

FIG. 1

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

1	CCCCAAAACC	CCAAAACCCC	AAAACCCCTA	TAAAAAAAGA	AAAAATTGAG
51	GTAGTTTAGA	AATAAAATAT	TATTCCCGCA	CAAATGGAGA	TGGATATTGA
101	TTTGGATGAT	ATAGAAAATT	TACTTCCTAA	TACATTCAAC	AAGTATAGCA
		TGACAAGAAA	GGATGCAAAA	CATTGAAATC	TGGCTCGAAA
151	GCTCTTGTAG				
201	TCGCCTTCAT	TGACTATTCC	AAAGTTGCAA	AAACAATTAG	AGTTCTACTT
251	CTCGGATGCA	AATCTTTATA	ACGATTCTTT	CTTGAGAAAA	TTAGTTTTAA
301	AAAGCGGAGA	GCAAAGAGTA	GAAATTGAAA	CATTACTAAT	GTTTAAATAA
351	AATCAGGTAA	TGAGGATTAT	TCTATTTTTT	AGATCACTTC	TTAAGGAGCA
401	TTATGGAGAA	AATTACTTAA	TACTAAAAGG	TAAACAGTTT	GGATTATTTC
451	CCTAGCCAAC	AATGATGAGT	ATATTAAATT	CATATGAGAA	TGAGTCAAAG
501	GATCTCGATA	CATCAGACTT	ACCAAAGACA	AACTCGCTAT	AAAACGCAAG
551	AAAAAGTTTG	ATAATCGAAC	AGCAGAAGAA	CTTATTGCAT	TTACTATTCG
601	TATGGGTTTT	ATTACAATTG	TTTTAGGTAT	CGACGGTGAA	CTCCCGAGTC
651	TTGAGACAAT	TGAAAAAGCT	GTTTACAACT	GAAGGAATCG	CAGTTCTGAA
701	AGTTCTGATG	TGTATGCCAT	TATTTTGTGA	ATTAATCTCA	AATATCTTAT
751	CTCAATTTAA	TGGATAGCTA	TAGAAACAAA	CCAAATAAAC	CATGCAAGTT
801	TAATGGAATA	TACGTTAAAT	CCTTTGGGAC	AAATGCACAC	TGAATTTATA
851	TTGGATTCTT	AAAGCATAGA	TACACAGAAT	GCTTTAGAGA	CTGATTTAGC
901	TTACAACAGA	TTACCTGTTT	TGATTACTCT	TGCTCATCTC	TTATATCTTT
951	AAAAGAAGCA	GGCGAAATGA	AAAGAAGACT	AAAGAAAGAG	ATTTCAAAAT
1001	TTGTTGATTC	TTCTGTAACC	GGAATTAACA	ACAAGAATAT	TAGCAACGAA
1051	AAAGAAGAAG	AGCTATCACA	ATCCTGATTC	TTAAAGATTT	CAAAAATTCC
1101	AGGTAAGAGA	GATACATTCA	TTAAAATTCA	TATATTATAG	TTTTTCATTT
1151	CACAGCTGTT	ATTTTCTTTT	ATCTTAACAA	TATTTTTTGA	TTAGCTGGAA
1201	GTAAAAAGTA	TCAAATAAGA	GAAGCGCTAG	ACTGAGGTAA	CTTAGCTTAT
1251	TCACATTCAT	AGATCGACCT	TCATATATCC	AATACGATGA	TAAGGAAACA
1301	GCAGTCATCC	GTTTTAAAAA	TAGTGCTATG	AGGACTAAAT	TTTTAGAGTC
1351	AAGAAATGGA	GCCGAAATCT	TAATCAAAAA	GAATTGCGTC	GATATTGCAA
1401	AAGAATCGAA	CTCTAAATCT	TTCGTTAATA	AGTATTACCA	ATCTTGATTG
1451	ATTGAAGAGA	TTGACGAGGC	AACTGCACAG	AAGATCATTA	AAGAAATAAA
1501	GTAACTTTTA	TTAATTAGAG	AATAAACTAA	ATTACTAATA	TAGAGATCAG
1551	CGATCTTCAA	TTGACGAAAT	AAAAGCTGAA	CTAAAGTTAG	ACAATAAAAA
1601	ATACAAACCT	TGGTCAAAAT	ATTGAGGAAG	GAAAAGAAGA	CCAGTTAGCA
1651	AAAGAAAAA	TAAGGCAATA	AATAAAATGA	GTACAGAAGT	GAAGAAATAA
1701	AAGATTTATT	TTTTTCAATA	ATTTATTGAA	AAGAGGGGTT	TTGGGGTTTT
1751	GGGGTTTTGG	GG			

FIG. 11

FIG. 8

1	AAAACCCCAA	AACCCCAAAA	CCCCTTTTAG	AGCCCTGCAG	TTGGAAATAT
51			CAGATTTTAA		CAAAACCTAA
101	ATGGAGGTTG	ATGTTGATAA		AATCATGGCA	TTCACTCAGC
151	TCTTAAGACT	TGTGAAGAAA		TAAAACGTTG	TACTCTTGGA
201	TCCAGAAAGT	TATTAGATGA		CTCAAAGTCA	TTATAAAGAT
251	TTAGAAGATA	TTAAAATATT	TGCGCAGACA	AATATTGTTG	CTACTCCACG
301	AGACTATAAT	GAAGAAGATT	TTAAAGTTAT	TGCAAGAAAA	GAAGTATTTT
351	CAACTGGACT	AATGATCGAA		AATGCTTAGT	TGAACTTCTT
401		ATGTTTCAGA	TAGACAAAAA		TTGGATTTCA
451		AATCAATTAG	CAAAGACCCA	TTTATTAACA	GCTCTTTCAA
501	CTCAAAAGCA	GTATTTCTTT	CAAGACGAAT	GGAACCAAGT	TAGAGCAATG
551	ATTGGAAATG	AGCTCTTCCG	ACATCTCTAC	ACTAAATATT	TAATATTCCA
601	GCGAACTTCT	GAAGGAACTC	TTGTTCAATT	TTGCGGGAAT	AACGTTTTTG
651	ATCATTTGAA	AGTCAACGAT	AAGTTTGACA	AAAAGCAAAA	
701	GCAGACATGA	ATGAACCTCG	ATGTTGATCA	ACCTGCAAAT	ACAATGTCAA
751	GAATGAGAAA	GATCACTTTC	TCAACAACAT	CAACGTGCCG	AATTGGAATA
801	ATATGAAATC	AAGAACCAGA	ATATTTTATT	GCACTCATTT	TAATAGAAAT
851	AACCAATTCT	TCAAAAAGCA	TGAGTTTGTG	AGTAACAAAA	ACAATATTTC
901	AGCGATGGAC	AGAGCTCAGA	CGATATTCAC	GAATATATTC	AGATTTAATA
951	GAATTAGAAA	GAAGCTAAAA	GATAAGGTTA	TCGAAAAAAT	TGCCTACATG
1001	CTTGAGAAAG	TCAAAGATTT	TAACTTCAAC	TACTATTTAA	CAAAATCTTG
1051	TCCTCTTCCA	GAAAATTGGC	GGGAACGGAA	ACAAAAAATC	GAAAACTTGA
1101	TAAATAAAAC	TAGAGAAGAA	AAGTCGAAGT	ACTATGAAGA	GCTGTTTAGC
1151	TACACAACTG	ATAATAAATG	CGTCACACAA	TTTATTAATG	AATTTTTCTA
1201	CAATATACTC	CCCAAAGACT	TTTTGACTGG	AAGAAACCGT	AAGAATTTTC
1251	AAAAGAAAGT	TAAGAAATAT	GTGGAACTAA	ACAAGCATGA	ACTCATTCAC
1301	AAAAACTTAT	TGCTTGAGAA	GATCAATACA	AGAGAAATAT	CATGGATGCA
1351	GGTTGAGACC	TCTGCAAAGC	ATTTTTTATTA	TTTTGATCAC	GAAAACATCT
1401	ACGTCTTATG	GAAATTGCTC	CGATGGATAT	TCGAGGATCT	CGTCGTCTCG
1451	CTGATTAGAT	GATTTTTCTA	TGTCACCGAG	CAACAGAAAA	GTTACTCCAA
1501	AACCTATTAC	TACAGAAAGA	ATATTTGGGA	CGTCATTATG	AAAATGTCAA
1551	TCGCAGACTT	AAAGAAGGAA	ACGCTTGCTG	AGGTCCAAGA	AAAAGAGGTT
1601	GAAGAATGGA	AAAAGTCGCT	TGGATTTGCA	CCTGGAAAAC	TCAGACTAAT
1651	ACCGAAGAAA	ACTACTTTCC	GTCCAATTAT	GACTTTCAAT	AAGAAGATTG
1701	TAAATTCAGA	CCGGAAGACT	ACAAAATTAA	CTACAAATAC	GAAGTTATTG
1751	AACTCTCACT	TAATGCTTAA	GACATTGAAG	AATAGAATGT	TTAAAGATCC
1801	TTTTGGATTC	GCTGTTTTTA		TGTAATGAAA	AAGTATGAGG
1851	AGTTTGTTTG	CAAATGGAAG	CAAGTTGGAC	AACCAAAACT	CTTCTTTGCA
1901	ACTATGGATA	TCGAAAAGTG	ATATGATAGT	GTAAACAGAG	AAAAACTATC
1951	AACATTCCTA	AAAACTACTA	AATTACTTTC	TTCAGATTTC	TGGATTATGA
2001	CTGCACAAAT	TCTAAAGAGA	AAGAATAACA	TAGTTATCGA	TTCGAAAAAC
2051	TTTAGAAAGA	AAGAAATGAA	AGATTATTTT	AGACAGAAAT	TCCAGAAGAT
2101	TGCACTTGAA		ATCCAACCTT	ATTCAGTGTT	CTTGAAAATG
2151		CTTAAATGCA		TAATTGTTGA	AGCAAAGCAA
2201	AGAAATTATT	TTAAGAAAGA	TAACTTACTT	CAACCAGTCA	TTAATATTTG
2251	CCAATATAAT	TACATTAACT	TTAATGGGAA	GTTTTATAAA	CAAACAAAAG
2301		AGGTCTTTGA	GTTTCATCAA	TTTTGTCATC	ATTTTATTAT
2351	GCAACATTAG	AGGAAAGCTC	CTTAGGATTC	CTTAGAGATG	AATCAATGAA

FIG. 9

2401	CCCTGAAAAT	CCAAATGTTA	ATCTTCTAAT	GAGACTTACA	GATGACTATC
2451	TTTTGATTAC	AACTCAAGAG	AATAATGCAG	TATTGTTTAT	TGAGAAACTT
2501	ATAAACGTAA	GTCGTGAAAA	TGGATTTAAA	TTCAATATGA	AGAAACTACA
2551	GACTAGTTTT	CCATTAAGTC	CAAGCAAATT	TGCAAAATAC	GGAATGGATA
2601	GTGTTGAGGA	GCAAAATATT	GTTCAAGATT	ACTGCGATTG	GATTGGCATC
2651	TCAATTGATA	TGAAAACTCT	TGCTTTAATG	CCAAATATTA	ACTTGAGAAT
2701	AGAAGGAATT	CTGTGTACAC	TCAATCTAAA	CATGCAAACA	AAGAAAGCAT
2751	CAATGTGGCT	CAAGAAGAAA	CTAAAGTCGT	TTTTAATGAA	TAACATTACC
2801	CATTATTTTA	GAAAGACGAT	TACAACCGAA	GACTTTGCGA	ATAAAACTCT
2851	CAACAAGTTA	TTTATATCAG	GCGGTTACAA	ATACATGCAA	TGAGCCAAAG
2901	AATACAAGGA	CCACTTTAAG	AAGAACTTAG	CTATGAGCAG	TATGATCGAC
2951	TTAGAGGTAT	CTAAAATTAT	ATACTCTGTA	ACCAGAGCAT	TCTTTAAATA
3001	CCTTGTGTGC	AATATTAAGG	ATACAATTTT	TGGAGAGGAG	CATTATCCAG
3051	ACTTTTTCCT	TAGCACACTG	AAGCACTTTA	TTGAAATATT	CAGCACAAAA
3101	AAGTACATTT	TCAACAGAGT	TTGCATGATC	CTCAAGGCAA	AAGAAGCAAA
3151	GCTAAAAAGT	GACCAATGTC	AATCTCTAAT	TCAATATGAT	GCATAGTCGA
3201	CTATTCTAAC	TTATTTTGGA	AAGTTAATTT	TCAATTTTTG	TCTTATATAC
2251	TCCCCTTTTC	CCCTTTTCCC	CTTTTCCCC		

FIG. 9 (CONTINUED)

1	MEVDVDNQAD	NHGIHSALKT	CEEIKEAKTL	YSWIQKVIRC	RNQSQSHYKD
51	LEDIKIFAQT	NIVATPRDYN	EEDFKVIARK	EVFSTGLMIE	LIDKCLVELL
101	SSSDVSDRQK	LQCFGFQLKG	NQLAKTHLLT	ALSTQKQYFF	QDEWNQVRAM
151	IGNELFRHLY	TKYLIFQRTS	EGTLVQFCGN	NVFDHLKVND	KFDKKQKGGA
201	ADMNEPRCCS	TCKYNVKNEK	DHFLNNINVP	NWNNMKSRTR	IFYCTHFNRN
251	NQFFKKHEFV	SNKNNISAMD	RAQTIFTNIF	RFNRIRKKLK	DKVIEKIAYM
301	LEKVKDFNFN	YYLTKSCPLP	ENWRERKQKI	ENLINKTREE	KSKYYEELFS
351	YTTDNKCVTQ	FINEFFYNIL	PKDFLTGRNR	KNFQKKVKKY	VELNKHELIH
401	KNLLLEKINT	REISWMQVET	SAKHFYYFDH	ENIYVLWKLL	RWIFEDLVVS
451	LIRCFFYVTE	QQKSYSKTYY	YRKNIWDVIM	KMSIADLKKE	TLAEVQEKEV
501	EEWKKSLGFA	PGKLRLIPKK	TTFRPIMTFN	KKIVNSDRKT	TKLTTNTKLL
551	NSHLMLKTLK	NRMFKDPFGF	AVFNYDDVMK	KYEEFVCKWK	QVGQPKLFFA
601	TMDIEKCYDS	VNREKLSTFL	KTTKLLSSDF	WIMTAQILKR	KNNIVIDSKN
651	FRKKEMKDYF	RQKFQKIALE	GGQYPTLFSV	LENEQNDLNA	KKTLIVEAKQ
701	RNYFKKDNLL	QPVINICQYN	YINFNGKFYK	QTKGIPQGLC	VSSILSSFYY
751	ATLEESSLGF	LRDESMNPEN	PNVNLLMRLT	DDYLLITTQE	NNAVLFIEKL
801	INVSRENGFK	FNMKKLQTSF	PLSPSKFAKY	GMDSVEEQNI	VQDYCDWIGI
851	SIDMKTLALM	PNINLRIEGI	LCTLNLNMQT	KKASMWLKKK	LKSFLMNNIT
901	HYFRKTITTE	DFANKTLNKL	FISGGYKYMQ	CAKEYKDHFK	KNLAMSSMID
951	LEVSKIIYSV	TRAFFKYLVC	NIKDTIFGEE	HYPDFFLSTL	KHFIEIFSTK
1001	KYIFNRVCMI	LKAKEAKLKS	DOCOSLIOYD	A	

FIG. 10

1	CCCCAAAACCCCAAAACCCCTATAAAAAAGAAAAATTGAGGTAGTTTAGA	
1	GGGGTTTTGGGGGTTTTGGGGGATATTTTTTTTTTTTTAACTCCATCAAATCT	60
a b c	P Q N P K T P K P L * K K K K L R * F R - P K T P K P Q N P Y K K R K N * G S L E - P K P Q N P K T P I K K E K I E V V * K -	
<i>C</i> 1	AATAAAATATTATTCCCGCACAAATGGAGATGGATATTGATTTGGATGATATAGAAAATT	
<i>ο</i> τ	TTATTTTATAATAAGGGCGTGTTTACCTCTACCTATAACTAAACCTACTATATCTTTTAA	120
a b c	N K I L F P H K W R W I L I W M I * K I - I K Y Y S R T N G D G Y * F G * Y R K F - * N I I P A Q M E M D I D L D D I E N L -	
101	TACTTCCTAATACATTCAACAAGTATAGCAGCTCTTGTAGTGACAAGAAAGGATGCAAAA	
121	ATGAAGGATTATGTAAGTTGTTCATATCGTCGAGAACATCACTGTTCTTTCCTACGTTTT	180
a b c	Y F L I H S T S I A A L V V T R K D A K - T S * Y I Q Q V * Q L L * * Q E R M Q N - L P N T F N K Y S S S C S D K K G C K T -	
181	CATTGAAATCTGGCTCGAAATCGCCTTCATTGACTATTCCAAAGTTGCAAAAACAATTAG+ GTAACTTTAGACCGAGCTTTAGCGGAAGTAACTGATAAGGTTTCAACGTTTTTGTTAATC	240
a b c	H * N L A R N R L H * L F Q S C K N N * - I E I W L E I A F I D Y S K V A K T I R - L K S G S K S P S L T I P K L Q K Q L E -	
241	AGTTCTACTTCTCGGATGCAAATCTTTATAACGATTCTTTCT	300
a b c	S S T S R M Q I F I T I L S * E N * F * - V L L L G C K S L * R F F L E K I S F K - F Y F S D A N L Y N D S F L R K L V L K -	
301	AAAGCGGAGAGCAAAGAGTAGAAATTGAAACATTACTAATGTTTAAATAAA	360
a b c	K A E S K E * K L K H Y * C L N K I R * - K R R A K S R N * N I T N V * I K S G N - S G E Q R V E I E T L L M F K * N Q V M -	
361	TGAGGATTATTCTATTTTTTAGATCACTTCTTAAGGAGCATTATGGAGAAAATTACTTAA+ ACTCCTAATAAGATAAAAAATCTAGTGAAGAATTCCTCGTAATACCTCTTTTAATGAATT	420
a b	* G L F Y F L D H F L R S I M E K I T * - E D Y S I F * I T S * G A L W R K L L N -	

FIG. 12

TACTAAAAGGTAAACAGTTTGGATTATTTCCCTAGCCAACAATGATGAGTATATTAAATT 421+ 48 ATGATTTTCCATTTGTCAAACCTAATAAAGGGATCGGTTGTTACTACTCATATAATTTAA	0
a Y * K V N S L D Y F P S Q Q * * V Y * I - b T K R * T V W I I S L A N N D E Y I K F - c L K G K Q F G L F P * P T M M S I L N S -	
CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAGACAAACTCGCTAT 481	: 0
a HMRMSQRISIHQTYQRQTRY - b I * E * V K G S R Y I R L T K D K L A I - c Y E N E S K D L D T S D L P K T N S L * -	
AAAACGCAAGAAAAGTTTGATAATCGAACAGCAGAAGAACTTATTGCATTTACTATTCG 541+ 60 TTTTGCGTTCTTTTTCAAACTATTAGCTTGTCGTCTTCTTGAATAACGTAAATGATAAGC	0 (
a KTQEKV**SNSRRTYCIYYS - b KRKKKFDNRTAEELIAFTIR - c NARKSLIIEQQKNLLHLLFV-	
TATGGGTTTTATTACAATTGTTTTAGGTATCGACGGTGAACTCCCGAGTCTTGAGACAAT 601+ 66 ATACCCAAAATAATGTTAACAAAATCCATAGCTGCCACTTGAGGGCTCAGAACTCTGTTA	0
a Y G F Y Y N C F R Y R R * T P E S * D N - b M G F I T I V L G I D G E L P S L E T I - c W V L L Q L F * V S T V N S R V L R Q L -	
TGAAAAAGCTGTTTACAACTGAAGGAATCGCAGTTCTGAAAGTTCTGATGTGTATGCCAT 661+ 72 ACTTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTTCAAGACTACACATACGGTA	0 :
a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L -	
TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA 721+	30
a Y F V N * S Q I S Y L N L M D S Y R N K - b I L * I N L K Y L I S I * W I A I E T N - c F C E L I S N I L S Q F N G * L * K Q T -	
CCAAATAAACCATGCAAGTTTAATGGAATATACGTTAAATCCTTTGGGACAAATGCACAC 781+ 84 GGTTTATTTGGTACGTTCAAATTACCTTATATGCAATTTAGGAAACCCTGTTTACGTGTG	ŀΟ
a PNKPCKFNGIYVKSFGTNAH - b QINHASLMEYTLNPLGQMHT - c K*TMQV*WNIR*ILWDKCTL-	
TGAATTTATATTGGATTCTTAAAGCATAGATACACAGAATGCTTTAGAGACTGATTTAGC 841	0 (
a * I Y I G F L K H R Y T E C F R D * F S - b E F I L D S * S I D T Q N A L E T D L A -	

