Relations, Partial orders.

Pairing function. Diagonalization.

Infinity. Cardinality.

Relations

Remember that a relation is a subset of the Cartesian Product of two sets.

For example,

$$R = \{(a, b) \in A \times B \mid \text{some property holds}\}\$$

$$R \subseteq A \times B$$

For convenience, we adopt the following infix notation:

when
$$(a, b) \in R$$
, we write aRb

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Relations. Infix notation

It is originated from the relations like =, \leq , \geq , <, and >.

$$(1,2) \in R_{(<)}$$
 we usually write $1 < 2$

$$(3,3) \in R_{(=)}$$
 we usually write $3=3$

Divisibility is a relation on \mathbb{N} too. And we use infix notation:

$$(15,60) \in R_{(divides)}$$
 we write $15 \mid 60$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Relations on the same set

What if the sets *A* and *B* are the same?

$$R \subseteq A \times A$$

For example, =, \leq , \geq , <, > are relations on \mathbb{N} . That is, these relations are subsets of $\mathbb{N} \times \mathbb{N}$.

Def. A relation on the set A is

- *reflexive* if $\forall x \in A : xRx$.
- *symmetric* if $\forall x, y \in A : xRy \rightarrow yRx$.
- antisymmetric if $\forall x, y \in A : (xRy \land yRx) \rightarrow x = y$.
- transitive if $\forall x, y, z \in A : (xRy \land yRz) \rightarrow xRz$.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Relations on the same set

• *reflexive* if $\forall x \in A : xRx$.

• *symmetric* if $\forall x, y \in A : xRy \rightarrow yRx$.

• antisymmetric if $\forall x, y \in A : (xRy \land yRx) \rightarrow x = y$.

• transitive if $\forall x, y, z \in A : (xRy \land yRz) \rightarrow xRz$.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

	reflexive?	symmetric?	antisymmetric?	transitive?
$x \equiv y \pmod{5}$	Yes	Yes	No	Yes
$ \begin{array}{c} x \mid y \\ x \leq y \end{array} $	Yes Yes	No No	Yes Yes	Yes Yes

Partial orders

Def. A relation is a *partial order* if it is reflexive, antisymmetric, and transitive.

An example, the "divides" relation on the natural numbers is a partial order:

- It is reflexive because $x \mid x$.
- It is antisymmetric because $x \mid y$ and $y \mid x$ implies x = y.
- It is transitive because $x \mid y$ and $y \mid z$ implies $x \mid z$.

The \leq relation on the natural numbers is also a partial order. However, the < relation is not a partial order, because it is not reflexive; no number is less than itelf.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Partial orders

Often a partial order relation is denoted with the symbol

 \leq

instead of a letter, like R.

This makes sense since the symbol calls to mind \leq , which is one of the most common partial orders.

 $x \leq y$ it reads as "x precedes y".

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Def. If \leq is a partial order on the set A, then the pair (A, \leq) is called a *partially-ordered set* or *poset*.

Def. The elements x and y of a poset (A, \preceq) are called *comparable* if either $x \preceq y$ or $x \preceq y$.

When x and y are elements of A such that neither $x \leq y$ nor $y \leq x$, x and y are called *incomparable*.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Hasse diagram

This graph is called the *Hasse diagram* for the poset (A, \leq) .

For a and b from A, we draw an edge from a to b if $a \leq b$.

Self-loops and edges implied by transitivity are omitted.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Hasse diagram

Consider a poset $(\mathcal{P}(A), \subseteq)$ for $A = \{a, b, c\}$.

Its Hasse diagram:

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Mminimal and maximal elements

In a poset (A, \leq) , an element $x \in A$ is *minimal* if there is no other element $y \in A$ such that $y \leq x$.

Similarly, an element $x \in A$ is *maximal* if there is no other element $y \in A$ such that $x \leq y$.

There are four minimal elements.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Proof. Suppose that for some $n \ge 2$ such sequence $a_1 \dots a_n$ exists.

Recall that the partial order is a transitive, antisymmetric, and refelxive relation.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Proof. Suppose that for some $n \ge 2$ such sequence $a_1 \dots a_n$ exists.

Recall that the partial order is a transitive, antisymmetric, and refelxive relation.

Since it's transitive: $a_1 \leq a_2$ and $a_2 \leq a_3$, therefore $a_1 \leq a_3$.

Similarly, we prove that $a_1 \leq a_4$, $a_1 \leq a_5$, ..., $a_1 \leq a_n$.

Thus $a_1 \leq a_n$ and $a_n \leq a_1$.

But \leq is antisymmetric, and therefore $a_1 = a_n$. This contradicts the supposition that $a_1, \ldots a_n$ are $n \geq 2$ distinct elements! Thus there is no such directed cycle.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Total order

Def. A *total order* is a partial order in which every pair of elements is comparable.

 (A, \preceq) is a total order if for every $x, y \in A$, either $x \preceq y$ or $y \preceq x$.

The \leq relation on natural numbers is a total order. However, the "divides" relation on the same set \mathbb{N} is not.

