

VII. Országos Magyar Matematikaolimpia XXXIV. EMMV

országos szakasz, Csíkszereda, 2025. február 24-28.

XI. osztály – I. forduló

- **1. feladat.** a) Az $A \in \mathcal{M}_n(\mathbb{N})$ (ahol $n \geq 2$) mátrixban minden $i, j \in \{1, 2, ..., n\}$ esetén $a_{ij} = 1$, ha $i \mid j$, különben $a_{ij} = 0$. Számítsd ki a det A értékét!
- b) Az $A \in \mathcal{M}_n(\mathbb{N})$ (ahol $n \geq 2$) mátrixban minden $i, j \in \{1, 2, ..., n\}$ esetén $a_{ij} = 1$, ha i és j relatív prím, különben $a_{ij} = 0$. Számítsd ki a det A értékét!
- **2. feladat.** Legyen $b \ge 2$ egy természetes szám. Tekintsünk egy, a b számrendszerben felírt, $(x_n)_{n\ge 0}$ sorozatot, ahol $x_0 \in \mathbb{N}$ és x_{n+1} az x_n számjegyeinek az összege. Bizonyítsd be, hogy az $(x_n)_{n\ge 0}$ sorozat konvergens és számítsd ki a határértékét!
- **3. feladat.** Adott az $(a_n)_{n\geq 0}$ és $(b_n)_{n\geq 0}$ valós számsorozat, valamint az $\alpha\in(0,1)$ valós szám úgy, hogy

$$0 \le a_{n+1} \le \alpha \cdot a_n + b_n,$$

minden $n \ge 0$ esetén, és $\lim_{n \to \infty} b_n = 0$. Igazold, hogy az $(a_n)_{n \ge 0}$ sorozat konvergens és határértéke nulla!

4. feladat. Az $A = (a_{ij})_{i,j=1,2,3} \in \mathcal{M}_3(\mathbb{Z})$ mátrix teljesíti a $2A^3 - 7A^2 + 4A + 4I_3 = O_3$ összefüggést. Igazold, hogy a

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

összeg osztható hárommal!