```
import pandas as pd
          import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
          from jupyterthemes import jtplot
         jtplot.style(theme='onedork')
         sns.set(style='white')
         df = pd.read_csv('./KaggleV2-May-2016.csv')
         df.head()
Out[2]:
               PatientId AppointmentID Gender ScheduledDay AppointmentDay Age Neighbourhood 5
                                                     2016-04-
                                                                     2016-04-
                                                                                        JARDIM DA
         0 2.987250e+13
                               5642903
                                                                                62
                                                                  29T00:00:00Z
                                                 29T18:38:08Z
                                                                                           PENHA
                                                     2016-04-
                                                                     2016-04-
                                                                                        JARDIM DA
           5.589980e+14
                               5642503
                                                                                56
                                            M
                                                 29T16:08:27Z
                                                                  29T00:00:00Z
                                                                                           PENHA
                                                     2016-04-
                                                                     2016-04-
           4.262960e+12
                               5642549
                                                                                62
                                                                                    MATA DA PRAIA
                                                 29T16:19:04Z
                                                                  29T00:00:00Z
                                                     2016-04-
                                                                     2016-04-
                                                                                        PONTAL DE
           8.679510e+11
                               5642828
                                                 29T17:29:31Z
                                                                  29T00:00:00Z
                                                                                         CAMBURI
                                                                                        JARDIM DA
                                                     2016-04-
                                                                     2016-04-
           8.841190e+12
                               5642494
                                                                                56
                                                 29T16:07:23Z
                                                                  29T00:00:00Z
                                                                                           PENHA
         df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 110527 entries, 0 to 110526
        Data columns (total 17 columns):
         #
              Column
                                Non-Null Count
                                                  Dtype
         0
              Patientld
                                 110527 non-null
                                                  float64
              AppointmentID
                                 110527 non-null
                                                   int64
          1
         2
              Gender
                                 110527 non-null
                                                  object
                                 110527 non-null
         3
              ScheduledDay
                                                  object
                                 110527 non-null
          4
              AppointmentDay
                                                  object
         5
                                 110527 non-null
              Age
                                                  int64
         6
                                 110527 non-null
              Neighbourhood
                                                  object
          7
              Scholarship
                                 110527 non-null
                                                  int64
         8
             Hipertension
                                 110527 non-null
                                                  int64
                                 110527 non-null
              Diabetes
                                                  int64
                                 110527 non-null
          10
             Alcoholism
                                                  int64
                                 110527 non-null
          11
             Handcap
                                                  int64
                                 110527 non-null
          12
             SMS_received
                                                  int64
                                 110527 non-null
          13
             No-show
                                                  object
                                 110527 non-null
             ScheduledDay.1
                                                  object
             AppointmentDay.1
                                110527 non-null
          15
                                                  object
                                 110527 non-null
          16 watingday
                                                  object
        dtypes: float64(1), int64(8), object(8)
        memory usage: 14.3+ MB
         # 데이터 중복 여부 확인
In [4]:
         df.duplicated().sum()
Out[4]: 0
         # 데이터 null값 확인
         print(df.isnull().sum())
```

```
print('-'*30)
 print(df.nunique())
PatientId
AppointmentID
                    0
Gender
                    0
ScheduledDay
                    0
AppointmentDay
                    0
                    0
Neighbourhood
                    0
Scholarship
                    0
Hipertension
                    0
Diabetes
                    0
Alcoholism
                    0
Handcap
                    0
SMS_received
                    0
No-show
                    0
ScheduledDay.1
                    0
AppointmentDay.1
                    0
watingday
                    0
dtype: int64
PatientId
                     61744
AppointmentID
                    110527
Gender
ScheduledDay
                    103549
AppointmentDay
                        27
Aae
                       104
Neighbourhood
                        81
Scholarship
                         2
Hipertension
                         2
Diabetes
                         2
Alcoholism
                         2
Handcap
                         5
SMS_received
                         2
No-show
                         2
ScheduledDav.1
                       111
AppointmentDay.1
                        27
watingday
                       131
dtype: int64
#df['No-show'].replace("Yes", 1, inplace=True) 글자인식으로 인해 밑으로 이동
 #df['No-show'].replace("No", 0, inplace=True) 글자인식으로 인해 밑으로 이동
 df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay']).dt.date.astype('datetime64[ns
 df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay']).dt.date.astype('datetime6')
 df['WeekDay']=df['AppointmentDay'].dt.weekday
 df['Waiting']=(df['AppointmentDay']-df['ScheduledDay']).dt.days
 df['Waiting_str']=(df['AppointmentDay']-df['ScheduledDay']).dt.days
 df['Age_str'] = df['Age']
 #df['Past'] = df.sort_values(['ScheduledDay']).groupby(['PatientId'])['No-show'].cumsu
columns = df.columns
waiting2 = df.groupby(by=['Waiting_str', 'No-show'])
waiting2 = waiting2.count()['PatientId'].unstack()
waiting2.fillna(value=0, inplace=True)
waiting2.reset_index(drop=False, inplace=True)
waiting2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 131 entries, 0 to 130
Data columns (total 3 columns):
 #
     Column
                  Non-Null Count
                                  Dtype
```

