# 章节 01 - 03 基本概念

LATEX Definitions are here.

#### 始对象与终对象

范畴由对象及其间箭头构成。本文重点分析**余积闭范畴**  $\mathcal{C}$  。首先给出如下定义:

- 0 为**始对象**当且仅当对任意  $\mathcal{C}$  中对象 c 都有且仅有唯一的箭头  $:c_i$ : 0  $\stackrel{c}{\rightarrow}$  c;
- 1 为**终对象**当且仅当对任意  $\mathcal{C}$  中对象 c 都有且仅有唯一的箭头 :c!: c  $\overset{c}{\rightarrow}$  1;

#### **i** Note

其他范畴中始终对象不一定存在。

范畴 C 中我们假设其含 0 和 1 分别作为始对象和终对象,那么由上述信息可知

- 形如  $0 \xrightarrow{c} 0$  的箭头 只有一个, 即 :0id;
- 形如  $1 \stackrel{c}{\rightarrow} 1$  的箭头只有一个,即: $_1id$ ;

## 元素与全局元素

对任意对象 a,  $a_1$ ,  $a_2$ , etc , b,  $b_1$ ,  $b_2$ , etc 以及任意映射  $\phi$  , 我们进行如下的规定 :

- $\phi$  为 b 的元素当且仅当  $\phi$ : a  $\overset{c}{\rightarrow}$  b;
- $\phi$  为 a 的**全局元素**当且仅当  $\phi: \mathbf{1} \overset{\mathcal{C}}{\to}$  a ;
- $\phi$  不存在可通过  $\phi: \mathbf{b} \overset{\mathcal{C}}{ o} \mathbf{0}$  得出 。

#### (i) Note

其他范畴中刚才的断言未必成立。

## 箭头构成的集合

这里再给一个定义:

- $\bullet \quad \mathsf{a} \overset{\mathcal{C}}{\to} \mathsf{b} =$ 所有从 a 射向 b 的箭头构成的集。

上述断言仅对于**局部小范畴**成立 , 在其他范畴里 a  $\stackrel{\mathcal{C}}{ o}$  b 未必构成集 。

## 箭头的复合运算

范畴 
$$\mathcal{C}$$
 中特定的箭头可以进行复合运算:
$$\overset{\mathcal{C}}{\circ} : (\mathsf{a}_2 \overset{\mathcal{C}}{\rightarrow} \mathsf{a}_1) \times (\mathsf{a}_1 \overset{\mathcal{C}}{\rightarrow} \mathsf{b}_1) \overset{\mathcal{S}et}{\longrightarrow} (\mathsf{a}_2 \overset{\mathcal{C}}{\rightarrow} \mathsf{b}_1)$$

$$\overset{\mathcal{C}}{\circ} : ( f_1 \qquad . \qquad \phi_1 \quad ) \longmapsto \ f_1 \circ \phi_1$$

若我们还知道箭头  $f_1$  ,  $\phi_1$  ,  $g_1$  分别属于  $\mathbf{a}_2\overset{\mathcal{C}}{ o}$   $\mathbf{a}_1$  ,  $\mathbf{a}_1\overset{\mathcal{C}}{ o}$   $\mathbf{b}_1$  ,  $\mathbf{b}_1\overset{\mathcal{C}}{ o}$   $\mathbf{b}_2$  那么便有

 $\bullet \quad (f_1 \overset{\mathcal{C}}{\circ} \phi_1) \overset{\mathcal{C}}{\circ} g_1 = f_1 \overset{\mathcal{C}}{\circ} (\phi_1 \overset{\mathcal{C}}{\circ} g_1)$ 说明箭头复合运算具有结合律。

另外固定住一侧实参便获可得新的函数:

 $\begin{array}{ccc} \bullet & (f_1 \overset{\mathcal{C}}{\circ} \_) : (\mathsf{a}_1 \overset{\mathcal{C}}{\rightarrow} \_) \xrightarrow{\mathcal{C} \rightarrow \mathcal{S}et} (\mathsf{a}_2 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\rightarrow}} \_) \\ & (f_1 \overset{\mathcal{C}}{\circ} \_) : & \phi_1 & \longmapsto & f_1 \overset{\mathcal{C}}{\circ} \phi_1 \end{array}$ 称作前复合。下图有助于形象理解:



称作后复合;下图有助于形象理解:



