Integer Polynomials

- 1. A polynomial P(x) has integer coefficients. Prove that if the polynomials P(x) and P(P(P(x))) have a common zero, then they also have a common integer zero.
- 2. Let $f, g \in \mathbb{Z}[x]$ be relatively prime over \mathbb{Q} and define the sequence

$$a_n = (f(n), g(n)).$$

Prove that $(a_n)_{-\infty}^{\infty}$ is periodic.

- 3. Find all polynomials $f(x) \in \mathbb{Z}[x]$ such that there exists a natural number N, such that for any prime p > N, |f(p)| is also prime.
- 4. Determine all monic polynomials p(x) with integer coefficients of degree two for which there exists a polynomial q(x) with integer coefficients such that p(x)q(x) is a polynomial having all coefficients ± 1 .
- 5. Find all monic polynomials $f(x) \in \mathbb{Z}[x]$ such that $\{f(a)|a \in \mathbb{Z}\}$ is closed under multiplication.
- 6. Does there exist a sequence of natural numbers a_0, a_1, a_2, \ldots such that for each $i \neq j$, $(a_i, a_j) = 1$ and for each n, the polynomial $\sum_{i=0}^n a_i x^i$ is irreducible in $\mathbb{Z}[x]$?
- 7. Let

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

be an integer polynomial of degree $n \geq 3$ such that $a_k + a_{n-k}$ is even for all $k = 1, 2, \ldots, n-1$ and a_0 is even. Suppose that f = gh, where $g, h \in \mathbb{Z}[x]$, $\deg g \leq \deg h$ and all the coefficients of h are odd. Prove that f has an integer root.

8. Find all triples of integers (x, y, z) such that

$$x^2 + y^2 + z^2 + 2xyz = 1$$

- 9. Let p(x) be a polynomial with integer coefficients. Determine if there always exists a positive integer k such that p(x) k is irreducible.
- 10. Suppose that $f, g \in \mathbb{Z}[x]$ are monic nonconstant irreducible polynomials such that for all sufficiently large n, f(n) and g(n) have the same set of prime divisors. Prove that f = g.
- 11. Is there a polynomial f with integer coefficients that has no rational zeros, but nonetheless has a zero modulo any positive integer?
- 12. Find all polynomials p with integer coefficients such that, for integers a, b with a + b a perfect square, p(a) + p(b) is a perfect square.

13. Let a, b, c, d, m be positive integers such that (m, c) = 1. Prove that there exists a polynomial f with rational coefficients and of degree at most d such that

$$f(n) \equiv c^{an+b} \pmod{m}$$

for all positive integers n if and only if m devides $(c^a - 1)^{d+1}$.

- 14. Suppose that a polynomial f with integer coefficients has no double zeros. Let $r \ge 1$ be an integer. Prove that there exists an integer n such that the prime factorization of f(n) contains at least r primes occurring with multiplicity 1.
- 15. Prove that, for every integer $n \ge 2$, there is a polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with integer coefficients satisfying the following conditions:
 - (a) the product $a_0 a_1 \cdots a_{n-1}$ is nonzero;
 - (b) the polynomial f(x) is irreducible in $\mathbb{Z}[x]$;
 - (c) for every integer x, |f(x)| is not prime.
- 16. Let $f \in \mathbb{Z}[x]$ be a nonconstant polynomial, and let $k \geq 2$ be an integer such that f(n) is a perfect k^{th} power for each positive integer n. Prove that there exists a polynomial $g \in \mathbb{Z}[x]$ with $f = g^k$.
- 17. Prove that for any given positive integer n, there exists a unique polynomial f(x) of degree n with integer coefficients such that f(0) = 1 and $(x+1)(f(x))^2 1$ is odd.
- 18. Let m and n be odd numbers with n > m > 1. Prove that $f(x) = x^n + x^m + x + 1$ is irreducible in $\mathbb{Z}[x]$.
- 19. Find all polynomials f with integer coefficients such that $f(n)|n^{n-1}-1$ for all sufficiently large n.
- 20. For a non-zero integer n, let d(n) denote the number of positive integer divisors of |n|.
 - (a) For any polynomial f(x) having integer coefficients and no integer roots, prove that the largest primes divisor of d(f(n)) is unbounded as n varies over the integers.
 - (b) For polynomials f(x) and g(x) with integer coefficients and no integer roots, prove that if d(f(n)) = d(g(n)) for all integers n, then there is some constant c such that f(x) = cg(x).
- 21. Find all integers n such that $1 + x + x^2 + \cdots + x^{100}$ can be represented as $P^2 + nQ^2$ where P and Q are polynomials with rational coefficients.