Problemas de Enzimologia

Série 5

1. Os dados abaixo dizem respeito à hidrólise de vários tripéptidos em N-terminal aminoácidos e C-terminal dipéptidos, catalisada pelo enzima intestinal aminotripep-tidase, a pH 7.0 e 37 °C :

Substrato	$k_0(s^{-1})$	$K_{\rm m}({ m mM})$
L-Pro-Gly-Gly	385	1.3
L-Leu-Gly-Gly	190	0.55
L-Ala-Gly-Gly	365	1.4
L-Ala-L-Ala-L-Ala	298	0.52

- a) Qual dos substratos seria hidrolisado mais rapidamente na fase inicial da reacção, se o enzima fosse adicionado a uma mistura equimolar dos quatro substratos ?
- b) Quando o L-Ala-Gly-Gly foi estudado como inibidor da hidrólise do L-Pro-Gly-Gly, a constante de inibição competitiva determinada foi 1.4 mM. Será que este valor suporta a hipótese de que o enzima tenho um único centro no qual ambos os substratos são hidrolisados ?
- c) Sugira uma outra experiência que pudesse suportar a resposta dada em b)
- 2. Verifica-se, para qualquer valor da razão entre a concentração de inibidor e a constante de inibição, que um inibidor competitivo diminui a velocidade de reacção mais que um inibidor anti-competitivo para valores de [A]
 K_m e que o inverso é verdade para valores de [A]>K_m. Provar esta relação algébricamente e explicar o seu significado.
- 3. A partir dos seguintes dados:

[A] (mM)	[I] = 0 mM	[I] = 0.2 mM	[I] = 0.4 mM
0.1	0.20	0.08	0.00
0.3	0.46	0.27	0.10
0.5	0.67	0.42	0.18
0.7	0.84	0.51	0.18
0.9	0.94	0.65	0.25
1.1	1.08	0.73	0.29

determine o tipo de inibição e calcule a respetiva constante por meio de um gráfico secundário.

4. Os dados abaixo mostram velocidades iniciais (em unidades arbitrárias) medidas para uma reacção catalisada enzimaticamente para várias valores de [I] e [A]. Que se pode concluir sobre o tipo de inibição ?

[I] (mM)	[A] = 1 mM	[A] = 2 mM	[A]=3 mM
0	2.36	3.90	5.30
1	1.99	3.35	4.40
2	1.75	2.96	3.98
3	1.60	2.66	3.58
4	1.37	2.35	3.33

5. Para uma reacção catalisada enzimática, um estudo de velocidades iniciais para diferente oncentrações de substrato produziu os seguintes resultados:

[S]	Vi
6	5.92
12	9.06
18	9.36
24	9.33
30	8.76
36	8.25
42	8.39
48	7.70
54	7.37
60	7.03

Analise os dados graficamente e proponha uma explicação para o comportamento observado.

5. Num estudo do efeito do pH sobre a actividade de determinado enzima, obtiveramse os seguintes valores para a dependência de $V_{\rm max}$ com o pH

pН	V_{max}
3.0	0.17
4.0	2.15
5.0	14.21
6.0	26.97
7.0	29.37
8.0	27.37

9.0	15.68
10.0	2.13
11.0	0.20

- a) Usando as representações gráficas apropriadas, determine o número de grupos que influenciam o perfil observado e os valores dos seus pKa's
 b) A quais dos equilíbrios do modelo de Waley correspondem os pKa's determinados
- na alínea anterior ?