[MEN573] Advanced Control Systems I

Lecture 12 – Stability
Part III The Lyapunov Equation

Associate Professor Joonbum Bae Department of Mechanical Engineering UNIST

Lyapunov stability theorems (LTI)

The origin 0 of the n-th order LTI system

$$\dot{x} = A x$$

is <u>stable in the sense of Lyapunov</u> if there exists a **Lyapunov function** V(x) for some for some r > 0, *i.e.*

$$V(x) \succ 0$$
,

$$\forall |x| < r$$

$$\dot{V}(x) \leq 0$$
,

$$\forall |x| < r$$

Lyapunov stability theorems (LTI)

The origin 0 of the n-th order LTI system

$$\dot{x} = A x$$

is <u>asymptotically stable</u> if there exists a <u>Lyapunov</u> function V(x) such that

$$V(x) \succ 0$$
 PDF

$$\dot{V}(x) \prec 0$$
 NDF

Lyapunov stability theorems (LTI)

Lets consider a quadratic Lyapunov function candidate:

$$V(x) = x^T P x$$

where

$$P^T = P \qquad P \succ 0$$

and compute
$$\dot{V}(x)$$
 along $\dot{x} = A x$

$$V(x) = x^{T} P x \qquad P^{T} = P \qquad \dot{x} = A x$$

$$\dot{V}(x) = \dot{x}^{T} P x + x^{T} P \dot{x}$$

$$= \dot{x}^{T} P x + x^{T} P A x$$

$$= x^{T} A^{T} P x + x^{T} P A x$$

$$\dot{V}(x) = x^T \left[A^T P + P A \right] x$$

Thus,
$$P^T = P$$

$$V(x) = x^T P x \qquad P \succ 0$$

is a Lyapunov function for the system $\dot{x} = A x$ when

$$\left[A^T P + P A\right] \leq 0$$
 (negative semi-definite)

and the origin is stable in the sense of Lyapunov.

Therefore, the origin of the system

$$\dot{x} = A x$$

is stable in the sense of Lyapunov, if

there exists a symmetric matrix

$$P \succ 0$$

(positive definite)

such that

$$\left[A^T P + P A\right] \leq 0$$
 (negative semi-definite)

Moreover, the origin of the system

$$\dot{x} = A x$$

is **globally asymptotically stable**, if

there exists a symmetric matrix

$$P \succ 0$$

(positive definite)

such that

$$\left[A^T P + P A\right] \prec 0$$
 (negative definite)

The Lyapunov Equation

It turns out that much stronger stability results can be obtained for CT LTI systems by analyzing the following Lyapunov equation,

Exponential Stability Theorem (CT)

The origin of the n-th order LTI system

$$\dot{x} = A x$$

is globally exponentially stable <u>iff</u> (if and only if),

for *any* symmetric matrix $Q\succ 0$

there exist a symmetric matrix $P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P + P A = -Q$$

Exponential Stability Theorem (CT)

The matrix

$$A \in \mathcal{R}^{n \times n}$$

is Hurwitz iff (if and only if),

for **every** symmetric matrix $Q \succ 0$

there exist a symmetric matrix $P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P + P A = -Q$$

Stability Analysis (CT)

How to use the Lyapunov equation:

- Given a matrix A, select an arbitrary positive definite symmetric matrix Q (for example I).
- Attempt to find a solution to the Lyapunov equation

$$A^T P + P A = -Q$$

- 1. If a solution P cannot be found, A is not Hurwitz.
- 2. If a solution P is found, check for its sign definiteness:
 - If P is positive definite, then A is Hurwitz.
 - If P is not positive definite, then A has at least one eigenvalue with a positive real part (unstable).

Lyapunov equation

It is important to note that the Lyapunov equation:

$$A^T P + P A = -Q$$

is a linear algebraic equation in $oldsymbol{P}$

Thus, it is easy to solve!

