ESTEQUIOMETRIA (ELETRÓLISE)

EXERCÍCIOS DE APLICAÇÃO

- 01 (UEL-PR) A carga elétrica necessária para transformar, por eletrólise, 2 mols de íons Cu²⁺ em cobre metálico é igual a:
- a) 1 Faraday.
- b) 2 Faradays.
- c) 3 Faradays.
- d) 4 Faradays.
- e) 5 Faradays.

primeira cuba. Em relação às quantidades e à natureza das substâncias liberadas, respectivamente, no cátodo e no ânodo da segunda cuba, pode-se dizer (massas atômicas (u): H = 1; O = 16; K = 39; Ag = 108; I = 127): a) 39 g de K e 8 g de O ₂ b) 11,2 L (CNTP) H ₂ e 127 g de I ₂ c) 11,2 L (CNTP) H ₂ e 5,6 g de O ₂ d) 39 g de K e 127 g de I ₂ e) 1 g de H ₂ e 254 g de I ₂
03 (UFES-ES) A quantidade de metal depositado pela passagem de 0,4 Faraday através de uma solução de um sal de zinco é igual a: Dado: Zn = 65 a) 13 g b) 43 g c) 74 g d) 26 g e) 3,6 g
04 (E. E. Mauá-SP) No processo de eletrodeposição de prata (Ag°) sobre uma peça metálica imersa em solução aquosa de nitrato de prata (Ag ⁺ NO ₃ ⁻), circulou corrente com intensidade de 2,30 A (1A = 1C/s) durante 7 minutos. Faça um esquema dessa eletrodeposição e determine a massa de Ag° depositada sobre a peça. Adote: 1 F (carga de 1 mol de elétrons) = 96.500 C, Massa atômica da prata = 108u
05 (ITA-SP) Uma cuba eletrolítica com eletrodos de cobre e contendo solução aquosa de Cu(NO ₃) ₂ é ligada em série a outra provida de eletrodos de prata e contendo solução aquosa de AgNO ₃ . Este conjunto de cubas em série é ligado a uma fonte durante certo intervalo de tempo. Nesse intervalo de tempo, um dos eletrodos de cobre teve um incremento de massa de 0,64 g. O incremento de massa em um dos eletrodos da outra célula deve ter sido de: Massas molares (g/mol): Cu = 64; Ag = 108 a) 0,32 g b) 0,54 g c) 0,64 g d) 1,08 g e) 2,16 g
06 (FCC-SP) Admita que o cátodo de uma pilha A seja uma barra de chumbo mergulhada em solução de Pb(NO ₃) ₂ . Quando o aumento de massa for de 2,07g, isso significa que circulou pelo fio: Dado Pb = 207 u a) 0,01 mol de elétrons. b) 0,02 mol de elétrons. c) 0,03 mol de elétrons. d) 0,04 mol de elétrons. e) 0,05 mol de elétrons.
07 (UNIMEP-SP) 19.300 C são utilizados na eletrólise do cloreto de sódio fundido. A massa de sódio produzida será igual a: Dados: 1 F = 96.500 C; massa atômica: Na = 23 u; Cℓ = 35,5 u. a) 1,15 g b) 2,30 g c) 3,60 g d) 4,60 g e) 5.20 g

02 (FEI-SP) Duas cubas eletrolíticas dotadas de eletrodos inertes, ligadas em série, contêm, respectivamente, solução aquosa de AgNO₃ e solução aquosa de KI. Certa quantidade de eletricidade acarreta a deposição de 108 g de prata na

a) 128 g b) 64 g c) 32 g d) 16 g e) 8 g
09 (FAAP-SP) Uma peça de ferro constitui o cátodo de uma célula eletrolítica, que contém uma solução aquosa de íons níquel (Ni ²⁺). Para niquelar a peça, faz-se passar pela célula uma corrente de 19,3 A. Calcule o tempo, em segundos, necessário para que seja depositada, na peça, uma camada de níquel de massa 0,59 g. (Dado: Ni = 59 μ.)
10 (UFS-SE) Numa célula eletrolítica contendo solução aquosa de nitrato de prata flui uma corrente elétrica de 5,0 A durante 9.650 s. Nessa experiência, quantos gramas de prata metálica são obtidos? Ag = 108 u. a) 108 b) 100 c) 54,0 d) 50,0 e) 10,0
11 (ITA-SP) Uma fonte de corrente contínua fornece corrente elétrica a um sistema composto por duas células eletrolíticas, ligadas em série através de um fio condutor. Cada célula é dotada de eletrodos inertes. Uma das células contém somente uma solução aquosa 0,3 molar de NiSO₄ e a outra, apenas uma solução aquosa 0,2 molar de AuCℓ₃. Se durante todo o período da eletrólise as únicas reações que ocorrem nos cátodos são as deposições dos metais, qual das opções corresponde ao valor da relação: massa de níquel depositado/massa de ouro depositado? Dados: Ni = 59 u Au = 197 u a) 0,19 b) 0,45 c) 1,0 d) 2,2 e) 5,0
12 (CESGRANRIIO-RJ) Para a deposição eletrolítica de 11,2 gramas de um metal cuja massa atômica é 112 u, foram necessários 19.300 coulombs. Portanto, o número de oxidação do metal é: Dado: 1 Faraday = 96.500 C a) + 1 b) + 2 c) + 3 d) + 4 e) + 5

08 (UFMG-MG) Na eletrólise (eletrodos inertes), em série de soluções aquosas de Hg(NO₃)₂ e CuSO₄, foram formados

50g de mercúrio metálico no cátodo da primeira cuba. A massa de cobre depositada na segunda cuba é:

Dados: Hg = 200 u; Cu = 64 u

- 13 (ITA-SP) Em relação à reação de oxidorredução representada pela equação: $Zn + 2 Ag^+ \rightarrow Zn + 2 Ag$ são feitas as seguintes afirmações: Dados: $Zn + 2 Ag^+ \rightarrow Zn + 2 Ag$ são feitas as seguintes afirmações: Dados: $Zn + 2 Ag^+ \rightarrow Zn + 2 Ag$ são feitas as
- I. A produção de 1,0 g de prata requer mol de elétrons.
- II. A semi-reação de oxidação é: 2 Ag + 2 e⁻ → 2 Ag⁺
- III. Zinco metálico é mais redutor do que prata metálica.
- a) Somente III é certa.
- b) I e III estão certas.
- c) Todas estão certas.
- d) Somente a afirmação I é certa.
- e) Somente a afirmação II é certa
- 14 (PUC-SP) As massas de cobre depositado e de zinco dissolvido na pilha de Daniel para se obter uma corrente de 0.8A, durante 30 min, são iguais, respectivamente, a: Dados: $Zn \cong 65$ u e $Zn \cong 63.5$
- a) 0,94 g e 0,97 g
- b) 0,23 g e 0,48 g
- c) 0,47 g e 0,97 g
- d) 0,47 g e 0,48 g
- e) 0,23 g e 0,24 g
- 15 (FEI-SP) Durante duas horas passou-se uma corrente elétrica de 1 ampère em uma solução aquosa de NaCℓ. A alternativa que apresenta as substâncias (e suas massas) formadas, respectivamente, no cátodo e ânodo é:

