

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance

Kimia Nadjahi¹ Alain Durmus² Umut Şimşekli^{1,3} Roland Badeau¹

¹ Télécom Paris ² ENS Paris-Saclay ³ University of Oxford

Minimum Distance Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\boldsymbol{\mu}}_n, \boldsymbol{\mu}_{\theta})$$

D: distance between distributions

 $\hat{\mu}_n$: empirical distribution of data points Y_1, \dots, Y_n i.i.d from μ_{\star}

 μ_{θ} : distribution parametrized by $\theta \in \Theta$

Minimum Distance Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{D}(\hat{\boldsymbol{\mu}}_n, \boldsymbol{\mu}_{\theta})$$

D: distance between distributions

 $\hat{\mu}_n$: empirical distribution of data points Y_1, \dots, Y_n i.i.d from μ_{\star}

 μ_{θ} : distribution parametrized by $\theta \in \Theta$

Minimum Expected Distance Estimation

Directly optimizing μ_{θ} is often **not possible** (e.g. GANs)

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{D}(\hat{\boldsymbol{\mu}}_{n}, \hat{\boldsymbol{\mu}}_{\theta,m}) \mid Y_{1:n} \right]$$

 $\hat{\mu}_{\theta,m}$: empirical distribution of a sample Z_1,\ldots,Z_m i.i.d. from μ_{θ}

Optimal Transport

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadjahi, A. Durmus, U. Şimşekli, R. Badeau

Optimal Transport

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadjahi, A. Durmus, U. Şimşekli, R. Badeau

Minimum Wasserstein Estimation

Choose $\mathbf{D} = \mathbf{W}_p$ (Wasserstein distance of order $p \ge 1$)

- ✓ Robust and increasingly popular estimators: Wasserstein GAN [1], Wasserstein auto-encoders [2]
- ✓ Asymptotic guarantees [3]
- [1] Arjovsky et al., 2017 $\quad [2]$ Tolstikhin et al., 2018 $\quad [3]$ Bernton et al., 2019

Minimum Wasserstein Estimation

Choose $\mathbf{D} = \mathbf{W}_p$ (Wasserstein distance of order $p \ge 1$)

- ✓ Robust and increasingly popular estimators: Wasserstein GAN [1], Wasserstein auto-encoders [2]
- ✓ Asymptotic guarantees [3]
- [1] Arjovsky et al., 2017 [2] Tolstikhin et al., 2018 [3] Bernton et al., 2019
 - \times W_p: expensive + curse of dimensionality
 - × Central limit theorem in [3] valid in 1D

Sliced-Wasserstein distance

In 1D, \mathbf{W}_p has an analytical form \Rightarrow Motivates a practical alternative:

$$\mathbf{SW}_p^p(oldsymbol{\mu},oldsymbol{
u}) = \int_{\mathbb{S}^{d-1}} \mathbf{W}_p^p(oldsymbol{u}_\sharp^\staroldsymbol{\mu},oldsymbol{u}_\sharp^\staroldsymbol{
u}) \mathrm{d}oldsymbol{\sigma}(oldsymbol{u})$$

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadiahi, A. Durmus, U. Simsekli, R. Badeau

Minimum Sliced-Wasserstein Estimation

$$\hat{\theta}_n = \operatorname{argmin}_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n, \mu_{\theta})$$

$$\hat{\theta}_{n,m} = \operatorname{argmin}_{\theta \in \Theta} \mathbb{E} \left[\mathbf{SW}_p(\hat{\mu}_n, \hat{\mu}_{\theta,m}) \mid Y_{1:n} \right]$$

Successful in generative modeling applications:

SW GANs [1, 2], SW Autoencoders [2, 3], SW flows [4]

- $[1] \ Deshpande \ et \ al., \ CVPR \ 2018 \\ \qquad [2] \ Wu \ et \ al., \ CVPR \ 2019$
- [3] Kolouri et al., ICLR 2019 [4] Liutkus et al., ICML 2019

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadiahi, A. Durmus, U. Simsekli, R. Badeau

Existence and consistency

 $n \to +\infty$ $\theta \in \Theta$

There exists E with $\mathbb{P}(\mathsf{E}) = 1$ such that, for all $\omega \in \mathsf{E}$:

There exists
$$n(\omega)$$
 such that, for all $n \geq n(\omega)$, the set $\underset{\theta \in \Theta}{\operatorname{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta})}$ is non-empty.

Existence

Consistency

$$\lim_{n \to +\infty} \inf_{\theta \in \Theta} \mathbf{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta}) = \inf_{\theta \in \Theta} \mathbf{SW}_p(\mu_{\star}, \mu_{\theta}),$$
$$\lim \sup \operatorname{argmin} \ \mathbf{SW}_p(\hat{\mu}_n(\omega), \mu_{\theta}) \subset \operatorname{argmin} \ \mathbf{SW}_p(\mu_{\star}, \mu_{\theta})$$

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance.

Central limit theorem

Suppose $\mu_{\star} = \mu_{\theta_{\star}}$

Under reasonably mild assumptions on the CDFs of the projected $\mu_{\theta_{\star}}$, $\hat{\mu}_{n}$,

$$\sqrt{n} \inf_{\theta \in \Theta} \mathbf{SW}_{1}(\hat{\mu}_{n}, \mu_{\theta}) \xrightarrow{w} \inf_{\theta \in \Theta} \mathbf{H}(\theta) ,$$

$$\sqrt{n}(\hat{\theta}_{n} - \theta_{\star}) \xrightarrow{w} \underset{\theta \in \Theta}{\operatorname{argmin}} \mathbf{H}(\theta) \quad \text{as } n \to +\infty,$$

where \mathbf{H} is a random map that corresponds to the limit (as $n \to +\infty$) of an approximation of $\mathbf{SW}_1(\hat{\mu}_n, \mu_{\theta})$ near θ_{\star} .

Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance. K. Nadjahi, A. Durmus, U. Şimşekli, R. Badeau

Summary

- Theoretical study of minimum Sliced-Wasserstein estimators:
 - Convergence in $\mathbf{SW}_p \Rightarrow$ weak convergence of probability measures
 - Existence and consistency of $\hat{\theta}_n$, $\hat{\theta}_{n,m}$
 - Central limit theorem for $\hat{\theta}_n$: \sqrt{n} convergence rate for any dimension
- Empirical confirmation on synthetical and real data

Thank you!

Also at **NeurIPS** on **Thu Dec 12th** (Spotlight presentation + Poster)