Chapter 1

 $\$ \begin{align} i(t)&=\frac{dq}{dt} \left(+ i(t)\cdot dt \ P&=v\times i=i\times \frac{W}{q} \right) = \int_{\mathbb{R}^{q}} \left(+ i(t)\cdot dt \right) dt \ P&=v\times i=i\times \frac{W}{q} \right) dt \ P&=v\times i=i\times \frac{W}{q} \ P&=v\times i=i\times \frac{W}{q}

Chapter 4

 $\label{logalign} $$ \left[a \lim_{x &= -\frac{v_x}{R_T} + \frac{v_t}{R_T} \right] } A_v &= \frac{v_t}{R_T} \left[a \lim_{x &= -\frac{v_t}{R_T} + \frac{v_t}{R_T} \right] } A_v &= 1 + \frac{R_f}{R_{in}} \right] } \end{align} $$$

Inverting

Non-inverting

Chapter 5

Capacitor

Differential equation solution

Where \$v_s=v_\infty\$:

\$\$ \begin{align}

- 1. Remove all independent sources, find equivalent resistance and capacitance, find \$\tau\$.
- 2. Set C as open circuit, find initial capacitor voltage \$v_0\$ at \$t=0\$
- 3. Set C as open circuit, find final capacitor voltage \$v_\infty\$ at \$t\to\infty\$

Inductor

$$\begin{align} L \&= \frac{1}{L}\int_0^tv\cdot dt \& \left[\frac{1}{L}\right] L \& \left[\frac{1}{L}\right] L \& \left[\frac{1}{L}\right] \\ \end{align} L \& = \frac{1}{L}\int_0^tv\cdot dt \\ \end{align} \& = \frac{1}{2}Li^2 \left[\frac{1}{L}\right] \\ \end{align} $$$$

Differential equation solution

Where $v_s/R=i_\inf$:

\$\$ \begin{align}

\end{align} \$\$

Voltage drop in DC for capacitor and inductor at steady state

Capacitor

Current through capacitors in series is the same, so all capacitors have same charge stored \$q\$.

 $\$ \begin{align} \text{Voltage drop over capacitor \$i\$: } v_{Di} &= v_T \frac{C_i}{C_i} \ &= v_T \frac{C_i}{C_i} + \frac{1}{C_i} + \frac{1}{

Inductor

No voltage drop in steady state (Inductor is a short circuit)

Chapter 7

Maximum power transfer in AC

 $\label{thm:power} $$ \left[\frac{Z_S^*} \operatorname{Maximum power to load (50\%): } &2P_\text{avg}=P_\text{frac}(|V_S|)^2 \\4R_S & = \frac{(|V_S|)^2}{4R_S} & = \frac{(|V_L|)^2}{4R_L} \\ \left[\frac{2}{P_\text{text}} \right] & = \frac{(|V_S|)^2}{4R_S} & = \frac{(|V_S|)^2}{4R_S} \\ \left[\frac{2}{P_\text{text}} \right] & = \frac{(|V_S|)^2}{2R_S} \\ \left[\frac{2}{P_\text{text}} \right] & = \frac{(|V_S|)^2}{2R_S} \\ & = \frac$

Complex Power

Where $\sigma = \Gamma_{l}=1\$

 $\$ \begin{align} \text{Complex [VA]: }\bar{S} &= \brac{\bar{I}\text{rms}\times \bar{I}\text{rms}^* = \frac{\brac{V}\times \brac{I}^*}{2} = \frac{V}{2}\angle(\theta-\phi)}

```
\text{Apparent [VA]: } |S|\\
\text{Real [W]: } P &= |S| \cos(\theta-\phi) = \text{Re}(\bar{S})\\
\text{Reactive [VAR]: } Q &= |S| \cos(\theta-\phi) = \text{Im}(\bar{S})\\
Q &= P\tan(\arccos(\text{Power factor}))\\
\text{Power Factor} &= \frac{P}{|S|} = \cos\left(\arctan\left(\frac{Q}{P}\right)\right)
```

Where $\sigma = |S| \angle \angle \$

\$\$ \varphi = \arctan\left(\frac{Q}{P}\right)\$\$

	Lagging	Leading
Voltage	Current behind	Current ahead
Load type	Inductive	Capacitive
\$Q\$	\$Q>0\$	\$Q<0\$
\$\varphi\$	\$\varphi>0\$	\$\varphi<0\$

Chapter 8

Constants

\$\$ \mu_0=4\pi \times 10^{-7} \$\$

 $\$ \begin{align} \text{Faraday's law: }\varepsilon &= -N\frac{d\varPhi}{dt}\ \text{Ampere's law: }B &= \frac{\mu_0 I}{2\pi i} \end{align} \$\$

Transformer

Step up: \$n>1\$
Step down: \$n<1\$

 $\$ \begin{align} \frac{V_s}{V_p} &= \frac{i_p}{i_s}=n\ \&= \frac{1}{n^2}\bar{Z}_L \end{align} \$\$

Motor

For permanent motors, define permanent torque constant \$k_{TP}=k_T\varPhi\$

 $\$ \begin{align} T &= k_T\times\varPhi \times i_a = k_{TP} \times i_a\ P_\text{mech} &= \omega_\text{mech} T = \omega_\text{mech} \times k_{TP}\times i_a \end{align} \$\$

Back emf

Define for permanent motors, define permanent armature constant $k_{aP} = k_a\$ Note, back emf should oppose v_a and i_a

 $\$ \begin{align} e_b=k_a\times \omega_\text{mech} = k_{aP} \times {aP} \times {align} \$\$

Summary

For ideal motor, torque and armature constants are the same: \$k_a=k_T\$

Define \$p\$ as number of magnetic poles and \$M\$ as the number of parallel paths in armature winding.

 $\$ \begin{align} \text{Power dissipated: } P_e &= e_b\times i_a = k_{aP} \times [\ensuremath{\mathbb{n}} \ \text {Constants for ideal motor: } k_a &= k_T = \frac{pN}{2\pi M}

\end{align} \$\$

For permanent magnet DC motor in DC steady state:

Define viscous frictional damping coefficient \$b\$ and load torque \$T_L\$

\$\$ \begin{align} &\begin{cases}

```
0 &= v_a - i_a R_a - k_{aP} \omega_\text{mech} = v_a - i_a R_a - e_b \\
    k_{TP} i_a &= T_L + b\times \omega_\text{mech}

\end{cases}\\
&\text{Analog speed control (Voltage): } T = \frac{k_{TP}}{R}v_s - \frac{k_{TP}}k_{aP}}{R} \omega_\text{mech}\\
&\text{Analog speed control (Current): } T = \frac{k_{TP}}R_S}{R}i_s - \frac{k_{TP}}k_{aP}}{R} \omega_\text{mech}}
```

\end{align} \$\$