Package 'oreo'

October 14, 2022

Type Package

Title Large Amplitude Oscillatory Shear (LAOS)
Version 1.0
Date 2021-03-01
Maintainer Serena Berretta < serena.berretta@ge.imati.cnr.it>
Description The Sequence of Physical Processes (SPP) framework is a way of interpreting the transient data derived from oscillatory rheological tests. It is designed to allow both the linear and non-linear deformation regimes to be understood within a single unified framework. This code provides a convenient way to determine the SPP framework metrics for a given sample of oscillatory data. It will produce a text file containing the SPP metrics, which the user can then plot using their software of choice. It can also produce a second text file with additional derived data (components of tangent, normal, and binormal vectors), as well as pre-plotted figures if so desired. It is the R version of the Package SPP by Simon Rogers Group for Soft Matter (Simon A. Rogers, Brian M. Erwin, Dimitris Vlassopoulos, Michel Cloitre (2011) <doi:10.1122 1.3544591="">).</doi:10.1122>
Imports gridExtra,ggplot2,openxlsx,tools,spectral,pracma,fftwtools,scales
Depends R (>= $3.5.0$)
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Author Serena Berretta [aut, cre], Giorgio Luciano [aut], Kristian Hovde Liland [ctb], Simon Rogers [ctb]
Repository CRAN
Date/Publication 2021-03-10 19:20:07 UTC
R topics documented:
mydata

2

2 mydata

	plotColeCole	3
	plotDeltaStrain	4
	plotDisp	5
	plotFft	6
	plotGpdot	7
	plotPAV	8
	plotSpeedGp	9
	plotSpeedGpp	
	plotStrain	
	plotStressRate	
	plotStressStrain	
	plotStressTime	
	plotTimeRate	
	plotTimeStrain	
	plotTimeStress	
	plotVGP	
	rpp_fft	
	Rpp_num	
	rpp_out_csv	
	rpp_out_excel	
	rpp_read	
	rpp_read2	24
Index		26

mydata

Data from the Giesikus model

Description

The data is arranged into four columns: Time (s), Strain (-), Rate (1/s) and Stress (Pa). reflecting the applied strain- control

Usage

data(mydata)

Format

A data frame with 1024 rows and 4 columns

V1 Time

V2 Strain

V3 Rate

V4 Stress

References

ppp

plotColeCole 3

plotColeCole

Cole-Cole plot

Description

```
create Cole-Cole plot
create Cole-Cole plot
```

Usage

```
plotColeCole(Gp_t, Gpp_t, ...)
plotColeCole(Gp_t, Gpp_t, ...)
```

Arguments

Gp_t from the output matrix from fft analysis or numerical differentiation analysis
Gpp_t from the output matrix from fft analysis or numerical differentiation analysis
... parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

4 plotDeltaStrain

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
Gpp_t= out$spp_data_out$Gpp_t
plotColeCole(Gp_t,Gpp_t)</pre>
```

plotDeltaStrain

Strain Delta Plot

Description

```
create Strain Delta Plot
create Strain Delta Plot
```

Usage

```
plotDeltaStrain(strain, delta_t, ...)
plotDeltaStrain(strain, delta_t, ...)
```

Arguments

strain from the output matrix from fft analysis or numerical differentiation analysis
delta_t from the output matrix from fft analysis or numerical differentiation analysis
... parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

plotDisp 5

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
delta_t= out$spp_data_out$delta_t
plotDeltaStrain(strain,delta_t)</pre>
```

plotDisp

Strain Displacement Stress

Description

Strain Displacement Stress Strain Displacement Stress

Usage

```
plotDisp(strain, disp_stress, ...)
plotDisp(strain, disp_stress, ...)
```

Arguments

strain from the output matrix from fft analysis or numerical differentiation analysis disp_stress from the output matrix from fft analysis or numerical differentiation analysis parameters of plot()

Value

No return value

No return value

6 plotFft

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
disp_stress= out$spp_data_out$disp_stress
plotDisp(strain,disp_stress)</pre>
```

plotFft

Fourier Harmonic Magnitudes plot

Description

```
create Fourier Harmonic Magnitudes plot
create Fourier Harmonic Magnitudes plot
```

Usage

```
plotFft(ft_amp, fft_resp, spp_params, ...)
plotFft(ft_amp, fft_resp, spp_params, ...)
```

Arguments

ft_amp	from the output matrix from fft analysis or numerical differentiation analysis
fft_resp	from the output matrix from fft analysis or numerical differentiation analysis
spp_params	input parameters used for the fft analysis or numerical differentiation analysis
	parameters of plot()

Value

No return value No return value plotGpdot 7

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- rpp_fft(time_wave,resp_wave,L=1024,omega=3.16 , M=15,p=1)
ft_amp= out$ft_out$ft_amp
fft_resp= out$ft_out$fft_resp
spp_params= out$spp_params
plotFft(ft_amp,fft_resp,spp_params)</pre>
```

plotGpdot

Gp_t_dot vs Gpp_t_dot

Description

```
create Gp_t_dot vs Gpp_t_dot
create Gp_t_dot vs Gpp_t_dot
```

Usage

```
plotGpdot(Gp_t_dot, Gpp_t_dot, ...)
plotGpdot(Gp_t_dot, Gpp_t_dot, ...)
```

Arguments

Gp_t_dot from the output matrix from fft analysis or numerical differentiation analysis

Gpp_t_dot from the output matrix from fft analysis or numerical differentiation analysis

... parameters of plot()

Value

No return value

No return value

plotPAV

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t_dot= out$spp_data_out$Gp_t_dot
Gpp_t_dot= out$spp_data_out$Gpp_t_dot
plotGpdot(Gp_t_dot,Gpp_t_dot)</pre>
```

plotPAV

Strain Delta Plot

Description

```
create Strain Delta Plot
create Strain Delta Plot
```

Usage

```
plotPAV(strain, delta_t_dot, ...)
plotPAV(strain, delta_t_dot, ...)
```

```
strain from the output matrix from fft analysis or numerical differentiation analysis delta_t_dot from the output matrix from fft analysis or numerical differentiation analysis parameters of plot()
```

plotSpeedGp 9

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
delta_t_dot= out$spp_data_out$delta_t_dot
plotPAV(strain,delta_t_dot)</pre>
```

plotSpeedGp

Speed-G'_t plot

Description

```
create Speed-G'_t plot
create Speed-G'_t plot
```

Usage

```
plotSpeedGp(Gp_t, G_speed, ...)
plotSpeedGp(Gp_t, G_speed, ...)
```

Arguments

Gp_t from the output matrix from fft analysis or numerical differentiation analysis
G_speed from the output matrix from fft analysis or numerical differentiation analysis
... parameters of plot()

10 plotSpeedGpp

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
G_speed= out$spp_data_out$G_speed
plotSpeedGp(Gp_t,G_speed)</pre>
```

plotSpeedGpp

Speed-G"_t plot

Description

```
create Speed-G"_t plot
create Speed-G"_t plot
```

```
plotSpeedGpp(G_speed, Gpp_t, ...)
plotSpeedGpp(G_speed, Gpp_t, ...)
```

plotStrain 11

Arguments

G_speed	from the output matrix from fft analysis or numerical differentiation analysis
Gpp_t	from the output matrix from fft analysis or numerical differentiation analysis
	parameters of plot()

Value

No return value No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
G_speed= out$spp_data_out$G_speed
Gpp_t= out$spp_data_out$Gpp_t
plotSpeedGpp(G_speed,Gpp_t)</pre>
```

plotStrain

Strain Gp_t,eq_strain_est

Description

```
Strain Gp_t,eq_strain_est
Strain Gp_t,eq_strain_est
```

12 plotStressRate

Usage

```
plotStrain(Gp_t, eq_strain_est, ...)
plotStrain(Gp_t, eq_strain_est, ...)
```

Arguments

Gp_t from the output matrix from fft analysis or numerical differentiation analysis eq_strain_est from the output matrix from fft analysis or numerical differentiation analysis parameters of plot()

