TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath PAGE NO: 1 OF 8

• Closed-book exam:

- No printed or handwritten material of any form allowed.
- No Internet access or any other form of electronic media permitted.
- A non-programmable calculator may be used.
- Answer all 4 questions. For full credit, you must clearly show how you arrive at the solution, including all relevant calculations. Solutions without intermediate steps will not receive any marks.

3 Marks

- 1. Provide short (but clear) answers.
 - (a) What are the <u>most important</u> advantages of digital communication over analog communication?
 - (b) What is the significance of the modulation index in conventional AM?
 - (c) What is the main advantage of FM compared to AM?
- 2. (a) The following frequency spectrum was recorded (plotted to scale) on a spectrum analyzer, when a sinusoidal message signal having a dc off set is applied to a DSB-SC modulator.

2 Marks

i. Estimate the modulation index.

1 Mark

ii. By how much should the dc off set be changed to achieve a 100 % modulation index? Explain why.

4 Marks

(b) A message signal m(t), whose frequency spectrum is shown below, is transmitted using lower sideband suppressed carrier amplitude modulation. The unmodulated carrier is $50\cos(2\pi f_c t)$, where $f_c = 500$ kHz.

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: 2 OF 8

The transmitted signal is demodulated by a receiver with an imperfect synchronous demodulator whose local oscillator output is $\cos(1100\pi \times 10^3 t)$, where t is in seconds. Assume that the demodulator employs an ideal low-pass filter which has a cut-off frequency equal to the message bandwidth.

- i. Plot the two-sided magnitude spectrum of the input to the LPF in the demodulator. Indicate all important values on your plots.
- ii. Plot the spectrum of the demodulated signal.
- 3. (a) The periodic signal x(t) shown below (assume that amplitude is in Volts) is used as the input to a frequency modulator whose sensitivity is 3 Hz/volt.

The Fourier series expansion of x(t) is

2 Marks

4 Marks

$$x(t) = \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(\frac{2\pi n}{T_o}t - n\pi\right)$$

Assume A = 2 Volts and $T_0 = 0.25$ sec. Also consider the modulated carrier phase to be 0 rad. at t = 0 (i.e., the phase reference)

- i. Calculate the peak phase deviation (in radians) of the modulator output.
- ii. By considering 90%-power bandwidth as the bandwidth of x(t), find an estimate for the bandwidth of the modulator output (clearly show how you obtain your estimate).
- 1 Marks (b) The signal x(t) is applied to a phase modulator with a sensitivity of 0.6 radians/volt. Find an estimate for the bandwidth of the modulator output.
- 3 Marks 4. (a) Suppose a cosine wave is used as the message signal in a frequency modulator whose sensitivity is 10 kHz per volt. The significant components of the frequency spectrum of the resulting FM signal are shown below (only the positive half of the frequency axis is shown here and spectral components with phase shifts of π are shown as negative impulse functions).

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>3 OF 8</u>

Calculate the amplitude and the frequency of the message signal.

——— END OF TEST ———

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>4 OF 8</u>

Appendix

• Carson's rule: $2(\beta + 1)W$

• Trigonometric identities:

$$\cos[2\pi f_c t + a \sin 2\pi f_m t] = \sum_{n=-\infty}^{\infty} J_n(a) \cos[2\pi (f_c + n f_m) t]$$

$$\cos[2\pi f_c t + a \cos 2\pi f_m t] = \sum_{n=-\infty}^{\infty} J_n(a) \cos[2\pi (f_c + n f_m) t + \frac{n\pi}{2}]$$

$$e^{\pm jx} = \cos x \pm j \sin x$$

$$\cos x = \frac{1}{2} (e^{jx} + e^{-jx})$$

$$\sin x = \frac{1}{2j} (e^{jx} - e^{-jx})$$

$$\cos(x \pm \frac{\pi}{2}) = \mp \sin x$$

$$\sin(x \pm \frac{\pi}{2}) = \pm \cos x$$

$$2 \sin x \cos x = \sin 2x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 + \cos 2x)$$

$$\sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x = \frac{1}{2} (1 - \cos 2x)$$

