Lecture 26: Magnetic Dipole and Magnetic Materials

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

Magnetic Dipole

Properties of Magnetic Materials

The Magnetic Dipole

Recall the circular loop we analyzed before. If the loop is small such that

define
$$\vec{m} = magnetic$$
 moment
$$= \vec{I} \cdot \pi a^2 \cdot \hat{\vec{x}}$$

$$= \vec{I} \cdot \pi a^2 \cdot \hat{\vec{x}}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin \theta \hat{\phi}}{4\pi r^2}$$

$$A = \frac{\mu_0 I \pi a^2 \sin$$

Magnetic Dipole

Dipoles

Recall

electrostorie
$$\overline{E} = \frac{ad}{4\pi \epsilon_{ar}} (2\cos\theta \hat{r} + \sin\theta \hat{\theta})$$

(a) Electric dipole

(b) Magnetic dipole

(c) Bar magnet

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

Nature of Magnetic Materials

- Just as we did for dielectrics, we now consider the magnetic properties of "magnetic" materials
- We gain invoke a simple atomic model where there is a positively charged nucleus around which there are electronics in various orbits

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

If orbital radius is round electron e

election current =
$$-\frac{9e}{T} = \frac{9eU}{2\pi r}$$
 completes one orbit in time T

$$T = \frac{2\pi r}{U} \quad U = e^{-\frac{1}{2}} \text{ velocity.}$$

$$m_0 = IA_{loop} = \frac{9eU}{2\pi r} \text{ Tr}^2 = \frac{9eUr}{2\pi r} = \frac{9e}{2\pi r} \text{ Le}$$

Magnetization

- Properties of Magnetic Materials

 where h is plant's constant lagnetization $m_0 = \frac{nq_e h}{2\pi}$ From a macroscopic perspective we now differentiate between free currents and bound currents
- \bullet A bound current \mathcal{I}_b circulates around a path enclosing a differential area ds

$$m = I_b ds$$

ullet If there are N magnetic dipoles per unit volume and we consider a volume $\Delta \nu$, then the total magentic dipole moment is

$$m{m}_{total} = \sum_{i=1}^{N\Delta
u} m{m}_i$$

 Define magnetization as magnetic dipole moment per unit volume, just as we did for polarization

$$M \lim_{\Delta \nu \to 0} \frac{1}{\Delta \nu} \sum_{i=1}^{N \Delta \nu} m_i$$

$$16 = \pm \frac{n9e \text{ h}}{2me \cdot 2\pi}$$
$$= \pm 9 \times 10^{-24} \text{ A} \cdot \text{m}^2$$

Differential Analysis

For a differential volume dv', the magnetic moment is $d\mathbf{m} = \mathbf{M}dv'$. What is the vector magnetic potential produced by the volume?

Types of Magnetic Materials: Diamagnetic Materials

Diamagnetic materials:

- Have no permanent magnetic moments
- Electron orbit moment and spin moment nearly cancel
- An applied B field causes a very slight reduction in m_o
- In most diamagnetic materials, $\chi_m \approx -10^{-5}$ and $\mu_r \approx 1$
- In very special materials (superconductors), the internal magnetic field can completely cancel the external one, producing $\mu_r=-1$

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

Types of Magnetic Materials: Paramagnetic Materials

Paramagnetic materials:

- Have no permanent magnetic moments
- Electron spin moment very slightly larger than electron orbit moment
- An applied B field torques the moments, causing them to align with the applied field
- In most paramagnetic materials, $\chi_m \approx 10^{-5}$ and $\mu_r \approx 1$

Source: Ulaby, Ravaioli: Fundamentals of Applied Electromagnetics, 7th ed.

Types of Magnetic Materials: Ferromagnetic Materials

Ferromagnetic materials:

- Have permanent magnetic moments resulting from electron spin moments
- Interatomic forces cause these moments to line up in parallel over regions containing large numbers of atoms called domains
- An applied B field magnetized the material to cause regular and semi-permanent alignment of the dipoles

Source: Wikipedia

Types of Magnetic Materials: Ferromagnetic Materials

- A magnetic materials spontaneously divides into domains to minimize the *magnetostatic energy* stored in the internal field.
- Domains can be reoriented by an external magnetic field
- Domains will remain aligned when external field is removed, since domain walls become pinned to defects in the crystal structure
- The material can be *demagnetized* by applying another field, or heating the material passed its *Curie temperature*

Summary of Magnetic Materials

	Diamagnetism	Paramagnetism	Ferromagnetism
Permanent magnetic	No	Yes, but weak	Yes, and strong
dipole moment			
Primary magnetiza-	Electron orbital	Electron spin mag-	Magnetized domains
tion mechanism	magnetic moment	netic moment	
Direction of induced	Opposite	Same	Hysteresis*
magnetic field (rela-			
tive to external field)			
Common substances	Bismuth, copper, di-	Aluminmum,	Iron, nickel, cobalt
	amond, gold, lead,	chromium, mag-	
	mercury, silber, sili-	nesium, niobium,	
	con	platinum, tungsten	
Typical value of χ_m	$\approx -10^{-5}$	$\approx 10^{-5}$	$ \chi_m \gg 1$ and hys-
			teretic
Typical value of μ_r	≈ 1	≈ 1	$ \mu_r \gg 1$ and hys-
			teretic

Hysteresis of Magnetic Materials

- A magnetization curve describes the relationship between B and H in a material
- You might think it is a line because $B=\mu H$, but this is not true in ferromagnetic materials where the relationship is **nonlinear**

$$B = \mu(H)H$$

 Ferromagnetic materials have magnetic hysteresis (to lag behind)

