

DOCKET NO.: 272976US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Martin SOHN, et al. SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP03/14186 INTERNATIONAL FILING DATE: December 13, 2003

FOR: SEPARATION OF ISOCYANATES FROM A REACTION MIXTURE

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY Germany **APPLICATION NO**

DAY/MONTH/YEAR

102 60 093.7

19 December 2002

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP03/14186. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number 22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03) Norman F. Oblon Attorney of Record Registration No. 24,618 Surinder Sachar

Registration No. 34,423

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 0 9 FEB 2004 WIPO PCT

07 JUN 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 60 093.7

Anmeldetag:

19. Dezember 2002

Anmelder/Inhaber:

BASF Aktiengesellschaft,

Ludwigshafen/DE

Bezeichnung:

Verfahren zur Abtrennung von Isocyanaten aus

einem Reaktionsgemisch

IPC:

C 07 C, B 01 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 11. September 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Stanschus

A 9161

Patentansprüche

- Verfahren zur Herstellung von Isocyanaten durch Umsetzung von Aminen mit Phosgen in einem Reaktor und die nachfolgende Abtrennung und Reinigung des Isocyanats aus der Reaktionsmischung, dadurch gekennzeichnet, daß die Abtrennung und Reinigung des Isocyanats in einer Kolonne bei einem Kopfdruck von 1-950 mbar, bevorzugt 5-50 mbar, besonders bevorzugt 10-20 mbar, und einer Sumpftemperatur von 90-250°C, bevorzugt 120-170°C, besonders bevorzugt 130-150°C, durchgeführt wird, und die Kolonne im Gegenstrom von Gas und Flüssigkeit betrieben wird.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Rein-Isocyanat-Strom in einem Seitenabzug der Kolonne flüssig oder gasförmig abgenommen wird.
- 3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Sumpfprodukt der Kolonne noch Isocyanat enthält, welches in einem weiteren Apparat, bei einem Druck von 1-500 mbar, bevorzugt 5-25 mbar, und einer Temperatur von 100-225°C, bevorzugt 110-140°C, bis auf eine Konzentration von < 10 Gew.-% bezüglich des Feedstroms der ersten Kolonne, abgereichert wird.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der weitere Apparat eine Kolonne ist.
- 30 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Kolonne eine ein- oder mehrstufige Verdampfung vorgeschaltet ist.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekenn zeichnet, dass eine Zwischenverdampfung an der Kolonne durchgeführt.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Verdampfer für die Kolonne, die Vorverdampfung und die Zwischenverdampfung ein Durchlaufverdampfer, vorzugsweise ein Fallfilmverdampfer, Langrohrverdampfer oder Dünnschichtverdampfer verwendet wird.

- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kolonne mit einer Blech-, Gewebe- oder Gitterpackung gepackt ist.
- 5 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Verweilzeit im Sumpf der Kolonne nicht größer als sechs Stunden, bevorzugt nicht größer als vier Stunden, bezogen auf den Sumpfabzug, ist.
- 10 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Reaktionsmischung im unteren Teil der ersten Kolonne zur Abtrennung des Isocyanats zugeführt wird.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Isocyanat Toluylendiisocyanat (TDI),
 Methylendiphenyldiisocyanat (MDI), Hexamethylendiisocyanat
 (HDI) oder Isophorondiisocyanat (IPDI) ist.

20

25

30

35

Verfahren zur Abtrennung von Isocyanaten aus einem Reaktionsgemisch

5 Beschreibung

Die Erfindung betrifft ein Verfahren zur Abtrennung und Reinigung von Isocyanaten aus einem Reaktionsgemisch in der Herstellung von aromatischen oder aliphatischen Isocyanaten. Bei den aromatischen 10 Isocyanaten sind dies bevorzugt Methylendi(phenylisocyanat) (MDI) und Toluylendiisocyanat (TDI), bei den aliphatischen Hexamethylendiisocyanat (HDI) und Isophorandiisocyanat (IPDI).

