

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

03-293003

(43) Date of publication of application: 24.12.1991

(51)Int.CI.

B01D 21/01 // CO2F 1/52

(21)Application number: 02-095592 (71)Applicant: NIPPON STEEL CORP

NITTETSU PLANT

DESIGNING CORP

(22)Date of filing:

11.04.1990

(72)Inventor: ABE RYUICHI

UEMATSU NOBUYUKI YAMAGUCHI MASAO NAITO SHUNICHI

ICHIMARU YOSHITAKA

(54) METHOD FOR SHORTENING AGEING TIME OF SILICA FLOCCULANT (57)Abstract:

PURPOSE: To shorten the ageing time of a silica flocculant by ageing a soln. contg. a polyvalent metal ion such as Al ion, an alkaline-earth metal ion such as Ca ion and silicic acid and then diluting the soln. with water to restrain its gelling. CONSTITUTION: A powdered ore contg. Si, Al and Ca is dissolved in hydrochloric acid, sulfuric acid or their mixture to prepare a soln, contg. a polyvalent metal ion such as aluminum ion, an alkaline-earth metal ion such as calcium ion and silicic acid. The soln. is aged and then diluted with water to restrain its gelling, and the ageing time of the silica flocculant is shortened. A mineral powder obtained by melting blast-furnace slag powder and an ore contg. Si, Al and Ca to change its mineral crystal structure is appropriately used as the powdered ore.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

⑩日本国特許庁(JP)

⑩特許出願公開

◎ 公 開 特 許 公 報(A) 平3-293003

®Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成3年(1991)12月24日

B 01 D 21/01 // C 02 F 1/52 102 Z 7824-4D 7824-4D

審査請求 未請求 請求項の数 4 (全13頁)

60発明の名称 シリカ凝集剤熟成期間の短縮方法

②特 願 平2-95592

❷出 願 平2(1990)4月11日

@発 明 者 阿 部 隆 一 福岡県北九州市戸畑区大字中原46-59 新日本製鐵株式會

社機械・プラント事業部内

@発明者 植松 信行 福岡県北九州市戸畑区大字中原46-59 新日本製鐵株式會

社機械・プラント事業部内

⑫発 明 者 山 口 雅 夫 福岡県北九州市戸畑区大字中原46-59 新日本製鐵株式會

社機械・プラント事業部内

勿出 願 人 新日本製鐵株式会社 東

式会社 東京都千代田区大手町2丁目6番3号

⑦出 願 人 日鐵プラント設計株式 会社 福岡県北九州市戸畑区大字中原46番地の59

四代 理 人 弁理士 谷山 輝雄

外4名

最終頁に続く

明 細 音

1. 発明の名称

シリカ凝集剤熟成期間の短縮方法

- 2. 特許請求の範囲
 - 1 Si. Al. Caを含む鉱石粉末を塩酸、硫酸またはそれらの混酸溶液に溶解して得られる、アルミニウムイオン等の多価金属イオン、カルシウムイオン等アルカリ土類金属イオン、およびケイ酸を含有する溶液を熟成させた後、水で希釈しゲル化を抑制することを特徴とするシリカ凝集剤熟成期間の短縮方法。
 - 2 鉱石粉末として高炉スラグ粉末を用いることを特徴とする請求項1記載のシリカ凝集剤 熟成期間の短縮方法。
 - 3 鉱石粉末としてSi、Al. Caを含む鉱石を溶 融させることにより鉱物結晶構造を変化させ た鉱物粉末を用いることを特徴とする請求項 1 記載のシリカ磁集剤熟成期間の短縮方法。
 - 4 請求項 3 記載の Si. Al. Caを含む鉱石とし

てフライアッシュを用いることを特徴とする 請求項1記載のシリカ凝集剤熟成期間の短縮 方法。

- 3. 発明の詳細な説明
- [産業上の利用分野]

本発明は、凝集作用を利用する水処理に関するものである。

[従来の技術]

水処理に関しては各種方法があるが、その1 つである凝集法において、一般的な凝集剤である破集法において、一般のな凝集剤コロイド(カロイドを共に重合シリカコロイド(コロイドケイ酸、シリカゾル、無定形ケイ酸と略す)を がなどと呼ばれるが以下活性ケイ酸と略す)を る水の凝集に用いて効果をあげている例が浄水 場で報告されている(水道協会雑誌第381号)。

