Continuous Elementary Signal

$$\begin{split} rect(\frac{t}{\tau}) &= \begin{cases} 1 & |t| < \frac{\tau}{2} \\ 0 & |t| > \frac{\tau}{2} \end{cases} \\ u(t) &= \begin{cases} 1 & |t| > 0 \\ 0 & |t| < 0 \end{cases} \quad r(t) &= \begin{cases} t & |t| > 0 \\ 0 & |t| < 0 \end{cases} \end{split}$$

Unit Impulse Function

- 1. $\delta(0) \to \infty$
- 2. $\delta(t) = 0, t \neq \infty$
- 3. $\int_{-\infty}^{\infty} \delta(t) dt = 1$
- 4. $\delta(t)$ is an even function, i.e., $\delta(t) = \delta(-t)$
- Sifting $\int_{t_1} t_2 x(t) \delta(t t_0) dt = \begin{cases} x(t_0) & t_1 < t_0 < t_2 \\ 0 & \text{otherwise} \end{cases}$
- Sampling $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$
- Scaling $\delta(at+b) = \frac{1}{|a|}\delta(t+\frac{b}{a})$

$$\frac{du(t)}{dt} = \delta(t) \quad \int_{-\infty}^{\infty} \delta(\tau) \, d\tau = u(t)$$

Periodic Signal

Continous

$$x(t)=x(t+nT)\ T \text{ is period, } T=\frac{2\pi}{|\omega_0|}$$

$$z(t)=ax(t)+by(t)\quad x(t)=x(t+kT_1)\quad y(t)=y(t+lT_2)$$

Will be Periodic if $T=kT_1=lT_2$ where k,l are integers

Discrete

x[n] = x[n+N] for all n, some integer N > 0

Continuous Time System

4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5	Time Reversal	x(-t)	$X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega-\theta))d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$
4.3.6	Differentiation in Frequency	tx(t)	uw
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im e\{X(j\omega)\} = -\Im e\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ X(j\omega) = X(-j\omega) \end{cases}$ $\stackrel{*}{\times} X(j\omega) = -\stackrel{*}{\times} X(-j\omega)$
			$\forall X(i\omega) = -\forall X(-i\omega)$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd

Discrete Elementary Signal

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases} = \sum_{k=0}^{\infty} \delta[k]$$
$$u[n] - u[n-1] = \delta[n] \quad x[n]\delta[n-k] = x[k]\delta[n-k]$$
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Convolution

Continuous

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = x(t)*h(t), \quad x(t)*\delta(t-a) = x(t-a)$$
$$x(t)*u(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau) d\tau = \int_{-\infty}^{t} x(\tau) d\tau$$

Discrete

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$
$$x[n] * u[n] = \sum_{k=-\infty}^{\infty} x[k]u[n-k] = \sum_{k=-\infty}^{n} x[k]$$

Continuous Fourier Transform

$rect(\frac{t}{\tau}) \leftrightarrow \tau sir$	$ac(\frac{\omega\tau}{2}) e^{-\alpha t} \leftrightarrow$	$\frac{1}{\alpha + j\omega}$
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$

and $ (0, T_1 < t \le \frac{\tau}{2} $ $ x(t+T) = x(t) $	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 \Gamma_1}{k} \delta(\omega - k\omega_0)$	$\frac{\log x}{\pi}$ sinc $\left(\frac{\log x}{\pi}\right) = \frac{\sin \log x}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),}{\Re e\{a\}>0}$	$\frac{1}{(a+j\omega)^n}$	_

Fourier Transform for DT (DTFT)

Property	Aperiodic Signal	Fourier Transform		
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Expansion Convolution Multiplication	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n} x[n]$ $x'[n]$ $x[-n]$ $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$ $x[n] * y[n]$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π $aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega_0}X(e^{j\omega})$ $X(e^{j(\omega-\omega)})$ $X'(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{-j\omega})$ $X(e^{j\omega})$ $X(e^{j\omega})$ $X(e^{j\omega})$ $X(e^{j\omega})$ $X(e^{j\omega})$		
Differencing in Time	x[n] - x[n-1]	$\frac{2\pi}{2\pi} \int_{2\pi}^{\infty} X(e^{i\omega}) f(e^{-i\omega}) X(e^{i\omega})$ $\frac{1}{1 - e^{-i\omega}} X(e^{i\omega})$		
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$		
Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\pi}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$		
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\} \\ \Re\{X(e^{j\omega})\} = -\Re\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \not \le X(e^{j\omega}) = -\not \le X(e^{-j\omega}) \end{cases}$		
Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even		
Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd		
Even-odd Decomposition	$x_c[n] = \mathcal{E}_v\{x[n]\}$ [x[n] real]	$\Re\{X(e^{j\omega})\}$		
of Real Signals	$x_n[n] = Od\{x[n]\}$ [x[n] real]	$j \mathcal{G} m\{X(e^{j\omega})\}$		
Parseval's Re				
$\sum_{n=-\infty}^{+\infty} x[n] ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$				

Discrete Fourier Transform (DFT)

Matrix Representation

$$X[k] = \sum\limits_{n=0}^{N-1} x[n] W_n^{nk} \, ; k = 0, 1, ..., N-1$$

Convolution Example

$$x[n] = \{1, 2, 0, -1\} \ h[n] = \{1, 3, -1, 2\} \ N = 4 \ e^{\frac{-2\pi}{4}j} = -j$$

$$X = Wx = \begin{bmatrix} \frac{1}{1} & \frac{1}{-j} & \frac{1}{j} \\ \frac{1}{1} & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{1-3j} \\ 0 \\ 1+3j \end{bmatrix}$$

$$H = Wh = \begin{bmatrix} \frac{1}{1} & \frac{1}{-j} & \frac{1}{j} \\ \frac{1}{1} & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2-5j} \\ -1 \\ 2+5j \end{bmatrix}$$

$$Y = XH = \begin{bmatrix} -\frac{13-11j}{0} \\ 0 \\ -13+11j \end{bmatrix} W^{-1} = \frac{1}{N}W^*$$

$$y = \frac{1}{4} \begin{bmatrix} \frac{1}{1} & \frac{1}{j} & \frac{1}{j} & -1 \\ \frac{1}{1} & -1 & 1 & -j \\ 1 & -1 & 1 & -j \\ 1 & -1 & 1 & -j \\ 1 & -j & 1 & j \end{bmatrix} = \begin{bmatrix} -66 \\ 6 \\ 7 \\ -5 \end{bmatrix}$$

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)	
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k	
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic	_Sampling
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic	Nyquist rate $2\omega_0$
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic	-Impulse Train Sampling
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$	
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\kappa}^{+\kappa} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi klN)(N_1 + \frac{1}{2})]}{N \sin[2\pi kl2N]}, \ k \neq 0, \pm N, \pm 2N,.$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N,$	$\neg x(t)$ low pass signal and no freq. $> \omega_B$ $\neg p(t)$ periodic impulse train T_s sampling period Output of the sampler $x_s(t)$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k	Fundamental freq. (sampling freq.) of $p(t)$ is $\omega_s = \frac{2\pi}{T_s}$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_	
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_	$\overline{x}_s(t) = x(t)p(t)$ where $p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_	
$\delta[n]$	1		_Aliasing
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$	_	$-\omega_s < 2\omega_R \to \text{Aliasing}$
$\delta[n-n_0]$	e-jana		Reconstructed frequency f_p of signal frequency f which is
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$		sampled at f_s
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^{\gamma}}$	_	$f_p = f - kf_s ; k \text{ is the rounded value of } \frac{f}{f_s}$