

5G核心网研究进展情况

马瑞涛 北京

2019. 12

目录

- 1、5GC标准组织
- 2、总体进展计划
- 3、3GPP R15功能
- 4、3GPP R16功能
- 5、3GPP R17功能

扫描右侧二维码,可下载更多5G技术资料

5G标准组织

GSMA

NGMN

IETF

3GPP Partners

ATIS

The Alliance for Telecommunications Industry Solutions, USA

ARIB

The Association of Radio Industries and Businesses, Japan

TTC

Telecommunication Technology Committee, Japan

Telecommunication Technology Committee

CCSA

The European
Telecommunications
Standards Institute

China Communications

Standards Association

Telecommunications Technology Association, Korea TSDSI

tsdsı

Telecommunications Standards Development Society, India

3GPP标准组

Project Coordination Group (PCG)

TSG RAN

Radio Access Network

RAN WG1

Radio Layer 1 spec

RAN WG2

Radio Layer 2 spec Radio Layer 3 RR spec

RAN WG3

lub spec, lur spec, lu spec
UTRAN O&M requirements
(Radio CN Interfaces)

RAN WG4

Radio Performance Protocol aspects

RAN WG5

Mobile Terminal Conformance Testing

RAN WG6

GSM EDGE Radio Access Network TSG CT

Core Network & Terminals

CT WG1

MM/CC/SM (lu) (end-to-end aspects)

CT WG3

Interworking with external networks

CT WG4

MAP/GTP/BCH/SS (protocols within the CN)

CT WG6

Smart Card Application
Aspects

TSG SA

Service & Systems Aspects

SA WG1

Services

SA WG2

Architecture

SA WG3

Security

SA WG4

Codec & Media

SA WG5

Telecom Management

SA WG6

Mission-Critical Applications

总体进展及时间计划

• 2020年和2021年现网将主要围绕Rel15开展建网和基于Rel16标准的增强功能部署

3GPP R15主要功能

• Rel-15阶段关注最紧急的应用案例以满足市场需求,完成5G核心网整体架构及基本功能的定义,支持eMBB业务基础特性

R15-F1-SBA (服务化架构)

- •5G核心网控制面网元采用基于服务的接口进行交互,N1、N2、N3、N4、N6等接口扔采用传统的非服务化接口
- 支持不同接入方式(3GPP和非3GPP),针对不同的接入技术统一接口与流程
- 减少网元间的重叠及互相依赖性,以更灵活支持功能演进及更新,快速执行NF生命周期管理,可更快支持新功能引入与更新

• 服务化架构特点:

- ✓ 网络功能解耦和模块化
- ✓ 服务化接口
- ✓ 网络功能按需组合和部署
- ✓ NF服务独立升级,可编排
- ✓ 网络服务对外开放
- ✓ 新业务快速开通

R15-F1-SBA (服务化架构)

P2P架构

CU分离和服务化架构:

•AUSF: 鉴权网络功能

•AMF:接入和移动性管理网络功能

•SMF: 会话管理网络功能

•NSSF: 网络切片选择功能

•NEF:能力开放网络功能

•NRF:服务注册、发现、授权等功能

•UDM:统一数据库,存放用户的签约数据等

•PCF: 策略决策功能

·AF:应用功能

•UPF:用户面功能,执行用户面数据的转发等

功能

R15-F2-4G/5G互操作

非漫游架构

漫游架构-本地分流

漫游架构-回归属地

支持与4G互通时, EPC和5GC中的HSS/UDM、PCF/PCRF、SMF/PGW、UPF/PGW-U合设。

R15-F3-融合数据

- 定义Data Layer, 实现业务处理逻辑和状态数据的解耦。
- 从网络功能中剥离出状态数据存放在Data Layer中,使得网络功能变得无状态。
- UDSF用于保存特定的非透明数据,UDR存储签约数据,策略数据,结构化数据和应用数据。

UDSF

- 动态会话数据,不标准化数据模型
- 同厂商设备间无状态化,实现云环境下动态伸缩和无损故障恢复

UDR

- 签约数据和认证数据 (HSS BE)
- 策略数据 (SPR)
- 能力开放数据:用于网络内和网络外的数据共享
- 应用数据:用于应用检测数据 (PFDF) 和应用路由请求数据 (MEC)
- UDR存取接口定义
 - 标准化Nudr接口数据模型

