NEW YORK CITY COLLEGE OF TECHNOLOGY COMPUTER SYSTEMS TECHNOLOGY DEPARTMENT COURSE OUTLINE

CST 3604 – Quality Database Implementation

COURSE DESCRIPTION

This course is the continuation of the course "Database Design" (CST3504). The course concentrates on: the physical design and implementation of databases; functionality of Database Management Systems (DBMS) in support of concurrent, secure, well-performing, reliable, scalable database solutions. Also discussed are: special database architectures and topics – data warehouses and business intelligence, and semi-structured stores (XML and Cloud). Database and data warehouse concepts are illustrated on Oracle RDBMS, XML and Cloud stores are illustrated on various open-source products.

4 Class Hours, 3 Credits

LEARNING OUTCOMES

After finishing the course, the students should be able to:

- Understand the goals of physical data design and implementation of a database. Design the physical model of a database in Oracle DBMS, including a distributed solution.
- Understand the basic features of DBMSs for support of query processing, transaction management, concurrent access, security, reliability
- Participate in resolving the goals of physical design of a database and understand the approaches to implementing user requirements on performance, security, consistency, and reliability with the help of a particular DBMS.
- Implement basic support of database security, performance improvement, reliability, and consistent transactions.
- Understand the purpose and architecture of special databases: data warehouses, semi-structured, Cloud
- Design and implement simple data warehouses and semi-structured stores

ASSESSMENT CRITERIA

Students will be assessed in exams, homework, case assignments, and through class participation. The major areas include:

- The basic understanding of the physical data model and features of a DBMS for its support.
- Implementing, supporting and maintaining a database (in Oracle).
- Understanding of the basic data warehouse design
- Understanding of the basics of semi-structured stores

General Education Outcomes

- SKILLS/Inquiry/Analysis: Students will employ scientific reasoning and logical thinking.
- **SKILLS/Communication:** Students will communicate in diverse settings and groups, using written (both reading and writing), oral (both speaking and listening), and visual means
- VALUES, ETHICS, RELATIONSHIPS / Professional/Personal Development: Students will work with teams, including those of diverse composition. Build consensus. Respect and use creativity.

PREREQUISITES

Completion of CST3504 with the grade C or higher.

REQUIRED TEXTBOOKS

- 1. Essential Aspects of Physical Design and Implementation of Relational Databases. T. Malyuta, A. Satyanarayana. Amazon, 2017.
- 2. Database Systems: Introduction to Databases and Data Warehouses, N. Jukić, S Vrbsky, S. Nestorov, Prospect Press, 2016, https://prospectpressyt.com/titles/jukic-database-systems/.
- 3. A Guide to SQL, P. Pratt, Course Technology, 2010.

Additional Resources

- 1. Oracle 11g Documentation, http://www.oracle.com/pls/db111/homepage. The books:
 - a. Application Development Concepts http://docs.oracle.com/cd/B28359_01/server.111/b28318/toc.htm
 - b. Application Development Security Guide http://docs.oracle.com/cd/B28359_01/network.111/b28531/toc.htm
 - c. Database Administrator's Guide Advance Security Administration Guide http://docs.oracle.com/cd/B28359_01/network.111/b28530/toc.htm
 - d. Database Administrator's Guide Performance Tuning Guide http://docs.oracle.com/cd/B28359 01/server.111/b28274/toc.htm
 - e. Database Administrator's Guide Distributed Database Concepts http://docs.oracle.com/cd/B28359 01/server.111/b28310/ds concepts.htm
- 2. Oracle Database 11*g* Express Edition (free Oracle small footprint database) http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html
- 3. Oracle Lite SQL (easy online access to Oracle database to test scripts and queries) https://livesql.oracle.com/apex/livesql/file/index.html

Academic Integrity Policy:

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.

