ALGEBRA Chapter 18

RACIONALIZACIÓN SESIÓN II

MOTIVATING STRATEGY

La raíz cuadrada de 2 es un número racional?

Mi calculadora dice que la raíz cuadrada de 2 es 1,4142135623730950488016887242097, ¡pero eso no es todo! de hecho sigue indefinidamente, sin que los números se repitan. No se puede escribir una fracción que sea igual a la raíz cuadrada de 2. Así que la raíz de 2 es un número irracional. Muchas raíces cuadradas, cúbicas, etc. también son números irracionales. Ejemplos:

 $\sqrt{3}$ = 1,7320508075688772935274463415059 (etc.)...

 $\sqrt{99}$ = 9,9498743710661995473447982100121 (etc.)...

pero $\sqrt{4} = 2y\sqrt[3]{27} = 3$, así que no todas las raíces son irracionales.

Es el publica de la company de

Es el places medianes el can se transforma el denominador de una fracción que tiene raíz a otra que no lo tiene, para ello hacemos uso del factor racionalizante.

Casos

	Expresión irracional	Factor racionalizante (FR)	Expresión racional
1.	$\sqrt[n]{\mathbf{A}^k}$	$\sqrt[n]{\mathbf{A}^{n-k}}; n > k$	A
2.	$\left(\sqrt{a} \mp \sqrt{b}\right)$	$\left(\sqrt{a} \mp \sqrt{b}\right)$	a – b

RACIONALIZACIÓN

$$\frac{N}{\sqrt[n]{a^m}}$$

$$\frac{N}{\sqrt[n]{a^m}} = \frac{N}{\sqrt[n]{a^m}} \times \frac{\sqrt[n]{a^{n-m}}}{\sqrt[n]{a^{n-m}}}$$

$$\frac{N}{\sqrt[n]{a^m}} = \frac{N \cdot \sqrt[n]{a^{n-m}}}{a}$$

Ejemplo.: Racionalizar

$$\frac{12}{\sqrt[3]{2}}$$

$$\frac{12}{\sqrt[3]{2}} = \frac{12}{\sqrt[3]{2}} \times \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^2}}$$

$$\frac{12}{\sqrt[3]{2}} = \frac{12.\sqrt[3]{4}}{\sqrt[3]{2}}$$

$$\frac{12}{\sqrt[3]{2}} = 6\sqrt[3]{4}$$

Caso II:

$$\frac{N}{\sqrt{a} \pm \sqrt{b}}$$

$$\frac{N}{\sqrt{a} \pm \sqrt{b}} = \frac{N}{\sqrt{a} \pm \sqrt{b}} \times \frac{\sqrt{a} \mp \sqrt{b}}{\sqrt{a} \mp \sqrt{b}}$$

$$\frac{N}{\sqrt{a} \pm \sqrt{b}} = \frac{N(\sqrt{a} \mp \sqrt{b})}{a - b}$$

Ejemplo.: Racionalizar Ţ

$$\frac{7}{\sqrt{5} + \sqrt{2}} = \frac{7}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

$$\frac{7}{\sqrt{5} + \sqrt{2}} = \frac{7(\sqrt{5} - \sqrt{2})}{5 - 2}$$

$$\frac{7}{\sqrt{5}+\sqrt{2}}=\frac{7(\sqrt{5}-\sqrt{2})}{3}$$

HELICO PRACTICE

Calcule

$$A=\frac{\sqrt{2}}{\sqrt{7}}+\frac{6\sqrt{14}}{7}$$

Resolución:

$$A = \frac{\sqrt{2}}{\sqrt{7}} + \frac{6\sqrt{14}}{7}$$

$$A = \frac{\sqrt{2}}{\sqrt{7}} + \frac{6\sqrt{14}}{7} + \frac{6\sqrt{14}}{7}$$

$$A = \frac{\sqrt{14}}{7} + \frac{6\sqrt{14}}{7} = \frac{7\sqrt{14}}{7} = \sqrt{14}$$

Recuerda

Rpta:

$$A = \sqrt{14}$$

PROBLEMA 2

Transforme a una fracción racionalizada.

