第三章 时序电路的分析与设计学习要求:

- 3.1 时序逻辑电路
 - > 熟悉时序电路的一般形式、分类和描述方法
 - 》 掌握时序电路双稳态元件的内部结构、逻辑符号、 次态真值表和次态方程
- 3.2 熟练掌握同步时序逻辑电路的分析和设计方法
- 3.3 掌握脉冲异步时序逻辑电路的分析和设计方法*
- 3.4 熟练掌握常用时序中规模集成电路MSI和555定时 电路的应用

3.2 同步时序电路的分析与设计

- 1. 同步时序电路的分析
- > 同步时序电路分析的一般步骤
- > 同步时序电路分析举例
- 2. 同步时序电路的设计
- > 同步时序电路设计步骤
- > 建立原始状态图和原始状态表——构图法
- 状态化简:完全给定与不完全给定同步时序电路 状态表的化简
- > 状态分配: 相邻状态分配法
- > 激励函数和输出函数的确定
- > 电路分析与说明、设计举例

2) 不完全给定同步时序电路状态表的化简

(1) 不完全给定Incompletely Specified States的概念如图所示,次态或输出中包含有无关项(d)。

之所以会出现不确定的次态或输出,是因为电路在正常工作时,一些次态或输出实际上不会出现,因而把它们看成是无关项。

在原始状态表中的无关项,可以任意给予指定,可使状态

表被化得更简,但使状态表的化简过程变得复杂。

由于无关项的存在,已不能采用完全给定时序电路中的等效概念,而是采用广义的等效——相容的概念进行状态表化简。

y	0	1
A	A/0	D/d
В	A/0	D /0
C	A/0	D /1
D	A/0	C/1

- (2) 相容的概念
- ① 状态相容 State Compatibility

设: S_1 和 S_2 是 不完全给定 时序电路 M_1 和 M_2 ((M_1 和 M_2 可以是同一个电路)的两个状态,作为初态同时加入预定的允许输入序列(加入该序列后,

电路除最后一个次态外, 其他次态都

是确定的),所产生的输出序列一致 (认为确定的输出与对应的不确定输出 与对应的不确定输出相同),则状态 S_1 和 S_2 是相容的,称 S_1 和 S_2 是相容对。记为: (S_1, S_2) 。

yX	0	1
A	A/0	D/d
В	A/0	D /0
C	A/0	D /1
D	A/0	C/1

对现态B来说,0010是预定的允许输入序列,0100是不允许的。

$$\mathbf{B} \xrightarrow{0/1} \mathbf{C} \xrightarrow{0/0} \mathbf{D} \xrightarrow{1/d} \mathbf{B} \xrightarrow{0/1} \mathbf{C}$$

$$\mathbf{B} \xrightarrow{0/1} \mathbf{C} \xrightarrow{1/1} \mathbf{?} \xrightarrow{0} \mathbf{?}^{0}$$

在不完全给定状态表中,两状态相容只对允许的输入序列有效,而不 是对任意的输入序列有效:

ΓA _	$0/d \rightarrow A$	$\frac{0/d}{} \to A \frac{1/d}{}$	— → d
		$D/0 \rightarrow D 1/d$	

$$\begin{cases}
A \xrightarrow{0/d} & A \xrightarrow{1/d} & d \\
C \xrightarrow{0/0} & D \xrightarrow{1/d} & B
\end{cases}$$

	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A/0	C/1

状态相容反映在状态表上: 两个状态的(次态或输出)的确定部分相同,两个状态(的次态或输出)中的无关项按确定的次部分取同一值,则这两个状态就变为等效状态。因此相容状态有可能变为等效,从而导致合并。

	0	1
A	A/d	d/d
В	C/1 B/0	
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A/0	C/1
(Λ, \mathbf{D})	(ΛC)	(\mathbf{A}, \mathbf{P})

(A,D), (A,C), (A,B), (A,E), (B,D), (C,D), (C,E)均相容

	0	1
A	A/0	D/d
В	A/0	D /0
C	A/0	D /1
D	A/0	C/1

(A,B), (A,C), (A,D), (C,D) 均相容 状态相容也可以理解为经 过对两个状态的不确定输 出或不确定的下一状态能 当赋值后,这两个状态能 够满足等价(等效)条件。 即状态相容是一种条件等 价(等效)关系。 2 状态相容无传递性如左图中, (A, B)、(A, C)相容, 但(B,C)不相容

y	0	1
A	A/0	D/d
B	A/0	D /0
C	A/0	D /1
D	A/0	C/1

③ 相容类

两两相容的状态的集合称为相容类。

④ 最大相容类

不能被其他相容类所包含的相容类。

(3)相容对的判别标准:如果两个状态对一位可能的输入都满足下列两个条件,则这两个状态相容。

条件一:它们的输出相同;

条件二:它们的次态必须满足下列情况之一:

- 1、次态相同
- 2、次态交错
- 3、次态维持
- 4、后继状态相容
- 5、次态循环

注意:一方给定,一方不给定的次态(输出)均当作相同。

例化简不完全给定状态表。

右表中的相容对为:

(A,B), (A,C), (A,D), (C,D)

y	0	1	
A	A/0 D/d		
B	A/0	D /0	
C	A/0 D/1		
D	A/0 C/1		
$\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$			