Die kontinuierliche Herstellung von organischen Isocyanaten durch 15 Reaktion von primären organischen Aminen mit Phosgen ist vielfach beschrieben und wird im großtechnischen Maßstab durchgeführt (s. z.B. Ullmanns Enzyklopädie der Technischen Chemie, and 7 (Polyurethane), 3. neubearbeitete Auflage, Carl Hanser Verlag, München-Wien, S. 76ff (1993)). Insbesondere die aromatischen Isocyanate TDI (Toluylendiisocyanat) und MDI (Methylendiphenyldiisocyanat) bzw. PMDI (Polymethylenpolyphenylenpolyisocyanat) sowie die aliphatischen Isoyanate HDI (Hexamethylendiphenyldiisocyanat) und Isophorondiisocyanat (IPDI) werden großtechnisch hergestellt.

25 Die Herstellung von Isocyanaten aus den entsprechenden Aminen durch Phosgenierung erfolgte bisher zumeist in Rührkesseln, wie beispielsweise in DE-A-1468445 beschrieben, in Rührkesselkaskaden, wie beispielsweise in DE-PS 844896 beschrieben, in mit Füllkörpern gefüllten Reaktionssäulen oder Reaktionskolonnen, wie 30 beispielsweise in WO 99/5428, und DE-A-2112181 beschrieben oder in ungefüllten Kolonnen. Oftmals ist eine Kreislauffahrweise erforderlich, um genügend Verweilzeit für einen vollständigen Umsatz bei begrenztem Reaktionsvolumen (Holdup) zu schaffen. Da die Reaktion von Amin und Phosgen in der Flüssigphase sehr 35 schnell ist, wird für die erste Reaktionsstufe häufig ein Mischreaktor mit einer hohen Scherung des durch die Mischeinrichtung geführten Reaktionsstroms eingesetzt. Zu den bekannten Mischaggregaten gehören vor allem Düsen wie die Ringsschlitzdüse, Ringlochdüsen, Glattstrahlmischdüsen, Fächerstrahldüsen, Winkel-40 strahlkammerdüsen, Dreistromdüsen, Gegenstrommischkammern, Staudüsen und Venturimischdüsen.

Die Isocyanatsynthese erfolgt häufig in der ersten Stufe bei sehr tiefer und in der zweiten bei deutlich höherer Temperatur in 45 einem Verweilzeitapparat. Dieses Verfahren wird häufig als Kalt-Heiß-Phosgenierung bezeichnet. Eine Beschreibung findet sich beispielsweise in W. Siefken, Liebigs Analen der Chemie 562

(1949), Seite 96. Zuerst wird bei tiefer Temperatur, zumeist bei 0°C oder Raumtemperatur, maximal 60°C, eine Suspension der Zwischenprodukte Carbamoylchlorid und Aminhydrochlorid hergestellt, die dann bei höheren Temperaturen, zumeist 100 bis 200°C, in einem 5 Verweilzeitapparat zum Isocyanat umgesetzt wird. Solche zweistufige Verfahren werden in Ullmanns Enzyklopädie der Technischen Chemie, Band 7 (Polyurethane), 3. neubearbeitete Auflage, Carl Hanser Verlag, München-Wien, S. 76ff (1993), und beispielsweise in den Patentschriften DE 2058032, DE 2153268 und DE 2908703 beschrieben.

Als Verweilzeitapparate können die für die Herstellung der Isocyanate üblichen und bekannten, oben beispielhaft aufgeführten Reaktoren eingesetzt werden.

15

Die Herstellung der Isocyanate erfolgt zumeist in Lösung. Als Lösungsmittel für die Herstellung der Isocyanate werden vorzugsweise chlorierte aromatische Kohlenwasserstoffe wie Dichlorbenzol, Chlorbenzol, Trichlorbenzol oder aromatische oder aliphatische Kohlenwasserstoffe wie Toluol, Xylol, Benzol, Pentan, Hexan, Heptan, Octan, Cyclohexan, Biphenyl, Ketone wie 2-Butanon, Methylisobutylketon, Ester wie Diethylisophtalate, Ethylacetat, Butylacetat, Nitrile wie Acetonitril, oder Sulfolan u.a. verwendet.

