Presentación de la materia Historia de las computadoras

Organización de computadoras

Universidad Nacional de Quilmes

12 de agosto de 2013

Horarios

Dos bandas horarias:				
Banda	Clase	Aula	Horario	Docente
Matutina	Teoría		Martes de 10 a 13	Flavia (sflaviaar@yahoo.com.ar) y Mara (mdalponte@unq.edu.ar)
	Práctica	51	Viernes de 10 a 13	Flavia (sflaviaar@yahoo.com.ar) y Mara (mdalponte@unq.edu.ar)
	Práctica	103	Sabado de 9 a 12	Federico (federicoemartinez@gmail.com)
Nocturna	Teoría		Martes de 19 a 22	Federico (federicoemartinez@gmail.com)
	Práctica	52	Viernes de 16 a 19	Esteban y Flavia
	Práctica	52	Viernes de 19 a 22	Esteban

Reglas del juego

Importante: Comunicación

Para comunicarnos

- Lista de correos
- tpi-est-org@listas.unq.edu.ar
- tpi-doc-org@listas.unq.edu.ar
- Campus virtual http://campus.unq.edu.ar/

(1)

Entender los principios básicos de funcionamiento de las computadoras

(2)

Reconocer los componentes funcionales y entender su funcionamiento

(3)

Entender el mecanismo de ejecución de los programas

```
Per No. 1981, NM. E. POLICELE:
1990 [4:0] STO. CYCLE:
1990 [4:0] STO.
1990 [4:
```

(4)

Entender las decisiones de diseño de una arquitectura y como se relacionan con el modelo de programación que ofrece

(5)

Conocer las características básicas de la comunicación de la computadora con el usuario y con otras computadoras

Terminología

Arquitectura de una computadora

atributos de un sistema que puede ver un programador. Tienen un efecto directo en la ejecución de un programa

Organización de una computadora

unidades funcionales y sus interconexiones que hacen efectivas las especificaciones de la arquitectura.

Historia Arquitectura de Von Neumann Sistema Binario

Historia de las computadoras

1642

Pascal

1671

Leibniz: Calculadora que efectuaba multiplicaciones y divisiones (modo paso a paso)

Se usan las tarjetas perforadas para especificar patrones de tejido (Instrucciones ejecutadas por humanos)

1801

Jaquard:

1833

Babbage

1944

MARK 1 (Harvard University):

1946

ENIAC (University of Pensilvania):

1952

IAS (Princeton):

1952 | Programa almacenado

1952 | Programa almacenado

¿Cómo almacenarlo en memoria?

1952 | Programa almacenado

¿Cómo almacenarlo en memoria?

Representar las instrucciones adecuadamente

1951

UNIVAC

1952

IBM 701

1964

IBM 360

PDP-8

1974

1976

1985

Intel 80386

Apple 1

Historia
Arquitectura de Von Neumann
Sistema Binario
Otras bases

Arquitectura de Von Neumann

¿Qué es un programa?

¿Qué es un programa?

Programa

Secuencia de instrucciones que resuelven un problema

¿Qué es un programa?

Programa

Secuencia de instrucciones que resuelven un problema

¿Qué es una instrucción?

¿Qué es un programa?

Programa

Secuencia de instrucciones que resuelven un problema

¿Qué es una instrucción?

Instrucción

Una orden que puede ser llevada a cabo por una computadora

Instrucciones en la historia

¿Cómo eran las instrucciones en esta época?

¿Cuando aparece el software?

¿Cuando aparece el software?

Cuando las computadoras no se programan manualmente con cables e interruptores

¿Cuando aparece el software?

Cuando las computadoras no se programan manualmente con cables e interruptores

Los programas se *memorizan* (ej: tarjetas perforadas)

¿Cómo se memoriza un programa?

¿Cómo se memoriza un programa?

Escribiendolo mediante un código

¿Cómo se *memoriza* un programa?

Escribiendolo mediante un código

El código debe ser **interpretado** por la computadora

Arquitectura de Von Neumann

Arquitectura de Von Neumann

- UC Capaz de interpretar y ejecutar las instrucciones traidas de memoria
- ALU Capaz de operar con datos binarios: operaciones aritméticas elementales

Arquitectura de Von Neumann

El sistema binario

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

El sistema binario

En el mundo interno de las computadoras se utilizan solo 0 y 1.

El sistema binario

En el mundo interno de las computadoras se utilizan solo 0 y 1.

BIT

($\underline{\mathsf{BI}}$ nary digi $\underline{\mathsf{T}}$) es un dígito que puede ser 0 ó 1.

