In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [3]:

```
df=pd.read_csv('heart.csv')
```

In [4]:

df

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	t
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

1.Data cleaning:

1025 rows × 14 columns

In [5]:

```
df.info() #Data cleaning means fixing bad data in your data set. Bad data could be: Empty
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
     Column
               Non-Null Count Dtype
 #
     _ _ _ _ _
               -----
                                ____
- - -
0
               1025 non-null
                                int64
     age
 1
     sex
               1025 non-null
                                int64
 2
               1025 non-null
                                int64
     ср
 3
     trestbps 1025 non-null
                                int64
 4
     chol
               1025 non-null
                                int64
 5
     fbs
               1025 non-null
                                int64
 6
               1025 non-null
     restecg
                                int64
 7
     thalach
               1025 non-null
                                int64
 8
               1025 non-null
                                int64
     exang
 9
     oldpeak
               1025 non-null
                                float64
 10
                                int64
     slope
               1025 non-null
               1025 non-null
                                int64
 11
     ca
 12
     thal
               1025 non-null
                                int64
13
    target
               1025 non-null
                                int64
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
In [6]:
```

```
df['sex'] = df['sex'].astype('object')
df['cp'] = df['cp'].astype('object')
df['fbs'] = df['fbs'].astype('object')
df['restecg'] = df['restecg'].astype('object')
df['exang'] = df['exang'].astype('object')
df['slope'] = df['slope'].astype('object')
df['ca'] = df['ca'].astype('object')
df['thal'] = df['thal'].astype('object')
df.dtypes
```

Out[6]:

```
int64
age
              object
sex
ср
              object
trestbps
               int64
               int64
chol
fbs
              object
              object
restecg
thalach
               int64
              object
exang
oldpeak
             float64
slope
              object
              object
ca
thal
              object
               int64
target
dtype: object
```

In [7]:

```
df.isnull()
```

Out[7]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
0	False	False	False	False	False	False	False	False	False	False	False	Fa
1	False	False	False	False	False	False	False	False	False	False	False	Fa
2	False	False	False	False	False	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	False	False	False	False	False	Fa
4	False	False	False	False	False	False	False	False	False	False	False	Fa
1020	False	False	False	False	False	False	False	False	False	False	False	Fa
1021	False	False	False	False	False	False	False	False	False	False	False	Fa
1022	False	False	False	False	False	False	False	False	False	False	False	Fa
1023	False	False	False	False	False	False	False	False	False	False	False	Fa
1024	False	False	False	False	False	False	False	False	False	False	False	Fa
1025 r	rows ×	14 colı	umns									>

In [8]:

df.isnull().sum()

Out[8]:

0 age 0 sex 0 ср trestbps 0 0 chol fbs 0 0 restecg thalach 0 0 exang oldpeak 0 0 slope 0 ca 0 thal target dtype: int64

In [9]:

```
###Before we plot the outliers, let's change the labeling for better visualization and in
heart dataset.
df['target'] = df.target.replace({1: "Disease", 0: "No_disease"})
df['sex'] = df.sex.replace({1: "Male", 0: "Female"})
df['cp'] = df.cp.replace({0: "typical_angina",1: "atypical_angina",2:"non-anginal pain",3
df['exang'] = df.exang.replace({1: "Yes", 0: "No"})
df['fbs'] = df.fbs.replace({1: "True", 0: "False"})
df['slope'] = df.slope.replace({0: "upsloping", 1:"flat",2:"downsloping"})
df['thal'] = df.thal.replace({1: "fixed_defect", 2: "reversable_defect",3:"normal"})
```

heart dataset.

