YEAR 2022

1.Read the passage given below and answer the questions that follow:

- (i) Is silver plate the anode or cathode?
- (ii)What will happen if the salt bridge is removed?
- (iii) When does electro-chemical cell behaves like an electrolytic cel1?
- (iv)What will happen to the concentration of Zn^{2+} and Ag^{+} when Ecell = 0.
- (v) Why does conductivity of a solution decreases with dilution?
- (vi) The molar conductivity of a 1.5 M solution of an electrolyte is found to be $138.9 \text{ S cm}^2 \text{ mol}^{-1}$. Calculate the conductivity of this solution.

YEAR 2020

1.Kohlrausch given the following relation for strong electrolytes:

$$\Lambda = \Lambda_0 - A\sqrt{C}$$

Which of the following equality holds?

- (a) $\Lambda = \Lambda_0$ as $C \rightarrow \sqrt{A}$
- (b) $\Lambda = \Lambda_0$ as $C \rightarrow \infty$
- (c) $\Lambda = \Lambda_0$ as $C \rightarrow 0$
- (d) $\Lambda = \Lambda_0$ as $C \rightarrow 1$
- 2. In an electrochemical process, a salt bridge is used

as a reducing agent.

as an oxidizing agent.

to complete the circuit so that current can flow.

None of these

3. Assertion (A): Conductivity of an electrolyte increases with decrease in concentration.

Reason (R): Number of ions per unit volume decreases on dilution.

- 4. When a steady current of 2A was passed through two electrolytic cells A and B containing electrolytes ZnSO₄ and CuSO₄ connected in series, 2g of Cu were deposited at the cathode of cell B.
- (a) How long did the current flow?
- (b) What mass of Zn was deposited at cathode of cell A? [Atomic mass: $Cu = 63.5 \text{ g mol}^{-1}$, $Zn = 65 \text{ g mol}^{-1}$; $1F = 96500 \text{ C mol}^{-1}$]
- 5. Name the cell used in hearing aids and watches.
- 6. How much charge in terms of Faraday is required to reduce one mol of MnO^- to Mn^{2+} ?

YEAR 2019

- 1. E°cell for the given redox reaction is 2.71 V Mg(s) + Cu²⁺ (0.01 M) \rightarrow Mg²⁺(0.001 M) + Cu(s)
- Calculate Ecell for the reaction. Write the direction of flow of current when an external opposite potential applied is
 - (i) less than 2.71 V and
 - (ii) greater than 2.71 V
- 2. (a) A steady current of 2 amperes was passed through two electrolytic cells X and Y connected in series containing electrolytes FeSO₄ and ZnSO₄ until 2.8 g of Fe deposited at the cathode of cell X. How long did the current flow? Calculate the mass of Zn deposited at the cathode of cell Y. (Molar mass: Fe = 56 g mol⁻¹ Zn = 65.3 g mol⁻¹, 1F = 96500 C mol⁻¹)
- (b) In the plot of molar conductivity (\land m) vs square root of concentration ($c^{1/2}$), following curves are obtained for two electrolytes A and B:

Answer the following:

Predict the nature of electrolytes A and B.

What happens on extrapolation of Am to concentration approaching zero for electrolytes A and B?

YEAR 2018

1. (a) Write the cell reaction and calculate the e.m.f of the following cell at 298 K: $Sn_{(s)}|Sn^{2+}(0.004 \text{ M})||H^{+}(0.020 \text{ M})|H2_{(g)}(1 \text{ bar})$ Pt (s)

(Given: $E^0Sn^{2+}/Sn = -0.14 \text{ V}$)

- (b) Give reasons:
- (i) On the basis of E° values, O_2 gas should be liberated at anode but it is Cl_2 gas which is liberated in the electrolysis of aqueous NaCl.
- (ii) Conductivity of CH₃COOH decreases on dilution.
- 2. (a) For the reaction. $2 \text{ AgCl}_{(s)} + \text{H}_{2 (g)} (1 \text{ atm}) \rightarrow 2 \text{ Ag}_{(s)} + 2 \text{H}^{+} (0.1 \text{ M}) + 2 \text{ Cl}^{-} (0.1 \text{ M}),$ $\Delta G^{\circ} = -43600 \text{ J at } 25^{\circ}\text{C}$

Calculate the e.m.f. of the cell. $[log 10^{-l} = - n]$ (b) Define fuel cell and write its two advantages.

YEAR 2017

- 1.Calculate the degree of dissociation (α) of acetic acid if it's molar conductivity (Λ_m) is 39.05 S cm² mol⁻¹. Given, $\lambda^{\circ}(H^+) = 349.8 \text{ S cm}^2 \text{ mol}^{-1}$ and $\lambda^{\circ}(CH_3COO^-) = 40.9 \text{ S cm}^2 \text{ mol}^{-1}$
- 2. Calculate the mass of Ag deposited at cathode when a current of 2 amperes was passed through a solution of $AgNO_3$ for 15 minutes.
- (Given : Molar mass of Ag = 108 g mol^{-1} , 1 F = 96500 C mol^{-1})

- 3.(a) Define fuel cell
- (b) Write the name of the cell which is generally used in transistors. Write the reactions taking place at the anode and the cathode of this cell.
- $2\;Fe^{3+}\;\;{}_{(aq)}+\;\;2\;I^{-}\;{}_{(aq)} \longrightarrow \;\;2\;Fe^{2+}\;\;{}_{(aq)}+\;I_{2\;(s)}$ 4. The cell in which the following reaction occurs has E° cell = 0.236 V at 298 K. Calculate the standard Gibbs energy of the cell reaction. (Given : 1 F = 96,500 C

