

Synteza automatu Mealy'ego wykrywającego sekwencję "abb", przy pomocy przerzutników typu D

Krok 1. Określenie i kodowanie sygnałów wejściowych X

Ustala się dwa stany wejściowe a oraz b.

Stany wejściowe symbolicznie	Zakodowane stany wejściowe X ₀
a	0
b	1

Krok 2. Określenie i kodowanie stanów wyjściowych Y

Ustala się dwa stany wyjściowe wykryto oraz nie wykryto.

Stany wyjściowe słownie	Zakodowane stany wyjściowe Y ₀
nie wykryto	0
wykryto	1

Krok 3. Określenie i kodowanie stanów wewnętrznych

Zgodnie z grafem dla tego automatu, występują 4 stany. Stany te muszą zostać zakodowane zatem na dwóch przerzutnikach. Stany zakodowano przy pomocy naturalnego kodu binarnego.

	\mathbf{Q}_1	\mathbf{Q}_0
A	0	0
В	0	1
С	1	0
D	1	1

Ponieważ automat będzie zbudowany w oparciu o przerzutniki typu D, więc dla przypomnienia poniżej tablica wzbudzeń dla przerzutnika typu D.

Q→Q+	D
0>0	0
0→1	1
1→0	0
1→1	1

Tworzenie tabeli przejść bez kodowania binarnego. Następne przejście + odpowiada przejściom w grafie, w zależności od sygnału wejściowego.

Stan bieżący	X	Stan następny
A	а	В
A	b	A
В	а	В
В	b	С
С	а	В
С	b	D
D	а	В
D	b	A

Tablica przejść z kodowaniem binarnym:

	\mathbf{Q}_1	\mathbf{Q}_0	X	\mathbf{Q}_1 +	Q_0 +	\mathbf{D}_1	\mathbf{D}_0
A	0	0	0	0	1	0	1
A	0	0	1	0	0	0	0
В	0	1	0	0	1	0	1
В	0	1	1	1	0	1	0
С	1	0	0	0	1	0	1
С	1	0	1	1	1	1	1
D	1	1	0	0	1	0	1
D	1	1	1	0	0	0	0

Krok. 5. Określenie funkcji wyjścia (stan wyjścia zależy od stanu wewnętrznego oraz sygnałów wejściowych)

\mathbf{Q}_1	\mathbf{Q}_0	X	Y_0
0	0	a	0
0	1	a	0
1	0	a	0
1	1	a	0
0	0	b	0

0	1	b	0
1	0	b	0
1	1	b	1

Krok. 5. Określanie optymalnych funkcji wzbudzeń oraz wyjścia za pomocą metody Karnaugh

Funkcja wzbudzeń D₁:

	$Q_1Q_0=00$	$Q_1Q_0=01$	$Q_1Q_0=11$	$Q_1Q_0=10$
$X_0 = 0$	0	0	0	0
$X_0 = 1$	0	1	0	1

Uzyskana funkcja: $D_1 = X_0 \left(\overline{Q_1} Q_0 + Q_1 \overline{Q_0} \right)$

Funkcja wzbudzeń D₀:

	$Q_1Q_0=00$	$Q_1Q_0=01$	$Q_1Q_0=11$	$Q_1Q_0=10$
$X_0 = 0$	0	0	0	1
$X_0 = 1$	0	0	0	1

Uzyskana funkcja: $D_0 = X_0 + Q_1 \overline{Q_0}$

Funkcja wyjścia

	$Q_1Q_0=00$	$Q_1Q_0=01$	$Q_1Q_0=11$	$Q_1Q_0=10$
$X_0 = 0$	0	0	0	0
$X_0 = 1$	0	0	1	0

Uzyskuje się wzór wynosi: $Y_0 = X_0 Q_1 Q_0$

Krok. 6. Opracowanie schematu połączeń elektrycznych

