1 Some Useful Theorems

Lemma 1 (Splitting Lemma (Hatcher p. 147)). For a short exact sequence

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$$

of abelian groups the following statements are equivalent

- 1. There is a homomorphism $p: B \to A$ such that $p \circ i = \mathbf{Id}_A$.
- 2. There is a homomorphism $s: C \to B$ such that $j \circ s = \mathbf{Id}_C$.
- 3. There is an isomorphism $B \cong A \oplus C$ making the commutative diagram below, where the maps in the lower row are the obvious ones $a \mapsto (a,0)$ and $(a,c) \mapsto c$.

Lemma 2 (The Five-Lemma (Hatcher p. 129)). In a commutative diagram of abelian groups as below, if the two rows are exact and α, β, δ , and ε are isomorphisms then γ is an isomorphism.

Theorem 1 (Alexander Duality). If D is a compact, locally contractible, nonempty, proper subspace of S^d then for all k there is an isomorphism

$$\Gamma_D^k : \tilde{\mathrm{H}}_k(D) \to \tilde{\mathrm{H}}^{d-k-1}(S^d \setminus D).$$

If (D, B) is a pair of such subspaces of S^d then for all k there is an isomorphism

$$\Gamma_{(D,B)}^k : \tilde{\mathrm{H}}_k(D,B) \to \tilde{\mathrm{H}}^{d-k}(S^d \setminus B, S^d \setminus D).$$

Lemma 3 (Lemma 3.2 from [?]). Given a sequence $A \to B \to C \to D \to E \to F$ of homomorphisms between finite-dimensional vector spaces, if $\mathbf{rk}(A \to F) = \mathbf{rk}(C \to D)$ then this quantity also equals the rank of $B \to E$. Similarly, if $A \to B \to C \to E \to F$ is a sequence of homomorphisms such that $\mathbf{rk}(A \to F) = \dim C$ then $\mathbf{rk}(B \to E) = \dim C$.

TODO

• Excision

2 Separation

Definition 1 (Separated). Two subsets U, V of a topological space X are **separated in** X if each is disjoint from the other's closure: $cl(U) \cap V = \emptyset$ and $U \cap cl(V) = \emptyset$.

Definition 2 (Separation). We say that a subset B **separates** a topological space X with the pair (U, V) if B, U, V partitions X, U, V are separated in X, and any path from U to V in X intersects B.

Lemma 4. If B separates X with the pair (U, V) then for all k the short exact sequence

$$0 \to \mathrm{H}_k(V) \xrightarrow{i_*} \mathrm{H}_k(X \setminus B) \xrightarrow{j_*} \mathrm{H}_k(U) \to 0$$

splits.

Proof. Because $X \setminus B$ is the disjoint union of U and V we know that $i_* : H_k(V) \to H_k(X \setminus B)$ is the map induced by inclusion and $p_* : H_k(X \setminus B) \to H_k(V)$ is induced by the restriction of the identity on $X \setminus B$ to V. Thus $p_* \circ i_* = \mathbf{Id}_{H_k(V)}$ and therefore, by Lemma 1 the sequence splits. \square

Corollary 1. If B separates X with the pair (U, V) then for all k

$$H_k(X \setminus B) \cong H_k(U) \oplus H_k(V)$$
.

Lemma 5. If B separates X with the pair (U, V) then for all k

$$H_k(U) \cong H_k(X \setminus B, V).$$

Proof. First note that the short exact sequence

$$0 \to H_k(V) \to H_k(U) \oplus H_k(V) \to H_k(U) \to 0$$

extends to a long exact sequence with the zero map $\partial_*^k: H_k(U) \to H_k(V)$ as $\operatorname{im} j_*^k = H_k(U) = \ker \partial_*^k$ and $\operatorname{im} \partial_*^k = \ker i_*^{k-1} = \mathbf{0}_{H_{k-1}(V)}$. Consider the following commutative diagram where the bottom row is the long exact sequence of the pair $(X \setminus B, V)$

$$\dots \longrightarrow H_{k}(V) \xrightarrow{i_{*}^{k}} H_{k}(U) \oplus H_{k}(V) \xrightarrow{j_{*}^{k}} H_{k}(U) \xrightarrow{\partial_{*}^{k}} H_{k-1}(V) \xrightarrow{i_{*}^{k-1}} H_{k-1}(U) \oplus H_{k-1}(V) \longrightarrow \dots$$

$$\downarrow f_{*}^{k} \qquad \downarrow g_{*}^{k} \qquad \downarrow h_{*}^{k} \qquad \downarrow f_{*}^{k-1} \qquad \downarrow g_{*}^{k-1}$$

$$\dots \longrightarrow H_{k}(V) \xrightarrow{\hat{i_{*}^{k}}} H_{k}(X \setminus B) \xrightarrow{\hat{j_{*}^{k}}} H_{k}(U) \xrightarrow{\hat{\partial_{*}^{k}}} H_{k-1}(V) \xrightarrow{\hat{i_{*}^{k-1}}} H_{k-1}(X \setminus B) \longrightarrow \dots$$

As f_*^k is the identity map and, by Corollary 1, g_*^k is an isomorphism for all k it follows that h_*^k is an isomorphism for all k by Lemma 2.

