Nirma University

Institute of Technology
Semester End Examination (IR), May - 2016
B. Tech. in Computer Engineering / Information Technology, Semester-VI
CE601 Design and Analysis of Algorithms

Roll / Exam		Supervisor's Initial with Date		
Time: 3 Hours Max Marks: 100				
Instruc	 Attempt all the questions. Figures to right indicate full marks. Draw neat sketches wherever necessary. Section I			2" (* 8
Q-1	Do as directed			[20]
a)	Consider an array A[pr] which needs sort. Write the "PARTITION" algorithm (last element) to its correct position in invariant" in the algorithm precisely correctness.	that puts the pivot the array. State t	element he "loop	[10]
b)	A sequence $\langle a_1, a_2,, a_n \rangle$ of n unorde input to a sorting algorithm, whose ave time complexities are $O(n^2)$. Write the satisfies the above mentioned criteria. statement of the algorithm and hence total running time of the algorithm (where o)	verage case and wo e suitable algorithm Indicate the cost e derive the expres	rst case n which of each ssion for	[10]
	stated time complexity of O(n2)).			
Q-2 a)	Do as directed Prove that :- $(nlogn - 10n + 50) = \Omega(nlogn - 10n + 50)$	n)		[18] [6]
2)				[6]
a)	Prove that :- $(\sqrt{2})^{\log n} + \log^2 n + n^4 = O(2^n)$	K.		
b)	Solve the following recurrence by "Recur $T(n) = 3T(n/4) + n^2$	sion tree" method :-		[6]
c)	Solve the following recurrence by "Change $T(n) = \sqrt{n} T(\sqrt{n}) + n$ (n > 1 and is a power		nod :-	[6]
Q-3	Do as directed			[12]
a)	Let $T[1n]$ be a sorted array of distinct is be negative. Design an algorithm that can $1 \le i \le n$ and $T[i] = i$, provided such an is should take a time in $O(\log n)$ in the work or	an find an index i s index exists. Your a	uch that	[6]
a)	Rather than separating T[1n] into two purpose of merge sorting, we might choosarrays of size n/3, (n+1)/3 and (n+2) recursively, and then to merge the three formal description of this algorithm and	ose to separate it in)/3, to sort each e sorted arrays. Give	of these e a more	[6]
b)	The number of additions and subtraction product of two 2 X 2 matrices	ons needed to calcu	alate the	[6]
	pege 1/3			

multiplication method seems at first to be 24. Show that this can be reduced to 15 by using auxiliary variables to avoid recalculating terms such as $m_1 + m_2 + m_4$.

Section II

Q-4	Do as directed	[20]
a)	Let $X = \langle x_1, x_2,, x_m \rangle$ and $Y = \langle y_1, y_2,, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2,, z_k \rangle$ be any Longest Common Subsequence (LCS) of X	[10]
	and Y. Write an algorithm which computes the length of the LCS.	
	Estimate the running time of the algorithm.	
b)	How many spanning trees are possible on a graph G = (V, E) having 5 vertices? Write Kruskal's algorithm to find out the "Minimum Spanning Tree" in the weighted graph G = (V, E). Which data structure is used to implement this algorithm? Analyse the running time of the algorithm.	[10]
Q-5	Do as directed	[18]
a)	Consider a set S, which contains n distinct elements. If we want to	[6]
a)	find out the i-th smallest element in S, then it can be done efficiently by using a deterministic linear time selection algorithm.	[o]
	Discuss the algorithm which performs this task and derive the expression which computes the total time taken by this algorithm.	
A	OR	[6]
a)	Prove that :- The expected running time of the Randomized Quikcksort is O(n logn).	[6]
b)	Prove the following statement:-	[6]
	"If there exists a non-empty sub problem S_k and let a_m be an activity in S_k with the earliest finish time, then a_m is included in some maximum-size subset of mutually compatible activities of S_k ."	
c)	Prove that: The total number of comparisons required to determine both the minimum and the maximum of a set of n elements (n can be even or odd) is at most $3 n/2 $.	[6]
Q-6	Do as directed	[12]
a)	Ram's house contains four types of objects, whose weights are respectively 2, 3, 4 and 5 units, and whose values are 3, 5, 6 and	[6]
	10. A thief enters his house with the knapsack that can carry a	
	maximum of 8 units of weight. Apply "Backtracking" approach to fill the knapsack in a way that maximizes the value of the included	
	objects in the knapsack.	
	OR	
a)	Consider n objects and a knapsack of capacity W. For i =1, 2,n,	[6]
,	object i has a positive weight wi and a positive value vi. If the	
	fractional selection of object i is allowed and is denoted by xi,	
	develop a mathematical model which maximizes the value in the knapsack. Apply "Greedy approach" to the following example so	
	that value of the included objects in the knapsack is maximized :-	

Number of objects (n) = 5 Capacity of Knapsack (W) = 100

page 2/3

Wi	10	20	30	40	50
Vi	20	30	66	40	60

- b) State whether the following statements are True or False (with [6] proper justification):-
- 1) The problems 3-SAT and 2-SAT are NP-complete and in P respectively.
- 2) If P! = NP, then NP-complete \cap P = Φ .
- 3) If we want to prove that a problem X is NP-Hard, we take a known NP-Hard problem Y and reduce Y to X.