

UNIVERSITÀ DEGLI STUDI ROMA TRE

Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica

Tesi Di Laurea

Analisi, progettazione e prove sperimentali di un Fulgur Hub in Type Script

Laureando

Federico Ginosa

Matricola 457026

Relatore

Correlatore

Alberto Paoluzzi

Federico Spini

Anno Accademico 2017-2018

Indice

1	Introduzione	9
	2008 pubblicazione paper di Sathosi Nakamoto	9
	2009 pubblicazione protocollo BitCoin	10
	Problemi di scalabilità	11
	Throughput teorico massimo di BitCoin	11
	Aumento costi delle fee	11
	Soluzioni al problema della scalabilità	11
	Algoritmo di consenso	11
	Sharding	11
	OffChain	11
	Lavoro di questa tesi	11
	Analisi dello stato dell'arte relativa a soluzioni di scalabilità	
	OffChain	11
	Design e implementazione di un IPC	11
	Analisi, progettazione e sviluppo di un Fulgur Hub 	11
	Prove sperimentali di Fulgur Hub	11
	Descrizione capitoli	11
2	Background	13
-		
	Distributed Ledger Technologies	13
	Il problema che risolvono le DLT	13

4	INDICE
---	--------

	Caso d'uso: scambio di asset
	Blockchain e smart contract
	Scalabilità OffChain
	State channel
	Payment channel
	Inextinguishable payment channel
	Obiettivi di Fulgur Hub
	Transazioni immediate
	Transazioni tra più di due entità
	Transazioni tra diversi hub
	Autogestito
	Non censurabile
	FulgurHub e stato dell'arte
	Lightning Network
	NOCUST
3	Analisi 19
	Obiettivi
	Dimostrazione di fattibilità
	Dimostrare la scalabilità architetturale
	Descrizione generale dell'architettura
	Lo smart contract
	Il client
	L'hub
	Casi d'uso
	Apertura di un canale
	Pagamento OnChain-OnChain
	Pagamento OffChain-OffChain
	Pagamento OffChain-OnChain
	Pagamento OnChain-OffChain

INDICE 5

	Prelievo a caldo	22
	Ricarica a caldo	22
	Chiusura di un canale	22
	Riscossione dei pending token	22
4	Progettazione e sviluppo	23
	Le motivazioni tecnologiche	23
	La blockchain: Ethereum	23
	Il linguaggio di programmazione: TypeScript	23
	Il database lato server: Redis	24
	Il database lato client: LevelDB	24
	Lo smart contract	24
	Implementazione in Solidity	
	Interfaccia in TypeScript	24
	Il client	
	RPC privata	
	Endpoint pubblici	25
	Gestione degli eventi asincroni	25
	Hub	25
	Endpoint pubblici	25
	Gestione degli eventi asincroni	
5	Prove sperimentali	27
	Gli obiettivi	27
	Verifica delle performance delle transazioni OffChain	
	Verifica della scalabilità delle transazioni OffChain	27
	L'approccio adottato	27
	Benchmark server	27
	Il throughput lato client	28
	Risultati	28
	Il throughput lato hub	28

6		INDICE

	Risultati	28
	Considerazioni sulle performance	29
	Considerazioni sulla scalabilità	29
	Replicare l'hub	29
	Replicare redis	29
6	Conclusioni e sviluppi futuri	31
	Autogestione finanziaria dell'hub	31
	Denominazione degli endpoint sulla base della valuta	31

Elenco delle figure

1.1 Uno schema UML realizzato con plantuml			
--	--	--	--

Introduzione

2008 pubblicazione paper di Sathosi Nakamoto

Figura 1.1: Uno schema UML realizzato con plantuml

2009 pubblicazione protocollo BitCoin

11

Problemi di scalabilità

Throughput teorico massimo di BitCoin

Aumento costi delle fee

Soluzioni al problema della scalabilità

Algoritmo di consenso

Sharding

OffChain

Lavoro di questa tesi

Analisi dello stato dell'arte relativa a soluzioni di scalabilità OffChain

Design e implementazione di un IPC

Analisi, progettazione e sviluppo di un FulgurHub

Prove sperimentali di Fulgur Hub

Descrizione capitoli

Background

Distributed Ledger Technologies

Il problema che risolvono le DLT

- 1. Transazioni trustless in un sistema distribuito
- 2. DLT permissionless vs DLT permissioned

Caso d'uso: scambio di asset

- 1. La transazione, rappresentazione dello scambio di valore
- 2. Il ledger, registro pubblico degli scambi di valore

Blockchain e smart contract

- 1. Meccanismo di consenso e Proof of Work
 - (a) Descrizione generale della PoW
 - (b) Problema del double spending
 - (c) Controllo della generazione di asset
- 2. Aggiornare lo stato della blockchain con operazioni complesse basate su smart contract

Scalabilità OffChain

State channel

Payment channel

- 1. Architettura generale
 - (a) 1 smart contract
 - (b) 2 server
- 2. Inizializzazione
 - (a) Deploy
 - (b) Apertura
 - (c) Join
- 3. Schema propose/accept

- (a) Gli endpoint
 - i. Propose
 - ii. Accept
- (b) Struttura di una propose
 - i. Numero di sequenza
 - ii. Balance A
 - iii. Balance B
 - iv. Firma della propose
- 4. Chiusura in due fasi
 - (a) Richiesta di chiusura
 - i. L'operazione "'close"
 - (b) Finalizzazione della chiusura
 - i. Il tempo di grazia
 - ii. L'operazione "'withdraw"'

