Chemistry 3P51 – Fall 2013 Quantum Chemistry

Lecture No. 23 Nov 1st, 2013

1

Objectives

- To understand the origin of the expression of the differential volume in spherical coordinates.
- To introduce the concept of radial density distribution for hydrogenic atoms.
- To show expressions and plots of radial functions for the hydrogen atom.
- To show plots of radial probability distributions for the hydrogen atom.
- To show solved problems involving radial probability distributions.

2

Differential area elements in Cartesian and planar polar coordinates

$$dS = dx dy$$

Area element between r ... r+dr and $\varphi ... \varphi+d\varphi$

$$dS = rdr d\varphi$$

Differential volume elements in Cartesian and spherical coordinates

Volume element between x ... x+dx, y ... y+dy, and z ... z+dz

$$dV = dx dy dz$$

Volume element between r ... r + dr, $\theta ... \theta + d\theta$, and $\varphi ... \varphi + d\varphi$

$$dV = \text{length} \times \text{width} \times \text{height}$$
$$= (r d\theta)(r \sin \theta d\phi)(dr) = r^2 \sin \theta dr d\theta d\phi$$

Radial density distribution in hydrogenic atoms

The probability of finding an electron in the region of space between r and r + dr, θ and $\theta + d\theta$, φ and $\varphi + d\varphi$ is

$$|\psi_{nlm}|^2 dV = |\psi_{nlm}(r,\theta,\varphi)|^2 r^2 \sin\theta \, dr \, d\theta \, d\varphi$$

differential volume element in spherical polar coordinates

The probability of finding the electron in a thin spherical shell of inner radius r and outer radius r + dr (i.e., the probability of finding the electron between r and r+dr at any angles θ and φ) is given by

$$D_{nl}(r) dr$$
,

where $D_{nl}(r)$ is the **radial probability density** defined by

$$D_{nl}(r) \equiv \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \, r^{2} \sin\theta \left| \psi_{nlm}(r,\theta,\varphi) \right|^{2} \tag{1}$$

Recall that the wave functions for the hydrogen atom are of the form

$$\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi) \tag{2}$$

Substitution of Eq. (2) into Eq. (1) gives

$$D_{nl}(r) = r^{2} [R_{nl}(r)]^{2} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} |Y_{l}^{m}(\theta, \varphi)|^{2} \sin\theta \, d\theta = r^{2} R_{nl}^{2}(r)$$

=1 because spherical harmonics are normalized

The radial distribution function

$$D_{nl}(r) = r^2 R_{nl}^2(r)$$

is the **probability density** characterizing the likelihood of finding the electron at a distance r from the nucleus.

Example:

 $R_{1s}(r)$ is not zero at r = 0 but $D_{1s}(r)$ is zero because of the r^2 factor.

Radial functions for the hydrogen atom (Z=1)

$$n = 1$$

$$R_{10}(r) = 2\left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

$$n = 2$$

$$R_{nl}(r)$$
 $n = 1, 2, 3, ...$
 $l = 0, 1, 2, ..., n-1$

$$\int_{0}^{\infty} r^{2} [R_{nl}(r)]^{2} dr = 1$$

$$R_{20}(r) = \frac{1}{2\sqrt{2}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} \qquad R_{21}(r) = \frac{1}{2\sqrt{6}} \left(\frac{1}{a_0}\right)^{5/2} r e^{-r/2a_0}$$

$$R_{21}(r) = \frac{1}{2\sqrt{6}} \left(\frac{1}{a_0}\right)^{5/2} r e^{-r/2a_0}$$

$$n = 3$$

$$R_{30}(r) = \frac{2}{81\sqrt{3}} \left(\frac{1}{a_0}\right)^{3/2} \left(27 - \frac{18r}{a_0} + \frac{2r^2}{a_0^2}\right) e^{-r/3a_0}$$

$$R_{31}(r) = \frac{4}{81\sqrt{6}} \left(\frac{1}{a_0}\right)^{5/2} \left(6 - \frac{r}{a_0}\right) r e^{-r/3a_0} \qquad R_{32}(r) = \frac{4}{81\sqrt{30}} \left(\frac{1}{a_0}\right)^{7/2} r^2 e^{-r/3a_0}$$

Plots of the radial functions for the hydrogen atom

Radial functions and radial probability densities for the 1s, 2s, 2p, 3s and 3p orbitals of the H atom

Radial functions and radial probability densities for the 3d, 4s, 4p, 3s and 4f orbitals of the H atom

Comparison of radial probability densities for the 1s, 2s and 3s orbitals of the hydrogen atom

Comparison of radial probability densities for the 2d, 3p and 3d orbitals of the hydrogen atom

More on the radial probability density

Think of the radial probability density as of a one-dimensional probability distribution function f(r). There are two equivalent ways of obtaining the radial probability density:

1) From the radial function $R_n(r)$ as:

$$D_{nl}(r) = r^2 R_{nl}^2(r)$$

2) From the total wave function (orbital) $\psi_{nlm}(r,\theta,\varphi)$ as:

$$D_{nl}(r) = r^2 \int_0^{2\pi} d\varphi \int_0^{\pi} |\psi_{nlm}(r,\theta,\varphi)|^2 \sin\theta \ d\theta$$

The radial probability density is normalized:

$$\int_{0}^{\infty} D_{nl}(r) dr = 1$$

which means that the probability of finding electron at any distance from the nucleus is 1.

