빅데이터 분석 -통계분석4-

강의자료 출처:

한밭대학교 임경태

CHAPTER 05

이산형 확률변수

CONTENTS

5.1 1차원 이산형 확률변수 5.2 2차원 이산형 확률변수

5.1.1 1차원 이산형 확률변수의 정의

- 확률변수 X가 취할 수 있는 값의 집합 $\{x_1, x_2, \dots\}$
- X가 x_k 라는 값을 취하는 확률

$$P(X = x_k) = p_k \ (k = 1, 2, \cdots)$$

- 확률질량함수(확률함수)

$$f(x) = P(X = x)$$

5.1.1 1차원 이산형 확률변수의 정의

- 불공정한 주사위의 확률분포
 - 확률변수가 취할 수 있는 값의 집합 x_set

- x_set에 대응하는 확률

[표 5-1] 불공정한 주사위의 확률분포

눈	1	2	3	4	5	6
확률	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$

- 불공정한 주사위의 확률변수

$$f(x) = \begin{cases} \frac{x}{21} & (x \in \{1, 2, 3, 4, 5, 6\}) \\ 0 & (otherwise) \end{cases}$$

$$p_1 = P(X = 1) = \frac{1}{21}$$

 $p_2 = P(X = 2) = \frac{2}{21}$
 \vdots

1 1차원 이산형 확률변수

5.1.1 1차원 이산형 확률변수의 정의

- 파이썬으로 구현

$$\frac{1}{21}$$
 = 0.048, $\frac{2}{21}$ = 0.095, $\frac{3}{21}$ = 0.143, ...

```
In [3]:

def f(x):
    if x in x_set:
        return x / 21
    else:
        return 0
```

In [4]:

 $X = [x_set, f]$

5.1.1 1차원 이산형 확률변수의 정의

$$\frac{1}{21}$$
 = 0.048, $\frac{2}{21}$ = 0.095, $\frac{3}{21}$ = 0.143, ...

In [5]:

```
# 확률 p_k를 구한다

prob = np.array([f(x_k) for x_k in x_set])

# x_k와 p_k의 대응을 사전식으로 표시

dict(zip(x_set, prob))
```

Out [5] :

{1: 0.048, 2: 0.095, 3: 0.143, 4: 0.190, 5: 0.238, 6: 0.286}

5.1.1 1차원 이산형 확률변수의 정의

[그림 5-1] 확률분포

5.1.1 1차원 이산형 확률변수의 정의

- 확률의 성질
$$f(x_k) \geq 0$$
 $\sum_k f(x_k) = 1$

- np.all은 모든 요소가 참일 때만 참을 반환
- 확률의 총합은 1

$$\frac{1}{21} + \frac{2}{21} + \frac{3}{21} + \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = 1$$
 np. sum(prob)

Out [8]:

1.000

5.1.1 1차원 이산형 확률변수의 정의

- 누적분포함수(분포함수) F(x)
 - X가 x 이하가 될 때의 확률을 반환하는 함수

$$F(x) = P(X \le x) = \sum_{x_k \le x} f(x_k)$$

In [9]:

def F(x):

return np.sum($[f(x_k) \text{ for } x_k \text{ in } x_set \text{ if } x_k \le x]$)

- 눈이 3 이하가 되는 확률

In [10] :	
F(3)	$F(3) = P(X \le 3) = \sum_{x_k \le 3} f(x_k)$
Out [10] :	1 0 0
0.286	$\frac{1}{21} + \frac{2}{21} + \frac{3}{21} = 0.048 + 0.095 + 0.143 = 0.286$

5.1.1 1차원 이산형 확률변수의 정의

- 확률변수의 변환
 - 확률변수 X에 2를 곱하고 3을 더한 2X + 3도 확률변수
 - -2X + 3을 확률변수 Y라고 하면
- Y의 확률분포

In [11]:

```
y_set = np.array([2 * x_k + 3 for x_k in x_set])
prob = np.array([f(x_k) for x_k in x_set])
dict(zip(y_set, prob))
```

Out [11]:

```
{5: 0.048, 7: 0.095, 9: 0.143, 11: 0.190, 13: 0.238, 15: 0.286}
```

