

Home Search Collections Journals About Contact us My IOPscience

Spinor representation of Maxwell's equations

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 J. Phys.: Conf. Ser. 788 012025

(http://iopscience.iop.org/1742-6596/788/1/012025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 80,250,174,190

This content was downloaded on 09/02/2017 at 12:27

Please note that terms and conditions apply.

You may also be interested in:

The remarkable algebra so*(2n), its representations, its Clifford algebra and potential applications

A O Barut and A J Bracken

An Exact Matrix Representation of Maxwell's Equations

Sameen Ahmed Khan

The role of the Pauli–Lubaski vector for the Dirac, Weyl, Proca, Maxwell and Fierz–Pauli equations Sergey I Kryuchkov, Nathan A Lanfear and Sergei K Suslov

Gauge transformation and electromagnetism with biquaternions

M. Tanili

Generalizations of nonlinear and supersymmetric classical electrodynamics

Steven Duplij, Gerald A Goldin and Vladimir M Shtelen

Classical electrodynamics without the Lorentz condition: ideal square wave electric field

G H Jadhav

On the connection between solutions of Dirac and Maxwell equations, dual Poincare invariance and superalgebras of invariance and solutions of nonlinear Dirac equations

W I Fushchich, W M Shtelen and S V Spichak

Are Maxwell's equations Lorentz-covariant?

D V Redži

A new perspective on relativistic transformation for Maxwell's equations of electrodynamics

Young-Sea Huang

Spinor representation of Maxwell's equations

D S Kulyabov^{1,2}, A V Korolkova¹, L A Sevastianov^{1,3}

¹Department of Applied Probability and Informatics,

RUDN University (Peoples' Friendship University of Russia),

6 Miklukho-Maklaya str., Moscow, 117198, Russia

²Laboratory of Information Technologies,

Joint Institute for Nuclear Research,

6 Joliot-Curie, Dubna, Moscow region, 141980, Russia

³Bogoliubov Laboratory of Theoretical Physics,

Joint Institute for Nuclear Research,

6 Joliot-Curie, Dubna, Moscow region, 141980, Russia

E-mail: yamadharma@gmail.com, akorolkova@sci.pfu.edu.ru, leonid.sevast@gmail.com

Abstract. Spinors are more special objects than tensor. Therefore possess more properties than the more generic objects such as tensors. Thus, the group of Lorentz two-spinors is the covering group of the Lorentz group. Since the Lorentz group is a symmetry group of Maxwell's equations, it is assumed to reasonable to use when writing the Maxwell equations Lorentz two-spinors and not tensors. We describe in detail the representation of the Maxwell's equations in the form of Lorentz two-spinors. This representation of Maxwell's equations can be of considerable theoretical interest.

1. Introduction

Maxwell's equations have a large number of representations [1–4]. The principle of the introduction of the following: every representation must simplify the concrete theoretical and practical study. In this paper, we consistently describe the Lorentz two-spinor [5] representation of Maxwell's equations. It is supposed that this form will be interested in theoretical studies [6–8].

The structure of the article is as follows. In the section 2 basic notations and conventions are introduced. Section 3 gives a brief description of the Maxwell equations. Section 4 gives the spinors of the electromagnetic field. Further, section 5 gives the Lorenz two-spinor representation of Maxwell's equations.

2. Notations and conventions

- (i) The abstract indices notation [9] is used in this work. Under this notation a tensor as a whole object is denoted just as an index (e.g., x^i), components are denoted by underlined index (e.g., x^i).
- (ii) We will adhere to the following agreements . Greek indices (α, β) will refer to the four-dimensional space , in component form it looks like: $\underline{\alpha} = \overline{0,3}$. Latin indices from the middle of the alphabet (i,j,k) will refer to the three-dimensional space , in the component form it looks like: $i = \overline{1,3}$.

- (iii) The comma in the index denotes partial derivative with respect to corresponding coordinate $(f_{,i} := \partial_i f)$; semicolon denotes covariant derivative $(f_{;i} := \nabla_i f)$.
- (iv) To write the equations of electrodynamics in the article is used CGS symmetrical system.

