Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	Г_Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления (ИУ5)

ОТЧЕТ по лабораторной работе

«Линейные модели, SVM и деревья решений.»

ДИСЦИПЛИНА: «Технологии машинного обучения»

Выполнил: студент гр. ИУ5-62Б_	(Федюкин Д.А)
· · · · -	(Подпись)	(Ф.И.О.)
П		T
Проверил:	(_	Гапанюк Ю.Е.)
	(Подпись)	(Ф.И.О.)

Лабораторная работа №5

Линейные модели, SVM и деревья решений

Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодировани
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестову
- 4. Обучите следующие модели:
 - одну из линейных моделей;
 - SVM;
 - дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните

Дополнительные задания

- Проведите эксперименты с важностью признаков в дереве решений.
- Визуализируйте дерево решений.

Ход выполнения лабораторной работы

```
import pandas as pd
import seaborn as sns
import numpy as np
from typing import Tuple, Dict
import matplotlib.pyplot as plt
from operator import itemgetter
from sklearn.model_selection import train_test_split

from sklearn.biepaocesdehgidmpottLineardBedSeaien
from sklearn.metrics import f1_score, r2_score, mean_squared_error, mean_absolute_c
from sklearn.svm import LinearSVR, SVR
from sklearn.tree import DecisionTreeRegressor, plot_tree
%matplotlib inline
sns.set(style="ticks")
```

```
col_list = ['Pelvic_incidence',
               'Pelvic tilt',
               'Lumbar_lordosis_angle',
               'Sacral slope',
               'Pelvic radius',
               'Degree spondylolisthesis',
               'Pelvic_slope',
               'Direct tilt',
               'Thoracic slope',
               'Cervical tilt',
               'Sacrum angle',
               'Scoliosis slope',
               'Class att',
               'To drop']
data = pd.read_csv('data/Dataset_spine.csv', names=col_list, header=1, sep=",")
data.drop('To_drop', axis=1, inplace=True)
```

data.head()

	Pelvic_incidence	Pelvic_tilt	Lumbar_lordosis_angle	Sacral_slope	Pelvic_
0	39.056951	10.060991	25.015378	28.995960	114.
1	68.832021	22.218482	50.092194	46.613539	105.
2	69.297008	24.652878	44.311238	44.644130	101.
3	49.712859	9.652075	28.317406	40.060784	108.
4	40.250200	13.921907	25.124950	26.328293	130.

data.isnull().sum()

```
Pelvic_incidence
                             0
Pelvic_tilt
                             0
Lumbar_lordosis_angle
                             0
Sacral slope
                             0
                             0
Pelvic radius
Degree_spondylolisthesis
                             0
                             0
Pelvic slope
Direct_tilt
                             0
                             0
Thoracic_slope
                             0
Cervical tilt
                             0
Sacrum_angle
                             0
Scoliosis slope
Class_att
dtype: int64
```

Пропуски данных отсутствуют.

```
data['Class_att'] = data['Class_att'].map({'Abnormal': 1, 'Normal': 0})
```

Разделим выборку на обучающую и тестовую:

```
# Разделим данные на целевой столбец и признаки
X = data.drop("Class_att", axis=1)
Y = data["Class att"]
# C использованием метода train test split разделим выборку на обучающую и тестовую
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_s
X train.shape, X test.shape, Y train.shape, Y test.shape
    ((231, 12), (78, 12), (231,), (78,))
```

Линейная модель

```
#Построим корреляционную матрицу
sns.set(style="white")
corr = data.corr(method='pearson')
mask = np.zeros like(corr, dtype=np.bool)
mask[np.triu indices from(mask)] = True
f, ax = plt.subplots(figsize=(11, 9))
cmap = sns.diverging palette(220, 10, as cmap=True)
g=sns.heatmap(corr, mask=mask, cmap=cmap, center=0, annot=True, fmt='.3f',
            square=True, linewidths=.5, cbar kws={"shrink": .5})
```


Pelvic_incidence

Pelvic_tilt

```
        Sacral_slope
        0.815
        0.063
        0.598

        Pelvic_radius
        -0.248
        0.035
        -0.084
        -0.344

        Degree_spondylolisthesis
        0.640
        0.399
        0.533
        0.524
        -0.030

        Pelvic_slope
        0.043
        0.007
        0.032
        0.050
        0.020
        0.088
```

fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x='Pelvic_incidence', y='Sacral_slope', data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x5d88a30>

b0, b1

Вычисление значений у на основе х для регрессии def y_regr(x_array : np.ndarray, b0: float, b1: float) -> np.ndarray: res = [b1*x+b0 for x in x_array] return res

