Name:	Maths	Class:
-------	-------	--------

Sydney Technical High School

2 Unit Mathematics

Year 11

Assessment Task 1 April 2002

Instructions:

- Write your name and class at the top of this page.
- Attempt all questions. All questions are of equal value.
- Staple these questions to the front of your answers.
- Begin each question on a new page.
- All working must be shown.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL
				-				

Question 1

1

- (a) Write 61/4 %. as a fraction in simplest terms.
- 1 (b) Decrease \$2000 by 8½%.
 - (c) Write 0.000 004 173 in scientific notation.
- 1 (d) Calculate $(8.3 \times 10^{15}) (7.1 \times 10^{13})$ (leave your answer in scientific notation correct to 2 significant figures).
- 1 (e) Evaluate $|-6| \times |3-5|$
- 2 (f) Solve $\frac{2x}{3} = 2 + \frac{x-3}{2}$

Question 2 (Begin a new page)

1 (a) Simplify
$$3x^3 - 2x^2 - 4x(2 - 3x + x^2)$$

1 (b) If
$$\frac{1}{\sqrt[4]{x}} = x^p$$
, what is the value of p ?

1 (c) Simplify fully
$$\frac{y^4}{(y^2)^{-2}}$$

1 (d) Solve for integer x:
$$\sqrt{26} < x < \sqrt{48}$$

2 (e) Express with a rational denominator
$$\frac{3-\sqrt{2}}{1+\sqrt{2}}$$

1 (f) Solve
$$1 - 2x < 5$$

Question 3 (Begin a new page)

1 (a) Simplify fully
$$\sqrt{72} \times \sqrt{20}$$

2 (b) Find the values of a and b if
$$a + \sqrt{b} = 4 + 2\sqrt{6}$$
.

1 (c) Simplify
$$\frac{a}{4} \div \frac{a}{2}$$

1 (d) Evaluate
$$\frac{3a}{a+1}$$
 if $a = \frac{4}{5}$

2 (e) Solve
$$(x-3)^2 = 5$$
 leaving your answer as a surd.

Question 4 (Begin a new page)

- 3 (a) Express 0.45 as a simple fraction.
- 4 (b) Find the points of intersection of the curves x y = 5 and $y = x^2 11$.

Question 5 (Begin a new page)

- 3 (a) Solve x(2x-1) = 1
- 2 (b) Solve $4^{x+3} = 32$
- 2 (c) Solve |3x-4| < 8

Question 6 (Begin a new page)

2 (a) The function $f(x) = \begin{cases} x^3 + 1 & \text{if } x > 2 \\ 2x & \text{if } -1 \le x \le 2 \\ 5 & \text{if } x < -1 \end{cases}$

Find f(-2) + f(2)

- 2 (b) (i) State why it is necessary to restrict the domain of the function $y = \frac{1}{x-3}$
 - (ii) Hence state the domain of the function $y = \frac{1}{x-3}$
- 3 (c) Solve |x-4| = 5-2x

Question 7 (Begin a new page)

- 1 (a) Factorise $t^3 + 8$
- 3 (b) (i) Neatly sketch the graph of y = 2x(6-x). (Make your diagram at least 8cm x 8cm and use a ruler.)
 - (ii) Hence state the range for the function y = 2x(6-x)
- 3 (c) Simplify $\frac{1}{x+y} + \frac{2y}{x^2 y^2}$

Question 8 (Begin a new page)

1 (a) Simplify f(x) + f(-x) if f(x) is an even function.

2 (b) Determine if the following function is odd, even or neither:

$$f(x) = \frac{x^3 + x}{x^3 - x}$$

2 (c) Factorise $x^2 + 2ax + a^2 - y^2$

2 (d) (i) Expand $\left(x + \frac{1}{x}\right)^2$

(ii) If $x + \frac{1}{x} = 4$, find the value of $x^2 + \frac{1}{x^2}$ without solving for x.

End of Exam

MARKS

QUESTION 1.

$$f) \quad \frac{2x}{3} = 2 + \frac{x-3}{2}$$

$$4x = 12 + 3x - 9$$

$$\alpha = 3$$

QUESTION 2.
a)
$$3x^3 - 2x^2 - 8x + 12x^2 - 4x^3$$

= $-8x + 10x^2 - x^3$

b)
$$p = -\frac{1}{4}$$

$$d) x=6$$

e)
$$\frac{3-\sqrt{2}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{3-3\sqrt{2}-\sqrt{2}+2}{1-2}$$

$$= 4\sqrt{2} - 5$$

١

2

f)
$$1-2x < 5$$

 $2x > -4$

QUESTION 3.

a)
$$\sqrt{72} \times \sqrt{20} = 6\sqrt{2} \times 2\sqrt{5}$$

c)
$$\frac{a}{4} \times \frac{2}{a} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{3 \times \frac{4}{5}}{\frac{4}{5} + 1} = \frac{3 \times 4}{4 + 5} = \frac{12}{9}$$

0) 7-2-+/E

$$=\frac{1}{3}$$

$$\therefore \quad \mathbf{0.45} = \frac{41}{90}$$

b)
$$x-y=5$$
 ——(B) $y=x^2-11$ ——(B)

®→**®**:
$$\chi - (\chi^2 - 11) = 5$$

MARKS

$$\dot{y} = -2, -7$$

QUESTION 5.

$$(2x+1)(x-1)=0$$

$$\therefore x = -\frac{1}{2}, 1$$

(b)
$$4^{2+3} = 2^5$$

 $2^{2+46} = 2^5$

$$2^{1x+6} = 2^{5}$$

$$2n+6=5$$

$$\chi = -\frac{1}{2}$$

l

QUESTION 6

- (b) (i) Denominator cannot be zero. 1
 - (I) Domain: All real x except 3. 1 (All x, 2 + 3)

(e)
$$|x-4| = 5-2x$$

 $x-4 = 5-2x$ or $-(x-4) = 5-2x$
 $3x = 9$ $x = 1$ 1
 $x = 3$ 1

QUESTION 7

1 for shape intercepts

(ii) Range: {y | y < 18 }

(c)
$$\frac{1}{x+y} + \frac{2y}{x^2-y^2}$$

= $\frac{x-y}{x^2-y^2} + \frac{2y}{x^2-y^2}$

$$= \frac{x+y}{x^2-y^2}$$

MARKS QUESTION 8

(a)
$$f(x) + f(-x)$$

= $f(x) + f(x)$ since $f(x)$ even
= $2f(x)$

(b)
$$f(x) = \frac{\chi^3 + x}{\chi^3 - x}$$
 $\frac{\chi(\chi^2 + 1)}{\chi(\chi^2 - 1)}$

Now
$$f(-x) = \frac{(-x)^3 + (x)}{(-x)^3 - (-x)} = \frac{(-x)^3 + 1}{(-x)^3 - 1}$$

$$= \frac{-x^3 - x}{-x^3 + x} = \frac{x^2 + 1}{x^2 - 1}$$

$$= -\frac{(x^3 + x)}{-(x^3 - x)} = f(x)$$

$$= \frac{x^3 + x}{x^3 - x}$$

$$= f(x)$$
-'. $f(x)$ is even. : $f(x)$ even.

(c)
$$x^2 + 2ax + a^2 - y^2$$

= $(x+a)^2 - y^2$
= $(x+a+y)(x+a-y)$

(d) (i)
$$(x + \frac{1}{x})^2 = x^2 + 2x \cdot \frac{1}{x^2} + \frac{1}{x^2}$$

= $x^2 + \frac{1}{x^2} + 2$

(ii)
$$\chi^{2} + \frac{1}{2} + 2 = (4)^{2}$$

$$\therefore x^{2} + \frac{1}{x^{2}} = 16 - 2 = 14. 1$$

YEAR 11 2 UNIT ASSESSMENT MAY 2002 MARKING SCHEME

MARKING	SCH	teme	100
ANSWER	MARK		PART
Q1 (a) 1/16	1		
b) \$1830	ı		
c) 4.173×10-6	1		
d) 8.2 x 1015			
e) 12	1		
f) x=3	2	OR Correctly removes fractions	1
$(2 a) -x^3 + 10x^2 - 8x$			
6) -4			
c) y ⁸			
d) 6			
e) 4/2-5	1	OR knows to multiply by $\frac{1-\sqrt{2}}{1-\sqrt{1}}$	1
f) x>-2	1	. , , , , , , , , , , , , , , , , , , ,	
Q3 a) 12 sto	1		
b) a=4, b=24	2,	I mark each	
c) 1/2	l l		
d) 4/3	l I		
e) 3 ± √5	2	or for attempting to take 5 of both sides	
Q4 a) 41/90	2	OR Removing fractional part by	
		subtraction	2
		OR Knowing to × 100 or × 10	l
h) (3-2) and (2-7)	ı	or Finding Correct x values	3
b) (3,-2) and (-2,-7)		OR Obtaining a correct equation in	
		I variable	2
		OR Making a correct substitution	1
		J = (

ANSWERS	MARK		PART
$a = \frac{1}{2}$	2	OR Obtaining quadratic in standard form & Correctly factorizing quadratic OR Making bases the same	1 +1
c)- $\frac{4}{3}$ < x < 4 x>- $\frac{4}{3}$, x < 4 (no need to combine)	2	I mark each part OR if both answers wrong but a correct inequality was obtained for the negative case of the absolute value	L
06 a) 9 b) i) Denominator \$\pm 0\$ ii) Domain {\pi: \pi \pm \pm 3} c) \pi = 1 \pm d \pi = 3. Testing solution: to eliminate \pi = 3.	2 1 1 1	OR either f(-1) or f(2) correct	(
01 a) $(t+2)(t^2-2t+4)$ b)i)Correct shape \cap Correct > c intercepts ii) Range $\{y: y \le 18\}$ c) $\frac{1}{x-y}$	1 1 3	OR 2+4 2-42	2
		OR For correctly changing denominators to x2-y2	
(08a) $2f(x)$ b) $f(x)$ is even c) $(x+a+y)(x+a-y)$ d) i) $x^2+2+\frac{1}{x^2}$ ii) 14	1 2 2 1	or knowing to find f(-x) or (x+a)2-y2	1