The Move Group of the Three–Ring Puzzle is $\mathbf{S_{12}}$

Abstract

We analyze the well-known three–ring ("Machinarium") puzzle with twelve fixed positions arranged on three intersecting circles. Each legal move is a 60° rotation of one circle, hence a 6-cycle on the six positions on that circle. We prove that the group G generated by the three rotations is the full symmetric group S_{12} . We give a short proof via Jordan's theorem (in a very weak form) and, independently, a constructive proof that avoids Jordan altogether: we show the action is 2-transitive, exhibit an explicit 3-cycle, then generate A_{12} from conjugates and conclude S_{12} by parity.

1 The model and notation

There are three circles, labelled A, B, C, each intersecting the other two in exactly two positions. Altogether there are 12 fixed positions.

Definition 1.1 (Position set and labels). Let the position set be

$$\Omega = \{a_1, a_2, b_1, b_2, c_1, c_2, ab_1, ab_2, bc_1, bc_2, ca_1, ca_2\}.$$

Here a_1, a_2 (resp. b_1, b_2, c_1, c_2) are the two positions unique to circle A (resp. B, C). The two intersections $A \cap B$ contribute ab_1, ab_2 , the two intersections $B \cap C$ give bc_1, bc_2 , and the two intersections $C \cap A$ give ca_1, ca_2 .

Conventions. We compose permutations right-to-left: $(\alpha\beta)(x) = \alpha(\beta(x))$. We write permutations in disjoint cycle notation. We adopt the commutator convention $[x,y] := xyx^{-1}y^{-1}$. We write $S(\Omega)$ for the full symmetric group on Ω and $A(\Omega)$ for its alternating subgroup; when $|\Omega| = 12$ we identify these with S_{12} and S_{12} .

Definition 1.2 (Generators). Let $g_A, g_B, g_C \in S(\Omega)$ be the permutations induced by a geometrically positive 60° rotation of circles A, B, C respectively. Around each circle the six positions occur in cyclic order, hence

$$g_A = (a_1 \ ca_1 \ ab_1 \ a_2 \ ab_2 \ ca_2),$$

 $g_B = (b_1 \ ab_1 \ bc_1 \ b_2 \ bc_2 \ ab_2),$
 $g_C = (c_1 \ bc_1 \ ca_1 \ c_2 \ ca_2 \ bc_2).$

We write $G = \langle g_A, g_B, g_C \rangle \leq S(\Omega) \cong S_{12}$ for the move group.

Figure 1: Schematic of the three rings and the 12 labelled positions. Points ab_i lie on $A \cap B$, bc_i on $B \cap C$, and ca_i on $C \cap A$. The arrow snippets indicate the common positive direction used in Definition 1.2. (Figure not to scale.)

2 First properties of G

Lemma 2.1 (Transitivity). The action of G on Ω is transitive.

Proof. Starting from a_1 , powers of g_A reach every position on circle A: $a_1, ca_1, ab_1, a_2, ab_2, ca_2$. From ab_1 and ab_2 the moves $g_B^{\pm 1}$ reach b_1, b_2, bc_1, bc_2 ; from ca_1, ca_2 , the moves $g_C^{\pm 1}$ reach c_1, c_2, bc_1, bc_2 . Thus the G-orbit of a_1 is all of Ω .

Lemma 2.2 (Explicit 3-cycle factors). The group G has elements that decompose as products of two disjoint 3-cycles; explicitly,

$$[g_A,g_B] = (a_2 \ bc_1 \ ab_1) \ (b_1 \ ab_2 \ ca_2) \,, \quad [g_B,g_C] = (b_2 \ ca_1 \ bc_1) \ (c_1 \ bc_2 \ ab_2) \,,$$

and

$$[g_C,g_A] = (a_1 \ ca_2 \ bc_2) \ (c_2 \ ab_1 \ ca_1) \, .$$

Proof. A direct calculation suffices; we record one in detail. Track each symbol through $g_A g_B g_A^{-1} g_B^{-1}$. For example:

$$ab_1 \xrightarrow{g_B^{-1}} b_1 \xrightarrow{g_A^{-1}} b_1 \xrightarrow{g_B} ab_2 \xrightarrow{g_A} ca_2,$$

so $ab_1 \mapsto ca_2$. Continuing with $ca_2 \mapsto b_1$ and $b_1 \mapsto ab_1$ shows $(b_1 \ ab_2 \ ca_2)$ is one factor. Repeating for the remaining moved points yields the displayed decompositions. (The other two commutators are analogous.)

