第四部分 数理逻辑

离散数学

主要内容

- ●命题与命题联结词
- ●命题变元与命题公式
- ●重言式
- ●命题逻辑的基本等式及等式推理
- 命题逻辑的基本蕴涵式及蕴涵推理
- ●范式
- 命题联结词的扩充与归约

10.7 联结词扩充与规约

回顾前面学过的每个命题联结词的真值表

表 10.13 命题联结词定义表

P	Q	命题联结词		
Т	T	U_1		
T	F	U_2		
F	T	U_3		
F	F	U_{4}		

其中 $U_i(i=1,2,3,4)$ 可取两个值 T,F,故可得 $2^4=16$ 张表. 由此可得结论:命题联结词最多有 16 个.

离散数学

P	Q	f_1	f_2	f_3	f_4	f_5	f_{6}	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	1	0	0	0	1	1	1	0	0	0	1	1	0	1	1
0	1	0	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1
1	0	0	0	0	1	0	0	1	0	1	0	1	1	0	1	1	1
1	1	0	0	0	0	1	0	0	1	0	1	1	0	1	1	1	1
		永	或	蕴	蕴	合	P	Q	等	异	恒	恒	与	蕴	析	蕴	永
		假	非	含	含	取	非	非	值	或	等	等	非	含	取	含	真
				否	否						Q	P					
				定	定												
		* *	\triangle	\triangle	\triangle	*	*	*	*	\triangle	* *	* *	\triangle	*	*	×	* *

注:表中*表示已定义,**表示意义不大,△表示可再定义。

离散数学

命题联结词的扩充

- (1) 异或联结词: $A \oplus B = \neg (A \leftrightarrow B)$
- (2) 谢佛联结词: $A \uparrow B = \neg (A \land B)$ 与非
- (3) 魏泊联结词: $A \downarrow B = \neg (A \lor B)$ 或非
- (4) 蕴涵否定联结词: $A \rightarrow B = \neg (A \rightarrow B)$

与之前学习的五种联结词一起,穷尽了一切命题间的(真值函项)联结词

联结词完备集

设S是一个联结词集合,如果任何公式都可以由仅含S中的联结词表示,则称S是联结词完备集

定理 $S = \{\neg, \land, \lor\}$ 是联结词完备集证明 由范式存在定理可证

范式存在定理——任何命题公式都存在与之等值的析取范式与合 取范式。

联结词完备集

推论以下都是联结词完备集

$$(1) S_1 = \{\neg, \land, \lor, \rightarrow\}$$

$$(2) S_2 = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$$

$$(3) S_3 = {\neg, \land}$$

(4)
$$S_4 = \{ \neg, \lor \}$$

$$(5) S_5 = \{\neg, \rightarrow\}$$

证明

(1),(2) 在联结词完备集中加入新的联结词后仍为完备集

(3)
$$A \lor B \Leftrightarrow \neg(\neg A \land \neg B)$$

(4)
$$A \wedge B \Leftrightarrow \neg (\neg A \vee \neg B)$$

(5)
$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

{∧,∨,→,↔}不是联结词完备集, 0不能用它表示 它的子集{∧},{∨},{→},{↔},{∧,∨},{∧,∨,→}等都不是 注意: {↑}、{↓}是完备集, {¬, ↔}不是完备集。

THE END