Module PRB1 : Probabilités de base.

Partiel 1^{re} session : durée deux heures.

Documents non autorisés.

Samedi 15 novembre 2003.

Exercice 1. 1. Soit X une variable aléatoire positive. Établir que

$$\mathbb{E}[X] = \int_0^{+\infty} \mathbb{P}(X > t) \, dt.$$

Soient $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires positives indépendantes et de même loi et N une variable aléatoire à valeurs dans \mathbb{N}^* indépendante de la suite $(X_n)_{n\in\mathbb{N}^*}$. On note F la fonction de répartition de X_1 et G la fonction génératrice de N:

$$\forall t \in \mathbb{R}, \quad F(t) = \mathbb{P}(X_1 \le t), \qquad \forall |s| \le 1, \quad G(s) = \mathbb{E}\left[s^N\right] = \sum_{k > 1} s^k \, \mathbb{P}(N = k).$$

- 2. Pour tout $k \in \mathbb{N}^*$, on note Z_k la variable aléatoire $Z_k = \max(X_1, \dots, X_k)$.
 - (a) Exprimer la fonction de répartition H_k de Z_k en fonction de F.
 - (b) Déterminer $\lim_{k\to+\infty} \mathbb{E}[Z_k]$ lorsque X_1 est de loi uniforme sur [0,1].
- (c) Comparer la variable aléatoire Z_k aux variables aléatoires X_1 et $X_1 + \ldots + X_k$. En déduire que Z_k est intégrable si et seulement si X_1 l'est.
 - (d) On suppose que $\mathbb{E}[X_1] < +\infty$ et on note

$$\tau = \inf\{t \in \mathbb{R} : F(t) = 1\}, \quad \inf \emptyset = +\infty.$$

Remarquer que $\tau \in \mathbb{R}_+ \cup \{+\infty\}$ et montrer que $\lim_{k \to +\infty} \mathbb{E}[Z_k] = \tau$.

3. On considère la variable aléatoire définie par

$$Z(\omega) = \max (X_1(\omega), \dots, X_{N(\omega)}(\omega)), \quad \omega \in \Omega.$$

(a) Soit H la fonction de répartition de Z. Montrer que

$$\forall t \in \mathbb{R}, \qquad H(t) = \sum_{k \geq 1} \mathbb{P}(N = k) \, H_k(t).$$

En déduire une expression de H en fonction de F et G.

- (b) Expliciter H lorsque X_1 est de loi uniforme sur [0,1] et N de loi géométrique de paramètre $p \in]0,1[$.
 - (c) Montrer que dans $\mathbb{R}_+ \cup \{+\infty\}$ on a

$$\mathbb{E}[Z] = \sum_{k>1} \mathbb{P}(N=k) \, \mathbb{E}[Z_k].$$

En déduire que si X_1 et N sont intégrables Z l'est aussi.

Exercice 2. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes.

1. Montrer que l'événement

$$A = \left\{ \omega \in \Omega, \sum_{n \ge 1} X_n(\omega) \text{ converge} \right\}$$

est un événement asymptotique de la suite $(X_n)_{n\in\mathbb{N}^*}$.

- 2. On suppose que les variables X_n sont identiquement distribuées et que $\mathbb{P}(X_1=0)<1$.
 - (a) Montrer qu'il existe c > 0 tel que $\mathbb{P}(|X_1| \ge c) > 0$ et en déduire $\mathbb{P}(\limsup\{|X_n| \ge c\})$.
 - (b) Montrer que $\mathbb{P}(A) = 0$.
- 3. On suppose à présent que, pour tout $n \ge 1$, X_n est de loi $\mathcal{N}(0, n^{-4})$.
 - (a) En utilisant l'inégalité de Tchebycheff, établir que

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(|X_n| \ge \frac{1}{n^{\frac{5}{4}}}\right) \le \frac{1}{n^{\frac{3}{2}}}.$$

- (b) Montrer que lim inf $\{|X_n| < n^{-\frac{5}{4}}\} \subset A$ et en déduire que $\mathbb{P}(A) = 1$.
- (c) On note, pour $n \ge 1$,

$$S_n = \sum_{k=1}^n X_k, \qquad S = \mathbf{1}_A \sum_{k \ge 1} X_k.$$

Déterminer la loi de S_n . Montrer que la fonction caractéristique de S_n converge simplement vers celle de S. En déduire la loi de S. On notera $\sigma^2 = \sum_{k \ge 1} k^{-4}$.

(d) La variable S est-elle asymptotique de la suite $(X_n)_{n\in\mathbb{N}^*}$?

Exercice 3. Soient X et Y deux variables aléatoires réelles indépendantes et de même loi μ . On note F la fonction de répartition de X et on suppose que F est continue sauf aux points $d_1 < d_2 < \ldots < d_r$. On rappelle que F(t-) désigne la limite à gauche de F au point t.

Montrer que

$$\mathbb{P}(X - Y = 0) = \int_{\mathbb{R}} \mu(\{x\}) \ \mu(dx) = \sum_{n=1}^{r} (F(d_n) - F(d_n - 1))^2.$$