

Jhordanth Fabian Villamizar Peñaranda 2190069 Andrea Juliana Urrego Paredes 2190066 Alejandro Rodriguez Vargas 2191419

Análisis del dataset

Para realizar este estudio se tomó en cuenta las condiciones y comportamientos, de 649 estudiantes de una clase, buscando patrones en los datos que pudiesen indicar la tendencia que tiene un estudiante a consumir bebidas alcohólicas.

Para poder realizar esta diferenciación de patrones de comportamiento se tendrá en cuenta las variables weekend alcohol consumption (Consumo de alcohol el fin de semana) y workday alcohol consumption (consumo de alcohol en días laborales)(**Walc y Dalc en el dataset** respectivamente), las cuales toman valores entre 1 y 5, siendo 5 muy alto y 1 muy bajo, en este análisis se decidió sumar ambas variables para tomarlas como **ground truth**, por tanto ahora nuestro ground truth tomará valores entre 2 y 10.

La información del dataset puede encontrarse en el siguiente link: https://www.kaggle.com/datasets/uciml/student-alcohol-consumption

Eliminación de columnas menos importantes del dataset.

Relacionando los datos para el respectivo análisis que queremos realizar, algunas columnas no tenían mucha relación en cuanto a poder ver el consumo de alcohol de los estudiantes, como por ejemplo el tiempo de viaje.

```
## limpiar dataset
import pandas as pd

dp.drop(['school','reason','traveltime', 'failures','paid','nursery'],axis=1, inplace=True)

dp.info()
```

```
dp['sex'].unique()
dp['sex'] = dp['sex'].map(
        'F': 0,
        'M': 1.
dp['address'].unique()
dp['address'] = dp['address'].map(
        'U': 0,
        'R': 1,
dp['famsize'].unique()
dp['famsize'] = dp['famsize'].map(
        'GT3': 0,
        'LE3': 1,
```

Conversión de las columnas del dataset a valores numéricos.

Correlación de Pearson

Uso del feature importances

Al final nos quedamos con 24 columnas.

```
features= est.feature_importances_
bestfeat = np.argsort(features[::-1])
bestcols = bestfeat[0:24]
X_train_best = X_train.values[:, bestcols]
X_test_best = X_test.values[:, bestcols]
```

Usando el DecisionTreeClassifier

Para calcular algunas métricas como lo son el recall score, el accuracy sin el uso de feature importances.

```
X = dp[['sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'guardian', 'studytime', 'schoolsup', 'famsup', 'activities', 'higher', 'internet'
y = dp['Walc']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=False, random_state=21)

est = DecisionTreeClassifier(random_state=21)
    est.fit(X_train,y_train)
    pred = est.predict(X_test)
    print('prediction: ',pred)
    print('grand trouth: ',y_test.values)
    print('accuracy socre: ', accuracy_score(pred, y_test))
    print('recall socre: ', recall_score(y_test,pred, average='macro'))
    print('f1 socre: ', f1_score(y_test, pred, average='macro'))
```

```
est.fit(X train best, y train)
score = est.score(X_test_best, y_test)
pred = est.predict(X test best)
print('prediction: ',pred)
print('grand trouth: ',y test.values)
print('accuracy socre: ', accuracy_score(pred, y_test))
print('recall socre: ', recall_score(y_test,pred, average='macro'))
print('f1 socre: ', f1 score(y test, pred, average='macro'))
                                                                                  Y con el uso
                                                                                  de feature
                                                                                  importances
 2 7 7]
```

est = DecisionTreeClassifier(random state=21, criterion='gini')

Uso de RandomForestClassifier sin feature importances

```
X train, X test, y train, y test = train test split(X, y, test size=0.3, shuffle=False, random state=21)
s1plot= []
s2plot= []
s3plot= []
splot= []
bests1plot= []
bests2plot= []
bests3plot= []
bestsplot= []
for x in n:
  est = RandomForestClassifier(n estimators=x+1, random state=21, criterion='gini')
  est.fit(X train, y train)
  score = est.score(X test, y test)
  pred = est.predict(X test)
  s1 = jaccard score(pred, y test, average='micro')
  s2 = accuracy score(pred, y test)
  s3 = balanced accuracy score(pred, y test)
  s1plot.append(s1)
  s2plot.append(s2)
  s3plot.append(s3)
  splot.append(score)
```