5.1.2 1차원 이산형 확률변수의 지표

- 기댓값 = 확률변수의 평균
 - 확률변수를 몇 번이나(무제한) 시행하여 얻어진 실현값의 평균
 - 무제한 시행할 수 없으므로 확률변수가 취할 수 있는 값과 확률의 곱의 총합

$$E(X) = \sum_{k} x_k f(x_k)$$

- 불공정한 주사위의 기댓값

In [12]:

$$np.sum([x_k * f(x_k) for x_k in x_set])$$

$$1 \times 0.048 + 2 \times 0.095 + 3 \times 0.143 + 4 \times 0.190 + 5 \times 0.238 + 6 \times 0.286 = 4.333$$

5.1.2 1차원 이산형 확률변수의 지표

- 기댓값 = 확률변수의 평균
 - 주사위를 100만(106)번 굴린 실현값의 평균

In [13]: sample = np.random.choice(x_set, int(1e6), p=prob) np.mean(sample) Out [13]: 4.333

- 확률변수 X = 2X + 3 으로 변환한 Y의 기댓값

$$E(Y) = E(2X+3) = \sum_{k} (2x_k+3)f(x_k)$$

5.1.2 참고 : 데이터 샘플링

이미 있는 데이터 집합에서 일부를 무작위로 선택하는 것을 샘플링(sampling)이라고 한다. 샘플링에는 **choice** 명령을 사용한다. **choice** 명령은 다음과 같은 인수를 가질 수 있다.

numpy.random.choice(a, size=None, replace=True, p=None)

- a: 배열이면 원래의 데이터, 정수이면 arange(a) 명령으로 데이터 생성
- size : 정수. 샘플 숫자
- replace : 불리언. True이면 한번 선택한 데이터를 다시 선택 가능
- p: 배열. 각 데이터가 선택될 수 있는 확률

In [11]:

```
np.random.choice(5, 5, replace=False) # shuffle 명령과 같다.
```

Out:

```
array([1, 4, 0, 3, 2])
```

In [12]:

```
np.random.choice(5, 3, replace=False) # 3개만 선택
```

Out:

```
array([2, 1, 3])
```

In [13]:

```
np.random.choice(5, 10) # 반복해서 10개 선택
```

Out:

```
array([0, 4, 1, 4, 1, 2, 2, 0, 1, 1])
```

In [14]:

```
np.random.<mark>choice</mark>(5, 10, p=[0.1, 0, 0.3, 0.6, 0]) # 선택 확률을 다르게 해서 10개 선택
```

Out:

```
array([0, 3, 3, 2, 2, 3, 3, 2, 0, 3])
```

5.1.2 1차원 이산형 확률변수의 지표

- 기댓값 = 확률변수의 평균

이산형 확률변수의 기댓값

$$E(g(X)) = \sum_{k} g(x_k) f(x_k)$$

- 수식을 기댓값의 함수로 구현
- 인수 g가 확률변수에 대한 변환의 함수

In [14]:

```
def E(X, g=lambda x: x):

x_set, f = X

return np.sum([g(x_k) * f(x_k) for x_k in x_set])
```

- g에 아무것도 지정하지 않으면 확률변수 *X*의 기댓값이 구해짐

5.1.2 1차원 이산형 확률변수의 지표

- 기댓값 = 확률변수의 평균
 - 확률변수 Y = 2X + 3의 기댓값

$$(2 \times 1 + 3) \times 0.048 + (2 \times 2 + 3) \times 0.095 + \cdots (2 \times 6 + 3) \times 0.286$$

= 11.667

In [16]:

E(X, g=lambda x: 2*x + 3)

Out [16]:

참고: 람다(lambda) 함수(익명 함수)

- 값을 반환하는 단순한 한 문장으로 이루어진 함수
- 코드를 적게 쓰고 더 간결해짐

```
def short_function(x): return x*2
```

equiv_anon = **lambda** x: x*2

```
def apply_to_list(some_list, f):
    return [(f(x) for x in some_list]
```

ints = [4, 0, 1, 5, 6] apply_to_list(ints, **lambda** x: x*2)

참고: 람다(lambda) 함수(익명 함수)

• 리스트의 sort 메서드에 람다 함수를 넘겨 정렬 가능

```
In [1]: strings = ['hyeja', 'parkhyeja', 'youngtae', 'kimyoungtae', 'bbangtae']
In [3]: strings.sort(key=lambda x: len(set(list(x))))
In [4]: strings
Out [4]: ['hyeja', 'bbangtae', 'parkhyeja', 'youngtae', 'kimyoungtae']
```

5.1.2 1차원 이산형 확률변수의 지표

- 기댓값 = 확률변수의 평균

기댓값의 선형성

a, b를 실수, X를 확률변수로 했을 때

$$E(aX+b) = aE(X)+b$$

가 성립합니다.