Question: Given a parially ordered set (A, \preceq) , can we make a total order \preceq_T that is "compatible" with the given partial order \preceq ? (Compatible in the sense that the total order never violates the given partial order)

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Topological sort

Def. A *topological sort* of a poset (A, \preceq) is a total order \preceq_T s.t.

$$x \leq y$$
 implies $x \leq_T y$.

Theorem. Every finite poset has a topological sort.

Lemma. Every finite poset has a minimal element.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Infinite sets

Consider three sets:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Can we compare their cardinalities?

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Infinite sets

Consider three sets:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Can we compare their cardinalities?

We need a definition for the cardinality of an infinite set.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Def. The sets *A* and *B* have the same cardinality if and only if there is a bijection from *A* to *B*.

When *A* and *B* have the same cardinality, we write |A| = |B|.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Even_N$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Even_N$$

$$f(x) = 2x$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Alternatively

$$f: \mathbb{N} \to Even_N$$

. . .

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Odd_N$$

0• 1• 2• 3• ·

•1 •3 •5 •7 ···

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Odd_N$$

$$f(x) = 2x + 1$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$\mathbb{Z}^- = \{-1, -2, -3, -4, -5, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to \mathbb{Z}^-$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$\mathbb{Z}^{-} = \{-1, -2, -3, -4, -5, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to \mathbb{Z}^-$$

$$f(x) = -x - 1$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Therefore, all these sets have the same cardinality

$$|\mathbb{N}| = |Even_N| = |Odd_N| = |\mathbb{Z}^-|$$

Countable sets

Therefore, all these sets have the same cardinality

$$|\mathbb{N}| = |Even_N| = |Odd_N| = |\mathbb{Z}^-|$$

Def. A set *S* is called *countable* if $|S| = |\mathbb{N}|$ or if *S* is a finite set.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Countable sets

Since $\mathbb N$ is an infinite set, the cardinality $|\mathbb N|$ is greater than any natural number. We need a way to denote the cardinality of this set.

The following symbol is used

$$|\mathbb{N}| = \aleph_0$$

It reads as "aleph naught", "aleph null", "aleph zero".

All infinite countable sets have the same cardinality \aleph_0 .

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Hilbert's Hotel

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Imagine a hotel with a countably infinite number of rooms.

Each room is occupied by a guest.

Question: Can it accomodate one more guest?

Hilbert's Hotel

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

There is a bijection between $\{x\} \cup \mathbb{N}$ (guests) and \mathbb{N} (rooms)

Hilbert's Hotel

There is a bijection between $\{x\} \cup \mathbb{N}$ (guests) and \mathbb{N} (rooms)

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

We want to prove that $B = \mathbb{N} \times \{T, F\}$ is countable.

Can we find a bijection between \mathbb{N} and $B = \mathbb{N} \times \{T, F\}$?

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

$$B = \{(0, T), (1, T), (2, T), \ldots, (0, F), (1, F), (2, F), \ldots\}$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Can we find a bijection between \mathbb{N} and $B = \mathbb{N} \times \{T, F\}$?

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

$$B = \{(0, \mathbf{T}), (1, \mathbf{T}), (2, \mathbf{T}), \dots (0, F), (1, F), (2, F), \dots\}$$

$$(0, T), (0, F), (1, T), (1, F), (2, T), (2, F), \dots$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Similarly, there is a bijection between $\mathbb N$ and $\mathbb Z$

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

$$\mathbb{Z} = \{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

We just rearrange the order of integers:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

In general, if there is a way to list the elements of a given set in linear order, then it is *countable* (i.e. there is a bijection between this set and \mathbb{N}).

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Find a bijection $h: A \rightarrow B$, where

$$A = \mathbb{N} \times \{ \mathbf{T}, F \}$$

$$B = \mathbb{Z}$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

More complex cases

Find a bijection $h: A \rightarrow B$, where

$$A = \mathbb{N} \times \{T, F\}$$

$$B = \mathbb{Z}$$

A and *B* are countable, and we know how to construct the following two bijections

$$f: \mathbb{N} \to A$$

$$g:\mathbb{N}\to B$$

Since f is a bijection, there exist an inverse function $f^{-1}: A \to \mathbb{N}$, which is a bijection too, and we can find it, so

$$h(x) = g(f^{-1}(x))$$

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

We have shown that \mathbb{Z} is countable, $\mathbb{N} \times \{T, F\}$ is countable.

Similarly, it's not hard to show that for any *finite* set *A*, its Cartesian products

 $A \times \mathbb{N}$ and $\mathbb{N} \times A$ are countable.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$\mathbb{N} \times A$ and $A \times \mathbb{N}$ when A is finite

Similarly, it's not hard to show that for any *finite* set *A*, its Cartesian products

 $A \times \mathbb{N}$ and $\mathbb{N} \times A$ are countable.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Is the set $\mathbb{N} \times \mathbb{N}$ countable?

