Theoretische Informatik

Julian Schubert

28. Juni 2021

Inhaltsverzeichnis

1	Wichtige Vermutungen	2
2	Elementare Begriffe 2.1 Komplexitätsklassen 2.2 Funktionen 2.3 Binärdarstellung 2.4 Listencodierung	3 3 3 4
3	While-Programme 3.1 Berechnende Funktion bestimmen	4 4
4	Ram-Programme	5
5	Alphabete und Wörter	5
6	Turing-Maschinen	6
7	Laufzeit von Algorithmen	7
8	Entscheidbarkeit und Aufzählbarkeit	7
9	Endliche Automaten	9
10	Nichtdeterministische endliche Automaten	10
11	Reguläre Ausdrücke	11
12	Pumping-Lemma	12
13	Formale Sprachen	14
14	Kellerautomaten	17

1 Wichtige Vermutungen

Definition 1: Goldbachsche Vermutung

Jede natürliche gerade Zahl größer 2 ist Summe zweier Primzahlen

Definition 2: Collaz-Problem (3n +1)-Vermutung

- Beginne mit irgendeiner natürlichen Zahl n > 0
- Ist n gerade, so nimm als nächstes n//2 (abrundende Division)
- \bullet ist n ungerade, so nimm als nächstes 3n+1
- Wiederhole das Vorgehen mit der erhaltenen Zahl

Vermutung: Jede so konstruierte Zahlenfolge mündet in den Zyklus 4, 2, 1, egal mit welcher natürlichen zahl n > 0 beginnt

Definition 3: Ackermann-Funktion

Frage: Gilt LOOP = $\{f \in WHILE \mid f \text{ ist total}\}$?

Die folgende Funktion (auch **Ackermann-Funktion** genannt) $a: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ ist total und While-berechenbar, aber nicht Loop-berechenbar:

$$a(n,m) = \begin{cases} m+1 & \text{falls } n=0\\ a(n-1,1) & \text{falls } n>0 \text{ und } m=0\\ a(n-1,a(n,m-1)) & \text{falls } n>0 \text{ und } m>0 \end{cases}$$

 \Rightarrow Die Ackermann-Funktion ist eine totale Funktion in WHILE-LOOP

Definition 4: Hauptsatz der Algorithmentheorie

RAM = WHILE = MINIWHILE = TM

Definition 5: Curch-Turing These

Auch: These von Church:

Turing-Berechenbarkeit erfasst den intitiven Begriff der Berechenbarkeit.

2 Elementare Begriffe

2.1 Komplexitätsklassen

$$ALL \subset P \subset NP$$

- ALL: Alle Probleme
- NP: Probleme, deren Lösungen schnell übrprüft weden können (effizient überprüfbare Probleme)
- P: Probleme, die isch in polynomieller Zeit lösen lassen (effizient lösbare Probleme)

2.2 Funktionen

Definition 6: Funktionen

Seien $f: A \to B$ und $g: B \to C$ Funktionen

• **Definitionsbereich** von f:

 $D_f = \{a \in A | \text{ es existiert ein } b \in B \text{ mit } f(a) = b\}$ \Rightarrow Alles was etwas im Wertebereich trifft

• Wertebereich von f:

 $D_f = \{a \in A | \text{ es existiert ein } a \in A \text{ mit } f(a) = b\}$ \Rightarrow alles was von etwas im Definitionsbereich getroffen wird

• Total: $D_f = A$

• Surjektiv: $W_f = B$

• Injektiv: aus $a_1, a_2 \in D$ und $a_1 \neq a_2$ folgt $f(a_1) \neq f(a_2)$

 \bullet **Bijektiv:** f ist total, surjektiv und injektiv

• ist f injektiv, so existiert die **Umkehrfunktion** $f^{-1}: B \to A$ mit $f^{-1}(b) =$ dasjenige $a \in A$ mit f(a) = b

2.3 Binärdarstellung

Definition 7

Jede natürliche Zahl $n \ge 1$ ist in genau einer Weise darstellbar als

$$n = \sum_{i=0}^{m} a_i \cdot 2^i$$

mit
$$m \in \mathbb{N}$$
, $a_m = 1$ und $a_0, \dots, a_{m-1} \in \{0, 1\}$.

