Unit 1. Passband Modulation

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- □ Determine if a system is real passband or baseband
- ☐ Mathematically describe upconversion and downconversion
 - In time-domain and frequency-domain
- □ Compute simple continuous-time Fourier transforms (Review)
- ☐ Select parameters and analyze low-pass filter in down conversion
- ☐ Determine if a signal is a power or energy signal
 - Convert power in dBm
- □ Compute the effective baseband filter given a passband filter
- ☐ Model impairments such as time and frequency offsets

This Unit

Outline

- Time-Domain Relationships
 - ☐ Fourier Transform Review
 - ☐ Frequency-Domain Relationships
 - ☐ Power and Energy Spectra
 - ☐ Baseband Equivalent Filters
 - ■Wireless channels

Signals in Communications

- □ Signal: Any quantity that varies in time
 - Can be continuous time x(t)
 - \circ Or discrete time x[n]
 - Real or complex valued
- □ Signals in communications:
 - v(t) = Voltage at a particular point / place in a circuit (relative to ground)
 - $E_z(t)$ = Electric field strength in a particular direction Note: electric field is a vector quantity $E(t) = [E_x(t), E_y(t), E_z(t)]$
 - A digital sample of a signal
 - An intermediate value used in processing a signal

Real Baseband Systems

- ☐ Real baseband communication systems:
 - Communicate with lowpass real-valued signals
 - $X(f) \approx 0 \text{ for } |f| \leq \frac{W}{2}$

□ Examples

Coaxial cable

Twisted pair

PCB traces e.g. microstrip or stripline

ASIC metal traces

Real Passband Communications

- ☐ Real passband communication systems
 - Transmit around a carrier frequency f_c
 - \circ f_c is sometimes called the center frequency
 - $X(f) \neq 0$ for $|f f_c| < W$ and $|f + f_c| < W$
- ☐ Mostly radio frequency communication
 - Often wireless
 - Transmissions are restricted to bandwidth
 - Also, RF propagation is limited to certain bands
 - RF communication also occurs over cables

Up- and Downconversion

- □ Up and downconversion: Shift center frequency of signals
- ☐ Used for all passband communications systems
 - Information occurs or is processed in baseband
 - Transmitted and received in real passband

Upconversion in Time Domain

- \square Baseband signals: $u_i(t)$ and $u_q(t)$,
 - Also called "in-phase" and "quadrature" (I and Q)
 - \circ Real-valued. Typically bandlimited to $|f| < \frac{W}{2}$ ($\frac{W}{2}$ = Single-sided bandwidth)
 - Sometimes called the "cosine" and "sine" part.
- \square Carrier frequency f_c
 - Also called the "center" frequency
- □Create real passband signal:

$$u_p(t) = u_i(t)\cos(2\pi f_c t) - u_q(t)\sin(2\pi f_c t)$$

- □ Upconversion is also called modulation
 - But, we will use that term for something later.

Downconversion

- □Can recover I part from multiplication by sinusoid:
- ☐ Recovery of the I part:
 - $v_i(t) = 2u_p(t)\cos(2\pi f_c t) = u_i(t) + \text{high freq terms}$
 - $u_i(t) = LPF(v_i(t))$
- ☐ Recovery of the Q part:
 - $v_q(t) = -2u_p(t)\sin(2\pi f_c t) = u_q(t) + \text{high freq terms}$
 - $u_q(t) = LPF(v_q(t))$
- ☐ Can derive relations using

$$\sin(2x) = 2\sin(x)\cos(x) \quad 2\cos^2(x) = 1 + \cos(2x)$$

□ Note gain of 2 and sign.