Definition 3 (Surrounding). We say that $B \subset D$ surrounds $D \subset X$ in X if B separates X with the pair $(D \setminus B, X \setminus D)$. We will refer to such a pair (D, B) as a surrounding pair in X.

We define the extension of a surrounding pair (D, B) in X to be the pair

$$(X, \hat{B}) = (D \cup (X \setminus D), B \cup (X \setminus D)).$$

Note that, for $X \subset \mathcal{X}$ the extension of a surrounding pair in X is a surrounding pair in \mathcal{X} .

Lemma 6. If (D, B) is a surrounding pair of open sets in a topological space X then for all k

$$H_k(D, B) \cong H_k(X, \hat{B}).$$

Proof. Note,

$$\begin{split} X \setminus (\operatorname{int}(D) \cup \operatorname{int}(\hat{B})) &= X \cap \overline{(\operatorname{int}(D) \cup \operatorname{int}(\hat{B}))} \\ &= X \cap \operatorname{cl}(\overline{D}) \cap \operatorname{cl}(\overline{\hat{B}})) \\ &= X \cap \overline{D} \cap \operatorname{cl}(\overline{\hat{B}})), \end{split}$$

because D is open, thus \overline{D} is closed, and therefore equal to its closure. Now,

$$\operatorname{cl}(\overline{\hat{B}}) = \operatorname{cl}(\overline{B \cup (X \setminus D)})$$

$$= \operatorname{cl}(\overline{B \cup (X \cap \overline{D})})$$

$$= \operatorname{cl}(\overline{(B \cup X) \cap (B \cup \overline{D})})$$

$$= \operatorname{cl}(\overline{X} \cup (D \cap \overline{B}))$$

$$= \operatorname{cl}(D \setminus B).$$

Therefore,

$$X \setminus (\operatorname{int}(D) \cup \operatorname{int}(\hat{B})) = (X \setminus D) \cap \operatorname{cl}(D \setminus B) = \emptyset$$

for a surrounding pair (D,B) in X which requires that $(X\setminus D)$ and $D\setminus B$ are separated in X.

So
$$\operatorname{int}(D) \cup \operatorname{int}(\hat{B}) = X$$
 thus $H_k(D, B) \cong H_k(X, \hat{B})$ by excision. \square

The following is a corollary of Theorem 1 (Alexander Duality).

Corollary 2. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces in S^d then for all k

$$\tilde{\mathrm{H}}_k(D,B) \cong \tilde{\mathrm{H}}^{d-k}(D \setminus B).$$

In the following we will assume that (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces in S^d . Let $(\overline{B}, \overline{D}) = (S^d \setminus B, S^d \setminus D)$ denote the complement of the pair (D, B) in S^d .

Lemma 7. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces of S^d then

$$i_*^k : \tilde{\mathrm{H}}_{k+1}(D,B) \to \tilde{\mathrm{H}}_k(B)$$

is injective and

$$j_*^k : \tilde{\mathrm{H}}_k(B) \to \tilde{\mathrm{H}}_k(D)$$

is surjective for all k.

Proof. We have the following commutative diagram of long exact sequences of the pairs (D, B) and $(\overline{B}, \overline{D})$.

$$\tilde{\mathbf{H}}_{k+1}(D,B) \xrightarrow{\partial_*^{k+1}} \tilde{\mathbf{H}}_k(B) \xrightarrow{i_*^k} \tilde{\mathbf{H}}_k(D)
\downarrow^{\Gamma_{(D,B)}^{k+1}} \qquad \downarrow^{\Gamma_B^k} \qquad \downarrow^{\Gamma_D^k}
\tilde{\mathbf{H}}^{d-k-1}(\overline{B},\overline{D}) \xrightarrow{\overline{j_*^{d-k-1}}} \tilde{\mathbf{H}}^{d-k-1}(\overline{B}) \xrightarrow{\overline{i_*^{d-k-1}}} \tilde{\mathbf{H}}^{d-k-1}(\overline{D})$$
(1)

Because B surrounds D we have that

$$\tilde{\mathrm{H}}^{d-k-1}(\overline{B}) \cong \tilde{\mathrm{H}}^{d-k-1}(D \setminus B) \oplus \mathrm{H}_k(\overline{D})$$

by Corollary 1¹, where $\tilde{\mathrm{H}}^{d-k-1}(D\setminus B)\cong \tilde{\mathrm{H}}^{d-k-1}(\overline{B},\overline{D})$ by Lemma 5. It follows that $\overline{j_*^{d-k-1}}$ is injective and $\overline{i_*^{d-k-1}}$ is surjective.

