미분과 적분

Sooji Shin • soojishin@live.com

이 노트에서는 고등학교에서 배우는 수학의 내용 중 미적분에 관련된 개념과 공식을 정리하고 그에 따른 예제와 풀이를 소개 합니다. 이 노트에서 포함하고 있는 내용은 다음과 같습니다.

- 수열의 극한
- 함수의 극한과 연속함수
- 미분의 뜻과 성질
- 적분의 뜻과 성질
- 삼각함수, 지수함수, 로그함수의 미적분
- 미분과 적분의 활용

이 노트가 수학을 공부하는 분들께 도움이 되기를 바랍니다.

1 수열의 극한

수열의 극한은 수렴하는 경우와 발산하는 경우로 나눌 수 있으며, 발산하는 경우는 양의 무한대로 발산하는 경우, 음의 무한대로 발산하는 경우, 진동하는 경우로 나눌 수 있다.

수렴하는 수열 무한수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때 일반항 a_n 의 값이 일정한 값 α 에 한없이 가까워지면 수열 $\{a_n\}$ 은 α 에 수렴한다고 말하고, α 를 무한수열 $\{a_n\}$ 의 극한값이라고 부르며, 이것을 기호로

$$\lim a_n = \alpha$$

로 나타낸다. 이것을 풀어서

$$n \to \infty$$
일 때 $a_n \to \alpha$

로 쓰기도 한다.

무한대에 발산하는 수열 n의 값이 한없이 커짐에 따라 a_n 의 값이 한없이 커지면 수열 $\{a_n\}$ 은 **양의 무한대로 발산한다**고 말하고 기호로는

$$\lim_{n\to\infty} a_n = \infty$$

또는

$$n \to \infty$$
일 때 $a_n \to \infty$

로 나타낸다. 또 n의 값이 한없이 커짐에 따라 a_n 의 값은 음의 값으로서 그 절댓값이 한없이 커지면 수열 $\{a_n\}$ 은 음의 무한대로 발산한다고 말하고 기호로

$$\lim a_n = -\infty$$

또는

$$n \to \infty$$
일 때 $a_n \to -\infty$

로 나타낸다.

진동하는 수열 수열 $\{(-1)^n\}$ 과 같이, $\{a_n\}$ 이 수렴하지도 않고 양의 무한대 또는 음의 무한대에 발산하지도 않을 때, 수열 $\{a_n\}$ 은 **진동한다**고 말한다.

수열의 극한의 기본성질

수렴하는 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$\lim_{n \to \infty} a_n = \alpha, \lim_{n \to \infty} b_n = \beta$$

일 때, 다음이 성립한다.

① $\lim_{n \to \infty} (a_n \pm b_n) = \alpha \pm \beta$ (복부호동순)

②
$$\lim ca_n = c \lim a_n$$
 (c는 상수)

④
$$a_n \neq 0$$
, $\alpha \neq 0$ 일 때 $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{\beta}{\alpha}$

참고 수열의 극한이나 함수의 극한의 성질을 증명하는 것은 고등학교 과정을 벗어나므로 여기서는 증명하지 않고 직관적으로 받아들인다.

에제 1. 다음 수열의 수렴, 발산을 조사하고, 수렴하면 그 극한 값을 구하여라.

$$(1) -1, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{3}}, \cdots, -\frac{1}{\sqrt{n}}, \cdots$$

- (2) 1, 0, -1, -2, -3, \cdots , -n+2, \cdots
- (3) $\cos n\pi$ $(n=1, 2, 3, \cdots)$
- $(4) \ 3n-1 \ (n=1, 2, 3, \cdots)$

풀이 (1) 0에 수렴

- (2) 음의 무한대로 발산
- (3) 발산(진동)
- (4) 양의 무한대로 발산

예제 2. 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여

$$\lim_{n \to \infty} a_n = 3, \lim_{n \to \infty} b_n = -2$$

일 때, 다음 극한값을 구하여라.

- $(1) \quad \lim (2-a_n)$
- $(2) \lim_{n \to \infty} (3a_n + 4b_n)$
- (3) $\lim_{n\to\infty} 5a_n b_n$
- $(4) \lim_{n \to \infty} \frac{2a_n + 1}{(b_n)^2}$

罿이 (1) 2-3=-1

- (2) $3 \cdot 3 4 \cdot (-2) = 1$
- (3) $5 \cdot 3 \cdot (-2) = -30$
- $(4) \ \frac{2 \cdot 3 + 1}{(-2)(-2)} = \frac{7}{4}$

예제 3. 다음 극한값을 구하여라.

(1)
$$\lim_{n\to\infty} \left(3 + \frac{3}{n}\right)$$

$$(1) \lim_{n \to \infty} \left(3 + \frac{3}{n} \right) \qquad (2) \lim_{n \to \infty} \left(\frac{2}{n} - \frac{1}{n^2} \right)$$

(3)
$$\lim_{n \to \infty} \left(3 - \frac{1}{n} \right) \left(2 + \frac{5}{n} \right)$$
 (4) $\lim_{n \to \infty} \frac{2 + \frac{3}{n^2}}{1 - \frac{4}{n}}$

$$(4) \lim_{n \to \infty} \frac{2 + \frac{3}{n^2}}{1 - \frac{4}{n}}$$

풀이 (1) 3+0=3

(2)
$$0 - 0 = 0$$

(3)
$$(3-0)(2+0) = 6$$
 (4) $\frac{2+0}{1-0} = 2$

4)
$$\frac{2+0}{1-0} = 2$$

부정형의 극한값

- (1) $\left\{a_n\right\}$ 의 극한이 $\frac{\infty}{\infty}$ 꼴인 경우, a_n 의 분모와 분자가 n에 관한 다항식이면 분자와 분모를 분모의 최고차항으로 나 누어 계산한다.
- (2) $\left\{a_n\right\}$ 의 극한이 $\infty-\infty$ 꼴인 경우, 유리화하여 $\frac{\infty}{\infty}$ 꼴로 변형하여 구한다.

예제 4. 다음 극한을 조사하여라.

(1)
$$\lim_{n \to \infty} \frac{4n^3 - 2n}{3n^2 + 2n - 1}$$
 (2) $\lim_{n \to \infty} \frac{2n - 1}{n^2 + 1}$

(2)
$$\lim_{n \to \infty} \frac{2n-1}{n^2+1}$$

$$(3) \lim_{n\to\infty} \frac{2n+1}{\sqrt{n^2-n}+3}$$

플이 (1) (준식)=
$$\lim_{n\to\infty} \frac{4n-\frac{2}{n}}{3+\frac{2}{n}-\frac{1}{n^2}} = \infty$$
 (발산)

(2) (준식)=
$$\lim_{n\to\infty} \frac{\frac{2}{n} - \frac{1}{n^2}}{1 + \frac{1}{n^2}} = \frac{0 - 0}{1 + 0} = 0 \quad (수렴)$$

(3) (준식)=
$$\lim_{n\to\infty} \frac{2+\frac{1}{n}}{\sqrt{1-\frac{1}{n}+\frac{3}{n}}} = \frac{2+0}{1+0} = 2 \quad (수렴)$$

참고 A와 B가 n에 대한 다항식이고

$$a_n = \frac{A}{B}$$

일 때 $\lim a_n$ 의 수렴 여부는 다음과 같다.

 $(i)(A의 차수)>(B의 차수)인 경우 <math>\lim a_n$ 은 발산한다.

A의 최고차항의 계수와 B의 최고차항의 계수의 부호가 동 일하면 양의 무한대에 발산하고, 두 계수의 부호가 다르면 음의 무한대에 발산한다.

- (ii) (A의 차수)<(B의 차수)인 경우 $\lim a_n$ 은 0에 수렴한다.
- (iii) (A의 차수)=(B의 차수)인 경우 $\lim_{n\to\infty}a_n$ 은 수렴한다.

이때
$$\lim_{n\to\infty} a_n = \frac{(A$$
의 최고차항의 계수)}{(B의 최고차항의 계수)}.

예제 5. 다음 극한을 조사하여라.

$$(1) \lim \left(\sqrt{n^2+2n}-n\right)$$

$$(1) \lim_{n \to \infty} \left(\sqrt{n^2 + 2n} - n \right) \qquad (2) \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n} - n}$$

(3)
$$\lim (5+3n^2-2n^3)$$

풀이 (1) (준시) =
$$\lim_{n \to \infty} \frac{\left(\sqrt{n^2 + 2n} - n\right)\left(\sqrt{n^2 + 2n} + n\right)}{\sqrt{n^2 + 2n} + n}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n - n^2}{\sqrt{n^2 + 2n} + n} = \lim_{n \to \infty} \frac{2n}{\sqrt{n^2 + 2n} + n}$$

$$= \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{2}{n} + 1}} = \frac{2}{1 + 1} = 1 \quad (구렴)$$

(2) (준식)=
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + n} + n}{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n^2 + n} + n}{n} = \lim_{n \to \infty} \frac{\sqrt{1 + \frac{1}{n}} + 1}{1}$$
$$= \frac{1 + 1}{1} = 2 \quad (수렴)$$

(3) (준식)=
$$\lim_{n\to\infty} n^3 \left(\frac{5}{n^3} + \frac{3}{n} - 2 \right) = -\infty$$
 (발산)

극한의 대소 관계

- (1) 수열 $\{a_n\}$, $\{b_n\}$ 이 각각 α , β 에 수렴하고 모든 자연수 n에 대하여 $a_n \leq b_n$ 이면 $\alpha \leq \beta$ 이다.
- (2) 수열 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ 이 모든 자연수 n에 대하여 $a_n \le b_n \le c_n$ 이고 $\{a_n\}$ 과 $\{c_n\}$ 이 동일한 값 α 에 수렴하면 $\{b_n\}$ 도

동일한 값 α 에 수렴한다.

에제 6. 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$\frac{n}{4n+5} < a_n < \frac{n+2}{4n+3}$$

를 만족시킬 때, $\lim a_n$ 의 값을 구하여라.

풀이
$$\lim_{n\to\infty}\frac{n}{4n+5}=\frac{1}{4}$$
, $\lim_{n\to\infty}\frac{n+2}{4n+3}=\frac{1}{4}$ 이므로 $\lim a_n=\frac{1}{4}$.

- 에제 7. $\lim_{n \to \infty} \frac{(1+n)\cos n\theta}{n^2}$ 의 값을 구하여라. (단, θ 는 상수)
- **풀이** 모든 자연수 n에 대하여

$$-\frac{n+n}{n^2} \le -\frac{1+n}{n^2} \le \frac{(1+n)\cos n\theta}{n^2} \le \frac{1+n}{n^2} \le \frac{n+n}{n^2}$$

이고
$$\lim_{n\to\infty} \left(-\frac{2n}{n^2}\right) = 0 = \lim_{n\to\infty} \frac{2n}{n^2}$$
이므로
$$\lim_{n\to\infty} \frac{(1+n)\cos n\theta}{n^2} = 0.$$

예제 8. 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여

$$\frac{1}{\sqrt{n^2+2n}} < a_n < \frac{1}{\sqrt{n^2+n}}$$

을 만족시킬 때, $\lim na_n$ 의 값을 구하여라.

풀이 모든 자연수 n에 대하여

$$\frac{n}{\sqrt{n^2 + 2n}} < na_n < \frac{n}{\sqrt{n^2 + n}}$$

이고

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 2n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{2}{n}}} = 1,$$

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}} = 1$$

이므로 $\lim na_n = 1$ 이다.

무한등비수열의 극한

무한등비수열 $\{r^n\}$ 의 극한은 다음과 같다.

- ① r > 1일 때 $\lim r^n = \infty$,
- ② r=1일 때 $\lim r^n=1$,
- ③ |r| < 1일 때 $\lim r^n = 0$.
- ④ $r \le -1$ 일 때 $\{r^n\}$ 은 진동한다.

증명 ① r > 1일 때 r = 1 + h라고 하면 h > 0이다. 또한 이항 정리에 의하여 $n \ge 2$ 일 때

$$r^n = (1+h)^n = 1 + nh + {}_nC_2h^2 + \dots \ge 1 + nh$$

이다. 따라서

$$\lim_{n\to\infty}r^n\geq\lim_{n\to\infty}(1+nh)=\infty.$$

②는 당연하다.

③ $r \neq 0$ 인 경우 $|r| = \frac{1}{1+h}$ 라고 하면 h > 0이다. 또한 이항 정리에 의하여 $n \geq 2$ 일 $^{\text{T}}$

$$|r|^n = \frac{1}{(1+h)^n} \le \frac{1}{1+nh}$$

이므로

$$0 \le \lim_{n \to \infty} |r|^n \le \lim_{n \to \infty} \frac{1}{1 + nh} = 0$$

이다. 따라서 $\lim_{n \to \infty} |r|^n = 0$ 이므로 $\lim_{n \to \infty} r^n = 0$ 이다.

④ n이 짝수일 때 $r^n \ge 1$ 이고 n이 홀수일 때 $r^n \le -1$ 이므로 $\{r^n\}$ 은 하나의 값에 가까워지지 않으며 양의 무한대 또는 음의 무한대로 발산하지도 않는다.

예제 9. 다음 무한등비수열의 수렴, 발산을 조사하여라.

$$(1) \left\{ \left(\frac{3}{4}\right)^n \right\}$$

(2)
$$\{(-2)^n\}$$

(1)
$$\left\{ \left(\frac{3}{4} \right)^n \right\}$$
 (2) $\left\{ (-2)^n \right\}$ (3) $\left\{ \left(-\frac{1}{3} \right)^n \right\}$

풀이 (1) 0에 수렴 (2) 발산(진동) (3) 0에 수렴

П

에제 10. 다음 무한등비수열이 수렴하기 위한 실수 x의 값의 범위를 구하여라.

(1)
$$\{(2x-1)^n\}$$

$$(2) \left\{ \left(\frac{x}{3}\right)^n \right\}$$

풀이 (1) $-1 < 2x - 1 \le 1$ 이므로 $0 < x \le 1$.

(2)
$$-1 < \frac{x}{3} \le 1$$
이므로 $-3 < x \le 3$.

예제 11. 다음 극한을 조사하여라.

(1)
$$\lim_{n \to \infty} \frac{3^n - 2^n}{3^n + 2^n}$$

(1)
$$\lim_{n \to \infty} \frac{3^n - 2^n}{3^n + 2^n}$$
 (2) $\lim_{n \to \infty} \frac{2^{n+1} + 3^n}{5^n - 1}$ (3) $\lim_{n \to \infty} (3^{2n} - 3^n)$

(3)
$$\lim_{n \to \infty} (3^{2n} - 3^n)$$

풀이 (1)
$$\lim_{n\to\infty} \frac{3^n - 2^n}{3^n + 2^n} = \lim_{n\to\infty} \frac{1 - \left(\frac{2}{3}\right)^n}{1 + \left(\frac{2}{3}\right)^n} = \frac{1 - 0}{1 + 0} = 1$$
. (수렴)

(2)
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^n}{5^n - 1} = \lim_{n \to \infty} \frac{2 \cdot 2^n + 3^n}{5^n - 1}$$

$$= \lim_{n \to \infty} \frac{2 \cdot \left(\frac{2}{5}\right)^n + \left(\frac{3}{5}\right)^n}{1 - \left(\frac{1}{5}\right)^n} = \frac{2 \cdot 0 + 0}{1 - 0} = 0. \quad (\overrightarrow{\uparrow} \vec{\exists})$$

(3)
$$\lim_{n\to\infty}(3^{2n}-3^n)=\lim_{n\to\infty}(9^n-3^n)=\lim_{n\to\infty}9^n\left\{1-\left(\frac{3}{9}\right)^n\right\}$$

$$=\infty. \quad (발산)$$

예제 **12.** 수열 $\{a_n\}$ 이

$$a_1 = 3$$
, $3a_{n+1} = a_n + 4$ $(n = 1, 2, 3, \dots)$

으로 정의되었을 때 $\lim a_n$ 의 값을 구하여라.

풀이 주어진 식을 변형하면

$$a_{n+1}-2=\frac{1}{2}(a_n-2)$$

이다. 따라서 $A_n=a_n-2$ 라고 하면 $\left\{A_n\right\}$ 은 첫째항이 1, 공비 가 $\frac{1}{3}$ 인 등비수열이므로 0에 수렴한다. 따라서 $a_n=A_n+2$ 이 므로 $\{a_n\}$ 은 2에 수렴한다. 즉 $\lim a_n = 2$ 이다.

2 급수

무한수열 $\{a_n\}$ 의 각 항을 합의 기호로 연결한 식

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

을 **무한급수**라고 부르고

$$\sum_{n=0}^{\infty} a_n$$

으로 나타낸다. 이 무한급수에서 첫째항부터 제 n항까지의 합

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$$

를 이 무한급수의 **부분합**이라고 부른다.

만약 부분합 수열 $\{S_n\}$ 이 S에 수렴하면, 즉

$$\lim_{n\to\infty} S_n = S$$

이면 무한급수 $\sum_{n=1}^{\infty} a_n$ 은 S에 **수렴한다**고 말하고, S를 이 **무한**

급수의 합이라고 부르며 기호로

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = S$$

또는

$$\sum_{n=1}^{\infty} a_n = S$$

로 나타낸다.

만약 $\{S_n\}$ 이 발산하면 $\sum_{n=1}^{\infty}a_n$ 은 **발산한다**고 말한다.

무한급수의 성질

무한급수 $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ 이 각각 S, T에 수렴하면

①
$$\sum_{n=1}^{\infty} (a_n \pm b_n) = S \pm T$$
 (복부호동순)

②
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n \quad (c \ \ \ \ \ \ \ \ \ \ \)$$

예제 13. 다음 무한급수의 수렴, 발산을 조사하고, 수렴하면 그 합을 구하여라.

(1) $2+4+6+8+\cdots+2n+\cdots$

(2)
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$$

풀이 주어진 무한급수의 제 n항까지의 부분합을 S_n 이라고 하자.

(1)
$$S_n = 2 + 4 + 6 + \dots + 2n = \frac{n(2+2n)}{2} = n^2 + n$$
이므로
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} (n^2 + n) = \infty. \quad (발산)$$

(2)
$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$
이므로
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1. \quad (수템)$$

예제 14. 다음 무한급수의 수렴, 발산을 조사하여라.

(1)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

(2)
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots$$

풀이 주어진 무한급수의 제 n항까지의 부분합을 S_n 이라고 하자.

$$\begin{split} (1) \ \ S_{2^n} &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^n} \\ &\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots + \frac{1}{2^n} \\ &= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{n}{2} \,. \end{split}$$

따라서
$$\lim_{n\to\infty} S_n \ge \lim_{n\to\infty} \left(1 + \frac{n-1}{2}\right) = \infty$$
. (발산)

$$\begin{split} (2) \ \ S_{2^n} &= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^{2^n}} \\ &\leq 1 + \left(\frac{1}{2^2} + \frac{1}{2^2}\right) + \left(\frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2}\right) + \dots + \frac{2^{n-1}}{(2^{n-1})^2} \\ &= 1 + \frac{2}{2^2} + \frac{4}{4^2} + \frac{8}{8^2} + \dots + \frac{2^{n-1}}{(2^{n-1})^2} \\ &= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^{n-1}} \leq 2. \end{split}$$

따라서 $\lim S_n \leq 2$ 이다. 즉 $\lim S_n$ 은 양의 무한대로 발산하지 는 않는다. 그런데 $S_n-S_{n-1}=rac{1}{n}$ 이므로 $S_{n-1}\leq S_n$ 이다. 즉 n이 커지면 S_n 도 커지므로 $\lim S_n$ 은 음의 무한대로 발산하지 도 않고 진동하지도 않는다. 따라서 $\lim S_n$ 은 수렴한다.

참고 $\{a_n\}$ 의 모든 항이 양수이고 부분합이 $S_n = \sum_{k=1}^n a_k$ 일 때,

$$\lim_{n \to \infty} S_n$$
이 수렴 $\iff \lim_{n \to \infty} S_{2^n}$ 이 수렴

이다. 여기서 2를 더 큰 자연수로 바꾸어도 성립한다.

무한급수와 수열의 극한 사이의 관계

- (1) 무한급수 $\sum_{n=0}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다.
- (2) $\lim_{n\to\infty} a_n \neq 0$ 이면 $\sum_{n=1}^{\infty} a_n$ 은 발산한다.

증명 (1) 무한급수의 합을 S라고 하고 부분합을 S_n 이라고 하 자. 즉

$$S = \sum_{n=1}^{\infty} a_n$$
 그런코 $a_1 + a_2 + \dots + a_n = S_n$

 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$

(2)는 (1)의 대우이므로 참이다.

예제 15. 다음 무한급수가 발산함을 보여라.

(1)
$$\sum_{n=1}^{\infty} \frac{3n^2}{n+5}$$

(1)
$$\sum_{n=1}^{\infty} \frac{3n^2}{n+5}$$
 (2) $\sum_{n=1}^{\infty} \left\{ 1 - \left(\frac{1}{5}\right)^{n-1} \right\}$

풀이 (1) 일반항의 극한을 구해보면

$$\lim_{n \to \infty} \frac{3n^2}{n+5} = \infty \neq 0$$

이므로 주어진 무한급수는 발산한다.

(2) 일반항의 극한을 구해보면

$$\lim_{n \to \infty} \left\{ 1 - \left(\frac{1}{5} \right)^{n-1} \right\} = 1 \neq 0$$

이므로 주어진 무한급수는 발산한다.

 $a \neq 0$ 일 때, 첫째항이 a이고 공비가 r인 무한등비수열 $\{ar^{n-1}\}$ 에서 얻어진 무한급수

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^{2} + \dots + ar^{n-1} + \dots$$

를 첫째항이 a이고 공비가 r인 **무한등비급수**라고 부른다.

무한등비급수의 수렴과 발산

무한등비급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 은

- ① |r| < 1이면 수렴하고 그 합은 $\frac{a}{1-r}$ 이다.
- $2|r| \ge 1$ 이면 발산한다.

증명 주어진 무한등비급수의 부분함은

$$\sum_{k=1}^{n} ar^{k-1} = \frac{a(1-r^n)}{1-r}$$

이므로 $n \to \infty$ 인 극한을 취하면 원하는 결과를 얻는다.

예제 16. 다음 무한등비급수의 수렴, 발산을 조사하여라.

(1)
$$1 + \frac{2}{5} + \frac{4}{25} + \frac{8}{125} + \cdots$$
 (2) $\sqrt{2} - 2 + 2\sqrt{2} - 4 + \cdots$

(2)
$$\sqrt{2}-2+2\sqrt{2}-4+\cdots$$

풀이 (1) (공비의 절댓값)= $\frac{2}{5}$ <1이므로 수렴한다.

(2) (공비의 절댓값)= $|-\sqrt{2}|=\sqrt{2}>1$ 이므로 발산한다.

예제 17. 무한등비급수

$$1 - 3x + 9x^2 - 27x^3 + \cdots$$

가 수렴하기 위한 실수 x의 값의 범위를 정하여라.

풀이 (공비의 절댓값)=|3x|<1이므로 $-\frac{1}{3}< x<\frac{1}{3}$.

예제 18. 두 무한등비급수

$$\sum_{n=1}^{\infty} \left(\frac{x}{4}\right)^n, \sum_{n=1}^{\infty} \left(\frac{3}{x}\right)^n$$

이 모두 수렴하기 위한 x의 값의 범위를 구하여라.

풀이 $-1 < \frac{x}{4} < 1$ 과 $-1 < \frac{3}{x} < 1$ 을 모두 만족시키는 범위를 구하면 -4 < x < -3 또는 3 < x < 4이다.

