Discussion 3: Week 2 - Stats 100 A

Andrew Lizarraga

Department of Statistics and Data Science

July 2, 2024

Homework 1 Survey

► A majority of you indicated that Problem 2 and 3 are the most difficult.

Homework 1 Survey

- A majority of you indicated that Problem 2 and 3 are the most difficult.
- ► Remember if you're ever unclear about a topic, please feel free to address your questions to Prof. Wu during lectures.

► $X, Y \sim^{ind} U[0, 1]$

- \triangleright X, Y \sim^{ind} U[0, 1]
- Equivalently (X, Y) is a random point in $[0, 1]^2$.

- \triangleright X, Y \sim^{ind} U[0, 1]
- ▶ Equivalently (X, Y) is a random point in $[0, 1]^2$.

Determine $P(X^2 + Y^2 \le 1)$ by measuring an area.

Suppose we repeat the experiment n times. For large n how, how often $X^2 + Y^2 \le 1$? Suppose it happens m times, can you calculate π based on m and n?

Calculate
$$P(X \geq \frac{1}{2})$$
 and $P(X \geq \frac{1}{2} \mid X + Y \geq 1)$

Let A be the event that $X \in [.2, .6]$ and B be the event that $Y \in [.3, .5]$. Show that $P(A \cap B) = P(A)P(B)$

▶ The length of the needle is 1 unit.

- ▶ The length of the needle is 1 unit.
- ▶ The length between parallel the parallel lines is also 1 unit.

- ▶ The length of the needle is 1 unit.
- ▶ The length between parallel the parallel lines is also 1 unit.

Estimate π using the Buffon Needle experiment

Problem 3 (Lazzarini's Lie)

Thank You / Questions

Contact:

You may contact me at: andrewlizarraga@g.ucla.edu.