Package 'WEE'

November 11, 2016

Title Weighted Estimated Equation (WEE) approaches in genetic

Type Package

Version 1.0 **Date** 2016-09-05

Index

case-control studies

Maintainer Wodan Ling <wl2459@columbia.edu></wl2459@columbia.edu>
Description This package provides functions for the secondary analysis of case-control studies using a weighted estimating equation (WEE) approach. Three regression models are included in the package: logistic regression for binary secondary outcomes, linear regression and quantile regression for continuous secondary outcomes.
License GPL-2
Imports quantreg, doParallel, foreach, parallel
NeedsCompilation no
R topics documented:
WEE-package
plot.predict.WEE.quantile
plot.WEE.quantile
predict.WEE.linear
predict.WEE.logistic
predict.WEE.quantile
print.summary.WEE.linear
print.summary.WEE.logistic
print.summary.WEE.quantile
print.WEE.linear
print.WEE.logistic
print.WEE.quantile
summary.WEE.linear
summary.WEE.logistic
summary.WEE.quantile
WEE.linear
WEE.logistic
WEE.quantile

21

2 WEE-package

WEE-package Weighted Estimated Equation (WEE) approaches control studies	in genetic case-
--	------------------

Description

This package provides functions for the secondary analysis of case-control studies using a weighted estimating equation (WEE) approach. Three regression models are included in the package: logistic regression for binary secondary outcomes, linear regression and quantile regression for continuous secondary outcomes.

Author(s)

Xiaoyu Song, Iuliana Ionita-Laza, Mengling Liu, Joan Reitman, Ying Wei

Maintainer: Wodan Ling <wl2459@columbia.edu>

References

[1] Ying Wei, Xiaoyu Song, Mengling Liu, Iuliana Ionita-Laza and Joan Reibman (2016). Quantile Regression in the Secondary Analysis of Case Control Data. *Journal of the American Statistical Association*, 111:513, 344-354; DOI: 10.1080/01621459.2015.1008101

[2] Xiaoyu Song, Iuliana Ionita-Laza, Mengling Liu, Joan Reibman, Ying Wei (2016). A General and Robust Framework for Secondary Traits Analysis. *Genetics*, vol. 202 no. 4 1329-1343; DOI: 10.1534/genetics.115.181073

```
#-----#
## Generate simulated data
# set population size as 500000
n = 500000
# set parameters
beta = c(0.2, 0.1) # P(Y|X,Z)
gamma = c(0.3, log(2), log(2)) #P(D|X,Y,Z)
# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
# generate the standardized continuous covariate Z correlated with X
z = rnorm(n, mean=0.5*x-0.3, sd=1)
\# generate the binary secondary trait Y
py = exp(-1+beta[1]*x+beta[2]*z)/(1+exp(-1+beta[1]*x+beta[2]*z))
y = rbinom(n, 1, py)
\# generate the primary disease D (alpha changes to make sure the disease prevalence = 0.1 )
alpha = -2.88
pd = \exp(alpha + x * gamma[1] + y * log(2) + z * log(2)) / (1 + exp(alpha + x * gamma[1] + y * log(2) + z * log(2)))
d = rbinom(n,size=1,prob=pd)
# form the population dataset
dat = as.data.frame(cbind(d, y, z, x))
```

