

Sistemas Dedutivos Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

25 e 28 de maio de 2020

⁰Slides baseados no livro Lógica para Ciência da Computação¹.

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.

Sistemas Dedutivos

O que é um sistema dedutivo?

- Nas últimas aulas, vimos o que são fórmulas da lógica proposicional clássica e como atribuir valores verdade a essas fórmulas
- Vimos também a noção de consequência lógica e como determinar se um fórmula é consequência lógica de um conjunto de fórmulas Γ
- No entanto, não vimos como, a partir de um conjunto de fórmulas Γ, podemos inferir novas fórmulas que sejam a consequência lógica de Γ
- Essa é a tarefa de um sistema dedutivo

Sistemas Dedutivos

O que é um sistema dedutivo?

- Um sistema dedutivo nos permite inferir, derivar ou deduzir as consequências lógicas de um conjunto de fórmulas, chamado de teoria
- Quando um sistema dedutivo infere uma fórmula A a partir de uma teoria Γ , escrevemos $\Gamma \vdash A$
- O objeto Γ ⊢ A é chamado de sequente, no qual Γ é o antecedente(ou hipótese) e A é o consequente(ou conclusão)

Sistemas dedutivos

- Existem vários procedimentos distintos que nos permitem realizar uma inferência
- Cada procedimento dá origem a um sistema dedutivo distinto
- Neste curso, iremos analisar três tipos de sistemas dedutivos: axiomatizações, sistemas de dedução natural e o método dos tableaux analíticos

Sistemas dedutivos

- Obviamente, não queremos que um sistema de dedução produza fórmulas que não sejam consequência lógica da teoria usada como hipótese
- Dizemos que um sistema dedutivo \vdash é correto se isso nunca ocorre, ou seja, se $\Gamma \vdash A$ então $\Gamma \vDash A$
- Por outro lado, queremos que um sistema dedutivo consiga inferir todas as possíveis consequências lógicas de uma teoria
- Dizemos que um sistema dedutivo ⊢ é completo se ele for capaz de realizar todas essas inferências, ou seja, se Γ ⊨ A então Γ ⊢ A
- Todos os sistemas dedutivos que apresentaremos possuem as propriedades de correção e completude

Introdução

- É o sistema formal de dedução mais antigo que se conhece, tendo sido usado desde a apresentação da geometria euclidiana pelos gregos
- A apresentação da axiomatização segue o estilo utilizado por Hilbert, tanto que as axiomatizações de lógicas são muitas vezes chamadas de sistemas de Hilbert
- De acordo com essa forma de apresentação, uma axiomatização possui dois tipos de elementos:
 - Os axiomas, que s\u00e3o f\u00f3rmulas da l\u00f3gica \u00e1s quais se atribui um status especial de "verdades b\u00e1sicas"
 - As regras de inferência, que permitem inferir novas fórmulas a partir de fórmulas já inferidas

Antes de apresentarmos uma axiomatização da lógica proposicional clássica, temos de mencionar o conceito de substituição

Substituições

- A substituição de um átomo p por uma fórmula B em uma fórmula A é representada por A[p:=B]
- Intuitivamente, se temos uma fórmula $A = p \to (p \land q)$ e queremos substituir p por $(r \lor s)$, o resultado da substituição será $A[p := r \lor s] = (r \lor s) \to ((r \lor s) \land q)$
- A definição formal de substituição se dá por indução estrutural sobre a fórmula A sobre a qual se processa a substituição, da seguinte maneira:
 - p[p := B] = B
 - q[p := B] = q, para $q \neq p$
 - $(\neg A)[p := B] = \neg (A[p := B])$
 - $(A_1 \square A_2)[p := B] = A_1[p := B] \square A_2[p := B]$, para $\square \in \{\land, \lor, \to\}$

Substituição

- Note que os itens 1 e 2 tratam do caso básico de substituir em fórmulas proposicionais
- Os itens 3 e 4 tratam dos casos indutivos
- Aplicando essa definição ao exemplo que foi visto intuitivamente, temos que:

$$(p \to (p \land q))[p := (r \lor s)] = p[p := (r \lor s)] \to (p \land q)[p := (r \lor s)]$$

$$= (r \lor s) \to (p[p := (r \lor s)] \land q[p := (r \lor s)])$$

$$= (r \lor s) \to ((r \lor s) \land q)$$

Substituição

- Quando uma fórmula B é resultante da substituição de um ou mais átomos da fórmula A, dizemos que B é uma instância da fórmula A
- Com a noção de substituição bem definida, apresentamos a seguir uma axiomatização da lógica proposicional clássica

Antes de definir uma axiomatização para a lógica proposicional clássica, é importante frisarmos que pode existir mais de uma axiomatização possível, todas elas equivalentes. A axiomatização a seguir apresenta grupos de axiomas que definem o comportamento de cada um dos conectivos booleanos.

