Badanie właściwości dielektrycznych ciał stałych Ćwiczenie nr 225 z działu Elektromagnetyzm

Maciej Kaszkowiak, Lab 4, 151856

1 Cel ćwiczenia

Przeprowadzone ćwiczenie ma dwa główne cele:

- 1. Zbadanie zależności pojemności płaskiego kondensatora powietrznego od odległości między jego okładkami.
- 2. Wyznaczenie przenikalności elektrycznej oraz tangensa kąta strat (współczynnika stratności) wybranych dielektryków.

2 Wstęp teoretyczny

W doświadczeniu wykorzystano kondensator płaski, który składa się z dwóch okładek wykonanych z przewodnika. Gdy kondensator jest podłączony do zewnętrznego źródła napięcia, na okładkach pojawiają się ładunki różnoimienne o tej samej wartości. W ten sposób między okładkami powstaje pole elektryczne.

$$E_{wyp} = E_0 - E_{ind} \tag{1}$$

Jeżeli między okładki kondensatora włożymy płytkę wykonaną z dielektryka, to pole elektryczne występujące w kondensatorze zostanie zmniejszone przez indukowane pole elektryczne wytworzone przez dielektryk (ze względu na zjawisko polaryzacji).

Rysunek 1: a) kondensator próżniowy, b) kondensator z dielektrykiem

Pojemność kondensatora jest proporcjonalna do powierzchni okładek kondensatora i odwrotnie proporcjonalna do odległości między okładkami. Na pojemność kondensatora proporcjonalnie wpływają również stała przenikalności elektrycznej próżni ϵ_0 oraz względna przenikalność elektryczna dielektryka ϵ_r .

$$C_0 = \epsilon_0 \frac{S}{d} < C = \epsilon_0 \epsilon_r \frac{S}{d} \tag{2}$$

3 Przebieg ćwiczenia

- 1. Uruchomiliśmy miernik Escort ELC-3131D. Ustawiliśmy parametry pomiarowe zakres automatyczny, pomiar pojemności, częstotliwość pomiarowa: 1 kHz.
- 2. Wykonaliśmy serię 18 pomiarów pojemności kondensatora, zmieniając odległość d między okładkami kondensatora w zakresie od 0.2 do $5~\rm cm$.
- 3. Wykonaliśmy serię 4 pomiarów dla czterech wybranych dielektryków. Po umieszczeniu dielektryka między okładkami kondensatora zanotowaliśmy odległość pomiędzy okładkami (dokładność: 0,1 mm), pojemność, dobroć oraz tangens kąta strat.

4. Po wykonaniu pomiaru dla każdego z dielektryków powtórzyliśmy pomiary dla kondensatora powietrznego przy zachowaniu tej samej odległości między okładkami.

Rysunek 2: Kondensator pomiarowy

4 Wyniki pomiarów

Pomiary odległości zostały wykonane z dokładnością do 0,1 mm z wykorzystaniem noniusza. Pomiary pojemności zostały wykonane z dokładnością do 0,1 pF. Pomiar dobroci został wykonany z dokładnością do 0,1 wielkości, natomiast pomiar tangensa kąta strat został wykonany z dokładnością do 0,001 wielkości.

Nr pomiaru	Odległość	Odwrotność odległości	Pojemność
	[mm]	[1/mm]	[pF]
1	2,0	0,5000	281,5
2	3,0	0,3333	191,6
3	4,0	0,2500	149,2
4	5,0	0,2000	122,6
5	6,0	0,1667	106,6
6	7,0	0,1429	93,2
7	8,0	0,1250	86,6
8	9,0	0,1111	78,5
9	10,0	0,1000	75,3
10	12,0	0,0833	65,1
11	15,0	0,0667	59,9
12	17,0	0,0588	57,6
13	20,0	0,0500	55,2
14	25,0	0,0400	53,0
15	30,0	0,0333	51,4
16	35,0	0,0286	50,1
17	42,0	0,0238	47,1
18	50,0	0,0200	46,0

Tabela 1: Seria 18 pomiarów pojemności kondensatora próżniowego ze zmienną odległością w zakresie 2-50mm

Nr	Materiał	Odległość	Pojemność	Dobroć	Tangens
próbki			[pF]	Q	kąta strat
1	Akrylit	4,9 mm	302,9	25,8	0,038
1p	Powietrze	4.9 mm	125,6	-	-
2	?	9,9 mm	175,2	62,1	0,015
2p	Powietrze	$9,9~\mathrm{mm}$	71,7	-	-
3	Plexiglass	11,0 mm	161,4	19,3	0,051
3p	Powietrze	$11,0~\mathrm{mm}$	67,4	-	-
4	?	$10,4~\mathrm{mm}$	162,4	23,8	0,041
4p	Powietrze	$10,4~\mathrm{mm}$	69,9	-	-