Uso de RandomForestClassifier con feature importances

```
for x in n:
    est = RandomForestClassifier(n_estimators=x+1, random_state=21, criterion='gini')
    est.fit(X_train_best, y_train)
    score = est.score(X_test_best, y_test)
    pred = est.predict(X_test_best)
    s1 = jaccard_score(pred, y_test, average='micro')
    s2 = accuracy_score(pred, y_test)
    s3 = balanced_accuracy_score(pred, y_test)
    bests1plot.append(s1)
    bests2plot.append(s2)
    bests3plot.append(s3)
    bestsplot.append(score)
```

Gráfica de la predicción con feature importances

```
ax= plt
meanax = plt

ax.figure(figsize=(30,6))
ax.plot(bests1plot, color='red')
ax.plot(bests2plot, color='blue')
ax.plot(bests3plot, color='green')
#ax.plot(bestsplot)
ax.xticks(range(0, 100, 1))
ax.grid(alpha=0.8, color='Black',linestyle='-.',linewidth=1.5)
ax.show
```


Gráfica de la suma de las dos predicciones

```
mean=[]

for n in range(100):
    mean.append(bests1plot[n]+bests2plot[n]+bests3plot[n]+bestsplot[n]+s1plot[n]+s2plot[n]+s3plot[n]+splot[n])

meanax.figure(figsize=(30,6))
    meanax.plot(mean)
    meanax.xticks(range(0, 100, 1))
    meanax.grid(alpha=0.8, color='Black',linestyle='-.',linewidth=1.5)
    meanax.show
```


Gráfica de las predicciones sin feature importances

```
plt.figure(figsize=(30,6))
plt.plot(s1plot)
plt.plot(s2plot)
plt.plot(s3plot)
#plt.plot(splot)
plt.xticks(range(0, 100, 1))
plt.grid(alpha=0.8, color='Black',linestyle='-.',linewidth=1.5)
plt.show
```


Mediante las gráficas y usando RandomForest buscamos la mejor cantidad de n estimators.

Aplicamos GaussianNB

Podemos ver que con el GaussianNB sabemos que es un método menos preciso, las métricas fueron mucho peores.

```
X = dp[['sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu', 'Mjob', 'Fjob', 'guardian', 'studytime', 'schoolsup', 'famsup', 'activities', 'higher', 'internet', y = dp['Walc']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=False, random_state=21)

est = GaussianNB()
    est.fit(X_train,y_train)
    pred = est.predict(X_test)
    print('prediction: ',pred)
    print('grand trouth: ',y_test.values)
    print('grand trouth: ',y_test.values)
    print('accuracy score: ', accuracy_score(pred, y_test))
    print('recall score: ', recall_score(y_test,pred, average='macro'))

print('f1 score: ', f1_score(y_test, pred, average='macro'))
```

pred	ict	ion	:	[8	2	3	9	2	2	3	2	2	2	9	8	9	3	9	9	8	8	3 2	9	9	2	. 8	9)
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	6	8	8	8	9	3	3	8	9					
9	2	8	8	8	8	9	3	2	8	8	8	8	6	8	8	8	9	8	8	8	8	8	9					
8	9	8	8	9	9	9	3	8	9	8	8	8	8	8	2	8	9	9	9	8	9	8	2					
8	9	8	8	8	2	9	8	8	9	9	9	8	9	9	9	8	8	9	8	9	8	8	3					
7	8	9	9	9	8	9	8	8	8	3	8	10	8	8	8	8	8	8	8	3	9	3	8					
9	9	8	8	8	8	8	8	3	8	8	8	8	2	9	8	8	8	9	3	8	3	8	2					
9	9	3	8	8	8	8	8	8	2	8	8	3	8	9	9	9	9	9	2	8	8	8	3					
8	9	9]																										
gran	d t	rou	th:]	3	6	3	10	2	2	2	7	3	4	7	5	4	2	3	2	2	5	2	5	8	2	2	6
2	2	2	2	4	3	3	3	5	2	2	7	2	5	2	8	4	2	4	7	2	3	10	6					
0	2	2	7	6	2	7	2	2	2	2	4	Е.	Г	F	F	4	2	4	2	7	10	2	7					

8	2	2	3	6	2	3	2	2	2	2	4	5	
3	4	3	3	10	6	5	2	7	4	5	3	4	
4	4	7	2	4	2	6	2	8	2	4	5	2	
6	7	10	6	5	5	6	2	2	2	2	4	4	
10	2	7	2	5	2	3	5	4	3	3	2	5	
6	4	3	3	6	5	2	4	2	3	2	7	3	
2	7	7]											

accuracy socre: 0.09230769230769231 recall socre: 0.06736111111111111

f1 socre: 0.05905353690093004