Tabăra de pregătire a lotului național de informatică

Râmnicu - Vâlcea, 24 aprilie - 1 mai 2015 Baraj 2 – Juniori

Problema 1 - easydel

Autor - prof. Ionel-Vasile Piţ-Rada, Colegiul Naţional "Traian",

Drobeta Turnu Severin

Descrierea soluției

Presupunem că eliminarea cuburilor se efectuează în ordinea x_1 , x_2 , ..., x_C , unde x_i este culoarea cuburilor care se elimină la pasul i . Calcularea efortului de deplasare poate fi făcută în aproximativ $\mathbf{C} \cdot \mathbf{N}$ pași, unde C este numărul de culori distincte.

Complexitatea O(C!·C·N)

Se calculează pentru fiecare permutare a mulțimii $T = \{1, 2, ..., C\}$ efortul de deplasare și se reține cel mai mare.

Complexitate O(2^c·C·N)

Se calculează pentru fiecare submulțime de culori S efortul de deplasare corespunzător eliminării cuburilor de culori din S. Submulțimile se pot parcurge în ordinea crescătoare numărului de elemente. Efortul EF (S) corespunzător eliminării cuburilor de culori din submulțimea $S = \{ x_1, x_2, ..., x_k \}$, se poate calcula cu relația

$$EF (S) = \max \{ EF (S-\{x_i\}) + NR(x_i) \mid 1 \leq i \leq k \},$$

unde NR(x_i) este numărul de mutări efectuat la etapa de eliminare a cuburilor de culoare x_i dintre cele rămase după eliminarea celor de culori din S-{ x_i }.

Complexitățile de mai sus se pot îmbunătăți la $O(C! \cdot C^2 + C \cdot N)$ și respectiv $O(2^c \cdot C^2 + C \cdot N)$, dacă se observă că se poate precalcula , cu complexitate $O(C \cdot N)$, matricea definită prin

Q[i][j] = numărul de mutări ale cuburilor de culoare j , dacă se elimină cuburile de culoare i