Experimental Evaluation of a Novel Equivalence Class Partition Testing Strategy

Felix Hübner Wen-ling Huang Jan Peleska

Department of Mathematics and Computer Science University of Bremen, Germany http://informatik.uni-bremen.de/agbs

22nd July 2015

Safety in the railway domain

ETCS (European Train Control System)

Test Case Generation

Finite-State-Machine

Test Case Generation

Strategy works on semantic level: deterministic **Reactive State Transition System (RSTS)**

$$S = (S, s_0, R) \tag{1}$$

$$S \subseteq V \to D$$
 variable valuation functions (2)

$$V = I \cup M \cup O$$
 input, internal, output variable symbols (3)

$$D = \text{variable domains}$$
 (4)

$$R = S \times S$$
 transition relation (5)

Types of input variables may be infinite.

Types of internal and output variables have to be finite.

I/O equivalence

- Two states s and s' are equivalent, if every input trace applied to these states lead to the same observable output trace $s \sim s' \equiv \forall \iota = \vec{c}_1 \dots \vec{c}_n \in D_I^* : (s/\iota)|_O = (s'/\iota)|_O$
- factorise states into I/O-equivalence classes *q*

- number of I/O-equivalence classes is finite
- Two systems are equivalent, if their initial states are I/O equivalent

Input Equivalence Class Partitioning (IECP)

• factorise input space into a **finite** number of input equivalence classes (IEC) X, such that, inputs c_1 and c_2 are equivalent $(c_1 \sim_I c_2)$, if:

$$\forall q \forall s \in q \exists q' : (s/c_1) \in q' \Leftrightarrow (s/c_2) \in q' \land (s/c_1)|_O = (s/c_2)|_O$$

DFSM abstraction

- I/O equivalence class factorisation and IECP induce complete DFSM abstraction of the test model
- concrete alphabet can be extracted from IECP
- complete DFSM strategy can be applied, e.g. W-Method

Completeness of Equivalence Class Partitioning Strategy

Equivalence class testing method is **complete** with respect to a given **fault domain**

- **soundness**: every correct behaviour of an SUT will be accepted
- exhaustiveness: every erroneous behaviour of the SUT will be rejected, provided that the true SUT behaviour is inside a (very large) set of pre-defined behavioural models, the fault domain
- experiments have shown that the equivalence class strategy also shows superior test strength for SUT behaviours not restricted to the fault domain

Completeness of Equivalence Class Partitioning Strategy

Faultdomain $\mathcal{D}(\mathcal{S}, m, \mathcal{I}_2)$ contains all systems \mathcal{S}'

- the number of I/O-equivalence classes of S' is less or equal m
- for every input equivalence class X of S and every input equivalence class X' of S': $X \cap X' \neq \emptyset \Rightarrow \exists X_2 \in \mathcal{I}_2 \subseteq X \cap X'$

Heuristics

MCDC

boundary value tests

combination with random testing

Experimental Evaluation – Models

Ceiling Speed Monitor

Airbag Controller

Experimental Evaluation

- evaluate test strength of generated test suite for SUTs not restricted to the faultdomain
- compare mutation score to random testing
- create a correct implementation of the test model (Java)

lacksquare build mutants using the μ Java mutation tool $^{11}_{12}$

■ mutation score = number of mutants that did not pass the test suite number of mutants

Experimental Evaluation – Results

			Mutation Score	
		No. testcases	ECPT	RT
1	no heuristics	21	62 %	34 %
2	MCDC	186	87 %	64 %
3	boundary values	610	93 %	80 %

Experimental Evaluation – Results

			Mutation Score	
		No. testcases	ECPT	RT
1	no heuristics	368	89 %	66 %
2	boundary values	3248	99 %	68 %

Experimental Evaluation – Combination with Random Testing

Ceiling Speed Monitor

	Mutation Score		
	std	randomisation	Δ
no heuristics	62 %	82 %	+ 20 %
MCDC	87 %	94 %	+ 7 %
boundary values	93 %	100 %	+ 7 %

Experimental Evaluation – Combination with Random Testing

Airbag Controller

	Mutation Score		
	std	randomisation	Δ
no heuristics	89 %	97 %	+8%
boundary values	99 %	100 %	+ 1 %

Conclusion

- experimental evaluation of a complete equivalence class testing strategy
- results apply for SUTs not restricted to the fault domain (completeness assumption does not apply, approx. 50 % of the mutants outside the fault domain)
- ECPT has significantly greater strength than conventional RT
- heuristics and randomisation of equivalence classes increase the test strength even further

Future and Ongoing Work

Evaluation and Improvement of ETCS Test Cases for the Ceiling Speed Monitor

evaluation of the effect of a "randomisation in the *m*-dimension"

generalisation of the ECPT for non-deterministic models

Thank you for your attention!

I will now answer remaining questions.

