Le changement de base et ses applications

Olivier Nicole

31 mars 2021

- 1 Comment trouver les coordonnées d'un vecteur dans une autre base?
- 2 Comment parler de la matrice d'un endomorphisme dans une autre base?

Définition 1 – Matrice de passage

Soit E un espace vectoriel de dimension finie n. Soient $e = (e_1, \ldots, e_n)$ et $e' = (e'_1, \ldots, e'_n)$ deux bases de E. On appelle matrice de passage de e dans e', notée $P_e^{e'}$, la matrice dont la i-ème colonne contient les coordonnées de e'_i dans la base e.

Si X est une matrice colonne contenant les coordonnées de $x \in E$ dans la base e', alors $P_e^{e'}X$ contient les coordonnées de x dans la base e.

Soit E un \mathbb{K} -espace vectoriel et e et e' deux bases de E. La matrice $P_{e'}^e$ est inversible et son inverse est $P_{e}^{e'}$.

$$\left(\textit{P}_{\textit{e}'}^{\textit{e}}\right)^{-1} = \textit{P}_{\textit{e}}^{\textit{e}'}$$

Comment trouver la matrice d'un endomorphisme dans une autre base?

Proposition 3

Soit $\varphi\in\mathcal{L}(\mathsf{E})$. Soit A la matrice de φ dans la base e. La matrice de φ dans e' est :

$$(P_e^{e'})^{-1}AP_e^{e'}$$

Un type de matrice simple

Définition 2

Une matrice diagonale est une matrice dont seuls les éléments sur la diagonales sont éventuellement non nuls. C'est à dire qu'elles sont de la forme

$$\begin{pmatrix} d_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & d_n \end{pmatrix}$$

Corollaire 1

$$\begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_n \end{pmatrix}^k = \begin{pmatrix} d_1^k & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_n^k \end{pmatrix}$$

Exemple 1

Considérons la symétrie dont l'axe est porté par le vecteur (2,1). Pouvez-vous trouver une base dans laquelle sa matrice est particulièrement simple? Pouvez-vous trouver sa matrice dans la base canonique?

On a fait:

base bien adaptée \rightarrow base canonique

Comment faire l'inverse?

Définition 3

On dit qu'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable si on peut la tranformer en matrice diagonale par changement de base.

C'est-à-dire s'il existe $P \in \mathcal{M}_n(\mathbb{K})$ inversible telle que

$$P^{-1}AP$$

est diagonale.

Soit A, une matrice diagonalisable, D une matrice diagonale et P une inversible telle que $A = PDP^{-1}$. On a

$$\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$$

Définition 4 - Valeur propre d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe un vecteur x non nul tel que

$$u(x) = \lambda \cdot x$$

Définition 5 - Valeur propre d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de A s'il existe une matrice colonne $x \in \mathcal{M}_{1,n}(\mathbb{K})$ non nulle tel que

$$Ax = \lambda x$$

Définition 6 – Vecteur propre d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. On dit que $x \in E \setminus \{0\}$ est un vecteur propre de u s'il existe un scalaire $\lambda \in \mathbb{K}$ tel que

$$u(x) = \lambda \cdot x$$

On dit que x est un vecteur propre associé à λ .

Si on trouve une base constituée de vecteurs propres, la matrice de u dans cette base est diagonale.

Définition 7 – Vecteur propre d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que $x\mathcal{M}_{1,n}(\mathbb{K}) \setminus \{0\}$ est un vecteur propre de A s'il existe un scalaire $\lambda \in \mathbb{K}$ tel que

$$Ax = \lambda x$$

On dit que x est un vecteur propre associé à λ .

Définition 8 – Polynôme caractéristique d'une matrice 2×2

Soit

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

une matrice à valeurs dans \mathbb{K} . On appelle polynôme caractéristique de A le polynôme :

$$(a-x)(d-x)-bc$$

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Pour tout $\lambda \in \mathbb{K}$, λ est valeur propre de A si et seulement si A est racine du polynôme caractéristique de A.

Théorème 2

Soit $A \in \mathcal{M}_2(\mathbb{K})$. Si le polynôme caractéristique de A possède deux racines distinctes, alors A est diagonalisable.

Méthode:

- 1 Résoudre le polynôme caractéristique et trouver les valeurs propres
- Trouver 2 vecteurs propres en résolvant le système $AX = \lambda X$ pour chaque valeur propre.

Exemple 2

La suite de FIBONACCI est définie par

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ u_{n+2} = u_{n+1} + u_n \end{cases}$$

Trouver le terme général de cette suite.

On va exprimer le problème en termes de matrices.

Remarque : cette technique fonctionne pour toute suite récurrente linéaire.

Conclusion

- On peut calculer la matrice d'un endomorphisme dans différentes bases.
- Dans une base bien choisie, la matrice d'un endomorphisme peut être plus simple (par exemple diagonale).
- On aime bien les matrices diagonales pour faire des calculs.
- En suivant une méthode, on peut diagonaliser certaines matrices.
- Pour diagonaliser une matrice $n \times n$, il faut résoudre un polynôme de degré n.