FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Grafos e suas representações

SUMÁRIO

- Definições de Grafos
- > Terminologias
- > Aplicações
- > Representação Computacional

Um grafo é um conjunto não vazio de nós (vértices) e um conjunto de arcos (arestas), tais que cada arco conecta dois nós.

Um grafo é uma tripla ordenada (N, A, g), em que:

N: conjunto não vazio de nós (vértices)

A: conjunto de arcos (arestas)

g: função que associa cada arco a um par não ordenado x-y de nós, chamados de extremidades de a.

Exemplo:

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$g(a_1)=1-2$$

$$g(a_2)=1-3$$

$$g(a_3)=3-4$$

$$g(a_4)=3-4$$

$$g(a_5)=4-5$$

$$g(a_5)=4-5$$

 $g(a_6)=5-5$

Um grafo direcionado (dígrafo) é uma tripla ordenada (N, A, g), em que

N: conjunto não vazio de nós

A: conjunto de arcos

g: uma função que associa a cada arco um par ordenado (x, y) de nós, em que x é o ponto inicial (extremidade inicial) e y é o ponto final (extremidade final) de a.

Exemplo:

$$N=\{1,2,3,4,5\}$$

$$A=\{(1,2),(1,3),(3,4),(4,3),\\ (4,5),(5,5)\}$$

$$A=\{a_1,a_2,a_3,a_4,a_5,a_6\}$$

$$g(a_1)=(1,2)$$

$$g(a_2)=(1,3)$$

$$g(a_3)=(3,4)$$

$$g(a_4)=(4,3)$$

$$g(a_5)=(4,5)$$

$$g(a_6)=(5,5)$$

O grau de um nó é o número de extremidades de arcos naquele nó

(Grau de entrada, Grau de saída)

Um grafo completo é um grafo simples no qual dois nós distintos quaisquer são adjacentes.

Subgrafo: conjunto de nós e arcos que são subconjuntos do grafo original, ondes as extremidades de um arco têm que ser os mesmos nós que no grafo original.

Um caminho do nó n_0 para o nó n_k é uma sequência n_0 , a_0 , n_1 , a_1 , ..., n_{k-1} , a_{k-1} , n_k

1,{1,3},3,{3,4},4,{4,5},5 1,{1,3},3,{3,4},4,{4,1},1,{1,3},3,{3,4},4,{4,5},5 comprimento: 3

Grafo conexo: Há um caminho de qualquer nó para qualquer outro.

Conexo

Não conexo

Ciclo: caminho de algum nó n_0 para ele mesmo tal que nenhum arco aparece mais de uma vez, exceto por n_0 nas extremidades.

Acíclico: grafo sem ciclos.

Nós e arcos podem ser repetidos em um caminho, mas não, com exceção do nó n_0 , em um ciclo.

1,{1,3},3,{3,4},4,{4,1},1,{1,3},3,{3,4},4,{4,5},5

Grafo bipartido completo: nós podem ser divididos em dois conjuntos disjuntos não vazios N1 e N2 tais que dois nós são adjacentes se, e somente se, um deles pertencer a N1 e o outro pertencer a N2.

Se |N1| = m e |N2| = n; K_{m,n}

Aplicações

Aplicações

Aplicações

Matriz de Adjacência A_{nxn} : $a_{ij} = p$, se existirem p arcos entre n_i e n_j .

Matriz de Adjacência A_{nxn} : $a_{ij} = p$, se existirem p arcos de n_i para n_j .

Lista de Adjacência:

Lista de Adjacência:

	Nó	Peso	Ponteiro	
1			5	
2			6	
3 4			8	
4			0	
20 2 10 10 10 40 40				

Nó	Peso	Ponteiro
3	30	0
1	20	7
2	10	0
1	10	9
4	40	0

Os conceitos e exemplos apresentados nesses slides são baseados no conteúdo da seção 6.1 do material-base "Fundamentos Matemáticos para a Ciência da Computação", J.L. Gersting, 7a edição, LTC editora.

FUNDAMENTOS MATEMÁTICOS PARA COMPUTAÇÃO

Grafos e suas representações