

pairwise comaximal ideals property

Canonical name PairwiseComaximalIdealsProperty

Date of creation 2013-03-22 16:53:34 Last modified on 2013-03-22 16:53:34 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 9

Author polarbear (3475)

Entry type Result Classification msc 16D25 **Proposition 1.** Let R be a commutative ring with unity. For every pairwise comaximal ideals $I_1, I_2, ..., I_n$, the following holds:

$$I_1 \cap I_2 \cap ... \cap I_n = I_1 I_2 ... I_n.$$
 (1)

Proof. We prove by induction on n. For n = 2, $I_1 + I_2 = R$ implies:

$$I_1 \cap I_2 = R(I_1 \cap I_2) = (I_1 + I_2)(I_1 \cap I_2) \subseteq I_1 I_2.$$
 (2)

The converse inclusion is trivial. Assume now that the equality holds for $n \geq 2$: $J := I_1 \cap I_2 \cap ... \cap I_n = I_1 I_2 ... I_n$. Since $I_{n+1} + I_j = R$, for every $j \neq n+1$, there exist the elements $a_j \in I_j$ and $b_j \in I_{n+1}$ such that $a_j + b_j = 1$. The product $c := \prod_{j=1}^n a_j = \prod_{j=1}^n (1-b_j) \in 1 + I_{n+1}$. Also $c \in J$, then $1 \in J + I_{n+1}$ or $J + I_{n+1} = R$.

Applying the case 2, the induction step is satisfied:

$$I_1I_2...I_{n+1} = JI_{n+1} = J \cap I_{n+1} = I_1 \cap I_2 \cap ... \cap I_n \cap I_{n+1}.$$
 (3)