一、振动和波动

例题1 一质点沿x轴作简谐振动,振动方程为 $x = 4 \times 10^{-2} \cos(2\pi t + 10^{-2})$

从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为

题意 \Rightarrow $\omega t = \pi \Rightarrow 2\pi t = \pi \Rightarrow t = \frac{1}{2}$

例题2 一简谐振动的振动曲线如图所示. 求振动方程.

解:由图 \Rightarrow A=0.1m; t=2s 由图 \Rightarrow 旋转矢量 \Rightarrow

 $x = A\cos(\omega t + \varphi) = 0.1\cos\left(\frac{5\pi}{12}t + \frac{\pi}{12}\right)$

例题3 一质点作简谐振动. 其运动速度与时间的曲线如图所示. 若质点的振动规律用余弦函数描述,则其初相应为

(C) $-5\pi/6$. (D) $-\pi/6$.

(E) $-2\pi/3$.

 $\upsilon/(m/s)$

答案: (C) -5π/6

 $x = A\cos(\omega t + \varphi)$; $\upsilon = \upsilon_m \cos(\omega t + \varphi)$

例题4 一长为/的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆. 已知细棒绕通过其一端的轴的转动惯

P31 、8—9

解: (1) 由振动方程 $x = 0.60 \sin(5t - \frac{\pi}{2})$ 知: $A = 0.6 \text{m}, \omega = 5 \text{(rad/s)}$

故振动周期:

 $T = \frac{2\pi}{\omega} = \frac{2}{5}\pi = 1.256(s) \approx 1.26(s)$

第1页共18页

(2) t=0 时,由振动方程得:
$$v_0 = -0.60 \text{m}$$

$$v_0 = \frac{dx}{dt}|_{t=0} = 3.0 \cos(5t - \frac{\pi}{2}) = 0$$

(3) 由旋转矢量法知,此时的位相:
$$\varphi = -\frac{\pi}{3}$$

速度
$$v = -A\omega \sin \varphi = -0.60 \times 5 \times (-\frac{\sqrt{3}}{2}) \text{m/s} = 2.6 \text{(m/s)}$$

加速度
$$a = -A\omega^2 \cos \varphi = -0.60 \times 5^2 \times \frac{1}{2} \text{ m/s}^2 = -7.5 \text{ (m/s}^2)$$

所受力
$$F = ma = 0.2 \times (-7.5) \text{N} = -1.5(\text{N})$$

(4) 设质点在 x 处的动能与势能相等,由于简谐振动能量守恒,即:

故有:
$$E_k = E_p = \frac{1}{2}E = \frac{1}{2}(\frac{1}{2}kA^2)$$
 即 $\frac{1}{2}kx^2 = \frac{1}{2} \times \frac{1}{2}kA^2$ 得: $x = \pm \frac{\sqrt{2}}{2}A = \pm 0.42$ (m)

作业:

1、利用旋转矢量绘制合振动的轨迹图形,已知两个简谐振动的方程 $y = A_2 \cos(\omega t + \pi) \mathbf{A} A_1 = 2A_2$

第三十讲: § 8.1 简谐振动

8-1 解: 取固定坐标 xOy, 坐标原点 O 在水面上(图题所示) 设货轮静止不动时,货轮上的 A 点恰在水面上,则浮力为 $S \rho ga$.这时 $Mg = s \rho ga$

往下沉一点时,合力 $F = Mg - s\rho g(a + y)$

故作简谐振动 =6.35(s) $2\times10^3\times10^3\times9.8$

习题 8-1 图

 $\bigwedge x(cm)$

习题 8-3

8-3 解:简谐振动的振动表达式: $x = A\cos(\omega t + \varphi)$

由题图可知, $A = 4 \times 10^{-2} \text{ m}$,当 t=0 时,将 $x = 2 \times 10^{-2} \text{ m}$ 代入简谐振动表达式,得:

当 t=0 时, $v = -\omega A \sin \varphi$ $\pm \upsilon = -\omega A \sin(\omega t + \varphi),$

故由 cos Ø 由图可知: U > 0,即 $\sin \varphi < 0$,

又因:t=1s 时, $x = 2 \times 10^{-2} m$,

由 t=1s 时, 知:

练习题1. 一物体同时参与两个同方向的简谐振动: $x_2 = 0.03\cos(2\pi t + \pi)(SI)$ $=0.04\cos(2\pi t +$

求此物体的振动方程.

解: 设合成运动(简谐振动)的振动方程为 $x = A\cos(\omega t + \phi)$ 1

 $A = \sqrt{4^2 + 3^2}$ cm = 5cm 以 $A_1 = 4$ cm, $A_2 = 3$ cm, 2分

2分

1分

 $x = 0.05\cos(2\pi t + 2.22)(SI)$

练习题2. 两个同方向简谐振动的振动方程分别为

$$x_1 = 5 \times 10^{-2} \cos(10t + \frac{3}{4}\pi)(SI)$$
; $x_2 = 6 \times 10^{-2} \cos(10t + \frac{1}{4}\pi)(SI)$

求合振动方程.

解:依合振动的振幅及初相公式可得

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\phi}$$

$$= \sqrt{5^2 + 6^2 + 2 \times 5 \times 6 \times \cos(\frac{3}{4}\pi - \frac{1}{4}\pi)} \times 10^{-2} = 7.81 \times 10^{-2} n$$

$$\phi = \arctan \frac{5\sin(3\pi/4) + 6\sin(\pi/4)}{5\cos(3\pi/4) + 6\cos(\pi/4)} = 84.8^{\circ} = 1.48rad$$

则所求的合成振动方程为 $x = 7.81 \times 10^{-2} \cos(10t + 1.48)$ (SI)

解: 由題意
$$x_1 = 4 \times 10^{-2} \cos \left(2\pi t + \frac{\pi}{4} \right)$$
 (SI) $x_2 = 3 \times 10^{-2} \cos \left(2\pi t + \frac{\pi}{2} \right)$ (SI)

2分

按合成振动公式代入已知量,可得合振幅及初相为

$$A = \sqrt{4^2 + 3^2 + 24\cos(\pi/2 - \pi/4)} \times 10^{-2} = 6.48 \times 10^{-2} m$$

 $\phi = \arctan \frac{4\sin(\pi/4) + 3\sin(\pi/2)}{4\cos(\pi/4) + 3\cos(\pi/2)} = 1.12rad$

合振动方程为 $x = 6.48 \times 10^{-2} \cos(2\pi t + 1.12)$ (SI)

练习题4. 一质点同时参与两个同方向的简谐振动,其振动方程分别为

 $x_1 = 5 \times 10^{-2} \cos(4t + \pi/3)$ (SI), $x_2 = 3 \times 10^{-2} \sin(4t - \pi/6)$ (SI)

画出两振动的旋转矢量图,并求合振动的振动方程.