BYTE

cadena de 8 bits.

El sistema binario

En el mundo interno de las computadoras se utilizan solo 0 y 1.

BIT

(BInary digiT) es un dígito que puede ser 0 ó 1.

BYTE

cadena de 8 bits.

El sistema binario:

- Utiliza solo dos símbolos: 0 y 1, llamados "bits".
- Es un sistema posicional.
- El número representado será la suma de potencias de 2.

distoria Arquitectura de Von Neumani i**istema Binario** Otras bases

Interpretación

Historia
Arquitectura de Von Neumanr
Sistema Binario
Otras bases

Sistema binario: interpretación

La tarea de **interpretar** responde la pregunta:

Historia
Arquitectura de Von Neumanr
Sistema Binario
Otras bases

Sistema binario: interpretación

La tarea de **interpretar** responde la pregunta:

¿Qué significa esta cadena?

La tarea de **interpretar** responde la pregunta:

¿Qué significa esta cadena?

Ejemplos:

Sistema Decimal la cadena 11 significa: $(1 \times 10) + (1 \times 1)$

La tarea de **interpretar** responde la pregunta:

¿Qué significa esta cadena?

Ejemplos:

Sistema Decimal la cadena 11 significa: $(1 \times 10) + (1 \times 1)$

Sistema Binario ¿Cómo saber que significa la cadena 11?

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Sistema binario: interpretación

¿Cómo saber **qué significa** la cadena 11?

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Sistema binario: interpretación

¿Cómo saber qué significa la cadena 11?

- 4 definir cuanto pesa el primer '1' y cuanto pesa el segundo '1'
- sumar los componentes del valor

¿Cómo saber qué significa la cadena 11?

- 4 definir cuanto pesa el primer '1' y cuanto pesa el segundo '1'
- sumar los componentes del valor

cadena 1 1

¿Cómo saber qué significa la cadena 11?

- definir cuanto pesa el primer '1' y cuanto pesa el segundo '1'
- sumar los componentes del valor

cadena	1	1
pesos	2^1	2^{0}

¿Cómo saber qué significa la cadena 11?

- definir cuanto pesa el primer '1' y cuanto pesa el segundo '1'
- sumar los componentes del valor

cadena	1	1
pesos	2^1	2 ⁰

Interpretar

Encontrar el valor que representa la cadena dada

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Sistema binario: interpretación

Mas ejemplos de interpretaciones

 $110 \rightarrow$

$$\begin{array}{l} {\bf 110} \ \to 0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 \\ = 2 + 4 \\ = 6 \end{array}$$

$$110 \rightarrow 0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2}$$

$$= 2 + 4$$

$$= 6$$

$$101 \rightarrow 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2}$$

$$= 1 + 4$$

$$= 5$$

$$110 \rightarrow 0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2}$$

$$= 2 + 4$$

$$= 6$$

$$101 \rightarrow 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2}$$

$$= 1 + 4$$

$$= 5$$

$$1101 \rightarrow 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3}$$

$$= 1 + 4 + 8$$

$$= 13$$

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Sistema binario: interpretación

 $101101 \rightarrow$

$$\begin{array}{l} \textbf{101101} \ \to 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 0 \times 2^4 + 1 \times 2^5 \\ = 1 + 4 + 8 + 32 \\ = 45 \end{array}$$

$$101101 \rightarrow 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 0 \times 2^{4} + 1 \times 2^{5}$$

$$= 1 + 4 + 8 + 32$$

$$= 45$$

$$110000010100$$

$$\begin{array}{l} \textbf{101101} \ \to 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 0 \times 2^4 + 1 \times 2^5 \\ = 1 + 4 + 8 + 32 \\ = 45 \end{array}$$

110000010100

Historia Arquitectura de Von Neuman **Sistema Binario** Otras bases

Representación

Historia Arquitectura de Von Neumanr Sistema Binario Otras bases

Así aprendimos a interpretar una cadena binaria

Así aprendimos a interpretar una cadena binaria

También necesitamos aprender a 'escribir' una cadena binaria que represente el valor que queremos.

Así aprendimos a interpretar una cadena binaria

También necesitamos aprender a 'escribir' una cadena binaria que represente el valor que queremos.

Representar

Encontrar una cadena en el sistema (binario) que tenga el valor dado

Historia
Arquitectura de Von Neumani
Sistema Binario
Otras bases

Sistema binario: Representación

Para representar un número X:

- Dividiendo X sucesivamente por 2 hasta obtener cociente cero.
- Escribiendo los restos del primero al último de derecha a izquierda.

