空論上の砂、楼閣上の机。

The Towering Sea

2021-08-22

Tohoku - 第3章層に係数を持つコホモロジー

翻訳 数学

• 3.1.層についての一般論

3.1. 層についての一般論

X を (必ずしも分離的とは限らない) 位相空間とする. \supset により順序付けられた Xの空でない開部分集合上に定義される集合の帰納系すべてを X 上の**集合の前層**と 呼ぶことを思い出そう (1.7 例 h). したがって前層とは、すべての開集合 $U \subset X$ に対 する集合 F(U) と, $U \supset V$ なる空でないすべての対 U,V に対する制限写像 $arphi_{VU}\colon F(U) o F(V)$ から成るデータであって,次の条件を伴うものである: $arphi_{UU}$ がF(U) の恒等写像であり, $U \supset V \supset W$ であれば $arphi_{WV}arphi_{VU} = arphi_{WU}$ である.前 層 F が層であるとは、空でない開集合による X の開集合 U の被覆 (U_i) すべてと、 元 $f_i \in F(U_i)$ であって $U_{ij} = U_i \cap U_j
eq \phi$ なるすべての対 (i,j) に対して $arphi_{U_{ij}U_{i}}f_{i}=arphi_{U_{ij}U_{j}}f_{j}$ となるものの族 (f_{i}) すべてに対し, ある $f\in F(U)$ がただ一 つ存在してすべてのiに対して $\varphi_{U_iU}f=f_i$ となることである.もし前述の定義にお いて,F(U) が群 (resp. 環, etc.) であり $arphi_{VU}$ が準同型であると仮定すれば,**群**の (resp. 環の, etc.) 前層や層という概念を得る; より一般に, 与えられた圏 (cf. 1.1) に値をとる 前層や層という概念を定義できる.与えられた圏に値をとる X 上の前層や層は圏を 成し、射は帰納系の射として定義される、たとえばアーベル群の圏のような加法圏に 値をとる X 上の前層や層は加法圏を成し,アーベル群の前層や層の場合にはアーベ ル圏すら成す.(簡単のためアーベル群の層や前層をアーベル層やアーベル前層とい うととにする). しかし注意すべきは、恒等関手はアーベル層にそれと対応するアーベ ル前層を結び付けるが、これは左完全だが完全ではないということである:層の準同 型 $u\colon F o G$ があれば, 前層の準同型としての核は前層 Q(U)= $G(U)/\operatorname{Im} F(U)$ であるが、一般には層ではない;層の準同型としての核は前層 Q

(後述) に結び付けられた層である. これらの問題は, 今ではかなり知られているので (cf. [4] と Godement の著書 [9]), これ以上は強調しない.

F を X 上の集合の前層とし、すべての x に対して $F(x) = \varinjlim F(U)$ とし、その帰納極限は x の開近傍 U にフィルター付けられた順序関係に従ってとられる. F(x) の和集合 \overline{F} 上には、 \overline{F} の部分集合のうち A(f) の形で書けるものから成る集合から生成される位相が入る. ここで、すべての開集合 $U \subset X$ とすべての $f \in F(U)$ に対し、 $x \in U$ に対する F(x) における f の標準的な像 f(x) から成る集合を A(f) で表した. \overline{F} にこの位相が入っていれば、F から X への自然な写像は局所同相写像である (i.e. \overline{F} におけるすべての点が X の開集合と同相になるように写される開近傍をもつ) ので \overline{F} を (Godement に従って) X におけるエタール空間という. さらに、X 上のエタール空間 E は層 F(x) を自然な仕方で定める、すなわち開集合 E に E の連続な断面から成る集合

 \mathbf{O} を X 上の単位的環の成す層とすると, 左 \mathbf{O} 加群の層, あるいは単に左 \mathbf{O} -Module

命題 3.1.1. O を空間 X 上の単位的環の層とする. このとき X 上の O 加群の加法圏 C^O は公理 AB 5) と AB 3*) を充たし生成子を持つアーベル圏である.

層 F_i の族 (F_i) の直和 S を構成するには単純に各開集合 U に対して $F_i(U)$ の直和をとり

系. すべての **O** 加群は入射 **O** 加群の部分 **O** 加群に同型である.

