Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-[6,8-Dibromo-3-(4-hydroxycyclohex-yl)-1,2,3,4-tetrahydroquinazolin-2-yl]-phenol methanol 0.25-solvate

Zhi-Gang Wang,^a Rong Wang,^b Feng Zhi^b and Ming-Li Wang^{c*}

^aDepartment of Respiratory Medicine, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ^bModern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, and ^cDepartment of Pharmacy, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China Correspondence e-mail: wangmingli09@163.com

Received 23 February 2011; accepted 2 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.013$ Å; disorder in solvent or counterion; R factor = 0.087; wR factor = 0.199; data-to-parameter ratio = 17.6.

The title compound, $C_{20}H_{22}Br_2N_2O_2\cdot 0.25CH_4O$, was synthesized by the condensation reaction of salicylaldehyde with 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol in methanol. There are four independent main molecules and two half-occupied methanol solvent molecules in the asymmetric unit. The dihedral angles between the two benzene rings in the four molecules are 87.8 (6), 86.6 (6), 89.3 (6) and 83.1 (6)°. Each molecule features an intramolecular $O-H\cdots N$ hydrogen bond and a short $N-H\cdots Br$ link. In the crystal components are linked by $O-H\cdots O$ hydrogen bonds.

Related literature

For details of the pharmaceutical uses of ambroxol, systematic name 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol, a compound closely related to the title compound, see: Gaida *et al.* (2005); Lee *et al.* (2004). For the structures of similar compounds, see: Wang *et al.* (2009, 2010). For standard bondlength data, see: Allen *et al.* (1987).

Experimental

Crystal data

Data collection

 $\begin{array}{lll} \text{Bruker SMART CCD} & 46008 \text{ measu} \\ \text{diffractometer} & 17573 \text{ indepe} \\ \text{Absorption correction: multi-scan} & 6508 \text{ reflection} \\ \text{($SADABS$; Sheldrick, 1996)} & R_{\text{int}} = 0.108 \\ T_{\text{min}} = 0.468, \, T_{\text{max}} = 0.509 \\ \end{array}$

46008 measured reflections 17573 independent reflections 6508 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.108$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.087$ $wR(F^2) = 0.199$ S = 0.9517573 reflections 1001 parameters 38 restraints H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 1.06 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.78 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O1-H1···N4	0.82	1.93	2.643 (8)	145
$N1-H1A\cdots Br2$	0.91(8)	2.69 (7)	3.081 (7)	107 (6)
$O2-H2\cdots O9^{i}$	0.82	1.85	2.660 (15)	167
$O3-H3\cdots N2$	0.82	1.93	2.661 (9)	148
$N3-H3B\cdots Br4$	0.91(8)	2.77 (8)	3.097 (7)	103 (5)
$O4-H4\cdots O6^{ii}$	0.82	2.13	2.721 (10)	129
$O5-H5\cdots N6$	0.82	1.95	2.650 (9)	143
$N5-H5B\cdots Br5$	0.90(6)	2.77 (8)	3.110 (7)	104 (6)
$O6-H6\cdotsO8^{iii}$	0.82	1.95	2.735 (9)	160
$O7-H7\cdots N8$	0.85 (6)	1.99 (8)	2.717 (9)	142 (6)
$N7 - H7B \cdot \cdot \cdot Br7$	0.90(6)	2.61 (8)	3.100 (7)	115 (6)
$O8-H8\cdots O2^{iv}$	0.84 (9)	1.90 (8)	2.713 (11)	162 (8)
O9−H9···O10 ^v	0.82	2.18	2.94 (2)	156

Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) -x+1, -y, -z+2; (iv) x-1, y, z+1; (v) x-1, y, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from the Third Affiliated Hospital of Soochow University is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5804).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor,
R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin,
USA.

organic compounds

Gaida, W., Klinder, K., Arndt, K. & Weiser, T. (2005). *Neuropharmacology*, **49**, 1220–1227.

Lee, H. J., Joung, S. K., Kim, Y. G., Yoo, J.-Y. & Han, S. B. (2004). Pharm. Res. 49, 93–98.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Z.-G., Wang, R., Zhang, Y., Zhi, F. & Yang, Y.-L. (2009). *Acta Cryst.* E65, o550.

Wang, Z.-G., Xia, Z.-L., Wang, R. & Wang, M.-L. (2010). Acta Cryst. E66, o1205-o1206.

supplementa	ry materials		

Acta Cryst. (2011). E67, o808-o809 [doi:10.1107/S1600536811007987]

2-[6,8-Dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl]phenol methanol 0.25-solvate

Z.-G. Wang, R. Wang, F. Zhi and M.-L. Wang

Comment

Ambroxol [or 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol] is an expectorant agent which leads to bronchial secretion due to its mucolytic properties (Gaida *et al.*, 2005; Lee *et al.*, 2004). Recently, we reported the crystal structures of two derivatives of Ambroxol (Wang *et al.*, 2009; Wang *et al.*, 2010). In this paper, the crystal structure of the title compound, derived from the condensation reaction of salicylaldehyde with 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol in methanol, is reported.

There are four independent molecules and two methanol molecules in the asymmetric unit of the title compound, Fig. 1. The dihedral angles between the two benzene rings in the four molecules are 87.8 (6), 86.6 (6), 90.7 (6), and 96.9 (6)°, respectively. The cyclohexyl rings adopt chair configurations. All bond lengths are within normal ranges (Allen *et al.*, 1987).

Experimental

Salicylaldehyde (1.0 mol, 122.1 mg) and 4-(2-amino-3,5-dibromobenzylamino)cyclohexanol (1.0 mmol, 378.1 mg) were dissolved in methanol (30 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of the title compound were formed by gradual evaporation of the solvent for a few days at room temperature.

Refinement

H1A, H3B, H5B, H7B, and H7 atoms were located from a difference Fourier map and refined isotropically, with N—H and O—H distances restrained to 0.90 (1) and 0.85 (1) Å, respectively. The other H atoms were included in calulated positions with, with C—H = 0.93–0.98 Å, and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $1.5 U_{eq}(O)$ and methyl C).

Figures

Fig. 1. The asymmetric unit of the title compound showing 30% probability ellipsoids. H atoms bonded to C atoms are not shown.

2-[6,8-Dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl]phenol methanol 0.25-solvate

Crystal data

 $C_{20}H_{22}Br_2N_2O_2 \cdot 0.25CH_4O$ Z = 8

 $M_r = 490.23$ F(000) = 1972 $D_{\rm x} = 1.559 \; {\rm Mg \; m}^{-3}$ Triclinic, $P\overline{1}$

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1 a = 11.733 (2) Å Cell parameters from 2369 reflections

 $\theta = 2.5 - 24.3^{\circ}$ b = 16.831(3) Åc = 21.721 (4) Å $\mu = 3.90 \text{ mm}^{-1}$ $\alpha = 94.69 (3)^{\circ}$ T = 298 K $\beta = 96.88 (3)^{\circ}$ Block, colorless $\gamma = 99.44 (3)^{\circ}$ $0.23\times0.23\times0.20~mm$

 $V = 4178.4 (14) \text{ Å}^3$

Data collection

Bruker SMART CCD 17573 independent reflections diffractometer

Radiation source: fine-focus sealed tube 6508 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.108$ graphite

 $\theta_{\text{max}} = 27.0^{\circ}, \, \theta_{\text{min}} = 2.3^{\circ}$ ω scans

Absorption correction: multi-scan $h = -14 \rightarrow 14$ (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.468$, $T_{\max} = 0.509$ $k = -21 \rightarrow 21$ $l = -27 \rightarrow 27$ 46008 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.087$

