1

ASSIGNMENT 3: GATE 2016 GG: Geology and Geophysics

EE25BTECH11003 -Adharvan Kshathriya Bommagani

1)	The volume of a sphere unit.	of diameter 1 unit is	than th	ne volume of a cube of side 1
	unit.			(GATE GG 2016)
	a) least	b) less	c) lesser	d) low
2)	The unruly crowd dema	nded that the accused be	v	vithout trial. (GATE GG 2016)
	a) hanged	b) hanging	c) hankering	d) hung
3)		where the underlined wo um. (ii) He was lying pro		People who eat a lot of fat are
				(GATE GG 2016)
	a) (i) and (iii) only b) (iii) only		c) (i) and (ii) only d) (ii) and (iii) only	,
4)	Fact: If it rains, then the Read the following state (i) It rains (ii) The field is not wet (iii) The field is wet (iv) It did not rain			
	Which one of the option	ns given below is NOT lo	gically possible, base	ed on the given fact? (GATE GG 2016)
	a) If (iii), then (iv).b) If (i), then (iii).		c) If (i), then (ii).d) If (ii), then (iv).	
5)	the triangular portion co		de of the square. If the	portion above it. The base of ne perimeter of the window is
				(GATE GG 2016)
	a) 1.43	b) 2.06	c) 2.68	d) 2.88

Q.6 - Q.10 carry two marks each.

6) Students taking an exam are divided into two groups, P and Q such that each group has the same number of students. The performance of each of the students in a test was evaluated out of 200 marks. It was observed that the mean of group P was 105, while that of group Q was 85. The standard deviation of group P was 25, while that of group Q was 5. Assuming that the marks were distributed on a normal distribution, which of the following statements will have the highest probability of being TRUE?

(GATE GG 2016)

- a) No student in group Q scored less marks than any student in group P.
- b) No student in group P scored less marks than any student in group Q.
- c) Most students of group Q scored marks in a narrower range than students in group P.
- d) The median of the marks of group P is 100.
- 7) A smart city integrates all modes of transport, uses clean energy and promotes sustainable use of resources. It also uses technology to ensure safety and security of the city, something which critics argue, will lead to a surveillance state.

Which of the following can be logically inferred from the above paragraph?

- (i) All smart cities encourage the formation of surveillance states.
- (ii) Surveillance is an integral part of a smart city.

b) 1

a) 0

- (iii) Sustainability and surveillance go hand in hand in a smart city.
- (iv) There is a perception that smart cities promote surveillance.

(GATE GG 2016)

d) 10

	a) (i) and (iv) only b) (ii) and (iii) only		c) (iv) only d) (i) only	
8)	Find the missing sequen B, FH, LNP,	nce in the letter series.		(GATE GG 2016)
				(G/HL GG 2010)
	a) SUWY	b) TUVW	c) TVXZ	d) TWXZ
9)	The value of the identit		(a + b), where a and b a on, defined as the number	•
	any <i>a</i> , is			(GATE GG 2016)

c) 2

10) Which of the following curves represents the function $y = \ln(|e^{|\sin(|x|)|}|)$ for $|x| < 2\pi$? Here, x represents the abscissa and y represents the ordinate.

