Al & ML in speech systems

Dr. Anil Kumar Vuppala, Speech Processing Laboratory, IIIT Hyderabad

Contents

- Introduction
- Feature representation
- Gaussian Mixture Modelling (GMM) for Speech technologies
 - Speaker recognition/verification
 - Language Identification
 - Emotion recognition
- GMM-Hidden Markov Modelling for sequential information modelling
 - Automatic speech recognition (ASR)
- DNN based speech applications

Introduction

 Speech is a unique, complex, and dynamic motor activity through which we express our thoughts and emotions.

 Natural mode of communication for human beings.

Important in human computer interaction

Introduction contd.

- Information in speech
 - Message
 - Language
 - Gender
 - Age
 - Speaker identity
 - Emotional state
 - Cognitive behaviors of
 - Depression
 - Autism
 - Language dis
 - Abnormalities in speech production etc.

Typical speech signal for a word "Artificial"

Applications of speech processing:

- Automatic speech recognition
- Text-to-speech synthesis
- Spoken language dialog systems
- Speaker recognition/verification
- Emotion recognition
- Language identification
- Pronunciation evaluation for clinical tools
- Forensictools
- Speech coding

Importance of speech technologies:

- For better human machine interaction
- For information security and authentication
- Speech based smart appliances
- Multilingual speech systems (speech to speech translation)
- As a navigator for disabled people
- As a personalized speech therapist
- As a personalized assistant in education, agriculture, health care, and other service sectors.

Feature extraction

- Primary step in the development of speech systems
- Fourier transform
- Short time Fourier analysis due to non-stationarity
- 20-30 ms frame size of speech
- Window type: Hamming, Hanning, Rectangular etc.
- Cepstral coefficients are most common feature representation the which captures the vocal tract shape and dynamic information
- Mel-frequency cepstral coefficients (MFCC), Linear prediction cepstral coefficients (LPCC), Perceptual linear prediction cepstral coefficients (PLPCC), etc.

Feature extraction contd.

- Including the energy, total 13-dimensional static cepstral features
- 39-dimensional MFCC features: [static -- delta -- delta-delta]

Speech systems

- **Speaker recognition:** is a technique to recognize the identity of a speaker from a speech utterance.
- Speaker verification aims to verify whether an input speech corresponds to the claimed identity.
- **Emotion recognition** is a process of identifying the emotional state (Anger, Happy, Sad, Neutral, Fear, etc.) of a speaker from the spoken utterance.
- **Spoken Language identification** is a task of recognizing the language identity/information from the speech signal.
- Automatic speech recognition is the process of deriving the transcription (word sequence) of an utterance, given the speech waveform.
- **Text to speech synthesis** aims to converts the given text (word sequence) information into speech.

Speech systems contd.

Speaker identification/verification

Language identification

Emotion recognition

Simple classification problems

Automatic speech recognition (ASR)

Text to speech synthesis

Are advanced speech systems require: classification, duration/pronunciation modelling, sequence-sequence mapping etc.

Speech systems contd.

- Input: speech signal
- **Features:** 39-dimensional MFCCs
- Class labels:
 - Language ID (Ex: Telugu-1, Hindi-2, English-3, Tamil-4, etc.) in language identification task. Similarly, speaker ID will be the class label in speaker identification.
- Machine learning algorithms:
 - Gaussian Mixture Modelling (GMM),
 GMM with universal background modelling, I-vector modelling.

Classification system example

Gaussian Mixture Modelling (GMM)

Parameter estimation:

Assume we have a collection of acoustic frames $X = \{\mathbf{x}_t\}_{t=1}^T$ for estimation of model parameters $\boldsymbol{\theta}$

Maximum likelihood (ML) estimation

$$\theta_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(X|oldsymbol{ heta})$$

Maximum a posteriori (MAP) estimation

$$\theta_{\mathsf{MAP}} = \arg\max_{oldsymbol{ heta}} p(oldsymbol{ heta}|X) = \arg\max_{oldsymbol{ heta}} p(X|oldsymbol{ heta}) p(oldsymbol{ heta})$$

where $p(\theta)$ denotes the prior distribution of θ

Gaussian Mixture Modelling (GMM) contd.

