Feedback Control System Design

ICT 41205 Digital Control Systems

Nimal Skandhakumar

Faculty of Technology
University of Sri Jayewardenepura

Types of Control Systems

Open loop:

- The output variables do not affect the input variables
- The system will follow the desired reference commands if no unpredictable effects occur
- It can compensate for disturbances that are taken into account
- It does not change the system stability

Types of Control Systems

Closed loop/Feedback:

- The output variables do affect the input variables in order to maintain a desired system behaviour
- Requires measurement (controlled variables or other variables)
- Requires control errors computed as the difference between the controlled variable and the reference command
- Computes control inputs based on the control errors such that the control error is minimized
- Able to reject the effect of disturbances
- Can make the system unstable, where the controlled variables grow without bound

A Hitting the Wall Example

- A simple robot that moves forward when turned on.
- Task: Move from initial position to destination 1 meter from wall
- Q? Give two control strategies, feed-forward and feedback.

Overview of Closed Loop Control Systems

PID Control

 Dynamic Systems controlled with a three term compensator known as PID:

- P Proportional Control
- I Integral Control
- D Derivative Control

Command

PID Control

- $u(t) = K_p e(t) + K_i \int e(t) dt + K_d e(t)$
 - u(t) control input
 - e(t) error
 - K_p proportional gain

PID Control

Parameters	Advantage	Limitation
K_p	Adjustment of Controller output	May cause instability
K_i	Produces zero steady state error	Slow dynamic Response and Instability
K_d	Provides rapid system response	Sensitive to Noise and non-zero offset

- P-I-D can be independently applied based on the nature of controller
 - P controller
 - PI controller
 - PD controller
 - PID controller

Proportional (P) Controller

- Multiplies the error by the proportional gain value ${\it K}_p$ to get the controller output
- Advantages
 - Easy to implement
 - Less computation needed
- Disadvantages
 - Oscillations in output may be present
 - Increases maximum overshoot

Proportional Integral (PI) Controller

- Multiplies the error by the proportional gain value K_p and adds the integral of error to the proportional term.
- Advantages
 - Integral term makes sure steady state error is zero
 - Can return the controlled variable back to the exact set point
- Disadvantages
 - Requires timer to keep track of time
 - Responds slowly towards the produced error

Proportional Derivative (PD) Controller

- Multiplies the error by the proportional gain value K_p and adds the derivative of error to the proportional term.
- Advantages
 - Minimises the maximum overshoot
 - Fast response, improves the transient response of the system
- Disadvantages
 - Steady state error cannot be guarantied to be zero
 - Amplifies the noise signals produced in the system

PID Controller

- Combines the advantages of all of P-I-D
- Advantages
 - No steady state error
 - Low maximum overshoot
- Disadvantages
 - Difficult to implement
 - Gain tuning is a difficult task

Further Learning

Reading:

- http://www.pacontrol.com/download/Proportional-Integral-Derivative-PID-Controls.pdf
- http://www.ece.uvic.ca/~agullive/trans/D p1-20.pdf

Videos:

- https://www.youtube.com/watch?v=UR0hOmjaHp0 (Intro)
- https://www.youtube.com/watch?v=XfAt6hNV8XM (Examples)
- https://www.youtube.com/watch?v=wkfEZmsQqiA (Fundamentals)

Math

https://www.youtube.com/watch?v=JEpWITI95Tw

• Demo:

- https://www.youtube.com/watch?v=fusr9eTceEo
- https://sites.google.com/site/fpgaandco/pid

Lead-lag Compensator

- Lead-lag compensators come from the days when control engineers cared about constructing controllers from networks of op amps using frequency-phase methods.
 - These days pretty much everybody uses PID, but you should at least know what the heck they are in case someone asks.
- Compensating networks are applied to the system in the form of feed forward path gain adjustment.
 - Compensate an unstable system to make it stable
 - Used to minimise overshoot
 - Increase the steady state accuracy of the system

Lead-lag Compensator

https://youtu.be/xLhvil5sDcU?t=168