

Mathematical Induction

The principle of mathematical induction.

Consider an integer a known as the basis. If

- 1. P(a) holds and
- 2. P(n) must hold whenever P(n-1) holds, for each integer n > a.

Therefore, a typical proof consists of two steps

- basis
- induction step

A more general principle of mathematical induction.

Consider any property P of the integers, and two integers a and b such that $a \le b$

- 1. P(n) holds for $a \le n < b$
- 2. for any integer $n \ge b$, the fact P(n) holds follows from the assumption that P(m) holds for all m such that $a \le m < n$.

Therefore, a typical proof consists of two steps

- basis
- induction step

Constructive Induction

Example: Fibonacci sequence

$$f_0 = 0; f_1 = 1 \text{ and}$$

 $f_n = f_{n-1} + f_{n-2} \text{ for } n \ge 2$

Easy to prove if we know

$$f_n = \frac{1}{\sqrt{5}} [\phi^n - ((-\phi)^{-n})], \phi = \frac{1 + \sqrt{5}}{2}$$

How about we don't know f_n .

Conjecture: $\exists x > 1, N_0 \in \mathcal{N}$, for all $n > N_0, f_n \ge x^n$.

Constructive Induction

```
Let g(n) be the number of times that the marked instruction is executed.
Show that there exist positive constants a and b such that
af_n \leq g(n) \leq bf_n for any sufficiently large n.
double fibRecursive(int n)
  double ret;
     if (n < 2)
        ret = (double)n;
     e 1 s e
               fibRecursive (n-1)
           + fibRecursive(n-2); // ***
     return ret;
```

Mathematical Notation

- Propositional calculus
- Set theory
- Integers, reals, and intervals
- Functions and relations
- Quantifiers
- Sums and products
- Logarithm equations

propositional calculus

- Boolean variable can be either true or false
- Conjunction, $p \land q$
- Disjunction, $p \bigvee q$
- Negation, $\neg p$
- Implication, $p \Longrightarrow q$
- Equivalence, $p \Longleftrightarrow q$

Set theory

- A set is an unordered collection of distinct elements.
- finite, infinite, empty set (ϕ)
- Cardinality of X, |X|.
- $x \in X, x \notin X$
- $X \subseteq Y, X \subset Y$
- $X \supseteq Y, X \supset Y$

Integers, reals, and intervals

• $\mathcal{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

• $\mathcal{N} = \{0, 1, 2, ...\}$

• $\mathcal{N}^+ = \{1, 2, ...\}$

- \mathcal{R} for real numbers and \mathcal{R}^+ for positive real numbers
- An open interval $(a, b) = \{x \in \mathcal{R} | a < x < b\}.$
- An close interval $[a, b] = \{x \in \mathcal{R} | a \le x \le b\}.$
- An semi-open interval $(a, b] = \{x \in \mathcal{R} | a < x \le b\}$. Similarly, [a, b).
- An integer interval $[i..j] = \{n \in \mathcal{Z} | i \le n \le j\}$. |[i..j]| = j i + 1.

Functions and relations

- Any subset ρ of Cartesian product XxY is a relation.
- A relation f between X and Y is a function if for each $x \in X$, there exists one and only one $y \in Y$ such that $(x, y) \in f$. It is denoted as $f: X \to Y$.
 - 1. domain
 - 2. image
 - 3. range
- A function $f: X \to Y$ is *injective* if there do not exist two distinct $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$
- surjective, bijective

Quantifiers

•
$$\forall n \in \mathcal{N}$$
 $\left[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\right]$

•
$$\exists n \in \mathcal{N}^+ \quad [\sum_{i=1}^n i = n^2]$$

- Definition of "exist infinite", "finite exceptions"
- Duality principle

Sums and Products

- Sum, $\sum_{i=1}^{n} f(n)$
- Conditional sum, $\sum_{i=1,P(i)}^{n} f(n)$
- Conditional product, $\Pi_{i=1,P(i)}^n f(n)$

Logarithm equations

- $log_a(xy) = log_a x + log_a y$
- $log_a x^y = ylog_a x$
- $log_a x = \frac{log_b x}{log_b a}$
- $\bullet \ x^{log_b y} = y^{log_b x}$

Limits

- Definitions of $\lim_{n\to\infty} f(n) = a$ and $\lim_{n\to\infty} f(n) = \infty$
- Properties

If
$$\lim_{n\to\infty} f(n) = a$$
 and $\lim_{n\to\infty} f(n) = b$ then $\lim_{n\to\infty} f(n)$ op $g(n) = a$ op b .

Series

- Arithmetic series: a, a + d, a + 2d, ... $s_n = \sum_{i=0}^{n-1} a + i * d = an + n(n-1)d/2.$
- Geometric series: $a, ar, ar^2, ...,$ $s_n = \sum_{i=0}^{n-1} ar^i = a(1-r^n)/(1-r).$
- The infinite geometric series: $a + ar + ar^2 + ...$ is convergent and has the sum a/(1-r) if and only of -1 < r < 1.
- Harmonic series. Let $H_n = \sum_{i=1}^n 1/n$. $log(n+1) < H_n < 1 + log n$.

Combinatorics

- A permutation of n objects is an ordered arrangement of the objects. n!.
- A combination of r objects from n objects is a selection of r objects without regard to order. $\binom{n}{r} = \frac{n!}{r!(n-r)!}$.
- $(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x + \dots + \binom{n}{n-1}x^{n-1} + x^n$.