

Ingegneria del Software - Mod.A e B Introduzione al Corso

Prof. Sergio Di Martino - Prof. Franco Cutugno

Ciclo di Vita del Software

Software e costi

Dimensioni di un tipico software

▶ Dimensioni in termini di Linee di Codice per alcuni sw di uso comune:

Sistema	Linee di codice
App Media per iOs	400.000
Firefox	34.871.726
Windows 11	≈ 50.000.000
Vettura alto di gamma	>100.000.000
Ecosistema Google	>2.000.000.000

https://www.openhub.net/p/firefox/analyses/latest/language s_summary

Lo sviluppo del software

Approccio Naive:

Specifiche

- ▶ Da dove vengono le specifiche?
- ► Le specifiche corrispondono alle vere esigenze del cliente?
- Come si decide l'architettura/struttura del Programma?
- ► Come suddividiamo il lavoro tra più programmatori?
- ► Come sappiamo se il programma davvero implementa le specifiche?
- ▶ Il programma funziona sempre correttamente?
- ► Come gestiamo modifiche delle specifiche?

L'Industria del Software

- ▶ Produrre software non è (solo) un'arte e neppure (solo) una scienza: è un'industria
 - ► Si lavora sempre in un contesto di gruppo e di azienda
 - vincoli economici e requisiti di qualitá
- Come in ogni industria, per produrre software sono state sviluppate metodologie di progetto, di sviluppo e di verifica
- ▶ Il laureato in Informatica deve conoscerle!
 - ▶ Non basta essere i migliori programmatori possibili
 - ➤ Si deve sapere come ANALIZZARE, PROGETTARE e VALIDARE un software nella sua interezza, con particolare enfasi anche sulle interfacce grafiche

L'Ingegneria

- L'ingegneria propone *metodologie di sviluppo*, che riassumono e formalizzano esperienze e conoscenze pregresse
 - ▶ Edilizia
 - ► Marco Vitruvio Pollione, *De Architectura* (1° Secolo A.C.)
 - ► Aereonautica, Automobili, etc...
 - ▶ Elettronica
 - Nucleare
- ► Molti fattori hanno storicamente limitato l'utilizzo di approcci ingegneristici nella produzione di software
 - ► L'intangibilità del software
 - ▶ Disciplina (relativamente) nuova
 - ► Approccio "artistico", non strutturato allo sviluppo

L'Ingegneria del Software

- Alcune definizioni
 - ► "The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software; that is, the application of engineering to software " [IEEE]
 - "State of the art of developing quality software on time and within budget"

Il Concetto di Qualità del Software

Qualità del Software

- Quality (IEEE SE Glossary).
 - 1. The degree to which a system, component, or process meets specified requirements.
 - 2. The degree to which a system, component, or process meets customer or user needs or expectations.
- Gran parte della ricerca nel campo dell'ingegneria del software è dedicata, direttamente o indirettamente, al tema della qualità del prodotto software.

Qualità Esterna e Qualità Interna

- ▶ I fattori rispetto a cui si può misurare la qualità del software vengono classificati in:
 - ► Fattori Interni la qualità del software percepita dagli sviluppatori
 - ► Fattori Esterni la qualità del software percepita dagli utenti

(Alcune) Qualità Interne del SW

Riparabilità

▶ Un sistema è riparabile se la correzione degli errori è agevole. La riparabilità si persegue attraverso la modularizzazione e opportune metodologie di progettazione.

Manutenibilità

► Facilità di apportare modifiche a istema realizzato.

Riusabilità

Facilità con cui è possible iusare parti di sistema per realizzare un prodotto divel 2.

Verificabilità

▶ Un sistema è verificabile se le sue proprietà di correttezza e di affidabilità sono facilmente validabili.

(Alcune) Qualità Esterne del SW

Usabilità

▶ Un sistema è facile da usare se un esse umano lo reputa tale.

▶ Robustezza

La robustezza di un sistema è la refisi ra in cui il sistema si comporta in modo ragionevole il situazioni impreviste, non contemplate dalle specifiche.

