1. TP codage - révision

Thème 1 : Types de bases

16 bis

Exercices : Codage des caractères

Char	Dec	Oct	Hex	Char	Dec	Oct	Hex	Char	Dec	Oct	Hex
(sp)	32	0040	0x20	@	64	0100	0x40	Ι,	96	0140	0x60
1	33	0041	0x21	Α	65	0101	0x41	a	97	0141	0x61
	34	0042	0x22	В	66	0102	0x42	b	98	0142	0x62
#	35	0043	0x23	C	67	0103	0x43	C	99	0143	0x63
\$	36	0044	0x24	D	68	0104	0x44	d	100	0144	0x64
96	37	0045	0x25	E	69	0105	0x45	e	101	0145	0x65
&	38	0046	0x26	F	70	0106	0x46	l f	102	0146	0x66
	39	0047	0x27	G	71	0107	0x47	l g	103	0147	0x67
(40	0050	0x28	H	72	0110	0x48	ĥ	104	0150	0x68
)	41	0051	0x29		73	0111	0x49	į i	105	0151	0x69
*	42	0052	0x2a	J	74	0112	0x4a	Ιj	106	0152	0x6a
+	43	0053	0x2b	K	75	0113	0x4b	k	107	0153	0x6t
	44	0054	0x2c	L	76	0114	0x4c		108	0154	0x60
-	45	0055	0x2d	M	77	0115	0x4d	m	109	0155	0x60
	46	0056	0x2e	N	78	0116	0x4e	n	110	0156	0x6e
1	47	0057	0x2f	0	79	0117	0x4f	0	111	0157	0x6f
0	48	0060	0x30	P	80	0120	0x50	p	112	0160	0x70
1	49	0061	0x31	Q	81	0121	0x51	q	113	0161	0x71
2	50	0062	0x32	R	82	0122	0x52	r	114	0162	0x72
3	51	0063	0x33	S	83	0123	0x53	S	115	0163	0x73
4	52	0064	0x34	T	84	0124	0x54	t	116	0164	0x74
5	53	0065	0x35	U	85	0125	0x55	u	117	0165	0x75
6	54	0066	0x36	V	86	0126	0x56	V	118	0166	0x76
7	55	0067	0x37	W	87	0127	0x57	W	119	0167	0x7
8	56	0070	0x38	X	88	0130	0x58	X	120	0170	0x78
9	57	0071	0x39	Υ	89	0131	0x59	ĺу	121	0171	0x79
:	58	0072	0x3a	Z	90	0132	0x5a	Ź	122	0172	0x7a
;	59	0073	0x3b] [91	0133	0x5b	 {	123	0173	0x7
<	60	0074	0x3c	Ĭ	92	0134	0x5c	ΙÌ	124	0174	0x7
=	61	0075	0x3d	1	93	0135	0x5d	1 }	125	0175	0x7
>	62	0076	0x3e	Á	94	0136	0x5e	1 ~	126	0176	0x7
?	63	0077	0x3f	_	95	0137	0x5f	-			

Table ASCII

Exercice 1 :

- Q.1. Quel est le code binaire ASCII du « b » minuscule et du « B » majuscule?
- Q.2. Décoder l'expression suivante, écrite en ASCII :

00100000 01100110 01101111 01110010 01100011 01100101 00100000 01110011 01101111 01101001 01110100 00100000

Latin-9

Exercice 2:

Q.1. Le mot représenté par les octets ci-dessous est-il codé en ASCII ou en Latin 9 ? Donner ce mot :

Q.2. Représenter deçà en Latin-9

Définition du nombre d'octets utilisés dans le codage (uniquement les séquences valides)

Caractères codés	Représentation binaire	UTF-8	Premier octet valide (hexadécimal)	Signification	
U+0000 à U+007F		<mark>0</mark> xxxxxxx	00 à 7F	1 octet, codant 7 bits	
U+0080 à U+07FF	I10xxxxx	10xxxxxx	C2 à DF	2 octets, codant 11 bits	
U+0800 à U+0FFF	11100000 101xxxxx	10 xxxxx	E0 (le 2 ^e octet est restreint de A0 à BF)		
U+1000 à U+1FFF	11100001 10xxxxx	10 xxxxx	E1		
U+2000 à U+3FFF	1110001x 10xxxxxx	10xxxxxx	E2 à E3		
U+4000 à U+7FFF	111001xx 10xxxxxx	10 <i>xxxxx</i>	E4 à E7	2 actots codent 16 hits	
U+8000 à U+BFFF	111010xx 10xxxxx	10 xxxxx	E8 à EB	3 octets, codant 16 bits	
U+C000 à U+CFFF	11101100 10xxxxx	10 <i>xxxxx</i>	EC		
U+D000 à U+D7FF	11101101 100xxxxx	10xxxxxx	ED (le 2 ^e octet est restreint de 80 à 9F)		
U+E000 à U+FFFF	1110111x 10xxxxxx	10xxxxxx	EE à EF		
U+10000 à U+1FFFF	11110000 1001xxxx 10xxxxxx	10 xxxxx	F0 (le 2 ^e octet est restreint de 90 à BF)		
U+20000 à U+3FFFF	11110000 101xxxxx 10xxxxxx	10 <i>xxxxx</i>	FO (le 2° octet est restremt de 90 a BF)		
U+40000 à U+7FFFF	11110001 10xxxxxx 10xxxxxx	10xxxxxx	F1	4 octets, codant 21 bits	
U+80000 à U+FFFFF	1111001x 10xxxxxx 10xxxxxx	10 xxxxx	F2 à F3		
U+100000 à U+10FFFF	11110100 1000xxxx 10xxxxxx	10 xxxxx	F4 (le 2 ^e octet est restreint de 80 à 8F)		

