Inherited Inequality in Latin America*

Pedro Salas-Rojo

June, 2025

^{*}Joint work with Paolo Brunori, Francisco H. G. Ferreira, Guido Neidhöfer and Louis Sirugue. This is a preliminary version of a chapter commissioned for the Elsevier Handbook of the Economics of Intergenerational Mobility (eds: Durlauf and Mazumder)

Let's open with an anecdote:

According to Stone (1976), no fewer than 31 presidents of Costa Rica, and 285 members of its parliament are direct descendants of Juan Vázquez de Coronado y Anaya (Spain, 1523).

Advantages and disadvantages are, indeed, transmitted through generations. In this presentation we summarized what we have learned in the literature for LAC.

Intergenerational persistence is typically measured as

- Intergenerational mobility (IGM): measure of the association in $F(y_c, y_p)$.
- **Inequality of opportunity (IOp)**: amount of inequality in y_c predicted by "circumstances" *Circ*.

The concept of "inherited inequality" theoretically encompasses both measuring deviations from $y_c \perp H$, where H is a selected set of inherited personal characteristics.

If $y_c \not\perp H$, then $\exists f \in \mathcal{F}$ such that $y_c = f(H, \varepsilon)$ outperforms the mean in predicting y_c .

Relative inherited inequality

$$I_n = \frac{I(\hat{y}_c)}{I(y_c)}$$

For example, in the IGM literature:

$$y_c = f(H, \varepsilon) = \alpha + \beta y_p + \varepsilon$$

Note that:

$$\hat{\rho} = \hat{\beta} \frac{\sigma_p}{\sigma_c}$$

Alternatively:

$$y_c = f(H, \varepsilon) = \alpha + \beta Circ + \varepsilon$$

Relative IOp (ex-ante):

$$ReI.IOp = \frac{I(\hat{y}_{Circ})}{I(y_c)}$$

In short:

 $H \rightarrow y_p$, inherited inequality converges to IGM.

ullet We focus on regression-based measures $(\hat{eta},\hat{
ho})$.

 $H \rightarrow C$, inherited inequality converges to IOp.

- We focus on exante IOp (van de Gaer, 1993; Ferreira and Gignoux, 2011).
- Absolute IOp obtained from $y_c = f(Circ, \varepsilon)$, and then $I(\hat{y}_c)$.

As target outcomes, we focus on income and education.

Education Intergenerational Mobility in LAC

The literature goes back 25 years or so, including Behrman et al. (1999, 2001); Hertz et al. (2008); Torche (2014); Neidhöfer et al. (2018); Van der Weide et al. (2024), among many others.

Main take out: lower mobility than in developed countries (European β is around 0.3-0.35). In older cohorts, β in LAC reaches 0.5-0.6! But encouraging: IGM goes down.

Warning: Estimates from different studies, samples, data origin and so on.

Education average IGM levels

Table 1 - Educational mobility in Latin America: Average estimates of intergenerational regression coefficients.

	Van der Weide et al. (2024)	Neidhöfer et al. (2018)	Hertz et al. (2008)	Ciaschi et al. (2023)	Celhay and Gallegos (2023,	
ARG	0.484	0.437				
BOL	0.679	0.540				
BRA	0.548	0.578	0.950	0.763		
CHL	0.476	0.444	0.640	0.489	0.453	
COL	0.692	0.572	0.800		0.521	
CRI	0.386	0.408				
DOM	0.477	0.438				
ECU	0.651	0.574	0.720	0.768		
GTM	0.815	0.696				
HND	0.585	0.538				
HTI	0.585					
MEX	0.510	0.492		0.648	0.672	
NIC	0.511	0.525	0.820			
PAN	0.598	0.521	0.730	0.728		
PER	0.603	0.532	0.880			
PRY	0.548	0.549			0.459	
SLV	0.577	0.620			0.553	
URY	0.473	0.480			0.351	
VEN	0.378	0.392				
Cohorts	1940-1989	1940-1987	1916- 1983*	1940-1989	1940-1990**	
Parental education	Maximum Maximum		Average	Both (Lubotsky- Wittenberg estimate)	Either father of mother***	

Notes: *BRA 1927-76, CHI. 1930-79, COI. 1928-77, ECU 1925-74, NIC 1929-78, PAN 1934-83, PER 1916-65; ** While the youngest children in data are indicated to be born in 1990, we could not find only information on the oldest ones. 1940 is an approximation based on the parents' cohorts, which are 1920-1970; **Estimates are obtained from census data where respondents are asked about their children's education. Depending on whether the respondent is male or female the estimate refers to father's or mother's education.

Education IGM Trends

Education β vs ρ

Education Inequality across Cohorts

Income β vs ρ

Inverted U-shaped patterin when compared with age?

Intergenerational elasticity estimates by average child age

Exante IOp

We rely on the estimates produced by the Global Estimates of Opportunity and Mobility (GEOM). Other sources: are Brunori et al. (2024, 2025).

Estimates produced with random forests (Brunori et al., 2023). Parameters and technical details can be found in the GEOM website.

Random Forests estimate $y_c = f(Circ, \varepsilon)$ with a machine learning setting that accounts for interactions and non-linearities avoiding overfitting. See more in Brunori et al. (2019).

