<u>Lecture 4</u> 2025-09-04

Last time: smooth unconstrained optimization

Today: smooth optimization with linear equality constraints

min
$$f(x)$$
 $f \in \mathbb{C}^2$
subject to: $Ax = b$ $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
(so m -equality
constraints)

How to interpret Ax?

$$A = \begin{pmatrix} 1 & 1 & 1 \\ a_1 & a_2 & ... & a_n \\ 1 & 1 & 1 \end{pmatrix} \text{ where } a_i \in \mathbb{R}^m \text{ are columns of } A$$

$$A \times \begin{pmatrix} 1 & 1 & 1 \\ a & 1 & 1 \\ a & 1 & 1 \end{pmatrix} \times_1 \begin{pmatrix} x_1 & x_2 \\ x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}$$

$$A \times = \begin{pmatrix} 1 & & & \\ a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i a_i$$

SO Ax is a linear combination of the columns of A

Define range and null space?

range (A) = $\{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$

> When is range (A) = IRm? → when A is full rank

rank A = dim range A = min (m,n)# of Imarly independent columns of A

null space: W(A) = {x | x elR and Ax=0}

Rank-nullity theorem:

rank A + dim N(A) = n

Why does the matter? consider three cases of full rank matrices

man m=n $m \leq n$ rank A=n rank A=mAm N(A)=0 Am N(A)=0 Am N(A)=n-m

- e. g., suppose A is wide $(m \le n)$ and full rank, then $dm \ \mathcal{N}(A) = n m$ so $\exists x_2 \in \mathcal{N}(A)$ such that $Ax_2 = 0$ then if we have some x_1 such that $Ax_1 = b$ then rote that $A(x_1 + x_2) = Ax_1 + Ax_2 = Ax_1 = b$
- -> in this case, there are many solutions to Ax= b

Now consider optimization problem for three cases of Ax=b linear equality constraints:

Case 1: A cs square and full rank

man
$$f(x)$$
 $x \rightarrow x^* = A^{-1}b$

subj. to: $Ax=b$

Case 2: A is tall and full rank e. q. $A \in \mathbb{R}^{3\times 2}$ (i.e. maps from $2D \rightarrow 3D$)

Don't necessarily have an x such that Ax=b

- > monomize squared residual 11 Ax-61/2
- $\rightarrow f(x) = \pm \|Ax b\|_2^2$

$$= \frac{1}{2} (A \times -b)^{\dagger} (A \times -b)$$

$$= \frac{1}{2} (x^{\dagger} A^{\dagger} A \times -b^{\dagger} A \times -x^{\dagger} A b + b^{\dagger} b)$$

$$= \frac{1}{2} (x^{\dagger} A^{\dagger} A \times -2 (A^{\dagger} b)^{\dagger} x + b^{\dagger} b)$$

$$\nabla_{x} f(x) = \frac{1}{2} (2A^{\dagger}Ax - 2A^{\dagger}b)$$
$$= A^{\dagger}Ax - A^{\dagger}b := 0$$

$$\rightarrow$$
 $\chi^* = (A^T A)^{-1} A^T b$ Linear Least Squares

e. g., applications of LLS include signal reconstruction

e.g., when the residual is of form $f(x) = \frac{1}{2} \| v(x) \|_2^2$ where v(x) is a nonlinear function of x, least squares can iteratively be applied

→ nonlinear least squares (NLLS) is commonly used in SLAM with the bauss-Newton method

Case 3: AB wide and Sull rank

$$A \in \mathbb{R}^{m \times n}$$

$$m \leq n$$

$$\dim \mathcal{N}(A) = n - m$$

e.g., consider the dynamics constraint matrix for a 2D spacecraft double integrator

OK, A is full rank and wide.
What are necessary conditions of optimality (N.C.O.)

Last time: for unconstrained optimization with JECZ,

 \rightarrow N.C.O: $\nabla f(x^*) = 0$

suppose we have linear constraints $h(x) = c^{T}x - b = 0 \in \mathbb{R}$

consider level surfaces of h(x);

The gradient $\nabla h(x)$ points in the direction of greatest increase

What's the connection between $\nabla f(x)$ and $\nabla h(x)$ at

a local optimizer x*?

To remain along the constraint set h(x)=0, we cannot move along $\nabla h(x)$, which necessarily moves along direction of greatest increase, and can only move along the tangent direction ∇ to h(x).

Thus, given some cterate $x^{(R)}$, consider expressing the descent direction $d^{(R)} = -\nabla_x f(x^{(R)})$ along:

at the optimal solution x*, we cannot possibly have

a descent direction along v

Thus, if x* is a local optimizer,

$$\nabla f(x^*) = \lambda \nabla h(x^*)$$

$$\rightarrow \nabla f(x^*) + \lambda \nabla h(x^*) = 0$$

where the sign on I has been swapped for convenience

if there are m equality constraints, then this condition holds as:

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h(x^*) = 0$$

Suppose we integrate this expression w.r.t. x;

defre the Lagrangian:

$$\chi(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$$

$$= f(x) + \chi h(x)$$

we can now succontly rewrite the N.C.O.

$$\nabla_{\mathsf{x}} \mathcal{L}(\mathsf{x}^*) = 0$$