

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V400HJ2 SUFFIX: LE1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your conficomments.	firmation with your signature and

Approved By	Checked By	Prepared By		
Chao-Chun Chung	Ken Wu	Apple Wen		

Version 2.1 - 1 - Date: 07 Mar 2011

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	8
2.3.1 TFT LCD MODULE	8
2.3.2 BACKLIGHT UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION	12
3.2.1 LED LIGHT BAR CHARACTERISTICS	12
4. BLOCK DIAGRAM OF INTERFACE	13
4.1 TFT LCD MODULE	13
5. INPUT TERMINAL PIN ASSIGNMENT	14
5.1 TFT LCD MODULE INPUT	14
5.2 BLOCK DIAGRAM OF INTERFACE	17
5.3 LVDS INTERFACE	19
5.4 COLOR DATA INPUT ASSIGNMENT	20
6. INTERFACE TIMING	21
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	21
6.2 POWER ON/OFF SEQUENCE	24
7. OPTICAL CHARACTERISTICS	25
7.1 TEST CONDITIONS	25
7.2 OPTICAL SPECIFICATIONS	26

8. PRECAUTIONS	30
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	30
8.2 SAFETY PRECAUTIONS	30
9. DEFINITION OF LABELS	
9.1 CMI MODULE LABEL	31
10. PACKAGING	32
10.1 PACKAGING SPECIFICATIONS	
10.2 PACKAGING METHOD	32
11. MECHANICAL CHARACTERISTICS	34

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver. 2.0	Jan. 20, 2011	All	All	The Approval specification was first issued. Correct T5 from 1500 ms to 500 ms
Ver. 2.1	Mar. 07, 2011	24	6.2	Correct T5 from 1500 ms to 500 ms
		32	10.2	Module quantity per box changed from 5 pcs to 6 pcs

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V400HJ2-LE1 is a 40" TFT Liquid Crystal Display module with LED Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit).

1.2 FEATURES

- High brightness (400 nits)
- High contrast ratio (5000:1)
- Fast response time (Gray to gray average 9.5 ms)
- High color saturation (NTSC 72%)
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 60 Hz frame rate
- Ultra wide viewing angle : Super MVA technology
- RoHS compliance

1.3 APPLICATION

- Standard Living Room TVs
- Public Display Application
- Home Theater Application
- MFM Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	885.6 (H) x 498.15 (V) (40" diagonal)	mm	(1)
Bezel Opening Area	891.7 (H) x 504.8 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.15375 (H) x 0.46125 (V)	mm	-
Pixel Arrangement	RGB Vertical Stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally Black	-	-
Surface Treatment	Anti-Glare Coating (Haze 11%)	-	(2)

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
Module Size	Horizontal (H)	920.7	921.7	922.7	mm	(1)
	Vertical (V)	536.8	537.8	538.8	mm	(1)
	Depth (D)	10	10.8	11.8	mm	(2)
	Depth (D)	26.5	27.5	28.5	mm	(3)
Weight		_	7200	_	_	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth is between bezel to T-CON cover.

Note (3) Module Depth is between bezel to converter cover.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Cromb al	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	TST	-20	+60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)
Shock (Non-Operating)	SNOP	_	50	G	(3), (5)
Vibration (Non-Operating)	VNOP	_	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 % RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$
- Note (4) $10 \sim 200 \text{ Hz}$, 10 min, 1 time each X, Y, Z
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Value		Value		Unit	Note
пеш	Эуший	Min.	Max.	Offit	Note		
Power Supply Voltage	VCC	-0.3	13.5	V	(1)		
Logic Input Voltage	VIN	-0.3	3.6	V	(1)		

2.3.2 BACKLIGHT UNIT

Item	Symbol	Va	Value		Note	
nem	3y111001	Min.	Max.	Unit	note	
Light Bar Voltage	VW	_	216	V_{DC}	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter		Symbol	Value			Unit	Note	
	Turumeer		Symbol	Min.	Тур.	Max.	Offic	Note
Power Sup	oply Voltage		Vcc	10.8	12	13.2	V	(1)
Rush Curr	ent		I_{RUSH}	_	_	3	A	(2)
		White Pattern	Рт	_	4.248	4.62	A	
Power Co	nsumption	Black Pattern	P_{T}	_	4.476	4.848	A	(3)
		Horizontal Stripe	P_{T}	_	7.44	8.064	A	
		White Pattern	_	_	0.354	0.385	W	
Power Sup	oply Current	Black Pattern	_	_	0.373	0.404	W	
		Horizontal Stripe	_	_	0.620	0.672	W	
	Differential I Threshold V	1 0	V _{LVTH}	+100	_	_	mV	
	Differential I Threshold V	nput Low	$V_{ m LVTL}$		_	-100	mV	
LVDS interface	Common Inp	out Voltage	V_{CM}	1.0	1.2	1.4	V	(4)
Differential (single-end		nput voltage	V _{ID}	200	_	600	mV	
Terminating Resistor		Resistor	R_{T}	_	100	_	ohm	
CMOS	Input High Threshold Voltage		V _{IH}	2.7	_	3.3	V	
interface	Input Low T	hreshold Voltage	$V_{\rm IL}$	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Version 2.1 - 10 - Date: 07 Mar 2011

