Глубинное обучение

Функции активации. Инициализация.

Объявление

На следующей неделе пар по DL не будет! Встречаемся 8 февраля

Recap

Объекты x_1, \ldots, x_n

Ответы $y_1, ..., y_n \in [0,1]$

Алгоритм предсказания $f(x, \theta) = P(y = 1 | x, \theta) > \frac{1}{2}$

нейросеть из двух блоков вида Linear -> Sigmoid

Input

 ${\mathcal X}$ - ч/б картинка

Input


```
{\mathcal X} - ч/б картинка
```

массив с элементами от 0 до 1 0 - черный, 1 - белый

Input


```
{\mathcal X} - ч/б картинка
```

массив с элементами от 0 до 1 0 - черный, 1 - белый

Какая размерность?

Input

 ${\mathcal X}$ - ч/б картинка

массив с элементами от 0 до 1 0 - черный, 1 - белый

$$H \times W \times C$$

Input

 ${\mathcal X}$ - ч/б картинка

массив с элементами от 0 до 1 0 - черный, 1 - белый

$$H \times W \times C = 10 \times 10 \times 1$$

параметры: W_1 - матрица размера

 $d1 \times d2$ - веса линейного слоя

 $H \times W \times C = 10 \times 10 \times 1$

параметры: W_1 - матрица размера $d1 \times d2$ - веса линейного слоя

Какие параметры выбираем?

Нужно сначала представить картинку в виде вектора размера $H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$

[0.0, 0.1875, 0.984375, 0.92578125, 0.0,

$$H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$$

Операция flatten

Какие параметры выбираем?

параметры: W_1 - матрица размера

веса линейного слоя

Output текущего слоя

 x_{output_1}

- вектор

размера 128

- вектор размера

$$H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$$

Output текущего слоя

 x_{output_1}

- вектор размера 128

> Передаем дальше

- вектор размера

$$H \cdot W \cdot C = 10 \cdot 10 \cdot 1 = 100$$

0.92578125,

0.0,

Input текущего слоя

Input текущего слоя

Input текущего слоя

$$X_{output_1}$$
- вектор $11 + e^{-x_{output_1}}$ \longrightarrow X_{output_2}

Input текущего слоя

$$X_{output_1}$$
- вектор размера 128 \longrightarrow $\frac{1}{1+e^{-x_{output_1}}}$ \longrightarrow $\xrightarrow{X_{output_2}}$ размера 128

Input текущего слоя

Input текущего слоя

Output текущего слоя

Какой размер W_2 выбираем?

Input текущего слоя

$$X_{output_2}$$
 — $W_2 \cdot x_{output_2}$ — $W_2 \cdot x_{output_2}$

$$W_2$$
 размера 1×128

Input текущего слоя

Output текущего слоя

 W_2 размера 1×128

Хотим оценить $P(y = 1 | x, \theta)$

Input текущего слоя

$$X_{output_3}$$
 — \rightarrow Sigmoid \rightarrow $P(y = 1 \mid x, \theta)$ размер 1

Input текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Хотим посчитать
$$\frac{\mathrm{d}L}{\mathrm{d}W_1}, \frac{\mathrm{d}L}{\mathrm{d}W_2}$$

и сделать шаг градиентного спуска

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

$$W_{new_i} = W_i - \alpha \frac{\mathrm{d}L}{\mathrm{d}W_i}$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

$$\frac{\mathrm{d}L}{\mathrm{d}L} = 1$$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

Input текущего слоя

Output текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

$$L(\mathbf{y}, \hat{\mathbf{y}}) = -[y \log P(y = 1 | x, \theta) + (1 - y) \log(1 - P(y = 1 | x, \theta))]$$

$$\frac{dL}{dL} = 1$$

$$\frac{dL}{dP} = -\frac{y}{P} + \frac{1-y}{1-P}$$

Input текущего слоя

$$X_{output_3}$$
 — число, размер 1
$$\frac{1}{1+e^{-x_{output_3}}} \longrightarrow P(y=1\,|\,x,\theta)$$

