Stat 551 Exam 1 Formulas

Introduction

Covariances/Variances of Linear Combinations

$$\begin{aligned} & \text{Var}\left(a_{0} + \sum_{j=1}^{p} a_{j} X_{j}\right) = \sum_{j=1}^{p} \sum_{k=1}^{p} a_{j} a_{k} \text{Cov}(X_{j}, X_{k}) \\ & \text{Cov}\left(a_{0} + \sum_{j=1}^{p} a_{j} X_{j}, b_{0} + \sum_{k=1}^{q} b_{j} Y_{j}\right) = \sum_{j=1}^{p} \sum_{k=1}^{q} a_{j} b_{k} \text{Cov}(X_{j}, Y_{k}) \end{aligned}$$

Weakly, Strong Stationarity and White Noise

Definition. A time series $\{X_t\}$ is weakly stationary if for all integers t and h,

- a) $Var(X_t) < \infty$
- b) $E[X_t]$ does not depend on t
- c) $Cov(X_t, X_{t+h})$ does not depend on t

In other words, first and second order moments do not change with time.

Definition. A time series $\{X_t\}$ is *strictly stationary* if for any positive integer k and integers t_i, \ldots, t_k and h,

 $(X_{t_1},\ldots,X_{t_k})\stackrel{d}{=}(X_{t_1+h},\ldots,X_{t_k+h})$ where $\stackrel{d}{=}$ denotes equality in probability distribution. In other words, joint probability distributions do not change with time.

Definition. A time series is *white noise* if it is uncorrelated, zero mean, with finite variance.

 $row \Rightarrow column$

(1) SS + finite variances \Rightarrow WS (2) IID + finite variances \Rightarrow WS (3) IID + finite variances + mean zero \Rightarrow WN (4) WS implies SS if $\{X_t\}$ is Gaussian.

ACVF/ACF function properties

Definition. The Autocovariance function (ACVF) for a WS $\{X_t\}$ is defined as $Cov(X_t, x_{t+h}) = \gamma(h)$. This is a function of h only.

Properties of ACVF:(i) $\gamma(0) = \text{Var}(X_t)$ (ii) $|\gamma(h)| = |\text{Cov}(X_t, x_{t+h}| \leq \sqrt{\text{Var}(X_t)\text{Var}(X_t+h)} = \gamma(0)$ (iii) $\gamma(-h) = \text{Cov}(X_t, x_{t-h}) = \text{Cov}(X_{t+h}, x_t) = \gamma(h)$ Thus $\gamma(h)$ is an even function.

Definition. A function $\gamma: \mathbb{Z} \to \mathbb{R}$ is nonnegative definite iff for any n, all $(a_1, \ldots, a_n) \in \mathbb{R}^n$, all $t_1, \ldots, t_n \in \mathbb{Z}$ $0 \le \sum_{i=1}^n \sum_{j=1}^n a_i a_j \gamma(t_i - t_j)$.

Result. $\gamma: \mathbb{Z} \to \mathbb{R}$ is NND iff γ is the ACVF of some WS time series.

Definition. Autocorrelation function (ACF) $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$

Properties of ACF (i) $\rho(0) = 1$ (ii) $|\rho(h)| \le 1$ (iii) $\rho(\cdot)$ is even: $\rho(h) = \rho(-h) = \rho(|h|)$ (iv) $\rho(\cdot)$ is NND

Sample ACVF/ACF & large sample properties

Definition. Same ACVF based on X_1, \ldots, X_n is defined as for $|h| < n, \hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (X_t - \bar{X}_n)(X_{t+|h|} - \bar{X}_n)$ where

 $\bar{X}_n = \frac{1}{n}\sum_{t=1}^n X_t$. Estimates $\gamma(h) = \mathrm{E}[(X_t - \mu)(X_{t+|h|} - \mu)]$ where $mu = \mathrm{E}X_t$ for WS process.

Definition. Sample ACF: $\hat{\rho} = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$

Under mild conditions, $(\hat{\rho}(1), \dots, \hat{\rho}(h))' = \hat{\rho}_h$ is asymptotically normal, $N(\hat{\rho}_h, \Sigma)$ where $\Sigma = \frac{1}{n}W$ and $W = [w_{ij}]_{i,j=1,\dots,h}$ and $w_{ij} = \sum_{k=1}^{\infty} \{\rho(k+i) + \rho(k-i) - 2\rho(k)\rho(i)\} \times \{\rho(k+j) + \rho(k-j) - 2\rho(k)\rho(j)\}$.

