Uwaga 1 (gwoli uzupełnienia).
$$H_G^i(Y, \ell_2(G)) = Z^i(Y) / B^i(Y)$$

 $\bar{H}^n(Y) = Z^i(Y) / \bar{B}^i(Y) \simeq \mathcal{H}_n(Y) = \ker \Delta_n$

Moduły Hilbertowskie

Definicja 2 (G-moduł Hilbertowski). M przestrzeń Hilberta nazywa się G-modułem Hilbertowskim, jeśli M jest wyposażona w reprezentację unitarną grupy G, $\pi: G \to U(M)$, taką, że M jest izometrycznie G-izomorficzna z domkniętą G-niezmienniczą podprzestrzenią $(\ell_2(G))^n$ (istnieje $V \subseteq (\ell_2(G))^n$ domknięta, $T: M \to V$ liniowa izometria, $T\pi_g = \lambda_g T$.

Lemat 3. $\delta_i \lambda_g = \lambda_g \delta_i$

Fakt 4. $C_i(Y) \simeq (\ell_2(G))^{\alpha_i}$ jest G-modułem Hilbertowskim.

 $Z^{i}(Y), Z_{i}(Y)$ są G-modułami Hilbertowskimi.

 $\bar{B}_i(Y), \bar{B}^i(Y)$ są G-modułami Hilbertowskimi.

Wniosek 5. $\mathcal{H}_i(Y)$ jest G-modułem Hilbertowskim.

Lemat 6. M – G-modul Hilbertowski, $V \subseteq M$ to G-niezmiennicza podprzestrzeń M, wówczas M/\bar{V} z normą $\|w\| = \inf\{\|\tilde{w}\| : \pi(\tilde{w}) = w\}$ ma naturalną strukturę G-modulu Hilbertowskiego.

Lemat 7. Jeśli $\bar{V} \subseteq M$ jest G-niezmiennicza, to \bar{V}^{\perp} jest G-niezmiennicza.

Definicja 8 (izomorfizmy). $f: M_1 \to M_2$ przekształcenie G-modułów Hilbertowskich jest

- $stabym\ izomorfizmem$, jeśli jest injekcją, ograniczone, G-ekwiwariantne, oraz im f jest gęste w M_2 ;
- $silnym\ izomorfizmem$, jeśli jest G-ekwiwariantną izometrią M_1 i M_2 .

Lemat 9. Załóżmy, że istnieje słaby izomorfizm G-modułów Hilbertowskich $M_1 \rightarrow M_2$. Wtedy istnieje silny izomorfizm M_1 i M_2 .

Uwaga 10. $T: H_1 \to H_2$, im T gęsty w H_2 wtw, gdy T^* jest injekcją, bo $(\operatorname{im} T)^{\perp} = \ker T^*$.

Twierdzenie 11 (spektralne). $T \in \mathcal{B}(H)$ dodatni samosprzężony, to istnieje $S \in \mathcal{B}(H)$ dodatni samosprzężony taki, że $S^2 = T$, co więcej S jest przemienny z każdym operatorem, z którym przemienny jest T.

Definicja 12 (izomorficzne G-moduły). $M_1, M_2 - G$ -moduły Hilbertowskie są izomorficzne, jeśli istnieje słaby (lub równoważnie – silny) izomorfizm $f: M_1 \to M_2$.

Wniosek 13. $\varphi: M_1 \to M_2$ ograniczone G-ekwiwariantne przekształcenie G-modułów Hilbertowskich, wówczas $(\ker \varphi)^{\perp} \simeq M_1/\ker \varphi \simeq \overline{\operatorname{im} \varphi}$ jako G-moduły Hilbertowskie.

Twierdzenie 14. \mathcal{H}_i jest funktorem z kategorii Δ -kompleksów z wolnym kozwartym działaniem G i klas G-homotopii przekształceń do kategorii G-modułów Hilbertowskich i ograniczonych G-ekwiwariantnych operatorów.

Twierdzenie 15 (o aproksymacji symplicjalnej). Niech K – skończony Δ -kompleks, L – dowolny Δ -kompleks. Wówczas przekształcenie $f: K \to L$ jest homotopijne z przekształceniem symplicjalnym $f': K' \to L$, gdzie K' jest pewnym podpodziałem barycentrycznym K.

Definicja 16. Przekształcenie symplicjalne przekształca sympleksy na sympleksy i jest liniowe w obcięciu do wnętrza każdego sympleksu.

Lemat 17. $W(\ell_2(G))^n$ nie ma G-niezmienniczych niezerowych wektorów, jeśli $|G| = \infty$.

Przykład18. Y – spójny $G\text{-}\Delta\text{-kompleks}$ z kozwartym 1-szkieletem, Gnieskończona, wtedy $\mathcal{H}_0(Y)=0.$

Przykład 19. Dla $Y = \mathbb{R}, G = \mathbb{Z}, X = S^1$ mamy $\mathcal{H}_0(Y) = 0 \neq H_0^G(Y, \ell_2(G))$.