FIG. 12 (CONTINUED)

12/78

901	TTACAACAGATTACCTGTTTTGATTACTCTTGCTCATCTCTTATATCTTTAAAAGAAGCA
a I b c	QQITCFDYSCSSLISLKEA - YNRLPVLITLAHLLYL*KKQ - TTDYLF*LLLISYIFKRSR-
961	GGCGAAATGAAAAGAAGACTAAAGAAAGAGATTTCAAAATTTGTTGATTCTTCTGTAACC
a (b c	BEMKRRLKKEISKFVDSSVT - AK*KED*RKRFQNLLILL*P - RNEKKTKERDFKIC*FFCNR-
1021	GGAATTAACAACAAGAATATTAGCAACGAAAAAGAAGAAGAGCTATCACAATCCTGATTC
a (b c	GINNKNISNEKEEELSQS*F- ELTTRILATKKKKSYHNPDS- N*QQEY*QRKRRAITILIL-
1081	TTAAAGATTTCAAAAATTCCAGGTAAGAGAGATACATTCATT
a b c	L K I S K I P G K R D T F I K I H I L * - * R F Q K F Q V R E I H S L K F I Y Y S - K D F K N S R * E R Y I H * N S Y I I V -
1141	TTTTTCATTTCACAGCTGTTATTTTCTTTATCTTAACAATATTTTTTGATTAGCTGGAA++ 1200 AAAAAGTAAAGTGTCGACAATAAAAGAAAATAGAATTGTTATAAAAAAACTAATCGACCTT
a b c	FFISQLLFSFILTIFFD*LE - FSFHSCYFLLS*QYFLISWK- FHFTAVIFFYLNNIF*LAGS-
1201	GTAAAAAGTATCAAATAAGAGAAGCGCTAGACTGAGGTAACTTAGCTTATTCACATTCAT++ 1260 CATTTTCATAGTTTATTCTCTTCGCGATCTGACTCCATTGAATCGAATAAGTGTAAGTA
a b c	V K S I K * E K R * T E V T * L I H I H - * K V S N K R S A R L R * L S L F T F I - K K Y Q I R E A L D * G N L A Y S H S * -
1261	AGATCGACCTTCATATATCCAATACGATGATAAGGAAACAGCAGTCATCCGTTTTAAAAA+
a b c	R S T F I Y P I R * * G N S S H P F * K - D R P S Y I Q Y D D K E T A V I R F K N - I D L H I S N T M I R K Q Q S S V L K I -
1321	TAGTGCTATGAGGACTAAATTTTTAGAGTCAAGAAATGGAGCCGAAATCTTAATCAAAAA++ 1380 ATCACGATACTCCTGATTTAAAAAATCTCAGTTCTTTACCTCGGCTTTAGAATTAGTTTTT
a b c	* C Y E D * I F R V K K W S R N L N Q K - S A M R T K F L E S R N G A E I L I K K - V L * G L N F * S Q E M E P K S * S K R -

FIG. 12 (CONTINUED)

1381	GAATTGCGTCGATATTGCAAAAGAATCGAACTCTAAATCTTTCGTTAATAAGTATTACCA
a 1 b c	ELRRYCKRIEL*IFR**VLP- NCVDIAKESNSKSFVNKYYQ- IASILQKNRTLNLSLISITN-
1441	ATCTTGATTGAAGAGAGATTGACGAGGCAACTGCACAGAAGATCATTAAAGAAATAAA+
a b c	I L I D C R D * R G N C T E D H * R N K - S * L I E E I D E A T A Q K I I K E I K - L D * L K R L T R Q L H R R S L K K * S -
1501	GTAACTTTTATTAATTAGAGAATAAACTAAATTACTAATATAGAGATCAGCGATCTTCAA++ 1560 CATTGAAAATAATTAATCTCTTATTTGATTTAATGATTATATCTCTAGTCGCTAGAAGTT
a ' b c	V T F I N * R I N * I T N I E I S D L Q - * L L L I R E * T K L L I * R S A I F N - N F Y * L E N K L N Y * Y R D Q R S S I -
1561	TTGACGAAATAAAAGCTGAACTAAAGTTAGACAATAAAAAATACAAACCTTGGTCAAAAT+
a b c	L T K * K L N * S * T I K N T N L G Q N - * R N K S * T K V R Q * K I Q T L V K I - D E I K A E L K L D N K K Y K P W S K Y -
1621	ATTGAGGAAGGAAAAGAACCAGTTAGCAAAAGAAAAAATAAGGCAATAAATA
a b c	I E E G K E D Q L A K E K I R Q * I K * - L R K E K K T S * Q K K K * G N K * N E - * G R K R P V S K R K N K A I N K M S -
1681	GTACAGAAGTGAAGAAATAAAAGATTTATTTTTTCAATAATTTATTGAAAAGAGGGGTT++ 1740 CATGTCTTCACTTCTTTATTTCTAAATAAAAAAAGTTATTAAATAACTTTTCTCCCCCAA
a b c	V Q K * R N K R F I F F N N L L K R G V - Y R S E E I K D L F F S I I Y * K E G F - T E V K K * K I Y F F Q * F I E K R G F -
1741	TTGGGGTTTTGGGG+
a b c	LGFWGFG - WGFGVLG - GVLGFW -

FIG. 12 (CONTINUED)

14/78

2 19	EVDVQNQADNHGIHSALKTCEEIKEAKTLYSWIQKVIRCRNQSQSHYKDL ::: :::: ::: ELELEMQENQNDIQVRVKIDDPKQYLVNVTAACLLQEGSYYQDK	51 62
52		100
63	:: .::::::::::::::::::::::::::::::::::	107
101	SSSDVSDRQKLQCFGFQLKGNQLAKTHLLTALSTQKQYFFQDEWNQVRAM	150
108	:: . : . : : . :	144
151	IGNELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDHLKVNDKFDKKQKGGA	200
145	:: : ::::: :: :: :: :: :: :	181
201	ADMNEPRCCSTCKYNVKNEKDHFLNNINVPNWNNMKSRTRIFYCTHF	247
182	.:: .:: .: . :: :: .: SEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK	220
248	NRNNQFFKKHEFVSNKNNISAMDRAQTIFTNIFRFNRIRKKLKDKVIEKI	297
221	: : . ::: .: : : .: . . : . . .	264
298	AYMLEKVKDFNFNYYLTKSCPLPENWRERKQKIENLINKTREEKSKYYEE	347
265	:	294
348	LFSYTTDNKCVTQFINEFFYNILPKDFLTGRNRKNFQKKVKKYVELNKHE	397
295	: : : . LIKFCHISEPKERVYKILGKKYPKTEEEYKAAFGDSASAPFN.PE	338
398	LIHKNLLLEKINTREISWMQVETSAKHFYYFDHENIYVLWKLLRWIFEDL	447
339	LAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSN	386
448	VVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKKETLAEVQE	497
387	: ::: ilkagvsd	394
498	KEVEEWKKSLGFAPGKLRLIPKKTTFRPIMTFNKKIVNSDRKTTKLTTNT	547
395	trhs	398
548	KLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL : . . : :	597
399	IVINKiĊEPKAVENSKM	415
598	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKNNIVID : : : : . : : : :	647
416	F. PLQFFSAIEAVN.EAVTKGFKAKKRENMNLKGQIEAVKEVVE	457
648	SKNFRKKEMKDYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVE	697
458	.: : . .: .: : :. KTDEEKKDMELEQTEEGEFVKVNEGIGKQYINSIELAIK	496
698	AKQRNYFKKDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSS:::::::::::::::::::::::::::::::	747
497	IAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGL	546
748	FYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFI : : : : : : :	797
547	MVKQRCEKSSFYIFSSPSSQCNKCYLEVDL	576

798	EKLINVSRENGFKFNMKK.LQTSFPLSPSKFAKYGMDSVEEQNIVQDYCD	846
577	.::::: ::: ::::	617
847	WIGISIDMKTLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLM	896
618	. : : .: : .: . .: : NIVILSDMMIAEGYSDINVRGSSIVNSI	653
897	NNITHYFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKD.HFKKNLAM	945
654		687
946	SSMIDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHFIE	995
688	. : :::: ::: SDSI	706
996	IFSTKKYIFNRVC 1008 :: .: :.:.	
707	VIKNFALQKIG 717	
	FIG. 13	
	(CONTINUED)	
	, ,	
132	LSTQKQYFFQDEWNQVRAMIGNEL.FRHLYTKYLIFQRTSEGTLVQFC	178
1	: : : : :	43
179	GNNVFDHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLNNIN	228
44	:: :: : : .	84
229	VPNWNNMKSRTRIFYCTHFNRNNQFFKKHEFVSNKNNISAMDRAQTIFTN :: :: :. :	278
85	QIKQQVQLIKKVGSKVEKDLNLNEDENKKN	114
279	<pre>IFRFNRIRKKLKDKVIEKIAYMLEKVKDFNFNYYLTKSCPLPENWRERKQ ::</pre>	328
115	GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRRETDY	164
329	KIENLINKTREEKSKYYEELFSYTTDNKCVTQFINE.FFYNILPKDFLTG::::::::: .:.::: ::::::::::::::::::	377
165		200
378	RNRKNFQKKVKKYVELNKHELIHKNLLLEKINTREISWMQVETSAKHFYY	427
201	NNYDHLNVSINRLETEAEFYAFDDFSQTIKLTNNSYQTVNID	242
428	FDHENIYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNI .:: :: :: :	475
243	VNFDNNLCILALLRFLLSLERFNILNIRSSYTRNQYNFEKIGELLETI	290
476	WDVIMKMSIADLKKETLAEVQEKEVEEWKKSLGFAPGKLRLIPKKTTFRP :. ::	525
291	FAVVFSHRHLQGIHLQVPCEAFQYLVNSSSQISVKDSQLQ	330
526	<pre>IMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNY : : . : . : . : : .</pre>	575
331	VYSESTDIKIVD TNKVODYEKELOEFPRLTHVSOOAIPVSATNAVENL	378

5/6	: .:	612
379	NVLLKKVKH ANLNLVSIPTQFNFDFYFVNLQHLKLEFGLEPNILTKQK	426
516	LSTFLKTTKLLSSDFWIMTAQILKRKNNIVIDSKNFRKKEMK	657
427	LENLLLSIKQSKNLKFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQ	476
558	DYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVEAKQRNYFK	705
477	: : : :: . EETPETKDETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIY	520
706	KDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSSFYYATLEE	755
521		564
756	SSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFIEKLINVSR	305
565	: . : : .::: LKRCSVNISNPHGNISYELTNKDSTFYKFKLTLNQE	500
806	ENGFKFNMKKLQTSFPLSPSKFAKYGMDSVEEQNIVQDYCDWIGISIDMK	855
601	:.: .:. .:. : . ::: : :::. LQHAKYTFKQNEFQFNNVKSAKIESSSLESLEDIDSLCKSIASCKNLQ	648
856	TLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLMNNITH	901
649	.:.: :: :. : ::: .: . . NVNIIASLLYPNNIQKNPFNKPNLLFFKQFEQLKNLENVSINC	691
902	YFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKDHFKKNLAMSSM .: . .: : :	948
692	ILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPEL	741
949	IDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHY	982
742	NQVYINQQLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDF	791
983	PDFFLS TLKHFIEIFSTKKY IFNRVCMILKAKEAKLKSDQCQSLIQ .: : . : . : ::. . :.	1028
792	DQNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQELLK	840
	FIG. 14 (CONTINUED)	-
4	DIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPSLTIPK	47
617	:: . :.:: : . : . . NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPNNIQKNP	666
48	LQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLLM	86
667	: : : ::: : . .: : ::: FNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEFLEKNKKIKAFIL	716

1	MEMDIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPS	42
491	IÉLAÍKIAVNKNÍDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLEC	540
43	.LTIPKLQKQLEFYFSDANLYNDSFLRKLVLKSGEORVEIETLL	85
541	ALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL.EVDLPGDELRPSMOKLL	589

FIG. 16

telomerase p43	LQKQLEFYFSDANLYNDSFIRKLVLKSGEQRMEIETLLM
human La	ICHQUEYYFGDFNLPRDKFLKEQI.KLDEGWYPLEIMIK
Xenopus LaA	ICEDIEYYFGDHNLPRDKFIKQQI.LLDDGWVPLETMIK
Drosophila La	ILROVEYYFGDANLNROKFIREQIGKNEDGWYPLSVLVT
S. c. Lhplp	CLKDVEFYFSEFNFPYDRFURTTAEK.NDGWVPISTIAT

FIG. 18

```
1 aactcattta attactaatt taatcaacaa gattgataaa aagcagtaaa taaaacccaa
  61 tagatttaat ttagaaagta tcaattgaaa aatggaaatt gaaaacaact aagcacaata
 121 gccaaaagcc gaaaaattgt ggtgggaact tgaattagag atgcaagaaa accaaaatga
 181 tatataagtt agggttaaga tigacgatcc taagcaatat ctcgtgaacg tcactgcagc
 241 atgtttgttg taggaaggta gttactacta agataaagat gaaagaagat atatcatcac
 301 taaagcactt cttgaggtgg ctgagtctga tcctgagttc atctgctagt tggcagtcta
 361 catccgtaat gaactttaca tcagaactac cactaactac attgtagcat tttgtgttgt
 421 ccacaagaat actcaaccat tcatcgaaaa gtacttcaac aaagcagtac ttttgcctaa
 481 tgacttactg gaagtetgtg aatttgeata ggttetetat atttttgatg caactgaatt
 541 caaaaatttg tatcttgata ggatactttc ataagatatt cgtaagqaac tcactttccq
 601 taagtgttta caaagatgcg tcagaagcaa gttttctgaa ttcaacgaat actaacttgg 661 taagtattgc actgaatcct aacgtaagaa aacaatgttc cgttacctct cagttaccaa
 721 caagtaaaag tgggattaaa ctaagaagaa gagaaaagag aatctcttaa ccaaacttta
 781 ggcaataaag gaatctgaag ataagtccaa gagagaaact ggagacataa tgaacgttga
841 agatgcaatc aaggctttaa aaccagcagt tatgaagaaa atagccaaga gatagaatgc
 901 catgaagaaa cacatgaagg cacctaaaat tootaactot accttggaat caaagtactt
 961 gaccttcaag gatctcatta agttctgcca tatttctgag cctaaagaaa gagtctataa
1021 gatcettggt aaaaaatace etaagaeega agaggaatae aaageageet ttggtgatte
1081 tgcatctgca cccttcaatc ctgaattggc tggaaagcgt atgaagattg aaatctctaa
1141 aacatgggaa aatgaactca gtgcaaaagg caacactgct gaggtttggg ataatttaat
1201 ttcaagcaat taactcccat atatggccat gttacgtaac ttgtctaaca tcttaaaagc
1261 cggtgtttca gatactacac actctattgt gatcaacaag atttgtgagc ccaaggccgt
1321 tgagaactcc aagatgttcc ctcttcaatt ctttagtgcc attgaagctq ttaatgaagc
1381 agttactaag ggattcaagg ccaagaagag agaaaatatg aatcttaaag gtcaaatcga
1441 agcagtaaag gaagttgttg aaaaaaccga tgaagagaag aaagatatgg agttggagta
1501 aaccgaagaa ggagaatttg ttaaagtcaa cgaaggaatt ggcaagcaat acattaactc
1561 cattgaactt gcaatcaaga tagcagttaa caagaattta gatgaaatca aaggacacac
1621 tgcaatette tetgatgttt etggttetat gagtacetea atgteaggtg gageeaagaa 1681 gtatggttee gttegtactt gtetegagtg tgcattagte ettggtttga tggtaaaata
1741 acgttgtgaa aagtcctcat tctacatctt cagttcacct agttctcaat gcaataagtg
1801 ttacttagaa gttgatctcc ctggagacga actccgtcct tctatgtaaa aacttttgca
1861 agagaaagga aaacttggtg gtggtactga tttcccctat gagtgcattg atgaatggac
1921 aaagaataaa actcacgtag acaatatcgt tattttgtct gatatgatga ttgcagaagg
1981 atattcagat atcaatgtta gaggcagttc cattgttaac agcatcaaaa agtacaagga
2041 tgaagtaaat cctaacatta aaatctttgc agttgactta gaaggttacg gaaagtgcct
2101 taatctaggt gatgagttca atgaaaacaa ctacatcaag atattcggta tgagcgattc
2161 aatettaaag tteattteag ceaageaagg aggageaaat atggtegaag ttateaaaaa
2221 ctttgcctt caaaaaatag gacaaaagtg agtttcttga gattcttcta taacaaaaat 2281 ctcaccccac ttttttgttt tattgcatag ccattatgaa atttaaatta ttatctattt
2341 atttaagtta cttacatagt ttatgtatcg cagtctatta gcctattcaa atgattctgc
2401 aaagaacaaa aaagattaaa a
```

FIG. 19

Motif A

Motif B

GQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLL-100-KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL KNRNLHCTYDDYKKAFDSIPHSWLIQVLEIYKIN- 28-RQIAIKKGIYQGDSLSPLWFCLALNPLSHQLHNDR FGGSNWFREVDLKKCFDTISHDLIIKELKRYISD- 26-HVPVGPRVCVQGAPTSPALCNAVLLRLDRRLAGLA LKKKKSVTVL**D**VGDAYFSVPLDEDFRKYTAFTIP- 7-GIRYQYNVLP**QG**WKG**S**PAIFQSSMTKILEPFRKQN VLPELYFMKFDVKSCYDSIPRMECMRILKDALKN- 68-KCYIREDGLF**QG**SSL**S**APIVDLVYDDLLEFYSEFK h---+-QG----SP h--hDh---h--h Dong (LINE) al S.c. (groupII) telomerase p123 Consensus L8543.12

Motif C

Motif D

Motif E

-14-LMRLTDDYLLITTQENN-0-AVLFIEKLINVSRENGFKFNMKKLQT-23-QDYCDWIGISI-16-HLIYMDDIKLYAKNDKE-0-MKKLIDTTTIFSNDISMQFGLDKCKT-25-KCLYKYLGFQQ-55-YVRYADDILIGVLGSKN-2-KIIKRDLNNFLNS.LGLTINEEKTLI- 4-ETPARFLGYNI- 4-IYQYMDDLYVGSHLEIG-1-HRTKIEELRQHLLRWGLTTPDKKHQK- 0-EPPFLWMGYELL- 8-ILKLADDFLIISTDQQQ.....VINIKKLAMGGFQKYNAKANR-41-IRSKSSKGIFR h-hLGh-h Gh-h--Kh--YhDDhhh al S.c. (groupII) HIV-RT telomerase p123 Dong (LINE) Consensus L8543.12

