The Odd Questions of Chapter 9

Aidan Morris

17 November, 2023

9.1: Using just \neg and \lor , rewrite the following equations

a:
$$p \wedge q$$

 $\neg(\neg p \vee \neg q)$
b: $p \oplus q$
 $\neg(\neg(p \vee q) \vee \neg(\neg p \vee \neg q))$

c:
$$p \Leftrightarrow q$$

$$\neg p \lor q$$

9.3: Prove the associative laws by comparing truth tables for the following expressions

$$(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$$

α	β	γ	$(\alpha \lor \beta)$	$(\alpha \lor \beta) \lor \gamma$	$(\beta \lor \gamma)$	$\alpha \vee (\beta \vee \gamma)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

The 2nd and 4th columns are equivalent

$$(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$$

$ \alpha $	β	γ	$(\alpha \wedge \beta)$	$(\alpha \wedge \beta) \wedge \gamma$	$(\beta \wedge \gamma)$	$\alpha \wedge (\beta \wedge \gamma)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

The 2nd and 4th columns are equivalent

9.5: With truth tables determine if the following propositions are satisfiable, a tautlogy, or unsatisfiable

a:
$$p \Rightarrow (p \lor q)$$

p	q	$(p \lor q)$	$p \implies (p \lor q)$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	1

 $p \implies (p \lor q)$ is a tautalogy

b:
$$\neg(p \Rightarrow (p \lor q))$$

1	q	$(p \lor q)$	$p \implies (p \lor q)$	$ \mid \neg(p \implies (p \lor q)) \mid$
(0	0	1	0
() 1	1	1	0
1	0	1	1	0
1	1	1	1	0

 $\neg (p \implies (p \lor q))$ is unsatisfiable

c:
$$p \Rightarrow (p \Rightarrow q)$$

	p	q	$(p \implies q)$	$p \implies (p \implies q)$
ĺ	0	0	1	1
	0	1	1	1
	1	0	0	0
	1	1	1	1

 $p \implies (p \implies q)$ is satisfiable

9.7: Prove that $\alpha \equiv \beta$ iff $\alpha \Leftrightarrow \beta$ is a tautology

 $\alpha \Leftrightarrow \beta$ checks that the values in α and β are either both true or both false. If it results a tautology then it means the values are equivalent in all possible combinations. If it does not return a tautology, then atleast one combination of α and β are not the same, and so then α and β are not equivalent

9.9: Give a real world example of p, q, r where $(p \land q) \Rightarrow r$ and $p \land (q \Rightarrow r)$ are not equivalent

Let's make the scenerio that where p is happiness, q is hungryness, and r is if you went a restaurant. The first proposition would read "If I am happy and hungry, then I will

go to a restaurant" while the second proposition says "If I am hungry, I will go to a restaurant and I will be happy". The propositions will not be equivalent any scenerio I am not happy

9.11:

a: Write $p \Leftrightarrow q$ using \oplus and the constant T $p \oplus q \oplus T$

b: Show that \oplus and \Leftrightarrow are associative

q	p	r	$(q \oplus p)$	$(q \oplus p) \oplus r$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1
ı				
~	12	1.0	$(n \cap r)$	$a \cap (n \cap r)$
q	p	r	$(p \oplus r)$	$q\oplus (p\oplus r)$
0	<i>p</i> 0	0	$\begin{array}{ c c } (p \oplus r) \\ \hline \\ 0 \\ \end{array}$	$q \oplus (p \oplus r)$ 0
0	0	0	0	0
0	0	0	0 1	0 1
0 0 0	0 0 1	0 1 0	0 1 1 1	0 1 1
0 0 0 0	0 0 1 1	0 1 0 1	0 1 1 0	0 1 1 0
0 0 0 0	0 0 1 1 0	0 1 0 1 0	0 1 1 0 0	0 1 1 0

They have the same final result

q	p	r	$(q \Leftrightarrow p)$	$(q \Leftrightarrow p) \Leftrightarrow r$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

q	p	r	$(p \Leftrightarrow r)$	$q \Leftrightarrow (p \Leftrightarrow r)$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

They have the same final result

c: Show that $\{\oplus, \Leftrightarrow, \neg, T, F\}$ is not a complete set of logical operators

The set of operators $\{\oplus, \Leftrightarrow, \neg, T, F\}$ cannot be used to create \land , \lor , or \Longrightarrow so it cannot be functionally complete. I have no clue how to prove this. In my head it makes sense to me that \Leftrightarrow cannot differitate between two same 0s and 1s, but I am unsure if this has any real weight.

It would be good to note that \oplus and \Leftrightarrow are just negations of each other, and same with just T and F, and checking \oplus or \Leftrightarrow with the constants T and F is only going to result itself or its negation. So the set can be reduced to only 2 items, one of the operators and negation. Hopefully this makes my previous conclusion easier to reach.