

3: CAMINOS MÁS CORTOS

- 3.1 BELLMAN-PERT.
- Ecuaciones de Bellman.
- Proyectos PERT.
- Ejercicios resueltos.

3.2. DIJKSTRA.

- Algoritmo de Dijkstra.
- Ejercicios resueltos.

3.3. FLOYD-WARSHALL.

- Algoritmo de Floyd-Warshall.
- Ejercicios resueltos

EDSGER W. DIJKSTRA: Físico + programador

Dijkstra propone un algoritmo que obtiene los caminos más cortos y sus pesos desde un vértice cualquiera a los restantes que son accesibles desde él en un grafo ponderado con pesos no negativos. El algoritmo se basa en poner etiquetas a los vértices del grafo que indicarán si el peso del camino más corto desde el vértice inicial a dicho vértice es definitivo o puede variar.

MATEMATICAS 1

Suponemos:

- >> GD ponderado.
- >> Vértices : numerados de 1 a n. $V = \{v_1,...v_n\}$
- >> Vértice origen del camino: v_i
- >> $\mathbf{w_{ii}} \ge 0$: peso del arco (v_i, v_i) (no negativos).
- $>> \mathbf{u_i}$: peso del cmc $(\mathbf{v_i} \mathbf{v_i})$
- >> P: conjunto de vértices v; que tienen peso u;, fijo
- >> T : conjunto de vértices v_i cuyo peso u_i, puede cambiar

Proceso:

- Se elige el vértice inicial de los cmc, e.g., v₁ y se añade a P, el resto de vértices en T.
- El algoritmo realiza una serie de iteraciones I = 1,...n,
- Iteración: cada vez que se aplica el paso 2.
- En cada iteración se añade un vértice a P y se elimina de T.
- Todo vértice v_i de P tiene ya determinado su peso u_i del cmc(v_i v_i)
- El algoritmo consigue que todos los vértices estén en P.
- Para pasar un vértice de T a P se aplica el Paso 2 en el que se <u>exploran</u> los vértices en los que inciden arcos con origen en un vértice de P y el vértice más cercano al origen será el que se incorpore.
- En el proceso, los vértices de P no pueden aparecer en T.

Algoritmo de Dijkstra

 $V = \{1,2,...n\}$, vértice inicial : 1.

Paso 1: Inicio P =
$$\{1\}$$
, T = $\{2,...n\}$

$$u_1 = 0$$

 $u_j = w_{1j}, j \in \Gamma(1), (1,j) \in E$
 $u_i = \infty, j \notin \Gamma(1), (1,j) \notin E$

Paso 2: Se determina el vértice de T que debe pasar a P

Elegir
$$k \in T / u_k = min\{u_i\}, j \in T$$

Hacer T := T
$$\sim$$
 {k}, P := P \cup {k}

Si T =
$$\varnothing \rightarrow$$
 STOP

 u_i es el peso del cmc de 1 a j, j = 2,3,...n

Paso 3: Actualizar pesos:

$$\forall j \in \Gamma(k) \cap T$$
 (i.e., para todo arco (k,j) / $j \in T$)

Hacer:
$$u_i := min \{u_i, u_k + w_{ki}\}$$

Ir al Paso 2

VÉRTICES DEL CMC:

- Localizar la iteración donde el vértice **v**_k obtiene peso fijo.
- Si u_k = u_i + w_{ik} → (v_i,v_k) es el último arco recorrido por el cmc(v₁- v_k) → El vértice anterior a k será el j.

OBSERVACIONES

- ► En el algoritmo se ha elegido como vértice origen de los caminos el vértice v₁ pero se podría haber elegido cualquier otro vértice.
- Para los vértices v_i que no sean accesibles desde el vértice inicial Dijkstra asigna un valor de infinito a las variables u_i.
- El razonamiento realizado es válido para GNDP ya que toda arista $\{v_{i,}v_{j}\}$ con peso w_{ij} puede ser reemplazado por dos arcos $(v_{i,}v_{j})$, $(v_{j,}v_{i})$ y con el mismo peso $w_{ij} = w_{ij}$
- Puede presentar problemas con costes negativos en arcos/aristas.