Eigenschaft 1: Binärdarstellung

$$bin(2n+a) = bin(n)a$$
 für $n \ge 1$ und $a \in \{0,1\}$

2.4 Listencodierung

Liste von Binärzahlen: $\langle x_1, \ldots, x_n \rangle$

Anwendung: Bits verdoppeln, 10 alss Anfangs-, Trenn- und Enmarkierung **Beispiele:**

$$\langle \rangle = bin^{-1}(10) = 2$$

 $\langle 2 \rangle = bin^{-1}(10110010) = 178$
 $\langle 5, 3, 2 \rangle = bin^{-1}(10110011101111110110010) = 2944946$

3 While-Programme

Definition 8: While-Berechenbarkeit

Eine Funktion ist dann **While-Berechenbar**, falls es ein While-Programm gibt, sodass der Definitionsbereich von beiden identisch ist und der Wert für alle Eingaben übereinstimmt.

Definition 9: Loop-Programm

ein ${\bf Loop\text{-}Programm}$ ist ein While-Programm mit folgenden Eigenschaften:

- Das Programm enthält keine While-Schleifen
- Aus einer Funktion können nur weiter oben deklarierte Funktionen aufgerufen werden. Insbesondere sind keine Selbstaufrufe erlaubt
- Das Programm enhält nur Funktionsdeklarationen mit Initialiserung
- Das Programm ist für alle Eingaben definiert
- \Rightarrow Alle Loop-berechenbaren Funktionen sind total.

3.1 Berechnende Funktion bestimmen

- 1. Schauen für welche Eingabe(n) die Schleife(n) wie oft ausgeführt werden
- 2. Schauen was sich mit jedem Schleifendurchlauf verändert

4 Ram-Programme

Definition 10: modifizierte Differenz

$$x - y = md(x, y)$$

$$\begin{cases} x - y & \text{falls } x > y \\ 0 & \text{sonst} \end{cases}$$

5 Alphabete und Wörter

Definition 11: Alphabete und Wörter

- Ein Alphabet ist eine endliche, nichtleere Menge
- Die Elemente eines Alphabets werden **Buchstaben** oder **Symbole** genannt
- Ein Wort über einem Alphabet Σ ist eine endliche Folge von 0 oder mehr Elementen aus Σ
- das leere Wort (d.h. das Wort, das aus 0 Buchstaben) besteht bezeichnen wir mit ε

Definition 12: Mengen von Wörtern

Sei Σ ein Alphabet, $n \ge 0$ und $a_1, a_2, \dots a_n \in \Sigma$

- Die Länge eines Wortes w $a_1 a_2 \dots a_n$ ist |w| = n
- Menge aller Wörter mit Länge n: $\Sigma^n = \{w|w \text{ ist ein Wort "über } \Sigma \text{ mit } |w| = n\}$ Es gilt $\Sigma^0 = \{\varepsilon\}$
- Menge aller Wörter: $\Sigma^* = \{w|w \text{ ist ein Wort "über } \Sigma\} = \bigcup_{u\geqslant 0} \Sigma^n \text{ und } \Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$
- eine formale Sprache über Σ ist eine Teilmenge von Σ^*
- Das Entscheidungsproblem einer formalen Sprache $L \subseteq \Sigma^*$ ist folgende Aufagbe:

Eingabe: $w \in \Sigma^*$

Ausgabe:

1, falls $w \in L$

0, falls $w \notin L$

Definition 13: Dyadische dartstellung

dya: $\mathbb{N} \to \{1, 2\}^*$ ist definiert durch

- $dya(0) = \varepsilon$
- day(n) = $a_m \dots a_0$ falls $n \ge 1, n = \sum_{i=0}^m a_i \cdot 2^i$ und $a_0, \dots, a_m \in \{1, 2\}$