(Massas atômicas: H = 1 u; O = 16 u; Na = 23 u; C ℓ = 35,5 u)

- a) H_2 (0,30 g) e $C\ell_2$ (5,30 g)
- b) Na (1,72 g) e C ℓ_2 (2,65 g)
- c) Na (3,44 g) e O₂ (0,60 g)
- d) H_2 (0,075 g) e $C\ell_2$ (2,65 g)
- e) $C\ell_2$ (2,65 g) e H_2 (0,15 g)
- **16 (UNICAMP-SP)** Em um determinado processo eletrolítico, uma pilha mostrou-se capaz de fornecer $5,0.10^{-3}$ mol de elétrons, esgotando-se depois. (Massa atômica: Cu = 64 u)
- a) Quantas pilhas seriam necessárias para se depositar 0,05 mol de cobre metálico, a partir de uma solução de Cu²+, mantendo-se as mesmas condições do processo eletrolítico?
- b) Quantos gramas de cobre seriam depositados nesse caso?
- 17 (UNICAMP-SP) Quando o acumulador dos automóveis (bateria de chumbo) fornece uma corrente elétrica, ocorre uma reação química representada por: Pb(s) + PbO₂(s) + 4 H⁺(aq) + 2 SO₄²⁻(aq) \rightarrow 2 PbSO₄(s) + 2 H₂O(ℓ)
- a) Quais as variações do número de oxidação do chumbo nesta reação?
- b) O anúncio de uma bateria de automóvel dizia que a mesma poderia fornecer 50 A h. Neste caso, quantos gramas de chumbo metálico seriam consumidos?

Dados:

- Constante de Faraday, F = 96.500 C/mol. Lembre-se de que a constante de Faraday é igual à constante de Avogadro multiplicada pela carga do elétron.
- Massa molar do chumbo = 207 g/mol
- 1 Ah = 3.600 C

18 O volume de hidrogênio em mililitros (mL) nas CNTP, obtido na eletrólise (eletrodos inertes) de uma solução aquosa de soda cáustica, durante 8 minutos e corrente contínua de 0,1 A, é aproximadamente:

Dados: $H_2 = 2 \text{ g/mol}$; $1 \text{ F} \cong 96.000 \text{ C}$

- a) 22,4
- b) 11,2
- c) 5,6
- d) 2,8
- e) 1,4
- 19 (IME-RJ) Num processo de niquelação, o níquel é depositado eletroliticamente a partir de meio litro de uma solução 0,1 M de NiSO₄. Passando uma corrente constante de 1 A através da solução, teremos a deposição total do níquel exatamente após: Dado: F = 96.500 C
- a) 160,8 s
- b) 160,8 min
- c) 964,8 min
- d) 1.608,8 min
- 20 (UERJ-RJ) Considere a célula eletrolítica abaixo.

Eletrolisando-se, durante 5 minutos, a solução de $CuSO_4$ com uma corrente elétrica de 1,93 ampère, verificou-se que a massa de cobre metálico depositada no cátodo foi de 0,18 g. Em função dos valores apresentados acima, o rendimento do processo foi igual a: Dado: Cu = 63,5 u.

- a) 94,5%
- b) 96,3%
- c) 97,2%
- d) 98,5%

21 (FCC-SP) Na eletrólise de ferrocianeto de potássio, realizada entre eletrodos de Pt, ocorre no ânodo o processo:

$$Fe(CN)_6^{4-} \rightarrow Fe(CN)_6^{3-} + 1e^-$$

Qual a carga que deve circular entre os eletrodos para que se formem 2 mols de íons Fe(CN)₆³⁻?

Dado: 1 Faraday = 96.500 C

- a) 3 coulombs
- b) 4 coulombs
- c) 6 coulombs
- d) 1,93. 105 coulombs
- e) 5,79. 10⁵ coulombs
- **22 (PUC-SP)** Estudando a deposição eletrolítica em série dos íons A^{x+} , B^{y+} e C^{z+} , foi verificado que a passagem de 4 mols de elétrons pelo circuito provocava a deposição de 4 mols de A, 1 mol de B e 2 mols de C. Os valores de x, y e z são, respectivamente:
- a) 4, 2 e 4
- b) 2, 4 e 1
- c) 1, 4 e 2
- d) 1, 2 e 4
- e) 4, 1 e 2
- 23 (UFRGS-RS) Na obtenção eletrolítica de cobre a partir de uma solução aquosa de sulfato cúprico, ocorre a seguinte semi-reação catódica.

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu^{\circ}(s)$$

Para depositar 6,35 g de cobre no cátodo da célula eletrolítica, a quantidade de eletricidade necessária, em coulombs, é aproximadamente igual a:

- a) 0, 100
- b) 6,35
- c) 12,7
- d) $9,65 \cdot 10^3$
- e) 1,93 · 10⁴
- **24 (UNIMONTES-MG)** Durante a eletrólise de uma solução aquosa de Na₂SO₄, foram produzidos 2,4 L de oxigênio gasoso, conforme as equações a seguir:

$$4 H_2O_{(I)} + 4e^- \rightarrow 2 H_{2(g)} + 4 OH^-(aq)$$

$$2\;H_2O_{(I)}\to O_{2(g)}+4\;H^+_{}(aq)+4e^-$$

Dados:

Volume de gás a 20 °C e 1 atm = 24 L

F = 96.500 C

 $Q = i \cdot \Delta t$, em que Q = carga(C), i = corrente(A) e $\Delta t = \text{variação de tempo(s)}$

Considerando-se que foi utilizada uma corrente elétrica de 20 A, o tempo, em segundos, decorrido nesse processo, foi de:

- a) 3.860
- b) 19.300
- c) 1.930
- d) 9.650

25 (ITA-SP) Para niquelar uma peça de cobre, usou-se uma solução de sulfato de níquel (II) e aparelhagem conveniente para eletrodeposição. Terminada a niquelação, verificou-se que havia passado pelo circuito 1,0 · 10⁻³ mol de elétrons. Conclui-se, então, que a quantidade de níquel depositada sobre a peça de cobre foi de: Dado: Ni = 58,71 u

```
a) 5.0 \cdot 10^{-4} mol, isto é, 29.35 \cdot 10^{-3} g
```

26 (E. E. Mauá-SP) Uma calota de automóvel de 675 cm^2 de área constitui o cátodo de uma célula eletrolítica que contém uma solução aquosa de íons de níquel +2. Para niquelar a calota, faz-se passar através da célula uma corrente de 32,9 ampères. Calcule o tempo (em minutos) necessário para que seja depositada na calota uma camada de níquel de 0.1 mm de espessura. Dados: $d_{\text{Ni}} = 8.9 \text{ g/cm}^3$; Ni = 58 u; F = 96.500 C

27 (FEPECS-DF) O esquema abaixo consiste em uma placa de ouro mergulhada em uma solução do íon desse metal. Nessa mesma solução encontra-se também mergulhado um anel de alumínio que se deseja banhar com ouro (processo de eletrodeposição), sendo o sistema ligado a um gerador. A partir desse esquema, são feitas as seguintes afirmações:

I. a placa de ouro deve ser conectada ao polo positivo do gerador;

II. o anel de alumínio atua como o catodo do sistema;

III. durante o processo a placa de ouro sofre oxidação;

IV. a cada 1,8 . 10^{21} elétrons que circulam na célula eletrolítica, a massa do anel é aumentada em aproximadamente 0,197 g.

São corretas as afirmações: (Au = 197u)

- a) I e II, apenas
- b) I e III, apenas
- c) II e III, apenas
- d) II, III e IV, apenas
- e) I, II, III e IV

28 (UFC-CE) O pH é um dos parâmetros físico-químicos utilizados no monitoramento ambiental de lagos e rios. Este parâmetro pode ser medido experimentalmente montando-se uma célula galvânica com um eletrodo de hidrogênio (ânodo), sendo a pressão do gás hidrogênio igual a 1,0 bar, e com um eletrodo de calomelano (cátodo), com a concentração de cloreto igual a 1,0 mol L⁻¹. As semirreações e os respectivos valores de potenciais de eletrodo padrão para os dois eletrodos são dados abaixo. Assinale a alternativa que corretamente indica o pH de uma solução aquosa em que o potencial de eletrodo da célula medido experimentalmente a 298,15 K foi de 0,565 V.

Dados: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ e F} = 96.500 \text{ C mol}^{-1}$

$$Hg_2C\ell_2(s) + 2e^- \rightarrow 2Hg(\ell) + 2C\ell^-(aq) E^* = +0,270 V (cátodo)$$

$$2 H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g) E^{\circ} = + 0,000 V (\hat{a}nodo)$$

b) 1,0· 10⁻³ mol, isto é, 58,71· 10⁻³ g

29 (VUNESP-SP) A pilha esquematizada, de resistência desprezível, foi construída usando-se, como eletrodos, uma lâmina de cobre mergulhada em solução aquosa, contendo íons Cu^{2+} (1mol.L⁻¹) e uma lâmina de zinco mergulhada em solução aquosa contendo íons Zn^{2+} (1mol.L⁻¹). Além da pilha, cuja diferença de potencial é igual a 1,1 volts, o circuito é constituído por uma lâmpada pequena e uma chave interruptora Ch. Com a chave fechada, o eletrodo de cobre teve um incremento de massa de 63,5 μ g após 193s.

Dados: P = U.i

Carga de um mol de elétrons = 96 500C

Massas molares (g.mol⁻¹): Zn = 65,4; Cu = 63,5

 $Cu^{2+} + 2 e^- \rightarrow Cu$

 $Zn^{2+} + 2e^- \rightarrow Zn$

Considerando que a corrente elétrica se manteve constante nesse intervalo de tempo, a potência dissipada pela lâmpada nesse período foi de:

- a) 1,1 mW.
- b) 1,1 W.
- c) 0,55 mW.
- d) 96 500 W.
- e) 0,22 mW.

30 (UFT-TO) Atualmente, César Cielo é o brasileiro mais rápido do mundo na natação estilo livre. Após ter vencido os 50 metros livres nas Olimpíadas de Pequim, em 2008, é o campeão e recordista mundial dos 100 metros livres e campeão dos 50 metros livres. Estas três medalhas de ouro são um marco para a natação brasileira e César Cielo, um exemplo de atleta para os jovens do Brasil. As medalhas conquistadas, ao contrário do que muitos pensam, não possuem valor financeiro relevante, pois são feitas de prata e apenas recobertas com uma fina camada de ouro. O uso de corrente elétrica para produzir uma reação química, chamada de eletrólise, é a técnica aplicada para recobrir a prata com o ouro, produzindo assim a tão almejada medalha de ouro. O processo consiste em reduzir uma solução aquosa de Ouro(III) contendo excesso de íons cloreto, a ser depositada sobre a Prata, que atua como um eletrodo, conforme a reação total a seguir:

$$Au^{3+}(aq) + 3 C\ell^{-}(aq) \rightarrow Au(s) + 3/2 C\ell_{2}(g)$$

Supondo que tenha sido utilizada uma corrente elétrica constante de 3,5 ampere durante 35 minutos, determine qual das alternativas abaixo representa corretamente a quantidade de ouro depositada em cada medalha:

(Dados: constante de Faraday = $9,65.10^4$ coulomb mol⁻¹; 1 ampere = 1 coulomb s⁻¹; Au = 197u)

- a) 15 gramas
- b) 5,0 gramas
- c) 7,0 gramas
- d) 12 gramas
- e) 10 gramas

- 31 (UFC-CE) Revestimento metálico de zinco sobre ferro é obtido pela redução de íons Zn⁺ a partir da eletrólise de uma solução aquosa contendo estes íons.
- a) Considerando que ferro e zinco formam um par galvânico, indique, a partir dos valores de potencial padrão de eletrodo, fornecidos abaixo, que metal atuará como ânodo e que metal atuará como cátodo neste par galvânico. Justifique sua resposta em função dos valores de potencial padrão de eletrodo fornecidos.

Dados:

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s) E^{\circ} = -0.76 V$$

Fe²⁺(aq) + 2e⁻ \rightarrow Fe(s) E° = -0.44 V

b) Considerando que, em uma célula eletrolítica, a intensidade de corrente elétrica para a redução de íons Zn²⁺ varia com o tempo, de acordo com o gráfico abaixo, determine o número de moles de zinco metálico reduzido sobre ferro. Dado: Assuma que um mol de elétrons corresponde a uma carga de 96.500 C.

32 (UFG-GO) O esquema de uma pilha de Ni-Fe é ilustrado abaixo.

