COMP147 Discrete Maths

Robin Hirsch, 5.07a MPEB, r.hirsch@ucl.ac.uk

February 20, 2019

Group Definition

Let G be a set and $*: G \times G \to G$ be a binary function. (G,*) is a group if

- ▶ for all $f, g, h \in G$ (f * g) * h = f * (g * h) (associativity)
- ▶ there is $e \in G$ such that for all $g \in G$ we have g * e = e * g = g (identity)
- ▶ for all $g \in G$ there is $g' \in G$ such that g * g' = g' * g = e (two sided inverse)

If (G,*) is a group and for all $f,g\in G$ we have f*g=g*f the group is called Abelian or commutative.

Group Examples

- **▶** (ℤ, +)
- $\blacktriangleright (\mathbb{Q} \setminus \{0\}, \cdot)$
- ▶ $(S_n, *)$ where $S_n = \text{permutations of}\{0, 1, 2, ..., n-1\}$ and * is composition of perms.
- $(GL(n,\mathbb{R}),*)$ automorphisms of vector space \mathbb{R}^n with concatenation
- \triangleright $(\mathbb{Z}/n\mathbb{Z},+)$, integers modulo n

The size (order) of a subgroup divides into the order of the group.

The size (order) of a subgroup divides into the order of the group. The order of an element $g \in G$ is smallest positive interger m such that $g^m = \overbrace{g * g * \ldots * g}^m = e$.

The size (order) of a subgroup divides into the order of the group. The order of an element $g \in G$ is smallest positive interger m such that $g^m = \overbrace{g * g * \ldots * g}^m = e$. By Lagrange, the order of any element of a group divides the order of the group.

The size (order) of a subgroup divides into the order of the group. The order of an element $g \in G$ is smallest positive interger m such that $g^m = \overbrace{g * g * \ldots * g}^m = e$. By Lagrange, the order of any element of a group divides the order of the group. Hence $g^{|G|} = e$.

Additive group modulo *n*

 $(\mathbb{Z}/n\mathbb{Z}),+)$ is an Abelian Group.

Additive group modulo *n*

```
(\mathbb{Z}/n\mathbb{Z}),+) is an Abelian Group. For 0 \leq k < n we have k \equiv_n k + n \equiv \dots Use representatives \{0,1,\dots,n-1\} of the n equivalence classes.
```

▶ $G_n = \{i : 1 \le i \le n, i \text{ is coprime to } n\}.$

- ▶ $G_n = \{i : 1 \le i \le n, i \text{ is coprime to } n\}.$
- ▶ Define x * y as $(x \cdot y) \pmod{n}$.

- ▶ $G_n = \{i : 1 \le i \le n, i \text{ is coprime to } n\}.$
- ▶ Define x * y as $(x \cdot y) \pmod{n}$.
- ▶ Check $g, h \in G_n$ implies $g \cdot h \in G_n$ (closed), and associative and identity laws hold.

- ▶ $G_n = \{i : 1 \le i \le n, i \text{ is coprime to } n\}.$
- ▶ Define x * y as $(x \cdot y) \pmod{n}$.
- ▶ Check $g, h \in G_n$ implies $g \cdot h \in G_n$ (closed), and associative and identity laws hold.
- ▶ Prove $x \in G_n$ implies there is $g' \in G$ such that the identity is $g \cdot g' = g' \cdot g$ (inverse law).

- ▶ $G_n = \{i : 1 \le i \le n, i \text{ is coprime to } n\}.$
- ▶ Define x * y as $(x \cdot y) \pmod{n}$.
- ▶ Check $g, h \in G_n$ implies $g \cdot h \in G_n$ (closed), and associative and identity laws hold.
- ▶ Prove $x \in G_n$ implies there is $g' \in G$ such that the identity is $g \cdot g' = g' \cdot g$ (inverse law).
- ► E.g., n = 15, $G_n = \{1, 2, 4, 7, 8, 11, 13, 14\}$.

Euler's Totient Function $\phi(n)$

$$\phi(n) = |\{i: 1 \le i \le n, \ i \text{ is coprime with } n\}|$$
 E.g. $\phi(9) = |\{1, 2, 4, 5, 7, 8\}| = 6.$

$\phi(n)$ — Key Facts

- ▶ If *m* is coprime with *n* then $\phi(m \cdot n) = \phi(m) \cdot \phi(n)$
- ▶ If $n = p_1^{k_1} \cdot p_2^{k_2} \cdot \ldots \cdot p_{k_t}^t$ where each p_i is prime, then

$$\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\dots(1 - \frac{1}{p_t})$$

E.g.

$$\phi(9) = \phi(3^2) = 9 \times (1 - \frac{1}{3}) = 6$$

$$\phi(120) = \phi(2^3 \cdot 3 \cdot 5) = 120 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} = 32$$

Euler and Lagrange

Recall that
$$|G_n| = \phi(n)$$
. If $x \in G_n$ (i.e. $1 \le x \le n$ and x is coprime with n) then

$$x^{\phi(n)} = 1 \mod n$$

Hence

$$x^{-1} = x^{\phi(n)-1} \mod n$$

Example Solve

 $8x = 5 \mod 11$

$$8x = 5 \mod 11$$

$$\phi(11)=10,$$

$$8x = 5 \mod 11$$

$$\phi(11) = 10$$
, so $8^{10} = 1 \mod 11$,

$$8x = 5 \mod 11$$

$$\phi(11)=10$$
, so $8^{10}=1 \text{ mod } 11$, so $8^9=8^{-1} \text{ mod } 11$.

Solve

$$8x = 5 \mod 11$$

 $\phi(11)=10,$ so $8^{10}=1$ mod 11, so $8^9=8^{-1}$ mod 11. Powers of 8 modulo 11.

k		8 ^k	mod 11
1		8	
2	$64 =_{11}$	9	
3	$9 \times 8 =_{11}$	6	
4	$9 \times 9 =_{11}$	4	
5	$9 \times 6 =_{11}$	-1	
9	$4 \times (-1) =_{11}$	7	
10	$(-1) \times (-1) =_{11}$	1	

$$8x = 5 \mod 11$$

$$\phi(11)=10,$$
 so $8^{10}=1$ mod 11, so $8^9=8^{-1}$ mod 11. Powers of 8 modulo 11.

k		8 ^k	mod 11
1		8	
2	$64 =_{11}$	9	
3	$9 \times 8 =_{11}$	6	
4	$9 \times 9 =_{11}$	4	
5	$9 \times 6 =_{11}$	-1	
9	$4 \times (-1) =_{11}$	7	
10	$(-1) \times (-1) =_{11}$	1	

So
$$8^{-1} =_{11} 8^9 =_{11} 7$$
.

$$8x = 5 \mod 11$$

$$\phi(11)=10$$
, so $8^{10}=1 \bmod 11$, so $8^9=8^{-1} \bmod 11$. Powers of 8 modulo 11.

k		8^{k}	mod 11
1		8	
2	$64 =_{11}$	9	
3	$9 \times 8 =_{11}$	6	
4	$9 \times 9 =_{11}$	4	
5	$9 \times 6 =_{11}$	-1	
9	$4 \times (-1) =_{11}$	7	
10	$(-1) \times (-1) =_{11}$	1	

So
$$8^{-1} =_{11} 8^9 =_{11} 7$$
.
So $x =_{11} 8^{-1} \times 5 =_{11} 7 \times 5 =_{11} 35 =_{11} 2$.

Solve

$$8x = 5 \mod 11$$

 $\phi(11) = 10$, so $8^{10} = 1 \mod 11$, so $8^9 = 8^{-1} \mod 11$.

Powers of 8 modulo 11.

k		$8^k \mod 11$	<u></u>	8 K	
1		8		8	
2	$64 =_{11}$	9	2	9	
3	$9 \times 8 =_{11}$	6	3 4	b 4	
4	$9 \times 9 =_{11}$	4	S	10	
5	$9 \times 6 =_{11}$	-1	6	3	
9	$4 \times (-1) =_{11}$	7	7	1	
10	$(-1) \times (-1) =_{11}$	1	8	2	
	` , , ,		9	7	

So $8^{-1} =_{11} 8^9 =_{11} 7$. So $x =_{11} 8^{-1} \times 5 =_{11} 7 \times 5 =_{11} 35 =_{11} 2$. Solutions are $x = 2 + k \times 11(k \in \mathbb{Z})$, i.e. $\{\dots, -20, -9, 2, 13, 24, \dots\}$.

Euclidean Algorithm gcd(m, n)

```
Suppose m \ge n (else swap) and n \ge 1 if m = n then return (n) else return (GCD(m-n,n))
```

Euclidean Algorithm gcd(m, n), version 2

```
func \gcd(m, n) Suppose m \ge n (else swap) and n \ge 1 if \operatorname{rem}(m, n) = 0 then return (n) else return (\gcd(\operatorname{rem}(m, n), n))
```

$$egin{array}{lll} r_0 = a & s_0 = 1 & t_0 = 0 \ r_1 = b & s_1 = 0 & t_1 = 1 \ r_{i+1} = r_{i-1} - q_i r_i & s_{i+1} = s_{i-1} - q_i s_i & t_{i+1} = t_{i-1} - q_i t_i \end{array}$$

where $r_{i+1} < r_i$ (all i).

▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.

$$r_0 = a$$
 $s_0 = 1$ one a $t_0 = 0$ $r_1 = b$ $s_1 = 0$ $t_1 = 1$ one b $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$

- ▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.
- ▶ Prove $as_i + bt_i = r_i$ (all i).

$$r_0 = a$$
 $s_0 = 1$ $t_0 = 0$
 $r_1 = b$ $s_1 = 0$ $t_1 = 1$
 $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$

- ▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.
- ▶ Prove $as_i + bt_i = r_i$ (all i).
- ▶ If gcd(a, b) = 1 then $r_k = 1$.

$$r_0 = a$$
 $s_0 = 1$ $t_0 = 0$
 $r_1 = b$ $s_1 = 0$ $t_1 = 1$
 $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$

- ▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.
- ▶ Prove $as_i + bt_i = r_i$ (all i).
- ▶ If gcd(a, b) = 1 then $r_k = 1$.
- $\blacktriangleright \text{ Hence } 1 = a.s_k + b.t_k.$

$$r_0 = a$$
 $s_0 = 1$ $t_0 = 0$
 $r_1 = b$ $s_1 = 0$ $t_1 = 1$
 $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$

- ▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.
- ▶ Prove $as_i + bt_i = r_i$ (all i).
- ▶ If gcd(a, b) = 1 then $r_k = 1$.
- ▶ Hence $1 = a.s_k + b.t_k$.
- And $b.t_k = 1 \mod a$.

$$r_0 = a$$
 $s_0 = 1$ $t_0 = 0$
 $r_1 = b$ $s_1 = 0$ $t_1 = 1$
 $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$

- ▶ Eventually (some $k \ge 0$) $r_k \ne 0$, $r_{k+1} = 0$ and $r_k = \gcd(a, b)$.
- ▶ Prove $as_i + bt_i = r_i$ (all i).
- ▶ If gcd(a, b) = 1 then $r_k = 1$.
- ▶ Hence $1 = a.s_k + b.t_k$.
- And $b.t_k = 1 \mod a$.
- $b^{-1} = t_k \bmod a.$

$3^{-1} \mod 10$

So,
$$1 = 1 \times 10 + (-3) \times 3$$

 $3^{-1} = (-3) \mod 10 = 7 \mod 10$.

god (15,9) 5-1 (nod 12) Question i n; | Si | 1 | 0 | ti o t₁
0
1
-2
5 -2 0 12 1 5 2 2 3 1 4 0 2 2 2 1 9 2 3 3 4 0 5 god(12, 5) = 1 = 12 x (-2) + 5x5

5-1= 5 mod 12

Proof by Induction

```
Base Case: Prove P(b) (often P(0))
Inductive Hypothesis: Assume P(i) is true (some i \ge b).
```

Inductive Step: $\underline{\text{Prove}}\ P(i+1)$, using IH.

Conclude: For all integers $n \ge b$, P(n).

Induction, Example

$$P(n) = "2^{n+2} + 3^{2n+1}$$
 is divisible by 7"

 \blacktriangleright Base case, P(0).

$$2^2 + 3^1 = 7$$

which is divisible by 7.

I.H. Assume
$$P(i)$$
, i.e. assume $2^{i+2} + 3^{2i+1}$ is div. by 7.
I.S. Prove $P(i+1)$.

- ▶ I.S. Prove P(i+1).

Tradiction Step
$$2^{(i+1)+2} + 3^{2(i+1)+1}$$

 $= 2 \times 2^{i+2} + 3^2 \times 3^{2i+1}$
 $= 2 \times (2^{i+2} + 3^{2i+1}) + 9 \times 3^{2i+1} - 2 \times 3^{2i+1}$
 $= 2 \times (2^{i+2} + 3^{2i+1}) + 7 \times 3^{2i+1}$
div. by 7, by IH

which is divisible by 7.

► Hence $2^{n+2} + 3^{2n+1}$ is divisible by 7, for all integers $n \ge 0$.

Induction, Second Example

P(n) says 'Int. angles of *n*-sided polygon sum to $180^{\circ} \times (n-2)$ '

- 1. Base case n = 3, \checkmark .
- 2. IH. Assume interior angle of *i*-sided polygon always add up to $180^{\circ} \times (i-2)$ (some $i \geq 3$).
- 3. IS. Consider i+1-sided polygon (draw picture). Cut off one triangle to leave i-sided polygon. By IH, int. angles of i-sided polygon sum to $180^{\circ} \times (i-2)$. Hence, total int. angles of i+1-sided polygon sum to $180^{\circ} \times (i-2)+180^{\circ}=180^{\circ} \times ((i+1)-2)$.
- 4. Result follows.

gcd(a, b) by extended Euclid

$$r_0 = a$$
 $s_0 = 1$ $t_0 = 0$ $r_1 = b$ $s_1 = 0$ $t_1 = 1$ $r_{i+1} = r_{i-1} - q_i r_i$ $s_{i+1} = s_{i-1} - q_i s_i$ $t_{i+1} = t_{i-1} - q_i t_i$ Claim: $as_i + bt_i = r_i$ and $a.s_{i-1} + b.t_{i-1} = r_{i-1}$, for all $i \ge 1$. Base case $i = 1$, $a.1 + b.0 = a$. and $a.0 + b.1 = b \checkmark$ I.H. For some $i \ge 1$, $as_i + bt_i = r_i$, $a.s_{i-1} + b.t_{i-1} = r_{i-1}$ I.S.
$$r_{i+1} = r_{i-1} - q_i r_i \text{ (def. of } r_{i+1})$$

$$= a.s_{i-1} + b.t_{i-1} - q.(a.s_i + b.t_i) \text{ (I.H.)}$$

$$= a.(s_{i-1} - q.s_i) + b.(t_{i-1} - q.t_i) \text{ (factorising)}$$

$$= a.s_{i+1} + b.t_{i+1} \text{ (def. of } s_{i+1}, t_{i+1})$$

RSA algorithm

- ▶ Randomly pick large primes p, q, let $n = p \times q$.
- ▶ Calculate $\phi(n) = (p-1) \times (q-1)$. Don't tell anyone.
- ▶ Choose *e* with $1 < e < \phi(n)$ coprime to $\phi(n)$.
- ▶ Compute d such that $e \cdot \underline{d} \equiv_{\phi(n)} 1$.
- Public key is (n, e).
 Private key is (n, d).
- ▶ Message is m where $0 \le m < n$.
- ► Encoding: $m \mapsto m^e \mod n$. Quite quickly.
- ▶ Decoding: $c \mapsto c^d \mod n$.

 $Dec(Enc(m)) = Dec(m^e \mod n) = (m^e)^d \mod n = m^{e \cdot d}$ $\mod n = m$.

$$p = 3, q = 5, n = 15, \phi(15) = 8$$

▶
$$p = 3$$
, $q = 5$, $n = 15$, $\phi(15) = 8$

▶ Let $e = 3$ (coprime to 8)

- $p = 3, q = 5, n = 15, \phi(15) = 8$
- ▶ Let e = 3 (coprime to 8)
- From $3 \times d = 1 \mod 8$ get d = 3

$$p = 3, q = 5, n = 15, \phi(15) = 8$$

- ▶ Let e = 3 (coprime to 8)
- From $3 \times d = 1 \mod 8$ get d = 3
- $Enc(m) = m^3 \mod 15$, $Dec(c) = c^3 \mod 15$.

$$p = 7$$
, $q = 11$, $n = 77$, $\phi(77) = 60$,

$$p = 7$$
, $q = 11$, $n = 77$, $\phi(77) = 60$,

▶ pick
$$e = 13$$
 (coprtime to 60)

- $ightharpoonup p = 7, q = 11, n = 77, \phi(77) = 60,$
- ▶ pick e = 13 (coprtime to 60)
- ▶ $13 \times d =_{60} 1$ gives d = 37

- $ightharpoonup p = 7, q = 11, n = 77, \phi(77) = 60,$
- ▶ pick e = 13 (coprtime to 60)
- ▶ $13 \times d =_{60} 1$ gives d = 37
- $Enc(m) = m^{13} \mod 77$, $Dec(c) = c^{37} \mod 77$

Proof that
$$(m^e)^d = m \mod n$$

If
$$m$$
 is coprime to m and $e \cdot d = 1 + k \cdot m$ then
$$(m^e)^d = m^{ed} = m^{1+kn} = m \cdot (m^n)^k = m \cdot 1^k \mod m = m \mod n$$
 If m is not coprime to $n = p \times q$, then $m = a \cdot p$ or $m = b \cdot q$, still works.