1 Input File - New Style

```
<InitialConditions>
Temperature
EndTime - followed by end time and time step
</InitialConditions>
<Species>
Species Name - followed by concentration
Optional:
Species Name - followed by concentration - followed by ConstantConcentration
</Species>
<SolverParameters>
Jacobian
Force Stability
Use General Solver
initialh
Tolerance a b
Threshold
RTOL
IRREV
Print Rates
Stoichiometry Matrix For Opt
</SolverParameters>
<Analysis>
RatesMaxAnalysis
StreamRatesAnalysis
RatesSpeciesAllAnalysis
RatesAnalysisAtTime - followed by times (sorted)
RatesOfSpecies - follwoed by species names
</Analysis>
<PressureVessel>
Sample Size=
Vessel Size=
Initial Pressure=
Maximum Pressure=
Gas Solubility=
Gas Species=
PetroOxy Temperature Rise=
Experimental: Henry Law Diffusion Limit
</PressureVessel>
<MechanismReduction>
Use New Lumping
Use Slow Lumping
ReduceReactions
</MechanismReduction>
Experimental:
```

GasPhasePressure

2 Input File - Old Style

2.1 Required

```
Temperature 423 ! initial temperature/K
EndTime 5e4 1.0e0! second entry is time step
02(2) 0.02! concentrations of initial species, assumes mol/L
C12H26(1) 4.7
```

2.2 Either of

```
Threshold 1.0e-13
RTOL 1.0e-7
```

Tolerance 1.0e-7 1.0e-13 ! relative tolerance and threshold

2.3 Optional

```
IRREV ! flag to make scheme irreversible, set automatically where necessary
PrintReac ! prints reaction rates
RatesMaxAnalysis! find the maximum rates for every reaction
RatesAnalysisAtTime x y z ! print rates at timex xyz
%TimeStepChange 1.0e5 1.0e-3 ! time to change the timestep to the new step
ReduceReactions 7 ! orders of magnitude difference to the fastest rate
hm 1.e-12 ! minimum timestep if other is desired
initialh 1.e-3! initial timestep for solver if other is desired
GasPhasePressure 101.325 ! input is in kPa
GasPhaseVolume 1
                        ! input is in L
PetroOxySolvent Sample=5
PetroOxyInitialPressure=700
PetroOxyMaximumPressure=1015
PetroOxyGasSpecies=02(2)
PetroOxyGasSolubility=0.002
```

Use General Solver ! uses dodesol_rkm9mkn for non-stiff to stiff problems, ! else uses dodesol_mk52lfn which is specific to stiff problems

2.3.1 PetroOxy

Additional Commands in the Input File, example given below. The module will not be activated if any parameters are missing.

2.4 Files

2.4.1 Species Lumping

File with name "species_mapping.txt". Unmapped or ungrouped species are internally assigned class 0, hence the labelling from 1.

```
MAPPING
C12H26(1)
02(2)
H02J(4)
C12H25J(5)
SPC(54) ! C12H2502J(54)
H202(38)
SPC(92) ! C12H2502J(92)
SPC(113) ! C12H2504J(113)
SPC(114) ! C12H2604(114)
SPC(13) 1 ! C12H25J(13)
SPC(213) 2 ! C12H2502J(213)
SPC(214) 3 ! C12H2602(214)
C12H25J(9) 1
END
```

2.4.2 Species Removal

File with name "kill.txt" and a species list, "!" for comments

```
SPC(190) !4 ! C12H25O2J(190)
SPC(203) !4 ! C12H25O2J(203)
SPC(250)
```

2.4.3 Species Picking

File wih name "SpeciesPicking.txt", the first line with "ONLY" results in only reactions with chosen species to be picked otherwise all reactions that include a desired species are selected

```
ONLY
C12H26(1)
O2(2)
H02J(4)
C12H25J(5)
SPC(54) ! C12H2502J(54)
H202(38)
SPC(92) ! C12H2502J(92)
SPC(113) ! C12H2504J(113)
SPC(114) ! C12H2604(114)
SPC(13) 1 ! C12H25J(13)
SPC(213) 2 ! C12H2502J(213)
SPC(214) 3 !
```