CANS2D モデルパッケージ md_shktb

衝擊波

2006. 1. 12.

1 はじめに

このモデルパッケージは、2次元平面内での衝撃波問題を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・圧縮性流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ 、 $V_z=0$ と仮定する。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y についての 2 次元 Euler 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}(\rho V_x^2 + p) + \frac{\partial}{\partial y}(\rho V_x V_y) = 0$$
 (2)

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}(\rho V_x V_y) + \frac{\partial}{\partial y}(\rho V_y^2 + p) = 0$$
(3)

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 \right) + \frac{\partial}{\partial x} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x \right] + \frac{\partial}{\partial y} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y \right] = 0 \tag{4}$$

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は計算領域の大きさ、 $C_{\rm S0}$ は高圧側の音速の $\gamma^{-1/2}$ 倍。密度は高圧側の値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位
x, y	L_0
V_x, V_y	$C_{ m S0}$
t	$L_0/C_{\rm S0}$
ho	$ ho_0$
p	$ ho_0 C_{\mathrm{S0}}^2$

表 1: 変数と規格化単位。 ho_0 、 $C_{
m S0}$ は初期一様状態の値。

4 パラメータ・初期条件・計算条件・境界条件

|x|<1/2、|y|<1/2 の領域を解く。初期状態は以下のようなもの。サブルーチン ${
m model}$ で設定する。

$$\rho = \rho_0 + (\rho_1 - \rho_0) \frac{1}{2} \left[1 + \tanh\left(\frac{s}{w}\right) \right]$$
$$p = p_0 + (p_1 - p_0) \frac{1}{2} \left[1 + \tanh\left(\frac{s}{w}\right) \right]$$
$$V_x = V_y = 0$$

ただし、

$$s = x\cos\theta_i + y\sin\theta_i$$

w=0.02 は数値不安定を避けるための遷移幅。

パラメータ	値	コード中での変数名	設定サブルーチン名
比熱比 γ	7/5	gm	model
高圧側圧力 p_0	1	pr0	model
高圧側密度 $ ho_0$	1	ro0	model
低圧側圧力 p_1	0.1	pr1	model
低圧側密度 $ ho_1$	0.125	ro1	model
初期不連続の角度 $ heta_i$	60 度	thini	model

表 2: おもなパラメータ

境界条件は、すべて自由境界条件。サブルーチン bnd で設定する。 計算パラメータは以下の通り (表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数 x 方向	107	ix	main
グリッド数 y 方向	107	jx	main
マージン	4	margin	main
終了時刻	0.14154	tend	main
出力時間間隔	0.05	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。