By commutativity of Diagram 1 and because $\Gamma^{k+1}_{(D,B)}$, Γ^k_B and Γ^k_D are isomorphisms we have that

$$\partial_*^{k+1} = (\Gamma_B^k)^{-1} \circ \overline{j_*^{d-k-1}} \circ \Gamma_{(D,B)}^{k+1}$$

is injective and

$$i_*^k = (\Gamma_D^k)^{-1} \circ \overline{i_*^{d-k-1}} \circ \Gamma_B^{k+1}$$

is surjective.

We note that this implies the following for non-reduced homology² for subsets of $\mathbb{R}^{d,3}$

Corollary 3. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces of \mathbb{R}^d then

$$i_*^k: \mathcal{H}_{k+1}(D,B) \to \mathcal{H}_k(B)$$

is injective and

$$j_*^k: \mathrm{H}_k(B) \to \mathrm{H}_k(D)$$

is surjective for all k.

- ²TODO reasoning:
- consider $H_1(D,B) \to H_0(B)$.
- $\tilde{\mathrm{H}}_0(B) \to \tilde{\mathrm{H}}_0(D)$ surjective implies $\mathrm{H}_0(B) \to \mathrm{H}_0(D)$ surjective (right?).

³TODO reasoning:

- $S^d \cong \mathbb{R}^d \cup \{\infty\}$.
- Only requires spaces and complements remain compact?

¹TODO show/state this holds for cohomology as well.

3 Separating Covers

In the following let $\mathbf{d}(x,y) = ||x-y||$ denote the euclidean distance between points $x,y \in \mathbb{R}^d$. For $A \subset \mathbb{R}^d$ and $x \in \mathbb{R}^d$ let

$$\mathbf{d}_A(x) = \min_{a \in A} \mathbf{d}(x, a)$$

denote the distance from x to the set A. In the following, we will use open metric balls

$$\mathbf{ball}_{\varepsilon}(x) = \{ y \in \mathbb{R}^d \mid \mathbf{d}(x, y) < \varepsilon \}$$

and offsets

$$A^{\varepsilon} = \mathbf{d}_A^{-1}[0, \varepsilon) = \{x \in \mathbb{R}^d \mid \mathbf{d}_A(x) < \varepsilon\}.$$

Definition 4 (Separating Cover). For $\delta > 0$, $\gamma > \delta$, and finite subsets $P \subset D$, $Q \subset P \cap B$ we say that (P,Q) is an **(open) separating** (δ,γ) -cover of a surrounding pair (D,B) if

- (a) $D \setminus B \subseteq P^{\delta}$,
- (b) Q^{δ} surrounds P^{δ} in D, and
- (c) $\hat{Q}^{\delta} \subseteq B \subseteq \hat{Q}^{\gamma}$.

4 Chasing

Theorem 2. Let $(\mathcal{D}, \mathcal{B})$ be a surrounding pair of open subsets of \mathbb{R}^d and let $P \subset \mathcal{D}$ be a finite subset of \mathcal{D} . Let (P,Q) be an (open) separating (δ, γ) -cover of $(\mathcal{D}, \mathcal{B})$ for $\gamma > \delta > 0$. Let (D_0, B_0) and (D_1, B_1) be surrounding pairs of nonempty, compact subsets of \mathbb{R}^d such that $B_0 \subseteq \hat{Q}^{\delta}$, $\hat{Q}^{\gamma} \subseteq B_1$, and

$$(D_0, B_0) \subset (\mathcal{D}, \mathcal{B}) \subset (D_1, B_1).$$

If

im
$$H_k((D_0, B_0) \hookrightarrow (D_1, B_1)) \cong H_k(\mathcal{D}, \mathcal{B})$$

then

im
$$H_k((P^\delta, Q^\delta) \hookrightarrow (P^\gamma, Q^\gamma)) \cong H_k(\mathcal{D}, \mathcal{B}).$$

Proof. In the following let

$$\eta_B^k : H_k(B_0) \to H_k(B_1),
\eta_D^k : H_k(D_0) \to H_k(D_1), \text{ and}
\eta^k : H_k(D_0, B_0) \to H_k(D_1, B_1).$$

Consider the commutative diagram of long exact sequences of the pairs $(D_0, B_0), (\mathcal{D}, \mathcal{B})$ and (D_1, B_1) .

$$H_{k}(B_{0}) \xrightarrow{i_{0}^{k}} H_{k}(D_{0}) \xrightarrow{j_{0}^{k}} H_{k}(D_{0}, B_{0}) \xrightarrow{\partial_{0}^{k}} H_{k-1}(B_{0}) \xrightarrow{i_{0}^{k-1}} H_{k-1}(D_{0})$$

$$\downarrow a^{k} \qquad \downarrow b^{k} \qquad \downarrow d^{k} \qquad \downarrow a^{k-1} \qquad \downarrow b^{k-1}$$

$$H_{k}(\mathcal{B}) \xrightarrow{i_{*}^{k}} H_{k}(\mathcal{D}) \xrightarrow{j_{*}^{k}} H_{k}(\mathcal{D}, \mathcal{B}) \xrightarrow{\partial_{*}^{k}} H_{k-1}(\mathcal{B}) \xrightarrow{i_{*}^{k-1}} H_{k-1}(\mathcal{D})$$

