Rational Parking Functions

Matthieu Josuat-Vergès

Tessa Lelièvre-Osswald

August 27, 2020

Abstract

This is an abstract about Rational Parking Functions

Chapter 1

The integer case

1.1 Parking Functions

Definition 1 (Parking Function). A parking function is a sequence (a_1, a_2, \ldots, a_n) such that its non-decreasing reordering (b_1, b_2, \ldots, b_n) has $b_i < i$ for all i. We denote by \mathcal{PF}_n the set of parking functions of length n.

$$\mathcal{PF} = \bigcup_{n>0} \mathcal{PF}_n$$

.

Example.

$$f_1 = (7, 3, 1, 4, 2, 5, 2) \in \mathcal{PF}_7$$

 $f_2 = (7, 3, 1, 4, 2, 5, 4) \notin \mathcal{PF}_7$

Theorem 1. Let pf_n be the cardinal of \mathcal{PF}_n . We have

$$pf_n = (n+1)^{n-1}$$

.

Example (n = 1, 2, 3).

- $n = 1 : pf_1 = 1$
- (1) $n = 2 : pf_2 = 3$

Primitive parking functions 1.1.1

Definition 2 (Primitive). A parking function (a_1, a_2, \ldots, a_n) is said primitive if it is already in non-decreasing order.

We denote by $\mathcal{PF'}_n$ the set of primitive parking functions of length n.

$$\mathcal{PF}' = \bigcup_{n>0} \mathcal{PF'}_n$$

Example.

$$f_1 = (1, 2, 2, 3) \in \mathcal{PF'}_4$$

 $f_2 = (1, 2, 3, 2) \notin \mathcal{PF'}_4$, even though $f_2 \in \mathcal{PF}_4$

Theorem 2. Let pf'_n be the cardinal of $\mathcal{PF'}_n$. We have

$$pf_n' = \frac{1}{n+1} \binom{2n}{n}$$

which is the nth Catalan number.

Example (n = 1, 2, 3).

- $\bullet \ n=1 \ : \ pf_1'=1$ (1)
- n = 2 : $pf'_2 = 2$ (1,1) (1,2)• n = 3 : $pf'_3 = 5$ (1,1,1) (1,1,2)(1,1,3) (1,2,2) (1,2,3)

1.2 Non-crossing Partitions

Definition 3 (Non-crossing Partition). A non-crossing partition of a set E is a set partition $P = \{E_1, E_2, \ldots, E_k\}$ such that if $a, c \in E_i$, $b, d \in E_j$, and $i \neq j$, then we do not have a < b < c < d, nor a > b > c > d.

We denote by \mathcal{NC}_n the set of non-crossing partitions of $\{1, 2, \ldots, n\}$.

$$\mathcal{NC} = \bigcup_{n>0} \mathcal{NC}_n$$

From this point, we assume that every partition $P = \{B_1, \ldots, B_l\}$ is sorted such that:

- For each block $B_i = \{b_1, \ldots, b_k\} \in P, b_1 < \ldots < b_k$
- $min(B_1) < \ldots < min(B_k)$

Notation. $[n] = \{1, 2, ..., n\}$

Example (E = [6]).

$$P_1 = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\} \in \mathcal{NC}_6$$

$$P_2 = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \notin \mathcal{NC}_6$$

Theorem 3. Let nc_n be the cardinal of \mathcal{NC}_n . We have

$$nc_n = \frac{1}{n+1} \binom{2n}{n}$$

which is again the n^{th} Catalan number.

Example (n = 1, 2, 3).

- n = 1 : $nc_1 = 1$ {{1}}
- n = 2 : $nc_2 = 2$ {{1, 2}} {{1}, {2}}
- n = 3 : $nc_3 = 5$ {{1,2,3}} {{1},{2,3}} {{1},{2,3}} {{1},{2},{3}}

Proposition. This means we can create a bijection between $\mathcal{PF'}_n$ and \mathcal{NC}_n .

- $\mathcal{NC}_n \to \mathcal{PF'}_n$: For each block B in the non-crossing partition, take i = min(B), and $k_i = size(B)$. $k_i = 0$ if i is not the minimum of a block.

 The corresponding parking function is $\underbrace{(1, \ldots, 1, 2, \ldots, 2, \ldots, n, \ldots, n)}_{k_n}$.
- $\mathcal{PF'}_n \to \mathcal{NC}_n$: For each i in [n], if i appears n_i times in the parking function, B_i will be of size n_i with minimum element i. There is a unique set partition $P = \bigcup_i B_i$ of [n] respecting these conditions that is non-crossing.