Definition. Bartlett Bounds: $P\left(\frac{-1.96}{\sqrt{n}} \le \rho(\hat{k}) \le \frac{1.96}{\sqrt{n}}\right)$

If $\{X_t\}$ are $\mathrm{IID}(\mu,\sigma^2)$, about 5% of sample autocorrelations should exit the bounds by chance.

Removing Trend/Seasonality

Classical decomposition

 $X_t = m_t + s_t + I_t$ where m_t is trend (non-random), s_t is seasonality component, and I_t is random/irregular with mean 0.

Removing Trend

To start, assume $s_t = 0$ and focus on removing m_t in $X_t = m_t + I_t$. Linear filter (to estimate trend)

integer $q \geq 0$ and filter $\{a_{-q}, \ldots, a_{-1}, a_0, a_1, \ldots, a_q\}$. Then $\hat{m}_t = \sum_{k=-q}^q a_k X_{t-k}$.

Exponential smoothing (trend estimation)

 $0 < a < 1, \hat{m}_1 = X_1, \hat{m}_t = aX_t + a(1-a)X_{t-1} + a(1-a)^2X_{t-2} + \cdots$. In other words, exponentially decreasing weights on previous observations. $a \to 1$ less bias, $a \to 0$ less variance.

Differencing (trend elimination)

- Backshift operator: $B^k f(t) = f(t-k)$
- Difference operator: 1 B
- Difference once to kill linear trend, difference twice to kill quadratic trend.
- Differencing also helping remove "stochastic trends"

Removing seasonality

 $X_t = m_t + s_t + I_t$, s_t cyclic behavior, known period d.

Definition. Deterministic seasonality: perfect repetition in the seasonal component $s_t = s_{t+d} = s_{t+2d} = \cdots$. The sum of effects over length of period will always be equal, so that WLOG, $\sum_{j=0}^{d-1} s_{t-j} = 0$.

Smoothing:

$$Y_{t} = \frac{X_{t} + X_{t-1} + \dots + X_{t-(d-1)}}{d} = \frac{\sum_{j=1}^{d} m_{t-j}}{d} + \frac{\sum_{j=1}^{d} I_{t-j}}{d}$$

Differencing:

Use seasonal difference $1 - B^d$ to remove seasonality. In fact $1 - B^d - (1 - B)(1 + B + B^2 + \cdots + B^{d-1})$ smooths seasonal summation filter and eliminates trends. Regression (dummy variable, trigonometric polynomials)

Estimate s_t with $s_t = s_{t+d} = s_{t+2d} \cdots$ and $\sum_{i=0}^{d-1} s_{t-i} = 0$

<u>Dummy variables:</u> Let s_t be assigned dummy variable $\gamma_1, \ldots, \gamma_{d-1}$.

for t = 1, 2 + d, etc and then for t = d, 2d, 3d, ... $s_t = \sum_{j=1}^{d-1}$. Then

regression of X_t , dummy variables s_t over t. $\sum_{t=1}^{n} (X_t - s_t)^2$ minimize for $\gamma_1, \ldots, \gamma_{d-1}$.

Trigonometric polynomials:

Let $f = \lfloor \frac{d}{2} \rfloor$ and $s_t = \sum_{j=1}^{f} \{a_j \cos(\lambda_j t) + b_j \sin(\lambda_j t)\}$ where $\lambda_j = \frac{2\pi j}{2}$ (frequency). Then estimate a_j and b_j by regression methods. To summarize, could use regression to estimate seasonality or

difference to eliminate.

Checks for WN or iid

Bartlett bounds in sample ACF for WN – 95% of $\hat{\rho}(h)$ should fall within the bounds.

Ljung-Box (portmanteau) for WN

 $Q_{LB} = n(n+2) \sum_{k=1}^h [\hat{\rho}(k)]^2/(n-k) \stackrel{.}{\sim} \chi_h^2.$ Reject H₀ if $Q_{LB} > \chi_{h,1-\alpha}^2$ H₀: $\{Y_t\}$ is WN.

McLeod-Li for iid Gaussian

 $\begin{array}{ll} & Q_{ML} = n(n+2) \sum_{k=1}^{h} [\hat{\rho}_{X^2}(k)]^2/(n-k) \stackrel{\cdot}{\sim} \chi_h^2, \\ & \rho_{X^2}(k) = \operatorname{corr}(X_t^2, X_{t+h}^2). \text{ Reject H}_0 \text{ if } Q_{ML} > \chi_{h,1-\alpha}^2.\text{H}_0 \text{: } \{Y_t\} \text{ is Gaussian WN.} \end{array}$

Rank tests for iid/randomness

Replace data with ranks $\Rightarrow R_1, \dots, R_n$.

