JHU-NJU Survival Analysis

Lab 2 (July 19, 2011)

1 PBC Data

NAME: PBC Data (PBC.DAT) SIZE: 418 observations, 20 variables

SOURCE: Counting Processes and Survival Analysis by T. Fleming, D. Harrington, (1991), pub-

lished by John Wiley and Sons.

BASIC DATA DESCRIPTION: Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver

conducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during

that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug

D-penicillamine. Censoring was due to liver transplantation.

The Data

X The number of days between registration and the earlier of death, liver transplantation, or study

analysis time in July, 1986.

D 1 if X is time to death, 0 if time to censoring

Z1 Treatment Code, 1 = D-penicillamine, 2 = placebo.

1

-	Stata 11.1	File Edit	Data Editor	Graph
0	0			
3				Y
	X[1]	400	0	
	х	D	Z1	
1	400	1	1	
2	4500	0	1	
3	1012	1	1	
4	1925	1	1	
5	1504	0	2	
6	2503	1	2	
7	1832	0	2	
8	2466	1	2	
9	2400	1	1	
10	51	1	2	
11	3762	1	2	
12	304	1	2	
13	3577	0	2	
14	1217	1	2	
15	3584	1	1	
16	3672	0	2	
17	769	1	2	
18	131	1	1	
19	4232	0	1	
20	1356	1	2	
21	3445	0	2	
22	673	1	1	
23	264	1	2	
24	4079	1	1	
25	4127	0	2	

2 Comparing treatment groups

We know the MLE (maximum likelihood estimate) for θ in $T \sim \exp(\theta)$ is $\hat{\theta} = \frac{\sum_{i=1}^{n} \delta_i}{\sum_{i=1}^{n} y_i}$.

Performing this operation, we can obtain the MLEs for both treatment groups :

Intervention (group 1):
$$\hat{\theta}_1 = .0002041$$

Placebo (group 2):
$$\hat{\theta}_2 = .0001951$$

- What are the assumptions of this model?
- How is the MLE related to how we would usually estimate the failure rate?

We can also find the variance of these estimates using Fisher's Information:

$$Var(\hat{\theta}) = \frac{\hat{\theta}^2}{\sum_{i=1}^n \delta_i} \tag{1}$$

Using the variance, we can find the 95% confidence interval for the MLE's:

$$CI_{95} = (\hat{\theta} - 1.96 \cdot SE_{\hat{\theta}}, \hat{\theta} + 1.96 \cdot SE_{\hat{\theta}})$$

Using this, we have the following confidence intervals:

Group 1:
$$CI_{95} = (0.0001545, 0.0002537)$$

Group 2:
$$CI_{95} = (0.0001457, 0.0002445)$$

3 Appendix: STATA Code

```
egen sumD=sum(D) if Z1==1
egen sumX=sum(X) if Z1==1
*find the MLE for group 1
gen mle1=sumD/sumX if Z1==1

*generate summation of censoring variable and time variable for group 2
egen sumD2=sum(D) if Z1==2
egen sumX2=sum(X) if Z1==2
*find the MLE for group 2
gen mle2=sumD2/sumX2 if Z1==2
```

*generate summation of censoring variable and time variable for group 1

```
*code from Prof. Wang

*set survival data

stset X, failure(D)

*recode variables for later functions
gen z01=Z1

replace z01=0 if Z1==2

*apply exponential distribution

streg z01, d(exponential) nohr

predictnl haz = predict(hazard), ci(haz_lb haz_ub)

*plot estimates

stcurve, survival at1(z01=1) at2(z01=0)
```