Demo determinismo de configuración instantánea en autómatas determinísticos finitos

Miguel Angel De Lillo

Septiembre 2024

Demo determinismo

Quiero ver que para todo autómata finito determinístico su relación de transiición \vdash cumple: $Determinismo: ((q, \alpha) \vdash^* (r, \lambda) \land (q, \lambda) \vdash^* (s, \lambda)) \Longrightarrow r = s$ Voy a hacer inducción sobre n en \vdash^n

Caso base

El caso base es con n = 1. Quiero ver que $((q,\alpha) \vdash (q_1,\alpha) \land (q,\alpha) \vdash (q'_1,\alpha)) \Longrightarrow q_1 = q'_1$ Por ser un autómata finito determinístico, $\delta: Q \ge Q$ función, $\delta(q,\alpha) = (q',\alpha') \Longrightarrow q' = q_1 = q'_1$ Queda probado el caso base.

Paso inductivo

Hipótesis inductiva:
$$(q, \alpha) \vdash^n (q_n, \alpha_n) \land (q, \alpha) \vdash^n (q'_n, \alpha_n) \Longrightarrow q_n = q'_n$$

Quiero ver que: $(q, \alpha) \vdash^{n+1} (q_{n+1}, \alpha_{n+1}) \land (q, \alpha) \vdash^{n+1} (q'_{n+1}, \alpha_{n+1}) \Longrightarrow q_{n+1} = q'_{n+1}$

Puedo reescribir esas expresiones como

$$(q,\alpha) \vdash^{n} (q_{n},\alpha_{n})$$

$$(q,\alpha_{n}) \vdash^{n+1} (q_{n+1},\alpha_{n+1})$$

$$y$$

$$(q,\alpha) \vdash^{n} (q'_{n},\alpha_{n})$$

$$(q',\alpha_{n}) \vdash^{n+1} (q'_{n+1},\alpha_{n+1})$$

Por hipótesis inductiva, $q_n = q'_n$, luego

$$(q_n,\alpha_n) \vdash^{n+1} (q_{n+1},\alpha_{n+1}) \land (q_n,\alpha_n) \vdash^{n+1} (q'_{n+1},\alpha_{n+1})$$

Como el autómata es determinístico, eso solo vale sii $q_{n+1} = q_{n+1}$ '. Queda probado el determinismo para \vdash^* .