Up and Downconversion Block Diagram

- ☐ Fig. 2.28 from Madhow
- ☐ Implementation with multipliers

Example

□Suppose

```
u_i(t) = Tri\left(\frac{t}{T}\right), \ u_q(t) = 2Tri\left(\frac{t}{T} - 0.5\right), Tri(s) := \max(0, 1 - |s|)
```

 $T = 2 \mu s, f_c = \frac{8}{T} = 4 \text{ MHz}$

```
% Create the baseband signals
nt = 1024;
T = 2.0;
t = linspace(-2*T,2*T,nt)';
f0 = 8/T;
ui = max(1-abs(t/T),0);
uq = 2*max(1-abs(t/T-0.5),0);

% Modulate the I and Q components
uicos = ui.*cos(2*pi*f0*t);
uqsin = -uq.*sin(2*pi*f0*t);
up = uicos + uqsin;
```


Actual IQ Mixer

 \square LO = "local oscillator" = square or sine wave at f_c

 \square I1, I2 = I and Q inputs.

Generally, lowpass

 \square RF = passband output centered at f_c

http://www.markimicrowave.com/Mixers/IQ Quadrature-IF Double-Balanced/IQ-0318.aspx

Datashe et	RF [GHz]	LO [GHz]	IF [MHz]		Image Rejectio n [dB]	e	Phase Deviation [Degrees]	Isolations L-R [dB]	Isolations L-I [dB]
<u>IQ-0318</u>	3 to 18	3 to 18	DC to 500	7	22	0.75	10	40	20

Complex Envelope

□ Complex envelope:

$$u(t) = u_i(t) + ju_q(t)$$

☐ Magnitude and phase:

$$\circ e(t) = \sqrt{u_c^2(t) + u_s^2(t)}$$

$$\theta(t) = \tan^{-1}(u_s(t)/u_c(t))$$

□Can recover passband signal:

$$u_p(t) = e(t)\cos(2\pi f_c t + \theta(t))$$

Fig 2.29, Madhow

Visualizing the Convex Envelope

□Observe passband signal:

- Oscillates between -|u(t)| and |u(t)|
- Is much higher frequency than baseband

```
%% Plot the convex envelope
umag = abs(ui + li*uq);
subplot (2,1,1);
plot(t,[ui uq],'Linewidth', 2);
hold on:
plot(t,umag, 'g-', 'Linewidth', 2);
hold off;
grid on;
legend('u i(t)', 'u q(t)', '|u(t)|', 'Location', 'NorthWest');
set(gca, 'Fontsize', 16);
subplot (2,1,2);
plot(t, [umag -umag], 'g-', 'Linewidth', 2);
hold on;
plot(t,up, 'b-');
hold off:
legend('|u(t)|','-|u(t)|', 'u_p(t)','Location','NorthWest');
grid on;
set(gca, 'Fontsize', 16);
```


Complex Baseband has all Information

□Can recover passband signal from alternate form:

$$u_p(t) = Re[u(t)e^{2\pi j f_c t}]$$

Derive on board

- \blacksquare All information content of the signal is in u(t)
 - The passband signal is the complex baseband with a fast, but predictable offset

Complex Notation for Downconversion

- $\Box \text{Upconversion: } u_p(t) = Re(u(t)e^{j\omega_c t})$
- □ Downconversion:
 - $v(t) = 2u_p(t)e^{-j\omega_c t} = u(t) + \text{High freq terms}$
 - $u(t) = H_{LPF}(v(t))$
- ☐Proof:
 - $u_p(t) = Re(u(t)e^{j\omega_c t}) = \frac{1}{2}(ue^{j\omega_c t} + u^*e^{-j\omega_c t})$
 - $u_p(t)e^{-j\omega_c t} = u(t) + HFT$
 - HFT = high frequency terms

Sample Problem (Soln on Board)

 \square Suppose that $T=1~\mu s$ and

$$u(t) = \begin{cases} 1+j & t \in [0,T) \\ 1-j & t \in [T,2T) \\ 0 & \text{else} \end{cases}$$

- \square What are $u_i(t)$ and $u_q(t)$? Draw them.
- \square Write an equation for $u_p(t)$ with a carrier frequency $f_c=4~\mathrm{MHz}$
- \square Draw $u_p(t)$ for $t \in [1, 2] \mu s$.

