Package 'copre'

May 21, 2024

Type Package

Title Tools for Nonparametric Martingale Posterior Sampling

Version 0.2.1

Description Performs Bayesian nonparametric density estimation using Martingale posterior distributions including the Copula Resampling (CopRe) algorithm. Also included are a Gibbs sampler for the marginal Gibbs-type mixture model and an extension to include full uncertainty quantification via a predictive sequence resampling (SeqRe) algorithm. The CopRe and SeqRe samplers generate random nonparametric distributions as output, leading to complete nonparametric inference on posterior summaries. Routines for calculating arbitrary functionals from the sampled distributions are included as well as an important algorithm for finding the number and location of modes, which can then be used to estimate the clusters in the data using, for example, k-means. Implements work developed in Moya B., Walker S. G. (2022). doi:10.48550/arxiv.2206.08418>, Fong, E., Holmes, C., Walker, S. G. (2021)

doi:10.48550/arxiv.2103.15671, and Escobar M. D., West, M. (1995)

<doi:10.1080/01621459.1995.10476550>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.1

LinkingTo Rcpp, RcppArmadillo, BH

Imports Rcpp, pracma, abind, dirichletprocess

Suggests ggplot2

NeedsCompilation yes

Author Blake Moya [cre, aut],

The University of Texas at Austin [cph, fnd]

Maintainer Blake Moya <blakemoya@utexas.edu>

Repository CRAN

Date/Publication 2024-05-21 21:40:02 UTC

2 copre-package

R topics documented:

copre-package	- 2
antimodes	3
autoplot.copre_result	3
autoplot.grideval_result	4
autoplot.seqre_result	5
base_measure	5
copre	6
functional	7
gibbsmix	8
$G_normls \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	8
length.grideval_result	9
modes	10
moment	11
plot.copre_result	11
plot.grideval_result	12
plot.seqre_result	13
$register_autoplot_s3_methods $	13
register_s3_method	14
seq_measure	14
Sq_dirichlet	15
Sq_gnedin0	15
Sq_pitmanyor	16
[[.seqreresult	17
\$.grideval_result	18
	20

copre-package

CopRe Tools for Nonparametric Martingale Posterior Sampling

Description

Index

Performs Bayesian nonparametric density estimation using Martingale posterior distributions including the Copula Resampling (CopRe) algorithm. Also included are a Gibbs sampler for the marginal Gibbs-type mixture model and an extension to include full uncertainty quantification via a predictive sequence resampling (SeqRe) algorithm. The CopRe and SeqRe samplers generate random nonparametric distributions as output, leading to complete nonparametric inference on posterior summaries. Routines for calculating arbitrary functionals from the sampled distributions are included as well as an important algorithm for finding the number and location of modes, which can then be used to estimate the clusters in the data using, for example, k-means. Implements work developed in Moya B., Walker S. G. (2022).

Author(s)

Blake Moya blakemoya@utexas.edu

antimodes 3

References

 Fong, E., Holmes, C., Walker, S. G. (2021). Martingale Posterior Distributions. arXiv. DOI: doi:10.48550/arxiv.2103.15671

- Moya B., Walker S. G. (2022). Uncertainty Quantification and the Marginal MDP Model. arXiv. DOI: doi:10.48550/arxiv.2206.08418
- Escobar M. D., West, M. (1995) Bayesian Density Estimation and Inference Using Mixtures. Journal of the American Statistical Association. DOI: doi:10.1080/01621459.1995.10476550

antimodes

Antimode Extractor

Description

Extracts the antimodes from a copre_result or seqre_result object.

Usage

```
antimodes(obj, mean = FALSE, grd = NULL, idx = FALSE)
```

Arguments

obj	A copre_result or mdp_result object.
mean	A logical value indicating whether to extract the modes of the mean density of each of the individual sampled density.
grd	For mdpolya_result, a grid on which to evaluate the object.
idx	A logical value indicating whether to also return the index within grd of the discovered modes.

