

Funktionsprinzip und Anwendungsbeispiele des Dijkstra-Algorithmus

Annika Kremer, Thomas Jürgensen, Tobias Meier

Fachhochschule Trier

22. Juli 2015

Problemstellung

(Quelle: http://www.vrt-info.de/images/

liniennetzplan_trier_2014.png)

(Quelle:

http://www.uni-trier.de/index.php?id=27631)

Table of content

Problemstellung

Graphendefinition

Dijkstra - Algorithmus

Komplexität

Implementierung

Anwendungsbereiche

Quellen

Graphendefinition

Ein **Graph** G besteht aus einer Menge X [deren Elemente Knotenpunkte genannt werden] und einer Menge U, wobei jedem Element $u \in U$ in eindeutiger Weise ein geordnetes oder ungeordnetes Paar von [nicht notwendig verschiedenen] Knotenpunkten, $x,y \in X$ zugeordnet ist. Ist jedem $u \in U$ ein geordnetes Paar von Knoten zugeordnet, so heißt der Graph **gerichtet**, und wir schreiben G = (X, U). Die Elemente von U werden in diesem Fall als Bögen bezeichnet. Ist jedem $u \in U$ ein ungeordnetes Paar von Knotenpunkten zugeordnet, so heißt der Graph ungerichtet und wir schreiben G = [X, U]. Die Elemente von U bezeichnen wir dann als **Kanten**. (Quelle: Bieß, Graphentheorie)

Graphendefinition

Beispiel

Erweiterung der Knoten um ...

Erweiterung der Knoten um ...

einen Schätzwert.

Erweiterung der Knoten um ...

- einen Schätzwert.
- einen Vorgänger.

Erweiterung der Knoten um ...

- einen Schätzwert.
- einen Vorgänger.

Einschränkung der Kanten

Erweiterung der Knoten um ...

- einen Schätzwert.
- einen Vorgänger.

Einschränkung der Kanten

Eine Kante darf nur ein positives Gewicht besitzen.

white node

Ein "white node" ist ein Knoten über den weder ein Schätzwert noch ein Vorgänger bekannt ist.

white node

Ein "white node" ist ein Knoten über den weder ein Schätzwert noch ein Vorgänger bekannt ist.

grey node

Ein "grey node" ist ein Knoten zu dem bereits ein Weg gefunden wurde. Er besitzt also einen Schätzwert und Nachfolger. Diese müssen aber noch nicht optimal sein.

white node

Ein "white node" ist ein Knoten über den weder ein Schätzwert noch ein Vorgänger bekannt ist.

grey node

Ein "grey node" ist ein Knoten zu dem bereits ein Weg gefunden wurde. Er besitzt also einen Schätzwert und Nachfolger. Diese müssen aber noch nicht optimal sein.

black node

Ein "black node" ist ein Knoten zu dem bereits der optimale Weg gefunden wurde.

Berechnung von Knotenwerten

Der Schätzwert S_A eines Knotens K_A kann berechnet werden, wenn es einen Knoten K_V gibt, dessen Schätzwert S_V bekannt ist und eine gerichtete Kante von K_V nach K_A mit bekannten Gewichtung g existiert.

Berechnung: $S_A = S_V + g$

Initialisierung

Initialisierung

▶ Der Startknoten ist ein "black node" mit dem Schätzwert 0. Einen Vorgänger besitzt der Startknoten nicht.

Initialisierung

- Der Startknoten ist ein "black node" mit dem Schätzwert 0. Einen Vorgänger besitzt der Startknoten nicht.
- ▶ Alle seine Nachfolgerknoten werden berechnet. Sie sind somit alle "grey nodes".

Schritt

Schritt

Der "grey node" mit dem niedrigsten Schätzwert wird gesucht.

Schritt

- Der "grey node" mit dem niedrigsten Schätzwert wird gesucht.
- ▶ Dieser "grey node" wird ab sofort als "black node" angesehen.

Schritt

- Der "grey node" mit dem niedrigsten Schätzwert wird gesucht.
- ▶ Dieser "grey node" wird ab sofort als "black node" angesehen.
- Alle Nachfolgerknoten dieses Knotens werden berechnet. Falls die Nachfolger bereits einen Schätzwert hat wird der niedrigere Wert dem Knoten zugeordnet (relaxieren), der Vorgänger wird dabei auch geändert.

