PHƯƠNG PHÁP TỌA ĐỘ TRONG **KHÔNG GIAN**

Bài 1. PHƯƠNG TRÌNH MẶT PHẨNG

Xác định vectơ pháp tuyến của mặt phẳng. Xác định điểm thuộc và không thuộc mặt phẳng

- 1. Vecto pháp tuyến của mặt phẳng:
 - \bullet Mặt phẳng (α) : Ax + By + Cz + D = 0 có vecto pháp tuyến $\vec{n} = (A; B; C)$.
 - $oldsymbol{\Theta}$ Nếu mặt phẳng (α) có cặp vectơ chỉ phương là \overrightarrow{a} , \overrightarrow{b} thì (α) có vectơ pháp tuyến là $\vec{n} = [\vec{a}, \vec{b}].$
 - Θ vecto pháp tuyến của mặt phẳng (α) là vecto có giá vuông góc với (α) .
 - \odot vecto chỉ phương của mặt phẳng (α) là vecto có giá song song hoặc nằm trên
 - Θ Nếu \vec{n} là một vecto pháp tuyến của (α) thì $k \cdot \vec{n}$ cũng là một vecto pháp tuyến của (α) .
 - \bullet Nếu \vec{a} là một vectơ chỉ phương của (α) thì $k \cdot \vec{a}$ cũng là một vectơ chỉ phương của (α) .

Chú ý:

- \bigcirc Trục Ox có vecto chỉ phương là $\overrightarrow{i} = (1;0;0)$.
- \bigcirc Trục Oy có vectơ chỉ phương là $\overrightarrow{j} = (0; 1; 0)$.
- \bigcirc Truc Oz có vecto chỉ phương là $\overrightarrow{k} = (0; 0; 1)$.
- Θ Mặt phẳng (Oxy) có vectơ pháp tuyến là $\vec{k} = (0;0;1)$.
- Θ Mặt phẳng (Oxz) có vectơ pháp tuyến là $\overrightarrow{j} = (0;1;0)$.
- Θ Mặt phẳng (Oyz) có vectơ pháp tuyến là $\vec{i} = (1;0;0)$.
- 2. Điểm thuộc và không thuộc mặt phẳng:

Cho mặt phẳng (α) có phương trình Ax + By + Cz + D = 0. Khi đó:

- $\bigcirc N_0(x_0; y_0; z_0) \in (\alpha) \Leftrightarrow Ax_0 + By_0 + Cz_0 + D = 0.$
- Θ $N_0(x_0; y_0; z_0) \notin (\alpha) \Leftrightarrow Ax_0 + By_0 + Cz_0 + D \neq 0.$

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong không gian Oxyz, tọa độ một vecto \vec{n} vuông góc với cả hai vecto $\vec{a} =$ $(1;1;-2), \vec{b} = (1;0;3)$ là

- (A) (2; 3; -1).
- **(B)** (3; 5; -2).
- $(\mathbf{C})(2;-3;-1).$
- $(\mathbf{D})(3; -5; -1).$

CÂU 2. Trong không gian với hệ tọa độ Oxyz, cho hai vecto $\vec{a} = (2;1;-2)$ và vecto $\vec{b} =$ (1;0;2). Tìm tọa độ vecto \vec{c} là tích có hướng của \vec{a} và \vec{b} .

- $(\mathbf{A}) \vec{c} = (2; 6; -1).$
- **(B)** $\vec{c} = (4; 6; -1).$
- (**C**) $\vec{c} = (4; -6; -1)$. (**D**) $\vec{c} = (2; -6; -1)$.

CÂU 3. Trong không gian với hệ trực tọa độ Oxyz, cho A(2;1;-3), B(0;-2;5) và C(1;1;3). Tìm tọa độ vecto \overrightarrow{n} có phương vuông góc với hai vecto \overrightarrow{AB} và \overrightarrow{AC} .

- **(B)** $\vec{n} = (-18; 0; -3)$. **(C)** $\vec{n} = (-18; 4; -3)$. **(D)** $\vec{n} = (1; 4; -3)$.

CÂU 4. Trong không gian Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

 $(\mathbf{A}) x - 3y^2 + z - 1 = 0.$

- $\mathbf{(B)} \, x^2 + 2y + 4z 2 = 0.$
- (c) 2x 3y + 4z 2024 = 0.
- \mathbf{D} $2x 3y + 4z^2 2025 = 0.$

CÂU 5. Trong không gian Oxyz, cho mặt phẳng (P): 3x - y + 2z - 1 = 0. vectơ nào dưới đây **không phải** là một vecto pháp tuyến của (P)?

ĐIỂM:

"It's not how much time you have, it's how you use it."

)	${f UI}$	\mathbf{CK}	NO	\mathbf{TE}

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	
•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

																•

					_																											
		•																						•	•	•	•					
•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•

\sim III	ICK	NIC	í
വി	ш	MC	1112

A	\overrightarrow{n}	=	(-3:	1
(/	10		١ ٠,	_

$$;-2).$$
 (**B**) $\vec{n}=(3;1;2).$

$$(\vec{c}) \vec{n} = (3; -1; 2).$$

$$(\mathbf{D}) \vec{n} = (6; -2; 4).$$

CÂU 6. Trong không gian với hệ tọa độ Oxyz, vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (Oxy)?

$$(\mathbf{A}) \vec{i} = (1; 0; 0).$$

(B)
$$\vec{m} = (1; 1; 1)$$
.

$$(\mathbf{c}) \overrightarrow{j} = (0; 1; 0).$$

$$(\mathbf{D}) \vec{k} = (0; 0; 1).$$

CÂU 7. Trong không gian Oxyz, vectơ nào dưới đây có giá vuông góc với mặt phẳng (α) : 2x - 3y + 1 = 0?

$$(\mathbf{A}) \vec{a} = (2; -3; 1).$$

(B)
$$\vec{b} = (2; 1; -3)$$
. **(C)** $\vec{c} = (2; -3; 0)$. **(D)** $\vec{d} = (3; 2; 0)$.

$$\vec{c}$$
) $\vec{c} = (2; -3; 0).$

$$\vec{\mathbf{D}}) \vec{d} = (3; 2; 0)$$

CÂU 8. Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng $\frac{x}{-2} + \frac{y}{-1} + \frac{z}{3} = 1$

$$(\mathbf{A}) \vec{n} = (3; 6; -2).$$

$$(\mathbf{B}) \vec{n} = (2; -1; 3).$$

$$(\mathbf{C}) \vec{n} = (-3; -6; -2).$$

$$(\vec{\mathbf{D}}) \vec{n} = (-2; -1; 3).$$

CÂU 9. Trong không gian Oxyz, điểm nào dưới đây nằm trên mặt phẳng (P): 2x-y+z-2=0.

$$\bigcirc$$
 $Q(1;-2;2).$

B)
$$P(2;-1;-1)$$
.

$$\bigcirc$$
 $M(1;1;-1).$

$$(\mathbf{D}) N(1; -1; -1).$$

CÂU 10. Trong không gian với hệ toa độ Oxyz, cho mặt phẳng (α) : x+y+z-6=0. Điểm nào dưới đây **không thuộc** (α) ?

$$\bigcirc$$
 Q(3; 3; 0).

B)
$$N(2; 2; 2)$$
.

$$(\mathbf{C}) P(1; 2; 3).$$

$$(\mathbf{D})M(1;-1;1).$$

CÂU 11. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?

$$(A) P(0; 0; -5).$$

B
$$M(1;1;6)$$
.

$$\mathbb{C}$$
 $Q(2;-1;5).$

$$(-5; 0; 0)$$
.

CÂU 12. Trong không gian Oxyz, mặt phẳng (P): $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$ không đi qua điểm nào dưới đây?

(B)
$$N(1;2;3)$$
.

$$(\mathbf{C})M(1;0;0).$$

$$\bigcirc Q(0;0;3).$$

CÂU 13. Trong không gian Oxyz, mặt phẳng $(\alpha): x-y+2z-3=0$ đi qua điểm nào dưới

(A)
$$M\left(1; 1; \frac{3}{2}\right)$$
. (B) $N\left(1; -1; -\frac{3}{2}\right)$. (C) $P(1; 6; 1)$.

$$\bigcirc P(1;6;1)$$

$$\mathbf{D}Q(0;3;0)$$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 14.** Trong không gian cho hệ tọa độ Oxyz. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Mặt phẳng (Oxy) có một vectơ pháp tuyến là $\overrightarrow{n} = (0;0;1)$.		
b) Mặt phẳng (Oxz) có vectơ pháp tuyến là $\vec{n} = (0;3;0)$.		
c) Mặt phẳng (Oyz) có vectơ pháp tuyến là $\vec{n} = (-2,0,0)$.		
d) Trục Oz có vectơ chỉ phương là $\vec{a} = (0; 0; -2024)$.		

CÂU 15. Trong không gian với hệ toạ độ Oxyz, cho $\vec{a}=(1;-2;3)$ và $\vec{b}=(1;1;-1)$. Các mênh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\boxed{\mathbf{a}) \ \left \vec{a} + \vec{b} \right = 3.}$		
$\overrightarrow{a} \cdot \overrightarrow{b} = -4.$		

Mệnh đề	Ð	S
$ \vec{a} - \vec{b} = 5. $		
$\boxed{\mathbf{d}) \ \left[\overrightarrow{a}, \overrightarrow{b} \right] = (-1; -4; 3).}$		

CÂU 16. Trong không gian với hệ trục tọa độ Oxyz, cho ba vecto $\vec{a}=(1;2;-1), \vec{b}=$ (3;-1;0), $\overrightarrow{c}=(1;-5;2)$. Các mệnh đề sau đây đúng hay sai?

Mệnh đề			
a) \vec{a} cùng phương với \vec{b} .			
$\mathbf{b)} \ \left[\vec{a}, \vec{b} \right] \cdot \vec{c} = 0.$			
c) \vec{a} không cùng phương với \vec{b} .			

Mệnh đề	Ð	\mathbf{S}
d) \vec{a} vuông góc với \vec{b} .		

CÂU 17. Trong không gian Oxyz, cho mặt phẳng (P): 2x + 3y + z - 2024 = 0. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Mặt phẳng (P) có một vectơ pháp tuyến là $\overrightarrow{n}=(2;3;1).$		
b) Mặt phẳng (P) có vectơ pháp tuyến là $\overrightarrow{n}=(6;9;3).$		
c) Mặt phẳng (P) có vectơ pháp tuyến là $\overrightarrow{n} = (-4; -6; -2)$.		
d) Điểm $M(0;0;2024)$ không thuộc mặt phẳng (P) .		

CÂU 18. Trong không gian Oxyz, cho mặt phẳng (P): x+y+z-3=0. Các mệnh đề sau đây đúng hay sai?

Mệnh đề		
a) Điểm $M(-1;-1;-1)$ không thuộc mặt phẳng (P) .		
b) Điểm $N(1;1;1)$ thuộc mặt phẳng (P) .		
c) Điểm $K(-3;0;0)$ không thuộc mặt phẳng (P) .		
d) Điểm $Q(0;0;-3)$ thuộc mặt phẳng (P) .		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 19. Trong không gian với hệ trục tọa độ Oxyz, cho A(0;1;-1), B(1;1;2) và C(1;-1;0). Biết $\overrightarrow{u} = \left[\overrightarrow{BC}, \overrightarrow{BD}\right]$. Khi đó, độ dài của \overrightarrow{u} bằng bao nhiêu?

KQ:				
-----	--	--	--	--

CÂU 20. Trong không gian với hệ trục tọa độ Oxyz, cho A(2;0;2), B(1;-1;-2) và C(-1;1;0) Một vecto $\overrightarrow{n}=(a;b;2)$ có phương vuông góc với hai vecto \overrightarrow{AB} và \overrightarrow{AC} . Tính giá trị của a+b.