Value

No return value

No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
Gp_t= out$spp_data_out$Gp_t
eq_strain_est= out$spp_data_out$eq_strain_est
plotStrain(Gp_t,eq_strain_est)</pre>
```

plotStressRate

Stress-Rate plot

Description

create Stress Rate Plot create Stress Rate Plot plotStressRate 13

Usage

```
plotStressRate(stress, rate, ...)
plotStressRate(stress, rate, ...)
```

Arguments

stress data the output matrix from fft analysis or numerical differentiation analysis
rate data the output matrix from fft analysis or numerical differentiation analysis
... parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
rate= out$spp_data_out$rate
stress= out$spp_data_out$stress
plotStressRate(stress, rate)</pre>
```

14 plotStressStrain

plotStressStrain

Stress-Strain plot

Description

```
create Stress Strain Plot
create Stress Strain Plot
```

Usage

```
plotStressStrain(stress, strain, strain_in, stress_in, ...)
plotStressStrain(stress, strain, strain_in, stress_in, ...)
```

Arguments

stress	data the output matrix from fft analysis or numerical differentiation analysis
strain	data the output matrix from fft analysis or numerical differentiation analysis
strain_in	data the input matrix from fft analysis or numerical differentiation analysis
stress_in	data the input matrix from fft analysis or numerical differentiation analysis
	parameters of plot()

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

plotStressTime 15

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
strain= out$spp_data_out$strain
stress= out$spp_data_in$stress
strain_in= out$spp_data_in$strain
stress_in= out$spp_data_in$stress
plotStressStrain(stress, strain,strain_in,stress_in)</pre>
```

plotStressTime

Stress-Time plot

Description

```
create Stress-Time plot
create Stress-Time plot
```

Usage

```
plotStressTime(time_wave_in, stress_in, time_wave, stress)
plotStressTime(time_wave_in, stress_in, time_wave, stress)
```

Arguments

time_wave_in raw time from input data stress_in stress from input data

time_wave from the output matrix from fft analysis or numerical differentiation analysis stress from the output matrix from fft analysis or numerical differentiation analysis

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

plotTimeRate

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave_in= out$spp_data_in$time_wave
stress_in= out$spp_data_in$stress
time_wave= out$spp_data_out$time_wave
stress= out$spp_data_out$time_wave
stress= out$spp_data_out$stress
plotStressTime(time_wave_in,stress_in,time_wave,stress)</pre>
```

plotTimeRate

Rate, time_wave plot

Description

```
create Rate, time_wave plot create Rate, time_wave plot
```

Usage

```
plotTimeRate(time_wave, rate, time_wave_in, strain_rate, ...)
plotTimeRate(time_wave, rate, time_wave_in, strain_rate, ...)
```

Arguments

from the output matrix from fft analysis or numerical differentiation analysis
from the output matrix from fft analysis or numerical differentiation analysis
time_wave_in raw time from input data
strain_rate strain rate from input data
... parameters of plot()

Value

No return value No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter plotTimeStrain 17

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
rate= out$spp_data_out$rate
time_wave_in= out$spp_data_in$time_wave
strain_rate= out$spp_data_in$strain_rate
plotTimeRate(time_wave,rate,time_wave_in,strain_rate)</pre>
```

plotTimeStrain

Strain time_wave, strain

Description

```
Strain time_wave, strain
Strain time_wave, strain
```

Usage

```
plotTimeStrain(time_wave, strain, time_wave_in, strain_in, ...)
plotTimeStrain(time_wave, strain, time_wave_in, strain_in, ...)
```

```
time_wave time from output data

strain from the output matrix from fft analysis or numerical differentiation analysis

time_wave_in time from input data

strain_in from the input matrix from fft analysis or numerical differentiation analysis

