Лекции по математическому анализу

Титилин Александр

1 Равномерная непрерывность.

$$\forall x \in D \forall \varepsilon > 0 \exists \delta \forall y |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Определение непрерывной функции.

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \forall y |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Определение равномерно непрерывной функции.

1.1 Примеры

1. f(x) = C Берем любую дельту

$$|f(x) - f(y)| = 0 < \varepsilon.$$

2.
$$f(x) = ax + b$$

$$|f(x) - f(y)| = |ax + b - ay - b| = |a(x - y)| = |a||x - y|.$$

- а) $a=0 \implies$ прошлый пункт
- b) $a \neq 0$

$$\delta = \frac{\varepsilon}{|a|}.$$

3.
$$f(x) = x^2 D = [a, b]a \neq b$$

$$\varepsilon > 0$$
.

$$|x^2 - y^2| = |(x - y)||(x + y)| \le (|x| + |y|)|x - y| \le 2C|x - y|.$$

$$C = \max(|a|, |b|).$$

$$\delta = \frac{\varepsilon}{2C}.$$

4.
$$f(x) = \frac{x^2}{x^2+1}$$

$$|\frac{x^2}{x^2+1} - \frac{y^2}{y^2+1}| = |\frac{x^2y^2 + x^2 - x^2y^2 - y^2}{(x^2+1)(y^2+1)}| = |\frac{x^2 - y^2}{(x^2+1)(y^2+1)}| = |\frac{(x+y)(x-y)}{(x^2+1)(y^2+1)}|.$$

Определение 1. Пусть $f:D\to \mathbb{R}$ говорят, что функция f удовлетворяет условию Липшица если

$$\exists C \ge 0 \forall x, y \in D : |f(x) - f(y)| < C|x - y|.$$

Теорема 1. Если функция удовлетворяет условию Липщица на промежутке D, то она равномерно непрерывна на промежутке D.

Теорема 2. Пусть функция задана на промежутке, функция удовлетворятет условию Гёльде, если

$$\exists C \ge 0 \exists \alpha > 0 \forall x, y \in D : |f(x) - f(y)| \le C|x - y|^{\alpha}.$$

Теорема 3. Если функция удовлетворяет условию Гёльдера, то она равномерно непрерывна.

Доказательство.

$$C > 0 |x - y| < (\frac{\varepsilon}{C})^{\frac{1}{\alpha}}.$$

$$\delta = (\frac{\varepsilon}{C})^{\frac{1}{\alpha}}.$$

1.2 Пример.

$$D = (0, +\infty), f(x) = \sqrt{x}.$$

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}|.$$

Теорема 4. Функция f равномерно непрерывна $\iff \forall (x_n), (y_n), x_n, y_n \in D \implies f(x_n) - f(y_n) \to 0$

Доказательство. 1. Возьмем $\forall (x_n)(y_n)x_n-y_n\to 0$. Нужно доказать $\forall \varepsilon>0 \exists n_0 \forall n\geq n_0 |f(x_n)-f(y_n)|<\varepsilon$ Дальше смотрим определение равномерной непрырывности и все понятно.

2. Теперь обратно доказываем. От противного

$$\exists \varepsilon > 0 \forall \delta > 0 |x - y| < \delta \wedge |f(x) - f(y)| > \varepsilon.$$

Берем все такие последовательность $(x_n)(y_n)x_n - y_n < \frac{1}{n}$

$$|x_n - y_n| \to 0 \implies f(x_n) - f(y_n) \to 0.$$

По т. о ментах.

1.3 Пример функции, которая не является равномерно непрерывной

$$D = (0, +\infty)f(x) = \frac{1}{x}.$$

$$x_n = \frac{1}{n}.$$

$$y_n = \frac{1}{n+1}.$$

$$x_n - y_n = \frac{1}{n(n+1)} \to 0.$$

$$f(x_n) = n.$$

$$f(y_n) = n + 1.$$

$$f(x_n) - f(y_n) = -1 \not\to 0.$$

1.4 Еще такой пример

$$f(x) = \ln x \ D = (0; +\infty).$$

$$x_n = \frac{1}{n}.$$

$$y_n = \frac{1}{n^2}.$$

$$x_n - y_n \to 0.$$

$$f(x_n) - f(y_n) = \ln x_n - \ln y_n = \ln \frac{x_n}{y_n} = \ln 0 \to +\infty.$$

