Геометрия

- 1. Дан выпуклый четырехугольник ABCD такой, что AD = AB + CD. Оказалось, что биссектриса угла A проходит через середину стороны BC. Докажите, что биссектриса угла D также проходит через середину BC.
- **2.** Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.
- **3.** Окружности ω_1 и ω_2 касаются внешним образом в точке P. Через центр ω_1 проведена прямая ℓ_1 , касающаяся ω_2 . Аналогично, прямая ℓ_2 касается ω_1 и проходит через центр ω_2 . Оказалось, что прямые ℓ_1 и ℓ_2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных прямыми ℓ_1 и ℓ_2 .
- **4** (Прямая Симсона). Докажите, что основания перпендикуляров, опущенных их точки описанной окружности треугольника ABC на прямые AB, BC и CA лежат на одной прямой.
- **5.** На стороне AC треугольника ABC выбрана точка D такая, что BD = AC. Медиана AM этого треугольника пересекает отрезок BD в точке K. Оказалось, что DK = DC. Докажите, что AM + KM = AB.
- **6.** Точки A, B и C лежат на окружности, а прямая b касается этой окружности в точке B. Из точки P, лежащей на прямой b, опущены перпендикуляры PA_1 и PC_1 на прямые AB и BC соответственно (точки A_1 и C_1 лежат на отрезках AB и BC). Докажите, что $A_1C_1 \perp AC$.
- 7. На стороне AC треугольника ABC отметили произвольную точку D. Пусть E и F точки, симметричные точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A_0C_0 , где A_0 и C_0 точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.