Inextinguishable payment channel

- 1. Estensione delle struttura dati di una propose
 - (a) Hash di un token
 - (b) Tipologia di operazione
 - (c) Tipologia di catena

2.	. Struttura di un token				
	(a)	Numero di sequenza			
	(b)	Valore			
	(c)	Scadenza			
	(d)	Firma del token			
3.	Sche	ma attach/detach			
	(a)	Detach di un token OffChain			
	(b)	Attach di un token OnChain			
1.	Rica	rica a caldo			

Obiettivi di Fulgur Hub

Transazioni immediate

Transazioni tra più di due entità

Transazioni tra diversi hub

Autogestito

Non censurabile

FulgurHub e stato dell'arte

Lightning Network

- 1. Topologia di rete a confronto e censura
- 2. Superamento del problema di ricerca del percorso ottimo

NOCUST

1. Conferma di una transazione non immediata

Analisi

Obiettivi

Dimostrazione di fattibilità

- 1. Transazioni OffChain-OffChain
- 2. Transazioni OnChain-OnChain
- 3. Transazioni OffChain-OnChain
- 4. Transazioni OnChain-OffChain
- 5. Prelievi a caldo
- 6. Ricariche a caldo

Dimostrare la scalabilità architetturale

Descrizione generale dell'architettura

Lo smart contract

Il client

L'hub

Casi d'uso

Apertura di un canale

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Pagamento OnChain-OnChain

- 1. Pre condizioni
- 2. Descrizione delle interazioni
- 3. Gestione delle eccezioni
 - (a) Credito insufficiente del client OnChain

CASI D'USO 21

Pagamento OffChain-OffChain

- 1. Pre condizioni
- 2. Descrizione delle interazioni
- 3. Gestione delle eccezioni
 - (a) B non invia la ricevuta di pagamento ad A
 - (b) Generazione di una miriade di token
 - (c) L'hub non permette di attaccare un token
 - (d) L'hub non permette di staccare un token
 - (e) A si rifiuta di regolare un trasferimento nei confronti dell'hub
 - (f) Tentativo di pagamento con un token scaduto
 - (g) Mancanza di cooperazione nel ricevere un pagamento

Pagamento OffChain-OnChain

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Pagamento OnChain-OffChain

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Prelievo a caldo

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Ricarica a caldo

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Chiusura di un canale

- 1. Pre condizioni
- 2. Descrizione delle interazioni

Riscossione dei pending token

- 1. Pre condizioni
- 2. Descrizione delle interazioni
- 3. Gestione delle eccezioni
 - (a) Tentativo di ritirare un pending token già usato

Progettazione e sviluppo

Le motivazioni tecnologiche

La blockchain: Ethereum

- 1. Supporto degli smart contract
- 2. Ambiente di sviluppo maturo
 - (a) Solidity
 - (b) Ganache
 - (c) Web3

Il linguaggio di programmazione: TypeScript

- 1. Supporto di web3
- 2. Tipizzazione forte

Il database lato server: Redis

- 1. Throughput considerevole in scrittura
- 2. Customizzazione delle qualità nei limiti del teorema CAP
 - (a) Consistenza
 - (b) Disponibilità
 - (c) Sharding

Il database lato client: LevelDB

Lo smart contract

Implementazione in Solidity

Interfaccia in TypeScript

Il client

RPC privata

- 1. Join di un hub
- 2. Trasferimento OnChain-OnChain
- 3. Detach di un token OffChain-OffChain
- 4. Detach di un token OnChain-OffChain

HUB 25

- 5. Invio della PoD
- 6. Redimere un pending token
- 7. Attach di un token OnChain
- 8. Regolazione di un pagamento OffChain
- 9. Invio della ricevuta di pagamento

Endpoint pubblici

- 1. Ricezione di una PoD
- 2. Ricezione di una ricevuta di pagamento

Gestione degli eventi asincroni

- 1. Il monitor
- 2. Gli eventi
 - (a) Detach di un token OnChain
 - (b) Ricezione di una PoD

Hub

Endpoint pubblici

1. Ricezione di una propose

2. Ricezione di una ricevuta di pagamento

Gestione degli eventi asincroni

- 1. Il monitor
- 2. Gli eventi
 - (a) Join di un utente
 - (b) Chiusura di un canale
 - (c) Ritiro di un pending token

Prove sperimentali

Gli obiettivi

Verifica delle performance delle transazioni OffChain

Verifica della scalabilità delle transazioni OffChain

L'approccio adottato

Benchmark server

- 1. Deploy dell'ambiente di collaudo basato su Docker Swarm
- 2. Esecuzione del benchmark
 - (a) Transazioni seriali
 - (b) Transazioni concorrenti

(c) Simulazione della latenza di rete

Il throughput lato client

Risultati

- 1. Al variare della RAM
 - (a) Tabella
 - (b) Grafico
- 2. Al variare della CPU
 - (a) Tabella
 - (b) Grafico

Il throughput lato hub

Risultati

- 1. Al variare della RAM
 - (a) Tabella
 - (b) Grafico
- 2. Al variare della CPU
 - (a) Tabella

Considerazioni sulle performance

Considerazioni sulla scalabilità

Replicare l'hub

Replicare redis

Conclusioni e sviluppi futuri

Autogestione finanziaria dell'hub

Denominazione degli endpoint sulla base della valuta

[1] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable off-chain instant payments. $draft\ version\ 0.5\ 9,\ (2016),\ 14.$