# Lecture 16: High-dimensional regression, non-linear regression

Reading: Sections 6.4, 7.1

STATS 202: Data mining and analysis

Jonathan Taylor Nov 2, 2018 Slide credits: Sergio Bacallado

lacktriangle Most of the methods we've discussed work best when n is much larger than p.

- Most of the methods we've discussed work best when n is much larger than p.
- ▶ However, the case  $p \gg n$  is now common, due to experimental advances and cheaper computers:

- ▶ Most of the methods we've discussed work best when *n* is much larger than *p*.
- ▶ However, the case  $p \gg n$  is now common, due to experimental advances and cheaper computers:
  - 1. **Medicine:** Instead of regressing heart disease onto just a few clinical observations (blood pressure, salt consumption, age), we use in addition 500,000 single nucleotide polymorphisms.

- ▶ Most of the methods we've discussed work best when *n* is much larger than *p*.
- ▶ However, the case  $p \gg n$  is now common, due to experimental advances and cheaper computers:
  - 1. **Medicine:** Instead of regressing heart disease onto just a few clinical observations (blood pressure, salt consumption, age), we use in addition 500,000 single nucleotide polymorphisms.
  - Marketing: Using search terms to understand online shopping patterns. A bag of words model defines one feature for every possible search term, which counts the number of times the term appears in a person's search. There can be as many features as words in the dictionary.

lacktriangle When n=p, we can find a fit that goes through every point.



▶ When n = p, we can find a fit that goes through every point.



lackbox Least-squares regression doesn't have a unique solution when p>n.

▶ When n = p, we can find a fit that goes through every point.



- ightharpoonup Least-squares regression doesn't have a unique solution when p>n.
- ► We can use regularization methods, such as variable selection, ridge regression and the lasso.

- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- ► We can use regularization methods, such as variable selection, ridge regression and the lasso.
- ▶ When n = p, we can find a fit that goes through every point.
- ▶ Measures of training error are really bad.



## Some new problems



- ▶ Furthermore, it becomes hard to estimate the noise  $\hat{\sigma}^2$ .
- ▶ Measures of model fit  $C_p$ , AIC, and BIC fail.

## Some new problems



- ▶ In each case, only 20 predictors are associated to the response.
- ▶ Plots show the test error of the Lasso.

## Some new problems



- ▶ In each case, only 20 predictors are associated to the response.
- Plots show the test error of the Lasso.
- ▶ Message: Adding predictors that are uncorrelated with the response hurts the performance of the regression!

▶ When p > n, every predictor is a linear combination of other predictors, i.e. there is an extreme level of multicollinearity.

- ▶ When *p* > *n*, every predictor is a linear combination of other predictors, i.e. there is an extreme level of multicollinearity.
- ► The Lasso and Ridge regression will choose one set of coefficients.

- When p > n, every predictor is a linear combination of other predictors, i.e. there is an extreme level of multicollinearity.
- The Lasso and Ridge regression will choose one set of coefficients.
- ▶ The coefficients selected  $\{i : |\hat{\beta}_i| > \delta\}$  are not guaranteed to be identical to  $\{i : |\beta_i| > \delta\}$ . There can be many sets of predictors (possibly non-overlapping) which yield good models.

- ▶ When p > n, every predictor is a linear combination of other predictors, i.e. there is an extreme level of multicollinearity.
- The Lasso and Ridge regression will choose one set of coefficients.
- ▶ The coefficients selected  $\{i : |\hat{\beta}_i| > \delta\}$  are not guaranteed to be identical to  $\{i : |\beta_i| > \delta\}$ . There can be many sets of predictors (possibly non-overlapping) which yield good models.
- ► Message: Don't overstate the importance of the predictors selected.

▶ When p > n, LASSO might select a sparse model.

- ▶ When p > n, LASSO might select a sparse model.
- ▶ Running 1m on selected variables on *training data* is **bad**.

- ▶ When p > n, LASSO might select a sparse model.
- ▶ Running 1m on selected variables on *training data* is **bad**.
- Running 1m on selected variables on independent validation data is OK.

- ▶ When p > n, LASSO might select a sparse model.
- ▶ Running 1m on selected variables on *training data* is **bad**.
- Running 1m on selected variables on independent validation data is OK.
- ► Message: Don't use inferential methods developed for least squares regression for things like LASSO, forward stepwise, etc.

- ▶ When p > n, LASSO might select a sparse model.
- ▶ Running 1m on selected variables on *training data* is **bad**.
- Running 1m on selected variables on independent validation data is OK.
- ► Message: Don't use inferential methods developed for least squares regression for things like LASSO, forward stepwise, etc.
- Can we do better? Yes, but it's complicated.

## Non-linear regression

Problem: How do we model a non-linear relationship?

#### Degree-4 Polynomial



Left: Regression of wage onto age.

**Right:** Logistic regression for classes wage > 250 and wage  $\le 250$ 

#### Strategy:

▶ Define a model:

$$Y = \beta_0 + \beta_1 f_1(X) + \beta_2 f_2(X) + \dots + \beta_d f_d(X) + \epsilon.$$

### Strategy:

Define a model:

$$Y = \beta_0 + \beta_1 f_1(X) + \beta_2 f_2(X) + \dots + \beta_d f_d(X) + \epsilon.$$

▶ Fit this model through least-squares regression:  $f_j$ 's are nonlinear, model is linear!

#### Strategy:

Define a model:

$$Y = \beta_0 + \beta_1 f_1(X) + \beta_2 f_2(X) + \dots + \beta_d f_d(X) + \epsilon.$$

- Fit this model through least-squares regression:  $f_j$ 's are nonlinear, model is linear!
- ▶ Options for  $f_1, \ldots, f_d$ :

#### Strategy:

Define a model:

$$Y = \beta_0 + \beta_1 f_1(X) + \beta_2 f_2(X) + \dots + \beta_d f_d(X) + \epsilon.$$

- Fit this model through least-squares regression:  $f_j$ 's are nonlinear, model is linear!
- ▶ Options for  $f_1, \ldots, f_d$ :
  - 1. Polynomials,  $f_i(x) = x^i$ .

#### Strategy:

Define a model:

$$Y = \beta_0 + \beta_1 f_1(X) + \beta_2 f_2(X) + \dots + \beta_d f_d(X) + \epsilon.$$

- Fit this model through least-squares regression:  $f_j$ 's are nonlinear, model is linear!
- ▶ Options for  $f_1, \ldots, f_d$ :
  - 1. Polynomials,  $f_i(x) = x^i$ .
  - 2. Indicator functions,  $f_i(x) = \mathbf{1}(c_i \le x < c_{i+1})$ .



- ▶ Options for  $f_1, \ldots, f_d$ :
  - 3. Piecewise polynomials:



▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .

- ▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .
- ▶ We want the function f in  $Y = f(X) + \epsilon$  to:

- ▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .
- ▶ We want the function f in  $Y = f(X) + \epsilon$  to:
  - 1. Be a cubic polynomial between every pair of knots  $\xi_i, \xi_{i+1}$ .

- ▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .
- ▶ We want the function f in  $Y = f(X) + \epsilon$  to:
  - 1. Be a cubic polynomial between every pair of knots  $\xi_i, \xi_{i+1}$ .
  - 2. Be continuous at each knot.

- ▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .
- ▶ We want the function f in  $Y = f(X) + \epsilon$  to:
  - 1. Be a cubic polynomial between every pair of knots  $\xi_i, \xi_{i+1}$ .
  - 2. Be continuous at each knot.
  - 3. Have continuous first and second derivatives at each knot.

- ▶ Define a set of knots  $\xi_1 < \xi_2 < \cdots < \xi_K$ .
- ▶ We want the function f in  $Y = f(X) + \epsilon$  to:
  - 1. Be a cubic polynomial between every pair of knots  $\xi_i, \xi_{i+1}$ .
  - 2. Be continuous at each knot.
  - 3. Have continuous first and second derivatives at each knot.
- ▶ It turns out, we can write f in terms of K+3 basis functions:

$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X, \xi_1) + \dots + \beta_{K+3} h(X, \xi_K)$$

where,

$$h(x,\xi) = \begin{cases} (x-\xi)^3 & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$

## Natural cubic splines

Spline which is linear instead of cubic for  $X < \xi_1$ ,  $X > \xi_K$ .



The predictions are more stable for extreme values of X.

# Choosing the number and locations of knots

The locations of the knots are typically quantiles of X.

## Choosing the number and locations of knots

The locations of the knots are typically quantiles of X.

The number of knots, K, is chosen by cross validation:





## Natural cubic splines vs. polynomial regression

- Splines can fit complex functions with few parameters.
- ▶ Polynomials require high degree terms to be flexible.
- ▶ High-degree polynomials can be unstable at the edges.



## Smoothing splines

Find the function f which minimizes

$$\sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

- ▶ The RSS of the model.
- ► A penalty for the roughness of the function.

## Smoothing splines

Find the function f which minimizes

$$\sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

- ▶ The RSS of the model.
- ▶ A penalty for the roughness of the function.

#### Facts:

- ► The minimizer  $\hat{f}$  is a natural cubic spline, with knots at each sample point  $x_1, \ldots, x_n$ .
- lacktriangle Obtaining  $\hat{f}$  is similar to a Ridge regression.

1. Show that if you fix the values  $f(x_1), \ldots, f(x_2)$ , the roughness

$$\int f''(x)^2 dx$$

is minimized by a natural cubic spline.

1. Show that if you fix the values  $f(x_1), \ldots, f(x_2)$ , the roughness

$$\int f''(x)^2 dx$$

is minimized by a natural cubic spline.

Deduce that the solution to the smoothing spline problem is a natural cubic spline, which can be written in terms of its basis functions.

$$f(x) = \beta_0 + \beta_1 f_1(x) + \dots + \beta_{n+3} f_{n+3}(x)$$

1. Show that if you fix the values  $f(x_1), \ldots, f(x_2)$ , the roughness

$$\int f''(x)^2 dx$$

is minimized by a natural cubic spline.

Deduce that the solution to the smoothing spline problem is a natural cubic spline, which can be written in terms of its basis functions.

$$f(x) = \beta_0 + \beta_1 f_1(x) + \dots + \beta_{n+3} f_{n+3}(x)$$

3. Letting N be a matrix with  $N(i, j) = f_j(x_i)$ , we can write the objective function:

$$(y - \mathbf{N}\beta)^T (y - \mathbf{N}\beta) + \lambda \beta^T \Omega_{\mathbf{N}}\beta,$$

where  $\Omega_{\mathbf{N}}(i,j) = \int N_i''(t)N_j''(t)dt$ .

4. By simple calculus, the coefficients  $\hat{\beta}$  which minimize

$$(y-\mathbf{N}\beta)^T(y-\mathbf{N}\beta)+\lambda\beta^T\Omega_{\mathbf{N}}\beta,$$
 are  $\hat{\beta}=(\mathbf{N}^T\mathbf{N}+\lambda\Omega_{\mathbf{N}})^{-1}\mathbf{N}^Ty.$ 

**4.** By simple calculus, the coefficients  $\hat{\beta}$  which minimize

$$(y - \mathbf{N}\beta)^T (y - \mathbf{N}\beta) + \lambda \beta^T \Omega_{\mathbf{N}}\beta,$$

are 
$$\hat{\beta} = (\mathbf{N}^T \mathbf{N} + \lambda \Omega_{\mathbf{N}})^{-1} \mathbf{N}^T y$$
.

5. Note that the predicted values are a linear function of the observed values:

$$\hat{y} = \underbrace{\mathbf{N}(\mathbf{N}^T \mathbf{N} + \lambda \Omega_{\mathbf{N}})^{-1} \mathbf{N}^T}_{\mathbf{S}_{\lambda}} y$$