

Ligero++ 1 / 25

Table of Contents

Ligero++ 2 / 25

Definitions

Prover wants to prove the verifier that $\langle a, b \rangle = y$:

2.4 Inner Product Arguments

Inner product arguments (IPA) allow a verifier to validate the inner product of a committed vector from the prover and a public vector. Our protocols use the inner product arguments recently proposed by Zhang et al. in [55] as a building block. The scheme is a Reed-Solomon encoded interactive oracle proof based on the work of Aurora[20], and does not require a trusted setup. Let $y = \langle a, b \rangle$ be the inner product of two vectors. The scheme consists of the following algorithms:

- pp \leftarrow IPA.KeyGen(1 $^{\lambda}$),
- $com_a \leftarrow IPA.Commit(a, pp)$,
- $(y, \pi) \leftarrow IPA.Prove(a, b, pp),$
- $\{0,1\} \leftarrow \mathsf{IPA}.\mathsf{Verify}(\mathsf{pp}, y, \mathsf{com}_a, b, \pi)$

Ligero++ 4 / 25

THEOREM 2.6 ([55]). There exists an inner product argument scheme satisfying the following properties:

Ligero++ 5 / 25

• Completeness. For any private vector $a \in \mathbb{F}^n$, public vector $b \in \mathbb{F}^n$, pp \leftarrow IPA.KeyGen(1 $^{\lambda}$), com \leftarrow IPA.Commit(a, pp), $\{y, \pi\} \leftarrow$ IPA.Prove(a, b, pp), it holds that

$$Pr[IPA.Verify(pp, y, com_a, b, \pi) = 1] = 1$$

Ligero++ 6 / 25

• **Soundness.** For any PPT adversary \mathcal{A} , pp \leftarrow IPA.KeyGen(1 $^{\lambda}$), the following probability is negligible in λ :

$$\Pr\begin{bmatrix} (a^*, \mathsf{com}^*, b, y^*, \pi^*) \leftarrow \mathcal{R}(1^\lambda, \mathsf{pp}) & \mathsf{com}^* = \mathsf{IPA.Commit}(a^*, \mathsf{pp}) \\ \mathsf{IPA.Verify}(\mathsf{pp}, y^*, \mathsf{com}^*, b, \pi^*) = 1 & \land \langle a^*, b \rangle \neq y^* \end{bmatrix}$$

Ligero++ 7 / 25

Complexity. Let the size of the vectors be n. The running time of Commit and Prove is $O(n \log n)$ time for the prover, and the running time of Verify is O(n) for the verifier. The proof size is $O(\log^2 n)$.

Ligero++ 8 / 25

Reed-Solomon Code Summary

We have a message $m=(m_1,\ldots,m_k)\to \text{We find polynomial }p$ such that $(p(\zeta_1),\ldots,p(\zeta_k))=(m_1,\ldots,m_k)\to \text{We define}$ $(p(\eta_1),\ldots,p(\eta_n))=(u_1,\ldots,u_n)=u$ as the encoded message of m

Ligero++ 9 / 25

Reed-Solomon Code

DEFINITION 4.1 (REED-SOLOMON CODE). For positive integers n, k, finite field \mathbb{F} , and a vector $\eta = (\eta_1, \ldots, \eta_n) \in \mathbb{F}^n$ of distinct field elements, the code $\mathrm{RS}_{\mathbb{F}, n, k, \eta}$ is the [n, k, n-k+1] linear code over \mathbb{F} that consists of all n-tuples $(p(\eta_1), \ldots, p(\eta_n))$ where p is a polynomial of degree < k over \mathbb{F} .

Ligero++ 10 / 25

Reed-Solomon Code

Let $L = RS_{\mathbb{F},n,k,\eta}$ be an RS code and $\zeta = (\zeta_1, \ldots, \zeta_k)$ be a sequence of distinct elements in \mathbb{F} .

Ligero++ 11 / 25

Reed-Solomon Code

For a codeword $u \in L$, we define the message $\text{Dec}_{\zeta}(u)$ to be $(p_u(\zeta_1), \ldots, p_u(\zeta_k))$, where p_u is the polynomial (of degree < k) corresponding to u such that:

$$(p_u(\eta_1),\ldots,p_u(\eta_n))=(u_1,\ldots,u_n)$$

Ligero++ 12 / 25

Reed-Solomon Code Extended Version

For a codeword $u \in L$, we define the message $\operatorname{Dec}_{\zeta}(u)$ to be $(p_u(\zeta_1), \ldots, p_u(\zeta_k))$, where p_u is the polynomial (of degree < k) corresponding to u. For $U \in L^m$ with rows $u_1, \ldots, u_m \in L$, we let $\operatorname{Dec}_{\zeta}(U)$ be the length-mk vector $x = (x_{11}, \ldots, x_{1k}, \ldots, x_{m1}, \ldots, x_{mk})$ such that $(x_{i1}, \ldots, x_{ik}) = \operatorname{Dec}(u^i)$, $i \in [m]$. Finally we say that U encodes x if $x = \operatorname{Dec}_{\zeta}(U)$, we use $\operatorname{Dec}(U)$ when ζ is clear from the context.