$$\sin^2 x + \cos^2 x + \sin x = C \cos(x + \theta)$$

$$\sin^2 x + \cos^2 x + \sin x = C \cos(x + \theta)$$

$$\sin^2 x + \cos^2 x + \cos^2 x + \sin x = C \cos(x + \theta)$$

$$\sin^2 x + \cos^2 x$$

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>5 OF 8</u>

Note: $J_{-n}(\beta) = (-1)^n J_n(\beta)$

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

PAGE NO: 6 OF 8

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

Table of Common Fourier Series

Nome Wordsam a Commente					
Name 1.	Waveform ×(t) ∱	a_0	a _k	Comments	
Square wave	X_0 X_0 X_0 X_0 X_0 X_0 X_0 X_0 X_0	0	$-j\frac{2X_0}{\pi k}$ when k is odd	$a_k = 0$ when k is even	
2. Sawtooth	$X(t)$ X_0	$\frac{X_0}{2}$	$j\frac{X_0}{2\pi k}$		
3. Triangular wave	$X(t)$ X_0 T_0 T_0	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$ when k is odd	a _k = 0 when k is even	
4. Full-wave rectified	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2X_0}{\pi}$	$\frac{2X_0}{\pi(1-4k^2)}$		
5. Half-wave rectified	X_0	$\frac{X_0}{\pi}$	$\frac{X_0}{\pi(1-k^2)}$ when k is even	$a_k = 0$ when k is odd, except $a_{1=-j} \frac{X_0}{4}$	
6. Rectangular Wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{wX_0}{T_0}$	$\frac{wX_0}{T_0} sinc \frac{wk\omega_0}{2}$ $\frac{wX_0}{T_0} \frac{\sin \frac{wk\omega_0}{2}}{\frac{wk\omega_0}{2}}$ $\frac{X_0}{k\pi} \sin \frac{wk\omega_0}{2}$	$\omega_0 = \frac{2\pi}{T_0}$ $sinc(x) = \frac{\sin x}{x}$	
7. Impulse train	$X_0 \longrightarrow X_0 $	$\frac{X_0}{T_0}$	$\frac{X_0}{T_0}$		

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = a_0 + \sum_{k=1}^{\infty} 2|a_k|\cos(k\omega_0 t + \angle a_k)$$

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath PAGE NO: 7 OF 8

TABLE OF FOURIER TRANSFORMS

Time Domain $(x(t))$	Frequency Domain $(X(f))$
$\delta(t)$	1
•	$\delta(f)$ $e^{-j2\pi f t_0}$
$\delta(t-t_0)$ $e^{j2\pi f_0 t}$	$e^{-j2\pi j t_0}$ $\delta(f-f_0)$
$\cos(2\pi f_0 t)$	$\frac{\delta(f - f_0)}{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}$
	2 2
$\sin(2\pi f_0 t)$	$-\frac{1}{2j}\delta(f+f_0) + \frac{1}{2j}\delta(f-f_0)$
$\int_{0}^{\infty} 1, t < \frac{1}{2}$	$\sin(\pi f)$
$\Pi(t) = \begin{cases} 1, & t < \frac{1}{2} \\ \frac{1}{2}, & t = \pm \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$	$\operatorname{sinc}(f) = \frac{\sin(\pi f)}{\pi f}$
0, otherwise	,
$\operatorname{sinc}(t)$	$\Pi(f)$
$\begin{cases} t+1, & -1 \le t < 0 \end{cases}$. 2
$\Lambda(t) = \begin{cases} t + 1, & -1 \le t < 0 \\ -t + 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$	$\operatorname{sinc}^2(f)$
(0, otherwise)	A (f)
$\operatorname{sinc}^{2}(t)$ $e^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{\Lambda(f)}{\frac{1}{\alpha+j2\pi f}}$
	$\alpha + j2\pi f$
$te^{-\alpha t}u_{-1}(t), \alpha > 0$	$\frac{1}{(\alpha+j2\pi f)^2}$
$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
$e^{-\pi t^2}$	$e^{-\pi f^2}$
$\int 1, t > 0$	
$sgn(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \\ 0, & t = 0 \end{cases}$	$1/(j\pi f)$
(3,	1870 . 1
$u_{-1}(t)$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\delta'(t) \\ \delta^{(n)}(t)$	$j2\pi f$ $(j2\pi f)^n$
	$-j\pi \operatorname{sgn}(f)$
$\sum_{n=-\infty}^{n=+\infty} \frac{\frac{1}{t}}{\delta(t-nT_0)}$	
$\sum_{n=-\infty} o(t-nI_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{n=+\infty} \delta\left(f - \frac{n}{T_0}\right)$

TERM TEST, FALL 2017

October 23, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>8 OF 8</u>

TABLE 2.2	TABLE OF FOURIER-TRANSFORM PROPERTIES
------------------	---------------------------------------

Signal	Fourier Transform $\alpha X_1(f) + \beta X_2(f)$	
$\overline{\alpha x_1(t) + \beta x_2(t)}$		
X(t)	x(-f)	
x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$	
$x(t-t_0)$	$e^{-j2\pi f t_0} X(f)$	
$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$	
$x(t) \star y(t)$	X(f)Y(f)	
x(t)y(t)	$X(f) \star Y(f)$	
$\frac{d}{dt}x(t)$	$j2\pi f X(f)$	
$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$	
tx(t)	$\left(\frac{j}{2\pi}\right)\frac{d}{df}X(f)$	
$t^n x(t)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f)$	
$\int_{-\infty}^t x(\tau)d\tau$	$\frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$	