TABELAS DE DIFUSÃO EM GASES, LÍQUIDOS E SÓLIDOS

Tabela J.1 Difusividades mássicas binárias em gases[†]

Sistema	T(K)	$D_{AB} P(\text{cm}^2 \text{ atm/s})$	$D_{AB} P(\text{cm}^2 \text{ Pa/s})$
Ar			
Amônia	273	0,198	2,006
Anilina	298	0,0726	0,735
Benzeno	298	0,0962	0,974
Bromo	293	0,091	0,923
Dióxido de carbono	273	0,136	1,378
Dissulfeto de carbono	273	0,0883	0,894
Cloro	273	0,124	1,256
Difenil	491	0,160	1,621
Acetato de etila	273	0,0709	0,718
Etanol	298	0,132	1,337
Éter etílico	293	0,0896	0,908
Iodo	298	0,0834	0,845
Metanol	298	0,162	1,641
Mercúrio	614	0,473	4,791
Naftaleno	298	0,0611	0,619
Nitrobenzeno	298	0,0868	0,879
n-Octano	298	0,0602	0,610
Oxigênio	273	0,175	1,773
Acetato de propila	315	0,092	0,932
Dióxido de enxofre	273	0,122	1,236
Tolueno	298	0,0844	0,855
Água	298	0,260	2,634
mônia			
Etileno	293	0,177	1,793
argônio			
leon	293	0,329	3,333
Dióxido de carbono			
Benzeno	318	0,0715	0,724
Dissulfeto de carbono	318	0,0715	0,724
cetato de etila	319	0,0666	0,675

Sistema	T(K)	$D_{AB} P(\text{cm}^2 \text{ atm/s})$	$D_{AB} P(\text{cm}^2 \text{ Pa/s})$	
Etanol	273	0,0693	0,702	
Éter etílico	273	0,0541	0,548	
Hidrogênio	273	0,550	5,572	
Metano	273	0,153	1,550	
Metanol	298,6	0,105	1,064	
Nitrogênio	298	0,165	1,672	
Óxido nitroso	298	0,117	1,185	
Propano	298	0,0863	0,874	
Água	298	0,164	1,661	
Monóxido de carbono				
Etileno	273	0,151	1,530	
Hidrogênio	273	0,651	6,595	
Nitrogênio	288	0,192	1,945	
Oxigênio	273	0,185	1,874	
Hélio				
Argônio	273	0,641	6,493	
Benzeno	298	0,384	3,890	
Etanol	298	0,494	5,004	
Hidrogênio	293	1,64	16,613	
Neon	293	1,23	12,460	
Água	298	0,908	9,198	
Hidrogênio				
Amônia	293	0,849	8,600	
Argônio	293	0,770	7,800	
Benzeno	273	0,317	3,211	
Etano	273	0,439	4,447	
Metano	273	0,625	6,331	
Oxigênio	273	0,697	7,061	
Água	293	0,850	8,611	
Nitrogênio				
Amônia	293	0,241	2,441	
Etileno	298	0,163	1,651	
Hidrogênio	288	0,743	7,527	
Iodo	273	0,070	0,709	
Oxigênio	273	0,181	1,834	
Oxigênio			The second second	
Amônia	293	0,253	2,563	
Benzeno	296	0,0939	0,951	
Etileno	293	0,182	1,844	

[†] R. C. Reid e T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, Nova York, 1958, Capítulo 8.

