

UN PEUPLE- UN BUT -UNE FOIE

MINISTERE DE l'ECONOMIE, DES FINANCES ET

AGENCE NATIONALE DE LA STATISTIQUE ET DE LA DEMOGRAPHIE

ECOLE NATIONALE DE LA STATISTIQUE ET DE l'ANALYSE ECONOMIQUE Pierre Ndiaye

Projet final - Logiciel statistique R

Rédigé par:

MOSSE Isabelle Danielle

Elèves ingénieurs statisticiens économistes

Sous la supervision de :

M. HEMA Aboubacar

Research Analyst

Contents

1	partie 1	3
	1.1 Préparation des données	3
	1.1.1 Importation et mise en forme	3
	1.1.2 Création de variables	4
	1.2 Analyses descriptives	4
	1.3 cartographie	
	1.4 autre analyse spaciale	11
2	partie 2	1 2
	2.1 Nettoyage et gestion des données	12
	2.2 Analyse et visualisation des données	14
3	partie 3	17

1 partie 1

1.1 Préparation des données

1.1.1 Importation et mise en forme

```
##Importation et mise en forme##
projet <- read_excel("Base_Partie 1.xlsx",</pre>
                     sheet = "sheet1",
                     range = NULL,
                     col_names = TRUE,
                     col_types = NULL,
                     na = "")
# Sélection les variables
variables <- select(projet, matches("^[qfgst]"))</pre>
#Résumé des valeurs manquantes par variable
val_manq <- variables %>%
summarise_all(~ sum(is.na(.)))
#tableau qui resume les valeurs manquantes par variable
# Calcul du nombre total de valeurs manquantes par variable
table_manquantes <- data.frame(</pre>
Variable = names(projet),
`Nombredevaleursmanquante` = colSums(is.na(projet))
# tableau "gtsummary" avec les variables et le nombre de valeurs manquantes
table_manquantes_table <-
     gt(table_manquantes)
table_manquantes_table
```

Variable	Nombredevaleursmanquante
key	0
q1	0
q2	0
q23	0
q24	0
$q24a_1$	0
$q24a_2$	0
$q24a_3$	0
$q24a_4$	0
$q24a_5$	0
q24a_6	0
q24a_7	0
q24a_9	0
q24a_10	0
q25	0
q26	0
q12	0
q14b	1
q16	1
q17	131
q19	120

```
q20
                                                 0
filiere 1
                                                  0
filiere 2
                                                  0
filiere 3
                                                  0
filiere 4
                                                  0
q8
                                                  0
q81
gps\_menlatitude
                                                  0
gps menlongitude
submissiondate
                                                  0
start
                                                  0
today
                                                  0
```

```
# Vérifier les valeurs manquantes pour la variable "key"
valeurs_manquantes_key <- subset(projet, is.na(key))
if (nrow(valeurs_manquantes_key) > 0) {
pmes_concernees <- valeurs_manquantes_key$key
cat("Les PME concernées avec des valeurs manquantes pour 'key' sont :", pmes_concernees)
} else {
cat("Il n'y a pas de valeurs manquantes pour la variable 'key'.")
}</pre>
```

Il n'y a pas de valeurs manquantes pour la variable 'key'.

1.1.2 Création de variables

```
# Renommer les variables "q1", "q2" et "q23" respectivement en "region", "departement" et "sexe"
projet <- projet %>%
 rename(region = q1,
         departement = q2,
         sexe = q23)
# Créer la variable sexe 2
projet$sexe_2 <- ifelse(projet$sexe == "Femme", 1, 0)</pre>
# Sélectionner les variables key et les variables correspondantes dans un nouveau data.frame
langues <- projet %>%
  select(key, starts_with("q24a"))
# Créer la variable parle
langues$parle <- rowSums(langues[, -1])</pre>
# Sélectionner les variables key et parle
langues <- select(langues, key, parle)</pre>
# Fusionner les data.frames projet et langues
projet_r <- merge(projet, langues, by = "key")</pre>
```

