Matemática Computacional - MEBiol, MEBiom e MEFT

Responsável: Ana Leonor Silvestre

ana.silvestre@math.tecnico.ulisboa.pt

Instituto Superior Técnico, 1º Semestre, 2020/2021

Considerações gerais sobre a Matemática Computacional

A Matemática Computacional é uma área da Matemática cuja importância é evidenciada pelo papel fundamental que hoje em dia as ferramentas computacionais desempenham em todos os ramos das Ciências e da Engenharia.

Permite obter resultados numéricos para inúmeros problemas cuja solução analítica não é conhecida ou efetivamente calculável, o que a torna indispensável no estudo e na simulação de modelos matemáticos usados nas mais variadas áreas das Ciências e Engenharia.

É uma disciplina transversal às diferentes áreas da Matemática, já que o seu estudo e desenvolvimento assentam em conhecimentos de Álgebra Linear, Análise Matemática, Equações Diferenciais, etc. O desenvolvimento e implementação de algoritmos computacionais faz com que a Programação seja essencial na Matemática Computacional.

Em que situações surge a Matemática Computacional?

Muitos dos problemas da vida real, da indústria ao mercado financeiro, passando pela investigação científica em física, engenharia e ciências da vida, têm "soluções matemáticas", mas é impossível colocá-las em prática sem a ajuda da computação.

Veremos, em seguida, alguns exemplos relacionados com os tópicos do programa de Matemática Computacional.

Representação de números e sistemas de ponto flutuante

A implementação em computador de um sistema de representação numérica normalizada obedece a regras definidas pelo Institute of Electrical and Electronics Engineers (IEEE).

Existem dois esquemas principais de **representação de números reais**: *precisão simples* de 32 bits e *precisão dupla* de 64 bits (bit=dígito binário)

$$x = (-1)^s (d_1.d_2...d_n)_2 \times 2^t, s \in \{0,1\}, d_i \in \{0,1\}, d_1 \neq 0$$

Figura: Sistemas de ponto flutuante definidos pela norma IEEE 754 (a versão mais recente é: IEEE 754-2019)

Representação de números no computador

Na representação

$$x = (-1)^s (d_1.d_2...d_n)_2 \times 2^t, d_1 \neq 0, s \in \{0, 1\},$$

o inteiro t representa o **expoente**, s o **sinal** do número e a $(d_1.d_2...d_n)_2$ chama-se **mantissa**.

As representações definidas pelas normas IEEE incluem

INF (infinito)

е

NaN (not a number).

Exemplo: 0/0 e $\infty - \infty$ produzem NaN.

A representação de números inteiros no computador pode ser feita separadamente, usando esquemas de 8 bits, 16 bits, 32 bits ou 64 bits. Além disso, há dois subconjuntos de representação para inteiros: inteiros sem sinal (podem representar zero e inteiros positivos) e inteiros com sinal.

Sistemas de ponto flutuante e aritmética computacional

Vejamos alguns problemas com a representação de números e cálculos efetuados no computador.

▶ 1993: Divisão em ponto flutuante no Pentium

Um problema com os microprocessadores provocou uma falha na divisão de números em ponto flutuante. Por exemplo, ao dividir 4195835.0 por 3145727.0, o resultado apresentado era 1.33374 ao invés de 1.33382.

Ainda que o erro (erro de 0.006%) fosse pequeno e a falha afetasse poucos utilizadores, isto resultou num problema para a Intel, que se viu obrigada a trocar entre 3 e 5 milhões de chips, uma operação que lhe custou mais de 500 milhões de dólares.

Sistemas de ponto flutuante e aritmética computacional

▶ 4 de junho de 1996: Desintegração do Ariane 5 devido a um erro numérico (overflow)

O computador de voo do novo foguetão Ariane 5 incorporava, sem que ninguém esperasse, um erro de programação numa rotina aritmética, o qual provocou uma falha poucos segundos após a descolagem. Como consequência, meio segundo depois, o computador principal entrou em colapso. Assim, o Ariane 5 desintegrou-se 40s após o lançamento, com prejuízos estimados em várias centenas de milhões de euros.

A anomalia interna de software do SRI (Inertial Reference System) ocorreu durante a conversão de um número de 64 bits em ponto flutuante para um inteiro de 16 bits com sinal: o valor do número era maior do que seria possível representar como inteiro de 16 bits (overflow).

