Fermi $(b = 0)$	0.05)	Nb.	of buoys of	lisplaced:	1		Nb	. of buoys	displaced:	2	Nb. of buoys displaced: 3					
			Upda	ate proced	lures	•	Update procedures						Upd	ate proced	ures	
Grid size	N (Ξ_{ω})	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		F-scratch	V1	V2	V3	
50 × 50	8 (12)	1.45	0.95	0.57	0.57		1.53	1.39	1.03	1.03		1.49	1.59	1.24	1.24	
	16 (48)	5.16	2.33	1.17	1.17		5.44	3.35	2.16	2.14		5.35	4.20	3.10	3.06	
	24 (108)	10.93	4.04	1.61	1.76		11.51	5.63	3.19	3.15		11.54	6.95	4.65	4.55	
	32 (192)	20.17	6.80	2.45	2.43		21.06	8.82	4.66	4.56		19.97	10.27	6.25	6.09	
m = 1725	40 (300)	29.37	8.90	2.79	3.41		30.84	11.98	5.73	5.66		31.89	14.24	8.01	7.92	
75×75	16 (48)	16.18	7.02	3.69	3.49	-	17.17	10.54	7.14	6.63		17.77	13.42	10.14	9.40	
	24 (108)	36.46	13.16	6.21	5.65		36.38	18.01	11.33	10.04		37.32	23.22	16.79	14.66	
	32 (192)	64.89	20.30	8.25	7.23		63.27	26.67	15.71	13.35		68.13	37.46	27.68	21.03	
	40 (300)	109.39	37.03	15.48	9.78		107.53	47.74	30.95	19.70		99.48	47.97	36.35	25.35	
m = 4396	48 (432)	152.25	48.46	22.61	13.63		153.12	60.20	41.17	24.96		150.91	69.15	53.81	34.69	
100×100	48 (432)	58.25	24.76	5.82	4.74	-	57.52	28.84	11.00	8.87		63.85	35.13	17.67	14.37	
	56 (588)	80.97	34.98	7.66	5.64		80.68	39.95	15.16	11.51		81.57	46.33	23.95	17.48	
	64 (768)	112.28	51.18	11.69	7.34		115.51	61.67	27.69	18.99		121.67	70.48	39.93	26.91	
The second	72 (972)	156.94	70.36	16.24	9.15		152.45	77.67	32.77	22.37		146.05	80.07	44.72	30.42	
m = 6630	80 (1200)	177.53	79.25	18.55	11.06		178.88	88.61	37.62	24.92		184.10	95.71	51.76	35.85	
125×125	64 (768)	566.74	161.87	57.54	41.41	-	558.05	193.76	113.56	81.03		576.05	233.79	192.25	121.89	
120 % 120	72 (972)	694.20	194.31	74.20	46.27		711.64	230.42	142.64	89.32		690.31	265.72	217.76	133.85	
	80 (1200)	894.75	238.60	93.88	60.67		865.25	276.34	174.91	107.87		858.70	315.72	258.99	157.75	
	88 (1452)	1021.17	266.79	96.21	61.80		1016.82	307.52	182.69	112.86		1026.53	349.38	266.17	163.10	
m=10293	96 (1728)	1242.27	310.09	99.37	64.57		1230.02	350.96	195.12	121.05		1215.55	393.79	303.39	174.94	
150×150	80 (1200)	844.55	284.84	82.25	62.76	-	920.81	342.88	166.42	121.57	-	898.16	373.48	234.40	167.74	
100 % 100	88 (1452)	1054.82	341.18	90.67	68.76		1051.97	382.23	179.08	132.47		1060.37	423.40	255.13	183.45	
	96 (1728)	1223.53	368.43	93.59	71.75		1151.56	400.01	168.31	127.55		1208.25	474.35	268.44	193.48	
	104 (2028)	1508.65	429.07	106.06	82.15		1372.15	459.62	178.90	132.34		1431.71	531.42	303.22	215.92	
m=19244	112 (2352)	1603.52	476.35	108.64	83.81		1582.70	526.15	213.65	157.43		1735.34	606.89	330.01	232.02	
175×175	120 (2700)	5296.95	1263.40	430.95	279.63	-	5203.39	1451.38	883.90	511.66		5186.49	1587.85	1229.33	684.29	
110 × 110	128 (3072)	5888.65	1417.79	481.36	297.38		5904.74	1596.53	909.78	532.06		5848.29	1783.08	1359.77	755.42	
	136 (3468)	6679.18	1567.28	501.13	311.95		6678.50	1789.09	1015.70	580.48		6722.86	1968.25	1458.17	805.58	