 $x_2 = 3 \times 10^{-2} \sin(4t - \pi/6)$

 $= 3 \times 10^{-2} \cos(4t - \pi/6 - \pi/2)$

 $= 3 \times 10^{-2} \cos(4t - 2\pi/3).$

作两振动的旋转矢量图,如图所示. 图2分

由图得: 合振动的振幅和初相分别为

$$A = (5-3)$$
cm = 2 cm, $\phi = \pi/3$ 2 $\frac{4}{3}$

合振动方程为 $x = 2 \times 10^{-2} \cos(4t + \pi/3)$ (SI) 1分

8-16 解: 设两质点的振动表达式分别为: $x_1 = A\cos(\omega t + \varphi_1)$ $x_2 = A\cos(\omega t + \varphi_2)$

由图题可知,一质点在 $x_1 = \frac{A}{2}$ 处时对应的相位为:

$$\omega t + \varphi_1 = \arccos \frac{A/2}{A} = \frac{\pi}{3}$$

同理:另一质点在相遇处时,对应的相位为:

$$\omega t + \varphi_2 = \arccos \frac{A/2}{A} = \frac{5\pi}{3}$$

故相位差 $\Delta \varphi = (\omega t + \varphi_2) - (\omega t + \varphi_1) = \varphi_2 - \varphi_1 = \frac{5\pi}{3} - \frac{\pi}{3} = \frac{4}{3}\pi$

若_{v₁与v₂的方向与上述情况相反,故用同样的方法,可得:}

$$\Delta \varphi = \varphi_2 - \varphi_1 = \frac{\pi}{3} - (-\frac{\pi}{3}) = \frac{2}{3}\pi$$

习题 8-16 图

8-17 解:由 8-17 图(\mathbf{P}_{33})所示曲线可以看出,两个简谐振动的振幅相同,即 $A_1=A_2=0.05\mathrm{m}$,周期均匀 $T=0.1\mathrm{s}$,因而圆频率为: $\omega=\frac{2\pi}{m}=20\pi$

由 x-t 曲线可知,简谐振动 1 在 t=0 时, $x_{10}=0$,且 $v_{10}>0$,故可求得振动 1 的初位相 $v_{10}=\frac{3}{2}\pi$. 同样,简谐振动 2 在 $v_{10}=0$ 时,

 $x_{20} = -0.05m$, $v_{20} = 0$, 可知 $\varphi_{20} = \pi$

故简谐振动 1、2 的振动表达式分别为: $x_1 = 0.05\cos(20\pi + \frac{3}{2}\pi)$

 $x_2 = 0.05\cos(20\pi t + \pi)m$

因此,合振动的振幅和初相位分别为: $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_{20} - \varphi_{10})} = 5\sqrt{2} \times 10^{-2} m_0$

$$\varphi_0 = \arctan \frac{A_1 \sin \varphi_{10} + A_2 \sin \varphi_{20}}{A_1 \cos \varphi_{10} + A_2 \cos \varphi_{20}} = \arctan \frac{\pi}{4} \stackrel{5}{=} \frac{5}{4} \pi$$

但由 x-t 曲线知,t=0 时, $x = x_1 + x_2 = -0.05$,因此 ϕ 应取 $\frac{5}{4}\pi$,故合振动的振动表达式: $x = 5\sqrt{2} \times 10^{-2} \cos(20\pi t + \frac{5}{4}\pi)m$

二、波动<mark>例题1.</mark> 机械波的表达式为 $y = 0.03\cos6\pi(t + 0.01x)$ (SI) ,则

- (C) 其波速为10 m/s.
- (D) 波沿x轴正向传播

答案: $\frac{2\pi}{\sigma} = 6\pi$ \Rightarrow $\frac{1}{\sigma} = \frac{1}{3}s$ (B) $\frac{A = 3mm}{s}$; 波沿 x 轴负向传播; $\frac{u = 100m/s}{s}$

例题2: 若一平面简谐波的表达式为 $y = A\cos(Bt - Cx)$, 式中 $A \times B \times C$ 为正值常量,则

- (A) 波速为C. (B)周期为1/B. (C) 波长为 $2\pi/C$. (D) 角频率为 $2\pi/B$. 答案:
- (A) 波速为 $u = \frac{\omega}{C}$; (B) 周期 $T = \frac{2\pi}{B}$; (C) 波长为 $\lambda = \frac{2\pi}{C}$; (D)角频率为 $\omega = Cu$

例题 3: 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为: A =______; o =______; $\phi =$ _______.

答案: A = 0.1m ; T = 12s ; $\omega = \frac{2\pi}{T} = \frac{\pi}{6} rad/s$; $\phi = \frac{\pi}{3}$

例题 4. 图为 t = T/4 时一平面简谐波的波形曲线,则其波的表达式为

答案: A = 0.1m ; $\lambda = 4m$; u = 330m/s $\Longrightarrow \omega = 2\pi v = \frac{2\pi u}{\lambda} = 165 rad/s$

由 t=T/4 时刻的波形图 \Longrightarrow t=0 时刻的波形图,利用旋转矢量法求 ϕ ,在利用三步法求出波函数。

注意: 旋转矢量仅与振动图像对应,与波形图无关。

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right] \implies y = 0.10\cos\left[165\pi\left(t - \frac{x}{330}\right) \mp \pi\right]$$

<mark>例题5:</mark> 在简谐波的一条射线上,相距0.2 m两点的振动相位差为π/6. 又知振动周期为0.4 s,则波长为_____,波速为_____.

答案: 已知: $\Delta x = 0.2m$; $\Delta \varphi = \frac{\pi}{6}$; T = 0.4s

$$\mathbf{\mathscr{H}} \colon \ \Delta \varphi = \frac{2\pi}{\lambda} \Delta x \quad \Longrightarrow \quad \lambda = \frac{2\pi}{\Delta \varphi} \Delta x = 2.4m \quad \Longrightarrow \quad u = \frac{\lambda}{T} = 6m/s$$

例题6: 一列平面简谐波在媒质中以波速u=5 m/sAx轴正向传播,原点O处质元的振动曲线如图所示.

- (1) 求解并画出x = 25 m处质元的振动曲线.
- (2) 求解并画出t=3 s时的波形曲线.

已知: A = 0.02m ; T = 4s ; u = 5m/s ; $\Rightarrow \varphi = -\frac{\pi}{2}$; $\omega = \frac{2\pi}{T} = \frac{\pi}{2} rad/s$

解: (1) 求解并画出 x = 25 m 处质元的振动曲线

设: O 点的振动方程: $y_0 = A\cos(\omega t + \varphi)$ \Longrightarrow P 点的振动方程: $y_p = A\cos\left(\omega \left(t - \frac{x}{u}\right) + \varphi\right)$

$$y_p = 0.02 \cos \left[\frac{\pi}{2} \left(t - \frac{25}{5} \right) - \frac{\pi}{2} \right] = 0.02 \cos \left(\frac{\pi}{2} - \pi \right)$$

(2) 求解并画出t = 3 s时的波形曲线

$$y_p = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right] \implies y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right] \implies y = 0.02\cos\left(\pi - \frac{\pi x}{10}\right)$$

例题7: 一振幅为 10 cm,波长为200 cm的一维余弦波. 沿x轴正向传播,波速为 100 cm/s,在t=0时原点处质点在平衡位置向正位移方向运动.求:

- (1) 原点处质点的振动方程.
- (2) 在 x = 150 cm 处质点的振动方程.

已知:
$$A=0.1m$$
 ; $\lambda=2m$; $u=1m/s$; $\varphi=-\frac{\pi}{2}$ 或 $\frac{3\pi}{2}$ \Longrightarrow $\omega=2\pi v=2\pi\frac{u}{\lambda}=\pi rad/s$

解: (1) 原点处质点的振动方程
$$y_0 = A\cos(\omega t + \varphi)$$
 \Rightarrow $y_0 = 0.1\cos(\pi - \frac{\pi}{2})$

(2) 在
$$x = 150$$
 cm=1.5m 处质点的振动方程 $y_p = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi\right]$ \Rightarrow $y = 0.1\cos\left(\pi - \frac{3\pi}{2} - \frac{\pi}{2}\right) = 0.1\cos\pi$

例题8: 某质点作简谐振动,周期为2s,振幅为0.06 m, t=0 时刻,质点恰好处在负向最大位移处,求:

- (1) 该质点的振动方程;
- (2) 此振动以波速u=2 m/s沿x轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);
- (3) 该波的波长.

