

## Universidade do Minho

SISTEMAS BASEADOS EM SIMILARIDADE

# Conceção e implementação de modelos de Machine Learning usando Árvores de Decisão

Autores: Bruno Nascimento João Palmeira Rafael Silva Números Aluno: A67647 A73864 A74264

24 de Novembro de 2019

# Conteúdo

| 1        | Intr | rodução                                    | 3  |
|----------|------|--------------------------------------------|----|
| <b>2</b> | Dat  | taSet Intensidade do Trânsito              | 4  |
|          | 2.1  | Análise dos dados                          | 4  |
|          | 2.2  | Tratamento dos dados                       | 5  |
|          | 2.3  | Métodos aplicados                          | 8  |
|          | 2.4  | Cross-validation                           | 8  |
|          | 2.5  | Tuning                                     | 10 |
|          | 2.6  | Feature Selection                          | 12 |
|          | 2.7  | Modelos desenvolvidos e resultados obtidos | 13 |
|          |      | 2.7.1 1 <sup>a</sup> Versão                | 13 |
|          |      | 2.7.2 2 <sup><u>a</u></sup> Versão         | 13 |
|          |      | 2.7.3 3ª Versão                            | 14 |
|          |      | 2.7.4 Versão Final                         | 16 |
|          | 2.8  | Submissão no Kaggle                        | 17 |
| 3        | Dat  | taSet da Temperatura Global                | 18 |
|          | 3.1  | Contextualização                           | 18 |
|          | 3.2  | Análise dos dados                          | 18 |
|          | 3.3  | Tratamento dos dados                       | 19 |
|          | 3.4  | Tuning                                     | 20 |
|          |      | 3.4.1 Tuning Inicial                       | 20 |
|          |      | 3.4.2 Tuning Final                         | 20 |
|          | 3.5  | Cross-Validation                           | 21 |
|          | 3.6  | Workflow desenvolvido                      | 22 |
|          | 3.7  | Resultados obtidos                         | 22 |
| 4        | Con  | nclusões                                   | 23 |
| 5        | Ref  | erências                                   | 24 |

# Lista de Figuras

| 1  | Distribuição do atributo "average_speed_diff"         |
|----|-------------------------------------------------------|
| 2  | Filtragem das colunas                                 |
| 3  | Tratamento de dados no Workflow                       |
| 4  | Propriedades do gráficos                              |
| 5  | Distribuição do AVERAGE_SPEED_DIFF                    |
| 6  | AVERAGE_FREE_FLOW_TIME/AVERAGE_FREE_FLOW_SPEED 8      |
| 7  | Tipos de modelos                                      |
| 8  | Cross-validation no Workflow                          |
| 9  | Cross-validation com $k$ -fold=10                     |
| 10 | Definições dos nodos "X-Partitioner" e "X-Aggregator" |
| 11 | Parte inicial do tuning                               |
| 12 | Definições "Table Creator"                            |
| 13 | Definições "Parameter Optimization Loop Start"        |
| 14 | Parte final do tuning                                 |
| 15 | Definições "Variable Loop End"                        |
| 16 | Feature Selection Workflow                            |
| 17 | Exemplo de uma feature selection                      |
| 18 | Primeiro Modelo                                       |
| 19 | Segundo Modelo                                        |
| 20 | Terceiro Modelo                                       |
| 21 | Workflow final                                        |
| 22 | Submissão escolhida                                   |
| 23 | Melhor submissão                                      |
| 24 | Distribuição da temperatura ao longo dos anos         |
| 25 | Tratamento de dados no Workflow                       |
| 26 | Nodo Tuning Begin                                     |
| 27 | Nodo Tuning Final                                     |
| 28 | Cross Validation                                      |
| 29 | Workflow desenvolvido                                 |
| 30 | Resultados obtidos 22                                 |

## 1 Introdução

Este trabalho prático foi desenvolvido no âmbito da UC de **Sistemas Baseados em Similaridade** e tem como principal desenvolver e implementar **modelos** *Machine Learning* usando **Árvores de Decisão** através da plataforma *KNIME*.

