Math 203, Fall 2022 Advanced Vector Calculus

Lecture #2b Wednesday, September 14, 2022

Cylindrical and Spherical Coordinates

In \mathbb{R}^2 , we can use polar coordinates (r, θ) rather than Cartesian coordinates (x, y), where a point is specified by (r, θ) , where r is the distance from the origin and θ the angle that the vector (x, y) makes with the positive x-axis.

We have

$$x = r\cos\theta, \qquad y = r\sin\theta$$

We require $r \geq 0$ and $\theta \in [0, 2\pi)$.

$$r = \sqrt{x^2 + y^2}, \qquad \theta = \begin{cases} \arctan \frac{y}{x} & x > 0 \text{ and } y \ge 0\\ \pi + \arctan \frac{y}{x} & x < 0\\ 2\pi + \arctan \frac{y}{x} & x > 0 \text{ and } y < 0 \end{cases}$$

where $\arctan \frac{y}{x}$ is in $[-\pi/2, \pi/2]$. Polar coordinates can be very useful to represent circles or lines through the origin, or if there is radial symmetry.

Example 1. r=a represents a circle of radius of a; $\theta=\alpha$ represents a ray starting at the origin making an angle α with positive x-axis; $r=a\theta$, a>0 represents a spiral (the Archimedes spiral) starting at the origin. The smaller a is, the tighter the spiral.

Example 2. What curve does the equation $r = 2a \cos \theta$ represent? Multiplying both sides by r, we have

$$r^{2} = 2ar\cos\theta,$$
 $x^{2} + y^{2} = 2ax.$
 $(x - a)^{2} + y^{2} = a^{2}.$

This is a circle of radius a centered at (a,0). When $\theta = \pi/2$, r = 0. Multiplying both sides of the equation by r does not introduce the origin as extra solution.

In \mathbb{R}^3 , there are two other natural systems of coordinates: cylindrical (r, θ, z) and spherical (ρ, θ, ϕ) coordinates.

Cylindrical Coordinates:
$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$.

A point P is specified by three coordinates (r, θ, z) , where r is distance to the origin of the projection P' of P on the xy-plane, θ is the angle $\overrightarrow{OP'}$ makes with the positive x-axis, so (r, θ) is the polar coordinate for the point P' in the xy-plane, and z is just the z-coordinate of P, or height of P from the xy-plane.

What are the surfaces described by r = a? $\theta = \alpha$, and z = b? Cylindrical coordinates are useful in describing objects with radial symmetry (symmetry about a line).

Analogous to \hat{i} , \hat{j} , and \hat{k} , the orthonormal vectors in \mathbb{R}^3 corresponding to cylindrical coordinates are

$$\hat{e}_r = \frac{1}{\sqrt{x^2 + y^2}}(x, y, 0) = (\cos \theta, \sin \theta, 0), \qquad \hat{e}_\theta = (-\sin \theta, \cos \theta, 0), \qquad \hat{e}_z = (0, 0, 1).$$

Example 3. z = ar specifies a half cone. At height 1, the cone has radius 1/a, so the smaller a is the more open the cone.

Example 4. The surface $z = a\theta$ is more complicated. Fix an angle α , we get a ray of height $a\alpha$ with angle α . The resulting surface is a helicoid, looking like a spiral staircase.

Spherical Coordinates:
$$r = \rho \sin \phi$$
, $\theta = \theta$, $z = \rho \cos \phi$.

$$\rho = \sqrt{r^2 + z^2}, \qquad \theta = \theta, \qquad \phi = \arccos \frac{z}{\rho}.$$

In spherical coordinates, ρ is the distance from the point P to the origin, θ is the angle with positive x-axis made by the projection of \overrightarrow{OP} down to the xy-plane, and ϕ is the angle the position vector \overrightarrow{OP} makes with the positive z-axis. $\rho \in [0, \infty), \ \theta \in [0, 2\pi), \ \text{and} \ \phi \in [0, \pi].$ In Cartesian coordinates, we have

$$x = \rho \sin \phi \cos \theta, \qquad y = \rho \sin \phi \cos \theta, \qquad z = \rho \cos \phi.$$

$$\rho = \sqrt{x^2 + y^2 + z^2}, \qquad \theta = \begin{cases} \arctan \frac{y}{x} & x > 0 \text{ and } y \ge 0 \\ \pi + \arctan \frac{y}{x} & x < 0 \\ 2\pi + \arctan \frac{y}{x} & x > 0 \text{ and } y < 0 \end{cases},$$

$$\phi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

What are the surfaces described by $\rho = a$? $\theta = \alpha$, and $\phi = \beta$? Spherical coordinates are useful in describing objects with spherical symmetry (symmetry about a point).

A great circle on a sphere S is the intersection of S with a plane through the center. If P and Q are on S the shortest path along the sphere connecting P and Q is an arc of a great circle. To visualize this, rotate the sphere so P and Q are on the equator. On a sphere, θ corresponds to a **longitude** and ϕ corresponds to a **latitude**. Note that longitudes lie in great circles.

