Chapter 3 Understanding How the DATA Step Works

Arthur Li

- A common befuddlement for beginning programmer:
 - ☐ The newly-created SAS dataset is not what we intended.
 - ☐ There are more or less observations.
 - ☐ The value of the variable was not retained correctly.
- *Reason:
 - ☐ Learning only SAS language syntax.
 - ■Not understanding the fundamental SAS programming concepts.

A DATA step is processed in two-phase sequences:

Compilation phase:

Each statement is scanned for syntax errors.

If there is no syntax error

Execution phase:

The DATA step reads and processes the input data.

- **SAS** statements in the DATA step:
 - executable
 - declarative
- The declarative statements:
 - □ provide information to SAS and only take effect during the compilation phase
 - □can be placed in any order within the DATA step
 - □LENGTH, FORMAT, LABEL, DROP, KEEP
- Executable statements: The order of the statement matters

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Variable names	Columns
Name	1-7
Height	9-10
Weight	12-14

- *Read the external file and create BMI:
 - ☐ INFILE: identify the location of the external file
 - INPUT: instruct SAS how to read observation
 - □ Create BMI

Example3_1.txt

12345678901234567890

Barbara 61 (12D) Data Entry

Error

John 62 175

Variable names	Columns
Name	1-7
Height	9-10
Weight	12-14

- *Read the external file and create BMI:
 - ☐ INFILE: identify the location of the external file
 - INPUT: instruct SAS how to read observation
 - □ Create BMI

Program 3.1:

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
																								• • •

- Used to hold raw data
- Will not be created when reading a SAS dataset

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

PDV

Memory area where SAS builds its new data set, 1 observation at a time.

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	

PDV

Automatic variables:

N = 1: 1st observation is being processed

 $_N_ = 2: 2^{nd}$ observation is being processed

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

PDV

Automatic variables:

ERROR = 1: signals the data error of the currently-processed observation

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

PDV

A space is added to the PDV for each variable

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;

    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

PDV

BMI is added to the PDV

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;

    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

PDV


```
= dropped
```

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;

    BMI = 700*weight/(height*height);
    output;
run;
```

PDV is created

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	

PDV

N D	_ERROR_ C	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K

- Checks for syntax errors
 - □invalid variable names
 - □invalid options
 - □incorrect punctuations
 - ☐misspelled keywords

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
																								• • •

PDV

1st Iteration:

- ❖At the beginning
 - \square _N_ \leftarrow 1, _ERROR_ \leftarrow 0

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	

PDV

1st Iteration:

- At the beginning
 - \square _N_ \leftarrow 1, _ERROR_ \leftarrow 0
 - ☐ The remaining variables are set to *missing*

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
																									• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		0									

1st Iteration:

❖The INFILE statement identifies the location of Exampl1.txt

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		0									

1st Iteration:

❖The INPUT statement copies the 1st data line into the input buffer

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		0									

1st Iteration:

The input pointer positions at the beginning of the input buffer

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

PDV

N	_ERRO	R_ D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
1	0									

1st Iteration:

❖The INPUT statement reads data values: input buffer →PDV

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

```
Input buffer
```

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
E	В	a	r	b	a	r	a		6	1		1	2	D											
_																									

PDV

N D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1	0		Barbara	3						

1st Iteration:

❖ input buffer (columns 1-7) → "Name" in the PDV

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

PDV

N	D	_ERROR_	D	NAME K	HEIGHT	K	WEIGHT	K	BMI	K
1		0		Barbara						

1st Iteration:

❖ The input pointer @ column 8

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
	В	a	r	b	a	r	a		6	1		1	2	D											
ĺ																									

PDV

N D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1	0		Barbar	ra	61		-			

1st Iteration:

❖ input buffer (columns 9-10) → "Height" in the PDV

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		0		Barbar	a	61					

1st Iteration:

❖The input pointer @ column 11

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											
															_						_			

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		0		Barbar	a	61					

1st Iteration:

❖Tries to read Weight – invalid value

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											
																					_			

N D	_ERROR_ D	NAME K	HEIGHT I	WEIGHT	K BMI K
1	1	Barbara	61		

1st Iteration:

- ❖Tries to read Weight invalid value
- ❖ ERROR ← 1

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											
																								

PDV

N D	_ERROR_ D	NAME K	HEIGHT	WEIGHT K	BMI K
1	1	Barbara	61	-	

1st Iteration:

❖The input pointer @ column 15

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;

BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

