Self-Organizing Maps para resolver Traveling Salesman Problem

Diego Vicente Martín (100317150@alumnos.uc3m.es)

15 de enero, 2018

Outline

Resumen del artículo original

Modificando SOM para resolver TSP

Implementación y evaluación

Conclusiones

Introducción

- Self-organizing maps: estudiados por Kohonen (1998)
 - ► Técnica de organización y visualización inspirada en ANNs.
 - Simula un modelo dado a través de una regresión en una red.
 - Se auto-organiza para poner cerca entre sí nodos que representan partes similares.

Regresión al modelo

- Las neuronas del SOM se organizan espacialmente para juntar nodos similares.
- La regresión se realiza elemento por elemento del modelo:

$$n_{t+1} = n_t + h(w_e) \cdot \Delta(e, n_t)$$

 n_i neurona en el momento i.

 w_e neurona ganadora del elemento.

h(n) factor de vecindario de una neurona n.

 $\Delta(x, y)$ vector de distancia entre x e y

Definiendo conceptos

- La elección del ganador se define por similitud:
 - ▶ El ejemplo más cercano usando la distancia euclídea.
 - Las dos distribuciones con mayor correlación.
 - Elemento de mayor heurística.
- El vecindario actúa como un filtro de convolución.
 - ▶ Un filtro de suavizado (normalmente Gaussiano).
 - Se encarga de actualizar zonas concretas del mapa.

Otras cosas a tener en cuenta

- La conectividad de la red puede cambiar
 - ▶ No solo una red rectangular, sino hexagonal, octogonal...
- ► El modelo no siempre converge si los parámetros no son correctos.
- ► Si se usa como un LVQ, se pueden aplicar regiones de Voronoi.

Usando SOM para resolver TSP

- ► Si usamos una conectividad 2 (1D) en el mapa, la red es un anillo.
 - Las neuronas intentarán reducir la distancia con su sucesor y predecesor.
 - Aún así, se aplicará una regresión al modelo.
- Usando un mapa para resolver un TSP en 2D:
 - Similitud: distancia euclídea.
 - Conectividad de una dimensión (circular).
 - ▶ Vecindario: filtro Gaussiano de 1D.

Otras modificaciones

- ► El mapa no siempre converge, hace falta una forma de equilibrar la exploración y la explotación del modelo.
- Solución: introducción factor de aprendizaje (α) y descuentos en el factor de aprendizaje y el tamaño del vecindario.
 - Reducir el factor de aprendizaje permite forzar la convergencia.
 - ► Reducir el vecindario fuerza la exploración primero para luego explotar zonas más locales.

$$n_{t+1} = n_t + \alpha_t \cdot g(w_e, h_t) \cdot \Delta(e, n_t)$$

$$\alpha_{t+1} = \gamma_{\alpha} \cdot \alpha_t, \quad h_{t+1} = \gamma_h \cdot h_t$$

Implementación

- Python 3 y numpy para la vectorización de operaciones en el mapa.
- ▶ Parámetros configurables, valores elegidos por defecto basados en Brocki (2010):
 - ▶ Tamaño de la red: 8 veces el número de ciudades.
 - $\alpha = 0.8, \gamma_{\alpha} = 0.99997$
 - ▶ h = número de ciudades, γ_h = 0.9997

Evaluación

- Métricas:
 - Calidad de la solución en función de la óptima.
 - Tiempo consumido hasta devolver una solución.

Resultados

- Pruebas del mapa en 3 países:
 - Qatar, con 194 ciudades.
 - Uruguay, con 734 ciudades.
 - Filandia, con 10639 ciudades.
 - ▶ Italia, con 16862 ciudades.

Instancia	Iteraciones	Tiempo (s)	Longitud	Calidad
Qatar	14690	14.3	10233.89	9.4 %
Uruguay	17351	23.4	85072.35	7.5 %
Finlandia	37833	284.0	636580.27	22.3 %
Italia	39368	401.1	723212.87	29.7 %

Visualización: Uruguay

Visualización: Italia

Conclusiones

- SOM es una técnica muy interesante que ofrece buenos resultados
- Potente herramiento para la visualización
- Aplicar SOM al TSP resulta en una técnica muy sensible a los parámetros.
- ► Es posible encontrar una ruta subóptima en menos de 25 segundos para más de 700 ciudades.

Referencias

Brocki, L. (2010). Kohonen self-organizing map for the traveling salesperson. In *Traveling Salesperson Problem, Recent Advances in Mechatronics*, pages 116–119.

Kohonen, T. (1998). The self-organizing map. *Neurocomputing*, 21(1):1–6.