根据上面的定义便不难得出下述结论

- $\bullet \quad (f_1 \overset{\mathcal{C}}{\circ} \_)^{\mathcal{C} \to \mathcal{S}et} (\_ \overset{\mathcal{C}}{\circ} g_1) = (\_ \overset{\mathcal{C}}{\circ} g_1)^{\mathcal{C} \to \mathcal{S}et} (f_1 \overset{\mathcal{C}}{\circ} \_)$ 复合运算具有结合律,即后面会提到的自然性;
- $\bullet \quad \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \phi_1 \end{smallmatrix} \right)^{\mathcal{C} \longrightarrow \mathcal{S}et} \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \end{smallmatrix} \right) = \left( \begin{smallmatrix} \mathcal{C} \\ \circ \\ \end{smallmatrix} \left( \phi_1 \stackrel{\mathcal{C}}{\circ} g_1 \right) \right)$ 前复合与复合运算的关系
- $\bullet \quad (\phi_1 \overset{\mathcal{C}}{\circ} \_)^{\mathcal{C} \to \mathcal{S}et} (f_1 \overset{\mathcal{C}}{\circ} \_) = ((f_1 \overset{\mathcal{C}}{\circ} \phi_1) \overset{\mathcal{C}}{\circ} \_)$

# 箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如  $a_1$  为  $a_1$  的全局元素则可规定

$$\bullet \quad a_1\phi_1=a_1 \overset{\mathcal{C}}{\circ} \phi_1$$

## 恒等箭头

范畴  $\mathcal{C}$  内的每个对象都有恒等映射:

• 
$$a_1 id : a_1 \xrightarrow{\mathcal{C}} a_1$$
  
 $a_1 id : a_1 \mapsto a_1$ 

如此我们便可以得出下述重要等式:

• 
$$_{\mathsf{:a_1}}\mathrm{id} \overset{\mathcal{C}}{\circ} \phi_1 = \phi_1 \overset{\mathcal{C}}{\circ}_{\mathsf{:b_1}}\mathrm{id} = \phi_1 \overset{\mathcal{C}}{\circ}_{\mathsf{:b_1}}\mathrm{id}$$

此外还可以得知

- $(a_1 id \overset{\mathcal{C}}{\circ} \_) : (a_1 \overset{\mathcal{C}}{\rightarrow} \_) \xrightarrow{\mathcal{C} \rightarrow \mathcal{S}et} (a_1 \overset{\mathcal{C}}{\rightarrow} \_)$ 为恒等自然变换,可以记作是  $(a_1 \overset{\mathcal{C}}{\rightarrow} \_)id$ ;
- $\begin{pmatrix} c \\ \circ :_{b_1} id \end{pmatrix} : \begin{pmatrix} c \\ & b_1 \end{pmatrix} \xrightarrow{c \to \mathcal{S}et} \begin{pmatrix} c \\ & b_1 \end{pmatrix}$ 为恒等自然变换,可以记作是  $\begin{pmatrix} c \\ - & b_1 \end{pmatrix}$ id;

#### 单态

在范畴论里我们也可以定义单态:

•  $\phi_1$  为**单态**当且仅当对任意  $\mathsf{a}_2$  若有  $f_1, f_1': \mathsf{a}_2 \overset{c}{\to} \mathsf{a}_1$  满足  $f_1 \overset{c}{\circ} \phi_1 = f_1' \overset{c}{\circ} \phi_1$  则有  $f_1 = f_1'$  。详情见下图:



结合终对象的性质我们不难得知

•  $a_1$  为单态 —— 由 ! 的唯一性可得知 。

## 满态

在范畴论里我们也可以定义满态;

•  $\phi_1$  为**满态**当且仅当对任意  $\mathsf{b}_2$  若有  $g_1,g_1':\mathsf{b}_1\overset{c}{\to}\mathsf{b}_2$  满足  $\phi_1\overset{c}{\circ}g_1=\phi_1\overset{c}{\circ}g_1'$  则有  $g_1=g_1'$  。详情见下图:



#### 同构

在范畴论里我们也可以定义同构:

•  $\phi_1$  为**同构**当且仅当存在  $\psi_1: \mathsf{b}_1 \overset{\mathcal{C}}{
ightarrow} \mathsf{a}_1$  使  $\phi_1 \overset{\mathcal{C}}{\circ} \psi_1 = {}_{\mathsf{:a}_1}\mathrm{id}$  且  $\psi_1 \overset{\mathcal{C}}{\circ} \phi_1 = {}_{\mathsf{:b}_1}\mathrm{id}$  。

结合始终对象的性质便不难得知

• 
$$:_0! = :_1$$
 为同构 —— 这是因为  $0 \overset{\mathcal{C}}{\rightarrow} 0 = \{:_0\mathrm{id}\}$  ,  $1 \overset{\mathcal{C}}{\rightarrow} 1 = \{:_1\mathrm{id}\}$ 