int64

Waiting\_str 131 non-null

```
131 non-null
                                          float64
             No
          1
         2
             Yes
                          131 non-null
                                          float64
         dtypes: float64(2), int64(1)
         memory usage: 3.2 KB
         Waitingsort = pd. Series(['Same day: 0', 'Week: 1-7', 'Month: 8-30', 'Quarter: 31-92',
         waiting2['Waiting_str'] = pd.cut(waiting2.Waiting_str, bins = [-1,0,7,30,92,181,500],
         df['Waitingsort'] = pd.cut(df.Waiting_str, bins = [-1,0,7,30,92,181,500], labels=Wait
         waiting2 = waiting2.groupby('Waiting_str').sum()
         waiting2['No-showing rate'] = (waiting2.Yes / waiting2.No)*100
         waiting2
                No-show
                             No
                                   Yes No-showing rate
               Waiting_str
              Same day: 0 36771.0 1792.0
                                              4.873406
               Week: 1-7 24413.0 7772.0
                                             31.835497
              Month: 8-30 20071.0 9325.0
                                             46.460067
            Quarter: 31-92
                          6839.0 3381.0
                                             49.437052
         half-yearly: 93-181
                           114.0
                                  44.0
                                             38.596491
           Very long: >181
                             0.0
                                   0.0
                                                 NaN
In [14]:
         eda_waiting2 = waiting2.copy()
         eda_waiting2.reset_index(drop=False, inplace=True)
         eda_waiting2.drop(5, inplace=True)
         # 'No-showing rate'를 백분율 값이있는 문자열로 변환
         eda_waiting2['No-show percentual'] = eda_waiting2['No-showing rate'].apply(lambda x:
         # 동일한 척도로 그려지기 위해 비율 값에 500 배를 곱함
         eda_waiting2['No-showing rate (500x)'] = eda_waiting2['No-showing rate']*500
         ## 그래프 매개 변수 설정 :https://codetorial.net/matplotlib/two_types_of_graphs.html
         fig1, ax = plt.subplots(figsize=[12,8]) # 그래프 창 크기를 정의
         fig1.subplots_adjust(top=0.92)
         plt.suptitle('Appointments distribution by waiting time', fontsize=14, fontweight='b
         colors = ['tab:blue', 'tab:green', 'tab:red'] # 사용할 색상을 정의
         ax.set_ylabel('Patients', color=colors[0], fontsize=8,rotation=45) #y 축 색상 및 레이
         ax.tick_params(axis='y', labelcolor=colors[0])
         ## 꺾은 선형 차트 그리기 :
         eda_waiting2[['Waiting_str', 'No-showing rate (500x)']].plot(x='Waiting_str', linesty
         # 선 차트 마커 라벨 설정
         x = ax.get_xticks() #Getting the x-axis ticks to plot the label
         for a,b,c in zip(x,eda_waiting2['No-showing rate (500x)'], eda_waiting2['No-show perc
             plt.text(a,b+1500,c, color='red', fontsize=10)
         plt.axhline(5000, color="red", linestyle=":")
         ## 막대 차트 플로팅 :
```

eda\_waiting2[['Waiting\_str', 'No', 'Yes']].plot(x='Waiting\_str', kind='bar', ax=ax, c

```
ax.set_xticklabels(ax.get_xticklabels(), rotation=360,fontsize=10)
ax.set_xlabel('Waiting day', fontsize=10) #y 축 색상 및 레이블 설정
plt.show()
```

## Appointments distribution by waiting time



```
sort_age = pd.Series(['underage_age: 0-19', 'Adult: 20-39', 'Adult2: 40-59', 'Senior:
 #나이대별로 분류
age_str = df.groupby(by=['Age_str', 'No-show'])
age_str = age_str.count()['PatientId'].unstack()
age_str.fillna(value=0, inplace=True)
age_str.reset_index(drop=False, inplace=True)
 age_str.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 104 entries, 0 to 103
Data columns (total 3 columns):
     Column
             Non-Null Count Dtype
 #
0
     Age_str
              104 non-null
                              int64
              104 non-null
 1
     No
                              float64
              104 non-null
                              float64
    Yes
dtypes: float64(2), int64(1)
memory usage: 2.6 KB
age_str['Age_str'] = pd.cut(age_str.Age_str, bins = [-1,19,39,59,79,99,150], labels=s
df['sort_age'] = pd.cut(df.Age_str, bins = [-1,19,39,59,79,99,150], labels=sort_age)
age_str = age_str.groupby('Age_str').sum()
 age_str['No-showing rate'] = (age_str.Yes / age_str.No)*100
 age_str
         No-show
                     No
                            Yes No-showing rate
```

| NAgeh <u>et</u> w  | No      | Yes    | No-showing rate |
|--------------------|---------|--------|-----------------|
| Age_str            |         |        |                 |
| underage_age: 0-19 | 23670.0 | 6741.0 | 28.479087       |
| Adult: 20-39       | 22190.0 | 6680.0 | 30.103650       |
| Adult2: 40-59      | 24416.0 | 5656.0 | 23.165138       |
| Senior: 60-79      | 15118.0 | 2692.0 | 17.806588       |
| Old: 80-99         | 2805.0  | 547.0  | 19.500891       |
| Very old: >99      | 8.0     | 3.0    | 37.500000       |

```
In [22]: # 데이터 프레임 조정
edit_age_str = age_str.copy()
edit_age_str.reset_index(drop=False, inplace=True) #인덱스를 열로
# 'No-showing rate'를 백분율 값이있는 문자열로 변환
edit_age_str['No-show %'] = edit_age_str['No-showing rate'].apply(lambda x: '{0:.2f}%
# 동일한 척도로 그려지기 위해 비율 값에 500 배를 곱함
edit_age_str['No-showing rate (500x)'] = edit_age_str['No-showing rate']*500
edit_age_str
```

### Out[22]

| : | No-<br>show | Age_str                | No      | Yes    | No-showing<br>rate | No-show<br>% | No-showing rate<br>(500x) |
|---|-------------|------------------------|---------|--------|--------------------|--------------|---------------------------|
|   | 0           | underage_age: 0-<br>19 | 23670.0 | 6741.0 | 28.479087          | 28.48%       | 14239.543726              |
|   | 1           | Adult: 20-39           | 22190.0 | 6680.0 | 30.103650          | 30.10%       | 15051.825146              |
|   | 2           | Adult2: 40-59          | 24416.0 | 5656.0 | 23.165138          | 23.17%       | 11582.568807              |
|   | 3           | Senior: 60-79          | 15118.0 | 2692.0 | 17.806588          | 17.81%       | 8903.294087               |
|   | 4           | Old: 80-99             | 2805.0  | 547.0  | 19.500891          | 19.50%       | 9750.445633               |
|   | 5           | Very old: >99          | 8.0     | 3.0    | 37.500000          | 37.50%       | 18750.000000              |

```
## 그래프 매개 변수 설정 :
fig1, ax = plt.subplots(figsize=[12,6]) # 그래프 창 크기를 정의
fig1.subplots_adjust(top=0.92)
plt.suptitle('Reservation status by age group', fontsize=14, fontweight='bold')
#plt.legend(shadow=True.borderpad=1)
colors = ['tab:blue', 'tab:green', 'tab:red'] # 사용할 색상을 정의
ax.set_ylabel('Patients', color=colors[0], fontsize=8,rotation=45) #y 축 색상 및 레이
ax.tick_params(axis='y', labelcolor=colors[0])
## 꺾은 선형 차트 그리기 :
edit_age_str[['Age_str', 'No-showing rate (500x)']].plot(x='Age_str', linestyle='-', l
# 선 차트 마커 라벨 설정
x = ax.get_xticks() #x 축 눈금을 가져와 레이블 플로팅하기
for a,b,c in zip(x,edit_age_str['No-showing rate (500x)'], edit_age_str['No-show %'])
   plt.text(a,b-1500,c, color='red', fontsize=13)
## 막대 차트 플로팅 :
edit_age_str[['Age_str', 'No', 'Yes']].plot(x='Age_str', kind='bar', ax=ax, color=col
ax.set_xticklabels(ax.get_xticklabels(), rotation=360,fontsize=10)
ax.set_xlabel('Age', fontsize=10) #y 축 색상 및 레이블 설정
```

