INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40097B buffers 3-state hex non-inverting buffer

Product specification
File under Integrated Circuits, IC04

January 1995

3-state hex non-inverting buffer

HEF40097B buffers

DESCRIPTION

The HEF40097B is a hex non-inverting buffer with 3-state outputs. The 3-state outputs are controlled by two enable inputs (\overline{EO}_4 and \overline{EO}_2). A HIGH on \overline{EO}_4 causes four of the six buffer elements to assume a high impedance or OFF-state, regardless of the other input conditions and a HIGH on \overline{EO}_2 causes the outputs of the remaining two buffer elements to assume a high impedance or OFF-state, regardless of the other input conditions.

HEF40097BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF40097BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF40097BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

I₁ to I₆ buffer inputs

 $\overline{\text{EO}}_4$, $\overline{\text{EO}}_2$ enable inputs (active LOW)

O₁ to O₆ buffer outputs (active HIGH)

FAMILY DATA, I_{DD} LIMITS category BUFFERS

See Family Specifications

Philips Semiconductors Product specification

3-state hex non-inverting buffer

HEF40097B buffers

DC CHARACTERISTICS

 $V_{SS} = 0 V$

					T _{amb} (°C)						
HEF	V _{DD} V	V _{OH} V	V _{OL}	SYMBOL	_	40	+	25	+8	35	
	-	_	_		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output current	5	4,6			1,2		1,0		0,8		mA
HIGH	10	9,5		−l _{OH}	3,8		3,2		2,5		mA
	15	13,5			12,0		10,0		8,0		mA
HIGH	5	2,5		-l _{OH}	3,8		3,2		2,5		mA
Output current	4,75		0,4		3,5		2,9		2,3		mA
LOW	10		0,5	I _{OL}	12,0		10,0		8,0		mA
	15		1,5		24,0		20,0		16,0		mA

					T _{amb} (°C)						
HEC	V _{DD}	V _{OH} V	V _{OL} V	SYMBOL	_	55	+	25	+1	25	
	-		_		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output current	5	4,6			1,25		1,0		0,6		mA
HIGH	10	9,5		-I _{OH}	4,0		3,2		2,1		mΑ
	15	13,5			12,5		10,0		6,7		mΑ
HIGH	5	2,5		-l _{OH}	4,0		3,2		2,1		mA
Output current	4,75		0,4		3,6		2,9		1,9		mΑ
LOW	10		0,5	I _{OL}	12,5		10,0		6,7		mΑ
	15		1,5		25,0		20,0		13,0		mΑ

Philips Semiconductors Product specification

3-state hex non-inverting buffer

HEF40097B buffers

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		70	140	ns	60 ns + (0,20 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	30	60	ns	26 ns + (0,08 ns/pF) C _L
	15		25	50	ns	22 ns + (0,06 ns/pF) C _L
	5		60	120	ns	45 ns + (0,30 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	25	50	ns	19 ns + (0,13 ns/pF) C _L
	15		20	40	ns	16 ns + (0,09 ns/pF) C _L
Output transition times	5		30	60	ns	15 ns + (0,30 ns/pF) C _L
HIGH to LOW	10	t _{THL}	15	30	ns	10 ns + (0,11 ns/pF) C _L
	15		10	20	ns	7 ns + (0,07 ns/pF) C _L
	5		35	70	ns	10 ns + (0,50 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	20	40	ns	8 ns + (0,24 ns/pF) C _L
	15		15	30	ns	6 ns + (0,18 ns/pF) C _L
3-state propagation delays						
Output disable times						
$\overline{EO}_2,\overline{EO}_4 \to O_n$	5		45	95	ns	
HIGH	10	t _{PHZ}	35	70	ns	
	15		30	60	ns	
	5		60	120	ns	
LOW	10	t _{PLZ}	35	70	ns	
	15		25	55	ns	
Output enable times						
$\overline{EO}_2,\overline{EO}_4 \to O_n$	5		75	150	ns	
HIGH	10	t _{PZH}	35	70	ns	
	15		30	60	ns	
	5		95	190	ns	
LOW	10	t _{PZL}	40	80	ns	
	15		30	65	ns	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	5 400 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	25 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	96 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)