

Numerische Darstellung und Codes

Übungen Digitales Design

1 NUM - Zahlensystem	l NUM - Zahlensys	tem
------------------------	---------------------	-----

1.1	Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Zahlen codier
auf:	

- a) 4 bits
- b) 8 bits
- c) 10 bits

- c) 16 bits
- d) 32 bits

num/number-systems-01

1.2 Bestimmen Sie, bis zu welchem Wert man zählen kann, mit Hexadezimalzahlen codiert auf:

a) 4 Ziffern

b) 8 Ziffern

num/number-systems-02

2 | NUM - Umwandlung von Zahlensystemen

2.1 Führen Sie die Umwandlung folgender reiner Binärzahlen im Dezimalformat durch:

a)
$$110_2 = ?_{10}$$

c)
$$01001010_2 = ?_{10}$$

e)
$$111111111_2 = ?_{10}$$

b)
$$1111_2 = ?_{10}$$

num/conversion-01

2.2 Führen Sie die Umwandlung folgender Dezimalzahlen im Binärformat durch:

a) a)
$$125_{10} = ?_2$$

e)
$$9_{10} = ?_2$$

b)
$$16_{10} = ?_2$$

d)
$$256_{10} = ?_2$$

num/conversion-02

2.3 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Binärformat durch:

a)
$$E_{16} = ?_2$$

c)
$$AB3D_{16} = ?_2$$

e)
$$2346_{16} = ?_2$$

b)
$$15C_{16} = ?_2$$

d)
$$9F7_{16} = ?_2$$

num/conversion-03

2.4 Führen Sie die Umwandlung folgender Binärzahlen im Hexadezimalformat durch:

a)
$$1010_2 = ?_{16}$$

e)
$$1100_2 = ?_{16}$$

b)
$$110_2 = ?_{16}$$

d)
$$0101111_2 = ?_{16}$$

num/conversion-04

2.5 Führen Sie die Umwandlung folgender Hexadezimalzahlen im Dezimalformat durch:

a)
$$D_{16} = ?_{10}$$

c)
$$234_{16} = ?_{10}$$

e)
$$A6B9_{16} = ?_{10}$$

b)
$$15C_{16} = ?_{10}$$

d)
$$FE_{16} = ?_{10}$$

num/conversion-05

2.6 Führen Sie die Umwandlung folgender Dezimalzahlen im Hexadezimalformat durch:

3.
$$65113_{10} = ?_{16}$$

5.
$$9_{10} = ?_{16}$$

2.
$$16_{10} = ?_{16}$$

4.
$$209_{10} = ?_{16}$$

num/conversion-06

3 NUM - Operationen auf Logikzahlen

3.1 Führen Sie im Binärsystem folgende Additionen durch:

 $1. \ 0000 \ 1100_2 + 0001 \ 1110_2$

3. $0011\ 0100_2 + 0111\ 1111_2$

 $2.\ 0000\ 1111_2 + 0101\ 1010_2$

4. $0111\ 1111_2 + 0000\ 0001_2$

num/operation-01

3.2 Führen Sie im Binärsystem folgende Substraktionen durch:

1. $0100\ 0011_2 - 0000\ 1001_2$

3. $0011\ 0100_2 - 0010\ 1000_2$

2. $1010\ 0110_2 - 0110\ 1100_2$

4. $1000\ 0000_2^2 - 0000\ 0001_2^2$

num/operations-02

3.3 Führen Sie im Binärsystem folgende Multiplikationen durch:

1. $1010_2 * 0110_2$

3. 1000₂ * 0110₂

 $2.\ \ 0110_2*1010_2$

4. $0111_2 * 1110_2$

num/operation-03

3.4 Führen Sie im Hexadezimalsystem folgende Additionen durch:

1. $1234_{16} + CC_{16}$

3. $1234_{16} + FF_{16}$

2. $8888_{16} + FC_{16}$

4. $89AB_{16} + AB89_{16}$

num/operation-04

3.5 Bestimmen Sie den Binärwert von:

1. $(11_2)^2$

3. $(1111_2)^2$

2. $(111_2)^2$

Durch Analogie, schätzen Sie den Binärwert von $(111111_2)^2$ und prüfen Sie damit die Formel: $(2^n-1)^2=2^{2n}-2*2^n+1$.

num/operation-05

NUM - Codes

- Führen Sie tolgenue August 1. 0001 0010 0011 $_{\rm BCD}$ + 0011 0010 0001 $_{\rm BCD}$ 3. 1000 0101 $_{\rm BCD}$ + 0000 0001 $_{\rm BCD}$ 4. 1001 1001 $_{\rm BCD}$ + 0000 0001 $_{\rm BCD}$ 4.1 Führen Sie folgende Additionen auf BCD-codierte Zahlen durch:

num/codes-01

4.2 Führen Sie die Umwandlung des Gray-Codes 1001_{Gray} mit Hilfe der Rekursionsformel im Skript durch.

num/codes-02

5 NUM - Darstellung von Arithmetischen Zahlen

5.1 Stellen Sie folgende Dezimal- und reine Binärzahlen mit den Verfahren Vorzeichen- Grösse, Einer-Komplement und Zweierkomplement auf 8 Bits codiert dar:

num/representation-01

- 5.2 Führen Sie eine Zeichenänderung auf die folgenden, im Zweierkomplement codierten Zahlen durch:
- 5.3 Perform a character change to the following numbers encoded in two's complement:

 $1. \ 0000 \ 0001_2 \\ 2. \ 0111 \ 1000_2$

 $3.\ 1111\ 0000_2$

5. 44₁₆

4. 01_{16}

6. 81₁₆

num/representation-02

5.4 Gegeben sind die Zahlen 0001_2 und 1001_2 , ausgedrückt als Zweierkomplement auf 4 Bits codiert. Stellen Sie dieselben Zahlen als Zweierkomplement auf 8 Bits codiert dar.

num/representation-03