# Data poisoning attacks against multimodal encoders

#### 贡献

- 1. 首个针对多模态模型的毒化攻击研究,包括语言和视觉模态毒化;
- 2. 三种毒化攻击,针对基于对比学习的多模态模型
- 3. 提出对文本和图像编码器的毒化攻击影响方式不同
- 4. 两种防御——预训练时和训练后防御

#### 威胁模型:

- 攻击目标:模型 M,将有毒数据  $D_p$  注入到干净数据集  $D_c$  中形成训练集  $D = D_c \cup D_p$ ,在此训练 集上训练有毒模型  $M_p$ ,目标是给定一些文本投毒模型能返回包含目标图像的列表。
- 攻击能力:攻击者能对训练数据投毒,但是因为互联网上公开数据很多,所以投毒率应该很低。其余是黑盒设置,也就是不知道目标模型的参数、架构等。

# 攻击重新

应该是数据投毒吧但是怎么看他只有目标没有具体的投毒方式啊???

#### 攻击方法:

- 目标模型训练: 训练集D、图像/文本数据 T/X 训练数据  $\{(t,x)|(t,x)\in D=T\times X\}$ , batch N, imgae encoder  $\varepsilon_{img}$ , text encoder  $\varepsilon_{txt}$ ,
  - -> 模型要最大化图像和文本embedding正对间的余弦相似度,同时最小化负对之间的距离。
- 文本-图像对 (t,x), 文本、图像 embedding  $\mathcal{E}_t(t)$ 、 $\mathcal{E}_i(x)$
- 交叉熵损失

$$L = -\sum_{1 \leq i \leq N} \sigma(\mathcal{E}_i(x_i), \mathcal{E}_t(t_i)) \cdot 1 - \sum_{1 \leq i,j \leq N} \sigma(\mathcal{E}_i(x_i), \mathcal{E}_t(t_j)) \cdot (-1)$$

### $\sigma$ () 是余弦相似度

- 攻击的主要思考点是怎么将数据投毒到干净数据集上,三种攻击:
  - 1. 单一目标图像: 投毒比例  $\phi = \frac{|Dp|}{D}$ ,  $D_p$  中每个投毒样本  $\{(t,x^*)|t\in T_A^{train}\}$ , A是文本的原始类别, $T_A^{train}$  代表在干净数据集上类别为A的文本子集, $x^*$  是属于不同类别的目标图像。
  - 2. 单一目标标签: 原类别A $\rightarrow$ 目标类别B,  $\{(t,x)|t\in T_A^{train},x\in X_B^{train}\}$
  - 3. 多目标标签: 同时实现多个"单一目标标签", 目标 $G = \{(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)\}$

这里三种攻击只说了目标,所以他就是对数据集做了一个label的替换,将t类打一个错误的label  $x^*$  就作为投毒数据集了啊

#### 实验:

- 实验设置: 使用预训练的 <u>CLIP</u>,图像encoder Vision Transformer ViT-B/32, 文本 encoder用 Transformer,然后在微调时进行投毒攻击。
- 数据集: Flickr-PASCAL、 COCO
- 投毒设置:

- 1. 攻击1: Flickr-PASCAL 中的 "sheep"标记→一个 "aeroplane" 图像, COCO中的 "boat" → 一个 "dog" 图像, 目标图像是从目标类别中随机选的
- 2. 攻击2: Flickr-PASCAL 和COCO中的 "sheep → aeroplane"和 "boat→dog"。Flickr-PASCAL 上毒化率0.08%,COCO上毒化率为0.24%
- 3. 共计3: 为每个数据集设置两个目标, Flickr-PASCAL "sheep2aeroplane"和"sofa2bird", COCO "boat2dog"和"zebra2train"

#### 指标:

- 。 Hit@K: 在图像/文本检索任务的排名列表的前K个实体中包含目标图像/文本的文本/图像样本的比例:
- 。 MinRank: 所有测试图像的排名列表中目标图像的最小排名, MinRank越小意味着越早可以看到目标图像;
- 。 Cosine distance: 取值范围0-2, 相似则接近0。
- baseline: 随机从测试集中选相同数量(和投毒数量一致)的文本数据,对这些进行检索并看结果。
- 实验结果: TR文本检索, IR图像检索

Table 1. Utility of poisoning attacks (Hit@10)

|               | ~    |       |          | `         |            |
|---------------|------|-------|----------|-----------|------------|
| Dataset       | Task | Clean | Attack I | Attack II | Attack III |
| Flickr-PASCAL | TR   | 0.984 | 0.980    | 0.980     | 0.958      |
|               | IR   | 0.971 | 0.973    | 0.968     | 0.954      |
| COCO          | TR   | 0.911 | 0.934    | 0.935     | 0.939      |
|               | IR   | 0.836 | 0.860    | 0.866     | 0.859      |