Para tal foram desenvolvidos dois modelos de *Machine Learning* de maneira a responder a dois *datasets*: um para a modelação de **tráfego na cidade do Porto** e outro sobre *Aumento da Temperatura Média Global*. De referir ainda que o modelo desenvolvido para o primeiro *dataset*, referente ao tráfego, foi utilizado para uma competição na plataforma *Kaggle*.

Neste relatório são apresentadas todas as etapas da realização deste modelos, desde a análise inicial dos dados de cada *dataset*, o processamento, a avaliação das *features*, o tunning, a validade até aos testes de cada modelo.

De modo a concluir este trabalho iremos também realizar uma análise crítica dos resultados obtidos para cada modelo.

### 2 DataSet Intensidade do Trânsito

#### 2.1 Análise dos dados

Inicialmente verifica-se que o dataset contém dados relativos ao tráfego na cidade do Porto num determinado período temporal, mais concretamente entre 24 de Julho de 2018 e 20 de Setembro de 2019. Este dataset inclui os seguintes atributos:

- city\_name nome da cidade em causa;
- record\_date o timestamp associado ao registo;
- average\_speed\_diff a diferença de velocidade corresponde à diferença entre (1.) a velocidade máxima que os carros podem atingir em cenários sem trânsito e (2.) a velocidade que realmente se verifica. Quanto mais alto o valor, maior é a diferença entre o que se está a andar no momento e o que se deveria estar a andar sem trânsito, i.e., valores altos deste atributo implicam que se está a andar mais devagar;
- average\_free\_flow\_speed o valor médio da velocidade máxima que os carros podem atingir em cenários sem trânsito;
- average\_time\_diff o valor médio da diferença do tempo que se demora a percorrer um determinado conjunto de ruas. Quanto mais alto o valor maior é a diferença entre o tempo que demora para se percorrer as ruas e o que se deveria demorar sem trânsito, i.e., valores altos implicam que se está a demorar mais tempo a atravessar o conjunto de ruas;
- average\_free\_flow\_time o valor médio do tempo que demora a percorrer um determinado conjunto de ruas quando não há trânsito;
- luminosity o nível de luminosidade que se verificava na cidade do Porto;
- average\_temperature o valor médio da temperatura para o record\_date na cidade do Porto:
- $\bullet \ average\_atmosp\_pressure$  o valor médio da pressão atmosférica para o record\_date;
- average\_humidity o valor médio da humidade para o record\_date;
- average\_wind\_speed o valor médio da velocidade do vento para o record\_date;
- average\_cloudiness o valor médio da percentagem de nuvens para o record\_date;
- average\_precipitation o valor médio de precipitação para o record\_date;
- average\_rain avaliação qualitativa da precipitação para o record\_date.

O objetivo da análise deste dataset é perceber qual o atributo que será necessário utilizar para o modelo ser capaz de prever a intensidade do transito num dado momento com a melhor accuracy possível. Como tal importa destacar que esse atributo é o "average\_speed\_diff".



Figura 1: Distribuição do atributo "average\_speed\_diff"

Como se pode observar pela figura anterior, o atributo é composto pelos parâmetros "Low", "Medium", "High", "Very\_High" e "None" que definem a intensidade do trânsito. Estes parâmetros constituem uma escala que será utilizada para realizar as previsões.

Através do gráfica é possível elaborar uma ideia do trânsito que existe ao longo do dia, isto é, através do nosso quotidiano verificamos que, como se pode observar no gráfico. a maior percentagem corresponde ao "None", cerca de 32%, logo podemos concluir que ao longo do dia existem bastantes períodos onde não existe qualquer tipo de trânsito nomeadamente de madrugada. Já o caso do "Very\_High" devido à sua percentagem ser menor (7%), conclui-se que é referente a períodos como o início da manhã e o final da tarde, alturas em que as pessoas entram/saem dos seus empregos ou levam/buscam os seus filhos à escola.

Os valores de "Low", "Medium", "High" são respectivamente 21%, 24% e 16%, fazendo com que se conclua que o transito ao longo do dia tem um tráfego mediano, visto que existem percentagens altas tanto para o "Low" como para o "Medium".