- $E(2X + 3) \equiv 2E(X) + 3$

In [17] :

$$2 * E(X) + 3$$

Out [17]:

11,667

5.1.2 1차원 이산형 확률변수의 지표

- 분산

$$\begin{split} V(X) &= \sum_k (x_k - \mu)^2 f(x_k) \\ &= (1 - 4.333)^2 \times 0.048 + (2 - 4.333)^2 \times 0.095 + \dots + (6 - 4.333)^2 \times 0.286 \\ &= 2.222 \end{split}$$

- 불공정한 주사위의 분산

- 확률변수 Y = 2X + 3의 분산

$$V(2X+3) = \sum_{k} ((2x_k+3) - \mu)^2 f(x_k)$$

5.1.2 1차원 이산형 확률변수의 지표

- 분산
 - 이산형 학률변수의 분산식을 분산의 함수로 구현

0산형 확률변수의 분산 $V(g(X)) = \sum_k (g(x_k)) - E(g(X)))^2 f(x_k)$

- 인수 g가 확률변수에 대한 변환의 함수

```
In [19]:

def V(X, g=lambda x: x):
    x_set, f = X
    mean = E(X, g)
    return np.sum([(g(x_k)-mean)**2 * f(x_k) for x_k in x_set])
    2.222
Out [20]:

2.222
```

- 확률변수 Y = 2X + 3의 분산

In [21]:	Out [21] :
V(X, lambda x: 2*x + 3)	8.889

5.1.2 1차원 이산형 확률변수의 지표

- 분산

분산의 공식

a, b를 실수, X를 확률변수라고 하면

$$V(aX+b) = a^2 V(X)$$

가 성립합니다.

- $V(2X + 3) = 2^2V(X)$

In [22]:

2**2 * V(X)

Out [22] :

5.2.1 2차원 이산형 확률변수의 정의

- 결합확률분포

1차원 확률분포 2개를 동시에 다룹니다(X, Y)

확률은 X와 Y가 각각 취할 수 있는 값의 조합에 관해서 정의

- 확률변수 X가 x_i , 확률변수 Y가 y_i 를 취하는 확률

$$P(X = x_i, Y = y_j) = p_{ij}$$
 $(i = 1, 2, \dots; j = 1, 2, \dots)$

- 확률변수 (X, Y)의 움직임을 동시에 고려한 분포
- 불공정한 주사위 A와 B
 - A와 B의 눈을 더한 것 X, A의 눈을 Y로 하는 2차원 확률분포
- 결합확률함수

-
$$P(X = x, Y = y) = f_{xy}(x, y)$$

$$f_{XY}(x, y) = \begin{cases} \frac{y(x-y)}{441} \\ 0 \end{cases}$$

5.2.1 2차원 이산형 확률변수의 정의

[표 5-2] 불공정한 주사위의 결합확률분포

X	1	2	3	4	5	6
2	$\frac{1}{441}$	0	0	0	0	0
3	$\frac{2}{441}$	$\frac{2}{441}$	0	0	0	0
4	$\frac{3}{441}$	$\frac{4}{441}$	$\frac{3}{441}$	0	0	0
5	$\frac{4}{441}$	$\frac{6}{441}$	$\frac{6}{441}$	$\frac{4}{441}$	0	0
6	$\frac{5}{441}$	$\frac{8}{441}$	$\frac{9}{441}$	$\frac{8}{441}$	$\frac{5}{441}$	0
7	$\frac{6}{441}$	$\frac{10}{441}$	$\frac{12}{441}$	$\frac{12}{441}$	$\frac{10}{441}$	$\frac{6}{441}$
8	0	$\frac{12}{441}$	$\frac{15}{441}$	$\frac{16}{441}$	$\frac{15}{441}$	$\frac{12}{441}$
9	0	0	$\frac{18}{441}$	$\frac{20}{441}$	$\frac{20}{441}$	$\frac{18}{441}$
10	0	0	0	$\frac{24}{441}$	$\frac{25}{441}$	$\frac{24}{441}$
11	0	0	0	0	$\frac{30}{441}$	$\frac{30}{441}$
12	0	0	0	0	0	$\frac{36}{441}$