... parameters of plot()
```

18 plotTimeStress

Value

No return value No return value

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
strain= out$spp_data_int$time_wave
strain_in= out$spp_data_in$time_wave
strain_in= out$spp_data_in$train
plotTimeStrain(time_wave,strain,time_wave_in,strain_in)</pre>
```

plotTimeStress

Stress-Time plot

Description

```
create Stress-Time plot
create Stress-Time plot
```

Usage

```
plotTimeStress(time_wave, stress, time_wave_in, strain_rate, ...)
plotTimeStress(time_wave, stress, time_wave_in, strain_rate, ...)
```

```
time_wave from the output matrix from fft analysis or numerical differentiation analysis stress from the output matrix from fft analysis or numerical differentiation analysis time_wave_in raw time from input data strain_rate strain rate from input data
... parameters of plot()
```

plotVGP 19

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
time_wave= out$spp_data_out$time_wave
stress= out$spp_data_out$stress
time_wave_in= out$spp_data_in$time_wave
strain_rate= out$spp_data_in$strain_rate
plotTimeStress(time_wave,stress,time_wave_in,strain_rate)</pre>
```

plotVGP

VGP plot

Description

```
create VGP plot create VGP plot
```

Usage

```
plotVGP(G_star_t, delta_t, ...)
plotVGP(G_star_t, delta_t, ...)
```

```
G_star_t from the output matrix from fft analysis or numerical differentiation analysis delta_t from the output matrix from fft analysis or numerical differentiation analysis parameters of plot()
```

rpp_fft

Value

No return value

No return value

Author(s)

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

Giorgio Luciano and Serena Beretta, based on the Plotting functions created by Simon Rogers Group for Soft Matter

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)
G_star_t= out$spp_data_out$G_star_t
delta_t= out$spp_data_out$delta_t
plotVGP(G_star_t,delta_t)</pre>
```

rpp_fft

SPP Analysis via fourier

Description

applies the SPP Analysis by means of a fourier series.

```
rpp_fft(time_wave, resp_wave, L, omega, M, p)
```

Rpp_num 21

Arguments

time_wave Lx1 vector of time at each measurement point

resp_wave Lx3 matrix of the strain, rate and stress data, with each row representing a mea-

suring point

L number of measurement points in the extracted data

omega frequency of oscilation (rad/s)

M number of harmonics for stress

p number of cycles

Value

a list with the following data frame spp_data_in= the data frame with the data spp_params=spp_params, spp_data_out= Length, frequency, harmonics, cycles, max_harmonics, step_size fsf_data_out= Tx, Ty, Tz, Nx, Ny, Nz, Bx, By, Bz coordinates of the trajectory (T=tangent, N=principal Normal, B=Binormal Vectors) ft_out=data frame with that includes time_wave, strain_rate, stress, Gp_t, Gpp_t, G_star_t, tan_delta_t, delta_t, disp_stress, eq_strain_est, Gp_t_dot, Coordinates of the trajectory (T=tangent, N=principal Normal, B=Binormal Vectors) ft_out=data frame

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- rpp_fft(time_wave,resp_wave,L=1024,omega=3.16 , M=15,p=1)</pre>
```

Rpp_num

SPP Analysis via numerical differentiation

Description

applies the SPP Analysis by means of a numerical differentiation.

```
Rpp_num(time_wave, resp_wave, L, k, num_mode)
```

rpp_out_csv

Arguments

time_wave Lx1 vector of time at each measurement point

resp_wave Lx3 matrix of the strain, rate and stress data, with each row representing a mea-

suring point

L number of measurement points in the extracted data

k step size for numerical differentiation

num_mode numerical method

Value

a list with the following data frame spp_data_in= the data frame with the data spp_params=spp_params, spp_data_out= Length, frequency, harmonics, cycles, max_harmonics, step_size fsf_data_out= Tx, Ty, Tz, Nx, Ny, Nz, Bx, By, Bz coordinates of the trajectory (T=tangent, N=principal Normal, B=Binormal Vectors) ft_out=data frame with that includes time_wave, strain_rate, stress, Gp_t, Gpp_t, G_star_t, tan_delta_t, delta_t, disp_stress, eq_strain_est, Gp_t_dot, Coordinates of the trajectory (T=tangent, N=principal Normal, B=Binormal Vectors) ft_out=data frame

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

References

Simon A. Rogersa, M. Paul Letting, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models Journal of Rheology 56:1, 1-25

Examples

