$$A = \bigcup \sum_{v \in \mathbb{Z}} V^*$$

$$V \in \mathbb{Z}^{m \times n}$$

$$V^* U = I_n$$

$$U^* U = I_m \qquad \sum_{v \in \mathbb{Z}} diaq(6, \dots, 6p)$$

$$p = min\{m, n\}$$

• Existence:
$$OA^*A = V\begin{bmatrix} G_1^2 & 2 \\ G_n \end{bmatrix}V^*$$

$$\mathcal{Q}$$
 $U\Sigma = AV$

• Practical algorithm: Solve eigenvalue problem for
$$H = \begin{bmatrix} 0 & A^* \end{bmatrix}$$
 — Hermittian

use Golub-Kahan didiagonalization: operation count = 4mn² FLOPs (will go into defail when we talk about eigenvalue problems)

- · Application 1: Point cloud registration
- · Application 2: Overdetermined least-squares

Given bla)
$$\in L^2([0,1])$$

Find
$$n-\text{degree}$$
 polynomial $p(a) \in P_n([0,1])$
such that $\min_{p \in P_n} \int_{0}^{1} |p(a) - b(a)|^2 da$

Discretize the problem:

quadrature: $\int_0^1 f(a) da \approx \frac{1}{m} \sum_{i=1}^m f(a_i)$, $a_i = \frac{i-1}{m-1}$, $i = 1, \dots, m$

$$p(x) = \sum_{k=0}^{n-1} \chi_k a^k$$

$$\Rightarrow \min_{C \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \left| \sum_{k=0}^{n-1} \chi_k \alpha_i^k - b(\chi_i) \right|^2$$

Let
$$A = \begin{bmatrix} 1 & a_1 & \cdots & a_n^{n-1} \\ 1 & a_2 & \cdots & a_n^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_m & \cdots & a_m^{n-1} \end{bmatrix}$$
, $b = (b(x_i), \dots, b_{r(x_m)})^T$

m equations > n variables

$$\begin{bmatrix} n \\ m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A \times b$$

· Solve least-squares via normal equations

$$(=)$$
 $r = b - A\hat{x} \perp R(A)$

A*A invertible · Solving least-squares via normal equations Step 1: compute C = A*A, d = A*bStep 2: Solve $C\hat{x} = d$ operation count $\approx 2mn^2$ FLOPs · Solving normal equations directly can suffer from ill-conditioning For the least square problem using monomials, as $m \to +\infty$, $\frac{1}{m} (A^*A) : j = \frac{1}{m} \sum_{k=1}^{m} a_k^{i+j-2}$ $= \frac{1}{m} \sum_{k=1}^{m} \left(\frac{k-1}{m-1}\right)^{i+j-2}$ $\frac{1}{m}A^*A \rightarrow Hn$ Hilbert matrix - ill-conditioned! Beyond NLA: monomials are "bad" basis, choose basis that are orthogona to each other In general, $K_2(A^*A) = \frac{6^2}{6^2} > \frac{6}{6} (= K(A))$ Forward ever ~ K2(A) &

Solve Least - squares via SVD

backward error Let A = UZ V* min 11 USV*x - 6112 Let d = v*b, y = v*xmin $|| \sum_{y} - d ||_{2}^{2} = \min_{y \in \mathcal{L}^{n}} || \begin{bmatrix} 6_{1} & 6_{1} & 6_{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{n} \end{bmatrix} - || \frac{1}{2} || \frac{1}{2}$

Let
$$\Sigma^{+} = \begin{bmatrix} \frac{dy_{0}}{dy_{0}} & \frac{dy_{0}}{dy_{0}} \end{bmatrix}$$
 $\hat{y} := \Sigma^{+}d = arg min || \Sigma y - d||_{2}^{2}$

hence $\hat{x} = V\hat{y} = V\Sigma^{+}U^{*}b \in arg min || Ax - b||_{2}^{2}$
 A^{+} proved inverse of A