^a Tabela 1.1 — Coeficientes de difusão binária em gases

Sistema	T	$D_{AB}.P$	Sistema	T	$D_{AB}.P$
	(K) $(cm^2 \cdot atm/s)$			(K)	$(cm^2 \cdot atm/s)$
ar/acetato de etila	273	0,0709	C0 ₂ /metanol	298,6	0,105
ar/acetato de propila	315	0,092	C0 ₂ /nitrogênio	298	0,158
ar/água	298	0,260	C0 ₂ /óxido nitroso	298	0,117
ar/amônia	273	0,198	CO ₂ /propano	298	0,0863
ar/anilina	298	0,0726	C0/etileno	273	0,151
ar/benzeno	298	0,0962	C0/hidrogênio	273	0,651
ar/bromo	293	0,091	C0/nitrogênio	288	0,192
ar/difenil	491	0,160	C0/oxigênio	273	0,185
ar/dióxido de carbono	273	0,136	He/água	298	0,908
ar/dióxido de enxofre	273	0,122	He/argônio	273	0,641
ar/etanol	298	0,132	He/benzeno	298	0,384
ar/éter etílico	293	0,0896	He/etanol	298	0,494
ar/iodo	298	0,0834	He/hidrogênio	293	1,64
ar/mercúrio	614	0,473	He/neônio	293	1,23
ar/metanol	298	0,162	H ₂ /ágụa	293	0,850
ar/nafttaleno	298	0,0611	H ₂ /amônia	293	0,849
ar/nitrobenzeno	298	0,0868	H ₂ /argônio	293	0,770
ar/n-octano	298	0,0602	H ₂ /benzeno	273	0,317
ar/oxigênio	273	0,175	H ₂ /etano	273	0,439
ar/tolueno	298	0,0844	H ₂ /metano	273	0,625
NH ₃ /etileno	293	0,177	N ₂ /oxigênio	273	0,697
argônio/neônio	293	0,329	N ₂ /amônia	293	0,241
C0 ₂ /acetato de etila	319	0,0666	N ₂ /etileno	298	0,163
C0₂/água	298	0,164	N ₂ /hidrogênio	288	0,743
C0 ₂ /benzeno	318	0,0715	N ₂ /iodo	273	0,070
CO ₂ /etanol	273	0,0693	N ₂ /oxigênio	273	0,181
C0 ₂ /éter etílico	273	0,0541	O ₂ /amônia	293	0,253
CO ₂ /hidrogênio	273	0,550	O ₂ /benzeno	296	0,0939
C0 ₂ /metano	273	0,153	O ₂ /etileno	293	0,182

^a Fonte: R. D. Reid, J. M. Prausnitz e T. Sherwood, *The properties of gases & liquids*, 3^a ed. Nova York: McGraw-Hill, 1977.

Quadro 1.1 — Correlações para a estimativa de σ_i e ϵ_i/k a Para o ar, utilizar: σ_i = 3,711 Å e ϵ_i/k = 78,6K

Grupos	σ_i =	$\varepsilon_i/k =$		
^b condições à T _b	$1.18V_{\rm b}^{1/3}$	(1.36)	1,15T _b	(1.37)
^b condições à T _c	$0.841V_{c}^{1/3}$	(1.38)	0,77T _c	(1.39)
c fator acêntrico	$(2,3551-0,087 \text{w})(T_c/P_c)^{1/3}$	(1.40)	$(0,7915 + 0,1693w)T_c$	(1.41)

^a Fontes: ^a Reid et al. 1977, 1978; ^b Hirschfelder et al., 1949; ^c Tee et al. 1966.

Tabela K.1 As integrais de colisão, Ω_{μ} e Ω_D , baseadas no potencial de Lennard-Jones[†]

κΤ/ε	$\Omega_{\mu} = \Omega_{k}$ (para viscosidade e condutividade térmica)	Ω_D (para difusividade mássica)	κΤ/ ε	$\Omega_{\mu} = \Omega_{k}$ (para viscosidade e condutividade térmica)	Ω_D (para difusividade mássica)
			1,75	1,234	1,128
0,30	2,785	2,662	1,80	1,221	1,116
0,35	2,628	2,476	1,85	1,209	1,105
0,40	2,492	2,318	1,90	1,197	1,094
0,45	2,368	2,184	1,95	1,186	1,084
0,50	2,257	2,066	2,00	1,175	1,075
0,55	2,156	1,966	2,10	1,156	1,057
0,60	2,065	1,877	2,20	1,138	1,041
0,65	1,982	1,798	2,30	1,122	1,026
0,70	1,908	1,729	2,40	1,107	1,012
0,75	1,841	1,667	2,50	1,093	0,9996
0,80	1,780	1,612	2,60	1,081	0,9878
0,85	1,725	1,562	2,70	1,069	0,9770
0,90	1,675	1,517	2,80	1,058	0,9672
0,95	1,629	1,476	2,90	1,048	0,9576
1,00	1,587	1,439	3,00	1,039	0,9490
1,05	1,549	1,406	3,10	1,030	0,9406
1,10	1,514	1,375	3,20	1,022	0,9328
1,15	1,482	1,346	3,30	1,014	0,9256
1,20	1,452	1,320	3,40	1,007	0,9186
1,25	1,424	1,296	3,50	0,9999	0,9120
1,30	1,399	1,273	3,60	0,9932	0,9058
1,35	1,375	1,253	3,70	0,9870	0,8998
1,40	1,353	1,233	3,80	0,9811	0,8942
1,45	1,333	1,215	3,90	0,9755	0,8888
1,50	1,314	1,198	4,00	0,9700	0,8836
1,55	1,296	1,182	4,10	0,9649	0,8788
1,60	1,279	1,167	4,20	0,9600	0,8740
1,65	1,264	1,153	4,30	0,9553	0,8694
					(Continua)

