Problem 7.15. Show that P is closed under the star operation.

Proof Idea. For $A \in P$, a string $y = y_i \cdots y_j \in A^*$, where $i \leq j$, when one of following is true:

- 1. $y_i \cdots y_j = \varepsilon$.
- 2. $y_i \cdots y_{k-1} \in A^*$ and $y_k \cdots y_j \in A$, for some $i \leq k \leq j$.

Tree of sub-problems for a string of length 4. Non-shaded sub-problems are unique, whereas shaded are duplicate.

First, we give a recurive algorithm C that tests if A^* contains a string y. Secondly, we use Dynamic Programming (recursion + memoinzation) to obtain a polynomial time algorithm D.

Proof. Let A be any language in P, and S be the **TM** that decides A in polynomial time.

C = "On input $\langle y, i, j \rangle$, where y is a string and i, j are integers:

- 1. If $y_i \cdots y_j = \varepsilon$, then accept.
- 2. Repeat for each k between i and j.
- 3. Run C on $\langle y, i, k-1 \rangle$.
- 4. Use S to check if $y_k \cdots y_j \in A$.
- 5. Accept, if both C and S accept.
- 6. Reject."

Then decide A^* by starting with i = 1 and j = |y|.

C takes non-polynomial time as it makes 2^n calls for a string for length n. We add memoinzation in C to obtain algorithm D, which makes O(n). Therefore, time used by D is polynomial.

D = "On input $\langle y, i, j \rangle$, where y is a string and i, j are integers:

- 1. If previously solved then answer same, else continue.
- 2. If $y_i \cdots y_j = \varepsilon$, then accept.
- 3. Repeat for each k between i and j.
- 4. Run C on $\langle y, i, k-1 \rangle$.
- 5. Use S to check if $y_k \cdots y_j \in A$.
- 6. Accept, if both C and S accept.
- 7. Reject."

Then decide A^* by starting with i=1 and j=|y|.