intrusion detection, malware, tor

last discussion:(

slides bit.ly/cs161-disc

feedback bit.ly/abhifeedback

- Alibaba Cloud compromised

- Alibaba Cloud compromised
 - "...privilege escalation flaw...and a remote code execution bug...made it possible to elevate privileges to root within the container...and ultimately obtain unauthorized access to the API server."

- Alibaba Cloud compromised
 - "...privilege escalation flaw...and a remote code execution bug...made it possible to elevate privileges to root within the container...and ultimately obtain unauthorized access to the API server."
 - all because of a bug in AnalyticDB and AsparaDB!

- Alibaba Cloud compromised
 - "...privilege escalation flaw...and a remote code execution bug...made it possible to elevate privileges to root within the container...and ultimately obtain unauthorized access to the API server."
 - all because of a bug in AnalyticDB and AsparaDB!
 - 58% of orgs don't enforce MFA for root users

general questions, concerns, etc.

reminder

please fill out course evaluations!

course-evaluations.berkeley.edu

- application level:

- application level:
 - use inputs that overwhelm the victim in computing the output

- application level:
 - use inputs that overwhelm the victim in computing the output
 - algorithmic complexity attack

- application level:
 - use inputs that overwhelm the victim in computing the output
 - algorithmic complexity attack
- network level:

- application level:
 - use inputs that overwhelm the victim in computing the output
 - algorithmic complexity attack
- network level:
 - overwhelm victim's bandwidth/packet processing capacity

- application level:
 - use inputs that overwhelm the victim in computing the output
 - algorithmic complexity attack
- network level:
 - overwhelm victim's bandwidth/packet processing capacity
 - DDoS (distributed denial of service)

- overprovisioning:

- overprovisioning:
 - purchase enough physical resources/network bandwidth to avoid DoS

- overprovisioning:
 - purchase enough physical resources/network bandwidth to avoid DoS
- packet filters

- overprovisioning:
 - purchase enough physical resources/network bandwidth to avoid DoS
- packet filters
 - discard packets where source IP is malicious

- overprovisioning:
 - purchase enough physical resources/network bandwidth to avoid DoS
- packet filters
 - discard packets where source IP is malicious
 - examine packet content for malice

- overprovisioning:
 - purchase enough physical resources/network bandwidth to avoid DoS
- packet filters
 - discard packets where source IP is malicious
 - examine packet content for malice
 - not very effective against DDoS (many IPs)

- firewalls often packet filters—inspect packets

- firewalls often packet filters—inspect packets
- stateless packet filter

- firewalls often packet filters—inspect packets
- stateless packet filter
 - no history of previous packets

- firewalls often packet filters—inspect packets
- stateless packet filter
 - no history of previous packets
- stateful packet filter

- firewalls often packet filters—inspect packets
- stateless packet filter
 - no history of previous packets
- stateful packet filter
 - keeps track of history & inbound/outbound connections

proxy firewalls

- think of the firewall as a (helpful) MITM

proxy firewalls

- think of the firewall as a (helpful) MITM
- has direct access to the TCP bytestreams

proxy firewalls

- think of the firewall as a (helpful) MITM
- has direct access to the TCP bytestreams
- proxy can spoof incoming/outgoing IPs

intrusion detection detect if you can't prevent

path traversal attack

Backend Filesystem

path traversal attack

Backend Filesystem

network intrusion detection system

- NIDS: monitors network traffic to detect attacks

NIDS drawback: inconsistency

- NIDS doesn't know what to do if it sees ambiguous information

 NIDS doesn't know what to do if it sees ambiguous information

alert because it looks like path traversal

- NIDS doesn't know what to do if it sees ambiguous information

 NIDS doesn't know what to do if it sees ambiguous information

don't alert, doesn't look like path traversal

- NIDS doesn't know what to do if it sees ambiguous information

don't alert, doesn't look like path traversal

- evasion attack: ambiguous input to bypass NIDS

- evasion attack: ambiguous input to bypass NIDS
 - defenses:

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations
 - enforce normalized form for input

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations
 - enforce normalized form for input
 - flag possible evasions

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations
 - enforce normalized form for input
 - flag possible evasions
- encrypted traffic (TLS)

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations
 - enforce normalized form for input
 - flag possible evasions
- encrypted traffic (TLS)
 - can just give NIDS all private keys on network

- evasion attack: ambiguous input to bypass NIDS
 - defenses:
 - consider all possible interpretations
 - enforce normalized form for input
 - flag possible evasions
- encrypted traffic (TLS)
 - can just give NIDS all private keys on network
 - why is this unideal?

host-based intrusion detection system

- HIDS: detector installed on each end system

- benefits:

- benefits:
 - less evasion, interpret packets as host does

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages
 - performance scales better