Can we find a bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$? If yes, then the set of ordered pairs of natural numbers, $\mathbb{N} \times \mathbb{N}$, is a countable set.

(0,3)(1,3) (2,3) (3,3)(4.3)(1,2) (2,2) (3,2)(0,2)(4,2)(0,1)(1,1) (2,1) (3,1)(4,1)(0,0)(1,0) (2,0) (3,0)(4,0) Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Is the set $\mathbb{N} \times \mathbb{N}$ countable?

Can we find a bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$? If yes, then the set of ordered pairs of natural numbers, $\mathbb{N} \times \mathbb{N}$, is a countable set.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Pairing function $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$P(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$$

$$(0,3)$$
 $(1,3)$ $(2,3)$ $(3,3)$ $(4,3)$...

$$(0,2)$$
 $(1,2)$ $(2,2)$ $(3,2)$ $(4,2)$...

$$(0,1)$$
 $(1,1)$ $(2,1)$ $(3,1)$ $(4,1)$...

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

The set of rational numbers, Q

We can define the set of rational numbers as the set of all quotients p/q such that $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^+$:

$$\mathbb{Q} = \left\{ \left. \frac{p}{q} \, \right| \, p \in \mathbb{Z} \, \land \, q \in \mathbb{Z}^+ \right\}$$

We can prove that $\mathbb Q$ is countable. The argument is similar to the proof for $\mathbb N \times \mathbb N$.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Is the power set $\mathcal{P}(\mathbb{N})$ countable?

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Theorem. The power set $\mathcal{P}(\mathbb{N})$ is not countable.

Proof. (by contradiction)

Assume that $\mathcal{P}(\mathbb{N})$ is countable, so all subsets of \mathbb{N} can be listed:

$$A_0, A_1, A_2, \ldots$$

We know that subsets can be encoded by sitrings of 1s and 0s.

Subset	0	1	2	3	4	5	
A_0	0	0	0	1	0	0	
A_1	1	1	1	0	0	1	
A_2	1	1	1	1	1	1	
A_3	0	0	0	0	0	1	
A_4	1	0	0	0	0	1	
A_5	1	1	0	0	1	1	

Now, we want to construct a counter-example subset $C \subseteq \mathbb{N}$ that is different from each A_i .

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Subset	0	1	2	3	4	5	• • •
A_0	0	0	0	1	0	0	
A_1	1	1	1	0	0	1	
A_2	1	1	1	1	1	1	
A_3	0	0	0	0	0	1	
A_4	1	0	0	0	0	1	
A_5	1	1	0	0	1	1	• • •
•••							
С	1	0	0	1	1	0	

We construct a counter-example set C that is different from each subset A_i . How can we do it?

For all i = 0, 1, 2, 3...: Whenever $i \in A_i$, we choose $i \notin C$, and vice versa, when $i \notin A_i$, we choose $i \in C$. Thus, by construction, C is different from each A_i . Effectively, the set C inverts the diagonal.

Relations

Partial orders

Infinite sets

Countable sets Hilbert's Hotel

_ . . .

Ordered pairs

Power set. Diagonalization.

Since $C \neq A_i$ for all i, and C is obviously a subset of \mathbb{N} by construction, the list of subsets A_i does not contain all subsets of \mathbb{N} (it does not contain C, for example), therefore, our assumption was incorrect: the subsets of \mathbb{N} are not countable.

That is, the power set $\mathcal{P}(\mathbb{N})$ is uncountable.

This proof strategy is called diagonalization.

Similarly, we can show that the *unit interval* $0 \le x \le 1$ of real numbers is uncountable. (Also, see Rosen's book for the proof). And because you can make a bijection between this interval, [0, 1], and \mathbb{R} , the set of all real number is uncountable.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

More results about cardinality

Theorem. If *A* and *B* are countable sets, then their union $A \cup B$ is also countable.

Proof. Wihtout loss of generality, we can assume that A and B are disjoint. (If they are not, we continue the proof with A and $B \setminus A$)

If at least one of the sets is finite, we first list this set, then the other set.

Otherwise, if both are infinite countable sets, we list both sets by alternating elements:

$$a_0, b_0, a_1, b_1, a_2, b_2, \dots$$

where $a_i \in A$ and $b_i \in B$.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Cardinality, one-to-one and onto

Mapping rules

If there is a *one-to-one* function $f : A \rightarrow B$ then

$$|A| \leq |B|$$
.

If there is an *onto* function $g: A \rightarrow B$ then

$$|A| \ge |B|$$
.

If there is a *bijection* $h : A \rightarrow B$ then

$$|A| = |B|$$
.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Theorem (Schröder-Bernstein). Given two sets A and B, if there exist one-to-one functions $f: A \to B$ and $g: B \to A$, then there is a bijection between A and B.

In other words, to prove existence of a bijection, it's enough to prove existence of two one-to-one functions:

Once you have found a one-to-one function $f: A \to B$, instead of proving that f is onto, you can prove that there exists another one-to-one function that maps B to A.

Relations

Partial orders

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein