Azure 실습 3

Azure 가상 네트워킹 관리(AZ-104, 모듈 04)

AZ-104: Azure 관리자를 위한 가상 네트워크 구성 및 관리

인터넷은 어떤 원리로 운영되고 있는 걸까?

https://youtu.be/Pwf-YG--Zsg

인터넷은 어떻게 작동될까요?

https://youtu.be/o5yBl59wRbY

그림으로 배우는 네트워크 이야기 [OSI 7 Layer/네트워크]

https://youtu.be/aTPy201F0AA

OSI 7 Layer과 네트워크 장비

OSI 7 Layer Model		TCP/IP Protocol
7 Layer	Application Layer	Application
6 Layer	Presentation Layer	telnet FTP DHCP TFTP
5 Layer	Session Layer	HTTP SMTP DNS SNMP
4 Layer	Transport Layer	TCP Transport UDP
3 Layer	Network Layer	Internet ICMP ARP RARP IP
2 Layer	DataLink Layer	
1 Layer	Physical Layer	Network Interface

Azure 실습 3

IP 주소(v4)

32비트의 값을 가지며 비트의 나열만으로는 파악하기 어려우므로 8비트씩 끊어 0~255의 10진수로 나타내며 각 숫자는 점(.)으로 구분. 최대 약 43억개.

IPv4 클래스 분류

Class	IP 주소의 첫번째 옥텟	첫째 옥텟의 최소값 (2진수)	첫째 옥텟의 최대값 (2진수)	첫째 옥텟의 값 의 범위 (10진수)	이론적 IP 주소 범위
A Class	0xxx xxxx	0000 0000	0111 1111	0 ~ 127	0.0.0.0 ~ 127.255.255.255
B Class	10xx xxxx	1000 0000	1011 1111	128 ~ 191	128.0.0.0 ~ 191.255.255.255
C Class	110x xxxx	1100 0000	1101 1111	192 ~ 223	192.0.0.0 ~ 223.255.255.255
D Class	1110 xxxx	1110 0000	1110 1111	224 ~ 239	224.0.0.0 ~ 239.255.255.255
E Class	1111 xxxx	1111 0000	1111 1111	240 ~ 255	240.0.0.0 ~ 255.255.255.255

클래스 별로 2진수의 첫번째 옥텟이 고정됨(표의 빨간색)

IP 주소 4마디 중 첫 번째 마디의 숫자(옥텟)로 구분 네트워크 크기에 따라 선택. ABC만 알면됨.

클래스 A는 대규모 B는 중규모 C는 소규모 D는 멀티캐스트 E는 연구/개발용 IP주소 혹은 미래에 사용

Network ID와 Host ID

각 클래스 안에서 IP는 Network ID와 Host ID로 구분

A Class

116	81	97	8
Network ID	Host ID	Host ID	Host ID
iss			
171	47	154	1
Network ID	Network ID	Host ID	Host ID
ass			
214	175		51
Network ID	Network ID	Network ID	Host ID

각 Network ID에서 첫번째 주소는 **Network Address** (호스트부를 모두 비트 '0'채움. 네트워크 자체를 식별하기 위해 사용) 마지막 주소는 **Boardcast** (호스트부를 모두 비트 '1'채움. 네트워크 자체를 식별하기 위해 사용)

인터넷(Internet)은 Inter-networking(인터넷들의 연결)의 약자로, 쉽게 표현하면 **라우터들(L3)의 모임**

Public, Private Network

공중망(Public Network)은 사설망과 대칭되는 개념으로 불특정 다수의 사용자에게 서비스를 제공하는 통신망으로 우리가 흔히 쓰고 있는 인터넷이 대표적인 공중망이라고 볼 수 있다.

Private Network(<u>사설망</u>)

사설망이란 특정한 회사나 조직이 소유하고 독점적으로 사용하는 네트워크를 의미한다. <u>위</u> <u>키피디아</u>에서는 "**사설 IP 주소 공간을 이용하는 네트워크이며 RFC 1918과 RFC 4193 표 준을 준수한다. 이러한 주소는 가정, 사무실, 기업 랜에 쓰인다**"라고 설명하고 있다. 쉽게 말해서 우리가 가정에서 공유기 내부에서 사설 IP로 사용하고 있는 네트워크가 대표적인 사설망이라고 보면 된다.

가상 네트워크가 사설망을 구축.

Subnet(부분망)

한정된 IP자원을 효율적으로 분배하기 위해 네트워크 영역과 호스트 영역을 쪼개는 작업을 Subnetting이라고 하며 Subnetting을 하기 위해 쓰이는 것이 Subnet Mask.

2진수로 연속된 '1'과 연속한 '0'로 구성된 숫자로 IP주소와 논리 AND연산. (논리 AND 연산은 1 AND 1 = 1, 1 AND 0 = 0, 0 AND 1 = 0, 0 AND 0 = 0)

Subnet mask 표기법 -> 1.1.1.1 (255.255.255.255) CIDR(prefix) 표기법 -> 1.1.1.1/32

CIDR to IPv4 Conversion

https://www.ipaddressguide.com/cidr

WWW?

1. 가상 네트워크(VNet, Virtual Networks) 구성

AWS VPC(Virtual Private Cloud) : https://aws.amazon.com/ko/vpc/

Virtual Network(VNet)

- Azure 배포에 대한 IP 주소 지정 스키마 디자인(샌드박스)
- Windows Server laaS VM IP 주소 지정 및 라우팅 구현

실습

<u>빠른 시작: Azure 포털을 사용하여 가상 네트워크 만들기</u>

자습서: Azure Portal을 사용하여 가상 네트워크 피어링으로 가상 네트워크 연결

2. 네트워크 보안 그룹(NSG, Network Security Group)

서비스 엔드 포인트는 PaaS 진행 후에 실습

AWS SG(Security Group):

https://docs.aws.amazon.com/ko kr/vpc/latest/userquide/VPC SecurityGroups.html

Network Security Group

서브넷과 NIC에 대해 독립적으로 적용

Application Security Group

원본	대상	포트
인터넷	WebServers	80, 443
WebServers	SQLServers	1533

• <u>네트워크 보안 그룹 및 서비스 엔드포인트를 사용하여 Azure 리소스에 대한 액세스 보호 및 격리(</u>샌드박스)

실습

네트워크 트래픽 필터링 - 자습서

PaaS 리소스에 대한 네트워크 액세스 제한 자습서

→ 나중에 진행

3. Azure Firewall 구성

추후 진행

AWS WAF(Web Application Firewall) : https://aws.amazon.com/ko/waf/

- Azure Firewall 소개
- Azure Firewall Manager 소개

4. Azure DNS 구성

추후 진행

AWS Route 53: https://aws.amazon.com/ko/route53/

- Azure DNS에서 도메인 호스트(샌드박스)
- Windows Server laaS VM용 DNS 구현

실습

자습서: Azure DNS에서 도메인 호스트

랩