	144 (3888)	7565.02	1757.60	585.67	363.70		7489.12	1903.67	995.32	580.57		7435.71	2107.83	1516.09	827.14	
m=23954	152 (4332)	8269.23	1862.62	565.10	350.25		8054.61	2049.62	1081.18	620.53		8184.49	2231.23	1537.52	845.30	
200×200	208 (8112)	4888.16	1847.63	246.86	187.38	-	4946.87	1948.57	543.72	384.57		4959.96	1970.62	648.57	456.69	
200 × 200	216 (8748)	5311.76	1830.34	224.95	176.30		5319.10	1941.68	409.20	310.41		5109.65	1973.49	576.04	418.92	
	224 (9408)	5478.13	1947.72	210.21	164.79		5042.59	1933.12	407.88	310.45		5436.63	2098.99	610.84	441.06	
	232 (10092)	6026.48	2099.21	227.80	178.86		5773.85	2107.06	414.53	313.21		6345.89	2268.95	630.99	463.34	
m = 32612	240 (10800)	5890.26	2090.45	219.58	178.58		5812.73	2157.52	410.60	309.98		5961.60	2312.58	627.36	459.43	

Table 1: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using **Fermi** function (transition curve) with $\mathbf{b} = \mathbf{0.05}$.

Fermi $(b = 0)$	0.1)	Nb.	of buoys of	lisplaced:	1		Nb	. of buoys	displaced:	2		Nb. of buoys displaced: 3					
			Upda	ate proced	lures			Upd	late proced	ures	-		Update procedures				
Grid size	$N\ (\Xi_{\omega})$	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		
50×50	8 (12)	1.42	0.87	0.50	0.50		1.49	1.34	0.96	0.96		1.62	1.69	1.31	1.31		
	16 (48)	5.52	2.34	1.11	1.11		5.47	3.27	2.07	2.04		5.48	4.20	3.03	3.00		
	24 (108)	11.36	4.29	1.75	1.74		11.47	5.81	3.39	3.34		11.58	7.14	4.75	4.62		
	32 (192)	20.29	6.76	2.33	2.33		19.33	8.32	4.20	4.13		20.78	10.82	6.66	6.49		
m = 1725	40 (300)	30.82	9.31	2.79	2.85		31.37	12.19	5.76	5.55		31.01	14.51	8.32	7.99		
75×75	16 (48)	17.09	7.16	3.67	3.47	-	17.49	10.91	7.45	6.90		17.86	13.56	10.26	9.28		
	24 (108)	37.97	14.12	6.26	5.49		37.73	19.46	12.15	10.34		39.16	24.29	17.85	14.85		
	32 (192)	69.03	24.11	9.63	7.18		68.66	31.46	19.74	14.49		68.71	37.55	28.16	21.18		
	40 (300)	109.50	37.75	17.17	15.51		109.14	46.95	31.48	19.96		109.94	55.62	46.18	30.22		
m = 4396	48 (432)	156.01	49.80	20.37	12.03		151.31	57.87	37.31	23.18		153.78	71.45	58.95	37.85		
100×100	48 (432)	75.28	36.33	9.90	7.81		64.99	37.48	16.18	10.87	-	68.39	43.49	24.14	16.92		
	56 (588)	92.54	44.60	11.42	6.86		93.82	50.09	21.74	14.82		88.34	53.62	29.36	20.94		
	64 (768)	113.36	54.04	12.93	8.14		114.87	60.15	25.04	16.76		107.60	61.10	31.32	21.87		
	72 (972)	145.46	68.28	17.58	10.97		138.65	69.16	27.38	17.78		131.59	72.64	36.85	25.07		
m = 6630	80 (1200)	163.93	73.64	17.05	10.54		172.86	82.95	33.95	22.88		176.77	93.24	49.79	34.55		
125×125	64 (768)	500.62	150.68	61.76	38.53		528.04	182.91	117.61	74.52	-	519.99	210.42	172.47	107.70		
	72 (972)	646.99	182.29	69.28	43.09		659.93	217.11	133.66	84.42		654.67	251.95	200.27	123.89		
	80 (1200)	833.13	226.18	87.17	54.15		822.08	263.89	162.49	101.42		793.28	288.91	221.93	136.57		
	88 (1452)	992.09	261.02	92.79	57.86		989.98	301.85	171.10	106.02		980.01	336.52	248.69	151.21		
