Esercizio W1D4: Dati e attributi.

Esempio: report d'analisi sulle proprietà meccaniche di un materiale.

Nell'immagine seguente abbiamo un esempio di schermata software di un dinamometro a doppia colonna (<u>karg a doppia colonna - Cerca Immagini (bing.com)</u>) durante una sessione di analisi sulle proprietà meccaniche dei materiali:

Figura 1: schermata di analisi in software Karg.

Nello specifico possiamo dire che: tale immagine è una tipologia di dato non strutturato in cui si trovano due tipologie di dati strutturati (ovvero: dati organizzati in tabelle, semplici da leggere e comprendere soprattutto grazie agli attributi):

• <u>Il grafico allungamento/carico</u>: gli identificatori in questo caso sono i nomi degli assi: in ascissa troviamo l'allungamento % ed in ordinata il carico applicato.

Figura 2: grafico allungamento/ carico applicato.

• <u>I risultati d'analisi tabellati:</u> in questo caso gli attributi sono i parametri che si trovano nella prima riga e, dunque, le colonne che identificano i dati raggruppati per parametro rilevato.

Figura 3: tabella risultati in software Karg.

Volendo, si può utilizzare l'immagine del grafico (dato non strutturato) per trasformarlo in strutturato creando manualmente una tabella Excel il cui si trascrivono i punti rilevati e si ricostruisce l'andamento.

Oppure, per parlare di dato **semi – strutturato**, si può dire che: la tabella 2, contiene testi e numeri. Durante il processo di salvataggio ed invio dati in file Excel di raccolta ed analisi è necessario salvare in formato .txt creando dunque un report in note che può essere "agganciato" al file Excel. In questo modo si descrive un sato semi – strutturato convertito in dato Excel struttuato.

Esempio salvataggio tabella raccolta ed analisi dati in file Excel:

In tabella seguente sono stati organizzati alcuni risultati di test per le proprietà meccaniche prendendo come campione film in PET di diverso spessore.

Salvataggio formato .txt

tipo campione n° prova		MdJ (MPa)		A(%)	Rm (Kg/cm2)
PET 23µm	prova 1	4400	154	2240	
PET 23µm	prova 2	4430	152	2235	
PET 30µm	prova 1	4350	144	2340	
PET 30µm	prova 2	4330	147	2350	
PET 50μm	prova 1	4520	159	2260	
PET 50μm	prova 2	4560	162	2320	

Che diventa tabella in file Ecxel:

tipo campione	n° prova	MdJ (MPa)	A(%)	Rm (Kg/cm ²)
PET 23µm	prova 1	4400	154	2240
ΡΕΙ Ζ5μΙΙΙ	prova 2	4430	152	2235
PET 30μm	prova 1	4350	144	2340
ΡΕΙ 30μΠ	prova 2	4330	147	2350
DET FOUR	prova 1	4520	159	2260
PET 50μm	prova 2	4560	162	2320