目次

無機化学

非金属元素	2
水素	2
同位体	2
製法	2
反応	2
貴ガス	2
性質	2
生成	2
ヘリウム He	2
ネオン Ne	2
アルゴン Ar	2
ハロゲン	3
単体	3
ハロゲン化水素	4
ハロゲン化銀	4
次亜塩素酸塩	4
水素酸カリウム	4
	水素 同位体 製法 反応 貴ガス 性質 生成 ヘリウム He ネオン Ne アルゴン Ar ハロゲン 単体 ハロゲン化水素 ハロゲン化銀 、次亜塩素酸塩 、

無機化学 1/5

第I部

非金属元素

1 水素

無色無臭の気体 *1 最も軽く、水に溶けにくい

1.1 同位体

 1 H 99% 以上 2 H ($\underline{\mathbf{D}}$)0.015% 3 H ($\underline{\mathbf{T}}$) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した $\frac{1-\rho_Z}{\text{C}}$ に水蒸気を吹き付ける $\frac{\text{工業的製法}}{\text{C}+\text{H}_2\text{O}}$ \longrightarrow $\frac{\text{H}_2+\text{CO}}{\text{C}}$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 + \operatorname{O}_2$
- \bullet <u>イオン化傾向</u>が H_2 より大きい金属と希薄強酸
 - Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow

1.3 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2 H_2 + O_2 \longrightarrow H_2O$
- 加熱した酸化銅(Ⅱ)と水素

$$\mathrm{CuO} + \mathrm{H_2} \longrightarrow \mathrm{Cu} + \mathrm{H_2O}$$

• 水酸化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

2.1 性質

- 無色・無臭
- 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。
- イオン化エネルギーが極めて大きい。
- 電子親和力は極めて小さい(ほぼ0)。
- 電気陰性度は定義されない。

2.2 生成

 40 K の電子捕獲

$$^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 $N_2,\,O_2$ に次いで 3 番目に空気中での存在量が多い (約 1%)。

無機化学 2/5

 $^{^{*1}}$ 融点 14K 沸点 20K

3 ハロゲン

3.1 単体

3.1.1 性質

I_2	X	強(弱)	垣	固体	黑紫色	昇華性	高温で平衡状態	加熱して触媒により一部反応	<u>反応しない</u> Klaq には可溶	ヨウ素デンプン反応で	青紫色																									
${ m Br}_2$	<u> </u>			↑	液体	赤褐色	揮発性	ンつ、隣町	触媒により反応	一部とけて反応	C=C &	C=Cの検出																								
Cl_2	+	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\	\	\	\	+	+	+	\	+	\	\	+	気体	黄緑色	刺激臭	<mark>常温</mark> でも <mark>光</mark> で	爆発的に反応	一部とけて反応	CIO_12	殺菌・漂白作用
${ m F}_2$	Ý	弱(強)	低	気体	淡黄色	特異臭	多型 <u>州開</u> 学	爆発的に反応	水を酸化して酸素を発生 激しく反応	保存が困難	Kr や Xe と反応																									
化学式	分子量	分子間力(反応性)	沸点・融点	常温での状態	色	特徴	日のより日	112 ころぶん	水との反応	外田																										

3.1.2 製法

- フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液の電気分解 工業的製法
- 水酸化ナトリウム の電気分解 (工業的製法 $(2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH})$
- 酸化マンガン(IV)に濃硫酸 を加えて加熱 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$

• 高度さらし粉と塩酸

 $\begin{aligned} &\operatorname{Ca(ClO)_2} \cdot 2\operatorname{H_2O} + 4\operatorname{HCl} \longrightarrow \operatorname{CaCl_2} + 2\operatorname{Cl_2} \uparrow + \\ &4\operatorname{H_2O} \end{aligned}$

● さらし粉と塩酸

 $\begin{aligned} &\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \, \longrightarrow \, \operatorname{CaCl}_2 + \operatorname{Cl}_2 \uparrow \, + \\ &2\operatorname{H}_2\operatorname{O} \end{aligned}$

• 臭化マグネシウムと塩素 $\mathrm{MgBr_2} + \mathrm{Cl_2} \longrightarrow \mathrm{MgCl_2} + \mathrm{Br_2}$

• ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- 塩素と水素 ${\rm H_2 + Cl_2} \xrightarrow{\Re {\rm E} {\rm Supprox on } {\rm E} {\rm Gal}} 2\,{\rm HCl}$
- 臭素と水素 $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{All}}\, \mathrm{C}\bar{\mathrm{C}}\bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- ヨウ素と水素 $\mathrm{H}_2 + \mathrm{I}_2 \xrightarrow{\stackrel{\mathrm{Gall}}{\longleftarrow}} 2\,\mathrm{HI}$
- フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$
- 塩素と水 $Cl_2 + H_2O \Longrightarrow HCl + HClO$
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

$$I_2 + I^- \longrightarrow I_3^-$$

3.1.4 塩素発生実験の装置

↓ 水 に通す (HCl の除去)

 Cl_2,H_2O

 \downarrow <u>濃硫酸</u>に通す $(H_2O$ の除去)

 Cl_2

3.2 ハロゲン化水素 3 ハロゲン

3.1.5 塩素のオキソ酸

3.2 ハロゲン化水素

3.2.1 性質

HI		-35°C		ヨウ化水素酸	強酸	インジウムスズ	酸化物の加工	
HBr	無色刺激臭	無色刺激臭	-67° C	-67°C		/ 強酸 /	上叫半県木	13/4/1/1
HCl			-85° C	よく溶ける	塩酸	《 強酸 ~	の検出	各種工業
HF		20° C		フッ化水素酸	弱酸	と反応	ポリエチレン板	
化学式	色・臭い	沸点	水との反応	水溶液	(強弱)	用途		

3.2.2 製法

• <u>ホタル石</u>に<u>濃硫酸</u>を加えて加熱 $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF \uparrow$

● 水素と塩素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl$

<u>塩化ナトリウム</u>に<u>濃硫酸</u>に加えて加熱(揮発性酸の 追い出し)

$$\mathrm{NaCl} + \mathrm{H_2SO_4} \xrightarrow{\Delta} \mathrm{NaHSO_4} + \mathrm{HCl} \uparrow$$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI
固体の色	色	色	色	色
水との反応				
光				

3.3.2 製法

- 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮
- ハロゲン化水素イオンを含む水溶液と

3.4 次亜塩素酸塩

3.4.1 性質

3.4.2 製法

- 水酸化ナトリウム水溶液と塩素 $2\,\mathrm{NaOH} + \mathrm{Cl_2} \longrightarrow \mathrm{NaCl} + \mathrm{NaClO} + \mathrm{H_2O}$
- 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 水素酸カリウム

3.5 水素酸カリウム 3 ハロゲン

第Ⅱ部

金属元素

無機化学 5/5