EE210: HW-11 Solution

Date: 28/03/2019

Unless stated otherwise, the BJT in the problems given below has the following characteristics:

$$\begin{split} I_S &= 2.03 \times 10^{-15} A; \; \beta_F = 100; \; \beta_R = 1; \; V_A = \infty; \; r_{bb} = 200 \Omega; \; V_T = 26 mV \\ C_{jeo} &= 1 pF; \; C_{jco} = 0.5 pF; \; C_{jso} = 3 pF; \; m = 0.5; \; V_{bi} = 0.85; \; \tau_F = 1 ns \end{split}$$

(For simplicity, include r_{bb} only in high frequency analysis and ignore C_{js})

Q.1 Determine the efficiency of the amplifier shown in Fig. 1, when the input is a sinusoid of magnitude 1V.

Sol.:

Given: input is a sinusoid of magnitude 1V.

$$v_{in} = 1V \sin \omega t$$

Efficiency:

$$\eta = \frac{P_L}{P_S} \times 100$$

For CC amplifier,

$$A_V \approx 1 \Rightarrow v_o = v_{in}$$

$$P_L = \frac{v_o^2}{2R_L} = \frac{1}{2 \times 8} = 0.0625W$$

For P_S calculation:

$$I_{EQ} = \frac{-0.7 - (-V_{CC})}{R_E} = \frac{-0.7 + 6}{16} = 0.33A$$

$$P_S = 2 * V_{CC} * I_{EQ} = 3.975W$$

$$\eta = \frac{P_L}{P_S} \times 100 = \frac{0.0625}{3.975} \times 100 = 1.57\%$$

Q.2 Design the amplifier shown in Fig. 2 to deliver a maximum power of 0.5W to the load. As part of the design, determine V_{CC} , R_E and maximum values of collector current, collector emitter voltage and power dissipated in the transistor.

Fig. 2

Sol.:

$$P_L = 0.5W = \frac{v_{om}^2}{2R_L}$$
$$v_{om} = \sqrt{2R_L P_L} = 2.83V$$

For max efficiency, choose $R_E = R_L$.

$$v_{om} = I_{EQ}.R_E || R_L \Rightarrow I_{EQ} = 0.707A$$

 $V_{cc} = I_{EQ}.R_E + 0.7 \Rightarrow V_{cc} = 6.356V$

Choose V_{CC} as close as possible to this value to keep efficiency maximum. Let's take

$$V_{CC} = 6.5V$$
 $P_S = V_{CC}I_{CQ} + V_{CC}I_{EQ} \cong 2V_{CC}I_{EQ} \cong 9.2W$
 $\eta = \frac{P_L}{P_S} \times 100 = \frac{0.5}{9.2} \times 100 = 5.43\%$
 $I_{C(max)} = I_E + \frac{v_{om}}{R_E ||R_L} = 1.4A$

Power dissipation:

$$P_D = P_S - P_L \cong 2V_{CC}I_{EQ} - \frac{v_{om}^2}{2R_L} = 9.2 - 0.5 = 8.7W$$

$$V_{CE(max)} = V_{CC} - (-0.7 - v_{om}) = 10.03V$$

Q.3 Design the amplifier shown below in Fig. 3 to deliver a maximum power of 2W to the load. As part of the design, determine V_{CC} and maximum values of collector current, collector emitter voltage and power dissipated in the transistor.

General Comments on this circuit:

Fig. 3 shows a class B output stage. It consists of a complementary pair of transistors (an *npn* and a *pnp*) connected in such a way that both cannot conduct simultaneously.

When the input voltage v_{IN} is zero, both transistors are cut-off and the output voltage v_O is zero. As v_{IN} goes positive and exceeds about 0.5 V (different books take different values: 0.5-0.65V), Q_N conducts and operates as an emitter follower. In this case v_O follows v_{IN} (i.e., $v_O = v_{IN} - v_{BEN}$) and Q_N supplies the load current. Meanwhile, the emitter–base junction of Q_P will be reverse-biased by the V_{BE} of Q_N , which is approximately 0.7 V. Thus, Q_P will be cut off.

If the input goes negative by more than about 0.5 V, Q_P turns on and acts as an emitter follower. Again, v_O follows v_{IN} (i.e., $v_O = v_{IN} + v_{EBP}$), but in this case QP supplies the load current and Q_N will be cut off. We conclude that the transistors in the class B stage of Fig. 3 are biased at zero current and conduct only when the input signal is present. The circuit operates in a **push–pull** fashion: Q_N pushes (sources) current into the load when v_{IN} is positive, and Q_P pulls (sinks) current from the load when v_{IN} is negative.

A sketch of the transfer characteristic of the class B stage is shown in the figure. Note that there exists a range of v_{IN} centered around zero where both transistors are cut off and v_O is zero. This **dead band** results in the **crossover distortion** illustrated in the figure for the case of an input sine wave. The effect of crossover distortion will be most pronounced when the amplitude of the input signal is small. Crossover distortion in audio power amplifiers gives rise to unpleasant sounds.

Fig. (a) Transfer characteristic for the class B output stage in Fig. 3. (b) Illustrating how the dead band in the class B transfer characteristic results in crossover distortion.