Ende

Ende

► Wenn der Zielknoten ein "black node" ist, so hat man den idealen Weg vom Startknoten zum Endknoten gefunden.

Abbildung: Pr. Dr. Schmitz Algorithmendesign

Ursprüngliche Implementierung

► Einzelschritte:

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)

- Einzelschritte:
 - Initialisieren der Arrays je O(m)
 - ▶ Abarbeiten der grauen Knoten O(m)

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - ▶ Bestimmen des Minimums *O*(*m*)

- Einzelschritte:
 - Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - Bestimmen des Minimums O(m)
 - ▶ Aktualisieren der Nachfolger $O(deg(v)) \rightarrow O(k)$

- Einzelschritte:
 - ▶ Initialisieren der Arrays je O(m)
 - ► Abarbeiten der grauen Knoten *O*(*m*)
 - Bestimmen des Minimums O(m)
 - ▶ Aktualisieren der Nachfolger $O(deg(v)) \rightarrow O(k)$
- ▶ insgesamt Komplexität $O(m^2)$

Implementierung mit Heap

Vorteile:

Implementierung mit Heap

- Vorteile:
 - ▶ Heapoperationen in O(logm)

Implementierung mit Heap

- Vorteile:
 - Heapoperationen in O(logm)
 - ▶ Bestimmen des Minimums in *O*(*logm*)

Implementierung mit Heap

- Vorteile:
 - ► Heapoperationen in *O*(*logm*)
 - ▶ Bestimmen des Minimums in *O*(*logm*)
- ▶ insgesamt Komplexität O(k * logm)

Eigenschaften

▶ Programmiersprache: Python

- ► Programmiersprache: Python
- Umsetzung mit Heap (Priority Queue)

- ► Programmiersprache: Python
- Umsetzung mit Heap (Priority Queue)
- keine Speicherung der Farbstufen wie bei Dijkstra

- ▶ Programmiersprache: Python
- Umsetzung mit Heap (Priority Queue)
- keine Speicherung der Farbstufen wie bei Dijkstra
 - kürzerer und übersichtlicherer Code

Kompletter Code

```
from heapp import heappush, heappop
   def dijkstra_pq(G,s):
        m = len(G)
                                                  #0(1)
                      #priority queue
                                                  #O(1)
        d = [None]*m #kosten
                                                  #O(m)
        p = [None] *m #vorgaenger
        d[s] = 0
                                                  #0(1)
        heappush(pq, (0,s))
                                                  #O(log(m))
10
        while pq:
                                                  #O(m)
11
            (.,v) = heappop(pq)
                                                  #O(log m)
            for u in G[v]:
                                                  #O(deg(v)) --> O(k)
13
                alt = d[v] + G[v][u]
                                                  #O(1)
                if d[u]== None or alt < d[u]:
                                                  #O(1)
15
                     d[u] = alt
16
                       p[u] = v
                                                    #O(1)
17
                     heappush(pq. (alt.u))
                                                  #O(log m)
18
        return d.p
19
   def shortest_path(s.v.p):
       if v == None:
22
          return []
23
24
          return shortest path(s.p[v].p) + [v]
25
   # Knotennummern: s=0, u=1, x=2, y=3, v=4, z=5
   def define_G():
29
       G = 1
                {1:1, 4:4, 2:2}.
                                    # Nachfolger von s
30
                 {3:3, 4:1},
31
                 {4:2, 5:3}.
32
33
                {3:1, 5:2}.
                                    # von v
34
                                    # von z
35
36
        return G
37
38
   G = define_G()
   d.p = dijkstra_pq(G, 0)
   print ( shortest_path(0,5,p))
42 print ( shortest path (0.3.p))
```


Eingabe

```
#Graph:
27  #Knotennummern: s=0, u=1, x=2, y=3, v=4, z=5
28  def define_G():
29  G = [ {1:1, 4:4, 2:2},  # Nachfolger von s
30  {3:3, 4:1},  # von u
31  {4:2, 5:3},  # von x
32  {},  # von y
33  {3:1, 5:2},  # von v
34  {}
35  ]
36  return G
```


Algorithmus-Initialisierung

```
from heapq import heappush, heappop
3
    def dijkstra_pq(G, s):
4
        m = len(G)
5
                        #priority queue
        pq =
             None]*m
                        #kosten
                                                      #O(m)
7
8
              None]*m
                        #vorgaenger
                                                 \#O(m)
10
11
12
13
14
15
16
17
18
19
```


