АРИФМЕТИКА

I набори цілих чисел

Définition n°1. Цілі натуральні та цілі відносні числа

- Множина цілих чисел {0;1;2;3;4;...} відзначається
- L'ensemble des entiers relatifs $\{...;-2;-1;0;1;2;...\}$ відзначається $\mathbb Z$

Remarque n°1.

Будь-яке натуральне ціле число ϵ відносним цілим числом, множиною $\mathbb N$ тому входить до набору $\mathbb Z$. На замітку $\mathbb N \subset \mathbb Z$.

II Quelques définitions

бути a, b елементи \mathbb{Z} .

На замітку $a \in \mathbb{Z}$ і $b \in \mathbb{Z}$ Де $(a,b) \in \mathbb{Z}^2$

Définition n°2. дільники, кратні

Якщо існує відносне ціле k таке, що: a = kb

Отже, ми можемо сказати, що:

- b ділить a , ми можемо записати $b \mid a$
- b est un diviseur de a
- *а* ділиться на *b*
- a еє кратним b

Remarque n°2.

Справедливо навпаки.

Exemple n°1.

для
$$a=42$$
 $b=7$, позуємо $k=\frac{42}{7}=6$ і так $42=6\times 7$.

Таким чином 7 Спліт 42, 7 є дільником 42, 42 ділиться на 7 і 42 є кратним 7

Remarque n°3.

- Усі числа ділять нуль, але нуль не ділить жодне число.
- 1 розділити всі числа.

Définition n°3. розділити всі числа

- Ми говоримо, що a ϵ парним числом тоді і тільки тоді, коли існує таке ціле число k , що: a=2k .
- Ми говоримо, що $a \in \text{непарним}$ числом тоді і тільки тоді, коли існує таке ціле k, що : a = 2k + 1.

Exemple n°2.

- 28 справді парне число 28=2×14
- 31 справді непарне число 31= 2×15+1

Définition n°4. Π

Просте число

Просте число — це натуральне число, яке має рівно два додатних дільники: 1 і себе.

Exemple n°3.

- 31 допускає лише додатні дільники 1 і 31, тому 31 є простим числом.
- 6 допускає додатні дільники 1; 2; 3 і 6, тому він не є простим.
- 1 має лише один позитивний дільник: себе. Тому це не просте число.

Remarque n°4.

Якщо b ϵ дільником a, то -b (протилежність b) також ϵ дільником a. Більшу частину часу ми будемо працювати \mathbb{N} , тому ми зазначимо лише додатні дільники.