SyntaxError: invalid syntax

In [18]:

```
sns.boxplot(df["target"])
sns.boxplot(df['chol'])
```

Out[18]:

<Axes: >

In [19]:

```
sns.boxplot(x='target', y='oldpeak', data=df)
```

Out[19]:

<Axes: xlabel='target', ylabel='oldpeak'>

In [20]:

```
###define continuous variable & plot
continous_features = ['age','trestbps','chol','thalach','oldpeak']
def outliers(df out, drop = False):
    for each_feature in df_out.columns:
        feature_data = df_out[each_feature]
        Q1 = np.percentile(feature_data, 25.) # 25th percentile of the data of the given
        Q3 = np.percentile(feature data, 75.) # 75th percentile of the data of the given
        IQR = Q3-Q1 #Interquartile Range
        outlier step = IQR * 1.5 #That's we were talking about above
        outliers = feature_data[~((feature_data >= Q1 - outlier_step) & (feature_data <=
        if not drop:
            print('For the feature {}, No of Outliers is {}'.format(each_feature, len(out
        if drop:
            df.drop(outliers, inplace = True, errors = 'ignore')
            print('Outliers from {} feature removed'.format(each_feature))
outliers(df[continous_features])
For the feature age, No of Outliers is 0
For the feature trestbps, No of Outliers is 30
```

For the feature chol, No of Outliers is 16 For the feature thalach, No of Outliers is 4 For the feature oldpeak, No of Outliers is 7

```
In [21]:
```

```
###Drop Outliers
outliers(df[continous_features],drop=True)
```

```
Outliers from age feature removed
Outliers from trestbps feature removed
Outliers from chol feature removed
Outliers from thalach feature removed
Outliers from oldpeak feature removed
```

In [22]:

```
###Duplicate rows:
```

In [23]:

```
duplicated=df.duplicated().sum()
```

In [24]:

```
duplicated
```

Out[24]:

683

In [25]:

```
if duplicated:
    print("Duplicated rows :{}".format(duplicated))
else:
    print("No duplicates")
```

Duplicated rows :683

In [26]:

```
###Displaying duplicate rows
duplicates=df[df.duplicated(keep=False)]
duplicates.head()
```

Out[26]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
4														•

In [27]:

df.drop_duplicates()

Out[27]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ta
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
723	68	0	2	120	211	0	0	115	0	1.5	1	0	2	
733	44	0	2	108	141	0	1	175	0	0.6	1	0	2	
739	52	1	0	128	255	0	1	161	1	0.0	2	1	3	
843	59	1	3	160	273	0	0	125	0	0.0	2	0	2	
878	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

285 rows × 14 columns

In [28]:

duplicates.head()

Out[28]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
4														•

```
In [29]:
```

df.drop_duplicates()

Out[29]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ta
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
723	68	0	2	120	211	0	0	115	0	1.5	1	0	2	
733	44	0	2	108	141	0	1	175	0	0.6	1	0	2	
739	52	1	0	128	255	0	1	161	1	0.0	2	1	3	
843	59	1	3	160	273	0	0	125	0	0.0	2	0	2	
878	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

285 rows × 14 columns

In [30]:

duplicated=df.duplicated().sum()

In [31]:

duplicated

Out[31]:

683

2.Data integration

In [32]:

#This process of bringing data together in one place is called data integration.
#To do data integration, we can merge multiple pandas DataFrames using the merge function

dataset1="C:/Users/Mayuri Tambe/Downloads/student.csv"
dataset2 = "C:/Users/Mayuri Tambe/Downloads/mark.csv"

```
In [33]:
```

```
df1 = pd.read_csv(dataset1, header = 0)
df2 = pd.read_csv(dataset2, header = 0)
```

```
FileNotFoundError
                                          Traceback (most recent call las
t)
Cell In[33], line 1
----> 1 df1 = pd.read_csv(dataset1, header = 0)
      2 df2 = pd.read csv(dataset2, header = 0)
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\util\ decorat
ors.py:211, in deprecate_kwarg.<locals>._deprecate_kwarg.<locals>.wrapper
(*args, **kwargs)
            else:
    209
                kwargs[new_arg_name] = new_arg_value
    210
--> 211 return func(*args, **kwargs)
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\util\_decorat
ors.py:331, in deprecate_nonkeyword_arguments.<locals>.decorate.<locals>.w
rapper(*args, **kwargs)
    325 if len(args) > num_allow_args:
            warnings.warn(
    327
                msg.format(arguments=_format_argument_list(allow_args)),
    328
                FutureWarning,
    329
                stacklevel=find_stack_level(),
    330
            )
--> 331 return func(*args, **kwargs)
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\io\parsers\re
aders.py:950, in read_csv(filepath_or_buffer, sep, delimiter, header, name
s, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, c
onverters, true_values, false_values, skipinitialspace, skiprows, skipfoot
er, nrows, na values, keep default na, na filter, verbose, skip blank line
s, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirs
t, cache_dates, iterator, chunksize, compression, thousands, decimal, line
terminator, quotechar, quoting, doublequote, escapechar, comment, encodin
g, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_line
s, delim_whitespace, low_memory, memory_map, float_precision, storage_opti
ons)
    935 kwds_defaults = _refine_defaults_read(
    936
            dialect,
    937
            delimiter,
   (\ldots)
            defaults={"delimiter": ","},
    946
    947 )
    948 kwds.update(kwds defaults)
--> 950 return _read(filepath_or_buffer, kwds)
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\io\parsers\re
aders.py:605, in _read(filepath_or_buffer, kwds)
    602 validate names(kwds.get("names", None))
    604 # Create the parser.
--> 605 parser = TextFileReader(filepath or buffer, **kwds)
    607 if chunksize or iterator:
    608
            return parser
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\io\parsers\re
aders.py:1442, in TextFileReader. init (self, f, engine, **kwds)
            self.options["has_index_names"] = kwds["has_index_names"]
   1441 self.handles: IOHandles | None = None
-> 1442 self._engine = self._make_engine(f, self.engine)
```