3 A short proof via primitivity and Jordan

Definition 3.1 (Blocks and primitivity). A nonempty subset $\Delta \subseteq \Omega$ is a block of imprimitivity for G if for each $g \in G$ either $g(\Delta) = \Delta$ or $g(\Delta) \cap \Delta = \emptyset$. The action is primitive if the only

blocks are singletons and Ω .

Lemma 3.2 (Primitivity). The action of G on Ω is primitive.

Proof. Assume $\emptyset \neq \Delta \subsetneq \Omega$ is a block. Since G is transitive (Lemma 2.1), we may assume $a_1 \in \Delta$. Since a_1 lies only on circle A, both $g_B^{\pm 1}$ and $g_C^{\pm 1}$ fix a_1 ; hence they lie in $G_{a_1} \subseteq G_{\Delta}$. Therefore $g_B(\Delta) = \Delta = g_C(\Delta)$, i.e. the block Δ is invariant under the point stabilizer G_{a_1} . By Lemma 4.2 (proved in Section 4), G_{a_1} acts transitively on $\Omega \setminus \{a_1\}$. It follows that the only G-blocks containing a_1 are $\{a_1\}$ and Ω . Since Δ is assumed nontrivial, necessarily $\Delta = \Omega$, a contradiction. Thus $\Delta = \Omega$, contradicting nontriviality. Hence no nontrivial block exists. \square

We now invoke a classical result in a form tailored to our situation.

Proposition 3.3 (Jordan, special case). Let $G \leq S_n$ act primitively with $n \geq 6$. If G contains a 3-cycle, then $A_n \leq G$.

(Idea of proof). Jordan's original theorem states: if a primitive $G \leq S_n$ contains a p-cycle for some prime $p \leq n-3$, then $G \supseteq A_n$. The case p=3 used here follows by the same argument; see standard texts (e.g. Cameron; Dixon-Mortimer). One can also give a short direct proof: the normal closure of any 3-cycle in a primitive group of degree $n \geq 6$ is transitive and contains a point stabilizer in its support, forcing it to contain all 3-cycles and hence A_n . (A completely constructive alternative avoiding Jordan appears in Section 4.)

Theorem 3.4 (Main theorem). With $G = \langle g_A, g_B, g_C \rangle$ as in Definition 1.2, we have $G = S_{12}$.

Proof. By Lemma 3.2, G is primitive. By Lemma 4.4 (proved in Section 4), G contains a 3-cycle. Proposition 3.3 then yields $A_{12} \leq G$. Since each g_* is a 6-cycle and hence an *odd* permutation, $G \nsubseteq A_{12}$. Therefore $G = S_{12}$.

4 A constructive proof avoiding Jordan

We now give a completely explicit route to S_{12} that does not appeal to Jordan's theorem.

Step 1: 2-transitivity (point stabilizer transitivity)

Definition 4.1. The action of G is 2-transitive if for any ordered pairs (x, y), (x', y') of distinct points there exists $g \in G$ with g(x) = x' and g(y) = y'. Equivalently, for a fixed point x, the stabilizer G_x acts transitively on $\Omega \setminus \{x\}$.

Lemma 4.2. The stabilizer G_{a_1} acts transitively on $\Omega \setminus \{a_1\}$. Hence the action of G is 2-transitive.

