Árvores AVL

Prof. Martín Vigil
Adaptado de Prof. Ricardo Luís Lachi
https://www.comp.uems.br/~ricardo/

Custo de Árvore Binárias

Altura h da árvore (definição recursiva)

Altura h da árvore (definição recursiva)

Exemplo de altura da árvore

Exemplo de altura da árvore

Árvores AVL

- Propostas pelos soviéticos Georgy Adelson-Velsky e Evgenii Landis em 1962
- São árvores binárias
- Para todo nodo da AVL, $-1 \le h_E h_D \le 1$
- Parcialmente balanceadas
- Custo O(log n) para inserir, remover e buscar

Exemplos

Não é AVL

AVL

Árv. AVL estendem Árv. Binárias

- Mesmo algoritmo de busca
- Inserção e remoção
 - Função recursiva para inserir/remover
 - Rotacionar antes do retorno da função se necess.
 - Rotação de acordo com fator de balanceamento b
- Existem quatro tipos de rotações possíveis

Fator de balanceamento b

- Fator $b = h_E h_D$
- Nodo balanceado sse -1 ≤ b ≤ 1

Verificar b no caminho até raiz

ROTAÇÃO SIMPLES À ESQUERDA

Rotação simples à esquerda

Antes da rotação

Rotação simples à esquerda

Antes da rotação

Antes da rotação

Rotação simples à esquerda (1/2)

Durante a rotação

Rotação simples à esquerda (2/2)

Durante a rotação

Rotação simples à esquerda (2/2)

Antes da rotação

Depois da rotação

ROTAÇÃO SIMPLES À DIREITA

Rotação simples à direita

Antes da rotação

Rotação simples à direita

Antes da rotação

Antes da rotação

Rotação simples à direita (1/2)

Antes da rotação

Durante a rotação

Rotação simples à direita (2/2)

Antes da rotação

Durante a rotação

Rotação simples à direita (2/2)

Antes da rotação

Depois da rotação

ROTAÇÃO ESQUERDA-DIREITA

Rotação esquerda-direita

Antes da rotação

Rotação esquerda-direita

Antes da rotação

Antes da rotação

Rotação esquerda-direita (1/5)

Antes da rotação

Durante rotação

Rotação esquerda-direita (2/5)

Antes da rotação

Durante rotação

Rotação esquerda-direita (3/5)

Antes da rotação

Durante rotação

Rotação esquerda-direita (3/5)

Durante rotação

Rotação esquerda-direita (3/5)

Durante rotação

Rotação esquerda-direita (4/5)

Durante rotação

Rotação esquerda-direita (5/5)

Durante rotação

Rotação esquerda-direita (5/5)

Antes da rotação

Depois da rotação

ROTAÇÃO DIREITA-ESQUERDA

Rotação direita-esquerda

Antes da rotação

Rotação direita-esquerda

B C E

Antes da rotação

Antes da rotação

Rotação direita-esquerda (1/5)

B C C E

Antes da rotação

Durante a rotação

Rotação direita-esquerda (2/5)

B C E

Antes da rotação

Durante a rotação

Rotação direita-esquerda (3/5)

Antes da rotação

Durante a rotação

Rotação direita-esquerda (3/5)

Antes da rotação

Durante a rotação

Rotação direita-esquerda (3/5)

Antes da rotação

Durante a rotação

Rotação direita-esquerda (4/5)

Antes da rotação

Durante a rotação

Rotação direita-esquerda (5/5)

Antes da rotação

Durante a rotação

Rotação direita-esquerda (5/5)

Antes da rotação

Depois da rotação

INSERÇÕES NA ÁRVORE AVL

Local da inserção sugere rotação

Rotação simples à direita

Rotação simples à esquerda

Rotação esquerda-direita

Rotação direita-esquerda

1º) Vamos inserir o nó 10.

Resultado: desbalanceou os nós 40 e 50.

2º) Vamos balancear o nó 40.

Por que o nó 40 e não o 50?

Porque a idéia é que ao ajustarmos as subárvores esquerda e direita do nó 40, teremos automaticamente ajustado a subárvore esquerda do nó 50 também.

3º) Aplicar rotação simples à direita para balancear o nó 40.

Por que rotação à direita? Porque $h_e > h_d$ para o nó 40. Logo a subárvore esquerda do nó 40 está mais pesada que a subárvore direita do nó 40.

Por que rotação simples? Porque $h_e > h_d$ para o nó 30 (nó filho esquerdo do nó 40, que é a subárvore mais pesada).

Desse fato se conclui que o novo nó (nó 10) foi inserido na subárvore esquerda do nó 30.

3º) Rotação simples à direita do nó 40 (primeiro nó que ficou desbalanceado).

3º) Rotação simples à direita do nó 40 (primeiro nó que ficou desbalanceado).

Filho a direita do nó 30 passa a ser filho a esquerda do nó 40.

3º) Rotação simples à direita do nó 40 (primeiro nó que ficou desbalanceado).

Filho a esquerda do nó 40 passa a ser o filho a direita do nó 30.

Filho a direita do nó 30 passa a ser o nó 40.

3º) Rotação simples à direita do nó 40 (primeiro nó que ficou desbalanceado).

Filho a esquerda do nó 40 passa a ser o filho a direita do nó 30.

Filho a direita do nó 30 passa a ser o nó 40.

Filho a esquerda do nó 50 passa a ser o nó 30.

E resolveu os desbalanceamentos?
Sim, todas as diferenças de alturas agora são menores que 2.

Continua uma árvore de pesquisa binária?
 Sim. Percurso "em ordem":
 10 20 30 35 40 45 50 70 80

1º) Vamos inserir o nó 38.

Resultado: desbalanceou os nós 40 e 50.

2º) Vamos balancear o nó 40.

Por que o nó 40 e não o 50?

Porque a idéia é que ao ajustarmos as subárvores esquerda e direita do nó 40, teremos automaticamente ajustado a subárvore esquerda do nó 50 também.

3º) Aplicar rotação dupla à direita para balancear o nó 40.

Por que rotação à direita? Porque $h_e > h_d$ para o nó 40. Logo a subárvore esquerda do nó 40 está mais pesada que a subárvore direita do nó 40.

Por que rotação dupla? Porque $h_e < h_d$ para o nó 30 (nó filho esquerdo do nó 40, que é a subárvore mais pesada).

Desse fato se conclui que o novo nó (nó 38) foi inserido na subárvore direita do nó 30.

E resolveu os desbalanceamentos?
Sim, todas as diferenças de alturas agora são menores que 2.

Continua uma árvore de pesquisa binária?
Sim. Percurso "em ordem":
20 30 35 38 40 45 50 70 80

DELEÇÕES NA ÁRVORE AVL

Resultado da deleção sugere rotação

Rotação simples à direita

Rotação simples à esquerda

Rotação esquerda-direita

Rotação direita-esquerda

Rotação simples à esquerda

Resumo

- AVL são árvores binárias parc. Balanceadas
- Fator b ≥ 1 ou b ≤ -1 exige rotações
- Quatro tipos de rotação
 - Simples à direita (aka Right-Right)
 - Simples à Esquerda (aka Left-Left)
 - Esquerda, depois direita (aka Left-Right)
 - Direita, depois esquerda (aka Right-Left)