Tabela K.1 (Continuação)

κΤ/ ε	$\Omega_{\mu} = \Omega_{k}$ (para viscosidade e condutividade térmica)	Ω_D (para difusividade mássica)	κΤ/ ε	$ \Omega_{\mu} = \Omega_{k} $ (para viscosidade e condutividade térmica)	Ω_D (para difusividade mássica)
1,70	1,248	1,140	4,40	0,9507	0,8652
4,50	0,9464	0,8610	10,0	0,8242	0,7424
4,60	0,9422	0,8568	20,0	0,7432	0,6640
4,70	0,9382	0,8530	30,0	0,7005	0,6232
4,80	0,9343	0,8492	40,0	0,6718	0,5960
4,90	0,9305	0,8456	50,0	0,6504	0,5756
5,0	0,9269	0,8422	60,0	0,6335	0,5596
6,0	0,8963	0,8124	70,0	0,6194	0,5464
7,0	0,8727	0,7896	80,0	0,6076	0,5352
8,0	0,8538	0,7712	90,0	0,5973	0,5256

Prof^a. Myriam Lorena M. N. Cerutti

Tabela K.2 Constantes de força de Lennard-Jones, calculadas a partir de dados de viscosidade[†]

Composto	Fórmula	ϵ_A/κ , em (K)	σ, em Å
Acetileno	C ₂ H ₂	185	4,221
Ar		97	3,617
Argônio	Α	124	3,418
Arsina	AsH ₃	281	4,06
Benzeno	C_6H_6	440	5,270
Bromo	Br ₂	520	4,268
i-Butano	C_4H_{10}	313	5,341
n-Butano	C_4H_{10}	410	4,997
Dióxido de carbono	CO_2	190	3,996
Dissulfeto de carbono	CS ₂	488	4,438
Monóxido de carbono	CO	110	3,590
Tetracloreto de carbono	CCl ₄	327	5,881
Sulfeto de carbonila	COS	335	4,13
Cloro	Cl_2	357	4,115
Clorofórmio	CHCl ₃	327	5,430
Cianogênio	C_2N_2	339	4,38
Ciclo-hexano	C_6H_{12}	324	6,093
Etano	C_2H_6	230	4,418
Etanol	C ₂ H ₅ OH	391	4,455
Etileno	C_2H_6	205	4,232
Flúor	F_2	112	3,653
Hélio	He	10,22	2,576
n-Heptano	C_7H_{16}	282 [‡]	8,88 ³
n-Hexano	C_6H_{14}	413	5,909
Hidrogênio	H ₂	33,3	2,968
Ácido clorídrico	HCl	360	3,305

[†] R. C. Reid e T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, Nova York, 1958.