A axiomatização para a lógica proposicional clássica contém os seguintes axiomas:

- $\bullet \ (\to_1) \ p \to (q \to p)$
- $\bullet \ (\rightarrow_2) \ (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
- ullet (\wedge_1) $p o (q o (p \wedge q))$
- $\bullet \ (\land_2) \ (p \land q) \rightarrow p$
- (\land_3) $(p \land q) \rightarrow q$
- $(\vee_1) p \rightarrow (p \vee q)$
- $(\vee_2) q \rightarrow (p \vee q)$
- $\bullet \ (\vee_3) \ (p \to r) \to ((q \to r) \to (p \lor q) \to r))$
- $\bullet \ (\neg_1) \ (p \to q) \to ((p \to \neg q) \to \neg p)$
- $\bullet \ (\neg_2) \ \neg \neg p \rightarrow p$

E a seguinte regra de inferência:

Modus Ponens: A partir de $A \rightarrow B$ e A, infere-se B

- Os axiomas podem ser instanciados, ou seja, seus átomos podem ser uniformemente substituídos por qualquer fórmula de lógica.
- Nesse caso, dizemos que a fórmula resultante é uma instância do axioma
- Com essa noção de axiomatização, podemos definir a noção de dedução

Dedução - Definição

Uma dedução é uma sequência de fórmulas $A_1, ..., A_n$ tal que cada fórmula na sequência ou é uma instância de um axioma ou é obtida de fórmulas anteriores por meio de regras de inferência, ou seja, por modus ponens.

Teorema - Definição

Um teorema A é uma fórmula tal que existe uma dedução $A_1,...,A_n=A$. Representaremos um teorema por $\vdash_{AX} A$ ou simplesmente $\vdash A$, quando o contexto deixar claro qual o método de inferência que está sendo usado

- A axiomatização apresentada possui a propriedade de substituição uniforme, ou seja, se A é um teorema e B é uma instância de A, então B é um teorema também.
- O motivo para isso é bem simples: se podemos aplicar uma substituição para obter B de A, podemos aplicar a mesma substituição nas fórmulas que ocorrem na dedução de A e, como todo instância de um axioma é uma fórmula dedutível, transformamos a dedução de A em uma dedução de B
- Iremos definir agora quando uma fórmula A segue de um conjunto de fórmulas Γ , também chamado de teoria ou de conjunto de hipóteses, o que é representado por $\Gamma \vdash_{AX} A$
- ullet Nesse caso, trata-se de adaptar a noção de dedução para englobar os elementos de Γ

Definição

Dizemos que uma fórmula A é dedutível a partir de um conjunto de fórmulas Γ se há uma dedução, ou seja, uma sequência de fórmulas $A_1,...,A_n=A$ tal que cada fórmula A_i na sequência:

- ou é uma fórmula $A_i \in \Gamma$
- ou é uma instância de um axioma
- ou é obtida de fórmulas anteriores por meio de modus ponens

- Note que, no caso de o conjunto Γ ser um conjunto vazio, $\Gamma = \emptyset$, temos que $\emptyset \vdash_{AX} A$ implica que A é um teorema, o que é representado simplesmente por $\vdash_{AX} A$
- Note também que não podemos aplicar a substituição uniforme nos elementos de Γ; a substituição uniforme só pode ser aplicadas aos axiomas da lógica.
- Também é costume representar o conjunto Γ como uma sequência de fórmulas, sem o uso das chaves delimitadoras de conjuntos. Assim, se $\Gamma = \{A_1, A_2, ..., A_n\}$, em vez de escrevermos $\{A_1, ..., A_n\} \vdash A$, escrevemos simplesmente $A_1, ..., A_n \vdash A$
- Similarmente, em vez de escrevermos $\Gamma \cup \{A\} \vdash B$, escrevemos simplesmente $\Gamma, A \vdash B$, representando a união das hipóteses pela concatenação de listas de hipóteses.

