INFO0606 – Introduction à l'imagerie numérique

Céline Loscos

Enseignantes

- Céline Loscos, <u>celine.loscos@univ-reims.fr</u>
- Jessica Jonquet, jessica.jonquet@univ-reims.fr

Information sur le cours

- Tous le contenu du cours est accessible sur moodle
 - cours.univ-reims.fr
 - Rechercher le cours : INFO0606 Ouverture Introduction à l'imagerie numérique
 - Vous inscrire!
- Chaque semaine :
 - 2H de CM
 - 2H de TD avec des exercices sur feuille
 - 2H de TP avec un projet de programmation sur Unity 3D

Notes

- Compte rendu de TP 40%
- Devoir sur table 60%

Contenu du cours

- Introduction
- Eléments de composition de contenu d'imagerie 3D
- Mathématiques utiles
- Scène et objets
- Modèle de camera
- Rendu
- Animation

Illusions et art de l'approximation

Contenu

- Anatomie d'une illusion
 - Environnement
 - Transport de la lumière et interaction
 - Réception par l'oeil
- La méthode du peintre
 - Lancer de rayons
 - Approximations

Environnement

- Une description de l'espace qui consiste en *objets*
- Ces objets ont une description et un état
- Description: comportement, géométrie et apparence
- La géométrie doit être décrite de façon relative à un repère de coordonnées
- Un état définit un objet à un moment particulier dans le temps

Radiométrie – Comment la lumière se propage dans le monde reel ?

Vie et mort d'un photon

Emission

Réflexion

Absorption

L'éclairage est un problème « global »

• Tout point de l'environnement reçoit de la lumière de tout point de la scène

Types de surfaces

Surface spéculaire

Surface diffuse

Hypothèses de simplification

- Pas de dépendance sur la longueur d'onde
 - Pas de fluorescence
- Invariance de temps
 - Pas de phosphorescence
- Transport de la lumière comme dans le vide
 - Pas de média participatif
- Objets isotropes
 - Réflectances constantes sur toute la surface

Photometrie – Comment voyons-nous la lumière ?

DE REIMS CHAMPAGNE-ARDENNE

Physiologie de la réponse de l'oeil

- 6 millions de cônes dans la fovéa (centre de la macula)
 - cônes sensibles à la lumière rouge, vert ou bleue
 - La région de perception est très petite
- 120 millions de bâtonnets en rétine périphérique
 - Vision périphérique
 - Sensibilité au mouvement

Réponse à la couleur

Cônes

- A = Red
- B = Green
- C = Blue

Hypothèses pour la synthèse d'images temps réel

- Ignorer les distributions spectrales réelles
- Calcul sur 3 longueurs d'onde seulement: rouge, vert, et bleu
- Evidemment, c'est une approximation grossière
 - Il faudrait trouver le spectre en chaque point et calculer la valeur RGB la plus proche

Model RGB

Correspondance de couleur

Quelle quantité de R,G,B pour fabriquer une couleur pure en particulier?

Objets

Caméra

Scène

Image

Eclairage

Concepts principaux en graphique

- Séparation de la specification de la scène, de la visualisation et du rendu
 - La scène est modélisée indépendamment du point de vue
 - Les vues ne sont pas contraintes
 - Il y a plusieurs méthodes de rendu possibles pour une scène et une vue

Lien caméra-image

Peindre au travers d'une fenêtre

Lancer des rayons au travers de pixels

COP = Centre of Projection

Volume de vue

- Volume de vue
 - L'étendue des pixels sur l'écran et le COP forment une pyramide
 - Clipping est le processus pour enlever toutes les parties de la scène qui ne sont pas dans le volume de vue

Aliasing

• Les pixels sont carrés et échantillonnent la lumière

Combattre l'aliasing

- Envoyer plusieurs rayons au travers de chaque pixel
 - Echantillonnage stochastique
 - Echantillonnage régulier (anti-aliasing sur tout l'écran)
- Echantillonnage stochastique est correct car il ôte la régularité
- Mais seul un échantillonnage régulier est facile dans la "pipeline" du rendu

Perspective

- Projection perspective
 - La taille de l'image dépend de la distance

Eclairage

- Le lancer de rayon est la partie facile
- Déterminer la couleur du pixel est plus difficile
- En théorie, il faut calculer toute la lumière qui parvient jusqu'au pixel
- En pratique, on peut ne considèrer qu'un éclairage local –
 la lumière reçue directement par les sources de lumières

Le pipeline de l'imagerie 3D

CHAMPAGNE-ARDENNE

Conclusion

- Nous avons regardé de façon très globale le processus de synthèse d'images
- En considérant la réponse de l'oeil humain
- Nous avons vu les termes de
 - Scène
 - Caméra
 - Image
 - Aliasing
 - Projection

- Eclairage
- Modélisation
- Animation
- Rendu

