

Transport Layer

- Congestion Control

Lec 18

Principles of congestion control

Principles of Congestion Control

Congestion:

- informally: "too many sources sending too much data too fast for network to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

- two senders, two receivers
- one router, infinite buffers
- no retransmission

- large delays when congested
- maximum achievable throughput

- one router, *finite* buffers
- sender retransmission of lost packet

- always: $\lambda_{in} = \lambda_{out}$ (goodput)
- "perfect" retransmission only when loss:
- retransmission of delayed (not lost) packet makes

 $\lambda' > \lambda$ in out
es Aarger (than perfect

"costs" of congestion:

- more work (retrans) for given "goodput"
- unneeded retransmissions: link carries multiple copies of pkt

 BITS Pilani, K K Birla Goa Campus

innovate achieve lead

- four senders
- multihop paths
- timeout/retransmit

Q: what happens as λ_{in} and λ_{in}' increase ?

innovate achieve

Causes/costs of congestion: scenario 3

Another "cost" of congestion:

when packet dropped, any "upstream transmission capacity used for that packet was wasted!

innovate achieve lead

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control:

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

Network-assisted congestion control:

- routers provide feedback to end systems
 - single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - explicit rate sender should send at