As semirreações que ocorrem em cada compartimento dessa pilha e os potenciais de redução das espécies são os seguintes:

$$Ni^{2+}(aq) + 2e^- \rightarrow Ni^{\circ}(s) E_{RED} = -0.23V$$

$$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe^{\circ}(s) E_{RED} = -0.45V$$

Com base nestas informações,

- a) escreva a equação eletroquímica da reação global para o processo espontâneo e a distribuição eletrônica do metal que é produto dessa reação;
- b) determine o número de mols de metal depositado quando essa pilha é ligada a um gerador externo, com FEM = 1,5 V e corrente de 1 A durante $1 \cdot 10^6$ s, sabendo que a massa, em gramas, do metal depositado, é igual a 3,4 \cdot 10^{-4} i \cdot t (i = corrente em Ampères e t = tempo em segundos).

33 (FUVEST-SP) Quantos mols de hidrogênio se obtêm por eletrólise de 108 g de água? a) 1 b) 2 c) 4
d) 6 e) 8
 34 (UFRO-RO) Para a produção de alumínio, partimos da bauxita, que, após uma "lavagem", é processada para formar a alumina (Aℓ₂O₃), a qual sofre decomposição eletrolítica para formar o Aℓ. Se considerarmos 102 toneladas de alumina, a que corresponderá o alumínio produzido? a) 13,5 toneladas no cátodo da cuba eletrolítica. b) 27,0 toneladas no ânodo da cuba eletrolítica. c) 27,0 toneladas no cátodo da cuba eletrolítica. d) 54,0 toneladas no ânodo da cuba eletrolítica. e) 54,0 toneladas no cátodo da cuba eletrolítica.
35 (PUC-PR) Na eletrólise aquosa, com eletrodos inertes, de uma base de metal alcalino, obtêm-se 8,00 g de $O_2(g)$ no ânodo. Qual é o volume de $H_2(g)$, medido nas CNTP, liberado no cátodo? (Dados: M_H = 1,00 g/mol; M_O = 16,00 g/mol; volume molar = 22,4 L) a) 22,4 L b) 5,6 L c) 11,2 L d) 33,6 L e) 7,50 L
36 (UFS-SE) Numa célula eletrolítica contendo solução aquosa de nitrato de prata flui uma corrente elétrica de 5,0 A durante 9.650 s. Nessa experiência, quantos gramas de prata metálica são obtidos? a) 108 b) 100 c) 54,0 d) 50,0 e) 10,0
37 (FMTM-MG) O magnésio é um metal leve, prateado e maleável. Dentre as diversas aplicações desse metal, destacam-se as ligas metálicas leves para a aviação, rodas de magnésio para automóveis e como metal de sacrifício em cascos de navios e tubulações de aço. Industrialmente, o magnésio é obtido por eletrólise de MgCℓ₂ fundido. Qual a massa de magnésio metálico produzida quando uma corrente elétrica de 48.250 A atravessa uma cuba eletrolítica contendo cloreto de magnésio fundido durante 5 horas de operação em kg? Dados: Mg²+ + 2e⁻ → Mg massa molar do Mg = 24 g/mol 96.500 C = carga elétrica transportada por um mol de elétrons 1 coulomb (C) = 1 ampère (A) x 1 segundo (s) a) 108,0 b) 81,0 c) 30,0 d) 22,5 e) 12,0

- 38 (FAAP-SP) Uma peça de ferro constitui o catodo de uma célula eletrolítica, que contém uma solução aquosa de íons níquel (Ni⁺²). Para niquelar a peça, faz-se passar pela célula uma corrente de 19,3 A. Calcule o tempo, em segundos, necessário para que seja depositada, na peça, uma camada de níquel de massa 0,59 g (dado: Ni = 59 u). (Dado: massa atômica do níquel = 59 g/mol.)
- **39 (FEI-SP)** A deposição eletrolítica de 2,975 g de um metal de peso atômico 119 requereu 9.650 coulombs. Qual o número de oxidação desse metal?
- **40 (CESGRANRIO-RJ)** Na composição química da célula estão presentes sais minerais que desempenham importantes papéis. As espécies Na⁺ e K⁺, por exemplo, respondem pelas cargas elétricas que provocam o potencial de ação responsável pelo impulso nervoso, como ocorre com os neurônios.

Para a espécie Na^+ ganhar 1 mol de elétrons e se reduzir a Na° , a quantidade de eletricidade, em coulomb, será aproximadamente igual a: (Dado: carga do elétron = 1,602 x 10^{-19} C)

- a) 19.300
- b) 38.600
- c) 57.900
- d) 77.200
- e) 96.500
- **41 (FEI-SP)** Calcule o volume de hidrogênio liberado a 27°C e 700 mmHg pela passagem de uma corrente de 1,6 A durante 5 min por uma cuba contendo hidróxido de sódio.
- **42 (VUNESP-SP)** 0,5 g de cobre comercial foi "dissolvido" em ácido nítrico, e a solução resultante foi eletrolisada até deposição total do cobre, com uma corrente de 4,0 A em 5 min. Qual a pureza desse cobre comercial?
- **43 (PUC-RJ)** A massa de uma barra de cobre contendo impurezas é de 100 g. Para separar tais impurezas do cobre metálico, utilizou-se a seguinte célula eletrolítica:

Anodo:
$$Cu^0$$
 (s) \longrightarrow Cu^{2+} (aq) $+$ $2e^-$

Impuro

Catodo:
$$Cu^{2+}$$
 (aq) + $2e^{-}$ \longrightarrow Cu^{0} (s)

Após cerca de 5 h e 22 min (19.320 s) sob corrente de 10 A, todo cobre havia sido purificado. Qual a massa correspondente às impurezas que havia na barra não tratada?

- **44 (UFES-ES)** Uma célula eletrolítica industrial, para produzir alumínio, utiliza uma corrente de 19.300 A. Admitindo uma eficiência de 90% no processo industrial, pode-se afirmar que em um dia são produzidos aproximadamente:
- a) 420 kg
- b) 500 kg
- c) 210 kg
- d) 350 kg
- e) 140 kg

45 (CESGRANRIO-RJ) Em uma cuba eletrolítica, utilizou-se uma corrente de 3 A para depositar toda a prata existente
em 400 mL de uma solução 0,1 M de AgNO₃ (Dados: 1 F = 96.500 C; massas atômicas: Ag = 108; N = 14; O = 16). Com
base nesses dados, podemos afirmar que o tempo necessário para realizar a operação foi próximo de:

- a) 21 min
- b) 10 min
- c) 5 min
- d) 3 min
- e) 2 min

46 (UFSCar-SP) Para decompor totalmente o NaCℓ presente em 0,2 L de uma solução, usando uma corrente de 6 A, o tempo necessário foi de 2 h 40 min 50 s. Qual a molaridade da solução?