plt.axhline(5000, color="red", linestyle=":")

```
plt.show()
#위의 차트를 통해 대기 시간이 길어질수록 노쇼 비율이 증가
```

### Reservation status by age group



```
In [24]:
         df.drop(df[df['Neighbourhood'] == 'ILHAS OCEÂNICAS DE TRINDADE'].index, inplace=True
         df['No_show'] = df['No-show']
         neighborhood = df.Neighbourhood.unique()
         neighborhood.sort()
         nei_hos = df.groupby(by='Neighbourhood').No_show.value_counts().sort_index()
         ## ## 데이터 조작 :
         nei_hos = nei_hos.unstack() #groupby 객체를 데이터 셋으로 변환
         nei_hos.fillna(value=0, inplace=True) #NaN 값을 0으로 바꾸기
         print(nei_hos.head(3))
         def get_total(dataframe):
             return dataframe.sum(axis=1)
         def df_row_normalize(dataframe):
             return dataframe.div(dataframe.sum(axis=1), axis=0)
         No_show
                             No
                                  Yes
         Neighbourhood
         AEROPORTO
                            7.0
                                   1.0
         ANDORINHAS
                         1741.0
                                521.0
        ANTÔNIO HONÓRIO
                          221.0
                                 50.0
         ## 미리 정의 된 함수를 사용하여 데이터 정규화 :
         normalnei = df_row_normalize(nei_hos)
         print(normalnei.head(3))
         nei_hos['Total'] = get_total(nei_hos)
         normalnei['Total'] = get_total(normalnei)
         No_show
                               No
                                       Yes
```

ANTÔNIO HONÓRIO 0.815498 0.184502

0.875000 0.125000

0.230327

0.769673

Neighbourhood AEROPORTO

**ANDOR I NHAS** 

```
In [29]: # 'neighbourhood'인덱스 재설정 및 열로 만들기
nei_hos.reset_index(inplace=True)
normalnei.reset_index(inplace=True)
```

```
fig2, (ax1, ax2) = plt.subplots(1,2, figsize=(12,16), sharey=False)
fig2.tight_layout()
plt.suptitle('Regional hospital patient attendance rate', fontsize=14, fontweight='bo
fig2.subplots_adjust(top=0.96)
## 지역병원별로 노쇼(상대)
#총 예약
sns.set_color_codes("pastel")
sns.barplot(x="Total", y="Neighbourhood", data=normalnei, label="Total", color="g", a
#참석한 예약
sns.set_color_codes("muted")
sns.barplot(x="No", y="Neighbourhood", data=normalnei, label="Attended", color="g", a
## 범례 ,축 레이블 추가
ax1.legend(ncol=2, loc="lower left", frameon=True)
ax1.set(xlim=(0, 1), ylabel="", xlabel="Attendance rate to local hospitals(relative)"
sns.despine(left=True, bottom=True,ax=ax1)
# 지역병원별로 노쇼(절대)
#총 예약
sns.set_color_codes("pastel")
sns.barplot(x="Total", y="Neighbourhood", data=nei_hos, label="Total", color="g",ax=a
# 참석한 예약
sns.set_color_codes("muted")
sns.barplot(x="No", y="Neighbourhood", data=nei_hos, label="Attended", color="g", ax=
# 범례 ,축 레이블 추가
ax2.legend(ncol=2, loc="lower right", frameon=True)
ax2.set(xlim=(0, 7720), ylabel="", xlabel="Regional hospital patient attendance rate
ax2.set_yticklabels([''])
sns.despine(left=True, bottom=True, ax=ax2)
plt.show()
```