Proof. Since a_1 lies only on circle A, both $g_B^{\pm 1}$ and $g_C^{\pm 1}$ fix a_1 ; thus they lie in G_{a_1} . From the cycles in Definition 1.2, starting from bc_2 we obtain

$$bc_2 \xrightarrow{g_B^{-1}} b_2$$
, $bc_2 \xrightarrow{g_B} ab_2$, $bc_2 \xrightarrow{g_B^2} b_1$, $bc_2 \xrightarrow{g_B^3} ab_1$,

and

$$bc_2 \xrightarrow{g_C} c_1, \xrightarrow{g_C^2} bc_1, \xrightarrow{g_C^3} ca_1, \xrightarrow{g_C^{-1}} ca_2, \xrightarrow{g_C^{-2}} c_2.$$

To reach a_2 while fixing a_1 , consider

$$h := g_A^{-1} g_B g_A.$$

Since $g_A^6 = 1$, we have $g_A^{-1} = g_A^5$. Also $bc_2 \notin \text{supp}(g_A)$, so $g_A(bc_2) = bc_2$; and $g_A(a_1) = ca_1 \notin \text{supp}(g_B)$, hence $h \in G_{a_1}$. Moreover

$$h(bc_2) = g_A^{-1}(g_B(g_A(bc_2))) = g_A^{-1}(g_B(bc_2)) = g_A^{-1}(ab_2) = a_2.$$

Therefore the G_{a_1} -orbit of bc_2 contains every point of $\Omega \setminus \{a_1\}$, proving the claim.

Step 2: Many 3-cycles and generation of A_{12}

We first pin down an explicit 3-cycle.

Lemma 4.3. The commutator $[g_C, g_A]$ has the 3-cycle $\tau = (a_1 \ ca_2 \ bc_2)$ as a factor in its disjoint cycle decomposition.

Proof. This is the third identity in Lemma 2.2.

Lemma 4.4 (Isolating a single 3-cycle). Set $\tau = (a_1 \, ca_2 \, bc_2)$ and $\sigma = (c_2 \, ab_1 \, ca_1)$, so that $[g_C, g_A] = \tau \, \sigma$ by Lemma 2.2. There exists $h \in G_{a_1}$ such that h fixes a_1, ca_2, bc_2, c_2 and swaps ab_1 with ca_1 ; for example,

$$h = g_B (g_A g_B g_A^{-1}) (g_A^{-1} g_B^{-1} g_A)^2 (g_A g_B g_A^{-1}) g_B^{-1}.$$

Then $h\sigma h^{-1} = \sigma^{-1}$ and $h\tau h^{-1} = \tau$, hence

$$(\tau\sigma) h(\tau\sigma) h^{-1} = \tau^2 \in G,$$

so in particular $\tau \in G$.

Lemma 4.5 (Fixed-point conjugates of τ). Let $G = \langle g_A, g_B, g_C \rangle \leq S_{\Omega}$ be as above and set $\tau = (a_1 \ ca_2 \ bc_2)$. Then G_{a_1} acts 2-transitively on $\Omega \setminus \{a_1\}$. Consequently, for every ordered pair (x,y) of distinct elements of $\Omega \setminus \{a_1\}$ there exists $h \in G_{a_1}$ with

$$h \tau h^{-1} = (a_1 x y).$$

Proof. All of g_B , $g_A g_B g_A^{-1}$, $g_A^5 g_B g_A^{-5}$, and $g_A^2 g_C g_A^{-2}$ fix a_1 , hence

$$H := \langle g_B, g_A g_B g_A^{-1}, g_A^5 g_B g_A^{-5}, g_A^2 g_C g_A^{-2} \rangle \leq G_{a_1}.$$

The supports of these four 6-cycles are

$$supp(g_A^2 g_C g_A^{-2}) = \{c_1, bc_1, ca_1, c_2, bc_2, a_2\},\$$

$$supp(g_B) = \{b_1, ab_1, bc_1, b_2, bc_2, ab_2\},\$$

$$supp(g_A g_B g_A^{-1}) = \{b_1, bc_1, b_2, bc_2, a_2, ca_2\},\$$

$$supp(g_A^5 g_B g_A^{-5}) = \{b_1, bc_1, b_2, bc_2, a_2, ca_1\},\$$

whose union is $\Omega \setminus \{a_1\}$ and which intersect pairwise; thus H is transitive on $\Omega \setminus \{a_1\}$.