WEE-package 3

```
# generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200,replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0), 200,replace=FALSE),]
dat_logistic = rbind(dat_cases_sample,dat_controls_sample)
colnames(dat_logistic) = c("D", "y", "z", "x")
D = dat_logistic$D # Disease status
pD = sum(dat$d==1)/500000 # Population disease prevalence
## WEE logsitic regression
WEE.logistic(y \sim x + z, D, data = dat_logistic, pD)
WEE.logistic(y ~ x + z, D, data = dat_logistic, pD, boot = 500)
#-----#
## Generate simulated data
# set population size as 500000
n = 500000
# set parameters
beta = c(0.2, 0.1) # P(Y|X,Z)
gamma = c(0.3, log(2), log(2)) #P(D|X,Y,Z)
# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
# generate the standardized continuous covariate Z correlated with X
z = rnorm(n, mean=0.5*x-0.3, sd=1)
# generate the continuous secondary trait Y
y = 1+beta[1]*x+beta[2]*z+rnorm(n)
# generate the primary disease D
alpha = -3.62
pd = exp(alpha + x*gamma[1] + y*log(2) + z*log(2)) / (1+exp(alpha + x*gamma[1] + y*log(2) + z*log(2)))
d = rbinom(n,size=1,prob=pd)
# form population data set
dat=as.data.frame(cbind(d, y, z, x))
# generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200, replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0),200, replace=FALSE),]
dat_linear=rbind(dat_cases_sample,dat_controls_sample)
colnames(dat_linear)=c("D", "y", "z","x")
D = dat_linear$D # Disease status
pD = sum(dat$d == 1)/500000 # Population disease prevalence
## WEE linear regresssion
```

```
WEE.linear(y \sim x + z, D, data = dat_linear, pD)
WEE.linear(y ~ x + z, D, data = dat_linear, pD, boot = 500)
#-----#
## Generate simulated data
# set population size as 500000
n = 500000
# set parameters
beta = c(0.12, 0.1) # P(Y|X,Z)
gamma = c(-4, log(1.5), log(1.5), log(2)) #P(D|X,Y,Z)
# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
# generate the continuous covariate Z
z = rnorm(n)
# generate the continuous secondary trait Y
y= 1 + beta[1]*x + beta[2]*z + (1+0.02*x)*rnorm(n)
# generate disease status D
p = \exp(\text{gamma[1]} + x + \text{gamma[2]} + z + \text{gamma[3]} + y + \text{gamma[4]}) / (1 + \exp(\text{gamma[1]} + x + \text{gamma[2]} + z + \text{gamma[3]} + y + \text{gamma[4]}))
d = rbinom(n,size=1,prob=p)
# form population data dataset
dat = as.data.frame(cbind(x,y,z,d))
colnames(dat) = c("x","y","z","d")
# Generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200, replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0),200, replace=FALSE),]
dat_quantile = as.data.frame(rbind(dat_cases_sample,dat_controls_sample))
colnames(dat_quantile) = c("x","y","z","D")
D = dat_quantile$D # Disease status
pd = sum(d==1)/n # population disease prevalence
# WEE quantile regressions:
WEE.quantile(y \sim x, D, tau = 0.5, data = dat_quantile, pd_pop = pd)
WEE.quantile(y \sim x + z, D, tau = 1:9/10, data = dat_quantile, pd_pop = pd, boot = 500)
```

```
plot.predict.WEE.quantile
```

Plot predicted quantiles of WEE.quantile regression fit

plot.WEE.quantile 5

Description

Plot the predicted quantiles and their point-wise confidence intervals of a WEE-quantile fit on new dataset.

Usage

```
## S3 method for class 'predict.WEE.quantile'
plot(x, CI = FALSE, level = 0.95, index = 1, ...)
```

Arguments

x	object produced by predict.WEE.quantile.
CI	logical flag indicating whether to plot confidence interval: default is FALSE; if TRUE the function not only plots point predictions for each of the 'newdata' points but also lower and upper confidence limits. Only set TRUE when boot >

0.

level confidence level.

index a vector to indicate the subset of news to be plotted. Default is 1, i.e. the first

combination of newx.

... further graphical parameters passed to plot.

See Also

```
predict.WEE.quantile
```

Examples

```
## continued from predict.WEE.quantile
## Plot prediction without confidence interval
plot(p1,index = c(2,3))

## Plot prediction with confidence interval
plot(p2, CI = TRUE)
```

plot.WEE.quantile

Plot coefficients estimated from WEE.quantile

Description

Plot the estimated quantile coefficients and their pointwise confidence intervals from WEE.quantile regression

Usage

```
## S3 method for class 'WEE.quantile'
plot(x, CI = FALSE, level = 0.95, index = 1, ...)
```

6 predict.WEE.linear

Arguments

x object produced by WEE.quantile.