Exercice 3:

Latin étendu B

HEX		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
180	384	ħ	В	Б	Б	Ъ	b	Э	Ç	ď	Đ	D	а	đ	9	3	ə
190	400	3	F	f	ď	¥	h	ι	ł	К	ƙ	ŧ	λ	ш	И	η	θ
1A0	416	Q	ď	9	aı	P	þ	Ŗ	S	s	Σ	١	ţ	τ	t	τ	ľ
1B0	432	ŭ	Ω	С	Υ	У	Z	Z	3	3	3	3	2	5	5	\$	р
1C0	448	_	I	ŧ	!	DŽ	Dž	dž	IJ	Lj	lj	NJ	Nj	nj	Ă	ă	Ĭ
1D0	464	ĭ	Ŏ	ŏ	Ŭ	ŭ	Ü	ü	Ú	ű	Ŭ	ŭ	Ù	ù	ә	Ä	ä
1E0	480	Ā	ā	Æ	æ	G	g	Ğ	ğ	Ř	Ř	Q	Q	Ō	Ō	ž	ž
1F0	496	Ĭ	DZ	Dz	dz	Ġ	ģ	н	р	Ň	'n	Å	á	Æ	ǽ	Ø	ø
200	512	À	ä	Â	â	È	è	Ê	ê	ĩ	ĩ	î	î	ő	ő	ô	ô
210	528	Ř	ř	Ř	ŕ	Ű	ũ	Û	û	Ş	ş	Ţ	ţ	3	3	Ĥ	ň
220	544	ր	ď	8	8	ζ	z	À	à	Ę	ę	Ö	ö	Õ	õ	Ò	ò
230	560	Ō	ō	Ÿ	ÿ	L	ŋ,	ţ.	J	ф	ф	Æ	Ø	g	Ł	7	ş
240	576	ζ	?	2	B	¥	٨	£	Ø	ł	j	q	q	R	f	*	¥

Donnée le codage Unicode la lettre qp puis son codage en UTF-8

Exercice 4

Décoder le message suivant :

Exercice 5

Le défi du cours : codage UTF-8, décoder le texte ci-dessous :

01110101 01110011 00100000 01100101 01110100 00100000 01100010 01101111 01101110 01101110 01100101 00100000 01110010 01100101 01110000 01110010 01101001 01110011 01100101

★ Exercice 4:

Codage XOR:

- Q.1. Le nombre 65, donné ici en écriture décimale, s'écrit 01000001 en notation binaire. En détaillant la méthode utilisée, donner l'écriture binaire du nombre 97.
- Q.2. La fonction logique OU EXCLUSIF, appelée XOR et représentée par le symbole ⊕, fournit une sortie égale à 1 si l'une ou l'autre des deux entrées vaut 1 mais pas les deux.

On donne ci-dessous la table de vérité de la fonction XOR

А	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Poser et calculer l'opération : 11011101 ⊕ 01101011

On donne, ci-dessous, un extrait de la table ASCII qui permet d'encoder les caractères de A à Z.

On peut alors considérer l'opération XOR entre deux caractères en effectuant le XOR entre les codes ASCII des deux caractères.

Par exemple : 'F' XOR 'S' sera le résultat de 01000110 ⊕ 01010011.

Code ASCII	Code ASCII	
Décimal	Binaire	Caractère
65	01000001	Α
66	01000010	В
67	01000011	С
68	01000100	D
69	01000101	E
70	01000110	F
71	01000111	G
72	01001000	Н
73	01001001	I
74	01001010	J
75	01001011	K
76	01001100	L
77	01001101	M

Code	Code ASCII	
Décimal	Binaire	Caractère
78	01001110	N
79	01001111	0
80	01010000	Р
81	01010001	Q
82	01010010	R
83	01010011	S
84	01010100	Т
85	01010101	U
86	01010110	V
87	01010111	W
88	01011000	Х
89	01011001	Υ
90	01011010	Z

On souhaite mettre au point une méthode de cryptage à l'aide de la fonction XOR. Pour cela, on dispose d'un message à crypter et d'une clé de cryptage de même longueur que ce message. Le message et la clé sont composés uniquement des caractères du tableau ci-dessus et on applique la fonction XOR caractère par caractère entre les lettres du message à crypter et les lettres de la clé de cryptage.

Question 3. Chiffrer **INFORMATIQUE** avec la clé **NSI**. Pour cela recopier et compléter le tableau ci-dessous :

LETTRE	I	N	F	0	R	М	А	Т	I	Q	U	E
ASCII												
BINAIRE												
CLE	N	S	ı	N	S	I	N					
ASCII												
BINAIRE												
XOR												
ASCII												

Q.4. Recopier et compléter la table de vérité de $(E1 \oplus E2) \oplus E2$.

$\boldsymbol{E_1}$	$\boldsymbol{E_2}$	$E_1 \oplus E_2$	$(E_1 \oplus E_2) \oplus E_2$
0	0	0	
0	1	1	
1	0	1	
1	1	0	

A l'aide de ce résultat, proposer une démarche pour décrypter un message crypté.

Q.5 Décoder le message suivant : 12 1 8 24 28 105 15 115 29 1 6 26