Primary atom site location: structure-invariant direct Refinement on F^2

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring

H atoms treated by a mixture of independent and $wR(F^2) = 0.199$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0601P)^2]$ S = 0.95

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 17573 reflections

1001 parameters $\Delta \rho_{\text{max}} = 1.06 \text{ e Å}^{-3}$

 $\Delta \rho_{min} = -0.78 \text{ e Å}^{-3}$ 38 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Br1	0.50780 (11)	0.54851 (6)	0.41605 (5)	0.0858 (4)	
Br2	0.75088 (8)	0.28881 (6)	0.44920 (4)	0.0564(3)	
Br3	1.02222 (11)	0.55820 (6)	0.42630 (5)	0.0768 (4)	
Br4	1.26724 (8)	0.29701 (6)	0.44757 (4)	0.0573 (3)	
Br5	0.73267 (9)	0.40022 (6)	0.68344 (5)	0.0733 (3)	
Br6	1.12176 (15)	0.56107 (7)	0.85040 (8)	0.1393 (7)	
Br7	0.22232 (9)	0.41215 (6)	0.68357 (5)	0.0680(3)	
Br8	0.59680 (15)	0.58398 (7)	0.85557 (8)	0.1367 (7)	
O1	0.7323 (5)	0.0798 (3)	0.2677 (3)	0.0541 (16)	
H1	0.7805	0.1076	0.2504	0.081*	
O2	1.1310 (8)	0.2056 (5)	0.0423 (4)	0.109(3)	
H2	1.0954	0.2393	0.0275	0.164*	
O3	0.2270 (5)	0.0715 (4)	0.2618 (3)	0.0570 (17)	
Н3	0.2705	0.1041	0.2455	0.085*	
O4	0.6491 (7)	0.1764 (5)	0.0424(3)	0.085(2)	
H4	0.7056	0.1542	0.0391	0.128*	
O5	1.0710 (5)	0.0754 (4)	0.7097 (3)	0.0603 (17)	
H5	1.0295	0.0842	0.7364	0.090*	
O6	0.7231 (6)	0.0560 (4)	0.9749 (3)	0.075 (2)	
Н6	0.7517	0.0184	0.9883	0.113*	
O7	0.5483 (6)	0.0782 (4)	0.7181 (3)	0.0605 (17)	
O8	0.2347 (6)	0.0897 (4)	0.9893 (3)	0.073 (2)	
N1	0.5676 (6)	0.2056 (4)	0.3396 (3)	0.0406 (17)	
N2	0.4082 (5)	0.1867 (4)	0.2547 (3)	0.0368 (16)	
N3	1.0712 (6)	0.2146 (4)	0.3426 (3)	0.0405 (17)	
N4	0.9067 (5)	0.1991 (4)	0.2622 (3)	0.0369 (16)	
N5	0.8385 (6)	0.2493 (4)	0.7178 (3)	0.0430 (17)	
N6	0.9564 (5)	0.1679 (4)	0.7749 (3)	0.0341 (16)	
N7	0.3360 (6)	0.2657 (4)	0.7195 (3)	0.0466 (18)	
N8	0.4575 (5)	0.1926 (4)	0.7824(3)	0.0393 (17)	
C1	0.3768 (7)	0.1178 (4)	0.3488 (4)	0.0338 (19)	
C2	0.2633 (8)	0.0780 (5)	0.3238 (5)	0.044(2)	
C3	0.1865 (8)	0.0458 (4)	0.3639 (5)	0.052(3)	
Н3А	0.1120	0.0187	0.3480	0.063*	
C4	0.2228 (9)	0.0548 (5)	0.4272 (5)	0.054(3)	
H4A	0.1713	0.0338	0.4536	0.065*	
C5	0.3321 (9)	0.0935 (5)	0.4524 (4)	0.055 (3)	
H5A	0.3552	0.0990	0.4952	0.066*	

C6	0.4061 (7)	0.1239 (5)	0.4130 (4)	0.047(2)
H6A	0.4805	0.1503	0.4301	0.057*
C7	0.4654 (7)	0.1496 (5)	0.3066 (4)	0.037(2)
H7A	0.4938	0.1027	0.2881	0.044*
C8	0.4625 (7)	0.3155 (4)	0.3258 (3)	0.036(2)
C9	0.5528 (6)	0.2828 (4)	0.3580 (4)	0.0330 (19)
C10	0.6297 (7)	0.3326 (5)	0.4049 (4)	0.039(2)
C11	0.6164 (8)	0.4108 (5)	0.4212 (4)	0.052(2)
H11	0.6679	0.4428	0.4530	0.062*
C12	0.5289 (8)	0.4412 (5)	0.3912 (4)	0.049(2)
C13	0.4520 (7)	0.3943 (5)	0.3435 (4)	0.047(2)
H13	0.3922	0.4163	0.3230	0.057*
C14	0.3733 (7)	0.2620 (5)	0.2785 (4)	0.047(2)
H14A	0.3024	0.2481	0.2971	0.057*
H14B	0.3553	0.2923	0.2437	0.057*
C15	0.4654 (8)	0.1917 (5)	0.1979 (4)	0.047(2)
H15	0.4097	0.2119	0.1684	0.056*
C16	0.4707 (8)	0.1082 (5)	0.1677 (4)	0.056(3)
H16A	0.3942	0.0745	0.1631	0.067*
H16B	0.5243	0.0832	0.1940	0.067*
C17	0.5117 (9)	0.1145 (6)	0.1033 (4)	0.070(3)
H17A	0.5234	0.0615	0.0870	0.084*
H17B	0.4505	0.1301	0.0752	0.084*
C18	0.6187 (9)	0.1720 (6)	0.1038 (5)	0.070(3)
H18	0.6809	0.1512	0.1283	0.084*
C19	0.6130 (8)	0.2539 (5)	0.1356 (4)	0.062(3)
H19A	0.5593	0.2794	0.1097	0.074*
H19B	0.6894	0.2877	0.1401	0.074*
C20	0.5737 (9)	0.2483 (5)	0.1989 (4)	0.064(3)
H20A	0.6343	0.2317	0.2268	0.077*
H20B	0.5634	0.3016	0.2155	0.077*
C21	0.8835 (7)	0.1260 (4)	0.3539 (4)	0.037(2)
C22	0.7711 (8)	0.0852 (5)	0.3305 (4)	0.044(2)
C23	0.6981 (8)	0.0501 (5)	0.3688 (5)	0.052(2)
H23	0.6245	0.0221	0.3520	0.063*
C24	0.7325 (9)	0.0556 (5)	0.4320 (5)	0.057(3)
H24	0.6813	0.0328	0.4579	0.068*
C25	0.8405 (9)	0.0942 (5)	0.4566 (4)	0.055(3)
H25	0.8641	0.0971	0.4993	0.066*
C26	0.9148 (8)	0.1290 (5)	0.4190 (4)	0.048(2)
H26	0.9887	0.1556	0.4367	0.057*
C27	0.9673 (7)	0.1606 (4)	0.3101 (4)	0.036(2)
H27	0.9940	0.1147	0.2891	0.043*
C28	0.9668 (7)	0.3264 (4)	0.3369 (4)	0.038(2)
C29	1.0599 (6)	0.2932 (4)	0.3632 (4)	0.0319 (19)
C30	1.1402 (7)	0.3414 (5)	0.4079 (4)	0.041(2)
C31	1.1315 (7)	0.4202 (5)	0.4270 (4)	0.046(2)
H31	1.1867	0.4515	0.4575	0.055*
C32	1.0393 (8)	0.4507 (5)	0.3997 (4)	0.046(2)

