Mid-Term Project

SHILPI & SHUBHANGI

Objective

PREDICTING DELAYS

WHY ???

- Challenging, lot of learning
- Can check accuracy
- Supervised ML Algorithms

Steps

• Data Gathering

Used VS Code editor and SQL

Explored different features & their relationship with different variables

Data Cleaning

Null values replacement, Outliers detection,

Binning, Encoding

feature importance and heatmaps

Approach

RESEARCH

- Research what factors affect flight delay
- Deciding how to sample dataset for modeling

TOOLS & TECHNIQUES

- Jupyter Lab/Notebook
- Google Collab
- Pycaret
- Google Drive/Slack

CODE QUALITY

- Organize Codes
- Add comments & docstring
- Relevant names of variable
- Organized Dataset
- Storey-Telling

Exploratory Data Analysis

TEST HYPOTHESIS FOR NORMAL DISTRIBUTION

- Sampled Dataset Randomly of samle size 150K
- Plotted graph to check distribution
- Shepiro test on sample data < 5000

Monthly distribution of arrival and departure delays

Monthly distribution of reasons of arrival delays

Taxi in and out during the day

Relationship between arrival and departure

Air traffic on the basis of states

States covering 50% air trafic

- California
- Texas
- Florida
- Illinois
- Georgia
- New York
- North Carolina

ML Algorithms

Logistic Regression

Random Forest

XG Boost

Model Evaluation

Random Forest: Accuracy 5%

XG Boost: MSE 33.81, MSE 29

Challenges

- Technical issues
- Sampling dataset
- Many new concepts to learn
- Tools Google Colab, Pycaret
- No definite answer
- Limited Timeline

THANKYOU