Simulating neural computation and information processing (with *Brian*)

Marcel Stimberg
Institut de la Vision/Sorbonne Université

marcel.stimberg@inserm.fr

The jupyter notebooks for the practical introductions to neural simulation can be found at:

https://github.com/brian-team/brian-material/tree/master/2020-TD-Brian-Sorbonne

Zoom features

- Please keep yourself muted but with camera on (but of course not mandatory)
- Use raise hand for questions (but feel free to interrupt me if I don't see it)
- Please give feedback with yes/no buttons I might also ask you to answer question in chat

Plan for today

(More or less) practical introduction to neural modeling

Part 1: neurons

Part 2: networks of neurons

Part 3: case study (binaural sound localisation)

(short break after each part)

Each part:

some slides + practical simulation in Brian

The Simulator

Who is Brian?

- Simulator for spiking neuronal networks, written in Python
- Started by Dan Goodman and Romain Brette at ENS Paris in 2007
- "A simulator should not only save the time of processors, but also the time of scientists"
- Does not provide a library of fixed models but allows for a flexible definition of (almost) arbitrary models
- Focusses on "medium-sized" neuronal networks
 ("a few" to ~100000 neurons), simulations on standard PCs, not
 supercomputers
- Tool for research and teaching
- Free-and-open-source

Brian's approach

- Philosophy: Mathematical model descriptions
 - Models are defined in mathematical notation
 - Everything is expressed using physical units
- *Technology*: Code generation
 - High-level descriptions transformed into low-level code
 - Modular architecture allows for extensions (e.g. to run code on GPU)

Part 1: **Neurons**

Modelling neurons

Individual elements

Detailed neuronal morphologies → point-neuron models

Modelling neurons

Individual elements Point-neuron models

Hodgkin-Huxley formalism

integrate-and-fire model

firing rate models

Modelling neurons

Individual elements Point-neuron models

Izhikevich (2004) IEEE Neural Networks

Integrate-and-fire neuron

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = g_L(V_{\text{rest}} - V) + I_{\text{stim}}$$

$$V(t) > V_{\rm threshold} \rightarrow {\rm spike} + V(t) = V_{\rm reset}$$

Computing with spikes

• An argument that is sometimes made:

"Spike timing in individual neurons is unreliable. Therefore, only the firing rate (averaged over neurons or over time) matters."

• Empirical evidence for "unreliable timing" is unclear.

Computing with spikes

Constant current injection = **unreliable** spike times

Computing with spikes

Constant current injection = **unreliable** spike times **Fluctuating** current injection = **reliable** spike times

Let's try with

Part 2: **Networks**

Postsynaptic neuron

Excitatory neuron

Synapses

Why can we talk about excitatory/ inhibitory neurons and not just synapses?

→ "Dale's law" Neurons release the same neurotransmitter(s) on every synapse

© 2000 UTHSCH

Synapses

Synapses

Synapses

Dynamics in spiking models

- Randomly connected (often: sparsely) neurons
- excitatory and inhibitory

Activity regimes

regular firing global synchronization

Activity regimes

irregular firing global synchronization

Brunel (2000)

Activity regimes

irregular firing asynchronous activity

Brunel (2000)

Input integration in neurons

- Neurons sum inputs over space (synapses) and over time
- Synchronous activation is more efficient than asynchronous activation

Input integration in neurons

- Cortical neurons: ~10000 synapses
- If spikes at synapses are independent
 - → total input relatively constant (law of big numbers)
 - → neuron should fire regularly

Firing regularity

Neurons in the cortex fire irregularly

Coefficient of variation

$$CV = \frac{\sigma_{ISI}}{\langle ISI \rangle}$$

Mean-driven vs. fluctuation-driven

Mean-driven

$$\left\langle I\right\rangle > I_{\mathrm{threshold}}$$
 Small variability (average of many inputs)

Fluctuation-driven

$$\left\langle I \right\rangle < I_{\mathrm{threshold}}$$

Let's try with

spikes can only occur at times when the input fluctuates above the mean

Firing regularity

Membrane potential distribution peaks below threshold

irregular firing with CV ≈1

→ fluctuation-driven

Input integration in fluctuation-driven regime

Highly sensitive to synchronous activation / correlated inputs

Part 3: Case study Binaural sound localisation

Binaural sound localisation

The Jeffress model

Interaural time delay (ITD)

Binaural sound localisation

Anatomical structures from the ear to the brainstem

Let's try with

More info about Brian

Documentation: https://brian2.readthedocs.io

Web site: https://briansimulator.org

Articles:

Stimberg, Marcel, Romain Brette, and Dan FM Goodman. "Brian 2, an Intuitive and Efficient Neural Simulator." ELife 8 (2019): e47314. https://doi.org/10.7554/eLife.47314.

Stimberg, Marcel, Dan F. M. Goodman, Victor Benichoux, and Romain Brette. "Equation-Oriented Specification of Neural Models for Simulations." Frontiers in Neuroinformatics 8 (2014). https://doi.org/10.3389/fninf.2014.00006