# 同构与自然性

下图即为自然性对应的形象解释 。 后面会将自然性进行进一步推广 。



若提供自然变换  $\beta$  满足自然性 —— 即对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$ ,  $\mathbf{x}_2$  及任意  $\mathcal{C}$  中映射  $f_1: \mathbf{x}_2 \xrightarrow{\mathcal{C}} \mathbf{x}_1$  都会有  $(f_1 \xrightarrow{\mathcal{C}} \mathbf{b}_1) \overset{Set}{\circ} \mathbf{x}_2 \overset{\beta}{=} \mathbf{x}_1 \overset{\beta}{\circ} \overset{Set}{\circ} (f_1 \xrightarrow{\mathcal{C}} \mathbf{b}_2)$  (即下图自西向南走向操作结果同自北向东):



#### 那么我们便会有下述结论:

•  $b_1 \cong b_2$  当且仅当对任意  $\mathcal{C}$  中对象 x  $x^{\beta}$  都是同构 。此时称  $\beta$  为**自然同构** 。

若提供自然变换  $\alpha$  满足自然性 —— 即对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$  ,  $\mathbf{x}_2$  及任意  $\mathcal{C}$  中映射  $g_1: \mathbf{x}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{x}_2$  都会有  $(\mathbf{a}_1 \overset{\mathcal{C}}{\rightarrow} g_1) \overset{\mathcal{S}et}{\circ} \mathbf{x}_2 \overset{\mathcal{C}}{=} \mathbf{x}_1 \overset{\mathcal{C}}{\circ} (\mathbf{a}_2 \overset{\mathcal{C}}{\rightarrow} g_1)$  (即下图自西向南走向操作结果同自北向东):



#### 那么我们便会有下述结论:

•  $\mathbf{a}_1 \cong \mathbf{a}_2$  当且仅当对任意  $\mathcal C$  中对象  $\mathbf{x}^\alpha$  都是同构 。此时称  $\alpha$  为**自然同构** 。

#### 上一页的第一条定理若用交换图表示则应为



⇒ 易证, ← 用到了米田技巧(考虑特殊情况)



为了方便就用 (etc) 表示  $_{:b_1}id(b_1^{\beta})$  。 由上图可知  $f_1(x_2^{\beta}) = f_1 \circ (etc)$ ,故  $x_2^{\beta} = x_2 \rightarrow (etc)$ ;而  $x_2^{\beta} = x_2 \rightarrow (etc) = x_2^{(-\circ(etc))}$ 是同构,从而知 ((etc)  $\circ$  \_) 是同构,(etc) :  $b_1 \stackrel{c}{\rightarrow} b_2$  也是 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

#### 上一页的第二条定理若用交换图表示则应为



⇒ 易证, ← 用到了米田技巧(考虑特殊情况)



为了方便就用 (etc) 表示  $_{:a_1}\mathrm{id}(\mathsf{a}_1^\alpha)$  。 由上图可知  $g_1(\mathsf{x}_2^\alpha) = (\mathrm{etc}) \circ g_1$  ,故  $\mathsf{x}_2^\alpha = (\mathrm{etc}) \to \mathsf{x}_2$  ;  $\mathsf{m} \mathsf{x}_2^\alpha = (\mathrm{etc}) \to \mathsf{x}_2 = \mathsf{x}_2^{((\mathrm{etc}) \circ \_)}$ 是同构,从而知  $(\_\circ (\mathrm{etc}))$  是同构,(etc): $\mathsf{a}_1 \to \mathsf{a}_2$  也是 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

# 章节 04 - 05 类型的积与和

LATEX Definitions are here.

## 泛性质

默认函子  $\overset{c}{\times}: \mathcal{C}\overset{cat}{\times} \mathcal{C}\overset{cat}{\longrightarrow} \mathcal{C}$  在范畴  $\mathcal{C}$  中有下述性质:

•  $(x \xrightarrow{c} a) \times^{Set} (x \xrightarrow{c} b) \cong (x \xrightarrow{c} (a \times b))$ , x 为任意 C 中对象。
——**泛性质**, 指数对乘法的分配律。下图便于形象理解:



默认函子 $+: \mathcal{C} \times \mathcal{C} \xrightarrow{cat} \mathcal{C} \stackrel{cat}{\longrightarrow} \mathcal{C}$  在范畴  $\mathcal{C}$  中有下述性质:

•  $(\mathbf{a} \xrightarrow{\mathcal{C}} \mathbf{x}) \overset{\mathcal{S}et}{\times} (\mathbf{b} \xrightarrow{\mathcal{C}} \mathbf{x}) \cong ((\mathbf{a} + \mathbf{b}) \xrightarrow{\mathcal{C}} \mathbf{x})$ ,  $\mathbf{x}$  为任意  $\mathcal{C}$  中对象。 —— **泛性质**, 指数对加法的分配律。下图便于形象理解:



#### **i** Note

#### 在上面的插图中:

- $\stackrel{\mathcal{C}}{\underset{\mathcal{C}}{\bigtriangleup}}: \mathcal{C} \stackrel{\mathit{Cat}}{\longrightarrow} \mathcal{C} \stackrel{\mathit{Cat}}{\times} \mathcal{C}$  为对角函子,满足 $\Delta: \mathsf{c} \longmapsto \mathsf{c} \cdot \mathsf{c}$
- $I: 2 \stackrel{\mathit{Cat}}{\longrightarrow} \mathcal{C}$  为函子,满足
  - $I: 1 \longmapsto \mathsf{a}$ 
    - $2 \longmapsto b$

2为只有两个对象的范畴,

1和2分别为其中的对象。

这里 2 充当一个指标范畴。

## 函子性

如何证明 $\overset{c}{\times}$ 构成函子呢?请看

- $\overset{c}{\times}: ({}_{:a_2}\mathrm{id} . {}_{:b_2}\mathrm{id}) \longmapsto {}_{:a_2 \overset{c}{\times} b_2}\mathrm{id}$ —— 即函子  $\times$  保持恒等箭头;

下图有助于形象理解证明的过程:





另外规定  $\overset{c}{\times}$  在实参分别为箭头和对象时的输出:

$$egin{array}{ll} ullet &\overset{\mathcal{C}}{\mathop{ imes}}: (f_1 \ . \ \mathsf{b}_1) \longmapsto f_1 \overset{\mathcal{C}}{\mathop{ imes}}_{\overset{:}{\mathcal{b}}_1} \mathrm{id} \ &\overset{\mathcal{C}}{\mathop{ imes}}: (\mathsf{a}_1 \ . \ g_1) \longmapsto {}_{:\mathsf{a}_1} \mathrm{id} imes g_1 \end{array}$$

c如何证明 + 构成函子呢?请看

- c
   +: (:a₁id . :b¿id) → :a₁+b₁id
   —即函子 + 保持恒等箭头;
- $+: (f_1 \overset{c}{\circ} f_2 \cdot g_1 \overset{c}{\circ} g_2) \mapsto h_1 \overset{c}{\circ} h_2 \ -\!\!\!\!\!-\!\!\!\!\!-$  即函子 + 保持箭头复合运算。

下图有助于形象理解证明的过程:





c 同理规定 + 在实参分别为箭头和对象时的输出 :

$$egin{array}{ll} ullet &\overset{c}{ imes}: (f_1 \ . \ \mathsf{b}_1) \longmapsto f_1 \overset{c}{+}_{\dot{\mathcal{C}}} \mathfrak{b}_1 \mathrm{id} \ &\overset{c}{ imes}: (\mathsf{a}_1 \ . \ g_1) \longmapsto {}_{\mathsf{:a}_1} \mathrm{id} + g_1 \end{array}$$

## 运算性质

## 对于函子 $\overset{c}{\times}$ 我们不难得知

•  $\mathbf{a} \overset{c}{\times} \mathbf{1} \cong \mathbf{1} \overset{c}{\times} \mathbf{a} \cong \mathbf{a} \longrightarrow$  乘法有**幺元**  $\mathbf{1}$  。 下图便于理解证明 : (f,g) 决定 h , h' 。



•  $\mathbf{a} \overset{c}{\times} \mathbf{b} \cong \mathbf{b} \overset{c}{\times} \mathbf{a} \longrightarrow \mathfrak{m} \times \mathbb{E}$  乘法运算有**交换律** 。

下图便于理解证明: (f,g) 决定 h, h'。



•  $(a \times b) \times c \cong a \times (b \times c)$  — 乘法运算具有**结合律**。 下图有助于形象理解证明 :  $(f_{ax}, f_{bx}, f_{cx})$  决定 h , h' 。



#### c对于函子+我们不难得知

•  $\mathbf{a} \overset{c}{+} \mathbf{0} \cong \mathbf{0} \overset{c}{+} \mathbf{a} \cong \mathbf{a} \longrightarrow \mathbf{m}$ 法有**幺元**  $\mathbf{0}$ 。 下图有助于理解:(f,g) 决定 h, h'。