Teorema da Dedução

O Teorema da Dedução estabelece a relação entre o conectivo da implicação, \rightarrow , e a dedução lógica representada por \vdash

Teorema da Dedução

 $\Gamma, A \vdash B$ se, e somente se, $\Gamma \vdash A \rightarrow B$

$A \rightarrow B, C \rightarrow A, C \vdash B$

- 1. $A \rightarrow B$ hipótese
- 2. $C \rightarrow A$ hipótese
- C hipótese
- 4. A modus ponens 2, 3
- 5. B modus ponens 1, 4

$p \to q, p \to r, p \vdash q \land r$

1.
$$p \rightarrow q$$
 hipótese

6.
$$q \rightarrow (r \rightarrow (q \land r))$$
 instância de (\land_1)

7.
$$r \rightarrow (q \land r)$$
 modus ponens 6, 4

8.
$$q \wedge r$$
 modus ponens 7, 5

- Os métodos de inferência Axiomatização e Dedução Natural permitem mostrar quando uma fórmula pode ser a conclusão de um conjunto de hipóteses
- No entanto, nenhum desses métodos provê, de maneira óbvia, um procedimento de decisão
- Um procedimento de decisão permite determinar a validade de um sequente, ou seja, determinar se $B_1, ..., B_n \vdash A_1, ..., A_m$ ou se $B_1, ..., B_n \not\vdash A_1, ..., A_m$
- No caso típico, estamos interessados em decidir sequentes com o consequente unitário, da forma $\Gamma \vdash A$
- Os métodos dos sistemas axiomáticos e da dedução natural apenas nos permitiriam demonstrar como A poderia ser inferido a partir de Γ
- Mas esses métodos não nos permitiam inferir que $\Gamma \not\vdash A$, ou seja, não permitiam inferir a falsidade de um sequente

- É importante notar que $\Gamma \nvdash A$ não implica que $\Gamma \vdash \neg A$
- Isso pode ser visualizado mais facilmente pela noção de consequência lógica
- Considere a (in)consequência lógica $p \not\models q$ em que claramente podemos ter uma valoração v que satisfaz p e contradiz q; com isso não podemos afirmar que $p \models \neg q$, pois podemos ter uma valoração v' que satisfaz p e q, falsificando $\neg q$
- Dessa forma, temos que $p \not\models q$ e $p \not\models \neg q$

- Esse exemplo, aliás, é muito conveniente para ilustra o fato de que os métodos baseados em Tabelas da Verdade são procedimentos de decisão
- Porém, como já vimos, esses procedimentos têm um crescimento no número de linhas das Tabelas da Verdade exponencial com o número de símbolos proposicionais
- Apresentaremos agora um método de decisão baseado em um sistema de inferência, o qual não necessariamente gera provas de tamanho exponencial com o número de símbolos proposicionais
- Tal método é chamado de método dos tableaux analíticos ou tableaux semânticos

- Tableau analíticos é um método de inferência baseado em refutação: para provarmos que $B_1, ..., B_n \vdash A_1, ...A_m$, afirmaremos a veracidade de $B_1, ..., B_n$ e a falsidade de $A_1, ..., A_m$, na esperança de derivarmos uma contradição
- Se a contradição for obtida, teremos demonstrado o sequente
- Por outro lado, se não for obtida uma contradição, teremos obtido um contra-exemplo ao sequente, ou seja, teremos construído uma valoração que satisfaz todas as fórmulas B_i do antecedente e falsifica todas as fórmulas A_j do consequente

Fórmulas marcadas

- Para afirmar a veracidade ou a falsidade de fórmula, o método dos tableaux analíticos lida com fórmulas marcadas pelos símbolos T(de true, verdadeira) e F(falso)
- Dessa forma, em vez de lidar com fórmulas puras, do tipo A, lidaremos com fórmulas marcadas, do tipo TA e FA
- As fórmulas marcadas TA e FA são chamadas de fórmulas conjugadas
- O passo inicial para a criação de um tableau para um sequente B₁, ..., B_n ⊢ A₁, ...A_m é marcar todas as fórmulas da seguinte maneira: as fórmulas do antecedente(aquelas cuja veracidade queremos afirmar) são marcadas por T; as fórmulas do consequente, cuja finalidade em um processo de refutação queremos afirmar, são marcadas por F

Fórmulas marcadas

```
Dessa forma, o sequente B_1, ..., B_n \vdash A_1, ...A_m dá origem ao tableau inicial:
TB_1
TB_n
FA_1
FA_m
```

