Tutorial 3: Series2,3, Limitcontinuity1,2

- A) If possible find examples with nonzero terms (wherever necessary).
- 1. Let l be a fixed real number. Give two series with distinct terms converging to l.

Sol. For
$$l \neq 0$$
, take $l = \sum_{n \geq 1} \frac{l}{2^n}$, $l = \sum_{n \geq 1} \frac{l}{e-1} \frac{1}{n!}$.

For l=0, first take the above two series for l=1 and then add one more term -1 at the beginning. As the above series have positive terms only, the new term will be distinct from them.

- 2. If $\sum a_n$ and $\sum b_n$ are divergent, is $\sum (a_n + b_n)$ necessarily divergent? Sol. No. Take $a_n = 1$, $b_n = -1$.
- 3. What happens to $\sum (a_n + b_n)$ when $\sum a_n = a$ and $\sum b_n$ diverges? Sol. Divergent. Put $c_n = a_n + b_n$. If $\sum c_n = c$, then $\sum b_n = \sum (c_n - a_n) = c - a$.
- 4. If $\sum a_n$ and $\sum b_n$ are convergent is $\sum (a_n b_n)$ necessarily convergent? Sol. No. Take $a_n = b_n = (-1)^n \frac{1}{\sqrt{n}}$.
- 5. Let $a_n, b_n \ge 0$. Suppose that $\sum a_n = l$ and $\sum b_n = t$. Is $\sum a_n b_n$ convergent? Sol. Yes. Let $S_k := \sum_{n=1}^k (a_n b_n)$ (means 'let S_k denote this sum'). Then

$$S_k \le \left(\sum_{n=1}^k a_n\right) \left(\sum_{n=1}^k b_n\right) \le lt.$$

So the sequence (S_k) is bounded above by lt. As the sequence is increasing, by using MCT, we see that (S_k) is convergent. That is, $\sum a_n b_n$ is convergent.

Alternately, as $\sum a_n$ is given to be convergent, we know that $a_n \to 0$. Hence $\exists k$ such that for each $n \geq k$, we have $a_n < 1$. As $a_n \geq 0$, we see that $a_n^2 < a_n$ for each $n \geq k$. Then the series $\sum_{n \geq k} a_n^2$ is convergent by suing comparison test with $\sum_{n \geq k} a_n$. Hence, the series $\sum_{n \geq 1} a_n^2$ also converges, by definition. Similarly, $\sum_{n \geq 1} b_n^2$ converges. Then the series $\sum_{n \geq 1} 2a_nb_n$ converges by using comparison test with $\sum_{n \geq 1} (a_n^2 + b_n^2)$. Hence, the series $\sum_{n \geq 1} a_nb_n$ also converges.

- 6. Let $a_n \ge 0$. If $\sum a_n^2$ converges, then is $\sum a_n$ convergent? Sol. No, for example consider $\sum \frac{1}{n}$
- 7. Can $\sum (a_n b_n)$ be convergent, given $\sum a_n, \sum b_n$ are divergent? Sol. Yes. Take $a_n = b_n = \frac{1}{n}$.
- 8. If $\sum a_n$ is convergent and (b_n) is bounded, is $\sum (a_n b_n)$ necessarily convergent? Sol. No. $a_n = (-1)^n \frac{1}{n}$ and $b_n = (-1)^n$.
- 9. Let $a_n \ge 0$ and $\sum a_n$ be convergent. Is $\sum \frac{\sqrt{a_n}}{n}$ necessarily convergent? Sol. Yes. As $ab \le a^2 + b^2$, we have $\sqrt{a_n} \frac{1}{n} \le a_n + \frac{1}{n^2}$. Use comparison test.
- 10. If $\sum a_n$ converges and $a_n \geq 0$ then is $\sum \frac{a_n}{n}$ necessarily convergent?

Sol. Yes. By using comparison test with $\sum a_n$. Alternately, one can first show that $\sum a_n^2$ is convergent, and then use the previous item. Another alternate way is to apply Dirichlet's test.

11. Suppose that $a_n > 0$ and $\lim_{n \to \infty} a_n = 0$. Is $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ necessarily convergent?

Sol. No. Consider the sequence

$$(a_n) = (2, 1, 1, \frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{2}{4}, \frac{1}{4}, \cdots, \frac{2}{n}, \frac{1}{n}, \cdots).$$

Here $a_{2n}=\frac{1}{n}$ and $a_{2n-1}=\frac{2}{n}$. Let s_n denote the sum of the first n elements of the alternating series for this sequence. Then

$$s_{2n} = (2-1) + (1-\frac{1}{2}) + (\frac{2}{3} - \frac{1}{3}) + (\frac{2}{4} - \frac{1}{4}) + \dots + (\frac{2}{n} - \frac{1}{n}) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \to \infty.$$

The answer would have been 'yes' by Leibniz test, if $a_n \downarrow 0$.

