DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA CUARTA PRÁCTICA (Modelo A)

1.	Una primitiva de la función $f(x) = \frac{x - \sqrt{\arctan(2x)}}{1 + 4x^2}$ es
	El valor de la integral de $f(x)$ en el intervalo $[0,1]$ es, aproximadamente, $\boxed{\int_0^1 f(x) \ dx} \approx$
2.	Representa gráficamente la región encerrada entre la gráfica de la función $g(x) = \frac{\sin(x)}{x}$ y el eje x en el intervalo $[0, 2\pi]$. La región pedida se obtiene al ejecutar la expresión
	Plot[]
	El valor aproximado del área de esta región es 2.
3.	Representa gráficamente las funciones $h(x) = x^3$ y $t(x) = 2x + 1$. Observa que delimitan una región cerrada. Para obtener el valor del área de esta región necesitas calcular primero los puntos de corte de esas dos gráficas:
	$x_1 = $, $x_2 = $, $x_3 = $.
	Representa esta región cerrada y calcula su área: ÁREA=
4.	Aproxima la integral $\int_0^1 \frac{\cos(x)}{x+1} dx$ mediante el método de los Trapecios con 10 subdivisiones (es decir, $n=10$):
	$\int_0^1 \frac{\cos(x)}{x+1} \ dx \approx \boxed{0.}$
	Calcula la derivada segunda de la función $f(x) = \frac{\cos(x)}{x+1}$ y, a partir de una gráfica adecuada, halla M_2 , cota superior del valor absoluto de f'' en el intervalo $[0,1]$: $M_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
	Acota el error cometido en la aproximación por Trapecios: Error \leq $< 10^{-m}$, donde $m =$.
	Por tanto, la aproximación de la integral mediante Trapecios tiene, al menos, decimales exactos.
	Aproxima ahora la integral usando el comando NIntegrate : $\int_0^1 \frac{\cos(x)}{x+1} dx \approx \boxed{0}$, y compara este valor con la aproximación por el método de Trapecios.
5.	Calcula una aproximación de la integral del ejercicio 4 mediante el método de Simpson con 10 cifras decimales exactas. Para ello, efectúa los siguientes pasos:
	(a) Calcula la derivada cuarta de la función $f(x) = \frac{\cos(x)}{x+1}$ y, a partir de una gráfica adecuada, halla M_4 , cota
	superior del valor absoluto de f'''' en el intervalo $[0,1]$: $M_4 = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
	(b) Para conseguir la precisión que nos piden (10 decimales exactos), tenemos que pedir que la cota de error de Simpson sea menor que 10^{-m} , donde $m = $, y de ahí vamos a deducir el número mínimo n de
	subdivisiones necesarias. Este valor de n es $\boxed{}$.
	(c) Aplicando el método de Simpson con el valor de n encontrado se tiene que la aproximación de la integral que nos piden es $\boxed{}$.
	(d) Compara este valor con la aproximación que proporciona el comando NIntegrate con 15 dígitos de precisión.

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA CUARTA PRÁCTICA (Modelo B)

1.	Una primitiva de la función $f(x) = x \sin(x) \cos(x)$ es
	El valor de la integral de $f(x)$ en el intervalo $[0,\pi]$ es $\boxed{\int_0^\pi f(x)dx =}$
2.	Representa gráficamente la región encerrada entre la gráfica de la función $g(x) = x + \sin(2x)$ y el eje x en el intervalo $[-3,3]$. La región pedida se obtiene al ejecutar la expresión
	Plot[]
	El valor del área de esta región es \approx 9.
3.	Representa gráficamente las funciones $h(x) = x^4 - x + 1$ y $t(x) = x^4 - x^3 + 1$. Observa que delimitan una región cerrada. Para obtener el valor del área de esta región necesitas calcular primero los puntos de corte de esas dos
	gráficas: $x_1 = $, $x_2 = $, $x_3 = $.
	Representa esta región cerrada y calcula su área: ÁREA= \approx
4.	Aproxima la integral $\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx$ usando el método de los Trapecios con $n = 10$ subdivisiones: $\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx \approx \boxed{1.}$
	Calcula la derivada segunda de la función $f(x) = \sqrt{2 + \cos^2(x)}$ y, a partir de una gráfica adecuada, halla M_2 ,
	cota superior del valor absoluto de f'' en el intervalo [1, 2]: $M_2 = $
	Acota el error cometido en la aproximación por Trapecios: Error \leq $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	Por tanto, la aproximación de la integral mediante Trapecios tiene, al menos, decimales exactos.
	Aproxima ahora la integral usando el comando NIntegrate : $\int_{1}^{2} \sqrt{2 + \cos^{2}(x)} dx \approx \boxed{1}$, y compara este valor con la aproximación por el método de Trapecios.
5.	Calcula una aproximación de la integral del ejercicio 4 mediante el método de Simpson con 10 cifras decimales exactas. Para ello, efectúa los siguientes pasos:
	(a) Calcula la derivada cuarta de la función $f(x) = \sqrt{2 + \cos^2(x)}$ y, a partir de una gráfica adecuada, halla M_4 , cota superior del valor absoluto de f'''' en el intervalo $[1,2]$: $M_4 = \boxed{}$
	(b) Para conseguir la precisión que nos piden (10 decimales exactos), tenemos que pedir que la cota de error de Simpson sea menor que 10^{-m} , donde $m = 10^{-m}$, y de ahí vamos a deducir el número mínimo n de
	subdivisiones necesarias. Este valor de n es \square .
	(c) Aplicando el método de Simpson con el valor de n encontrado se tiene que la aproximación de la integral que nos piden es \square .
	(d) Compara este valor con la aproximación que proporciona el comando NIntegrate con 15 dígitos de precisión.