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Sistema binario: Representación

Queremos escribir el número 26 en binario.

Sistema binario: Representación

Queremos escribir el número 26 en binario.

Historia
Arquitectura de Von Neumani
Sistema Binario
Otras bases

Sistema binario: Representación

Ejercicios

- Representar el número 4
- 2 Representar el número 8
- Representar el número 16
- Representar el número 17

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Aritmética binaria

Un sistema de numeración debe proveer:

Aritmética binaria

Un sistema de numeración debe proveer:

- Mecanismo de interpretación
- Mecanismo de representación

Aritmética binaria

Un sistema de numeración debe proveer:

- Mecanismo de interpretación
- Mecanismo de representación
- Aritmética

• Es más sencillo que en decimal ya que solo sumamos 0's y 1's.

- Es más sencillo que en decimal ya que solo sumamos 0's y 1's.
- Casos posibles al sumar 1 bit:

- Es más sencillo que en decimal ya que solo sumamos 0's y 1's.
- Casos posibles al sumar 1 bit:

- Es más sencillo que en decimal ya que solo sumamos 0's y 1's.
- Casos posibles al sumar 1 bit:

$$+ \frac{0}{1}$$

- Es más sencillo que en decimal ya que solo sumamos 0's y 1's.
- Casos posibles al sumar 1 bit:

+ 0 0	$\begin{vmatrix} + \frac{1}{0} \\ \hline 1 \end{vmatrix}$
+ 0 1 1	+ 1 "me llevo 1" - 1 0

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Suma de múltiples bits

¿Qué pasa al sumar más de un bit?

Suma de múltiples bits

¿Qué pasa al sumar más de un bit?

Se debe considerar si hubo acarreo de la columna inmediata anterior

Suma de múltiples bits

¿Qué pasa al sumar más de un bit?

Se debe considerar si hubo acarreo de la columna inmediata anterior

Hay 8 casos

Suma de múltiples bits

$$\begin{array}{c} \text{anterior=0} \\ + \begin{array}{c} 1 \\ 0 \\ \hline 1 \end{array}$$

anterior=1
$$+ 0$$

$$- 0$$

$$- 1$$

anterior=1
$$0$$
acarreo $\frac{1}{0}$

Aritmética binaria: resta

 Se opera en forma similar a la suma, procediendo bit a bit de derecha a izquierda.

Aritmética binaria: resta

- Se opera en forma similar a la suma, procediendo bit a bit de derecha a izquierda.
- Cuando se resta 0-1, se "pide uno" al bit inmediatamente a la izquierda. Cuando esto sucede, tendremos acarreo.

Aritmética binaria: resta

- Se opera en forma similar a la suma, procediendo bit a bit de derecha a izquierda.
- Cuando se resta 0-1, se "pide uno" al bit inmediatamente a la izquierda. Cuando esto sucede, tendremos acarreo.

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

$$\begin{array}{c|c|c} -\frac{1}{0} & -\frac{1}{1} \\ \hline \end{array}$$

- 1 0 1	$\begin{array}{c} -\frac{1}{1} \\ \hline 0 \end{array}$
- 0 0 0	0 - 1 1

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Resta con múltiples bits

¿Qué pasa al restar con más de un bit?

Resta con múltiples bits

¿Qué pasa al restar con más de un bit?

Se debe considerar si hubo **prestamo** en la columna inmediata derecha

Resta con múltiples bits

¿Qué pasa al restar con más de un bit?

Se debe considerar si hubo **prestamo** en la columna inmediata derecha

Hay 8 casos

Resta con múltiples bits

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ 0 \\ 1 \end{array} \end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array}$$

Historia
Arquitectura de Von Neumann
Sistema Binario
Otras bases

Rango

Si se limita el sistema de numeración a una cantidad fija de dígitos

Si se limita el sistema de numeración a una cantidad fija de dígitos

Se limita el conjunto de números representables

Si se limita el sistema de numeración a una cantidad fija de dígitos

Se limita el conjunto de números representables

Rango

Número mínimo y número máximo representables en el sistema.

Ejercicios

• ¿Cuál es el rango de un sistema binario de 2 bits (ya lo dijo paenza)?

Ejercicios

- ¿Cuál es el rango de un sistema binario de 2 bits (ya lo dijo paenza)?
- ¿Cuál es el rango de un sistema binario de 3 bits?

