Визуализация больших графов

Актуальность

- Биоинформатика
- Анализ социальных сетей
- Маркетинг
- Социология

Проблемы визуализации больших графов

- Производительность
- Различимость элементов
- Понимание (можно отобразить общую структуру, но не внутренние взаимосвязи)

Мотивация

Разные методы раскладки —

Различные внешние представления графа

Различное восприятие пользователем

Методы раскладки графов

- Использование физических аналогий (force-directed)
- Понижение размерности (dimension reduction)
- Спектральные методы (Spectral method)
- Многоуровневая раскладка (Multi-Level)

Выборка графов

- Random Node
- Random Edge
- Random Edge-Node
- Random Walk
- Random Jump
- Forest Fire

Визуальное восприятие

Что влияет на визуальное восприятие:

- Вершины высокой степени
- Качество кластера
- Область покрытия

Данные

Генераторы графов:

- Baraba´si-Albert гарантирует, что в сгенерированном графе будут вершины высокой степени
 - Параметры:
 - число вершин
 - среднее значение степени для вершин высокой степени
- Sah. et al.
 - Параметры:
 - число кластеров
 - значение модулярности (модулярность оценка качества разбиения графа на "сообщества")

Алгоритмы выборки и вершины высокой степени

- Легко "распознать" вершины высокой степени в выборе графа, полученной алгоритмом RW
- Достаточно сложно "распознать" высокой степени в сэмпле графа, полученном RN

Алгоритмы выборки и качество кластеров

- REN и RJ лучше всех исследуемых алгоритмов раскладки сохраняют Cluster Quality
- Результаты относительно метрики Cluster Quality для алгоритмов RW и FF зависят от модулярности и не зависят от размера графа

Алгоритмы выборки и область покрытия

- REN и RJ имеют наибольшую область покрытия
- Результаты RW и FF зависят от свойств графа

Алгоритмы выборки и область покрытия

- REN и RJ имеют наибольшую область покрытия
- Результаты RW и FF зависят от свойств графа

Рекомендации

- REN & RJ для сохранения общей структуры и качества кластеров
- RW сохранения восприятия вершин высокой степени
- Избегать RN
- RW & FF чувствительны к модулярности

Эстетические метрики

- Минимизировать пересечение ребер
- Максимизировать минимальный угол между инцидентными ребрами вершины
- Максимизировать угол между пересекающимися ребрами
- Унификация длин ребер
- Стресс
- Основанные на форме (Shape-based)

Shape graphs

- Граф k-ближайших соседей (k-nearest neighbours)
- Триангуляции (triangulations)
- Граф Габриэля (Gabriel graph)
- Граф относительной близости (relative neighbourhood)
- Евклидово минимальное остовное дерево (Euclidean minimum spanning tree)

Shape-based метрика

$$Q_{\mu,\eta}(D) = \eta(G,\mu(P))$$

Средняя схожесть Жаккара (Mean Jaccard similarity)

$$MJS(G_1, G_2) = \frac{1}{|V|} \sum_{u \in V} \frac{|N_1(u) \cap N_2(u)|}{|N_1(u) \cup N_2(u)|},$$

Ni(u) - множество соседей и в графе Gi для i = 1, 2

Изначальная раскладка

10 шагов деформации

5 шагов деформации

15 шагов деформации

Специально портим раскладку графа - в случайном направлении разбрасываем вершины на случайном расстояние [0, δ*w], w - ширина экрана - и смотрим на то, как изменяется метрика качества

Figure 12: Q_{EMST} values as the drawing stringyBlobsOrganic is deformed.

Чем больше деформируем раскладку, тем ниже метрика

Пользователи предпочитают графы с меньшим числом пересечений и стресса

Пользователи предпочитают графы с большим значением новой метрики, причем новая метрика лучше, чем стресс и пересечения соотносится с

предпочтениями пользователя

Q-ratio =
$$\frac{\max(Q_{\mu}(D_{left}), Q_{\mu}(D_{right}))}{\min(Q_{\mu}(D_{left}), Q_{\mu}(D_{right}))}$$

Каждый элемент выборки может иметь значение предпочтения 0 <= x <= 5, S(I) = x, если элемент имеет большее значение метрики качества, иначе S(I) = -x, далее для каждого элемента брали медиану этого значения

Figure 15: Metrics against untangling.

Эстетические метрики - в одну?

Отсутствие метрики, измеряющей качество раскладки в целом => оцениваем раскладку, основываясь на

- личном суждении
- пользовательских исследованиях

Личное суждение - слишком субъективно Пользовательские исследования - дорого

Эстетические метрики - в одну?