$$\downarrow f^{k} \qquad \downarrow g^{k} \qquad \downarrow h^{k} \qquad \downarrow f^{k-1} \qquad \downarrow g^{k-1}$$

$$H_{k}(B_{1}) \xrightarrow{i_{1}^{k}} H_{k}(D_{1}) \xrightarrow{j_{1}^{k}} H_{k}(D_{1}, B_{1}) \xrightarrow{\partial_{1}^{k}} H_{k-1}(B_{1}) \xrightarrow{i_{1}^{k-1}} H_{k-1}(D_{1})$$

$$(2)$$

Because (D_0, B_0) and (D_1, B_1) are nonempty, compact surrounding pairs of \mathbb{R}^d we can embed them in $S^d \cong \mathbb{R}^d \cup \{\infty\}$ in order to show that i_0^k and i_1^k are surjective by Lemma 7. So, by exactness, $\operatorname{im} i_0^k = \ker j_0^k = \operatorname{H}_k(D_0)$ and $\operatorname{im} i_1^k = \ker j_1^k = \operatorname{H}_k(D_1)$. It follows that for any $[y''] \in \operatorname{im} \eta^k$ with preimage $[y] \in \operatorname{H}_k(D_0, B_0)$ we must have that $[y''] \in \operatorname{cok} j_1^k$ and $[y] \in \operatorname{cok} j_0^k$. That is, there must exist nonzero $[z] = \partial_0^k[y]$ in $\operatorname{H}_{k-1}(B_0)$ and $[z''] = \partial_1^k[y'']$ in $\operatorname{H}_{k-1}(B_1)$ such that $\eta_B^{k-1}[z] = [z'']$. Moreover, because η^k factors through $\operatorname{H}_k(\mathcal{D}, \mathcal{B})$ and η_B^{k-1} factors through $\operatorname{H}_{k-1}(\mathcal{B})$ there must exist nonzero $[y'] = d^k[y]$ in $\operatorname{H}_k(\mathcal{D}, \mathcal{B})$ and $[z'] = \partial_*^k[y'] = a^{k-1}[z]$ in $\operatorname{H}_{k-1}(\mathcal{B})$ such that $h^k[y'] = [y'']$ and $f^{k-1}[z'] = [z'']$.

Consider the long exact sequence of the pair $(\mathcal{D}, Q^{\delta})$

$$\ldots \to \mathrm{H}_k(\mathcal{D}, \hat{Q}^{\delta}) \xrightarrow{\partial_{\delta}^k} \mathrm{H}_{k-1}(\hat{Q}^{\delta}) \xrightarrow{p_{\delta}^{k-1}} \mathrm{H}_{k-1}(\mathcal{D}) \to \ldots,$$

and the following commutative diagrams taken from the long exact sequences of the pairs $(\mathcal{D}, \hat{Q}^{\delta})$ and $(\mathcal{D}, \mathcal{B})$.

$$\begin{array}{ccc}
H_{k-1}(\hat{Q}^{\delta}) & \xrightarrow{p_{\delta}^{k-1}} & H_{k-1}(\mathcal{D}) \\
\downarrow & \downarrow & \downarrow \\
H_{k-1}(\mathcal{B}) & & & & & & \\
\end{array} \tag{3}$$

where $\psi_{\delta}^{k-1}: \mathcal{H}_{k-1}(\hat{Q}^{\delta}) \to \mathcal{H}_{k-1}(\mathcal{B})$ is induced by inclusion.

Letting $\phi_0^{k-1}: \mathcal{H}_{k-1}(B_0) \to \mathcal{H}_{k-1}(\hat{Q}^{\delta})$ be the homomorphism induced by inclusion we have that $a^{k-1} = \psi_{\delta}^{k-1} \circ \phi_0^{k-1}$ so, because

$$\eta_B^{k-1} = f^{k-1} \circ a^{k-1} = f^{k-1} \circ \psi_\delta^{k-1} \circ \phi_0^{k-1}$$

and $\partial_1^k \circ \eta^k = \partial_0^k \circ \eta_B^{k-1}$ it follows that $\phi_0^{k-1} \circ \partial_0^k[y]$ is nonzero in $H_{k-1}(\hat{Q}^\delta)$. Moreover, because $a^{k-1} \circ \partial_0^k[y] \in \mathbf{im}$ ∂_*^k we have that $a^{k-1} \circ \partial_0^k[y] \in \mathbf{ker}$ i_*^{k-1} by exactness, thus $\phi_0^{k-1} \circ \partial_0^k[y] \in \mathbf{ker}$ p_δ^{k-1} as $p_\delta^{k-1} = i_*^{k-1} \circ \psi_\delta^{k-1}$. That is, $\phi_0^{k-1} \circ \partial_0^k[y] \in \mathbf{im}$ ∂_δ^k by exactness. We can therefore construct a homomorphism $\mu^k : H_k(D_0, B_0) \to H_k(P^\delta, Q^\delta)$ for $[y] \in H_k(D_0, B_0)$ as the preimage of $\phi_0^{k-1} \partial_0^k[y]$ in $H_k(P^\delta, Q^\delta)$ for nonzero $[y''] = \eta^k[y]$, 0 otherwise.

