Title

D. Zack Garza

August 22, 2019

Contents

0.1 Exercises

Problem 1.

Let C denote the Cantor set.

- 1. Show that C contains point that is not an endpoint of one of the removed intervals.
- 2. Show that C is nowhere dense, meager, and has measure zero.
- 3. Show that C is uncountable.

Solution 1.

1. First we will characterize the endpoints of the removed intervals. Let C_n be the nTh stage of the deletion process that is used to define the Cantor set; then what remains is a union of intervals:

$$C_n = [0, \frac{1}{3^n}] \bigcup [\frac{2}{2^n}, \frac{3}{3^n}] \bigcup \cdots \bigcup [\frac{3^n - 1}{n}, 1],$$

and so the endpoints are precisely the numbers of the form $\frac{k}{3^n}$ where $0 \le k \le 3^n$. Moreover, any endpoint appearing in C_n is never removed in any later step, and so all endpoints remaining in C are of this form where we allow $0 \le n < \infty$.

Thus, our goal is to produce a number $x \in [0,1]$ such that $x \neq \frac{k}{3^n}$ for any k or n, but also satisfies $x \in C$. So we will need a general characterization of all of the points in C.

Lemma: If $x \in C$, then one can find a ternary expansion for which all of the digits are either 0 or 2, i.e.

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$
 where $a_k \in \{0, 2\}$.

Proof: By induction on the index k in a_k , first consider note that if $x \in C$ then $x \in C_1 = [0,1] \setminus [\frac{1}{3},\frac{2}{3}] = [0,\frac{1}{3}] \bigcup [\frac{2}{3},1]$. So if $x \in C_1$, then $x \notin (\frac{1}{3},\frac{2}{3})$. But note that a_1 is computed in the following way:

$$a_1 = \begin{cases} 0 & 0 \le x < \frac{1}{3}, \\ 1 & \frac{1}{3} \le x < \frac{2}{3}, \\ 2 & \frac{2}{3} \le x < 1. \end{cases}$$

Since the interval $(\frac{1}{3}, \frac{2}{3})$ is deleted in C_1 , we find that $a_1 = 1 \iff x = \frac{1}{3}$. In this case, however, we claim that we can find a ternary expansion of x that does not contain a 1. We first write

$$x = \frac{1}{3} = \sum_{k=1}^{\infty} a_k 3^{-k}$$
 where $a_1 = 1, a_{k>1} = 0$,

and then define

$$x' = \sum_{k=1}^{\infty} b_k 3^{-k}$$
 where $b_1 = 0, b_{k>1} = 2$.

The claim now is that x = x', which follows from the fact that this is a geometric sum that can be written in closed form:

$$x' = \sum_{k=2}^{\infty} (2)3^{-k}$$

$$= \left(\sum_{k=0}^{\infty} (2)3^{-k}\right) - 2 - 2(3^{-1})$$

$$= 2\left(\sum_{k=0}^{\infty} 3^{-k}\right) - 2 - 2(3^{-1})$$

$$= 2\left(\frac{1}{1 - \frac{1}{3}}\right) - 2 - 2(3^{-1})$$

$$= 2\left(\frac{3}{2}\right) - 2 - 2(3^{-1})$$

$$= 1 - \frac{2}{3}$$

$$= \frac{1}{3} = x.$$

In short, we have $\frac{1}{3} = (0.1)_3 = (0.222 \cdots)_3$ as ternary expansions, and a similar proof shows that such an expansion without 1s can be found for any endpoint.

For the inductive step, consider a_n : the claim is that if $a_n = 1$, then $x \notin C_{n+1}$ – that is, it is contained in one of the intervals deleted at the n+1st stage. Writing the deleted interval at this stage as (a,b), we find that $a_n = 1$ if and only if $x \in [a,b)$. Since $x \in C$, the only way a_n can be 1 is if x was in fact the endpoint a (since no previous digit was a 1, by hypothesis). However, as shown above, every such endpoint has a ternary expansion containing no 1s. \square

Therefore, if we can produce an x that satisfies $x \neq \frac{k}{3^n}$ for any k, n and x has no 1s in its ternary expansion, we will have an $x \in C$ that is not an endpoint.