	KQ:					
--	-----	--	--	--	--	--

CÂU 21. Hệ trục tọa độ Oxyz, cho bốn điểm A(1;-2;0), B(2;0;3), C(-2;1;3) và D(0;1;1). Tính giá trị của phép tính $\overrightarrow{AB}, \overrightarrow{AC} \cdot \overrightarrow{AD}$.

KQ:				
-----	--	--	--	--

CÂU 22. Trong mặt phẳng tọa độ Oxyz, mặt phẳng (P): 2x - 6y - 8z + 1 = 0 có một vectơ pháp tuyến $\vec{n} = (1; a; b)$. Khi đó tổng a + b bằng bao nhiều?

KQ:				
-----	--	--	--	--

CÂU 23. Trong không gian với hệ tọa độ Oxyz, cho $\vec{u}=(1;1;2), \vec{v}=(-1;m;m-2)$. Tìm giá trị của m dương sao cho $|[\vec{u},\vec{v}]|=\sqrt{14}$.

KQ:		

CÂU 24. Trong không gian với hệ tọa độ Oxyz, cho hai vecto $\vec{m}=(4;3;1), \vec{n}=(0;0;1)$. Gọi $\vec{p}=(a;b;c)$ là vecto cùng hướng với $[\vec{m},\vec{n}]$ (tích có hướng của hai vecto \vec{m} và \vec{n}). Biết $|\vec{p}|=15$, giá trị của tổng a+b+c bằng bao nhiêu?

KQ:		

2

Hai mặt phẳng song song, vuông góc. Khoảng cách một điểm đến mặt phẳng

1. Điều kiện hai mặt phẳng song song, vuông góc: Cho 2 mặt phẳng $(\alpha_1): A_1x+B_1y+C_1z+D_1=0$ và $(\alpha_2): A_2x+B_2y+C_2z+D_2=0$ có vectơ pháp tuyến lần lượt là $\overrightarrow{n}_1=(A_1;B_1;C_1)$, $\overrightarrow{n}_2=(A_2;B_2;C_2)$. Khi đó:

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																											•						

- Θ (α_1) cắt $(\alpha_2) \Leftrightarrow \vec{n}_1$ và \vec{n}_2 không cùng phương.
- Θ $(\alpha_1) \perp (\alpha_2) \Leftrightarrow \overrightarrow{n}_1 \cdot \overrightarrow{n}_2 = 0 \Leftrightarrow A_1 A_2 + B_1 B_2 + C_1 C_2 = 0.$

- \bigcirc \overrightarrow{a} cùng phương với $\overrightarrow{b} \Leftrightarrow [\overrightarrow{a}, \overrightarrow{b}] = \overrightarrow{0}$.
- Θ Nếu $\vec{n} = [\vec{a}, \vec{b}]$ thì vectơ \vec{n} vuông góc với cả hai vectơ \vec{a} và \vec{b} .

2. Khoảng cách từ một điểm đến một mặt phẳng

Trong không gian Oxyz, cho $M_0(x_0; y_0; z_0)$ và mặt phẳng (α) : Ax +By + Cz + D = 0. Khi đó khoảng cách từ điểm M_0 đến mặt phẳng (α) được tính:

$$d(M_0,(\alpha)) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

- \mathbf{A} Chú ý:
 - \bigcirc Mặt phẳng (Oxy) có phương trình: z=0.
 - Θ Mặt phẳng (Oxz) có phương trình: y = 0.
 - \bigcirc Mặt phẳng (Oyz) có phương trình: x=0.

3. Khoảng cách hai mặt phẳng song song

Khoảng cách giữa mặt phẳng song song là khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia (Thực chất là khoảng cách từ một điểm đến mặt phẳng).

Để tính khoảng cách mặt phẳng (α_1) song song với (α_2) , ta thực hiện như sau:

Bước 1: Chọn điểm $M \in (\alpha_1)$.

Bước 2: Tính khoảng cách điểm M đến (α_2) .

Bước 3: Kết luận: $d((\alpha_1), (\alpha_2)) = d(M, (\alpha_2))$.

Chú ý: Cho 2 mặt phẳng (α_1) : $Ax + By + Cz + D_1 = 0$ và (α_2) : $Ax + By + Cz + D_1 = 0$ $By + Cz + D_2 = 0$ có cùng vectơ pháp tuyến là $\vec{n} = (A; B; C)$. Khi đó khoảng cách giữa hai mặt phẳng đó là:

$$d((\alpha_1), (\alpha_2)) = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}.$$

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Khoảng cách từ điểm M(3;2;1) đến mặt phẳng $(P): Ax + Cz + D = 0, A.C.D \neq 0$. Chọn khẳng định đúng trong các khẳng định sau:

$$\mathbf{\widehat{A}} d(M, (P)) = \frac{|3A + C + D|}{\sqrt{A^2 + C^2}}.$$

$$\mathbf{\widehat{C}} d(M, (P)) = \frac{|3A + C|}{\sqrt{A^2 + C^2}}.$$

$$\mathbf{B} d(M,(P)) = \frac{|A+2B+3C+D|}{\sqrt{A^2+B^2+C^2}}.$$

$$\mathbf{D} d(M,(P)) = \frac{|3A+C+D|}{\sqrt{3^2+1^2}}.$$

$$\mathbf{C}$$
 d(M,(P)) = $\frac{\sqrt{A^2 + C}}{\sqrt{A^2 + C^2}}$.

$$\mathbf{D} d(M, (P)) = \frac{|3A + C + D|}{\sqrt{3^2 + 1^2}}.$$

CÂU 2. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình: 3x +4y + 2z + 4 = 0 và điểm A(1, -2, 3). Tính khoảng cách d từ A đến (P).

$$\mathbf{C} d = \frac{5}{\sqrt{29}}.$$

B
$$d = \frac{5}{29}$$
. **C** $d = \frac{5}{\sqrt{29}}$. **D** $d = \frac{\sqrt{5}}{3}$.

CÂU 3. Trong không gian Oxyz, cho mặt phẳng (P): 2x - 2y + z - 1 = 0. Khoảng cách từ điểm M(-1;2;0) đến mặt phẳng (P) bằng

(B) 2.

CÂU 4. Trong không gian Oxyz, tính khoảng cách từ M(1;2;-3) đến mặt phẳng (P):x+2y + 2z - 10 = 0.

 $\frac{11}{3}$

 $(c)^{\frac{7}{2}}$.

CÂU 5. Trong không gian Oxyz, cho mặt phẳng (P): 2x - y + 2z - 4 = 0. Gọi H là hình chiếu vuông góc của điểm M(3;1;-2) lên mặt phẳng (P). Độ dài đoạn thẳng MH là

CÂU 6. Trong không gian với hệ trục tọa độ Oxyz, gọi H là hình chiếu vuông góc của điểm A(1;-2;3) lên mặt phẳng (P): 2x-y-2z+5=0. Độ dài đoạn thẳng AH bằng

 (\mathbf{A}) 3.

 $(\mathbf{D})1.$

CÂU 7. Khoảng cách từ điểm M(-4, -5, 6) đến mặt phẳng (Oxy), (Oyz) lần lượt bằng

(B) 6 và 5.

(C) 5 và 4.

(D) 4 và 6.

CÂU 8. Tính khoảng cách d từ điểm $B(x_0; y_0; z_0)$ đến mặt phẳng (P): y+1=0 ta được:

 $(\mathbf{D})|y_0+1|.$

CÂU 9. Khoảng cách từ điểm C(-2;0;0) đến mặt phẳng (Oxy) bằng

 (\mathbf{A}) 0.

CÂU 10. Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y+2z-10=0và (Q): x + 2y + 2z - 3 = 0 bằng

CÂU 11. Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y+3z-1=0và(Q): x + 2y + 3z + 6 = 0 là

(c) 14.

CÂU 12. Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y+2z-8=0và (Q): x + 2y + 2z - 4 = 0 bằng

CÂU 13. Trong không gian Oxyz, mặt phẳng (P): 2x + y + z - 2 = 0 vuông góc với mặt phẳng nào dưới đây?

 $(\mathbf{A}) \, 2x - y - z - 2 = 0.$

B x - y - z - 2 = 0. **D** 2x + y + z - 2 = 0.

(c) x + y + z - 2 = 0.

QUICK NOTE	CÂ
	và
	'
	CÂ
	y -
	CÂ m
	P
	CÂ
	0, $(P$
	CÂ
	4y
	(
	CÂ
	ph
	(
	Pł CÂ
	O
	` ₋
	CÂ
	2y
	L
	CÂ
	bà
	[
	CÂ
	0,

U 14. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): 2x+my+3z-5=0(Q): nx - 8y - 6z + 2 = 0, với $m, n \in \mathbb{R}$. Xác định m, n để (P) song song với (Q). **(B)** m = 4; n = -4. $(\mathbf{C})m = -4; n = 4.$ **(A)** m = n = -4. **(D)** m = n = 4. **ÙU 15.** Trong không gian Oxyz, cho hai mặt phẳng (P): x-2y+2z-3=0 và (Q): mx+1-2z+1=0. Với giá trị nào của m thì hai mặt phẳng đó vuông góc với nhau? **(A)** m = 1. **(B)** m = -1. (**C**) m = -6. **(D)** m = 6.

lu 16. Trong không gian Oxyz, cho ba mặt phẳng (P): x + y + z - 1 = 0, (Q): 2x + y + z - 1 = 0y+2z+3=0 và $(R)\colon -x+2y+nz=0$. Tính tổng m+2n, biết rằng $(P)\perp (R)$ và (Q) / (Q)

(A) - 6.

 $(\mathbf{C})_{0}$.

10 17. Trong không gian O(xyz), cho (P): x+y-2z+5=0 và (Q): 4x+(2-m)y+mz-3=0m là tham số thực. Tìm tham số m sao cho mặt phẳng (Q) vuông góc với mặt phẳng

A) m = -3.

 $(\mathbf{B}) m = -2.$

 $(\mathbf{C}) m = 3.$

(D) m = 2.

ÙU 18. Trong không gian Oxyz cho hai mặt phẳng (α) : x + 2y - z - 1 = 0 và (β) : 2x + 2y - z - 1 = 0-mz-2=0. Tìm m để hai mặt phẳng (α) và (β) song song với nhau.

(A) m = 1.

(B) Không tồn tai m. **(C)** m = -2.

lu 19. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): x + 2y - 2z - 1 = 0, mặt ẳng nào dưới đây song song với (P) và cách (P) một khoảng bằng 3.

(A) (Q): x + 2y - 2z + 8 = 0.

(B) (Q): x + 2y - 2z + 5 = 0.

(c) (Q): x + 2y - 2z + 1 = 0.

 $(\mathbf{D})(Q)$: x + 2y - 2z + 2 = 0.

nần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **ÙU 20.** Trong không gian toạ độ Oxyz, cho điểm M(1;2;0) và các mặt phẳng (Oxy), (yz), (Oxz). Các mệnh đề sau đây đúng hay **sai**?

Mệnh đề	Ð	S
a) $d(M, (Oxz)) = 2.$		
b) $d(M, (Oyz)) = 1.$		
c) $d(M, (Oxy)) = 1.$		
d) $d(M, (Oxz)) > d(M, (Oyz)).$		

ÀU 21. Trong không gian Oxyz, cho hai mặt phẳng (P): x + 2y - 2z - 6 = 0 và (Q): x + 2y - 2z - 6 = 0-2z+3=0. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Hai mặt phẳng (P) và (Q) song song với nhau.		
b) Hai mặt phẳng (P) và (Q) vuông góc với nhau.		
c) Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng 2.		
d) Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng 3.		

ÀU 22. Trong không gian toạ độ Oxyz, Biết khoảng cách từ điểm O đến mặt phẳng (Q)ng 1. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
a) Mặt phẳng (Q) có phương trình là $x+y+z-3=0$.		
b) Mặt phẳng (Q) có phương trình là $2x + y + 2z - 3 = 0$.		
c) Mặt phẳng (Q) có phương trình là $2x + y - 2z + 6 = 0$.		
d) Mặt phẳng (Q) có phương trình là $x + 2y + 2z - 3 = 0$.		