已知:
$$T = 2s$$
 ; $A = 0.06m$; $\varphi = \pm \pi$ $\Longrightarrow \omega = \frac{2\pi}{T} = \pi rad/s$

解: (1) 该质点的振动方程
$$y = A\cos(\omega t + \varphi)$$
 $\Rightarrow y = 0.06\cos(\pi t + \pi)$

(2)以波速
$$u = 2 \text{ m/s}$$
 沿 x 轴正方向传播时的波动表达式 $y = A \cos \left[\omega \left(t - \frac{x}{u}\right) \mp \pi\right]$ $\Rightarrow y = 0.06 \cos \left[\pi \left(t - \frac{x}{2}\right) \mp \pi\right]$

(3) 该波的波长 $\lambda = uT = 4m$

9-11 解

(1) 因合成波方程为: $y = y_1 + y_2$

$$= [0.06\cos\pi(x-4t) + 0.06\cos\pi(x+4t)]m$$

$$= 2 \times 0.06\cos\frac{\pi(x-4t) + \pi(x+4t)}{2} \times \cos\frac{\pi(x-4t) - \pi(x+4t)}{2}m$$
故细绳上的振动为驻波式振动。
$$= 0.12\cos\pi x \times \cos 4\pi t m$$

(2) 由
$$\cos \pi x = 0$$
 得: $\pi x = (2k+1)\frac{\pi}{2}$ 故波节位置为: $x = \frac{1}{2}(2k+1)(m)$ $(k = 0,\pm 1,\pm 2\cdots)$

由
$$|\cos \pi x| = 1$$
 得: $|\cos \pi x| = 1$ 符: 故波腹位置 $|x| = k(m)$ $|x| = k(m)$

(3) 由合成波方程可知,波腹处振幅为: A = 0.12m

在 x=1.2m 处的振幅为: $A_x = 0.12 \cos 1.2\pi \mid m = 0.097$

9-12 (1)
$$y_{\lambda} = A\cos\left[10\pi(t - \frac{x}{40}) + \frac{\pi}{2}\right] = A\cos(10\pi t - \frac{\pi}{4}x + \frac{\pi}{2})$$
$$y_{\mathbb{R}} = A\cos\left[10\pi(t - \frac{28 - x}{40}) + \frac{\pi}{2} - \pi\right] = A\cos\left[10\pi(t - \frac{28 - x}{40}) - \frac{\pi}{2}\right] = A\cos(10\pi t + \frac{\pi}{4}x - \frac{3\pi}{2})$$

(2) 驻波方程

$$y = y_{\lambda} + y_{\bar{x}} = A\cos(0\pi t - \frac{\pi}{4}x + \frac{\pi}{2}) + A\cos(0\pi t + \frac{\pi}{4}x - \frac{3}{2}\pi) = 2A\cos(0\pi t - \frac{\pi}{2})\cos(\pi t - \frac{\pi}{4}x)$$

$$=2A\cos(\pi-\frac{\pi}{4}x)\sin 10\pi t = -2A\cos\frac{\pi}{4}x\sin 10\pi t$$

∴ 波节: x=2,6,10,14 ; 波腹: x=0,4,8,12

例题 1: 一广播电台的平均辐射功率为 20Kw,假定辐射的能量均匀分布在以电台为球心的球面上,那么,距离电台 10Km 处电磁波的平均强度为多少?

$$I = \frac{\overline{P}}{\Delta S} = \frac{\overline{P}}{4\pi r^2} = \frac{20 \times 10^3}{4\pi \times (10 \times 10^3)^2} = 1.59 \times 10^{-5} W \cdot m^2 \frac{(P72.9-17.5)}{4\pi \times (10 \times 10^3)^2}$$

- 解: (1) 波源远离观察者运动,故 v_s 应取负值,观察者听到的声音频率为: $v' = \frac{u}{u v_s} v = \frac{340}{340 + 10} \times 100 \text{Hz} = 971.4 \text{Hz}$
 - (2) 波源向着悬崖运动, U_s 应取正值,从悬崖反射的声音频率为:
 - (3) 拍频 $v'' = \frac{u}{u v_s} v = \frac{340}{340 10} \times 100$ Hz = 1030.3Hz $\Delta v = v'' v'(1030.3 971.4)$ Hz = 58.9Hz

现论上应有58.9 拍,但因为强弱相差太悬殊,事实上可能听不出拍频。

二、光学

- 习题1: 在双缝干涉实验中,波长 λ =550 nm的单色平行光垂直入射到缝间距d=2×10⁴ m的双缝上,屏到双缝的距离D=2 m. 求:
 - (1) 中央明纹两侧的两条第10级明纹中心的间距;
 - (2) 用一厚度为 $e=6.6 \times 10^{-6}$ m、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? $(1 \text{ nm} = 10^{-9} \text{ m})$

解: (1)
$$\Delta x = 20 D\lambda / d$$

=0.11 m

2分

(2) 覆盖云玻璃后,零级明纹应满足 $\delta = 0 \implies (n-1)e + r_1 = r_2$

27

设不盖玻璃片时,此点为第k级明纹,则应有: $r_2 - r_1 = k\lambda$

24

所以 $(n-1)e = k\lambda$ $k=(n-1)e/\lambda=6.96\approx7$ 零级明纹移到原第7级明纹处。

习题2:在双缝干涉实验中,双缝与屏间的距离 $D=1.2~\mathrm{m}$,双缝间距 $d=0.45~\mathrm{mm}$,若测得屏上干涉条纹相邻明条纹间距为1.5 mm,求光源发出的单色光的波长 λ . 解:根据公式 $x=k\lambda D/d$ 相邻条纹间距 $\Delta x=D\lambda/d$ 则 $\lambda=d\Delta x/D=562.5~\mathrm{nm}$.

作业: P131 10—1; 10—2

10-1 (1)
$$\pm x = k \frac{D}{d} \lambda$$
 $\approx \lambda = \frac{xd}{kD} = \frac{6 \times 10^{-3} \times 0.2 \times 10^{-3}}{2 \times 1.0} = 6 \times 10^{-7} \,\text{m} = 6000 \,\text{A}$

(2)
$$\Delta x = \frac{D}{d} \lambda = \frac{6 \times 10^{-7}}{0.2 \times 10^{-3}} = 3 \times 10^{-3} = 3 \text{(mm)}$$

10-2 若在下缝处置一折射率为n厚度为t的透明薄膜,则光从下缝到屏上的光程将增加(n-1)t,屏上的条纹均要向下移动。依题意中央明条纹多到屏中心下方原来第3级明条纹位置,则从双缝到该位置的光程差

$$\delta = [r_2 + (n-1)t] - r_1 = (r_2 - r_1) + (n-1)t = -3\lambda + (n-1)t = 0$$

t =
$$\frac{3\lambda}{n-1}$$
 = $\frac{3 \times 6.328 \times 10^{-7}}{1.6-1}$ = 3.16×10⁶ m ≈ 3.2µm

例题 1. 在康普顿散射实验中,波长 $\lambda_0=0.1$ nm 的 X 射线在碳块上散射,我们从与入射的 X 射线束成 90° 方向去研究散射

- (1) 求这个方向的波长改变量 △Д;
- (2) 反冲电子获得的能量有多大。
- 解:(1)由康普顿散射公式,有

$$\Delta \lambda = 2\lambda_c \sin^2 \frac{\theta}{2} = 2 \times 2.426 \times 10^{-12} \times \sin^2 \frac{\pi}{4}$$
$$= 2.43 \times 10^{-3} nm$$

