Геодезическая гравиметрия 2019

Практическое занятие № 1

Введение. Краткие сведения из математики и высшей геодезии

11 февраля 2019 г.

1 Предмет и задачи курса

Вспомним, что основной научной задачей геодезии является определение фигуры и внешнего гравитационного поля Земли и их изменений во времени.

Геодезическая гравиметрия решает эту задачу преимущественно на основе гравиметрических данных (то есть по измерениям величин, характеризующих гравитационное поле Земли), изучая взаимосвязь фигуры Земли и её гравитационного поля на поверхности. Геодезическую гравиметрию можно рассматривать как теоретический фундамент геодезии. ¹ Синонимами являются дисциплины «физическая геодезия» и «теория фигуры Земли». Решением той же задачи, но с использованием всей совокупности существующих исходных данных (например, спутниковых) занимается теоретическая геодезия, которая преподается обычно на последних курсах геодезических специальностей.

Другое определение можно сформулировать так: геодезическая гравиметрия — раздел геодезии, в котором рассматриваются теории и методы использования гравиметрических данных для решения научных и практических задач геодезии. 2

Задача получения гравиметрических данных с необходимой плотностью и точностью стоит перед другой наукой, которая называется «гравиметрия» (или «экспериментальная гравиметрия»).

Вообще говоря, задача изучения внешнего гравитационного поля Земли в сущности является задачей гефизики также, как и изучение магнитного поля (теория которого очень близка к гравитационному) и других физических полей. Но, как мы увидим по ходу курса, внешнее гравитационное поле и фигура Земли на самом деле определяются одновременно из обработки одних и тех же исходных данных. Более того, эти задачи неотделимы друг от друга, а потому и входят в основную задачу геодезии и её подразделов[1].

Действительно, ведь абсолютно все («геометрические») геодезические измерения выполняются в гравитационном поле Земли и связаны с ним. В этом легко убедиться, ответив на вопросы:

- 1. Назовите основные геометрические условия в нивелирах и угломерных приборах.
- 2. Что происходит с геодезическими приборами, когда мы выставляем их по уровням?
- 3. В какой системе координат выполняются измерения на поверхности Земли?
- 4. Чему равна сумма измеренных углов в треугольнике на поверхности Земли, если измерения считать безошибочными?
- 5. Как расположена визирная ось поверенного и выставленного по уровням нивелира?

Оказывается, в теории во все наземные и спутниковые измерения, даже выполненные исправными инструментами и оборудованием, необходимо вводить те или иные поправки, связанные с гравитационным полем Земли.

На практике же необходимость учёта неоднородности гравитационного поля Земли всегда определяется требованиями к точности результатов измерений. Например, при нивелировании I и II классов вводить поправки в измеренные превышения за переход к разностям нормальных

 $^{^1}$ Огородова, Л. В. Геодезическая гравиметрия // Большая российская энциклопедия. Том 6. Москва, 2006, стр. 595

²Юркина, М. И. Геодезическая гравиметрия // Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978. (в оригинале вместо «гравиметрических данных» — «результатов измерения силы тяжести»)

высот необходимо (в том числе, по нормативным документам), а в нивелировании низших классов (III, IV, техническое) — нет.

Перейдём теперь к более тонкому понятию — фигуре Земли. Что это такое? Понятие фигуры Земли неоднозначно и может подразумевать под собой

- геометрическую фигуру простой и правильной формы (сфера, эллипсоид);
- фигуру конкретной эквипотенциальной (уровенной) поверхности (Земля геоид, Луна селеноид, Марс ареоид);
- фигуру её физической поверхности.

Исторически дисциплина развивалась точно также, от простого к сложному (см. [2, 3]), но мы начнём с конца, с современных взглядов. Что такое физическая поверхность Земли?

В областях суши физическая поверхность ограничена физической твёрдой оболочкой Земли. Эта же поверхность изображается на картах, аэро— и космо— снимках. На ней проходит большая часть деятельности человека.

Мировой океан занимает около 71% земной поверхности и находится в постоянном движении и возмущении, кторые вызваны разностями температуры, атмосферного давления, солёности, ветровыми нагонами и т.д. Поэтому за физическую поверхность здесь принимается невозмущенная поверхность воды, называемая морской топографической поверхностью.

Итак, в настоящее время, под фигурой Земли понимают форму её физической поверхности, которая образуется в областях суши поверхностью твёрдой оболочки Земли, а на территории океанов и морей – их невозмущенной поверхностью.

Физическая поверхность Земли является очень сложной, не всегда однозначно определена и не имеет строгого математического описания. Вместо неё, а также для решения ряда научных и практических задач за приближённую фигуру Земли может быть принята одна из уровенных поверхностей потенциала силы тяжести, которая близка (но не совпадает) к невозмущенной поверхности океана.

При решении целого ряда научных и практических задач можно использовать еще более простую фигуру Земли, эллипсоид или сферу. Эллипсоид вращения является основой для геодезической системы координат. Определение параметров (геометрических и физических) такого эллипсоида, близкого к геоиду, является одной из современных задач теории фигуры Земли.

