Notas

Jorge Alfredo Álvarez Contreras

20th December 2021

Contenido

1	Ecuaciones Diferenciales de Primer Orden				2
1.1 Obtención de una ecuación diferencial parcial			na ecuación diferencial parcial	3	
		1.1.1	Por elin	ninación de funciones arbitrarias	3
		1.1.2	Caso ge	ométrico	4
	1.2	Solución de ecuaciones lineales de primer orden			7
		1.2.1	Ecuació	n diferencial homogénea con coeficientes constantes	8
		1.2.2	Ecuació	n no homogénea	9
2	Ser	ies de	Fourier 1		
3	Métodos de solución. (Mie 10 nov 2021)				12
	3.1 Método por separación de variables			paración de variables	12
		3.1.1	Problemas de calor		12
			3.1.1.1	Problemas con temperatura cero	12
			3.1.1.2	Extremos aislados	15
			3.1.1.3	Extremos con temperatura constante (mie 17 nov 2021)	16
			3.1.1.4	Modelo con extremos que irradian temperatura	17
			3.1.1.5	Problema de calor no homogéneo	19
	3.1.2 Problemas de vibraciones		21		
			3.1.2.1	Vibraciones con perturbación	24
		3.1.3 Vibraciones en dos dimensiones			25
			3.1.3.1	Vibraciones en una membrana rectangular (26 nov 2021)	25
			3.1.3.2	Vibraciones en una membrana circular (1 dic 2021)	25

Chapter 1

Ecuaciones Diferenciales de Primer Orden

Definición 1. Una ecuación diferencial parcial (EDP) es una ecuación que involucra derivadas de una o más variables dependientes respecto a más de una variable independiente.

Ejemplo 1.0.1. Si u = u(x, y, z) entonces

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0,$$

es una EDP conocida com la ecuación de Laplace.

Los conceptos como orden, linealidad, homogeniedad son similares a los vistos en ecuaciones diferenciales ordinarias.

Definición 2 (Orden). Es el orden de la máxima o máximas derivadas que aparezcan en la EDP.

Definición 3 (Linealidad). Se dice que una EDP es lineal si la variable o variables son lineales, así como todas sus derivadas.

Ejemplo 1.0.2. La siguiente ecuación es una EDP de primer orden en dos variables x, y:

$$P(x,y)z_x + Q(x,y)z_y + R(x,y)z = S(x,y).$$

Ejemplo 1.0.3. La siguiente EDP es de segundo orden en x, y:

$$A(x,y)z_{xx} + 2B(x,y)z_{xy} + C(x,y)z_{yy} + D(x,y)z_x + E(x,y)z_y + F(x,y)z = S(x,y),$$

en donde P, Q, R, A, B, C, D, E y F son funciones continuas en alguna región del plano.

Definición 4 (Ecuación cuasilineal). Uan EDP se dice cuasilineal si ésta es lineal en las máximas derivadas que aparecen en la ecuación sin importar como son los coeficientes.

Ejemplo 1.0.4. De primer orden:

$$P(x, y, z)z_x + Q(x, y, z)z_y = R(x, y, z).$$

De segundo orden:

$$A(x, y, z, z_x, z_y)z_{xx} + B(x, y, z, z_x, z_y)z_{yy} + C(x, y, z, z_x, z_y)z_{xy} = R(x, y, z, z_x, z_y).$$

Definición 5 (Ecuación casilineal). La ecuación se dice casilineal si ésta es cuasilineal y los coeficientes dependen solo de las variables independientes.

Ejemplo 1.0.5. De primer orden:

$$P(x,y)z_x + Q(x,y)z_y = R(x,y,z).$$

De segundo orden:

$$A(x,y)z_{xx} + B(x,y)z_{yy} + C(x,y)z_{xy} = R(x,y,z,z_x,z_y).$$

Definición 6 (Solución de una EDP). Por una solución de una EDP se entiende a una función $\varphi(x,y)$ tal que al sustituirla en la ED, ésta se satisface.

Ejercicio 1. Determine si la función $\varphi(x,y) = \frac{1}{3}x^3 + xy^2 + c$, donde c es una constante, es solución de la ecuación diferencial

$$\frac{\partial z}{\partial x} + z = x, \quad z = z(x, y).$$

Solución. Sea $z = \varphi(x,y) = \frac{1}{3}x^3 + xy^2 + c$, entonces $z_x = x^2 + y^2$, sustituyendo en la ecuación obtenemos

$$x^{2} + y^{2} + \frac{1}{3}x^{3} + xy^{2} \neq x,$$

por lo tanto φ no es solución de la ecuación diferencial.

Ejercicio 2. Sea $\varphi(x,y) = e^{x^2} f(x^2 + y^2)$ donde f es arbitraria. La ecuación es $yz_x - xz_y = 2xyz$.

Solución. Primero calculamos las derivdas parciales

$$z_x = 2xe^{x^2}f(x^2 + y^2) + e^{x^2}f'(x^2 + y^2)2x$$
$$z_y = e^{x^2}f'(x^2 + y^2)2y$$

Sustituyendo tenemos

$$y \left[2xe^{x^2} f(x^2 + y^2) + e^{x^2} f'(x^2 + y^2) 2x \right] - 2xye^{x^2} f'(x^2 + y^2) = 2xye^{x^2} f(x^2 + y^2)$$

$$\iff 2xye^{x^2} f(x^2 + y^2) + 2xye^{x^2} f'(x^2 + y^2) - 2xye^{x^2} f'(x^2 + y^2) = 2xye^{x^2} f(x^2 + y^2)$$

$$\iff 2xye^{x^2} f(x^2 + y^2) = 2xye^{x^2} f(x^2 + y^2).$$

Por lo tanto φ sí es solución de la ecuación.

1.1 Obtención de una ecuación diferencial parcial

1.1.1 Por eliminación de funciones arbitrarias

Dada una familia $z = \varphi(x, y)$ de funciones definidas en cierto dominio del plano, es posible obtener una ecuación diferencial eliminando las funciones arbitrarias que aparezcan en ella.

Ejemplo 1.1.1. Sean f(x) y g(y) dos funciones diferenciables y sea z = f(x) + g(y). Determine la ecuación diferencial correspondiente a la familia dada.

Solución. Dado que f y g son arbitrarias, la ecuación diferencial debe ser de segundo orden. Si z = f(x) + g(y), entonces

$$z_x = f'(x)$$

$$z_y = g'(y)$$

$$z_{xx} = f''(x)$$

$$z_{yy} = g''(y)$$

$$z_{xy} = 0.$$

Observamos que z satisface la ecuación buscada $z_{xy} = 0$.

Ejemplo 1.1.2. Sea z = f(x)g(y). De nuevo

$$z_x = f'(x)g(y)$$

$$z_y = f(x)g'(y)$$

$$z_{xx} = f''(x)g(y)$$

$$z_{yy} = f(x)g''(y)$$

$$z_{xy} = f'(x)g'(y).$$

Ahora, $z_x z_y = f'(x)g(y)f(x)g'(y) = z_{xy}z$, por lo tanto la ecuación buscada es

$$z_{xy}z - z_xz_y = 0.$$

Ejemplo 1.1.3. Sea $z = e^{-x} f(x - y)$. La solución será de primer orden. Las parciales son

$$z_x = -e^{-x} f(x - y) + e^{-x} f'(x - y)$$

$$z_y = -e^{-x} f'(x - y).$$

Sumando tenemos

$$z_x + z_y = -e^{-x}f(x - y) = -z \implies z + z_x + z_y = 0.$$

1.1.2 Caso geométrico

Podemos obtener una ecuación diferencial correspondiente a los planos tangentes a una superficie.

(a) Sea f una función diferenciable en una región del plano xy, entonces la superficie \mathbb{S} en el espacio tiene un plano tangente en el punto (x_0, y_0, z_0) dada como

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0.$$

(b) Si S está dada por la función en forma ímplicita F(x, y, z) = 0, entonces la ecuación del plano tangente a S en el punto (x_0, y_0, z_0) es

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

(c) Supongamos que \mathbb{S} está dada por la ecuación en forma paramétrica x = f(u, v), y = g(u, v) y z = h(u, v), donde u y v son parámetros en donde los Jacobianos

$$J_1 = \frac{\partial(g,h)}{\partial(u,v)}, \quad J_2 = \frac{\partial(f,h)}{\partial(u,v)}, \quad y \quad J_3 = \frac{\partial(f,g)}{\partial(u,v)}$$

no son ceros simultáneamente. Entonces la ecuación del plano tangente a S es

$$J_1 \cdot (x - x_0) + J_2 \cdot (y - y_0) + J_3 \cdot (z - z_0) = 0.$$

Recordatorio 1. Los Jacobianos se calculan como

$$J_1 = \begin{vmatrix} \frac{\partial g}{\partial u} & \frac{\partial g}{\partial v} \\ \frac{\partial h}{\partial u} & \frac{\partial h}{\partial v} \end{vmatrix},$$

donde $J_1, J_2, \ y \ J_3$ están evaluados en el punto (u_0, v_0) correspondiente a (x_0, y_0, z_0) .