예제 19. 아래 그림과 같이 $\overline{OP}=2$, $\overline{OQ}=1$ 이고 $\angle QOP=$ 90°인 직각삼각형 OPQ에 정사각형 $OA_1B_1C_1$ 을 내접시키고, 다시 직각삼각형 A_1PB_1 에 정사각형 $A_1A_2B_2C_2$ 를 내접시킨다.

이와 같은 방법으로 정사각형을 계속 만들어 나갈 때, 이들 정 사각형의 넓이의 합을 구하여라.

해설 가장 큰 정사각형의 넓이를 첫째 항으로 두고, 인접한 두 정사각형의 넓이의 비를 이용하여 공비를 구한다.

3 함수의 극한

함수 y = f(x)에서 x의 값이 a가 아니면서 a에 한없이 가까워질 때, f(x)의 값이 일정한 값 L에 한없 이 가까워지면 함수 f(x)는 L에 수렴한다고 말한다.

이때 L을 x의 값이 a에 한없이

가까워질 때의 함수 f(x)의 **극한값** 또는 **극한**이라고 하며, 이 것을 기호로

$$\lim_{x \to a} f(x) = L$$
 또는 $x \to a$ 일 때 $f(x) \to L$

과 같이 나타낸다.

에제 20. 다음 극한을 조사하여라.

(1)
$$\lim_{x \to -2} (x-3)$$

(1)
$$\lim_{x \to -2} (x-3)$$
 (2) $\lim_{x \to -2} \frac{x^2 - x - 6}{x+2}$

풀이 (1) x가 -2에 가까워지면 x-3은 -2-3=-5에 가까 워진다. 따라서 $\lim (x-3)=-5$ 이다.

(2) $x \neq -2$ 일 때

$$\frac{x^2 - x - 6}{x + 2} = \frac{(x + 2)(x - 3)}{x + 2} = x - 3$$

이므로 x가 -2에 가까워지면 $\frac{x^2-x-6}{x+2}$ 은 -5에 가까워진다.

따라서
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x + 2} = -5$$
이다.

참고 위 예제에서 보는 바와 같이 한 점에서 함수의 극한은 그 점에서 함숫값과 관계가 없다.

함수 f(x)에서 x의 값이 a에 한없이 가까워질 때, f(x)의 값 이 한없이 커지면 f(x)는 **양의 무한대로 발산**한다고 말하며, 이것을 기호로

$$\lim_{x \to a} f(x) = \infty$$
 또는 $x \to a$ 일 때 $f(x) \to \infty$

와 같이 나타낸다.

또 함수 f(x)에서 x의 값이 a에 한없이 가까워질 때, f(x)의 값이 음수이면서 그 절댓값이 한없이 커지면 f(x)는 음의 무한 대로 발산한다고 말하며, 이것을 기호로

$$\lim_{x\to a} f(x) = -\infty$$
 또는 $x\to a$ 일 때 $f(x)\to -\infty$

와 같이 나타낸다.

예제 21. 다음 극한을 조사하여라.

(1)
$$\lim_{x \to -2} \frac{1}{(x+2)^2}$$
 (2) $\lim_{x \to 2} \frac{1}{|x-2|}$

(2)
$$\lim_{x \to 2} \frac{1}{|x-2|}$$

풀이 (1) x가 -2에 가까워질 때 $(x+2)^2$ 은 0에 가까운 양수 이다. 즉 $\frac{1}{(x+2)^2}$ 의 분모가 0에 가까운 양수이므로 이 분수는

매우 커진다. 따라서
$$\lim_{x \to -2} \frac{1}{(x+2)^2} = \infty$$
이다.

(2) x가 2에 가까워질 때 |x-2|는 0에 가까운 양수이다. 즉 $\frac{1}{|x+2|}$ 의 분모가 0에 가까운 양수이므로 이 분수는 매우 커진 다. 따라서 $\lim_{x\to 2} \frac{1}{|x-2|} = \infty$ 이다.

함수 y = f(x)에서 x의 값이 한없이 커질 때 f(x)의 값이 일 정한 값 L에 한없이 가까워지면, 이것을 기호로

$$\lim_{x\to\infty} f(x) = L$$
 또는 $x\to\infty$ 일 때 $f(x)\to L$

과 같이 나타낸다.

또 함수 y = f(x)에서 x의 값이 음수이면서 절댓값이 한없이 커질 때 함수 f(x)의 값이 일정한 값 M에 한없이 가까워지면, 이것을 기호로

$$\lim_{x \to -\infty} f(x) = M$$
 또는 $x \to -\infty$ 일 때 $f(x) \to M$

과 같이 나타낸다.

그리고 $x \to \infty$ 또는 $x \to -\infty$ 일 때, f(x)가 양의 무한대나 음의 무한대로 발산하면 이것을 기호로

$$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to \infty} f(x) = -\infty,$$

$$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to \infty} f(x) = -\infty$$

와 같이 나타낸다.

에제 22. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to \infty} \left(-\frac{1}{x} \right)$$

(2)
$$\lim_{x \to -\infty} \left(-\frac{1}{x} \right)$$

풀이 분모가 엄청 커지면 분수는 0에 한없이 가까워진다. 따라 서 두 극한 모두 극한값은 0이다.

예제 23. 다음 극한을 조사하여라.

- (1) $\lim \sqrt{x}$
- (2) $\lim_{x \to \infty} (1-x)(1+x)$
- (3) $\lim_{x \to \infty} \left(1 \frac{1}{x^2} \right)$ (4) $\lim_{x \to \infty} \frac{1}{|x|}$
- (5) $\lim_{x \to \infty} (2x+5)$ (6) $\lim_{x \to -\infty} (-x^2+2x-1)$
- **풀0** (1) ∞ (2) $-\infty$

- (4) 0
- $(5) \infty$
- $(6) \infty$

일반적으로 $x \to a+0$ 일 때, f(x)의 값이 일정한 값 L에 한없 이 가까워지면 L을 x=a에서의 f(x)의 **우극한**이라고 하며, 이것을 기호로

$$\lim_{x \to a+0} f(x) = L$$
 또는 $x \to a+0$ 일 때 $f(x) \to L$

과 같이 나타낸다.

또 $x \to a - 0$ 일 때, f(x)의 값이 일정한 값 M에 한없이 가까 워지면 M을 x=a에서의 f(x)의 **좌극한**이라고 하며, 이것을 기호로

$$\lim_{x\to a=0} f(x) = M$$
 또는 $x\to a-0$ 일 때 $f(x)\to M$

과 같이 나타낸다.

좌우극한과 극한의 관계

x=a에서 함수 f(x)의 좌극한과 우극한이 존재할 때 $\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = L \iff \lim_{x \to a} f(x) = L.$

참고 x = a에서 f(x)의 좌극한과 우극한이 각각 존재하더라 도 그것이 같지 않으면 x = a에서 f(x)의 극한은 존재하지 않 는다.

예제 24. 함수 f(x)가 다음과 같이 정의되었을 때, x=0에서 좌극한, 우극한, 극한을 조사하여라.

(1)
$$f(x) = \frac{x^2 + x}{x}$$
 (2) $g(x) = \frac{1}{x}$ (3) $h(x) = \frac{|x|}{x}$

풀이 (1) $\lim_{x \to -0} f(x) = \lim_{x \to -0} \frac{x^2 + x}{x} = \lim_{x \to -0} (x+1) = 1$, $\lim_{x \to +0} f(x) = \lim_{x \to +0} \frac{x^2 + x}{x} = \lim_{x \to +0} (x+1) = 1,$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2 + x}{x} = \lim_{x \to 0} (x + 1) = 1.$$

(2) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x} = -\infty$,

$$\lim_{x \to +0} f(x) = \lim_{x \to +0} \frac{1}{x} = \infty.$$

점 x=0에서 좌극한과 우극한이 모두 존재하지 않으므로 (발산하므로) x = 0에서 f(x)의 극한은 발산한다.

(3)
$$\lim_{x \to -0} f(x) = \lim_{x \to -0} \frac{|x|}{x} = \lim_{x \to -0} (-1) = -1,$$
$$\lim_{x \to +0} f(x) = \lim_{x \to +0} \frac{|x|}{x} = \lim_{x \to +0} 1 = 1.$$
$$\text{At } x = 0 \text{ odd } (3) \Rightarrow (3) \Rightarrow (4) \Rightarrow (4)$$

x = 0에서 f(x)의 극한은 발산한다.

참고 다음과 같은 경우에는 다음 x의 값에서 좌극한과 우극 한이 다를 수 있으므로 주의한다.

- (1) 분수함수 : 분모가 0이 되게 하는 x의 값
- (2) 구간이 나누어져 정의된 함수 : 구간의 경계가 되는 x의 값
- (3) 절댓값 기호를 포함한 함수 : 절댓값 기호 안의 식의 값이 0이 되게 하는 x의 값
- (4) 가우스 기호를 포함한 함수 : 가우스 기호 안의 식의 값을 정수가 되게 하는 x의 값

에제 25. 다음 극한을 조사하여라. (단, [x]는 x보다 크지 않은

(1)
$$\lim_{x \to 1} \frac{|x-1|}{x^2 - x}$$

(2)
$$\lim_{x \to 2} ([x] + 1)$$

풀이 (1)
$$x-1>0$$
일 때에는 $\frac{|x-1|}{x^2-x}=\frac{x-1}{x(x-1)}=\frac{1}{x}$,

$$x-1 < 0$$
일 때에는 $\frac{|x-1|}{x^2-x} = \frac{-(x-1)}{x(x-1)} = -\frac{1}{x}$

이므로

(좌구한)=
$$\lim_{x \to 1-0} \frac{|x-1|}{x^2 - x} = \lim_{x \to 1-0} \left(-\frac{1}{x}\right) = -1,$$

(수그첫)=
$$\lim_{x\to 1+0}\frac{|x-1|}{x^2-x}=\lim_{x\to 1+0}\frac{1}{x}=1$$

이다. $(좌극한) \neq (우극한)$ 이므로 x=1에서 극한은 존재하지 않 는다. (발산한다.)

$$(2)$$
 $1 < x < 2$ 일 때 $[x] = 1$ 이므로

(좌구한)=
$$\lim_{x\to 2-0} ([x]+1) = 1+1=2$$
,

2 < x < 3일 때 [x] = 2이므로

$$($$
수국한 $) = \lim_{x \to 2+0} ([x]+1) = 2+1 = 3.$

즉 (좌극한)≠(우극한)이므로 x=2에서 극한은 존재하지 않는 다. (발산한다.)

함수의 극한에 관한 성질

 $\lim f(x) = A$, $\lim g(x) = B$ 일 때

- ① $\lim_{x\to a} cf(x) = cA$ (단, c가 상수일 때.)
- ② $\lim \{f(x) + g(x)\} = A + B$
- $3 \lim \{f(x) g(x)\} = A B$
- $\textcircled{4} \lim_{x \to a} f(x)g(x) = AB$
- ⑤ $\lim \frac{f(x)}{g(x)} = \frac{A}{B}$ (단, $g(x) \neq 0$, $B \neq 0$ 일 때.)

위 등식들은 a가 실수일 때, a가 양 또는 음의 무한대일 때 에도 성립한다.

예제 26. 두 함수 f(x), g(x)에 대하여

$$\lim_{x \to \infty} f(x) = 2, \lim_{x \to \infty} \{f(x) + 2g(x)\} = 4$$

일 때, $\lim_{x \to f(x) + 6g(x)} f(x) = f(x) + 6g(x)$ 의 값을 구하여라.

풀이
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \left[\frac{1}{2} \{ f(x) + 2g(x) \} - \frac{1}{2} f(x) \right]$$

$$= \lim_{x \to \infty} \frac{1}{2} \{ f(x) + 2g(x) \} - \lim_{x \to \infty} \frac{1}{2} f(x)$$

$$= \frac{1}{2} \lim_{x \to \infty} \{ f(x) + 2g(x) \} - \frac{1}{2} \lim_{x \to \infty} f(x)$$

$$= \frac{1}{2} \cdot 4 - \frac{1}{2} \cdot 2 = 1$$
이므로

$$\lim_{x \to \infty} \frac{f(x) - 2g(x)}{2f(x) + 6g(x)} = \frac{2 - 2 \cdot 1}{2 \cdot 2 + 6 \cdot 1} = 0.$$

에제 27. 함수 f(x)에 대하여 $\lim_{x\to 0} \frac{f(x)}{x} = 2$ 일 때

$$\lim_{x \to 0} \frac{3x^2 + 4f(x)}{2x^2 - f(x)}$$

의 값을 구하여라.

풀이
$$\lim_{x \to 0} \frac{3x^2 + 4f(x)}{2x^2 - f(x)} = \lim_{x \to 0} \frac{3x + 4 \cdot \frac{f(x)}{x}}{2x - \frac{f(x)}{x}}$$

$$= \frac{3 \cdot 0 + 4 \cdot 2}{2 \cdot 0 - 2} = \frac{8}{-2} = -4.$$

예제 28. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$

(1)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$$
 (2) $\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3}$

풀이 (1) (준식)=
$$\lim_{x\to 1} \frac{(x+2)(x-1)}{x-1} = \lim_{x\to 1} (x+2) = 3.$$

(2)
$$(\stackrel{\sim}{\mathbb{Z}} \stackrel{\lambda}{\longrightarrow}) = \lim_{x \to 3} \frac{(\sqrt{x+1}-2)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)}$$

 $= \lim_{x \to 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)} = \lim_{x \to 3} \frac{1}{\sqrt{x+1}+2} = \frac{1}{4}.$

예제 29. 다음 극한을 조사하여라.

(1)
$$\lim_{x \to 1} \frac{x-1}{\sqrt[3]{x}-1}$$

(2)
$$\lim_{x \to \infty} \frac{3x^2 + x - 2}{2x^2 + 1}$$

풀이 (1) (존식) =
$$\lim_{x \to 1} \frac{(x-1)(\sqrt[3]{x^2} + \sqrt[3]{x+1})}{(\sqrt[3]{x} - 1)(\sqrt[3]{x^2} + \sqrt[3]{x+1})}$$

$$= \lim_{x \to 1} \frac{(x-1)(\sqrt[3]{x^2} + \sqrt[3]{x+1})}{x-1}$$

$$= \lim_{x \to 1} (\sqrt[3]{x^2} + \sqrt[3]{x+1}) = 3.$$

(2)
$$(\vec{\Xi} \vec{A}) = \lim_{x \to \infty} \frac{3 + \frac{1}{x} - \frac{2}{x^2}}{2 + \frac{1}{x^2}} = \frac{3 + 0 - 0}{2 + 0} = \frac{3}{2}$$

예제 30. 다음 극한을 조사하여라.

(1)
$$\lim_{x \to \infty} \frac{2x^2 - 4x + 1}{x - 3}$$

(1)
$$\lim_{x \to \infty} \frac{2x^2 - 4x + 1}{x - 3}$$
 (2) $\lim_{x \to -\infty} \frac{2x - 1}{\sqrt{x^2 + 3x}}$

• • • 미분과 적분

풀이 (1) 주어진 식의 분모와 분자를 x^2 으로 나누면

$$(준식) = \lim_{x \to \infty} \frac{2x - 4 + \frac{1}{x}}{1 - \frac{3}{x}} = \infty.$$

(2) 주어진 식의 분모와 분자를 -x로 나누면

(존시)=
$$\lim_{x \to -\infty} \frac{-2 + \frac{1}{x}}{\sqrt{1 - \frac{3}{x}}} = \frac{-2 + 0}{\sqrt{1 - 0}} = -2.$$

예제 31. 다음 극한을 조사하여라.

(1)
$$\lim_{x \to 3} (x^2 - 3x + 2)$$

(1)
$$\lim_{x \to \infty} (x^2 - 3x + 2)$$
 (2) $\lim_{x \to \infty} (x - \sqrt{x^2 - 3x + 1})$

풀이 (1) (준식)=
$$\lim_{x \to -\infty} x^2 \left(1 - \frac{3}{x} + \frac{2}{x^2}\right) = \infty$$
.

$$(2) \ (\stackrel{\sim}{\leftarrow} \stackrel{\sim}{\rightarrow}) = \lim_{x \to \infty} \frac{(x - \sqrt{x^2 - 3x + 1})(x + \sqrt{x^2 - 3x + 1})}{x + \sqrt{x^2 - 3x + 1}}$$

$$= \lim_{x \to \infty} \frac{3x - 1}{x + \sqrt{x^2 - 3x + 1}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x}}{1 + \sqrt{1 - \frac{3}{x} - \frac{1}{x^2}}} = \frac{3}{2}.$$

예제 32. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{x+1} - \frac{1}{4x+1} \right)$$
 (2) $\lim_{x \to \infty} x \left(1 - \frac{\sqrt{2x+1}}{\sqrt{2x}} \right)$

$$(2) \lim_{x \to \infty} x \left(1 - \frac{\sqrt{2x+1}}{\sqrt{2x}} \right)$$

풀이 (1) (준식)=
$$\lim_{x\to 0} \frac{1}{x} \cdot \frac{4x+1-(x+1)}{(x+1)(4x+1)}$$

$$= \lim_{x\to 0} \frac{1}{x} \cdot \frac{3x}{4x^2+5x+1} = \lim_{x\to 0} \frac{3}{4x^2+5x+1} = 3.$$

함수의 극한의 대소관계

 $\lim f(x) = A$, $\lim g(x) = B$ 일 때

- ① a에 가까운 모든 x에 대하여 $f(x) \le g(x)$ 이면 $A \le B$.
- ② a에 가까운 모든 x에 대하여 $f(x) \le h(x) \le g(x)$ 이고 A = B이면 $\lim h(x) = A$.

예제 33. 다음 극한값을 구하여라.

$$(1) \lim_{x \to 0} x \sin \frac{1}{x}$$

(2)
$$\lim_{x \to \infty} \frac{\cos x}{x}$$

풀이 (1) $x \neq 0$ 인 모든 x에 대하여

$$-|x| \le \left| x \sin \frac{1}{x} \right| \le |x|$$

이고 $\lim_{x \to 0} (-|x|) = \lim_{x \to 0} |x| = 0$ 이므로

$$\lim_{x \to 0} \left| x \sin \frac{1}{x} \right| = 0$$

이다. 따라서 $\lim_{x \to 0} x \sin \frac{1}{x} = 0$ 이다.

(2) 모든 양수 *x* 에 대하여

$$-\left|\frac{1}{x}\right| \le \frac{\cos x}{x} \le \left|\frac{1}{x}\right|$$

이 성립한다.

그런데

$$\lim_{x \to \infty} \left(-\left| \frac{1}{x} \right| \right) = \lim_{x \to \infty} \left| \frac{1}{x} \right| = 0$$

이므로

$$\lim_{x \to \infty} \frac{\cos x}{x} = 0$$

이다.

4 함수의 연속

함수 f(x)가 실수 a에 대하여 세 조건

- (i) x = a에서 f(x)가 정의되어 있다,
- (ii) x = a에서 f(x)의 극한값이 존재한다,
- (iii) x = a에서 f(x)의 극한값과 함숫값이 일치한다

를 모두 만족시킬 때, 함수 f(x)는 x=a에서 **연속**이라고 말한 다. 반면에 만약 f(x)가 x = a에서 연속이 아닐 때. 함수 f(x)는 x = a에서 **불연속**이라고 말한다.

예를 들어 다음과 같은 함수 f(x)는 x=1에서 연속이다.

그러나 다음 두 경우 g(x)와 h(x)는 x=1에서 불연속이다.

연속함수의 성질

두 함수 f(x), g(x)가 x = a에서 연속이면 다음 함수들도 x = a에서 연속이다. (단, c는 상수)

- \bigcirc cf(x)
- $\bigcirc f(x) + q(x)$
- $\Im f(x) g(x)$
- (4) f(x)g(x)
- ⑤ $\frac{f(x)}{g(x)}$ (단, $g(x) \neq 0$ 일 때)

예제 **34.** x = 0에서 다음 함수의 연속성을 조사하여라.

(1)
$$f(x) = \begin{cases} \frac{x^2 + x}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (2) $f(x) = |x|$

풀이 (1) x = 0에서의 함숫값은 f(0) = 0이고 극한값은

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2 + x}{x} = \lim_{x \to 0} (x + 1) = 1$$

이므로 (함숫값) \neq (극한값)이다. 따라서 f(x)는 x=0에서 불연 속이다.

(2) x = 0에서의 함숫값은 f(0) = 0이고 극한값은

(좌국한)=
$$\lim_{x\to -0} f(x) = \lim_{x\to -0} |x| = \lim_{x\to -0} (-x) = 0$$
, (우극한)= $\lim_{x\to 0} f(x) = \lim_{x\to 0} |x| = \lim_{x\to 0} x = 0$

이다. 따라서 x=0에서 (함숫값)=(극한값)=0이므로 f(x)는 x=0에서 연속이다.

실수 a, b에 대하여 **구간**을 다음과 같이 정의한다.

$$[a, b] = \{x \mid a \le x \le b\}, (a, b) = \{x \mid a < x < b\}$$

$$[a, b) = \{x \mid a \le x < b\}, (a, b] = \{x \mid a < x \le b\}$$

$$[a, \infty) = \{x \mid a \le x\}, (a, \infty) = \{x \mid a < x\}$$

$$(\infty, b] = \{x \mid x \le b\}, (\infty, b) = \{x \mid x < b\}$$

이때 점 a를 구간의 **왼쪽 끝점**, b를 구간의 **오른쪽 끝점**이라고 부르며, 이 두 끝점을 통틀어 구간의 **끝점**이라고 부른다.

위 구간들 중에서 [a, b]를 **닫힌구간**, (a, b)를 **열린구간**, [a, b)와 (a, b]를 **반닫힌구간** 또는 **반열린구간**이라고 부른다.

함수 f(x)가 어떤 구간에 속하는 모든 실수에 대하여 연속일 때 f(x)는 그 구간에서 **연속**이라고 말하고 이때 f(x)를 **연속 함수**라고 부른다.

단, 구간의 왼쪽 끝점에서는 우극한을 이용하고 구간의 오른쪽 끝점에서는 좌극한을 이용하여 연속을 판정한다. 예를 들어 함 수 f(x)가 두 조건

- (i) 열린구간 (a, b)에서 연속이다,
- (ii) $\lim_{x \to a+0} f(x) = f(a)$, $\lim_{x \to b-0} f(x) = f(b)$

를 모두 만족시킬 때, f(x)는 닫힌구간 [a, b]에서 연속이라고 말한다.

예제 **35**. 함수 f(x)가

$$f(x) = \begin{cases} \frac{x^2 + x}{x} & (x \neq 0) \\ k & (x = 0) \end{cases}$$

로 정의되었을 때 f(x)가 [0, 1]에서 연속이 되도록 상수 k의 값을 정하여라.

풀이 x=0에서 f(x)의 우극한은

$$\lim_{x \to +0} f(x) = \lim_{x \to +0} \frac{x^2 + x}{x} = \lim_{x \to +0} (x+1) = 1$$

이다. 따라서 k=1이라고 하면

(x=0)에서의 함숫값)=(x=0)에서의 우극한)

이 되어 x=0에서 f(x)가 연속이 된다. 따라서 k=1이다. \square

연속함수의 최대 · 최소 정리

함수 f(x)가 닫힌구간 [a, b]에서 연속이면 f(x)는 이 구간에서 반드시 최댓값과 최솟값을 가진다.

참고 닫힌구간이 아닌 경우 연속함수가 최댓값과 최솟값을 갖지 않을 수도 있다. 예를 들어 (-1, 1)에서 f(x) = x로 정의된 함수 f(x)는 최댓값이나 최솟값을 갖지 않는다.

참고 연속이 아닌 함수는 최댓값과 최솟값을 갖지 않을 수 있다. 예를 들어

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

으로 정의된 함수 f(x)는 [-1, 1]에서 최댓값과 최솟값을 갖지 않는다.