NU 23. Trong không gian Oxyz, cho điểm N(0;1;0) và hai mặt phẳng (P):2x-y-2z-9=(Q): 4x - 2y - 4z - 6 = 0. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Hai mặt phẳng (P) và (Q) song song với nhau.		
b) Khoảng cách từ điểm N đến mặt phẳng (Q) bằng $\frac{1}{2}$.		
c) Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng 2.		
d) Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng 3.		

CÂU 24. Khoảng cách từ điểm A(2;4;3) đến mặt phẳng (α) : 2x+y+2z+1=0 và (β) : x=0 lần lượt là $d(A,(\alpha))$, $d(A,(\beta))$. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
$\mathbf{a)} \ \mathrm{d} \left(A, (\alpha) \right) =$		
$3 \cdot d(A, (\beta)).$ b) $d(A, (\alpha)) > d(A, (\beta)).$		

Mệnh đề	Ð	S
$\mathbf{c)} \ \mathrm{d}(A,(\alpha)) = \mathrm{d}(A,(\beta)).$		
d) $2 \cdot d(A,(\alpha)) =$		
$d(A,(\beta)).$		

CÂU 25. Trong không gian Oxyz, cho điểm I(2;6;-3) và các mặt phẳng: $(\alpha):x-2=0;$ $(\beta):y-6=0;$ $(\gamma):z-3=0.$ Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) $(\alpha) \perp (\beta)$.		
b) (β) // (Oyz).		

Mệnh đề	Đ	S
$\mathbf{c)} \ \ (\gamma) \ \# \ Oz.$		
d) (α) qua I .		

CÂU 26. Trong không gian Oxyz, cho hai mặt phẳng (P): y-9=0. Xét các mệnh đề sau:

(I)
$$(P) \# (Oxz)$$
.

(II)
$$(P) \perp Oy$$

Mệnh đề	Ð	S
a) Cả (I) và (II) đều sai.		
b) (I) đúng, (II) sai.		

Mệnh đề	Ð	S
c) (I) sai, (II) đúng.		
d) Cả (I) và (II) đều đúng.		

CÂU 27. Trong không gian Oxyz, Cho ba mặt phẳng (α) : x+y+2z+1=0; (β) : x+y-z+2=0; (γ) : x-y+5=0. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \ (\alpha) \ /\!\!/ \ (\gamma).$		
b) $(\alpha) \perp (\beta)$.		

Mệnh đề	Đ	S
c) $(\gamma) \perp (\beta)$.		
d) $(\alpha) \perp (\gamma)$.		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 28. Trong không gian Oxyz, cho điểm M(-1;2-3) và mặt phẳng (P): 2x-2y+z+5=0. Tính khoảng cách từ điểm M đến mặt phẳng (P) (kết quả viết dưới dạng số thập phân, lấy gần đúng đến hàng phần mười).

KQ:					
-----	--	--	--	--	--

CÂU 29. Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng (P): x+2y-2z-16=0 và (Q): x+2y-2z-1=0 bằng bao nhiêu?

KQ:			

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 30. Trong không gian Oxyz, điểm M(0;a;0) thuộc trục Oy và cách đều hai mặt phẳng: (P): x+y-z+1=0 và (Q): x-y+z-5=0. Khi đó a có giá trị bằng

	5	•	0	
KQ:				

CÂU 31. Trong không gian với hệ trục tọa độ Oxy, cho A(1;2;3), B(3;4;4). Khi đó giá trị của tham số m bằng bao nhiêu để khoảng cách từ điểm A đến mặt phẳng (P): 2x + y + mz - 1 = 0 bằng độ dài đoạn thẳng AB.

QUICK NOTE	KQ:				
	CÂU 32. Gọi điểm $M(0; a; 0)$ trên trục Oy sao cho khoảng cách từ điển $(P): 2x - y + 3z - 4 = 0$ nhỏ nhất. Khi đó giá trị của a là	n M d	 đến n	ıặt p	 hẳng
	KQ:				
	CÂU 33. Cho điểm $M(0;0;m)$ thuộc trục Oz sao cho điểm M cách đề mặt phẳng $(P): 2x + 3y + z - 17 = 0$. Khi đó giá trị của m là	u điển	n A (2; 3;	——— 4) và
	KQ:				
	CÂU 34. Trong không gian với hệ trực tọa độ $Oxyz$, cho hai điểm A (1 và mặt phẳng (P) qua Ox sao cho d $(B;(P)) = 2d(A;(P)), (P)$ cắt A				
	giữa AB . Tính $a+b+c$. KQ:				
	CÂU 35. Trong không gian $Oxyz$, cho mặt phẳng $(P): 3x + 4y - 12$)~ F			 điểm
	A $(2;4;-1)$. Trên mặt phẳng (P) lấy điểm M . Gọi B là điểm sao cho khoảng cách d từ B đến mặt phẳng (P)				
	KQ:				
	CÂU 36. Trong không gian $Oxyz$, cho hai mặt phẳng $(P): 2x + my$	+2n	iz -	9 =	0 và
	$(Q): 6x-y-z-10=0. \text{ Tìm } m \text{ d\'e }(P)\perp (Q)$ KQ:		$\overline{}$		
	CÂU 37. Trong không gian $Oxyz$, cho hai mặt phẳng $(P): 5x+my+z-3y-2z+7=0$. Để (P) // (Q) thì giá trị của $m+n$ là (làm tròn đến cho nhất)				
	KQ:				
		1~	6 1		0 773
	CÂU 38. Trong không gian $Oxyz$, cho hai mặt phẳng $(P): 2x - my - (Q): (m+3)x + y + (5m+1)z - 7 = 0$. Tìm m để $(P) \equiv (Q)$.	- 42 -	0 + 7	m =	U va
	KQ:				
	CÂU 39. Trong không gian $Oxyz$, cho hai mặt phẳng $(P): x-2y-z+y+z-1=0$. Mặt phẳng (R) đi qua điểm $M(1;1;1)$ chứa giao tuy phương trình của $(R): m(x-2y-z+3)+(2x+y+z-1)=0$. Khi	rến củ	ia (P)	và	(Q);
	bao nhiêu? $m(x-2y-z+3)+(2x+y+z-1)=0$. Kin	do gi	a ui	cua	111 Ia
	KQ:				
	CÂU 40. Trong không gian $Oxyz$, cho 3 điểm $A\left(1;0;0\right)$, $B\left(0;b;0\right)$, $C\left(0;0\right)$); c) tr	ong d	₫ó b∙α	$c \neq 0$
	và mặt phẳng $(P): y-z+1=0$. Giá trị của $\frac{2b}{c}$ bằng bao nhiêu để	mặt	phẳn	g (A	BC)
	vuông góc với mặt phẳng (P) .				
	KQ:				
	CÂU 41. Trong không gian $Oxyz$, cho mặt phẳng $(\alpha):ax-y+2z+b=$				uyến
	của hai mặt phẳng $(P): x - y - z + 1 = 0$ và $(Q): x + 2y + z - 1 = 0$.	Tính	$\frac{a+4}{1}$	$\frac{4b}{}$	
	KQ:				
	CÂU 42. Gọi m , n là hai giá trị thực thỏa mãn giao tuyến của hai mặt $2y+nz+1=0$ và $(Q_m):x-my+nz+2=0$ vuông góc với mặt phẳng (α)				
	Tính $m+n$				
	KQ:				
	CÂU 43. Trong không gian với hệ tọa độ $Oxyz$ có bao nhiều mặt phẳn phẳng $(Q): x+y+z+3=0$, cách điểm $M(3;2;1)$ một khoảng bằng 3	$\sqrt{3}$ bi			
	một điểm $X(a;b;c)$ trên mặt phẳng đó, khi đó $a+b+c$ có giá trị bằng	r 5			
	KQ:				
	CÂU 44. Biết rằng trong không gian với hệ tọa độ $Oxyz$ có hai mặt cùng thỏa mãn các điều kiện sau: đi qua hai điểm $A(1;1;1)$ và $B(0;-1)$				

các trục tọa độ Ox, Oy tại hai điểm cách đều O. Giả sử $(P): x+b_1y+c_1z+d_1=0$ và $(Q): x+b_2y+c_2z+d_2=0$. Tính giá trị biểu thức $b_1b_2+c_1c_2$

Г		
KQ:		

3

Viết PTTQ MP khi biết điểm đi qua và một VTPT hoặc hai VTCP

1. Lập phương trình tổng quát của mặt phẳng đi qua điểm $M_0\left(x_0;y_0;z_0\right)$ và biết một vectơ pháp tuyến $\vec{n}=(A;B;C)$

Trong không gian Oxyz, phương trình tổng quát của mặt phẳng đi qua điểm $M_0\left(x_0;y_0;z_0\right)$ và có vectơ pháp tuyến $\overrightarrow{n}=(A;B;C)$ là:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

hay Ax + By + Cz + D = 0 với $D = -Ax_0 - By_0 - Cz_0$

Chú ý:

- a. Mặt phẳng (α) có cặp vectơ chỉ phương \overrightarrow{a} , \overrightarrow{b} $(\overrightarrow{a}, \overrightarrow{b}$ không cùng phương) thì mặt phẳng (α) có vectơ pháp tuyến $\overrightarrow{n} = \left[\overrightarrow{a}, \overrightarrow{b}\right]$.
- b. Mặt phẳng (α) đi qua ba điểm A, B, C không thẳng hàng thì có cặp vectơ chỉ phương $\overrightarrow{AB}, \overrightarrow{AC}$ nên mặt phẳng (α) có vectơ pháp tuyến $\overrightarrow{n} = [\overrightarrow{AB}, \overrightarrow{AC}]$.
- c. Dựa vào tính chất vuông góc, song song giữa mặt phẳng với mặt phẳng, giữa đường thẳng với mặt phẳng trong không gian để tìm vectơ chỉ phương, vectơ pháp tuyến của mặt phẳng cần lập.
 - ❷ Hai mặt phẳng song song thì có cùng vecto pháp tuyến.
 - Hai mặt phẳng vuông góc thì vectơ chỉ phương của mặt phẳng này là vectơ pháp tuyến của mặt phẳng kia.
 - Đường thẳng song song mặt phẳng thì vecto chỉ phương của đường thẳng là vecto chỉ phương của mặt phẳng.
 - ② Đường thẳng vuông góc mặt phẳng thì vectơ chỉ phương của đường thẳng là vecto pháp tuyến của mặt phẳng.

