Audio & Speech Week4: Baby Sounds Challenge

Prof. Chi-Chun Lee, Yi-Wen Liu
TAs:邱信豪、許暐彤、陳舫慶、陳靖杰

EE3662: Digital Signal Processing Lab

#Lab12 - Dec. 20, 2021

Dataset Description

Baby Sounds Challenge

• The INTERSPEECH 2019 Computational Paralinguistics Challenge

Datasets

• Training set: 3996 files

• Testing set: 3617 files

Download Datasets

• Kaggle → Data

Flow Chart

Kaggle

- Join this link and create your own account:
 - Create your **Team** name: using your student ID
 - One member one team!
 - We will give you competition link on 12/20.

Kaggle (Download Datasets)

?

Click Data

• upload_sample.csv - a sample csv file that you need to follow the format to submit.

kaggle competitions download -c dsplab-detecting-baby-sounds-2021

Data Explorer

87.42 MB

▶ 🗖 Baby_Data

label_raw_train.csv

upload_sample.csv

Kaggle (Upload results)

- Click submit predictions
- Upload your results.csv
 - Results format:

	А	В	
1	file_name	Predicted	
2	devel_0001.wav	Crying	
3	devel_0002.wav	Crying	
4	devel_0003.wav	Crying	
5	devel_0004.wav	Crying	
6	devel_0005.wav	Crying	
7	devel_0006.wav	Crying	
8	devel_0007.wav	Crying	
9	devel_0008.wav	Crying	
10	devel_0009.wav	Crying	

You can refer to upload_sample.csv

Lab12 Grading

Kaggle Challenge Results (40%) + Report (60%)

Kaggle Challenge Grading

•90分以上: For every 1% improvement, you will get an extra 2 points

Challenge Hints

- Please use MFCC implemented in Lab9 by yourself to extract MFCC features.
- Kaggle has maximum daily submissions (5 times one day), so you can use SVM and Cross Validation in Lab11 to verify the training data
- Try different parameters (kernel, c, degree) to tune your model
- Try different features, statistics functions or classifiers to achieve higher performance

Report

- Try to explain your accuracies from your results table
- Using your best results to plot the confusion matrix (lab11)

Baby Sounds (%)								
	Canonical	Crying	Junk	Laughing	Non-canonical	UAR		
SVM (rbf)	3.7	18.4	74.06	0	73.78	63.23		
SVM (linear)								
SVM (poly)								

• (Bonus) Analyses

- 1. Try to explain why some categories perform worse? The data distribution seems quite imbalanced, try to solve the problems and compare the experimental results.
- 2. What other problems did you meet? What is your solution? Any interesting findings?