Ejercicios

- ¿Cuál es el rango de un sistema binario de 2 bits (ya lo dijo paenza)?
- ¿Cuál es el rango de un sistema binario de 3 bits?
- ¿Si agregamos otro bit?

```
mínimo ¿Qué número representa la cadena de N ceros (0..0)?
Representa el valor 0
```

máximo ¿Qué número representa la cadena de N unos (1..1)?

```
mínimo ¿Qué número representa la cadena de N ceros (0..0)?
Representa el valor 0
```

máximo ¿Qué número representa la cadena de N unos (1..1)?

¡Ejercicio!

Historia Arquitectura de Von Neumani Sistema Binario Otras bases

Sistema Hexadecimal

- Utiliza 16 símbolos: {0,1,2,3,4,5,6,7,8,9,A, B,C,D,E,F}
- El número representado se obtiene: sumando los dígitos por potencias de 16.

- Utiliza 16 símbolos: {0,1,2,3,4,5,6,7,8,9,A, B,C,D,E,F}
- El número representado se obtiene: sumando los dígitos por potencias de 16.
- ¿Cuánto vale A?

• Interpretación (sumo dígitos por las potencias 16):

$$\frac{11}{11} \to 1 \times 16^1 + 1 \times 16^0 = 17$$

Interpretación (sumo dígitos por las potencias 16):

$$\frac{11}{11} \to 1 \times 16^1 + 1 \times 16^0 = 17$$

 Representación (método de las divisiones sucesivas): ¿Cómo represento el número 24 en base 16? Dividiendo sucesivamente por 16 y escribiendo los restos de derecha a izquierda.

$$R_{16}(24) = 18$$

Historia Arquitectura de Von Neumani Sistema Binario Otras bases

Interpretación en Hexadecimal

Interpretación en Hexadecimal

$$A \rightarrow A \times 16^0 =$$

Interpretación en Hexadecimal

$$A \rightarrow A \times 16^0 = 10 \times 16^0$$

Interpretación en Hexadecimal

$$\begin{array}{l} \mathsf{A} \ \rightarrow \mathsf{A} \times 16^0 = 10 \times 16^0 \\ \mathsf{B} \ \rightarrow \mathsf{B} \times 16^0 = \end{array}$$

Interpretación en Hexadecimal

$$\begin{array}{l} \mathsf{A} \ \rightarrow \mathsf{A} \times 16^0 = 10 \times 16^0 \\ \mathsf{B} \ \rightarrow \mathsf{B} \times 16^0 = 11 \times 16^0 \end{array}$$

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Ejercicios

- ¿Cuánto vale la cadena 9 en hexadecimal?
- ¿Cuánto vale la cadena F en hexadecimal?
- ¿Cómo represento el valor 30 en hexadecimal?

Sistemas Hexadecimal

- El sistema hexadecimal es un sistema de base 16 respectivamente.
- Al ser la base una potencia de 2, tiene una forma directa de conversión con binario.
- Las representaciones de números requieren de menos dígitos que binario ya que utiliza una base más grande.

- En el sistema hexadecimal (base 16) se utilizan 16 dígitos:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F
- Se agrupa de a 4 dígitos binarios por cada dígito hexadecimal,

	Hexa	Binario	Hexa	Binario
	0	0000	8	1000
	1	0001	9	1001
	2	0010	Α	1010
	3	0011	В	1011
	4	0100	С	1100
	5	0101	D	1101
	6	0110	E	1110
	7	0111	F	1111

pues $16 = 2^4$

Historia
Arquitectura de Von Neuman
Sistema Binario
Otras bases

Conversión directa Binario / Hexadecimal

Ejemplos:

Ejemplos:

 $\begin{array}{c} {\rm A34BF_{16}} \rightarrow 1010\ 0011\ 0100\ 1011\ 1111_2 \\ 101\ 1101\ 0111\ 0010\ 1100\ 0110_2 \rightarrow 5{\rm D72C6_{16}} \end{array}$

Historia
Arquitectura de Von Neuman
Sistema Binario
Otras bases

Conversión directa Binario / Hexadecimal

Ejemplos:

Ejemplos:

 $A34BF_{16} \rightarrow 1010\ 0011\ 0100\ 1011\ 1111_2$

Ejemplos:

 $\begin{array}{c} {\rm A34BF_{16}} \rightarrow 1010\ 0011\ 0100\ 1011\ 1111_2 \\ 101\ 1101\ 0111\ 0010\ 1100\ 0110_2 \rightarrow 5{\rm D72C6_{16}} \end{array}$

Historia Arquitectura de Von Neumann Sistema Binario Otras bases

Cierre

¿Preguntas?

Ejercicio: haga un resumen de lo que aprendió hoy. Para entregar!