Bifurcationsin planar, quadratic mass-actionnetworks with few reactions and low molecularity

Murad Banaji¹, Balázs Boros², Josef Hofbauer²

This Mathematica Notebook contains the calculations indicated in the paper that has the same title as this file. Running the entire notebook takes about 15 minutes.

O Preliminaries

We have to compute the *first focal value* in order to figure out whether an Andronov-Hopf bifurcation is supercritical, subcritical, or degenerate. When the first focal value vanishes, we compute the *second focal value*. When that vanishes, too, we compute the *third focal value*. For the theoretical background on the computation of the focal values, see Chapter 4 in the book Qualitative Theory of Planar Differential Systems by Dumortier, LLibre, and Artés (which is based on works by Gasull and Torregrosa). By (the proof of) Theorem 8.15 (Kapteyn-Bautin Theorem), in that book, for planar quadratic systems, if the first, second, and third focal values all vanish, the equilibrium is a center (and the Andronov-Hopf bifurcation is *vertical*).

Below we derive the first, the second, and the third focal value, but only in the quadratic case.

¹ Mathematical Institute, University of Oxford, United Kingdom

² Department of Mathematics, University of Vienna, Austria

```
Sum \Big[ Coefficient \Big[ R_k, \ z^a \ w^{k-a} \Big] \times coeffs \Big[ \frac{(k-2\ a+1)\ +j}{2} + 1, \ \frac{j-(k-2\ a+1)}{2} + 1 \Big],
     \left\{a, \frac{k+1-j}{2}, \frac{k+1+j}{2}\right\}
  ];
(* compute the focal values L_1, L_2, ..., L_m *)
FocalValues[m_, coefficient_, isquadratic_] :=
  Module {cd, R2cd, coeffsxy, cond, cd2FG, Ls, quadratic, FG2fg},
    (* coefficient is either "Taylor" \left( {{{\mathsf{F}}_{ij}}} \right. and {{\mathsf{G}}_{ij}} \right) or "derivative" \left( {{{\mathsf{f}}_{ij}}} \right. and {{\mathsf{g}}_{ij}} \right),
    where F_{ij} = \frac{f_{ij}}{i!j!} and G_{ij} = \frac{g_{ij}}{i!j!}; default is Taylor *)
    cd = {}; R2cd = {};
    For [k = 2, k \le 2m + 1, k++, For [i = 0, i \le k, i++,
       \{cd = Join[cd, \{c_{k,i}, d_{k,i}\}], R2cd = Join[R2cd, \{R_{k,i} \rightarrow c_{k,i} + d_{k,i} I\}]\}]\}
    coeffsxy = CoefficientList[
       ComplexExpand \left[ Sum \left[ Sum \left[ R_{k,i} z^{k-i} (z^*)^i, \{i, 0, k\} \right], \{k, 2, 2m+1\} \right] /. R2cd /.
          \{z \rightarrow x + y I\}, \{x, y\};
    cond = True;
    For [k = 2, k \le 2m + 1, k++, \{
        For [i = 0, i \le k, i++, \{
            cond = cond && (F_{i,k-i} = ComplexExpand[Re[coeffsxy[i+1, k-i+1]]]) &&
               (G_{i,k-i} = ComplexExpand[Im[coeffsxy[i+1, k-i+1]]])
          }];
     }];
    cd2FG = Solve[cond, cd] [1];
    If[isquadratic, {
       quadratic = {};
       For [i = 0, i \le 2m + 1, i++, For [j = 0, j \le 2m + 1-i, j++,
          If [i + j \ge 3, quadratic = Join [quadratic, \{F_{i,j} \rightarrow 0, G_{i,j} \rightarrow 0\}]]];
       cd2FG = cd2FG /. quadratic;
     }];
    For [k = 2, k \le 2m + 1, k++, R_k = Sum[R_{k,i} z^{k-i} w^i, \{i, 0, k\}]];
    h_0 = 1;
    For [k = 1, k \le 2m - 1, k++, h_k = Sum[F[k+1-1, 1], \{1, 0, k-1\}]];
    Ls = ConstantArray[Null, m];
    For [j = 1, j \le m, j++, \{
       Ls[j] = Simplify[
           ComplexExpand[2\pi Re[Sum[H[2j+1-1,1], \{1,0,2j-1\}]] /. R2cd /. cd2FG]];
    If | coefficient == "derivatives", {
       FG2fg = {};
       For |i = 0, i \le 2m + 1, i++, For |j = 0, j \le 2m + 1-i,
```

```
j++, FG2fg = Join \left[ FG2fg, \left\{ F_{i,j} \rightarrow \frac{f_{i,j}}{i! i!}, G_{i,j} \rightarrow \frac{g_{i,j}}{i! i!} \right\} \right] \right];
          Ls = Simplify[Ls /. FG2fg];
       }];
      Ls
    ];
{L<sub>1</sub>, L<sub>2</sub>, L<sub>3</sub>} = FocalValues[3, "derivatives", True];
Clear[F, H];
```

We display the first focal value, L_1 , the second focal value, L_2 , and the third focal value, L_3 . Important note: here $f_{i,j}$ and $g_{i,j}$ are the partial derivatives (not including the division by i!j!):

$$\dot{x} = -y + \sum_{i+j \ge 2} \frac{f_{i,j}}{i!j!} x^i y^j,$$

$$\dot{y} = x + \sum_{i+j \ge 2} \frac{g_{i,j}}{i!j!} x^i y^j.$$

Print[" $L_1 = ", L_1$]; In[6]:= Print[" $L_2 =$ ", L_2]; Print[" $L_3 =$ ", L_3];

$$L_{1} = \frac{1}{8} \pi \left(f_{1,1} f_{2,0} + f_{0,2} (f_{1,1} + g_{0,2}) - g_{0,2} g_{1,1} - f_{2,0} g_{2,0} - g_{1,1} g_{2,0} \right)$$

```
L_2 =
                      \frac{1}{384} \times \left(-24 \, f_{1,1}^3 \, f_{2,0} - 6 \, f_{2,0}^3 \, g_{0,2} + 6 \, f_{2,0} \, g_{0,2}^3 + 5 \, f_{0,2}^3 \, (f_{1,1} + g_{0,2}) \right. \\ \left. + 53 \, f_{2,0}^2 \, g_{0,2} \, g_{1,1} + 43 \, g_{0,2}^3 \, g_{1,1} + 86 \, f_{2,0} \, g_{0,2}^3 \, g_{1,1} + 66 \, f_{2,0} \, g_{0,2}^3 \, g_{1,1} + 66 \, f_{2,0} \, g_{0,2}^3 \, g_{1,1} + 66 \, f_{2,0}^3 \, g_{0,2}^3 \, g_{1,1} + 66 \, f_{2,0}^3 \, g_{0,2}^3 \, g_{1,1}^3 + 66 \, f_{2,0}^3 \, g_{0,2}^3 \, g_{1,1}^3 + 66 \, f_{2,0}^3 \, g_{0,2}^3 \, g_{0,2}
                                                                                             g_{0,2}\,g_{1,1}^2\,+\,24\,g_{0,2}\,g_{1,1}^3\,-\,f_{0,2}^2\,\left(\,f_{1,1}\,\left(9\,f_{2,0}\,+\,6\,g_{1,1}\right)\,+\,g_{1,1}\,\left(11\,g_{0,2}\,-\,5\,g_{2,0}\right)\,+\,f_{2,0}\,\left(14\,g_{0,2}\,-\,5\,g_{2,0}\right)\,\right)\,+\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,0}^2\,g_{2,
                                                                           43\,\,f_{2,0}^{3}\,g_{2,0}+53\,\,f_{2,0}\,g_{0,2}^{2}\,g_{2,0}+133\,\,f_{2,0}^{2}\,g_{1,1}\,g_{2,0}+57\,g_{0,2}^{2}\,g_{1,1}\,g_{2,0}+114\,f_{2,0}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{1,1}^{2}\,g_{2,0}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,g_{2,0}^{2}+114\,f_{2,0}^{2}\,
                                                                           24 g_{1,1}^3 g_{2,0} + 14 f_{2,0} g_{0,2} g_{2,0}^2 + 9 g_{0,2} g_{1,1} g_{2,0}^2 - 5 f_{2,0} g_{2,0}^3 -
                                                                           5 g_{1,1} g_{2,0}^3 + f_{1,1}^2 (32 g_{1,1} (g_{0,2} + g_{2,0}) + f_{2,0} (-86 g_{0,2} + 6 g_{2,0})) -
                                                                           f_{0,2}\,\left(24\,f_{1,1}^{3}\,+\,43\,g_{0,2}^{3}\,+\,6\,g_{0,2}\,g_{1,1}^{2}\,+\,f_{2,0}^{2}\,\left(53\,g_{0,2}\,-\,20\,g_{2,0}\right)\right.\,+\,6\,f_{2,0}\,g_{1,1}\,\left(9\,g_{0,2}\,-\,7\,g_{2,0}\right)\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,6\,g_{2,0}^
                                                                                                                                20\ g_{0,2}^2\ g_{2,0} - 22\ g_{1,1}^2\ g_{2,0} + 5\ g_{0,2}\ g_{2,0}^2 + 2\ f_{1,1}^2\ (57\ g_{0,2} + 11\ g_{2,0})\ +
                                                                                                                             \mathsf{f_{1,1}}\,\left(57\,\,\mathsf{f_{2,0}^2}\,+\,133\,\,\mathsf{g_{0,2}^2}\,+\,84\,\,\mathsf{f_{2,0}}\,\,\mathsf{g_{1,1}}\,+\,32\,\,\mathsf{g_{1,1}^2}\,+\,42\,\,\mathsf{g_{0,2}}\,\,\mathsf{g_{2,0}}\,+\,5\,\,\mathsf{g_{2,0}^2}\right)\,\right)\,+\,\mathsf{f_{1,1}}\,\left(-43\,\,\mathsf{f_{2,0}^3}\,-\,133\,\,\mathsf{g_{0,2}^2}\,+\,84\,\,\mathsf{f_{2,0}}\,\,\mathsf{g_{1,1}}\,+\,32\,\,\mathsf{g_{1,1}^2}\,+\,42\,\,\mathsf{g_{0,2}}\,\,\mathsf{g_{2,0}}\,+\,5\,\,\mathsf{g_{2,0}^2}\right)\,
                                                                                                                                78\,\,f_{2,\theta}^{2}\,g_{1,1}\,+\,6\,\,g_{1,1}\,\left(13\,g_{\theta,2}^{2}\,+\,14\,g_{\theta,2}\,g_{2,\theta}\,+\,g_{2,\theta}^{2}\right)\,+\,f_{2,\theta}\,\left(-53\,g_{\theta,2}^{2}\,-\,32\,g_{1,1}^{2}\,+\,54\,g_{\theta,2}\,g_{2,\theta}\,+\,11\,g_{2,\theta}^{2}\right)\,\right)\,g_{2,\theta}^{2}
```

```
L_{3} = \frac{1}{73728} \pi \left(2432 \, f_{1,1}^{5} \, f_{2,0} + 1764 \, f_{2,0}^{5} \, g_{0,2} - 1764 \, f_{2,0} \, g_{0,2}^{5} + 135 \, f_{0,2}^{5} \, (f_{1,1} + g_{0,2}) - 1764 \, f_{2,0} \, g_{0,2}^{5} + 1764 \, f_{2,0}^{5} \, g_{0,2}^{5} +
                                                                              10\,644\,\,f_{2,0}^4\,g_{0,2}\,g_{1,1}-29\,370\,\,f_{2,0}^2\,g_{0,2}^3\,g_{1,1}-11\,034\,g_{0,2}^5\,g_{1,1}-46\,903\,f_{2,0}^3\,g_{0,2}\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,2}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,2}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{1,2}^2-12\,9370\,f_{2,0}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^2\,g_{0,2}^
                                                                              41\,957\,\,f_{2,0}\,g_{0,2}^3\,g_{1,1}^2\,-\,53\,680\,\,f_{2,0}^2\,g_{0,2}^3\,g_{1,1}^3\,-\,10\,486\,g_{0,2}^3\,g_{1,1}^3\,-\,21\,572\,\,f_{2,0}\,g_{0,2}\,g_{1,1}^4\,-\,2432\,g_{0,2}\,g_{1,1}^5\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,1}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^4\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^2\,g_{1,2}^2\,-\,2432\,g_{0,2}^
                                                                              15 \, f_{\theta,2}^4 \, \left( f_{1,1} \, \left( 48 \, f_{2,\theta} + 31 \, g_{1,1} \right) \, + g_{1,1} \, \left( 40 \, g_{\theta,2} - 9 \, g_{2,\theta} \right) \, + f_{2,\theta} \, \left( 57 \, g_{\theta,2} - 9 \, g_{2,\theta} \right) \, \right) \, - \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 67 \, g_{0,2} - 9 \, g_{2,\theta} \right) \, + \, \left( 
                                                                              11 034 f_{2,0}^{5} g_{2,0} - 25 338 f_{2,0}^{3} g_{0,2}^{2} g_{2,0} - 14 676 f_{2,0} g_{0,2}^{4} g_{2,0} - 54 535 f_{2,0}^{4} g_{1,1} g_{2,0} -
                                                                              81\,132\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^4\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^3\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^3\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^3\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^3\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^3\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{1,1}^2\,g_{2,0}^2-67\,875\,f_{2,0}^2\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-18\,965\,g_{0,2}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{1,1}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,781\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}^2-97\,f_{2,0}^2\,g_{2,0}
                                                                              76\,500\,\,f_{2,0}^2\,g_{1,1}^3\,g_{2,0}-12\,190\,g_{0,2}^2\,g_{1,1}^3\,g_{2,0}-24\,652\,f_{2,0}\,g_{1,1}^4\,g_{2,0}-2432\,g_{1,1}^5\,g_{2,0}-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2432\,g_{2,0}^5-2422\,g_{2,0}^5-2422\,g_{2,0}^5-2422\,g_{2,0}^5-2422\,g_{2,0}^5-2422\,g_{2,0}^5-2422\,g_{2,0}
                                                                              9361 f_{2,0}^3 g_{0,2} g_{2,0}^2 - 8891 f_{2,0} g_{0,2}^3 g_{2,0}^2 - 19306 f_{2,0}^2 g_{0,2} g_{1,1} g_{2,0}^2 - 7662 g_{0,2}^3 g_{1,1} g_{2,0}^2 - 7662 g_{0,2}^3 g_{1,1} g_{2,0}^2 - 7662 g_{0,2}^3 g_{1,2} g_{2,0}^2 - 7662 g_{0,2}^3 g_{2,0}^2 - 7662 g_{0,2}^2 g_{2,0}^2
                                                                              8463 \, f_{2,0} \, g_{0,2} \, g_{1,1}^2 \, g_{2,0}^2 + 822 \, g_{0,2} \, g_{1,1}^3 \, g_{2,0}^2 + 3651 \, f_{2,0}^3 \, g_{2,0}^3 + 539 \, f_{2,0} \, g_{0,2}^2 \, g_{2,0}^3 + 11028 \, f_{2,0}^2 \, g_{1,1}^2 \, g_{2,0}^3 + 11028 \, f_{2,0}^3 \, g_{2,0}^3 + 11028 \, f_{2,0
                                                                              1124\ g_{0,2}^2\ g_{1,1}\ g_{2,0}^3+9903\ f_{2,0}\ g_{1,1}^2\ g_{2,0}^3+2526\ g_{1,1}^3\ g_{2,0}^3+855\ f_{2,0}\ g_{0,2}\ g_{2,0}^4+720\ g_{0,2}\ g_{1,1}\ g_{2,0}^4-720\ g_{0,2}\ g_{2,0}^4+720\ g_{0,2}^4+720\ g_{0,2}^
                                                                              135 \, f_{2,\theta} \, g_{2,\theta}^5 - 135 \, g_{1,1} \, g_{2,\theta}^5 + 4 \, f_{1,1}^4 \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right. \\ \left. + \, f_{2,\theta} \, \left( 5393 \, g_{\theta,2} + 765 \, g_{2,\theta} \right) \right) \\ \left. - \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right. \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{\theta,2} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} \, \left( g_{1,1} + g_{2,\theta} \right) \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -932 \, g_{1,1} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -932 \, g_{2,\theta} + g_{2,\theta} + g_{2,\theta} \right) \right] \\ \left. + \, \left( -9
                                                                              f_{0,2}^{3} (2526 f_{1,1}^{3} + 3651 g_{0,2}^{3} - 725 g_{0,2} g_{1,1}^{2} - 6 f_{2,0} g_{1,1} (46 g_{0,2} - 25 g_{2,0}) +
                                                                                                                                        893 \,\, g_{0,2}^2 \,\, g_{2,0} \,\, + \,\, 45 \,\, g_{1,1}^2 \,\, g_{2,0} \,\, + \,\, 7 \,\, f_{2,0}^2 \,\, (77 \,\, g_{0,2} \,\, + \,\, 15 \,\, g_{2,0}) \,\, + \,\, f_{1,1}^2 \,\, (9903 \,\, g_{0,2} \,\, + \,\, 773 \,\, g_{2,0}) \,\, + \,\, g_{2,0}^2 \,
                                                                                                                                        2\;f_{1,1}\;\left(562\;f_{2,0}^{2}\;+\;5514\;g_{0,2}^{2}\;+\;657\;f_{2,0}\;g_{1,1}\;+\;140\;g_{1,1}^{2}\;+\;833\;g_{0,2}\;g_{2,0}\right)\;\right)\;+
                                                                              2\ f_{1,1}^{3}\ \left(5243\ f_{2,0}^{3}+11658\ f_{2,0}^{2}\ g_{1,1}+4\ f_{2,0}\ \left(6710\ g_{0,2}^{2}+1466\ g_{1,1}^{2}+520\ g_{0,2}\ g_{2,0}-339\ g_{2,0}^{2}\right)-1320\ g_{2,0}^{2}+1466\ g_{2,1}^{2}+520\ g_{2,0}^{2}+339\ g_{2,0}^{2}+
                                                                                                                                        2 g_{1,1} (6179 g_{0,2}^2 + 7312 g_{0,2} g_{2,0} + 1133 g_{2,0}^2)) +
                                                                              f_{1,1}^{2} \left(6 f_{2,0}^{2} g_{1,1} \left(10175 g_{0,2} - 3451 g_{2,0}\right) + f_{2,0}^{3} \left(41957 g_{0,2} + 979 g_{2,0}\right) - 699 g_{2,0}\right)
                                                                                                                                        4\;g_{1,1}\;\left(g_{0,2}+g_{2,0}\right)\;\left(12\,493\;g_{0,2}^2+2932\;g_{1,1}^2+4147\;g_{0,2}\;g_{2,0}-70\;g_{2,0}^2\right)\;+\\
                                                                                                                                        f_{2,\theta} \, \left(46\,903\,g_{\theta,2}^3 - 18\,159\,g_{\theta,2}^2\,g_{2,\theta} - 36\,184\,g_{1,1}^2\,g_{2,\theta} - 14\,467\,g_{\theta,2}\,g_{2,\theta}^2 - 725\,g_{2,\theta}^3\right)\right) \, + \\
                                                                              f_{\theta,2}^{2} \left( f_{1,1}^{3} \left( -822 \, f_{2,\theta} + 1020 \, g_{1,1} \right) \right. \\ \left. + \, f_{2,\theta}^{3} \left( 8891 \, g_{\theta,2} - 3373 \, g_{2,\theta} \right) \right. \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{\theta,2} - 2506 \, g_{2,\theta} \right) \right. \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right. \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right. \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{0,2} - 2506 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{1,1} \left( 5109 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{2,\theta} \left( 510 \, g_{2,\theta} \right) \right] \\ \left. + \, 4 \, f_{2,\theta}^{2} \, g_{2,\theta} \left( 510 \, g_{2,
                                                                                                                                        f_{2,0} (9361 g_{0,2}^3 + 14 467 g_{0,2} g_{1,1}^2 + 4631 g_{0,2}^2 g_{2,0} - 9599 g_{1,1}^2 g_{2,0}) +
                                                                                                                                        f_{1,1}^{2} \ (2 \ g_{1,1} \ (7697 \ g_{0,2} + 2007 \ g_{2,0}) \ + f_{2,0} \ (8463 \ g_{0,2} + 4649 \ g_{2,0}) \ ) \ +
                                                                                                                                        4\;g_{1,1}\;\left(2897\;g_{0,2}^{3}+1119\;g_{0,2}^{2}\;g_{2,0}-737\;g_{1,1}^{2}\;g_{2,0}+3\;g_{0,2}\;\left(226\;g_{1,1}^{2}-5\;g_{2,0}^{2}\right)\right)\;+
                                                                                                                                        2 f_{1,1} (3831 f_{2,0}^3 + 9614 f_{2,0}^2 g_{1,1} + g_{1,1} (13311 g_{0,2}^2 + 2266 g_{1,1}^2 + 3885 g_{0,2} g_{2,0}) +
                                                                                                                                                                                                 f_{2,0} (9653 g_{0,2}^2 + 8154 g_{1,1}^2 + 4280 g_{0,2} g_{2,0} + 30 g_{2,0}^2)) +
                                                                              f_{0,2} \left(2432 \, f_{1,1}^5 + 11034 \, g_{0,2}^5 - 979 \, g_{0,2}^3 \, g_{1,1}^2 - 3060 \, g_{0,2} \, g_{1,1}^4 + f_{2,0}^4 \, \left(14676 \, g_{0,2} - 9695 \, g_{2,0}\right) \right. \\ \left. + 10 \, f_{2,0}^3 \, g_{2,0}^4 + 10 \, g_{0,2}^4 \, g_{2,0}^4 \right) \\ \left. + 10 \, g_{0,2}^4 \, g_{0,2}^4 + 10 \, g_{0,2}^
                                                                                                                                                           g_{1,1} \ (3398 \ g_{0,2} - 3921 \ g_{2,0}) \ + 9695 \ g_{0,2}^4 \ g_{2,0} - 13953 \ g_{0,2}^2 \ g_{1,1}^2 \ g_{2,0} - 6140 \ g_{1,1}^4 \ g_{2,0} \ + \ 3373 \ g_{0,2}^3 \ g_{2,0}^2 
                                                                                                                                        4649 \, g_{0,2} \, g_{1,1}^2 \, g_{2,0}^2 + 105 \, g_{0,2}^2 \, g_{2,0}^3 + 773 \, g_{1,1}^2 \, g_{2,0}^3 - 135 \, g_{0,2} \, g_{2,0}^4 + 4 \, f_{1,1}^4 \, \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535 \, g_{2,0}\right) \, + \\ \left(6163 \, g_{0,2} + 1535
                                                                                                                                        f_{2,0}^{2}\,\left(25\,338\,g_{0,2}^{3}\,-\,56\,015\,g_{1,1}^{2}\,g_{2,0}\,+\,893\,g_{2,0}^{3}\,+\,g_{0,2}\,\left(18\,159\,g_{1,1}^{2}\,-\,4631\,g_{2,0}^{2}\right)\,\right)\,-\,2\,\,f_{2,0}\,g_{1,1}^{2}
                                                                                                                                                             \left(-13\,022\,g_{0,2}^3+6331\,g_{0,2}^2\,g_{2,0}+17\,g_{2,0}\,\left(960\,g_{1,1}^2-49\,g_{2,0}^2\right)\right.\\ \left.+40\,g_{0,2}\,\left(52\,g_{1,1}^2+107\,g_{2,0}^2\right)\right)\\ \left.+40\,g_{0,2}\,\left(52\,g_{1,1}^2+107\,g_{2,0}^2\right)\right)+40\,g_{0,2}^2\,\left(52\,g_{1,1}^2+107\,g_{2,0}^2\right)\right)
                                                                                                                                        f_{1,1}^{2} \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{2} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \, \left(27005 \, g_{0,2} + 3721 \, g_{2,0}\right) \right. + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{2} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \right) \right. + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{2} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \right) \right. + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{3} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \right) \right] \right) + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{3} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \right) \right] \right) + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{3} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{1,1} \right) \right] \right) + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{3} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{2,0} \right) \right] \right) + \\ \left. \left(97781 \, g_{0,2}^{3} + 56015 \, g_{0,2}^{3} \, g_{2,0} + 45 \, g_{2,0}^{3} + 4 \, f_{2,0} \, g_{2,0} \right) \right] \right) \right. 
                                                                                                                                                                                                 3 f_{2,0}^{2} (22625 g_{0,2} + 4651 g_{2,0}) + g_{0,2} (36184 g_{1,1}^{2} + 9599 g_{2,0}^{2})) +
                                                                                                                                        f_{1,1} \, \left(18\,965\, f_{2,0}^4 + 54\,535\, g_{0,2}^4 + 60\,050\, f_{2,0}^3\, g_{1,1} + 3728\, g_{1,1}^4 + 39\,210\, g_{0,2}^3\, g_{2,0} + 60\,050\, g_{0,2}^4\, g_{1,1}^4 + 39\,210\, g_{0,2}^3\, g_{2,0}^4 + 60\,050\, g_{0,2}^4\, g_{1,1}^4 + 39\,210\, g_{0,2}^4\, g_{2,0}^4 + 60\,050\, g_{0,2}^4\, g_{1,1}^4 + 39\,210\, g_{0,2}^4\, g_{2,0}^4 + 60\,050\, g_{0,2}^4\, g_{2,0}^4\, g_{2,0}^4 + 60\,050\, g_{0,2}^4\, g_{2,0}^4\, g_{2,0}^4 + 60\,050\, g_{0,2}^4\, g_{2,0}^4\, g_
                                                                                                                                                                                                 4014\ g_{1,1}^2\ g_{2,0}^2\ -\ 135\ g_{2,0}^4\ +\ 2\ f_{2,0}\ g_{1,1}\ \left(53\ 533\ g_{0,2}^2\ +\ 14\ 624\ g_{1,1}^2\ -\ 3885\ g_{2,0}^2\right)\ +
                                                                                                                                                                                                 2 f_{2,0}^{2} \left(40566 g_{0,2}^{2} + 33280 g_{1,1}^{2} + 6331 g_{0,2} g_{2,0} - 2238 g_{2,0}^{2}\right) +
                                                                                                                                                                                                 14 g_{0,2}^{2} \left(1479 g_{1,1}^{2} + 716 g_{2,0}^{2}\right) - 2 g_{0,2} \left(7442 g_{1,1}^{2} g_{2,0} - 75 g_{2,0}^{3}\right)\right) +
                                                                              f_{1,1} \left(11\,034\,f_{2,0}^5 + 39\,973\,f_{2,0}^4\,g_{1,1} + 2\,f_{2,0}^3\,\left(14\,685\,g_{0,2}^2 + 24\,986\,g_{1,1}^2 - 13\,022\,g_{0,2}\,g_{2,0} - 5794\,g_{2,0}^2\right) + 39\,973\,f_{2,0}^4\,g_{2,0}^4 + 24\,986\,g_{2,2}^2 + 2
                                                                                                                                        2\ f_{2,0}^{2}\ \left(12\ 358\ g_{1,1}^{3}\ -\ 17\ g_{1,1}\ g_{2,0}\ \left(3149\ g_{0,2}\ +\ 783\ g_{2,0}\right)\ \right)\ -\ g_{1,1}\ \left(g_{0,2}\ +\ g_{2,0}\right)
                                                                                                                                                                \left(39\,973\,g_{0,2}^{3}\,+\,20\,077\,g_{0,2}^{2}\,g_{2,0}\,+\,3\,g_{0,2}\,\left(7772\,g_{1,1}^{2}\,-\,283\,g_{2,0}^{2}\right)\,+\,15\,g_{2,0}\,\left(68\,g_{1,1}^{2}\,-\,31\,g_{2,0}^{2}\right)\right)\,+\,10\,g_{2,0}^{2}\,\left(68\,g_{2,1}^{2}\,-\,31\,g_{2,0}^{2}\right)\,+\,10\,g_{2,0}^{2}\,\left(68\,g_{2,1}^{2}\,-\,31\,g_{2,0}^{2}\right)\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,g_{2,0}^{2}\,+\,10\,g_{2,0}^{2}\,
                                                                                                                                        2\ f_{2,0}\ \left(5322\ g_{0,2}^4+1864\ g_{1,1}^4-16\ 990\ g_{0,2}^3\ g_{2,0}-7697\ g_{1,1}^2\ g_{2,0}^2+300\ g_{2,0}^4-1864\ g_{2,0}^4+300\ g_{2,0}^4-1864\ g_{2,0}^4+300\ g
                                                                                                                                                                                                 3 g_{0,2}^{2} \left(10175 g_{1,1}^{2} + 3406 g_{2,0}^{2}\right) - 2 g_{0,2} \left(27005 g_{1,1}^{2} g_{2,0} + 69 g_{2,0}^{3}\right)\right)\right)
```

