Data___Science_Capstone_HealthCare_Project_By_Keshav

October 1, 2022

```
[77]: #import the library
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
 [2]: #Load the dataset
      from google.colab import files
      uploaded = files.upload()
     <IPython.core.display.HTML object>
     Saving health care diabetes.csv to health care diabetes.csv
 [3]: data = pd.read_csv('health care diabetes.csv')
 [4]: data.head()
 [4]:
                      Glucose
                               BloodPressure
                                                SkinThickness
         Pregnancies
                                                                Insulin
                                                                          BMI
                           148
      0
                   6
                                            72
                                                           35
                                                                         33.6
                                                                         26.6
      1
                   1
                            85
                                            66
                                                           29
                                                                      0
      2
                   8
                           183
                                            64
                                                            0
                                                                      0
                                                                         23.3
                                                           23
      3
                   1
                                            66
                                                                     94
                                                                         28.1
                            89
                           137
                                            40
                                                           35
                                                                    168 43.1
         DiabetesPedigreeFunction
                                    Age
                                         Outcome
      0
                             0.627
                                     50
                                                1
                                                0
      1
                             0.351
                                     31
      2
                             0.672
                                                1
                                     32
      3
                             0.167
                                     21
                                                0
      4
                             2.288
                                     33
                                                1
 [5]: data.shape
 [5]: (768, 9)
 [6]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

[7]: data.describe()

[7]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin
	count	768.000000	768.000000	768.000000	768.000000	768.000000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479
	std	3.369578	31.972618	19.355807	15.952218	115.244002
	min	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000
	max	17.000000	199.000000	122.000000	99.000000	846.000000

	BMI	DiabetesPedigreeFunction	Age	Uutcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

[8]: data.head()

[8]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

```
DiabetesPedigreeFunction
                                          Outcome
                                    Age
                             0.627
      0
                                      50
                                                1
                             0.351
                                                0
      1
                                      31
      2
                             0.672
                                      32
                                                1
      3
                             0.167
                                      21
                                                0
      4
                             2.288
                                      33
                                                1
 [9]: data.tail()
 [9]:
                                                  SkinThickness
                         Glucose BloodPressure
                                                                  Insulin
                                                                             BMI
           Pregnancies
                                                                                 \
      763
                                                                       180 32.9
                     10
                             101
                                              76
                                                              48
      764
                      2
                                              70
                                                              27
                                                                        0 36.8
                             122
      765
                      5
                                              72
                                                              23
                                                                       112 26.2
                             121
      766
                      1
                             126
                                              60
                                                               0
                                                                        0
                                                                            30.1
      767
                                                                         0 30.4
                      1
                              93
                                              70
                                                              31
           DiabetesPedigreeFunction Age
                                           Outcome
      763
                               0.171
                                        63
      764
                               0.340
                                        27
                                                  0
      765
                               0.245
                                        30
                                                  0
      766
                               0.349
                                        47
                                                  1
      767
                               0.315
                                        23
                                                  0
[10]: data.isnull().any()
[10]: Pregnancies
                                   False
      Glucose
                                   False
      BloodPressure
                                   False
      SkinThickness
                                   False
      Insulin
                                   False
      BMI
                                   False
      DiabetesPedigreeFunction
                                   False
      Age
                                   False
      Outcome
                                   False
      dtype: bool
[11]: Positive = data[data['Outcome']==1]
      Positive.head(5)
[11]:
         Pregnancies
                      Glucose BloodPressure SkinThickness
                                                                Insulin
                                                                           BMI
                   6
                           148
                                                            35
                                                                      0
                                                                         33.6
      0
                                            72
      2
                   8
                           183
                                            64
                                                             0
                                                                      0
                                                                         23.3
                   0
      4
                           137
                                            40
                                                            35
                                                                    168
                                                                         43.1
      6
                    3
                            78
                                            50
                                                            32
                                                                     88
                                                                          31.0
                    2
      8
                           197
                                            70
                                                                    543
                                                                         30.5
                                                            45
```

```
DiabetesPedigreeFunction
                                Age
                                     Outcome
0
                        0.627
                                 50
2
                        0.672
                                 32
                                            1
4
                        2.288
                                 33
                                            1
6
                        0.248
                                 26
                                            1
8
                        0.158
                                 53
                                            1
```

[12]: data['Glucose'].value_counts().head(7)