Now, consider the long exact sequence of the pair $(\mathcal{D}, \hat{Q}^{\gamma})$

$$\ldots \to \mathrm{H}_k(\mathcal{D}, \hat{Q^{\gamma}}) \xrightarrow{\partial_{\gamma}^k} \mathrm{H}_{k-1}(\hat{Q^{\gamma}}) \xrightarrow{p_{\gamma}^{k-1}} \mathrm{H}_{k-1}(\mathcal{D}) \to \ldots$$

We have the following commutative diagrams

$$\begin{array}{cccc}
H_{k-1}(\mathcal{B}) & \xrightarrow{i_{*}^{k-1}} & H_{k-1}(\mathcal{D}) & & H_{k}(\mathcal{D}, \hat{Q}^{\gamma}) & \xrightarrow{\partial_{\gamma}^{k}} & H_{k-1}(\hat{Q}^{\gamma}) \\
\downarrow^{\psi_{\gamma}^{k-1}} & p_{\gamma}^{k-1} & & (4a) & \downarrow^{\psi_{\gamma}^{k}} & \downarrow^{\phi_{1}^{k-1}} & (4b) \\
H_{k-1}(\hat{Q}^{\gamma}) & & H_{k}(D_{1}, B_{1}) & \xrightarrow{\partial_{1}^{k}} & H_{k-1}(B_{1})
\end{array}$$

where ψ_{γ}^{k-1} , σ_{γ}^{k-1} , ϕ_{1}^{k-1} and ν^{k} are induced by inclusion. Because $[z'] \in \mathbf{im} \ \partial_{*}^{k}$ we have $[z'] \in \mathbf{ker} \ i_{*}^{k-1}$ by exactness and, by commutativity of diagram 4a, $[z'] \in \mathbf{ker} \ p_{\gamma}^{k-1} \circ \psi_{\gamma}^{k-1}$. Noting that f^{k-1} factors through $H_{k-1}(\hat{Q}^{\gamma})$ as $f^{k-1} = \phi_{1}^{k-1} \circ \psi_{\gamma}^{k-1}$ we have that $\psi_{\gamma}^{k-1}[z']$ is nonzero in $H_{k-1}(Q^{\gamma})$. So $\psi_{\gamma}^{k-1}[z'] \in \mathbf{ker} \ p_{\gamma}^{k-1}$ thus $\psi_{\gamma}^{k-1}[z'] \in \mathbf{im} \ \mathrm{H}_k(\mathcal{D}, \hat{Q}^{\gamma}) \ \mathrm{by \ exactness.}$

So we may conclude that η^k factors through $\hat{\tau}^k : H_k(\mathcal{D}, \hat{Q}^\delta) \to H_k(\mathcal{D}), \hat{Q}^\gamma$ with the maps $\mu^k = (\partial_{\delta}^k)^{-1} \circ \phi_0^{k-1} \circ \partial_0^k$ and $\nu^k : H_k(\mathcal{D}, \hat{Q}^{\gamma}) \to H_k(D_1, B_1)$ induced by inclusion. We therefore have the following sequence of homomorphisms

$$H_k(D_0, B_0) \xrightarrow{\mu^k} H_k(\mathcal{D}, \hat{Q}^\delta) \to H_k(\mathcal{D}, \mathcal{B}) \to H_k(\mathcal{D}, \hat{Q}^\gamma) \xrightarrow{\nu^k} H_k(D_1, B_1).$$

So, by Lemma 3, im $\eta^k \cong H_k(\mathcal{D}, \mathcal{B})$ implies im $\hat{\tau}^k \cong H_k(\mathcal{D}, \mathcal{B})$. The result follows from Lemma 6 as

$$\mathbf{im}\ \mathrm{H}_k((P^\delta,Q^\delta)\hookrightarrow (P^\gamma,Q^\gamma))\cong \mathbf{im}\ \hat{\tau}^k\cong \mathrm{H}_k(\mathcal{D},\mathcal{B}).$$

Connection with the TCC 5

Assumptions 5.1

Let $P \subset \mathcal{D}$ be a finite collection of sensors p with the following capabilities.

Sensor Capabilities

- a. (Communication Radii) detect the presence, but not location or distance, of sensors within distances $\delta > 0$ and $\gamma \geq 3\delta$, and discriminate between sensors within each scale,
- b. (Coverage Radius) cover a radially symmetric subset of the domain with radius δ ,

We will refer to the following preliminary assumptions about pairs (D_0, B_0) and (D_1, B_1) for $\delta > 0$ and $\gamma \geq 3\delta$.

Geometric Assumptions

- 1. **(Domain)** (D_0, B_0) and (D_1, B_1) are surrounding pairs of nonempty, compact subsets of \mathbb{R}^d with $(D_0^{\delta+\gamma}, B_0^{\delta+\gamma}) \subset (D_1, B_1)$.
- 2. **(Boundary)** $H_0(D_1 \setminus B_1 \hookrightarrow D_0 \setminus B_0^{2\delta})$ is surjective.

