Play-tennis example: estimating $P(x_i|C)$

	_			
Outlook	Temperature	<u>Humidity</u>	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook			
P(sunny p) = 2/9	P(sunny n) = 3/5		
P(overcast p) = 4/9	P(overcast n) = 0		
P(rain p) = 3/9	P(rain n) = 2/5		
temperature			
P(hot p) = 2/9	P(hot n) = 2/5		
P(mild p) = 4/9	P(mild n) = 2/5		
P(cool p) = 3/9	$P(\mathbf{cool} \mathbf{n}) = 1/5$		
humidity			
P(high p) = 3/9	P(high n) = 4/5		
P(normal p) = 6/9	P(normal n) = 2/5		
windy			
P(true p) = 3/9	P(true n) = 3/5		
P(false p) = 6/9	P(false n) = 2/5		

Naive Bayesian Classifier (II)

Z Given a training set, we can compute the probabilities

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
mild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Play-tennis example: classifying X

- Z An unseen sample X = <rain, hot, high, false>
- $P(X|p)\cdot P(p) = P(rain|p)\cdot P(hot|p)\cdot P(high|p)\cdot P(false|p)\cdot P(p) = 3/9\cdot 2/9\cdot 3/9\cdot 6/9\cdot 9/14 = 0.010582$
- $P(X|n)\cdot P(n) = P(rain|n)\cdot P(hot|n)\cdot P(high|n)\cdot P(false|n)\cdot P(n) = 2/5\cdot2/5\cdot4/5\cdot2/5\cdot5/14 = 0.018286$
- Z Sample X is classified in class n (don't play)