m = 10293	96 (1728)	1153.60	293.71	102.97	64.88		1226.15	350.66	200.04	123.95		1180.10	385.91	274.61	166.80		
150×150	80 (1200)	867.17	278.15	75.10	56.56		776.67	298.99	135.19	99.50	-	825.49	346.22	207.25	150.24		
	88 (1452)	985.66	319.84	86.05	65.10		899.56	352.31	163.59	120.23		1016.81	414.43	252.49	178.70		
-	96 (1728)	1209.18	370.29	96.83	72.60		1194.25	413.76	174.79	129.01		1263.41	473.79	266.11	190.69		
All Value	104 (2028)	1475.17	432.88	101.93	78.22		1338.37	466.25	203.18	150.82		1419.74	528.72	295.00	212.64		
m = 19244	112 (2352)	1679.41	492.13	103.45	79.05		1667.48	548.61	227.39	166.30		1578.65	573.96	299.82	217.23		
175×175	120 (2700)	5169.06	1250.52	434.40	270.26		5185.72	1447.29	896.52	515.22	-	5144.86	1592.83	1262.47	701.24		
	128 (3072)	5768.63	1287.43	358.56	247.37		5825.08	1442.99	656.47	435.02		5791.02	1605.34	981.35	632.11		
	136 (3468)	6493.98	1440.29	395.12	273.33		6370.77	1556.42	684.36	456.02		6499.32	1765.66	1056.06	670.71		
and the second second	144 (3888)	7288.50	1553.24	387.32	271.95		7304.44	1796.92	862.95	543.85		7389.09	2077.66	1514.43	827.54		
m=23954	152 (4332)	8194.98	1840.73	566.81	352.13		8208.31	2035.08	1049.18	600.70		8222.40	2284.11	1623.13	895.14		
200×200	208 (8112)	4388.35	1622.19	187.58	145.83		4767.74	1773.62	362.51	272.41	-	4383.47	1769.99	539.21	394.15		
- <u> </u>	216 (8748)	5301.45	1963.83	275.58	210.94		5166.28	2076.74	573.92	401.98		5486.74	2207.37	883.91	587.70		
	224 (9408)	5530.34	2005.56	261.39	197.84		5136.07	2020.83	496.25	351.13		5994.79	2357.12	994.41	645.69		
2	232 (10092)	6364.13	2301.04	341.47	252.49		5721.22	2250.16	586.80	413.79		6240.72	2414.75	889.92	593.14		
m=32612	240 (10800)	6923.98	2454.04	332.10	244.36		6449.02	2478.61	637.10	451.19		6068.20	2517.47	877.29	589.28		

Table 2: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using **Fermi** function (transition curve) with $\mathbf{b} = \mathbf{0.1}$.

Fermi $(b = 0.2)$		Nb.	of buoys of	lisplaced:	1		Nb	. of buoys	displaced:	2	Nb. of buoys displaced: 3					
			Upda	ate proced	lures			Upd	ate proced	ures		Upd	ate proced	ures		
Grid size	$N\ (\Xi_{\omega})$	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3	F-scratch	V1	V2	V3		
50×50	8 (12)	1.48	0.92	0.54	0.53		1.55	1.34	0.96	0.96	1.57	1.64	1.28	1.27		
	16 (48)	5.31	2.42	1.19	1.19		5.34	3.31	2.14	2.12	5.40	4.13	3.00	2.95		
	24 (108)	11.15	4.16	1.64	1.64		11.70	5.64	3.13	3.10	11.79	7.41	5.02	4.95		
	32 (192)	20.02	6.57	2.25	2.24		20.59	8.94	4.64	4.51	20.17	10.80	6.67	6.47		
m = 1725	40 (300)	29.22	9.07	2.71	2.72		33.10	12.94	6.09	5.70	32.21	14.73	8.25	7.97		
75×75	16 (48)	16.42	6.92	3.67	3.35	-	16.59	10.17	7.29	6.51	17.06	13.18	10.49	9.13		
	24 (108)	36.61	14.09	6.64	5.63		37.48	19.62	13.07	10.80	37.45	23.18	17.48	14.49		
	32 (192)	66.40	22.29	9.19	7.28		64.96	29.18	18.27	13.77	66.96	35.82	26.23	19.72		
