Ejercicio 21. Calcula la tabla de sumar y de multiplicar de cada uno de los anillos $\mathbb{Z}/5Z$ y $\mathbb{Z}/6Z$.

Determina, mirando las tablas, cuáles son los elementos invertibles y cuáles los divisores de cero de cada uno de los dos anillos.

Solución 21.

Para $\mathbb{Z}/5Z$ tenemos:

+	$[0]_5$	$[1]_5$	$[2]_5$	$[3]_5$	$[4]_5$
$[0]_5$	$[0]_5$	$[1]_{5}$	$[2]_5$	$[3]_5$	$[4]_5$
$[1]_{5}$	$[1]_{5}$	$[2]_{5}$	$[3]_5$	$[4]_{5}$	$[0]_5$
$[2]_5$	$[2]_{5}$	$[3]_5$	$[4]_{5}$	$[0]_5$	$[1]_{5}$
$[3]_5$	$[3]_5$	$[4]_{5}$	$[0]_5$	$[1]_{5}$	$[2]_{5}$
$[4]_5$	$[4]_{5}$	$[0]_5$	$[1]_{5}$	$[2]_5$	$[3]_5$

•	$[0]_5$	$[1]_{5}$	$[2]_{5}$	$[3]_5$	$[4]_{5}$
$[0]_{5}$	$[0]_5$	$[0]_5$	$[0]_5$	$[0]_5$	$[0]_5$
$[1]_{5}$	$[0]_5$	$[1]_{5}$	$[2]_{5}$	$[3]_5$	$[4]_5$
$[2]_5$	$[0]_5$	$[2]_{5}$	$[4]_{5}$	$[1]_{5}$	$[3]_5$
$[3]_5$	$[0]_5$	$[3]_5$	$[1]_{5}$	$[4]_{5}$	$[2]_5$
$[4]_5$	$[0]_5$	$[4]_5$	$[3]_5$	$[2]_{5}$	$[1]_5$

y para $\mathbb{Z}/6Z$ tenemos:

+	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[0]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[1]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$
$[2]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$
$[3]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$
$[4]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$
$[5]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$

•	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$
$[1]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[2]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$
$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$
$[4]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$
$[5]_{6}$	$[0]_{6}$	$[5]_{6}$	$[4]_{6}$	$[3]_{6}$	$[2]_{6}$	$[1]_{6}$

Observando las respectivas tablas, vemos que en $\mathbb{Z}/5Z$, los elementos 1, 2, 3, 4 son invertibles, esto es, para cada uno de ellos existe otro elemento $a \in \mathbb{Z}/5Z$ tal que el producto de ambos da el elemento unidad de $\mathbb{Z}/5Z$, que es 1. Así, 1*1=1, 2*3=1, 3*2=1, 4*4=1.

En cuanto a los divisores de cero, tenemos que en $\mathbb{Z}/5Z$ no hay ninguno, pues la única posibilidad de que el producto de dos elementos a, b \in 1, 2, 3, 4 dé al elemento neutro 0, es que uno de los dos sea cero.

En $\mathbb{Z}/6Z$, observamos que no todos los elementos diferentes de cero son invertibles. De hecho, son solo invertibles el 1 y el 5 (1*1 = 1, 5*5 = 25 que es 1 en $\mathbb{Z}/6Z$).

No obstante, en $\mathbb{Z}/6Z$ sí que existen divisores de cero, esto es, para $a \in \mathbb{Z}/6Z \setminus \{0\}$, decimos que a es divisor de cero si existe $b \in \mathbb{Z}/6Z \setminus \{0\}$ tal que ab = 0.

Así, son divisores de cero el 2, 3 y 4. Concretamente, $2*3 = 0 \mod 6$ y 4*3 = 0.