Ashok R. Dinasarapu

4101 Azalea Garden Drive, Dunwoody (Atlanta), 30338 Email: <u>darphd@gmail.com</u>, <u>ashok.reddy.dinasarapu@emory.edu</u> Cell: 619-342-5126

SUMMARY

Highly motivated bioinformatics scientist with background in computing & biology, and currently responsible for

- Pre-process, analyze, and interpretation of high volumes of Microarrays, Next Generation Sequencing (NGS) and Proteomics (LC-MS/MS) data
- Development and validation of bioinformatics pipelines with real-world samples
- Technical assistance to other scientists in the group

PROFESSIONAL EXPERIENCE

SCIENTIST, BIOINFORMATICS (09/2017 – till date)

Department of Human Genetics, Emory University, Atlanta, GA

Description:

Application of existing and novel algorithms to analyze WES, WGS, RNA-seq, 16S rRNA and proteomics (label free and TMT quantification) data from individuals living with

- Lesh-Nyhan disease (Rare genetic disease; Proteomics; Fibroblasts/iPSC/NPC)
- Neuromuscular disease (Variant effects on Splicing defects)
- Head & Neck Cancer (HPV+ vs HPV-, WES and RNA-seq)
- HIV-1 (Substance use; Microbiome/16S rRNA)
- 3q29 deletion (Genotyping and gene expression studies of NPC)

SENIOR BIOINFORMATICS ANALYST (08/2016 - 09/2017)

Department of Human Genetics, Emory University, Atlanta, GA

Description:

Application of existing and novel algorithms to analyze NGS and microarray data sets and, communicate analysis results to industry clients and university collaborators, and clinicians.

12/04/2019

SENIOR BIOINFORMATICS ANALYST (09/2015 - 08/2016)

Emory Vaccine Center, Emory University, Atlanta, GA

Description:

Integration of gene expression and immunological data of flu vaccination, with or without adjuvant at various time-points.

POSTDOCTORAL ASSOCIATE (11/2013 - 09/2015)

Dept., of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL

Description:

Performed integrative analysis of gene expression and immune/clinical data from substance use HIV-infected young adults.

POSTDOCTORAL FELLOW (03/2008 - 11/2013)

Dept., of Bioengineering, University of California San Diego, CA

Description:

Integrate transcriptomic and lipidomic data sets obtained from mouse macrophages stimulated with various ligands. Design and develop databases, applications and semantic data exchange formats to store and disseminate biological data.

EDUCATION

Ph.D Biochemistry/Bioinformatics University of Hyderabad, India 5/2003-5/2007 M.Tech Biotechnology Anna University, India 7/2000-1/2002

PUBLICATIONS

Book Chapters/Journal Reviews

- 1. Bioinformatics and systems biology of the lipidome. S Subramaniam, E Fahy, S Gupta, M Sud, RW Byrnes, D Cotter, <u>AR Dinasarapu</u>, MR Maurya (2011). *Chemical reviews*, 111 (10), 6452-6490.
- 2. Omics approaches to macrophage biology. S Gupta, <u>AR Dinasarapu</u>, MJ Gersten, MR Maurya, S Subramaniam. (2014). *Macrophages: Biology and Role in the Pathology of Diseases*, 587-615.
- 3. Biological data integration and dissemination on semantics web a perspective. <u>AR</u> <u>Dinasarapu</u>, S Gupta (2015). *Journal of Bioinformatics and Intelligent control*, 3 (4), 273-277.