	40 (300)	107.35	35.63	14.61	9.33		100.99	40.86	24.54	17.73	104.55	50.77	37.76	26.53		
m = 4396	48 (432)	150.13	46.74	18.85	11.48		150.65	57.47	35.61	23.56	148.10	65.14	47.71	33.21		
100×100	48 (432)	61.64	32.25	8.97	5.79	-	72.58	39.70	17.68	12.10	61.54	38.58	20.59	17.48		
	56 (588)	93.09	40.09	9.82	6.47		84.22	44.73	18.49	13.14	83.52	50.42	28.03	20.40		
	64 (768)	115.96	51.31	11.83	7.53		117.81	58.37	24.34	17.09	113.64	63.94	33.26	23.95		
	72 (972)	152.47	67.65	16.03	10.00		145.36	73.67	31.34	21.97	139.98	75.21	37.31	26.59		
m = 6630	80 (1200)	170.80	73.42	16.64	10.67		177.34	83.70	32.43	23.13	176.42	91.99	45.92	32.62		
125×125	64 (768)	525.13	153.31	58.46	36.03	-	489.37	176.14	112.49	71.95	528.50	213.79	176.88	110.59		
	72 (972)	666.23	188.03	74.78	46.56		666.92	224.93	143.89	89.93	676.63	253.43	201.67	124.07		
	80 (1200)	795.71	217.43	79.02	53.39		809.09	262.54	165.34	102.28	816.82	298.77	238.71	145.22		
	88 (1452)	935.17	247.27	90.99	56.84		982.84	290.70	160.42	100.55	1014.06	342.78	254.00	155.78		
m = 10293	96 (1728)	1173.15	299.95	101.43	64.45		1166.33	345.14	194.46	118.40	1190.03	386.00	279.44	167.61		
150×150	80 (1200)	792.81	270.34	71.14	53.91	-	885.97	323.02	154.06	113.81	781.62	341.66	205.92	148.61		
	88 (1452)	1087.09	347.07	95.70	72.76		1000.70	362.20	159.41	116.66	1004.40	411.16	237.13	171.97		
-	96 (1728)	1199.47	369.50	89.80	68.33		1150.31	402.25	171.20	124.87	1224.97	472.10	274.08	198.66		
400	104 (2028)	1322.68	414.94	97.84	75.21		1325.23	460.11	186.55	137.97	1415.41	523.32	285.40	204.74		
m = 19244	112 (2352)	1630.76	491.56	105.73	81.13		1556.78	527.20	211.62	156.83	1461.54	554.25	293.84	207.13		
175×175	120 (2700)	5155.96	1261.36	457.23	282.37	-	5145.92	1424.10	860.50	503.09	5169.54	1585.71	1258.24	695.11		
	128 (3072)	5837.08	1405.66	491.64	306.28		5771.36	1575.91	918.85	531.87	5841.95	1755.81	1355.98	741.86		
	136 (3468)	6543.28	1542.80	494.93	309.08		6552.35	1724.12	954.23	556.54	6565.03	1939.37	1471.05	818.55		
	144 (3888)	7334.02	1679.64	511.28	322.47		7377.21	1894.25	1027.63	603.02	7330.43	2078.31	1516.19	830.34		
m = 23954	152 (4332)	8203.19	1836.97	547.35	342.00		8257.45	2047.77	1052.04	621.60	8176.09	2282.52	1635.17	900.99		
200×200	208 (8112)	4945.67	1883.07	285.60	212.02	-	4649.12	1861.02	529.19	377.75	5369.49	2131.25	861.71	569.01		
- <u> </u>	216 (8748)	5282.80	1964.88	292.08	220.28		5145.71	2042.81	568.19	398.19	5260.75	2086.96	771.16	503.09		
	224 (9408)	5542.10	2098.60	296.15	225.09		5680.08	2206.60	608.63	425.94	4981.30	2177.07	837.41	563.62		
2,	232 (10092)	6026.23	2208.52	300.68	230.31		5920.56	2310.07	604.61	427.09	6085.94	2418.61	867.80	578.08		
m = 32612	240 (10800)	6587.79	2375.22	328.72	244.90		6153.20	2406.46	612.35	438.98	6273.71	2516.40	903.65	603.83		

Table 3: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using **Fermi** function (transition curve) with $\mathbf{b} = \mathbf{0.2}$.