2. Các trường hợp đặc biệt của mặt phẳng

a. Phương trình mặt phẳng theo đoạn chắn Mặt phẳng (α) không đi qua gốc tọa độ O và lần lượt cắt trục Ox tại $A\left(a;0;0\right)$, cắt trục Oy tại $B\left(0;b;0\right)$, cắt trục Oz tại $C\left(0;0;c\right)$ có phương trình mặt phẳng theo đoạn chắn là: $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ với $a\cdot b\cdot c\neq 0$

	QU	ICK	NOTE	
				• • • • • • • • • • • • • • • • • • • •
	• • • • •			
• • • • • • • • •				
• • • • • • • • •	• • • • •			
	• • • • •			
	• • • • •			
• • • • • • • • • • • • • • • • • • • •	• • • • •			
• • • • • • • • •				

<u> </u>	٧	/ \	۱ŀ	⊃r	Υ	10	a	t	h		-	С	9)(5	2	9) _	1()	8	1	Ç)	(?			
					7	ŝ	1	1	Ī	7		,	,	7		١	7		7										
					•	_		•	1	•	•	7	•			•		•	•				•						
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.																												
	٠.									•	•																		
	٠.																		•										
	٠.																												
		•						•					•											•		•		•	
		•						•					•											•		•		•	
			•	٠.	•	•	•	•	•			•	•												•		•		•
		•	•					•		•	•			•	•	•	•	•		•	•	•	•	•		•		•	•
• •	٠.	٠	•	٠.	•	•	•	•		•	•		•	•	•	•	•	•	•				•	•		•		•	•
		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
• •	• •	•	•		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •																												

- b. Phương trình mặt phẳng đặc biệt Xét phương trình mặt phẳng $(\alpha):Ax+By+Cz+D=0$ với $A^2+B^2+C^2\neq 0$
 - $\mbox{\Large \ \ \, }$ Nếu D=0 thì mặt phẳng (α) đi qua gốc tọa độ O và có dạng $(\alpha):Ax+By+Cz=0.$

- \bullet Nếu $A=0, B\neq 0, C\neq 0$ thì mặt phẳng (α) song song hoặc chứa trục Ox.
- + Mặt phẳng (α) song song Ox thì có dạng $(\alpha): By + Cz + D = 0$.(Hình 1)
- + Mặt phẳng (α) chứa trực Ox thì có dạng $(\alpha): By + Cz = 0$.
- Θ Nếu $A \neq 0$, B = 0, $C \neq 0$ thì mặt phẳng (α) song song hoặc chứa trục Oy.
- + Mặt phẳng (α) song song Oy thì có dạng (α): Ax + Cz + D = 0.(Hình 2)
- + Mặt phẳng (α) chứa trục Oy thì có dạng $(\alpha): Ax + Cz = 0$.
- $oldsymbol{\Theta}$ Nếu $A \neq 0, B \neq 0, C = 0$ thì mặt phẳng (α) song song hoặc chứa trục Oz.
- + Mặt phẳng (α) song song Oz thì có dạng (α) : Ax + By + D = 0.(Hình 3)
- + Mặt phẳng (α) chứa trục Oz thì có dạng (α) : Ax + By = 0.
- \bullet Nếu $A = B = 0, C \neq 0$ thì mặt phẳng (α) song song hoặc trùng với (Oxy).
- + Mặt phẳng (α) song song (Oxy) thì có dạng $(\alpha): Cz + D = 0.$ (Hình 4)
- + Mặt phẳng (α) chứa (Oxy) thì có dạng $(\alpha): z = 0$.
- \bullet Nếu A = C = 0, $B \neq 0$ thì mặt phẳng (α) song song hoặc trùng với (Oxz).
- + Mặt phẳng (α) song song (Oxz) thì có dạng $(\alpha): By + D = 0.$ (Hình 5)
- + Mặt phẳng (α) chứa (Oxz) thì có dạng $(\alpha): y = 0$.
- $\mbox{\Large \ \ \, }$ Nếu $B=C=0,\,A\neq 0$ thì mặt phẳng (α) song song hoặc trùng với (Oyz).
- + Mặt phẳng (α) song song (Oyz) thì có dạng (α) : Ax + D = 0.(Hình 6)
- + Mặt phẳng (α) chứa (Oyz) thì có dạng $(\alpha): x = 0$.

Ax + Cz + D =

Hình 1

Hình 2

Hình 3

Hình 5

Hình 4

Nhận xét:

- $oldsymbol{\Theta}$ Để nhớ các phương trình mặt phẳng đặc biệt thì lấy phương trình $(\alpha): Ax + By +$ Cz + D = 0 làm chuẩn.
- + Mặt phẳng (α) chứa gốc tọa độ O(0;0;0) thì D=0.
- $+\,$ Mặt phẳng (α) chứa trục tương ứng nào (trục $Ox,\,Oy,\,Oz)$ thì ẩn đó không có (không chứa Ax, By, Cz) và D=0.
- + Mặt phẳng (α) song song với trực tương ứng nào (trực $Ox,\,Oy,\,Oz)$ thì ẩn đó không c
ó (không chứa Ax, By, Cz) và $D \neq 0$.
- ❷ Nếu không nhớ các phương trình mặt phẳng đặc biệt thì nhớ vec-tơ chỉ phương của các trục Ox, Oy, Oz và vectơ pháp tuyến các mặt phẳng tọa độ (Oxy), (Oxz), (Oyz) để chuyển bài toán lập phương trình mặt phẳng khi biết một điểm và một vectơ pháp tuyến.
- + Trục Ox có vecto chỉ phương là $\overrightarrow{i} = (1;0;0)$.
- + Truc Oy có vecto chỉ phương là $\overrightarrow{j} = (0; 1; 0)$.

QUICK NOTE

QUICK NOTE	+ Trục Ox có vectơ chỉ phương l	$\vec{k} = (0; 0; 1).$								
	+ Mặt phẳng (Oxy) có vectơ pháp tuyến là $\overrightarrow{k}=(0;0;1)$.									
		+ Mặt phẳng (Oxz) có vectơ pháp tuyến là $\vec{j} = (0;1;0)$.								
	+ Mặt phẳng (Oyz) có vectơ pháp tuyến là $\vec{i} = (1;0;0)$.									
	Phần I. Mỗi câu hỏi học sinh chọ	n một trong bốn phương án A, B, C, D.								
	l -	tộ $Oxyz$, phương trình nào dưới đây là phương trình								
		a có một vectơ pháp tuyến $\vec{n} = (1; -2; 3)$.								
		(B) $x - 2y - 3z - 6 = 0$. (D) $x - 2y - 3z + 6 = 0$.								
		tọa độ $Oxyz$, phương trình mặt phẳng đi qua điểm								
	A(1; 2; -3) có vectơ pháp tuyến \vec{n} = (2									
		B $2x - y + 3z - 4 = 0$. D $2x - y + 3z + 4 = 0$.								
		(D) $2x - y + 3z + 4 = 0$.								
		ơng trình của mặt phẳng đi qua điểm $A(3;0;-1)$ và								
	có vecto pháp tuyến $\vec{n} = (4; -2; -3)$ là $\mathbf{\hat{A}} 4x - 2y + 3z - 9 = 0.$									
	CÂU 4. Trong không gian với hệ tọa c	độ $Oxyz$, phương trình mặt phẳng qua $A(-1;1;-2)$								
	và có vectơ pháp tuyến $\vec{n} = (1; -2; -2; -2; -2; -2; -2; -2; -2; -2; -2$	2) là								
	$\begin{array}{c c} (A) & x - 2y - 2z - 1 = 0. \\ \hline (C) & x - 2y - 2z + 7 = 0. \end{array}$									
		•								
	CÂU 5. Trong không gian $Oxyz$, phươ $\mathbf{\hat{A}} z = 0$. $\mathbf{\hat{B}} x = 0$.	ong trình mặt phẳng (Oyz) là $(\mathbf{C})x + y + z = 0.$ $(\mathbf{D})y = 0.$								
	CÂU 6. Trong không gian $Oxyz$, phươ									
	(A) $z = 0$. (B) $x = 0$.	ong trimi cua mat phang (Oxy) ia \mathbf{C} $y = 0$.								
		$\hat{\phi}$ \hat{O}								
	của mặt phẳng (Oyz) ?									
		© $y - z = 0$. D $z = 0$.								
		độ $Oxyz$, phương trình nào sau đây là phương trình								
	của mặt phẳng Ozx ? $ (\textbf{A}) x = 0. \qquad (\textbf{B}) y - 1 = 0. $	$\mathbf{\widehat{C}}) y = 0. \qquad \qquad \mathbf{\widehat{D}}) z = 0.$								
	CÂU 9. Trong không gian với hệ toa độ	Oxyz, phương trình mặt phẳng (P) qua $M(0;-2;1)$								
	và có cặp vectơ chỉ phương $\vec{a} = (1; 1; -1)$	$-2), \vec{b} = (1;0;3)$ là								
	\bigcirc 3x - 5y - z - 6 = 0.									
		a độ $Oxyz$, cặp vector $\vec{a}=(2;1;-2), \vec{b}=(1;0;2)$ cơ rơng trình mặt phẳng (P) qua $C(1;1;3)$ là								
	(a) $2x + 6y - z - 7 = 0$.	(B) $2x - 6y - z + 5 = 0$.								
	\bigcirc 2x + 6y + z + 5 = 0.	$\mathbf{D} 2x - 6y - z + 7 = 0.$								
		no ba điểm $A(3;0;0),\ B(0;1;0)$ và $C(0;0;-2).$ Mặt								
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	z , x , y , z , x , y , z ,								
	(A) $\frac{1}{3} + \frac{1}{-1} + \frac{1}{2} = 1$. (B) $\frac{1}{3} + \frac{3}{1} + \frac{1}{-1}$	$\frac{z}{-2} = 1$. © $\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1$. D $\frac{x}{-3} + \frac{y}{1} + \frac{z}{2} = 1$.								
		tộ $Oxyz$, cho ba điểm $A(0;1;2)$, $B(2;-2;1)$, $C(-2;1;0)$								
		C) là $ax + y - z + d = 0$. Hãy xác định a và d . $c - 6$. \mathbf{C} $a = -1$, $d = -6$. \mathbf{D} $a = -6$, $d = 6$.								
		điểm $A(0; -3; 2)$ và mặt phẳng (P) : $2x-y+3z+5=0$								
	Mặt phẳng đi qua A và song song với (
		B $2x + y + 3z - 3 = 0$.								
	2x + y + 3z + 3 = 0.									

.......

..........

..........

CÂU 14. Trong không gian Oxyz, cho hai điểm A(0;0;1) và B(1;2;3). Mặt phẳng đi qua A và vuông góc với AB có phương trình là

 $(\mathbf{A}) x + 2y + 2z - 11 = 0.$

B) x + 2u + 2z - 2 = 0.

(c) x + 2y + 4z - 4 = 0.

 $(\mathbf{D})x + 2y + 4z - 17 = 0.$

CÂU 15. Trong mặt phẳng Oxyz, cho hai điểm A(1;0;0) và B(3;2;1). Mặt phẳng đi qua A và vuông góc với AB có phương trình là

 $(\mathbf{A}) \, 2x + 2y + z - 2 = 0.$

B) 4x + 2y + z - 17 = 0.

(**c**) 4x + 2y + z - 4 = 0.

 \mathbf{D} 2x + 2y + z - 11 = 0.

CÂU 16. Trong không gian với hệ toa độ Oxyz, cho hai điểm A(0;1;1) và B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

 $(\mathbf{A}) \, x + y + 2z - 3 = 0.$

(B) x + y + 2z - 6 = 0.

 $(\mathbf{C})x + 3y + 4z - 7 = 0.$

 \mathbf{D} x + 3y + 4z - 26 = 0.

CÂU 17. Trong không gian Oxyz, cho ba điểm A(-1;1;1), B(2;1;0), C(1;-1;2). Mặt phẳng đi qua A và vuông góc với đường thẳng BC có phương trình là

(A) 3x + 2z + 1 = 0.

(B) x + 2y - 2z + 1 = 0.

 \mathbf{C} x + 2y - 2z - 1 = 0.

 $(\mathbf{D})3x + 2z - 1 = 0.$

CÂU 18. Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;1), C(-2;0;1)Phương trình mặt phẳng đi qua A và vuông góc với BC là

- $(\mathbf{A}) y + 2z 5 = 0.$
- **(B)** 2x y 1 = 0. **(C)** 2x y + 1 = 0.
- $(\mathbf{D}) y + 2z 5 = 0.$

CÂU 19. Trong không gian Oxyz, mặt phẳng (P) đi qua hai điểm A(0;1;0), B(2;3;1) và vuông góc với mặt phẳng (Q): x + 2y - z = 0 có phương trình là

- (A) 4x 3y + 2z + 3 = 0.
- **B**) 4x 3y 2z + 3 = 0.

 \mathbf{C} 2x + y - 3z - 1 = 0.

 $(\mathbf{D}) 4x + y - 2z - 1 = 0.$

CÂU 20. Cho hai mặt phẳng (α) : 3x - 2y + 2z + 7 = 0, (β) : 5x - 4y + 3z + 1 = 0. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả (α) và (β) là

(A) 2x - y - 2z = 0.

(B) 2x - y + 2z = 0.

