

²Shopee

⁴UB

¹Luchuan Song ²Zheng Fang ³Xiaodan Li ¹Xiaoyi Dong ¹Zhenchao Jin ³Yuefeng Chen ⁴Siwei Lyu

1. Introduction

³Alibaba

Motivation:

- > The existing deepfake detection work originates from the large intra-class distance caused by various artifacts on fake faces.
- > We want to improve the cross-frame detection consistency for spatial and frequency domain.

Contribution:

- > We introduce a Dual-domain Intra-Consistency Module (DICM) to improve consistency and stability of instance representation, which is extracted based on multiple frames in various domains, i.e. RGB and frequency patterns.
- > We introduce an Instance-Discrimination Module to adjust the discriminative centers. It can dynamically adjust the position of the hyperplane according to the input instance, which can help to improve the detection performance further.
- > We verify that our approach can achieve stateof-the-art performance on several datasets under both in-domain and out-domain settings.

2. Dual-domain Intra-Consistency Module

- > We propose a Dual-domain Intra-Consistency Module to extract consistent representations in both the RGB and frequency domain from the input multiple *n* frames to interact with each other.
- > The structure of Dual-domain Intra-Consistency Module is in the DICM in above.

3. Instance-Discrimination Module

- > We propose a novel Instance-Discrimination Module to adaptively adjust the discriminative center based on the instance itself to make robust and efficient predictions.
- > We propose the IDM to adaptively adjust the discriminative centers based on the instance itself.

$$P(Y = y | \mathbf{x}) = \frac{\exp(\tau \frac{\mathbf{w}_y^\top + \mathbf{b}_y^\top(\mathbf{x})}{\left\|\mathbf{w}_y^\top + \mathbf{b}_y^\top(\mathbf{x})\right\|_2} \frac{\mathbf{x}}{\left\|\mathbf{x}\right\|_2})}{\sum_j^N \exp(\tau \frac{\mathbf{w}_j^\top + \mathbf{b}_j^\top(\mathbf{x})}{\left\|\mathbf{w}_j^\top + \mathbf{b}_j^\top(\mathbf{x})\right\|_2} \frac{\mathbf{x}}{\left\|\mathbf{x}\right\|_2})},$$

> The IDM adjust discriminative centers based on each individual instance. To give insight into it, we compare the difference of Cosine Similarity between T_{Norm} and T_{IDM} , specifically,

$$\begin{split} T_{\text{Norm}} &= \frac{\mathbf{w}^{\top}}{\|\mathbf{w}^{\top}\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}, T_{\text{Bias}} = \frac{\mathbf{b}^{\top}(\mathbf{x})}{\|\mathbf{b}^{\top}(\mathbf{x})\|_{2}}; \\ T_{\text{IDM}} &= \frac{\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}} \\ &= \frac{\mathbf{w}^{\top}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}} + \frac{\mathbf{b}^{\top}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}} \\ &= \frac{\left\|\mathbf{w}^{\top}\right\|_{2}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} \left(\frac{\mathbf{w}^{\top}}{\|\mathbf{w}^{\top}\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}\right) + \frac{\left\|\mathbf{b}^{\top}(\mathbf{x})\right\|_{2}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} \left(\frac{\mathbf{b}^{\top}(\mathbf{x})}{\|\mathbf{b}^{\top}(\mathbf{x})\|_{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|_{2}}\right) \\ &= \frac{\left\|\mathbf{w}^{\top}\right\|_{2}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} T_{\text{Norm}} + \frac{\left\|\mathbf{b}^{\top}(\mathbf{x})\right\|_{2}}{\|\mathbf{w}^{\top} + \mathbf{b}^{\top}(\mathbf{x})\|_{2}} T_{\text{Bias}} \end{split}$$

4. Experiments

> In-domain results:

Methods	AUC	Acc	AUC	Acc	AUC	Acc
Wiethods	(LQ)	(LQ)	(HQ)	(HQ)	(RAW)	(RAW)
Steg.Features [21]	-	55.98%	-	70.97%	-	97.63%
LD-CNN [14]	-	58.69%	-	78.45%	-	98.57%
Constrained Conv [6]	-	66.84%	-	82.97%	-	98.74%
CustomPooling CNN [41]	-	61.18%	-	79.08%	-	97.03%
MesoNet [3]	-	70.47%	-	83.10%	-	95.23%
Face X-ray [27]	0.616	-	0.874	-	0.987	-
Two-branch RNN [35]	0.911	86.34%	0.991	96.43%	-	-
Xception [11]	0.925	84.11%	0.963	95.04%	0.992	98.77%
STIL^{\dagger} [22]	0.948	86.31%	0.986	98.57%	0.993	99.04%
$PCL\&I2G^{\dagger}$ [55]	0.939	87.02%	0.990	98.85%	0.997	99.78%
F^3 -Net (Xception) [40]	0.933	86.89%	0.981	97.31%	0.998	99.84%
CD-Net (Xception)	0.952	88.12 %	0.999	$\boldsymbol{98.75\%}$	0.999	$\boldsymbol{99.91\%}$
I3D [8]	-	87.43%	-	-		-
3D ResNet [23]	-	83.86%	-	-	1-	-
3D ResNeXt [51]	-	85.14%	-	Ξ.	-	-
3D R50-FTCN [56]	0.966	92.35%	0.995	98.59%	0.997	99.84%
Slowfast [19]	0.936	88.25%	0.982	96.92%	0.994	99.34%
F^3 -Net (Slowfast) [40]	0.958	92.37%	0.993	98.64%	0.999	99.91%
CD-Net (Slowfast)	0.985	93.21 %	0.999	$\boldsymbol{98.93\%}$	0.999	99.91%

➤ Out-domain results:

1					
Methods	DFDC	Celeb-DF v2	Methods	DFDC	Celeb-DF v2
Two-Branch [35]	-	0.767	PCL&I2G [55]	0.675	0.900
CNN-aug [50]	0.721	0.756	3DR50-FTCN [56]	0.740	0.869
CNN-GRU [43]	0.689	0.698	Multi-task [38]	0.681	0.757
FWA [29]	0.695	0.673	PatchForensics [9]	0.656	0.696
Face X-ray [27]	0.655	0.795	$ \mathrm{STIL}^{\dagger}$ [22]	0.661	0.715
VA-LogReg [36]	0.680	0.651	DSP-FWA [29]	0.630	0.693
Xception-raw [11]	0.709	0.655	${f CD ext{-}Net}^1$	0.783	0.877
Xception-c23 [11]	0.717	0.635	${f CD ext{-}Net}^2$	0.770	0.885
Xception-c40 [11]	0.709	0.655	${f CD-Net}^3$	0.753	$\boldsymbol{0.921}$