CI logical flag indicating whether to plot confidence interval: default is FALSE; if

TRUE the pointwise confidence interval is plotted. Only set TRUE when boots

> 0 in the WEE.quantile fitting process.

level confidence level.

index a vector to indicate the subset of coefficients to be plotted (e.g., 2 indicates

the coefficient of the first covariate, 3 indicates the coefficient of the second

covaraite). Default is 1, i.e. the intercept.

... further graphical parameters passed to plot.

See Also

WEE.quantile

Examples

```
## continued from WEE.quantile
## plot fitted model without pointwise confidence interval
plot(WEE.quantile(y ~ x, D, tau = 0.5, data = dat_quantile, pd_pop = pd),index = c(2,3))
## plot fitted model with pointwise confidence interval
plot(WEE.quantile(y ~ x + z, D, tau = c(0.25,0.5), data = dat_quantile, pd_pop = pd, boot=500), CI = TRUE)
```

predict.WEE.linear

WEE Linear Regression Prediction

Description

Prediction on new dataset based on model fitted by WEE linear regression

Usage

```
## S3 method for class 'WEE.linear'
predict(object,newx, ...)
```

Arguments

object Diject produced by WEE.linear.

newx A data matrix in which to look for variables with which to predict, newx cannot

be omitted.

. . . Further arguments passed to or from other methods.

Details

Produces predicted values, obtained by evaluating the WEE linear regression function on newx.

predict.WEE.logistic 7

Value

If in the WEE.linear fitting procedure boot = 0, only point predictions are provided here. If in the WEE.linear fitting procedure boot > 0, standard errors of prediction are also provided.

See Also

```
WEE.linear
```

Examples

```
## continued from WEE.linear
## predict outcome y based on newx
newx = dat[sample(500000,3, replace=F),][,c("x","z")]
predict(WEE.linear(y ~ x + z, D, data = dat_sample, pD),newx)
predict(WEE.linear(y ~ x + z, D, data = dat_sample, pD, boot = 500),newx)
```

```
predict.WEE.logistic WEE logistic Regression Prediction
```

Description

Prediction on new dataset based on model fitted by WEE logistic regression

Usage

```
## S3 method for class 'WEE.logistic'
predict(object,newx, ...)
```

Arguments

object Deject produced by WEE.logistic.

newx A data matrix in which to look for variables with which to predict, newx cannot

be omitted

... Further arguments passed to or from other methods.

Details

Produces predicted values, obtained by evaluating the WEE logistic regression function on newx.

Value

If in the WEE.logistic fitting procedure boot = 0, linear predictor and predicted response of each newx are given. If in the WEE.logistic fitting procedure boot > 0, standard errors of linear predictor and predicted response are given.

```
WEE.logistic
```

Examples

```
## continued from WEE.logistic
## predict outcome y based on newx
newx = dat[sample(500000,3, replace=FALSE),][,c("x","z")]
predict(WEE.logistic(y ~ x + z, D, data = dat_sample, pD),newx)
predict(WEE.logistic(y ~ x + z, D, data = dat_sample, pD, boot = 500),newx)
```

```
predict.WEE.quantile WEE quantile Regression Prediction
```

Description

Prediction on new dataset based on model fitted by WEE quantile regression

Usage

```
## S3 method for class 'WEE.quantile'
predict(object,newx, ...)
```

Arguments

object Dject produced by WEE.quantile.

newx A new data matrix in which to look for data with which to predict, newx cannot

be omitted.

... Further arguments passed to or from other methods.

Details

Produces predicted values, obtained by evaluating the WEE quantile regression function on newx.

Value

If in the WEE.quantile fitting procedure boot = 0, only point predictions are given. If in the WEE.quantile fitting procedure boot > 0, standard errors of prediction are also given.