Outline

- ☐ Time-Domain Relationships
- ☐ Fourier Transform Review
- Frequency-Domain Relationships
 - ☐ Power and Energy Spectra
 - ☐ Baseband Equivalent Filters
 - ■Wireless channels

Fourier Transform

- $\square s(t)$: real or complex continuous-time signal
- ☐ Fourier Transform: time-domain to frequency domain

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-2\pi i f t} dt$$

□ Inverse Fourier transform:

$$s(t) = \int_{-\infty}^{\infty} S(f)e^{2\pi i f t} df$$

☐ Represents signals in their frequency components

FT in Angular Frequency

- \square Angular frequency: $\omega = 2\pi f$
- ☐ Fourier Transform: time-domain to frequency domain

$$S(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t} dt$$

□ Inverse Fourier transform:

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} \, df$$

- Note scaling
- ☐ Some texts use other scalings

Rect and Sinc

$$\square rect(at) \leftrightarrow \frac{1}{|a|} sinc\left(\frac{f}{a}\right) = \frac{\sin(\pi f/|a|)}{\pi f}$$

$$\square sinc(at) \leftrightarrow \frac{1}{|a|} rect\left(\frac{f}{a}\right)$$

Height =
$$\frac{1}{|a|}$$

Main lobe f = $\pm |a|$

Unit Steps

■Unit step

$$u(t) = \begin{cases} 1 & t > 0 \\ 1/2 & t = 0 \\ 0 & t < 0 \end{cases}$$

☐FT:

$$e^{-\alpha t}u(t)\leftrightarrow \frac{1}{\alpha+2\pi if},\ Re(\alpha)>0$$

•
$$u(t) \leftrightarrow \frac{1}{2}\delta(f) + \frac{1}{2\pi i f}$$

Table (From WikiPedia)

	Function	Fourier transform unitary, ordinary frequency
	f(x)	$\hat{f}\left(\xi ight) \ = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} \ dx$
201	rect(ax)	$\frac{1}{ a } \cdot \operatorname{sinc}\left(\frac{\xi}{a}\right)$
202	$\operatorname{sinc}(ax)$	$rac{1}{ a } \cdot \mathrm{rect}\left(rac{\xi}{a} ight)$
203	$\mathrm{sinc}^2(ax)$	$rac{1}{ a } \cdot \mathrm{tri}igg(rac{\xi}{a}igg)$
204	$\mathrm{tri}(ax)$	$\frac{1}{ a } \cdot \mathrm{sinc}^2\left(\frac{\xi}{a}\right)$
205	$e^{-ax}u(x)$	$\frac{1}{a+2\pi i \xi}$
206	$e^{-\alpha x^2}$	$\sqrt{rac{\pi}{lpha}}\cdot e^{-rac{(\pi \xi)^2}{lpha}}$
207	$e^{-a x }$	$\frac{2a}{a^2+4\pi^2\xi^2}$

f(x)	$\hat{f}\left(\xi ight) \ =\int_{-\infty}^{\infty}f(x)e^{-2\pi ix\xi}dx$
1	$\delta(\xi)$
$\delta(x)$	1
e^{iax}	$\delta\left(\xi-rac{a}{2\pi} ight)$
$\cos(ax)$	$rac{\delta\left(\xi-rac{a}{2\pi} ight)+\delta\left(\xi+rac{a}{2\pi} ight)}{2}$
$\sin(ax)$	$rac{\delta\left(\xi-rac{a}{2\pi} ight)-\delta\left(\xi+rac{a}{2\pi} ight)}{2i}$

$\mathrm{sgn}(x)$	$rac{1}{i\pi \xi}$
u(x)	$rac{1}{2}\left(rac{1}{i\pi\xi}+\delta(\xi) ight)$
$\sum_{n=-\infty}^{\infty} \delta(x - nT)$	$\frac{1}{T}\sum_{k=-\infty}^{\infty}\delta\left(\xi-\frac{k}{T}\right)$