Journal Research Papers

- 4. Rectal microbiome composition correlates with humoral immunity to HIV-1 in vaccinated rhesus macaques. Elizaldi SR, Verma A, Rolston M, <u>Dinasarapu AR</u> et al. (2019). *mSphere* (accepted).
- 5. Impact of Th1 CD4 TFH skewing on antibody responses to an HIV-1 vaccine in Rhesus Macaques. Verma A, Schmidt B, Nguyen N, Elizaldi S, Walter K, Beck Z, Trinh H, Dinasarapu AR et al. (2019). *Journal of Virology* (accepted).
- 6. Modeling DYT1 Dystonia Using Induced Pluripotent Stem Cells. AR Dinasarapu, DJ Sutcliffe, ME Zwick, HA Jinnah (2018). *Annals Of Neurology* 84, S198-S199.
- 7. Disease Modeling of Lesch-Nyhan Disease Using Induced Pluripotent Stem Cells. D Sutcliffe, A Dinasarapu, M Zwick and H Jinnah (2018). In *Movement Disorders* (Vol. 33, pp. S351-S351). 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY.
- 8. Statistical insights into major human muscular diseases. S Gupta, SM Kim, Y Wang, <u>AR Dinasarapu</u>, S Subramaniam (2014). *Human molecular genetics*, 23(14): 3772-8.
- 9. A combined omics study on activated macrophages—enhanced role of STATs in apoptosis, immunity and lipid metabolism. <u>AR Dinasarapu</u>, S Gupta, MR Maurya, E Fahy, J Min, M Sud, MJ Gersten, CK Glass, S Subramaniam (2013). *Bioinformatics*, 29 (21), 2735-2743.
- 10. Analysis of inflammatory and lipid metabolic networks across RAW264. 7 and thioglycolate-elicited macrophages. MR Maurya, S Gupta, X Li, E Fahy, <u>AR Dinasarapu</u>, M Sud, HA Brown, CK Glass, RC Murphy, DW Russell, EA Dennis, S Subramaniam (2013). *Journal of lipid research*, 54 (9), 2525-2542.
- 11. MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 signaling. R Dontula, <u>A Dinasarapu</u>, C Chetty, P Pannuru, E Herbert, H Ozer, SS Lakka (2013). *Genes & cancer*, 4(7-8):285-96.
- 12. CMAP: Complement Map Database. K Yang, <u>AR Dinasarapu</u>, ES Reis, RA DeAngelis, D Ricklin, S Subramaniam, JD Lambris (2013) *Bioinformatics*, 29 (14), 1832-1833.
- 13. Signaling gateway molecule pages—a data model perspective. AR Dinasarapu, B Saunders, I Ozerlat, K Azam, S Subramaniam (2011). *Bioinformatics*, 27 (12), 1736-1738.
- 14. Comparative analysis of core promoter region: Information content from mono and dinucleotide substitution matrices. <u>DA Reddy</u>, B Prasad, CK Mitra (2006). *Computational biology and chemistry*, 30 (1), 58-62.
- 15. Comparative analysis of transcription start sites using mutual information. <u>DA Reddy</u>, CK Mitra (2006). *Genomics, proteomics & bioinformatics*, 4 (3), 189-195.
- 16. Functional classification of transcription factor binding sites: information content as a metric. <u>DA Reddy</u>, B Prasad, CK Mitra (2006). *Journal of Integrative Bioinformatics*, 3 (1), 20.

Research Papers [under preparation]

- 17. Systems biology approach predicts immune-modulatory role of recreational marijuana use in HIV-infected young adults. Dinasarapu AR et al.
- 18. Induced pluripotent stem cells for Lesch-Nyhan disease. Sutcliffe DJ, <u>Dinasarapu AR</u> et. al.
- 19. Landscape of genetic alterations in oropharyngeal squamous cell carcinoma based on RNA-seq and WES analysis of FFPE samples. Saba Nabil, Dinasarapu AR et al.

TECHNICAL SKILLS

Computing

- Proficiency in R, Python, Perl, Java and UNIX/Linux (Shell scripting)
- Experience with high-performance Linux clusters and Cloud computing

Bioinformatics

- NGS de-multiplexing, pre-/post-mapping quality control analysis
- Genome/transcriptome mapping and assembly
- WGS/WES: Variant calling, quality control and annotations
- 16s rRNA/ITS: Microbiome diversity and taxonomic data analysis
- RNA-seq: Differential expression, alternative splicing and variant calling
- ATAC-seg to assess genome-wide chromatin accessibility
- 10X Genomics (scRNA-seq and scATAC-seq) pipelines
- Mass spectroscopy (proteomics and lipidomic) data analysis
- SNP/Genotyping arrays Infinium array data analysis
- Network and clustering analysis.
- Pathway and Gene Set Enrichment analysis

Immunology, Biochemistry/Molecular biology

• Working experience in gene cloning, protein expression and purification.

COMPUTING SCRIPTS & TEACHING

R | Linux shell | Python https://bitbucket.org/adinasarapu
Bioinformatics teaching https://adinasarapu.github.io/teaching/