참고 아래 그림에서 볼 수 있는 것처럼 f(x)가 [a, b]에서 연속일 때에는 최댓값과 최솟값을 구간의 끝점에서 가질 수도 있고 구간의 내부에 있는 점에서 가질 수도 있다.

예제 **36.** 이차함수 $f(x) = x^2 - 2x + 3$ 이 [0, 3]에서 최댓값과 최솟값을 가짐을 보여라.

풀이 두 가지 방법으로 풀어보자.

방법 1. $f(x) = (x-1)^2 + 2$ 이므로 y = f(x)의 그래프의 꼭짓점의 좌표는 (1, 2)이다. 이때 1은 [0, 3]에 속하는 점이므로 f(x)는 x = 1일 때 최솟값 2를 가진다. 한편 구간의 끝점에서 함숫값을 구해보면 f(0) = 3, f(3) = 6이므로 x = 3일 때 최댓값 6을 가진다.

방법 2. f(x)는 [0, 3]에서 연속이므로 최댓값과 최솟값을 가지다.

참고 위 예제에서 보는 바와 같이 연속함수의 최대·최소 정리를 이용하면 최댓값과 최솟값을 직접 구하지 않더라도 주어진 구간에서 함수가 최댓값과 최솟값을 가진다는 사실을 알 수 있다

연속함수의 중간값 정리

함수 f(x)가 닫힌구간 [a, b]에서 연속이고 $f(a) \neq f(b)$ 일 때, f(a)와 f(b) 사이의 임의의 값 k에 대하여 f(c) = k인 c가 열린구간 (a, b)에 하나 이상 존재한다.

참고 아래그림에서 보는 바와 같이 f(c) = k를 만족시키는 c 가 (a, b)에 두 개 이상 존재할 수도 있다.

참고 중간값 정리는 방정식의 근이 존재하는지 알아볼 때에도 사용된다.

위 그림과 같이 연속함수 f(x)에 대하여 f(a)와 f(b)의 부호가 다르면, 즉 f(a)f(b) < 0이면 방정식 f(x) = 0은 열린구간 (a, b)에서 하나 이상의 근을 가진다.

에제 37. 다음 방정식이 주어진 구간에서 적어도 하나의 실근을 가짐을 보여라.

(1)
$$x^4 - x^3 - 7x + 1 = 0$$
 (-1, 1)

풀이 (1) $f(x) = x^4 - x^3 - 7x + 1$ 이라고 하면

$$f(-1)f(1) = 10 \cdot (-6) < 0$$

이므로 f(x) = 0은 (-1, 1)에서 근을 가진다.

(2) $f(x) = x - \cos x$ 라고 하면

$$f(0)f\left(\frac{\pi}{4}\right) = (-1) \cdot \left(\frac{\pi}{4} - \frac{1}{\sqrt{2}}\right) < 0$$

이므로 $x - \cos x = 0$ 은 $\left(0, \frac{\pi}{4}\right)$ 에서 근을 가진다.

5 미분계수와 도함수

함수 y=f(x)에서 x의 값이 a에서 b까지 변할 때, y의 값은 f(a)에서 f(b)까지 변한다. 이때

x의 값의 변화량 b-a를 x의 **증분**, y의 값의 변화량 f(b)-f(a)를 y의 **증분**

이라고 부르고, 기호로 각각 Δx , Δy 와 같이 나타낸다. 즉

$$\Delta x = b - a$$
, $\Delta y = f(b) - f(a)$

이다. 또한

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

를 x의 값이 a에서 b까지 변할 때의 함수 y = f(x)의 **평균변** 화율이라고 부른다.

즉 평균변화율은 그래프 위의 두 점 (a, f(a))와 (b, f(b))를 지나는 직선의 기울기이다.

예제 38. 함수 $f(x) = x^2$ 에서 x의 값이 1에서 2까지 변할 때 평균변화율을 구하여라.

풀이
$$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3.$$

에제 **39.** x = 2일 때와 x = 4일 때 f(x) = -2x + 1의 그래프 위의 두 점을 지나는 직선의 기울기를 구하여라.

풀이
$$\frac{f(4)-f(2)}{4-2} = \frac{-7-(-3)}{4-2} = \frac{-4}{2} = -2.$$

참고 상수함수와 일차함수의 평균변화율은 일정하다. 즉

$$f(x) = ax + b$$

라고 하면, 서로 다른 두 점 x_1 , x_2 에 대하여

$$\frac{f(x_2)-f(x_1)}{x_2-x_1}\!=\!\frac{(ax_1\!+\!b)-(ax_2\!+\!b)}{x_2\!-\!x_1}\!=\!a$$

이므로 평균변화율은 그래프의 기울기와 같다. 이처럼 그래프가 직선인 경우 평균변화율은 일정하며 그 값은 그래프의 기울기와 동일하다.

함수 y=f(x)에서 x의 값이 a에서 $a+\Delta x$ 까지 변할 때의 평 균변화율은

$$\frac{\Delta y}{\Delta x} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

이다. 여기서 $\Delta x \rightarrow 0$ 일 때, 평균변화율의 극한값

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

가 존재하면 이 값을 함수 y = f(x)의 x = a에서 **순간변화율** 또는 **미분계수**라고 하며, 이것을 기호로

와 같이 나타낸다.

참고 미분계수의 정의에서 $a+\Delta x=x$ 로 놓으면 $\Delta x=x-a$ 이고 $\Delta x \rightarrow 0$ 일 때 $x \rightarrow a$ 이므로 미분계수는

$$f'(a) = \lim \frac{f(x) - f(a)}{x - a}$$

로 나타낼 수도 있다.

미분계수의 기하학적 의미

함수 y=f(x)에 대하여 x=a에서의 미분계수 f'(a)가 존재할 때, f'(a)는 곡선 y=f(x) 위의 점 $(a,\ f(a))$ 에서의 접선의 기울기와 같다.

에제 40. $f(x) = x^2$ 일 때 x = 2에서 f(x)의 미분계수를 구하여라.

풀이 두 가지 방법으로 구해보자.

방법 1.
$$f'(2) = \lim_{\Delta x \to 0} \frac{f(2 + \Delta x) - f(2)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{(2 + \Delta x)^2 - 2^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 + 4\Delta x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (\Delta x + 4) = 4.$$

방법 2.
$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$$

$$= \lim_{x \to 2} \frac{x^2 - 2^2}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4. \quad \Box$$

예제 41. 함수 $f(x) = x^2 - 1$ 에 대하여 다음을 구하여라.

- (1) f'(0)
- (2) f'(1)
- (3) f'(x)

풀이 (1)
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x = 0.$$

(2)
$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{(x^2 - 1) - (1^2 - 1)}{x - 1}$$

= $\lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$

$$(3) \ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\{(x + \Delta x)^2 - 1\} - (x^2 - 1)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x.$$

참고 상수함수의 미분계수는 항상 0이고, 일차함수의 미분계수는 항상 일차항의 계수와 같다. 즉 f(x) = ax + b라고 하면

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\{a(x + \Delta x) + b\} - (ax + b)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{a\Delta x}{\Delta x} = a$$

이므로 f'(x) = a이다.

참고 고등학교 과정에서 미분은 주로 그래프의 기울기와 관련하여 정의된다. 하지만 본래 미분의 의미는 넓게 보면 '아주 작게 자른 조각'이며, 좁게 보면 '서로 관계있는 양들 사이의 순간적인 변화의 비율'이다.

에제 42. 곡선 $y=x^2-2x$ 위의 점 (2, 0)에서의 접선의 방정식을 구하여라.

풀이 $f(x) = x^2 - 2x$ 라고 하면

$$f'(2) = \lim_{\Delta x \to 0} \frac{f(2 + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\{(2 + \Delta x)^2 + 2(2 + \Delta x)\} - (2^2 - 2 \cdot 2)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(\Delta x)^2 + 2\Delta x}{\Delta x} = \lim_{\Delta x \to 0} (\Delta x + 2) = 2$$

이다. 따라서 접선의 기울기는 2이다. 이 직선은 $(2,\ 0)$ 을 지나야 하므로 구하는 접선의 방정식은 y=2(x-2)+0이다. 이것을 예쁘게 바꾸면 y=2x-4를 얻는다.

에제 43. 함수 f(x)에 대하여 f'(a) = 1일 때, 다음 극한값을 구하여라.

(1)
$$\lim_{h\to 0} \frac{f(a-h)-f(a)}{h}$$
 (2) $\lim_{h\to 0} \frac{f(a+h^2)-f(a)}{h}$

풀이 (1) (존식)=
$$\lim_{h\to 0} \frac{f(a-h)-f(a)}{-h} \cdot (-1)$$
= $f'(a)\cdot (-1)=-1$.

(2) (준식)=
$$\lim_{h\to 0} \frac{f(a+h^2)-f(a)}{h^2} \cdot h$$

= $f'(a) \cdot \lim_{h\to 0} h = f'(a) \cdot 0 = 0.$

함수 f(x)의 x = a에서의 미분계수

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

가 존재할 때, 함수 f(x)는 x=a에서 **미분가능**하다고 말한다. 또 함수 f(x)가 어떤 구간에 속하는 모든 x에 대하여 미분가 능할 때, 함수 f(x)는 그 구간에서 **미분가능**하다고 말한다.

미분기능성과 연속성

함수 f(x)가 x=a에서 미분 가능하면 f(x)는 x=a에서 연속이다. [그러나 일반적으로 그 역은 성립하지 않는다.]

증명 함수 f(x)가 x=a에서 미분 가능하다고 하자. 그러면

$$\lim_{x \to a} f(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) + f(a)$$

$$= f'(a) \lim_{x \to a} (x - a) + f(a)$$

$$= f'(a) \cdot 0 + f(a) = f(a)$$

이므로 f(x)는 x = a에서 연속이다.

참고 위 명제의 대우를 이용하여 주어진 함수가 미분 불가능 함을 보일 수 있다.

에제 44. 다음 함수가 x = 0에서 미분 가능한지 판별하여라.

- (1) $f(x) = x^2$
- (2) g(x) = |x|
- (3) h(x) = [x]

풀이 (1) 미분의 정의에 따르면

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2}{\Delta x} = 0$$

이므로 f(x)는 x=0에서 미분 가능하다.

(2) 미분의 정의에서 좌극한과 우극한을 구해보면

$$\lim_{\Delta x \to -0} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = \lim_{\Delta x \to -0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to -0} (-1) = -1,$$

$$\lim_{\Delta x \to +0} \frac{g(0 + \Delta x) - g(0)}{\Delta x} = \lim_{\Delta x \to +0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to -0} 1 = 1$$

이므로 (좌극한)≠(우극한)이어서 극한

$$\lim_{\Delta x \to 0} \frac{g(0 + \Delta x) - g(0)}{\Delta x}$$

은 존재하지 않는다. 따라서 x=0에서 g(x)는 미분 불가능하다.

(3) 좌극한과 우극한을 구해보면

$$\lim_{x \to -0} h(x) = \lim_{x \to -0} [x] = -1, \quad \lim_{x \to +0} h(x) = \lim_{x \to +0} [x] = 0$$

이므로 h(x)는 x=0에서 불연속이다. 따라서 h(x)는 x=0에 서 미분 불가능하다.

참고 위 예제의 (2)에서 보는 바와 같이 연속이지만 미분 불 가능한 경우가 존재한다.

함수 f(x)가 정의역에서 미분 가능할 때 f'(x)는 새로운 함수 가 된다. 이 함수를 f(x)의 **도함수**라고 부르고, 기호로

$$f'(x), y', \frac{dy}{dx}, \frac{d}{dx}f(x)$$

와 같이 나타낸다.

함수 y = f(x)에서 도함수 f'(x)를 구하는 것을 함수 f(x)를 x에 대하여 **미분한다**고 하고, 그 계산법을 **미분법**이라고 부른 다.

단항함수의 미분법

$$y = x^n$$
을 미분하면 $y' = nx^{n-1}$. (n 은 자연수)

증명 $f(x) = x^n$ 이라고 하면

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{(x+h-x)\{(x+h)^{n-1} + (x+h)^{n-2}x + \dots + x^n\}}{h}$$

$$= \lim_{h \to 0} \{(x+h)^{n-1} + (x+h)^{n-2} + \dots + x^n\}$$

$$= \underbrace{x^{n-1} + x^{n-1} + \dots + x^{n-1}}_{n \text{ times}} = nx^{n-1}.$$

참고 미분법 공식 $y'=nx^{n-1}$ 에서 x=0이고 n=1인 경우 편의상 $y' = nx^{n-1} = 0^0 = 1$ 인 것으로 약속한다.

여러 가지 함수의 미분법

두 함수 f(x), g(x)가 미분 가능할 때 다음이 성립한다.

- ① y = cf(x)이면 y' = cf'(x). (단, c가 상수일 때)
- ② y = f(x) + q(x)이면 y' = f'(x) + q'(x).
- ③ y = f(x) g(x)이면 y' = f'(x) g'(x).
- ④ y = f(x)g(x)이면 y' = f'(x)g(x) + f(x)g'(x).

⑤
$$y = \frac{f(x)}{g(x)}$$
이고 $g(x) \neq 0$, $g'(x) \neq 0$ 이면
$$y' = \frac{f'(x)g(x) - f(x)g'(x)}{\{g(x)\}^2}.$$

증명 극한의 성질에 의해 다음을 얻는다.

$$\begin{aligned} \textcircled{4} \ \ y' &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left[f(x+h) \frac{g(x+h)g(x)}{h} + g(x) \frac{f(x+h) - f(x)}{h} \right] \\ &= f'(x)g(x) + f(x)g'(x). \end{aligned}$$

①은 ④에서 q(x) = c로 두면 된다.

③은 f(x) + (-1)g(x)를 미분하면 된다.

예제 45. 다음 함수를 미분하여라.

(1)
$$y = x^2 + 2x$$

(2)
$$y = \frac{1}{2}x - 3$$

풀이 (1)
$$y' = 2x + 2$$
 (2) $y' = \frac{1}{2}$

(2)
$$y' = \frac{1}{2}$$

예제 46. 다음 함수의 도함수를 구하여라.

(1)
$$f(x) = (x+1)(x^2+1)$$
 (2) $g(x) = (x^3+1)(x^2-1)$

풀0| (1)
$$f'(x) = (x+1)'(x^2+1) + (x+1)(x^2+1)'$$

= $1 \cdot (x^2+1) + (x+1) \cdot 2x$
= $x^2+1+2x^2+2x=3x^2+2x+1$.

(2)
$$g'(x) = (x^3 + 1)'(x^2 - 1) + (x^3 + 1)(x^2 - 1)'$$

 $= 3x^2 \cdot (x^2 - 1) + (x^3 + 1) \cdot 2x$
 $= 3x^4 - 3x^2 + 2x^3 + 2x = 3x^4 + 2x^3 - 3x^2 + 2x$.

에제 47. 다음 함수의 도함수를 구하여라.

(1)
$$f(x) = \frac{x+1}{x-2}$$

(1)
$$f(x) = \frac{x+1}{x-2}$$
 (2) $g(x) = \frac{(x^2+1)(x-1)}{x^2-1}$

畳이 (1)
$$f'(x) = \frac{(x+1)'(x-2) - (x+1)(x-2)'}{(x-2)^2}$$
$$= \frac{(x-2) - (x+1)}{(x-2)^2} = -\frac{3}{(x-2)^2}.$$

(2)
$$g'(x) = \frac{\{(x^2+1)(x-1)\}'(x^2-1)-(x^2+1)(x-1)(x^2-1)'}{(x^2-1)^2}.$$

위 식의 분자를 계산하면

(분자)=
$$(x^2+1)'(x-1)(x^2-1)+(x^2+1)(x-1)'(x^2-1)$$

 $-(x^2+1)(x-1)(x^2-1)'$
 $= 2x \cdot (x-1)(x^2-1)+(x^2+1)(x^2-1)$
 $-(x^2+1)(x-1) \cdot 2x$
 $= (x-1)^2(x^2+2x-1)$

이다. 따라서 다음을 얻는다

$$g'(x) = \frac{(x-1)^2(x^2+2x-1)}{\{(x+1)(x-1)\}^2} = \frac{x^2+2x-1}{(x+1)^2}.$$

다른 풀이
$$g(x) = \frac{(x^2+1)(x-1)}{x^2-1} = \frac{x^2+1}{x+1}$$
이므로
$$g'(x) = \frac{(x^2+1)'(x+1)-(x^2+1)(x+1)'}{(x+1)^2}$$

$$= \frac{2x(x+1)-(x^2+1)}{(x+1)^2} = \frac{x^2+2x-1}{(x+1)^2}.$$

6 여러 가지 미분법

이제 다양한 방법으로 표현된 함수의 미분법을 살펴보자.

연쇄법칙(합성함수의 미분법)

두 함수 f(x), g(x)가 미분 가능하고 합성함수 $g \circ f$ 가 존 재할 때 다음이 성립한다.

① y = g(f(x))이면 y' = g'(f(x))f'(x).

② $y = \{f(x)\}^n$ 이면 $y' = n\{f(x)\}^{n-1}f'(x)$.

증명 ① y = g(u), u = f(x)가 미분 가능하다고 하자. f(x)의 변화율이 0이 아니면

$$\begin{split} y' &= \frac{dy}{dx} = \lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{h} \\ &= \lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} \cdot \frac{f(x+h) - f(x)}{h} \\ &= g'(f(x))f'(x) = \frac{dy}{du} \cdot \frac{du}{dx}. \end{split}$$

한편 f(x)의 변화율이 0이면 자명하게

$$y' = \frac{dy}{dx} = 0 = \frac{dy}{dy} \cdot \frac{du}{dx}$$

가 성립한다.

② $q(x) = x^n$ 으로 두고 ①을 적용하면 된다.

연쇄법칙은 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ 로 쓸 수도 있다.

예제 48. 다음 함수의 도함수를 구하여라.

(1)
$$f(x) = (2x^2 - 1)^3$$

(1)
$$f(x) = (2x^2 - 1)^3$$
 (2) $g(x) = (x^3 + 2x)^3(x^3 - 2x)^2$

풀이 (1)
$$f'(x) = 3(2x^2-1)^2(2x^2-1)'$$

$$= 3(2x^2 - 1)^2 \cdot 4x = 12x(2x^2 - 1)^2.$$

$$(2) \ q(x) = (x^3 + 2x)^3 (x^3 - 2x)^2$$

(2)
$$g(x) = (x^3 + 2x)^3 (x^3 - 2x)^2$$

= $(x^3 + 2x) \{ (x^3 + 2x) (x^3 - 2x) \}^2$
= $(x^3 + 2x) (x^6 - 4x^2)^2$

$$\begin{split} g'(x) &= (3x^2 + 2)(x^6 - 4x^2)^2 \\ &\quad + (x^3 + 2x) \cdot 2(x^6 - 4x^2) \cdot (6x^5 - 8x). \end{split} \endaligned$$

에제 49. x에 대한 다항식 $f(x) = x^{10} - ax + b$ 가 $(x-1)^2$ 으 로 나누어떨어질 때, 상수 a, b의 값을 구하여라.

풀이 다항식 f(x)를 $(x-1)^2$ 으로 나누었을 때의 몫을 g(x)라고 하면 $f(x) = (x-1)^2 q(x)$ 이므로

$$x^{10} - ax + b = (x-1)^2 g(x)$$
 ...

이다. 양변을 x에 대하여 미분하면

$$10x^9 - a = 2(x-1)g(x) + (x-1)^2g'(x) \qquad \cdots \bigcirc$$

이다. x=1을 \bigcirc , \bigcirc 에 대입하면

$$1-a+b=0$$
, $10-a=0$

이고 이것을 연립하여 풀면 a=10, b=9이다.

참고 다항식 f(x)가 $(x-\alpha)^2$ 으로 나누어떨어질 조건은 $f(\alpha) = 0$, $f'(\alpha) = 0$

을 만족시키는 것이다.

예제 50. 다음 함수 f(x)가

$$f(x) = \begin{cases} bx+3 & (x \ge 1) \\ x^2+a & (x < 1) \end{cases}$$

이고 x=1에서 미분 가능할 때 상수 a. b의 값을 구하여라.

풀이 f(x)가 x=1에서 미분가능하면 x=1에서 연속이므로

$$\lim_{x \to 1} (x^2 + a) = f(1)$$

이다. 즉 1+a=b+3이다. 한편 x=1에서 f(x)이 미분가능하

$$\lim_{x \to 1+0} \frac{f(x) - f(1)}{x - 1} = b, \lim_{x \to 1-0} \frac{f(x) - f(1)}{x - 1} = 2$$

에서 b=2이다. 이것을 1+a=b+3에 대입하면 a=4이다. 따라서 a=4. b=2이다.

일반적으로 두 변수 x, y 사이의 관계가 변수 t를 매개로 하여

$$x = f(t), y = q(t)$$

의 꼴로 표현될 때 변수 t를 **매개변수**라고 부르고, 위 식을 **매** 개변수로 나타내어진 함수라고 부른다. 예를 들어

$$x = 3\cos t, \ y = 3\sin t \ (0 \le t < 2\pi)$$

라고 하면 위 식은 좌표평면에서 중심이 0이고 반지름이 3인 원을 나타내는 함수이다.

한편 x의 함수 y가 f(x, y) = 0의 꼴로 주어졌을 때, y를 x의 음함수라고 부른다. 예를 들어

$$x^2 + y^2 = 9$$

는 $f(x, y) = x^2 + y^2 - 9$ 에 대하여 f(x, y) = 0으로 나타낼 수 있으므로, 위 식에서 y는 x의 음함수이다.

여러 가지 미분 공식(2)

함수 f, g가 미분 가능할 때

(1) 매개변수 미분법 : x = f(t)이고 y = g(t)이며 $f'(t) \neq 0$ 이면

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

- (2) **음함수 미분법** : x의 함수 y가 음함수 f(x, y) = 0의 꼴 로 주어졌을 때, y를 x의 함수로 보고 각 항을 x에 대하여 미분하여 $\frac{dy}{dx}$ 를 구한다.
- (3) **역함수의 미분법** : y = f(x)의 역함수가 존재하고 미분 가능하면

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

에제 51. 매개변수로 나타내어진 함수 x=3t-5, $y=t^2-3t$ 에서 $\frac{dy}{dx}$ 를 t의 식으로 나타내어라.

풀이
$$\frac{dx}{dt} = 3$$
, $\frac{dy}{dt} = 2t - 3$ 이므로 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t - 3}{3}$

에제 52. 음함수 $x^2+y^2-9=0$ 에 대하여 $\frac{dy}{dx}$ 를 구하여라.

풀이 음함수 $x^2 + y^2 - 9 = 0$ 에서 y를 x의 함수로 보고 양변을 x에 대하여 미분하면 다음과 같다.

$$\frac{d}{dx}(x^2 + y^2 - 9) = \frac{d}{dx}(0)$$

$$\Rightarrow \qquad \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) - \frac{d}{dx}(9) = 0$$

$$\Rightarrow \qquad 2x + 2y\frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = -\frac{x}{y}(y \neq 0)$$

에제 53. 역함수의 미분법을 이용하여 함수 $y = \sqrt[5]{x-3}$ 의 도 함수를 구하여라.

풀이
$$y = \sqrt[5]{x-3}$$
 에서 $y^5 = x-3$, 즉 $x = y^5 + 3$ 이므로
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{5y^4} = \frac{1}{5(\sqrt[5]{x-3})^4} = \frac{1}{5\sqrt[5]{(x-3)^4}}$$

- 예제 54. 음함수 xy = 25에 대하여 $\frac{dy}{dx}$ 를 구하여라.
- **풀이** 양변을 x에 대하여 미분하면

$$\frac{d}{dx}(xy) = \frac{d}{dx}(25)$$

$$\Rightarrow \qquad \frac{d}{dx}(x) \cdot y + x \cdot \frac{d}{dx}(y) = 0$$

$$\Rightarrow \qquad y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = -\frac{y}{x} (x \neq 0)$$

7 삼각함수의 미분

삼각함수의 극한과 미분법을 살펴보자.