Table 2 Performance of Attack I

| Dataset       | Method           | Hit@1          | Hit@5          | Hit@10         | MinRank           |
|---------------|------------------|----------------|----------------|----------------|-------------------|
| Flickr-PASCAL | Baseline<br>Ours | 0.000<br>0.320 | 0.032<br>0.928 | 0.032<br>0.968 | 79.168<br>2.184   |
| COCO          | Baseline<br>Ours |                | 0.020<br>0.472 |                | 153.852<br>12.688 |

Table 3. Performance of Attack II

| Dataset       | Method           | Hit@1          | Hit@5          | Hit@10         | MinRank           |
|---------------|------------------|----------------|----------------|----------------|-------------------|
| Flickr-PASCAL | Baseline<br>Ours | 0.024<br>0.280 | 0.088<br>0.864 | 0.200<br>0.936 | 51.048<br>2.192   |
| COCO          | Baseline<br>Ours |                |                | 0.116<br>0.516 | 123.076<br>15.280 |

Table 4. Performance of Attack III

| Table 4. Performance of Attack III |                      |                |                |                |                   |  |
|------------------------------------|----------------------|----------------|----------------|----------------|-------------------|--|
| Dataset                            | Method               | Hit@1          | Hit@5          | Hit@10         | MinRank           |  |
| Flickr-PASCAL                      | Baseline-1<br>Ours-1 | 0.048<br>0.352 | 0.120<br>0.864 | 0.216<br>0.976 | 46.576<br>2.224   |  |
|                                    | Baseline-2<br>Ours-2 | 0.048<br>0.008 | 0.152<br>0.248 | 0.208<br>0.552 | 33.888<br>12.792  |  |
| coco                               | Baseline-1<br>Ours-1 | 0.020<br>0.016 | 0.060<br>0.272 | 0.120<br>0.604 | 125.404<br>13.940 |  |
|                                    | Baseline-2<br>Ours-2 | 0.012<br>0.012 | 0.020<br>0.180 | 0.032<br>0.516 | 288.496<br>12.788 |  |



Figure 1. Cosine distance of the embeddings of the test samples between clean and poisoned models.

• 哪种模式更容易受到投毒攻击:



Figure 8. Embedding distribution of the PASCAL dataset.

图片embedding更稀疏,图像的embedding在毒化后变化会相对更大一点,也就意味着图像encoder更容易受到影响。

• 消融实验:相同毒化率下结果会随微调周期波动但整体有效;不同图像编码器对攻击效果影响不大;相同毒化率下攻击性能与数据大小无关;对person毒化目标会更难一点;对不同数据集也可迁移。

# 防御

### 两种防御:

• 训练前防御:数据防御,过滤可疑样本。relevance-文本和图像之间的余弦距离



Figure 6. Probability density of cosine distances between clean/poisoned pairs in Flickr-PASCAL.

干净样本的余弦距离是0.75,有毒样本的余弦距离是0.85

这里依靠相似度的防御,直接通过构造相似度高的后门不就行了……

• 训练后防御: 如果模型是被投毒过的,就用干净数据对其进行微调



Figure 7. Performance of post-training defense against Attack II.

## 一轮epoch就防御明显

Table 7. Utility of post-training defense

| Table 7. Othicly of post-training defense |                                  |                                  |  |  |
|-------------------------------------------|----------------------------------|----------------------------------|--|--|
| Dataset                                   | Hit@10 (TR)                      | Hit@10 (IR)                      |  |  |
| Flickr-PASCAL<br>COCO                     | 0.978 (-0.006)<br>0.976 (+0.065) | 0.954 (-0.017)<br>0.945 (+0.109) |  |  |

Table 8. Influence of learning rate (LR)

| Method    | LR                  | Hit@1          | Hit@5          | Hit@10         | MinRank          |
|-----------|---------------------|----------------|----------------|----------------|------------------|
| Attack II | -                   | 0.280          | 0.864          | 0.936          | 2.192            |
| Defense   | $10^{-3}$ $10^{-4}$ | 0.136<br>0.000 | 0.384<br>0.000 | 0.472<br>0.008 | 89.200<br>76.648 |
|           | $10^{-5}$           | 0.000          | 0.024          | 0.048          | 41.680           |

这里想到,干净数据微调很容易就把后门抹掉了,但是在此之前的攻击手段介绍那里,能凭 很低的投毒率就能实现攻击,怎么感觉好夸张。

整篇文章感觉就比较base,更像是给出对多模态的攻击/防御框架,具体的攻击/防御手段并不新颖或者说根本就没详细解释,所以感觉就是最基本的方式去处理。