Other Properties

$$\Box s(t-a) \leftrightarrow e^{-2\pi i a f} S(f)$$

$$\Box e^{2\pi i a t} s(t) \leftrightarrow S(f-a)$$

$$\square s(at) \leftrightarrow S(f/a)/|a|$$

$$\Box d^n s(t)/dt^n \leftrightarrow (2\pi i f)^n S(f)$$

$$\Box t^n s(t) \leftrightarrow d^n S(f)/df^n$$

$$\square s^*(t) \leftrightarrow S^*(-f)$$

$$\square s(t) \leftrightarrow S(f) \Rightarrow S(t) \leftrightarrow s(-f)$$

Problems

2.10 Determine the Fourier transform of each of the following signals (α is positive).

- 1. $x(t) = \frac{1}{1+t^2}$
- 2. $\Pi(t-3) + \Pi(t+3)$
- 3. $\Lambda(2t+3) + \Lambda(3t-2)$
- 4. $\operatorname{sinc}^3 t$
- 5. t sinc t
- 6. $t \cos 2\pi f_0 t$
 - 7. $e^{-\alpha|t|}\cos(\beta t)$
 - 8. $te^{-\alpha t}\cos(\beta t)$

■ Solutions on board

Outline

- ☐ Time-Domain Relationships
- ☐ Fourier Transform Review
- Frequency-Domain Relationships
 - ☐ Power and Energy Spectra
 - ☐ Baseband equivalent filters
 - ■Wireless channels

Bandwidth Terminology

☐ Baseband signals

- Centered around f = 0, complex
- $\circ \frac{W}{2}$ = single sided bandwidth
- W = two sided bandwidth
- ∘ Band-limited to $|f| \le \frac{W}{2}$

☐ Passband signals

- \circ Centered around $f = f_c$, real
- W = bandwidth (per side or image)
- ∘ Band-limited to $|f f_c| \le \frac{W}{2}$

Importance of Bandwidth

- □ Data rate generally scales linearly in bandwidth
 - \circ If the transmit power and bandwidth increase by $N \Rightarrow$ the communication rate increase by N
 - We will see this in detail later
- ■Ex: Compare GSM (2G) and LTE (4G)
 - Single channel of GSM system = 200 kHz
 - Single channel of LTE = 20 MHz
 - If power scales sufficiently, LTE would in general have 100x data rate
 - LTE, in fact, can have even more capacity due to other improvements
- ☐ Figure to the right: 802.11ad channels
 - The channels are > 2 GHz

Frequency Domain Relationships Baseband to Passband

 \square Suppose that U(f) is bandlimited to [-W, W] and $f_c > W$

$$U_p(f) = \frac{1}{2} [U(f - f_c) + U^*(-f - f_c)]$$

☐ Use notation:

- $U^+(f) \coloneqq \frac{1}{2}U(f-f_c)$: This is U(f) shifted to the right by f_c and scaled by $\frac{1}{2}$
- $U^-(f) := \frac{1}{2}U^*(-f-f_c)$: Flip $U^+(f)$ around y axis and take negative of the imaginary part

☐Proof:

- Let $c(t) = u(t)e^{2\pi i f_c t} \leftrightarrow C(f) = U(f f_c)$
- $u_p(t) = Re(c(t)) = \frac{1}{2}(c(t) + c^*(t))$
- Now use conjugate symmetry $c^*(t) \leftrightarrow C^*(-f)$

Example Problem

- ■Suppose baseband signal is as drawn:
- ■What is the:
 - Single-sided bandwidth?
 - Two-sided bandwidth?

- \square Write an equation for $u_i(t)$
 - You do not need to evaluate the integral.