(4.565546113493063, 0.6347707526286969)

```
y_array_regr = y_regr(x_array, b0, b1)
# Простейшая реализация градиентного спуска
def gradient descent(x array : np.ndarray,
                     y array : np.ndarray,
                     b0 0 : float,
                     b1 0 : float,
                     epochs : int,
                     learning rate : float = 0.001
                    ) -> Tuple[float, float]:
    # Значения для коэффициентов по умолчанию
    b0, b1 = b0 0, b1 0
    k = float(len(x array))
    for i in range(epochs):
        # Вычисление новых предсказанных значений
        # используется векторизованное умножение и сложение для вектора и константі
        y pred = b1 * x array + b0
        # Расчет градиентов
        # np.multiply - поэлементное умножение векторов
        dL db1 = (-2/k) * np.sum(np.multiply(x array, (y array - y pred)))
        dL_db0 = (-2/k) * np.sum(y_array - y_pred)
        # Изменение значений коэффициентов:
        b1 = b1 - learning_rate * dL_db1
        b0 = b0 - learning rate * dL db0
    # Результирующие значения
    y_pred = b1 * x_array + b0
    return b0, b1, y pred
def show gradient descent(epochs, b0 0, b1 0):
    grad_b0, grad_b1, grad_y_pred = gradient_descent(x_array, y_array, b0_0, b1_0,
    print('b0 = {} - (теоретический), {} - (градиентный спуск)'.format(b0, grad_b0
    print('b1 = {} - (теоретический), {} - (градиентный спуск)'.format(b1, grad b1
    print('MSE = {}'.format(mean_squared_error(y_array_regr, grad_y_pred)))
    plt.plot(x_array, y_array, 'g.')
    plt.plot(x_array, y_array_regr, 'b', linewidth=2.0)
    plt.plot(x_array, grad_y_pred, 'r', linewidth=2.0)
    plt.show()
# Примеры использования градиентного спуска
show gradient descent(0, 1, 1)
    b0 = 4.565546113493063 - (теоретический), 1 - (градиентный спуск)
    b1 = 0.6347707526286969 - (теоретический), 1 - (градиентный спуск)
    MSE = 382.8630387134672
```

120

```
80
60
40
```

show gradient descent(0, 1, 0.7)

b0 = 4.565546113493063 - (теоретический), 1 - (градиентный спуск) b1 = 0.6347707526286969 - (теоретический), 0.7 - (градиентный спуск) MSE = 1.4084724961222816

Обучим линейную регрессию и сравним коэффициенты с рассчитанными ранее $regl = LinearRegression().fit(x_array.reshape(-1, 1), y_array.reshape(-1, 1))$ (b1, $regl.coef_)$, (b0, $regl.intercept_)$

((0.6347707526286969, array([[0.63477075]])),
 (4.565546113493063, array([4.56554611])))

SVM

fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x=x_array, y=y_array)

8

<matplotlib.axes._subplots.AxesSubplot at 0xf20d730>


```
def plot_regr(clf):
    title = clf.__repr__
    clf.fit(x_array.reshape(-1, 1), y_array)
    y_pred = clf.predict(x_array.reshape(-1, 1))
    fig, ax = plt.subplots(figsize=(5,5))
    ax.set_title(title)
    ax.plot(x_array, y_array, 'b.')
    ax.plot(x_array, y_pred, 'ro')
    plt.show()
```

plot regr(LinearSVR(C=1.0, max iter=100000))

8

<bound method BaseEstimator.__repr__ of LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=100000,</p>

plot_regr(SVR(kernel='rbf', gamma=0.2, C=1.0))