Solving the Lyapunov equation with matlab

$$A^T P + P A = -Q$$

Matlab functions:

- Lyapunov equation: P = lyap(A',Q)
 (if P cannot be found, it returns an error message)
- The definiteness of P can be checked with the Cholesky factorization function: N = chol(P)

it returns a upper triangular matrix N, such that

$$P = N^T N$$
 (when $P \succ 0$)

(otherwise it returns an error message)

Examples using matlab (CT)

1. A is Hurwitz

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \bullet P = lyap(A',Q)$$

$$\bullet N = chol(P)$$

$$P = \begin{bmatrix} 0.50 & 0.25 \\ 0.25 & 0.75 \end{bmatrix}, N = \begin{bmatrix} 0.7071 & 0.3536 \\ 0 & 0.7906 \end{bmatrix} \quad P = N^T N$$

P is positive definite

2. A is not Hurwitz but limitedly stable

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \bullet \mathbf{P} = \mathbf{lyap(A',Q)}$$

P could not be found

Examples using matlab (CT)

3. A is not Hurwitz and has an unstable eigenvalue

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{P} = \mathbf{lyap}(\mathbf{A',Q})$$

$$P = \begin{bmatrix} 0.50 & -0.50 \\ -0.50 & 0 \end{bmatrix}, \quad N \text{ could not be found}$$

P is not positive definite

4. A is not Hurwitz and has an unstable eigenvalue

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \bullet P = lyap(A',Q)$$

P could not be found

Lets consider the solution of the Lyapunov equation when $A \in \mathbb{R}^{2 \times 2}$.

Let:
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, and

$$Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \quad P = \begin{bmatrix} p_1 & p_2 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix},$$
first column of \mathbf{Q}

$$second \ column \ of \mathbf{P}$$

we will latter generalize the result for $\mathcal{R}^{n \times n}$

Expanding element by element the matrices in

$$A^T P + P A = -Q$$

we obtain

$$\underbrace{\begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}}_{A^T} \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}}_{P} + \underbrace{\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}}_{A} = - \underbrace{\begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}}_{Q}$$

$$A^{T}[p_{1} \quad p_{2}] + [p_{1} \quad p_{2}] \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = -[q_{1} \quad q_{2}]$$

$$A^{T}[p_{1} \quad p_{2}] + [p_{1} \quad p_{2}] \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = -[q_{1} \quad q_{2}]$$

Lining up one column on top of the other

$$\begin{bmatrix} A^T & 0 \\ 0 & A^T \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = -\begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} A^T & 0 \\ 0 & A^T \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \right\} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = -\begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} A^T & 0 \\ 0 & A^T \end{bmatrix} + \begin{bmatrix} a_{11}I & a_{21}I \\ a_{12}I & a_{22}I \end{bmatrix} \right\} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = -\begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

where we have used the Kronecker product \otimes

The Kronecker product \otimes between two matrices is defined as follows:

Let $B \in \mathbb{R}^{m \times n}$ and C of arbitrary dimension,

is defined as

$$B \otimes C = \begin{bmatrix} b_{11}C & b_{12}C & \cdots & b_{1n}C \\ b_{21}C & b_{22}C & \cdots & b_{2n}C \\ \vdots & \vdots & \cdots & \vdots \\ b_{m1}C & b_{m2}C & \cdots & b_{mn}C \end{bmatrix}$$

We can now consider the solution of the Lyapunov equation

$$A^T P + P A = -Q$$

where

$$A \in \mathcal{R}^{n \times n} \ P \in \mathcal{R}^{n \times n} \ Q \in \mathcal{R}^{n \times n}$$

$$A^T P + P A = -Q$$

First stack the columns of matrices **P** and **Q**

$$P = \left[\begin{array}{cccc} p_1 & p_2 & \cdots & p_n \end{array} \right] \qquad Q = \left[\begin{array}{cccc} q_1 & q_2 & \cdots & q_n \end{array} \right]$$

$$Q = \left| \begin{array}{cccc} q_1 & q_2 & \cdots & q_n \end{array} \right|$$

as follows,

$$\mathbf{P} = \left| \begin{array}{c} p_1 \\ p_2 \\ \vdots \\ p_n \end{array} \right| \in \mathcal{R}^{n^2}$$

$$\mathbf{Q} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix} \in \mathcal{R}^{n^2}$$

$$A^T P + P A = -Q$$

$$L_A P = -Q$$

$$\mathbf{L}_A \in \mathcal{R}^{n^2 \times n^2}$$

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

There is a unique solution for $m{P}$ iff $m{\mathrm{L}}_A$ is nonsingular.