•  $\mathbf{a} \stackrel{c}{+} \mathbf{b} \cong \mathbf{b} \stackrel{c}{+} \mathbf{a} \longrightarrow \mathbf{m}$ 法运算有**交换律**。 下图有助于理解: (f,g) 决定 h, h'。

•  $(a + b) + c \cong a + (b + c)$  — 加法运算具有**结合律**。 下图有助于形象理解证明: $(f_{ax}, f_{bx}, f_{cx})$  决定  $\frac{h}{h}$ ,  $\frac{h'}{h}$ 。

$$((a+b)+c)\overset{c}{\Delta}\overset{c}{\leftarrow}(a+b).c\overset{c}{\leftarrow}(a+b).c \overset{\epsilon \cdot \cdot \cdot c \text{id}}{\leftarrow}(a.b).c \qquad (a+(b+c))\overset{c}{\Delta}\overset{\epsilon}{\leftarrow}a.(b+c)\overset{c}{\leftarrow}a.(b+c)$$

$$\overset{c}{\leftarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{c}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l}{\rightarrow}\overset{l$$

#### 幺半范畴

像刚才这样对象运算具有单位元以及结合律的范畴称作幺半范畴;

若上述范畴还具有交换律则称作对称幺半范畴;

很明显我们的范畴 C 是典型的**对称幺半范畴** 。

#### 幺半群

什么是幺半群呢?有两种定义方式:

- **幺半群** *M* 是个范畴,其只含一个对象 m; 其中的复合运算正好有单位元以及结合律。
- 对象 m 属于幺半范畴  $\mathcal{C}$ , 满足下述交换图:





#### 其中

- $u: 1 \stackrel{\mathcal{C}}{ o} m$  其实就是 m 里面的幺元
- $u_l: 1 \overset{c}{ imes} \mathsf{m} \overset{c}{ o} \mathsf{m}$  表示 u 构成左幺元
- $u_r: \mathsf{m} \overset{c}{\times} \mathbf{1} \overset{c}{\to} \mathsf{m}$  表示 u 构成右幺元
- $p: \mathsf{m} \overset{c}{\times} \mathsf{m} \overset{c}{\to} \mathsf{m}$  即为  $\mathsf{m}$  中的二元运算
- $a: (\mathbf{m} \overset{c}{\times} \mathbf{m}) \overset{c}{\times} \mathbf{m} \overset{c}{\to} \mathbf{m} \overset{c}{\times} (\mathbf{m} \overset{c}{\times} \mathbf{m})$  表示  $\mathbf{m}$  具有结合律

# 章节 06 类型的幂

LATEX Definitions are here.

## 泛性质

默认函子  $\overset{c}{\rightarrow}: \mathcal{C} \overset{\mathcal{C}at}{\times} \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{C}$  在范畴  $\mathcal{C}$  中有下述性质:

•  $(\mathbf{a} \overset{c}{\times} \mathbf{x}) \xrightarrow{c} \mathbf{b} \cong \mathbf{x} \xrightarrow{c} (\mathbf{a} \xrightarrow{c} \mathbf{b}) \cong \mathbf{a} \xrightarrow{c} (\mathbf{x} \xrightarrow{c} \mathbf{b})$ ,  $\mathbf{x}$  为任意  $\mathcal{C}$  中对象 —— **泛性质**, 指数与加乘法运算间的关系。 下图便干理解证明:



## 函子性

如何证明  $\stackrel{c}{\rightarrow}$  构成函子呢 ? 请看

- $\overset{\mathcal{C}}{\rightarrow}:({}_{:a_1}\mathrm{id}.{}_{:b_1}\mathrm{id})\longmapsto{}_{:(a_1}\overset{\mathcal{C}}{\rightarrow}{}_{b_1})\mathrm{id}$ ——即函子  $\overset{\mathcal{C}}{\rightarrow}$ 能**保持恒等箭头**;
- $\overset{c}{\rightarrow}: (f_2 \overset{c}{\circ} f_1 \overset{c}{\cdot} g_1 \overset{c}{\circ} g_2) \longmapsto h_1 \overset{c}{\circ} h_2$ —— 即函子  $\overset{c}{\rightarrow}$  **保持箭头复合运算**。

  下图有助于形象理解证明过程:





