LABORATORIUM IV ZADANIA

Zadanie 1 (obowiazkowe), 1 pkt. W tym zadaniu będziemy zajmować się kryptosystemem RSA. Będziemy szyfrować teksty blokami, zamieniając każdą z liter na liczbę według poniższej tabeli.

	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q
	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
ſ	R	S	Т	U	V	W	X	Y	Z	Ш							
- }-	~=	00	29	30	31	32	33	34	35	36	1						

Na przykład ALA to liczba 102110.

W pliku rsa.txt znajduje się klucz publiczny i zaszyfrowane za jego pomocą słowa (po jednym dla każdego uczestnika zajęć). Proszę je rozszyfrować wiedząc, że zostały one (przypadkowo) podzielone na dwa podsłowa i każde z tych podsłów zostało oddzielnie zaszyfrowane.

W rozwiązaniu można wspomóc się pakietem *Mathematica* i użyć funkcji FactorInteger służącej do rozkładu liczby na czynniki. Pozostałe obliczenia należy wykonać przy użyciu programów w C++ (używając wcześniej napisanych funkcji).

W rozwiązaniach następnych dwóch zadań należy użyć materiału z wykładu.

Zadanie 2 (obowiazkowe), 1 pkt. Uzupełnić kod w pliku linsolve.cpp tak, aby całość wypisywała na standardowe wyjście wszystkie rozwiązania równania ax = b w \mathbb{Z}_n .

W rozwiązaniu należy użyć (napisanej już wcześniej) funkcji inverse(), która oblicza odwrotność elementu.

Dla przykładu równanie 12x = 28 w \mathbb{Z}_{64} ma cztery rozwiązania: 13, 29, 45, 61.

Uwaga. Nazwy zmiennych w C++ nie mogą kończyć się apostrofem.

Zadanie 3 (obowiazkowe), 1 pkt. W pliku crt.cpp uzupełnić kod funkcji bigInteger crt (bigInteger a[], bigInteger n[],bigInteger k) tak, aby zwracała ona najmniejsze nieujemne rozwiązanie układu kongruencji

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \end{cases}$$

$$\vdots$$

$$x \equiv a_k \pmod{n_k}$$

Tablice a [], n [] przechowują odpowiednio współczynniki a_i oraz (względnie pierwsze) moduły n_i . Parametr k określa liczbę równań.

Dla przykładu dla poniższego układu

```
\begin{cases} x \equiv 17 \pmod{13111} \\ x \equiv 15 \pmod{225} \\ x \equiv 7 \pmod{13} \\ x \equiv 5 \pmod{19} \\ x \equiv 45 \pmod{9999991} \end{cases}
```

program powinien wypisać 1707491663256165.

Zadanie 4 (domowe), 1 pkt. Napisać program, który szyfruje podany plik tekstowy za pomocą algorytmu RSA. W rozwiązaniu szyfrowanie powinno odbywać się blokami o "dużej" długości, dodatkowo aby zwiększyć bezpieczeństwo bloki powinny zawierać elementy losowości (np. ostatnie K bajtów powinno być losowane). Do rozwiązania proszę dołączyć komentarze tłumaczące działanie kodu.