See Also

```
WEE.quantile
```

```
## continued from WEE.quantile
## prediction based on newx
newx = dat[sample(500000,3, replace=F),][,c("x")]
p1 = predict(WEE.quantile(y ~ x, D, tau = 0.5, data = dat_quantile, pd_pop = pd),newx)
p1
newx = dat[sample(500000,3, replace=F),][,c("x","z")]
p2 = predict(WEE.quantile(y ~ x + z, D, tau = c(0.25,0.5), data = dat_quantile, pd_pop = pd, boot = 500),newx)
p2
```

```
print.summary.WEE.linear
```

Print WEE Linear Summary Object

Description

Print summary of WEE linear regression object

Usage

```
## S3 method for class 'summary.WEE.linear' print(x, ...)
```

Arguments

x An object of class "summary.WEE.linear" produced by a call to summary.WEE.quantile()

... Optional arguments passed to printing function

See Also

```
summary.WEE.linear
```

Description

Print summary of WEE logistic regression object

Usage

```
## S3 method for class 'summary.WEE.logistic' print(x, \ldots)
```

Arguments

x An object of class "summary.WEE.logistic" produced by a call to summary.WEE.quantile()

... Optional arguments passed to printing function

```
summary.WEE.logistic
```

10 print.WEE.linear

```
print.summary.WEE.quantile
```

Print WEE quantile Summary Object

Description

Print summary of WEE quantile regression object

Usage

```
## S3 method for class 'summary.WEE.quantile' print(x, ...)
```

Arguments

- x An object of class "summary.WEE.quantile" produced by a call to summary.WEE.quantile()
- ... Optional arguments passed to printing function

See Also

```
summary.WEE.quantile
```

print.WEE.linear

Print a WEE.linear object

Description

Print an object generated by WEE.linear

Usage

```
## S3 method for class 'WEE.linear'
print(x, ...)
```

Arguments

- x Object returned from WEE.linear representing the fit of the model
- ... Optional arguments passed to printing function

```
WEE.linear
```

print.WEE.logistic 11

```
print.WEE.logistic Print
```

Print a WEE.linear object

Description

Print an object generated by WEE.logistic

Usage

```
## S3 method for class 'WEE.logistic'
print(x, ...)
```

Arguments

x Object returned from WEE.logistic representing the fit of the model

... Optional arguments passed to printing function

See Also

```
WEE.logistic
```

print.WEE.quantile

Print a WEE.linar object

Description

Print an object generated by WEE.quantile

Usage

```
## S3 method for class 'WEE.quantile' print(x, ...)
```

Arguments

x Object returned from WEE.quantile representing the fit of the model

... Optional arguments passed to printing function

```
WEE.quantile
```

12 summary.WEE.linear

summary.WEE.linear	Summary methods for WEE linear Regression
Julillar y. MLL. III lear	Summary memous for WED uncar Regression

Description

Returns a summary list for a WEE linear regression fit.

Usage

```
## S3 method for class 'WEE.linear'
summary(object, ...)
```

Arguments

object produced by WEE.linear.

... further arguments passed to or from other methods.

Value

a list is returned with the following components.

Coefficients a vector of coefficients

StdErr bootstrap standard errors of the coefficients, only returned when boot > 0Chi-squared test statistics of the coefficients, only returned when boot > 0

p.value p-values of the chi-squared test statistics, only returned when boot > 0

Covariance the estimated covariance matrix of the coefficients in the model, provided that

boot > 0 in the called sequence.

See Also

```
WEE.linear
```

```
## continued from WEE.linear
## summary of WEE linear object
summary(WEE.linear(y ~ x + z, D, data = dat_sample, pd_pop = pD))
summary(WEE.linear(y ~ x + z, D, data = dat_sample, pd_pop = pD, boot=500))
```

summary.WEE.logistic

```
{\tt summary.WEE.logistic} \quad \textit{Summary methods for WEE logistic Regression}
```

Description

Returns a summary list for a WEE logistic regression fit.

Usage

```
## S3 method for class 'WEE.logistic'
summary(object, ...)
```

Arguments

object produced by WEE.logistic.

... further arguments passed to or from other methods.

Value

a list is returned with the following components.