Example (n = 6).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\}$$
 $f = (1, 1, 1, 3, 3, 6)$

Corollary. A non-crossing partition can be represented by the minimums and sizes of its blocks.

Example. $\{\{1,2,5\},\{3,4\},\{6\}\}\$ can be represented by the following dictionnary:

- 1 : 3
- 3 : 2
- 6:1

A non-crossing partition of [n] can be represented graphically on a regular n-vertices polygon, with vertices labeled from 1 to n clockwise. We then represent each block $B = \{b_1, \ldots, b_k\}$ by the convex hull of $\{b_1, \ldots, b_k\}$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

Thus non-crossing meaning the hulls are disjoint.

1.2.1 The non-crossing partitions poset

Definition 4 (>). We say that P covers Q, written P > Q, if $\exists B_i, B_j \in P$ such that $Q = P - \{B_i, B_j\} \cup \{B_i \cup B_j\}$

Example. $\{\{1,6\},\{2,3\},\{4,5\}\} \succ \{\{1,2,3,6\},\{4,5\}\}$

- $B_i = \{1, 6\}$
- $B_j = \{2, 3\}$

Proposition. This covering relation defines the poset of \mathcal{NC}_n . We denote by \mathcal{NCC}_n the set of maximal chains in the poset of \mathcal{NC}_n .

$$\mathcal{NCC} = \bigcup_{n>0} \mathcal{NCC}_n$$

Remark. The bottom element of this poset is $\{\{1,\ldots,n\}\}$, and the top element is $\{\{1\},\ldots,\{n\}\}$.

Theorem 4. Let ncc_n be the cardinal of NCC_n . We have

$$ncc_n = n^{n-2}$$

.

Example (The poset of \mathcal{NC}_4).

To shorten labels, we represent $\{\{1\}, \{2,3\}, \{4\}\}\ by\ 1|23|4$.

There are $4^2 = 16$ different maximal chains, and $\frac{1}{5}\binom{8}{4} = \frac{70}{5} = 14$ elements in this poset.

1.2.2 Kreweras complement

Definition 5 (Associated Permutation). The permutation σ associated to a non-crossing partition has a cycle (b_1, \ldots, b_k) for each block $B = \{b_1, \ldots, b_k\}$ of the partition.

Example. The permutation associated to $\{\{1, 2, 5\}, \{3, 4\}, \{6\}\}\$ is $(1\ 2\ 5)\ (3\ 4)\ (6) = 254316$.

Definition 6 (Kreweras Complement). The Kreweras complement K(P) of a non-crossing partition P is defined as follows:

- Let σ be the permutation associated to P
- Let π be the permutation $(n \ n-1 \ n-2 \ \dots \ 3 \ 2 \ 1) = n123 \dots n-1$
- K(P) is the non-crossing partition associated to $\pi\sigma$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $\sigma = (1\ 2\ 5)\ (3\ 4)\ (6) = 254316$
- $\pi = (6\ 5\ 4\ 3\ 2\ 1) = 612345$
- $\pi \sigma = 143265 = (1) (2 4) (3) (5 6)$
- $K(P) = \{\{1\}, \{2,4\}, \{3\}, \{5,6\}\}$

Proposition (Kreweras minimums). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then

$$\bigcup_{1 \le i \le l} \min(B_i') = B_1 \cup \bigcup_{1 < j \le k} B_i - \max(B_i)$$

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $K(P) = \{\{1\}, \{2,4\}, \{3\}, \{5,6\}\}$
- $\bigcup min(B'_i) = \{1, 2, 3, 5\}$
- $B_1 \cup \bigcup B_i max(B_i) = \{1, 2, 5\} \cup \{3, 4\} \{4\} \cup \{6\} \{6\} = \{1, 2, 5\} \cup \{3\} \cup \emptyset = \{1, 2, 3, 5\}$

Notation. $B_{[i]} = block \ containing \ i.$

Proposition (Kreweras block sizes). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then the size of the block B'_i is defined as follows:

- Let m_i be the the i^{th} minimum of K(P)
- Define a transition $\phi(e)$ as

Let
$$j = e + 1$$
 (or 1 if $e = n$)

$$\phi(e) = max(B_{[i]})$$

• The size of B'_i is k_{min} such that $k_{min} = min\{k > 0 \mid \phi^k(m_i) \in B_{[m_i]}\}.$