$$B = \frac{5}{\sqrt[5]{5}} + 3\sqrt[5]{625}$$

$$B = \sqrt{\frac{5}{5\sqrt{5}}} + 3\sqrt[5]{625}$$

$$B = \frac{5 \times \sqrt[5]{54}}{\sqrt[5]{5}} + 3\sqrt[5]{625}$$

$$B = \frac{5\sqrt{625}}{5} + 3\sqrt[5]{625}$$

$$B = \sqrt[5]{625} + 3\sqrt[5]{625}$$

$$Rpta: B = 4\sqrt[5]{625}$$

PROBLEMA 3

Efectúe

$$F = \frac{10}{\sqrt{6} - 1} - 2\sqrt{6} + 10$$

$$F = \frac{10}{\sqrt{6} - 1} - 2\sqrt{6} + 10$$

$$Racionalización - 2do Caso$$

$$A = \frac{A}{\sqrt{x} \pm \sqrt{y}} = \frac{A}{\sqrt{x} \pm \sqrt{y}} \times \frac{\sqrt{x} \mp \sqrt{y}}{\sqrt{x} \mp \sqrt{y}} = \frac{A\sqrt{x} \mp \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{A\sqrt{x} \mp \sqrt{y}}{\sqrt{x} + \sqrt{y}} = \frac{A\sqrt{x} + \sqrt{y}}$$

Simplifique

PROBLEMA 4

$$Q = \frac{3}{\sqrt{6} + \sqrt{3}} - \frac{4}{\sqrt{6} - \sqrt{2}} + \sqrt{3}$$

Resolución

$$Q = \frac{3}{\sqrt{6} + \sqrt{3}} - \frac{4}{\sqrt{6} - \sqrt{2}} + \sqrt{3}$$

$$Q = \frac{3}{\sqrt{6} + \sqrt{3}} \times \frac{\sqrt{6} - \sqrt{3}}{\sqrt{6} - \sqrt{3}} - \frac{4}{\sqrt{6} - \sqrt{2}} \times \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

$$Q = \frac{3(\sqrt{6} - \sqrt{3})}{3} \underbrace{4(\sqrt{6} + \sqrt{2})}_{Diferencia de Guadrados | \sqrt{3}} \sqrt{3}$$
$$(a - b)(a + b) = a^2 - b^2$$

$$Q = \sqrt{6} - \sqrt{3} - (\sqrt{6} + \sqrt{2}) + \sqrt{3}$$

$$Q = \sqrt{6} - \sqrt{3} - \sqrt{6} - \sqrt{2} + \sqrt{3}$$

Racionalización - 2do Caso

$$\frac{A}{\sqrt{x} \pm \sqrt{y}} = \frac{A}{\sqrt{x} \pm \sqrt{y}} \times \frac{\sqrt{x} \mp \sqrt{y}}{\sqrt{x} \mp \sqrt{y}} = \frac{A\sqrt{x} \mp \sqrt{y}}{x - y}$$
Nota: $(\sqrt{6} + \sqrt{3}) \times (\sqrt{6} - \sqrt{3}) = (\sqrt{6})^2 - (\sqrt{3})^2 = 3$

$$(\sqrt{6} - \sqrt{2}) \times (\sqrt{6} + \sqrt{2}) = (\sqrt{6})^2 - (\sqrt{2})^2 = 4$$

Efectúe y racionalice.

Resolución:

$$H = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{2}}$$

$$H = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{2}}$$

$$H = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$H = \frac{(\sqrt{7} + \sqrt{3}).\sqrt{2}}{2} = \frac{\sqrt{14} + \sqrt{6}}{2}$$

Rpta:

$$\frac{A}{\sqrt[m]{\chi^n}} = \frac{A}{\sqrt[m]{\chi^n}} \times \frac{\sqrt[m]{\chi^{m-n}}}{\sqrt[m]{\chi^{m-n}}} = \frac{A\sqrt[m]{\chi^{m-n}}}{\chi}$$

$$Nota.\sqrt{2} \times \sqrt{2} = \sqrt{4} = 2$$

$$H=\frac{\sqrt{14}+\sqrt{6}}{2}$$

lo 🏻

PROBLEMA 6 Simplifique $Q = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$ el resultado representa el número de canicas negras que Rebeca tiene. Si son 25% del

total, ¿cuántas canicas tiene?