この方法は凝集剤である硫酸パンドの単独使用より凝集フロックが強固で大きく且つ重いので 沈降速度が速くなり、従って残留濁度がより小さくなる効果があるが、特に原水水温が10℃以下に低下して凝集フロックの成長が悪

い冬期や、原水濁度が300 度を越えるときに、 活性ケイ酸の凝集助剤としての効果が高い。

ところで活性ケイ酸の製造方法はいろいのない。 かく、ケイ酸ソーダ(水ガラス)の存いであるいいである。 しかし、ケイ酸ツーダ でである。 しかし、ケイ酸ツーダ・溶液中の大部分のアルカリ度が中和されたで、 1~2時間がたっと液全体が変集を記して、いわゆるゲル化したケイ酸や配管をはかりか、 500元をで、 実用上支障のない程度に遅らせたの進行を実用上支障のない程度に遅らたたの、 1~2時間静置した後、溶液中の 510元を 0.5 % 程度まで希釈してから使用している。

従って、実際の活性ケイ酸製造設備では、計量器の誤差や停止信号から閉弁までの時間遅れ等のため、使用する硫酸の計量に若干の誤差を生じ、これがケイ酸ソーダの中和率に大きく影響するため、硫酸を加えた後のpHを測定しなが

置的にも簡単でないため、我国では東京都の金町・長沢・東村山などの各浄水場、及び北九州市や愛知用水公団系の浄水場などで5~10年間使用された実績があるが、現在はいずれも使用が中止されている。

[発明が解決しようとする課題]

活性ケイ酸を凝集剤の硫酸パンドと共に使用すれば、強固で大きく且つ重いフロックを作るという活性ケイ酸の凝集助剤としての働きにより、濁質濃度の低減、赤潮ブランクトンの駆除及び鑑類の除去が促進される効果は著しい。

しかし、このケイ酸の活性化は作業的にも設備的にも簡単でないため活性ケイ酸は一部の浄水場でかつて使用されていたにすぎない。

以上の如く、現在一般的に使用されている水 処理用の凝集剤は、凝集主剤機能と助剤機能を 併せ持つ物が少なく凝集操作が複雑になってい る。

本発明は、これらの課題を解決するために重合化度の高い活性ケイ酸を含んだ凝集剤を提供

ら、ケイ酸ソーダまたは硫酸をさらに添加して 適正な残留アルカリ度になるように必ず補正を 行っている。

このようにケイ酸の活性化作業は、ゲル化を防止するために溶液のPHや残留アルカリ度等管理すべき項目も多く簡単ではない。なお、作業簡略化のため複雑な自動計装を導入した場合は、保守に高度の技術を必要とするので小規模水処理には向かない。

このように、ケイ酸の活性化が作業的にも装

するものである。本概集剤の製造過程でケイ酸が極短時間で活性化されるため、別途ケイ酸ソーダから活性ケイ酸を製造して添加する必要もなく、設備も作業も大幅に簡略化され、安価な凝集剤が提供できるものである。

[課題を解決するための手段および作用]

本発明の凝集剤の製造は、例えばまず高炉スラグ粉末を1規定~7規定の硫酸、塩酸またはこれらの混酸中に溶解させ高炉スラグ粉末から酸溶液中へアルミニウムイオン等の多価金属イオン、カルシウムイオン等アルカリ土類金属イオンと共に溶解性シリカ(分子分散状ケイ酸・ケイ酸・ノマー、イオン状ケイ酸とも呼ばれる)を溶解させ短時間の熟成をさせることで得られる。

中において、カルシウムイオン、マグネシウムイオン等アルカリ土類金属イオンの溶出と同時に溶解性シリカ、アルミニウムイオン等の多価金属イオンが容易に溶解する。

本発明において用いる高炉スラグ粉末の作用は、溶解性シリカを凝集助剤として効果のある活性ケイ酸に変えることであり、共晶構造を有する高炉スラグ粉末を用いて強酸中溶出させ同時に酸性溶液をケイ酸の重合反応促進助剤として用いる事を特徴としている。

本展集剤中のケイ酸の重合度を高くするには、熱成時間を長く取ることで重合度を高める方法と酸性溶液の酸濃度を高くしかつ酸性溶液中の溶解性シリカ濃度を高くすることにより酸による溶解性シリカ重合促進と反応熱による溶液温度上昇による重合促進により短時間に熟成をさせる方法がある。