Formulation of GMM:

Gaussian mixture model (GMM) is a weighted sum of Gaussians

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{i=1}^{M} \pi_i b_i(\mathbf{x})$$
$$\boldsymbol{\theta} = \{\pi_i, \mathbf{u}_i, \Sigma_i\}$$

 π_i : mixture weight

 \mathbf{u}_i : mixture mean vector

 Σ_i : mixture covariance matrix

$$b_i(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u}_i)^{\top} \Sigma_i^{-1} (\mathbf{x} - \mathbf{u}_i)\right)$$

Mixture component z_i is a latent variable which is either zero or one

Gaussian Mixture Modelling (GMM) contd.

GMM distribution from three Gaussians

Gaussian Mixture Modelling (GMM) contd.

Accumulate sufficient statistics

$$T_i = \sum_{t=1}^T p(z_{ti} = 1|X)$$

$$\mathbb{E}_i(\mathbf{x}) = \sum_{t=1}^T p(z_{ti} = 1|X)\mathbf{x}_t$$

$$\mathbb{E}_i(\mathbf{x}\mathbf{x}^T) = \sum_{t=1}^T p(z_{ti} = 1|X)\mathbf{x}_t\mathbf{x}_t^T$$

E-step

GMM parameters

$$\begin{split} \pi_i^{\text{new}} &= \frac{T_i}{T} \\ \boldsymbol{\mu}_i^{\text{new}} &= \frac{1}{T_i} \mathbb{E}_i[\mathbf{x}] \\ \Sigma_i^{\text{new}} &= \frac{1}{T_i} \mathbb{E}_i[\mathbf{x}\mathbf{x}^T] - \boldsymbol{\mu}_i \boldsymbol{\mu}_i^T \end{split}$$

GMM with universal background model (GMM-UBM)

- GMM are used for both target and background models
 - Target model of a class is trained using features corresponding to that class
 - Universal background model is trained using features from many classes
- Target model is adapted from universal background model (UBM)
 - good with limited target training data
- Maximum a posteriori (MAP) adaptation:
 - align target training vectors to UBM
 - accumulate sufficient statistics
 - update target model parameters with smoothing to UBM parameters

GMM-UBM Example:

Adjustment of enrolled speaker's GMM using UBM.

GMM-UBM based classification

Metrics: Accuracy, and Equal error rate (EER). EER is function of false acceptance ratio (FAR) and False rejection ratio (FRR).

Procedure for **speaker recognition, language identification, emotion recognition** using GMM-UBM modelling

Joint factor analysis and I-vector modelling

- Factor analysis is a statistical method which is used to describe the variability among the observed variables in terms of potentially lower number of unobserved variables called factors.
- Joint factor analysis (JFA) was the initial paradigm for speaker recognition
- Later, it is used in Language identification, Emotion recognition, Automatic speech recognition, etc.

Intuition and interpretation

- A supervector for a speaker (language / emotion) should be decomposable into speaker independent, speaker dependent, channel dependent, and residual components
- Each component is represented by low-dimensional factors, which operate along the principal dimensions of the corresponding component
- Speaker (language/emotion) dependent component, known as the eigen voice, and the corresponding factors

Joint factor analysis and I-vector modelling

GMM supervector u for a speaker (language/emotion/ any other) can be decomposed as:

where

- m is a speaker-independent supervector from UBM
- **V** is the eigenvoice matrix
- $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the speaker factor vector
- **U** is the eigenchannel matrix
- $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$ is the channel factor vector
- D is the residual matrix, and is diagonal
- $oldsymbol{z} \sim \mathcal{N}(0, oldsymbol{I})$ is the speaker-specific residual factor vector

Joint factor analysis and I-vector modelling

• I-vectors gives the utterance level representation. Cosine distance can be used to find similarity between I vectors.