FIG. 17

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL VNVTAACLLQEGSYYQDKDERRYIITKALLEVAESDPEFICQLA VYIRNELYIRTTTNYIVAFCVVHKNTQPFIEKYFNKAVLLPNDL LEVCEFAQVLYIFDATEFKNLYLDRILSQDIRKELTFRKCLQRC VRSKFSEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK RKENLLTKLQAIKESEDKSKRETGDIMNVEDAIKALKPAVMKKI AKRQNAMKKHMKAPKIPNSTLESKYLTFKDLIKFCHISEPKERV YKILGKKYPKTEEEYKAAFGDSASAPFNPELAGKRMKIEISKTW ENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSNILKAGVSDTT HSIVINKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKAKKR ENMNLKGQIEAVKEVVEKTDEEKKDMELEQTEEGEFVKVNEGIG KQYINSIELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGA KKYGSVRTCLECALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL EVDLPGDELRPSMQKLLQEKGKLGGGTDFPYECIDEWTKNKTHV DNIVILSDMMIAEGYSDINVRGSSIVNSIKKYKDEVNPNIKIFA VDLEGYGKCLNLGDEFNENNYIKIFGMSDSILKFISAKQGGANM VEVIKNFALOKIGOK

FIG. 20

MSRRNOKKPOAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK EEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVNQIKQ OVOLIKKVGSKVEKDLNLNEDENKKNGLSEQQVKEEQLRTITEE QVKYQNLVFNMDYQLDLNESGGHRRHRRETDYDTEKWFEISHDQ KNYVSIYANQKTSYCWWLKDYFNKNNYDHLNVSINRLETEAEFY ${ t AFDDFSQTIKLTNNSYQTVNIDVNFDNNLCILALLRFLLSLERF}$ NILNIRSSYTRNOYNFEKIGELLETIFAVVFSHRHLQGIHLQVP CEAFQYLVNSSSQISVKDSQLQVYSFSTDLKLVDTNKVQDYFKF LQEFPRLTHVSQQAIPVSATNAVENLNVLLKKVKHANLNLVSIP TQFNFDFYFVNLQHLKLEFGLEPNILTKQKLENLLLSIKQSKNL KFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQEETPETKD ETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIYDSLHKLLI RSTNLKKFKLSYKYEMEKSKMDTFIDLKNIYETLNNLKRCSVNI SNPHGNISYELTNKDSTFYKFKLTLNQELQHAKYTFKQNEFQFN NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPN NIQKNPFNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEF LEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPELNQVYINQ QLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDFD QNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQ ELLKACDEKGVLVKAYYKFPLCLPTGTYYDYNSDRW

FIG. 22

MKILFEFIQDKLDIDLQTNSTYKENLKCGHFNGLDEILTTCFAL PNSRKIALPCLPGDLSHKAVIDHCIIYLLTGELYNNVLTFGYKI ARNEDVNNSLFCHSANVNVTLLKGAAWKMFHSLVGTYAFVDLLI NYTVIQFNGQFFTQIVGNRCNEPHLPPKWVQRSSSSSATAAQIK OLTEPVTNKOFLHKLNINSSSFFPYSKILPSSSSIKKLTDLREA IFPTNLVKIPQRLKVRINLTLQKLLKRHKRLNYVSILNSICPPL EGTVLDLSHLSRQSPKERVLKFIIVILQKLLPQEMFGSKKNKGK IIKNLNLLLSLPLNGYLPFDSLLKKLRLKDFRWLFISDIWFTKH NFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVTIVYFR HDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRI IPKKSNNEFRIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEY LRNKRPTSFTKIYSPTQIADRIKEFKQRLLKKFNNVLPELYFMK FDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFNTNTGVL KLFNVVNASRVPKPYELYIDNVRTVHLSNQDVINVVEMEIFKTA LWVEDKCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS QDTLILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDK ILAVSSQSDDDTVIQFCAMHIFVKELEVWKHSSTMNNFHIRSKS SKGIFRSLIALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISE ${ t CYKSAFKDLSINVTQNMQFHSFLQRIIEMTVSGCPITKCDPLIE}$ YEVRFTILNGFLESLSSNTSKFKDNIILLRKEIQHLQAYIYIYI HTVN

```
1 tcaatactat taattaataa ataaaaaaaa gcaaactaca aagaaaatgt caaggcqtaa
  61 ctaaaaaaag ccataggete ctataggeaa tgaaacaaat cttgattttg tattacaaaa
 121 tetagaagtt tacaaaagee agattgagea ttataagaee tagtagtaat agateaaaga
 181 ggaggatete aagettttaa agtteaaaaa ttaagattag gatggaaaet etggeaaega
 241 tgatgatgat gaagaaaaca actcaaataa ataataagaa ttattaagga gagtcaatta
 301 gattaagtag caagtttaat tgataaaaaa agttggttct aaggtagaga aagatttgaa
 361 tttgaacgaa gatgaaaaca aaaagaatgg actttctgaa tagcaagtga aagaagagta
 421 attaagaacg attactgaag aataggttaa gtattaaaat ttagtattta acatggacta
 481 ccagttagat ttaaatgaga gtggtggcca tagaagacac agaagagaaa cagattatga
 541 tactgaaaaa tggtttgaaa tatctcatga ccaaaaaaat tatgtatcaa tttacgccaa
 601 ctaaaagaca tcatatigtt ggtggcttaa agattatttt aataaaaaca attatgatca
 661 tettaatgta ageattaaca gaetagaaae tgaageegaa ttetatgeet ttgatgattt
 721 ttcacaaaca atcaaactta ctaataattc ttactagact gttaacatag acgttaattt
 781 tgataataat ctctgtatac tcgcattgct tagattitta ttatcactag aaagattcaa
 841 tattttgaat ataagatett ettatacaag aaattaatat aattttgaga aaattggtga
 901 getactigaa actatetteg cagtigtett tieteatege caettacaag geatteatit
 961 acaagtteet tgcgaagegt tetaatattt agttaactee teateataaa ttagegttaa
1021 agatagctaa ttataggtat actotttoto tacagactta aaattagttg acactaacaa
1081 agtccaagat tattttaagt tottataaga attooctogt ttgactcatq taaqctaqta
1141 ggctatccca gttagtgcta ctaacgctgt agagaacctc aatgttttac ttaaaaaggt 1201 caagcatgct aatcttaatt tagtttctat ccctacctaa ttcaattttg atttctactt
1261 tgttaattta taacatttga aattagagtt tggattagaa ccaaatattt tgacaaaaca
1321 aaagettgaa aatetaettt tgagtataaa ataateaaaa aatettaaat ttttaagatt
1381 aaacttttac acctacgttg cttaagaaac ctccagaaaa cagatattaa aacaagctac
1441 aacaatcaaa aatctcaaaa acaataaaaa tcaagaagaa actcctgaaa ctaaagatga
1501 aactecaage gaaageacaa gtggtatgaa atttittgat catettietg aattaacega
1561 gettgaagat tteagegtta acttgtaage taeccaagaa atttatgata gettgeacaa
1621 acttitgatt agatcaacaa atttaaagaa gttcaaatta agttacaaat atgaaatgga
1681 aaagagtaaa atggatacat tcatagatct taagaatatt tatgaaacct taaacaatct
1741 taaaagatgc tetgttaata tatcaaatcc teatggaaac atttettatg aactgacaaa
1801 taaagattot actitttata aatttaaget gacettaaac taagaattat aacaegetaa
1861 gtatactttt aagtagaacg aattttaatt taataacgtt aaaagtgcaa aaattgaatc
1921 ttcctcatta gaaagcttag aagatattga tagtctttgc aaatctattg cttcttgtaa
1981 aaatttacaa aatgttaata ttatcgccag tttgctctat cccaacaata tttagaaaaa
2041 tootttoaat aagoocaato ttotatttt caagoaattt gaataattga aaaatttgga
2101 aaatgtatet ateaactgta ttettgatea geatataett aattetattt eagaattett
2161 agaaaagaat aaaaaaataa aagcattcat tttgaaaaga tattatttat tacaatatta
2221 tottgattat actaaattat ttaaaacact toaatagtta cotgaattaa attaagttta
2281 cattaattag caattagaag aattgactgt gagtgaagta cataagtaag tatgggaaaa
2341 ccacaagcaa aaagctttct atgaaccatt atgtgagttt atcaaagaat catcctaaac
2401 cctttagcta atagattttg accaaaacac tgtaagtgat gactctatta aaaagatttt
2461 agaatetata tetgagteta agtateatea ttattigaga itgaaceeta gitaatetag
2521 cagtttaatt aaatotgaaa acgaagaaat ttaagaactt ctcaaagctt gcgacgaaaa
2581 aggtgtttta gtaaaagcat actataaatt ccctctatgt ttaccaactg gtacttatta
2701 tgaatatttc tttgcttatt atttgaataa tacatacaat agtcattttt agtgttttga
2761 atatatttta gttatttaat tcattatttt aagtaaataa ttatttttca atcattttt
2821 aaaaaatcg
```

FIG. 21

21/78

Oxytricha Euplotes LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT LCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIG. 24

ATTTATACTCATGAAAATCTTATTCGAGTTCATTCAAGACAAGCTTGACATTGATCTACA GACCAACAGTACTTACAAAGAAAATTTAAAATGTGGTCACTTCAATGGCCTCGATGAAAT TCTAACTACGTGTTTCGCACTACCAAATTCAAGAAAAATAGCATTACCATGCCTTCCTGG TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATTTACCTGTTGACGGGCGAATT ATACAACAACGTACTAACATTTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG TCTTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCGCTGCTTGGAAAAT GTTCCACAGTTTGGTCGGTACATACGCATTCGTTGATTTATTGATCAATTATACAGTAAT TCAATTTAATGGGCAGTTTTTCACTCAAATCGTGGGTAACAGATGTAACGAACCTCATCT GCCGCCCAAATGGGTCCAACGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA ACTTACAGAACCAGTGACAAATAAACAATTCTTACACAAGCTCAATATAAATTCCTCTTC TTTTTTTCCTTATAGCAAGATCCTTCCTTCATCATCATCATCAAAAAGCTAACTGACTT GAGAGAAGCTATTTTTCCCACAAATTTGGTTAAAATTCCTCAGAGACTAAAGGTACGAAT TAATTTGACGCTGCAAAAGCTATTAAAGAGACATAAGCGTTTGAATTACGTTTCTATTTT GAATAGTATTTGCCCACCATTGGAAGGGACCGTATTGGACTTGTCGCATTTGAGTAGGCA ATCACCAAAGGAACGAGTCTTGAAATTTATCATTGTTATTTTACAGAAGTTATTACCCCA AGAAATGTTTGGCTCAAAGAAAAATAAAGGAAAAATTATCAAGAATCTAAATCTTTTATT AAGTTTACCCTTAAATGGCTATTTACCATTTGATAGTTTGTTGAAAAAGTTAAGATTAAA GGATTTTCGGTGGTTGTTCATTTCTGATATTTGGTTCACCAAGCACAATTTTGAAAACTT GAATCAATTGGCGATTTGTTTCATTTCCTGGCTATTTAGACAACTAATTCCCAAAATTAT ACAGACTTTTTTTTTTTCTGCACCGAAATATCTTCTACAGTGACAATTGTTTACTTTAGACA TGATACTTGGAATAAACTTATCACCCCTTTTATCGTAGAATATTTTAAGACGTACTTAGT CGAAAACAACGTATGTAGAAACCATAATAGTTACACGTTGTCCAATTTCAATCATAGCAA AATGAGGATTATACCAAAAAAAGTAATAATGAGTTCAGGATTATTGCCATCCCATGCAG AGGGGCAGACGAAGAATTCACAATTTATAAGGAGAATCACAAAAATGCTATCCAGCC CACTCAAAAAATTTTAGAATACCTAAGAAACAAAAGGCCGACTAGTTTTACTAAAATATA TTCTCCAACGCAAATAGCTGACCGTATCAAAGAATTTAAGCAGAGACTTTTAAAGAAATT TAATAATGTCTTACCAGAGCTTTATTTCATGAAATTTGATGTCAAATCTTGCTATGATTC CATACCAAGGATGGAATGTATGAGGATACTCAAGGATGCGCTAAAAAATGAAAATGGGTT TTTCGTTAGATCTCAATATTTCTTCAATACCAATACAGGTGTATTGAAGTTATTTAATGT TGTTAACGCTAGCAGAGTACCAAAACCTTATGAGCTATACATAGATAATGTGAGGACGGT TCATTTATCAAATCAGGATGTTATAAACGTTGTAGAGATGGAAATATTTAAAACAGCTTT GTGGGTTGAAGATAAGTGCTACATTAGAGAAGATGGTCTTTTTCAGGGCTCTAGTTTATC TGCTCCGATCGTTGATTTGGTGTATGACGATCTTCTGGAGTTTTATAGCGAGTTTAAAGC CAGTCCTAGCCAGGACACATTAATTTTAAAACTGGCTGACGATTTCCTTATAATATCAAC AGACCAACAGCAAGTGATCAATATCAAAAAGCTTGCCATGGGCGGATTTCAAAAAATATAA TGCGAAAGCCAATAGAGACAAAATTTTAGCCGTAAGCTCCCAATCAGATGATGATACGGT TATTCAATTTTGTGCAATGCACATATTTGTTAAAGAATTGGAAGTTTGGAAACATTCAAG CACAATGAATAATTTCCATATCCGTTCGAAATCTAGTAAAGGGATATTTCGAAGTTTAAT AGCGCTGTTTAACACTAGAATCTCTTATAAAACAATTGACACAAATTTAAATTCAACAAA CACCGTTCTCATGCAAATTGATCATGTTGTAAAGAACATTTCGGAATGTTATAAATCTGC TTTTAAGGATCTATCAATTAATGTTACGCAAAATATGCAATTTCATTCGTTCTTACAACG CATCATTGAAATGACAGTCAGCGGTTGTCCAATTACGAAATGTGATCCTTTAATCGAGTA TGAGGTACGATTCACCATATTGAATGGATTTTTTGGAAAGCCTATCTTCAAACACATCAAA ATTTAAAGATAATATCATTCTTTTGAGAAAGGAAATTCAACACTTGCAAGC

AKFLHWLMSVYVVELLRSFFYVTETTFQKNR ISEIEWLVLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNR LKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVT- TREISWMQVET-SAKHFYYFDHEN-IYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSK . *.	MOLIÍ 1 LFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGL TVYFRKDIWKLLCRPFI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLLPKKNTF IVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIPKKSNNEF TYYYRKNIWDVIMKMSI-ADLKKETLAEVQEKEVEEWKKS-LGFAPGKLRLIPKKTTF ****	MOtif 2 RPIVNMDYVVGARTFRREKRAERLTSRVKALF-SVLNYERA RLITN-LRKRFLIKMGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFNLEVYMKLLTF RIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKIYSPTQIADRIKEF RPIMTFNKKIVNSDRKTTKLTTNTKLINSHLMLKTLKN-RMFKDPFGFAVFNYDDVMKKY * *	MOtif 3 (A) KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPEFVIRKYATIHATS KQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKD-ALKNENGFFVRSQYFFNTN EEFVCKWKQVGQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKN * * * * * * * * * * * * * * * * * * *
human tezl EST2 p123	human tezl EST2 p123	human tezl EST2 p123	tezl EST2 p123

FIG. 25

23/78

AKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKR VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREK RAERLTSRVKALFSVLNYERA

FIG. 27

GCCAAGTTCCTGCACTGGCTGATGAGTGTACGTCGTCGAGCTGCTCAGGTC
TTTCTTTTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAG
AGGGTGCAGCTGCGGGACGTGTCGGAAGCAGAGCTCAGCAGCCCGGCCCTGCTGACGGGC
CAGGCCCGCCTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGGC
TGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGA
GAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTGCT
CAACTACGAGCGGCGCG

FIG. 28

MTEHHTPKSRILRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRSDVQTSFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVKQMFDESFERRNLLMKGFSMNHEDFRAMHVNGVQNDLVSTF
PNYLISILESKNWQLLLEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPLFKNNVFEETVSKKRKR
TIETSITQNKSARKEVSWNSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAFQVKQLHKVIPLVSQSTVVPKRLLKVYPLIEQTAKRLHRISLSKVYNHYCPYIDTHDDEKILS
YSLKPNQVFAFLRSILVRVFPKLIWGNQRIFEIILKDLETFLKLSRYESFSLHYLMSNIKISEIEWL
VLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCR
PFITSMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGSNKKMLVSTN
QTLRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMFGRKKYFVRIDIKSCYDRIKQDLM
FRIVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVVQLLSMKTSDTLFVDFVDY
WTKSSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACPKIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVFIDITHNSKFNSCCN
IYRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKKLAEILGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFKYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLFLHRRIAD

actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctattttatcggtcgtta ggttcgcttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggatat agetettggagtageteacagaaateettacaaatettetgatgagaetatattagatteattacagteegtgeatatte ttaacatggagccttacactttagatgagtcacgtcgcatgatggagtatttggtatcatccaacgtttgccttgaaaag gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg ccaaatatgtatcatctcgtattaggcttttttccgttttactcctggaatcgtacctttttcactattccccctaatga ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa gatactttgcaaaacatttattagctatcattatataaaaaaatcctataaatattataaatuutaatcaatatttgcggtc ATGTACAACTTGTTTTGAGAGGGTCGCCGGCAAGCTCGTATAGCAATATATGCGAACGCTTGAGAAGCGATGTACAAACG ATGCTCACAGTCAGAGGtatatatatttttgttttgattttttttttctattcgggatagctaatatggggcagCTAATAGC GAATGTTGTAAAACAGATGTTCGATGAAAGTTTTTGAGCGTCGAAGGAATCTACTGATGAAAGGGTTTTCCATGGTaaggt attotaattgtgaaatatttacotgoaattactgtttcaaagagattgtatttaaocgataaagAATCATGAAGATTTTC AATTGGCAACTITITGTTAGAAATgtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatagTATCGG CAGTGATGCCATGCATTACTTATTATCCAAAGGAAGTATTTTTGAGGCTCTTCCAAATGACAATTACCTTCAGATTTCTG CAAAATAAAAGCGCCCGCAAAGAAGTTTCCTGGAATAGCATTTCAATTAGTAGGTTTAGCATTTTTACAGGTCATCCTA GTGATCGGAACACAGTAČACATGTGGCTTČAATGGATTTTTCCAAGGCAATTTGGACTTATAAACGCATTTCAAGTGAAG ACAAACAGCAAAGCGACTCCATCGTATTTCTCTATCAAAAGTTTACAACCATTATTGCCCATATATTGACACCCATG AAATTAATCTGGGGTAACCAAAGGATATTTGAGATAATATTAAAAGGtattgtataaaaatttattaccactaacgatttt accagACCTCGAAACTTTCTTGAAATTATCGAGATACGAGTCTTTTÄGTTTACATTATTAATGAGTAACATAAAGGtaa caatgtactttacttctaatctattattagcagATGGGTTCAAACAAAAAAATGTTAGTCAGTACGAACCAAACTTTACG **ACCTGTGGCATCGATACTGAAACATTTAATCAATGAAGAAAGTAGTGGTATTTCCATTTAACTTGGAGGTTTTACATGAAGC** ggtaccgatttactttcctttcttcataagctaattgcttcctcgaacgctcctaaatctctggaaatattttacaaga ccaagtataaggacaaaaagaacaacttccttcccctaaagacttttactttaatttaatttacttttcaaatatttcg attgagatattcaaaaatttctatccactacaactcctttaacgcgggttttatttttctattttctattctcatgttgtt TCCTTTTCTATTTTTCTTCATTCGACTGTAGTCGGCTTCGACAGTAAGCCCAGATGAAGGTGTTCAATTTTCTTCTTCTAAA GAGCCATGCATGTAAACGGAGTACAAAATGATCTCGTTTCTACTTTTCCTAATTACCTTATATATCTATACTTGAGTCAAAA CAATTGCACAAAGTGATTCCACTGGTATCACAGAGTACAGTTGTGCCCCAAACGTCTCCTAAAGGTATACCCTTTAATTGA ATGAAAAAATCCTTAGTTATTCCTTAAAGCCGAACCAGGIGTTTGCGTTTCTTCGATCCATTCTTGTTGGAGTGTTTCCT tatgccaaattttttttaccattaattaacaatcagATTTCAGAAATTGAATGGCTAGTCCTTGGAAAAAAGGTCAAATGG <u>AAAATGIGCTTAAGTGATTTTGAGAAACGCAAGCAAATATTTGCGGAATTCATCTACTGGCTATACAATTCGTTTATAAT</u> ttttgcaaaaagctaatattttcagAACAATGTTAGGATAGTACTCAGAAAACTACTTTGCCTCCAGCAGTATTCGTC GACCGAAACACCATACCCCCAAAAGCAGGATTCTTCGCTTTCTAGAGAATCAATATGTATACCTATGTACCTTAAATGATT TAAGAAGTTTAAGCAAGGtaactaatactgttatccttcataactaattttagATCTATATTTTAACTTACACTCTATTTT ACCTATTTTACAATCTTTTTTTTATATCACTGAATCAAGTGATTTACGAAATCGAACTGTTTATTTTAGAAAAGATATTT TATTÄCCTAAGÄAGAATACCTTTCGTCTCATTACGAATTTAAGAAAAAGATTCTTAATAAAGGtattaatttttggtcat