Value

A matrix of antimodes values in the support of the copre_result density

```
autoplot.copre_result Create a CopRe Result ggplot
```

Description

Create a CopRe Result ggplot

```
autoplot.copre_result(x, ..., func = "density", confint = NULL)
```

Arguments

x A copre_result object.

... Additional arguments discarded from plot. func Either 'distribution', 'density', or 'gradient'.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95%

confidence interval). Defaults to NULL, in which case no confidence intervals

will be drawn.

Value

A ggplot object.

autoplot.grideval_result

Create a ggplot of a grideval_result Object

Description

Create a ggplot of a grideval_result Object

Usage

```
autoplot.grideval\_result(x, ..., confint = NULL)
```

Arguments

x A grideval_result object.

... Additional arguments discarded from plot.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95

percent confidence interval). Defaults to NULL, in which case no confidence

intervals will be drawn.

Value

A ggplot object.

autoplot.seqre_result 5

autoplot.segre_result Create a SeqRe Result ggplot

Description

Create a SeqRe Result ggplot

Usage

```
autoplot.seqre_result(x, ..., func = "density", confint = NULL)
```

Arguments

x A segre_result object.

... Additional arguments discarded from plot. func Either 'distribution', 'density', or 'gradient'.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95%

confidence interval). Defaults to NULL, in which case no confidence intervals

will be drawn.

Value

A ggplot object.

base_measure Base Measure for Mixture Models

Description

A structure for wrapping base measures as in Escobar and West (1995).

Usage

```
base_measure(idx, dim, pars, hpars, eval)
```

Arguments

idx A unique index for the base measure.

dim A dimension for the support of the base measure.

pars A list of parameters used to generate mixture components.

hpars A list of hyperparameters used to generate pars.

eval An evaluation function taking phi, a list of mixture parameter matrices, grd,

a grid vector, f, a character string indicating whether to calculate the gradient, density, or distribution function, and nthreads, a number of threads to utilize

for parallel execution.

6 copre

Value

A base_measure object for use in the sequence resampling scheme for mixtures.

References

• Escobar M. D., West, M. (1995) Bayesian Density Estimation and Inference Using Mixtures. Journal of the American Statistical Association. DOI: doi:10.1080/01621459.1995.10476550

See Also

```
segre()
```

copre

Copula Resampling

Description

A function that samples predictive distributions for univariate continuous data using the bivariate Gaussian copula.

Usage

```
copre(
  data,
  N,
  k,
  rho = 0.91,
  grd_res = 1000,
  nthreads = parallel::detectCores(),
  gpu = FALSE,
  gpu_path = NULL,
  gpu_odir = NULL,
  gpu_seed = 1234
)
```

Arguments

data	The data from which to sample predictive distributions.
N	The number of unobserved data points to resample for each chain.
k	The number of predictive distributions to sample.
rho	A scalar concentration parameter.
grd_res	The number of points on which to evaluate the predictive distribution.
nthreads	The number of threads to call for parallel execution.
gpu	A logical value indicating whether or not to use the CUDA implementation of the algorithm.

functional 7

gpu_path	The path to the CUDA implementation source code.
gpu_odir	A directory to output the compiled CUDA code.
gpu_seed	A seed for the CUDA random variates.

Value

A copre_result object, whose underlying structure is a list which contains the following components:

References

```
Fong, E., Holmes, C., Walker, S. G. (2021). Martingale Posterior Distributions. arXiv. DOI: doi:10.48550/arxiv.2103.15671
```

Examples

```
res_cop <- copre(rnorm(50), 10, 10, nthreads = 1)</pre>
```

_					_
fι	ın	ct	i	Λn	a 1

Obtain Functionals from a CopRe Result

Description

Obtain Functionals from a CopRe Result

Usage

```
functional(obj, f, ..., mean = FALSE)
```

Arguments

obj	A copre_result object.
f	A list of functions.
	Additional arguments passed to f.
mean	A logical value indicating whether or not to obtain the functional from the pointwise mean of the sampled distributions or from each individually.

Value

The integral over the copre_result grid of the functions in the list multiplied by the density of each sample distribution in obj.

