Tutorial 2: Applying One-Pass profiling to sequences from one OTU

```
library(otu2ot)
#help(package = otu2ot)
```

1) option a) The file is found in the working directory as a FASTA file containing aligned sequences.

```
File=" HGB_0013_GXJPMPL01A30QX. fasta"
```

```
OnePass <- OnePassProfiling(File="HGB_0013_GXJPMPL01A30QX. fasta",
   mi nseq=21,
   entropymi n=0.6,
   Plot=TRUE
)</pre>
```

```
Nber 193.00 982.00
Prop 0.17 0.87
Position: 241
```

Position: 185

```
A C G U
Nber 568.0 3 5 599.00
Prop 0.5 0 0 0.53
```

```
Position: 242

- A C G U

Nber 355.00 4 4 247.00 565.0

Prop 0.31 0 0 0.22 0.5
```

```
Position: 271
- A G
Nber 818.00 2 355.00
Prop 0.72 0 0.31
```

```
Position: 272
C G U
Nber 981.00 1 193.00
Prop 0.87 0 0.17
```


one-pass OT profile

str(OnePass)

```
List of 3

$ OT. seq. concat: Named chr [1:1175] "GAU-C" "GAU-C" "AUG-U" "AUG-U" ...
... attr(*, "names")= chr [1:1175] "1" "2" "3" "4" ...

$ OT. count : 'table' int [1:17(1d)] 1 1 1 1 1 188 4 562 1 2 ...
... attr(*, "dimnames")=List of 1
....$ OT. seq. concat: chr [1:17] "AAU-C" "ACG-U" "AU-G" "AU-GC" ...

$ OT. freq : table [1:17(1d)] 0.000851 0.000851 0.000851 0.000851
```

```
..- attr(*, "dimnames")=List of 1
 ....$ OT. seq. concat: chr [1:17] "AAU-C" "ACG-U" "AU--G" "AU-GC" ....
system. time(
OnePassProfiling(File="HGB_0013_GXJPMPL01A30QX.fasta",
  mi nseq=21,
  entropymi n=0.6,
  PI ot=TŘUE
      system el apsed
user
3.00
        0.02
                3. 01
Option b) Importing first the sequences, and then applying the OnePassProfi I i ngMat
function
Aln.list<- ImportFastaAlignment(File)</pre>
Names <- Aln.list[[1]]
Sequences <- toupper(Aln.list[[2]])
OT. seq. concat2 <- OnePassProfilingMat
(Al i gnedSequences=Sequences, mi nseq=21,
                                                entropymi n=0.6,
PI ot=TRUE)
#not shown
system.time(OnePassProfiling(File="HGB_0013_GXJPMPL01A30QX.fasta"
  mi nseq=21,
  entropymi n=0.6,
  PI ot=TRUE
      ))
      system el apsed
user
0. 32
        0.00
                0.32
2) Retrieve the sample information from the FASTA headers directly. To see if the length of the
substring in the FASTA headers if correct, use:
GetEnvironmentDatafromFileR(File, Start=2, Stop=9, test=TRUE)
[1] "HGB_0010"
Then apply it to all headers:
ENV <-
GetEnvi ronmentDatafromFileR(File, Start=2, Stop=9, test=FALSE)
3) build the Sample-by-OT table and filter by abundance too if needed.
Table0 <- SampleXOT_Table(
                                    OT. seq. concat = OnePass[[1]],
      ENV=ENV,
     mosai cPl ot=TRUE,
      filterByMinAbund= 0
)
```

unfiltered

str(Tabl e0)

```
List of 1

$ SamplexOT. table: int [1:13, 1:17] 0 0 0 0 0 0 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
....$ Samples : chr [1:13] "HGB_0010" "HGB_0011" "HGB_0012" "HGB_0013"...
....$ Oligotypes: chr [1:17] "AAU-C" "ACG-U" "AU-G" "AU-GC" ...
```

Which OT in the raw table have abundances higher than predicted by using the Broken-Stick model approach?

```
OTAbund <- col Sums(TableO[[1]])
#overall abundance for each OT
```

OTAbund_BSM <- Count. BrokenStick(OTAbund, Plot = TRUE)

Read number

% contribution in abundance

OTAbund BSM

\$Tabl e	DOW					
	GAU-C	GU-GC	AUG-U	GUG-C	GAC-C	GGAGC
	47.82979 2					
FromModel	20. 23266 1	4. 35031				
	GC-GC		C GUC		AAU-C	ACG-U
	0. 1702128					
FromModel	5. 8208972		— — .			
	AUG			AUA-U	GAU-U	GG-GC
	0.08510638					
FromModel	2. 46867752		3144 1.525	99275 1.1	10582468 0.	. 71366782
01	GGU-C					
0.000 00.	0. 08510638					
FromModel	0. 34602076					
¢III aborTbo	nDCM					
\$Hi gherThanBSM [1] "GAU-C" "GU-GC" "AUG-U"						
[1] GAU-C GU-GC AUG-U						

Conclusions: here only three OT have relative abundances higher than predicted by a random partition of sequence abundance.

Table0_BSM <-Table0[[1]][,OTAbund_BSM\$HigherThanBSM] Table0_BSM

Tableu_DSWI									
Oligotypes									
Samples	GAÜ-C	GU-GC	AUG-U						
HGB_0010	2	0	3						
HGB_0011	5	7	0						
HGB_0012	19	25	18						
HGB_0013	41	22	11						
HGB_0014	66	42	9						
HGB 0015	45	18	7						
HGB_0016	54	28	30						
HGB 0017	43	41	16						
HGB_0018	61	24	16						
HGB_0019	49	34	15						
HGB 0023	24	20	11						
HGB_0024	95	51	22						

HGB_0025 58 36 30 mosaicplot(Table0_BSM,col=1:ncol(Table0_BSM), main="BSM",xlab="",las=2,cex=0.6)