Bayesian Inference for Sample Surveys Module 12: Small Area Estimation

Roderick Little and T. Rathunathan

Limitations of design-based approach

- Inference is based on probability sampling, but true probability samples are harder and harder to come by:
 - Noncontact, nonresponse is increasing
 - Face-to-face interviews increasingly expensive
 - Can't do "big data" (e.g. internet, administrative data)
 from the design-based perspective
- Theory is basically asymptotic -- limited tools for small samples, e.g. small area estimation

Design-based methods: live in the land of asymptotia

The current "status quo" -- designmodel compromise

- Design-based for large samples, descriptive statistics
 - But may be *model assisted*, e.g. regression calibration:

$$\hat{T}_{GREG} = \sum_{i=1}^{N} \hat{y}_i + \sum_{i=1}^{N} I_i (y_i - \hat{y}_i) / \pi_i, \hat{y}_i = \text{model prediction}$$

- model estimates adjusted to protect against misspecification, (e.g. Särndal, Swensson and Wretman 1992).
- Can incorporate auxiliary information, but does not borrow strength for small areas
- Model-based for small area estimation, nonresponse, time series,...
- Attempts to capitalize on best features of both paradigms... but ... at the expense of "inferential schizophrenia" (Little 2012)?

Example: when is an area "small"?

Multilevel (hierarchical Bayes) models

A hierarchical Bayes model for small areas

• Fixed-effects models have distinct parameters (means, variances) for small areas, e.g.

$$y_{ai} \mid \mu_a, \sigma_a^2 \sim N(\mu_a, \sigma_a^2)$$
, for unit *i* in area *a*

 Hierarchical Bayes models assign distributions to the parameters for each area, e.g.

$$(y_{ai} \mid \mu_a, \sigma_a^2, \beta, \tau^2) \sim N(\mu_a, \sigma_a^2);$$

$$\Rightarrow (\overline{y}_a \mid \mu_a, \sigma_a^2, \beta, \tau^2) \sim N(\mu_a, \sigma_a^2 / n_a)$$

$$(\mu_a \mid \mu_a, \sigma_a^2, \beta, \tau^2) \sim N(\beta z_a, \tau^2)$$

 z_a is a vector of covariates for area a, including constant term

Hierarchical Bayes Models for small areas

$$(\overline{y}_{a} \mid \mu_{a}) \sim N(\mu_{a}, \sigma_{a}^{2} / n_{a})$$

$$(\mu_{a}) \sim N(\beta z_{a}, \tau^{2})$$

$$p(\overline{y}_{a}, \mu_{a}) \propto \exp(-\frac{1}{2} \left[A(\overline{y}_{a} - \mu_{a})^{2} + B(\mu_{a} - \beta z_{a})^{2} \right]$$

$$\left(A = n_{a} / \sigma_{a}^{2}, B = 1 / \tau^{2} \right)$$

$$p(\overline{y}_{a}, \mu_{a}) \propto \exp(-\frac{1}{2} (A + B) \left[(\mu_{a} - \frac{A\overline{y}_{a} + B\beta z_{a}}{A + B})^{2} \right]$$
Hence $E(\mu_{a} \mid \overline{y}_{a}, \beta) = \frac{A\overline{y}_{a} + B\beta z_{a}}{A + B} = w_{a} \overline{y}_{a} + (1 - w_{a}) \beta z_{a}$
where weight on \overline{y}_{a} is $w_{a} = A / (A + B) = \frac{n_{a} / \sigma_{a}^{2}}{n_{a} / \sigma_{a}^{2} + 1 / \tau^{2}}$

Proper prior $(\tau^2 < \infty)$ on μ_a moves the direct area estimate \overline{y}_a towards the model prediction βz_a ; w_a increases with n_a Integrating over posterior of β replaces β by its posterior mean Small area estimation

Hierarchical Bayes Models for small areas

Treatment of variances σ^2 , τ^2 :