 $\mathbf{C} 2x + y - 2z = 0.$

 \mathbf{D} 2x + y - 2z + 1 = 0.

CÂU 21. Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;4;1); B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0. Một mặt phẳng (Q) đi qua hai điểm A,B và vuông góc với mặt phẳng (P) có dạng ax + by + cz - 11 = 0. Khẳng định nào sau đây là đúng?

- (A) a + b + c = 5.
- **(B)** a + b + c = 15.
- (**C**) a + b + c = -5.
- **(D)** a + b + c = -15.

CÂU 22. Trong không gian Oxyz, cho hai mặt phẳng (P): x-3y+2z-1=0, (Q): x-z+2=00. Mặt phẳng (α) vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3 . Phương trình của (α) là

(A) x + y + z - 3 = 0.

B) x + y + z + 3 = 0.

 $(\mathbf{C}) - 2x + z + 6 = 0.$

 $(\mathbf{D}) - 2x + z - 6 = 0.$

CÂU 23. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): ax+by+cz-9=0chứa hai điểm A(3;2;1), B(-3;5;2) và vuông góc với mặt phẳng (Q):3x+y+z+4=0. Tính tổng S = a + b + c?

- (A) S = -12.
- **(B)** S = 2.
- $(\mathbf{C})S = -4.$

CÂU 24. Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x + y + 3z = 0, (R): 2x - y + z = 0 là

- $(\mathbf{A}) 4x + 5y 3z + 22 = 0.$
- **(B)** 4x 5y 3z 12 = 0.
- $(\mathbf{C}) 2x + y 3z 14 = 0.$

 $\mathbf{(D)} 4x + 5y - 3z - 22 = 0.$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 25.** Trong không gian Oxyz, cho điểm A(1;-2;3) và hai vecto $\vec{v}=(-1;2;3), \vec{u}=(-1;2;3)$ (-2;0;1).

Mệnh đề	Ð	\mathbf{S}
$\mathbf{a)} \ \vec{v} = -\vec{i} + 2\vec{j} + 3\vec{k}.$		
b) $\vec{u} \perp \vec{v}$.		
c) Phương trình mặt phẳng đi qua điểm $A(1;-2;3)$ và vuông góc với giá của vectơ $\overrightarrow{v}=(-1;2;3)$ là $x-2y-3z+4=0$.		

d) Phương trình mặt phẳng di qua diểm $A(1;-2;3)$ và vuông góc với giá của vecto $\overrightarrow{u}=(-2;0;1)$ là $2x-y+1=0$. CÂU 26. Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm $A(1;1;4)$, $B(2;7;9)$, $Oxin 0$ $\overrightarrow{AB} = \overrightarrow{i} + 6\overrightarrow{j} + 5\overrightarrow{k}$. b) $\overrightarrow{AB} \perp \overrightarrow{AC}$. c) Phương trình mặt phẳng đi qua ba điểm A , B , C là $x-y+z-4=0$. d) Phương trình mặt phẳng đi qua ba điểm A , B , C là $2x+y-z-2=0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng (P) : $3x-2=0$. c) $Oxin 0$ $Oxin$	D	S	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	S -z+1	
a) $\overrightarrow{AB} = \overrightarrow{i} + 6\overrightarrow{j} + 5\overrightarrow{k}$. b) $\overrightarrow{AB} \perp \overrightarrow{AC}$. c) Phương trình mặt phẳng đi qua ba điểm A, B, C là $x - y + z - 4 = 0$. d) Phương trình mặt phẳng đi qua ba điểm A, B, C là $2x + y - z - 2 = 0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng (P) : $3x - 2 = 0$.	2y+	-z+1	
b) $\overrightarrow{AB} \perp \overrightarrow{AC}$. c) Phương trình mặt phẳng di qua ba diễm A, B, C là $x-y+z-4=0$. d) Phương trình mặt phẳng di qua ba diễm A, B, C là $2x+y-z-2=0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng $(P): 3x-2=0$. Mệnh đề a) Mặt phẳng (P) có một vec-tơ pháp tuyến là $\overrightarrow{n}=(-3;2;-1)$. b) Mặt phẳng (P) di qua điểm $B(-1;1;2)$. c) Phương trình của mặt phẳng (Q) di qua điểm M và song song với mặt phẳng (P) là $3x-2y+z-12=0$. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là $7x+my+nz=0$. Khi đó $m+n=8$. CÂU 28. Trong không gian với hệ toa độ $Oxyz$, cho hai điểm $A(1;0;0), B(4;1;2)$. b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$. c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x+y+2z-3=0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x+y+2z-12=0$. CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của A trên các trục Ox, Oy, Oz . Mệnh đề a) Diểm A có tọa độ là $A(1;0;0)$. b) Diểm B có tọa độ là $A(1;0;0)$.			
b) $\overrightarrow{AB} \perp \overrightarrow{AC}$. c) Phương trình mặt phẳng đi qua ba điểm A, B, C là $x-y+z-4=0$. d) Phương trình mặt phẳng đi qua ba điểm A, B, C là $2x+y-z-2=0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng (P) : $3x-2=0$.			
c) Phương trình mặt phẳng di qua ba diễm A, B, C là $x-y+z-4=0$. d) Phương trình mặt phẳng di qua ba diễm A, B, C là $2x+y-z-2=0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng $(P):3x-2;0$. Mệnh đề a) Mặt phẳng (P) có một vec-tơ pháp tuyến là $\overrightarrow{n}=(-3;2;-1)$. b) Mặt phẳng (P) di qua điểm $B(-1;1;2)$. c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là $3x-2y+z-12=0$. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là $7x+my+nz=0$. Khi đó $m+n=8$. CÂU 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0), B(4;1;2)$. b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$. c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x+y+2z-3=0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x+y+2z-12=0$. CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của A trên các trục A ,			
d) Phương trình mặt phẳng đi qua ba điểm A, B, C là $2x+y-z-2=0$. CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng $(P):3x-2;0$. Mệnh đề a) Mặt phẳng (P) có một vec-tơ pháp tuyến là $\vec{n}=(-3;2;-1)$. b) Mặt phẳng (P) đi qua điểm $B(-1;1;2)$. c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là $3x-2y+z-12=0$. d) Phương trình của mặt phẳng (R) đi qua điểm O , M và vuông góc với mặt phẳng (P) là $7x+my+nz=0$. Khi đó $m+n=8$. CÂU 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0), B(4;1;2)$ b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$. c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x+y+2z-3=0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x+y+2z-12=0$. CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox , Oy , Oz . Mệnh đề a) Diểm A có tọa độ là A (1;0;0). b) Diểm B có tọa độ là A (1;0;0). c) $\overrightarrow{BC} = (-1;-2;3)$.			
CÂU 27. Trong không gian $Oxyz$, cho điểm $M(2;-1;4)$ và mặt phẳng (P) : $3x-2;0$.Mệnh đềDa) Mặt phẳng (P) có một vec-tơ pháp tuyến là $\vec{n} = (-3;2;-1)$.b) Mặt phẳng (P) đi qua điểm $B(-1;1;2)$.c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là $3x-2y+z-12=0$.d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là $7x+my+nz=0$. Khi đó $m+n=8$.CÂU 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0)$, $B(4;1;2)$.b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$.c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x+y+2z-3=0$.d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x+y+2z-12=0$.CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trực Ox , Oy , Oz .Mệnh đềDa) Diểm A có tọa độ là $A(1;0;0)$.Db) Diểm B có tọa độ là $B(1;2;0)$.c) $\overrightarrow{BC} = (-1;-2;3)$.			
 a) Mặt phẳng (P) có một vec-tơ pháp tuyến là n = (-3; 2; -1). b) Mặt phẳng (P) di qua điểm B(-1; 1; 2). c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là 3x - 2y + z - 12 = 0. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là 7x + my + nz = 0. Khi đó m + n = 8. CÂU 28. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;0), B(4; 1; 2) b) Nếu I là trung điểm đoạn thẳng AB thì I (5/2; 1/2; 1). c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1; 2; 3). Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1; 0; 0). b) Điểm B có tọa độ là B(1; 2; 0). c) BC = (-1; -2; 3). 	<u>D</u>		
 a) Mặt phẳng (P) có một vec-tơ pháp tuyến là n = (-3; 2; -1). b) Mặt phẳng (P) di qua điểm B(-1; 1; 2). c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là 3x - 2y + z - 12 = 0. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là 7x + my + nz = 0. Khi đó m + n = 8. CÂU 28. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;0), B(4;1;2 Mệnh đề a) AB = (5;1;2). b) Nếu I là trung điểm đoạn thẳng AB thì I (5/2; 1/2;1). c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1;0;0). b) Điểm B có tọa độ là B(1;2;0). c) BC = (-1; -2;3). 			
 b) Mặt phẳng (P) di qua điểm B(-1;1;2). c) Phương trình của mặt phẳng (Q) di qua điểm M và song song với mặt phẳng (P) là 3x - 2y + z - 12 = 0. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là 7x + my + nz = 0. Khi đó m + n = 8. CÂU 28. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;0), B(4;1;2) Mệnh đề a) AB = (5;1;2). b) Nếu I là trung điểm đoạn thẳng AB thì I (5/2; 1/2;1). c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1;0;0). b) Điểm B có tọa độ là B(1;2;0). c) BC = (-1; -2;3). 			
 c) Phương trình của mặt phẳng (Q) đi qua điểm M và song song với mặt phẳng (P) là 3x - 2y + z - 12 = 0. d) Phương trình của mặt phẳng (R) đi qua điểm O, M và vuông góc với mặt phẳng (P) là 7x + my + nz = 0. Khi đó m + n = 8. CÂU 28. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;0), B(4;1;2) Mệnh đề a) AB = (5;1;2). b) Nếu I là trung điểm đoạn thẳng AB thì I (5/2;1/2;1). c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1;0;0). b) Điểm B có tọa độ là B(1;2;0). c) BC = (-1; -2; 3). 	\dashv		
phẳng (P) là $3x - 2y + z - 12 = 0$. d) Phương trình của mặt phẳng (R) đi qua điểm O , M và vuông góc với mặt phẳng (P) là $7x + my + nz = 0$. Khi đó $m + n = 8$. CÂU 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0)$, $B(4;1;2)$. Mệnh đề a) $\overrightarrow{AB} = (5;1;2)$. b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$. c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x + y + 2z - 3 = 0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x + y + 2z - 12 = 0$. CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trực Ox , Oy , Oz . Mệnh đề a) Điểm A có tọa độ là $A(1;0;0)$. b) Điểm B có tọa độ là $B(1;2;0)$.			1
câu 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0)$, $B(4;1;2)$ Mệnh đề a) $\overrightarrow{AB} = (5;1;2)$. b) Nếu I là trung điểm đoạn thắng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$. c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x + y + 2z - 3 = 0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x + y + 2z - 12 = 0$. Câu 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox , Oy , Oz . Mệnh đề a) Điểm A có tọa độ là $A(1;0;0)$. b) Điểm B có tọa độ là $B(1;2;0)$. c) $\overrightarrow{BC} = (-1;-2;3)$.	_		
CÂU 28. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0)$, $B(4;1;2)$ Mệnh đềDa) $\overrightarrow{AB} = (5;1;2)$.b) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2};\frac{1}{2};1\right)$.c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x + y + 2z - 3 = 0$.d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x + y + 2z - 12 = 0$.CÂU 29. Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trục Ox , Oy , Oz .Mệnh đềĐa) Điểm A có tọa độ là $A(1;0;0)$.b) Điểm B có tọa độ là $B(1;2;0)$.c) $\overrightarrow{BC} = (-1;-2;3)$.			
$ \begin{array}{c} \mathbf{M} \\ \mathbf{\hat{n}} \\ \mathbf{\hat{d}} \\ \mathbf{\hat{B}} \\ \mathbf$			
 a) \$\overline{AB}\$ = (5;1;2). b) Nếu \$I\$ là trung điểm đoạn thẳng \$AB\$ thì \$I\$	2).		
 b) Nếu I là trung điểm đoạn thẳng AB thì I (⁵/₂; ¹/₂; 1). c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trực tọa độ Oxyz, cho điểm M(1; 2; 3). Gọi A lượt là hình chiếu vuông góc của M trên các trực Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1; 0; 0). b) Điểm B có tọa độ là B(1; 2; 0). c) BC = (-1; -2; 3). 	5	\mathbf{S}	
c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là $3x + y + 2z - 3 = 0$. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x + y + 2z - 12 = 0$. CÂU 29. Trong không gian với hệ trực tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A lượt là hình chiếu vuông góc của M trên các trực Ox , Oy , Oz . Mệnh đề a) Điểm A có tọa độ là $A(1;0;0)$. b) Điểm B có tọa độ là $B(1;2;0)$. c) $\overrightarrow{BC} = (-1;-2;3)$.			
 c) Mặt phẳng (α) đi qua A và vuông góc với AB có phương trình là 3x + y + 2z - 3 = 0. d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. CÂU 29. Trong không gian với hệ trực tọa độ Oxyz, cho điểm M(1; 2; 3). Gọi A lượt là hình chiếu vuông góc của M trên các trực Ox, Oy, Oz. Mệnh đề a) Điểm A có tọa độ là A(1; 0; 0). b) Điểm B có tọa độ là B(1; 2; 0). c) BC = (-1; -2; 3). 			
$3x + y + 2z - 3 = 0.$ $d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là 3x + y + 2z - 12 = 0. \vec{CÂU 29.} \text{ Trong không gian với hệ trực tọa độ } Oxyz, \text{ cho điểm } M(1;2;3). \text{ Gọi } A, \text{ lượt là hình chiếu vuông góc của } M \text{ trên các trực } Ox, Oy, Oz. \frac{\text{Mệnh đề}}{\text{a) Diểm } A \text{ có tọa độ là } A(1;0;0).} \frac{\text{b) Diểm } B \text{ có tọa độ là } B(1;2;0).}{\text{c) } \overrightarrow{BC} = (-1;-2;3).}$	+		-
$y+2z-12=0.$ $\overrightarrow{CAU} 29. \text{ Trong không gian với hệ trực tọa độ } Oxyz, \text{ cho điểm } M(1;2;3). \text{ Gọi } A;$ $\text{lượt là hình chiếu vuông góc của } M \text{ trên các trực } Ox, Oy, Oz.$ $\overrightarrow{Mệnh đề}$ a) Diểm A có tọa độ là $A(1;0;0)$. $\overrightarrow{b} \text{ Diểm } B \text{ có tọa độ là } B(1;2;0).$ $\overrightarrow{c} \overrightarrow{BC} = (-1;-2;3).$			
CÂU 29. Trong không gian với hệ trực tọa độ $Oxyz$, cho điểm $M(1;2;3)$. Gọi A , lượt là hình chiếu vuông góc của M trên các trực Ox , Oy , Oz .Mệnh đềĐa) Điểm A có tọa độ là $A(1;0;0)$.b) Điểm B có tọa độ là $B(1;2;0)$.c) $\overrightarrow{BC} = (-1;-2;3)$.			
lượt là hình chiếu vuông góc của M trên các trực Ox , Oy , Oz . Mệnh đề a) Điểm A có tọa độ là A (1; 0; 0). b) Điểm B có tọa độ là B (1; 2; 0). c) $\overrightarrow{BC} = (-1; -2; 3)$.			
Mệnh đề Đ a) Điểm A có tọa độ là $A(1;0;0)$. b) Điểm B có tọa độ là $B(1;2;0)$. c) $\overrightarrow{BC} = (-1; -2; 3)$.	i, B	C	lần
 a) Điểm A có tọa độ là A (1;0;0). b) Điểm B có tọa độ là B (1;2;0). c) BC = (-1; -2; 3). 			_
b) Điểm B có tọa độ là B (1; 2; 0). c) $\overrightarrow{BC} = (-1; -2; 3)$.)	\mathbf{S}	-
c) $\overrightarrow{BC} = (-1; -2; 3).$	\downarrow		
d) Phương trình mặt phẳng (ABC) là $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 0$.			
1 2 3			1
	$\frac{1}{1}$		_
CÂU 30. Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;0;0), B(4;1;2)$ nào sau đây đúng hay sai?		I ệnh	đề
$oxed{ ext{M}}$ ệnh đề). M		7
a) $\overrightarrow{AB} = (3; 1; 2)$.	,	\mathbf{S}	1
b) Mặt phẳng đi qua A và vuông góc với AB có phương trình là $3x + y + y + y + y + y + y + y + y + y + $,	S	
2z - 3 = 0.	,	S	-
c) Nếu I là trung điểm đoạn thẳng AB thì $I\left(\frac{5}{2}; \frac{1}{2}; 1\right)$.	,	<u>S</u>	
	,	<u>S</u>	_

