Geometría y Álgebra Lineal I

Examen - Turno matutino

N° de prueba	Apellido, Nombre	Firma	Cédula

La duración de la prueba es de tres horas, y no se permite usar ni calculadora ni material de consulta. La comprensión de las preguntas es parte de la prueba. La prueba consta de 4 Verdaderos/Falso y 7 ejercicios Múltiple opción.

Sugerencia: sea cuidadoso al pasar las respuestas. Lo completado aquí será lo único tenido en cuenta a la hora de corregir.

Puntajes

- Verdadero/Falso: respuestas correctas 3 puntos; incorrectas, −3 puntos; sin responder, 0 punto.
- Múltiple opción: respuestas correctas 13 puntos; incorrectas, −3 puntos; sin responder, 0 punto.

Verdaderos/Falsos

- 1. Si $T:V\to V$ es una transformación lineal y existe $v\in V$ no nulo tal que $T^3(v)=0$ entonces T no es invertible.
- 2. Sean $T, S: V \to W$ transformaciones lineales tales que $\operatorname{Im}(T) = \operatorname{Im}(S)$, entonces existe $v \in V$ no nulo tal que T(v) = S(v).
- 3. Si $V = S_1 \oplus S_2$ y $S \subset V$ es un subespacio, entonces se cumple que o bien $S \subset S_1$ o bien $S \subset S_2$.
- 4. Sean \mathcal{A} , \mathcal{B} bases de V un espacio vectorial de dimensión n y $T:V\to V$ una transformación lineal tal que $\mathfrak{g}(T)_{\mathcal{A}}=\mathrm{Id}_n$. Entonces $\mathcal{A}=\mathcal{B}$.

Múltiple opción

- 1. Sea r la recta intersección de los planos π_1 y π_2 de ecuaciones x + y z = 0 y 3x z = 0 respectivamente. Sea s la recta que pasa por (1,1,2) y tiene vector director (1,0,3). Considere el plano π que contiene a s y es paralelo a r. Determinar cuál de los siguientes puntos está en π .
 - a) (0,0,0).
 - b) (2,0,6).
 - c) (6,0,-2).
 - d) (3,3,8).
 - e) (5,2,0).

- 2. Sea $w \in \mathbb{R}^3$ tal que $w \neq (0,0,0)$ y considere $T_w : \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por $T_w(v) = (\langle v, 2w \rangle, \langle v, -w \rangle)$. Entonces:
 - a) $\dim(N(T_w)) = 2 \text{ e Im}(T_w) = [(1, -2)].$
 - b) $\dim(N(T_w)) = 2 \text{ e Im}(T_w) = [(-2,1), (1,-2)].$
 - c) $\dim(N(T_w)) = 1 \text{ e Im}(T_w) = [(-2, 1), (1, -2)].$
 - d) Existen $w_1, w_2 \in \mathbb{R}^3$ no nulos tales que $\dim(N(T_{w_1})) \neq \dim(N(T_{w_2}))$.
 - e) $\dim(N(T_w)) = 2 \text{ e Im}(T_w) = [(-2, 1)].$
- 3. Sean P = (2, 1, 1) y π un plano que pasa por el punto (2, 2, -4) y tiene como vectores directores a (1, -1, 0) y (1, 0, 1). Considere el punto Q tal que $\operatorname{dist}(Q, \pi) = \operatorname{dist}(P, \pi)$, $\operatorname{dist}(P, Q) = 2\operatorname{dist}(P, \pi)$ y además, la recta que pasa por P y Q es normal a π . Entonces,
 - a) La suma de las entradas de Q es -6.
 - b) La suma de las entradas de Q es 8.
 - c) La suma de las entradas de Q es -8.
 - d) La suma de las entradas de Q es 6.
 - e) La suma de las entradas de Q es 0.
- 4. Se considera la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^4$ que cumple las condiciones:

$$(*)$$
 $T(1,8,-2) = (-3,1,1,4), T(2,1,5) = (0,-1,2,5), T(1,-2,4) = (1,-1,1,2).$

Entonces:

- a) Existe una única transformación lineal T que cumple las condiciones (*), y dicha transformación lineal cumple la condición T(2,0,3) = (0,-2,0,5).
- b) Existe una única transformación lineal T que cumple las condiciones (*), y dicha transformación lineal cumple la condición T(2,0,3) = (1,0,-2,3).
- c) Existen infinitas transformaciones lineales T que cumplen las condiciones (*), pero sólo una de ellas cumple la condición T(2,0,3) = (-3,2,0,1).
- d) Existen infinitas transformaciones lineales T que cumplen las condiciones (*), y todas ellas cumplen la condición T(2,0,3)=(-3,2,0,1).
- e) No existe ninguna transformación lineal T que cumple las condiciones (*).
- 5. Sean los subespacios

$$S_1 = \{ p \in \mathbb{R}_3[x] : p(0) + p'(0) + p''(0) = 0 \}, \quad S_2 = \{ p \in \mathbb{R}_3[x] : p(0) + p'(0) = 0 \},$$

у

$$S_3 = \{ p \in \mathbb{R}_3[x] \colon p''(0) = 0 \}.$$

Entonces:

- a) $S_1 = S_2 + S_3$ pero la suma no es directa.
- b) $S_1 = S_2 \oplus S_3$.
- c) $\mathbb{R}_3[x] = S_1 \oplus [x^3].$
- d) $\mathbb{R}_3[x] = S_1 \oplus [x^3 + 1].$
- e) $\mathbb{R}_3[x] = S_2 \oplus [x^3].$

6. Sean $T: \mathbb{R}_2[x] \to \mathbb{R}^4$ y $S: \mathbb{R}^4 \to \mathbb{R}^4$ transformaciones lineales definidas por:

$$_{\mathcal{B}}(T)_{\mathcal{C}} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & 2 \\ -1 & 3 & -2 \\ 3 & 4 & 7 \end{array}\right),$$

siendo $\mathcal{B} = \{(1,0,1,0), (0,1,1,0), (0,0,-1,1), (0,0,0,-1)\}$ y $\mathcal{C} = \{1,x,x^2\}$, y

$$S(1,0,1,0) = (1,2,3,-1),$$
 $S(0,1,1,0) = (1,3,2,0),$

$$S(0,0,-1,1) = (0,-1,-1,2),$$
 $S(0,0,0,-1) = (0,0,-1,-2).$

Sea $p \in \mathbb{R}_2[x]$ tal que $S \circ T(p) = (5, 11, 3, -12)$. Entonces:

- a) p(1) = -2.
- b) p(1) = 1.
- c) p(1) = 0.
- d) p(1) = -1.
- e) p(1) = 2.

7. Sea $\alpha \in \mathbb{R}$ y $T_{\alpha} \colon \mathbb{R}^4 \to \mathbb{R}^4$ una transformación lineal cuya matriz asociada en la base canónica \mathcal{C} es:

$$c(T_{\alpha})_{\mathcal{C}} = \begin{pmatrix} 1 & 1 & \alpha + 2 & -2 \\ 1 & \alpha + 3 & 4 & -2\alpha \\ -2 & -2 & \alpha - 4 & 3 \\ -2 & \alpha & -2 & \alpha^2 + 3 \end{pmatrix}.$$

- a) Si T_{α} no es sobreyectiva entonces dim(Im(T)) = 3.
- b) Si T_{α} no es sobreyectiva entonces dim(Im(T)) = 2.
- c) T_{α} es sobreyectiva para todo $\alpha \in \mathbb{R}$.
- d) Si T_{α} no es sobreyectiva entonces hay valores de α para los que dim $(\operatorname{Im}(T)) = 3$ y otros valores para los dim $(\operatorname{Im}(T)) = 2$.
- e) Si T_{α} no es sobreyectiva entonces dim(Im(T)) = 1.