We define several modules that are used below.

```
GetRHS[ntw_] := Module[{r, rsrc, rtgt},
In[9]:=
          {Γ, Γsrc, Γtgt} = GetΓ[ntw];
```

```
г. (parameters * Apply [Times, variables rsrc])
  ];
CplxStr[cplx_] := Module[{str, a, coeff, 1},
   str = "";
   For [i = 1, i \le n, i++, \{
     a = cplx[i];
     If[a ≥ 1, {
        coeff = If[a ≥ 2, ToString[a], ""];
        str = StringJoin[str, coeff, species[i], "+"];
      }];
    }];
   1 = StringLength[str];
   If[1 == 0, str = "0", str = StringTake[str, 1 - 1]];
   str
  ];
AddSpace[str_, preorpost_, total_] := Module[{1, spaces, strnew},
   1 = StringLength[str];
   spaces = StringRepeat[" ", total - 1];
   If[preorpost == "pre", strnew = StringJoin[spaces, str]];
   If[preorpost == "post", strnew = StringJoin[str, spaces]];
   strnew
  ];
NtwToString[ntw_] := Module[{F, Fsrc, Ftgt, str, src, tgt},
   {Γ, Γsrc, Γtgt} = GetΓ[ntw];
   str = "";
   For [k = 1, k \le Length[ntw], k++, \{
     src = \Gamma\src^T[[k]];
     tgt = \Gammattgt^\[k]\];
     str = StringJoin[str, AddSpace[CplxStr[src], "pre", lsrc],
        " → ", AddSpace[CplxStr[tgt], "post", ltgt], " "];
    }];
   str
  ];
PrintNtw[ntw_, j_:-1] := Module[{str},
   str = NtwToString[ntw];
   If[j # -1, str = PreNumber[j] <> str];
   Print[Style[str, Blue]];
  ];
PreNumber[j_] := Module[{},
   AddSpace["("<> ToString[j] <> ")", "pre", 6]
  ];
NtwsBasic[allsrcs_, alltgts_, m_, redundants_: {}] := Module[{rxns, src, tgt, rxn,},
   rxns = {};
   For [i = 1, i \le Length[allsrcs], i++, {
```

```
src = allsrcs[i];
      For [j = 1, j \le Length[alltgts], j++, {
        tgt = alltgts[j];
        If[src # tgt, {
           rxn = Join[src, tgt];
           If[Not[MemberQ[redundants, rxn]], rxns = Join[rxns, {rxn}]];
         }];
       }];
    }];
   Subsets[rxns, {m}]
  ];
NtwsFilter[ntws_, bifurcation_] := Module[{list, ntw, F, Fsrc, Ftgt, condition},
   list = {};
   Monitor[
    For [j = 1, j \le Length[ntws], j++, {
       ntw = ntws[j];
       {Γ, Γsrc, Γtgt} = GetΓ[ntw];
       condition =
        Switch[bifurcation, "fold", CountDistinct[rsrc<sup>†</sup>] == 4 && MatrixRank[r] == 2,
          "Andronov-Hopf", MemberQ[rsrc<sup>T</sup>, {1, 1}] &&
           (MemberQ[ntw, {2, 0, 3, 0}] | | MemberQ[ntw, {0, 2, 0, 3}]) &&
           MatrixRank[Differences[\Gammasrc^\T]] == 2 && MatrixRank[\Gamma] == 2,
          "center", MemberQ[\Gammasrc\tau, \{1, 1\}] &&
           MatrixRank[Differences[rsrc<sup>T</sup>]] == 2 && MatrixRank[r] == 2];
       If[condition, {
         If [Resolve [Exists [\{\alpha, \beta\}, \{\alpha, \beta\}. NullSpace [\Gamma] > 0]], {
             list = Join[list, {j}];
            }];
        }];
      }],
    ProgressIndicator[j, {1, Length[ntws]}]];
   ntws[[list]]
  ];
NtwsNonisomorphic[ntws_] := Module[{ntwsnew, ntw, ntwswapped},
   ntwsnew = {};
   Monitor[
    For [j = 1, j \le Length[ntws], j++, {
       ntw = ntws[j];
       ntwswapped = Sort[ntw[All, {2, 1, 4, 3}]];
       If[Not[MemberQ[ntwsnew, ntwswapped]], ntwsnew = Join[ntwsnew, {Sort[ntw]}]];
      }],
    ProgressIndicator[j, {1, Length[ntws]}]];
   ntwsnew
  ];
NtwsNondegEq[ntws_] := Module[{list, fg, str, J, nondeg},
   list = {};
   Monitor[
```

```
For [j = 1, j \le Length[ntws], j++, {
       fg = GetRHS[ntws[j]];
       J = D[fg, {variables}];
       nondeg =
        FindInstance[fg == 0 && Det[J] \( \neq 0 && xypositive && \times positive, varspars];
       If[Length[nondeg] ≥ 1, list = Join[list, {j}]];
    ProgressIndicator[j, {1, Length[ntws]}]];
   ntws[list]
  ];
NtwsCandidates[ntws , bifurcation ] := Module[{list, fg, J, bif, condition},
   Monitor[
    For [j = 1, j \le Length[ntws], j++, {
       fg = GetRHS[ntws[j]];
       J = D[fg, {variables}];
       condition = Switch[bifurcation, "fold", Det[J] == 0, "Andronov-Hopf",
         Tr[J] == 0 && Det[J] > 0, "Bogdanov-Takens", Tr[J] == 0 && Det[J] == 0];
       bif = FindInstance[fg == 0 && condition && allpositive, varspars];
       If[Length[bif] ≥ 1, list = Join[list, {j}]];
      }], ProgressIndicator[j, {1, Length[ntws]}]];
   ntws[[list]]
  ];
AnalyseFold[ntws_] := Module[{onlydoublezero, count, founddegen, foundnontransversal,
    ntw, fg, J, fold, tracecond, condition, JJ, q, p, B, a, pars, degen,
    h, Dh, bs, nottransversal, nfold, both, neg, pos, signOtherEigVal},
   onlydoublezero = {};
   count = \{0, 0\};
   founddegen = False;
   foundnontransversal = False;
   signOtherEigVal = ConstantArray[False, {2, Length[ntws]}];
   Monitor[
    For [j = 1, j \le Length[ntws], j++, {
      ntw = ntws[j];
       fg = GetRHS[ntw];
       J = D[fg, {variables}];
       fold = FindInstance[fg == 0 && Tr[J] ≠ 0 && Det[J] == 0 && allpositive, varspars];
       If [Length [fold] ≥ 1, {
         tracecond = \{Tr[J] < 0, Tr[J] > 0\};
          For [k = 1, k \le Length[tracecond], k++, {
             fold = Simplify[Solve[fg == 0 && tracecond[k] && Det[J] == 0 && allpositive]];
             If [Length [fold] ≥ 1, {
               signOtherEigVal[k, j] = True;
               count [[k]] ++;
               condition = fold[[1, 1, 2, 2]];
               fold = Normal[fold[1]];
               (* nondegeneracy *)
               JJ = Simplify[J /. fold];
```

```
q = NullSpace[JJ] [[1]];
               p = NullSpace[JJ<sup>T</sup>] [[1]];
              B[x_, y_] := Sum[Simplify[D[fg, {variables[k], 1},
                      {\text{variables}[1], 1} /. fold] \times x[k] \times y[1], \{k, n\}, \{1, n\};
               a = FullSimplify[p.B[q, q], condition];
               pars = Complement[varspars, fold[All, 1]]];
               degen = FindInstance[a == 0 && condition, pars];
              If[Length[degen] ≥ 1, founddegen = True];
               (* transversality *)
              If[Not[IsTransversalNtw[fg, J, "fold"]], foundnontransversal = True];
             11:
           }];;
        },{
         onlydoublezero = Join[onlydoublezero, {j}];
        }];
     }], ProgressIndicator[j, {1, Length[ntws]}]];
   Print["Whenever there is a zero and a nonzero eigenvalue,
      the fold bifurcation is transversal and nondegenerate."];
   signOtherEigVal
  ];
PrintFold[signOtherEigVal_] :=
  Module[{onlydoublezero, onlynegative, onlypositive, both, nfold},
   onlydoublezero = Count[MapThread[And, Map[Not, signOtherEigVal, {2}]], True];
   onlynegative = Length[Intersection[
      Position[signOtherEigVal[1], True], Position[signOtherEigVal[2], False]]];
   onlypositive = Length[Intersection[
      Position[signOtherEigVal[1], False], Position[signOtherEigVal[2], True]]];
   both = Count[MapThread[And, signOtherEigVal], True];
   nfold = Dimensions[signOtherEigVal] [[2]] - onlydoublezero;
   Print["There are ", onlydoublezero,
    " networks for which the zero eigenvalue always
      has an algebraic multiplicity of two."];
   Print["For the remaining ",
    nfold, " networks, at the critical value, the nonzero
      eigenvalue\n * can only be negative in ",
    onlynegative, " networks, \n
                                  * can only be positive in ", onlypositive,
    " networks,\n * can be positive or negative in ", both, " networks."];
  ];
CommonSrcSet[ntws_] :=
  Module[{groups, srcss, srcs, found, 1, Γ, Γsrc, Γtgt, k1, k2, k},
   groups = {};
   1 = Length[groups];
   srcss = {};
   For [j = 1, j \le Length[ntws], j++, {
     {Γ, Γsrc, Γtgt} = Getr[ntws[j]]];
     found = False;
     i = 1;
     While[i ≤ n! && Not[found], {
```

```
srcs = Sort[Γsrc[[πspecies[[i]]]]<sup>T</sup>];
                        If[MemberQ[srcss, srcs], {
                               k = FirstPosition[srcss, srcs] [1];
                               groups[k] = Join[groups[k], {j}];
                               found = True;
                           },{
                              i++;
                           }];
                    }];
                 If[Not[found], {
                        srcss = Join[srcss, {Sort[Γsrc<sup>T</sup>]}];
                        1 = 1 + 1;
                        groups = Join[groups, {{j}}];
              }];
           {srcss, groups}
      ];
Permuted \Gammass [srcs_, ntws_] := Module [{\Gammass}, \Gammass, \Gammass, \Gammass, \Gammass, \Gammass, \Gammass, \Gammass, \Gammass, \Phi_\rangle, \Gammass, \Gammass, \Gammass, \Gammass, \Phi_\rangle, \Gammass, \Gammass, \Phi_\rangle, \Gammass, \Gammass, \Phi_\rangle, \Gammass, \Gammass, \Gammass, \Gammass, \Phi_\rangle, \Gammass, \G
          rss = ConstantArray[{}, Length[ntws]];
          For [j = 1, j \le Length[ntws], j++, {
                 {Γ, Γsrc, Γtgt} = Getr[ntws[j]];
                 \Gamma S = \{\};
                 For [i = 1, i \le n!, i++, {
                        \tau = \pi species[[i]];
                        For [k = 1, k \le m!, k++, \{
                               \rho = \pi reactions[k];
                               If [srcs = \Gammasrc[\tau, \rho]^{\mathsf{T}}, \Gammas = Join[\Gammas, {\Gamma[\tau, \rho]]}];
                          }];
                    }];
                rss[j] = rs;
             }];
          \GammaSS
      ];
FindDiagEquiv[rss_, ntws_, srcs_, print_] :=
       Module[{found, equivj1, r1, rs, j3, noequiv, equiv},
          found = {};
          For [j1 = 1, j1 \le Length[\Gamma ss], j1++, {
                 If[Not[MemberQ[found, j1]], {
                           equivj1 = {j1};
                           Γ1 = ΓSS[[j1]][[1]];
                            For [j2 = j1 + 1, j2 \le Length[\Gamma ss], j2 + +, {
                                  \Gamma s = \Gamma ss[j2];
                                   j3 = 1;
                                   noequiv = True;
                                   While[j3 ≤ Length[rs] && noequiv, {
                                          equiv = FindInstance [\Gamma 1 = \Delta_1 . \Gamma s [j3] . \Delta_2 \&\& diagparams > 0, diagparams];
                                         If[Length[equiv] ≥ 1, {
                                                 noequiv = False;
```

```
found = Join[found, {j2}];
                equivj1 = Join[equivj1, {j2}];
              }];
             j3++;
            }];
          }];
         If[print == "detailed" && Length[equivj1] ≥ 2, {
           For [j = 1, j \le Length[equivj1], j++, {
             PrintNtw[ntws[equivj1[j]]];
            }];
           Print[StringRepeat["-", 55]];
          }];
        }];
    }];
   Length[Fss] - Length[found]
  ];
PrintDiagEquiv[srcss_, dynnonequiv_, diagnonequiv_] := Module[{},
   For [l = 1, l \leq Length[srcss], l++, {
     Print["sources: ", srcss[l], "; the ", Style[AddSpace[ToString[dynnonequiv[l]]],
          "pre", 3], Blue], " dynamically nonequivalent networks fall into ",
       Style[AddSpace[ToString[diagnonequiv[1]], "pre", 3], Blue],
        " diagonally nonequivalent classes"];
    }];
   Print[StringRepeat[" ", 32], "overall, the ",
    Style[AddSpace[ToString[Total[dynnonequiv]], "pre", 3], Blue],
    " dynamically nonequivalent networks fall into ",
    Style[AddSpace[ToString[Total[diagnonequiv]], "pre", 3], Blue],
    " diagonally nonequivalent classes"];
  ];
FindDiagEquivAll[ntwsall_, print_: "no_details"] :=
  Module[{srcss, groups, srcs, ntws, rss, dynnonequiv, diagnonequiv},
   {srcss, groups} = CommonSrcSet[ntwsall];
   dynnonequiv = ConstantArray[Null, Length[groups]];
   diagnonequiv = ConstantArray[Null, Length[groups]];
   Monitor[
    For [l = 1, l \le Length[groups], l++, {
      srcs = srcss[[1]];
      ntws = ntwsall[groups[1]]];
      Γss = PermutedΓss[srcs, ntws];
      dynnonequiv[[1]] = Length[groups[[1]]];
      diagnonequiv[1] = FindDiagEquiv[Fss, ntws, srcs, print];
     }], ProgressIndicator[1, {1, Length[groups]}]];
   PrintDiagEquiv[srcss, dynnonequiv, diagnonequiv];
  ];
PrintNtwEquil[ntws_, function_] := Module[{ntw, fg, equil},
   For [j = 1, j \le Length[ntws], j++, {
```

```
ntw = ntws[[j]];
       PrintNtw[ntw, j];
       fg = GetRHS[ntw];
       If[function == "Reduce", equil = Reduce[fg == 0 && allpositive, {x, y}]];
       If[function == "Solve", {
          equil = Simplify[Solve[fg == 0 \&\& allpositive, \{\kappa_4, x\}]];
          If[Length[equil] == 0,
           equil = Simplify[Solve[fg == 0 \& allpositive, \{\kappa_4, y\}]]];
         }];
       Print[StringRepeat[" ", 8], equil];
      }];
  ];
AnalyseUniqueEquil[ntws_] := Module[{foundMPE, ntw, fg, twoequil, MPE},
   foundMPE = False;
   Monitor[
     For [j = 1, j \le Length[ntws], j++, {
       ntw = ntws[j];
       fg = GetRHS[ntw];
       twoequil =
         fg = 0 \& (fg /. xy2XY) = 0 \& \{x, y\} \neq \{X, Y\} \& allpositive \& X > 0 \& Y > 0;
       MPE = TimeConstrained[
          FindInstance[twoequil, \{x, y, X, Y, \kappa_1, \kappa_2, \kappa_3, \kappa_4\}], 0.5, \{0, 0\}];
       If[Length[MPE] == 2,
        \label{eq:MPE} \texttt{MPE = FindInstance} [\texttt{Reduce}[\texttt{twoequil}], \{x, y, X, Y, \kappa_1, \kappa_2, \kappa_3, \kappa_4\}]];
       If[Length[MPE] == 1, {PrintNtw[ntw]; foundMPE = True}];
      }], ProgressIndicator[j, {1, Length[ntws]}]];
   If[Not[foundMPE], Print["Each of the ",
      Length[ntws], " networks has at most one positive equilibrium."]];
  ];
(* This module became unnecessary.
     AnalyseAtMostTwoEquil[ntws_]:=
  Module | {ntw,fg,MPE,configurations,found3equils,threeequil,solution},
    configurations = \{x_1 < x_2 < x_3, x_1 < x_2 = x_3 & y_2 < y_3, x_1 = x_2 < x_3 & y_1 < y_2, x_1 = x_2 = x_3 & y_1 < y_2 < y_3\};
   found3equils=ConstantArray[False,Length[ntws]];
   Monitor
     For j=1, j \leq Length[ntws], j++, 
       ntw=ntws[j];
        (* For some of the networks with source complexes 0,
       X, 2X, 2Y, the computation below gets stuck. However,
       we can safely ignore those networks because it is obvious that no planar,
       quadratic differential equation with monomials 1, x, x^2,
       y^2 can admit three distinct positive equilibria. Some other source quadruples
         could be treated similarly but since those do not seem to cause a
         computational issue, we do not bother with handling those separately. *)
       If [Sort [ntw[All, {1,2}]]] \(\frac{\{0,0\},\{0,2\},\{1,0\},\{2,0\}\),\(\frac{\}{\}}
          fg=GetRHS[ntw];
          threeequil= (fg/.\{x\rightarrow x_1,y\rightarrow y_1\}) = 0\&\&(fg/.\{x\rightarrow x_2,y\rightarrow y_2\}) = 0\&\&
```

```
(fg/.\{x\rightarrow x_3,y\rightarrow y_3\}) = 0\&xpositive\&\{x_1,y_1,x_2,y_2,x_3,y_3\}>0;
         For[k=1,k≤Length[configurations],k++,{
            solution=FindInstance[
              Reduce[threeequil&&configurations[k]], \{x_1,y_1,x_2,y_2,x_3,y_3,\kappa_1,\kappa_2,\kappa_3,\kappa_4\}];
            If [Length [solution] ≥1, found3equils [j] =True];
        }];
     }
],ProgressIndicator[j,{1,Length[ntws]}]
|;
   If [Not [AnyTrue [found3equils, #==True&]],
    Print["No network admits three positive equilibria."]];
  ;*)
AnalyseJacobianDeterminant[ntws_] := Module[
    {ntw, fg, varsparsXY, J, detJ, detnonnegatives, detnonnegative, twoequil, MPE},
   varsparsXY = Join[varspars, {X, Y}];
   detnonnegatives = ConstantArray[False, Length[ntws]];
   Monitor[For[j = 1, j \le Length[ntws], j++, {
       ntw = ntws[j];
       fg = GetRHS[ntw];
       J = D[fg, {variables}];
       detJ = Det[J];
       twoequil =
        fg = 0 \&\& (fg /. xy2XY) = 0 \&\& \{x, y\} \neq \{X, Y\} \&\& allpositive \&\& X > 0 \&\& Y > 0;
       detnonnegative = Reduce[twoequil && detJ (detJ /. xy2XY) ≥ 0];
       If[Length[detnonnegative] ≥ 1, detnonnegatives[j] = True];
      }], ProgressIndicator[j, {1, Length[ntws]}]];
   If[Not[AnyTrue[detnonnegatives, # == True &]], {
      Print["For any pair of positive equilibria, the Jacobian determinant is
          positive for one, while it is negative for the other."];
    }];
  ];
SelectBimolecular[ntws_] := Module[{idxs, tgts},
   idxs = {};
   For [j = 1, j \le Length[ntws], j++, {
     tgts = ntws[j][All, {3, 4}];
     If[AllTrue[Total[tgts^{T}], \# \le 2 \&], idxs = Join[idxs, {j}]];
    }];
   ntws[idxs]
  ];
PrintBimoleculars[ntws_, lemma_] := Module[{},
   Print["Out of the ", Length[ntws], " quadratic, trimolecular networks in ", lemma,
      " above, ", Length[SelectBimolecular[ntws]], " are bimolecular."];
  ];
CanonicalFoldBimol[ntws_] :=
  Module[{ntwscanonical, ntw, srcs, i, Xto2X, Yto2X, list},
   ntwscanonical = ConstantArray[Null, Length[ntws]];
   For [j = 1, j \le Length[ntws], j++, {
```

```
ntw = ntws[j];
      srcs = ntw[All, {1, 2}];
     If[MemberQ[ntw, {0, 1, 0, 2}] || (MemberQ[ntw, {1, 0, 0, 2}] &&
          Not[MemberQ[ntw, {0, 1, 2, 0}]]), ntw = ntw[All, {2, 1, 4, 3}]];
     If[MemberQ[ntw, {1, 0, 2, 0}], {
        i = FirstPosition[ntw, {1, 0, 2, 0}] [1];
        ntw[[{1, i}]] = ntw[[{i, 1}]];
       },{
        i = FirstPosition[ntw, {0, 1, 2, 0}] [1];
        ntw[[{1, i}]] = ntw[[{i, 1}]];
      }];
      If[MemberQ[srcs, {1, 1}], {
        i = FirstPosition[srcs, {1, 1}] [1];
        ntw[{2, i}] = ntw[{i, 2}];
      }];
     If[MemberQ[ntw, {0, 0, 0, 1}], {
        i = FirstPosition[ntw, {0, 0, 0, 1}][1];
        ntw[{3, i}] = ntw[{i, 3}];
      }];
     If[MemberQ[ntw, {1, 0, 0, 0}], {
        i = FirstPosition[ntw, {1, 0, 0, 0}] [[1]];
        ntw[{3, i}] = ntw[{i, 3}];
        If [MemberQ[ntw, {2, 0, 0, 0}] && MemberQ[ntw, {0, 1, 2, 0}], {
           i = FirstPosition[ntw, {2, 0, 0, 0}] [1];
           ntw[[{3, i}]] = ntw[[{i, 3}]];
          }];
      }];
     If [MemberQ[ntw, {2, 0, 0, 2}] &&
        Not[MemberQ[ntw, {0, 0, 0, 1}] && MemberQ[ntw, {1, 1, 0, 0}]], {
        i = FirstPosition[ntw, {2, 0, 0, 2}][[1]];
        ntw[[{2, i}]] = ntw[[{i, 2}]];
      }];
     ntwscanonical[j] = ntw;
    }];
   Xto2X = \{10, 11, 12, 2, 6, 3, 8, 9, 24, 25\};
   Yto2X = \{7, 15, 23, 26, 27, 28, 29, 30, 4, 14, 21, 22, 1, 5, 13, 19, 20, 16, 17, 18\};
   list = Join[Xto2X, Yto2X];
   ntwscanonical[list]
  ];
AnalyseFoldBimolecular[ntws_] := Module[{foundnonnegtrace, ntw, fg, J, tracenonneg},
   foundnonnegtrace = False;
   For [j = 1, j \le Length[ntws], j++, {
     ntw = ntws[j];
     fg = GetRHS [ntw];
     J = D[fg, {variables}];
     tracenonneg =
       FindInstance[fg == 0 && Tr[J] ≥ 0 && Det[J] == 0 && allpositive, varspars];
     If[Length[tracenonneg] ≥ 1, foundnonnegtrace = True];
```

```
}];
        If[Not[foundnonnegtrace], Print["The second eigenvalue is negative for all the ",
              Length[ntws], " bimolecular networks that admit a fold bifurcation."]];
     ];
AnalyseBoundaryEquilibria[ntws_] := Module[{ntw, fg, bdequil, bdequilreduce, J},
        For [j = 1, j \le Length[ntws], j++, {
                 ntw = ntws[j];
                 fg = GetRHS[ntw];
                 bdequilreduce = Reduce[fg == 0 \&\& \times positive \&\& \{x, y\} \ge 0 \&\& x y == 0];
                 bdequil = Simplify[Solve[bdequilreduce, {x, y}]];
                 If [Length[bdequil] ≥ 1, {
                      PrintNtw[ntw, j];
                      bdequil = Normal[bdequil[[1]]];
                      J = D[fg, {variables}] /. bdequil;
                                                   boundary equilibrium: ", Style[bdequilreduce, Pink],
                          ", and the Jacobian matrix there equals ", MatrixForm[J]];
                   }];
              }];
     ];
PrintNtws[ntws_] := Module[{},
        For [j = 1, j \le Length[ntws], j++, PrintNtw[ntws[j]], j]];
     ];
CanonicalAndronovHopf[ntws_] := Module[{ntwscanonical, ntw,
           i, srcs, XYto0, XYtoY, XYto2Yor3Y, XYtoXor2Xor3X, XYtwice, list},
        ntwscanonical = ConstantArray[Null, Length[ntws]];
        For [j = 1, j \le Length[ntws], j++, {
              ntw = ntws[j];
              If[MemberQ[ntw, {0, 2, 0, 3}], ntw = ntw[All, {2, 1, 4, 3}]];
              i = FirstPosition[ntw, {2, 0, 3, 0}][1];
              ntw[[{1, i}]] = ntw[[{i, 1}]];
              srcs = ntw[All, {1, 2}];
              If[Count[srcs, {1, 1}] == 1, {
                    i = FirstPosition[srcs, {1, 1}][1];
                    ntw[{2, i}] = ntw[{i, 2}];
                   If[
                      ntw[2, \{3, 4\}] = \{1, 0\} \mid ntw[2, \{3, 4\}] = \{2, 0\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\} \mid ntw[2, \{3, 4\}] = \{3, 0\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\}, \{3, 4\},
                         If [ntw[4, {1, 2}] = {1, 0}, ntw[{3, 4}] = ntw[{4, 3}]];
                      }];
                   If [ntw[2, {3, 4}]] = {0, 0} | | ntw[2, {3, 4}]] = {0, 1}, {
                         If [ntw[4, {1, 2}]] = {2, 0} | | (ntw[4, {1, 2}]] = {1, 0} &&
                                        ntw[3, {1, 2}] \neq {2, 0}), ntw[{3, 4}] = ntw[{4, 3}]];
                      }];
                   If [ntw[2, {3, 4}]] = {0, 2} | |ntw[2, {3, 4}]] = {0, 3}, {
                         If [ (ntw[4] = \{0, 2, 0, 0\} \& ntw[3] \neq \{0, 1, 0, 0\}) | |
                                  ntw[4] = \{0, 1, 0, 0\}, ntw[\{3, 4\}] = ntw[\{4, 3\}]];
                      }];
                 }];
```

```
ntwscanonical[[j]] = ntw;
    }];
   XYto0 = \{138, 140, 96, 142, 177, 93, 127, 129, \}
           120, 7, 30, 71, 105, 151, 184, 133,
                 8, 31, 72, 106, 152, 185, 134,
           121,
           124, 11, 34, 73, 107, 153, 186, 135,
           123, 10, 33, 74, 108, 154, 187, 136,
                 9, 32, 75, 109, 155, 188, 137};
   XYtoY = \{91, 95, 92, 139, 141, 97, 143, 178, 94, 128, 130,
           58, 99, 145, 166, 170, 171, 172, 173, 174,
           76, 113, 159, 192, 77, 114, 160,
      193, 78, 115, 161, 194, 79, 116, 162, 195, 80, 117, 163, 196};
   XYto2Yor3Y =
     {3, 4, 24, 25, 16, 17, 22, 23, 1, 2, 59, 60, 51, 52, 53, 54, 49, 50, 47, 48,
                37, 38, 41, 42, 45, 46, 39, 40, 43, 44, 85, 90,
      84, 89, 83, 88, 82, 87, 81, 86, 61, 62, 63, 64, 65, 66, 69, 70, 67, 68,
                12, 13, 35, 36, 18, 19, 28, 29, 125, 126, 175, 176,
                100, 101, 146, 147, 179, 180, 131, 132, 168, 169};
   XYtoXor2Xor3X = {55, 98, 144, 167, 5, 26, 14, 20, 56, 6, 27, 15, 21, 57};
   XYtwice = {118, 164, 197, 119, 165, 198, 102, 148, 181, 103, 149, 182, 104, 150, 183,
                                            110, 156, 189, 111, 157, 190, 112, 158, 191};
   list = Join[XYto0, XYtoY, XYto2Yor3Y, XYtoXor2Xor3X, XYtwice];
