1

CH -16 APPLICATION OF DERIVATIVES

AI24BTECH11001 - Abhijeet Kumar

I.	B : JEE Mains / AIEEE	
40) The maximum volume (incu.m) of the	e right circular cone having slant height 3m is (JEEM2019 – 9Ja	an(M)
a) 6π b) $3\sqrt{3}\pi$	c) $\frac{4}{3}\pi$ d) $2\sqrt{3}\pi$	
41) If q denotes the acute angle betwee intersection, then is equal to:	the curves, $y = 10 - x^2$ and $y = 2 + x^2$ at a point o $(JEEM2019 - 9Ja)$	
a) $\frac{4}{9}$ b) $\frac{8}{15}$	c) $\frac{7}{17}$ d) $\frac{8}{17}$	
· · · · · ·	degree four, having local extreme end points at $x = -$	1, 0, 1;
then the set $S = \{xR : f(x) = f(0)\} \text{ contains exact}$ a) four irrational numbers. b) four rational numbers. c) two irrational and two rational numbers and two irrational numbers.	nbers.	ril(M))
· ·	+b at that point $(1, -5)$ is perpendicular to the line, $-x+y-$	
a) (-2, 1) b) (-2, -2)	c) (2, -1) d) (2, -2)	
	or which the tangent to the curve, $y = f(x) = x^3 - x^2$ - bining the points $(1, f(a))$ and $(-1, f(-1))$, then S is eq $(JEEM2019 - 9Apr)$	ual to:
a) $\{\frac{1}{3}, 1\}$ b) $\{\frac{-1}{3}, -1\}$	c) $\{\frac{1}{3}, -1\}$ d) $\{\frac{-1}{3}, 1\}$	