```
data(mydata)
df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))
time_wave <- df$raw_time
resp_wave <- data.frame(df$strain,df$strain_rate,df$stress)
out <- Rpp_num(time_wave, resp_wave , L=1024, k=8, num_mode=1)</pre>
```

rpp_out_csv

Export results of the performed SPP analysis in csv format

Description

This function export the output the SPP analysis (performed via FFT or Numeric Analysis) and export it to csv files

```
rpp_out_csv(out, myfilename = "my_models.xlsx")
```

rpp_out_excel 23

Arguments

out output of the SPP analysis (performed via FFT or Numeric Analysis)

myfilename name of the file where to save results (csv)

Value

No return value

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

rpp_out_excel

Export results of the performed SPP analysis in xls format

Description

This function export the output the SPP analysis (performed via FFT or Numeric Analysis) and export it to xls files

Usage

```
rpp_out_excel(out, myfilename = "my_models.xlsx")
```

Arguments

out output of the SPP analysis (performed via FFT or Numeric Analysis)

myfilename name of the file where to save results in xls format

Value

No return value

Author(s)

Simon Rogers Group for Soft Matter (matlab version), Giorgio Luciano and Serena Berretta (R version)

24 rpp_read2

r	nr	١	r	ρ	a	d
	\sim	_		·	u	u

Read function

Description

This function reads data from the selected file, and assign it to a dataframe

Usage

```
rpp_read(filename, header = TRUE, selected = c(2, 3, 4, 0, 0, 1, 0, 0), \ldots)
```

Arguments

filename the name of the file to read

header TRUE if colnames are present FALSE if colnames are not present

selected the user should input the number of the columns that represent strain-smoothed

(gamma), strain rate-smoothed (gamma dot), stress smoothed (tau recon), Elast-Stress (FTtau_e), Visco-Stress (FTtau_v), raw time (time), raw stress (tau), raw strain (gamma) i.e. selected=c(2, 3, 4, 0, 0, 1, 0, 0) means that the second column of your data is the strain rate smoothed, the third column is the stress smoothed, the stress smoothed is the fourth column in the original data, and finally that we

do not have data for the raw stress and raw strain

.. parameters of read.csv

Value

a dataframe with all the columns assigned

Author(s)

Giorgio Luciano and Serena Berretta, Simon Rogers Group for Soft Matter (matlab version)

rpp_read2	Read function
i pp_i cauz	кеши јинсион

Description

This function reads data from a dataframe

```
rpp_read2(dat, selected = c(2, 3, 4, 0, 0, 1, 0, 0), ...)
```

rpp_read2 25

Arguments

dat dataframe of input

selected the user should input the number of the columns that represent strain-smoothed

(gamma), strain rate-smoothed (gamma dot), stress smoothed (tau recon), Elast-Stress (FTtau_e), Visco-Stress (FTtau_v), raw time (time), raw stress (tau), raw strain (gamma) i.e. selected=c(2, 3, 4, 0, 0, 1, 0, 0) means that the second column of your data is the strain rate smoothed, the third column is the stress smoothed, the stress smoothed is the fourth column in the original data, and finally that we

do not have data for the raw stress and raw strain

... parameters of read.csv

Value

a dataframe with all the columns assigned

Author(s)

Giorgio Luciano and Serena Berretta, Simon Rogers Group for Soft Matter (matlab version)

Examples

```
\label{eq:data-mydata} $$ data(mydata)$ $$ df <- rpp_read2(mydata , selected=c(2, 3, 4, 0, 0, 1, 0, 0))$
```

Index

ploto
plot
plot:
plot:
plot:
plot:
plot
plots
plot
plot
plot
plot
rpp_
Rpp_i
rpp_c
rpp_c
rpp_i
rpp_i

Gpdot, 7 PAV, 8 SpeedGp, 9 SpeedGpp, 10 Strain, 11 StressRate, 12 StressStrain, 14 StressTime, 15 TimeRate, 16 TimeStrain, 17 TimeStress, 18 VGP, 19 fft, 20 num, 21 out_csv, 22 out_excel, 23 read, 24 read2, 24