Coefficients a vector of coefficients

Oddsratio the exponentiated coefficients, namely the odds ratio associated with the corre-

sponding covariate

StdErr bootstrap standard errors of the coefficients, only returned when boot > 0

Wald test statistics of the coefficients, only returned when boot > 0

p.value p-values of the Wald test statistics, only returned when boot > 0

Covariance the estimated covariance matrix for the coefficients in the model, provided that

boot > 0 in the called sequence

See Also

```
WEE.logistic
```

```
## continued from WEE.logistic
## summary of WEE logistic object
summary(WEE.logistic(y ~ x + z, D, data = dat_sample, pd_pop = pD))
summary(WEE.logistic(y ~ x + z, D, data = dat_sample, pd_pop = pD, boot=500))
```

summary. WEE. quantile Summary methods for WEE Quantile Regression

Description

Returns a summary list for a WEE quantile regression fit.

Usage

```
## S3 method for class 'WEE.quantile'
summary(object, ...)
```

Arguments

object produced by WEE.quantile.

... further arguments passed to or from other methods.

Value

a list is returned with the following components.

Coefficients a vector of coefficients

StdErr bootstrap standard errors of the coefficients, only returned when boot > 0

Wald test statistics of the coefficients, only returned when boot > 0

p.value p-values of the Wald test statistics, only returned when boot > 0

Covariance the estimated covariance matrix for the coefficients in the model, provided that

boot > 0 in the called sequence

See Also

```
WEE.quantile
```

```
## continued from WEE.quantile summary(WEE.quantile(y \sim x, D, tau = 0.5, data = dat_quantile, pd_pop = pd)) summary(WEE.quantile(y \sim x + z, D, tau = c(0.25,0.5), data = dat_quantile, pd_pop = pd, boot=500))
```

WEE.linear 15

WEE.linear	WEE linear regression	

Description

Returns an object of class "WEE.linear" that is generated by linear regression with WEE approach for continuous secondary traits in genetic case-control studies.

Usage

```
WEE.linear(formula, D, data, pd_pop, boot = 0, ...)
```

Arguments

formula	the secondary trait given SNPs and covariates. e.g. y~x+z
D	primary disease (case-control status)
data	dataset with real observation.
pd_pop	the population disease prevelance of primary disease.
boot	number of bootstrap samples. (boot=0 by default)
	optional arguments to be passed through to lm.

Value

Warning

If boot = 0, point estimates are plotted. If boot > 0, boostrap standard errors, chisquare test statistics, p-values, and covariance matrix are also returned. Optional arguments from lm can be passed to this function, but arguments 'subset' and 'weights' should be used with caution.

References

Xiaoyu Song, Iuliana Ionita-Laza, Mengling Liu, Joan Reibman, Ying Wei (2016). A General and Robust Framework for Secondary Traits Analysis. *Genetics*, vol. 202 no. 4 1329-1343; DOI: 10.1534/genetics.115.181073

```
## Generate simulated data # set population size as 500000 n = 500000 # set parameters beta = c(0.2, 0.1) # P(Y|X,Z) gamma = c(0.3, log(2), log(2)) #P(D|X,Y,Z)
```

16 WEE.logistic

```
# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
\# generate the standardized continuous covariate Z correlated with X
z = rnorm(n, mean=0.5*x-0.3, sd=1)
# generate the continuous secondary trait Y
y = 1+beta[1]*x+beta[2]*z+rnorm(n)
# generate the primary disease D
alpha = -3.62
pd = exp(alpha + x*gamma[1] + y*log(2) + z*log(2)) / (1+exp(alpha + x*gamma[1] + y*log(2) + z*log(2)))
d = rbinom(n,size=1,prob=pd)
# form population data set
dat=as.data.frame(cbind(d, y, z, x))
# generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200, replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0),200, replace=FALSE),]
dat_linear=rbind(dat_cases_sample,dat_controls_sample)
colnames(dat_linear)=c("D", "y", "z", "x")
D = dat_linear$D # Disease status
pD = sum(dat$d == 1)/500000 # Population disease prevalence
## WEE linear regresssion
WEE.linear(y \sim x + z, D, data = dat_linear, pD)
WEE.linear(y ~ x + z, D, data = dat_linear, pD, boot = 500)
```

WEE.logistic

WEE logistic regression

Description

Returns an object of class "WEE.logistic" that is generated by logistic regression with WEE approach for binary secondary traits in genetic case-control studies.