Input текущего слоя

$$X_{output_3}$$
 — Y_{output_3} — $Y_{$

Input текущего слоя

$$X_{output_3}$$
- число, \longrightarrow размер 1 \longleftrightarrow $\frac{\mathrm{d}L}{\mathrm{d}x_{output_3}} = \frac{\mathrm{d}L}{\mathrm{d}P} \frac{\mathrm{d}P}{\mathrm{d}x_{output_3}}$

$$\frac{1}{1 + e^{-x_{output_3}}} \longrightarrow P(y = 1 \mid x, \theta)$$

$$\frac{dP}{dx_{output_3}} = P(1 - P) \quad \frac{dL}{dP} = -\frac{y}{P} + \frac{1 - y}{1 - P}$$

Input текущего слоя

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_3}$ — размер 1 $\frac{dL}{dx_{output_3}} = \frac{dL}{dP} \frac{dP}{dx_{output_3}}$

Input текущего слоя

Output текущего слоя

Input текущего слоя

Output текущего слоя

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{out$

Input текущего слоя

Output текущего слоя

 $\frac{L}{x_{output_2}^T} => W_{new_2} = W_2 - \alpha \frac{\Delta L}{dW_2}$

$$X_{output_2}$$
 — вектор размера 128 $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ $W_2 \cdot x_{output_2}$ W_3 — число, размер 1 $\frac{\mathrm{d} x_{output_3}}{\mathrm{d} W_2} = x_{output_2}^T$ $\frac{\mathrm{d} L}{\mathrm{d} x_{output_3}}$

 dx_{output_3}

 dW_2 dx_{output_3} dW_2 dx_{output_3}

Input текущего слоя

Output текущего слоя

 $W_2 \cdot x_{output_2}$

$$\frac{\mathrm{d}x_{output_3}}{\mathrm{d}x_{output_2}} = W_2^T$$

 $\frac{\mathrm{d}L}{\mathrm{d}x_{output_3}}$

$$x_{output_3} -$$
 число, размер 1

Input текущего слоя

Output текущего слоя

Train loop

```
for epoch in range(epochs): # эпоха - проход по датасету
   model.train() # переключаем все в режим тренировки (DO/BN/...)
   for x, gt in tqdm(train_loader): # датасет разбит на (мини)батчи
       logits = network.forward(x) # предсказания сети
       loss = loss_fn(logits, gt) # nodcчem οшибки
       accuracy = accuracy(logits, gt) # подсчет метрик
                       # подсчет градиентов
       loss.backward()
       network.apply_updates() # обновление весов
   model.eval() # переключаем все в режим валидации (DO/BN/...)
   for x, gt in tqdm(val_loader): # валидация
       logits = network.forward(x)
       loss = loss_fn(logits, gt) # nodcuem oшибок
       accuracy = accuracy(logits, gt) # подсчет метрик
```

Виды слоев в нейросетях

Функции активации

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Функции активации: Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Выход в диапазоне от 0 до 1

Проблемы?

Функции активации: Sigmoid

Sigmoid
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Выходы в диапазоне от 0 до 1

- На краях одинаково работает
- Local grad на краях маленький
- Выходы не центрированы

Функции активации: Tanh

tanh(x)

Выходы в диапазоне от -1 до 1

- Выходы центрированы

Функции активации: Tanh

tanh(x)

Выходы в диапазоне от -1 до 1

- На краях одинаково работает
- Local grad на краях маленький
- Выходы центрированы

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)
- Выходы не центрированы
- Local grad для x < 0

Функции активации: ReLU

ReLU $\max(0, x)$

Выходы в диапазоне от 0 до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость (х6)
- Выходы не центрированы
- Local grad для x < 0

Хороший выбор, но learning rate не должен быть большим

Функции активации: Leaky ReLU

Leaky ReLU $\max(0.1x, x)$

Выходы в диапазоне от -inf до +inf

Функции активации: Leaky ReLU

Leaky ReLU $\max(0.1x, x)$

Выходы в диапазоне от -inf до +inf

- На краях работает по-разному
- Нет вычислений ехр
- Быстрая сходимость

Функции активации: ELU

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Функции активации: ELU

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Выходы в диапазоне от -inf до +inf

- На краях работает по-разному
- Быстрая сходимость
- Вычисляем ехр

Функции активации: вывод

ReLU - хороший базовый выбор

Можно пробовать LeakyReLU, ELU, GELU, etc.

Избегать Sigmoid

Функции активации: вывод

ReLU - хороший базовый выбор

Можно пробовать LeakyReLU, ELU, GELU, etc.

Избегать Sigmoid

Важно - подбирать Ir, инициализации весов...