Deel 3

TeSS en UGO zwaaien!

Wat heb je nodig?

Een **servomotor** is een kleine elektromotor met tandwielen die de snelheid verlagen maar de kracht vergroten. De servomotor vertaalt een elektrische impuls in een bepaalde positie.

3 Jumperwires

Schrijf een programma waarmee je de arm van UGO of TeSS kan laten zwaaien. Gebruik hiervoor een servomotor die je verbindt met pin 9. Dit is een ~ pin.

Wat ga je maken?

TIPS VOOR SLIMME PROGRAMMEURS

Wat is een lus?

Om je servomotor traag en gecontroleerd te laten bewegen, ga je een lusstructuur gebruiken. Programmeurs noemen dit een 'for-lus'. Als je in de code duikt, zal je dit zien:

$$for(pos = 0; pos < 180; pos += 1)$$

Dit laat een stukje programma een bepaald aantal keren uitvoeren. In het algemeen is de constructie:

for(variabele; voorwaarde; vermeerdering of vermindering)

Hierboven is de variabele pos en begint bij 0. De voorwaarde is dat pos kleiner is dan 180, en pos wordt telkens met 1 verhoogd.

- 1
- 🚺 Verbind een servo motor aan pin 9.
- 2 In de 'Arduino doe eerst' bepaal je de beginpositie, en wacht je een halve seconde zodat deze positie kan ingenomen worden .

- 1 Zet een rekenlus in de Arduino herhaallus. Laat de variabele 'i' van 0 tot 90 graden bewegen in stappen van 10 graden. Zet er een positieblokje en wachtblokje in.
- 2 Verwijder het getal '90' en vervang het door een variabele.
- Verander de variabele 'item' in 'i'.

Zet nog een tweede rekenlus in de Arduino herhaallus. Laat de variabele 'i' van 90 tot 0 graden bewegen in stappen van -10 graden.

Nu moet je enkel nog de code op je Arduino zetten.

```
Platform Arduino Uno
                                                                                                     #include <Servo.h>
                                   Servo motor Servo1 Type: 0~180 graden Servo (hoek)
            digitale pin 9
                                                                                                     int i:
                                                                                                     int Servol = 9:
Arduino doe eerst:
                                                                                                     Servo myServoServo1:
                                                                                                     void setup() {
   Positioneer 180 graden Servo Servol naar 90
                                                       graden (0~180)
           500
   wacht
                                                                                                      delay(500);
Arduino herhaal voor altijd:
                                                                                                     void loop() {
  rekenen met is van
                                     90
                                           in stappen van
                                                           10
                                                                                                        delay(20);
  voer uit
             Positioneer 180 graden Servo Servo1 naar
                                                                  graden (0~180)
                                                                                                        delay(20);
                     20
                           milliseconden
                          90
  rekenen met i van
                                      0
                                           in stappen van
                                                           -10
  voer uit
             Positioneer 180 graden Servo Servo naar
                                                                  graden (0~180)
                           milliseconden
```

Arduino Source Code myServoServo1.attach(9); myServoServo1.write(90); for (i = 0; i <= 90; i += 10) { myServoServo1.write(i): for $(i = 90: i \ge 0: i = 10)$ { myServoServo1.write(1):

- 1 Verbind je Arduino met de computer. Selecteer 'Arduino Uno' en de juiste poort in de Arduino IDE.
- 2 Klik op de pijl om de code op de Arduino te laden.
- 3 Zie je 'Uploaden voltooid', dan zouden de arm nu moeten zwaaien!

Speel met de blokjes!

Duik in de code!

Verander de code zodat de servo sneller beweegt.

Hoe zou je de code moeten aanpassen om ervoor te zorgen dat de servo zonder rekenlus (for-lus) naar een bepaalde positie gaat (en daar blijft)?

Ga terug naar de blokjes!

Combineer het zwaaien met het kloppend hartje. Maak gebruik van het zelfgemaakte effect 'HartKnipperen'.

EXTRA OFFENING

Hoe kan je ervoor zorgen dat de servo steeds sneller en sneller zal bewegen?

TIP:

Vervang de stap van 10 door een variabele stapgrootte. Variabelen maak je via het Variabelen-menu. Laat de servo altijd sneller bewegen van stapgrootte 5 tot stapgrootte 25, door telkens 5 bij te tellen. Optellen vind je in het Wiskunde-menu. Als de stapgrootte 25 is maak je ze terug 5 met een als-structuur uit het Logicamenu, en een 'groter dan' test uit hetzelfde menu.

Gebruik volgende blokken:

De Creatieve STEM