#### 2.2 Tratamento dos dados

Numa fase inicial da contrução deste modelo de *Machine Learning*, foi necessário realizar um tratamento de dados, isto é, realizou-se uma análise crítica do conjunto de dados fornecidos nos *datasets* e determinou-se quais seriam os dados a serem utilizados, quais teriam que ser alterados e quais não seriam utilizados. De certa forma foram selecionados os atributos imprescindíveis para a criação do modelo.

Inicialmente começou-se por transformar a string "record\_date" de cada dados para o tipo Date&Time para, posteriormente, retirar o dia da semana, o mês, o ano e a hora do dia desse DateTime. De seguida através de um Column Filter removeu-se as colunas que achamos desnecessárias, como podemos ver na figura seguinte.



Figura 2: Filtragem das colunas

Optou-se por utilizar um *String Manipulation* de modo a transformar os valores da coluna *LUMINOSITY* que são *strings* em valores inteiros e alterou-se o tipo da coluna através do *String to Number*:

- DARK = 0
- LIGHT = 1
- LOW\_LIGHT = 2

É usado o *Missing Value* para alterar os *missing values* das tabelas *AVERAGE\_CLOUDINESS* e *AVERAGE\_RAIN* para *NULL*. Posteriormente, através dos quatro *Math Formulas*, é elaborado o cálculo da **distância** percorrida para cada *row* que é utilizada para fazer calcular a **velocidade média** para cada *row*. De seguida, é calculado a **velocidade individual** de cada *row*, ou seja, a velocidade a que realmente o carro circulou e, por fim, a **diferença entre estas velocidades** calculada através da subtração da velocidade individual à velocidade média do trajeto. Por último, utilizou-se um *Column Filter* com o intuito de remover columas desnecessárias.

Esta sequência de passos é comprovada pela próxima figura.



Figura 3: Tratamento de dados no Workflow

Foi ainda aplicado um *Color Manager* e um *Pie chart (local)* para elaborar o gráfico referido na secção anterior.



Figura 4: Propriedades do gráficos

De modo a obter mais dados estatísticos decidimos construir mais dois gráficos através de um **Bar Chart** e de um **Scartter Plot**, que constituem uma estatística do AVERAGE\_SPEED\_DIFF pelos seus atributos e uma estatística da distribuição dos valores da velocidade pelo tempo, respetivamente.



Figura 5: Distribuição do  $AVERAGE\_SPEED\_DIFF$ 



Figura 6: AVERAGE\_FREE\_FLOW\_TIME/AVERAGE\_FREE\_FLOW\_SPEED

### 2.3 Métodos aplicados

Após o tratamento de dados, decidiu-se aplicar uma *Decision Tree* através do método de *Crossvalidation*. Desta forma foram criados dois *workflows*: um *workflow* para otimizar as variáveis do modelo da *Decision Tree* tais como a *quality measure*, *pruning*, *minimum number of records per node*, *number of records to store for view* e o *number of threads*; um segundo *workflow* para realizar uma *feature selection*.

### 2.4 Cross-validation

Cross-validation é uma técnica de validação de modelos de *Machine Learning* que tem como objetivo ter uma métrica precisa do desempenho do modelo na prática.

Essencialmente, consiste em dividir o conjunto de dados em **k-folds**. Em cada execução do modelo, k-1 dobras são usadas para treino e 1 dobra (a restante) é usado como teste. Continua-se a repetir o processo até que todas as dobras tenham sido usadas para teste. A métrica de erro final é baseada no valor médio de todas as métricas de erro.

Foi decidido colocar em prática o Cross-validation devido a uma das suas vantagens: diminuição do overfitting. O overfitting consiste na produção de uma análise que corresponde aproximadamente a um determinado conjunto de dados e, portanto, pode falhar ao se ajustar aos dados adicionais ou prever observações futuras sem fiabilidade.



Figura 7: Tipos de modelos

Queremos com isto dizer que o overfitting reflete que o modelo memoriza e modela demasiado o training set, originando uma previsão errada caso se utilize outro dataset no modelo.



