Sistemas Inteligentes - IF684

Prof: Adriano Lorena

Integrantes

Lucas Henrique - Ihns3

Introdução

Objetivo de limpar, analisar, explorar os dados e utilizar modelos de classificação nos dados tratados, utilizando os melhores parâmetros e interpretando e discutindo os resultados.

O dataset escolhido foi o Breast Cancer Wisconsin (Diagnostic), que conta com dados referentes aos núcleos celulares de massa mamária e o diagnóstico (target) de câncer benigno ou maligno dos pacientes.

• Características do Dataset: Multivariado

Área: Ciência da Vida

• Tarefas associadas: Classificação

Tipo dos atributos: Real

• Instâncias: **569**

• Atributos: 32

*Observações:

ID - > inteiro

Diagnóstico -> objeto

B -> benigno

M -> maligno

10 atributos com a média, erro

padrão e o pior

Fundamentos

kNN (k-Nearest-Neighbors)

- armazena todos os casos possíveis
- sistema de votos de maioria
- parâmetro k (geralmente 3-10)
- calculado a partir de distâncias
- k não pode ser múltiplo do número de classes
- simples, eficiente, modelo n\u00e3o entend\u00edvel e lento na classifica\u00e7\u00e3o

Fundamentos Árvores de decisão

- pode-se pensar em um arranjo de perguntas que levam a uma decisão
- estrutura de árvore semelhante a fluxograma hierárquico
- nós internos é um atributo, um ramo uma decisão e um nó folha a saída
- algoritmo "caixa branca", fácil entendimento
- encontra atributos que recursivamente bifurca a árvore a partir do ASM
- Information Gain, Gain Ratio e Gini Index
- captura padrões não-lineares facilmente
- requer menos pré-processamento e é não-paramétrico
- sensitivo a dados com ruídos, pequenas alterações nos dados e dataset desequilibrado
- pouco robusto a muitas dimensões

Fundamentos

Random Forest

- Conjunto de árvores de decisão
- Diversas árvores criadas com diferentes subconjuntos do dataset
- Resultado é o voto mais popular ou a média das n árvores
- Tem uma ótima precisão
- Lida bem com alto volume de dados e variáveis

Metodologia Visualização inicial dos dados

- 33 colunas
- 569 instâncias
- última coluna com números indefinidos
- apenas diagnosis é categórica

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean (
0	842302	М	17.99	10.38	122.80	1001.0	0.11840
1	842517	М	20.57	17.77	132.90	1326.0	0.08474
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960
3	84348301	М	11.42	20.38	77.58	386.1	0.14250
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030
5 rows × 33 columns							
4							
i] df.shape							
(56	59, 33)						

symmetry_worst	fractal_dimension_worst	Unnamed: 32
0.4601	0.11890	NaN
0.2750	0.08902	NaN
0.3613	0.08758	NaN
0.6638	0.17300	NaN
0.2364	0.07678	NaN

Data	columns (total 33 column				
#	Column	Non-Null Count	Dtype		
0	id	569 non-null	int64		
1	diagnosis	569 non-null	object		
2	radius_mean	569 non-null	float64		
3	texture_mean	569 non-null	float64		
4	perimeter_mean	569 non-null	float64		
5	area_mean	569 non-null	float64		
6	smoothness_mean	569 non-null	float64		
7	compactness_mean	569 non-null	float64		
8	concavity_mean	569 non-null	float64		
9	concave points_mean	569 non-null	float64		
10	symmetry_mean	569 non-null	float64		
11	fractal_dimension_mean	569 non-null	float64		
12	radius_se	569 non-null	float64		
13	texture_se	569 non-null	float64		
14	perimeter_se	569 non-null	float64		
15	area_se	569 non-null	float64		
16	smoothness_se	569 non-null	float64		
17	compactness_se	569 non-null	float64		
18	concavity_se	569 non-null	float64		
19	concave points_se	569 non-null	float64		
20	symmetry_se	569 non-null	float64		
21	<pre>fractal_dimension_se</pre>	569 non-null	float64		
22	radius_worst	569 non-null	float64		
23	texture_worst	569 non-null	float64		
24	perimeter_worst	569 non-null	float64		
25	area_worst	569 non-null	float64		
26	smoothness_worst	569 non-null	float64		
27	compactness_worst	569 non-null	float64		
28	concavity_worst	569 non-null	float64		
29	concave points_worst	569 non-null	float64		
30	symmetry_worst	569 non-null	float64		
31	fractal_dimension_worst	569 non-null	float64		
32	Unnamed: 32	0 non-null	float64		
dtypes: float64(31), int64(1), object(1)					

Metodologia

Pré-Processamento

- Retirada das colunas id e Unnamed
- Id não tem relação com o diagnóstico
- Unnamed tem valores indefinidos

```
[159] # Retirando a coluna de id e Unnamed
    df.drop('id',axis=1,inplace=True)
    df.drop('Unnamed: 32',axis=1,inplace=True)
```

• Trocamos M e B por 1 e 0

	<pre>df['diagnosis'] = df['diagnosis'].map({'M':1,'B':0}) df.head()</pre>					
dia	ngnosis	radius_mean	texture_mean	perimeter_mean		
0	1	17.99	10.38	122.80		
1	1	20.57	17.77	132.90		
2	1	19.69	21.25	130.00		
3	1	11.42	20.38	77.58		
4	1	20.29	14.34	135.10		
5 rows × 31 columns						

