Math. - CC 1 - S2 - Analyse

vendredi 12 mars 2021 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

On cherche les fonctions $g: \mathbb{R}^2 \to \mathbb{R}$, de classe C^1 , vérifiant :

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = a , \quad a \in \mathbb{R}$$

1. On note $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(u,v) = g\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$. Montrer que

$$\frac{\partial f}{\partial u} = \frac{a}{2}$$

2. En déduire les solutions de l'équation initiale.

EXERCICE 2

1. a. Convergence

On pose $J_n = \int_0^{+\infty} t^n e^{-t^2} dt$ et $I_n = \int_{-\infty}^{+\infty} t^n e^{-t^2} dt$.

- i. Justifier que pour tout $n \in \mathbb{N}$, $t^n e^{-t^2} = cond(\frac{1}{t^2})$.
- ii. Montrer alors que pour tout $n \in \mathbb{N}$, l'intégrale J_n est convergente.
- iii. En déduire que pour tout $n \in \mathbb{N}$, l'intégrale I_n est convergente.
- iv. En déduire que pour tout polynôme $P \in \mathbb{R}[X]$, l'intégrale $\int_{-\infty}^{+\infty} P(t) e^{-t^2} dt$ est convergente.

b. Calcul

Pour la suite, on admet que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

- i. Établir à l'aide d'une intégration par parties que pour tout $n \in \mathbb{N}$, $I_{n+2} = \frac{n+1}{2}I_n$.
- ii. Montrer que pour tout $p \in \mathbb{N}$, $I_{2p+1} = 0$.
- iii. Montrer que pour tout $p \in \mathbb{N}$, $I_{2p} = \frac{(2p)!}{2^{2p} p!} \sqrt{\pi}$.

2. Recherche des extrema

Soit F la fonction définie sur \mathbb{R}^2 par

$$F(x,y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (t-x)^2 (t-y)^2 e^{-t^2} dt$$

- $\textbf{a.}\quad \text{Montrer que } F \text{ est définie sur } \mathbb{R}^2 \text{ et que } \forall (x,y) \in \mathbb{R}^2, \quad F(x,y) = \frac{3}{4} + \frac{1}{2}(x^2 + 4xy + y^2) + x^2y^2.$
- **b.** Montrer que F possède trois points critiques sur \mathbb{R}^2 qui sont (0,0), $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ et $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
- c. Déterminer, lorsqu'ils existent, les extremum locaux de F sur \mathbb{R}^2 .

Fin de l'énoncé d'analyse