状态合并图Merger Diagrams

将所有相容对填入合并图,

可以得到两个最大相容类为:

(A,B), (A,C,D)

最大等效类和最大相容类存在如下差别:

- ①最大等效类之间没有包含相同的状态。 同一个状态有可能出现在若干个不同的最大相容类中。
- ②最大等效类数目就等于最简状态表中的状态数,必须全部使用。 最大相容类的数目往往多于最简状态表中的状态数目,所以最 大相容类存在取舍问题。
- ③取舍的原则:

从最大相容类中选取一组相容类,每个代表一个状态; 所选相容类集应包含原始状态表中所有的状态及可能的输入 条件下的次态;

要求其数目最少(即最小化状态(表))。

(4) 最小化状态表

- · 覆盖性 Coverd: 能包含全部的原始状态。
- · 闭合性 Closure: 任一个相容类的次态应属于也仅仅属于该集内的一个相容类。
- 最小化:选择满足"覆盖"和"闭合"的相容类且数目最少。
 - 入不完全给定状态表的化简过程
 - 利用隐含表寻找相容对
 - 用合并图确定最大相容类
 - 采用覆盖闭合表进行相容类集的选择,建立最小化状态表

y	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	<mark>d</mark> /1
D	d/d	B/d
E	A/0	C/1

	A	В	C	D
E				
D				
C				
В				

 y^{n+1}/z

例1 化简如图所示的原始状态表。

yX	0	1	B	AC			
A	A/d	d/d	C				
B	C /1	B /0					
C	D /0	d/1	D				
D	d/d	B/d	\mathbf{E}				
E	A/0	C/1			D		D
		y^{n+1}/z		A	В	C	D

例1 化简如图所示的原始状态表。

y	0	1	В	AC			
A	A/d	d/d		* A D			
В	C/1	B/0		AD			
C	D /0	d/1	D				
D	<mark>d</mark> /d	B/d	\mathbf{E}				
E	A/0	C/1					
		y^{n+1}/z		A	В	C	D

例1 化简如图所示的原始状态表。

yX	0	1	В	AC			
A	A/d	d/d	C	A D			
В	C /1	B /0		AD			
C	D /0	d/1	D	→ √			
D	d/d	B/d	E				
E	A/0	C/1			.		
		y^{n+1}/z		A	В	C	D

例1 化简如图所示的原始状态表。

y	0	1	В	AC			
A	A/d	d/d		A D			
В	C/1	B/0	C	AD			
C	D /0	d/1	D	$\sqrt{}$			
D	d/d	B/d	E	* 1			
E	A/0	C/1					
		y^{n+1}/z		A	В	C	D

例1 化简如图所示的原始状态表。

yX	0	1	В	AC			
A	A/d	d/d	C	A D	×		
В	C/1	B /0		AD			
C	D /0	d/1	D	$\sqrt{}$			
D	d/d	B/d	E				
E	A/0	C/1			TO TO		
		y^{n+1}/z		A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d		A D	×		
В	C /1	B /0	C	AD	^		
C	D /0	d/1	D	1	⇒ √		
D	d/d	B/d	E				
E	A/0	C/1			D		D
		y^{n+1}/z		A	В	C	D

yX	0	1	В	AC			
A	A/d	<mark>d</mark> /d	C	A D	×		
В	C /1	B /0		AD			
C	D /0	d/1	Ð	$\sqrt{}$			
D	d/d	B/d	E	1	×		
E	A/0	C /1		_			
		y^{n+1}/z		A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d	C	A D	×		
В	C /1	B /0		AD	^		
C	D /0	d/1	D	√	→	⇒ √	
D	d/d	B/d	E		×		
E	A/0	C/1					
		y^{n+1}/z		A	В	C	D

yX	0	1	В	AC			
A	A/d	<mark>d</mark> /d	C	AD	×		
B	C /1	B /0		AD			
C	D /0	d/1	D	$\sqrt{}$		$\sqrt{}$	
D	d/d	B/d	E		X	≵AD	
E	A/0	C/1			D		
		$v^{n+1/2}$		A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d	C	AD	×		
B	C/1	B /0		AD			
C	D /0	<mark>d</mark> /1	D	$\sqrt{}$	$\sqrt{}$		
D	d/d	B/d	E		X	AD	BC
E	A/0	C/1					
		v^{n+1}/z		A	B	C	D

yX	0	1	
A	A/d	d/d	
В	C/1	B /0	
C	D /0	d /1	
D	d/d	B/d	
E	A/0	C/1	y

 y^{n+1}/z

	A	В	C	D
E	V	×	AD	BX
D	√	√	√	
C	AD	X		
В	AC			

① 利用隐含表寻找相容对:

(A,B),(A,C),(A,D),(A,E),(B,D),(C,D),(C,E)

② 用合并图确定最大相容类: (A,B,D),(A,C,D),(A,C,E)

③ 作出最小化状态表:

y	0	1
A	A/d	d/d
B	C /1	B /0
C	D /0	d/1
D	d/d	B/d
E	A/0	C/1

相容		覆盖				闭合		
类	A	В	C	D	E	X = 0	X = 1	
ABD	A	В		D		AC	В	
ACD	A		C	D		AD	В	
ACE	A		C		E	AD	C	

 y^{n+1}/z

覆盖闭合表

选择最小化:

③ 作出最小化状态表:

y	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d/1
D	d/d	B/d
E	A/0	C/1
	y ⁿ⁺¹	/ Z

相容		À	覆盖		闭合		
类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	C

覆盖闭合表

最小化状态表

y	0	1
A'	B'/1	A'/0
B '		

 $\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$

选择最小化:

③ 作出最小化状态表:

y	0	1			
A	A/d	d/d			
B	C /1	B /0			
C	D /0	d/1			
D	d/d	B/d			
E	A/0	C/1			
$\mathbf{y}^{\mathbf{n}+1}/\mathbf{z}$					

相容		À	覆盖		闭合		
类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	C

覆盖闭合表

最小化状态表

y	0	1
A'	B'/1	A'/0
B '	A'/0	B'/1

 $\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$

选择最小化:

> 能否具有最小化状态表:

yX	0	1				
A	A/d	d/d				
В	C/1	B/0				
C	D /0	<mark>d</mark> /1				
D	d/d	B/d				
E	A/0	C/1				
y^{n+1}/z						

相容类		į	覆盖		闭合		
类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	d

y	0	1
A'	B'/1	A'/0
B'	A'/0	B'/1

最小化状态表

覆盖闭合表

yX	0	1
A	A / <u>0</u>	<u>d/1</u>
В	<u>B</u> /1	B /0
C	D /0	d /1
D	d/d	B/d
E	A/ <u>1</u>	<u>D</u> / <u>0</u>

	相容类		į	覆盖		闭合		
	类	A	В	C	D	E	X = 0	X = 1
	<u>BD</u>		В		D		<u>E</u>	В
	ACD	A		C	D		<u>BD</u>	В
	<u>CE</u>		В			E	<u>AD</u>	С

相容类BE不满足 闭合性。

覆盖闭合表

y	0	1	В	DE			
A	D/d	A/d					
В	E/0	A/d					
C	D /0	B/1	D				
D	C/d	C/d	E				
E	C/1	B/d		<u> </u>	В	C	D
	$\mathbf{y}^{\mathbf{n}+}$	$^{1}/_{\mathbf{Z}}$		A	D		D

y	0	1	В	DE			
A	D/d	A/d		A D			
В	E/0	A/d	C	AB			
C	D /0	B/1	D				
D	C/d	C/d	E				
E	C/1	B/d		<u> </u>	В	C	D
	$\mathbf{y}^{\mathbf{n}+}$		A	_ D			

yX	0	1	В	DE			
A	D/d	A/d		A D			
В	E/0	A/d	C	AB			
C	D /0	B/1	D	AC CD			
D	C/d	C/d	E				
E	C /1	B/d			D		
$\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$				A	B	C	D

yX	0	1	В	DE			
A	D/d	A/d		A D			
В	E/0	A/d	\setminus C	AB			
C	D /0	B/1	D	AC CD			
D	C/d	C/d		AB			
E	C/1	B/d	E	CD			
	$\mathbf{v}^{\mathbf{n}+}$		A	В	C	D	

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	<u>C</u>	AB	DE		
C	D /0	B/1	D	AC			
D	C/d	C/d		CD AB			
E	C/1	B/d	E	CD			
$\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$				A	B	C	D

y	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC		
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	E	CD			
y^{n+1}/z				A	B	C	D

yX	0	1	В	DE			
A	D/d	A/d			AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC		
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	<u> </u>	CD	×		
$\mathbf{v}^{\mathbf{n+1/z}}$				A	B	C	D

yX	0	1	В	DE			
A	D/d	A/d	C	4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	E	CD	×		
$\mathbf{y}^{\mathbf{n+1}/\mathbf{z}}$				A	B	C	D

y	0	1	В	DE			
A	D/d	A/d			AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	<u> </u>	CD	_X	×X	
$\mathbf{y}^{\mathbf{n+1/Z}}$			A	B	C	D	

yX	0	1	В	DE			
A	\mathbf{D}/\mathbf{d}	A/d	~	4 T	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	E	CD	X	X	BC
$\mathbf{v}^{\mathbf{n+1/z}}$				A	B	C	D

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	BC
	A	B	C	D

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	ВС
	A	B	C	D

E	AB CD	X	×	BC
D	AC CD	AC CE	BC	
C	AB	AB DE		
B	DE			

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	BC
	A	B	C	D

	A	R		D
E	AB CD	X	X	BC
D	CD	CE	BC	
D	AC	AC	D.C.	
	AD	DE		
C	AB	AB		
B	DE			

yX	0	1			
		_	В	D	
A	D/d	A/d			
В	E/0	A/d	C	\mathbf{A}	
C	D /0	B/1	6	A	
D	C/d	C/d	D	A (C)	
E	C/1	B/d	E	A C	
$\mathbf{v}^{\mathbf{n}+1}/\mathbf{z}$					

В	DE			
C	AB	AB DE		
D	AC CD	AC CE	BC	
E	AB CD	×	×	BC
	A	B	C	D

练习

① 利用隐含表找出相容对:

(A,B),(A,C),(A,D),(A,E),(B,C),(C,D),(D,E)

② 用合并图确定最大相容类: (A,B,C),(A,C,D),(A,D,E)