47 Através de 100 mL de uma solução contendo 2,841 g de $Zn(NO_3)_2$, fizeram-se passar 965 coulombs. Qual é a concentração mol/L de Zn^{2+} , na solução, após a eletrólise? (Dados: massas atômicas: N = 14; O = 16; Zn = 65,4)

48 (UEL-PR) Considere duas soluções aquosas, uma de nitrato de prata (AgNO₃) e outra de um sal de um metal X, cuja carga catiônica não é conhecida. Quando a mesma quantidade de eletricidade passa através das duas soluções, 1,08 g de prata e 0,657 g de X são depositados (massas molares: Ag = 108 g/mol; X = 197 g/mol).

Com base nessas informações, é correto afirmar que a carga iônica de X é:

- a) -1
- b) +1
- c) +2
- d) +3
- e) +4

49 **(EEM-SP)** Um rádio de pilha ficou ligado durante a partida de um jogo de futebol. Nesse período sua cápsula de zinco sofreu um desgaste de 0,3275 g, tendo originado uma corrente de 0,3216 A. Qual foi a duração da narração do jogo, em minutos? (Dados: massa atômica do Zn = 65,5; 1 F = 96.500 C.)

50 (CESGRANRIO-RJ) A reação que ocorre no anodo da bateria do automóvel é representada pela equação:

$$Pb(s) + HSO_4^{-}(s) \rightarrow PbSO_4^{-}(s) + H^+ + 2e^-$$

Ou seja:

$$Pb \rightarrow Pb^{2+} + 2e^{-}$$

Verifica-se que 0,207 g de chumbo no anodo é convertido em PbSO₄, quando a bateria é ligada por 1 s. Qual a corrente fornecida pela bateria?

- a) 48,3A
- b) 193A
- c) 193.000A
- d) 96,5A
- e) 96.500 A

GABARITO

01- Alternativa D

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

1 mol 2 mols (2F)
2 mols 4 mols (4F)

02- Alternativa B

Cálculo da carga elétrica disponível na 1ª cuba:

$$Ag^{+}(aq) + 1e^{-} \rightarrow Ag(s)$$

$$1 \text{ mol} \quad 1 \text{ mol}$$

$$\downarrow \qquad \downarrow$$

$$1 \text{ Faraday} \quad 108g$$

Na eletrólise do KI(aq) na 2ª cuba temos:

$$2 \text{ KI} \rightarrow 2 \text{ K}^{+}(aq) + 2 \text{ I}^{-}(aq)$$

$$2 H_2O(\ell) \rightarrow 2 H^+(aq) + 2 OH^-(aq)$$

Prioridade de descarga: H⁺ > K⁺ e I⁻ > OH⁻

Cálculo das quantidades dos produtos obtidos nos eletrodos:

$$2 H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2 OH^-(aq)$$

 $2 mols 1 mol$
 $\downarrow \qquad \downarrow$
 $2 Faraday 22,4L$

$$2 I^{-}(aq) \rightarrow I_{2}(s) + 2e^{-}$$
 $1 \text{ mol} \quad 2 \text{ mols}$

$$\downarrow \qquad \qquad \downarrow$$
 $254g \qquad 2 \text{ Faraday}$
 $X = 127g \quad 1 \text{ Faraday}$

03- Alternativa A

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$

Cálculo da massa de zinco depositada:

$$0.4Faraday. \frac{1 \text{mol elétrons}}{1Faraday}. \frac{1 \text{mol Zn}}{2 \text{mols elétrons}}. \frac{65 \text{g Zn}}{1 \text{mol Zn}} = 13 \text{g Zn}$$

t = 7 min × 60 s/min = 420s Ag⁺ + e
$$\rightarrow$$
 Ag
Q = i · t
Q = 2,30 · 420 96.500 C 108 g
Q = 966 C \rightarrow x \rightarrow \rightarrow X \rightarrow

05- Alternativa E

Cálculo da carga elétrica disponibilizada na formação de 0,64g de cobre:

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

2 mols 1 mol
 \downarrow \downarrow
2 Faraday 64g
 $X = 0.02 \text{ F } 0.64g$

Cálculo da massa de prata depositada no outro eletrodo:

Ag⁺(aq) + 1e⁻
$$\rightarrow$$
 Ag(s)
1mol 1mol
 \downarrow \downarrow
1 Faraday 108g
0,02 Faraday X = 2,16g

06- Alternativa B

$$\begin{array}{ccc} Pb^{2^{+}}(aq) + 2e^{-} & \rightarrow & Pb(s) \\ & 2 \; mols & 1 mol \\ & \downarrow & \downarrow \\ & 2 \; mols & 207g \\ & X = 0,02 mol & 20,7g \end{array}$$

07- Alternativa D

$$Na^{+}(\ell) + 1e^{-} \rightarrow Na^{\circ}(s)$$

$$1mol \quad 1mol$$

$$\downarrow \qquad \downarrow$$

$$96500C \quad 23g$$

$$19300C \quad X = 4,6g$$

08- Alternativa D

Cálculo da carga disponibilizada na formação de 50g de mercúrio na primeira cuba eletrolítica:

$$\begin{array}{ccc} \text{Hg}^{2+}(\text{aq}) + 2\text{e}^{-} & \rightarrow & \text{Hg}(\ell) \\ & 2\text{mols} & 1\text{mol} \\ & \downarrow & \downarrow \\ & 2\text{F} & 200\text{g} \\ & X=0.5\text{F} & 50\text{g} \end{array}$$

Cálculo da massa de cobre depositada na segunda cuba eletrolítica:

$$\begin{array}{ccc} \text{Cu}^{2+}(\text{aq}) + 2\text{e}^{-} & \rightarrow & \text{Cu(s)} \\ & 2\text{mols} & 1\text{mol} \\ & \downarrow & & \downarrow \\ & 2\text{F} & 64\text{g} \\ & 0,5\text{F} & \text{X} = 16\text{g} \end{array}$$

09-
$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni^{\circ}(s)$$
2mols 1mol
 $\downarrow \qquad \downarrow$
193000C 59g
 $X = 1930C 0,59g$

Cálculo do tempo em segundos: Q = i . $t \rightarrow 1930 = 19,3$. $t \rightarrow t = 100s$

10- Alternativa C

Cálculo da carga elétrica: $Q = i \cdot t = 5 \cdot 9650 C$

Cálculo da massa de prata depositada:

$$Ag^{+}(aq) + 1e^{-} \rightarrow Ag^{\circ}(s)$$

$$1mol \qquad 1mol$$

$$\downarrow \qquad \downarrow$$

$$96.500C \qquad 108g$$

$$5.9650C \qquad X = 54g$$

11- Alternativa B

Como as cubas estão ligadas em série, a carga elétrica que atravessa as cubas é igual. Vamos admitir uma carga correspondente a 1 mol de elétrons.

