Lecture 4, Part 2 Fitts' Law

UNIVERSITY OF AUCKLAND

COMPSCI 705 / SOFTENG 702

Prof. Robert Amor

Notes from:

Heim, S. (2007) The Resonant Interface, Section 7.6.1, Addison Wesley

https://www.nngroup.com/articles/fitts-law/

https://www.asktog.com/columns/022DesignedToGiveFitts.html

Learning objectives

- Comprehensive understanding of Fitts' Law
- Implications of Index of Difficulty and Movement Time
- Limitations of Fitts' Law

Performance Measurements

- An analytical performance measurement that can be extracted directly from the interface as compared to an empirical performance measurement observed in a usability study
 - Fitts' Law is the classic performance measure for time to complete the task of pointing at an object
 - Hick—Hyman Law time taken to make a decision (e.g., that is the object I want!)
- There are other more comprehensive models we won't cover here
 - KLM keystroke-level model
 - GOMS goals, operators, methods and selection rules

- Fitts' Law is the classic performance measure.
 - Time to target depends on target width (w) and distance to move pointer (D)

$$T = a + b \log_2 \frac{2D}{w}$$

- Paul Fitts, a psychologist, understood that human error is attributable to poor design
 - Studied airplane cockpits
- What is the implication for design for usability?

- The constants a and b vary
 - Unique to every user
 - Unique to every device
 - Unique to different types of software
 - Unique to different modes of pointing
- Yikes! But
 - Can average over a population, or user group
 - Can average for a particular device
 - Etc.

Fitts' Law

5

log₂ component is the Index of Difficulty (ID)

$$ID = \log_2 \frac{2D}{w}$$

- Measured in bits
- As ID increases,
 time to reach target
 increases

Prime pixel

- Point where the user will carry out their action
- Initially estimated to be the centre of the screen
 - E.g., Google search screen
- Will be updated as the user performs actions
 - E.g., when they press the login button
- Magic pixels
 - Four corners of the screen (for mouse movement)
 - Can be acquired at great speed
 - Rule of the infinite edge
 - Microsoft Start button at bottom left
 - Microsoft/Apple icons and menus across the top and bottom of the screen

Fitts' Law

7

Influences

- Short dropdown lists
 - Important/frequently used items first
- Right-click pop-up menu
- Pie menu rather than dropdown list
- Large targets
 - Increase size until error rate drops off
- Add labels to icons
- Related targets close together
 - E.g., *Submit* button close to last form element
- Minimise distance from attention area

Influences

- Infinite targets along edges (for mouse movement)
- Crowded targets can be problematic
- Padded targets aren't identifiable
- Make items you don't want accessed small

Limitations

- Models continuous movements
- Doesn't cover 2-handed operations
- Differences with flexor and extensor movements

Calculations

- Maintaining the same time to target?
 - ID needs to stay the same
 - Double w, then you need to double D
 - Double *D*, then you need to double *w*
 - 3 x *D*?
- Find a and b
 - ID = 0 to find a, or
 - Simultaneous equation