Omega Cross-Section

Martin Sobotzik

Mainz, March 2019

Institute for Nuclear Physics Johannes Gutenberg University of Mainz

Figure 1: Olis Cross Section; Dip at about $cos(\theta) = -0.3$

Figure 2: Increased number of bins to 40; now there is still a dip at $\cos(\theta) = -0.3$ but also a peak at $\cos(\theta) = -0.5$

Figure 3: Both Cross Sections are shown.

$$\omega \to \gamma \ \pi^0$$

Closer look at:

• u

π⁰

• ~

Proton

Bachelor Photon

Figure 5: Energy of protons for $\cos(\theta\omega) = [-0.45, -0.35]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Figure 6: θ of protons for $\cos(\theta\omega) = [-0.45, -0.35]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Figure 7: Energy of protons for $\cos(\theta\omega) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Figure 8: θ of protons for $\cos(\theta\omega) = [-0.35, -0.25]$. Red are MC and blue are beamtime data. Left side is just measured, right side is after KFit.

Figure 9: $\cos(\theta_{\textit{fit}})$ vs. $\cos(\theta_{\textit{gen}})$ for all protons.

Figure 10: $\cos(\theta_{fit})$ vs. $\cos(\theta_{gen})$ for all ω .

Unfolding

Motivation

- \bullet μ is the *true* distribution given by nature
- detector effects are then described by the response function R. (inefficiencies, bias and smearing)
- This results in the distribution ν .

$$\nu_i = \sum_{j=1}^M R_{ij} \mu_j$$

 With infinite statistics, it would be possible to recover the original distribution by inverting the response matrix

$$\mu = R^{-1}\nu$$

What is Unfolding?

- Using MC we can train the unfolding algorithm
- Create a 2D-Hist with $\cos(\theta_{\omega})$ of all generated and all reconstructed ω (ω which are generated but not reconstructed are label *miss*)
- \bullet Then we can solve for μ iteratively

 $\textbf{Figure 11:} \ \, \textbf{Example for a working Unfolding Algorithm}$

 $\textbf{Figure 11:} \ \, \textbf{Example for a working Unfolding Algorithm}$

 $\textbf{Figure 11:} \ \, \textbf{Example for a working Unfolding Algorithm}$

Figure 12: Folded; same cuts

Figure 13: Distribution of the ω in center of mass frame

Figure 14: Flat ω was used. MC fitted data were folded.