Eigenschaft 2: k-adische Darstellung

Sei $k \ge 2$

- 1. $ad_k(kn + a) = ad_k(n)a$ für $n \ge 0$ und $a \in \{1, ..., k\}$
- 2. $\operatorname{ad}_k^{-1}(\operatorname{xa}) = \operatorname{k} \cdot \operatorname{ad}_k^{-1}(\operatorname{x}) + \operatorname{a} \operatorname{für} x \in \{1, \dots, k\}^*, a \in \{1, \dots, k\}$

6 Turing-Maschinen

Definition 14: Turing Maschiene

Sei $k \geqslant 1$. Eine **k-Band-Turing-Maschine** ist ein Quintupel (Σ, Z, f, z_0, z_1) mit

- Σ ist eine endliche Menge (Alphabet)
- Z ist eine endliche Menge (Zustandsmenge)
- $f(Z\setminus\{z_1\}) \times \Sigma^k \to Z \times \Sigma^k \times \{L, O, R\}^k$ ist eine totale Funktion (Überführungsfunktion)
- $z_0 \in Z$ (Startzustand)
- $z_1 \in Z$ (Stoppzustand)

 $M(z, a_1 \dots a_m)$: Wort das auf Band 1 steht, alle anderen Bänder leer, und $a \in \Sigma \setminus \{\text{Leersymbol}\}$

Definition 15: Palindrom

Ein wort $a_1 \dots a_n$ heißt symmetrisch oder auch **Palindrom**, falls $a_1 \dots a_n = a_n \dots a_1$

7 Laufzeit von Algorithmen

Definition 16: Länge einer Zahl

$$|x| = |dya(abs(x))|$$

8 Entscheidbarkeit und Aufzählbarkeit

Definition 17: Entscheidungsalgorithmus

Entscheidungsalgorithmus für eine Menge A:

Eingabe
$$x \Rightarrow Ausgabe \begin{cases} 1 \text{ (ja)}, & \text{falls } x \in A \\ 0 \text{ (nein)}, & \text{falls } x \notin A \end{cases}$$

Dies ist die berechnung der charakteristischen Funktion von A $(c_A(x))$.

Semicharakteristische Funktion:

Wie characteristische Funktion, nur n.d. falls $x \notin A$ $(\chi_A(x))$

Definition 18: Entscheidbarkeit

Seien $n \ge 0$ und $t : \mathbb{N} \to \mathbb{N}$ eine totale Funktion:

- $A \subseteq \mathbb{N}^n$ heißt **entscheidbar** $\Leftrightarrow c_A$ ist berechenbar
- $A \subseteq \mathbb{N}^n$ heißt semientscheidbar $\Leftrightarrow \chi_A(x)$ ist berechenbar
- REC = $\{A | \exists n \ge 0 \text{ mit } A \subseteq \mathbb{N}^n \text{ und A ist entscheidbar} \}$ (recursive languages), also alle berechenbaren Mengen
- Ein Algorithmus M entscheidet $A \subseteq \mathbb{N}^n$ in der Zeit t (bzw. O(t)) \Leftrightarrow M berechnet c_A in der Zeit t (bzw. O(t))

Eigenschaft 3

Fär $A \subseteq \mathbb{N}^n$ gilt:

A entscheidbar
$$\Leftrightarrow$$
 A und \bar{A} semientscheidbar A entscheidbar \Leftrightarrow A und \bar{A} aufzählbar A aufzählbar \Leftrightarrow $B \subseteq \mathbb{N}^n \times \mathbb{N}$ mit $A = Pr(B)$

Definition 19: Aufzählbarkeit

 $A\subseteq\mathbb{N}^n$ mit $n\geqslant 0$ heißt **rekursiv aufzählbar** (kurz: aufzählbar) $\Leftrightarrow A=\varnothing$ oder es gibt ein berechenbares, totales $f:\mathbb{N}\to\mathbb{N}^n$ mit $W_f=A$ **RE** Alle Mengen die Aufzählbar sind

Eigenschaft 4

Für $m, n \ge 0$ gilt:

 $f:\mathbb{N}^m\to\mathbb{N}^n$ berechenbar, total $\Rightarrow W_F$ ist aufzählbar

