

Investigação Operacional Trabalho Prático 1

Licenciatura em Engenharia Informática

Ana Henriques – A93268 Ana Murta – A93284 Leonardo Freitas – A93281 Luís Faria – A93209 Tiago Carneiro – A93027

Ano Letivo 2021/2022

Índice

1	Introdução	3
2	Formulação do problema	3
3	Modelo	4
	3.1 Variáveis de decisão	5
	3.2 Parâmetros	5
	3.3 Função objetivo	6
	3.4 Restrições	6
4	Solução ótima	6
5	Validação do modelo	9
6	Conclusão	. 10

1 Introdução

O primeiro trabalho prático da Unidade Curricular de Investigação Operacional tem por base o problema de um drone que precisa de percorrer um conjunto de linhas elétricas de alta tensão para verificar se há vegetação a interferir com as mesmas. Como tal, o objetivo é que o drone passe, em qualquer sentido, por todas as linhas pelo menos uma vez, percorrendo a menor distância possível. É importante denotar, no entanto, que o drone pode efetuar este percurso pelas linhas elétricas ou através do ar. Para a resolução deste problema, recorreu-se ao *software* de programação linear introduzido nas aulas práticas, o *LPSolve*. Na Figura 1, temos a representação do mapa de linhas de alta tensão proposto inicialmente.

Figura 1: Mapa de linhas de alta tensão proposto inicialmente.

2 Formulação do problema

O principal objetivo é, então, encontrar a solução ótima para o problema e calcular a distância mínima percorrida pelo drone quando este tem de passar, pelo menos uma vez e em qualquer sentido, por todas as linhas de alta tensão. Deste modo, o drone tem de percorrer um caminho Euleriano. Neste trabalho prático, idealizou-se a situação em que os pontos de partida e de chegada são, respetivamente, os pontos \bigstar I e \bigstar F.

De acordo com o maior número de estudante do nosso grupo (93284), devemos remover as arestas C, D e E da nossa rede, resultando no mapa ilustrado na Figura 2, que representa o grafo do problema e as linhas elétricas são as suas arestas.

Figura 2: Mapa de linhas de alta tensão

Tal como supramencionado, a solução ideal é o drone percorrer, então, um caminho Euleriano, que é o mesmo que dizer um caminho do grafo que visita todas as arestas exatamente uma vez. Todavia, segundo o Teorema de Euler, um grafo G conexo possui um caminho Euleriano se e somente se ele tiver exatamente zero ou dois vértices de grau impar. Ou seja, precisamos que todos os vértices do nosso grafo tenham um grau par para que o grafo seja Euleriano, o que não se verifica no nosso mapa visto que temos cerca de 10 vértices de grau impar. Para resolver isto, teremos de adicionar arestas ao grafo e é precisamente aí que reside o problema de otimização deste trabalho porque é necessário determinar que arestas têm de ser adicionadas de maneira que o caminho percorrido pelo drone seja Euleriano e minimize a distância total a correr.

Sabe-se que a distância a minimizar é o comprimento das arestas que serão adicionadas ao grafo e, como o drone visita obrigatoriamente todas estas arestas, o seu comprimento é constante; logo, pode ser ignorado. O importante é focar nos vértices que apresentam grau ímpar e ligá-los a outros, criando, assim, novas arestas. Regressando ao mapa do grupo, analisamos que, à exceção dos vértices 5, 7 e 8, todos os outros possuem grau ímpar e, consequentemente, serão estes os que serão incluídos no modelo.

3 Modelo

Para definir o modelo, decidiu-se que as variáveis de decisão seriam definidas por dois algarismos, de 1 a 9. Na situação de ser preciso representar um valor acima de 10 com apenas um algarismo, como os vértices de 10 a 13, estes são numerados de [a-d]. O valor do vértice I corresponde ao 0 e o vértice F corresponde ao 14, usando o caracter 'e'.

Assim sendo, o conjunto de vértices usados no nosso modelo são definidos da seguinte forma: V = {I, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, F}, sendo V usando como referência a este conjunto de valores ao longo do relatório.

3.1 Variáveis de decisão

 x_{ij} : existe ou não uma aresta a unir os vértices i e j, $i,j \in V, i < j$ $x_{ij} \in \{0,1\}$

As variáveis de decisão são definidas por x_{ij} : i < j para que arestas diferentes sejam representadas diferentemente. Por exemplo, no caso de existir uma ligação entre os vértices 3 e 7, representamos a aresta x_{37} e não a x_{73} que seria a mesma.

3.2 Parâmetros

 d_{ij} : corresponde ao comprimento da aresta que une os vértices i e j.

