

Classifier for face detection

Feature Space

• Haar features f (a vector) at a pixel is a point in an n-D space, f ∈ Rⁿ

• Find the nearest training sample and assign the label

• Find the nearest training sample and assign the label

• Find the nearest training sample and assign the label

• Large training set

• Robust NN classifier

Slower the NN classifier

Decision boundary

Linear decision boundaries

A Linear decision boundary in 2-D space is a 1-D line

Linear decision boundaries

A Linear decision boundary in 3-D space is a 2-D plane

Linear decision boundaries

A Linear decision boundary in n-D space is a (n-l)-D Hyperplane

Decision boundary (w,b)

Evaluating a decision boundary

Margin or Safe Zone: The width that the boundary could be increased, before hitting a feature point

Evaluating a decision boundary

Evaluating a decision boundary

Choose decision boundary with Maximum margin

Support Vector Machine (SVM)

Support Vectors: Closest data samples to the boundary

Support Vector Machine (SVM)

Given

- k training images $\{I_1,\,I_2,\,...\,,\,I_k\}$ and their Haar features $\{f_l,\,f_2,\,...\,,\,f_k\}$
- K corresponding labels $\{\lambda_l, \lambda_2, ..., \lambda_k\}$, where $\lambda_j = +1$ if I_j is a face and $\lambda_j = -1$ if I_j is not a face

Find

- Decision boundary $w^Tf + b=0$ with maximum margin ρ

Finding decision boundary (w, b)

Finding decision boundary (w, b)

For each training sample $(\mathbf{f}_i, \lambda_i)$:

If
$$\lambda_i = +1$$
: $\mathbf{w}^T \mathbf{f}_i + b \ge \rho/2$
If $\lambda_i = -1$: $\mathbf{w}^T \mathbf{f}_i + b \le -\rho/2$

$$\lambda_i(\mathbf{w}^T \mathbf{f}_i + b) \ge \rho/2$$

If S is the set of support vectors, Then for every support vector $s \in S$: $\lambda_s(\mathbf{w}^T\mathbf{f}_s + b) = \rho/2$

Numerical methods exist to find \mathbf{w}, b and \mathcal{S} that maximize ρ

Classification using SVM

Given: Haar features f for an image window and SVM parameters $\mathbf{w}, b, \rho, \mathcal{S}$ Classification: Compute $d = \mathbf{w}^T \mathbf{f} + b$ $d \ge \rho/2$ Face d > 0 and $d < \rho/2$ Probably Face d < 0 and $d > -\rho/2$ Probably Not-Face

Results

Programs

- Nearest Neighbour Classifier
- Support Vector Machine