Metodologia Exploração dos dados

- Algumas variáveis tem relação direta com tumores malignos ou benignos
- À medida que compactness aumenta percebe-se mais tumores malignos
- Smoothness parece n\u00e3o influir no tipo do tumor


```
[] # Empilhando os dados
  plt.rcParams.update({'font.size': 8})
  fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(8,10))
  axes = axes.ravel()
  for idx,ax in enumerate(axes):
     ax.figure
     binwidth= (max(df[features_mean[idx]]) - min(df[features_mean[idx]]))/50
     ax.hist([dfM[features_mean[idx]],dfB[features_mean[idx]]], bins=np.arange
     ax.legend(loc='upper right')
     ax.set_title(features_mean[idx])
  plt.tight_layout()
  plt.show()

# percebe-se que quando radius, perimeter, area, compactness, concavity, concavity enquanto texture, smoothness, symmetry e fractal_dimension médios parecem namedia.
```

Metodologia Divisão e Normalização (kNN)

- Normalização dos valores no kNN, por ser um algoritmo que utiliza do cálculo de distâncias
 - Divisão de 20% dos dados para teste e 80% para treino

```
# Divisão dos dados em atributos (X) e target (Y)
X = df.drop('diagnosis', axis=1)
y = df['diagnosis']

# Divide os dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# Scale the features using StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Metodologia

Parâmetros arbitrários Modelo Acurácia padrão

kNN

96%

AS

94%

RF

94%

```
[ ] # Criação da árvore de decisão
    clf = DecisionTreeClassifier()

# treinamento do classificador com nossos dados
    clf = clf.fit(X_train,y_train)

# Predição da resposta para o dataset
    y_pred = clf.predict(X_test)

[ ] # Testando a acurácia da árvore de decisão
    print("Acurácia:",metrics.accuracy_score(y_test, y_pred))

Acurácia: 0.9385964912280702
```

```
[ ] rf = RandomForestClassifier()
    rf.fit(X_train, y_train)
    y_pred = rf.predict(X_test)
    accuracy = metrics.accuracy_score(y_test, y_pred)
    print("Acurácia:", accuracy)

Acurácia: 0.9385964912280702
```

Metodologia

Escolha de parâmetros Modelo Acurácia padrão

Método

kNN 96%

Cross-Validation

AS 94%

Mudança na profundida máxima e entropia

RF

94%

RandomizedSearchCV

kNN

Resultados

Cross Validation Score


```
[] k_values = [i for i in range (1,31)]
    scores = []

scaler = StandardScaler()
X = scaler.fit_transform(X)

for k in k_values:
    knn = KNeighborsClassifier(n_neighbors=k)
    score = cross_val_score(knn, X, y, cv=5)
    scores.append(np.mean(score))
    score_mean = (np.mean(score))*100
    print(f'Para o valor {k} de k obtemos {score_mean}% de Cross Validation Score')
```

K = 3 : 96% de Acurácia

Acurácia: 0.9824561403508771

Precisão: 1.0

Recall: 0.9487179487179487

K = 9

Resultados Árvore de decisão

entropia e max_depth variável

```
[ ] for i in range(1,11):
    # Criação da árvore de decisão
    clf = DecisionTreeClassifier(criterion="entropy", max_depth=i)

# treinamento do classificador com nossos dados
    clf = clf.fit(X_train,y_train)

# Predição da resposta para o dataset
    y_pred = clf.predict(X_test)

# Testando a acurácia
    print("Accuracy:",metrics.accuracy_score(y_test, y_pred),"para máximo de profundidade = ", i)
```

```
Accuracy: 0.868421052631579 para máximo de profundidade = 1
Accuracy: 0.868421052631579 para máximo de profundidade = 2
Accuracy: 0.9122807017543859 para máximo de profundidade = 3
Accuracy: 0.9649122807017544 para máximo de profundidade = 4
Accuracy: 0.9473684210526315 para máximo de profundidade = 5
Accuracy: 0.9473684210526315 para máximo de profundidade = 6
Accuracy: 0.9473684210526315 para máximo de profundidade = 7
Accuracy: 0.9385964912280702 para máximo de profundidade = 8
Accuracy: 0.9385964912280702 para máximo de profundidade = 9
Accuracy: 0.956140350877193 para máximo de profundidade = 10
```

max_depth = 6 e gini : 94% de Acurácia

Acurácia: 0.9649122807017544

Precisão: 1.0

Recall: 0.9047619047619048

entropia e max_depth = 4

Resultados Árvore de decisão

Resultados Árvore de decisão

Random Forest

n_estimators = 3 : 94% de Acurácia

Acurácia: 0.956140350877193

Precisão: 0.9512195121951219

Recall: 0.9285714285714286

n_estimators = 303 e max_depth = 5

Conclusões

Modelo Acurácia padrão Acurácia melhorada kNN 96% 98%

AS 94% 96,5%

RF 94% 95%

Conclusões

- Pouca diferença entre as métricas dos modelos
- kNN um pouco melhor
- Taxas muito elevadas de acurácia!

- Tamanho do dataset relativamente pequeno: 569 instâncias
- Uso de validação cruzada para teste de diferentes subconjuntos de dados
- Matriz de confusão, recall e precisão também altos
- Procura por bons hiperparâmetros
- Dataset balanceado

Sistemas Inteligentes - IF684

Prof: Adriano Lorena

Obrigado pela atenção!

Projeto Aprendizado Supervisionado