Fermi $(b = 0)$	0.4)	Nb.	of buoys of	lisplaced:	1		Nb	. of buoys	displaced:	2	Nb. of buoys displaced: 3						
			Upda	ate proced	lures			Update procedures					Update procedures				
Grid size	$N~(\Xi_{\omega})$	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		
50 × 50	8 (12)	1.47	0.96	0.56	0.56		1.59	1.41	1.01	1.02		1.62	1.75	1.37	1.37		
	16 (48)	5.61	2.41	1.15	1.19		5.37	3.32	2.11	2.09		5.67	4.28	3.05	3.02		
	24 (108)	12.49	4.41	1.72	1.72		12.07	6.00	3.38	3.31		12.79	8.46	5.94	5.29		
	32 (192)	20.61	6.83	2.34	2.36		21.43	9.25	4.75	4.67		20.35	10.82	6.50	6.34		
m = 1725	40 (300)	32.22	9.88	2.99	2.94		32.85	12.80	6.07	5.91		33.74	16.37	10.16	8.87		
75×75	16 (48)	16.86	7.08	3.77	3.47	-	17.01	10.61	7.70	6.97	-	17.23	12.74	9.93	8.89		
	24 (108)	37.81	13.89	6.59	5.73		37.54	18.40	11.74	9.90		37.60	23.85	18.21	15.06		
	32 (192)	67.59	23.16	9.91	7.62		67.96	29.45	17.96	13.32		67.78	37.77	29.74	21.58		
	40 (300)	103.88	32.57	13.33	9.28		93.54	35.96	20.44	17.10		96.28	43.98	30.38	25.67		
m = 4396	48 (432)	135.52	36.73	12.72	10.38		139.54	47.47	25.20	20.45		139.13	57.73	38.17	31.00		
100×100	48 (432)	66.94	31.49	8.16	5.38	-	70.20	38.05	16.38	11.57		63.96	38.88	21.58	15.61		
	56 (588)	93.19	43.28	11.57	7.66		88.66	48.30	20.19	18.26		86.53	52.30	28.07	20.13		
	64 (768)	114.92	52.83	11.82	7.13		119.61	62.76	25.42	16.88		112.06	63.96	33.08	23.63		
	72 (972)	140.01	66.52	15.28	8.99		149.00	73.77	28.95	19.54		130.03	69.16	31.52	23.04		
m = 6630	80 (1200)	157.11	66.84	13.24	8.61		166.19	75.67	25.29	18.12		160.76	82.12	39.77	30.47		
125×125	64 (768)	549.39	156.05	59.70	36.31	-	507.70	182.59	119.69	74.84	- 1	546.80	216.76	176.82	108.55		
	72 (972)	665.49	188.01	70.13	44.08		668.41	220.79	136.31	85.27		679.95	259.06	207.85	128.10		
	80 (1200)	869.26	230.46	83.88	51.82		815.59	258.38	151.98	95.14		828.71	294.84	222.25	135.14		
	88 (1452)	994.44	259.04	91.55	57.77		988.81	297.22	168.00	104.27		972.64	332.06	242.22	147.90		
m = 10293	96 (1728)	1204.78	296.89	93.06	58.13		1179.80	340.19	189.92	117.32		1167.15	384.87	280.16	168.77		
150×150	80 (1200)	743.55	257.08	68.93	51.86	-	915.39	341.05	170.34	124.65		873.41	361.05	224.07	159.22		
	88 (1452)	949.05	312.98	81.86	63.05		1022.85	374.03	173.17	127.37		1027.14	418.91	255.05	180.68		
-	96 (1728)	1146.44	368.43	94.26	71.42		1147.80	417.61	188.90	140.80		1177.03	456.59	259.09	185.40		
Agree .	104 (2028)	1325.19	414.85	99.79	76.98		1384.28	477.80	201.10	149.64		1355.33	515.99	294.04	209.03		
m = 19244	112 (2352)	1510.11	470.76	109.52	83.03		1656.59	543.81	211.19	154.62		1747.33	615.61	334.41	239.22		
175×175	120 (2700)	5118.49	1269.46	469.50	290.97	-	5075.76	1418.96	857.15	495.16	-	5109.13	1595.70	1252.90	693.06		
	128 (3072)	5787.41	1416.35	495.15	307.72		5842.90	1575.94	909.58	526.87		5844.55	1761.23	1326.59	738.97		
	136 (3468)	6443.71	1544.51	517.53	320.65		6516.24	1753.90	990.59	580.09		6564.53	1926.23	1435.69	781.14		
	144 (3888)	7330.71	1700.50	534.85	334.37		7335.22	1907.00	1060.18	607.76		7310.63	2090.16	1516.11	835.51		
m = 23954	152 (4332)	8199.14	1851.13	556.96	347.06		8173.53	2040.07	1027.23	593.40		8164.99	2256.49	1572.97	860.80		
200×200	208 (8112)	4957.54	1851.43	246.41	182.16	-	4386.72	1829.69	515.30	374.12		4984.06	2060.17	801.07	538.65		
- <u> </u>	216 (8748)	5271.93	1968.75	288.01	218.05		4977.10	2038.22	615.14	422.13		5072.65	2145.84	833.84	551.20		
	224 (9408)	5488.80	2059.76	300.12	229.57		5567.24	2152.67	590.04	414.37		5358.05	2243.21	855.39	564.76		
2,	232 (10092)	6500.64	2292.12	338.13	253.38		5752.88	2276.21	603.21	425.28		6030.54	2447.69	942.28	623.06		
m = 32612	240 (10800)	6787.51	2349.02	344.71	265.61		5960.08	2392.41	614.67	435.00		6632.60	2610.94	927.82	619.76		

Table 4: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using **Fermi** function (transition curve) with $\mathbf{b} = \mathbf{0.4}$.