C33	0.9581 (8)	0.4048 (5)	0.3554 (4)	0.044(2)
H33	0.8959	0.4268	0.3374	0.053*
C34	0.8736 (6)	0.2733 (4)	0.2891 (4)	0.041(2)
H34A	0.8043	0.2584	0.3088	0.049*
H34B	0.8531	0.3051	0.2555	0.049*
C35	0.9587 (8)	0.2094 (5)	0.2050 (4)	0.050(2)
H35	0.9031	0.2337	0.1786	0.060*
C36	0.9599 (9)	0.1281 (5)	0.1695 (5)	0.073(3)
H36A	0.8844	0.0938	0.1677	0.088*
H36B	1.0177	0.1018	0.1916	0.088*
C37	0.9880 (11)	0.1373 (7)	0.1029 (5)	0.085 (4)
H37A	0.9915	0.0845	0.0824	0.102*
H37B	0.9259	0.1584	0.0795	0.102*
C38	1.0978 (11)	0.1911 (7)	0.1021 (5)	0.090(4)
H38	1.1585	0.1653	0.1232	0.108*
C39	1.1043 (9)	0.2720 (7)	0.1394 (5)	0.087(3)
H39A	1.0528	0.3029	0.1172	0.104*
H39B	1.1832	0.3021	0.1433	0.104*
C40	1.0688 (9)	0.2624 (6)	0.2064 (5)	0.083(3)
H40A	1.1290	0.2412	0.2313	0.100*
H40B	1.0642	0.3153	0.2263	0.100*
C41	0.9815 (6)	0.1804 (4)	0.6651 (3)	0.0342 (19)
C42	1.0596 (7)	0.1269 (5)	0.6652 (4)	0.043 (2)
C43	1.1287 (7)	0.1243 (5)	0.6175 (4)	0.054(2)
H43	1.1781	0.0864	0.6160	0.064*
C44	1.1247 (7)	0.1775 (6)	0.5724 (4)	0.053(2)
H44	1.1722	0.1759	0.5411	0.063*
C45	1.0516 (9)	0.2321 (5)	0.5737 (4)	0.059(3)
H45	1.0511	0.2690	0.5441	0.071*
C46	0.9789 (8)	0.2331 (5)	0.6182 (4)	0.049(2)
H46	0.9268	0.2693	0.6175	0.059*
C47	0.8971 (6)	0.1786 (4)	0.7138 (4)	0.038(2)
H47	0.8362	0.1309	0.7014	0.046*
C48	1.0032 (7)	0.3208 (5)	0.7885 (4)	0.037(2)
C49	0.9029 (8)	0.3203 (5)	0.7471 (4)	0.042(2)
C50	0.8687 (8)	0.3950 (6)	0.7391 (4)	0.054(2)
C51	0.9346 (10)	0.4662 (5)	0.7697 (5)	0.072 (3)
H51	0.9122	0.5158	0.7636	0.086*
C52	1.0323 (10)	0.4621 (6)	0.8085 (5)	0.070(3)
C53	1.0690 (8)	0.3894 (6)	0.8191 (4)	0.054(2)
H53	1.1361	0.3879	0.8462	0.065*
C54	1.0416 (7)	0.2411 (5)	0.7979 (4)	0.047(2)
H54A	1.1106	0.2392	0.7777	0.056*
H54B	1.0643	0.2397	0.8422	0.056*
C55	0.8793 (7)	0.1335 (5)	0.8192 (4)	0.049(2)
H55	0.8187	0.0928	0.7940	0.058*
C56	0.9439 (8)	0.0884 (6)	0.8639 (4)	0.060(3)
H56A	1.0060	0.1262	0.8897	0.072*
H56B	0.9794	0.0495	0.8408	0.072*

C57	0.8643 (9)	0.0435 (6)	0.9062 (5)	0.076 (3)
H57A	0.8087	0.0003	0.8814	0.091*
H57B	0.9109	0.0195	0.9371	0.091*
C58	0.8021 (8)	0.0999 (6)	0.9374 (4)	0.063 (3)
H58	0.8590	0.1404	0.9650	0.075*
C59	0.7345 (8)	0.1427 (6)	0.8917 (5)	0.069(3)
H59A	0.6948	0.1799	0.9139	0.083*
H59B	0.6761	0.1035	0.8647	0.083*
C60	0.8170 (8)	0.1891 (6)	0.8529 (4)	0.067 (3)
H60A	0.7730	0.2165	0.8232	0.081*
H60B	0.8730	0.2299	0.8799	0.081*
C61	0.4694 (6)	0.1857 (5)	0.6699 (4)	0.036(2)
C62	0.5409 (7)	0.1278 (5)	0.6708 (4)	0.038(2)
C63	0.6068 (7)	0.1153 (5)	0.6243 (4)	0.051(2)
H63	0.6530	0.0754	0.6251	0.062*
C64	0.6023 (9)	0.1646 (6)	0.5755 (5)	0.068 (3)
H64	0.6441	0.1557	0.5425	0.082*
C65	0.5389 (8)	0.2247 (6)	0.5752 (4)	0.059(3)
H65	0.5407	0.2589	0.5436	0.071*
C66	0.4717 (7)	0.2349 (5)	0.6218 (4)	0.045(2)
H66	0.4268	0.2756	0.6211	0.054*
C67	0.3914 (7)	0.1941 (5)	0.7208 (4)	0.040(2)
H67	0.3289	0.1466	0.7140	0.049*
C68	0.5023 (7)	0.3429 (5)	0.7885 (4)	0.045(2)
C69	0.3967 (7)	0.3390 (5)	0.7479 (4)	0.039(2)
C70	0.3564 (8)	0.4105 (6)	0.7393 (4)	0.055(3)
C71	0.4159 (9)	0.4848 (6)	0.7707 (5)	0.070(3)
H71	0.3880	0.5324	0.7642	0.084*
C72	0.5144 (10)	0.4863 (5)	0.8106 (5)	0.072(3)
C73	0.5602 (8)	0.4159 (6)	0.8211 (4)	0.058(3)
H73	0.6274	0.4179	0.8490	0.070*
C74	0.5474 (7)	0.2652 (5)	0.7962 (4)	0.043(2)
H74A	0.6064	0.2613	0.7689	0.052*
H74B	0.5846	0.2670	0.8387	0.052*
C75	0.3780 (7)	0.1742 (5)	0.8313 (4)	0.043(2)
H75	0.3017	0.1864	0.8156	0.051*
C76	0.3619 (8)	0.0868 (5)	0.8389 (4)	0.054(2)
H76A	0.4371	0.0728	0.8528	0.064*
H76B	0.3323	0.0564	0.7987	0.064*
C77	0.2793 (8)	0.0624 (5)	0.8848 (4)	0.062(3)
H77A	0.2766	0.0055	0.8900	0.074*
H77B	0.2016	0.0697	0.8684	0.074*
C78	0.3163 (7)	0.1119 (5)	0.9477 (4)	0.047(2)
H78	0.3919	0.1002	0.9653	0.057*
C79	0.3307 (9)	0.1990 (5)	0.9392 (4)	0.070(3)
H79A	0.3580	0.2305	0.9791	0.084*
H79B	0.2558	0.2121	0.9235	0.084*
C80	0.4164 (9)	0.2215 (5)	0.8942 (4)	0.064(3)
H80A	0.4237	0.2789	0.8898	0.077*