Analogous to \hat{i} , \hat{j} , and \hat{k} , the orthonormal vectors in \mathbb{R}^3 corresponding to spherical coordinates are

$$\hat{e}_{\rho} = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x, y, z) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),$$

$$\hat{e}_{\theta} = (-\sin\theta, \cos\theta, 0), \qquad \hat{e}_{\phi} = \hat{e}_{\rho} \times \hat{e}_{\theta} = (-\cos\phi\cos\theta, -\cos\phi\sin\theta, \sin\phi).$$

Example 5. Describe the region

$$x^2 + y^2 + z^2 \le a^2$$
 and $x^2 + y^2 \ge z^2$

in spherical coordinates. The first region is inside the sphere of radius a: $\rho \le a$. The second region is given by $\sin^2 \phi \ge \cos^2 \phi$, or $\tan \phi \ge 1$ or $\tan \phi \le -1$, so $\pi/4 \le \phi \le 3\pi/4$. Hence, the region in common is

$$\rho \le a \qquad \pi/4 \le \phi \le 3\pi/4.$$

The region is enclosed by the ball and the cone.

Example 6. Describe the surface $x^2 + y^2 - z^2 = 4$ in spherical coordinates.

$$x^{2} + y^{2} - z^{2} = \rho^{2} - 2\rho^{2}\cos^{2}\phi = -\rho^{2}\cos(2\phi).$$
$$\rho^{2}\cos(2\phi) + 4 = 0.$$

In cylindrical coordinates, it is given by $r^2 = z^2 + 4$. It is a hyperboloid, an example of a surface of revolution, independent of θ .

n-Dimensional Euclidean Space

Definition 1. • A vector $\vec{v} \in \mathbb{R}^n$ is an *n*-tuple of real numbers (v_1, v_2, \dots, v_n) .

- The **zero vector** $\vec{0} = (0, 0, \dots, 0)$. By convention, the zero vector is parallel and perpendicular to all vectors.
- If $\vec{v} = (v_1, v_2, \dots, v_n)$, and $\vec{w} = (w_1, w_2, \dots, w_n)$, then the **sum of vectors** \vec{v} and \vec{w} , $\vec{v} + \vec{w}$ is the vector $(v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$.
- The scalar productor of $\lambda \in \mathbb{R}$ and $\vec{v}, \lambda \cdot \vec{v}$ is the vector $(\lambda v_1, \lambda v_2, \dots, \lambda v_n)$.

The sum and scalar product of vectors in \mathbb{R}^n obey the same rules as those in \mathbb{R}^2 and \mathbb{R}^3 .

Definition 2. The standard basis of \mathbb{R}^n is the set of vector

$$\hat{e}_1 = (1, 0, \dots, 0), \qquad \hat{e}_2 = (0, 1, 0, \dots, 0), \qquad \dots, \qquad \hat{e}_n = (0, \dots, 0, 1).$$

If $\vec{v} = (v_1, v_2, \cdots, v_n)$, then

$$\vec{v} = v_1 \hat{e}_1 + v_2 \hat{e}_2 + \dots + v_n \hat{e}_n.$$

We adopt the convention that two vectors \vec{v} and \vec{w} are parallel if and only if one vector is a scalar multiple of the other.

Definition 3. The **dot product** of \vec{v} and \vec{w} in \mathbb{R}^n is the scalar

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n.$$

The **norm** (or **length**) of \vec{v} is the scalar

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}.$$

The properties of dot products of vectors in \mathbb{R}^2 and \mathbb{R}^3 hold true in \mathbb{R}^n as well. Of particular importance is positive definiteness, from which we can derive the following theorem.

Theorem 1 (Cauchy-Schwarz). For any two vectors \vec{v} and \vec{w} in \mathbb{R}^n ,

$$|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||,$$

where equality holds if and only if \vec{v} is parallel to \vec{w} .

Proof. We can assume that neither \vec{v} nor \vec{w} is the zero vector, otherwise, there is nothing to prove. Let $\vec{u} = x\vec{v} + \vec{w}$ for some scalar x. By positive definiteness, $\|\vec{u}\|^2 \geq 0$. Hence

$$(\vec{v} \cdot \vec{v})x^2 + 2(\vec{v} \cdot \vec{w})x + \vec{w} \cdot \vec{w} = ax^2 + bx + c > 0,$$
 where $a, c > 0$

The corresponding quadratic function $f(x) = ax^2 + bx + c$, being non negative has at most one real root, so the discriminant must be ≤ 0 . Therefore,

$$4(\vec{v} \cdot \vec{w})^2 - 4\|\vec{v}\|^2 \|\vec{w}\|^2 \le 0$$
, or $|\vec{v} \cdot \vec{w}| \le \|\vec{v}\| \|\vec{w}\|$.