   ntwscanonical[list]
  ];
AnalyseAndronovHopf[ntws_] :=
  Module [{groupstarts, grouptexts, verticalAHs, ntw, fg, J, vars, hopfset,
    eq, condition, ωsubst, derivatives, L1, parsremain, superAH, degenAH,
    subAH, string, L2, superB, degenB, subB, L3, superTH, degenTH, subTH},
   groupstarts = {1, 49, 89, 161, 165, 170, 175};
   grouptexts = {"Group 1 (the second reaction is X + Y \rightarrow 0)",
      "Group 2 (the second reaction is X + Y \rightarrow Y)",
      "Group 3 (the second reaction is X + Y \rightarrow 2Y or 3Y)",
      "Group 4 (the second reaction is X + Y \rightarrow X)",
      "Group 5 (the second reaction is X + Y \rightarrow 2X)",
      "Group 6 (the second reaction is X + Y \rightarrow 3X)",
      "Group 7 (the second reaction is Y \rightarrow X or 2X or 3X)"};
   verticalAHs = {};
   For [j = 1, j \le Length[ntws], j++, {
      If [MemberQ[groupstarts, j],
       {Print[Style[grouptexts[FirstPosition[groupstarts, j][1]]], Bold, 18]]}];
      ntw = ntws [j];
      fg = GetRHS[ntw];
      J = D[fg, {variables}] /. xy2XY;
      vars = {};
      If [MemberQ[{45, 46, 47, 60, 61, 62, 63}, j], vars = {X, Y, \kappa_2}];
      hopfset = Reduce[
        (fg /. xy2XY) == 0 && Tr[J] == 0 && Det[J] > 0 && XYpositive && xpositive, vars];
      eq = Simplify[Solve[hopfset, Reals][1]];
```

```
condition = Reduce[eq[1][2][2]];
      eq = Normal[eq];
      \omegasubst = {\omega \rightarrow Sqrt[Simplify[Det[J] /. eq, condition]]};
      derivatives = Simplify[GetDerivatives[fg, xy2XY, 1] /. eq, condition];
      L1 = Simplify [L<sub>1</sub> /. derivatives /. \omegasubst, condition];
      parsremain = Complement[\{X, Y, \kappa_1, \kappa_2, \kappa_3, \kappa_4\}, eq[All, 1]];
      superAH = Length[FindInstance[L1 < 0 && condition, parsremain]] ≥ 1;</pre>
      degenAH = Length[FindInstance[L1 == 0 && condition, parsremain]] ≥ 1;
      subAH = Length[FindInstance[L1 > 0 && condition, parsremain]] ≥ 1;
      string = {PreNumber[j] <> NtwToString[ntw]};
      If[superAH && Not[degenAH] && Not[subAH],
       string = Join[string, {Style["
                                          supercritical A-H", RGBColor[0, 0.5, 0]]}]];
     If[Not[superAH] && Not[degenAH] && subAH,
       string = Join[string, {Style["
                                             subcritical A-H", Orange]}]];
     If[degenAH, {
        L2 = Simplify[L_2 /. derivatives /. \omegasubst];
        superB = Length[FindInstance[L2 < 0 && L1 == 0 && condition, parsremain]] ≥ 1;</pre>
        degenB = Length[FindInstance[L2 == 0 && L1 == 0 && condition, parsremain]] ≥ 1;
        subB = Length[FindInstance[L2 > 0 && L1 == 0 && condition, parsremain]] ≥ 1;
        If[superAH && subAH && superB && Not[degenB] && Not[subB],
         string = Join[string, {Style["
                                           supercritical Bautin", Purple]}]];
        If[superAH && subAH && Not[superB] && Not[degenB] && subB,
         string = Join[string, {Style[" subcritical Bautin", Purple]}]];
        If[degenB, {
          L3 = Simplify[L_3 /. derivatives /. \omegasubst];
           superTH = Length[
              FindInstance [L3 < 0 && L2 == 0 && L1 == 0 && condition, parsremain] \geq 1;
          degenTH = Length[
              FindInstance [L3 == 0 \& L2 == 0 \& L1 == 0 \& condition, parsremain] \geq 1;
          subTH = Length[
              FindInstance [L3 > 0 && L2 == 0 && L1 == 0 && condition, parsremain]] \geq 1;
          If [superAH && subAH && Not [superB] &&
             Not [subB] && Not [superTH] && degenTH && Not [subTH],
            string = Join[string, {Style[" supercritical A-H", RGBColor[0, 0.5, 0]]},
              {", "}, {Style["vertical A-H", Blue]}, {", "},
              {Style["subcritical A-H", Orange]}]];
          If[Not[superAH] && Not[subAH] && Not[superB] &&
             Not[subB] && Not[superTH] && degenTH && Not[subTH],
            string = Join[string, {Style["
                                                    vertical A-H", Blue]}]];
          If[degenTH, verticalAHs = Join[verticalAHs, {j}]];
         }];
       }1;
     Print[Row[string]];
    }];
   ntws[verticalAHs]
  |;
PrintL1[ntw_] := Module | {fg, J, hopfset, eq, condition, ωsubst, derivatives, L1},
```

```
fg = GetRHS[ntw];
   J = D[fg, {variables}] /. xy2XY;
   hopfset = Reduce [ (fg /. xy2XY) == 0 &&
       Tr[J] = 0 \&\& Det[J] > 0 \&\& \{X, Y, \kappa_1, \kappa_2, \kappa_3, \kappa_4\} > 0, \{X, Y, \kappa_4\}];
   eq = Simplify[Solve[hopfset, Reals][1]];
   condition = Reduce[eq[1][2][2]];
   eq = Normal[eq];
   \omegasubst = {\omega \rightarrow Sqrt[Simplify[Det[J] /. eq, condition]]};
   derivatives = Simplify[GetDerivatives[fg, xy2XY, 1] /. eq, condition];
   L1 = Simplify[L_1 /. derivatives /. \omegasubst, condition];
   Print["The Andronov-Hopf bifurcation set: ", eq, ", where ", condition];
   Print ["\omega = \sqrt{\det J} = ", \omega /. \omega \text{subst}];
    Print["The first focal value: L_1 = ", L1];
  ];
AndronovHopfVertical[ntws_] :=
  Module | {ntw, fg, J, eq, eqcondition, derivatives, \omegasubst, trJ,
     hopf, hopfcondition, derivativessimp, L1, L2, L3, verticalHopf},
   For j = 1, j \le Length[ntws], j++, \{
       ntw = ntws[[j]];
       fg = GetRHS[ntw];
       J = D[fg, {variables}] /. xy2XY;
       eq = Simplify[
          Solve [ (fg /. xy2XY) = 0 \& Det[J] > 0 \& XYpositive \& \times positive, {X, Y}] [1]];
       eqcondition = eq[1, 2, 2];
       eq = Normal[eq];
       derivatives = Simplify [Simplify [GetDerivatives [fg, \{x \rightarrow X, y \rightarrow Y\}, 1] /. eq,
            eqcondition], Simplify[eqcondition, *positive]];
       \omegasubst = \{\omega \rightarrow \text{Simplify} | \sqrt{\text{Det}[J]} / . \text{ eq, eqcondition} | \};
       trJ = Simplify[Tr[J /. eq], eqcondition];
       hopf = Simplify[Solve[trJ == 0 && eqcondition] [[1]]];
       hopfcondition = hopf[[1, 2, 2]];
       hopf = Normal[hopf];
       derivativessimp = Simplify[derivatives /. ωsubst /. hopf, hopfcondition];
        L1 = Simplify[L<sub>1</sub> /. derivativessimp, hopfcondition];
        L2 = Simplify[L<sub>2</sub> /. derivativessimp, hopfcondition];
        L3 = Simplify[L3 /. derivativessimp, hopfcondition];
       verticalHopf = FullSimplify[Reduce[(Tr[J] /. eq) == 0&& eqcondition] &&
            Reduce [L1 == 0 \&\& L2 == 0 \&\& L3 == 0 \&\& hopfcondition], \kappa positive];
       Print[Style[PreNumber[j] <> NtwToString[ntw], Blue], verticalHopf];
  ];
FrankKamenetskySalnikov[bifurcation_] :=
  Module [{fg, J, hopfset, eq, condition, derivatives, L1, BT0, BT1, BT2,
     BTcondition, BTparams, istransversal, product, sidecondition, varsparsall},
   fg = \kappa_1 \times \{1, 0\} + \kappa_2 \times y \{-1, 1\} + \kappa_3 y \{0, -1\} + \kappa_4 x^2 \{1, 0\} + \kappa_5 \{0, 1\};
```

```
J = D[fg, {variables}];
   If[bifurcation == "Andronov-Hopf", {
      hopfset = Reduce[(fg /. xy2XY) == 0 && Tr[J /. xy2XY] == 0 &&
         Det [J /. xy2XY] > 0 && {X, Y, \kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5} > 0];
      eq = Simplify[Solve[hopfset]][1];
      condition = Simplify[Reduce[eq[1][2][2]]];
     eq = Normal[eq];
     derivatives = Simplify[GetDerivatives[fg, xy2XY, 1] /. eq, condition];
      L1 = Simplify[L<sub>1</sub> /. derivatives, condition];
      Print["L_1 = ", L1];
    }];
   If[bifurcation == "Bogdanov-Takens", {
      sidecondition = allpositive && \kappa_5 > 0;
     varsparsall = Join[varspars, \{\kappa_5\}];
      {BT0, BT1, BT2, BTcondition, BTparams} =
       ComputeBT[fg, sidecondition, varsparsall];
      product = Simplify[BT1 * BT2, BTcondition];
     istransversal =
       IsTransversalNtw[fg, J, bifurcation, sidecondition, varsparsall];
      Print["(BT.0) Jordan normal form of the Jacobian matrix: ",
       MatrixForm[JordanDecomposition[BT0][2]]];
      Print["(BT.1) and (BT.2) (a_{20} + b_{11}) b_{20} equals ", product];
      Print["(BT.3) transversality holds: ", istransversal];
    }];
  ];
IsTransversalNtw[fg_, J_, bifurcation_,
   sidecondition_:allpositive, varsparsall_:varspars] :=
  Module[{bifcondition, biffunction, bifset, c, Dh, nottransversal},
   bifcondition = Switch[bifurcation,
      "fold", Tr[J] # 0 && Det[J] == 0,
      "Andronov-Hopf", Tr[J] = 0 \& Det[J] > 0,
      "Bogdanov-Takens", Tr[J] == 0 && Det[J] == 0];
   biffunction = Switch[bifurcation,
      "fold", {Det[J]},
      "Andronov-Hopf", {Tr[J]},
      "Bogdanov-Takens", {Tr[J], Det[J]}];
   bifset = fg == 0 && bifcondition && sidecondition;
   c = Length[biffunction];
   Dh = D[Join[fg, biffunction], {varsparsall}];
   nottransversal = FindInstance[
      Reduce[Not[MatrixRank[Dh] == n + c && MatrixRank[Dh[All, Range[1, n]]] == n] &&
        bifset], varsparsall];
   If[Length[nottransversal] ≥ 1, False, True]
  ];
IsTransversalNtws[ntws_, bifurcation_] := Module[{istransversal, ntw, fg, J},
   istransversal = ConstantArray[Null, Length[ntws]];
   For [j = 1, j \le Length[ntws], j++, {
```

```
ntw = ntws[j];
     fg = GetRHS[ntw];
     J = D[fg, {variables}];
     istransversal[[j]] = IsTransversalNtw[fg, J, bifurcation];
   istransversal
  ];
Transversality[ntws_, bifurcation_] := Module[{istransversal},
   istransversal = IsTransversalNtws[ntws, bifurcation];
   If[AllTrue[istransversal, # == True &], Print[
     "The " <> bifurcation <> " bifurcation is transversal in all ", Length[ntws],
     " networks."], Print["Transversality fails for some networks."]];
  ];
ImaginaryEigvals[ntws_] := Module[{list, fg, J, imaginary, posrealpart, negrealpart},
   list = {};
   Monitor[
    For [j = 1, j \le Length[ntws], j++, {
       fg = GetRHS[ntws[j]];
       J = D[fg, {variables}];
      imaginary =
        FindInstance[fg == 0&& Tr[J] == 0&& Det[J] > 0&& allpositive, varspars];
      If [Length [imaginary] ≥ 1, {
         posrealpart =
          FindInstance[fg == 0 && Tr[J] > 0 && Det[J] > 0 && allpositive, varspars];
         negrealpart =
          FindInstance[fg == 0 && Tr[J] < 0 && Det[J] > 0 && allpositive, varspars];
         If[Length[posrealpart] == 0 | | Length[negrealpart] == 0, {
           list = Join[list, {j}];
          }];
        }];
     }],
    ProgressIndicator[j, {1, Length[ntws]}]];
   ntws[[list]]
  ];
CanonicalCenter[ntws ] := Module[{ntwsnew, ntw, i, list},
   ntwsnew = ConstantArray[Null, Length[ntws]];
   For [j = 1, j \le Length[ntws], j++, {
     ntw = ntws[j];
     If[MemberQ[ntw, {0, 1, 0, 2}] && MemberQ[ntw, {1, 0, 0, 0}], {
        ntw = ntw[All, {2, 1, 4, 3}];
      }];
     i = FirstPosition[ntw, {1, 0, 2, 0}] [1];
     ntw[{1, i}] = ntw[{i, 1}];
     i = FirstPosition[ntw, {0, 1, 0, 0}] [[1]];
     ntw[{4, i}] = ntw[{i, 4}];
     If [ntw[3] = \{1, 1, 1, 2\}, ntw[\{2, 3\}] = ntw[\{3, 2\}]];
     If [ntw[3] = \{1, 1, 0, 3\}, ntw[\{2, 3\}] = ntw[\{3, 2\}]];
```

```
If [ntw[3] = \{1, 1, 0, 2\}, ntw[\{2, 3\}] = ntw[\{3, 2\}]];
      ntwsnew[j] = ntw;
    }];
   list = {1, 2, 3, 4, 8, 9, 5, 6, 11, 12, 13, 18, 17, 21, 16, 20, 15, 19, 14, 10, 7};
   ntwsnew[list]
  ];
CanonicalBogdanovTakens[ntws_] := Module[{ntw, ntwsnew, order, srcs, reorder},
   ntwsnew = ConstantArray[Null, Length[ntws]];
   For [j = 1, j \le Length[ntws], j++, {
      ntw = ntws [j];
      If[MemberQ[ntw, {0, 2, 0, 3}], ntw = ntw[All, {2, 1, 4, 3}]];
      ntwsnew[j] = ntw;
    }];
   order = \{\{2, 0\}, \{1, 1\}, \{0, 2\}, \{0, 1\}, \{0, 0\}, \{1, 0\}\};
   For [j = 1, j \le Length[ntwsnew], j++, {
      ntw = ntwsnew[j];
      srcs = ntw[All, {1, 2}];
      ntwsnew[j] = ntw[Flatten[Position[srcs, #] & /@ order]];
   reorder = {14, 15, 20, 21, 18, 19, 16, 17, 26, 30, 27, 31, 28,
      32, 29, 33, 23, 24, 25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 22};
   ntwsnew[reorder]
  ];
ComputeBT[fg_, sidecondition_:allpositive, varsparsall_:varspars] :=
  Module {J, BT, BTcondition, BTparams, BT0, BT1, BT2},
   J = D[fg, {variables}];
   BT = FullSimplify[Solve[fg == 0 && Det[J] == 0 && Tr[J] == 0 && sidecondition] [1]];
   BTcondition = BT[[1, 2, 2]];
   BTparams = Complement[varsparsall, BT[All, 1]];
   BT = Normal[BT];
   BT0 = Simplify[J /. BT, BTcondition];
   \{q_0, q_1, p_0, p_1\} = GetEigenvectors[BT0];
   B[x_y] := Sum[Simplify[D[fg, {variables[k], 1}, {variables[l], 1}] /.BT] \times
       x[k] \times y[1], \{k, n\}, \{1, n\}];
   BT1 = Simplify[p_0.B[q_0, q_0] + p_1.B[q_0, q_1]];
   BT2 = - Simplify[p<sub>1</sub>.B[q<sub>0</sub>, q<sub>0</sub>]];
   {BT0, BT1, BT2, BTcondition, BTparams}
  ];
AnalyseBogdanovTakens[ntws_] := Module[{ntw, fg, product, BT0holds, BTcondition,
    BTparams, BTO, BT1, BT2, BTneg, BTzer, BTpos, signs, ntwstring},
   BT0holds = True;
   For [j = 1, j \le Length[ntws], j++, {
      ntw = ntws[j];
      fg = GetRHS[ntw];
```

```
{BT0, BT1, BT2, BTcondition, BTparams} = ComputeBT[fg];
      If [JordanDecomposition [BT0] [2] \neq \{\{0, 1\}, \{0, 0\}\}, BT0holds = False];
      product = Simplify[BT1 * BT2, BTcondition];
      BTneg = FindInstance[product < 0 && BTcondition, BTparams];</pre>
      BTzer = FindInstance[product == 0 && BTcondition, BTparams];
      BTpos = FindInstance[product > 0 && BTcondition, BTparams];
      signs = {Length[BTneg], Length[BTzer], Length[BTpos]};
      ntwstring = Style[PreNumber[j] <> NtwToString[ntw], Blue];
     If [signs == \{1, 0, 0\},
       Print[ntwstring, Style["supercritical B-T", RGBColor[0, 0.5, 0]]]];
     If[signs == {0, 1, 0}, Print[ntwstring, Style[" degenerate B-T", Blue]]];
     If[signs == {0, 0, 1}, Print[ntwstring, Style[" subcritical B-T", Orange]]];
   If[BTOholds == False, Print["Condition (BT.0) doesn't hold for all networks!"]];
  ];
BogdanovTakensVerticalAnalyse[ntw_] :=
  Module [{fg, J, detJ, trJ, fold, equilibria, eq1, eq2},
   fg = GetRHS[ntw];
   J = D[fg, {variables}];
   detJ = Simplify[Det[J]];
   trJ = Simplify[Tr[J]];
   fold = Reduce[fg == 0 \&\& detJ == 0 \&\& allpositive, \{\kappa_1, x, y\}];
   Print["fold bifurcation: ", fold];
   equilibria = Reduce[fg == 0 && allpositive, variables];
   Print["equilibria: ", equilibria];
   eq1 = Normal[Simplify[Solve[fg == 0 && detJ < 0 && allpositive, variables][[1]]]];
   eq2 = Normal[Simplify[Solve[fg == 0 && detJ > 0 && allpositive, variables][[1]]]];
   Print[
    "the trace of the Jacobian matrix at the equilibrium with positive Jacobian
       determinant: ", Simplify[trJ /. eq2]];
   Print["divergence of the vector field (after multiplying by 1/x): ",
    Simplify[Div[fg / x, variables]]];
  ];
BogdanovTakensVerticalStreamPlot[fg_, \kappasubst_, xylim_, H_] :=
  Module {b, h, eq1, eq2, ccenter, csaddle, r, levelsbelow, levels, l,
    colors, limits, levelcurves, strpl, xaxis, yaxis, peq1, peq2, shw},
   b = xylim;
   h = Solve[H == c, y];
   \{eq1, eq2\} =
    Simplify[Solve[Grad[H, variables] == 0 && allpositive, variables]] /. *subst;
   ccenter = Simplify[H /. eq2 /. ksubst];
   csaddle = Simplify[H /. eq1 /. ksubst];
   r = 8;
   levelsbelow = Table \left[\frac{r^2 - i^2}{r^2} \cdot ccenter + \frac{i^2}{r^2} \cdot csaddle, \{i, 1, r - 1\}\right];
   levels = Join[levelsbelow, {csaddle}];
   1 = Length[levelsbelow] + 1;
```

```
colors[i_] := Module[{},
      Piecewise [{{Blue, i < 1}, {Red, i = 1}, {RGBColor[0, 0.5, 0], i > 1}}]];
   limits[i] := Module[\{\}, Piecewise[\{\{x /. eq1 /. \kappa subst, i < 1\}, \{b, i \ge 1\}\}]];
   levelcurves = Table [Plot[y /. h /. {c \rightarrow levels[i]} /. \kappa subst, {x, 0, limits[i]},
       PlotRange \rightarrow {{0, b}, {0, b}}, PlotStyle \rightarrow colors[i]], {i, 1, Length[levels]}];
   strpl = StreamPlot[fg /. \kappa subst, \{x, 0, b\}, \{y, 0, b\}, StreamMarkers \rightarrow "PinDart",
      Frame → False, StreamColorFunction → None, ImageSize → Large];
   xaxis = ListLinePlot[{{0, 0}, {b, 0}}, PlotStyle → {Gray, Thick}];
   yaxis = ListLinePlot[{{0, 0}, {0, b}}, PlotStyle → {Gray, Thick}];
   peq1 = ListPlot[{variables /. eq1 /. \kappasubst}, PlotStyle \rightarrow Red];
   peq2 = ListPlot[{variables /. eq2 /. xsubst}, PlotStyle → Blue];
   Show[strpl, xaxis, yaxis, levelcurves, peq1, peq2]
  |;
BogdanovTakensVerticalBifDiagr[] :=
  Module [rpl1, rpl2, rpl3, xaxis, yaxis, fold, hopf, BT, txt, arrows},
   rpl1 = RegionPlot [\kappa_1 > 2, \{\kappa_1, 0, 3\}, \{\kappa_2, 0, 3\},
      PlotStyle → {Darker[Red], Opacity[0.2]}, BoundaryStyle → None,
      Frame \rightarrow False, PlotRange \rightarrow {{-0.1, 3.2}, {-0.1, 3.2}}, ImageSize \rightarrow Large];
   rpl2 = RegionPlot [\kappa_2 < \kappa_1 < 2, \{\kappa_1, 0, 3\},
      \{\kappa_2, 0, 3\}, PlotStyle \rightarrow \{Darker[Magenta], Opacity[0.2]\},
      BoundaryStyle → None, PlotStyle → Red, MaxRecursion → 10];
   rpl3 = RegionPlot [\kappa_1 < 2 \&\& \kappa_2 > \kappa_1, {\kappa_1, 0, 3},
      \{\kappa_2, 0, 3\}, PlotStyle \rightarrow {Darker[Green], Opacity[0.2]},
      BoundaryStyle → None, PlotStyle → Red, MaxRecursion → 10];
   xaxis = ListLinePlot[{{0, 0}, {3, 0}}, PlotStyle → {Gray, Thick}];
   yaxis = ListLinePlot[{{0, 0}, {0, 3}}, PlotStyle → {Gray, Thick}];
   fold = ListLinePlot[{{2, 0}, {2, 3}}, PlotStyle → {Orange, Thick}];
   hopf = ListLinePlot[{{0, 0}, {2, 2}}, PlotStyle → {Blue, Thick}];
   BT = ListPlot[{{2, 2}}, PlotStyle → Black];
   txt = Graphics[{
       Text[Style[\kappa_1, Bold, 14], {3.1, 0}],
       Text[Style[\kappa_2, Bold, 14], {0, 3.1}],
       Text[Style[
          "degenerate\nBogdanov-Takens\nbifurcation", Black, Bold, 14], {1.3, 2.7}],
       Text[Style["a saddle and a stable\nequilibrium",
          Darker[Green], Bold, 14], {0.7, 2.1}],
       Text[Style["a saddle and an unstable\nequilibrium",
          Darker[Magenta], Bold, 14], {1.3, 0.25}],
       Text[Style[Rotate["no positive equilibrium", 90 Degree],
          Darker[Red], Bold, 14], {2.75, 1.5}],
       Text[Style[Rotate["fold bifurcation, one positive equilibrium", 90 Degree],
          Orange, Bold, 14], {2.08, 1.5}],
       Text[Style[Rotate["homoclinic orbit surrounding a center", 45 Degree],
          Darker[Blue], Bold, 14], {1-0.06, 1+0.06}],
       Text[Style[Rotate["vertical Andronov-Hopf bifurcation", 45 Degree],
          Darker[Blue], Bold, 14], {1+0.06, 1-0.06}]
      }];
   arrows = Graphics[{{Arrowheads[Medium], Black,
```

```
Arrow[BezierCurve[{{1.55, 2.5}, {1.75, 2.1}, {1.95, 2.03}}]]}}];
   Show[rpl1, rpl2, rpl3, fold, hopf, BT, arrows, xaxis, yaxis, txt]
  ];
BogdanovTakensThreeSpecies[fg_, zsubst_, sidecondition_, varsparsall_] :=
  Module [{FG, BT0, BT1, BT2, BTcondition, BTparams, product, istransversal},
   FG = fg[[{1, 2}]] /. zsubst;
    {BT0, BT1, BT2, BTcondition, BTparams} =
     ComputeBT[FG, sidecondition, varsparsall];
   product = FullSimplify[BT1 * BT2, BTcondition];
   istransversal = IsTransversalNtw[FG,
      D[FG, {variables}], "Bogdanov-Takens", sidecondition, varsparsall];
   Print["(BT.0) Jordan normal form of the Jacobian matrix: ",
     MatrixForm[JordanDecomposition[BT0][2]]];
   Print["(BT.1) and (BT.2) (a_{20} + b_{11}) b_{20} equals ", product];
   Print["(BT.3) transversality holds: ", istransversal];
  ];
PrintNtwsRHS[ntws_] := Module[{ntw, fg},
   For [j = 1, j \le Length[ntws], j++, {
       ntw = ntws[j];
       fg = GetRHS[ntw];
       Print[
        Style[PreNumber[j] <> NtwToString[ntw], Blue], " r.h.s. ", Simplify[fg]];
      }];
  ];
Getr[ntw_] := Module[{n, rsrc, rtgt, r},
   n = Length[ntw[1]] / 2;
   rsrc = ntw[All, Range[1, n]];
   \Gammatgt = ntw[All, Range[n + 1, 2 n]]<sup>T</sup>;
   Γ = Γtgt - Γsrc;
   {F, Fsrc, Ftgt}
  ];
GetEigenvectors [A_] := Module [q, p, \mu, \nu],
   q<sub>0</sub> = FullSimplify[NullSpace[A][1]];
   q<sub>1</sub> = FullSimplify[LinearSolve[A, q<sub>0</sub>]];
   p<sub>1</sub> = FullSimplify[NullSpace[A<sup>T</sup>][1]];
   p_0 = FullSimplify[LinearSolve[A^T, p_1]];
   \mu = \sqrt{q_0 \cdot q_0};
   q_0 = Simplify \left[ \frac{1}{u} q_0 \right];
   q_1 = \frac{1}{\mu} q_1;
   q_1 = Simplify[q_1 - (q_0.q_1) q_0];
   v = Simplify[q_0.p_0];
   p_1 = Simplify \left[ \frac{1}{y} p_1 \right];
```

```
p_0 = p_0 - (p_0 \cdot q_1) p_1;
    p_{\theta} = Simplify \begin{bmatrix} 1 \\ - p_{\theta} \end{bmatrix};
    \{q_0, q_1, p_0, p_1\}
   |;
GetDerivatives[fg_, equilibrium_, m_] :=
   Module [{J, xyshift, T, Tinvuv, FG, derivatives, a, b, u, v, i, j},
    J = Simplify[D[fg, {{x, y}}] /. equilibrium];
    xyshift = \{x \rightarrow x + (x /. equilibrium), y \rightarrow y + (y /. equilibrium)\};
    T = \{\{1, 0\}, \{-a/\omega, -b/\omega\}\};
    Tinvuv = Inverse[T].{u, v};
    FG =
      \frac{\texttt{T.fg/.xyshift}}{} \ /. \ \{\texttt{x} \to \texttt{Tinvuv[[1]]}, \ \texttt{y} \to \texttt{Tinvuv[[2]]} \} \ /. \ \{\texttt{a} \to \texttt{J[[1, 1]]}, \ \texttt{b} \to \texttt{J[[1, 2]]} \};
    derivatives = {};
    For [i = 0, i \le 2m+1, i++, For [j = 0, j \le 2m+1-i, j++,
       derivatives =
         Join[derivatives, \{f_{i,j} \rightarrow (D[FG[1], \{u, i\}, \{v, j\}] /. \{u \rightarrow 0, v \rightarrow 0\}),
            g_{i,j} \rightarrow (D[FG[2], \{u, i\}, \{v, j\}] /. \{u \rightarrow 0, v \rightarrow 0\})]]];
    derivatives;
srcstrs = {" 0", " X", " Y", " 2X", "X+Y", " 2Y"};
           ", "X ", "Y ", "2X ", "X+Y ", "2Y ", "3X ", "2X+Y", "X+2Y", "3Y "};
   {"0
bimol = \{\{0,0\}, \{1,0\}, \{0,1\}, \{2,0\}, \{1,1\}, \{0,2\}\};
   \{\{0,0\},\{1,0\},\{0,1\},\{2,0\},\{1,1\},\{0,2\},\{3,0\},\{2,1\},\{1,2\},\{0,3\}\};
redundants =
   \{\{0, 0, 2, 0\}, \{0, 0, 3, 0\}, \{0, 0, 0, 2\}, \{0, 0, 0, 3\}, \{1, 0, 3, 0\}, \{1, 0, 1, 2\},
    \{0, 1, 0, 3\}, \{0, 1, 2, 1\}, \{2, 0, 1, 0\}, \{2, 0, 1, 1\}, \{0, 2, 0, 1\}, \{0, 2, 1, 1\}\};
xy2XY = \{x \rightarrow X, y \rightarrow Y\};
XYpositive = X > 0 & Y > 0;
variables = {x, y};
species = {"X", "Y"};
parameters = \{\kappa_1, \kappa_2, \kappa_3, \kappa_4\};
varspars = Join[variables, parameters];
\kappapositive = \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0;
xypositive = variables > 0;
allpositive = xypositive && xpositive;
n = Length[variables];
m = Length[parameters];
1src = 4;
ltgt = 4;
\pispecies = Permutations[Range[1, n]];
πreactions = Permutations[Range[1, m]];
\Delta_1 = DiagonalMatrix[\{\delta_1, \delta_2\}];
```

```
\Delta_2 = DiagonalMatrix[{v_1, v_2, v_3, v_4}];
diagparams = \{\delta_1, \delta_2, V_1, V_2, V_3, V_4\};
```