下图 (自上到下分别为图 1 和图 2)后面会用到。



范畴  $\mathcal{C}$  内任意两对象  $\mathbf{a}_1$  和  $\mathbf{b}_1$  间的箭头构成一个集合  $\mathbf{a}_1 \overset{\mathcal{C}}{\to} \mathbf{b}_1$  ,说明  $\overset{\mathcal{C}}{\to}$  只能将两个对象打到一个集合。下面使  $\overset{\mathcal{C}}{\to}$  升级为函子:若还知道箭头  $f_1: \mathbf{a}_2 \overset{\mathcal{C}}{\to} \mathbf{a}_1$  以及  $g_1: \mathbf{b}_1 \overset{\mathcal{C}}{\to} \mathbf{b}_2$  ,则规定

• 
$$(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):\mathcal{C}^{\mathrm{op}}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{C}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{S}et$$
 为函子且  $(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):\mathsf{a}_1\longmapsto (\mathsf{a}_1\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1)$  , 并且有  $(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):f_1\longmapsto (f_1\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1)=(f_1\stackrel{c}{\underset{:\mathsf{b}_1}{\rightarrow}}\mathsf{id})=\mathsf{b}_1^{(f_1\stackrel{c}{\underset{c}{\rightarrow}})}$ 

图 1 有助于理解。

图 2 有助于理解。

不难看出

• よ:
$$\mathcal{C} \xrightarrow{\mathcal{C}at} (\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}at} \mathcal{S}et)$$

• よ: $\mathcal{C} \xrightarrow{\mathcal{C}} (\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}} \mathcal{S}et)$ 

• ね成一个函子,称作预层

 $g_1 \longmapsto (\_ \xrightarrow{\mathcal{C}} g_1) = (\_ \circ g_1)$  构成一个函子间映射,即自然变换

• 
$$(\mathsf{a}_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}}): \overset{\mathcal{C}^{\mathrm{op}} \overset{\mathcal{C}_{at}}{\nearrow}}{\underset{\mathcal{C}}{\nearrow}} \overset{\mathcal{C}_{at}}{\underset{\mathcal{C}}{\longrightarrow}} \overset{\mathcal{C}_{at}}{\nearrow} \overset{\mathcal{C}$$

图 2 有助于理解。

$$egin{aligned} (f_1 \stackrel{\mathcal{C}}{\underset{\mathcal{C}}{
ightarrow}}): & \mathcal{C} \stackrel{\mathcal{C}at}{
ightarrow} \mathcal{S}et \ , \ (f_1 \stackrel{\mathcal{C}}{\underset{\mathcal{C}}{
ightarrow}}): \mathsf{b}_1 \longmapsto (f_1 \stackrel{\mathcal{C}}{\underset{\mathcal{C}}{
ightarrow}} \mathsf{b}_1) = (f_1 \stackrel{\mathcal{C}}{\underset{\mathcal{C}}{
ightarrow}} :_{\mathsf{b}_1} \mathrm{id}) = \mathsf{b}_1 \stackrel{\mathcal{C}}{\overset{\mathcal{C}}{
ightarrow}} \ (f_1 \stackrel{\mathcal{C}}{\hookrightarrow} \_): g_1 \longmapsto (f_1 \stackrel{\mathcal{C}}{\hookrightarrow} g_1) = (f_1 \stackrel{\mathcal{C}}{\circ} \_) \stackrel{\mathcal{C}}{\circ} (f_1 \stackrel{\mathcal{C}}{\circ} \_) \\ & \circ (f_1 \stackrel{\mathcal{C}}{\hookrightarrow} \_): g_1 \longmapsto (f_1 \stackrel{\mathcal{C}}{\hookrightarrow} g_1) = (f_1 \stackrel{\mathcal{C}}{\circ} \_) \stackrel{\mathcal{C}}{\circ} (f_1 \stackrel{\mathcal{C}}{\circ} \_) \end{aligned}$$

图 1 有助于理解。

不难看出

• 尤:
$$\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}_{at}} (\mathcal{C} \xrightarrow{\mathcal{C}_{at}} \mathcal{S}et)$$
 $\mathbf{a}_1 \longmapsto (\mathbf{a}_1 \xrightarrow{\mathcal{C}} \_)$  构成一个函子
 $f_1 \longmapsto (f_1 \xrightarrow{\mathcal{C}} \_) = (f_1 \circ \_)$  构成一个函子间映射,即自然变换
该函子戏称为**尤达嵌入**。

#### 积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象 , 所有类型的和 , 则可将其称作是**余积闭范畴** ;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴** 。

# 章节 07 递归类型

LATEX Definitions are here.

