课程名称
 半导体物理 929
 编辑时间
 2013-1
 得分

 适用专业
 电子科学与技术
 考试形式
 闭卷
 考试时间长度 180 分钟

室温下 $k_0T = 0.026eV$, 电子电量 $e = 1.6 \times 10^{-19}C$ 。

- 一、 填空题 (每空1分,共35分)
- 1. 设晶格常数为a的一维晶格,导带极小值附近的能量为 $\mathbf{E}_{\mathbf{C}}(k) = \frac{h^2 k^2}{3m_0} + \frac{h^2 (k-k_1)^2}{m_0}$,

价带极大值附近的能量 $\mathbf{E}_{\mathrm{V}}(k) = \frac{h^2k_1^2}{6m_0} - \frac{3h^2k^2}{m_0}$,其中 m_0 为电子质量,h为普朗克常数, $k_1 = \frac{a}{2}$,则半导体禁带宽度为______,价带顶电子跃迁到导带底时的准动量的变化为_____,价带顶空穴有效质量为_____。

- 2. 室温下,锗的禁带宽度 $E_g=0.67eV$,估计室温下本征锗导带底的一个能态被电子占据的几率为 ______。锗价带顶的一个能态被空穴占据的几率为 10^{-3} ,此时费米能级的位置在 ______,玻尔兹曼分布是否近似成立? ______。
- 3. 由间接复合作用决定的非平衡载流子寿命 $\tau = \frac{c_n(n_0 + n_l + \Delta n) + c_p(p_0 + p_l + \Delta p)}{N_t c_n c_p(n_0 + p_0 + \Delta p)}$,式

中 N_t 代表_____。半导体禁带宽度 $E_g=1.12eV$,小注入条件下,复合中心能级 E_t 在价带顶上方0.12eV,费米能级在导带底下方0.31eV,则非平衡载流子的寿命可化简为______;大注入条件下,非平衡载流子的寿命可化简为_____。

4. 室温下本征硅掺入某种杂质后,电子浓度为 $n_0=1.5\times 10^4cm^{-3}$,硅的本征载流子浓度 $n_i=1.5\times 10^{10}cm^{-3}$,导带有效状态密度 $N_C=2.8\times 10^9cm^{-3}$,价带有效状态密度 $N_V=1.1\times 10^{19}cm^{-3}$ 。则费米能级与价带顶的差为______;掺入施主杂质 $N_D=5\times 10^5cm^{-3}$ 后,费米能级将______(填"上升"、"下降"或"不变")。

共6页 第1页

(luobin 考研复习卷)

5.	表面复合率 U_s 表示单位时间,它与成正比,比例系数用 s
	表示,反应了表面复合的强弱。如果半导体表面载流子的复合几率为 p_s ,体内复合寿
	命为 $ au_{v}$,则有效寿命为 $ extcolored$ 。
6.	半导体中的载流子主要受到两种散射,在高温下起主要作用;在高掺杂情况下,载流子的迁移率随温度的变化是比较小的,其原因是。
7.	设室温下半导体材料硅中载流子迁移率 $\mu_{\scriptscriptstyle n}=1000cm^2/V\cdot s,\mu_{\scriptscriptstyle p}=300cm^2/V\cdot s,$ 本
	征载流子浓度 $n_i = 1.5 \times 10^{10} cm^{-3}$,本征电阻率为,掺入硼 $5 \times 10^{16} cm^{-3}$,
	掺入磷 2×10^{17} cm^{-3} ,设迁移率不随掺杂浓度的变化而变化,半导体加电场 $2V/cm$,
8.	则电流密度为。 pn结电容主要有势垒电容和扩散电容,反向偏压下,电容的作用越重要。对于点接触型二极管和面接触型二极管,更适合用于大电流和整流。
9.	对于 Si 、 Ge 和 $GaAs$ 材料,同一掺杂浓度下
10.	小,
11.	某硅样品含有 10^{16} cm^{-3} 的 \ln 受主原子和一定数量的浅浓度施主杂质,硅的禁带宽度
\	$E_{\rm g}=1.12eV$ 。室温下,硅的本征载流子浓度 $n_{\rm i}=1.5\times 10^{10}{ m cm^{-3}}$,导带有效状态密度
	$N_{\rm C}=2.8\times 10^{19}cm^{-3}$,价带有效状态密度 $N_{ m V}=1.1\times 10^{19}cm^{-3}$ 。 In 受主能级比 $E_{ m V}$ 高
	$0.16eV$,费米能级 $\mathbf{E}_{_{\mathrm{F}}}$ 比 $\mathbf{E}_{_{\mathrm{V}}}$ 高 $0.26eV$,电离杂质中心浓度为。
12.	若在掺有受主杂质 N_A 的 p 型衬底上采用扩散工艺又掺入一层浓度为 N_D 施主杂质,
	且 $N_A \gg N_D$,本征载流子浓度为 n_i 。 p 区和 n 区哪边的势垒宽度宽?。
	外加正向偏置时,正向扩散电流的主要成分是电流。若外加正向电压为
	V_f 时,注入 p 区的电子浓度为。实际工艺中往往采用 $\mathbf{N_D} \gg \mathbf{N_A}$,这样
	做的原因是。
	共 6 页 第 2 页 (luobin 考研复习卷)