1.2 Analyses descriptives

```
#labelisation des variables
var_label(projet_r$q25) <- "Niveau d'instruction"
var_label(projet_r$q12) <- "Statut juridique"
var_label(projet_r$q81) <- "Locataire/propriétaire"</pre>
```

```
#précisons le français comme langue de sortie
theme_gtsummary_language("fr", decimal.mark = ",", big.mark = " ")
#tableau récapitulatif des statistiques descriptives
tab1 <-projet_r %>%
tbl_summary(
include = c(sexe, q12, q25, q81),
statistic = all_categorical() ~ "{p} % ({n}/{N})",
)%>%
bold_labels()
## repartition des pme suivant le statut juridique et le sexe
tab2 <- projet_r %>%
tbl_summary(
include = c(sexe, q25, q12, q81),
by = sexe,
statistic = all_categorical() ~ "{p}% ({n}/{N})",
percent = "row"
)%>%
add overall()%>%
modify_header(
all_stat_cols() ~ "**{level}** ({n} obs.)"
) %>%
bold_labels()
```

#combinons les tables tab1 et tab2

)## intitulé des groupes de tableau associés

tab_spanner = c("statistiques univarié", "statistiques bivariées")

gtsummary::tbl_merge(
list(tab1, tab2),

Caractéristique	N = 250	Total (250 obs.)	Femme (191 obs.)	Homme (59 obs.)
sexe				
Femme	76~%			
	(191/250)			
Homme	24% (59/250)			
Statut juridique	, , ,			
Association	2.4% (6/250)	100% (6/6)	50% (3/6)	50% (3/6)
GIE	72%	100% (179/179)	83% (149/179)	17% (30/179)
	(179/250)	, , ,	` ' '	, , ,
Informel	15% (38/250)	100% (38/38)	84% (32/38)	$16\% \ (6/38)$
SA	2.8%(7/250)	100% (7/7)	14% (1/7)	86% (6/7)
SARL	5,2 %	100% (13/13)	$15\% \ (2/13)$	85% (11/13)
	(13/250)	, , ,	· · /	, , ,
SUARL	2.8% (7/250)	$100\% \ (7/7)$	57% (4/7)	43% (3/7)
Niveau d'instruction	n	, , ,	, , ,	, , ,
Aucun niveau	32% (79/250)	100% (79/79)	$89\% \ (70/79)$	11% (9/79)
Niveau primaire	22%(56/250)	100% (56/56)	86% (48/56)	14% (8/56)
Niveau secondaire	30% (74/250)	$100\% \ (74/74)$	$76\% \ (56/74)$	$24\% \ (18/74)$
Niveau Superieur	16%(41/250)	100% (41/41)	41% (17/41)	59% (24/41)
Locataire/propriéta	ire	, , ,	, , ,	, , ,
Locataire	9,6 %	100% (24/24)	$67\% \ (16/24)$	33% (8/24)
	(24/250)	. , ,	` ', '	. , ,
Propriétaire	90 %	$100\% \ (226/226)$	$77\% \ (175/226)$	23% (51/226)
_	(226/250)	, , ,	, , ,	` ', '

```
#statistique descriptive de notre choix sur les autres variables
#analyse par filiere
var_label(projet_r$q24) <- "Age du dirigeant"</pre>
var_label(projet_r$filiere_1) <- "filiere arachide"</pre>
var_label(projet_r$filiere_2) <- "filiere anacarde"</pre>
var_label(projet_r$filiere_3) <- "filiere mangue"</pre>
var_label(projet_r$filiere_4) <- "filiere riz"</pre>
theme_gtsummary_language("fr", decimal.mark = ",", big.mark = " ")
projet_r %>%
tbl_summary(
 include = c(q24, region, departement, parle),
 type = q24 ~ "continuous2",
 by = sexe,
 statistic = list(
   all_continuous2() ~ c("{median} ({p25} - {p75}", "{mean} ({sd})", "{min} - {max}"))
)%>%
add_overall()%>%
bold_labels()
```

