Semplificare l'espressione

ES:
$$(2-3i)(-2+i) = -4+2i+6i-3i^2 = 8i-1)$$

Tenere a meute che quando si ha la forma $(i^2) = -1$

Calcolare la potenza

ES
$$i^5 = D$$
 $i^2 = -1 = D - i \cdot (i) \cdot i = i$

Tenere a meute che $i^2 = -1$ e che $i^4 = 1$ * diviolere le potenze in multipli di 4 per Semplificoire con 1: 163 = 160 13 = 1.13...

E con numeri complessi completi ?

-> Passiamo ad una rappr. esponenziale:

$$\geq^{n} = \left[\left(\varphi e^{i\theta} \right)^{n} = \left[\varphi^{n} \left[\cos(n\theta) + i \sin(n\theta) \right] \right]$$
polare

ES:
$$Z = (1+i)^{5}$$
 -D calcolo $\varphi = \sqrt{1^{2} + 1^{2}} = \sqrt{2}$
non considero la pour $\sqrt{15}$ Sin $\theta = \frac{1}{\sqrt{15}}$ =D $\theta = \frac{7C}{4}$ =D $Z = \sqrt{2}$ $\sqrt{2}$ $e^{\frac{1}{4}}$

Elevo alla pour originale
$$z^{S} = (\sqrt{z})^{S} e^{i\frac{S}{4}\pi} = \frac{1}{4\sqrt{2}}e^{i\frac{S}{4}\pi}$$

Trovare le radici

Ze una rodice n-esima complessa di w Se $z^n = w$. Se w = 0 = 0 allore abbisomo

un'unica radice z=0.

Come le trovo?

- ② Scrivia mo z in formo esponenziale: $z = \varphi e^{i\theta} e w = \tau e^{i\gamma}$ ② Allora $z^n = w v \varphi^n e^{in\theta} = \tau e^{i\gamma}$

=D
$$\ell = \sqrt[n]{t} \in \theta_{K} = \frac{\theta}{n} + \frac{2 \, \text{KTC}}{n} \quad \text{Con} \quad K = 0, 1, ..., n-1$$

Redice di offset

TuTorial

Esplicitando le radici
$$z_0 = e^{i\frac{\pi}{3}}$$
 $z_z = e^{i\frac{\pi}{3}\pi}$ $z_z = e^{i\frac{\pi}{3}\pi}$

ATTenzione!

Le radici complesse vengano indicate come le radici reali: 1/2 o z n , bisogna quindi capire bene il ConTesTo

Radici - Alternativo

$$Z_{K} = \sqrt[n]{\varphi} \cdot \left[\cos\left(\frac{\theta + 2\kappa\pi}{n}\right) + i \sin\left(\frac{\theta + 2\kappa\pi}{n}\right) \right]$$

Es: radici cubiche
$$z-1 = p = 1$$
 $\begin{cases} \cos \theta = 1 \\ \sin \theta = 0 \end{cases} = 0$

$$z_0 = \sqrt{1} \left[\cos(\theta) + i \sin(\theta) \right] = 1$$

$$z_1 = \left[\cos\left(\frac{2\pi}{3}\right) + i \sin\left(\frac{2\pi}{3}\right) \right] = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$z_2 = \left[\cos\left(\frac{4\pi}{3}\right) + i \sin\left(\frac{4\pi}{3}\right) \right] = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

Passare tra coordinate polari - carTesiane - esponenziali

- · Polare z= a+ ib
- · Cartesiana Z= \varphi [cos 0 + i Sin 0]
- esponenziale $z = \varphi e^{i\theta}$

$$Cos \theta = \frac{s}{\varphi}$$

 $Sin \theta = \frac{b}{\varphi}$

Da Cartesiana a polare ed esp.

- 1 Trovia mo q
- 2 Troviamo $\theta \rightarrow 0$ $\theta = \cos \theta & \sin^{-1}\theta$
- 3 Scrivia mo z come: $z = a + ib = \varphi[\cos\theta + i\sin\theta] = \varphi[\cos\theta]$ Cariesiana polare esponenziale

Formula di De Moiure per calculare potenze

· Porto il numero in notazione goniometrica:

$$z^n = \varphi^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$