

Multilayer Perceptron

Multi-layer Perceptron

Why MLP is needed?

Multiple boundaries needed (e.g. XOR problem)
→Multiple units

More complex regions needed (e.g. Polygons)

→ Multiple layers

Multilayer Perceptron

- Attributed to Rumelhart and McClelland, late 70's
- To bypass the linear classification problem, we can construct multilayer networks.
- Typically we have fully connected, feedforward networks.

- Hidden units are nodes that are situated between the input nodes and the output nodes.
- Hidden units allow a network to learn non-linear functions.
- Hidden units allow the network to represent combinations of the input feat ures.

Boolean XOR

$$X1 \oplus X2 \Leftrightarrow (X1 \lor X2) \land \neg (X1 \land X2)$$

Not Linear separable →
Cannot be represented by a single-layer perceptron

Let's consider a single hidden layer network, using as building blocks threshold units.

$$W_1 X_1 + W_2 X_2 - W_0 > 0$$

- Neural nets can be thought of as a way of learning nonlinear feature mapping
- The last hidden layer can be thought of as a feature map
- The last layer weights can be thought of as a linear model using those features

• The last hidden layer can be thought of as a feature map

MNIST handwritten digit dataset

A subset of learned first layer features: many of them pick up oriented image

Expressiveness of MLP: Soft Threshold

- Advantage of adding hidden layers
- → It enlarge the space of hypotheses that the network can represent

Example: we can think of each hidden unit a s a perceptron that represents a soft thresho ld function in the input space, and an outpu t unit as as a soft-thresholded linear combin ation of several such functions.

Soft threshold function

Expressiveness of MLP: Soft Threshold

- (a) The result of combining two opposite-facing soft threshold functions to produce a ridg e.
- (b) The result of combining two ridges to produce a bump.

 Add bumps of various sizes and locations to any surface

All continuous functions w/ 2 layers, all functions w/ 3 layers

Expressiveness of MLP

- With a single, sufficiently large hidden layer, it is possible to represent a ny continuous function of the inputs with arbitrary accuracy;
- With two layers, even discontinuous functions can be represented.
 - The proof is complex → main point, required number of hidden units grows exponentially with the number of inputs.
 - For example, 2ⁿ/n hidden units are needed to encode all Boolean f unctions of n inputs.
- Issue: For any particular network structure, it is harder to characterize ex actly which functions can be represented and which ones cannot.

Multi-Layer Feedforward Networks

Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

$$o_i = g \left(\sum_h w_{h,i} g \left(\sum_j w_{j,h} x_j \right) \right)$$

Learning Algorithms for MLP

How to compute the errors for the hidden units?

 $Err_1 = y_1 - o_1$

 $Err_2 = y_2 - o_2$

 $Err_i = y_i - o_i$

Err_o=y_o-o_o

Clear error at the output layer

Goal: minimize sum squared errors

$$E = \frac{1}{2} \sum_{i} (y_i - o_i)^2$$

$$o_i = g \left(\sum_h w_{h,i} g \left(\sum_j w_{j,h} x_j \right) \right)$$

parameterized function of inputs: weights are the parameters of the function.

We can back-propagate the error from the output layer to the hidden layers.

The back-propagation process emerges directly from a derivation of the overall error gradient.

Backpropagation Learning Algorithms for MLP

Perceptron update:

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

Output layer weight update (similar to perceptron)

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

$$\Delta_i = Err_i \times g'(in_i)$$

Hidden layer: back-propagate the error from the output layer:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i$$
.

Err_i → "Error" for hidden node j

Hidden node j is "responsible" for some fraction of the error i in each of the output nodes to which it connects

→ depending on the strength of the connection between the hidden node and the output node i.

Optimization Problem

Obj.: minimize E

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

Choice of learning rate α How many restarts (local optima) of search to find good optimum of objective function?

Variables: network weights w_{ii}

Algorithm: local search via gradient descent.

Randomly initialize weights.

Until performance is satisfactory, cycle through examples (epochs):

Update each weight:

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$
$$\Delta_i = Err_i \times g'(in_i)$$

Hidden node:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i .$$

See derivation details in the next slides

Learning Algorithms for MLP

- Similar to the perceptron learning algorithm:
 - One minor difference is that we may have several outputs, so we have an output vector $h_W(x)$ rather than a single value, and each example has an output vector y.
 - The major difference is that, whereas the error y h_W at the perceptron output layer is clear, the error at the hidden layers seems mysterious because the training data does not say what value the hidden nodes should have

We can **back-propagate** the error from the output layer to the hidden layers. The back-propagation process emerges directly from a derivation of the overall error gradient.