Variable length sequence to fixed dimension representation

 I-vectors with SVM or DNN or PLDA scoring are used for speaker/emotion/language identification

I-vector modelling in Language identification

Motivation

- I-vector models are the state-of-art baseline models in NIST 2009
 Language Recognition Evaluation (NIST 2009 LRE) and Oriental language recognition (OLR) challenge.
- Allows low dimensional speech representation based on the Factor analysis
- Each speech recording is mapped on low dimensional vector (Ex: 400)
- Factor analysis as feature extractor
- Modeling the inter-language variability between different language classes

I-vector modelling in Language identification

 C_{avg} is the average pairwise loss between miss rate and false alarm rate;

• **EER** refers to equal error rate.

 Low values of these metrics implies better system performance C_{avg} and EER results of various i-vector baseline systems on 3 test conditions

	1 sec	cond	3 second		Full-Length	
System	C_{avg}	EER%	C_{avg}	EER%	C_{avg}	EER%
i-vector	0.1672	15.28	0.0695	7.59	0.0522	6.224
i-vector + LDA	0.1238	13.30	0.0494	5.95	0.0362	4.704
i-vector	0.1485	14.43	0.0624	6.07	0.0469	4.58
(Linear SVM)						
i-vector	0.1242	12.43	0.0470	4.83	0.0351	3.58
(Poly SVM)						
i-vector	0.1313	12.16	0.0495	4.59	0.0352	3.39
(RBF SVM)						

I-vector modelling in Emotion recognition

INTERSPEECH 2009 Emotion recognition Challenge:

uses FAU-AIBO Emotion corpus, It is two class problem:
 Positive or Negative

GMM-MFCC systems (s1)

- MFCC feature (12-MFCC+E+delta+double delta)
- GMM uses 512 Gaussian Components

GMM-MFCC systems (s2)

- MFCC feature (12-MFCC+E+delta+double delta)
- UBM with 512 Gaussian Components
- I-vector dimension of 150, Fisher Discriminant Analysis

GMM-Prosodic system (s3)

- Prosody features: Pitch+ energy + duration features
- GMM-UBM with 256 components.

System	Unweighted recall
S1 : GMM w/ MFCC	69.72%
S2 : Ivector w/ MFCC	69.81%
S3 : GMM-UBM w/ long-term feature	66.61%
S1+S2+S3	70.54%

I-vector modelling in Speaker recognition

SRE database. **WCCN**: Within-class Covariance Normalisation, **LDA**: Linear discriminant analysis, **SDNAP**: scatter-difference Nuisance Attribute Projection, **GPLDA**: Gaussian Probabilistic LDA

Utterance Length	JFA S	ystem	LDA +	WCCN	SDNAP -	+ WCCN	GPLDA	System
(training-testing)	EER	DCF	EER	DCF	EER	DCF	EER	DCF
2 sec - 2 sec	35.25%	0.0988	35.35%	0.0986	35.67%	0.0999	36.16%	0.0999
4 sec - 4sec	30.48%	0.0934	31.05%	0.0966	30.23%	0.0968	31.30%	0.0991
8 sec - 8 sec	23.39%	0.0803	23.95%	0.0800	23.56%	0.0801	23.56%	0.0837
10 sec - 10sec	21.17%	0.0738	21.56%	0.0741	20.84%	0.0737	20.34%	0.0762
20 sec - 20sec	12.79%	0.0533	13.41%	0.0530	12.84%	0.0528	11.87%	0.0532
50 sec - 50 sec	6.51%	0.0266	6.44%	0.0310	6.42%	0.0299	5.77%	0.0272
full (2.5min) - full	3.37%	0.0149	3.54%	0.0179	3.62%	0.0166	3.13%	0.0168

EER: Equal error rate, DCF: Decision Cost Function is equivalent to pairwise loss function (Cavg)

- Building of ASR system required various knowledge sources:
 - Acoustics knowledge about variability in speech
 - Phonetics knowledge about characteristics of speech sounds
 - Phonology knowledge about variability of speech sounds
 - Prosodics knowledge about stress and the intonation patterns
 - Lexical knowledge about patterns of language
 - Syntax knowledge about the grammatical structure of language
 - Semantics knowledge about the meaning of the words
 - Pragmatics knowledge about the context of conversion

Automatic Speech recognition (ASR): is a transduction of spoken acoustic sequence to text sequence.

