

# HIGH-VOLTAGE MIXED-SIGNAL IC

UG1701x

65x132 STN Controller-Driver

MP Specifications Revision 1.0

November 7, 2008



# **Table of Content**

| INTRODUCTION                     | 3  |
|----------------------------------|----|
| MAIN APPLICATIONS                | 3  |
| FEATURE HIGHLIGHTS               | 3  |
| ORDERING INFORMATION             | 4  |
| BLOCK DIAGRAM                    | 5  |
| PIN DESCRIPTION                  | 6  |
| RECOMMENDED COG LAYOUT           | 9  |
| CONTROL REGISTERS                | 10 |
| COMMAND TABLE                    | 12 |
| COMMAND DESCRIPTION              | 13 |
| LCD VOLTAGE SETTING              | 18 |
| V <sub>LCD</sub> QUICK REFERENCE | 19 |
| LCD DISPLAY CONTROLS             | 21 |
| ITO LAYOUT AND LC SELECTION      | 22 |
| HOST INTERFACE                   | 25 |
| DISPLAY DATA RAM (DDRAM)         | 29 |
| RESET & POWER MANAGEMENT         | 31 |
| ESD Consideration                | 36 |
| ABSOLUTE MAXIMUM RATINGS         | 37 |
| SPECIFICATIONS                   | 38 |
| AC CHARACTERISTICS               | 39 |
| PHYSICAL DIMENSIONS              | 43 |
| ALIGNMENT MARK INFORMATION       | 44 |
| PAD COORDINATES                  | 45 |
| TRAY INFORMATION                 | 47 |
| REVISION HISTORY                 | 48 |

# UC1701x

Single-Chip, Ultra-Low Power 65COM by 132SEG Passive Matrix LCD Controller-Driver

## INTRODUCTION

UC1701x is an advanced high-voltage mixedsignal CMOS IC, especially designed for the display needs of ultra-low power hand-held devices.

This chip employs UltraChip's unique DCC (Direct Capacitor Coupling) driver architecture to achieve near crosstalk free images.

In addition to low power column and row drivers, the IC contains all necessary circuits for high-V LCD power supply, bias voltage generation, timing generation and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

## MAIN APPLICATIONS

 Cellular Phones, Smart Phones, PDA, and other battery operated palm top devices or portable Instruments

## **FEATURE HIGHLIGHTS**

- Single chip controller-driver support 65x132 graphics STN LCD panels.
- Support both row ordered and column ordered display buffer RAM access.

- Support industry standard 8-bit parallel bus (8080 or 6800 mode) and 4-wire serial bus (S8) interface.
- Ultra-low power consumption under all display patterns.
- Fully programmable Mux Rate and Bias Ratio allow many flexible power management options.
- 7-x internal charge pump with on-chip pumping capacitor requires only 3 external capacitors to operate.
- On-chip Power-ON Reset and Software RESET commands, make RST pin optional.
- Very low pin count (10-pin) allows exceptional image quality in COG format on conventional ITO glass.
- Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.

 $\begin{array}{lll} \bullet & V_{DD} \ range \ (Typ.): & 1.8 V \sim 3.3 V \\ V_{DD2/3} \ range \ (Typ.): & 2.5 V \sim 3.3 V \\ LCD \ V_{OP} \ range: & 3.9 V \sim 11.5 V \end{array}$ 

Available in gold bump dies

COM/SEG bump information

 $\begin{array}{ll} \text{Bump pitch:} & 27 \ \mu\text{M} \\ \text{Bump gap:} & 12 \ \mu\text{M} \\ \text{Bump surface:} & 2077.5 \ \mu\text{M}^2 \end{array}$ 



## **ORDERING INFORMATION**

| Part Number | I <sup>2</sup> C | Description     |
|-------------|------------------|-----------------|
| UC1701xGAA  | No               | Gold Bumped Die |

## **General Notes**

#### **APPLICATION INFORMATION**

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

## BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

#### LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

## CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

## **CONTACT DETAILS**

UltraChip Inc. (Headquarter) 2F, No. 70, Chowtze Street, Nei Hu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip.com

Web site: http://www.ultrachip.com

## **BLOCK DIAGRAM**





## **PIN DESCRIPTION**

| Name                                 | Туре | Pins   | Description                                                                                                                                                                                                |
|--------------------------------------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |      |        | Main Power Supply                                                                                                                                                                                          |
|                                      |      |        | $V_{DD}$ supplies for Display Data RAM and digital logic, $V_{DD2}$ supplies for $V_{LCD}$ and $V_{D}$ generator, $V_{DD3}$ supplies for $V_{BIAS}$ and other analog circuits.                             |
| $V_{DD} \ V_{DD2}$                   | PWR  | 3<br>4 | $V_{DD2}/V_{DD3}$ should be connected to the same power source. But $V_{DD}$ can be connected to a source voltage no higher than $V_{DD2}/V_{DD3}$ .                                                       |
| $V_{DD3}$                            |      | 2      | Please maintain the following relationship: $V_{DD}+1.3V \ge V_{DD2/3} \ge V_{DD}$                                                                                                                         |
|                                      |      |        | ITO trace resistance needs to be minimized for V <sub>DD2</sub> /V <sub>DD3</sub> .                                                                                                                        |
| $V_{SS}$ $V_{SS2}$                   | GND  | 2<br>4 | Ground. Connect $V_{SS}$ and $V_{SS2}$ to the shared GND pin. In COG applications, minimize the ITO resistance for both $V_{SS}$ and $V_{SS2}$ .                                                           |
|                                      |      |        | LCD Power Supply & Voltage Control                                                                                                                                                                         |
| V <sub>B0+</sub><br>V <sub>B0-</sub> | PWR  | 2<br>2 | LCD Bias Voltages. These are the voltage sources to provide SEG driving currents. These voltages are generated internally. Connect capacitors of $C_{BX}$ value between $V_{BX+}$ and $V_{BX-}$ .          |
| V <sub>B1+</sub><br>V <sub>B1-</sub> | PVVR | 4<br>2 | In COG application, the resistance of these ITO traces directly affects the SEG driving strength of the resulting LCD module. Minimize these trace resistance is critical in achieving high quality image. |
| V <sub>LCDIN</sub>                   | PWR  | 2      | Main LCD Power Supply. When $V_{\text{LCD}}$ is used, connect these pins together.                                                                                                                         |
| V <sub>LCDOUT</sub>                  | FVVK | 2      | By-pass capacitor $C_L$ is optional. It can be connected between $V_{LCD}$ and $V_{SS}$ . When $C_L$ is used, keep the ITO trace resistance around 70~100 $\Omega$ .                                       |

## Note

Recommended capacitor values:  $\begin{array}{ll} C_B\colon \ 2.2\mu F/5V \ or \ 100{\sim}250x(LCD \ load \ capacitance). \\ C_L\colon \ 330nF/25V \ is \ appropriate \ for \ most \ applications. \end{array}$ 

| Name             | Туре | Pins |                                            |                                                                                                                                                                                                 | Description                                                                                                          |  |  |  |  |  |  |  |  |
|------------------|------|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                  |      |      | Hos                                        | ST INTERFAC                                                                                                                                                                                     | E                                                                                                                    |  |  |  |  |  |  |  |  |
|                  |      |      | Bus mode: The int {D7, D6} by the fol      |                                                                                                                                                                                                 | node is determined by BM[1:0] and onship:                                                                            |  |  |  |  |  |  |  |  |
| DMO              |      |      | BM[1:0] {[                                 | 07, D6}                                                                                                                                                                                         | Mode                                                                                                                 |  |  |  |  |  |  |  |  |
| BM0<br>BM1       | 1    | 1 1  | 11                                         | Data                                                                                                                                                                                            | 6800/8-bit                                                                                                           |  |  |  |  |  |  |  |  |
|                  |      |      | 10                                         | Data                                                                                                                                                                                            | 8080/8-bit                                                                                                           |  |  |  |  |  |  |  |  |
|                  |      |      | 0x SE                                      | A, SCK                                                                                                                                                                                          | 4-wire SPI w/ 8-bit token (S8: conventional)                                                                         |  |  |  |  |  |  |  |  |
| CS0              | 1    | 1    | Chip Select. Chip is selected, D[7:0] wi   |                                                                                                                                                                                                 | when CS0 = "L". When the chip is not impedance.                                                                      |  |  |  |  |  |  |  |  |
| RST              | 1    | 1    | Since UC1701x ha                           | is built-in Po                                                                                                                                                                                  | sters are re-initialized by their default states.<br>wer-On Reset and Software Reset command,<br>per chip operation. |  |  |  |  |  |  |  |  |
|                  |      |      |                                            |                                                                                                                                                                                                 | d on-chip. There is no need for external RC seed, connect the pin to $V_{\text{DD}}$ .                               |  |  |  |  |  |  |  |  |
| CD               |      | 1    | Select Control data                        |                                                                                                                                                                                                 | data for read/write operation.                                                                                       |  |  |  |  |  |  |  |  |
|                  | '    | '    | "L": Control data                          | "H": Disp                                                                                                                                                                                       | olay data                                                                                                            |  |  |  |  |  |  |  |  |
| WR0              |      | 1    | WR [1:0] controls to Interface section for |                                                                                                                                                                                                 | e operation of the host interface. See Host                                                                          |  |  |  |  |  |  |  |  |
| WR1              | ı    | 1    | 6800 or 8080 mod                           | In parallel mode, the meaning of WR[1:0] depends on which interface it is in, 1800 or 8080 mode. In serial interface modes, these two pins are not used, Connect them to $V_{SS}$ or $V_{DD}$ . |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | Duty selection.                            | Duty selection.                                                                                                                                                                                 |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | DT2 DT1                                    | Duty                                                                                                                                                                                            |                                                                                                                      |  |  |  |  |  |  |  |  |
| DT1              | ı    | 1    | 0 0                                        | 1/65                                                                                                                                                                                            |                                                                                                                      |  |  |  |  |  |  |  |  |
| DT2              | •    | 1    | 0 1                                        | 1/49                                                                                                                                                                                            |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | 1 0                                        | 1/33                                                                                                                                                                                            |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | 1 1                                        | 1/55                                                                                                                                                                                            |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | Bi-directional bus t                       | or both seri                                                                                                                                                                                    | al and parallel host interfaces.                                                                                     |  |  |  |  |  |  |  |  |
|                  |      |      | In serial modes, co                        |                                                                                                                                                                                                 | to SDA, D[6] to SCK.                                                                                                 |  |  |  |  |  |  |  |  |
| D7~D0            | I/O  | 8    | DM 4 (0.1:1)                               | D7 D6                                                                                                                                                                                           |                                                                                                                      |  |  |  |  |  |  |  |  |
|                  |      |      | BM=1x (8-bit) BM=0x (S8)                   | DB7 DB                                                                                                                                                                                          | 6 DB5 DB4 DB3 DB2 DB1 DB0                                                                                            |  |  |  |  |  |  |  |  |
|                  |      |      | , ,                                        |                                                                                                                                                                                                 | o either V <sub>SS</sub> or V <sub>DD</sub> .                                                                        |  |  |  |  |  |  |  |  |
|                  |      |      | HIGH VOLTAG                                | ·                                                                                                                                                                                               |                                                                                                                      |  |  |  |  |  |  |  |  |
| SEG1 ~<br>SEG132 | HV   | 132  | SEG (column) driv<br>Leave unused SE       |                                                                                                                                                                                                 | Support up to 132 pixels.                                                                                            |  |  |  |  |  |  |  |  |
|                  |      |      | COM (row) driver                           | outputs. Su                                                                                                                                                                                     | oport up to 64 rows.                                                                                                 |  |  |  |  |  |  |  |  |
| COM1 ~<br>COM64  | HV   | 64   |                                            | than 64, se                                                                                                                                                                                     | start from COM1. If the LCM has <i>N</i> pixel at CEN to be <i>N-1</i> , and leave COM drivers                       |  |  |  |  |  |  |  |  |
| CIC              | HV   | 2    | Icon driver outputs                        | s. Leave it o                                                                                                                                                                                   | pen if not used.                                                                                                     |  |  |  |  |  |  |  |  |



| Name             | Туре | Pins | Description                                                                                                                                             |  |  |  |  |  |
|------------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                  |      |      | MISC. PINS                                                                                                                                              |  |  |  |  |  |
| V                |      | 4    | Auxiliary $V_{DD}$ . This pin is connected to the main $V_{DD}$ bus within the IC. It's provided to facilitate chip configurations in COG application.  |  |  |  |  |  |
| V <sub>DDX</sub> |      | 4    | There's no need to connect $V_{DDX}$ to main $V_{DD}$ externally and it should $\underline{\textit{NO}}$ be used to provide $V_{DD}$ power to the chip. |  |  |  |  |  |
| TST4             | I    | 1    | Test control. There's an on-chip pull-up resistor for TST4. Leave it open during normal use.                                                            |  |  |  |  |  |
| TST2             | I/O  | 1    | Test I/O pins. Leave these pins open during normal use.                                                                                                 |  |  |  |  |  |
| Dummy            |      | 11   | Dummy pins are NOT connected inside the IC.                                                                                                             |  |  |  |  |  |

**Note:** Several control registers will specify "0 based index" for COM and SEG electrodes. In those situations,  $COM\underline{X}$  or  $SEG\underline{X}$  will correspond to index  $\underline{X}$ -1, and the value range for those index register will be 0~63 for COM and 0~131 for SEG.

## RECOMMENDED COG LAYOUT



## Notes for $V_{DD}$ with COG:

The operation condition,  $V_{DD}$ =1.8V (typical), should be satisfied under all operating conditions. UC1701x's peak current ( $I_{DD}$ ) can be up to ~15mA during high speed data-write to UC1701x's on-chip SRAM. Such high pulsing current mandates very careful design of  $V_{DD}$  and  $V_{SS}$  ITO trances in COG modules. When  $V_{DD}$  and  $V_{SS}$  trace resistance is not low enough, the pulsing  $I_{DD}$  current can cause the actual on-chip  $V_{DD}$  to drop to below 1.65V and cause the IC to malfunction.



## **CONTROL REGISTERS**

UC1701x contains registers, which control the chip operation. The following table is a summary of these control registers, a brief description and the default values. These registers can be modified by commands, which will be described in the next two sections, Command Table and Command Description.

Name: The Symbolic reference of the register.

Note that, some symbol name refers to bits (flags) within another register.