Os comprimentos de todas as arestas podem ser calculados a partir da seguinte tabela:

		x v	0	3 8	3 5	2 2	2	4	6 8	6	9	10 8	10 6	10 3	10 0	6 4	12 0
×	у		- 1	1	2	3	4	5	6	7	8	9	10	11	12	13	F
0	8 I		0,00	3,00	4,24	6,32	8,25	5,66	6,00	10,00	9,85	10,00	10,20	11,18	12,81	7,21	14,42
3	s 1		3,00	0,00	3,00	6,08	8,06	4,12	3,00	8,54	7,21	7,00	7,28	8,60	10,63	5,00	12,04
3	s 2		4,24	3,00	0,00	3,16	5,10	1,41	4,24	5,83	6,08	7,62	7,07	7,28	8,60	3,16	10,30
2	2 3		6,32	6,08	3,16	0,00	2,00	2,83	7,21	4,47	7,28	10,00	8,94	8,06	8,25	4,47	10,20
2	o 4		8,25	8,06	5,10	2,00	0,00	4,47	8,94	4,00	8,06	11,31	10,00	8,54	8,00	5,66	10,00
4	4 5		5,66	4,12	1,41	2,83	4,47	0,00	4,47	4,47	5,00	7,21	6,32	6,08	7,21	2,00	8,94
6	s 6		6,00	3,00	4,24	7,21	8,94	4,47	0,00	8,00	5,00	4,00	4,47	6,40	8,94	4,00	10,00
6	0 7		10,00	8,54	5,83	4,47	4,00	4,47	8,00	0,00	5,00	8,94	7,21	5,00	4,00	4,00	6,00
9	4 8		9,85	7,21	6,08	7,28	8,06	5,00	5,00	5,00	0,00	4,12	2,24	1,41	4,12	3,00	5,00
10	s 9		10,00	7,00	7,62	10,00	11,31	7,21	4,00	8,94	4,12	0,00	2,00	5,00	8,00	5,66	8,25
10	6 10)	10,20	7,28	7,07	8,94	10,00	6,32	4,47	7,21	2,24	2,00	0,00	3,00	6,00	4,47	6,32
10	з 11		11,18	8,60	7,28	8,06	8,54	6,08	6,40	5,00	1,41	5,00	3,00	0,00	3,00	4,12	3,61
10	0 12	2	12,81	10,63	8,60	8,25	8,00	7,21	8,94	4,00	4,12	8,00	6,00	3,00	0,00	5,66	2,00
6	4 13	3	7,21	5,00	3,16	4,47	5,66	2,00	4,00	4,00	3,00	5,66	4,47	4,12	5,66	0,00	7,21
12	o F		14,42	12,04	10,30	10,20	10,00	8,94	10,00	6,00	5,00	8,25	6,32	3,61	2,00	7,21	0,00

Figura 3: Distâncias entre todos os vértices do mapa.

3.3 Função objetivo

A função objetivo é, como visto previamente, minimizar o comprimento das arestas a adicionar ao grafo do problema em estudo:

min:
$$\Sigma_{i,j \in V \ d_{ij} \times x_{ij}}$$
, $i < j$

3.4 Restrições

Cada vértice deve apenas pertencer a uma única aresta:

$$\forall i \ \in V : \sum x_{ij} = 1, j \ \in V, i < j$$

```
1 /* Objective function */
2 min; 3.00 x01 + 4.24 x02 + 6.32 x03 + 8.25 x04 + 6.00 x06 + 10.00 x09 + 10.20 x0a + 11.18 x0b + 12.81 x0c + 7.21 x0d + 14.42 x0e + 3
3.00 x12 + 6.08 x13 + 8.06 x14 + 3.00 x16 + 7.00 x19 + 7.28 x1a + 8.60 x1b + 10.63 x1c + 5.00 x1d + 12.04 x1e + 5
4 3.16 x23 + 5.10 x24 + 4.24 x26 + 7.62 x29 + 7.07 x2a + 7.28 x2b + 8.60 x2c + 3.16 x2d + 10.30 x2e + 5
5 2.00 x34 + 7.21 x36 + 11.31 x49 + 10.00 x3a + 8.54 x4b + 8.00 x4c + 5.66 x4d + 10.00 x4e + 6.60 x2e + 3.16 x2d + 10.00 x4e + 7.21 x36 + 11.31 x49 + 10.00 x4a + 8.54 x4b + 8.00 x4c + 5.66 x4d + 10.00 x4e + 7.21 x3e + 11.31 x49 + 10.00 x4a + 8.54 x4b + 8.00 x4c + 5.66 x4d + 10.00 x4e + 8.94 x4e + 11.31 x49 + 10.00 x4a + 8.54 x4b + 8.00 x4c + 5.66 x4d + 10.00 x4e + 8.94 x4b + 8.00 x4e + 5.66 x4d + 10.00 x4e + 8.94 x4b + 8.00 x4e + 5.66 x4d + 10.00 x4e + 8.94 x4b + 8.00 x4e + 5.66 x4d + 10.00 x4e + 8.94 x4b + 8.94 x4b
```

Figura 4: Ficheiro de input no LPSolve IDE

4 Solução ótima

Depois de introduzir o modelo do problema no *LPSolve*, chegámos a uma aparente solução ótima, onde, tal como se pode observar na Figura 5, são criadas arestas a unir os vértices I ao 1, o 2 ao 6, o 3 ao 4, o 9 ao 10, o 11 ao 13, o 12 ao F, com um comprimento total de 17,36.