Sol.:

Maximum Efficiency

We will neglect crossover distortion in the calculation. Given – deliver a maximum power of 2W to the load.

$$P_L = 2W \text{ and } P_L = \frac{v_{om}^2}{2R_L}$$

$$v_{om} = \sqrt{2R_LP_L} = 5.65V$$

$$V_{CC} = v_{om} + V_{CE} = 5.65 + 0.2 = 5.85V$$

Let's take $V_{CC} = 6V$.

For Class B amplifier:

$$P_S = \frac{2V_{CC} \cdot v_{om}}{\pi R_L} \cong 2.7W$$

$$\eta = \frac{P_L}{P_S} \times 100 = \frac{2}{2.7} \times 100 \cong 74 \%$$

$$I_{Cmax} \approx \frac{v_{om}}{R_L} = 0.706A$$

$$V_{CE}(max) = V_{CC} + v_{om} = 11.65 V$$

Maximum instantaneous device power dissipation:

$$P_c = V_{ce} * I_c = (V_{CC} - I_c R_L) * I_c = V_{CC} I_c - I_c^2 R_L$$

 $\frac{\partial P_c}{\partial I_c} = 0$ gives the maximum P_c for $I_c = V_{CC}/(2R_L)$ and correspondingly, $V_{ce} = V_{CC}/2$.

$$P_c = V_{ce} * I_c = \frac{V_{CC}}{2} * \frac{V_{CC}}{2R_L}$$

Maximum Power dissipation in the transistors vs. v_{om} :

$$P_L = \frac{v_{om}^2}{2R_L}; \ P_{S+} = \frac{V_{CC}.v_{om}}{\pi R_L}; \ P_{S-} = \frac{V_{CC}.v_{om}}{\pi R_L}$$

$$P_D = P_S - P_L = \frac{2V_{CC} \cdot v_{om}}{\pi R_L} - \frac{v_{om}^2}{2R_L}$$

From symmetry we see that half of P_D is dissipated in Q_N and the other half in Q_P . Thus, Q_N and Q_P must be capable of safely dissipating $\frac{1}{2}P_D$ watts. Since P_D depends on V_{om} , we must find the worst-case power dissipation, P_{Dmax} . For maximum average power dissipation,

$$\frac{\partial P_D}{\partial v_{om}} = 0 \Rightarrow v_{om} = \frac{2V_{CC}}{\pi}$$

$$P_{Dmax} = \frac{2V_{CC}^2}{\pi^2 R_L}$$

$$P_{DNmax} = P_{DPmax} = \frac{V_{CC}^2}{\pi^2 R_L}$$

Fig. Power dissipation of the class B output stage versus amplitude of the output sinusoid.

Q.4 Draw the complete schematic of class AB amplifier.

Sol.: Class AB amplifier output stage combines the advantages of the Class A amplifier and the Class B amplifier producing a better amplifier design. The amplifiers' two output transistors conduct somewhere between 180° and 360° of the input waveform. As there is some overlap in conduction of two transistors, efficiency of class AB amplifier is less than class B amplifier.

A bias voltage V_{BB} is applied between the bases of Q_N and Q_P . For $v_I = 0$, $v_O = 0$, and a voltage appears across the base–emitter junction of each of Q_N and Q_P . Assuming matched devices,

$$i_N = i_P = I_Q = I_S e^{\frac{V_{BB}}{2V_T}}$$

The value of V_{BB} is selected to yield the required quiescent current I_O .

When v_I goes positive by a certain amount, the voltage at the base of Q_N increases by the same amount and the output becomes positive at an almost equal value,

$$v_O = v_I + \frac{V_{BB}}{2} - v_{BEN}$$

The positive v_O causes a current i_L to flow through R_L , and thus i_N must increase; that is,

$$i_N = i_N + i_L$$

The increase in i_N will be accompanied by a corresponding increase in v_{BEN} (above the quiescent value of $V_{BB/2}$). However, since the voltage between the two bases remains constant at V_{BB} , the increase in v_{BEN} will result in an equal decrease in v_{EBP} and hence in i_P .

The relationship between i_N and i_P can be derived as follows:

$$v_{BEN} + v_{BEP} = V_{BB}$$

$$V_T \ln \frac{i_N}{I_S} + V_T \ln \frac{i_P}{I_S} = 2V_T \ln \frac{I_Q}{I_S}$$

$$i_N * i_P = I_Q^2$$

Thus, as i_N increases, i_P decreases by the same ratio while the product remains constant. From above equations, we also see,

$$i_N^2 - i_L * i_N - I_Q^2 = 0$$

From the equations above, we can see that for positive output voltages, the load current is supplied by Q_N , which acts as the output emitter follower. Meanwhile, Q_P will be conducting a current that decreases as v_O increases; for large v_O the current in Q_P can be ignored altogether. For negative input voltages the opposite occurs.

The power relationships in the class AB stage are almost identical to those derived for the class B circuit. The only difference is that under quiescent conditions the class AB circuit dissipates a power of $V_{CC}*I_Q$ per transistor, which can be neglected as I_Q is usually much smaller than the peak load current.