El procedimiento se describe en el siguiente ejemplo.

Ejemplo 1.1.4. Determine la ED de la familia de todos los planos tangentes a la elipsoide $x^2 + 4y^2 + 4z^2 = 4$ no perpendiculares al plano xy.

Solución. Sea $f(x_0, y_0, z_0)$ un punto en la superficie \mathbb{S} con $z_0 \neq 0$. Entonces la ecuación del plano tangente es

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Calculando las derivadas parciales

$$F_x = 2x$$
 $F_y = 8y$ $F_z = 8z$,

evaluando en (x_0, y_0, z_0) y sustituyendo obtenemos la ecuación del plano tangente

$$2x_0(x - x_0) + 8y(y - y_0) + 8z_0(z - z_0) = 0$$

$$\iff xx_0 - x_0^2 + 4yy_0 - 4y_0^2 + 4zz_0 - 4z_0^2 = 0$$

$$\iff xx_0 - 4yy_0 + 4zz_0 = x_0^2 + 4y_0^2 + 4z_0^2.$$

Derivando la ecuación del plano respecto a x y a y obtenemos

$$x_0 + 4z_x z_0 = 0 \implies x_0 = -4z_x z_0$$

 $4y_0 + 4z_y z_0 = 0 \implies y_0 = -z_y z_0.$

Sustituyendo los valores de x_0 y y_0 en la ecuación del plano obtenemos

$$-4xz_0z_x - 4yz_0z_y + 4zz_0 = 16z_x^2z_0^2 + 4z_y^2z_0^2 + 4z_0^2$$

$$\implies -xz_x - yz_y + z = (4z_x^2 + z_y^2 + 1)z_0.$$

Dado que el punto $P(x_0, y_0, z_0)$ pertenece a la superficie \mathbb{S} , se sigue que $x_0^2 + 4y_0^2 + 4z_0^2 = 4$. Sustituyendo el valor de x_0 y y_0 en la restricción anterior podemos despejar a z_0 :

$$16z_x^2 z_0^2 + 4z_y^2 z_0^2 + 4z_0^2 = 4$$

$$\implies (4z_x^2 + z_y^2 + 1)z_0^2 = 1$$

$$\implies z_0^2 = \frac{1}{4z_x^2 + z_y^2 + 1}.$$

Finalmente sustituímos el valor de z₀ en la ecuación del plano

$$z - xz_x - yz_y = (4z_x^2 + z_y^2 + 1) \frac{1}{(4z_x^2 + z_y^2 + 1)^{1/2}}$$

$$\implies z - xz_x - yz_y = (4z_x^2 + z_y^2 + 1)^{1/2},$$

o equivalentemente

$$(z - xz_x - yz_y)^2 = 4z_x^2 + z_y^2 + 1,$$

la cual es la ecuación diferencial de la familia de planos tangentes.

imgs/chap1-tangent.png

Figure 1.1: El plano tangente es solución particular de la ecuación diferencial anterior.

Ejemplo 1.1.5. Determine la ecuación diferencial de la familia de todos los planos tangentes a la superficie $\mathbb S$ dada por $x^2 - y^2 - z^2 = 0$.

Solución. Sea $P(x_0, y_0, z_0)$ un punto en la superficie \mathbb{S} , entonces la ecuación del plano tangente es:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0,$$

donde

$$F_x = 2x$$
, $F_y = -2y$, $F_z = -2z$,

evaluando en (x_0, y_0, z_0) obtenemos

$$2x_0(x - x_0) - 2y_0(y - y_0) - 2z_0(z - z_0) = 0$$

$$\iff xx_0 - yy_0 - zz_0 = x_0^2 - y_0^2 - z_0^2.$$

Derivando la ecuación del plano respecto a x y y tenemos

$$x_0 - z_x z_0 = 0 \implies x_0 = z_x z_0$$

 $-y_0 - z_y z_0 = 0 \implies y_0 = -z_y z_0.$

Sustituyendo:

$$xz_xz_0 + yz_yz_0 - zz_0 = (z_xz_0)^2 - (z_yz_0)^2 - z_0^2$$

$$\iff xz_x + yz_y - z = (z_x^2 - z_y^2 - 1)z_0.$$

Como $P \in \mathbb{S}$ y $z_0 \neq 0$, se sigue que

$$x_0^2 - y_0^2 - z_0^2 = 0 \implies (z_x z_0)^2 - (z_y z_0)^2 - z_0^2 = 0$$

$$\implies z_x^2 z_0^2 - z_y^2 z_0^2 - z_0^2 = 0$$

$$\implies z_x^2 - z_y^2 - 1 = 0$$

$$\implies z_x^2 - z_y^2 = 1.$$

Así la ecuación diferencial es

$$xz_x + yz_y - z = 0.$$

1.2 Solución de ecuaciones lineales de primer orden

Recordemos que una ecuación diferencial lineal es de la forma

$$A(x,y)z_x + B(x,y)z_y + C(x,y)z = G(x,y), (1.1)$$

donde A, B, C y G son continuas en el plano. La ecuación más sencilla de resolver es cuando 1.1 contiene solo una derivada parcial z_x ó z_y ya que se puede manejar como una ecuación diferencial lineal ordinaria de primer orden:

$$y' + P(x)y = Q(X),$$

cuya solución es

$$y(x) = e^{-\int P(x) dx} \left[\int e^{\int P(x) dx} Q(x) dx + C \right].$$

Ejemplo 1.2.1. Resolver $4z_x - 2xz = xy$ donde z = z(x, y).

Solución. Dividiendo por 4 obtenemos $z_x - \frac{1}{2}xz = \frac{1}{4}xy$, donde

$$P(x) = -\frac{1}{2}x$$
 y $Q(x) = \frac{1}{4}xy$.

De acuerdo a lo anterior, la solución está dada por

$$z(x,y) = e^{-\int P(x) dx} \left[\int e^{\int P(x) dx} dx + C \right]$$

$$= e^{\frac{1}{2}x dx} \left[\int e^{-\int \frac{1}{2}x dx} \cdot \frac{1}{4}xy dx + f(y) \right]$$

$$= e^{1/4x^2} \left[-\frac{y}{2} e^{-1/4x^2} + f(y) \right]$$

$$= -\frac{y}{2} + e^{1/4x^2} f(y),$$

donde f es una función arbitraria de y.

1.2.1 Ecuación diferencial homogénea con coeficientes constantes

Consideremos la ecuación

$$Az_x + Bz_y + Cz = 0,$$

con $A, B \ y \ C$ constantes. Para determinar la solución de la ecuación se hace el siguiente cambio de variable:

$$z_x = z_{\xi} \xi_x + z_{\eta} \eta_x = c_{11} z_{\xi} + c_{21} z_{\eta}$$

$$z_y = z_{\xi} \xi_y + z_{\eta} \eta_y = c_{12} z_{\xi} + c_{22} z_{\eta}.$$

Sustituyendo en la ecuación diferencial tenemos

$$A(z_{\xi}\xi_{x} + z_{\eta}\eta_{x}) + B(z_{\xi}\xi_{y} + z_{\eta}\eta_{y}) + Cz = 0$$

$$\iff A(c_{11}z_{\xi} + c_{21}z_{\eta}) + B(c_{12}z_{\xi} + c_{22}z_{\eta}) + Cz = 0$$

$$\iff (Ac_{11} + Bc_{12})z_{x}i + (Ac_{21} + Bc_{22})z_{\eta} + Cz = 0,$$

donde ahora $z = z(\xi, \eta)$. Ahora, fijemos $c_{11} = 1$, $c_{12} = 0$, $c_{21} = B$ y $c_{22} = -A$, entonces la ecuación diferencial anterior se reduce:

$$Az_{\mathcal{E}} + Cz = 0,$$

ó equivalentemente (si $A \neq 0$):

$$z_{\xi} + \frac{C}{A}z = 0,$$

cuya solución es

$$z(\xi,\eta) = f(\eta)e^{-\frac{C}{A}\xi}.$$

De acuerdo a la elección de las constantes también tenemos que

$$\xi = x, \quad \eta = Bx - Ay,$$

por lo tanto la solución de la ecuación origianl es

$$z(x,y) = f(Bx - Ay)e^{-\frac{C}{A}x},$$

para f arbitraria.

Observación 1. Para que el cambio de variables sea invertible, es necesario que el jacobiano no se anule, en éste caso tenemos

$$\frac{\partial(\xi,\eta)}{\partial(x,y)} = -A \neq 0.$$

Ejemplo 1.2.2. Resolver la ecuación $3z_x - 2z_y + 4z = 0$.

Solución. Notemos que A = 3, B = -2 y C = 4, entonces

$$z(x,y) = f(2x+3y)e^{-\frac{4}{3}x}.$$

1.2.2 Ecuación no homogénea

La ecuación no homogenea es de la forma

$$Az_x + Bz_y + Cz = G(x, y),$$

y recordamos que la solución general de la ecuación no homogenea es

$$z = z_h + z_p,$$

donde z_h es la solución a la ecuación homogenea correspondiente y z_p es una solución particular de la ecuación no homogenea.