Usage

```
WEE.logistic(formula, D, data, pd_pop, iter = 5, boot = 0, ...)
```

Arguments

formula	The secondary trait given SNPs and covariates. e.g. y~x+z
D	Primary disease (case-control status)
data	Dataset with real observation.
pd_pop	The population disease prevelance of primary disease.

WEE.logistic 17

iter	Number of generating pseudo observations. (iter=10 by default)
boot	Number of bootstrape samples. (boot=0 by default)
	Optional arguments to be passed through to glm.

Value

Coefficients Point estimates

Oddsratio The exponentiated coefficients, namely the odds ratio associated with the corre-

sponding covariate

StdErr Bootstrap standard errors, returned if boot > 0

Wald test statistics, returned if boot > 0

p. value p-values, returned if boot > 0

Covariance matrix, returned if boot > 0

Warning

If boot = 0, point estimates are plotted. If boot > 0, boostrap standard errors, Wald test statistics, p-values, and covariance matrix are also returned. Optional arguments from glm can be passed to this function, but arguments 'subset' and 'weights' should be used with caution.

References

Xiaoyu Song, Iuliana Ionita-Laza, Mengling Liu, Joan Reibman, Ying Wei (2016). A General and Robust Framework for Secondary Traits Analysis. *Genetics*, vol. 202 no. 4 1329-1343; DOI: 10.1534/genetics.115.181073

```
## Generate simulated data
# set population size as 500000
n = 500000
# set parameters
beta = c(0.2, 0.1) # P(Y|X,Z)
gamma = c(0.3, log(2), log(2)) #P(D|X,Y,Z)
\# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
# generate the standardized continuous covariate Z correlated with X
z = rnorm(n, mean=0.5*x-0.3, sd=1)
\# generate the binary secondary trait Y
py = exp(-1+beta[1]*x+beta[2]*z)/(1+exp(-1+beta[1]*x+beta[2]*z))
y = rbinom(n, 1, py)
\# generate the primary disease D (alpha changes to make sure the disease prevalence = 0.1 )
alpha = -2.88
pd = \exp(alpha + x * gamma[1] + y * log(2) + z * log(2)) / (1 + exp(alpha + x * gamma[1] + y * log(2) + z * log(2)))
d = rbinom(n,size=1,prob=pd)
# form the population dataset
dat = as.data.frame(cbind(d, y, z, x))
```

18 WEE.quantile

```
# generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200,replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0), 200,replace=FALSE),]
dat_logistic = rbind(dat_cases_sample,dat_controls_sample)
colnames(dat_logistic) = c("D", "y", "z","x")
D = dat_logistic$D # Disease status
pD = sum(dat$d==1)/500000 # Population disease prevalence

## WEE logsitic regression
WEE.logistic(y ~ x + z, D, data = dat_logistic, pD)
WEE.logistic(y ~ x + z, D, data = dat_logistic, pD, boot = 500)
```

WEE.quantile

WEE quantile regression

Description

Returns an object of class "WEE.quantile" that is generated by quantile regression with WEE approach for continuous secondary traits in genetic case-control studies.

Usage

```
WEE.quantile(formula, D, data, pd_pop, tau, iter = 5, boot = 0, ...)
```

Arguments

formula	The secondary trait given SNPs and covariates. e.g. y~x+z
D	Primary disease (case-control status), must be specified.
data	Dataset with real observation.
pd_pop	The population disease prevelance of primary disease.
tau	The quantile level to be estimated. Multiple taus can be chosen.
iter	Number of generating pseudo observations. (iter=10 by default)
boot	Number of bootstrape samples. (boot=0 by default)
	Optional arguments to be passed through to rq.