Eigenschaft 5

Für $A \subseteq \mathbb{N}^n$ sind folgende Aussagen äquivalent

- 1. A ist aufzählbar
- 2. A ist semientscheidbar
- 3. A ist Definitionsbereich einer berechenbaren Funktion $f:\mathbb{N}^n\to\mathbb{N}^m$ mit $m\geqslant 0$
- 4. A ist Wertebereich einer berechenbaren Funktion $g:\mathbb{N}^m \to \mathbb{N}^n$ mit m>0

Definition 20: Projektion

Die **Projektion** einer Menge

 $B \subseteq \mathbb{N}^n \times \mathbb{N}$ ist definiert als $Pr(B) = \{x \in \mathbb{N}^n | \exists y \in \mathbb{N}[(x, y) \in B]\}$

Definition 21: Reduzierbarkeit

Seien $A \subseteq \mathbb{N}^n$ und $B \subseteq \mathbb{N}^n$.

A ist reduzierbar auf B \Leftrightarrow es gibt ein totales, berechenbares $f: \mathbb{N}^m \to \mathbb{N}^n$ sodass für alle $x \in \mathbb{N}^m$ gilt:

$$x \in A \Leftrightarrow f(x) \in B$$

Die Äquivalenz ist gleichbedeutend mit den Aussagen $c_A=c_b\circ f$ und $\chi_A=\chi_B\circ f$

Eigenschaft 6

Seien $A \subseteq \mathbb{N}^m$ und $B \subseteq \mathbb{N}^n$. Falls A reduzierbar auf B ist, so gelten folgende Implikationen:

 $B \in REC \Rightarrow B \in REC$

 $B \in RE \Rightarrow A \in RE$

Definition 22: Gödelisierung

Skritp ab Seite 172, Rams werden als Liste codiert.

Definition 23: Halteproblem

 $K_0 = \{x|M_x \text{ hält bei Eingabe x}\}$ spezielles Halteproblem $K = \{(x,y)|M_x \text{ hält bei Eingabe y}\}$ allgemeines Halteproblem \Rightarrow wir geben der Maschiene ihren eigenen Quellcode als Eingabe K_0 ist aufzählbar, aber nicht entscheidbar

Definition 24: Satz von Rice

Die Frage, ob die von einem gegebenen Quelltext berechnete Funktion eine Eigenschaft S hat, lässt sich nicht Algorithmisch lösen

Definition 25

Seien \mathbb{G} eine Grundmenge, $A \subseteq \mathbb{G}$ und $t : \mathbb{N} \to \mathbb{N}$ eine totale Funktion

- A heißt entscheidbar $\Leftrightarrow c_A : \mathbb{G} \to \{0,1\}$ ist berechenbar
- A heißt semientscheidbar $\Leftrightarrow \chi_A : \mathbb{G} \to \{0,1\}$ ist berechenbar
- A heißt rekursiv aufzählbar (kurz: aufzählbar) $\Leftrightarrow A = \emptyset$ oder es gibt ein berechenbares, totales $f : \mathbb{N} \to \mathbb{G}$ mit $W_f = A$

9 Endliche Automaten

Definition 26: Deterministischer endlicher Automat

Ein deterministischer endlicher Automat (DEA) ist ein Quintupel

 $(\Sigma, Z, \delta, z_0, F)$ mit folgenden Eigenschaften:

- Σ ist eine endliche, nichtleere Menge (Eingabealphabet)
- Z ist eine endliche Menge (Zustandsmenge)
- δ ist eine totale Funktion $Z \times \Sigma \to Z$ (Überführungsfunktion)
- $z_0 \in Z$ (Startzustand)
- $F \subseteq Z$ (Menge der akzeptierenden Zustände)

Definition 27: Erweiterte Überführungsfunktion

Die erweiterte Überführungsfunktion eines DEA A = $(\Sigma, Z, \delta, z_0, F)$ ist die wie folg definierte Abbildung $\bar{\delta}: Z \times \Sigma^* \to Z$.

(IA)
$$\bar{\delta}(z, \epsilon) = z$$
 für alle $z \in Z$

(IS)
$$\bar{\delta} = \delta(\bar{\delta}(z, w), a)$$
 für alle $z \in Z, w \in \Sigma^*, a \in \Sigma$

Damit gilt: $\bar{\delta}(z, w) = \text{Zustand}$, den der DEA erreicht wenn er in z startet und das Wort w einliest.

