LP39 – Aspect ondulatoire de la matière. Notion de fonction d'onde.

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

Introduction

Louis de Broglie 1923

« Les corpuscules matériels, tout comme les photons, peuvent avoir un aspect ondulatoire »

I. Onde associée à une particule

1. Une question de longueur

Particule	Coureur	Balle de tennis	Poussière	Neutron thermique	Neutron ultra froid	Electron à c/10
Masse (kg)	70	55.10 ⁻³	10 ⁻³	1,67.10 ⁻²⁷	1,67.10 ⁻²⁷	9,1.10 ⁻³¹
Vitesse (m/s)	3,5	50	10^{-9}	2000	19	$3\ 10^7$
Longueur d'onde de de Broglie (m)	2,70.10 ⁻³⁶	2,4.10 ⁻³⁴	6,6.10 ⁻²²	2.10 ⁻¹⁰	2.10 ⁻⁸	2,4.10 ⁻¹¹

I. Onde associée à une particule

2. Mise en évidence expérimentale

Davisson et Germer 1927

I. Onde associée à une particule

2. Mise en évidence expérimentale

- 1960 Fentes d'Young pour des électrons (C. Jönsson)
- 1974 interféromètre de type Mach-Zehnder avec un monocristal de silicium (Rauch, Treimer, Bonse)
- 1992 Fentes d'Young pour des atomes de Néon refroidis par laser (F.Shimizu)
- 2012 Interférences de plus grosses molécules. (T.Juffman)

Interférence de « grosses molécules »

Image en fausse couleur des impacts individuels et franges d'interférences observées avec $C_{48}H_{26}F_{24}N_8O_8$ (114 atomes !) Les molécules sont initialement déposées sur une plaque (W_1) puis évaporées une à une par un laser bleu ; elles traversent le système comportant le réseau de fentes à l'origine des interférences et viennent se déposer sur une seconde plaque (W_2). Un laser les illumine et une caméra ultra sensible qui filme la plaque (W_2) détecte leur fluorescence et produit l'image.

II. Formalisme de l'onde de probabilité

2. Interprétation probabiliste

Nombre de mesures

N mesures indépendantes de la position

Mesure de la position de N particules indépendantes, identiques

III. Dynamique de la fonction d'onde

4. Principe d'indétermination quantique

$$\langle Y \rangle = \frac{1}{N} \sum_{i=1}^{N} yi$$

$$= \frac{1}{N} \sum_{i=1}^{N} yi^{2}$$

$$\Delta Y = \sqrt{\langle Y^2 \rangle - \langle Y \rangle^2}$$

On ne peut pas attribuer simultanément à une particule quantique une position rigoureusement précise et une impulsion rigoureusement précise. Il existe une limitation intrinsèque à la définition simultanée de la position et de l'impulsion imposée par

l'inégalité de Heisenberg :

$$\Delta x \Delta p_x \geq \frac{\hbar}{2}$$

Werner Heisenberg -1927

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

• 1974 interféromètre de type Mach-Zehnder avec un monocristal de silicium

(Rauch, Treimer, Bonse, « Test of a single crystal neutron interference », Physics Letters A 47)

- 1960 Fentes d'Young pour des électrons (C.Jönsson)
- 1992 Fentes d'Young pour des atomes de Néon refroidis par laser (F.Shimizu)