

Q

Go Back to Advanced Machine Learning	
E Course Content	
2.1 Test your understanding	
Type Questions Scoring Policy Your Marks	 : Practice Quiz : 5 : Highest Score : 5/5
Instructions	~
Attempt History	RETAKE
Attempt #1 Aug 11, 6:39 AM	Marks: 5
Q No: 1 Correct Answer	
Which of the following statements is correct?	Marks: 1/1
Boosting combines multiple strong learners to r	nake a model better than random guessing
Boosting combines multiple weak learners to m	ake a strong model. You Selected
Boosting combines strong and weak learners b	oth to make a good predictive model
O None	
Boosting follows sequential modeling and combines	multiple weak learners to make a strong model.
Q No: 2 Correct Answer	
Q No: 2 Correct Answer The boosting algorithm builds models	Marks: 1/1
	Marks: 1/1 You Selected

Q No: 3	Correct Answer	
Weights of each sample	remain the same for each subsequent weak learner.	Marks: 1/1
O True		
False		You Selected
	nay change for each subsequent weak learner. The samples which are incorrectly p given more weightage when they are used for training the subsequent weak learner.	
Q No: 4	Correct Answer	
Which of the following is	not an example of boosting algorithms?	Marks: 1/1
AdaBoost		
Gradient Boosting	g	
XGBoost		
Random Forest		You Selected
Random forest is an e algorithms.	example of bagging algorithms while AdaBoost, Gradient Boosting, and XGBoost are	examples of boosting
Q No: 5	(Correct Answer)	
Which boosting algorithm implementation?	n has the advantage of parallel computation, efficient missing value treatment, and cache	Marks: 1/ ² optimization built-in its
O AdaBoost		
Gradient Boosting	g	
XGBoost		You Selected
XGBoost has the adva	antage of parallel computation, efficient missing value treatment, and cache optimiz	ation features in its
Previous		Next >

Privacy Terms