Exercises and Problems for Section 9.1

Exercises

Are the functions in Exercises 1-6 power functions? If so, write the function in the form $f(x) = kx^p$.

1.
$$g(x) = \frac{(-x^3)^3}{6}$$
 2. $R(t) = \frac{4}{\sqrt{16t}}$

2.
$$R(t) = \frac{4}{\sqrt{16t}}$$

3.
$$Q(t) = \left(\frac{1}{2\sqrt{t}}\right)^3$$
 4. $K(w) = \frac{w^4}{4\sqrt{w^3}}$

4.
$$K(w) = \frac{w^4}{4\sqrt{w^3}}$$

5.
$$T(s) = (6s^{-2})(es^{-3})$$

6.
$$h(x) = 22(7^x)^2$$

Do the power functions in Exercises 7–10 appear to have odd, even, or fractional powers?

9.

10.

In Exercises 11-13, find a power function through the two points.

- **11.** (7,8) (1,0.7) **12.** (1,5) (3,27) **13.** (6,17) (1,2)
- **14.** Find a possible formula for the power function f(t) given that f(3) = 5 and f(5) = 3.
- 15. Suppose y is directly proportional to x. If y = 6 when x = 4, find the constant of proportionality and write the formula for y as a function of x. Use your formula to find x when y = 8.

- **16.** Suppose y is inversely proportional to x. If y = 6 when x = 4, find the constant of proportionality and write the formula for y as a function of x. Use your formula to find x when y = 8.
- 17. Suppose c is directly proportional to the square of d. If c=45 when d=3, find the constant of proportionality and write the formula for c as a function of d. Use your formula to find c when d = 5.
- 18. Suppose c is inversely proportional to the square of d. If c=45 when d=3, find the constant of proportionality and write the formula for c as a function of d. Use your formula to find c when d = 5.

In Exercises 19–22, find possible formulas for the power func-

19.

x	0	1	2	3
j(x)	0	2	16	54

20.

				-
x	2	3	4	5
f(x)	12	27	48	75

21.

x –	-6	-2	3	4
g(x) 3	36	4/3	-9/2	-32/3

22.

x	-2	-1/2	1/4	4
h(x)	-1/2	-8	-32	-1/8

23.	Find	(a)	$\lim x^{-4}$	(b)
			$x \rightarrow \infty$	x-

 $\lim_{\to -\infty} 2x$

24. Find (a) $\lim_{t \to \infty} (t^{-3} + 2)$

(b) $\lim_{y \to -\infty} (5 - 7y^{-2})$

Problems

- 25. Compare the graphs of $y = x^{-2}$, $y = x^{-4}$, and y = x^{-6} . Describe the similarities and differences.
- **26.** Describe the behavior of $y = x^{-10}$ and $y = -x^{10}$ as
 - (a) $x \to 0$
- (b) $x \to \infty$
- 27. Describe the behavior of $y = x^{-3}$ and $y = x^{1/3}$ as (a) $x \to 0$ from the right (b) $x \to \infty$
- **28.** If $f(x) = kx^p$, p an integer, show that f is an even function if p is even, and an odd function if p is odd.