Caractéristique	Total, $N = 250$	Femme, $N = 191$	Homme, $N = 59$
Age du dirigeant			
Médiane (EI	55 (45 - 62	56 (45 - 63	50 (40 - 59
Moyenne (ET)	3 106 217 (49 112 065)	4 065 708 (56 187 733)	65 (124)
Étendue	18 - 776 530 031	18 - 776 530 031	26 - 999
region			
Dakar	1 (0.4%)	0 (0%)	1 (1,7%)
Diourbel	34 (14%)	28~(15%)	6 (10%)
Fatick	30 (12%)	23 (12%)	7 (12%)
Kaffrine	8 (3,2%)	8 (4,2%)	0 (0%)
Kaolack	21 (8,4%)	20 (10%)	1(1,7%)
Kolda	9 (3,6%)	4(2,1%)	5 (8,5%)
Saint-Louis	42 (17%)	22 (12%)	20 (34%)
Sédhiou	4 (1,6%)	1 (0,5%)	3(5,1%)
Thiès	51 (20%)	48~(25%)	3 (5,1%)
Ziguinchor	50 (20%)	37 (19%)	13(22%)
departement			
Bambey	$20 \ (8,0\%)$	15 (7,9%)	5 (8,5%)
Bignona	13 (5,2%)	9(4,7%)	4(6.8%)
Birkelane	1 (0,4%)	1 (0,5%)	0 (0%)
Dagana	39 (16%)	20 (10%)	19 (32%)
Diourbel	12 (4.8%)	11 (5,8%)	1 (1,7%)
Fatick	15 (6,0%)	12~(6,3%)	3 (5,1%)
Foundiougne	15 (6,0%)	11 (5,8%)	4 (6.8%)
Goudomp	3(1,2%)	0 (0%)	3 (5,1%)
Kaffrine	4~(1,6%)	4(2,1%)	0 (0%)
Kaolack	16 (6,4%)	15 (7,9%)	1 (1,7%)
Kolda	7 (2,8%)	3 (1,6%)	4~(6.8%)
Koungheul	3(1,2%)	3 (1,6%)	0 (0%)
Mbacké	2 (0.8%)	2(1,0%)	0 (0%)
Mbour	22 (8.8%)	21~(11%)	1 (1,7%)
Médina Yoro Foula	1 (0,4%)	0 (0%)	1~(1,7%)
Nioro	5 (2,0%)	5 (2,6%)	0 (0%)

Caractéristique	Total, $N = 250$	Femme, $N = 191$	Homme, $N = 59$
Oussouye	2 (0,8%)	2 (1,0%)	0 (0%)
Podor	1 (0,4%)	0 (0%)	1(1,7%)
Rufisque	1 (0,4%)	0 (0%)	1 (1,7%)
Saint-Louis	2 (0,8%)	2 (1,0%)	0 (0%)
Sédhiou	1 (0,4%)	1 (0,5%)	0 (0%)
Thiès	23(9,2%)	23 (12%)	0 (0%)
Tivaouane	6 (2,4%)	4 (2,1%)	2(3.4%)
Velingara	1 (0,4%)	1 (0,5%)	0 (0%)
Ziguinchor	35 (14%)	26 (14%)	9 (15%)
parle	, ,	,	, ,
1	37 (15%)	32~(17%)	5 (8,5%)
2	104~(42%)	86 (45%)	18 (31%)
3	67 (27%)	44 (23%)	23 (39%)
4	34 (14%)	24 (13%)	10 (17%)
5	7 (2,8%)	5 (2,6%)	2(3,4%)
6	1 (0,4%)	0 (0%)	1 (1,7%)

```
#Analyse par filiere
#filiere suivant le sexe du dirigeant
tab3 <- projet_r %>%
tbl_summary(
include = c(sexe, filiere_1, filiere_2, filiere_3, filiere_4),
statistic = \sim "{p}% ({n})",
percent = "row"
)%>%
add_overall()%>%
modify_header(
all_stat_cols() ~ "**{level}** ({n} obs.)"
) %>%
bold_labels()
#filiere suivant la langue parlée
tab4 <- projet_r %>%
tbl_summary(
include = c(parle, filiere_1, filiere_2, filiere_3, filiere_4),
by = parle,
statistic =  "\{p\}\% (\{n\})", 
percent = "row"
)%>%
add_overall()%>%
modify_header(
all_stat_cols() ~ "**{level}** ({n} obs.)"
) %>%
bold_labels()
#filiere suivant la region
tab5 <- projet_r %>%
tbl_summary(
include = c(region, filiere_1, filiere_2, filiere_3, filiere_4),
by = region,
statistic =  "{p}% ({n})",
```

```
percent = "row"
)%>%
add_overall()%>%
modify_header(
all_stat_cols() ~ "**{level}** ({n} obs.)"
) %>%
bold_labels()
#combinons les tables tab1 et tab2
gtsummary::tbl_stack(
list(tab3, tab4, tab5),
group_header = c("filiere suivant le sexe du dirigeant", "filiere suivant la langue parlée", "#filiere
)
```

								Saint-			
	Total		e Homn		4	- / -	0 (1	Louis		υThiès	Ziguinch
~	(250	(191	(59	(67	(34	5 (7	6 (1	(42	(4	(51	(50
Group	Caracté visti q	ueobs.)	obs.)	obs.)	obs.)	obs.)	obs.)	obs.)	obs.)	obs.)	obs.)
filiere	filiere 100%	86%	14%								
suivant le sexe du dirigeant	arachid(108)	(93)	(15)								
31118000110	filiere 100%	66%	34%								
	anac- (61) arde	(40)	(21)								
	filiere 100%	76%	24%								
	$\mathbf{mangue}(89)$	(68)	(21)								
	filiere 100%	84%	16%								
	riz (92)	(77)	(15)								
iliere	filiere 100%	18%	45%	26%	$9,\!3\%$	1,9%	0%				
suivant la angue parlée	arachid(e108)	(19)	(49)	(28)	(10)	(2)	(0)				
	filiere 100%	$1,\!6\%$	34%	28%	25%	9,8%	1,6%				
	anac- (61) arde	(1)	(21)	(17)	(15)	(6)	(1)				
	filiere 100%	20%	45%	27%	$4,\!5\%$	3,4%	0%				
	$\mathbf{mangue}(89)$	(18)	(40)	(24)	(4)	(3)	(0)				
	filiere 100%	$7{,}6\%$	24%	33%	29%	$5,\!4\%$	$1,\!1\%$				
	riz (92)	(7)	(22)	(30)	(27)	(5)	(1)				
#filiere	filiere 100%	0%	31%	11%	$7,\!4\%$	19%	0,9%	0,9%	0%	25%	$5,\!6\%$
suivant la region	arachid(108)	(0)	(33)	(12)	(8)	(20)	(1)	(1)	(0)	(27)	(6)
	filiere 100%	$1,\!6\%$	0%	34%	0%	0%	$8,\!2\%$	0% (0)	4,9%	0%	51%
	anac- (61) arde	(1)	(0)	(21)	(0)	(0)	(5)		(3)	(0)	(31)
	filiere 100%	0%	1,1%	3,4%	$5,\!6\%$	7,9%	0%	47%	0%	28%	6,7%
	mangue (89)	(0)	(1)	(3)	(5)	(7)	(0)	(42)	(0)	(25)	(6)
	filiere 100%	1,1%	0%	4,3%	1,1%	4,3%	4,3%	0% (0)	$3,\!3\%$	35%	47%
	riz (92)	(1)	(0)	(4)	(1)	(4)	(4)	" (")	(3)	(32)	(43)

```
library("lubridate")
library("magrittr")
```

```
# Convertir les colonnes "date_depart" et "date_arrivee" en objets de type "POSIXct" (si nécessaire)
projet_r$start <- ymd_hms(projet_r$start)</pre>
projet_r$submissiondate <- ymd_hms(projet_r$submissiondate)</pre>
# Calculer l'intervalle de temps entre la date de départ et la date d'arrivée
projet_r$intervalle_temps <- interval(projet_r$start, projet_r$submissiondate)</pre>
# intervalle de temps entre la date de receuil et de soumissions des informations des informations de l
projet_r$duree <- as.duration(projet_r$intervalle_temps)</pre>
# creation d'un tatbleau qui donne la durée par region
projet_r %>%
 tbl_summary(
    include = c(region, duree),
    type = duree ~ "continuous2",
    by = region,
    statistic = list(
      all_continuous2() ~ c("{mean} ({sd})", "{min}", "{max}"))
)%>%
add overall()
## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
```

	Total,	Dakar	, Diourb	elFatick,		Kaolao	k ,	Saint-		Thiès,	
	N =	N =	N =	N =	Kaffrin	$\mathbf{e}, N =$	Kolda,	Louis,	Sédhio	$\mathbf{u}, N =$	Ziguinchor,
Caractér	i 35l que	e 1	34	30	N = 8	21	N = 9	N = 42	N = 4	51	N = 50
duree											
Moyenne	567	944	126	401	281	624	630	1 378	713	290	$560\ 226$
(ET)	820	916	586	594	582	660	489	780	334	979	(346
	(595)	(NA)	(209)	(485)	(291)	(558)	(224)	(714)	(42	(348)	353)
	691)	, ,	416)	986)	576)	324)	551)	012)	635)	563)	,
Minimum	$2\ 192$	944	3 130	19	$22\ 975$	$15\overset{\circ}{1}$	236	201 110	689°	$2\ 192$	$13\ 297$
		916		160		688	875		714		
Maximum	2 389	944	1 036	1 631	686	1 724	994	$2\ 389$	777	1 116	1 468
	712	916	607	063	076	260	305	712	224	615	834

To suppress this message, include `message = FALSE` in code chunk header.

1.3 cartographie

```
library(sf)
library(rnaturalearth)
library(ggspatial)

# Créer un objet sf à partir du data frame projet en utilisant les coordonnées géographiques
projet_map <- st_as_sf(projet, coords = c("gps_menlongitude", "gps_menlatitude"), crs = 4326)

# Récupérer les frontières des régions du Sénégal
senegal_regions <- rnaturalearth:: ne_states(country = "Senegal", returnclass = "sf")

# Création d'un data frame contenant les coordonnées et les noms des régions du Sénégal
regions <- data.frame(
region = c("Dakar", "Thiès", "Fatick", "Kaolack", "Kaffrine", "Kédougou", "Kolda", "Louga", "Matam", "S
lon = c(-17.455390, -16.920337, -16.412964, -16.073365, -15.687128, -12.220533, -14.981073, -16.246381,
lat = c(14.693425, 14.798658, 14.339950, 14.151858, 14.101164, 12.559404, 12.887101, 15.614472, 15.6509)
```

```
# Représentation spatiale des PME suivant le sexe avec ggplot2
ggplot() +
geom_sf(data = senegal_regions, fill = "cyan4" , color = "black") + # Fond de carte du Sénégal avec con
geom_text(data = regions, aes(x = lon, y = lat, label = region), size = 3, nudge_y = 0.1) + # Ajout des
annotation_north_arrow(location = "bl", which_north = "true", pad_x = unit(0.1, "cm"), pad_y = unit(0.1
geom_point(data = projet_map, aes(x = st_coordinates(geometry)[, 1], y = st_coordinates(geometry)[, 2],
labs(title = "Répartition des PME par sexe", color = "Sexe") +
theme_minimal()
```



```
# Représentation spatiale des PME suivant le niveau d'instruction avec ggplot2
ggplot() +
geom_sf(data = senegal_regions, fill = "sandybrown" , color = "gold4" ) + # Fond de carte du Sénégal
geom_text(data = regions, aes(x = lon, y = lat, label = region), size = 3, nudge_y = 0.1) + # Ajout des
annotation_north_arrow(location = "bl", which_north = "true", pad_x = unit(0.1, "cm"), pad_y = unit(0.1
geom_point(data = projet_map, aes(x = st_coordinates(geometry)[, 1], y = st_coordinates(geometry)[, 2],
labs(title = "Répartition des PME par niveau d'instruction", color = "Niveau d'instruction") +
theme_minimal()
```


