

Importance of direct marketing decision support through predictive customer response modeling is recognized

Background

- A bank is marketing Certificates of Deposit (CD) to a pool of 1,000 potential customers. The bank estimates that 13% of them are likely to buy a CD if they are contacted.
- The cost of each contact is \$10. The NPV to the bank of a customer buying a CD is \$50. Clearly, it is not profitable to contact all the potential customers.
- It has an unbalanced data set* (bank.csv) of some customers and whether they bought the CD or not. The data set has 16 features and a class variable for a total of 17 columns (e.g., age, job, marital, education, default, housing, balance, loan, campaign). It has 4,521 observations.

Request for Analytics Assistance

- To maximize expected profit, the bank is expected to employ a predictive model to predict whether or not a potential customer is a likely buyer.
- The data set will be used here to build the predictive model. After unbalanced data set is adjusted and decision tree is calibrated using complexity parameter and optimal cutoff, the expected profit is maximized at \$2261.017.
- Given the goal of driving future profit by better predicting which of past customers are best prospects to purchase CDs, the implementation of analytics team should focus on customer data organization, model performance perfection, and results monitoring.

Decision tree technique will be applied for target selection, reaching objective of direct marketing to maximize expected profit

A Decision Tree Pruned Using Complexity Parameter (CP) and Optimal Cutoff

- Route A (Pre-Prune): fit = rpart(churn ~ ., data=b.train, control=rpart.control(xval=10, cp=bestcp))
- Route B (Post-Prune): fit = prune.rpart(fit, cp=bestcp)
- Two routes produce similar results, thus in code post-pruned way is used as example.
- In the next slide, how to get optimal tree by finding best cp and best cutoff in a balanced dataset will be discussed.

Analytics Design & Process - Workstream Highlights*

Build a complex tree

Post prune with best complexity parameter

bestcp = fit\$cptable[which.min(fit\$cptable[,"xerror"]),

lowest error occurs at cp = 0.01186944

post-pruning fit.post = prune.rpart(fit, cp=bestcp) nrow(fit.post\$frame)

the pruned tree have 17 nodes

compute the confusion matrices in test cm = confusionMatrix(table(predict(fit.post, b.test, type="class"), b.test\$y), positive='ves')

profit = 5200 - 5200 * (1-cm\$byClass["Sensitivity"][[1]]) - 8700 * (1-cm\$byClass["Specificity"][[1]]) # profit = \$1600.222

splitting the training dataset b.train.yes = subset(b.train, v == 'ves'b.train.no = subset(b.train, y == 'no')

take a subsample from b.train.no with the same number of observations as b.train.yes. set.seed(234) no = sample(1:nrow(b.train.no),nr ow(b.train.yes)) b.train.no = b.train.no[no,]

Combine b.train.yes and subsample of b.train.no to make a new balanced training data frame b.bal = rbind(b.train.yes, b.train.no)

bal.fit has 95 nodes

lowest error occurs at bal.bestcp = 0.007418398

post-prund tree has bal.fit.post 19 nodes

profit = \$2186.02

Retrain model using balanced dataset

library(ROCR)

start by predicting prob instead of class v.pred = as.data.frame(predict(bal.fit.post, b.bal, type="prob"))

first step is to compute the score object v.pred.score = rediction(v.pred[,2], b.bal\$v)

library(rpart)

fit = rpart(y ~ ., # formula

rather than use ROCR curve directly, the cost built into ROC is used v.cost = performance(v.pred.score, measure="cost", cost.fn=5200, cost.fp=8700) cutoff.best = v.cost@x.values[[1]][which.min(v.cost@y.values[[1]])] # 0.7142857

make predictions using this cutoff rate for the test set v.pred.test = predict(bal.fit.post, b.test, type="prob") v.pred.test.cutoff = ifelse(v.pred.test[,2] > cutoff.best,'yes','no')

now find the profit for the test data set using the optimal cutoff cm = confusionMatrix(table(pred=y.pred.test.cutoff,actual = b.test\$v), positive='yes') profit = 5200 - 5200 * (1-cm\$byClass["Sensitivity"][[1]]) - 8700 * (1-cm\$byClass["Specificity"][[1]]) # profit = \$2261.017

Create a balanced dataset

Find Optimal Threshold for Cutoff

xval = 10 : cross-sample with 10 folds to determine error rate at each node

minsplit = 10 : min number of observations to attempt split # cp = 0 : minimum improvement in complexity parameter for splitting

control=rpart.control(xval=10, minsplit=10, cp = 0.0))

data=b.train, # dataframe used

nrow(fit\$frame) # the biggest tree have 193 nodes

now we will determine the optimal cutoff

*See complete code on https://qithub.com/Shelly-Yang/Predictive-Modeling-for-Direct-Marketing.

Dataset Description

Feature	Description
age	Age of customer in years (integer)
job	Job category, one of 12 possible values, (string)
marital	Marital status, one of 3 possible values, (string)
education	Level of education, one of 4 possible values, (string)
default	Whether the customer has previously defaulted on a loan (yes or no)
balance	Average daily balance (numeric)
housing	Whether the customer has a mortgage with the bank (yes or no)
loan	Whether the customer has a revolving loan credit with the bank (yes or no)
day	Date of last contact
month	Month of last contact
contact	Method of last contact, one of three values (string)
duration	Duration of last contact, in minutes, (integer)
campaign	Campaign identifier
pdays	Days to prior contact
previous	Number of previous contacts
poutcome	Outcome of previous
у	Whether the customer purchased a CD or not (yes, or no), the class variable