1.5

$$f(x) = x^2, D = \mathbb{R}.$$

$$x_n = n + \frac{1}{n}.$$

$$y_n = n.$$

$$x_n - y_n \to 0.$$

$$f(x_n) = n^2 + 2 + \frac{1}{n^2}.$$

$$f(y_n) = n^2.$$

$$f(x_n) - f(y_2) = 2 + \frac{1}{n} \to 2.$$

1.6

$$f(x) = \operatorname{tg} xD = \left(-\frac{\pi}{2}; \frac{\pi}{2}\right).$$
$$x_n = \frac{\pi}{2} - \frac{1}{n}.$$
$$y_n = \frac{\pi}{2} - \frac{1}{2n}.$$
$$\operatorname{tg} x_n - \operatorname{tg} y_n \neq 0.$$

1.7 Пример

$$D = [0, \frac{1}{2}].$$

$$f(x) = \begin{cases} \frac{1}{\ln x}, \text{если } x \neq 0 \\ 0, \text{если } x = 0 \end{cases}.$$

Докажем, что не удовлетворяет условию Гельдера. Пусть $\exists C>0\alpha>0$

$$\forall x, y \in [0; \frac{1}{2}] |f(x) - f(y)| \le C|x - y|^{\alpha}.$$

2 Теорема Кантора

Теорема 5 (Кантора). Пусть функция f задана на замкнутом и ограниченном промежутке и непрерывна. Тогда f равномерна непрерывна.

Доказательство. Пусть $f:[a,b] \to \mathbb{R}$ непрерывна на [a,b], но не является равномерно непрерывной. Тогда $\exists \varepsilon \forall \delta > 0$ Найдутся такие $x,y \in [a,b]$, такие что $|x-y| < \delta \land |f(x)-f(y)| \geq \varepsilon$. В частности $\forall n \in \mathbb{N}$ найдутся такие x_n,y_n , что $|x_n-y_n| < \frac{1}{n} \land |f(x_n)-f(y_n)| \geq \varepsilon$ Рассматриваем последовательность (x_n) Выбрали из нее сходящую подпоследовательность $(x_{n_k}) \to cc \in [a;b]$ Рассмотрим y_{n_k}

$$y_{n_k} = (y_{n_k} - x_{n_k}) + x_{n_k}.$$

По ментам

$$0 \le |y_{n_k} - x_{n_k}| < \frac{1}{n} \to 0.$$

f непрерывна в точке с $x_{n_k} \to c \implies f(x_{n_k}) \to f(c)$

$$y_{n_k} \to c \implies f(y_{n_k}) \to f(c).$$

$$f(x_{n_k}) - f(y_{n_k}) \to 0.$$

Противоречие так как $|f(x_n) - f(y_n)| \ge \varepsilon$

Теорема 6.

$$d:(a,b)\to\mathbb{R}.$$

Пусть f непрерывна f равномерно непрерывна \iff Существуют конечные пределы $\lim_{x\to a^+} f(x), \lim_{x\to b^-} f(x)$

Доказательство. В обратную сторону. Пусть

$$\lim_{x \to a^{+}} f(x) = A.$$

$$\lim_{x \to b^{-}} f(x) = B.$$

$$\overline{f}[a, b] \to \mathbb{R}.$$

$$\overline{f(x)} = \begin{cases} f(x), x \in (a, b) \\ A, x = a \\ B, x = b \end{cases}.$$

 \overline{f} непрерывна в $x \in (a,b)$ в a,b

2.1 Примеры

 $f(x) = \sqrt{x} D = (0,1)$ Так же она равномерно непрерывна на [a,b]

$$\lim_{x \to 0^+} f(x) = 0.$$

$$\lim_{x \to 1^-} f(x) = 1.$$

$$f(x) = \lg x \ D = (-\frac{\pi}{2}; \frac{\pi}{2}).$$

$$\lim_{x \to \frac{\pi}{2}^+} f(x) = +\infty.$$

f не является равномерной непрерывной

$$f(x) = \sqrt{1 - x^2} D = [-1; 1].$$

По т Кантора равномерно непрерывна.

3 Интеграл Римана

3.1 Разбиение отрезков

Определение 2 (Разбиение). [a,b] разбиение отрезка на n частей это набор точек $\tau = x_1, x_2, \ldots, x_{n-1}$

$$a=x_0$$
.

$$b=x_n$$
.