1.4 autre analyse spaciale

Nous allons faire une analyse spaciale des PME suivant le statut juridique

lon

```
# Représentation spatiale des PME suivant le niveau d'instruction avec ggplot2
ggplot() +
geom_sf(data = senegal_regions, fill = "wheat3", color = "aquamarine") + # Fond de carte du Sénégal ave
geom_text(data = regions, aes(x = lon, y = lat, label = region), size = 3, nudge_y = 0.1) + # Ajout des
annotation_north_arrow(location = "bl", which_north = "true", pad_x = unit(0.1, "cm"), pad_y = unit(0.1
geom_point(data = projet_map, aes(x = st_coordinates(geometry)[, 1], y = st_coordinates(geometry)[, 2],
labs(title = "Répartition des PME suivant le statut juridique", color = "statut juridique") +
theme_minimal()
```


2 partie 2

2.1 Nettoyage et gestion des données

```
library(broom)
# Charger les données depuis le fichier Excel
data <- read_excel("Base_Partie 2.xlsx",</pre>
             sheet = "data",
             range = NULL,
             col_names = TRUE,
             col_types = NULL,
             na = "")
# Nettoyage et gestion des données
# Remplacer les valeurs aberrantes (999) par NA dans la colonne endline_age
data <- data %>%
 mutate(age = ifelse(age == 999, NA, age))
# Calculer la moyenne des âges sans prendre en compte les valeurs manquantes (NA)
mean_age <- mean(data$age, na.rm = TRUE)</pre>
# Remplacer les valeurs manquantes (NA) par la moyenne des autres âges
data$age[is.na(data$age)] <- mean_age</pre>
# Arrondir à l'entier supérieur
data$age <- ceiling(data$age)</pre>
# Renommer la variable "country_destination" en "destination" et définir les valeurs négatives comme ma
data <- data %>%
 rename(destination = country_destination) %>%
 mutate(destination = ifelse(destination < 0, NA, destination))</pre>
```

```
# Remplacer les valeurs manquantes dans la variable "age" par NA
data <- data %>%
  mutate(age = ifelse(is.na(age), NA, age))
# Créer une nouvelle variable contenant des tranches d'âge de 5 ans en utilisant la variable "age"
data <- data %>%
  mutate(age_group = cut(age, breaks = seq(15, max(age) + 5, by = 5), include.lowest = TRUE),
         age_group = cut(age, breaks = seq(15, max(age) + 5, by = 5), include.lowest = TRUE))
# Afficher les premières lignes de la nouvelle variable age_group_label
head(data$age_group)
## [1] (30,35] (40,45] (25,30] (20,25] (25,30] (20,25]
## Levels: [15,20] (20,25] (25,30] (30,35] (35,40] (40,45]
# Créer une nouvelle variable contenant le nombre d'entretiens réalisés par chaque agent recenseur
data <- data %>%
  group_by(enumerator) %>%
  mutate(nombre_ent = n()) %>%
  ungroup()
# Créer une nouvelle variable qui affecte aléatoirement chaque répondant à un groupe de traitement (1)
set.seed(42) # fixons l'aléa
data <- data %>%
  mutate(treatment_group = sample(c(0, 1), nrow(.), replace = TRUE))
# Charger les données depuis le fichier Excel
district_data <- read_excel("Base_Partie 2.xlsx",</pre>
                      sheet = "district",
                      range = NULL,
                      col_names = TRUE,
                      col types = NULL,
                      na = "")
# Fusionner la taille de la population de chaque district avec l'ensemble de données
data2 <- left_join(data, district_data, by = "district")</pre>
# afficher les premieres lignes
head(data2)
## # A tibble: 6 x 14
        id starttime
                               endtime
                                                    enumerator district
                                                                          age
                                                                                 sex
##
    <dbl> <dttm>
                               <dttm>
                                                         <dbl>
                                                                  <dbl> <dbl> <dbl>
        2 2019-01-14 14:56:37 2019-01-14 15:11:10
                                                             6
                                                                      1
                                                                           33
         3 2019-01-14 16:12:22 2019-01-14 16:45:52
## 2
                                                             6
                                                                      1
                                                                           43
         4 2019-01-14 17:15:47 2019-01-14 17:45:47
                                                             6
                                                                           28
                                                                                  0
                                                                      1
## 4
        7 2019-01-14 13:04:51 2019-01-14 13:27:38
                                                             8
                                                                           24
                                                                      3
        8 2019-01-14 13:38:00 2019-01-14 14:31:16
                                                             8
                                                                      3
                                                                           29
                                                                                  0
        10 2019-01-14 15:52:17 2019-01-14 16:33:39
                                                             8
                                                                           22
## # i 7 more variables: children_num <dbl>, intention <dbl>, destination <dbl>,
       age_group <fct>, nombre_ent <int>, treatment_group <dbl>, population <dbl>
# Calculer la durée de l'entretien et indiquer la durée moyenne de l'entretien par enquêteur
data2 <- data2 %>%
mutate(duree = endtime - starttime,
duree_moy = mean(duree, na.rm = TRUE))
#affichage des premieres lignes
head(data2)
## # A tibble: 6 x 16
##
        id starttime
```

