

Olimpiada Națională de Fizică Târgoviște 3-7 mai 2019

Pagina 1 din 1

Problema 5: Optică

- A. Un dispozitiv interferențial cu două unde (de aceeași amplitudine) este iluminat cu radiația roșie a Cadmiului, având lungimea de undă $\lambda_0=6438,8\,$ Å și lărgimea spectrală $\Delta\lambda=1,2\cdot 10^{-3}\,$ Å. În scala frecvențelor, distribuția intensității spectrale a acestei radiații are un profil dreptunghiular ca în figura A. Notăm cu L diferența de drum optic între cele două unde ce interferă în punctul de observație M și prin $p\equiv L/\lambda_0$ ordinul de interferență din respectivul punct.
 - 1. Exprimați intensitatea luminoasă din punctul M sub forma $I(M) = 2I_0[1+V(p)\cos(2\pi p)]$ și precizați, în funcție de λ_0 , $\Delta\lambda$ și p semnificația **gradului de coerență (vizibilității)** V(p);
 - 2. a). Determinați lungimea de coerență $\Delta \ell$ definită ca fiind cea mai mică valoare a diferenței de drum optic la care franjele de interferență dispar complet (nu mai pot fi observate). Arătați că timpul de coerență $\Delta t = \Delta \ell / c$ este egal cu inversul benzii de frecvență $\Delta v = v_2 v_1$, adică $\Delta t = 1/\Delta v$;
 - **b).** Determinați cea mai mare valoare a ordinului de interferență p, astfel ca **vizibilitatea** V(p) a franjelor observate să fie superioară procentual lui 90%. Se va ține cont că $\sin 45^{\circ} \approx 0.225\pi$.

- **B.** Se reia experimentul. Acum, dispozitivul interferențial este iluminat de la o lampă cu vapori de Sodiu, care emite două radiații de intensități egale (I_o), cu lungimile de undă foarte apropiate, $\lambda_1 = 5890\,$ Å și $\lambda_2 = 5896\,$ Å, de aceeași lărgime spectrală $\delta\lambda = 0,11\,$ Å (figura B). Notăm cu λ_0 valoarea medie (aritmetică) a lungimilor de undă λ_1 și λ_2 .
 - 1. Exprimați intensitatea luminoasă din punctul M sub o formă similară celei de la punctul notat mai sus cu A.1). și determinați gradul de coerență V(p) corespunzător în funcție de ordinul de interferență $p = L/\lambda_0$, de valoarea medie λ_0 , de lărgimea spectrală $\delta\lambda$ și de diferența $\Delta\lambda = \lambda_2 \lambda_1$. Trasați calitativ graficul funcției V(p);
 - 2. a). Pentru ce ordin de interferență p_0 avem de-a face în M cu cea mai mare intensitate luminoasă?
 - **b**). Pentru ce ordin de interferență p_1 avem în M prima diminuare de intensitate luminoasă, până la o valoare egală cu jumătate din cea de la punctul anterior?
 - c). Începând cu ce ordin de interferență p_2 , contrastul franjelor începe din nou să crească după ce, până atunci, el a scăzut mereu?

problemă propusă de

Prof.univ.dr. Florea ULIU, Universitatea din Craiova

- 1. Fiecare dintre subiecte se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele.
- 3. Durata probei este de 5 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se notează de la 10 la 0 (fără punct din oficiu). Punctajul final este suma acestora.