Специальная математика и основы статистики

Случайные величины. Законы распределения случайных величин

Вопрос 1. Виды случайных величин

Случайной называют величину (СВ), которая в результате испытания примет одно и только одно возможное значение, заранее не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Будем далее обозначать случайные величины большими буквами X, Y, Z, а их возможные значения — соответствующими малыми буквами x, y, z.

Например, если случайная величина X — число попаданий при трех выстрелах, то ее возможные значения x_1 =0, x_2 =1, x_3 =2, x_4 =3.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Рассмотрим дискретную случайную величину X (ДСВ X) с возможными значениями $\mathbf{x}_1,\dots,\mathbf{x}_n$. В результате опыта величина X примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий.

Обозначим вероятности этих событий $P(X = x_1) = p_1, ..., P(X = x_n) = p_n$.

Так как несовместные события образуют полную группу, то $\sum_{i=1}^n p_i = 1$, т.е. сумма вероятностей всех возможных значений равна единице. Случайная величина будет полностью описана с вероятностной точки зрения,

если будет задано это распределение, т.е. в точности будет указано, какой вероятностью обладает каждое из событий $x_1, ..., x_n$.

Законом распределения ДСВ называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения ДСВ первая строка таблицы содержит возможные значения, а вторая – их вероятности:

Xi	X 1	•••	Xn
p_1	p_1		p _n

Если множество возможных значений X бесконечно (счетно), то ряд $\sum p_i$ сходится и его сумма равна единице.

Пример: Стрелок производит три выстрела по мишени. Вероятность попадания при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывается 5 очков. Найти закон распределения случайной величины X— числа выбитых очков.

Решение. Напишем возможные значения X: $x_1 = 0, x_2 = 5, x_3 = 10, x_4 = 15$.

Соответствующие вероятности этих возможных значений найдем по формуле Бернулли: $p_1=0.6^3=0.216,~p_2=C_3^1\cdot 0.4\cdot 0.6^2=0.432,~p_3=C_3^2\cdot 0.4^2\cdot 0.6^1=0.288,~p_4=0.4^3=0.064.$

Напишем искомый закон распределения

Xi	0	5	10	15	
p_1	0,216	0,432	0,288	0,064	

Для наглядности закон распределения ДСВ можно изобразить и графически, для чего в прямоугольной системе координат строят точки (x_i, p_i) , а затем соединяют их отрезками прямых. Полученную фигуру называют *многоугольником распределения*

Две СВ называют *независимыми*, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае СВ *зависимы*.

Несколько СВ называют *взаимно независимыми*, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Произведением независимых СВ X и Y называется $CB X \cdot Y$, возможные значения которой равны произведениям каждого возможного значения X на каждое возможное значение Y; вероятности возможных значений произведения $X \cdot Y$ равны произведениям вероятностей возможных значений сомножителей.

Суммой СВ X и Y называется СВ X+Y, возможные значения которой равны суммам каждого возможного значения X с каждым возможным значением Y; вероятности возможных значений X+Y для независимых величин X и Y равны произведениям вероятностей слагаемых; для зависимых величин — произведениям вероятности одного слагаемого, на условную вероятность второго.

Еще одним способом задания ДСВ является задание ее функции распределения.

Функцией распределения называют функцию F(x), определяющую вероятность того, что СВ X в результате испытания примет значение, меньшее x, т. е. F(X) = P(X < x)

Поэтому СВ называют *непрерывной*, если ее функция распределения есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.

Свойства функции распределения:

- **1**) Значения функции распределения принадлежат отрезку [0;1]: 0 < F(X) < 1
- 2) F(x) неубывающая функция, т.е. $\forall x_2 > x_1 \ F(x_2) \ge F(x_1)$
- **3**) Вероятность того, что СВ примет значение, заключенное в интервале (a;b), равна приращению функции распределения на этом интервале:

$$P(a < X < b) = F(b) - F(a)$$

- **4**) Вероятность того, что НСВ X примет одно определенное значение, равна нулю.
- **5**) Если возможные значения СВ принадлежат интервалу (a;b), то: $F(X) = \begin{cases} 0, & x \leq a \\ 1, & x > b \end{cases}$
- 6) Если возможные значения НСВ расположены на всей оси х, то справедливы следующие предельные соотношения:

$$\lim_{x \to -\infty} F(X) = 0, \lim_{x \to +\infty} F(X) = 1$$

Функция распределения ДСВ всегда есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям СВ, и равны вероятностям этих значений. Сумма всех скачков функции F(x) равна единице.