To prove 2-transitivity, it suffices to show that the stabilizer H_{ca_2} is transitive on $\Omega \setminus \{a_1, ca_2\}$. Note that g_B and

$$h := g_A^5 g_B g_A^{-5} = (bc_2 \ a_2 \ b_1 \ ca_1 \ bc_1 \ b_2)$$

both fix ca_2 . Hence $\langle g_B, h \rangle$ moves bc_2 to ab_2 and to a_2 , and permutes the 8 points

$$\{b_1, ab_1, bc_1, b_2, bc_2, ab_2, a_2, ca_1\}.$$

To bring in the remaining points, consider the commutator

$$\kappa := [g_C, h] = g_C h g_C^{-1} h^{-1} \in H_{ca_2}.$$

A direct check shows

$$\kappa(ca_2) = ca_2, \qquad \kappa(c_1) = a_2, \qquad \kappa(c_2) = ca_1,$$

so κ fixes ca_2 while sending c_1 and c_2 into the above 8-point orbit of $\langle g_B, h \rangle$. Therefore H_{ca_2} is transitive on $\Omega \setminus \{a_1, ca_2\}$.

Since H is transitive on $\Omega \setminus \{a_1\}$, all point stabilizers H_x ($x \neq a_1$) are conjugate in H, hence each H_x is transitive on $\Omega \setminus \{a_1, x\}$. Thus H (and therefore G_{a_1}) is 2-transitive on $\Omega \setminus \{a_1\}$.

Given distinct $x, y \in \Omega \setminus \{a_1\}$, choose $u \in H$ with $u(ca_2) = x$ and then $v \in H_x$ with $v(u(bc_2)) = y$. Setting $h := vu \in H \leq G_{a_1}$ we obtain

$$h \tau h^{-1} = (a_1 x y),$$

as required. \Box

Lemma 4.6 (Generating A_n from 3-cycles sharing a point). For $n \geq 5$ the subgroup of A_n generated by the set $\{(1 i j) : 2 \leq i < j \leq n\}$ is A_n .

Proof. Let H be the subgroup generated by all (1 i j) with $2 \le i < j \le n$. Using right-to-left composition one checks

$$(1 i j) (1 j k) = (i j k).$$

Hence, from cycles of the form (1 i j) we obtain all 3-cycles (i j k) with $2 \le i, j, k \le n$. But A_n is generated by 3-cycles, so $H = A_n$.

Proposition 4.7. The subgroup G contains A_{12} .

Proof. By Lemma 4.5, G contains every 3-cycle of the form $(a_1 \ x \ y)$ with x, y distinct in $\Omega \setminus \{a_1\}$. Relabelling a_1 as 1 and the other points as $2, \ldots, 12$, Lemma 4.6 implies that these 3-cycles generate A_{12} . Thus $A_{12} \leq G$.

Theorem 4.8 (Main theorem, constructive proof). We have $G = S_{12}$.

Proof. By Proposition 4.7, $A_{12} \leq G$. Each generator g_A, g_B, g_C is a 6-cycle and hence an *odd* permutation; therefore G is not contained in A_{12} . It follows that $G = S_{12}$.

5 Remarks and small variations

Remark 5.1 (Computational check). The commutator identities in Lemma 2.2 can be verified by hand as above, or quickly by a computer algebra system modeling the three 6-cycles from Definition 1.2.

Remark 5.2 (Why Jordan is overkill here). Jordan's theorem streamlines the argument once primitivity and the presence of a 3-cycle are known. In this special puzzle one can avoid it entirely by the explicit 2-transitivity of G (Lemma 4.2) and the elementary generation Lemma 4.6. This proves, in effect, the case "p=3" of Jordan's theorem for this concrete configuration.

Remark 5.3 (Generalizations). The same strategy applies to other ring-intersection puzzles whenever one can (i) exhibit enough elements in a point stabilizer to make it transitive on the complement, and (ii) produce a single 3-cycle. The parity argument then upgrades A to S.

Acknowledgements

The labelling convention in Definition 1.1 follows the natural geometry of three rings A, B, C with pairwise two-point intersections. The figure is schematic and not to scale; only incidences and labels matter for the proofs.