Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_6 = a_2 + 4r$, deci $4r = 16$, de unde obținem $r = 4$, unde r este rația progresiei aritmetice	3 p
	$a_1 = a_2 - r = 7 - 4 = 3$	2p
2.	$f(a) = 3a \Leftrightarrow 8a - 5 = 3a$	3p
	a=1	2p
3.	$\log_4(3x^2) = \log_4 12$, de unde obținem $3x^2 = 12$	3 p
	x = -2, care nu convine; $x = 2$, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale n , de două cifre, pentru care \sqrt{n} este număr natural par sunt 16, 36 și 64, deci sunt 3 cazuri favorabile, de unde obținem $p = \frac{3}{90} = \frac{1}{30}$	3p
5.	M(-1,3) și $N(3,0)$, unde punctele M și N sunt mijloacele segmentelor AB , respectiv OC	2p
	$MN = \sqrt{(3+1)^2 + (0-3)^2} = \sqrt{25} = 5$	3 p
6.	$\sin B = \frac{AC}{BC} \Rightarrow \frac{1}{2} = \frac{AC}{16}$, deci $AC = 8$	2p
	$AB = \sqrt{BC^2 - AC^2} = 8\sqrt{3}$ şi, cum $\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2}$, obținem $\mathcal{A}_{\Delta ABC} = \frac{8 \cdot 8\sqrt{3}}{2} = 32\sqrt{3}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -3 & 3 \\ -2 & -1 \end{vmatrix} = -3 \cdot (-1) - 3 \cdot (-2) =$ $= 3 + 6 = 9$	3p
		2p
b)	$B(3) = \begin{pmatrix} 4 & -3 \\ 2 & 2 \end{pmatrix}$ și $B(4) = \begin{pmatrix} 5 & -3 \\ 2 & 3 \end{pmatrix} \Rightarrow B(3) \cdot B(4) = \begin{pmatrix} 14 & -21 \\ 14 & 0 \end{pmatrix} =$	3р
	$=7\begin{pmatrix} 2 & -3 \\ 2 & 0 \end{pmatrix} = 7B(1)$, de unde obținem $x = 7$	2p
c)	$C \cdot B(a) = \begin{pmatrix} \frac{-a+1}{3} & \frac{a+2}{3} \\ \frac{-2a-4}{9} & \frac{-a+7}{9} \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$C \cdot B(a) = B(a) \cdot C = I_2$, de unde obținem $a = -2$	3 p

Probă scrisă la matematică $M_tehnologic$

Model

Barem de evaluare și de notare

2.a)	$f = X^3 + X^2 + X - 4 \Rightarrow f(2) = 2^3 + 2^2 + 2 - 4 =$	3 p
	=8+4+2-4=10	2 p
b)	$f = X^3 + X^2 - 4X - 4 \Rightarrow f = (X+1)(X-2)(X+2)$	2p
	Rădăcinile polinomului f sunt -2 , -1 și 2	3 p
c)	$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_2x_3 + x_3x_1 = m \Rightarrow x_1^2 + x_2^2 + x_3^2 = 1 - 2m$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f	3p
	Cum m este număr natural nenul, obținem $x_1^2 + x_2^2 + x_3^2 < 0$, deci polinomul f nu are toate rădăcinile reale	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{(2x-2)(x+2) - (x^2 - 2x + 1) \cdot 1}{(x+2)^2} =$	3p
	$= \frac{2x^2 + 4x - 2x - 4 - x^2 + 2x - 1}{(x+2)^2} = \frac{x^2 + 4x - 5}{(x+2)^2}, \ x \in (-2, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{e^x} = \lim_{x \to +\infty} \frac{x^2 - 2x + 1}{e^x(x+2)} = \lim_{x \to +\infty} \frac{2x - 2}{e^x(x+3)} =$	3 p
	$= \lim_{x \to +\infty} \frac{2}{e^x (x+4)} = 0$	2p
c)	$f''(x) = \frac{18}{(x+2)^3}, x \in (-2, +\infty)$	3 p
	$f''(x) > 0$, pentru orice $x \in (-2, +\infty)$, de unde obținem că funcția f este convexă	2p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{\sqrt{x+1}} \right) dx = \int_{1}^{3} (x+1) dx = \left(\frac{x^{2}}{2} + x \right) \Big _{1}^{3} =$	3 p
	$=\frac{9}{2}+3-\frac{1}{2}-1=6$	2p
b)	$\int_{0}^{8} (f(x) - x - 1) dx = \int_{0}^{8} \frac{1}{\sqrt{x + 1}} dx = 2 \int_{0}^{8} (x + 1)' \cdot \frac{1}{2\sqrt{x + 1}} dx = 2\sqrt{x + 1} \bigg _{0}^{8} =$	3p
	$=2\cdot 3-2\cdot 1=4$	2 p
c)	$V = \pi \int_{0}^{3} g^{2}(x) dx = \pi \int_{0}^{3} \left((x+1)^{2} + 2\sqrt{x+1} + \frac{1}{x+1} \right) dx =$	2p
	$= \pi \int_{0}^{3} (x+1)' \left((x+1)^{2} + 2\sqrt{x+1} + \frac{1}{x+1} \right) dx = \pi \left(\frac{(x+1)^{3}}{3} + 4 \cdot \frac{(x+1)\sqrt{x+1}}{3} + \ln(x+1) \right) \Big _{0}^{3} =$	3p
	$= \pi \left(\frac{64}{3} + \frac{32}{3} + \ln 4 - \frac{1}{3} - \frac{4}{3} \right) = \pi \left(\frac{91}{3} + \ln 4 \right)$	