I. INTRODUCTION

FIG. 1: Test

FIG. 2: Test

FIG. 3: Test

FIG. 4: Test

FIG. 5: Test

FIG. 6: Test

I

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

	Counter		Words	
	1 Col	2 Col	1 Col	2 Col
Words			108	
Figure	3	4	200	400
Table	0	0	13	26
Table Row	0	0	5	13
Eq Row	0	0	7	13
Pages			3	
Total	2308		308	
Remain			1192	

- ¹A. G. Peeters, F. Rath, R. Buchholz, Y. Camenen, J. Candy, F. J. Casson, S. R. Grosshauser, W. A. Hornsby, D. Strintzi, and A. Weikl, "Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold," Phys. Plasmas 23, 082517 (2016).
- ²F. Rath, A. G. Peeters, and A. Weikl, "Analysis of zonal flow pattern formation and the modification of staircase states by electron dynamics in gyrokinetic near marginal turbulence," Phys. Plasmas **28**, 072305 (2021).
- ³A. Weikl, A. G. Peeters, F. Rath, S. R. Grosshauser, R. Buchholz, W. A. Hornsby, F. Seiferling, and D. Strintzi, "Ion temperature gradient turbulence close to the finite heat flux threshold," Phys. Plasmas **24**, 102317 (2017).
- ⁴R. E. Waltz, G. D. Kerbel, J. Milovich, and G. W. Hammett, "Advances in the simulation of toroidal gyro-landau fluid model turbulence," Physics of Plasmas **2**, 2408–2416 (1995).
- ⁵X. Garbet, Y. Idomura, L. Villard, and T. H. Watanabe, "Gyrokinetic simulations of turbulent transport," Nuclear Fusion 50 (2010).
- ⁶A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L. Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E. Shumaker, R. Sydora, and J. Weiland, "Comparisons and physics basis of tokamak transport models and turbulence simulations," Phys. of Plasmas 7, 969–983 (2000).
- ⁷A. Hasegawa, C. G. Maclennan, and Y. Kodama, Phys. Fluids **22**, 2122 (1979).
- R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994).
 P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).
- ¹⁰ A. G. Peeters, Y. Camenen, F. J. Casson, W. A. Hornsby, A. P. Snodin, D. Strintzi, and G. Szepesi, Comput. Phys. Commun. **180**, 2650 (2009).
- ¹¹J. Candy and R. E. Waltz, Phys. Plasmas **13**, 032310 (2006).
- ¹²T.-H. Watanabe and H. Sugama, Nucl. Fusion **46**, 24 (2006).
- ¹³T. Tatsuno, W. Dorland, A. A. Schekochihin, G. G. Plunk, M. Barnes, S. C. Cowley, and G. G. Howes, Phys. Rev. Lett. **103**, 015003 (2009).
- ¹⁴M. Barnes, F. I. Parra, and A. A. Schekochihin, Phys. Rev. Lett. 107, 115003 (2011).
- ¹⁵J. Candy and R. E. Waltz, J. Comput. Phys. **186**, 545 (2003).
- ¹⁶A. I. Smolyakov, P. H. Diamond, and A. I. Shevchenko, Phys. Plasmas 7, 1349 (2000).
- ¹⁷L. Chen, Z. Lin, and R. White, Phys. Plasmas **7**, 3129 (2000).

- ¹⁸B. N. Rogers, W. Dorland, and M. Kotschenreuther, Phys. Rev. Lett. 85, 5336 (2000).
- ¹⁹G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, P. Ghendrih, A. Strugarek, S. Ku, and C. S. Chang, Phys. Rev. E 82, 025401 (2010).
- ²⁰R. E. Waltz and C. Holland, Phys. Plasmas **15**, 122503 (2008).
- ²¹M. Nakata, T.-H. Watanabe, and H. Sugama, Phys. Plasmas **19**, 022303 (2012).
- ²²G. G. Whelan, M. J. Pueschel, and P. W. Terry, Phys. Rev. Lett. **120**, 175002 (2018)
- ²³W. A. Cooper, Plasma Physics and Controlled Fusion **30**, 1805 (1988).
- ²⁴H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids B: Plasma Physics 2, 1–4 (1990).
- ²⁵T. S. Hahm and K. H. Burrell, "Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma," Phys. Plasmas 2, 1648–1651 (1995).
- ²⁶K. H. Burrell, Phys. Plasmas **4**, 1499–1518 (1997).
- ²⁷Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281, 1835 (1998).
- ²⁸M. W. Shafer, R. J. Fonck, G. R. McKee, C. Holland, A. E. White, and D. J. Schlossberg, Phys. Plasmas 19, 032504 (2012).
- ²⁹M. F. J. Fox, F. van Wyk, A. R. Field, Y. c Ghim, F. I. Parra, A. A. Schekochihin, and the MAST Team, Plasma Physics and Controlled Fusion 59, 034002 (2017).
- ³⁰J. Pinzón, T. Happel, P. Hennequin, C. Angioni, T. Estrada, A. Lebschy, U. Stroth, and the ASDEX Upgrade Team, Nuclear Fusion **59**, 074002 (2019)
- ³¹R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasmas 5, 1784–1792 (1998).
- ³²J. E. Kinsey, R. E. Waltz, and J. Candy, Phys. Plasmas **12**, 062302 (2005).
- ³³F. J. Casson, A. G. Peeters, Y. Camenen, W. A. Hornsby, A. P. Snodin, D. Strintzi, and G. Szepesi, Phys. of Plasmas 16, 092303 (2009).
- ³⁴F. Rath, A. G. Peeters, R. Buchholz, S. R. Grosshauser, P. Migliano, A. Weikl, and D. Strintzi, "Comparison of gradient and flux driven gyrokinetic turbulent transport," Phys. Plasmas 23, 052309 (2016).
- ³⁵A. Weikl, A. G. Peeters, F. Rath, F. Seiferling, R. Buchholz, S. R. Grosshauser, and D. Strintzi, Phys. of Plasmas 25, 072305 (2018).
- ³⁶M. J. Pueschel, M. Kammerer, and F. Jenko, Physics of Plasmas 15, 102310 (2008)