

Solving Big Data Challenges for Enterprise Application Performance Management

Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jacobsen
University of Toronto
Sergio Gomez-Villamor
Universitat Politecnica de Catalunya
Victor Muntes-Mulero*, Serge Mankowskii
CA Labs (Europe*)

Agenda

- Application Performance Management
- APM Benchmark

- Benchmarked Systems
- ▶ Test Results

Motivation

Enterprise System Architecture

Application Performance Management

APM in Numbers

- Nodes in an enterprise system
 - ▶ 100 10K
- Metrics per node
 - ▶ Up to 50K
 - Avg I0K
- Reporting period
 - ▶ 10 sec

- Data size
 - ▶ I00B / event
- ▶ Raw data
 - ▶ I00MB / sec
 - > 355GB / h
 - 2.8 PB / y
- Event rate at storage
 - > | M / sec

Metric Name	Value	Min	Max	Timestamp	Duration
HostA/AgentX/ServletB/AverageResponseTime	4	1	6	1332988833	15

- Based on Yahoo! Cloud Serving Benchmark (YCSB)
 - CRUD operations
- Single table
 - 25 byte key
 - ▶ 5 values (10 byte each)
 - > 75 byte / record

Five workloads

Workload	% Read	% Scans	% Inserts
R	95	0	5
RW	50	0	50
W	1	0	99
RS	47	47	6
RSW	25	25	50

> 50 rows scan length

6 systems

- Cassandra
- HBase
- Project Voldemort
- Redis
- VoltDB
- MySQL

Categories

- Key-value stores
- Extensible record stores
- Scalable relational stores
- Sharded systems
- Main memory systems
- Disk based systems

Chosen by

Previous results, popularity, maturity, availability

My5

Classification of Benchmarked Systems

Two clusters

- Cluster M (memory-bound)
 - ▶ 16 nodes (plus master node)
 - 2x quad core CPU, 16 GB RAM, 2x 74GB HDD (RAID 0)
 - ▶ 10 million records per node (~700 MB raw)
 - ▶ 128 connections per node (8 per core)
- Cluster D (disk-bound)
 - ▶ 24 nodes
 - 2x dual core CPU, 4 GB RAM, 74 GB HDD
 - ▶ 150 million records on 12 nodes (~10.5 GB raw)
 - ▶ 8 connections per node

Evaluation

- Minimum 3 runs per workload and system
- Fresh install for each run
- ▶ 10 minutes runtime
- ▶ Up to 5 clients for 12 nodes
 - To make sure YCSB is no bottleneck
- Maximum achievable throughput

Workload W - Throughput

Cassandra
HBase
Voldemort
VoltDB
Redis
MySQL

- Cassandra dominates
- Higher throughput for Cassandra and HBase
- Lower throughput for other systems
- Scalability not as good for all web stores
- VoltDB best single node throughput

Workload W – Latency Writes

Cassandra
HBase
Voldemort
VoltDB
Redis
MvSQL

- Same latencies for
 - Cassandra, Voldemort, VoltDB, Redis, MySQL
- HBase latency increased

Workload W – Latency Reads

Cassandra
HBase
Voldemort
VoltDB
Redis
MySQL
HBase
HBa

- Same latency as for R for
 - Cassandra, Voldemort, Redis, VoltDB, HBase
- ▶ HBase latency in second range

Workload R - Throughput

- ▶ 95% reads, 5% writes
- On a single node, main memory systems have best performance
- Linear scalability for web data stores
- Sublinear scalability for sharded systems
- Slow-down for VoltDB

Workload RW - Throughput

- ▶ 50% reads, 50% writes
- VoltDB highest single node throughput
- ▶ HBase and Cassandra throughput increase
- MySQL and Voldemort throughput reduction

Workload RS – Latency Scans

- HBase latency equal to reads in Workload R
- MySQL latency very high due to full table scans
- Similar but increased latency for
 - Cassandra, Redis, VoltDB

Workload RWS - Throughput

- ▶ 25% reads, 25% scans, 50% writes
- Cassandra, HBase, Redis, VoltDB gain performance
- ▶ MySQL performance 20 4 ops / sec

Bounded Throughput – Write Latency

- Workload R, normalized
- Maximum throughput in previous tests 100%
- Steadily decreasing for most systems
- ▶ HBase not as stable (but below 0.1 ms)

Bounded Throughput – Read Latency

HBase ---x---

MySQL

- Redis and Voldemort slightly decrease
- HBase two states
- Cassandra decreases linearly
- MySQL decreases and then stays constant

Disk Usage

Raw data: 75 byte per record, 0.7GB/10M

Cassandra: 2.5GB / I0M

HBase: 7.5GB / 10M

No compression

Cluster D Results – Throughput

- Disk bound, I50M records on 8 nodes
- More writes more throughput
 - Cassandra: 26x
 - ► Hbase: 15x
 - Voldemort 3x

RESEARCH GROUP MSRG.ORG

Cluster D Results – Latency Writes

- Low latency for writes for all systems
- Relatively stable latency for writes
- Lowest for HBase
- Equal for Voldemort and Cassandra

RESEARCH GROUP MSRG. ORG

Cluster D Results – Latency Reads

- Cassandra latency decreases with more writes
- Voldemort latency low 5-20ms
- HBase latency high (up to 200 ms)
- Cassandra in between

RESEARCH GROUP MSRG.ORG

Lessons Learned

- YCSB
 - Client to host ratio 1:3 better 1:2
- Cassandra
 - Optimal tokens for data distribution necessary
- HBase
 - Difficult setup, special JVM settings necessary
- Redis
 - Jedis distribution uneven
- Voldemort
 - Higher number of connections might lead to better results
- MySQL
 - Eager scan evaluation
- VoltDB
 - Synchronous communication slow on multiple nodes

Cassandra

Winner in terms of scalability and throughput

HBase

Low write latency, high read latency, low throughput

Sharded MySQL

Scales well, latency decreases with higher scales

Voldemort

Read and write latency stable at low level

Redis

Standalone has high throughput, sharded version does not scale well

VoltDB

High single node throughput, does not scale for synchronous access

- Cassandra's performance close to APM requirements
 - Additional improvements needed for reliably sustaining APM workload
- Future work
 - Benchmark impact of replication, compression
 - Monitor the benchmark runs using APM tool

Thanks!

Questions?

Contact: Tilmann Rabl tilmann.rabl@utoronto.ca

