3ª Aula Laboratorial de Matemática Computacional Licenciatura em Matemática Aplicada e Computação 2º Sem. 20/21

Problemas

- 1. Altere o código da função 'bissec' (que encontra na página da cadeira), de modo a contar o número de iterações efectuadas. Aplique o código transformado a três equações (à sua escolha). Obtenha soluções aproximadas com erro absoluto não superior a 10⁻¹⁰ e verifique que o número de iterações efectuadas corresponde à previsão teórica.
- 2. Sabendo que os valores próprios de uma matriz A são os zeros do seu polinómio característico P(x) = det(A xI), escreva um código que utilize a função 'bissec' para calcular um valor próprio de uma matriz dada. Note que é necessário previamente conhecer um intervalo que contenha esse valor próprio. Pode usar o comando 'det' do Matlab. Exemplifique no caso da matriz

$$A = \left[\begin{array}{rrr} -1 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 7 \end{array} \right],$$

cujos valores próprios satisfazem $\lambda_1 \in [-2,0], \lambda_2 \in [1,4], \ \lambda_3 \in [6,8]$. Obtenha aproximações de $\lambda_1, \lambda_2, \lambda_3$ com 10 algarismos significativos e verifique os resultados obtidos através da função 'eig' do Matlab.

3. O método da falsa posição é um método numérico para cálculo de raizes de equações que se assemelha ao método da bissecção. Tal como o método da bissecção baseia-se na construção de uma sucessão de segmentos encaixados $[a_k,b_k] \subset [a_{k-1},b_{k-1}], k=1,2,\ldots$, de tal modo que a raiz z da função f dada pertence à intersecção de todos esses segmentos. A diferença em relação ao método da bissecção está no seguinte: dado um segmento $[a_{k-1},b_{k-1}]$, e sabendo que $f(a_{k-1})*f(b_{k-1})<0$, o ponto x_k é escolhido como a intersecção com o eixo das abcissas da recta que passa pelos pontos $(a_{k-1},f(a_{k-1}))$ e $(b_{k-1},f(b_{k-1}))$. Esse ponto é dado pela fórmula

$$x_k = a_{k-1} - f(a_{k-1}) \frac{b_{k-1} - a_{k-1}}{f(b_{k-1}) - f(a_{k-1})}.$$

Uma vez verificado o sinal de $f(x_k)$, o segmento seguinte $[a_k, b_k]$ constroi-se seguindo os mesmos argumentos que no método da bissecção (ver fig.1).

Partindo do código da função 'bissec', elabore uma função análoga para o método da falsa posição. Deverá ter os mesmos dados de entrada e de saída que a função 'bissec' (incluíndo a contagem do número de iterações).

4. Teste o código do método da falsa posição, aplicando-o aos mesmos exemplos que usou no problema 1. Compare o número de iterações pelos dois métodos. Qual dos métodos lhe parece mais eficiente?

Figure 1: Interpretação geométrica do método da falsa posição.