Федеральное государственное образовательное бюджетное учреждениевысшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РФ»

Департамент анализа данных и машинного обучения Отчет по практике №5

по дисциплине «эконометрика»

Студента группы ПМ23-1

Факультета информационных технологий и анализа больших данных

Тищенко И.С.

Преподаватель

Кудрявцев К.Н.

Задание (а). Тест Грейнджера на причинно-следственную связь Цель: Проверить, является ли x_t (расходы на рекламу) причиной y_t (объём продаж), используя лаги 1–3.

Результаты теста:

- Для $X \to Y$:

При лагах 1,2 и 3 причинность подтверждается (p < 0.05)

Пример вывода для лага 1:

Лаг 1: Причинность $X \to Y$ подтверждается F=18.933 p=0.000

- Для $Y \to X$:

При всех лагах причинность не обнаружена (p > 0.05).

Вывод: Расходы на рекламу (x_t) влияют на объём продаж (y_t) с лагом трех периодов. Обратная связь не выявлена.

Задание (б). Оценка регрессии $y_t=\beta_0+\beta_1x_t+\beta_2x_{t-1}+\beta_3x_{t-2}+\varepsilon_t$ Модель:

$$y_t \stackrel{\dots}{=} 21.6889 - 0.0110x_t + 0.8305x_{t-1} + 0.4149x_{t-2} + \varepsilon_t$$

Ключевые метрики:

- $-R^2 = 0.767$ (высокая объясняющая способность).
- Коэффициент при x_t незначим (p = 0.813).
- Тест Дарбина-Уотсона: DW = 1.117 (автокорреляция обнаружена).

Интерпретация:

- Значимое влияние оказывают расходы на рекламу с лагами 1 и 2 периода.
- Наличие автокорреляции требует использования НАС-ошибок для корректности стандартных ошибок.

Задание (в). Пересчёт модели без незначимых переменных Молель:

$$y_t = 21.6406 + 0.8316x_{t-1} + 0.4138x_{t-2} + \varepsilon_t$$

Ключевые изменения:

- Исключена незначимая переменная x_t .
- R^2 сохранился на уровне 0.763.
- Тест Дарбина-Уотсона: DW = 1.113 (автокорреляция сохраняется).

Вывод:

Исключение незначимого предиктора не устранило проблему автокорреляции. Необходимо использовать НАС-ошибки.

Задание (г). Модель с лаговой зависимой переменной Модель:

$$y_t \stackrel{\dots}{=} 9.9072 + 0.8181x_{t-1} + 0.5021y_{t-1} + \varepsilon_t$$

Ключевые особенности:

- Добавлен лаг зависимой переменной y_{t-1} (инерционность процесса).
- Тест Дарбина-Уотсона некорректен из-за наличия y_{t-1} в модели.
- Альтернативные тесты:
 - Тест Бройша-Годфри: $LM=3.000,\,p=0.223$ (автокорреляция отсутствует).
- Тест Льюнга-Бокса: Для лагов 1–10 p > 0.05 (автокорреляция не обнаружена).

Вывод:

Модель с y_{t-1} корректна, автокорреляция отсутствует. Обычные стандартные ошибки применимы.

Задание (д). Сравнение моделей

Модель	R^2	Автокорреляция	Значимость коэффициентов
(б)	0.767	Есть	1 незначимый
(B)	0.763	Есть	Все значимы
(r)	0.857	Нет	Все значимы

Лучшая модель:

$$y_t = 9.9072 + 0.8181x_{t-1} + 0.5021y_{t-1} + \varepsilon_t$$

Обоснование:

- Наивысший $R^2 = 0.857$.
- Отсутствие автокорреляции (подтверждено тестами Бройша-Годфри и Льюнга-Бокса).
- Все коэффициенты значимы (p < 0.05).

Заключение

- 1. Расходы на рекламу (x_t) влияют на объём продаж (y_t) с лагом до двух периодов.
- 2. Лучшая модель включает лаги x_{t-1} и y_{t-1} , обеспечивая высокую объясняющую способность и отсутствие автокорреляции.
- 3. Для моделей с лаговой зависимой переменной тест Дарбина-Уотсона неприменим; используются альтернативные методы проверки автокорреляции.