China Uniconial

R15-F4-非3GPP接入

- •目前Non-3GPP接入一般只使用非可信接入架构,例如苹果终端的VoWiFi功能。
- •新增N3IWF网元,实现非可信Non-3GPP用户的接入鉴权和用户面路由的协议映射。
- N3IWF、AMF实现的功能与3GPP AAA Server及ePDG功能类似。

R15-F5-移动性管理

·5G基本沿用了4G基于TA(Tracking Area,跟踪区)的移动性管理机制,最大的改变来自MM和SM分离,此外还包括新移动性管理状态的引入,通过Mobility Pattern实现按需的移动性管理等。

MM&SM分离

- ●驱动力: One-UE Multi-slicing的业务需求和模型。
- ●解耦: AMF不感知、不处理会话管理操作。
- ●NAS终结: AMF作为唯一的NAS终结点, 处理NAS安全路由分发UE消息 (SM消息和SMS短消息)。

MM相关状态

- R M状态和CM状态独立: RM状态标识UE是否注册到网络, CM状态标识UE和核心网的信令连接是否存在。
- ●RAN侧引入RRC-inactive state: UE对于CN而言处于连接态,对RAN而言处于Idle态。
- S M状态独立: SM状态 (PDU session state, active or inactive) , 通过per-PDU session的activation和 deactivation流程隐式定义。

On-Demand MM

- Mobility Restriction:用于限制UE的行为和业务,包括 RAT type的限制和可服务区域的限制。
- Mobility Pattern: 包括UE capability, UE mobility properties, mobility speed category, service characteristics等与UE MM相关的参数。
- ON-Demand MM: 根据Mobility Pattern对UE进行移动性管理的优化,例如:
 - > deregistration after communication:传输完数据后去注册。
 - ➤MICO模式: Mobile Initiated Connection Only, UE在Idle状态不能寻呼,不能接收下行数据,无M-TAU。
 - ➤ SMF/RAN根据会话承载的业务属性决定PDU session state (i.e. 数据传输后维持active, 超时转为idle)。

Mobility Pattern (MP)	UE states		Locationupdate		CN Paging		Handover	
	CN Idle	Config.	Indi	Config.	Indi	Config.	Indi	Config
MP1	Y	N/A	Y	TA list (large) P-TAU Timer	Y	Predicted PA	Y	N/A
MP2	N	N/A	N	N/A	N	N/A	Y	N/A
MP3	Y	eDRX/ PSM paras	N	N/A	Y	Fixed area	N	N/A
MP4	Y	N/A	Y	TA list (normal)	Y	PA (TA list)	Y	N/A

A Unicorn Shinonidential

R15-F6-会话管理

·5G对会话管理模型进行了较多的优化和扩展,包括隧道模型从承载粒度改为会话粒度、取消对IPv4v6 双栈的支持、增加对以太网和非结构化报文等协议类型的支持、引入SSC (Service and Session Continuity)模式、定义优化的小包传输方案、支持本地offload、支持不同接入技术等。

PDU会话隧道,取消承载,减少专有承载的信令交互

其他关键技术:

- > 按需会话建立,网络可以根据应用需求,UE的位置触发会话建立
- > 异步会话模式,在IDLE状态下缓存会话状态修改以减少寻呼
- 基于会话粒度的用户面连接激活机制

SSC模式:满足不同应用的业务连续性需求

模式1:提供IP连续性,适用于IMS语音等强连续性需求应用

模式2:不提供IP连续性,适用于网页浏览等无连续性需求应用

模式3:提供短期IP连续性,适用于支持多径传输(如MPTCP)的应用

China Inicom

R15-F7-策略控制

5G在策略控制上基本沿用4G的PCC架构,主要差异是除了会话管理策略之外,还包括接入和移动性管理相关的策略、选网策略(ANDSP)、路由选择策略(URSP),以及PCF和AMF之间的直连接口可以传输单个UE的策略

P2P架构

新特性:

- Per UE Policy:
 - URSP策略,包含切片选择策略,SSC模式选择策略,DNN选择策略和Non-Seamless 接入选择Policy
 - ANDSP策略(合并了ANDSF功能),选网策略。
- 策略传输机制: PCF发送策略信息到AMF,由AMF通过NAS信令传给UE 。

R15-F8-IMS支持(语音方案)

概

- •5G NSA语音方案与4G相同。
- 5G SA应支持融合的4G/5G核心网接入统一的IMS域,VoNR及VoNR与EPS Fallback(VoLTE)的平滑切换

