Advanced Mathematical Physics, Assignment 1

Johannes Agerskov

Dated: May 19, 2020

1 Stability through Lieb-Oxford inequality

We are given the Lieb-Oxford inequality: For any bosonic or fermionic wave function $\psi \in L^2(\mathbb{R}^{3N})$ with $\|\psi\|_2 = 1$ we have

$$\sum_{1 \le i \le N} \int_{\mathbb{R}^{3N}} \frac{|\psi(x_1, ..., x_N)|^2}{|x_i - x_j|} \, \mathrm{d}x_1 ... \, \mathrm{d}x_N - D(\rho_{\psi}, \rho_{\psi}) \ge -C_{LO} \int_{\mathbb{R}^3} \rho_{\psi}(x)^{4/3} \, \mathrm{d}x, \tag{1.1}$$

with constant $0 \le C_{LO} \le 1.636$ independent of ψ and N. We now proceed to prove stability of the second kind through this inequality.

(a)

Let $\delta > 0$ then

$$\int_{\mathbb{R}^3} \rho_{\psi}(x)^{4/3} \, \mathrm{d}x \le \frac{\delta}{2} \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x + \frac{N}{2\delta}.$$
 (1.2)

Proof. Notice first first that $\rho_{\psi}(x)^{4/3} = \rho_{\psi}(x)^{5/6} \rho_{\psi}(x)^{1/2}$. Thus by Cauchy-Schwartz inequality, we have

$$\int_{\mathbb{R}^3} \rho_{\psi}(x)^{4/3} \, \mathrm{d}x \le \left(\int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^3} \rho_{\psi}(x) \, \mathrm{d}x \right)^{\frac{1}{2}} = \left(\int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x \right)^{\frac{1}{2}} \sqrt{N}, \quad (1.3)$$

where we used that $\int_{\mathbb{R}^3} \rho_{\psi}(x) dx = N$. Now using that for $\delta > 0$ and $a, b \in \mathbb{R}$ is holds that $\frac{\delta}{2}a^2 + \frac{1}{2\delta}b^2 \ge ab$ (this is simply $(\sqrt{\delta}a - \frac{1}{\sqrt{\delta}}b)^2 \ge 0$) we find that

$$\int_{\mathbb{D}^3} \rho_{\psi}(x)^{4/3} \, \mathrm{d}x \le \frac{\delta}{2} \int_{\mathbb{D}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x + \frac{N}{2\delta}$$
 (1.4)

(b)

Let $V_{\mathcal{C}}$ be defined as in the lecture notes with fixed $R_1, ..., R_M \in \mathbb{R}^3$ and $Z_1 = = Z_N = Z$. We prove that if $\psi \in H^1(\mathbb{R}^{3N})$ is fermionic, then

$$\mathcal{E}(\psi) = T_{\psi} + (V_{\mathcal{C}})_{\psi}$$

$$\geq C_1 \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x + D(\rho_{\psi}, \rho_{\psi}) - \sum_{i=1}^M \int_{\mathbb{R}^3} \frac{Z\rho_{\psi}}{|x - R_j|} \, \mathrm{d}x + \sum_{1 \leq i \leq k \leq M} \frac{Z^2}{|R_j - R_k|} - C_2 N,$$

with some constants $C_1, C_2 > 0$ independent of ψ and N.

Proof. By definition we have

$$(V_{\mathcal{C}})_{\psi} = \int_{\mathbb{R}^{3N}} \sum_{1 \le i < j \le N} \frac{|\psi(x_1, ..., x_N)|^2}{|x_i - x_j|} - \sum_{i=1}^N \sum_{j=1}^M \frac{Z |\psi(x_1, ..., x_N)|^2}{|x_i - R_j|} \, \mathrm{d}x_1 ... \, \mathrm{d}x_N + \sum_{1 \le j < k \le M} \frac{Z^2}{|R_j - R_k|}.$$