### Regional hospital patient attendance rate



```
In [31]:
          df['No-show'].replace("Yes", 1, inplace=True)
          df['No-show'].replace("No", 0, inplace=True)
          df['Past'] = df.sort_values(['ScheduledDay']).groupby(['PatientId'])['No-show'].cumsu
In [ ]:
          columns = df.columns
          for i in range(len(columns)):
              print(df.iloc[:,i].value_counts(),'\forall n','-'*30)
         8.221460e+14
                          88
         9.963767e+10
                          84
         2.688610e+13
                          70
         3.353480e+13
                          65
         6.264200e+12
                          62
```

```
2.471290e+14 1
4.999710e+13 1
8.483290e+14 1
1.338260e+11
                1
3.367740e+13
                1
Name: PatientId, Length: 61742, dtype: int64
5769215 1
5651786 1
5733701 1
5707080 1
5702986 1
5686470 1
5582192 1
5586290 1
5584243
        1
5771266
        1
Name: AppointmentID, Length: 110525, dtype: int64
F
    71838
    38687
M
Name: Gender, dtype: int64
2016-05-03 4238
2016-05-02 4216
2016-05-16 4120
2016-05-05 4095
2016-05-10 4024
            1
1
2016-04-09
2015-11-10
2016-01-19
              1
2016-06-04
               - 1
            1
2016-03-19
Name: ScheduledDay, Length: 111, dtype: int64
2016-06-06 4692
2016-05-16 4613
2016-05-09 4520
2016-05-30
             4514
2016-06-08
             4479
2016-05-11
             4474
2016-06-01
             4464
2016-06-07
             4416
2016-05-12
             4394
2016-05-02
             4376
2016-05-18
             4373
2016-05-17
             4372
2016-06-02
             4310
2016-05-10
             4308
2016-05-31
             4279
2016-05-05
             4273
2016-05-19
             4270
2016-05-03
             4256
2016-05-04
             4168
2016-06-03
             4090
2016-05-24
             4009
2016-05-13
             3985
2016-05-25
             3909
2016-05-06
             3879
2016-05-20
             3828
2016-04-29
             3235
2016-05-14
             39
Name: AppointmentDay, dtype: int64
 0
       3539
 1
       2273
 52
       1746
```

```
1652
49
53
       1651
        5
 115
 100
          4
 102
          2
99
-1
          1
Name: Age, Length: 104, dtype: int64
JARDIM CAMBURI 7717
MARIA ORTIZ
                   5805
RESISTÊNCIA
                   4431
JARDIM DA PENHA
                  3877
ITARARÉ
                   3514
PONTAL DE CAMBURI
ILHA DO BOI
ILHA DO FRADE
                    10
AEROPORTO
                     8
PARQUE INDUSTRIAL
                     1
Name: Neighbourhood, Length: 80, dtype: int64
()
    99664
    10861
1
Name: Scholarship, dtype: int64
0
    88724
    21801
1
Name: Hipertension, dtype: int64
0
  102582
     7943
1
Name: Diabetes, dtype: int64
0
  107165
      3360
1
Name: Alcoholism, dtype: int64
0
  108284
1
     2042
2
      183
3
       13
        3
Name: Handcap, dtype: int64
    75043
    35482
Name: SMS_received, dtype: int64
  88208
    22317
Name: No-show, dtype: int64
2016-05-03 4238
2016-05-02 4216
2016-05-16
           4120
2016-05-05
            4095
2016-05-10
            4024
2016-01-27
2016-04-09
2016-03-05
2015-12-03
               1
Name: ScheduledDay.1, Length: 111, dtype: int64
2016-06-06
             4692
2016-05-16
             4613
```

```
4520
2016-05-09
2016-05-30
             4514
2016-06-08
             4479
2016-05-11
             4474
2016-06-01
             4464
2016-06-07
             4416
2016-05-12
             4394
2016-05-02
             4376
2016-05-18
             4373
2016-05-17
             4372
2016-06-02
             4310
2016-05-10
             4308
2016-05-31
             4279
2016-05-05
             4273
2016-05-19
             4270
2016-05-03
             4256
2016-05-04
             4168
2016-06-03
             4090
2016-05-24
             4009
2016-05-13
             3985
2016-05-25
             3909
2016-05-06
             3879
2016-05-20
             3828
2016-04-29
             3235
2016-05-14
             39
Name: AppointmentDay.1, dtype: int64
        38563
 2
         6725
          5290
 4
          5213
 1
 7
         4906
 139
             1
 146
             1
 127
             1
 123
             1
 125
            1
Name: watingday, Length: 131, dtype: int64
2
    25867
1
    25640
0
    22715
4
    19017
3
    17247
5
       39
Name: WeekDay, dtype: int64
 0
       38563
 2
        6725
 4
        5290
 1
        5213
 7
        4906
 117
 146
 82
-6
           1
Name: Waiting, Length: 131, dtype: int64
 0
        38563
 2
         6725
 4
         5290
 1
         5213
 7
        4906
 117
 146
```

```
-6
                    1
          127
                    1
         Name: Waiting_str, Length: 131, dtype: int64
          0
                3539
          1
                2273
          52
                1746
          49
                1652
          53
                1651
                  5
          115
                   4
          100
          102
                   2
         99
                   1
         -1
                   1
         Name: Age_str, Length: 104, dtype: int64
         Same day: 0
                               38563
         Week: 1-7
                               32185
         Month: 8-30
                               29394
         Quarter: 31-92
                               10220
         half-yearly: 93-181
         Very long: >181
         Name: Waitingsort, dtype: int64
         underage_age: 0-19
                            30411
         Adult2: 40-59
                              30070
         Adult: 20-39
                              28870
         Senior: 60-79
                              17810
         01d: 80-99
                               3352
         Very old: >99
                                11
         Name: sort_age, dtype: int64
         No
               88208
               22317
         Yes
         Name: No_show, dtype: int64
         0
              74926
              27553
         1
         2
               5554
         3
               1508
         4
                485
         5
                220
         6
                105
         7
                 51
         8
                 35
         9
                 28
         10
                 19
         11
                 19
         12
                  6
                  5
         13
         14
                  4
                  3
         15
                  2
         16
         17
                  1
         18
         Name: Past, dtype: int64
         df = df[df['Age']>=0]
In [33]:
         df = df[df['Waiting']>=0]
         df.drop(['PatientId', 'AppointmentID'], axis=1, inplace=True)
In [34]:
         # 각 변수별로 value 확인 및 그래프
         columns = df.columns
```

```
# ScheduledDay, AppointmentDay 날짜형식변환
df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay']).dt.date.astype('datetime64[ns
df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay']).dt.date.astype('datetime6
for i in range(len(columns)):
    if i \ge 1 and i \le 4 or i = 13:
        if i==1 or i==2 or i==4:
            plt.figure(figsize=(20,8))
            sns.countplot(data=df, x=columns[i])
            plt.xticks(rotation=90)
            plt.show()
        else:
            plt.figure(figsize=(25,4))
            sns.countplot(data=df, x=columns[i])
            plt.show()
   else:
        sns.countplot(data=df, x=columns[i])
       plt.show()
   print(df.iloc[:,i].value_counts(),'\text{\pm}','-'*30)
```



F 71834 M 38685 Name: Gender, dtype: int64



2016-05-03 4238 2016-05-02 4216 2016-05-16 4120 2016-05-05 4094 2016-05-10 4023 ... 2016-04-09 1 2016-03-05 1 2015-12-03 1 2016-01-04 1

