Birla Institute of Technology and Science, Pilani, Hyderabad Campus

Course Handout (Part II) First Semester 2019-2020

01/08/2019

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No.: CHE F312

Course Title: Chemical Engineering Laboratory -I

Instructor-in-charge: Lakshmi Sirisha P

Instructors: Dr. Ved Prakash Mishra, Vuchuru Kalyan

1. Scope

This course serves as an introduction to important experiments which serves to supplement the Compulsory Discipline Courses of Chemical Engineering.

2. Learning Outcomes

- Gain practical knowledge of the equipments used in various unit operations.
- Conducting experiments, trouble shooting.
- Data analysis and interpretation.
- Learning and applying the basic Chemical Engineering concepts

3. **Text Books**

- 1. McCabe W. L., and Smith J. M., & Harriott P., *Unit Operations of Chemical Engineering*, 7th Edition., McGraw-Hill International Edition, 2006.
- 2. Robert E. Trevbal, Mass Transfer Operations, 3rd Edition, McGraw Hill.
- 3. William Callister JR, *Material science and Engineering: An Introduction*, 7th Edition, John Wiley 2007
- 4. Relevant handouts and Experiment manuals with instructions will be provided.

4. List of Experiments:

S. No.	Experiments			
	Transport Phenomena - I			
1	To determine the pump efficiency at various piston speeds and flow rates for a reciprocating pump.			
2	To determine Reynold's number for laminar, transition and turbulent fluid flow.			
3	To determine the thermal conductivity of a solid by static method.			
4	To experimentally verify Bernoulli's theorem.			
5	To determine the thermal conductivity of a composite wall.			

6	To determine the coefficient of discharge for Venturi & Orifice Meter with Air			
7	To determine the thermal conductivity of a liquid.			
8	To determine the heat transfer coefficient of air in a natural convection specification and to compare with theoretically calculated value of the same.			
9	To study the temperature-mass profiles in a muffle furnace			
	Transport Phenomena - II			
1	To study the mass transfer of fluids in a Wetted wall column.			
2	To determine the Diffusion coefficient of acetone in gaseous phase			
3	Liquid-liquid Extraction - Mass transfer studies between extract and raffinate			
4	Fixed & Fluidized Bed- Verify Ergun equation and incipient fluidization			
5	To determine the Heat transfer of air in a forced convection specification and to compare with theoretically calculated value of the same.			
6	To study the Heat transfer phenomena in Shell-and-tube heat exchanger.			
7	To study the Heat transfer phenomena in Plate-type heat exchanger.			
8	To determine the Coefficient of discharge for Venturi & Orifice meter and calculate the skin friction losses in different pipes.			
9	To study the process of Drop-wise and Film-wise condensation.			
	Demo Experiments: Rotary pulp digester, Granulator, Distillation, Micro-GC.			

5. Evaluation Scheme

Component	Duration	Weightag e (%)	Remark s
Regular Experiments (18)	3 hrs/slot	20	ОВ
Skill Test I (TPI/TPII) + Viva	1 .5 hr	20+10	СВ
Skill Test II (TPI/TPII) + Viva	1.5 hr	20+10	СВ
Quiz	1 hr	20	СВ

Make-up policy

Make-up for the regular lab or tests shall be granted only for genuine reasons and with prior information and permission from the IC.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge CHE F312