25

Nach erfolgter Reaktion wird das in der Regel leichter als das Isocyanat siedende Lösungsmittel vom Isocyanat und einem eventuellen Rückstand abgetrennt und destillativ aufgearbeitet. Im Falle von Toluylendiisocyanat (TDI) erfolgt anschließend eine 30 destillative Abtrennung des Isocyanats vom Rückstand und eine Reindestillation des Isocyanats oder eine Reinigung durch Kristallisation. (wird im Falle von TDI u.a. von Wettbewerbern auch gemacht. Wir sollten nicht zu offensichtlich zeigen, daß wir Destillation ausüben). Es können außerdem weitere Trennoperationen durchgeführt werden, um im Falle von TDI, oder MDI das Isomerengemisch oder im Falle von MDI das Oligomerengemisch in einzelne Fraktionen mit unterschiedlicher Isomeren- und Oligomerenzusammensetzung zu erzeugen.

40 Das bei der Umsetzung von aliphatischen oder aromatischen Aminen mit Phosgen zu den entsprechenden Isocyanaten anfallende Gemisch aus Phosgen und Chlorwasserstoff, das noch mehr oder weniger große Mengen Lösungsmittel enthalten kann, wird in der Regel in den meist gasförmig anfallenden Chlorwasserstoff und ein in der

45 Regel flüssig anfallendes Gemisch aus Phosgen und gegebenenfalls

Lösungsmittel aufgetrennt. Das Phosgen bzw. Phosgen-Lösungsmittelgemisch wird dann in die Reaktion zurückgeführt.

In US 3410888 wird ein Verfahren zur Isolierung eines aromati-5 schen Diisocyanats aus einer Reaktionsmischung beschrieben, wobei das Isocyanat zwei Phenylkerne besitzt und die Isocyanatgruppen an Kohlenstoffatomen unterschiedlicher Phenylkerne gebunden sind. Dies betrifft 4,4'-, 2,4'-, 2,2'-Methylendi(phenylisocyanat) (MDI) sowie Mischungen dieser Isomere oder Polymethylenpolypheny-10 lenpolyisocyanat (PMDI). Das dort beschriebene Verfahren umfaßt die Schritte erstens der Reaktion eines entsprechenden aromatischen Diamins mit Phosgen und der destillativen Abtrennung eines Teils des so hergestellten aromatischen Isocyanats im Zuge der Lösungsmittelabtrennung, zweitens der Überführung des Destillati-15 onsrückstandes (Sumpfproduktes) in eine zweite Destillationseinrichtung, die als Gefäß ausgestaltet ist, über dessen innere Oberfläche der Rückstand als dünner Film verteilt ist und dessen Temperatur und Druck ausreichend sind, um eine Verdampfung des Isocyanats zu bewirken, und drittens der Entnahme des Dampfes aus 20 dieser zweiten Destillationseinrichtung, der im wesentlichen reich an Isocyanat ist. Der Dampf wird kondensiert und das Isocyanat gelagert. Als mögliche Destillationseinrichtung werden beispielsweise Kletterfilmverdampfer oder Fallfilmverdampfer genannt. Das gewählte Lösungsmittel in der Isocyanatsynthese hat 25 üblicherweise einen niedrigeren Siedepunkt als das Isocyanat, er ist bevorzugt mindestens 30°C niedriger. Bei einer kleineren Siedepunktsdifferenz wird allerdings in der Lösungsmittelabtrennung ein Teil des hergestellten Isocyanats zusammen mit dem Lösungsmittel mitabgetrennt. Daran schließt sich die Destillation 30 des als Rückstand erhaltenen Rohisocyanats im Dünnschichtverdampfer an. Die teilweise Abtrennung des Isocyanats in der Lösungsmittelabtrennung hat den Vorteil, dass unerwünschte Mittelsieder, gegebenenfalls gefärbte Verunreinigungen oder Komponenten, deren Siedepunkt zwischen dem des Isocyanats und dem 35 Lösungsmittel liegt, in der Lösungsmittelabtrennung mit abgetrennt werden. Die Mischung aus dem teilweise abgetrennten Isocyanat und dem Lösungsmittel wird dann wieder als Einsatzstoffstrom der Lösungsmittelabtrennung zugeführt, oder sie wird in einer separaten Verdampfung oder fraktionierten Destillation zur 40 Aufkonzentration des Isocyanats zugeführt. Letzteres wird dann als Feed in die Lösungsmittelabtrenung rezykliert.