삼각함수의 극한

- ① sin, cos, tan, sec, cosec, cot는 정의역의 모든 점에서 연속인 함수이다.
- ② $\lim_{x\to 0} \frac{\sin x}{x} = 1$ (단, x의 단위는 라디안)

증명 오른쪽 그림에서

△OAB <(부채꼴 OAB)< △OAT

이므로 x > 0일 때

$$\frac{1}{2}\sin\,x < \frac{1}{2}x < \frac{1}{2}\tan\,x$$

이고, 이 식을 변형하면

$$1 > \frac{\sin x}{x} > \cos x$$

이다. 여기에 $x \to 0+$ 인 극한을 취하면

$$\lim_{x \to +0} \frac{\sin x}{x} = 1.$$

또한 사인 함수는 기함수이므로

$$\lim_{x \to -0} \frac{\sin x}{x} = \lim_{x \to +0} \frac{\sin (-x)}{-x} = \lim_{x \to +0} \frac{\sin x}{x} = 1.$$

좌극한과 우극한이 모두 1에 수렴하므로 주어진 극한은 1에 수렴한다. ■

예제 55. 극한값 $\lim_{x\to 0} \frac{\sin^2 x}{1-\cos x}$ 를 구하여라.

풀이
$$\lim_{x\to 0} \frac{\sin^2 x}{1-\cos x} = \lim_{x\to 0} \frac{1-\cos^2 x}{1-\cos x}$$

$$= \lim_{x\to 0} \frac{(1+\cos x)(1-\cos x)}{1-\cos x}$$

$$= \lim_{x\to 0} (1+\cos x) = 2$$

예제 56. 다음 극한값을 구하여라.

$$(1) \lim_{x \to 0} \frac{\sin 3x}{x}$$

$$(2) \lim_{x \to 0} \frac{\sin 3x}{\sin 2x}$$

풀이 (1) 3x = t로 놓으면 $x \to 0$ 일 때 $t \to 0$ 이므로

$$\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \left(3 \cdot \frac{\sin 3x}{3x} \right) = 3 \lim_{t \to 0} \frac{\sin t}{t} = 3 \cdot 1 = 3.$$

$$(2) \lim_{x \to 0} \frac{\sin 3x}{\sin 2x} = \lim_{x \to 0} \frac{3x \cdot \frac{\sin 3x}{3x}}{2x \cdot \frac{\sin 2x}{2x}} = \lim_{x \to 0} \left(\frac{3}{2} \cdot \frac{\frac{\sin 3x}{3x}}{\frac{\sin 2x}{2x}} \right)$$

$$= \frac{3}{2} \cdot \frac{\lim_{x \to 0} \frac{\sin 3x}{3x}}{\lim_{x \to 0} \frac{\sin 2x}{2x}} = \frac{3}{2} \cdot \frac{1}{1} = \frac{3}{2}$$

예제 57. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(1)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
 (2) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$

(2)
$$x - \frac{\pi}{2} = t$$
로 놓으면 $x \to \frac{\pi}{2}$ 일 때 $t \to 0$ 이므로

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} = \lim_{t \to 0} \frac{\cos \left(\frac{\pi}{2} + t\right)}{t} = \lim_{t \to 0} \frac{-\sin t}{t} = -1 \qquad \Box$$

삼각함수의 도함수

- ① $y = \sin x$ 이면 $y' = \cos x$
- $y' = -\sin x$ ② $y = \cos x$ 이면
- ③ $y = \tan x$ 이면 $y' = \sec^2 x$
- ④ $y = \sec x$ 이면 $y' = \sec x \tan x$
- ⑤ y = cosecx이면 $y' = -\csc x \cot x$
- ⑥ $y = \cot x$ 이면 $y' = -\csc^2 x$

증명 항등식

$$\cos h = \cos 2 \left(\frac{h}{2} \right) = 1 - 2\sin^2 \frac{h}{2}$$

을 이용하면

$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1)}{h} + \lim_{h \to 0} \frac{\cos x \sin h}{h}$$

$$= \sin x \lim_{h \to 0} \frac{1 - 2\sin^2 \frac{h}{2} - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \left(\lim_{h \to 0} \sin \frac{h}{2}\right) \left(\lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right) + \cos x$$

$$= 0 \times 1 + \cos x = \cos x.$$

$$(\cos x)' = \left(\sin\left(x + \frac{\pi}{2}\right)\right)' = \cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos x - \sin x(\cos x)'}{\cos^2 x}$$

$$=\frac{1}{\cos^2 x} = \sec^2 x$$

 $(\csc x)' = \left(\frac{1}{\sin x}\right)' = -\frac{\cos x}{\sin^2 x} = -\frac{1}{\sin x} \frac{\cos x}{\sin x}$

$$(\sec x)' = \left(\frac{1}{\cos x}\right) = \frac{\sin x}{\cos^2 x} = \frac{1}{\cos x} \frac{\sin x}{\cos x} = \sec x \tan x.$$

$$(\cot x)' = \left(\frac{\cos x}{\sin x}\right)' = -\frac{1}{\sin^2 x} = -\csc^2 x.$$

예제 58. 다음 함수를 미분하여라.

- (1) $y = 3 \sin x \cos x$ (2) $y = \tan (2x 5)$
- 풀이 (1) $y' = (3 \sin x)' (\cos x) = 3 \cos x (-\sin x)$ $= 3 \cos x + \sin x$

(2)
$$y' = \sec^2(2x-5) \cdot (2x-5)' = \sec^2(2x-5) \cdot 2$$

= $2 \sec^2(2x-5)$

예제 59. 다음 함수를 미분하여라.

- (1) $y = \sec x 2 \csc x$ (2) $y = \cot (x^2 3)$
- 풀이 (1) $y' = (\sec x)' (2 \csc x)'$ $= \sec x \tan x - (-2 \csc x \cot x)$ $= \sec x \tan x + 2 \csc x \cot x$

(2)
$$y' = -\csc^2(x^2 - 3) \cdot (x^2 - 3)' = -\csc^2(x^2 - 3) \cdot 2x$$

= $-2x \csc^2(x^2 - 3)$

에제 60. 사인 함수의 역함수 $y = \sin^{-1} x$ 에 대하여 $\frac{dy}{dx}$ 를 구하여라. $\left(\text{단}, -1 < x < 1, -\frac{\pi}{2} < y < \frac{\pi}{2} \right)$

풀이 $\sin y = x$ 의 양변을 x에 대하여 미분하면 $y'\cos y = 1$ 이 므로 $y'\sqrt{1-\sin^2 y}=1$ 이다. 즉 다음을 얻는다.

$$y' = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}$$

참고 삼각함수의 역함수의 정의역과 치역은 다음과 같다.

$$y = \sin^{-1} x$$
 $\left(-1 \le x \le 1, -\frac{\pi}{2} \le y \le \frac{\pi}{2}\right)$
 $y = \cos^{-1} x$ $\left(-1 \le x \le 1, 0 \le y \le \pi\right)$
 $y = \tan^{-1} x$ $\left(x$ 는 임의의 실수, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}\right)$

또한 이들의 도함수는 다음과 같다.

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

8 지수함수와 로그함수의 미분

극한의 성질을 이용하여 지수함수와 로그함수의 도함수를 구해 보자.

지수함수의 극한

- ① a > 0, $a \ne 1$ 일 때 지수함수 $f(x) = a^x$ 는 실수 전체 집합에서 연속인 함수이다.
- ② 오일러 상수 : $e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$ (약 2.71828182845…)
- 참고 오일러 상수는 다음과 같이 정의할 수도 있다.

$$\lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^t = e$$

예제 61. 다음 극한값을 구하여라.

$$(1) \lim_{x \to \infty} \frac{5^x}{5^x - 1}$$

(1)
$$\lim_{x \to \infty} \frac{5^x}{5^x - 1}$$
 (2) $\lim_{x \to \infty} \frac{2^x + 3^x}{2^x - 3^x}$

풀이 (1)
$$\lim_{x\to\infty} \frac{5^x}{5^x - 1} = \lim_{x\to\infty} \frac{1}{1 - \frac{1}{5^x}} = \frac{1}{1 - 0} = 1$$

(2)
$$\lim_{x \to \infty} \frac{2^x + 3^x}{2^x - 3^x} = \lim_{x \to \infty} \frac{\left(\frac{2}{3}\right)^x + 1}{\left(\frac{2}{3}\right)^x - 1} = \frac{0 + 1}{0 - 1} = -1$$

예제 62. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to 0} (1+2x)^{\frac{1}{x}}$$
 (2) $\lim_{x \to \infty} \left(1+\frac{3}{x}\right)^x$

$$(2) \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

풀이 (1) 2x = t로 놓으면 $x \to 0$ 일 때 $t \to 0$ 이므로

$$\lim_{x \to 0} (1+2x)^{\frac{1}{x}} = \lim_{t \to 0} (1+t)^{\frac{2}{t}} = \lim_{t \to 0} \left\{ (1+t)^{\frac{1}{t}} \right\}^2 = e^2$$

(2) $\frac{3}{x}$ =t로 놓으면 $x \to \infty$ 일 때 $t \to 0$ 이므로

$$\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x = \lim_{t \to 0} \left(1 + t \right)^{\frac{3}{t}} = \lim_{t \to 0} \left\{ \left(1 + t \right)^{\frac{1}{t}} \right\}^3 = e^3 \qquad \Box$$

로그함수의 극한

- ① a>0, $a\neq 1$ 일 때 로그함수 $f(x)=\log_a x$ 는 모든 양의 실수 x에서 연속인 함수이다.
- ② 자연로그 : 밑이 e인 로그 $\ln x = \log_e x$

참고 밑이 e인 지수함수 $y=e^x$ 과 로그함수 $y = \ln x$ 는 서로 역함수 관계 에 있다. 즉 다음이 성립한다.

$$y = e^x \iff x = \ln y$$

보기 **63**. *a* > 1일 때 다음이 성립한다.

$$\lim_{x \to +0} \log_a x = -\infty, \lim_{x \to 1} \log_a x = 0,$$

$$\lim_{x \to a} \log_a x = 1, \lim_{x \to \infty} \log_a x = \infty$$

또한 0 < a < 1일 때 다음이 성립한다.

$$\begin{split} &\lim_{x\to+0}\log_a x = \infty\,,\,\, \lim_{x\to 1}\log_a x = 0\,,\\ &\lim_{x\to a}\log_a x = 1\,,\,\, \lim_{x\to\infty}\log_a x = -\infty \end{split} \endaligned$$

에제 64. 극한값 $\lim \{\log_2 (3x+1) - \log_2 3x\}$ 를 구하여라.

풀이
$$\lim_{x \to \infty} \left\{ \log_2 (3x+1) - \log_2 3x \right\} = \lim_{x \to \infty} \log_2 \frac{3x+1}{3x}$$
 $= \lim_{x \to \infty} \log_2 \left(1 + \frac{1}{3x} \right) = \log_2 \lim_{x \to \infty} \left(1 + \frac{1}{3x} \right) = \log_2 1 = 0$

예제 65. 다음 극한값을 구하여라.

(1)
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$
 (2) $\lim_{x \to 0} \frac{e^x - 1}{x}$

$$(2) \lim_{x \to 0} \frac{e^x - 1}{x}$$

풀이 (1)
$$\lim_{x \to 0} \frac{\ln (1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln (1+x)$$
$$= \lim_{x \to 0} \ln (1+x)^{\frac{1}{x}} = \ln \left\{ \lim_{x \to 0} (1+x)^{\frac{1}{x}} \right\} = \ln e = 1$$

(2) $e^x - 1 = t$ 로 놓으면 $e^x = 1 + t$ 이므로 $x = \ln(1 + t)$ 이다. 또 한 $x \rightarrow 0$ 일 때 $t \rightarrow 0$ 이므로

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1 + t)} = \lim_{t \to 0} \frac{1}{\frac{\ln(1 + t)}{t}}$$

$$= \frac{1}{\ln\left\{\lim(1 + t)^{\frac{1}{t}}\right\}} = \frac{1}{\ln e} = 1$$

지수함수와 로그함수의 도함수 $(\cdot \cdot \cdot , \ a > 0, \ a \neq 1)$

- ① $y = e^x$ 이면
- ② $y = a^x$ 이면
- ③ y=lnx이면
- $y' = \frac{1}{x}$ (단, x > 0)
- ④ $y = \log_a x$ 이면
- $y' = \frac{1}{x \ln a} \quad (\stackrel{\frown}{\Sigma}, \ x > 0)$
- ⑤ $y = \ln |x|$ 이면
- $y' = \frac{1}{x}$ (단, $x \neq 0$)
- ⑥ $y = \log_a |x|$ 이면 $y' = \frac{1}{x \ln a}$ (단, $x \neq 0$)

중명 ①
$$y' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \cdot 1 = e^x$$
.

$$2y' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$= a^x \ln a \cdot \lim_{h \to 0} \frac{e^{h \ln a} - 1}{h \ln a} = a^x \ln a \cdot \lim_{t \to 0} \frac{e^t - 1}{t}$$

$$= a^x \ln a \cdot 1 = a^x \ln a$$

$$(3) y' = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \frac{1}{x} \lim_{h \to 0} \ln\left(1 + \frac{h}{x}\right)^{\frac{x}{h}} = \frac{1}{x}.$$

(4)
$$y' = \frac{1}{x} \cdot \frac{1}{\ln a} = \frac{1}{x \ln a}$$
.

⑤, ⑥ x > 0인 경우와 x < 0인 경우로 나누어 계산한다.

예제 66. 다음 함수를 미분하여라.

(1)
$$y = e^{3x}$$

(2)
$$y = 3^{5x}$$

풀이 (1) u = 3x로 놓으면 $y = e^u$ 이므로

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot 3 = 3e^{3x}$$

(2) u = 5x로 놓으면 $y = 3^u$ 이므로

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 3^u \ln 3 \cdot 5 = 5 \cdot 3^{5x} \ln 3$$

예제 67. 다음 함수를 미분하여라.

(1)
$$y = \ln(3x - 5)$$

(1)
$$y = \ln(3x - 5)$$
 (2) $y = \log_2(x^2 + 3x)$

풀이 (1) u = 3x - 5로 놓으면 $y = \ln u$ 이므로

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot 3 = \frac{3}{3x - 5}.$$

(2) $u = x^2 + 3x$ 로 놓으면 $y = \log_2 u$ 이므로

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u \ln 2} \cdot (2x+3) = \frac{2x+3}{(x^2+3x) \ln 2}$$

예제 68. 다음 함수를 미분하여라.

(1)
$$y = \ln |5x - 3|$$

(2)
$$y = \log_2 |x^3 - x|$$

풀이 (1)
$$y' = \frac{(5x-3)'}{5x-3} = \frac{5}{5x-3}$$

(2)
$$y' = \frac{(x^3 - x)'}{(x^3 - x) \ln 2} = \frac{3x^2 - 1}{(x^3 - x) \ln 2}$$

복잡한 분수함수의 도함수는 자연로그를 이용하여 쉽게 구할 수 있다.

에제 69. 함수
$$y = \frac{(x+1)(x-1)^3}{(x-2)^2}$$
을 미분하여라.

풀이 양변의 절댓값에 자연로그를 취하면

$$\ln |y| = \ln |x+1| + 3\ln |x-1| - 2\ln |x-2|$$

양변을 x에 대하여 미분하면

$$\frac{y'}{y} = \frac{1}{x+1} + \frac{3}{x-1} - \frac{2}{x-2} = \frac{2x^2 - 6x - 2}{(x+1)(x-1)(x-2)}$$
$$y' = y \cdot \frac{2x^2 - 6x - 2}{(x+1)(x-1)(x-2)} = \frac{2(x-1)^2(x^2 - 3x - 1)}{(x-2)^3} \quad \Box$$

참고 α 가 실수일 때 $y=x^{\alpha}$ 의 양변의 절댓값에 자연로그를 취하면

$$\ln |y| = \ln |x^{\alpha}| = \alpha \ln |x|$$

이므로 양변을 x에 대하여 미분하면 다음과 같다.

$$\frac{y'}{y} = \frac{\alpha}{x}$$
 \Rightarrow $y' = y \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}$

즉 함수 $y=x^n$ 의 미분법 $y'=nx^{n-1}$ 은 n이 실수일 때에도 성 립한다.

9 미분의 활용

함수 f(x)가 x = a에서 미분가능할 때, 곡선 y = f(x) 위의 점 (a, f(a))에서의 접선의 기울기는 x = a에서의 미분계수 f'(a)와 같다.

따라서 다음 공식을 얻는다.

접선의 방정식

곡선 y = f(x) 위의 점 P(a, f(a))에서의 접선의 방정식은 y = f'(a)(x-a) + f(a).

예제 **70.** 곡선 $y=x^3+2x^2-1$ 위의 점 (1, 2)에서 이 곡선 에 접하는 직선의 방정식을 구하여라.

풀이 $f(x) = x^3 + 2x^2 - 1$ 이라고 하면 $f'(x) = 3x^2 + 4x$ 이므로 (1, 2)에서 이 곡선에 접하는 직선의 기울기는 f'(1) = 7이다. 따라서 구하는 접선의 방정식은 y=7(x-1)+2이다.

예제 71. 곡선 $y = x^3 + ax^2 + 2x + b$ 위의 점 (1, 4)에서의 접 선의 기울기가 3일 때, 상수 a, b의 값을 각각 구하여라.

풀이 $f(x) = x^3 + ax^2 + 2x + b$ 라고 하면

$$f'(x) = 3x^2 + 2ax + 2$$

이다. f'(1) = 3이 되어야 하므로 f'(1) = 3 + 2a + 2 = 3이다. 이것을 풀면 a=-1이므로

$$f(x) = x^3 - x^2 + 2x + b$$

이다. 한편 이 함수의 그래프가 (1, 4)를 지나므로 f(1) = 4이 다. 즉 f(1) = 1 - 1 + 2 + b = 4이므로 b = 2이다.

예제 **72.** 곡선 $y = x^3 - 4x + 3$ 에 접하고 기울기가 8인 직선의 방정식을 구하여라.

풀이 $f(x) = x^3 - 4x + 3$ 이라고 하면 $f'(x) = 3x^2 - 4$ 이다. 기 울기가 8이 되는 점을 구하려면 $f'(x) = 3x^2 - 4 = 8$ 의 해를 구 해야 한다. 이것을 풀면 $x = \pm 2$ 이다.

$$x=2$$
일 때 $y=f(2)=3$ 이므로 접점은 $(2,\ 3),$ $x=-2$ 일 때 $y=f(-2)=3$ 이므로 접점은 $(-2,\ 3)$

이다. 따라서 접선의 방정식은

$$y=8(x-2)+3$$
 그리고 $y=8(x+2)+3$ 이다.

• • • 미분과 적분

에제 73. 원점을 지나고 곡선 $y = x^4 - x^2 + 2$ 에 접하는 직선의 방정식을 구하여라.

풀이 $f(x) = x^4 - x^2 + 2$ 라고 하자. 그리고 어디서 접하게 될지 모르니까 접점을 (a, f(a))라고 하자. 즉

$$(a, f(a)) = (a, a^4 - a^2 + 2)$$

이다. 이때

$$f'(x) = 4x^3 - 2x$$

이므로 접선의 방정식은

$$y = (4a^3 - 2a)(x - a) + (a^4 - a^2 + 2)$$

이다. 이 직선이 원점을 지나야 하므로 x=0, y=0을 대입하면

$$0 = (4a^3 - 2a)(-a) + (a^4 - a^2 + 2)$$

이고 이것을 풀면 $a=\pm 1$ 이다.

a=1일 때 접점은 (1, 2), a=-1일 때 접점은 (-1, 2)

이므로 구하는 접선의 방정식은

$$y = (x-1)+2$$
 그리고 $y = -(x+1)+2$

이다.

함수 f(x)가 어떤 구간에 속하는 임의의 두 수 x_1, x_2 에 대하여

$$x_1 < x_2$$
일 때, $f(x_1) < f(x_2)$

이면 함수 f(x)는 이 구간에서 **증가한다**고 말한다. 또

$$x_1 < x_2$$
일 때, $f(x_1) > f(x_2)$

이면 함수 f(x)는 이 구간에서 **감소한다**고 말한다.

함수 f(x)가 x=a에서 연속이고 x의 값이 증가하면서 x=a의 좌우에서 f(x)가 증가상태에서 감소상태로 변하면 함수 f(x)는 x=a에서 극대라고 하며, 함숫값 f(a)를 **극댓값**이라고 부른다.

또 x의 값이 증가하면서 x=a의 좌우에서 f(x)가 감소상태에서 증가상태로 변하면 함수 f(x)는 x=a에서 극소라고 하며, 함숫값 f(a)를 **극솟값**이라고 부른다.

극댓값과 극솟값을 통틀어 **극값**이라고 부른다.

극점에서의 미분계수

함수 f(x)가 x=a에서 미분가능하고 x=a에서 극값을 가지면 f'(a)=0이다.

증명 f(x)가 x=a에서 미분가능하고 극댓값을 갖는다고 하자. 그러면

 Δx 가 절댓값이 작은 양수일 때 $f(a + \Delta x) \leq f(a)$,

 Δx 가 절댓값이 작은 음수일 때 $f(a+\Delta x) \leq f(a)$ 이므로

$$f(a) = \lim_{\Delta x \to +0} \frac{f(a + \Delta x) - f(a)}{\Delta x} \ge 0,$$

$$f'\left(a\right) = \lim_{\Delta x \to -0} \frac{f(a + \Delta x) - f(a)}{\Delta x} \le 0$$

이다. 따라서 f'(a) = 0이다. 극솟값을 갖는 경우에도 같은 방법으로 하면 된다.

평균값 정리

함수 f(x)가 닫힌구간 [a, b]에서 연속이고 열린구간 (a, b)에서 미분 가능하면

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

를 만족시키는 c가 a와 b 사이에 하나 이상 존재한다.

증명 구간 [a, b]에서 함수 F(x)를 다음과 같이 정의하자.

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a) - f(a)$$

그러면 F(a) = 0, F(b) = 0이다. 또한 F(x)는 [a, b]에서 연속 이므로 [a, b]에서 최댓값과 최솟값을 가진다.

경우 1. 만약 [a, b]에서 F(x)의 최댓값과 최솟값이 같다면 F(x)는 [a, b]에서 상수함수이므로 (a, b)에 속하는 모든 c에 대하여 F'(c)=0이다.

경우 2. 만약 $[a,\ b]$ 에서 F(x)의 최댓값이 최솟값보다 크다면 F(x)는 $(a,\ b)$ 의 점 c에서 극값을 가진다. 이때 F'(c)=0이다

두 경우 모두 F'(c) = 0이 되는 c가 (a, b)에 존재한다. 이때

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

이므로 여기에 x=c를 대입하면

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

이다.

참고 평균값 정리의 의미는 구간 [a, b]에서 f(x)의 그래프를 그렸을 때, 그래프의 양 끝점을 이어서 만든 선분의 기울기와 같은 미분계수를 갖는 점이 (a, b)에 존재한다는 뜻이다.

함수의 증가상태와 감소상태

함수 y = f(x)가 x = a에서 미분가능할 때

- ① f'(a) > 0이면 f(x)는 x = a에서 증가상태에 있다.
- ② f'(a) < 0이면 f(x)는 x = a에서 감소상태에 있다.