Th-1D. Sea G = (V,E), |V| = n. Si $v_i \in P$ entonces u_i es el peso del cmc($v_1 - v_i$), j = 1,...n.

Dem. Por inducción sobre nº iteraciones I. Si I = 1, P = $\{v_1\}$, obvio que u_1 = 0 es el cmc $(v_1 - v_1)$

Sup. cierto para I = j, $0 \le j < n$. Si v_k es el vértice que pasa a tener etiqueta fija en I = j + 1, será suficiente demostrar, por hip. inducción, que el valor u_k representa el peso del cmc(v_1 - v_k). Sup. que el valor de u_k se ha calculado como $u_k = \min\{u_k, v_j \in T\} = u_i + w_{ik}$ (1) i.e., el arco $e = (v_i, v_k)$ es el último arco en el camino que queremos demostrar que es el más corto del vértice v_1 al vértice v_k ; llamemos a este camino $Q_{1k}^{(1)}$ y sea $Q_{1k}^{(2)}$ otro camino de v_1 a v_k . Demostramos que $w(Q_{1k}^{(2)}) \ge w(Q_{1k}^{(1)})$. Sea $f = (v_s, v_t)$ el 1º arco del camino $Q_{1k}^{(2)}$ que verifica que su extremo final, v_t no está en P y llamemos Q_{tk} a la sección del camino $Q_{1k}^{(2)}$ que une los vértices v_t y v_k . Ver figura:

Por construcción de los caminos $Q_{1k}^{(1)}$, $Q_{1k}^{(2)}$ y Q_{tk} sabemos que:

$$w(Q_{1k}^{(1)}) = u_i + w_{ik}$$

 $w(Q_{1k}^{(2)}) = u_s + w_{st} + w(Q_{tk})$ por igualdad (1) como $v_k, v_t \in T$ se tiene que: $u_k \le u_t$

y como $u_k = u_i + w_{ik}$ y $u_t \le u_s + w_{st}$, obtenemos $u_k = u_i + w_{ik} \le u_t \le u_s + w_{st}$.

Por tanto

$$W(Q_{1k}^{(2)}) = U_s + W_{st} + W(Q_{tk}) \ge U_t + W_{ik} + W(Q_{tk}) \ge U_t + W_{ik} = W(Q_{1k}^{(1)})$$

donde la última desigualdad se tiene debido a que los pesos son no negativos.

Ejemplo. Se calculan los cmc desde el vértice 1 al resto aplicando el Alg. Dijkstra

Iteraciones para calcular los pesos

Iteración-1

P = {1}, T = {2,3,4,5,6}

$$u_1 = 0$$

 $u_2 = w_{12} = 3$
 $u_3 = w_{13} = \infty$
 $u_4 = w_{14} = 2$
 $u_5 = w_{15} = \infty$
 $u_6 = w_{16} = \infty$

$$\begin{aligned} & Min\{u_j\} = \mathbf{u_4} \\ & \{4\} \cup P \Longrightarrow P = \{1,4\} \\ & T \sim \{4\} \Longrightarrow T = \{2,3,5,6\} \end{aligned}$$

Iteración-2

$$\begin{split} & P = \{1,4\}, \quad T = \{2,3,5,6\} \\ & \Gamma(4) = \{2,5\} \\ & \Gamma(4) \cap T = \{2,5\} \\ & \text{Actualizar } u_2, u_5 \\ & \textbf{u_2} = \min\{\textbf{u_2}, u_4 + \textbf{w_{42}}\} = \min\{3, 2 + 8\} = \textbf{3} \\ & \textbf{u_3} = \infty \\ & \textbf{u_5} = \min\{\textbf{u_5}, \textbf{u_4} + \textbf{w_{45}}\} = \min\{\infty, 2 + 4\} = 6 \\ & \textbf{u_6} = \infty \end{split}$$

$$Min\{u_j\} = \mathbf{u_2}$$
$$\{2\} \cup P \Rightarrow P = \{1,4,2\}$$
$$T \sim \{2\} \Rightarrow T = \{3,5,6\}$$