13.	在室温下,当反向偏压等于 $0.13V$ 时,流过 pn 结二极管的电流为 $5\mu A$ 。当二极管	II
14.	向偏置同样大小的电压时,流过二极管的电流为。 	K
	映有浓度梯度时载流子运动难易的物理量,联系两者的关系式是,称关系式。	
二、	简答题(共 72 分)	
1.	(12分)解释半导体物理中载流子的平均自由程、扩散长度和牵引长度有何不同?	

2. (10分)解释半导体物理中大注入、小注入概念。

3. (12分) 比较 PN 结和肖特基结的主要异同点,解释肖特基结更适合高频条件下使用。

www.docin.com

4. (12分) 画出并定性解释 Si 的电子平均漂移速度与电场强度的关系。

5. (12分) 简要叙述金属和半导体的导电机理。

6. (14分)两掺杂浓度不同的硅样品,其载流子电子浓度与温度的关系如图所示,解释说明 AB 段基本重合,BC 段基本平行,CD 段不平行。

三、 计算题 (共43分)

1.(13分) (1) 已知 r 为电子空穴复合几率,本征载流子浓度为 n_i ,热平衡下 p 型半导体材料的空穴浓度为 p_0 ,求该材料由直接复合决定的非平衡载流子的寿命。

(2) 试证明半导体中当 $\mu_n \neq \mu_p$ 且电子浓度 $n = n_i \sqrt{\mu_p / \mu_n}$, 空穴浓度 $p = n_i \sqrt{\mu_n / \mu_p}$, 材料的电导率 σ 最小,其中 n_i 为本征载流子浓度,并求 σ_{\min} 的表达式。

2.(15分) 如图所示,室温下一个无限大的均匀掺杂的n型半导体样品,无外场作用。用适当频率且稳定均匀光在t=0 照射在半导体样品的左半部分,产生非平衡载流子,产生率 $G_{op}=10^{15}cm^{-3}s^{-1}$ 。非平衡载流子空穴的寿命为 $\tau_p=5us$,迁移率为 $\mu_p=480cm^2/V\cdot s$ 。

(提示: 非平衡载流子的连续性方程为
$$\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial x^2} - p\mu_p \frac{d\varepsilon}{dx} - \varepsilon\mu_p \frac{\partial p}{\partial x} - \frac{\Delta p}{\tau_p} + g_p$$
)

- (1) 画出半导体非平衡载流子的浓度与位置 x 的关系;
- (2)什么位置非平衡载流子的浓度为10°cm-3?

www.docin.com

3.(15分) 室温下均匀掺杂的硅掺入的施主杂质浓度为 N_D ,掺入的受主杂质浓度为 N_A ,且满足: 5.0×10^{14} cm^{-3} < N_A < N_D < 1.5×10^{17} cm^{-3} , N_A = 0.1 N_D 。室温下:硅的导带底电子状态密度有效质量 $m_{dn}=1.08m_0$,硅的价带顶空穴状态密度有效质量 $m_{dp}=0.55m_0$,其中 m_0 为电子的惯性质量;导带有效状态密度为 $N_C=2(\frac{2\pi m_{dn}k_0T}{h^2})^{\frac{3}{2}}$,价带有效状态密度为 $N_V=2(\frac{2\pi m_{dp}k_0T}{h^2})^{\frac{3}{2}}$,其中 k_0 为波尔兹曼常数,T=300 K;禁带宽度为 E_g ; μ_n 为电子迁移率, μ_p 为空穴迁移率。设 600 K 下硅的本征载流子浓度为 n_i 。

- ▶ 解释说明电子惯性质量、状态密度有效质量和有效状态密度三个概念;
- ▶ 室温下假定本征硅的费米能级在禁带中央合理吗?说明理由;
- 求室温下的该掺杂硅的载流子浓度、费米能级位置及电导率:
- ▶ 求600K下的载流子浓度。

doc価道力 www.docin.com