Calculando as massas depositadas nas cubas eletrolíticas:

1ª cuba eletrolítica:

$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni^{\circ}(s)$$
2mols 1mol
 $\downarrow \qquad \qquad \downarrow$
2mols 59g
1mol $X = 29,5g$

2ª cuba eletrolítica:

$$Au^{3+}(aq) + 3e^{-} \rightarrow Au^{\circ}(s)$$
3mols 1mol
$$\downarrow \qquad \downarrow$$
3mols 197g
1mol $X = 65,7g$

Calculando a razão das massas obtidas temos:

$$\frac{\text{massa de níquel}}{\text{massa de ouro}} = \frac{29,5g}{65,7g} = 0,45$$

12- Alternativa B

$$M^{X+}(aq) + Xe^{-} \rightarrow M^{\circ}(s)$$
 $Xmol \quad 1mol$
 $\downarrow \qquad \downarrow$
 $X.96500C \quad 112g$
 $19300C \quad 11,2g$
Com isso temos: $X = +2$

13- Alternativa B

I. A produção de 1,0 g de prata requer 1/108 mol de elétrons.

Verdadeiro.

II. A semi-reação de oxidação é: 2 Ag + 2 e $^- \rightarrow$ 2 Ag $^+$

Falso. $Zn \rightarrow Zn^{2+} + 2e^{-}$

III. Zinco metálico é mais redutor do que prata metálica.

Verdadeiro.

14- Alternativa D

Cálculo da carga elétrica: Q = i . t = 0,8 . 1800 = 1440C

Cálculo da massa de cobre: Cu²⁺ + 2e⁻ → Cu

1440Coulomb.
$$\frac{1 \text{mol elétrons}}{96500 \text{ Coulomb}} \cdot \frac{1 \text{mol Cu}}{2 \text{mols elétrons}} \cdot \frac{63,5 \text{g Cu}}{1 \text{mol Cu}} = 0,47 \text{g Cu}$$

Cálculo da massa de zinco: $Zn \rightarrow Zn^{2+} + 2e^{-}$

$$\frac{1\text{mol elétrons}}{96500 \text{ Coulomb}} \cdot \frac{1\text{mol Zn}}{2\text{mols elétrons}} \cdot \frac{65\text{g Zn}}{1\text{mol Zn}} = 0,48\text{g Zn}$$

15- Alternativa D

Cálculo da carga elétrica: Q = i . t = 1 . 7200 = 7200 Coulomb

Na eletrólise do NaCℓ(aq) temos:

$$2 \text{ NaC}\ell \rightarrow 2 \text{ Na}^+(aq) + 2 \text{ C}\ell^-(aq)$$

$$2 H_2O(\ell) \rightarrow 2 H^+(aq) + 2 OH^-(aq)$$

Prioridade de descarga: $H^+ > Na^+ e C\ell^- > OH^-$

Cálculo das massas dos produtos obtidos nos eletrodos:

$$2\;H_2O(\ell)+2e^-\;\to\;H_2(g)+2\;OH^-(aq)$$

$$2 C\ell^{-}(aq) \rightarrow C\ell_{2}(g) + 2e^{-}$$
 $1 mol 2 mols$
 $\downarrow \qquad \qquad \downarrow$
 $71g \qquad 2.96500C$
 $X = 2,65g \qquad 7200C$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

a)
$$0.05 \text{mol Cu} \cdot \frac{2 \text{mols elétrons}}{1 \text{mol Cu}} \cdot \frac{1 \text{ pilha}}{5.10^{-3} \text{mol elétrons}} = 20 \text{ pilhas}$$

b)
$$0.05 \text{mol-Cu} \cdot \frac{64 \text{g Cu}}{1 \text{mol-Cu}} = 32 \text{g Cu}$$

17-
a)
$$Pb(s) + PbO_{2}(s) + 4 H^{+}(aq) + 2 SO_{4}^{2-}(aq) \rightarrow 2 PbSO_{4}(s) + 2 H_{2}O(\ell)$$
0 +4 +2
$$Redução$$
Oxidação

b)
$$50\text{Ah}.\frac{3600\text{C}}{1\text{Ah}}.\frac{1\text{mol elétrons}}{96500\text{C}}.\frac{1\text{mol Pb}}{2\text{mols elétrons}}.\frac{207\text{g Pb}}{1\text{mol Pb}} = 193\text{g Pb}$$

18- Alternativa C

Cálculo da carga elétrica: Q = i . t = 0,1A . 480s = 48C

Na eletrólise da solução de NaOH(aq) temos:

2 NaOH(aq) \rightarrow 2 Na⁺(aq) + OH⁻(aq)

 $2 H_2O(\ell) \rightarrow 2 H^+(aq) + 2 OH^-(aq)$

Prioridade de descarga: H⁺ > Na⁺ e OH⁻(base) > OH⁻(água)

Cálculo do volume de hidrogênio obtido nas CNTP:

2 H₂O(
$$\ell$$
) + 2e⁻ → H₂(g) + 2 OH⁻(aq)
2mols 1mol
↓ ↓
2.96500C 22,4L
48C X = 5,6.10⁻³L ou 5,6L

19- Alternativa B

Na niquelação temos:

$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni^{\circ}(s)$$

Cálculo do tempo para deposição de 0,5L de solução de Ni²⁺ com corrente de 1 A (C/s):

$$\frac{0.5L \text{ solução}}{1A} \cdot \frac{0.1 \text{mol Ni}^{2+}}{1L \text{ solução}} \cdot \frac{2 \text{mols elétrons}}{1 \text{mol Ni}^{2+}} \cdot \frac{96500 A.s}{1 \text{mol elétrons}} \cdot \frac{1 \text{minuto}}{60 \text{s}} = 160.8 \, \text{min}$$

20- Alternativa A

Cálculo da carga elétrica: Q = i . t = 1,93 . 300 = 579C

Cálculo da massa teórica de cobre depositada:

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

2mols 1mol
↓ ↓
2.96500C 63,5g
579C X = 0,1905g

Cálculo do rendimento do processo:

$$0,1905g \rightarrow 100\%$$
 (teórico)

$$0.180g \rightarrow X \text{ (real)}$$

 $X = 94.5\%$

```
21- Alternativa D
```

$$\begin{aligned} \text{Fe}(\text{CN})_6^{\text{4-}} &\rightarrow \text{Fe}(\text{CN})_6^{\text{3-}} + 1\text{e}^{\text{-}} \\ &1\text{mol} & 1\text{mol} \\ &2\text{mols} & 2\text{mols} \\ &\downarrow & \downarrow \\ &2\text{mols} & 2.96500\text{C} \end{aligned}$$

22- Alternativa C

$$A^{x+} + Xe^- \rightarrow A^\circ$$
 $B^{y+} + Ye^- \rightarrow B^\circ$ $C^{z+} + Ze^- \rightarrow C^\circ$ Xmol 1mol Ymol 1mol Zmol 1mol 4mols 4mols 4mols 4mols 2mols $\therefore X = 1$ $\therefore Y = 4$ $\therefore Z = 2$