この系の Godement による直接的な証明を示そう. すべての $x \in X$ に対し, M_x を \mathbf{O}_x 加群, M を $M(U) = \prod_{x \in X} M_x$ により定義される X 上の層とし, 制限写像と M(U) 上の $\mathbf{O}(U)$ の作用を明白な仕方で定義する. $M^x(U)$ を $x \in U$ のときは M_x , そうでないときは 0 と定義することで得られる \mathbf{O} 加群 M^x ($x \in X$) の積への 同型の構成により, M は X 上の \mathbf{O} 加群となる. この注意からただちに次が従う: すべての \mathbf{O} 加群 F に対して F から M への準同型が族 $(u_x)_{x \in X}$ であってすべての $x \in X$ に対して u_x が F(x) から M_x への $\mathbf{O}(x)$ 準同型となるものと同一視される. これより次が結論付けられる:

命題 3.1.2. すべての $x\in X$ に対して M_x が入射 \mathbf{O}_x 加群であれば、このとき上のように定義された積層 M は入射 \mathbf{O} 加群である.

F を任意の $\mathbf O$ 加群とする. すべての $x\in X$ に対し, F(x) が入射 $\mathbf O_x$ 加群, すなわち M_x に埋め込めることは古典的である (さらに定理 1.10.1 の帰結でもある). したがって, M_x により定義される入射 $\mathbf O$ 加群 M への F の埋め込みが得られる.

また、後々のために次を指摘しておく.

命題 3.1.3. M を X 上の入射 $\mathbf O$ 加群, U を X の開部分集合, $\mathbf O_U$ (resp. M_U) を $\mathbf O$ (resp. M) の U への制限とする. このとき M_U は入射 $\mathbf O_U$ 加群である.

 M_U は明らかに \mathbf{O}_U 加群である. F を \mathbf{O}_U 加群, G を部分加群, u を G から M_U への準同型とする. 示すべきは u が F から M_U への準同型に延長できることである. U 上のすべての \mathbf{O}_U 加群 H に対し, x タール空間の用語法で言えば " \mathbf{C}_U における 0 による H の延長" (cf. $[4, \% 17 \ ^{\circ}]$ 命題 [1]) により得られる [0] 加群を [0] とする. [0] とする. [0] のとき [0] 加群の準同型 [0] [0] により [0] のとき [0] 加群の準同型 [0] [0] がのも [0] ないうのも [0] [0] ないうのも [0] ないうのも [0] [0] から [0] [0] への準同型に延長できるので,所望の [0] のから [0] への準同型を誘導する. 命題 [0] 3.1.3 は [0] が開でなく閉であると仮定すると偽になることに注意する. 完全に類似の方法で次が示せる.

命題 3.1.4. M を X の閉部分集合 Y 上の入射 $\mathbf O$ 加群とする. このとき $\mathbf O$ 加群 M^X であって Y 上では M に Y の補集合上では 0 に一致するものは入射的である.

永月杏 (id:all_for_nothing) 2年前

コメントを書く

«読書録:『宇宙と宇宙をつなぐ数...

Tohoku - 第2章アーベル圏における...

プロフィール

検索

永月杏 (id:all_for_nothing)

記事を検索

読者になる 88

<u>とのブログについて</u>

月別アーカイブ

カテゴリー

► 2023 (13)

<u>IBO (1)</u>

► <u>2022 (67)</u>

iOS (1)

2021 (83)

2021 / 12 (2)	<u>Mac (1)</u>
<u>2021 / 11 (5)</u> <u>2021 / 10 (5)</u>	<u>TeX (11)</u>
2021 / 9 (1)	IEX (II)
<u>2021 / 8 (9)</u>	<u>ドイツ語 (3)</u>
<u>2021 / 7 (8)</u> <u>2021 / 6 (28)</u>	<u>フランス語 (4)</u>
<u>2021 / 5 (9)</u>	- ペックライ(a)
<u>2021 / 4 (6)</u> <u>2021 / 3 (5)</u>	<u>ヘブライ語 (1)</u>
2021 / 2 (4)	<u>ロシア語 (2)</u>
<u>2021 / 1 (1)</u>	医学 (12)
· <u>2020 (54)</u>	<u>古文(3)</u>
2019 (30)	<u>呟살 (12)</u>
	<u>哲学(4)</u> .
	<u>報告(3)</u>
	<u>数学 (75)</u>
	<u>日本語 (15)</u>
	<u>漢文 (1)</u>
	物理 (25)
	<u>生活 (14)</u>
	<u>生物学 (7)</u>
	<u>経済学 (2)</u>
	統計 (3)
	翻訳 (12)
	<u>英語 (41)</u>
	<u>言語学 (27)</u>
	<u>読書録 (22)</u>
	<u>音楽 (1)</u>

