MECH 7710 Optimal Estimation and Control

Mid-Term Exam

April 6, 2020

General Instruction

- This exam is open book, open notes, and open calculators. It is okay to use Matlab for calculation. Do not use built-in Matlab tools like "pinv"
- You have 24 Hours
- Solve each problem fully showing all your work. Clearly indication your answers
- Total credit is 100 points

Name:		-		
Date:		-		
I certify that I have performed thave not given or received any		C		ersity honor code and
Signature:		_		
Note:				
	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{aa}$	$\frac{1}{d-bc} \begin{bmatrix} d \\ -c \end{bmatrix}$	$\begin{bmatrix} -b \\ a \end{bmatrix}$	

1. (10 Points) Assume that t observations of a random variable are given:

$$\tilde{y}_k = y_k \quad \forall k = 1, ..., t$$

Find a recursive formula for calculating the mean at time t.

- 2. (20 Points) Consider the continuous system below
 - a. Calculate the expected steady state Kalman filter estimation error variance
 - b. Calculate the steady state Kalman gain
 - c. Calculate the open loop and closed loop estimator eigenvalues
 - d. Plot the location of all possible closed loop eigenvalues. What do you notice about the minimum Kalman gain and the slowest closed loop estimator the Kalman filter will use?

$$\dot{x} = x + w$$

$$y = x + v$$

$$E[w] = E[v] = 0$$

$$E[ww^{T}] = Q$$

$$E[vv^{T}] = R$$

- 3. (30 Points) Given the measurements shown in the table:
 - a. Use least squares to estimate the slope and y-intercept of a line assuming the x values are inputs and the y values are measurements that are corrupted by zero mean Gaussian noise with a standard deviation of 0.2
 - b. What is the expected error of the estimate?
 - c. Used weighted least squares to calculate the estimates assuming the last measurement is twice as bad (1σ) as the first two measurements

k	X	y
1	0	3
2	1	2
3	2	0

4. (20 Points) A random number generator generates integers from 1 to 9 (inclusive). All outcomes are equally likely, and each integer is generated independently of any previous integer. Let Σ denote the sum of two consecutively generated integers - $\Sigma = N_1 + N_2$.

(Hint: It may be helpful to write out the discrete joint PDF)

- a. Given $N_1 > 8$, what is the conditional probability that Σ is odd.
- b. Given $\Sigma > 10$, what is the conditional probability that at least one of the two integers is >7?
- c. Using Bayes Rule, find the conditional probably that $\Sigma = 7$ given Σ is odd.

5. (20 Points) Consider the linearized pendulum driven by a motor torque with a force disturbance. The system is sampled at 100 Hz. The pendulum has an optical encoder with 360 counts/revolutions to measure angular position. The motor has a tachometer that measures angular velocity with an accuracy of 0.2 deg/s (1 σ). However, the tachometer measurement has a bias that should be modeled as a Markov process with a time constant of 10 seconds and a unit white noise input

$$J\ddot{\theta} + b\dot{\theta} + mgl\theta = \tau_m - F_d l$$
 where $E[F_d] = \mu_d$ and $E[F_d F_d^T] = \sigma_d^2$

- a. Find A, Bu, Bw, C, D, Q, and R
- b. Find the first order approximation (i.e. Taylor Series) of Ad
- c. Calculate Qd