Empirical Bayes: replaces them by estimates $\hat{\sigma}^2$, $\hat{\tau}^2$

(Maximum likelihood, or the simpler method of moments)

Bayes: assigns them dispersed prior distributions and

integrates over their posterior distribution

(note that τ^2 cannot be assigned the Jeffreys' prior $p(\tau^2) \propto 1/\tau^2$)

Bayes approach is better, particularly if $\hat{\tau}^2 = 0$

A Basic Beta/Binomial small area model for binary outcomes

$$n_a = \text{count in area } a$$
 $m_a = \text{count with } y = 1 \text{ in area } a$
 $m_a \mid p_a \sim \text{Bin}(n_a; p_a)$
 $p_a \sim \text{Beta}(\alpha, \beta) \text{ (conjugate prior distribution)}$
Prior mean of p_a : $E(p_a) = \frac{\alpha}{\alpha + \beta}$

A Basic Beta/Binomial small area model for binary outcomes

Posterior distribution of p_a is Beta:

$$(p_a | n_a, m_a) \sim \text{Beta}(\alpha + m_a, \beta + n_a - m_a)$$

Posterior mean of p_a :

$$E(p_a \mid n_a, m_a) = \frac{\alpha + m_a}{\alpha + \beta + n_a} = w_a \frac{m_a}{n_a} + (1 - w_a) \frac{\alpha}{\alpha + \beta}$$

where weight on sample proportion is $w_a = \frac{n_a}{n_a + \alpha + \beta}$

"Prior adds α successes and β failures to data"

Applications

- U.S. Census Bureau SAIPE (Small Area Income and Poverty Estimates) Program
- Voting Rights Act special tabulation
- The American Community Survey (ACS) and the "standard error error"

Example 1: SAIPE project

- Objective: Estimates of poverty for various age groups and median household income for all *states*, *counties*, and *school districts* in the U.S.
- Problem: Direct survey estimates (from Current Population Survey (CPS) or, later, American Community Survey (ACS) are too unreliable for many areas
 - CPS sample small for most states; no sample in $\approx 2/3$ counties
 - ACS (single year) sample small for many counties and most school districts.
- Solution: Use small area model to integrate survey data with data from admin records (IRS, SNAP program) and previous census long form, estimation

Fay-Herriot (1979) Model

(Hierarchical Bayesian Formulation)

$$y_i | \theta_i, v_i \sim N(\theta_i, v_i)$$
$$\theta_i | \beta, \sigma^2 \sim N(x_i' \beta, \sigma^2)$$

- y_i = direct survey estimate of population quantity θ_i for area i
- v_i = sampling variance of y_i (assumed known)
- x_i = vector of regression variables for area i
- β = vector of regression parameters
- σ^2 = variance of small area random effects

Example: State 5-17 poverty rate model

- Direct survey estimates y_i originally from CPS, but since 2005 from ACS
- Regression variables in x_i include a constant term and, for each state
 - Pseudo-poverty rate for children from tax return data
 - Tax "nonfiler rate"
 - SNAP (food stamp) participation rate
 - Previous census estimated state 5-17 poverty rate, or residuals from regressing previous census estimates on other elements of x_i for the census year.
 - Recent work explicitly Bayesian to propagate error in variance components

Posterior Variances from State Model for 2004 CPS 5-17 Poverty Rates

Results for four states

State	n_i	${\cal V}_i$	$Var(Y_i data)$	approx. wt. on y_i in $E(Y_i data)$
CA	5,834	1.1	0.8	.61
NC	1,274	4.6	2.0	.28
IN	904	8.1	2.0	.18
MS	755	12.0	3.9	.13

Example 2: Voting Rights Tabulations

- Section 203 Language Provisions of the Voting Rights Act
- Determines counties and townships required to provide language assistance at the polls
- Determinations are based <u>in part</u> on the following "more than 5%" provision:
 - ... More than 5 percent of voting age citizens of political district are members of a single language minority and are LEP.

