Deep Learning PA_3

Nived Narayanan EP14B035 1)

BasicLSTM

Training Accuracy

Training Loss

Validation Accuracy

Validation loss

BasicRNN

Training Accuracy

Training Loss

Validation Accuracy

Validation Loss

BidirectionalRNN

Training Loss

run to download 🕌 CSV JSON

<u>Training error over 10,000 images</u> = 0.96929997

Validation Accuracy

Validation Loss

LSTM with L2 regularization for neural net weights

Training Accuracy

Training Loss

RNN with L2 Regularization for weights of Neural Network

Training Accuracy

Training Loss

BidirectionalRNN with L2 regularization for weights of Neural Network

Training Accuracy

Training Loss

True label v/s predicted for BasicLSTM

1 / 1,7,2

7 / 7,1,9

4 / 4,7,9

5 / 5,3,8

0/0,9,6

2) L = 5, Sate vector size = 5 (MSE cost function)

Training Accuracy

Training Loss

Test Accuracy

Test Loss

L = 5, Sate vector size = 10 (MSE cost function)

Training Accuracy

Training Loss

Test Accurcy

Test Loss

L = 3, Sate vector size = 10 (MSE cost function)

Training Accuracy

Training Loss

Test Accuracy

Test Loss

L = 10, Sate vector size = 5 (MSE cost function)

Training Accuracy

Training Loss

Test Accuracy

Test Loss

L = 5, Sate vector size = 10 (Cross entropy cost function)

Test Accuracy

Test Loss