$$\frac{4}{21} \times \frac{5}{21} = \frac{20}{441}$$

5.2.1 2차원 이산형 확률변수의 정의

- 확률의 성질

$$\begin{split} f_{XY}(x_i,\,y_j) &\geq \, 0 \\ \sum_i \sum_j f_{XY}(x_i,\,y_j) &= 1 \end{split}$$

$$\begin{split} &f_{XY}(x_2,y_1) + f_{XY}(x_3,y_1) + f_{XY}(x_3+y_2) + \dots + f_{XY}(x_{12}+y_6) \\ &= \frac{1}{441} + \frac{2}{441} + \frac{2}{441} + \dots + \frac{36}{441} \\ &= 1 \end{split}$$

5.2.1 2차원 이산형 확률변수의 정의

- 확률의 성질
 - X와 Y가 취할 수 있는 값의 집합

In [23]: x_set = np.arange(2, 13) y_set = np.arange(1, 7)

- 결합확률함수

```
In [24]:

def f_XY(x, y):
    if 1 <= y <=6 and 1 <= x - y <= 6:
        return y * (x-y) / 441
    else:
        return 0</pre>
```

In [25] :

 $XY = [x_set, y_set, f_XY]$

5.2.1 2차원 이산형 확률변수의 정의

- 확률의 성질
 - 확률분포의 히트맵

In [26]:

```
prob = np.array([[f_XY(x_i, y_j) for y_j in y_set]]
                for x i in x set])
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111)
c = ax.pcolor(prob)
ax.set_xticks(np.arange(prob.shape[1]) + 0.5, minor=False)
ax.set_yticks(np.arange(prob.shape[0]) + 0.5, minor=False)
ax.set_xticklabels(np.arange(1, 7), minor=False)
ax.set yticklabels(np.arange(2, 13), minor=False)
# y축을 내림차순의 숫자가 되게 하여, 위 아래를 역전시킨다
ax.invert_yaxis()
# x축 눈금을 그래프 위쪽에 표시
ax.xaxis.tick_top()
fig.colorbar(c, ax=ax)
plt.show()
```

5.2.1 2차원 이산형 확률변수의 정의

- 확률의 성질
 - 확률분포의 히트맵

[그림 5-2] 2차원 확률분포의 히트맵

5.2.1 2차원 이산형 확률변수의 정의

- 확률의 성질

$$f_{XY}(x_i, y_j) \ge 0$$
$$\sum_{i} \sum_{j} f_{XY}(x_i, y_j) = 1$$

$$\begin{split} &f_{XY}(x_2,y_1) + f_{XY}(x_3,y_1) + f_{XY}(x_3+y_2) + \dots + f_{XY}(x_{12}+y_6) \\ &= \frac{1}{441} + \frac{2}{441} + \frac{2}{441} + \dots + \frac{36}{441} \\ &= 1 \end{split}$$

In [27]:

np.all(prob >= 0)

Out [27]:

True

In [28]:

np.sum(prob)

Out [28]:

1,000

5.2.1 2차원 이산형 확률변수의 정의

- 주변확률분포

개별 확률변수에만 흥미

- 확률변수 (X,Y)는 결합확률분포에 의해 동시에 정의되지만, 확률변수 X의 확률함수 $f_X(x)$ 를 알고 싶을 때
- f_{XY} 에서 Y가 취할 수 있는 값 모두를 대입한 다음 모두 더한 $f_{X}(x) = \sum_{k} f_{XY}(x, y_{k})$

결합확률함수 f_{XY} 에서 확률변수 Y의 영향을 제거

5.2.1 2차원 이산형 확률변수의 정의

- 주변확률분포

```
In [29]:

def f_X(x):
    return np.sum([f_XY(x, y_k) for y_k in y_set])

In [30]:

def f_Y(y):
    return np.sum([f_XY(x_k, y) for x_k in x_set])

In [31]:

X = [x_set, f_X]
Y = [y_set, f_Y]
```

5.2.1 2차원 이산형 확률변수의 정의

In [32]:

```
prob_x = np.array([f_X(x_k) for x_k in x_set])
prob_y = np.array([f_Y(y_k) for y_k in y_set])

fig = plt.figure(figsize=(12, 4))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
```

```
ax1.bar(x_set, prob_x)
ax1.set_title('X_marginal probability distribution')
ax1.set_xlabel('X_value')
ax1.set_ylabel('probability')
ax1.set_xticks(x_set)

ax2.bar(y_set, prob_y)
ax2.set_title('Y_marginal probability distribution')
ax2.set_xlabel('Y_value')
ax2.set_ylabel('probability')
```


5.2.2 2차원 이산형 확률변수의 지표

- 기댓값

$$\mu_X = E(X) = \sum_{i} \sum_{j} x_i f_{XY}(x_i, y_j)$$

- 파이썬으로 구현

 $np.sum([x_i * f_XY(x_i, y_j) \text{ for } x_i \text{ in } x_set \text{ for } y_j \text{ in } y_set])$

 $E(g(X, Y) = \sum_{i} \sum_{j} g(x_i, y_j) f_{XY}(x_i, y_j)$

8.667

32

5.2.2 2차원 이산형 확률변수의 지표

- 기댓값
 - 기댓값의 함수로 구현

$$2 \times \frac{1}{441} + 3 \times \left(\frac{2}{441} + \frac{2}{441}\right) + \dots + 36 \times \frac{36}{441}$$
= 8.667

In [34]:

5.2.2 2차원 이산형 확률변수의 지표

- 기댓값
 - X와 Y의 기댓값

5.2.2 2차원 이산형 확률변수의 지표

기댓값의 선형성

a, b를 실수, X, Y를 확률변수로 했을 때

$$E(aX + bY) = aE(X) + bE(Y)$$

가 성립합니다.

In [37]:

a, b = 2, 3

In [38]:

E(XY, lambda x, y: a*x + b*y)

Out [38]:

30.333

In [39] :

 $a * mean_X + b * mean_Y$

 $2 \times 8.667 + 3 \times 4.333 = 30.333$

Out [39]:

5.2.2 2차원 이산형 확률변수의 지표

- 분산
 - X의 분산은 X에 관한 편차 제곱의 기댓값

$$\sigma_X^2 = \ V(X) = \ \sum_i \sum_j (x_i - \ \mu_X)^2 f_{XY}(x_i, \ y_j)$$

- 파이썬으로 구현

5.2.2 2차원 이산형 확률변수의 지표

- 분산
 - X와 Y의 함수 g(X, Y)의 분산

$$V(g(X, Y)) = \sum_{i} \sum_{j} (g(x_i, y_j) - E(g(X, Y)))^2 f_{XY}(x_i, y_j)$$

- 함수 구현

In [41]:

5.2.2 2차원 이산형 확률변수의 지표

- 분산
 - X와 Y의 분산

```
In [42]:
var_X = V(XY, g=lambda x, y: x)
var_X

Out [42]:
4.444

In [43]:
var_Y = V(XY, g=lambda x, y: y)
var_Y

Out [43]:
2.222
```

5.2.2 2차원 이산형 확률변수의 지표

- 공분산
 - 두 확률변수 X, Y 사이의 상관

$$\sigma_{XY} = Cov(X, Y) = \sum_{i} \sum_{j} (x_i - \mu_X)(y_j - \mu_Y) f_{XY}(x_i, y_j)$$

```
In [45]:
```

```
cov_xy = Cov(XY)
cov_xy
```

Out [45]:

5.2.2 2차원 이산형 확률변수의 지표

분산과 공분산의 공식

a, b를 실수, X, Y를 확률변수로 했을 때

$$V(aX + bY) = a^2 V(X) + b^2 V(Y) + 2ab Cov(X, Y)$$

가 성립합니다.

$$V(2X + 3Y) = 4V(X) + 9V(Y) + 12Cov(X, Y)$$

In [46]:

V(XY, lambda x, y: a*x + b*y)

Out [46] :

64.444

In [47]:

a**2 * var_X + b**2 * var_Y + 2*a*b * cov_xy

Out [47]:

5.2.2 2차원 이산형 확률변수의 지표

- 상관계수

$$\rho_{XY} = \rho(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

In [48] :

cov_xy / np.sqrt(var_X * var_Y)

Out [48]:

Q&A