Mệnh đề	Ð	\mathbf{S}
d) Mặt phẳng trung trực đoạn thẳng AB có phương trình là $3x+y+2z-12=0$.		

CÂU 31. Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A,B,C lần lượt là hình chiếu vuông góc của M trên các trục Ox,Oy,Oz. Mệnh đề nào sau đây đúng hay sai?

Mệnh đề	Đ	S
a) Điểm A có tọa độ là $A(1;0;0)$.		
b) Điểm B có tọa độ là $B(1;2;0)$.		
c) Phương trình mặt phẳng (ABC) là $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 0$.		
d) Phương trình mặt phẳng (ABC) là $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$.		

CÂU 32. Trong không gian Oxyz, cho điểm A(3;5;2). Gọi A_1, A_2, A_3 lần lượt là hình chiếu của điểm A lên các mặt phẳng (Oxy), (Oyz), (Oxz). Mệnh đề nào sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Điểm A_1 có tọa độ là $(3;5;0)$.		
b) Phương trình mặt phẳng đi qua các điểm A_1,A_2,A_3 là $10x+6y+15z-60=0.$		
c) Phương trình mặt phẳng đi qua các điểm A_1,A_2,A_3 là $10x+6y+15z-90=0.$		
d) Phương trình mặt phẳng đi qua các điểm A_1, A_2, A_3 là $\frac{x}{3} + \frac{y}{5} + \frac{z}{2} = 1$.		

CÂU 33. Trong không gian Oxyz, cho hai điểm A(4;0;1) và B(-2;2;3). Mệnh đề nào sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
a) $\overrightarrow{AB} = (-6; 2; 2).$		
b) Nếu I là trung điểm đoạn thẳng AB thì $I(1;1;2)$.		
c) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $x+y+2z-6=0.$		
d) Mặt phẳng trung trực của đoạn thẳng AB có phương trình là $3x-y-z=0$.		

CÂU 34. Trong không gian hệ tọa độ Oxyz, cho A(1;2;-1);B(-1;0;1) và mặt phẳng (P): x+2y-z+1=0. Mệnh đề nào sau đây đúng hay sai?

Mệnh đề	Ð	S
a) $\overrightarrow{AB} = (1; 1; -1).$		
b) Phương trình mặt phẳng (Q) qua A,B và vuông góc với (P) là $x+z=0.$		
c) Khoảng cách từ điểm A đến mặt phẳng (P) là: $d(A, (P)) = \frac{7\sqrt{6}}{6}$.		
d) Phương trình mặt phẳng (Q) qua A,B và vuông góc với (P) là $3x-y+z=0$.		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 35. Trong không gian Oxyz, phương trình tổng quát mặt phẳng (P): ax+by+cz+d=0 đi qua điểm M(3;-1;4) đồng thời vuông góc với giá của vecto $\overrightarrow{a}=(1;-1;2)$. Tính a+b+c.

, ,	/		
KQ:			

QUICK NOTE	CÂU 36. Trong không gian với hệ tọa độ $Oxyz$, phương trình mặt phẳng (P) : $ax + by + cz + d = 0$ qua $M(0; -2; 1)$ và có cặp vectơ chỉ phương $\vec{a} = (-2; -3; 8), \vec{b} = (-1; 0; 6)$. Tính
	a+b+c.
	KQ:
	CÂU 37. Trong không gian $Oxyz$, cho $A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1)$. Mặt phẳng
	(α) : $ax + by + cz + d = 0$ đi qua $A(1;1;0), B(0;2;1), (\alpha)$ song song với đường thẳng CD . Tính $a + b + c$.
	KQ:
	The.
	CÂU 38. Trong không gian $Oxyz$, cho điểm $M(2;1;-3)$ và mặt phẳng $(P): 3x-2y+z-3=0$. Phương trình của mặt phẳng đi qua M và song song với (P) có dạng $(Q): ax+by+cz+d=0$
	0. Tính $a+b+c$.
	KQ:
	CÂU 39. Trong không gian $Oxyz$, cho ba điểm $A(3; -2; -2), B(3; 2; 0), C(0; 2; 1)$. Phương
	trình mặt phẳng (ABC) có dạng $= ax + by + cz + d = 0$. Tính $a + b + c$.
	KQ:
	CÂU 40. Trong không gian, cho hai điểm $A(0;0;1)$ và $B(2;1;3)$. Phương trình mặt phẳng
	đi qua A và vuông góc với ABC : $ax + by + cz + d = 0$. Tính $a + b + c$.
	KQ:
	CÂU 41. Trong không gian $Oxyz$, cho hai điểm $A(2;4;1)$, $B(-1;1;3)$ và mặt phẳng $(P):x-$
	3y + 2z - 5 = 0. Lập phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với
	mặt phẳng (P) : $ax + by + cz + d = 0$. Tính $a + b + c$.
	KQ:
	CÂU 42. Trong không gian $Oxyz$, gọi M, N, P lần lượt là hình chiếu vuông góc của $A(2; -3; 1)$
	lên các mặt phẳng tọa độ. Tính $a+b+c$ của phương trình mặt phẳng (MNP) : $ax+by+$
	cz + d = 0.
	cz + d = 0. KQ:
	cz + d = 0.
	cz + d = 0. KQ:
	cz+d=0. KQ: Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua
	$cz+d=0.$ KQ: Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng $Ax+By+Cz+D=0.$
	$cz+d=0$. KQ: Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng $Ax+By+Cz+D=0$. Sau đó dựa vào giả thiết bài toán để tìm giá trị D .
	 Cz + d = 0. KQ: Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt
	$cz+d=0$. KQ: Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng $Ax+By+Cz+D=0$. Sau đó dựa vào giả thiết bài toán để tìm giá trị D .
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua ② Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. ② Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 1 = 0 Mặt
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y − z − 1 = 0 Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng 3?
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 1 = 0 Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng 3? Â (Q): 2x + 2y - z + 10 = 0. B (Q): 2x + 2y - z + 4 = 0.
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 1 = 0 Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng 3? Â (Q): 2x + 2y - z + 10 = 0. B (Q): 2x + 2y - z + 4 = 0.
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua ② Viết phương trình mặt phẳng (α) dưới dạng
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D. Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 1 = 0 Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng 3? (Q): 2x + 2y - z + 10 = 0. (Q): 2x + 2y - z + 4 = 0. (Q): 2x + 2y - z + 8 = 0. CÂU 2. Trong không gian Oxyz, cho ba điểm A(2;0;0), B(0;3;0), C(0;0;-1). Phương trình của mặt phẳng (P) qua D(1;1;1) và song song với mặt phẳng (ABC) là
	Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua ② Viết phương trình mặt phẳng (α) dưới dạng $Ax + By + Cz + D = 0.$ ② Sau đó dựa vào giả thiết bài toán để tìm giá trị D . Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $(P): 2x + 2y - z - 1 = 0$ Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng $(P): 2x + 2y - z + 10 = 0$. ② $(Q): 2x + 2y - z + 10 = 0$. ② $(Q): 2x + 2y - z + 8 = 0$.
	 Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua Viết phương trình mặt phẳng (α) dưới dạng Ax + By + Cz + D = 0. Sau đó dựa vào giả thiết bài toán để tìm giá trị D.
	Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua ② Viết phương trình mặt phẳng (α) dưới dạng $Ax + By + Cz + D = 0.$ ② Sau đó dựa vào giả thiết bài toán để tìm giá trị D . Chú ý: Dạng này giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng. Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D. CÂU 1. Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng (P): $2x + 2y - z - 1 = 0$ Mặt phẳng nào sau đây song song với (P) và cách (P) một khoảng bằng 3 ? ② (Q): $2x + 2y - z + 10 = 0$. ② (Q): $2x + 2y - z + 8 = 0$.
	Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua

CÂU 4. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (Q): x+2y+2z-3=0, mặt phẳng (P) không qua O, song song với mặt phẳng (Q) và $\mathrm{d}((P),(Q))=1$. Phương trình mặt phẳng (P) là

 \mathbf{A} x + 2y + 2z + 1 = 0.