증명 f(x)가 x=a에서 미분가능하면

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

이므로 $|\Delta x|$ 가 충분히 작으면

$$f'(a) \coloneqq \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

이다. 따라서 f'(a)와 $\frac{f(a+\Delta x)-f(a)}{\Delta x}$ 는 같은 부호를 가진다.

경우 1. f'(a) > 0이면

$$\frac{f(a+\Delta x)-f(a)}{\Delta x} > 0$$

이므로

$$\Delta x > 0$$
일 때 $f(a + \Delta x) > f(a)$,
 $\Delta x < 0$ 일 때 $f(a + \Delta x) < f(a)$

이다. 따라서 $h = |\Delta x|$ 라고 하면

$$f(a-h) < f(a) < f(a+h)$$

이므로 f는 x = a에서 증가상태에 있다.

경우 2. f'(a) < 0인 경우도 경우 1과 비슷한 방법을 이용하면 작은 양수 h에 대하여 f(a-h) > f(a) > f(a+h)임을 알 수 있다.

함수의 증가와 감소

함수 y=f(x)가 구간 $[a,\ b]$ 에서 미분가능하고, 이 구간의 모든 x에 대하여

- ① f'(x) > 0이면 f(x)는 이 구간에서 증가한다.
- ② f'(x) < 0이면 f(x)는 이 구간에서 감소한다.
- ③ f'(x) = 0이면 f(x)는 이 구간에서 상수함수이다.

증명 x_1 과 x_2 가 $[a,\ b]$ 의 점이고 $x_1 < x_2$ 라고 하자. 평균값 정리에 의하여

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

인 점 c가 x_1 과 x_2 사이에 존재한다. 이때 $x_2-x_1>0$ 이므로 $f(x_2)-f(x_1)$ 의 부호는 f'(c)와 동일하다. 따라서

- (i) f'(c) > 0이면 $f(x_1) < f(x_2)$ 가 되어 함수 f(x)는 이 구 간에서 증가하고,
- (ii) f'(c) < 0이면 $f(x_1) > f(x_2)$ 가 되어 함수 f(x)는 이 구간에서 감소한다.
- (iii) 만약 f'(c) = 0이면 임의의 두 점 x_1 , x_2 에 대하여 $f(x_1) = f(x_2)$ 이므로 f(x)는 구간의 모든 점에서 동일한 함숫값을 가진다. 따라서 상수함수이다.

참고 위 법칙에서 구간이 닫힌구간이 아니라 열린구간이거나 반닫힌구간이어도 된다. 에제 74. 다음 함수의 증가와 감소를 조사하여라.

(1)
$$f(x) = x^3 - \frac{3}{2}x^2 - 6x + 1$$

(2)
$$f(x) = -x^3 + 6x^2 - 9x - 4$$

풀이 (1) 주어진 함수를 미분하면

$$f'(x) = 3x^2 - 3x - 6 = 3(x+1)(x-2)$$

이다. f'(x) = 0이 되는 점을 구하면 x = -1 또는 x = 2이므로 이 두 점을 기준으로 구간을 나누어 f(x)의 증감을 표로 나타내면 다음과 같다.

x	•••	-1	•••	2	•••
f'(x)	+	0	_	0	+
f(x)	7	$\frac{9}{2}$	`	-9	7

(2) 주어진 함수를 미분하면

$$f'(x) = -3x^2 + 12x - 9 = -3(x-1)(x-3)$$

이다. f'(x) = 0이 되는 점을 구하면 x = 1 또는 x = 3이므로 이 두 점을 기준으로 구간을 나누어 f(x)의 증감을 표로 나타내면 다음과 같다.

x	•••	1	•••	3	•••
f'(x)	_	0	+	0	_
f(x)	7	-8	7	-4	7

예제 75. 함수 $f(x) = x^3 - 2ax^2 + ax$ 가 실수 전체 집합에서 증가하도록 하는 실수 a의 값의 범위를 구하여라.

풀이 $f'(x) = 3x^2 - 4ax + a$ 이다. 모든 x에 대하여 $f'(x) \ge 0$ 이어야 하므로 f'(x)의 판별식이 $D \le 0$ 이 되어야 한다. 즉

$$D = 16a^2 - 12a \le 0$$

이므로
$$0 \le a \le \frac{3}{4}$$
이다.

함수의 극대와 극소의 판정

미분가능한 함수 y=f(x)에서 f'(a)=0이고 x=a의 좌우에서

- ① f'(x)의 부호가 양에서 음으로 바뀌면 f(x)는 x=a에 서 극대이다.
- ② f'(x)의 부호가 음에서 양으로 바뀌면 f(x)는 x=a에 서 극소이다.

중명 ① x=a의 왼쪽에서 f'(x)>0이므로 x=a의 왼쪽에서 f(x)는 증가상태이고, x=a의 오른쪽에서 f'(x)<0이므로 x=a의 오른쪽에서 f(x)는 감소상태이다. 따라서 f(x)는 x=a에서 극댓값을 가진다. ②도 같은 방법으로 증명한다.

위 내용을 그림으로 나타내면 다음과 같다.

예제 **76.** 함수 $f(x) = x^3 - 3x^2 - 9x + 3$ 의 극값을 구하여라.

풀이 $f'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$ 이다. f'(x) = 0인 점을 구하면 x=-1 또는 x=3이다. 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	-1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	7	8	7	-24	1

따라서 함수 f(x)는 x=-1일 때 극댓값 8을 갖고, x=3일 때 극솟값 -24를 가진다.

에제 77. 함수 $f(x) = x^4 - \frac{4}{3}x^3 + 1$ 의 극값을 구하여라.

풀이 $f'(x) = 4x^3 - 4x^2 = 4x^2(x-1)$ 이다. f'(x) = 0이 되는 x를 구하면 x=0 또는 x=1이다. 함수 f(x)의 증가와 감소 를 표로 나타내면 다음과 같다.

а	r	•••	0	•••	1	•••
f' ((x)	_	0	_	0	+
f(x)	7	1	7	$\frac{2}{3}$	1

따라서 함수 f(x)는 x=1에서 극솟값 $f(1)=\frac{2}{3}$ 를 가진다. \square

에제 78. 함수 $f(x) = x^3 + ax^2 + bx + c$ 가 x = -1에서 극댓값 3을 갖고 x=1에서 극솟값을 갖는다. 이때 실수 a, b, c의 값 을 구하여라.

풀이 $f'(x) = 3x^2 + 2ax + b$ 이고 함수 f(x)가 x = -1과 x = 1에서 극값을 가지므로

$$f'(-1) = 3 - 2a + b = 0$$
, $f'(1) = 3 + 2a + b = 0$.

연립하여 풀면 a=0, b=-3이므로 $f(x)=x^3-3x+c$ 이다. 함수 f(x)가 x=-1에서 극댓값 3을 가지므로

$$f(-1) = -1 + 3 + c = 3$$
, $c = 1$

이다. 따라서 a=0, b=-3, c=1이다.

함수의 그래프

함수 y = f(x)의 그래프는 다음과 같은 순서로 그린다.

- (i) f'(x) = 0인 x의 값을 구한다.
- (ii) 위 (i)에서 구한 x의 값의 좌우에서 f'(x)의 부호를 조사하여 증감표를 만든다.
- (iii) 증감표를 이용하여그래프의 개형을 그린다.

예제 **79.** 함수 $y = x^3 - 3x^2 + 4$ 의 그래프를 그려라.

풀이 $f(x) = x^3 - 3x^2 + 4$ 라고 하면

$$f'(x) = 3x^2 - 6x = 3x(x-2)$$

이므로 f'(x) = 0인 점을 구하면 x = 0, x = 2이다. 이 두 점을 기준으로 구간을 나누어 함수 f(x)의 증가와 감소를 표로 나타 내면 다음과 같다.

x		0		2	•••
f'(x)	+	0	_	0	+
f(x)	1	4	7	0	1

함수 f(x)는 x=0에서 극댓값 4, x=2에서 극솟값 0을 갖는다. 따라 서 함수 $f(x) = x^3 - 3x^2 + 4$ 의 그 래프는 오른쪽 그림과 같다.

참고 삼차·사차함수의 극값이 존재할 조건은 다음과 같다.

- (1) 삼차함수 f(x)가 극값을 가진다.
 - \Leftrightarrow 이차방정식 f'(x) = 0이 서로 다른 두 실근을 가진다.
 - ⇔ 이차방정식 f'(x) = 0의 판별식이 D > 0이다.
- (2) 최고차항이 양수인 사차함수 f(x)가 극댓값을 가진다.
 - \Leftrightarrow 삼차방정식 f'(x)=0이 서로 다른 세 실근을 가진다.

에제 80. 함수 $y = \frac{1}{2}x^4 - 2x^3 + 8$ 의 그래프를 그려라.

풀이 $f(x) = \frac{1}{2}x^4 - 2x^3 + 8$ 이라고 하면

$$f'(x) = 2x^3 - 6x^2 = 2x^2(x-3)$$

이므로 f'(x) = 0인 점을 구하면 x = 0, x = 3이다. 따라서 함 수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	•••	3	•••
f'(x)	_	0	_	0	+
f(x)	\nearrow	8	¥	$-\frac{11}{2}$	1

함수 f(x)는 x=3에서 극솟값 $-\frac{11}{2}$ 을 갖고, 극댓값은 없다. 따라서 함수 $y = \frac{1}{2}x^4 - 2x^3 + 8$ 의 그래프는 오른쪽 그림과 같다.

함수의 최대 · 최소

닫힌구간 [a, b]에서 연속함수 f(x)의 최댓값, 최솟값은 다 음과 같은 순서로 구한다.

- (i) 주어진 구간에서 f(x)의 극댓값과 극솟값을 모두 구한다.
- (ii) 주어진 구간의 양 끝에서의 함숫값 f(a), f(b)를 구한다.
- (iii) 극댓값, 극솟값, f(a), f(b) 중 가장 큰 값이 최댓값이 고, 가장 작은 값이 최솟값이다.

참고 아래 그림처럼 최댓값과 최솟값은 구간의 안쪽에 있는 점에서 존재할 수도 있고 구간의 끝점에서 존재할 수도 있다.

에제 81. 구간 [-2, 4]에서 함수 $f(x) = -x^3 + 3x^2 + 9x - 3$ 의 최댓값과 최솟값을 구하여라.

풀이 $f'(x) = -3x^2 + 6x + 9 = -3(x+1)(x-3)$ 이므로 f'(x) = 0인 점을 구하면 x = -1, x = 3이다. 구간 [-2, 4]에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	-2		-1		3
f'(x)		_	0	+	0
f(x)	-1	>	-8	7	24

따라서 함수 f(x)의 최댓값은 24, 최솟값은 -8이다.

이계도함수

함수 f(x)의 도함수 f'(x)를 한 번 더 미분한 함수를 f(x)의 **이계도함수**라고 부르며 기호로

$$f''(x), y'', \frac{d^2y}{dx^2}, \frac{d^2}{dx^2}f(x)$$

와 같이 나타낸다.

참고 함수 f(x)를 n번 미분한 함수를 f(x)의 n계도함수라 고 부르며 기호로

$$f^{(n)}(x), y^{(n)}, \frac{d^n y}{(dx)^n}, \frac{d^n}{(dx)^n} f(x)$$

와 같이 나타낸다.

예제 82. 다음 함수의 이계도함수를 구하여라.

(1) $y = \ln x$

(2)
$$y = \sin 3x$$

풀이 (1)
$$y' = \frac{1}{x}$$
이므로 $y'' = -\frac{1}{x^2}$.

(2) $y' = \cos 3x \cdot 3 = 3 \cos 3x$ 이므로

$$y'' = 3(-\sin 3x) \cdot 3 = -9\sin 3x$$

예제 83. 다음 함수의 이계도함수를 구하여라.

(1)
$$y = \frac{1}{x^2 + 1}$$

$$(2) \ y = xe^x$$

풀이 (1) $y' = -\frac{2x}{(x^2+1)^2}$ 이므로

$$y'' = -\frac{2(x^2+1)^2 - 2x \cdot 2(x^2+1) \cdot 2x}{(x^2+1)^4} = \frac{6x^2 - 2}{(x^2+1)^3}$$

(2) $y' = e^x + xe^x = (1+x)e^x$

$$y'' = e^x + (1+x)e^x = (2+x)e^x$$

함수의 극값 판정

이계도함수를 갖는 함수 y = f(x)에서 f'(a) = 0일 때

- ① f''(a) < 0이면 f(x)는 x = a에서 극대이다.
- ② f''(a) > 0이면 f(x)는 x = a에서 극소이다.

에제 84. 이계도함수를 이용하여 함수 $f(x) = x - 2 \sin x$ 의 극값을 구하여라. (단, $0 \le x \le 2\pi$)

풀이 $f'(x) = 1 - 2\cos x$ 이므로 f'(x) = 0을 풀면

$$x=\frac{\pi}{3}$$
 또는 $x=\frac{5}{3}\pi$

이다. $f''(x) = 2 \sin x$ 이므로

$$f''\left(\frac{\pi}{3}\right) = \sqrt{3} > 0, \quad f''\left(\frac{5}{3}\pi\right) = -\sqrt{3} < 0$$

따라서 함수 f(x)는 $x = \frac{5}{3}\pi$ 에서 극대이고 극댓값은

$$f\left(\frac{5}{3}\pi\right) = \frac{5}{3}\pi + \sqrt{3}$$

이며, $x = \frac{\pi}{3}$ 에서 극소이고 극솟값은

$$f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \sqrt{3}$$

이다.

곡선의 오목과 볼록

함수 y = f(x)가 어떤 구간에서

- ① f''(x) > 0이면 곡선 y = f(x)는 이 구간에서 아래로 볼록이다.
- ② f''(x) < 0이면 곡선 y = f(x)는 이 구간에서 위로 볼록 이다

곡선 y=f(x) 위의 한 점 P(a, f(a))에 대하여 x=a의 좌우에서 곡선의 모양이 아래로 볼록에서 위로 볼록으로 변하거나위로 볼록에서 아래로 볼록으로 변할 때, 이 점 P= 곡선 y=f(x)의 변곡점이라고 부른다.

변곡점의 판정

함수 f(x)에서 f''(a) = 0이고 x = a의 좌우에서 f''(x)의 부호가 바뀌면 점 (a, f(a))는 곡선 y = f(x)의 변곡점이다.

에제 85. 곡선 $y = x^3 - 3x^2 + 4$ 의 오목과 볼록을 조사하고, 변 곡점의 좌표를 구하여라.

풀이 $f(x) = x^3 - 3x^2 + 4$ 라고 하면

$$f'(x) = 3x^2 - 6x$$

$$f''(x) = 6x - 6 = 6(x - 1)$$

이다. f''(x) = 0인 점을 구하면 x = 1이다. 곡선 y = f(x)의 오목과 볼록을 표로 나타내면 다음과 같다.

x		1	•••
f''(x)	_	0	+
f(x)	<i>→</i>	2	\

따라서 곡선 y=f(x)는 x<1일 때 위로 볼록하고, x>1일 때 아래로 볼록하다.

또 변곡점의 좌표는 (1, 2)이다.

방정식과 부등식

- (1) 방정식 f(x) = g(x)의 실근은 두 함수 y = f(x)와 y = g(x)의 그래프의 교점의 x좌표이다. 따라서 두 함수 y = f(x)와 y = g(x)의 그래프의 교점의 개수를 조사하면 방정식 f(x) = g(x)의 실근의 개수를 구할 수있다.
- (2) 어떤 구간에서 부등식 $f(x) \ge 0$ 이 성립함을 보이려면 함수 y = f(x)의 증가와 감소를 조사하여 그 구간에서 f(x)의 최솟값이 0보다 크거나 같음을 보이면 된다.
- (3) 또 두 함수 f(x), g(x)에 대하여 부등식 $f(x) \geq g(x)$ 가 성립함을 보이려면 F(x) = f(x) g(x)로 놓고 F(x)의 최솟값이 0보다 크거나 같음을 보이면 된다.

예제 86. 방정식 $x^3 + 3x^2 - 1 = 0$ 의 실근의 개수를 구하여라.

풀이 $f(x)=x^3+3x^2-1$ 이라고 하면 f'(x)=3x(x+2)이다. 따라서 f'(x)=0인 점은 x=-2, x=0이다. 이 점을 기준으로 구간을 나누어 함수의 증감표를 작성하면 다음과 같다.

x		-2		0	•••
f'(x)	+	0	_	0	+
f(x)	7	3	>	-1	7

따라서 y=f(x)의 그래프가 x축과 만나는 점은 x=-2의 왼쪽에 하나, x=-2와 x=0 사이에 하나, x=0의 오른쪽에 하나로서 3개다. 따라서 주어진 방정식의 실근은 3개다.

예제 87. 다음 삼차방정식의 근을 판별하여라.

- (1) $2x^3 6x^2 + 3 = 0$
- (2) $x^3 3x 2 = 0$
- (3) $x^3 6x^2 + 9x + 2 = 0$

풀이 (1) $f(x) = 2x^3 - 6x^2 + 3$ 으로 두면 f'(x) = 6x(x-2)이다. f'(x) = 0인 점을 구하면 x = 0, x = 2이다. 따라서 f(x)의 증감표는 다음과 같다.

x		0	•••	2	•••
f'(x)	+	0	_	0	+
f(x)	7	극대	7	극소	7

즉 (극댓값)=f(0)=3, (극솟값)=f(2)=-5이므로 (극댓값)×(극솟값)<0

이다. 따라서 f(x) = 0은 서로 다른 세 실근을 가진다.

(2) $f(x) = x^3 - 3x - 2$ 로 두면

$$f'(x) = 3(x+1)(x-1)$$

이다. f'(x) = 0인 점을 구하면 x = -1, x = 1이다. 따라서 f(x)의 증감표는 다음과 같다.

x	• • • •	-1	•••	1	•••
f'(x)	+	0	_	0	+
f(x)	7	극대	>	극소	7

즉 (극댓값)=f(-1)=0, (극솟값)=f(1)=-4이므로 (극댓값)×(극솟값)=0

이다. 따라서 f(x)=0은 하나의 실근과 한 쌍의 중근을 가진다.

(3) $f(x) = x^3 - 6x^2 + 9x + 2$ 로 두면

$$f'(x) = 3(x-1)(x-3)$$

이다. f'(x) = 0인 점을 구하면 x = 1, x = 3이다. 따라서 f(x)의 증감표는 다음과 같다.

x	•••	1	•••	3	•••
f'(x)	+	0	_	0	+
f(x)	7	극대	7	극소	7

즉 (극댓값)= f(1) = 6, (극솟값)= f(3) = 2이므로 (극댓값)(극솟값)> 0

이다. 따라서 f(x) = 0은 하나의 실근과 두 허근을 가진다.

에제 88. 모든 실수 x에 대하여 부등식 $x^4 - 4x + 5 > 0$ 이 성립함을 미분을 이용하여 증명하여라.

풀이 $f(x) = x^4 - 4x + 5$ 라고 하면 $f'(x) = 4x^3 - 4$ 이다. 이때 f'(x) = 0인 점은 x = 1일 때뿐이며 증감표는 아래와 같다.

x	• • • •	1	•••
f'(x)		0	+
f(x)	/	2	7

즉 f(x)는 x=1에서 최솟값 2를 가진다. 최솟값이 양수이므로 이 함수는 항상 양수의 값만 가진다.

에제 89. x > 1인 모든 실수 x에 대하여 $2x^3 - 6x + 5 > 0$ 이 성립함을 미분을 이용하여 증명하여라.

풀이 $f(x) = 2x^3 - 6x + 5$ 로 두면 $f'(x) = 6x^2 - 6$ 이다. 이때 x > 1이면

$$f'(x) = 6x^2 - 6 > 6 \cdot 1^2 - 6 = 0$$

이므로 x>1일 때 f(x)는 항상 증가한다. 또한 f(1)=1>0이므로 x>1일 때 f(x)의 값은 항상 1보다 크다.

평면 운동에서의 속도와 가속도

좌표평면 위를 움직이는 점 P(x, y)의 시각 t에서의 위치가 함수 x=f(t), y=g(t)와 같이 주어졌을 때, 시각 t에서 점 P의 속도와 가속도는 다음과 같다.

① 속도
$$\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$$
 ② 가속도 $\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$

에제 90. 좌표평면 위를 움직이는 점 P(x, y)의 시각 t에서의 위치가 $x = t - \sin t$, $y = 1 - \cos t$ 로 나타내어질 때, 점 P의 시각 t에서의 속도와 가속도를 구하여라.

풀이 x, y의 도함수와 이계도함수를 구하면

$$\frac{dx}{dt} = 1 - \cos t, \quad \frac{dy}{dt} = \sin t, \quad \frac{d^2x}{dt^2} = \sin t, \quad \frac{d^2y}{dt^2} = \cos t$$

이다. 따라서

점 P의 시각 t에서의 속도는 $(1-\cos t, \sin t)$,

점 P의 시각 t에서의 가속도는 $(\sin t, \cos t)$.

10 로피탈의 정리와 테일러의 정리

로피탈의 정리와 테일러의 정리는 고급수학 과정이다.

분수의 극한을 구할 때 분모와 분자가 모두 0에 수렴하거나 모 두 무한대로 발산하는 형태를 부정형이라고 부른다. 로피탈의 정 리는 미분을 활용하여 부정형의 극한을 구하는 방법을 제시한다.

코시의 평균값 정리

두 함수 f(x)와 g(x)가 닫힌구간 [a, b]에서 연속이고, 열 린구간 (a, b)에서 미분 가능하며, 열린구간 (a, b)에 속하 는 모든 x에 대하여 $q'(x) \neq 0$ 이면

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

를 만족시키는 c가 열린구간 (a, b)에 존재한다.

증명 $h(x) = \{f(b) - f(a)\}g(x) - \{g(b) - g(a)\}f(x)$ 라고 하 면 h(x)는 닫힌구간 [a, b]에서 연속이고 열린구간 (a, b)에서 미분 가능하며 h(a) = h(b)이다. 따라서 평균값 정리에 의하여 h'(c) = 0 = 0

$$\{f(b) - f(a)\}g'(c) - \{g(b) - g(a)\}f'(c) = 0$$

인 c가 열린구간 (a, b)에 적어도 하나 존재한다.

열린구간 (a, b)의 모든 x에 대하여 $g'(x) \neq 0$ 이므로 평균값 정리에 의하여 $g'(a) \neq g(b)$ 이다. 따라서

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f^{\prime}\left(c\right)}{g^{\prime}\left(c\right)}$$

인 c가 열린구간 (a, b)에 적어도 하나 존재한다.

부정형 0/0 꼴에 대한 로피탈의 정리

두 함수 f(x)와 g(x)가 x=a를 포함하는 어떤 구간에서 미분 가능하다고 하자. f(a) = g(a) = 0이고 a에 가까운 x에 대하여 $g'(x) \neq 0$ 이며 $(x \neq a)$, 극한값

$$\lim_{x\to 0} \frac{f'(x)}{g'(x)}$$

이 존재하면 다음이 성립한다.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

증명 a에 매우 가까우며 a < x인 x를 택하자. 구간 [a, x]에 서 코시의 평균값 정리를 적용하면

$$\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}$$

를 만족시키며 a < c < x인 c가 존재한다. $g'(x) \neq 0, x \neq a$ 이 므로 평균값 정리에 의하여 $g(x) \neq g(a) = 0$ 이다. 또 f(a) =q(a) = 0이므로

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$$

가 성립한다. 그런데 $x \rightarrow a +$ 이면 $c \rightarrow a +$ 이므로

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{c \to a+} \frac{f'(c)}{g'(c)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}$$

이다.