5. How many electrons flow through a metallic wire if a current of 0.5 A is passed for 2 hours? (Given: 1 F = 96,500 C mol⁻¹)

YEAR 2016

- 1. From the given cells: <u>Lead storage cell, Mercury cell, Fuel cell and Dry cell</u> Answer the following:
- (i) Which cell is used in hearing aids?
- (ii) Which cell was used in Apollo Space Programme?
- (iii) Which cell is used in automobiles and inverters?
- (iv) Which cell does not have long life?
- $2Cr(s) + 3Fe^{2+} (0.1M) \rightarrow 2Cr^{3+} (0.01M) + 3 Fe(s)$ 2. Calculate e.m.f of the following cell at 298 K:

Given: $E^{\circ}(Cr^{3+}/Cr) = -0.74 \text{ V}$ $E^{\circ}(Fe^{2+}/Fe) = -0.44 \text{ V}$

- 3. (a) Calculate E°_{Cell} for the following reaction at 298 K: 2Al(s) + 3Cu²⁺ (0.01 M) \rightarrow 2Al³⁺ (0.01M) + 3Cu(s) Given: Ecell = 1.98V
- (b) Using the E° values of A and B, predict which is better for coating the surface of iron $[E^{(Fe^2+/Fe)}] = -0.44V$ to prevent corrosion and why?

Given: $E^{\circ}(A^{2+}/A) = -2.37V$: $E^{\circ}(B^{2+}/B) = -0.14V$

- 4. The conductivity of 0.001 mol L⁻¹ solution of CH₃COOH is 3.905×10^{-5} S cm⁻¹. Calculate its molarconductivity and degree of dissociation (a). [Given λ^0 (H⁺) = 349.6 S cm² mol⁻¹ and λ^0 (CH₃COO⁻) = 40.9 S cm² mol⁻¹]
- 5. Define electrochemical cell. What happens if external potential applied becomes greater than E°cell of electrochemical cell?

1. How much charge is required for the reduction of 1 mol of Zn^{2+} to Zn?

Calculate e.m.f. and ΔG for the following cell: Mg (s) /Mg²⁺(0. 001 M) // Cu²⁺(0. 0001 M)/Cu(s)

Given : E^0 Mg2+/Mg= -2.37v. E^0 Cu2+/Cu = +0.34 v)

- 2. The conductivity of 0.20 mol L $^{-1}$ solution of KCl is 2.48 \times 10 $^{-2}$ S cm $^{-1}$. Calculate its molar conductivity and degree of dissociation (a). [Given λ^0 (K⁺) = 73.5 S cm² mol⁻¹ and λ^0 (C1⁻) = 76.5 S cm² mol⁻¹.]
- 3. What type of battery is mercury cell? Why is it more advantageous than dry cell?
- 4. Following reactions occur at cathode during the electrolysis of aqueous copper(II) chloride solution:

 Cu^{2+} (aq) + $2e^{-}$ ---- \to Cu (s) E° = 0.34 V $2H^+ + (aq) + e^- - H_2(g)$ $E^{\circ} = 0.00 \text{ V}$

- 5. On the basis of their standard reduction electrode potential (E°) values, which reaction is feasible at the cathode and why ? State Kohlrausch law of independent migration of ions. Write its one application.
- 6. Calculate the emf of the following cell at 25°C: **Zn | Zn²⁺ (0.001 M) || H⁺ (0.01 M) | H₂(g) (1 bar) | Pt(s)** $[E^{0}Zn^{2+}/Zn = -0.76 V, E^{0}(H+/H2) = 0.00 V]$
- 7. Define limiting molar conductivity. Why conductivity of an electrolyte solution decreases with the decrease in concentration?

Calculate emf of the following cell at 25 °C :Fe /Fe²⁺ (0. 001 M) // H⁺ (0. 01 M)/H₂ (g) /(1 bar)Pt(s)

 \mathbb{E}° (Fe²⁺/Fe) = -0.44 v \mathbb{E}° (H⁺ H₂) = 0.00 v

YEAR 2014

- 1. Define the following terms:
- (a)Molar conductivity (Λ_m)
- (b) Secondary batteries
- 2. Calculate $\Delta_r G^\circ$ for the given reaction: Mg (s) + Cu²⁺ (aq.) \rightarrow Mg²⁺ (aq.) + Cu (s)

[Given: $E^{\circ}_{cell} = +2.71 \text{ V}$, 1 F = 96500 Cmol⁻¹]

- 3. Name the type of cell which was used in Apollo space program for providing electrical power.
- 4. Resistance of a conductivity cell filled with 0.1 mol L^{-1} KCl solution is 100 Ω . If the resistance of the same cell when filled with 0.02 M KCl solution is 520Ω , calculate the conductivity and molar conductivity of 0.02 M KCl solution. The conductivity of 0.1 M KCl solution is 1.29×10^{-2} Scm⁻¹.
- 5. State Faraday's first law of electrolysis. How much charge in terms of Faraday is required for the reduction of 1 mol of Cu²⁺ to Cu.

Calculate emf of the following cell at 298 K: $Mg(s) \mid Mg^{2+}(0.1 \text{ M}) \mid Cu^{2+}(0.01) \mid Cu(s)$ [Given E^{O} cell = +2.71 V, 1 F = 96500 C mol⁻¹1

- 6. Define the following terms:
- (a) Limiting molar conductivity (b) Fuel cell
- 7. State Faraday's first law of electrolysis. How much charge in terms of Faraday is required for the reduction of 1 mol of Cu²⁺ to Cu.
- 8. Why does the conductivity of a solution decrease with dilution?