FIG. 3(

TTCTTACTTTTAAGAAGGATCTTCTTAAGCACCGAATGTTTGGgtaattataatgcgcgattcctcattattaatttt gcagGCGTAAGAAGTATTTTGTACGGATAGATATAAAATCCTGTTATGATCGAATAAAGCAAGATTTGATGTTTCGGATT TTAAAAAGAAACTCAAGGATCCCGAATTTGTAATTCGAAAGTATGCAACCATACATGCAACAAGTGACCGAGCTACAAA **AAACTTTGTTAGTGAGGCGTTTTCCTATTgtaagtttattttttcattggaattttttaacaaattcttttttagTTGAT** GACCAAAAGTTCTTCTGAAATTTTTAAAATGCTCAAGGAACATCTCTCTGGACACATTGTTAAGGtataccaattgttga CTCTGTGAACATGAGGTCTCTTGATACATTGTTAGCATGTCCTAAAATTGATGAAGCCTTATTTAACTCTACATCTGTAG AGCTGACGAAACATATGGGGAAATCTTTTTTTTACAAAATTCTAAGGtatactgtaactgaataatagctgacaaata TGTTCATAACGGgtgagtacttattttaactagaaaagtcattaattaaccttagATCTTTTGAATGTTATTGGAAGAAA cggtctcgagacttcagcaatattgacacatcagGCTTTTTTGTCTTGGAATGAGAGGGTTTGAAACCCTCTTTGAÄA TATCATCCATGCTTCGAACAGCTAATATATACCAATTTCAGTCATTGACTGATCTTATCAAGCCGCTAAGACCAGTTTTGCG ACAGGTGTTATTTTACATAGAAGAATAGCTGATTAAtgtcattttcaattttatatacatcctttattactggtgtc gttattagttttgattgactigtctitaiccttatactittaägaaagattgacagtggttgctgactactgcccacatg aaatagtgttaagccattattggattccgaaatagccaaatttcttggttcctcaaagcggaagtctaaagaacttattg gotgaggagaagoctaatttttgcaaaaaagaaatatcattgggagacatotottgatgaatcagatgcgagagatat otcoagoggatoottgatgtcaataaottotatttotgaaatgtatggtootaotgtogotttcgaottotogtagotota .gagttgctgtcattcctaagttctaaccgttgaagGATTTGAGAAACACAATTTTTCTACGAGCCTGGAGAAACAGTĀ atcagATCGAGCCTTGCATCCTTTGCACAAGTATTTATTGACATTACCCACAATTCAAAATTCAAATTCTTGCTGCAATAT ${\tt cccattaaacgggagtggttaaaacattaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggtt<math>ar{ t t}$ tctataatgaataatgcccgcactaatgcaaaaagacgaagattatcttctaaacaagggggattaagcatatccgaagg aaaagagagagtaatatacccagtgttgttgaagaaagcaaggataatttggaacaagcttctgcagatgacaggctaaatt agtttgaatactaatagctcatttaatgtcttatataaggttttgttttttcctgacttcaatttttggatgggtgaaaa aagottatgaggottcaaaaactcotcotgatttaaaggaggaatottcoacogatgaggaaatggatagottatcadot attgtaataacactaatgaaactagATAGGAAATTCTCAATACCTTCAAAAAGTTGGTATCCCTCAGGGCTCAATTCTGT <u>AATTTTGGAAAAAGTTGGCCGAAATATTAGGATATACGAGTAGGCGTTTCTTGTCCTCTGCAGAAGTCAAATGG</u>tacgtgt ATAAACTTTGAAAATAGTAATGGGATAATÄAAČAATACTTTTTTAATGAAAGCAAGGAAAGAATGCCATTCTTCGGTT cgcagttaagtgaccaaaggtacc

FIG. 30 (CONTINUED)

4 4 4 4 4	20	79 78 92	100	129 120 130	150	157 155 158	186
FFYCTEISST VTIVYFRHDT WNKLIT PFIVE YFK-TYLVEN FFYVTEQQKS YSKTYYYRKN IWDVI-MKMS IADLKK ETLAEVQE KHKE GSQIFYYRKP IWKLVSKLTI VKVRIQFSEK NKQMKNNFYQ	FFY.TEKSYYYRK. IWKLFKV	NVCRNHNSY TLSNFNHSKM RIIPKKSNNE FRUIAIPCRG KEVEEWKKSLGFAPGKG RLIPKKIT FRPIMTFNKK KIQLEEENLE KVEEKLIPED SFQKYPQGKL RIIPKKGS FRPIMTFLRK	FGKL RILPKK FRPLMTF.RK	ADEEEFTIYK ENHKNAIQPT QKILEYLRNK RPTSFTKIYS PTQIADRIKE IVNSDRKTTK LTTNTKLLNS HLMLKTLKNRMFK -DPFGFAVFN DKQKNIK LNLNQILMDS QLVFRNLKDML-G -QKIGYSVFD	KK IŅ.NLS QL.LLKNIGVF.	FKQRLLKKKFN NVLPBLYFMKFD VKSCYD YD-DVMKKYE BFVCKWKQVH CPKLFFATMD IEKCYD NK-QISEKFA QFIEKWKNKG RPCLYYVTL	.KKKFFKWKG .P.LYF.T.DCYD
VTIVYFRHDT YSKTYYYRKN GSQIFYYRKP	.SYYYRK.	 KVBEKLIPED		ENHKNAIQPT LTTNTKLLNS LNLNQILMDS	LŅ.NLS	NVL EFVCKWKQVH QFIEKWKNKG	.FKWKG
FFYCTEISST FFYVTEQQKS KHKE	FFY.TEK.	NVCRNHNSY- KEVEEWKKSL KIQLEEENLE	КВ	ADEEEFTIYK IVNSDRKTTK DKQKNIK	KK	FKQRLLKKKFN YD-DVMKKYE NK-QISEKFA	. K KKF.
EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus	EST2 pep Euplotes pep Trans of tetrahymen	Consensus

FIG. 3

27/78

```
S-1: FFY VTE TTF QKN RLF FYR KSV WSK
S-2: RQH LKR VQL RDV SEA EVR QHR EA
S-3: ART FRR EKR AER LTS RVK ALF SVL NYE
```

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIG. 32

5(c¹)

D D Y L L I T
3'- ctg ctg atg gag gag tag tgg -5'
a a a a a a a a a
t t t t
c c
Poly 1

FIG. 34

FIG. 33A

FIG. 33B

KGIPQGLCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLIT DGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS-----QDTLILKLADDFLIIS SILSSFLCHFYMEDLIDEYLSFTKKK------GSVLLRVV LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT Ea p123 Sp M2 Sc p103

<---Actual Genomic Sequence. Ö Ø Д ט caa aaa ¥ Ø

caa aaa gtt ggt atc cct cag gg...... $\frac{Poly\ 4}{t}$ t c c t c g c c g aa gga att cca taa gg ---->

TAA GAC AGT AGA AAA AAC ACA GIA AAG AIA IAC

K G I P S G S I L S S F L C H F Y

Σ

FIG. 36

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA CTT CTA AAC TAA CTA ATG GAT AGC AAA TGC TTT TTC TTT CCT AGT CAC AAC AAT GCT

ĸ ᆸ > ß ᠐ × × × Н ш 闰 Д Д

GTA GTC gac gac tac ctc atc acc CAT CAG ctg ctg atg gag gag tag tgg

G CLY CLY ALY YAY GAY LAY LYE

>

<---- ctg ctg atg gag gag tag tgg
a a a a a a a a
t t t
t t
c c
C C
Poly 1</pre>

.....gac gat ttc ctc ttt ata aca..... <---Actual Genomic Sequence
D D F L F I T

FIG. 36 (CONTINUED)

(+34/78

1. Synthesis of cDNA with Specific Destination Primer

2. Ligate Oligo with 5' –P and blocked 3' to cDNA using T4 RNA Ligase


```
. (173)
               ... (35) ...
                                                                                                                                                                                                                                                                                                                                                                           LILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDKILAVSSQS
LLMRLTDDYLLITTQENNAVLFIEKLINVSRENGFKFNMKKLQTSFPLS
                                                                                                                                                                                                                                                                                                                                                              VLLRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENS
                                                                                                                                                                                                                                                                                        ...(8)...
                                                                                                                                                                                                                                                                                                                                     Motif 6(D)
            (429). WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIW
(366). WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTW
(441). WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIW
                                                                                                                                                                                                                                                                             ...(9)...
                                                                                                                                                                                                                                                                                                                                                    Gh h
                                                                                                                                                                                   KKYFVRIDIKSCYDRIKQDLMFRIVK ... (89) ...
ELYFMKFDVKSCYDSIPRMECMRILK ... (75) ...
KLFFATMDIEKCYDSVNREKLSTFLK ... (107) ...
                                                                     Motif 1 Motif 2 K
p hh h K hR h R
AVIRLLPKK--NTFRLITN-LRKRF ...(61)...
SKMRIIPKKSNNEFRIIAIPCRGAD ...(62)...
GKLRLIPKK--TTFRPIMTFNKKIV ...(61)...
                                                                                                                                                                                                                                                                                                    YKQTKGIPQGLCVSSILSSFYYATLEESSLGF
                                                                                                                                                                                                                                                                         YLQKVGIPQGSILSSFLCHFYMEDLIDEYLSF
                                                                                                                                                                                                                                                                                      YIREDGLFOGSSLSAPIVDLVYDDLLEFYSEF
Motif O
                                                         ** ***
                                                                                                                                                                                                                                                             pP hh
                                                                                                                                                                        hDh GY h
                                                                                                                                                                                                                                                                                                                                Y Motif 5(C)
F DDhhh
                                                                                                                                                       Motif 3(A) AF
                                                                                                                                                                                                                                            Motif 4(B')
                                                                                                                                                                                                                                                             hPQG
                                                                                                                                             *** *
                                                                                                                                                                                                                                 *
            S.p. Tezlp
S.c. Est2p
E.a. p123
                                                                                                S.p. Tezlp
S.c. Est2p
E.a. p123
                                                                                                                                                                                                                                                                         Tez1p
Est2p
                                                                                                                                                                                     Tezlp
Est2p
p123
                                                                                                                                                                                                                                                                                                                                                             Tez1p
Est2p
                                                                                                                                                                                                                                                                                                    p123
                                                                                                                                                                                    S S S E
                                                                                                                                                                                                                                                                                                                                                              S S D
В С С .
```

FIG. 4

Ä

+

	LNDYVQLVLRGSPASSYSNICERLRSDVQTSFS 57	IFLHSTVVGFDSKPDEGVQFSSPKCSQSELIAN 90	VVKQMFDESFERRR-NLLMKGFSMNHEDFRAMH 122	VNGVQNDLVSTFPNYLISILESKNWQLLLEIIG 155	SDAMHYLLSKGSIFEALPNDNYLQISGIPLEKN 188	N V F E E T V SKKRKT I E T S I T QN K S A R K E V S 218
	IQDKLDIDLQTN STYK ENLKCGHFNGLD 35	EILTTCFALPNSR-KIALPCLPGDLSHKAVIDH 67	CIIYLLTGELYN NVLTFGYKIARNED 93	VNNSLFCHSANVNVTLLKGAAWKMFHSLVG 123	TYAFVDLLINYTVIQFN - GQFFTQIVGNRCNEP 155	H L P P K W V Q R S S S S S A T A A Q I K Q L T E P V T 183
	IQKVIRCRNQSQ SHYK DLEDIKIFAQTN 61	IVATPRDYNEEDFKVIARKEVFSTGLMIELIDK 94	CLVELLSSSDVSDRQKLQCFGFQLKGNQ 122	LAKTHLLTALSTQKQYFFQDEWNQVRAMIG 152	NELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDH 185	L K V N D K F D K - K Q K G G A A D M N E P R C C S T C K Y N V K 217
~ ~ ~	25	58	91	123	156	189
	8	36	68	94	124	156
	34	62	95	123	153	186
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 4

	=	ä
	=	=
	2 2 2	=
11111	1	-
+12851.	a Shu a	-
4	ì.	Parity
STORY	Pitter!	4,100
-5100.05	(hod)	23000
ş		
-2000	H H H	Store
×	Bertier	
CHARLES.	22	2
-01245-	July 1	Trend
Hen.	***	111111
attenus.	Track in it worth	the same

A. Sp_Tip1p 219 WN S I S I S R F S I F Y R S S Y K K F K Q D L Y E N L H S I C D S C E 5t2p 184 N · · · · · · · · · · · · · · · · · · ·	FIG. 42 (CONTINUED)
N	
NON YER OF THE STATE OF THE STA	<i>42</i> IUED)
N	FIG.
N	
219 184 218 201 224 224 224 225 309 309 300 300 333 333 333	
A. Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Ea_p1	

reteries.	==
	500
District.	F
ALIEN A	Į.
ij	-
CATALOG .	
ä	
attati.	
ş	
inder:	
and a	I
STATE.	
1115)[1	

426 EFIYWLYNSFIIPILQSFFYITESSDLRNRTVY 458 363 CFISWLFRQLIPKIIQTFFYCTEISSTVT-IVY 394 438 KLLRWIEEDLVVSLIRCFFYVTEQQKSYSKTYY 470	FRKDIWKLLCRPFITSMKMEAFEKINENNVRMD 491 395 FRHDTWNKLITPFIVEYFKTYLVENNVCRNHNS 427 471 YRKNIWDVIMKMSIADLKKETLAEVQEKEVEEW 503	492 TQKTTLPPAVIRLLPKKNTFRLITNLRKRFL 522 428 YTLSNFNHSKMRLIPKKSNNEFRIIAIPCRGAD 460 504 KKSLGFAPGKLRLIPKKTTFRPIMTFNKKIV 534	523 IKMGSNKKMLVSTNQTLRPVASILKHLINE 552 461 EEE FTIYKENHKNAIQPTQKILEYLRNKRPT 491 535 NSD RKTTKLTINTKLLNSHLMLKTLKNR - MF 564	553 ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584 492 SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524 565 KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	785 YFVRIDIKSCYDRIKQDLMFRIVKKLKDPE-F 616 525 YFMKFDVKSCYDSIPRMECMRILKDALKNENGF 557 598 FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDF 630	617 VIRKYATIHATSDRATKN 634 558 FVRSQYFFNTNTG 570 631 WIMTAQILKRKNNIVIDSKNFRKKEMKDYFRQK 663
田の本		⊢≻⊻	— W Z	三ろ入		
A. Sp_Tip1p 4 Sc_Est2p 3 Ea_p123 4	Sp_Tip1p 4 Sc_Est2p 3 Ea_p123 4	Sp_Tip1p 4 Sc_Est2p 4 Ea_p123 5	Sp_Tip1p 5 Sc_Est2p 4 Ea_p123 5	Sp_Tip1p 5 Sc_Est2p 4 Ea_p123 5	Sp_Tip1p 5 Sc_Est2p 5 Ea_p123 5	Sp_Tip1p 6 Sc_Est2p 5 Ea_p123 6

FIG. 42 (CONTINUED)

	EVSEAFSYFDMVPFEKVVQLLS - MKTSDTLFV 665 1 VLKLFNVVNASR VPKPYELY 1 591 4 FQKIALEGGQYPTLFSVLENEQNDLNAKKTLIV 696	D F V D Y W T K S S S E I F K M L K E H L S G H I V K D N V R T V H L S N Q D V I N V V E M E I F K T A L W V E A K Q R N Y F K K D N L L Q P V I N I C Q Y N Y I N I	LQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTK 731 FREDGLEQGSLSAPIVDLVYDDLLEFYSEFKA 657 KQTKGIPQGLCVSSILSSFYYATLEESSLGFLR 762	KKG SVLLRVVDDFLFITVNKKDAKK 756 SPSQD TLILKLADDFLIISTDQQQVIN 684 DESMNPENPNVNLLMRLTDDYLLITTQENNAVL 795	FLNLSLRGFEKHNFSTSLEKTVINFENSNG 786 KKLAMGGFQKYNAKANRDKILAVSSQSD 713 FIEKLINVSRENGFKFNMKKLQTSFPLSPSKFA 828	787IINNTFFNESKKRMPFFGFSVNMRSLDTLL 816 714DDTVIQFCAMHIFVKELEVWKHSSTM 739 829 KYGMDSVEEQNIVQDYCDWIGISIDMKTLALMP 861	ACPKIDEALFNSTSVELTKHMGKSFFYKILRSS 849 740 NNFHIRSKSSKGIFRSLIALFNTRISYKTIDTN 772 862 NINLRIEGILCTLNLNMQTKKASMWLKKKLKSF 894
	11p 635 12p 571 23 664	11p 666 12p 592 23 697	o1p 699 t2p 625 23 730	51p 732 t2p 658 23 763	Tip1p 757 Est2p 685 p123 796		
Ŕ	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123

FIG. 42 (CONTINUED)

	LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR 882 LNSTNTVLMQIDHVVKNISEC793 LMNNITHYFRKTITTEDFANKTLNKLFISGGYK 927	AQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKK 915 YKSAFKDLSINVTQNMQFHSFLQRIIEM 821 YMQCAKEYKDHFKKNLAMSSMIDLEVSKIIYSV 960	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS 948 TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN 854 TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF 993	⊥≻ ບ	LHRRIAD - 988 YIHIVN - 884 QSLIQYDA 1031
	850	883	916	949	982
	773	794	822	855	878
	895	928	961	994	1024
A.	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