$$(1.5)$$

Using that ψ is fermionic we find that

$$\int_{\mathbb{R}^{3N}} \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{Z \left| \psi(x_1, ..., x_N) \right|^2}{|x_i - R_j|} \, \mathrm{d}x_1 ... \, \mathrm{d}x_N = \sum_{j=1}^{M} \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{R}^3} \frac{Z \rho_{\psi}(x_i)}{|x_i - R_j|} \, \mathrm{d}x_i = \sum_{j=1}^{M} \int_{\mathbb{R}^3} \frac{Z \rho_{\psi}(x)}{|x - R_j|} \, \mathrm{d}x.$$

$$(1.6)$$

Furthermore, using the Lieb-Oxford inequality we find that

$$(V_{\rm C})_{\psi} \ge -C_{LO} \int_{\mathbb{R}^3} \rho_{\psi}(x)^{4/3} \, \mathrm{d}x + D(\rho_{\psi}, \rho_{\psi}) - \sum_{j=1}^M \int_{\mathbb{R}^3} \frac{Z\rho_{\psi}(x)}{|x - R_j|} \, \mathrm{d}x + \sum_{1 \le j < k \le M} \frac{Z^2}{|R_j - R_k|}.$$
 (1.7)

Therefore, by (a) we have

$$(V_{\rm C})_{\psi} \ge -C_{LO} \left(\frac{\delta}{2} \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x + \frac{N}{2\delta} \right) \mathrm{d}x + D(\rho_{\psi}, \rho_{\psi}) - \sum_{j=1}^{M} \int_{\mathbb{R}^3} \frac{Z \rho_{\psi}(x)}{|x - R_j|} \, \mathrm{d}x + \sum_{1 \le j < k \le M} \frac{Z^2}{|R_j - R_k|}$$
(1.8)

Now we use the fact that there exist a constant C>0 such that $T_{\psi} \geq C \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} dx$. This can be seen by considering the Lieb-Thirring inequality with potential $V=-\alpha \rho_{\psi}^{2/3}$ with some $\alpha>0$. Notice that then $V\in L^{5/2}(\mathbb{R}^3)$ by Sobolev's inequality and the fact that $\rho_{\psi}\in L^{3/2}(\mathbb{R}^3)$. Thus we may apply the Lieb-Thirring inequality

$$\sum_{i} |E_{i}| \le L_{1,3} \int_{\mathbb{R}^{3}} V_{-}(x)^{5/2} dx = \alpha^{5/2} L_{1,3} \int_{\mathbb{R}^{3}} \rho_{\psi}(x)^{5/3} dx.$$
 (1.9)

Notice however, that from the very definition of the eigenvalues we have $T_{\psi} \geq -V_{\psi} + E_0$. Thus we may conclude that

$$T_{\psi} \ge \alpha \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} dx - \alpha^{5/2} L_{1,3} \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} dx.$$
 (1.10)

Dated: May 19, 2020

Thereby we see that if we choose $\alpha < 1$ and $\alpha^{3/2} < L_{1,3}^{-1}$ we see that there exist some constant $C = \alpha(1 - \alpha^{3/2}L_{1,3}) > 0$ such that

$$T_{\psi} \ge C \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x.$$
 (1.11)

Combining this with (1.8) we find that

$$\mathcal{E}(\psi) \ge \left(C - C_{LO}\frac{\delta}{2}\right) \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} dx + D(\rho_{\psi}, \rho_{\psi}) - \sum_{j=1}^M \int_{\mathbb{R}^3} \frac{Z\rho_{\psi}(x)}{|x - R_j|} dx + \sum_{1 \le j < k \le M} \frac{Z^2}{|R_j - R_k|} - C_{LO}\frac{N}{2\delta}.$$
(1.12)

Now choosing $0 < \delta < \frac{2C}{C_{LO}}$, we find that $C_1 = \left(C - C_{LO} \frac{\delta}{2}\right) > 0$ and $C_2 = \frac{C_{LO}}{2\delta} > 0$ and

$$\mathcal{E}(\psi) \ge C_1 \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x + D(\rho_{\psi}, \rho_{\psi}) - \sum_{j=1}^M \int_{\mathbb{R}^3} \frac{Z \rho_{\psi}(x)}{|x - R_j|} \, \mathrm{d}x + \sum_{1 \le j < k \le M} \frac{Z^2}{|R_j - R_k|} - C_2 N.$$
(1.13)

as desired.
$$\Box$$

(c)

We now prove that for any $\psi \in H_1(\mathbb{R}^{3N})$ that is fermionic it hold for any b > 0 that

$$\mathcal{E}(\psi) \ge C_1 \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x - Z \int_{\mathbb{R}^3} \rho_{\psi}(x) \left(\frac{1}{\mathfrak{D}(x)} - b \right) \, \mathrm{d}x - ZbN - C_2 N.$$
 (1.14)

with some constants $C_1, C_2 > 0$ independent of ψ and N.

