Building Trust into OO Components using a Genetic Analogy Yves Le Traon Yves.Le_Traon@irisa.fr

→ The problem: trustable components → Component qualification with mutation analysis → Genetic algorithms for test enhancement → A new model: bacteriological algorithms for test enhancement → A mixed-approach and tuning of the parameters → Conclusion

I R I S A Componen	t qualif	ication
	Type	Description
	EHF	Exception Handling Fault
Mutation operators	AOR	Arithmetic Operator Replacement
	LOR	Logical Operator Replacement
	ROR	Relational Operator Replacement
	NOR	No Operation Replacement
	VCP	Variable and Constant Perturbation
	MCR	Methods Call Replacement
	RFI	Referencing Fault Insertion
© Yves Le Traon 2002		

→ Trust estimating : Score of mutation analysis

$$MS = \frac{d}{m}$$

- ▶d : Number of killed mutants
- >m : Number of generated mutants which are not equivalent


```
TRISA

Test enhancement: Genetic algorithm

→ Operators

□ Crossover

ind<sub>1</sub> = {G<sub>11</sub>, ... G<sub>1</sub>, G<sub>1+1</sub>, ... G<sub>2m</sub>} ind<sub>2</sub> = {G<sub>21</sub>, ... G<sub>21</sub>, G<sub>2+1</sub>, ... G<sub>2m</sub>}

ind<sub>3</sub> = {G<sub>11</sub>, ... G<sub>1</sub>, G<sub>2+1</sub>, ... G<sub>2m</sub>} ind<sub>4</sub> = {G<sub>21</sub>, ... G<sub>21</sub>, G<sub>1+1</sub>, ... G<sub>1m</sub>}

□ Mutation for unit testing

G<sub>1</sub> = [I<sub>1</sub>, S<sub>1</sub>] G<sub>2</sub> = [I<sub>1</sub>, S<sub>1</sub>S<sub>2</sub>] G<sub>6</sub> = [I<sub>2</sub>, S<sub>2</sub>S<sub>1</sub>]

G<sub>3</sub> = [I<sub>2</sub>, S<sub>1</sub>] G<sub>4</sub> = [I<sub>1</sub>, S<sub>2</sub>] G<sub>5</sub> = [I<sub>1</sub>, S<sub>1</sub>S<sub>2</sub>] G<sub>6</sub> = [I<sub>2</sub>, S<sub>2</sub>S<sub>1</sub>]

S = (m<sub>1</sub>(p<sub>1</sub>),...,m<sub>n</sub>(p<sub>2</sub>),...m<sub>n</sub>(p<sub>n</sub>))  S<sub>mut</sub> = (m<sub>1</sub>(p<sub>1</sub>),...,m<sub>n</sub>(p<sub>imu</sub>),...m<sub>n</sub>(p<sub>n</sub>))

© Yyes Le Traon 2002
```


→ Mutation operator for system testing. The mutation operator, chooses a gene at random in an individual and replaces a node in that gene by another one:

$$G = [N_1, ..., N_i, ..., N_x] \Rightarrow G_{mut} = [N_1, ..., N_{imut}, ..., N_x]$$

© Yves Le Traon 2002

	p_date	p_date_tim e	p_time
# of generated mutants	673	199	275
mutation score (%)	53	58	58

Case study: system testing

- → The GA have many parameters: difficult tuning
- → Results are not stable
- → The mutation plays a crucial role
 →Not a « classical » GA
- → Some technical reasons for these deceiving results
 - →No memorization to guarantee a growth of the MS

© Yves Le Traon 2002

A new model:
bacteriological algorithms for test
enhancement

The bacteriological approach → an adaptive approach → Test cases have to be adapted to a given «environment » → No cross-over → A new model taken from a biological analogy → The bacteriological approach

IRISA Comparison Performances mutation score # mutants Algorithm # generation (%) executed Genetic 200 85 480000 Bacteriologic 30 96 46375 → reduced tuning effort: less parameters (size of an individual, selection of individuals for reproduction) © Yves Le Traon 2002

Tuning of models and clues for a mixed-approach → Loooking for an intermediate solution between 'pure' GAs and bacteriological algorithms. → From no memorization to a systematic memorization → Trade-off between → number of test cases = number of memorized bacteria → Convergence speed = number of generations

© Yves Le Traon 2002

Clues for a mixed-approach

Let B be bacterium and threshold_value be the memorization threshold

if fitness_value(B)> threshold_value then memorize
B

The category of the algorithm depends on the threshold value:

if threshold_value = 100 then "pure" genetic
if threshold_value = 0 then "pure" bacteriological
if 0 < threshold_value < 100 then mixed-approach</pre>

	•	
	,	
	•	
	,	
orize	,	
ld		
al ach		
uon	;	
	;	
	;	
H		
Ш		
		_

→ Method to build trustable components → Automated test improvement → Gas not adapted → BAs better and easier to calibrate → Mixed-approach benefit not obvious © YvesLe Traon 2002