研究生算法课课堂笔记

上课日期: 2016.09.29

第(2)节课

组长学号及姓名: 黄觊鹏 1601214543 组员学号及姓名: 付钰雯 1601214540

卢苇 1601214553

一. 内容概要

本节课所学的内容包括以下几点:

- 1. 决策树需要解决过拟合的原因,及解决决策树过拟合的几种算法;
- 2. 第二次算法作业第 4 题解析。

二. 详细内容

1. **决策树的算法是贪心的,贪心法是否一定能找到正确划分且高度最短的树?** 答: 贪心法不一定是最优解,但只有极少的情况(如异或)不是最优解。 反例:

最优解法:

但是贪心法构造不出这样的决策树。

贪心法 (ID3): $Gain(Y, x_1) = 1 - 1 = 0$; $Gain(Y, x_2) = 1 - 1 = 0$

基于 x_1 或 x_2 为节点划分后,在每个子节点中 y 还是均匀分布的,所以每个子节点的熵仍为 1,加权平均后也为 1,故其信息增益为 0;而 x_3 到 x_{10} 的划分有可能不会引起 y 的均匀分布,其信息增益不为 0。由于贪心算法会选择 info gain 大的作为根节点,所以会选择 x_3 到 x_{10} 作为根节点,从第二层开始才会有可能选择 x_1 或 x_2 。

虽然贪心法不一定能得到最优解,但是在实际中得不到最优解的情况是比较少见的。

Occam's Razor (剃刀原理):如果有几种解释都成立,那么最简单的解释往往是正确的。

为什么:简单的假设数目比较少,能够划分正确是偶然性的几率也较小。 争议:以数量少分优劣不合理。

2. 决策树构建过程算法:

3.	B ecursion	对于不同子集自顶向下递归,直到终止条件	$\sqrt{}$
	√ Greedy	每次都是找信息增益最大的属性作为节点	$\sqrt{}$
	Dynamic programming	未使用	×
	rDivide and conquer	每次对于整个空间分裂成子集进行构建	$\sqrt{}$

fitting (过拟合): 对于 $h \in H$ 来说,如果存在另一个 $h' \in H$ 在训练集上效果较差,但在测试集上效果就较好,那么称 h 是过拟合的.

普遍情况:在训练集上训练如果追求过好的训练效果,会出现过拟合,此时模型在测试集效果较差,泛化能力低。例如:"第十名现象"。

大数据发展现况:模型的表达能力是足够的,在不限制复杂度的情况下,一定能找到解释问题的模型,主要问题是避免 overfitting。

4. 决策树避免过拟合的思想: 限制每个叶节点的最小样本数,即使分类不纯也停止分裂。或者分类后子节点的样本数过少了也停止分裂。

决策树避免过拟合的两种方法:

	算法	优点	缺点
Pre-prune(预	数据的分裂在统计上无	效率高	可能剪掉有用的枝:再分裂几
剪枝)	意义,即分裂前后的熵		步信息增益可能又增大
	相差较小,信息增益不		例如:异或情况下,单个属性
	够大,此时停止分裂		区别度低,多个属性联合区分
			度高
Post-prune	先长好全部的节点,从	结果好	效率低
(后剪枝)	后往前剪枝,若剪枝后		
	在验证集上的效果变		
	好,则剪掉该枝。		
	(实际中使用更多)		

5. **Reduced-Error Prune**: 使用验证集来剪枝,剪掉后在验证集中性能上升的剪掉,多个节点,剪掉性能上升最大的。

Training set	用于训练模型;决定跟属性直接相关的普通参数,例如决策平面法		
	向量 w		
Validation set	控制复杂度;决定超参数(不是跟属性直接相关的参数),例如决		
	策树的高度		
Test set	用于测试模型		

验证集训练过多也可能出现过拟合。

6. 对于 64 页图的讲解:

Decision stump(决策树桩): 节点数为 1 的决策树,此时 bias 很高。

训练集性能随节点增多而不断提升,测试集性能随节点增多先提升后减退,即出现过拟合的情况。

7. 对于 67 页图的讲解

剪枝过程测试集性能变化: 剪枝过程,测试集性能不断上升,到某处停止,此时再剪枝有害。

8. 决策树生长过程中,有没有可能从根节点到叶节点的过程中,同一个属性用了两次?

答:若使用两次,子节点的区分度为 0,信息增益为 0。所以必然不会重复选择同一个属性。

9. **Rule post-pruning**:形式不是树,而是转化为 rules,用逻辑表示。 好处:剪枝时可以不从叶节点开始,从后往前按顺序进行。可以剪掉 rule 中任一属性(条件)。

10. 第二次作业第 4 题讲解:

这道题目就是求逆序数,目前在 $O(n \lg n)$ 的复杂度下求逆序数的算法一般是利用树状数组或归并排序。老师在课上简单讲解了一下归并排序的思想,其中主要思想是将两个子串合并时,分别比较第一串中的数和第二串中的数,从而得到逆序数。

$$A = \{1, \begin{bmatrix} 1 & 1 & 1 \\ 4 & 6 & 7 & 9 \end{bmatrix}\}$$

$$B = \{\begin{bmatrix} 2 & 3 & 5 & 10 & 13 & 21 \\ 2 & 3 & 5 & 10 & 13 & 21 \end{bmatrix}$$

例如:现在将要 A 和 B 合并,有两个 index: i 和 j,当 i 指向 4,j 指向 2 时,A[i] 比 B[j]要大,说明 4 后面的数都要比 2 大,此时 2 的逆序数要加上 A 中被圈中的数的个数。当 i 和 j 继续向后移动时,i 和 j 之前的数在算逆序数时不再重复考虑。