Draw both the positive and negative images

Frequency Domain Relationships

Passband to Baseband

- Downcoversion in time-domain: $v(t) = 2u_p(t)e^{-j\omega_c t}$, $u(t) = h_{LPF}(t) * v(t)$
- □ In frequency-domain: $U(f) = 2U_p(f + f_c)H_{LPF}(f)$
 - Shift to left, scale by 2 and filter

- □ Ideal filtering:
 - \circ Suppose $U_p(f)$ has bandwidth W around f_c
 - Then typically have: $H_{LPF}(f)=1$ for $|f|\leq \frac{W}{2}$ and $H_{LPF}(f)=0$ for $|f|>f_c-\frac{W}{2}$
 - $U(f) = 2U_p(f + f_c)1_{\{|f| \le W\}}$
 - Shift to the left and remove left image.
- ☐ Pictures on board

Example Problem

- ■Suppose right image of passband is as shown:
 - $\sim W=4\,$ MHz, $f_c=800\,$ MHz
- ☐ Draw magnitude spectrum of down-converted signal
 - When $f_0 = 5 \text{ MHz}$
 - When $f_0 = 3$ MHz
- \square What range of values f_0 will:
 - Keep the low-pass component
 - Reject the high frequency component
- Solution on board

Radio Spectrum

Bandwidth and Center Frequencies Examples

System	Duplex	Center freq (MHz)	Bandwidth
GSM	FDD	GSM-850: 824-849 (UL), 869-894 (DL) GSM-900: 890-914 (UL), 935-959 (DL) GSM-1800: 1710–1784(UL), 1805.2–1879(DL) GSM-1900: 1850–1910(UL), 1930–1990(DL)	200 kHz per channel
UMTS	FDD	GSM + other bands ~2100 and ~1900	5 MHz per carrier
LTE	Mostly FDD	Mostly in 2100 to 2600 MHz	1.4 to 20 MHz, 10 MHz typical
802.11abg			20 MHz
802.11n	TDD	2.4 GHz (ISM band) and 5 GHz (U-NII band)	20, 40 MHz
802.11ac			20-160 MHz
802.11ad	TDD	60 GHz (millimeter wave spectrum)	2.16 GHz

Millimeter Wave

- New bands for 5G
 - 100x more bandwidth than conventional bands below 6 GHz
 - Bands at 28 GHz and 38 GHz opened up by FCC
 - 5G systems operating in these bands are coming soon

Outline

- ☐ Time-Domain Relationships
- ☐ Fourier Transform Review
- ☐ Frequency-Domain Relationships
- Power and Energy Spectra
 - ☐ Baseband equivalent filters
 - ■Wireless channels

Energy and Power Signals

- \square Instantaneous power: $|x(t)|^2$
 - Why squared?
- ☐Energy:
 - $E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$
 - \circ Signal is called an "energy signal" if $E_{\chi} < \infty$
- ■Power:
 - $P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$
 - Energy per unit time
 - \circ Signal is called a "power signal" if limit P_x exists and is finite

Power of a Periodic Signal Time-Domain Method

- \square Suppose x(t) is periodic, period T
- \Box Theorem: x(t) is a power signal and power can be computed from any one period

$$P_{x} = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} |x(t)|^{2} dt$$

Proof on board

Example: Done on board

 \square Suppose that x(t) has period T

$$x(t) = a + bt, t \in [0, T]$$

- ∘ *a*, *b* are real
- \square Draw x(t)
- \square What is P_{χ}
- \square What if a, b were complex?

Power of a Periodic Signal Fourier Series Method

- \square Suppose that x(t) is periodic with period T
- ☐ Then has Fourier Series

$$x(t) = \sum c_n e^{2\pi j f_n t}, \qquad f_n = n/T$$

□ Theorem: Power of x(t) is:

$$P_{x} = \sum |c_{n}|^{2}$$

- □ Note that if $x(t) = \sum g(t nT)$, then $c_n = G(f_n)$
 - \circ Can compute power from Fourier transform of g(t)

Example: On board

 \square Suppose $T = 10 \,\mu s$,

$$x(t) = \sum g(t - nT),$$
 $g(t) = \begin{cases} 2 & t \in [0, T/4) \\ -1 & t \in [T/4, T) \\ 0 & \text{else} \end{cases}$

- \square Draw x(t)
- \square What is the FT G(f)?
- \square What is the FT X(f)?
- \square What is the power of x(t)?
- ■What fraction of power of x(t) is in the $|f| \le 250$ kHz?