Dicha solución particular se puede determinar mediante el método de coeficientes indeterminados si G(x, y) es una combinación de funciones elementales:

$$\sin, \cos, \exp,$$

con argumentos lineales en x y en y, ó cuando G es un polinomio en x y y.

Ejemplo 1.2.3. Resolver la ecuación $2z_x - 3z_y + z = 5e^{-2x-y} + xy$.

Solución. (a) Primero obtenemos la solución de la ecuación homogenea $2z_x - 3z_y + z = 0$, la cual está dada por

$$z(x,y) = f(3x+2y)e^{-\frac{1}{2}x}.$$

(b) Ahora obtenemos una solución particular para el término $5e^{-2x-y}$. Para ésto proponemos una solución de la forma

$$z = Ae^{-2x-y}.$$

calculando las derivadas parciales obtenemos

$$z_x = -2Ae^{-2x-y}, \quad z_y = -Ae^{-2x-y},$$

sustituyendo en la ecuación

$$2(-2Ae^{-2x-y}) - 3(-Ae^{-2x-y}) + Ae^{-2x-y} = 5e^{-2x-y}$$

$$\implies -4A + 3A + A = 5$$

$$\implies 0 = 5.$$

lo cual es absurdo, por lo tanto la solución propuesta no es adecuada, intentemos con $z=Axe^{-2x-y}$, entonces

$$z_x = Ae^{-2x-y} - 2Axe^{-2x-y}, \quad z_y = -Axe^{-2x-y},$$

sustituy endo

$$2(Ae^{-2x-y} - 2Axe^{-2x-y}) - 3(-Axe^{-2x-y}) + Axe^{-2x-y} = 5e^{-2x-y}$$

$$\implies 2A - 4Ax + 3Ax + Ax = 5$$

$$\implies A = \frac{5}{2},$$

por lo tanto $z_{p_1} = \frac{5}{2}xe^{-2x-y}$. La solución particular z_{p_2} correspondiente al término xy se deja como ejercicio para el lector.

Ejercicio 3. Resolver la ecuación de coeficientes constantes no homogenea $z_x + 2z_y = \sin x - 3\cos y$.

CONTINUAR CON SESIÓN 5.PDF...

Chapter 2

Series de Fourier

Definición 7. Dos funciones son ortogonales en [a,b] si $\int_a^b fg = 0$.

Ejemplo 2.0.1. (a) si $f(x) = 2x^2$ y $g(x) = 4x^3$, ambas definidas en [-1, 1], entonces

$$\int_{-1}^{1} 2x^2 \cdot 4x^3 \, dx = 8 \int_{-1}^{1} x^5 \, dx$$
$$= \frac{8}{6} x^6 \Big|_{-1}^{1}$$
$$= 0$$

(b) Sea f(x) = 4x - 1 y $g(x) = x^2 - 2x$ definidas en [0, 2]. Entonces

$$\int_0^2 (4x - 1)(x^2 - 2x) dx = \int_0^2 (4x^3 - 9x^2 + 2x) dx$$
$$= x^4 - 3x^3 + x^2|_0^2$$
$$= -4$$
$$\neq 0.$$

Definición 8. Un conjunto infinito de funciones $\{\varphi_n\}_{n=0}^{\infty}$ se dice que es ortogonal en [a,b] si

$$\int_{a}^{b} \varphi_{n} \varphi_{m} = 0 \qquad para \ n \neq m.$$

 $Si \ n = m, \ entonces$

$$\langle \varphi_n, \varphi_m \rangle = \int_a^b \varphi_n^2$$

es la norma cuadrada de φ_n que se denotará como $\|\varphi_n\|$.

Ejemplo 2.0.2. (a) El conjunto $\{1, \cos x, \cos 2x, \cos 3x, \dots\}$ es ortogonal en $[-\pi, \pi]$, ya que, si $\varphi_n(x) = \cos nx$, $n = 1, 2, 3, \dots$ y $\varphi_0(x) = 1$, entonces

$$\int_{-\pi}^{\pi} \varphi_n \varphi_m = \int_{-\pi}^{\pi} \cos nx \cos mx \, dx$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} [\cos((m+n)x) + \cos((m-n)x)] \, dx$$

$$= \frac{1}{2(m+n)}\sin((m+n)x) + \frac{1}{2(m-n)}\sin((m-n)x)\Big|_{-\pi}^{\pi}$$

= 0.

para $n, m \ge 0, n \ne m$.

(b) Determine si el conjunto $\{\sin x, \sin 2x, \sin 3x, \dots\}$ es ortogonal en $[0, 2\pi]$. Tenemos

$$\int_0^{\pi} \sin nx \sin mx \, dx = \frac{1}{2} \int_0^{\pi} \left[\cos((m-n)x) - \cos((m+n)x) \right] dx$$
$$= \frac{1}{2(m-n)} \sin((m-n)x) - \frac{1}{2(m+n)} \sin((m+n)x) \Big|_0^{\pi}$$
$$= 0.$$

Chapter 3

Métodos de solución. (Mie 10 nov 2021)

Los métodos más usuales para resolver los P.F. son

- (a) Separación de variables
- (b) Por transformadas integrales
 - Laplace
 - Fourier
- (c) Funciones de Green
- (d) Funciones variacionales
- (e) Métodos numéricos

3.1 Método por separación de variables

3.1.1 Problemas de calor

3.1.1.1 Problemas con temperatura cero

Considérese el problema de determinar la distribución de temperatura en una varilla delgada lateralmente aislada de longitudo L en donde la temperatura en los extremos es cero y con temperatur ainicial dada por f(x) a lo largo de la varilla.

Modelo Sea u = u(x,t) la función que describe la temperatura sobre la varilla. Entonces la ecuación diferencial es

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \qquad \quad 0 < x < L, t > 0.$$

C.F.
$$u(0,t) = 0$$
 $u(L,t) = 0$ $t > 0$
C.I. $u(x,0) = f(x)$ $0 < x < L$

Solución El método de separación de variables supone como solución a

$$u(x,t) = X(x)T(t).$$

Sustituyendo en la ecuación diferencial, tenemos XT' = kX''T. Dividiendo entre ku = kXT, tenemos

$$\frac{XT'}{kXT} = k\frac{X''T}{kXT}.$$

Es decir,

$$\frac{T'}{kT} = \frac{X''}{X}.$$

Como el lado izquierdo depende solo de t y el lado derecho depende solo de X, la igualdad anterior solo es posible cuando ambos lados son iguales a una constante. La denotaremos como $-\lambda$ por conveniencia. Así,

$$\frac{T'}{kT} = \frac{X''}{X} = -\lambda.$$

A λ la llamaremos la constante de separación. Por lo tanto, obtenemos dos EDO

$$X'' + \lambda X = 0 \qquad T' + kT = 0$$

Ahora, aplicando las condiciones de frontera a u(x,t):

Si
$$u(0,t) = 0$$
 \Longrightarrow $X(0)T(t) = 0$ ssi $X(0) = 0$
Si $u(L,t) = 0$ \Longrightarrow $X(L)T(t) = 0$ ssi $X(L) = 0$

Así, obtenemos un problema de Strum-Liouville cuya solución depende de λ .

• Caso $\lambda = 0$. Entonces la ecuación diferencial X'' = 0 tiene solución

$$X(x) = c_1 + c_2 x$$
.

- Como X(0) = 0, entonces $c_1 + 0 = 0$, por lo cual $c_1 = 0$.
- Como X(L) = 0, entonces $c_2L = 0$, por lo cual $c_2 = 0$.

Concluimos que X(x) = 0 para todo x: la solución es trivial.

• Caso $\lambda < 0$. Entonces la ecuación diferencial tiene solución

$$X(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x},$$

donde $\alpha = \sqrt{-\lambda}$.

- Como X(0) = 0, entonces $c_1 + c_2 = 0$, por lo cual $c_1 = -c_2$.
- Como X(L) = 0, entonces $c_1 e^{\alpha L} + c_2 e^{-\alpha L} = 0$, por lo cual $c_1(e^{\alpha L} e^{-\alpha L}) = 0$. Esto implica que $c_1 = 0$.

Concluimos que X(x) = 0 para todo x: la solución es trivial.

• Caso $\lambda > 0$. Entonces la ecuación diferencial tiene solución

$$X(x) = c_1 \cos(\beta x) + c_2 \sin(\beta x),$$

donde $\beta = \sqrt{\lambda}$.

- Como X(0) = 0, entonces $c_1 = 0$.
- Como X(L) = 0, entonces $c_2 \sin(\beta L) = 0$.

