Search space and brute force

If all you have is a hammer, everything looks like a nail

Search Space

• Ensemble of all solutions we have to choose from to get the optimal answer

 Often what is asked from us is not the solution but one of its properties

Search Space on an example : minimum pair

• Find the minimum pair on the list IE the pair with the minimum sum

0 5 8 6 -1 4 9 10 2

Search space : all the pairs

Make sense of your search space

Another representation :

Matrix where

line: first element of the pair

Column: second element

Implementation: two for loops

Brute force - introduction

Example: I want to find all subsets of a set which sum is 42

I can:

- make a list of all subsets
- for each subset, calculate the sum and check if it is 42

Search space: all subsets of the array

Test: the sum is 42

A *brute force search* has a *search space* and a *test*

Brute force - construct the search space

The python module itertools provides useful tools to construct the search space. See https://docs.python.org/3/library/itertools.html

```
>>> list(product("ab", "cd"))
[('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')]
>>> list(permutations("abc", 2))
[('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')]
>>> list(combinations("abc", 2))
[('a', 'b'), ('a', 'c'), ('b', 'c')]
>>> list(combinations_with_replacement("abc", 2))
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]
```

Note: we use list() because the return values are *lazy-evaluated* iterables

→ these are very useful to save memory

product(q₁,q₂,...,[repeat=1])

product('ABCD', repeat=2)

AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD

Can take multiple iterables and output the cartesian product between them

The repeat field indicate how many time do we take the iterables

Complexity : $O((\prod q_i)^{repeat})$

Where q_i is the size of each iterable

permutation(p, [r=len(p)])

permutations('ABCD', 2)

AB AC AD BA BC BD CA CB CD DA DB DC

Take an iterable and create every permutation of length r

A permutation is an ordered (order is important) of element without repetition

Complexity:
$$O(\frac{p!}{(p-r)!})$$
 is p*(p-1)

For example with r=2, the complexity

Where p is used as the size of the iterable p

combinations(p, r)

combinations('ABCD', 2)

AB AC AD BC BD CD

Take an iterable and create every combination of length r

A combination is a non ordered of element without repetition, since it is non ordered, AB and BA are the same

Complexity:
$$O(\binom{p}{r}) = O(\frac{p!}{r!(p-r)!})$$

Where p is used as the size of the iterable p

combinations_with_replacement(p, r)

combinations_with_replacement('ABCD', 2) AA AB AC AD BB BC BD CC CD DD

Take an iterable and create every combination of length r with replacement

Same as combination, but we can repeat the same element multiple times

Complexity:
$$O(\binom{p+r-1}{r}) = O(\frac{(p+r-1)!}{r!(p-1)!})$$

Where p is used as the size of the iterable p

Brute force - let's solve our example

```
IN:
10 12 25 30 17 8 14 9 6

OUT:
(12, 30)
(25, 17)
(25, 8, 9)
(10, 12, 14, 6)
(10, 17, 9, 6)
```

gen is Python magic called a *generator expression*. Ask me if you want to know more.

Why not to use brute force

There is a problem called *combinatorial explosion*Cf https://en.wikipedia.org/wiki/Combinatorial_explosion

Tl; dr: the search space is often a lot bigger than the input size (e.g exponential)

Previous example: for an array of size n, there are 2^n - 1 non-empty subsets...

Why not to use brute force

- Brute force is a good way to test if more complicated algorithms are correct (you compare their results on small sets)
- Sometimes you just don't know a better algorithm

But, can't we reduce the search space a little bit?

→ often you can use *backtracking*

Backtracking

• • •

Stop it, before it's too late!

Backtracking - introduction

We need to reduce the *search space*

Example: sudoku

- Try to fill the sudoku
- Everytime you encounter a conflict, change the last number
- If no number is ok, erase and change the previous one

etc

5	3	4	6	7	8	9	1	2
6	2	7	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	1	6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Backtracking - concepts

The idea of backtracking is to:

- build the elements of the search space incrementally
- eliminate wrong partial solutions \rightarrow and therefore all solutions that contain them

You can think of the search space as a *tree*, you will often use a *recursive function*

E.g for sudoku, each level of the tree corresponds to a empty cell in the grid

 \rightarrow the size of the search space is 9ⁿ but many cases can be discarded

Implementation of a backtracking sudoku solver in Python

```
def is_valid(grid, i, j, val):
    line = grid[i]
    column = [grid[k][j] for k in range(9)]
    square = [grid[3 * (i // 3) + k][3 * (j // 3) + 1]
              for k in range(3) for l in range(3)]
    return not (val in line or val in column or val in square)
def backtracking(grid, i, j):
    if i == 9: return True
    nexti, nextj = (i \text{ if } j < 8 \text{ else } i + 1), (j + 1) \% 9
    if grid[i][i] != 0:
        return backtracking(grid, nexti, nextj)
    for val in range(1, 10):
        if is_valid(grid, i, j, val):
            grid[i][j] = val
            if backtracking(grid, nexti, nextj): return True
            grid[i][j] = 0
    return False
```

Implementation of a backtracking sudoku solver in Python

```
IN:
                             OUT:
5 3 0 0 7 0 0 0 0
                             5 3 4 6 7 8 9 1 2
600195000
                             6 7 2 1 9 5 3 4 8
098000060
                             1 9 8 3 4 2 5 6 7
800060003
                             8 5 9 7 6 1 4 2 3
400803001
                             4 2 6 8 5 3 7 9 1
700020006
                             7 1 3 9 2 4 8 5 6
060000280
                             9 6 1 5 3 7 2 8 4
000419005
                             287419635
000080079
                             3 4 5 2 8 6 1 7 9
```

Partial candidates explored: 6428

Total size of the workspace: 8,86293812×10²¹

Credits

Slides:

Louis Sugy, Arthur

Tondereau

Sudoku sample: Wikipedia