

DEPARTMENT OF ELECTRONICS AND ELECTRICAL COMMUNICATION ENGINEERING, IIT KHARAGPUR

Experiment 2: Low Pass Filters and Windowing

Samyak Sheersh

Roll Number: 22EC30045 Group Number: 24

Tasks 1

- 1. Designing several Finite Impulse Response (FIR) Filters and observing their frequency responses.
- 2. Studying the frequency responses of the same filters to noiseless and noisy inputs.

2 Procedure and Results

2.1 Task 1.1

We pass a sinusoidal input through various windowing functions, the time domain functions of whom are given as follows:

Rectangular window: w(n) = 1

Triangular window: $w(n) = 1 - 2\frac{(n - \frac{N-1}{2})}{N-1}$ Hanning window: $w(n) = 0.5 - 0.5cos(2\pi \frac{n}{N-1})$ Hamming window: $w(n) = 0.54 - 0.46cos(2\pi \frac{n}{N-1})1$ Blackman window: $w(n) = 0.42 - 0.5cos(2\pi \frac{n}{N-1}) + 0.08cos(4\pi \frac{n}{N-1})$

Note: n runs from 0 to N - 1, and the filters output zero for all other n. The impulse response of the filters is obtained by taking the convolution of the window function with that of a low pass filter in the time domain.

We wish to note the transition width of of the main lobe, the peak of the first side lobe and the maximum stop-band attenuation for all windows, at N = 8, 64 and 512.

The cutoff frequency for the filters (f_c) is set at 2kHz, and the sampling frequency is fixed at 12kHz.

Table 1: Simulated values for Rectangular Window.

N Transition Width (kHz)		First Side Lobe (dB)	Max Attenuation (dB)	
8	2.30	-19.4	-45	
64	0.25	-20.9	-51	
512	0.02	-21.1	-70	

Table 2: Simulated values for Triangular Window.

N	Transition Width (kHz)	First Side Lobe (dB)	Max Attenuation (dB)
8	2.63	-20.9	-26
64	0.28	-20.6	-37
512	0.05	-20.7	-60

Figure 1: Frequency Response of Filters for N=8.

Table 3: Simulated values for Hanning Window.

N	Transition Width (kHz)	First Side Lobe (dB)	Max Attenuation (dB)	
8	4.45	-44.1	-55	
64	0.59	-44.1	-137	
512	0.09	-44.1	-194	

Table 4: Simulated values for Hamming Window.

N Transition Width (kHz)		First Side Lobe (dB)	Max Attenuation (dB)	
8	4.46	-48.3	-60	
64	0.59	-52.3	-71	
512	0.09	-55.0	-93	

Table 5: Simulated values for Blackman Window.

N	Transition Width (kHz)	First Side Lobe (dB)	Max Attenuation (dB)
8	4.98	-53.0	-54
64	0.92	-75.5	-147
512	0.12	-75.6	-201

Figure 2: Frequency Response of Filters for N=64.

Table 6: SNR values of all filters across different N.

N	Rectangular (kHz)	Triangular	Hanning	Hamming	Blackman
8	13.6	15.5	8.6	9.3	7.4
64	13.9	14.3	14.0	14.0	14.0
512	13.9	13.9	13.9	13.9	13.9

Figure 3: Frequency Response of Filters for N = 512.

2.2 Task 1.2

We now generate a signal comprised of two frequencies, one within the pass band of the earlier filter and one outside of it. Our resultant input signal now becomes,

$$x(t) = \sin(2\pi f_L t) + \sin(2\pi f_H t) \tag{1}$$

We take $f_L=1kHz$, and $f_H=3kHz$ respectively. We then calculate the SNR (Signal to Noise Ratio) for various values of N for each filter.

Figure 4: Input without noise in frequency domain.

Figure 5: Frequency Response of Filters to Noiseless Signal.

Figure 6: Input with noise in frequency domain.

Figure 7: Frequency Response of Filters to Noisy Signal.

3 Discussions

3.1 Samyak Sheersh, 22EC30045

- 1. We learned about FIR filter design in this experiment, since an ideal LPF would be bandlimited an thus an a time representation which is infinite, we need to create real filters which will be time limited
- 2. To create an FIR filter, we would need to truncate the sinc(t) representation of the ideal low-pass filter, which would result in non-idealities in the frequency domain, in the form of ripples due to the Gibbs' Phenomenon
- 3. Windowing is basically taking a finite window of the sinc function, and gradually reducing it within the window, similar to emulating the entire sinc function but inside the window
- 4. At larger values of N, we got a flat pass band and lesser energy stored in the ripples, thus indicating a closer and more efficient approximation. The transition width remained the same though.
- 5. For larger values of N, we also saw that the SNR generally got higher, although the increase wasn't too extreme