H80B	0.4924	0.2111	0.9109	0.077*	
O9	0.0335 (12)	0.3116 (7)	0.9790 (6)	0.072 (4)	0.50
Н9	-0.0263	0.3256	0.9886	0.108*	0.50
O10	0.7990 (12)	0.3078 (8)	1.0151 (6)	0.081 (4)	0.50
H10	0.7985	0.2663	0.9924	0.121*	0.50
C81	0.1269 (17)	0.3789 (11)	0.9909 (10)	0.104(8)	0.50
H81A	0.0960	0.4283	0.9913	0.155*	0.50
H81B	0.1763	0.3771	0.9588	0.155*	0.50
H81C	0.1715	0.3768	1.0306	0.155*	0.50
C82	0.7119 (18)	0.3499 (13)	0.9890 (11)	0.114 (9)	0.50
H82A	0.6939	0.3871	1.0208	0.170*	0.50
H82B	0.6428	0.3117	0.9723	0.170*	0.50
H82C	0.7404	0.3792	0.9562	0.170*	0.50
H1A	0.609 (7)	0.178 (5)	0.366 (3)	0.080*	
Н3В	1.117 (6)	0.184 (4)	0.363 (4)	0.080*	
H5B	0.783 (5)	0.245 (5)	0.685 (3)	0.080*	
H7B	0.278 (5)	0.269 (5)	0.689(3)	0.080*	
H7	0.528 (8)	0.100 (5)	0.751 (2)	0.080*	
Н8	0.193 (7)	0.117 (5)	1.008 (4)	0.080*	

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1302 (11)	0.0416 (6)	0.0861 (9)	0.0253 (6)	0.0123 (8)	-0.0075 (6)
Br2	0.0457 (6)	0.0728 (7)	0.0474 (6)	0.0083 (5)	-0.0034 (5)	0.0044 (5)
Br3	0.1229 (10)	0.0366 (6)	0.0691 (8)	0.0169 (6)	0.0102(7)	-0.0075 (5)
Br4	0.0435 (6)	0.0741 (7)	0.0513 (6)	0.0068 (5)	-0.0033 (5)	0.0104 (5)
Br5	0.0702(7)	0.0785 (8)	0.0846 (8)	0.0348 (6)	0.0184 (6)	0.0329 (6)
Br6	0.1881 (16)	0.0526 (8)	0.1468 (14)	-0.0179 (9)	-0.0318 (12)	-0.0100 (8)
Br7	0.0655 (7)	0.0694 (7)	0.0756 (8)	0.0291 (6)	0.0034(6)	0.0201 (6)
Br8	0.1732 (15)	0.0526 (8)	0.1521 (14)	-0.0194 (8)	-0.0530 (12)	0.0089(8)
O1	0.052 (4)	0.052 (4)	0.051 (4)	0.001(3)	-0.006(3)	0.000(3)
O2	0.154(8)	0.122 (8)	0.085 (6)	0.064(6)	0.080(6)	0.035 (5)
O3	0.058 (4)	0.061 (4)	0.045 (4)	0.000(3)	-0.004(3)	0.008(3)
O4	0.113 (7)	0.093 (6)	0.057 (5)	0.014(5)	0.050(4)	0.002(4)
O5	0.068 (5)	0.067 (4)	0.056 (5)	0.030(4)	0.017(3)	0.016 (4)
O6	0.090(5)	0.075 (5)	0.076 (5)	0.019 (4)	0.047 (4)	0.034 (4)
O7	0.067 (4)	0.068 (4)	0.056 (5)	0.032 (4)	0.020(4)	0.010(4)
O8	0.076 (5)	0.085 (5)	0.075 (5)	0.021 (4)	0.059 (4)	0.027 (4)
N1	0.033 (4)	0.035 (4)	0.052 (5)	0.004(3)	0.003 (4)	0.004(3)
N2	0.043 (4)	0.035 (4)	0.030(4)	0.003(3)	0.005(3)	-0.003(3)
N3	0.044 (5)	0.034 (4)	0.044 (5)	0.008(3)	0.005 (4)	0.002(3)
N4	0.045 (4)	0.033 (4)	0.035 (4)	0.015(3)	0.003(3)	0.005(3)
N5	0.039 (4)	0.051 (5)	0.040 (5)	0.011 (4)	0.002(3)	0.007(4)
N6	0.030(4)	0.037 (4)	0.035 (4)	-0.001(3)	0.006(3)	0.011(3)
N7	0.052 (5)	0.044 (4)	0.045 (5)	0.014 (4)	0.009 (4)	0.006 (4)
N8	0.036 (4)	0.049 (4)	0.036 (4)	0.009(3)	0.012(3)	0.009(3)
C1	0.043 (5)	0.030(4)	0.031 (5)	0.012 (4)	0.008 (4)	0.001 (4)