しかし、前者は熟成に長時間を要し適度の熟成したものを安定して得ることが難しいのに対し、後者は短時間でかつ容易に適度な熟成をお

安としてよい。

上記の割合で、高炉スラグ粉末を酸溶液に溶解すると高炉スラグ粉末に含まれるCaD 等によって中和反応が進み酸溶液のpHは次第に上昇する。この平衡状態において定まる溶解度まで高炉粉末各成分が溶解する。さらに、溶解性シリカは酸性溶液中で重合反応が進み次第に活性ケイ酸になる。

本法で用いる高炉スラグ粉末は、塊状の鉱石に比べ、粒径が100 μ以下の微粉末状で比表面積が大きいことから、酸溶液に対する溶解性、反応性に優れていることに着目して考案された、熟成期間の短縮をするシリカ凝集剤の製造方法である。

高炉スラグの鉱物組成は、2CaO・A220。・SiO2 (ゲーレナイト)、2CaO・MgO・2SiO2(アケルマナイト)、2CaO・SiO2(珪酸 2.石灰)、CaO・SiO2 (ウオラストナイト)からなると推定され、溶融状態の鉱海の冷却過程において結晶性珪酸塩やガラス状珪酸塩を生じる。これらが強酸溶液

こなわせることができる。

短時間でかつ容易に適度な熟成をおこなりせるためには酸溶液の濃度は1規定以上7規度がある。これは、酸溶液低過度があると酸溶液の濃度が低液性度が、1規定以下であると酸溶液の濃度が低液性であると酸溶液の熱 成に長時間 がまり は上であると酸溶液の 濃度が高く、湿度が高く、湿度が高く、酸溶液の溶解による反応熱での溶液 は しまり でかい を で で ない の ない ことか ら 凝集剤の 熟成が 非常に 速く 瞬時 に 現象を発現して 工業的でない。

粉末の添加量を増やし、製造した凝集剤のpHが2.0 以上になると凝集剤液中に不溶解性シリカが生じゲル化も促進されるため、適度な熟成期間をとることが難しく、凝集剤がゲルとなり取扱い上トラブルをきたすばかりか凝集効果が低減することから、本凝集剤のpHは2.0 以下好ましくは1.6 以下になる鉱石粉末の溶解量にする必要がある。

これに対し本概集剤の活性ケイ酸への重合反応は酸溶液と粉末中のアルカリ成分との反応熱による温度上昇での液温とpHに主に依存するため、ゲル化は粉末の添加量及び添加方法にて簡単に防止できる。即ち、適度な熟成の後、酸溶液濃度を一定濃度以下に水で希釈することにより、ゲル化速度を実用上問題にならない程度まで抑制することができる。

本要集剤の場合は、高炉スラグ粉末を酸溶液に溶解してA12等を主成分とする無機凝集剤を製造する過程で、同時に活性ケイ酸ができるため、従来技術のように別途ケイ酸ソーダから影性ケイ酸を製造して添加する必要もなり、管理している。図において11は、粉末を貯蔵する粉末の粉末を換入する。2により所定量の粉末を投入する。

上記状態で一定時間、攪拌後溶解液抜出し弁 1 9 を開放し、溶媒(II)が張込まれるている

料に用いるため、 安価な凝集剤を提供できるも のである。

本発明において用いられる紅石粉末の原料となる高炉スラグは、鉄鉱石中の不要成分であるシリカ(SiO2)やアルミナ(Al2O。)が、フラックス(石灰:CaO 、マグネシア:MgO 等)と反応して得られる副産物である。

一般に生成された直後の高炉スラグは、1500 に以上の高温の溶融状態にあるため、まず冷却 処理されるが、冷却方法によって次の2種類の 高炉スラグとなる。

自然放冷散水により徐冷処理された高炉スラグ(以下徐冷スラグと呼ぶ)は、塊状となりスラグのCaO、SiO2などの酸化物は単体としては存在せず互いに結合してケイ酸塩をはじめとする硬質酸密な結晶質となる。

加圧水を噴射するなどして急冷処理された高炉スラグ(以下急冷スラグと呼ぶ)は、徐冷スラグのように結晶を形成する時間的余裕がなく、組織はガラス質となっている。

前記したように、張り込む溶媒(I)(酸溶液)濃度を事前に一定濃度に調整し粉末を規定量添加するだけで、短時間で熟成させ、溶媒(II)(水)で、酸の濃度を一定以下にすることにより、ゲル化を抑制することができるため、従来技術のようにケイ酸ソーダの中和率や残留アルカリ度等の項目について管理する必要もなく作業も簡略化される。