Energy Density

- □ Energy of signal: $E_x = \int |x(t)|^2 dt$
- \square From Parseval's identity: $E_{\chi} = \int |X(f)|^2 df$
 - Can compute energy in frequency-domain
- \square Energy density: $G_{x}(f) = |X(f)|^{2}$
 - \circ Density of energy around frequency f

Power Spectral Density (PSD)

- ☐ Three equivalent ways to define PSD
- ☐ Definition 1: via windowing in time
- ☐ Definition 2: via filtering
- □ Definition 3: via auto-correlation for a random process
 - More advanced.
 - We will cover this in the next unit

PSD: Time-Windowing Definition

- \square Let x(t) be a power signal
- □ Define windowed signal:

$$x_T(t) = \begin{cases} x(t) & |t| \le T \\ 0 & |t| > T \end{cases}$$

■PSD is defined as:

$$S_x(f) := \lim_{T \to \infty} \frac{1}{2T} |X_T(f)|^2$$

- ☐ Similar to energy signal, but with averaging over time.
- □Can show power is given by:

$$P_{x} = \int_{-\infty}^{\infty} S_{x}(f) df$$

• $S_x(f)$ represents power per unit frequency

PSD: Filtering Definition

- \square Let x(t) be a power signal
- \square Select frequency f_0 to measure PSD
- ☐ Filter with narrowband filter

$$\circ y(t) = h(t) * x(t)$$

$$H(f) = 1$$
 for $|f - f_0| \le \Delta/2$

- \square Measure power P_y
- \square PSD at f_0 is defined as

$$S_x(f_0) \coloneqq \lim_{\Delta \to 0} \frac{1}{\Delta} P_y$$

- ☐ Can show this is equivalent to window definition
- ☐ Reveals how much power is in a certain frequency

Spectrum Analyzer

- ☐ Measures PSD in real time
- ☐ Uses averaging of FT
 - But proper averaging is quite tricky
- ☐ Lab 2: Use MATLAB function pwelch

Units

- ☐ Energy signals:
 - \circ E_{x} : Joules
 - $G(f) = |X(f)|^2$: Joules / Hz
- □ Power signals (much more common):
 - P_x : Joules / sec = Watts
 - \circ $S_x(f)$: Watts / Hz = Joules

Power: Linear and decibel scale

- ☐ Receive or transmit antenna energy per unit time
 - Measured in Watts (W) or mW
 - Power values in W or mW called linear scale
 - Use notation P_{IW} or P_{ImW} when units need to be specified
- Power often measured in dB scale:
 - $P_{1dBW} = 10log_{10}(P_{1W} / 1W)$
 - $P_{|dBm} = 10log_{10}(P_{|mW} / 1mW)$
- \square Example: P = 250 mW (typical max mobile transmit power)
 - $P_{\text{IdBW}} = 10\log_{10}(0.25\text{W} / 1\text{W})$
 - $P_{1dBm} = 10log_{10}(250mW / 1mW)$

Some important dB values

- ■Some conversions don't need a calculator:
 - 10log10(2) = 3 [Most important: Doubling power = 3dB]
 - 10log10(3) =4.7 ~5
 - \circ 10log10(10) = 10
- ☐ You can cascade these.
- □Ex: If the power is increased by 50 in linear scale, what is the increase in dB? Answer:

$$10\log_{10}(50) = 10\log_{10}(10^2 / 2)$$

= 2×10\log_{10}(10) - 10\log_{10}(2) = 2×10 - 3 = 17 dB

PSD and Linear Filters

- $\square \text{Suppose } y(t) = h(t) * x(t)$
- - $\circ S_{\mathcal{Y}}(f) = |H(f)|^2 S_{\mathcal{X}}(f)$
- Transfer function $|H(f)|^2$ power gain at frequency f:

$$|H(f)|^2 = \frac{S_y(f)}{S_x(f)} \frac{\text{output power at } f}{\text{input power at } f}$$