Voting Rights Tabulations

- Previously used direct estimates from Long Form Decennial Census Data
- Use ACS 2005-2009 and 2010 Census data to produce a Federal Register Notice by mid-summer 2011
- Direct estimates for some districts are based on small ACS sample and hence have unacceptably high variance
- E.g. let P be proportion of voting age citizens in political district who are members of a single language minority and are LEP
- Suppose ACS was a simple random sample, a direct estimate of P is the sample proportion m/n
 - District A with n=105, m=5, m/n < 0.05
 - District B with n=105, m=6, m/n > 0.05
 - Direct ACS estimation is more complex, but same idea applies

Voting Rights Tabulations

- Alternative approach to the "more than 5%" provision:
- Build a district level regression model to predict P based on variables in the ACS
- Classify districts into classes with similar predicted P based on the model [predictive mean stratification]
- Within classes, apply a hierarchical random-effects model that pulls the direct ACS estimate of P towards the average P for districts in that class
- Compare HRE model estimate with 5% for this aspect of the determination
- Rationale: increased precision of HRE estimates in small samples increases the probability of getting the determination right, particularly in small districts

Example 3: ACS tabulations

- American Fact Finder gives users access to a dazzling array of ACS tables, for small areas
- The move to make more data available is highly commendable, but the methodology remains design-based and assumes large samples.
- Need for methods appropriate for small samples...

B01001A. SEX BY AGE (WHITE ALONE) -

Universe: WHITE ALONE POPULATION

Data Set: 2005-2009 American

Community Survey 5-Year Estimates

Survey: American Community Survey

90% CI = Estimate +/- Margin of Error

Northfield township, Washtenaw County, Michigan				
	Estimate	Margin of Error		
	8,062	+/-210		
Male:	4,164	+/-239		
Under 5 years	321	+/-108		
5 to 9 years	239	+/-90		
10 to 14 years	342	+/-171		
15 to 17 years	151	+/-57		
18 and 19 years	14	+/-21		
20 to 24 years	332	+/-175		
•••	•••	•••		

90% CI = Estimate +/- Margin of Error

Northfield township, Washtenaw County, Michigan				
	Estimate	Margin of Error		
	8,062	+/-210		
Male:	4,164	+/-239		
Under 5 years	321	+/-108		
5 to 9 years	239	+/-90		
10 to 14 years	342	+/-171		
15 to 17 years	151	+/-57		
18 and 19 years	14	+/-21		
20 to 24 years	332	+/-175		

Oops! →

Example: ACS tabulations

B01001B. SEX BY AGE (BLACK OR AFRICAN

AMERICAN ALONE) - Universe: BLACK OR

AFRICAN AMERICAN ALONE POPULATION

Data Set: 2005-2009 American Community

Survey 5-Year Estimates

Survey: American Community Survey

90% CI = Estimate +/- Margin of Error

- (1) Margin of Error gives a rough idea of uncertainty, but ...
- (2)Intervals often contains negative values
- (3)Truncated to be positive, CI still does not have stated coverage
- (4)Simple fixes for SRS, less simple for complex designs

Northfield township, Washtenaw County, Michigan				
	Estimate	Margin of Error		
Total:	43	+/-41		
Male:	28	+/-32		
Under 5 years	0	+/-109		
5 to 9 years	0	+/-109		
10 to 14 years	0	+/-109		
15 to 17 years	0	+/-109		
•••		•••		
35 to 44 years	0	+/-109		
45 to 54 years	28	+/-32		
55 to 64 years	0	+/-109		

Imagine a better table...

90% CI =(LL, UL) LL, UL based on Bayesian model

...but more complex... and billions of cells!

Northfield township, Washtenaw County, Michigan				
	LL	Estimate	UL	
Total:	0	?	?	
Male:	0	?	?	
Under 5 years	0	?	?	
5 to 9 years	0	?	?	
10 to 14 years	0	?	?	
15 to 17 years	0	?	?	
•••	0	?	?	
35 to 44 years	0	?	?	
45 to 54 years	0	?	?	
55 to 64 years	0	?	?	

