Redes Neuronales Artificiales y Deep Learning

Percepción Multicapa (MLP), Funciones de Activación y Retropropagación

Una exploración completa de los fundamentos del aprendizaje profundo



# ¿Qué es una Red Neuronal Artificial?

Las redes neuronales artificiales están **inspiradas en el cerebro humano**, utilizando neuronas artificiales conectadas en capas que imitan el procesamiento biológico de información.

Estas redes procesan información mediante nodos (neuronas) que reciben señales de entrada, las transforman mediante operaciones matemáticas y transmiten el resultado a las siguientes capas.

### Arquitectura básica

- Capa de entrada: recibe los datos iniciales
- Capas ocultas: procesan y extraen características
- Capa de salida: genera la predicción final



# Redes Neuronales: Arquitectura y Funcionamiento



# Fundamento del Aprendizaje Profundo

Son modelos computacionales inspirados en el cerebro humano, diseñados para reconocer patrones complejos y aprender de grandes volúmenes de datos.



# **Conexiones y Pesos Sinápticos**

Las neuronas artificiales se conectan entre sí mediante 'pesos' que ajustan la fuerza de la señal, imitando las sinapsis biológicas para el aprendizaje.



# Propagación de la Información

Los datos fluyen de la capa de entrada a la de salida, transformándose en cada neurona a través de funciones de activación que permiten identificar características complejas.

# Funciones de Activación: ¿Por qué son clave?

Las funciones de activación introducen no linealidad en la red, permitiéndole aprender patrones complejos y relaciones sofisticadas en los datos.



### Sigmoide

# $f(x)=rac{1}{1+e^{-x}}$

**Rango:** 0 a 1

Ideal para clasificación binaria y probabilidades.

#### ReLU

$$f(x) = \max(0, x)$$

Activa solo valores positivos.

#### **Tanh**

$$f(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

**Rango:** -1 a 1

Tangente hiperbólica centrada en cero.

### **Softmax**

$$f(x_i) = rac{e^{x_i}}{\sum e^{x_j}}$$

Usada para clasificación multiclase

# ¿Cómo aprende una Red Neuronal?



#### **Entrenamiento con datos**

La red ajusta sus pesos internos para minimizar el error entre predicciones y valores reales



#### **Proceso iterativo**

Múltiples pasadas por los datos mejoran progresivamente la precisión de la red



### Retropropagación

Algoritmo clave que distribuye el error hacia atrás para optimizar cada peso

# Retropropagación: Ajuste de Pesos Paso a Paso

La **retropropagación** (backpropagation) es el algoritmo fundamental que permite a las redes neuronales aprender de sus errores de manera sistemática.

01

#### Cálculo del error

Se mide la diferencia entre la salida predicha y el valor real esperado

02

### Propagación hacia atrás

El error se propaga desde la capa de salida hacia las capas ocultas anteriores 03

### Cálculo de gradientes

Se determina la contribución de cada peso al error total usando derivadas parciales

04

### Actualización de pesos

Los pesos se modifican usando gradiente descendente para reducir el error

05

### **Iteración**

El proceso se repite múltiples veces hasta que el error sea mínimo aceptable

# Ejemplo Práctico: Clasificación de Dígitos Manuscritos

## Flujo del proceso



#### **Entrada**

Imagen de un dígito de 28×28 píxeles (784 valores numéricos)



#### **Procesamiento MLP**

La red procesa la imagen a través de capas ocultas que extraen características



### Salida probabilística

Vector de probabilidades para cada dígito (0-9), suma 100%



#### Clasificación

Reconocimiento automático con precisión superior al 98%

# Deep Learning: Redes Neuronales Profundas

El Deep Learning representa la evolución del perceptrón multicapa hacia arquitecturas con decenas o incluso cientos de capas ocultas.

### Visión por computadora

Reconocimiento facial, detección de objetos, segmentación de imágenes médicas

### Procesamiento de lenguaje

Traducción automática, chatbots, análisis de sentimientos, generación de texto

### Reconocimiento de voz

Asistentes virtuales, transcripción automática, comandos por voz

Estas redes aprenden **representaciones jerárquicas**: las primeras capas detectan características simples, mientras que las capas profundas identifican conceptos complejos y abstractos.

# **Retos y Consideraciones**

#### Volumen de datos masivo

Riesgo de sobreajuste

Las redes profundas requieren grandes cantidades de datos etiquetados para entrenamiento efectivo. Datos insuficientes pueden llevar a bajo rendimiento.

Sin técnicas de regularización (dropout, normalización), la red puede memorizar en lugar de generalizar patrones.

### Costo computacional elevado

Diseño de arquitectura

El entrenamiento demanda GPUs o TPUs especializadas. Tiempos de entrenamiento pueden extenderse de horas a días o semanas.

Elegir el número de capas, neuronas por capa y funciones de activación adecuadas requiere experiencia y experimentación.

Nota importante: El equilibrio entre complejidad del modelo y disponibilidad de recursos es crucial para el éxito del proyecto.