Пример: ДСВ Х задана таблицей распределения

X	-1	2	5	
pi	0,2	0,3	0,5	

Если $x \le -1$, то F(x) = 0 (третье свойство).

Если $-1 < x \le 2$, то F(x) = 0,2, т.к. X может принять единственное возможное в данном случае значение -1 с вероятностью 0,2.

Если $2 < x \le 5$, то F(x) = 0,2 + 0,3 = 0,5. Действительно, т.к. X может принять значение -1 (вероятность этого события равна 0,2) или значение 2 (вероятность этого события равна 0,3) и поскольку эти два события несовместны, то по теореме сложения вероятность события X < x равна сумме вероятностей 0,2 + 0,3 = 0,5.

Если x>5, то F(x)=0,2+0,3+0,5=1.

Итак, функция распределения аналитически может быть записана в виде:

$$F(X) = \begin{cases} 0, & x \le -1\\ 0, 2, -1 < x \le 2\\ 0, 5, 2 < x \le 5\\ 1, & x > 5 \end{cases}$$

Ее график имеет вид

Ранее НСВ задавалась с помощью функции распределения. Другим способом задания НСВ является задание плотности ее распределения. **Плотностью распределения** вероятностей НСВ X называют функцию f(x) – первую производную от функции распределения F(x): f(X) = F'(X)

Из этого определения следует, что функция распределения является первообразной для плотности распределения: $F(X) = \int_{-\infty}^{x} f(x) dx$

Заметим, что для описания распределения вероятностей ДСЕ плотность распределения неприменима.

Пример: Найти функцию распределения по данной плотности $0, x \le 0$

распределения:
$$f(X) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2}sinx, & 0 < x \le \pi \\ 0, & x > \pi \end{cases}$$

Решение

При
$$x \le 0$$
 $F(X) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} 0 dx = 0$

При
$$0 < x \le \pi$$
 $F(X) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \frac{\sin x}{2} dx = -\frac{\cos x}{2} \Big|_{0}^{x} = 1 - \frac{\cos x}{2}$

При
$$x > \pi$$
 $F(X) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{\pi} \frac{\sin x}{2} dx + \int_{\pi}^{x} 0 dx = -\frac{\cos x}{2} \Big|_{0}^{\pi} = 1$

Таким образом, функция распределения имеет вид:

$$F(X) = \begin{cases} 0, & x \le 0 \\ 1 - \frac{\cos x}{2}, & 0 < x \le \pi \\ 1, & x > \pi \end{cases}$$

Свойства плотности распределения

1) Плотность распределения – неотрицательная функция: $f(X) \ge 0$

С геометрической точки зрения это означает, что точки, принадлежащие графику плотности распределения, расположены либо над осью Ox, либо на

этой оси. График плотности распределения называют *кривой распределения*.

2) Несобственный интервал от плотности распределения в пределах от $-\infty$ до ∞ равен единице: $\int_{-\infty}^{\infty} f(x) dx = 1$

Геометрически это означает, что вся площадь криволинейной трапеции, ограниченной осью Ох и кривой распределения, равна единице.

3) Теорема. Вероятность того, что НСВ X примет значение, принадлежащее интервалу (a;b), равна определенному интегралу от плотности распределения, взятому в пределах от а до b: $P(a < X < b) = \int_a^b f(x) dx$

Вопрос 2. Числовые характеристики СВ

Закон распределения полностью характеризует СВ. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями, например, числами, которые описывают случайную

величину суммарно; такие числа называют **числовыми** характеристиками СВ.

К числу важных числовых характеристик относятся:

1. Математическое ожидание

Математическое ожидание приближенно равно среднему значению СВ.

Математическим ожиданием ДСВ называют сумму произведений всех ее возможных значений на их вероятности: $M(X) = x_1 p_1 + \cdots + x_n p_n$ (если СВ принимает конечное множество значений) и $M(X) = \sum x_i p_i$ (если СВ принимает бесконечное множество значений, причем мат.ожидание существует, если ряд справа сходится абсолютно).