## 泛性质

默认对象 N 在范畴  $\mathcal{C}$  中有下述性质:

•  $(\mathbf{1} \xrightarrow{c} \mathbf{x}) \overset{cat}{\times} (\mathbf{x} \xrightarrow{c} \mathbf{x}) \cong (\mathbf{N} \xrightarrow{c} \mathbf{x})$ ,  $\mathbf{x}$  为任意  $\mathcal{C}$  中对象 —— **泛性质**。 rec 即对应的同构 ( 上式从左至右 ) 。





默认函子 [\_]:  $\mathcal{C} \xrightarrow{cat} \mathcal{C}$  在范畴  $\mathcal{C}$  中有下述性质:

•  $(1 \xrightarrow{c} x) \times^{cat} ((x \times^{c} b) \xrightarrow{c} x) \cong ([b] \xrightarrow{c} x), x$  为任意 C 中对象 — **泛性质**。 foldr 即对应的同构(上述等式从左至右)。



## 函子性

如何证明[\_]构成函子呢?请看

- [\_]: :b₁id → :[b₁]id
   [\_] 保持恒等箭头;
- [ $\_$ ]:  $(g_1 \overset{c}{\circ} g_2) \longmapsto (h_1 \overset{c}{\circ} h_2)$  [ $\_$ ] 保持箭头复合运算。

下图便于形象理解证明过程。

# 章节 08 - 09 函子与自然变换

LATEX Definitions are here.

## 一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
  - Set 中对象为任意集合;
  - Set 中箭头为集合间映射。
- Cat: 所有范畴构成的范畴, 满足
  - Cat 中任何对象都构成一个范畴;
  - Cat 中任何箭头都构成一个函子。

#### 若 $\mathcal{C}$ , $\mathcal{D}$ 为 $\mathcal{C}at$ 中对象,则:

- C<sup>op</sup>: 反范畴,满足
  - C<sup>op</sup> 中对象皆形如 c,
     c 为任意 C 中的对象;
  - $\mathcal{C}^{\mathrm{op}}$  中箭头皆形如  $\phi^{\mathrm{op}}: \mathsf{c}_2 \xrightarrow{\mathcal{C}^{\mathrm{op}}} \mathsf{c}_1$  ,  $\phi: \mathsf{c}_1 \xrightarrow{\mathcal{C}} \mathsf{c}_2$  可为任意  $\mathcal{C}$  中的箭头 。
- で<sup>cat</sup> ン: **积范畴**, 満足
- $\mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ : **所有**  $\mathcal{C}$  **到**  $\mathcal{D}$  **的函子的范畴** , 满足
  - $\mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$  中任何对象 都是  $\mathcal{C}$  到  $\mathcal{D}$  的函子;
  - $\mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$  中任何箭头都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象;满足
  - $\mathcal{C}/c$  中对象皆形如  $\cancel{x}$   $\cancel{1}$  .  $\phi$  , 其中 x 和  $\phi$  : x  $\overset{c}{\rightarrow}$  c 分别为  $\mathcal{C}$  中任意的对象和箭头 ;







- $c/\mathcal{C}$ : **仰范畴**, 这里 c 为任意  $\mathcal{C}$  中对象;满足
  - c/C 中对象皆形如  $1 \times . \phi$ , 其中 x 和  $\phi$ :  $c \xrightarrow{c} x$  分别为 C 中对象和箭头;
  - $\mathcal{C}/c$  中箭头皆形如  $\mathcal{L}$  点d.  $g_1$  且满足下述交换图 , 其中  $\mathsf{x}_1$  ,  $\mathsf{x}_2$  为  $\mathcal{C}$  中任意对象且  $g_1$  ,  $\phi_1$  ,  $\phi_2$  为  $\mathcal{C}$  中任意箭头 ;







#### 函子

接下来我们来提供函子的正式定义:

- $P: \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$  为范畴当且仅当
  - 对任意  $\mathcal C$  中对象  $\mathbf c$  ,  $\mathbf c P$  为  $\mathcal D$  中对象且  ${}_{:\mathbf c P}\mathrm{id}$  ;
  - 对任意  $\mathcal C$  中箭头  $\phi_1$ :  $\mathbf c_1 \overset{c}{ o} \mathbf c_2$  和  $\phi_2$ :  $\mathbf c_2 \overset{c}{ o} \mathbf c_3$ , 始终都有等式  $(\phi_1 \circ \phi_2)P = \phi_1 P \overset{\mathcal D}{\circ} \phi_2 P$  成立。

#### 函子的复合运算

假如刚才的 P 确实构成一个函子且  $Q:\mathcal{D}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{E}$  也构成函子 , 那么