Equality occurs when the discriminant is zero, in which case f has a real root $\lambda \neq 0$ and hence $\vec{u} = \lambda \vec{v} + \vec{w}$ has zero length which implies that \vec{v} and \vec{w} are parallel.

Definition 4. The unique **angle** θ between two non-zero vectors \vec{v} and \vec{w} in \mathbb{R}^n can be determined from

$$\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}, \qquad 0 \le \theta \le \pi.$$

Example 7. Recall the triangle inequality for vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$,

$$\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$$

In particular,

$$\begin{aligned} \|\vec{v} + (\vec{w} - \vec{w})\| &\leq \|\vec{v}\| + \|\vec{v} - \vec{w}\| \\ \|\vec{v} - \vec{w}\| &= \|\vec{w} - \vec{v}\| \geq \|\vec{w}\| - \|\vec{v}\| \end{aligned}$$

Example 8.

$$\vec{v} \cdot \vec{w} = (v_1, \dots, v_n) \cdot (w_1, \dots, w_n) = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

$$A = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vdots \\ \vec{r}_m \end{bmatrix}, \qquad \vec{r}_j \in \mathbb{R}^n, \qquad A\vec{w} = \begin{bmatrix} \vec{r}_1 \cdot \vec{w} \\ \vec{r}_2 \cdot \vec{w} \\ \vdots \\ \vec{r}_m \cdot \vec{w} \end{bmatrix} \in \mathbb{R}^m$$

Definition 5. A function or map $F : \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if for all \vec{v} and \vec{w} in \mathbb{R}^n and for all scalars $\lambda \in \mathbb{R}$,

$$F(\vec{v} + \vec{w}) = F(\vec{v}) + F(\vec{w}), \quad \text{and} \quad F(\lambda \vec{v}) = \lambda F(\vec{v}).$$

If A is an $m \times n$ matrix, and B an $n \times p$ matrix, we get functions

$$F: \mathbb{R}^n \to \mathbb{R}^m, \qquad F(\vec{v}) = A\vec{v};$$

$$G: \mathbb{R}^p \to \mathbb{R}^n, \qquad G(\vec{u}) = B\vec{u}.$$

Both f and g are linear functions on their respective domain (check!).

Example 9. F(x) = x + 3 is not a linear map from \mathbb{R} to \mathbb{R} .

Example 10.

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}, \qquad A\vec{v} = \begin{pmatrix} x+2y \\ y \end{pmatrix}.$$

A map that arises from matrix multiplication $F(\vec{v}) = A\vec{v}$ is linear. Conversely, all linear functions from \mathbb{R}^n to \mathbb{R}^m arise from matrix multiplications.

Example 11. Suppose $F: \mathbb{R}^2 \to \mathbb{R}^3$ is linear.

$$F\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\\3\end{array}\right], \qquad F\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\5\\6\end{array}\right]$$

By linearity,

$$F\left(\left[\begin{array}{c} a \\ b \end{array}\right]\right) = F\left(a\left[\begin{array}{c} 1 \\ 0 \end{array}\right] \ + b\left[\begin{array}{c} 0 \\ 1 \end{array}\right]\right) = aF\left(\left[\begin{array}{c} 1 \\ 0 \end{array}\right]\right) + bF\left(\left[\begin{array}{c} 0 \\ 1 \end{array}\right]\right)$$

$$= a \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + b \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = A \begin{bmatrix} a \\ b \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

F is represented by matrix multiplication by A.

More generally, suppose $\hat{e}_1, \hat{e}_2, \dots, \hat{e}_n$ and $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_m$ are standard bases for \mathbb{R}^n and \mathbb{R}^m , and F is linear, then $F(\hat{e}_j)$ is a vector in \mathbb{R}^m . Any vector in \mathbb{R}^m is a linear combination of the standard basis vectors $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_m$, hence

$$F(\hat{e}_j) = \sum_{i=1}^m a_{ij} \hat{f}_i,$$

for some scalars a_{ij} .

$$F(\vec{v}) = F(\sum_{j=1}^{n} v_j \hat{e}_j) = \sum_{j=1}^{n} v_j F(\hat{e}_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} v_j \hat{f}_i = A\vec{v}.$$

The composite of two linear functions

$$F: \mathbb{R}^n \to \mathbb{R}^m, \qquad F(\vec{v}) = A\vec{v}$$

and

$$G: \mathbb{R}^p \to \mathbb{R}^n, \qquad G(\vec{u}) = B\vec{u}$$

is given by

$$F \circ G : \mathbb{R}^p \to \mathbb{R}^m$$
, $(F \circ G)(\vec{u}) = F(G(\vec{u})) = A(B\vec{u}) = (AB)\vec{u}$.

Matrix multiplication is represented as composite of two linear function, which is also linear. Since composition of two functions is not commutative, $AB \neq BA$. Since composition of functions is associative, matrix multiplication is also associative.

See the *linear algebra* file in the "extras" section for a succinct summary of the basics of vector spaces, linear functions and determinants and why you should care.