Guía de ejercicios N°1

Mecánica Cuánica I

2° Semestre 2025 — Prof. Marcela González

IFA – Universidad de Valparaíso

Problema 1

El estado de una partícula de espín 1/2, con espín "up" a lo largo de un eje cuya dirección está dada por el vector unitario

$$\mathbf{n} = \sin \theta \cos \phi \,\hat{\mathbf{i}} + \sin \theta \sin \phi \,\hat{\mathbf{j}} + \cos \theta \,\hat{\mathbf{k}}$$

con θ y ϕ los ángulos convencionales de coordenadas esféricas, viene dado por

$$|S_n, +\rangle = \cos\left(\frac{\theta}{2}\right)|S_z, +\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|S_z, -\rangle.$$

- (a) Verifique que el estado $|S_n, +\rangle$ se reduce a los estados $|S_x, +\rangle$ y $|S_y, +\rangle$, para una elección apropiada de los ángulos θ y ϕ .
- (b) Suponga que se mide \hat{S}_z en una partícula en el estado $|S_n, +\rangle$. ¿Cuál es la probabilidad de que la medición arroje (i) $+\hbar/2$? (ii) $-\hbar/2$?
- (c) Determine la incertidumbre $\Delta \hat{S}_z \equiv \sqrt{\langle \hat{S}_z^2 \rangle \langle \hat{S}_z \rangle^2}$ de sus mediciones.

Problema 2

Repita los cálculos del Problema 1, incisos (b) y (c), pero ahora para mediciones de \hat{S}_x . Sugerencia: deduzca la probabilidad de obtener $-\hbar/2$ para \hat{S}_x , a partir de la probabilidad de obtener $+\hbar/2$.

Problema 3

- (a) ¿Cuál es la amplitud de transición para encontrar una partícula que está en el estado $|S_n, +\rangle$ (del Problema 1) con $S_y = \hbar/2$? ¿Cuál es la probabilidad? Verifique su resultado evaluando la probabilidad para una elección apropiada de θ y ϕ .
- (b) ¿Cuál es la amplitud para encontrar una partícula que está en el estado $|S_y,+\rangle$ con $S_n=\hbar/2?$ ¿Cuál es la probabilidad?

Problema 4

Muestre que el estado

$$|S_n, -\rangle = \sin\left(\frac{\theta}{2}\right)|S_z, +\rangle - e^{i\phi}\cos\left(\frac{\theta}{2}\right)|S_z, -\rangle$$

satisface $\langle S_n, +|S_n, -\rangle = 0$. Con $|S_n, +\rangle$ definifo en el problema 1. Verifique además que $\langle S_n, -|S_n, -\rangle = 1$.

Problema 5

Un haz de partículas de espín 1/2 atraviesa una serie de tres dispositivos de Stern-Gerlach, como se ilustra en la Figura. El primer dispositivo, un SG_z , transmite partículas con $S_z = \hbar/2$ y rechaza las de $S_z = -\hbar/2$. El segundo dispositivo, un SG_n , transmite partículas con $S_n = \hbar/2$ y filtra las de $S_n = -\hbar/2$, donde el eje **n** forma un ángulo θ en el plano x-z con respecto al eje z. Así, las partículas tras pasar por el SG_n están en el estado $|S_n, +\rangle$ dado en el Problema 1 con $\phi = 0$. Un último SG_z transmite partículas con $S_z = -\hbar/2$ y filtra las de $S_z = \hbar/2$.

- (a) ¿Qué fracción de las partículas transmitidas por el primer SG_z sobrevivirá a la tercera medición?
- (b) ¿Cómo debe elegirse el ángulo θ del SG_n para maximizar el número de partículas transmitidas por el SG_z final? ¿Qué fracción sobrevive a la tercera medición para ese valor de θ ?
- (c) ¿Qué fracción de partículas sobrevive a la última medición si se retira el SG_n ?

Problema 6

Verifique que $\Delta \hat{S}_x = \sqrt{\langle \hat{S}_x^2 \rangle - \langle \hat{S}_x \rangle^2} = 0$ para el estado $|S_x, +\rangle$.

Problema 7

El estado

$$|\psi\rangle = \frac{1}{2}|S_z, +\rangle + \frac{i\sqrt{3}}{2}|S_z, -\rangle$$

tiene $S_n = \hbar/2$ a lo largo de cierto eje **n**. Compare $|\psi\rangle$ con el estado $|S_n, +\rangle$ del Problema 1 para encontrar **n**. Determine $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ y $\langle \hat{S}_z \rangle$ para este estado.

Problema 8

Calcule $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ y $\langle \hat{S}_z \rangle$ para el estado

$$|\psi\rangle = -\frac{i}{2}|S_z, +\rangle + \frac{\sqrt{3}}{2}|S_z, -\rangle.$$

Compare sus resultados con el problema anterior. ¿Qué puede concluir acerca de estos dos estados?

Problema 9

El estado

$$|\psi\rangle = \frac{1}{2}|S_z, +\rangle + \frac{\sqrt{3}}{2}|S_z, -\rangle$$

es similar al del Problema 7; sólo "le falta" el factor i. Comparando este estado con $|S_n, +\rangle$ del Problema 1, determine en qué dirección \mathbf{n} el espín se encuentra "up". Calcule $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ y $\langle \hat{S}_z \rangle$ para $|\psi\rangle$. Compare sus resultados con los del Problema 9.

Problema 10

Muestre que ni la probabilidad de obtener un resultado a_i ni el valor esperado $\langle A \rangle$ se ven afectados por el cambio de fase global $|\psi\rangle \to e^{i\delta} |\psi\rangle$.

Problema 11

Se sabe que existe un 36% de probabilidad de obtener $S_z = \hbar/2$ (y por lo tanto un 64% de obtener $S_z = -\hbar/2$) si se mide \hat{S}_z de una partícula de espín 1/2. Además, se sabe que la probabilidad de encontrar la partícula con $S_x = \hbar/2$, es decir, en el estado $|S_x, +\rangle$, es 50%. Determine el estado de espín de la partícula de la manera más completa posible a partir de esta información.

Problema 12

Se sabe que hay un 90% de probabilidad de obtener $S_z=\hbar/2$ si se mide \hat{S}_z de una partícula de espín 1/2. Además, se sabe que hay un 20% de probabilidad de obtener $S_y=\hbar/2$ si se mide \hat{S}_y . Determine el estado de espín de la partícula de la manera más completa posible a partir de esta información. ¿Cuál es la probabilidad de obtener $S_x=\hbar/2$ si se realiza una medición de \hat{S}_x ?