Tabela 2: Seria 4 pomiarów dla czterech różnych dielektryków oraz 4 pomiarów dla kondensatorów próżniowych zgodnych odległością pomiędzy okładkami

5 Opracowanie wyników

5.1 Zbadanie zależności pojemności płaskiego kondensatora powietrznego od odległości między jego okładkami

Posłużyłem się wzorem wyznaczającego pojemność kondensatora powietrznego, gdzie $\epsilon_r=1,0059$ wyznacza przenikalność dla powietrza znajdującego się pomiędzy okładkami.

$$C_0 = \epsilon_0 \epsilon_r \frac{S}{d} \tag{3}$$

$$C_0 = \epsilon_0 \epsilon_r S \frac{1}{d} \tag{4}$$

Przewody pomiędzy kondensatorem a miernikiem mogą posiadać niezerową pojemność, co należy uwzględnić w obliczeniach:

$$C_0 = \epsilon_0 \epsilon_r S \frac{1}{d} + C_p \tag{5}$$

Zależność $C_0=f(\frac{1}{d})$ można przedstawić w postaci funkcji liniowej $C_0=a\frac{1}{d}+b$, traktując $\epsilon_0\epsilon_r S$ jako współczynnik kierunkowy a oraz C_p jako wyraz wolny b.

Z pomiarów dla kondensatora powietrznego wykonałem wykres $C_0 = f(\frac{1}{d})$. Wykorzystując regresję liniową obliczyłem współczynnik kierunkowy prostej a i wartość b punktu przecięcia z osią y. Wartość b jest równa pojemności przewodów łączących kondensator z miernikiem pomiarowym.

Rysunek 3: Wykres zależności pojemności kondensatora od odwrotności odległości pomiędzy jego okładkami.

Z wykorzystaniem kalkulatora $Statystyka\ pomiarów\$ autorstwa Stanisława Szuby ustaliłem współczynniki $a,\ b$ oraz R^2 z wykorzystaniem regresji liniowej.

$$a = 0,486 \left[pF \cdot m \right] \tag{6}$$

$$b = 29,741 [pF] (7)$$

$$R^2 = 0.9938 \tag{8}$$

Współczynnik b=29,741~[pF] wyznacza pojemność przewodów pomiędzy kondensatorem a miernikiem. Na podstawie wyznaczonego współczynniku $a=\epsilon_0\epsilon_r S$ można ustalić przenikalność elektryczną próżni.

$$a = \epsilon_0 \epsilon_r S \tag{9}$$

$$\epsilon_0 = \frac{a}{S\epsilon_r} \tag{10}$$

$$\epsilon_0 = \frac{0,486 \cdot 10^{-12}}{\pi \cdot (0,13)^2 \cdot 1,0059} \tag{11}$$

$$\epsilon_0 = 9, 10 \cdot 10^{-12} \left[\frac{F}{m} \right]$$
 (12)

W celu wyznaczenia niepewności pomiarowej wykorzystałem odchylenie standardowe współczynnika a, wyznaczone na podstawie wspołczynnika R^2 .

$$\sigma_a = a - aR^2 \tag{13}$$

$$\sigma_a = 0,486 - 0,486 \cdot 0,9938 \tag{14}$$

$$\sigma_a = 0,003 \ [pF \cdot m] \tag{15}$$

Następnie skorzystałem z różniczki logarytmicznej.

$$\epsilon_0 = \frac{S}{a} \tag{16}$$

$$\Delta \epsilon_0 = \left\| -\frac{\Delta a}{a} \right\| \cdot \epsilon_0 \tag{17}$$

$$\Delta \epsilon_0 = \left\| -\frac{0,003 \cdot 10^{-12}}{0,486 \cdot 10^{-12}} \right\| \cdot 9,15 \cdot 10^{-12} \tag{18}$$

$$\Delta\epsilon_0 = 0,0564 \cdot 10^{-12} \left[\frac{F}{m} \right] \tag{19}$$

Tym samym, przenikalność próżni ϵ_0 wynosi 9, $10\pm0,06$ $\left[\frac{pF}{m}\right]$. Wyznaczona wartość odbiega od wartości z tablic $\epsilon_0=8,854$ $\left[\frac{pF}{m}\right]$. Powodem źle wykonanych pomiarów może być błąd paralaksy przy ustalaniu odległości oraz niedokładny pomiar wynikający z długiego czasu stabilizacji przy pomiarze pojemności kondensatora.

