

## Cálculo Diferencial e Integral en Varias Variables I Semestre 2025



## Práctico 8 – Derivadas parciales y diferenciabilidad.

1. Calcular las derivadas parciales de cada una de las siguientes funciones f = f(x, y), especificando en cuáles puntos las derivadas existen.

$$\begin{array}{ll} ax^{\alpha} + by^{\beta} & \frac{3x}{y} + \frac{4y}{x} & x^2y^{3/2} & \arctan(xy) \\ \log\left(x + \frac{y}{x^2}\right) & e^y \operatorname{sen}(x) & \max\{|x|, |y|\} & \max\{x^2, y^3\} \end{array}$$

2. Calcular las derivadas parciales de primer y segundo orden de las siguientes funciones f = f(x, y).

(a) 
$$xy$$
 (b)  $\log(xy)$  (c)  $\sin(x^2 + y^2)$ 

- 3. Verificar que la función  $u(x,t)=e^{-a^2k^2t}\sin(kx)$  satisface la ecuación del calor:  $u_t=a^2u_{xx}$
- 4. Estudiar la continuidad de cada función y la existencia de las derivadas direccionales respectivas.

$$(a) \ f(x,y) = \left\{ \begin{array}{l} (xy)/(\sqrt{x^2 + y^2}) & \text{si } (x,y) \neq (0,0) \\ a & \text{si } (x,y) = (0,0) \end{array} \right. \\ (b) \ f(x,y) = \left\{ \begin{array}{l} (e^{xy} - 1)/x & \text{si } x \neq 0 \\ y & \text{si } x = 0 \end{array} \right. \\ (d) \ f(x,y) = \left\{ \begin{array}{l} xy \sin \frac{1}{x} \cos \frac{1}{y} & \text{si } xy \neq 0 \\ a & \text{si } xy = 0 \end{array} \right. \\ (e) \ f(x,y) = \left\{ \begin{array}{l} x^3/y & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{array} \right. \\ x^3y^2 & \text{si } y < 1 \end{array}$$

5. Consideremos  $f: \mathbb{R}^2 \to \mathbb{R}$  tal que:

$$f(x,y) = \begin{cases} 1 & \text{si } 0 < y < x^2 \\ 0 & \text{en otro caso} \end{cases}$$

Probar que exiten todas las derivadas direccionales de f en (0,0), pero sin embargo f no es continua en (0,0). En otras palabras derivar respecto a cualquier dirección no garantiza la continuidad en el punto.

6. Representar gráficamente la siguiente función  $f: \mathbb{R}^2 \to \mathbb{R}$  bosquejando las curvas de nivel.

$$f(x,y) = \begin{cases} 0 & \text{si } y \le x^2 \text{ o } 2x^2 \le y \\ |x| & \text{si } x^2 < y < 2x^2 \end{cases}$$

Demostrar que f es continua y que existen todas las derivadas direccionales en (0,0) y que, sin embargo, f no es diferenciable en dicho punto.

7. Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  la función dada por

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x} + e^{xy} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

Estudiar la continuidad y la diferenciabilidad de f en los puntos (0,0), (0,1) y (1,0), hallando, si existen, las derivadas parciales.

- 8. ¿Existe alguna función  $f: \mathbb{R}^2 \to \mathbb{R}$  de clase  $C^2$  tal que  $f_x(x,y) = e^{x+y}$  y  $f_y(x,y) = \cos(xy)$ ?
- 9. Sea  $f: \mathbb{R}^2 \mapsto \mathbb{R}$  definida como

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2} \text{ si } (x,y) \neq (0,0), \quad f(0,0) = 0$$

