Tutorial 01

- 1. Give an example of the following types of machine learning:
 - (a) Supervised learning
 - (b) Unsupervised learning

For each example, give the feature set, and explain the aim of the learning.

To explain: in the Iris example, the features are measurements that describe each flower (petal area and sepal area, for example), and the task is to identify which species a given Iris flower comes from.

Your example should not be one that was mentioned in the lecture.

- 2. For each of the following machine learning tasks:
 - (a) Binary classification
 - (b) Multiclass classification
 - (c) Clustering
 - (d) Regression

For each example, give the feature set, and for explain the aim of the learning task.

Your example should not be one that was mentioned in the lecture.

- 3. (a) Explain how a k-nearest neighbour classifier is trained.
 - (b) Explain how a k-nearest neighbour classifier is used to classify a new example.
 - (c) For a given set of data, what difference in performance would you expect to see between a 1-nearest neighbour classifier and a 5-nearest neighbour classifier?
- 4. The data in the table below are the results of testing a binary classifier:

Example	Classifier output	Correct class	Example	Classifier output	Correct class
E01	1	1	E11	1	1
E02	1	1	E12	1	0
E03	1	0	E13	1	1
E04	1	1	E14	0	1
E05	0	0	E15	0	0
E06	0	0	E16	0	0
E07	0	1	E17	1	1
E08	0	0	E18	1	1
E09	1	1	E19	0	1
E10	0	0	E20	0	0

Given this data:

- (a) Calculate the accuracy of the classifier.
- (b) Write down the confusion matrix.
- (c) What does the confusion matrix tell you about the classifier?
- (d) Calculate the precision of the classifier.
- (e) Calculate the recall of the classifier.
- (f) Calculate the F1 score of the classifier.

For each question you should explain the reasoning behind your answer.

5. A (simple) 3-nearest neighbour classifier includes the following examples:

Instance	Fea	tures	Class
	x_1	x_2	
X_1	1	1	C_1
X_2	2	2	C_1
X_3	1	3	C_1
X_4	4	2	C_1
X_5	1	6	C_2
X_6	2	4	C_2
X_7	2	5	C_2
X_8	3	4	C_2
X_9	5	4	C_2

The distance metric used by this classifier is Manhattan distance, which, for two examples i with features (x_1^i, x_2^i) and j with features (x_1^j, x_2^j) is:

$$distance = |x_1^i - x_1^j| + |x_2^i - x_2^j|$$

where |a| is the absolute value of a.

Which class would this classifier allocate to:

- (a) An instance with $x_1 = 3$ and $x_2 = 1$?
- (b) An instance with $x_1 = 4$ and $x_2 = 5$?
- (c) An instance with $x_1 = 2$ and $x_2 = 3$?
- (d) An instance with $x_1 = 4$ and $x_2 = 3$?

For each example calculate the probability of the example being classified in both classes using the "sophisticated" method from the slides.

Version list

- Version 1.0, January 19th 2019.
- Version 1.1, January 24th 2019.
 - Corrected typos
- Version 1.2, February 1st 2019.

- Added an explanation of Manhattan distance in question 5
- Version 1.3, January 16th 2020.
 - (Updated module number for 2020 onwards).
- Version 1.4, January 8th 2021.
- Version 1.5, January 20th 2021.
 - Fixed indices under question 5.