Ligero++ 13 / 25

Reed-Solomon Code Complexity

In our protocol, we set $\eta_i = \omega^i$ where ω is a generator of a multiplicative group in field \mathbb{F} . We can evaluate $(p(\eta_0), p(\eta_1), ..., p(\eta_{n-1}))$ using the fast Fourier transform (FFT), which takes $O(n \log n)$ field operations. We use RS(a) to denote the RS encoding of message a.

Ligero++ 14 / 25

Ligero

We have a matrix that has C elements. The dimension of this matrix is $\sqrt{C} \times \sqrt{C}$. The encoding of each row takes $\sqrt{C} \log C$. The overall encode time is $\mathcal{O}(C \log C)$. The communication time takes $t \times ColumnSize + RowSize = \mathcal{O}((t+1) \times \sqrt{C})$ time

Ligero++ 15 / 25

Ligero

- Oracle: A purported L^m-codeword U. Depending on the context, we may view U either as a matrix in F^{m×n} in which each row U_i is a purported L-codeword, or as a sequence of n symbols (U[1],...,U[n]), U[j] ∈ F^m.
- Interactive testing:
 - W picks a random linear combinations r ∈ F^m and sends r to P.
 - (2) \mathcal{P} responds with $w = r^T U \in \mathbb{F}^n$.
 - (3) V queries a set Q ⊂ [n] of t random symbols U[j], j ∈ Q.
 - (4) V accepts iff w ∈ L and w is consistent with U_Q and r. That is, for every j ∈ Q we have ∑_{i=1}^m r_j · U_{i,j} = w_j.
 - The following lemma follows directly from the linearity of L.

Ligero++ 16 / 25

PROTOCOL 1 (INTERLEAVED LINEAR CODE TEST). \mathbb{F} is a prime field and $L \subset \mathbb{F}^n$ is a [n, k, d] RS code. Let $U \in \mathbb{F}^{m \times n}$ be the matrix to be tested. pp ← KeyGen(1^λ).

- Interleaved testing:
- (1) V generates a random vector $r \in \mathbb{F}^m$ and sends it to \mathcal{P} .
- (2) \mathcal{P} computes $w = r^T U \in \mathbb{F}^n$ and sends it to V.
- (3) V checks that w ∈ L.
- (4) V generates a random set $Q \subseteq [n]$ and |Q| = t and sends it to P.
- (5) W checks the consistency of w. In particular, for $j \in Q$, \mathcal{P} and \mathcal{V} invoke an IPA protocol on U[j] and r. \mathcal{V} accepts if all the checks pass, and rejects otherwise.

Ţ

Ligero++ 17/25

Complexity. Let the size of the vectors be n. The running time of Commit and Prove is $O(n \log n)$ time for the prover, and the running time of Verify is O(n) for the verifier. The proof size is $O(\log^2 n)$.

Ligero++ 18 / 25

We set the size of matrix as $\frac{C}{polylog(C)} \times polylog(C)$

Ligero++ 19 / 25

Complexity. Let C be the size of matrix U. Then the prover time is $O(C \log C)$, the communication size is $O(\operatorname{polylog} C)$ and the verifier time is O(C).

Ligero++ 20 / 25

Ligero

Test-Linear-Constraints-IRS($\mathbb{F}, L = RS_{\mathbb{F}, n, k, n}, m, t, \zeta, A, b; U$)

- . Oracle: A purported Lm-codeword U that should encode a message $x \in \mathbb{F}^{m\ell}$ satisfying Ax = b.
- Interactive testing:
 - (1) V picks a random vector $r \in \mathbb{F}^{m\ell}$ and sends r to P.
 - (2) V and P compute

$$r^{T}A = (r_{11}, \dots, r_{1\ell}, \dots, r_{m1}, \dots, r_{m\ell})$$

and, for $i \in [m]$, let $r_i(\cdot)$ be the unique polynomial of degree $< \ell$ such that $r_i(\zeta_c) = r_{ic}$ for every $c \in [\ell]$.

- (3) \mathcal{P} sends the $k + \ell 1$ coefficients of the polynomial defined by $q(\bullet) = \sum_{i=1}^{m} r_i(\bullet) \cdot p_i(\bullet)$, where p_i is the polynomial of degree < k corresponding to row i of U.
- (4) V queries a set Q ⊂ [n] of t random symbols U[j], j ∈ Q.
- (5) V accepts if the following conditions hold:

(a) Σ_{c∈[ℓ]} q(ζ_c) = Σ_{i∈[m],c∈[ℓ]} r_{ic}b_{ic}.
(b) For every j ∈ Q, Σ^m_{i=1} r_i(η_j) · U_{i,j} = q(η_j).

We will analyze the test under the promise that the (possibly badly formed) U is close to L^m .

The following lemma easily follows by inspection.

Ligero++

PROTOCOL 2 (TESTING LINEAR CONSTRAINTS OVER INTERLEAVED RS CODES). Let L[n, k, d] be an RS code and $U \in L^m$ be an interleaved code that encodes the message x. $A \in \mathbb{F}^{mC \times mt}$ is a public matrix such that Ax = 0.