Tabela K.2 (Continuação)

Composto	Fórmula	ϵ_A/κ , em (K)	σ, em Å
Ácido iodrídico	НІ	324	4,123
Iodo	I_2	550	4,982
Criptônio	Kr	190	3,60
Metano	CH ₄	136,5	3,822
Metanol	CH ₃ OH	507	3,585
Cloreto de metileno	CH_2Cl_2	406	4,759
Cloreto de metila	CH ₃ Cl	855	3,375
Iodeto mercúrico	HgI_2	691	5,625
Mercúrio	Hg	851	2,898
Neon	Ne	35,7	2,789
Óxido nítrico	NO	119	3,470
Nitrogênio	N_2	91,5	3,681
Óxido nitroso	N ₂ O	220	3,879
n-Nonano	C_9H_{20}	240	8,448
n-Octano	C_8H_{18}	320	7,451
Oxigênio	O_2	113	3,433
n-Pentano	C_5H_{12}	345	5,769
Propano	C_3H_8	254	5,061
Silano	SiH ₄	207,6	4,08
Tetracloreto de silício	SiCl ₄	358	5,08
Dióxido de enxofre	SO_2	252	4,290
Água	H ₂ O	356	2,649
Xenônio	Xe	229	4,055

[‡] Calculado a partir dos coeficientes do virial.¹

^a Tabela 1.2a — Propriedades de gases e de líquidos inorgânicos

Espécies	Fórmula molecular	Massa molar (g/gmol)	T _b (K)	V_b^b (cm ³ /gmol)	T _c (K)	P _c (atm)	$\frac{V_c}{(\text{cm}^3/\text{gmol})}$	w	μ _p (debyes)	R _i ¹ (A)
água	H ₂ O	18,015	373,2	18,71	647,3	217,6	56,0	0,344	1,8	0,6150
amônia	NH_3	17,031	239,7	$25,0^{1}$	405,6	111,3	72,5	0,25	1,5	0,8533
argônio bromo	Ar Br ₂	39,948 159,808	87,3 331,9	53,22	150,8 584,0	48,1 102,0	74,9 127,0	-0,004 0,132	0,0 0,2	- 1,076
dióxido de carbono	CO_2	44,010	194,7	$34,0^{2}$	304,2	72,8	94,0	0,225	0,0	0,9918
dióxido de enxofre	SO_2	64,063	263,0	43,81	430,8	77,8	122,0	0,251	1,6	1,6738
hidrogênio	H_2	2,016	20,4	$14,3^{2}$	33,2	12,8	65,0	-0,22	0,0	0,3708
Hélio-4	He (4)	4,003	4,21	_	5,19	2,24	57,3	-0,387	0,0	0,8077
monóxido de carbono neônio	CO Ne	28,010 20,183	81,7 27,0	30,72	132,9 44,4	34,5 27,2	93,1 41,7	0,049 0,0	0,1 0,0	0,5582 0,8687
nitrogênio	N_2	28,013	77,4	$31,2^{2}$	126,2	33,5	89,5	0,04	0,0	0,5471
óxido nitroso	N_2O	44,013	184,7	36,42	309,6	71,5	97,4	0,16	0,2	1,1907
oxigênio	O_2	31,999	90,2	$25,6^{2}$	154,6	49,8	73,4	0,021	0,0	0,6037

^a Fonte: R. C. Reid, J. M. Prausnitz e T. K. Sherwood, *The properties of gases & liquids*, 3^a ed. Nova York: McGraw-Hill, 1977.

