MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 1 \\ 0 & 1 & -1 & 7 \\ 1 & -1 & 3 & -1 \end{bmatrix}$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & 2 & 1 & 2 & | & -1 \\ 1 & 1 & 2 & 4 & | & 5 \\ 3 & 3 & -1 & -2 & | & 1 \end{bmatrix}$$

E3. Solve the following linear system.

$$3x + 2y + z = 7$$
$$x + y + z = 1$$

$$-2x + 3z = -11$$

 ${f E4.}$ Find a basis for the solution set to the homogeneous system of equations

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 0$$

$$x_1 + x_2 - x_3 + 5x_4 = 0$$

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (0, cy_1)$

- (a) Show that scalar multiplication **distributes vectors** over scalar addition: $(c+d)\odot(x,y)=c\odot(x,y)\oplus d\odot(x,y).$
- (b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if $\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 2 \end{bmatrix}$.

$$\mathbf{V3.} \quad \text{Does span} \left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

V4. Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

S2. Determine if the set $\left\{ \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 3 & 9 \end{bmatrix} \right\}$ is a basis of $M_{2,2}$ or not.

S3. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Find a basis of W .

S4. Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3-x^2+3x-3,2x^3+x+1,3x^3-x^2+4x-2,x^3+x^2+x-7\right\}\right)$. Compute the dimension of W.

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	