Supervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

- Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. O'Reilly. 2020
- Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

Table of Contents

- k-Nearest Neighbors
 - kNN classification
 - kNN regression
 - Summary
- 2. Linear models
 - Ordinary least squares
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Linear models for classification
 - Summary
- 3. Naive Bayes Classifiers

- Summary
- 4. Decission Trees
 - Summary
- 5. Ensembles of Decision Trees
 - Summary
- 6. Support Vector Machines
 - Kernelized Support Vector Machines
 - Summary
- 7. A
 - b
 - A: Summary
 - ARIMA

k-Nearest Neighbors

kNN classification (I)

Diagrama 1-NN y 3-NN.

k-Nearest Neighbors

kNN classification (II)

k-Nearest Neighbors

Diagrama frontera para varios valores de K

k-Nearest Neighbors

kNN regression

k-Nearest Neighbors

k-Nearest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines

○○○

○○

○○

○○

○○

○○

○○

k-Nearest Neighbors

Summary

Linear models

Linear regression (I)

Lineal regression assumes a linear relationship among variables

- This limitation can be easely overcome
- Surprisingly good results in high dimensional spaces

Lineal regression

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

Linear models (II)

Several methods to fit coefficients

- Ordinary Least Squares (OLS)
- Generalized Least Squares (GSL)
- Weighted Least Squares (WLS)
- Generalized Least Squares with AR Covariance Structure (GLSAR)

Regularization: Term that penalizes complexity

- L1 (Lasso regression)
- L2 (Ridge regression)
- ElasticNet: Lt and L2

Lasso

$$\lambda \sum_{i}^{n} \beta_{j}^{2}$$

Ridge

$$\lambda \sum_{i=1}^{n} |\beta_{i}|$$

ElasticNet

$$\alpha \sum_{j}^{n} \beta_{j}^{2} + (1 - \alpha) \sum_{j}^{n} |\beta_{j}|$$

earest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines

Linear models

Summary

Naive Bayes Classifiers

rrest Neighbors Linear models **Naive Bayes Classifiers** Decission Trees Ensembles of Decision Trees Support Vector Machines

OO OO OO OO

Naive Bayes Classifiers

Summary

Decission Trees

rest Neighbors Linear models Naive Bayes Classifiers **Decission Trees** Ensembles of Decision Trees Support Vector Machines

Decission Trees

Summary

Ensembles of Decision Trees

bors Linear models Naive Bayes Classifiers Decission Trees **Ensembles of Decision Trees** Support Vector Machines

OOO OO OO OO OO

Ensembles of Decision Trees

Summary

Support Vector Machines

Support Vector Machines

Kernelized Support Vector Machines

phbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees **Support Vector Machines**

Support Vector Machines

Summary

A

E

B: Summary

Hyperparameters Advantages Disadvantages

0000

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

$ARMA \mod el = AR + MA$

ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

ecission Trees Ensembles of Decision Trees Support Vector Machines
O OO OO

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

0000