本概集剤は、成分的にも凝集主剤として働くアルミニウムイオン等の多価金属イオン、フロック形成補助剤としての活性ケイ酸、アルカリ 度調整剤としてのカルシウムイオン等のアルカリ土類金属イオン及びpH調整剤としての水素イオンを含むために、アルミニウムイオン等の凝集主剤だけから成る従来の凝集剤(例えば硫酸バンド)に比べて凝集能力が高い。

また、製鉄所の副産物である高炉スラグを原

これら2種類の高炉スラグは、いずれも本発明の概集剤の原料として用いることができる。 高炉スラグの組成は、装入原料や操業方法など によって異なるが、代表的な組成例を表 - 1 に 示す。

表 - 1 高炉スラグの組成例 (単位:wt%)

SiO ₂	CaO	A 2 2 0 s	FeO	MgD	s	TiO ₂
33.7	41.5	13.5	0.3	6.5	1.0	1.3

[実 施 例]

本発明をいっそう理解しやすくするために、 ・以下に実施例を示すが、下記の実施例は本発明 を制限するものではない。

実施例-1

100 μm以下に微粉砕された高炉スラグ粉末を攪拌中の塩酸、硫酸またはそれらの混酸溶液に投入し、所定の時間、全量均一混合後、一定の容積比になるよう水で希釈することによって聚集剤を製造した。

凝集剤の製造条件を表-2に示す。

凝集剤の製造条件 表-2(1/1)

希釈液/原液

液量

3

規定度

(粉末81)

NO.

混酸 1

視職

0

36

37 38 39

混酸

12 0

8 5

謎

- 2 (1/1)

提牌時間 • 30 30 30 90 9 90 90 30 2 30 9 90 80 30 30 30 8 $\widehat{\Xi}$ (ag) 300 90 8 8 300 300 300 300 300 5 5 8 8 300 8 8 8 茶草 慧 規定度(盤 25 25 盘 2 紐 巹 盤 台 醔 2 盤 盤 8 色 魯 題 觀 台 8 8 鰠 製 盤 舒 盤 经 政権 扭 珊 珊 珊 描 썦 垂 井 珊 毌 抽 퍫 珊 毌 理 甁 珊 毌 讄 Ψ 選 怎 瞎 恁 怎 忠 塔 選 麘 (粉末gr) 2 15 2 20 52 2 30 **\$** 2 40 20 2 0 20 2 \$ 20 2 **\$** 20 S 2 15 2 6 20 2 **\$** 9 极集剤 21 . 7 . 8 6 4 9 8 =| = 2 2 = 2 16 11 8 2 2 11 23 24 25 26 11 29 വ 6 希釈液/原液 希釈伯率 提择時間 · (*) 30 30 30 90 9 30 30 9 9 30 30 凝集剤の製造条件 (m2) 300 300 2 2 300 300 300 38 300 300 300 300 300 9 9 300 300 8 300

凝集剤の製造に用いる塩酸と硫酸の混酸は下配の比率のものを使用した。

混酸3 混酸3

40

20

2

混酸 3 混酸 3

混酸

40

53 5.4 55 28 21

9 12 2

\$ 43 20 52

很酸1;塩酸10;硫酸9

混酸2:塩酸50:硫酸5

混酸1

2

32

-29-

= 5 9 =

43

•

混酸 2 混酸 3 混酸 3 混酸 3 混酸 3

\$ = 42

9 2 2 **\$** 20 9 0 20

混酸 1

混酸

混酸) 混酸 1

20 2 40 0 次に凝集剤の使用例を示す。

陶芸用粘土を水に溶かし、24時間静電後、 沈降しなった高濁度水を採取し、さらに水にて 濁度を調整して検水(原水)とした。

獨度の測定は、カオリン標準液で検定した獨 度計を、凝集実験には凝集反応水質試験器を用 いて実施した。

この原水に凝集剤を対原水量比で1/1000 (1000ppm)の割合で添加し、150回転/分で2 分間急速攪拌し、さら40回転/分で2分間経 速攪拌したあと静置させ、2分間間隔で10分 経過するまでの間上潤水採取して濁度を測定した。以下の実験に使用する検水(原水)はすべて上記のものを使用する。