Nachteilig an diesem Verfahren ist die teilweise Abtrennung des Isocyanats in der Lösungsmittelabtrennung, die eine zusätzliche 45 destillative Reinigung des Lösungsmittels erforderlich macht. Enthält das Lösungsmittel zur Herstellung der Aminlösung Isocyanat, bilden sich beim Vermischen von Amin und Lösungsmittel

Harnstoffe, die als Feststoffe zum einen zu Verstopfung und zum anderen zu schlechter Produktqualität führen.

Bei der Herstellung von Isocyanaten im großtechnischen Maßstab in sogenannten Worldscale-Anlagen, das heißt Anlagen mit einer Kapazität von mindestens 160,000 Jahrestonnen Isocyanat, fallen große Mengen eines schwersiedenden Rückstandes an, welcher schwierig zu handhaben und teuer in der Entsorgung ist. Der Rückstand besteht zumeist aus Nebenprodukten, die durch Oligomerisierung, Polymerisation oder durch unerwünschte Neben- und Folgereaktionen gebildet werden. Durch Minimierung der thermischen Belastung und der Verweilzeit in den Destillationskolonnen, insbesondere denen zur Abtrennung des Isocyanats aus dem Reaktionsgemisch und der Reindestillation des Isocyanats, ist daher eine signifikante Verminderung der Schwersiederanfalls möglich.

Es war somit die Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, bei dem insbesondere in großtechnischen Anlagen die Abtrennung des Isocyanats aus dem Reaktionsgemisch und die Reindestillation des Isocyanats unter solchen Bedingungen durchgeführt wird, daß der Schwerproduktanfall minimiert wird und das Isocyanat in guter Qualität anfällt.

Es wurde überraschenderweise ein Verfahren zur Abtrennung von

25 Isocyanaten aus Reaktionsmischungen und Reindestillation der Isocyanate in großtechnischen Anlagen gefunden, bei welchem mit weniger Apparaten bei gleicher Reinheit des gewünschten Isocyanats ein geringerer Schwersiederanfall erreicht werden kann und das unten näher beschrieben ist.

Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Isocyanaten durch Umsetzung von Aminen mit Phosgen in einem Reaktor, gegebenenfalls Abtrennung des verwendeten Lösungsmittels und der nachfolgenden Abtrennung und Reinigung des Isocyanats aus der Reaktionsmischung, dadurch gekennzeichnet, daß die Abtrennung und Reinigung des Isocyanats in einer Kolonne bei einem Kopfdruck von 1-950 mbar, bevorzugt 5-50 mbar, besonders bevorzugt 10-20 mbar, und einer Sumpftemperatur von 90-250°C, bevorzugt 120-170°C, besonders bevorzugt 130-150°C, durchgeführt wird, und die Kolonne bevorzugt im Gegenstrom von Gas und Flüssigkeit betrieben wird. Der Rein-Isocyanat-Strom wird bevorzugt flüssig

oder gasförmig in einem Seitenabzug der Kolonne abgenommen.

Besonders geringer Schwerproduktanfall wird erzielt, wenn die Verweilzeit im Sumpf der Kolonne nicht größer als sechs Stunden, bevorzugt nicht größer als vier Stunden, bezogen auf den Sumpfabzug, ist.

