

Olimpiada Națională de Matematică

Etapa Județeană/a Sectoarelor Municipiului București, 2022

CLASA a VIII-a – soluții și bareme

Problema 1. Fie $a,b,c\in(0,\infty)$. Arătați că:

a)
$$\sqrt{\frac{2a}{b+c}} \geqslant \frac{4a}{2a+b+c}$$
.

b)
$$\frac{b}{a} \cdot \sqrt{\frac{2a}{b+c}} + \frac{c}{b} \cdot \sqrt{\frac{2b}{c+a}} + \frac{a}{c} \cdot \sqrt{\frac{2c}{a+b}} \geqslant 3.$$

$$\frac{b}{a} \cdot \sqrt{\frac{2a}{b+c}} + \frac{c}{b} \cdot \sqrt{\frac{2b}{c+a}} + \frac{a}{c} \cdot \sqrt{\frac{2c}{a+b}} \geqslant \frac{4b}{2a+b+c} + \frac{4c}{2b+c+a} + \frac{4a}{2c+a+b}. \dots \mathbf{1p}$$

Folosind inegalitatea lui Bergström, obținem:

$$E = \frac{(2b)^2}{2ab+b^2+bc} + \frac{(2c)^2}{2bc+c^2+ca} + \frac{(2a)^2}{2ac+a^2+ab} \geqslant \frac{(2a+2b+2c)^2}{a^2+b^2+c^2+3ab+3bc+3ca}. \dots 2\mathbf{p}$$

Este suficient să arătăm că $\frac{(2a+2b+2c)^2}{a^2+b^2+c^2+3ab+3bc+3ca}\geqslant 3$, ceea ce este echivalent cu $a^2+b^2+c^2\geqslant ab+bc+ca$, inegalitate adevărată, de unde rezultă concluzia. ${\bf 1p}$

Problema 2. Determinați numerele naturale nenule n pentru care numerele $\frac{n}{\left[\sqrt{n+2}\right]}$

și $\frac{n+2}{[\sqrt{n}]}$ sunt naturale. (Notația [a] reprezintă partea întreagă a numărului real a.)

Soluție. Notăm $\lceil \sqrt{n+2} \rceil = k \in \mathbb{N}^*$. Din inegalitatea părții întregi, rezultă:

Dacă
$$\frac{n}{k} = k + 1$$
, atunci $n = k^2 + k$ și $\frac{n+2}{\lceil \sqrt{n} \rceil} = k + 1 + \frac{2}{k} \notin \mathbb{N}$ 1p

Pentru k=1 obținem n=1, iar pentru k=2 rezultă $2 \le n < 7$, iar condițiile din enunț sunt îndeplinite dacă $n \in \{1, 2, 4, 6\}$2p

Observație. Aceste 2p se acordă și în cazul în care se obțin toate soluțiile prin verificare directă.

Problema 3. Fie ABCDA'B'C'D' un paralelipiped dreptunghic și punctele M, N pe muchiile sale BC, respectiv DD', astfel încât $\frac{CM}{MB} = \frac{DN}{ND'} = k$. Notăm cu P intersecția dreptelor DM și AC, și cu Q intersecția dreptelor CN și DC'.

- a) Arătați că dreapta PQ este paralelă cu planul (ABC').
- b) $Dac\check{a} \not< (PQ,(ABC)) = 30^\circ$, determinați valoarea lui k pentru care paralelipipedul <math>ABCDA'B'C'D' este cub.

 Problema 4. Un cub C de latură $n \ge 2$, $n \in \mathbb{N}$, este împărțit în n^3 cuburi de latură 1, cu interioarele disjuncte două câte două.

Spunem că două dintre cuburile de latură 1 sunt olimpice, dacă orice plan paralel cu oricare dintre fețele cubului C intersectează cel mult unul dintre interioarele acestor cuburi. Alegem cuburile C_1, C_2, \ldots, C_n olimpice două câte două, și notăm cu O_1, O_2, \ldots, O_n centrele lor. Determinați valoarea minimă a sumei $O_1O_2 + O_2O_3 + \ldots + O_{n-1}O_n$ și stabiliți care sunt configurațiile formate din n cuburi de latură 1 pentru care se atinge acest minim.

Soluție. Cerința ca două cuburi să fie olimpice revine la a spune că ele au cel mult un vârf comun, iar dreapta determinată de centrele lor nu este paralelă cu nicio față a cubului C, deci pentru orice $k \in \{1, 2, ..., n-1\}$ putem forma un paralelipiped dreptunghic P_k cu muchiile paralele cu cele ale cubului C, pentru care O_k și O_{k+1} sunt vârfuri opuse $\mathbf{2p}$

Cum paralelipipedul P_k are toate laturile de dimensiuni numere naturale nenule, rezultă că $O_kO_{k+1} \geqslant \sqrt{3}$, deci $O_1O_2 + O_2O_3 + \ldots + O_{n-1}O_n \geq (n-1)\sqrt{3}\ldots 1\mathbf{p}$ Valoarea $(n-1)\sqrt{3}$ este atinsă atunci când punctele O_1, O_2, \ldots, O_n sunt coliniare și se află, în această ordine, pe o diagonală a cubului C.

Aşadar min
$$\{O_1O_2 + O_2O_3 + \ldots + O_{n-1}O_n\} = (n-1)\sqrt{3}.\ldots 1p$$

Observație. Pentru descrierea corectă a unei configurații minimale se acordă 2 puncte.