Um exemplo de cálculo em sistemas de ponto flutuante

$$f(x) := \frac{1}{x} - \frac{1}{x+1} = \frac{1}{x(x+1)} \quad (x \in \mathbb{R} \setminus \{-1, 0\})$$

No Matlab R2015b (IEEE-754 com precisão dupla):

» format long

$$> 1/10^{20} - 1/(10^{20} + 1)$$

$$ans = 0$$

Note-se que ans = 0 tem erro de 100%.

Como se explica este resultado?

Um problema da Física: Equação do foguete de Tsiolkovsky

A velocidade de um projétil é dada, em cada instante t, por

$$v(t) = u \ln \left(\frac{m_0}{m_0 - qt}\right) - gt$$

onde u é a velocidade de expulsão do combustível (em relação ao projétil), m_0 é a sua massa inicial, q é o coeficiente de consumo do combustível e $g=9.8 \text{ m/s}^2$ é a aceleração da gravidade.

Problema: Determinar em que instante t a velocidade do projétil atinge o valor v=1000 m/s, quando u=2200 m/s, $m_0=16\times10^4$ kg e q=2680 Kg/s.

Localização gráfica das soluções de v(t)=1000

Figura: Localização da solução através de esboço gráfico

Localização e separação de soluções

Resultado (teórico) que assegura a existência e unicidade de solução de uma equação f(x) = 0 num certo intervalo limitado:

Teorema Seja f uma função contínua em $\left[a,b\right]$ e diferenciável em $\left]a,b\right[$. Se

- f(a)f(b) < 0
- $\blacktriangleright \ f' \ {\rm n\~ao} \ {\rm se} \ {\rm anula} \ {\rm em} \]a,b[$

então existe um e um só $z\in]a,b[$ tal que f(z)=0, ou, por outras palavras: no intervalo]a,b[, a equação f(x)=0 tem uma e uma só solução.

Aplicação à equação do foguete de Tsiolkovsky

Voltando ao exemplo, consideramos a equação

$$2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000 = 0$$
 Seja $f(t) := 2200 \ln \left(\frac{16 \times 10^3}{16 \times 10^3 - 268t} \right) - 9.8t - 1000$. Tem-se
$$f(20) = -298.47, \ f(30) = 241.951$$

$$f'(t) = -9.8 + \frac{589600}{16000 - 268t}$$

$$f'(t) = 0 \iff t = \frac{16000 - \frac{589600}{9.8}}{268} = -164.788$$

Como f' não se anula em [20,30] e f(20)f(30)<0, conclui-se que a equação tem em]20,30[uma e uma só solução.

Solução para a equação de Tsiolkovsky obtida com

Mathematica

```
Out[1]:={t->25.9424}
In[2]:=FindRoot[2200Log[16*10^4/(16*10^4-2680t)]-9.8t-1000,{t,30}]
Out[2]:={t->25.9424}
In[3]:=FindRoot[2200Log [16*10^4/(16*10^4-2680t)]-9.8t-1000,{t,20,30}]
Out[3]:={t->25.9424}
```

 $In[1] := FindRoot[2200Log[16*10^4/(16*10^4-2680t)] - 9.8t-1000, \{t, 20\}]$

Nota: " FindRoot searches for a numerical root of f, starting from the point $x=x_0$.

FindRoot uses a damped **Newton's method**, the **secant method**, and *Brent's method* "

Outro software para resolução numérica de equações

• Matlab : a resolução numérica de equações não lineares pode fazer-se recorrendo à função fzero.

• Python: está disponível nsolve.

Ajustamento de dados discretos

Um problema de Biologia

Os dados representados na tabela

referem-se ao crescimento de uma bactéria num meio de cultura líquido ao longo de vários dias.

Problema: Obter previsões da quantidade de bactérias ao fim de 15 e 30 dias.

Resolução do problema: Construir uma função contínua que "se ajuste" aos dados disponíveis. Usar essa função para prever valores que não podem ser obtidos/medidos experimentalmente.

Ajustamento de dados discretos

Mathematica

A função Interpolating Polynomial faz interpolação polinomial e a função Fit faz ajustamento segundo o critério dos mínimos quadrados.

Figura: Funções de ajustamento aos dados experimentais relativos às bactérias

Ajustamento de dados discretos

Matlab

A função polyfit permite fazer o ajustamento de dados discretos através de interpolação polinomial e melhor aproximação mínimos quadrados.

Python

A função polyfit, faz ajustamento de polinómios a dados discretos. Está disponível no pacote interpolate da biblioteca scipy (scipy.interpolate).

Um problema de Probabilidades e Estatística

Consideremos uma população com M=200 indivíduos. Sabese que a distribuição das alturas destes indivíduos pode ser representada por uma Gaussiana que se caracteriza pelo valor médio $\bar{a}=1.70\,$ m e pelo desvio padrão $\sigma=0.10\,$ m (distribuição normal):

$$f(a) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(\bar{a}-a)^2/(2\sigma^2)}.$$

Problema: Qual o número N de indivíduos cuja altura varia na faixa 1.80-1.90 m?

Resolução do problema: Uma estimativa para N é dada por

$$N \approx M \int_{1.80}^{1.90} f(a)da = 797.885 \int_{1.80}^{1.90} e^{-50(1.70-a)^2} da.$$

Problema numérico: Calcular

$$797.885 \int_{1.80}^{1.90} e^{-50(1.70-a)^2} da.$$

Nota: integrais deste tipo aparecem nas tabelas de distribuição normal usadas em Probabilidades e Estatística.

Mathematica

A função NIntegrate faz integração numérica:

27 pessoas com altura entre 1.80 - 1.90 m

Integração numérica

Matlab

A função integral faz integração numérica. A regra dos trapézios está implementada em trapz e cumtrapz.

Python

As funções quad, trapz, simps,..., fazem integração numérica. Estão disponíveis no pacote integrate da biblioteca scipy (scipy.integrate).

Resolução numérica de equações diferenciais

Um problema de Medicina

Numa comunidade de 800 crianças suscetíveis de contrair varicela, uma delas é diagnosticada com esta doença. Suponhamos que a propagação da doença é modelada pelo sistema de equações diferenciais (modelo SIR)

$$\begin{cases} S'(t) &= -0.001 S(t) I(t) \\ I'(t) &= 0.001 S(t) I(t) - 0.3 I(t) \\ R'(t) &= 0.3 I(t) \end{cases}$$

onde

- \bullet S(t) é o número de crianças suscetíveis de contrair a doença no momento t,
- $\bullet\ I(t)$ é o número de infetados na mesma altura e que podem propagar a doença, e
- ullet R(t) é o número de recuperados, ou seja, que já contraíram a doença e adquiriram imunidade.

Resolução numérica de equações diferenciais

Problema: Estudar a evolução de (S,I,R) desde o início da epidemia até que esta termina.

 Mathematica: a rotina NDSolve permite a resolução numérica de equações diferenciais ordinárias.

- Matlab: ode23, ode45, ...
- Python: odeint disponível no pacote scipy.integrate.

Programa da UC Matemática Computacional

- Conceitos Básicos do Cálculo Científico
 Erros absoluto e relativo. Representação de números no computador e sistemas de ponto flutuante. Arredondamento. Teoria linear de erros. Propagação de erros em funções e algoritmos. Condicionamento e estabilidade.
- Resolução Numérica de Equações Não Lineares
 Localização de raízes. Método da bisseção. Método da secante.
 Método de Newton. Métodos de ponto fixo. Análise de convergência (local e global) e estimativas de erro para cada um destes métodos.
- 3. Resolução Numérica de Sistemas
 - 3.1. **Sistemas Lineares** Normas matriciais. Condicionamento. Métodos iterativos (ex: métodos de Jacobi, de Gauss-Seidel, SOR,...). Análise de convergência e estimativas de erro.
 - 3.2. **Sistemas Não-Lineares** Método de Newton. Métodos de ponto fixo. Análise de convergência e estimativas de erro.

Programa (cont.)

- Ajustamento de Dados Discretos e Aproximação de Funções
 - 4.1. Interpolação Polinomial Solução através da matriz de Vandermonde. Fórmula interpoladora de Lagrange. Diferenças divididas de Newton. Fórmula interpoladora de Newton. Erro de interpolação na aproximação de funções.
 - Teoria de Aproximação Melhor aproximação mínimos quadrados.
- 5. Integração Numérica
 - Grau de exatidão de uma regra de quadratura. Método dos coeficientes indeterminados. Fórmulas de Newton-Cotes (ponto médio, trapézio, Simpson). Fórmulas compostas. Quadraturas de Gauss. Análise de erros. Ordem de precisão.
- 6. Resolução Numérica de Equações Diferenciais Ordinárias Métodos de passo único (Euler, Taylor de segunda ordem, Runge-Kutta). Análise de erros. Consistência, convergência e estabilidade. Aproximação de problemas de valores na fronteira através de diferenças finitas.