Devoir sur table nº 3

Concours blanc de mathématiques

Durée : 4h. Calculatrice interdite.

• Mettre le numéro des questions.

• Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Questions de cours

1) Résoudre l'équation $z^2 - (2+i)z - 3 + 3i = 0$ dans \mathbb{C} .

2) Déterminer une primitive pour chacune des fonctions suivantes en précisant le domaine de validité:

a)
$$f(x) = \frac{1}{x^2 + 3x - 10}$$
, b) $g(x) = \frac{1}{x^2 - 4x + 10}$, c) $h(x) = \arcsin x$.

b)
$$g(x) = \frac{1}{x^2 - 4x + 10}$$
,

c)
$$h(x) = \arcsin x$$

3) Soient E, F deux ensembles et f une application de E dans F. Rappeler les définitions de finjective, f surjective et f bijective.

Exercice 1.

1) Montrer que : $\forall x \in]0, +\infty[$, $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$.

2) On considère l'intégrale suivante : $I = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \arctan x \, dx$.

a) Justifier que *I* existe.

b) Calculer I en effectuant le changement de variable : $t = \frac{1}{x}$.

Exercice 2. Soit $z \in \mathbb{C} \setminus \mathbb{R}_-$ qu'on écrit sous forme polaire : $z = \rho e^{i\theta}$ avec $\rho > 0$ et $\theta \in \mathbb{R}$.

1) Montrer que $z + |z| = 2\rho \cos\left(\frac{\theta}{2}\right) e^{i\frac{\theta}{2}}$ puis que $(z + |z|)^2 = 2\rho(1 + \cos\theta)z$.

2) En déduire l'expression d'une racine carrée de z en fonction de z, |z| et Re(z).

Exercice 3. Le but de cet exercice est de résoudre l'équation différentielle suivante, de fonction inconnue y de la variable réelle x.

(E):
$$(1+x^2)y'' + xy' - y = x\sqrt{1+x^2}$$
.

On considère aussi l'équation différentielle suivante, de fonction inconnue z de la variable réelle t.

$$(F)$$
: $z'' - z = \frac{1}{4} \left(e^{2t} - e^{-2t} \right)$.

- 1) Résoudre l'équation homogène associée à (F).
- 2) En déduire l'ensemble des solutions de (F).
- 3) Justifier que la fonction sh réalise une bijection de \mathbb{R} sur \mathbb{R} . On note argsh sa bijection réciproque.
- 4) Montrer que : $\forall x \in \mathbb{R}$, $\operatorname{ch}(\operatorname{argsh}(x)) = \sqrt{1 + x^2}$. Simplifier également $\operatorname{sh}(\operatorname{argsh}(x))$, $e^{\operatorname{argsh}(x)}$ et $e^{-\operatorname{argsh}(x)}$.
- 5) Justifier que argsh est dérivable sur \mathbb{R} et que argsh' $(x) = \frac{1}{\sqrt{1+x^2}}$.

Soit $y: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable. On pose $z: t \mapsto y(\operatorname{sh}(t))$.

- 6) Calculer z'(t) et z''(t). En déduire que y est solution de (E) si et seulement si z est solution de (F).
- 7) Exprimer les solutions de (E) à l'aide de argsh.
- 8) Déterminer finalement l'ensemble des solutions de (E) (on simplifiera au maximum l'expression précédente).

Exercice 4. Soit l'équation (E): $x^3 - 2x - 1 = 0$.

- 1) Résoudre (E) et en déduire le tableau de signe de $x^3 2x 1$.
- 2) On introduit la fonction g définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad g(x) = \frac{x^3 - 1}{2}.$$

Montrer que l'intervalle [-1,1] est stable par g.

- 3) On considère alors la suite u définie par $u_0 = 0$ et $u_{n+1} = g(u_n)$. Montrer que : $\forall n \in \mathbb{N}, \ u_n \in [-1, 1]$.
- 4) Étudier la monotonie de u.
- 5) En déduire que la suite u converge et déterminer sa limite.

Exercice 5. Soit $\omega = e^{i\frac{2\pi}{5}}$. On pose $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- 1) Calculer $\alpha + \beta$ et $\alpha\beta$. On précise que le résultat est très simple...
- 2) En déduire une équation polynomiale dont α et β sont solutions. Résoudre cette équation.
- 3) Déterminer plus directement une autre expression de α et β et en déduire les valeurs exactes de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$.
- 4) Montrer que $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.
- 5) Soient A le point d'affixe $-\frac{1}{2}$, B le point d'affixe i et \mathcal{C} le cercle de centre A passant par B. Déterminer une équation cartésienne de \mathcal{C} .
- 6) Montrer que α et β correspondent aux points d'intersection de \mathcal{C} avec l'axe des abscisses. En déduire une construction à la règle et au compas d'un pentagone régulier dans le cercle unité.

Exercice 6. Le but de l'exercice est d'étudier les intégrales de Wallis définies pour $n \in \mathbb{N}$ par :

$$W_n = \int_0^{\frac{\pi}{2}} \cos^n t \ dt.$$

- 1) Calculer W_0 , W_1 et W_2 .
- 2) Justifier que pour tout $n \in \mathbb{N}$, $W_n \geqslant 0$ et que pour $t \in [0, \frac{\pi}{2}]$: $\cos(t)^{n+1} \leqslant \cos(t)^n$. On admet dans la suite que $W_n > 0$ pour tout $n \in \mathbb{N}$.
- 3) En déduire que la suite $(W_n)_{n\in\mathbb{N}}$ est décroissante et que $\frac{W_{n+2}}{W_n} \leqslant \frac{W_{n+1}}{W_n} \le 1$.
- 4) Justifier que $(W_n)_{n\in\mathbb{N}}$ est convergente.
- 5) Soit $n \in \mathbb{N}$. En effectuant une intégration par parties, montrer que

$$W_{n+2} = \frac{n+1}{n+2} W_n.$$

- 6) En déduire que la suite $((n+1) W_{n+1} W_n)_{n \in \mathbb{N}}$ est constante (on précisera la valeur).
- 7) Conclure que, pour tout $p \in \mathbb{N}$,

$$W_{2p} = \frac{\pi}{2} \frac{(2p)!}{2^{2p} (p!)^2}.$$

Déterminer une expression analogue pour W_{2p+1} .

8) On pose, pour tout $n \in \mathbb{N}$,

$$u_n = \sqrt{\frac{2n}{\pi}} \ W_n.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 1.