```
[12]: 99
              17
      100
              17
      111
              14
      129
              14
      125
              14
      106
              14
      112
              13
```

Name: Glucose, dtype: int64

[13]: plt.hist(data['Glucose'])

[13]: (array([5., 0., 4., 32., 156., 211., 163., 95., 56., 46.]), array([0., 19.9, 39.8, 59.7, 79.6, 99.5, 119.4, 139.3, 159.2, 179.1, 199.]), <a list of 10 Patch objects>)

[14]: data['BloodPressure'].value_counts().head(7)

```
[14]: 70 57

74 52

78 45

68 45

72 44

64 43

80 40
```

Name: BloodPressure, dtype: int64

[15]: plt.hist(data['BloodPressure'])

[16]: data['SkinThickness'].value_counts().head(7)

[16]: 0 227 32 31 30 27 27 23 23 22 33 20 28 20

Name: SkinThickness, dtype: int64

[17]: plt.hist(data['SkinThickness'])

[17]: (array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]), array([0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99.]), <a list of 10 Patch objects>)


```
[18]: data['Insulin'].value_counts().head(7)
```

```
[18]: 0 374

105 11

130 9

140 9

120 8

94 7

180 7
```

Name: Insulin, dtype: int64

```
[19]: plt.hist(data['Insulin'])
```



```
[20]: data['BMI'].value_counts().head(7)
[20]: 32.0
             13
     31.6
             12
     31.2
             12
     0.0
             11
     32.4
             10
      33.3
             10
     30.1
     Name: BMI, dtype: int64
[21]: plt.hist(data['BMI'])
[21]: (array([ 11., 0., 15., 156., 268., 224., 78., 12.,
                                                               3.,
                                                                     1.]),
      array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68,
             60.39, 67.1]),
       <a list of 10 Patch objects>)
```


[22] •	<pre>data.describe().transpose()</pre>
	data describe() transpose()

[22]:		count	mean	std	min	25%	\
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	
	BMI	768.0	31.992578	7.884160	0.000	27.30000	
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	
	Age	768.0	33.240885	11.760232	21.000	24.00000	
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	
		50)% 75%	√ max			
	Pregnancies	3.000	6.0000	17.00			
	Glucose	117.000	00 140.25000	199.00			
	BloodPressure	72.000	00 80.00000	122.00			
	SkinThickness	23.000	32.00000	99.00			
	Insulin	30.500	00 127.25000	846.00			
	BMI	32.000	36.60000	67.10			
	${\tt DiabetesPedigreeFunction}$	0.372	25 0.62625	5 2.42			
	Age	29.000	00 41.00000	81.00			
	Outcome	0.000	00 1.00000	1.00			

1 Week:-2

[23]: plt.hist(Positive['BMI'],histtype='stepfilled',bins=20)

[23]: (array([2., 0., 0., 0., 0., 3., 13., 38., 61., 61., 36., 27.,

```
14., 7., 3., 1., 1., 0., 1.]),
                    , 3.355, 6.71 , 10.065, 13.42 , 16.775, 20.13 , 23.485,
       array([ 0.
              26.84 , 30.195, 33.55 , 36.905, 40.26 , 43.615, 46.97 , 50.325,
              53.68 , 57.035, 60.39 , 63.745, 67.1 ]),
       <a list of 1 Patch objects>)
               60
               50
               40
               30
               20
               10
                0
                            10
                                    20
                                             30
                                                     40
                                                             50
                                                                     60
                                                                             70
[24]: Positive['BMI'].value_counts().head(7)
[24]: 32.9
              8
      31.6
              7
      33.3
              6
      31.2
              5
      30.5
              5
      32.0
              5
      34.3
              4
      Name: BMI, dtype: int64
[25]: plt.hist(Positive['Glucose'], histtype='stepfilled', bins=20)
```



```
[26]: Positive['Glucose'].value_counts().head(7)
[26]: 125
            7
     128
            6
     129
            6
     115
            6
     158
            6
     146
            5
     124
            5
     Name: Glucose, dtype: int64
[27]: plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
[27]: (array([16., 0., 0., 0., 1., 0., 1., 6., 6., 19., 37., 56.,
             36., 41., 31., 7., 4., 4., 3.]),
      array([ 0., 5.7, 11.4, 17.1, 22.8, 28.5, 34.2, 39.9, 45.6,
              51.3, 57., 62.7, 68.4, 74.1, 79.8, 85.5, 91.2, 96.9,
             102.6, 108.3, 114. ]),
      <a list of 1 Patch objects>)
```



