卒業論文

Reservoir Computer による 外力付きカオス時系列予測と 生体リズム研究への応用

03-210599 **久野** 証 指導教員 郡宏教授

2024年2月

東京大学工学部計数工学科数理情報工学コース

Copyright © 2024, Sho Kuno.

概要

ここに概要を書く.

目次

第1章	はじめに	1
1.1	背景	1
1.2	本書の構成	1
第2章	前提知識	2
2.1	生体リズム研究	2
2.2	力学系	2
2.3	Reservoir Computer	2
2.4	先行研究	2
第3章	手法	3
3.1	数値シミュレーション	3
3.2	学習空間の測定	3
3.3	教師データ付き学習と Hyperparameters の最適化	3
3.4	短期的未来予測と統計量の取得	3
第4章	結果	4
4.1	Van Der Pol モデル	4
4.2	Rössler モデル	4
第5章	議論	5
謝辞		7
参考文献		8
付録 A	Hyperparameters の設定値	9
A.1	Van Der Pol モデル	9
A.2	Rössler モデル	S

第1章

はじめに

- 1.1 背景
- 1.2 本書の構成

第2章

前提知識

- 2.1 生体リズム研究
- 2.2 力学系
- 2.2.1 Van Der Pol モデル

$$\frac{d^2x}{dt^2} - \mu \left(1 - x^2\right) \frac{dx}{dt} + x = 0$$

- 2.2.2 Rössler モデル
- 2.3 Reservoir Computer
- 2.4 先行研究

第3章

手法

- 3.1 数値シミュレーション
- 3.1.1 **外力付き** Van Der Pol モデル

$$\begin{cases} \frac{dx}{dt} = y\\ \frac{dy}{dt} = \mu(1 - x^2)y - x + P(x) \end{cases}$$

- 3.1.2 **外力付き** Rössler モデル
- 3.2 学習空間の測定
- 3.3 教師データ付き学習と Hyperparameters の最適化
- 3.4 短期的未来予測と統計量の取得

第4章

結果

- 4.1 Van Der Pol モデル
- 4.2 Rössler モデル

第5章

議論

6 第5章 議論

[1]

謝辞

参考文献

[1] Francisco A. Rodrigues, Thomas K. DM. Peron, Peng Ji, and Jurgen Kurths. The kuramoto model in complex networks. Physics Reports, 610:1–98, 2016.

付録 A

Hyperparameters の設定値

- A.1 Van Der Pol モデル
- A.2 Rössler モデル