РОБОТА із ЗОБРАЖЕННЯМИ

Файл: Image_10_001

Класифікація зображень. Машина опорних векторів - Support Vector Machine (SVM)

Приклад класифікації облич

Дивись Support Vector Machines

```
# Завантаження пакетів
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 3

# Для статистичної обробки
from scipy import ndimage
from scipy import stats
```

```
# Завантаження пакету [Seaborn]
import seaborn as sns
sns.set()
```

```
# 3 sklearn імпорт лінійної perpeciï
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_blobs
```

Завантаження набору фотографій

```
# Приклади фото оббличчь

from sklearn.datasets import fetch_lfw_people

faces = fetch_lfw_people(min_faces_per_person=60)

print('Всього облич', faces.target_names.shape[0])

print(faces.target_names)

print('Всього фото', faces.images.shape[0])

print('Размір фото', faces.images.shape[1],' X ',faces.images.shape[2])
```

```
Всього Облич 8
['Ariel Sharon' 'Colin Powell' 'Donald Rumsfeld' 'George W Bush'
'Gerhard Schroeder' 'Hugo Chavez' 'Junichiro Koizumi' 'Tony Blair']
Всього фото 1348
Размір фото 62 X 47
```

```
# Як приклад - перші 15 фото
fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='bone')
    # axi.set(xticks=[], yticks=[])
    axi.set(xticks=[], yticks=[],
    xlabel=faces.target_names[faces.target[i]])
```


Colin PowellGeorge W Busheorge W Bushlugo Chavez

George W Bulshnichiro Koizu@neiorge W Bush Tony Blair

George W Bushald Rumsfeleorge W Busheorge W Busheorge W Bush

```
# Датасет поділяємо на тренувальні та валідаційні послідовності from sklearn.model_selection import train_test_split

Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target, random_state=42)

print('Тренувальна множина', Xtrain.shape, ytrain.shape)

print('Валідаційна множина', Xtest.shape, ytest.shape)
```

```
Тренувальна множина (1011, 2914) (1011,)
Валідаційна множина (337, 2914) (337,)
```

!! Стврення дискріптора

```
# Імпортуємо функцію формуваня дескріпторів (векторів)

# Використвуємо метод головних компонент (РСА) для вилучення признаків from sklearn.decomposition import PCA # імпорт методу PCA

# Будемо вилучати 150 признаків з 2914 пикселів каждної фотографії # Тільки для демонтсрації рса = PCA(n_components=150, whiten=True, random_state=42) # стоврення екземпляру (моделі) PCA рса.fit(Xtrain) # Обрабляємо тренувальну множину # Отримали 1011 векторів по 150 компонент кажний print('Кількість зразків для тренування', pca.n_samples_) print('Кількість компонент в векторі', pca.n_components_)
```

```
Кількість зразків для тренування 1011
Кількість компонент в векторі 150
```

Навчання SVM класифікатора

```
from sklearn.svm import SVC # "Support vector classifier"
```

```
# СОЗДАЕМ КОНВЕЙЕР

from sklearn.pipeline import make_pipeline

svc = SVC(kernel='rbf', class_weight='balanced') # модель класифікатора

model = make_pipeline(pca, svc) # конвейєр -> PCA -> SVM
```

```
{'svc__C': 5, 'svc__gamma': 0.001}
```

Вікориствуємо теству множину

```
# Передаємо модлі знайдені оптимальні параметри
model = grid.best_estimator_

# Визначаємо мітки для тестової множини
yfit = model.predict(Xtest)
```

ВИзначено; Невірні - червоні

Метрики

from sklearn.metrics import classification_report
print(classification_report(ytest, yfit,

target_names=faces.target_names))

	precision	recal1	f1-score	support
Ariel Sharon	0.65	0.87	0.74	15
Colin Powell	0.83	0.88	0.86	68
Donald Rumsfeld	0.70	0.84	0.76	31
George W Bush	0.97	0.80	0.88	126
Gerhard Schroeder	0.76	0.83	0.79	23
Hugo Chavez	0.93	0.70	0.80	20
Junichiro Koizumi	0.86	1.00	0.92	12
Tony Blair	0.82	0.98	0.89	42
accuracy			0.85	337
macro avg	0.82	0.86	0.83	337

weighted avg 0.86 0.85 0.85 337

Матриця плутанини

