

one of which is analytically detectable (Reactant*) and one of which is firmly anchored in the matrix (Reactant I), said device comprising a flow matrix having:

- A) an application zone for liquid (LZ), containing buffer and sample and optionally reactants needed for a complete determination, but not Reactant I,
- B) a detection zone (DZ) with the firmly anchored reactant (Reactant I) located downstream of LZ, and
- C) optionally one or more zones in which any of the reactants has been pre-deposited,

wherein

the flow matrix comprises at least two application zones for liquid arranged substantially adjacent to each other:

wherein

- a) LZ_n is an application zone for liquid, and n is the position of the application zone LZ_n ,
- b) m is the total number of application zones in which flow is initiated ($m \geq 2$),
- c) one LZ_n is an application zone for sample (LZ_n, S) and one LZ_n is for Reactant* (LZ_n, R^*) with $n'' \geq n'$;
- d) \longrightarrow is the direction of the flow, and
- e) DZ is the detection zone, wherein, when flow is initiated by adding liquid to each zone $LZ_m \dots LZ_n \dots LZ_l$ ($m \neq n$) in such a way that liquid _{$n+1$} added to the

application zone LZ_{n+1} , contacts the flow matrix substantially simultaneously, the

*C 2
concl'd.* device is adapted to transport the liquid $_{n+1}$ through the matrix immediately after liquid $_n$, added to the nearest downstream application zone LZ_n .
