Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа №5

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Цель	3
Теоретические сведения	3
Общая задача	3
Метод прямоугольников	4
Метод трапеций	5
Метод Симпсона	6
Метод Рунге-Ромберга-Ричардсона	7
Интегрирование таблично заданной функции	8
	8
Результаты	8
Вывол	10

Цель

Проанализировать и реализовать различные методы численного интегрирования функции. В частности, функции, заданной табличным способом.

Теоретические сведения

Общая задача

Задача численного интегрирования является очень острой и имеет огромное количество применений. Именно поэтому развита целая теория численного интегрирования, и существует множество формул, по которым можно посчитать интеграл заданной функции.

Общая задача ставится следующим образом. Пусть у нас есть некая функция f(x), которая задана на каком-то промежутке $[x_0, x_n]$. Требуется найти следующий интеграл:

$$I = \int_{x_0}^{x_n} f(x) dx$$

Самое банальное, что сразу же приходит на ум, – это разбить интервал интегрирования на элементарные отрезки $[x_k, x_{k+1}], k = \overline{0, n-1}$ и представить функцию на каждом частичном отрезке как

$$f(x) = P_m(x) + R_m(x), \tag{1}$$

где $P_m(x)$ – это многочлен степени не выше m, а R_m – это член ошибки. Перебирая различные m, мы сможем получать разные формулы численного интегрирования.

Метод прямоугольников

Если в формуле (1) мы будем использовать m=0, то получим так называемый метод прямоугольников.

Рис. 1. Метод прямоугольников: а) левых; б) правых

Таким образом, мы приближаем нашу функцию константой на каждом элементарном интервале. Данный метод имеет первый порядок. Существуют две разновидности метода прямоугольников первого порядка – левые и правые прямоугольники (Рис. 1). При равномерной сетке с шагом h формулы

$$I = \int_{x_0}^{x_n} f(x)dx \approx h \sum_{k=0}^{n-1} f_k$$
 (2)

$$I = \int_{x_0}^{x_n} f(x)dx \approx h \sum_{k=1}^n f_k$$
 (3)

для левых и правых прямоугольников соответственно.

Ошибка при подсчете методом прямоугольников дается формулой:

$$|R(f)| \le \max_{[x_0, x_n]} |f'(x)| \cdot \frac{x_n - x_0}{2} h$$
 (4)

Метод трапеций

Теперь берем m=1 и получаем метод трапеций. Мы приближаем нашу функцию прямой на каждом элементарном отрезке (Рис. 2).

Рис. 2. Метод трапеций

Порядок этого метода — 2. Для равномерной сетки с шагом h метод дает следующую формулу:

$$I = \int_{x_0}^{x_n} f(x)dx \approx h \left[\frac{f_0 + f_n}{2} + \sum_{k=1}^{n-1} f_k \right]$$
 (5)

Ошибка же оценивается следующим образом:

$$|R(f)| \le \max_{[x_0, x_n]} |f''(x)| \cdot \frac{x_n - x_0}{12} h^2$$
 (6)

Метод Симпсона

Идем еще дальше, берем m=2, и выходит метод Симпсона. То есть теперь функция приближается параболами на каждом отрезке (Рис. 3).

Рис. 3. Метод Симпсона

Оказывается, что порядок этого метода скакнул еще выше – он равен 4. Для сетки с равномерным шагом h и четным количеством интервалов n имеется формула:

$$I = \int_{x_0}^{x_n} f(x)dx \approx \frac{h}{3} \left[f_0 + f_n + 4 \sum_{k=1}^{n/2} f_{2k-1} + 2 \sum_{k=1}^{n/2-1} f_{2k} \right]$$
 (7)

В общем случае, когда сетка неравномерна и шаги определяются следующим образом: $h_k = x_{k+1} - x_k, \, \overline{0,n-1}; \, формула становится немного сложнее:$

$$\sum_{k=0}^{n/2-1} \frac{h_{2k} + h_{2k+1}}{6} \left[\left(2 - \frac{h_{2k+1}}{h_{2k}} \right) f_{2k} + \frac{(h_{2k} + h_{2k+1})^2}{h_{2k} h_{2k+1}} f_{2k+1} + \left(2 - \frac{h_{2k}}{h_{2k+1}} \right) f_{2k+2} \right]$$
(8)