Figura 8: Cross-validation no Workflow

Assim sendo para a construção deste modelo optou-se por atribuir uma valor de 10 ao k-fold (k=10).



Figura 9: Cross-validation com k-fold=10

Utilizou-se um "X-Partitioner" e um "X-Aggregator" para que fosse possível aplicar esta técnica. O primeiro faz a repartição do dataset pelo k-fold definido, ou seja, por k=10 (10 partes iguais) com sampling aleatório. Já o segundo serve para definir a coluna "alvo" e a coluna da previsão, retornado a tabela das previsões já com a percentagem de erro de cada fold.



Figura 10: Definições dos nodos "X-Partitioner" e "X-Aggregator"

## 2.5 Tuning

Já relativamente ao *tuning*, este foi dividido na parte inicial e na parte final. Na fase inicial foi realizado o *tuning* de parâmetros nominais e de parâmetros numéricos, respetivamente.



Figura 11: Parte inicial do tuning

Inicialmente definiu-se os parâmetros nominais da tabela a ser criada, através do *Table Creator*, com o intuito de otimizar a variável *Quality Measure*. Para tal definimos os parâmetros *Information Gain*, *Information Gain Ratio* e, por último, o *Gini Index*.



Figura 12: Definições "Table Creator"

Após a introdução dos parâmetros nominais, aplicou-se os parâmetros numéricos. Através do *Parameter Optimization Loop Start* criou-se três variáveis diferentes: *nrModels* que corresponde ao número máximo de modelos a usar, *nrLevels* que corresponde ao número máximos de níveis de cada árvore de decisão e o *stopCriteria* que corresponde a uma variável que serve de critério de paragem. A estratégia utilizada foi a *Brute Force*.



Figura 13: Definições "Parameter Optimization Loop Start"

Já na parte final do tuning, de maneira a que seja cálculo o accuracy, optou-se por se utilizar um GroupBy, que através das percentagens fornecidas pelo X-Aggregator, calcula a média dos erros. Esta média é usada posteriormente no  $Math\ Formula$  que efectua o cálculo da accuracy segundo a fórmula accuracy = 100 -  $mean\_error$ .



Figura 14: Parte final do tuning

Seguidamente no **Parameter Optimization Loop End** selecionou-se a função objetivo que se queria maximizar, isto é, neste caso selecionou-se a opção maximized para a accuracy. Estes dados são, por fim, passados ao **Variable Loop End** onde foram definidos os parâmetros a otimizar, como se pode observar na figura 13. Colocou-se ainda um **GroupBy** com o intuito de calcular a média final do valor da função objetivo, ou seja, calcular o valor médio da accuracy do output gerado. Este **GroupBy** foi apenas utilizado para uma avaliação do output por parte do grupo de trabalho.



Figura 15: Definições "Variable Loop End"

### 2.6 Feature Selection

De modo a otimizar as escolhas das features a utilizar para gerar valores de accuracy desejáveis, decidiu-se criar um workflow que realiza-se uma seleção ótima das features a utilizar na nossa previsão.



Figura 16: Feature Selection Workflow

Como se pode observar através da Figura 16 o processo é semelhante ao que já foi descrito, embora não haja tuning, utilizou-se um **Feature Selection Filter** de modo a obter a seleção ótima tal como no exemplo da Figura 17.



Figura 17: Exemplo de uma feature selection

#### 2.7 Modelos desenvolvidos e resultados obtidos

#### $2.7.1 \quad 1^{\underline{a}} \text{ Versão}$

Nesta primeira versão, apenas tratamos dos dados relativos à data, recolhendo o dia, o mês, o ano e a hora, e realizando um *Partitioning* dos dados de treino para serem usado na aprendizagem de uma *Decision Tree Learner*. Após a aprendizagem, a previsão é qualificada através de um *Scorer*.