enumerator district

age

sex

endtime

```
<dbl> <dttm>
                               <dttm>
                                                         <dbl>
                                                                  <dbl> <dbl> <dbl>
## 1
        2 2019-01-14 14:56:37 2019-01-14 15:11:10
                                                                           33
                                                             6
                                                                      1
         3 2019-01-14 16:12:22 2019-01-14 16:45:52
                                                             6
                                                                           43
         4 2019-01-14 17:15:47 2019-01-14 17:45:47
                                                                           28
                                                                                   0
## 3
                                                             6
                                                                      1
## 4
        7 2019-01-14 13:04:51 2019-01-14 13:27:38
                                                             8
                                                                      3
                                                                            24
                                                                                   0
## 5
        8 2019-01-14 13:38:00 2019-01-14 14:31:16
                                                             8
                                                                      3
                                                                           29
                                                                                   Λ
       10 2019-01-14 15:52:17 2019-01-14 16:33:39
## # i 9 more variables: children_num <dbl>, intention <dbl>, destination <dbl>,
       age_group <fct>, nombre_ent <int>, treatment_group <dbl>, population <dbl>,
       duree <drtn>, duree_moy <drtn>
# Renommer toutes les variables en ajoutant le préfixe "endline_" à l'aide de sapply et setNames
#creation un objet "prefix" qui prend la valeur "endline_"
prefix <- "endline "</pre>
# Utilisation de la fonction rename_with() pour ajouter le préfixe
data2 <- data2 %>%
rename_with(~ pasteO(prefix, .), everything())
```

2.2 Analyse et visualisation des données

```
# Creation d'un tableau récapitulatif contenant l'âge moyen et le nombre moyen d'enfants par district

data2 %>%
tbl_summary(
include = c(endline_age, endline_children_num),
by = endline_district,
statistic = all_continuous()~ "Moy. : {mean}"
)%>%
add_overall()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at
https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

	Total, N	1, N =	2 , N =	3, N =	4, N =	5 , N =	6, N =	7 , N =	8, N =
Caractérist	ique=97	8	27	8	5	6	26	6	11
endline_age	Moy. : 26	Moy. :	Moy. :	Moy. :	Moy. :	Moy. :	Moy. :	Moy. :	Moy. :
		30	27	26	26	24	23	28	25
endline_child	dren_num								
0	73~(75%)	4	17	8	5	4	23	5	7 (64%)
		(50%)	(63%)	(100%)	(100%)	(67%)	(88%)	(83%)	
1	9(9,3%)	1	3 (11%)	0 (0%)	0 (0%)	1	3 (12%)	1	0(0%)
	, ,	(13%)	,	, ,	, ,	(17%)	, ,	(17%)	` /
2	6(6,2%)	1	3 (11%)	0(0%)	0(0%)	1	0 (0%)	0(0%)	1
	, ,	(13%)	` ,	, ,	, ,	(17%)	, ,	, ,	(9,1%)
3	5 (5,2%)	0(0%)	3 (11%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	2 (18%)
4	1(1,0%)	1	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	, ,	(13%)	, ,	, ,	, ,	(/	, ,	, ,	,
5	2(2,1%)	1	1	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)
	(, ,	(13%)	(3,7%)	(/	(/	, ,	· /	\ /	()
6	1 (1,0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1
	())	(' ' ')	(' ' ')	(' ' ')	(' ' ')	(' ' ')	()	(1 1)	(9,1%)