^a Tabela 1.2b — Propriedades de gases e de líquidos orgânicos

Espécies	Fórmula molecular	Massa molar (g/gmol)	T _b (K)	V _b ^b (cm³/gmol)	T _c (K)	P _c (atm)	$\begin{array}{c} V_c \\ (cm^3/gmol) \end{array}$	w	μ _p (debyes)	R _i 1 (A)
ácido acético	C ₂ H ₄ O ₂	60,052	391,1	64,11	594,4	57,1	171,0	0,454	1,3	-2,5950
acetona	C ₃ H ₆ O	58,080	329,4	$77,5^{1}$	508,1	46,4	209,0	0,309	2,9	2,7404
benzeno	C_6H_6	78,114	353,3	96,51	562,1	48,3	259,0	0,212	0,0	3,0037
clorofórmio	$CHC\ell_3$	119,378	334,3	$96,5^{3}$	536,4	54,0	239,0	0,216	1,1	3,1779
ciclohexano	C_6H_{12}	84,162	353,9	117,01	553,4	40,2	308,0	0,213	0,3	3,2605
etano	C_2H_6	30,07	184,5	$53,6^{3}$	305,4	48,2	148,0	0,098	0,0	1,8314
etanol	C_2H_6O	46,069	351,5	$60,8^{3}$	516,2	63,0	167,0	0,635	1,7	2,2495
glicerol	$C_3H_8O_3$	92,095	563,0	$94,8^{3}$	726,0	66,0	255,0	-	3,0	=
n-hexano	$C_{6}H_{14}$	86,178	341,9	$140,06^{3}$	507,4	29,3	370,0	0,296	0,0	3,8120
metano	CH_4	16,043	111,7	37,71	190,6	45,4	99,0	0,008	0,0	1,1234
metanol	CH ₄ O	32,042	337,8	$42,5^{1}$	512,6	79,9	118,0	0,559	1,7	1,5360
naftaleno	$C_{10}H_{8}$	128,174	491,1	$156,0^{3}$	748,4	40,0	410,0	0,302	0,0	3707
n-pentano	C_5H_{12}	72,151	309,2	$114,0^{3}$	469,6	33,3	304,0	0,251	0,0	3,3858
tetracloreto de carbono	$CC\ell_4$	153,823	349,7	102,01	556,4	45,0	276,0	0,194	0,0	3,4581
tolueno	C_7H_8	92,141	383,8	$118,7^{3}$	591,7	40,6	316,0	0,257	0,4	3,4432

^a Fonte: R. C. Reid, J. M. Prausnitz e T. K. Sherwood, *The properties of gases & liquids*, 3^a ed. Nova York: McGraw-Hill, 1977.

b Utilizou-se das seguintes fontes: Reid et al., 1977; J. R. Welty, K. E. Wilson e E. Wicks, Fundamentals of momentum, heat and mass transfer, 2ª ed. Nova York: John Wiley, 1976; Equação de Tyn e Callus, eq.(1.76).

b Utilizou-se das seguintes fontes: ¹ Reid, Prausnitz e Sherwood (1977); ² J. R. Welty, K. E. Wilson e E. Wicks, *Fundamentals of momentum, heat and mass transfer*, 2^a ed. Nova York: John Wiley, 1976; ³ Equação de Tyn e Callus, eq.(1.76).

Tabela 24.4 Volumes moleculares no ponto normal de ebulição para alguns compostos comumente encontrados

Composto	Volume Molecular, V_A (cm ³ /gmol)	Composto	Volume Molecular, V_A (cm ³ /gmol)
Hidrogênio, H ₂	14,3	Óxido nítrico, NO	23,6
Oxigênio, O ₂	25,6	Óxido nitroso, N ₂ O	36,4
Nitrogênio, N ₂	31,2	Amônia, NH ₃	25,8
Ar	29,9	Água, H ₂ O	18,9
Monóxido de carbono, CO	30,7	Sulfeto de hidrogênio, H ₂ S	32,9
Dióxido de carbono, CO ₂	34,0	Bromo, Br ₂	53,2
Sulfeto de carbonila, COS	51,5	Cloro, Cl ₂	48,4
Dióxido de enxofre, SO ₂	44,8	Iodo, I ₂	71,5

Tabela 24.5 Incrementos de volume atômico para estimativa de volumes moleculares no ponto normal de ebulição para substâncias simples¹⁵

Elemento	Volume Atômico (cm³/gmol)	Elemento	Volume Atômico (cm³/gmol)
Bromo	27,0	Oxigênio, exceto quando indicado abaixo	7,4
Carbono	14,8	Oxigênio, em ésteres metílicos	9,1
Cloro	21,6	Oxigênio, em éteres metílicos	9,9
Hidrogênio	3,7	Oxigênio, em éteres de maior cadeia	
Iodo	37,0	e em outros ésteres	11,0
Nitrogênio, dupla ligação	15,6	Oxigênio, em ácidos	12,0
Nitrogênio, em aminas primárias	10,5	Enxofre	25,6
Nitrogênio, em aminas secundárias	12,0		