(2) 根据碰撞过程中能量守恒,有

$$\frac{hc}{\lambda_0} + m_0 c^2 = \frac{hc}{\lambda} + mc^2$$

所以反冲电子获得的能量为

$$E_k = mc^2 - m_0c^2 = \frac{hc}{\lambda_0} - \frac{hc}{\lambda_0 + \Delta\lambda} = 295eV$$

例题 2. 在康普顿散射中,入射光子的波长为0.003nm, 反冲电子的速度为光速的 60%,求散射光子的波长及散射角。

解: 根据碰撞中能量守恒,有

$$\frac{hc}{\lambda_0} + m_0 c^2 = \frac{hc}{\lambda} + mc^2$$

又由于反冲电子的质量为

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

联立两式, 可求得

 $\lambda = 0.0043$ *nm*

由康普顿散射公式,有

$$\Delta \lambda = \lambda - \lambda_0 = 2\lambda_c \sin^2 \frac{\theta}{2}$$

 $_{\mathbf{6}}$ 解得. $\theta = 62.3^{\circ}$

<mark>习题1:</mark> 在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量 ε 与反冲电子动能 E_K 之比 ε/E_K 为

- (A) 2. (B) 3. (C) 4.
- (D) √ 5.

习题2: 具有下列哪一能量的光子,能被处在n=2的能级的氢原子吸收?

- (A) 1.51 eV. (B) ✓ 1.89 eV.
- (C) 2.16 eV.
- (D) 2.40 eV.

习题3: 玻尔的氢原子理论的三个基本假设是:

- (1)

习题 4: 氢原子中电子从 n = 3 的激发态被电离出去,需要的能量为_____

答案: 1.51

- 3分
- 习题1: 一束平行单色光垂直入射在光栅上,当光栅常数(a+b)为下列哪种情况时(a代表每条缝的宽度),k=3、6、9 等级次的主极大均不出现? (A) a+b=2a.
 - (B) $\sqrt{a+b=3} a$. (C) a+b=4a.
- (A) a+b=6a.

习题2:在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分 宽度b的关系为

- (A) a=0.5b.
- (B) $\sqrt{a=b}$. (C) a=2b.
- **(D)** a=3b.

习题 4: 已知入射的 X 射线束含有从 0.095 ~ 0.13nm 这个范围内的各种波长,晶体晶格常数为 0.275nm ,当 X 射线以 45°角入射到晶体时,问对哪些波长的 X 射线能产生强反射?

解: 由布拉格公式 $2d\sin\varphi = k\lambda$ 得 $\lambda = \frac{2d\sin\varphi}{k} = \frac{2\times 2.75\times\sqrt{2}/2}{k} = \frac{3.89A}{k}$

- $\stackrel{\text{\tiny \pm}}{=} k = 1, \lambda = 3.89 \, A; k = 2, \lambda_2 = 1.94 \, A$
- $\pm k = 3, \lambda_3 = 1.3 A; k = 4, \lambda_4 = 0.97 A;$

所以只有 λ 为 1.30 A 和 0.97 A 的谱线在 x 射线波长范围内,能产生强反射.

所以 $(n-1)e = k\lambda$ $k=(n-1)e/\lambda=6.96\approx7$ 故 零级明纹移到原第7级明纹处。

<mark>课堂习题1:在双缝干涉实验中,波长 λ =550 nm的单色平行光垂直入射到缝间距d= $2 imes10^{-4}$ m的双缝上,屏到双缝的距离为D=2 m.求:(1) 中央明纹两侧的两</mark> 条第10级明纹中心的间距; (2) 用一厚度为 $e=6.6 \times 10^{-6}$ m、折射率为n=1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? $(1 \text{ nm} = 10^{-9} \text{ m})$

解: (1) $\Delta x = 20 D \lambda / d = 0.11 \text{ m}$

4分(2) 覆盖云玻璃后,零级明纹应满

足 $\delta = 0$ \Rightarrow $(n-1)e+r_1=r_2$

设不盖玻璃片时,此点为第k级明纹,则应有 $r_2-r_1=k\lambda$

2分

题2:在双缝干涉实验中,双缝与屏间的距离D=1.2 m,双缝间距d=0.45 mm,若测得屏上干涉条纹相邻明条纹间距为1.5 mm,求光源发出的单色光的波长

解: 根据公式 $x = k\lambda D/d$ 相邻条纹间距 $\Delta x = D\lambda/$ 则 $\lambda = d\Delta x/D = 562.5$ nm.

已知: $d = 0.20mm = 0.2 \times 10^3 m$; D = 1.0m; $\Delta x_2 = 6.0mm = 6.0 \times 10^{-3} m$

 $x_{\text{iij}} = \pm k \frac{D}{d} \lambda$ $k = 0, 1, 2, 3, \dots$; $\Delta x = x_{k+1} - x_k = \frac{D}{d} \lambda$

求: (1) $\lambda = ?$; (2) $\Delta x = ?$

$$\lambda = \frac{\Delta x_2 d}{2D} = \frac{6 \times 10^{-3} \times 0.2 \times 10^{-3}}{2 \times 1.0} = 6 \times 10^{-7} \text{ m} = 6000 \text{ Å}$$

(2)
$$\Delta x = x_{k+1} - x_k = \frac{D}{d} \lambda$$
 \Rightarrow $\Delta x = \frac{D}{d} \lambda = \frac{1.0 \times 6 \times 10^{-7}}{0.2 \times 10^{-3}} = 3 \times 10^{-3} = 3 \text{(mm)}$

10-2 解: 若在下缝处置一折射率为 n 厚度为 t 的透明薄膜,则光从下缝到屏上的光程将增加(n-1)t,屏上的条纹均要向下移动。依题意中央明条纹多到屏中心下 方原来第3级明条纹位置,则从双缝到该位置的光程差

$$\delta = [r_2 + (n-1)t] - r_1 = (r_2 - r_1) + (n-1)t = -3\lambda + (n-1)t = 0$$

故
$$t = \frac{3\lambda}{n-1} = \frac{3 \times 6.328 \times 10^{-7}}{1.6 - 1} = 3.16 \times 10^6 \,\mathrm{m} \approx 3.2 \,\mu\mathrm{m}$$

§ 10.4.1 光的衍射现象及分类

习题1: 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹

- (A) 对应的衍射角变小. (B) √ 对应的衍射角变大.
- (C) 对应的衍射角也不变. (D) 光强也不变.

单缝衍射极小值的公式: $a \sin \varphi = \pm k\lambda$ $\implies a \downarrow \sin \varphi \uparrow = \pm k\lambda = 恒量$

习题 2: 单缝宽a=0.10mm,透镜焦距为 f=50cm,用 $\lambda=500nm$ 的钠光垂直照射单缝,求位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度 各为多少?若把此装置侵入水中(n=1.33),中央明条纹的半角宽度又是多少?

