第3章 多层次的存储器

主要内容:

- 存储器概述
- SRAM存储器
- DRAM存储器
- 只读和闪速存储器
- 并行存储器
- cache存储器

3.1 存储器概述

- □存储器的作用
 - 存储CPU执行的指令和数据;
 - 与输入输出设备直接交换数据;
 - 在多处理器系统中,存储共享数据。
- □存储器的单位
 - 存储元 (存储位)
 - 存储单元:由若干个存储元组成; 每个存储单元占用1个地址
 - 存储器: 由许多存储单元组成。

按编址方式分为: 字地址或字节地址

3.1.1 存储器的分类

□按存储介质分

- 半导体存储器: 用半导体器件组成的存储器。
- 磁表面存储器: 用磁性材料做成的存储器。

用于存储的材料,必须具有区别分明的2个稳定状态

□按存取方式分

- 随机存储器: 任何存储单元的内容都能被随机 存取,且存取时间和存储单元的物理位置无关。
- 顺序存储器: 只能按某种顺序来存取,存取时间和存储单元的物理位置有关。

半导体介质的存储器,均采用随机存取方式

- □ 按存储器的内容可变性分
 - 只读存储器(ROM):存储的内容只能读出而不能 写入的半导体存储器。
 - 随机读写存储器(RAM): 既能读出又能写入的半导体存储器。 ROM和RAM共同构成主存
- □按信息的易失性分
 - 非永久记忆的存储器: 断电后信息即消失的存储器。
 - 永久记忆性存储器: 断电后仍能保存信息的存储器。
- □按在计算机中的作用分

主存储器、辅助存储器、高速缓冲存储器、控制存储器、寄存器等。

3.1.2 存储器的分级

名 称	简称	用途	特点
高速缓冲 存储器	Cache	高速存取指令和数据	存取速度快,但存 储容量小
主存储器	主存	存放计算机运行期间 的大量程序和数据	存取速度较快,存 储容量中
外存储器	外存	存放系统程序和大型 数据文件及数据库	存储容量大,位成 本低

3.1.3 主存储器的技术指标

- •存储容量:指存储器所能容纳的存储元的总量。 常用容量单位:Byte、KB、MB、GB、TB
- 存取速度
 - 存取时间(访问时间、读写时间):指启动 一次存储器操作到完成该操作所经历的时间。
 - 存储周期(读写周期):指连续启动两次读操作所需的最小时间。
 - 存储器带宽:单位时间里存储器所存取的信息量,以位/秒或字节/秒为单位。
- •可靠性:规定时间内存储器无故障读写的概率。 常用平均无故障时间MTBF来衡量