So take

$$x = (0.\overline{02})_3 = (0.020202 \cdots)_3.$$

This evidently has no 1s in its ternary expansion, and if we sum the corresponding geometric series, we find $x = \frac{1}{4}$. This is not of the form $\frac{k}{3^n}$ for any k, n, and thus fulfills both conditions.

2. We first show that C is nowhere dense by showing that the interior of its closure is empty, i.e. $(\overline{C})^{\circ} = \emptyset$.

To do so, we note that C is itself closed and so $C = \overline{C}$. To see why this is, consider C^c ; we'll show that it is open. By construction, C_1^c is the open interval $(\frac{1}{3}, \frac{2}{3})$ that is deleted, and similarly C_n^c is the finite union of the open intervals that are deleted at the nth stage. But then

$$C^c = \left(\bigcap C_n\right)^c = \bigcup C_n^c$$

is an infinite union of open sets, which is also open. So C is closed.

It is also the case that C has empty interior, so $C^{\circ} = \emptyset$. Towards a contradiction, suppose $x \in C$ is an interior point; then there is some neighborhood $N_{\varepsilon}(x) \subset C$. Since we are on the real line, we can write this as an interval $(x - \varepsilon, x + \varepsilon)$, which has length $2\varepsilon > 0$. Moreover, we have the containment

$$(x-\varepsilon,x+\varepsilon)\subset C\subset C_n$$

for every n.

Claim: The length of C_n is $(\frac{2}{3})^n$ where we define $C_0 = [0, 1]$. Letting L_n be the length of C_n , one easy way to see that this is the case is to note that L_n satisfies the recurrence relation

$$L_{n+1} = \frac{2}{3}L_n,$$

since an interval of length $\frac{1}{3}L_n$ is removed at each stage. With the initial conditions $L_0 = 1$, it can be checked that $L_n = \left(\frac{2}{3}\right)^n$ solves this relation.

Now, since $x \in C = \bigcap C_n$, it is in every C_n . So we can choose n large enough such that

$$\left(\frac{2}{3}\right)^n \le 2\varepsilon.$$

Letting $\mu(X)$ denote the length of an interval, we always have $C \subseteq C_n$ and so $\mu(C) \le \mu(C_n)$. Using the subadditivity of measures, we now have

$$(x - \varepsilon, x + \varepsilon) \subset C \subset C_n$$

$$\implies \mu(x - \varepsilon, x + \varepsilon) \leq \mu(C) \leq \mu(C_n)$$

$$\implies 2\varepsilon \leq \left(\frac{2}{3}\right)^n,$$

a contradiction. So C has no interior points.

But this means that

$$(\overline{C})^{\circ} = C^{\circ} = \emptyset,$$

and so C is nowhere dense.

To see that $\mu(C) = 0$, we can use the fact that for any sets, measures are additive over disjoint sets and we have

$$\mu(A) + \mu(X \setminus A) = \mu(X) \implies \mu(X \setminus A) = \mu(X) - \mu(A).$$

Here we will take X = [0, 1], so $\mu(X) = 1$, and A = C the Cantor set.

By tracing through the construction of the Cantor set, letting B_n be the length of the interval that is removed at each stage, we can deduce

$$B_1 = \frac{1}{3}$$

$$B_2 = \frac{2}{9}$$

$$\dots$$

$$B_n = \frac{2^n}{3^{n+1}}.$$

We can identify $B_n = \mu(C_n^c)$, and using the fact that $C_n^c \cap C_{>n}^c = \emptyset$ and the fact that measures are additive over disjoint sets, we can compute

$$\mu(C) = 1 - \mu(C^c)$$

$$= 1 - \mu((\bigcap_{n=0}^{\infty} C_n)^c)$$

$$= 1 - \mu(\coprod_{n=0}^{\infty} C_n^c)$$

$$= 1 - \sum_{n=0}^{\infty} \mu(C_n^c)$$

$$= 1 - \sum_{n=0}^{\infty} \frac{2^n}{3^{-n}}$$

$$= 1 - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$

$$= 1 - \frac{1}{3} \left(\frac{1}{1 - \frac{2}{3}}\right)$$

$$= 1 - \frac{1}{3}(3) = 0,$$

which is what we wanted to show. \square

3. Let $y \in [0,1]$ be arbitrary, we will construct an element $x \in C$ such that y = f(x). We first note that every number has a binary expansion, and we can write

$$y = \sum_{k=1}^{\infty} y_k 2^{-k}$$
 where $y_k \in \{0, 1\}$.

Now we construct

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$
 where $a_k = 2y_k \implies a_k \in \{0, 2\}$.

By the characterization given in part (1), we see that $x \in C$ because it has no 1s in its ternary expansion. Moreover, under f, we have $a_k \mapsto \frac{1}{2}a_k = \frac{1}{2}(2a_k) = a_k$, and so f(x) = y by construction.

This shows that C surjects onto [0,1], and in particular, $\#C \ge \#[0,1]$ holds for the cardinalities of these sets. Since [0,1] is uncountable (say, by Cantor's diagonalization argument), this shows that C is uncountable.

Problem 2.

- 1. Show that X is G_{δ} iff X^c is F_{σ} .
- 2. Show that X closed $\implies X$ is G_{δ} and X open $\implies X$ is F_{σ} .
- 3. Give an example of an F_{σ} set that is not G_{δ} , and a set that is neither.

Solution 2.

1. To show the forward direction, suppose X is a F_{σ} , so $X = \bigcup_{i \in \mathbb{N}} A_i$ with each A_i an closed set. By definition, each A_i^c is open, and we have

$$X^{c} = \left(\bigcup_{i \in \mathbb{N}} A_{i}\right)^{c} = \bigcap_{i \in \mathbb{N}} A_{i}^{c},$$

which exhibits X^c as a countable intersection of closed sets, making it an G_{δ} .

The reverse direction proceeds analogously: supposing X^c is G_{δ} , we can write $X^c = \bigcap_{i \in \mathbb{N}} B_i$ with each B_i open, where B_i^c is closed by definition, and

$$X = (X^c)^c = (\bigcap B_i)^c = \bigcup B_i^c$$

which exhibits X as a union of closed sets, and thus an F_{σ} .

2. Suppose X is closed, we want to then write X as a countable intersection of open sets. For every $x \in X$ and every $n \in \mathbb{N}$, define

$$B_n(x) = \left\{ y \in \mathbb{R}^n \ni |x - y| \le \frac{1}{n} \right\},$$

$$V_n = \bigcup_{x \in X} B_n(x),$$

$$W = \bigcap_{n \in \mathbb{N}} V_n.$$

$$W = \bigcap_{n \in \mathbb{N}} \bigcup_{x \in X} B_n(x),$$

and the claim is that W is a G_{δ} and W = X.

To see that the V_n are open, note that n is fixed and each $B_n(x)$ is an open ball around a point x. Any union of open sets is open, and thus so is V_n . By construction, W is then a countable intersection of open sets, and thus W is a G_{δ} by definition.

We show W = X in two parts. To see that $X \subseteq W$, note that if $x \in X$, then $x \in B_n(x)$ for every n and thus $x \in V_n$ for every n as well. But this means that $x \in \bigcap_n V_n$, and so $x \in W$.

To see that $W \subseteq X$, let $w \in W$ be arbitrary. If $w \in X$, there is nothing to check, so suppose $w \notin X$ towards a contradiction.

Since $w \in \bigcap_n V_n$, it is in V_n for every n. But this means that there is some particular x_0 such that $w \in B_n(x_0)$ for every n as well, and moreover since we assumed $w \notin X$, we have $w \neq x_0$.

Then, letting $N_{\varepsilon}(w)$ be an arbitrary neighborhood of w, we can find an n large enough such that $B_n(x) \subset N_{\varepsilon}(w)$. This means that $x_0 \neq w$ can be found in every neighborhood of w, which makes w a limit point of X. However, since we assumed X was closed, it contains all of its limit points, which would force $w \in X$, a contradiction. \square

Now suppose X is an open set, we want to show it is an F_{σ} and can thus be written as a countable union of closed sets. We can use the fact that X^c is closed, and by the previous result, X^c is thus a G_{δ} . But by an earlier result, X^c is a $G_{\delta} \iff (X^c)^c = X$ is an F_{σ} , and we are done.

3. We want to construct a set that can be written as a countable union of closed sets, but not as a countable intersection of open sets. Note that in \mathbb{R} with the usual topology, singletons are closed, and so $\{p\}^c$ is an open set for any point p.

With this motivation, consider $X = \mathbb{Q}$ and $X^c = \mathbb{R} \setminus \mathbb{Q}$. We can write

$$\mathbb{Q}=\bigcup_{q\in\mathbb{Q}}\left\{ q\right\} ,$$

which exhibits X as a countable union of closed sets because \mathbb{Q} itself is countable. So \mathbb{Q} is an F_{σ} set. Suppose towards a contradiction that \mathbb{Q} is also G_{δ} , so we have $\mathbb{Q} = \bigcap_{i \in \mathbb{N}} O_i$ with each O_i open. So each O_i covers \mathbb{Q} , i.e. $\mathbb{Q} \subseteq O_i$, which (importantly!) forces each O_i to be dense in \mathbb{R} .

But now note that we can also write

$$\mathbb{R} \setminus \mathbb{Q} = \mathbb{R} \setminus \bigcup_{q \in \mathbb{Q}} \left\{q\right\} = \bigcap_{q \in \mathbb{Q}} \mathbb{R} \setminus \left\{q\right\},$$

where we can note that $\mathbb{R} \setminus \{q\}$ is an open, dense subset of \mathbb{R} for each q. We can appeal to the Baire category theorem twice, which tells us that any countable intersection of *open* dense sets will also be dense. This first tells us that the above intersection, and thus $\mathbb{R} \setminus \mathbb{Q}$, is dense in \mathbb{R} . Then, writing

$$\left(\bigcap_{i\in\mathbb{N}}O_i\right)\bigcap\left(\bigcap_{q\in\mathbb{Q}}\mathbb{R}\setminus\{q\}\right)=\mathbb{Q}\bigcap\mathbb{R}\setminus\mathbb{Q}=\emptyset,$$

we produce what is still just a countable intersection of open dense sets, and by Baire, the result would need to be dense as well. Since the empty set is *not* dense in \mathbb{R} , so we arrive at a contradiction.

Problem 3.

- 1. Let r_n be an enumeration of the rationals, define $f(r_n) = \frac{1}{n}$ and f(x) = 0 for $x \in \mathbb{R} \setminus \mathbb{Q}$. Show that $\lim_{x \to c} f(x) = 0$ for every $c \in I$, and $D_f = \mathbb{Q} \cap I$.
- 2. Supposing f is bounded, show that ω_f is (in general) well-defined, and that f is continuous at $x \iff \omega_f(x) = 0$.
- 3. Show that for every $\varepsilon > 0$, the set $A(\varepsilon) = \{x \in \mathbb{R} \ni \omega_f(x) > \varepsilon\}$ is closed, and thus D_f is an F_{σ} set.

Solution 3.

1. We need to show that

$$\forall c \in I, \ \forall \varepsilon > 0, \ \exists \delta \ni |x - c| \le \delta \implies |f(x) - 0| \le \varepsilon.$$

To that end, let $\{r_n\}$ be an arbitrary enumeration of $\mathbb{Q} \cap I$, let ε be fixed, and let $c \in I$ be arbitrary. If $c \in I \setminus \mathbb{Q}$, then $f(c) = 0 < \varepsilon$ and there's nothing to prove. Otherwise, $c \in \mathbb{Q}$, so $c = r_n$ for some n, and $f(c) = \frac{1}{n}$. Let $S = \{r_i \ni i \in \mathbb{N}, \frac{1}{i} > \varepsilon\} \subset \mathbb{Q}$, and note that S is finite by the archimedean property of \mathbb{R} . So choose

$$\delta < \min \{ |c - s| \ni s \in S \},$$

so that $S \cap B_{\delta}(c) = \emptyset$.

This means that if $x \in B_{\delta}(c) \cap \mathbb{Q}$, then $x = r_m$ where $\frac{1}{m} < \varepsilon$ by construction. But then $|f(x)| = \frac{1}{m} < \varepsilon$, and we are done.

By the sequential definition of continuity, f is continuous iff $\lim_{x\to c} f(x) = f(c)$. As we have shown, if $c \in I \setminus \mathbb{Q}$, then $\lim_{x\to c} f(x) = 0 = f(c)$, and so f is continuous there. However, for $c \in I \cap \mathbb{Q}$, since $\lim_{x\to r_n} f(x) = 0 \neq \frac{1}{n}$, f fails to be continuous there. Taken together, this says that $D_f = I \setminus \mathbb{Q}$ as desired.

2. To show that this is well-defined, we need to prove that the limit exists. By definition, since f is bounded, there exists some M that is independent of x such that $x \in \mathbb{R} \implies |f(x)| \leq M$. In particular, for any fixed δ , it is certainly the case that $B_{\delta}(x) \subset \mathbb{R}$, and so $x \in B_{\delta}(x) \implies |f(x)| \leq M$ as well.

We can then say that if $y, z \in B_{\delta}(x)$, then

$$|f(y) - f(z)| < |f(y)| + |f(z)| < 2M$$

and thus the set $\{|f(y) - f(z)| \ni y, z \in B_{\delta}(x)\}$ is bounded above and thus has a least upper bound (since \mathbb{R} has the least upper bound property). Thus the following supremum exists:

$$S(x,\delta) = \sup_{y,z \in B_{\delta}(x)} |f(y) - f(z)|.$$

We now just need to show that $\lim_{\delta \to 0^+} S(x, \delta)$ exists. To this end, we can note that if $\delta_1 < \delta_2$, then $B_{\delta_1} \subset B_{\delta_2}$, and so S is a monotonically decreasing function of δ that is bounded below by 0 (since $B_0(x) = \{x\} \implies y = z = x$ are the only choices), and is thus convergent by the monotone convergence theorem. So ω_f is well-defined.

To see that f continuous at $x \implies \omega_f(x) = 0$, let ε be arbitrary; we will show that $\omega_f(x) < \varepsilon$. Since f is continuous, we can pick a δ such that $y, z \in B_{\delta}(x) \implies f(y), f(z) \in B_{\varepsilon/2}(f(x))$. Thus we have

$$|y - x| < \delta \implies |f(y) - f(x)| < \varepsilon/2$$

 $|z - x| < \delta \implies |f(z) - f(x)| < \varepsilon/2$

Moreover, we can write

$$|f(y) - f(z)| = |f(y) - f(x)| + |f(x) - f(z)| \le |f(y) - f(x)| + |f(x) - f(z)| \le \varepsilon$$

and thus we also have

$$\sup_{y,z\in B_{\delta}(x)}|f(y)-f(z)|<\varepsilon.$$

We now want to take the limit as $\delta \to 0^+$; again since $\delta_1 \leq \delta_2 \Longrightarrow B_{\delta_1} \subseteq B_{\delta_2}$, this can only make the left-hand-side of the above inequality smaller, and thus $\omega_f(x) \leq \varepsilon$. Taking $\varepsilon \to 0$ completes the proof.