 $(\mathbf{C})x + 2y + 2z - 6 = 0.$

 $(\mathbf{D})x + 2y + 2z + 3 = 0.$

CÂU 5. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - 2y + z - 5 = 0. Viết phương trình mặt phẳng (Q) song song với mặt phẳng (P), cách (P) một khoảng bằng 3 và cắt trục Ox tại điểm có hoành độ dương.

- **(A)** (Q): 2x 2y + z + 4 = 0.
- **(B)** (Q): 2x 2y + z 14 = 0.
- **(c)** (Q): 2x 2y + z 19 = 0.
- $(\mathbf{D})(Q): 2x 2y + z 8 = 0.$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 6. Trong không gian hệ toạ độ Oxyz, lập phương trình các mặt phẳng song song với mặt phẳng (β) : x+y-z+3=0 và cách (β) một khoảng bằng $\sqrt{3}$ có dạng ax+by+cz+d=0 $(d\neq 0)$. Tính a+b+c.

CÂU 7. Trong không gian với hệ trực tọa độ Oxyz, cho hai mặt phẳng $(Q_1): 3x-y+4z+2=0$ và $(Q_2): 3x-y+4z+8=0$. Viết phương trình mặt phẳng (P): ax+by+cz=0 song song và cách đều hai mặt phẳng (Q_1) và (Q_2) . Tính a+b+c.

CÂU 8. Trong không gian Oxyz, gọi (γ) là mặt phẳng cách đều hai mặt phẳng sau đây: $4x-y-2z-3=0,\ 4x-y-2z-5=0.$ lập mặt phẳng (γ) có dạng ax+by+cz=0. Tính a+b+c+d.

CÂU 9. Trong không gian Oxyz cho các điểm A(2;0;0), B(0;4;0), C(0;0;6), D(2;4;6). Gọi (P) là mặt phẳng song song với mặt phẳng (ABC), (P) cách đều D và mặt phẳng (ABC). Viêt phương trình của mặt phẳng (P): ax + by + cz + d = 0. Tính a + b + c.

Viết PTTQ khi biết điểm đi qua nhưng không biết vectơ

Khi bài toán cho biết mặt phẳng (α) đi qua điềm $M_0(x_0;y_0;z_0)$ và giả thiết bài toán không cho vectơ pháp tuyến \overrightarrow{n} hoặc không cho hai vectơ chỉ phương \overrightarrow{a} , \overrightarrow{b} thì ta thực hiện các bước sau:

- \odot Gọi vectơ pháp tuyến của mặt phẳng (α) là $\overrightarrow{n} = (A; B; C)$ với $A^2 + B^2 + C^2 \neq 0$.
- \odot Viết phương trình mặt phẳng (α) dưới dạng:

$$(\alpha)$$
: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$.

 $oldsymbol{\Theta}$ Sau đó dựa vào giả thiết bài toán để tìm **hai** phương trình chứa 3 ẩn A,B,C. Chú ý:

- ② Dạng này, giả thiết có liên quan đến khoảng cách và góc liên quan đến mặt phẳng.
- $oldsymbol{\Theta}$ Để giải tìm vectơ pháp tuyến của mặt phẳng đơn giàn hơn thì gọi vectơ pháp tuyến của mặt phẳng là $\overrightarrow{n}=(1;B;C)$.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong không gian Oxyz, cho 3 điểm A(1;0;0), B(0;-2;3), C(1;1;1). Gọi (P) là mặt phẳng chứa A,B sao cho khoảng cách từ C tới mặt phẳng (P) bằng $\frac{2}{\sqrt{3}}$. Phương trình mặt phẳng (P) là

QUICK NOTE

•		•																														
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•
	•	•	•	•	•	•	•	•	•	•			•	•		•	•	•	•	•	•	•	•	•	•	•						•	

						-		-	-						-	-		

 	• • • • • •	• • • • • •	

QUICK NOTE	trình mặt phẳ $(\mathbf{A}) x - 2y - \mathbf{A}$	g hệ trực tọa độ $Oxyz$ cho 3 điể ng chứa OQ và cách đều 2 điể $2z=0$ hoặc $x+4y-2z=0$. $2z=0$ hoặc $x+4y-2z=0$.	m M, N.	z = 0 hoặc $x - 4y - 2z = 0$.
	CÂU 3. Trong $(A, B, C \in \mathbb{Z},$		yz, biết mặt phẳng góc với mặt ph	g (P) : $Ax + By + Cz + D = 0$ ắng (Q) : $x + y + z = 0$ và cách B + C.
				KQ:
				tiểm $M(-1;1;0),\ N(0;0;-2),$ ảng cách từ I đến (P) bằng
	$\sqrt{3}$. Giả sử ph	ương trình mặt phẳng (P) có c	dang $ax + by + z$	$+d=0$ với $b>0$. Tính $\frac{a}{b}$ viết
	dưới dạng số t	hập phân.		
				KQ:
	C(-3;4;1), D khoảng cách t	g không gian với hệ toạ độ Oxy . $(1;2;1)$. Mặt phẳng (P) đi qua từ D đến (P) . Biết có hai mặ tà $x+b_2y+c_2z+d_2=0$. Tính	a A, B sao cho kh t phẳng (P) thỏa	noảng cách từ C đến (P) bằng a yêu cầu đề bài là $x+b_1y+$
				KQ:
	C(1;1;1). Mặt khoảng cách t	g không gian với hệ trục tọa C phẳng (P) đi qua A và gốc tọ C đến (P) . Biết phương trìn phiêu ước nguyên?	a độ O sao cho k	hoảng cách từ B đến (P) bằng
				KQ:
	C(-1;2;-2) v mặt phẳng (P thỏa yêu cầu đ		+1 = 0. Mặt phẩn sao cho $IB = 2I$ là $4x+b_1y+c_1+c_1$	ng (α) đi qua A , vuông góc với C . Biết có hai mặt phẳng (α) $d_1 = 0$ và $2x + b_2y + c_2 + d_2 = 0$
				KQ:
		24 a É alama ar lab é a		
	6 × M	ột số dạng khác		
	CÂU 1. Trongqua điểm M tâm của tam g \bullet (P) : $6x$	và cắt các trục tọa độ Ox, Oy	M(1;2;3). Viết pl μ , Oz lần lượt tại (P): 6x +	tương án A, B, C, D. nương trình mặt phẳng (P) đi A, B, C sao cho M là trọng 3y + 2z + 6 = 0. 3y + 2z - 6 = 0.
			· /	G(1;4;3). Mặt phẳng nào sau
	đây cắt các tri	$A \subset Ox$, Oy , Oz lần lượt tại A , B		trọng tâm tứ diện $OABC$?
		$\frac{1}{9} \frac{9}{z}$	\bigcirc 12x + 3y + \bigcirc \bigcirc 12x + 3y +	
	$\frac{1}{4} + \frac{1}{16}$	$+\frac{1}{12}=0.$	D) $12x + 3y + 3$	-4z = 0.
	lần lượt tại A	B,Csao cho tam giác ABC	nhận M làm trự	
		+z-6=0.		
		3z - 14 = 0.		
	$(P) \colon x + y + z$			$M\left(a,b,c\right)$ thuộc mặt phẳng $C;2;-1),$ $C\left(5;-1;3\right)$. Tích abc
	bằng (A) 6.	B) -6.	© 0.	D 5.

CÂU 5. Trong không gian với hệ tọa độ $Oxyz$, cho điểm $M(3;2;1)$. Mặt phẳng (P) đi qua
M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa
độ sao cho M là trực tâm tam giác ABC . Trong các mặt phẳng sau, tìm mặt phẳng song
song với mặt phẳng (P) .

- **(A)**<math>3x + 2y + z + 14 = 0.
- **(B)** 2x + y + 3z + 9 = 0.

 \mathbf{C} 3x + 2y + z - 14 = 0.

CÂU 6. Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2), B(2;-2;0), C(-2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC)có phương trình là

(A) 4x - 2y - z + 4 = 0.

(B) 4x - 2y + z + 4 = 0.

(c) 4x + 2y + z - 4 = 0.

 $(\mathbf{D})4x + 2y - z + 4 = 0.$

CÂU 7. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua A(1;1;1) và B(0;2;2) đồng thời cắt các tia Ox, Oy lần lượt tại hai điểm M, N (không trùng với gốc tọa độ O) sao cho OM = 2ON.

- **(A)** (P): 3x + y + 2z 6 = 0.
- **(B)** (P): 2x + 3y z 4 = 0.
- **(c)** (P): 2x + y + z 4 = 0.
- $(\mathbf{D})(P)$: x + 2y z 2 = 0.

CÂU 8. Trong không gian Oxyz, cho mặt phẳng (α) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (khác gốc tọa độ O) sao cho M là trực tâm tam giác ABC. Mặt phẳng (α) có phương trình dạng ax + by + cz - 14 = 0. Tính tổng T = a + b + c.

- **(B)** 14.

CÂU 9. Trong không gian Oxyz, cho hai mặt phẳng (P): x+4y-2z-6=0, (Q): x-2y+14z-6=0. Mặt phẳng (α) chứa giao tuyến của (P),(Q) và cắt các trục tọa độ tại các điểm A, B, C sao cho hình chóp O.ABC là hình chóp đều. Phương trình mặt phẳng (α) là

(A) x + y + z - 6 = 0.

(B) x + y + z + 6 = 0.

(C) x + y + z - 3 = 0.

 $(\mathbf{D})x + y - z - 6 = 0.$

CÂU 10. Trong không gian tọa độ Oxyz, cho mặt phẳng (α) đi qua M(1; -3; 8) và chắn trên Oz một đoạn dài gấp đôi các đoạn chắn trên các tia Ox, Oy. Giả sử (α) : ax+by+cz+d=0 $(a, b, c, d \text{ là các số nguyên}). \text{ Tính } S = \frac{a+b+c}{d}.$ $\textcircled{\textbf{A}} 3. \qquad \textcircled{\textbf{B}} -3.$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 11. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3;1;7), B(5;5;1) và mặt phẳng (P): 2x-y-z+4=0. Điểm M thuộc (P) sao cho $MA=MB=\sqrt{35}$. Biết Mcó hoành độ nguyên, tính OM (làm tròn đến chữ số hàng phần trăm).

KQ:

CÂU 12. Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) chứa điểm M(1;3;-2), cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho $\frac{OA}{1} = \frac{OB}{2} = \frac{OC}{4}$. Biết phương trình mặt phẳng (P) có dạng ax + by + cz - 8 = 0. Tính $P = \frac{a+c}{2b}$ (kết quả được viết dưới dạng số thập phân).

KQ:

CÂU 13. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) đi qua điểm M(9;1;1)cắt các tia Ox, Oy, Oz tại A, B, C (A, B, C không trùng với gốc tọa độ). Thể tích tứ diện OABC đạt giá tri nhỏ nhất là bao nhiêu (kết quả được viết dưới dang số thập phân)?

KQ:

CÂU 14. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là ba số thực dương thay đổi, thỏa mãn điều kiện $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 2017$. Khi đó, mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ là M(m; m; m). Tính giá trị P = 2017m + 2.