Figura 18: Primeiro Modelo

### 2.7.2 $2^{\underline{a}}$ Versão

Através desta versão é possível verificar que existe um aperfeiçoamento do workflow anterior, uma vez que existe a inserção de tuning inicial e final bem como a inserção do conceito de Crossvalidation, sendo ambos idênticos ao que foi mencionado nos capítulos anteriores. Optou-se por manter a Decision Tree Learner e, abdicou-se do Scorer para a introdução do cálculo final da accuracy como no modelo final.



Figura 19: Segundo Modelo

#### $2.7.3 \quad 3^{\underline{a}} \text{ Versão}$

Relativamente a esta terceira versão, bastante semelhante ao workflow final, é importante referir que foi introduzido o tratamento de dados para os dados de teste, que implicou a introdução de um novo **Predictor** para estes novos dados, e, também foi introduzido, a formatação dos dados de output para CSV, com a filtragem das colunas bem como a introdução da coluna RowId.

Ainda a respeito desta versão, ela pode ser dividida em dois estágios: primeiro estágio onde o modelo de workflow utiliza uma **Decision Tree Learner**, obtendo resultados interessantes, e um segundo estágio onde foi introduzido o conceito de **Random Forest**, permitindo obter uma melhoria significativa nos resultados. Basicamente, de uma forma simplista, uma **Random Forest** é um conjunto de **Decision Trees**, daí o aumento significativo da **accuracy**.



Figura 20: Terceiro Modelo

## 2.7.4 Versão Final



Figura 21: Workflow final

Por último, a versão final, em relação à versão anterior, contou com a introdução de novos dados tal como foi mencionado nos capítulos anteriores e que dizem respeito a: distância do trajeto, velocidade média do trajeto, velocidade individual do carro no trajeto, diferença entre a velocidade média e velocidade individual.

Com a introdução destes novos dados, acha-se que existe uma maior exatidão nos resultados obtidos referentes à accuracy.

## 2.8 Submissão no Kaggle

Quanto à submissão no Kaggle, o nosso grupo foi o que realizou mais submissões, fruto também dos vários modelos que desenvolveu, das várias implementações que decidiu realizar. Como tal a escolha da submissão final foi difícil e, como tal, o grupo decidiu utilizar a última que foi realizada, apesar de não ter sido a que nos tenha fornecido valores mais altos tanto no Kaggle como no KNIME, o grupo estava confiante da fiabilidade dos resultados deste mesmo output.



Figura 22: Submissão escolhida

Relativamente à melhor submissão é de destacar, que apesar do valor fornecido pelo KNIME do output dessa submissão ser razoável, os valores obtidos no Kaggle público não foram satisfatórios (78.66%) embora no leaderboard privado tenham sido bastante satisfatórios.



Figura 23: Melhor submissão

## 3 DataSet da Temperatura Global

### 3.1 Contextualização

Neste capítulo é será explicado a segunda parte do projeto, além do dataset fornecido pelos docentes, que depois é submetido perante uma competição no Kaggle, com o uso do programa KNIME. Agora temos liberdade de escolha perante o dataset que queremos analisar, nesta segunda parte não temos que submeter as previsões numa plataforma como o Kaggle, basta medirmos localmente a capacidade de aprendizagem do modelo que iremos treinar.

Como tal procedemos a uma pesquisa de um *dataset* interessante, após uma breve recolha de opiniões, *datasets* tais como o do Titanic que prevê se um passageiro vai sobreviver, ou um que contém pacientes se estão ou não em risco de serem pacientes oncológicos, o grupo continuou a sua pesquisa até com um tema a nível global, as **alterações de temperatura média do Planeta Terra**.

O dataset que escolhemos para analisar é sobre a variação da temperatura da Terra, tanto na terra como no mar desde 1855 até 2013. Através deste o grupo pretende realizar uma aprendizagem através dos dados fornecidos de maneira a que seja possível prever a temperatura média apenas da terra.

No desenvolvimento é necessário ter em consideração, que ao usar um algoritmo árvore de decisão, ter em conta os valores de  $AUC(Area\ Under\ The\ Curve)$  e a curva  $ROC\ (Receiver\ Operating\ Characteristics)$ . Um valor base do modelo sem algoritmos de  $Random\ Forest$  ou a criar um modelo de overfitting é possível obter valores de 79% de taxa de accuracy. Para aprendizagem o programa KNIME é o programa aconselhado para treinar e testar a aprendizagem.