Iteración-3

P = {1,4,2}, T = {3,5,6}

$$\Gamma(2) = {3,4}$$

 $\Gamma(2) \cap T = {3}$
Actualizar u_3
 $u_3 = \min\{u_3, u_2 + w_{23}\} = \min\{\infty, 3+10\} = 13$
 $u_5 = 6$
 $u_6 = \infty$

$$Min\{u_j\} = \mathbf{u_5}$$
$$\{5\} \cup P \Rightarrow P = \{1,4,2,5\}$$
$$T \sim \{5\} \Rightarrow T = \{3,6\}$$

Iteración-4

P = {1,4,2,5}, T = {3,6}

$$\Gamma(5)$$
 = {3,4}
 $\Gamma(2) \cap T$ = {3}
Actualizamos u₃
u₃ = min{u₃, u₅ + w₅₃} =

$$u_3 = min\{u_3, u_5 + w_{53}\} = min\{13, 6+2\} = 8$$
 $u_6 = \infty$

$$\begin{aligned} & \text{Min}\{u_j\} = \mathbf{u_3} \\ & \{3\} \cup P \Rightarrow P = \{1,4,2,5,3\} \\ & T \sim \{3\} \Rightarrow T = \{6\} \end{aligned}$$

Iteración-5

Iteración-5
$$P = \{1,4,2,5,3\}, T = \{6\}$$

$$\Gamma(3) = \{2,6\}$$

$$\Gamma(3) \cap T = \{6\}$$

$$Actualizar u_6$$

$$u_6 = \min\{u_6, u_3 + w_{36}\} = \{0\}$$

 $min{\infty, 8+3} = 11$

Min{u_j} =
$$\mathbf{u}_6$$

{6} \cup P \Rightarrow P = {1,4,2,5,3,6}
T \sim {6} \Rightarrow T = {}

Iteración-6

 $T=\{\}, P=\{1,4,2,5,3,6\} \rightarrow PARAR$

Iteraciones para calcular los vértices

Vértice anterior a 2 en cmc(1-2)

Se busca iteración / v_2 pasa a P (min uj). Iter-2 \rightarrow u_2 =min(uj)

Iter-1 \rightarrow u₂ = w₁₂ = 3 \rightarrow Arco (1,2)

Vértice anterior a 2 → 1

Vértice anterior a 3 en cmc(1-3)

Iteración donde v₃ pasa a P:

Iter-4 \rightarrow u₃ = min{u₃, u₅ + w₅₃} = 8 \rightarrow Arco (5,3)

Vértice anterior a 3 → 5

Vértice anterior a 4 en cmc(1-4)

Iteración donde **v**₄ pasa a P:

Iter-1 \rightarrow u₄ = \mathbf{w}_{14} = 2 \rightarrow Arco(1,4)

Vértice anterior a 4 → 1

Vértice anterior a 5 en cmc(1-5)

Iteración donde **v**₅ pasa a P:

Iter-3 \rightarrow $u_5 = min(uj)$

Iter-2 \rightarrow u₅ = min{u₅, u₄ + w₄₅} = 6 \rightarrow Arco (4,5)

Vértice anterior a 5 → 4

Vértice anterior a 6 en cmc(1-6)

Iteración donde v₆ pasa a P es:

Iter-5 \rightarrow u₆ = min{u₆, u₃ + w₃₆} = 11 \rightarrow Arco (3,6)

Vértice anterior a $6 \rightarrow 3$

Vértices del cmc (1, final)				Peso
Origen	Anterior al final	Final	Vértices cmc	ui
1	1	2	1,2	3
	5	3	1,4,5,3	8
	1	4	1,4	2
	4	5	1,4,5	6
	3	6	1,4,5,3,6	11

El cmc (1-v_k) se obtiene a partir del único camino entre los respectivos vértices en el árbol enraizado (raíz 1) construido