Homework 3 - december 20, 2019

Deadline and delivery: january 10, 2020, 12:00-14:00 in C210

- The homework can be solved by teams of at most two students.
- For LaTeX written solutions a bonus of 1 point is reserved.
- Identical or copied solutions will receive no points.
- The solutions must be written (printed) on papers, signed by its author(s), and physically delivered not by e-mail.
- Don't write again the texts of the problems! Each problem needs at most 1-2 pages.
- ANY COPIED SOLUTION FOR A PROBLEM FROM BELOW WILL BE PENALISED WITH 2 POINTS.
- 1. Let G = (V, E) be a digraph, $c : E \to \mathbb{R}_+$, and $X, Y \subseteq V$ be two disjoint non-empty subsets of vertices in G. Suppose that we have two functions $\sigma : X \to \mathbb{R}_+$ (the supply) and $\theta : Y \to \mathbb{R}_+$ (the demand). R = (G, X, Y, c) is an **e-network**; a function $x : E \to \mathbb{R}$ is called a **feasible e-flow** in the **e-network** R = (G, X, Y, c) if

$$0 \leqslant x_{ij} \leqslant c_{ij}, \forall ij \in E,$$

$$\sum_{k} x_{ik} = \sum_{k} x_{ki}, \forall i \in V \setminus (X \cup Y),$$

$$\sum_{k} x_{ik} - \sum_{k} x_{ki} \leqslant \sigma_{i}, \forall i \in X$$

$$\sum_{k} x_{kj} - \sum_{k} x_{jk} \geqslant \theta_{j}, \forall j \in Y$$

Suppose that the total demand is at most the total supply, i. e., $\sigma = \sum_{i \in X} \sigma_i \geqslant \sum_{j \in Y} \theta_j = \theta$. Prove that there exists a feasible e-flow in R if and only if for every $S, T \subseteq V$ such that $S \cup T = V$ and $S \cap T = \emptyset$, we have

$$\sum_{i \in S, j \in T} c_{ij} \geqslant \sum_{j \in Y \cap T} \theta_j - \sum_{i \in X \cap T} \sigma_i.$$

(4 points)

2. At the CS department there are p students $(S = \{S_1, S_2, \ldots, S_p\})$ who want to graduate and k professors $(P = \{P_1, P_2, \ldots, P_k\})$. For the final graduate examination (also called exit examination) teams of r professors will judge the students final projects.

For a given project each professor either has the competences to judge it or not, i. e., we know the set, $\mathcal{P}_i \subsetneq \mathcal{P}$ ($\mathcal{P}_i \neq \emptyset$), of professors specialized on the project of student S_i . Each professor P_l can participate to at most n_l teams.

Each student must present this project to a team of $r(\leqslant k)$ professors, $a(\leqslant r)$ of them being specialized on this project and the remaining (r-a) are not.

- (a) Devise a network flow model to organize the judging teams (which professor will attend which project presentation).
- (b) Give a characterization of the existence of a solution to this problem in terms of maximum flow in the above network.

(c) What is the time complexity for deciding if a solution exists?

$$(1+1+1=3 \text{ points})$$

3. Consider the following decision problem:

3AN

Instance: G = (V, E) a graph with $\Delta(G) \leq 3$ and $k \in \mathbb{N}^*$.

Question: Is there $U \subseteq V$, $|U| \leq k$ s. t. $\{u, v\} \cap U \neq \emptyset$, $\forall uv \in E$?

We consider also an instance of **3SAT** problem: $X = \{x_1, x_2, ..., x_n\}$ a set of boolean variables, $C = C_1 \wedge C_2 ... \wedge C_m$ a set of disjunctive clauses over X, each clause containing exactly three literals: $C_j = v_{j_1} \vee v_{j_2} \vee v_{j_3}, \forall j = \overline{1, m}$.

Let k_i to be the number of occurrences of x_i (as pozitive or negative literal) in \mathcal{C} (we index these occurrences: the 1st, the 2nd etc). Define the following disjoint graphs and sets of edges:

- (1) a $2k_i$ length cycle, $G_i = (V_i, E_i)$, for each boolean variable x_i , where $V_i = \{a_{i,1}, f_{i,1}, a_{i,2}, f_{i,2}, \dots, a_{i,k_i}, f_{i,k_i}\}$ and $E_i = \{a_{i,h}f_{i,h}, f_{i,h}a_{i,h+1} : 1 \le h \le k_i\}$ (notation modulo k_i);
- (2) a graph $H_j = (W_j, E(H_j)) \cong K_3$, for each clause C_j , where $W_j = \{w_{j,1}, w_{j,2}, w_{j,3}\}$;
- (3) $A = \{a_{i,l}w_{j,k} : \text{ if } v_{jk} = x_i \text{ is the } l^{th} \text{ occurrence of } x_i \text{ in } C_j\};$
- (4) $F = \{f_{i,l}w_{j,k} : \text{ if } v_{j_k} = \overline{x}_i \text{ is the } l^{th} \text{ occurrence of } x_i \text{ in } C_j\};$

In the end define the following graph G = (V, E):

$$V = \left(\bigcup_{i=1}^{n} V_i\right) \cup \left(\bigcup_{j=1}^{m} W_j\right), E = \left(\bigcup_{i=1}^{n} E_i\right) \cup \left(\bigcup_{j=1}^{m} E(H_j)\right) \cup A \cup F.$$

Prove that **3SAT** can be polinomially reduced to **3AN** (with the instance G from above and k = 5m) by showing that

- (a) There is only two minimum cardinality vertex subsets that covers all the edges of G_i and their cardinalities are k_i , namely: $\{a_{i,1}, a_{i,2}, \ldots, a_{i,k_i}\}$ and $\{f_{i,1}, f_{i,2}, \ldots, f_{i,k_i}\}$.
- (b) If $U \subset V(G)$ covers the edges of G and |U| = 5m, then
 - (b1) $|U \cap W_j| \geqslant 2, \forall j = \overline{1, m};$

(b2)
$$\left| U \cap \left(\bigcup_{i=1}^{n} V_{i} \right) \right| \geqslant 3m;$$

- (b3) $|U \cap W_j| = 2$, $\forall j = \overline{1, m}$, and $|U \cap V_i| = k_i$, $\forall i = \overline{1, n}$.
- (b4) the following truth assignment satisfies all the clauses from C: for all $i, t(x_i) = true$ if and only if $U \cap V_i = \{a_{i,1}, a_{i,2}, \dots, a_{i,k_i}\}$.
- (c) Suppose $t: X \to \{true, false\}$ is a truth assignment that satisfies all the clauses from C. Construct U as follows:
 - for each boolean variable x_i with $t(x_i) = true$ add to U the set $\{a_{i,1}, a_{i,2}, \dots, a_{i,k_i}\}$;
 - for each boolean variable x_i with $t(x_i) = false$ add to U the set $\{f_{i,1}, f_{i,2}, \dots, f_{i,k_i}\}$;
 - for each clause C_j add to U all the nodes in W_j except one which corresponds to a true literal in C_j .

Prove that U has the required property and |U| = 5m.

$$(1 + (1 + 1 + 1 + 1) + 1 = 6 \text{ points})$$

4.

- (a) Every graph G has a $\chi(G)$ -coloring in which at least one of its coloring classes is a maximal stable set.
- (b) Let G=(V,E) be a graph and $x,y\in V$ such that $xy\notin E.$ Prove that

$$\chi(G) = \min \{ \chi(G + xy), \chi(G|xy) \},\$$

where G|xy denotes the contraction of the pair (x,y) in G.

$$(1+1=2 \text{ points})$$