	8)	Nb.	of buoys d	lisplaced:	1		Nb	of buoys	displaced:	2	Nb. of buoys displaced: 3					
	-		Upda	ate proced	lures	-		Upd	ate proced	ures			Upd	ate proced	ures	
Grid size	$N (\Xi_{\omega})$	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3		F-scratch	V1	V2	V3	
50×50	8 (12)	1.60	1.01	0.59	0.58		1.55	1.32	0.92	0.92		1.68	1.77	1.36	1.36	
	16 (48)	5.67	2.50	1.24	1.24		5.76	3.51	2.24	2.28		5.66	4.30	3.07	3.04	
	24 (108)	12.30	4.53	1.85	1.85		12.39	6.04	3.38	3.36		12.12	7.30	4.74	4.67	
	32 (192)	21.11	7.01	2.40	2.40		21.38	9.13	4.66	4.59		20.74	10.99	6.66	6.49	
m = 1725	40 (300)	31.04	9.46	2.84	2.80		32.70	12.66	5.91	5.74		32.82	15.34	8.68	8.28	
75×75	16 (48)	16.14	7.08	4.00	3.70	-	16.56	10.16	7.39	6.71		16.39	12.74	10.15	9.18	
	24 (108)	34.71	12.19	5.76	5.25		35.40	17.12	11.33	10.11		35.26	21.32	16.04	14.19	
	32 (192)	63.22	19.41	8.15	7.18		63.34	26.59	15.71	13.09		61.86	31.73	22.37	19.26	
	40 (300)	95.01	27.28	10.37	8.89		95.85	35.55	19.91	16.91		97.37	43.47	29.24	24.41	
m = 4396	48 (432)	139.93	38.10	13.21	10.54		144.50	51.38	28.46	21.85		137.50	55.81	35.78	29.07	
100×100	48 (432)	60.33	26.68	6.28	4.97	-	57.31	31.15	12.39	9.71	-	62.13	36.68	18.46	14.68	
	56 (588)	81.38	35.37	8.01	5.97		84.00	41.24	15.37	11.66		81.69	45.37	22.03	17.11	
	64 (768)	105.26	45.91	9.23	6.38		100.86	49.16	16.81	12.18		104.90	57.09	26.54	20.48	
1000	72 (972)	136.81	58.63	12.02	8.08		132.71	63.94	22.94	16.50		137.13	70.01	31.87	23.97	
m = 6630	80 (1200)	162.84	66.67	13.34	9.11		162.31	74.45	24.92	18.01		164.69	83.21	38.00	28.19	
125×125	64 (768)	547.06	158.20	64.76	40.73	- 1	543.91	187.74	118.01	74.50		552.46	219.50	183.55	112.87	
	72 (972)	665.35	185.57	69.23	43.07		676.45	224.15	139.18	87.20		637.22	244.39	192.35	118.53	
	80 (1200)	806.99	217.22	75.32	47.12		812.96	262.47	163.48	101.22		811.38	293.93	226.14	138.39	
	88 (1452)	1001.14	258.83	84.53	53.99		996.92	305.92	183.65	115.01		992.31	336.56	246.56	151.35	
m = 10293	96 (1728)	1162.88	299.41	104.23	66.37		1179.84	345.36	192.05	117.79		1228.15	399.67	289.17	176.34	
150×150	80 (1200)	962.48	302.91	85.26	64.91	-	782.73	306.14	137.67	101.87		842.79	362.50	222.94	161.90	
	88 (1452)	1055.76	326.79	86.80	66.51		1041.30	364.99	159.27	117.77		1011.36	400.80	237.08	170.41	
-	96 (1728)	1157.47	362.21	89.97	69.09		1155.02	413.16	184.53	133.40		1128.36	437.63	241.19	175.28	
	104 (2028)	1436.51	417.62	99.52	76.69		1361.70	462.36	186.49	138.46		1339.84	504.27	278.42	201.77	
m = 19244	112 (2352)	1600.14	485.92	108.88	84.74		1535.02	517.88	206.66	154.21		1528.41	573.52	300.07	216.52	
175×175	120 (2700)	5065.24	1258.68	462.63	286.86	- 1	5120.81	1441.29	886.22	509.17		5108.55	1576.66	1204.18	672.50	