3. Maxwell's Equations

Maxwell's equations in 3-dimensional form are as follows:

$$\nabla_0 B^i = -e^{ijk} \nabla_j E_k;$$

$$\nabla_i D^i = 4\pi \rho;$$

$$\nabla_0 D^i = e^{ijk} \nabla_j H_k - \frac{4\pi}{c} j^i;$$

$$\nabla_i B^i = 0.$$
(1)

where $e^{i\underline{j}\underline{k}}$ is the alternating tensor expressed by Levi-Civita simbol $\varepsilon^{i\underline{j}\underline{k}}$:

$$e_{\underline{i}\underline{j}\underline{k}} = \sqrt{{}^3g}\varepsilon_{\underline{i}\underline{j}\underline{k}}, \quad e^{\underline{i}\underline{j}\underline{k}} = \frac{1}{\sqrt{{}^3g}}\varepsilon^{\underline{i}\underline{j}\underline{k}}.$$

Let's rewrite (1) with the help of electromagnetic field tensors $F_{\alpha\beta}$ and $G_{\alpha\beta}$ [10]:

$$\nabla_{\alpha} F_{\beta\gamma} + \nabla_{\beta} F_{\gamma\alpha} + \nabla_{\gamma} F_{\alpha\beta} = F_{[\alpha\beta;\gamma]} = 0,$$

$$\nabla_{\alpha} G^{\alpha\beta} = \frac{4\pi}{c} j^{\beta},$$
(2)

where

$$\begin{split} F_{\underline{\alpha}\underline{\beta}} &= \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B^3 & B^2 \\ -E_2 & B^3 & 0 & -B^1 \\ -E_3 & -B^2 & B^1 & 0 \end{pmatrix}, \quad F^{\underline{\alpha}\underline{\beta}} &= \begin{pmatrix} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & -B_3 & B_2 \\ E^2 & B_3 & 0 & -B_1 \\ E^3 & -B_2 & B_1 & 0 \end{pmatrix}, \\ G^{\underline{\alpha}\underline{\beta}} &= \begin{pmatrix} 0 & -D^1 & -D^2 & -D^3 \\ D^1 & 0 & -H_3 & H_2 \\ D^2 & H_3 & 0 & -H_1 \\ D^3 & -H_2 & H_1 & 0 \end{pmatrix}, \quad G_{\underline{\alpha}\underline{\beta}} &= \begin{pmatrix} 0 & D_1 & D_2 & D_3 \\ -D_1 & 0 & -H^3 & H^2 \\ -D_2 & H^3 & 0 & -H^1 \\ -D_3 & -H^2 & H^1 & 0 \end{pmatrix}, \end{split}$$

 E_i , H^i are components of electric and magnetic fields intensity vectors; D_i , B^i are components of vectors of electric and magnetic induction.

4. Spinors of electromagnetic field

Spinors are used in physics quite extensively. The following spinors are mainly used: Dirac four-spinors; Pauli three-spinors; quaternions. If Dirac four-spinors are used, the main difficulty is γ -matrices. The essence of these objects is that they serve to connect the spinor and tensor spaces and therefore have two types of indices: spinor and tensor ones. It would be logical to perform calculations in one of these spaces only. In this paper we use semispinors of Dirac spinors, Lorentz two-spinors.

The tensor of electromagnetic field $F_{\alpha\beta}$ and its components $F_{\underline{\alpha}\underline{\beta}}$, $\underline{\alpha}$ may be considered in spinor form (and similarly for $G_{\alpha\beta}$):

$$\begin{split} F_{\alpha\beta} &= F_{A\dot{A}B\dot{B}};\\ F_{\underline{\alpha}\underline{\beta}} &= F_{A\,\dot{A}\,B\,\dot{B}}\,g_{\underline{\alpha}}{}^{\underline{A}\dot{A}}\,g_{\underline{\beta}}{}^{\underline{B}\dot{B}}, \end{split}$$

doi:10.1088/1742-6596/788/1/012025

MPMM2016

where $g_{\underline{\alpha}} = \underline{A} = \underline{A}$ are Infeld–van der Waerden symbols defined in real spinor basis $\varepsilon_{\underline{A}\underline{B}}$ in the following

$$g_{\underline{\alpha}}{}^{\underline{A}}{}^{\underline{\dot{A}}} := g_{\underline{\alpha}}{}^{\alpha} \varepsilon_{A}{}^{\underline{A}} \varepsilon_{\dot{A}}{}^{\dot{\underline{A}}}, \quad g_{A\,\dot{A}}{}^{\underline{\alpha}} := g_{\underline{\alpha}}{}^{\alpha} \varepsilon^{A}{}_{\underline{A}} \varepsilon^{\dot{A}}{}_{\dot{A}}, \tag{3}$$

$$\varepsilon_{\underline{A}\underline{B}} = \varepsilon_{\underline{\dot{A}}\underline{\dot{B}}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varepsilon^{\underline{A}\underline{B}} = \varepsilon^{\underline{\dot{A}}\underline{\dot{B}}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varepsilon_{\underline{A}}{}^{A}\varepsilon_{A}{}^{\underline{B}} = \varepsilon_{\underline{A}}{}^{\underline{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{4}$$