表 - 3 に原水と処理水満度の測定結果を示す。

木温 室内温度20~25℃

芸用粘土潤水の処理結果

医

المنذ	10.	186	162	20	120	10	2	20	2	0	9	\$	-	ê.	-	6	ę	6	7	\$	0	2	252	182	28	42	=	2	42
水阀度	80	202	196	62	132	82	12	82	=	0	44	90	0	54	_	-	54	0	1	28	-	6	298	216	9	8	13	4	48
上值	9	242	226	9.6	912	88	18	27	18	2	89	12	1	7.8	3	9	82	1	7	88	2	3	346	256	7.8	56	28	-	54.
理木の	4	320	304	9.2	324	124	42	8.2	38	5	88	15	S.	86	9 .	0	106	8	01	701	9	8	424	348	96	84	42	8	64
₽	2	480	420	116	412	176	99	88	8.2		114	11	10	126	12	15	135	14	16	134	14	10	906	420	136	120	99	6	82
	静置時間																												
※ 主		1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000
百木酒店	No rest of the	095	5.60	580	560	580	260	580	560	980	980	960	260	560	560	560	560	560	260	260	560	560	280	260	980	560	560	260	999
拉勒斯	*	-	2	3	4	2	8	7	8	6	10	=	1.2	13	7	15	16	11	18	13	20	11	11	23	24	2.2	2.6	27	28

表-3(1/1) 陶芸用粘土濁水の処理結果

5

0

室内温度 2

米節

次 供 欠	世頭千里	** **		又	理木の	上價	木褐度	
500米那	师小包足	# n// %	静置時間	2	4	9	8	10
2.9	560	0001/1	·	11	8	ħ	3	3
30	260	0001/1		18	11.	8	S	9
31	260	0001/1		520	460	400	360	350
3.2	260	0001/1		420	340	260	230	210
33	560	0001/1		150	100	80	10	10
34	580	0001/1		120	90	0.9	0.9	40
3.5	280	1/1000.		8.8	42	28	15	0.1
36	999	1/1000		10	æ	2	6	. 2
3.7	280	1/1000		88	67	9.0	24	50
38	260	1/1000		13	6	1	•	1
3.9	560	1/1000		81	11	6	1	\$
40	560	1/1000		029	444	382	384	350
=	260	1/1000	•	442	368	190	131	802
4.2	260	1/1000		164	111	98	85	20
43	580	1/1000		128	8.2	95	11	40
44	560	1/1000		11.	81	97	91	01
45	560	1/1000	·	10	8	£	ı	2
46	960	1/1000		98	. 18	63	0\$	48
41	560	1/1000		14	6 .	ç	ı	7
48	980	1/1000		20	12	ı	8	9
4.9	260	1/1000		506	448	384	328	312
20	. 580	1/1000		426	328	2+2	208	202
5.1	960	1/1000		144	86	1.8	89	99
5.2	260	1/1000		120	98	24	ş	42
53	280	1/1000		7.2	11	11	11	11
5.4	260	1/1000	·	13	6 7	ç		6
5.5	260	1/1000		92	11	29	24	52
9.6	580	1/1000		14	10	80	ų.	6
19	260	1/1000		61	13	92	6	2

表 - 3 の陶芸用粘土濁水の処理結果を表 - 2 の凝集剤の製造条件で整理して第 2 図に示す。用いる酸種によって凝集剤の凝集効果は若干異なるが(硫酸に比べ塩酸がやや優れており、混酸はその中間)、凝集効果での有意差は認められない。

又酸溶液の濃度と添加する鉱石粉末量における凝集剤のゲル化時間を測定した。酸溶液の濃度が高くなるにつれてゲル化する速度は、急激に速くなり酸溶液の濃度が7規定を越えると凝

集剤は瞬間ゲル化する。また、酸溶液の濃度が 1 規定以下の場合、凝集剤の熟成が緩慢であ り、本凝集剤の能力を発揮するには長時間の熟 成を必要とすることが確認された。第3 図に酸 溶液の濃度と添加する鉱石粉末量における凝集 剤のゲル化時間の関係を示す。

比較例-1

本方式にて得られた凝集剤の凝集性能について、一般的に使用されているPAC (ポリ塩化アルミニウム)と比較するため、獨度560 の標準獨度水を陶芸用粘土を用いて作成し、本凝集剤の凝集主剤であるAQ(アルミニウムイオン)を等量として除濁効果を比較する。

添加する凝集剤中のAl(アルミニウムイオン)量は、一般に添加されている濁度500程度の濁度水に対するPACの添加量20~30ppmに相当するAl量1ppm及び2ppmについて表~4に示す如く比較実験結果を得た。