Дерево решений

```
. .
                                 200
# Обучим дерево на всех признаках
tree = DecisionTreeRegressor(random state=1)
tree.fit(X train, Y train)
    DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                           max features=None, max leaf nodes=None,
                           min impurity decrease=0.0, min impurity split=None,
                           min samples leaf=1, min samples split=2,
                           min_weight_fraction_leaf=0.0, presort='deprecated',
                           random state=1, splitter='best')
# Важность признаков
list(zip(X train.columns.values, tree.feature importances ))
    [('Pelvic incidence', 0.03881985535831688),
      ('Pelvic tilt', 0.0648640652612829),
      ('Lumbar lordosis angle', 0.06149200087661627),
      ('Sacral slope', 0.08263904265020883),
      ('Pelvic_radius', 0.181238439623055),
      ('Degree spondylolisthesis', 0.41411903317709764),
      ('Pelvic_slope', 0.023065828402366866),
      ('Direct_tilt', 0.01842735042735041),
      ('Thoracic_slope', 0.07000532439464523),
      ('Cervical_tilt', 0.007145299145299295),
      ('Sacrum angle', 0.038183760683760684),
      ('Scoliosis slope', 0.0)]
# Важность признаков в сумме дает единицу
sum(tree.feature importances )
    1.0
def draw_feature_importances(tree_model, X_dataset, figsize=(10,5)):
    Вывод важности признаков в виде графика
    # Сортировка значений важности признаков по убыванию
    list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importance
    sorted list = sorted(list to sort, key=itemgetter(1), reverse = True)
    # Названия признаков
    labels = [x for x,_ in sorted_list]
    # Важности признаков
    data = [x for _,x in sorted_list]
    # Вывод графика
    fig, ax = plt.subplots(figsize=figsize)
    ind = np.arange(len(labels))
    plt.bar(ind, data)
    plt.xticks(ind, labels, rotation='vertical')
    # Вывод значений
```

```
for a,b in zip(ind, data):
    plt.text(a-0.05, b+0.01, str(round(b,3)))
plt.show()
return labels, data
```

tree_fl, tree_fd = draw_feature_importances(tree, X_train)

Список признаков, отсортированный на основе важности, и значения важности tree_fl, tree_fd


```
(['Degree_spondylolisthesis',
   'Pelvic_radius',
   'Sacral_slope',
   'Thoracic_slope',
   'Pelvic_tilt',
   'Lumbar_lordosis_angle',
   'Pelvic_incidence',
```

'Sacrum_angle', 'Pelvic slope',

X train.head()

Pelvic incidence Pelvic tilt Lumbar lordosis angle Sacral slope Pelvic 291 34.756738 2.631740 29.504381 32.124998 1: 17 38.697912 13.444749 31.000000 25.253163 1: 110 84.998956 29.610098 83.352194 55.388858 1: 228 43.436451 10.095743 36.032224 33.340707 1 125 70.676898 21.704402 59.181161 48.972496 1

Пересортируем признаки на основе важности X_train_sorted = X_train[tree_fl] X train sorted.head()

8		Degree_spondylolisthesis	Pelvic_radius	Sacral_slope	Thoracic_slope	Pe
	291	-0.460894	127.139850	32.124998	11.2762	
	17	1.429186	123.159251	25.253163	17.9575	
	110	71.321175	126.912990	55.388858	9.0119	
	228	-3.114451	137.439694	33.340707	11.0132	
	125	27.810148	103.008355	48.972496	14.8568	

Y_test_predict = tree.predict(X_test)

mean_absolute_error(Y_test, Y_test_predict)

0.11538461538461539

Обучим дерево и предскажем результаты на пяти лучших признаках
tree_2 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:5]], Y_train)
Y_test_predict_2 = tree_2.predict(X_test[tree_fl[0:5]])

mean_absolute_error(Y_test, Y_test_predict_2)

0.1666666666666666

Исследуем, как изменяется ошибка при добавлении признаков в порядке значимости $X_{range} = list(range(1, len(X_{train.columns})+1))$ X range

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

```
for i in X_range:

# Обучим дерево и предскажем результаты на заданном количестве признаков

tree_3 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:i]], Y_tray_test_predict_3 = tree_3.predict(X_test[tree_fl[0:i]])

temp_mae = mean_absolute_error(Y_test, Y_test_predict_3)

mae_list.append(temp_mae)

plt.subplots(figsize=(10,5))

plt.plot(X_range, mae_list)

for a,b in zip(X_range, mae_list):

    plt.text(a, b, str(round(b,3)))

plt.show()
```


Оценка качества моделей

Дерево решений

```
print("r2_score:", r2_score(Y_test, tree.predict(X_test)))
print("mean_squared_error:", mean_squared_error(Y_test, tree.predict(X_test)))
```

Property of the property of th

Линейная регрессия

```
pred = reg1.predict(x_array.reshape(-1, 1))
print("r2_score:", r2_score(y_array, pred))
print("mean_squared_error", mean_squared_error(y_array, pred))
```

e r2_score: 0.664423352506976 mean_squared_error 60.45739674813066

Метод опорных векторов

```
svr = SVR(kernel='rbf')
svr.fit(X_train, Y_train)
print("r2_score:", r2_score(Y_test, svr.predict(X_test)))
print("mean_squared_error", mean_squared_error(Y_test, svr.predict(X_test)))

e    r2_score: 0.5993410854165501
    mean squared error 0.08725724224573822
```

Последние две модели являются приемлемыми, т.к. коэффициент детерминации для всех Если учитывать показатели обеих метрик, наилучший результат показал метод опорных ве