R15-F9-网络切片

- 网络切片有利于运营商按垂直行业的需求对网络进行定制,从而优化网络性能
- 5G支持端到端网络切片:包括无线接入网络、传输网、 核心网
- 不同网络切片的网络功能可共享, 典型的共享包括:
 - ▶ 基站共享 (Slice A&B&C)
 - ▶ 控制面功能共享, 如AMF共享(Slice A&B)
 - 核心网用户面功能不共享
- UE可同时接入共享AMF的多个网络切片(Slice A&B),
 UE最多可同时接入8个切片
- 目前定义了4种类型的网络切片: eMBB, URLLC, mMTC、V2X

R15-F10-MEC (多接入边缘计算)

- 边缘计算主要依托UPF的UL/CL、Multi-Homing实现本地业务分流,数据分流后进入边缘计算平台和业务服务平台。
- UPF支持用户边缘流量的分流、流量统计上报及安全特通要求

UL CL: 在用户面插入UL CL(Uplink Classifier)进行分流,UE只有一个IP地址,不感知数据分流。

Multi-homing: IPv6支持, 一个PDU Session 分配两个IPV6前缀, UE能感知并控制数据分流。

R15-F11-5G QoS

5G QoS是基于QoS流的框架,QoS Flow是5G QoS控制的最小粒度,每一个QoS Flow由QFI (QoS Flow ID) 唯一识别,QFI在每个PDU会话中唯一。

5G QoS分为保证速率比特流 (GBR Qos FLow) 和非保证速率比特流 (Non-GBR Qos FLow)

控制粒度	基于QoS flow执行QoS控制	
N3 Tunnel	非双连接下,同一PDU session的服务流 采用同一隧道	
5G QoS flow类 型	GBR QoS flow和Non-GBR QoS flow	
5G QoS flow与 DRB的映射	支持多对一	
QoS建立机制	支持信令控制QoS机制和reflective QoS机制(仅用于Non-GBR QoS flow)	

UPF	下行: UPF根据SDF模板将数据包映射到QoS flow,并在N3隧道头标记QFI; 上行: UPF接收AN发送的数据包,并执行验证;
AN	下行:AN根据QFI将数据包映射到DBR上。 上行:AN根据DRB上接收到的数据包的QFI,在N3隧道头标 记QFI;
UE	NAS层根据QoS规则将数据包映射QoS flow, AS层负责QoS flow到DRB的映射

la Unicomial

R15-F12-控制面协议栈

N2 SM

information

NG-AP

SCTP

L1

5G-AN

N2

概述

- NAS消息分为: NAS-MM、NAS-SM、SMS及其它NAS。
- NAS-MM全部由AMF终结处理。
- AMF转发SMF与UE之间的NAS-SM、SMS及其它NAS消息

NAS-MM:

UE -AMF.

NAS-MM

NG-AP

L2

N11

N11

NG-AP

L2

L1

5G-AN

N2

5G-AN

Protocol

AMF 转发 N2 SM NAS-SM

NAS-MM

Protocol

UE

NAS-SM: UE-SMF

NAS-SM

NAS-MM:

SMS消息

转发 NAS-SM 及

R15-F13-用户面协议栈

概述

- PDU层有四种类型; IPv4、IPv6、IPv4/v6、ethernet。
- GTP-U (GPRS Tunnelling Protocol for the user plane) : 支持N3、N9接口的用户数据传输,封装PDU,并传递QoS Flow。

R15-F14-轻量化服务协议

• 服务化接口新协议体系:

✓ 传输层: TCP

✓ 应用层: HTTP 2.0 + JSON

√ 消息数据模型: JSON + OpenAPI3.0

• 服务化接口设计原则:

✓ RESTful Style HTTP

• 接口性能:

✓ JSON相比现有Diameter性能有一定下降, 但通用性、可描述性、可读性更强

• 演进需求:

✓ 5G网络和4G存在互联互通需求,5G信令网 应支持信令共存与互转

Application
HTTP 2.0
ТСР
IP
L2
L1

R15-F15-5G安全认证机制

ARPF:

和UDM合一部署: 漫游场景部署在归属网络

AUSF:

独立的NF功能; 漫游场景部署在归属网络(5G phase1阶段)

SEAF/SCMF:

和AMF合一部署;漫游场景部署在拜访网络

ARPF (Authentication Credential Repository and Processing Function):