Proof. First notice that by the basic electrostatic inequality with measure $\mu(dx) = \rho_{\psi}(x) dx$ (which indeed defines a measure since $\rho_{\psi} \in L^1(\mathbb{R}^3)$ and $\rho_{\psi} \geq 0$) and the result of (b) it follows that

$$\mathcal{E}(\psi) \ge C_1 \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, \mathrm{d}x - Z \int_{\mathbb{R}^3} \rho_{\psi}(x) \frac{1}{\mathfrak{D}(x)} \, \mathrm{d}x - C_2 N.$$
 (1.15)

Now using that $\int_{\mathbb{R}^3} \rho_{\psi}(x) dx = N$ we see that

$$-Z \int_{\mathbb{R}^3} \rho_{\psi}(x) \frac{1}{\mathfrak{D}(x)} dx = -Z \int_{\mathbb{R}^3} \rho_{\psi}(x) \left(\frac{1}{\mathfrak{D}(x)} - b \right) dx - ZbN, \tag{1.16}$$

from which the claim follows:

$$\mathcal{E}(\psi) \ge C_1 \int_{\mathbb{R}^3} \rho_{\psi}(x)^{5/3} \, dx - Z \int_{\mathbb{R}^3} \rho_{\psi}(x) \left(\frac{1}{\mathfrak{D}(x)} - b \right) dx - ZbN - C_2 N.$$
 (1.17)

(d)

From calculus of variations it can be shown that the functional obtained in (c) is minimized by some ρ_{ψ} of the form

$$\rho_{\psi}(x) = d \left(\frac{1}{\mathfrak{D}(x)} - b \right)^{3/2} \chi_{\left\{ \frac{1}{\mathfrak{D}(x)} - b \ge c \right\}}(x)$$
 (1.18)

for some d, c > 0 independent of ψ and N. Thereby, we may conclude that $\mathcal{E}(\psi) \geq C(Z)(N+M)$. To see this notice that by inserting the minimizer on the left-hand side of (1.17) we obtain

$$\mathcal{E}(\psi) \ge (C_1 d^{5/3} - Zd) \int_{\left\{\frac{1}{\mathfrak{D}(x)} - b \ge c\right\}} \left(\frac{1}{\mathfrak{D}(x)} - b\right)^{5/2} dx - ZbN - C_2 N$$

$$\ge \min\left\{0, (C_1 d^{5/3} - Zd)\right\} \int_{\left\{\frac{1}{\mathfrak{D}(x)} \ge c + b\right\}} \left(\frac{1}{\mathfrak{D}(x)}\right)^{5/2} dx - (Zb + C_2) N$$
(1.19)

Now choose $b > \frac{2}{d}$ where $d = \min\{|R_i - R_j| : 1 \le i < j \le M\}$, then

$$\int_{\left\{\frac{1}{\mathfrak{D}(x)} \ge c + b\right\}} \left(\frac{1}{\mathfrak{D}(x)}\right)^{5/2} dx \le \sum_{i=1}^{M} \int_{\left\{|x_i| < \frac{d}{2}\right\}} \left(\frac{1}{|x_i|}\right)^{5/2} dx = 8\pi \sqrt{d/2}M. \tag{1.20}$$

From this it follows that

$$\mathcal{E}(\psi) \ge -K_1(Z)M - K_2(Z)N \ge -C(Z)(N+M) \tag{1.21}$$

with
$$K_1(Z) = \min \{0, (C_1 d^{5/3} - Z d)\} 8\pi \sqrt{d/2}$$
, $K_2(Z) = (Zb + C_2)$, and $C(Z) = \max\{K_1(Z), K_2(Z)\}$.