Active Area

b. Black Pattern

Active Area

c. Horizontal Pattern

Note (4) The LVDS input characteristics are as follows:

3.2 BACKLIGHT CONNECTOR PIN CONFIGURATION

3.2.1 LED LIGHT BAR CHARACTERISTICS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

Parameter	Cumbal		Value	Unit	Note	
rarameter	Symbol	Min.	Тур.	Max.	Ont	note
Total Current (2 Light Bars)	If		260	275.6	mA	(1) Duty=100% I _{PIN} =130mA
One String Current	I_{L}		130	137.8	mA	(1) Duty=100%
One String Voltage	V_{W}	163.2	_	218.6	V_{DC}	@130mA/MDL
Power Consumption	P_{BL}	_	50.54	_	W	Only LEDs Duty=100% I _{PIN} =130mA
One String Voltage Variation	$\triangle V_W$	_	_	2	V	@130mA/MDL
Life time	_	30,000	_	_	Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at $Ta = 25\pm2^{\circ}C$, IL = 130 mA

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE INPUT

CNF1 Connector Pin Assignment (FI-RE51S-HF (JAE))

Pin	Name	Description	Note
1	VCC	+12V power supply	
2	VCC	+12V power supply	
3	VCC	+12V power supply	
4	VCC	+12V power supply	
5	VCC	+12V power supply	
6	N.C.	No Connection	(3)
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
11	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
12	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	-
13	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	$\overline{}$ (1)
14	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
15	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
16	GND	Ground	
17	OCLK-	Odd pixel Negative LVDS differential clock input	
18	OCLK+	Odd pixel Positive LVDS differential clock input.	$\overline{}$ (1)
19	GND	Ground	
20	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	
21	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(1)
22	N.C.	No Connection	(-)
23	N.C.	No Connection	(3)
24	GND	Ground	
25	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
26	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
27	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	
28	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	
29	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
30	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	
31	GND	Ground	
32	ECLK-	Even pixel Negative LVDS differential clock input.	(1)
33	ECLK+	Even pixel Positive LVDS differential clock input.	$- \qquad (1)$
34	GND	Ground	
35	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(4)
36	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	$- \qquad (1)$
37	N.C.	No Connection	(2)
38	N.C.	No Connection	(3)
39	GND	Ground	
40	SCL	EEPROM Serial Clock (for auto Vcom)	
41	SDA	EEPROM Serial Data (for auto Vcom)	
42	N.C.	No Connection	(3)

43	WP	EEPROM Write Protection (for auto Vcom) (0V~0.7V/Open→Disable, 2.7V~3.3V→Enable)	(8)
44	N.C.	No Connection	(3)
45	SELLVDS	LVDS data format selection (2.7V~3.3V/Open→VESA, 0V~0.7V→JEIDA).	(4)(5)
46	OD_SEL	Overdriving lookup table selection	(6)(7)
47	N.C.	No Connection	(3)
48	TST_AGE	Do not need external clock when AGEN mode enabled. Test aging (0V~0.7V/Open→Disable, 2.7V~3.3V→Enable)	
49	N.C.	No Connection	(3)
50	TCON_RDY	T-CON ready output signal	
51	N.C.	No Connection	(3)

Note (1) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel

Note (2) LVDS connector pin order defined as follows

Note (3) Reserved for internal use. Please leave it open.

Note (4) Low = Connect to GND: JEIDA LVDS Format, High = Connect to +3.3V or Open: VESA LVDS Format.

Note (5) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Version 2.1 - 15 - Date: 07 Mar 2011

Note (6) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

Low = Open or connect to GND, High = Connect to +3.3V

ODSEL	Note
	Lookup table was optimized for 60 Hz frame rate.
	Lookup table was optimized for 60 Hz frame rate.

Note (7) ODSEL signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

Note (8) Digital auto VCOM adjust control pin

WP	Mode
L(default)	Internal week pull-low
Н	Auto-VCOM adjust mode.