Considerando $c_1 = 0$, concluimos que $\beta L = \pi n$ con n entero positivo. Así,

$$\beta = \frac{n\pi}{L}, \qquad n = 1, 2, 3, \dots$$

Concluimos que $X(x) = c_2 \sin(\frac{n\pi}{L}x)$ para $n = 1, 2, 3, \dots$

Ahora, sustituyendo $\lambda = (\frac{n\pi}{L})^2$ en la ecuación para T(t), tenemos

$$T' + k(\frac{n\pi}{L})^2 T = 0.$$

La cual tiene solución $T(t) = c_3 \exp(-k(\frac{n\pi}{L})^2 t)$. Por lo tanto, tenemos una familia de soluciones

$$u_n(x,t) = X(x)T(t)$$

$$= c_2 \sin(\frac{n\pi}{L}x)c_3 \exp(-k(\frac{n\pi}{L})^2 t)$$

$$= b \sin(\frac{n\pi}{L}x) \exp(-k(\frac{n\pi}{L})^2 t),$$

donde $b = c_2 c_3$.

Si tomamos una de estas soluciones y le aplicamos la condición inicial u(x,0)=f(x), obtenemos la ecuación

$$f(x) = b\sin(\frac{n\pi}{L}x),$$

la cual no se puede satisfacer para cualquier función f(x).

Sin embargo, si tomamos una constante b_n para cada n y sumamos las soluciones $u_n(x,t)$ resultantes, obtenemos

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L}x) \exp(-k(\frac{n\pi}{L})^2 t), \tag{3.1}$$

la cual sigue siendo una solución de la ecuación diferencial, ya que la linealidad de la E.D. nos permite aplicar el principio de superposición.

Ahora sí, aplicando la condición inicial u(x,0) = f(x), tenemos

$$f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L}x),\,$$

lo cual tiene solución exactamente cuando f se puede expresar como una serie de Fourier en senos en [0, L]. En este caso, los coeficientes son

$$b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi}{L}x) dx.$$

En particular, una condición necesaria para que f se pueda expresar de esta manera es la llamada condición de compatibilidad:

$$f(0) = f(L) = 0.$$

Ejemplo 3.1.1. Considérese una varilla de longitud $L = \pi$ y

$$f(x) = x(\pi - x) k = 1$$

Notemos que f cumple las condiciones de compatibilidad.

Además, f tiene transformada de Fourier en senos en $[0, \pi]$, así que la solución está dada por

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) \exp(-kn^2 t),.$$

donde

$$b_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin(nx) dx$$

Empleando el método tabular

$$(+) \begin{vmatrix} u \\ x(\pi - x) \end{vmatrix} \begin{vmatrix} dv \\ \sin(nx) \end{vmatrix}$$

$$(-) \begin{vmatrix} \pi - 2x \\ + \end{vmatrix} -2 \begin{vmatrix} -\frac{\cos(nx)}{n} \\ -\frac{\sin(nx)}{n^2} \end{vmatrix}$$

$$(-) \begin{vmatrix} 0 \end{vmatrix} \begin{vmatrix} \frac{\cos(nx)}{n^3} \end{vmatrix}$$

Obtenemos

$$b_n = \frac{2}{\pi} \left[-x(\pi - x) \frac{\cos(nx)}{n} + (\pi - 2x) \frac{\sin(nx)}{n^2} - \frac{2\cos(nx)}{n^3} \right]_{x=0}^{x=\pi}$$

$$= \frac{2}{\pi} \left[-\frac{2\cos(n\pi)}{n^3} + \frac{2\cos(n0)}{n^3} \right]$$

$$= \frac{4(1 - (-1)^n)}{n^3\pi}$$

$$= \begin{cases} \frac{8}{n^3\pi} & n \ impar\\ 0 & n \ par. \end{cases}$$

o bien

$$b_{2n-1} = \frac{8}{(2n-1)^3 \pi} \qquad b_{2n} = 0$$

 $para \ n = 1, 2, 3, \dots Asi,$

$$u(x,t) = \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin((2n-1)x) \exp(-k(2n-1)^2 t).$$

3.1.1.2 Extremos aislados

Consideremos ahora el problema de la distribución de temperatura sobre una varilla de longitud L donde los extremos son aislados con temperatura inicial dada por f(x) a lo largo de la varilla

Modelo Sea u = u(x,t) la función deseada. La ecuación diferencial

$$\frac{\partial u}{\partial u} = k \frac{\partial^2 u}{\partial^2 x} \qquad \quad 0 < x < L, t > 0.$$

C.F.
$$u_x(0,t) = 0$$
 $u_x(L,t) = 0$ $t > 0$
C.I. $u(x,0) = f(x)$ $0 < x < L$

Queda de tarea.

3.1.1.3 Extremos con temperatura constante (mie 17 nov 2021)

Determinar la función que determina la distribución de temperatura sobre una varilla de longitud L laterlamente aislada en donde los extremos tienen temperatura constante en el extremo izquierdo T_1 y en el extremo derecho T_2 , con temperatura inicial dada por f(x), $0 \le x \le L$.

Modelo Sea u = u(x,t). Entonces la EDP es

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < L, \quad t > 0.$$

con

C.F.
$$u(0,t) = T_1$$
 $u(L,t) = T_2$ $t > 0$
C.I. $u(x,0) = f(x)$ $0 \le x \le L$

Solución Obsevemos que, si v es una solución del problema con temperatura cero en los extremos

$$\frac{\partial v}{\partial t} = k \frac{\partial^2 v}{\partial x^2} \qquad 0 < x < L, \quad t > 0.$$

con

C.F.
$$v(0,t) = 0 \qquad v(L,t) = 0 \qquad t > 0$$
$$C.I. \qquad v(x,0) = g(x) \qquad 0 \le x \le L$$

entonces $u(x,t) = v(x,t) + a_1 + a_2x$ es solución de

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < L, \quad t > 0.$$

con

C.F.
$$u(0,t) = a_1$$
 $u(L,t) = a_1 + a_2L$ $t > 0$
C.I. $u(x,0) = g(x) + a_1 + a_2x$ $0 \le x \le L$

Por lo tanto, podemos tomar $a_1 = T_1$, $a_2 = (T_2 - T_1)/L$ y $g(x) = f(x) - a_1 - a_2x$ para reducir este problema al problema anterior, obteniendo

$$u(x,t) = v(x,t) + T_1 + \frac{T_2 - T_1}{L}x$$

donde

$$v(x,t) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L}x) \exp(-k(\frac{n\pi}{L})^2 t),$$

$$g(x) = f(x) - T_1 - \frac{T_2 - T_1}{L} = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L}x),$$
(3.2)

lo cual tiene solución exactamente cuando los coeficientes de Fourier

$$b_n = \frac{2}{L} \int_0^L \left[f(x) - T_1 - \frac{T_2 - T_1}{L} x \right] \sin(\frac{n\pi}{L} x) dx$$

existen. En particular, es necesario que se cumpla la condición de compatibildad

$$f(0) = T_1 f(L) = T_2.$$

Ejemplo 3.1.2. Caso particular: $L = \pi$, f(x) = x, $T_1 = 50$, $T_2 = 100$. Entonces

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x - 50 - \frac{50}{\pi}x) \sin(nx) dx.$$

Usando el método tabular

$$(+) \begin{vmatrix} u \\ x - 50 - \frac{50}{\pi}x \end{vmatrix} \searrow \begin{vmatrix} dv \\ \sin(nx) \end{vmatrix}$$

$$(-) \begin{vmatrix} 1 - \frac{50}{\pi} \\ (+) \end{vmatrix} = 0$$

$$(+) \begin{vmatrix} 0 \\ -\frac{\sin(nx)}{n} \end{vmatrix}$$

tenemos

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x - 50 - \frac{50}{\pi} x) \sin(nx) dx$$

$$= \frac{2}{\pi} \left[-\left(x - 50 - \frac{50}{\pi} x\right) \frac{\cos(nx)}{n} + \left(1 - \frac{50}{\pi}\right) \frac{\sin(nx)}{n^2} \right]_{x=0}^{\pi}$$

$$= \frac{2}{\pi} \left[(100 - \pi) \frac{\cos(n\pi)}{n} \right] - \frac{2}{\pi} \frac{50}{n}$$

$$= \frac{2}{\pi} \frac{(100 - \pi)(-1)^n - 50}{n}.$$

Luego,

$$u(x,t) = v(x,t) + 50 + \frac{50}{\pi}x$$
$$= 50 + \frac{50}{\pi}x + \frac{2}{\pi}\sum_{n=1}^{\infty} \frac{(100 - \pi)(-1)^n - 50}{n}\sin(nx)\exp(-kn^2t),$$

3.1.1.4 Modelo con extremos que irradian temperatura

Si en el problema anterior las condiciones de frontera fueran de la forma

$$u_x(0,t) = A[u(0,t) + T]$$

 $u_x(L,t) = -A[u(L,t) + T]$

se dice que hay irradiación de temperatura en los extremos.

