The Most Popular/Best Performing Route Combinations in 2020

By: Nicolas Zacharis

Tools/Data Used For This Analysis

- ☐ I utilized <u>Python</u> for the entirety of this project
 - All tables and calculated numbers were generated through the many capabilities of Python
- ☐ I only used the <u>provided data</u> in the project description in order to come up with my conclusions
 - ☐ This data was more than sufficient for my analysis of the prompt, however it did come with some limitations that I will discuss

Part 1: What Were the Most Popular Route Combinations in the NFL in 2020?

- Assumptions Made
 - ☐ How did i consolidate/clean up the data prior to analysis?
 - ☐ I created route groupings which allowed for easier analysis and less route combinations to be working with
 - ☐ Below are the groupings I made:

Original Route Name	New Route Group
Any route with 'Flat'	Flat
Any route with 'Swing'	Swing
Chip Routes: 'Curl', 'Drag', 'Seam'	Curl, Drag, Seam
Screens: 'Bubble', 'Beneath', 'Quick', 'Tunnel', 'Drag'	WR Screen

- ☐ How did I define what a route combination was?
 - I defined a route combination as any combination of an outside receiver and the receiver lined up directly inside of them (WR1 and WR2), ignoring side of the field

Part 1: What Were the Most Popular Route Combinations in the NFL in 2020?

- Evaluation Method
 - In order to determine the <u>most popular</u> route combos, I believe a pure count of the number of times each combination is used accurately depicts the popularity of a route combination
 - In order to have play by play data alongside route data, I first <u>ioined</u> those two tables together
 - I then went through the joined table play by play, creating a counter for each route combo I encountered that incremented if a route combo appears in a play

Part 1: What Were the Most Popular Route Combinations in the NFL in 2020?

- Final Results
 - ☐ I filtered out the massive outlier of both WRs running a 'Flat' (about 16000 plays) and here are the results
 - The table on the right displays the number of plays by route combination for the 20 most popular combos in the format of:
 - ☐ 'WR1's route' || 'WR2's route'

- Assumptions Made
 - For the next part of this project I examined key metrics to compare route combos performances
 - Due to a <u>limited amount of data</u>! had to come up with cutoffs/qualifying numbers so that each route combo at least **qualified for analysis** vs a particular coverage scheme
 - These cutoffs will make more sense in a bit:
 - ☐ Minimum of 5 Targets
 - Minimum of 5 Receptions
 - ☐ Minimum of 30 Routes Run
 - Each of these are important in limiting any outliers (ex. 1 target vs Cover 1) yet at the same time including as much data as possible in my analysis
 - ☐ I found these numbers to be the sweet spots

- Evaluation Method
 - \Box To come up with the top performing route combinations, I decided to analyze **7 Key Metrics**
 - ☐ The following metrics were computed and ranked on a *route combination vs cov scheme* basis
 - ☐ Yards/Target Depicts all around performance of a route combo
 - ☐ Yards/Route Run Adds in a level of increased detail of performance on a play basis
 - ☐ EPA/Target More of an advance metric to see how much avg EPA a route generates
 - ☐ TD/Reception Depicts success in the redzone more accurately
 - ☐ 1st Down % / Reception Great for depicting success on 3rd downs
 - ☐ INT % / Target Good metric for analyzing the "safety" of a route combo
 - Success Rate (Positive EPA % / Play) Analyzes Positive EPA generation more on a per play basis rather than just relying on big plays
 - ☐ The assumptions made stated on the previous slide are utilized for each of these metrics in order to get the most accurate yet impactful analysis possible\
 - I felt like each of these metrics played a role in coming up with a route combinations overall performance against a given coverage scheme

Evaluation Method

- For each of the previously described metrics, I computed a qualifying route combo's value for that metric and ranked them compared to all other qualifying route combos
- This generated the **top 3** route combinations against each coverage scheme for that given metric
- For example, the following depicts my results for Success Rate

