MÉTODO DE SOBREPOSIÇÃO

Circuito com n f.e.m.s $\Xi_1, \Xi_2, \dots, \Xi_n = \mathbb{R}$ Resolvem-se n circuitos mais simples, em que o circuito j tem apenas uma das f.e.m., Ξ_j , e as outras foram desativadas ($\Xi_m = 0$, se $m \neq j$), ou seja, substituidas por um curto-circuito.

As voltagens/correntes no circuito original são as somas das voltagens/correntes nos n circuitos

Exemplo:

Determine as voltagens e correntes nos 6 elementos no circuito

Resolução.

Unidades: R > ks, DV > V, I > mA

1) Circuito apenas com a f.e.m de 3V

$$i_{AB} = \frac{V_{A/B}}{2.2} = 0.642$$
 $i_{AD} = \frac{V_{A/D}}{5.6} = 0.253$
 $i_{EF} = \frac{V_{E/F}}{3.2} = 0.428$

$$R_{AD} = (\frac{1}{5.6} + \frac{1}{2.2} + \frac{1}{3.3})^{2} = 1.068$$

$$1.2 \ge i \ge 1.068$$

$$1.2 \ge i \ge 1.068$$

$$E = i_{AB} = i_{BD} = i_{DC} = i_{CA} = \frac{3}{1.2 + 1.068}$$

$$= 1.323$$

$$V_{A/B} = V_{A/D} = V_{E/F} = 1.068 i_{AB}$$

 $V_{D/C} = 1.2 i_{DC} = 1.587$

=1.413

2 Circuito apenas com a f.e.m. de 9V.

$$R_{AB} = \frac{2.2 \times 3.3}{2.2 + 3.3} = 1.32$$

$$R_{AD} = \frac{1.2 \times 5.6}{1.2 + 5.6} = 0.988$$

circuito anterior:

$$i_{CD} = \frac{V_{C/D}}{1.2} = 3.211$$

$$i_{AD} = \frac{V_{A/D}}{5.6} = 0.688$$

$$i = I_{BA} = I_{FE} = I_{CD} = I_{AD} = I_{DB}$$

= $\frac{9}{0.988 + 1.32} = 3.899$

$$V_{C/A} = 0$$
 $V_{B/D} = 9$
 $V_{B/A} = V_{F/E} = 1.32 l = 5.147$
 $V_{A/D} = V_{C/D} = 0.988 l = 3.853$

$$i_{BA} = \frac{V_{B/A}}{2.2} = 2.339$$
 $i_{FE} = \frac{V_{F/E}}{3.3} = 1.560$
 $i_{DB} = i = 3.899$

	circuito 1		circuito2		total	
RAMO (XY)	V _{X/Y}	ixy	VXY	ixy	VXYY	IXY
AB	1.41.3	0.642	-5.147	-2.339	-3.734	-1.637
EF	1.413	0.428	-5.147	-1.560	-3.734	-1.132
AD	1.413	0.253	3.853	0.688	5.266	0.941
CD	-1.587	-1.323	3.853	3.211	2.266	1.888
AC	3	-1.323	Q	3.211	3	1.888
BD	0	1.070	9	-3.899	9	-2.829
-	1		1		•)

CIRCUITOS COM CONDESADORES E RESISTEM

DAdmifindo que em t=0 todos os condensadores estão descarregados,

Qo=0 => $\Delta V_0 = 0$, mas, $T_0 = \frac{dQ}{dt} = qualquer valor (condensada)$ Cada condensador é equivalente a um curto-circuito (interruptor fechado), onde $\Delta V = 0$ mas há corrente.

- 2) t→∞. O circuito atinge um estado estacionário em que cada condensador tem a carga máxima que pode ter nesse circuito.
 - =) Q_∞=constante =) I_∞=dQ=0, mas ΔV_∞=qualquer Cada condensador ε equivalente a um interruptor aberta
- 3) Num tempo intermédio (estado transitório), $\Delta V \neq 0$ e $I \neq 0$ em cada condensador (Q=0, $Q\neq Q_{max}$) Cada condensador é equivalente a uma f.e.m. com E=Q

Exemplo: Em t=0, quando o condensador está descarregado, secha-se o interruptor, e volta a abrir-se em

t>>0 (muito tempo após t=0). Determine a corrente na resistência de 5.6 ks2, em t=0 e t=t,