- B) True or false?
- 1. Let $f: \mathbb{N} \to \mathbb{R}$ be defined as f(x) = 5. Then $\lim_{x \to 4} f(x) = 5$.
 - Sol. No. Limits are defined at cluster points of A.
- 2. Let $f: A \to \mathbb{R}$ and a be a cluster point of A. Suppose that for each sequence (a_n) of points from A converging to a, we have $f(a_n) \to l$ (here we are not putting the restriction that $a_n \neq a$). Then $\lim_{x\to a} f(x) = l$.

Sol. T. If it is satisfied for all these sequences, it will be satisfied for a subset of these sequences, namely, those for which terms are not a. The given hypothesis will give us continuity if we assume $a \in A$.

3. Take $f(x) = x^5 + 7x^4 - 10x^3 + 5$. We want to show that $\lim_{x \to 1} f(x) = 3$. For that we start with 'Let $\epsilon > 0$ '. Then

$$\delta = \min\{\sqrt[5]{1 + \frac{\epsilon}{3}} - 1, \sqrt[4]{1 + \frac{\epsilon}{21}} - 1, \sqrt[3]{1 + \frac{\epsilon}{30}} - 1\}$$

is an appropriate value.

Sol. T. For
$$f_1(x)=x^5$$
, with $\epsilon/3$, and $\delta_1=\sqrt[5]{1+\frac{\epsilon}{3}}-1$, we see that 'for each $x\in\{x\mid 0<|x-1|<\delta_1$, we have $|f_1(x)-1|<\epsilon/3$.'

(Refer to notes or video, if you did note understand the above.)

For
$$f_2(x)=7x^4$$
, with $\epsilon/21$ and $\delta_2=\sqrt[4]{1+rac{\epsilon}{21}}-1$ we see that

'for each $x\in\{x\mid 0<|x-1|<\delta_2$, we have $|x^4-1|<\epsilon/21$ and so $|f_2(x)-7|<\epsilon/3$.'

Similarly, with $\delta_3 = \sqrt[3]{1+\frac{\epsilon}{30}}-1$ we see that

'for each
$$x \in \{x \mid 0 < |x-1| < \delta_3$$
, we have $|f_3(x) + 10| < \epsilon/3$.'

Hence for $0 < |x-1| < \delta = \min\{\delta_1, \delta_2, \delta_3\}$, we have

$$|f(x) - 3| = |x^5 + 7x^4 - 10x^3 + 5 - 1 - 7 + 10 - 5|$$

 $\leq |x^5 - 1| + |7x^4 - 7| + |-10x^3 + 10| < \epsilon.$

- C) Other questions.
 - 1. Define $\lim_{x\to c} f(x) = \infty$ in both ways. Compare with texts.

Sol. We say $\lim_{x\to c} f(x) = \infty$ if for each $n\in\mathbb{N}$, $\exists \delta>0$ such that $f(D_{\delta}(c))\subseteq [n,\infty)$.

We say $\lim_{x\to c} f(x) = \infty$ if for each sequence $x_n \to c$, $x_n \ne c$, we have $f(x_n) \to \infty$.

2. Define $\lim_{x\to\infty} f(x) = l$ in both ways. Compare with the texts. Did you find it similar to that of $\lim_{n\to\infty} a_n = l$, where $a_n = f(n)$?

 $Sol. \ \ \text{We say} \ \lim_{x\to\infty} f(x) = l \ \ \text{if for each} \ \ \epsilon>0, \ \ \text{there exists} \ \ n\in\mathbb{N} \ \ \text{such that} \ \ f([n,\infty))\subseteq (l-\epsilon,l+\epsilon).$

We say $\lim_{x\to\infty} f(x) = l$ if for each $x_n \to \infty$, we have $f(x_n) \to l$.

Yes, the first one is similar to the definition of convergence, if we consider $f: \mathbb{N} \to \mathbb{R}$.

3. Define f on \mathbb{R} as

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{1}{n}, \ n \in \mathbb{N} \\ 0 & \text{else.} \end{cases}$$

Find the points a at which $\lim_{x\to a} f(x)$ exists.

Sol. Limit exists and it is 0 at all $a \in \mathbb{R}$. Notice that $f(x) \leq x$ on (0,1] and 0 outside.

Case I. a=0. Let $x_n \to 0$, $x_n \neq 0$. Then we have $0 \leq f(x_n) \leq |x_n|$. Hence, by sandwich lemma $f(x_n) \to 0$. So limit of f exists at a=0 and it is 0

Case II. Let $a \neq 0$. We show that $\lim_{x \to a} f(x) = 0$. For that, let $\epsilon > 0$. We will find a delta such that $f(D_{\delta}(a)) \subseteq B_{\epsilon}(0)$.

Recall that the set $A=\{1/n\mid n\in\mathbb{N}\}$ has only one limit point and it is 0. So a is not a limit point of A. Hence there exists $\delta>0$ such that $D_{\delta}(a)$ does not contain any point of A. Hence $f(D_{\delta}(a))=\{0\}\subseteq B_{\epsilon}(0)$.