a) Eon is a excess of feldspar.	b) Period well-sorted sandstone conta	c) Era aining up to 75% quartz,	(GATE GG 2016) d) System
is a	,	,	. •
excess of feldspar.	well-sorted sandstone conta	aining up to 75% quartz,	
cheess of felaspair			with rock fragments in
			(GATE GG 2016)
a) Arkose	b) Lithic arenite	c) Quartz arenite	d) Feldspathic arenite
International Geomagn	netic Reference Field (IGRF	is used in processing re	gional magnetic data (GATE GG 2016)
magnetic field.		omagnetic field.	linal variation of the ge-
b) to remove the diu magnetic field.	rnal variation of the geo-	d) to remove the terrain	effect.
Which one of the follo	owing layers of the Earth ha	as the largest volume?	(GATE GG 2016)
			(6/112 66 2010)
a) Upper Mantle	b) Lower Mantle	c) Outer core	d) Inner Core
The S-wave shadow ze	one of the Earth ranges from	n	
			(GATE GG 2016)
a) 103° to 180°	b) 103° to 160°	c) 103° to 153°	d) 103° to 143°
According to Airy's recharacterized by	model, gravity anomalies for	or fully isostatically comp	pensated topography are
			(GATE GG 2016)
b) positive Bouguer a	nomaly and negative free-air	ir anomaly.	
	a) to remove the secondaric field. b) to remove the diumagnetic field. b) to remove the diumagnetic field. Which one of the following the secondarian	a) Arkose b) Lithic arenite International Geomagnetic Reference Field (IGRF a) to remove the secular variation of the geomagnetic field. b) to remove the diurnal variation of the geomagnetic field. Which one of the following layers of the Earth has a) Upper Mantle b) Lower Mantle The S-wave shadow zone of the Earth ranges from a) 103° to 180° b) 103° to 160° According to Airy's model, gravity anomalies for characterized by a) negative Bouguer anomaly and positive free-arc b) positive Bouguer anomaly and negative free-air arc c) zero Bouguer anomaly and negative free-air arc.	a) Arkose b) Lithic arenite c) Quartz arenite International Geomagnetic Reference Field (IGRF) is used in processing re a) to remove the secular variation of the geo- magnetic field. b) to remove the diurnal variation of the geo- magnetic field. b) to remove the diurnal variation of the geo- magnetic field. Which one of the following layers of the Earth has the largest volume? a) Upper Mantle b) Lower Mantle c) Outer core The S-wave shadow zone of the Earth ranges from a) 103° to 180° b) 103° to 160° c) 103° to 153° According to Airy's model, gravity anomalies for fully isostatically compared to the

5 17) Match the metals (listed in Group I) with the localities of their deposits (listed in Group II). Group I Group II P. Iron 1. Boula Q. Zinc 2. Gadag R. Gold 3. Bellary S. Chromium 4. Agucha (GATE GG 2016) a) P-1; Q-2; R-3; S-4 c) P-3; Q-1; R-2; S-4 b) P-4: O-3: R-1: S-2 d) P-3; Q-4; R-2; S-1 18) In a region, given the palaeomagnetic inclination (I R), the palaeolatitude (λR) can be calculated using the formula _____. (GATE GG 2016) a) $\cos \lambda R = \sin R$ c) $\tan \lambda R = \frac{1}{2} \tan R$ d) $\sin \lambda R = 2 \cos I R$ b) $\tan \lambda R = \tan R$ 19) Which one of the following parent-daughter systems has the longest half life? (GATE GG 2016) a) 147 Sm \to 143 Nd c) 87 Rb \rightarrow 87 Sr d) 187 Re \to 187 Os b) $^{40}\text{K} \rightarrow ^{40}\text{Ar}$ 20) For a soil, Liquidity Index = (Natural Water Content -X) / Plasticity Index. Here, X is (GATE GG 2016) a) Shrinkage Limit b) Plastic Limit c) Liquid Limit d) Activity 21) Match the following features (listed in Group I) with the different agents of erosion (listed in Group II). Group I **Group II** P. Earth pillar 1. River Q. Fjord 2. Wind R. Pot hole 3. Glacier S. Yardang 4. Rain (GATE GG 2016) a) P-2; Q-4; R-1; S-3 c) P-4; Q-3; R-1; S-2 b) P-2; Q-3; R-4; S-1 d) P-3; Q-1; R-4; S-2 22) Match the parameters listed in Group I with the units listed in Group II. Group I Group II P. Hydraulic conductivity 1. Newton sec./m² Q. Permeability 2. m/sec

3. m

4. m^2

c) P-2; Q-4; R-3; S-1

d) P-4; Q-2; R-1; S-3

(GATE GG 2016)

