

STM32MP1

Coprocessing Management overview

Presentation

Agenda 2

30min

- M4 Firmware Loading
- Multi-core Resources management
- Shared resources management

Cortex-M4 advantage

- Save energy
- Real time constraints
- Offload the A7
- Provide more peripheral accessible
- Reuse of already developed firmware on MCU

M4 Firmware loading

- The Cortex-M4 firmware is loaded in MCURAM by Cortex-A7
- Load of the firmware is done either:
 - Automatically by Uboot (early boot)
 - Automatically by OpenSTLinux kernel
 - Manually at OpenSTLinux runtime
- In OpenSTLinux uses the RemoteProc framework
- Firmware is stored in an ELF format file in OpenSTLinux filesystem (/lib/firmware)

Fw Load OpenSTLinux Framework

Multi-core Resources management 6

- M4 is seen as a coprocessor of A7
 - Peripherals are assigned to A7 or to M4
 - OpenSTLinux controls Clock Tree and Power regulator
 - M4 firmware controls its peripherals independently from A7 (except clock frequency & regulators)
 - For M4 assigned peripheral, OpenSTlinux rproc-srm (system resource manager) ensures reservation of peripheral Clocks and GPIOs.

Peripherals	A7S	A7NS	Cortex-M4
₩ UART4		√	
WUART5			√
WUART7			√
₩ UART8			
₩ USART2			
₩ USART3			
₩ USART6			
		√	
		√	
SPI3			
SPI4			
SPI5			
QUADSPI			
		√	
		√	
▼ USBH_HS1		√	
₩ USBH_HS2			
WUSB_OTG_HS		√	
₩ I2S1			V

Peripheral Assignment _____

- All the peripherals is assigned to one hw execution context
- Peripheral Assignment configuration is stored in the TF-A device tree file
- STM32CubeMX supports assignment. TF-A device tree file is generated by the tool.

A7-M4 Shared resources management

- The A7 OpenSTLinux has the control of the clock tree frequencies and the regulators.
 M4 can ask OpenSTLinux resource manager for a dynamic reconfiguration
- The M4 firmware and OpenSTLinux on A7 shares some peripherals.
 - The GPIO clocks and GPIO pin muxing
 - The EXTI configuration
 - RCC for IP clk gating, IP reset

```
PERIPH_LOCK(GPIOA);
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
PERIPH_UNLOCK(GPIOA);
```

- GPIO&EXTI configuration is via HSEM h/w semaphore => avoids concurrent access (rproc-srm on A7, HAL driver on M4)
- RCC IP (clock & reset) is via MCU and MPU dedicated registers HSEM h/w semaphore not required

Shared resource configuration set

Dynamic system resource update ______

Coprocessor software framework

Engineering Boot chain

- Used in M4-only preliminary debug – no Linux boot image needed
- M4 Firmware Load is done via JTAG/SWD
- Need to address clocks and pio alternate function set-up

Boot Pins: "0b100"

M4 Debug in Engineering mode

- Used in M4-only preliminary debug
 - No Linux boot image needed
- M4 Firmware Load is done via JTAG/SWD
- Need to address clocks and pins alternate function set-up

Serial console in use 🔲

M4 Debug with Linux (CoProc Eclipse plug-in)

Debua perspective