G. Le Bas, The Molecular Volumes of Liquid Chemical Compounds, Longmans, Green & Company, Ltd., Londres, 1915.

As seguintes correlações são recomendadas quando se utilizam os volumes atômicos fornecidos pela Tabela 24.5:

para anel com três componentes, como no óxido de etileno	deduzir 6
para anel com quatro componentes, como no ciclobutano	deduzir 8,5
para anel com cinco componentes, como no furano	deduzir 11,5
para piridina	deduzir 15
para anel do benzeno	deduzir 15
para anel do naftaleno	deduzir 30
para anel do antraceno	deduzir 47,5

Tabela 24.3 Volumes atômicos de difusão utilizados para estimar D_{AB} pelo método de Fuller, Schettler e Giddings¹⁰

	Incremente	os de Volumes A	Atômico e Estrutura	al de Difusão, ν_i	
\overline{c}	16,	5	Cl		19,5
H	1,	98	\boldsymbol{S}		17,0
0	5,	48	Anel Aromát	ico	-20,2
N	5,	69	Anel Heteroc	iclico	-20,2
	Volu	ımes de Difusão	para Moléculas Si	mples, ν	
$\overline{\mathrm{H_2}}$	7,07	Ar	16,1	H ₂ O	12,7
D_2	6,70	Kr	22,8	$C(Cl_2)(F_2)$	114,8
He	2,88	CO	18,9	SF ₆	69,7
N_2	17,9	CO_2	26,9	Cl_2	37,7
O_2	16,6	N_2O	35,9	Br_2	67,2
Air	20,1	NH_3	14,9	SO_2	41,1

Tabela J.2 Difusividades mássicas binárias em líquidos†

Soluto A	Solvente B	Temperatura (K)	Concentração do soluto (gmol/L ou kgmol/m³)	Difusividade (cm ² /s × 10 ⁵ ou m ² /s × 10 ⁹)
Cloro	Água	289	0,12	1,26
Ácido	Água	273	9	2,7
clorídrico			2	1,8
		283	9	3,3
			2,5	2,5
		289	0,5	2,44
Amônia	Água	278	3,5	1,24
		288	1,0	1,77
Dióxido de carbono	Água	283	0	1,46
		293	0	1,77
Cloreto	Água	291	0,05	1,26
de sódio			0,2	1,21
			1,0	1,24
			3,0	1,36
			5,4	1,54
Metanol	Água	288	0	1,28
Ácido acético	Água	285,5	1,0	0,82
			0,01	0,91
		291	1,0	0,96
Etanol	Água	283	3,75	0,50
			0,05	0,83
		289	2,0	0,90
n-Butanol	Água	288	0	0,77
Dióxido de carbono	Etanol	290	0	3,2
Clorofórmio	Etanol	293	2,0	1,25

[†] R. E. Treybal, Mass Transfer Operations, McGraw-Hill, Nova York, 1955, p. 25.

Tabela 1.6 — Coeficiente de difusão binária em líquidos em diluição infinita

^a Sistema soluto/solvente	T (K)	$\begin{array}{c} D_{o} \times 10^{5} \\ AB \end{array}$ (cm^{2}/s)	b Sistema soluto/solvente	T (K)	$\begin{array}{c} D_o \times 10^5 \\ AB \end{array}$ (cm^2/s)
acetona/CCl ₄	298,15	1,70	ácido acético/acetona	298	3,31
argônio/CCl ₄	298,15	3,63	ácido benzóico/acetona	298	2,62
benzeno/CCl ₄	298,15	1,54	ácido acético/benzeno	298	2,09
ciclohexano/CCl ₄	298,15	1,27	etanol/benzeno	280,6	1,77
etano/CCl ₄	298,15	2,36	etanol/benzeno	298	3,82
etanol/CCl ₄	298,15	1,95	naftaleno/benzeno	280,6	1,19
heptano/CCl ₄	298,15	1,13	CCl ₄ /benzeno	298	1,92
hexano/CCl ₄	298,15	1,49	acetona/clorofórmio	288	2,36
isoctano/CCl ₄	298,15	1,34	benzeno/clorofórmio	288	2,51
metano/CCl ₄	298,15	2,97	etanol/clorofórmio	288	2,20
metanol/CCl ₄	298,15	2,61	acetona/tolueno	293	2,93
nitrogênio/CCl ₄	298,15	3,54	ácido acético/tolueno	298	2,26
oxigênio/CCl ₄	298,15	3,77	ácido benzóico/tolueno	293	1,74
pentano/CCl ₄	298,15	1,57	etanol/tolueno	288	3,00
tolueno/CCl ₄	298,15	1,40	água/anilina	293	0,70
argônio/hexano metano/hexano etano/hexano pentano/hexano	298,15 298,15 298,15 298,15	8,50 8,69 5,79 4,59	água/etanol água/etileno glicol água/glicerol água/n-propanol	298 293 298 288	1,132 0,18 0,0083 0,87
ciclohexano/hexano	298,15	3,77	H ₂ /água	298	4,8
heptano/hexano	298,15	3,78	O ₂ /água	298	2,41
isoctano/hexano	298,15	3,38	N ₂ /água	298	3,47
benzeno/hexano tolueno/hexano acetona/hexano	298,15 298,15 298,15	4,64 4,21 5,26	amônia/água benzeno/água etanol/água	298 298 298	1,64 1,02 0,84
CCl ₄ /hexano	298,15	3,70	metanol/água	298	0,84