```
Barbara 61 12D
John 62 175
```

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		1		Barbai	a	61					

1st Iteration:

❖BMI will remain missing:
operations on a missing value → a missing value

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
1		1		Barbai	ra	61					

1st Iteration:

- OUTPUT statement is executed
- Only values marked with (K) are copied as a single observation to the SAS dataset ex1

	Name	Height	Weight	ВМІ
1	Barbara	61		

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
1		1		Barbai	ra	61					

1st Iteration:

❖At the end of the DATA step, two things occur automatically:

	Name	Height	Weight	ВМІ
1	Barbara	61	•	

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
1		1		Barbai	a	61					

1. The SAS system returns to the beginning of the DATA step

	Name	Height	Weight	ВМІ
1	Barbara	61		

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
В	a	r	b	a	r	a		6	1		1	2	D											• • •

PDV

2. The values of the variables in the PDV are reset to *missing*

$$_{N_{\uparrow}}^{2}$$
 ERROR \leftarrow 0

	Name	Height	Weight	BMI
1	Barbara	61		

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
J	0	h	n					6	2		1	7	5											

PDV

N D	_ERROR_	NAME	HEIGHT	K	WEIGHT	K	ВМІ	K
2	0							

2nd Iteration:

- ❖2nd data line → input buffer
- The input pointer @ beginning of the input buffer

	Name	Height	Weight	ВМІ
1	Barbara	61	•	

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
,	J	0	h	n					6	2		1	7	5											

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
2		0		John		62		175			

2nd Iteration:

❖The INPUT statement: input buffer → PDV

	Name	Height	Weight	ВМІ
1	Barbara	61	•	

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;

> BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
J	0	h	n					6	2		1	7	5											

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
2		0		John		62		175		31.80	68

2nd Iteration:

BMI is calculated

	Name	Height	Weight	BMI
1	Barbara	61	•	

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
•	J	0	h	n					6	2		1	7	5											• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
2		0		John		62		175	31.80	68	

2nd Iteration:

The OUTPUT statement is executed

	Name	Height	Weight	ВМІ
1	Barbara	61		
2	John	62	175	31.868

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
•	J	0	h	n					6	2		1	7	5											• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
2		0		John		62		175		31.80	68

2nd Iteration:

At the end of the DATA step, two things occur automatically:

Ex3_1:

	Name	Height	Weight	ВМІ
1	Barbara	61		
2	John	62	175	31.868

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
J	0	h	n					6	2		1	7	5											• • •

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
2		0		John		62		175		31.80	68

1. The SAS system returns to the beginning of the DATA step

Ex3_1:

	Name	Height	Weight	ВМІ
1	Barbara	61		
2	John	62	175	31.868

```
data ex3_1;
   infile 'W:\SAS Book\dat\example3_1.txt';
   input name $ 1-7 height 9-10 weight 12-14;
   BMI = 700*weight/(height*height);
   output;
run;
```

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

Input buffer

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
J	0	h	n					6	2		1	7	5											• • •

PDV

N [_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
3	0									
1	1									

2. The values of the variables in the PDV are reset to *missing*

N ↑3

Ex3_1:

	Name	Height	Weight	ВМІ
1	Barbara	61	•	
2	John	62	175	31.868

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
    run;
    The end-of-
    file marker
    proc print data=ex3_1;
```

run;

Example3_1.txt

12345678901234567890

Barbara 61 12D John 62 175

- ❖ SAS attempts to read an observation from the input data set, but it reaches the end-of-file-marker, which means that there are no more observations to read
- ❖ The SAS system → next DATA/PROC step