Что значит определить поверхность Земли? Что вообще значит определить и задать геометрическую поверхность? В геодезии в настоящее время под определением физической поверхности Земли подразумевается определение положения её точек в единой системе координат.

2 Системы координат

Вообще говоря, сама задача установления системы координат в настоящее время не входит в задачи геодезической гравиметрии, хотя и тесно с ней связана. В геодезической гравиметрии мы будем пользоваться различными системами координат прежде всего как теоретическим инструментом (system, а не frame, если пользоваться англоязычной терминологией), если не оговорено иное.

2.1 Прямоугольная система координат

В геодезии используют прямоугольную систему координат, начало O которой находится в центре масс Земли, ось Z направлена по оси вращения Земли, ось X совмещена с линией пересечения плоскостей экватора и начального меридиана, ось Y дополняет систему до правой[4]. Это геоцентрическая или общеземная система координат. В ней положение точек определяется по всей Земле. Если начало системы координат по той или иной причине смещено относительно центра масс, то система называется референцной.

2.2 Сферическая система координат

Сферические (полярные) координаты определяются геоцентрической широтой $\overline{\varphi}$ (или полярным расстоянием ϑ), долготой λ и полярным радиус-вектором r. Геоцентрической широтой $\overline{\varphi}$ называется угол между радиусом-вектором заданной точки и плоскостью экватора. Долгота λ есть угол между плоскостью меридиана заданной точки и плоскостью меридиана, принятого в качестве начального. Полярное расстояние ϑ является дополнением широты $\overline{\varphi}$ до 90° :

$$\vartheta = 90^{\circ} - \overline{\varphi}.$$

Сферические координаты связаны с прямоугольными следующими соотношениями

$$X = r \cos \overline{\varphi} \cos \lambda,$$

$$Y = r \cos \overline{\varphi} \sin \lambda,$$

$$Z = r \sin \overline{\varphi}.$$

Задача 2.1. Получите формулы связи для случая, когда вместо широты Φ задано полярное расстояние ϑ .

Решение.

$$X = r \sin \theta \cos \lambda,$$

$$Y = r \sin \theta \sin \lambda,$$

$$Z = r \cos \theta.$$

Задача 2.2. Получите обратные формулы для перехода от геоцентрических прямоугольных координат к сферическим.

Решение.

$$r = \sqrt{X^2 + Y^2 + Z^2},$$

$$\overline{\varphi} = \operatorname{arctg} \frac{Z}{\sqrt{X^2 + Y^2}},$$

$$\lambda = \operatorname{arctg} \frac{Y}{X}.$$

2.3 Астрономические координаты

Астрономичесие координат естественным образом возникают при измерениях в гравитационном поле и определяют направление силовой линии поля силы тяжести. Астрономическая широта Φ – это дополнение до 90° угла между линией, параллельной оси вращения Земли, и отвесной линией. Долгота равна двугранному углу между плоскостями начального астрономического меридиана и астрономического меридиана данной точки.

Задача 2.3. Объясните, чем неудобна астрономическая система координат?

2.4 Эллипсоид. Геодезическая система координат

Во многих геодезических приложениях применяют системы геодезических координат B, L, H, связанных с выбранным эллипсоидом вращения. Эллипсоид обычно задается его большой полуосью a и сжатием α . Вспомним, что

$$\alpha = \frac{a-b}{a}, \quad e^2 = \frac{a^2 - b^2}{a^2},$$

где b — малая полуось эллипсоида, e — его первый эксцентриситет.

Геоодезическая широта B для некоторой точки P есть угол между опущенной из P нормалью к эллипсоиду и плоскостью экватора. Геодезическая долгота L — угол между плоскостью начального меридиана и плоскостью меридиана точки P (равна сферической долготе λ). Геодезическая высота H — кратчайшее расстояние от точки P по нормали до поверхности эллипсоида.

Важно отметить, что именно геодезическая система координат подразумевается, когда мы говорим об определении физической поверхности Земли в единой системе координат.

Задача 2.4. Подумайте, всегда ли в этой системе координат поверхность Земли может быть определена однозначно? Какие недостатки у этой системы координат?

Геодезические координаты связаны с прямоугольными следующими соотношениями

$$X = (N + H)\cos B \cos L,$$

$$Y = (N + H)\cos B \sin L,$$

$$Z = (N(1 - e^2) + H)\sin B,$$

где N — радиус кривизны первого вертикала, который, как известно из курса сфероидической геодезии, вычисляется так

 $N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}}.$

Задача 2.5. Вспомните, что такое первый вертикал и что такое плоскость меридиана? Что такое главные радиусы кривизны эллипсоида?

Геодезическая долгота L совпадает со сферической долготой λ , если начала и ориентация координатных осей систем совпадают. Геоцентрическая широта отличается от геодезической. Опуская вывод (см. лекции), приведем здесь окончательное выражение для точки на поверхности эллипсоида

$$\operatorname{tg}\overline{\varphi} = \left(1 - e^2\right)\operatorname{tg}B.$$

В некоторых геодезических выводах также полезно использовать приведенную широту u — геоцентрическую широту точки P', которая является проекцией точки P_0 (пересечение нормали точки P с эллипсоидом) на вспомогательную сферу радиуса a (размер большой полуоси) нормальной к плоскости экватора. Приведенная широта связана с геодезической следующим выражением (вывод см. в лекциях):

$$\operatorname{tg} u = \sqrt{1 - e^2} \operatorname{tg} B.$$

Геодезические широта и долгота отличаются от соответствующих астрономических координат, поскольку направление отвесной линии отличается от направления нормали к эллипсоиду. Угол между направлением отвесной линии и нормалью к эллипсоиду называется астрономогеодезическим уклонением отвеса. Удобно этот угол разложить на две составляющие — проекции угла в плоскости первого вертикала η и в плоскости меридиана ξ , тогда

$$\xi = \Phi - B,$$

 $\eta = (\Lambda - L)\cos\varphi.$

В дальнейшем мы познакомимся и с другими видами уклонения отвеса.

3 Связь с другими науками

Математика. Изучение гравитационного поля и фигуры Земли — сложная задача. В ходе курса мы будет пользоваться различными разделами математики, с некоторыми из которых вам придется познакомиться впервые:

- векторный анализ,
- теория поля,
- теория ньютоновского потенциала,
- специальные функции,
- дифференциальные уравнения, обыкновенные и в частных производных,
- краевые задачи.

Исторически так сложилось, как и в случае теории математической обработки геодезических измерений, обогатившей теорию вероятностей, теория фигуры Земли обогатила многие разделы математики, которые теперь прочно служат её основой.

Геофизика и геология. Гравитационное поле на поверхности Земли отражает распределение масс внутри неё. И хотя, как мы очень скоро убедимся, одних только гравиметрических данных недостаточно для изучения внутреннего строения, они, наряду с другими геоифизическими методами, служат важным источником информации.

Гравиметрический метод является одним из основных при поиске и разведке полезных ископаемых. Высокоточные регулярные измерения используются для монторинга месторождений в процессе добычи нефти и газа.

Археология и строительство. Локальная информация о гравитационном поле может быть полезна для поиска пустот (карст), провалов, древних подземных ходов и тоннелей, объектов археологического наследия.

Гляциология и уровень моря. Океанология. Таяние ледников, вызванное изменением климата, уменьшает их массу, следовательно, меняется и гравитационное поле. По спутниковым гравиметрическим данным (миссия GRACE) получены важнейшие данные о ледниках Гренландии и Антарктиды. Таяние льдов вызывает рост среднего уровня Мирового океана, следовательно, изменение высоты морской топографической поверхности, то есть физической поверхности Земли. Эти процессы изучаются методом спутниковой альтиметрии.

Гидрология. Перераспределение водных масс на всей поверхности Земли вызвано не только таянием льдов, но и другими климатическими явлениями. Локальные измерения слы тяжести позволяют изучать местный гидрологический режим, а спутниковые гравиметрические миссии — региональный и даже глобальный.

Орбиты ИСЗ. Для вычисления орбит искусственных спутников для определения его положения относительно центра масс Земли необходимо знание гравитационного поля вне поверхности Земли (на высоте полета спутника). Этот нюанс свидетельствует о том, что, казалось бы, чисто геометрический метод определения координат при помощи глобальных навигационных спутниковых систем, на самом деле также связан с гравитационным полем.

Кроме всего вышеперечисленного, высокоточные измерения силы тяжести используются в метрологии и при изучении геодинамических процессов, а также в других областях науки и техники.

4 Задачи для решения на занятии

Найдите в Google таблицу простейших производных и интегралов (первообразных). Вспомните основные правила дифференцирования и интегрирования. Решите примеры:

- 1. Найти производную функций (a и n числа)
 - (a) $y = x + \sqrt{x} + \sqrt[3]{x}$,
 - (b) $y = \frac{1}{x} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}$,
 - (c) $y = \sin^n x \cdot \cos nx$,
 - (d) $y = \frac{a}{x^n}$, найти y'''.
- 2. Найти все частные производные первого и второго порядков для функции $f\left(x,y\right)=\frac{x}{y}$.
- 3. Разложить в ряд Тейлора функцию из предыдущего примера в окрестности точки M(1,1). Подсказка: примените формулу Тейлора для функции двух переменных.

Список литературы

- [1] Л. П. Пеллинен. Высшая геодезия (Теоретическая геодезия). М.: Недра, 1978, с. 264.
- [2] Л. В. Огородова. Основы теории потенциала. Гравитационное поле Земли, Луны и планет. Учебное пособие. М.: Изд-во МИИГАиК, 2013, с. 108.
- [3] А. П. Юзефович. Поле силы тяжести и его изучение: учебное пособие. М.: Изд-во МИИГАиК, 2014, с. 194.
- [4] Л. В. Огородова. Высшая геодезия. Часть III. Теоретическая геодезия: Учебник для вузов. М.: Геодезкартиздат, 2006, с. 384.