore it, or to become a responder.
- The two stations start a series of (FTM, ACK) packet exchanges, called burst, allowing the initiator to estimate the round trip time (RTT) with the responder
- An FTM burst consists of the responder sending multiple FTM packets, which are all acknowledged by the initiator
 - Both stations capture the timestamps at which the burst packets are sent and received

IEEE Fine Time Measurement

$$RTT = \frac{1}{N} \sum_{i=1}^{N} (t_4(i) - t_1(i))$$

Does it work?

What happened?