Theorem LTI S-2

- Let the i^{th} eigenvalue of the matrix A be λ_i
- Let the l^{th} eigenvalue of the matrix $\;\mathbf{L}_{A}\;$ be $\;\mu_{l}$ where,

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

Then, the n^2 eigenvalues μ_l 's are given by

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\begin{bmatrix} \mu_l = \lambda_i + \lambda_j, & l = 1, 2, \dots, n^2 \\ i = 1, 2, \dots, n \\ j = 1, 2, \dots, n \\ j = 1, 2, \dots, n \end{bmatrix}$$

Example:

$$A = \left[\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array} \right]$$

$$\lambda_1 = -1$$
$$\lambda_2 = -1$$

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\mathbf{L}_{A} \ = \ \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & -2 \end{bmatrix} \quad \begin{array}{l} \mu_{1} = -2 \\ \mu_{2} = -2 \\ \mu_{3} = -2 \\ \mu_{4} = -2 \end{array}$$

$$\mu_1 = -2$$
 $\mu_2 = -2$
 $\mu_3 = -2$
 $\mu_4 = -2$
Nonsingular

$$\mu_1 = \lambda_1 + \lambda_1 = -2$$

$$\mu_3 = \lambda_2 + \lambda_1 = -2$$

$$\mu_2 = \lambda_1 + \lambda_2 = -2$$

$$\mu_4 = \lambda_2 + \lambda_2 = -2$$

Example:

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 $\mathbf{L}_A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & -2 \end{bmatrix}$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow Q = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{P} = -\mathbf{L}_{A}^{-1}\mathbf{Q} \implies \mathbf{P} = \begin{bmatrix} 0.5 \\ 0.25 \\ 0.25 \\ 0.75 \end{bmatrix} \implies P = \begin{bmatrix} 0.50 & 0.25 \\ 0.25 & 0.75 \end{bmatrix}$$

$$P \succ \mathbf{0}$$

Example:
$$A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\lambda_1 = -1$$
$$\lambda_2 = 1$$

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

$$\mathbf{L}_{A} = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\mu_{1} = -2$$

$$\mu_{2} = 0$$

$$\mu_{3} = 0$$

$$\mu_{4} = 2$$
Singular

$$\mu_1 = \lambda_1 + \lambda_1 = -2$$

$$\mu_2 = \lambda_1 + \lambda_2 = 0$$

$$\mu_3 = \lambda_2 + \lambda_1 = 0$$

$$\mu_4 = \lambda_2 + \lambda_2 = 2$$

Theorem LTI S-2

- Let the i^{th} eigenvalue of the matrix A be λ_i
- Let the l^{th} eigenvalue of the matrix $\;\mathbf{L}_{A}\;$ be $\;\mu_{l}$ where,

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

Then, the n^2 eigenvalues μ_l 's are given by

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\begin{bmatrix} \mu_l = \lambda_i + \lambda_j, & l = 1, 2, \dots, n^2 \\ i = 1, 2, \dots, n \\ j = 1, 2, \dots, n \\ j = 1, 2, \dots, n \end{bmatrix}$$

Consider the Lyapunov equation in an abstract sense:

$$A^T P + P A = -Q$$

The left hand side of this equation is a linear map:

Consider the Lyapunov equation in an abstract sense:

$$A^T P + P A = -Q$$

The left hand side of this equation is a linear map:

$$\mathcal{L}_A(P) = A^T P + P A$$

$$\mathcal{L}_A:\mathcal{R}_s^{n imes n} o\mathcal{R}_s^{n imes n}$$

where $\mathcal{R}_s^{n imes n}$ is the vector space of symmetric nxn matrices

Coordinate representations

$$\mathbf{P} = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \in \mathcal{R}^{n^2} \qquad \text{is the coordinate representation of the vector} \qquad P \in \mathcal{R}^{n \times n}$$

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

is the matrix representation of the linear map $\mathcal{L}_A(\cdot)$

$$\mathbf{L}_{A} \mathbf{P} \quad \longleftrightarrow \quad \mathcal{L}_{A}(P) = A^{T} P + P A$$

Let λ_i and t_i be respectively an eigenvalue and corresponding eigenvector of A

$$At_i = \lambda_i t_i$$

Also, let $\,\lambda_i\,$ and $\,v_i\,$ be respectively an eigenvalue and corresponding eigenvector of A^T

$$A^T v_i = \lambda_i \, v_i$$

Remember that the eigenvalues of \boldsymbol{A} are invariant under matrix transposition.