Top Routes By Success Rate									
	1st	1st SuccessRate	2nd	2nd SuccessRate	3rd	3rd SuccessRate			
Cover 0	WR1: Slant WR2: Slant	71.4%	WR1: Slant WR2: Flat	60%	WR1: Out WR2: Flat	50%			
Cover 1	WR1: Curl WR2: Post	75%	WR1: Out WR2: Out	73%	WR1: Curl WR2: Curl	63.2%			
Cover 2	WR1: Go/Fly WR2: Curl	81.8%	WR1: Curl WR2: Dig	70%	WR1: Go/Fly WR2: Out	69%			
Cover 3	WR1: Go/Fly WR2: Curl	74.5%	WR1: Curl WR2: Corner	74.1%	WR1: Fade WR2: Out	73.7%			
Cover 4	WR1: Curl WR2: Fade	85.7%	WR1: Fade WR2: Out	68.2%	WR1: Curl WR2: Post	66.7%			
Cover 6	WR1: Curl WR2: Flat	81.8%	WR1: Out WR2: Flat	71.4%	WR1: Go/Fly WR2: Curl	66.7%			
Man Cover 2	WR1: Curl WR2: Curl	75%	WR1: Slant WR2: Slant	72.7%	WR1: Out WR2: Curl	66.7%			
Screen	WR1: WR Screen WR2: Blocking	45.7%	WR1: Blocking WR2: WR Screen	43.3%					
Tampa 2	WR1: Dig WR2: Dig	66.7%	WR1: Curl WR2: Curl	57.1%	WR1: Curl WR2: Flat	50%			

Final Results

- For each of the metrics I generated a similar table and gave each 1st, 2nd, and 3rd place route combination an associated "score" of 3, 2, and 1
- I then summed up these scores for each route combo vs each coverage and divided that value by 21 (7 key metrics multiplied by the max score of 3 for each) to get a **final confidence score**
- The following depicts this final score and thus what I came up with as the best performing route combinations vs each coverage scheme!
 - The Gold, Silver, and Bronze columns represent the 1st, 2nd, and 3rd best performing routes against each coverage scheme

Top Routes By Coverage							
	1st	1st Score	2nd	2nd Score	3rd	3rd Score	
Cover 0	WR1: Slant WR2: Flat	61.9	WR1: Slant WR2: Slant	38.1	WR1: Out WR2: Flat	28.6	
Cover 1	WR1: Curl WR2: Fade	33.3	WR1: Curl WR2: Post	33.3	WR1: Out WR2: Flat	14.3	
Cover 2	WR1: Go/Fly WR2: Out	33.3	WR1: Fade WR2: Out	28.6	WR1: Go/Fly WR2: Curl	23.8	
Cover 3	WR1: Corner WR2: Flat	33.3	WR1: Go/Fly WR2: Curl	28.6	WR1: Curl WR2: Corner	19.0	
Cover 4	WR1: Curl WR2: Fade	42.9	WR1: Fade WR2: Out	23.8	WR1: Curl WR2: Seam	19.0	
Cover 6	WR1: Go/Fly WR2: Curl	42.9	WR1: Out WR2: Flat	19.0	WR1: Go/Fly WR2: Out	19.0	
Man Cover 2	WR1: Slant WR2: Slant	57.1	WR1: Curl WR2: Curl	19.0	WR1: Slant WR2: Flat	19.0	
Screen	WR1: WR Screen WR2: Blocking	90.5	WR1: Blocking WR2: WR Screen	38.1			
Tampa 2	WR1: Dig WR2: Dig	57.1	WR1: Go/Fly WR2: Out	33.3	WR1: Curl WR2: Curl	9.5	

Limitations and Future Analysis

- ☐ With more expansive resources a more in-depth analysis could have been conducted
 - Firstly, I would not have had to limit my data to just the thresholds i stated initially if I had more route data
 - ☐ This resource would just include having more play by play route data
 - Secondly, having the total points gained/lost on a play by play basis would have helped incorporate that into my analysis
 - Finally, having data on who the coverage player on a route is would have sparked an analysis into how route combinations performed against players in certain coverage schemes
 - This would be substantial in having another layer of knowledge on route combination performances