3 Fold bifurcation

3.2 Planar networks

Lemma 20

We start by generating all two-species, four-reaction, quadratic, trimolecular reaction networks. However, since we are interested only in dynamically nonequivalent networks with four distinct sources, for each source complex we keep only one reaction in each direction (e.g. $0 \rightarrow X$ and $0 \rightarrow Y$ are allowed, but $0 \rightarrow 2 \times 1, 0 \rightarrow 3 \times 1, 0 \rightarrow 2 \times 1, 0 \rightarrow 3 \times 1, 0 \rightarrow$

```
ntws0 = NtwsBasic[bimol, trimol, m, redundants];
In[80]:=
      Print["We start with ", Length[ntws0], " networks."];
       We start with 111930 networks.
```

Next, we eliminate those networks that have fewer than four distinct source complexes or have rank smaller than two. Furthermore, we keep only the dynamically nontrivial ones. Out of the 111930 networks, 11767 remains.

```
ntws1 = NtwsFilter[ntws0, "fold"];
In[82]:=
       Print["There remains ", Length[ntws1],
         " networks. (These have four distinct source complexes,
           have rank two, and are dynamically nontrivial.)"];
       There remains 11767 networks. (These have four distinct
          source complexes, have rank two, and are dynamically nontrivial.)
```

We keep only one member of each isomorphism class. Practically, we remove one of those networks that differ only in swapping X and Y. There remains 5897 networks.

```
ntws2 = NtwsNonisomorphic[ntws1];
In[84]:=
       Print["There remains ", Length[ntws2], " networks. (These are nonisomorphic.)"];
       There remains 5897 networks. (These are nonisomorphic.)
```

We filter out those networks that have no positive nondegenerate equilibrium. There remains 5864 networks.

Theorem 21

We check which networks admit a positive equilibrium with a zero eigenvalue. There are 834 such networks.

Next, we analyse the 834 networks. We check whether they admit a transversal and nondegenerate fold bifurcation.

```
signOtherEigVal = AnalyseFold[ntws4];
PrintFold[signOtherEigVal];

Whenever there is a zero and a nonzero
    eigenvalue, the fold bifurcation is transversal and nondegenerate.

There are 3
    networks for which the zero eigenvalue always has an algebraic multiplicity of two.

For the remaining 831 networks, at the critical value, the nonzero eigenvalue
    * can only be negative in 792 networks,
    * can only be positive in 6 networks,
    * can be positive or negative in 33 networks.
```

Remark 22 (a)

We search for diagonal equivalence among the 831 networks in Theorem 21.

```
ntws5 = ntws4[[Flatten[Position[MapThread[Or, signOtherEigVal], True]]]];
FindDiagEquivAll[ntws5];
```

```
sources: \{\{0,0\},\{0,1\},\{1,0\},\{2,0\}\}\; the 87
 dynamically nonequivalent networks fall into 63 diagonally nonequivalent classes
sources: \{\{0,0\},\{1,0\},\{1,1\},\{2,0\}\}\; the 79
 dynamically nonequivalent networks fall into 62 diagonally nonequivalent classes
sources: {{0, 0}, {0, 2}, {1, 0}, {2, 0}}; the 101
 dynamically nonequivalent networks fall into 70 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,2\},\{1,0\},\{1,1\}\}\; the 129
 dynamically nonequivalent networks fall into 101 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,1\},\{1,0\},\{1,1\}\}\; the 41
  dynamically nonequivalent networks fall into 34 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,2\},\{1,1\},\{2,0\}\}\}; the 31
 dynamically nonequivalent networks fall into 22 diagonally nonequivalent classes
sources: \{\{0, 1\}, \{0, 2\}, \{1, 0\}, \{2, 0\}\}\; the 77
 dynamically nonequivalent networks fall into 57 diagonally nonequivalent classes
sources: {{0, 1}, {1, 0}, {1, 1}, {2, 0}}; the 166
 dynamically nonequivalent networks fall into 138 diagonally nonequivalent classes
sources: \{\{0, 2\}, \{1, 0\}, \{1, 1\}, \{2, 0\}\}\; the 120
 dynamically nonequivalent networks fall into 92 diagonally nonequivalent classes
                                 overall, the 831
 dynamically nonequivalent networks fall into 639 diagonally nonequivalent classes
```

Remark 22 (d)

The three networks for which the zero eigenvalue cannot have an algebraic multiplicity of one.

```
ntws6 = ntws4[Flatten[Position[MapThread[Or, signOtherEigVal], False]]];
In[94]:=
      PrintNtwEquil[ntws6, "Reduce"];
```

Remark 22 (f)

The 5864-834=5030 networks that do not admit a fold bifurcation can have only a unique positive equilibrium.

ntws7 = Complement[ntws3, ntws4]; In[96]:= AnalyseUniqueEquil[ntws7];

Each of the 5030 networks has at most one positive equilibrium.

Remark 22 (g)

For any pair of positive equilibria, the Jacobian determinant is positive for one, while it is negative for the other. Hence, three positive equilibria are forbidden. Further, whenever there are two positive equilibria, both are nondegenerate.

AnalyseJacobianDeterminant[ntws4];

For any pair of positive equilibria, the Jacobian determinant is positive for one, while it is negative for the other.

Remark 22 (h)

In[98]:=

We study the 5897-5864=33 networks that admit a positive equilibrium but not a nondegenerate positive equilibrium. We find that there is no positive equilibrium for almost all rate constants,

while there is a line of equilibria for an exceptional set of rate constants. That line is either through the origin or vertical or horizontal.

ntws8 = Complement[ntws2, ntws3]; In[99]:=

 $Y \rightarrow 2Y$ $2Y \rightarrow 0$

PrintNtwEquil[ntws8, "Solve"]; $\left\{ \left\{ \kappa_{4} \rightarrow \boxed{\begin{array}{c} \kappa_{2} \kappa_{3} \\ \kappa_{1} \end{array}} \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right. \right\} \left\{ \kappa_{1} \Rightarrow \left[\begin{array}{c} \kappa_{1} \\ \kappa_{2} \end{array} \right] \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right. \right\} \right\}$ $\left\{\left\{\kappa_{4} \rightarrow \left| \begin{array}{c} \kappa_{1} \ \kappa_{3}^{2} \\ 2 \ \kappa_{2}^{2} \end{array} \right| \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right.\right\}, \ \mathbf{x} \rightarrow \left[\begin{array}{c} \kappa_{2} \\ \kappa_{3} \end{array} \right] \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right.\right\}$ $(3) \quad 0 \to X \qquad \qquad Y \to 2Y \qquad \qquad X \to 0 \qquad \qquad X+Y \to X$ $\left\{ \left\{ \kappa_{4} \rightarrow \boxed{\frac{\kappa_{2} \kappa_{3}}{\kappa_{1}}} \text{ if } \kappa_{1} > 0 \&\&\kappa_{2} > 0 \&\&\kappa_{3} > 0 \&\&y > 0 \right\}, \mathbf{x} \rightarrow \boxed{\frac{\kappa_{1}}{\kappa_{2}}} \text{ if } \kappa_{1} > 0 \&\&\kappa_{2} > 0 \&\&\kappa_{3} > 0 \&\&y > 0 \right\} \right\}$ $\left\{\left\{\kappa_{4} \to \boxed{\frac{\kappa_{1} \; \kappa_{3}^{2}}{2 \; \kappa_{2}^{2}} \; \text{if} \; \kappa_{1} > 0 \; \& \& \; \kappa_{2} > 0 \; \& \& \; \kappa_{3} > 0 \; \& \& \; y > 0} \; \middle| \; , \; \; x \to \boxed{\frac{\kappa_{2}}{\kappa_{3}} \; \text{if} \; \kappa_{1} > 0 \; \& \& \; \kappa_{2} > 0 \; \& \& \; \kappa_{3} > 0 \; \& \& \; y > 0} \right\}\right\}$ $(5) \quad \emptyset \to X \qquad \qquad Y \to X \qquad \qquad X \to \emptyset \qquad X+Y \to 2Y$ $\left\{ \left\{ \kappa_{4} \rightarrow \boxed{\frac{\kappa_{2} \kappa_{3}}{\kappa_{1}} \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0} \right. \right\}, \ \mathbf{x} \rightarrow \boxed{\frac{\kappa_{1}}{\kappa_{3}} \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0} \right\} \right\}$ $(6) \quad \emptyset \to X \qquad \qquad Y \to X \qquad \qquad X+Y \to 2Y \qquad \qquad 2X \to \emptyset$ $\left\{\left\{\kappa_{4} \rightarrow \left| \begin{array}{c} \kappa_{1} \ \kappa_{3}^{2} \\ 2 \ \kappa_{3}^{2} \end{array} \right. \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right. \right\}, \ \mathbf{x} \rightarrow \left[\begin{array}{c} \kappa_{2} \\ \kappa_{3} \end{array} \right. \text{ if } \kappa_{1} > 0 \&\& \kappa_{2} > 0 \&\& \kappa_{3} > 0 \&\& y > 0 \right. \right\}\right\}$ $Y \longrightarrow X+2Y \qquad X \longrightarrow 0$ $\left\{\left\{\kappa_{4} \rightarrow \left[\begin{array}{cc} \kappa_{2} \ \kappa_{3} \\ \kappa_{1} \end{array} \right] \text{ if } \kappa_{1} > 0 \text{ \&\& } \kappa_{2} > 0 \text{ \&\& } \kappa_{3} > 0 \text{ \&\& } y > 0 \right], \ x \rightarrow \left[\begin{array}{cc} \kappa_{1} \\ \kappa_{3} \end{array} \right] \text{ if } \kappa_{1} > 0 \text{ \&\& } \kappa_{2} > 0 \text{ \&\& } \kappa_{3} > 0 \text{ \&\& } y > 0 \right]\right\}$ $(8) \quad 0 \longrightarrow X \qquad \qquad Y \longrightarrow X+2Y \quad X+Y \longrightarrow 0 \qquad \qquad 2X \longrightarrow 0$ $\left\{ \left\{ \kappa_{4} \rightarrow \left[\begin{array}{c} \kappa_{1} \kappa_{3}^{2} \\ 2 \kappa^{2} \end{array} \right] \text{ if } \kappa_{1} > 0 \& \kappa_{2} > 0 \& \kappa_{3} > 0 \& \kappa_{3} > 0 \& \kappa_{3} > 0 \\ \left\{ \kappa_{3} \times \left[\begin{array}{c} \kappa_{2} \\ \kappa_{3} \end{array} \right] \text{ if } \kappa_{1} > 0 \& \kappa_{2} > 0 \& \kappa_{3} > 0 \& \kappa_{3} > 0 \\ \left\{ \kappa_{3} \times \left[\begin{array}{c} \kappa_{2} \\ \kappa_{3} \end{array} \right] \text{ if } \kappa_{4} > 0 \& \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \& \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \end{array} \right] \text{ if } \kappa_{5} > 0 \\ \left\{ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \\ \kappa_{5} \times \left[\begin{array}{c} \kappa_{5} \right] \right] \right] \right] \right] \right\} \right\} \right\}$ $\left\{\left\{\kappa_{4}\rightarrow\left[\begin{array}{c}\kappa_{2}\ \kappa_{3}\\ \kappa_{1}\end{array}\right]\ \text{if}\ \kappa_{1}>0\ \&\&\ \kappa_{2}>\overline{0\ \&\&\ \kappa_{3}>0\ \&\&\ y>0}\right],\ x\rightarrow\left[\begin{array}{c}\kappa_{1}\\ \kappa_{2}\end{array}\right]\ \text{if}\ \kappa_{1}>0\ \&\&\ \kappa_{2}>0\ \&\&\ \kappa_{3}>0\ \&\&\ y>0\right\}\right\}$ (10) $Y \rightarrow 2Y$ $\left\{ \left\{ \kappa_{4} \rightarrow \left[\begin{array}{c} 2 \, \kappa_{2} \, \kappa_{3} \\ \end{array} \right] \text{ if } \kappa_{1} > 0 \, \&\& \, \kappa_{2} > 0 \, \&\& \, \kappa_{3} > 0 \, \&\& \,$

$$\left\{ \left[\kappa_{4} \rightarrow \left\{ \frac{2 \kappa_{2} \kappa_{3}}{\kappa_{1}} \text{ if } \kappa_{1} > 0.88 \kappa_{2} > 0.88 \kappa_{3} > 0.88 \kappa_{3} > 0.88 \kappa_{3} > 0.88 \kappa_{2} > 0.88 \kappa_{2} > 0.88 \kappa_{3} > 0.88 \kappa_{3}$$

 $(23) \hspace{0.5cm} Y \, \longrightarrow \, X+Y \hspace{0.5cm} 2Y \, \longrightarrow \, 3Y \hspace{0.5cm} X \, \longrightarrow \, \emptyset$

$$\left\{ \left\{ X_{4} \Rightarrow \frac{K_{2} \times X_{3}}{\kappa_{1}} \text{ if } K_{1} > 0.88. K_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0 \right\}, \ X \Rightarrow \frac{y \times X_{1}}{\kappa_{3}} \text{ if } K_{1} > 0.88. K_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0 \right\} \right\}$$

$$\left\{ \left\{ X_{4} \Rightarrow \frac{K_{2} \times X_{3}}{\kappa_{1}} \text{ if } K_{1} > 0.88. K_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0.88. Y_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0.88. X_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0.88. X_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0.88. X_{2} > 0.88. K_{3} > 0.88. Y_{2} > 0.88. X_{3} > 0.88. Y_{3} >$$

Lemma 23

We count the networks in Lemma 20 that are bimolecular.

In[101]:=

```
PrintBimoleculars[ntws2, "Lemma 20"];
PrintBimoleculars[ntws3, "Lemma 20"];
Out of the 5897 quadratic, trimolecular networks in Lemma 20 above, 838 are bimolecular.
Out of the 5864 quadratic, trimolecular networks in Lemma 20 above, 829 are bimolecular.
```

Theorem 24

We count the networks in Theorem 21 that are bimolecular.

In[103]:=

```
PrintBimoleculars[ntws4, "Theorem 21"];
ntwsbimol = SelectBimolecular[ntws4];
ntwsbimol = CanonicalFoldBimol[ntwsbimol];
AnalyseFoldBimolecular[ntwsbimol];
Out of the 834 quadratic, trimolecular networks in Theorem 21 above, 30 are bimolecular.
The second eigenvalue is negative for all the
 30 bimolecular networks that admit a fold bifurcation.
```

Next, we print all the 30 bimolecular networks that admit a fold bifurcation.

In[107]:=

```
PrintNtws[ntwsbimol];
```

(1)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$2X \rightarrow 0$
(2)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$2X \to Y$
(3)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$2X \rightarrow 2Y$
(4)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$Y\to X$
(5)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$Y \to 2X$
(6)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$Y \ \longrightarrow \ X{+}Y$
(7)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$2Y \to X$
(8)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$0 \rightarrow Y$	$2Y \rightarrow 2X$
(9)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$Y \to 2Y$	$2Y \to X$
(10)	$X \longrightarrow 2X$	$X+Y \longrightarrow 0$	$Y \to 2Y$	$2Y \rightarrow 2X$
(11)	$Y \longrightarrow 2X$	$X+Y \longrightarrow 2Y$	$2X \rightarrow 0$	$0 \rightarrow Y$
(12)	$Y \longrightarrow 2X$	$X+Y \longrightarrow 2Y$	$2X \rightarrow 0$	$0 \longrightarrow X+Y$
(13)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$2X \rightarrow 0$	$X\longrightarrow Y$
(14)	$Y \longrightarrow 2X$	$X+Y \longrightarrow 2Y$	$2X \rightarrow 0$	$X \; \longrightarrow \; X{+}Y$
(15)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$2X \rightarrow 0$	$X \longrightarrow 2Y$
(16)	$Y \longrightarrow 2X$	$X+Y \longrightarrow 2Y$	$2X \rightarrow 0$	$2Y \rightarrow 0$
(17)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$2X \rightarrow 0$	$2Y \longrightarrow X$
(18)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$2X \rightarrow 0$	$2Y \longrightarrow 2X$
(19)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$X \rightarrow 0$	$0 \rightarrow Y$
(20)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$X \rightarrow 0$	$0 \longrightarrow X+Y$
(21)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$X \rightarrow 0$	$2Y \rightarrow 0$
(22)	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 2Y$	$X \rightarrow 0$	$2Y \longrightarrow X$
(23)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \longrightarrow 0$	$0 \longrightarrow X$
(24)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \longrightarrow 0$	$0 \longrightarrow Y$
(25)	$Y \longrightarrow 2X$	$2X \longrightarrow 2Y$	$X \rightarrow 0$	$0 \longrightarrow X+Y$
(26)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \rightarrow 0$	$2Y \rightarrow 0$
(27)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \rightarrow 0$	$2Y \longrightarrow X$
(28)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \rightarrow 0$	$X+Y \longrightarrow 0$
(29)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \rightarrow 0$	$X{+}Y \ \longrightarrow \ X$
(30)	$Y \longrightarrow 2X$	$2X \rightarrow 2Y$	$X \rightarrow 0$	$X{+}Y \ \longrightarrow \ Y$

Remark 25 (a)

The 30 bimolecular networks that admit a fold bifurcation are diagonally nonequivalent.

In[108]:=

FindDiagEquivAll[ntwsbimol];

```
sources: \{\{0,0\},\{1,0\},\{1,1\},\{2,0\}\}\; the
 dynamically nonequivalent networks fall into 3 diagonally nonequivalent classes
sources: {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; the 5
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,2\},\{1,0\},\{1,1\}\}\; the
 dynamically nonequivalent networks fall into 4 diagonally nonequivalent classes
sources: {{0, 1}, {0, 2}, {1, 0}, {1, 1}}; the 10
  dynamically nonequivalent networks fall into 10 diagonally nonequivalent classes
sources: \{\{0, 1\}, \{0, 2\}, \{1, 1\}, \{2, 0\}\}\; the
  dynamically nonequivalent networks fall into 3 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,1\},\{1,0\},\{2,0\}\}\; the
 dynamically nonequivalent networks fall into
                                               3 diagonally nonequivalent classes
sources: {{0, 1}, {0, 2}, {1, 0}, {2, 0}}; the
  dynamically nonequivalent networks fall into
                                                 2 diagonally nonequivalent classes
                                overall, the 30
 dynamically nonequivalent networks fall into 30 diagonally nonequivalent classes
```

Lemma 26

We analyse the boundary equilibria of the 30 bimolecular networks that admit a fold bifurcation.

 $X+Y \, \longrightarrow \, 0 \hspace{1cm} Y \, \longrightarrow \, 2Y \hspace{1cm} 2Y \, \longrightarrow \, X$

In[109]:=

AnalyseBoundaryEquilibria[ntwsbimol];

 $X \rightarrow 2X$

```
boundary equilibrium: \kappa_1 > 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_4 > 0 && y = 0 && x = 0
, and the Jacobian matrix there equals \begin{pmatrix} \kappa_1 & \mathbf{0} \\ \mathbf{0} & \kappa_3 \end{pmatrix}
                                        X+Y \rightarrow 0 Y \rightarrow 2Y
 (10)
               X \rightarrow 2X
                                                                                                 2Y \rightarrow 2X
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& y == 0 \&\& x == 0
, and the Jacobian matrix there equals \begin{pmatrix} \kappa_1 & \mathbf{0} \\ \mathbf{0} & \kappa_3 \end{pmatrix}
 (13) Y \rightarrow 2X
                                        X+Y \rightarrow 2Y 2X \rightarrow 0 X \rightarrow Y
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& y = 0 \&\& x = 0
, and the Jacobian matrix there equals \left( \begin{smallmatrix} -\mathcal{K}_4 & 2\,\mathcal{K}_1 \\ \mathcal{K}_4 & -\mathcal{K}_1 \end{smallmatrix} \right)
                                        X+Y \; \longrightarrow \; 2Y \hspace{1cm} 2X \; \longrightarrow \; 0 \hspace{1cm} X \; \longrightarrow \; X+Y
 (14)
               Y \rightarrow 2X
     boundary equilibrium: \kappa_1 > 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_4 > 0 && y = 0 && x = 0
, and the Jacobian matrix there equals \left(\begin{array}{cc}0&2\,{\it K}_1\\{\it K}_4&-{\it K}_1\end{array}\right)
 (15) \hspace{0.5cm} Y \, \rightarrow \, 2X \hspace{0.5cm} X + Y \, \rightarrow \, 2Y \hspace{0.5cm} 2X \, \rightarrow \, 0 \hspace{0.5cm} X \, \rightarrow \, 2Y
```

```
boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& y = 0 \&\& x = 0
, and the Jacobian matrix there equals \begin{pmatrix} -\kappa_4 & 2\,\kappa_1 \\ 2\,\kappa_4 & -\kappa_1 \end{pmatrix}
               Y \, \longrightarrow \, 2X
                                      X+Y \longrightarrow 2Y
                                                                 2X \rightarrow 0 2Y \rightarrow 0
 (16)
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x == 0 \&\& y == 0
, and the Jacobian matrix there equals \begin{pmatrix} 0 & 2 \, \kappa_1 \\ 0 & -\kappa_1 \end{pmatrix}
               Y \, \longrightarrow \, 2X
                                      X+Y \longrightarrow 2Y
                                                                 2X \rightarrow 0
     boundary equilibrium: \kappa_1 > 0 && \kappa_2 > 0 && \kappa_3 > 0 && \kappa_4 > 0 && x == 0 && y == 0
, and the Jacobian matrix there equals \left( \begin{smallmatrix} 0 & 2 \, \kappa_1 \\ 0 & -\kappa_1 \end{smallmatrix} \right)
                                                                    2X → 0
                                                                                                2Y \rightarrow 2X
 (18)
               Y \, \longrightarrow \, 2X
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x == 0 \&\& y == 0
, and the Jacobian matrix there equals \left( \begin{smallmatrix} 0 & 2 \, \kappa_1 \\ 0 & -\kappa_1 \end{smallmatrix} \right)
                                      X+Y \rightarrow 2Y \qquad X \rightarrow 0
                                                                                            2Y → 0
               Y \rightarrow 2X
 (21)
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& y == 0 \&\& x == 0
, and the Jacobian matrix there equals \left(\begin{array}{cc} -\kappa_3 & 2\,\kappa_1\\ 0 & -\kappa_1 \end{array}\right)
                                      X+Y \longrightarrow 2Y
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& y == 0 \&\& x == 0
, and the Jacobian matrix there equals \left(egin{array}{cc} -\kappa_3 & 2\,\kappa_1 \\ 0 & -\kappa_1 \end{array}
ight)
 (26)
               Y \, \longrightarrow \, 2X
                                         2X \rightarrow 2Y
                                                                  X \rightarrow 0 2Y \rightarrow 0
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x = 0 \&\& y = 0
, and the Jacobian matrix there equals \begin{pmatrix} -\kappa_3 & 2\kappa_1 \\ 0 & -\kappa_1 \end{pmatrix}
              Y \rightarrow 2X
                                        2X \rightarrow 2Y
                                                                  X \rightarrow 0 2Y \rightarrow X
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x == 0 \&\& y == 0
, and the Jacobian matrix there equals \left(\begin{array}{cc} -\kappa_3 & 2\,\kappa_1\, \\ 0 & -\kappa_1\, \end{array}\right)
                                         2X \rightarrow 2Y X \rightarrow 0 X+Y \rightarrow 0
 (28)
               Y \, \to \, 2X
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x == 0 \&\& y == 0
, and the Jacobian matrix there equals \begin{pmatrix} -\kappa_3 & 2 \; \kappa_1 \\ 0 & -\kappa_1 \end{pmatrix}
                                         2X \rightarrow 2Y
               Y \, \longrightarrow \, 2X
                                                                  X \rightarrow 0
                                                                                           X+Y \longrightarrow X
 (29)
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x == 0 \&\& y == 0
, and the Jacobian matrix there equals \begin{pmatrix} -\kappa_3 & 2\,\kappa_1 \\ 0 & -\kappa_1 \end{pmatrix}
                                         2X \rightarrow 2Y \qquad X \rightarrow 0
     boundary equilibrium: \kappa_1 > 0 \&\& \kappa_2 > 0 \&\& \kappa_3 > 0 \&\& \kappa_4 > 0 \&\& x = 0 \&\& y = 0
, and the Jacobian matrix there equals \begin{pmatrix} -\kappa_3 & 2 \,\kappa_1 \\ 0 & -\kappa_1 \end{pmatrix}
```

4 Andronov-Hopf bifurcation

Lemma 28

We determine the base set for Andronov-Hopf bifurcation.

```
In[110]:=
```

```
ntws0 = NtwsBasic[bimol, trimol, m, redundants];
Print["We start with ", Length[ntws0], " networks."];
We start with 111930 networks.
```

In[112]:=

```
ntws1 = NtwsFilter[ntws0, "Andronov-Hopf"];
Print["There remains ", Length[ntws1],
  " networks. (These are dynamically nontrivial, rank-two
    networks, whose source complexes do not lie on a line, have
    a reaction with source X + Y, and have 2X \rightarrow 3X or 2Y \rightarrow 3Y.)"
```

```
There remains 2067
  networks. (These are dynamically nontrivial, rank-two networks, whose source complexes
   do not lie on a line, have a reaction with source X + Y, and have 2X \rightarrow 3X or 2Y \rightarrow 3Y.)
```

In[114]:=

```
ntws2 = NtwsNonisomorphic[ntws1];
Print["There remains ", Length[ntws2], " networks. (These are nonisomorphic.)"];
```

```
There remains 1034 networks. (These are nonisomorphic.)
```

In[116]:=

```
ntws3 = NtwsNondegEq[ntws2];
Print["There remains ", Length[ntws3],
  " networks. (These admit a nondegenerate positive equilibrium.)"];
```

```
There remains 946 networks. (These admit a nondegenerate positive equilibrium.)
```

Lemma 29

In[118]:=

```
ntws4 = NtwsCandidates[ntws3, "Andronov-Hopf"];
Print["In total, ", Length[ntws4],
  " networks have a positive equilibrium with a pair
    of purely imaginary eigenvalues."];
In total, 198
  networks have a positive equilibrium with a pair of purely imaginary eigenvalues.
```

Theorem 30

Next, we bring the 198 networks to "canonical form" and order them. Then we compute and analyse the focal values. Thereby classify the networks according to the type of Andronov-Hopf bifurcation they admit. Further, we verify the transversality of the Andronov-Hopf bifurcation for all the 198 networks.

In[120]:=

```
ntws5 = CanonicalAndronovHopf[ntws4];
ntwsVerticalAH = AnalyseAndronovHopf[ntws5];
Transversality[ntws5, "Andronov-Hopf"];
```

Group 1 (the second reaction is $X + Y \rightarrow 0$)

(1)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$X \ \longrightarrow \ 2Y$	$Y \longrightarrow 2X$	subcritical A-H
(2)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$X \ \longrightarrow \ 2Y$	$Y\longrightarrow3X$	subcritical A-H
(3)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$X \longrightarrow 3Y$	$Y\longrightarrow X$	subcritical A-H
(4)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$X \longrightarrow 3Y$	$Y \to 2X$	subcritical A-H
(5)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$X \longrightarrow 3Y$	$Y\longrightarrow3X$	subcritical A-H
(6)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$X \ \longrightarrow \ X{+}Y$	$Y\longrightarrow X$	subcritical A-H
(7)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$X \ \longrightarrow \ X{+}Y$	$Y \to 2X$	subcritical A-H
(8)	$2X\rightarrow3X$	$X{+}Y \ \longrightarrow \ 0$	$X \ \longrightarrow \ X{+}Y$	$Y\to3X$	subcritical A-H
(9)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \longrightarrow Y$	$X \longrightarrow 2X$	vertical A-H
(10)	$2X\rightarrow3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$0\longrightarrow X$	supercritical A-H
(11)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \longrightarrow Y$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(12)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$Y \to \emptyset$	supercritical A-H
(13)	$2X\to3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$Y\longrightarrow X$	supercritical A-H
(14)	$2X\to3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$Y \longrightarrow 2X$	supercritical A-H
(15)	$2X \longrightarrow 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$Y \longrightarrow 3X$	supercritical A-H
(16)	$2X \longrightarrow 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow Y$	$Y \ \longrightarrow \ X{+}Y$	supercritical A-H
(17)	$2X \longrightarrow 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$X \longrightarrow 2X$	vertical A-H
(18)	$2X \ \longrightarrow \ 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$0\longrightarrow X$	supercritical A-H
(19)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(20)	$2X \ \longrightarrow \ 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$Y \longrightarrow \emptyset$	supercritical A-H
(21)	$2X \ \longrightarrow \ 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$Y\longrightarrow X$	supercritical A-H
(22)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$Y \longrightarrow 2X$	supercritical A-H
(23)	$2X \ \longrightarrow \ 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$Y \longrightarrow 3X$	supercritical A-H
(24)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 2Y$	$Y \ \longrightarrow \ X + Y$	supercritical A-H
(25)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 3Y$	$X \longrightarrow 2X$	vertical A-H
(26)	$2X\rightarrow3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \rightarrow 3Y$	$0\longrightarrow X$	supercritical A-H
(27)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 3Y$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(28)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \longrightarrow 3Y$	$Y\longrightarrow\emptyset$	supercritical A-H
(29)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \rightarrow 3Y$	$Y\longrightarrow X$	supercritical A-H
(30)	$2X \longrightarrow 3X$	$X\!+\!Y \ \longrightarrow \ 0$	$2X \longrightarrow 3Y$	$Y \longrightarrow 2X$	supercritical A-H

(31)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 0$	$2X \longrightarrow 3Y$	$Y\longrightarrow3X$	supercritical A-H
(32)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \rightarrow 3Y$	$Y \ \longrightarrow \ X + Y$	supercritical A-H
(33)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \longrightarrow X+2Y$	$X \longrightarrow 2X$	vertical A-H
(34)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ X + 2Y$	$0\longrightarrow X$	supercritical A-H
(35)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ X\!+\!2Y$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(36)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ X + 2Y$	$Y \to \emptyset$	supercritical A-H
(37)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y \longrightarrow X$	supercritical A-H
(38)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y \ \longrightarrow \ 2X$	supercritical A-H
(39)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ \emptyset$	$2X \ \longrightarrow \ X + 2Y$	$Y \longrightarrow 3X$	supercritical A-H
(40)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ X + 2Y$	$Y \ \longrightarrow \ X{+}Y$	supercritical A-H
(41)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ 2X{+}Y$	$X \longrightarrow 2X$	vertical A-H
(42)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ 2X{+}Y$	$0\longrightarrow X$	supercritical A-H
(43)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ 2X{+}Y$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(44)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ 2X{+}Y$	$Y \longrightarrow \emptyset$	supercritical A-H
(45)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ 2X + Y$	$Y\longrightarrow X$	supercritical A-H
(46)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ 2X{+}Y$	$Y \longrightarrow 2X$	supercritical A-H
(47)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \ \longrightarrow \ 2X{+}Y$	$Y \rightarrow 3X$	supercritical A-H
(48)	$2X \ \longrightarrow \ 3X$	$X{+}Y \ \longrightarrow \ 0$	$2X \ \longrightarrow \ 2X + Y$	$Y \ \longrightarrow \ X{+}Y$	supercritical A-H
Group	2 (the	second re	action is X	$(+ Y \rightarrow Y)$	
(49)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$X\longrightarrow Y$	$Y \ \longrightarrow \ 2X$	subcritical A-H
(50)	$2X \rightarrow 3X$	$X\!+\!Y \ \longrightarrow \ Y$	$X \longrightarrow Y$	$Y\rightarrow3X$	subcritical A-H
(50) (51)	$\begin{array}{c} 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \end{array}$	$\begin{array}{ccc} X_+ Y & \longrightarrow & Y \\ \\ X_+ Y & \longrightarrow & Y \end{array}$	$\begin{array}{c} X \longrightarrow Y \\ \\ X \longrightarrow 2Y \end{array}$	$Y \rightarrow 3X$ $Y \rightarrow X$	subcritical A-H subcritical A-H
, ,					
(51)	$2X \rightarrow 3X$	$X{+}Y \;\longrightarrow\; Y$	$X \rightarrow 2Y$	$Y \rightarrow X$	subcritical A-H
(51) (52)	$\begin{array}{ccc} 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \end{array}$	$\begin{array}{ccc} X+Y & \longrightarrow & Y \\ \\ X+Y & \longrightarrow & Y \end{array}$	$\begin{array}{ccc} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \end{array}$	$\begin{array}{c} Y \to X \\ \\ Y \to 2X \end{array}$	subcritical A-H subcritical A-H
(51) (52) (53)	$2X \longrightarrow 3X$ $2X \longrightarrow 3X$ $2X \longrightarrow 3X$	$\begin{array}{c} X{+}Y \longrightarrow Y \\ \\ X{+}Y \longrightarrow Y \\ \\ X{+}Y \longrightarrow Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \end{array}$	$\begin{array}{l} Y \to X \\ \\ Y \to 2X \\ \\ Y \to 3X \end{array}$	subcritical A-H subcritical A-H subcritical A-H
(51) (52) (53) (54)	$\begin{array}{c} 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \end{array}$	$\begin{array}{c} X{+}Y \longrightarrow Y \\ \\ X{+}Y \longrightarrow Y \\ \\ X{+}Y \longrightarrow Y \\ \\ X{+}Y \longrightarrow Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \end{array}$	$\begin{array}{l} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \end{array}$	subcritical A-H subcritical A-H subcritical A-H subcritical A-H
(51) (52) (53) (54) (55)	$2X \longrightarrow 3X$	$\begin{array}{c} X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \end{array}$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \end{array}$	subcritical A-H subcritical A-H subcritical A-H subcritical A-H subcritical A-H
(51) (52) (53) (54) (55) (56)	$2X \longrightarrow 3X$	$\begin{array}{c} X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \end{array}$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \end{array}$	subcritical A-H subcritical A-H subcritical A-H subcritical A-H subcritical A-H
(51) (52) (53) (54) (55) (56) (57)	$2X \longrightarrow 3X$	$\begin{array}{c} X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \\ \\ X + Y & \longrightarrow \; Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; X+Y \end{array}$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58)	$\begin{array}{c} 2X \ \longrightarrow \ 3X \\ 2X \ \longrightarrow \ 3X \end{array}$	$\begin{array}{c} X + Y & \longrightarrow \; Y \\ X + Y & \longrightarrow \; Y \end{array}$	$\begin{array}{c} X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 2Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; 3Y \\ X \; \longrightarrow \; X+Y \\ X \; \longrightarrow \; X+Y \end{array}$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61)	$2X \longrightarrow 3X$	$\begin{array}{c} X+Y \longrightarrow Y \\ X+Y \longrightarrow Y $	$\begin{array}{c} X \longrightarrow 2Y \\ X \longrightarrow 2Y \\ X \longrightarrow 2Y \\ X \longrightarrow 3Y \\ X \longrightarrow 3Y \\ X \longrightarrow X+Y \\ X \longrightarrow X+Y \\ X \longrightarrow X+Y \\ X \longrightarrow X+Y \\ X \longrightarrow 2X+Y \\ X \longrightarrow 2X+Y \end{array}$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) sup	$2X \longrightarrow 3X$	$X+Y \longrightarrow Y$	$X \longrightarrow 2Y$ $X \longrightarrow 2Y$ $X \longrightarrow 2Y$ $X \longrightarrow 3Y$ $X \longrightarrow 3Y$ $X \longrightarrow 3Y$ $X \longrightarrow X+Y$ $X \longrightarrow X+Y$ $X \longrightarrow X+Y$ $X \longrightarrow 2X+Y$ $X \longrightarrow 2X+Y$ $X \longrightarrow 2X+Y$ -H, subcritical	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \\ A-H \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) sup	$2X \longrightarrow 3X$	$\begin{array}{c} X + Y & \to \; Y \\ A - H, \; vertical \; A \\ X + Y & \to \; Y \end{array}$	$X \longrightarrow 2Y$ $X \longrightarrow 2Y$ $X \longrightarrow 2Y$ $X \longrightarrow 3Y$ $X \longrightarrow 3Y$ $X \longrightarrow 3Y$ $X \longrightarrow X+Y$ $X \longrightarrow X+Y$ $X \longrightarrow X+Y$ $X \longrightarrow 2X+Y$ $X \longrightarrow 2X+Y$ $X \longrightarrow 2X+Y$ -H, subcritical	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \\ A-H \\ Y \longrightarrow 2X \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) sup	$2X \longrightarrow 3X$	$\begin{array}{c} X + Y & \to \; Y \\ A - H, \; vertical \; A \\ X + Y & \to \; Y \end{array}$	$X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow 2X+Y$ $X \rightarrow 2X+Y$ -H, subcritical A	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \\ A-H \\ Y \longrightarrow 2X \\ A-H \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) sup (62) sup (63)	$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow 2X+Y$ $X \rightarrow 2X+Y$ -H, subcritical A	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \\ A-H \\ Y \longrightarrow 2X \\ A-H \\ Y \longrightarrow 3X \end{array}$	subcritical A-H
(51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) sup (62) sup (63) sup	$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow 3Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow X+Y$ $X \rightarrow 2X+Y$	$\begin{array}{c} Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow X \\ Y \longrightarrow 2X \\ Y \longrightarrow 3X \\ Y \longrightarrow 0 \\ Y \longrightarrow X \\ A-H \\ Y \longrightarrow 2X \\ A-H \\ Y \longrightarrow 3X \\ A-H \end{array}$	subcritical A-H

(66)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X + Y$	$2Y \to 2X$	subcritical A-H
(67)	$2X \to 3X$	$X{+}Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X + Y$	2Y o 3X	subcritical A-H
(68)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X + Y$	$2Y \ \longrightarrow \ 2X{+}Y$	subcritical A-H
(69)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \longrightarrow Y$	$Y\to0$	supercritical A-H
(70)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \longrightarrow Y$	$Y\longrightarrow X$	supercritical A-H
(71)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \longrightarrow Y$	$Y \to 2X$	supercritical A-H
(72)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \longrightarrow Y$	$Y \to 3X$	supercritical A-H
(73)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 2Y$	$Y\to0$	supercritical A-H
(74)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 2Y$	$Y\longrightarrow X$	supercritical A-H
(75)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 2Y$	$Y \longrightarrow 2X$	supercritical A-H
(76)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 2Y$	$Y\longrightarrow3X$	supercritical A-H
(77)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 3Y$	$Y\longrightarrow0$	supercritical A-H
(78)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 3Y$	$Y\longrightarrow X$	supercritical A-H
(79)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 3Y$	$Y \longrightarrow 2X$	supercritical A-H
(80)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \rightarrow 3Y$	$Y\longrightarrow3X$	supercritical A-H
(81)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y\longrightarrow\emptyset$	supercritical A-H
(82)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y\longrightarrow X$	supercritical A-H
(83)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y \longrightarrow 2X$	supercritical A-H
(84)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ X\!+\!2Y$	$Y\longrightarrow3X$	supercritical A-H
(85)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ 2X{+}Y$	$Y\longrightarrow0$	supercritical A-H
(86)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ 2X + Y$	$Y \to X$	supercritical A-H
(87)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ 2X + Y$	$Y \to 2X$	supercritical A-H
(88)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2X \ \longrightarrow \ 2X{+}Y$	$Y\rightarrow3X$	supercritical A-H
Group	3 (the	second re	action is X	$(+ Y \rightarrow 2 Y)$	or 3Y)
(89)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \rightarrow 0$	$0\longrightarrow X$	supercritical A-H
(90)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$0\longrightarrow X$	supercritical A-H
(91)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \rightarrow 0$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(92)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$0 \ \longrightarrow \ 2X + Y$	supercritical A-H
(93)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \rightarrow 0$	$0 \ \longrightarrow \ X{+}Y$	supercritical A-H
(94)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$Y \rightarrow 0$	$0 \ \longrightarrow \ X{+}Y$	supercritical A-H
(95)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \rightarrow 0$	$0 \ \longrightarrow \ X {+} 2Y$	supercritical A-H
(96)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\rightarrow0$	$0 \ \longrightarrow \ X {+} 2Y$	supercritical A-H
(97)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\rightarrow0$	$0\longrightarrow Y$	supercritical A-H
(98)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$Y\rightarrow0$	$0\longrightarrow Y$	supercritical A-H
(99)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\rightarrow0$	$X \ \longrightarrow \ 2X + Y$	supercritical A-H
(100)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$Y\rightarrow0$	$X \ \longrightarrow \ 2X + Y$	supercritical A-H

 $(\textbf{101}) \quad \textbf{2X} \, \rightarrow \, \textbf{3X} \qquad \quad \textbf{X+Y} \, \rightarrow \, \textbf{2Y} \qquad \qquad \textbf{Y} \, \rightarrow \, \textbf{0} \qquad \qquad \textbf{X} \, \rightarrow \, \textbf{X+Y} \qquad \text{supercritical A-H}$

 $X \longrightarrow X + Y$ supercritical A-H

 $(102) \quad 2X \, \longrightarrow \, 3X \qquad \quad X{+}Y \, \longrightarrow \, 3Y \qquad \qquad Y \, \longrightarrow \, 0$

(103)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$Y \rightarrow 0$	$X \rightarrow 3Y$	supercritical A-H
(104)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$X \rightarrow 3Y$	supercritical A-H
(105)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \longrightarrow \emptyset$	$X \longrightarrow 2Y$	supercritical A-H
(106)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \longrightarrow \emptyset$	$X \longrightarrow 2Y$	supercritical A-H
(107)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \to 0$	$X\to Y$	supercritical A-H
(108)	$2X \longrightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$Y\longrightarrow0$	$X\longrightarrow Y$	supercritical A-H
(109)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$Y\longrightarrow X$	supercritical A-H
(110)	$2X \longrightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$Y \longrightarrow \emptyset$	$Y\longrightarrow X$	supercritical A-H
(111)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \longrightarrow \emptyset$	$Y\longrightarrow2X$	supercritical A-H
(112)	$2X \longrightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$Y \longrightarrow \emptyset$	$Y \longrightarrow 2X$	supercritical A-H
(113)	$2X \rightarrow 3X$	$X\!+\!Y \ \longrightarrow \ 2Y$	$Y \longrightarrow 0$	$Y \longrightarrow 3X$	supercritical A-H
(114)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \to 0$	$Y \longrightarrow 3X$	supercritical A-H
(115)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$Y \ \longrightarrow \ X + Y$	supercritical A-H
(116)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$Y \ \longrightarrow \ X + Y$	supercritical A-H
(117)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$Y \ \longrightarrow \ X + 2Y$	supercritical A-H
(118)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$Y \ \longrightarrow \ X + 2Y$	supercritical A-H
(119)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2X \longrightarrow 2X+Y$	supercritical A-H
(120)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2X \longrightarrow 2X+Y$	supercritical A-H
(121)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2X \longrightarrow X+2Y$	supercritical A-H
(122)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2X \longrightarrow X+2Y$	supercritical A-H
(123)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2X \rightarrow 3Y$	supercritical A-H
(124)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2X \rightarrow 3Y$	supercritical A-H
(125)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2X \rightarrow 2Y$	supercritical A-H
(126)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \longrightarrow \emptyset$	$2X \rightarrow 2Y$	supercritical A-H
(127)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \longrightarrow \emptyset$	$2X \to Y$	supercritical A-H
(128)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2X \to Y$	supercritical A-H
(129)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \longrightarrow \emptyset$	$2Y \rightarrow 0$	vertical A-H
(130)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2Y \rightarrow 0$	vertical A-H
(131)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2Y \longrightarrow X$	supercritical A-H
(132)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2Y \longrightarrow X$	supercritical A-H
(133)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2Y \rightarrow 2X$	supercritical A-H
(134)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2Y \rightarrow 2X$	supercritical A-H
(135)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y\longrightarrow0$	$2Y \rightarrow 3X$	supercritical A-H
(136)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y\longrightarrow0$	$2Y \rightarrow 3X$	supercritical A-H
(137)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \longrightarrow \emptyset$	$2Y \longrightarrow 2X+Y$	supercritical A-H
(138)	$2X \longrightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \longrightarrow \emptyset$	$2Y \longrightarrow 2X+Y$	supercritical A-H
(139)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \rightarrow 0$	$0 \longrightarrow X$	vertical A-H
(140)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \rightarrow 0$	$0 \longrightarrow X$	vertical A-H
(141)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \rightarrow 0$	$0 \longrightarrow 2X+Y$	subcritical A-H

(142)	$2X \ \longrightarrow \ 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$2Y \rightarrow 0$	$0 \ \longrightarrow \ 2X + Y$	subcritical	A-H
(143)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \rightarrow 0$	$0 \longrightarrow X+Y$	subcritical	А-Н
(144)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \rightarrow 0$	$0 \longrightarrow X+Y$	subcritical	А-Н
(145)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y\longrightarrow0$	$0 \longrightarrow X+2Y$	subcritical	A-H
(146)	$2X \rightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$2Y \to 0$	$0 \longrightarrow X+2Y$	subcritical	A-H
(147)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \to 0$	$X \longrightarrow 2X$	vertical	A-H
(148)	$2X \rightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$2Y \longrightarrow 0$	$X \longrightarrow 2X$	vertical	A-H
(149)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \longrightarrow 0$	$X \ \longrightarrow \ 2X{+}Y$	subcritical	A-H
(150)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$2Y \longrightarrow 0$	$X \ \longrightarrow \ 2X{+}Y$	subcritical	A-H
(151)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y\longrightarrow0$	$Y\longrightarrow X$	supercritical	A-H
(152)	$2X \longrightarrow 3X$	$X+Y \ \longrightarrow \ 3Y$	$2Y \rightarrow 0$	$Y\longrightarrow X$	supercritical	A-H
(153)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \rightarrow 0$	$Y \longrightarrow 2X$	supercritical	A-H
(154)	$2X\rightarrow3X$	$X+Y \longrightarrow 3Y$	$2Y\longrightarrow0$	$Y \to 2X$	supercritical	A-H
(155)	$2X \longrightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y\longrightarrow0$	$Y \longrightarrow 3X$	supercritical	A-H
(156)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \to 0$	$Y \rightarrow 3X$	supercritical	A-H
(157)	$2X\rightarrow3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y\longrightarrow0$	$Y \ \longrightarrow \ X + Y$	vertical	A-H
(158)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \to 0$	$Y \ \longrightarrow \ X + Y$	vertical	A-H
(159)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \to 0$	$Y \ \longrightarrow \ X + 2Y$	subcritical	A-H
(160)	$2X \to 3X$	$X{+}Y \ \longrightarrow \ 3Y$	$2Y \rightarrow 0$	$Y \ \longrightarrow \ X \! + \! 2Y$	subcritical	A-H
Group	4 (the	second re	action is	$X + Y \rightarrow X$)		
(161)	4 (the 2X → 3X		action is $X \rightarrow 0$	$X + Y \rightarrow X$) $Y \rightarrow X+2Y$	vertical	A-H
-	-			•	vertical subcritical	
(161)	2X → 3X	$X{+}Y \ \longrightarrow \ X$	$X \rightarrow 0$	$Y \longrightarrow X+2Y$		А-Н
(161) (162)	$2X \rightarrow 3X$ $2X \rightarrow 3X$	$\begin{array}{ccc} X+Y & \longrightarrow & X \\ X+Y & \longrightarrow & X \end{array}$	$\begin{array}{c} X \longrightarrow \emptyset \\ X \longrightarrow Y \end{array}$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$	subcritical	A-H A-H
(161) (162) (163) (164)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$	$\begin{array}{c} X + Y \ \longrightarrow \ X \\ \\ X + Y \ \longrightarrow \ X \\ \\ X + Y \ \longrightarrow \ X \\ \\ X + Y \ \longrightarrow \ X \end{array}$	$\begin{array}{c} X \longrightarrow \emptyset \\ X \longrightarrow Y \\ X \longrightarrow 2Y \\ X \longrightarrow 3Y \end{array}$	$\begin{array}{ccc} Y & \longrightarrow & X+2Y \\ Y & \longrightarrow & X+2Y \\ Y & \longrightarrow & X+2Y \end{array}$	subcritical subcritical	A-H A-H
(161) (162) (163) (164)	$2X \rightarrow 3X$ $5 (the)$	$\begin{array}{c} \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{second re} \end{array}$	$\begin{array}{c} X \longrightarrow \emptyset \\ X \longrightarrow Y \\ X \longrightarrow 2Y \\ X \longrightarrow 3Y \end{array}$	$Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$	subcritical subcritical subcritical	A-H A-H A-H
(161) (162) (163) (164) Group	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $0.5 \text{ (the } 2X \rightarrow 3X$	$\begin{array}{c} \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{second re} \\ \text{X+Y} \longrightarrow \text{2X} \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ eaction is $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$	subcritical subcritical subcritical vertical	A-H A-H A-H
(161) (162) (163) (164) Group (165)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ 0.5 (the $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$	$\begin{array}{c} \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{second re} \\ \text{X+Y} \longrightarrow \text{2X} \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ eaction is $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow Y+2Y$ $X + Y \rightarrow 2 X$ $0 \longrightarrow Y$	subcritical subcritical vertical subcritical	A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ 0.5 (the $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$	$\begin{array}{c} \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \\ \text{second re} \\ \text{X+Y} \longrightarrow \text{2X} \\ \text{X+Y} \longrightarrow \text{2X} \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$	subcritical subcritical vertical subcritical subcritical	A-H A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166) (167)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $0 $	$\begin{array}{c} \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \text{X+Y} \longrightarrow \text{X} \\ \\ \textbf{Second re} \\ \text{X+Y} \longrightarrow 2\text{X} \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ $X \rightarrow \emptyset$ $X \rightarrow \emptyset$ $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$	subcritical subcritical vertical subcritical subcritical subcritical subcritical	A-H A-H A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166) (167) (168) (169)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $0 $	$\begin{array}{c} X + Y \longrightarrow X \\ \\ Second \ \ re \\ X + Y \longrightarrow 2X \\ \\ X + Y \longrightarrow 2X \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$ $0 \longrightarrow X+Y$	subcritical subcritical vertical subcritical subcritical subcritical subcritical	A-H A-H A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166) (167) (168) (169)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ 0.5 (the) $2X \rightarrow 3X$	$\begin{array}{c} X + Y \longrightarrow X \\ \\ Second \ \ re \\ X + Y \longrightarrow 2X \\ \\ X + Y \longrightarrow 2X \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ And $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$ $0 \longrightarrow 2X+Y$ $Y \longrightarrow X+2Y$	subcritical subcritical vertical subcritical subcritical subcritical subcritical subcritical	A-H A-H A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166) (167) (168) (169) Group	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ 0.5 (the) $2X \rightarrow 3X$	$\begin{array}{c} X + Y & \to X \\ \\ Second re \\ X + Y & \to 2X \\ \\ Second re \\ X + Y & \to 3X \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ And $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$ $0 \longrightarrow 2X+Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 3 X)$	subcritical subcritical vertical subcritical subcritical subcritical subcritical subcritical vertical	A-H A-H A-H A-H A-H A-H A-H A-H
(161) (162) (163) (164) Group (165) (166) (167) (168) (169) Group (170)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $6 $	$\begin{array}{c} X + Y & \to X \\ Second re \\ X + Y & \to 2X \\ Second re \\ X + Y & \to 3X \\ \end{array}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ Eaction is $X \rightarrow \emptyset$ $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$ $0 \longrightarrow 2X+Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow Y+2Y$	subcritical subcritical vertical subcritical subcritical subcritical subcritical subcritical subcritical subcritical	A-H A-H A-H A-H A-H A-H A-H A-H Bautin
(161) (162) (163) (164) Group (165) (166) (167) (168) (169) Group (170) (171)	$2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ $2X \rightarrow 3X$ 0.5 (the) $2X \rightarrow 3X$	$\begin{array}{c} X + Y & \to X \\ Second re \\ X + Y & \to 2X \\ Second re \\ X + Y & \to 3X \\ \end{smallmatrix}$	$X \rightarrow \emptyset$ $X \rightarrow Y$ $X \rightarrow 2Y$ $X \rightarrow 3Y$ Paction is $X \rightarrow \emptyset$ Paction is $X \rightarrow \emptyset$	$Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 2 X)$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$ $0 \longrightarrow X+Y$ $0 \longrightarrow 2X+Y$ $Y \longrightarrow X+2Y$ $X + Y \rightarrow 3 X)$ $0 \longrightarrow Y$ $0 \longrightarrow Y$ $0 \longrightarrow X+2Y$	subcritical subcritical subcritical vertical subcritical subcritical subcritical subcritical subcritical subcritical supercritical	A-H A-H A-H A-H A-H A-H A-H A-H A-H

Group 7 (the second reaction is $Y \rightarrow X$ or 2 X or 3 X)

(175)	$2X \longrightarrow 3X$	$Y\longrightarrow X$	$X{+}Y \ \longrightarrow \ X$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(176)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X\!+\!Y \ \longrightarrow \ X$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(177)	$2X \longrightarrow 3X$	$Y \to 3X$	$X{+}Y \;\longrightarrow\; X$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(178)	$2X \longrightarrow 3X$	$Y\longrightarrow X$	$X{+}Y \;\longrightarrow\; X$	$X+Y \longrightarrow 3Y$	supercritical A-H
(179)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X\!+\!Y \ \longrightarrow \ X$	$X+Y \longrightarrow 3Y$	supercritical A-H
(180)	$2X \longrightarrow 3X$	$Y \to 3X$	$X{+}Y \;\longrightarrow\; X$	$X+Y \longrightarrow 3Y$	supercritical A-H
(181)	$2X \rightarrow 3X$	$Y\longrightarrow X$	$X{+}Y \ \longrightarrow \ 0$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(182)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 0$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(183)	$2X \rightarrow 3X$	$Y \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 0$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(184)	$2X \rightarrow 3X$	$Y \to X$	$X{+}Y \ \longrightarrow \ 0$	$X+Y \longrightarrow 3Y$	supercritical A-H
(185)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 0$	$X+Y \longrightarrow 3Y$	supercritical A-H
(186)	$2X \rightarrow 3X$	$Y\to3X$	$X{+}Y \ \longrightarrow \ 0$	$X+Y \longrightarrow 3Y$	supercritical A-H
(187)	$2X \rightarrow 3X$	$Y \to X$	$X{+}Y \ \longrightarrow \ 0$	$X\!+\!Y \ \longrightarrow \ X\!+\!2Y$	supercritical A-H
(188)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ 0$	$X\!+\!Y \ \longrightarrow \ X\!+\!2Y$	supercritical A-H
(189)	$2X \rightarrow 3X$	$Y\to3X$	$X{+}Y \ \longrightarrow \ 0$	$X\!+\!Y \ \longrightarrow \ X\!+\!2Y$	supercritical A-H
(190)	$2X \rightarrow 3X$	$Y\longrightarrow X$	$X{+}Y \ \longrightarrow \ Y$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(191)	$2X \rightarrow 3X$	$Y \longrightarrow 2X$	$X{+}Y \ \longrightarrow \ Y$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(192)	$2X \rightarrow 3X$	$Y \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$X{+}Y \ \longrightarrow \ 2Y$	supercritical A-H
(193)	$2X \rightarrow 3X$	$Y\longrightarrow X$	$X{+}Y \ \longrightarrow \ Y$	$X+Y \longrightarrow 3Y$	supercritical A-H
(194)	$2X \rightarrow 3X$	$Y \to 2X$	$X{+}Y \ \longrightarrow \ Y$	$X+Y \longrightarrow 3Y$	supercritical A-H
(195)	$2X \rightarrow 3X$	$Y\to3X$	$X{+}Y \ \longrightarrow \ Y$	$X+Y \longrightarrow 3Y$	supercritical A-H
(196)	$2X \rightarrow 3X$	$Y \to X$	$X{+}Y \ \longrightarrow \ Y$	$X{+}Y \ \longrightarrow \ X{+}2Y$	supercritical A-H
(197)	$2X \rightarrow 3X$	$Y \to 2X$	$X{+}Y \ \longrightarrow \ Y$	$X\!+\!Y \ \longrightarrow \ X\!+\!2Y$	supercritical A-H
(198)	$2X \rightarrow 3X$	$Y \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$X\!+\!Y \ \longrightarrow \ X\!+\!2Y$	supercritical A-H

The Andronov-Hopf bifurcation is transversal in all 198 networks.

Remark 31 (a)

We identify the diagonally equivalent ones among the 198 networks that admit an Andronov-Hopf bifurcation.

In[123]:=

$2X \longrightarrow 3X \qquad X+Y \longrightarrow Y$ $X \rightarrow Y \qquad \qquad Y \rightarrow 2X$ $2X \rightarrow 3X$ $X+Y \longrightarrow Y$ $X \ \longrightarrow \ 2Y$ $2X \rightarrow 3X$ $X+Y \longrightarrow Y$ $X \rightarrow Y$ $Y \rightarrow 3X$ $2X \rightarrow 3X$ $X+Y \longrightarrow Y$ $X \rightarrow 3Y$ $Y \longrightarrow X$ $2X \longrightarrow 3X \qquad X+Y \longrightarrow Y$ $X \rightarrow 2Y$ $Y \rightarrow 3X$ $2X \, \rightarrow \, 3X \qquad X{+}Y \, \rightarrow \, Y \qquad \qquad X \, \rightarrow \, 3Y \qquad \qquad Y \, \rightarrow \, 2X$

FindDiagEquivAll[ntws5, "detailed"];

$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$X \longrightarrow X+Y$	Y o X
		$X \longrightarrow X+Y$	
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$X \longrightarrow X+Y$	Y → 3X
$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	Y -> 0	$X \longrightarrow X+Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y -> 0	$X \longrightarrow X+Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y → 0	$X \rightarrow 2Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	Y -> 0	$X \rightarrow Y$
$2X \rightarrow 3X$	$X{+}Y \;\longrightarrow\; Y$	$2X \ \longrightarrow \ Y$	Y -> 0
$2X \rightarrow 3X$	$X{+}Y \;\longrightarrow\; Y$	$2X \rightarrow 2Y$	Y -> 0
$2X \rightarrow 3X$	$X{+}Y \;\longrightarrow\; Y$	$2X \rightarrow 3Y$	$Y \rightarrow 0$
$2X \rightarrow 3X$	$X{+}Y \;\longrightarrow\; Y$	$2X \longrightarrow X+2Y$	$Y \rightarrow 0$
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2X \rightarrow Y$	$Y \rightarrow 2X$
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2X \rightarrow 2Y$	$Y \rightarrow X$
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2X \rightarrow Y$	
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2X \rightarrow 3Y$	$Y\longrightarrowX$
	$X+Y \longrightarrow Y$		
$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2X \rightarrow X+2Y$	Y o X
2V . 2V	$X+Y \longrightarrow Y$	$2X \rightarrow 2Y$	V > 2V
		$2X \rightarrow 2Y$ $2X \rightarrow 3Y$	
		$2X \rightarrow 2X+Y$	
		$2X \rightarrow 2X+Y$	
		$2X \longrightarrow 2X+Y$	
$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	Y -> 0	$2X \rightarrow 2X+Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$2X \longrightarrow 2X+Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$2X \longrightarrow X+2Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$Y \rightarrow 0$	$2X \rightarrow 2Y$
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y -> 0	$2X \rightarrow 2Y$

2X → 3X	X+Y → 2Y	Y → 0	2X → Y
	$\begin{array}{ccc} X+Y & \longrightarrow & 2Y \\ \\ X+Y & \longrightarrow & 3Y \end{array}$		
	$X+Y \longrightarrow 3Y$ $X+Y \longrightarrow 2Y$		
	$X+Y \rightarrow 3Y$ $X+Y \rightarrow 2Y$		
2X → 3X	$X+Y \longrightarrow 2Y$	2Y → 0	$X \rightarrow 2X$
	$X+Y \longrightarrow 3Y$ $X+Y \longrightarrow 3Y$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$X+Y \rightarrow 2Y$ $X+Y \rightarrow 2Y$		Y → 2X
	$\begin{array}{c} X+Y \longrightarrow 2Y \\ X+Y \longrightarrow 3Y \end{array}$		$\begin{array}{ccc} Y & \rightarrow & X+Y \\ Y & \rightarrow & X+Y \end{array}$
	$X+Y \longrightarrow 2Y$ $X+Y \longrightarrow 3Y$		$\begin{array}{c} 0 \to X \\ \\ 0 \to X \end{array}$
	$\begin{array}{c} X+Y \;\longrightarrow\; 2Y \\ \\ X+Y \;\longrightarrow\; 3Y \end{array}$		
	$X+Y \longrightarrow 2Y$ $X+Y \longrightarrow 3Y$		
$2X \rightarrow 3X$	$X+Y \rightarrow 2Y$ $X+Y \rightarrow 3Y$	Y -> 0	
$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$ $X+Y \longrightarrow 2Y$	Y -> 0	
2X → 3X	$X+Y \longrightarrow 2Y$	Y → 0	$Y \rightarrow X+Y$
	$X+Y \rightarrow 3Y$ $X+Y \rightarrow 2Y$		

```
0 \longrightarrow X
  2X \rightarrow 3X \qquad X+Y \rightarrow 3Y \qquad 2Y \rightarrow 0
                                   2Y \rightarrow 0
  2X \rightarrow 3X
              X+Y \longrightarrow 2Y
                                                     0 \longrightarrow 2X+Y
                 X+Y \rightarrow 3Y
                                   2Y \rightarrow 0
  2X \rightarrow 3X
                                                      0 \longrightarrow X+Y
_____
  2X \rightarrow 3X
                 X+Y \longrightarrow 2Y
                                   2Y \rightarrow 0
                                                      0 \longrightarrow X+Y
  2X \ \longrightarrow \ 3X \hspace{1cm} X+Y \ \longrightarrow \ 3Y
                                   2Y \rightarrow 0
                                                      0 \longrightarrow X+2Y
                                    X \rightarrow 0
  2X \rightarrow 3X
              X+Y \longrightarrow 2X
                                                      0 \rightarrow Y
  2X \rightarrow 3X
                 X+Y \longrightarrow 3X
                                    X \rightarrow 0
                                                      0 → Y
                                    X \rightarrow 0
  2X \rightarrow 3X
                 X+Y \longrightarrow 2X
                                                     0 \longrightarrow X+2Y
  2X \rightarrow 3X \qquad X+Y \rightarrow 3X
                                    X \rightarrow 0
                                                      0 \longrightarrow X+Y
_____
  2X \rightarrow 3X \qquad X+Y \rightarrow 2X
                                    X \rightarrow 0
                                                     0 \longrightarrow X+Y
  2X \longrightarrow 3X \qquad X+Y \longrightarrow 3X
                                    X → 0
                                                      0 \longrightarrow 2X+Y
_____
  2X \rightarrow 3X
                  Y \longrightarrow 2X \qquad X+Y \longrightarrow X
                                                   X+Y \longrightarrow 2Y
  2X \rightarrow 3X
                  Y \rightarrow X
                                 X+Y \longrightarrow X
                                                  X+Y \longrightarrow 3Y
  2X \rightarrow 3X
                  Y \longrightarrow 2X \qquad X+Y \longrightarrow Y
                                                   X+Y \longrightarrow 2Y
                  Y \longrightarrow X
                                 X+Y \longrightarrow Y
  2X \rightarrow 3X
                                                  X+Y \longrightarrow 3Y
______
                  Y \rightarrow X
                                 X+Y \longrightarrow Y
  2X \rightarrow 3X
                                                  X+Y \longrightarrow X+2Y
  2X \rightarrow 3X
                   Y \longrightarrow 2X \qquad X+Y \longrightarrow Y
                                                   X+Y \longrightarrow X+2Y
  2X \rightarrow 3X
                   Y \longrightarrow 3X \qquad X+Y \longrightarrow Y
                                                  X+Y \longrightarrow X+2Y
sources: \{\{0, 1\}, \{1, 0\}, \{1, 1\}, \{2, 0\}\}\; the 39
  dynamically nonequivalent networks fall into 32 diagonally nonequivalent classes
sources: \{\{1,0\},\{1,1\},\{2,0\},\{2,0\}\}\; the 5
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
sources: \{\{0,0\},\{1,1\},\{2,0\},\{2,0\}\}\; the 10
  dynamically nonequivalent networks fall into 10 diagonally nonequivalent classes
sources: {{0, 1}, {1, 1}, {2, 0}, {2, 0}}; the 55
  dynamically nonequivalent networks fall into 43 diagonally nonequivalent classes
sources: \{\{0, 2\}, \{1, 0\}, \{1, 1\}, \{2, 0\}\}\; the 29
  dynamically nonequivalent networks fall into 23 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,1\},\{1,1\},\{2,0\}\}\; the 10
  dynamically nonequivalent networks fall into 6 diagonally nonequivalent classes
sources: \{\{0, 1\}, \{0, 1\}, \{1, 1\}, \{2, 0\}\}\; the 10
  dynamically nonequivalent networks fall into 8 diagonally nonequivalent classes
```

```
sources: \{\{0,0\},\{0,2\},\{1,1\},\{2,0\}\}\; the 8
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
sources: \{\{0,0\},\{1,0\},\{1,1\},\{2,0\}\}\; the 8
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
sources: \{\{0, 1\}, \{1, 1\}, \{1, 1\}, \{2, 0\}\}\; the 24
  dynamically nonequivalent networks fall into 20 diagonally nonequivalent classes
                                 overall, the 198
  dynamically nonequivalent networks fall into 157 diagonally nonequivalent classes
```

Remark 31 (c)

We check the transversality of the Bautin bifurcation in network (171) above. The first focal value, L_1 , changes sign at $\kappa_2 = \frac{2 \kappa_1}{5}$ in a transversal way. Notice that ω becomes zero at $\kappa_2 = \frac{4 \kappa_1}{5}$.

In[124]:=

PrintL1[ntws5[171]];

The Andronov-Hopf bifurcation set:

$$\left\{ X \rightarrow \frac{\kappa_{3}}{6\;\kappa_{1}\;-\;5\;\kappa_{2}}\;\text{, }\; Y \rightarrow \frac{2\;\left(\;-\;\kappa_{1}\;+\;\kappa_{2}\right)\;\kappa_{3}}{\kappa_{2}\;\left(\;-\;6\;\kappa_{1}\;+\;5\;\kappa_{2}\right)}\;\text{, }\;\kappa_{4} \rightarrow \frac{\left(\;\kappa_{1}\;-\;\kappa_{2}\right)\;\kappa_{3}^{2}}{\left(\;6\;\kappa_{1}\;-\;5\;\kappa_{2}\right)^{\;2}}\right\}\text{, where }\;\kappa_{1} > 0\;\&\&\;0 < \kappa_{2} < \frac{4\;\kappa_{1}}{5}\;\&\&\;\kappa_{3} > 0\;\&\&\;0 < \kappa_{2} < \frac{4\;\kappa_{1}}{5}\;\&\&\;\kappa_{3} > 0\;\&\&\;0 < \kappa_{3} < \frac{4\;\kappa_{1}}{5}\;\&\&\;0 < \frac{4\;\kappa_{1}}{5}\;\&\&\;0 < \kappa_{2} < \frac{4\;\kappa_{1}}{5}\;\&\&\;0 < \kappa_{3} < \frac{4\;\kappa_{1}}{5}\;\&\&\;0 < \frac{4\;\kappa_{1}}{5}\;\&\;0 < \frac{4\;\kappa_{1}}{5}\;\&\&\;0 < \frac{4\;\kappa_{1}}{5}\;\&\;0 < \frac{4\;\kappa_{1}}{$$

$$\omega = \sqrt{\det J} = \sqrt{\frac{(4 \,\kappa_1 - 5 \,\kappa_2) \,\kappa_2 \,\kappa_3^2}{(6 \,\kappa_1 - 5 \,\kappa_2)^2}}$$

The first focal value:
$$L_1 = -\frac{\pi \ (2 \ \kappa_1 - 5 \ \kappa_2) \ (6 \ \kappa_1 - 5 \ \kappa_2)^2 \ (\kappa_1 - \kappa_2)}{4 \ (4 \ \kappa_1 - 5 \ \kappa_2)^{3/2} \ \sqrt{\kappa_2} \ \kappa_3^2}$$

Remark 31 (d)

Frank-Kamenetsky and Salnikov: verify that the first focal value is everywhere negative on the Andronov-Hopf bifurcation set. Here, $\omega = \sqrt{\det J}$.

In[125]:=

FrankKamenetskySalnikov["Andronov-Hopf"];

$$L_1 = -\frac{\pi \kappa_2 \kappa_3 \kappa_4}{4 \omega^3}$$

Remark 31 (e)

Here we list those networks that admit a pair of purely imaginary eigenvalues, but do not allow eigenvalues crossing the imaginary axis, hence, an Andronov-Hopf bifurcation is forbidden. Counting only genuine four-reaction networks (e.g. $X \rightarrow 2X$ and $X \rightarrow 3X$ cannot be present in a network simultaneously, in other words, we forbid redundant reactions), up to isomorhism, there are 21 dynamically nonequivalent, quadratic, trimolecular (2,4,2) networks with the property described in the previous sentence. All 21 networks are closely related to the (generalised) Lotka reactions.

In[126]:=

```
ntws0 = NtwsBasic[bimol, trimol, m, redundants];
ntws1 = NtwsFilter[ntws0, "center"];
ntws2 = NtwsNonisomorphic[ntws1];
ntws3 = ImaginaryEigvals[ntws2];
ntws4 = CanonicalCenter[ntws3];
PrintNtwsRHS[ntws4];
```

```
(1) \qquad X \ \longrightarrow \ 2X \qquad \qquad X+Y \ \longrightarrow \ 2Y
                                                             X \rightarrow 0
                                                                                         Y → 0
   r.h.s. \{x (\kappa_1 - y \kappa_2 - \kappa_3), y (x \kappa_2 - \kappa_4) \}
  (2) X \rightarrow 2X
                                 X+Y \longrightarrow 3Y
                                                                                            Y \rightarrow 0
   r.h.s. \{x (\kappa_1 - y \kappa_2 - \kappa_3), y (2 x \kappa_2 - \kappa_4) \}
  (3) X \rightarrow 2X
                                X+Y \rightarrow 2Y
                                                              Y \rightarrow 2Y
                                                                                           Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y \kappa_2), y (x \kappa_2 + \kappa_3 - \kappa_4) \}
  (4) X \rightarrow 2X
                                  X+Y \rightarrow 3Y
                                                              Y \rightarrow 2Y
                                                                                           Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y \kappa_2), y (2 x \kappa_2 + \kappa_3 - \kappa_4) \}
  (5) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                            X+Y \longrightarrow Y
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y (\kappa_2 + \kappa_3)), y (x \kappa_2 - \kappa_4) \}
                                 X+Y \rightarrow 3Y
                                                           X+Y \longrightarrow Y
  (6) X \rightarrow 2X
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y (\kappa_2 + \kappa_3)), y (2 x \kappa_2 - \kappa_4) \}
  (7) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow 0
                                                                                            Y \rightarrow 0
  r.h.s. \{x\ (\kappa_1-y\ (\kappa_2+\kappa_3)\ ) , y\ (x\,\kappa_2-x\,\kappa_3-\kappa_4)\ \}
                                  X+Y \longrightarrow 3Y
  (8) X \rightarrow 2X
                                                             X+Y \longrightarrow 0
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y (\kappa_2 + \kappa_3)), y (2 x \kappa_2 - x \kappa_3 - \kappa_4) \}
 (9) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow X
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y \kappa_2), y (x \kappa_2 - x \kappa_3 - \kappa_4) \}
(10) X \rightarrow 2X
                                 X+Y \longrightarrow 3Y
                                                           X+Y \longrightarrow X
                                                                                            Y \rightarrow 0
   r.h.s. \{x (\kappa_1 - y \kappa_2), y (2 x \kappa_2 - x \kappa_3 - \kappa_4) \}
(11) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow 2X
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 + y (-\kappa_2 + \kappa_3)), y (x \kappa_2 - x \kappa_3 - \kappa_4) \}
(12) X \rightarrow 2X
                                 X+Y \rightarrow 3Y
                                                           X+Y \longrightarrow 2X
                                                                                            Y → 0
  r.h.s. \{x (\kappa_1 + y (-\kappa_2 + \kappa_3)), y (2 x \kappa_2 - x \kappa_3 - \kappa_4)\}
(13) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                            X+Y \longrightarrow 3X
                                                                                           Y → 0
  r.h.s. \{x (\kappa_1 - y \kappa_2 + 2 y \kappa_3), y (x \kappa_2 - x \kappa_3 - \kappa_4) \}
(14) X \rightarrow 2X
                                X+Y \longrightarrow 3Y
                                                           X+Y \rightarrow 3X
                                                                                            Y \rightarrow 0
   r.h.s. \{x (\kappa_1 - y \kappa_2 + 2 y \kappa_3), y (2 x \kappa_2 - x \kappa_3 - \kappa_4) \}
(15) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow 2X+Y
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 + y (-\kappa_2 + \kappa_3)), y (x \kappa_2 - \kappa_4) \}
(16) X \rightarrow 2X
                                 X+Y \rightarrow 3Y
                                                            X+Y \longrightarrow 2X+Y
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 + y (-\kappa_2 + \kappa_3)), y (2 x \kappa_2 - \kappa_4) \}
(17) X \rightarrow 2X
                                 X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow X+2Y
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y \kappa_2), y (x \kappa_2 + x \kappa_3 - \kappa_4) \}
(18) X \rightarrow 2X
                                 X+Y \longrightarrow 3Y
                                                           X+Y \longrightarrow X+2Y
                                                                                            Y \rightarrow 0
   r.h.s. \{x\ (\kappa_1-y\ \kappa_2)\ \mbox{, }y\ (2\ x\ \kappa_2+x\ \kappa_3-\kappa_4)\ \}
(19) X \rightarrow 2X
                                X+Y \longrightarrow 2Y
                                                           X+Y \longrightarrow 3Y
                                                                                            Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y (\kappa_2 + \kappa_3)), y (x \kappa_2 + 2 x \kappa_3 - \kappa_4) \}
(20) X \rightarrow 2X
                                 X+Y \longrightarrow X+2Y \qquad X+Y \longrightarrow Y
                                                                                           Y \rightarrow 0
  r.h.s. \{x (\kappa_1 - y \kappa_3), y (x \kappa_2 - \kappa_4)\}
(21) X \rightarrow 2X
                                 X+Y \longrightarrow X+2Y \qquad X+Y \longrightarrow 0
                                                                                           Y → 0
   r.h.s. \{x (\kappa_1 - y \kappa_3), y (x \kappa_2 - x \kappa_3 - \kappa_4) \}
```

5 Bogdanov-Takens bifurcation

A quadratic, octomolecular network

We analyse the Bogdanov-Takens bifurcation in the following network.

```
2X \rightarrow 4X + 3Y + Z
X + Y \rightarrow 0
Z \rightarrow X
```

In[132]:=

```
fg = \kappa_1 x^2 \{2, 3, 1\} + \kappa_2 x y \{-1, -1, 0\} + \kappa_3 z \{1, 0, -1\};
zsubst = Solve[-x + y - z == c, z][1];
sidecondition = \{x, y, \kappa_1, \kappa_2, \kappa_3\} > 0 \& c \in Reals;
varsparsall = \{x, y, \kappa_1, \kappa_2, \kappa_3, c\};
BogdanovTakensThreeSpecies[fg, zsubst, sidecondition, varsparsall];
```

```
(BT.0) Jordan normal form of the Jacobian matrix: \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
```

(BT.1) and (BT.2)
$$(a_{20}+b_{11})$$
 b_{20} equals $\frac{1}{10}$ $\left(169-69\sqrt{6}\right)$ y κ_1^3

```
(BT.3) transversality holds: True
```

A trimolecular network

We analyse the Bogdanov-Takens bifurcation in the following network.

```
2X \rightarrow 3X
X + Y + Z \rightarrow 2Y
Y \rightarrow Z
```

In[137]:=

```
fg = \kappa_1 x^2 \{1, 0, 0\} + \kappa_2 x y z \{-1, 1, -1\} + \kappa_3 y \{0, -1, 1\};
zsubst = Solve[y + z == c, z][1];
sidecondition = \{x, y, \kappa_1, \kappa_2, \kappa_3\} > 0 \& c > 0;
varsparsall = \{x, y, \kappa_1, \kappa_2, \kappa_3, c\};
BogdanovTakensThreeSpecies[fg, zsubst, sidecondition, varsparsall];
```

```
(BT.0) Jordan normal form of the Jacobian matrix: \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
```

(BT.1) and (BT.2)
$$(a_{20}+b_{11})$$
 b_{20} equals $-\frac{3}{8}$ $x^4 imes_2^3$

```
(BT.3) transversality holds: True
```

Lemma 32

The 198 networks with an Andronov-Hopf bifurcation and the 831 networks with a fold bifurcation have 40 networks in common. Out of the 40 networks, 33 admit a positive equilibrium with a double zero eigenvalue.

In[142]:=

```
ntws0 = NtwsBasic[bimol, trimol, m, redundants];
ntws1 = NtwsFilter[ntws0, "Andronov-Hopf"];
ntws2 = NtwsNonisomorphic[ntws1];
ntws3 = NtwsNondegEq[ntws2];
ntws4 = NtwsCandidates[ntws3, "Andronov-Hopf"];
ntws5 = CanonicalAndronovHopf[ntws4];
ntws6 = NtwsCandidates[ntws5, "fold"];
ntws7 = NtwsCandidates[ntws6, "Bogdanov-Takens"];
ntws8 = CanonicalBogdanovTakens[ntws7];
Print["There are ", Length[ntws6],
  " networks that admit both a fold and an Andronov-Hopf bifurcation."];
Print["Out of these ", Length[ntws6], " networks, ",
  Length[ntws8], " admit a double zero eigenvalue."];
There are 40 networks that admit both a fold and an Andronov-Hopf bifurcation.
```

Theorem 33

Classify the Bogdanov-Takens bifurcation in the 33 networks.

Out of these 40 networks, 33 admit a double zero eigenvalue.

In[153]:=

```
AnalyseBogdanovTakens[ntws8];
Transversality[ntws8, "Bogdanov-Takens"];
```

(1)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$Y \rightarrow 0$	$0 \rightarrow Y$	supercritical B-T
(2)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y -> 0	$0 \rightarrow Y$	supercritical B-T
(3)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	Y -> 0	$X\to Y$	supercritical B-T
(4)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y -> 0	$X\longrightarrow Y$	supercritical B-T
(5)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$Y \rightarrow 0$	$X \longrightarrow 2Y$	supercritical B-T
(6)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	Y -> 0	$X \rightarrow 2Y$	supercritical B-T
(7)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$Y \rightarrow 0$	$X \longrightarrow 3Y$	supercritical B-T
(8)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$X \longrightarrow 3Y$	supercritical B-T
(9)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2X$	$0 \longrightarrow Y$	$X \longrightarrow 0$	degenerate B-T
(10)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3X$	$0 \longrightarrow Y$	$X \longrightarrow 0$	degenerate B-T
(11)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2X$	$0 \longrightarrow X+2Y$	$X \rightarrow 0$	subcritical B-T
(12)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3X$	$0 \longrightarrow X+2Y$	$X \rightarrow 0$	subcritical B-T
(13)	$2X \rightarrow 3X$	$X+Y \ \longrightarrow \ 2X$	$0 \longrightarrow X+Y$	$X \rightarrow 0$	subcritical B-T
(14)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3X$	$0 \longrightarrow X+Y$	$X \rightarrow 0$	subcritical B-T
(15)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2X$	$0 \longrightarrow 2X+Y$	$X \rightarrow 0$	subcritical B-T
(16)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3X$	$0 \longrightarrow 2X+Y$	$X \rightarrow 0$	subcritical B-T
(17)	$2X \rightarrow 3X$	$X+Y \longrightarrow X$	$Y \ \longrightarrow \ X\!+\!2Y$	$X\longrightarrow Y$	subcritical B-T
(18)	$2X \rightarrow 3X$	$X+Y \longrightarrow X$	$Y \ \longrightarrow \ X\!+\!2Y$	$X \longrightarrow 2Y$	subcritical B-T
(19)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ X$	$Y \ \longrightarrow \ X\!+\!2Y$	$X \rightarrow 3Y$	subcritical B-T
(20)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \rightarrow 2X$	$X \rightarrow 2Y$	subcritical B-T
(21)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \rightarrow 3X$	$X \rightarrow 2Y$	subcritical B-T
(22)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \longrightarrow X$	$X \rightarrow 3Y$	subcritical B-T
(23)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \longrightarrow 2X$	$X \rightarrow 3Y$	subcritical B-T
(24)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \rightarrow 3X$	$X \rightarrow 3Y$	subcritical B-T
(25)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \longrightarrow X$	$X \longrightarrow X+Y$	subcritical B-T
(26)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \longrightarrow 2X$	$X \longrightarrow X+Y$	subcritical B-T
(27)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$Y \rightarrow 3X$	$X \longrightarrow X{+}Y$	subcritical B-T
(28)	$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	2Y -> 0	$X \ \longrightarrow \ 2X + Y$	subcritical B-T
(29)	$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$2Y \longrightarrow X$	$X \ \longrightarrow \ 2X + Y$	subcritical B-T
(30)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2Y \rightarrow 2X$	$X \ \longrightarrow \ 2X{+}Y$	subcritical B-T
(31)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2Y \rightarrow 3X$	$X \ \longrightarrow \ 2X{+}Y$	subcritical B-T
(32)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ Y$	$2Y \longrightarrow 2X+Y$	$X \ \longrightarrow \ 2X + Y$	subcritical B-T
(33)	$2X \rightarrow 3X$	$X+Y \rightarrow 2Y$	$2Y \rightarrow 0$	$0 \longrightarrow X+2Y$	subcritical B-T

The Bogdanov-Takens bifurcation is transversal in all 33 networks.

Vertical Bogdanov-Takens bifurcation

Below we study those two networks that admit a degenerate Bogdanov-Takens bifurcation (networks (9) and (10)). Both networks show a vertical Andronov-Hopf bifurcation and a homoclinic bifurcation at the same place in parameter space. At the critical parameter value, the homoclinic orbit is filled with periodic orbits. We only detail the study of network (9) (note that networks (9) and (10) are diagonally equivalent).

- There is a fold bifurcation at $\kappa_1 = \frac{\kappa_4^2}{4 \, \kappa_3}$. There is no positive equilibrium for $\kappa_1 > \frac{\kappa_4^2}{4 \, \kappa_3}$, while there are two positive equilibria for $\kappa_1 < \frac{\kappa_4^2}{\Lambda_{\nu}}$.
- We compute the trace of the positive equilibrium with positive Jacobian determinant.
- The system is Hamiltonian when $\kappa_1 = \kappa_2$.
- We plot some typical trajectories for some fixed rate constants that result in a center surrounded by a homoclinic orbit.
- We plot the bifurcation diagram. We fix κ_3 , $\kappa_4 > 0$, while keeping κ_1 , $\kappa_2 > 0$ parameters.

In[155]:=

BogdanovTakensVerticalAnalyse[ntws8[9]];

$$\text{fold bifurcation: } \kappa_2 > 0 \&\& \, \kappa_3 > 0 \&\& \, \kappa_4 > 0 \&\& \, \kappa_1 = \frac{\kappa_4^2}{4 \, \kappa_3} \&\& \, x = \frac{\kappa_4}{2 \, \kappa_1} \&\& \, y = \frac{-x^2 \, \kappa_1 + x \, \kappa_4}{x \, \kappa_2}$$

$$\begin{split} & \text{equilibria: } \kappa_1 > 0 \, \& \& \, \kappa_4 > 0 \, \& \& \\ & \left(\left[0 < \kappa_3 < \frac{\kappa_4^2}{4 \, \kappa_1} \, \& \& \, \kappa_2 > 0 \, \& \& \, \left(x = \frac{\kappa_4}{2 \, \kappa_1} - \frac{1}{2} \, \sqrt{\frac{-4 \, \kappa_1 \, \kappa_3 + \kappa_4^2}{\kappa_1^2}} \, \mid \mid x = \frac{\kappa_4}{2 \, \kappa_1} + \frac{1}{2} \, \sqrt{\frac{-4 \, \kappa_1 \, \kappa_3 + \kappa_4^2}{\kappa_1^2}} \, \right) \right) \mid \mid | \\ & \left(\kappa_3 = \frac{\kappa_4^2}{4 \, \kappa_1} \, \& \& \, \kappa_2 > 0 \, \& \& \, x = \frac{\kappa_4}{2 \, \kappa_1} - \frac{1}{2} \, \sqrt{\frac{-4 \, \kappa_1 \, \kappa_3 + \kappa_4^2}{\kappa_1^2}} \, \right) \right) \, \& \& \, y = \frac{-x^2 \, \kappa_1 + x \, \kappa_4}{x \, \kappa_2} \end{split}$$

the trace of the Jacobian matrix at the equilibrium with positive Jacobian determinant:

$$\frac{2 \; \left(\, \mathsf{K}_{1} \, - \, \mathsf{K}_{2} \, \right) \; \mathsf{K}_{3}}{\mathsf{K}_{4} \, + \; \sqrt{-4 \; \mathsf{K}_{1} \; \mathsf{K}_{3} \, + \, \mathsf{K}_{4}^{2}}}$$

divergence of the vector field (after multiplying by 1/x): $\kappa_1 - \kappa_2$

In[156]:=

```
fg = GetRHS[ntws8[9]];
\kappasubst = {\kappa_1 \rightarrow 2, \kappa_2 \rightarrow 2, \kappa_3 \rightarrow 1, \kappa_4 \rightarrow 3.4};
xylim = 3;
H = \kappa_1 \times y + \frac{\kappa_2}{2} y^2 - \kappa_3 \text{Log}[x] - \kappa_4 y;
BogdanovTakensVerticalStreamPlot[fg, ksubst, xylim, H]
BogdanovTakensVerticalBifDiagr[]
```

Out[160]=

Out[161]=

K₂

Remark 34 (a)

We find that the 33 networks that admit a Bogdanov-Takens bifurcation fall into 28 diagonally nonequivalent classes.

In[162]:=

FindDiagEquivAll[ntws8, "detailed"];

```
2X \longrightarrow 3X \qquad X+Y \longrightarrow 2Y
                                       Y \rightarrow 0
                                                          0 \rightarrow Y
                   X+Y \longrightarrow 3Y
                                        Y \rightarrow 0
                                                           0 \rightarrow Y
  2X \rightarrow 3X
                   X+Y \longrightarrow 2Y
                                        Y \rightarrow 0
  2X \rightarrow 3X
                                                           X \rightarrow Y
  2X \rightarrow 3X \qquad X+Y \rightarrow 3Y \qquad Y \rightarrow 0
                                                           X \rightarrow 2Y
  2X \rightarrow 3X
                   X+Y \longrightarrow 2X
                                       \mathbf{0} \, \longrightarrow \, \mathbf{Y}
                                                           X \rightarrow 0
  2X \rightarrow 3X
                   X+Y \longrightarrow 3X
                                         0 \rightarrow Y
                                                           X \rightarrow 0
  2X \rightarrow 3X
                X+Y \longrightarrow 2X
                                         0 \longrightarrow X+2Y
                                                           X \rightarrow 0
  2X \, \longrightarrow \, 3X \hspace{1cm} X+Y \, \longrightarrow \, 3X
                                        0 \longrightarrow X+Y
                                                           X \rightarrow 0
  2X \longrightarrow 3X \qquad X+Y \longrightarrow 2X
                                        0 \longrightarrow X+Y
                                                           X \rightarrow 0
  2X \longrightarrow 3X \qquad X+Y \longrightarrow 3X
                                        0 \longrightarrow 2X+Y
                                                           X \rightarrow 0
sources: {{0, 0}, {0, 1}, {1, 1}, {2, 0}}; the 2
  dynamically nonequivalent networks fall into 1 diagonally nonequivalent classes
sources: \{\{0, 1\}, \{1, 0\}, \{1, 1\}, \{2, 0\}\}\; the 17
  dynamically nonequivalent networks fall into 16 diagonally nonequivalent classes
sources: \{\{0,0\},\{1,0\},\{1,1\},\{2,0\}\}\; the
  dynamically nonequivalent networks fall into
                                                                  5 diagonally nonequivalent classes
sources: \{\{0, 2\}, \{1, 0\}, \{1, 1\}, \{2, 0\}\}\; the 5
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
sources: \{\{0,0\},\{0,2\},\{1,1\},\{2,0\}\}\; the 1
  dynamically nonequivalent networks fall into 1 diagonally nonequivalent classes
                                           overall, the 33
  dynamically nonequivalent networks fall into 28 diagonally nonequivalent classes
```

Remark 34 (b)

The Bogdanov-Takens bifurcation is supercritical in the network by Frank-Kamenetsky and Salnikov.

In[163]:=

FrankKamenetskySalnikov["Bogdanov-Takens"];

(BT.0) Jordan normal form of the Jacobian matrix:

(BT.1) and (BT.2)
$$(a_{20}+b_{11})$$
 b_{20} equals $-\frac{y \, \kappa_2^5 \, (\kappa_2 + \kappa_4)}{\kappa_4 \, \left(\kappa_2^2 + \kappa_4^2\right)}$

(BT.3) transversality holds: True

Remark 34 (e)

The single network that admits a Bautin bifurcation also admits a Bogdanov-Takens bifurcation. However, the two codimension-two bifurcations occur in separate parts of the parameter space. As we have seen in Remark 31 (c) above, the Bautin bifurcation occurs at $\kappa_2 = \frac{2 \kappa_1}{5}$, while the double zero eigenvalue (and hence, the Bogdanov-Takens bifurcation) is at $\kappa_2 = \frac{4 \kappa_1}{\kappa_2}$ (i.e., where ω becomes zero).

Remark 34 (f)

The 7 networks that admit both a fold and an Andronov-Hopf bifurcation, but not a Bogdanov-Takens bifurcation.

In[164]:=

```
ntws9 = Complement[ntws6, ntws7] [[{1, 3, 2, 4, 5, 7, 6}]];
PrintNtws[ntws9];
```

```
(1) 2X \rightarrow 3X
                              X+Y \longrightarrow 2Y
                                                               Y \rightarrow 0 2Y \rightarrow 2X
(2) \quad 2X \,\longrightarrow\, 3X \qquad \quad X+Y \,\longrightarrow\, 2Y
                                                            Y → 0
                                                                                  2Y \rightarrow 3X
                              X+Y \longrightarrow 2Y
                                                               Y \rightarrow 0
                                                                                     2Y \rightarrow 2X+Y
(3) 2X \rightarrow 3X
(4) \quad 2X \, \longrightarrow \, 3X \qquad \quad X+Y \, \longrightarrow \, 3Y
                                                            Y \rightarrow 0
                                                                                     2Y \rightarrow X
(5) \quad 2X \ \longrightarrow \ 3X \qquad \quad X+Y \ \longrightarrow \ 3Y
                                                                                     2Y \rightarrow 2X
                                                            Y \rightarrow 0
(6) \quad 2X \rightarrow 3X \qquad X+Y \rightarrow 3Y
                                                               Y \rightarrow 0
                                                                                     2Y \rightarrow 3X
(7) \quad 2X \ \longrightarrow \ 3X \qquad \quad X+Y \ \longrightarrow \ 3Y
                                                               Y -> 0
                                                                                        2Y \rightarrow 2X+Y
```

The 7 networks fall into 5 diagonally nonequivalent classes.

In[166]:=

FindDiagEquivAll[ntws9, "detailed"]

```
2X \rightarrow 3X \qquad X+Y \rightarrow 2Y
                                   Y → 0
                                                  2Y \rightarrow 2X
  2X \rightarrow 3X
                X+Y \rightarrow 3Y
                                     Y → 0
                                                     2Y \rightarrow X
  2X \rightarrow 3X \qquad X+Y \rightarrow 2Y
                                    Y \rightarrow 0
                                                     2Y \rightarrow 2X+Y
  2X \rightarrow 3X \qquad X+Y \rightarrow 3Y
                                   Y → 0
                                                    2Y \rightarrow 2X
sources: {{0, 1}, {0, 2}, {1, 1}, {2, 0}}; the 7
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
                                      overall, the 7
  dynamically nonequivalent networks fall into 5 diagonally nonequivalent classes
```

Appendix: Vertical Andronov-Hopf bifurcation

Lemma 39

We compute the condition on the rate constants under which $\det J > 0$ and $\det J = L_1 = L_2 = L_3 = 0$ in the 20 networks that admit a vertical Andronov-Hopf bifurcation.

In[167]:=

$ntws = ntwsVerticalAH[Join[Range[1, 11], \{14, 15, 12, 13\}, Range[16, 20]]];\\$ AndronovHopfVertical[ntws];

(1)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \rightarrow Y$	$X \longrightarrow 2X$	$\kappa_1 = \kappa_2 + 2 \kappa_3 \&\& \kappa_2 < \kappa_3$
(2)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \rightarrow 2Y$	$X \to 2X$	$\kappa_1 = \kappa_2 + 2 \kappa_3 \&\& \kappa_2 < 2 \kappa_3$
(3)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \rightarrow 3Y$	$X \to 2X$	$\kappa_1 = \kappa_2 + 2 \kappa_3 \&\& \kappa_2 < 3 \kappa_3$
(4)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \longrightarrow X+2Y$	$X \rightarrow 2X$	$\kappa_1 = \kappa_2 + \kappa_3 \&\& \kappa_2 < 2 \kappa_3$
(5)	$2X \rightarrow 3X$	$X+Y \longrightarrow 0$	$2X \rightarrow 2X+Y$	$X \rightarrow 2X$	$\kappa_1 = \kappa_2 \&\& \kappa_2 < \kappa_3$
(6)	$2X \rightarrow 3X$	$X\!+\!Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X{+}Y$	$Y \rightarrow 0$	$\kappa_2 \kappa_3 = \kappa_1 (\kappa_3 + \kappa_4)$
(7)	$2X \rightarrow 3X$	$X+Y \longrightarrow Y$	$X \ \longrightarrow \ 2X{+}Y$	$Y\longrightarrow X$	
$\kappa_2 \kappa_3$ ()	$\kappa_3 + \kappa_4) = \kappa_1 \kappa_4$	$(3 \kappa_3 + \kappa_4)$ && $\kappa_3 =$	≔ κ ₄		
(8)	$2X \rightarrow 3X$	$X\!+\!Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X + Y$	$Y \longrightarrow 2X$	
$\kappa_2 \kappa_3$ (2	$2 \kappa_3 + \kappa_4) = \kappa_1 \kappa_1$	$\kappa_4 (5 \kappa_3 + \kappa_4) \& \kappa_5$	$_3 = \kappa_4$		
(9)	$2X \rightarrow 3X$	$X\!+\!Y \ \longrightarrow \ Y$	$X \ \longrightarrow \ 2X{+}Y$	$Y \rightarrow 3X$	
$\kappa_2 \kappa_3$ (3	$3 \kappa_3 + \kappa_4) = \kappa_1 \kappa_1$	$\kappa_4 \ (7 \ \kappa_3 + \kappa_4) \ \&\& \ \kappa_3$	$_3 = \kappa_4$		
(10)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$Y \rightarrow 0$	$2Y \rightarrow 0$	$\kappa_2 = 2 \; \kappa_4 \; \&\& \; \kappa_1 < 2 \; \kappa_4$
(11)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$Y \rightarrow 0$	$2Y \rightarrow 0$	$\kappa_2 = 2 \; \kappa_4 \; \&\& \; \kappa_1 < 4 \; \kappa_4$
(12)	$2X \rightarrow 3X$	$X{+}Y \ \longrightarrow \ 2Y$	$2Y \rightarrow 0$	$X \longrightarrow 2X$	$\kappa_1 = \kappa_2 \&\& \kappa_2 > 2 \kappa_3$
(13)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \rightarrow 0$	$X \longrightarrow 2X$	$\kappa_1 = 2 \kappa_2 \&\& \kappa_2 > 2 \kappa_3$
(14)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	2Y -> 0	$0 \rightarrow X$	$ \kappa_3 = \frac{\kappa_2^2}{4 \kappa_1 - 2 \kappa_2} \& \kappa_1 > \kappa_2 $
(15)	$2X \rightarrow 3X$	$X+Y \rightarrow 3Y$	2Y -> 0	$0 \to X$	$2 \kappa_3 = \frac{\kappa_2^2}{\kappa_1 - \kappa_2} \&\& \kappa_1 > 2 \kappa_2$
(16)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2Y$	$2Y \rightarrow 0$	$Y \ \longrightarrow \ X{+}Y$	$4\; \kappa_1\; \kappa_3 = \kappa_2\; \left(\kappa_2 + 2\;\kappa_3\right)\; \&\&\; \kappa_2 > 2\;\kappa_3$
(17)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3Y$	$2Y \rightarrow 0$	$Y \ \longrightarrow \ X{+}Y$	2 $(\kappa_1 - \kappa_2)$ $\kappa_3 = \kappa_2^2 \&\& \kappa_2 > 2 \kappa_3$
(18)	$2X \rightarrow 3X$	$X+Y \longrightarrow X$	$X \rightarrow 0$	$Y \ \longrightarrow \ X{+}2Y$	$\kappa_2 \kappa_3 = 2 \kappa_1 \kappa_4$
(19)	$2X \rightarrow 3X$	$X+Y \longrightarrow 2X$	$X \rightarrow 0$	$0 \rightarrow Y$	$\kappa_1 = \kappa_2 \&\& \kappa_3^2 > 4 \kappa_2 \kappa_4$
(20)	$2X \rightarrow 3X$	$X+Y \longrightarrow 3X$	X → 0	$0 \rightarrow Y$	$\kappa_1 = \kappa_2 \&\& \kappa_3^2 > 8 \kappa_2 \kappa_4$