

Universidade Tecnológica Federal do Paraná Curso de Engenharia da Computação Fundamentos de Teoria da Computação Prof. Marco Antonio Barbosa

Atividade Avaliativa 2 – Parte Prática Data limite para submissão no Moodle: 27/08/2021

Orientações: Submeta no Moodle, até a data limite sua resposta, em formato digital ou digitalizado.

Questões:

1) Considere a GLC abaixo:

$$G = (\{S, A, B, C\}, \{a, b, c, d\}, P, S)$$

$$P = \{S \rightarrow aSb \mid A,$$

$$A \rightarrow bAc \mid d \mid B$$

$$C \rightarrow cCd \mid \epsilon$$
}

- 1.1) Simplifique a GLC
- 1.2) Transforme a GLC para a Forma Normal de Chomsky (FNC)
- 2) Considere a GLC abaixo:

G = ({E, T, F}, {+, *, (,), id}, P, E)
P = { E
$$\rightarrow$$
 E + T | T,
T \rightarrow T * F | F,
F \rightarrow (E) | id }

Pede-se:

- 2.1) Transforme a GLC para a Forma Normal de Chomsky (FNC)
- 2.2) Transforme a GLC para a Forma Normal de Greibach (FNG)
- 2.3) Construa um Autômato com Pilha que reconheça a GLC
- 3) Considere a GLC abaixo:

$$\begin{split} G &= (\{Prop\}, \, \{ {}^{\wedge}, \, \vee, \, \rightarrow, \, (, \,), \, p, \, q, \, \}, \, P, \, Prop) \\ P &= \{ \, Prop \rightarrow Prop \, {}^{\wedge} \, Prop \mid \, Prop \vee Prop \mid Prop \rightarrow \, Prop \mid (\, Prop) \mid p \mid q \, \} \end{split}$$

- 3.1.) Transforme a GLC para a Forma Normal de Greibach
- 3.2) Construa um Autômato com Pilha que reconheça a GLC

4)

estado	símbolo lido na fita	símbolo gravado na fita	direção	próximo estado	
início	•	•	direita	0	
0	0	1	direita	0	
0	1	0	direita	0	
0	۵	۵	esquerda	1	
1	0	0	esquerda	1	
1	1	1	esquerda	1	
1	•	•	direita	parada	

Na tabela acima, estão descritas as ações correspondentes a cada um dos quatro estados (início, 0, 1, parada) de uma máquina de Turing, que começa a operar no estado "início" processando símbolos do alfabeto {0,1,●, △}, em que '△' representa o espaço em branco. Considere que, no estado "início", a fita a ser processada esteja com a cabeça de leitura/gravação na posição 1, conforme ilustrado a seguir.

1	1	2	3	4	5	6	7	8	9	10	11	***
T	•	0	1	1	0	1	Δ	Δ	Δ	Δ	Δ	

Considerando essa situação, assinale a opção que indica corretamente a posição da cabeça de leitura/gravação e o conteúdo da fita após o término da operação, ou seja, após a máquina atingir o estado "parada".

0	1	2	3	4	5	6	7	8	9	10	11	***
	•	0	0	1	1	1	1	0	0	1	1	
3	1	2	3	4	5	6	7	8	9	10	11	***
	•	0	1	1	0	1	Δ	Δ	Δ	Δ	Δ	
Θ [1	2	3	4	5	6	7	8	9	10	11	***
	•	0	1	1	0	1	0	1	0	0	1	
0	1	2	3	4	5	6	7	8	9	10	11	
	•		Δ	Δ	Δ	Δ	1			Δ		
9	1	2	3	4	5	6	7	8	9	10	11	
	•	1	0	0	1	0	Δ	Δ	Δ		Δ	···