Modelo Resolveremos el problema en el cual la temperatura en el extremo izquierdo es cero y en el derecho hay irradiación tomando T=0. Esto es

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \qquad 0 < x < L, \quad t > 0.$$

con

C.F.
$$u(0,t) = 0$$
 $u_x(L,t) + Au(L,t) = 0$ $t > 0$
C.I. $u(x,0) = f(x)$ $0 \le x \le L$

Solución Separando variables con el supuesto u(x,t) = X(x)T(t), obtenemos las ecuaciones

$$X'' + \lambda X = 0 T' + k\lambda T = 0.$$

Aplicando las condiciones de frontera, tenemos

$$Si \ u(0,t) = 0 \qquad \Longrightarrow \qquad X(0)T(t) = 0$$

$$ssi \qquad X(0) = 0$$

$$Si \ u_x(L,t) + A(L,t) = 0 \qquad \Longrightarrow \qquad X'(L)T(t) + AX(L)T(t) = 0$$

$$ssi \qquad X'(L) + AX(L) = 0.$$

Así, obtenemos un problema de Strum-Liouville completo:

$$X'' + \lambda X = 0$$
$$X(0) = 0$$
$$X'(L) + AX(L) = 0.$$

• Caso $\lambda = 0$. Entonces X tiene solución

$$X(x) = c_1 + c_2 x.$$

Aplicando las condiciones de frontera, tenemos

$$X(0) = 0$$
 \Longrightarrow $c_1 = 0$
 $X'(L) + AX(L) = 0$ \Longrightarrow $c_2 + Ac_2L = 0$ \Longrightarrow $c_2 = 0$,

por lo cual la solución es trivial.

• Caso $\lambda < 0$. Entonces

$$X(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$$

 $con \ \alpha = \sqrt{-\lambda}.$

• Caso $\lambda > 0$. Entonces

$$X(x) = c_1 \cos(\beta x) + c_2 \sin(\beta x)$$

donde $\beta = \sqrt{\lambda}$. Aplicando X(0) = 0, obtenemos $c_1 = 0$, por lo cual

$$X(x) = c_2 \sin(\beta x)$$

$$X'(x) = \beta c_2 \cos(\beta x)$$

Aplicando la otra condición de frontera, tenemos

$$\beta c_2 \cos(\beta L) + Ac_2 \sin(\beta L) = 0.$$

Suponiendo $c_2 \neq 0$ (de otro modo la solución es trivial), tenemos

$$\beta \cos(\beta L) + A \sin(\beta L) = 0.$$

Esta ecuación no se puede resolver algebraicamente para β , pero sí tiene infinitas soluciones $\beta_1, \beta_2, \beta_3, \beta_4, \ldots$ Luego, tenemos valores para λ dados como $\lambda_n = \beta_n^2$, lo cual nos da soluciones

$$X(x) = b\sin(\beta_n x)$$

con $n \in \mathbb{N}$ y $c \in \mathbb{R}$.

Así,

$$T(t) = b \exp(-k\beta_n^2 t)$$

por lo cual obtenemos soluciones

$$u(x,t) = b\sin(\beta_n x)\exp(-k\beta_n^2 t).$$

Ejemplo 3.1.3. Considérese el caso con L=6, k=4, $A=\frac{1}{2}$ y f(x)=x(6-x).

3.1.1.5 Problema de calor no homogéneo

Consideremos el problema de distribución de temperatura sobre una varilla delgada de longitud L lateralmente aislada con temperatura cero en los extremos y temperatura inicial dada por f(x) para $0 \le x \le L$ y en el cual existe una fuerza externa dada por F(x,t).

Modelo Sea u = u(x,t) la temperatura. La ecuación diferencial que gobierna a este fenómeno es

$$\frac{\partial u}{\partial x} = k \frac{\partial^2 u}{\partial x^2} + F(x, t) \tag{3.3}$$

C.F.
$$u(0,t) = 0,$$
 $u(L,t) = 0$ $t > 0$ $C.I.$ $u(x,0) = f(x),$ $0 \le x \le L$

Solución Dado que la ecuación es lineal y no homogénea, la solución general está dada como

$$u(x,t) = u_h(x,t) + u_p(x,t)$$

donde $u_p(x,t)$ es una solución particular y $u_h(x,t)$ es la solución de la ecuación homogénea correspondiente

$$\begin{split} \frac{\partial u}{\partial x^2} &= k \frac{\partial^2 u}{\partial x^2} \\ C.F. & u(0,t) = 0, & u(L,t) = 0 & t > 0 \\ C.I. & u(x,0) = f(x), & 0 \leq x \leq L. \end{split}$$

Recordemos que este modelo homogéneo tiene solución

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L}x) \exp(-k(\frac{n\pi}{L})^2 t)$$

con

$$b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi}{L}x) dx.$$

Esto sugiere que, para determinar la solución de (3.3), es razonable suponer que u tiene la forma

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin(\frac{n\pi}{L}x), \qquad (3.4)$$

donde $T_n(t)$ es una función desconocida que, en el caso homogéneo, se reduce a $T_n(t) = b_n \exp(-k(\frac{n\pi}{L})^2 t)$). La ecuación (3.4) representa la serie en senos de u(x,t), por lo cual tenemos

$$T_n(t) = \frac{2}{L} \int_0^L u(x, t) \sin(\frac{n\pi}{L}x) dx.$$
 (3.5)

Ahora supongamos que F(x,t) tiene serie de Fourier en senos

$$F(x,t) = \sum_{n=1}^{\infty} B_n(t) \sin(\frac{n\pi}{L}x), \qquad B_n(t) = \frac{2}{L} \int_0^L F(x,t) \sin(\frac{n\pi}{L}x) dx.$$

En este caso, al derivar (3.5) con respecto a t, obtenemos

$$T'_n(t) = \frac{2}{L} \int_0^L \frac{\partial u}{\partial t}(x, t) \sin(\frac{n\pi}{L}x) dx$$

$$= \frac{2}{L} \int_0^L \left[k \frac{\partial^2 u}{\partial x^2}(x, t) + F(x, t) \right] \sin(\frac{n\pi}{L}x) dx$$

$$= \frac{2k}{L} \int_0^L \frac{\partial^2 u}{\partial x^2}(x, t) \sin(\frac{n\pi}{L}x) dx + \frac{2}{L} \int_0^L F(x, t) \sin(\frac{n\pi}{L}x) dx$$

$$= \frac{2k}{L} \left[\frac{\partial u}{\partial x}(x, t) \sin(\frac{n\pi}{L}x) \Big|_{x=0}^L - \frac{n\pi}{L} \int_0^L \frac{\partial u}{\partial x}(x, t) \cos(\frac{n\pi}{L}x) dx \right] + B_n(t)$$

$$= -\frac{2kn^2\pi^2}{L^3} \int_0^L u(x, t) \sin(\frac{n\pi}{L}x) dx + B_n(t)$$

$$= -k(\frac{n\pi}{L})^2 T_n(t) + B_n(t).$$

Es decir,

$$T_n'(t) + k(\frac{n\pi}{L})^2 T_n(t) = B_n(t),$$

lo cual es una EDO lineal de primer orden, cuya solución es

$$T_n(t) = \exp(-k(\frac{n\pi}{L})^2 t) \left[\int_0^t \exp(k(\frac{n\pi}{L})^2 \xi) B_n(\xi) d\xi + C \right].$$

En t = 0 tenemos que $T_n(0) = C$ es una constante, pero $T_n(0) = b_n$, así que $C = b_n$. Así, sustituyendo en (3.4), tenemos

$$u(x,t) = \sum_{n=1}^{\infty} \exp(-k(\frac{n\pi}{L})^2 t) \left[\int_0^t \exp(k(\frac{n\pi}{L})^2 \xi) B_n(\xi) d\xi + b_n \right] \sin(\frac{n\pi}{L} x).$$

Es decir,

$$u(x,t) = \sum_{n=1}^{\infty} \exp(-k(\frac{n\pi}{L})^2 t) \int_0^t \exp(k(\frac{n\pi}{L})^2 \xi) B_n(\xi) d\xi \sin(\frac{n\pi}{L} x)$$
$$+ \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi}{L} x) \exp(-k(\frac{n\pi}{L})^2 t)$$

Ejercicio 4. Consideremos el caso particular de L=5, k=1, f(x)=x, $F(x,t)=x\sin t$.

3.1.2 Problemas de vibraciones

Considérese el problema de determinar las vibraciones en una varilla de longitud L fija en los extremos con un desplazamiento inicial dado por f(x) y una velocidad inicial dada por g(x) para 0 < x < L.

Primero trataremos el modelo ideal en que la cuerda o varilla no tiene nada que lo impida.

Modelo Sea u = u(x,t) la función que describa las vibraciones. Entonces la ecuación diferencial que domina la evolución del sistema es la ecuación de onda:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad 0 < x < L \quad t > 0$$

con

C.F.
$$u(0,t) = 0$$
 $u(L,t) = 0$ $t > 0$
C.I. $u(x,0) = f(x)$ $u_t(x,0) = g(x)$ $0 \le x \le L$.