Name: ScheduledDay, Length: 111, dtype: int64



```
2016-06-06
              4691
2016-05-16
              4613
2016-05-09
              4519
2016-05-30
              4514
2016-06-08
              4479
2016-05-11
              4474
2016-06-01
              4464
2016-06-07
              4416
2016-05-12
              4394
2016-05-02
              4376
2016-05-18
              4373
2016-05-17
              4371
2016-06-02
              4310
2016-05-10
              4308
2016-05-31
              4279
2016-05-05
              4272
2016-05-19
              4270
2016-05-03
              4255
2016-05-04
              4167
2016-06-03
              4090
2016-05-24
              4009
2016-05-13
              3985
2016-05-25
              3909
2016-05-06
              3879
2016-05-20
               3828
2016-04-29
              3235
2016-05-14
                39
```

Name: AppointmentDay, dtype: int64



```
1 2273
52 1746
49 1652
53 1651
...
98 6
115 5
```

Name: Age, Length: 103, dtype: int64



JARDIM CAMBURI 7717 MARIA ORTIZ 5805 RESISTÊNCIA 4430 JARDIM DA PENHA 3877 ITARARÉ 3514 PONTAL DE CAMBURI 69 ILHA DO BOI 35 ILHA DO FRADE 10 **AEROPORTO** 8

PARQUE INDUSTRIAL

Name: Neighbourhood, Length: 80, dtype: int64

1



99658 0 10861 1

Name: Scholarship, dtype: int64



0 88718 1 21801

Name: Hipertension, dtype: int64



0 102576 1 7943

Name: Diabetes, dtype: int64



0 107159 1 3360

Name: Alcoholism, dtype: int64



Name: Handcap, dtype: int64



Name: SMS\_received, dtype: int64



Name: No-show, dtype: int64



2016-05-03 4238 4216 2016-05-02 4120 2016-05-16 2016-05-05 4094 2016-05-10 4023 2016-01-27 2016-04-09 1 2016-03-05 2015-12-03 2016-01-04 1

Name: ScheduledDay.1, Length: 111, dtype: int64



```
2016-06-06
               4691
2016-05-16
              4613
2016-05-09
              4519
2016-05-30
              4514
2016-06-08
              4479
2016-05-11
              4474
2016-06-01
              4464
2016-06-07
              4416
2016-05-12
              4394
2016-05-02
              4376
              4373
2016-05-18
              4371
2016-05-17
              4310
2016-06-02
              4308
2016-05-10
2016-05-31
              4279
2016-05-05
              4272
2016-05-19
              4270
2016-05-03
              4255
2016-05-04
              4167
2016-06-03
              4090
2016-05-24
               4009
2016-05-13
               3985
2016-05-25
               3909
2016-05-06
               3879
2016-05-20
               3828
2016-04-29
               3235
2016-05-14
                 39
```

Name: AppointmentDay.1, dtype: int64

\_\_\_\_\_



Name: watingday, Length: 129, dtype: int64



Name: WeekDay, dtype: int64





| 0                             | 3539             |
|-------------------------------|------------------|
| 1                             | 2273             |
| 52                            | 1746             |
| 49                            | 1652             |
| 53                            | 1651             |
| 98<br>115<br>100<br>102<br>99 | 6<br>5<br>4<br>2 |

Name: Age\_str, Length: 103, dtype: int64



Same day: 0 38562
Week: 1-7 32185
Month: 8-30 29394
Quarter: 31-92 10220
half-yearly: 93-181 158
Very long: >181 0
Name: Waitingsort, dtype: int64



underage\_age: 0-19 30409
Adult2: 40-59 30070
Adult: 20-39 28868
Senior: 60-79 17810
Old: 80-99 3351
Very old: >99 11
Name: sort\_age, dtype: int64



No 88207 Yes 22312

Name: No\_show, dtype: int64



- 0 74925 1 27550
- 2 5552 3 1508

```
4
         485
5
         220
6
         105
7
          51
8
          35
9
          28
10
          19
          19
11
12
           6
13
           5
14
           4
15
           3
           2
16
17
           1
18
           1
Name: Past, dtype: int64
```

```
df.columns
```

```
def ratio(col):
    ratio_ = df[df['No-show']==1].groupby([col]).size()/df.groupby([col]).size()
    return ratio_
```

```
sns.countplot(data=df, x='Gender', hue='No-show')
plt.show()
sns.barplot(x=ratio('Gender').index, y=ratio('Gender'))
plt.title('% of Patients NoShow by Gender')
plt.grid()
plt.show()
```





```
In [38]: plt.figure(figsize=(20,8))
    sns.countplot(data=df, x='Age', hue='No-show')
    plt.xticks(rotation=90)
    plt.show()

plt.figure(figsize=(20,8))
    sns.barplot(x=ratio('Age').index, y=ratio('Age'))
    plt.xticks(rotation=90)
    plt.title('% of Patients NoShow by Age')
    plt.grid()
    plt.show()
```





```
In [39]: plt.figure(figsize=(20,8))
    sns.countplot(data=df, x='Neighbourhood', hue='No-show')
    plt.xticks(rotation=90)
    plt.show()

plt.figure(figsize=(20,8))
    sns.barplot(x=ratio('Neighbourhood').index, y=ratio('Neighbourhood'))
    plt.xticks(rotation=90)
    plt.title('% of Patients NoShow by Neighbourhood')
    plt.grid()
    plt.show()
```





```
sns.countplot(data=df, x='Scholarship', hue='No-show')
plt.show()

sns.barplot(x=ratio('Scholarship').index, y=ratio('Scholarship'))
plt.title('% of Patients NoShow by Scholarship')
plt.grid()
plt.show()
```