- Turning Point: $T \equiv \#$ of $i(2 \le i \le n-1)$ where $R_{i-1} < R_i$ and $R_i > R_{i+1}$ or $R_{i-1} > R_i$ and $R_i < R_{i+1}$. $\mathrm{E}(T) = 2(n-2)/3$, $\mathrm{Var}(T) = (16n-29)/90$
- Positive Differences: $S \equiv \#$ of $i(2 \le i \le n)$ where $R_{i-1} < R_i$. $\mathrm{E}(T) = (n-1)/2$, $\mathrm{Var}(P) = (n+1)/12$
- Positive Pairs: $P \equiv \#$ of $(i, j)(2 \le i \le j \le n)$ where $R_j > R_i$. $E(T) = \binom{n}{2}/2$, Var(T) = n(n-1)(2n+5)/72

 $\{Y_t\}$ is IID. Low power on all three tests.

Prediction

Problem: Given X_1, \ldots, X_n , predict X_{n+h} .

best MS prediction vs. best linear MS prediction

- Using MSE criterion, want to find a predictor $\tilde{X}_{n+h} = h(X_1, \dots, X_n)$ that minimizes $\text{MSE}(\tilde{X}_{n+h}) \equiv \mathbb{E} \left[X_{n+h} \tilde{X}_{n+h} \right]^2$.
- Well-known best MSE predictor given by $\hat{X}_{n+h} = \mathbb{E}[X_{n+h}|X_1,\ldots,X_n].$
- Can compute $E[X_{n+h}|X_1,\ldots,X_n]$ only when $\{X_t\}$ IID with $EX^2 < \infty$ or when $\{X_t\}$ is Gaussian WS.

Gaussian W.S. X_t

 $\hat{X}n + h = \mathbb{E}[X_{n+h}|X_1,\dots,X_n] = \mu + \widetilde{\chi}(h)'\Gamma_n^{-1}(\widetilde{X} - \widetilde{\mu})$ and $MSE\hat{X}n + h = \gamma(0) - \gamma(h)'\Gamma_n^{-1}\gamma(h)$.

best linear MS predictor

- Linear prediction means a predictor for X_{n+h} of the form $a_0 + \sum_{j=1}^n a_j X_{n+1-j}$ for real constants a_0, \dots, a_n .
- Best Linear prediction means choosing a_0, \ldots, a_n to minimize MSE.
- compute best linear predictor by pretending $\{X_t\}$ are WS Gaussian and calculating $E(X_{n+h}|X_1,\ldots,X_n)$.

$$\hat{X}_{n+1} = \mu + \sum_{j=1}^{n} \phi_{n,j} (X_{n+1-j} - \mu)$$
 where $\phi_n = \Gamma_n^{-1} \tilde{\chi}(h)$ where $h = 1, \dots, n$.

Projection Theorem

For Time Series,

- 1. $X_1, \ldots, X_n, X_{n+h} \in L_2 \equiv \text{space of all r.v.s}$ with finite 2nd moment.
- 2. Inner Product: $\langle X, Y \rangle = EXY$ for $X, Y \in L_2$
- 3. Orthogonal: $\langle X, Y \rangle = 0$ for $X, Y \in L_2$.
- 4. Distance: $||X Y|| = [E(X Y)^2]^{1/2}$ for $X, Y \in L_2$.
- 5. The best linear predictor, P_nX_{n+h} is the linear combination of $(1, X_1, \ldots, X_n)$ in L_2 which minimizes the distance to X_{n+h} and the residual $X_{n+h} P_nX_{n+h}$ is orthogonal to 1 and each X_i .

Theorem (Projection Theorem). If $\mathcal{M} \equiv span(1, X_1, \dots, X - n) \subset L_2$ and $X_{n+h} \in L_2$,

(i) there exists a unique
$$P_n X_{n+h} \in \mathcal{M}$$
 st $||X_{n+h} - P_n X_{n+h}|| = \inf_{Z \in \mathcal{M}} ||X_{n+h} - Z||$

(ii)
$$\tilde{X}_{n+h} = P_n X_{n+h}$$
 iff $\tilde{X}_{n+h} \in \mathcal{M}$ and $X_{n+h} - \tilde{X}_{n+h} \perp \mathcal{M}$.

