This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Normally the first step in debugging is to attempt to reproduce the problem. It is very difficult to determine what are the most popular modern programming languages. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. There are many approaches to the Software development process. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Programs were mostly entered using punched cards or paper tape. Use of a static code analysis tool can help detect some possible problems. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Programming languages are essential for software development. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA.