UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA

Q1: 3,0 Q2: 3,0 Q3: 3,0 Nota: 9,0

5º Exercício Computacional de Algoritmos Numéricos II Relatório

> Matheus Gomes Arante de Souza Vinícius Lucas dos Reis

> > Vitória Maio de 2019

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA

Matheus Gomes Arante de Souza Vinícius Lucas dos Reis

5º Exercício Computacional de Algoritmos Numéricos II **Relatório**

Neste relatório compararemos 3 algoritmos de discretização via diferenças finitas para resolver o problema de valor inicial unidimensional referente a equação do calor. Os testes foram realizados com o Octave.

Vitória Maio de 2019

Sumário

1	Introdução	1
2	Exercício 1 2.1 Explícito	2 2 2
3	Exercício 2 3.1 Explícito	6 6 6
4	4.1 Explícito	10 10 10
5	5.1 Comparativo entre métodos	14 14 14
6	Referências	15

1 Introdução

Os Problemas de Valor Inicial, ou PVI, são problemas nos quais são considerados tanto um domínio físico quanto um domínio temporal. Através da discretização desses dois domínios é possível fazer uma aproximação das derivadas (em cada domínio) por diferenças finitas e, assim, obter-se uma equação matricial na qual é possível calcular a solução do problema num próximo instante t de tempo e ir se aproximando da solução estacionária.

Neste relatório irá ser feito um comparativo entre 3 métodos de resolução de PVI: o método explícito que calcula a próxima solução através de um produto matriz-vetor, o método implícito que resolve um sistema linear para achar a próxima solução e o método de Crank-Nicolson que mescla os métodos anteriores para alcançar seu resultado.

2 Exercício 1

Equação do calor com condutividade térmica constante, fonte de calor nula e

- Parâmetros básicos: $\kappa = 0.835 cm^2/s$, f(x,t) = 0 e (0,l) = (0,10)
- Condições de contorno e iniciais: $u(0,t)=100^{\circ}C,\,u(10,t)=50^{\circ}C$ e u(x,0)=0, para $x\in(0,10)$
- Parâmetros da aproximação por Diferenças finitas considerando a condição de estabilidade:

$$\begin{array}{l} -\Delta x=1,\, \Delta t_1=0.538922<\frac{(\Delta x)^2}{2\kappa}\; \mathbf{e}\; \Delta t_2=0.778443>\frac{(\Delta x)^2}{2\kappa}\\ -\Delta x=0.1,\, \Delta t_1=0.00538922<\frac{(\Delta x)^2}{2\kappa}\; \mathbf{e}\; \Delta t_2=0.00778443>\frac{(\Delta x)^2}{2\kappa}\\ -\Delta x=0.01,\, \Delta t_1=5.38922e^{-5}<\frac{(\Delta x)^2}{2\kappa}\; \mathbf{e}\; \Delta t_2=7.78443e^{-5}>\frac{(\Delta x)^2}{2\kappa} \end{array}$$

Nas tabelas, k = número de passos necessários para obter convergência; t = k*dt; T_{Comp} = tempo computacional.

2.1 Explícito

				Δt_1		Δt_2			
Δx	n	k	t	T_{Comp}	Atingiu Tol.?	k	t	T_{Comp}	Atingiu Tol.?
1	11	188	101.317	0.87s	Sim	1100	†	1.19s	Não
0.1	101	8439	45.4796	1.57s	Sim	10100	†	1.80s	Não
0.01	1001	15000	†	2.45s	Não	15000	†	2.57s	Não

2.2 Implícito

				Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.?	k	t	T_{Comp}	Atingiu Tol.?	
1	11	195	105.09	1.13s	Sim	143	111.317	1.12s	Sim	
0.1	101	8441	45.4904	1.79s	Sim	6418	49.9605	1.63s	Sim	
0.01	1001	15000	†	2.82s	Não	15000	†	2.70s	Não	

2.3 Crank-Nicolson

				Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.?	k	k t T_C		Atingiu Tol.?	
1	11	104	56.0479	1.07s	Sim	76	59.1617	1.26s	Sim	
0.1	101	5001	26.9515	1.48s	Sim	3750	29.1916	1.31s	Sim	
0.01	1001	15000	†	2.62s	Não	15000	†	2.61s	Não	

 $\begin{aligned} & \text{Explicito:} \quad n = 101 \quad Dt = 0.00538922 \\ & \text{Atingiu tol. com 8439 passos (npassosMax = 10100)} \end{aligned}$