```
# Testez si la différence d'âge entre les sexes est statistiquement significative au niveau de 5 %
test <- lm(endline_age ~ endline_sex, data = data2)
test%>%gtsummary::tbl_regression(add_estimate_to_reference_rows = TRUE)

## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include `message = FALSE` in code chunk header.
```

Caractéristique	Beta	95% IC	p-valeur
endline_sex	-3,6	-7,6 - 0,38	0,076

```
# Créer un nuage de points de l'âge en fonction du nombre d'enfants (ggplot)
ggplot(data2, aes(x = endline_children_num, y = endline_age)) +
geom_point() +
labs(x = "Nombre d'enfants", y = "Âge") +
ggtitle("Nuage de points de l'âge en fonction du nombre d'enfants")
```

Nuage de points de l'âge en fonction du nombre d'enfants


```
# Effectuer l'analyse de régression linéaire
modele_regression <- lm(endline_intention ~ endline_treatment_group, data = data2)
# Obtenir les résultats de l'analyse
summary(modele_regression)</pre>
```

```
##
## Call:
## lm(formula = endline_intention ~ endline_treatment_group, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -1.2500 -1.2500 -0.9623 1.0377 5.0377
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            2.2500
                                       0.2598
                                                8.660 1.2e-13 ***
## endline_treatment_group -0.2877
                                       0.3515 -0.819
                                                         0.415
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.723 on 95 degrees of freedom
## Multiple R-squared: 0.007004,
                                   Adjusted R-squared:
## F-statistic: 0.6701 on 1 and 95 DF, p-value: 0.4151
# Obtenir les résultats de l'analyse dans un tableau
modele_regression%>%gtsummary::tbl_regression()## le coefficient de regression est négatif et on consta
## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include `message = FALSE` in code chunk header.
                   Caractéristique
                                           Beta
                                                   95% IC
                                                              p-valeur
```

```
endline_treatment_group -0,29 -0,99 - 0,41 0,4

a tableau de régression avec 3 modèles
```

```
# Créez un tableau de régression avec 3 modèles
model_A <- lm(endline_intention ~ endline_treatment_group, data = data2)
model_B <- lm(endline_intention ~ endline_treatment_group + endline_age + endline_sex, data = data2)
model_C <- lm(endline_intention ~ endline_treatment_group + endline_age + endline_sex + endline_distric
# Stocker les résultats des modèles dans un tableau
tabA <- model_A%>%gtsummary::tbl_regression(add_estimate_to_reference_rows = TRUE)
tabB <- model_A%>%gtsummary::tbl_regression(add_estimate_to_reference_rows = TRUE)
tabC <- model_A%>%gtsummary::tbl_regression(add_estimate_to_reference_rows = TRUE)

#sortons le tableau de la regression
stacked_table <- gtsummary::tbl_stack(
list(tabA, tabB, tabC),
group_header = c("traitement sur les intentions", "traitement sur les intentions en tenant compte de l'
)
stacked_table</pre>
```

```
## Table printed with `knitr::kable()`, not {gt}. Learn why at
## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
## To suppress this message, include `message = FALSE` in code chunk header.
```

Group	Caractéristique Beta 95% IO	p- C valeur
traitement sur les intentions	endline_treatment <u>-0</u> 29 up -0,99 - 0,41	0,4
traitement sur les intentions en tenant compte de l'âge et du sexe	endline_treatment <u>-0</u> 29 up -0,99 - 0,41	0,4
traitement sur les intentions en tenant compte de l'âge et du sexe en tenant compte du district	$\begin{array}{ccc} \text{endline_treatment} \underline{\textbf{-0g20}} \text{up} & \textbf{-0,99} \\ & 0.41 \end{array}$	0,4

3 partie 3

Voici le lien de l'application RShinny https://isabellemosse.shinyapps.io/MIDapp/ Il est nécessaire de choisir un pays une fois l'application ouverte afin que la carte ne s'affiche.