некоторые пределы

$ \lim_{x\to 0}\frac{\sin x}{x}=1 $	$\lim_{x\to 0}\frac{\operatorname{tg} x}{x}=1$	
$\lim_{x\to 0}\frac{e^x-1}{x}=1$	$ \lim_{x\to 0}\frac{a^x-1}{x}=\ln a,a>0 $	
$\lim_{x\to 0}(1+x)^{1/x}=e$	$\lim_{x\to 0}\frac{\ln{(1+x)}}{x}=1$	
производные элементарных функций		
Функция	Производная	
f(x) = c	c'=0, где c — const	
$f(x)=x^{\alpha}$	$(x^{\alpha})' = \alpha x^{\alpha-1}$	
$f(x)=e^x$	$(e^x)'=e^x$	
$f(x)=a^x$	$(a^x)'=a^x\ln a$	
$f(x) = \ln x$	$(\ln x)' = \frac{1}{x}$	
$f(x) = \log_a x$	$(\log_a x)' = \frac{1}{x \ln a}$	
$f(x)=\sin x$	$(\sin x)' = \cos x$	
$f(x)=\cos x$	$(\cos x)' = -\sin x$	
$f(x)=\operatorname{tg} x$	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	
$f(x)=\operatorname{ctg} x$	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	
$f(x) = \arcsin x$	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	
$f(x) = \arccos x$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	
$f(x) = \operatorname{arctg} x$	$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$	
$f(x) = \operatorname{arcctg} x$	$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	
таблица интегралов		
$\int 0 \cdot dx = C$	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$	
$\int 1 \cdot dx = x + C$	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C$	
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ (\alpha \neq -1)$	$\int \frac{1}{\sin x} dx = \ln \left \lg \frac{x}{2} \right + C$	
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{\cos x} dx = \ln \left \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$	
$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} \arcsin x + C \\ -C \end{cases}$	$-\cos x$ $-(2 4)$	

$f(x) = \operatorname{arcctg} x$	$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$
ТАБЛИЦА ИНТЕГРАЛОВ	
$\int 0 \cdot dx = C$	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$
$\int 1 \cdot dx = x + C$	$\int \frac{1}{\sin^2 x} dx = -\cot x + C$
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ (\alpha \neq -1)$	$\int \frac{1}{\sin x} dx = \ln \left \lg \frac{x}{2} \right + C$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{\cos x} dx = \ln \left \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \begin{cases} \arcsin x + C \\ -\arccos x + C \end{cases}$	1
$\int \frac{1}{1+x^2} dx = \begin{cases} \arctan x + C \\ -\arctan x + C \end{cases}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \begin{cases} \arcsin \frac{x}{a} + C \\ -\arccos \frac{x}{a} + C \end{cases}$
$\int a^x dx = \frac{a^x}{\ln a} + C$	
$\int \sin x dx = -\cos x + C$	$\int \frac{1}{a^2 + x^2} dx = \begin{cases} \frac{1}{a} \arctan \frac{x}{a} + C \\ -\frac{1}{a} \operatorname{arcctg} \frac{x}{a} + C \end{cases}$
$\int \cos x dx = \sin x + C$	
$\int \operatorname{tg} x dx = -\ln \cos x + C$	$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + C$
$\int \operatorname{ctg} x dx = \ln \sin x + C$	