Machine Perception Tracking

Projektprüfung

Jule Naßenstein, Fouad Ghazal, Aleem Hussain, Zayd Badla

TABLE OF CONTENTS

Aufgabenstellung

02

Module

Arbeitsaufteilung

04

Demo

Aufgabenstellung

Aufgabenstellung

Entwicklung eines Algorithmus um Fußballspiele zu analysieren

In verschiedene Module unterteilt

- Detektor
- Optical Flow
- Tracker
- Shirt Classifier

Module

Module

01 Detektor

02 Optischer Fluss

03 Tracker

04 Shirt Classifier

Detektor

Aufgabe

Erkennung des Balles, der Torhüter, der Spieler und der Schiedsrichter

Implementation

Definierung einer Bounding Box für jedes Objekt

YOLO Netzwerke

- Echtzeit-Objekterkennungsnetzwerk
- lokalisiert und klassifiziert alle Objekte im Bild in einem einzigen Vorwärtsdurchlauf
- 1. Eingabebild wird in ein festes Raster aus Zellen unterteilt
- 2. Jede Rasterzelle ist verantwortlich Objekte zu erkennen deren Mittelpunkt in die Zelle fällt
- 3. für jedes potenzielle Objekt gibt YOLO

```
(x, y) – Mittelpunkt der Box (relativ zur Zelle)
```

(w, h) – Breite und Höhe der Box (relativ zum Bild)

Confidence-Score – Wie sicher ist YOLO, dass sich dort ein Objekt befindet

Klassenscores – Wahrscheinlichkeiten für jede Klasse (z. B. Ball, Spieler)

Vorteile von YOLO

- Schnell: Echtzeitfähig ideal für Videos und Roboteranwendungen
- Kontextwahrnehmung: Das gesamte Bild wird betrachtet, nicht nur lokale Regionen

Aufbau des Moduls

start Methode

Initalisiert das YOLO-Modell

step Methode

Verarbeitet ein Bild pro Zeitschritt, erkennt darin relevante Objekte und gibt sie strukturiert zurück.

stop Methode

Setzt das YOLO Modell auf None

Aufbau der step Methode

```
def step(self, data):
       data (dict): Input data containing the image to be processed.
       dict: A dictionary containing the detections and their corresponding classes.
    image = data["image"]
   if self.model is None:
      self.initialise_yolo()
   results = self.model(image)[0]
   if results.boxes is None or len(results.boxes) == 0:
            "detections": np.empty((0, 4), dtype=np.float32),
            "classes": np.empty((0, 1), dtype=np.int64),
    boxes = results.boxes.xywh.cpu().numpy() # Center-based boxes: (X, Y, W, H)
    classes = results.boxes.cls.cpu().numpy() # Klassen
    valid_classes = [
    indices = [1 for i, cls in enumerate(classes) if int(cls) in valid classes]
    if not indices:
           "detections": np.empty((0, 4), dtype=np.float32),
            "classes": np.empty((0, 1), dtype=np.int64),
    detections = np.array([boxes[i] for i in indices], dtype=np.float32]
    class_tensor = np.array([[int(classes[i])] for i in indices], dtype=np.int64)
    return {"detections": detections, "classes": class_tensor}
```

lädt das aktuelle Bild

initalisiert das Modell falls noch nicht

übergibt das Bild an das YOLO Modell

wenn nichts erkannt wird ein leeres array zurückgegeben

konvertiert die Bounding Boxes und Klassen in NumPy-Arrays

Filtert nur Objekte die zu den interessanten Klassen gehören

wenn keine gültigen Objekte wird wieder ein leeres Array zurückgegeben

baut arrays für die gültigen Erkennungen

gibt das Ergebnis zurück

Was ist ein Optischer Fluss

- Misst, wie sich Bildpunkte von Frame zu Frame verschieben
- Gibt für jeden Pixel einen Bewegungs-Vektor (vx, vy) an, der zeigt, wie sich der Pixel bewegt hat.

 liefert die Infos, die andere Systeme nutzen, um Bewegung zu verstehen oder zu kontrollieren.