#### 3.2 Análise dos dados

No presente dataset foi possível tratar os dados que em seguida enumeramos:

- Date começa em 1750 para temperatura média da terra e 1850 para temperaturas máximas e mínimas da terra e temperaturas globais do oceano e da terra;
- LandAverageTemperature temperatura média global da terra em graus Celsius;
- LandAverageTemperatureUncertainty o intervalo de confiança de 95% em torno da média;
- LandMaxTemperature média da temperatura global máxima da terra em graus Celsius;
- LandMaxTemperatureUncertainty o intervalo de confiança de 95% em torno da temperatura máxima da terra;
- LandMinTemperature média da temperatura global mínima da terra em graus *Celsius*;
- LandMinTemperatureUncertainty o intervalo de confiança de 95% em torno da temperatura mínima da terra;
- LandAndOceanAverageTemperature temperatura média global da terra e do mar em graus *Celsius*;
- LandAndOceanAverageTemperatureUncertainty o intervalo de confiança de 95% em torno da média;

O nosso objetivo será prever o valor médio da temperatura da Terra, sendo, para isso, necessário enfatizar o atributo **LandAverageTemperature**. Para tal começamos por fazer uma análise gráfica da temperatura ao longo dos anos e, à semelhança do que aconteceu com a primeira parte do projeto, gerou-se o gráfico que é apresentado a seguir. Como se pode observar, a temperatura ao longo dos anos tem tendência a aumentar, algo a ter em consideração a quando da análise dos resultados.



Figura 24: Distribuição da temperatura ao longo dos anos

#### 3.3 Tratamento dos dados

Relativamente ao tratamento de dados para este dataset foram removidas as rows com missing values através do Missing Values. Foi utilizado um Auto-Binner com o intuito de intervalar os valores da temperatura média da Terra.

De seguida, com o auxílio de um *Cell Splitter*, partiu-se a data em *Year*, *Month* e *Day*, seguindo uma ideologia semelhante à primeira parte do projeto com o objetivo de melhorar a previsão.

Por fim, é usado um *Column Filter* de modo a selecionar as colunas que são realmente relevantes, que neste caso são todas com exceção do dia e a string data original.



Figura 25: Tratamento de dados no Workflow

## 3.4 Tuning

Tal como no dataset anterior (Previsão Tráfego), neste modelo também foi implementado um tuning inicial e um tuning final.

#### 3.4.1 Tuning Inicial

No tuning inicial definiu-se os parâmetros de medição de qualidade, para tal usou-se Table Creator, onde declarou-se os seguintes parâmetros Quality Measure que se obtém através do Gini Index. De seguida aplicou-se Table Row To Variable Loop Start onde são efetuadas as iterações com a finalidade de calcular os valores correspondentes ás variáveis previamente declaradas. A controlar estes ciclos estão as variáveis implementadas em Parameter Optimization Loop Start, neste dataset apenas está implementado o stop criteria que serve como critério de paragem.



Figura 26: Nodo Tuning Begin

#### 3.4.2 Tuning Final

Relativamente ao *Tuning* Final, tal como no *datset* anterior, procedeu-se á utilização de um *GroupBy* que recebe os valores do *X-Aggregator*, faz o cálculo da média de erros, e logo de seguida usa-se uma *Math Formula* para calcular a *accuracy* final. Após esse cálculo, usa-se um *Parameter Optimization Loop End* para maximizar o valor da *accuracy*, por fim são retornados os valores a *Variable Loop End* que retorna os melhores valores de parâmetro.



