Escola de Ciências

Departamento de Matemática

Mestrado Integrado em Engenharia Informática

Teste 2 A :: 11 de janeiro de 2021

Nome Proposta de correcção

Número (

ı

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Considere a função
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = \begin{cases} \cos(\pi x) + 1, & \text{se } x < 0 \\ \frac{\ln(x+1)}{x+1} + 2, & \text{se } x \geq 0 \end{cases}$

Determine o conjunto dos pontos onde f é derivável, indicando o valor da derivada nesses pontos.

fo deciravel em]-0,0[e em]0,+0[, por ser obtido por composição, quaciente e soma de funções desirbreis.

$$f'(o^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(o)}{x - 0} = \lim_{x \to 0^{-}} \frac{cor(\pi x) + 1 - 2}{x} = 0$$
(aplicando a regea de l'Hôpitze) = $\lim_{x \to 0^{-}} \frac{-\pi \operatorname{dem}(\pi x)}{1} = 0$

$$f'(0^{+}) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{\lim_{x \to 0^{+}} \frac{f(x+1)}{x} + 2 - 2}{x - 0} = \lim_{x \to 0^{+}} \frac{\lim_{x \to 0^{+}} \frac{f(x+1)}{x} - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{\lim_{x \to 0^{+}} \frac{f(x+1)}{x} - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{1}{x^{2} + x} = 0$$
(aphicando a Rogea de l'Ho^{*} potal) = $\lim_{x \to 0^{+}} \frac{1}{2x + 1} = 1$

Como $f'(0^-) \neq f'(0^+)$, f não e' deciverel em z = 0. Gotas

• le x > 0, $f'(x) = \frac{\frac{1}{x+1} \cdot (x+1) - \ln(x+1)}{(x+1)^2} = \frac{1 - \ln(x+1)}{(x+1)^2}$

- . le x=0, f'(0) mais axiste
- · de x<0, \$'(x)=- 17 dem(17x)

Questão 2. [2 valores] Considere função $f(x) = x^2 - e^{x^2} + 1$.

- a) Verifique que f(0) = 0.
- b) Mostre que a função f não tem mais zeros.

b) f'(x)= 2x - 2xex= = 2x(1-ex=) =0(=) z=0 ve = 1(=) x=0 Como 1-então, para todo o z + 0, então

· Yxe]-0,0[f'(x)<0

e f'e' estritamente decerrante meste intervalo

· Yxe]0,+0[f'(x)>0

e f e' esteitamente ceescente neste interelo.

CU APE

Yx∈ R f(x)< f(0)=0 e Yx∈R+ 0=f(0)<f(x)

Questão 3. [2,5 valores] Calcule
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^2}$$

Questão 3. [2,5 valores] Calcule
$$\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x^2}$$
.

Lim $\underbrace{e^x - e^{\sin x}}_{x\to 0} = \lim_{x\to 0} \underbrace{\frac{e^x - e^{\sin x}}{x^2}}_{2x}$ (por aplicação da Regea de l'Hôpital, indeferminação $\frac{e^x}{e^x}$)

O. $e^x + \operatorname{Jenx} e^{\operatorname{Jenx}}_{x\to 0} = \operatorname{Jenx}_{x\to 0}$

Questão 4. [4 valores] Calcule os seguintes integrais:

a)
$$\int \frac{1 + \arctan x}{1 + x^2} \, dx;$$

= 0

b)
$$\int_{1}^{e} x^{3} \ln x \, dx$$
.

a)
$$\int \frac{1 + aectgx}{1 + x^2} dx = \int \frac{1}{1 + x^2} dx + \int \frac{1}{1 + x^2} aectgx dx$$

b)
$$\int_{1}^{e} z^{3} \ln z dz = \left[\frac{z^{4}}{4} \ln z\right]_{1}^{e} - \int_{1}^{e} \frac{1}{4} z^{3} = \left(\frac{e^{4}}{4} \ln e - \frac{1}{4} \ln 1\right) - \left[\frac{1}{16} z^{4}\right]_{1}^{e}$$

$$= \frac{e^{4}}{4} - \frac{e^{4}}{16} + \frac{1}{16} = \frac{3e^{4} + 1}{16}$$

$$= \frac{1}{4} - \frac{1}{16} + \frac{1}{16} = \frac{3e^{4} + 1}{16}$$

Questão 5. [3,5 valores] Considere a função $f:[-2,3]\to\mathbb{R}$ cujo gráfico se representa abaixo. O gráfico é constituído por um arco de circunferência centrada na origem e um segmento de reta que se unem no ponto $(\sqrt{2}, -\sqrt{2})$, onde f é derivável.

a) Indique o conjunto dos pontos onde f é derivável.