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

练

相		À	覆盖		闭合		
容类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
ADE	•A			D	E	CD	ABC

 y^{n+1}/z

覆盖闭合表一

$$(ABC) \quad (ACD) \quad (ADE)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A' \qquad B' \qquad C'$$

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d

练

 y^{n+1}/z

最小化状态表

y	0	1	
A'	C'/0	A'/1	
B'			
C'			y^{n+1}/z

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d

练

 y^{n+1}/z

最小化状态表

y	0	1	
A'	C'/0	A'/1	
B'	B'/0	A'/1	
C'			y^{n+1}/z

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C/1	B/d

练

 y^{n+1}/z

最小化状态表

y	0	1	
A'	C'/0	A'/1	
B'	B'/0	A'/1	
C'	B'/1	A'/d	y^{n+1}

$$\begin{array}{cccc} (ABC) & (ACD) & (ADE) \\ \downarrow & \downarrow & \downarrow \\ A' & B' & C' \end{array}$$

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d

练之

 y^{n+1}/z

最小化状态表

y	0	1
A'	C'/0	A'/1
B '	B'/0	A'/1
C'	B'/1	A'/d

 $\mathbf{y}^{\mathbf{n}+1}/\mathbf{z}$

④ 作出最小化状态表二

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C /1	B/d

练

选择最小化:

相容	覆盖			闭	合		
女	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

覆盖闭合表二

最小化状态表

y	0	1
A'	B'/0	A'/1
B '		

 $\mathbf{y}^{\mathbf{n+1}/\mathbf{Z}}$

④ 作出最小化状态表二

ух	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C/1	B/d

练

TO 1	1 /
$\mathbf{v}^{\mathbf{n}}$	-1/7
J	

选择最小化:

相容类	•	覆盖				闭合	
类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

覆盖闭合表二

最小化状态表

y	0	1
A'	B'/0	A'/1
B '	A'/1	A'/d

 y^{n+1}/z

④ 作出最小化状态表二

y	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B/1
D	C/d	C/d
E	C/1	B/d

练

₹7n-	+1		
y	-	7	Z

选择最小化:

相	覆盖				闭合		
容类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

覆盖闭合表二

最小化状态表

y	0	1
A'	B'/0	A'/1
B '	A'/1	A'/d

 y^{n+1}/z

3. 状态分配

状态分配就是给最小化状态表中的每个字母状态指定一个二进制代码来表示,又称为状态编码。

状态分配将影响到所设计的同步时序电路的复杂 程度和使用器件的多少。

1) 选择状态分配方案

①状态个数和触发器个数的关系

设状态个数为n, 触发器个数为K, 则n、K之间应满足下列关系

 $2^{K} \ge n > 2^{K-1}$ 或 $K = \log_2 n$

式中: $\log_2 n$ 为不小于 $\log_2 n$ 的最小整数。

例 某时序电路的状态表

$S X_1 X_2$	00	01	11	10
A	A	В	D	C
В	C	D	В	A
C	В	A	C	D
D	D	C	A	В

状态表

两种状态分配方案的比较:

y_1	0	1
0	A	C
1	В	D

y_1	0	1
0	A	В
1	D	C

方案1

方案2

方案1的二进制状态表

y ₁ y ₂	X ₁ X ₂	00	01	11	10
A	00	00	01	11	10
В	01	10	11	01	00
D	11	11	10	00	01
C	10	01	00	10	11
V ₁ n+1 V ₂ n+1					

方案2的二进制状态表

y_1y_2	X_1X_2	00	01	11	10
A	00	00	10	01	11
D	01	01	11	00	10
C	11	10	00	11	01
В	10	11	01	10	00
			4		

 $y_1^{n+1}y_2^{n+1}$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$D_1(y_1^{n+1})$$

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	0 1	1 1	1 0
B 01	1 0	1 1	0 1	00
D 11	1 1	1 0	00	0 1
C 10	01	00	1 0	1 1

 $y_1^{n+1}y_2^{n+1}$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

 $y_1^{n+1}y_2^{n+1}$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

y_1y_2 x_1x_2

0	0	1	1
1	1	0	0
1	1	0	0
0	0	1	1

0	1	1	0
0	1	1	0
1	0	0	1
1	0	0	1

$$D_1(y_1^{n+1})$$

$$D_2(y_2^{n+1})$$

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	10
B 01	10	11	01	00
D 11	11	1 0	00	01
C 10	01	00	10	11

 $y_1^{n+1}y_2^{n+1}$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

$$y_1^{n+1}y_2^{n+1}$$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

方案2的激励函数表达式

$$\mathbf{D}_1 = \mathbf{x}_1 \mathbf{x}_2 \mathbf{y}_1 + \mathbf{x}_1 \mathbf{x}_2 \mathbf{y}_1 + \mathbf{x}_1 \mathbf{x}_2 \mathbf{y}_1 + \mathbf{x}_1 \mathbf{x}_2 \mathbf{y}_1$$
$$= \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \mathbf{y}_1$$

$$D_1(y_1^{n+1})$$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	1 0	0 1	1 1
D 01	0 1	1 1	00	1 0
C 11	10	00	1 1	01
B 10	1 1	01	10	00

$$y_1^{n+1}y_2^{n+1}$$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_2 \mathbf{y}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

