5. POWDER METALLURGY

POWDER METALLURGY: It's one of the oldest manufacturing processes. Finished or Semi-finished products are manufactured by using powders of different materials blended, compacted and sintered. E.g. Filament of bulb, Carbide cutting tools

REASONS FOR SELECTION OF POWDER METALLURGY:

- 1. Melting Point Temperature: High melting point temperature Materials are not possible to melt to make component. Eg. Refractive material (W, Nb, Mo, Ta)
- 2. Large difference in melting point temperature: Large difference in melting point temperature of two or more materials are not possible to make an alloy (E.g. Fe (1535°C) + Sn(380°C))
- 3. Large difference in density of materials: Large difference in density of two or more materials are not possible to make an alloy. (E.g. Fe (7.869 g/cc) + Al (2.19 g/cc))
- 4. Processing Cost: Very low cost.
- 5. Bulk Production is possible.

STEPS INVOLVED IN POWDER METALLURGY:

A)	Making powders	B) Adding Additives	C)	Compaction/ Pressing	D)	Sintering	
1.	Mechanical		1.	Cold Compaction			E) Final
	Grinding		•	Cold Iso-Static Pressing			Product:
2.	Atomization		•	Die compaction			Note:
3.	Chemical		•	Extrusion			Hot Compaction
	Electrolysis		•	Injection moulding			directly gives
			2.	Hot Compaction			final product.
			•	Hot Iso-Static Pressing			

MECHANICAL GRINDING: E.g. Ball Milling.

- By using this method, powder are produced by using mechanical energy as source of energy.
- This method is not Suitable for ductile materials (E.g. Al, Cu, Au...). Because Flanky shape powder generated in ball milling are breaks/ fails in Compression.
- This method is more suitable for brittle materials.

ATOMIZATION PROCESS: Spherical Forms of Grains.

- Powders are produced by heating the metal in a furnace and sending into a cold chamber through nozzles. Liquid droplets are released from nozzles and solidifies in cold chamber.
- This method is not suitable for high melting point temperature metals.

CHEMICAL ELECTROLYSIS:

- The powders are produced by using current or electricity as a source of energy to make powder.
- This method is not suitable for electrical insulating materials.

Note: The powders of different materials are produced by using different method based on properties of materials.

CHARACTERISTICS OF POWDERS:

1) Shape of the powder:

Best Suitable powder:	Surface Area of Powder
Spherical	$Shape\ Factor = \frac{1}{Volume\ of\ Powder} * Equivalent\ Spherical\ diameter.$

Conclusion: The Shape Factor of the powder must be low to make good powder metallurgical products.

 $((SF)_{Spher} < (SF)_{Eliptical} < (SF)_{Pinned})$

- 2) **Size of the powder:** The Size of the powder is analysed based on aspect ratio. Aspect Ratio = $\frac{Large\ Dimension}{Small\ Dimension}$ **Conclusion:** The Size of the powders/ Aspect Ratio must be low (E.g. Sphere). To make good powder metallurgical products.
- 3) **Distribution of the powder**: Distribution of the powder is analysed based on frequency mode.

Conclusion: The frequency mode of the powders must be low make good powder metallurgical products.

CONCLUSION: TO MAKE GOOD POWDER METALLURGICAL PRODUCT, SPHERICAL SHAPED OF THE POWDERS WITH WIDE DISTRIBUTION OF SIZES OF POWDERS ARE BEST SUITABLE.

ADDING ADDITIVES: After making powders of different materials mixed/ Blended properly to get homogeneous composition and hence uniform properties are generated in final product.

Mixing: Powders of Different Chemistry material.	Siending: Powders of Same Chemistry material.			
NOTE: Lubricants are added to improve powder flow characteristics. E.g.				
1. To reduce the friction between powders & Die walls.	3. To increase compressibility			
2. To increase flowability	4. To reduce porosity.			

NOTE: Binders are added to bind the powders and hence, green strength of the body increased. E.g. Low Melting point metals, Waxes, Thermoplastic Materials.

COMPACTION / PRESSING:

GREEN COMPACT: After adding additives and blending, pressed uniformly to get final shaped of the component is known as green compacted component. It's Semi-finished body and strength of the final product is directly proportional to the strength of green compact.

 	\mathcal{E}	
1.	Commessibility – Volume of the powder Befor compaction	$Strength_{component} \propto Compressiblity$
	$Compressibility = \frac{volume\ of\ the\ powder\ Befor\ compaction}{Volume\ of\ the\ powder\ After\ compaction}$	
2.	Carr Index = % of Volume compressed	$Strength_{component} \propto Carr Index$

Only point of contact happened after compression.

COMPACTION/ PRESSING TYPES					
Col	d Compaction	Hot Compaction			
Die Compaction	Cold Iso-Static Pressing	Hot Iso-Static Pressing			
• Piston Plunger	• P=1000 MPa, pressing form all	• In addition to Cold Iso-Static Pressing,			
Arrangement	direction in rubber tube filled with	Hitting takes place simultaneously.			
• Non-Uniform	hydraulic fluid.	• $P_{\text{max}} = 100 \text{ MPa}$, pressing form all			
Properties	Isotopic Properties	direction in rubber tube filled with			
Bulk Production	Can't use for bulk production	hydraulic fluid.			
• Compressibility is low	Less porosity.	 No sintering required. 			
Porosity is high	• Can't use for explosive materials.	 Same Points like Cold Iso-Static 			
	E.g. Mg, Ti, Zr, Cd, Be.	Pressing.			

SINTERING: It's the final powder metallurgical step. In this process, the green compact is heated up to a sintering temperature. To form chemical bonds between powders.

Sintering temperature: Less than least melting point of all powders.

Initially at the time of heating, **Neck Formation** happened. After Necking Electrons transfers and **Chemical bonds** forms. At the end it gives very high strength.

SOME SECONDARY PROCESS:

IMPREGNATION	INFILTRATION		
In this process, The Pours of a powder metallurgical	In this process, The Pours of a powder metallurgical		
product is filled with oil .	product is filled with Filler Material and due to this		
E.g. Impregnated Gears & Bearings	surface porosity removed.		

Advantages		Dis- Advantages		
1. Well-Shaped Composite, Ceramics & Alloys		1.	Porosity is high.	
re	efractory materials are easy to produce.	2.	Brittle in nature.	
2. P	Processing cost/ Unit is low.	3.	Variety of products not possible.	
3. N	Mass Production. (1,00,000 Units)	4.	Initial cost is more. E.g. Equipment & Tooling Cost	
4. H	High Compressive Strength.		is more.	