Contents

1	Sect	Section 10.1															1								
	1.1	10.1.13																							1
	1.2	10.1.16																							1
	1.3	10.1.17	٠.																						1
	1.4	10.1.19																							2
	1.5	10.1.23																							2
	1.6	10.1.27	٠.																						2
	17	10 1 29																							2

1 Section 10.1

1.1 10.1.13

Find the Laplace transform of the following function.

$$f(t) = t^5 - 8e^{8t}$$

$$\mathcal{L}\{f\}(s) = \frac{5!}{s^{5+1}} - \frac{8}{s-8}, \quad s > 8$$

1.2 10.1.16

Find the Laplace transform of the following function.

$$f(t) = \cos(8t) - \sin(8t)$$

$$F(s) = \frac{s}{s^2 + 8^2} - \frac{8}{s^2 + 8^2}$$
$$F(s) = \frac{s - 8}{s^2 + 64}$$

1.3 10.1.17

Find the Laplace transform of the following function.

$$f(t) = \cos^2(5t)$$

$$f(t) = \cos^2(5t) = \frac{1 + \cos(10t)}{2}$$
$$F(s) = \frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 100} \right), \quad s > 0$$

1.4 10.1.19

Find the Laplace transform of the following function.

$$f(t) = (3+t)^2$$

$$f(t) = (3+t)^2 = t^2 + 6t + 9$$

$$F(s) = \frac{2!}{s^3} + \frac{6}{s^2} + \frac{9}{s}$$

$1.5 \quad 10.1.23$

Use transforms to find the inverse Laplace transform of the following function.

$$F(s) = \frac{6}{s^2}$$

$$f(t) = 6t$$

$1.6 \quad 10.1.27$

Use transforms to find the inverse Laplace transform of the following function.

$$F(s) = \frac{19}{4s + 8}$$

$$F(s) = \frac{19}{4} \frac{1}{s+2}$$

$$f(t) = \frac{19}{4}e^{-2t}$$

$1.7 \quad 10.1.29$

Use transforms to find the inverse Laplace transform of the following function.

$$F(s) = \frac{8 - 9s}{s^2 + 81}$$

$$F(s) = \frac{8}{s^2 + 81} - \frac{9s}{s^2 + 81}$$

$$f(t) = \frac{8}{9}\sin(9t) - 9\cos(9t)$$