The Importance of the OUTPUT Statement

The explicit OUTPUT statement:

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);
    output;
run;
```

- ■writes the current observation from the PDV to a SAS dataset immediately
- ☐ not at the end of the DATA step

The Importance of the OUTPUT Statement

```
data ex3_1;
    infile 'W:\SAS Book\dat\example3_1.txt';
    input name $ 1-7 height 9-10 weight 12-14;
    BMI = 700*weight/(height*height);

run;
```

The implicit OUTPUT:

- □It tells SAS to write observations to the dataset at the end of the DATA step
- Without explicit OUTPUT statements, every DATA step contains an implicit OUTPUT statement at the end of the DATA step

The Importance of the OUTPUT Statement

- Placing an explicit OUTPUT
 - □Override the implicit OUTPUT
 - □SAS adds an observation to a dataset only when an explicit OUTPUT is executed
 - ■You can use more than one OUTPUT statement in the DATA step

When Reading a raw dataset ...

data ex3_1;
 infile 'W:\SAS Book\dat\example3_1.txt';
 input name \$ 1-7 height 9-10 weight 12-14;
 BMI = 700*weight/(height*height);
 output;
run;

Raw data

Barbara 61 12D John 62 175

Input buffer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K

SAS dataset

	Name	Height	Weight	ВМІ
1	Barbara	61		
2	John	62	175	31.868

When Reading a SAS dataset ...

SAS dataset

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

PDV

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K

SAS dataset

	Name	Height	Weight	ВМІ
1	Barbara	61	170	31.981
2	John	62	175	31.868

- When reading a raw dataset, SAS sets each variable value in the PDV to *missing* at the beginning of each iteration of execution, except for ...
 - ■the automatic variables
 - □ variables that are named in the RETAIN or SUM statements
 - ☐ data elements in a _TEMPORARY_ array
 - □ variables created in the options of the FILE/INFILE statement

When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example1

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

- ❖ SAS sets each variable to missing in the PDV only before the 1st iteration of the execution.
- Variables will retain their values in the PDV until they are replaced by the new values.

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example1

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

SAS sets each variable to missing in the PDV at the beginning of every iteration of the execution.

N	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K

Variables being created in the DATA step

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example1

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

1st Iteration:

At the beginning of the execution phase, SAS sets each variable to missing in the PDV.

N D	_ERROR_ D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
1	0								

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

1st Iteration:

The SET statement is executed.

Example1:

-		Name	Height	Weight
	1	Barbara	61	170
	2	John	62	175

PDV

N D	_ERROR_ D	NAME K	HEIGHT	K	WEIGHT	K	ВМІ	K
1	0	Barbara	61		170			

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

1st Iteration:

❖BMI is calculated.

Example1:

-		Name	Height	Weight
	1	Barbara	61	170
	2	John	62	175

PDV

N D	_ERROR_ D	NAME K	HEIGHT	WEIGHT P	K BMI K
1	0	Barbara	61	170	31.981

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

1st Iteration:

The OUTPUT statement executes.

Example1:

-		Name	Height	Weight		
	1	Barbara	61	170		
	2	John	62	175		

PDV

N D	_ERROR_ D	NAME K	HEIGHT	WEIGHT P	K BMI K
1	0	Barbara	61	170	31.981

Ex3_1

:		Name	Height	Weight	ВМІ
	1	Barbara	61	170	31.981

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

1st Iteration:

SAS reaches the end of DATA step.

Example1

	Name	Height	Weight		
1	Barbara	61	170		
2	John	62	175		

PDV	_N_	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	BMI	K
	1		0		Barbai	a	61		170		31.98	31

Е	x3	1

	Name	Height	Weight	ВМІ
1	Barbara	61	170	31.981

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example1

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

2nd Iteration:

❖ Variables will retain their values in the PDV until they are replaced by the new values from the input dataset, except for BMI.

PNV	_N_	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
PDV	2		0		Barbar	a	61		170			

Ex3_1:		Name	Height	Weight	ВМІ
	1	Barbara	61	170	31.981

When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

Example1

	Name	Height	Weight		
1	Barbara	61	170		
2	John	62	175		

2nd Iteration:

❖The SET statement copies the 2nd observation to the PDV.

DDV	_N_	D	_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
PDV	2		0		John		62		175			

Ex3_1:		Name	Height	Weight	ВМІ
	1	Barbara	61	170	31.981

❖When Reading a SAS dataset ...