23- Alternativa E

24- Alternativa C

Cálculo da carga elétrica:

Cálculo do tempo necessário para produzir 2,4L de oxigênio:

Q = i . t
$$\rightarrow$$
 38600 = 20 . t \rightarrow t = 1930 segundos

25- Alternativa A

26-

Cálculo do volume de níquel a ser depositado: V = área . espessura = 675cm² . 0,01cm = 6,75 cm³ Cálculo da massa de níquel a ser depositado: $m = d \cdot v = 8.9 \text{ g/cm}^3 \cdot 6.75 \text{ cm}^3 = 60.075 \text{ g}$

Cálculo da carga elétrica necessária na deposição:

Cálculo do tempo necessário para deposição: $Q = i \cdot t \rightarrow 199904,74 = 32,9 \cdot t \rightarrow t = 6076,13 seg ou 101,3 min$

27- Alternativa E

Na eletrólise com eletrodos ativos temos:

Polo positivo – (ânodo): $Au^{\circ}(s) \rightarrow Au^{3+}(aq) + 3e^{-}$

Polo negativo – anel a ser galvanizado (cátodo): $Au^{3+}(aq) + 3e^{-} \rightarrow Au^{\circ}(s)$

I. a placa de ouro deve ser conectada ao polo positivo do gerador;

Verdadeiro.

II. o anel de alumínio atua como o catodo do sistema;

Verdadeiro.

III. durante o processo a placa de ouro sofre oxidação;

Verdadeiro.

IV. a cada $1.8.10^{21}$ elétrons que circulam na célula eletrolítica, a massa do anel é aumentada em aproximadamente 0.197 g.

Verdadeiro.
$$Au^{3+}(aq) + 3e^{-} \rightarrow Au^{\circ}(s)$$

 $3mols$ $1mol$
 \downarrow \downarrow
 $3.6.10^{23}el\acute{e}trons$ $197g$
 $1,8.10^{21}el\acute{e}trons$ $X = 0,197g$

28- Alternativa E

Semi-reação do polo negativo: $H_2(g) \rightarrow 2 H^+(aq) + 2e^-$

Semi-reação do polo positivo: $Hg_2C\ell_2(s) + 2e^- \rightarrow 2Hg(\ell) + 2C\ell^-(aq)$ Reação global: $Hg_2C\ell_2(s) + H_2(g) \rightarrow 2Hg(\ell) + 2C\ell^-(aq) + 2H^+(aq)$

Pela equação de Nernst temos: $E=E^0-\frac{R.T}{n.F}\ln Q$, substituindo os valores de R, T e F, ficamos com:

$$E = E^{0} - \frac{8,314.298,15}{n.96500} \ln Q \rightarrow E = E^{0} - \frac{0,0257}{n} \ln Q \rightarrow E = E^{0} - \frac{0,0592}{n} \log Q$$

Substituindo os dados temos:

$$E=E^{0}-\frac{0{,}0592}{n}.logQ \rightarrow 0{,}565=0{,}270-\frac{0{,}0592}{2}.log\frac{[C\ell^{-}]^{2}.[H^{+}]^{2}}{(pH_{2})} \rightarrow 0{,}295=-0{,}0295.2.log[H^{+}] \rightarrow 0{,}295=-0{,}2$$

$$-\log[H^+] = \frac{10}{2} = 5 \rightarrow pH = -\log[H^+] = 5$$

29- Alternativa A

Cálculo da carga elétrica:

Cu²⁺(aq) + 2e⁻
$$\rightarrow$$
 Cu°(s)
2mols 1mol
 \downarrow \downarrow
2.96500C 63,5g
X 63,5.10⁻⁶g
X = 0,193C

Cálculo da corrente elétrica: Q = i . t \rightarrow 0,193 = i . 193 \rightarrow i = 1.10⁻³A ou 1mA

Cálculo da potência: P = U . i = 1,1V . 1mA = 1,1mW

30- Alternativa B

Cálculo da carga elétrica: Q = i . t = 3,5 . (35.60) = 7350C

Cálculo da massa de ouro depositada:

Au³⁺(aq) + 3e⁻
$$\rightarrow$$
 Au°(s)
3mols 1mol
 \downarrow \downarrow
3.96500C 197g
7350C X
 \therefore X = 5,0g

31-

- a) O zinco e o ferro formarão um par galvânico. Por possuir um potencial padrão de eletrodo mais negativo que o ferro, o zinco atuará como ânodo e o ferro como cátodo.
- b) Cálculo da carga elétrica através das áreas (A₁ e A₂):

Área A₁:
$$A_1 = \frac{b \cdot h}{2} = \frac{3600s \cdot 1A}{2} = 1800C$$

Área A₂: A₂ = b . h = 7200s . 1,0A = 7200C

Cálculo da área total: $A_T = A_1 + A_2 = 1800C + 7200C = 9000C$

Cálculo do número de mols de zinco obtido:

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn^{\circ}(s)$$
2mols 1mol
 $\downarrow \qquad \downarrow$
2.96500C 1mol
9000C X
 $\therefore X = 0,045$ mol

32-

a)
$$Ni^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Ni(s) \Delta E^{\circ} = + 0.22V$$

Ni:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^8$$

b) n =
$$3.4.10^{-4}.1.1.10^{6} / 56 = 6$$
 mols de ferro

33- Alternativa D

$$\begin{array}{ccc} 2 \ H_2O(\ell) & \rightarrow & 2 \ H_2(g) + O_2(g) \\ 2 mols & & 2 mol \\ \downarrow & & \downarrow \\ 2.18g & & 2 mol \end{array}$$

34- Alternativa E

```
35- Alternativa C
Cálculo da carga elétrica:
```

2 OH (aq)
$$\rightarrow$$
 H₂O(ℓ) + ½ O₂(g) + 2e⁻¹

X = 1Faraday

8g Cálculo do volume de hidrogênio medido nas CNTP:

$$2 \; H_2O(\ell) + 2e \; \rightarrow \; H_2(g) + 2 \; OH \; (aq)$$

1Faraday
$$X = 11,2L$$

36- Alternativa C

Cálculo da carga elétrica: Q = i . t = 5 . 9650 C

Cálculo da massa de prata obtida:

$$Ag^{+}(aq) + 1e^{-} \rightarrow Ag^{\circ}(s)$$

1mol 1mol

 \downarrow

96500C 108g

5.9650C $X = 54g$

37- Alternativa A

Cálculo da carga elétrica: Q = i . t = 48250 . 18000 = 8,685.108 C

Cálculo da massa de magnésio obtida:

$$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg^{0}(s)$$
2mols 1mol
 $\downarrow \qquad \qquad \downarrow$
2.9600C 24.10⁻³ Kg
8,685.10⁸C X = 108 Kg