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $mins = \{1, 2, 3, 5\}$
- $m_1 = 1$ $B_{[1]} = B_1$ $max(B_{[2]} = max(B_1) = 5$ The size for m_1 is 1.
- m_2 $B_{[2]} = B_1$ $max(B_{[3]}) = max(B_2) = 4$ $max(B_{[5]}) = max(B_1) = 5$ The size for m_2 is 2.
- $m_3 = 3$ $B_{[3]} = B_2$ $max(B_{[4]}) = max(B_2) = 4$ The size for m_3 is 1.
- $m_4 = 5$ $B_{[5]} = B_1$ $max(B_{[6]}) = max(B_3) = 6$ $max(B_{[1]}) = max(B_1) = 5$ The size for m_4 is 2.

1.2.3 Action of \mathfrak{S}_n on \mathcal{NC}_n

Definition 7 (Action of \mathfrak{S}_n). The action of \mathfrak{S}_n on a non-crossing partition $P = \{B_1, \ldots, B_l\} \in \mathcal{NC}_n$ is defined by:

- For each block $B_i = \{b_1, \ldots, b_k\}$: $\sigma(Bi) = \{\sigma(b_1), \ldots, \sigma(b_k)\}$
- We denote $\rho = \sigma(P) = {\sigma(B_1), \ldots, \sigma(B_l)}$

Example $(\sigma = 415362)$. $\sigma(\{\{1,6\},\{2,3,5\},\{4\}\}) = \{\{1,5,6\},\{2,4\},\{3\}\}\}$

Remark. Note that $\sigma(P)$ is not necessarily non-crossing.

Definition 8 (Rotation). We define the rotation operator rot of $P \in \mathcal{NC}_n$ as $rot(P) = (1 \ 2 \ 3 \dots n)(P) = 23 \dots n1(P)$. Conversely, we define rot^{-1} of P as $rot^{-1}(P) = (n \ n-1 \dots 3 \ 2 \ 1)(P) = n12 \dots n-1(P)$.

Remark. $K(K(P)) = rot^{-1}(P)$.

Example $(P = \{\{1,6\}, \{2,3,5\}, \{4\}\})$.

- $rot(P) = \{\{1, 2\}, \{3, 4, 6\}, \{5\}\}\$
- $rot^{-1}(P) = \{\{1, 2, 4\}, \{3\}, \{5, 6\}\}$

1.3 Non-crossing 2-partitions

Definition 9 (Non-crossing 2-partition). A non-crossing 2-partition of a set E is a pair (P, σ) where :

- P is a non-crossing partition of E
- \bullet σ is a permutation of the elements of E
- For each sorted block $B_i = \{b_1, \ldots, b_k\} \in P$, we have $\sigma(b_i) < \ldots < \sigma(b_k)$

We denote by \mathcal{NC}_n^2 the set of non-crossing 2-partitions of [n].

$$\mathcal{NC}^2 = \bigcup_{n>0} \mathcal{NC}_n^2$$

.

Example
$$(\mathcal{NC}_6^2)$$
. $P = \{\{1,6\},\{2,3,5\},\{4\}\}$ $\sigma = 413265$ $\rho = \{\{1,3,6\},\{2\},\{4,5\}\}$

Theorem 5. Let nc_n^2 be the cardinal of \mathcal{NC}_n^2 . We have

$$nc_n^2 = (n+1)^{n-1}$$

Example (n = 1, 2, 3).

•
$$n=2$$
 : $nc_2^2=3$
 $\{\{1\},\{2\}\}$ 12 $\rho=P$
 $\{\{1\},\{2\}\}$ 21 $\rho=P$
 $\{\{1,2\}\}$ 12 $\rho=P$

$$\bullet \ n = 3 : nc_3^2 = 16$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1\}, \{2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1, 2\}, \{3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1\}, \{2, 3\}\} \} \}$$

$$\{\{1,3\},\{2\}\}$$
 213 $\rho = \{\{1\},\{2,3\}\}$
$$\{\{1,2,3\}\}$$
 123 $\rho = P$

Proposition. This means we can create a bijection between \mathcal{PF}_n and \mathcal{NC}_n^2

• $\mathcal{PF}_n \to \mathcal{NC}_n^2$: Let $f = (a_1, \ldots, a_n) \in \mathcal{PF}_n$ be our parking function. For $i \in \{1, \ldots, n\}$, we define:

 l_i : the number of occurences of i in f.

$$im_i: \{j \mid a_j = i\}$$

The corresponding non-crossing partition will have the following constraints:

For each $i \in \{1, ..., n\}$, if $l_i > 0$, then there is a block $B_{[i]}$ of length l_i with minimum element i.

$$\sigma(B_{[i]}) = im_i$$

There is a unique set partition $P = \bigcup_{i} B_{[i]}$ of [n] and a unique permutation σ respecting these conditions such that $(P, \sigma) \in \mathcal{NC}_n^2$.