Solución El método de separación de variables supone que la solución u es de la forma u(x,t) = X(x)T(t). Sustituyendo en la ecuación, obtenemos

$$XT'' = c^2 X''T,$$

de donde

$$\frac{T''}{c^2T} = \frac{X''}{X} = -\lambda,$$

por lo cual obtenemos las EDO

$$X'' + \lambda X = 0 \qquad T'' + c^2 \lambda T = 0.$$

Ahora apliquemos las condiciones

- Dado que u(0,t) = 0, entonces X(0)T(t) = 0, por lo cual X(0) = 0.
- Dado que u(L,t)=0, entonces X(L)T(t)=0, por lo cual X(L)=0.

Así, obtenemos el problema de Strum-Liouville

$$X'' + \lambda X = 0$$
, $X(0) = X(L) = 0$

que tiene un espacio de soluciones generado por

$$X(x) = c \sin(\frac{n\pi}{L}x), \quad \text{con } \lambda = (\frac{n\pi}{L})^2$$

y $c \in \mathbb{R}$. Luego, la solución de $T'' + (\frac{cn\pi}{L})^2 T = 0$ es

$$T(t) = k_1 \cos(\frac{cn\pi}{L}t) + k_2 \sin(\frac{cn\pi}{L}t)$$

donde $k_1, k_2 \in \mathbb{R}$. Luego, tenemos soluciones

$$u_n(x,t) = \sin(\frac{n\pi}{L}x) \left[a\cos(\frac{cn\pi}{L}t) + b\sin(\frac{cn\pi}{L}t) \right].$$

Tomando coeficientes distintos a_n, b_n para cada n y sumando, obtenemos una solución

$$u(x,t) = \sum_{n=1}^{\infty} \sin(\frac{n\pi}{L}x) \left[a_n \cos(\frac{cn\pi}{L}t) + b_n \sin(\frac{cn\pi}{L}t) \right]$$

con derivada

$$\frac{\partial u}{\partial t} = \sum_{n=1}^{\infty} \sin(\frac{n\pi}{L}x) \left[-a_n \frac{cn\pi}{L} \sin(\frac{cn\pi}{L}t) + b_n \frac{cn\pi}{L} \cos(\frac{cn\pi}{L}t) \right].$$

Al aplicar las condiciones iniciales, tenemos

• Como u(x,0) = f(x), entonces

$$f(x) = \sum_{n=1}^{\infty} a_n \sin(\frac{n\pi}{L}x).$$

• Como $u_t(x,0) = g(x)$, entonces

$$g(x) = \sum_{n=1}^{\infty} b_n \frac{cn\pi}{L} \sin(\frac{n\pi}{L}x).$$

Estas dos ecuaciones tienen solución cuando f y g tienen serie de Fourier en senos, en cuyo caso los coeficientes se pueden obtener como

$$a_n = \frac{2}{l} \int_0^L f(x) \sin(\frac{n\pi}{L}x) dx \qquad b_n \frac{cn\pi}{L} = \frac{2}{L} \int_0^L g(x) \sin(\frac{n\pi}{L}x) dx.$$

Es decir,

$$a_n = \frac{2}{l} \int_0^L f(x) \sin(\frac{n\pi}{L}x) dx \qquad b_n = \frac{2}{cn\pi} \int_0^L g(x) \sin(\frac{n\pi}{L}x) dx.$$

Ejemplo 3.1.4. Consideremos el caso particular con $L=\pi,\ c=1$ y condiciones iniciales

$$f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x \le \pi. \end{cases}$$
$$g(x) = x(1 + \cos x).$$

•

Solución La solución es

$$u(x,t) = \sum_{n=1}^{\infty} \sin(nx) \left[a_n \cos(cnt) + b_n \sin(cnt) \right]$$

con

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx,$$

$$b_n = \frac{2}{cn\pi} \int_0^{\pi} g(x) \sin(nx) dx.$$

Tenemos

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi/2} x \sin(nx) dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} (\pi - x) \sin(nx) dx$$

$$= \frac{2}{\pi n} \int_{0}^{\pi/2} \cos(nx) dx - \frac{2x \cos(nx)}{\pi n} \Big|_{0}^{\pi/2}$$

$$- \frac{2}{\pi n} \int_{\pi/2}^{\pi} \cos(nx) dx - \frac{2(\pi - x) \cos(nx)}{\pi n} \Big|_{\pi/2}^{\pi}$$

$$= \frac{2}{\pi n^{2}} \sin(nx) \Big|_{0}^{\pi/2} - \frac{\cos(n\pi/2)}{n}$$

$$- \frac{2}{\pi n^{2}} \sin(nx) \Big|_{\pi/2}^{\pi/2} + \frac{\cos(n\pi/2)}{n}$$

$$= \frac{2}{\pi n^{2}} \sin(nx) \Big|_{0}^{\pi/2} - \frac{2}{\pi n^{2}} \sin(nx) \Big|_{\pi/2}^{\pi}$$

$$= \frac{4}{\pi n^{2}} \sin(n\pi/2).$$

Y haciendo la otra integral (yo la hice con Wolfram) obtenemos

$$b_1 = \frac{3}{2}$$

$$b_n = \frac{2(-1)^n}{n^2(n^2 - 1)}, \quad n \ge 2.$$

Así,

$$u(x,t) = \sin(x)[a_1 \cos(t) + b_1 \sin(t)]$$

$$+ \sum_{n=2}^{\infty} \sin(nx) [a_n \cos(nt) + b_n \sin(nt)]$$

$$= \sin(x) \left[\frac{4}{\pi} \cos(t) + \frac{3}{2} \sin(t) \right]$$

$$+ \sum_{n=2}^{\infty} \sin(nx) \left[\frac{4}{n^2 \pi} \cos(nt) + \frac{2(-1)^n}{n^2 (n^2 - 1)} \sin(nt) \right]$$

3.1.2.1 Vibraciones con perturbación

Consideremos el problema anterior en donde ahora existe una fuerza externa h(x) que impide que la cuerda vibre libremente.

Modelo La ecuación diferencial que gobierna a este fenóneno está dada como

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} + h(x)$$

con

C.F.
$$u(0,t) = 0$$
 $u(L,t) = 0$ $t > 0$
C.I. $u(x,0) = f(x)$ $u_t(x,0) = g(x)$ $0 \le x \le L$.

Solución El método de separación de variables supone que la solución es de la forma u(x,t) = X(x)T(t). Sustituyendo esto en la ecuación, tenemos

$$XT'' = c^2 X''T + h(x)$$

dividiendo entre XT, tenemos

$$\frac{T''}{T} = c^2 \frac{X''}{X} + \frac{h(x)}{XT}.$$

Así, las variables no se pueden separar.

Para resolver esto, introducimos una perturbación φ para considerar soluciones de la forma $u(x,t) = v(x,t) + \varphi(x)$. Sustituyendo en la EDP, tenemos

$$\frac{\partial^2 v}{\partial t^2} = c^2 \frac{\partial^2 v}{\partial x^2} + c^2 \varphi''(x) + h(x).$$

Supongamos que podemos resolver las ecuaciones

$$c^{2}\varphi'' + h = 0$$
$$\frac{\partial^{2}v}{\partial t^{2}} = c^{2}\frac{\partial^{2}v}{\partial x^{2}}.$$

Donde las condiciones para v y de φ se obtienen de las de u:

- Como u(0,t) = 0, entonces $v(0,t) + \varphi(0) = 0$, por lo cual v(0,t) = 0 y $\varphi(0) = 0$.
- Como u(L,t)=0, entonces $v(L,t)+\varphi(L)=0$, por lo cual v(L,t)=0 y $\varphi(L)=0$.
- Como u(x,0) = f(x), entonces $v(x,0) = u(x,0) \varphi(x) = f(x) \varphi(x)$.
- Como $u_t(x,0) = g(x)$, entonces $v_t(x,0) = g(x)$.

Por lo cual v es la solución del problema

$$\frac{\partial^2 v}{\partial t^2} = c^2 \frac{\partial^2 v}{\partial x^2}$$

con

C.F.
$$v(0,t) = 0$$
 $v(L,t) = 0$ $t > 0$

C.I.
$$v(x,0) = f(x) - \varphi(x) \qquad v_t(x,0) = g(x) \qquad 0 \le x \le L.$$

Además, la ecuación $c^2\varphi'' + h = 0$ tiene solución general

$$\varphi(x) = -\frac{1}{c^2} \int_0^x H(\xi) \, d\xi + c_1 x + c_2, \quad H(\xi) = \int_0^x h(\xi) \, d\xi.$$

Por lo tanto.

$$\varphi(x) = -\frac{1}{c} \int_0^x H(\xi) \, d\xi + \frac{x}{c^2 L} \int_0^L H(\xi) \, d\xi.$$

Ejercicio 5. Consideremos el caso particular $L=\pi,\ c=1,\ h(x)=ax,\ f(x)=0\ y$ g(x)=x.