方案2的激励函数表达式

$$\mathbf{D}_{1} = \overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{2} \mathbf{y}_{1} + \overline{\mathbf{x}}_{1} \mathbf{x}_{2} \overline{\mathbf{y}}_{1} + \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{y}_{1} + \mathbf{x}_{1} \overline{\mathbf{x}}_{2} \overline{\mathbf{y}}_{1}$$

$$= \mathbf{x}_{1} \oplus \mathbf{x}_{2} \oplus \mathbf{y}_{1}$$

$$\mathbf{D}_2 = \overline{\mathbf{x}}_1 \overline{\mathbf{y}}_1 \mathbf{y}_2 + \overline{\mathbf{x}}_1 \mathbf{y}_1 \overline{\mathbf{y}}_2 + \mathbf{x}_1 \mathbf{y}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_1 \overline{\mathbf{y}}_2$$
$$= \mathbf{x}_1 \oplus \mathbf{y}_1 \oplus \mathbf{y}_2$$

	X ₁ X ₂
y_1y_2	1 2

0	1	0	1	0	0	1	1
0	1	0	1	1	1	0	0
1	0	1	0	0	0	1	1
1	0	1	0	1	1	0	0

$$D_1 (y_1^{n+1}) D_2 (y_2^{n+1})$$

方案2的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

$$y_1^{n+1}y_2^{n+1}$$

若选择D触发器:

方案1的激励函数表达式

$$\mathbf{D}_1 = \overline{\mathbf{x}}_1 \mathbf{y}_2 + \mathbf{x}_1 \overline{\mathbf{y}}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2$$

$$\mathbf{D}_2 = \mathbf{x}_2 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_1 = \mathbf{x}_2 \oplus \mathbf{y}_1$$

方案2的激励函数表达式

$$\mathbf{D}_1 = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \mathbf{y}_1$$
$$\mathbf{D}_2 = \mathbf{x}_1 \oplus \mathbf{y}_2 \oplus \mathbf{y}_1$$

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	10
B 01	10	11	01	00
D 11	11	10	00	01
C 10	01	00	10	11

 $y_1^{n+1}y_2^{n+1}$

方案2的二进制状态表

y_1y_2 x_1x_2	00	00 01		10
A 00	00	10	01	11
D 01	01	11	00	10
C 11	10	00	11	01
B 10	11	01	10	00

 $y_1^{n+1}y_2^{n+1}$

状态分配方案总数

如果触发器个数为 K,则每一状态的二进制码的位数即为K, K个变量有 2^K 种组合,用 2^K 种组合来对 n个状态进行分配时就有 N_{Δ} 种分配方案:

$$N_A = \frac{2^K!}{(2^K - n)!}$$

在上式中, 当 K = 3, n = 5, 则 $N_A = 3720$ (方案)

又如上例中,K=2,n=4, $N_A=24$ (方案) 具体如下页所示。

n=4,K=2全部状态分配方案

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
_	В	01	11	00	10	10	11	00	01
组	С	11	01	10	00	11	10	01	00
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
=	В	11	01	10	00	11	10	01	00
组	C	01	11	00	10	10	11	00	01
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
=	В	10	00	11	01	01	00	11	10
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1 \overline{y_0}$	$\overline{y}_1\overline{y}_0$	y_0y_1	$y_0 \overline{y_1}$	$\overline{y_0}y_1$	$\overline{y_0}\overline{y_1}$

n=4,K=2全部状态分配方案

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
—	В	01	11	00	1 1-1 1-	- 从一本	1 al - ¥	00	01
组	C	11	01	10			1对应着	01	00
	D	10	00	11	农中牙	三组的	<i>力 杂 5</i>	11	10
	方案	1	2	3	$\mathbf{y_1}$	y ₀ 0	1	7	8
第	A	00	10	01		A	\mathbf{C}	10	11
二	В	11	01	10		В	D	01	00
组	C	01	11	00			D	00	01
	D	10	00	11		方案1		11	10
	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
三	В	10	00	11	01	01	00	11	10
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1 \overline{y_0}$	$\overline{y}_1\overline{y}_0$	$y_0 y_1$	$y_0 \overline{y_1}$	$\overline{y_0}y_1$	$\overline{y_0}\overline{y_1}$

n=4,K=2全部状态分配方案

	方案	1	2	3	4	5	6	7	8
第	A	00	10	01	11	00	01	10	11
_	В	01	11	00	10	10	11	00	01
组	C	11	01	10	00	11	10	01	00
	D	10	00	11	01	01	00	11	10
	方案	1	2	3	上例中	的方案	7	8	
第	A	00	10	01	表中第	一组的	方案5	10	11
_	В	11	01	10		y ₀ 0	1	01	00
组	C	01	11	00	$\mathbf{y_1}$		1	00	01
	D	10	00	11	0	A	В	11	10
	方案	1	2	3	1	D	C	7	8
第	A	00	10	01		方案2		10	11
=	В	10	00	11	万 米 2		11	10	
组	C	01	11	00	10	10	11	00	01
	D	11	01	10	00	11	10	01	00
状 态	变量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1 \overline{y_0}$	$\overline{y_1}\overline{y_0}$	$y_0 y_1$	$y_0 \overline{y_1}$	$\overline{y_0}y_1$	$\overline{y_0}\overline{y_1}$

n=4,K=2全部状态分配方案

			,						
	方案	1	2	3	1	5	6	7	Q
第	A	00		命に	L	1 £h -	华与士	= 0 £h	λ
_	В	01						了3种	
组	С	11	配	方案是	完全狐	虫立的	,即表	是中的.	三
	D	10	个:	大组,	每大约	且对应	着一个	电路	设
	方案	1		。它们					
第	A	00					بالرماح		
=	В	11		A		A		A	
组	С	01	/						
	D	10	В	D	C	j) B		C
	方案	1				$\setminus_{\mathbf{R}}$		\backslash _D /	
第	A	00				Ъ		D	
=	В	10	第	一组	É	第二组		第三组	
组	С	01							
	D	11	01	10	00	11	10	V1	UU
状 态	变量	$y_1 y_0$	$\overline{y}_1 y_0$	$y_1 \overline{y_0}$	$\overline{y}_1\overline{y}_0$	$y_0 y_1$	$y_0 \overline{y_1}$	$\overline{y_0}$ y_1	$\overline{y_0}\overline{y_1}$

真正独立的状态分配方案总数 Unique State Assibnment

如果触发器个数为K,有 2^K 种二进制组合,用来对n个状态进行分配时就有N种独立的分配方

案:

$$N = \frac{(2^{K} - 1)!}{(2^{K} - n)! K!}$$

又如上例中,K=2, n=4, N=3(方案)。 状态分配数 Number of State Assignments

n	K	N_A	N	n	K	N_A	N
2	1	2	1	7	3	40320	840
3	2	24	3	8	3	40320	840
4	2	24	3	9	4	4.15×10^{9}	10810800
5	3	6720	140	10	4	2.91×10^{10}	75675600
6	3	20160	420				

2) 相邻状态分配法 State Assignment Rules

目的: 导找次佳状态分配

(不是最佳状态分配 Optimal State Assigment)

思路: 尽可能使次态和输出函数在卡诺图上"1"单元的分布为相邻,以便形成较大的卡诺圈,从而得到最简的次态和输出函数表达式。

方案1的二进制状态表

y_1y_2 x_1x_2	00	01	11	10
A 00	00	01	11	1 0
B 01	1 0	11	0 1	00
D 11	11	1 0	00	01
C 10	01	00	1 0	11

次态的1 靠拢, 控制 函数的 1 就靠拢

/ 2 >				
	0	0	1	1
	1	1	0	0
	1	1	0	0
	0	0	1	1

0	1	1	0
0	1	1	0
1	0	0	1
1	0	0	1

 $y_1^{n+1}y_2^{n+1}$

 $\mathbf{D_1}$

 D_2

方法: 由如下三个主要规则找出状态之间的相邻关系。

规则 I: 在相同输入条件下,次态相同,现态相邻。

规则 II: 在相邻的输入条件下, 同一现态, 次态相邻。

规则III: 输出完全相同, 现态相邻。

- 相邻编码,是指各二进制编码中只有一位元素不同。
- 通常,次态表达式最简,所得到的激励函数表达式也最简单, 电路结构也必定较简单。
- 要得到更简单的次态及输出函数逻辑表达式,不但要求卡诺图上1单元相邻情况最好,也同样要求0单元的相邻情况最好。

规则I: 在相同输入条件下,次态相同,现态相邻。(列相邻)

采用规则I,可以改善次态函数卡诺图上列向1单元(或0单元)的相邻情况。

在有 K个变量(触发器)的情况下,如果满足规则 I一次,则可保证 K个次态函数卡诺图中各有一对1单元(或 0单元)列向相邻。

若满足 R 次 意味着可保证次 态函数卡诺图上有K×R 对 "1"或 "0"相邻,记为:

改善效果 I = K XR

设有K个状态变量, p 种输入组合, q个输出。

规则II: 在相邻的输入条件下, 同一现态, 次 态相邻。(行相邻)

采用规则 II, 可以改善次态函数卡诺图上行向 1单元(或 0单元)的相邻情况。

在有 K个变量(触发器)的情况下,如果满足规则 II 一次,则可保证 (K-1) 个次态函数卡诺图中各有一对 1 单元(或 0 单元)行向相邻。

若满足m次意味着可保证次态函数卡诺图上有 $(K-1) \times m$ 对"1"或"0"相邻,记为:

改善效果 $II = (K - 1) \times m$

设有K个状态变量, p 种输入组合, q个输出。

规则III: 输出完全相同, 现态相邻。

采用规则 III, 可以改善输出 函数卡诺图上<mark>列向1单元(或 0单元)</mark> 的相邻情况。

在有p个输入组合、q个输出的情况下,如果满足规则 III 一次,则可保证q个输出函数卡诺图中各有p对 1 单元(或 0 单元)列向相邻。

若满足l次意味着可保证输出函数卡诺图上有 $(p \times q) \times l$ 对"1"或"0"相邻,记为:

改善效果 III = $(p \times q) \times l$

设有K个状态变量, p 种输入组合, q个输出。 满足状态 S_1 、 S_2 相邻要求的总改善效果为: (即两个"1"的相邻数与两个"0"的相邻数之和)

 E_{S1S2} = 改善效果 I + 改善效果 II + 改善效果 III = K×R + (K-1) × m + (p×q) × l

给各状态分配二进制编码的步骤如下:

找出状态表中出现最多的次态 S_i^{n+1} 所对应的现态 S_i ,并令 S_i 的二进制编码全为 0。

(应使出现在二进制状态表中的"1"尽可能的少,这样可减少次态方程中最小项的个数并最终有可能减少与项的数目。)

2、按已确定出的状态相邻关系给其它状态分配二进制 编码。

分配原则:优先满足总改善效果大的状态对的相邻要求。

例1 完成如图所示状态表的状态分配。

$$K = 2$$
; $p = 2$; $q = 1$.

总改善效果为:

$$\mathbf{E}_{S1S2} = \mathbf{K} \times R + (\mathbf{K} - 1) \times m + (p \times q) \times l$$
$$= 2R + m + 2l$$

分析状态表, 求得:

①根据规则I:
$$R_{AB} = 1$$
, $R_{AC} = 1$

②根据规则II:
$$m_{CD} = 1$$
, $m_{AC} = 1$

$$m_{\rm BD} = 1$$
, $m_{\rm AB} = 1$

③根据规则III:
$$l_{AB} = 1$$
, $l_{AC} = 1$ $l_{BC} = 1$

y	0	1
A	C/0	D/0
B	C/0	A/0
C	B/0	D/0
D	A/0	B/1
	n.1 177	

$$y^{n+1}/Z$$

$$\mathbf{E}_{AB} = 2R_{AB} + m_{AB} + 2l_{AB}$$

= 5
 $\mathbf{E}_{AC} = 2R_{AC} + m_{AC} + 2l_{AC}$
= 5
 $\mathbf{E}_{CD} = m_{CD} = 1$
 $\mathbf{E}_{BD} = m_{BD} = 1$
 $\mathbf{E}_{BC} = 2l_{BC} = 2$

例1 完成如图所示状态表的状态分配。

y_0	0	1		
0	A	C		
1	В	D		
状态分配				

y_1y_0 x	0	1	
A 00	10/0	11/0	
B 01	10/0	00/0	
D 11	00/0	01/1	
C 10	01/0	11/0	$y_1^{n+1} y_0^{n+1} / Z$

二进制状态表

y	0	1
A	C/0	D/0
В	C/0	A/0
C	B/0	D/0
D	A/0	B/1
	y^{n+1}/Z	

$$\mathbf{E}_{AB} = 2R_{AB} + m_{AB} + 2l_{AB}$$

= 5
 $\mathbf{E}_{AC} = 2\mathbf{R}_{AC} + m_{AC} + 2l_{AC}$
= 5
 $\mathbf{E}_{CD} = m_{CD} = 1$
 $\mathbf{E}_{BD} = m_{BD} = 1$
 $\mathbf{E}_{BC} = 2l_{BC} = 2$

例2 完成如图所示状态表的状态分配。

y X ₂ X ₁	00	01	11	10
A	C/0	C/0	A/0	A/0
В	B /1	C/0	A/0	D /1
C	C/0	B/0	A/0	A/0
D	B/1	A/0	A/0	D /1
E	E/0	E/0	A/0	A/0

K=3, p=4, q=1 当x₂x₁=11时, 次态均 为A, 输出均为0, 则对规 则I而言, 可以不参加讨论。

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
 $l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

例2 完成如图所示状态表的状态分配。 $E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB} = 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0 = 7$ $E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC} = 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1 = 18$ $E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD} = 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0 = 4$ $E_{AE} = 11, \ E_{BC} = 4,$

 $\mathbf{E_{BD}} = 14$, $\mathbf{E_{CE}} = 7$.

总改善效果为:
$$E_{S1S2} = 3 \times R + (3-1) \times m + (4 \times 1) \times l$$

 $= 3R + 2m + 4l$
则: $R_{AB} = 1$, $R_{AC} = 2$, $R_{AE} = 1$, $R_{BD} = 2$, $R_{CE} = 1$;
A: $m_{AC} = 2$; B: $m_{BC} = 1$, $m_{AC} = 1$, $m_{AD} = 1$, $m_{BD} = 1$;
C: $m_{CB} = 1$, $m_{AB} = 1$, $m_{AC} = 1$; D: $m_{AB} = 1$, $m_{AD} = 1$, $m_{BD} = 1$; E: $m_{AE} = 2$;
 $l_{AC} = 1$, $l_{AE} = 1$, $l_{CE} = 1$, $l_{BD} = 1$;

例2 完成如图所示状态表的状态分配。

$\mathbf{y}^{\mathbf{X_2X_1}}$	00	01	11	10
A	C /0	C /0	A/0	A/0
В	B /1	C/0	A/0	D /1
C	C/0	B /0	A/0	A/0
D	B/1	A/0	A/0	D /1
E	E/0	E/0	A/0	A/0