5

Die Zuführung des Reaktionsgemisches erfolgt vorteilhaft im unteren Teil der Kolonne, bevorzugt kann die Kolonne auch nur mit einem reinen Verstärkungsteil ohne Abtriebsteil ausgestattet sein. Als Einbauten kommen die bekannten Einbauten von Destilla-10 tions- und Rektifikationskolonnen zum Einsatz. Es kann u.a. eine Boden- oder eine Packungskolonne zum Einsatz kommen. Als Böden können beispielsweise Sieb-, Ventil-, Glocken- oder Dualflowböden und bei Packungen z.B. Blech-, Gewebe- oder Gitterpackungen aller Art verwendet werden. Besonders vorteilhaft sind Packungen, da 15 sie einen geringen Druckverlust aufweisen. Füllkörperschüttungen sind jedoch weniger geeignet, aber nicht prinzipiell ausgeschlossen. Als Packungstypen können beispielsweise Sulzer BX, Sulzer CY, Sulzer Mellapak, Sulzer Mellapak Plus, Montz A3, Glitsch 4A, Kühni Rombopak, und andere. verwendet werden. Als Sumpfumlaufver-20 dampfer können prinzipiell alle Arten von Verdampfertypen eingesetzt werden, wobei Fallfilmverdampfer, Langrohrverdampfer oder Dünnschichtverdampfer besonders vorteilhaft sind, da sich mit ihnen eine produktschonende Verdampfung realisieren läßt. Aus energetischen Gründen und um das Produkt zu schonen und so den 25 Schwerproduktanfall zu minimieren, kann es vorteilhaft sein, der erfindungsgemäß verwendeten Kolonne eine ein- oder mehrstufige Verdampfung vorzuschalten. Auch eine Zwischenverdampfung ist vorteilhaft. Bei der Vorverdampfung wird der Flüssigkeitszulauf einem Verdampfer zugeführt und dadurch teilweise oder ganz ver-30 dampft. Der Dampf- und gegebenenfalls der verbliebene Flüssigkeitsstrom wird der Kolonne zugeführt. Bei einer Zwischenverdampfung wird die Flüssigkeit entsprechend von einem Boden oder Sammler der Kolonne entnommen und einem Wärmetauscher zugeführt. Sowohl die Vorverdampfung als auch die Zwischenverdampfung können 35 ein- oder mehrstufig ausgeführt werden. Der Kopfkondensator kann extern gestaltet oder in die Kolonne integriert sein. Es können Rohrbündel- wie auch Plattenapparate zum Einsatz kommen.

Prinzipiell kann das verwendete Lösungsmittel noch in der Reak40 tionsmischung, die in die erfindungsgemäß verwendete Kolonne enthalten sein. Es ist jedoch vorteilhaft, zumindest einen Teil
davon vorher abzutrennen. Dies kann beispielsweise in einer
vorgeschalteten Kolonne oder einer ähnlichen Trenneinrichtung
erfolgen.

Am Kopf der Kolonne fallen u.a. Chlorwasserstoff, Phosgen, Lösungsmittel, chlorierte Nebenprodukte und Inerte wie Stickstoff und Kohlendioxid an.

- 5 Das am Sumpfaustrag der Kolonne abgezogene Schwerprodukt enthält hochsiedende oligomere und polymere Verbindungen, typischerweise zumeist Harnstoffe, Polyharnstoffe, Isocyanurate, Uretdione, Carbodiimide sowie nicht vollständig abgetrenntes Isocyanat.
- 10 Wenn das ausgeschleuste Sumpfprodukt der Kolonne noch Isocyanat enthält, kann dieses vorteilhaft zur Gewinnung des im Rückstand noch verbliebenen Isocyanats in einem weiteren Apparat, bevorzugt einer Kolonne, bei einem Druck von 1-500 mbar, bevorzugt 5-25 mbar, und einer Temperatur von 100-225°C, bevorzugt
- 15 110-140°C, bis auf eine Konzentration von < 10 Gew.-% bezüglich des Feedstroms der ersten Kolonnen abgereichert werden. Der Sumpfaustrag dieser Kolonne kann noch einmal aufgearbeitet werden, um weiteres Rest-Isocyanat aus dem Schwerprodukt zu gewinnen. Alle so erhaltenen Isocyanatfraktionen können der ersten</p>
 20 Kolonne zur Reinigung des Isocyanats wieder zugeführt werden.
- Das erfindungsgemäße Verfahren eignet sich insbesondere für die Aufarbeitung von Toluylendiisocyanat (TDI), Methylendiphenyldiisocyanat (MDI), Hexamethylendiisocyanat (HDI) und Isophorondiisocyanat (IPDI) Prinzipiell können auch andere Isocyanate so gereinigt werden.