Let's $g_{\alpha\beta} = \text{diag}(1, -1, -1, -1)$ is the Minkowski space metric. We use (4) as spinor space metric. Then the Infeld–van der Waerden symbols will have the following coordinate representation:

$$\begin{split} g_0^{\underline{A}\, \dot{\underline{A}}} &= g_{\underline{A}\, \dot{\underline{A}}}^0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad g_{\overline{1}}^{\underline{A}\, \dot{\underline{A}}} &= g_{\underline{A}\, \dot{\underline{A}}}^1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\ g_{\overline{2}}^{\underline{A}\, \dot{\underline{A}}} &= -g_{\underline{A}\, \dot{\underline{A}}}^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \mathbf{i} \\ -\mathbf{i} & 0 \end{pmatrix}, \quad g_{\overline{3}}^{\underline{A}\, \dot{\underline{A}}} &= g_{\underline{A}\, \dot{\underline{A}}}^3 = g_{\underline{A}\, \dot{\underline{A}}}^3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \end{split}$$

The tensor $F_{\alpha\beta}$ is real and antisymmetric, it can be represented in the form

$$F_{\alpha\beta} = \varphi_{AB}\varepsilon_{\dot{A}\dot{B}} + \varepsilon_{AB}\bar{\varphi}_{\dot{A}\dot{B}},$$

*
$$F^{\alpha\beta} = -i\varphi^{AB}\varepsilon^{\dot{A}\dot{B}} + i\varepsilon^{AB}\bar{\varphi}^{\dot{A}\dot{B}}.$$
 (5)

where φ_{AB} is a spinor of electromagnetic field:

$$\varphi_{AB} := \frac{1}{2} F_{ABC'}{}^{C'} = \frac{1}{2} F_{A\dot{A}B\dot{B}} \varepsilon^{\dot{A}\dot{B}} = \frac{1}{2} F_{\alpha\beta} \varepsilon^{\dot{A}\dot{B}}.$$

The components of electromagnetic field spinor:

$$\varphi_{\underline{A}\,\underline{B}} = \frac{1}{2} F_{\underline{\alpha}\,\underline{\beta}} \varepsilon^{\underline{\dot{A}}\,\underline{\dot{B}}} g^{\underline{\alpha}}_{\phantom{\underline{A}\,\underline{\dot{A}}}} g^{\underline{\beta}}_{\phantom{\underline{B}\,\underline{\dot{B}}}}.$$

Using the equations (3), (4) and notation $F_i = E_i - iB^i$, we will get:

$$\varphi_{00} = \frac{1}{2} (F_{31} + F_{01} - iF_{32} - iF_{02}) = \frac{1}{2} (F_1 - iF_2),$$

$$\varphi_{01} = \varphi_{10} = \frac{1}{2} (-F_{03} - iF_{12}) = -\frac{1}{2} F_3,$$

$$\varphi_{11} = \frac{1}{2} (F_{31} - F_{01} + iF_{32} - iF_{02}) = -\frac{1}{2} (F_1 + iF_2).$$

Similarly

$$G^{\alpha\beta} = \eta^{AB} \varepsilon^{\dot{A}\dot{B}} + \varepsilon^{AB} \bar{\eta}^{\dot{A}\dot{B}},$$

$$^*G_{\alpha\beta} = -i\eta_{AB} \varepsilon_{\dot{A}\dot{B}} + i\varepsilon_{AB} \bar{\eta}_{\dot{A}\dot{B}}.$$
(6)

where η^{AB} is a Minkowski spinor:

$$\eta^{AB} := \frac{1}{2} G^{ABC'}{}_{C'} = \frac{1}{2} G^{A\dot{A}B\dot{B}} \varepsilon_{\dot{A}\dot{B}} = \frac{1}{2} G^{\alpha\beta} \varepsilon_{\dot{A}\dot{B}}.$$

The components of the spinor η^{AB} :

$$\eta^{\underline{A}\,\underline{B}} = \frac{1}{2} G^{\underline{\alpha}\,\underline{\beta}} \, \varepsilon_{\underline{\dot{A}}\,\underline{\dot{B}}} \, g_{\underline{\alpha}}^{\ \underline{A}\,\underline{\dot{A}}} \, g_{\underline{\beta}}^{\ \underline{B}\,\underline{\dot{B}}} \, .$$

IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012025

doi:10.1088/1742-6596/788/1/012025

Using the equations (3), (4) and notation $G^i = D^i - iH_i$, we will get:

$$\eta^{00} = \frac{1}{2} \left(G^{31} + G^{01} + iG^{32} + iG^{02} \right) = \frac{1}{2} \left(G^1 - iG^2 \right),$$

$$\eta^{01} = \eta^{10} = \frac{1}{2} \left(-G^{03} + iG^{12} \right) = -\frac{1}{2} G^3,$$

$$\eta^{11} = \frac{1}{2} \left(G^{31} - G^{01} - iG^{32} + iG^{02} \right) = -\frac{1}{2} \left(G^1 + iG^2 \right).$$

5. Spinor Form of Maxwell's Equations

Let's write Maxwell's equations using the spinors.

Replacing in (2) abstract indices α by $A\dot{A}$ and β by $B\dot{B}$, we can write:

$$\nabla_{A\dot{A}}G^{A\dot{A}B\dot{B}} = \frac{4\pi}{c}j^{B\dot{B}}.$$

Using (6) we will get

$$\nabla^{A\dot{B}}\eta_A^B + \nabla^{B\dot{A}}\bar{\eta}_{\dot{A}}^{\dot{B}} = \frac{4\pi}{c}j^{B\dot{B}}.$$

Similarly, from (5) it follows

$$\nabla^{\dot{A}B}\varphi^{A}_{B} - \nabla^{A\dot{B}}\bar{\varphi}^{\dot{A}}_{\dot{B}} = 0.$$

In so doing the system of Maxwells equations can be written as

$$\nabla^{\dot{A}\dot{B}}\varphi_{B}^{A} - \nabla^{A\dot{B}}\bar{\varphi}_{\dot{B}}^{\dot{A}} = 0,$$

$$\nabla^{A\dot{B}}\eta_{A}^{B} + \nabla^{B\dot{A}}\bar{\eta}_{\dot{A}}^{\dot{B}} = \frac{4\pi}{c}j^{B\dot{B}}.$$
(7)

In the vacuum case (no medium), we can put $\eta^A_{\ B} = \varphi^A_{\ B}$. Then we can write the equations (7) as follows:

$$\begin{split} \nabla^{\dot{A}B}\varphi^{A}_{B} &= \nabla^{A\dot{B}}\bar{\varphi}^{\dot{A}}_{\dot{B}},\\ \nabla^{A\dot{B}}\varphi^{B}_{A} &+ \nabla^{B\dot{A}}\bar{\varphi}^{\dot{B}}_{\dot{A}} &= \frac{4\pi}{c}j^{B\dot{B}}. \end{split}$$

Thus, the spinor form of Maxwell's equations system in vacuum can be written in the form of one equation:

$$\nabla^{A\dot{B}}\varphi_A^B = \frac{2\pi}{c}j^{B\dot{B}}.$$

6. Conclusions

Thus, in the article, we have proposed a representation of Maxwell's equations in the form of Lorentz 2-spinors. We consider that the given representation might be interested in in theoretical studies.

Acknowledgments

The work is partially supported by RFBR grants No's 14-01-00628, 15-07-08795, and 16-07-00556. Also the publication was supported by the Ministry of Education and Science of the Russian Federation (the Agreement No 02.a03.21.0008).

IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012025

doi:10.1088/1742-6596/788/1/012025

References

- [1] Kulyabov D S, Korolkova A V and Korolkov V I 2012 Bulletin of Peoples' Friendship University of Russia. Series "Mathematics. Information Sciences. Physics" 96–106 (Preprint 1211.6590)
- [2] Laporte O and Uhlenbeck G E 1931 Physical Review 37 1380–1397
- [3] Aste A 2012 Journal of Geometry and Symmetry in Physics 47–58 (Preprint arXiv:1211.1218v3)
- [4] Bialynicki-Birula I 1996 Progress in Optics vol 36 (Elsevier) chap 5, pp 245–294 (Preprint 0508202)
- [5] Kulyabov D S and Ul'yanova A G 2009 Physics of Particles and Nuclei Letters 6 546–549 (Preprint 1312.6655)
- [6] Moses H E 1959 Physical Review $\mathbf{113}$ 1670–1679
- [7] Luneburg R K 1964 Mathematical Theory of Optics (Berkeley & Los Angeles: University of California Press)
- [8] Khan S A 2005 Physica Scripta **71** 440–442 (Preprint 0205083v1)
- [9] Penrose R and Rindler W 1987 Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields vol 1 (Cambridge University Press)
- $[10]\,$ Minkowski H $1910\,$ Math. Ann. 472–525