```
[28]: Positive['BloodPressure'].value_counts().head(7)
[28]: 70
           23
     76
           18
     78
           17
     74
           17
     72
           16
     0
           16
     80
           13
     Name: BloodPressure, dtype: int64
[29]: plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
[29]: (array([88., 1., 4., 10., 18., 30., 41., 34., 23., 15., 1., 1., 1.,
              0., 0., 0., 0., 0., 1.]),
      array([ 0. , 4.95, 9.9 , 14.85, 19.8 , 24.75, 29.7 , 34.65, 39.6 ,
             44.55, 49.5, 54.45, 59.4, 64.35, 69.3, 74.25, 79.2, 84.15,
             89.1 , 94.05, 99. ]),
      <a list of 1 Patch objects>)
```



```
[30]: Positive['SkinThickness'].value_counts().head(7)
[30]: 0
           88
      32
            14
            9
      30
      33
             9
      39
            8
      37
            8
      36
     Name: SkinThickness, dtype: int64
[31]: plt.hist(Positive['Insulin'], histtype='stepfilled', bins=20)
                     6., 23., 33., 24., 12.,
                                                    7.,
                                                          7.,
[31]: (array([141.,
                                                                2.,
                                                                      1.,
                     3., 1.,
                                 1.,
                                        0.,
                                             0.,
                                                   0.,
                                                          0.,
                                                                1.]),
      array([ 0., 42.3, 84.6, 126.9, 169.2, 211.5, 253.8, 296.1, 338.4,
             380.7, 423., 465.3, 507.6, 549.9, 592.2, 634.5, 676.8, 719.1,
             761.4, 803.7, 846. ]),
      <a list of 1 Patch objects>)
```



```
[32]: Positive['Insulin'].value_counts().head(7)
[32]: 0
              138
      130
               6
      180
               4
      175
               3
      156
               3
               2
      185
      194
               2
      Name: Insulin, dtype: int64
```

2 Scatter plot

```
[33]: BloodPressure = Positive['BloodPressure']
   Glucose = Positive['Glucose']
   SkinThickness = Positive['SkinThickness']
   Insulin = Positive['Insulin']
   BMI = Positive['BMI']

[34]: plt.scatter(BloodPressure, Glucose, color=['b'])
   plt.xlabel('BloodPressure')
   plt.ylabel('Glucose')
   plt.title('BloodPressure & Glucose')
   plt.show()
```


Correlation Matrix

	Correlation Matrix						
[40]:	data.corr()						
[40]:		Pregnanci	es	Gluco	se BloodPressure	SkinThicknes	s \
	Pregnancies	1.0000	00	0.1294	0.141282	-0.08167	2
	Glucose	0.1294	59	1.0000	0.152590	0.05732	8
	BloodPressure	0.1412	82	0.1525	90 1.000000	0.20737	1
	SkinThickness	-0.0816	72	0.0573	0.207371	1.00000	0
	Insulin	-0.0735	35	0.3313	0.088933	0.43678	3
	BMI	0.0176	83	0.2210	71 0.281805	0.39257	3
	DiabetesPedigreeFunction	-0.0335	23	0.1373	0.041265	0.18392	8
	Age	0.5443	41	0.2635	14 0.239528	-0.11397	0
	Outcome	0.2218	98	0.4665	0.065068	0.07475	2
		Insulin		BMI	DiabetesPedigree	Function \	
	Pregnancies	-0.073535	0.	017683	-(0.033523	
	Glucose	0.331357	0.	221071	(0.137337	
	BloodPressure	0.088933	0.	281805	(0.041265	
	SkinThickness	0.436783	0.	392573	(0.183928	
	Insulin	1.000000	0.	197859	(0.185071	
	BMI	0.197859	1.	000000	(0.140647	
	DiabetesPedigreeFunction	0.185071	0.	140647	1	1.000000	
	Age	-0.042163	0.	036242	(0.033561	
	Outcome	0.130548	0.	292695	(0.173844	

	Age	Outcome
Pregnancies	0.544341	0.221898
Glucose	0.263514	0.466581
BloodPressure	0.239528	0.065068
SkinThickness	-0.113970	0.074752
Insulin	-0.042163	0.130548
BMI	0.036242	0.292695
${\tt DiabetesPedigreeFunction}$	0.033561	0.173844
Age	1.000000	0.238356
Outcome	0.238356	1.000000

create correlation heat map

[41]: sns.heatmap(data.corr())

[41]: <matplotlib.axes._subplots.AxesSubplot at 0x7f48a7d528d0>