- a) Probar que existen derivadas parciales en todos los puntos y calcularlas.
- b) Probar que f es diferenciable.
- c) Probar que f no es de clase  $C^1$ .
- 10. Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  definida como  $f(x,y) = x^3y$ . Sean a = (0,0) y b = (1,2). Hallar  $\xi$  en el segmento [a,b] tal que  $f(b) f(a) = df(\xi)(b-a)$ .
- 11. Sean  $f: V \subset \mathbb{R}^2 \to \mathbb{R}$  y  $g: U \subset \mathbb{R}^2 \to V$ , donde f es diferenciable y g esta definida por  $g(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta))$ . Calcular  $\frac{\partial f \circ g}{\partial \rho}$  y  $\frac{\partial f \circ g}{\partial \theta}$
- 12. Se sabe que  $f: \mathbb{R}^2 \to \mathbb{R}$  verifica  $f_x(0,0) = 2$ ,  $f_y(0,0) = -1$  y que f es diferenciable en el origen. Calcular  $\frac{\partial f}{\partial v}(0,0)$  para v = (h,k) no nulo.
- 13. Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  tal que se sabe lo siguiente:
  - $f(x,1) = x^3 + x^2, \forall x \neq 0$
  - $f(0,y) = y^2 2y + 1, \forall y \in \mathbb{R}$
  - $f(x,1-x)=x, \forall x\neq 0$
  - a) Indique en qué puntos es posible hallar la derivada parcial respecto a x o respecto a y. ¿En qué puntos es posible hallar el gradiente?
  - b) Calcular la derivada direccional en (0,1) respecto a v=(1,-1)
  - c) Indique en qué puntos se puede decir algo sobre la diferenciabilidad de f.
- 14. Se sabe que  $f: \mathbb{R}^2 \to \mathbb{R}$  verifica f(x, x) = x, que f(0, y) = 0 para todo  $x, y \in \mathbb{R}$  y que f es diferenciable en el origen. Calcular  $f_x(0, 0)$ .
- 15. Calcular la matriz Jacobiana en el punto a y el diferencial  $df(a)(\Delta x, \Delta y)$  de las siguientes funciones:
  - a)  $f(x,y) = e^{x+y} + 2\sin(2x-y)$ , a = (0,0)
  - b)  $f(x,y,z) = (e^{z+x+y}, x+y+2z), \quad a = (0,1,2)$
  - c)  $f(x,y) = (e^{x+y}, \sin(2x-y), \log(1+y^2)), \quad a = (\pi, \pi)$
  - d)  $f: \mathbb{R}^p \to \mathbb{R}^q$ , en  $a \in \mathbb{R}^p$  fijo cualquiera, donde  $f(\mathbf{x}) = A\mathbf{x}$ , siendo A una matriz  $q \times p$  y  $\mathbf{x}$  se escribe como una matriz columna  $p \times 1$ .
  - e)  $f(x,y) = \langle g(x,y), h(x,y) \rangle$  donde  $g,h: \mathbb{R}^2 \to \mathbb{R}^2$  son funciones de clase  $C^1$
- 16. Hallar, en cada caso, las matrices jacobianas de  $f, g, f \circ g$  y  $g \circ f.$ 
  - a)  $f(u,v) = \left(\frac{12}{\log(u^2 + v^2)}, \arctan(u/v)\right), g(x,y) = (e^x \cos y, e^x \sin(y)).$
  - b)  $f(u,v) = (u^2 v^2, 2uv), g(x,y) = (x\cos y, x\sin y).$
  - c)  $f(u,v) = (e^u \cos v, e^u \sin v), g(x,y) = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$
- 17. En cada caso hallar la ecuación del plano tangente a la gráfica de la función en el punto P.
  - $3x^2 + 4y^2, P = (0,1)$
  - $2\cos(x-y) + 3\sin(x), P = (\pi, \pi/2)$
  - $2xy + e^{yx}x, P = (1, 1)$
- 18. Demostrar que todos los planos tangentes a la gráfica de la función f(x,y) = y h(y/x), en donde  $h: \mathbb{R} \to \mathbb{R}$  es una función diferenciable, tienen un punto en común.

## Ejercicios propuestos en evaluaciones anteriores

- 1. (*Examen diciembre 2022*) Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  una función.
  - a) Definir diferenciabilidad de f en un punto  $a = (x_0, y_0) \in \mathbb{R}^2$ .

Sea ahora  $f: \mathbb{R}^2 \to \mathbb{R}$  definida como:

$$f(x,y) = \begin{cases} \frac{x^3y + xy^3}{x^2 + y^2 + \sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- b) Calcular las derivadas parciales de f en el (0,0).
- c) Estudiar la diferenciabilidad de la función en el origen.
- 2. (Segundo parcial primer semestre 2022) De la función  $f: \mathbb{R}^2 \to \mathbb{R}$  se conoce que:
  - f es diferenciable en  $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ .
  - $f\left(\frac{\sqrt{2}}{2},t\right) = t^2 + 2t$
  - $\bullet \frac{\partial f}{\partial \vec{v}} \left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) = 0 \text{ con } \vec{v} = (1, -2)$

Si  $g(r,\theta) = (r\cos\theta, r\sin\theta)$ , calcular  $\frac{\partial (f\circ g)}{\partial \theta} \left(1, \frac{\pi}{4}\right)$ .