Some sample examples

Problem 1. Show that the 1s-electron is most likely to be found at the distance $r = a_0$ from the nucleus. The 1s-orbital is:

$$\psi_{1s}(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$$

Solution. First we find the radial probability density for the 1s state:

$$D_{1s}(r) = \frac{1}{\pi} \left(\frac{1}{a_0}\right)^3 r^2 e^{-2r/a_0} \underbrace{\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta \, d\theta}_{= 4\pi} = 4 \left(\frac{1}{a_0}\right)^3 r^2 e^{-2r/a_0}$$

The condition for a maximum of $D_{1s}(r)$ is $dD_{1s}(r)/dr = 0$. Ignoring the constant prefactor, we have the equation

$$\frac{d}{dr}(r^2e^{-2r/a_0}) = 2re^{-2r/a_0} - \frac{2}{a_0}r^2e^{-2r/a_0} = 2r\left(1 - \frac{r}{a_0}\right)e^{-2r/a_0} = 0$$

whose solution is $r = a_0$.

Some sample examples

Problem 2. Find the average distance between the electron and the nucleus in the 1s state. Make use of the standard integral

$$\int_{0}^{\infty} x^{n} e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}}$$

Solution.

$$\langle r \rangle = \int_{0}^{\infty} r D_{1s}(r) dr = 4 \left(\frac{1}{a_0} \right)_{0}^{3} \int_{0}^{\infty} r^3 e^{-2r/a_0} dr = \frac{4}{a_0^3} \frac{3!}{(2/a_0)^4} = \frac{3}{2} a_0$$

Alternative solution.

$$\langle r \rangle = \int_{\text{all space}} \psi_{1s}^* r \psi_{1s} \, dV = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin\theta \, d\theta \int_{0}^{\infty} r |\psi_{1s}|^2 r^2 dr$$
$$= 4\pi \frac{1}{\pi a_0^3} \int_{0}^{\infty} r^3 e^{-2r/a_0} \, dr = \frac{3}{2} a_0$$

15

Some sample examples

Problem 3. At which distance from the nucleus is a 1s electron more likely to be found, $r = a_0/2$ or $r = 2a_0$?

Solution. The probabilities of interest are proportional to the radial probability densities at $r = a_0/2$ or $r = 2a_0$

$$D_{1s}\left(r = \frac{a_0}{2}\right) = \frac{4}{a_0^3} \left(\frac{a_0}{2}\right)^2 e^{-2(a_0/2)/a_0} = \frac{e^{-1}}{a_0}$$

$$D_{1s}\left(r = 2a_0\right) = \frac{4}{a_0^3} (2a_0)^2 e^{-2(2a_0)/a_0} = \frac{16e^{-4}}{a_0}$$

The ratio of these probability densities is

$$\frac{D_{1s}\left(r = \frac{a_0}{2}\right)}{D_{1s}\left(r = 2a_0\right)} = \frac{e^{-1}}{16e^{-4}} = \frac{e^3}{16} \approx 1.2553 > 1$$

Thus, a 1s electron is more likely to be found at $r = a_0/2$ than at $r = 2a_0$.

Some sample examples

Problem 4. Find the probability that the electron in a ground-state H atom is at a distance less than a_0 from the nucleus.

Solution. The probability that the electron will be found between 0 and a_0 :

$$P(0 < r < a_0) = \int_0^{a_0} D_{1s}(r) dr$$

The radial distribution function for the 1s electron was found earlier:

$$D_{ls}(r) = 4\left(\frac{1}{a_0}\right)^3 r^2 e^{-2r/a_0}$$

Therefore.

$$P(0 < r < a_0) = \frac{4}{a_0^3} \int_{0}^{a_0} r^2 e^{-2r/a_0} dr$$

Using integration by parts we obtain

$$\frac{4}{a_0^3} \int_0^{a_0} r^2 e^{-2r/a_0} dr = -\frac{4}{a_0^3} \left(\frac{r^2 a_0}{2} + \frac{r a_0^2}{2} + \frac{a_0^3}{4} \right) e^{-2r/a_0} \Big|_0^{a_0} = -5e^{-2} + 1 \approx 0.3233$$

Useful integrals

$$\int re^{-\beta r} dr = -\left(\frac{r}{\beta} + \frac{1}{\beta^2}\right)e^{-\beta r}$$

$$\int r^2 e^{-\beta r} dr = -\left(\frac{r^2}{\beta} + \frac{2r}{\beta^2} + \frac{2}{\beta^3}\right)e^{-\beta r}$$

$$\int r^3 e^{-\beta r} dr = -\left(\frac{r^3}{\beta} + \frac{3r^2}{\beta^2} + \frac{6r}{\beta^3} + \frac{6}{\beta^4}\right)e^{-\beta r}$$

$$\int_0^\infty r^n e^{-\beta r} dr = \frac{n!}{\beta^{n+1}}$$

18