B	D
A	E
\mathbf{C}	

y_1	0	1
00	A	C
01	В	
11	D	
10	E	

$$E_{AB} = 3R_{AB} + 2m_{AB} + 4l_{AB}$$

$$= 3 \cdot 1 + 2 \cdot 2 + 4 \cdot 0$$

$$= 7$$

$$E_{AC} = 3R_{AC} + 2m_{AC} + 4l_{AC}$$

$$= 3 \cdot 2 + 2 \cdot 4 + 4 \cdot 1$$

$$= 18$$

$$E_{AD} = 3R_{AD} + 2m_{AD} + 4l_{AD}$$

$$= 3 \cdot 0 + 2 \cdot 2 + 4 \cdot 0$$

$$= 4$$

$$E_{AE} = 11, \quad E_{BC} = 4,$$

$$E_{BD} = 14, \quad E_{CE} = 7.$$

例2 完成如图所示状态表的状态分配。

$\mathbf{y}^{\mathbf{X}_{2}\mathbf{X}_{1}}$	00	01	11	10
A	C /0	C/0	A/0	A/0
В	B /1	C /0	A/0	D /1
C	C/0	B /0	A/0	A/0
D	B/1	A/0	A/0	D /1
E	E/0	E/0	A/0	A/0

B	D
A	E
C	

y_1y_0	0	1
00	A	C
01	В	
11	D	
10	E	

y x_2x_1	00	01	11	10
A 000	100/0	100/0	000/0	000/0
B 001	001/1	100/0	000/0	011/1
D 011	001/1	000/0	000/0	011/1
E 010	010/0	010/0	000/0	000/0
C 100	100/0	001/0	000/0	000/0

4. 激励函数和输出函数的确定

原始状态图、状态表 状态化简 最简状态表 状态分配 二进制状态表 选触发器类型 (选触发器激励表) 激励函数表达式 输出函数表达式

4. 激励函数和输出函数的确定

(1) 触发器类型的选择

触发器类型的不同将决定电路中激励函数的繁简。因此, 选择触发器类型的重要条件就是能使函数最简。

在大多数情况下,最常选用的是D触发器,其次是选用JK触发器和T触发器。

在非计数型的时序电路中,有时可选用 SR触发器。在PLD器件中只包含D触发器。

(2) 激励函数和输出函数的确定

例 分别用 D触发器、JK触发器和 T触发器确定如图 所示二进制状态表所要求的激励函数和输出函数。

y_1y_0 X	0	1
	4 0/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

二进制状态表y₁ⁿ⁺¹ y₀ⁿ⁺¹/z

Q	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1
141	EL ±	

激励表

① 用D触发器

$$\mathbf{D}_1 = \overline{\mathbf{x}} \bullet \overline{\mathbf{y}}_1 + \mathbf{x} \bullet \overline{\mathbf{y}}_0$$

$$\mathbf{D}_0 = \mathbf{x} \bullet \mathbf{y}_1 + \mathbf{x} \bullet \overline{\mathbf{y}}_0 + \mathbf{y}_1 \bullet \overline{\mathbf{y}}_0$$

$$\mathbf{Z} = \mathbf{x} \bullet \mathbf{y}_1 \bullet \mathbf{y}_0$$

② 用JK触发器

J	K	Q	Q n+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

次态真值表

J K C	Q /Q
d d 0	保持不变
$0 0 \Box$	保持不变
0 1	0 1
1 0	1 0
1 1 √	变反

功能表

J K	Q n+1
0 0	Q
0 1	$egin{array}{c} \mathbf{Q} \\ 0 \end{array}$
1 0	1
1 1	Q

简化的次态真值表

② 用JK触发器

y_1y_0 x	0	1
Ø 0	7 0/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q Q^{n+1}		J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

$$\mathbf{J}_1 = \overline{\mathbf{x}} + \overline{\mathbf{y}}_0 \qquad \mathbf{J}_0 = \mathbf{x} + \mathbf{y}_1$$
$$\mathbf{K}_1 = \overline{\mathbf{x}} + \mathbf{y}_0 \qquad \mathbf{K}_0 = \overline{\mathbf{x}} + \overline{\mathbf{y}}_1$$

二进制状态表 $y_1^{n+1}y_0^{n+1}/z$

激励表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	力	1	00 (d	d	00	0	1	00	d	d
01	1	0	01	d	d	01	d	d	01	1	1
11	d	d	11	1	1	11	d	d	11	1	0
10	d	d	10	1	0	10	1	1	10	d	d
${f J_1}$				K	${f J_0}$			\mathbf{K}_0			

③用T触发器

y_1y_0 x	0	1
00	10/0	11/0
01	10/0	00/0
11	00/0	01/1
10	01/0	11/0

Q	T		
0	0	0	
0	1	1	
1	0	1	
1	1	0	

$$T_{1} = \overline{\mathbf{x} \cdot \mathbf{y}_{1} \cdot \overline{\mathbf{y}}_{0}} + \mathbf{x} \cdot \overline{\mathbf{y}}_{1} \cdot \mathbf{y}_{0}$$

$$T_{0} = \overline{\mathbf{x} \cdot \overline{\mathbf{y}}_{1} \cdot \overline{\mathbf{y}}_{0}} + \mathbf{x} \cdot \mathbf{y}_{1} \cdot \mathbf{y}_{0}$$

$$\mathbf{Z} = \mathbf{x} \cdot \mathbf{y}_{1} \cdot \mathbf{y}_{0}$$

二进制状态表 $y_1^{n+1}y_0^{n+1}/z$

激励表

y_1y_0	0	1	y_1y_0	0	1	y_1y_0	0	1
00	1	1	00	0	1	00	0	0
01	1	0	01	1	1	01	0	0
11	1	1	11	1	0	11	0	1
10	1	0	10	1	1	10	0	0
	7	Γ_{1}		\mathbf{T}_{0}	0	Z		