8 G_normls

	smix

Marginal Gibbs-type Mixture Model Sampler

Description

A function that samples marginal mixture densities via a marginal Gibbs sampler.

Usage

```
gibbsmix(data, k, b_msr, s_msr, burn = 1000, thin = 150)
```

Arguments

data	The data from which to sample predictive distributions.
------	---

k The number of predictive samples to draw.

b_msr A base_measure object. s_msr A seq_measure object.

burn The number of initial sampling iterations to discard, will be truncated if a non-

integer.

thin The number of sampling iterations to discard between records, will be truncated

if a non-integer.

Value

A seqre_result object.

See Also

```
seqre(), seq_measure(), base_measure()
```

G_normls	Normal-Inverse-Gamma Ba Mixture Models.	ase Measure for	Location-Scale Normal

Description

Normal-Inverse-Gamma Base Measure for Location-Scale Normal Mixture Models.

```
G_normls(mu = 0, tau = 1, s = 1, S = 1, a = NULL, A = NULL, W = NULL, W = NULL)
```

length.grideval_result 9

Arguments

mu	The mean parameter.
tau	The variance scaling parameter.
S	The primary shape parameter for the Inverse-Gamma component.
S	The secondary shape parameter for the Inverse-Gamma component. $ \\$
а	The prior mean parameter for mu.
A	The prior variance for mu.
W	The prior primary shape parameter for tau.
W	The prior secondary shape parameter for tau.

Value

A base_measure object for use in the sequence resampling scheme for mixtures.

See Also

```
base_measure(), seqre()
```

```
length.grideval_result
```

Length

Description

Length

Usage

```
## S3 method for class 'grideval_result'
length(x)
```

Arguments

x A grideval_result object.

Value

The number of samples k in obj.

10 modes

Description

Extracts the modes from a copre_result or seqre_result object.

Usage

```
modes(obj, mean = FALSE, grd = NULL, idx = FALSE, anti = FALSE)
## S3 method for class 'seqre_result'
modes(obj, mean = FALSE, grd = NULL, idx = FALSE, anti = FALSE)
## S3 method for class 'grideval_result'
modes(obj, mean = FALSE, grd = NULL, idx = FALSE, anti = FALSE)
n_modes(obj, mean = FALSE, grd = NULL, anti = FALSE)
```

Arguments

obj	A copre_result or seqre_result object.
mean	A logical value indicating whether to count the modes of the mean density of each of the individual sampled density.
grd	For seqre_result, a grid on which to evaluate the object.
idx	A logical value indicating whether to also return the index within grd of the discovered modes.
anti	A logical value indicating whether to extract true modes or anti-modes (i.e. local minima of the density function).

Value

A matrix of modes values in the support of the copre_result density

Methods (by class)

- $\bullet \ \ \mathsf{modes}(\mathsf{seqre_result}) \colon \mathsf{Mode\text{-}counting} \ \mathsf{method} \ \mathsf{for} \ \mathsf{seqre_result} \ \mathsf{objects}.$
- modes(grideval_result): Mode-counting method for grideval_result objects.

Functions

• n_modes(): Counts the modes from a copre_result or seqre_result object.

moment 11

moment

Obtain Moments from a CopRe or SeqRe Result

Description

Obtain Moments from a CopRe or SeqRe Result

Usage

```
moment(obj, mom, cntrl = TRUE, grd = NULL)
## S3 method for class 'seqre_result'
moment(obj, mom, cntrl = TRUE, grd = NULL)
## S3 method for class 'grideval_result'
moment(obj, mom, cntrl = TRUE, grd = NULL)
```

Arguments

obj	A copre_result or seqre_result object.
mom	A numeric scalar indicating the moment to calculate.
cntrl	A logical value indicating whether the moment should be central or not. Defaults to TRUE.
grd	A numeric vector of grid values on which the density function samples in obj

should be calculated for trapezoidal integration.

Value

A vector of moment values for each sampled distribution in obj.