File ~\AppData\Roaming\Python\Python311\site-packages\pandas\io\parsers\re

```
aders.py:1735, in TextFileReader._make_engine(self, f, engine)
   1733
            if "b" not in mode:
                mode += "b"
   1734
-> 1735 self.handles = get handle(
   1736
            f,
   1737
            mode,
   1738
            encoding=self.options.get("encoding", None),
   1739
            compression=self.options.get("compression", None),
   1740
            memory map=self.options.get("memory map", False),
            is text=is text,
   1741
            errors=self.options.get("encoding errors", "strict"),
   1742
   1743
            storage_options=self.options.get("storage_options", None),
  1744 )
   1745 assert self.handles is not None
   1746 f = self.handles.handle
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\io\common.py:
856, in get handle(path or buf, mode, encoding, compression, memory map, i
s_text, errors, storage_options)
    851 elif isinstance(handle, str):
            # Check whether the filename is to be opened in binary mode.
    852
            # Binary mode does not support 'encoding' and 'newline'.
    853
            if ioargs.encoding and "b" not in ioargs.mode:
    854
                # Encoding
    855
                handle = open(
--> 856
    857
                    handle,
    858
                    ioargs.mode,
    859
                    encoding=ioargs.encoding,
    860
                    errors=errors,
                    newline="",
    861
    862
                )
    863
            else:
    864
                # Binary mode
    865
                handle = open(handle, ioargs.mode)
ambe/Downloads/student.csv'
```

FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/Mayuri T

```
In [ ]:
```

```
df1.head()
```

In [34]:

```
df2.head()
```

Out[34]:

	Student_id	Mark	City
0	1	95	Chennai
1	2	70	Delhi
2	3	98	Mumbai
3	4	75	Pune
4	5	89	Kochi

In [35]:

####Student_id is common to both datasets. Perform data integration on both the DataFrame
##respect to the Student_id column using the pd.merge() function, and then print the firs
##the new DataFrame:

In [36]:

```
df = pd.merge(df1, df2, on = 'Student_id')
df.head(10)
```

Out[36]:

	Student_id	Age	Gender	Grade	Employed	Mark	City
0	1	19	Male	1st Class	yes	95	Chennai
1	2	20	Female	2nd Class	no	70	Delhi
2	3	18	Male	1st Class	no	98	Mumbai
3	4	21	Female	2nd Class	no	75	Pune
4	5	19	Male	1st Class	no	89	Kochi
5	6	20	Male	2nd Class	yes	69	Gwalior
6	7	19	Female	3rd Class	yes	52	Bhopal
7	8	21	Male	3rd Class	yes	54	Chennai
8	9	22	Female	3rd Class	yes	55	Delhi
9	10	21	Male	1st Class	no	94	Mumbai

3.Data transformation

To transform the data into a machine-learning-digestible format. All machine learning algorithms are based on mathematics. So, we need to convert all the columns into numerical format