Details

The quantile regression package "quantreg" is required before calling this function

Covariance matrix, returned if boot > 0

Value

Covariance

Coefficients	Point estimates
StdErr	Bootstrap standard errors, returned if boot > 0
Wald	Wald test statistics, returned if boot > 0
p.value	p-values, returned if boot > 0

WEE.quantile 19

Warning

If boot = 0, point estimates are plotted. If boot > 0, boostrap standard errors, Wald test statistics, p-values, and covariance matrix are also returned. Optional arguments from rq can be passed to this function, but arguments 'subset' and 'weights' should be used with caution.

References

- [1] Ying Wei, Xiaoyu Song, Mengling Liu, Iuliana Ionita-Laza and Joan Reibman (2016). Quantile Regression in the Secondary Analysis of Case Control Data. *Journal of the American Statistical Association*, 111:513, 344-354; DOI: 10.1080/01621459.2015.1008101
- [2] Xiaoyu Song, Iuliana Ionita-Laza, Mengling Liu, Joan Reibman, Ying Wei (2016). A General and Robust Framework for Secondary Traits Analysis. *Genetics*, vol. 202 no. 4 1329-1343; DOI: 10.1534/genetics.115.181073

```
## Generate simulated data
# set population size as 500000
n = 500000
# set parameters
beta = c(0.12, 0.1) # P(Y|X,Z)
gamma = c(-4, log(1.5), log(1.5), log(2)) #P(D|X,Y,Z)
# generate the genetic variant X
x = rbinom(n, size=2, prob=0.3)
# generate the continuous covariate Z
z = rnorm(n)
# generate the continuous secondary trait Y
y= 1 + beta[1]*x + beta[2]*z + (1+0.02*x)*rnorm(n)
# generate disease status D
p = \exp(\text{gamma[1]} + x + \text{gamma[2]} + z + \text{gamma[3]} + y + \text{gamma[4]}) / (1 + \exp(\text{gamma[1]} + x + \text{gamma[2]} + z + \text{gamma[3]} + y + \text{gamma[4]}))
d = rbinom(n,size=1,prob=p)
# form population data dataset
dat = as.data.frame(cbind(x,y,z,d))
colnames(dat) = c("x","y","z","d")
# Generate sample dataset with 200 cases and 200 controls
dat_cases = dat[which(dat$d==1),]
dat_controls= dat[which(dat$d==0),]
dat_cases_sample = dat_cases[sample(sum(dat$d==1),200, replace=FALSE),]
dat_controls_sample = dat_controls[sample(sum(dat$d==0),200, replace=FALSE),]
dat_quantile = as.data.frame(rbind(dat_cases_sample,dat_controls_sample))
colnames(dat_quantile) = c("x","y","z","D")
D = dat_quantile$D # Disease status
pd = sum(d==1)/n # population disease prevalence
# WEE quantile regressions:
WEE.quantile(y \sim x, D, tau = 0.5, data = dat_quantile, pd_pop = pd)
```

20 WEE.quantile

WEE.quantile(y \sim x + z, D, tau = 1:9/10, data = dat_quantile, pd_pop = pd, boot = 500)

Index

```
*Topic package
    WEE-package, 2
plot, 5, 6
plot.predict.WEE.quantile,4
plot.WEE.quantile, 5
predict.WEE.linear, 6
predict.WEE.logistic, 7
predict.WEE.quantile, 5, 8
print.summary.WEE.linear,9
print.summary.WEE.logistic,9
print.summary.WEE.quantile, 10
print.WEE.linear, 10
print.WEE.logistic, 11
print.WEE.quantile, 11
summary.WEE.linear, 9, 12
summary.WEE.logistic, 9, 13
summary.WEE.quantile, 10, 14
WEE (WEE-package), 2
WEE-package, 2
WEE.linear, 6, 7, 10, 12, 15
WEE.logistic, 7, 11, 13, 16
WEE.quantile, 6, 8, 11, 14, 18
```