CS 631: DATA MANAGEMENT SYSTEMS DESIGN ASSIGNMENT 4

EXERCISE

Consider a relation R(ABCDEFGHIJ) with the following set of functional dependencies $\mathbf{F} = \{ F \rightarrow AB, CD \rightarrow E, C \rightarrow FG, H \rightarrow IJ, D \rightarrow H \}$ 1. Is CDE a superkey of R?

- 2. Is CDE a key of R?
- 3. Apply the appropriate algorithm to determine a key for R.
- 4. Apply the appropriate algorithm to determine all the keys for R.
- 5. Determine the prime attributes of R.
- 6. Is R in BCNF?
- 7. Is R in 3NF?
- 8. Determine whether the decomposition **D** = { CDE, CFG, DH, HIJ, FAB } has (i) the dependency preservation property and (ii) the lossless join property, with respect to **F**. Also determine which normal form each relation in the decomposition is in.

Please justify (briefly) your answers. Answers without justification will not get any points.

1. Is CDE a superkey of R?

Yes. Since $CDE_+ = ABCDEFGHIJ = R$ 2. Is CDE a key of R?

CD is a proper subset of CDE (CD \subset CDE).

CD is a superkey of R: $CD_+ = R$.

Since a proper superset of CDE is a superkey of R, CDE is not a key of R.

3. Apply the appropriate algorithm to determine a key for R.

C and D do not appear in the RHS of any FD in \mathbf{F} . Therefore, every key of R must contain C and D. We will not try to remove them from K.

Initially K = R.

If $(K - X)_+ = R$ for some attribute X in $K - \{CD\}$ then we remove X from K; otherwise, we leave X in K and continue with another attribute in $K - \{CD\}$, until all attributes in $K - \{CD\}$ are considered:

We try to remove E from R: (CDFGHIJAB) + = R. $\therefore K := CDFGHIJAB$

We try to remove F from R: (CDGHIJAB) + = R. $\therefore K := CDGHIJAB$

We try to remove G from R: (CDHIJAB)+ = R. \therefore K := CDHIJAB

We try to remove H from R: (CDIJAB)+=R. $\therefore K:=CDIJAB$

We try to remove I from R: (CDJAB) + = R. $\therefore K := CDJAB$

We try to remove J from R: (CDAB)+ = R. \therefore K = CDAB

We try to remove A from R: (CDB)+=R. $\therefore K:=CDB$

We try to remove B from R: (CD)+ = R. \therefore K := CD

Thus, CD is a key of R.

4. Apply the appropriate algorithm to determine all the keys for R.

C and D do not appear in the RHS of any FD in **F**. Therefore, every key of R must contain C and D. From question 2, CD is a superkey of R. Thus, CD is the unique key of R.

5. Determine the prime attributes of R.

The prime attribute of R are C and D.

6. Is R in BCNF?

Consider $H \rightarrow IJ$ in **F**.

 $H \rightarrow IJ$ violates BCNF in R: H is not a superkey of R ($\mathbf{F}_+ = IJ \neq R$).

R is not in BCNF.

7. Is R in 3NF?

Consider $H \rightarrow IJ$ in **F**.

 $H \rightarrow IJ$ violates 3NF in R: H is not a superkey of R ($H_+ = IJ \neq R$) and neither I nor J is a prime attribute of R.

- 8. Determine whether the decomposition **D** = { CDE, CFG, DH, HIJ, FAB } has (i) the dependency preservation property and (ii) the lossless join property, with respect to **F**. Also determine which normal form each relation in the decomposition is in.
- (i) Yes, since every FD in **F** is applicable to at least one schema in **D**. For instance, CD \rightarrow E \in Π CDE(**F**).

(ii)

We use the property of binary LJ decomposition and the property of repeated LJ decompositions.

Let R1 = CDE, R2 = CFG and R3 = R1 \cup R2 = CDEFG

Since $\mathbf{F} \models \mathbf{C} \to \mathbf{FG}$, $\mathbf{F} \models \mathbf{R}1 \cap \mathbf{R}2 \to \mathbf{R}2 - \mathbf{R}1$. Thus, the decomposition $\{\mathbf{R}1, \mathbf{R}2\}$ of $\mathbf{R}3$ is LJ w.r.t. $\Pi_{\mathbf{R}3}(\mathbf{F})$.

Let R4 = DH and $R5 = R3 \cup R4 = CDEFGH$

Since $\mathbf{F} \models D \rightarrow H$, $\mathbf{F} \models R3 \cap R4 \rightarrow R4 - R3$. Thus, the decomposition $\{R3, R4\}$ of R5 is LJ w.r.t. $\Pi_{R5}(\mathbf{G})$. Therefore, the decomposition $\{R1, R2, R4\}$ of R5 is LJ w.r.t. $\Pi_{R5}(\mathbf{G})$.

Let R6 = HIJ and $R7 = R5 \cup R6 = CDEFGHIJ$

Since $\mathbf{F} \models H \rightarrow IJ$, $\mathbf{F} \models R5 \cap R6 \rightarrow R6 - R5$. Thus, the decomposition $\{R5, R6\}$ of R7 is LJ w.r.t. $\Pi_{R7}(\mathbf{F})$. Therefore, the decomposition $\{R1, R2, R4, R6\}$ of R7 is LJ w.r.t. $\Pi_{R7}(\mathbf{F})$.

Let R8 = FAB. Notice that $R7 \cup R8 = R$.

Since $\mathbf{F} \models F \to AB$, $\mathbf{F} \models R7 \cap R8 \to R8 - R7$. Thus, the decomposition $\{R7, R8\}$ of R is LJ w.r.t. \mathbf{F} . Therefore, the decomposition $\{R1, R2, R4, R6, R8\}$ of R is LJ w.r.t. \mathbf{F} . (iii)

CDE: $\Pi CDE(\mathbf{F}) = \{ CD \rightarrow E \}$. Since CD is a superkey of CDE, CDE is in BCNF.

Similarly we show that the rest of the schemas in \mathbf{D} are in BCNF.