- 1. Минимизировать количество пересечений (*cross*#)
- 2. Максимизировать угол пересечения (*crossRes*)
- 3. Максимизировать угловое разрешение вершины(angularRes)
- 4. Унифицировать длины ребер (*uniEdge*)

$$O = -z_{cross\#} + z_{crossRes} + z_{angularRes} - z_{uniEdge}$$

$$z_{cross\#} = \frac{x - Mean}{StDev}$$

Пользователь должен выполнить какое-то задание на графах, в данном эксперименте - найти кратчайший путь между двумя вершинами, при этом эксперимент ставится так, что этот путь единственный и одна из вершин уже указана

Измеряем время, затраченное на выполнение задание, усилия, а также точность. Исследуем чувствительность (соотношение заранее известного качества раскладок с качеством, измеренным новой метрикой) и прогнозируемость (исследуем зависимость между метриками эффективности понимания графа человеком и новой метрикой)

Чувствительность

Чувствительность - сигнализирует о разнице, если есть изменения в качестве (соответствует ли качество, измеренное метрикой, действительному качеству)

Эксперимент:

- генерируется множество случайных графов со схожей структурой
- к каждому применялся force-directed метод раскладки
- взяли раскладки на 3000, 6000, 9000 и 12000 шагах алгоритма
- выясняется, соотносится ли измеренное новое метрикой общее качество раскладок с заранее известными уровнями качества

Чувствительность

$$E = \frac{z_A - z_T - z_{ME}}{\sqrt{3}}$$

Table 1Mean values of dependent variables.

Variable	С3	C6	C9	C12
Time (s)	9.91	9.51	7.19	7.11
Effort	3.60	3.26	3.27	3.09
Accuracy	0.69	0.75	0.76	0.76
Efficiency	-0.74	-0.22	0.28	0.48
Overall quality	-2.14	0.04	1.02	1.08

Можно видеть, что испытуемые обычно проводили меньше времени, прикладывали меньше усилий и были более точными, в то время как качество рисования улучшилось с с3 до с12.

Прогнозируемость

Прогнозируемость

Мотивация

- множество алгоритмов раскладки
- множество метрик для их оценки (причем нет общепринятого мнения, какие предпочтительнее)
- большой размер графов

=> нужно что-то, что быстрее, чем прямой перебор алгоритмов раскладки и подсчет для них всех метрик

Graphlet kernel

Fig. 2. All connected graphlets of 3, 4, or 5 vertices.

Graphlet kernel

1. Выбрать алгоритм для выборки graphlet

- a. Random Vertex
- b. Random Walk

2. Отмасштабировать вектора частоты graphletoв

- а. линейное масштабирование $x_i = \frac{w_i}{\sum w_i}$
- b. логарифмическое $x_i = \log\left(\frac{w_i + w_b}{\sum(w_i + w_b)}\right)$

3. Определить скалярное произведение

- а. косинусный коэффициент $\langle \mathbf{x}, \mathbf{x}' \rangle = \frac{\mathbf{x} \cdot \mathbf{x}'^\mathsf{T}}{\|\mathbf{x}\| \|\mathbf{x}'\|}$
- b. Gaussian radial basis function kernel $\langle \mathbf{x}, \mathbf{x}' \rangle = \exp\left(-\frac{\|\mathbf{x} \mathbf{x}'\|^2}{2\sigma^2}\right)$
- c. Laplacian kernel $\langle \mathbf{x}, \mathbf{x}' \rangle = \exp\left(-\frac{\|\mathbf{x} \mathbf{x}'\|_1}{\sigma}\right)$

What Would a Graph Look Like in This Layout

Не всегда схожесть частот graphletoв говорит о топологической схожести графов => добавили ограничение на отношение количества вершин

Метрики

$$m_c = \begin{cases} 1 - \frac{c}{c_{\text{max}}}, & \text{if } c_{\text{max}} > 0\\ 1, & \text{otherwise} \end{cases} \quad c_{\text{max}} = \frac{|E|(|E| - 1)}{2} - \frac{1}{2} \sum_{v \in V} (\deg(v)) (\deg(v) - 1)$$

$$m_a = 1 - \frac{1}{|V|} \sum_{v \in V} \left| \frac{\theta(v) - \theta_{\min}(v)}{\theta(v)} \right|, \quad \theta(v) = \frac{360^{\circ}}{\deg(v)}$$

Метрики

$$m_l = rac{l_{
m cv}}{\sqrt{|E|-1}}, \;\; l_{
m cv} = rac{l_{m \sigma}}{l_{m \mu}} = \sqrt{rac{\sum\limits_{e \in E} (l_e - l_{m \mu})^2}{|E| \cdot l_{m \mu}^2}}$$

$$m_{S} = \text{MJS}(G_{\text{input}}, G_{S}), \quad \text{MJS}(G_{1}, G_{2}) = \frac{1}{|V|} \sum_{v \in V} \frac{|N_{1}(v) \cap N_{2}(v)|}{|N_{1}(v) \cup N_{2}(v)|}$$

What Would a Graph Look Like in This Layout

- 1. Обучаем регрессионную модель на входных данных
- 2. Подсчитываем похожесть для входного графа и уже существующих графов (для которых уже рассчитаны раскладки)
- 3. Вычисляем значение метрики, используя обученную модель

Оценки точности

$$RMSE(\mathcal{Y}, \tilde{\mathcal{Y}}) = \sqrt{\frac{1}{n} \sum_{i} (y_i - \tilde{y}_i)^2}$$

- среднеквадратичная ошибка

$$R^2(\mathcal{Y}, ilde{\mathcal{Y}}) = 1 - \sum_i (y_i - ilde{y_i})^2 \Big/ \sum_i (y_i - y_\mu)^2$$
 коэффициент детерминации

Table 1. Estimation accuracy of the two most accurate kernels and the state-of-the-art kernels. We report Root-Mean-Square Error (RMSE) and the coefficient of determination (R^2) of estimation of four aesthetic metrics on eight layout methods.