Математическим ожиданием НСВ, называют определенный интеграл: $M(X) = \int_{-\infty}^{\infty} x f(x) dx$

Пример: а) найти математическое ожидание ДСВ X:

Xi	0	5	10	15	
p_1	0,216	0,432	0,288	0,064	

$$[p_1]$$
 $[0,216]$ $[0,432]$ $[0,288]$ $[0,064]$ $[0,x \le a]$ $[0,x \ge a]$

Решение.

a)
$$M(X) = 0.0,216 + 5.0,432 + 10.0,288 + 15.0,064 = 6$$

6)
$$M(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_{a}^{b} = \frac{a+b}{2}$$

Свойства математического ожидания:

- 1) Математическое ожидание постоянной величины равно самой постоянной: M(C)=C
- 2) Постоянный множитель можно выносить за знак математического ожидания: $M(CX)=C\cdot M(X)$
- 3) Математическое ожидание произведения двух независимых СВ равно произведению их математических ожиданий: $M(XY)=M(X)\cdot M(Y)$
- **4)** Математическое ожидание суммы двух CB равно сумме математических ожиданий слагаемых: M(X+Y)=M(X)+M(Y)
- **5) Теорема.** Математическое ожидание M(X) числа появлений события A в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: M(X)= $n \cdot p$

2. Дисперсия

Дисперсия показывает как рассеянывозможные значения СВ вокруг ее математического ожидания.

0000 X

×

Отклонением называют разность между СВ и ее математическим ожиданием.

Дисперсией (рассеянием) ДСВ называют математическое ожидание квадрата отклонения СВ от ее математического ожидания: $D(X) = M(X - M(X))^2$

Дисперсией НСВ называют величину $D(X) = \int_{-\infty}^{\infty} (x - M(X))^2 f(x) dx$

Теорема. Дисперсия равна разности между математическим ожиданием квадрата СВ X и квадратом ее математического ожидания: $D(X) = M(X^2) - (M(X))^2$

Пример. a) найти дисперсию CB X, которая задана следующим законом распределения:

X 0		5	10	15	
p_i	0,2	0,4	0,3	0,1	

б) найти дисперсию НСВ *X*:
$$f(X) = \begin{cases} 0, & x \le a \\ \frac{1}{b-a}, & a < x \le b \\ 0, & x > b \end{cases}$$

Решение

a)
$$M(X) = 0 \cdot 0.2 + 5 \cdot 0.4 + 10 \cdot 0.3 + 15 \cdot 0.1 = 6.5$$

 $D(X) = (0 - 6.5)^2 \cdot 0.2 + (5 - 6.5)^2 \cdot 0.4 + (10 - 6.5)^2 \cdot 0.3 + (15 -$

$$(6,5)^2 \cdot 0,1 = 20,25$$

Или $M(X^2) = 0^2 \cdot 0,2 + 5^2 \cdot 0,4 + 10^2 \cdot 0,3 + 15^2 \cdot 0,1 = 62,5$

$$D(X) = M(X^2) - (M(X))^2 = 62.5 - 6.5^2 = 20.25$$

6)
$$D(X) = \int_{-\infty}^{\infty} (x)^2 f(x) dx - \left(M(X) \right)^2 = \int_a^b \frac{x^2}{b-a} dx - \left(\frac{a+b}{2} \right)^2 = \frac{1}{b-a} \cdot \frac{x^3}{3} \Big|_a^b - \left(\frac{a+b}{2} \right)^2 = \frac{(b-a)^2}{12}$$

Свойства дисперсии:

- 1) Дисперсия постоянной величины С равна нулю: D(C)=0
- **2**) Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат: $D(CX) = C^2 \cdot D(X)$
- **3**) Дисперсия суммы двух независимых CB равна сумме дисперсий этих величин: D(X+Y) = D(X) + D(Y)
- **4)** Дисперсия суммы постоянной величины и случайной равна дисперсии CB: D(X + C) = D(X)
- **5**) Дисперсия разности двух независимых CB равна сумме их дисперсий: D(X Y) = D(X) + D(Y)
- **6) Теорема.** Дисперсия числа появлений события A в n независимых испытаниях, в каждом из которых вероятность p появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании: D(X) = npq

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения, кроме дисперсии, служат и некоторые другие характеристики, например, среднее квадратическое отклонение. *Средним квадратическим отклонением* случайной величины X называют квадратный корень из дисперсии: $\sigma(X) = \sqrt{D(X)}$

4. Теоретические моменты

Начальным моментом порядка k СВ X называют математическое ожидание величины X^k : $v_k = M(X^k)$

В частности,
$$\nu_1 = M(X)$$
, $\nu_2 = M(X^2)$, $D(X) = \nu_2 - \nu_1^2$

Центральным моментом порядка k CB X называют математическое ожидание величины $(X - M(X))^k$: $\mu_k = M((X - M(X))^k)$

В частности,
$$\mu_1 = M(X - M(X)) = 0$$
, $\mu_2 = M((X - M(X))^2) = D(X) = \nu_2 - \nu_1^2$, $\mu_3 = \nu_3 - 3\nu_1\nu_2 + 2\nu_1^3$, $\mu_4 = \nu_4 - 4\nu_1\nu_3 + 6\nu_1^3\nu_2 - 3\nu_1^4$ Моменты более высоких порядков применяются редко.

Отметим, что моменты, рассмотренные здесь, называют *теоретическими*. В отличие от теоретических моментов моменты, которые вычисляются по данным наблюдений, называют *эмпирическими*.

5. Мода и медиана

Модой Мо *ДСВ* называется ее наиболее вероятное значение.

Для НСВ мода есть такое значение СВ, для которой f(Mo) = max f(x) Meduahoŭ Ме СВ X называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения СВ, т.е. P(X < Me) = P(X > Me)

Геометрически медиана — это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится пополам.

Каждая из этих площадей равна 0,5, т.к. вся площадь, ограниченная кривой распределения, равна 1.

Вопрос 3. Законы распределения ДСВ

Среди законов распределения для ДСВ наиболее распространенными являются биномиальное распределение, распределение Пуассона, геометрическое распределение и некоторые другие.

1. Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна p (следовательно, вероятность не появления q=1-p).

Рассмотрим в качестве ДСВ X число появлений события A в этих испытаниях. Требуется составить закон распределения СВ X.

Для этого необходимо определить возможные значения X и соответствующие им вероятности.

Событие A в n испытаниях может либо не появиться, либо появиться 1 раз, либо 2 раза, ..., либо n раз. Таким образом, возможными значениями X являются $\mathbf{x}_1=0$, $\mathbf{x}_2=1$, $\mathbf{x}_3=2$, ..., $\mathbf{x}_{n+1}=n$.

Для нахождения вероятностей данных значений используем формулу Бернулли: $P_n(X=k) = C_n^k p^k (1-p)^{n-k}$

Биномиальным называют распределение вероятностей, определяемое формулой Бернулли и представляемое в виде таблицы:

Xi	0	1	•••	k	•••	n-1	n
p_1	q^n	npq^{n-1}	• • •	$C_n^k p^k q^{n-k}$	•••	$np^{n-1}q$	p^n

Обозначение: $X \in B(n, k)$

Числовые характеристики биномиального закона:

$$M(X) = n \cdot p$$
, $D(X) = n \cdot p \cdot q$, $\sigma(X) = \sqrt{n \cdot p \cdot q}$

2. Распределение Пуассона

Пусть производится n независимых испытаний, в каждом из которых вероятность появления события A равна p. Для определения вероятности k появлений события в этих испытаниях используют формулу Бернулли. Если же n велико, то пользуются асимптотической формулой Лапласа. Однако эта формула непригодна, если вероятность события мала ($p \le 0,1$). В этих случаях (n велико, p мало) прибегают к асимптотической формуле Пуассона.

Пусть среднее число появлений события A в различных сериях испытаний, т.е. при различных значениях п остается неизменным, что выражается соотношением $np = \lambda$.

Распределением Пуассона называется закон распределения массовых (п велико) и редких (р мало) событий, который выражается формулой:

$$P_n(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Пример: Тигр-альбинос появляется в природе в среднем один на десять тысяч особей. В год рождается около 500 особей. Какова вероятность появится в следующем году двум тиграм-альбиносам?

Решение. По условию, n=500, p=0,0001, k=2. Найдем: λ =np=500·0,0001=0,05.

Тогда по формуле Пуассона искомая вероятность приближенно равна

$$P_{500}(X=2) = \frac{0.05^2}{2!}e^{-0.05} \approx 0.0012$$

Числовые характеристики закона Пуассона:

$$M(X) = \lambda$$
, $D(X) = \lambda$, $\sigma(X) = \sqrt{\lambda}$

Пусть производятся независимые испытания, в каждом из которых вероятность появления события A равна p (0<p<1) и, следовательно, вероятность его непоявления q=1-p. Испытания заканчиваются, как только появится событие A.

