Understanding responses to environments for the Prisoner's Dilemma: A meta analysis, multidimensional optimisation and machine learning approach

Nikoleta E. Glynatsi

Dr Vincent Knight & Dr Jonathan Gillard

Bibliometric Study of the Prisoner's Dilemma

"A bibliometric study of research topics, collaboration and influence in the field of the Iterated Prisoner's Dilemma"

Nikoleta E. Glynatsi, Vincent A. Knight

Palgrave Communications

arxiv.org/abs/1911.06128

Meta Analysis of Tournaments

strategies in 45686 tournaments

Tit For Tat Normalised Rank

"Properties of Winning Iterated Prisoner's Dilemma Strategies"

Nikoleta E. Glynatsi, Vincent A. Knight, Marc Harper

arXiv:2001.05911

data: DOI:10.5281/zenodo.3516652

Best Response Memory One Strategies

 $p = (p_1, p_2, p_3, p_4)$

$$p = (p_1, p_2, p_3, p_4)$$
$$q = (q_1, q_2, q_3, q_4)$$

$$p = (p_1, p_2, p_3, p_4)$$
$$q = (q_1, q_2, q_3, q_4)$$

$u_q(p) = v \cdot (3, 0, 5, 1)$

$$u_q(p) = v \cdot (3, 0, 5, 1)$$

$$u_q(p) = v \cdot (3, 0, 5, 1)$$

 $u_q(p) = \frac{\frac{1}{2}pQp^T + cp + a}{\frac{1}{2}p\bar{Q}p^T + \bar{c}p + \bar{a}}$

$\sum_{i=1}^{N} (c^{(i)T}\bar{a}^{(i)} - \bar{c}^{(i)T}a^{(i)}) \le 0 \implies \text{Defection}$

$$\sum_{i=1}^{N} (c^{(i)T}\bar{a}^{(i)} - \bar{c}^{(i)T}a^{(i)}) \le 0 \implies \text{Defection}$$

$\sum\limits_{i=1}^{N}u_{q}{}^{(i)}(p)$

$\sum_{i=1}^{N} u_q^{(i)}(p) \longrightarrow \max_p : \sum_{i=1}^{N} u_q^{(i)}(p)$

$$\sum_{i=1}^{N} u_q^{(i)}(p) \longrightarrow \max_p : \sum_{i=1}^{N} u_q^{(i)}(p)$$

$$\sum_{i=1}^{N} u_q^{(i)}(p) + u_p(p) \longrightarrow \max_p : \sum_{i=1}^{N} u_q^{(i)}(p) + u_p(p)$$

"Using a theory of mind to find best responses to memory-one strategies"

Nikoleta E. Glynatsi, Vincent A. Knight

Scientific Reports

arXiv:1911.12112

Best Response Sequences

Tit For Tat

 \mathbf{S}

Tit For Tat

 \mathbf{S}

Tit For Tat

Alternator

 ${\bf AntiTitForTat}$

Random

Cooperator

Defector

 ${\bf Suspicious Tit For Tat}$

WinShiftLoseStay

Evolved FSM 16

```
Tit For Tat
       AntiTitForTat
          Random
197
          Defector
     SuspiciousTitForTat
      WinShiftLoseStay
      Evolved FSM 16
```

Genetic Algorithm

Prisoner's Dilemma"

"Training Recurrent Neural Network strategies for Iterated

data: DOI:10.5281/zenodo.3685251

Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma: doi.org/10.1371/journal.pone.0188046

 $\label{thm:condition} Evolution\ Reinforces\ Cooperation\ with\ the\ Emergence\ of\ Self-Recognition\ Mechanisms:\ doi.org/10.1371/journal.pone.0204981$

LSTM based strategy - trained on all data with $p_o = 1$

Be nice & Open with cooperation

Be nice & Open with cooperation

Be a little envious & Be complex

Be nice & Open with cooperation

Be a little envious & Be complex

Adapt to the environment & Longer memory

Published

- Using a theory of mind to find best responses to memory-one strategies. Nikoleta E. Glynatsi and Vincent A. Knight - Scientific Reports - Preprint arXiv:1911.12112
- Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma. Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulos, Nikoleta E. Glynatsi, Owen Campbell - PLOS One - Preprint arXiv:1707.06307
- An evolutionary game theoretic model of rhino horn devaluation. Nikoleta E. Glynatsi, Vincent Knight, Tamsin Lee. Ecological Modelling - Preprint arXiv:1712.07640
- Evolution reinforces cooperation with the emergence of self-recognition mechanisms: an empirical study of the Moran process for the Iterated Prisoner's dilemma. Vincent Knight, Marc Harper, Nikoleta E. Glynatsi, Owen Campbell - PLOS ONE - Preprint arXiv:1707.06920
- An open framework for the reproducible study of the Iterated prisoner's dilemma.
 Vincent Knight, Owen Campbell, Marc Harper et al Journal of Open Research Software

Under review

- A bibliometric study of research topics, collaboration and influence in the field of the Iterated Prisoner's Dilemma. Nikoleta E. Glynatsi and Vincent A. Knight - Palgrave Communications - Preprint arXiv:1911.06128
- Game Theory and Python: An educational tutorial to game theory and repeated games using Python Nikoleta E. Glynatsi and Vincent A. Knight - Journal of Open Source Education Nikoleta-v3/Game-Theory-and-Python

In preparation

- Properties of Winning Iterated Prisoner's Dilemma Strategies. Nikoleta E. Glynatsi, Vincent A. Knight and Marc Harper - Preprint arXiv:2001.05911
- Recognising and evaluating the effectiveness of extortion in the Iterated Prisoner's Dilemma. Vincent Knight, Marc Harper, Nikoleta E. Glynatsi, Jonathan Gillard -Preprint arXiv:1904.00973