Besonders gut geeignet ist dieses Verfahren zur Herstellung von TDI. Gerade TDI neigt zur Ausbildung von Schwerprodukten, die 30 sehr schwierig zu handhaben sind und die unter Umständen die Verfügbarkeit von TDI-Anlagen mindern. Durch die erfindungsgemäße Ausgestaltung der Parameter der Kolonne zur Abtrennung des TDI kann die Ausbildung der Feststoffe merklich zurückgedrängt werden. Dieser Effekt macht sich besonders bei großtechnischen Anlagen mit einer Kapazität von mindestens 160,000 Jahrestonnen bemerkbar.

Die Erfindung soll an dem nachstehenden Beispiel näher erläutert werden.

Beispiel:

40

Von einem Reaktionsaustrags aus der Synthese von Toluylendiisocyanat (TDI) ausgehend von Toluylendiamin (TDA) und Phosgen, von 45 dem das Lösungsmittel abgetrennt worden ist, wurde dem unteren Teil einer Destillationskolonne mit 50 mm Durchmesser zugeführt. Die Kolonne war mit 12 Schüssen Gitterpackung (Kühni Rombopak 9M,

Länge eines Schusses 630 mm) gepackt. Die Sumpftemperatur betrug 145°C und der Kopfdruck 15 mbar abs. Als Verdampfer wurde ein Dünnschichtverdampfer eingesetzt. Die Zusammensetzung des Zulaufs (1,14 kg/h) war 1,1 kg/h (96,5 Gew.-%) TDI inklusive schwersie-5 dender TDI-Homologen, 0,02 kg/h (1,8 Gew.-%) Uretdion und 0,02 kg/h (1,8 Gew.-%) chlorierte Nebenprodukte sowie geringe Mengen Leichtsieder wie Chlorwasserstoff, Phosgen, und andere. An einem Seitenabzug der Kolonne wurden 1,0 kg/h (99,9 Gew.-%) TDI mit geringen Mengen (0,001 kg/h, 0,1 Gew.-%) chlorierter Neben-10 produkte entnommen. Am Kopf der Kolonne wurden hinter dem Kopfkondensator, einem Rohrbündelapparat mit 13 Rohren, 0,018 kg/h Leichtsieder. vorwiegend Chlorwasserstoff und Phosgen, gasförmig entnommen und einer alkalischen Wäsche zur Vernichtung zugeführt. Das im Wärmetauscher anfallende Kondensat des Brüden wurde als 15 Rücklauf auf den Kopf der Kolonne gegeben. Am Sumpf der Kolonne wurden 0,12 kg/h entnommen und einer einstufigen Verdampfung, die

bei 5 mbar und 115°C betrieben wurde, zugeführt. Es wurden 0,06 kg/h TDI dampfförmig entnommen, kondensiert und mit dem anderen, am Seitenabzug der ersten Kolonne gewonnen TDI, vereinigt.

20 Der zurückbleibende teerartige Rückstand wurde der Verbrennung zugeleitet.

25

30

35

Verfahren zur Abtrennung von Isocyanaten aus einem Reaktionsgemisch

5 Zusammenfassung

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Isocyanaten durch Umsetzung von Aminen mit Phosgen in einem Reaktor und die nachfolgende Abtrennung und Reinigung des Isocyanats aus der den Reaktor verlassenden Reaktionsmischung, dadurch gekennzeichnet, daß die Abtrennung und Reinigung des Isocyanats in einer Kolonne bei einem Kopfdruck von 1-950 mbar, bevorzugt 5-50 mbar, besonders bevorzugt 10-20 mbar, und einer Sumpftemperatur von 90-250°C, bevorzugt 120-170°C, besonders bevorzugt 130-150°C, durchgeführt wird, und daß der Rein-Isocyanat-Strom flüssig oder gasförmig bevorzugt in einem Seitenabzug der Kolonne abgenommen wird.

20

25

30

35