Figura 27: Nodo Tuning Final

#### 3.5 Cross-Validation

Relativamente á parte de cross validation, para este dataset em especifico foi usada uma **Decision Tree**, com este algoritmo, é atribuido um valor a cada nodo da árvore, e a cada ponto é dividido em dois caminhos, o algoritmo calcula a cada divisão *Gini Index* e o *Gini Ratio*. No final caso seja aplicado um **Post-Prunning** de modo a reduzir o tamanho da árvore ao retirar nodos redundantes, este método é baseado no principio **Minimum Description Length** 



Figura 28: Cross Validation

## 3.6 Workflow desenvolvido



Figura 29: Workflow desenvolvido

Na figura 29 é possível observar o *workflow* desenvolvido e, para além do que já foi referido na secção anterior (tratamento de dados), este modelo é idêntico ao modelo desenvolvido para a competição realizada no *Kaggle*.

Excluindo o tratamento de dados, o modelo difere em relação ao anterior apenas na utilização de uma *Decision Tree* ao invés de uma *Random Forest*. Optou-se por se utilizar apenas uma *Decision Tree*, uma vez que os resultados obtidos foram bastante satisfatórios e não seria necessário envergar por uma opção mais poderosa.

### 3.7 Resultados obtidos

Por fim, nos resultados é possível verificar que o melhor resultados acontece quando **não se usa** *pruning* e utiliza-se o *Gini Index*. Através destes resultados constata-se que o *pruning* retira informação importante a utilizar no treino e, como é necessário ter a árvore completa para obter um melhore *score*, neste modelo fazer *pruning* não compensa.

De resto os resultados obtidos são satisfatórios, uma vez que estão todos numa gama de valores acima dos 85%.

| Row ID | 1 5 | stopCriteria | DO   | Objective value | S   | RowID        | Ι | curren | I | maxlt | S   | qualityMeasure | S  | pruningMethod |
|--------|-----|--------------|------|-----------------|-----|--------------|---|--------|---|-------|-----|----------------|----|---------------|
| Row0   | 3   |              | 85.9 | 45              | Bes | t parameters | 0 | 4      | ļ | G     | air | ratio          | No | pruning       |
| Row1   | 3   |              | 85.5 | 43              | Bes | t parameters | 1 | 4      | ļ | G     | air | ratio          | ΜE | DL            |
| Row2   | 4   |              | 87.3 | 99              | Bes | t parameters | 2 | 4      | 1 | G     | ini | index          | No | pruning       |
| Row3   | 2   |              | 86.0 | 95              | Bes | t parameters | 3 | 4      | 1 | G     | ini | index          | ME | )L            |

Figura 30: Resultados obtidos

## 4 Conclusões

Ao longo deste trabalho, o grupo foi capaz de desenvolver várias competências na área de *Machine Learning* e na criação de modelos através da plataforma KNIME.

Em relação à primeira parte do projeto, fazendo uma retrospectiva, o grupo tomou o rumo descrito aqui, embora em certas situações fosse possível tomar outro tipo de decisões. Apesar dos resultados obtidos, o grupo sentiu ser capaz de atingir valores na ordem os 83% com a introdução dos novos conceitos como a distância e as velocidades, embora o tempo para desenvolver estas novas ideias tivesse sido escasso. Contudo, de um modo geral, o grupo acha que o modelo desenvolvido foi bastante satisfatório, já a escolha no Kaggle não foi realmente a melhor.

Quanto a segunda parte do projeto, escolhemos uma área que nos despertou interesse e construímos um modelo que, apesar das semelhanças com o modelo criado na primeira parte, foi capaz de nos ajudar a aprimorar ainda mais os conceitos do KNIME.

Em suma, através deste trabalho o grupo interessou-se por aprender e desenvolver competências nesta área de *Machine Learning*, nomeadamente as Árvores de Decisão, assumindo os desafios propostos e ultrapassando as diversidades que fomos encontrando neste percurso. De um modo geral, o grupo encontra-se satisfeito com o trabalho realizado.

## 5 Referências

https://www.knime.com/knime

https://www.knime.com/knime-introductory-course/chapter6/section3/random-forest

www.kaggle.com

Peter D. Grunwald, Título: Minimum Description Length Principle The Mit Press

A.Barron, J.Rissanen, Bin Yu Titulo : The minimum description length principle in coding and modeling IEEE Transactions on Information Theory