- Dimensionless quantity
- Often expressed in dB

Typical Wireless Power Transmit Levels

- □ 100 kW = 80 dBm: Typical FM radio transmission with 50 km radius
- \square 1 kW = 60 dBm: Microwave oven element (most of this doesn't escape)
- \square ~300 W = 55 dBm: Geostationary satellite
- \square 250 mW = 24 dBm: Cellular phone maximum power (class 2)
- □200 mW = 23 dBm: WiFi access point
- □32 mW = 15 dBm: WiFi transmitter in a laptop
- □4 mW = 6 dBm: Bluetooth 10 m range
- \square 1 mW = 0 dBm: Bluetooth, 1 m range

Example 1:

- $\square S_{x}(f)$ is as shown.
- \square What is the power (in linear scale) in terms of W, A?
- \square Suppose the power is $P_{\chi}=20$ dBm, W=20 MHz, $f_{c}=2$ GHz
 - What is *A*?
 - What are the units of *A*?

Example 2

- $\square S_x(f)$ is shown for f>0. Assume x(t) is real. W=20 MHz, $B=2(10)^{-8}$ mW/Hz, $f_c=2$ GHz
- \square What is P_x ? (Linear and in dBm).
- □Suppose y(t) = h(t) * x(t) with H(f) = f₀/(2πjf + f₀)
- \square What is $S_{\nu}(f)$? Draw it.
- \square Assuming $f_c \gg f_0$ what is P_y ?
- ■What is the attenutation in dB?

 $S_{x}(f)$

В

Outline

- ☐Time-Domain Relationships
- ☐ Fourier Transform Review
- ☐ Frequency-Domain Relationships
- ☐ Power and Energy Spectra
- Baseband equivalent filters
 - ■Wireless channels

Filtering

- ☐ Filtering at passband equivalent to complex baseband filter
- ☐ Assuming downconversion filter is ideal (see next slide):
 - $H_b(f) = H_p(f + f_c) \text{ for } |f| \le \frac{W}{2}$
 - Simply shift $H_p(f)$ to the left by f_c .

Proof of Result

- ☐ Using the conversions from passband:
- □ Downconversion formula: $Y(f) = 2Y_p(f + f_c)H_{LPF}(f)$
- □ Filtering in passband: $Y(f) = 2H(f + f_c)U_p(f + f_c)H_{LPF}(f)$
- ☐ Using upconversion formula:

$$Y(f) = H(f + f_c)\{U^*(-f - 2f_c) + U(f)\}H_{LPF}(f)$$

- ☐Assume:
 - $U(f)H_{LPF}(f) \approx U(f)$ Filtering preserves baseband image
 - $U^*(-f-2f_c)H_{LPF}(f) \approx 0$ Filtering removes image around $-2f_c$

Delay

- \square Important special case: Suppose that $h_p(t) = A\delta(t-\tau)$
 - \circ A = gain
 - \circ $\tau = \text{delay}$
- \square Passband frequency response is: $H_p(f) = Ae^{-2\pi jf\tau}$
- ☐ Baseband frequency response:

$$H_b(f) = H_p(f + f_c) = Ae^{-2\pi j(f_c + f)\tau}$$

☐ Equivalent impulse response:

$$h_b(t) = Ae^{-2\pi j f_c \tau} \delta(t - \tau)$$

☐ Delay adds a constant phase rotation

Example: First Order Filter

- $\square \text{ Passband: } H_p(\omega) = \frac{1}{1 + j\omega/\omega_0}$
- $\Box \text{ Effective baseband: } H(\omega) = \frac{1}{1 + j(\omega + \omega_c)/\omega_0}$
- □Observe baseband response is:
 - Almost flat
 - Not symmetric around f = 0

```
fp = 1e9*linspace(0,2,128)';
Hp = freqs(G0,[1/w0 1], 2*pi*fp);
plot(fp/le9, 20*log10(abs(Hp)), 'Linewidth', 3);
```

```
fb = linspace(-2e8,2e8,128)';
Hb = freqs(G0, [1/w0, 1+li*fc/f0], 2*pi*fb);
plot(fb/le6, 20*log10(abs(Hb)), 'Linewidth', 3);
```