In [39]:

```
#Data transformation is the process of converting raw data into a a format or structure t
url='C:/Users/Mayuri Tambe/Downloads/heart.csv'
df=pd.read_csv(url)
```

In [40]:

df

Out[40]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	t
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	

1025 rows × 14 columns

In [53]:

```
url="C:/Users/Mayuri Tambe/Downloads/AirQuality.csv"
ddf=pd.read_csv(url,encoding='cp1252')
```

C:\Users\Mayuri Tambe\AppData\Local\Temp\ipykernel_11180\1761435286.py:2:
DtypeWarning: Columns (0) have mixed types. Specify dtype option on import
or set low_memory=False.

ddf=pd.read_csv(url,encoding='cp1252')

In [62]:

ddf

Out[62]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	1	4.8	17.4	NaN
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	2	3.1	7.0	NaN
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	1	6.2	28.5	NaN
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	1	6.3	14.7	NaN
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	2	4.7	7.5	NaN
435736	SAMP	24-12-2015	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	5	22.0	50.0	143.0
435737	SAMP	29-12-2015	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	5	20.0	46.0	171.0
435738	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN	NaN
435739	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN	NaN
435740	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN	NaN
435741	rows × 13	columns							
4									•

In []:

###stn_code, agency, sampling_date, location_monitoring_agency do not add much value to t
dataset in terms of information. Therefore, we can drop those columns.
###Dropping rows where no date is available.

In [64]:

ddf=ddf.drop(['stn_code','agency','sampling_date','location_monitoring_station'], axis =
#dropping columns that aren't required

In [65]:

```
ddf=ddf.dropna(subset=['date']) # dropping rows where no date is availabl
```

In [67]:

```
# defining columns of importance, which shall be used reguarly
COLS = ['so2', 'no2', 'rspm', 'spm', 'pm2_5']
from sklearn.impute import SimpleImputer
# invoking SimpleImputer to fill missing values
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
ddf[COLS] = imputer.fit_transform(ddf[COLS])
```

In [68]:

ddf[COLS]

Out[68]:

	so2	no2	rspm	spm	pm2_5
0	4.8	17.4	108.833285	220.784295	40.791467
1	3.1	7.0	108.833285	220.784295	40.791467
2	6.2	28.5	108.833285	220.784295	40.791467
3	6.3	14.7	108.833285	220.784295	40.791467
4	4.7	7.5	108.833285	220.784295	40.791467
435733	20.0	44.0	148.000000	220.784295	40.791467
435734	17.0	44.0	131.000000	220.784295	40.791467
435735	18.0	45.0	140.000000	220.784295	40.791467
435736	22.0	50.0	143.000000	220.784295	40.791467
435737	20.0	46.0	171.000000	220.784295	40.791467

435734 rows × 5 columns

In [69]:

```
ddf['type'].value_counts()
```

Out[69]:

1	179013
2	96089
3	86791
Industrial Areas	51746
4	8979
Sensitive Areas	5536
5	1304
Sensitive	495
Industrial	233
6	158
Name: type, dtype:	int64

```
In [70]:
```

```
ddf['type']
Out[70]:
0
          1
1
          2
2
          1
          1
3
          2
435733
          5
435734
          5
435735
          5
435736
          5
435737
          5
Name: type, Length: 435734, dtype: object
```

In []:

###Converting Categorical Data to Numerical Data Using Label Encoding

In [72]:

```
ddf['state'].value_counts()
```

Out[72]:

Maharashtra	60382
Uttar Pradesh	42816
Andhra Pradesh	26368
Punjab	25634
Rajasthan	25589
Kerala	24728
Himachal Pradesh	22896
West Bengal	22463
Gujarat	21279
Tamil Nadu	20597
Madhya Pradesh	19920
Assam	19361
Odisha	19278
Karnataka	17117
Delhi	8551
Chandigarh	8520
Chhattisgarh	7831
Goa	6206
Jharkhand	5968
Mizoram	5338
Telangana	3978
Meghalaya	3853
Puducherry	3785
Haryana	3420
Nagaland	2463
Bihar	2275
Uttarakhand	1961
Jammu & Kashmir	1289
Daman & Diu	782
Dadra & Nagar Haveli	634
Uttaranchal	285
Arunachal Pradesh	90
Manipur	76
Sikkim	1
Name: state, dtype: int	04