KQ:

CÂU 15. Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(1;2;5). Tính số mặt phẳng (α) đi qua M và cắt các trực Ox, Oy, Oz lần lượt tại A, B, C sao cho OA = OB = $OC \neq 0$.

ລແ	ICK	NC	
SII	IIC K	MC) 2

KO.		
NQ:		

CÂU 16. Trong không gian với hệ trục tọa độ Oxyz, có bao nhiều mặt phẳng (P) đi qua ba điểm M(2;1;3), A(0;0;4) và cắt hai trực Ox, Oy lần lượt tại B, C khác O thỏa mãn diện tích tam giác OBC bằng 1?

Bài toán thực tế

Gắn hệ trục toạ độ vào mô hình. Đặt gốc toạ độ tại vị trí có "3 góc vuông"

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Cho tứ diện O.ABC, có OA, OB, OC đôi một vuông góc và OA = 5, OB = 2, OC = 4. Gọi M, N lần lượt là trung điểm của OB và OC. Gọi G là trọng tâm của tam giác ABC. Khoảng cách từ G đến mặt phẳng (AMN) là

(A)
$$\frac{20}{3\sqrt{129}}$$
.

B
$$\frac{20}{\sqrt{129}}$$
. **C** $\frac{1}{4}$.

$$\bigcirc \frac{1}{4}$$
.

$$\bigcirc \frac{1}{2}$$
.

CÂU 2. Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, $SA \perp (ABCD)$. Góc giữa SB và mặt phẳng đáy bằng 45° , E là trung điểm của SD, AB=2a, AD=DC=a. Tính khoảng cách từ điểm B đến mặt phẳng (ACE).

$$\bigcirc a$$
.

$$\bigcirc \frac{3a}{4}.$$

CÂU 3. Trong không gian với hệ tọa độ Oxyz, cho hình chóp SABCD có đáy ABCD là hình chữ nhật. Biết A(0;0;0), D(2;0;0), B(0;4;0), S(0;0;4). Gọi M là trung điểm của SB. Tính khoảng cách từ B đến mặt phẳng (CDM).

$$(\mathbf{A}) d(B, (CDM)) = 2.$$

$$(\mathbf{B}) d(B, (CDM)) = 2\sqrt{2}.$$

$$\mathbf{C} d(B, (CDM)) = \frac{1}{\sqrt{2}}.$$

$$(\mathbf{D}) d(B, (CDM)) = \sqrt{2}.$$

CÂU 4. Một phần sân trường được định vị bởi các điểm A, B, C, D như hình vẽ.

Bước đầu chúng được lấy "thăng bằng" để có cùng độ cao, biết ABCD là hình thang vuông ở A và B với độ dài AB=25 m, AD=15 m, BC=18 m. Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở C nên người ta lấy độ cao ở các điểm B, C, D xuống thấp hơn so với đô cao ở A là 10 cm, a cm, 6 cm tương ứng. Giá tri của alà số nào sau đây?

Phần III. Học sinh điền kết quả vào ô trống.

 $\hat{\mathbf{CAU}}$ 5. Một sân vận động được xây dựng theo mô hình là hình chóp cụt OAGD.BCFE có hai đáy song song với nhau. Mặt sân OAGD là hình chữ nhật và được gắn hệ trực Oxyz như hình vẽ dưới (đơn vị trên mỗi trục tọa độ là mét). Mặt sân OAGD có chiều dài OA = 100 m, chiều rộng OD = 60 m và tọa độ điểm B(10; 10; 8). Tính khoảng cách từ điểm G đến mặt phẳng (OBED) (kết quả làm tròn đến hàng phần chục).

KQ:

CÂU 6. Một công trình đang xây dựng được gắn hệ trục Oxyz như hình vẽ dưới (đơn vị trên mỗi trục tọa độ là mét). Mỗi cột bê tông có dạng hình lăng trụ tứ giác đều và có tâm của mặt đáy trên lần lợt là $A(3;2;3), B(6;3;3), C(9;4;2), D\left(6;0;\frac{5}{2}\right)$. Tính khoảng cách từ điểm D đến mặt phẳng (ABC) (kết quả làm tròn tới hàng phần trăm).

KQ:		
11 co.		

CÂU 7. Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P), (Q), (R) (như hình vẽ) của tòa nhà lần lượt có phương trình (P): x+2y-2z+1=0, (Q): 2x+y+2z-3=0, (R): 2x+4y-4z-19=0. Tính khoảng cách giữa hai bức tường (P) và (R) của tòa nhà.

CÂU 8. Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P), (Q), (R), (T) (như hình vẽ) của tòa nhà lần lượt có phương trình $(P)\colon 2x-y-z+1=0, (Q)\colon x+3y-z-2=0, (R)\colon 4x-2y-2z+9=0, (T)\colon 2x+6y-2z+15=0.$ Tính chiều rộng bức tường (Q) của tòa nhà (kết quả làm tròn đến hàng phần chục).

den nang phan enge).						
KQ:						

CÂU 9. Cho hình lập phương ABCD.A'B'C'D' có độ dài cạnh bằng 1. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, C'D', DD'. Chọn hệ tọa độ Oxyz như hình vẽ, xác định tọa độ các điểm M, N, P, Q. Tính khoảng cách từ điểm Q đến mặt phẳng (MNP). Kết quả làm tròn đến hàng phần chục.

	~.		
~ 1	\/II	NGOC	ри Ат

QUICK NOTE	
GUICK NOIE	
	• • •
	• • •
	• • •
•••••	
	••
	• • •
•••••	

KQ:

CÂU 10. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,SAD là tam giác đều và nằm trong mặt phẳng với đáy. Gọi M và N lần lượt là trung điểm của BC và CD. Chọn hệ tọa độ Oxyz như hình vẽ dưới. Gọi Q là trung điểm SD. Tính khoảng cách giữa hai mặt phẳng (SAC) và mặt phẳng (ONQ) (kết quả làm tròn đến hàng phần chục).

KQ:

CÂU 11. Cho tứ diện OABC, có OA, OB, OC đôi một vuông góc và OA = 5, OB = 2, OC = 14. Gọi M, N lần lượt là trung điểm của OB và OC. Chọn hệ tọa độ Oxyz như hình vẽ dưới. Tính khoảng cách từ điểm B đến mặt phẳng (AMN). Kết quả làm tròn đến hàng phần chục.

KQ:

CÂU 12. Cho hình chóp S.ABCD đáy là hình thang vuông tại A và $D, SA \perp (ABCD)$. Góc giữa SB và mặt phẳng đáy bằng $45^{\circ}, E$ là trung điểm của SD, AB = 2a, AD = DC = a. Chọn hệ tọa độ Oxyz như hình vẽ dưới. Tính khoảng cách từ điểm B đến mặt phẳng (AEC) (kết quả làm tròn đến hàng phần chục).

KQ:

CÂU 13. Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm S(-1;6;2), A(0;0;6), B(0;3;0), C(-2;0;0). Gọi H là chân đường cao vẽ từ S của tứ diện S.ABC. Giả sử phương trình mặt phẳng đi qua ba điểm S,B,H có dạng x+by+cz+d=0 với $b,c,d\in\mathbb{Z}$. Tính b+c+d.

KQ:

CÂU 14. Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Biết A(0;0;0), D(2;0;0), B(0;4;0), S(0;0;4). Gọi M là trung điểm của SB và G là trọng tâm của tam giác SCD. Tính khoảng cách từ điểm B đến mặt phẳng (AMG). Kết quả làm tròn đến hàng phần chục.

KQ:

CÂU 15. Cho hình hộp chữ nhật $ABCD \cdot A'B'C'D'$ có các kích thước AB = 4, AD = 3, AA' = 5. Gọi G là trọng tâm của tam giác ACB'. Gọi m là khoảng cách từ điểm G đến mặt phẳng (AB'C) và n là khoảng cách giữa hai mặt phẳng (AB'D') và (CB'D'). Tính m+n.

KQ:

CÂU 16. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA=a và vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và SD và G là trọng tâm của tam giác AMN. Biết độ dài đoạn BG có dạng $x \cdot a$. Hỏi giá trị x bằng bao nhiêu? (Kết quả được làm tròn đến hàng phần trăm).

KQ:

CÂU 17. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của SB và SD và G là

QUICK NOTE	trọng tâm của tam giác AMN . Khoảng cách từ điểm G đến mặt phẳng (SBC) là bao nhiêu
	nếu $a = 6\sqrt{3}$?
	KQ:
	CÂU 18. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , cạnh bên $SA=a$
	và vuông góc với mặt phẳng đáy. Gọi M , N lần lượt là trung điểm của SB và SD và G là trọng tâm của tam giác AMN . Tính khoảng cách từ điểm C đến mặt phẳng (AMN) biết
	trong tam cua tam grac AMN . Timi khoang cach tu diem C den mat phang (AMN) blet $a = \sqrt{3}$.
	KQ:
	CÂU 19. Cho hình chốp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $AB = a$, $BC = a\sqrt{3}$, $SA = a$ và SA vuông góc với đáy $ABCD$. Tính khoảng cách từ điểm C đến mặt phẳng
	(SBD) biết $a = \sqrt{21}$.
	KQ:
	CÂU 20. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $AB=a,BC=a\sqrt{3},$
	SA=a và SA vuông góc với đáy $ABCD$. Gọi G là trọng tâm của tam giác SBD . Tính
	khoảng cách từ điểm G đến mặt phẳng (SCD) biết $a=\sqrt{3}$.
	KQ:
	CÂU 21. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông tâm I , có độ dài đường
	chéo bằng $a\sqrt{2}$ và SA vuông góc với mặt phẳng $(ABCD)$. Gọi α là góc giữa hai mặt phẳng
	(SBD) và $(ABCD)$ và $\tan \alpha = \sqrt{2}$. Khoảng cách từ điểm I đến mặt phẳng (SAB) có dạng
	$x \cdot a$. Tìm giá trị của x .
	KQ:
	CÂU 22. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông tâm I , có độ dài đường
	chéo bằng $a\sqrt{2}$ và SA vuông góc với mặt phẳng $(ABCD)$. Gọi α là góc giữa hai mặt phẳng (SBD) và $(ABCD)$ và $\tan\alpha = \sqrt{2}$. Tính khoảng cách từ điểm I đến mặt phẳng (SCD)
	biết $a=2\sqrt{2}$.
	KQ:
	CÂU 23. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABCD)$. Tính khoảng
	cách từ điểm A đến mặt phẳng (SBD) biết $a=\sqrt{21}$.
	KQ:
	CÂU 94 Cha bành abón C ADCD aó đón ADCD là bành amôn na nah a mặt bên C AD là
	CÂU 24. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABCD)$. Gọi G là trọng
	tâm của tam giác SAB và M,N lần lượt là trung điểm của $SC,\dot{S}D.$ Tính khoảng cách từ
	điểm S đến mặt phẳng (GMN) biết $a=\sqrt{14}.$
	KQ:

PHƯƠNG PHÁP TỌ	DA ĐỘ TRONG KHÔNG GIAN	1
Bài 1.	PHƯƠNG TRÌNH MẶT PHẨNG	1
	Dạng 1. Xác định vectơ pháp tuyến của mặt phẳng. Xác định điểm thuộc và không thu	ıộc mặt
	phẳng	1
	🖒 Dạng 2. Hai mặt phẳng song song, vuông góc. Khoảng cách một điểm đến mặt phẳng	3
	🗁 Dạng 3. Viết PTTQ MP khi biết điểm đi qua và một VTPT hoặc hai VTCP	9
	🗁 Dạng 4. Viết PTTQ MP khi biết VTPT, VTCP nhưng không biết điểm đi qua	16
	Dạng 5. Viết PTTQ khi biết điểm đi qua nhưng không biết vecto	17
	🗁 Dạng 6. Một số dạng khác	18
	🗁 Dạng 7. Bài toán thực tế	20

