PHASE 3: DEVELOPMENT PART 1

PROJECT TITLE: ASSESSMENT OF MARGINAL WORKERS IN TAMILNADU-A SOCIO ECONOMIC ANALYSIS

TEAM MEMBERS:

SIVA GURU.K

NITHISH.S

MANIBARATHI

KARTHIKEYAN

DEVELOPMENT PART 1 – LOADING AND PREPROCESSING IN THE WORKERS DATASET USING IBM COGNOS

ANALYSIS OBJECTIVES:

- 1. Identify Marginal Workers: In the initial phase, our primary focus will be on establishing a comprehensive methodology to accurately identify and classify marginal workers in the Tamil Nadu region. This will involve data collection and categorization techniques.
- 2. Understand Socio-Economic Factors: We will begin by gathering and analyzing demographic and socio-economic data to gain a foundational understanding of the factors that contribute to the prevalence of marginal work in Tamil Nadu. This analysis will help us identify the key variables to consider.
- 3. Assess Livelihood Challenges: During this phase, we will conduct preliminary interviews and surveys with a sample of marginal workers to gain insights into the daily challenges they face. These insights will be used to shape our later, more extensive research.
- 4. Regional Disparities Exploration: Our initial geographical focus will be on one or more districts or regions within Tamil Nadu to understand the regional variations in the prevalence and challenges faced by marginal workers.

DATA COLLECTION:

We will collect customer data from the provided dataset available on Kaggle(link: https://tn.data.gov.in/resource/marginal-workers-classified-age-industrial-category-and-sex-scheduled-caste-2011-tamil)

DATA PREPROCESSING:

Data preprocessing is essential to ensure data quality and prepare it for analysis in IBM Cognos Analytics.

The following steps will be taken:

1.DATA LOADING:

Import the dataset into IBM COGNOS Analytics, ensuring it's in a format compatible with the tool.

2.DATA EXPLORATION:

Perform exploratory data analysis (EDA) to gain an initial understanding of the dataset's structure and contents. This includes identifying missing values, outliers, and data types.

3.HANDLING MISSING VALUES:

Identify and address missing values in the dataset. Options may include imputation or removal, depending on the impact of missing data on the analysis.

4.DATA CLEANING:

Detect and address data anomalies, such as outliers and incorrect entries, which could negatively affect the analysis.

5.DATA TRANSFORMATION:

Transform data into a format suitable for modeling. Ensure that the target variable (churn status) is correctly defined.

6)DATA SPLITTING:

Divide the dataset into training and testing sets for model development and evaluation.

DATA EXPLORATION:


```
CO Untitled0.ipynb - Colaboratory x +
 ← → C 🕯 colab.research.google.com/drive/1eHZFIDXK60jXRvEx8A5eaqmzH9qRLwcZ#scrollTo=j0VzVYc5xxbu
                                                                                                                                                                      e ☆ 🖈 🛘 🕓 :
 M Gmail YouTube Maps G New Tab
 CO Untitled0.ipynb 🌣
                                                                                                                                                                 □ Comment 😃 Share 🌣 S
        File Edit View Insert Runtime Tools Help <u>Last edited on October 18</u>
∷
                                                                                                                                                                         ↑ ↓ © □ ‡ 🖟 🔋 :
        print(df.describe())
Q
           \{x\}
Industrial Category - N to 0 - Females \
594.000000
48.013468
222.553500
0.000000
0.0000000
2.0000000
            mean
std
min
25%
50%
75%
max
                   Industrial Category - P to Q - Persons \ 594.000000
            count
mean
std
min
25%
50%
75%
                                               594.000000
149.225589
696.553730
0.000000
0.000000
14.500000
99.750000
>_
```

HANDLING MISSING VALUES:

DATA SPLITTING:

```
O Untitled1.ipynb - Colaboratory x +
 ← → C  

• colab.research.google.com/drive/1lFZoOFrqyeUYvqgfXQmk4EPuEE0sb5O5#scrollTo=NDhVPSuWrgcf
                                                                                                                                                                                e ☆ * □ S :
M Gmail O YouTube O Maps G New Tab
CO ♣ Untitled1.ipynb ☆
                                                                                                                                                                               ■ Comment 😃 Share 🌣 S
        File Edit View Insert Runtime Tools Help All changes saved
✓ RAM ___ ~ ^
numerical_features = [
                 'Age',
'Income'
                                                                                                                                                                                      ↑ ↓ ⊖ 🔲 💠 🖟 📋 :
     from sklearn.model_selection import train_test_split
             # Define the feature matrix (X) and the target variable (y)

X = data.drop(columns=['Morked for less than 3 months - Persons', 'Worked for less than 3 months - Males']) # Replace 'Churn' with your actual target column
             y = data['Worked for less than 3 months - Persons']
             # Split the data into training and testing sets (adjust the test_size and random_state as needed)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
             # Check the shapes of the resulting datasets
print("Training set - X:", X_train.shape, "y:", y_train.shape)
print("Testing set - X:", X_test.shape, "y:", y_test.shape)
\equiv
             Training set - X: (415, 67) y: (415,)
Testing set - X: (179, 67) y: (179,)
>_
                                                                                          ✓ 0s completed at 5:24 PM
```