R. Viscosity

S. Hydraulic head

a) P-2; Q-4; R-1; S-3

b) P-1; Q-2; R-4; S-3

23)	In digital remote sensing.	land-water contrast is bes	et identified in the	wavelength band. (GATE GG 2016))
	a) Ultraviolet	b) Near IR	c) Middle IR	d) Thermal IR	
24)	Which one of the following	ng rocks has the highest n	nagnetic susceptibility val	lue? (GATE GG 2016))
	a) Quartzite	b) Limestone	c) Gabbro	d) Shale	
25)	In which one of the follow	wing electromagnetic metho	ods is the rate of change	of secondary field recorded? (GATE GG 2016)	
	a) Very Low Frequenceb) Time-domain ENc) Magnetotelluricd) TURAM method	I method method			
26)	If the measured potential		v in subsurface are $10mV$	an inhomogeneous ground. V and SmA , respectively, the	
				(GATE GG 2016) exploration of a horizontally	
	stratified grapified deposite	at a depth of 50 m.		(GATE GG 2016)	i
	a) Gravity	b) Magnetic	c) Radiometric	d) Electromagnetic	
28)	Which one of the following two sandstone layers?	ng logging techniques is mo	st suitable to detect a shall	le layer sandwiched between	Į
	·			(GATE GG 2016)	ļ
	a) Neutron-Gamma	b) Gamma-Gamma	c) Natural Gamma	d) Sonic	
29)	a flat earth Plate A subdu	cts below Plate C normal to	the plate boundary while	ng a stable triple junction on le the contact between Plates and C is a	

Fig. 1

	a) mid-oceanic ridgeb) subduction zone		c) sinistral transform fd) dextral transform fa	
30)	In Gondwanaland reconstructi	ions, much of the pr	resent west coast of India is place	ed adjacent to
20)		ions, much of the pr	esone west coust of main is place	(GATE GG 2016)
	a) South America	b) Madagascar	c) Antarctica	d) Australia
31)	Two vertically dipping limbs of	of a fold have perpe	ndicular strikes. The fold can be	classified as
				(GATE GG 2016)
	a) an antiformal fold	b) a synformal fo	old c) a vertical fold	d) a recumbent fold
32)	Match the crystal forms (liste Group I	ed in Group I) with	their corresponding number of Group II	faces (listed in Group II).
	P. Cube		1. Two	
	Q. Tetrahedron		2. Four	
	R. Pinacoid		3. Six	
	S. Dodecahedron		4. Twelve	(CATE CC 2016)
				(GATE GG 2016)
	a) P-4; Q-2; R-3; S-1		c) P-3; Q-4; R-1; S-2	
	b) P-3; Q-2; R-1; S-4		d) P-1; Q-3; R-4; S-2	
			,	
33)		with their essential	mineral assemblages in Group	II.
	Group I P. Granodiorite		Group II	
	Q. Harzburgite		 Hornblende-plagioclase Plagioclase-quartz 	2
	R. Gabbro		3. Olivine-orthopyroxene	
	S. Diorite		4. Clinopyroxene-plagioc	lase
	S. Diorite		Chilopyroxene plugioes	(GATE GG 2016)
	a) P-2; Q-3; R-4; S-1		c) P-4; Q-1; R-3; S-2	
	b) P-3; Q-4; R-1; S-2		d) P-1; Q-3; R-2; S-4	
34)	Which one of the following i	mineral assemblage	es is stable under eclogite facies	conditions? (GATE GG 2016)
	a) Garnet-orthonyroxen	e-clinopyroxene-pl:	agioclase	
	a) Garnet-orthopyroxene-clinopyroxene-plagioclaseb) Garnet-clinopyroxene-plagioclase-kyanite			
	c) Garnet-orthopyroxen			
	d) Garnet-clinopyroxene			

Geology(section - 1): Optional Section

35) Select the CORRECT statement from the following options.

(GATE GG 2016)

- a) Hogback is an isolated tableland with sides that are usually steep.
- b) Crevasses are deposits of glacial origin.
- c) Loess comprises pebbles of rocks or minerals with some plane faces formed by wind abrasion.
- d) Loamy soil is a mixture of sand and clay.
- 36) Match the following patterns (listed in Group I) with their appropriate Cephalopod sutures (listed in Group II). Arrow gives the direction of aperture.

