

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Middle con

| *        |  |
|----------|--|
| 4        |  |
| μ        |  |
| U        |  |
| $\infty$ |  |
| W        |  |
| U        |  |
| N        |  |
| 4        |  |
| N        |  |
| Ø        |  |

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

PHYSICS 0625/31

Paper 3 Extended

October/November 2012 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Take the weight of 1 kg to be 10 N (i.e. acceleration of free fall =  $10 \,\text{m/s}^2$ ).

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | iner's Use |
|----------|------------|
| 1        |            |
| 2        |            |
| 3        |            |
| 4        |            |
| 5        |            |
| 6        |            |
| 7        |            |
| 8        |            |
| 9        |            |
| 10       |            |
| 11       |            |
| Total    |            |

This document consists of 16 printed pages.



Fig. 1.1 shows the graph of speed v against time t for a train as it travels from one sta 1 the next.



Fig. 1.1

(a) Use Fig. 1.1 to calculate

the distance between the two stations,

distance = ..... [4]

the acceleration of the train in the first 10s.

acceleration = ..... [2]

| (b) | The mass of the train is $1.1 \times 10^5$ kg.                       | ocan.      |
|-----|----------------------------------------------------------------------|------------|
|     | Calculate the resultant force acting on the train in the first 10 s. | Mridge com |

|     | resultant force = [2]                                                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | The force generated by the engine of the train is called the driving force.                                                                                        |
|     | Write down, in words, an equation relating the driving force to any other forces acting on the train during the period $t = 10 \text{ s}$ to $t = 130 \text{ s}$ . |
|     | [1]                                                                                                                                                                |
|     | ITotal: 9                                                                                                                                                          |

(a) State the factors which completely describe a vector quantity.

[1]

(b) An aeroplane is flying towards the east in still air at 92 m/s. A wind starts to blow at 24 m/s towards the north.

Draw a vector diagram to find the resultant velocity of the aeroplane. Use a scale of 1.0 cm = 10 m/s.

2

| resultant speed =                                | ·   |
|--------------------------------------------------|-----|
| angle between resultant and easterly direction = |     |
| 3                                                | [5] |

[Total: 6]

| 3 | (a) | A stationary body is acted upon by a number of forces. State the two conditions must apply for the body to remain at rest. | Mohice |
|---|-----|----------------------------------------------------------------------------------------------------------------------------|--------|
|   |     | 2                                                                                                                          | Se.COM |
|   |     | [2                                                                                                                         |        |

**(b)** Fig. 3.1 shows a device used for compressing crushed material.



Fig. 3.1

The lever arm rotates about the hinge H at its right-hand end. A force of 20 N acts downwards on the left-hand end of the lever arm. The force F of the crushed material on the plunger acts upwards. Ignore the weight of the lever arm.

(i) Use the clockwise and anticlockwise moments about H to calculate the upward force F which the crushed material exerts on the plunger. The distances are shown on Fig. 3.1.

force 
$$F = \dots$$
 [3]

(ii) The cross-sectional area A of the plunger in contact with the crushed material is  $0.0036\,\text{m}^2$ . Calculate the pressure exerted on the crushed material by the plunger.

| Explain why the value of $h$ used in the calculation is much less than 2.0 m. |
|-------------------------------------------------------------------------------|
|                                                                               |
| [1]                                                                           |

g.p.e. = mgh.

a pole Randhidge Com

(c) Fig. 4.2 shows, in order, five stages of an athlete successfully performing a pole



Fig. 4.2

Describe the energy changes which take place during the performance of the pole-vault, from the original stationary position of the pole-vaulter before the run-up, to the final stationary position after the vault.

[Total: 8]

| air |
|-----|
| ć   |

(b)

| (i)  | how gas molecules exert a force on a solid surface,                                                                                                                    | -    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      |                                                                                                                                                                        |      |
|      |                                                                                                                                                                        |      |
|      |                                                                                                                                                                        | [1]  |
| (ii) | the increase in pressure of a gas when its volume is decreased at constatemperature.                                                                                   | ant  |
|      |                                                                                                                                                                        |      |
|      |                                                                                                                                                                        |      |
|      |                                                                                                                                                                        | •••• |
|      |                                                                                                                                                                        | [3]  |
| A c  | ylinder of volume $5.0 \times 10^3$ cm <sup>3</sup> contains air at a pressure of $8.0 \times 10^5$ Pa.                                                                |      |
|      | ak develops so that air gradually escapes from the cylinder until the air in the cylind tatmospheric pressure. The pressure of the atmosphere is $1.0 \times 10^5$ Pa. | der  |