In the following let $Q = P \cap B_0^{\delta}$ and $(\mathcal{D}, \mathcal{B}) = (D_0^{2\delta}, B_0^{2\delta})$.

5.2 Proof of the TCC

In the following let $\overline{X} = \mathbb{R}^d \setminus X$ for all subsets $X \subset \mathbb{R}^d$. We have the following commutative diagrams of inclusions between the pairs (P,Q) and $(\mathcal{D},\mathcal{B})$ and their complements in \mathbb{R}^d with increasing scale.

$$(P^{\delta}, Q^{\delta}) \longleftrightarrow (P^{\gamma}, Q^{\gamma}) \quad (\overline{B_1}, \overline{D_1}) \overset{j}{\longleftrightarrow} (\overline{\mathcal{B}}, \overline{\mathcal{D}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\mathcal{D}, \mathcal{B}) \longleftrightarrow (D_1, B_1), \quad (\overline{Q^{\gamma}}, \overline{P^{\gamma}}) \overset{i}{\longleftrightarrow} (\overline{Q^{\delta}}, \overline{P^{\delta}})$$

The following diagram is formed by applying the homology functor.

$$\begin{array}{ccc}
H_{0}(\overline{B_{1}}, \overline{D_{1}}) & \xrightarrow{j_{*}} & H_{0}(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \\
\downarrow & & \downarrow \\
H_{0}(\overline{Q^{\gamma}}, \overline{P^{\gamma}}) & \xrightarrow{i_{*}} & H_{0}(\overline{Q^{\delta}}, \overline{P^{\delta}}).
\end{array} (5)$$

Let $p_* : \mathbf{im} \ j_* \to \mathbf{im} \ i_*$.

Lemma 8. Given assumptions 1 & 2, the map p_* is surjective.

Proof. Choose a basis for **im** i_* such that each basis element is represented by a point in $P^{\delta} \setminus Q^{\gamma}$. Let $x \in P^{\delta} \setminus Q^{\gamma}$ be such that [x] is non-trivial in **im** i_* . Suppose $x \in \mathcal{B}$ and let $y \in B_0$ so that $\mathbf{d}(x,y) < 2\delta$.

Now, because $x \in \overline{Q^{\gamma}}$ by hypothesis $\mathbf{d}(x,q) \geq \gamma$ for all $q \in Q$. For any z in the shortest path between x and y we have $\mathbf{d}(x,z) \leq \mathbf{d}(x,y) < 2\delta$, so the following inequality holds for all $q \in Q$

$$\mathbf{d}(x,q) \ge \mathbf{d}(x,q) - \mathbf{d}(x,z)$$

$$> \gamma - 2\delta$$

$$\ge \delta.$$

So $z \in \overline{Q^{\delta}}$ for all z in the shortest path from x to y. In particular, $x, y \in \overline{Q^{\delta}}$.

Now, suppose $y \in P^{\delta}$. So there exists some $p \in P$ such that $\mathbf{d}(p,y) < \delta$. So $\mathbf{d}(p,y) < \delta$ which implies $p \in Q$ thus $y \in Q^{\delta}$. But we have shown that $y \in \overline{Q^{\delta}}$, a contradiction, so we may assume that $y \in \overline{P^{\delta}}$.

Because $x, y \in \overline{Q^{\delta}}$ we have corresponding chains $x, y \in C_0(\overline{Q^{\delta}})$ as well as $y \in \overline{P^{\delta}}$ generating a chain $y \in C_0(P^{\delta})$. As we have shown that $x \in \mathcal{B}$ implies that the shortest path from x to y is contained in $\overline{Q^{\delta}}$ there exists a path $h: [0,1] \to \overline{Q^{\delta}}$ with h(0) = x and h(1) = y that generates a chain $h \in C_1(\overline{Q^{\delta}})$. So for $h \in C_1(\overline{Q^{\delta}}, \overline{P^{\delta}})$ with $\partial h = x + y$ we have that $x = \partial h + y$. Thus [x] is a relative boundary and is therefore trivial in $H_0(\overline{P^{\delta}}, \overline{Q^{\delta}})$, a contradiction, as we have assumed [x] is non-trivial in \mathbf{im} i_* . So we may conclude that $x \notin \mathcal{B}$.

So $x \in \overline{\mathcal{B}}$ and $x \in \mathcal{D} \setminus \mathcal{B}$. So [x] is non-trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}})$ and, because j_* is surjective, $\operatorname{im} j_* = H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}})$. So p_* is surjective as $p_*[x] = [x] \in \operatorname{im} p_*$ for all non-trivial $[x] \in \operatorname{im} i_*$. \square

Lemma 9. Given assumptions 1 & 2, if p_* is injective then $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$.