存储用户的根密钥Ki以及认证的相关签约数据

计算5G认证鉴权向量

EAP-AKA'(RAND, AUTN, IK', CK', XRES)

5G AKA (RAND, AUTN, Kasme*, XRES*)

AUSF (Authentication Server Function):

EAP认证服务器(认证服务器在归属域),进行EAP认证,推导锚点密钥

5G AKA认证完成归属域确认(可选)

SEAF/SCMF (Security Anchor Function/Security Context

Management Function :

根据锚点密钥推到下层的NAS和AS密钥 5G AKA完成鉴权结果比较功能

3GPP和Non-3GPP接入通过统一的认证框架实现接入认证。

China Unicom

R16阶段高优先级项目列表

Study/Work Items

服务化架构增强 - eSBA (Enhancements to the Service-Based 5G System Architecture)

URLLC特性增强 - 5G_URLLC (Enhancement of URLLC supporting in 5G)

NWDAF功能研究 - eNA (Enablers for Network Automation Architecture for 5G)

5G固移融合增强 - 5WWC (Wireless-Wireline Convergence)

5G IoT特性增强 - CIoT_5G (Study on Cellular IoT support and evolution for the 5G System)

垂直行业部分特性支持 - Vertical_LAN (5GS Enhanced support of Vertical and LAN Services)

网络切片增强 - eNS (Enhance Network Slicing)

车联网架构增强 - eV2XARC (Architecture enhancements for support of advanced V2X services)

多接入分流/导流 - ATSSS (Study on Access Traffic Steering, Switch and Splitting support in the 5G system architecture)

SMF/UPF拓扑增强 - ETSUN (Study on Enhancing Topology of SMF and UPF in 5G Networks)

5G位置服务架构增强 - eLCS (Study on Enhancement to the 5GC location services)

UE信令优化 - RACS (UE capability signalling optimization)

卫星接入架构 - SAT_ARCH (Study on using Satellite Access in 5G)

用户数据迁移增强 - UDICoM (Study on User Data Interworking, Coexistence and Migration)

5G-3G语音连续性 - 5G-SRVCC (Study for single radio voice continuity from 5GS to 3G)

hina hicom Confidential

R16-F1-eSBA - 服务化架构增强

• 代理服务发现及间接通信:

✓ 通过引入新的功能实体SCP (Service Communication Proxy) 实现服务化消息的非直接通信;

• 基于NF Set和NF Service Set的可靠性增强:

✓ 同样类型的NF实体或NF Service实体组成一个Set,服务发现以Set为粒度 ,提升服务交互可靠性。

R16-F2-5G URLLC

• 支持基于冗余传输方案的高可靠性通信:

✓ 引入冗余传输机制,实现数据通信的高可靠性特性,具体的冗余传输方案分为基于双连接的端到端冗余用户面路径方案(双PDU会话),以及 冗余N3/N9接口连接的冗余传输方案(单PDU会话);

• 基于冗余用户面路径机制的移动性过程中的会话连续性方案:

- ✓ 基于基础的冗余N3/N9方案,实现PSA重定位、UL CL重定位等移动性流程中的用户会话连续性增强;
- 针对URLLC特性的配套能力:
 - ✓ 端到端QoS监测
 - ✓ CN PDB配置增强等。

R16-F3-eNA - 大数据及AI应用

- 围绕NWDAF的5GC自动化管理架构(Enablers for Network Automation Architecture for 5G):
 - 完成数据收集、反馈架构的定义;
 - 完成典型目标场景及对应解决方案的确定。

KI	Title	Priority
1	Analytic Information Exposure to 5GS NF	
2	Analytic Information Exposure to AF	High
	· ·	High
3	Interactions with 5GS NFs/AFs for Data Collection	High
4	Interactions with OAM for Data Collection and Data Analytics Exposure	High
5	NWDAF-Assisted QoS Profile Provisioning	Medium
6	NWDAF assisting traffic routing	Medium
7	NWDAF assisting Future Background Data Transfer	Medium
8	Performance improvement and supervision of mIoT terminals	Medium
9	Customizing mobility management based on NWDAF output	Medium
12	Support of Northbound Network Status Exposure	Medium
13	UE driven analytics	Medium
14	How to ensure that slice SLA is guaranteed	Medium

R16-F4-Vertical_LAN - 垂直行业能力支持

- Vertical_LAN项目分为三个子课题,分别为:
 - ✓ 非公共网络(Non-Public Network):定义非公共网络标识),重点面向行业专用业务接入,禁止非NPN用户接入NPN小区或TA;
 - ✓ 5G-LAN: 5G LAN业务特性,主要支持局域网类型的网络覆盖,通过几个或几个UPF即可完成LAN区域内的点对点通信;

✓ 时间敏感网络 (Time Sensitive Network) : 引入IEEE的TSN特性,支持确定性时间传输(即特定数据包在确定的时间到达并完成转发)。

R16-F5-ETSUN - SMF/UPF拓扑增强

- ETSUN项目重点面向用户的移动性管理场景,主要解决的问题为:
 - ✓ 移动性过程跨多个管理域(如省间漫游),而源SMF无法直接管理目标UPF
 - ✓ 行业SMF可以管理行业UPF, 但无法管理PLMN UPF
 - ✓ 部署场景中UP路径上存在多个UPF, 但部分UPF不能被中心SMF管理
- · 通过由目标AMF控制插入一个中间SMF(I-SMF)解决跨SMF管理区域的移动性流程,其中I-SMF也可以视为漫游场景中的V-SMF

Thira Unicornia

R16-F6-5G_SRVCC - 5GS到3G的语音连续性

- 5G SRVCC主要针对部分运营商没有部署VoLTE功能的情况,为这类运营商提供立足于VoNR功能的语音连续性方案
 - ✓ 定义MME_SRVCC功能,实现5GS到3G的间接SRVCC方案(两步回落: 5GS到MME_SRVCC, MME_SRVCC到MSC)
 - ✓ SRVCC流程最大程度的重用4G SRVCC的流程和参数定义
 - ✓ 暂时不支持3G到5GS的快速返回机制 (需要修改UTRAN, 对现有系统冲击较大)

R17阶段目前已通过立项

Study/Work Items	牵头公司	属性	
5G多播组播架构增强 - Study on Architectural enhancements for 5G multicast-broadcast services	Huawei		
边缘计算特性增强 - Study on enhancement of support for Edge Computing in 5GC	Huawei		
无人机特性增强 - Study on supporting Unmanned Aerial Systems Connectivity, Identification, and Tracking	Qualcomm		
交互式业务能力增强 - New SID on 5G System Enhancements for Interactive Services	Tencent		
用户标识使用增强 - New Study on the Usage of User Identifiers in the 5G System		R17新立	
UPF服务化 - Study on UPF enhancement for control and SBA	China Mobile	···-	
UE Policy能力增强 - Study on enhancement of 5G UE Policy D2D业务能力增强 - Study on System enhancement for Proximity based Services in 5GS			
			5GC短信服务化 - New study on service-based support for SMS in 5GC
双卡终端增强研究 - Study on system enablers for multi-SIM devices	Intel		
NWDAF功能增强Phase 2 - Enablers for Network Automation Architecture for 5G - Phase 2	Huawei		
5G固移融合Phase 2 - Wireless-Wireline Convergence - Phase 2	Huawei		
非公共网络NPN增强 - Study on enhanced support of Non-Public Networks		R16扩展	
5G LAN功能增强 - Study on enhancement of support for 5G LAN-type service	Huawei	(Phase 2)	
多接入分流/导流增强 - Study on Access Traffic Steering, Switch and Splitting support in the 5G system architecture Phase 2	ZTE		
5G位置服务架构增强 Phase 2 - eLCS Phase 2 (Study on Enhancement to the 5GC location services)	CATT		
本地数据网络LADN增强 - WID on supporting Flexible Local Area Data Network	LG-E		
RTC业务能力增强 - Study on system architecture for next generation real time communication services		R16低优先级项 目重启	
基于业务感知的业务流量分流 - Study on Application Awareness Interworking between LTE and NR	China Telecom		

Rel17 DownScope

FS_5GSAT_ARCH FS_eNA_ph2 FS_eNPN FS_MUSIM FS_enh_EC FS_5G_ProSe FS_5MBS FS_eNS_ph2 FS_eV2XARC_ph2 FS_lioT 5G_AIS FS_eATSSS FS_eLCS_ph2 FS_ID_UAS-SA2 FS_MPS

小结

- 1、标准是丰满的,现网是骨感的,运营商应努力寻找平衡点
- 2、成年后的技术,大多数会活成制定标准时自己讨厌的样子

谢 谢!