LRFS: Efficient Customer Segmentation in E-commerce By: Daniel Mehta

Motivation: Why Better Segmentation?

- E-commerce is booming
 - Online shopping has become the default for millions of consumers.
- Not all customers behave the same
 - Businesses need to understand who buys, how often, and why they leave.
- Traditional RFM models are limited
 - Focus only on Recency, Frequency, and Monetary value, but ignore time spent, page behavior, and exit patterns.
- Need for smarter, behavior-aware segmentation
 - Better grouping = better targeting = more revenue.

Existing Models & Their Limitations

Widely used models:

- **RFM**: Recency, Frequency, Monetary value
- Enhanced variants: LRFM, WRFM, CLV, LRFMP

What they improve:

- Add dimensions like Length, Cost, Churn, or Periodicity
- Use weights (e.g. AHP) and cluster methods like K-Means, SOM, Fuzzy C-Means

Key limitations:

- Rely on monetary or transaction data, often missing in web analytics
- Ignore behavioral features like time on site, exit intent, or bounce rates Can't capture session-level dynamics or new user behavior

Identified gap:

Few models use Google Analytics session features for segmentation. LRFS addresses this by integrating "Staying Rate for Revenue" from bounce and exit data.

What is LRFS?

A behavior-based segmentation model using:

Component	Meaning
L (Length)	Months of association with the site (based on Month + VisitorType)
R (Recency)	Time since last visit (12 - current month + 1)
F (Frequency)	Total page visits during session
S (Staying Rate for Revenue)	Engagement + contribution to purchase likelihood

Understanding the 'S' Component

S = PageValues * (1-ExitRates)

- Page Value: Average value of a transaction
- Exit Rate: Frequency of users leaving without action
- (1 Exit Rate) = Probability user stays and engages

Why S matters:

- Captures session-level intent and engagement
- Moderately correlated with Revenue (r = 0.49)
- **Low correlation** with L, R, F -> adds unique signal
- Crucial for segmenting new or low-recency buyers who still convert

Dataset & Preprocessing

Dataset Overview

Source: UCI Online Shoppers Intention Dataset (from Google Analytics)

Sessions: 12,330 unique user sessions

Target: Revenue (binary - purchase or not)

Class Imbalance: Only 15.6% of sessions led to purchases

Feature Engineering

Visit counts (Admin, Info, Product pages) -> aggregated into total_page_view

Durations merged into total_page_duration

Created key features:

L, R, F, and S

S derived from: S = Page Value × (1 – Exit Rate)

Data Cleaning

Removed 125 duplicate rows

Dropped irrelevant columns:

SpecialDay,
 OperatingSystems,
 Browser, Region,
 TrafficType, Weekend

Encoded Month and VisitorType for use in modeling

Feature Engineering Details

Estimating Time Without Timestamps

- No DateTime field available
- Used Month + VisitorType to approximate:
 - Compare the com
 - ReturningVisitor -> months since January
 - NewVisitor → 1 month
 - R (Recency):
 - 12 current month + 1 (soDecember = 1)

Frequency and Revenue Proxy

- F (Frequency): total page visits
- S (Staying Rate for Revenue):
 - Page Value × (1 + Exit Rate)
 - High S = high engagement and likely purchase

Dimensionality Reduction & Clustering

Why Reduce Dimensions?

- Improve clustering performance and visualization
- LRFS data is behavioral and multi-dimensional

Methods Used

- PCA: linear, captures variance
- t-SNE: non-linear, preserves local patterns
- Autoencoder: neural network, extracts deep structure

Clustering

- K-Means: centroid-based, simple but sensitive to noise
- K-Medoids:
 more robust,
 uses real points
 as centers

Result Highlights

Model Comparison: Revenue by Cluster

Model	Revenue Separation
LR, LF, LRF	Moderate to weak cluster separation
LRFS	Clear revenue peak in Cluster 3

Why LRFS Wins

- Indicates stronger segmentation of high-value customers.
- Confirms the added value of the "S" (Staying Rate for Revenue) feature.

Customer Typing

CPA Matrix

- Carriage Trade
- Passive
- Transaction
- Bargain Basement

CRM Matrix

- Loyal
- Potential
- New
- Uncertain

FIGURE 20. Customer X test case.

Customer X: Plotted on t-SNE map (Figure 20)

- Cluster 1: Transaction
 / Uncertain
- Cluster 3: Passive /Loyal

Limitations & Future Work

Limitations:

- No timestamp: prevents true recency or time-based patterns
- Revenue is binary (0/1): limits granularity in customer value analysis
- Session-level data only: no multi-session behavior tracking

Future Work:

- Apply LRFS to richer datasets with timestamps and revenue amounts
- Explore real-time segmentation with dynamic LRFS updates
- Test generalizability across industries and traffic sources

Conclusion

- LRFS enhances customer segmentation by introducing the "S" (Staying Rate) feature
- Delivers improved clustering performance compared to LR, LF, and LRF models
- **Enables better targeting** through personalized marketing and retention strategies

Works Cited

R. Hayat Khan, D. Fabian Dofadar, M. G. R. Alam, M. Siraj, M. Rafiul Hassan and M. Mehedi Hassan, "LRFS: Online Shoppers' Behavior-Based Efficient Customer Segmentation Model," in IEEE Access, vol. 12, pp. 96462-96480, 2024, doi: 10.1109/ACCESS.2024.3420221.