(GATE GG 2016)

Group I

1.Ceratitic

Group II

Q.

2. Nautilitic

R.

3. Goniatitic

4.Orthoceratitic

- a) P-2; Q-3; R-4; S-1
- b) P-2; Q-1; R-4; S-3
- c) P-4; Q-3; R-1; S-2
- d) P-3; Q-1; R-4; S-2
- 37) Match the following test composition (listed in Group I) with the microfossil taxa (listed in Group II).

(GATE GG 2016)

Group I

- P. Organic-walled
- Q. Siliceous
- R. Phosphatic
- S. Calcareous
 - a) P-4; O-3; R-1; S-2
 - b) P-2; Q-1; R-4; S-3

Group II

Radiolaria

- 2. Conodont
- 3. Foraminifera
- 4. Acritarch
 - c) P-4; Q-1; R-2; S-3
 - d) P-3; Q-4; R-1; S-2

38) Which one of the following statements is CORRECT?

(GATE GG 2016)

- a) Movement of the shoreline seaward is transgression.
- b) No movement of the shoreline is transgression.
- c) Movement of the shoreline seaward as a result of sea-level fall is forced regression.
- d) Movement of the shoreline landward is regression.
- 39) Mud-supported limestone containing greater than 10% allochems is called

(GATE GG 2016)

- a) Packstone
- b) Wackestone
- c) Grainstone
- d) Mudstone
- 40) At a depth of 500 m, the determined in-situ stresses in a rock mass are as follows: maximum horizontal stress = 20 MPa, minimum horizontal stress = 8 MPa and vertical stress = 13.5 MPa. Assuming the principal stress directions to be vertical and horizontal, if this compressive stress field leads to faulting, the plausible fault type would be

(GATE GG 2016)

a) Normal fault

c) Strike-slip fault

b) Reverse fault

- d) Detachment fault
- 41) The following litholog represents fossil occurrences (figure). The biostratigraphic zone represented by the assemblage is.

(GATE GG 2016)

Fig. 2

a) Assemblage Zone

c) Consecutive Range Zone

b) Taxon Range Zone

- d) Acme Zone
- 42) Which one of the following stratigraphic successions is in the correct chronological order (oldest at bottom)?

- a) Iron Ore Group, Older Metamorphic Group, Kolhan Group
- b) Chitradurga Group, Sargur Group, Bababudan Group
- c) Jharol Group, Alwar Group, Ajabgarh Group

d) Chitravati Group, Papaghni Group, Kurnool Group

43) Water content is 10%, total porosity is 25% and specific gravity of solid grains is 2.5. The volume of water required to be added to 100 m^3 of the wet soil to make it fully saturated is m^3 .

(GATE GG 2016)

44) In a zone of superposed folding, poles to bedding plot as a great circle on the stereonet. For such a case, the fold axes related to the first generation of folds will:

(GATE GG 2016)

a) be parallel to the great circle.

- c) lie at the poles to the great circle.
- b) lie on the great circle at its intersections with d) be randomly distributed. the primitive circle.
- 45) For horizontal flow in a fully saturated aquifer, the product of hydraulic conductivity and aquifer thickness is called the

(GATE GG 2016)

a) specific yield

c) coefficient of storage

b) transmissivity

d) seepage force

46) If a rectangle is deformed into a parallelogram of equal area by simple shear deformation (with shear strain γ) parallel to the abscissa, the displacement matrix is

(GATE GG 2016)

a)
$$\begin{pmatrix} 1 & \gamma \\ 0 & 1 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}$
c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 0 & \gamma \\ 1 & 0 \end{pmatrix}$

47) If tangent Young's modulus (at 50% of the uniaxial compressive strength) and modulus ratio of a rock are given as 60 GPa and 500, respectively, the uniaxial compressive strength of the rock is