-4 (1/1) 凝集削とb 4 による処理結果の比較例・水温12・3で 添加する凝集剤中の4.9添加量=1.0bbm

凝集剤とPAC による処理結果の比較例	水温15.3C 添加する微集剤中のA&添加量=	処理水の上間水橋度	静健時間 2 4 6 8	.58 12 9 8	174 126 92 80	10 6 4 2	12 5 2 1	10 4 2 0	196 144 112 86	18 13 6	20 14 . 8 6	180 132 106 82	18 12 5 3	14 6 3 2	208 154 128 88	15 10 8	17 10 8 4	216 162 124 92	16 11 7	d
بر. بر	る後	飘	4	12	128	9	us.	-	144	13	14	132	12	6	2.5	0	10	162	==	
b A C	凝		2	. 5.8	174	07	12	2	. 196	81	20	180	18	14	208	15	11	218	91	;
凝集型 2	木温 25.3		佐	-				-					-							
(1/1)		=		7.40	6.84	8.83	6.78	6.82	6.76	8.82	8.84	6.81	8.78	6.81	8.85	6.19	6.76	6.84	6.86	
表 - 4		李	ŧ	P A C	被集創一3	凝集割-9	聚集和-14	凝集割-20	凝集割-24	凝集割-27	凝集割-29	被集制 33	凝集剂-36	极集割-38	級集割-42	凝集到-45	凝集剂-47	凝集到-51	凝集剂-54	海 体 女二 ここ

8 # 11 9 2 3 2 0 3,4 20 27 台 34 24 9 6 ¥ 2 2 6 2 26 3 38 0 4 13 7 18 9 [13 7 89 7 16 101 9 7 88 126 9 2 9 6 静霞時間 ౼ 凝集削-54 凝集剤-20 凝集削-24 凝集削-33 凝集到-42 凝集剤-56 凝集剂-14 凝集剂-27 凝集到-29 凝集削-36 凝集剤-38 凝集削-45 凝集剂-47 凝集剤-51 45 凝集割-3 凝集到-9 集部 ⋖

上記の実験結果から、凝集剤製造条件(表-2)に示す如く使用する酸溶液の濃度が4規定及び7規定の場合、 PACに比べ優れた凝集効果を発揮するが、酸溶液の濃度が1規定の場合、 PACに比べやや劣っている事が確認された。 実施例-2

フライアッシュ100 重量部に対し高炉スラグ4 5 重量部以上を混合して、鉱石中のA120、100 重量部に対しアルカリ分 (CaO+MgO)100 重量部以上になるようにし、電気炉を用いて1200で以上に昇温して鉱石を完全に溶融混合させることにより鉱物結晶構造を変化させた鉱石を冷却した後、鉱石を100 μ以下の粉末に粉砕して実施例-1 と同様に以下の模集剤を得た。

ここで用いたフライアッシュの組成例を表っ 5に、夫々の鉱石混合比率を表っ6に、又混合鉱石を用いた凝集剤の製造条件を表っ7に示す。

表-5 フライアッシュの組成例 (単位:wt%)

	SiO ₂	C·a0	A220.	FeO	MgO	·s	TiO2
Ì	49.0	6.4	22.4	6 . 2	1.1	0.3	0.5

表 - 6 フライアッシュと高炉スラグの混合比率

混合鉱石	フライアッシュ	高炉スラグ
S-1	100	45
S - 2	100	7 0
5 - 3	100	100

混合鉱石を用いた凝集剤の製造条件(1/1)

游	≨ .	-	þ	. 1	1	7	1	-	-	1	1	1	,	1	-	,	1	-	,	-	-	,	-	-	1
課	#	9.0	0 €	. 3	09	09	0 €	0.9	3.0		0.9	3.0		0.9	3.0	1	09	30	6	0.9	0.9	30	0.9	3.0	-
椞	液 最 (n2)·	300	000	300	000	300	300	0.0 €	300	300	300	300	300	300	000	000	000	300	300	3.00	300	300	300	300	300
	規定度 (N)	-	ł	,	1	1	1	1	•		1	4	1		1	7	1	1	ı	1	1	ı	1	1	1
(29	酸種名	塩酸	塩酸	塩酸	硫酸	硫酸	机酸	混酸1	混酸 1	混酸 1	混酸 2	混散 2	混酸 2	混散 3	准数3	混酸 3	塩酸	塩酸	塩酸	硫酸	報	研験	混酸!	混酸!	流版 1
質	粉末量 (8r)	1.5	4.0	5.0	15	01	9.0	1.5	0.5	0.5	1.5	40	5.0	15	40	5.0	1.5	01	9.0	1.5	40	5.0	\$Ì	40	9.0
磅	合鉱石 NO.	5-1	5-1	5-1	5-1	5-1	S-1	5-1	5-1	5-1	S-1	5-1	8-1	8-1	5-1	5-1	S-2	5-2	5-2	5-2	5-2	5-2	5-2	S-2	S-2
	題			[1												