C2	0.047 (6)	0.029 (5)	0.064 (7)	0.017 (4)	0.019 (5)	0.009(4)
C3	0.052 (6)	0.019 (4)	0.090(8)	0.005 (4)	0.021 (6)	0.019 (5)
C4	0.063 (7)	0.043 (6)	0.067(8)	0.011 (5)	0.034(6)	0.028 (5)
C5	0.069 (7)	0.052 (6)	0.046 (6)	0.006 (5)	0.017(6)	0.013 (5)
C6	0.043 (5)	0.046 (5)	0.053 (6)	0.003 (4)	0.011 (5)	0.007 (5)
C7	0.037 (5)	0.038 (5)	0.038 (5)	0.013 (4)	0.010(4)	0.003 (4)
C8	0.047 (5)	0.034 (5)	0.031 (5)	0.016 (4)	0.010(4)	0.009(4)
C9	0.032 (5)	0.029 (5)	0.036 (5)	-0.001 (4)	0.006 (4)	0.006 (4)
C10	0.038 (5)	0.033 (5)	0.045 (6)	0.005 (4)	0.016 (4)	-0.002 (4)
C11	0.063 (7)	0.047 (6)	0.038 (6)	-0.012 (5)	0.006 (5)	-0.001 (4)
C12	0.074 (7)	0.028 (5)	0.047 (6)	0.013 (5)	0.009 (5)	0.001 (4)
C13	0.054(6)	0.048 (6)	0.048 (6)	0.023 (5)	0.020 (5)	0.015 (5)
C14	0.045 (5)	0.052 (6)	0.042 (6)	0.006 (4)	-0.004(4)	0.003 (4)
C15	0.060(6)	0.050(6)	0.031 (5)	0.004 (5)	0.012 (5)	0.009(4)
C16	0.069 (7)	0.055 (6)	0.037 (6)	-0.006(5)	0.011 (5)	-0.005 (4)
C17	0.094(8)	0.051 (6)	0.064(7)	0.000(6)	0.027 (6)	0.004 (5)
C18	0.074 (8)	0.074(8)	0.057 (7)	0.003 (6)	0.011 (6)	-0.008 (6)
C19	0.075 (7)	0.052 (6)	0.055 (7)	0.001 (5)	0.019 (5)	-0.005(5)
C20	0.093 (8)	0.044 (6)	0.052 (7)	-0.011 (5)	0.034(6)	-0.006(5)
C21	0.045 (5)	0.023 (4)	0.046 (6)	0.015 (4)	0.000(4)	0.006 (4)
C22	0.049 (6)	0.030 (5)	0.050(6)	0.007 (4)	-0.001 (5)	0.005 (4)
C23	0.044 (6)	0.040 (5)	0.074 (8)	-0.001 (4)	0.014(6)	0.022 (5)
C24	0.060(7)	0.050(6)	0.070(8)	0.015 (5)	0.029 (6)	0.027 (5)
C25	0.074 (8)	0.049 (6)	0.048 (6)	0.011 (5)	0.025 (6)	0.017 (5)
C26	0.054(6)	0.045 (5)	0.042 (6)	0.015 (5)	-0.010 (5)	0.000(4)
C27	0.038 (5)	0.023 (4)	0.043 (5)	0.000(4)	0.000(4)	-0.005 (4)
C28	0.038 (5)	0.032 (5)	0.039 (5)	0.000(4)	0.004(4)	-0.004 (4)
C29	0.024 (4)	0.033 (5)	0.039 (5)	0.002 (4)	0.014 (4)	-0.003 (4)
C30	0.037 (5)	0.049 (6)	0.039 (5)	0.008 (4)	0.011 (4)	0.012 (4)
C31	0.058 (6)	0.036 (5)	0.036 (5)	-0.006(5)	-0.002(5)	0.004 (4)
C32	0.072 (7)	0.030 (5)	0.038 (5)	0.011 (5)	0.013 (5)	-0.001 (4)
C33	0.065 (6)	0.040 (5)	0.029 (5)	0.011 (5)	0.016 (5)	0.003 (4)
C34	0.037 (5)	0.039 (5)	0.051 (6)	0.008 (4)	0.012 (4)	0.018 (4)
C35	0.072 (7)	0.037 (5)	0.042 (6)	0.009 (5)	0.014 (5)	0.006 (4)
C36	0.094(8)	0.057 (7)	0.066 (8)	0.007 (6)	0.020(6)	-0.008(5)
C37	0.123 (11)	0.091 (9)	0.052 (7)	0.051 (8)	0.019 (7)	0.004(6)
C38	0.099 (10)	0.087 (9)	0.094 (10)	0.015 (7)	0.068 (8)	-0.005 (7)
C39	0.084(8)	0.100 (9)	0.076 (8)	-0.005 (7)	0.029 (7)	0.018 (7)
C40	0.084(8)	0.093 (9)	0.064(8)	-0.017 (7)	0.026 (6)	0.008(6)
C41	0.036 (5)	0.034 (5)	0.030 (5)	-0.002 (4)	0.008 (4)	-0.010 (4)
C42	0.038 (5)	0.042 (5)	0.050(6)	0.013 (4)	0.013 (5)	-0.007(4)
C43	0.050 (6)	0.055 (6)	0.058 (7)	0.012 (5)	0.019 (5)	-0.003(5)
C44	0.050 (6)	0.075 (7)	0.033 (6)	0.007 (5)	0.021 (5)	-0.003(5)
C45	0.101 (8)	0.048 (6)	0.040(6)	0.022(6)	0.030(6)	0.020 (5)
C46	0.074 (7)	0.040 (5)	0.032 (5)	0.003 (5)	0.018 (5)	-0.003 (4)
C47	0.033 (5)	0.029 (4)	0.057 (6)	0.010(4)	0.011 (4)	0.013 (4)
C48	0.052 (6)	0.033 (5)	0.033 (5)	0.015 (4)	0.014 (4)	0.006 (4)
C49	0.051 (6)	0.037 (5)	0.040(6)	0.000 (5)	0.018 (5)	0.005 (4)
C50	0.063 (7)	0.052 (6)	0.048 (6)	0.007 (5)	0.008 (5)	0.012 (5)

C51	0.117 (10)	0.030(6)	0.076 (8)	0.018 (6)	0.033 (7)	0.015 (5)
C52	0.088 (8)	0.060(7)	0.046 (7)	-0.013 (6)	-0.006(6)	-0.005 (5)
C53	0.061 (6)	0.049 (6)	0.051 (6)	0.002 (5)	0.013 (5)	0.009 (5)
C54	0.044 (5)	0.061 (6)	0.035 (5)	0.006 (5)	0.010(4)	0.004 (4)
C55	0.055 (6)	0.061 (6)	0.037 (5)	0.019 (5)	0.013 (5)	0.020 (5)
C56	0.062(6)	0.076 (7)	0.054(6)	0.025 (5)	0.029 (5)	0.028 (5)
C57	0.096(8)	0.067 (7)	0.079 (8)	0.027 (6)	0.035 (7)	0.025 (6)
C58	0.074 (7)	0.073 (7)	0.053 (7)	0.024(6)	0.025 (6)	0.031 (5)
C59	0.056 (6)	0.100(8)	0.076 (7)	0.041 (6)	0.044 (6)	0.047 (6)
C60	0.073 (7)	0.084(7)	0.064(7)	0.045 (6)	0.025 (6)	0.027(6)
C61	0.033 (5)	0.037 (5)	0.041 (5)	0.006 (4)	0.013 (4)	0.007 (4)
C62	0.043 (5)	0.038 (5)	0.034 (5)	0.004(4)	0.007 (4)	0.004(4)
C63	0.052(6)	0.055 (6)	0.046 (6)	0.013 (5)	0.010 (5)	-0.005 (5)
C64	0.071 (7)	0.079 (8)	0.048 (7)	-0.009(6)	0.028 (6)	-0.021 (6)
C65	0.085(8)	0.053 (6)	0.046 (6)	0.018 (6)	0.022 (6)	0.013 (5)
C66	0.057 (6)	0.048 (5)	0.035 (5)	0.019 (5)	0.010(5)	0.009(4)
C67	0.039 (5)	0.041 (5)	0.042 (6)	0.010(4)	0.007 (4)	-0.002 (4)
C68	0.032 (5)	0.066 (6)	0.038 (5)	0.005 (5)	0.009(4)	0.017 (5)
C69	0.037 (5)	0.049 (6)	0.038 (5)	0.018 (4)	0.016 (4)	0.011 (4)
C70	0.049 (6)	0.071 (7)	0.056 (7)	0.018 (5)	0.023 (5)	0.030 (5)
C71	0.077 (8)	0.045 (6)	0.089 (9)	0.018 (6)	-0.004(7)	0.015 (6)
C72	0.086(8)	0.038 (6)	0.083 (8)	-0.011 (6)	-0.006 (7)	0.014 (5)
C73	0.053 (6)	0.064(7)	0.048 (6)	-0.016(5)	-0.007(5)	0.020 (5)
C74	0.033 (5)	0.069(6)	0.035 (5)	0.016 (5)	0.020(4)	0.009(4)
C75	0.034 (5)	0.066 (6)	0.036 (5)	0.020(4)	0.019 (4)	0.015 (4)
C76	0.069(7)	0.048 (6)	0.040(6)	-0.009(5)	0.016 (5)	0.008 (4)
C77	0.069 (7)	0.056 (6)	0.064(7)	-0.002(5)	0.033 (6)	0.015 (5)
C78	0.049 (6)	0.056 (6)	0.045 (6)	0.014 (5)	0.023 (5)	0.014 (5)
C79	0.124 (9)	0.043 (6)	0.056 (7)	0.019 (6)	0.053 (6)	0.012 (5)
C80	0.110(8)	0.047 (6)	0.043 (6)	0.014 (5)	0.041 (6)	0.004 (5)
O9	0.096(8)	0.065 (7)	0.053 (7)	0.024(6)	-0.009(6)	0.006(6)
O10	0.094(8)	0.065 (7)	0.075 (8)	-0.006(6)	0.015 (7)	-0.006 (6)
C81	0.127 (11)	0.108 (11)	0.080 (10)	0.022 (9)	0.009(8)	0.043 (8)
C82	0.124 (12)	0.111 (12)	0.100 (12)	0.018 (9)	0.005 (9)	-0.003 (9)
Geometric par	rameters (Å, °)					
Br1—C12		1.907 (8)	C33-	—Н33	0.9	300
Br2—C10		1.902 (8)		–Н34А	0.9	700
Br3—C32		1.903 (7)	C34-	–Н34В	0.9	700
Br4—C30		1.920 (8)	C35-	-C40	1.4	40 (11)
Br5—C50		1.902 (9)	C35-	-C36		18 (11)
Br6—C52		1.911 (9)		—H35		800
Br7—C70		1.872 (9)		—C37		37 (12)
Br8—C72		1.892 (9)		–Н36А		700
O1—C22		1.376 (9)		–Н36В		700
O1—H1		0.8200		-C38		50 (14)
O2—C38		1.429 (11)		–Н37А		700
O2—H2		0.8200		–Н37В		700

O3—C2	1.353 (9)	C38—C39	1.513 (13)
O3—H3	0.8200	C38—H38	0.9800
O4—C18	1.425 (10)	C39—C40	1.575 (12)
O4—H4	0.8200	C39—H39A	0.9700
O5—C42	1.359 (9)	C39—H39B	0.9700
O5—H5	0.8200	C40—H40A	0.9700
O6—C58	1.458 (10)	C40—H40B	0.9700
O6—H6	0.8200	C41—C42	1.387 (10)
O7—C62	1.381 (9)	C41—C46	1.405 (10)
O7—H7	0.85 (6)	C41—C47	1.531 (10)
O8—C78	1.419 (9)	C42—C43	1.392 (11)
O8—H8	0.84 (9)	C43—C44	1.382 (11)
N1—C9	1.373 (9)	C43—H43	0.9300
N1—C7	1.467 (9)	C44—C45	1.356 (11)
N1—H1A	0.91 (8)	C44—H44	0.9300
N2—C14	1.468 (9)	C45—C46	1.365 (11)
N2—C15	1.475 (9)	C45—H45	0.9300
N2—C7	1.477 (9)	C46—H46	0.9300
N3—C29	1.394 (9)	C47—H47	0.9800
N3—C27	1.462 (9)	C48—C53	1.352 (11)
N3—H3B	0.91 (8)	C48—C49	1.391 (11)
N4—C27	1.446 (9)	C48—C54	1.506 (10)
N4—C35	1.459 (9)	C49—C50	1.400 (11)
N4—C34	1.465 (9)	C50—C51	1.384 (12)
N5—C49	1.367 (10)	C51—C52	1.355 (13)
N5—C47	1.470 (9)	C51—H51	0.9300
N5—H5B	0.90 (6)	C52—C53	1.390 (12)
N6—C47	1.462 (9)	C53—H53	0.9300
N6—C54	1.464 (9)	C54—H54A	0.9700
N6—C55	1.485 (9)	C54—H54B	0.9700
	1.376 (10)		
N7—C69	` '	C55—C60	1.480 (11)
N7—C67	1.460 (9)	C55—C56	1.493 (10)
N7—H7B	0.90 (6)	C55—H55	0.9800
N8—C74	1.463 (9)	C56—C57	1.541 (11)
N8—C67	1.469 (9)	C56—H56A	0.9700
N8—C75	1.513 (9)	C56—H56B	0.9700
C1—C6	1.386 (10)	C57—C58	1.460 (11)
C1—C2	1.411 (11)	C57—H57A	0.9700
C1—C7	1.529 (10)	C57—H57B	0.9700
C2—C3	1.403 (11)	C58—C59	1.498 (11)
C3—C4	1.378 (12)	C58—H58	0.9800
С3—Н3А	0.9300	C59—C60	1.521 (11)
C4—C5	1.367 (12)	C59—H59A	0.9700
C4—H4A	0.9300	C59—H59B	0.9700
C5—C6	1.361 (11)	C60—H60A	0.9700
C5—H5A	0.9300	C60—H60B	0.9700
C6—H6A	0.9300	C61—C66	1.385 (10)
C7—H7A	0.9800	C61—C62	1.385 (10)
C8—C13	1.379 (10)	C61—C67	1.529 (10)

C8—C9	1.411 (10)	C62—C63	1.365 (11)
C8—C14	1.498 (10)	C63—C64	1.400 (12)
C9—C10	1.395 (10)	C63—H63	0.9300
C10—C11	1.375 (10)	C64—C65	1.351 (12)
C11—C12	1.343 (11)	C64—H64	0.9300
C11—H11	0.9300	C65—C66	1.372 (11)
C12—C13	1.387 (11)	C65—H65	0.9300
C13—H13	0.9300	C66—H66	0.9300
C14—H14A	0.9700	C67—H67	0.9800
C14—H14B	0.9700	C68—C73	1.394 (11)
C15—C20	1.455 (11)	C68—C69	1.421 (10)
C15—C16	1.515 (10)	C68—C74	1.502 (11)
C15—H15	0.9800	C69—C70	1.381 (11)
C16—C17	1.538 (11)	C70—C71	1.406 (12)
C16—H16A	0.9700	C71—C72	1.353 (12)
C16—H16B	0.9700	C71—H71	0.9300
C17—C18	1.453 (12)	C72—C73	1.403 (12)
C17—H17A	0.9700	C73—H73	0.9300
C17—H17B	0.9700	C74—H74A	0.9700
C18—C19	1.505 (11)	C74—H74B	0.9700
C18—H18	0.9800	C75—C76	1.477 (10)
C19—C20	1.508 (11)	C75—C80	1.503 (11)
C19—H19A	0.9700	C75—H75	0.9800
C19—H19B	0.9700	C76—C77	1.506 (10)
C20—H20A	0.9700	C76—H76A	0.9700
C20—H20B	0.9700	C76—H76B	0.9700
C21—C22	1.398 (11)	C77—C78	1.518 (11)
C21—C26	1.411 (10)	C77—H77A	0.9700
C21—C27	1.530 (10)	C77—H77B	0.9700
C22—C23	1.364 (11)	C78—C79	1.476 (10)
C23—C24	1.375 (12)	C78—H78	0.9800
C23—H23	0.9300	C79—C80	1.510 (11)
C24—C25	1.351 (12)	C79—H79A	0.9700
C24—H24	0.9300	C79—H79B	0.9700
C25—C26	1.361 (11)	C80—H80A	0.9700
C25—H25	0.9300	C80—H80B	0.9700
C26—H26	0.9300	O9—C81	1.425 (10)
C27—H27	0.9800	O9—H9	0.8200
C28—C33	1.371 (10)	O10—C82	1.427 (9)
C28—C29	1.392 (10)	O10—H10	0.8200
C28—C34	1.526 (10)	C81—H81A	0.9600
C29—C30	1.374 (10)	C81—H81B	0.9600
C30—C31	1.380 (10)	C81—H81C	0.9600
C31—C32	1.367 (11)	C82—H82A	0.9600
C31—H31	0.9300	C82—H82B	0.9600
C32—C33	1.360 (11)	C82—H82C	0.9600
C22—O1—H1	109.5	С38—С39—Н39В	109.2
C38—O2—H2	109.5	С40—С39—Н39В	109.2
С2—О3—Н3	109.5	Н39А—С39—Н39В	107.9

C18—O4—H4	109.5	C35—C40—C39	112.6 (9)
C42—O5—H5	109.5	C35—C40—H40A	109.1
C58—O6—H6	109.5	C39—C40—H40A	109.1
C62—O7—H7	110 (7)	C35—C40—H40B	109.1
C78—O8—H8	131 (7)	C39—C40—H40B	109.1
C9—N1—C7	117.4 (6)	H40A—C40—H40B	107.1
C9—N1—H1A	120 (6)	C42—C41—C46	118.5 (8)
C7—N1—H1A	109 (6)	C42—C41—C47	119.9 (7)
C14—N2—C15	115.1 (6)	C46—C41—C47	121.6 (7)
C14—N2—C7	109.9 (6)	O5—C42—C41	122.8 (8)
C15—N2—C7	117.2 (6)	O5—C42—C43	117.9 (7)
C29—N3—C27	117.7 (6)	C41—C42—C43	119.3 (8)
C29—N3—H3B	126 (6)	C44—C43—C42	120.6 (8)
C27—N3—H3B	108 (6)	C44—C43—H43	119.7
C27—N4—C35	117.6 (6)	C42—C43—H43	119.7
C27—N4—C34	110.5 (6)	C45—C44—C43	120.1 (8)
C35—N4—C34	113.2 (6)	C45—C44—H44	120.0
C49—N5—C47	117.2 (7)	C43—C44—H44	120.0
C49—N5—H5B	125 (6)	C44—C45—C46	120.4 (8)
C47—N5—H5B	109 (6)	C44—C45—H45	119.8
C47—N6—C54	109.0 (6)	C46—C45—H45	119.8
C47—N6—C55	115.4 (6)	C45—C46—C41	121.0 (8)
C54—N6—C55	117.2 (6)	C45—C46—H46	119.5
C69—N7—C67	119.5 (7)	C41—C46—H46	119.5
C69—N7—H7B	115 (6)	N6—C47—N5	110.7 (6)
C67—N7—H7B	121 (6)	N6—C47—C41	110.5 (6)
C74—N8—C67	109.2 (6)	N5—C47—C41	114.2 (6)
C74—N8—C75	116.9 (6)	N6—C47—H47	107.0
C67—N8—C75	111.9 (6)	N5—C47—H47	107.0
C6—C1—C2	117.3 (8)	C41—C47—H47	107.0
C6—C1—C7	121.4 (7)	C53—C48—C49	123.2 (8)
C2—C1—C7	121.3 (7)	C53—C48—C54	118.8 (8)
O3—C2—C3	119.6 (8)	C49—C48—C54	118.0 (7)
O3—C2—C1	120.9 (8)	N5—C49—C48	121.1 (8)
C3—C2—C1	119.5 (9)	N5—C49—C50	121.8 (8)
C4—C3—C2	119.3 (9)	C48—C49—C50	117.0 (8)
C4—C3—H3A	120.3	C51—C50—C49	121.0 (9)
C2—C3—H3A	120.3	C51—C50—Br5	119.0 (8)
C5—C4—C3	122.1 (9)	C49—C50—Br5	120.0 (7)
C5—C4—H4A	119.0	C52—C51—C50	118.7 (9)
C3—C4—H4A	119.0	C52—C51—H51	120.7
C6—C5—C4	118.1 (9)	C50—C51—H51	120.7
C6—C5—H5A	121.0	C51—C52—C53	122.7 (9)
C4—C5—H5A	121.0	C51—C52—Br6	118.0 (8)
C5—C6—C1	123.7 (8)	C53—C52—Br6	119.3 (8)
C5—C6—H6A	118.2	C48—C53—C52	117.4 (9)
C1—C6—H6A	118.2	C48—C53—H53	121.3
N1—C7—N2	111.0 (6)	C52—C53—H53	121.3
N1—C7—C1	113.9 (6)	N6—C54—C48	116.7 (7)

N2—C7—C1	110.4 (6)	N6—C54—H54A	108.1
N1—C7—H7A	107.1	C48—C54—H54A	108.1
N2—C7—H7A	107.1	N6—C54—H54B	108.1
C1—C7—H7A	107.1	C48—C54—H54B	108.1
C13—C8—C9	118.5 (8)	H54A—C54—H54B	107.3
C13—C8—C14	121.4 (7)	C60—C55—N6	117.7 (7)
C9—C8—C14	119.7 (7)	C60—C55—C56	110.4 (7)
N1—C9—C10	121.9 (7)	N6—C55—C56	110.4 (7)
N1—C9—C8	119.4 (7)	C60—C55—H55	105.9
C10—C9—C8	118.5 (7)	N6—C55—H55	105.9
C11—C10—C9	121.3 (8)	C56—C55—H55	105.9
C11—C10—Br2	119.9 (6)	C55—C56—C57	112.5 (7)
C9—C10—Br2	118.8 (6)	C55—C56—H56A	109.1
C12—C11—C10	120.0 (8)	C57—C56—H56A	109.1
C12—C11—H11	120.0	C55—C56—H56B	109.1
C10—C11—H11	120.0	C57—C56—H56B	109.1
C11—C12—C13	120.5 (8)	H56A—C56—H56B	107.8
C11—C12—Br1	119.7 (7)	C58—C57—C56	109.9 (8)
C13—C12—Br1	119.7 (7)	C58—C57—H57A	109.7
C8—C13—C12	121.2 (8)	C56—C57—H57A	109.7
C8—C13—H13	119.4	C58—C57—H57B	109.7
C12—C13—H13	119.4	C56—C57—H57B	109.7
N2—C14—C8	115.0 (6)	H57A—C57—H57B	108.2
N2—C14—H14A	108.5	O6—C58—C57	109.3 (8)
C8—C14—H14A	108.5	O6—C58—C59	109.6 (7)
N2—C14—H14B	108.5	C57—C58—C59	111.9 (8)
C8—C14—H14B	108.5	O6—C58—H58	108.6
H14A—C14—H14B	107.5	C57—C58—H58	108.6
C20—C15—N2	119.7 (7)	C59—C58—H58	108.6
C20—C15—C16	112.3 (7)	C58—C59—C60	109.7 (7)
N2—C15—C16	111.3 (7)	C58—C59—H59A	109.7
C20—C15—H15	103.8	C60—C59—H59A	109.7
N2—C15—H15	103.8	C58—C59—H59B	109.7
C16—C15—H15	103.8	C60—C59—H59B	109.7
C15—C16—C17	110.1 (7)	H59A—C59—H59B	108.2
C15—C16—H16A	109.6	C55—C60—C59	110.6 (8)
C17—C16—H16A	109.6	C55—C60—H60A	109.5
C15—C16—H16B	109.6	C59—C60—H60A	109.5
C17—C16—H16B	109.6	C55—C60—H60B	109.5
H16A—C16—H16B	108.1	C59—C60—H60B	109.5
C18—C17—C16	114.1 (8)	H60A—C60—H60B	108.1
C18—C17—H17A	108.7	C66—C61—C62	117.7 (7)
C16—C17—H17A	108.7	C66—C61—C67	121.9 (7)
C18—C17—H17B	108.7	C62—C61—C67	120.4 (7)
C16—C17—H17B	108.7	C63—C62—O7	115.8 (8)
H17A—C17—H17B	107.6	C63—C62—C61	122.1 (8)
O4—C18—C17	110.9 (8)	O7—C62—C61	122.0 (7)
O4—C18—C19	112.4 (8)	C62—C63—C64	117.8 (9)
C17—C18—C19	112.2 (8)	C62—C63—H63	121.1

