	1
set_seed	set_seed를 만들고 seed 값을 줘서 고정된 결과가 나올 수 있도록 만들어줬다. (model 호출 후 eval 값이 안 바뀌고 계속 같은 결과가 나옴)
dataset	dataset : - category는 "O"와 "R" 두 개의 라벨링 - split_data 함수 dataset 안에 sklearn의 train_test_split으로 데이터의 30%를 랜덤하게 샘플링 (random_state 값을 줘서 호출할 때마다 동일하게 분할하도록 만듬) # dataset category = {"O" : 0, "R" : 1} class MyCustombataset(Dataset): definit(self, path, mode, transform=None): self.path = self.split_data(path, mode) self.mode = mode self.ransform = transform defgotitom(self, index): data = self.path(index) # ./DATASET/TRAIN\0\0_1.jpg ing = Image.open(data).convert("RGB") if self.transform is not None : ing = self, transform(ing) label_temp = data.split('\\)[-2] label_temp = data.split('\\)[-2] label = category(label_temp] return ing, label deflun(self): return len(self.path) defsplit_data(self, path, mode): 0_data = sorted(glob.glob(os.path.join(path, mode, "0", "*.jpg"))) R_data = sorted(glob.glob(os.path.join(path, mode, "8", "*.jpg"))) tl_data, _, _, _ = train_test_split(0_data, 0_data, test_size=0.7, random_state=100) data = tl_data + t2_data return data Resize((224,224)),
augmentation	RandomHorizontalFlip(p=0.2), RandomVerticalFlip(p=0.2), Normalize([0.5, 0.5, 0.5], [0.2, 0.2, 0.2])
model	mobilenetV2
epoch	10
Loss	CrossEntropyLoss()
optimizer	SGD / lr = 0.01 / momentum = 0.9
best.pt	Oit [00:00, ?it/s]Starting evaluation 12it [00:02, 4.45it/s] Test acc for image : 753 ACC : 95.22 End test
last.pt	Starting evaluation 12it [00:02, 4.41it/s] Test acc for image : 753 ACC : 91.77 End test

데이터의 10%만 샘플링해서 사용

learning rate 0.0025, momentum 0.9 일 때 대체로 accuracy 값이 좋았음.
RandomAdjustSharpeness를 쓰니까 다른 하이퍼 파라미터를 바꿔도 전반적으로 학습결과가 조금 떨어짐.
데이터의 30% 샘플링해서 학습한 것보다 더 적은 10%로 학습했을 때도 95% 이상 좋은 결과가 나왔음.

model	mobilenetV2
epoch	10
Loss	CrossEntropyLoss()

augmentation	Resize((224,224)),
	RandomHorizontalFlip(p=0.2), RandomVerticalFlip(p=0.2),
	Normalize([0.5, 0.5, 0.5], [0.2, 0.2, 0.2])
optimizer	SGD / Ir = 0.01 / momentum = 0.9
best.pt	Starting evaluation 4it [00:01, 2.67it/s] Test acc for image: 251 ACC: 95.62 End test
last.pt	Oit [00:00, ?it/s]Starting evaluation 4it [00:01, 2.60it/s] Test acc for image : 251 ACC : 94.02 End test

augmentation	Resize((224,224)),
	RandomHorizontalFlip(p=0.2), RandomVerticalFlip(p=0.2),
	RandomAutocontrast(),
	Normalize([0.5, 0.5, 0.5], [0.2, 0.2, 0.2])
optimizer	SGD / Ir = 0.0025 / momentum = 0.9
best.pt	Oit [00:00, ?it/s]Starting evaluation
	4it [00:01, 2.66it/s]
	Test acc for image : 251 ACC : 96.81
	End test
last.pt	0it [00:00, ?it/s]Starting evaluation
	4it [00:01, 2.63it/s]
	Test acc for image : 251 ACC : 93.23
	End test

augmentation	Resize((224,224)),
	RandomHorizontalFlip(p=0.2), RandomVerticalFlip(p=0.2),
	RandomAutocontrast(), RandomAdjstSharpness(1.5),
	Normalize([0.5, 0.5, 0.5], [0.2, 0.2, 0.2])
optimizer	SGD / Ir = 0.005 / momentum = 0.7
best.pt	Oit [00:00, ?it/s]Starting evaluation 4it [00:01, 2.63it/s] Test acc for image : 251 ACC : 96.02 End test
last.pt	Starting evaluation 4it [00:01, 2.68it/s] Test acc for image : 251 ACC : 94.42 End test