# 0.20 0.15 0.00 0.05 0.00 Scholarship







```
In [42]: sns.countplot(data=df, x='Diabetes', hue='No-show')
plt.show()

sns.barplot(x=ratio('Diabetes').index, y=ratio('Diabetes'))
plt.title('% of Patients NoShow by Diabetes')
plt.grid()
plt.show()
```





```
sns.countplot(data=df, x='Alcoholism', hue='No-show')
plt.show()
```

```
sns.barplot(x=ratio('Alcoholism').index, y=ratio('Alcoholism'))
plt.title('% of Patients NoShow by Alcoholism')
plt.grid()
plt.show()
```





```
sns.countplot(data=df, x='Handcap', hue='No-show')
plt.show()

sns.barplot(x=ratio('Handcap').index, y=ratio('Handcap'))
plt.title('% of Patients NoShow by Handcap')
plt.grid()
plt.show()
```





```
In [45]: sns.countplot(data=df, x='SMS_received', hue='No-show')
plt.show()

sns.barplot(x=ratio('SMS_received').index, y=ratio('SMS_received'))
plt.title('% of Patients NoShow by SMS_received')
plt.grid()
plt.show()
```





```
sns.countplot(data=df, x='WeekDay', hue='No-show')
plt.show()
```

```
sns.barplot(x=ratio('WeekDay').index, y=ratio('WeekDay'))
plt.title('% of Patients NoShow by WeekDay')
plt.grid()
plt.show()
```





```
plt.figure(figsize=(30,8))
sns.countplot(data=df, x='Waiting', hue='No-show')
plt.xticks(rotation=90)
plt.show()

plt.figure(figsize=(30,8))
sns.barplot(x=ratio('Waiting').index, y=ratio('Waiting'))
plt.xticks(rotation=90)
plt.title('% of Patients NoShow by Waiting')
plt.grid()
plt.show()
```





```
plt.figure(figsize=(30,8))
    sns.countplot(data=df, x='Past', hue='No-show')
    plt.xticks(rotation=90)
    plt.show()

plt.figure(figsize=(30,8))
    sns.barplot(x=ratio('Past').index, y=ratio('Past'))
    plt.xticks(rotation=90)
    plt.title('% of Patients NoShow by Past')
    plt.grid()
    plt.show()
```





```
In [49]: df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 110519 entries, 0 to 110526 Data columns (total 23 columns):

| #  | Column         | Non-Null Count  | Dtype  |
|----|----------------|-----------------|--------|
| 0  | Gender         | 110519 non-null | object |
| 1  | ScheduledDay   | 110519 non-null | object |
| 2  | AppointmentDay | 110519 non-null | object |
| 3  | Age            | 110519 non-null | int64  |
| 4  | Neighbourhood  | 110519 non-null | object |
| 5  | Scholarship    | 110519 non-null | int64  |
| 6  | Hipertension   | 110519 non-null | int64  |
| 7  | Diabetes       | 110519 non-null | int64  |
| 8  | Alcoholism     | 110519 non-null | int64  |
| 9  | Handcap        | 110519 non-null | int64  |
| 10 | SMS_received   | 110519 non-null | int64  |
| 11 | No-show        | 110519 non-null | int64  |
|    |                |                 |        |

```
12 ScheduledDay.1
                      110519 non-null object
 13 AppointmentDay.1 110519 non-null object
 14
                      110519 non-null object
    watingday
 15 WeekDay
                      110519 non-null
                                      int64
 16 Waiting
                      110519 non-null int64
 17 Waiting_str
                      110519 non-null int64
                      110519 non-null int64
 18 Age_str
 19 Waitingsort
                      110519 non-null category
20 sort_age
                      110519 non-null category
                      110519 non-null object
21 No_show
22 Past
                      110519 non-null int64
dtypes: category(2), int64(13), object(8)
memory usage: 23.8+ MB
```

In [50]: | df.describe()

|       | Age           | Scholarship   | Hipertension  | Diabetes      | Alcoholism    | Handcap       |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|
| count | 110519.000000 | 110519.000000 | 110519.000000 | 110519.000000 | 110519.000000 | 110519.000000 |
| mean  | 37.089071     | 0.098273      | 0.197260      | 0.071870      | 0.030402      | 0.022231      |
| std   | 23.109970     | 0.297684      | 0.397932      | 0.258274      | 0.171692      | 0.161495      |
| min   | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| 25%   | 18.000000     | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| 50%   | 37.000000     | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| 75%   | 55.000000     | 0.000000      | 0.000000      | 0.000000      | 0.000000      | 0.000000      |
| max   | 115.000000    | 1.000000      | 1.000000      | 1.000000      | 1.000000      | 4.000000      |

```
In [ ]:
         import numpy as np
         import pandas as pd
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         import tensorflow as tf
         from sklearn.metrics import confusion_matrix, classification_report, accuracy_score,
         tf.random.set_seed(500)
         df =pd.read_csv('./KaggleV2-May-2016.csv',encoding='latin-1')
```

```
In [52]:
          df['No-show'].replace("Yes", 1, inplace=True)
          df['No-show'].replace("No", 0, inplace=True)
          df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay']).dt.date.astype('datetime64[ns
          df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay']).dt.date.astype('datetime6
          df['WeekDay']=df['AppointmentDay'].dt.weekday#요일 숫자로
          df['Waiting']=(df['AppointmentDay']-df['ScheduledDay']).dt.days
          df['Past'] = df.sort_values(['ScheduledDay']).groupby(['PatientId'])['No-show'].cumsu
          df = df[df['Age']>=0]
```

```
df = df[df['Waiting']>=0]
         df['NoShow'] = df['No-show']
         df.drop(['PatientId', 'AppointmentID', 'No-show'], axis=1, inplace=True)
         df.drop(['ScheduledDay'], axis=1, inplace=True)
         df.drop(['AppointmentDay'], axis=1, inplace=True)
         df.drop(df[df['Neighbourhood'] == 'ILHAS OCEÂNICAS DE TRINDADE'].index, inplace=True
         df. Gender = df. Gender. apply (lambda x: 1 if x == 'M' else 0)
        def encoding(df, column, prefix):
             df = df.copy()
             dumv1 = pd.get dummies(df[column], prefix=prefix)
             df = pd.concat([df, dumy1], axis=1)
             df = df.drop(column, axis=1)
             return df
         #https://devuna.tistory.com/67,https://rfriend.tistory.com/tag/pd.get_dummies%28%29%20
        df = encoding(df, 'Neighbourhood', prefix='N')
In [54]:
In [55]: y = df['NoShow'].copy()
         X = df.drop("NoShow", axis=1).copy()
         scaler = StandardScaler()
         X = scaler.fit transform(X)
        Xtrain, xtest, ytrain, ytest = train_test_split(X, y, train_size=0.8, random_state=10
        inputs = tf.keras.Input(shape=(X.shape[1]))
         x = tf.keras.layers.Dense(64, activation='relu')(inputs)
         x = tf.keras.layers.Dense(64, activation='relu')(x)
         outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
         model = tf.keras.Model(inputs, outputs)
         model.compile(
             loss='binary_crossentropy',
             optimizer='adam',
             metrics=[
                 'accuracy',
                 tf.keras.metrics.AUC(name='auc')
         )
         history = model.fit(
             Xtrain.
             ytrain.
             validation_split=0.2,
             epochs=500.
             batch_size=52,
             callbacks=[
                 tf.keras.callbacks.EarlyStopping(
                    monitor='val_loss',
                    patience=4,
                     restore_best_weights=True
                 )
             1
         #참조 https://hwiyong.tistory.com/96 ,https://www.tensorflow.org/guide/keras/sequentia
        Epoch 1/500
        8837 - auc: 0.9453 - val_loss: 0.1857 - val_accuracy: 0.9038 - val_auc: 0.9616
        Epoch 2/500
        1361/1361 [========
                                  =========] - 2s 1ms/step - loss: 0.1789 - accuracy: 0.
```