In [73]:

```
from sklearn.preprocessing import LabelEncoder
labelencoder=LabelEncoder()
ddf["state"]=labelencoder.fit_transform(ddf["state"])
ddf.head(5)
```

Out[73]:

	state	location	type	type so2 no2 rspm spm		spm	pm2_5	date	
0	0	Hyderabad	1	4.8	17.4	108.833285	220.784295	40.791467	01-02-1990
1	0	Hyderabad	2	3.1	7.0	108.833285	220.784295	40.791467	01-02-1990
2	0	Hyderabad	1	6.2	28.5	108.833285	220.784295	40.791467	01-02-1990
3	0	Hyderabad	1	6.3	14.7	108.833285	220.784295	40.791467	01-03-1990
4	0	Hyderabad	2	4.7	7.5	108.833285	220.784295	40.791467	01-03-1990

In []:

###One Hot Encoding

In [75]:

dfAndhra=ddf[(ddf['state']==0)]
dfAndhra

Out[75]:

	state	location	type	so2	no2	rspm	spm	pm2_5	date
0	0	Hyderabad	1	4.8	17.4	108.833285	220.784295	40.791467	01-02-1990
1	0	Hyderabad	2	3.1	7.0	108.833285	220.784295	40.791467	01-02-1990
2	0	Hyderabad	1	6.2	28.5	108.833285	220.784295	40.791467	01-02-1990
3	0	Hyderabad	1	6.3	14.7	108.833285	220.784295	40.791467	01-03-1990
4	0	Hyderabad	2	4.7	7.5	108.833285	220.784295	40.791467	01-03-1990
26363	0	Rajahmundry	2	7.0	13.0	71.000000	220.784295	40.791467	13-12-2015
26364	0	Rajahmundry	2	7.0	18.0	77.000000	220.784295	40.791467	16-12-2015
26365	0	Rajahmundry	2	8.0	23.0	64.000000	220.784295	40.791467	19-12-2015
26366	0	Rajahmundry	2	7.0	19.0	61.000000	220.784295	40.791467	22-12-2015
26367	0	Rajahmundry	2	6.0	17.0	71.000000	220.784295	40.791467	25-12-2015

26368 rows × 9 columns

In [76]:

```
dfAndhra['location'].value_counts()
```

Out[76]:

Hyderabad	7764
Visakhapatnam	7108
Vijayawada	2093
Chittoor	1003
Tirupati	986
Kurnool	857
Patancheru	698
Guntur	629
Nalgonda	618
Ramagundam	554
Nellore	408
Khammam	385
Warangal	336
Ananthapur	324
Ongole	317
Kadapa	316
Srikakulam	315
Rajahmundry	311
Eluru	300
Vishakhapatnam	297
Kakinada	288
Vizianagaram	282
Sangareddy	85
Karimnagar	67
Nizamabad	27

Name: location, dtype: int64

In [77]:

```
from sklearn.preprocessing import OneHotEncoder
onehotencoder=OneHotEncoder(sparse=False, handle_unknown='error', drop='first')
pd.DataFrame(onehotencoder.fit_transform(dfAndhra[["location"]]))
```

Out[77]:

	0	1	2	3	4	5	6	7	8	9	 14	15	16	17	18	19	20	21
0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26363	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26364	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26365	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26366	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26367	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26368	rows	× 24	colu	ımns														

In []:

#####You have successfully converted categorical data to numerical data using the OneHotE

4.Error Correction

In []:

####In heart dataset it can be observed that feature 'ca' should range from 0-3, however, ##listed 0-4. So let's find the '4' and change them to NaN.