					10 00 01	m 10 10	438
77	33	57 35 61	90 67 94	122 93 122	155 123 152	188 155 185	218 183 217
⊢	- և ≽	ωQZ	ZIY	I'' ∑''	_ > _	$X \square O$ X G T	>>>
	л Т ≻ S П C	S D D		∀ ''	– ⊿ ∑	ᄔᅩᅩᄔ	шог
>		⊢Z∢ Ì	<u> </u>	R	R R R	A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	スTK
	- スス - 一 ト	> T -	ωХ— ПАП	О П О -	ユエ>	-zz	C L A
	y ≥ ∢	\Box \Box $\overleftarrow{\Delta}$	GΙΣ	M Z Z	QXZ TZQ	S > 0	X X X X X X X X X X X X X X X X X X X
	ト・ス N ・ M	8 X Z D C C C C C C C C C C C C C C C C C C	C S C S C L	Z A X I R Q	333		1 10
_	ـ ، د	\perp \perp \square	メロト	$\Sigma - \bot$	X Q O	1⊢>	S
	Х · Ш Г · Ш	日日口氏とし	S P G P S P S P S P S P S P S P S P S P	н> н Q X Q	\circ	\succ \vdash \vdash	$z - \sigma$
-	ں ۔ د	0 ' '	S _ >	000	レしFEMKF	D Q Q	⊢ A Z Q Q ⊞
	ス・ス	_ ' '	Q D X ГОШ	Σ⊢0 ⊼ππ	- → ≻	$\mathbf{Z} \odot \mathbf{m}$	- ∢∑
(ഗ്പ	のオオ	> - 2	$\neg \neg \sigma$	->3 \ \	72F 8 · 8	A A D
	P K	××× ×××	E A A G	ZZX L<	JZO	\forall \square \boxtimes	шsA
	⊢ · ∓	A	ロス>	1 0	>> ⊢	н− н ш Q Q	_ გა ე
	H 0	P A	X X T	8	LAP	->-	R S Y
	ш•エ	$\sigma z \sigma$	တလ	N N N	H H F	S	XXX
	⊢ · Z ∑ · O	გ გ გ ს ა	$\mathbf{F} \mathbf{G} \mathbf{H}$	F C V	r c s	メ Z メ	ス・・
	1 14	u u z	ロレロ	S П S	フ ル ト エ	L S T T	S S D
	Ø	л — С С В	>	D T S S	ലഗ⊢		>> 1
	· · 0	$Q \cap K$	$\vdash \circ \bowtie$	뜨그그	ZZY	R V H	ニメロ ⊢≥ス
	>	≻ <i>⊼</i> > > ┐ −	2 T T P	Ω N Z L L	P N Q	∑⊩╙	шсх
	· ·>	$\Box\Box$	$A \vdash A$	スー>	り · ·	D A Y A E L	ンコス FG>
	Щ	z o o	— Ш <i>—</i> Т — >	> - J	Z ' '	S ⊢ Z	ZIJ
	=				e 4 e	9 4 6	189 156 186
		25 8 34	58 36 62	91 68 95	123 94 123		• • •
	<u> </u>	0 d 8	3 p	3 p	15 25	Sp_Tip1p Sc_Est2p Ea_p123	Tip1p Est2p p123
юi	Tip1p Est2p p123	ip1 st2 12	rip Est	Tip1p Est2p p123	Tip Est p12	Tip Est p1%	Tig P1
ш	Sp_Tip1p Sc_Est2p Ea p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp Sc. Fa. I	Sp_Tip1p Sc_Est2p Ea_p123	္က ဗိုင္တ	Sp_Tip1p Sc_Est2p Ea_p123
	ωωш	SSШ	O) O) III	0, 0, ш	, , , <u>u</u>		

FIG. 42 (CONTINUED)

10000	=	5
-dista-	2	Į
	7	ļ
-denie	Harry,	
	j.	
4	-	
10000	Pare 43	9000
-575732-	Į.	the state of
Ë		
	211	1,000
2	1	2
attifett.	211	į
James.	Just	il il
.41163.	200	Tarage and the same and the sam
CHIEFE STATES	Hank	in in

	SISISRFSIFYRSSYKKFKQDLYFNLHSICD 251 	TVHMWLQWIFPRQFGLINAFQVKQLHKVIPL 284 YSKILPSSSSIKKLTDLREAIFP 223 NNQFFKKHEFVSNKNNISAMDRAQTI 275	QSTVVPKRLLKVYPLIEQTAKRLHRIS 313 LVKIPQRLKVRINLTLQKLLKRHKRLN 252 NIFRFNRIRKKLKDKVIEKIAYMLEKVKDFN 308	KVYNHYCPYID - THDDEKILSYSLKPNQ 342 SILNSICPPLEGTVLDLSHLSRQSPKER 282 YYLTKSCPLPENWRERKQKIENLINKTREEK 341	VFAFLRSILVRVFPKLI 359 VLKFIIVILQKLLPQEM 299 YYEELFSYTTDNKCVTQFINEFFYNILPKDF 374	NQRIFEIILKDLETFLKLSRYESFSLHYLMS 392 SKKNKGKIIKNLNLLLSLPLNGYLPFDSLLK G-RNRKNFQKKVKKYVELNKHELIHKNLLLE 406	KISEIEWLVLGKRSNAKMCLSDFEKRKQIFA 425 RLKDFRWLFIS DIWFTKHNFENLNQLAI 362 NTREISWMQVETS - AKHFYYFDHEN - IYVLW 437
		> ' '	–	> - >	· ·>	az ,	
	219	252	285	314	343	360	393
	184	201	224	253	283	300	333
	218	249	276	309	342	375	407
ങ്	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42 (CONTINUED)

THE SOLIBINATIVE	EFIYWLYNSFIIPILGSFFYCTEISSTVT - IVY 394 CFISWLFRQLIPKIIQTFFYCTEISSTVT - IVY 394 KLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYY 470	FRKD IWKLLCRPFITSMKMEAFEKINENNVRMD 491 FRHDTWNKLITPFIVEYFKTYLVENNVCRNHNS 427 YRKN IWDVIMKMSIADLKKETLAEVQEKEVEEW 503	KRFL KR A D	IKMGSNKKMLVSTNQTLRPVASILKHLINE 552 EEE FTIYKENHKNAIQPTQKILEYLRNKRPT 491 NSD RKTTKLTTNTKLLNSHLMLKTLKNR - MF 564	ESSGIPFNLEVYMKLLTFKKDLLKHRMFGR-KK 584 SFTKIYSPTQIADRIKEFKQRLLKKFNNVLPEL 524 KDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL 597	YFVRIDIKSCYDRIKQDLMFRIVKKKLKDPE-F 616 YFMKFDVKSCYDSIPRMECMRILKDALKNENGF 557 FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDF 630	VIRKYATIHATSDRATKN 570 FVRSQYFFNTNTG 570 WIMTAQILKRKNNIVIDSKNFRKKEMKDYFRQK 663
	426	459	492	523	553	585	617
	363	395	428	461	492	525	558
	438	471	504	535	565	598	631
ю́	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

44/78

FIG. 42 (CONTINUED)

MKTSDTLFV VPKPYELYI NDLNAKKTLIV	A L W L B D K C X Y L N K B D K C X Y L N K B D K C X X L X L X L X L X L X L X L X L X L	DEYLSFIK EFYSEFKA ESSLGFLR	KKG SVLLRVVDD FLF1TVNKKDAKK 756 SPSQD TLILKLADD FLIISTDQQQVIN 684 DESMNPENPNVNLLMRLTDD YLLITTQENNAVL 795	SNG SND SND SND SND	_ _ ⊢ ≥	ACPKIDEALFNSTSVELTKHMGKSFFYKILRSS 849 NNFHIRSKSSKGIFRSLIALFNTRISYKTIDTN 772 NINLRIEGILCTLNLNMQTKKASMWLKKKKSF 894
635 571 664	666 592 697	699 625 730	732 658 763	757 685 796	787 714 829	817 740 862
B. Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123

FIG. 42 (CONTINUED)

		0	w 4 6	981 877 1023	83 44 03.1
		913 821 960	948 854 993		988 884 1031
SCCNIYRLGYSMCMR	ANKTLNKLFISGGY	FITDLLNVIGRAIWAN TQNMQFHSFLQRIIEM MSSMIDLEVSKIIYSV	KWLFCLGMRDGLKPS RFTILNGFLESLSSN EEHYPDFFLSTLKHF	- DLIKPLRPVLRQVLF ILLRKEIQHLQAYIY MILKAKEAKLKSDQC	
ASFAQVFIDITHNSKFN	2 Q 2 H 2 H	AQAYLKRMKD IFIPQRMF YKSAFKDLSIN VT YMQCAKEYKDHFKKNLAM	LAEILGYTSRRFLSSAEV TVSGCPITKCDPLIEYEV TRAFFKYLVCNIKDTIFG	EQL I	LHRRIAD - IYIHIVN - QSLIQYDA
850	773 895	883 794 928	916 822 961	949 855 994	•
B. Sn Tip1p	Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Ea_p123	Sp_Tip1p Sc_Est2p Fa_0123	Sp_Tip1p Sc_Est2p Fa_0123	Sp_Tip1p Sc_Est2p Ea p123

FIG. 42 (CONTINUED)

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

FIG. 43

+-

+

FIG. 45

1272 1405 1469 128 1198 1332 1078 1018 880 agetettgggagtageteacagaaateettacaaatettetgatgagaetatattagatteatteagateagteegtgeatatte gatactttgcaaaacatttattagctatcattatatataaaaaaatcctataattataaatattaatcaatatttgcggtc GAG gtatatattttttttttttttttttttttttgggatagctaatatggggcag gtaaggtattctaattgtgaaatatttacctgcaattactgtttcaaagaga ccaaatatgtatcatctcgtattaggcttttttccgttttactcctggaatcgtaccttttcactattccccctaatga actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctattttatcggtcgtta ttaacatggagccttacactttagatgagtcacgtcgcatgatggagtatttggtatcatccaacgtttgccttgaaaag ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa ggtaccgatttactttcctttcttcataagctaattgcttcctcgaacgctcctaaatctctggaaatatttttacaaga ccaagtataaggacaaaagaacaactteetteeectaaagaettitaettiaatttaetttteaaataiditeg ggttögettaöttttaatogtggtactgttttagetgetaettetagecaacegegtgtttetaeceegfcattggatat gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg attgagatattcaaaaatttctatccactacaactccittaacgcggtttfatttttctaitttctattcfcatgitgtt AATGTA V z CAA O $_{
m TAT}$ GGA AAT r GTA AAC V GAG GAG E CTA $_{
m LLL}$ $_{
m LLL}$ GCC ATG CAT A M H CGC GAA AGI ß CLIGATATTTTC GAT GAT TTT (F CAT ACC CCC AAA AGC AGG H T P K S R AAG AGC GAT AGA AGT GAA GAC \mathtt{TAT} M AAA ATG CAT GAT CGC AAT TCC AAT000 GTA GAA 1406 ttgtatttaaccgataaag TCACAC CAG AAT GAA ACT TCA ACC CTA $_{
m TCG}$ Ø ATG M CTA CATAAA TAC \mathtt{TAT} Ή 1019 1199 1273 1079 1139 87 241 321 561 641 801 61 81 161 401 481 81

FIG.

1529 148	1601 155	1661 175	1721 195	1781 215	1841 235	1907 245	1967 265	2027 285	2087 305	2147 325	2207 345	2267 365
CAA Q	. GGC	GAC	GTG V	AAA K	TAT Y	AAC N	AGG R	GTA V	ACA T	ATT I	GCG A	ATA I
TGG W	ATC	AAT N	ACT T	CGC R	TCC		CCA P	$_{ m L}$	CAA Q	$_{\rm Y}^{\rm TAT}$	${ m TTT}$	AGG R
AAT N	ag T	CCA P	GAA E	GCC	TCA S	T TTT F	$_{\rm F}^{\rm TTT}$	CCA P	gaa E	CCA P	GTG V	CAA Q
AAA K	ıgtat	$_{\rm L}^{\rm CTT}$	GAG E	AGC	AGG R	CTA TAT L Y	ATT I	ATT I	ATT I	TGC	CAG Q	AAC N
TCA S	facaa	GCT A	TTT F	aaa K	$_{\rm Y}^{\rm TAC}$		TGG W	$_{ m GTG}$	$_{ m L}^{ m TTA}$	$_{\rm Y}^{\rm TAT}$	AAC N	GGT
GAG E	gtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatag	GAG E	GTG V	AAT N	TTT F	G gtaactaatactgttatccttcataactaattttag AT D	CAA Q	AAA K	CCT P	CAT H	CCG P	TGG W
$_{\rm L}^{\rm CTT}$	เตลลด	TTT F	AAT N	CAA Q	ATT I	ıttt	$_{\rm L}^{\rm CTT}$	CAC H	$_{\rm Y}^{\rm TAC}$	AAC N	AAG K	ATC
ATA I	tgaa	ATT I	AAT N	ACT T	AGC	ıctaa	TGG W	$\mathop{\mathrm{TTG}}_{\mathrm{L}}$	GTA V	TAC Y	$ _{\rm L}^{\rm TTA}$	$_{\rm L}^{\rm TTA}$
TCT	actt	AGT	AAA K	ATT I	$_{F}^{\mathrm{TTT}}$	ataa	ATG M	CAA O	AAG K	GTT V	TCC	AAA K
ATA I	:gcgc	GGA G	$_{\rm F}^{\rm TT}$	TCC	AGG R	cttc	CAC H	AAG K	$_{\rm L}^{\rm CTA}$	AAA K	$_{\rm Y}^{\rm TAT}$	CCT
$_{\rm L}^{\rm CTT}$	ıtgtt	AAA K	$_{\rm L}^{\rm CTT}$	ACA T	AGT S	tato	GTA V	GTG V	$_{ m L}^{ m CTC}$	TCA S	AGT	$_{\rm F}^{\rm TTT}$
TAC Y	aage	TCC	CCA P	GAA E	ATT I	ıctgt	ACA T	CAA O	CGT R	$_{\rm L}^{\rm CTA}$	CTT L	GTG V
AAT N	ggtt	TTA L	ATA I	ATT I	TCA	aata	AAC N	TTT F	AAA K	TCT	ATC I	CGA R
CCT P	ataco	TTA L	GGC G	ACC T	ATT	aact	CGG R	GCA	CCC	ATT	AAA K	GTT V
$_{\rm F}^{\rm TTT}$	ytaaa	TAC Y	TCT S	CGA R	AGC S	G gt D	GAT D	AAC N	GTG V	CGT R	GAA E	CTT L
ACT	AT	CAT H	ATT I	AAG K	AAT N	CAA Q	TGT C	ATA I	GTT V	CAT H	GAT D	ATT I
TCT	GAA E	ATG M	CAG Q	AGA R	TGG W	AAG K	ATT I	$_{\rm L}^{\rm CTT}$	ACA T	CTC L	GAT D	TCC
$_{\rm V}^{\rm GTT}$	$_{\rm L}^{\rm TTA}$	GCC A	CTT L	AAA K	TCC	$\mathop{\mathrm{TTT}}_{F}$	TCT	GGA G	AGT S	CGA R	CAC H	CGA R
CTC L	$_{ m L}^{ m TTG}$	GAT D	TAC Y	AAA K	GTT V	AAG K	CAC H	TTT F	CAG Q	AAG K	ACC	$_{\rm L}^{\rm CTT}$
GAT D	$_{\rm L}^{\rm CTT}$	AGT	AAT N	TCA	GAA E	AAG K	TTA L	CAA Q	TCA S	GCA A	GAC	$_{\rm F}^{\rm TTT}$
1470 129	1530 149	1602 156	1662 176	1722 196	1782 216	1842 236	1908 246	1968 266	2028 286	2088 306	2148 326	2208 346

FIG. 46 (CONTINUED)

2336 375	2396 395	2465 405	2525 425	2585 445	2645 465	2705 485	2775 495	2835 515	2906 524	2967 542	3027 562	3088 581
A ACT T	AAG K	GGA G	GCG A	TAT Y	AAA K	GAG	, ACT T	ACG T	gtattaatttttggtcatcaatgtactttacttctaatctatta	GTG V	GAG E	gtaat
GAA E	ATA I	$_{\rm L}^{\rm CTT}$	$ ext{TTT}$	$_{\mathbf{F}}^{\mathrm{TTT}}$	TGG W	AAC N	AAA K	ATT I	atct	CCT P	${ m TTG}$	99 9
CTC	AAC N	GTC V	ATA I	$_{\rm F}^{\rm TTT}$	ATT I	ATA I	CAG Q	CTC	tcta	CGA R	AAC N	$_{ m F}$
ag A(AGT S	CTA L	CAA Q	TCT	GAT D	AAA K	ACT T	CGT R	tact	$_{\rm L}^{\rm TTA}$	TTT F	ATG M
tacci	ATG M	TGG W	AAG K	CAA Q	AAA K	GAA E	GAT D	$_{\rm F}^{\rm TTT}$	actt	ACT T	CCA P	CGA R
attt	TTA L	GAA E	CGC R	TTA L	AGA R	TTT F	3 ATG M	ACC T	ıatgt	CAA Q	ATT I	CAC H
aacg	$_{\rm Y}^{\rm TAT}$	ATT I	AAA K	ATT I	$_{\rm F}^{\rm TTT}$	GCG A	r AGG R	AAT N	catca	AAC N	GGT G	AAG K
gtattgtataaaatttattaccactaacgattttaccag AC	CAT H	GAA E	GAG E	CCT	$_{\rm Y}^{\rm TAT}$	GAA E	r GTT V	AAG K	ggto	ACG T	AGT S	$_{\rm L}^{\rm CTT}$
ttac	TTA L	TCA S	TTT F	ATA I	GTT V	ATG M	3 AAT N	AAG K	ttt	AGT S	AGT S	$_{\rm L}^{\rm CTT}$
ttta	AGT S	ATT I	GAT D	ATA I	ACT T	AAA K	g AAC N	CCT P	taat	GTC V	GAA E	GAT D
aaaa	TTT	gtaatatgccaaatttttttaccattaattaacaatcag	AGT S	TTT F	CGA R	ATG M	gtattttaaagtattttttgcaaaaagctaatattttcag	$_{\rm L}^{\rm TTA}$		TTA L	GAA E	AAG K
gtat	TCT	acaa	TTA L	TCG	AAT N	TCA S	tatt	CTA L	AAG K	ATG M	AAT N	AAG K
ıtatt	GAG	atta	TGC	AAT N	CGA R	ACA T	ctaa	CGT R	ATA I	AAA K	ATC I	$_{\rm F}^{\rm TT}$
O O	, TAC Y	atta	ATG M	TAC	$_{\rm L}^{\rm TTA}$	ATT I	aaag	ATT I	$_{\rm L}^{\rm TTA}$	AAA K	$_{\rm L}^{\rm TTA}$	ACT T
AAA K	AGA R	tacc	AAA	CTA	GAT	TTT F	gcaa	GTT V	TTC	AAC N	CAT H	$_{\rm L}^{\rm CTT}$
A TTA L	A TCG	ttt	, GCG A	TGG W	AGT S	. CCC	ttt	GCA A	AGA R	TCA S	AAA K	$_{\rm L}^{\rm CTT}$
A ATA I	A TTA L	aatt	AAT N	TAC Y	TCA S	. CGA R	tatt	CCA	AAA K	GGT G	CTG	AAG K
s ATA I	AAA K	gccg	TCA S	ATC	GAA E	TGC	aaag	CCT	AGA R	ATG M	ATA I	ATG M
r gag E	TTG L	atat	A AGG R	TTC F	ACT T	TTG L	ttt	TTG	TTA L	ttagcag	TCG S	TAC Y
3 TTT 5 F	7 TTC 5 F		AAA K	GAA	ATC	CIC		ACT T	AAT N		GCA A	GTT V
2268 366	2337	2397 396	2466 406	2526 426	2586 446	2646 466	2706 486	2776 496	2836 516	2907 525	2968 543	3028 563

FIG. 46 (CONTINUED)