```
9082 - auc: 0.9646 - val_loss: 0.1795 - val_accuracy: 0.9087 - val_auc: 0.9650
      Epoch 3/500
      9118 - auc: 0.9667 - val_loss: 0.1770 - val_accuracy: 0.9114 - val_auc: 0.9659
      Epoch 4/500
      9144 - auc: 0.9678 - val_loss: 0.1743 - val_accuracy: 0.9155 - val_auc: 0.9674
      Epoch 5/500
      9160 - auc: 0.9687 - val_loss: 0.1739 - val_accuracy: 0.9137 - val_auc: 0.9670
      Epoch 6/500
      9163 - auc: 0.9695 - val_loss: 0.1747 - val_accuracy: 0.9125 - val_auc: 0.9668
      Epoch 7/500
      1361/1361 [=============] - 2s 1ms/step - loss: 0.1664 - accuracy: 0.
      9181 - auc: 0.9700 - val_loss: 0.1722 - val_accuracy: 0.9161 - val_auc: 0.9676
      Epoch 8/500
      9186 - auc: 0.9704 - val_loss: 0.1728 - val_accuracy: 0.9163 - val_auc: 0.9675
      Epoch 9/500
      1361/1361 [==============] - 2s 2ms/step - loss: 0.1641 - accuracy: 0.
      9198 - auc: 0.9710 - val_loss: 0.1726 - val_accuracy: 0.9151 - val_auc: 0.9673
      Epoch 10/500
      9201 - auc: 0.9714 - val_loss: 0.1724 - val_accuracy: 0.9179 - val_auc: 0.9677
      Epoch 11/500
      9212 - auc: 0.9720 - val_loss: 0.1733 - val_accuracy: 0.9165 - val_auc: 0.9673
In [58]: | model.evaluate(xtest, ytest)
      9116 - auc: 0.9659
Out[58]: [0.17580853402614594, 0.9115584492683411, 0.9658643007278442]
      y_true = np.array(ytest)
       y_pred = np.squeeze(np.array(model.predict(xtest) >= 0.5, dtype=np.int))
       print("是异:\m\m", classification_report(y_true, y_pred))
      분류:
                precision
                         recall f1-score
                                      support
              0
                   0.96
                          0.93
                                 0.94
                                      17683
              1
                   0.75
                          0.85
                                 0.79
                                        4422
                                 0.91
                                       22105
         accuracy
                   0.85
                          0.89
                                 0.87
                                       22105
        macro avg
                   0.92
                          0.91
                                 0.91
                                       22105
      weighted avg
      print("Confusion Matrix:\footnotesis n_matrix(y_true, y_pred))
      Confusion Matrix:
       [[16402 1281]
```

# **Analysis**

[ 674 3748]]

# DT

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
df = pd.read_csv('./KaggleV2-May-2016_1.csv')
df.head()
df.info()
df['No-show'].replace("Yes", 1, inplace=True)
df['No-show'].replace("No", 0, inplace=True)
df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay']).dt.date.astype('datetime64[ns
df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay']).dt.date.astype('datetime6
df['WeekDay']=df['AppointmentDay'].dt.weekday
df['Waiting']=(df['AppointmentDay']-df['ScheduledDay']).dt.days
df['Past'] = df.sort_values(['ScheduledDay']).groupby(['PatientId'])['No-show'].cumsu
df = df[df['Age'] >= 0]
df = df[df['Waiting']>=0]
df.drop(['PatientId', 'AppointmentID'], axis=1, inplace=True)
df.drop(['ScheduledDay'], axis=1, inplace=True)
df.drop(['AppointmentDay'], axis=1, inplace=True)
df.drop(df[df['Neighbourhood'] == 'ILHAS OCEÂNICAS DE TRINDADE'].index, inplace=True
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 110527 entries, 0 to 110526
Data columns (total 17 columns):
    Column
#
                      Non-Null Count
                                       Dtype
```

0 110527 non-null PatientId float64 110527 non-null 1 AppointmentID int64 110527 non-null 2 Gender object 3 110527 non-null ScheduledDay object 110527 non-null 4 AppointmentDay object 5 110527 non-null Age int64 6 110527 non-null Neighbourhood object 7 110527 non-null Scholarship int64 110527 non-null 8 Hipertension int64 110527 non-null Diabetes int64 110527 non-null 10 Alcoholism int64 110527 non-null 11 Handcap int64 110527 non-null 12 SMS\_received int64 13 No-show 110527 non-null object 14 ScheduledDay.1 110527 non-null object 15 AppointmentDay.1 110527 non-null object 16 watingday 110527 non-null object dtypes: float64(1), int64(8), object(8) memory usage: 14.3+ MB

In [62]: df.head(20)