In [78]:

```
df['ca'].unique()
```

Out[78]:

```
array([2, 0, 1, 3, 4], dtype=int64)
```

```
In [79]:
```

```
df[df['ca']==4]
```

Out[79]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ta
52	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
83	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
128	52	1	2	138	223	0	1	169	0	0.0	2	4	2	
208	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
242	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
290	52	1	2	138	223	0	1	169	0	0.0	2	4	2	
340	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
348	43	1	0	132	247	1	0	143	1	0.1	1	4	3	
417	52	1	2	138	223	0	1	169	0	0.0	2	4	2	
428	43	1	0	132	247	1	0	143	1	0.1	1	4	3	
465	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
521	58	1	1	125	220	0	1	144	0	0.4	1	4	3	
597	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
743	58	1	1	125	220	0	1	144	0	0.4	1	4	3	
749	58	1	1	125	220	0	1	144	0	0.4	1	4	3	
831	58	1	1	125	220	0	1	144	0	0.4	1	4	3	
970	38	1	2	138	175	0	1	173	0	0.0	2	4	2	
993	43	1	0	132	247	1	0	143	1	0.1	1	4	3	
4														•

In [80]:

```
df.loc[df['ca']==4,'ca']=np.NaN
```

In [81]:

```
df['thal'].nunique()
```

Out[81]:

4

In [82]:

```
df['thal'].unique()
```

Out[82]:

```
array([3, 2, 1, 0], dtype=int64)
```

In [84]:

```
df[df['thal']==3]
```

Out[84]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	1
0	52	1	0	125	212	0	1	168	0	1.0	2	2.0	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0.0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0.0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1.0	3	
7	55	1	0	160	289	0	0	145	1	0.8	1	1.0	3	
1015	58	1	0	128	216	0	0	131	1	2.2	1	3.0	3	
1017	53	1	0	123	282	0	1	95	1	2.0	1	2.0	3	
1018	41	1	0	110	172	0	0	158	0	0.0	2	0.0	3	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1.0	3	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1.0	3	

410 rows × 14 columns

In [85]:

```
df.loc[df['thal']==3,'thal']=np.NaN
```

In [86]:

```
###Now, we can replace changed NaN values(missing values).
df.isna().sum()
```

Out[86]:

```
0
age
               0
sex
               0
ср
               0
trestbps
chol
               0
               0
fbs
               0
restecg
thalach
               0
               0
exang
               0
oldpeak
slope
               0
ca
              18
             410
thal
target
dtype: int64
```

```
In [87]:
```

```
df = df.fillna(df.median())
df.isnull().sum()
```

Out[87]:

age 0 sex ср 0 trestbps 0 chol fbs 0 0 restecg 0 thalach 0 exang oldpeak slope 0 ca thal target dtype: int64

5.Data model building

In [88]:

####Create a variable called X to store the independent features. Use the drop() function ##the features, leaving out the dependent or the target variable, which in this case is n ##for heart dataset. Then, print out the top five instances of the variable. Add the foll ##do this:

X = df.drop('target', axis=1)

In [89]:

X.head()

Out[89]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	52	1	0	125	212	0	1	168	0	1.0	2	2.0	2.0
1	53	1	0	140	203	1	0	155	1	3.1	0	0.0	2.0
2	70	1	0	145	174	0	1	125	1	2.6	0	0.0	2.0
3	61	1	0	148	203	0	1	161	0	0.0	2	1.0	2.0
4	62	0	0	138	294	1	1	106	0	1.9	1	3.0	2.0

In [90]:

##1. Print the shape of your new created feature matrix using the X.shape command: X.shape

Out[90]:

(1025, 13)

```
In [91]:
y = df['target']
y.head(10)
Out[91]:
0
     0
1
     0
2
     0
3
     0
4
     0
5
     1
6
     0
7
     0
8
     0
9
     0
Name: target, dtype: int64
In [92]:
y.shape
Out[92]:
(1025,)
In [93]:
from sklearn import preprocessing
df=df.apply(preprocessing.LabelEncoder().fit_transform)
In [94]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=0)
In [95]:
###Print the shape of X_train, X_test, y_train, and y_test. Add the following code to do
print("X_train : ",X_train.shape)
print("X_test : ",X_test.shape)
print("y_train : ",y_train.shape)
print("y_test : ",y_test.shape)
X train: (820, 13)
```

X_test : (205, 13)
y_train : (820,)
y_test : (205,)

In [96]:

```
###Using Supervised Learning
##When the prediction is between two classes, it is known as binary classification. An ex
##predicting whether or not a person has a heart disease (in this case, the classes are y
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
clf = DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(y_pred)
```

In []: