추세분석 : 회귀모형

2023. 3. 14

시계열 자료의 전통적 분석 방법

$$Z_t=eta_0+eta_1t+eta_2t^2+\cdots+eta_pt^p+arepsilon_t$$
 $p=0\Rightarrow Z_t=eta_0+arepsilon_t$ 상수평균모형 $p=1\Rightarrow Z_t=eta_0+eta_1t+arepsilon_t$ 선형 추세모형 $p=2\Rightarrow Z_t=eta_0+eta_1t+eta_2t^2+arepsilon_t$ 2차 추세모형

비선형 추세모형 $Z_t = \varepsilon_t \exp(\beta_0 + \beta_1 t)$

회귀모형

두 개 이상의 변수들 Z,T_1,T_2,\cdots,X_p 사이의 상호관련성을 다음과 같은 꼴로 표현한 것.

$$Z_t = f(X_t; \beta) + \varepsilon_t \quad (t = 1, 2, \dots, p)$$

확률오차 ε_t

회귀모형은 확률모형

설명변수 X_t1,\cdots,X_tp 가 주어지면 Z_t 들은 서로 독립이고 평균이 $f(X_t;\beta)$, 분산이 σ_{ε}^2 인 정규분포.