表一 7 組合鉱石を用いた鞭集剤の製造条件(11/1)

奈命	花原 秋 後被		7	,	1	-	1	-	•	1	1	7	t.	1	•	1	1	-	,	1	-	1
	(((((((((((((((((((09.	3.0	-	90	3.0	1	0.9	3.0	-	0.9	0.8	3.0	0.9.	3.0		9.0	3.0	-	80	30	-
***	海(10)	300	300	300	300	300	300	300	300	.300	300	300	300	300	300	300	300	300	300	300	300	300
	規定度 (N)	1	-	-	-	-	-	-	-	7	1	~	1	-	-		-	-	1	-	-	1
慸	2 8	2 3	2 2	2.2	8 3	£ 3	£ 3	24	2	2	盤	2	***	1	1 (1)	1 0	酸 2	1 2	2 %	E 3	£ 3	E 3
1 1	2	混酸	調整	過	崩	悪	流数	퐾	報	#	選	選	選	復數	飕	第	朔	混	復敗	頭	嬂	篇
氰		15 推翻		5.0 福島	15 福	40. 细	50 混	15 44	40 4	\$0 th	15 研	40 研	50 66	15 · 復	40 混	50 混	15 福	40 . 混	50 福	15 混	40 准	50 福
	末 8r)	選	40. 随		S.		0			0	ur)		0		. 0	0 流	5 競	0 通	. 0	5 選	0	· ·

級集剤の製造に用いる塩酸と硫酸の混酸は下記の比率のものを使用した。 混酸 1:塩酸 1 0:硫酸 3 0 混酸 2:塩酸 2 0:硫酸 2 0 混酸 3:塩酸 8 0:硫酸 1 0

次に凝集剤の使用例を示す。

実施例-1と同様に調整した検水(原水)を

用いて凝集性能試験を実施する。

表 - 8 に原水と処理水橋度の測定結果を示

表 - 8 (1/1) 陶芸用粘土濁水の処理結果

水温 室内温度20~25℃

陶芸用粘土御水の処理結果

				•																3 5 1	開手	3-2	930	103	(11
, 2 5 C		9.4	01	60	0	0	12	67	0	8	89	-	=	6	2	=	20	60	-	0.	0	38	. 60	3	15
度20~		木窗原	8	6	0	0	24	-	0	· 01	60	-	11	-	6	87	ic.	6	4	0	0	2	80	6.	11
関盟と選		型型	9	∞ .	-	0.	4.	6	1	91	80	6	=	=	-	26	80	4	80	-	0	58	7	-	36
米		増木の	4	13		-	88	11	2	42	12	S.	6.5	23	,	41	14	90	18	60	2	7.8	32	-	62
	- 1	3	2	28	10	9	9.6	46	•	7.2	18	10	83	32	11	88	28	8	36	60	-	118	26	50	92
			静置時間			2-		. ,							;·										
.; ·		級計學		1/1000	1/1008	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000.	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000
		原水橋度		260	560	260	560	260	560	. 560	560	560	999	560	260	260	999		560	580	260			280	260
		凝集剤		<u>=</u>	102	103	104	105	108	101	108	109	=	Ξ	112	= 13	=	115	116	1	81.1	119	120		771
											,			<u> </u>						I	_ _	Į		1	- !
, [u.J	2	01	-		-	-	=	5	6	9	0	•	88	=	ج	11	1	2	35	-	6	46	. 7	6
8	木窗田	8	12	-	28	. 60	-	28	6	6	9	0	0	64	==	co.	37	1	2	42	=		48	80	-
#	上值	9	=	-	- =	12	. 15	36	2	s	12	2	-	78	28	60	. 99	=	ν.	=	18	9	56	15	9
	埋木の	4	11.	9	75	82	•	15	91	-	28	15	-	9.6	42	14	82	32	1	88	35	60	=	32	10
	製	2	38	2	103	42	12	18	32	12	2	=	50	136	9.9	<u>e</u>	102	₩	12	=	25	Ξ	88	5.2	11

木の上間木媧度	01 8 9	2 14 12 10	6 4 1	5 41 28 15	8 12 8 7	6 4 4	1 36 28 16	9 01 9	7 5 3 3	8 12 6 6	5 2 0 0	4 0 0 0	6 78 64 58	2 28 13 11	4 8 5	2 56 37 22	2, 14 7 7	7 5 2 2	5 61 42 35	5 18 11 7	8 6 3 3	1 56 46 46		15 8 . 7
	22 6 6 8 8 1 1 1 1 1 1 1 5 1 5 1 5 1 5 1 5 1 5	6 28 28 16 16 16 28 28 28 28 28 28 5 5	75 28 8 8 16 16 7 7 7 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7	28 8 1 16 1 7 7 7 5 5 5	8 1 16 1 16 1 2 8 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16 16 7 7 7 7 8 5	16 7 7 28 28 5					6		66 42	18 14		48 32	12 7	113 85	52 35	14 8	98 71	52 32	
整													: .										77.4	
1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000 1/1000	1/1000 1/1000 1/1000	1/1000	1/1000	1/1000		1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1/1000	1 /1000
560 560 560 560 560 560 560 560	560 560 560 560 560 560 560 560 560	960 960 960 960 960 960 960 960 960 960	560 560 560 560 560 560 560 560	560 560 560 560 560 560	560 560 560 560 560	099999999999999999999999999999999999999	560	560	980	560	560	6.60		980	260	980	960	560	560	560	560	580	560	. 082
123 124 125 126 127 128 130 130	123 126 126 127 128 129 130 131	126 126 126 127 128 129 130 131	125 126 127 128 139 130	126 127 128 129 130 131	127 128 129 130 131	128 130 131 132	130	130	131	132		133	134	135	136	137	138	138	14.0	<u>=</u>	142	143	144	1.45

BEST AVAILABLE COPY

特閒平3-293003 (12)

上記の実験結果から、表 - 3 に示す獨水処理 結果と同様に凝集剤製造条件(表 - 7)に示す 如く使用する酸溶液の濃度が 4 規定及び 7 規定 の場合、PAC に比べ優れた凝集効果を発揮する が、酸溶液の濃度が 1 規定の場合、PAC に比べ や今労っている事が確認された。

以上の結果から、本被集剤製造に用いる鉱石 粉末として、Si、A2、Caを含む鉱石を用いて本 複集剤の製造が可能であることが確認された。 [発明の効果]

従来の優集剤による水処理では、優集主剤と 要集助剤を併用させることにより十分なる優集 効果を発揮させているが、優集操作が復雑と なっている。これに比べ、Si、Al. Caを含む鉱石粉末を酸溶液に溶解させたことで、優集主剤 であるAl. Fe等を溶出させると共に優集助剤と なる活性ケイ酸(SiO2を溶出させつつポリマー 化を促進させる)を短時間で作ることが可能と なり、凝集主剤と凝集助剤を併せもつ優集剤を 安価に製造することが可能となった。

第 1 図

第 2 図

(*1)酸溶液の温度を1規定に希釈した場合の 酸溶液100mæに対する鉱石粉末量

4. 図面の簡単な説明

第1図は本発明の粉末造水フローを示す図、第2図は酸溶液の濃度と添加する鉱石粉末量における凝集剤の凝集効果の相関を示す図、第3図は酸溶液の濃度と添加する鉱石粉末量における凝集剤のゲル化時間の相関を示す図、第4図は従来の活性ケイ酸製造設備のフローを示す図である。

1 … ケイ酸ソーダ貯蔵槽

2 … 濃硫酸タンク 3 … 活性化反応槽

4 … ケイ酸ソーダ受入ポンプ

5 … ケイ酸ソーダ送液ポンプ

6 … 硫酸送液ポンプ

7 … 活性ケイ酸注入ポンプ

1 1 … 粉末ホッパー 1 2 … 粉末供給装置

1 3 … 溶解槽

1 4 … 希釈槽

15…溶解液抜出し弁

代理人 谷山 輝 雄ぽ 他 4 名

第 3 図

第 4 図

第1頁の続き

⑫発 明 者 内 藤 俊 一 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント

設計株式会社内

@発 明 者 市 丸 義 隆 福岡県北九州市戸畑区大字中原46-59 新日本製鐵株式會

社機械・プラント事業部内