Output layer: same as for single-layer perceptron,

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

where $\Delta_i = Err_i \times g'(in_i)$

Perceptron update:

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

 $Err_i \rightarrow i^{th}$ component of vector y - h_W

Hidden layer: back-propagate the error from the output layer:

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i .$$

Update rule for weights in hidden layer:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

Hidden node j is "responsible" for some fraction of the error i in each of the output nodes to which it connec ts → depending on . the strength of the connection between the hidden node and the output node i.

Derivation

The squared error on a single example is defined as

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

where the sum is over the nodes in the output layer.

$$\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}}
= -(y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i) g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_j W_{j,i} a_j\right)
= -(y_i - a_i) g'(in_i) a_j = -a_j \Delta_i$$

Derivation

$$\frac{\partial E}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial a_i}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial g(in_i)}{\partial W_{k,j}}
= -\sum_{i} (y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{k,j}} = -\sum_{i} \Delta_i \frac{\partial}{\partial W_{k,j}} \left(\sum_{j} W_{j,i} a_j \right)
= -\sum_{i} \Delta_i W_{j,i} \frac{\partial a_j}{\partial W_{k,j}} = -\sum_{i} \Delta_i W_{j,i} \frac{\partial g(in_j)}{\partial W_{k,j}}
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial in_j}{\partial W_{k,j}}
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial}{\partial W_{k,j}} \left(\sum_{k} W_{k,j} a_k \right)
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) a_k = -a_k \Delta_j$$

Derivation

$$\frac{\partial E}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial a_i}{\partial W_{k,j}} = -\sum_{i} (y_i - a_i) \frac{\partial g(in_i)}{\partial W_{k,j}}
= -\sum_{i} (y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{k,j}} = -\sum_{i} \Delta_i \frac{\partial}{\partial W_{k,j}} \left(\sum_{j} W_{j,i} a_j \right)
= -\sum_{i} \Delta_i W_{j,i} \frac{\partial a_j}{\partial W_{k,j}} = -\sum_{i} \Delta_i W_{j,i} \frac{\partial g(in_j)}{\partial W_{k,j}}
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial in_j}{\partial W_{k,j}}
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial}{\partial W_{k,j}} \left(\sum_{k} W_{k,j} a_k \right)
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) a_k = -a_k \Delta_j$$

Artificial Inteligence
& Computer Vision
Laboratory

```
function BACK-PROP-LEARNING(examples, network) returns a neural network
  inputs: examples, a set of examples, each with input vector x and output vector y
            network, a multilayer network with L layers, weights W_{i,i}, activation function g
  repeat
       for each e in examples do
           for each node j in the input layer do a_j \leftarrow x_j[e]
           for \ell = 2 to M do
               in_i \leftarrow \sum_j W_{j,i} a_j
               a_i \leftarrow q(in_i)
           for each node i in the output layer do
               \Delta_i \leftarrow g'(in_i) \times (y_i[e] - a_i)
           for \ell = M - 1 to 1 do
               for each node j in layer \ell do
                    \Delta_i \leftarrow g'(in_i) \sum_i W_{i,i} \Delta_i
                    for each node i in layer \ell + 1 do
                        W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i
  until some stopping criterion is satisfied
  return Neural-Net-Hypothesis(network)
```


Design Decisions

Network architecture

- How many hidden layers? How many hidden units per layer?
 - Given too many hidden units, a neural net will simply memorize the input patterns (overfitting).
 - Given too few hidden units, the network may not be able to represent all of the necessary generalizations (underfitting).
- How should the units be connected? (Fully? Partial? Use domain knowledge?)

Summary

- Perceptrons (one-layer networks) limited expressive power—they can I earn only linear decision boundaries in the input space.
- Single-layer networks have a simple and efficient learning algorithm;
- Multi-layer networks are sufficiently expressive
 - they can represent general nonlinear function
 - they can be trained by gradient descent, i.e., error back-propagation.
- Problems of Generalization vs. Memorization.
 - With too many units, we will tend to memorize the input and not generalize well.
 - Someschemes exist to "prune" the neural network.
- MLP harder to train because of the abundance of local minima and the high dimensionality of the weight space
- Many applications: speech, driving, handwriting, fraud detection, etc.

