1) Assume x is an m-dimensional vector, prove $||x||_{\infty} \le ||x||_2$ and $||x||_2 \le \sqrt{m}||x||_{\infty}$.

Recall that

$$||x||_2 = \sqrt{\sum_{i=1}^m |x_i|^2} \tag{1}$$

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_m|\}.$$
 (2)

Thus, for the first inequality we have the following. Suppose that $|x_k| = ||x||_{\infty}$, then

$$||x||_2 = \sqrt{||x||_{\infty}^2 + \sum_{i \neq k} |x_i|^2} \le \sqrt{||x||_{\infty}^2} \le ||x||_{\infty} , \qquad (3)$$

since $|x_i| \ge 0$ for all i.

For the second inequality, we know that $|x_i| \leq ||x||_{\infty}$ for all i. Hence,

$$||x||_2 \le \sqrt{\sum_{i=1}^m ||x||_\infty^2} = \sqrt{m}||x||_\infty$$
 (4)

2) Show that if a matrix A is both triangular and unitary, then it is diagonal.

Suppose that $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ is an upper triangular matrix we know that $a_{ij} = 0$ if i > j. Furthermore, we know that $AA^{\dagger} = A^{\dagger}A = 1$. Using the definition of matrix multiplication, we see that

$$(A^{\dagger}A)_{ij} = \sum_{k=1}^{n} a_{ki}^* a_{kj} = \delta_{ij}, \tag{5}$$

where $\delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$. Since A is upper triangular, it immediately follows that A^{\dagger} is

lower triangular. Hence, we find that $(A^{\dagger}A)_{11} = 1 = |a_{11}|^2$ or that $|a_{11}| = 1$. Next, we observe that $(A^{\dagger}A)_{12} = 0 = a_{11}^*a_{12}$, which implies that $a_{12} = 0$. Suppose that it is true that $a_{12}, \ldots, a_{1m} = 0$ for some m < n, then $(A^{\dagger}A)_{1,m+1} = 0 = a_{11}^*a_{1,m+1}$, which implies that $a_{1,m+1} = 0$. This argument can be continued for the elements above the diagonal of A for each row. Hence, $a_{ij} = 0$ if i > j.

Now suppose that A is lower triangular and unitary. Then, A^{\dagger} is upper triangular and unitary, which implies that A^{\dagger} is diagonal. It immediately follows then that A is diagonal.

3) Prove that matrix ∞ -norm is

$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$$
 (6)

- 4) Let $||\cdot||$ denote any norm on \mathbb{C} and also the induced matrix norm on $\mathbb{C}^{m\times m}$. Show that $\rho(A) \leq ||A||$, where ρ is the spectral radius of A, which is the largest absolute value of an eigenvalue of A.
- 5) Find l_1 , l_2 , and l_{∞} norms of the following vectors and matrices, also, please verify your results by MATLAB.
- (a) $x = (3, -4, 0, \frac{3}{2})^{\mathrm{T}}$
- (b) $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$
- 6) Determine SVDs of the following matrices by hand calculation and MATLAB.
- (a) $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$