Data mining, lab 3: Klasyfikacja

dr inż. Robert Bembenik dr inż. Grzegorz Protaziuk

Politechnika Warszawska Instytut Informatyki

Klasyfikacja – proces dwuetapowy

- Automatyczna budowa klasyfikatora na podstawie danych treningowych zawierających oznaczone obiekty.
- Celem jest znalezienie reguły (reguł) klasyfikacyjnej, która dla dowolnego obiektu w poda jego klasę g.
- Zakłada się, że każdy obiekt należy do predefiniowanej klasy, determinowanej przez wartość atrybutu przynależności do klasy.

Klasyfikacja – proces dwuetapowy (1)

- Wykorzystanie modelu: do klasyfikacji przyszłych, lub nieznanych obiektów
 - Ustalanie dokładności modelu
 - Znana klasa próbki testowej jest porównywana z rezultatem klasyfikacji uzyskanym z modelu
 - Dokładność to odsetek przykładów ze zbioru testowego, które są poprawnie klasyfikowane przez model
 - Zbiór testowy jest niezależny od zbioru trenującego
 - Jeśli dokładność jest akceptowalna wykorzystujemy model do klasyfikacji nowych danych

Proces (1): Konstrukcja modelu

lmię	Stanowisko	Lata	Doż. pos.
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Algorytmy klasyfikacji

Klasyfikator
(Model)

IF stano.= 'profesor'
OR lata > 6
THEN doż. pos.= 'yes'

Proces (2): Wykorzystanie modelu w przewidywaniu

Indukcja drzewa decyzyjnego: przykład

Algorytm indukcji drzewa decyzyjnego

- Podstawowy algorytm
 - Drzewo jest tworzone w sposób zstępujący, rekursywny, metodą dziel-i-rządź
 - Na początku wszystkie przykłady trenujące są na poz. korzenia
 - Przykłady są partycjonowane rekursywnie na podstawie wybranych atrybutów
 - Atrybuty testowe są wybierane na podstawie heurystyki lub miary statystycznej (np. przyrost informacji)
- Warunki na zakończenie partycjonowania
 - Wszystkie przykłady dla danego węzła należą do tej samej klasy
 - Nie ma więcej atrybutów do dalszego partycjonowania wykorzystywane jest głosowanie większościowe do klasyfikacji liścia
 - Nie ma więcej przykładów

Trzy możliwości podziału krotek

- a) atrybuty dyskretne
- b) atrybuty ciągłe
- c) atrybuty dyskretne, tworzone jest drzewo binarne

Porównanie miar wyboru atrybutów

Przyrost informacji (ID3):

skłania się w stronę atrybutów wielowartościowych

Współczynnik przyrostu (C4.5):

 raczej preferuje niezbalansowane podziały, w których jedna partycja jest dużo mniejsza niż pozostałe

Indeks Gini:

- skłania się w stronę atrybutów wielowartościowych
- ma problemy przy dużej liczbie klas
- raczej preferuje testy, których wynikiem są partycje o takiej samej wielkości i czystości

Drzewo przed i po przycięciu

Metryki ewaluacji klasyfikatora: dokładność, wsp. błędu, czułość i specyfika

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

- Dokładność klasyfikatora, lub wsp. rozpoznawalności: odsetek krotek ze zbioru testowego poprawnie sklasyfikowanych
 Dokładność = (TP + TN)/All
- Wsp. błędu: 1 dokładność, lub
 Wsp. błędu = (FP + FN)/All

Problem nierówności klas:

- Jedna klasa może być rzadka, np. oszustwa, lub pozyt. wyniki testu na HIV
- Czułość: Rozpoznawanie przypadków True Positive
 Czułość = TP/P
- Specyfika: Rozpoznawanie przypadków True Negative
 Specyfika = TN/N

Metryki ewaluacji klasyfikatora: precyzja i odzysk, F-miary

Precyzja: dokładność jaki % krotek, które klasyfikator oznaczył jako pozytywne jest pozytywny

$$precision = \frac{TP}{TP + FP}$$

- Odzysk=czułość: zupełność- jaki % pozytywnych krotek klasyfikator oznaczył jako pozytywne recall = TP
- Wynik doskonały to 1.0
- F miara (F_1): harmoniczna średnia precyzji i odzysku

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

Wybór klasyfikatora - testowanie

- Testowanie klasyfikatorów
 - Zbiór walidacyjny wykorzystana do wyboru klasyfikatora
 - Zbiór testowy wykorzystywany do oceny jakości klasyfikatora

Kroswalidacja

Ogólny schemat metody:

- Utworzenie k-podzbiorów ze zbioru wejściowego.
- Budowanie k-klasyfikatorów budowane są one na kolejnych (k-1) podzbiorach i testowane na pozostałym k-tym podzbiorze.
- Oszacowanie jakości klasyfikatora jest wykonywane na podstawie wszystkich wyników.
- Ostateczny klasyfikator jest budowany na całym zbiorze.

Rodzina klasyfikatorów - metoda Bagging

Ogólny schemat metody

- Utworzenie k –zbiorów poprzez losowanie ze zwracaniem ze zbioru wejściowego
- Dla każdego zbioru tworzony jest klasyfikator.

Nowy obiekt jest przypisywany do klasy wyznaczonej przez większość klasyfikatorów.

Rodzina klasyfikatorów - metoda Boosting

Utworzenie k- klasyfikatorów w następujący sposób:

- Utworzenie zbioru_k poprzez losowanie ze zwracaniem ze zbioru wejściowego
- Zbudowania klasyfikatora na podstawie wygenerowanego zbioru i przeprowadzenie klasyfikacji dla oryginalnego zbioru.
- 3. Dla obiektów źle zakwalifikowanych zwiększenie prawdopodobieństwa wylosowania.
- Powrót do korku 1.

Nowy obiekt jest przypisywany do klasy wyznaczonej przez większość klasyfikatorów.

Teoretyczny błąd dla rodziny klasyfikatorów

Błąd dla pojedynczego klasyfikatora – 40%

liczba klasyfikatorów	prawdopodobieństwo błędu
1	40,00%
3	35,20%
5	31,74%
7	28,98%
11	24,65%
21	17,44%
51	7,35%
77	3,76%
101	2,09%

Lasy losowe vs. drzewo decyzyjne

Drzewo decyzyjne

- Łatwość interpretacji modelu
- Szybkość klasyfikacji (z użyciem modelu)
- Możliwość przeuczenia
- Możliwość sterowania procesem budowy

Lasy losowe

- Brak praktycznych możliwości interpretacji modelu
- Możliwy długi czas klasyfikacji
- Lepsza jakość klasyfikacji od drzew decyzyjnych
- W praktyce brak przeuczenia
- Sterowanie metadanymi modelu