

## planetmath.org

Math for the people, by the people.

## Kripke semantics for modal propositional logic

Canonical name KripkeSemanticsForModalPropositionalLogic

Date of creation 2013-03-22 19:33:22 Last modified on 2013-03-22 19:33:22

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 30

Author CWoo (3771)
Entry type Definition
Classification msc 03B45
Related topic ModalLogic

A Kripe model for a modal propositional logic  $PL_M$  is a triple M := (W, R, V), where

- 1. W is a set, whose elements are called possible worlds,
- 2. R is a binary relation on W,
- 3. V is a function that takes each wff (well-formed formula) A in  $PL_M$  to a subset V(A) of W, such that
  - $V(\bot) = \varnothing$ ,
  - $V(A \to B) = V(A)^c \cup V(B)$ ,
  - $V(\Box A) = V(A)^{\Box}$ , where  $S^{\Box} := \{s \mid \uparrow s \subseteq S\}$ , and  $\uparrow s := \{t \mid sRt\}$ .

For derived connectives, we also have  $V(A \wedge B) = V(A) \cap V(B)$ ,  $V(A \vee B) = V(A) \cup V(B)$ ,  $V(\neg A) = V(A)^c$ , the complement of V(A), and  $V(\diamond A) = V(A)^{\diamond} := V(A)^{c \square c}$ .

One can also define a  $satisfaction\ relation \models \text{between}\ W$  and the set L of wff's so that

$$\models_w A$$
 iff  $w \in V(A)$ 

for any  $w \in W$  and  $A \in L$ . It's easy to see that

- $\not\models_w \perp$  for any  $w \in W$ ,
- $\models_w A \to B$  iff  $\models_w A$  implies  $\models_w B$ ,
- $\models_w A \land B \text{ iff } \models_w A \text{ and } \models_w B$ ,
- $\models_w A \lor B$  iff  $\models_w A$  or  $\models_w B$ ,
- $\models_w \neg A \text{ iff } \not\models_w A$ ,
- $\models_w \Box A$  iff for all u such that wRu, we have  $\models_u A$ ,
- $\models_w \diamond A$  iff there is a u such that wRu and  $\models_u A$ .

When  $\models_w A$ , we say that A is true at world w.

The pair  $\mathcal{F} := (W, R)$  in a Kripke model M := (W, R, V) is also called a (Kripke) frame, and M is said to be a model based on the frame  $\mathcal{F}$ . The validity of a wff A at different levels (in a model, a frame, a collection of frames) is defined in the http://planetmath.org/KripkeSemanticsparent entry.

For example, any tautology is valid in any model.

Now, to prove that any tautology is valid, by the completeness of  $PL_c$ , every tautology is a theorem, which is in turn the result of a deduction from axioms using modus ponens.

First, modus ponens preserves validity: for suppose  $\models_w A$  and  $\models_w A \to B$ . Since  $\models_w A$  implies  $\models_w B$ , and  $\models_w A$  by assumption, we have  $\models_w B$ . Now, w is arbitrary, the result follows.

Next, we show that each axiom of  $PL_c$  is valid:

- $A \to (B \to A)$ : If  $\models_w A$  and  $\models_w B$ , then  $\models_w A$ , so  $\models_w B \to A$ .
- $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ : Suppose  $\models_w A \to (B \to C)$ ,  $\models_w A \to B$ , and  $\models_w A$ . Then  $\models_w B \to C$  and  $\models_w B$ , and therefore  $\models_w C$ .
- $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ : we use a different approach to show this:

$$V((\neg A \to \neg B) \to (B \to A)) = V(\neg A \to \neg B)^c \cup V(B \to A)$$

$$= (V(\neg A) \cap V(\neg B)^c) \cup V(B)^c \cup V(A)$$

$$= (V(A)^c \cap V(B)) \cup V(B)^c \cup V(A)$$

$$= (V(A)^c \cup V(B)^c) \cup V(A) = W.$$

In addition, the rule of necessitation preserves validity as well: suppose  $\models_w A$  for all w, then certainly  $\models_u A$  for all u such that wRu, and therefore  $\models_w \Box A$ .

There are also valid formulas that are not tautologies. Here's one:

$$\Box(A \to B) \to (\Box A \to \Box B)$$

*Proof.* Let w be any world in M. Suppose  $\models_w \Box (A \to B)$ . Then for all u such that wRu,  $\models_u A \to B$ , or  $\models_u A$  implies  $\models_u B$ , or for all u such that wRu,  $\models_u A$ , implies that for all u such that wRu,  $\models_u B$ , or  $\models_w \Box A$  implies  $\models_w \Box B$ , or  $\models_w (\Box A \to \Box B)$ . Therefore,  $\models_w \Box (A \to B) \to (\Box A \to \Box B)$ .

From this, we see that Kripke semantics is appropriate only for normal modal logics.

Below are some examples of Kripke frames and their corresponding validating logics:

1.  $A \to \Box A$  is valid in a frame (W,R) iff R weak identity: wRu implies w=u.

*Proof.* Let (W, R) be a frame validating  $A \to \Box A$ , and M a model based on (W, R), with  $V(p) = \{w\}$ . Then  $\models_w p$ . So  $\models_w \Box p$ , or  $\models_u p$  for all u such that wRu. But then  $u \in V(p)$ , or u = w. Hence R is the relation: if wRu, then w = u.

Conversely, suppose (W,R) is weak identity, M based on (W,R), and w a world in M with  $\models_w A$ . If wRu, then u=w, which means  $\models_u A$  for all u such that wRu. In other words,  $\models_w \Box A$ , and therefore,  $\models_w A \to \Box A$ .

2.  $\square A$  is valid in a frame (W, R) iff  $R = \emptyset$ .

*Proof.* First, suppose  $\Box A$  is valid in (W, R), and M a model based on (W, R), with  $V(p) = \emptyset$ . Since  $\models_w \Box p$ ,  $\models_u p$  for any u such that wRu. Since no such u exists, and w is arbitrary,  $R = \emptyset$ .

Conversely, given a model M based on  $(W, \emptyset)$ , and a world w in M, it is vacuously true that  $\models_u A$  for any u such that wRu, since no such u exists. Therefore  $\models_w \Box A$ .

A logic is said to be sound if every theorem is valid, and complete if every valid wff is a theorem. Furthermore, a logic is said to have the finite model property if any wff in the class of finite frames is a theorem.