```
data ex3_1;
    set example1;
    BMI = 700*weight/(height*height);
    output;
run;
```

2nd Iteration: ❖BMI is calculated

Example1:

	Name	Height	Weight
1	Barbara	61	170
2	John	62	175

PDV	_N_ D _ERROR_		_ERROR_	D	NAME	K	HEIGHT	K	WEIGHT	K	ВМІ	K
PDV	2		0		John		62		175		31.80	86

Ex3 _	1

•		Name	Height	Weight	ВМІ
	1	Barbara	61	170	31.981

Consider the following dataset:

	D	SCORE
1	A01	3
2	A02	
3	A03	4

Consider the following dataset:

	D	SCORE	TOTAL
1	A01	3	3
2	A02		3
3	A03	4	7

Task: Create a new variable that accumulates the values of SCORE

Consider the following dataset:

	D	SCORE	TOTAL
1	A01	3	3
2	A02		3
3	A03	4	7

Approach:

- ■Set the TOTAL to 0 at the first iteration of the execution
- ☐ Then at each iteration of the execution, add values from SCORE to TOTAL

Consider the following dataset:

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3
3	A03	4	7

Problem:

- TOTAL is the variable that you are creating in the DATA step
- ❖ TOTAL will be set to missing at the beginning of the every iteration

- Approach:
 - ■Set the TOTAL to 0 at the first iteration of the execution
 - ☐ Then at each iteration of the execution, add values from SCORE to TOTAL

The RETAIN Statement

❖ To prevents the VARIABLE from being initialized each time the DATA step executes, use the RETAIN statement:

Name of the variable that you will want to retain

The RETAIN Statement

❖ To prevents the VARIABLE from being initialized each time the DATA step executes, use the RETAIN statement:

RETAIN variable <value>;

- ❖ A numeric value
- ❖ Used to initialize the VARIABLE only at the first iteration of the DATA step execution
- ❖ Not specifying an initial value → VARIABLE is initialized as *missing*

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K

The execution phase begins immediately after the completion of the compilation phase

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

1st Iteration:

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0							
				1		1			

1st Iteration:

- \bullet _N_ \leftarrow 1, _ERROR_ \leftarrow 0
- ❖ID, SCORE ← missing

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0						0	

1st Iteration:

- **❖**_N_ ←1, _ERROR_ ← 0
- ❖ID, SCORE ← missing
- ❖ TOTAL ← 0 because of the RETAIN statement

SAS3_1:

		ID	SCORE
	1	A01	3
,	2	A02	
	3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0		A01		3		0	
				1		1			

1st Iteration:

❖ 1st observation from SAS3_1 → PDV

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0		A01		3		0	

1st Iteration:

The RETAIN statement is declarative statement; it does not execute during the execution phase

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0		A01		3		3	

1st Iteration:

TOTAL is calculated

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
1		0		A01		3		3	
				1		1			

1st Iteration:

The implicit OUTPUT statement tells the SAS system to write observations to the dataset **EX3_2**:

	ID	SCORE	TOTAL
1	A01	3	3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A01		3		3	

2nd Iteration:

EX3 2:

	ID	SCORE	TOTAL
1	A01	3	3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A01		3		3	
				1		1			

2nd Iteration:

❖ ID and SCORE are retained from the previous iteration because they are read from an existing SAS data set

EX3_2:

	ID	SCORE	TOTAL
1	A01	3	3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A01		3		3	
								1	

2nd Iteration:

❖ TOTAL is also retained because the RETAIN statement is used

EX3_2:

	ID	SCORE	TOTAL
1	A01	3	3

SAS3_1:

		ID	SCORE
,	1	A01	3
	2	A02	
,	3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A02				3	
				1		1			

2nd Iteration:

❖ 2nd observation from SAS3_1 → PDV

	ID	SCORE	TOTAL
1	A01	3	3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A02		-		3	
								1	

2nd Iteration:

❖ TOTAL is calculated

EX3 2:

	ID	SCORE	TOTAL
1	A01	3	3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
2		0		A02	ı			3	
				1		1		1	

2nd Iteration:

❖ The implicit OUTPUT:
The contents in PDV → EX3_2

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
3		0		A02				3	

3rd Iteration:

- **.** N_ ↑ 3
- ID and SCORE are retained from the previous iteration
- ❖ TOTAL is also retained

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
3		0		A03		4		3	
				1		1			

3rd Iteration:

❖ 3rd observation from SAS3_1 → PDV

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

PDV

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
3		0		A03		4		7	

3rd Iteration:

TOTAL is calculated

EX3 2:

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```

SAS3_1:

	ID	SCORE
1	A01	3
2	A02	
3	A03	4

N	D	_ERROR_	D	ID	K	SCORE	K	TOTAL	K
3		0		A03		4		7	
								1	

3rd Iteration:

❖ The implicit OUTPUT:
The contents in PDV → EX3_2

	ID	SCORE	TOTAL
1	A01	3	3
2	A02		3
3	A03	4	7

The SUM Statement

The SUM statement has the following form:

variable+expression;

- The numeric accumulator variable that is to be created.
- It is automatically set to 0 at the beginning of the first iteration of the DATA step execution.
- Retained in following iterations.

The SUM Statement

The SUM statement has the following form:

variable+expression;
Any SAS expression.
If EXPRESSION is evaluated to a missing value, it is treated as 0.

The SUM Statement

