TD nº 4 - Configuration et routage

Ce TD a pour but de vous faire comprendre le paramétrage et le fonctionnement du routage sur une machine connectée à Internet. Il se décompose en trois parties : la configuration IP de la machine, la découverte du réseau Internet à l'échelle locale, nationale et internationale et des exercices de configuration de tables de routage.

Les commandes indiquées dans le sujet sont celles à utiliser sous Windows, mais leurs équivalents pour un système Unix sont également donnés.

1 Configuration IP d'une machine

1.1 La commande ipconfig

La commande ipconfig (ifconfig sous Unix) vous donne la configuration IP de votre machine.

- 1 Exécutez la commande et expliquez les informations observées.
- 2 À l'aide de l'option /all (option par défaut sous *Unix*) déterminez la configuration réseau de votre machine (cartes et caractéristiques, adresses physiques et IP, etc.)

1.2 La commande route

Les tables de routage sont indispensables pour savoir comment atteindre d'autres machines, sur le même réseau ou sur un autre réseau, elles renseignent les adresses réseaux à atteindre. Une table de routage est constituée d'un ensemble de lignes qui contiennent chacune 3 types d'informations (les informations ne sont pas dans le même ordre sous Unix):

Adresse réseau : adresse à atteindre;

Masque réseau : masque binaire pour extraire une partie de l'adresse de destination; Adr. passerelle : adresse du routeur (ou machine) qui transmettra le datagramme.

3 À partir des informations recueillies dans la question précédente définissez le contenu de la table de routage minimale que devrait avoir votre machine.

Ces tables peuvent être visualisées et mises à jour par la commande route.

4 Quelles options de cette commande permettent de visualiser le contenu de la table de routage de votre machine?

Remarque: Ce n'est pas la même option sous Windows et Unix.

5 Visualisez le contenu de la table de routage, est-ce conforme à ce que vous aviez prévu?

1.3 La commande arp

Executez la commande « arp -a ».

- 6 Quel est le résultat?
- 7 A quoi correspondent les informations affichées? A quoi servent–elles?

- 8 Quel est le rôle de cette commande?
- 9 À quel niveau du modèle OSI se situe-t-on?

2 Trace de datagrammes IP

2.1 La commande ping

La commande ping est un utilitaire qui permet de demander à une machine distante de se manifester, par l'intermédiaire du protocole ICMP. En plus de la machine distante, on peut également spécifier la taille des paquets à envoyer et leur nombre (il existe plusieurs autres options détaillées dans la documentation, par exemple -v produit un affichage plus détaillé et -R affiche les étapes du routage).

- Exécutez plusieurs fois la commande ping sur les sites www.cnam.fr et www.free.fr en modifiant à chaque fois la taille des paquets envoyés. Vous testerez avec trois tailles : 10, 100 et 1000 octets.
- 11 Quel est le temps aller-retour entre votre station et les sites?
- 12 Le temps dépend-il de la taille des paquets?
- 13 Le temps dépend-il de la distance qui sépare votre machine du destinataire?
- Que pouvez vous en déduire sur le fonctionnement d'Internet?

2.2 La commande netstat

- 15 Quel est le rôle de la commande netstat?
- 16 Exécutez la commande « netstat -A » (simplement « netstat » sous *Unix*). Que pouvez vous dire sur les liaisons qui existent entre votre machine et l'extérieur?

2.3 La commande tracert

la commande tracert permet de déterminer la route empruntée sur Internet pour atteindre une machine distante. Elle affiche les adresses des routeurs intermédiaires ainsi que les temps d'aller-retour.

- 17 Exécutez cette commande plusieurs fois sur les adresses de destination ci-dessous (sous *Unix* la commande peut s'appeler traceroute, ou tracepath ou une autre variante similaire):
- -162.38.221.50;
- -162.38.101.47;
- www.google.fr;
- -216.239.53.101;
- www.yahoo.com;
- 150.22.120.10.
- Pour chacune des destinations indiquez selon le cas le nom de la machine ou son adresse
- 19 Pour chacune des destinations, essayez de localiser géographiquement la machine.

- 20 Combien de routeurs sont traversés avant de quitter l'IUT?
- 21 Combien de routeurs y a-t-il entre votre station et www.google.fr? Entre votre station et www.yahoo.com?
- **22** Que pouvez vous dire sur :
- l'organisation des routeurs au niveau local et national;
- le comportement du protocole IP.

Remarque: En ce qui concerne le tracé des paquets IP, il est aussi possible d'utiliser des applications graphiques qui présentent la route parcourue sur des cartes (par exemple visualroute ou neotrace).

