facts and definitions

Definition 1. We call a relation E on the set A right-Euclidean if for any $x, y, z \in A$, $x \to y$ and $x \to z$ together guarantee $y \to z$.

Definition 2. We call a relation E on the set A Euclidean if for any $x, y, z \in A$, $x \to y$ and $x \to z$ together guarantee $y \to z$, and $y \to z$ and $z \to z$ together guarantee $y \to z$.

Definition 3. We call a relation E on the set A antisymmetric if for any $x, y \in A$, $x \to y$ and $y \to x$ together guarantee x = y.

We call a relation E on the set A asymmetric if for any $x, y \in A$, $x \to y$ guarantees $y \not \to x$.

exercises These problems don't require you to write proofs.

- 1. Write a blueprint for a proof of If blah and yadda yadda, then E is right-Euclidean.
- 2. Write a blueprint for a proof of If blah and so on, then \mathcal{P} is a partition of A.
- 3. "R is antisymmetric" means something different from "R is not symmetric". Give an example to demonstrate and then explain in terms of logic.
- 4. "R is asymmetric" means something different from "R is not symmetric". Give an example to demonstrate and then explain in terms of logic.

proofs Write a complete proof for each of the following statements.

- 1. Let R be a relation on the set A.
 - (a) (\star) If Domain(R) = A, and R is symmetric and transitive, then R is reflexive.

Claim 1. If Domain(R) = A, and R is symmetric and transitive, then R is reflexive.

Proof. Let $x \in R$. So x = (a, b) where $a, b \in A$ (R is a relation on set A and $a \in A$ is given.). Since R is symmetric, $(b, a) \in A$. Since $x \in R$ and $(b, a) \in R$, and R is transitive, $(a, a) \in R$. Therefore R is reflexive.

(b) (\star) Explain, both by giving an example and in general, why the assumption Domain(R) = A is necessary.

The assumption Domain R=A is required because these properties will not hold when using an element for the Domain that is not in A as R is on the relationship A. For instance, if $g \in R$ and g = (x, y) where $x, y \in \mathbb{R}$ xy = yx, this would not work if you were to use an element of a set of horses (what does it mean to multiply a horse?). Therefore Domain R = A is required.

2. Let R and S be equivalence relations on a set A. Show that $S \cap R$ is an equivalence relation.

Claim 2. $S \cap R$ is an equivalence relation on the set A if S and R are equivalence relationships.

Proof. (Reflexive) Let $x \in S \cap R$. Then x = (a, a) where $a \in A$. Therefore $x \in S$ and $x \in R$ (We know this because elements are related to themselves in equivalence classes). Therefore $S \cap R$ is Reflexive.

(Symmetric) Let $j \in S \cap R$. Then j = (c, d) where $c, d \in A$. Since $j \in S$ and S is an equivallence relationship, $(d, c) \in S$. Since $j \in R$, and R is an equivalence relationship, $(d, c) \in R$. Therefore $S \cap R$ is symmetric.

(Transitive) Let $k, i \in S \cap R$. So k = (e, f) and i = (f, g) where $e, f, g \in A$. So $k, i \in S$ and $k, i \in R$. Since S is an equivallence class and is transitive, i and k imply (e, g). Since R is an equivalence class and is transitive, i and k imply (e, g). Therefore $S \cap R$ is transitive. So $S \cap R$ is an equivalence class.

3. (\star) Consider the relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ given by

$$(m,n) \operatorname{CP}(r,s)$$
 means $ms = nr$

Show that CP is an equivalence relation. You may not use fractions anywhere in your proof!

Claim 3. CP is an equivallence class.

Proof. (Reflexive) Let $x, y \in \mathbb{Z} \times (\digamma \setminus \{0\})$. Then x, y = (a, b) where $a, b \in \mathbb{Z}$. Since ab = ba (Used definition of CP and communative property), xCPy is true and since x = y,xCPx is true and CP is reflexive.

(Symmetric) Let $j \in CP$. Then j = ((a, b), (c, d)) where $a, b, c, d \in \mathbb{Z}$. Therefore ad = bc. So bc = ad (equals in symmetric. So cb = da (multiplication is communative over multiplication). So $((c, d), (a, b)) \in CP$ therefore CP is symmetric.

(Transitive) Let
$$k \in$$

4. We write $\frac{m}{n}$ for $[(m,n)]_{CP}$. Verify that $\frac{10}{5} = \frac{6}{3} = \frac{2}{1}$.

Claim 4. $\frac{10}{5} = \frac{6}{3} = \frac{2}{1}$.

Proof. Since $[(m,n)]_{CP} = \frac{m}{n}$ We can rewrite $\frac{10}{5} = \frac{6}{3}$ as (10,5)CP(6,3). This means that 10*3=6*5. Since this statement is true, $\frac{10}{5} = \frac{6}{3}$. We can now verify $\frac{6}{3} = \frac{2}{1}$ by using 6*1=3*2 (Used definition of CP), which is valid. So $\frac{10}{5} = \frac{6}{3} = \frac{2}{1}$.

- 5. Define $(m, n) \oplus (p, q) = (mq + pn, nq)$.
 - (a) Show that if (m,n) CP(r,s) and (p,q) CP(t,s), then $(m,n) \oplus (p,q)$ CP $(r,s) \oplus (t,s)$.
 - (b) Rewrite the claim in part (a) using the fraction notation introduced in problem 4. If $\frac{m}{n} = \frac{r}{s}$, then and $\frac{p}{q} = \frac{t}{s}$ then $\frac{mq+np}{nq} = \frac{rs+st}{s^2}$
- 6. Let S and T be equivalence relations on a set A. Assume that $S \subseteq T$.
 - (a) $S \subseteq T$ means that the condition x S y is easier/harder to satisfy than the condition x T y. (Pick one and explain your answer.)

Claim 5. The condition xSy is easier to satisfy than xTy

Proof. This is because for xTy to be true, xSy must also be true, while for xSy to be true, only xSy must be true.

- (b) Let $a \in A$. What is the relationship between $[a]_S$ and $[a]_T$? Prove your answer.
- (c) (\star) What is the relationship between $A_{/S}$ and $A_{/T}$? Prove your answer.
- 7. Let A be a set with at least three elements.
 - (a) If $\mathcal{P} = \{B_1, B_2\}$ is a partition of A, and $B_1 \neq B_2$, what can you say about B_1^c and B_2^c ? Prove your answer.

Claim 6. If $\mathcal{P} = \{B_1, B_2\}$ is a partition of A, and $B_1 \neq B_2$, $B_1 \subseteq B_2^c$ and $B_2 \subseteq B_1^c$.

Proof. Let $x \in B_1$. So $x \notin B_2$ (By definition of a partition since $B_1 \neq B_2$). So $B_1 \subseteq B_2^c$. Let $x \in B_2$. So $x \notin B_1$ (By definition of a partition since $B_1 \neq B_2$). So $B_2 \subseteq B_1^c$. \square

(b) If $\mathcal{P} = \{B_1, B_2\}$ is a partition of A, \mathcal{C}_1 is a partition of B_1 , and \mathcal{C}_2 is a partition of B_2 , and $B_1 \neq B_2$, show that $\mathcal{C}_1 \cup \mathcal{C}_2$ is a partition of A.

- (c) Why did we assume A has at least three elements?
- 8. Show that any asymmetric relation must be antisymmetric.
- 9. (\star) Let S be a reflexive relation. Show that if S is right-Euclidean, then S is an equivalence relation.

Claim 7. If S is right-Euclidean, then S is an equivalence relation.

Proof. Let $x, y \in S$ where x = (a, b) and y = (a, c). So $(c, b) \in S$ (Right-Euclidian property). So $(c, a) \in S$ (Right-Euclidian property with (c, b) and x). Therefore S is symmetric. Then $(b, b) \in S$ (Right-Euclidian peoperty on (c, b) and (c, b)). Therefore S is reflexive. Then, since $(a, c) \in S$ and $(c, b) \in S$ gurantees (a, b), S is transitive. Since S is reflexive, transitive, and symmetric, S is an equivalence relation.

10. (*) Show that if E is transitive and Euclidean, then E is symmetric.

Claim 8. Show that if E is transitive and Euclidean, then E is symmetric.

Proof. Let $x, y \in E$ where x = (a, b) y = (b, c). So $(a, c) \in E$ (Transitive property). So $(b, a) \in E$ (left euclidian property on x and (a, c)). So $(c, a) \in E$ (Left euclidian property on y and (b, a)). So $(c, b) \in E$ (Right Euclidian property on (a, c) and x). Therefore E is symmetric.