MATH 850 Combinatorial Commutative Algebra Homework

(1) Let Δ be a simplicial complex with corresponding Stanley–Reisner ideal I_{Δ} , and let

$$m^{\tau} := \langle x_j : j \in \tau \rangle,$$

the monomial (prime) ideal corresponding to $\tau \subseteq [n]$. Show that

$$I_{\Delta} = \bigcap_{\sigma \in \Delta} m^{[n] \setminus \sigma}.$$

(2) Let $R := \mathbb{F}[x_1, x_2, x_3, x_4]$ and $I := \langle x_1, x_2, x_3, x_4 \rangle$. Compute a finite free resolution for the R-module R/I.

(3) Let Δ be the boundary of a pentagon. Compute I_{Δ} and one of its finite free resolutions.

(4) Let Δ be the boundary of an octahedron. Compute I_{Δ} and one of its finite free resolutions.

(5) Let $I := \langle x_1 x_3, x_1 x_4, x_2 x_4 \rangle \subset \mathbb{F}[x_1, x_2, x_3, x_4]$, and let I_d denote the \mathbb{F} -vector space of homogeneous polynomials in I of degree d. Compute the Hilbert function $h_I(n) := \dim_{\mathbb{F}}(I_n)$ and the Hilbert series

$$H_I(x) := \sum_{n\geq 0} h_I(n) x^n.$$

(6) Compute the Hilbert series of $\mathbb{F}[x_1, x_2, \dots, x_5]/I_{\Delta}$ for Δ be the boundary of a pentagon, and verify that it yields the correct face numbers.

(7) Compute the Hilbert series of $\mathbb{F}[x_1, x_2, \dots, x_6]/I_{\Delta}$ for Δ be the boundary of an octahedron, and verify that it yields the correct face numbers.

(8) Let $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. Prove that the following are equivalent:

(a) There exists a polynomial p(x) of degree d such that f(n) = p(n) for sufficiently large integers n.

(b) There exists a polynomial g(x) such that

$$\sum_{n>0} f(n) x^n = \frac{g(x)}{(1-x)^{d+1}}.$$

(9) Let Δ_1 and Δ_2 be simplicial complexes on the disjoint sets E_1 and E_2 . The join $\Delta_1 \star \Delta_2$ is the simplicial complex on $E_1 \cup E_2$ whose faces are the sets $\sigma_1 \cup \sigma_2$ for $\sigma_1 \in \Delta_1$ and $\sigma_2 \in \Delta_2$. Compute the h-vector of $\Delta_1 \star \Delta_2$ in terms of the h-vectors for Δ_1 and Δ_2 .