```
data ex3_2;
    set sas3_1;
    retain total 0;
    total = sum(total, score);
run;
```



```
data ex3_3;
    set sas3_1;
    total + score;
run;
```

Conditional Processing In the DATA Step

- Many applications require to process only part of the observations that meet the condition of a specified expression.
- In this situation, you need to use the subsetting IF statement.

The IF statement:

IF expression;

- If the EXPRESSION is true for the observation
 - □ SAS continues to execute statements in the DATA step and includes the current observation in the data set
 - ☐ The resulting SAS data set contains a subset of the external file or SAS data set

❖ The IF statement:

IF expression;

- ❖ If the EXPRESSION is false
 - □ no further statements are processed for that observation
 - ☐ the current observation is not written to the data set
 - ☐ the remaining program statements in the DATA step are not executed
 - ☐ SAS immediately returns to the beginning of the DATA step

Program 3.5

```
data ex3_4;
    set sas3_1;
    total + score;
    if not missing(score);
run;

title 'Keep observations only when SCORE is not missing';
proc print data=ex3_4;
run;
```

```
Keeping observations for SCORE is not missing

Obs ID score total

1 A01 3 3

2 A03 4 7
```

Sometimes it is more efficient (or easier) to specify a condition for excluding observations:

IF expression THEN DELETE;

Program 3.6

```
data ex3_5;
    set sas3_1;
    total + score;
    if missing(score) then delete;
run;
```

Detecting the End of a Data Set by Using the END= Option

- Sometimes you might want to determine when the last observation in an input data set has been read
- You can create a temporary variable by using the END= option in the SET statement

SET SAS-data-set **END**=variable;

- ❖ A temporary variable that contains an end-of-file indicator
- ❖ VARIABLE ← 0 at the beginning of the DATA step iteration
- ❖ VARIABLE ← 1 when SET reads the last observation of the input data set
- ❖ VARIABLE is not added to any new data seta

Detecting the End of a Data Set by Using the END= Option

To calculate the total score and list total # of observations

Program 3.7

```
data total_score(keep = total n);
    set sas3_1 end = last;
    total + score;
    n + 1;
    if last;
run;
title 'Only keep the last observation';
proc print data=total_score;
run;
```