Affidabilità

► Un sistema è tant prù ffidabile quanto più raramente, durante l'uso del sistema i manifestano malfunzionamenti.

Informazioni sul corso

Organizzazione del corso

- ► ~40 lezioni:
 - ▶ 4-5 lezioni per argomento
 - ▶ 3-4 seminari di aziende
 - ▶ Esercitazioni

Obiettivi del Corso di Ingegneria del Software

- Conoscenze che si intendono trasmettere (sapere):
 - ► Metodi e tecniche per sviluppare software di migliore qualità
 - ▶ Modulo A: Focus su qualità INTERNE del codice
 - ► Modulo B: Focus su qualità ESTERNE del codice
 - ► Concetti di base dell'ingegneria del software, dei processi di ingegneria del software e delle relative fasi, attività e deliverable;
 - Concetti di base dell'interazione uomo-macchina, e dei paradigmi di interazione
 - ► Metodi di analisi e progettazione di un sistema software e della sua GUI. Importanza dei linguaggi di modellazione del software per la comunicazione tra diversi attori coinvolti in un processo di ingegneria del software;
 - ► Concetti e tecniche di testing e validazione del software;
 - Concetti e tecniche di valutazione dell'usabilità di un software
 - Principali problematiche e metodologie per la gestione dei progetti software

Comunicazioni Docente → Studenti

► Sito Istituzionale su docenti.unina

Siti dei docenti: www.docenti.unina.it/sergio.dimartino www.docenti.unina.it/francesco.cutugno

Comunicazioni Studenti -> Docente

- NO Chat di Teams
- ► Mail:
 - ► Solo per quesiti brevi! Per quesiti articolati esiste il ricevimento
 - sergio.dimartino@unina.it oppure cutugno@unina.it
 - ► Subject: [INGSW] *e poi l'oggetto*
 - ► Firmare SEMPRE le mail
 - ▶ Non mandare mail per quesiti su aspetti già descritti nel sito istituzionale e/o nel materiale didattico.
 - ► Le mail che non rispettano queste regole non solo non riceveranno risposta, ma saranno fonte di valutazione negativa!
- ► La comunicazione cliente/committente è uno degli aspetti chiave nell'Ingegneria del Software!

Modalità di esame

- Progetto obbligatorio di gruppo
 - Analisi, Progettazione, Implementazione e Testing di un piccolo sistema software
 - ▶ Presentazione di gruppo ai docenti
 - ▶ Documentazione + Demo/Powerpoint max 20 min.
- Scritto:
 - ► Esercizi e domande aperte sull'intero programma.
 - Obbligatorio
 - ▶ Può essere sostenuto nei 12 mesi successivi alla consegna del progetto
- Orale obbligatorio se il voto del progetto è superiore di almeno 4 punti a quello dello scritto
- Voto: Media di Progetto e Scritto (ed eventuale orale)

Progetto come gioco di ruolo

- Un'unica traccia, declinata differentemente per i vari gruppi
- ▶ Committente: Docenti
 - Saranno fornite specifiche incomplete e potenzialmente inconsistenti.
 - ► Le specifiche vanno raffinare in incontri programmati e contingentati (per numero e durata).
- Azienda produttrice: Gruppo di studenti.
- Si dovranno produrre tre documenti, oltre al codice
 - Analisi dei requisiti
 - ▶ Progettazione di sistema
 - ► Progettazione dei casi di test

Presentazione Progetto

- ▶ Ogni gruppo, a valle della consegna del progetto, dovrà concordare con i docenti una data per la presentazione (in orario di ricevimento, se non diversamente specificato).
- La presentazione si articola in 3 fasi:
 - 1. Presentazione **tecnica** del progetto (Slides)
 - ▶ 15 minuti per convincerci di aver sviluppato un prodotto di alta qualità interna/esterna
 - 2. Demo dell'applicativo dopo la presentazione
 - Discussione del codice
- ► Vale il concetto di Collective Ownership