Таким образом, если событие A появилось в k-м испытании, то в предшествующих k-1 испытаниях оно не появлялось.

Обозначим через $X \not\perp CB$ — число испытаний, которые нужно провести до первого появления события A.

Очевидно, возможными значениями X являются натуральные числа: $x_1 = 1, x_2 = 2, ...$

Пуст первыь вх k-l испытаниях событие A не наступило, а в k-м испытании появилось. Вероятность этого события, по теореме умножения вероятностей независимых событий, есть $P(X = k) = q^{k-1}p$.

Полагая $k=1, 2, \dots$ в данной формуле, получим геометрическую прогрессию с первым членом p и знаменателем q (0<q<1): $p,qp,q^2p,\dots,q^{k-1}p,\dots$

По этой причине данное распределение называют геометрическим.

Легко убедиться, что ряд $\sum q^{k-1}p$ сходится и сумма его равна единице. **Пример:** Электрическая лампочка включается и выключается до

перегорания спирали. Вероятность перегорания p=0,001. Найти вероятность того, что перегорание произойдет на 100-м включении.

Решение. По условию p=0,001, q=0,999, k=100. Искомая вероятность $P(X = 100) = 0,999^{100-1} \cdot 0,001 \approx 0,0009$.

Числовые характеристики геометрического распределения:

$$M(X) = \frac{1}{p}, D(X) = \frac{q}{p^2}, \sigma(X) = \frac{\sqrt{q}}{p}$$

4. Гипергеометрическое распределение

Рассмотрим задачу: пусть в партии из N изделий имеется M стандартных (M < N). Из партии случайно отбирают n изделий (каждое изделие может быть извлечено с одинаковой вероятностью), причем отобранное изделие перед отбором следующего не возвращается в партию (поэтому формула Бернулли здесь неприменима).

Обозначим через X CB — число m стандартных изделий среди n отобранных. Возможными значениями X являются: $0, 1, 2, ..., \min(M, n)$.

Для определения вероятности того, что X=m, т.е. что среди n отобранных изделий ровно m стандартных, используем классическое определение вероятности: общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь n изделий из N изделий: C_N^n ; число исходов, благоприятствующих

событию X=m (среди взятых n изделий ровно m стандартных): \mathcal{C}_M^m \mathcal{C}_{N-M}^{n-m} : искомая вероятность равна $P(X=m)=\frac{\mathcal{C}_M^m \cdot \mathcal{C}_{N-M}^{n-m}}{\mathcal{C}_N^n}$.

Данная формула определяет распределение вероятностей, которое называют *гипергеометрическим*.

Учитывая, что m-CB, заключаем, что гипергеометрическое распределение определяется тремя параметрами: N, M, n. Иногда в качестве параметров этого распределения рассматривают N, n и p=M/N, где p- вероятность того, что первое извлеченное изделие стандартное. Заметим, что если n значительно меньше N (практически если $n<0,1\cdot N$), то гипергеометрическое распределение дает вероятности, близкие к вероятностям, найденным по биномиальному закону.

Пример: Среди 12 изделий имеется 8 стандартных. Найти вероятность того, что среди наудачу извлеченных 5 изделий окажется ровно 3 стандартных.

Решение. По условию N=12, M=8, n=5, m=3. Искомая вероятность $P(X=3) = \frac{C_8^3 \cdot C_{12-8}^{5-3}}{C_{12}^5} = \frac{14}{33}$.

Числовые характеристики гипергеометрического распределения:

$$M(X) = \frac{n \cdot M}{N},$$

$$D(X) = \frac{n \cdot m \cdot M \cdot (N - M)}{N^2} + n(n - 1) \left(\frac{M}{N} \cdot \frac{M - 1}{N - 1} - \left(\frac{M}{N}\right)^2\right)$$

Вопрос 4. Законы распределения НСВ

1. Нормальный закон

Нормальный закон распределения (закон Гаусса) играет исключительно важную роль в ТВ и занимает среди других законов распределения особое положение. Это наиболее часто встречающийся на практике закон распределения. Главная особенность, выделяющая нормальный закон среди

других законов, состоит в том, что он является *предельным законом*, к которому приближаются другие законы распределения при достаточно часто встречающихся типичных условиях.