마찬가지 방법으로 a에 매우 가까우며 x < a인 x에 대하여

$$\lim_{x \rightarrow a^-} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a^-} \frac{f'(c)}{g'(c)} = \lim_{x \rightarrow a^-} \frac{f'(x)}{g'(x)}$$

가 성립한다. 따라서

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

이다.

예제 91. 다음 극한값을 구하여라.

$$(1) \lim_{x \to 1} \frac{\ln x}{x - 1}$$

(1)
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
 (2) $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$

풀이 (1) $\lim_{x\to 1} \ln x = 0$, $\lim_{x\to 1} (x-1) = 0$ 이므로 로피탈의 정리에 의하여

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{(\ln x)'}{(x - 1)'} = \lim_{x \to 1} \frac{1/x}{1} = 1.$$

(2) $\lim_{x\to 0} (1-\cos x) = 0$, $\lim_{x\to 0} x^2 = 0$ 이므로 로피탈의 정리에 의

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}.$$

부정형 ∞/∞ 꼴에 대한 로피탈의 정리

두 함수 f(x)와 g(x)가 x=a를 포함하는 어떤 구간에서 미분 가능하다고 하자. $x \rightarrow a$ 일 때 f(x)와 g(x)가 양의 무 한대 또는 음의 무한대로 발산하고 a에 가까운 x에 대하여 $q'(x) \neq 0$ 이며 $(x \neq a)$, 극한값

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

가 존재하면 다음이 성립한다.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

참고 로피탈의 정리는 0/0꼴과 ∞/∞ 꼴 모두 ' $x \to a$ '를

$$x \to a+, \quad x \to a-, \quad x \to \infty, \quad x \to -\infty$$

중 어느 것으로 바꾸어도 성립함이 알려져 있다.

예제 92. $\lim \frac{x^2}{e^x}$ 을 구하여라.

풀이 $\lim x^2 = \infty$, $\lim e^x = \infty$ 이므로 로피탈의 정리에 의하여

$$\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{(x^2)'}{(e^x)'} = \lim_{x \to \infty} \frac{2x}{e^x}$$

이다. 또 $\lim_{x\to\infty} 2x = \infty$, $\lim_{x\to\infty} e^x = \infty$ 이므로 다시 로피탈의 정리 를 적용하면

$$\lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0.$$

함수 f(x)가 x=a를 포함하는 열린구간에서 미분 가능할 때 곡선 위의 점 $(a,\ f(a))$ 에서의 곡선의 접선을 나타내는 일차함수 g(x)=f(a)+f'(a)(x-a)는 함수 f(x)의 근사함수이다. 즉 x=a의 근방에서 f(x)는 일차함수

$$g(x) = f(a) + f'(a)(x-a)$$

와 매우 가깝다는 것이다. 이 일차함수를 y = f(x)의 x = a에 서의 일차근사식이라고 부른다.

일반적으로 x = a를 포함하는 열린구간에서 함수 y = f(x)가 n 번 미분 가능할 때 다음과 같은 n차 다항식

$$\begin{split} P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots \\ + \frac{f^{(n)}(a)}{n!}(x-a)^n \end{split}$$

을 함수 f(x)의 x=a에서의 n차 **테일러 다항식**이라고 부른다. 이때 f(x)와 $P_n(x)$ 는 x=a에서 n차까지의 도함수의 값이 일 치한다. 즉

$$f(a) = P_n(a), f'(a) = P_n'(a), \dots, f^{(n)}(a) = P_n^{(n)}(a)$$

가 성립한다.

에제 93. n=3, n=5일 때 $f(x)=\sin x$ 의 x=0에서의 테일러 다항식을 구하여라.

풀이 $f(x) = \sin x$ 에 대하여

$$f'(x) = \cos x$$
, $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$,
 $f^{(4)}(x) = \sin x$, $f^{(5)}(x) = \cos x$

이므로

$$f^{(2n-1)}(0) = (-1)^{n-1}, f^{(2n)}(0) = 0$$

이다. 따라서 다음을 얻는다.

$$P_3(x) = x - \frac{x^3}{3!}, \ P_5(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

일반적으로 함수 f(x)와 다항식 $P_n(x)$ 의 차

$$R_n(x) = f(x) - P_n(x)$$

를 n차 나머지 항이라고 부른다. 만약 함수 f(x)가 임의 횟수로 미분 가능하면 테일러 다항식의 수열 $\left\{P_n(x)\right\}$ 를 얻을 수 있다. $P_n(x)=f(x)-R_n(x)$ 이므로 $\lim_{x\to\infty}R_n(x)=0$ 이면

$$\begin{split} \lim_{n \to \infty} P_n(x) &= \lim_{n \to \infty} \big\{ f(x) - R_n(x) \big\} \\ &= f(x) - \lim_{n \to \infty} R_n(x) = f(x) \end{split}$$

가 되어 테일러 다항식 $P_n(x)$ 는 함수 f(x)에 수렴한다. 이때 테일러 다항식의 극한으로 주어지는 급수

$$\begin{split} \lim_{n \to \infty} P_n(x) &= \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \\ &= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots \\ &\quad + \frac{f^{(n)}(a)}{n!} (x-a)^n + \cdots \end{split}$$

를 f(x)의 x=a에서의 **테일러 급수**라고 부른다. (a=0일 때에는 **맥클라린 급수**라고부른다.)

다음 테일러의 정리는 함수 f(x)가 적당한 조건을 만족시킬 때 나머지항 $R_n(x)$ 의 모양과 오차의 한계를 보여준다.

테일러의 정리

함수 y = f(x)가 x = a를 포함하는 열린구간 I에서 (n+1) 번 미분 가능하고 (n+1)계도함수가 연속이면 열린구간 I에 속하는 임의의 x에 대하여

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

을 만족시키는 c가 a와 x 사이에 존재한다. 또 a와 x 사이의 임의의 t에 대하여

$$\left| f^{(n+1)}(t) \right| \le M$$

을 만족시키는 상수 M이 존재하면 나머지항

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

은 부등식

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

을 만족시킨다.

증명 나머지항 $R_n(x) = f(x) - P_n(x)$ 를 이용하여 t에 대한 함수 g(t)를 다음과 같이 정의하자.

$$g(t) = f(x) - f(t) - f'(t)(x-t) - \frac{f''(t)}{2!}(x-t)^2 - \dots$$
$$-\frac{f^{(n)}(t)}{n!}(x-t)^n - R_n(x)\frac{(x-t)^{n+1}}{(x-a)^{n+1}}$$

그러면

$$g(x) = f(x) - P_n(x) - R_n(x) = 0, g(x) = 0$$

이므로 닫힌구간 [a, x]에서 평균값 정리를 적용하면 a와 x 사이에 q'(c)=0인 c가 존재한다. 그런데

$$g'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n + R_n(x)\frac{(n+1)(x-t)^n}{(x-a)^{n+1}}$$

이므로 t=c를 대입하면 g'(c)=0으로부터

$$R_n(x)\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

을 얻는다. 또 a와 x 사이의 임의의 t에 대하여

$$\left| f^{(n+1)}(t) \right| \leq M$$

인 상수 M이 존재하면 다음이 성립한다.

$$\left| R_n(x) \right| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \right| \le \frac{M}{(n+1)!} |x-a|^{n+1}. \quad \blacksquare$$

에제 94. 함수 $f(x)=e^x$ 의 x=0에서의 테일러 급수를 구하고 n차 나머지항 $R_n(x)$ 에 대하여 $\lim_{n\to\infty}R_n(x)=0$ 임을 보여라.

풀이 $f(x) = e^x$, f(0) = 1이다. 또한 임의의 자연수 n에 대하여 $f^{(n)}(x) = e^x$ 이므로 $f^{(n)}(0) = 1$ 이다. 따라서 x = 0에서 함수 $f(x) = e^x$ 의 테일러 급수는

$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+\cdots$$

이다.

이때 n차 나머지항 $R_n(x)$ 는 0과 x 사이의 적당한 c에 대하여

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} = \frac{e^c}{(n+1)!} x^{n+1}$$

이 성립한다. $\lim_{n} R_n(x) = 0$ 임을 보이기 위해서는

$$\lim_{n\to\infty} |R_n(x)| = 0$$

임을 보이면 충분하다.

$$|R_n(x)| = \frac{e^c}{(n+1)!} |x|^{n+1} = e^c \frac{|x|^{n+1}}{(n+1)!}$$

이므로 주어진 실수 x에 대하여 |x| < k인 자연수 k를 택하면 n > k인 자연수 n에 대하여

$$\frac{|x|^{n+1}}{(n+1)!} = \frac{|x|^{n+1}}{(n+1)n \cdots (k+1)k!} \le \frac{|x|^{n+1}}{k! k^{n-k+1}} = \frac{k^k}{k!} \left(\frac{|x|}{k}\right)^{n+1}$$

이고,
$$\frac{|x|}{k} < 1$$
일 때 $\lim_{n \to \infty} \left(\frac{|x|}{k}\right)^{n+1} = 0$ 이므로

$$\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$

이다. 따라서 $\lim_{n\to\infty} |R_n(x)| = 0$ 이다.

에제 95. 함수 $f(x) = \ln(x+1)$ 의 x = 0에서의 1차 테일러 다항식을 이용하여 $\ln 0.9$ 의 근삿값과 오차의 한계를 구하여라.

풀이 x>-1일 때

$$f'(x) = \frac{1}{x+1}$$

이므로 함수 f(x)의 x=0에서의 1차 테일러 다항식은

$$P_1(x) = f(0) + f'(0)x = x$$

이다. 그러므로 ln 0.9의 근삿값은

$$\ln 0.9 = f(-0.1) = P_1(-0.1) = -0.1$$

이다. 또한

$$f''(x) = -\frac{1}{(x+1)^2}$$

이므로 -0.1 < c < 0인 c에 대하여

$$|f''(c)| = \left| \frac{1}{(c+1)^2} \right| \le \frac{1}{0.9^2}$$

이 성립한다. 따라서 테일러의 정리에 의하여 오차의 한계는

$$\left| R_1(-0.1) \right| = \left| \frac{f''(c)}{2!} \cdot (-0.1)^2 \right|$$

 $\leq \frac{1}{2!} \cdot \frac{1}{0.9^2} \cdot 0.1^2 = \frac{1}{162}$

이다.

참고 여러 가지 함수의 테일러 급수는 다음과 같다.

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + - \dots$$
 (x는 모든 실수)

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 (x는 모든 실수)

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 (x는 모든 실수)

•
$$\ln(1+x) = \frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
 $(|x| < 1)$

11 부정적분

함수 F(x)의 도함수가 f(x)일 때, 즉 F'(x) = f(x)일 때 F(x)를 f(x)의 부정적분 또는 원시함수라고 부르며 이것을 기호로

$$\int f(x)dx$$

로 나타낸다.

부정적분

F(x)가 f(x)의 부정적분이면 F(x)에 상수를 더하여 만든 함수도 f(x)의 부정적분이다. 즉

$$\int f(x)dx = F(x) + C \quad (C는 상수)$$

이다. 이때 f(x)를 **피적분함수**, C를 **적분상수**, x를 **적분변** 수라고 부른다.

미분과 부정적분의 관계를 그림으로 나타내면 다음과 같다.

함수 f(x)의 부정적분을 구하는 것을 f(x)를 **적분한다**고 말하고, 그 계산법을 **적분법**이라고 부른다.

참고 다음은 모두 $3x^2$ 의 부정적분들이다.

$$x^3-1$$
, x^3 , x^3+1 , x^3+2

왜냐하면 위 함수들은 각각 x에 대하여 미분하면 모두 $3x^2$ 이 되기 때문이다. 이렇게 한 함수의 부정적분은 하나만 있는 것이 아니라 여러 개가 있는데, 이들은 모두 상수를 제외하고는 동일 한 형태이다. 따라서 $3x^2$ 의 부정적분을

$$x^3+C$$
 (C 는 상수)
타낼 수 있다.

의 꼴로 나타낼 수 있다.

부정적분 공식은 미분 공식을 거꾸로 생각하여 얻을 수 있다. 다항함수의 부정적분은 다음과 같다.

다항함수의 부정적분

(1) $\int k dx = kx + C \quad (단, k = 0)$ 아닌 상수)

(2)
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

(단, n은 자연수이고 C는 적분상수)

보기 96. (1) $\int x^2 dx = \frac{1}{3}x^3 + C$ (C는 상수)

(2)
$$\int 4x^3 dx = x^4 + C \quad (C \vdash \ \ \ \ \ \ \ \ \ \)$$

(3)
$$\int x \, dx = \frac{1}{2}x^2 + C$$
 (C 는 상수)

참고 $\int 1 dx$ 는 간단히 $\int dx$ 로 나타내기도 한다.

에제 97. 다음 등식을 만족시키는 함수 f(x)를 구하여라. (단, C는 적분상수이다.)

(1)
$$\int f(x)dx = 3x^2 - 4x + C$$

(2)
$$\int f(x)dx = x^3 - 2x^2 + 5x + C$$

풀이 양변을 미분하여 구한다.

(1)
$$f(x) = (3x^2 - 4x + C)' = 6x - 4$$
.

(2)
$$f(x) = (x^3 - 2x^2 + 5x + C)' = 3x^2 - 4x + 5$$
.

유리항의 적분공식

①
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$
 (단, $n \neq -1$)

예제 98. 다음 부정적분을 구하여라.

$$(1) \int \frac{2x^2 + 1}{x} dx$$

(1)
$$\int \frac{2x^2+1}{x} dx$$
 (2) $\int \frac{(\sqrt{x}-1)^2}{x} dx$

풀이 (1)
$$\int \frac{2x^2+1}{x} dx = \int \left(2x+\frac{1}{x}\right) dx = x^2+\ln|x|+C$$

(2)
$$\int \frac{(\sqrt{x}-1)^2}{x} dx = \int \frac{x-2\sqrt{x}+1}{x} dx$$
$$= \int \left(1-2x^{-\frac{1}{2}} + \frac{1}{x}\right) dx = x-4x^{\frac{1}{2}} + \ln|x| + C$$
$$= x-4\sqrt{x} + \ln|x| + C$$

예제 99. 다음 부정적분을 구하여라.

(1)
$$\int (\sin x + 3\cos x) dx$$
 (2) $\int \frac{2\cos^3 x - 4}{\cos^2 x} dx$

罿이 (1)
$$\int (\sin x + 3\cos x) dx$$
$$= \int \sin x dx + 3 \int \cos x dx$$
$$= -\cos x + 3\sin x + C$$

(2)
$$\int \frac{2\cos^3 x - 4}{\cos^2 x} dx = \int (2\cos x - 4\sec^2 x) dx$$
$$= 2\int \cos x \, dx - 4\int \sec^2 x \, dx$$
$$= 2\sin x - 4\tan x + C$$

부정적분과 미분의 관계

함수 f(x)에 대하여 다음이 성립한다.

$$(1) \frac{d}{dx} \left\{ \int f(x) dx \right\} = f(x)$$

(2)
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx = f(x) + C$$
 (단, C는 적분상수)

예제 100. 함수 $f(x) = x^3 - 2x$ 에 대하여 다음을 구하여라.

(1)
$$\frac{d}{dx} \left\{ \int f(x) dx \right\}$$
 (2) $\int \left\{ \frac{d}{dx} f(x) \right\} dx$

(2)
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx$$

풀이 (1)
$$\frac{d}{dx} \left\{ \int f(x) dx \right\} = \frac{d}{dx} \left\{ \int (x^3 - 2x) dx \right\}$$
$$= \frac{d}{dx} \left(\frac{1}{4} x^4 - x^2 + C \right) = x^3 - 2x.$$

(2)
$$\int \left\{ \frac{d}{dx} f(x) \right\} dx = \int \left\{ \frac{d}{dx} (x^3 - 2x) \right\} dx$$
$$= \int (3x^2 - 2) dx = x^3 - 2x + C.$$

부정적분의 성질은 대부분 미분의 성질로부터 유도된다.

부정적분의 성질

П

(1)
$$\int kf(x)dx = k \int f(x)dx \quad (k = 0)$$
 아닌 상수)

(2)
$$\int \{f(x) + g(x)\}dx = \int f(x)dx + \int g(x)dx$$

(3)
$$\int \{f(x) - g(x)\} dx = \int f(x) dx - \int g(x) dx$$

증명 f(x)와 g(x)의 부정적분을 각각 F(x), G(x)라고 하자.

(1) $\{kF(x)\}' = kf(x)$.

(2)
$$\{F(x) + G(x)\}' = F'(x) + G'(x) = f(x) + g(x)$$
이므로
$$\int \{f(x) + g(x)\} dx = F(x) + G(x) = \int f(x) dx + \int g(x) dx$$

(3)
$$\{F(x) - G(x)\}' = F'(x) - G'(x) = f(x) - g(x)$$
 으므로
$$\int \{f(x) - g(x)\} dx = F(x) - G(x) = \int f(x) dx - \int g(x) dx$$

예제 101. 다음 부정적분을 구하여리

(1)
$$\int (x-1)^3 dx$$

(1)
$$\int (x-1)^3 dx$$
 (2) $\int \frac{x^3+1}{x+1} dx$

(3)
$$\int (x^2 + tx + t^2) dt$$

(3)
$$\int (x^2 + tx + t^2) dt$$
 (4) $\int \frac{x^2}{x - 1} dx - \int \frac{1}{x - 1} dx$

풀이 (1) (준식)=
$$\int (x^3-3x^2+3x-1)dx$$

$$=\frac{1}{4}x^4-x^3+\frac{3}{2}x^2-x+C.$$

(2)
$$(\stackrel{\geq}{\text{--}} \stackrel{\lambda}{\text{--}}) = \int (x^2 - x + 1) dx = \frac{1}{3}x^3 - \frac{1}{2}x^2 + x + C.$$
(Fr. $x \neq -1$)

(3)
$$\int (x^2 + tx + t^2) dt = x^2 t + \frac{1}{2} x t^2 + \frac{1}{3} t^3 + C.$$

(4)
$$(\vec{\Xi} \vec{A}) = \int \left(\frac{x^2}{x - 1} - \frac{1}{x - 1} \right) dx$$

 $= \int \frac{x^3 - 1}{x - 1} dx$
 $= \int (x + 1) dx = \frac{1}{2} x^2 + x + C. \quad (\vec{\Box}, \ x \neq 1)$

치환적분

$$\int f'(g(x))g'(x)dx = f(g(x)) + C$$

증명 합성함수의 미분법에 의하여

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

이므로

$$\int f'(g(x))g'(x)dx = \int \frac{d}{dx}(f(g(x)))dx$$
$$= f(g(x)) + C$$

이다.

예제 102. 다음 부정적분을 구하여라.

(1)
$$\int (x+1)^2 dx$$

(1)
$$\int (x+1)^2 dx$$
 (2) $\int (2x+1)^2 dx$

(3)
$$\int 4(2x+1)(x^2+x-1)^3 dx$$

풀이 (1)
$$\int (x+1)^2 dx = \frac{1}{3}(x+1)^3 + C$$
.

(2)
$$\int (2x+1)^2 dx = \frac{1}{3}(2x+1)^3 \cdot \frac{1}{2} + C$$
.

(3)
$$f(x) = x^4$$
, $g(x) = x^2 + x - 1$ 이라고 하면

$$\frac{d}{dx}[f(g(x))] = \frac{d}{dx}(x^2 + x - 1)^4$$
$$= 4(x^2 + x - 1)^3(2x + 1)$$

이다. 따라서 주어진 부정적분을 계산하면

$$\int 4(2x+1)(x^2+x-1)^3 dx = f(g(x))$$
$$= (x^2+x-1)^4 + C$$

이다.

참고 위 예제의 (1), (2)를 통해 다음 공식을 알 수 있다.

$$\int (ax+b)^n dx = \frac{1}{n+1} (ax+b)^{n+1} \cdot \frac{1}{a} + C$$

12 정적분

다각형의 넓이는 삼각형이나 사각형으로 분할하여 그 분할된 넓 이의 합으로 구할 수 있다. 그러나 직선과 곡선으로 둘러싸인 도형은 삼각형이나 사각형만으로는 완전히 분할할 수 없다.

오른쪽 그림과 같이 곡선으로 둘러싸인 도형의 넓이를 S, 곡선의 내부에 있는 정사각형들의 넓이의 합을 m, 곡선의 내부와 곡선의 경계선을 포함하는 정사 각형들의 넓이의 합을 *M*이라고 하면 $m \leq S \leq M$ 이다. 이때 정사각형의 크

П

기를 한없이 작게 하면 m과 M은 도형의 넓이 S에 가까워지므 로, m과 M의 극한을 구하면 이 도형의 넓이를 구할 수 있다.

구분구적법

다음과 같은 방법으로 도형의 넓이 또는 부피를 구하는 방법 을 **구분구적법**이라고 부른다.

- (i) 주어진 도형을 충분히 작은 n개의 기본도형으로 분할한다.
- (ii) 기본도형의 넓이 또는 부피의 합을 구한다.
- (iii) 위 (ii)에서 구한 합의 $n \to \infty$ 일 때의 극한값을 구한다.

예제 103. 곡선 $y = x^2$ 과 직선 x=1 및 x축으로 둘러싸인 도형 의 넓이를 오른쪽 그림과 같이 구 간 [0, 1]을 n등분하고 곡선의 아 래쪽에 직사각형을 만들어 구분구 적법으로 구하여라.

풀이 구간 [0, 1]을 n등분하면 양 끝점을 포함하여 각 분점의 x좌표 는 차례로 다음과 같다.

$$0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, \frac{n}{n} = 1$$

이때 각각의 직사각형의 높이는 각 구간의 왼쪽 끝에서의 함숫값이므로

$$0, \left(\frac{1}{n}\right)^2, \left(\frac{2}{n}\right)^2, \cdots, \left(\frac{n-1}{n}\right)^2$$

각 구간의 길이는 $\frac{1}{n}$ 이므로 그림에서 색칠된 부분의 넓이 S_n 은

$$\begin{split} S_n &= \frac{1}{n} \cdot 0 + \frac{1}{n} \cdot \left(\frac{1}{n}\right)^2 + \frac{1}{n} \cdot \left(\frac{2}{n}\right)^2 + \dots + \frac{1}{n} \cdot \left(\frac{n-1}{n}\right)^2 \\ &= \frac{1}{n^3} \left\{ 1^2 + 2^2 + \dots + (n-2)^2 + (n-1)^2 \right\} \\ &= \frac{1}{n^3} \cdot \frac{n(n-1)(2n-1)}{6} = \frac{1}{6} \left(1 - \frac{1}{n}\right) \left(2 - \frac{1}{n}\right) \end{split}$$

여기서 n이 한없이 커질 때, S_n 은 곡선 $y=x^2$ 과 x축 및 직선 x=1로 둘러싸인 도형의 넓이 S와 같다.

따라서 구하는 도형의 넓이 S는

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{6} \left(1 - \frac{1}{n} \right) \left(2 - \frac{1}{n} \right) = \frac{1}{3}$$

에제 104. 밑면의 반지름의 길이가 r이고 높이가 h인 원뿔의 부피를 구분구적법으로 구하여라.