Actaclly, from normal equation,

 $\hat{x} = (A^{*}A)^{-1}A^{*}b$
 $= A^{+}$
 $= (V\Sigma^{*}\Sigma V^{*})^{-1} V\Sigma^{*}U^{*}b$
 $= V(\Sigma^{*}\Sigma)^{-1}V^{*}V \Sigma^{*}U^{*}b$
 $= V \Sigma^{+}U^{*}b$

Algorithm:

Step 1: Compute $SVD : A = U\Sigma V^{*}$

generation count $2 \times 4mn^{2} FLOPs$

Stability of least accuses

Stability of least - squares

Define
$$K_2(A) = ||A||_2 ||A^{\dagger}||_2 = \sqrt{K_2(A^{\dagger}A)}$$

Thu (Wedin) Let $A \in \mathbb{R}^{m \times n}$, $A + \triangle A$ both be of full rank

Let $||b - A \times ||_2 = min$, $r = b - A \times$
 $||(b + \triangle b) - (A + \triangle A) y||_2 = min$, $S = b + \triangle b - (A + \triangle A) y$
 $||\Delta A||_2 / ||\Delta b||_2 / ||\Delta b||_2 = S$

Then provided that K2(A) & < 1

$$\frac{\|x-y\|_{2}}{\|x\|_{2}} \leq \frac{K_{2}(A) \mathcal{E}}{1 - K_{1}(A) \mathcal{E}} \left(2 + (K_{2}(A) + 1) \frac{\|y\|_{2}}{\|A\|_{L} \|x\|_{2}}\right) \\ \frac{\|y-y\|_{2}}{1 - K_{1}(A) \mathcal{E}} \leq \frac{K_{2}(A) \mathcal{E}}{1 - K_{1}(A) \mathcal{E}}$$

$$\frac{\|y-y\|_{2}}{\|A\|_{L} \|x\|_{2}} \leq \frac{K_{2}(A) \mathcal{E}}{1 - K_{1}(A) \mathcal{E}}$$

These bounds are approximately obtainable

Pf: See Higham Thm 20, 1

Remark: The first bound is usually interpreted as saying that the sensitivity of least-squares is measured by K2(A) when 11711 is small or zero and by K2(A) otherwise

Thm Solving lowst - squares via SVD is backward stable. The computed \hat{x} satisfies

 $\hat{x} = \underset{X}{\operatorname{arg min}} \| (A + \triangle A) \times + b + \triangle b \|_{2}$ and $\| \triangle A \| = \| \triangle b \| \leq C_{min} \leq C_{mach}$

Summary:	method	normal egn	SVD
l			
	conditioning	$\approx K_2^2(A)$	≈ K2[A]
			≈ K2lA) (11711 Small)
	operation count	$\approx 2mn^2$ FLoPs	≈ 4mn² FLofs

· Solving least -squares via QR factorization

Computing SUD is expensive can be work with

orthogonal transform but bower cost?

· (reduced) QR factorization

A = Q R

$$R \in \mathbb{C}^{n \times n}$$

Repper triangular matrix

Not $QQ^{\#}=Im$
 $Q^{\#}Q = In$

orthonormal columns (m > n)

when
$$rank(A) = n$$
, \Rightarrow $rank(R) = n$

Let
$$Q = [q_1 \dots q_n]$$
, $q_i \in \mathbb{C}^m$

projection
onto R(A)

Then
$$P_{A} x = P_{\alpha} x = \sum_{i=1}^{n} q_{i}(q_{i}^{*}x) = Q_{\alpha} Q^{*}x$$

Hence
$$\hat{\chi} \in \text{arg min } ||Ax-b||_{2}^{2}$$

Hence $\hat{\chi}$ to arg min $||Ax-b||_2^2$

$$(=) r = b - A\hat{x} \perp R(A)$$

$$\Leftrightarrow$$
 $P_{\alpha} r = 0$

$$\Leftrightarrow$$
 $\hat{R}\hat{x} = \alpha^*b$

Actually, from normal equations,

$$\hat{\chi} = (A^*A)^{-1}A^*b = (R^*R)^{-1}R^*\hat{Q}b = R^{-1}\hat{d}b$$