O4—C18—H18	107.0	C64—C63—H63	121.1
C17—C18—H18	107.0	C65—C64—C63	121.5 (9)
C19—C18—H18	107.0	C65—C64—H64	119.3
C18—C19—C20	112.1 (8)	C63—C64—H64	119.3
C18—C19—H19A	109.2	C64—C65—C66	119.4 (9)
C20—C19—H19A	109.2	C64—C65—H65	120.3
C18—C19—H19B	109.2	C66—C65—H65	120.3
C20—C19—H19B	109.2	C65—C66—C61	121.3 (8)
H19A—C19—H19B	107.9	C65—C66—H66	119.4
C15—C20—C19	113.3 (8)	C61—C66—H66	119.4
C15—C20—H20A	108.9	N7—C67—N8	110.6 (6)
C19—C20—H20A	108.9	N7—C67—C61	113.9 (7)
C15—C20—H20B	108.9	N8—C67—C61	110.1 (6)
C19—C20—H20B	108.9	N7—C67—H67	107.3
H20A—C20—H20B	107.7	N8—C67—H67	107.3
C22—C21—C26	115.8 (8)	C61—C67—H67	107.3
C22—C21—C27	120.8 (8)	C73—C68—C69	120.9 (8)
C26—C21—C27	123.3 (8)	C73—C68—C74	121.4 (8)
C23—C22—O1	118.7 (8)	C69—C68—C74	117.7 (8)
C23—C22—C21	121.3 (9)	N7—C69—C70	121.7 (8)
O1—C22—C21	120.0 (8)	N7—C69—C68	120.4 (7)
C22—C23—C24	120.6 (9)	C70—C69—C68	118.0 (8)
C22—C23—H23	119.7	C69—C70—C71	121.4 (9)
C24—C23—H23	119.7	C69—C70—Br7	121.0 (8)
C25—C24—C23	120.1 (9)	C71—C70—Br7	117.6 (7)
C25—C24—H24	119.9	C72—C71—C70	119.4 (9)
C23—C24—H24	119.9	C72—C71—H71	120.3
C24—C25—C26	120.0 (9)	C70—C71—H71	120.3
C24—C25—H25	120.0	C71—C72—C73	122.0 (9)
C26—C25—H25	120.0	C71—C72—Br8	121.5 (8)
C25—C26—C21	122.2 (9)	C73—C72—Br8	116.6 (8)
C25—C26—H26	118.9	C68—C73—C72	118.3 (8)
C21—C26—H26	118.9	C68—C73—H73	120.9
N4—C27—N3	111.8 (6)	C72—C73—H73	120.9
N4—C27—C21	110.5 (6)	N8—C74—C68	114.0 (6)
	` ′	N8—C74—C08 N8—C74—H74A	108.7
N3—C27—C21	113.3 (6)		
N4—C27—H27 N3—C27—H27	107.0	C68—C74—H74A	108.7
C21—C27—H27	107.0	N8—C74—H74B	108.7
	107.0	C68—C74—H74B	108.7
C33—C28—C29	120.0 (7)	H74A—C74—H74B	107.6
C33—C28—C34	121.2 (7)	C76—C75—C80	109.0 (7)
C29—C28—C34	118.8 (7)	C76—C75—N8	109.5 (6)
C30—C29—C28	117.7 (7)	C80—C75—N8	115.8 (7)
C30—C29—N3	122.4 (7)	C76—C75—H75	107.4
C28—C29—N3	119.9 (7)	C80—C75—H75	107.4
C29—C30—C31	122.6 (7)	N8—C75—H75	107.4
C29—C30—Br4	119.1 (6)	C75—C76—C77	113.1 (7)
C31—C30—Br4	118.2 (6)	C75—C76—H76A	109.0
C32—C31—C30	117.9 (8)	C77—C76—H76A	109.0

G00 G01 YV01	101.0		G=4 G=4 Y=4D		109.0	
C32—C31—H31	121.0			C75—C76—H76B		
C30—C31—H31	121.0		C77—C76—H76B		109.0 107.8	
C33—C32—C31	121.1 (8)			H76A—C76—H76B		
C33—C32—Br3	119.8 (7)		C76—C77—C78		111.8 (7)	
C31—C32—Br3	119.1 (6)		C76—C77—H77A		109.3	
C32—C33—C28	120.8 (8)		C78—C77—H77A		109.3	
C32—C33—H33	119.6		C76—C77—H77B		109.3	
C28—C33—H33	119.6		С78—С77—Н77В		109.3	
N4—C34—C28	115.3 (6)		H77A—C77—H77B		107.9	
N4—C34—H34A	108.5		O8—C78—C79	O8—C78—C79		
C28—C34—H34A	108.5		O8—C78—C77	O8—C78—C77		
N4—C34—H34B	108.5		C79—C78—C77		109.3 (7)	
C28—C34—H34B	108.5		O8—C78—H78		108.2	
H34A—C34—H34B	107.5		C79—C78—H78		108.2	
C40—C35—N4	120.3 (8)		C77—C78—H78			
C40—C35—C36	110.4 (8)		C78—C79—C80			
N4—C35—C36	111.1 (7)		C78—C79—H79A		109.3	
C40—C35—H35	104.5		C80—C79—H79A		109.3	
N4—C35—H35	104.5		С78—С79—Н79В		109.3	
C36—C35—H35	104.5		С80—С79—Н79В		109.3	
C35—C36—C37	111.7 (8)		H79A—C79—H79B		108.0	
C35—C36—H36A	109.3		C75—C80—C79		111.4 (8)	
C37—C36—H36A	109.3		C75—C80—H80A		109.3	
C35—C36—H36B	109.3		C79—C80—H80A		109.3	
C37—C36—H36B	109.3		C75—C80—H80B		109.3	
H36A—C36—H36B	107.9		C79—C80—H80B		109.3	
C38—C37—C36	112.1 (9)		H80A—C80—H80B		108.0	
C38—C37—H37A	109.2		C81—O9—H9		109.5	
C36—C37—H37A	109.2		C82—O10—H10		109.5	
C38—C37—H37B	109.2		O9—C81—H81A		109.5	
C36—C37—H37B	109.2		O9—C81—H81B		109.5	
H37A—C37—H37B	107.9		H81A—C81—H81B		109.5	
O2—C38—C37	116.8 (11)		O9—C81—H81C		109.5	
O2—C38—C39	108.2 (10)		H81A—C81—H81C		109.5	
C37—C38—C39	112.4 (9)		H81B—C81—H81C		109.5	
O2—C38—H38	106.3		O10—C82—H82A		109.5	
C37—C38—H38 C39—C38—H38	106.3 106.3		O10—C82—H82B H82A—C82—H82B		109.5 109.5	
C38—C39—C40	112.2 (9)		O10—C82—H82C		109.5	
C38—C39—H39A	109.2		H82A—C82—H82C		109.5	
C40—C39—H39A	109.2		H82B—C82—H82C		109.5	
Hydrogen-bond geometry (Å, °)						
<i>D</i> —H··· <i>A</i>		<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>	
O1—H1···N4		0.82	1.93	2.643 (8)	145	
N1—H1A···Br2		0.91 (8)	2.69 (7)	3.081 (7)	107 (6)	
O2—H2···O9 ⁱ		0.82	1.85 2.660 (15)		167	
02—H2···O9 03—H3···N2						
O3—H3N2		0.82	1.93	2.661 (9)	148	

N3—H3B···Br4	0.91 (8)	2.77 (8)	3.097 (7)	103 (5)
O4—H4···O6 ⁱⁱ	0.82	2.13	2.721 (10)	129
O5—H5···N6	0.82	1.95	2.650 (9)	143
N5—H5B···Br5	0.90(6)	2.77 (8)	3.110 (7)	104 (6)
O6—H6···O8 ⁱⁱⁱ	0.82	1.95	2.735 (9)	160
O7—H7···N8	0.85 (6)	1.99 (8)	2.717 (9)	142 (6)
N7—H7B···Br7	0.90(6)	2.61 (8)	3.100 (7)	115 (6)
O8—H8···O2 ^{iv}	0.84 (9)	1.90 (8)	2.713 (11)	162 (8)
O9—H9···O10 ^v	0.82	2.18	2.94 (2)	156

Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) -x+1, -y, -z+2; (iv) x-1, y, z+1; (v) x-1, y, z.

Fig. 1