5.2 Wyznaczenie przenikalności elektrycznej oraz tangensa kąta strat (współczynnika stratności) wybranych dielektryków.

W celu wyznaczenia rzeczywistej składowej względnej przenikalności elektrycznej danych dielektryków posłużyłem się następującym wzorem:

$$\epsilon_r' = \frac{C - C_p}{C_0 - C_p} \tag{20}$$

gdzie C to pojemność kondensatora z dielektrykiem, C_0 to pojemność kondensatora powietrznego, a C_p to wcześniej wyznaczona pojemność przewodów.

Niepewności $\Delta C = \Delta C_0 = 0, 1~pF$ biorą się z niepewności miernika, natomiast niepewność $\Delta C_p = 1, 72~pF$ została odczytana z Kalkulatora~pomiarów.

Niepewność dla zmiennej ϵ'_r obliczyłem za pomocą metody różniczki całkowitej.

$$\Delta \epsilon_r' = \left\| \Delta C \frac{\delta}{\delta C} \right\| + \left\| \Delta C_0 \frac{\delta}{\delta C_0} \right\| + \left\| \Delta C_p \frac{\delta}{\delta C_p} \right\| \tag{21}$$

$$\frac{\delta}{\delta_C} = \frac{1}{C_0 - C_p} \tag{22}$$

$$\frac{\delta}{\delta_{C0}} = \frac{C_p - C}{(C_0 - C_p)^2} \tag{23}$$

$$\frac{\delta}{\delta_{Cp}} = \frac{C - C_0}{(C_0 - C_p)^2} \tag{24}$$

Wyniki dla wszystkich 4 próbek zapisałem w poniższej tabeli.

Nr próbki	ϵ_r'	Niepewność
1	2,85	0,04
2	3,47	0,11
3	3,5	0,13
4	3,3	0,11

Tabela 3: Względna przenikalność elektryczna wraz z niepewnością dla poszczególnych próbek.

Na podstawie zmierzonej dobroci oraz wyliczonej rzeczywistej składowej względnej przenikalności elektrycznej mogę ustalić współczynnik strat ϵ_r'' , czyli zespoloną względną przenikalność elektryczną dielektryka.

$$Q = \frac{\epsilon_r'}{\epsilon_r''} \tag{25}$$

$$\epsilon_r^{\prime\prime} = \frac{\epsilon_r^{\prime}}{Q} \tag{26}$$

Wyniki dla wszystkich 4 próbek zapisałem w poniższej tabeli.

Nr próbki	$\epsilon_r^{\prime\prime}$
1	0,11
2	0,06
3	0,18
4	0,14

Tabela 4: Współczynnik strat dla poszczególnych próbek

Po przeprowadzeniu obliczeń mogę odczytać materiał próbek z wykorzystaniem następującej tabeli:

Materiał	ϵ_r
Bakelit	2,2-3,0
Ebonit	2,0-3,5
Kwarc	3-6
Pleksi	3-3,7
Porcelana	5,5-6,5
Powietrze	1,0059
Szkło	3,1-4,4
Tytanian strontu	310

Tabela 5: Względna przenikalność elektryczna ϵ_r przykładowych materiałów dielektrycznych (t = 20°C)

Materiał próbek przedstawia się następująco:

Nr próbki	Ustalony materiał
1	Akrylit
2	Bakelit
3	Plexiglass
4	Kwarc

Tabela 6: Ustalony materiał poszczególnych próbek

6 Wnioski

Przedstawione doświadczenie wykazało zależność liniową pomiędzy odwrotnością odległości pomiędzy okładkami kondensatora a pojemnością. Wykazałem również, że włożenie dielektryku pomiędzy okładki ma wpływ na pojemność zgodny z teoretycznymi wzorami. Przeprowadzone pomiary obarczone były niepewnością pomiarową, wynikającą z efektu paralaksy (dla pomiaru odległości pomiędzy okładkami) oraz z powolnej stabilizacji urządzenia służącego do pomiaru pojemności kondensatora. Ustaliłem materiał poszczególnych próbek dielektryków, lecz wynik przenikalności próżni ϵ_0 nieznacznie odbiegł od założeń teoretycznych.

7 Bibliografia

- 1. Badanie właściwości dielektrycznych ciał stałych (Mirosław Szybowicz, Krzysztof Łapsa, Izabela Hanyż)
- 2. Elektromagnetyzm. Ćwiczenie: 225. Badanie właściwości dielektrycznych ciał stałych. (Krzysztof Łapsa) film na platformie Youtube
- 3. Kalkulator pomiarów: https://phys-old.put.poznan.pl/szuba/states/index.php