Homework 3 Colorado CSCI 5654

Alex Book

February 25, 2022

Note: All code for this assignment (namely, problems 1, 3c, and 4) can be found here.

Problem 1

(A)

1.

solution: $x_1 = 2$, $x_2 = -8$, $x_3 = 4$, $w_1 = -7$, $w_2 = -3$, $w_3 = 2$ objective row: $16 + 0x_4 - 6x_5 + 0x_6 - 3w_4 - 2w_5 - 4w_6$ objective value: 16

2.

solution: $x_1 = -1, x_2 = -4, x_5 = 0, w_3 = -2, w_5 = 7, w_6 = -3$ objective row: $14 + 4x_3 - 6x_4 - 6x_6 + 2w_1 + 0w_2 - 5w_4$ objective value: 14

3.

solution: $x_1 = -1, x_2 = -6, x_6 = 2, w_4 = -4, w_5 = 5, w_6 = -1$ objective row: $22 - 5x_3 - 6x_4 - 5x_5 - 3w_1 + 5w_2 + 4w_3$ objective value: 22

(B)

1.

constant column: $[2\ 6\ 4\ 3\ 9\ 0]^T$ objective row: $-8-2x_1-4x_2+4x_6-2w_3+1w_4+0w_5$

2.

entering variable: x_6

3.

column corresponding to entering variable: $[\text{-}1\ \text{-}2\ 0\ 1\ \text{-}2\ \text{-}1]^T$

4.

leaving variable: w_6

5.

basic variable in the next dictionary: $\{x_3, x_4, x_5, w_1, w_2, x_6\}$

(C)

 $x = [0 \ 0 \ 0 \ 0 \ 1 \ 4]$

$$w_{1} = 3 - x_{1} + x_{2} + x_{6} = 7$$

$$w_{2} = -1 - x_{1} + x_{4} + x_{5} = 0$$

$$w_{3} = -2 + x_{3} + x_{6} = 2$$

$$w_{4} = 4 + x_{2} + x_{3} - x_{4} - x_{6} = 0$$

$$w_{5} = 6 - x_{1} - x_{3} - x_{5} - x_{6} = 1$$

$$w_{6} = -2 + x_{1} + x_{4} - x_{5} + x_{6} = 1$$

basic variables: $x_5, x_6, w_1, w_3, w_5, w_6$ non-basic variables: $x_1, x_2, x_3, x_4, w_2, w_4$

complete final dictionary:

Problem 2

$$\max c^T x$$

s.t. $Ax \le b$

 \downarrow replace x with the difference of two positive numbers x^+ and x^-

$$\max c^{T}(x^{+} - x^{-})$$
s.t. $A(x^{+} - x^{-}) \le b$

$$x^{+}, x^{-} \ge 0$$

 \downarrow use block matrices

$$\max \begin{bmatrix} c & -c \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix}$$
s.t.
$$\begin{bmatrix} A & -A \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} \le b$$

$$\begin{bmatrix} x^+ \\ x^- \end{bmatrix} \ge \bar{0}$$

 \downarrow primal to dual as shown in class

$$\min\,b^{\rm T}y$$

s.t.
$$\begin{bmatrix} A & -A \end{bmatrix}^{\mathrm{T}} y \ge \begin{bmatrix} c \\ -c \end{bmatrix}$$

 $y \ge 0$

$$\downarrow$$

$$\min \, b^{\rm T} y$$

s.t.
$$A^{\mathrm{T}}y \ge c$$

 $-A^{\mathrm{T}}y \ge -c$
 $y > 0$

 \downarrow

$$\min \, b^{\mathrm{T}} y$$

s.t.
$$A^{\mathrm{T}}y = c$$

4

$$y \ge 0$$

Problem 3

(A)