Proof. Suppose, for the sake of contradiction, that p_* is injective and there exists a point $x \in (\mathcal{D} \setminus \mathcal{B}) \setminus P^{\delta}$. So [x] is non-trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) = \operatorname{im} j_*$ as x is in some connected component of $\mathcal{D} \setminus \mathcal{B}$ and j_* is surjective. So we have the following sequence of maps induced by inclusions

$$H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \xrightarrow{f_*} H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}} \cup \{x\}) \xrightarrow{g_*} H_0(\overline{Q^\delta}, \overline{P^\delta}).$$

As $f_*[x]$ is trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}} \cup \{x\})$ we have that $p_*[x] = (g_* \circ f_*)[x]$ is trivial, contradicting our hypothesis that p_* is injective.

Lemma 10. Given assumptions 1 & 2, if the map p_* is injective then Q^{δ} surrounds P^{δ} in \mathcal{D} .

Proof. Suppose, for the sake of contradiction, that Q^{δ} does not surround P^{δ} in \mathcal{D} . Then there exists a path $\pi: [0,1] \to \overline{Q^{\delta}}$ with $\pi(0) \in P^{\delta} \setminus Q^{\delta}$ and $\pi(1) \in \mathcal{D} \setminus P^{\delta}$. By Lemma 9 we know that $\mathcal{D} \setminus \mathcal{B} \subset P^{\delta}$ and, because $Q^{\delta} \subset \mathcal{B}$ it follows that $\mathcal{D} \setminus \mathcal{B} \subset P^{\delta} \setminus Q^{\delta}$.

Choose $x \in \mathcal{D} \setminus \mathcal{B}$ and $y \in \overline{\mathcal{D}}$ such that there exist paths $\pi_x : [0,1] \to P^{\delta} \setminus Q^{\delta}$ with $\pi_x(0) = x$, $\pi_x(1) = \pi(0)$ and $\pi_y : [0,1] \to \overline{\mathcal{D}} \cup (\mathcal{D} \setminus P^{\delta})$ with $\pi_y(0) = y$, $\pi_y(1) = \pi(1)$. π_x, π_y and π all generate chains in $C_1(\overline{Q^{\delta}}, \overline{P^{\delta}})$ and $\pi_x + \pi + \pi_y = \pi^* \in C_1(\overline{Q^{\delta}}, \overline{P^{\delta}})$ with $\partial \pi^* = x + y$. Moreover, y generates a chain in $C_0(\overline{P^{\delta}})$ as $\overline{\mathcal{D}^{2\delta}} \subseteq \overline{P^{\delta}}$. So $x = \partial \pi^* + y$ is a relative boundary in $C_0(\overline{Q^{\delta}}, \overline{P^{\delta}})$ thus [x] = 0 = [y] in $H_0(\overline{Q^{\delta}}, \overline{P^{\delta}})$ and therefore [x] = [y] in m i_* . However, because \mathcal{B} surrounds \mathcal{D} we know that $[x] \neq [y]$ in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \cong \mathbf{im} \ j_*$, contradicting our assumption that p_* is injective.

Recall that Q^{δ} surrounding P^{δ} in \mathcal{D} implies that \hat{Q}^{δ} , and therefore \hat{Q}^{γ} , surrounds \mathcal{D} in \mathbb{R}^d .

Lemma 11. Given assumptions 1 & 2, if p_* is injective then then $B_0 \subseteq \hat{Q}^{\delta}$.

Proof. Given assumptions 1 & 2 and p_* injective we have that $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$ and Q^{δ} surrounds P^{δ} in \mathcal{D} by Lemmas 9 and 10. Recalling that $\mathcal{B} = B_0^{2\delta}$, $P \subset D_0$ and $Q = P \cap B_0^{\delta}$ we first note that $B_0 \cap P^{\delta} \subseteq Q^{\delta}$ as $x \in B_0 \cap P^{\delta}$ implies there exists some $p \in P$ such that $\mathbf{d}(x,p) < \delta$ which, for $x \in B_0$ implies that $p \in Q = P \cap B_0^{\delta}$, and therefore that $x \in Q^{\delta}$. It follows that

$$B_0 \cap (P^\delta \setminus Q^\delta) = B_0 \cap P^\delta \cap \overline{Q^\delta} \subseteq Q^\delta \cap \overline{Q^\delta} = \emptyset.$$

As Q^{δ} surrounds P^{δ} in \mathcal{D} we have

$$B_0 \subset \mathcal{D} = (P^\delta \setminus Q^\delta) \sqcup Q^\delta \sqcup (\mathcal{D} \setminus P^\delta)$$

where $B_0 \cap (P^{\delta} \setminus Q^{\delta}) = \emptyset$. It therefore follows that $B_0 \subseteq Q^{\delta} \sqcup (\mathcal{D} \setminus P^{\delta}) = \hat{Q}^{\delta}$.

Lemma 12. Given assumptions 1 & 2, if p_* is injective then $\mathcal{B} \subseteq \hat{Q}^{\gamma}$.