CGG ATA GAT ATA ? I D I	AAA AAG AAA CTC 3215 K K K L 611	AGT GAC CGA GCT 3275 S D R A 631	ttggaattttttaacaa 3343 643	TCT ATG AAA ACA 3405 S M K T 659	TCT GAA ATT TTT 3465 S E I F 679	gtataccaattgttgaattgtaataaca 3532 692	CCT CAG GGC TCA 3593 P Q G S 708	GAA TAC CTA TCG 3653 E Y L S 728	CTC TTT ATA ACA 3713 L F I T 748	gtgagttgctgtcattcc 3777 764	GAG AAA ACA GTA 3840 E K T V 778	GAA AGC AAG AAA 3900 E S K K 798	
CGT AAG AAG TAT TTT GTA R K Y F V	AAG CAA GAT TTG ATG TTT CGG ATT GTT K Q D L M F R I V	CGA AAG TAT GCA ACC ATA CAT GCA ACA R K Y A T I H A T	GCG TTT TCC TAT T gtaagtttattttttcattggaattttttaacaa A F S Y F	CCT TTT GAA AAA GTC GTG CAG TTA CTT P F E K V V Q L L L	"T GTG GAT TAT TGG ACC AAA AGT TCT V D Y W T K S S	TCT GGA CAC ATT GTT AAG gtataccaattg S G H I V K	CAA TAC CTT CAA AAA GTT GGT ATC CC Q Y L Q K V G I P	T TTC TAT ATG GAA GAT TTG ATT GAT F Y M E D L I D	TTG TTA CGA GTA GTC GAC GAT TTC L L R V V D D F	TTT TTG AAT TTA TCT TTA AGA G F L N L S L R G	AAA CAC AAT TTT TCT ACG AGC CTG K H N F S T S L	ATA ATA AAC AAT ACT TTT TTT AAT I I N N T F F N	<i>FIG. 46</i> (CONTINUED)
tatataatgcgcgattcctcattattae	3156 AAA TCC TGT TAT GAT CGA ATA AJ 592 K S C Y D R I K	3216 AAG GAT CCC GAA TTT GTA ATT CG 612 K D P E F V I R	3276 ACA AAA AAC TTT GTT AGT GAG GG 632 T K N F V S E A	3344 attettttttag TT GAT ATG GTG CC 644	3406 TCA GAT ACT TTG TTT GTT GAT TTT 660 S D T L F V D F	3466 AAA ATG CTC AAG GAA CAT CTC TC 680 K M L K E H L S	3533 ctaatgaaactag ATA GGA AAT TCT 693 I G N S	3594 ATT CTG TCA TCT TTT TTG TGT CAT 709 I L S S F L C H	3654 TTT ACG AAA AAG AAA GGA TCA GTG 729 F T K K K G S V	3714 GTT AAT AAA AAG GAT GCA AAA AAA 749 V N K K D A K K	3778 taagttctaaccgttgaag GA TTT GAG 765 F E	3841 ATA AAC TTT GAA AAT AGT AAT GGG 779 I N F E N S N G	

3960 818	4020 838	4089 848	4149 868	4209 888	4274 903	4339 917	4401 935	4468 946	4528 966	4588 986	4665 989
TGT C	999 9	A TCG S	TCT	AAA K	G gtgagtacttattttaactaga D	GCC A	gtacgtgtc	AAA K	ACT	ATA I	tgtcattttcaatttattatatacatcctttattactggtgtcttaaacaatattattactaagtata
GCA A	ATG M	cag.	AAT N	$ _{\rm L}^{\rm TTA}$	taa	J TT	ytace	$\mathop{\mathrm{TTG}}_{\mathrm{L}}$	${\rm TTG}_{\rm L}$	AGA R	taac
$_{\rm L}^{\rm TTA}$	CAT H	taat	TTC F	TAC Y	catt	HAAA AAG TTG G K K L A	T ₩	GGT G	TCA S	AGA R	ıttac
${ m TTG}$	AAA K	caaat	AAA K	GCA A	cactt	3 AAA	AAA K	GAT D	CAG Q	CAT H	atta
ACA T	ACG T	ctgad	TCA	CAA Q	gagt	r TGG W	GTC	AGA R	$ ext{TTT}$	$_{\rm L}^{\rm TTA}$	ıcaat
GAT D	$_{\rm L}^{\rm CTG}$	gtatactgtgtaactgaataatagctgacaaataatcag	AAT N	GCA A		A ATT I	GAA E	ATG M	CAA Q	$_{\rm F}^{\rm TT}$	taaa
$_{\rm L}^{\rm CTT}$	GAG	aata	CAC H	AGA R	ACG T	A AAA K	GCA A	GGA G	TAC Y	TTA	gtct
TCT	GTA V	actg	GAC ATT ACC D I T	ATG M	ATA I	A AGA R	TCT	CTT L	ATA I	GTG V	tggt
AGG R	TCT	tgta	ATT I	TGT C	$_{ m F}^{ m TTC}$	r GGA G	TCC	TGT C	CTA . L	CAG Q	ıttac
ATG M	ACA T	actg.	GAC D	ATG M	ATG M	r ATT I	TTG	$_{\rm F}^{\rm TTT}$	CAG Q	CGA R	itti
AAC N	TCT	gtati	ATT I	TCT	AGA R	r GTT V	TTC	$_{\rm L}^{\rm CTT}$	GAA E	$_{\rm L}^{\rm TTG}$	atco
GTG V	AAC N	AG R	TTT F	TAC Y	CAA Q	3 AAT N	CGT R	ag G	TTC F	GTT V	atac
TCT S	$ ext{TTT}$	CTA L	GTA V	GGA G	CCC	r TTG L	AGG R	atca	TGC	CCA P	ıttat
$_{ m F}$	$_{\rm L}^{\rm TTA}$	ATT I	CAA Q	CTA L	ATT I	r ctt L	AGT S	уасас	CCA TGC P C	AGA R	attta
GGT	GCC	AAA K	GCA A	AGG R	$ ext{TTT}$	ag AT	ACG T	ggtctcgagacttcagcaatattgacacatcag	CAT H	CTA L	tcag
$_{\rm F}^{\rm TTC}$	GAA E	TAC Y	TTT F	$_{\rm Y}^{\rm TAT}$	ATA I	aaagtcattaattaaccttag	TAT Y	gcaat	$_{\rm Y}^{\rm TAT}$	CCG P	attt
TTC F	GAT D	\Pr_F	TCC	ATA I	GAT D	ttaad	GGA G	tcaç	AAA K	AAG K	
CCA P	ATT I	$ ext{TTT}$	GCA A	AAT N	AAG K	ttaai	TTA L	agact	TTC	ATC I	TAA *
ATG M	AAA K	TCT	CIT	TGC C	ATG M	gtcat	ATA I	st cg	TCT S	$_{\rm L}^{\rm CTT}$	GAT D
AGA R	CCT P	AAA K	AGC S	TGC	AGG R		GAA E		CCC	GAT D	GCT A
3901 799	3961 819	4021 839	4090 849	4150 869	4210 889	4275 904	4340 918	4402 936	4469 947	4529 967	4589 987

FIG. 46 (CONTINUED)

4666

4746 4826 FIG. 46 (CONTINUED)

56/78

met ser val tyr val val glu leu leu GCCAAGTTCCTGCACTGGCTG ATG AGT GTG TAC GTC GTC GAG CTG CTC arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG 30 leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT gly ile arg gln his leu lys arg val gln leu arg glu leu ser GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG 60 glu ala glu val arg gln his arg glu ala arg pro ala leu leu GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG ile val asn met asp tyr val val gly ala arg thr phe arg arg ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA glu lys ala glu arg leu thr ser arg val lys ala leu phe GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC 120 ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG GGC ala ser val leu gly leu asp asp ile his arg ala trp arg thr GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC phe val leu arg val arg ala gln asp pro pro glu leu tyr TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG TAC phe val lys val asp val thr gly ala tyr asp thr ile pro gln TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG 180 asp arg leu thr glu val ile ala ser ile ile lys pro gln asn GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC 200 thr tyr cys val arg arg tyr ala val val gln lys ala ala met ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC ATG

FIG. 47

57/78

210 gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC 230 gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC 240 leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG 260 arg asp gly leu leu leu arg leu val asp asp phe leu leu val CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG TTG GTG thr pro his leu thr his ala lys thr phe leu arg thr leu val ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC 280 290 arg gly val pro glu tyr gly cys val val asn leu arg lys thr CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG AAG ACA 300 val val asn phe pro val glu asp glu ala leu gly gly thr ala GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT 310 320 phe val gln met pro ala his gly leu phe pro trp cys gly leu TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG 330 leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC TCC AGC tyr ala arg thr ser ile arg ala ser leu thr phe asn arg gly TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC CGC GGC 360 phe lys ala gly arg asn met arg arg lys leu phe gly val leu TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG arg leu lys cys his ser leu phe leu asp leu gln val asn ser CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC 390 leu gln thr val cys thr asn ile tyr lys ile leu leu gln CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG 400 ala tyr arg phe his ala cys val leu gln leu pro phe his gln GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

FIG. 47 (CONTINUED)

58/78

420 gln val trp lys asn pro his phe ser cys ala ser ser leu thr CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA arg leu pro leu leu leu his pro glu ser gln glu arg arg asp CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT 450 val ala gly gly gln gly arg arg pro ser ala leu arg gly GTC GCT GGG GGC CAA GGG CGC CGC CGC CCC TCT GCC CTC CGA GGC 460 470 arg ala val ala val pro pro ser ile pro ala gln ala asp ser CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG 480 thr pro cys his leu arg ala thr pro gly val thr gln asp ser ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC 490 pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC 510 pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC his pro gly leu met ala thr arg pro gln pro gly arg glu gln CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG 540 thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG arg gly gly pro his pro gly leu his arg trp glu ser glu ala AGG ĞGC ĞGC CCA CAC CCA ĞGC CTG CAC CGC TGG ĞAG TCT ĞAG GCC 564 OP TGA GTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC AGGCTGGCGTTCGGTCCACCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACT CCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCTTCGCCCTGCCTTCC TTTGCCTTCCACCCCACCATTCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTTTGGG AATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGG GTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATTGAGTT

FIG. 47 (CONTINUED)

```
Motif -1
              ...LVVSLIRCFFYVTEQQKSYSKT...
Ep p123
              ...FIIPILQSFFYITESSDLRNRT...
Sp Tezl
Sc Est2
              ...LIPKIIQTFFYCTEISSTVTIV...
              ...YVVELLRSFFYVTETTFQKNRL...
Hs TCP1
consensus
                         FFY TE
                                                 K
Motif 0
                        p hhh K
                                    hR h
              ... KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
Ep p123
Sp Tez1
              ...QKTTLPPAVIRLLPKKN--TFRLITNLRKRFL...
Sc Est2
              ...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...
              ... ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
Hs TCP1
                           R PK
consensus
                             AF
                     h hDh GY h
Motif A
              ... PKLFFATMDIEKCYDSVNREKLSTFLK...
Ep p123
Sp Tez1
              ... RKKYFVRIDIKSCYDRIKQDLMFRIVK...
Sc Est2
              ...PELYFMKFDVKSCYDSIPRMECMRILK...
              ...PELYFVKVDVTGAYDTIPQDRLTEVIA...//...
Hs TCP1
consensus
                     F
Motif B
                           hPQG
                                   ps hh
Ep p123
              ...NGKFYKQTKGIPQGLCVSSILSSFYYA...
Sp Tez1
              ... GNSQYLQKVGIPQGSILSSFLCHFYME...
Sc Est2
              ... EDKCYIREDGLFQGSSLSAPIVDLVYD...
              ...RATSYVQCQGIPQGSILSTLLCSLCYG...
Hs TCP1
consensus
                           G QG
                         Y
Motif C
                      h F DD hhh
Ep p123
              ... PNVNLLMRLTDDYLLITTQENN...
Sp Tezl
              ...KKGSVLLRVVDDFLFITVNKKD...
Sc Est2
              ...SQDTLILKLADDFLIISTDQQQ...
Hs TCP1
              ... RRDGLLLRLVDDFLLVTPHLTH...
consensus
                           DD L
Motif D
                       Gh h cK
Ep p123
              ...NVSRENGFKFNMKKL...
Sp Tezl
              ...LNLSLRGFEKHNFST...
Sc Est2
              ...KKLAMGGFQKYNAKA...
Hs TCP1
              ...LRTLVRGVPEYGCVV...
consensus
                        G
```

FIG. 48

FIG. 49

1	GCAGCGCTGC	GTCCTGCTGC	GCACGTGGGA	AGCCCTGGCC	CCGGCCACCC
51	CCGCGATGCC	GCGCGCTCCC	CGCTGCCGAG		CCTGCTGCGC
101	AGCCACTACC		GCCGCTGGCC		GGCGCCTGGG
151	GCCCCAGGGC	TGGCGGCTGG	TGCAGCGCGG		GCTTTCCGCG
	CGNTGGTGGC	CCANTGCNTG	GTGTGCGTGC		ANGGCNGCCC
201	CCCGCCGCCC	CCTCCTTCCG	CCAGGTGTCC		ANCTGGTGGC
251	CCGAGTGCTG	CANANGCTGT	GCGANCGCGG	CGCGAANAAC	GTGCTGGCCT
301	TCGGCTTCGC	GCTGCTGGAC	GGGGCCCGCG	GGGGCCCCC	CGAGGCCTTC
351	ACCACCAGCG	TGCGCAGCTA	CCTGCCCAAC	ACGGTGACCG	ACGCACTGCG
401	GGGGAGCGGG	GCGTGGGGGC	TGCTGCTGCG	CCGCGTGGGC	GACGACGTGC
451	TGGTTCACCT	GCTGGCACGC	TGCGCGNTNT	TTGTGCTGGT	GGNTCCCAGC
501		ANGTGTGCGG	GCCGCCGCTG	TACCAGCTCG	GCGCTGCNAC
551	TGCGCCTACC	CCCCCGCCAC	ACGCTANTGG	ACCCGAANGC	GTCTGGGATC
601	TCAGGCCCGG		CGTCAGGGAG	GCCGGGGTCC	CCCTGGGCTG
651	CAACGGGCCT	GGAACCATAG	GCGCGGGGGC	AGTGCCAGCC	GAAGTCTGCC
701	CCAGCCCCGG	GTGCGAGGAG	GTGGCGCTGC	CCCTGAGCCG	GAGCGGACGC
751	GTTGCCCAAG	AGGCCCAGGC	GCCCACCCGG	GCAGGACGCC	TGGACCGAGT
801	CCGTTGGGCA	GGGGTCCTGG	GTCACCTGCC	AGACCCGCCG	AAGAAGCCAC
851	GACCGTGGTT	TCTGTGTGGT		CCACTCCCAC	CCATCCGTGG
901	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG CCCCCATCCA	CATCGCGGCC	ACCACGTCCT
951	GCCGCCAGCA	CCACGCGGGC	GTGTACGCCG	AGACCAAGCA	CTTCCTCTAC
1001	GGGACACGCC	TTGTCCCCCG	TGCGNCCCTC	CTTCCTACTC	AATATATCTG
1051	TCCTCAGGCG	ACAAGNACAC	TCGGGAGGTT	CGTGGAGACA	
1101	AGGCCCAGCC	TGACTGGCGT	GATTCCCCGC	AGGTTGCCCC	GCCTGCCCCA
1151	TTCCAGGCCT	TGGATGCCAG	CCCTGTTTCT	GGAGCTGCTT	GGGAACCACG
1201	GCGNTACTGG	CAAATGCGGC	TTCCTCAAGA	CGCACTGCCC	GCTGCGAGCT
1251	CGCAGTGCCC	CTACGGGGTG		CGCACIGCCC	CCCAGGGCTC
1301	GCGGTCACCC	CAGCAGCCGG	TGTCTGTGCC	ACCCCCGTCG	CCTGGTGCAG
1351	TGTGGCGGCC	CCCGAGGAGG	AGGAACACAG		TCGTGCGGGC
1401	CTGCTCCGCC	AGCACAGCAG	CCCCTGGCAG	CTGGGGCTCC	AGGCACAACG
1451	CTGCCTGCGC	CGGCTGGTGC	CCCCAGGCCT	TCATCTCCCT	GGGGAAGCAT
1501	AACGCCGCTT	CCTCAGGAAC	ACCAAGAAGT		TGCGGGACTG
1551	GCCAAGCTCT		GCTGACGTGG		GCCGCAGAGC
1601	CGCTTGGCTG		CAGGGGTTGG		GCTGATGAGT
1651	ACCGTCTGCG		CTGGCCAAGT		CGGAGACCAC
1701	GTGTACGTCG		CAGGTCTTTC TTTTCTACCG		TGGAGCAAGT
1751	GTTTCAAAAG				GCTGCGGGAG
1801	TGCAAAGCAT		CAGCACTTGA GCAGCATCGG		CCGCCCTGCT
1851	CTGTCGGAAG				CGGCCGATTG
1901	GACGTCCAGA				
1951	TGAACATGGA				
2001	GCCGAGCGTC				
2051	CGAGCGGGCG				
2101	ACGATATCCA				
2151	GACCCGCCGC				
2201	CGACACCATC				
2251	AACCCCAGAA				
2301	GCCCATGGGC				
2351	AGACCTCCAG				
2401	GCCCGCTGAG	GGATGCCGTC	GTCATCGAGC		
2451	GCCAGCAGT'G	GCCTCTTCGA	. CGICIICCIA	CGCTTCATGT	JULACUACUC

FIG. 50

	41111		=
	attr.	**	
	-111111	the state of the state of	-
			-
-		-	
A11715			
ë			
The catholic	77	=	1
ű	Selenter.	10	11
111111	2	311	-
	.peast.	21	
1 1000 2	77		
ž	Til.		;

2501	CGTGCGCATC	AGGGGCAAGT	CCTACGTCCA	GTGCCAGGGG	ATCCCGCAGG
2551	GCTCCATCCT	CTCCACGCTG	CTCTGCAGCC	TGTGCTACGG	CGACATGGAG
2601	AACAAGCTGT	TTGCGGGGAT	TCGGCGGGAC	GGGCTGCTCC	TGCGTTTGGT
2651	GGATGATTTC	TTGTTGGTGA	CACCTCACCT	CACCCACGCG	AAAACCTTCC
2701	TCAGGACCCT	GGTCCGAGGT	GTCCCTGAGT	ATGGCTGCGT	GGTGAACTTG
2751	CGGAAGACAG	TGGTGAACTT	CCCTGTAGAA	GACGAGGCCC	TGGGTGGCAC
2801	GGCTTTTGTT	CAGATGCCGG	CCCACGGCCT	ATTCCCCTGG	TGCGGCCTGC
2851	TGCTGGATAC	CCGGACCCTG	GAGGTGCAGA	GCGACTACTC	CAGCTATGCC
2901	CGGACCTCCA	TCAGAGCCAG	TCTCACCTTC	AACCGCGGCT	TCAAGGCTGG
2951	GAGGAACATG	CGTCGCAAAC	TCTTTGGGGT	CTTGCGGCTG	AAGTGTCACA
3001	GCCTGTTTCT	GGATTTGCAG	GTGAACAGCC	TCCAGACGGT	GTGCACCAAC
3051	ATCTACAAGA	TCCTCCTGCT	GCAGGCGTAC	AGGTTTCACG	CATGTGTGCT
3101	GCAGCTCCCA	TTTCATCAGC	AAGTTTGGAA	GAACCCCACA	TTTTTCCTGC
3151	GCGTCATCTC	TGACACGGCC	TCCCTCTGCT	ACTCCATCCT	GAAAGCCAAG
3201	AACGCAGGGA	TGTCGCTGGG	GGCCAAGGGC	GCCGCCGGCC	CTCTGCCCTC
3251	CGAGGCCGTG	CAGTGGCTGT	GCCACCAAGC	ATTCCTGCTC	AAGCTGACTC
3301	GACACCGTGT	CACCTACGTG	CCACTCCTGG	GGTCACTCAG	GACAGCCCAG
3351	ACGCAGCTGA	GTCGGAAGCT	CCCGGGGACG	ACGCTGACTG	CCCTGGAGGC
3401	CGCAGCCAAC	CCGGCACTGC	CCTCAGACTT	CAAGACCATC	CTGGACTGAT
3451	GGCCACCCGC	CCACAGCCAG	GCCGAGAGCA	GACACCAGCA	GCCCTGTCAC
3501	GCCGGGCTCT	ACGTCCCAGG	GAGGGAGGGG	CGGCCCACAC	CCAGGCCCGC
3551	ACCGCTGGGA	GTCTGAGGCC	TGAGTGAGTG	TTTGGCCGAG	GCCTGCATGT
3601	CCGGCTGAAG	GCTGAGTGTC	CGGCTGAGGC	CTGAGCGAGT	GTCCAGCCAA
3651	GGGCTGAGTG	TCCAGCACAC	CTGCCGTCTT	CACTTCCCCA	CAGGCTGGCG
3701	CTCGGCTCCA	CCCCAGGGCC	AGCTTTTCCT	CACCAGGAGC	CCGGCTTCCA
3751	CTCCCCACAT	AGGAATAGTC	CATCCCCAGA	TTCGCCATTG	TTCACCCCTC
3801	GCCCTGCCCT	CCTTTGCCTT	CCACCCCCAC	CATCCAGGTG	GAGACCCTGA
3851	GAAGGACCCT	GGGAGCTCTG	GGAATTTGGA	GTGACCAAAG	GTGTGCCCTG
3901	TACACAGGCG	AGGACCĆTGC	ACCTGGATGG	GGGTCCCTGT	GGGTCAAATT
3951	GGGGGGAGGT	GCTGTGGGAG	TAAAATACTG	AATATATGAG	TTTTTCAGTT
4001	TTGAAAAAAA	AAAAAAAAA	AAAAAAAA		

	GCAGCGCTGCGTCCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCGATGCC 1+ 60 CGTCGCGACGCAGGACGCGTGCACCCTTCGGGACCGGGGCCGGTGGGGGCGCTACGG
a b c	A A L R P A A H V G S P G P G H P R D A - Q R C V L L R T W E A L A P A T P A M P - S A A S C C A R G K P W P R P P P R C R -
	GCGCGCTCCCCGCTGCCGAGCCGTCCCTGCTGCGCAGCCACTACCGCGAGGTGCT 61+ 120 CGCGCGAGGGGCGACGCTCGGCACGCGAGGGACGACGCGTCGGTGATGGCGCTCCACGA
a b c	ARSPLPSRALPAAQPLPRGA- RAPRCRAVRSLLRSHYREVL- ALPAAEPCAPCCAATTARCC-
	GCCGCTGGCCACGTTCGTGCGGCGCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAGCGCGG 121+ 180 CGGCGACCGGTGCAAGCACGCCGCGGACCCCGACCACGTCGCGCC
a b c	A A G H V R A A P G A P G L A A G A A R - P L A T F V R R L G P Q G W R L V Q R G - R W P R S C G A W G P R A G G W C S A G -
	GGACCCGGCGGCTTTCCGCGCGTTGGTGGCCCANTGCNTGGTGTGCGTGCCCTGGGANGN 181+ 240 CCTGGGCCGCGAAAGGCGCGCNACCACCGGGTNACGNACCACGCACGCACGGACCCTNCN
a b c	G
	ANGGCNGCCCCCGCCGCCCCTCCTTCCGCCAGGTGTCCTGCCTGAANGANCTGGTGGC 241
a b c	? A A P R R P L L P P G V L P E ? ? G G - ? ? P P A A P S F R Q V S C L ? ? L V A - G ? P P P P P S A R C P A * ? ? W W P -
	CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGCTTCGC 301
a b c	P S A A ? A V R ? R R E ? R A G L R L R - R V L ? ? L C ? R G A ? N V L A F G F A - E C C ? ? C A ? A A R ? T C W P S A S R -
	GCTGCTGGACGGGGCCCGCGGGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA
	361+ 420 CGACGACCTGCCCCGGGGCGCCCCCGGGGGGGCTCCGGAAGTGGTGGTCGCACGCGTCGAT
a b c	361+ 420
b	CGACGACCTGCCCCGGGGCGCCCCCGGGGGGGCTCCGGAAGTGGTCGCACGCGTCGAT A A G R G P R G P P R G L H H Q R A Q L - L L D G A R G G P P E A F T T S V R S Y -

64/78

a b c		P R G R R A G S P A G T L R ? ? C A G R V G D D V L V H L L A R C A ? F V L V A W A T T C W F T C W H A A R ? L C W W	- - -
	E 4.3	$\tt GGNTCCCAGCTGCGCCTACCANGTGTGCGGGCCGCCGCTGTACCAGCTCGGCGCTGCNAC$	600
	541	CCNAGGGTCGACGCGGATGGTNCACACGCCCGGCGGCGACATGGTCGAGCCGCGACGNTG	600
a b c		G S Q L R L P ? V R A A A V P A R R C ? ? P S C A Y ? V C G P P L Y Q L G A A T ? P A A P T ? C A G R R C T S S A L ? L	- -
	601	TCAGGCCCGGCCCCCCCCACACGCTANTGGACCCGAANGCGTCTGGGATCCAACGGGCCT AGTCCGGGCCGGGGGCGTGTGCGATNACCTGGGCTTNCGCAGACCCTAGGTTGCCCGGA	660
a b c		S G P A P A T R ? W T R ? R L G S N G P Q A R P P P H A ? G P E ? V W D P T G L R P G P R H T L ? D P ? A S G I Q R A W	 -
	661	GGAACCATAGCGTCAGGGAGGCCGGGGTCCCCTGGGCTGCCAGCCCCGGGTGCGAGGAG+ CCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGGACCCGACGGTCGGGGCCCACGCTCCTC	720
a b c		G T I A S G R P G S P W A A S P G C E E E P * R Q G G R G P P G L P A P G A R R N H S V R E A G V P L G C Q P R V R G G	
	721	GCGCGGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGC	780
a b c		A R G Q C Q P K S A V A Q E A Q A W R C R G G S A S R S L P L P K R P R R G A A A G A V P A E V C R C P R G P G V A L P	- - -
	781	CCCTGAGCCGGAGCGGACGCCCGTTGGGCAGGGGTCCTGGGCCCACCCGGGCAGGACGCC GGGACTCGGCCTGGCGGGCAACCCGTCCCCAGGACCCGGGTGGGCCCGTCCTGCGG	840
a b c		P * A G A D A R W A G V L G P P G Q D A P E P E R T P V G Q G S W A H P G R T P L S R S G R P L G R G P G P T R A G R L	- -
	841	TGGACCGAGTGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCCGCCGAAGAAGCCAC ACCTGGCTCACTGGCACCAAAGACACACACACAGTGGACGGTCTGGGCGGCTTCTTCGGTG	900
a b c		W T E * P W F L C G V T C Q T R R R S H G P S D R G F C V V S P A R P A E E A T D R V T V V S V W C H L P D P P K K P P	- - -
	901	CTCTTTGGAGGGTGCGCTCTCTGGCACGCCACTCCCACCCA	960
a b c		L F G G C A L W H A P L P P I R G P P A S L E G A L S G T R H S H P S V G R Q H L W R V R S L A R A T P T H P W A A S T	
	961	CCACGCGGGCCCCCATCCACATCGCGGCCACCACGTCCTGGGACACGCCTTGTCCCCCG	1020

65/78

a b c		PRGPPIHIAATTSWDTPCPP HAGPPSTSRPPRPGTRLVPR TRAPHPHRGHHVLGHALSPG	
	1021	GTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACAAGNACACTGCGNCCCTC+ CACATGCGGCTCTGGTTCGTGAAGGAGATGAGGAGTCCGCTGTTCNTGTGACGCNGGGAG	1080
a b c		V Y A E T K H F L Y S S G D K ? T A ? L C T P R P S T S S T P Q A T ? T L R P S V R R D Q A L P L L R R Q ? H C ? P P	
	1081	CTTCCTACTCAATATATCTGAGGCCCAGCCTGACTGGCGTTCGGGAGGTTCGTGGAGACA+ GAAGGATGAGTTATATAGACTCCGGGTCGGACTGACCGCAAGCCCCTCCAAGCACCTCTGT	1140
a b c		L P T Q Y I * G P A * L A F G R F V E T F L L N I S E A Q P D W R S G G S W R ? S Y S I Y L R P S L T G V R E V R G D ?	
	1141	NTCTTTCTGGTTCCAGGCCTTGGATGCCAGGATTCCCCGCAGGTTGCCCCGCCTGCCCCA+ NAGAAAGACCAAGGTCCGGAACCTACGGTCCTAAGGGGCGTCCAACGGGGCGGACGGGGT	1200
a b c		? F L V P G L G C Q D S P Q V A P P A P S F W F Q A L D A R I P R R L P R L P Q L S G S R P W M P G F P A G C P A C P S	-
	1201	GCGNTACTGGCAAATGCGGCCCCTGTTTCTGGAGCTGCTTGGGAACCACGCGCAGTGCCC+ CGCNATGACCGTTTACGCCGGGGACAAAGACCCTCGACGAACCCTTGGTGCGCGTCACGGG	1260
a b c		A ? L A N A A P V S G A A W E P R A V P R Y W Q M R P L F L E L L G N H A Q C P ? T G K C G P C F W S C L G T T R S A P	
	1261	CTACGGGGTGTTCCTCAAGACGCACTGCCCGCTGCGAGCTGCGGTCACCCCAGCAGCCGG	1320
a b c		L R G V P Q D A L P A A S C G H P S S R Y G V F L K T H C P L R A A V T P A A G T G C S S R R T A R C E L R S P Q Q P V	-
	1321	TGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTGGCGGCCCCCGAGGAGGAGGAACACAG+ ACAGACACGGGCCTCTTCGGGGTCCCGAGACACCGCCGGGGGCTCCTCCTCCTTGTGTC	1380
a b c		C L C P G E A P G L C G G P R G G G T Q V C A R E K P Q G S V A A P E E E E H R S V P G R S P R A L W R P P R R R N T D	- -
•	1381	ACCCCGTCGCCTGGCAGCTGCTCCGCCAGCACAGCAGCCCCTGGCAGGTGTACGGCT	1440
a b c		T P V A W C S C S A S T A A P G R C T A P P S P G A A A P P A Q Q P L A G V R L P R R L V Q L L R Q H S S P W Q V Y G F	
	1441	TCGTGCGGGCCTGCCTGCGCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCACAACG	1500

66/78

a b c		S C G P A C A G W C P Q A S G A P G T T - R A G L P A P A G A P R P L G L Q A Q R - V R A C L R R L V P P G L W G S R H N E -
	1501	AACGCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCATGCCAAGCTCT
	1301	TTGCGGCGAAGGAGTCCTTGTGGTTCTTCAAGTAGAGGGACCCCTTCGTACGGTTCGAGA
a b c		N A A S S G T P R S S S P W G S M P S S - T P L P Q E H Q E V H L P G E A C Q A L - R R F L R N T K K F I S L G K H A K L S -
	1561	CGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGGACTGCGCTTGGCTGCGCAGGAGCC
	1301	GCGACGTCCTCGACTGCACCTTCTACTCGCACGCCCTGACGCGAACCGACGCGTCCTCGG
a b c		R C R S * R G R * A C G T A L G C A G A - A A G A D V E D E R A G L R L A A Q E P - L Q E L T W K M S V R D C A W L R R S P -
	1621	CAGGGGTTGGCTGTGTTCCCGCCCGCAGAGCACCGTCTGCGTGAGGAGATCCTGGCCAAGT+ 1680 GTCCCCAACCGACACAAGGCCGGCGTCTCGTGGCAGACGCACTCCTCTAGGACCGGTTCA
a b c		Q G L A V F R P Q S T V C V R R S W P S - R G W L C S G R R A P S A * G D P G Q V - G V G C V P A A E H R L R E E I L A K F -
	1681	TCCTGCACTGGCTGATGAGTGTGTACGTCGTCGAGCTGCTCAGGTCTTTCTT
a b c		S C T G * * V C T S S S C S G L S F M S - P A L A D E C V R R R A A Q V F L L C H - L H W L M S V Y V V E L L R S F F Y V T -
	1741	CGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTGGAGCAAGT
a b c		R R P R F K R T G S F S T G R V S G A S - G D H V S K E Q A L F L P E E C L E Q V - E T T F Q K N R L F F Y R K S V W S K L -
	1801	TGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCTGTCGGAAG
a b c		C K A L E S D S T * R G C S C G S C R K - A K H W N Q T A L E E G A A A G A V G S - Q S I G I R Q H L K R V Q L R E L S E A -
	1861	CAGAGGTCAGGCAGCATCGGGAAGCCAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCA+ 1920 GTCTCCAGTCCGTCGTAGCCCTTCGGTCCGGGCGGACGACTCTGAGGCGAAGT
a b c		Q R S G S I G K P G P P C * R P D S A S - R G Q A A S G S Q A R P A D V Q T P L H - E V R Q H R E A R P A L L T S R L R F I -
	1921	TCCCCAAGCCTGACGGCCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAA+ 1980 AGGGGTTCGGACTGCCCGACGCCGGCTAACACTTGTACCTGATGCAGCACCCTCGGTCTT

FIG. 51 (CONTINUED)

67/78

a b c		P Q A * R A A A D C E H G L R R G S Q N - P K P D G L R P I V N M D Y V V G A R T -	-
	1981	CGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCG GCAAGGCGTCTCTTTTCTCCCGGGCTCGCAGAGTGGAGCTCCCACTTCCGTGACAAGTCGC	2040
a b c		R S A E K R G P S V S P R G * R H C S A - V P Q R K E G R A S H L E G E G T V Q R - F R R E K R A E R L T S R V K A L F S V -	~ ~ -
	2041	TGCTCAACTACGAGCGGGCGCGCGCCCCGGCCTCCTGGGCGCCTCTGTGCTGGGCCTGG ACGAGTTGATGCTCGCCCGCGCGCGCGGGGGCCGGAGACCCGGAGACACGACCCGGACC	2100
a b c		C S T T S G R G A P A S W A P L C W A W - A Q L R A G A A P R P P G R L C A G P G - L N Y E R A R R P G L L G A S V L G L D -	
	2101	ACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGACCCGCCGC TGCTATAGGTGTCCCGGACCGCGTGGAAGCACGACGCACACGCCCGGGTCCTGGGCGGCG	2160
a b c		T I S T G P G A P S C C V C G P R T R R R P P Q G L A H L R A A C A G P G P A A D I H R A W R T F V L R V R A Q D P P P	-
	2161	CTGAGCTGTACTTTGTCAAGGTGGATGTGACGGGCGCGTACGACACCATCCCCCAGGACA GACTCGACATGAAACAGTTCCACCTACACTGCCCGCGCATGCTGTGGTAGGGGGGTCCTGT	2220
a b c		L S C T L S R W M * R A R T T P S P R T + A V L C Q G G C D G R V R H H P P G Q + E L Y F V K V D V T G A Y D T I P Q D R -	- -
	2221	GGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGTGCG	2280
a b c		G S R R S S P A S S N P R T R T A C V G A H G G H R Q H H Q T P E H V L R A S V A L T E V I A S I I K P Q N T Y C V R R Y	- - -
	2281	ATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCACGTCT+	2340
a b c		M P W S R R P P M G T S A R P S R A T S C R G P E G R P W A R P Q G L Q E P R L A V V Q K A A H G H V R K A F K S H V S	- -
	2341	CTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGANAACA GATGGAACTGTCTGGAGGTCGGCATGTACGCTGTCAAGCACCGAGTGGACGTCCTNTTGT	2400
a b c		L P * Q T S S R T C D S S W L T C R ? T Y L D R P P A V H A T V R G S P A G ? Q T L T D L Q P Y M R Q F V A H L Q ? N S	-
	2401	GCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCCAGCAGTG	2460

68/78

a b c		A R * G M P S S S S R A P P * M R P A V P A E G C R R H R A E L L P E * G Q Q W P L R D A V V I E Q S S S L N E A S S G	
	2461	GCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGT ++ CGGAGAAGCTGCAGAAGGATGCGAAGTACACGGTGGTGCGGCACGCGTAGTCCCCGTTCA	2520
a b c		A S S T S S Y A S C A T T P C A S G A S P L R R L P T L H V P P R R A H Q G Q V L F D V F L R F M C H H A V R I R G K S	
	2521	CCTACGTCCAGGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTGCAGCC GGATGCAGGTCACGGTCCCCTAGGGCGTCCCGAGGTAGGAGAGGTGCGACGAGACGTCGG	2580
a b c		P T S S A R G S R R A P S S P R C S A A L R P V P G D P A G L H P L H A A L Q P Y V Q C Q G I P Q G S I L S T L L C S L	
	2581	TGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGCTGCTCC ACACGATGCCGCTGTACCTCTTGTTCGACAAACGCCCCTAAGCCGCCCTGCCCGACGAGG	2640
a b c		C A T A T W R T S C L R G F G G T G C S V L R R R H G E Q A V C G D S A G R A A P C Y G D M E N K L F A G I R R D G L L L	-
	2641	TGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCCACGCGAAAACCTTCC	2700
a b c		C V W W M I S C W * H L T S P T R K P S A F G G * F L V G D T S P H P R E N L P R L V D D F L L V T P H L T H A K T F L	
	2701	TCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTGCGTGGTGAACTTGCGGAAGACAG	2760
a b c		S G P W S E V S L S M A A W * T C G R Q Q D P G P R C P * V W L R G E L A E D S R T L V R G V P E Y G C V V N L R K T V	- - -
	2761	TGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGÄTGCCGG+ ACCACTTGAAGGGACATCTTCTGCTCCGGGACCCACCGTGCCGAAAACAAGTCTACGGCC	2820
a b c		W * T S L * K T R P W V A R L L F R C R G E L P C R R R G P G W H G F C S D A G V N F P V E D E A L G G T A F V Q M P A	
	2821	CCCACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCCTGGAGGTGCAGA+ GGGTGCCGGATAAGGGGACCACGCCGGACGACGACGTCT	2880
a b c		P T A Y S P G A A C C W I P G P W R C R P R P I P L V R P A A G Y P D P G G A E H G L F P W C G L L L D T R T L E V Q S	- - -
	2881	GCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCT	2940

69/78

b c		R L L Q L C P D L H Q S Q S H L Q P R L D Y S S Y A R T S I R A S L T F N R G F	
	2941	TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACA+ AGTTCCGACCCTCCTTGTACGCAGCGTTTGAGAAACCCCCAGAACGCCGACTTCACAGTGT	3000
a b c		S R L G G T C V A N S L G S C G * S V T Q G W E E H A S Q T L W G L A A E V S Q K A G R N M R R K L F G V L R L K C H S	-, -
	3001	GCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGTGTGCACCAACATCTACAAGA + CGGACAAAGACCTAAACGTCCACTTGTCGGAGGTCTGCCACACGTGGTTGTAGATGTTCT	3060
a b c		A C F W I C R * T A S R R C A P T S T R P V S G F A G E Q P P D G V H Q H L Q D L F L D L Q V N S L Q T V C T N I Y K I	
	3061	TCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCATCAGC+ AGGAGGACGACGTCCGCATGTCCAAAGTGCGTACACCACGACGTCGAGGGTAAAGTAGTCG	3120
a b c		S	
	3121	AAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCCTC	3180
a b c		K F G R T P H F S C A S S L T R P P S A S L E E P H I F P A R H L * H G L P L L V W K N P T F F L R V I S D T A S L C Y	
	3181	ACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCAAGGGCGCCGCCGGCC + TGAGGTAGGACTTTCGGTTCTTGCGTCCCTACAGCGACCCCCGGTTCCCGCGGCGGCCGG	3240
a b c		T P S * K P R T Q G C R W G P R A P P A L H P E S Q E R R D V A G G Q G R R R P S I L K A K N A G M S L G A K G A A G P	
	3241	CTCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCAAGCATTCCTGCTCAAGCTGACTC	3300
a b c		L C P P R P C S G C A T K H S C S S * L S A L R G R A V A V P P S I P A Q A D S L P S E A V Q W L C H Q A F L L K L T R	
	3301	GACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGA	3360
a b c		D T V S P T C H S W G H S G Q P R R S * T P C H L R A T P G V T Q D S P D A A E H R V T Y V P L L G S L R T A Q T Q L S	-
	3361	GTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGC	3420