	128 (3072)	5794.74	1416.47	490.05	305.61		5791.75	1588.52	925.66	539.39		5820.61	1771.46	1337.58	736.75	
	136 (3468)	6516.18	1564.39	530.81	328.76		6566.59	1755.26	997.33	571.52		6513.39	1896.60	1345.36	745.49	
	144 (3888)	7270.21	1684.36	520.72	325.06		7326.62	1909.39	1049.11	602.78		7298.72	2081.84	1490.78	819.72	
m = 23954	152 (4332)	8126.46	1856.12	565.49	352.85		8153.81	2075.20	1104.91	627.89		8138.71	2280.20	1631.39	892.12	
200×200	208 (8112)	4936.79	1862.33	284.47	214.72	-	4707.18	1878.63	519.21	357.99		5072.37	2094.38	843.92	560.39	
	216 (8748)	5199.94	1936.78	275.79	213.45		5342.87	2034.71	560.83	396.60		5164.89	2148.63	819.27	555.59	
	224 (9408)	5732.88	2135.40	299.67	230.91		5059.03	2158.42	575.78	406.33		5570.17	2312.11	897.78	595.48	
	232 (10092)	6094.73	2243.29	303.94	227.64		5609.15	2298.16	593.96	436.35		6289.70	2466.40	927.13	627.30	
m=32612	240 (10800)	6030.58	2260.69	299.01	219.01		6809.19	2509.47	649.57	469.12		7023.87	2688.74	1032.77	695.42	

Table 5: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using **Fermi** function (transition curve) with $\mathbf{b} = \mathbf{0.8}$.

Exponential Nb. of buoys displaced: 1							Nb	. of buoys	displaced:	2	Nb. of buoys displaced: 3					
			Upda	ate proced	lures			Upd	ate proced	ures		Update procedures				
Grid size	$N\ (\Xi_{\omega})$	F-scratch	V1	V2	V3		F-scratch	V1	V2	V3	F-scratch	V1	V2	V3		
50×50	8 (12)	1.46	0.91	0.53	0.52		1.55	1.35	0.99	0.98	1.63	1.71	1.35	1.33		
	16 (48)	5.21	2.34	1.12	1.11		5.19	3.12	1.97	1.94	5.45	4.11	2.99	2.92		
	24 (108)	11.59	4.29	1.74	1.72		11.77	5.92	3.38	3.30	11.80	7.27	4.86	4.70		
	32 (192)	19.73	6.43	2.14	2.11		20.71	8.94	4.59	4.44	20.72	10.69	6.47	6.24		
m = 1725	40 (300)	32.10	9.76	2.96	2.85		31.69	12.09	5.55	5.34	31.73	14.72	8.44	8.02		
75×75	16 (48)	14.78	6.55	3.73	3.42	-	15.41	9.29	6.69	6.04	16.22	11.81	9.51	8.52		
	24 (108)	34.59	12.08	5.79	5.20		34.74	16.53	10.78	9.44	34.63	20.84	16.06	13.99		
	32 (192)	60.63	18.46	7.46	6.55		59.74	24.82	14.68	12.26	67.93	37.10	28.34	20.64		
	40 (300)	103.36	34.92	14.50	9.05		101.29	41.44	26.07	18.09	101.47	51.47	40.54	27.70		
m = 4396	48 (432)	148.80	46.12	18.23	10.53		145.79	55.78	33.88	21.92	146.41	67.74	53.10	34.82		
100×100	48 (432)	57.13	26.13	6.43	4.88	-	58.14	31.03	12.38	9.37	58.24	34.17	17.15	13.63		
	56 (588)	84.91	36.22	7.96	5.62		79.32	40.93	15.98	12.08	86.95	46.37	23.04	18.07		
	64 (768)	103.83	45.27	10.13	7.20		101.80	50.64	18.29	13.43	106.94	57.46	27.86	21.14		
1	72 (972)	125.10	56.48	11.52	7.45		124.98	60.49	20.74	14.76	124.09	65.42	30.02	22.81		
m = 6630	80 (1200)	169.27	71.10	14.77	9.90		164.06	73.92	24.38	17.50	167.06	83.46	37.94	28.34		