Optionale GPU-Beschleunigung für Farnebäck

CPU vs. GPU - Was ändert sich?

CPU-Modus (Standard)

Läuft auf jeder Maschine Gut für Tests und kleine Auflösungen

GPU-Modus (optional)

Nutzt NVIDIA-CUDA Deutlich schneller bei hohen Auflösungen und vielen Bildern pro Sekunde

Farneback vs. Lucas-Kanade

Merkmal	Farneback	Lucas–Kanade
Dichte	Vektor für jeden Pixel	Nur für ausgewählte Punkte
Feature- Detektion	Nicht nötig	Erst Punkte finden & filtern
Robustheit	Gut bei Rauschen & Helligkeits- änderungen	Kann bei starkem Rauschen versagen
GPU-Support	Direkte CUDA-Implementierung verfügbar	Keine offizielle GPU-Variante
Rechenaufwand	Höher (dicht), aber mit GPU sehr schnell	Niedriger pro Punkt, aber Verwaltungsaufwand

Warum Farnebäck für uns ideal ist

Wir berechnen die Durchschnittsbewegung aller Pixel für die Gesamtbewegung des Bildes.

Automatisch & vollständig:

Für alle Pixel wird direkt ein Vektor berechnet.

Robust & zuverlässig:

Weniger empfindlich gegen Rauschen und Lichtänderungen.

Echtzeit-Einsatz:

Mit cuda_FarnebackOpticalFlow hohe Bildraten möglich.

Schnelles Prototyping:

Standard-Parameter liefern sofort gute Ergebnisse.

Was ist ein Objekt-Tracker?

Aufgabe

• Erkenntnisse (Ball, Spieler, etc.) über

mehrere Bilder verfolgen

• Jedes Objekt bekommt eine eindeutige ID

 Entscheidung: Neuer Track oder vorhandener Track?

Filter (Einzelobjekt-Verfolgung)

Alpha-Beta-Filter

Arbeitet direkt mit Bounding Boxes im Bild ([cx, cy, w, h])

Benötigt nur zwei Parameter:

 $\alpha \rightarrow$ Gewichtung der

Positionskorrektur

β → Anpassung der Geschwindigkeit

Shirt Classifier

Ziel: Klassifikation aller Spieler anhand ihrer Trikotfarbe in Team A und Team B.

- Analysiert Trikotfarben getrackter Spieler
- Erkennt automatisch zwei Teamfarben
- Weist Spielern Team A (1), Team B (-1) oder unklar (0) zu
- Liefert Basis für visuelle Trennung & taktische Analysen

Team A

Team B

Benutzte Techniken

Feature-Vergleich L2-Distanz zur Farbzuordnung

ThresholdingSchwellenwert für sichere
Klassifikation

Data AssociationFarbinformation mit TrackingDaten verknüpft

Code-Aufbau und Logik Spieler Daten erkennen & ROI Genug Farben? **KMeans-Clustering** empfangen extrahieren (2 Farben) → Ja → weiter data["image"], data["track → Nein → neutrale Teamfarben bestimmen s"], data["trackClasses"] Trikoth ereich Rückgabe (Gruppe links = Team A) ausschneiden. Farbmittel berechnen (track_classes) if cls == 2] Farbvergleich **Ergebnis** Sicherheitsfix je Spieler zurückgeben (Optional) Farbverstärkung → L2-Distanz zu Team Mindestens ein Spieler teamAColor, teamBColor, pro Team sicherstellen → Zuweisung oder 0 teamClasses (unklar)

KMeans-Cluster der Shirtfarben

Shirt Color Clustering PCA Component 2 10 -1050 100 200 -100-50 150 PCA Component 1

Oberkörper-ROI

03

Aufgabenteilung

Aufgabenteilung

Jule

detector.py

Fouad

tracker.py

opticalflow.py

Aleem

shirtClassifier.py

C4 Demo