Out[62]:

|   | Gender | Age | Neighbourhood        | Scholarship | Hipertension | Diabetes | Alcoholism | Handcap | SMS |
|---|--------|-----|----------------------|-------------|--------------|----------|------------|---------|-----|
| 0 | F      | 62  | JARDIM DA<br>PENHA   | 0           | 1            | 0        | 0          | 0       |     |
| 1 | М      | 56  | JARDIM DA<br>PENHA   | 0           | 0            | 0        | 0          | 0       |     |
| 2 | F      | 62  | MATA DA PRAIA        | 0           | 0            | 0        | 0          | 0       |     |
| 3 | F      | 8   | PONTAL DE<br>CAMBURI | 0           | 0            | 0        | 0          | 0       |     |
| 4 | F      | 56  | JARDIM DA<br>PENHA   | 0           | 1            | 1        | 0          | 0       |     |

|    | Gender | Age | Neighbourhood     | Scholarship | Hipertension | Diabetes | Alcoholism | Handcap | SMS |
|----|--------|-----|-------------------|-------------|--------------|----------|------------|---------|-----|
| 5  | F      | 76  | REPÚBLICA         | 0           | 1            | 0        | 0          | 0       |     |
| 6  | F      | 23  | GOIABEIRAS        | 0           | 0            | 0        | 0          | 0       |     |
| 7  | F      | 39  | GOIABEIRAS        | 0           | 0            | 0        | 0          | 0       |     |
| 8  | F      | 21  | ANDORINHAS        | 0           | 0            | 0        | 0          | 0       |     |
| 9  | F      | 19  | CONQUISTA         | 0           | 0            | 0        | 0          | 0       |     |
| 10 | F      | 30  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 11 | М      | 29  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 12 | F      | 22  | NOVA<br>PALESTINA | 1           | 0            | 0        | 0          | 0       |     |
| 13 | М      | 28  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 14 | F      | 54  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 15 | F      | 15  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 16 | М      | 50  | NOVA<br>PALESTINA | 0           | 0            | 0        | 0          | 0       |     |
| 17 | F      | 40  | CONQUISTA         | 1           | 0            | 0        | 0          | 0       |     |
| 18 | F      | 30  | NOVA<br>PALESTINA | 1           | 0            | 0        | 0          | 0       |     |
| 19 | F      | 46  | DA PENHA          | 0           | 0            | 0        | 0          | 0       |     |

Xtr, Xts, ytr, yts = train\_test\_split(X, y, test\_size=0.25, random\_state = 1, stratif

y\_pred = tree.predict(Xts)

tree.fit(Xtr, ytr)

tree = DecisionTreeClassifier()

In [64]:

```
print('Training Acc: {:.3f}'.format(tree.score(Xtr, ytr)))
print('Test Acc: {:.3f}'.format(tree.score(Xts, yts)))
Training Acc: 0.995
Test Acc: 0.903
confmat = pd.DataFrame(confusion_matrix(yts,y_pred),
                        index=['True[0]','True[1]'],
                        columns=['Predict[0]', 'Predict[1]'])
 print('confusion_matrix', '\m', confmat, '\m\m')
 cl_report = classification_report(yts,y_pred)
 print('classification_report', '\m', cl_report, '\m')
print('잘못 분류된 샘플 개수: %d' %(yts != y_pred).sum())
 print('정확도: %.3f' % accuracy_score(yts,y_pred))
 print('정밀도: %.3f' % precision_score(yts,y_pred))
 print('재현율: %.3f' % recall_score(yts,y_pred))
print('F1: %.3f' % f1_score(yts,y_pred))
confusion_matrix
          Predict[0] Predict[1]
True[0]
              20827
                           1225
True[1]
               1445
                           4133
classification_report
               precision
                            recall f1-score
                                                support
           0
                   0.94
                             0.94
                                        0.94
                                                 22052
                   0.77
                             0.74
                                       0.76
                                                  5578
                                        0.90
                                                 27630
    accuracy
                   0.85
                             0.84
                                        0.85
                                                 27630
   macro avo
                   0.90
                             0.90
                                       0.90
                                                 27630
weighted avg
잘못 분류된 샘플 개수: 2670
정확도: 0.903
정밀도: 0.771
재현율: 0.741
F1: 0.756
colors = ['red', 'black', 'blue', 'green']
linestyles = [':', '--', '-.', '-']
 all_clf = [tree]
 clf_labels = ['Decision tree']
 for clf, label, clr, ls in zip(all_clf, clf_labels, colors, linestyles):
    clf.fit(Xtr, ytr)
    y_pred = clf.predict_proba(Xts)[:, 1]
     fpr, tpr, thresholds = roc_curve(y_true=yts,
                                      y_score=y_pred)
    roc_auc = auc(x=fpr, y=tpr)
    plt.plot(fpr, tpr,
              color=clr,
              linestyle=ls.
              label='%s (auc = \%0.3f)' \% (label, roc_auc))
 plt.legend(loc='lower right')
 plt.plot([0, 1], [0, 1],
          linestyle='--',
          color='gray',
          linewidth=2)
plt.xlim([-0.1, 1.1])
```

```
plt.ylim([-0.1, 1.1])
plt.grid(alpha=0.5)
plt.xlabel('False positive rate (FPR)')
plt.ylabel('True positive rate (TPR)')
plt.title('ROC-AUC')
plt.show()
```



```
importances
                           feature
8
                              Past
                                        0.557562
7
                           Waiting
                                        0.152605
0
                                        0.079665
                               Age
9
                          Gender_M
                                        0.013882
89
                         WeekDay_1
                                        0.010848
92
                         WeekDay_4
                                        0.009521
91
                         WeekDay_3
                                        0.009454
90
                         WeekDay_2
                                        0.008734
1
                       Scholarship
                                        0.007597
6
                      SMS_received
                                        0.007433
2
                      Hipertension
                                        0.007205
46
     Neighbourhood_JARDIM CAMBURI
                                        0.005060
51
        Neighbourhood_MARIA ORTIZ
                                        0.004734
3
                          Diabetes
                                        0.003638
67
        Neighbourhood_RESISTÊNCIA
                                        0.003551
47
    Neighbourhood_JARDIM DA PENHA
                                        0.003302
85
          Neighbourhood_SÃO PEDRO
                                        0.003296
18
          Neighbourhood_CARATOÍRA
                                        0.003218
44
            Neighbourhood_ITARARÉ
                                        0.003189
19
             Neighbourhood_CENTRO
                                        0.003144
```