Номер промежутка - номер правого конца.

Определение 3 (продолжение, измельчение). Пусть τ, τ' τ' будем называть продолжением разбиения τ , если

$$\tau \subset \tau'$$
.

Теорема 7. Любые два разбиения τ, τ' отрезка [a, b] имеют общеее измельчение

Доказательство. Общее измельчение $\tau \cup \tau'$

Определение 4. Длина *i-того промежутка* $\Delta x_i = x_i - x_{i-1}$

Определение 5 (Разбиение с отмеченными точками.). В каждом промежутке разбиения τ выбрано по точке $\xi_i \in [x_{i-1}, x_i]$

$$\xi = (\xi_1, dots, \xi_n).$$

 (au, ξ) разбиение c отмеченными точками

Определение 6 (Ранг разбиения).

$$\lambda(\tau) = \max \Delta x_1, \dots, \Delta x_n.$$

3.2 Интегральные суммы

Определение 7 (Интегральные суммы).

$$f: [a, b] \to \mathbb{R}.$$

Пусть (τ, ξ) – оснащенное разбиение

$$S(f,(\tau,\xi)) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

3.2.1 Свойства интегральных сумм

1.
$$\alpha \in \mathbb{R}$$
 $S(\alpha f, (\tau, \xi)) = \alpha S(f, (\tau, \xi))$

Доказательство.

$$S(\alpha f, (\tau, \xi)) = \sum_{i=1}^{n} \alpha f(\xi_i) \Delta x_i = \alpha \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

2.

$$S(f + q, (\tau, \xi)) = S(f, (\tau, \xi)) + S(q, (\tau, \xi)).$$

Доказательство.

$$\sum_{i=1}^{n} (f+g)(\xi_i) \Delta x_i = \sum_{i=1}^{n} (f(\xi_i) + g(\xi_i)) \Delta x_i = \sum_{i=1}^{n} (f(\xi_i) \Delta x_i + g(\xi_i) \Delta x_i).$$

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i + \sum_{i=1}^{n} g(\xi_i) \Delta x_i.$$

3. Если $f \leq g$, то

$$S(f,(\tau,\xi)) \le S(g,(\tau,\xi)).$$

$$\forall i f(\xi_i) \le g(\xi_i).$$

$$f(\xi_i) \Delta x_i \le g(\xi_i) \Delta x_i.$$

3.2.2 Предел интегральных сумм

Пусть для любой последовательности $\lambda(\tau^{(n)}) \to 0 \ n \to \infty$

3.2.3 Примеры

1. $f(x) = C, x \in [a, b]$

$$S(f,(\tau,\xi)) = \sum_{i}^{c} C\Delta x_{2} = C(b-a).$$

2.

$$f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}.$$

Разбили на

 п равных частей. $\lambda(\tau^{(n)}) = \frac{1}{n} \to 0 \ n \to \infty$

3. C -число $\neq 0$

$$f: [a, b] \to \mathbb{R}.$$

$$c \in [a, b].$$

$$f(x) = \begin{cases} 0, x \neq c \\ C, x = c \end{cases}.$$

Теорема 8.

$$I = \int_a^b f \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\tau, \xi) \lambda(\tau, \xi) < \delta \implies |S(f, (\tau, \xi)) - I| < \varepsilon.$$

Будем говорить, что некоторое свойство выполняется для всех достаточно мелких разбиений, если $\exists \delta > 0$ что это свойство выполняется для всех оснащенных разбиений

 $\forall \varepsilon |S(f,(\tau,\xi)| < \varepsilon$ для достаточно мелких разбиений.

Теорема 9. Если функция интегрируема, то она ограничена.

Доказательство. Докажем, что f ограничена сверху от противного. Пусть $\forall C \exists x, f(x) > C$. Построим последовательность оснащенных разбиений $(\tau^{(n)}, \xi^{(n)})$ такую что $\lambda(\tau^{(n)}, \xi^{(n)}) \to 0$ $n \to \infty$

$$S(f,(\tau^{(n)},\xi^{(n)})) \to \infty.$$

Так как f не ограничена сверху, то существует промежуток разбиения, где есть точка $\xi_i, f(\xi_i) > C$. На всех промежутках кроме этого выберем точку.

Теорема 10. Пусть функция f задана на отрезке [a,b]. И пусть K – конечное подмножество отрезка (a,b) Ξ – множество всех оснащенных разбиений (τ,ξ) отрезка, таких что $K \subset \tau$. Тогда для любой последовательность оснащенных размещений из X, такие что длина разбиения стремится κ нулю. Тогда предел интегральных сумм – это интеграл.

3.3 Простейшее свойство интеграла

1.
$$f \in R_{[a,b]}, \alpha \in \mathbb{R} \implies \alpha f \in R_{[a,b]} \wedge \int_a^b \alpha f = \alpha \int_a^b f$$

Доказательство. Возьмем $\forall (\tau^{(n)}, \xi^{(n)}) \lambda(\tau^{(n)}) \to 0$

$$S(\alpha f; (\tau^{(n)}, \xi^{(n)})) = \alpha S(f; (\tau^{(n)}); \xi^{(n)}).$$

$$S(f;(\tau^{(n)});\xi^{(n)})) \to \int_a^b f.$$

$$\alpha S(f;(\tau^{(n)});\xi^{(n)})) \to \alpha \int_{a}^{b} f.$$

2.
$$f, g \in R_{[a,b]} \to f + g \in R_{[a,b]} \land \int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

Доказательство. Рассмотрим $\forall (\tau^{(n)}, \xi^{(n)}) \ \lambda(\tau^{(n)}) \to 0$

$$S(f+g;(\tau^{(n)},\xi^{(n)})) = S(f;(\tau^{(n)},\xi^{(n)})) + S(g;(\tau^{(n)},\xi^{(n)})) \to \int_a^b f + \int_a^b g.$$

3.
$$f,g \in R_{[a,b]} \land \forall x \in [a,b] f(x) \leq g(x)$$
, to $\int\limits_a^b f \leq \int\limits_a^b g$

Следствие 10.1. Пусть $f \in R_{[a,b]}$ и пусть числа m,M таковы, что $\forall x \in [a;b]m \leq f(x) \leq M$ тогда

$$m(b-a) \le \int_{a}^{b} f \le M(b-a).$$

Доказательство.

$$m \le f \le M.$$

$$\int_a^b m \le \int_a^b f \le \int_a^b M.$$

$$m(b-a) \le \int_a^b f \le M(b-a).$$

4. $f\in R_{[a,b]},g:[a,b]\to\mathbb{R}$ и отличается от f в конечном числе точек. Тогда $g\in R_{[a,b]}$ и $\int\limits_a^bf=\int\limits_a^bg$

 $\ensuremath{\mathcal{A}}$ оказательство. Рассмотрим функцию \mathbf{h} задананную на [a,b]

$$h(x) = g(x) - f(x).$$

$$\int_{a}^{b} g = \int_{a}^{b} f + \int_{a}^{b} h = \int_{a}^{b} f.$$

5.

Теорема 11. $f:[a,b] \to \mathbb{R}, c \in (a;b)$

$$f \in R_{[a,c]} \land f \in R_{[c,b]}.$$

То
$$f \in R[a,b]$$
 и $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$

Следствие 11.1.

$$f \in R_{[a,b]}$$
.

Тогда
$$\left|\int\limits_a^b\right| \leq \int\limits_a^b \left|f\right|$$

9

Доказательство.

$$-|f| \le f \le |f|.$$

$$-\int_{a}^{b} |f| \le \int_{a}^{b} f \le \int_{a}^{b} |f|.$$

$$|\int_{a}^{b} f| \le \int_{a}^{b} |f|.$$

При $a \leq b$

В общем случае

$$\left| \int_{a}^{b} f \right| \le \left| \int_{a}^{b} |f| \right|.$$

$$\left| \int_{a}^{b} f \right| = \left| - \int_{b}^{a} f \right| = \left| \int_{b}^{a} f \right|.$$

4 Суммы Дарбу

Определение 8. Пусть $f:[a,b] o \mathbb{R}$, $au = \{x_1,x_2,\ldots,x_n\}$ – разбиение

$$d(f,\tau) = \sum_{i=1}^{n} m_i \Delta x_i.$$

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x).$$

$$D(f,\tau) = \sum_{i=1}^{n} M_i \Delta x_i.$$

$$M_i = \sum_{x \in [x_{i-1}, x_i]} f(x).$$

4.1 Свойства

1.
$$d(f,\tau) \leq S(f,(\tau,\xi) \leq D(f,\tau)$$

 $\forall i \ m_i \leq f(\xi_i) < M_i$
 $m_i \Delta x_i < f(\xi_i) \Delta x_i \leq M_i \Delta x_i.$

$$\sum_{i=1}^n m_i \Delta x_i \leq \sum f(\xi_i) \Delta x_i \leq \sum_{i=1}^n M_i \Delta x_i.$$

2.

$$d(f,\tau) = \inf_{\xi} S(f,(\tau,\xi)).$$

$$D(f,\tau) = \sup_{\xi} S(f,(\tau,\xi)).$$

Доказательство.

$$\forall \epsilon > 0 \exists \xi_i \in [x_{i-1}, x_i] \ M_i - f(\xi_i) < \epsilon.$$

$$(M_i - f(\xi_i)) \Delta x_i < e \Delta x_i.$$

$$\sum_{i=1}^n (M_i - f(\xi_i)) \Delta x_i \le .$$

$$D(f, \tau) - S(f, (\tau, \xi)) = \sum_{i=1}^n (M_i - f(\xi_i)) \delta x_i.$$

3.

$$f:[a,b] o\mathbb{R}.$$
 $au, au'- ext{-Разбиения отрезка}[a,b].$ $au'\supset au.$

Тогда

$$D(f, \tau') \le D(f, \tau).$$
$$d(f, \tau') \ge d(f, \tau).$$

Доказательство. Достаточно доказать только для случая $\tau' = \tau \cup \{c\}$ Суммы дарбу меняются только в том месте, куда попадалет с.

$$D(f, \tau') = \dots + (M_i^*(c - x_{i-1}) + M_i^*(x_i - c)) + \dots$$

$$M_i((c - x_{i-1}) + (x_i - c)) = M_i(c - x_{i-1}) + M_i(x_i - c) \ge M_i^* + M_i^{**}.$$

$$M_i \ge M_i^*.$$

$$M_i \ge M_i^{**}.$$

4.

$$orall au_1 au_2$$
 разбиений $[a,b].$
$$au'= au_1\cap au_2.$$

$$d(f, au_1)\leq d(f, au')\leq D(f, au')\leq D(f, au_2).$$

4.2 Критерий интегрируемости в терминах Дарбу

Пусть $f:[a,b] \to \mathbb{R}$

$$f \in R_{[a,b]} \iff \forall \epsilon > 0 \ \exists \delta > 0 \forall \tau \lambda(\tau) < \delta : D(f,\tau) - d(f,\tau) < \epsilon.$$

Доказательство. 1. Пусть функция интегрируема $f \in R_{[a,b]}$ по определению $\exists I$ что $\forall \varepsilon > 0 \ |S(f,(\tau,\xi)) - I| < \varepsilon$ Для всех достаточно мелих разбиений

$$I - \varepsilon < S(f, (\tau, \xi)) < I + \varepsilon.$$

 $I+\varepsilon$ верхняя граница инт сум для разбиенияau.

Верхняя сумма дарбу меньше или равна этой херне, так как она инфинум верхних границ С нижней аналогично

$$d(f,\tau) < S(f,(\tau,\xi)) < D(f,\tau).$$

$$d(f,\tau) - D(f,\tau) < \varepsilon.$$

2.

$$S(f,(\tau,\xi)).$$

Теорема 12.

$$f \in R_{[a,b]}, [c,d] \subset [a,b].$$

Тогда $f \in R_{[c,d]}$

Доказательство. Докажем, что $\forall \varepsilon > 0 \ D(f|_{[c,d]}, \tau^*) - d(f|_{[c,d]}, \tau^*) < \varepsilon$

Теорема 13. Если $f \in C_{[a,b]}$, то $f \in R_{[a,b]}$

Доказательство. Так как $f \in C_{[a,b]}$ f равномерно непрерывна

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in [a, b] |x - y| < \delta.$$

$$|f(x) - f(y)| < \varepsilon.$$

$$D(f,\tau) - d(f,\tau) = \sum_{i} M_i \Delta x_i - \sum_{i} m \Delta x_i = \sum_{i} (M_i - m_i) \Delta x_i.$$

Теорема 14. Пусть f задана на отрезке [a,b] f монотонна, тогда f интегрируема

5 Интеграл с переменным верхним пределом

Пусть функция f задана на промежутке D, f интегрируема на любом промежутке лежащем внутри D. Такие функции называют локально интегрируемыми. Зададим на D функцию F формулой выберем $\forall a \in D$

$$F(x) = \int_{a}^{x} f(t)dt.$$

Теорема 15. Пусть f задана на D, $a \in D$ тогда функция $F(x) = \int_{a}^{x} f$ Непрерывна

Доказательство.

$$|F(x) - F(x_0)| = |\int_a^x f - \int_a^{x_0} f| = |\int_{x_0}^x f| \le |\int_{x_0}^x |f|| \le |\int_{x_0}^x |f| = |M||x - x_0|.$$

Так f интегрируема на промежутке с концами x_0, x , она ограничена на этом промежутке

$$0 \le |F(x) - F(x_0)| \le M|x - x_0|.$$

По теорме о ментах $|F(x) - F(x_0)| \to 0x \to x_0$

Теорема 16. (Барроу)

$$f:D\to\mathbb{R}$$
.

f локально интегрирумема

$$F(x) = \int_{-\infty}^{x} f.$$

Пусть $x_0 \in D$ и пусть f непрерывна в точке x_0 Тогда F дифференцируема в x_0 и $F'(x) = f(x_0)$

$$|F(x) - F(x_0) - f(x_0)(x - x_0)|.$$

$$|\int_a^x f - \int_a^{x_0} f - \int_{x_0}^x f(x_0)|.$$

$$|\int_{x_0}^x f - \int_{x_0}^x f(x_0)| = |\int_{x_0}^x (f - f(x_0))| \le |\int_{x_0}^x |f - f(x_0)||.$$

 $Ta\kappa \kappa a\kappa f$ непрерывна в x_0 , то

$$\forall \varepsilon > 0 \exists \delta > 0 |t - x_0| < \delta \implies |f(t) - f(x_0)| < \varepsilon.$$

Следствие 16.1. $f \in C_{[a,b]}$. Тогда f имеет первобразную

$$F'(x_0) = f(x_0).$$

6 Обобщенная первообразная

Определение 9.

$$f: D \to \mathbb{R}$$
.

K – конечное подмножество D

Пусть $F \in C_{[a,b]}$ F обобщенная первообразная функции f, если для всех точек K

$$F'(x) = f(x).$$

Теорема 17. Любые две обобщенные первообразные отличаются на константу

7 Ряды

Есть последовательность a_1, a_2, \ldots

$$a_1 + a_2 + \dots$$

Вот эта фигня с плюсиками ряд.

$$\sum_{n=1}^{\infty} a_n.$$

$$S_1 = a_1.$$

$$S_2 = a_1 + a_2.$$

$$S_n = \sum_{i=1}^{n} a_i.$$

Определение 10 (Сумма ряда).

$$\lim_{n\to\infty} S_n.$$

Сумма – конечна ряд сходится иначе расходится.

7.1 Свойства

1. Если ряд сходится, то его последовательность стремится к нулю.

8 Несобственные интегралы

Определение 11 (Несобственный интеграл).

$$\lim_{t \to +\infty} F(t) = \int_{a}^{+\infty} f(x)dx.$$

Сходится если эта фигня конечная

8.1 Примеры

1.

$$f(x) = \frac{1}{x}.$$

$$\int_{1}^{+\infty} \int_{1}^{1} \frac{1}{x} dx.$$

$$\lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx.$$

$$\lim_{t \to +\infty} \ln t = +\infty.$$

2.

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x^2} dx = \lim_{t \to +\infty} (-\frac{1}{t} + 1) = 1.$$

9 Снова ряды

$$\sum_{n=1}^{\infty} a_n.$$

$$S_1 = a_1.$$

$$S_2 = a_1 + a_2.$$

$$S_n = \sum_{i=1}^{n} a_i.$$

Определение 12. Суммой ряда называется

$$\lim_{n\to\infty} S_n.$$

Ряд сходится если сумма конечная

9.1 Гармонический ряд

$$1 + \frac{1}{2} + \frac{1}{3} + \dots$$

9.2 Теоремочки

Теорема 18.