125×125	64 (768)	551.22	162.59	69.49	43.26	-	514.45	185.07	119.94	76.31	520.88	208.61	169.29	105.11		
	72 (972)	621.59	180.18	67.90	44.14		653.11	222.98	142.39	90.24	670.56	257.52	209.77	127.82		
	80 (1200)	832.09	227.59	85.07	54.36		807.29	258.31	158.36	99.36	794.50	293.82	229.15	140.61		
	88 (1452)	964.25	257.64	91.14	57.96		998.12	301.44	173.33	107.80	1000.30	335.13	242.94	147.17		
m=10293	96 (1728)	1146.69	298.93	100.10	63.77		1093.40	336.32	193.62	121.44	1174.85	390.51	290.96	177.16		
150×150	80 (1200)	806.53	266.77	72.39	53.64	-	817.47	310.92	151.02	110.97	772.51	335.17	205.54	147.73		
	88 (1452)	963.90	325.02	91.13	69.15		986.68	366.39	167.29	123.76	1031.09	404.45	238.02	170.34		
	96 (1728)	1204.41	369.11	91.46	69.72		1175.69	411.90	178.60	131.96	1179.82	454.06	257.34	182.61		
	104 (2028)	1368.10	418.39	99.11	75.25		1322.91	462.84	198.73	147.31	1316.65	505.04	277.91	199.18		
m=19244	112 (2352)	1576.29	485.11	104.50	81.85		1705.01	550.06	222.14	161.60	1451.34	540.21	275.60	197.81		
175×175	120 (2700)	5224.52	1277.55	427.88	266.43	-	5378.30	1350.53	821.44	446.03	5308.95	1560.84	1414.16	690.76		
	128 (3072)	6030.39	1380.11	571.85	308.29		6052.93	1550.27	1035.63	527.83	5918.77	1616.89	1262.65	644.21		
	136 (3468)	6816.26	1506.85	546.73	300.52		6737.70	1716.23	1142.69	576.39	6778.56	1830.07	1450.54	727.56		
	144 (3888)	7475.43	1507.58	433.24	252.87		7403.45	1700.90	863.36	483.11	7444.04	1847.70	1201.31	650.11		
m=23954	152 (4332)	8337.66	1681.97	496.56	286.13		8298.14	1873.53	939.80	519.25	8357.65	2052.90	1328.87	721.88		
200×200	208 (8112)	4992.42	1848.55	274.51	206.41	-	4877.93	1973.16	585.17	412.17	4584.01	1987.00	787.59	534.58		
200 × 200	216 (8748)	5268.11	1983.63	270.73	199.45		4884.62	2034.59	566.57	389.91	4798.81	2103.14	814.92	552.14		
	224 (9408)	6184.71	2162.58	301.53	225.85		5491.03	2240.31	602.45	423.50	5120.73	2210.17	810.27	540.16		
	232 (10092)	5481.62	2198.64	309.47	230.23		6379.35	2398.03	639.16	451.83	6109.89	2522.25	975.24	623.30		
m=32612	240 (10800)	5824.39	2268.39	341.82	237.01		6140.17	2443.76	688.94	449.38	6336.97	2603.77	1052.21	649.01		
	(/								-							

Table 6: Comparisons in terms of total CPU time (s) between naïve from-scratch evaluation and naïve update procedures (V1, V2 & V3) over 1000 iterations, where an iteration corresponds to a local change in the network, i.e. moving randomly a restricted set of buoys (1, 2 or 3). To achieve this, an initial network of N randomly distributed buoys is initialized and evaluated, then buoys are randomly moved. For a fixed number of moved buoys, at each iteration, the different methods evaluate the same network to ensure a fair comparison. Here using the **exponential** function.