38-

Cálculo da carga elétrica:

$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni^{\circ}(s)$$
2mols 1mol
 \downarrow
2.96500C 59g
X 0,59g
X= 1930C

Cálculo do tempo: Q = i . t \rightarrow 1930 = 19,3 . t \rightarrow t = 100 segundos

$$M^{X+}(aq) + Xe^{-} \rightarrow M^{\circ}(s)$$
 $Xmol \quad 1mol$
 $\downarrow \quad \downarrow$
 $X.96500C \quad 119g$
 $9650C \quad 2,975g$
 $X = 4 \therefore M^{4+}$

```
40- Alternativa E
Na^+(aq) + 1e^- \rightarrow Na^*(s)
         1mol 1mol
          1
                     \downarrow
        96500C 1mol
41-
Cálculo da carga elétrica: Q = i . t = 1,6 . 300 = 480 C
Cálculo do número de mols de hidrogênio obtido:
2 H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2 OH^-(aq)
           2mols 1mol
            \downarrow
                      \downarrow
        2.96500C 1mol
                     X = 2.5.10^{-3} \text{mol}
          480 C
Cálculo do volume de hidrogênio obtido nas condições especificadas:
P. V = n. R. T \rightarrow 700. V = 2,5.10<sup>-3</sup>. 62,3. 300 \rightarrow V = 0,06675 L ou 66,75 mL
42-
Cálculo da carga elétrica: Q = i . t = 4 . 300 = 1200 C
Cálculo da massa de cobre obtida:
Cu^{2+}(aq) + 2e^{-} \rightarrow Cu^{\circ}(s)
          2mols 1mol
            1
                 1
       2.96500C 63,5g
         1200C
                    X = 0.395g
Cálculo da porcentagem de pureza da amostra:
0.5g cobre impuro \rightarrow 100\%
0,395g cobre puro \rightarrow X
                       ∴ X = 79% de pureza
43-
Cálculo da carga elétrica: Q = i . t = 10 . 19320 = 193200 C
Cálculo da massa de cobre puro obtido:
Cu^{2+}(aq) + 2e^{-} \rightarrow Cu^{\circ}(s)
          2mols 1mol
       2.96500C 63,5g
        193200C X = 63.5g
Cálculo da massa de impurezas: 100,0g de cobre impuro – 63,5g de cobre puro = 36,5g de impurezas
44- Alternativa E
Cálculo da carga elétrica: Q = i \cdot t = 19300 \cdot (24.60.60) = 19300 \cdot 86400 = 1,66752.10^9 C
Cálculo da massa de alumínio com 100% de eficiência:
A\ell^{3+}(aq) + 3e^{-} \rightarrow A\ell^{\circ}(s)
         3mol 1mol
       3.96500C 27g
```

 $1,66752.10^{9}$ C X = 155,52Kg

Cálculo da massa de alumínio obtido com 90% de eficiência:

155,52Kg → 100%

$$X \rightarrow 90\%$$

 $X = 140Kg$

45- Alternativa A

Cálculo do número de mols de prata em solução: $0.4L \frac{0.1mol AgNO_3}{1L \frac{1}{1} \frac{1}$

Cálculo da carga elétrica:

$$Ag^{+}(aq) + e^{-} \rightarrow Ag^{\circ}(s)$$

$$1mol \quad 1mol$$

$$\downarrow \qquad \downarrow$$

$$96500C \quad 1mol$$

$$X \qquad 0,04mol$$

$$X=3860C$$

Cálculo do tempo: Q = i . t \rightarrow 3860 = 3 . t \rightarrow t = 1286,7segundos ou 21,4min

46-

Cálculo do tempo em segundos: 2h 40min 50s = 120min+40min 50s = 160min 50s = 9600s + 50s = 9650C

Cálculo da carga elétrica: Q = i . t = 6 . 9650 = 57900 C

Cálculo do número de mols de íons cloreto em solução:

$$C\ell^{-}(aq) \rightarrow \frac{1}{2} C\ell_{2}(g) + 1e^{-}$$

1mol 1mol \downarrow \downarrow
1mol 96500C χ 57900C χ 57900C χ = 0,6mol

Cálculo da concentração molar da solução: $[] = \frac{0,6mol}{0,2L} = 3mol/L$

47-

Cálculo da massa molar do Zn(NO₃)₂: M = 189,4g/mol

Cálculo da concentração molar de Zn²⁺ antes da eletrólise:

$$\frac{2,841 g \; Zn(NO_3)_2}{0,1L \; solução} \cdot \frac{1 mol \; Zn(NO_3)_2}{189,4g \; Zn(NO_3)_2} \cdot \frac{1 mol \; Zn^{2+}}{1 mol \; Zn(NO_3)_2} = 0,15 mol/L$$

Cálculo do número de mols de Zn²⁺ consumido na eletrólise:

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn^{\circ}(s)$$

1mol 2mol
 \downarrow \downarrow
1mol 2.96500C
 X 965C
 $X = 0,005$ mol

Cálculo da concentração molar de Zn^{2+} consumido na eletrólise: $[Zn^{2+}] = \frac{0.005 mol}{0.1L} 0.05 mol/L$

Cálculo da concentração molar de Zn²⁺ restante na solução: 0,15M – 0.05M = 0,10M

48- Alternativa D

Cálculo da carga elétrica:

$$Ag^{+}(aq) + 1e^{-} \rightarrow Ag^{\circ}(s)$$

$$1mol \quad 1mol$$

$$\downarrow \qquad \downarrow$$

$$96500C \quad 108g$$

$$X \quad 1,08g$$

$$X = 965C$$

Cálculo da Carga do metal:

$$M^{X+}(aq) + Xe^{-} \rightarrow M^{\circ}(s)$$
 $Xmol \quad 1mol$
 $\downarrow \qquad \downarrow$
 $X.96500C \quad 197g$
 $965C \quad 0,657g$
 $X = 3 \therefore M^{3+}$

49-

Cálculo da carga elétrica:

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$

2mols 1mol

 \downarrow

2.96500C 65,5g

 X 0,3275g

 $X = 965C$

Cálculo do tempo: Q = i . t \rightarrow 965 = 0,3216 . t \rightarrow t = 3000 segundos ou 50 minutos

50- Alternativa B

Cálculo da carga elétrica:

$$Pb \rightarrow Pb^{2+} + 2 e^{-}$$
1mol 2mols
 $\downarrow \qquad \qquad \downarrow$
207g 2.96500C
0,207g $X = 193C$

Cálculo da corrente elétrica: Q = i . t \rightarrow 193 = i . 1 \rightarrow i = 193A