Diskrete Strukturen Nachbereitungsaufgabe 6

Khmelyk Oleh

2023

A Es wird die folgende Menge von 2×2 -Matrizen mit Koeffizienten aus $\mathbb{Z}_2 = \{0, 1\}$ betrachtet:

$$M = \left\{ \left(\begin{array}{cc} x & 0 \\ y & x \end{array} \right) \mid x, y \in \mathbb{Z}_2 \right\}$$

Geben Sie alle Elemente von M an.

Es gibt 2 variante fuer jeden Koeffizient \Rightarrow es gibt $2 \cdot 2 = 4$ Elemente in M:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

(b) Zeigen Sie, dass M mit der üblichen Matrizenaddition eine Gruppe bildet. Stellen Sie dazu die Verknüpfungstafel auf. Diese können Sie für Ihre Argumentation verwenden.

+	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
$ \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) $	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Assoziativ - koenen wir das aus Verknuepfungstafel sehen.

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ - ist ein neutralis elemen. $\forall m \in M: -m = m \Rightarrow \text{M}$ eine additives Gruppe bildet.

(c) Untersuchen Sie, ob M mit der üblichen Matrizenmultiplikation ebenfalls eine Gruppe bildet.

	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
$ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} $	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
$ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} $	$ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) $	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} $	$ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) $

Assoziativ - koenen wir das aus Verknuepfungstafel sehen.

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ - ist ein neutralis elemen.

Es gibt kein inverses Element fuer $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \Rightarrow M$ ist keine multiplikatives Gruppe bildet.

(d) Berechnen Sie $((2^{-1} \cdot 5) \div 3)^5 \mod 11$.

$$2^{-1} \bmod 11 \equiv 6$$

$$(2^{-1} \cdot 5) \mod 11 \equiv (6 \cdot 5) \mod 11 \equiv 30 \mod 11 \equiv 8.$$

$$\frac{8}{3} \bmod 11 \equiv 8 \cdot (3^{-1}) \bmod 11 \equiv 8 \cdot 4 \bmod 11 \equiv 32 \bmod 11 \equiv 10$$

$$(10^5) \mod 11 \equiv 100000 \mod 11 \equiv 1$$