•  $P \overset{\mathcal{C}at}{\circ} Q : \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{E}$  也构成一个函子。

#### 恒等函子

对于函子我们也有恒等映射,即:

$$ullet :_{\mathcal{C}} \mathrm{id} \overset{\mathcal{C}at}{\circ} P = P \ = P \overset{\mathcal{C}at}{\circ}_{:\mathcal{D}} \mathrm{id}$$

#### 忠实和完全函子

若 C , D , E 皆为**局部小范畴** , 则

- P 是**忠实的**当且仅当对任意  $\mathcal{C}$  中的对象  $\mathbf{c}_1$  ,  $\mathbf{c}_2$   $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$  与  $(\mathbf{c}_1 P\overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$  之间始终存在单射 ;
- P 是**完全的**当且仅当对任意  $\mathcal{C}$  中的对象  $\mathbf{c}_1$  ,  $\mathbf{c}_2$   $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$  与  $(\mathbf{c}_1 P\overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$  之间始终存在满射 ;
- P 是**完全忠实的**当且仅当对任意  $\mathcal{C}$  中的对象  $c_1$  ,  $c_2$   $(c_1 \overset{\mathcal{C}}{\rightarrow} c_2)$  与  $(c_1 P\overset{\mathcal{D}}{\rightarrow} c_2 P)$  之间始终存在双射 ( 即集合间同构 ) 。

#### (i) Note

刚才提到的"单/满/双射" 针对的都是范畴的箭头部分。

## 自然变换

如果还知道  $P': \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$  为函子 , 那么

•  $\eta: P \xrightarrow{c \xrightarrow{cat} \mathcal{D}} P'$  为自然变换当且仅当对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$  ,  $\mathbf{x}_2$  始终都会有下述交换图成立:



## 自然变换的复合

若已知  $\eta: P \xrightarrow{c \xrightarrow{cat} \mathcal{D}} P'$  构成自然变换且还知道  $\eta': P' \xrightarrow{c \xrightarrow{\mathcal{D}} \mathcal{D}} P''$  为自然变换则

•  $\eta \overset{c\overset{cat}{\longrightarrow}\mathcal{D}}{\circ} \eta': P \overset{c\overset{cat}{\longrightarrow}\mathcal{D}}{\longrightarrow} P'$  为自然变换,称作  $\eta$  和  $\eta'$  的**纵复合** 。



如果还知道  $Q':\mathcal{D} \xrightarrow{\mathcal{C}at} \mathcal{E}$  也是个函子以及自然变换  $\theta:Q \xrightarrow{\mathcal{D} \to \mathcal{E}} Q'$  ,则有

•  $\eta \circ \theta : P \overset{cat}{\circ} Q \overset{c \overset{cat}{\longrightarrow} \mathcal{E}}{\longrightarrow} P' \overset{cat}{\circ} Q'$  为自然变换, 称作  $\eta$  和  $\theta$  的**横复合** 。



若  $heta':Q' \xrightarrow{\mathcal{D} \xrightarrow{\mathcal{E}} \mathcal{E}} Q''$  为自然变换则

•  $(\eta \circ \theta) \overset{c \overset{cat}{\longrightarrow} \mathcal{E}}{\circ} (\eta' \circ \theta') = (\eta \overset{c \overset{cat}{\longrightarrow} \mathcal{D}}{\circ} \eta') \circ (\theta \overset{\mathcal{D} \overset{cat}{\longrightarrow} \mathcal{E}}{\circ} \theta')$ , 改变横纵复合的先后顺序也不会影响最终结果。



## 恒等自然变换

同样对于自然变换也有恒等映射。

•  $_{:P}\mathrm{id}:P\overset{\mathcal{C}\overset{cat}{\longrightarrow}\mathcal{D}}{\longrightarrow}P$ ,并且对范畴  $\mathcal{C}$  中任意对象 x 都会有  $\mathsf{x}^{:_{P}\mathrm{id}}:\mathsf{x}P\overset{\mathcal{D}}{\longrightarrow}\mathsf{x}P$   $\mathsf{x}^{:_{P}\mathrm{id}}:=_{:\mathsf{x}_{1}P}\mathrm{id}$ 

# 自然同构

在范畴论中我们更关心的是自然同构。

•  $\eta: P \xrightarrow{c \xrightarrow{Cat} \mathcal{D}} P'$  为**自然同构**当且仅当  $\mathbf{x}^{\eta}$  总是同构 , 这里  $\mathbf{x}$  为任意  $\mathcal{C}$  中对象 。