Exhaustification algorithm

Keny Chatain

June 25, 2020

The algorithm used by this package is described here, with a proof of correction.

1 Definitions

Write p for the prejacent, and \mathcal{A} the set of alternatives.

Definition: A set of alternative \mathscr{A}' is consistent with the prejacent iff $p \land \bigwedge_{q \in \mathscr{A}'} \neg q$ is consistent.

Definition: A set of alternative \mathcal{A}' is maximal iff it is consistent with the prejacent and there is no set $\mathcal{A}' \subsetneq \mathcal{A}''$ consistent with the prejacent.

Definition: A world is minimal if p is true in w and there is no other world w' such that the set of alternatives false in w' strictly contains the set of alternatives false in w''

Definition An alternative $q \in \mathcal{A}$ is innocently excludable (*IE*) iff it belongs to every maximal set of alternatives.

2 Description of the algorithm

- 1. Find, for every minimal world w, the set of alternatives false in w.
 - (a) Initialize an empty list L of boolean arrays of length $\# \mathscr{A}$.
 - (b) For each world w true of p, add the array v_i which maps i to true if alternative a_i is true in w if there isn't a vector with more false values in L.
 - (c) By construction, the list *L* contains, for every minimal world *w*, the set of alternatives false in *w*.
- 2. The IE alternative are the intersection of the vectors in *L*.

3 Proof of correction

Claim: The set of alternatives false in a minimal world is a maximal set. Reciprocally, every maximal set is the set of false alternatives of some minimal world.

Proof: If w is a world where p is true, call alt(w) the set of alternatives false in w. Now, if w is a minimal world, then for all worlds w', alt(w') does not strictly contain alt(w). This means that there is no set of alternatives \mathscr{A}' strictly containing alt(w') such that $p \wedge \bigwedge_{q \in \mathscr{A}'} \neg q$ is consistent, i.e. true of some world w'. If there were, then alt(w') would contain \mathscr{A}' and thus alt(w) itself. So no such \mathscr{A}' exists. In other words, alt(w) is maximal

Reciprocally, if \mathscr{A}' is a maximal set and w a world where $p \land \bigwedge_{q \in \mathscr{A}'} \neg q$ is true, then w is minimal. If w weren't, then we could find a world w' where p is true and where a bigger set of alternatives \mathscr{A}'' than \mathscr{A}' is false. But then \mathscr{A}' wouldn't be maximal.

Claim: The set of alternatives false in every minimal worlds is the set of IE alternatives

Proof: From the claim above, it follows that the set of maximal sets is the set $\{alt(w) \mid w \text{ is a minimal world}\}$. Therefore, the set of alternatives false in every minimal world is the set of alternatives in every maximal set, i.e. the IE alternatives.