COP5612 - Fall 2020 Alin Dobra

Project 1 Submission

Akshay Kumar (UF: 4679-9946) | Rajat Rai (UF: 1417-2127)

Problem definition: An interesting problem in arithmetic with deep implications to the elliptic curve theory is the problem of finding perfect squares that are sums of consecutive squares.

A classic example is the Pythagorean identity: $3^2 + 4^2 = 5^2$ that reveals that the sum of squares of 3, 4 is itself a square.

A more interesting example is Lucas' Square Pyramid: $1^2 + 2^2 + ... + 24^2 = 70^2$. In both examples, sums of squares of consecutive integers from the square of another integer. The goal of this first project is to use F# and the actor model to build a good solution to this problem that runs well on multi-core machines.

Requirements: The input provided (as command line to your program, e.g. my app) will be two numbers: N and k. The overall goal of your program is to find all k consecutive numbers starting at 1 and up to N, such that the sum of squares is itself a perfect square (square of an integer).

Our Solution: Our solution involves having a dynamic number of workers actors that will be initialized by a Supervisor Actor. The supervisor actor simply breaks the N tasks into [ceiling of N/k] tasks and keeps track of how many of them are completed by maintaining a counter.

Algorithm Optimization: Instead of using a traditional loop method to get the sum of squares for every start or sequence, the range 1 to N, we decided to a more computationally efficient method calculate the sum of squares using the formula below:

$$P_n = \sum_{k=1}^{n} k^2 = \frac{2n^3 + 3n^2 + n}{6}$$

Here P_n is the sum squares of first n numbers. So to find the sum of squares, we just need to check if P_{i+k} - P_i is a perfect square or not for i in range of [1,n].

Size of the work unit: We observed that a lot of variables contribute to the optimum CPU/REAL Ratio, like:

- Length of the range
- Total no. of interconnected systems
- Total no. of Physical/Logical Cores of the systems
- CPU Loads

Command: dotnet fsi --langversion:preview project1.fsx 1000000 4

Result: The most optimum number we came across on our machine (Intel® Core™ i7-8550U Processor; # of Cores 4,# of Threads8) for the problem of N= 1000000 and k=4 are as follows:

C:\Projects\f#+Akka\FSNetCore\src\Project1>dotnet fsi --langversion:preview

project1.fsx 1000000 4
Total workers = 27
Subproblems per worker = 37038
CPU time = 150ms
Real time = 44ms
CPU to REAL time ratio = 3.333333

Additional Results:

Sr. No	N	К	Runtime Info
1	10 ⁶	24	Total workers = 25
			Subproblems per worker = 40000
			CPU time = 130ms
			Real time = 38ms
			CPU to REAL time ratio = 3.333333
			Total workers = 27
			Subproblems per worker = 37038
			CPU time = 140ms
			Real time = 40ms
			CPU to REAL time ratio = 3.414634
			Total workers = 50
			Subproblems per worker = 20000
			CPU time = 160ms
			Real time = 58ms
			CPU to REAL time ratio = 2.666667
			Total workers = 75
			Subproblems per worker = 13334
			CPU time = 170ms
			Real time = 56ms
			CPU to REAL time ratio = 2.982456
			Total workers = 100
			Subproblems per worker = 10000
			CPU time = 170ms
			Real time = 55ms
			CPU to REAL time ratio = 2.982456
2	10 ⁸	24	Total workers = 50
-			Subproblems per worker = 2000000
			CPU time = 7020ms
			Real time = 1176ms
			CPU to REAL time ratio = 5.959253
			Total workers = 75
			Subproblems per worker = 1333334
			CPU time = 6570ms
			Real time = 1227ms
			CPU to REAL time ratio = 5.341463
			Total workers = 100
			Subproblems per worker = 1000000
			CPU time = 6550ms
			CPU tillie - 05501115

			Real time = 1228ms
			CPU to REAL time ratio = 5.320877
3	10 ⁹	24	Total workers = 50
			Subproblems per worker = 20000000
			CPU time = 75870ms
			Real time = 12913ms
			CPU to REAL time ratio = 5.872291
			Total workers = 75
			Subproblems per worker = 13333334
			CPU time = 58210ms
			Real time = 10391ms
			CPU to REAL time ratio = 5.600885
			Total workers = 100
			Subproblems per worker = 10000000
			CPU time = 65140ms
			Real time = 11807ms
			CPU to REAL time ratio = 5.515198
4	10 ¹⁰	24	Total workers = 50
			Subproblems per worker = 200000000
			CPU time = 594750ms
			Real time = 106756ms
			CPU to REAL time ratio = 5.570907
			Total workers = 75
			Subproblems per worker = 133333334
			CPU time = 584060ms
			Real time = 105753ms
			CPU to REAL time ratio = 5.522504
			Total workers = 100
			Subproblems per worker = 100000000
			CPU time = 623180ms
			Real time = 110346ms
			CPU to REAL time ratio = 5.647253
5	10 ¹¹	24	Total workers = 1000
			Subproblems per worker = 100000000
			CPU time = 6814760ms
			Absolute time = 1165205ms
			CPU to REAL time ratio =5.848535