- Run pp_IPA.KeyGen(1^λ).
- Interleaved testing:
- V picks a random value r ∈ F^{mℓ} and sends r to P.
- (2) Both \mathcal{P} and \mathcal{V} computes $a \leftarrow r \times A$ and calculates polynomials $a_i(\cdot)$ such that $a_i(\zeta_i) = a_{i\ell+i-1}$ for all $i \in [m], j \in [\ell]$.
- (3) \mathcal{P} computes polynomials $p_i(\cdot)$ such that $p_i(\eta_i) = U_{ij}$ for $i \in [m]$, $j \in [n]$. \mathcal{P} constructs polynomial $q(x) = \sum_{i=1}^m a_i(x) \cdot p_i(x)$ and sends it to \mathcal{V} .
- (4) V checks that $\sum_{j \in [\ell]} q(\zeta_j) = 0$.
- (5) V generates a random set Q ⊆ [n] and |Q| = t and sends it to P.
- (6) Let b_j denote the vector (a₀(η_j),..., a_{m-1}(η_j)). V checks the consistency for q(·). In particular, for j ∈ Q, P and V invoke an IPA protocol on U[j] and b_j. V accepts if all the checks pass, and rejects otherwise.

Ligero++ 22 / 25

$\mathsf{Ligero} + +$

Complexity. Let C be the size of matrix U and assuming a can be computed in linear time. Then the prover time is $O(C \log C)$, the communication size is O(polylogC) and the verifier time is O(C).

Ligero++ 23 / 25

Ligero

Test-Quadratic-Constraints-IRS($\mathbb{F}, L = RS_{\mathbb{E}, n, k, n}, m, t, \zeta, a, b; U^x$, $U^y, U^z)$

- Oracle: Purported Lm-codewords Ux, Uy, Uz that should encode messages $x, y, z \in \mathbb{F}^{m\ell}$ satisfying $x \odot y + a \odot z = b$.
- · Interactive testing:
 - (1) Let $U^a = \operatorname{Enc}_{\zeta}(a)$ and $U^b = \operatorname{Enc}_{\zeta}(b)$.
 - (2) V picks a random linear combinations r ∈ F^m and sends r
 - (3) \mathcal{P} sends the 2k-1 coefficients of the polynomial p_0 defined by $p_0(\bullet) = \sum_{i=1}^m r_i \cdot p_i(\bullet)$, where $p_i(\bullet) = p_i^x(\bullet) \cdot p_i^y(\bullet) + p_i^a(\bullet)$ $p_i^z(\bullet) - p_i^b(\bullet)$, and where p_i^x, p_i^y, p_i^z are the polynomials of degree < k corresponding to row i of U^x , U^y , U^z , and p_i^a , p_i^b are the polynomials of degree $< \ell$ corresponding to row i of U^a, U^b .
 - (4) V picks a random index set O ⊂ [n] of size t, and queries $U^{x}[i], U^{y}[i], U^{z}[i], i \in O$.
 - (5) V accepts if the following conditions hold: (a) p₀(ζ_c) = 0 for every c ∈ [ℓ].
 - (b) For every $j \in Q$, it holds that

$$\sum_{i=1}^{m} r_{i} \cdot \left[U_{i,j}^{x} \cdot U_{i,j}^{y} + U_{i,j}^{a} \cdot U_{i,j}^{z} - U_{i,j}^{b} \right] = p_{0}(\eta_{j}).$$

The following lemma follows again directly from the description.

PROTOCOL 3 (TESTING QUADRATIC CONSTRAINTS OVER INTERLEAVED RS CODES). Let λ be the security parameter, F be a prime field. L[n,k,d] be the intended codeword space. $U^x \in L^m$ encodes the message $x,U^y \in L^m$ encodes the message x,U^y

- Run pp ← IPA.KeyGen(1^λ).
- Interleaved testing:
- (1) V picks a random value $r \in \mathbb{F}^m$ and sends r to P.
- (2) \mathcal{P} construct polynomial $q(\cdot)$ defined by $q(\cdot) = \sum_{i=1}^{m} r_i \cdot p_i(\cdot)$, where $p_i(\cdot) = p_i^{x}(\cdot)p_i^{y}(\cdot) p_i^{z}(\cdot)$ send the polynomial q to the verifier.
- (3) V checks that $\forall i \in [\ell], q(\zeta_i) = 0$.
- (4) V generates a random set Q ⊆ [n] and |Q| = t and sends it to P.
- (5) V checks the consistency for q(·). In particular, for j ∈ Q, P and V invoke an IPA protocol on U[j] and r where U[j] = U^x[j] * U^y[j] − U^z[j]. V accepts if all the checks pass, and rejects otherwise.

Ligero++ 25 / 25

$\mathsf{Ligero} + +$

Complexity. Let C be the size of matrix U and assuming a can be computed in linear time. Then the prover time is $O(C \log C)$, the communication size is O(polylogC) and the verifier time is O(C).

Ligero++ 26 / 25