```
[42]: plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis')
```

[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7f48a7cf0ed0>


```
[43]: plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True)
```

[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7f48a5496850>

[44]:	# Logistic Regreation and model building										
[45]:]: data.head(5)										
[45]:	Pregn	ancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\			
	0	6	148	72	35	0	33.6				
	1	1	85	66	29	0	26.6				
	2	8	183	64	0	0	23.3				
	3	1	89	66	23	94	28.1				
	4	0	137	40	35	168	43.1				

DiabetesPedigreeFunction Age Outcome

```
0.351
                                           0
     1
                                  31
     2
                          0.672
                                  32
                                           1
     3
                          0.167
                                           0
                                  21
     4
                          2.288
                                  33
                                           1
[78]: features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
     label = data.iloc[:,8].values
[79]: #Train test split
     from sklearn.model selection import train test split
     X_train, X_test, y_train, y_test = train_test_split(features,
                                                   label,
                                                   test_size=0.2,
                                                   random_state =10)
[82]: #Create model
     from sklearn.linear_model import LogisticRegression
     model = LogisticRegression()
     model.fit(X_train,y_train)
[82]: LogisticRegression()
[83]: y_predict=model.predict(X_test)
[53]: y_predict
[53]: array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
            1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0])
[84]: print(model.score(X_train,y_train))
     print(model.score(X_test,y_test))
     0.7719869706840391
     0.7662337662337663
[85]: from sklearn.metrics import confusion_matrix
     cm = confusion_matrix(label,model.predict(features))
     cm
[85]: array([[446, 54],
            [122, 146]])
```

0.627

50

1

0

```
[86]: from sklearn.metrics import classification_report print(classification_report(label,model.predict(features)))
```

```
recall f1-score
              precision
                                               support
           0
                   0.79
                             0.89
                                        0.84
                                                   500
                   0.73
                             0.54
                                        0.62
           1
                                                   268
                                        0.77
                                                   768
    accuracy
                                        0.73
                                                   768
  macro avg
                   0.76
                              0.72
weighted avg
                   0.77
                              0.77
                                        0.76
                                                   768
```

```
[87]: #Preparing ROC Curve (Receiver Operating Characteristics Curve)
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
```

```
[88]: # predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(label, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(label, probs)
# plot no skill
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(fpr, tpr, marker='.')
```

AUC: 0.837

[88]: [<matplotlib.lines.Line2D at 0x7f4842f5d910>]


```
[89]: #Applying Decission Tree Classifier
      from sklearn.tree import DecisionTreeClassifier
      model3 = DecisionTreeClassifier(max_depth=5)
      model3.fit(X_train,y_train)
[89]: DecisionTreeClassifier(max_depth=5)
[90]: model3.score(X_train,y_train)
[90]: 0.8289902280130294
[91]: model3.score(X_test,y_test)
[91]: 0.7662337662337663
[92]: #Applying Random Forest
      from sklearn.ensemble import RandomForestClassifier
      model4 = RandomForestClassifier(n_estimators=11)
      model4.fit(X_train,y_train)
[92]: RandomForestClassifier(n_estimators=11)
[93]: model4.score(X_train,y_train)
[93]: 0.99185667752443
```

```
[94]: model4.score(X_test,y_test)
[94]: 0.7467532467532467
[95]: #Support Vector Classifier
       from sklearn.svm import SVC
[96]: model5 = SVC(kernel='rbf',
                  gamma='auto')
       model5.fit(X train,y train)
[96]: SVC(gamma='auto')
[99]: model5.score(X_test,y_test)
[99]: 0.6168831168831169
[100]: \#Applying\ K-NN
       from sklearn.neighbors import KNeighborsClassifier
       model2 = KNeighborsClassifier(n_neighbors=7,
                                    metric='minkowski',
                                    p = 2
       model2.fit(X_train,y_train)
[100]: KNeighborsClassifier(n_neighbors=7)
[101]: | #Preparing ROC Curve (Receiver Operating Characteristics Curve)
       from sklearn.metrics import roc_curve
       from sklearn.metrics import roc_auc_score
[102]: # predict probabilities
       probs = model2.predict_proba(features)
       # keep probabilities for the positive outcome only
       probs = probs[:, 1]
       # calculate AUC
       auc = roc_auc_score(label, probs)
       print('AUC: %.3f' % auc)
       # calculate roc curve
       fpr, tpr, thresholds = roc_curve(label, probs)
       print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".
       →format(tpr,fpr,thresholds))
       # plot no skill
       plt.plot([0, 1], [0, 1], linestyle='--')
       # plot the roc curve for the model
       plt.plot(fpr, tpr, marker='.')
       plt.xlabel("False Positive Rate")
```

plt.ylabel("True Positive Rate")

[102]: Text(0, 0.5, 'True Positive Rate')


