Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Descomposición en Valores Singulares (parte II)

DVS Compacta, Reducida y Truncada

Sea
$$A \in \mathbb{R}^{m \times n}$$
 con DVS $A = U \Sigma V^T$:

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n$$

$$\begin{array}{c}
m \times n \\
m \times n
\end{array}$$

$$\begin{array}{c}
m \times n \\
m \times n$$

$$\begin{array}{c}
m \times n \\
m \times$$

• Si $\sigma_1, \ldots, \sigma_r > 0, \sigma_{r+1}, \ldots, \sigma_p = 0$, la DVS reducida es $A = \mathcal{U}_r \Sigma_r V_r^T$

• Sea $k \in \{1, ..., r-1\}$, la DVS truncada es $A \geqslant U_k \Sigma_k V_k^T$

$$\sigma_1 = 10^3$$
 $\sigma_3 = 10^{-3}$

Pseudoinversa de Moore-Penrose

Sea $A \in \mathbb{R}^{m \times n}$ y el sistema lineal Ax = y. La inversa de A no está definida, pero si m > n una posible solución (cuadrados mínimos) era

$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

¿Pero qué ocurre si A^TA no es invertible? Se define la pseudoinversa de Moore-Penrose como

y $\hat{x} = A^{\dagger}y$ es (si m < n) la solución de mínima norma euclídea o (si m > n) la aproximación de mínimo error cuadrático/distancia euclídea.

Obs.: Todo lo anteriormente visto también vale para $A \in \mathbb{C}^{m \times n}$, utilizando \cdot^H en vez de \cdot^T . Se utilizaron matrices reales para facilitar la lectura.