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages
 - performance scales better
 - prevent against in-network attacker

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages
 - performance scales better
 - prevent against in-network attacker
- drawbacks:

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages
 - performance scales better
 - prevent against in-network attacker
- drawbacks:
 - expensive—one detector per end host

- benefits:
 - less evasion, interpret packets as host does
 - works for encrypted messages
 - performance scales better
 - prevent against in-network attacker
- drawbacks:
 - expensive—one detector per end host
 - evasion attacks still sometimes possible

logging

- analyze log files generated by end systems
 - likely overnight, less traffic
- detect after attacks have happened
- very cheap

- signature-based: flag activity matching known attack
 - blacklisting (path traversal, known shellcode)

- signature-based: flag activity matching known attack
 - blacklisting (path traversal, known shellcode)
- specification-based: flag disallowed behavior
 - whitelisting (specify allowed behavior)

- signature-based: flag activity matching known attack
 - blacklisting (path traversal, known shellcode)
- specification-based: flag disallowed behavior
 - whitelisting (specify allowed behavior)
- anomaly-based: develop model for "usual" behavior and flag if deviating

- signature-based: flag activity matching known attack
 - blacklisting (path traversal, known shellcode)
- specification-based: flag disallowed behavior
 - whitelisting (specify allowed behavior)
- anomaly-based: develop model for "usual" behavior and flag if deviating
- behavioral: look for evidence of compromise
 - look at input actions triggered by input

worksheet (on 161 website)

anonymity, tor

proxy recap

proxy acts as MITM—rests on application layer

proxy recap

proxy acts as MITM—rests on application layer

VPN

- access an internal network via a VPN
- send data as if from a different network

issues with proxies/VPNs

issues with proxies/VPNs

- performance: additional hops around Internet

issues with proxies/VPNs

- performance: additional hops around Internet
- VPNs cost money

issues with proxies/VPNs

- performance: additional hops around Internet
- VPNs cost money
- trusting the proxy (can see sender and recipient's identities, have to trust it won't be given out)

- idea: use multiple proxies to hide source/dest
 - call these relays

- idea: use multiple proxies to hide source/dest
 - call these relays
- Tor network: a network of many relays

- idea: use multiple proxies to hide source/dest
 - call these relays
- Tor network: a network of many relays
- directory server: lists all Tor relays + public keys

- idea: use multiple proxies to hide source/dest
 - call these relays
- Tor network: a network of many relays
- directory server: lists all Tor relays + public keys
- Tor browser: browser based on Firefox

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them
- collusion: if all nodes work together and share information

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them
- collusion: if all nodes work together and share information
 - if (at least) one node is honest, anonymous

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them
- collusion: if all nodes work together and share information
 - if (at least) one node is honest, anonymous
 - defense: reputable "guard" node = entry node

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them
- collusion: if all nodes work together and share information
 - if (at least) one node is honest, anonymous
 - defense: reputable "guard" node = entry node
- distinguishable: can tell when user is using Tor

- doesn't defend against global adversaries
 - can observe timing of alice sending + bob receiving messages and link them
- collusion: if all nodes work together and share information
 - if (at least) one node is honest, anonymous
 - defense: reputable "guard" node = entry node
- distinguishable: can tell when user is using Tor
 - use Tor bridges: non-public entry node

- websites that are only accessible through Tor

- websites that are only accessible through Tor
 - want to have anon. server locations

- websites that are only accessible through Tor
 - want to have anon. server locations
- sometimes called the dark web

- websites that are only accessible through Tor
 - want to have anon. server locations
- sometimes called the dark web
- sparknotes version (out of scope):
 - client sends rendezvous point location to server-published introduction point via Tor circuit, which sends the rendezvous point to the server

- websites that are only accessible through Tor
 - want to have anon, server locations
- sometimes called the dark web
- sparknotes version (out of scope):
 - client sends rendezvous point location to server-published introduction point via Tor circuit, which sends the rendezvous point to the server
 - communicate through rendezvous point

- over 25% of Tor exit relays spied on users
 - threat actor controlled >27% of exit relays

- over 25% of Tor exit relays spied on users
 - threat actor controlled >27% of exit relays
 - Tor dropped these from Tor network

- over 25% of Tor exit relays spied on users
 - threat actor controlled >27% of exit relays
 - Tor dropped these from Tor network
 - hacker used <u>SSL stripping</u> to replace bitcoin addresses and redirect transactions to their wallets

- over 25% of Tor exit relays spied on users
 - threat actor controlled >27% of exit relays
 - Tor dropped these from Tor network
 - hacker used <u>SSL stripping</u> to replace bitcoin addresses and redirect transactions to their wallets
 - Tor Project says to websites—enable HTTPS by default, deploy .onion sites

worksheet (on 161 website)

slides: bit.ly/cs161-disc