- Speech Recognition Problem: P(W | Y)
 - Y represents sequence of observation symbols (acoustic features MFCC), W represents the sequence of words.
- Objective: maximize P(W | Y) during training

Bayesian formulation for speech recognition: P(W|Y) = P(Y|W)P(W)/P(Y)

$$\hat{W} = \arg \max_{W} P(W|Y) = \arg \max_{W} \frac{P(W)P(Y|W)}{P(Y)}$$

- P(Y | W): likelihood function, P(W): a priori probability distribution
 - Performance of Speech Recognition Systems: word error rate (WER) = (S+I+D)/N Here S, I, D, C are the number of substitutions, insertions, deletions and correct words and N is (S + D + C)

Widely used acoustic models:

- GMM-HMM based acoustic models
- DNN-HMM based acoustic models
- RNN-CTC based acoustic models
- Encoder-Decoder acoustic models

Hidden Markov models:

 A Markov chain is useful when we need to compute a probability for a sequence of observable events.

Three basic problems in HMM modelling:

- The Evaluation Problem: Given an HMM and a sequence of observations $O = O_1$, O_2 , O_3 , ... O_T what is the probability that the observations are generated by the model, $P(O|\lambda)$?
- **The Decoding Problem:** Given a model λ and a sequence of observations $O = O_1$, O_2 , O_3 , ... O_T what is the most likely state sequence in the model that produced the observations? i.e $Q *= q_1, q_2, q_3, ... q_T; Q *= argmax_O P(Q|O; λ);$ Here, $q_1, q_2, ...$ are referred to states.
- The Learning Problem Given a model λ and a sequence of observations $O = O_1$, O_2 , O_3 , ... O_T how should we adjust the model parameters $\lambda = (A, B, \pi)$ in order to maximize $P(O|\lambda)$

- HMM-GMM based acoustic models
- Spoken word can be decomposed into sequence of K_w basic phones (units) and the sequence called pronunciation sequence.
- HMMs model the temporal variability of speech and GMMs model how well each frame or a short window of frames fits a state of HMM
- In practice each phone is represented by a HMM with left to right topology and three hidden states.

Block diagram describing HMM-GMM based acoustic modeling.

Improvements in the performances of speech recognition systems with relevance to acoustic models (GMM-HMM, and DNN-HMM) as function training data

Performances of speech recognition systems developed using the WSJ corpus.

Acoustic modeling		%WER	%WER
approaches	LM	(14 Hrs)	(81 Hrs)
CD-HMM-GMM ¹⁵	Trigram	-	12.42 (4)
	None	-	-
	Dictionary	56.1	51.1
CD-HMM-DNN ¹⁵	Monogram	23.4	19.9
	Bigram	11.6	9.4
	Trigram	9.4	7.8 (3.5)

Thank you

Part-II Advanced AI & ML in Speech Systems

Deep Neural Network

Decision is taken at frame level.

 The frame level decisions are averaged to get utterance level decision.

Deep Neural Network

Frame level probabilities of a DNN-based LID system (8 languages selected) evaluated over an English-USA (4s) test utterance.

Deep Neural Network

i-vector vs DNN performance on LRE09 database. C_{avg} =average cost.

DNN with attention

DNN with attention architecture

Context vector (c) is weighted average of hidden representations

 All frames may not contribute for decision / classification

Decision is taken at utterance level.