Proof. As $\mathcal{B} = B_0^{2\delta}$ we know that for all $x \in \mathcal{B}$ there exists some $y \in B_0$ such that $\mathbf{d}(x, y) < 2\delta$. By Lemma 11 we know that $B_0 \subseteq \hat{Q}^{\delta} = Q^{\delta} \sqcup (\mathcal{D} \setminus P^{\delta})$ so either $y \in \mathcal{D} \setminus P^{\delta}$ or $y \in Q^{\delta}$. If $y \in Q^{\delta}$ then there exists some $q \in Q$ such that $\mathbf{d}(y, q) < \delta$. Then

$$\mathbf{d}(x,q) \le \mathbf{d}(x,y) + \mathbf{d}(y,q) < 2\delta + \delta \le \gamma$$

which would imply $x \in Q^{\gamma} \subset \hat{Q}^{\gamma}$.

Now, suppose $y \in B_0 \cap (\mathcal{D} \setminus P^{\delta})$. Because Q^{δ} surrounds P^{δ} in \mathcal{D} there is no path from $x \in \mathcal{B} \cap (P^{\delta} \setminus Q^{\gamma}) \subset P^{\delta} \setminus Q^{\delta}$ to $y \in B_0 \cap (\mathcal{D} \setminus P^{\delta}) \subset \mathcal{D} \setminus P^{\delta}$ that does not cross Q^{δ} . So there must be some point $z \in Q^{\delta}$ in the shortest path from x to y. That is, there exists some $q \in Q$ such that $\mathbf{d}(q, z) < \delta$ and $\mathbf{d}(z, x) < \mathbf{d}(x, y) < 2\delta$ so

$$\mathbf{d}(q, x) \le \mathbf{d}(q, z) + \mathbf{d}(z, x) < \delta + 2\delta \le \gamma.$$

So $y \in B_0 \cap (\mathcal{D} \setminus P^{\delta})$ implies $x \in Q^{\gamma}$.

Theorem 3 (Geometric TCC). Let (D_0, B_0) and (D_1, B_1) be surrounding pairs of nonempty, compact subsets of \mathbb{R}^d satisfying assumptions 1 & 2 for $\delta > 0$, and $\gamma > 3\delta$. Let $P \subset D_0$ be a finite collection of sensors and $Q = P \cap B_0^{\delta}$. Let $(\mathcal{D}, \mathcal{B}) = (D_0^{2\delta}, B_0^{2\delta})$ and $p_* : \operatorname{im} j_* \to \operatorname{im} i_*$ for j_* , i_* as defined in Diagram 5.

If $\mathbf{rk} \ i_* \geq \mathbf{rk} \ j_*$ and

im
$$H_k((D_0, B_0) \hookrightarrow (D_1, B_1)) \cong H_k(\mathcal{D}, \mathcal{B})$$

for all k then

im
$$H_k((P^{\delta}, Q^{\delta}) \hookrightarrow (P^{\gamma}, Q^{\gamma})) \cong H_k(\mathcal{D}, \mathcal{B})$$

for all k.

Proof. Because P is a finite point set we know that $\mathbf{im}\ i_*$ is finite-dimensional. Because $\mathbf{rk}\ i_* \geq \mathbf{rk}\ j_*$ is finite dimensional as well so p_* is injective. Therefore $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$ by Lemma 9 and Q^{δ} surrounds P^{δ} in \mathcal{D} by Lemma 10. We can extend (P^{δ}, Q^{δ}) and (P^{γ}, Q^{γ}) to pairs $(\mathcal{D}, \hat{Q}^{\delta})$ and $(\mathcal{D}, \hat{Q}^{\gamma})$ surrounding \mathcal{D} in \mathbb{R}^d .

As $Q = P \cap B_0^{\delta}$ we have that $Q^{\delta} \setminus P^{\delta} \subset B_0^{2\delta} \mathcal{B}$. Moreover, $\mathcal{D} \setminus \mathcal{B} \subset P^{\delta}$ so $\mathcal{D} \setminus P^{\delta} \subset \mathcal{D} \setminus (\mathcal{D} \setminus \mathcal{B}) = \mathcal{B}$. So $\hat{Q}^{\delta} = Q^{\delta} \cup (\mathcal{D} \setminus P^{\delta}) \subseteq \mathcal{B}$. Moreover, as p_* is injective $\mathcal{B} \subseteq \hat{Q}^{\gamma}$ by Lemma 12, so $\hat{Q}^{\delta} \subset \mathcal{B} \subseteq \hat{Q}^{\gamma}$.

As $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$, Q^{δ} surrounds P^{δ} in \mathcal{D} , and $\hat{Q}^{\delta} \subseteq \mathcal{B} \subseteq \hat{Q}^{\gamma}$ we may conclude that (P,Q) is an (open) separating (δ, γ) -cover of $(\mathcal{D}, \mathcal{B})$. Therefore, as $B_0 \subset \hat{Q}^{\delta}$ by Lemma 11 and $(D_0^{\delta+\gamma}, B_0^{\delta+\gamma}) \subset (D_1, B_1)$ by assumption 1 we have that $\hat{Q}^{\gamma} \subset B_1$. The result therefore follows from Theorem 2.