Tutorial Modelling Software-based Systems

. . .

Tutorial 2 : Designing and verifying sequential algorithms using the Event-B modelling language

Dominique Méry

9 avril 2025

Exercice 1 fx1-tut2.zip

We consider a finite sequence of integers v_1, \ldots, v_n where n is the length of the sequence and is supposed to be fixed. Write an Event B specification modelling the computation of the value of the summation of the sequence v. You should define cerafully v, n and the summation of a finite sequence of integers.

Exercice 2 fx2-tut2.zip

Apply the pattern for computing the value n^2 using the sequence $(n+1)^2 = n^2 + n + n + 1$. Write a C function with annotation that you will check with Frama-c.

Exercice 3 fx3-tut2.zip

Develop an algorithmic solution with the pattern for the problem of finding the number of occurrences of a value v value v satisfying a condition CO in a table t of dimension n. dimension n. The table is assumed to have a value in an envelope V. seems V and that CO is a part of V.

Exercice 4 fx4-tut2.zip

Apply this pattern to find the index i of t such that t(i) = v. Write a C function that you will check with Frama-c.

Exercice 5 fx5-tut2.zip

Apply this pattern to compute x^3 using $(i+1)^3 = i^3 + 3i^2 + 3i + 1$. We use the following sequences:

- $--z_0 = 0 \text{ et } \forall n \in \mathbb{N} : z_{n+1} = z_n + v_n + w_n$
- $v_0 = 0 \text{ et } \forall n \in \mathbb{N} : v_{n+1} = v_n + t_n$
- $-t_0 = 3 \ et \ \forall n \in \mathbb{N} : t_{n+1} = t_n + 6$
- $w_0 = 1 \text{ et } \forall n \in \mathbb{N} : w_{n+1} = w_n + 3$
- $u_0 = 0$ et $\forall n \in \mathbb{N} : u_{n+1} = u_n + 1$

$$\begin{pmatrix} z(i+1) \\ v(i+1) \\ t(i+1) \\ w(i+1) \\ u(i+1) \end{pmatrix} = \begin{pmatrix} z_i + v_i + w_i \\ v(i) + t(i) \\ t(i) + 6 \\ w(i) + 3 \\ u(i) + 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 01 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z(i) \\ v(i) \\ t(i) \\ w(i) \\ u(i) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 6 \\ 3 \\ 1 \end{pmatrix}$$

Write a C function from the development and use Frama-c for checking it.

Exercice 6 *

The objective is to design a correct by construction algorithm in a programming language with annotations and proof tool as Frama-c or Dafny.

The problem to solve is the power function defined usually as follows in a classical matematical language power = $\lambda x, y.x^y$. For instance, the notation x^y is foundd in the C programlming language and a function can be called for computing the power function.

Question 6.1 Define an inductive statement of the power function by defining the sequence $p(x \mapsto y)$ where $x, y \in \mathbb{N}$. The function $powereb = lambdax, y.x^y$. is defined in the Event-B language and you should prove that $\forall x, y \in \mathbb{N}.p(x \mapsto y) = x^y$.

Question 6.2 Define a context POW0 and a prepost machine POW1 expressing the contract os the problem to solve. The problem is to define first the contract in your programming language.

Question 6.3 Develop a computing process according to the methodology of the refinement to get an algorithm.

Question 6.4 Check that the algorithm satisfies the constract using the proof tool related to your programling language.