 $Implicito: \quad n=11 \quad Dt=0.538922$ Atingiu tol. com 195 passos (npassosMax = 1100) t = 105.09s 100 t=1.08 t=10.78 t=21.02 t=31.80 t=42.04 80 t=52.81 t=63.05 t=105.09 60 40 20

4

8

10

2

0

Crank-Nicolson: n = 11 Dt = 0.538922 Atingiu tol. com 104 passos (npassosMax = 1100)

3 Exercício 2

Equação do calor com condutividade térmica constante, fonte de calor nula e

- Parâmetros básicos: $a = 0.835cm^2/s$, f(x,t) = 0 e (0,l) = (0,10)
- Condições de contorno e iniciais: $u(0,t)=100^{\circ}C$, $\frac{\partial(10,t)}{\partial x}=0$ e u(x,0)=0, para $x\in(0,10]$
- Parâmetros da aproximação por Diferenças finitas considerando a condição de estabilidade:

$$\begin{array}{l} -\Delta x = 1,\, \Delta t_1 = 0.538922 < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 0.778443 > \frac{(\Delta x)^2}{2\kappa} \\ -\Delta x = 0.1,\, \Delta t_1 = 0.00538922 < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 0.00778443 > \frac{(\Delta x)^2}{2\kappa} \\ -\Delta x = 0.01,\, \Delta t_1 = 5.38922e^{-5} < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 7.78443e^{-5} > \frac{(\Delta x)^2}{2\kappa} \end{array}$$

Nas tabelas, k = número de passos necessários para obter convergência; t = k*dt; T_{Comp} = tempo computacional.

3.1 Explícito

			4	Δt_1	Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.
1	11	211	113.713	1.39s	Sim	1100	†	1.58s	Não
0.1	101	7631	41.1251	1.98s	Sim	10100	†	2.09s	Não
0.01	1001	15000	†	2.84s	Não	15000	†	2.85s	Não

3.2 Implícito

			4	Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.	
1	11	716	385.868	1.26s	Sim	523	407.126	1.14s	Sim	
0.1	101	10100	†	1.74s	Não	10100	†	1.74s	Não	
0.01	1001	15000	†	2.61s	Não	15000	†	2.63s	Não	

3.3 Crank-Nicolson

			4	Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.	
1	11	392	211.257	1.13s	Sim	285	221.856	1.35s	Sim	
0.1	101	10100	†	1.67s	Não	10100	†	1.64s	Não	
0.01	1001	15000	†	2.73s	Não	15000	†	2.85s	Não	

 $\begin{aligned} & \text{Explicito:} \quad n = 101 \quad Dt = 0.00538922 \\ & \text{Atingiu tol. com 7631 passos (npassosMax = 10100)} \end{aligned}$

Implicito: n = 11 Dt = 0.538922
Atingiu tol. com 716 passos (npassosMax = 1100)

Solução Errada!!!

Implicito: n = 11 Dt = 0.778443
Atingiu tol. com 523 passos (npassosMax = 1100)

Solução Errada!!

Crank-Nicolson: n = 11 Dt = 0.538922 Atingiu tol. com 392 passos (npassosMax = 1100)

Solução Errada!

4 Exercício 3

Equação do calor com condutividade térmica constante, fonte de calor unitária e

• Parâmetros básicos: $a(x,t) = 0.835cm^2/s$, f(x,t) = 1 e (0,l) = (0,10)

• Condições de contorno e iniciais: $u(0,t)=100^{\circ}C$, $\frac{\partial(10,t)}{\partial x}=0$ e u(x,0)=0, para $x\in(0,10]$

 Parâmetros da aproximação por Diferenças finitas considerando a condição de estabilidade:

$$\begin{array}{l} -\Delta x = 1,\, \Delta t_1 = 0.538922 < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 0.778443 > \frac{(\Delta x)^2}{2\kappa} \\ -\Delta x = 0.1,\, \Delta t_1 = 0.00538922 < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 0.00778443 > \frac{(\Delta x)^2}{2\kappa} \\ -\Delta x = 0.01,\, \Delta t_1 = 5.38922e^{-5} < \frac{(\Delta x)^2}{2\kappa} \text{ e } \Delta t_2 = 7.78443e^{-5} > \frac{(\Delta x)^2}{2\kappa} \end{array}$$

Nas tabelas, k = número de passos necessários para obter convergência; t = k*dt; T_{Comp} = tempo computacional.

