Semester VI (B. Tech.)

Er. No. 2016 308 Academic Year: 2022-23

Jaypee University of Engineering & Technology, Guna

T-3 (Even Semester 2023) 18B11CI933 – DEEP LEARNING

Maximum Duration: 2 Hours

Maximum Marks: 35

Notes:

- 1. This question paper has 5 questions.
- 2. Write relevant answers only.
- 3. Do not write anything on question paper (Except your Er. No.).

	Marks	CO No
Q1. Explain with the help of Python code:		CO3
(a) Ragged Tensors	[04]	
(b) String Tensors	[03]	
Q2. Write a Python code to customize less function to cater specific requirements. Use this loss function in your keras model, and also		CO5
train the model.	[07]	
Q3. Write a Python code to convert your selfic into a sketch with white		CO4
background. Write code for all the steps starting from taking the		
selfie to output a sketch.	[07]	
What causes the population of non-trainable parameters in the		CO5
deep learning model? Show it with the help of a suitable example.	[07]	
O5. Convert the model shown in figure below into python code using		CO4
Keras. Show the output of model summary of your code.	[07]	
	nse dense	
27 13 13 13		dense
$\frac{11}{3}$ $\frac{55}{5}$ $\frac{5}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$		
11 27 3 13 3 13 13 13 256		1000
MADA MADA	96 4096	
Max pooling pooling		
pooling		
Stride		
g of 4		

Figure: Model Architecture