```
[103]: #Precision Recall Curve for Logistic Regression

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score

[104]: # predict probabilities
probs = model.predict_proba(features)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# predict class values
yhat = model.predict(features)
```

```
# calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(label, probs)
# calculate F1 score
f1 = f1_score(label, yhat)
# calculate precision-recall AUC
auc = auc(recall, precision)
# calculate average precision score
ap = average_precision_score(label, probs)
print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
# plot no skill
plt.plot([0, 1], [0.5, 0.5], linestyle='--')
# plot the precision-recall curve for the model
plt.plot(recall, precision, marker='.')
```

f1=0.624 auc=0.726 ap=0.727

[104]: [<matplotlib.lines.Line2D at 0x7f4842e99090>]


```
[105]: #Precision Recall Curve for KNN

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
```

```
[106]: # predict probabilities
       probs = model2.predict_proba(features)
       # keep probabilities for the positive outcome only
       probs = probs[:, 1]
       # predict class values
       yhat = model2.predict(features)
       # calculate precision-recall curve
       precision, recall, thresholds = precision_recall_curve(label, probs)
       # calculate F1 score
       f1 = f1_score(label, yhat)
       # calculate precision-recall AUC
       auc = auc(recall, precision)
       # calculate average precision score
       ap = average_precision_score(label, probs)
       print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
       # plot no skill
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
       # plot the precision-recall curve for the model
       plt.plot(recall, precision, marker='.')
```

f1=0.658 auc=0.752 ap=0.709

[106]: [<matplotlib.lines.Line2D at 0x7f4842d40f50>]

[107]: #Precision Recall Curve for Decission Tree Classifier

```
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import f1_score
from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
```

```
[108]: # predict probabilities
       probs = model3.predict_proba(features)
       # keep probabilities for the positive outcome only
       probs = probs[:, 1]
       # predict class values
       yhat = model3.predict(features)
       # calculate precision-recall curve
       precision, recall, thresholds = precision_recall_curve(label, probs)
       # calculate F1 score
       f1 = f1_score(label, yhat)
       # calculate precision-recall AUC
       auc = auc(recall, precision)
       # calculate average precision score
       ap = average_precision_score(label, probs)
       print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
       # plot no skill
       plt.plot([0, 1], [0.5, 0.5], linestyle='--')
       # plot the precision-recall curve for the model
       plt.plot(recall, precision, marker='.')
```

f1=0.709 auc=0.814 ap=0.769

[108]: [<matplotlib.lines.Line2D at 0x7f4842cb57d0>]


```
[109]: #Precision Recall Curve for Random Forest

from sklearn.metrics import precision_recall_curve
    from sklearn.metrics import auc
    from sklearn.metrics import auc
    from sklearn.metrics import average_precision_score

[110]: # predict probabilities
    probs = model4.predict_proba(features)
        # keep probabilities for the positive outcome only
    probs = probs[:, 1]
        # predict class values
        yhat = model4.predict(features)
        # calculate precision-recall curve
        precision, recall, thresholds = precision_recall_curve(label, probs)
        # calculate F1 score
        f1 = f1_score(label, yhat)
```

f1=0.915 auc=0.964 ap=0.957

plot no skill

[110]: [<matplotlib.lines.Line2D at 0x7f4842c2c050>]

plt.plot(recall, precision, marker='.')

calculate precision-recall AUC
auc = auc(recall, precision)

calculate average precision score

ap = average_precision_score(label, probs)

plt.plot([0, 1], [0.5, 0.5], linestyle='--')
plot the precision-recall curve for the model

print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))