Methods (by class)

- moment(seqre_result): Moment calculation method for seqre_result objects.
- moment(grideval_result): Moment calculation method for grideval_result objects.

Description

Create a CopRe Result Plot

```
## S3 method for class 'copre_result'
plot(x, ..., func = "density", confint = NULL, use_ggplot = TRUE)
```

12 plot.grideval_result

Arguments

x A copre_result object.

... Additional arguments discarded from plot.

func Either 'distribution', 'density', or 'gradient'.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95%

confidence interval). Defaults to NULL, in which case no confidence intervals

will be drawn.

use_ggplot A logical value indicating whether to use ggplot2 instead of the base plot

function.

Value

None.

plot.grideval_result Create a Plot of a grideval_result Object

Description

Create a Plot of a grideval_result Object

Usage

```
## S3 method for class 'grideval_result'
plot(x, ..., confint = NULL, use_ggplot = TRUE)
```

Arguments

x A grideval_result object.

. . . Additional arguments discarded from plot.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95

percent confidence interval). Defaults to NULL, in which case no confidence

intervals will be drawn.

use_ggplot A logical value indicating whether to use ggplot2 instead of the base plot

function.

Value

A ggplot object if ggplot2 is used, else none.

plot.seqre_result 13

plot.seqre_result

Create a SeqRe Result Plot

Description

Create a SeqRe Result Plot

Usage

```
## S3 method for class 'seqre_result'
plot(x, ..., func = "density", confint = NULL, use_ggplot = TRUE)
```

Arguments

x A seqre_result object.

... Additional arguments discarded from plot. func Either 'distribution', 'density', or 'gradient'.

confint A decimal value indicating the confidence interval width (e.g. 0.95 for a 95%

confidence interval). Defaults to NULL, in which case no confidence intervals

will be drawn.

use_ggplot A logical value indicating whether to use ggplot2 instead of the base plot

function.

Value

None.

```
register_autoplot_s3_methods
```

Register autoplot methods to ggplot2

Description

Register autoplot methods to ggplot2

Usage

```
register_autoplot_s3_methods()
```

Value

None

seq_measure

register_s3_method

Register S3 Methods from External Packages

Description

https://github.com/tidyverse/hms/blob/master/R/zzz.R

Usage

```
register_s3_method(pkg, generic, class, fun = NULL)
```

Arguments

pkg Package name.

generic Generic function name.

class Class name.

fun Optional custom function name.

Value

None

seq_measure

Sequence Measure for Species Sampling Models

Description

Sequence Measure for Species Sampling Models

Usage

```
seq_measure(idx, pars, hpars, Pn, Po)
```

Arguments

idx A unique index for the sequence measure.

pars A list of parameters used in Pn and Po to generate a sequence.

hpars A list of hyperparameters used to generate pars.

Pn A function on a sequence length n and a number of unique values k that returns

the probability of the next member in the sequence having a new value.

Po A function on a sequence length n, a number of unique values k, and the number

of values equal to j, kj, that returns the probability of the next member in the

sequence having the value j.

Sq_dirichlet 15

Value

A seq_measure object for use in the exchangeable sequence resampling scheme for mixtures.

See Also

```
segre()
```

Sq_dirichlet

Dirichlet Sequence Measure.

Description

Dirichlet Sequence Measure.

Usage

```
Sq_dirichlet(alpha = 1, c = NULL, C = NULL)
```

Arguments

alpha The concentration parameter for the Dirichlet process. Must be greater than 0.

c The prior primary shape parameter for alpha.

C The prior secondary shape parameter for alpha.

Value

A seq_measure object for use in the exchangeable sequence resampling scheme for mixtures.

See Also

```
seq_measure(), seqre()
```

Sq_gnedin0

Collapsed Gnedin Process Sequence Measure.

Description

Collapsed Gnedin Process Sequence Measure.

```
Sq_gnedin0(gamma)
```

Sq_pitmanyor

Arguments

gamma The gamma parameter for the Gnedin process with xi set to 0. Bounded to

[0, 1].

Value

A seq_measure object for use in the exchangeable sequence resampling scheme for mixtures.

