Compactness

Many of these problems are from a collection made by Behnam Esmayli, who also references a collection created by Cezar Lupu.

Common Lemmas:

If $f: X \to Y$ is a continuous function between metric spaces (X, d) and (Y, ϱ) then f(X) is bounded.

Proof. Assume towards a contradiction that f(X) is not bounded. Therefore, for a fixed $y \in f(X)$ we have that for every R there is some f(x) such that $\varrho(y,f(x)) > R$. Therefore we can construct some sequence $(x_n)_{n=1}^{\infty}$ such that $\varrho(f(x_n),y) > n$. Since X is compact there must be some $(x_{n_k})_{k=1}^{\infty}$ with $x_{n_k} \to x_0 \ (\in X)$. Since f is continuous, we have that $f(x_{n_k}) \to f(x_0) \ (\in Y)$. Since these sequences are covergent, it must be that $\varrho(f(x_{n_k}),y) \to \varrho(f(x_0),y)$. However, $\varrho(x_{n_k},y) > n_k > k$ for all k. This is a contradiction and therefore f(X) is bounded.