3.1.3 Vibraciones en dos dimensiones

3.1.3.1 Vibraciones en una membrana rectangular (26 nov 2021)

3.1.3.2 Vibraciones en una membrana circular (1 dic 2021)

Supongamos que se desea determinar la función que describe las vibraciones sobre una membrana circular de radio r=a fija a lo largo de toda la frontera. Dado que la ecuación de onda está dada en la forma

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right).$$

debemos expresarla en coordenadas polares:

$$x = r\cos\theta$$
$$y = r\sin\theta$$

por lo cual

$$r^2 = x^2 + y^2$$
$$\theta = \tan^{-1}(\frac{y}{x})$$

Por la regla de la cadena y del producto, tenemos, en forma matricial,

$$\nabla u = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \end{bmatrix} \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{bmatrix}$$

$$Hu = \begin{bmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial \theta}{\partial x} \\ \frac{\partial r}{\partial y} & \frac{\partial \theta}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial^2 u}{\partial r \partial \theta} & \frac{\partial^2 u}{\partial r \partial \theta} \\ \frac{\partial^2 u}{\partial \theta \partial x} & \frac{\partial^2 u}{\partial \theta \partial x} \end{bmatrix} \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{bmatrix} + \frac{\partial u}{\partial r} \begin{bmatrix} \frac{\partial^2 r}{\partial x^2} & \frac{\partial^2 r}{\partial x \partial y} \\ \frac{\partial^2 \theta}{\partial y \partial x} & \frac{\partial^2 \theta}{\partial y^2} \end{bmatrix}$$

$$= \frac{\partial u}{\partial x} \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial \theta}{\partial y} \\ \frac{\partial r}{\partial y} & \frac{\partial \theta}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial y} & \frac{\partial \theta}{\partial y} \end{bmatrix} + \frac{\partial u}{\partial r} \begin{bmatrix} \frac{\partial^2 r}{\partial x^2} & \frac{\partial^2 r}{\partial x \partial y} \\ \frac{\partial \theta}{\partial y \partial x} & \frac{\partial \theta}{\partial y^2} \end{bmatrix}$$

Calculando todas estas derivadas parciales y tomando la traza de esta última matríz, tenemos

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r}$$

Así, la ecuación queda como

$$\frac{\partial u}{\partial t^2} = c^2 \left(\frac{\partial u}{\partial r^2} + \frac{1}{r^2} \frac{\partial u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)$$

con $u = u(r, \theta, t)$. Como la membrana está fija en la frontera, tenemos

$$u(0, \theta, t) = 0$$
 $u(a, \theta, t) = 0$ $u(r, \pi, t) = u(r, -\pi, t)$ $u_{\theta}(r, \pi, t) = u_{\theta}(r, -\pi, t)$.

Consideremos también que el desplazamiento inicial está dado por $f(r, \theta)$ y la velocidad inicial por $g(r, \theta)$ para todo $0 \le r \le a$ y para $-\pi \le \theta \le \pi$.

Solución Por separación de variables. Sea $u(r, \theta, t) = R(r)\Phi(\theta)T(t)$. Sustituyendo en la ecuación, tenemos

$$R\Phi T'' = c^2 \left(R''\Phi T + \frac{1}{r}R'\Phi T + \frac{1}{r^2}R\Phi''T \right).$$

Dividiendo entre u, esto es

$$\frac{T''}{c^2T} = \left(\frac{R''}{R} + \frac{1}{r}\frac{R'}{R} + \frac{1}{r^2}\frac{\Phi''}{\Phi}\right) = -\lambda^2.$$

De aquí, obtenemos las EDO

$$T'' + \lambda^2 c^2 T = 0$$

$$r^2 \frac{R''}{R} + r \frac{R'}{R} + r^2 \lambda^2 = -\frac{\Phi''}{\Phi} = \mu$$

Esta última ecuación se puede escindir en otras dos ecuaciones, para obtener el sistema de tres EDO:

$$T'' + \lambda^{2}c^{2}T = 0$$
$$r^{2}R'' + rR' + (r^{2}\lambda^{2} - \mu)R = 0$$
$$\Phi'' + \mu\Phi = 0.$$

Aplicando las condiciones de frontera

- $u(0, \theta, t) = 0$ implica que R(0) = 0.
- $u(a, \theta, t) = 0$ implica que R(a) = 0.
- $u(r, \pi, t) = u(r, -\pi, t)$ implica que $\Phi(\pi) = \Phi(-\varphi)$.
- $u_{\theta}(r, \pi, t) = u_{\theta}(r, -\pi, t)$ implies que $\Phi'(\varphi) = \Phi'(-\pi)$.

Resolviendo para Φ , tenemos

• Si $\mu = 0$, entonces $\Phi(\theta) = c_1 + c_2\theta$, así que $\Phi'(\theta) = c_2$. Como $\Phi(\pi) = \Phi(-\pi)$, entonces $c_1 + c_2\pi = c_1 - c_2\pi$, por lo cual $c_2 = 0$. Como $\Phi'(\pi) = \Phi'(-\pi)$, entonces $c_2 = c_2$. Por lo tanto, $\Phi(\theta) = c_1$. • Si $\mu < 0$, entonces

$$\Phi(\theta) = c_1 e^{\alpha \theta} + c_2 e^{-\alpha \theta}$$

donde $\alpha = \sqrt{-\mu}$.

Como $\Phi(\pi) = \Phi(-\pi)$, entonces $c_1 e^{\alpha \pi} + c_2 e^{-\alpha \pi} = c_1 e^{-\alpha \pi} + c_2 e^{\alpha \pi}$. Se sigue que $c_1 = c_2$.

Como $\Phi'(\pi) = \Phi'(-\pi)$, entonces $\alpha c_1 e^{\alpha \pi} + \alpha c_2 e^{-\alpha \pi} = \alpha c_1 e^{-\alpha \pi} - \alpha c_2 e^{\alpha \pi}$. Se sigue que $c_1 = -c_2$. Luego, $c_1 = c_2 = 0$.

Concluimos que la única solución es la trivial.

• Si $\mu > 0$. Entonces

$$\Phi(\theta) = c_1 \cos(\beta \theta) + c_2 \sin(\beta \theta)$$

$$\Phi'(\theta) = -\beta c_1 \sin(\beta \theta) + \beta c_2 \cos(\beta \theta)$$

donde $\beta = \sqrt{\mu}$.

Como $\Phi(\pi) = \Phi(-\pi)$, entonces

$$c_1\cos(\beta\pi) + c_2\sin(\beta\pi) = c_1\cos(-\beta\pi) + c_2\sin(-\beta\pi).$$

Luego, $\sin(\beta \pi) = 0$.

Como $\Phi(\pi) = \Phi(-\pi)$, entonces

$$-\beta c_1 \sin(\beta \pi) + \beta c_2 \cos(\beta \pi) = -\beta c_1 \sin(-\beta \pi) + \beta c_2 \cos(-\beta \pi).$$

Luego, $\sin(\beta \pi) = 0$.

En ambos casos, tenemos que $\beta=1,2,3,\ldots$, por lo cual $\mu=\beta^2=n^2$ con $n=1,2,3,\ldots$, y así la solución es

$$\Phi(\theta) = c_1 \cos(n\theta) + c_2 \sin(n\theta).$$

Ahora resolvemos para R(r) de la ecuación

$$r^2R'' + rR' + (r^2\lambda^2 - \mu)R = 0$$

donde $\mu = 0$ o $\mu = n^2$ para n = 1, 2, 3, ...

• Si $\lambda = 0$, la ecuación es de Cauchy-Euler,

$$r^2R'' + rR' - n^2R = 0.$$

Sustituyendo $R=r^m$ obtenemos soluciones $m=\pm n,$ por lo cual obtenemos la solución

$$R(r) = K_1 r^n + K_2 r^{-n}$$
.

La condición inicial R(0) = 0 se convierte en $\lim_{r\to 0} R(r) = 0$, lo cual solo se satisface si $K_2 = 0$. Por otro lado, la condición R(a) = 0 nos da que $0 = K_1 a^n$, lo cual solo se satisface con $K_1 = 0$. Luego, la solución es trivial.

• Si $\lambda \neq 0$ y $\mu = n^2$ con $n = 0, 1, 2, 3 \dots$, entonces la ecuación es de Bessel de orden n:

$$r^{2}R'' + rR' + ((\lambda r)^{2} - n^{2})R = 0.$$

Entonces la solución es

$$R(r) = K_1 J_n(\lambda r) + K_2 Y_n(\lambda r),$$

donde J_n y Y_n son las n-ésimas funciones de Bessel de 1er y segundo tipo (o especie).

$$J_n(\lambda r) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+n+1)} \left(\frac{\lambda x}{2}\right)^{2m+n}$$

Las $Y_n(\lambda r)$ no son acotadas cuando $r \to 0$, así que la condición $\lim_{r \to r} R(r) = 0$ nos hace elegir $K_2 = 0$, por lo cual

$$R(r) = K_1 J_n(\lambda r).$$

Dado que $J_0(0)=1$, para el caso $\mu=n^2=0$, la condición $\lim_{r\to 0} R(r)=0$ se convierte en $K_1=0$ por lo cual la solución es trivial.

Por otro lado, la condición R(a) = 0 nos da $K_1J_n(\lambda a) = 0$. Así, λ son las soluciones de $J_n(\lambda a) = 0$. La ecuación $J_n(\lambda a) = 0$ es una ecuación algebráica en λa de grado ∞ por lo tanto se tienen ∞^2 raíces (¿qué?). Ordenamos el conjunto de raíces $\{\xi_{n_1}, \xi_{n_2}, \xi_{n_3}, \dots\}$ de manera que

$$0 < \xi_{n_1} < \xi_{n_2} < \xi_{n_3} < \dots$$

Entonces

$$\lambda a = \xi \implies \lambda = \frac{\xi}{a},$$

es decir

$$\lambda_{nm} = \frac{\xi_{nm}}{a}, \quad \text{para } m = 1, 2, 3 \dots$$

Entonces la solución es

$$R(r) = K_{nm}J_n\left(\frac{\xi_{nm}}{a}r\right), \quad m = 1, 2, 3\dots$$

Ahora resolvemos para T(t) de la ecuación

$$T'' + c^2 \lambda^2 T = 0$$
, donde $\lambda = \frac{\xi}{a}$.

La solución es de la forma

$$T(t) = d_1 \cos\left(\frac{c\xi}{a}t\right) + d_2 \sin\left(\frac{c\xi}{a}t\right).$$

De lo anterior tenemos que $u(r, \theta, t)$ está dada por

$$u(r, \theta, t) = K_{nm}J_n\left(\frac{\xi_{nm}}{a}r\right)\left[c_1\cos(n\theta) + c_2\sin(n\theta)\right]$$

$$\cdot \left[d_1 \cos \left(\frac{c\xi_{nm}}{a} t \right) + d_2 \sin \left(\frac{c\xi_{nm}}{a} t \right) \right],$$

ó equivalentemente

$$u(r,\theta,t) = J_n \left(\frac{\xi_{nm}}{a}r\right) \left[A_{nm}\cos(n\theta) + B_{nm}\sin(n\theta)\right] \cos\left(\frac{c\xi_{nm}}{a}t\right) + J_n \left(\frac{\xi_{nm}}{a}r\right) \left[A_{nm}^*\cos(n\theta) + B_{nm}^*\sin(n\theta)\right] \sin\left(\frac{c\xi_{nm}}{a}t\right).$$

Por el principio de superposición se sigue que la solución general de la ecuación diferncial está dada por

$$u(r,\theta,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left\{ J_n \left(\frac{\xi_{nm}}{a} r \right) \left[A_{nm} \cos(n\theta) + B_{nm} \sin(n\theta) \right] \cos \left(\frac{c\xi_{nm}}{a} t \right) + J_n \left(\frac{\xi_{nm}}{a} r \right) \left[A_{nm}^* \cos(n\theta) + B_{nm}^* \sin(n\theta) \right] \sin \left(\frac{c\xi_{nm}}{a} t \right) \right\}.$$

Enseguida aplicamos la condición inicial $u(r, \theta, 0) = f(r, \theta)$, pero para facilitar la notación introducimos las siguientes funciones

$$\varphi_{nm}^{(c)}(r,\theta) = J_n \left(\frac{\xi_{nm}}{a}r\right) \cos(n\theta)$$
$$\varphi_{nm}^{(s)}(r,\theta) = J_n \left(\frac{\xi_{nm}}{a}r\right) \sin(n\theta).$$

Así podemos escribir a u de la siguiente manera

$$u(r,\theta,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[A_{nm} \varphi_{nm}^{(c)}(r,\theta) + B_{nm} \varphi_{nm}^{(s)}(r,\theta) \right] \cos \left(\frac{c\xi_{nm}}{a} t \right)$$
$$+ \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left[A_{nm}^* \varphi_{nm}^{(c)}(r,\theta) + B_{nm}^* \varphi_{nm}^{(s)}(r,\theta) \right] \sin \left(\frac{c\xi_{nm}}{a} t \right).$$

Aplicando la condición inicial tenemos

$$u(r,\theta,0) = f(r,\theta) \implies f(r,\theta) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(A_{nm} \varphi_{nm}^{(c)} + B_{nm} \varphi_{nm}^{(s)} \right).$$

La igualdad anterior se le conoce como la Serie de Fourier-Bessel de la función f. Es necesario determinar los coeficientes A_{nm} y B_{nm} . Sea (p,q) una pareja de enteros positivos fija, entonces multiplicamos la serie de Fourier-Bessel de la función $f(r,\theta)$ por el término $r\varphi_{pq}^{(c)}$:

$$rf(r,\theta)\varphi_{pq}^{(c)} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} r \left[A_{nm}\varphi_{pq}^{(c)}\varphi_{nm}^{(c)} + B_{nm}\varphi_{pq}^{(c)}\varphi_{nm}^{(s)} \right].$$

Integrando el producto anterior sobre 0 < r < a y $0 < \theta < 2\pi$ obtenemos

$$\int_{0}^{a} \int_{0}^{2\pi} r f(r,\theta) \varphi_{pq}^{(c)} d\theta dr = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} r \left[A_{nm} \int_{0}^{a} \int_{0}^{2\pi} \varphi_{pq}^{(c)} \varphi_{nm}^{(c)} d\theta dr \right]$$

$$+ B_{nm} \int_{0}^{a} \int_{0}^{2\pi} \varphi_{pq}^{(c)} \varphi_{nm}^{(s)} d\theta dr$$

Observemos que

$$\int \int r\varphi_{pq}^{(c)}\varphi_{nm}^{(c)} d\theta dr = \int rJ_pJ_n dr \int \cos(q\theta)\cos(m\theta) d\theta$$

pero dado que el conjunto $\{\cos(n\theta), \sin(m\theta)\}\$ es un conjunto ortogonal en $0 < \theta < 2\pi$, la integral anterior es igual 0 para todo $m \neq q$, así

$$\int_{0}^{a} \int_{0}^{2\pi} r f(r,\theta) \varphi_{pq}^{(c)} d\theta dr = A_{pq} \int_{0}^{a} \int_{0}^{2\pi} r \left(\varphi_{pq}^{(s)}\right)^{2} d\theta dr$$

$$= A_{pq} \int_{0}^{a} \int_{0}^{2\pi} r J_{p}^{2} \left(\frac{\xi_{nm}}{a} r\right) \cos^{2}(q\theta) d\theta dr$$

$$= A_{pq} \int_{0}^{a} r J_{p}^{2} \left(\frac{x_{pq}}{a} r\right) dr \int_{0}^{2\pi} \cos^{2}(q\theta) d\theta.$$

Ahora observemos que

$$\int_0^{2\pi} \cos^2(q\theta) d\theta = \frac{1}{2}\theta \Big|_0^{2\pi} = \pi.$$

y por propiedades de la función de Bessel

$$\int_0^a r J_p^2 \left(\frac{\xi_{pq}}{a} r \right) dr = \frac{a^2}{2} J_{p\pm 1}^2 (\xi_{pq}).$$

Por lo tanto

$$A_{pq} = \frac{\int_0^a \int_0^{2\pi} f(r,\theta) \varphi_{pq}^{(c)} d\theta dr}{\pi \frac{a^2}{2} J_{p\pm 1}^2(\xi_{pq})}.$$

Y en general tenemos

$$A_{nm} = \frac{2 \int_0^a \int_0^{2\pi} f(r,\theta) J_n\left(\frac{\xi_{nm}}{a}r\right) \cos(n\theta) d\theta dr}{\pi a^2 J_{p\pm 1}^2(\xi_{pq})}.$$

Haciendo un procedimiento similar, pero multiplicando a $u(r,\theta,t)$ por $r\varphi_{pq}^{(s)}$ se obtiene

$$B_{nm} = \frac{2 \int_0^a \int_0^{2\pi} f(r,\theta) J_n\left(\frac{\xi_{nm}}{a}r\right) \sin(n\theta) d\theta dr}{\pi a^2 J_{n+1}^2(\xi_{pq})}.$$

Aplicando la segunda condición inicial $u_t(r,\theta,0) = g(r,\theta)$ y el haciendo el procdimineto anterior obtenemos los coeficientes A_{nm}^* , sin olvidarnos del factor $\frac{a}{c\xi_{nm}}$ que aparece en la derivada parcial respecto t.

Ejercicio 6. Resolver la ecuación de calor en coordenadas polares.

$$\frac{\partial u}{\partial t} = c \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),\,$$

para las mismas condiciones de frontera y condiciones iniciales.

Supongamos que u no depende del tiempo, entonces tenemos la ecuación

$$\nabla^2 u = 0,$$

la cual se le conoce como la ecuación de Laplace o la ecuación de calor indpendiente del tiempo. ¿Podemos deducir la solución para la ecuación de Laplace a partir de la solución de la ecuación dependiente del tiempo $(u_t = c\nabla^2 u)$?