Algorithmus-Initialisierung

```
from heapq import heappush, heappop
3
    def dijkstra_pq(G, s):
4
        m = len(G)
5
                        #priority queue
                                                      #O(1)
        pq =
6
             None | *m
                        #kosten
                                                      #O(m)
              None | *m #vorgaenger
                                                 #O(m)
8
                                                      \#O(1)
        heappush(pq, (0,s))
                                                      #O(log m)
10
11
12
13
14
15
16
17
18
19
```


Algorithmus-Erweitern

```
from heapq import heappush, heappop
3
    def dijkstra_pq(G, s):
4
        m = len(G)
                                                     \#O(1)
5
                        #priority queue
                                                     \#O(1)
        pq =
        d = [None]*m #kosten
                                                     #O(m)
78
             [None] *m #vorgaenger
                                                 #O(m)
        d[s]
                                                     \#O(1)
        heappush(pq, (0,s))
                                                     #O(log m)
10
        while pq:
                                                     #O(m)
11
             (.,v) = heappop(pq)
                                                     #O(log m)
12
13
14
15
16
17
18
19
```


Algorithmus-Erweitern

```
from heapq import heappush, heappop
3
    def dijkstra_pq(G, s):
4
        m = len(G)
                                                      \#O(1)
        pq =
                        #priority queue
                                                      \#O(1)
        d = [None]*m #kosten
                                                      #O(m)
             [None]*m #vorgaenger
                                                 #O(m)
8
        d[s]
                                                      \#O(1)
                                                      #O(log m)
        heappush(pq, (0,s))
        while pq:
10
                                                      #O(m)
11
                                                      #O(log m)
             (-,v) = heappop(pq)
12
             for u in G[v]:
                                                      \#O(\deg(v)) \longrightarrow O(k)
                  alt = d[v] + G[v][u]
13
                                                      #O(1)
14
15
16
17
```

18 19

Algorithmus-Aktualisieren

```
from heapq import heappush, heappop
    def dijkstra_pq(G, s):
        m = len(G)
                                                      \#O(1)
                      #priority queue
                                                     \#O(1)
        pq = []
        d = [None]*m #kosten
                                                     #O(m)
78
        p = [None] *m #vorgaenger
                                                #O(m)
        d[s] = 0
                                                     \#O(1)
        heappush(pq, (0,s))
                                                     #O(log m)
        while pq:
10
                                                     #O(m)
11
                                                     #O(log m)
             (-,v) = heappop(pq)
12
             for u in G[v]:
                                                     \#O(\deg(v)) \longrightarrow O(k)
                 alt = d[v] + G[v][u]
13
14
                 if d[u]== None or alt < d[u]:
15
                      d[u] = alt
16
                                                       \#O(1)
17
                      heappush(pq, (alt,u))
                                                     #O(log m)
18
        return d.p
19
```


Rekursives Bestimmen des Pfades

Aufruf

```
| 40 d,p = dijkstra_pq(G,0)
| 41 print( shortest_path(0,5,p))
| 42 print( shortest_path(0,3,p))
```


▶ Wegfindung in Realität und Spiel

- Wegfindung in Realität und Spiel
- ► Routing-Algorithmus in verschiedenen Protokollen

- Wegfindung in Realität und Spiel
- Routing-Algorithmus in verschiedenen Protokollen
- weitere: z.B. Münzproblem

Quellen

- ▶ Prof. Dr. G. Biess: Graphentheorie. Verlag Harri Deutsch, Thun und Frankfurt/Main, 1976.
- ► Tanenbaum, Andrew; WETHERALL, David: Computernetz-werke. Pearson Deutschland GmbH,2012, 2012.
- Prof. Dr. Ottmann und Prof. Dr. Widmayer: Algorithmen und Datenstrukturen, Reihe Informatik Bd. 70.
 BI-Wissenschaftsverlag Mannheim/Wien/Zürich, 1990.
- ▶ Dijkstra, Edsger: A Method of Programming. Addison-Wesley Publishing Company, 1988.
- Vorlesungsskript Algorithmendesign Prof. Dr. Heinz Schmitz Stand 6.April 2015 Lektion 6 Beispiel 6.1 (Bild)
- ▶ Prof. Dr. Heinz Schmitz, Hochschule Trier, Vorlesung Algorithmendesign, Code aus Lektion 6, S.137, dijkstra.py