^a Tabela 1.14 — Dados necessários ao cálculo do coeficiente de difusão em sólidos porosos

Sólidos	Gases	T(K)	$r_{ m p} imes 10^{10} m (m)$	ϵ_{p}	τ
pelletsf de alumina	N ₂ ,He,CO ₂	303	96	0,812	0,85
sílica gel	C_2H_6	323-473	11	0,486	3,35
sílica-alumina	He, Ne, Ar, N_2	273-323	16	0,40	0,725
vidro vycorf	He, Ne, Ar, N_2	298	30,6	0,31	5,9

^a Fonte: C. N. Satterfield e T. K. Sherwood, The role of diffusion in catalysis. Addison-Wesley, 1963.

Profa. Myriam Lorena M. N. Cerutti

Departamento de Engenharia Química TQ-082 Fenômenos de Transporte III

^a Tabela 1.8 — Coeficiente de difusão iônica em diluição infinita em água a 25 °C

Cátions	D _i	Ânions	D _i
	$(cm^2/s \times 10^5)$		$(cm^2/s \times 10^5)$
H ⁺	9,31	OH ⁻	5,28
Li ⁺	1,03	F ⁻	1,47
Na ⁺	1,33	Cl ⁻	2,03
K^+	1,96	Br ⁻	2,08
Rb^+	2,07	I ⁻	2,05
Cs ⁺	2,06	NO ₃	1,90
Ag^+	1,65	CH ₃ COO	1,09
NH_4^+	1,96	CH ₃ CH ₂ COO	0,95
Ca ²⁺	0,79	SO_4^{2-}	1,06
NH_4^+ Ca^{2+} Mg^{2+} La^{3+}	0,71	CO_3^{2-}	0,92
La ³⁺	0,62	SO_4^{2-} CO_3^{2-} $Fe(CN)_6^{3-}$	0,98

^a Fonte: E. L. Cussler, *Diffusion: Mass transfer in fluid systems*. Cambridge: Cambridge University Press, 1984.

^a Tabela 1.9 — Coeficiente de difusão à diluição infinita em água a 25 °C

Compostos	o D A	Compostos	D A
	$(cm^2/s \times 10^5)$		$(\text{cm}^2/\text{s}\times 10^5)$
HCℓ	3,339	NH ₄ NO ₃	1,928
HBr	3,403	$\mathrm{NH_4C}\ell$	1,996
$\mathrm{LiC}\ell$	1,368	$MgC\ell_2$	1,251
LiBr	1,379	$CaC\ell_2$	1,336
NaCℓ	1,612	$SrC\ell_2$	1,336
NaI	1,616	$BaC\ell_2$	1,387
NaBr	1,627	Li ₂ SO ₄	1,041
KCℓ	1,996	Na_2SO_4	1,230
KBr	2,018	Cs_2SO_4	1,569
KI	2,001	$(NH_3)_2SO_4$	1,527
$RbC\ell$	2,057	$MgSO_4$	0,849
LiNO ₃	1,337	$ZnSO_4$	0,849
$AgNO_3$	1,768	LaCℓ ₃	1,294
KNO_3	1,931	K ₄ Fe(CN) ₆	1,473

Fonte: R. A. Robinson e R. H. Stoke, Electrolyte solutions. Londres: Butterworths Publications, 1955.