American Community Survey

- US Census Bureau is making available thousands of ACS tables, with millions of cells
- A high fraction of these estimates are based on very little data, and hence are very noisy
 - Many people want information, not data, so ACS should produce information products, as well as data products
 - When noise swamps the signal, the information content is buried
 - Data products are highly constrained by confidentiality requirements, leading to incompleteness

The Statistical Problem

- The ACS philosophy is essentially to produce "direct" ("design-based") estimates, together with margins of error
- This works fine with large samples, but most of the ACS estimates are based on small samples
 - The estimates are often too noisy to be useful
 - The confidence intervals derived from the estimates and margins of error are known to be of poor quality, violating statistical standards
 - Intervals include proportions outside the range (0,1)
 - Intervals do not have nominal coverage

The "standard error" error

- ACS reports estimates and margins of error that yield <u>asymptotic</u> 90% confidence intervals
- But in small samples, the implied confidence intervals do not have the stated coverage; so
- Calibrated Bayes: Seek to replaces estimates and margins of error by posterior means and 5% to 95% <u>credibility intervals</u> that have the approximately the nominal coverage
 - A non-Bayesian can interpret the posterior means as estimates, and the 90% credibility intervals as 90% confidence intervals.

Pragmatic "pseudo-Bayes" approach

A fully Bayesian hierarchical model for proportions is feasible but beyond current Bureau of Census capabilities Tom Louis suggested a simple "Bayes-like" approach, which "gets the Calibrated Bayes foot in the door" (my words)

Pragmatic "pseudo-Bayes" approach

- A. Compute design-based estimate of proportion and standard error using existing design-based methods
- B. Pretend data are binomial with number of successes m_a^* and sample size n_a^* that lead to the estimates in A.
- C. Compute Beta posterior distribution with noninformative prior (e.g. uniform or Jeffreys)
- D. Compute 90% posterior credibility interval based on this Beta posterior (reflects asymmetry, always between 0 and 1)

Simple to implement and easily beats standard Wald-type confidence intervals in simulations (Franco, Little, Louis and Slud 2014)

Approximate Beta posterior distribution for complex designs

SRS: Posterior distribution of p_a is Beta:

$$(p_a | n_a, m_a) \sim \text{Beta}(\alpha + m_a, \beta + n_a - m_a)$$

Complex Design: estimate \hat{p}_a , SE \hat{s}_a using a design-based approach

$$\hat{s}_a^2 = \frac{\hat{p}_a(1-\hat{p}_a)}{n_a^*}$$
, $n_a^* = \text{effective sample size}$; $n_a/n_a^* = \text{design effect}$

Hence define effective ss and count:
$$n_a^* = \frac{\hat{p}_a(1-\hat{p}_a)}{\hat{s}_a^2}$$
, $m_a^* = n_a^* \hat{p}_a$,

Approximate posterior distribution as

$$(p_a | n_a^*, m_a^*) \sim \text{Beta}(\alpha + m_a^*, \beta + n_a^* - m_a^*)$$

References

Franco, C., Little, R., Louis, T. and Slud, E. (2014). Coverage Properties of Confidence Intervals for Proportions in Complex Sample Surveys. *ASA Proc Survey Research Methods Section*.

Joyce, P.M., Malec, D., Little, R.J., Gilary, A., Navarro, A. and Asiala, M.E. (2014). Statistical Modeling Methodology for the Voting Rights Act Section 203 Language Assistance Determinations. *JASA*, 109, 36-47.

Little, R.J. (2012). Calibrated Bayes: an alternative inferential paradigm for official statistics (with discussion and rejoinder). *JOS*, 28, 3, 309-372.

Särndal, C.-E., Swensson, B. & Wretman, J.H. (1992), *Model Assisted Survey Sampling*, Springer Verlag: New York.