1. using desired histogram to obtain the table of transformation function for the mapping from the input gray level r to the output gray level z.

$r_{k, k=0-255}$	$Z_{k, k=0-255}$
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	1
13	1
14	1
15	2
16	2
17	3
18	4
19	6
20	8
21	10
22	13
23	16
24	20
25	24
26	28
27	31
28	34
29	37
30	40
31	43
32	46
33	49

34	52
35	55
36	58
37	61
38	63
39	67
40	71
41	75
42	79
43	82
44	86
45	90
46	93
47	97
48	101
49	104
50	107
51	111
52	114
53	117
54	120
55	124
56	127
57	130
58	133
59	136
60	139
61	141
62	144
63	146
64	148
65	151
66	153
67	155
68	157
69	159
70	161

71	163
72	165
73	166
74	168
75	170
76	171
77	172
78	174
79	175
80	177
81	178
82	179
83	180
84	181
85	183
86	184
87	185
88	186
89	187
90	188
91	189
92	191
93	192
94	192
95	193
96	194
97	194
98	195
99	195
100	196
101	197
102	197
103	198
104	199
105	199
106	200
107	201

108	201
109	202
110	203
111	203
112	204
113	204
114	205
115	206
116	206
117	207
118	207
119	208
120	208
121	209
122	209
123	210
124	210
125	211
126	211
127	212
128	212
129	213
130	213
131	214
132	214
133	215
134	215
135	215
136	216
137	216
138	217
139	217
140	217
141	218
142	218
143	218
144	219
	

145	219
146	219
147	220
148	220
149	220
150	221
151	221
152	221
153	222
154	222
155	222
156	222
157	223
158	223
159	223
160	224
161	224
162	224
163	225
164	225
165	225
166	225
167	226
168	226
169	226
170	227
171	227
172	227
173	228
174	228
175	228
176	228
177	229
178	229
179	229
180	229
181	230
	

182	230
183	230
184	230
185	231
186	231
187	231
188	232
189	232
190	232
191	232
192	233
193	233
194	233
195	233
196	234
197	234
198	234
199	234
200	234
201	235
202	235
203	235
204	235
205	235
206	235
207	235
208	236
209	236
210	236
211	236
212	236
213	236
214	236
215	236
216	237
217	237
218	237
	

219	237
220	237
221	237
222	237
223	237
224	237
225	237
226	237
227	238
228	238
229	238
230	238
231	238
232	238
233	238
234	238
235	238
236	238
237	238
238	238
239	239
240	239
241	239
242	239
243	239
244	239
245	239
246	239
247	239
248	239
249	239
250	240
251	240
252	240
253	240
254	243
255	255

2. Generating output image after applying the table of transformation function for original image.

Figure 1 Original image.

Figure 2 Output image.

3. original and output image histograms.

Figure 3 Original histograms.

Figure 4 output histograms.

Source code:

```
% Clear all command window, temporary variables and close all MATLAB
clear; clc; close all;
% Read the image, data type: uint8
pic1 = imread('camellia (mono) 512x512.tif');
% % Show the input image (camellia (mono) 512x512.tif)
figure;
imshow(pic1);
title('Original image');
\ensuremath{\text{\%}} Calculate the histogram of the input image
pic1 his=imhist(pic1);
% Show the histogram of the input image
figure;
imhist(pic1);
xlim([0 260]);
title('Original histograms');
ylabel('number of pixels');
% Calculate the probability each of gray-leve for input image
pic1 prob=pic1 his/sum(pic1 his);
% Calculate the probability of z
pz=zeros(256,1);
for ii=1:1:64
   pz(ii,1)=1248/(512*512);
end
for ii=65:1:192
   pz(ii,1)=800/(512*512);
end
for ii=193:1:256
   pz(ii,1)=1248/(512*512);
end
```

```
% Calculate sk,sn
sk=zeros(256,1);
sn=zeros(256,1);
for ii=1:256
  total=0;
   for jj=1:ii
      total=total+pic1_prob(jj,1);
   end
   sk(ii,1)=total;
end
for ii=1:256
   total=0;
   for jj=1:ii
      total=total+pz(jj,1);
   end
   sn(ii,1)=total;
end
% Calculate min n(sn-sk)>=0
a=zeros(256,256);
for k=1:256
  for n=1:256
      a(k,n) = sn(n,1) - sk(k,1);
   end
end
A=a.';
A(A < 0) = inf;
% Find the minimum and its row for each column
[B,C]=\min(A);
new=zeros(256,1);
for n=1:256
  new(n, 1) = C(1, n) - 1;
end
% new output image
npic1=zeros(512,512);
```

```
for ii=1:512
   for jj=1:512
      for kk=1:1:256
          if pic1(ii,jj) == kk-1
             npic1(ii,jj) = new(kk,1);
          end
      end
   end
end
% Show the output image
figure;
imshow(uint8(npic1));
title('Output image after histogram-specification scheme');
npic1_his=imhist(uint8(npic1));
% Show the output histograms
figure;
imhist(uint8(npic1));
xlim([-10 260])
title('Output histograms');
ylabel('number of pixels');
% Show the curve of transformation function
figure;
plot(0:1:255, new);
axis([-5 260 -5 260]);
xlabel('input intensity level (r)');
ylabel('output intensity level (s)');
```