Tabela 1.12 — Constantes do somatório proposto no polinômio

Eletrólitos	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A ₈	A ₉	A ₁₀
51.1				120000000000000000000000000000000000000					$\times 10^3$	×10 ⁴
NaOH	-0,8968	3,7902	-7,0085	7,1982	-4,4143	1,6811	-0,4006	0,0581	-4,682	1,610
NaCℓ	-0,9759	3,7828	-6,8350	7,0234	-4,3650	1,6969	-0,4154	0,0617	-5,115	1,806
KOH	-0,9465	4,3448	-8,0801	8,5962	-5,5595	2,2502	-0,5709	0,0880	-7,511	2,722
$KC\ell$	-1,0721	3,6216	-5,8292	5,1002	-2,5319	0,7105	-0,1047	0,0063	0,000	0,000
$\mathrm{NH_4C}\ell$	-1,0335	3,3045	-5,0441	4,2596	-2,1118	0,6208	-0,1099	0,0104	-4,124	0,000
NH_4NO_3	-1,3570	4,6305	-7,5998	7,5560	-4,5703	1,7395	-0,4174	0,0612	-5,000	1,748
$MgC\ell_2$	-1,5686	7,6767	-13,496	13,653	-8,2091	2,9796	-0,6390	0,0744	-3,612	0,000
$Mg(NO_3)_2$	-2,1324	12,811	-30,544	41,186	-33,445	16,869	-5,3202	1,0145	-106,940	47,74
$CaC\ell_2$	-1,7010	7,6594	-13,226	13,259	-8,1607	3,1849	-0,7896	0,1203	-10,236	3,722
$\mathbb{C}a(NO_3)_2$	-2,2346	8,8924	-16,242	16,803	-10,523	4,1208	-1,0130	0,1516	-12,618	4,471
Na_2SO_4	-2,3439	5,0669	-5,1111	2,5434	-0,5998	0,0535	0,000	0,0000	0,000	0,000
$NH_4)_2SO_4$	-2,5149	5,6704	-5,7900	2,8829	-0,6795	0,0606	0,000	0,0000	0,000	0,000

^a Tabela 1.16 — Coeficiente efetivo de difusão em zeólitas

Soluto	Zeólita	T (K)	D_{Azeo} (cm ² /s)
¹CH ₄	modernita-H	333	$0,48 \times 10^{-8}$
$^{1}\mathrm{CH_{4}}$	modernita-H	383	1.8×10^{-8}
$^{1}\mathrm{CH_{4}}$	modernita-H	423	$2,75 \times 10^{-8}$
² metanol	4A	288	$5,17 \times 10^{-12}$
² metanol	4A	303	$6,49 \times 10^{-12}$
³ n-hexano	erionita	483	$1,92 \times 10^{-12}$
³ n-dodecano	offretita	423	$2,07 \times 10^{-14}$
⁴ n-butano	silicalita	297	$5,7 \times 10^{-8}$
⁴ n-butano	silicalita	334	11×10^{-8}
⁴ iso-butano	silicalita	297	1.9×10^{-8}
⁴ iso-butano	silicalita	334	$5,5 \times 10^{-8}$

^a Fontes: ¹ C. A. M. Abreu e F. G. Pinto, *Anais* do XIX Enemp, vol. 1, 1991, p. 235. ² O. L. S. Alsina, F. H. L. da Silva e C. I. Mendes, *Anais* do XIX Enemp, vol. 3, 1993, p. 721. ³ C. L. Cavalcante Jr., J. R. Huflon e D. M. Ruthven, *Anais* do XIX Enemp, vol. 2, 1995, p. 449. ⁴ Paravar e Hayhurst, 1984, apud C. L. Cavalcante Jr., *Braz. J. of Chem. Eng.*, vol. 12, nº 13, 1995, p. 158.

Referências Bibliográficas

CREMASCO, M. A. Fundamentos de transferência de massa. 2ª ed. Campinas: Unicamp, 2002.

WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6ª ed. Rio de Janeiro: LTC, 2017.