19ECE363 MACHINE LEARNING

Coding Assignment 5

Logistic Regression

- This assignment will help you understand the implementation and working of a logistic regression ML module
- The dataset will be provided to you for this assignment
- You have to build a logistic regression module that can predict the chances of heart attack for an individual based on their medical data

Understanding the dataset

- Import the dataset and try to understand the feature set.
- The dataset contains information about the individuals body vitals
- The columns in the given dataset are as follows:
- age
- gender
- cp: chest pain type
- Value 1: typical angina
- Value 2: atypical angina
- Value 3: non-anginal pain
- Value 4: asymptomatic
- trtbps resting blood pressure (in mmHg)
- chol cholestoral (in mg/dl)
- fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- thalachh maximum heart rate achieved
- exng exercise induced angina (1 = yes; 0 = no)
- caa number of major vessels (0-3)
- output target
 - 0= less chance of heart attack
 - 1= more chance of heart attack

• Identify the target feature in the dataset

Logistic Regression

```
In [1]: import matplotlib.pyplot as plt
       import pandas as pd
import seaborn as sns
       import numpy as np
In [2]: df = pd.read_csv('heart - heart.csv')
df.head()
Out[2]:
          age gender cp trtbps chol fbs thalachh exng caa output
       0 63 1 3 145 233 1 150
        1 37
                        130 250 0
                                       187
                 1 2
        2 41
               0 1 130 204 0
                                     172 0 0
                 1 1 120 236 0
                                      178
                                            0 0
        4 57 0 0 120 354 0 163 1 0 1
```

Output is the target feature.

• Do a visual data analysis and try to get an insight about the relationship of feature set with the target feature

Pair Plot:

Correlation Plot:

• Do a proper and detailed data cleaning and transformation so that your model is well equipped with a very good accuracy

The reason for dropping the above three features if we observe the both pair plot and correlation plot the three features are not correlated with the output.

Normalization In [11]: from sklearn.preprocessing import MinMaxScaler X 2 = np.array(data_d['thalachh']).reshape(-1,1) scaler_1.fit(X_2) X 2 scaled = scaler_1.transform(X_2) data_d['thalachh'] = X_2_scaled.reshape(1, -1)[0] data_d Out[11]: age gender cp thalachh exng cas output 0 63 1 3 0.543860 0 0 0 1 1 37 1 2 0.868421 0 0 0 1 2 441 0 1 0.738842 0 0 0 1 3 56 1 1 0.738842 0 0 0 1 4 57 0 0 0.657895 1 0 1 298 57 0 0 0 0.307018 1 0 0 0 299 45 1 3 0.385865 0 0 0 0 300 68 1 0 0.464912 0 2 0 0 301 57 1 0 0.238642 1 1 0 302 57 0 1 0.754386 0 1 0 277 rows × 7 columns

1. Your task in this assignment is to build a logistic regression model with a good accuracy

```
Model
In [12]: x = data_d.drop(columns = 'output')
y = data_d['output']

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=101)

In [13]: from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
```

2. List out the features you selected for this model and why

Feature	Reason For Selection
age	If we observe from above though it
	doesn't have strong correlation (0.22)
	with the output it is slightly positively
	correlated with output

Cp(chest pain type)	Cp is strongly correlated with output
1	
gender	Though gender is negatively
	correlated it has good relation with
	the target feature
Exng(exercise induced angina)	Exng is negatively correlated (-0.41)
	with the output feature
Caa(number of major vessels)	Caa is also negatively correlated (-
	0.44) with target feature.

3. Implement the logistic regression model with the selected feature set

Model

```
In [12]: x = data_d.drop(columns = 'output')
y = data_d['output']

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=101)

In [13]: from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)

In [14]: model.score(x_train, y_train)
Out[14]: 0.8164251207729468
```

4. Show the confusion matrix and list out the values for TP, FP, TN, FN

5. Find out the accuracy score, precision, recall and F1 Score for your model

```
In [15]: from sklearn import metrics

In [16]: accuracy = metrics.accuracy_score(y_test, y_predict)
    precision = metrics.precision_score(y_test, y_predict)
    recall = metrics.recall_score(y_test, y_predict)
    f1 = metrics.f1_score(y_test, y_predict)
    print(f'Accuracy:{round(accuracy,3)}\nPrecision:{round(precision,2)}\nrecall:{round(recall,2)}\nF1:{round(f1,2)}')
    Accuracy:0.829
    Precision:0.84
    recall:0.84
    F1:0.84
```

Group:

Poludasu Paneendra -AM.EN. U4ECE19044

Koduru Madhusudhan Reddy -AM.EN. U4ECE19127

Lagumsani Vamsi Krishna -AM.EN. U4ECE19131

R.S.V. Mukhesh -AM.EN. U4ECE19147

Rudra Charith Chandan - AM. EN. U4ECE19148

Colab Notebook: Assignment-5