Valutazione del Progetto

- ▶ Qualità della progettazione, presentazione e demo.
- ▶ Valutazione dell'intera interazione committente-contraente.
 - ▶ Interazione e uso degli strumenti di comunicazione.
 - Qualità grafica dei documenti prodotti.
 - ▶ Qualità della presentazione finale.
 - ► Capacità di rispettare le indicazioni del docente nella consegna
- ► E' necessaria una valutazione almeno sufficiente su tutti gli artefatti prodotti.
- ▶ Il progetto dell'a.a. 2022-23 può essere consegnato entro il 29 Ottobre 2023.
 - ► Traccia semplificata per chi consegna entro la prima sessione

Progetto e Scritto

- ► Lo scritto può essere sostenuto solo *dopo* aver consegnato il progetto.
- ▶ Dalla data di consegna del progetto, si ha <u>un anno</u> di tempo per sostenere lo scritto.

Formazione dei gruppi

- ► Consistenza numerica: 2/3 persone
 - ► Esperienza di lavoro in team.
 - Saranno ammessi gruppi singoli solo per motivati e documentati impedimenti (ad esempio lavorativi)
- Formazioni dei gruppi
 - Autonome comunicate nel gruppo del corso
 - ▶ Operate dal docente in base alle disponibilità per studenti che non riescano a stabilire formazioni autonome.
- Variazione dei gruppi
 - Ogni variazione di un gruppo ufficializzato deve essere concordata con il docente

Cheating Policy

- ▶ Viene usato uno strumento automatico di Cheating Detection per il confronto di tutto ciò che viene consegnato.
- ► In caso di due o più progetti siano ritenuti troppo simili, ad insindacabile giudizio dei docenti, i progetti saranno annullati ad entrambi i gruppi e sarà data una nuova traccia, più estesa e complessa di quella originaria

Materiali di studio (1)

- ► Libri di testo generali consigliati
- Parti generali
 - ▶ I. Sommerville. Software Engineering, Pearson.
- Progettazione ad oggetti
 - ► C. Larman, Applicare UML e i Pattern Analisi e Progettazione orientata agli Oggetti, III ed. Prentice-Hall, 2005.
 - ▶ B. Bruegge, A. Dutoit. Object-Oriented Software Engineering, Pearson, 2008. (Alternativo a C. Larman).

Materiali di studio (2)

- ► UML
 - ► Stevens Rod Pooley, Usare UML, Addison Wesley, 2008.
 - ▶ J. Arlow, Ila Neustadt, UML2 e Unified Process, McGraw-Hill, 2006.
- ► Altri testi su aspetti specifici
 - ▶ P. Amman, J. Offutt. Introduction to software testing, Cambrigde University Press, 2008.
 - ► E. Gamma, R. Helm, R.Johnson, J. Vissides. Design patterns, Addison Wesley

Materiali di studio (3)

- ► A. Polillo Facile da Usare. Apogeo 2010
- ▶ J. Lazar, J. . Feng, H. Hochheiser. Research Methods in Human-Computer Interaction. Wiley 2010
- ► A. Cooper, R. Reimann, D. Cronin. About Face: The Essentials of Interaction Design. Wiley 2017
- ▶ Materiali vari indicati di volta in volta al corso.

Materiali di studio (4)

- ▶ Lucidi delle lezioni
 - ▶ I lucidi saranno disponibili on-line.
 - ▶ I lucidi delle lezioni non sono sostitutivi dei libri di testo.
- ▶ Materiali vari indicati di volta in volta al corso.

Contatti

- ▶ Ufficio: Palazzina 1, II piano, via Claudio 21
- Ricevimento Di Martino:
 - ▶ Durante il I semestre, Giovedì 10:00 12:00, in Presenza/Teams.
 - ▶ Dalla fine del semestre, indicazioni sul sito del docente.
- ➤ Sito del docente: www.docenti.unina.it/sergio.dimartino