解: : 衍射角 φ_0 很小,有 $\varphi_0 \approx \sin \varphi_0 \approx \tan \varphi_0$: 中央明条纹的半角宽度: $\varphi_0 = \frac{\lambda}{a} = \frac{5 \times 10^{-7}}{0.1 \times 10^{-7}}$

$$\varphi_0 = \frac{\lambda}{a} = \frac{5 \times 10^{-7}}{0.1 \times 10^{-3}} = 5 \times 10^{-3} \text{ rad}$$

$$(a\sin\varphi = \pm k\lambda) \le k = 1$$
 $a\sin\varphi_0 \approx a\varphi_0 = \lambda$

中央明条纹的宽度(线宽度)

$$\Delta x = 2(x_1 - x_0) = 2x_1 = 2f \tan \varphi_0 \approx 2f \frac{\lambda}{a} = 5 \times 10^{-3} m = 5mm$$

若单缝装置浸入水中,中央明条纹的半角宽度

$$\varphi_0 = \frac{\lambda}{a}$$
 \Longrightarrow $\varphi_0 = \frac{\lambda}{na} = \frac{5 \times 10^{-7}}{1.33 \times 0.1 \times 10^{-3}} = 3.76 \times 10^{-3} \text{ rad}$

§ 10.4.4 圆孔夫琅禾费衍射

习题 1 . 在夫琅禾费圆孔衍射中,设圆孔半径为 $\frac{0.10mm}{0.10mm}$,透镜焦距为 $\frac{50cm}{0.10mm}$,所用单色光波长为 $\frac{500nm}{0.10mm}$,求在透镜焦平面处屏幕上呈现的艾里斑半 径。如圆孔半径改为 1.0 mm, 其他条件不变, 艾里斑的半径变为多少?

解: 爱里班半径

$$r = f \times 1.22 \frac{\lambda}{D_1} = 1.22 \times 0.5 \times \frac{5 \times 10^{-7}}{2 \times 0.1 \times 10^{-3}} = 1.53 \times 10^{-3} \,\mathrm{m}$$

者
$$D_2 = 2 \times 1.0$$
mm,则 $r = 1.22 f \frac{\lambda}{D_2} = 1.22 \times 0.5 \times \frac{5 \times 10^{-7}}{2 \times 1 \times 10^{-3}} = 1.53 \times 10^{-4} \text{ m}$

习题 2:在迎面驶来的汽车上,两盏前灯相距 120cm,设夜间人眼瞳孔直径为 5.0mm,入射光波长为 500nm,问汽车离人多远的地方,眼睛恰可分辨这两盏灯?

解: 人眼最小分辨角为
$$\theta_0=1.22rac{\lambda}{D}=1.22 imesrac{5 imes10^{-7}}{5 imes10^{-3}}=1.22 imes10^{-4}\mathrm{rad}$$
 而 $l\cdot\theta_0=\Delta x$,

所以眼睛恰可分辨两灯的距离为
$$l = \frac{\Delta x}{\theta_0} = \frac{1.2}{1.22 \times 10^{-4}} = 9.84 \times 10^3 = 9.84 \text{km}$$

习题 3: 设人眼在正常照度下的瞳孔直径约为 3mm,而在可见光中,人眼最敏感的波长为 550nm,

- 问:(1)人眼的最小分辨角有多大?
 - (2) 若物体放在距人眼 25cm (明视距离) 处,则两物点间距为多大时才能被分辨?

解 (1)

$$\theta_0 = 1.22 \frac{\lambda}{D} = \frac{1.22 \times 5.5 \times 10^{-7} \text{m}}{3 \times 10^{-3} \text{m}}$$

= $2.2 \times 10^{-4} \text{rad}$

(2)

$$d = l\theta_0 = 25 \text{cm} \times 2.2 \times 10^{-4}$$
$$= 0.0055 \text{cm} = 0.055 \text{mm}$$

中央明条纹的宽度
$$\Delta x = 2 \operatorname{ftg} \varphi_0 \approx 2 f \frac{\lambda}{a} = 5 \times 10^{-3} \,\mathrm{m} = 5 \,\mathrm{mm}$$

若单缝装置浸入水中,中央明条纹的半角宽度 $\varphi_0 = \frac{\lambda}{na} = \frac{5 \times 10^{-7}}{1.33 \times 0.1 \times 10^{-3}} = 3.76 \times 10^{-3} \text{ rad}$

10-29 人眼最小分辨角为 ; $\theta_0 = 1.22 \frac{\lambda}{D} = 1.22 \times \frac{5 \times 10^{-7}}{5 \times 10^{-3}} = 1.22 \times 10^{-4} \text{ rad}$

而 $l \cdot \theta_0 = \Delta x$, 所以眼睛恰可分辨两灯的距离为 $l = \frac{\Delta x}{\theta_0} = \frac{1.2}{1.22 \times 10^{-4}} = 9.84 \times 10^3 = 9.84 \text{km}$

<mark>习题1:</mark>波长为<mark>之</mark>的平行单色光垂直照射到劈形膜上,劈形膜的折射率为<mark>n</mark>,在由反射光形成的干涉条纹中,第五条明条纹与第三条明条纹所对应的**薄**膜厚度

之差为_____

∴相邻明纹之间的距离: $\Delta e = e_{k+1} - e_k = \frac{\lambda}{2n}$

**:第五条明条纹与第三条明条纹所对应的薄膜厚度之差为: $\Delta_{53} = e_5 - e_3 = 2 \times \frac{\lambda}{2n} = \frac{\lambda}{n}$

习题2: 用波长为 λ 的单色光垂直照射折射率为 n_2 的劈形膜(如图)图中各部分折射率的关系是 $n_1 < n_2 < n_3$. 观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =________.

$$\Delta = 2n_2e = (2k+1)\frac{\lambda}{2}$$
 $k = 0,1,2,3,\cdots$ 第五条暗纹 $k = 4$ $\implies e = \frac{9\lambda}{4n_2}$

习题3:波长 λ =600 nm的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为_____nm. (1 nm=10 $^{-9}$ m)

$$\Delta = 2e + \frac{\lambda}{2} = k\lambda$$
 \Longrightarrow $2e = (2k+1)\frac{\lambda}{2}$ 第二个明环 $k=1$,第五个明环 $k=4$

$$\Delta e = e_5 - e_2 = (9 - 3) \frac{\lambda}{\lambda} \implies \Delta e = 900$$

习题4:在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P处形成的圆斑为

图中数字为各处介质的折射率

- (A) 全明.
- (B) 全暗.
- (C) 右半部明,左半部暗.
- (D) 右半部暗,左半部明.

[D]

$$\Delta_{P\pm} = 2en = k\lambda$$
 ; $\Delta_{P\pm} = 2en + \frac{\lambda}{2} = k\lambda$

$$P$$
点的厚度为零 $e=0$ \Longrightarrow $\Delta_{P\pm}=0$ \Longrightarrow 左半部明

$$P$$
点的厚度为零 $e=0$ \Longrightarrow $\Delta_{Ph}=\frac{\lambda}{2}$ \Longrightarrow 右半部暗 \Longrightarrow I

习题5:在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率 $\frac{n_1}{n_1}=1.50$)之间的空气 $(\frac{n_2}{n_2}=1.00)$)改换成水 $(\frac{n_2'}{n_2}=1.33)$,求第k个暗环半径

的相对改变量 $(r_k - r'_k)/r_k$

$$r_k = \sqrt{kR\lambda}$$

$$(n_2 = 1.00)$$

$$r_k' = \sqrt{kR\lambda/n_2'}$$

$$\frac{r_k - r_k'}{r_k} = \frac{\sqrt{kR\lambda} (1 - 1/\sqrt{n_2'})}{\sqrt{kR\lambda}} = 1 - \frac{1}{\sqrt{n_2'}} = 13.3\%$$

2分

习题1: 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片. 若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光 束中自然光与线偏振光的光强比值为

(A) $\sqrt{1}/2$.

$$\frac{I_{\text{Max}}}{I_{\text{min}}} = \frac{\frac{I_{\text{fight.}}}{2} + I_{\text{fight.}}}{\frac{I_{\text{fight.}}}{2}} = 5 \implies \frac{I_{\text{fight.}}}{I_{\text{fight.}}} = \frac{1}{2} \implies A$$

习题2: 如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 Li的自然光垂直入射在偏振片上,则出射光强为

(A) $\sqrt{I_0} / 8$.