Definition 28: Akzeptierung von Sprachen durch DEAs

- Ein wort $w \in \Sigma^*$ heißt von A akzeptiert $\Leftrightarrow \bar{\delta}(z_0, w) \in F$
- Die von A akzeptierte Sprache ist

$$\mathbf{L}(\mathbf{A}) = \{ w \in \Sigma^* | \text{ w wird von A akzeptiert} \}$$

• Die Menge der von DEAs akzeptierten Sprachen ist

$$\mathbf{EA} = \{L(A) | \text{ A ist ein DEA} \}$$

 \Rightarrow eine $L \in EA$ sind **entscheidbar**

10 Nichtdeterministische endliche Automaten

Unterschied DEA:

 δ ist eine totale Funktion $Z\times \varSigma\to P(Z),$ also eine Abbildung auf die Potenzmenge.

Kann in mehreren Zuständen gleichzeitig sein.

Erweiterte Überführungsfunktion: $\bar{\delta}(z,w) = \text{Menge der Zustände, die der NEA}$

gleichzeitig erreicht, wenn er in z startet und das Wort w einliest.

Die von NEAS akzeptierte Sprache heißt L(A)

Definition 29: Potenzmengenkonstruktion

Aus DEA einen NEA machen

Definition 30: Konkatenation von Sprachen

Seien L, L'
$$\subseteq \Sigma^*$$

$$L \cdot L' = \{uv | u \in L \text{ und } v \in L'\}$$

$$L^0 = \{\epsilon\}$$

$$L^{k+1} = L \cdot L^k \text{ für } k \geqslant 0$$

$$L^* = \bigcup_{k \geqslant 0} L^k = \{u_1 u_2 \dots u_m | m \geqslant 0 \text{ und } u_1, \dots u_m \in L\}$$

Definition 31: Abschlusseigenschaften von EA

$$L, L' \in EA \Rightarrow \bar{L}, L \cup L', L \cap L', L \cdot L', L^* \in EA$$

11 Reguläre Ausdrücke

Definition 32: Syntax und Semantik regulärer Ausdrücke

Sei Σ ein Alphabet. Wir definieren **reguläre Ausdrücke** γ und die durch sie beschriebenen Sprachen $L(\gamma)$.

- (IA) \emptyset , ϵ und **a** sind reguläre Ausdrücke (wobei $a \in \Sigma$). Semantik: $L(\emptyset) = \emptyset$, $L(\epsilon) = \{\epsilon\}$, $L(a) = \{a\}$
- (IS) sind α, β reguläre ausdrücke, so auch $(\alpha + \beta), (\alpha \cdot \beta), \alpha^*$ Semantik:

$$L(\alpha + \beta) = L(\alpha) \cup L(\beta)$$

$$L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta)$$

$$L(\alpha^*) = L(\alpha)^*$$

1. Unnötige Klammern un \cdot können weggelassen werden

- 2. Bindungsreihensfolge: * -> · -> + 0 + 01* steht also für $(0 + (0 \cdot (1^*)))$
- 3. Bezeichnung reg. Ausdrücke durch griechische Kleinbuchstaben

Definition 33: Reguläre Sprachen

- Eine Sprache L heißt **regulär** \Leftrightarrow es existiert ein regulärer Ausdruck α mit $L = L(\alpha)$
- $\mathbf{REG} = \{L|L \text{ ist regulär}\}$

Eigenschaft 7

Seien $L, A, B \subseteq \Sigma^*$ mit $\epsilon \notin A$. Falls $L = A \cdot L \cup B$, so gilt $L = A^*B$

12 Pumping-Lemma

Eigenschaft 8

Für jede reguläre Sprache L existiert ein $n \in \mathbb{N}^+$ mit folgender Eigenschaft: Jedes Wort $w \in L$ mit $|w| \geqslant n$ lässt sich zerlegen in w = xyz, sodass $y \neq \epsilon, |xy| \leqslant n$ und $\forall_{i \geqslant 0} xy^iz \in L$

Definition 34: Äquivalenz von Zuständen

Sei $A = (\Sigma, Z, \delta, z_0, F)$ ein DEA. Zwei Zustände $z_1, z_2 \in Z$ heißen **äquivalent**, falls für alle $w \in \Sigma^*$ gilt:

$$\bar{\delta}(z_1, w) \in F \Leftrightarrow \bar{\delta}(z_2, w) \in F$$

Definition 35: unterscheidbare Zustandspaare

Sei $A = (\Sigma, Z, \delta, z_0, F)$ ein DEA.