$$det(\lambda I - A) = det(\lambda I - A^{T})$$

lf,

$$A^T v_i = \lambda_i \, v_i$$
 and $A^T v_j = \lambda_j \, v_j$

Then,

$$\mu_l = \lambda_i + \lambda_j \qquad \text{and} \qquad V_l = \left[v_i \, v_j^T + v_j \, v_i^T \right]$$

are respectively an eigenvalue and eigenvector of $\;\mathcal{L}_{A}(\cdot)\;|\;$

$$\mathcal{L}_A(V_l) = \mu_l V_l \qquad A^T V_l + V_l A = \mu_l V_l$$

Lets compute: $\mathcal{L}_A(V_l) = A^T V_l + V_l A$

$$\mathcal{L}_A(V_l) = A^T \left[v_i v_j^T + v_j v_i^T \right] + \left[v_i v_j^T + v_j v_i^T \right] A$$

$$\mathcal{L}_{A}(V_{l}) = \left[\underbrace{A^{T}v_{i}\,v_{j}^{T} + A^{T}v_{j}\,v_{i}^{T}}_{\mathbf{I}} + \left[v_{i}\,v_{j}^{T}A + v_{j}\,\underline{v_{i}^{T}A} \right] \right]$$

$$\mathcal{L}_{A}(V_{l}) = \left[\lambda_{i} v_{i} v_{j}^{T} + \lambda_{j} v_{j} v_{i}^{T}\right] + \left[v_{i} \lambda_{j} v_{j}^{T} + v_{j} \lambda_{i} v_{i}^{T}\right]$$

$$\mathcal{L}_{A}(V_{l}) = \left[\lambda_{i}v_{i}v_{j}^{T} + \lambda_{j}v_{j}v_{i}^{T}\right] + \left[\lambda_{j}v_{i}v_{j}^{T} + \lambda_{i}v_{j}v_{i}^{T}\right]$$

$$\mathcal{L}_{A}(V_{l}) = \left[\lambda_{i} + \lambda_{j}\right] v_{i} v_{j}^{T} + \left[\lambda_{j} + \lambda_{i}\right] v_{j} v_{i}^{T}$$

Lets compute: $\mathcal{L}_A(V_l) = A^T V_l + V_l A$

$$\mathcal{L}_{A}(V_{l}) = \left[\lambda_{i} + \lambda_{j}\right] v_{i} v_{j}^{T} + \left[\lambda_{j} + \lambda_{i}\right] v_{j} v_{i}^{T}$$

$$\mathcal{L}_A(V_l) = \left[\lambda_i + \lambda_j\right] \left[v_i \, v_j^T + v_j \, v_i^T\right] = \mu_l \, V_l$$

$$\mathcal{L}_A(V_l) = \mu_l V_l \qquad A^T V_l + V_l A = \mu_l V_l$$

Q.E.D.

Solving the Lyapunov Equation, Examples

1. A is Hurwitz

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, \ \lambda_1 = -1, \ \lambda_2 = -1$$

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\mu_1 = -2, \ \mu_2 = -2,$$
 $\mu_3 = -2, \ \mu_4 = -2,$

 \mathbf{L}_A is nonsingular and $\mathbf{P} = -\mathbf{L}_A^{-1}\mathbf{Q}$ is unique

2. A is not Hurwitz but limitedly stable

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \ \lambda_1 = -1, \ \lambda_2 = 0$$

$$\mu_1 = 0, \ \mu_2 = -1,$$
 $\mu_3 = -1, \ \mu_4 = -2,$

 \mathbf{L}_A is singular

Solving the Lyapunov Equation, Examples

3. A is not Hurwitz and has an unstable eigenvalue

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, \ \lambda_1 = -1, \ \lambda_2 = 2$$

$$\mu_l = \lambda_i + \lambda_j \,,$$

$$\mu_1 = -2, \ \mu_2 = 1,$$
 $\mu_3 = 1, \ \mu_4 = 4,$

 \mathbf{L}_A is nonsingular and $\mathbf{P} = -\mathbf{L}_A^{-1}\mathbf{Q}$ is unique