(B)
$$I_0 / 4$$
.

(C)
$$3 I_0 / 8$$
. (D) $3 I_0 / 4$.

$$I = \frac{1}{2}I_0 \cos^2 60^\circ = \frac{1}{8}I_0$$

习<mark>题3:</mark> 使一光强为 & 的平面偏振光先后通过两个偏振片A和A. A和A的偏振化方向与原入射光光矢量振动方向的夹角分别是 <mark>℃</mark>和 90°, 则通过这两个偏振片后 的光强 /是

(A)
$$\frac{1}{2}I_0\cos^2\alpha$$
 (B) 0. (C) $\sqrt{\frac{1}{4}I_0\sin^22\alpha}$ (D) $\frac{1}{4}I_0\sin^2\alpha$ (E) $I_0\cos^4\alpha$.

(D)
$$\frac{1}{4}I_0\sin^2\alpha$$

(E)
$$I_0 \cos^4 \alpha$$

答案:
$$I = (I_0 \cos^2 \alpha) \cdot \cos^2 (90^\circ - \alpha) = I_0 \cos 2\alpha \cdot \sin^2 2\alpha = \frac{1}{4} I_0 \sin^2 2\alpha$$

习题4: 光强为 I_0 的自然光依次通过两个偏振片 I_0 和 I_0 . 若 I_0 和 I_0 的偏振化方向的夹角 I_0 ,则透射偏振光的强度 I_0 是

(A)
$$I_0 / 4$$
. (B) $\frac{\sqrt{3}}{4}I_0$. (C) $\frac{\sqrt{3}}{2}I_0$. (D) $I_0 / 8$. (E) $\sqrt{3}I_0 / 8$.

(c)
$$\frac{\sqrt{3}}{2}I_0$$

答案: $I = \frac{I_0}{2} \cos^2 30^\circ = \frac{3}{8} I$

习题5: 一束平行的自然光,以60°角入射到平玻璃表面上. 若反射光束是完全偏振的,则透射光束的折射角是____

习题6: 如图所示,一束自然光入射到折射率分别为1/1和1/2的两种介

质的交界面上,发生反射和折射. 已知反射光是完全偏振光,那

么折射角 θ_{\perp} 的值为_

$$\tan \theta_b = \frac{n_2}{n_1}$$

$$\theta_r = \frac{\pi}{2} - \arctan \frac{n_2}{n_1}$$

习题7: 假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是

答案: $n_1 \sin i_c = n_2 \sin r$ \Rightarrow $1 \times \sin 45^\circ = n_2 \sin 90^\circ$

$$\Rightarrow$$
 1

$$\bar{2} \Rightarrow$$

习题8: 当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为______

_偏振光,且反射光线和折射光线之间的夹角为

习题一: 若在迈克耳孙干涉仪的可动反射镜 M_1 移动 0.620mm 过程中,观察到干涉条纹移动了 2300 条,则所用光波的波长为

 $[nm] \cdot (1m = 10^{-9} nm)$

$$\lambda = \frac{2d}{N} = \frac{2 \times 0.620}{2300} \times 10^6 = 539.1 nm$$

习题二:用迈克耳孙干涉仪测衡小的位移. 若入射光波波长 $\lambda=628.9nm$,当动臂反射镜移动时,干涉条纹移动了2048条,反射镜移动的距离d=

 $d = N\frac{\lambda}{2} = 2048 \times \frac{628.9}{2} \times 10^{-6} = 0.644$ mm

<mark>习题三。</mark>已知在迈克耳孙干涉仪中使用波长为<mark>儿</mark>的单色光。在干涉仪的可动反射镜移动距离<mark>d</mark>的过程中,干涉条纹将移动_____条。

习题四:一束波长为<mark>礼</mark>的单色光由空气垂直入射到折射率为<mark>11</mark>的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为

(C)
$$\frac{\lambda}{2}$$
.

(D)
$$\frac{\lambda}{2n}$$

答案: 三线合一,
$$\Delta = 2ne + \frac{\lambda}{2} = k\lambda$$

$$e = \frac{1}{2n} \left(k - \frac{1}{2} \right) \lambda$$

<mark>习题五</mark>:在迈克耳孙干涉仪的一条光路中,插入一块折射率为 $m{1}$,厚度为 $m{d}$ 的透明薄片.插入这块薄片使这条光路的光程改变了_____

答案:

$$\Delta_1 = 2l$$

前:
$$\Delta_1 = 2l$$
 后: $\Delta_2 = 2[l-d+nd] = 2l+2(n-1)d$

前后: $\Delta = \Delta_2 - \Delta_1 = 2(n-1)d$

已知: $d = 0.322mm = 0.322 \times 10^{-3}m$; N = 1024

求: $\lambda = ?$

M:
$$\dot{\mathbf{H}}_{d} = N\frac{\lambda}{2}$$
 $\ddot{\mathbf{H}}_{d} \lambda = \frac{2d}{N} = \frac{2 \times 0.322 \times 10^{-3}}{1024} = 6.29 \times 10^{-7} \,\mathrm{m} = 6290 \,\mathrm{A}_{d}$

P132 10-18

已知: N=150 ; $\lambda = 500nm$; n=1.632

求: d=?

解:设放入厚度为 11 玻璃片后,则来自干涉仪两臂相应的光程差变化为

$$2(n-1)d = N\lambda$$

$$d = \frac{N\lambda}{2(n-1)} = \frac{150 \times 5 \times 10^{-7}}{2 \times (1.632 - 1)} = 5.93 \times 10^{-5} \,\mathrm{m}$$

三、量子力学

习题1: 若 α 粒子(电荷为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则 α 粒子的德布罗意波长是

- (B) h/(eRB).
- (C) 1/(2eRBh).
- (D) 1/(eRBh).

$$P = \frac{h}{\lambda}$$
 \Longrightarrow $\lambda = \frac{h}{P} = \frac{h}{m\nu_0} = \frac{h}{2eBR}$ \Longrightarrow A

习题2: 能量为15eV的光子,被处于基态的氢原子吸收,使氢原子电离发射一个光电子,求此光电子的德布罗意波长为 nm.

(电子的质量 m_e =9.11×10⁻³¹ kg,普朗克常量h =6.63×10⁻³⁴ J•s,1 eV =1.60×10⁻¹⁹ J)

解: 远离核的光电子动能为
$$E_K = \frac{1}{2} m_e v^2 = 15 - 13.6 = 1.4 eV$$

$$\mathbf{v} = \sqrt{\frac{2E_K}{m_e}} = \sqrt{\frac{2 \times 1.4 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}} = 7.0 \times 10^5 \, \text{m/s}$$

光电子的德布罗意波长为
$$\lambda = \frac{h}{p} = \frac{h}{m_e V} = 1.04 \times 10^{-9} m = 1.04 nm$$

习题3: 若不考虑相对论效应,则波长为 550 nm 的电子的动能是多少eV?

