Problem

Examine the formal definition of a Turing machine to answer the following questions, and explain your reasoning.		
a. Can a Turing machine ever write the blank symbol U on its tape?		
Γ		
b. Can the tape alphabet be the same as the input alphabet ∑?		
c. Can a Turing machine's head ever be in the same location in two successive steps?		
d. Can a Turing machine contain just a single state?		
Step-by-step solution		
Step 1 of 4		
(a) Yes. A Turing machine can write the blank symbol on its tape.		
According to the definition, a Turing machine is a 7 – tuple $\left(Q, \Sigma, \Gamma, \delta, q_{_0}, q_{_{accept}}, q_{reject}\right)$		
Where Q, Σ, Γ are all finite sets.		
Σ is the input alphabet not containing the blank symbol \Box .		
But Γ is the tape alphabet, where Γ and Γ and Γ		
A Turing machine can write any characters in $\ \Gamma$ on its tape.		
Thus Turing machine can write blank symbol on its tape.		
Comment		
Step 2 of 4		
(b) No. The tape alphabet $\ \Gamma$ never same as input alphabet $\ \Sigma$		
Because tape alphabet Γ contains blank symbol \Box where as input alphabet does not contain blank symbol.		
Always Σ is subset of Γ , but never same as Σ .		
Comment		
Step 3 of 4		
(c) Yes. Turing machines head be in the same location in two successive steps.		
When the Turing machines head is at the left _end of the tape, if Turing machine again try to move left side then Turing machine's head is in the same		
location as previous can move.		
Comment		
Step 4 of 4		
(d) No.		
$(Q, \Sigma, \Gamma, \delta, q_0, q_{accoun}, q_{raiser})$		
According to definition, A Turing machine is a 7- tuple ($(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$		
Where $^{ m Q}$ is the set of states.		

 $\boldsymbol{q}_{\text{accept}}$ is the accept state and is belongs to $\;\boldsymbol{Q}$

${ m q}_{ m reject}$ is the reject state and is belongs to ${ m Q}$.
$But \; q_{accept} eq q_{reject}$
Thus there must be two distinct states $^{ m q}_{ m accept}$ and $^{ m q}_{ m reject}$
So, a Turing machine contains at least two states.
Comment