Kernel		sfdp		FM ³		FR		KK		Spectral		HDE		Treemap		Gosper	
		RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2	RMSE	R^2
Rank 1 RW-LOG- LAPLACIAN	m_c	.0175	.9043	.0468	.7319	.0257	.8480	.0346	.8223	.1120	.6947	.0903	.8130	.0836	.6399	.0857	.6199
	m_a	.1011	.8965	.1041	.8919	.0982	.9004	.1024	.8876	.1153	.8793	.1152	.8666	.1053	.8552	.1071	.8580
	m_l	.0055	.9021	.0048	.8531	.0055	.9028	.0105	.4549	.0505	.6203	.0155	.5961	.0047	.8666	.0066	.8444
	m_s	.0514	.9060	.0474	.9325	.0417	.8533	.0485	.9084	.0534	.9031	.0486	.8942	.0112	.8429	.0323	.7495
Rank 2 RW-Log- RBF	m_c	.0176	.9036	.0446	.7568	.0279	.8218	.0350	.8182	.1138	.6845	.0917	.8072	.0841	.6356	.0882	.5976
	m_a	.1070	.8840	.1102	.8788	.1023	.8920	.1061	.8793	.1193	.8706	.1202	.8546	.1101	.8416	.1125	.8434
	m_l	.0062	.8793	.0050	.8412	.0059	.8874	.0106	.4497	.0519	.5992	.0167	.5291	.0052	.8417	.0073	.8127
	m_s	.0556	.8900	.0542	.9116	.0459	.8227	.0547	.8833	.0576	.8875	.0537	.8708	.0116	.8299	.0323	.7491
Rank 11 RV-LIN- Cos [76]	m_c	.0387	.5312	.0771	.2716	.0577	.2364	.0783	.0916	.1533	.4280	.1770	.2827	.1324	.0978	.1336	.0763
	m_a	.2883	.1581	.2907	.1570	.2817	.1805	.2850	.1292	.3019	.1723	.2978	.1080	.2688	.0557	.2726	.0801
	m_l	.0168	.0972	.0121	.0561	.0169	.0895	.0138	.0609	.0812	.0200	.0239	.0403	.0116	.2026	.0156	.1378
	m_s	.1721	0552	.1904	0890	.0984	.1850	.1653	0656	.1777	0729	.1538	0606	.0246	.2373	.0628	.0521
Rank 12 DGK [91]	m_c	.0399	.5029	.0783	.2500	.0583	.2207	.0803	.0448	.1564	.4041	.1804	.2541	.1358	.0489	.1345	.0630
	m_a	.2891	.1536	.2924	.1467	.2837	.1690	.2862	.1217	.3052	.1537	.3003	.0930	.2716	.0357	.2754	.0612
	m_l	.0175	.0246	.0126	0134	.0177	.0047	.0140	.0294	.0811	.0203	.0243	.0018	.0128	.0029	.0185	3883
	m_s	.1756	0982	.1928	1171	.1077	.0236	.1676	0953	.1807	1094	.1550	0771	.0286	0846	.0682	1187

What Would a Graph Look Like in This Layout

- 1. Подсчитываем похожесть для входного графа и уже существующих графов (для которых уже рассчитаны раскладки)
- 2. Убираем графы, которые не удовлетворяют набору ограничений
- 3. Берем к наиболее похожих графов
- 4. Показываем пользователю их раскладки для выбранного алгоритма

Пользователю предлагалось выбрать три наиболее похожих на исходных граф графа, для исходного графа и кандидатов использовался один и тот же метод раскладки, всего 9*8=72 задания - 9 графов и 8 раскладок

rt 1..9 - от самого "похожего" графа до самого непохожего

гр 1..3 - каким по счету пользователь выбрал этот граф как самый похожий

По поводу графа 2331 с самым низким результатом: участники выбирали вариант b, так как центр наиболее схож с графом на входе, а фреймворк рекомендовал с, из-за более схожей общей структуры

Выводы

Разные методы выборки графа => разные восприятия пользователем => выбираем метод выборки исходя из того, какие "внешние качества" графа хотим сохранить

Метрика, основанная на форме графа, подходит для измерения качества раскладок и иногда более чувствительна к качеству, чем существующие

Метрики оценки качества раскладок графа важны, так как с помощью них можно оптимизировать алгоритмы и сравнивать результаты раскладок, объединяя некоторые метрики в одну, можно сравнивать качество раскладок в целом

Используя машинное обучение, можно ускорить процесс выбора раскладки, предсказывая внешний вид графа и прогнозируя метрики качества