(GATE GG 2016)

48) In a rock sample, the values of $(^{87}Sr/^{86}Sr)_{present}$ and $(^{87}Rb/^{86}Sr)_{present}$ are 0.7125 and 0.2, respectively. The decay constant λ of ⁸⁷Rb is 1.42×10^{-11} year⁻¹, and time before present t is 1000 million years. The value of the initial ratio $(^{87}Sr/^{86}Sr)_0$ is

(GATE GG 2016)

49) The ΔG^0 of the reaction $2 \operatorname{Fe_3O_4} + 0.5 \operatorname{O_2} = 3 \operatorname{Fe_2O_3}$ at $300^{\circ} \mathrm{C}$ and 500 bars is -40.657 kilocalories. The value of $\log f_{\rm O_2}$ at that temperature and pressure is

(GATE GG 2016)

50) Match the types of mineralization in Group-I with their appropriate tectonic settings in Group-II. (VMS = volcanogenic massive sulfide)

(GATE GG 2016)

Group I

P. Cyprus-type VMS

Q. Kuroko-type VMS

R. Porphyry copper

S. Diamond in Kimberlite

Group II

1.Island Arc

- 2. Continental Arc
- 3. Intraplate
- 4. Mid Oceanic Ridge

	a) P-1; Q-2; R-3; S-4 b) P-4; Q-1; R-2; S-3 c) P-4; Q-2; R-3; S-1 d) P-2; Q-1; R-4; S-3
51)	Clay minerals and Fe-oxide minerals, products of hydrothermal alteration and supergene oxidation, are good indicators of mineralization. Choose the CORRECT Thematic Mapper (TM) band ratio images for detection of these minerals.
	(GATE GG 2016)
52)	 a) band ratio 5/7 for clay and 3/1 for Fe-oxide minerals b) band ratio 3/1 for clay and 5/7 for Fe-oxide minerals c) band ratio 3/7 for clay and 5/1 for Fe-oxide minerals d) band ratio 5/1 for clay and 3/7 for Fe-oxide minerals The age range of reservoir rock in Cambay oil field is
	(GATE GG 2016)
	a) 34 – 15 million years b) 56 – 34 million years c) 65 – 56 million years d) 100 – 65 million years
53)	Which one of the following statements is CORRECT in all respects for the amphibole glaucophane, $Na_2Mg_3Al_2Si_8O_{22}(OH)_2$?
	(GATE GG 2016)
	a) Na is in the M4-site, Al is in octahedral coordination and Si is in tetrahedral coordination.b) Na is in the A-site, both Al and Si are in tetrahedral coordination.c) Na is in the M4-site, Al is partly in octahedral and partly in tetrahedral coordination, Si is in tetrahedral coordination.
54)	d) Na is in the A-site, both Al and Si are in octahedral coordination. Choose the CORRECT modern analog of Besshi type VMS deposits (all are ocean floor rift zones). (GATE GG 2016)
	 a) 21°N East Pacific Rise (EPR) b) Guaymas Basin c) Lau Basin d) Trans Atlantic Geotraverse (TAG)
55)	Which one of the following options is arranged in the CORRECT increasing order of Vicker's microhardness?
	(GATE GG 2016)
	a) galena ¡ chalcopyrite ¡ sphalerite ¡ magnetite c) galena ¡ magnetite ¡ chalcopyrite ¡ sphalerite b) sphalerite ¡ galena ¡ magnetite ¡ chalcopyrite chalcopyrit
56)	The ($^{18}{\rm O}/^{16}{\rm O}$) of a quartz sample yields a value of 0.0019. The value of $\delta^{18}{\rm O}$ of the quartz sample is
	(Usethevalueo ftheratioinVS MOWas0.002005.) (GATE GG 2016)
57)	The ionic strength of a solution having 0.5 molal NaCl and 0.25 molal CaCl ₂ is
58)	(GATE GG 2016) During which stage of coalification is most of the methane gas generated?
	(GATE GG 2016)
	a) Lignite b) Peat c) Bituminous d) Anthracite
59)	The figure shows the liquidus phase relations in the forsterite-anorthite-silica system at 1 bar pressure. From the options below, identify the CORRECT reaction that takes place at the isobaric invariant point

P.