풀이 오른쪽 그림과 같이 워뿔의 높 이를 n등분하고 각 분점을 지나고 밑 면에 평행한 평면으로 워뿔을 자르면 각 단면의 반지름의 길이는 위에서부 터 차례로 다음과 같다.

$$\frac{r}{n}$$
, $\frac{2r}{n}$, ..., $\frac{(n-1)r}{n}$

각 단면을 밑면으로 하고 높이가 $\frac{h}{n}$ 인 (n-1)개의 원기둥의 부피의 합 V_n 은

$$\begin{split} V_n &= \pi \bigg(\frac{r}{n}\bigg)^2 \frac{h}{n} + \pi \bigg(\frac{2r}{n}\bigg)^2 \frac{h}{n} + \dots + \pi \bigg\{\frac{(n-1)r}{n}\bigg\}^2 \frac{h}{n} \\ &= \frac{\pi r^2 h}{n^3} \left\{1^2 + 2^2 + \dots + (n-1)^2\right\} \\ &= \frac{\pi r^2 h}{n^3} \cdot \frac{n(n-1)(2n-1)}{6} \\ &= \frac{\pi r^2 h}{6} \bigg(1 - \frac{1}{n}\bigg) \bigg(2 - \frac{1}{n}\bigg) \end{split}$$

따라서 구하는 도형의 부피 V는

$$V = \lim_{n \to \infty} V_n = \lim_{n \to \infty} \frac{\pi r^2 h}{6} \left(1 - \frac{1}{n} \right) \left(2 - \frac{1}{n} \right) = \frac{\pi r^2 h}{3} \qquad \Box$$

함수 f(x)의 그래프에 의해 둘러싸인 도형의 넓이를 구분구적 법으로 구해보자. 함수 y=f(x)가 닫힌구간 $[a,\ b]$ 에서 연속이라고 하자.

구간 [a, b]를 n등분하고 양 끝점을 포함하여 각 분점의 x좌표를 차례로

$$a = x_1, x_2, x_3, \dots, x_{n-1}, x_n = b$$

라고 하며

$$\Delta x = \frac{b-a}{n}$$

라고 할 때, 극한값

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

를 y = f(x)의 a에서 b까지의 **정적분**이라고 부르며, 이것을 기 호로

$$\int_{a}^{b} f(x) dx$$

로 나타낸다. 정적분의 기호가 부정적분이 기호와 동일한 이유 는 뒤에서 살펴볼 정적분의 기본 정리 때문이다.

연속함수의 정적분

함수 f(x)가 닫힌구간 [a, b]에서 연속일 때 다음이 성립한다.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{\infty} f\left(a + \frac{b-a}{n}k\right) \frac{b-a}{n}$$

정적분

$$\int_{a}^{b} f(x)dx$$

의 값을 구하는 것을 함수 f(x)를 a에서 b까지 **적분한다**고 말한다. 이때 a를 **이래끝**, b를 **위끝**이라고 부르며 구간 [a, b]를 **적분구간**이라고 부른다.

참고 정적분

$$\int_{a}^{b} f(x) dx$$

에서 x를 **적분변수**라고 부른다. 이때 적분변수는 다른 것으로 바뀌어도 상관없다. 예를 들어

$$\int_{a}^{b} f(t)dt, \quad \int_{a}^{b} f(y)dy, \quad \int_{a}^{b} f(z)dz$$

는 모두 동일한 적분을 나타낸다.

에제 105. 정적분의 정의를 이용하여 $\int_{0}^{2} x^{2} dx$ 의 값을 구하여라.

풀이 $f(x) = x^2$ 이라고 하면 함수 f(x)는 구간 [0, 2]에서 연속이다. 정적분의 정의에서 a = 0, b = 2라고 하면

$$\Delta x = \frac{b-a}{n} = \frac{2}{n}$$

$$x_k = a + k\Delta x = \frac{2k}{n}$$

$$f(x_k) = x_k^2 = \left(\frac{2k}{n}\right)^2 = \frac{4k^2}{n^2}$$

따라서 다음이 성립한다.

$$\int_{0}^{2} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{4k^{2}}{n^{2}} \cdot \frac{2}{n} \right)$$
$$= \lim_{n \to \infty} \left\{ \frac{8}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6} \right\} = \frac{8}{3} \qquad \Box$$

참고 연속인 함수는 정적분가능하다. 그러나 정적분가능한 모든 함수가 연속인 것은 아니다. 즉

이지만

(미분가능) ≠ (연속) ≠ (정적분가능)

이다. 예를 들어 f(x)=|x|는 x=0에서 연속이지만 x=0에서 미분 불가능하다. 또한

$$f(x) = \begin{cases} 3 & (x \ge 1) \\ 0 & (x < 1) \end{cases}$$

는 $[0,\ 2]$ 에서 정적분 가능하고 적분값은 3이지만 x=1에서 불연속이다. 한편

$$f(x) = \begin{cases} 1 & (x 는 유리수) \\ 0 & (x 는 무리수) \end{cases}$$

는 a < b인 임의의 구간 [a, b]에서 적분 불가능하다.

정적분과 부정적분의 관계를 살펴보자. 아래 그림과 같이 연속 함수 f(t)의 그래프와 t축, 그리고 t=a, t=x로 둘러싸인 부분의 넓이를 S(x)라고 하자.

이때 $S(x+\Delta x)-S(x)$ 의 값은 가로가 $|\Delta x|$ 이고 높이가 f(x)인 직사각형의 넓이 $f(x)|\Delta x|$ 에 가깝다. 즉 Δx 가 절댓값이 작은 양수이면

$$S(x + \Delta x) - S(x) = f(x)\Delta x$$

이다.

 Δx 의 절댓값이 작을수록 양변의 오차는 줄어든다. 따라서

$$\lim_{\Delta x \to 0} \frac{S(x + \Delta x) - S(x)}{\Delta x} = f(x)$$

가 성립한다. 좌변은 S(x)의 도함수와 동일하므로

$$\frac{d}{dx}S(x) = f(x)$$

임을 알 수 있다. 그런데 S(x)는 f(t)의 그래프와 t축, 그리고 t = a, t = x로 둘러싸인 부분의 넓이이므로 위 식을 다시 쓰면 다음과 같다.

적분과 미분의 관계

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

함수 f(x)의 한 부정적분을 F(x)라고 하고, 위 식의 양변의 부정적분을 구하면

$$\int_{a}^{x} f(t)dt = F(x) + C \tag{*}$$

이다. 식 (*)의 x = a를 대입하면

$$0 = \int_{a}^{a} f(t)dt = F(a) + C$$

이므로 C = -F(a)이다. 다시 식 (*)의 양변에 x = b를 대입하

$$\int_{a}^{b} f(t)dt = F(b) + C = F(b) - F(a)$$

이다. 따라서 다음 정리를 얻는다.

정적분의 기본 정리

함수 f(x)가 닫힌구간 [a, b]에서 연속이고, F(x)가 f(x)의 한 부정적분일 때

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

가 성립한다. 이때 F(b) - F(a)를 $[F(x)]_a^b$ 로 나타낸다.

정의 106. 다양한 경우에 적분을 하기 위하여 다음과 같이 정 의하다.

•
$$a = b \stackrel{\triangle}{=} \text{ III } \int_a^b f(x) dx = 0,$$

•
$$a > b$$
 \supseteq \coprod $\int_a^b f(x) dx = -\int_a^a f(x) dx$.

참고 정적분의 기본 정리는 정적분을 계산할 때 미분의 역연 산을 이용하여 쉽게 할 수 있다는 것을 말해준다. 또한 정적분 의 여러 가지 성질이 부정적분의 성질과 비슷하다는 것도 말해 준다. 완전히 정의가 다른 정적분과 부정적분이 이렇게 밀접한 관계를 가지고 있다는 사실은 정말 놀라운 일이다.

13 적분의 성질

정적분의 여러 가지 성질은 정적분의 정의와 부정적분의 성질로 부터 얻어진다.

정적분의 성질

두 함수 f(x), g(x)가 세 실수 a, b, c를 포함하는 구간에 서 연속일 때 다음이 성립한다.

①
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \quad (k = \ \ \ \ \ \ \ \)$$

예제 107. 다음 정적분의 값을 구하여라.

(1)
$$\int_{1}^{3} (t^2 - 2t + 1) dt$$

(1)
$$\int_{1}^{3} (t^2 - 2t + 1) dt$$
 (2) $\int_{0}^{2} (3x^2 - 6x + 2) dx$

(3)
$$\int_{-1}^{2} (t-1)^2 dt$$

(3)
$$\int_{-1}^{2} (t-1)^2 dt$$
 (4) $\int_{1}^{0} (s-1)(s^2+s+1) ds$

풀이 (1) (준식)=
$$\left[\frac{1}{3}t^3 - t^2 + t\right]_1^3$$

= $\left(\frac{1}{3} \cdot 3^3 - 3^2 + 3\right) - \left(\frac{1}{3} \cdot 1^3 - 1^2 + 1\right) = 3 - \frac{1}{3} = \frac{8}{3}$.

(2)
$$(\stackrel{>}{\leftarrow} \stackrel{>}{\leftarrow}) = [x^3 - 3x^2 + 2x]_0^2$$

= $(2^3 - 3 \cdot 2^2 + 2 \cdot 2) - (0^3 - 3 \cdot 0^2 + 2 \cdot 0) = 0.$

(3)
$$(\frac{3}{2}) = \left[\frac{1}{3} (t-1)^3 \right]_{-1}^2 = \frac{1}{3} - \left(-\frac{8}{3} \right) = 3.$$

$$(4) \ (\stackrel{\geq \lambda}{\text{therefore}}) = -\int_0^1 (s-1)(s^2+s+1)ds$$
$$= -\int_0^1 (s^3-1)ds = -\left[\frac{1}{4}s^4-s\right]_0^1 = -\left(-\frac{3}{4}\right) = \frac{3}{4}.$$

에제 108. 다음 정적분의 값을 구하여라.

(1)
$$\int_{-1}^{0} \frac{x^3}{x-1} dx + \int_{0}^{-1} \frac{1}{t-1} dt$$

(2)
$$\int_{-2}^{-1} (x^3 + 3x^2 + 1) dx + \int_{-1}^{1} (y^3 + 3y^2 + 1) dy$$

풀이 (1) (준시) =
$$\int_{-1}^{0} \frac{x^3}{x-1} dx - \int_{-1}^{0} \frac{1}{x-1} dx$$
$$= \int_{-1}^{0} \frac{x^3-1}{x-1} dx = \int_{-1}^{0} (x^2+x+1) dx = \frac{5}{6}.$$

$$(2) \ (\stackrel{\geq \times}{\overset{\sim}{\leftarrow}}) = \int_{-2}^{-1} (x^3 + 3x^2 + 1) dx + \int_{-1}^{1} (x^3 + 3x^2 + 1) dx$$
$$= \int_{-2}^{1} (x^3 + 3x^2 + 1) dx = \left[\frac{1}{4} x^4 + x^3 + x \right]_{-2}^{1}$$
$$= \frac{9}{4} - (-6) = \frac{33}{4}.$$

예제 109. 다음 정적분의 값을 구하여라.

(1)
$$\int_{-2}^{1} |x+1| dx$$

(1)
$$\int_{-2}^{1} |x+1| dx$$
 (2) $\int_{0}^{2} |x^{2}-x| dx$

풀이 절댓값 안의 식이 0이 되는 점을 기준으로 구간을 나눈

$$\begin{aligned} (1) \ &(\xrightarrow{\mathbb{Z}} \xrightarrow{\lambda}) = \int_{-2}^{-1} |x+1| dx + \int_{-1}^{1} |x+1| dx \\ &= \int_{-2}^{-1} (1-x) dx + \int_{-1}^{1} (x+1) dx \\ &= \left[x - \frac{1}{2} x^2 \right]_{-2}^{-1} + \left[\frac{1}{2} x^2 - x \right]_{-1}^{1} \\ &= \left\{ \frac{1}{2} - 0 \right\} + \left\{ \frac{3}{2} - \left(-\frac{1}{2} \right) \right\} = \frac{5}{2} \,. \end{aligned}$$

(2)
$$(\stackrel{\geq}{\text{tr}}\stackrel{\lambda}{=}) = \int_0^1 |x^2 - x| dx + \int_1^2 |x^2 - x| dx$$

$$= \left[-\frac{1}{3}x^3 + \frac{1}{2}x^2 \right]_0^1 + \left[\frac{1}{3}x^3 - \frac{1}{2}x^2 \right]_1^2 = 1.$$

참고 f(x)가 우함수이고 g(x)가 기함수이며 a가 양수일 때

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx, \quad \int_{-a}^{a} g(x)dx = 0$$

이 성립한다.

예제 110. 함수 f(x)가 [-1, 1]에서 정적분 가능하고 우함수 이며 $\int_{0}^{1} f(x)dx = -1$ 일 때

$$\int_{-1}^{1} (x^3 - 2x - 5) f(x) dx$$

를 구하여라.

풀이 f(x)가 우함수라는 것은 그래프가 y축에 대하여 대칭이 라는 것이다. 즉 모든 실수 x에 대하여 f(-x) = f(x)가 성립 한다는 것을 의미한다. 따라서

$$\int_{1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx = -2$$

가 성립한다. 이 식을 이용하여 주어진 적분을 계산하자.

$$\int_{-1}^{1} (x^3 - 2x - 5) f(x) dx$$

$$= \int_{-1}^{1} x^3 f(x) dx - 2 \int_{-1}^{1} x f(x) dx - 5 \int_{-1}^{1} f(x) dx$$

여기서 $x^3 f(x)$ 와 x f(x)는 모두 기함수이므로

$$\int_{-1}^{1} x^3 f(x) dx = 0, \quad \int_{1}^{1} f(x) dx = 0$$

이다. 따라서

$$\int_{-1}^{1} (x^3 - 2x - 5) f(x) dx = -5 \int_{-1}^{1} f(x) dx = 10.$$

참고 우함수와 기함수의 곱의 결과는 다음과 같다.

(우함수)×(우함수)=(우함수)

(우함수)×(기함수)=(기함수)

(기함수)×(기함수)=(우함수)

정적분으로 정의된 함수의 미분

증명 함수 f(x)의 한 부정적분을 F(x)라고 하면

①
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = \frac{d}{dx} [F(t)]_{a}^{x} = \frac{d}{dx} [F(x) - F(a)]$$
$$= F'(x) = f(x)$$

예제 111. 다음 함수를 x에 대하여 미분하여라.

(1)
$$\int_{0}^{x} (2t^2 - 3) dt$$

(1)
$$\int_{2}^{x} (2t^2 - 3)dt$$
 (2) $\int_{x}^{x+2} (t^2 - 3t + 2)dt$

풀이 (1)
$$2x^2-3$$

(2)
$$4x-2$$

정적분으로 정의된 함수의 극한

②
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{x+a} f(t)dt = f(a)$$

증명 함수 f(x)의 한 부정적분을 F(x)라고 하면

①
$$\lim_{x \to a} \frac{1}{x - a} \int_{a}^{x} f(t) dt = \lim_{x \to a} \frac{[F(t)]_{a}^{x}}{x - a} = \lim_{x \to a} \frac{F(x) - F(a)}{x - a}$$

= $F'(a) = f(a)$.

$$\lim_{x \to 0} \frac{1}{x} \int_{a}^{x+a} f(t) dt = \lim_{x \to 0} \frac{[F(t)]_{a}^{x+a}}{x}$$

$$= \lim_{x \to 0} \frac{F(x+a) - F(a)}{x} = F'(a) = f(a).$$

예제 112. 다음 극한값을 구하여라.

$$(1) \lim_{x \to 1} \frac{1}{x - 1} \int_{1}^{x} (t^{2} + 2t) dt \qquad (2) \lim_{x \to 0} \frac{1}{x} \int_{2}^{2 + x} (3t + 4) dt$$

풀이 (1) $f(t) = t^2 + 2t$ 로 놓고, f(t)의 한 부정적분을 F(t)라 고 하면

(준식)=
$$\lim_{x\to 1} \frac{[F(t)]_1^x}{x-1} = \lim_{x\to 1} \frac{F(x)-F(1)}{x-1} = F'(1) = f(1) = 3.$$

(2) f(t) = 3t + 4로 놓고, f(t)의 한 부정적분을 F(t)라고 하

(준식)=
$$\lim_{x\to 0} \frac{[F(t)]_2^{2+x}}{x} = \lim_{x\to 0} \frac{F(2+x) - F(2)}{x}$$
$$= F'(2) = f(2) = 6 + 4 = 10.$$

정적분과 무한급수

예제 113. 정적분을 이용하여 다음 극한값을 구하여라.

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{2k}{n} \right)^2 \frac{2}{n}$$

풀이 무엇을 적분변수로 정하느냐에 따라 다르게 풀 수 있다.

방법 1. $1 + \frac{2k}{2}$ 를 x로 나타내는 경우

- $1 + \frac{2k}{n}$ 를 x로, k의 계수 $\frac{2}{n}$ 를 dx로 나타낸다.
- k=1이면서 $n \rightarrow \infty$ 일 때 x=1이고, k=n일 때 x=3이

따라서 (준식)=
$$\int_{1}^{3} x^{2} dx = \frac{26}{3}$$
.

방법 2. $\frac{2k}{n}$ 를 x로 나타내는 경우

- $\frac{2k}{m}$ 를 x로, k의 계수 $\frac{2}{m}$ 를 dx로 나타낸다.
- k=1이면서 $n\to\infty$ 이면 x=0이고, k=n이면 x=2이므 로 적분구간은 [0, 2]이다.

따라서 (준식)=
$$\int_{0}^{2} (1+x)^{2} dx = \frac{26}{3}.$$

방법 3. $\frac{k}{n}$ 를 x로 나타내는 경우

- $\frac{k}{x}$ 를 x로, k의 계수 $\frac{1}{x}$ 을 dx로 나타낸다.
- k=1이면서 $n\to\infty$ 이면 x=0이고, k=n이면 x=1이므 로 적분구간은 [0, 1]이다.

따라서 (준식)=
$$2\int_{0}^{1}(1+2x)^{2}dx=\frac{26}{3}$$
.

예제 114. 정적분을 이용하여 다음 극한값을 구하여라.

(1)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^2 \frac{1}{n}$$

(1)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^2 \frac{1}{n}$$
 (2) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{3k}{n}\right)^2 \frac{2}{n}$

풀이 (1) $\frac{k}{n}$ 를 x로 $\frac{1}{n}$ 을 dx로 나타내면 적분구간은 [0, 1]이

다. 따라서 (준식)=
$$\int_0^1 x^2 dx = \frac{1}{3}$$
.

$$(2) \lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{3k}{n}\right)^{2} \frac{2}{n} = \frac{2}{3} \lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{3k}{n}\right)^{3} \frac{3}{n} \text{ and } k \in \mathbb{N}$$

 $1+\frac{3k}{n}$ 을 x로, $\frac{3}{n}$ 을 dx로 나타내면 적분구간은 [1, 4]이다.

따라서 (준식)=
$$\frac{2}{3}\int_{1}^{4}x^{3}dx = \frac{85}{2}$$
.

14 치환적분과 부분적분

합성함수의 미분법을 거꾸로 하면 다음과 같은 적분 공식을 얻

치환적분법

미분가능한 함수 g(t)에 대하여 x = g(t)로 놓으면

$$\int f(x)dx = \int f(g(t))g'(t)dt$$

특히

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

참고 치환적분법은

$$\int f'(g(x))g'(x)dx = f(g(x)) + C$$

로 나타낼 수도 있다.

예제 115. 다음 부정적분을 구하여라.

(1)
$$\int (2x+1)^3 dx$$

(1)
$$\int (2x+1)^3 dx$$
 (2) $\int \frac{1}{(2x-3)^2} dx$

풀이 (1) 2x+1=t로 놓으면 $x=\frac{t-1}{2}$ 에서 $\frac{dx}{dt}=\frac{1}{2}$ 이므로

$$\int (2x+1)^3 dx = \int t^3 \cdot \frac{1}{2} dt = \frac{1}{2} \int t^3 dt = \frac{1}{8} t^4 + C$$
$$= \frac{1}{8} (2x+1)^4 + C.$$

(2) 2x-3=t로 놓으면 $x=\frac{t+3}{2}$ 에서 $\frac{dx}{dt}=\frac{1}{2}$ 이므로

$$\int \frac{1}{(2x-3)^2} dx = \int \frac{1}{t^2} \cdot \frac{1}{2} dt = \frac{1}{2} \int \frac{1}{t^2} dt = -\frac{1}{2t} + C$$

$$= -\frac{1}{2(2x-3)} + C.$$

에제 116. 부정적분 $\int \sin^3 x \cos x \, dx$ 를 구하여라.

풀이
$$\sin x = t$$
로 놓으면 $\frac{dt}{dx} = \cos x$ 이므로

$$\int \sin^3 x \cos x dx = \int t^3 dt = \frac{1}{4} t^4 + C = \frac{1}{4} \sin^4 x + C \qquad \Box$$

예제 117. 다음 부정적분을 구하여라.

(1)
$$\int \frac{2x}{x^2-1} dx$$

(2)
$$\int \tan x \, dx$$

풀이 (1) $(x^2-1)'=2x$ 이므로

$$\int \frac{2x}{x^2 - 1} dx = \int \frac{(x^2 - 1)'}{x^2 - 1} dx = \ln|x^2 - 1| + C$$

(2) $\tan x = \frac{\sin x}{\cos x}$ 이고, $(\cos x)' = -\sin x$ 이므로

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{-\sin x}{\cos x} dx$$
$$= -\int \frac{(\cos x)'}{\cos x} dx = -\ln|\cos x| + C \qquad \Box$$

에제 118. 부정적분
$$\int \frac{1}{x(x+1)} dx$$
를 구하여라.

풀이
$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$
이므로
$$\int \frac{1}{x(x+1)} dx = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$
$$= \ln|x| - \ln|x+1| + C = \ln\left|\frac{x}{x+1}\right| + C$$

에제 119. 부정적분
$$\int \frac{5x-7}{x^2-3x+2} dx$$
를 구하여라.

풀이
$$\frac{5x-7}{x^2-3x+2}=\frac{a}{x-1}+\frac{b}{x-2}$$
라고 하면
$$\frac{5x-7}{x^2-3x+2}=\frac{(a+b)x-2a-b}{x^2-3x+2}$$

이므로

$$a+b=5, -2a-b=-7$$

이다. 이것을 풀면 a=2, b=3이다. 따라서

$$\frac{5x-7}{x^2-3x+2} = \frac{2}{x-1} + \frac{3}{x-2}$$

이므로

$$\begin{split} \int \frac{5x-7}{x^2-3x+2} dx &= \int \left(\frac{2}{x-1} + \frac{3}{x-2}\right) dx \\ &= 2\ln|x-1| + 3\ln|x-2| + C \\ &= \ln|(x-1)^2 (x-2)^3| + C \end{split}$$

치환적분법을 이용한 정적분

구간 $[a,\ b]$ 에서 연속인 함수 f(x)에 대하여 미분가능한 함수 x=g(t)의 도함수 g'(t)가 구간 $[\alpha,\ \beta]$ 에서 연속이고 $a=g(\alpha),\ b=g(\beta)$ 이면

$$\int_{a}^{b} f(x)d(x) = \int_{\alpha}^{\beta} f(g(t))g'(t)dt$$

에제 120. 정적분
$$\int_{0}^{1} 2e^{2x+1} dx$$
를 구하여라.

풀이
$$2x+1=t$$
로 놓으면 $x=\frac{t-1}{2}$ 에서 $\frac{dx}{dt}=\frac{1}{2}$ 이고 $x=0$ 일 때 $t=1$, $x=1$ 일 때 $t=3$ 이므로
$$\int_{-1}^{1} 2e^{2x+1} dx = \int_{-1}^{3} e^{t} dt = \left[e^{t}\right]_{1}^{3} = e^{3} - e$$

예제 121. 정적분
$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$$
를 구하여라.

풀이
$$\sin x = t$$
로 놓으면 $\frac{dt}{dx} = \cos x$ 이고 $x = 0$ 일 때 $t = 0$, $x = \frac{\pi}{2}$ 일 때 $t = 1$ 이므로

$$\int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos x \, dx = \int_{0}^{1} t^{2} dt = \left[\frac{1}{3} t^{3} \right]_{0}^{1} = \frac{1}{3}$$

에제 122.
$$\int_{0}^{2} \sqrt{4-x^{2}} dx$$
를 구하여라.