Durbin-Levinson algorithm

Let $\{X_t\}$ be WS, mean zero, ACVF $\gamma(\cdot)$ such that $\gamma(0)>0$ and $\lim_{h\to\infty}\gamma(h)=0$. Then:

- 1. Set $P_0 X_1 = E X_1 = 0$ and $v_0 \equiv E(X_1 P_0 X_1)^2 = Var(X_1) = \gamma(0)$.
- 2. Set $P_1 X_2 = \frac{\gamma(1)}{\gamma(0)} X_1 = \phi_{1,1} X_1$, $\phi_{1,1} = \frac{\gamma(1)}{\gamma(0)}$ and $v_1 \equiv \mathrm{E}(X_2 P_1 X_2)^2 = (1 \phi_{1,1}^2) v_0$.
- 3. For $k \geq 2$, set $P_k X_{k+1} = \sum_{j=1}^k \phi_{k,j} X_{k+1-j}$ where

$$\phi_{k,k} = \left[\gamma(k) - \sum_{j=1}^{k-1} \phi_{k-1,j} \gamma(k-j)\right] / v_{k-1}$$

$$\begin{bmatrix} \phi_{k,1} \\ \vdots \\ \phi_{k,k-1} \end{bmatrix} = \begin{bmatrix} \phi_{k-1,1} \\ \vdots \\ \phi_{k-1,k-1} \end{bmatrix} - \phi_{k,k} \begin{bmatrix} \phi_{k-1,1-1} \\ \vdots \\ \phi_{k,1} \end{bmatrix}$$

And
$$v_k \equiv E(X_{k+1} - P_k X_{k+1})^2 = (1 - \phi_{k,k}^2) v_{k-1}$$
.

PACF

Definition. If $\{X_t\}$ is WS (as in D-L algorithm), the partial autocorrelation function is given as $\alpha(n) = \operatorname{Corr}(X_n + 1 - P_{\mathcal{K}_1} X_{n+1}, X_1 - P_{\mathcal{K}_1} X_1) = \phi_{n,n}$ for $n \geq 1$ where $\mathcal{K}_1 = \operatorname{span}(X_2, \dots, X_n \text{ for } n \geq 2 \text{ and } \mathcal{K}_1 = \emptyset \text{ if } n = 1.$

PACF for AR(p)

Using $\{Z_t\} \sim WN(0, \sigma^2)$ (Z_t uncorrelated with $X_j, j < t$), define $X_t = \phi_1 X_{t-1} + \cdots \phi_p X_{t-p} + Z_t$. If n = p,

$$\begin{split} P_p X_{p+1} &= \phi_{p,1} X_p + \dots + \phi_{p,p} X_1 \\ &= \phi_1 X_p + \dots + \phi_p X_1 \end{split} \tag{D-L}$$

So $\alpha(p) = \phi_p$. And if n > p, $\alpha(n) = 0$.

Mean square convergence & Linear Filters Mean sequare convergence/Cauchy criterion

Definition. Suppose X is a r.v. and $\{X_n\}$ a sequence of r.v.s. We say X_n converges to X in MSE, $X_n \overset{MSE}{\to} X$ iff $||X_n - X||^2 = \mathrm{E}(X_n - X)^2 \to 0$ as $n \to \infty$ iff Cauchy criterion holds: $||X_n - X_m||^2 = \mathrm{E}(X_n - X_m)^2 \to 0$ as $n, m \to \infty$.

Sample mean variance formula & asymptotic normality

$$X_t \text{ WS, } \bar{X}_n \overset{MSE}{\to} \mu \text{ and } \bar{X}_n \overset{\cdot}{\sim} N\left(\mu, \frac{1}{n^2} \sum_{h=-n}^n (n-|h|)\gamma(h)\right) \text{ for }$$
 large $n \text{ or } \bar{X}_n \overset{\cdot}{\sim} N\left(\mu, \frac{1}{n} \sum_{h=-\infty}^{\infty} \gamma(h)\right).$

Linear filter result WS

Result. Consider WS $\{Z_t\}$ (not necessarily WN) with mean 0 and ACVF $\gamma_Z(h) = \operatorname{Cov}(Z_t, Z_{t+h})$. Let $\psi \in \mathbb{R}$, any integer j, with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$. Then the process

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j} = \left(\sum_{j=-\infty}^{\infty} \psi_j B^j\right) Z_t = \psi(B) Z_t \text{ is WS with mean}$$

$$0 \text{ and ACVF } \gamma_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \gamma_Z(h-k+j).$$

Linear processes

Use
$$Z_t \sim WN(0, \sigma^2)$$
, then $\gamma_X(h) = \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h} \sigma^2$

Causal linear representations/MA(∞), AR(1)

 $\underline{MA(\infty)}$: Linear process where $\psi_j=0$ for j<0. $X_t=\sum\limits_{j=0}^{\infty}\psi_jZ_{t-j}$

and $\gamma_X(h) = \gamma_X(|h|) = \sum_{j=1}^{\infty} \psi_j \psi_{j+|h|} \sigma^2$. Note X_t depends only on

past Z_t 's, this is a causal representation. AR(1): For $Z_t \sim WN(0, \sigma^2)$ and $|\phi| < 1$, define AR(1) process as

 $X_t = \sum_{j=0}^{\infty} Z_{t-j}$. Since $\sum_{j=0}^{\infty} |\phi|^j < \infty$, $\{X_t\}$ is WS with $\mathbf{E}X_t = 0$ and with $\gamma_X(h) = \frac{\sigma^2 \phi |h|}{1 - \phi^2}$.