Circumstances used: Birth Area, Ethnicity, Father Education and Occupation, Mother Education and Occupation, Sex.

Data used in GEOM for LAC

Table 1: Household surveys used in our analysis

Country	Survey Name	Acronym
Argentina	Encuesta Nacional sobre la Estructura Social	ENES
Bolivia	Encuesta de Hogares	EH
Brazil	Pesquisa Nacional por Amostra de Domicílios	PNAD
Chile	Encuesta de Caracterización Socioeconómica Nacional	CASEN
Colombia	Encuesta Nacional de Condiciones de Vida	ECV
Ecuador	Encuesta de Condiciones de Vida	ECV
Guatemala	Encuesta Nacional sobre Condiciones de Vida	ENCOVI
Mexico	Encuesta ESRU de Movilidad Social en México	EMOVI
Panama	Encuesta de Niveles de Vida	ENV
Peru	Encuesta Nacional de Hogares	ENAHO

Most recent income IOp in LAC vs rest of the World

Relative IOp in LAC is also huge (0.44-0.66)

Income IOp Trends in four LAC countries

Contribution of Circumstances to Income IOp

Table 4: Ex-ante Shapley value decompositions

	ARG	BOL	BRA	CHL	COL	ECU	GTM	MEX	PAN	PER
Circumstances	(2014)	(2008)	(2014)	(2015)	(2010)	(2014)	(2011)	(2017)	(2003)	(2015)
Birth Area	33.74	15.01	12.81	14.58	26.56		27.95	15.04	21.98	23.1
Ethnicity	0.10	15.82	9.48	2.44	3.39	7.17		4.39	2.77	11.69
Father Education	23.08	16.00	22.09	37.87	29.45	27.41	28.83	20.92	36.23	31.57
Father Occupation	18.82	17.09	19.23			19.85		18.23		
Mother Education	21.72	16.65	21.14	37.14	37.28	27.53	27.8	18.03	37.52	31.69
Mother Occupation		17.53	14.06			13.81		8.63		
Sex	2.53	1.90	1.18	7.98	3.33	2.34	3.01	14.76	1.51	1.94

Source: Data from ENES, EH, PNAD, CASEN, ECV, ENCOVI, EMOVI, ENV, ENAHO. See more details in Table 1 and Table 2. All values are relative (%) contributions to random forest IOp, see Table 3.

Education and Income IOp Trends

Take-home ideas

Two sets of inherited inequalities results:

- IOp, $\frac{I(\hat{y}_c)}{I(y_c)}$, between 0.44-0.66.
- IGM, ρ, between 0.20-0.60; β, between 0.20-0.80.
- Declining trend in education inherited inequalities. To some extent, also in income.
- \bullet ρ of education seem stable, declining β associated with declining inequality.
- Larger shares of inherited inequality than most other regions of the world.*

*Comparisons with Africa are difficult to make (Consumption vs. Income)

References I

- Behrman, J. R., Birdsall, N., and Székely, M. (1999). *Intergenerational mobility in Latin America: deeper markets and better schools make a difference*, volume 3. Carnegie Endowment for International Peace, Global Policy Program.
- Behrman, J. R., Gaviria, A., Székely, M., Birdsall, N., and Galiani, S. (2001). Intergenerational mobility in latin america [with comments]. *Economia*, 2(1):1–44.
- Brunori, P., Ferreira, F. H., and Neidhöfer, G. (2024). Inequality of opportunity and intergenerational persistence in latin america. Technical report, IZA Discussion Papers.
- Brunori, P., Hufe, P., and Mahler, D. (2023). The roots of inequality: Estimating inequality of opportunity from regression trees and forests. *The Scandinavian Journal of Economics*, 125(4):900–932.

References II

- Brunori, P., Peragine, V., and Serlenga, L. (2019). Upward and downward bias when measuring inequality of opportunity. *Social Choice and Welfare*, 52:635–661.
- Brunori, P., Triventi, M., and Gil-Hernandez, C. (2025). Educational inequality of opportunity with pisa data. Technical report, mimeo.
- Ferreira, F. and Gignoux, J. (2011). The measurement of inequality of opportunity: Theory and an application to latin america. *Review of income and wealth*, 57(4):622–657.
- Hertz, T., Jayasundera, T., Piraino, P., Selcuk, S., Smith, N., and Verashchagina, A. (2008). The inheritance of educational inequality: International comparisons and fifty-year trends. The BE Journal of Economic Analysis & Policy, 7(2).
- Neidhöfer, G., Serrano, J., and Gasparini, L. (2018). Educational inequality and intergenerational mobility in latin america: A new database. *Journal of development economics*, 134:329–349.

June. 2025

References III

- Stone, S. (1976). *La dinastía de los conquistadores...* Editorial Universitaria Centroamericana.
- Torche, F. (2014). Intergenerational mobility and inequality: The latin american case. *Annual review of sociology*, 40(1):619–642.
- van de Gaer, D. (1993). Equality of opportunity and investment in human capital.
- Van der Weide, R., Lakner, C., Mahler, D. G., Narayan, A., and Gupta, R. (2024). Intergenerational mobility around the world: A new database. Journal of Development Economics, 166:103167.