

Advanced Institute for Artificial Intelligence – Al2

https://advancedinstitute.ai

Agenda

- Séries Temporais
- ☐ Conceitos
- ☐ Ferramentas para Manipular Datas
- Exploracao Estatística
- Conceitos

Séries Temporais:

- Conjunto de observações realizadas sequencialmente ao longo do tempo.
- Muitos problemas são modelados usando séries temporais
 - Finanças, marketing, ciências sociais, entre outras
- □ Informações históricas, em muitos casos, auxiliam o entendimento e permite previsões

Alguns conceitos relacionados com Séries Temporais:

- Séries Univariadas:
 - Um único valor ao longo do tempo
- Séries Multivariadas:
 - Dois ou mais valores variam ao longo do tempo

	cterística 2	ca 1 Carac	Característic	Tempo
1	10		10	1
- Passo temporal	20		20	2
j	34		5	1
- Passo temporal	55		6	2
] n	60		3	1
Passo temporal	90		7	2
	Caracterí	Caracterí	Caracterí	Caracterí

Caracterí stica 1	Caracterí stica 2	Caracterí stica 1	Caracterí stica 2
10	10	20	20
5	34	6	55
3	60	7	90

Tempo	Característica 1	Característica 2
1	10	10
2	20	20
3	5	34
4	6	55
5	3	60
6	7	90
1	5	5
2	8	9

Característica 1	Característica 2	Característica 1 (t+1)	Característica 2 (t+2)
10	10	20	20
20	20	5	34
5	34	6	55
6	55	3	60
3	60	7	90
5	5	8	9

Quebra da série para outra amostra

Alguns conceitos relacionados com Séries Temporais:

- Séries Estacionárias
 - As características apresentam padrões que não variam com o tempo
- □ Séries não-Estacionárias
 - Padrões mudam de modo sistemático com dependência em relação ao tempo

Exemplo de série estacionária

Exemplo de série não-estacionária

Avaliando se uma série temporal é estacionária. Métodos possíveis:

- ☐ Analisar gráficos: você pode revisar um gráfico de série temporal de seus dados e verificar visualmente se há tendências ou sazonalidades óbvias
- Estatísticas resumidas: você pode revisar as estatísticas resumidas dos seus dados para temporadas ou partições aleatórias e verificar se há diferenças óbvias ou significativas
- □ Testes estatísticos: você pode usar testes estatísticos para verificar se as expectativas de estacionariedade foram atendidas ou foram violadas.
 - Teste Dickey-Fuller
 - Permite identificar se uma série é estacionária, mesmo em diferentes escalas

Series temporais não-estacionarias pode conter as seguintes características:

- □ Tendência: um componente linear sistemático geral ou (na maioria das vezes) componente não linear que muda com o tempo e não se repete
- ☐ Sazonalidade: ciclos que se repetem ao longo do tempo
- □ Ruídos : um componente não sistemático que não é Tendência / Sazonalidade nos dados

Teste de Tendência

Teste de Sazonalidade

Modelos preditivos:

- ☐ Histórico da série sendo usada para aprender o comportamento da série, permitindo prever valores para os períodos futuros
 - Para isso é importante que um conjunto específico de elementos em sequência, possua uma padrão qe permita explicar os próximos elementos
 - Essa característica pode ser medida com testes de autocorrelação
- Muitos métodos estatísticos exigem que as séries sejam estacionárias para realizar tais predições
- □ Alguns métodos podem ser usados para eliminar, tendências, sazonalidades e ruídos

Autocorrelação Ajuda a identificar qual defasagem mínima caracteriza os próximos elementos da série

- Segmentação dos dados para treino, validação e testes
- □ Normalmente os dados são divididos escolhendo uma posição específica do dataset, ou aleatoriamente
- no caso de séries temporais são escolhidos períodos
 - Periodo de treino
 - Periodo de validação
 - Periodo de teste

Métodos de predição para séries temporais: ARIMA Auto Regressive Integrated Moving Average

- Classe de modelos que caracteriza uma série temporal com base em seus próprios valores passados (atrasos e os erros de previsão defasados)para prever valores futuros.
- □ Restrições:
 - Série temporal "não sazonal", sem ruídos que exibe padrões

Modelo Arima é caracterizado de acordo com 3 termos:

- □ AR (Auto Regressive'): número de lags de y para ser usado como preditor
- ☐ MA (Moving Average): número de erros de previsão defasados
- □ d é o número de diferenciação necessário para tornar a série temporal estacionária

estimar os próximos valores da série temporal

А	serie deve ser estacionaria (ou proximo disso) para ser usada com model Arima.
	O parâmetro d define o nível de diferenciação para torar a série estacionária
	\square Se a série já for estacionária, basta usar d $=0$
	□ Normalmente, o valor de diferenciação é definido com base no efeito na autocorrelação

☐ Combinando os parâmetros d, AR e MA é possível definir um modelo de regressão para

A série deux seu estecionérie (en médicas dises) mars seu usado seus madel Arima

- Objeto datetime é disponibilizado pelo python para manipular datas
- □ Numpy e Pandas oferecem recursos para manipular datas
 - Slicing
 - Mudança de frequência
 - Segmentação
 - Agrupamento

Trabalhando com séries temporais como sequências

- □ Aprendizagem de máquina sáo aplicados normalmente para modelar problema utilizando recursos além dos métodos estatísticos tradicionais
- ☐ É difícil prever se um algoritmo oferecerá melhor desempenho para um problema considerando que a série é estacionária ou não
- Nesse sentido, a fonte de informação ainda que náo seja uma série estacionária, pode ser usada na engenharia e seleção de features

Representação de série para Deep Learning:

- □ A sequência é dividida em etapas fixas
 - Uma quantidade de dias, horas, semanas, elementos, etc
 - Para cada elemento da sequência um valor é associado, que é o valor da sequência
 - Esse é o conjunto de features
- □ Os próximos itens da sequência representa a matrix alvo

R	epresentação de série para Deep Learning:
	□ One to one: a partir de um valor, descobrir o próximo valor
	□ One to many : imagem gerando sequência de palavras
	□ many to one: sequência de ações gerando um resultado. Sequência de dados de um sensor gerando uma ação específica
	□ many to many: sequência de ações gerando a continuação da sequência. A partir de 10 ações de um sensor, quais serão as próximas 5
	□ many to many: sequência de ações gerando uma nova sequência. classificando vídeo frame a frame

RNN são redes neurais estruturadas de forma a representar sequências

- Para isso tais redes são montadas com base em um tipo de camada chamada camada recorrentes
- Tais camadas possuem uma unidade interna chamada memória
 - A idéia dessa unidade é processar sequências de quaisquer tamanhos

A idéia é aprender os padrões de sequências de elementos organizada em um vetor composto por t elementos em sequência x_t

Para isso é aplicado uma fórmula de recorrência em cada etapa de tempo

Cada novo estado h_t É calculado a partir de uma função f_w aplicada ao estado antesrior h_{t-1}

$$h_t = f_w(h_{t-1}, x_t)$$

a mesma função e o mesmo conjunto de parâmetros são usados em cada passo temporal

Camada recorrente:

- ☐ Camadas recorrentes recebem como entrada uma matrix multidimensional
- ☐ Cada item da sequência gera um valor de saída y e armazena uma matriz com um valor intermediário na unidade de memória
 - O próximo valor é calculado usando o valor x da sequência e o valor intermediário gerado no valor anterior
- Esse laço é repetido ao longo de todos os valores da sequência

Uma rede MLP pode ser usada para predizer o próximo valor em uma sequência:

X representa diferentes características (features) de uma mesma amostra

Camada Densa aprende a relação entre características e saídas v (Regressão)

As características X podem ser definidas como os itens da seguência, e v o próximo valor da seguência

X representa os valores da sequência na ordem que devem ser considerados

Camada Recorrente avalia cada valor da sequência em ordem, para determinar o próximo valor da sequência

As características X podem ser definidas como os itens da sequência, e y o próximo valor da sequência

A camada RNN sempre vai gerar uma matriz do mesmo formato da entrada na saída

- □ Se o problema for many-to-one, basta ignorar a sequência e utilizar apenas o último valor
- □ Quando a sequência completa é o y do modelo ou vamos utilizar mais de uma camada recorrente combinada, precisamos da sequência inteira como retorno
- □ Esse retorno é controlado pelo parâmetro return_sequences

Processamento de sequências complexas

- □ Sequências podem apresentar características que dificultam a predição, como tendência, sazonalidades e ruídos
- Combinar diversas características em um mesmo passo temporal, pode também tornar a sequência mais complexa
- □ RNN não são adequadas para processar sequências muito longas, por tornar o modelo muito complexo para ser treinado

LSTM e GRU

- □ Camadas LSTM (Long short term memory) e GRU (gate recurrent unit) tratam o problema de sequencias complexas
- □ Para isso utilizam uma recurso para filtrar o fluxo de informação chamado gate
- □ Esse recurso extra submete o valor do estado anterior para uma função sigmoide, e em seguida, multiplica pelo resultado da função
- Como resultado, a sequência gerada é capaz de filtrar informação ao longo do processamento da sequência

Gate

A diferença entre LSTM e GRU é que a GRU combina o input e forget em um único recurso chamado update