# Meta-Programming and Hybrid Parallel Strategies for Solving PDEs: An FDM and PINN Comparison <sup>1 2</sup>

Seminar Presentation III

#### LI YIHAI

Student ID: 23345919

Supervision: Michael Peardon

September 15, 2024



Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath

full docs: https://livihai.com/html/index.html

<sup>&</sup>lt;sup>2</sup>repository: https://github.com/livihai-official/Final-Project

- Introduction
  - Related Work
  - Challenges & Objectives
- Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- S Experiments
- 6 Discussion

- Introduction
  - Related Work
  - Challenges & Objectives
- 2 Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- S Experiments
- 6 Discussion

#### Kolmogorov PDEs

Solving 
$$u(x, T)$$
, for  $\mathbb{R}^1 \ni T > 0$ ,  $x \in \mathbb{R}^d$ ,  $t \in [0, T]$ ,  $u(t, x) = u \in \mathbb{R}^1$ ,  $\mu(x) \in \mathbb{R}^d$ ,  $\sigma(x) \in \mathbb{R}^{d \times d}$ ,
$$u_t = \frac{1}{2} \operatorname{Trace}_{\mathbb{R}^d} \left[ \sigma(x) \left[ \sigma(x) \right]^* \operatorname{Hess}_x u \right] + \langle \mu(x), \nabla_x u \rangle_{\mathbb{R}^d}$$
(1)



Figure: Deep Neural Network (DNN) Methodology of Solving Kolmogorov PDEs [FIRST]

LI Yihai (Mathematics Institute)

An FDM and PINN Comparison

September 15, 2024

4/18

#### Introduction

#### Recap - Physics Informed Nerual Network

#### General Form of PDEs

- -u(t,x) denotes with the target function,  $x \in \mathbb{R}^d$ .
- $-\Gamma[\cdot;\lambda]$  is a non-linear operator parameterized by  $\lambda$ .

$$u_t(t,x) + \Gamma[u;\lambda] = 0 \tag{2}$$

Define f(t,x) to be given by

$$f(t,x) = u_t(t,x) + \Gamma[u;\lambda]$$
(3)



Figure: PINN, with with 3 fully connected hidden layers

# Introduction Recap - Conclusion

## Comparing With Finite Difference Time Domain Method (FDTD)

- Deep Neural Network [FIRST]
  - Gives lower quality approximations.
  - Takes longer time to train.
  - Possible to solve high dimension PDEs
- Physics Informed Neural Network
  - Gives higher quality approximations.
  - Takes longer time to train.
  - Has more flexible way to get results.
  - Possible to solve high dimension PDEs

# Objectives

#### **Project Objectives**

- Implement FDTD and PINN in C++/C.
- Implement FDTD hybrid parallel version using MPI/OpenMP.
- Implement PINN GPU parallel version using Libtorch/CUDA.
- Optimize performance through parallel computing frameworks.
- **5** Evaluate the efficiency and accuracy of FDTDs and PINNs.

# Challanges

- Difficulty in modeling and predicting inhomogeneous cascades of scales.
- 4 High computational costs and uncertainties in classical methods.

- Introduction
  - Related Work
  - Challenges & Objectives
- Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- Second Experiments
- 6 Discussion

## General Form of problem

The PDE parametrized by number  $\lambda$  and an operator  $\mathcal{N}[\cdot;\lambda]$ , and assume the variable x is a 2D or 3D spatio-vector which is written in

$$\begin{cases} \frac{\partial u}{\partial t}(t, \vec{x}) + \mathcal{N}[u; \lambda] = 0\\ u(0, \vec{x}) = \varphi(\vec{x}) \end{cases}$$
(4)

where  $\varphi$  is the initial condition, and  $\vec{x} \in \Omega, t \in [0, +\infty)$ .

#### **Boundary Conditions**

The Dirichlet and Von Neurmann boundary conditions are formed as

$$\begin{cases} u(t,\vec{x}) = g(t,\vec{x}) \\ \frac{\partial u}{\partial \vec{n}} = g(t,\vec{x}) \end{cases}$$
 (5)

10/18

where  $\vec{n}$  is the normal vector on  $\overline{\Omega}$  the boundary of domain  $\Omega$ .

# Heat Equation Specific Example

#### Heat Equation 2D

The function u(t,x,y) = x + y - xy,  $\forall \alpha \in \mathbb{R}^1$ , is the solution of 2D Heat Equation 6 below

$$\frac{\partial u}{\partial t} = \alpha \left( \frac{\partial u^2}{\partial^2 x} + \frac{\partial u^2}{\partial^2 y} \right)$$
  $(x,y) \in \Omega, t \in [0, +\infty)$  
$$u(0,x,y) = \varphi(x,y) = 0$$
  $(x,y) \in \Omega$  
$$u(t,x,y) = g(x,y) = \begin{cases} y, & x = 0, y \in (0,1) \\ 1, & x = 1, y \in (0,1) \\ x, & y = 0, x \in (0,1) \\ 1, & y = 1, x \in (0,1) \end{cases}$$
  $t \in [0, +\infty)$ 

(6)

#### Heat Equation 3D

The function u(t,x,y,z) = x + y + z - 2xy - 2xz - 2yz + 4xyz,  $\forall \alpha \in \mathbb{R}^1$ , is the solution of 3D Heat Equation 7 below

$$\frac{\partial u}{\partial t} = \alpha \left( \frac{\partial u^2}{\partial^2 x} + \frac{\partial u^2}{\partial^2 y} + \frac{\partial u^2}{\partial^2 z} \right) \qquad (x, y, z) \in \Omega, \ t \in [0, +\infty)$$

$$u(0, x, y, z) = \varphi(x, y, z) = 0 \qquad (x, y, z) \in \Omega \qquad (7)$$

$$u(t, x, y, z) = g(x, y, z) = \begin{cases} y + z - 2yz, & x = 0, \\ 1 - y - z + 2yz, & x = 1, \\ x + z - 2xz, & y = 0, \\ 1 - x - z + 2xz, & y = 1, \\ x + y - 2xy, & z = 0, \\ 1 - x - y + 2xy, & z = 1 \end{cases}$$

$$t \in [0, +\infty)$$

12/18

- Introduction
  - Related Work
  - Challenges & Objectives
- 2 Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- Second Experiments
- 6 Discussion

13/18



- Introduction
  - Related Work
  - Challenges & Objectives
- Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- 6 Discussion

- Introduction
  - Related Work
  - Challenges & Objectives
- 2 Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementation
- S Experiments
- 6 Discussion

- Introduction
  - Related Work
  - Challenges & Objectives
- 2 Problem Setups
  - General Form
  - Thermal Conduction Systems

- Methodology
  - N-Dimensional Matrix
  - Parallelization of Multi-dimensional Matrices on cartesian Topologies
- 4 Implementations
- 6 Experiments
- 6 Discussion

# Closing Remarks

Thank you for your attention!

Any questions?