풀이
$$x=2\sin\theta\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$$
로 놓으면 $\frac{dx}{d\theta} = 2\cos\theta$ 이고, $x=0$ 일 때 $\theta=0$, $x=2$ 일 때 $\theta=\frac{\pi}{2}$ 이므로

$$\int_{0}^{2} \sqrt{4 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{4(1 - \sin^{2}\theta)} \cdot 2 \cos \theta \, d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, d\theta = 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_{0}^{\frac{\pi}{2}} = \pi$$

참고
$$a > 0$$
일 때

$$\int_{0}^{a} \sqrt{a^2 - x^2} \, dx$$

부분적분법

두 함수 f(x), g(x)가 미분가능할 때, $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$

증명
$$y = f(x)g(x)$$
일 때

$$y' = f'(x)g(x) + f(x)g'(x)$$

이므로 양변을 x에 대하여 적분하면

$$f(x)g(x) + C = \int f'(x)g(x)dx + \int f(x)g'(x)dx$$

이다. 이것을 정리하면

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
이다. (적분상수는 우변의 부정적분에 포함되어 있다.)

예제 123. 다음 부정적분을 구하여라.

(1)
$$\int \ln x \, dx$$

$$(2) \int e^x \sin x \, dx$$

풀이 (1) $f(x) = \ln x$, g'(x) = 1로 놓으면

$$f'(x) = \frac{1}{x}, g(x) = x$$
이므로

$$\int \ln x \, dx = x \ln x - \int \frac{1}{x} \cdot x \, dx = x \ln x - \int dx$$
$$= x \ln x - x + C$$

(2)
$$f(x) = e^x$$
, $g'(x) = \sin x$ 로 놓으면

$$f'(x) = e^x$$
, $q(x) = -\cos x$ 이므로

$$\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx \qquad \cdots \qquad \mathbb{D}$$

부분적분법을 한 번 더 적용하면

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx \qquad \cdots \qquad 2$$

②를 ①에 대입하여 정리하면

$$\int e^{x} \sin x \, dx = -e^{x} \cos x + (e^{x} \sin x - \int e^{x} \sin dx),$$
$$2 \int e^{x} \sin x \, dx = e^{x} (\sin x - \cos x)$$

따라서 구하는 부정적분은

$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C \qquad \Box$$

예제 124. 부정적분 $\int xe^x dx$ 를 구하여라.

풀이 f(x) = x, $g'(x) = e^x$ 으로 놓으면 $f'(x) = 1, g(x) = e^x$ 이므로

$$\int xe^{x}dx = xe^{x} - \int 1 \cdot e^{x}dx = xe^{x} - e^{x} + C$$

부분적분법을 이용한 정적분

두 함수 f(x), g(x)가 미분가능하고 f'(x), g'(x)가 연속

$$\int_a^b \! f(x)g'(x)dx \! = [f(x)g(x)]_a^b \! - \int_a^b \! f'(x)g(x)dx$$

예제 125. 다음 정적분을 구하여라.

$$(1) \int_0^1 x e^x dx$$

(1)
$$\int_{0}^{1} xe^{x} dx$$
 (2) $\int_{0}^{\frac{\pi}{2}} x \sin x dx$

풀이 (1)
$$\int_0^1 x e^x dx = \left[xe^x\right]_0^1 - \int_0^1 e^x dx = e - \left[e^x\right]_0^1 = 1$$

(2)
$$\int_{0}^{\frac{\pi}{2}} x \sin x \, dx = \left[x \left(-\cos x \right) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \left(-\cos x \right) dx$$
$$= 0 - \left[-\sin x \right]_{0}^{\frac{\pi}{2}} = 1$$

15 삼각함수, 지수함수, 로그함수의 적분

지금까지 살펴본 미분법과 여러 가지 적분법을 활용하여 삼각함 수, 지수함수, 로그함수의 적분을 구해보자.

삼각함수의 부정적분

예제 126. 다음 부정적분을 구하여라

$$(1) \int \tan^2 x \, dx$$

$$(1) \int \tan^2 x \, dx \qquad (2) \int \frac{\cos^2 x}{1 + \sin x} \, dx$$

풀이 (1)
$$\int \tan^2 x \, dx = \int (\sec^2 x - 1) dx = \tan x - x + C$$

(2)
$$\int \frac{\cos^2 x}{1 + \sin x} dx = \int \frac{1 - \sin^2 x}{1 + \sin x} dx$$
$$= \int \frac{(1 + \sin x)(1 - \sin x)}{1 + \sin x} dx$$
$$= \int (1 - \sin x) dx = x + \cos x + C \qquad \Box$$

에제 127. 부정적분 $\int \sin^2 \frac{x}{2} dx$ 를 구하여라.

풀이
$$\int \sin^2 \frac{x}{2} dx = \int \frac{1-\cos x}{2} dx$$

$$= \int \frac{1}{2} dx - \int \frac{1}{2} \cos x \, dx = \frac{1}{2} x - \frac{1}{2} \sin x + C$$

지수함수와 로그함수의 부정적분 (단, a > 0, $a \neq 1$)

예제 128. 다음 부정적분을 구하여라.

(1)
$$\int e^{x+2} dx$$

(1)
$$\int e^{x+2} dx$$
 (2) $\int \frac{e^{2x} - x^2}{e^x - x} dx$

풀이 (1)
$$\int e^{x+2} dx = \int e^x \cdot e^2 dx = e^2 \int e^x dx$$

= $e^2 e^x + C = e^{x+2} + C$

(2)
$$\int \frac{e^{2x} - x^2}{e^x - x} dx = \int \frac{(e^x + x)(e^x - x)}{e^x - x} dx$$
$$= \int (e^x + x) dx = e^x + \frac{1}{2}x^2 + C$$

에제 129. 부정적분 $\int \sin^3 x \cos x \, dx$ 를 구하여라.

풀이 $\frac{d}{dx}\sin^4 x = 4\sin^3 x \cdot \cos x$ 이므로

$$\int \sin^3 x \cos x \, dx = \frac{1}{4} \sin^4 x + C$$

참고로 이 풀이를 예제 116번과 비교해 보아라.

16 적분의 활용

적분을 활용하여 여러 가지 문제를 해결할 수 있다.

정적분을 이용한 부등식의 증명

① a < b이고 $f(x) \ge 0$ 일 때,

$$\int_{a}^{b} f(x)dx \ge 0$$

② a < b이고 $f(x) \leq g(x)$ 일 때,

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

에제 130. n이 자연수일 때, 다음 부등식이 성립함을 증명하여라.

$$\ln(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

풀이 $f(x) = \frac{1}{x}$ 이라고 하면 함수 f(x)는 x > 0일 때 감소한다.

따라서 곡선 $y = \frac{1}{x}$ 과 x축 및 두 직선 x = 1, x = n + 1로 둘러싸인

직선 x=1, x=n+1로 둘러싸인 넓이는 오른쪽 그림의 직사각형의 넓이의 합보다 작다. 즉

$$\int_{1}^{n+1} \frac{1}{x} dx < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

이다. 그런데

$$\int_{1}^{n+1} \frac{1}{x} dx = [\ln x]_{1}^{n+1} = \ln(n+1)$$

이므로

$$\ln(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

곡선과 축 사이의 넓이

함수 y=f(x)가 구간 $[a,\ b]$ 에서 연속일 때, 곡선 y=f(x)와 x축 및 두 직선 $x=a,\ x=b$ 로 둘러싸인 부분의 넓이 S는 다음과 같다.

$$S = \int_{a}^{b} |f(x)| dx$$

예제 131. 다음 도형의 넓이를 구하여라.

- (1) 곡선 $y = -x^2 + 2x + 3$ 과 x축으로 둘러싸인 도형
- (2) 곡선 $y = x^2 3x$ 와 x축 및 두 직선 x = -1과 x = 2로 둘러싸인 도형

풀이 (1) 주어진 곡선의 x 절편은 -1과 3이고, 구간 [-1, 3]에서 $y \ge 0$ 이다. 따라서 구하는 넓이 S는

(2) 구간 [-1, 0]에서 $y \ge 0$ 이며 구간 [0, 2]에서 $y \le 0$ 이다. 따라서 구하는 넓이 S는 $y y y = x^2 - 3xy$

두 함수 y=f(x)와 y=g(x)가 닫힌구간 $[a,\ b]$ 에서 연속일 때, 두 곡선 y=f(x)와 y=g(x) 및 두 직선 x=a와 x=b로 둘러싸인 도형의 넓이 S는

$$S = \int_a^b |f(x) - g(x)| dx.$$

에제 132. 직선 y=x-1과 곡선 $y=x^2-2x-1$ 로 둘러싸인 도형의 넓이를 구하여라.

풀이 방정식 $x^2 - 2x - 1 = x - 1$ 을 풀면 x = 0, x = 3이므로 주어진 직선과 곡선의 교점의 x좌표는 0, 3이다. 구간 [0, 3]에서

 $x-1 \ge x^2 - 2x - 1$ 이다. 따라서 구하는 넓이 S는

$$S = \int_0^3 \{(x-1) - (x^2 - 2x - 1)\} dx$$
$$= \int_0^3 (-x^2 + 3x) dx = \left[-\frac{x^3}{3} + \frac{3}{2}x^2 \right]_0^3 = \frac{9}{2}$$

에제 133. 다두 곡선 $y = \sin x$ 와 $y = \cos x$ 및 두 직선 x = 0 과 $x = \pi$ 로 둘러싸인 도형의 넓이를 구하여라.

풀이 구간 $[0, \pi]$ 에서 주어진 두 곡선의 교점의 x좌표는

$$\sin x = \cos x$$

를 만족시키는 점이다. 위 식을 변형하면

$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right) = 0$$

에서 $x = \frac{\pi}{4}$ 이다.

구간 $\left[0, \frac{\pi}{4}\right]$ 에서 $\sin x \le \cos x$ 이다.

구간
$$\left[\frac{\pi}{4}, \pi\right]$$
에서 $\sin x \ge \cos x$ 이다.

따라서 구하는 넓이 S는

$$\begin{split} S &= \int_0^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\pi} (\sin x - \cos x) dx \\ &= [\sin x + \cos x]_0^{\frac{\pi}{4}} + [-\cos x - \sin x]_{\frac{\pi}{4}}^{\pi} = 2\sqrt{2} \end{split} \qquad \Box$$

에제 134. 곡선 $y = \ln x$ 와 점 (e, 1)에서 이 곡선에 그은 접 선 및 x축으로 둘러싸인 도형의 넓이를 구하여라.

풀이 $y' = \frac{1}{x}$ 이므로 점 (e, 1)에서 주어진 곡선에 그은 접선 의 방정식은 $y-1=\frac{1}{e}(x-e)$, 즉 $y=\frac{1}{e}x$ 이다.

그러므로 주어진 도형은 곡선 x=ey와 두 직선 x=ey와 y=0으로 둘러싸인 도형이다.

따라서 구하는 넓이 S는

$$S = \int_0^1 (e^y - ey) dy = \left[e^y - \frac{e}{2} y^2 \right]_0^1 = \frac{e}{2} - 1$$

입체도형의 부피

닫힌구간 [a, b]에서 x축에 수직인 평면으로 자른 단면의 넓이가 S(x)인 입체도형의 부피 V는

$$V = \int_{a}^{b} S(x) dx.$$

이 공식은 S(x)가 구간 [a, b]에서 연속일 때에 사용한다.

참고 적분을 이용하여 입체도형의 부피를 구할 때에는 적분 구간과 단면의 넓이 함수 S(x)를 구하는 것이 중요하다.

에제 135. 정적분을 이용하여 밑면의 넓이가 S이고 높이가 h인 사각뿔의 부피를 구하여라.

풀이 오른쪽 그림과 같이 사각뿔의 꼭짓점 O를 원점, 꼭짓점에서 밑면에 내린 수선을 x축으로 정하자.

x좌표가 x인 점을 지나 x축에 수직 인 평면으로 자른 단면의 넓이를 S(x)라고 하면

$$S(x): S = x^2: h^2$$

이므로 $S(x) = \frac{x^2}{h^2} S$ 이다. 따라서 구하는 부피 V는

$$V = \int_{0}^{h} S(x) dx = \int_{0}^{h} \frac{x^{2}}{h^{2}} S dx = \frac{S}{h^{2}} \left[\frac{x^{3}}{3} \right]_{0}^{h} = \frac{1}{3} S h \qquad \Box$$

회전체의 부피

닫힌구간 [a, b]에서 곡선 y = f(x)를 x축을 회전축으로 하여 회전시킬 때 생기는 회전체의 부피 V는

$$V = \pi \int_{a}^{b} \{f(x)\}^{2} dx$$

에제 136. 곡선 $y=x^2+1$, x축, y축, 직선 x=1로 둘러싸인 도형을 x축을 회전축으로 하여 회전시킬 때 생기는 회전체의 부피를 구하여라.

곡선의 길이

① 곡선 x = f(t), y = g(t) $(a \le t \le b)$ 의 길이 l은

$$l = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{a}^{b} \sqrt{\{f'(t)\}^{2} + \{g'(t)\}^{2}} dt$$

② 곡선 y = f(x) $(a \le x \le b)$ 의 길이 l은

$$l = \int_{a}^{b} \sqrt{1 + \{f'(x)\}^2} \, dx$$

증명 곡선의 길이 l은 시각 t에서의 위치가 x좌표는 x=f(t)이고 y좌표는 y=g(t)인 점 $P(x,\ y)$ 가 좌표평면 위에서 시각 t=a부터 시각 t=b까지 움직인 거리와 같다.

위 오른쪽 그림과 같이 매개변수가 t부터 $t+\Delta t$ 까지 변할 때, 점 P(x,y)는 점 $Q(x+\Delta x,y+\Delta y)$ 까지 움직인다고 하자. 그러면 t의 증분 Δt 가 충분히 작을 때 l의 증분 Δl 은 선분 PQ의 길이와 거의 같다.

피타고라스의 정리에 의하여 다음과 같이 쓸 수 있다.

$$\Delta l = \overline{PQ} = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

그러므로 다음을 얻는다.

$$\frac{dl}{dt} = \lim_{\Delta t \to 0} \frac{\Delta l}{\Delta t} = \lim_{\Delta t \to 0} \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2}$$
$$= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

따라서 곡선 $x=f(t),\ y=g(t)\ (a\leq t\leq b)$ 의 길이 l은 다음 과 같다.

$$l = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

한편 함수 y=f(x) $(a \le x \le b)$ 인 매개변수 t를 이용하여 다음과 같이 나타낼 수 있다.

$$x = t$$
, $y = f(t)$ $(a \le t \le b)$

그러므로 곡선 y = f(x) $(a \le x \le b)$ 의 길이 l은 다음과 같다.

$$\begin{split} l &= \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt = \int_a^b \sqrt{1 + \{f't\}^2} \, dt \\ &= \int_a^b \sqrt{1 + \{f'(x)\}^2} \, dx \, . \end{split}$$

S(x)

에제 137. 곡선 $y = \ln x$, x축, y축, 직선 y = 2로 둘러싸인 도형을 y축을 회전축으로 하여 회전시킬 때 생기는 회전체의 부피를 구하여라.

풀이 $y = \ln x$ 에서

$$x = e^y \ (0 \le y \le 2)$$

이므로 구하는 부피 V는

$$V = \pi \int_0^2 (e^y)^2 dy = \pi \int_0^2 e^{2y} dy = \pi \left[\frac{1}{2} e^{2y} \right]_0^2 = \frac{\pi}{2} (e^4 - 1) \qquad \Box$$

에제 138. 정적분을 이용하여 반지름이 r인 원의 둘레의 길이를 구하여라.

풀이 $f(x)=\sqrt{r^2-x^2}$ 이라고 하면 $-r\leq x\leq r$ 일 때 f(x)의 그래프는 반지름이 r인 반원이 된다. 이때

$$f'(x) = \frac{-x}{\sqrt{r^2 - x^2}}$$

이므로 이 반원의 호의 길이는

$$\int_{-r}^{r} \sqrt{1 + \{f'(x)\}^2} \, dx$$

이고 위 식을 변형하면

$$(\mathbf{Z}^{\lambda}) = \int_{-r}^{r} \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx = r \int_{-r}^{r} \frac{1}{\sqrt{r^2 - x^2}} \, dx$$

이다. $x = r\cos\theta$ 로 치환하면 (단, $-\pi \le \theta \le 0$)

$$\frac{dx}{d\theta} = -r\sin\theta$$

이므로 $dx = -r\sin\theta$ 이고

$$x = -r \iff \theta = -\pi$$

이므로 위 적분은 다음과 같이 계산된다.

$$r \int_{-r}^{r} \frac{1}{\sqrt{r^2 - x^2}} dx = r \int_{-\pi}^{0} \frac{-r \sin \theta}{\sqrt{r^2 - r^2 \cos \theta}} d\theta$$
$$= r \int_{-\pi}^{0} \frac{-r \sin \theta}{r |\sin \theta|} d\theta = -r \int_{-\pi}^{0} (-1) d\theta = r\pi.$$

이것은 반지름이 r인 반원의 호의 길이이므로, 반지름이 r인 원의 둘레의 길이는 $2\pi r$ 이다.

회전체의 옆면의 넓이

닫힌구간 [a, b]에서 곡선 y = f(x)를 x축을 회전축으로 하여 회전시킬 때 생기는 회전체의 옆면의 넓이 S는

$$S = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + \{f'(x)\}^2} \, dx$$

증명 닫힌구간 [a, b]에서 곡선 y = f(x)를 x축을 회전축으로 하여 회전시킬 때 생기는 회전체의 겉넓이 S를 구해보자.

앞의 그림과 같이 매개변수가 t부터 $t+\Delta t$ 까지 변할 때

$$\begin{split} \Delta l &= \overline{\mathrm{PQ}} = \sqrt{(\Delta x)^2 + (\Delta y)^2} \\ &= \sqrt{(\Delta x)^2 + \{f'(x)\Delta x\}^2} = \sqrt{1 + \{f'(x)\}^2} \, \Delta x \end{split}$$

이므로 $\overline{\mathsf{PQ}}$ 를 x축을 회전축으로 하여 회전시킬 때 생기는 면의 넓이의 근삿값은

$$2\pi |f(x)|\sqrt{1+\{f^{\prime}(x)\}^2}\, \varDelta x$$

이다. 따라서 구하는 넓이 S는 다음과 같다.

$$S = \int_{a}^{b} 2\pi |f(x)| \sqrt{1 + \{f'(x)\}^2} \, dx$$

에제 139. 정적분을 이용하여 반지름이 r인 구의 겉넓이를 구하여라.

풀이 $f(x) = \sqrt{r^2 - x^2}$ 이라고 하면 $-r \le x \le r$ 일 때 f(x)의 그래프는 반지름이 r인 반원이 된다. 이 반원을 x축을 축으로 하여 회전시키면 반지름이 r인 구가 된다. 이때

$$f'(x) = \frac{-x}{\sqrt{r^2 - x^2}}$$

이므로 이 구의 겉넓이는

$$2\pi \int_{-r}^{r} \sqrt{r^2 - x^2} \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx = 2\pi \int_{-r}^{r} r \, dx = 4\pi r^2. \quad \Box$$

위치, 속도, 가속도

수직선 위를 움직이는 점 P의 시각 t에서의 위치가 p(t), 속도가 v(t), 가속도가 a(t)이고, 시각 $t=t_0$ 에서의 점 P의 위치가 x_0 , 속도가 v_0 일 때 다음이 성립한다.

②
$$p(t) = x_0 + \int_{t_0}^t v(t)dt$$
, $v(t) = v_0 + \int_{t_0}^t a(t)dt$

또한 시각 $t=t_0$ 에서 $t=t_1$ 까지 점 P가 움직인 거리 s는

$$3 s = \int_{t_0}^{t_1} |v(t)| dt$$

이다.

에제 140. 좌표가 4인 점에서 출발하여 수직선 위를 움직이는 점 P의 시각 t에서의 속도가 $v(t)=t^2-2t$ 일 때, 다음을 구하여라.

- (1) 시각 t에서 점 P의 위치
- (2) 시각 t=0부터 시각 t=3까지 점 P의 위치의 변화량
- (3) 시각 t = 0부터 시각 t = 3까지 점 P가 움직인 거리

풀이 $\;(1)$ 시각 t=0에서 위치가 x=4이므로, 구하는 위치 x는

$$x = 4 + \int_{0}^{t} (t^{2} - 2t) dt = 4 + \left[\frac{1}{3} t^{3} - t^{2} \right]_{0}^{t} = \frac{1}{3} t^{3} - t^{2} + 4$$

(2)
$$\int_{0}^{3} (t^{2} - 2t) dt = \left[\frac{1}{3} t^{3} - t^{2} \right]_{0}^{3} = 0$$

(3) $v(t)=t^2-2t=t(t-2)$ 이므로 구간 $[0,\ 2]$ 에서 $v(t)\leq 0$ 이고 구간 $[2,\ 3]$ 에서 $v(t)\geq 0$ 이다. 따라서 점 P가 처음 3초 동안 움직인 거리 s는

$$s = \int_0^3 |t^2 - 2t| dt = \int_0^2 (-t^2 + 2t) dt + \int_2^3 (t^2 - 2t) dt$$
$$= \left[-\frac{1}{3}t^3 + t^2 \right]_0^2 + \left[\frac{1}{3}t^3 - t^2 \right]_0^3 = \frac{8}{3}.$$

에제 141. 지상 30 m의 높이에서 49 m/초의 속도로 똑바로 위로 쏘아 올린 물체의 t초 뒤의 속도가 v(t)=49-9.8t(m/초)일 때, 다음을 구하여라.

- (1) 발사하고 3초 뒤 물체의 지면으로부터의 높이
- (2) 지면에 떨어질 때까지 움직인 거리

풀이 (1) t=0일 때의 높이가 $x_0=30$ 이므로, t초 뒤 물체의 지면으로부터의 높이 x는

$$x = 30 + \int_{0}^{t} (49 - 9.8t) dt = 30 + 49t - 4.9t^{2}$$

따라서 t=3일 때 물체의 지면으로부터의 높이는

$$x = 30 + 49 \cdot 3 - 4.9 \cdot 3^2 = 132.9$$
(m)

(2) 최고점에서의 속도는 $0 \, \mathrm{m}/$ 초이므로, v(t) = 49 - 9.8t = 0에 서 t = 5이다. 따라서 최고점의 높이는

$$x = 30 + 49 \cdot 5 - 4.9 \cdot 5^2 = 152.5 \text{ (m)}$$

이고, 지면에 떨어질 때까지 움직인 거리는

$$152.5 \times 2 - 30 = 275 \text{ (m)}$$

이다.

사람들이 흔히 하는 말처럼 삶은 별게 아니었다. 훌륭한 드립커 피나 적절한 순간에 흘러나오는 펫 숍 보이스의 노래, 닥터 하우스의 귀여운 미소, 좋은 책의 한 구절 같은 것들이면 충분할 때가 많았다. 먹고살기 위해 키보드에 손을 올리기 힘들어질 때까지 아르바이트 원고를 쓰지 않아도 된다면, 그리고 가끔씩 손톱 밑에 가시처럼 박히는 외로움만 어쩔 수 있다면 참 좋겠지. 하지만 그런 삶이 가능한 곳은 지상에는 없을 것이었다.

— 윤이형의 '큰 늑대 파랑' 중에서

고등학교 수학 요약노트 - 미분과 적분

• 만든이 : Sooji Shin

펴낸곳: http://www.soojishin.com 최종수정일: 2014년 8월 11일 (2판)

이 노트를 개인 학습용 또는 수업 준비용으로만 사용하고, 상업적 용도로 사용하지 마십시오.

• • • 미분과 적분