4. A is not Hurwitz and has an unstable eigenvalue

$$A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}, \ \lambda_1 = -1, \ \lambda_2 = 1$$

$$\mu_1 = 0, \ \mu_2 = 0,$$
 $\mu_3 = -2, \ \mu_4 = 2,$

 \mathbf{L}_{A} is singular

Solving the Lyapunov Equation

Corollary LTI S-1:

Let the matrix

 \boldsymbol{A}

be Hurwitz

Then the matrix

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

is also Hurwitz and

$$\mathbf{P} = -\mathbf{L}_{A}^{-1}\mathbf{Q}$$

always exists and is unique

Solving the Lyapunov Equation

Corollary LTI S-1:

Let the matrix A

be Hurwitz

Then the solution $oldsymbol{P}$ of the Lyapunov equation

$$A^T P + P A = -Q$$

Always exists and is unique for any matrix Q

Exponential Stability Theorem (CT)

The origin of the n-th order LTI system

$$\dot{x} = A x$$

is globally exponentially stable <u>iff</u> (if and only if),

for *any* symmetric matrix $Q\succ 0$

there exist a symmetric matrix $P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P + P A = -Q$$

Proof of asymptotic stability:

Assume that, for a symmetric matrix (

$$Q \succ 0$$

there exists a symmetric matrix $P \succ 0$ which is the solution of the Lyapunov equation

$$A^T P + P A = -Q$$

We need to show that the origin of

$$\dot{x} = A x$$
 is asymptotically stable

Proof of asymptotic stability:

Assume that, for a symmetric matrix $~Q \succ C$

there exists a symmetric matrix $P \succ 0$ which is the solution of the Lyapunov equation

$$A^T P + P A = -Q$$

Define the Lyapunov function candidate

$$V(x) = x^T P x > 0$$

Proof of asymptotic stability:

$$V(x) = x^T P x \succ 0$$

Taking the derivative along $\dot{x} = A x$

$$\dot{V}(x) = x^T \left\{ A^T P + P A \right\} x$$
$$= -x^T Q x \prec 0$$

Global asymptotic stability follows from Lyapunov's theorem.

Proof of exponential stability: We have shown that

$$V(x) = x^T P x \succ 0$$
 and
$$\dot{V}(x) = -x^T Q x \prec 0$$

We will now show that

$$||x(t)||_2 \le e^{-\beta t} M ||x(0)||_2$$

for
$$\beta > 0$$
 $0 < M < \infty$

Positive definite matrices

Let
$$P^T = P$$
 $P > 0$

We will use the following facts about symmetric matrices:

Fact 1: All eigenvalues of a symmetric matrix are real.

Fact 2: Distinct eigenvectors of a symmetric matrix are orthogonal

Fact 3: Symmetric matrices can always be diagonalized

Positive definite matrices

A consequence of these facts is:

$$P^T = P \qquad P \succ 0$$
 iff

there exists unitary and diagonal matrices

$$U^T = U^{-1} \qquad \wedge = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \succ 0$$

such that

$$U^T P U = \Lambda$$

Positive definite matrices

Let
$$P^T = P$$
 $P > 0$

and define its minimum and maximum eigenvalues

$$0 < (\lambda_P)_{min} \le (\lambda_P)_i \le (\lambda_P)_{max} < \infty$$

Then, for any vector x

$$x \in \mathcal{R}^n$$

$$||x||_2^2 = x^T x$$

$$(\lambda_P)_{min} \|x\|_2^2 \le x^T P x \le (\lambda_P)_{max} \|x\|_2^2$$

Proof of exponential stability: Define:

- $(\lambda_Q)_{min} > 0$ the minimum eigenvalue of Q
- $(\lambda_P)_{max} > 0$ the maximum eigenvalue of ${\bf P}$
- $(\lambda_P)_{min} > 0$ the minimum eigenvalue of ${m P}$ and

$$\alpha = \frac{(\lambda_Q)_{min}}{(\lambda_P)_{max}} > 0$$

Also remember that $||x||_2^2 = x^T x$

Proof of exponential stability:

Notice that:

$$\dot{V}(x) = -x^T Q x$$

since

$$x^T Q x \geq (\lambda_Q)_{min} \|x\|_2^2$$

$$-x^T Q x \leq -(\lambda_Q)_{min} \|x\|_2^2$$

$$\dot{V}(x) \leq -(\lambda_Q)_{min} \|x\|_2^2$$

also

$$V(x) = x^T P x$$

$$(\lambda_P)_{min} \|x\|_2^2 \le x^T P x \le (\lambda_P)_{max} \|x\|_2^2$$

$$(\lambda_P)_{min} \|x\|_2^2 \le V(x) \le (\lambda_P)_{max} \|x\|_2^2$$

$$||x||_2^2 \leq \frac{1}{(\lambda_P)_{min}} V(x)$$

also

$$V(x) = x^T P x$$

$$(\lambda_P)_{min} \|x\|_2^2 \le V(x) \le (\lambda_P)_{max} \|x\|_2^2$$

$$||x||_2^2 \geq \frac{1}{(\lambda_P)_{max}} V(x)$$

also

$$V(x) = x^T P x$$

$$(\lambda_P)_{min} \|x\|_2^2 \le V(x) \le (\lambda_P)_{max} \|x\|_2^2$$

$$-\|x\|_2^2 \leq -\frac{1}{(\lambda_P)_{max}}V(x)$$

since

$$\dot{V}(x) \leq -(\lambda_Q)_{min} \|x\|_2^2$$

$$-\|x\|_2^2 \leq -\frac{1}{(\lambda_P)_{max}}V(x)$$

therefore

$$\dot{V}(x) \leq -\frac{(\lambda_Q)_{min}}{(\lambda_P)_{max}} V(x)$$

since

$$\dot{V}(x) \leq -(\lambda_Q)_{min} \|x\|_2^2$$

$$-\|x\|_2^2 \leq -\frac{1}{(\lambda_P)_{max}}V(x)$$

therefore

$$\dot{V}(x) \leq -\alpha V(x)$$

$$\dot{V}(x) \leq -\alpha V(x)$$
 $\alpha = \frac{(\lambda_Q)_{min}}{(\lambda_P)_{max}} > 0$

Considering $oldsymbol{V}$ as a function of time

$$\dot{V}(t) \leq -\alpha V(t)$$
 and $V(t) \geq 0$

integrating the inequality we obtain,

$$V(t) \le e^{-\alpha t} V(0)$$

$$V(x(t)) \le e^{-\alpha t} V(x(0))$$

$$||x(t)||_{2}^{2} \leq \frac{1}{(\lambda_{P})_{min}} V(x(t))$$

$$||x(t)||_{2}^{2} \leq \frac{1}{(\lambda_{P})_{min}} e^{-\alpha t} V(x(0))$$

$$||x(t)||_{2}^{2} \leq \frac{1}{(\lambda_{P})_{min}} e^{-\alpha t} V(x(0))$$

$$V(x(0)) \leq (\lambda_{P})_{max} ||x(0)||_{2}^{2}$$

$$||x(t)||_{2}^{2} \leq \frac{(\lambda_{P})_{max}}{(\lambda_{P})_{min}} e^{-\alpha t} ||x(0)||_{2}^{2}$$

$$||x(t)||_{2}^{2} \leq e^{-\alpha t} \left(\frac{(\lambda_{P})_{max}}{(\lambda_{P})_{min}}\right) ||x(0)||_{2}^{2}$$

Taking square roots, we obtain

$$||x(t)||_2 \le e^{-\beta t} M ||x(0)||_2$$

$$eta = rac{(\lambda_Q)_{min}}{2\,(\lambda_P)_{max}} \qquad \qquad M = \left(rac{(\lambda_P)_{max}}{(\lambda_P)_{min}}
ight)^{rac{1}{2}} \quad ext{ Q.E.D.}$$

Exponential Stability Theorem (CT)

The origin of the n-th order LTI system

$$\dot{x} = A x$$

is globally exponentially stable <u>iff</u> (if and only if),

for *any* symmetric matrix $Q\succ 0$

there exist a symmetric matrix $P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P + P A = -Q$$

Part 1):

We will first show that

A is Hurwitz

There is a unique solution to

$$A^T P + P A = -Q$$

Corollary LTI S-1

Let the matrix

A

be Hurwitz

Then the matrix

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

is also Hurwitz and

$$\mathbf{P} = -\mathbf{L}_{\scriptscriptstyle A}^{-1}\mathbf{Q}$$

always exists and is unique

 According to the Corollary LTI-S1, if the matrix A is Hurwitz, then the matrix

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

is Hurwitz and nonsingular.

- •for <u>every</u> symmetric $Q \succ 0$
- ullet there exists a symmetric P
- •which is the **unique** solution of the Lyapunov equation

$$A^T P + P A = -Q$$

 According to the Corollary LTI-S1, if the matrix A is Hurwitz, then the matrix

$$\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$$

is Hurwitz and nonsingular.

We still need to prove two things:

ullet All elements of P are bounded

•
$$P \succ 0$$

Proof that all elements of $\,P\,$ are bounded:

• $Q \succ 0$ has all bounded elements

$$\mathbf{Q} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{bmatrix}$$

• $\mathbf{L}_A = \left\{ A^T \otimes I + I \otimes A^T \right\}$ is Hurwitz

 $\bullet \quad \mathbf{P} = -\mathbf{L}_{\scriptscriptstyle A}^{-1}\mathbf{Q} \quad \text{is unique}$

$$\mathbf{P} = \left| egin{array}{c} p_1 \\ p_2 \\ dash \\ p_n \end{array}
ight|$$

Thus,
$$\mathbf{P}^T\mathbf{P} = \mathbf{Q}^T \underbrace{\left[\mathbf{L}_A^{-T}\mathbf{L}_A^{-1}\right]}_{\succ 0} \mathbf{Q}$$

$$\|\mathbf{Q}\|_2 < \infty \Rightarrow \|\mathbf{P}\|_2 < \infty$$

Part 2): We will now show that

A is Hurwitz

The unique solution to

$$A^T P + P A = -Q$$

is

$$P = \int_0^\infty e^{A^T t} \, Q \, e^{At} \, dt$$

This result proves that $P \succ 0$

Aside

Notice that, if

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

Since:

•
$$Q \succ 0$$

• $\Phi(t) = e^{At}$ is nonsingular

$$M(t) = \Phi(t)^T Q \Phi(t) > 0$$

$$P = \int_0^\infty M(t) \, dt \succ 0$$

Part 2):

$$\dot{x} = A x$$
 is exponentially stable.

Therefore,

$$x(t) = e^{At} x(0)$$

$$\lim_{t\to\infty} x(t) = 0$$

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

Part 2): since,

$$x(t) = e^{At} x(0)$$

$$\lim_{t\to\infty} x(t) = 0$$

Then,

$$V(t) = x^T(t) Px(t)$$

Satisfies:

$$V(0) = x^{T}(0) Px(0) \qquad \lim_{t \to \infty} V(t) = 0$$

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

Part 2): also since,

$$V(t) = x^{T}(t) Px(t) \qquad A^{T} P + P A = -Q$$

Than,

$$\dot{V}(t) = \frac{d}{dt} \left\{ x^T(t) P x(t) \right\}$$

$$= x^{T}(t)\{\underbrace{A^{T}P + PA}_{-Q}\}x(t)$$

$$\dot{V}(t) = -x^{T}(t) Q x(t)$$

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

Part 2): Integrate with respect to time

$$\dot{V}(t) = -x^{T}(t) Q x(t)$$

$$\int_0^\infty \dot{V}(t)dt = -\int_0^\infty x^T(t) Q x(t) dt$$

$$\lim_{t \to \infty} V(t) - V(0) = -\int_0^\infty x^T(t) Q x(t) dt$$

$$V(0) = \int_0^\infty x^T(t) Q x(t) dt$$

Part 2): Evaluate both sides

$$x^{T}(0) P x(0) = x^{T}(0) \left[\int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt \right] x(0)$$

Proof of necessity \implies $P = \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt$

Part 2): Examine both sides

$$x^{T}(0) P x(0) = x^{T}(0) \left[\int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt \right] x(0)$$

Since x(0) is completely arbitrary

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

Q.E.D.