To see that $\omega_f(x) = 0 \implies f$ is continuous at x, let x be fixed and $\varepsilon > 0$ be arbitrary; we want to produce a δ to use in the definition of continuity. Since $\omega_f(x) = 0$, we can find a δ such that

$$\sup_{y,z\in B_{\delta}(x)}|f(y)-f(z)|<\varepsilon.$$

In particular, we can fix $x \in B_{\delta}(x)$ and let y vary to obtain

$$\sup_{y \in B_{\delta}(x)} |f(y) - f(x)| < \varepsilon.$$

But for any particular choice y_0 such that $|y_0 - x| < \delta$, we have

$$|f(x) - f(y_0)| \le \sup_{y \in B_{\delta}(x)} |f(y) - f(x)| < \varepsilon,$$

which is exactly the condition that

$$|y_0 - x| < \delta \implies |f(x) - f(y_0)| < \varepsilon,$$

which says that f is continuous at x. \square

3. Note that if A_{ε} is closed, we can write $D_f = \bigcup_{n=1}^{\infty} A_{\frac{1}{n}}$, which is a countable union of closed sets, making D_f an F_{σ} set.

We will proceed by fixing ε and showing that $A_{\varepsilon}^c = \{x \in \mathbb{R} \ni \omega_f(x) < \varepsilon\}$ is open. To do so, let $x \in A_{\varepsilon}^c$, we then want to produce a δ such that

$$B_{\delta}(x) = (x - \delta, x + \delta) \subset A_{\varepsilon}^{c},$$

which can be equivalently stated as

$$y \in B_{\delta}(x) \implies |y - x| < \delta \implies \omega_f(y) < \varepsilon \implies \lim_{\delta \to 0^+} \sup_{a, b \in B_{\delta}(y)} |f(a) - f(b)| < \varepsilon$$

Since $\omega_f(x) < \varepsilon$, we can find a δ such that

$$\sup_{y,z\in B_{\delta}(x)}|f(y)-f(z)|<\varepsilon,$$

and if we fix x, this says that $|y-x| < \delta \implies \sup_{y \in B_{\delta}(x)} |f(y)-f(x)| < \varepsilon$. ???

Problem 4.

Let X be countable and $\{x_i\}$ be an enumeration, and define $f_n(x) = \mathbb{1}[x > x_n]$. Let $f(x) = \sum_n \frac{1}{n^2} f_n(x)$, and show that f is increasing on \mathbb{R} and continuous on $\mathbb{R} \setminus X$.

Solution 4. To see that f is increasing, we need to show that $x_i < x_j \implies f(x_i) < f(x_j)$. We can note that both $x_i, x_j \in X$, so let i, j correspond to their indices in the enumeration. (Note that we may or may not have i < j.) Let n be fixed, and consider the sets

$$S(x_i) = \{ x \in X \ni x < x_i \}$$

 $S(x_j) = \{ x \in X \ni x < x_j \},$

and note that $x_i < x_j$ forces $S(x_i) \subset S(x_j)$. In particular, it is worth noting that if $y \in S(x_i)$, for example, then $y = x_n$ for some n where $f_n(x_i) = 1$ precisely because $x_i > x_n = y$.

We can then write

$$f(x_i) = \sum_{n=1}^{\infty} \frac{1}{n^2} \mathbb{1} [x_i > x_n] = \sum_{x \in S(x_i)} \frac{1}{n^2}$$
$$f(x_j) = \sum_{n=1}^{\infty} \frac{1}{n^2} \mathbb{1} [x_j > x_n] = \sum_{x \in S(x_j)} \frac{1}{n^2}.$$

from which the claim is that

$$S(x_i) \subset S(x_j) \implies \sum_{x \in S(x_i)} \frac{1}{n^2} < \sum_{x \in S(x_i)} \frac{1}{n^2}.$$

Indeed, we can write

$$\sum_{x \in S(x_j)} \frac{1}{n^2} = \sum_{x \in S(x_i)} \frac{1}{n^2} + \sum_{x \in S(x_j) \backslash S(x_i)} \frac{1}{n^2},$$

where the second term is nonzero precisely because $S(x_j) \setminus S(x_i)$ is nonempty – indeed, it contains x_i itself since $x_i < x_j$ but $x_i \not< x_i$. But this says that $f(x_i) < f(x_j)$, as desired.

To see that f is continuous, ???

Problem 5.

Problem 6.

Problem 7.

Problem 8.