Tests:

30%
30%
15%
15%
10%

Case Assignments

Case assignments include physical design of the centralized and distributed databases for a particular case (for this purpose the cases from Appendix 1 of [2] can be used). Design of the distributed database must include primary and derived horizontal fragmentation, vertical fragmentation, allocation and replication of fragments, and semantic control. The distribution of the database must be transparent to users.

On the local databases of the distributed solution and on the global distributed database the students must implement the basic security measures, define queries for the users' requests and suggest the measures for improving performance of these queries, and design a business transaction ensuring its consistency.

The assignments must be implemented in Oracle DBMS.

Grading Policy:

You cannot get a passing grade unless all case assignments are completed.

The professor preserves the right to ask you to defend any of your case assignments or tests.

Late submissions: next day after the deadline -80%, before the next class after the deadline -60%, after the discussion in class -0%.

COURSE OUTLINE

Chapters of [1] are referenced directly; [2] is mentioned for its referenced chapters; for the chapters from the Oracle Documentation, the book of the documentation is referenced by the letter under which it is mentioned in the list of additional resources..

CST3604 Fall 2018 Page 2

ge 2 8/27/2018

Week	Subject	Source
	The physical data model	Chapter 1
1.	Goals of physical modeling	
	Using features of the DBMS for physical data design	
	Place of the physical design in the database life cycle	
	Implementation of the database	
	Review of the process of design of relational databases	
	Operations of relational algebra	Appendix 2
	The physical data model	Chapter 2
2.	Tables. Columns' data types. Constraints.	3a – Chapter 26
	Indices	3a – Chapter 3
	Data storage organization	
	Heap and organized data storage The physical data model	Chantar 2
2	Distributed storage of data. Benefits and problems of design and	Chapter 2
3.	implementation of distributed databases.	
	Transparency of the physical model. 3-tier database architecture	
	The physical data model in Oracle. Oracle distributed database	
	The physical data model in Oracle. Oracle distributed database	
	Practicing building physical data models in Oracle	
	Distributed database design	Chapter 3
4.	Primary and derived horizontal fragmentation	3e
	Vertical fragmentation	
	Allocation and replication	
	Distributed database design	Chapter 3
5.	Semantic control	3e
	Practicing distributed data design Security	Chapter 4
6	Authentication and authorization. Users and schemas	3a – Chapter 20
6.	Views and stored procedures	3b
	Security in distributed databases	3c
	Security in Oracle	Chapter 4
7.	Security in centralized databases	3a – Chapter 20
7.	Security in distributed databases	3c
	Practicing implementing various security requirements in centralized and	
	distributed databases	
	Query processing	Chapter 5
8.	Overview of query processing	
	Query decomposition	
	Query optimization	
	Factors that influence performance: data storage, indexes, clusters,	
	database environment	G1
_	Query processing in distributed databases	Chapter 5
9.	Query decomposition and data localization	3d
	Optimization of distributed queries	
	Query processing and performance in Oracle. Types of optimization	
	Statistics	
	Hints	
	Tinits	
	Practicing tuning performance in Oracle	
	Transaction management	Chapter 6
10.	Basics of transaction management	
. • •	Concurrency control	3a – Chapters 4, 13
	Serializability and recoverability	
	Locking	

	Timestamping	
	Multiversionsing	
	Transaction management in distributed database	Chapter 6
11.	Transaction management in Oracle	
	Locking, multiversioning, different isolation levels, and additional tools	
	Practicing building transactions and analyzing results of concurrent execution of	
	different simple transactions	
	Transaction management in Oracle	Chapters 6, 7
12.	Examples of concurrent transactions for different isolation levels	
	Recovery in centralized and distributed databases	3a – Chapter 15
	Failures and fault tolerance	
	Transactions and Recovery	
	Data Warehouses	[2] Chapters 7, 8.
13.	Differences between OLTP and OLAP databases	Handouts
	Dimensional model	
	Practicing building a simple data warehouse	
	Semi-structured data stores	[2] Appendices I, J
14.	Cloud store solutions, NoSQL databases	Handouts
-	Data on the Web, RDF	
	Review	
15.	Final test	