- (IA) falls $z_1 \in F \Leftrightarrow z_2 \in F$ so sind z_1 und z_2 unterscheidbar

scheidbare Zustände, so sind z_1 und z_2 unterscheidbar

Eigenschaft 9

Sei $A=(\Sigma,Z,\delta,z_0,F)$ ein DEA. Sind zwei Zustände $z_1,z_2\in Z$ nicht unterscheidbar \Leftrightarrow so sind sie äquivalent

Definition 36: Äquivalente DEA

EquivalentDEA = $\{(A_1, A_2)|A_1, A_2 \text{ sind DEAS mit gleichem Eingabeal-phabet und } L(A_1) = L(A_2)\}$

- 1. Wir fassen A_1 und A_2 als einen DEA auf, indem wir beide Automaten nebeneinander zeichen und als Startzustand den von A_1 wählen
- 2. Bestimme die unterscheidbaren Zustände mit Hilfe des Algorithmus auf seite $234\,$
- 3. A_1 und A_2 sind genau dann äquivalent, wenn die beiden Start- zustände nicht unterscheidbar sind

Eigenschaft 10

Sei $A = (\Sigma, Z, \delta, z_0, F)$ ein DEA. Die Äquivalenz von Zuständen ist eine Äquivalenzrelation auf Z, d.h. es gilt:

- 1. Jeder Zustand ist sich selbst äquivalent (Reflexivität)
- 2. Ist p äquivalent zu q so auf q zu p (Symmetrie)
- 3. Ist p
 äquivalent zu q und q äquivalent zu r, so auf p zu r (Transitivität)

Definition 37

Es ist entscheidbar, ob ein DEA die leere Sprache bzw. eine endliche Sprache akzeptiert.

EmptyDEA = $\{A|A \text{ ist ein DEA mit } L(A) = \emptyset\}$

FiniteDEA = $\{A|A \text{ ist ein DEA mit und } L(A) \text{ ist endlich}\}$

EmptyDEA und FiniteDEA sind entscheidbar.

13 Formale Sprachen

Definition 38: generative Grammatik

Eine generative Grammatik ist ein Quadrupel $G=(\Sigma,N,S,R)$ mit folgenden Eigenschaften

- Σ ist eine enldiche, nichtleere Menge (Terminalsymbole)
- N ist eine endliche, nichtleere Menge mit $\Sigma \cap N = \emptyset$ (Nichtterminalsymbole)
- $S \in N$ (Startsymbol)
- $R \subseteq (\Sigma \cup N)^+ \times (\Sigma \cup N)^*$ ist eine endliche Menge (Menge der Erzeugungsregeln) Für $(v,w) \in R$ schreiben wir auch $v \to w$

Konvention:

- Terminale = Kleinbuchstaben
- Nichtterminale = Großbuchstaben

Definition 39: Erzeugung von Sprachen durch generative Grammatik

Seien $G = (\Sigma, N, S, R)$ eine Grammatik, $v, w \in (\Sigma \cup N)^*$ und $t \ge 0$

- $v \Rightarrow w \Leftrightarrow \text{ es existieren } u_1, u_2, x, y \text{ mit } (x, y) \in R, v = u_1 x u_2 \text{ und } w \stackrel{G}{=} u_1 y u_2$ (G erzeugt w aus v in einem Schritt)
- $v \stackrel{t}{\Rightarrow} w \Leftrightarrow \text{es existieren } w_0, \dots, w_t \in (\Sigma \cup N)^* \text{ mit } v \stackrel{G}{=} w_0 \underset{G}{\Rightarrow} w_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} w_t = w$ (G erzeugt w aus v in t Schritten)
- $v \underset{G}{\overset{*}{\Rightarrow}} w \Leftrightarrow \text{es existiert } t' \geqslant 0 \text{ mit } v \underset{G}{\overset{*}{\Rightarrow}} w$ (G erzeugt w aus v)
- $L(G) = \{z \in \Sigma^* | S \stackrel{*}{\underset{G}{\Rightarrow}} z\}$ (Die von G erzeugte Sprache)

