MM54HC151/MM74HC151 8-Channel Digital Multiplexer General Description

This high speed Digital multiplexer utilizes advanced silicongate CMOS technology. Along with the high noise immunity and low power dissipation of standard CMOS integrated circuits, it possesses the ability to drive 10 LS-TTL loads. The MM54HC151/MM74HC151 selects one of the 8 data sources, depending on the address presented on the A, B, and C inputs. It features both true (Y) and complement (W) outputs. The STROBE input must be at a low logic level at onable this multiplexer. A high logic level at the STROBE forces the W output high and the Y output low.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay
- data select to output Y: 26 ns
- Wide operating supply voltage range: 2-6V
- \blacksquare Low input current: 1 μ A maximum
- Low quiescent supply current: 80 µA maximum (74HC)
- High output drive current: 4 mA minimum

Connection and Logic Diagrams

Truth Table

Inputs				Outputs		
Select			Strobe	.,		
С	В	Α	S	Y	W	
Х	Χ	Χ	Н	L	Н	
L	L	L	L	D0	D0	
L	L	Н	L	D1	D1	
L	Н	L	L	D2	D2	
L	Н	Н	L	D3	D3	
Н	L	L	L	D4	D4	
Н	L	Н	L	D5	D5	
Н	Н	L	L	D6	D6	
Н	Н	Н	┙	D7	D7	

H = High Level, L = Low Level, X = Don't Care D0, D1...D7 = the level of the respective D input

Order Number MM54HC151 or MM74HC151

TL/F/5313-2

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\mbox{CC}}\!+\!0.5\mbox{V}$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW 260°C

Lead Temp. (T_L) (Soldering 10 seconds)

Operating Conditi	ons		
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	V _{CC} T _A =25°C		74HC T _A = -40 to 85°C		
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	> > >
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay A, B or C to Y		26	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay A, B or C to W		27	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Any D to Y		22	29	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay any D to W		24	32	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Strobe to Y		17	23	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Strobe to W		16	21	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	90	205	256	300	ns
	A, B or C to Y		4.5V	31	41	51	60	ns
			6.0V	26	35	44	51	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	95	205	256	300	ns
	A, B or C to W		4.5V	32	41	51	60	ns
			6.0V	27	35	44	51	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	70	195	244	283	ns
	any D to Y		4.5V	27	39	49	57	ns
			6.0V	23	33	41	48	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	75	185	231	268	ns
	any D to W		4.5V	29	37	46	54	ns
			6.0V	25	32	40	46	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	50	140	175	203	ns
	Strobe to Y		4.5V	21	28	35	41	ns
			6.0V	18	24	30	35	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V	45	127	159	185	ns
	Strobe to W		4.5V	20	25	32	37	ns
			6.0V	17	22	28	32	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		110				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$

Physical Dimensions inches, (millimeters) 0.785 [19.94] MAX 0.220-0.310 [5.59-7.87] 0.005-0.020 TYP [0.13-0.51] 1.037 ± 0.005 TYP 0.005 [0.13] 0.290-0.320 0.055 ± 0.005 [1.40 ± 0.13] TYP GLASS SEALANT 0.200 [5.08] MAX TYP 0.180 MAX [4.57] 0.010 ± 0.002 [0.25 ± 0.05] TYP 0.125-0.200 TYP [3.18-5.08] 90°±4° 0.080 [2.03] MAX — BOTH ENDS 0.310-0.410 [7.87-10.41] 0.018 ± 0.003 [0.46 ± 0.08] TYP J16A (REV L) 0.100 ± 0.010 [2.54 ± 0.25] TYP

Order Number MM54HC151J or MM74HC151J NS Package J16A

Order Number MM74HC151N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408