First we certify that the primal and dual solutions are feasible and dual-feasible, respectively. **Primal:**

$$x_1 - 2x_2 + x_3 = 0 \le 0$$

$$x_1 + 2x_3 = 3 \le 3$$

$$-x_1 + x_2 = -1.5 \le 0$$

$$2x_2 + x_3 = 3 \le 3$$

$$x_1 + x_3 = 3 \le 5$$

$$x_1, x_2, x_3 = 3, 1.5, 0 \ge 0$$

Dual:

$$\min 3y_2 + 3y_4 + 5y_5$$
s.t. $y_1 + y_2 - y_3 + y_5 \ge 3$

$$-2y_1 + y_3 + 2y_4 \ge 4$$

$$y_1 + 2y_2 + y_4 + y_5 \ge -1$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

$$y_1 + y_2 - y_3 + y_5 = 3 \ge 3$$
$$-2y_1 + y_3 + 2y_4 = 4 \ge 4$$
$$y_1 + 2y_2 + y_4 + y_5 = 8 \ge -1$$
$$y_1, y_2, y_3, y_4, y_5 = 3, 0, 0, 5, 0 \ge 0$$

All constraints are satisfied, so the solutions are feasible. The strong duality theorem tells us that if the primal has an optimal solution x then there exists a dual-feasible (and optimal) y such that $c^{T}x = b^{T}y$.

$$c^{\mathrm{T}}x = 3(3) + 4(1.5) - 1(0) = 15$$

 $b^{\mathrm{T}}y = 0(3) + 3(0) + 0(0) + 3(5) + 5(0) = 15$

Therefore, x is optimal with the corresponding dual solution y. \square

(B)

The non-zero values in the primal solution tell us that x_1 and x_2 must both be basic variables. The non-zero values in the dual solution tell us that y_1 and y_4 must both be basic variables. We let w and p be the slack variables for the primal and dual, respectively. Complementary slackness tells us that w_2 , w_3 , w_5 , and p_3 must also be basic variables. All other variables $(x_3, w_1, w_4, y_2, y_3, y_5, p_1, \text{ and } p_2)$ must be non-basic.

Primal

Basic: $\{x_1, x_2, w_2, w_3, w_5\}$ Non-basic: $\{x_3, w_1, w_4\}$

Dual

Basic: $\{y_1, y_4, p_3\}$

Non-basic: $\{y_2, y_3, y_5, p_1, p_2\}$

(C)

For the final dictionary to be feasible, the constant column must remain non-negative $(A_B^{-1}(b+\Delta b) \ge 0)$. With the basis $\{x_1, x_2, w_2, w_3, w_5\}$, we can find:

$$A_{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & .5 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & .5 & 0 \\ -1 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$A_{B}^{-1}(b + \Delta b) \geq 0 \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & .5 & 0 \\ -1 & 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & .5 & 0 \\ -1 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 + t \\ 5 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3+t \\ .5(3+t) \\ 3-(3+t) \\ .5(3+t) \\ .5(3+t) \\ -(3+t)+5 \end{bmatrix} \geq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} t \\ t \\ -t \\ t \\ t \end{bmatrix} \geq \begin{bmatrix} -3 \\ -3 \\ 0 \\ -3 \\ 2 \end{bmatrix}$$

Therefore we have that $-3 \le t \le 0$.

From lecture, we have $z'=z^*+\Delta by^*$. $z^*=15,\ \Delta b=[0\ 0\ 0\ t\ 0]^{\rm T},\ y^*=[3\ 0\ 0\ 5\ 0].$ Therefore, $z'=z^*+\Delta by^*=15+5t.$

Problem 4

Vertex	Constraints Saturated	Degenerate?
(0, 0, 0)	$\{1, 2, 3, 4\}$	yes
(0, 2, 0)	$\{2, 4, 7, 8\}$	yes
(1, 1, -2)	${3, 4, 5, 8}$	yes
(1, 1, 2)	$\{1, 2, 6, 7\}$	yes
(2, 0, 0)	$\{1, 3, 5, 6\}$	yes
(2, 2, 0)	$\{5, 6, 7, 8\}$	yes