

Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию №2 в рамках курса «Суперкомпьютерное моделирование и технологии» Численное интегрирование многомерных функций методом Монте-Карло

Выполнил:

студент группы 608 Канзепаров Денис Ринатович Вариант № 9

Содержание

1.	Математическая постановка задачи	2
2.	Численный метод решения	2
3.	Нахождение точного значения интеграла аналитически	3
4.	Краткое описание прогораммной реализации	3
5.	Исследование мастшабируемости программы на системе Polus.	4

1. Математическая постановка задачи

Функция f(x,y,z) – непрерывна в ограниченной замкнутой области $G \subset \mathbb{R}^3$. Требуется вычислить определенный интеграл:

$$I = \int \int_{C} \int f(x, y, z) dx dy dz.$$

Интегрируемая функция:

$$f(x, y, z) = xy^2z^3,$$

область G ограничена поверхностями z = xy, y = x, x = 1, z = 0.

2. Численный метод решения

Пусть область G ограниченна параллелепипедом Π :

$$\begin{cases} a_1 \leqslant x \leqslant b_1, \\ a_2 \leqslant x \leqslant b_2, \\ a_3 \leqslant x \leqslant b_3. \end{cases}$$

Рассмотрим функцию F(x, y, z):

$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G. \end{cases}$$

Преобразуем искомый интеграл:

$$I = \int \int_{G} \int f(x, y, z) dx dy dz = \int \int_{\Pi} \int F(x, y, z) dx dy dz.$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \ldots$ – случайные точки, равномерно распределенные в П. Возьмем n таких случайных точек. В качестве приближенного значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i), \tag{1}$$

где $|\Pi|$ – объем параллелепипеда Π . $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$.

3. Нахождение точного значения интеграла аналитически

Вычислим интеграл аналитически:

$$I = \int_{0}^{1} \int_{0}^{x} \int_{0}^{xy} xy^{2}z^{3} dxdydz = \int_{0}^{1} \int_{0}^{x} xy^{2} \frac{(xy)^{4}}{4} dxdy = \frac{1}{4} \int_{0}^{1} \int_{0}^{x} x^{5}y^{6} dxdy = \frac{1}{4} \int_{0}^{1} x^{5} \frac{x^{7}}{7} dx =$$

$$= \frac{1}{28} \int_{0}^{1} x^{12} dx = \frac{1}{28} \frac{1}{13} = 0.00(274725) \approx 0.002747252747$$

Далее в качестве точного решения данного интеграла будем использовать значение 0.002747252747.

4. Краткое описание прогораммной реализации

Реализуем парадигму «мастер-рабочие»: один из процессов («мастер») генерирует случайные точки и передаёт каждому из остальных процессов («рабочих») отдельный, предназначенный для него, набор сгенерированных случайных точек. Все процессы-рабочие вычисляют свою часть суммы по формуле (1). Затем вычисляется общая сумма с помощью операции редукции.

«Мастер»: проверяет условие сходимости, если оно не выполнено, то продолжает работу, а именно, увеличивает число создаваемых точек в 2 раза, определяет новое зерно для вычисления случайных координат точек, создает массив с координатами точек. Далее начинает рассылать данный массив по «рабочим».

«Рабочий»: проверяет условие сходимости, если оно не выполнено, то продолжает работу, а именно, принимает массив случайных точек, суммирует значения функции в точках, которые лежат в области G, вычисляет значение интеграла по формуле (1). Далее высылает полученный результат на «мастер».

«Мастер»: складывает полученные с «рабочих» результаты, проверяет верность условия сходимости и рассылает по «рабочим» значение переменной, отвечающей за прекращение вычислений, если достигнута точность. Если точность достигнута, то выводится результат работы программы. Иначе делает еще одну итерацию.

Таблица 1. Таблица с результатами расчётов для системы Polus

Γ Очность ε	Число MPI-	Время работы	Ускорение	Ошибка
	процессов	программы (с)		
	2	0.0114360789	1	0.0000063418
$3.0 \cdot 10^{-5}$	4	0.0059280460	1.9291481375	0.0000254376
	16	0.0050992691	2.2426898199	0.0000094070
	32	0.0100861250	1.1338426700	0.0000180734
	2	0.7285899210	1	0.0000014995
$5.0 \cdot 10^{-6}$	4	0.6601575660	1.1036606388	0.0000043206
	16	0.6359944200	1.1455916877	0.0000032540
	32	0.7432084291	0.9803305405	0.0000031747
	2	0.6942877981	1	0.0000009065
$1.5 \cdot 10^{-6}$	4	0.3303793331	2.1014867715	0.0000005525
	16	0.3610963470	1.9227217441	0.0000012337
	32	0.7447988479	0.9321816220	0.0000011781

5. Исследование мастшабируемости программы на системе Polus.

Мы видим, что реализация парадигмы «мастер-рабочие» для данной задачи не дает значительного ускорения, а в некоторых случаях, даже ухудшает производительность. Это объясняется тем, что время затраченное на пересылки увеличивается с увеличением количества MPI-процессов. А вычислений становится меньше на каждом из MPI-процессов.

Рис. 5.1. График зависимости ускорения программы от числа используемых МРІ- процессов для значения $\varepsilon=0.00003$

Рис. 5.2. График зависимости ускорения программы от числа используемых МРІ- процессов для значения $\varepsilon=0.000005$

Рис. 5.3. График зависимости ускорения программы от числа используемых MPI-процессов для значения $\varepsilon=0.0000015$

Рис. 5.4. Графики зависимости ускорения программы от числа используемых MPIпроцессов

Таблица 2. Таблица с результатами расчётов для системы Polus для фиксированного зерна

Точность ε	Число MPI-	Время работы	Ускорение	Ошибка
	процессов	программы (с)		
	2	0.0239540620	1	0.0000158589
$3.0 \cdot 10^{-5}$	4	0.0136748330	1.7516895453	0.0000289734
	16	0.0135930070	1.7622342135	0.0000188537
	32	0.0193841921	1.2357524046	0.0000296541
	2	0.3476793999	1	0.0000025991
$5.0 \cdot 10^{-6}$	4	0.1678119920	2.0718388224	0.0000027915
	16	0.1237788299	2.8088761234	0.0000029932
	32	0.4208524390	0.8261313650	0.0000035649
	2	5.6767938490	1	0.0000011178
$1.5 \cdot 10^{-6}$	4	2.0902041229	2.1014867715	0.0000012182
	16	2.8145470200	2.0169475971	0.0000005053
	32	5.3075983659	1.0695598004	0.0000008992

Рис. 5.5. Графики зависимости ускорения программы от числа используемых MPIпроцессов