Calculate the volume of the escaped air, now at atmospheric pressure. Assume that the temperature stays constant.

volume = .....cm<sup>3</sup> [4]

[Total: 8]

| (a) | Dei   | ine specific latent neat of fusion.                                                                                    |
|-----|-------|------------------------------------------------------------------------------------------------------------------------|
|     |       |                                                                                                                        |
| (b) | (i)   | A tray of area 0.25 m <sup>2</sup> , filled with ice to a depth of 12 mm, is removed from a refrigerator.              |
|     |       | Calculate the mass of ice on the tray. The density of ice is 920 kg/m <sup>3</sup> .                                   |
|     |       |                                                                                                                        |
|     |       | mass = [2]                                                                                                             |
|     | (ii)  | Thermal energy from the Sun is falling on the ice at a rate of 250 $\rm W/m^2$ . The ice absorbs 60% of this energy.   |
|     |       | Calculate the energy absorbed in 1.0s by the 0.25 m <sup>2</sup> area of ice on the tray.                              |
|     |       |                                                                                                                        |
|     |       |                                                                                                                        |
|     |       | energy = [2]                                                                                                           |
|     | (iii) | The ice is at its melting temperature.                                                                                 |
|     |       | Calculate the time taken for all the ice to melt. The specific latent heat of fusion of ice is $3.3 \times 10^5$ J/kg. |
|     |       |                                                                                                                        |
|     |       |                                                                                                                        |
|     |       |                                                                                                                        |
|     |       | time = [3]                                                                                                             |
|     |       | [Total: 8]                                                                                                             |

|     |                      |                                                 |                                 | surface.                        |
|-----|----------------------|-------------------------------------------------|---------------------------------|---------------------------------|
| Fiç | g. 7.1 shows five ve | ssels each made of the                          | e same metal and co             | ntaining water.                 |
|     |                      | Dare identical in size a e air surrounding each |                                 | is shallower and wider.         |
|     | A B                  | C                                               | D                               | E                               |
|     |                      | Fig. 7.                                         | 1                               |                                 |
| Γh  | e table shows detai  | ls about each vessel a                          | and their contents.             |                                 |
|     | vessel               | outer surface                                   | volume of water/cm <sup>3</sup> | initial temperature of water/°C |
|     | А                    | dull                                            | 200                             | 80                              |
|     | В                    | shiny                                           | 200                             | 80                              |
|     | С                    | dull                                            | 200                             | 95                              |
|     | D                    | dull                                            | 100                             | 80                              |
|     | E                    | dull                                            | 200                             | 80                              |
|     | Explain why the v    | From the initial tempe vater in B takes longer  | to cool than the wate           |                                 |
|     |                      |                                                 | quickly than the wate           |                                 |

| (iv) | Suggest <b>two</b> reasons why the water in E cools more quickly than the water. | 2   |
|------|----------------------------------------------------------------------------------|-----|
|      | 1                                                                                | 16n |
|      |                                                                                  |     |
|      | 2                                                                                |     |
|      |                                                                                  |     |
|      | [2]                                                                              |     |

[Total: 7]

|     | 44                                                                                                                                                                                                             |       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | A ray of light in air travels across a flat boundary into glass. The angle of incid- 51°. The angle of refraction is 29°.  (i) In the space below, draw a labelled diagram to illustrate this information. [3] |       |
| (a) | A ray of light in air travels across a flat boundary into glass. The angle of incid                                                                                                                            |       |
| ()  | 51°. The angle of refraction is 29°.                                                                                                                                                                           | B.    |
|     | (i) In the space below, draw a labelled diagram to illustrate this information. [3]                                                                                                                            | age ! |
|     |                                                                                                                                                                                                                | COM   |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                | 1     |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     | (ii) Calculate the refractive index of the glass.                                                                                                                                                              |       |
|     | (ii) Calculate the fertuence mask of the glassi                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     | refractive index =[2]                                                                                                                                                                                          |       |
| (b) | A ray of light in glass travels towards a flat boundary with air. The angle of incidence is 51°. This ray does not emerge into the air.                                                                        |       |
|     | State and explain what happens to this ray.                                                                                                                                                                    |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     |                                                                                                                                                                                                                |       |
|     | [2]                                                                                                                                                                                                            |       |
|     |                                                                                                                                                                                                                |       |
|     | [Total: 7]                                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                                                |       |

www.PapaCambridge.com Fig. 9.1 shows a thin, straight rod XY placed in the magnetic field between the polymagnet. The wires from the ends of XY are connected to a centre-zero voltmeter. 9



Fig. 9.1

|    |       | _                                                                                                                                |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------|
| a) | Whe   | en XY is moved slowly upwards the needle of the voltmeter shows a small deflection.                                              |
|    | (i)   | State how XY must be moved to produce a larger deflection in the opposite direction.                                             |
|    |       |                                                                                                                                  |
|    |       | [2]                                                                                                                              |
|    | (ii)  | XY is now rotated about its central point by raising X and lowering Y. Explain why no deflection is observed.                    |
|    |       |                                                                                                                                  |
|    |       |                                                                                                                                  |
|    |       | [2]                                                                                                                              |
| b) |       | effect of moving XY can be seen if the wires are connected to the terminals of a node-ray oscilloscope instead of the voltmeter. |
|    | (i)   | State the parts inside the oscilloscope tube to which these terminals are connected.                                             |
|    |       | [1]                                                                                                                              |
|    | (ii)  | The spot on the oscilloscope screen moves up and down repeatedly. State how XY is being moved.                                   |
|    |       | [1]                                                                                                                              |
|    | (iii) | State the setting of the time-base of the oscilloscope during the process described in (ii).                                     |
|    |       | [1]                                                                                                                              |

[Total: 7]

| 10 | (a) |      | battery                    | BANK. |
|----|-----|------|----------------------------|-------|
|    |     | (i)  | when they are in series,   | Table |
|    |     | (ii) | when they are in parallel. | [1]   |

(b) Fig. 10.1 shows a circuit with a  $1.2\,k\Omega$  resistor and a thermistor in series. There is no current in the voltmeter.



Fig. 10.1

Calculate the voltmeter reading when the resistance of the thermistor is  $3.6\,k\Omega$ .

voltmeter reading = ......[3]

www.PapaCambridge.com (c) Fig. 10.2 shows a fire-alarm circuit. The circuit is designed to close switch S a bell B if there is a fire.



Fig. 10.2

| Explain the operation of the circuit. |
|---------------------------------------|
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
|                                       |
| [3]                                   |
| [Total: 7]                            |

Question 11 is on the next page.

11

|    |        | 3                                                                                                                                                                                                           |
|----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) | A ra   | adioactive source emits $\alpha$ -, $\beta$ - and $\gamma$ -radiation.                                                                                                                                      |
|    | Whi    | ch of these radiations                                                                                                                                                                                      |
|    | (i)    | idioactive source emits $\alpha$ -, $\beta$ - and $\gamma$ -radiation. ch of these radiations has the shortest range in air,                                                                                |
|    | (ii)   | has a negative charge,                                                                                                                                                                                      |
|    | (iii)  | is not deflected in a magnetic field?[                                                                                                                                                                      |
| ၁) |        | famous experiment, carried out in a vacuum, a very thin sheet of gold was placed path of alpha particles.                                                                                                   |
|    | little | as found that a large number of the alpha particles passed through the sheet with or no deflection from their original path. A very small number of the alpha particle e reflected back towards the source. |
|    | (i)    | Explain, in terms of the force acting, why the direction of motion of an alpha partic changes when it comes close to the nucleus of a gold atom.                                                            |
|    |        |                                                                                                                                                                                                             |
|    |        |                                                                                                                                                                                                             |
|    |        | [                                                                                                                                                                                                           |
|    | (ii)   | State <b>two</b> conclusions, about the nuclei of atoms, that were made from the result of this experiment.                                                                                                 |
|    |        | 1                                                                                                                                                                                                           |
|    |        |                                                                                                                                                                                                             |
|    |        | 2                                                                                                                                                                                                           |
|    |        | [;                                                                                                                                                                                                          |
|    |        | [Total:                                                                                                                                                                                                     |
|    |        |                                                                                                                                                                                                             |
|    |        |                                                                                                                                                                                                             |