Weighted average of hidden representations

DNN with attention

An example of spectrogram with attention

 Attention weights are low for silence frames

Sequential Networks

• Long temporal dependencies

Sequence to sequence mapping

LSTM cell

Attention based residual time delay neural network

- Residual blocks allows skip connections which provide smooth flow of gradients
- In TDNN each layer captures temporal dependencies at different context

Attention aggregates the whole input sequence information

Performance of Indian LID system using DNNs

Network	Features			
	MFCC	SDC	i-vector	Phonetic
DNN	22.42	17.95	14.72	13.34
DNN-RES	21.87	17.12	14.25	12.56
LSTM	20.05	16.59	14.08	12.22
Attention based	15.45	12.01	12.60	0.46
RES-TDNN	15.45	13.81	13.68	9.46

Results on IIITH-ILSC database using different neural networks

Performance of Indian LID system using DNNs

Performance of Speaker verification using Attention NSE talent Performance of Speaker verification using Attention

Networks

An example of the Self Multi-Head	Attention Pooling with 3
heads	

Approach	DCF	EER
I-vector + PLDA	0.0078	9.54
CNN + Temporal Pooling	0.0047	4.91
CNN + Statistical Pooling	0.0046	4.9
CNN + Att. Pooling	0.005	4.71
CNN + MHA Pooling	0.0045	4.0

Evaluation results of the text-independent verification on VocCelb database.

Performance of Speaker identification using Attention Spe

The results for speaker identification on VoxCeleb

Accuracy	Top-1 (%)	Top-5(%)
I-Vectors + SVM [5]	49.0	56.6
I-Vectors + PLDA + SVM [5]	60.8	75.6
I-Vectors + LogReg [6]	65.8	81.4
VGG-like CNN+ TAP [5]	80.5	92.1
ResNet-34 + TAP [6]	88.5	94.9
ResNet-34 + SAP [6]	89.2	94.1
ResNet-34 + LDE [6]	89.9	95.7
VGG-like CNN+Self-Attention (ours)	88.2	93.8
ResNet-18+Self-Attention (ours)	90.8	96.5

The results of the three most frequently used acoustic features for speaker identification on VoxCeleb. Here, Spectr. corresponds to the spectrograms feature.

Model	Feature Type	Top-1 (%)	Top-5(%)
VGG-like CNN [5]	Spectr.	80.5	92.1
VGG-like CNN+Self-Attention (ours)	Spectr.	85.3	92.9
ResNet-18+Self-Attention (ours)	Spectr.	87.2	93.3
VGG-like CNN+TAP [5]	MFCCs	82.4	92.8
VGG-like CNN+Self-Attention (ours)	MFCCs	87.4	93.5
ResNet-18+Self-Attention (ours)	MFCCs	88.5	94.8
ResNet-34 [6]	FBank	89.9	95.7
VGG-like CNN+Self-Attention (ours)	FBank	88.2	93.8
ResNet-18+Self-Attention (ours)	FBank	90.8	96.5

Automatic speech recognition (recap)

$$\widehat{W} = \operatorname*{argmax}_W P(W|\boldsymbol{o}) = \operatorname*{argmax}_W P(\boldsymbol{A}|\boldsymbol{o}) P(\boldsymbol{o}|\boldsymbol{Q}) P(\boldsymbol{Q}|\boldsymbol{L}) P(\boldsymbol{L}|\boldsymbol{W}) P(\boldsymbol{W})$$

Automatic speech recognition (recap)

GMMs: Gaussian Mixture Models

HMMs: Hidden Markov Models

Lexical model

Lexical modelling forms the bridge between the acoustic and language models

Prior knowledge of language

Mapping between words and the acoustic units (phoneme is most common)

Deterministic Probabilistic

Word	Pronunciation
TOMATO	t ah m aa t ow
	t ah m ey t ow
COVERAGE	k ah v er ah jh
	k ah v r ah jh

Word	Pronunciation	Probability
TOMATO	t ah m aa t ow	0.45
	t ah m ey t ow	0.55
COVERAGE	k ah v er ah jh	0.65
	k ah v r ah jh	0.35

DNN-HMM in Speech Recognition

DNN: Deep Neural Networks

HMMs: Hidden Markov Models

DNN-HMM in Speech Recognition

- 1990s: Large vocabulary continuous dictation
- 2000s: Discriminative training
- (minimize word/phone error rate)
- 2010s: Deep learning significantly
- reduce error rate

George E. Dahl, et al. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Trans. Audio, Speech & Language Processing, 2012.