70/78

b c		S E A P G D D A D C P G G R S Q P G T A R K L P G T T L T A L E A A N P A L P	
	3421	CCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA+ GGAGTCTGAAGTTCTGGTAGGACCTGACTACCGGTGGGCGGGTGTCGGTCCGGCTCTCGT	3480
a b c		P Q T S R P S W T D G H P P T A R P R A L R L Q D H P G L M A T R P Q P G R E Q S D F K T I L D * W P P A H S Q A E S R	- -
	3481	GACACCAGCAGCCCTGTCACGCCGGGCTCTACGTCCCAGGGAGGG	3540
a b c		D T S S P V T P G S T S Q G G R G G P H T P A A L S R R A L R P R E G G A A H T H Q Q P C H A G L Y V P G R E G R P T P	
	3541	CCAGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGAGTG	3600
a b c		P G P H R W E S E A * V S V W P R P A C Q A R T A G S L R P E * V F G R G L H V R P A P L G V * G L S E C L A E A C M S	
	3601	CCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTG+ GGCCGACTTCCGACTCACAGGCCGACTCCGGACTCACAGGTCGGTTCCCGACTCAC	3660
a b c		P A E G * V S G * G L S E C P A K G * V R L K A E C P A E A * A S V Q P R A E C G * R L S V R L R P E R V S S Q G L S V	-
	3661	TCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCCAGGGCC+ AGGTCGTGTGGACGCAGAAGTGAAGGGGTGTCCGACCGCGAGCCGAGGTGGGGTCCCGG	3720
a b c		S S T P A V F T S P Q A G A R L H P R A P A H L P S S L P H R L A L G S T P G P Q H T C R L H F P T G W R S A P P Q G Q	
	3721	AGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGA TCGAAAAGGAGTGGTCCTCGGGCCGAAGGTGAGGGGTGTATCCTTATCAGGTAGGGGTCT	3780
a b c		S F S S P G A R L P L P T * E * S I P R A F P H Q E P G F H S P H R N S P S P D L F L T R S P A S T P H I G I V H P Q I	- - -
	3781	TTCGCCATTGTTCACCCCTCGCCCTGCCCTCCTTTGCCTTCCACCCCCACCATCCAGGTG+ AAGCGGTAACAAGTGGGGACGGGACGGGAGGAAACGGAAGGTGGGGGTGGTAGGTCCAC	3840
a b c		F A I V H P S P C P P L P S T P T I Q V S P L F T P R P A L L C L P P P P S R W R H C S P L A L P S F A F H P H H P G G	-
	3841	GAGACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGTGCCCTG	

```
E T L R R T L G A L G I W S D Q R C A L - R P * E G P W E L W E F G V T K G V P C - D P E K D P G S S G N L E * P K V C P V -
а
b
С
       TACACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGGGGAGGT
   ATGTGTCCGCTCCTGGGACCTGGACCTACCCCCAGGGACACCCAGTTTAACCCCCCTCCA
       Y T G E D P A P G W G S L W V K L G G G -
T Q A R T L H L D G G P C G S N W G E V -
H R R G P C T W M G V P V G Q I G G R C -
а
b
С
        3961 -----+ 4020
        A V G V K Y * I Y E F F S F E K K K K K - L W E * N T E Y M S F S V L K K K K K K - C G S K I L N I * V F Q F * K K K K K K -
а
b
С
       AAAAAAAA
   4021 ----- 4029
        TTTTTTTT
        KKK -
а
        K K
K K
b
С
```


FIG. 52

GCAGCGCTGCGTCCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCG												1 met ATG
pro arg CCG CGC	ala p GCT C	oro arg	cys TGC	arg CGA	ala GCC	10 val GTG	arg CGC	ser TCC	leu CTG	leu CTG	arg CGC	ser AGC
his tyr CAC TAC	arg g											
gly pro GGG CCC	gln g CAG G	jly trp GGC TGG	arg CGG	leu CTG	val GTG	40 gln CAG	arg CGC	gly GGG	asp GAC	pro CCG	ala GCG	ala GCT
phe arg TTC CGC	ala l	50 eu val CTG GTG	ala GCC	gln CAG	cys TGC	leu CTG	val GTG	cys TGC	val GTG	pro CCC	60 trp TGG	asp GAC
ala arg GCA CGG	pro p	oro pro	ala GCC	ala GCC	pro CCC	70 ser TCC	phe TTC	arg CGC	gln CAG	val GTG	ser TCC	cys TGC
leu lys CTG AAG	glu l											
gly ala GGC GCG	lys a AAG A	sn val AC GTG	leu CTG	ala GCC	phe TTC	100 gly GGC	phe TTC	ala GCG	leu CTG	leu CTG	asp GAC	gly GGG
ala arg GCC CGC	gly g											
tyr leu TAC CTG												
trp gly TGG GGG	leu l	140 Leu leu CTG CTG	arg CGC	arg CGC	val GTG	gly GGC	asp GAC	asp GAC	val GTG	leu CTG	150 val GTT	his CAC
leu leu CTG CTG												
ala tyr GCC TAC	qln v	170 val cys FTG TGC	gly GGG	pro CCG	pro CCG	leu CTG	tyr TAC	gln CAG	leu CTC	gly GGC	180 ala GCT	ala GCC
thr gln ACT CAG	ala a GCC C	arg pro	pro CCG	pro CCA	his CAC	190 ala GCT	ser AGT	gly GGA	pro CCC	arg CGA	arg AGG	arg CGT

FIG. 53

74/78

leu CTG	ı gly GGA	cys TGC	200 glu GAA	arg CGG	ala GCC	trp	asn AAC	his CAT	ser AGC	val GTC	arg	glu GAG	210 ala GCC	gly
val GTC	pro	leu CTG	gly GGC	leu CTG	pro CCA	ala .GCC	pro	220 gly GGT	ala GCG	arg AGG	arg AGG	arg CGC	gly	gly
ser AGT	ala GCC	ser AGC	230 arg CGA	ser AGT	leu CTG	pro CCG	leu TTG	pro CCC	lys AAG	arg AGG	pro CCC	arg AGG	240 arg CGT	gly GGC
ala GCT	ala GCC	pro CCT	glu GAG	pro CCG	glu GAG	arg CGG	thr ACG	250 pro CCC	val GTT	gly GGG	gln CAG	gly GGG	ser TCC	trp TGG
ala GCC	his CAC	pro CCG	260 gly GGC	arg AGG	thr ACG	arg CGT	gly GGA	pro CCG	ser AGT	asp GAC	arg CGT	gly GGT	270 phe TTC	cys TGT
val GTG	val GTG	ser TCA	pro CCT 290	ala GCC	arg AGA	pro CCC	ala GCC	280 glu GAA	glu GAA	ala GCC	thr ACC	ser TCT	leu TTG 300	glu GAG
gly GGT	ala GCG	leu CTC	ser TCT	gly GGC	thr ACG	arg CGC	his CAC	ser TCC	his CAC	pro CCA	ser TCC	val GTG	alv	arg CGC
gln CAG	his CAC	his CAC	ala GCG	gly GGC	pro CCC	pro CCA	ser TCC	310 thr ACA	ser TCG	arg CGG	pro CCA	pro CCA	arg CGT	pro CCC
trp TGG	asp GAC	thr ACG	320 pro CCT	cys TGT	pro CCC	pro CCG	val GTG	tyr TAC	ala GCC	glu GAG	thr ACC	lys AAG	330 his CAC	phe TTC
leu CTC	tyr TAC	ser TCC	ser TCA	gly GGC	asp GAC	lys AAG	glu GAG	340 gln CAG	leu CTG	arg CGG	pro CCC	ser TCC	phe TTC	leu CTA
leu CTC	ser AGC	ser TCT	350 leu CTG	arg AGG	pro CCC	ser AGC	leu CTG	thr ACT	gly GGC	ala GCT	arg CGG	arg AGG	360 leu CTC	val GTG
glu GAG	thr ACC	ile ATC	phe TTT	leu CTG	gly GGT	ser TCC	arg AGG	370 pro CCC	trp TGG	met ATG	pro CCA	gly GGG	thr ACT	pro CCC
arg CGC	arg AGG	leu TTG	380 pro CCC	arg CGC	leu CTG	pro CCC	gln CAG	arg CGC	tyr TAC	trp TGG	gln CAA	met ATG	390 arg CGG	pro CCC
leu CTG	phe TTT	leu CTG	glu GAG	leu CTG	leu CTT	gly GGG	asn AAC	400 his CAC	ala GCG	gln CAG	cys TGC	pro CCC	tyr TAC	ggg gly
val GTG	leu CTC	leu CTC	410 lys AAG	thr ACG	his CAC	TGC	pro CCG <i>IG.</i> a	ств 53	arg CGA	ala GCT	ala GCG	val GTC	420 thr ACC	pro CCA

(CONTINUED)

75/78

ala ala gl GCA GCC GC	y val cys T GTC TGT	s ala arg	43 glu l GAG A	ys pro	gln c	gly s	ser TCT	val GTG	ala GCG
ala pro gl GCC CCC GA	440 u glu glu AG GAG GAO	asp thr GAC ACA	asp p GAC C	ro arg CC CGT	arg :	leu v CTG (val 4	450 gln CAG	leu CTG
leu arg gl CTC CGC CA	n his sen AG CAC AGO	ser pro	trp g	60 ln val AG GTG	tyr (gly p GGC :	phe TTC	val GTG	arg CGG
ala cys le GCC TGC CT	470 au arg arg G CGC CGC	g leu val G CTG GTG	pro p	ro gly CA GGC	leu :	trp (TGG (qly	480 ser TCC	arg AGG
his asn gl	u arg arg A CGC CG0	g phe leu C TTC CTC	arq a	90 sn thr AC ACC	lys :	lys p AAG :	phe ITC .	ile ATC	ser TCC
leu gly ly							thr		
met ser va ATG AGC GI	l arg asp G CGG GAC	o cys ala C TGC GCT	trp 1	20 eu arg TG CGC	arg : AGG 1	ser p AGC (oro CCA	gly GGG	val GTT
gly cys va GGC TGT GT							glu .		
ala lys ph GCC AAG TI			met s						
leu arg se	560 er phe phe ET TTC TT	tyr val TAT GTC	thr g	lu thr AG ACC	thr p	phe q	gln .	570 lys AAG	asn AAC
arg leu ph AGG CTC TI	e phe tyr	arg lys CCGG AAG	ser v	80 al trp TC TGG	ser : AGC :	lys :	leu TTG	gln CAA	ser AGC
ile gly il ATT GGA AT	590 e arg glr C AGA CAC	his leu GCAC TTG	AAG A	rg val GG GTG 10	gln : CAG (leu a CTG (arg (600 glu GAG	leu CTG
ser glu al TCG GAA GO	a glu val A GAG GTO	arg gln BAGG CAG	his a	rg glu	ala a GCC A	arg g AGG (oro CCC	ala GCC	leu CTG
leu thr se	620 er arg let CC AGA CTO	arg phe	ile p	ro lys CC AAG	pro a	asp g GAC (gly :	630 leu CTG	arg CGG
pro ile va CCG ATT GT	l asn met G AAC ATC	GAC TAC	val v	TG GGA	ala a GCC I	arg t AGA <i>I</i>	thr j ACG '	phe TTC	arg CGC

╁

76/78														
2 200	~1.,		550	-1-	~1	2 200	1	+ h	~ ~ ~		3		560	7
AGA	GAA	AAG	AGG	GCC	GAG	CGT	CTC	ACC	TCG	AGG	GTG	lys AAG	GCA	CTG
		_	_					670						
phe	ser	val	leu	asn	tyr	glu	arg	ala	arg	arg	pro	gly GGC	leu	leu
110	AGC	010	CIC	MAC	IAC	OAG	CGG	000	CGG	CGC	CCC	990	CIC	CIG
~1·-	-1-	~	680	7		7			27.	7-2-		_7_	690	
GGC	GCC	TCT	GTG	CTG	GGC GTY	CTG	GAC	GAT	ATC	CAC	arg	ala GCC	TGG	arg CGC
thr	phe	val	leu	arq	val	arq	ala	700 aln	asp	pro	pro	pro	alu	leu
												CCT		
			710										720	
			lys									thr	ile	
TAC	TTT	GTC	AAG	GTG	GAT	GTG	ACG	GGC	GCG	TAC	GAC	ACC	ATC	CCC
								730						
gln	asp	arg	leu	thr	glu	val	ile ATC	ala	ser	ile	ile	lys AAA	pro	gln
0110	Gric	1100	CIC	7100	0210	O1C	<i>1</i> 11 C	occ.	1100	711.0	1110	111117		Crac
aen	thr	tur	740	اديد	220	ara	tur	בוב	ובזי	ובזי	αln	lys	750	ala
AAC	ACG	TAC	TGC	GTG	CGT	CGG	TAT	GCC	GTG	GTC	CAG	AAG	GCC	GCC
								760						
his	gly	his	val	arg	lys	ala	phe	lys	ser	his	val	ser	thr	leu
CAT	GGG	CAC	GTC	CGC	AAG	GCC	TTC	AAG	AGC	CAC	GTC	TCT	ACC	TTG
			770										780	
thr	asp	leu	gln	pro	tyr	met	arg	gln	phe	val	ala	his CAC	leu	gln
ACA	GAC	CIC	CAG	CCG	IAC	AIG	CGA	CAG	110	919	GCI	CAC	CIG	CAG
~711	+- h ~	a.~	220	1 011	222	2 2 2	212	790	**~ 7	470	~1.,	gln	a.~	a o x
GAG	ACC	AGC	CCG	CTG	AGG	GAT	GCC	GTC	GTC	ATC	GAG	CAG	AGC	TCC
			800										810	
ser	leu	asn	glu	ala	ser	ser	gly	leu	phe	asp	val	phe	leu	arg
TCC	CTG	TAA	GAG	GCC	AGC	AGT	GGC	CTC	TTC	GAC	GTC	TTC	CTA	CGC
								820						
phe	met	cys	his	his	ala	val	arg	ile	arg	gly	lys	ser	tyr	val
TTC	ATG	TGC	CAC	CAC	GCC	GIG	CGC	ATC	AGG	GGC	DAA	TCC	TAC	GTC
~1 n	~	~ 1 · .	830			~~~	~7	~	: 7 -	7		- 1	840	7
CAG	TGC	CAG	GGG	ATC	CCG	CAG	GGC	TCC	ATC	CTC	TCC	thr ACG	CTG	CTC
cys	ser	leu	cys	tyr	gly	asp	met	850 glu	asn	lys	leu	phe	ala	gly
TĞC	AGC	CTG	TĞC	TÃC	ĞĞĈ	GAĈ	ATG	ĞAG	AAC	AĀG	CTG	TTT	GCG	ĞĞĞ
			860										870	
ile	arg	arg	asp	gly	leu	leu	leu	arg	leu	val	asp	asp	phe	leu
ATT'	CGG	CGG	GAC	GGG	C.I.G	C.T.C.	CTG	CG'I'	TTG	GTG	GA'I'	GAT	TTC	TTG

FIG. 53 (CONTINUED)

77/78

leu TTG	val GTG	thr ACA	pro CCT	his CAC	leu CTC	thr ACC	his CAC	880 ala GCG	lvs	thr ACC	phe TTC	leu CTC	arg AGG	thr ACC
leu CTG	val GTC	arg CGA	890 gly GGT	val GTC	pro CCT	glu GAG	tyr TAT	gly GGC	cys TGC	val GTG	val GTG	asn AAC	900 leu TTG	arg CGG
lys AAG	thr ACA	val GTG	val GTG	asn AAC	phe TTC	pro CCT	val GTA	910 glu GAA	asp GAC	glu GAG	ala GCC	leu CTG	gly GGT	gly GGC
thr ACG	ala GCT	phe TTT	920 val GTT	gln CAG	met ATG	pro CCG	ala GCC	his CAC 940	gly GGC	leu CTA	phe TTC	pro CCC	930 trp TGG	cys TGC
gly GGC	leu CTG	leu CTG	leu CTG	asp GAT	thr ACC	arg CGG	thr ACC	leu	glu GAG	val GTG	gln CAG	ser AGC	asp GAC	tyr TAC
ser TCC	ser AGC	tyr TAT	950 ala GCC	arg CGG	thr ACC	ser TCC	ile ATC	arg AGA	ala GCC	ser AGT	leu CTC	thr ACC	960 phe TTC	asn AAC
arg CGC	gly GGC	phe TTC	lys AAG	ala GCT	gly GGG	arg AGG	asn AAC	970 met ATG	arg CGT	arg CGC	lys AAA	leu CTC	phe TTT	gly GGG
val GTC	leu TTG	arg CGG	980 leu CTG	lys AAG	cys TGT	his CAC	ser AGC	leu CTG	phe TTT	leu CTG	asp GAT	leu TTG	990 gln CAG	val GTG
asn AAC	ser AGC	leu CTC	gln CAG	thr ACG	val GTG	cys TGC	thr ACC	1000 asn AAC	ile	tyr TAC	lys AAG	ile ATC	leu CTC	leu CTG
leu CTG	gln CAG	ala GCG	1010 tyr TAC	arq	phe TTT	his CAC	ala GCA	cys TGT	val GTG	leu CTG	gln CAG	leu CTC	102 pro CCA	nhe
his CAT	gln CAG	gln CAA	val GTT	trp TGG	lys AAG	asn AAC	pro CCC	1030 thr ACA	phe	phe TTC	leu CTG	arg CGC	val GTC	ile ATC
ser TCT	asp GAC	thr ACG	1040 ala GCC	ser	leu CTC	cys TGC	tyr TAC	ser TCC	ile ATC	leu CTG	lys AAA	ala GCC	105 lys AAG	aen
ala GCA	gly GGG	met ATG	ser TCG	leu CTG	gly GGG	ala GCC	lys AAG	1060 gly GGC	ala	ala GCC	gly GGC	pro CCT	leu CTG	pro CCC
ser TCC	glu GAG	ala GCC	1070 val GTG	gln	trp TGG	leu CTG	cys TGC	his CAC	gln CAA	ala GCA	phe TTC	leu CTG	108 leu CTC	lvs
leu CTG	thr ACT	arg CGA	his CAC	arg CGT	val GTC	acc <i>F</i>	tac <i>IG.</i> :	втв 53	nro	leu CTC	leu CTG	gly GGG	ser TCA	leu CTC
						(CO)	NTIN	(ロコリ						

78/78

1100

arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr AGG ACA GCC CAG ACG CAG CTG AGT CGG AAG CTC CCG GGG ACG ACG leu thr ala leu glu ala ala ala asn pro ala leu pro ser asp CTG ACT GCC CTG GAG GCC GCA GCC AAC CCG GCA CTG CCC TCA GAC 1130 1132 phe lys thr ile leu asp OP TTC AAG ACC ATC CTG GAC TGA TGGCCACCCGCCCACAGCCAGGCCGAGAGCAGA AGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGATTTTGGCCGAGGCCTGCATGTCC GGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTC CAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCCAGGGCCAG CTTTTCYTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGATT CGCCATTGTTCACCCYTCGCCTGCCYTCCTTTGCCTTCCACCCCCACCATCCAGGTGGA GACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGTGCCCTGTA CACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGGGGAGGTGC AAAAAAAAA

FIG. 53 (CONTINUED)

FIG. 54