Passband cutoff freq $f_0=0.5~\mathrm{GHz}$ Carrier freq $f_c=1~\mathrm{GHz}$

Frequency Errors

- □LO on TX and RX are often slightly mismatched
- **□**Suppose
 - Upconversion: $u_p(t) = Re(u_{TX}(t)e^{j\omega_0t+\theta_0})$
 - Downcoversion: $u_{RX}(t) = 2u_p(t)e^{-(j\omega_1 t + \theta_1)} + LPF$
- ☐Then:
 - $u_{RX}(t) = u_{TX}(t)e^{j((\omega_0 \omega_1)t + (\theta_0 \theta_1))}$
- ☐ Causes a phase rotation

Delay and Synchronization

- ☐ Two methods to compensate for delay at the RX
- ☐ Method 1: Correct in analog by adjusting phase of LO
- \square Method 2: Correct digital by inverting the gain $Ae^{2\pi j f_c \tau}$
 - This is a special case of equalization

Parts Per Million

□Oscillator error often measured in parts per million (ppm):

$$\Delta(\text{ppm}) \coloneqq \frac{|f_c - f_c'|}{f_c} (10)^6$$

- f_c = desired carrier frequency
- \circ f_c' = actual carrier frequency
- **■**Example:
 - f_c = 2.5 GHz, $\Delta = 10$ ppm (typ value for low-cost oscillator)
 - Then,

$$|f_c - f_c'| = (2.5)(10)^9(10)(10)^6 = 25 \text{ kHz}$$

Very large frequency shift!

Outline

- ☐ Time-Domain Relationships
- ☐ Fourier Transform Review
- ☐ Frequency-Domain Relationships
- ☐ Power and Energy Spectra
- ☐ Baseband equivalent filters

Wireless channels

Freespace Wireless Channels

- ☐ Free space propagation
 - No obstacles
 - Isotropic (equal power in all directions)
- \square Power decreases as r^{-2}
 - $\circ \Rightarrow$ Gain = Ar^{-1} for some A
- \square Delay is $\tau = r/c$, $c = 3(10)^8$ m/s
- ☐ Hence, baseband channel is:

$$h(t) = \frac{A}{r} e^{\frac{j2\pi f_c r}{c}} \delta(t - r/c)$$

Multipath

- ☐ Wireless signals can arrive in many directions
 - Reflections, diffraction, transmission, ...
- ☐ Each path will have different gain and delay
- ☐ Receiver sees the combined total

$$h(t) = \sum_{k=1}^{K} h_k e^{-2\pi j f_c \tau_k} \delta(t - \tau_k)$$

• h_k = complex gain of each path

Two-Path Example

Magnitude response

$$S(f) = |H(f)|^2 = \left| h_1 e^{2\pi i f \tau_1} + h_2 e^{2\pi i f \tau_2} \right|^2$$

Plot shows:

$$\tau_2 - \tau_1 = 1 \,\mu\text{s}, \ |h_1|^2 + |h_2|^2 = 1, \ |h_2|^2 = 10^{0.1\Delta} |h_1|^2$$

- \square Rate of variation in frequency depends on delay spread: $\tau_2 \tau_1$
- □Size of variation depends on spread of path gains:
 - Average $S(t) = |h_1|^2 + |h_2|^2$
 - \circ Min $S(t) = (|h_1| |h_2|)^2$, Max $S(t) = (|h_1| + |h_2|)^2$

Example Problem (On board)

- ☐ A wireless channel has 2 paths:
 - Path 1: Power gain of -80 dB, travels 100m
 - Path 2: Power gain of -83 dB, travels 120m
- \square What are the amplitude gains of the two paths, h_1 , h_2 ?
- \square What are the two delays of the paths: τ_1 , τ_2 ?
- □What is the average, minimum and maximum power?