```
Only keep the last observation

Obs total n

1 7 3
```

Restructuring Data Sets from Wide Format to Long Format

Restructuring datasets:

data with one observation per subject (the wide format)

data with multiple observations per subject (the long format)

	ID	S1	S2	S 3
1	A01	3	4	5
2	A02	4		2

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4
5	A02	3	2

Restructuring Data Sets from Wide Format to Long Format

Restructuring datasets:

data with one observation per subject (the wide format)

data with multiple observations per subject (the long format)

	ID	S1	S2	S 3
1	A01	3	4	5
2	A02	4		2

	D	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4
5	A02	3	2

Distinguish different measurements for each subject

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K

- The execution phase begins immediately after the completion of the compilation phase
- ❖_ERROR_ is not shown for simplicity purpose

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1													

1st iteration:

- ♦ N ← 1
- ❖Other variables ← missing

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S 3
1	A01	3	4	5
2	A02	4		2

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A0 1		3		4	ı	5					
				1		1		1					

1st iteration:

♦ 1st observation from the wide → PDV

```
data long (drop=s1-s3);
    set wide;

    time = 1;
    score = s1;
    if not missing(score) then output;
    time = 2;
    score = s2;
    if not missing(score) then output;
    time = 3;
    score = s3;
    if not missing(score) then output;
    run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

PDV

N	D	ID	K	S 1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A0 1		3		4	ı	5		1			

1st iteration:

❖Time ← 1

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A0 1	l	3		4	ı	5		1		3	

1st iteration:

❖Score ← value from S1(3)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S 3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3

PDV

N	D	ID	K	S 1	D	S2	D	S3	D	TIME	K	SCORE	K
1		A0 1		3		4		5		1		3	
		1								1		1	

1st iteration:

❖SCORE ≠ missing: ID, TIME, and SCORE → Long

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;

  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

		ID	S1	S2	S3
1		A01	3	4	5
2	2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
1		A0 1		3	ı	4		5		2		3	

1st iteration:

♦TIME ← 2

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3

PDV

_	_N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
	1		A0 1		3		4		5		2		4	

1st iteration:

❖ Score ← value from S2(4)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S 3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4

PDV

N	D	ID	K	S 1	D	S2	D	S3	D	TIME	K	SCORE	K
1		A0 1		3		4	ı	5		2		4	
		1								1		1	

1st iteration:

❖SCORE ≠missing: ID, TIME, and SCORE → Long

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;

time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A0′	1	3		4		5		3		4	

1st iteration:

♦TIME ← 3

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A0 1		3		4		5		3		5	

1st iteration:

♦ SCORE ←value from S3(5)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
1		A01		3		4	ı	5		3		5	
		1								1		1	

1st iteration:

❖SCORE ≠missing: ID, TIME, and SCORE → Long

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
```

Wide:

	ID	S 1	S2	S 3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
1		A01		3		4		5		3		5	

1st iteration:

- There is no more implicit OUTPUT statement
- ❖SAS returns to the beginning of the DATA step to begin the 2nd iteration

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S 3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
2		A01		3		4		5					

2nd iteration:

- *****_N_ ↑2
- ❖ID and S1-S3 are retained from the previous iteration
- ❖TIME, SCORE ← missing

```
data long (drop=s1-s3);
    set wide;
    time = 1;
    score = s1;
    if not missing(score) then output;
    time = 2;
    score = s2;
    if not missing(score) then output;
    time = 3;
    score = s3;
    if not missing(score) then output;
    run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
2		A02	2	4				2					
										•			

2nd iteration:

❖ 2nd observation from the Wide → PDV

```
data long (drop=s1-s3);
  set wide;

time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S 1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4	ı			2		1			

2nd iteration:

❖ TIME ← 1

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S 3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4	ı			2		1		4	

2nd iteration:

❖ SCORE ← value from S1 (4)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;

if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4

PDV

N [כ	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4	ı			2		1		4	
		1								1		1	

2nd iteration:

❖ ID, TIME, and SCORE → Long

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;

time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4

PDV

N	D	ID	K	S 1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4				2		2		4	

2nd iteration:


```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4

PDV

N	D	ID	K	S1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4	•			2	ı	2			

2nd iteration:

❖ SCORE ← the value from S2 (missing)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;

if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4

PDV

N	D	ID	K	S 1	D	S2	D	S3	D	TIME	K	SCORE	K
2		A02	2	4				2		2			

2nd iteration:

❖ SCORE = missing: no output is generated

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S 1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
2		A02		4 .		2		3		2			
				-		-				-		1	

2nd iteration:

❖ SCORE ← the value from S3 (2)

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
  run;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4
5	A02	3	2

PDV

N	D	ID	K	S 1	D	S2	D	S 3	D	TIME	K	SCORE	K
2		A02	2	4	•			2		3		2	
		1		•		•		-		1		1	

2nd iteration:

❖ ID, TIME, and SCORE → Long

```
data long (drop=s1-s3);
  set wide;
  time = 1;
  score = s1;
  if not missing(score) then output;
  time = 2;
  score = s2;
  if not missing(score) then output;
  time = 3;
  score = s3;
  if not missing(score) then output;
```

Wide:

	ID	S1	S2	S3
1	A01	3	4	5
2	A02	4		2

Long:

	ID	TIME	SCORE
1	A01	1	3
2	A01	2	4
3	A01	3	5
4	A02	1	4
5	A02	3	2

PDV

N	D	ID	K	S1	D	S2	D	S3	D	TIME	K	SCORE	K
2		A02	2	4	ı			2		3		2	

2nd iteration:

- SAS reaches the end of the DATA step.
- ❖ SAS returns to the beginning of the DATA step to begin the 3rd iteration
- With no more observations to read in the 3rd iteration, SAS goes to the next DATA or PROC step

Debugging Techniques

- Syntax errors are often easier to detect than logic errors
 - ☐ SAS not only stops programs
 - ☐ SAS generates detailed error messages
- Logic errors often result in generating an unintended data set and they are difficult to debug

Using the PUT Statement to Observe the Contents of the PDV

One way to detect a logic error is to use the PUT statement in the DATA step:

PUT variable | variable-list | character-string;

Program 3.9

```
data ex3_4;
    put "1st PUT" _all_;
    set sas3_1;
    put "2nd PUT" _all_;
    total + score;
    put "3rd PUT" _all_;
    if not missing(score);
    put "4th PUT" _all_;
run;
```

Using the PUT Statement to Observe the Contents of the PDV

```
68
    data ex3 4;
69
       put "1st PUT" all ;
70
      set sas3 1;
   put "2nd PUT" all ;
71
72
    total + score;
     put "3rd PUT" all ;
73
     if not missing(score);
74
    put "4th PUT" all;
75
76
    run;
1st PUTID= SCORE=. total=0 ERROR =0 N =1
2nd PUTID=A01 SCORE=3 total=0 ERROR =0 N =1
3rd PUTID=A01 SCORE=3 total=3 ERROR =0 N =1
4th PUTID=A01 SCORE=3 total=3 ERROR =0 N =1
1st PUTID=A01 SCORE=3 total=3 ERROR =0 N =2
2nd PUTID=A02 SCORE=. total=3 ERROR =0 N =2
3rd PUTID=A02 SCORE=. total=3 ERROR =0 N =2
1st PUTID=A02 SCORE=. total=3 ERROR =0 N =3
2nd PUTID=A03 SCORE=4 total=3 ERROR =0 N =3
3rd PUTID=A03 SCORE=4 total=7 ERROR =0 N =3
4th PUTID=A03 SCORE=4 total=7 ERROR =0 N =3
1st PUTID=A03 SCORE=4 total=7 ERROR =0 N =4
NOTE: There were 3 observations read from the data set WORK.SAS3 1.
NOTE: The data set WORK.EX3 4 has 2 observations and 3 variables.
NOTE: DATA statement used (Total process time):
                    0.01 seconds
     real time
     cpu time
                        0.03 seconds
```