DNN-HMM vs. GMM-HMM

Deep models are more powerful

- GMM assumes data is generated from single component of mixture model
- GMM with diagonal variance matrix ignores correlation between dimensions
- Deep models take data more efficiently
 - GMM consists with many components and each learns from a small fraction of data
- Deep models can be further improved by recent advances in deep learning

RNN-CTC in Speech Recognition

RNN: Recurrent Neural Networks

CTC: Connectionist Temporal Classification

Connectionist Temporal Classification (CTC)

- No need of aligned data
- Reason: It can assign probability for any label, given an input
- It works by summing over the probability of all possible alignments between the input and the label
 - $-X = \{x_1, x_2, ... x_T\}$ represents input sequences
 - $-Y = \{y_1, y_2, \dots y_T\}$ Transcripts
- Need an accurate mapping from X to Y
- Challenges using simpler supervised learning algorithms:
 - Both X and Y can vary in length.

Loss function

- The CTC alignments give us a natural way to go from probabilities at each time-step to the probability of an output sequence
- conditional probability

$$-P(Y|X) = A \in A_{X,Y} \pi_{t=1}^T p_t(a_t|X)$$

• $p_t(a_t|X)$ computes the probability for a single alignment step-by-step.

We start with an input sequence, like a spectrogram of audio.

The input is fed into an RNN, for example.

The network gives p_t ($a \mid X$), a distribution over the outputs $\{h, e, l, o, \mathcal{E}\}$ for each input step.

With the per time-step output distribution, we compute the probability of different sequences

By marginalizing over alignments, we get a distribution over outputs.

LSTM-CTC MODELS: switch board corpus

Word error rate compared with HMM based models

	Context	Error Rate (%)
LSTM-HMM	Uni	8.9
	Bi	9.1
LSTM-CTC	Uni	9.4
	Ві	8.5

Encoder Decoder models for speech recognition

 Listen, Attend and Spell (LAS) model:

- Listener is a pyramidal BLSTM encoding our input sequence x into high level features h.
- Epeller is an attention-based decoder generating the y characters from h.

Deep learning in ASR on Chime and switch board

WER (SWB)	WER (full=SWB+CH)	Paper	Notes
5.5%	10.3%	English Conversational Telephone Speech Recognition by Humans and Machines	ResNet + BiLSTMs acoustic model, with 40d FMLLR + i-Vector inputs, trained on SWB+Fisher+CH, n-gram + model-M + LSTM + Strided (à trous) convs-based LM trained on Switchboard+Fisher+Gigaword+Broadcast
6.3%	11.9%	The Microsoft 2016 Conversational Speech Recognition System	VGG/Resnet/LACE/BiLSTM acoustic model trained on SWB+Fisher+CH, N-gram + RNNLM language model trained on Switchboard+Fisher+Gigaword+Broadcast
6.6%	12.2%	The IBM 2016 English Conversational Telephone Speech Recognition System	RNN + VGG + LSTM acoustic model trained on SWB+Fisher+CH, N-gram + "model M" + NNLM language model
8.5%	13%	Purely sequence- trained neural networks for ASR based on lattice-free MMI	HMM-BLSTM trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher
9.2%	13.3%	Purely sequence- trained neural networks for ASR based on lattice-free MMI	HMM-TDNN trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher (10% / 15.1% respectively trained on SWBD only)
12.6%	16%	Deep Speech: Scaling up end-to-end speech recognition	CNN + Bi-RNN + CTC (speech to letters), 25.9% WER if trained only on SWB

Thanks!!

Questions?