

Nonparametric Bayesian Statistics: Part II

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

• Last time:

- Last time:
 - Understand what it means to have a growing number of parameters

- Last time:
 - Understand what it means to have a growing number of parameters; understand having an infinite # parameters

- Last time:
 - Understand what it means to have a growing number of parameters; understand having an infinite # parameters
 - GEM

- Last time:
 - Understand what it means to have a growing number of parameters; understand having an infinite # parameters
 - GEM
 - www.tamarabroderick.com/ tutorial_2015_summer_npb.html

- Last time:
 - Understand what it means to have a growing number of parameters; understand having an infinite # parameters
 - GEM
 - www.tamarabroderick.com/ tutorial_2015_summer_npb.html
- This time:

Last time:

- Understand what it means to have a growing number of parameters; understand having an infinite # parameters
- GEM
- www.tamarabroderick.com/ tutorial_2015_summer_npb.html

This time:

 Understand what it means to have a growing/infinite number of parameters

Last time:

- Understand what it means to have a growing number of parameters; understand having an infinite # parameters
- GEM
- www.tamarabroderick.com/ tutorial_2015_summer_npb.html

This time:

- Understand what it means to have a growing/infinite number of parameters
- Dirichlet process

Last time:

- Understand what it means to have a growing number of parameters; understand having an infinite # parameters
- GEM
- www.tamarabroderick.com/ tutorial_2015_summer_npb.html

This time:

- Understand what it means to have a growing/infinite number of parameters
- Dirichlet process
- Dirichlet process mixture model

Last time:

- Understand what it means to have a growing number of parameters; understand having an infinite # parameters
- GEM
- www.tamarabroderick.com/ tutorial_2015_summer_npb.html

This time:

- Understand what it means to have a growing/infinite number of parameters
- Dirichlet process
- Dirichlet process mixture model
- A finite representation of an infinite process

Dirichlet process (DP) stick-breaking

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (**GEM**) distribution:

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (**GEM**) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]

- Dirichlet process (DP) stick-breaking
- Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[demo]

 Beta → random distribution over 1,2

 Beta → random distribution over 1,2

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k}$$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k}$$

- Beta → random distribution over 1,2
- Dirichlet \rightarrow random distribution over $1, 2, \dots, K$
- GEM / Dirichlet stickbreaking → random distribution over 1, 2, . . .
- Dirichlet process \rightarrow random distribution over Φ : $\rho = (\rho_1, \rho_2, \ldots) \sim \operatorname{GEM}(\alpha)$ $\phi_k \overset{iid}{\sim} G_0$ $G = \sum_{k=0}^{\infty} \rho_k \delta_{\phi_k}$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \dots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k}$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$ • i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \dots$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

• i.e.
$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \stackrel{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

Gaussian mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

• i.e.
$$G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \stackrel{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

• i.e. $\mu_n^* \stackrel{iid}{\sim} G$

$$x_n \overset{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

[demo]

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0), k = 1, 2, \ldots$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

 $\mu_n^* = \mu_{z_n}$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\mu_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0 \qquad k = 1, 2, \dots \qquad 1 \quad 2$$
• i.e. $G = \sum_{k=1}^{\infty} \rho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha, \mathcal{N}(\mu_0, \Sigma_0))$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\mu_n^* \overset{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\theta_n \overset{iid}{\sim} G$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_n^*, \Sigma)$$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\ldots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^\infty
ho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

 $\theta_n = \phi_{z_n}$ • i.e. $\theta_n \overset{iid}{\sim} G$

More generally

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\phi_k \stackrel{iid}{\sim} G_0$$

$$k=1,2,\dots$$

$$\phi_k \overset{iid}{\sim} G_0$$
 $k=1,2,\ldots$
• i.e. $G=\sum_{k=1}^{\infty} \rho_k \delta_{\phi_k} \overset{d}{=} \mathrm{DP}(\alpha,G_0)$

$$\theta_n = \phi_{z_n}$$

[Antoniak 1974; Ferguson 1983; West, Müller, Escobar 1994; Escobar, West 1995; MacEachern, Müller 1998]

• GEM: ...

• GEM:

Compare to:

• GEM: ...

- Compare to:
 - Finite (small K) mixture model

- GEM: ...
- Compare to:
 - Finite (small K) mixture model

Finite (large K) mixture model

- GEM: ...
- Compare to:
 - Finite (small K) mixture model

Finite (large K) mixture model

Time series

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

• Integrate out the frequencies $\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$
$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

Integrate out the frequencies

$$\rho_{1} \sim \text{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \text{Cat}(\rho_{1}, \rho_{2})$$

$$p(z_{n} = 1 | z_{1}, \dots, z_{n-1})$$

$$= \int p(z_{n} = 1, \rho_{1} | z_{1}, \dots, z_{n-1}) d\rho_{1}$$

Integrate out the frequencies

$$\begin{aligned} & \rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ & p(z_n = 1 | z_1, \dots, z_{n-1}) \\ & = \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \end{aligned}$$

Integrate out the frequencies

integrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1})$$

$$= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1$$

$$= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1$$

Integrate out the frequencies

$$\begin{aligned} &\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ &p(z_n = 1 | z_1, \dots, z_{n-1}) \\ &= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ &= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \\ &= a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\} \end{aligned}$$

• Integrate out the frequencies

$$\begin{aligned} &\rho_{1} \sim \operatorname{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1}, \rho_{2}) \\ &p(z_{n} = 1 | z_{1}, \dots, z_{n-1}) \\ &= \int p(z_{n} = 1 | \rho_{1}) p(\rho_{1} | z_{1}, \dots, z_{n-1}) d\rho_{1} \\ &= \int \rho_{1} \operatorname{Beta}(\rho_{1} | a_{1,n}, a_{2,n}) d\rho_{1} \\ &a_{1,n} := a_{1} + \sum_{m=1}^{n-1} \mathbf{1} \{z_{m} = 1\}, a_{2,n} = a_{2} + \sum_{m=1}^{n-1} \mathbf{1} \{z_{m} = 2\} \\ &= \int \rho_{1} \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n}) \Gamma(a_{2,n})} \rho_{1}^{a_{1,n}-1} (1 - \rho_{1})^{a_{2,n}-1} d\rho_{1} \end{aligned}$$

Integrate out the frequencies

$$\begin{aligned} &\rho_1 \sim \text{Beta}(a_1, a_2), z_n \overset{iid}{\sim} \text{Cat}(\rho_1, \rho_2) \\ &p(z_n = 1 | z_1, \dots, z_{n-1}) \\ &= \int p(z_n = 1 | \rho_1) p(\rho_1 | z_1, \dots, z_{n-1}) d\rho_1 \\ &= \int \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1 \\ &= a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\} \end{aligned}$$

$$= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1$$

$$= \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \frac{\Gamma(a_{1,n} + 1)\Gamma(a_{2,n})}{\Gamma(a_{1,n} + a_{2,n} + 1)}$$

• Integrate out the frequencies $a_1 \sim \text{Beta}(a_1, a_2) \approx iid \text{Cat}(a_1, a_2)$

$$\rho_{1} \sim \text{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \text{Cat}(\rho_{1}, \rho_{2})
p(z_{n} = 1 | z_{1}, \dots, z_{n-1})
= \int p(z_{n} = 1 | \rho_{1}) p(\rho_{1} | z_{1}, \dots, z_{n-1}) d\rho_{1}$$

$$= \int_{-\infty}^{\infty} \rho_1 \text{Beta}(\rho_1 | a_{1,n}, a_{2,n}) d\rho_1$$

$$a_{1,n} := a_1 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{\infty} \mathbf{1}\{z_m = 2\}$$

$$= \int \rho_1 \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \rho_1^{a_{1,n}-1} (1 - \rho_1)^{a_{2,n}-1} d\rho_1$$

$$= \frac{\Gamma(a_{1,n} + a_{2,n})}{\Gamma(a_{1,n})\Gamma(a_{2,n})} \frac{\Gamma(a_{1,n} + 1)\Gamma(a_{2,n})}{\Gamma(a_{1,n} + a_{2,n} + 1)}$$

$$= \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

Integrate out the frequencies

mitegrate out the frequencies
$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

Integrate out the frequencies

$$\rho_{1} \sim \text{Beta}(a_{1}, a_{2}), z_{n} \stackrel{iid}{\sim} \text{Cat}(\rho_{1}, \rho_{2})
p(z_{n} = 1 | z_{1}, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

$$a_{1,n} := a_1 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 1\}, a_{2,n} = a_2 + \sum_{m=1}^{n-1} \mathbf{1}\{z_m = 2\}$$

Pólya urn

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

m=1

Choose any ball with equal probability

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

- Choose any ball with equal probability
- Replace and add ball of same color

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

- Choose any ball with equal probability
- Replace and add ball of same color

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

- Choose any ball with equal probability
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}}$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)
p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

- Choose any ball with equal probability
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

- Choose any ball with equal probability
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

$$\rho_1 \sim \text{Beta}(a_1, a_2), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_1, \rho_2)$$

$$p(z_n = 1 | z_1, \dots, z_{n-1}) = \frac{a_{1,n}}{a_{1,n} + a_{2,n}}$$

m=1

- Choose any ball with prob proportional to its mass
- Replace and add ball of same color

$$\lim_{n \to \infty} \frac{\text{\# orange}}{\text{\# total}} = \rho_{\text{orange}} \stackrel{d}{=} \text{Beta}(a_{\text{orange}}, a_{\text{green}})$$

Integrate out the frequencies

• Integrate out the frequencies $\rho_{1:K} \sim \mathrm{Dirichlet}(a_{1:K}), z_n \overset{iid}{\sim} \mathrm{Cat}(\rho_{1:K})$

• Integrate out the frequencies $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{i=1}^K a_{j,n}}$

Integrate out the frequencies

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$$

$$p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$$

$$a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$$

• Integrate out the frequencies $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$ $a_{k,n} := a_k + \sum_{j=1}^{N} \mathbf{1}\{z_m = k\}$

multivariate Pólya urn

• Integrate out the frequencies $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \text{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^{K} a_{j,n}}$ $a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$

multivariate Pólya urn

- Integrate out the frequencies $\rho_{1:K} \sim \operatorname{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^K a_{j,n}}$ $a_{k,n} := a_k + \sum_{j=1}^{n-1} \mathbf{1}\{z_m = k\}$
- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass

- Integrate out the frequencies $\rho_{1:K} \sim \operatorname{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^K a_{j,n}}$ $a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$
- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

- Integrate out the frequencies $\rho_{1:K} \sim \operatorname{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^K a_{j,n}}$ $a_{k,n} := a_k + \sum \mathbf{1}\{z_m = k\}$
- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

- Integrate out the frequencies $\rho_{1:K} \sim \operatorname{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^K a_{j,n}}$ $a_{k,n} := a_k + \sum_{j=1}^{n-1} \mathbf{1}\{z_m = k\}$
- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

- Integrate out the frequencies $\rho_{1:K} \sim \operatorname{Dirichlet}(a_{1:K}), z_n \stackrel{iid}{\sim} \operatorname{Cat}(\rho_{1:K})$ $p(z_n = k | z_1, \dots, z_{n-1}) = \frac{a_{k,n}}{\sum_{j=1}^K a_{j,n}}$ $a_{k,n} := a_k + \sum_{j=1}^{n-1} \mathbf{1}\{z_m = k\}$
- multivariate Pólya urn
 - Choose any ball with prob proportional to its mass
 - Replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

Choose ball with prob proportional to its mass

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# orange, \# other) = PolyaUrn(1, \alpha)$

• not orange: (#green, #other) = PolyaUrn(1, α)

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

 $(\# orange, \# other) = PolyaUrn(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

```
Step 0 | Step 1 | Step 2 | Step 3 | Step 4 | V_k \stackrel{iid}{\sim} \text{Beta}(1, \alpha)
```

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0 | Step 1 | Step 2 | Step 3 | Step 4 |
$$V_k \stackrel{iid}{\sim} \operatorname{Beta}(1, \alpha)$$

 $(\text{\#orange}, \text{\#other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0 | Step 1 | Step 2 | Step 3 | Step 4 |
$$V_k \stackrel{iid}{\sim} \operatorname{Beta}(1, \alpha)$$

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

• Hoppe urn / Blackwell-MacQueen urn

- Choose ball with prob proportional to its mass
 - If black, replace and add ball of new color
 - Else, replace and add ball of same color

Step 0 | Step 1 | Step 2 | Step 3 | Step 4 |
$$V_k \stackrel{iid}{\sim} \operatorname{Beta}(1, \alpha)$$
 $\rho_1 = V_1$
 $\rho_2 = (1 - V_1)V_2$
 $\rho_3 = [\prod_{k=1}^2 (1 - V_k)]V_3$

(#orange, #other) = PolyaUrn(1, α)

 $(\# \text{orange}, \# \text{other}) = \text{PolyaUrn}(1, \alpha)$

- not orange: (#green, #other) = PolyaUrn(1, α)
- not orange, green: $(\#red, \#other) = PolyaUrn(1, \alpha)$

Same thing we just did

- Same thing we just did
- Each customer walks into the restaurant

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

[Aldous 1983]

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$

$$\Rightarrow \Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}\}$$

- Same thing we just did
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- Marginal for the Categorical likelihood with GEM prior $z_1=z_2=z_7=z_8=1, z_3=z_5=z_6=2, z_4=3$ $\Rightarrow \Pi_8=\{\{1,2,7,8\},\{3,5,6\},\{4\}\}$
- Partition of [8]: set of mutually exclusive & exhaustive sets of $[8] = \{1, \dots, 8\}$

Probability of this seating:

 $\frac{\alpha}{\alpha}$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4}$$

$$\frac{\alpha}{\alpha} \cdot \frac{1}{\alpha + 1} \cdot \frac{\alpha}{\alpha + 2} \cdot \frac{\alpha}{\alpha + 3} \cdot \frac{1}{\alpha + 4} \cdot \frac{2}{\alpha + 5}$$

α	1	α	α	1	2	2
$\frac{-}{\alpha}$.	$\overline{\alpha+1}$	$\alpha+2$	$\alpha+3$	$\overline{\alpha+4}$	$\overline{\alpha+5}$	$\alpha + 6$

α	1	α	α	1	2	2	3
$\frac{-}{\alpha}$.	$\overline{\alpha+1}$	$\overline{\alpha+2}$	$\alpha + 3$	$\overline{\alpha+4}$	$\frac{1}{\alpha+5}$	$\alpha + 6$	$\overline{\alpha+7}$

Exercises

- If I run the Chinese restaurant process (CRP) for N customers, what is the probability of the customers sitting at K_N tables where the kth table to form has n_k ($n_k > 0$) people at it?
- What is the expected number of clusters generated by a $CRP(\alpha)$ after N data points?
- What is the distribution of the number of clusters under a CRP(α) after N data points? (consider simulations and/or theory)

References (Part II), Page 1

DJ Aldous. Exchangeability and related topics. Springer, 1983.

CE Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. *The Annals of Statistics*, 1974.

D Blackwell and JB MacQueen. Ferguson distributions via Pólya urn schemes. *The Annals of Statistics*, 1973.

S Engen. A note on the geometric series as a species frequency model. *Biometrika*, 1975.

MD Escobar and M West. Bayesian density estimation and inference using mixtures. *Journal of the American Statistical Association*, 1995.

W Ewens. Population genetics theory -- the past and the future. *Mathematical and Statistical Developments of Evolutionary Theory*, 1987.

TS Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1973.

TS Ferguson. Bayesian density estimation by mixtures of normal distributions. Recent Advances in Statistics, 1983.

FM Hoppe. Pólya-like urns and the Ewens' sampling formula. Journal of Mathematical Biology, 1984.

H Ishwaran and LF James. Gibbs sampling methods for stick-breaking priors. *Journal of the American Statistical Association*, 2001.

SN MacEachern and P Müller. Estimating mixtures of Dirichlet process models. *Journal of Computational and Graphical Statistics*, 1998.

JW McCloskey. A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State University, 1965.

References (Part II), Page 2

GP Patil and C Taillie. Diversity as a concept and its implications for random communities. *Bulletin of the International Statistical Institute*, 1977.

J Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1994.

M West, P Müller, and MD Escobar. Hierarchical Priors and Mixture Models, With Application in Regression and Density Estimation. Aspects of Uncertainty, 1994.