$f[x_{-}] := x^3 - 5 * x + 1$ NewtonR[0.5, 5, f]

k	xk	f[xk]
0	0.5	-1.375
1	0.1764705882	0.1231426827
2	0.2015680743	0.0003492763989
3	0.2016396751	$3.100484314 \times 10^{-9}$
4	0.2016396757	$\textbf{1.110223025}\!\times\!\textbf{10}^{-16}$
5	0.2016396757	$\textbf{1.110223025} \!\times\! \textbf{10}^{-16}$

Root after 5 iteration xk=0.2016396757

Function value at approximated root, $f[xk]=1.110223025\times10^{-16}$

Question 2:

k	xk	f[xk]
0	2	_ 9
1	2.75	3.796875
2	2.582644628	0.2263772599
3	2.571331512	0.0009901837441
4	2.571281592	$1.922353121 \times 10^{-8}$

Root after 4 iteration xk=2.571281592

Function value at approximated root, $f[xk] = 1.922353121 \times 10^{-8}$

Question 3:

$$ln[\circ]:= f[x_{-}] := x^3 + 2 * x^2 - 3 * x - 1$$

NewtonR[-3, 4, f]
Plot[f[x], {x, -5, 5}]

k	xk	f[xk]
0	-3	-1
1	-2.916666667	-0.04803240741
2	-2.912241416	-0.0001320975296
3	-2.912229179	$-1.008864103 \times 10^{-9}$
4	-2.912229178	0.

Root after 4 iteration xk=-2.912229178

Function value at approximated root, f[xk] = 0.

