Homework 4

Due Friday, September 26

Problem 1 (15 pts). This problem is an exercise to practice set operations. No formal proof is required.

- (a) Determine the sets A, B where $A B = \{1, 3, 7, 11\}, B A = \{2, 6, 8\}, \text{ and } A \cap B = \{4, 9\}.$
- (b) Let $A = \{x \mid \exists n : x = 2n\}$ and $B = \{x \mid \exists n : x = 3n\}$ in the universe of integers. Find $A \cup B$, $A \cap B$, and $A^c \cap B$. You can answer either in English or in mathematical notation.
- (c) Let $A = \{x \in \mathbb{R} : x^2 < 4\}$, and $B = \{x \in \mathbb{R} : x > 1\}$. Find $A \cup B$, $A \cap B$, and A B.

Problem 2 (15 pts). In this problem, you will prove several identities about sets. Each part is worth 5 points.

- (a) Prove that $(A \cap B)^C = A^C \cup B^C$ is true for all sets A and B.
- (b) Prove that the symmetric difference is associative. That is, prove that for all sets A, B, and C, it must be true that

$$(A\triangle B)\triangle C = A\triangle (B\triangle C).$$

(c) Prove that if A and B are sets, then $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. (Recall from class that the power set $\mathcal{P}(A)$ is the set of all subsets of A.)

Bonus 1 (1 pt). Approximately how long did you spend on this homework assignment?