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$, 电子静止质量 $m_e = 9.11 \times 10^{-31} \,\text{kg}$)

解: 非相对论动能

$$E_K = \frac{1}{2} m_e v^2$$

 $\overrightarrow{m} p = m_{e} \mathbf{V}$

又根据德布罗意关系有 $p = h/\lambda$ 代入上式 (1分)

$$\mathbb{M}E_K = \frac{1}{2}h^2/(m_e\lambda^2) = 4.98 \times 10^{-6}eV$$

2分

习题 4: 若光子的波长和电子的德布罗意波长心相等,试求光子的质量与电子的质量之比.

解:光子动量:

$$p_r = m_r c = h / \lambda$$

电子动量:

$$p_e = m_e v = h / \lambda$$

两者波长相等,有

$$p_e = m_e v = h / \lambda$$

 $m_r c = m_e v$

得到

$$m_r/m_e = v/c$$

电子质量

$$m_e = \frac{m_0}{\sqrt{1 - v^2 / c^2}}$$

式中m0为电子的静止质量。由②、④两式解出

$$v = \frac{c}{\sqrt{1 + (m_0^2 \lambda^2 c^2 / h^2)}}$$

2分

代入③式得

$$\frac{m_r}{m_e} = \frac{1}{\sqrt{1 + (m_0^2 \lambda^2 c^2 / h^2)}}$$

2分

习题 5: 一束带电粒子经 206V 电压加速后,测得其德布罗意波长为 2.0×10⁻³nm,已知该粒子所带的电量与电子电量相等,求粒子的质量。

解: 粒子的能量 $\frac{1}{mv^2} = eU$

$$\Rightarrow \frac{1}{2}(mv)^2 = meU$$

 $; P = m \upsilon \Longrightarrow$ 効量 $p = \sqrt{2meU}$

2分

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meU}}$$

(3分)

$$m = \frac{h^2}{2\lambda^2 eU} = \frac{(6.63 \times 10^{-34})^2}{2 \times (2.0 \times 10^{-12})^2 \times 1.6 \times 10^{-19} \times 206} = 1.67 \times 10^{-27} \text{kg}$$

 $\sqrt{200}$ 1: 岩 α 粒子(电荷为2 ϵ)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则 α 粒子的德布罗意波长是

- $(A) \int h/(2eRB)$ (B) h/(eRB) (C) 1/(2eRBh) (D) 1/(eRBh)

习题2: 直接证实了电子自旋存在的最早的实验之一是

- (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙一革末实验. (D) √ 斯特恩一革拉赫实验.

<mark>习题3:</mark>若不考虑相对论效应,则波长为 5500 Å的电子的动能是多少eV?(普朗克常量h =6.63×10⁻³⁴ J⋅s,电子静止质量m∈9.11×10⁻³¹ kg)

解: 非相对论动能

$$E_K = \frac{1}{2} m_e v^2$$

$$E_{\scriptscriptstyle K} = rac{1}{2} m_e
u^2$$
 前 $p = m_e
u$ 故有 $E_{\scriptscriptstyle K} = rac{p^2}{2 m_e}$

$$E_K = \frac{p^2}{2m_a}$$

又根据德布罗意关系有

$$p=h/\lambda$$
 代入上式 则 $E_{\scriptscriptstyle K}=rac{1}{2}h^2/(m_e\lambda^2)=4.98 imes10^{-6}eV$

习题 4: 若光子的波长和电子的德布罗意波长2相等,试求光子的质量与电子的质量之比.

解: 光子动量: $p_r = m_r c = h/\lambda$

- (1)
- 电子动量: $p_e = m_e v = h/\lambda$

两者波长相等,有 $m_r c = m_e v$ 得到 $m_r / m_e = v / c$ ③

电子质量

$$m_e = \frac{m_0}{\sqrt{1 - v^2 / c^2}}$$

式中m0为电子的静止质量.由②、④两式解出

$$\frac{m_r}{m_e} = \frac{1}{\sqrt{1 + (m_0^2 \lambda^2 c^2 / h^2)}}$$

2分

习题5: 关于不确定关系 $\Delta p_x \Delta x \geq \hbar$ ($\hbar = h/(2\pi)$), 有以下几种理解:

(1) 粒子的动量不可能确定.

- (2) 粒子的坐标不可能确定.
- (3) 粒子的动量和坐标不可能同时准确地确定。
- (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.

其中正确的是:

- (A) (1), (2).
- (B) (2), (4). (C) $\sqrt{3}$, (4). (D) (4), (1).

习题1: 关于不确定关系 $\Delta x \cdot \Delta p_x \ge h$ $(h = h/(2\pi))$,有以下几种理解:

- (1) 粒子的动量不可能确定.

- (2) 粒子的坐标不可能确定。
- (3) 粒子的动量和坐标不可能同时准确地确定.
- (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子.

其中正确的是:

- (A) (1), (2). (B) (2), (4). (C) (3), (4). (D) (4), (1).

习题 2: 一颗质量为 $_{10g}$ 的子弹,具有 $_{200m\cdot s^{-1}}$ 的速率.若其动量的不确定范围为动量的 $_{0.01\%}$ (这在宏观范围是十分精确的),则该子弹位置的不确定量 范围为多大?

解: 子弹的动量: $p = m\upsilon = 2kg \cdot m \cdot s^{-1}$

动量的不确定范围: $\Delta p = 0.01\% p = 2 \times 10^{-4} kg \cdot m \cdot s^{-1}$

$$\Delta x \ge \frac{h}{\Delta p} = \frac{6.63 \times 10^{-34}}{2 \times 10^{-4}} = 3.3 \times 10^{-30} m$$

习题 3: 一电子具有 $200 \, m \cdot s^{-1}$ 的速率, 动量的不确范围为动量的 0.01% (这也是足够精确的了), 则该电子的位置不确定范围有多大?

解: 电子的动量: $p = m\upsilon = 9.11 \times 10^{-31} \times 200 \approx 1.8 \times 10^{-28} kg \cdot m \cdot s^{-1}$

动量的不确定范围:

$$\Delta p = 0.01\% p = 1.8 \times 10^{-32} kg \cdot m \cdot s^{-1}$$

位置的不确定量范围:

$$\Delta x \ge \frac{h}{\Delta p} = \frac{6.63 \times 10^{-34}}{1.8 \times 10^{-32}} = 3.7 \times 10^{-2} m$$

习题1: 下列各组量子数中,哪一组可以描述原子中电子的状态?

(A)
$$n = 2$$
, $I = 2$, $m_s = \frac{1}{2}$.

(B)
$$\sqrt{n} = 3$$
, $I = 1$, $m_I = -1$,

(C)
$$n = 1$$
, $I = 2$, $m = 1$, $m_s = \frac{1}{2}$.

(D)
$$n = 1$$
, $I = 0$, $m_I = 1$, $m_S = -\frac{1}{2}$

习题2: 氢原子中处于2p状态的电子,描述其量子态的四个量子数(n, 1, m, m)可能取的值为

$$(A)$$
 (2, 2, 1, $-\frac{1}{2}$)

(B)
$$(2, 0, 0, \frac{1}{2})$$
.

(B)
$$(2, 0, 0, \frac{1}{2})$$
. $(C) \checkmark (2, 1, -1, -\frac{1}{2})$.

(D)
$$(2, 0, 1, \frac{1}{2})$$

<mark>习题3:</mark> 原子内电子的量子态由*n、1、∞*及∞四个量子数表征. 当*n、1、∞*一定时,不同的量子态数目为__________; 当*n、1*一定时,不同的量子态数 目为____

<mark>习题1:</mark> 用频率为ν的单色光照射某种金属时,测得饱和电流为*I*₁, 以频率为ν的单色光照射该金属时,测得饱和电流为*I*₂, 若*I*₁> *I*₂, 则

- (\mathbf{B}) $\nu_1 < \nu_2$.
- (C) N=12. (D) N与12的关系还不能确定.