(GATE GG 2016)

Fig. 3

- a) Liquid (at P) = Forsterite + Anorthite + Enstatite
- b) Liquid (at P) + Forsterite = Anorthite + Enstatite
- c) Liquid (at P) + Forsterite + Anorthite = Enstatite
- d) Liquid (at P) = Forsterite + Anorthite + Silica polymorph
- 60) A garnet peridotite contains 2400 ppm of nickel. After 20% partial melting, a basaltic melt is generated, leaving a residue comprising 60% olivine, 30% orthopyroxene and 10% clinopyroxene. Given the partition coefficients K_D (Ni) as: olivine = 10, orthopyroxene = 4, clinopyroxene = 2, the nickel concentration in the melt, assuming equilibrium batch melting, is ppm.

(GATE GG 2016)

- 61) Which one of the following mineral assemblages is stable in a pelitic rock in the greenschist facies?

 (GATE GG 2016)
 - a) Albite-epidote-actinolite-chlorite-quartz
 - b) Muscovite-biotite-garnet-quartz

- c) Tremolite-talc-calcite-quartz
- d) Muscovite-biotite-garnet-sillimanite-quartz
- 62) Match the co-existing mineral pairs in Group I with the diagnostic metamorphic conditions they are associated with in Group II.

Group I

- P. Talc-phengite
- Q. Cordierite-andalusite
- R. Spinel-quartz
- S. Laumontite-wairakite

Group II

- 1. Ultrahigh temperature
- 2. Very low temperature
- 3. Ultrahigh pressure
- 4. Low pressure, high temperature

- a) P-2; Q-3; R-1; S-4
- b) P-3; Q-4; R-1; S-2

- c) P-4; Q-1; R-2; S-3
- d) P-3; Q-2; R-4; S-1

- 63) Out of the following symmetry elements, which one is present in all classes of the cubic system? (GATE GG 2016)
 - a) Four axes of 3-fold symmetry
 - b) Three axes of 4-fold symmetry
 - c) Six axes of 2-fold symmetry
 - d) Three mirror planes
- 64) Match the minerals in Group-I with their optical properties in Group-II.

Group I

- P. Calcite
- Q. Nepheline
- R. Apatite
- S. Quartz
 - a) P-4; Q-2; R-1; S-3
 - b) P-3; Q-2; R-4; S-1

Group II

- 1. Uniaxial negative, low birefringence, high relief
- 2. Uniaxial negative, high birefringence, moderately high relief
- 3. Uniaxial positive, low birefringence, low relief
- 4. Uniaxial negative, low birefringence, low relief (GATE GG 2016)

c) P-2; Q-4; R-1; S-3

d) P-1; Q-3; R-2; S-4

Section 2 (Geophysics): Optional Section

65) Depth migration is applied to a stacked seismic section. Compared to the stacked section, dipping events in the migrated section

(GATE GG 2016)

- (A) have a steeper slope and move updip.
- (B) remain unchanged.
- (C) have a gentler slope and move downdip.
- (D) have a steeper slope and move downdip.

66) A monochromatic elastic wave of frequency 20 Hz propagates in a medium with average velocity 3 km/s. For zero offset reflection from horizontal reflectors, the thickness of the vertical first Fresnel zone is m.

(GATE GG 2016)

67) The following figure shows a seismic reflection experiment above a reflector that dips 45°. The P-wave velocity in the medium is constant and equal to 2 km/s. The source is kept at location 'S' and the receiver is kept at location 'G'. The midpoint between S and G is denoted by 'M' and the depth to the reflector from 'M' is 1 km. The traveltime of the primary reflected arrival recorded at the receiver is equal to ______ seconds.

Fig. 4

(0)		(0.4.0) 4			
68)	8) Given a seismic wavelet $w = \{6, -4, -2\}$ and reflectivity so trace is	eries $r = \{0, 1, 0\}$, the con	(GATE GG 2016)		
	(A) $\{0, -4, 0, 0, 0\}$ (B) $\{0, -2, -4, 6, 0\}$ (C)	{0, 6, 0, 0, 0} (D)			
69)	9) The time period of the signal $s(t) = \sin(3\pi t) + \cos(2\pi t)$ is _				
	0) Assertion (a): The inverse of a minimum phase wavelet is a Reason (r): The Z-transform of a minimum phase wavelet h	causal and stable.	(GATE GG 2016) ne unit circle. (GATE GG 2016)		
71)	(A) (a) is true but (r) is false (B) (a) is false but (r) is true (C) Both (a) and (r) are true and (r) is the correct rease (D) Both (a) and (r) are true and (r) is not the correct of the value of free-air correction (assuming sea level as datum).	reason for (a)			
	mGal.		(GATE GG 2016)		
72)	2) A spherical cavity of radius 8 m has its centre 15 m below of density $1.5 \times 10^3 \text{ kg/m}^3$ and is in a rock body of density gravity anomaly is mGal.		is full of sediments		
72)		r corrections applied for	(GATE GG 2016)		
13)	Match the items (listed in Group I) with the corresponding corrections applied for reduction of marine gravity data (listed in Group II).				
	Group I P. Effect of rotating homogeneous ellipsoidal Earth Q. Effect of deficit mass from mean sea level to average de R. Effect of relative motion of ship with respect to revolvin S. Effect of elastic creep of gravimeter spring system and E Group II 1. Drift correction 2. Latitude correction 3. Bouguer correction 4. Eotvos correction	ng Earth Earth tides	(GATE GG 2016)		
		P-4; Q-1; R-2; S-3 P-3; Q-1; R-4; S-2			
74) Which one of the following Natural Remanent Magnetization (NRM) gives a primary			stable magnetization		
	for igneous rocks?		(GATE GG 2016)		
	 (A) Depositional Remanent Magnetization (DRM) (B) Thermo Remanent Magnetization (TRM) (C) Chemical Remanent Magnetization (CRM) (D) Isothermal Remanent Magnetization (IRM) 				
75)	5) The following figure shows the total magnetic field intensit by the present day geomagnetic field. From among the opti	• •			

an anomaly could be observed.

	(A) Equator	(B) Latitude 27°	(C) North pole	(D) South pole
76)	Which one of the foll the solid inner core?	lowing is the ray path for the	e P-wave that converts to	S-wave while passing through
				(GATE GG 2016)
	(A) PKiKP	(B) PKIKP	(C) pPcP	(D) PKJKP
77)	Which one of the fol	lowing statements is CORR	ECT for the stress drop ($\Delta\sigma$) of an earthquake? (GATE GG 2016)
	(B) Small slip or(C) Stress drop i	n a small fault will cause mon n a large fault will cause mon s inversely proportional to the ectly proportional to the rupt	ore stress drop. he slip of the fault.	
78)		by an earthquake of magnitugnitude 4 (use Kanamori's fo		_ times the energy released by
79)		ates 10 mV potential, the ap		(GATE GG 2016) trodes A and M is 0.40 m. If ayer between the electrodes is
80)	solution of resistivity	<u> </u>	the saturated sample mea	
81)	placed over an inhor	mogeneous medium. If the sivity is 100 Ω m, then the m	measured potential differ	(GATE GG 2016) al electrode separation 5 m is ence is 50 mV and the comsing through the subsurface is
82)	Two horizontal layers	s have resistivities and thick		(GATE GG 2016) and 50 Ω m, 10 m, respectively. The electrical anisotropy will be

83) The five-layer Schlumberger resistivity sounding curve given below represents

(GATE GG 2016)

Fig. 6

- (A) HAQ-type
- (B) HKQ-type
- (C) HKH-type
- (D) HAK-type

84) How are the numerical values of the real and imaginary components of the impedance tensor (Z) in Magnetotelluric (MT) method related over a homogeneous half-space?

(GATE GG 2016)

- (A) Imaginary component is one third of the real component.
- (B) Imaginary component is half of the real component.
- (C) Imaginary component is equal to the real component.
- (D) Imaginary component is twice that of the real component.

85) The strike of a 2-D geological structure is in Y-direction. From the following options, choose the field components required to compute the apparent resistivity in E-Polarization mode for plane wave electromagnetic signals.

(GATE GG 2016)

- (A) E_x and H_x (B) E_x and H_y (C) E_y and H_y
- (D) E_y and H_x

86) Dip angle electromagnetic methods are suitable to delineate

(GATE GG 2016)

- (A) both vertical and horizontal conductors.
 - (B) horizontal conductors only.
 - (C) vertical and dipping conductors.
 - (D) horizontal and dipping conductors.
- 87) Which one of the following equations is CORRECT for a time invariant field?

(A)
$$\nabla \times \mathbf{E} = 0$$

(B)
$$\nabla \cdot \mathbf{B} = 0$$

$$\begin{array}{ll} (\mathbf{C}) & \nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \\ (\mathbf{D}) & \nabla \times \mathbf{H} = \mathbf{J} \end{array}$$

(D)
$$\nabla \times \mathbf{H} = \mathbf{J}$$

88)	The solution to the Laplace is A and I			n with spherical symmetry tion point from the source. (GATE GG 2016)
	(A) $\Phi(r) = \frac{A}{r^2}$	(B) $\Phi(r) = A + \frac{B}{r}$	(C) $\Phi(r) = A \ln r + B$	· · · · · · · · · · · · · · · · · · ·
89)	If J is the Jacobian matrix parameter, λ , as $J^T J + \lambda I$, in			_
				(GATE GG 2016)
90)	(B) stable solution with(C) unstable solution with(D) stable solution withThe Singular Value Decomp	ith increased parameter resolute increased parameter resolute decreased parameters decreased parameter resolution of a square nonsi	olution resolution olution	by $J = U\Sigma V^T$. The inverse
	of matrix J will be			(GATE GG 2016)
				(6/112 66 2010)
	(A) $J^{-1} = U\Sigma^{-1}V^{T}$ (B) $J^{-1} = V\Sigma^{-1}U^{T}$		(C) $J^{-1} = V\Sigma U^T$ (D) $J^{-1} = U\Sigma V^T$	
91)	The fraction of a radioactive	e nuclide remaining after	10 half-lives is closest to	(GATE GG 2016)
	(A) 0.1	(B) 0.01	(C) 0.001	(D) 0.0001
92)	The correct relationship betw daughter product in a radioa		t P of the parent radionuc	elide and amount D of the
	and broader in a radion	15 15 15 15 15 15 15 15 15 15 15 15 15 1		(GATE GG 2016)
	(A) $D = P_0 - P$ (B) $P = P_0 - D$		(C) $D = P(e^{\lambda t} - 1)$ (D) $P = P_0 e^{-\lambda t}$	
93)	Which one of the following type ambiguities in interpret		rves exhibits both 'Equiva	alence' and 'Suppression'
	type amorganies in interpret	ation of data.		(GATE GG 2016)
	(A) HA-type			
	(B) AH-type			
	(C) HK-type			
	(D) KH-type			

94) For land seismic data acquisition, the following figure is a schematic plot of arrival times of seismic waves recorded at several detectors placed along the x-axis. The shot is placed at the origin (x = 0). (Match the events labelled in the figure listed in Group I with their corresponding types listed in Group II.)

Fig. 7

(GATE GG 2016)

Group I

P. E1

Q. E2

R. E3

S. E4

(A) P-3; Q-1; R-2; S-4

(B) P-2; Q-3; R-4; S-1

(C) P-1; Q-4; R-3; S-2

(D) P-4; Q-2; R-1; S-3

Group II

- 1. Ground roll
- 2. Direct arrival
- 3. Refracted energy
- 4. Primary reflection

END OF THE QUESTION PAPER