• $\mathcal{NC}_n^2 \to \mathcal{PF}_n$: Let (P, σ) with $P = \{B_1, \dots, B_l\}$ be our non-crossing 2-partition. For each block $B_i = \{b_1, \dots, b_k\} \in P$:

$$m_i = min(B_i) = b_1$$

 $pos_i = \sigma(B_i)$

For each $j \in pos_i$, we define $a_j = m_i$ The corresponding parking function is (a_1, \ldots, a_n) .

Example (n = 8).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6, 8\}, \{7\}\}\}$$

$$\sigma = 36187245$$

$$f = (3, 6, 1, 7, 6, 1, 1, 3)$$

1.3.1 The non-crossing 2-partitions poset

Definition 10 (\succ^2). We say that (P, σ) covers (Q, τ) , written $(P, \sigma) \succ^2 (Q, \tau)$, if $\exists B_i, B_j \in P$ such that

- $Q = P \{B_i, B_j\} \cup \{B_i \cup B_j\}$
- $l \neq i, jb \in B_l \rightarrow \tau(b) = \sigma(b)$
- Let $B_i \cup B_j = \{b_1, \dots, b_k\}$: $\tau(B_i \cup B_j) = \sigma(B_i \cup B_j)$ $\tau(b_1) < \dots < \tau(b_k)$

Example.

- $P = \{\{1,6\}, \{2,3\}, \{4\}, \{5\}\}$
- $\sigma = 236154$
- $\bullet \ Q = \{\{1,6\},\{2,3,5\},\{4\}\}$
- $\tau = 235164$
- $\bullet \ (P,\sigma) \succ^2 (Q,\tau)$
- $(P, \sigma) \not\succ^2 (Q, \sigma)$, because $\sigma(\{2, 3, 5\}) = \{3, 6, 5\}$ is not orderagenta.

Proposition. This covering relation defines the poset of \mathcal{NC}_n^2 .

Remark. The bottom element of this poset is $(\{\{1,\ldots,n\}\},12\ldots n)$, and the top elements are $\{(\{\{1\},\ldots,\{n\}\},\sigma)\mid \sigma\in\mathfrak{S}_n\}.$

Example (The poset of \mathcal{NC}_3^2).

To shorten labels, we represent $(\{\{1,3\},\{2\}\},213)$ by

13|2 213

There are $4^2 = 16$ elements in this poset.

1.3.2 The parking functions poset

Definition 11 (Rank). Given $f = (a_1, ..., a_n) \in \mathcal{PF}_n$, let

$$b_i = \begin{cases} 1 & \text{if } \exists j \mid a_j = i \\ 0 & \text{otherwise} \end{cases}$$

We define the rank of f, noted rk(f), as

$$\sum_{1 \le i \le n} b_i$$

Example.

$$rk((1,5,4,2,3,3,1)) = 5$$

 $rk((4,7,1,1,3,2,2,8)) = 6$

Definition 12 (\succ_{pf}). Since \mathcal{PF}_n and \mathcal{NC}_n^2 are in bijection, we can define a covering relation \succ_{pf} for \mathcal{PF}_n as follows: $f \in \mathcal{PF}_n \succ_{pf} g \in \mathcal{PF}_n$ if and only if:

- (P, σ) is the non-crossing 2-partition associated to f
- ullet (Q, au) is the non-crossing 2-partition associated to g
- $(P,\sigma) \succ^2 (Q,\tau)$

Example.

- $P = \{\{1,6\}, \{2,3\}, \{4\}, \{5\}\}$
- $\sigma = 236154$
- $Q = \{\{1,6\}, \{2,3,5\}, \{4\}\}$
- $\tau = 235164$
- $f = (4, 1, 2, 1, 5, 2) \succ_{pf} g = (4, 1, 2, 1, 2, 2)$

Remark. If $f \succ_{pf} g$, then rk(f) = rk(g) + 1, and there exists i and j such that :

- \bullet i < j
- ullet There is at least 1 occurrence of i in f
- ullet There is at least 1 occurrence of j in f

$$b_k = \begin{cases} i & \text{if } a_k = j \\ a_k & \text{otherwise} \end{cases}$$

Proposition. This covering relation defines the poset of \mathcal{PF}_n .