See Also

```
seq_measure(), seqre()
```

Sq_pitmanyor

Pitman-Yor Sequence Measure.

Description

Pitman-Yor Sequence Measure.

Usage

```
Sq_pitmanyor(d, alpha = 1, m = 1L)
```

Arguments

d The discount parameter for the Pitman-Yor process. Must be less than 1.

alpha The concentration parameter for the Pitman-Yor process. Must be greater than

-sigma if sigma is in [0, 1), else ignored.

m A positive integer used to set theta = m * abs(sigma) if sigma is negative.

Value

A seq_measure object for use in the exchangeable sequence resampling scheme for mixtures.

See Also

```
seq_measure(), seqre()
```

[[.seqreresult 17

Sequence Resampling	sult Sequence Resampling
---------------------	--------------------------

Description

A function that samples predictive distributions for univariate continuous data using exchangeable predictive extension.

Usage

```
## S3 method for class 'seqreresult'
obj[[i]]
seqre(obj, inc = 1000, eps = 0.001, max_it = 100)
```

Arguments

obj	A seqre_result object, usually output from gibbsmix().
i	A numeric vector of sample indices.
inc	A positive integer increment value for the number of predictive samples to take each convergence check.
eps	An error value which determines the convergence approximation.
max_it	A positive integer maximum number of iterations before halting.

Value

A seqre_result object, or a list of two seqre_result objects if keep_marg is TRUE.

Functions

• [[: Subset method for seqre_result objects

See Also

```
gibbsmix()
```

\$.grideval_result

\$.grideval_result Grid evaluation of copre_result and seqre_result objects

Description

Grid evaluation of copre_result and seqre_result objects

Usage

```
## S3 method for class 'grideval_result'
obj$name

## S3 method for class 'grideval_result'
obj[[i]]

grideval(obj, grd = NULL, func = "density", nthreads = 1)

## S3 method for class 'copre_result'
grideval(obj, grd = NULL, func = "density", nthreads = 1)

## S3 method for class 'seqre_result'
grideval(obj, grd = NULL, func = "density", nthreads = 1)
```

Arguments

obj	A copre_result or seqre_result object.
name	The name of the attribute to access (i.e. func, grid, or args).
i	A numeric vector of sample indices.
grd	For seqre_result objects, a numeric vector of m grid points.
func	Either 'distribution', 'density', or 'gradient'.
nthreads	The number of parallel threads to launch with OpenMP.

Value

A grideval_result object, which is a matrix with dimension [k, m] of evaluated sample functions, with the following attributes:

- func: The evaluated function.
- grid: The grid points on which each of the k rows was evaluated.
- args: A copy of the args entry from obj.

Methods (by class)

- grideval(copre_result): Grid evaluation method for copre_result objects.
- grideval(seqre_result): Grid evaluation method for seqre_result objects.

\$.grideval_result 19

Functions

- \$: Attribute access method for grideval_result objects
- [[: Subset method for grideval_result objects

Index

```
\ast internals
                                                 segre(), 6, 8, 9, 15, 16
    copre-package, 2
                                                 Sq_dirichlet, 15
[[.grideval_result($.grideval_result),
                                                 Sq_gnedin0, 15
                                                 Sq_pitmanyor, 16
[[.seqreresult, 17
$.grideval_result, 18
antimodes, 3
autoplot.copre_result, 3
autoplot.grideval_result, 4
autoplot.seqre_result, 5
base_measure, 5
base_measure(), 8, 9
copre, 6
copre-package, 2
functional, 7
G_normls, 8
gibbsmix, 8
gibbsmix(), 17
grideval ($.grideval_result), 18
length.grideval_result,9
modes, 10
moment, 11
n_modes (modes), 10
plot.copre_result, 11
plot.grideval_result, 12
plot.seqre_result, 13
register_autoplot_s3_methods, 13
{\tt register\_s3\_method}, 14
seq_measure, 14
seq_measure(), 8, 15, 16
seqre([[.seqreresult), 17
```