Lecture 2

Review Linear Algebra &
Ways of Geometric Thinking

Math 142 Professor Gu

Please think each topic you learned in linear algebra *geometrically*.

For examples:

- Solving linear system
- Determinant
- Vector Space
- Linear transformation
- Eigenvalues and Eigenvectors
- Inner product

Geometric meaning of solving linear system

$$3x + 2y - z = 1$$
 $x = 1$
 $2x - 2y + 4z = -2$ $y = -2$
 $-x + \frac{1}{2}y - z = 0$ $z = -2$

What kind of solutions that a linear system of two variables could have?

What kind of solutions that a linear system of three variables could have?

Key: Understand the solution space geometrically.

Understand the geometry of determinant of a matrix

The volume of this parallelepiped is the absolute value of the determinant of the matrix formed by the rows constructed from vectors r1, r2, and r3.

True or False

A linear system could have 3 solutions.

n+1 vectors in Rⁿ must be linear dependent.

 Determinant of n linearly dependent vectors must be equal to zero. What will happen if the following matrix applying to a vector in R²?

- 1 1
- -1 1

Does this matrix has real eigenvalues? Is it diagonalizable?

Answer:

How about the following matrix:

1 a

0 1

Matrix representation

- Given a matrix A.
- Go to the board and list all possible ways that this matrix A can represent.
- E.g. The matrix A could represent a quadratic form as we saw from last class.

Can the following matrix be used to define an inner product?

3 1

13

Or

1 2

2 1