 $f(z) = - \left[4 - x^{2}\right]^{\frac{1}{2}}$ Se $x \in \left[-2, \sqrt{2}\right]$ $f'(-2) = \lim_{x \to -2^{+}} \frac{f(x) - f(-2)}{x + 2} = \lim_{x \to -2^{+}} \frac{-(2 - x)^{\frac{1}{2}}(2 + x)^{\frac{1}{2}}}{2 + x}$

= lim - 1/2 = -0. Entain from tem derived a em x = -2. Not restantes pontos fe' desirado b) Indique os pontos onde a derivada de f se anula.

O único ponto orde f'se arela e'x=0

c) Determine a equação da reta tangente ao gráfico de f no ponto $(\sqrt{2},-\sqrt{2})$. Page $x \in]-2, \sqrt{2}], \ell^{3}(x) = -\frac{1}{2}(4-x^{2})^{-\frac{1}{2}}(-2x) = \frac{x}{\sqrt{4-x^{2}}}$. Entar o decline de cete tangente ces geofice de f em (VI, -VI) e 1 f' (VI) = 1. e a sua equação e' (y+v2)=(x-v2) re, equivalentemente, y=x-2v2

d) Sabendo que o valor da área da região sombreada na figura é $\frac{3\pi}{2}+1$, determine o valor de $\int_{-2}^3 f(x)\,dx$. (Caso necessite e não saiba calcular f(3), pode usar $f(3)=\frac{1}{5}$.)

*
$$x>0$$
 e $f(x)=0$ ($\Rightarrow x=2\sqrt{2}$) $\sqrt{2}=1$ | $f(3)=3-2\sqrt{2}$ | $f(3)=3-2\sqrt{2$

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira. Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

- Questão 1. Seja $f:[-1,1] \to \mathbb{R}$ uma função derivável tal que f(-1)=f(1)=-1 e $f(\frac{1}{2})=0$. Então:
 - \bigcirc f' nunca se anula;
 - f' tem pelo menos um zero;
 - \bigcirc f' tem um zero à esquerda de $\frac{1}{2}$ e outro à sua direita;
 - \bigcirc f é crescente em] -1,0[e decrescente em]0,1[.
- Questão 2. Seja $f:[0,1] \to \mathbb{R}$ uma função derivável cuja derivada nunca se anula. Então:
 - f não tem mínimo nem máximo;
- $\bigcirc f(x) \neq 0, \forall x \in [0,1];$

f é monótona;

- ∫ f' é derivável.
- Questão 3. Seja $f:[0,1]\to\mathbb{R}$ uma função contínua não negativa e seja F uma sua primitiva. Então F:

 - é crescente;
 - admite pelo menos um ponto de descontinuidade;
 - O verifica a desigualdade $F(x) \ge f(x)$, para todo o $x \in [0,1]$.
- Questão 4. O integral $\int \frac{8}{x(x^2-4)} \frac{dx}{dx}$ é igual a:
 - $\bigcirc \int \frac{8}{x} dx \int \frac{1}{x^2 4} dx;$

- nenhuma das anteriores.
- Questão 5. Seja $f:[0,2] \to \mathbb{R}$ tal que $f(x) = \begin{cases} 0, & x \in [0,2] \setminus \{1\} \\ 1, & x=1 \end{cases}$. Então:
 - O existe uma partição P do intervalo [0,2] tal que S(f,P)=0;
 - qualquer que seja a partição P do intervalo [0,2], s(f,P)=0;
 - $\bigcap \int_0^2 f(x) \, dx < \overline{\int_0^2} f(x) \, dx;$
 - $\bigcap \int_0^2 f(x) \, dx > 0.$