Beachte:

- $w \stackrel{*}{\underset{G}{\Rightarrow}} w$ gilt für alle $w \in (\Sigma \cup N)^*$
- L(G) besteht nur aus Terminalsymbolwörtern
- Nichtterminalsymbole sind Hilfszeiczhen, die für die Erzeugung eines $v \in \Sigma^*$ benötigt werden. Bis zum Ende der Erzeugung von v müssen alle Nichtterminalsymbole eliminiert sein

Definition 40: Äquivalenz von Grammatiken

Zei Grammatiken G und G' heißen äquivalent $\Leftrightarrow L(G) = L(G')$

Definition 41: Typen von Grammatik

Sei $G = (\Sigma, N, S, R)$ eine Grammatik

- G heißt Grammatik vom Typ 0
- G heißt Grammatik vom Typ 1 oder kontextsensitive Grammatik \Leftrightarrow jede Regel hat die Form $u_1Au_2 \to u_1wu_2$ mit $A \in N, u_1, u_2, w \in (\Sigma \cup N)^*$ und $w \neq \epsilon$
- G heißt Grammatik vom Typ 2 oder kontextfreie Grammatik \Leftrightarrow jede Regel hat die Form $A \to w$ mit $A \in N, w \in (\Sigma \cup N)^*$ und $w \neq \epsilon$ (Ersetzung von A durch w ohne Beachtung des Kontextes)

Nimmt man das ϵ hinzu führt das nicht aus der Klasse hinaus, ist formal dann jedoch keine kontextfreie sprache mehr.

• G heißt Grammatik vom Typ 3 oder rechtslineare Grammatik \Leftrightarrow jede Regel hat die Form $A \to aB$ oder $A \to a$ mit $A, B \in N$ und $a \in \Sigma$

Definition 42

Seien $L \subset \Sigma^*$ und $i \in \{0, 1, 2, 3\}$

- L heißt **Sprache vom Typ i** \Leftrightarrow es existiert eine Grammatik G vom Typ i mit L = L(G) oder $L = L(G) \cup \{\epsilon\}$
- L heißt kontextsensitiv \Leftrightarrow L ist vom Typ 1
- L heißt kontextfrei \Leftrightarrow L ist vom Typ 2

- $L_i = \{L | L \text{ ist vom Typ i} \}$
- Die Chomsky-Hiererachie besteht aus L_0, L_1, L_2, L_3

Es gilt:

$$L_3 \subsetneq L_2 \subsetneq L_1 \subsetneq L_0$$

Eigenschaft 11

Für $L \subseteq \Sigma^*$ sind folgende Aussagen äquivalent:

- 1. L ist Regulär
- 2. L ist vom Typ 3

Definition 43: Chomsky-Normalform

Eine Grammatik $G = (\Sigma, N, S, R)$ ist in **Comsky-Normalform** \Leftrightarrow G hat nur Regelnd der Form $A \to BC$ oder $A \to a$ mit $A, B, C \in N$ und $a \in \Sigma$ Jede kontextfreie Grammatik besitzt eine äquivalente Grammatik in Chomsky-Normalform.

