A possible point of confusion: μ_{ϕ} denotes both the measure and the content. Use context.

Here, we prove that the measurable sets of μ_{ϕ} contains the Borel σ -algebra, and thus can be restricted to the Borel σ -algebra. This requires some of the following concepts:

If μ is a measure or outer measure, then μ is:

- inner regular if the measures of sets can be approximated from below by the measures of compact sets,
- outer regular if the measures of sets can be approximated from above by the measures of open sets.

The content μ_{ϕ} is inner regular for open sets! However, we require a slightly modified definition of inner regularity as μ_{ϕ} is defined only on the open sets. What we mean is

$$\mu_{\phi}(U) = \sup \{ \mu_{\phi}(V) : V \text{ open, } \bar{V} \subset U \}, \quad U \text{ open.}$$

Theorem. Open sets are measurable in μ_{ϕ} .

Proof gist. For open set U, we want to show for any $A \subset X$, we have

$$\mu_{\phi}^*(A - U) + \mu_{\phi}^*(A \cap U) = \mu_{\phi}^*(A).$$

Use inner regularity for open sets to prove for A open, then extend using outer regularity.

More detail. To prove for A open, we need to use LCH Urysohn's friend and finite additivity. The key is that A - U is not necessarily open, so we need to do a few tricks before applying finite additivity.

Inner regularity for open sets. Because μ_{ϕ} is inner regular for open sets, this extends to μ_{ϕ}^* . It is also easy to see that μ_{ϕ}^* is outer regular.