

111. $\int_{1/4}^{1/2} \frac{dx}{8x^2 - 4x + 1} =$
 1. 0 2. $3\pi/2$ 3. $\pi/2$ 4. $\pi/8$ 5. $-\pi/2$ (M.-2000)

112. $\int_2^1 \frac{dx}{e^{3x} + 2} =$
 1. $\frac{1}{6} [3 + \ln 3 - \ln(2 + e^3)]$ 3. $\frac{1}{3} \ln \frac{2e}{e^2 + 3}$ 5. -1
 2. $\frac{1}{6} [\ln 3 - \ln(1 + e^3)]$ 4. $\ln \frac{e}{1+e} - \ln \frac{1}{2}$ (B.-2001)

113. L'aire déterminée par la courbe $y = x^3 - x$, l'axe de x et les verticales $x = -1$ et $x = 1$ vaut :
 1. $1/2$ 2. $11/2$ 3. $22/3$ 4. $93/2$ 5. $34/3$ (M.-2001)

114. Soit l'intégrale $F(a) = \int_0^a \frac{x-1}{x^2 - 2x + 3}$ définie pour tout réel a. La solution de l'équation $F(a) = \ln 3$ est :
 1. $a = -2$ ou $a = 3$ 3. $a = 1 - \sqrt{7}$ ou $a = 1 + \sqrt{7}$ 5. $a = -4$ ou $a = 6$
 2. $a = -3$ ou $a = 5$ 4. $a = 4$ ou $a = 5$ (M.-2001)

115. Si $I = \int \frac{(1-x^2)dx}{2x(1+x^2)} = F(x) + c$ $F\left(\frac{1}{2}\right) =$
 1. $\frac{1}{2} \ln 5$ 2. $-\frac{1}{2} \ln 2$ 3. $\frac{1}{2} \ln \frac{3}{10}$ 4. $\frac{1}{2} \ln \frac{2}{5}$ 5. $\frac{1}{2} \ln 3$ (M. 2001)

116. $\int \frac{(\sin x - \cos x)dx}{\sin x} =$ www.ecoles-rdc.net
 1. $-\ln|\cos x| + x + k$ 3. $\ln|\sin x| + x + k$ 5. $-\ln|\sin x| + x + k$
 2. $\ln|\cos x| + x + k$ 4. $\ln|\sin x| - x + k$ (M.-2001)

117. La figure déterminée par la parabole $y^2 = 4x$ et la droite $x = 5$ tourne autour de l'axe Ox. Le volume du corps de révolution engendré par cette rotation est :
 1. 32π 2. 8π 3. 50π 4. 72π 5. 18π (M. 2001)

118. $\int_1^{1/e} \frac{(\ln x)^2}{x} dx =$ -1/3 2. -1 3. 1/e 4. -1/e 5. e^{-9} (B. 2002)