Linear Algebra

Giacomo Fantoni

telegram: @GiacomoFantoni

 $Github:\ https://github.com/giacThePhantom/computational-biophysics$

January 20, 2025

Contents

1	Vector Spaces				
	1.1	\mathcal{R}^n an	d \mathcal{C}^n	2	
		1.1.1	Complex number	2	
		1.1.2	Lists	3	
		1.1.3	Digression on fields	4	

Chapter 1

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces A vector space is a set wit operations of addition and scalar multiplications that satisfy natural algebraic properties.

1.1 \mathcal{R}^n and \mathcal{C}^n

1.1.1 Complex number

Assume that there exists a square root of -1 called i, then:

- A complex number is an ordered pair (a, b) where $a, b \in \mathcal{R}$ written as a + bi.
- The set of all complex number is $C = \{a + bi | a, b \in \mathcal{R}\}.$
- Addition and multiplications are defined on $\mathcal C$ as:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$

Complex addition and multiplication have the expected properties:

- Commutativity: $\alpha + \beta = \beta + \alpha \wedge \alpha \cdot \beta = \beta \cdot \alpha \forall \alpha, \beta \in C$.
- Associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda) \land (\alpha \cdot \beta) \cdot \lambda = \alpha \cdot (\beta \cdot \lambda) \forall \alpha, \beta, \lambda \in \mathcal{C}.$
- Identities: $\lambda + 0 = \lambda \wedge 1 \cdot \lambda = \lambda \forall \lambda \in \mathcal{C}$.
- Additive inverse: $\forall \alpha \in \mathcal{C}, \exists \beta \in \mathcal{C} \Rightarrow \alpha + \beta = 0$
- Multiplicative inverse: $\forall \alpha \in \mathcal{C}, \exists \beta \in \mathcal{C} \Rightarrow \alpha \cdot \beta = 1.$
- Distributive property: $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta\forall\alpha,\beta,\lambda\in\mathcal{C}$.

Which are proved by using the same properties on the real numbers. Furthermore suppose $\alpha, \beta \in \mathcal{C}$, then:

• $-\alpha$ the additive inverse of α : $-\alpha$ is the unique complex number such that:

 $\alpha + (-\alpha) = 0$

• Subtraction is then defined as:

$$\beta - \alpha = \beta + (-\alpha)$$

• For $\alpha \neq 0$, let $\frac{1}{\alpha}$ denote the multiplicative

inverse of α , a number such that:

• For $\alpha \neq 0$ division by α is defined as:

$$\alpha \cdot \left(\frac{1}{\alpha}\right) = 1 \qquad \qquad \frac{\beta}{\alpha} = \beta \cdot \left(\frac{1}{\alpha}\right)$$

From now on definition and theorem can be proved on both real and complex numbers, adopting the notation where \mathcal{F} stands for either \mathcal{R} or \mathcal{C} .

Elements of \mathcal{F} are called *scalars*. Furthermore $\forall \alpha \in \mathcal{F} \land m \in \mathcal{N}, \alpha^m$ is defined as:

$$\alpha^m = \underbrace{\alpha \cdots \alpha}_{m \text{ times}}$$

Which implies that:

$$(\alpha^m)^n = a^{m \cdot n} \qquad \wedge \qquad (\alpha \beta)^m = \alpha^m \beta^m$$

1.1.2 Lists

Suppose $n \in \mathcal{N}$, then a list of length n is an ordered collection of n elements. Two lists are equal if and only if they have the same length and the same elements in the same order. They are often noted (z_1, \ldots, z_n) . By definition a list has a finite length that is a non negative integer. A list of length 0 is (). They differ from set in the fact that order matters and repetitions are allowed. Fixing n for the rest of the chapter, \mathcal{F}^n is the set of all lists of length n of elements of \mathcal{F} :

$$\mathcal{F}^n = \{(x_1, \dots x_n) | x_k \in \mathcal{F} \forall k \in [1, n] \}$$

Where x_k is the k^{th} coordinate of $(x_1, \ldots x_n)$. Addition in \mathcal{F}^n is defined by adding the corresponding coordinates:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

All of the same properties of addition hold.

Elements of \mathcal{F}^n , with n > 1 can be denoted as vectors with \vec{x} for example. Furthermore each of this set has a zero: $\vec{0}$.

For all $\vec{x} \in \mathcal{F}^n$, the additive inverse of \vec{x} , $-\vec{x}$, is the vector $-\vec{x} \in \mathcal{F}^n$ such that:

$$\vec{x} + (-\vec{x}) = \vec{0}$$

Thus if
$$\vec{x} = (x_1, \dots, x_n)$$
, then $-\vec{x} = (-x_1, \dots, -x_n)$.

Scalar multiplication in \mathcal{F}^n is the product of a number λ and a vector in \mathcal{F}^n . it is computed by multiplying each coordinate of the vector by λ :

$$\lambda \vec{x} = \lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

Where $\lambda \in \mathcal{F}$ and $\vec{x} \in \mathcal{F}^n$. From a geometric standpoint scalar multiplication shrinks or stretches the vector.

1.1.3 Digression on fields

A field is a set containing at least two distinct elements called $\vec{0}$ and $\vec{1}$, along with operations of addition and multiplication satisfying all the previously listed properties. The only fields in this work are \mathcal{R} and \mathcal{C} , but many of the definition and theorems that work for them work without change in arbitrary fields. Except in the inner product chapters, results that have as a hypothesis that \mathcal{F} is \mathcal{C} , the hypothesis can be replaced with the fact that \mathcal{F} is an algebraically closed field: every nonconstant polynomial with coefficients in \mathcal{F} has a zero.