Нормальным называют распределение вероятностей непрерывной СВ,

которое описывается плотностью
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Функция распределения нормального закона имеет вид $F(X)=0.5+\Phi\left(\frac{x-a}{\sigma}\right)$, где $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_0^x e^{-\frac{z^2}{2}}dz$ — функция Лапласа.

Обозначение: $X \in N(a, \sigma)$

Числовые характеристики нормального закона:

$$M(X) = a$$
, $D(X) = \sigma^2$, $\sigma(X) = \sigma$.

коэффициент асимметрии A=0, эксцесс E=0

Стандартным нормальным законом называется закон, у которого $a=0, \sigma=1$

График плотности нормального распределения называют *нормальной кривой (кривой Гаусса)*.

Свойства кривой Гаусса:

- 1. Функция определена на всей оси х.
- 2. При всех значениях х функция принимает положительные значения, т.е. нормальная кривая расположена над осью Ох.
- 3. Т.к. предел функции при неограниченном возрастании х (по абсолютной

величине) равен нулю $\lim_{x \to \pm \infty} f(x) = 0$, то ось Ox служит горизонтальной асимптотой графика.

- 4. При x=а функция имеет максимум, равный $y_{max} = \frac{1}{\sigma\sqrt{2\pi}}$
- 5. Точки графика с абсциссами x=a±σ являются точками перегиба.
- 6. Разность (x-a) содержится в аналитическом выражении функции в квадрате, т.е. график функции симметричен относительно прямой x=a.
- 7. Изменение величины математического ожидания не изменяет формы нормальной кривой, а приводит лишь к ее сдвигу вдоль оси Ох: вправо, если а возрастает, и влево, если а убывает.

8. С возрастанием о максимальная ордината нормальной кривой убывает, а сама кривая становится более пологой, т.е. сжимается к оси Ох; при убывании о нормальная кривая становится более «островершинной», и растягивается в положительном направлении оси Оу.

Пусть СВ $X \in N(a,\sigma)$. Тогда вероятность того, что X примет значение, принадлежащее интервалу $(\alpha;\beta)$, равна $P(\alpha < X < \beta) = \Phi\left(\frac{\beta-a}{\sigma}\right) - \Phi\left(\frac{\alpha-a}{\sigma}\right)$, где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \mathrm{e}^{-\frac{z^2}{2}} dz$ — функция Лапласа.

Пример: Найти вероятность того, что $X \in N(30,10)$ примет значение, принадлежащее интервалу (10;50).

Решение. По условию, α =10, β =50, a=30, σ =10, следовательно, $P(10 < X < 50) = \Phi\left(\frac{50-30}{10}\right) - \Phi\left(\frac{10-30}{10}\right) = 2\Phi(2)$. Находим в таблице $\Phi(2)$ =0,4772. Тогда $P(10 < X < 50) = 2 \cdot 0,4772 = 0,9544$

Правило трех сигм: если СВ распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Законы больших чисел

Неравенство Чебышева. Вероятность того, что отклонение СВ X от ее математического ожидания по абсолютной величине меньше положительного числа ε , не меньше, чем $1 - \frac{D(X)}{\varepsilon^2}$:

$$P(|X - M(X)| < \varepsilon) \ge 1 - \frac{D(X)}{\varepsilon^2}$$

Теорема Чебышева. Если $X_1, X_2, \ldots, X_n, \ldots$ – попарно независимые СВ, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число ε , вероятность неравенства $\left|\frac{X_1+\cdots+X_n}{n}-\frac{M(X_1)+\cdots+M(X_n)}{n}\right|<\varepsilon$ будет как угодно близка к единице, если число случайных величин достаточно велико:

$$\lim_{n\to\infty} P\left(\left|\frac{X_1+\cdots+X_n}{n}-\frac{M(X_1)+\cdots+M(X_n)}{n}\right|<\varepsilon\right)=1$$

<u>Сущность теоремы Чебышева:</u> среднее арифметическое достаточно большого числа независимых величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины.

Теорема Чебышева справедлива не только для дискретных, но и для непрерывных случайных величин.