$$\sum_{n=1}^{\infty} a_n = S.$$

$$\sum_{n=1}^{\infty} b_n = T.$$

Tог ∂a

$$\sum_{n=1}^{\infty} (a_n + b_n) = S + T.$$

 \mathcal{A} оказательство. Пусть U_n n-я частичная сумма ряда $\sum_{n=1}^{\infty} (a_n + b_n)$

$$U_n(a_1+b_1)+\cdots+(a_n+b_n)=(a_1+a_2+\cdots+a_n)+(b_1+b_2+\cdots+b_n)=S_n+T_n.$$

$$\lim_{n\to\infty} U_n = \lim_{n\to\infty} S_n + \lim_{n\to\infty} T_n.$$

Теорема 19. Пусть

$$\sum_{n=1}^{\infty} a_n = S.$$

$$\alpha \in \mathbb{R}$$
.

Tог ∂a

$$\sum_{n=1}^{\infty} \alpha a_n = \alpha S.$$

Доказательство.

$$U_n = \alpha(a_1 + a_2 + \dots + a_n).$$

$$\lim_{n \to \infty} U_n = \alpha \lim_{n \to \infty} S_n = \alpha S.$$

9.3 Ряды с неотрицательными членами

Теорема 20 (Необходимое и достачное условие сходимсоть ряда, все члены которого неотрицательные). *Ряд*, члены вкоторого неотрицательные, сходится тогда и только тогда когда множество его частичных суммм ограниченно.

Доказательство.

$$a_1+a_2+a_3+\ldots$$

$$S_i < S_{i+1}$$
.

По т Вейештрасса S_n имеет конечный предел ряд сходится

Теорема 21 (Первый признак сравнения). Даны ряды

$$\sum_{n=1}^{\infty} a_n.$$

$$\sum_{n=1}^{\infty} b_n.$$

 $\forall n \ a_n \leq b_n$ Тогда если больший ряд сходится, меньший ряд сходится (если меньший расходится, то больший расходится)

Доказательство. Пусть $\sum_{n=1}^{\infty}b_n=T$ Последовательность T_n ограничена , тогда частичные суммы первого ряда тоже ограничены.

Теорема 22 (Предельный признак сравнения).

$$\sum_{n=1}^{\infty} a_n.$$

$$\sum_{n=1}^{\infty} b_n.$$

$$b_n > 0$$
.

 $\Pi ycm b \lim_{n \to \infty} \frac{a_n}{b_n} = C \neq 0$ тогда первый ряд сходится тогда и только тогда когда второй ряд сходится

Доказательство.

$$\frac{a_n}{b_n} \in (K; L).$$

$$K * b_n < a_n < L * b_n.$$

Пусть a_n сходится, тогда $\sum_{n=1}^{\infty} Kb_n$ сходится, а значит $\sum_{n=1}^{\infty} b_n$ Пусть $\sum_{n=1}^{\infty} b_n$ тогда $\sum_{n=1}^{\infty} Lb_n$ сходится, а значит $\sum_{n=1}^{\infty} a_n$

9.3.1 Пример

$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 100n + 2}.$$

$$\frac{n^2}{n^2 - 100n + 2} \to 1.$$

10 Еще признаки сравнения

10.1 Признак Коши

Теорема 23. Дан ряд $\sum_{n=1}^{\infty} a_n, a_n \ge 0 \forall n$ Рассмотрим последовательность

$$c_n = \sqrt[n]{a_n}$$
.

Пусть c_n имеет предел

$$\lim_{n \to \infty} c_n = C.$$

Тогда

1. если c < 1 ряд cxodumcs.

2. если c > 1 ряд расходится.

3. c=1 ничего не знаем, ряд может и сходиться и расходиться.

Доказательство. 1. Пусть c<1 Выберем q , c< q<1 , $c_n\to C$, то $\exists n_0 \forall n\geq n_0 c_n < q$

$$\sqrt[n]{a_n} < q$$
.

$$a_n < q^n$$
.

Рассмотрим ряд $\sum_{n=1}^{\infty} q^n$. Этот ряд сходится, по признаку сравнения $\sum_{n=1}^{\infty} a_n$ сходится

2. Пусть c>1 $\exists n_0 \forall n \geq n_0 \ a_n>1$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n}, \sum_{n=1}^{\infty} \frac{1}{n^2}$$

10.2 Признак Даламбера

Теорема 24. Дан ряд $\sum_{n=1}^{\infty} a_n$ Рассмотрим последовательность

$$d_n = \frac{a_{n+1}}{a_n}.$$

Пусть d_n имеет предел $\lim_{n \to \infty} d_n = d$

1. d < 1 ряд сходится

2. d > 1 ряд расходится

3. d = 1 не понятно

Доказательство.

1.
$$d < q, 1 \exists n_0 \ \forall n \ge n_0 \ \frac{a_{n+1}}{n} < q$$

$$\frac{a_{n_0+1}}{a_{n_0}} < q \dots \frac{a_{n_0+k}}{a_{n_0+k-1}} < q.$$

$$a_{n_{0+k}} < a_{n_0} q^k.$$

Рассмотрим ряд $\sum_{k=1}^{\infty} a_{n_0+k}$ вынули из исходного первые n_0 членов и ряд $\sum_{n=1}^{\infty} a_{n_0} q^k$ По признаку сравнения ряд сходится, а значит исходный сходится

2. d>1 $\frac{a_{n+1}}{a_n}>1$ $a_{n+1}>a_n$ $(n\geq n_0)$ Последовательность начиная с n_0 строго возрастает, не стримится к нулю, ряд расходится

10.3 Примеры

- $1. \sum_{n=1}^{\infty} \frac{n^3}{3^n}$
 - а) Коши

$$\sqrt[n]{\frac{n^3}{3^n}} = \frac{\sqrt[3]{n^3}}{3} \to \frac{1}{3}.$$

b)
$$\frac{(n+1)^3}{3^{n+1}} * \frac{3^n}{n^3} = (\frac{n+1}{3}) * \frac{1}{3} \to \frac{1}{3}$$

2.
$$\sum_{n=1}^{\infty} \frac{n^{10}}{(n+1)!}$$

$$\frac{(n+1)^{10}}{(n+2)!} * \frac{(n+1)!}{n^{10}} = (\frac{n+1}{n})^{10} * \frac{1}{n+2} \to 0.$$

10.4 Интегральный признак

Теорема 25. Пусть f задана на $[1, +\infty]$ Пусть f интегрируема на каждом промежутке $[a, b] \subset [1; +\infty]$ f убывает на всем промежутке. Тогда ряд $\sum_{n=1}^{\infty} f(n)$ сходится $\iff \int_{1}^{+\infty} f(x) dx$ сходится.

Доказательство. Рассмотрим частичную сумму

$$S_n = f(1) + f(2) + \dots + f(n-1) + f(n).$$

$$S_n > \int_{1}^{n+1} f(x)dx.$$

$$f(2) + \dots + f(n) < \int_{1}^{n} f(x)dx.$$

1. Пусть
$$\int_{1}^{+\infty} f(x)dx$$
 Сходится

$$S_n < f(1) + \int_{1}^{n} f(x)dx \le f(1) + \int_{1}^{+\infty} f(x)dx.$$

2. Интеграл расходится есть бесконечный предел Имеем такое неравенство

$$S_n > \int_{1}^{n+1} f(x)dx.$$

$$\lim_{n \to \infty} \int_{1}^{n+1} f = +\infty.$$

Ряд расходится

10.4.1 Пример

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}.$$

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} d \ln x = \ln \ln x.$$

$$\lim_{x \to \infty} \ln \ln x - \ln \ln 2 = \infty.$$

11 Абсолютно сходящиеся ряды

Дан ряд $\sum_{n=1}^{\infty} a_n$

Определение 13. Если сходится ряд $\sum_{n=1}^{\infty}|a_n|$, то $\sum_{n=1}^{\infty}a_n$ абсолютно сходится

Теорема 26. Если ряд сходится абсолютно, то он сходится

Доказательство. Если отрицательных чисел конечно, то ряды почти одинаковые (отбрасывание конечного числа не влияет на сходимость)

Пусть в $\sum_{n=1}^{\infty} a_n$ бесконечное число неотрицательных членов и бесконечное число отрицательных членов

Построим 2 ряда. (*) получили из исходного заменой всех отрицательных на 0. (**) получили из исходного ряда заменой всех неотрицательных членов на 0, а отрицательных членов на их модули. Сумма новых рядов это исходный из модулей, разность — исходный

Пусть ряд из модулей сходится, тогда (**) сходится, (*) сходится, тогда (*) — (**) сходится \Box

Определение 14. Если ряд сходится, а ряд из модулей расходится, то такой ряд называется условно сходящимся