- 3. (*Examen febrero 2022*) Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  definida como  $f(x,y) = |x + e^{y^2}|$ . Indicar si cada una de las siguientes afirmaciones sobre f es verdadera o falsa.
  - a) f es continua en (0,0).
  - b) f no es continua en (-1,0).
  - c) f es diferenciable en (0,0) y su gradiente en ese punto es (1,0).
  - d) Existe la derivada parcial de f respecto a x en (-1,0) y vale 1.
  - e) Existe la derivada parcial de f respecto a y en (-1,0) y vale 0.
- 4. (**Examen febrero 2022**) Consideremos la siguiente función escalar sobre  $\mathbb{R}^2$ :

$$f(x,y) = \begin{cases} y\frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- a) Determinar si f es continua en el punto (0,0).
- b) Calcular, en caso de existir, todas las derivadas direccionales de f en el punto (0,0).
- c) Determinar si f es diferenciable en (0,0).
- 5. (Segundo parcial segundo semestre 2021) Sea  $g:\mathbb{R}^2 \to \mathbb{R}^2$  una función tal que g(1,1)=(1,0) y

$$J_g(1,2) = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right)$$

Si  $f: \mathbb{R}^2 \to \mathbb{R}$  está dada por  $f(x,y) = \frac{x^2 - y}{y^2 + 1}$ , indicar cuánto vale  $\frac{\partial f \circ g}{\partial x}(1,1)$ .

- 6. (Segundo parcial primer semestre 2021) Sea  $\alpha : \mathbb{R} \to \mathbb{R}^2$  una función diferenciable con  $\alpha(0) = (0,0)$ , y  $f : \mathbb{R}^2 \to \mathbb{R}^2$  la función dada por  $f(x,y) = (e^{x+y}, e^{x-y})$ . Sabiendo que  $(f \circ \alpha)'(0) = (2,0)$ , calcular el jacobiano de  $\alpha$  en 0.
- 7. (**Segundo parcial primer semestre 2019**) Sea  $f: \mathbb{R}^2 \to \mathbb{R}$  la función dada por:

$$f(x,y) = \begin{cases} y - x, & \text{si } y \ge x \\ \frac{2x^3y}{x^2 + y^2} + y - x, & \text{si } y < x \end{cases}$$

- a) Calcular  $\frac{\partial f}{\partial x}$  y  $\frac{\partial f}{\partial y}$  en (0,0).
- b) Mostrar que la función f es diferenciable en (0,0).
- c) Hallar el plano tangente al gráfico de f en el punto (0,0).

## Ejercicios complementarios

- 1. Calcular en un punto genérico los planos tangentes a:
  - a) La Esfera
  - b) El Cono
  - c) El Cilindro
  - d) El Paraboloide
- 2. La ecuación de Van der Waals para n moles de un gas está dada por:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

donde R es la constante universal del gas y a y b son constantes positivas características de un gas en particular. Calcular  $\frac{\partial T}{\partial V}$ ,  $\frac{\partial T}{\partial P}$ 

3. Se muestran las curvas de nivel para una función f. Determine si las derivadas parciales tienen signo negativo o positivo en el punto J, asumiendo que no se anulan.



4. Demuestre que las siguientes funciones verifican la ecuación de la onda  $u_{tt} = au_{xx}$ 

- $a) u = \sin(kx)\cos(akt)$
- b)  $u = (x at)^6 + (x + at)^6$
- c)  $u = \frac{t}{a^2 t^2 x^2}$
- 5. a) Sea  $T: \mathbb{R}^n \to \mathbb{R}$  una transformación lineal. Hallar  $\partial_i T$  para  $i = 1, \dots, n$ .
  - b) Sea A una matriz simétrica  $n \times n$  y  $Q \colon \mathbb{R}^n \to \mathbb{R}$  la función dada por  $Q(x) = x^t A x$ , esto es,  $Q(x_1, \dots, x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j$ , si  $A = (a_{ij})_{i,j=1}^n$ . Hallar  $\partial_i Q$  para  $i = 1, \dots, n$ .
  - c) Sea  $T: \mathbb{R}^n \to \mathbb{R}^n$  una transformación lineal y  $f: \mathbb{R}^n \to \mathbb{R}$  la función  $f(x) = \langle x, T(x) \rangle$ . Hallar la derivada direccional  $\partial f/\partial u$  para todo versor  $u \in \mathbb{R}^n$ .