3.2.3. Резонанс токов

Радькин Кирилл Б01-005 13.09.21

Цель работы: изучение параллельной цепи переменного тока, наблюдение резонанса токов.

В работе используются: лабораторный автотрансформатор (ЛАТР), разделительный понижающий трансформатор, емкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

В работе изучается параллельный контур, одна из ветвей которого содержит индуктивность L, другая емкость C. Через r_L обозначено активное сопротивление катушки, которое включает в себя как чисто оммическое сопротивление витков катушки, так и сопротивление, связанное с потерями энергии при перемагничиваниии сердечника катушки. Активным сопротивлением емкостной ветви контура можно пренебречь, т.к. используемый в работе конденсатор обладает малыми потерями.

Рис. 1. Схема для исследования резонанса токов

Экспериментальная установка: Схема экспериментальной установки приведена на рис. 1. Напряжение от сети (220В, 50Гц) с помощью ЛАТРа через понижающий трансформатор Тр подается на параллельный контур, содержащий конденсатор (C=120мкФ) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью многопредельного амперметра A_1 ; для измерения токов в L- и C-ветвях используются два одинаковых амперметра A_2 и A_3 ; напряжение на контуре контролируется электронным вольтметром V. Последовательно с контуром включен резистор r- реостат с полным сопротивлением $\simeq 100$ Ом.

Для наблюдения за сдвигом фаз между полным током и напряжением на контуре используется осциллограф. Сигнал, пропорциональный току, снимается с резистора r и подается на вход Y осциллографа. На вход X подается напряжение непосредственно с конутра. При наличии сдвига фаз между этим напряжениями на экране виден эллипс, а при нулевом сдвиге фаз эллипс вырождается в прямую.

Задание

В работе предлагается снять при постоянном напряжении U зависимости токов I_L , I_C и полного тока I от индуктивности катушки (глубины погружения сердечника), а также определить резонансные характеристики контура: полное сопротивление $R_{\rm pes}$, добротность Q, активное сопротивление r_L и индуктивность катушки $L_{\rm pes}$.

- 1. Соберием схему согласно рис. 1. Для амперметров A_2 , A_3 установим пределы измерения 1 A, для A_1 0.5 A. Полностью введем сердечник в катушку. По шкале на корпусе катушки это соответствует минимальному делению.
- 2. Установим движок ЛАТРа в положение, соответствующее минимуму выходного напряжения (крайнее левое). Включим в сеть ЛАТР, катодный вольтметр и осциллограф.
 - Плавным поворотом движка ЛАТРа установим напряжение на контуре (поэлектронному вольтметру) V = 10В.
- 3. Выдвигая сердечник дросселя и поддерживая с помощью ЛАТРа постоянное напряжение, определим диапазон перемещения сердечника, внутри которого общий ток I в контуре не превышает 0.5A.

Искомый диапазон: 3-11.5 см.

4. Подобрав рабочий диапазон, снимем зависимости I, I_L, I_C от координаты сердечника (U = const).

x, cm	I,% of $0.5A$	I_L , $\%$ от 1A	$I_C,\%$ от 1А
3	32	15	33
3.5	28	20	34
4	25	21	34
4.5	21	23	34
5	11	25	34
5.5	8	27	34
6	4	30	34
6.5	3	33	34
7	4	36	34
7.5	10	39	34
8	20	43	34
8.5	27	47	35
9	35	51	34
9.5	45	56	35
10	56	61	35
10.5	67	67	34
11	80	74	35
11.5	96	81	35

$$\Delta I = 1\%$$

Вблизи резонанса полный ток I мал и по шкале $0.5\mathrm{A}$ измеряется неточно, но для наблюдения за общим ходом изменений это несущественно.

Отметим, что эллипс вырождается в прямую при токе I = 15мA.

- 5. Вернием систему в положение резонанса (минимум полного тока в цепи) и, убрав напряжение до нуля, переключим амперметр A_1 на предел измерений 0.1A.
- 6. Как можно точнее измерим резонансные значения трех токов: $I=15~{\rm mA},~I_L=0.33~{\rm A},~I_C=0.33~{\rm A}$

Оценим на месте добротность: Q = 22. $r_L = 4$ Ом.

7. Убрав напряжение до нуля, отключим ЛАТР от сети и разберем схему.

Обработка результатов:

1. Построим на одном графике зависимости токов I, I_L, I_C от положения сердечника: I = f(x) (x — отсчет по шкале в мм).

2. Рассчитаем добротность контура Q через токи, и резонансное сопротивление $R_{\rm pes}$ — через полный ток и напряжение.

$$\begin{split} Q &= \frac{I_{C,\mathrm{pe3}}}{I_{\mathrm{pe3}}} = \frac{I_{L,\mathrm{pe3}}}{I_{\mathrm{pe3}}} = 22 \pm 7 \\ R_{\mathrm{pe3}} &= \frac{U_0}{I_{\mathrm{pe3}}} = 667 \pm 20 \text{ Om} \end{split}$$

3. Рассчитаем $L_{\rm pes}$ через емкость C и частоту ω_0 ($\nu_0=50$ Γ ц), а r_L — через емкость и добротность.

$$L_{\rm pe3} = \frac{1}{4 \cdot \pi^2 \cdot \nu_0^2 \cdot C} = 0.08 \ \Gamma {\rm H}$$

$$r_L = \frac{1}{2 \cdot \pi \cdot \nu_0 \cdot C \cdot Q} = 1.2 \pm 0.2 \ {\rm Om}$$

4. Рассчитаем индуктивность L_{pes} через U и $I_{L,\mathrm{pes}}$

$$L_{
m pes} = \frac{U_0}{2 \cdot \pi \cdot I_{L,
m pes}} = (9 \pm 27 \cdot 10^{-2}) \cdot 10^{-2} \ \Gamma_{
m H}$$