∵ 光电流与光子数成正比,而与频率无直接关系。 ∴ и与и的关系还不能确定 <mark>⇒</mark> D

<mark>习题2:</mark> 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是 U_0 (使电子从金属逸出需作功 eU_0),则此单色光的波长 λ 必须满足:

(A)
$$\lambda \leq \frac{hc}{(eU_0)}$$
.

(B)
$$\lambda \ge \frac{hc}{(eU_0)}$$

(C)
$$\lambda \leq eU_0/(hc)$$
.

(D)
$$\lambda \ge \frac{eU_0}{(hc)}$$

$$: \frac{1}{2} m v_m^2 = e U_0 : h \frac{c}{2} \ge \frac{1}{2} m v_m^2 \implies h \frac{c}{2}$$

$$\therefore \implies \lambda \leq \frac{hc}{eU_0} \implies \mathbf{A}$$

习题3: 一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示. 然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图 中虚线所示. 满足题意的图是:

习题4: 光子波长为1,则其能量=__ _; 动量的大小 =_

习题5: 频率为 100 MHz的一个光子的能量是

_____,动量的大小是_

(普朗克常量h =6.63×10⁻³⁴ J·s)

答案: $E = hv = 6.63 \times 10^{-34} \times 10^8 = 6.63 \times 10^{-26} J$

$$P = \frac{h}{\lambda} = \frac{hv}{c} = \frac{6.63 \times 10^{-34} \times 10^8}{3 \times 10^8} = 2.21 \times 10^{-34} Kg \cdot m/s$$

<mark>习题6:</mark>某金属产生光电效应的红限频率为τ₀,当用频率为τ(ν>τ₀)的单色光照射该金属时,从金属中逸出的光电子(质量为m)的德布罗意波长为

习题7:如图所示,某金属M的红限波长 $\lambda_0 = 260 \text{ nm} \ (1 \text{ nm} = 10^9 \text{ m})$ 今用单色紫外线照射该金属,发现有光电子放出,其中速度最大的光电子可以匀速直线地穿 过互相垂直的均匀电场(场强 $E = 5 \times 10^3 \text{ V/m}$)和均匀磁场(磁感应强度为B = 0.005 T)区域,求:

- (1) 光电子的最大速度v. (2) 单色紫外线的波长 λ . (电子静止质量 m_e =9.11×10 $^{-31}$ kg, 普朗克常量h =6.63×10 $^{-34}$ J·s)

解:(1) 当电子匀速直线地穿过互相垂直的电场和磁场区域时,电子所受静电力与洛仑兹力相等,即 eE=evB2分

 $v = E/B = 10^6 m/s$

1分

(2) 根据爱因斯坦光电理论,则有

$$hc/\lambda = hc/\lambda_0 + \frac{1}{2}m_e v^2$$

2分

$$\lambda = \frac{\lambda_0}{1 + \frac{1}{2} (\frac{m_e v^2 \lambda_0}{hc})} = 1.63 \times 10^{-7} m = 163 nm$$

例题 1. 在康普顿散射实验中,波长 $\lambda_0 = 0.1$ nm 的 X射线在碳块上散射,我们从与入射的 X射线束成 y_0 0 方向去研究散射

- (1) 求这个方向的波长改变量 △1
- (2) 反冲电子获得的能量有多大。
- 解: (1) 由康普顿散射公式,有

$$\Delta \lambda = 2\lambda_c \sin^2 \frac{\theta}{2} = 2 \times 2.426 \times 10^{-12} \times \sin^2 \frac{\pi}{4}$$
$$= 2.43 \times 10^{-3} nm$$

(2) 根据碰撞过程中能量守恒,有

$$\frac{hc}{\lambda_0} + m_0 c^2 = \frac{hc}{\lambda} + mc^2$$

所以反冲电子获得的能量为

$$E_k = mc^2 - m_0c^2 = \frac{hc}{\lambda_0} - \frac{hc}{\lambda_0 + \Delta\lambda} = 295eV$$

例题 2. 在康普顿散射中,入射光子的波长为 $\frac{0.003nm}{0.003}$,反冲电子的速度为光速的 60%,求散射光子的波长及散射角。

解:根据碰撞中能量守恒,有

又由于反冲电子的质量为

联立两式, 可求得

 $\lambda = 0.0043 nm$

由康普顿散射公式,有

$$\Delta \lambda = \lambda - \lambda_0 = 2\lambda_c \sin^2 \frac{\theta}{2}$$

解得

 $\theta = 62.3^{\circ}$

例题 3. 关于康普顿效应实验现象的描述,下列表述中正确的是

- (A) 散射光波长的改变量仅由入射光的波长决定,与散射角无关。
- (B) 在反射方向上, 散射光的波长与入射光的波长相同。
- (C) 散射光波长的改变量由散射角决定,与入射光的波长无关。
- (D) 仅用能量守恒就可能解释康普顿效应。

答案: C

习题2: 具有下列哪一能量的光子,能被处在n=2的能级的氢原子吸收?

- (A) 1.51 eV.
- (B) **√** 1.89 eV.
- (C) 2.16 eV.
- (D) 2.40 eV.

习题3: 玻尔的氢原子理论的三个基本假设是:

- (1)_ (2)
- (3)_ 答案: 量子化定态假设 1分量子化跃迁的频率法则

 $V_{kn} = \left| E_n - E_k \right| / h$

角动量量子化假设 $L=nh/2\pi$ $n=1, 2, 3, \ldots$

习题 4: 氢原子中电子从n=3的激发态被电离出去,需要的能量为_____eV.

答案: 1.51

习题1: 下列各组量子数中,哪一组可以描述原子中电子的状态?

(A)
$$n=2, \ell=2, m_{\ell}=0, m_{s}=\frac{1}{2}$$

(B)
$$n=3, \ell=1, m_{\ell}=-1, m_{s}=-\frac{1}{2}$$

(D) $n=1, \ell=2, m_{\ell}=-1, m_{s}=-\frac{1}{2}$

(C)
$$n=1, \ell=2, m_{\ell}=1, m_s=\frac{1}{2}$$

(D)
$$n=1, \ell=2, m_{\ell}=-1, m_s=-\frac{1}{2}$$

答案: B

习题2: 氢原子中处于2p状态的电子,描述其量子态的四个量子数 $(rac{n}{n},rac{\ell}{n},rac{m_{\ell}}{m_{s}})$ 可能取的值为

(A) (2, 2, 1,
$$-\frac{1}{2}$$
).

(B)
$$(2, 0, 0, \frac{1}{2})$$
.

(A)
$$(2, 2, 1, -\frac{1}{2})$$
. (B) $(2, 0, 0, \frac{1}{2})$. (C) $(2, 1, -1, -\frac{1}{2})$. (D) $(2, 0, 1, \frac{1}{2})$.

(D) (2, 0, 1,
$$\frac{1}{2}$$
)

答案: C : $2p \rightarrow n = 2$; $\ell = 1$

习题3: 原子内电子的量子态由 n , ℓ , m_ℓ , m_s 四个量子数表征. 当 n , ℓ , m_ℓ 一定时,不同的量子态数目为_______; 当 n , ℓ 一定时,

不同的量子态数目为_______; 当<mark>*1* 一定时,不同的量子态数</mark>目为______.

答案:

2 1分; $2(2\ell+1)$ 2分; $2n^2$ 2分.