М 🔻	result
17,36	17,36
1	1
1	1
1	1
1	1
1	1
1	1
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	17,36 1 1 1 1 1 1 1 0 0 0 0 0 0

Figura 5: Output produzido pelo LPSolve IDE

A solução está ilustrada na Figura 6:

Figura 6: Arestas a adicionar ao grafo

Na Figura 6, encontram-se representadas as arestas que foram adicionadas para que os vértices referidos anteriormente passem a ter grau par. Contudo, notamos a particularidade de cores diferentes. Ora, as arestas azuis indicam que o drone se desloca pelas linhas de alta tensão e as arestas verdes indicam que se desloca pelo ar. Deste modo, conseguimos um grafo onde todos os vértices têm um grau par e já podemos definir um caminho Euleriano.

O caminho terá que passar por todas as arestas exatamente uma vez; logo, distância total percorrida não variará, pelo que não é necessário minimizá-la. Com isto, conclui-se que falta apenas desenhar o trajeto do drone, existindo várias possibilidades para o mesmo, nomeadamente:

Figura 7: Possível solução

Como podemos ver na Figura 7, o percurso é: Azul→ Verde→ Rosa→ Vermelho.

Também se pode definir este percurso através dos vértices, ficando, portanto:

$$I \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow I \rightarrow 1 \rightarrow 6 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 7 \rightarrow 12 \rightarrow 11 \rightarrow 8 \rightarrow 10 \rightarrow 9 \rightarrow 6 \rightarrow 13$$

$$\rightarrow 11 \rightarrow 10 \rightarrow 9 \rightarrow F \rightarrow 12 \rightarrow F$$

Sabendo que a soma da distância de cada aresta do grafo inicial é:

$$8+8+12+12+2+3+3+3+3+3+4+2+2+2+3+3+3=76$$

Após somar o comprimento de todas as arestas do grafo e o das arestas que foram adicionadas (resultado devolvido pelo *LPSolver*, Figura 5), obtemos a distância total percorrida:

$$76 + 17.36 = 93.36$$

5 Validação do modelo

A seguinte tabela ilustra as restrições do nosso modelo, e tal como podemos observar, todas as restrições são cumpridas, para cada vértice de grau ímpar apenas criamos uma aresta.

j∖i		I(O)	1	2	3	4	6	9	a(10)	b(11)	c(12)	d(13)	F(e)	SUM	
I(0)	V0		1	0	0	0	0	0	0	0	0	0	0	1	=1
1	V1	1	0	0	0	0	0	0	0	0	0	0	0	1	=1
2	V2	0	0		0	0	1	0	0	0	0	0	0	1	=1
3	V3	0	0	0		1	0	0	0	0	0	0	0	1	=1
4	V4	0	0	0	1		0	0	0	0	0	0	0	1	=1
6	V6	0	0	1	0	0		0	0	0	0	0	0	1	=1
9	V9	0	0	0	0	0	0		1	0	0	0	0	1	=1
a(10)	Va	0	0	0	0	0	0	1		0	0	0	0	1	=1
b(11)	Vb	0	0	0	0	0	0	0	0		0	1	0	1	=1
c(12)	Vc	0	0	0	0	0	0	0	0	0		0	1	1	=1
d(13)	Vd	0	0	0	0	0	0	0	0	1	0		0	1	=1
F(e)	Ve	0	0	0	0	0	0	0	0	0	1	0		1	=1

Figura 8: As restrições são cumpridas

Supostamente, poderia existir uma solução onde os vértices estariam conectados a mais que uma aresta, desde que os vértices permanecessem com grau par continuaria a ser uma solução válida, mas não seria ótima. Para o provar voltámos a correr o nosso modelo no LPSolve, mas trocando o '=' das restrições por '>='. Esta mudança não implica que todos os vértices passem a ser de grau par, mas o que queremos provar com isto é que a solução obtida anteriormente é ótima, e é exatamente isso que concluímos, pois, o resultado deste novo modelo é igual ao do original. Ou seja, mesmo que pudéssemos adicionar mais que uma aresta a cada vértice, na solução ideal cada vértice possuiria apenas um; logo, as restrições no modelo original sãos válidas.

Figura 9: Modelo alternativo, onde podemos ligar mais que uma aresta a cada

6 Conclusão

Com isto, o grupo apresenta-se satisfeito com o resultado obtido. Utilizando as ferramentas introduzidas nas aulas práticas, fomos capazes de chegar à solução ótima, um caminho Euleriano. Para além disso, foi provado que, mesmo sem a implicação de todos os vértices serem de grau par, o caminho obtido originalmente continua a ser a solução ideal para o problema apresentado.