

Figure 1: Re-construction losses of MAE pre-training ViT-Large on ImageNet-1K. The number in bracket in the legend is the validation accuracy (%) after fine-tuning. ESWP achieves lossless acceleration over Baseline (no data selection), and consistently outperforms previous SOTA method InfoBatch.

	Baseline	InfoBatch	ESWP (r=0.3)	ESWP (r=0.5)
Time(h)	48.1	37.6	35.1	27.1
Time saved(%)	_	21.8	27.0	44.7
Acc.(%)	84.9	84.6	84.9	84.6

Table 1: Comparisons of pre-training time and fine-tuning accuracy (Table 6 updated)

	Baseline	Random	ES	ESWP
CIFAR-100 (clean), ResNet-50	81.1	$ 80.4_{\downarrow 0.7}, 29\%$	81.1 _{\(\frac{1}{0}.0\)}	$11\% \mid 80.6_{\downarrow 0.5}, 31\%$
CIFAR-100 (40% noise), ResNet-50 \mid	51.1	$ 52.9_{\uparrow 1.8}, 20\%$	$ 60.1_{\uparrow 9.0},$	$16\% \mid 58.7_{\uparrow 7.6}, \ 25\%$
CoLA, BERT-Base	55.0	$ 53.9_{\downarrow 1.1}, 18\%$	$ {f 56.2}_{ightarrow 1.2},$	$16\% \mid 54.7_{\downarrow 0.3}, \ 24\%$
SST-2, BERT-Base	91.9	$91.7_{\downarrow 0.2}, 20\%$	92.0 _{↑0.1} ,	$15\% \mid 92.3_{\uparrow 0.4}, \ 24\%$

Table 2: Accuracy (%) and Time-Saved of ResNet-50 on CIFAR-100. Here Random renders Baseline with random data pruning, and its performance is consistently worse than ESWP under the same amount of computation time saving.

References

Truong Thao Nguyen, Balazs Gerofi, Edgar Josafat Martinez-Noriega, François Trahay, and Mohamed Wahib. KAKURENBO: Adaptively hiding samples in deep neural network training. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, *Advances in Neural Information Processing Systems*, volume 36, pages 37900–37922. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/7712b1075f5e0eae297702845714098f-Paper-Conference.pdf.

Figure 2: Visualization of the number of selected samples for BP of each class in ESWP (ResNet-50, Cifar-100), following Figure 6 in Thao Nguyen et al. [2023]. The figure shows the result of the first 50 classes. The number on top of each column shows the rank over 100 classes (a lower number indicates a higher number of selected samples). This indicates that ES(WP) can automatically select samples in different training stages.