3.4.1 Umrechnung von der Normalform in die Polarform

Gegeben: $z = x + iy \in \mathbb{C}$

Gesucht: Polarform von z, d.h. r = |z| und $\varphi = \arg(z)$

 $\mathbf{Satz.}$ Sei $z=x+iy\in\mathbb{C}$ eine komplexe Zahl in Normalform. Dann gilt:

(1)
$$r = |z| = \sqrt{x^2 + y^2}$$
.

(2) Falls $x \neq 0$, dann

$$\varphi = \arg(z) = \arctan\left(\frac{y}{x}\right) + \text{Korrekturterm}$$

wobei der Korrekturterm je nach Lage von z in der komplexen Zahlenebene nach untenstehender Tabelle bestimmt wird.

(3) Falls x=0, die Zahl z also imaginär ist, dann $\varphi=\pi/2 \text{ für } y>0 \text{ und } \varphi=3\pi/2 \text{ für } y<0.$

		positive		negative	
		imaginäre		imaginäre	
Quadrant	1	Achse	2,3	Achse	4
Korrekturterm	0	-	π	-	2π
$\varphi = \arg(z)$	$\arctan\left(\frac{y}{x}\right)$	$\frac{\pi}{2}$	$\arctan\left(\frac{y}{x}\right) + \pi$	$\frac{3\pi}{2}$	$\arctan\left(\frac{y}{x}\right) + 2\pi$