EXERCISES FOR LANDSBERG'S TENORS LECTURES

J. M. LANDSBERG

Refer to the notes for definitions and terminology.

- (1) As a trilinear map, $M_{\langle \mathbf{n} \rangle}(X, Y, Z) = \operatorname{trace}(XYZ)$.
- (2) $M_{\langle \mathbf{n} \rangle}^{\boxtimes N} = M_{\langle n^N \rangle}$.
- (3) $\underline{\mathbf{R}}(T^{\boxtimes N}) \leq \underline{\mathbf{R}}(T)^N$. More generally, let $M_{\langle \ell, \mathbf{m}, \mathbf{n} \rangle}$ denote the rectangular matrix multiplication tensor. Show $M_{\langle \ell, \mathbf{m}, \mathbf{n} \rangle} \boxtimes M_{\langle \ell', \mathbf{m'}, \mathbf{n'} \rangle} = M_{\langle \ell\ell', \mathbf{mm'}, \mathbf{nn'} \rangle}$.
- (4) Show that the exponent of matrix multiplication $\omega = 2$ iff $\mathbf{R}(M_{\langle \mathbf{n} \rangle}) = n$ for any $n \geq 2$ iff $\mathbf{R}(M_{\langle \mathbf{n} \rangle}) = n \,\forall n \geq 2$
- (5) If $T \supseteq S$, then $\underline{\mathbf{R}}(T) \ge \underline{\mathbf{R}}(S)$.
- (6) Strassen's equations are, for all $\alpha, \alpha_1, \alpha_2 \in A^*$,

$$[T(\alpha_1)T(\alpha)^{cof}, T(\alpha_2)T(\alpha)^{cof}] = 0$$

where [X,Y] = XY - YX is commutator. These are equations of degree 2m = 1 + (m-1) + 1 + (m-1). Show that there are equivalent equations of degree m+1.

- (7) Show that the tensor $a_1 \otimes b_2 \otimes c_2 + a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1$ is a sum x' + x'' of tangent vector and second derivative of a curve at a point of the Segre.
- (8) Show that the tensor $a_2 \otimes b_1 \otimes c_2 + a_2 \otimes b_2 \otimes c_1 + a_1 \otimes b_1 \otimes c_3 + a_1 \otimes b_3 \otimes c_1 + a_3 \otimes b_1 \otimes c_1$ is the sum of two tangent vectors at two distinct points that lie on a line on Segre

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843-3368, USA Email address, J.M. Landsberg: jml@math.tamu.edu