Version 2.1 - 16 - Date: 07 Mar 2011

5.2 BLOCK DIAGRAM OF INTERFACE

ER0~ER7	Even pixel R data	OR0~OR7	Odd pixel R data
EG0~EG7	Even pixel G data	OG0~OG7	Odd pixel G data
EB0~EB7	Even pixel B data	OB0~OB7	Odd pixel B data
		DE	Data enable signal
		DCLK	Data clock signal

- Notes (1) The system must have the transmitter to drive the module.
- Notes (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.
- Notes (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

5.3 LVDS INTERFACE

VESA LVDS format: (SELLVDS pin=H)

JEDIA LVDS format: (SELLVDS pin=L/Open)

R0~R7	Pixel R Data (7; MSB,	DE	Data enable signal
	0; LSB)		, and the second
G0~G7	Pixel G Data (7; MSB,	DCLK	Data clock signal
	0; LSB)		
B0~B7	Pixel B Data (7; MSB,		
	0; LSB)		

Note (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

												Di	ata	Sigr	nal										
	Color				Re									reer							Bl				
	1	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	В6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) /Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CHOTT	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) /Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
C	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ı :
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ı :
Of	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	$T_{\rm rel}$	-200	_	200	ps	(2)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%	-	F _{clkin} +2%	MHz	
	Spread spectrum modulation frequency	F_{SSM}	_	_	200	KHz	(3)
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400	I	400	ps	
	Frame Rate	$F_{\rm r5}$	47	50	53	Hz	
Vertical	Tranie Rate	F_{r6}	57	60	63	Hz	
Active Display	Total	Tv	1090	1125	1480	Th	Tv=Tvd+Tvb
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	10	45	400	Th	
Horizontal	Total	Th	1030	1100	1325	Тс	Th=Thd+Thb
Active Display	Display	Thd	960	960	960	Тс	
Term	Blank	Thb	70	140	365	Тс	

Note (1) Please make sure the range of pixel clock has follow the below equation:

$$F_{clkin(max)} \ge F_{r6} \times Tv \times Th$$

$$F_{r5} \mathop{\textstyle \times} Tv \mathop{\textstyle \times} Th \geqq F_{\text{clkin(min)}}$$

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below:

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $|T_1 - T|$

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Note (6): (ODSEL) = H/L or open for 60/60Hz frame rate. Please refer to 5.1 for detail information

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance. If T2<0, that maybe cause electrical overstress failures.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	оС		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VCC	12	V		
Input Signal	According to typical v	ralue in "3. ELECTRICAL	CHARACTERISTICS"		
LED Current	IL	130	mA		
Vertical Frame Rate	Fr	60	Hz		

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

It	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio Response Time Center Luminance of White		CR		3500	5000	-	-	Note (2)	
		Gray to gray		-	9.5	19	ms	Note (3)	
		LC		310	390	-	cd/m	Note (4)	
White Variation	on	δW				1.3	-	Note (6)	
Cross Talk		СТ				4	%	Note (5)	
	Red	Rx			0.640		-		
	Red	Ry	$\theta x=0^{\circ}$, $\theta y=0^{\circ}$ Viewing angle		0.333		-	_	
	Green	Gx	at normal direction		0.290		-		
		Gy		Тур.	0.610	Тур.	-		
Color Chromaticity	Blue	Bx		-0.03	0.148	+0.03	-		
	blue	Ву			0.060		-		
	White	Wx			0.280		-		
	vvinte	Wy			0.290		-		
	Color Gamut	C.G			72	1	%	NTSC	
	Horizontal	θ x +		80	88	ı			
Viewing	Tiorizontai	θх-	CR≥20	80	88	1	Dog	Note (1)	
Angle	Vertical	θΥ+	CR220	80	88	ı	Deg.	Note (1)	
	vertical	θΥ-		80	88	-			

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Cono-80

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = $\frac{\text{Surface Luminance with all white pixels}}{\text{Surface Luminance with all black pixels}}$

CR = CR(5), where CR(X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223, 255.

Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223, 255. to each other.

Note (4) Definition of Luminance of White (Lc, LAVE):

Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

YA = Luminance of measured location without gray level 255 pattern (cd/m2)

YB = Luminance of measured location with gray level 255 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] When storing modules as spares for a long time, the following precaution is necessary.
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35° C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V400HJ2-LE1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line: $1 \rightarrow \text{Line} 1$, $2 \rightarrow \text{Line} 2$, ...etc.

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

(1) 6 LCD TV modules / 1 Box

(2) Box dimensions: 1035(L)x309(W)x625(H)mm

(3) Weight: approximately 47.6 Kg (6 modules per box)

10.2 PACKAGING METHOD

Packing method is shown in following figures.

11. MECHANICAL CHARACTERISTICS