Lyapunov stability theorems (DT)

The origin 0 of the n-th order LTI system

$$x(k+1) = Ax(k)$$

is <u>stable in the sense of Lyapunov</u> if there exists a Lyapunov function V(x) for some for some r > 0, *i.e.*

$$V(x) \succ 0, \qquad \forall |x| < r$$

$$\Delta V(x) \leq 0, \qquad \forall |x| < r$$

Lyapunov stability theorems (DT)

The origin 0 of the n-th order LTI system

$$x(k+1) = Ax(k)$$

is <u>asymptotically stable</u> if there exists a <u>Lyapunov</u> function V(x) such that

$$V(x) \succ 0$$
 PDF

$$\Delta V(x) \prec 0$$
 NDF

Lyapunov stability theorems (DT)

Lets consider a quadratic Lyapunov function candidate:

$$V(x) = x^T P x$$

where

$$P^T = P \qquad P \succ 0$$

and compute $\Delta V(x)$ along x(k+1) = Ax(k)

$$V(x) = x^{T} P x \qquad P^{T} = P \quad x(k+1) = A x(k)$$

$$\Delta V(x(k)) = V(x(k+1)) - V(x(k))$$

$$\Delta V(x(k)) = V(Ax(k)) - V(x(k))$$

$$\Delta V(x) = V(Ax) - V(x)$$

$$= x^{T} A^{T} P A x - x^{T} P x$$

$$\Delta V(x) = x^T \left[A^T P A - P \right] x$$

Thus,
$$P^{T} = P$$

$$V(x) = x^{T} P x \qquad P \succ 0$$

is a Lyapunov function for the system when

$$x(k+1) = Ax(k)$$

$$\left[A^T P A - P\right] \preceq 0$$
 (negative semi-definite)

and the origin is stable in the sense of Lyapunov.

Therefore, the origin of the system

$$x(k+1) = Ax(k)$$

is stable in the sense of Lyapunov, if

there exists a symmetric matrix

$$P \succ 0$$

(positive definite)

such that

$$\left[A^T P A - P\right] \preceq 0$$
 (negative semi-definite)

Moreover, the origin of the system

$$x(k+1) = Ax(k)$$

is globally asymptotically stable, if

there exists a symmetric matrix

$$P \succ 0$$

(positive definite)

such that

$$\begin{bmatrix} A^T P A - P \end{bmatrix} \prec 0$$
 (negative definite)

The matrix
$$A \in \mathcal{R}^{n \times n}$$

is **Schur** (i.e. all its eigenvalues are inside the unit circle)

if there exists a symmetric matrix

$$P \succ 0$$

(positive definite)

such that

$$\left[A^T P A - P \right] \prec 0$$
 (negative definite)

The Lyapunov Equation

It turns out that much stronger stability results can be obtained for DT LTI systems by analyzing the following discrete time Lyapunov equation,

Exponential Stability Theorem (DT)

The origin of the n-th order LTI system

$$x(k+1) = Ax(k)$$

is globally exponentially stable <u>iff</u> (if and only if),

for *any* symmetric matrix $Q \succ 0$

there exist a symmetric matrix $P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P A - P = -Q$$

Exponential Stability Theorem (DT)

The matrix
$$A \in \mathcal{R}^{n \times n}$$

is **Schur** (i.e. all its eigenvalues are inside the unit circle)

for **any** symmetric matrix $Q \succ 0$

there exist a symmetric matrix $~P \succ 0$

which is the *unique* solution of the Lyapunov equation

$$A^T P A - P = -Q$$

Stability Analysis (DT)

How to use the discrete time Lyapunov equation:

- Given a matrix A, select an arbitrary positive definite symmetric matrix Q (for example I).
- Attempt to find a solution to the Lyapunov equation

$$A^T P A - P = -Q$$

- 1. If a solution P cannot be found, A is not Hurwitz.
- 2. If a solution P is found, check for its sign definiteness:
 - If P is positive definite, then A is Hurwitz.
 - If P is not positive definite, then A has at least one eigenvalue outside the unit circle (unstable).

Stability Analysis (DT)

It is important to note that the Lyapunov equation is a linear algebraic equation. Thus, it is easy to solve!

$$A^T P A - P = -Q$$

Matlab functions

- Discrete time Lyapunov equation: P = dlyap(A',Q)
 (if P cannot be found, it returns an error message)
- The definiteness of P can be check with the Cholesky factorization function: N = chol(P)
- which returns a upper triangular matrix N, such that $P = N^T N$ when P is positive definite (otherwise it returns an error message)