$$Q = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

$$Q = \frac{\sqrt{3} + \sqrt{2} \times \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}}{\sqrt{3} + \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2} \times \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}}{\sqrt{3} + \sqrt{2}}$$

$$Q = (\sqrt{3} + \sqrt{2})^2 + (\sqrt{3} - \sqrt{2})^2$$

Q (a+b)² + (a - b)² =
$$2(a^2 + b^2)$$

$$Q = 2(3+2) = 12$$

$$\frac{1}{4}$$
 × Total canicas= 12
Total canicas= 48

Racionalización - 2do Caso

$$\frac{A}{\sqrt{x} \pm \sqrt{y}} = \frac{A}{\sqrt{x} \pm \sqrt{y}} \times \frac{\sqrt{x} \mp \sqrt{y}}{\sqrt{x} \mp \sqrt{y}} = \frac{A\sqrt{x} \mp \sqrt{y}}{x - y}$$

Nota:
$$(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} + \sqrt{2}) = (\sqrt{3})^2 - (\sqrt{2})^2 = 1$$

Recuerda 🦠

48 canicas

PROBLEMA 7

$$J = \frac{1}{(\sqrt{7} - \sqrt{5})(\sqrt{3} + 1)}$$

Sabiendo que este denominador duplicado representa el número de manzanas que hoy comió Jorge, ¿Cuántas manzanas fueron?

Resolucióna

$$J = \underbrace{\frac{1}{(\sqrt{7} - \sqrt{5})(\sqrt{3} + 1)}}_{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)} \times \underbrace{\frac{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)}{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)}}_{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)} = \underbrace{\frac{A}{\sqrt{x} \pm \sqrt{y}}}_{Nota: (\sqrt{7} - \sqrt{5}) \times (\sqrt{7} + \sqrt{5}) = (\sqrt{7})^{2} - (\sqrt{5})^{2} = 2}_{(\sqrt{3} + \sqrt{1}) \times (\sqrt{3} - \sqrt{1}) = (\sqrt{3})^{2} - (1)^{2} = 2}}$$

$$J = \underbrace{\frac{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)}{(7 - 5)(3 - 1)}}_{(7 - 5)(3 - 1)} = \underbrace{\frac{(\sqrt{7} + \sqrt{5})(\sqrt{3} - 1)}{(\sqrt{3} + \sqrt{5})(\sqrt{3} - 1)}}_{A} = \underbrace{\frac{A}{\sqrt{x} \pm \sqrt{y}}}_{Nota: (\sqrt{7} - \sqrt{5}) \times (\sqrt{7} + \sqrt{5}) = (\sqrt{7})^{2} - (\sqrt{5})^{2} = 2}_{(\sqrt{3} + \sqrt{1}) \times (\sqrt{3} - \sqrt{1}) = (\sqrt{3})^{2} - (1)^{2} = 2}_{A}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x \pm \sqrt{y}} = \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y}$$

$$\underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A\sqrt{x} \pm \sqrt{y}}_{x - y} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} = \underbrace{A}_{x \pm \sqrt{y}} \times \underbrace{A}$$

$$\frac{Racionalización - 2do Caso}{A}$$

$$\frac{A}{\sqrt{x} \pm \sqrt{y}} = \frac{A}{\sqrt{x} \pm \sqrt{y}} \times \frac{\sqrt{x} \mp \sqrt{y}}{\sqrt{x} \mp \sqrt{y}} = \frac{A\sqrt{x} \mp \sqrt{y}}{x - y}$$

$$\frac{Nota:}{\sqrt{3} + \sqrt{1}} \times (\sqrt{3} - \sqrt{1}) = (\sqrt{3})^2 - (\sqrt{5})^2 = 2$$

$$Recuerda$$

Rpta: Hoy el consumió 8 manzanas