Теорема Бернулли. Если в каждом из n независимых испытаний вероятность p события A постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико: $\forall \varepsilon > 0$ $\lim_{n \to \infty} P\left(\left|\frac{m}{n} - p\right| < \varepsilon\right) = 1$

Центральная предельная теорема. Если СВ X представляет собой сумму очень большого числа взаимно независимых СВ, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному.

2. Показательное распределение

Показательным (экспоненциальным) называют распределение вероятностей НСВ X, которое описывается плотностью $f(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases}$ где λ – постоянная положительная величина.

Числовые характеристики показательного закона:

$$M(X) = \frac{1}{\lambda}, \ D(X) = \frac{1}{\lambda^2}, \ \sigma(X) = \frac{1}{\lambda}$$

3. Равномерное распределение

Распределение вероятностей называют равномерным, интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Плотность равномерного распределения f(X) =имеет вид:

$$\begin{cases} 0, & x \le a \\ \frac{1}{b-a}, & a < x \le b \\ 0, & x > b \end{cases}$$

Функция распределения равномерного распределения имеет вид:

$$F(X) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1, & x > b \end{cases}$$

Числовые характеристики равномерного закона:

$$M(X) = \frac{a+b}{2}, D(X) = \frac{(b-a)^2}{12}$$

4. Распределение χ²

 \overline{P} аспределением χ^2 называется распределение случайной величины, представляющей собой сумму квадратов п независимых стандартных нормальных случайных величин: $\chi^2 = \sum_{i=1}^n x_i^2$, где $x_i \in N(0,1)$

 χ^2 -распределения имеет f(X) =

$$\begin{cases} 0, \ x \leq 0 \\ \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} e^{-\frac{x}{2}x^{\frac{k}{2}-1}}, \ x>0, \ \text{ где } \Gamma(\mathbf{x}) = \int_0^\infty t^{x-1}e^{-t}dt \ - \ \text{гамма-функция} \end{cases}$$

Эйлера ($\Gamma(n+1)=n!$)

Замечания.

- 1) Сумма квадратов $\chi^2 = \sum_{i=1}^n x_i^2$, где все x_i независимы, является случайной величиной, зависящей от п случайных величин, поэтому говорят, что распределением χ^2 имеет k=n степеней свободы. Если x_i связаны некоторыми соотношениями, то k=n-1.
- 2) С увеличением числа степеней свободы распределение «хи-квадрат» постепенно приближается к нормальному.

Числовые характеристики χ^2 -распределения:

$$M(X) = k, \ D(X) = 2k$$

Рассмотрим две независимые случайные величины: $Z \in N(0,1)$ и $V \in$ $\chi^2(k)$.

величина $T = \frac{Z}{\sqrt{\frac{V}{k}}}$ имеет распределение, называемое Тогда

распределение Стьюдента с к степенями свободы.

Замечание: с возрастанием числа степеней свободы распределение Стьюдента быстро приближается к нормальному (при распределение можно считать нлормальным).

Плотность распределения Стьюдента имеет вид:

$$f(X) = \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})\sqrt{\pi k}} \left(1 + \frac{x^2}{k}\right)^{\frac{k+1}{2}}$$

Числовые характеристики распределения Стьюдента:

$$M(X) = 0, D(X) = \frac{k}{k-2}$$

6. Распределение Фишера

Рассмотрим две независимые случайные величины: $\chi^2(k_1)$ с k_1 степенями свободы и $\chi^2(k_2)$ с k_2 степенями свободы. Тогда величина

$$F = \frac{\chi^2(k_1)/k_1}{\chi^2(k_2)/k_2}$$
 имеет распределение, называемое распределением Фишера с k_1 и k_2 степенями своболы

Фишера с k_1 и k_2 степенями свободы.

Плотность распределения Фишера имеет вид: $f(X) = C \cdot \frac{x^{\frac{k_1}{2}-1}}{\left(1+\frac{k_1}{k_2}x\right)^{\frac{k_1+k_2}{2}}}$

где С – нормировочная константа.

Числовые характеристики распределения Фишера:

$$M(X) = \frac{k_2}{k_1 - 2} \quad (k_2 > 2)$$

$$M(X) = \frac{k_2}{k_1 - 2} \quad (k_2 > 2) ,$$

$$D(X) = 2k_1^2 (k_1 + k_2 - 2) (k_1 (k_2 - 2)^2 (k_2 - 4)) \quad (k_2 > 4) .$$

00