See the HiHW grading rubric posted on Carmen

Due Date: 9/18/2022

Name: Recitation Instructors	:			
A metal ball $(m = 1.9 \text{ kg})$ hangs by a light string from the ceiling	Representation:	0	1	2
of a wooden crate $(M = 5.2 \text{ kg})$. The crate is then pushed with a		0	1	2
constant horizontal force F along some friction-less ice. This	Initial Equation(s):	0	0.5	1
causes the ball hang inside the crate at an angle of $\theta = 40^{\circ}$ with	Symbolic Answer:	0		1
respect to the vertical. What is the value of F ?(Hint: if the	Units Check:	0	0.5	1
ceiling of the crate is pulling on the ball, then the ball is pulling	Limits Check:	0	0.5	1
back on the ceiling of the crate.) For the limit check, investigate	Neatness:	-2	-1	0
what happens to F as the angle θ drops to zero.	Total:			
·	Correct Answer:	Y	N	

Representation

Physics Concept(s)	(Refer to the list posted on Carmen)	Initial Equations
(1)		

vmbolic Answer:	
mbolic Answer:	
	Limits Check
	Limits Check a) As $\theta \to 0^{\circ}$, what limit does F approach?
	a) As $\theta \to 0^{\circ}$, what limit does F approach?
	a) As $\theta \to 0^{\circ}$, what limit does F approach?
	a) As $\theta \to 0^{\circ}$, what limit does F approach?
vmbolic Answer:	a) As $\theta \to 0^{\circ}$, what limit does F approach?
	a) As $\theta \to 0^{\circ}$, what limit does F approach?