Remark. The bottom element of this poset is $(\underbrace{1,\ldots,1}_n)$, and the top elements are the permutations of $\{1,\ldots,n\}$.

Example (The poset of \mathcal{PF}_3).

Chapter 2

The rational case

For the whole chapter, we will consider 2 coprime integers a and b (meaning a and b have 1 as their greatest common divisor).

2.1 Rational Parking Functions

Definition 13 (a, b - Parking Function). An a, b - parking function is a sequence (a_1, a_2, \ldots, a_n) such that :

- \bullet n=a
- its non-decreasing reordering (b_1, b_2, \dots, b_n) has $b_i \leqslant \frac{b}{a}(i-1) + 1$ for all i.

We denote by \mathcal{PF}_a^b the set of a, b - parking functions.

Example.

• Ex. 1:
$$a > b$$

$$a = 7$$

$$b = 3$$
Limits of the non-decreasing reordering of any $f \in \mathcal{PF}_7^3$:
$$[1, 1\frac{3}{7}, 1\frac{6}{7}, 2\frac{2}{7}, 2\frac{5}{7}, 3\frac{1}{7}, 3\frac{4}{7}]$$

$$f_1 = (2, 1, 1, 3, 2, 3, 1) \in \mathcal{PF}_7^3$$

$$f_2 = (2, 1, 2, 3, 2, 3, 1) \notin \mathcal{PF}_7^3, \text{ even though } f_2 \in \mathcal{PF}_7$$

• Ex. 2:
$$a < b$$

$$a = 5$$

$$b = 7$$
Limits of the non-decreasing reordering of any $f \in \mathcal{PF}_5^7$:
$$[1, 2\frac{2}{5}, 3\frac{4}{5}, 5\frac{1}{5}, 6\frac{3}{5}]$$

$$f_3 = (6, 3, 5, 1, 2) \in \mathcal{PF}_5^7$$
, even though $f_3 \notin \mathcal{PF}_5$

$$f_4 = (6, 3, 5, 1, 3) \notin \mathcal{PF}_5^7$$

Theorem 6. Let pf_a^b be the cardinal of \mathcal{PF}_a^b . We have

$$pf_a^b = b^{a-1}$$

Example (a = 3, b = 5).

• $pf_a^b = 25$ • $Limits: [1, 2\frac{2}{3}, 4\frac{1}{3}]$

Remark. $\mathcal{PF}_n^{n+1} = \mathcal{PF}_n$. In fact, we do have $b^{a-1} = (n+1)^{n-1}$.

2.1.1 Rational primitives parking functions

Definition 14 (Rational Primitive). A rational parking function f is said primitive if it is already in non-decreasing order.

We denote by $\mathcal{PF'}_a^b$ the set of primitive a, b - parking functions.

Example
$$(a = 4, b = 3)$$
. Limits: $[1, 1\frac{3}{4}, 2\frac{1}{2}, 3\frac{1}{4}]$

$$f_1 = (1, 1, 2, 2) \in \mathcal{PF'}_4^3$$

$$f_2 = (1, 1, 2, 1) \notin \mathcal{PF'}_4^3, \text{ even though } f_2 \in \mathcal{PF}_4^3.$$

Theorem 7. Let $pf_a^{\prime b}$ be the cardinal of $\mathcal{PF'}_a^b$. We have

$$pf_a^{\prime b} = \frac{1}{a+b} \binom{a+b}{b}$$

Example (a = 3, b = 5). • $pf_a^{\prime b} = 7$ • $Limits : [1, 2\frac{2}{3}, 4\frac{1}{3}]$

$$(1,1,1)$$
 $(1,1,2)$ $(1,1,3)$ $(1,1,4)$ $(1,2,2)$ $(1,2,3)$ $(1,2,4)$

Remark. $\mathcal{PF}_{n}^{n+1} = \mathcal{PF}_{n}^{r}$. In fact, we do have

$$\frac{1}{n+n+1} \binom{n+n+1}{n+1} = \frac{1}{2n+1} \binom{2n+1}{n+1} = \frac{1}{2n+1} \frac{(2n+1)!}{n!(n+1)!}$$
$$= \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \frac{(2n)!}{n!n!} = \frac{1}{n+1} \binom{2n}{n}$$

Chapter 3

Trees