Stat 122 (Mathematical Statistics 2)

Course Outline

Course Information

Course Code: Stat 122

 $Course\ Title:$ Mathematical Statistics 2

Pre-requisite: Stat 121 (Mathematical Statistics 1)

Credit: 3.0 units

Semester Offered: Second Semester

Number of Contact Hours per Week: 3 hours lecture per week (10-11:30 TF)

Course Description: Functions of random variables, sampling distributions, point and interval

estimation

Course Outcomes

- 1. Derive distributions of functions of random variables;
- 2. Derive sampling distributions related to the normal distribution;
- 3. Derive point and interval estimates of population parameters; and
- 4. Evaluate properties of point estimators.

Topical Outline

Module 1. Distribution of Functions of Random Variables

- 1. The Cumulative Distribution Function Technique
- 2. The Transformation Technique
- 3. The Moment Generating Function Technique
- 4. Bivariate Transformation
- 5. Distribution of Order Statistics

Module 2. Sampling Distributions and the Central Limit Theorem

- 1. Sampling distributions related to the normal distribution (chi-square, t, and F distributions)
- 2. The Central Limit Theorem
- 3. The normal approximation to the binomial distribution

Module 3: Point and Interval Estimation

- 1. Bias and mean square error
- 2. The standard error of an estimator
- 3. Estimating the population variance
- 4. Error bounds and the empirical rule
- 5. Confidence intervals and pivotal quantities
- 6. Large-sample confidence intervals
- 7. Sample size determination
- 8. Small-sample confidence intervals for normal means
- 9. Confidence intervals for variances

Module 4. Properties of Point Estimators and Methods of Estimation

- 1. Sufficiency
- 2. The Rao-Blackwell theorem
- 3. Method of moments estimation
- 4. Maximum likelihood estimation
- 5. Consistency and the Weak Law of Large Numbers
- 6. Large-sample properties of maximum likelihood estimators

Course Requirements and Grading System

- 1. Quizzes (15%)
- 2. Problem Sets (25%)
- 3. Long Examinations (60%)

Rating (%)	Grade Equivalent
98-100	1.00
95-97	1.25
90-94	1.50
85-89	1.75
80-84	2.00
75-79	2.25
70-74	2.50
65-69	2.75
60-64	3.00
53-59	3.25
46-52	3.50
39-45	3.75
32-38	4.00
25-31	4.25
18-24	4.50
11-17	4.75
0-10	5.00

Suggested References

- 1. Mendenhall, W., Scheaffer, R. L., and Wackerly, D. D. (2008). Mathematical Statistics with Applications, 7th ed. Brooks/Cole, Cenage Learning.
- 2. Hogg, R. V., Tanis, E. A., and Zimmerman, D. L. (2015). Probability and Statistical Inference, 9th ed. Pearson Education, Inc.

- 3. Hogg, R.V. and Craig, A. T. (2004). Introduction to Mathematical Statistics, Fifth Edition, Macmillan Publishing Co., Inc., N.Y.
- 4. Ramachandran, K. M. and Tsokos, C. P. (2009). Mathematical Statistics with Applications. Elsevier Inc.
- 5. Miller, I. and Miller, M. (1999). John E. Freund's Mathematical Statistics. 6th ed. Prentice-Hall Int'l., Inc. New Jersey.
- 6. Mood, Graybill, and Boes. 1974. Introduction to the Theory of Statistics. Third Edition. International Student Edition. McGraw-Hill Kogakusha, Ltd.
- 7. https://online.stat.psu.edu/stat415/