Default: Numbers shown in **Bold** font are default values after Power-Up-Reset and System-Reset.

| Name | Bits | Default |                                                                                        |                                                                                                                                                                                                                                                          | Description                                                              | n                                                                                                          |  |  |  |  |  |  |  |  |
|------|------|---------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| SL   | 6    | 00H     | between 0 (for no                                                                      | scrolling) an                                                                                                                                                                                                                                            | d 63. Setting                                                            | y <i>SL</i> rows. The valid SL value is SL outside of this range causes This register does not affect icon |  |  |  |  |  |  |  |  |
| CA   | 8    | 00H     | Column Address (Used in Host to a                                                      |                                                                                                                                                                                                                                                          |                                                                          | RAM). Value range is 0~131.                                                                                |  |  |  |  |  |  |  |  |
| PA   | 4    | 0H      | Page Address of (Used in Host to a                                                     |                                                                                                                                                                                                                                                          |                                                                          | 3.                                                                                                         |  |  |  |  |  |  |  |  |
| BR   | 1    | 0H      | Bias Ratio.                                                                            | Bias Ratio.                                                                                                                                                                                                                                              |                                                                          |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | The ratio between                                                                      | $_{\rm LCD}$ and $_{\rm LCD}$                                                                                                                                                                                                                            | <sub>BIAS</sub> varies ac                                                | cording to Duty selected:                                                                                  |  |  |  |  |  |  |  |  |
|      |      |         |                                                                                        | BR=0                                                                                                                                                                                                                                                     | BR=1                                                                     |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | Duty=1/65                                                                              | 1/9                                                                                                                                                                                                                                                      | 1/7                                                                      |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | Duty=1/49                                                                              | 1/8                                                                                                                                                                                                                                                      | 1/6                                                                      |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | Duty=1/33                                                                              | 1/6                                                                                                                                                                                                                                                      | 1/5                                                                      |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | Duty=1/55                                                                              | 1/8                                                                                                                                                                                                                                                      | 1/6                                                                      |                                                                                                            |  |  |  |  |  |  |  |  |
| PM   | 6    | 20H     | Adjust contrast of                                                                     | LCD panel d                                                                                                                                                                                                                                              | isplay.                                                                  |                                                                                                            |  |  |  |  |  |  |  |  |
| PC   | 6    | 20H     | Power Control. PC [0]: Voltage PC [1]: Voltage PC [2]: Booster PC [5:3]: Resisto 000b~ | Regular. (De Ratio. (Defa                                                                                                                                                                                                                                | efault <b>0: OFF</b><br>ult <b>0: OFF</b> )<br><sub>_CD</sub> . (Default | 100b)                                                                                                      |  |  |  |  |  |  |  |  |
| CR   | 8    | 0H      | Return Column A                                                                        | ddress. Usefu                                                                                                                                                                                                                                            | ul for cursor i                                                          | mplementation.                                                                                             |  |  |  |  |  |  |  |  |
| AC3  | 1    | 0H      | Address Control. AC3: CUM: Co                                                          | •                                                                                                                                                                                                                                                        |                                                                          | ult <b>0: OFF</b> ) nly, wrap around suspended                                                             |  |  |  |  |  |  |  |  |
| DC   | 3    | 0H      | Display Control:                                                                       | <u> </u>                                                                                                                                                                                                                                                 |                                                                          |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         | DC[0]: PXV: F<br>DC[1]: APO: A<br>DC[2]: Display                                       | Display Control:  DC[0]: PXV: Pixels Inverse (bit-wise data inversion. Default <b>0: OFF</b> )  DC[1]: APO: All Pixels ON (Default <b>0: OFF</b> )  DC[2]: Display ON/OFF (Default <b>0: OFF</b> )  When DC[2] is set to 0, the IC will enter Sleep Mode |                                                                          |                                                                                                            |  |  |  |  |  |  |  |  |
| LC   | 2    | 0H      | LCD Control:                                                                           |                                                                                                                                                                                                                                                          |                                                                          |                                                                                                            |  |  |  |  |  |  |  |  |
|      |      |         |                                                                                        |                                                                                                                                                                                                                                                          |                                                                          | nce inversion (Default: <b>OFF</b> )<br>e inversion (Default: <b>OFF</b> )                                 |  |  |  |  |  |  |  |  |

65x132 STN Controller-Drivers

| Name       | Bits | Default | Description                                                                                                                                                       |  |  |  |  |  |
|------------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            |      |         | Advanced Program Control. For UltraChip only. Do NOT use.                                                                                                         |  |  |  |  |  |
| APC0       | 8    | 90H     | APC0 [7]: TC, V <sub>BIAS</sub> temperature compensation coefficient (%-per-°C)<br>0b: TC curve definition = -0.05% / °C<br>1b: TC curve definition = -0.11% / °C |  |  |  |  |  |
| APC1       | 8    |         | APC0 [1:0]: WA, automatic column/row Wrap Around.  WA[0]: 0: PA wrap around disable  WA[1]: 0: CA wrap around disable  1: CA wrap around enable.                  |  |  |  |  |  |
|            |      |         | APC1[7:0] : For UltraChip's use only.                                                                                                                             |  |  |  |  |  |
|            |      |         | Status Registers                                                                                                                                                  |  |  |  |  |  |
| BZ,<br>MX, | 1    | 0       | BZ : Set to 1 when system is busy. Commands can only be accepted when BZ=0.                                                                                       |  |  |  |  |  |
| DE,        |      |         | MX : Mirror X-axle (i.e. SEG or column)                                                                                                                           |  |  |  |  |  |
| RST        |      |         | DE : Set to 1 when display enabled.                                                                                                                               |  |  |  |  |  |
|            |      |         | RST : Reset flag. RST=1 when reset is in progress.                                                                                                                |  |  |  |  |  |



## **COMMAND TABLE**

The following is a list of host commands supported by UC1701x

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle # Useful Data bits – Don't Care

|     | Command                             | C/D | W/R | D7 | D6 | D5 | D4  | D3 | D2 | D1 | D0 | Action                        | Default |
|-----|-------------------------------------|-----|-----|----|----|----|-----|----|----|----|----|-------------------------------|---------|
| 1.  | Write Data Byte                     | 1   | 0   | #  | #  | #  | #   | #  | #  | #  | #  | Write 1 byte                  | N/A     |
| 2.  | Read Data Byte                      | 1   | 1   | #  | #  | #  | #   | #  | #  | #  | #  | Read 1 byte                   | N/A     |
| 3.  | Get Status                          | 0   | 1   | ΒZ | MX | DE | RST | 0  | 0  | 0  | 0  | Get Status                    |         |
| 4.  | Set Column Address LSB              | 0   | 0   | 0  | 0  | 0  | 0   | #  | #  | #  | #  | Set CA [3:0]                  | 0       |
| 4.  | Set Column Address MSB              | O   | U   | 0  | 0  | 0  | 1   | #  | #  | #  | #  | Set CA [7:4]                  | 0       |
| 5.  | Set Power Control                   | 0   | 0   | 0  | 0  | 1  | 0   | 1  | #  | #  | #  | Set PC[2:0]                   | 000b    |
| 6.  | Set Scroll Line                     | 0   | 0   | 0  | 1  | #  | #   | #  | #  | #  | #  | Set SL[5:0]                   | 0       |
| 7.  | Set Page Address                    | 0   | 0   | 1  | 0  | 1  | 1   | #  | #  | #  | #  | Set PA[3:0]                   | 0       |
| 8.  | Set V <sub>LCD</sub> Resistor Ratio | 0   | 0   | 0  | 0  | 1  | 0   | 0  | #  | #  | #  | Set PC[5:3]                   | 100b    |
| 9.  | Set Electronic Volume               | 0   | 0   | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 1  |                               |         |
| 9.  | (double-byte command)               | U   | U   | 0  | 0  | #  | #   | #  | #  | #  | #  | Set PM[5:0]                   | 20H     |
| 10. | Set All-Pixel-ON                    | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 1  | 0  | #  | Set DC[1]                     | 0b      |
| 11. | Set Inverse Display                 | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 1  | 1  | #  | Set DC[0]                     | 0b      |
| 12. | Set Display Enable                  | 0   | 0   | 1  | 0  | 1  | 0   | 1  | 1  | 1  | #  | Set DC[2]                     | 0b      |
| 13. | Set SEG Direction                   | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 0  | 0  | #  | Set LC[0]                     | 0b      |
| 14. | Set COM Direction                   | 0   | 0   | 1  | 1  | 0  | 0   | #  | -  | -  | -  | Set LC[1]                     | 0b      |
| 15. | System Reset                        | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 1  | 0  | System Reset                  | N/A     |
| 16. | NOP                                 | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 1  | 1  | No operation                  | N/A     |
| 17. | Set LCD Bias Ratio                  | 0   | 0   | 1  | 0  | 1  | 0   | 0  | 0  | 1  | #  | Set BR                        | 0b      |
| 18. | Set Cursor Update Mode              | 0   | 0   | 1  | 1  | 1  | 0   | 0  | 0  | 0  | 0  | AC3=1, CR=CA                  | N/A     |
| 19. | Reset Cursor Update Mode            | 0   | 0   | 1  | 1  | 1  | 0   | 1  | 1  | 1  | 0  | AC3=0, CA=CR.                 | N/A     |
| 20. | Set Static Indicator OFF            | 0   | 0   | 1  | 0  | 1  | 0   | 1  | 1  | 0  | 0  | NOP                           | N/A     |
| 21. | Set Static Indicator ON             | 0   | 0   | 1  | 0  | 1  | 0   | 1  | 1  | 0  | 1  | NOP                           | N/A     |
| ۷١. | Set Static Indicator                | U   | U   | -  | -  | -  | -   | -  | -  | -  | -  | NOP                           | IN/A    |
| 22. | Set Booster Ratio                   | 0   | 0   | 1  | 1  | 1  | 1   | 1  | 0  | 0  | 0  | NOP                           | 00b     |
| 22. | (double-byte command)               | U   | U   | 0  | 0  | 0  | 0   | 0  | 0  | #  | #  | NOP                           | dob     |
| 23. | Set Power Save (compound command)   | 0   | 0   | #  | #  | #  | #   | #  | #  | #  | #  | Display OFF &<br>All Pixel ON | N/A     |
|     | Set Test Control                    | •   |     | 1  | 1  | 1  | 1   | 1  | 1  | Т  | Т  | For UCI only                  | N1/A    |
| 24. | (double-byte command)               | 0   | 0   | -  | #  | #  | #   | #  | #  | #  | #  | Do NOT use                    | N/A     |
| 25. | Set Adv. Program Control 0          | 0   |     | 1  | 1  | 1  | 1   | 1  | 0  | 1  | 0  |                               |         |
|     | (double-byte command)               | U   | 0   | #  | 0  | 0  | 1   | 0  | 0  | #  | #  | Set TC, WA[1:0]               | 90H     |
| 26. | Set Adv. Program Control 1          | 0   | 0   | 1  | 1  | 1  | 1   | 1  | 0  | 1  | 1  | For UCI only                  |         |
|     | (double-byte command)               | U   | U   | #  | #  | #  | #   | #  | #  | #  | #  | Set APC1                      | N/A     |

<sup>\*</sup> Other than commands listed above, all other bit patterns result in NOP (No Operation).

## **COMMAND DESCRIPTION**

## 1. Write Data Byte to Memory

| Action     | C/D | W/R | D7                       | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|------------|-----|-----|--------------------------|----|----|----|----|----|----|----|--|
| Write data | 1   | 0   | 8-bit data write to SRAM |    |    |    |    |    |    |    |  |

## 2. Read Data Byte from Memory

| Action    | C/D | W/R | D7                        | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|-----------|-----|-----|---------------------------|----|----|----|----|----|----|----|--|
| Read data | 1   | 1   | 8-bit data read from SRAM |    |    |    |    |    |    |    |  |

Write/Read Data Byte (Command 1,2) access Display Data RAM based on Page Address (PA) register and Column Address (CA) register. PA and CA can also be programmed directly by issuing *Set Page Address* and *Set Column Address* commands.

#### 3. Get Status

| Action     | C/D | W/R | D7 | D6 | D5 | D4  | D3 | D2 | D1 | D0 |
|------------|-----|-----|----|----|----|-----|----|----|----|----|
| Get Status | 0   | 1   | ΒZ | MX | DE | RST | 0  | 0  | 0  | 0  |

BZ: BZ=1 when busy. The system accepts commands only when BZ=0.

MX: Mirror X. Status of register LC[0]

DE: Display Enable flag. DE=1 when display is enabled.

RST: RST flag. RST=1 when reset is in progress.

#### 4. Set Column Address

| Action                          | C/D | W/R | D7 | D6 | D5 | D4 | D3  | D2  | D1  | D0  |
|---------------------------------|-----|-----|----|----|----|----|-----|-----|-----|-----|
| Set Column Address LSB, CA[3:0] | 0   | 0   | 0  | 0  | 0  | 0  | CA3 | CA2 | CA1 | CA0 |
| Set Column Address MSB, CA[7:4] | 0   | 0   | 0  | 0  | 0  | 1  | CA7 | CA6 | CA5 | CA4 |

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~131

## 5. Set Power Control

| Action                     | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2  | D1  | D0  |
|----------------------------|-----|-----|----|----|----|----|----|-----|-----|-----|
| Set Power Control, PC[2:0] | 0   | 0   | 0  | 0  | 1  | 0  | 1  | PC2 | PC1 | PC0 |

Set PC[2:0] to enable the built-in charge pump.

PC[2]: 0 – Boost OFF 1 – Boost ON

PC[1]: 0 – Voltage Regular OFF 1 – Voltage Regular ON PC[0]: 0 – Voltage Follower OFF 1 – Voltage Follower ON

#### 6. Set Scroll Line

| Action                   | C/D | W/R | D7 | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
|--------------------------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|
| Set Scroll Line, SL[5:0] | 0   | 0   | 0  | 1  | SL5 | SL4 | SL3 | SL2 | SL1 | SL0 |

Set the scroll line number. Range: 0~63

Scroll line setting will scroll the displayed image up by SL rows. Icon output CIC will not be affected by Set Scroll Line command.



## 7. Set Page Address

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3  | D2  | D1  | D0  |
|---------------------------|-----|-----|----|----|----|----|-----|-----|-----|-----|
| Set Page Address, PA[3:0] | 0   | 0   | 1  | 0  | 1  | 1  | PA3 | PA2 | PA1 | PA0 |

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output CIC.

Possible value = 0~8.

## 8. Set V<sub>LCD</sub> Resistor Ratio

| Action                                       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2  | D1  | D0  |
|----------------------------------------------|-----|-----|----|----|----|----|----|-----|-----|-----|
| Set V <sub>LCD</sub> Resistor Ratio, PC[5:3] | 0   | 0   | 0  | 0  | 1  | 0  | 0  | PC5 | PC4 | PC3 |

Configure PC[5:3] to set internal Resistor Ratio, Rb/Ra, for the  $V_{LCD}$  Voltage regulator to adjust the contrast of the display panel:

PC[5:3]: 000b~111b - 1+Rb/Ra ratio. Default: 100b. Refer to V<sub>LCD</sub> Quick Reference for "1+Rb/Ra" ratio.

where Rb and Ra are internal resistors, V<sub>REF</sub> is on-chip contrast voltage, and PM is a vaule of electronic volume

## 9. Set Electronic Volume

| Action                         | C/D | W/R | D7 | D6 | D5  | D4  | D3  | D2  | D1  | D0  |
|--------------------------------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|
| Set Electronic Volume, PM[5:0] | 0   | 0   | 1  | 0  | 0   | 0   | 0   | 0   | 0   | 1   |
| Set Electionic Volume, PM[5.0] | U   | U   | 0  | 0  | PM5 | PM4 | PM3 | PM2 | PM1 | PM0 |

Set PM[5:0] for electronic volume "PM" for VLCD voltage regulator to adjust contrast of LCD panel display

Effective range : 0~63. Default : 32

#### 10. Set All Pixel ON

| Action                   | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|--------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set All Pixel ON, DC [1] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 1  | 0  | DC1 |

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM. Default: 0

## 11. Set Inverse Display

| Action                      | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|-----------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set Inverse Display, DC [0] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 1  | 1  | DC0 |

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

## 12. Set Display Enable

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|---------------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Set Display Enable, DC[2] | 0   | 0   | 1  | 0  | 1  | 0  | 1  | 1  | 1  | DC2 |

This command is for programming register DC[2]. When DC[2] is set to 1, UC1701x will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers.

#### 13. Set SEG Direction

| Action                       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Segment Direction, LC[0] | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | MX |

Set LC[0] for SEG (column) mirror (MX). Default: 0

MX is implemented by reversing the mapping order between RAM and SEG (column) electrodes. The data stored in RAM is not affected by MX command. Yet, MX has immediate effect on the display image.

## 14. Set COM Direction

| Action                      | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Common Direction, LC[1] | 0   | 0   | 1  | 1  | 0  | 0  | MY | -  | -  | -  |

Set LC[1] for COM (row) mirror (MY).

MY is implemented by reversing the mapping between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. Yet, MY has immediate effect on the display image.

## 15. System Reset

| Action       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------|-----|-----|----|----|----|----|----|----|----|----|
| System Reset | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  |

This command will activate the system reset.

Control register values will be reset to their default values. Data store in RAM will not be affected.

#### 16. NOP

| Action       | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------|-----|-----|----|----|----|----|----|----|----|----|
| No Operation | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 1  |

This command is used for "no operation".

#### 17. Set LCD Bias Ratio

| Action             | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Bias Ratio, BR | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 1  | BR |

Select voltage bias ratio required for LCD. Default: 0

The setting of Bias ratio varies according to Duty:

| DUTY | BR = 0 | BR = 1 |
|------|--------|--------|
| 1/65 | 1/9    | 1/7    |
| 1/49 | 1/8    | 1/6    |
| 1/33 | 1/6    | 1/5    |
| 1/55 | 1/8    | 1/6    |

## 18. Set Cursor Update Mode

| Action                 | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Cursor Update Mode | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |

This command is used for set cursor update mode function. When cursor update mode sets, UC1701x will update register CR with the value of register CA. The column address CA will increment with write RAM data operation but the address wraps around will be suspended no matter what WA setting is. However, the column address will not increment in read RAM data operation. The set cursor update mode can be used to implement "write after read RAM" function. The column address (CA) will be restored to the value, which is before the set cursor update mode command, when reset cursor update mode.

The purpose of this pair commands and their feature is to support "write after read" function for cursor implementation.

## 19. Reset Cursor Update Mode

| Action                   | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|--------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Reset Cursor Update Mode | 0   | 0   | 1  | 1  | 1  | 0  | 1  | 1  | 1  | 0  |

Set AC3=0 and CA=CR.

## 20. Set Static Indicator OFF

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|---------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Turn OFF Static Indicator | 0   | 0   | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 0  |

No Operation.

## 21. Set Static Indicator ON

| Action                    | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|---------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Turn ON Static Indicator  | 0   | 0   | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 1  |
| Turri ON Static indicator | 0   | 0   | -  | •  | -  | -  | -  | -  | -  | -  |

No Operation.

#### 22. Set Booster Ratio

| Action                | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set Booster Ratio     | 0   | 1   | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  |
| (Double-byte command) | U   | '   | 0  | 0  | 0  | 0  | 0  | 0  | -  | -  |

This command is used for "No Operation".

## 23. Set Power Save

| Action                        | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-------------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Power Save (Compound Command) | 0   | 0   | #  | #  | #  | #  | #  | #  | #  | #  |

## 24. Set Test Control

| Action                | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----------------------|-----|-----|----|----|----|----|----|----|----|----|
| Set TT                | 0   | 1   | 1  | 1  | 1  | 1  | 1  | 1  | Т  | Т  |
| (Double-byte command) | 0   | '   | -  | #  | #  | #  | #  | #  | #  | #  |

This command is for UltraChip's Test only. Do NOT use.

## 25. Set Advanced Program Control 0

| Action                               | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1  | D0  |
|--------------------------------------|-----|-----|----|----|----|----|----|----|-----|-----|
| Set Adv. Program Control, APC0 [7:0] | 0   | 0   | 1  | 1  | 1  | 1  | 1  | 0  | 1   | 0   |
| (Double-byte command)                |     | 0   | TC | 0  | 0  | 1  | 0  | 0  | WA1 | WA0 |

TC: APC0 [7], VBIAS temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

TC: 0b = -0.05%/°C, 1b = -0.11%/°C

WA: APC0 [1:0], Automatic column/row wrap around.

WA[0]: **0: PA WA disable**WA[1]: **0: CA WA disable**1: PA WA enable.
1: CA WA enable.

## 26. Set Advanced Program Control 1

| Action                               | C/D | W/R | D7 | D6 | D5    | D4     | D3     | D2   | D1 | D0 |
|--------------------------------------|-----|-----|----|----|-------|--------|--------|------|----|----|
| Set Adv. Program Control, APC1 [7:0] | 0   | 0   | 1  | 1  | 1     | 1      | 1      | 0    | 1  | 1  |
| (Double-byte command)                | U   | U   |    | Α  | PC1 r | egiste | er par | amet | er |    |

For UltraChip only. Please Do NOT use.



## **LCD VOLTAGE SETTING**

#### **MULTIPLEX RATES**

Multiplex Rate is completely software programmable in UC1701x via registers CEN, DST, DEN, and partial display control flags LC[4].

Combined with low power partial display mode and a low bias ratio of 6, UC1701x can support wide variety of display control options. For example, when a system goes into stand-by mode, a large portion of LCD screen can be turned off to conserve power.

#### **BIAS RATIO SELECTION**

Bias Ratio (BR) is defined as the ratio between  $V_{LCD}$  and  $V_{BIAS}$ , i.e.

$$BR = V_{LCD}/V_{BIAS}$$

where 
$$V_{BIAS} = V_{B1+} - V_{B1-} = V_{B0+} - V_{B0-}$$

The theoretical optimum  $Bias\ Ratio\ can$  be estimated by  $\sqrt{Mux}+1$ . BR of value 15~20% lower/higher than the optimum value calculated above will not cause significant visible change in image quality.

UC1701x supports four *BR* as listed below. BR can be selected by software program.

|      | Bias | Ratio |
|------|------|-------|
| Duty | BR=0 | BR=1  |
| 1/65 | 1/9  | 1/7   |
| 1/49 | 1/8  | 1/6   |
| 1/33 | 1/6  | 1/5   |
| 1/55 | 1/8  | 1/6   |

Table 1: Bias Ratios

#### **TEMPERATURE COMPENSATION**

The temperature compensation coefficients is -0.11% per  $^{\circ}$  C.

#### **V<sub>LCD</sub> GENERATION**

 $V_{LCD}$  is supplied by internal charge pump. The source of  $V_{LCD}$  is controlled by PC[2:0]. For good product reliability, it is recommended to keep  $V_{LCD}$  under 11.5V for all temperature conditions.

When  $V_{LCD}$  is generated internally, the voltage level of  $V_{LCD}$  is determined by three control registers: BR (Bias Ratio), PM (Potentiometer), and PC[5:3] ( $V_{LCD}$  Resistor Ratio) with the following relationship:

 $V_{LCD}=((1+Rb/Ra) \times Vev) \times (1+(T-25)xC_T\%)$ 

Vev=(1-(63-PM)/162)xV<sub>REF</sub>

#### where

Ra and Rb are two design constants, whose value depends on the setting of BR register, as illustrated in the table on the next page,

PM is value of electronic volume,

V<sub>REG</sub> is on-chip contrast voltage,

T is the ambient temperature in <sup>O</sup>C, and

 $C_T$  is temperature compensation coefficient.

#### **V<sub>LCD</sub> FINE TUNING**

Black-and-white STN LCD is sensitive to even a 1% mismatch between IC driving voltage and the  $V_{\text{OP}}$  of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust  $V_{\text{LCD}}$  to match the actual  $V_{\text{OP}}$  of the LCD.

For the best result, software based approach for  $V_{\text{LCD}}$  adjustment is the recommended method for  $V_{\text{LCD}}$  fine-tuning. System designers should always consider the contrast fine tuning requirement before finalizing on the LEM design

## LOAD DRIVING STRENGTH

The power supply circuit of UC1701x is designed to handle LCD panels with loading up to ~24nF using 20- $\Omega$ /Sq ITO glass with V<sub>DD2/3</sub>  $\geq$  2.4V. For larger LCD panels, use lower resistance ITO glass packaging.

# **V<sub>LCD</sub> QUICK REFERENCE**



 $V_{\text{LCD}}$  Programming Curve.

| PC[5:3] | 1+Rb/Ra | VREF | PM | VLCD Range (V) |
|---------|---------|------|----|----------------|
| 000b    | 3.769   | 1.68 | 0  | 3.87           |
| 0000    | 3.709   | 1.00 | 63 | 6.33           |
| 001b    | 4.396   | 1.68 | 0  | 4.51           |
| 0010    | 4.590   | 1.00 | 63 | 7.38           |
| 010b    | 5.020   | 1.68 | 0  | 5.15           |
| 0100    | 5.020   | 1.00 | 63 | 8.43           |
| 011b    | 5.643   | 1.68 | 0  | 5.79           |
| 0110    | 5.045   | 1.00 | 63 | 9.48           |
| 100b    | 6.266   | 1.68 | 0  | 6.43           |
| 1005    | 0.200   | 1.00 | 63 | 10.53          |
| 101b    | 6.891   | 1.68 | 0  | 7.08           |
| 1015    | 0.091   | 1.00 | 62 | 11.51          |
| 110b    | 7.517   | 1.68 | 0  | 7.72           |
| 1100    | 7.517   | 1.00 | 48 | 11.46          |
| 111b    | 8.143   | 1.68 | 0  | 8.36           |
| 1110    | 0.140   | 1.00 | 37 | 11.48          |

**Note:** For good product reliability, keep V<sub>LCD</sub> under **11.5V** over all temperature.

## HI-V GENERATOR AND BIAS REFERENCE CIRCUIT



FIGURE 1: Reference circuit using internal Hi-V generator circuit

## Note

Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

$$\begin{split} &C_{\text{Bx}}\colon\ 2.2\ \mu\text{F/5V}\ \text{or}\ 100\text{$\sim$}250x\ \text{LCD}\ \text{load}\ \text{capacitance}.\\ &C_{\text{L}}\colon\ 330\text{nF}(25\text{V})\ \text{is appropriate for most applications}. \end{split}$$

 $R_L\colon \ 3.3M{\sim}10M\ \Omega$  to act as a draining circuit when  $V_{DD}$  is shut down abruptly.

## LCD DISPLAY CONTROLS

#### **CLOCK & TIMING GENERATOR**

UC1701x contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

4 different frame rates are provided based on different Mux-Rate for system design flexibility.

#### **DRIVER MODES**

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When SEG and COM drivers are in idle mode, they will be connected together to ensure zero DC condition on the LCD.

#### **DRIVER ARRANGEMENTS**

The naming conventions are: COMx, where  $x = 1\sim64$ , refers to the row driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows is fixed and it is not affected by SL, MX or MY settings.

## **DISPLAY CONTROLS**

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO.

## DRIVER ENABLE (DE)

Driver Enable is controlled by the value of DC[2] via Set Display Enable command. When DC[2] is set to OFF (logic "0"), both COM and SEG drivers will become idle and UC1701x will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become "1",and UC1701x will first exit from Sleep Mode, restore the power ( $V_{LCD}$ ,  $V_D$  etc.) and then turn on COM and SEG drivers.

## ALL PIXELS ON (APO)

When set, this flag will force all SEG drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

#### INVERSE (PXV)

When this flag set to ON, SEG drivers will output the inverse of the value it received from the display buffer RAM (bit-wise inversion). This flag has no impact on data stored in RAM.



## ITO LAYOUT AND LC SELECTION

Since COM scanning pulses of UC1701x can be as short as  $153\mu S$ , it is critical to control the RC delay of COM and SEG signal to minimize crosstalk and maintain good mass production consistency.

## **COM TRACES**

Excessive COM scanning pulse RC decay can cause fluctuation of contrast and increase COM direction crosstalk.

Please limit the worst case of COM signals RC delay (RC<sub>MAX</sub>) as calculated below

$$(R_{ROW} / 2.7 + R_{COM}) \times C_{ROW} < 9.23 \mu S$$

where

 $C_{ROW}$ : LCD loading capacitance of one row of pixels. It can be calculated by  $C_{LCD}/Mux-Rate$ , where  $C_{LCD}$  is the LCD panel capacitance.

R<sub>ROW</sub>: ITO resistance over one row of pixels within the active area

R<sub>COM</sub>: COM routing resistance from IC to the active area + COM driver output impedance.

In addition, please limit the min-max spread of RC decay to be:

$$|RC_{MAX} - RC_{MIN}| < 2.76 \mu S$$

so that the COM distortions on the top of the screen to the bottom of the screen are uniform.

(Use worst case values for all calculations)

## **SEG** TRACES

Excessive SEG signal RC decay can cause image dependent changes of medium gray shades and sharply increase the crosstalk of SEG direction.

For good image quality, please minimize SEG ITO trace resistance and limit the worst case of SEG signal RC delay as calculated below.

$$(R_{COL} / 2.7 + R_{SEG}) \times C_{COL} < 6.30 \mu S$$

where

 $C_{\text{COL}}$ : LCD loading capacitance of one pixel column. It can be calculated by  $C_{\text{LCD}}$  / (# of column), where  $C_{\text{LCD}}$  is the LCD panel capacitance.

R<sub>COL</sub>: ITO resistance over one column of pixels within the active area

R<sub>SEG</sub>: SEG routing resistance from IC to the active area + SEG driver output impedance.

(Use worst case values for all calculations)

## SELECTING LIQUID CRYSTAL

The selection of LC material is crucial to achieve the optimum image quality of finished LCM.

When  $(V_{90}-V_{10})/V_{10}$  is too large, image contrast will deteriorate, and images will look murky and dull.

When  $(V_{90}-V_{10})/V_{10}$  is too small, image contrast will become too strong, and crosstalk will increase.

For the best result, it is recommended the LC material has the following characteristics:

$$(V_{90}-V_{10})/V_{10} = (V_{ON}-V_{OFF})/V_{OFF} \times 0.72 \sim 0.80$$

where  $V_{90}$  and  $V_{10}$  are the LC characteristics, and  $V_{ON}$  and  $V_{OFF}$  are the ON and OFF  $V_{RMS}$  voltage produced by LCD driver IC at the specific Mux-rate.

## Example:

| Duty | Bias | V <sub>ON</sub> /V <sub>OFF</sub> -1 | x0.80 | x0.72 |
|------|------|--------------------------------------|-------|-------|
| 1/65 | 1/9  | 10.6%                                | 9.6%  | 7.5%  |



FIGURE 2: COM and SEG Electrode Driving Waveform



## THE COMMON OUTPUT STATUS SELECT CIRCUIT

In the UC1701x chips, the COM output scan direction can be selected by the common output status select command. (See the table below for details.) Consequently, the constraints in IC layout at the time of LCD module assembly can be minimized.

| Duty | Direction | COM[1:16]  | COM<br>[17:24] | COM<br>[25:27] | COM<br>[28:37] | COM<br>[38:40] | COM<br>[41:48] | COM[49:64] | COMS   |
|------|-----------|------------|----------------|----------------|----------------|----------------|----------------|------------|--------|
| 1/65 | 0         |            |                |                | COM [1:64]     | ]              |                |            | COMS   |
| 1/05 | 1         |            |                |                | COM [64:1]     | ]              |                |            | COIVIS |
| 1/49 | 0         | COM[1      | :24]           |                | NC             |                | COI            | M [25:48]  | COMS   |
| 1/49 | 1         | COM[48     | 3:25]          |                | NC             |                | CO             | M [24:1]   | COIVIS |
| 1/33 | 0         | COM[1:16]  |                |                | NC             |                |                | COM[17:32] | COMS   |
| 1/33 | 1         | COM[32:17] |                |                | NC             |                |                | COM[16:1]  | COIVIS |
| 1/55 | 0         | С          | OM [1:27]      | •              | NC             |                | COM [28:       | 54]        | COMS   |
| 1/33 | 1         | CC         | OM [54:28]     | •              | NC             | NC COM [27:1]  |                |            | CONS   |

Table 2: Duty Layout

## **HOST INTERFACE**

As summarized in the table below, UC1701x supports two 8-bit parallel bus protocols and one serial bus protocol. Designers can choose either the 8-bit parallel bus to achieve high data transfer rate, or use serial bus to create compact LCD modules and minimize connector pins.

|         |         |             | Bus Type |                      |  |  |  |
|---------|---------|-------------|----------|----------------------|--|--|--|
|         |         | 8080        | 6800     | S8 (4-wire)          |  |  |  |
| ,       | Width   | 8-bit       | 8-bit    | Serial               |  |  |  |
| A       | ccess   | Read        | / Write  | Write only           |  |  |  |
| S       | BM[1:0] | 10          | 11       | 00                   |  |  |  |
| Pins    | CS0     | Chip Select |          |                      |  |  |  |
| Data    | CD      |             |          |                      |  |  |  |
| 8<br>D  | WR0     | WR          | R/W      | -                    |  |  |  |
|         | WR1     | RD          | EN       | _                    |  |  |  |
| Control | DB[5:0] | Da          | ata      | -                    |  |  |  |
|         | DB[7:6] | Da          | ata      | DB[6]=SCK, DB[7]=SDA |  |  |  |

<sup>\*</sup> Connect unused control pins and data bus pins to  $V_{DD}$  or  $V_{SS}$ 

|       | CS<br>Disable Bus Interface | CS<br>Init. Bus State | RESET<br>Init. Bus State |
|-------|-----------------------------|-----------------------|--------------------------|
| 8-bit | ✓                           | -                     | ✓                        |
| S8    | ✓                           | ✓                     | ✓                        |

- CS disable bus interface CS can be used to disable Bus Interface Write / Read Access.
- RESET can be pin reset / soft reset / power on reset.

Table 3: Host interfaces Summary



#### **PARALLEL INTERFACE**

High-Voltage Mixed-Signal IC

The timing relationship between UC1701x internal control signal RD, WR and their associated bus actions are shown in the figure below.

The Display RAM read interface is implemented as a two-stage pipeline. This architecture requires that, every time memory address is modified, either in parallel mode or serial mode, by either Set CA or

Set PA command, a dummy read cycle need to be performed before the actual data can propagate through the pipeline and be read from data port D[7:0].

There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal RAM on the rising edges of write pulses.



Figure 3: Parallel Interface & Related Internal Signals

#### SERIAL INTERFACE

UC1701x supports 1 serial modes: 4-wire SPI mode (S8). Bus interface mode is determined by the wiring of the BM[1:0]. See table in last page for more detail.

## S8 (4-WIRE) INTERFACE

Only write operations are supported in 4-wire serial mode. Pin CS[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse.

Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.



Figure 4: 4-wire Serial Interface (S8)

## HOST INTERFACE REFERENCE CIRCUIT



FIGURE 5: 8080/8bit parallel mode reference circuit



FIGURE 6: 6800/8bit parallel mode reference circuit





FIGURE 7: Serial-8 serial mode reference circuit

## Note

- The ID pins are for production control. The connection will affect the content of D[7] of the 1st byte of the Get Status command. Connect to V<sub>DD</sub> for "H" or V<sub>SS</sub> for "L".
- RST pin is optional. When the RST pin is not used, connect it to V<sub>DD</sub>.
- When using I<sup>2</sup>C serial mode, CS1/0 are user configurable and affect A[3:2] of device address.
- R1, R2:  $2k \sim 10k \Omega$ , use lower resistor for bus speed up to 3.6MHz, use higher resistor for lower power.

## **DISPLAY DATA RAM (DDRAM)**

#### **DATA ORGANIZATION**

The input display data is stored to a dual port static DDRAM (DDRAM, for Display Data RAM) organized as 65x132.

After setting CA and RA, the subsequent data write cycle will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page between the relation of COM, SEG, SRAM, and various memory control registers.

#### **DISPLAY DATA RAM ACCESS**

The Display RAM is a special purpose dual port RAM which allows asynchronous access to both its column and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

#### DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Row Address (RA) and Column Address (CA) by issuing *Set Row Address* and *Set Column Address* commands.

## MX IMPLEMENTATION

Column Mirroring (MX) is implemented by selecting either (CA) or (131–CA) as the RAM column address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

#### **ROW MAPPING**

COM electrode scanning orders are not affected by Start Line (SL), Fixed Line (FLT & FLB) or Mirror Y (MY, LC[3]). Visually, register SL having

a non-zero value is equivalent to scrolling the LCD display up or down (depends on MY) by *SL* rows.

## **RAM ADDRESS GENERATION**

The mapping of the data stored in the display SRAM and the scanning electrodes can be obtained by combining the fixed Rm scanning sequence and the following RAM address generation formula.

During the display operation, the RAM line address generation can be mathematically represented as following:

For the 1st line period of each field

Line = SL

Otherwise

Line = Mod(Line+1, 64)

Where Mod is the modular operator, and *Line* is the bit slice line address of RAM to be outputted to column drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above *Line* generation formula produce the "loop around" effect as it effectively resets *Line* to 0 when *Line+1* reaches *64*.

## **MY IMPLEMENTATION**

Row Mirroring (MY) is implemented by reversing the mapping order between row electrodes and RAM, i.e. the mathematical address generation formula becomes:

For the 1<sup>st</sup> line period of each field

Line = Mod(SL + MR -1, 64)

Otherwise

Line = Mod(Line-1, 64)

Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.



| PA(30   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 1  | Line | _  |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     | Y=0 |      | M   | /=1        |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|------|----|-------------------------------------|----------|----------|----------|----------|--------------|-----|----------|---------|----------|----------|----------|-----|--------------------|-----|-----|------|-----|------------|-------|
| D1   OHH   D2   OHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PA[3:0]  | 0  |      | 3  |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     |     | SL=0 |     |            | SL=25 |
| 0000 03 03H 04H 050 05H 050 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | D0 |      |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     |     |      |     |            |       |
| 030 03H 04H 05H 05H 05H 07F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | D1 | 01H  |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C2  | C50 | C63  | C47 | C24        | C8    |
| 04 04H 05 09H 06 09H 07 07H 08 09H 07 07H 08 09H 09 09H 09H 09 09H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    |      |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C3  |     | C62  |     |            |       |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000     |    |      | _  |                                     |          |          |          |          |              |     |          | Page 0  | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| 0001 00 09H 00H 00H 00H 00H 00H 00H 00H 00H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |      | -  |                                     |          |          |          |          |              | Ш   |          | ŭ       | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    |      | -  |                                     |          |          |          |          |              |     |          |         | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| 00 09H 01 09H 02 0AH 04 0CH 05 0H 05 0H 06 0EH 07 17H 08 18H 09 19 19H 09 19 19H 09 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |      | 1  |                                     |          |          |          |          |              | Н   |          |         | H        |          |          |     | Н                  |     |     |      |     |            |       |
| 01 094 094 005 005 034 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |      | 1  |                                     |          |          |          |          |              |     |          |         | 1        |          |          |     | П                  |     |     |      |     |            |       |
| 0010   033   08H   054   055   064   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075   075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |      | 1  |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     |     |      |     |            |       |
| Dec   OCH   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | D2 | 0AH  |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C11 | C59 | C54  | C38 | C15        |       |
| D4 OCH   D5 OCH   D6 OCH   D6 OCH   D7 OFH   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0001     |    |      |    |                                     |          |          |          |          |              |     |          | Page 1  |          |          |          |     |                    |     | C60 |      |     |            |       |
| De   OEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |      |    |                                     |          |          |          |          |              |     |          |         | _        |          |          |     |                    | _   | _   |      |     |            |       |
| D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | -  |      | 4  |                                     |          |          |          |          |              |     |          |         | _        |          |          |     |                    |     |     |      |     |            |       |
| DOI 10H   DOI 11H   DOI 11H   DOI 11H   DOI 11H   DOI 11H   DOI 12H   DOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |      | -  |                                     |          |          |          |          |              | Н   |          |         | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |    |      | -  |                                     |          |          |          |          |              |     |          |         | +        |          | -        |     | Н                  |     |     |      |     |            |       |
| D2   12H   D3   13H   D6   15H   D7   17H   D8   D8   D8   D9   D9   D9   D9   D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    |      | 1  |                                     |          |          |          |          |              |     |          |         | <b>—</b> |          |          |     |                    |     |     |      |     |            |       |
| 0010   D3   13H   D6   15H   D7   17H   D7   17H   D9   D9   D9   D9   D9   D9   D9   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |      | 1  | Н                                   |          |          |          |          |              | Н   |          |         | Н        |          | $\vdash$ |     | H                  |     |     |      |     |            |       |
| Data   14H   Data   15H   Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0010     |    |      | 1  |                                     | İ        |          |          | l        |              | П   |          | Borr 2  | Г        | П        | H        |     | П                  |     |     |      |     |            | _     |
| Def   19H   Def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0010     |    |      |    |                                     |          |          |          |          |              |     |          | Page 2  |          |          |          |     |                    |     |     |      |     |            |       |
| D7   17H   D1   19H   D2   1AH   D3   1BH   D6   1EH   D7   1FH   D7   1FH   D8   D8   D8   D8   D8   D8   D8   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | _  |      |    |                                     |          |          |          |          |              |     |          |         | 匚        |          |          |     |                    |     |     |      |     |            |       |
| DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |      | 4  | L                                   |          | П        | Щ        | L        |              | Щ   | Щ        |         | Ľ        | Щ        | Ц        |     | Ш                  |     |     |      |     |            |       |
| D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |      | 4  | L                                   |          |          |          | _        | _            | Ш   | Щ        |         | ┺        | Ш        | Щ        |     | Щ                  | _   | _   |      | _   |            | -     |
| D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | _  |      | -  |                                     |          |          |          |          |              | Н   |          |         | $\vdash$ |          | $\vdash$ |     | Н                  |     |     |      |     |            |       |
| 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |      | -  |                                     | -        | $\vdash$ | $\vdash$ |          |              | Н   | $\vdash$ |         | $\vdash$ | $\vdash$ | $\vdash$ |     | $\vdash$           |     |     |      |     |            |       |
| Date   Characteristic   Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |      | -  |                                     |          |          |          |          |              |     |          |         | $\vdash$ |          |          |     |                    |     |     |      |     |            |       |
| D5   1DH   D6   1EH   D7   1FH   D7   1FH   D7   1FH   D8   D8   D8   D8   D8   D8   D8   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0011     |    |      | 1  |                                     |          |          |          |          |              |     |          | Page 3  | <b>I</b> |          |          |     |                    |     |     |      |     |            |       |
| D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | _  |      | 1  |                                     |          |          |          |          |              |     |          |         | <b>-</b> |          |          |     |                    |     |     |      |     |            |       |
| 0100   D0   20H   D1   21H   D2   22H   D3   23H   D4   24H   D5   25H   D6   26H   D7   27H   D1   29H   D2   22H   D5   20H   D6   26H   D7   27H   D6   26H   D7   27H   D6   26H   D7   27H   D6   26H   D6   26H   D7   27H   D6   26H   D7   27H   D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |      |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     |     |      |     |            | C43   |
| 0100 0100 0100 0100 0100 0100 0100 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | D7 | 1FH  |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C32 | C16 | C33  | C17 | C58        | C42   |
| D2   22H   D3   23H   D4   24H   D5   25H   D6   26H   D7   27H   D0   28H   D1   29H   D1   29H   D6   26H   D6   26H   D7   27H   D7   27H   D8   20H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |      |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    |     | _   |      |     |            |       |
| D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |      |    |                                     |          |          |          |          |              |     |          |         | _        |          |          |     |                    |     |     |      |     |            |       |
| D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | -  |      | 4  |                                     |          |          |          |          |              |     |          |         | _        |          |          |     |                    |     |     |      |     |            |       |
| D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0100     | _  |      | -  |                                     |          |          |          |          |              |     |          | Page 4  | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |      | -  |                                     |          |          |          |          |              | Н   |          |         | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| D7   27H   D0   28H   D1   29H   D2   2AH   D4   C4C   C4C   C5C   C3C   C7   C48   C32   C3C   C44   C3C   C3C   C3C   C4C   C3C   C4C   C3C   C3C   C4C   C4C   C3C   C4C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |      | -  |                                     |          |          |          |          |              | Н   |          |         | <b>-</b> |          |          |     |                    |     |     |      |     |            |       |
| 0101 28H D1 29H D2 2AH D3 2BH D4 2CH D5 2DH D6 2EH D7 2FH D1 31H D2 32H D9 33H D9 33H D9 38H D1 39H D2 3AH D5 35H D6 36H D7 37H D8 38H D9 38H D9 38H D1 39H D9 38H D1 39H D1 39H D2 3AH D3 3BH D4 3CH D5 3CH D6 3EH D7 3FH D9 38H D1 39H D9 38H D1 39H D0 38H D1 39H D1 39H D2 3AH D1 39H D2 3AH D3 3BH D6 3EH D7 3FH D9 3BH D9 3BH D1 39H D0 3BH D1 39H D1 39H D0 3BH D1 39H D1 39H D2 3AH D1 39H D2 3AH D1 39H D2 3CH D1 3H D2 3CH D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |      | 1  |                                     |          |          |          |          |              |     |          |         | <b>—</b> |          |          |     |                    |     |     |      |     |            |       |
| 0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | _  |      | 1  |                                     |          |          |          |          |              |     |          |         |          |          |          |     | П                  |     |     |      |     |            |       |
| 0101   D3   2BH   D4   2CH   D5   2DH   D6   2EH   D7   2FH   D1   S1H   D2   33H   D6   36H   D7   37H   D1   39H   D6   3EH   D7   3FH   D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | D1 | 29H  |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C42 | C26 | C23  | C7  | C48        | C32   |
| D4   2CH   D5   2DH   D6   2EH   D7   2FH   D9   30H   D1   31H   D2   32H   D6   36H   D6   36H   D7   37H   D1   39H   D2   3AH   D5   3DH   D6   3EH   D7   3FH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | D2 | 2AH  |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C43 | C27 | C22  | C6  | C47        | C31   |
| D4   2CH   D5   2DH   D6   2EH   D7   2FH   D8   D8   D8   D8   D8   D8   D8   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0101     | _  |      |    |                                     |          |          |          |          |              |     |          | Page 5  |          |          |          |     |                    |     | _   |      |     |            |       |
| D6   2EH   D7   2FH   D8   D8   D8   D8   D8   D8   D8   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | -  |      |    |                                     |          |          |          |          |              |     |          |         | _        |          |          |     |                    |     |     |      |     |            |       |
| D7   2FH   D0   30H   D1   31H   D2   32H   D3   33H   D4   34H   D5   35H   D1   39H   D1   39H   D2   3AH   D1   39H   D2   3AH   D4   3CH   D5   3DH   D6   3EH   D7   3FH   D7   3FH   D0   D0   40H   D7   D0   D0   40H   D7   D0   D0   D0   A0H   D7   D0   D0   D0   D0   D0   D0   D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |      | 4  |                                     |          |          |          |          |              |     |          |         | <u> </u> |          |          |     |                    |     |     |      |     |            |       |
| 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |    |      | -  | F                                   |          | $\vdash$ | $\vdash$ |          |              | Н   |          |         | $\vdash$ |          | $\vdash$ |     | Н                  |     |     |      |     |            |       |
| D1 31H D2 32H D3 33H D4 34H D6 36H D7 37H D1 39H D2 3AH D4 3CH D5 35H D6 36H D7 37H D7 37H D8 30H D9 38H D4 3CH D5 3DH D6 3BH D7 3FH D6 3EH D7 3FH D8 3EH D9 3FH D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>—</b> | _  |      | 1  | H                                   |          |          |          |          |              | Н   |          |         | ٢        | H        | H        |     | Н                  |     |     |      |     |            |       |
| 0110 D2 32H D3 33H D4 34H D6 36H D7 37H D0 38H D1 39H D2 3AH D4 3CH D6 3CH D6 3CH D7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |      | 1  | H                                   |          |          |          |          |              | Н   |          |         | Н        | H        | H        |     | Н                  |     |     |      |     |            |       |
| 0110 D3 33H D4 34H D5 35H D6 36H D7 37H D1 39H D1 D2 3AH D4 3CH D5 3DH D6 3EH D7 37H D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |      | 1  |                                     | İ        |          |          | i        |              | П   |          |         | Г        |          | Ħ        |     | П                  |     |     |      |     |            | _     |
| D4 34H D5 35H D6 36H D7 37H D0 38H D1 39H D2 3AH D4 3CH D5 3DH D6 3EH D7 3FH D0 D0 40H  Page 8  C53 C37 C12 C36 C20 C54 C38 C11 C36 C20 C55 C39 C10 C35 C19 C56 C40 C9 C34 C18 C57 C41 C8 C32 C16 C57 C41 C8 C32 C16 C58 C42 C7 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C28 C12 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C65 C49 C9 C34 C18 C57 C41 C8 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C28 C12 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C65 C49 C9 C30 C14 C66 C44 C5 C30 C14 C67 C48 C1 C26 C10 C67 C48 C1 C26 C10 C68 C49 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C26 C10 C69 C47 C2 C27 C11 C69 C49 C49 C49 C69 C49 C49 C5 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C3 C28 C12 C69 C46 C38 C17 C36 C40 C69 C46 C3 C28 C12 C69 C46 C38 C47 C2 C27 C11 C69 C47 C48 C19 C69 C49 C49 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0110     | D3 |      | ]  |                                     |          |          |          |          |              |     |          | Page 6  |          |          |          |     |                    |     |     |      |     |            | -     |
| D6   36H   D7   37H   D8   S8H   D1   39H   D2   3AH   D4   3CH   D5   3DH   D6   3EH   D7   3FH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0110     |    |      | 1  |                                     |          |          |          |          |              |     |          | i age o |          |          |          |     |                    |     |     |      |     |            |       |
| D7 37H D0 38H D1 39H D2 3AH D4 3CH D5 3DH D6 3EH D7 37H D7 37H D0 D0 40H  Page 7  Page 8  C56 C40 C9 C34 C18 C57 C41 C8 C32 C16 C57 C41 C8 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C28 C12 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C65 C49 C9 C34 C18 C57 C41 C8 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C28 C12 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C1C C1C C1C C1C C1C C1C C1C C1C C1C C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |      | 4  | $ldsymbol{ldsymbol{ldsymbol{eta}}}$ |          |          |          | _        |              | Щ   | Щ        |         | $\vdash$ |          | Щ        |     | Щ                  |     |     |      | _   |            |       |
| D0 38H D1 39H D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H  Page 8  C57 C41 C8 C33 C17 C58 C42 C7 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C30 C14 C61 C45 C4 C30 C14 C61 C45 C4 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C27 C11 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C65 49 65 49 MUX  MUX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |      | 4  | $\vdash$                            |          | П        |          | <u> </u> | <u> </u>     | Н   | Щ        |         | $\vdash$ |          | Щ        |     | Щ                  |     |     |      |     |            |       |
| D1 39H D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H   Page 7  Page 8  Page 8  C58 C42 C7 C32 C16 C59 C43 C6 C31 C15 C60 C44 C5 C30 C14 C61 C45 C4 C29 C13 C62 C46 C3 C28 C12 C63 C47 C2 C27 C11 C64 C48 C1 C26 C10 C1C C1C C1C C1C C1C C1C C1C C1C C1C C1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | _  |      | -1 | _                                   | <u> </u> | $\vdash$ | Н        |          | <del> </del> | H   | Н        |         | ⊢        | Н        | H        |     | $oldsymbol{arphi}$ |     |     |      |     |            |       |
| D2 3AH D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |      | -  |                                     |          |          | $\vdash$ |          |              | Н   |          |         | $\vdash$ |          | $\vdash$ |     | $\vdash$           |     |     |      |     |            |       |
| 0111 D3 3BH D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H Page 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |      | 1  |                                     |          | _        |          |          |              | Н   | H        |         | Н        |          | $\vdash$ |     | $\vdash$           |     |     |      |     |            |       |
| D4 3CH D5 3DH D6 3EH D7 3FH 1000 D0 40H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0444     |    |      | 1  | Г                                   |          |          |          |          |              | Н   |          | D       | Г        |          |          |     | H                  |     |     |      |     |            |       |
| D5 3DH D6 3EH D7 3FH 1000 D0 40H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U111     |    |      |    |                                     |          |          |          |          |              |     |          | Page /  |          |          |          |     |                    |     |     |      |     |            |       |
| D7   3FH   1000   D0   40H     D   D   D   D   D   D   D   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | D5 |      |    |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C62 |     | C3   |     |            |       |
| 1000 D0 40H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | D6 |      | 1  |                                     |          |          |          |          |              |     |          |         |          |          |          |     |                    | C63 |     | C2   |     |            |       |
| X 0 0 SEG12 SEG12 SEG3 SEG4 49 85 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | _  |      | 4  | L                                   |          | _        | Щ        |          |              | Щ   |          | _       | ┺        |          | Ш        |     | Щ                  |     |     |      |     |            |       |
| X 0 0 SEG1128 SEG128 SEG3 SEG6 SEG6 SEG6 SEG6 SEG6 SEG6 SEG6 SEG6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000     | D0 | 40H  | _  | <u> </u>                            | <u> </u> |          |          | <u> </u> |              |     |          | Page 8  | _        |          | Ш        |     | Ш                  | CIC | CIC |      |     |            |       |
| MX 1 0 2EG132 SEG13 SEG131 SEG2 SEG131 SEG3 SEG128 SEG3 SEG127 SEG6 SEG127 SEG6 SEG128 SEG3 SEG3 SEG13 SEG2 SEG13 SEG2 SEG13 SEG3 SEG13 SEG3 SEG13 SEG3 SEG13 SEG3 SEG13 SEG3 SEG13 SEG3 SEG13 SEG3 SEG13 SEG4 SEG13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |      |    |                                     |          |          |          |          |              |     |          |         | ω        | 6        | 0        | _   | 8                  |     |     | 65   |     |            | 49    |
| MX  1  2 EG132 SE  2 EG131 SE  2 EG130 SE  3 EG128 SE  3 EG128 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  3 EG32 SE  4 EG32 SE  4 EG32 SE  5 EG32 SE  5 EG32 SE  5 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE  6 EG32 SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    |      | 0  | 9                                   | .G2      | G3       | Ğ4       | G5       | 95           | .G7 | G8       |         | 3128     | 312      | 313      | 313 | 313                |     |     |      | IVI | <b>υ</b> Λ |       |
| 8EG132<br>SEG132<br>SEG130<br>SEG128<br>SEG128<br>SEG128<br>SEG2 SEG3<br>SEG3 SEG3 SEG3 SEG3 SEG3 SEG3 SEG3 SEG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |      |    | SE                                  | SE       | SE       | SE       | SE       | SE           | SE  | SE       |         | SEG      | SEG      | SEC      | SEG | SEC                |     |     |      |     |            |       |
| 1<br>  SEG1/<br>  SEG2/<br>  SEG3/<br>            |    | S    | È  | 32                                  | 31       | 90       | 53       | 38       | 72           | 56  | 55       |         |          |          |          |     |                    |     |     |      |     |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |      | ~  | 91                                  | 9        | 91;      | G1,      | G        | G1,          | G1; | G12      |         | EĞ       | EG4      | EĞ       | EG. | EG.                |     |     |      |     |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L_       |    |      |    | SE                                  | SE       | SE       | SE       | SE       | SE           | SE  | SE       |         | S        | Ś        | Š        | Ś   | Ś                  |     |     |      |     |            |       |

Example for memory mapping: let MX = 0, MY = 0, SL = 0, according to the data shown in the above table:

⇒ Page 0 SEG 1 (D7-D0) : 11100000b⇒ Page 0 SEG 2 (D7-D0) : 00110011b

## **RESET & POWER MANAGEMENT**

#### **TYPES OF RESET**

UC1701x has two different types of Reset: Power-ON-Reset and System-Reset.

Power-ON-Reset is performed right after V<sub>DD</sub> is connected to power. Power-On-Reset will first wait for about ~5mS, depending on the time

required for  $V_{\text{DD}}$  to stabilize, and then trigger the System Reset.

System Reset can also be activated by software command or by connecting RST pin to ground.

In the following discussions, Reset means *System Reset*.

The differences between hardware reset and software reset are

| Procedure                                                           | Hardware<br>Reset | Software<br>Reset |
|---------------------------------------------------------------------|-------------------|-------------------|
| Display OFF: DC[2]=0, all SEGs/COMs output at V <sub>SS</sub>       | V                 | X                 |
| Normal Display: DC[0]=0, DC[1]=0                                    | V                 | X                 |
| SEG Normal Direction: MX=0                                          | V                 | X                 |
| Clear Serial Counter and Shift Register (if using Serial Interface) | V                 | X                 |
| Bias Selection: BR=0                                                | V                 | X                 |
| Booster Level BL[1:0]=0                                             | V                 | X                 |
| Exit Power Saving Mode                                              | V                 | X                 |
| Power Control OFF: PC[2:0]=000b                                     | V                 | X                 |
| Exit Cursor Update mode                                             | V                 | V                 |
| Scroll Line SL[5:0]=0                                               | V                 | V                 |
| Column Address CA[7:0]=0                                            | V                 | V                 |
| Page Address PA[3:0]=0                                              | V                 | V                 |
| COM Normal Direction: MY=0                                          | V                 | V                 |
| V <sub>LCD</sub> Regulation Ratio PC[5:3]=100b                      | V                 | V                 |
| PM[5:0]=10 0000b                                                    | V                 | V                 |
| Exit Test Mode                                                      | V                 | V                 |

## RESET STATUS

When UC1701x enters RESET sequence:

- Operation mode will be "Reset"
- All control registers are reset to default values.
   Refer to Control Registers for details of their default values.

## **OPERATION MODES**

UC1701x has three operating modes (OM): Reset, Sleep, Normal.

For each mode, the related statuses are as below:

| Mode             | Reset  | Sleep  | Normal |
|------------------|--------|--------|--------|
| OM               | 00     | 10     | 11     |
| Host Interface   | Active | Active | Active |
| Clock            | OFF    | OFF    | ON     |
| LCD Drivers      | OFF    | OFF    | ON     |
| Charge Pump      | OFF    | OFF    | ON     |
| Draining Circuit | ON     | ON     | OFF    |

Table 4: Operating Modes

#### CHANGING OPERATION MODE

In addition to Power-ON-Reset, two commands will initiate OM transitions:

Set Display Enable, and System Reset.

When DC[2] is modified by Set Display Enable, OM will be updated automatically. There is no other action required to enter power saving mode.

For maximum energy utilization, Sleep mode is designed to retain charges stored in external capacitors  $C_{B0}$ ,  $C_{B1}$ , and  $C_{L}$ . To drain these capacitors, use Reset command to activate the on-chip draining circuit..

| Action                                                 | Mode   | OM |
|--------------------------------------------------------|--------|----|
| Reset command<br>RST_ pin pulled "L"<br>Power ON reset | Reset  | 00 |
| Set Driver Enable to "0"                               | Sleep  | 10 |
| Set Driver Enable to "1"                               | Normal | 11 |

Table 5: OM changes

Even though UC1701x consumes very little energy in Sleep mode (typically under  $2\mu A);$  however, since all capacitors are still charged, the leakage through COM drivers may damage the LCD over the long term. It is therefore recommended to use Sleep mode only for brief Display OFF operations, such as full-frame screen updates, and to use RESET for extended screen OFF operations.

#### **EXITING SLEEP MODE**

UC1701x contains internal logic to check whether  $V_{LCD}$  and  $V_{BIAS}$  are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1701x internal voltage sources are restored to their proper values.

## POWER-UP SEQUENCE

UC1701x power-up sequence is simplified by built-in "Power Ready" flags and by the automatic invocation of *System-Reset* command after *Power-ON-Reset*.

System programmer is required to wait for only 5 ~ 10 mS before starting to issue commands to UC1701x. No additional commands or waits are required between enabling of the charge pump, turning on the display drivers, writing to RAM or any other commands.

There's no delay needed while turning on  $V_{\rm DD}$  and  $V_{\rm DD2/3}$ , and either one can be turned on first.



FIGURE 8: Reference Power-Up Sequence

## ENTER/EXIT SLEEP MODE SEQUENCE

UC1503t enters Sleep mode from Display mode by issuing Set Display Disable command and setting all-pixel-ON.

To exit Sleep mode, set All-pixel-OFF.



Figure 6: Reference Enter/Exit Sleep Mode Sequence

## **POWER-DOWN SEQUENCE**

To prevent the charge stored in capacitor  $C_L$  causing abnormal residue horizontal line on display when  $V_{DD}$  is switched off, use Reset mode to enable the built-in charge draining circuit to discharge these external capacitors.



FIGURE 9: Reference Power-Down Sequence



Figure 10: Power Off-On Sequence

## SAMPLE COMMAND SEQUENCES FOR POWER MANAGEMENT

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

C/D The type of the interface cycle. It can be either Command (0) or Data (1) W/R The direction of data flow of the cycle. It can be either Write (0) or Read (1).

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default <u>A</u>dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

## Power-Up

| Туре  | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Chip action                | Comments                              |
|-------|-----|-----|----|----|----|----|----|----|----|----|----------------------------|---------------------------------------|
| R     | _   | -   | -  | _  | -  | -  | _  | -  | -  | _  | Automatic Power-ON Reset.  | Wait ~5mS after V <sub>DD</sub> is ON |
| Α     | 0   | 0   | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | Set Adv. Program Control 0 |                                       |
| ^     | U   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 1  | Set Adv. Flogram Control o | Set Wrap Around Enable                |
| С     | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | #  | Set SEG Direction          | Set up LCD format specific            |
| С     | 0   | 0   | 1  | 1  | 0  | 0  | #  | -  | _  | -  | Set COM Direction          | parameters, MX, MY, etc.              |
| С     | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 1  | #  | Set LCD Bias Ratio         | LCD specific operating                |
| R     | 0   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | Set Electronic Volume      | voltage setting                       |
| - 1 \ | 0   | 0   | 0  | 0  | #  | #  | #  | #  | #  | #  | Oct Electronic Volume      | remage coming                         |
|       | 1   | 0   | #  | #  | #  | #  | #  | #  | #  | #  |                            |                                       |
| 0     |     |     |    |    |    |    |    |    |    |    | Write display RAM          | Set up display image                  |
|       |     |     |    |    |    |    |    |    |    |    | vviite display 10 tivi     | oct up display image                  |
|       | 1   | 0   | #  | #  | #  | #  | #  | #  | #  | #  |                            |                                       |
| R     | 0   | 0   | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 1  | Set Display Enable         |                                       |

## Power-Down

| Туре | C/D | W/R | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Chip action        | Comments                             |
|------|-----|-----|----|----|----|----|----|----|----|----|--------------------|--------------------------------------|
| R    | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | System Reset       |                                      |
| R    | _   | _   | -  | -  | -  | -  | _  | -  | -  | -  | Draining capacitor | Wait ~3mS before V <sub>DD</sub> OFF |

## **DISPLAY-OFF**

| Туре | C/D    | W/R     | D7     | D6  | D5     | D4     | D3     | D2     | D1     | D0  | Chip action         | Comments                                                                                              |
|------|--------|---------|--------|-----|--------|--------|--------|--------|--------|-----|---------------------|-------------------------------------------------------------------------------------------------------|
| R    | 0      | 0       | 1      | 0   | 1      | 0      | 1      | 1      | 1      | 0   | Set Display Disable |                                                                                                       |
| С    | 1<br>1 | 0 · · 0 | #<br># | # # | #<br># | #<br># | #<br># | #<br># | #<br># | # # |                     | Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.) |
| R    | 0      | 0       | 1      | 0   | 1      | 0      | 1      | 1      | 1      | 1   | Set Display Enable  |                                                                                                       |



## **ESD CONSIDERATION**

UC1700 series products usually are provided in bare die format to customers. This makes the product particularly sensitive to ESD damage during handling and manufacturing process. It is, therefore, highly recommended that LCM makers strictly follow the "JESD 625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices" when manufacturing LCM.

The following pins in UC1701x require special "ESD Sensitivity" consideration in particular:

| Test Mode             |                     | Machine Mode |                 | Human Body Mode |                 |
|-----------------------|---------------------|--------------|-----------------|-----------------|-----------------|
| Pins                  |                     | $V_{DD}$     | V <sub>SS</sub> | $V_{DD}$        | V <sub>SS</sub> |
| LCD Driver            |                     | 150V         | 150V            | 2000V           | 1500V           |
| LCM Digital Interface |                     | 300V         | 250V            | 3000V           | 3000V           |
| LCM HV<br>Interface   | TST1/2/4            | 300V         | 300V            | 3000V           | 3000V           |
|                       | C <sub>B</sub> pins | 300V         | 300V            | 3000V           | 3000V           |
|                       | V <sub>LCDIN</sub>  | 250V         | 300V            | 3000V           | 3000V           |
|                       | V <sub>LCDOUT</sub> | 300V         | 300V            | 3000V           | 3000V           |
| PWR/GND               |                     |              | 300V            |                 | 3000V           |

According to UltraChip's Mass Production experiences, the ESD tolerance conditions are believed to be very stable and can produce high yield in multiple customer sites. However, special care is still required during handling and manufacturing process to avoid unnecessary yield loss due to ESD damages.

# **ABSOLUTE MAXIMUM RATINGS**

In accordance with IEC134 - notes 1, 2 and 3.

| Symbol                             | Parameter                                                         | Min. | Max.           | Unit |
|------------------------------------|-------------------------------------------------------------------|------|----------------|------|
| $V_{DD}$                           | Logic Supply voltage                                              | -0.3 | +4.0           | V    |
| $V_{DD2}$                          | LCD Generator Supply voltage                                      | -0.3 | +4.0           | V    |
| $V_{DD3}$                          | Analog Circuit Supply voltage                                     | -0.3 | +4.0           | V    |
| $V_{DD2/3}$ - $V_{DD}$             | Voltage difference between V <sub>DD</sub> and V <sub>DD2/3</sub> | -    | 1.2            | V    |
| $V_{LCD}$                          | LCD Generated voltage                                             | -0.3 | +13.2          | V    |
| V <sub>IN</sub> / V <sub>OUT</sub> | Any input/output                                                  | -0.4 | $V_{DD} + 0.3$ | V    |
| T <sub>OPR</sub>                   | Operating temperature range                                       | -30  | +85            | °C   |
| T <sub>STR</sub>                   | Storage temperature                                               | -55  | +125           | °C   |

# Notes

- 1.  $V_{DD}$  is based on  $V_{SS} = 0V$
- 2. Stress values listed above may cause permanent damages to the device.



# **SPECIFICATIONS**

### **DC CHARACTERISTICS**

| Symbol              | Parameter                  | Conditions                                  | Min.               | Тур.    | Max.               | Unit |
|---------------------|----------------------------|---------------------------------------------|--------------------|---------|--------------------|------|
| $V_{DD}$            | Supply for digital circuit |                                             | 1.65               | 1.8~3.3 | 3.6                | V    |
| $V_{\text{DD2/3}}$  | Supply for bias & pump     |                                             | 2.4                | 2.5~3.3 | 3.6                | V    |
| $V_{LCD}$           | Charge pump output         | $V_{DD2/3} \ge 2.4V, 25^{\circ}C$           |                    |         | 11.5               | V    |
| V <sub>D</sub>      | LCD data voltage           | $V_{DD2/3} \ge 2.4V, 25^{\circ}C$           | 0.80               |         | 1.32               | V    |
| V <sub>IL</sub>     | Input logic LOW            |                                             |                    |         | 0.2V <sub>DD</sub> | V    |
| V <sub>IH</sub>     | Input logic HIGH           |                                             | 0.8V <sub>DD</sub> |         |                    | V    |
| V <sub>OL</sub>     | Output logic LOW           |                                             |                    |         | 0.2V <sub>DD</sub> | V    |
| V <sub>OH</sub>     | Output logic HIGH          |                                             | 0.8V <sub>DD</sub> |         |                    | V    |
| I <sub>IL</sub>     | Input leakage current      |                                             |                    |         | 1.5                | μА   |
| I <sub>SB</sub>     | Standby current            | $V_{DD} = V_{DD2/3} = 3.3V,$<br>Temp = 85°C |                    |         | 50                 | μА   |
| C <sub>IN</sub>     | Input capacitance          |                                             |                    | 5       | 10                 | PF   |
| C <sub>OUT</sub>    | Output capacitance         |                                             |                    | 5       | 10                 | PF   |
| R <sub>0(SEG)</sub> | SEG output impedance       | V <sub>LCD</sub> = 11V                      |                    | 2000    | 3000               | Ω    |
| R <sub>0(COM)</sub> | COM output impedance       | V <sub>LCD</sub> = 11V                      |                    | 2000    | 3000               | Ω    |
|                     |                            | Duty=1/65                                   |                    | 77      |                    |      |
| _                   | Average Frame Date         | Duty=1/49                                   | 100/               | 153     | .400/              | Ш-   |
| $F_{FR}$            | Average Frame Rate         | Duty=1/33                                   | -10%               | 76      | +10%               | Hz   |
|                     |                            | Duty=1/55                                   |                    | 136     |                    |      |

# POWER CONSUMPTION

 $V_{DD}$  = 2.7 V,  $V_{LCD}$  = 8.49 V Mux Rate = 65, PM = 32, Bias Ratio = 0b, Frame Rate = 77Hz,  $C_L = 330 \text{ nF},$ 

All outputs are open circuit. Bus mode = 6800,

 $C_B = 2.2 \mu F$ Temperature = 25°C

| Display Pattern | Display Pattern Conditions   |     | Max. |
|-----------------|------------------------------|-----|------|
| All-OFF         | Bus = idle                   | 190 | 304  |
| 2-pixel checker | Bus = idle                   | 192 | 308  |
| 1-pixel checker | Bus = idle                   | 203 | 325  |
| -               | Bus = idle (standby current) | -   | 5    |

# **AC CHARACTERISTICS**



FIGURE 11: Parallel Bus Timing Characteristics (for 8080 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal       | Descr        | ription    | Condition     | Min. | Max. | Units |
|---------------------|--------------|--------------|------------|---------------|------|------|-------|
| t <sub>AS80</sub>   | CD           | Address      | setup time |               | 0    |      | nS    |
| t <sub>AH80</sub>   | C            | Address      | hold time  |               | 5    |      | 113   |
| t <sub>CSSA80</sub> | CS1/CS0      | Chip select  | setup time |               | 5    |      | nS    |
| t <sub>CSH80</sub>  | C31/C30      | Chip select  | hold time  |               | 5    | _    | 113   |
| t <sub>CY80</sub>   |              | Cycle time   | read       |               | 120  |      | nS    |
| ICY80               |              | Cycle time   | write      |               | 80   |      | 113   |
| t <sub>PWR80</sub>  | WR1          | Pulse width  | read       |               | 60   | _    | nS    |
| t <sub>PWW80</sub>  | WR0          | i disc width | write      |               | 40   |      | 110   |
| t <sub>HPW80</sub>  | WR0. WR1     | High pulse   | read       |               | 60   | _    | nS    |
| THPW80              | vvito, vviti | width        | write      |               | 40   |      | 110   |
| t <sub>DS80</sub>   | D7~D0        | Data         | setup time |               | 30   |      | nS    |
| t <sub>DH80</sub>   | D1 ~ D0      | Dala         | hold time  |               | 0    | _    | 10    |
| t <sub>ACC80</sub>  |              | Read access  | time       | $C_L = 100pF$ | _    | 60   | nS    |
| t <sub>OD80</sub>   |              | Output disab | le time    |               | 20   | _    | 110   |

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal       | Desci        | ription    | Condition              | Min. | Max. | Units |
|---------------------|--------------|--------------|------------|------------------------|------|------|-------|
| t <sub>AS80</sub>   | CD           | Address      | setup time |                        | 0    | _    | nS    |
| t <sub>AH80</sub>   | CD           | Address      | hold time  |                        | 0    |      | 110   |
| t <sub>CSSA80</sub> | CS1/CS0      | Chip select  | setup time |                        | 5    |      | nS    |
| t <sub>CSH80</sub>  | 031/030      | Chip select  | hold time  |                        | 5    |      | 113   |
| 4                   |              | System       | read       |                        | 240  |      | nS    |
| t <sub>CY80</sub>   |              | cycle time   | write      |                        | 160  | _    | 113   |
| t <sub>PWR80</sub>  | WR1          | Pulse width  | read       |                        | 120  | _    | nS    |
| t <sub>PWW80</sub>  | WR0          | i disc width | write      |                        | 80   |      | 110   |
| ŧ                   | WR0, WR1     | High pulse   | read       |                        | 120  |      | nS    |
| t <sub>HPW80</sub>  | VVICO, VVICI | width        | write      |                        | 80   | _    | 113   |
| t <sub>DS80</sub>   | D7~D0        | Data         | setup time |                        | 60   |      | nS    |
| t <sub>DH80</sub>   | D1~D0        | Dala         | hold time  |                        | 0    |      | 113   |
| t <sub>ACC80</sub>  |              | Read access  |            | C <sub>L</sub> = 100pF | _    | 100  | nS    |
| $t_{OD80}$          |              | Output disab | le time    |                        | 50   | _    |       |



FIGURE 12: Parallel Bus Timing Characteristics (for 6800 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal  | Desci         | iption     | Condition              | Min. | Max. | Units |
|---------------------|---------|---------------|------------|------------------------|------|------|-------|
| t <sub>AS68</sub>   | CD      | Address       | setup time |                        | 0    | _    | nS    |
| t <sub>AH68</sub>   | OD      | Addicss       | hold time  |                        | 0    |      | 113   |
| t <sub>CSSA68</sub> | CS1/CS0 | Chip select   | setup time |                        | 5    | _    | nS    |
| t <sub>CSH68</sub>  | 001/000 | Only sciect   | hold time  |                        | 5    |      | 110   |
| t <sub>CY68</sub>   |         | System        | read       |                        | 120  |      | nS    |
| 1CY68               |         | cycle time    | write      |                        | 80   | _    | 110   |
| t <sub>PWR68</sub>  | WR1     | Pulse width   | read       |                        | 60   | _    | nS    |
| t <sub>PWW68</sub>  | VVIXI   | i dise widtii | write      |                        | 40   |      | 110   |
| t <sub>HPW68</sub>  |         | High pulse    | read       |                        | 60   | _    | nS    |
| THPW68              |         | width         | write      |                        | 40   |      | 110   |
| t <sub>DS68</sub>   | D7~D0   | Data          | setup time |                        | 30   |      | nS    |
| t <sub>DH68</sub>   | D1~D0   | Dala          | hold time  |                        | 0    | _    | 110   |
| t <sub>ACC68</sub>  |         | Read access   | time       | C <sub>L</sub> = 100pF | _    | 60   | nS    |
| t <sub>OD68</sub>   |         | Output disab  | le time    | OL - 100p1             | 50   | _    | 110   |

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal            | Descr         | iption     | Condition              | Min. | Max. | Units |
|---------------------|-------------------|---------------|------------|------------------------|------|------|-------|
| t <sub>AS68</sub>   | CD                | Address       | setup time |                        | 0    |      | nS    |
| t <sub>AH68</sub>   | CD                | Address       | hold time  |                        | 0    | _    | 110   |
| t <sub>CSSA68</sub> | CS1/CS0           | Chip select   | setup time |                        | 5    |      | nS    |
| t <sub>CSH68</sub>  | 031/030           | Chip select   | hold time  |                        | 5    |      | 110   |
| 4                   |                   | avala tima    | read       |                        | 240  |      | nS    |
| ICY68               | t <sub>CY68</sub> | cycle time    | write      |                        | 160  | _    | 110   |
| t <sub>PWR68</sub>  | WR1               | Pulse width   | read       |                        | 120  | _    | nS    |
| t <sub>PWW68</sub>  | VVIXI             | i dise widtii | write      |                        | 80   | _    | 110   |
| t <sub>HPW68</sub>  |                   | High pulse    | read       |                        | 120  |      | nS    |
| THPW68              |                   | width         | write      |                        | 80   | _    | 110   |
| t <sub>DS68</sub>   | D7~D0             | Data          | setup time |                        | 60   |      | nS    |
| t <sub>DH68</sub>   | D1~D0             | Dala          | hold time  |                        | 0    | _    | 113   |
| t <sub>ACC68</sub>  |                   | Read access   |            | C <sub>L</sub> = 100pF | _    | 100  | nS    |
| t <sub>OD68</sub>   |                   | Output disab  | le time    |                        | 100  | _    |       |



FIGURE 13: Serial Bus Timing Characteristics (for S8)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal  | Descri      | ption      | Condition | Min. | Max. | Units |
|---------------------|---------|-------------|------------|-----------|------|------|-------|
| t <sub>ASS8</sub>   | CD      | Address     | setup time |           | 0    | _    | nS    |
| t <sub>AHS8</sub>   | OB      | 71001000    | hold time  |           | 0    |      | 110   |
| t <sub>CSSAS8</sub> | CS1/CS0 | Chip select | setup time |           | 5    |      | nS    |
| t <sub>CSHS8</sub>  | 001/000 | Chip select | hold time  |           | 5    |      | 110   |
| t <sub>CYS8</sub>   |         | Cycle time  | read       |           | 100  |      | nS    |
| iCYS8               |         | Cycle time  | write      |           | 30   |      | 10    |
| t <sub>LPWS8</sub>  | SCK     | Low pulse   | read       |           | 50   |      | nS    |
| LPWS8               | SOR     | width       | write      |           | 15   |      | 10    |
| 4                   |         | High pulse  | read       |           | 50   |      | nS    |
| t <sub>HPWS8</sub>  |         | width       | write      |           | 15   | _    | 113   |
| t <sub>DSS8</sub>   | SDA     | Data        | setup time |           | 12   |      | nS    |
| t <sub>DHS8</sub>   | SDA     | Dala        | hold time  |           | 0    | _    | 110   |

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol              | Signal  | Description |            | Condition | Min. | Max. | Units |
|---------------------|---------|-------------|------------|-----------|------|------|-------|
| t <sub>ASS8</sub>   | CD      | Address     | setup time |           | 0    |      | nS    |
| t <sub>AHS8</sub>   | OD      | 71001033    | hold time  |           | 0    |      | 110   |
| t <sub>CSSAS8</sub> | CS1/CS0 | Chip select | setup time |           | 10   |      | nS    |
| t <sub>CSHS8</sub>  | 001/000 | Only select | hold time  |           | 10   |      | 110   |
| t <sub>CYS8</sub>   |         | Cycle time  | read       |           | 130  |      | nS    |
| iCYS8               |         | Cycle time  | write      |           | 60   |      | 110   |
| t <sub>LPWS8</sub>  | SCK     | Low pulse   | read       |           | 65   | _    | nS    |
| LPWS8               | JOIN    | width       | write      |           | 30   |      | 110   |
| t <sub>HPWS8</sub>  |         | High pulse  | read       |           | 65   |      | nS    |
| THPWS8              |         | width       | write      |           | 30   |      | 110   |
| $t_{DSS8}$          | SDA     | Data        | setup time |           | 24   |      | nS    |
| t <sub>DHS8</sub>   | SDA     | Data        | hold time  |           | 0    |      | 110   |





FIGURE 14: Reset Characteristics

 $(1.65V \le V_{DD} \le 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$ 

| Symbol          | Signal  | Description             | Condition | Min. | Max. | Units |
|-----------------|---------|-------------------------|-----------|------|------|-------|
| t <sub>RW</sub> | RST     | Reset low pulse width   |           | 3    | -    | μS    |
| t <sub>RD</sub> | RST, WR | Reset to WR pulse delay |           | 6    | 1    | mS    |

# **PHYSICAL DIMENSIONS**

DIE SIZE:

4850  $\mu$ M x 660  $\mu$ M  $\pm$  40  $\mu$ M

**DIE THICKNESS:** 

 $400~\mu M \pm 20~\mu M$ 

**BUMP HEIGHT:** 

 $15~\mu M~\pm 3~\mu M$ 

 $(H_{MAX}-H_{MIN})$  within die  $\leqslant$  2  $\mu M$ 

**BUMP SIZE:** 

15  $\mu$ M x 138.5  $\mu$ M  $\pm$  2  $\mu$ M (Typ.)

BUMP PITCH:

 $27 \mu M$ 

BUMP GAP:

12 µM

**COORDINATE ORIGIN:** 

Chip center

PAD REFERENCE:

Pad center

(Drawing and coordinates are for the Circuit/Bump view.)



# **ALIGNMENT MARK INFORMATION**



#### SHAPE OF THE ALIGNMENT MARK:



### Note:

Alignment mark is on Metal3 under Passivation.

The "+" mark is symmetric both horizontally and vertically.

# COORDINATES:

|   | D-Left I | Mark (+) | D-Right Mark (+) |        |  |
|---|----------|----------|------------------|--------|--|
|   | X        | Y        | X                | Y      |  |
| 1 | -1984.5  | -149.5   | 1969.5           | -149.5 |  |
| 2 | -1969.5  | -184.5   | 1984.5           | -184.5 |  |
| 3 | -1994.5  | -159.5   | 1959.5           | -159.5 |  |
| 4 | -1959.5  | -174.5   | 1994.5           | -174.5 |  |
| С | -1977    | -167     | 1977             | -167   |  |

### TOP METAL AND PASSIVATION:



FOR PROCESS CROSS-SECTION

# PAD COORDINATES

| #  | Pad     | Χ     | Υ       | W  | Н     |
|----|---------|-------|---------|----|-------|
| 1  | COM54   | -2363 | -227.75 | 15 | 138.5 |
| 2  | COM55   | -2336 | -227.75 | 15 | 138.5 |
| 3  | COM56   | -2309 | -227.75 | 15 | 138.5 |
| 4  | COM57   | -2282 | -227.75 | 15 | 138.5 |
| 5  | COM58   | -2255 | -227.75 | 15 | 138.5 |
| 6  | COM59   | -2228 | -227.75 | 15 | 138.5 |
| 7  | COM60   | -2201 | -227.75 | 15 | 138.5 |
| 8  | COM61   | -2174 | -227.75 |    | 138.5 |
| 9  | COM62   | -2147 | -227.75 | 15 | 138.5 |
| 10 | COM63   | -2120 | -227.75 | 15 | 138.5 |
| 11 | COM64   | -2093 | -227.75 | 15 | 138.5 |
| 12 | CIC     | -2066 | -227.75 | 15 | 138.5 |
| 13 | TST4    | -1970 | -274.5  | 50 | 45    |
| 14 | CS0     | -1905 | -274.5  | 50 | 45    |
| 15 | RST     | -1840 | -274.5  | 50 | 45    |
| 16 | CD      | -1775 | -274.5  | 50 | 45    |
| 17 | WR0     | -1710 | -274.5  | 50 | 45    |
| 18 | WR1     | -1645 | -274.5  | 50 | 45    |
| 19 | VDDX    | -1580 | -274.5  | 50 | 45    |
| 20 | D0      | -1515 | -274.5  | 50 | 45    |
| 21 | D1      | -1450 | -274.5  | 50 | 45    |
| 22 | D2      | -1385 | -274.5  | 50 | 45    |
| 23 | D3      | -1320 | -274.5  | 50 | 45    |
| 24 | D4      | -1255 | -274.5  | 50 | 45    |
| 25 | D5      | -1190 | -274.5  | 50 | 45    |
| 26 | D6      | -1125 | -274.5  | 50 | 45    |
| 27 | D7      | -1060 | -274.5  | 50 | 45    |
| 28 | VDD1    | -995  | -274.5  | 50 | 45    |
| 29 | VDD1    | -930  | -274.5  | 50 | 45    |
| 30 | VDD2    | -865  | -274.5  | 50 | 45    |
| 31 | VDD2    | -800  | -274.5  | 50 | 45    |
| 32 | VDD2    | -735  | -274.5  | 50 | 45    |
| 33 | VDD3    | -670  | -274.5  | 50 | 45    |
| 34 | VSS1    | -605  | -274.5  | 50 | 45    |
| 35 | VSS1    | -540  | -274.5  | 50 | 45    |
| 36 | VSS2    | -475  | -274.5  | 50 | 45    |
| 37 | VSS2    | -410  | -274.5  | 50 | 45    |
| 38 | VSS2    | -345  | -274.5  | 50 | 45    |
| 39 | VSS2    | -280  | -274.5  | 50 | 45    |
| 40 | VB1+    | -215  | -274.5  | 50 | 45    |
| 41 | VB1+    | -150  | -274.5  | 50 | 45    |
| 42 | DUMMY   | -85   | -274.5  | 50 | 45    |
| 43 | VB0+    | -20   | -274.5  |    | 45    |
| 44 | VB0+    | 45    | -274.5  | 50 | 45    |
| 45 | VB0-    | 110   | -274.5  | 50 | 45    |
| 46 | VB0-    | 175   | -274.5  | 50 | 45    |
| 47 | DUMMY   | 240   | -274.5  | 50 | 45    |
| 48 | VB1-    | 305   | -274.5  | 50 | 45    |
| 49 | VB1-    | 370   | -274.5  | 50 | 45    |
| 50 | VB1+    | 435   | -274.5  | 50 | 45    |
| 51 | VB1+    | 500   | -274.5  | 50 | 45    |
| 52 | VLCDIN  | 565   | -274.5  | 50 | 45    |
| 53 | VLCDIN  | 630   | -274.5  | 50 | 45    |
| 54 | VLCDOUT | 695   | -274.5  | 50 | 45    |
| 55 | VLCDOUT | 760   | -274.5  | 50 | 45    |
| 56 | DUMMY   | 820   | -274.5  | 45 | 45    |
| 57 | DUMMY   | 875   | -274.5  | 45 | 45    |
| 58 | DUMMY   | 930   | -274.5  | 45 | 45    |

| #   | Pad   | Х            | Υ                          | W              | Н                       |
|-----|-------|--------------|----------------------------|----------------|-------------------------|
| 59  | DUMMY | 985          | -274.5                     | 45             | 45                      |
| 60  | DUMMY | 1040         | -274.5                     | 45             | 45                      |
| 61  | DUMMY | 1095         | -274.5                     | 45             | 45                      |
| 62  | DUMMY | 1150         |                            | 45             | 45                      |
| 63  | DUMMY | 1205         | -274.5                     | 45             | 45                      |
| 64  | DUMMY | 1260         | -274.5                     | 45             | 45                      |
| -   | TST2  |              |                            | _              | 45                      |
| 65  |       | 1320         | -274.5                     | 50<br>50       | _                       |
| 66  | VSSL  | 1385         | -274.5                     | 50             | 45                      |
| 67  | VDDX  | 1450         | -274.5                     | 50             | 45                      |
| 68  | BM0   | 1515         | -274.5                     | 50             | 45                      |
| 69  | BM1   | 1580         | -274.5                     | 50<br>50       | 45                      |
| 70  | DT1   | 1645         | -274.5                     | 50             | 45                      |
| 71  | VSSX  | 1710         | -274.5                     | 50             | 45                      |
| 72  | DT2   | 1775         | -274.5                     | 50             | 45                      |
| 73  | VDD1  | 1840         | -274.5                     | 50             | 45                      |
| 74  | VDD2  | 1905         | -274.5                     | 50             | 45                      |
| 75  | VDD3  | 1970         | -274.5                     | 50             | 45                      |
| 76  | COM32 | 2066         | -227.75                    | 15             | 138.5                   |
| 77  | COM31 | 2093         | -227.75                    | 15             | 138.5                   |
| 78  | COM30 | 2120         | -227.75                    | 15             | 138.5                   |
| 79  | COM29 | 2147         | -227.75                    | 15             | 138.5                   |
| 80  | COM28 | 2174         | -227.75                    | 15             | 138.5                   |
| 81  | COM27 | 2201         | -227.75                    | _              |                         |
| 82  | COM26 | 2228         | -227.75                    |                | 138.5                   |
| 83  | COM25 | 2255         | -227.75                    |                |                         |
| 84  | COM24 | 2282         | -227.75                    | _              | 138.5                   |
| 85  | COM23 | 2309         | -227.75                    | _              |                         |
| 86  | COM22 |              | -227.75                    | _              | 138.5                   |
| 87  | COM21 | 2336<br>2363 | -227.75<br>-227.75         |                |                         |
| -   |       |              |                            | _              |                         |
| 88  | COM20 | 2363         | 227.75                     |                |                         |
| 89  | COM19 | 2336         | 227.75                     | 15             | 138.5                   |
| 90  | COM18 | 2309         | 227.75                     | 15             | 138.5                   |
| 91  | COM17 | 2282         | 227.75                     | _              | 138.5                   |
| 92  | COM16 | 2255         | 227.75                     |                | 138.5                   |
| 93  | COM15 | 2228         | 227.75                     |                | 138.5                   |
| 94  | COM14 | 2201         | 227.75                     | 15             | 138.5                   |
| 95  | COM13 | 2174         | 227.75                     | 15             | 138.5                   |
| 96  | COM12 | 2147         | 227.75                     | 15             | 138.5                   |
| 97  | COM11 | 2120         | 227.75                     | 15             | 138.5                   |
| 98  | COM10 | 2093         | 227.75                     | 15             | 138.5                   |
| 99  | COM9  | 2066         | 227.75                     | 15             | 138.5                   |
| 100 | COM8  | 2039         | 227.75                     | 15             | 138.5                   |
| 101 | COM7  | 2012         | 227.75                     | 15             | 138.5                   |
| 102 | COM6  | 1985         | 227.75                     | 15             | 138.5                   |
| 103 | COM5  | 1958         | 227.75                     | 15             | 138.5                   |
| 104 | COM4  | 1931         | 227.75                     | _              |                         |
| 105 | COM3  | 1904         | 227.75                     |                | 138.5                   |
| 106 | COM2  | 1877         | 227.75                     |                | 138.5                   |
| 107 | COM1  | 1850         | 227.75                     | 15             | 138.5                   |
| 108 | CIC   | 1823         | 227.75                     |                | 138.5                   |
| 100 | SEG1  | 1768.5       | 227.75                     |                | 138.5                   |
| _   |       |              |                            | _              |                         |
| 110 | SEG2  | 1741.5       | 227.75                     |                | 138.5                   |
| 111 | SEG3  | 1714.5       | 227.75                     | _              | 138.5                   |
| 112 | SEG4  | 1687.5       | 227.75                     | _              | 138.5                   |
|     |       | 1660.5       | 227.75                     | 15             | 138.5                   |
| 113 | SEG5  |              |                            |                |                         |
| 114 | SEG6  | 1633.5       | 227.75                     |                |                         |
|     |       |              | 227.75<br>227.75<br>227.75 | 15<br>15<br>15 | 138.5<br>138.5<br>138.5 |

| #          | Pad            | Х                | Υ                | w        | Н              |
|------------|----------------|------------------|------------------|----------|----------------|
| 117        | SEG9           | 1552.5           | 227.75           |          | 138.5          |
| 118        | SEG10          | 1525.5           | 227.75           | 15       | 138.5          |
| 119        | SEG11          | 1498.5           | 227.75           | 15       | 138.5          |
| 120        | SEG12          | 1471.5           | 227.75           | 15       | 138.5          |
| 121        | SEG13          | 1444.5           | 227.75           | 15       | 138.5          |
| 122        | SEG14          | 1417.5           | 227.75           | 15       | 138.5          |
| 123        | SEG14<br>SEG15 | 1390.5           |                  | 15       | 138.5          |
| 123        |                |                  | 227.75           | _        |                |
| 125        | SEG16<br>SEG17 | 1363.5<br>1336.5 | 227.75<br>227.75 | 15<br>15 | 138.5<br>138.5 |
| H          | SEG17<br>SEG18 | 1309.5           | 227.75           | 15       | 138.5          |
| 126        |                |                  |                  | 15       |                |
| 127<br>128 | SEG19<br>SEG20 | 1282.5<br>1255.5 | 227.75<br>227.75 | 15       | 138.5<br>138.5 |
| 129        |                | 1233.5           |                  | 15       | 138.5          |
| 130        | SEG21<br>SEG22 | 1201.5           | 227.75<br>227.75 | 15       | 138.5          |
| 131        | SEG23          | 1174.5           | 227.75           | 15       |                |
| 132        |                |                  |                  |          |                |
| H          | SEG24          | 1147.5           | 227.75           | 15       | 138.5          |
| 133        | SEG25          | 1120.5           | 227.75           | 15       | 138.5          |
| 134        | SEG26          | 1093.5           | 227.75           | 15       | 138.5<br>138.5 |
| 135        | SEG27          | 1066.5           | 227.75           | 15       |                |
| 136        | SEG28          | 1039.5           | 227.75           | 15       | 138.5          |
| 137        | SEG29          | 1012.5           | 227.75           | 15       | 138.5          |
| 138        | SEG30          | 985.5            | 227.75           | 15       | 138.5          |
| 139        | SEG31          | 958.5            | 227.75           | 15       | 138.5          |
| 140        | SEG32          | 931.5            | 227.75           | 15       | 138.5          |
| 141        | SEG33          | 904.5            | 227.75           | 15       | 138.5          |
| 142        | SEG34          | 877.5            | 227.75           | 15       | 138.5          |
| 143        | SEG35          | 850.5            | 227.75           | 15       | 138.5          |
| 144        | SEG36          | 823.5            | 227.75           | 15       | 138.5          |
| 145        | SEG37          | 796.5            | 227.75           | 15       | 138.5          |
| 146        | SEG38          | 769.5            | 227.75           | 15       | 138.5          |
| 147        | SEG39          | 742.5            | 227.75           | 15       | 138.5          |
| 148<br>149 | SEG40          | 715.5            | 227.75           | 15       | 138.5          |
| 150        | SEG41<br>SEG42 | 688.5            | 227.75           | 15       | 138.5          |
|            |                | 661.5            | 227.75           | 15       | 138.5          |
| 151<br>152 | SEG43<br>SEG44 | 634.5            | 227.75           | 15<br>15 | 138.5<br>138.5 |
| 153        | SEG44<br>SEG45 | 607.5<br>580.5   | 227.75<br>227.75 | 15       | 138.5          |
| 154        | SEG45<br>SEG46 |                  |                  | 15       |                |
| 155        | SEG47          | 553.5<br>526.5   | 227.75<br>227.75 | 15       | 138.5<br>138.5 |
| 156        | SEG48          | 499.5            | 227.75           | 15       | 138.5          |
| 157        | SEG49          | 472.5            | 227.75           | 15       | 138.5          |
| 158        | SEG50          | 445.5            | 227.75           | _        |                |
| 159        | SEG51          | 418.5            |                  |          | 138.5          |
| 160        | SEG52          | 391.5            | 227.75           | _        |                |
| 161        | SEG53          | 364.5            | 227.75           | _        |                |
| 162        | SEG54          | 337.5            | 227.75           | _        | 138.5          |
| 163        | SEG55          | 310.5            | 227.75           | <b>—</b> | 138.5          |
| 164        | SEG56          | 283.5            | 227.75           | _        | 138.5          |
| 165        | SEG57          | 256.5            | 227.75           |          | 138.5          |
| 166        | SEG58          | 229.5            | 227.75           |          | 138.5          |
| 167        | SEG59          | 202.5            |                  | _        | 138.5          |
| 168        | SEG60          | 175.5            | 227.75           |          | 138.5          |
| 169        | SEG61          | 148.5            | 227.75           | _        |                |
| 170        | SEG62          | 121.5            | 227.75           |          | 138.5          |
| 171        | SEG63          | 94.5             | 227.75           | _        | 138.5          |
| 172        | SEG64          | 67.5             | 227.75           |          | 138.5          |
| 173        | SEG65          | 40.5             | 227.75           | _        | 138.5          |
| 174        | SEG66          | 13.5             | 227.75           |          | 138.5          |
|            | 02000          | .0.0             |                  |          | . 55.5         |



| #          | Pad            | X                | Υ                | W        | H              |
|------------|----------------|------------------|------------------|----------|----------------|
| 175        | SEG67          | -13.5            | 227.75           | 15       | 138.5          |
| 176        | SEG68          | -40.5            | 227.75           | 15       | 138.5          |
| 177        | SEG69          | -67.5            | 227.75           | 15       | 138.5          |
| 178        | SEG70          | -94.5            | 227.75           | 15       | 138.5          |
| 179        | SEG71          | -121.5           | 227.75           | 15       | 138.5          |
| 180        | SEG72          | -148.5           | 227.75           | 15       | 138.5          |
| 181        | SEG73          | -175.5           | 227.75           | 15       | 138.5          |
| 182        | SEG74          | -202.5           | 227.75           | 15       | 138.5          |
| 183        | SEG75          | -229.5           | 227.75           | 15       | 138.5          |
| 184        | SEG76          | -256.5           | 227.75           | 15       | 138.5          |
| 185        | SEG77          | -283.5           | 227.75           | 15       | 138.5          |
| 186        | SEG78          | -310.5           | 227.75           | 15       | 138.5          |
| 187        | SEG79          | -337.5           | 227.75           | 15       | 138.5          |
| 188        | SEG80          | -364.5           | 227.75           | 15       | 138.5          |
| 189        | SEG81          | -391.5           | 227.75           | 15       | 138.5          |
| 190        | SEG82          | -418.5           | 227.75           | 15       | 138.5          |
| 191        | SEG83          | -445.5           | 227.75           | 15       | 138.5          |
| 192        | SEG84          | -472.5           | 227.75           | 15       | 138.5          |
| 193        | SEG85          | -499.5           | 227.75           | 15       | 138.5          |
| 194        | SEG86          | -526.5           | 227.75           | 15       | 138.5          |
| 195        | SEG87          | -553.5           | 227.75           | 15       | 138.5          |
| 196        | SEG88          | -580.5           | 227.75           | 15       | 138.5          |
| 197        | SEG89          | -607.5           | 227.75           | 15       | 138.5          |
| 198        | SEG90          | -634.5           | 227.75           | 15       | 138.5          |
| 199        | SEG91          | -661.5           | 227.75           | 15       | 138.5          |
| 200        | SEG92          | -688.5           | 227.75           | 15       | 138.5          |
| 201        | SEG93          | -715.5           | 227.75           | 15       | 138.5          |
| 202<br>203 | SEG94<br>SEG95 | -742.5<br>-769.5 | 227.75<br>227.75 | 15       | 138.5<br>138.5 |
| 203<br>204 | SEG95<br>SEG96 |                  |                  | 15       |                |
| 204<br>205 | SEG90          | -796.5<br>-823.5 | 227.75           | 15<br>15 | 138.5<br>138.5 |
| 205<br>206 | SEG97<br>SEG98 | -850.5           | 227.75<br>227.75 | 15       | 138.5          |
| 207        | SEG99          | -877.5           | 227.75           | 15       | 138.5          |
| 208        | SEG100         | -904.5           | 227.75           | 15       | 138.5          |
| 209        | SEG101         | -931.5           | 227.75           | 15       | 138.5          |
| 210        | SEG101         | -958.5           | 227.75           | 15       | 138.5          |
| 211        | SEG102         | -985.5           | 227.75           | 15       | 138.5          |
| 212        | SEG104         | -1012.5          | 227.75           | 15       | 138.5          |
| 213        | SEG105         | -1039.5          | 227.75           | 15       | 138.5          |
| 214        | SEG106         | -1066.5          | 227.75           | 15       | 138.5          |
| 215        | SEG107         |                  | 227.75           | 15       | 138.5          |
| 216        | SEG108         | 4400 =           | 227.75           | 4-       | 138.5          |
| 217        | SEG109         |                  | 227.75           |          |                |
| 218        | SEG110         |                  | 227.75           |          | 138.5          |
| 219        | SEG111         |                  | 227.75           | _        |                |
| 220        | SEG112         |                  | 227.75           |          | 138.5          |
| 221        | SEG113         |                  | 227.75           |          | 138.5          |
| 222        | SEG114         |                  | 227.75           | _        | 138.5          |
| 223        | SEG115         |                  | 227.75           | _        | 138.5          |
| 224        | SEG116         |                  | 227.75           |          | 138.5          |
| 225        | SEG117         |                  | 227.75           | _        | 138.5          |
| 226        |                |                  | 227.75           |          | 138.5          |
| 227        | SEG119         |                  | 227.75           | _        | 138.5          |
| 228        | SEG120         |                  | 227.75           |          | 138.5          |
| 229        | SEG121         |                  | 227.75           |          | 138.5          |
| 230        | SEG122         |                  | 227.75           | _        | 138.5          |
| 231        | SEG123         |                  | 227.75           |          | 138.5          |
| 232        |                |                  | 227.75           | _        | 138.5          |
| 233        |                |                  | 227.75           |          | 138.5          |
| 234        | SEG126         |                  | 227.75           |          | 138.5          |
| _          |                |                  |                  | _        |                |

| #   | Pad    | Х       | Υ      | W  | Н     |
|-----|--------|---------|--------|----|-------|
| 235 | SEG127 | -1633.5 | 227.75 | 15 | 138.5 |
| 236 | SEG128 | -1660.5 | 227.75 | 15 | 138.5 |
| 237 | SEG129 | -1687.5 | 227.75 | 15 | 138.5 |
| 238 | SEG130 | -1714.5 | 227.75 | 15 | 138.5 |
| 239 | SEG131 | -1741.5 | 227.75 | 15 | 138.5 |
| 240 | SEG132 | -1768.5 | 227.75 | 15 | 138.5 |
| 241 | COM33  | -1823   | 227.75 | 15 | 138.5 |
| 242 | COM34  | -1850   | 227.75 | 15 | 138.5 |
| 243 | COM35  | -1877   | 227.75 | 15 | 138.5 |
| 244 | COM36  | -1904   | 227.75 | 15 | 138.5 |
| 245 | COM37  | -1931   | 227.75 | 15 | 138.5 |
| 246 | COM38  | -1958   | 227.75 | 15 | 138.5 |
| 247 | COM39  | -1985   | 227.75 | 15 | 138.5 |
| 248 | COM40  | -2012   | 227.75 | 15 | 138.5 |
| 249 | COM41  | -2039   | 227.75 | 15 | 138.5 |
| 250 | COM42  | -2066   | 227.75 | 15 | 138.5 |
| 251 | COM43  | -2093   | 227.75 | 15 | 138.5 |
| 252 | COM44  | -2120   | 227.75 | 15 | 138.5 |
| 253 | COM45  | -2147   | 227.75 | 15 | 138.5 |
| 254 | COM46  | -2174   | 227.75 | 15 | 138.5 |
| 255 | COM47  | -2201   | 227.75 | 15 | 138.5 |
| 256 | COM48  | -2228   | 227.75 | 15 | 138.5 |
| 257 | COM49  | -2255   | 227.75 | 15 | 138.5 |
| 258 | COM50  | -2282   | 227.75 | 15 | 138.5 |
| 259 | COM51  | -2309   | 227.75 | 15 | 138.5 |
| 260 | COM52  | -2336   | 227.75 | 15 | 138.5 |
| 261 | COM53  | -2363   | 227.75 | 15 | 138.5 |

# **TRAY INFORMATION**





# **REVISION HISTORY**

High-Voltage Mixed-Signal IC

| Revision | Contents                                                                                                                                                         | Date of Rev.  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0.6      | First release                                                                                                                                                    | Jul. 29, 2008 |
| 0.7      | (1) A new register, APC, is added. (Section "Control Registers", page 10)                                                                                        |               |
|          | (2) Command "Set Advanced Program Control" is split into 2 commands. (Section "Command Table", - (25)(26), page 12; "Command Description" – (25)(26), page 17)   | Aug. 8, 2008  |
|          | (3) The sample codes for Power-Up are updated. (Section "Sample Command Sequences for Power Management", page 34)                                                |               |
|          | (4) The tray drawing is updated. (Section "Tray Information", page 46)                                                                                           |               |
|          | (1) V <sub>LCD</sub> data are updated.<br>(Section "V <sub>LCD</sub> Quick Reference", page 19)                                                                  |               |
| 0.8      | (2) The description on Mux-Rate is updated. (Section "LCD Display Controls" – Clock & Timing Generator, page 21)                                                 | Aug. 27, 2008 |
| 0.8      | (3) Power consumption data present. (Section "Specifications" – Power Consumption, page 37)                                                                      |               |
|          | (4) Some AC timings are adjusted. (Section "AC Characteristics", Pp 38~40)                                                                                       |               |
| 1.0      | <ul><li>(1) The setting of WR[1:0] in S8 mode is updated: 0 → -</li><li>(Section "Pin Description" – WR1~0, page 7;</li><li>"Host Interface", page 25)</li></ul> |               |
|          | (2) Power Up and Enter/Exit Sleep Mode sequences are updated. (Section "Reset & Power Management", page 32)                                                      | Nov. 7, 2008  |
|          | (3) ESD data are corrected.<br>(Section "ESD Consideration", page 36)                                                                                            |               |