Umwandlen einer kontextfreien Grammatik in Chomsky-Normalform

- 1. G_1 entsteht aus G wie folgt
 - wähle neues Nichtterminal D_a für jedes $a \in \Sigma$
 - ersetze in allen Regeln a durch D_a
 - füge neue Regel $D_a \to a$ hinzu
- 2. G_2 entsteht aus G_1 wie folgt
 - wenn $A_1 \underset{G}{\Rightarrow} A_2 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} A_k \underset{G}{\Rightarrow} a$ mit $k \geqslant 2$, so füge $A_1 \to a$ hinzu
 - wenn $A_1 \underset{G}{\Rightarrow} A_2 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} B_1 \dots B_m$ mit $m,k \geq 2$ so füge $A_1 \to B_1 \dots B_m$ hinzu
 - entferne alle Regeln der Form $A \to B$
- 3. G_3 entsteht aus G_2 wie folgt
 - ersetze $A \to B_1 \dots B_m$ mit $m \ge 3$ durch $A \to B_1 E_2, E_2 \to B_2 E_3, \dots, E_{m-1} \to B_{m-1} B_m$ (wobei E_i neue Nichtterminale sind)

Definition 44: Pumping-Lemma für kontextfreie Sprachen

Für jede kontextfreie Sprache L
 existiert ein $n \in \mathbb{N}^+$ mit folgender Eigenschaft:

Jedes Wort $z\in L$ mit $|z|\geqslant n$ lässt sich zerlegen in z=uvwxy, sodass $vx\neq \epsilon, |vwx|\leqslant n$ und $\forall_{i\geqslant 0}uv^iwx^iy\in L$

Eigenschaft 12

Im Gegensatz zu L_3 ist L_2 nicht mehr unter Durchschnitt und Komplenent abgeschlossen.

- 1. L_2 ist abgeschlossen unter $\cup, \cdot, *$
- 2. L_2 ist nicht abgeschlossen unter \cap bzw Komplement

Eigenschaft 13

Jede kontextfreie Sprache kann durch ein Python-Programm in der Zeit $O(n^3)$ entschieden werden

Definition 45: Akzeptierung Nichtdeterministischer Algorithmus

Sei M ein Nichtdeterministischer Algorithmus

- M akzeptiert x ⇔ es gibt einen Rechenweg von M bei eingabe x, der den Wert 1 berechnet
- Die von M akzeptierte Menge ist

 $\mathbf{L}(\mathbf{M}) = \{x | M \text{ akzeptiert } x\}$

14 Kellerautomaten

Definition 46: nichtdeterministischer Kellerautomat

Ein nichtdeterministischer Kellerautomat ist ein Quintupel $M=(\Sigma,\Delta,Z,f,z_0)$ mit folgenden Eigenschaften

• Σ ist endliche, nichtleere Menge mit $\neg \notin \Sigma$ (Eingabealphabet)

- Δ ist endliche, nichtleere Menge mit $\square \notin \Delta$ (Kelleralphabet)
- \bullet Z ist eine enliche Menge (Zustandsmenge)
- f ist eine totale Funktion $Z \times (\Sigma \cup \{\epsilon\}) \times \Delta \to P_{fin}(Z \times \Delta^*)$ (Überführungsfunktion)
 - $P_{fin}(A) = \{B \subseteq A | B \text{ ist endlich }\} = Menge der endlichen Teilmengen von A$
- $z_0 \in Z$ (Startzustand)

Schreibweise: statt $(z', u) \in f(z, a, A)$ schreiben wir auch $zaA \rightarrow z'u$ Akzeptierung von Wörtern:

Ein Kellerautomat akzeptiert ein Wort falls am Ende eines Rechenweges der Keller leer ist (und das gesamte Eingabewort gelesen wurde) $\mathbf{L}(\mathbf{M}) = \{w \in \Sigma^* | \mathbf{M} \text{ akzeptiert w} \}$

Möglichkeiten für Nichtakzeptierung

- Keller leer bevor Eingabeende erreicht (Stopp)
- kein Befehl für aktzellen Zustand / Eingabesymbol / Topsymbol vorhanden (Stopp)
- Einabeende nicht erreicht und nor folgen von ϵ -Befehelen möglich, d.h. keine Möglichkeit das nächste Zeichen zu lesen (Endlosschleife)
- Eingabeende zwar erreicht, aber keine Möglichkeit den Keller zu leeren (Stopp oder Endlosschleife)

Eigenschaft 14

Für $L \subseteq \Sigma^*$ sind folgende Aussagen äquivalent:

- 1. L ist kontextfrei
- 2. L wird von einem Nichtdeterministischen Kellerautomaten akzeptiert.