TED (15) - 5021	Reg. No
(REVISION — 2015)	Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

DESIGN OF MACHINE ELEMENTS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List any 4 Design factors.
 - 2. Write the formula for finding the torque transmitted by a solid shaft.
 - 3. Define the coefficient of fluctuation of speed of flywheel.
 - Define the slip in Belt drive.
 - 5. Define the Circular pitch of gear.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Describe that the efficiency of screw jack is independent of load.
 - 2. Explain (a) Sunk Key (b) Saddle Key and (c) Feather Key.
 - A solid shaft is required to transmit a torque of 20 kNm. Find the necessary diameter of shaft, if the allowable shear stress is 70 N/mm².
 - 4. A muff coupling is used to connect two shafts for transmitting 1365 N-m. Find the diameters of shaft and muff. Assume that permissible shearstress of muff and shaft are 15 N/mm² and 30 N/mm² respectively.
 - 5. Describe a detailed classification of bearings and explain.
 - 6. Define the following:
 - (a) Height of Governor (b) Isochronism of Governor and (c) Hunting of Governor
 - 7. Describe the velocity ratios of (a) Simple gear train (b) Compound gear train $(5 \times 6 = 30)$

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit -- I

III (a) A Machine weighing 25 kN is provided with a steel eye bolt for lifting it. If the ultimate tensile strength of steel is 480 N/mm² and the factor of safety is 5, find the size of bolt.

7

(b) A load of 2500 N is to be raised by a screw jack with a screw of 75 mm mean diameter and pitch of 12 mm. Find the efficiency of the screw jack, if the coefficient of friction of screw and nut is 0.075.

8

OR

IV (a) A 40 mm diameter shaft is subjected to a tangential force of 20 kN around it's circumference. Determine the size of key. The allowable shear stress in key is 60 N/mm².

7

(b) In a steam engine the maximum steam pressure is 1 N/mm² absolute and back pressure is 0.015 N/mm² absolute. The cylinder diameter is 300 mm. Determine the diameter of the screwed end of the piston rod, when the allowable stress is 45 N/mm² in tension.

8

UNIT - II

V (a) A solid circular shaft is to transmit 1.25 MW at 240 RPM. It is connected to another shaft with a flange coupling which has 6 bolts, equally spaced on a pitch circle having diameter of 1.5 times that of shaft diameter. The allowable shear stresses are 75 N/mm² for the shaft and 100 N/mm² for the bolts. Determine the diameter of shaft and diameter of bolts required.

7

(b) A solid circular shaft has to transmit a torque of 30 KN-m. The maximum shear stress is not to exceed 100 MPa and angle of twist is not to exceed 1° per meter length. Take the modulus of rigidity as 80 GPa. Design the diameter of shaft.

8

OR

VI (a) A flange coupling uses 8 equally spaced bolts on a pitch circle diameter of 120 mm. The maximum torque to be transmitted is 2500N-m. If the permissible shear stress of bolt material is 70 N/mm², estimate the minimum diameter of bolt required.

7

(b) A hollow shaft transmits 500 kW at 450 RPM. The maximum stress in shear is 60 N/mm². Find the outside and inside diameters of shaft, if the outside diameter is twice that of inside diameter, assuming that the maximum torque is 25% greater than the mean torque.

8

Unit - III

- VII (a) Explain the following terms of Flywheel.
 - Maximum fluctuation of energy.
 - (ii) Coefficient of fluctuation of energy.
 - (iii) Energy stored in flywheel.

7

			Marks
	(b)	A journal bearing whose diameter is 60 mm is subjected to a load of 4.5 kN while rotating at 180 RPM. If coefficient of friction is 0.02 and L/D ratio is 3, Find:	
		(i) Bearing pressure (ii) Power lost in friction (iii) Heat generated	8
		OR	
VIII	(a)	Explain Bearing characteristic number. Describe the relation between Coefficient of friction and Bearing characteristic number.	7
	(b)	Draw the profile of a cam operating a knife edge follower from the following data	:
		(i) Lifts the follower through 40 mm during 60 degree with SHM.	
		(ii) Dwell for next 45 Degrees.	
		(iii) Return stroke to it's original position during next 90° cam rotation with SHM.	
		(iv) Dwell for remaining period.	
		The least diameter of cam is 50 mm.	8
		Unit — IV	
IX	(a)	A pulley 270 mm diameter is driven at 300 RPM by a belt 12 mm thick. The tensions in the tight and slack sides of the belt are 1560 and 490 N respectively. Find the power transmitted.	7
	(b)	With a sketch explain the Reverted gear train and describe it's velocity ratio.	8
		OR	
X	(a)	With a sketch explain the compound belt drive and describe it's velocity ratio.	7
		A set of spur gear wheels are arranged as follows:	
	\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Gear "A" drives Gear "B". Gears "B" and "C" is a compound wheel. Gear "C" drives Gear "D". If number of teeth on Gear A = 25, on B = 50, on C = 35 and on D = 70. If Gear A rotates at 300 RPM, find the RPM of wheel D.	8