Если ситуация еще сложнее – число интервалов n нечетно, то формула выше применяется до предпоследнего интервала, а самый последний считается отдельно добавлением следующих слагаемых:

$$I_{\text{full}} = I_{\text{even}} + \alpha f_{n-2} + \beta f_{n-1} + \gamma f_n,$$

где

$$\alpha = \frac{-h_{n-1}^3}{6h_{n-2}(h_{n-2} + h_{n-1})}$$
$$\beta = \frac{h_{n-1}^2 + 3h_{n-1}h_{n-2}}{6h_{n-2}}$$
$$\gamma = \frac{2h_{n-1}^2 + 3h_{n-1}h_{n-2}}{6(h_{n-2} + h_{n-1})}.$$

Для обычного метода Симпсона с четным n и равномерной сеткой ошибка оценивается следующей формулой:

$$|R(f)| \le \max_{[x_0, x_n]} |f^{(4)}(x)| \cdot \frac{x_n - x_0}{180} h^4.$$
 (9)

Метод Рунге-Ромберга-Ричардсона

Данная модификация обычных методов интегрирования позволяет получить более высокий порядок точности без значительного увеличения числа арифметических действий.

Пусть для вычисления величины интеграла I есть некоторая формула I_h , позволяющая приближенно получить значение I на равномерной сетке с шагом h. Величину остатка можно представить в виде:

$$I - I_h = \psi_h \cdot h^p + o(h^p),$$

где p – порядок точности квадратурной формулы, а $\psi_h \cdot h^p$ – это главный член погрешности.

Проводя расчет по той же формуле, но на другой сетке с шагом $r \cdot h$, получим другое приближенное значение I_{rh} величины I:

$$I - I_{rh} = \psi_{rh} \cdot (r \cdot h)^p + o(h^p).$$

Вычитая второе из первого и полагая, что при малых значениях h постоянные $\psi_h \approx \psi_{rh} = \psi$, получаем:

$$\psi \cdot h^p = \frac{I_h - I_{rh}}{r^p - 1} + o(h^p).$$

Тогда, подставляя найденную погрешность в изначальную формулу, получим результат с более высокой точностью:

$$I = I_h + \frac{I_h - I_{rh}}{r^p - 1} + o(h^p) = \frac{r^p I_h - I_{rh}}{r^p - 1} + o(h^p).$$
 (10)

Интегрирование таблично заданной функции

Постановка задачи

В качестве примера для практики был взят номер VII.9.5 а). В нем описана таблично заданная функция $f(x) = \frac{\sin x}{x}$, доопределенная f(0) = 1. Изначально было дано всего 9 точек, то есть разбиение на 8 интервалов. Для рассмотрения нечетного количества интервалов была добавлена еще одна точка.

x	f(x)
0.00	1.000000
0.25	0.989616
0.50	0.958851
0.75	0.908852
1.00	0.841471
1.25	0.759188
1.50	0.664997
1.75	0.562278
2.00	0.454649
2.25	0.345810

Таблица 1. Таблично заданная функция

Были реализованы методы трапеций и Симпсона, а также поправочная формула Ричардсона.

Результаты

Используя только 9 точек, то есть разбиение на 8 интервалов, получаем следующие результаты:

• Метод трапеций:

- $I_t = 1.6031443749999998$
- Метод трапеций с уточнением Ричардсона: $I_R = 1.60541858333333333$
- Метод Симпсона:

 $I_S = 1.6054185833333333$

Истинное значение: $I_{\text{true}} = 1.605412976802695...$

Максимальное отличие от истинного значения составляет $\sim 0.14\%$.

Теперь используем еще и десятую точку для сравнения методов при нечетном количестве интервалов. Получаем:

• Метод трапеций:

 $I_t = 1.7032017499999998$

- \bullet Метод трапеций с уточнением Ричардсона: $I_R=1.7054687812499998$
- Метод Симпсона:

 $I_S = 1.7055011666666666$

Истинное значение: $I_{\text{true}} = 1.705457197538423...$

Максимальное отличие от истинного значения составляет ~ 0.14%.

Вывод

В данной работе были проанализированы и реализованы некоторые методы численного интегрирования для функции, заданной табличным образом. А именно – методы трапеций и Симпсона, а также формула уточнения Ричардсона. Полученные результаты действительно сходятся с заявленным теорией – порядок формулы Симпсона выше, чем у метода трапеций, а при использовании уточнения Ричардсона точность метода увеличивается.

Ошибки даже у метода трапеций весьма малы. Они составляют для него в нашем случае $\sim 0.14\%$.