《计算机系统基础》习题课

第六章 层次结构存储器

2019年12月6日

作业布置

- 第6章习题,课本 pg. 316 开始 第3、5、8、12、23
- 习题截止时间:
 - 2019年12月17日24时

层次结构

容量变大

速度变慢

cache管理

- 映射方法
- 替换算法
- 一致性问题(写cache)

虚存管理:

- 分段机制
 - 段表(GDT, GDTR)
 - 保护模式开关(CRO)
 - 逻辑地址 -> 线性地址
- 分页机制
 - 页表(两级页表, TLB)
 - 分页模式开关(CRO)
 - 线性地址 -> 物理地址

变

大

层次结构

假定一个计算机系统中有一个TLB和一个L1 data cache。该系统按字节编址,虚拟地址16位,物理地址12位;页大小为128B,TLB为4路组相联,共有16个页表项;L1 data cache采用直接映射方式,块大小为4B,共16行。在系统运行到某一时刻时,TLB、页表和L1 data cache中的部分内容(用十六进制表示)如下表所示。

组号	标记	页框号	有效位									
0	03		0	09	1D	1	00	_	0	07	10	1
1	13	2D	1	02	-	0	04	-	0	0A	_	0
2	02	-	0	08	-	0	06	-	0	03	_	0
3	07	_	0	63	12	1	0A	34	1	72	_	0

(a) TLB(4路组相联): 4组、16个页表项

虚页号	页框号	有效位
000	08	1
001	03	1
002	14	1
003	02	1
004	-	0
005	16	1
006	-	0
007	07	1
008	13	1
009	17	1
00A	09	1
00B	-	0
00C	19	1
00D	-	0
00E	11	1
00F	0D	1
'		

行索引	标记	有效位	字节3	字节2	字节1	字节0
1] 糸 51	かん	有双匹	<u>구</u> 112	于 l) 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0	19	1	12	56	C9	AC
1	_	0	_	_	_	_
2	1B	1	03	45	12	CD
3		0	_	_	_	_
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	-	0	_	_	_	-
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	-	0	_	_	_	-
A	2D	1	43	62	23	C3
В	_	0	_	_	_	_
C	12	1	76	83	21	35
D	16	1	A3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	_	_
•	(a) I 1	1 data aaalaa	・古坛品計	#16年	+11 + 11 + 1D	

(b) 部分页表: (开始16项)

(c) L1 data cache: 直接映射, 共16行, 块大小为4B

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

物理地址(12位)

因为页大小为128B

物理页号/页框号(5位)

页内地址(7位)

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

- (1) 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示TLB标记?哪几位表示TLB索引?
 - (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
 - (3) 主存物理地址如何划分成标记字段、行索引字段和块内地址字段?
 - (4) CPU从地址067AH中取出的值为多少?说明CPU读取地址067AH中内容的过程。

组号	标记	页框号	有效位									
0	03	_	0	09	1D	1	00	_	0	07	10	1
1	13	2D	1	02	_	0	04	-	0	0A	_	0
2	02	-	0	08	_	0	06	-	0	03	_	0
3	07	_	0	63	12	1	0A	34	1	72	_	0

(a) TLB(4路组相联): 4组、16个页表项

TLB缺失!

虚页号	页框号	有效位
000	08	1
001	03	1
002	14	1
003	02	1
004	-	0
005	16	1
006	-	0
007	07	1
008	13	1
009	17	1
00A	09	1
00B	-	0
00C	19	1
00D	-	0
00E	11	1
00F	0D	1

不缺页!

组号	标记	页框号	有效位									
0	03	19	1	09	1D	1	00	-	0	07	10	1
1	13	2D	1	02	_	0	04	1	0	0A	_	0
2	02	-	0	08	_	0	06	-	0	03	_	0
3	07	-	0	63	12	1	0A	34	1	72	_	0

(a) TLB(4路组相联): 4组、16个页表项

更新TLB (和替换策略有关)

行索引	标记	有效位	字节3	字节2	字节1	字节0
0	19	1	12	56	C9	AC
1	-	0	ı	-	1	_
2	1B	1	03	45	12	CD
3	1	0	1	1	1	_
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	1	0	1	1	1	_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	1	0	ı	1	1	_
A	2D	1	43	62	23	С3
В	1	0	1	1	1	_
C	12	1	76	83	21	35
D	16	1	A3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	_	_

cache命中!

行索引	标记	有效位	字节3	字节2	字节1	字节0
0	19	1	12	56	С9	AC
1		0	1	1	1	_
2	1B	1	03	45	12	CD
3	1	0	1	1	1	_
4	32	1	23	34	C2	2A
5	0D	1	46	67	23	3D
6	1	0	-	1	-	_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	1	0	1	1	-	_
A	2D	1	43	62	23	C3
В		0	1	1	1	_
C	12	1	76	83	21	35
D	16	1	A3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	_	_

取到 4A H

• 扩展问题

- 首先:冲刷cache, 所有有效位置0, 保留TLB和页表
- 若存在缺页,则新装入页在14H号物理页框
- 第二:有全局字节类型数组 byte a[2][128]
 - a 的虚拟地址 0600 H
 - 按行优先存储

```
void func_1() {
   int i = 0, j = 0, sum = 0;
   for( i=0 ; i < 2 ; i++ ) {
      for ( j=0 ; j < 128 ; j++ ) {
        sum += a[i][j];
      }
   }
}</pre>
```

```
void func_2() {
   int i = 0, j = 0, sum = 0;
   for ( j=0 ; j < 128 ; j++ ) {
      for( i=0 ; i < 2 ; i++ ) {
        sum += a[i][j];
      }
   }
}</pre>
```

问题:

- 1) 新装入页在14H号物理页框可不可能?若发生,除了说明缺页外,还说明了什么?
- 2) 两段代码在访问a时的L1 data cache命中率分别是多少?