4.1 Explícito

			4	Δt_1	Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.
1	11	211	13.713	1.37s	Sim	1100	†	1.58s	Não
0.1	101	7631	41.1251	1.96s	Sim	10100	†	2.01s	Não
0.01	1001	15000	†	3.20s	Não	15000	†	2.95s	Não

4.2 Implícito

			4	Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.	
1	11	760	409.581	1.21s	Sim	553	430.479	1.14s	Sim	
0.1	101	10100	†	1.76s	Não	10100	†	1.85s	Não	
0.01	1001	15000	†	2.83s	Não	15000	†	2.69s	Não	

4.3 Crank-Nicolson

				Δt_1		Δt_2				
Δx	n	k	t	T_{Comp}	Atingiu Tol.	k	t	T_{Comp}	Atingiu Tol.	
1	11	1100	†	1.15s	Não	1100	†	1.19s	Não	
0.1	101	10100	†	1.86s	Não	10100	†	1.74s	Não	
0.01	1001	15000	†	2.63s	Não	15000	†	2.67s	Não	

 $\begin{aligned} & \text{Explicito:} \quad n = 101 \quad Dt = 0.00538922 \\ & \text{Atingiu tol. com 7631 passos (npassosMax = 10100)} \end{aligned}$

Solução Errada!

Implicito: n = 11 Dt = 0.538922 Atingiu tol. com 760 passos (npassosMax = 1100)

Implicito: n = 11 Dt = 0.778443 Atingiu tol. com 553 passos (npassosMax = 1100)

Crank-Nicolson: n = 11 Dt = 0.538922 Nao atingiu tol. (npassosMax = 1100)

5 Conclusão

5.1 Comparativo entre métodos

Primeiramente é preciso ter em mente que dentre todos os métodos utilizados neste comparativo, o método explícito é o único que possui um fator de estabilidade que precisa ser atendido. O fator de estabilidade é definido como:

$$\lambda = \frac{(\Delta t * k)}{\Delta x^2} < \frac{1}{2}$$

Caso esta condição não seja atendida, isso poderá resultar em uma inconsistência na aproximação e fazendo com que está não convirja para uma solução estacionária. Este evento é demonstrado pelos 2 primeiros gráficos de cada exercício.

Já o método Crank-Nicolson, apesar de possuir um caráter estável, ao contrário do método implícito, pode vir a apresentar pequenos graus de instabilidade nos valores iniciais e finais de suas soluções devido ao acúmulo de erro de operações com números de ponto flutuante provenientes das operações que o algoritmo realiza.

5.2 Comparativo entre Condições de Contorno

Ao se observar as diferentes curvas em cada gráfico, comparando a diferença entre seus valores iniciais e finais, respectivamente, é possível perceber que quando se tem um valor prescrito as curvas convergem para tal, como é o caso de todos para o valor inicial e o caso do exercício 1 para o valor final.

Entretanto, quando só é fornecido o fluxo prescrito para o problema, os algoritmos apresentam variações nestes locais, como é possível observar no lado direito dos gráficos dos exercícios 2 e 3. Isso é devido a baixa precisão que o fluxo prescrito tem com relação ao valor prescito, uma vez que o valor de uma função no ponto é mais preciso que o valor de sua derivada neste mesmo ponto.

Por fim, temos o caso (exercício 3) em que além do valor prescrito para o primeiro ponto e o fluxo prescrito no último ponto, também temos que considerar o seguinte resultado:

$$\frac{\partial u}{\partial t} - \kappa * \frac{\partial^2 u}{\partial x^2} = f(x, t) = 1$$

Essa condição cria uma distorção ainda maior nos resultados, uma vez que o valor de f acaba por alterar a resultado da expressão de iteração dos algoritmos, fazendo com que estes tenham uma dificuldade maior para achar uma solução estacionária.

6 Referências

```
EATON, John W. Octave Documentation, 1996.

Disponível em: <a href="https://octave.org/doc/v4.2.2/">https://octave.org/doc/v4.2.2/</a>.

COMMUNITY, Octave Forge. Octave Forge, 2002.

Disponível em: <a href="https://octave.sourceforge.io/docs.php">https://octave.sourceforge.io/docs.php</a>.

CATABRIGA, Lucia. Problemas de Valor Inicial (PVI), 2019.

Disponível em: <a href="http://inf.ufes.br/~luciac/mn1/191-PVI_AlgoII.pdf">http://inf.ufes.br/~luciac/mn1/191-PVI_AlgoII.pdf</a>.
```