Fórmulas marcadas

- Esse formato inicial do tableau indica que um tableau é uma árvore
- Em seguida, o tableau é expandido por regras que podem simplesmente adicionar novas fórmulas ao final de um ramo (regras do tipo α) ou bifurcar um ramo em dois (regras do tipo β)

- As fórmulas marcadas de um tableau podem ser de dois tipos: fórmulas do tipo α e fórmulas do tipo β
- As fórmulas do tipo α se decompõem em fórmulas α_1 e α_2 , conforme ilustrado na figura abaixo

α	α_1	α_{2}
$TA \wedge B$	TA	ТВ
$FA \lor B$	FA	FB
$FA \to B$	TA	FB
$T \neg A$	FA	FA

• As fórmulas do tipo β se decompõe em fórmulas β_1 e β_2 , conforme ilustrado na figura abaixo

β	β_1	β_2
FA ∧ B	FA	FB
$TA \lor B$	TA	TB
$TA \to B$	FA	TB
$F \neg A$	TA	TA

- Note que a escolha de classificar $T \neg A$ como fórmula do tipo α e $F \neg A$ como fórmula do tipo B é arbitrária e foi feita com o intuito de dar simetria ao conjunto de fórmulas marcadas
- Assim, se um fórmula é do tipo α , a fórmula conjugada é do tipo β , e vice-versa
- As regras de expansão de um tableau são as seguintes

Expansão α

Se um ramo do tableau contém uma fórmula do tipo α , adicionam-se α_1 e α_2 ao fim de todos os ramos que contêm α

Expansão β

Se um ramo do tableau contém uma fórmula do tipo β , esse ramo é bifurcado em dois ramos, encabeçados por β_1 e β_2 , respectivamente

- Note que, se p é um átomo, Tp e Fp não são nem fórmulas do tipo α nem do tipo β e portanto não podem gerar expansões do tableau
- Em cada ramo, uma fórmula só pode ser expandida uma única vez
- Um ramo que não possui mais fórmulas para serem expandidas é dito saturado
- Como expansões α e β sempre geram fórmulas de tamanho menor, eventualmente todas as fórmulas serão expandidas até chegarmos ao nível atômico, quando todos os ramos estarão saturados
- Portanto, o processo de expansão sempre termina

- Um ramo do tableau está fechado se este possui um par de fórmulas conjugadas do tipo
 TA e FA
- Um ramo fechado não necessita mais ser expandido, mesmo que não esteja ainda saturado
- Um tableau está fechado se todos os seus ramos estão fechados

Definição

Um sequente $B_1, ...B_n \vdash_{TA} A_1, ..., A_m$ foi deduzido pelo método dos tableaux analíticos se existir um tableau fechado para ele

 No caso da dedução de um teorema ⊢_{TA} A pelo método dos tableaux analíticos, devemos construir um tableau fechado para FA

$\vdash p \lor \neg p$

- 1. Fp∨¬p
- 2. Fp
- 3. F-p
- 4. Ip

X

$$fp o q, q o r \vdash p o r$$

$$\begin{array}{c} \text{Tp} \rightarrow \text{q} \\ \text{Tq} \rightarrow \text{r} \\ \text{Fp} \rightarrow \text{r} \\ \text{Tp} \\ \text{Fr} \\ \\ \times \\ \times \\ \times \\ \times \\ \end{array}$$

$p, \overline{p} \land \overline{q} \rightarrow r \vdash r$

$$\begin{array}{c} \text{Tp} \\ \text{Tp} \land q \rightarrow r \\ \text{Fr} \\ / \\ \text{Fp} \land q \quad \text{Tr} \\ / \\ \times \\ \text{Tp} \quad \text{Fq} \\ \times \end{array}$$

$\overline{p \lor q, p \to r, q \to r} \lor s \vdash r$

Figura: Fonte: Livro Lógica para Computação - Silva, Finger e Melo

Tableaux Analíticos

Um mesmo sequente pode ter mais de um tableaux.

$\overline{p} \vee q, \overline{p} \rightarrow r, \overline{q} \rightarrow r \vdash r$

$p \lor q, p \to r, q \to r \vdash r$

Próxima Aula

O que vem por aí?

- Exercícios
- Dedução Natural

Sistemas Dedutivos Lógica para computação

Professor: Rennan Dantas

Universidade Federal do Ceará Campus de Crateús

25 e 28 de maio de 2020

⁰Slides baseados no livro Lógica para Ciência da Computação².

¹DE SOUZA, JOÃO NUNES. Lógica para ciência da computação. Elsevier Brasil, 2008.