3 Adressage IP

3.1 Adressage IP et table de routage

La commande route exécutée sur votre machine donne le résultat ci-dessous :

Destination	Masque	Passerelle
0.0.0.0	0.0.0.0	192.168.1.1
127.0.0.0	255.0.0.0	127.0.0.1
192.168.1.0	255.255.255.0	192.168.1.67
192.168.1.67	255.255.255.255	127.0.0.1
224.0.0.0	240.0.0.0	192.168.1.67
255.255.255.255	255.255.255.255	192.168.1.67

- 23 Quelle est l'adresse de votre machine et celle de la passerelle?
- 24 À quoi correspondent les adresses de destination 255.255.255.255, 224.0.0.0, 127.0.0.0 et 0.0.0.0?
- 25 Justifiez les valeurs des masques utilisés dans chaque ligne?

3.2 Recherche d'anomalies

On s'intéresse au réseau représenté par la figure 1. Le contenu des tables de routage est le suivant :

— poste d'adresse 164.38.10.2 :

Destination réseau	Masque réseau	Adresse passerelle
0.0.0.0	0.0.0.0	164.38.10.6
164.38.10.2	255.255.255.255	127.0.0.1
164.38.10.0	255.255.255.0	164.38.10.2
255.255.255.255	255.255.255.255	164.38.10.2
noutour d'adragge 164 s	00 10 1 .	

— routeur d'adresse 164.38.10.1:

Destination réseau		Adresse passerelle
0.0.0.0	0.0.0.0	X.X.X.X
164.38.10.0	255.255.255.0	164.38.10.1
255.255.255.255	255.255.255.255	164.38.10.1

FIGURE 1 – Un exemple de réseau.

— routeur d'adresse 164.38.10.6 :

Destination réseau	Masque réseau	Adresse passerelle
0.0.0.0	0.0.0.0	164.38.10.1
164.38.10.0	255.255.255.0	164.38.10.6
164.38.9.0	255.255.255.0	164.38.10.6
255.255.255.255	255.255.255.255	164.38.10.6

- Que se passe-t-il lorsque la machine d'adresse 164.38.10.2 expédie des messages aux machines d'adresse 164.38.10.5, 164.38.9.4 et www.google.fr?
- Quelles anomalies détectez vous dans ce réseau et dans les tables de routage? Justifiez vos réponses.
- 28 Comment corriger ces anomalies?

3.3 Construction de tables de routage

Considérez le réseau représenté par la figure 2 où la machine MA souhaite envoyer un datagramme à la machine MB. Les deux machines n'étant pas sur le même sous-réseau, le datagramme va devoir être routé via les deux routeurs R1 et R2.

Ce réseau Internet est supporté par trois réseaux physiques Ethernet dont les adresses Internet, de classe C et de masque 255.255.255.0, sont 193.2.2.0, 193.5.5.0 et 193.8.8.0.

- 29 Donnez le format du datagramme IP (supposé prêt à être envoyé) préparé sur MA, en précisant les adresses qui apparaissent dans l'en-tête.
- 30 Donnez les tables de routage initiales les plus simples (minimales), sur chaque machine (MA, R1, R2 et MB), permettant l'acheminement du datagramme de MA vers MB.
- 31 Donnez les étapes successives nécessaires à cet acheminement, en précisant les adresses utilisées dans les en-têtes des trames Ethernet envoyées, ainsi que les requêtes ARP nécessairement effectuées.

FIGURE 2 – Un exemple de réseau.

- Quel est l'état des tables ARP sur chaque machine une fois que MB a reçu le datagramme (on suppose que ces tables étaient vierges au départ)?
- 33 Dans l'état actuel, l'envoi d'un message de MB vers MA est-il possible?

3.4 Plan d'adressage

On considère le réseau présenté dans le TD précédent (fig. 3).

- 34 Sachant que votre site a pour adresse 193.133.10 et que votre routeur a l'adresse 193.133.10.1, proposez un plan d'adressage pour le site, en complétant le schéma.
- 35 À partir de ce plan d'adressage, indiquez le contenu minimal des tables de routage :
- du routeur;
- des postes 1 et 2;
- d'un poste de travail du bâtiment 2;
- du serveur de messagerie.

3.5 Initiation aux masques de sous-réseaux

Une machine faisant partie d'un réseau local est reliée à Internet, avec l'adresse IP 194.10.1.3 et sur un sous-réseau de masque 255.255.254.

- 36 Quelle est l'adresse du réseau local?
- 37 Quelle est l'adresse du sous-réseau dans lequel se trouve la station?
- 38 Combien de sous-réseaux sont utilisables dans le réseau local?
- 39 Combien peut-on déclarer de stations dans chacun des sous-réseaux?

Une entreprise possède une centaine de machines qu'elle souhaite relier en réseau. Cette entreprise dispose d'une adresse IPv4 de classe C ayant comme valeur 194.10.1.0. Pour des raisons d'organisation les machines seront réparties en 3 sous réseaux reliés par deux routeurs.

FIGURE 3 – Plan du réseau.

- 40 Définissez un plan d'adressage pour cette entreprise.
- 41 Justifiez la valeur du masque à utiliser pour le routage.