What happens if $|\phi| > 1$? 1. Explosive, non-stationary case, 2. Stationary case. $\{X_t\}$ not necessarily stationary when the relationship with Z_t doesn't hold for all t.

ARMA(p,q) models

Definition. A process $\{X_t\}$ is said to be ARMA(p,q) for integers p,q>0 with

AR polynomial $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p$ MA polynomial $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_n z^p$

if $\{X_t\}$ satisfies $\phi(B)X_t = \theta(B)Z_t$ for all integers t, wrt some $\{Z_t\} \sim WN(0, \sigma^2)$.

In the ARMA definition, assume that the polynomials $\phi(z)$ and $\theta(z)$ have no common factors.

WS criteria

There is a unique solution $\{X_t\}$ to $\phi(B)X_t = \theta(B)Z_t$ where $\{X_t\}$ is WS iff the AR polynomial $\phi(z)$ has no roots $z \in \mathbb{C}$ where |z| = 1.

Causal/invertible

Definition. For $\{X_t\} \sim ARMA(p,q), \{X_t\}$ is said to be *causal*

- iff $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ holds for all integer t wrt some coefficients $\{\psi_j\}$ where $\sum_{j=0}^{\infty} |\psi_j| < \infty$.
- iff AR polynomial satisfies $\phi(z) = 1 \phi_1 z \cdots \phi_p z^p \neq 0$ for any $z \in \mathbb{C}$ with $|z| \leq 1$.

Note, the coefficients $\{\psi_j\}$ are given by $\phi(z)\psi(z) = \theta(z)$.

Definition. For $\{X_t\} \sim ARMA(p,q), \{X_t\}$ is said to be *invertible*

- iff $Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}$ holds for all integer t wrt some coefficients $\{\pi_j\}$ where $\sum_{j=0}^{\infty} |\pi_j| < \infty$.
- iff MA polynomial satisfies $\theta(z) = 1 + \theta_1 z + \dots + \theta_p z^p \neq 0$ for any $z \in \mathbb{C}$ with $|z| \leq 1$.

Note, the coefficients $\{\pi_i\}$ are given by $\theta(z)\pi(z) = \phi(z)$.

Yule-Walker equations for causal ARMA(p,q)

Let $m = \max\{p, q+1\}$. Then the Yule-Walker equations are

$$\gamma(h) - \phi_1 \gamma(h-1) - \dots + \phi_p \gamma(h-p) = \begin{cases} \sigma^2 \sum_{j=1}^m \theta_{j+h} \psi_j & 0 \le h < m \\ 0 & h \ge m \end{cases}$$

Where $\theta_0 = 1$ and $\theta_j = 0$ for j > q.

Methods for finding ACVF of causal ARMA

• Method 1: Direct Approach (must have all $\psi_0, \psi_1, \psi_2, \ldots$ to be determined.

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} \Rightarrow \gamma_X(h) = \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|} \sigma^2$$

- Method 2: explicit, non-recursive
 - 1. Find ψ_0, \ldots, ψ_q
 - 2. Compute the k distinct roots ξ_1, \ldots, ξ_k of $\phi(z) = 0$ where root ξ_i has multiplicity $r_i \ge 1, i = 1, \ldots, k$ and $r_1 + \cdots r_k = p$. Causal implies each root $|\xi_i| > 1$.
 - 3. $\gamma(h) = \sum_{i=1}^{k} \sum_{j=1}^{r_i-1} \beta_{ij} \xi_i^{-h}, h \ge m-p.$
 - 4. Need to find $\{\beta_{ij}\}$ along with the first m-p ACVF values. There are m unknowns, so use first m Y-W equations.
- Method 3: explicit, recursive
 - 1. Find ψ_0, \ldots, ψ_q
 - 2. write down the first p + 1 Y-W equations (h = 0, ..., h = p).
 - 3. Solve the first p+1 covariances
 - 4. $\gamma(h) = \phi_1 \gamma(h-1) + \cdots + \phi_p \gamma(h-p)$ for all $h \ge m$ so we can solve for all other covariances recursively.