

CSE 311L (Database Management System)

LAB-Week 04 (Part A)

Displaying Data from Multiple Tables (Based on Company2.sql)

Topics:

- Obtaining Data from Multiple Tables
- Generating a Cartesian Product
- ► Retrieving Records with Equijoins
- Joining a Table to Itself
- Creating Joins with the ON Clause

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID
100	King	90
101	Kochhar	90
• • •		
202	Fay	20
205	Higgins	110
206	Gietz	110

DEPARTMENTS

DEPARTMENT_ID	DEPARTMENT_NAME	LOCATION_ID
10	Administration	1700
20	Marketing	1800
50	Shipping	1500
60	IT	1400
80	Sales	2500
90	Executive	1700
110	Accounting	1700
190	Contracting	1700

102	90	Executive
205	110	Accounting
206	110	Accounting

Generating a Cartesian Product

SELECT last_name, department_name dept_name
FROM emps, depts;

Retrieving Records with Equijoins

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id
FROM emps e , depts d

```
WHERE e.department_id = d.department_id;
Joining a Table to Itself
```

	WORKER.LAST_NAME 'WORKSFOR' MANAGER.LAST_NAME
Kochhar works for King	
De Haan works for King	
Mourgos works for King	
Zlotkey works for King	
Hartstein works for King	
Whalen works for Kochhar	
Higgins works for Kochhar	
Hunold works for De Haan	
Ernst works for Hunold	

Creating Joins with the ON Clause

```
SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id
FROM emps e JOIN depts d
ON (e.department id = d.department id);
```

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_ID	LOCATION_ID
200	Whalen	10	10	1700
201	Hartstein	20	20	1800
202	Fay	20	20	1800
124	Mourgos	50	50	1500
141	Rajs	50	50	1500
142	Davies	50	50	1500
143	Matos	50	50	1500

Activity 01:

Write a query to display the last name, department number, and department name for all employees.

Activity 02:

Write a query to display the employee last name, department name, location ID, and city of all employees who earn a commission.

Topics:

After completing this lesson, you should be able to do:

- Creating Three-Way Joins with the ON Clause
- ▶ LEFT OUTER JOIN
- ▶ RIGHT OUTER JOIN
- ▶ FULL OUTER JOIN
- Additional Conditions

Creating Three-Way Joins with the ON Clause

```
SELECT employee_id, city, department_name
FROM emps e
JOIN depts d
ON d.department_id = e.department_id
JOIN locs l
ON d.location id = l.location id;
```

EMPLOYEE_ID	CITY	DEPARTMENT_NAME
103	Southlake	IT
104	Southlake	IΤ
107	Southlake	ΙΤ
124	South San Francisco	Shipping
141	South San Francisco	Shipping
142	South San Francisco	Shipping

LEFT OUTER JOIN

```
SELECT e.last_name, e.department_id, d.department_name
FROM emps e
LEFT OUTER JOIN depts d
ON (e.department_id = d.department_id);
```

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Whalen	10	Administration
Fay	20	Marketing
Hartstein	20	Marketing

•••••

De Haan	90	Executive
Kochhar	90	Executive
King	90	Executive
Gietz	110	Accounting
Higgins	110	Accounting
Grant		

RIGHT OUTER JOIN

SELECT e.last name, e.department id, d.department name FROM emps e

RIGHT OUTER JOIN depts d

ON (e.department id = d.department id) ;

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
King	90	Executive
Kochhar	90	Executive

Whalen	10	Administration
Hartstein	20	Marketing
Fay	20	Marketing
Higgins	110	Accounting
Gietz	110	Accounting
		Contracting

FULL OUTER JOIN

SELECT e.last name, e.department id, d.department name FROM emps e FULL OUTER JOIN depts d ON (e.department_id = d.department id) ;

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Whalen	10	Administration
Fay	20	Marketing

De Haan	90	Executive
Kochhar	90	Executive
King	90	Executive
Gietz	110	Accounting
Higgins	110	Accounting
Grant		
		Contracting

Additional Conditions

SELECT e.employee id, e.last name, e.department id, d.department id, d.location id FROM emps e JOIN depts d

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_ID	LOCATION_ID
174	Abel	80	80	2500
176	Taylor	80	80	2500

Activity 01:

Write a query to display the last name, job, department number, and department name for all employees who work in Toronto.

LAST_NAME	JOB_ID	DEPARTMENT_ID	DEPARTMENT_NAME
Hartstein	MK_MAN	20	Marketing
Fay	MK_REP	20	Marketing

Activity 02:

Display the last name, salary, and commission for all employees who earn commissions. Sort data in descending order of salary and commissions. Title.

Activity 03:

Display the employee last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.

Employee	EMP#	Manager	Mgr#
Kochhar	101	King	100
De Haan	102	King	100
Mourgos	124	King	100
Zlotkey	149	King	100
Hartstein	201	King	100
Whalen	200	Kochhar	101
Higgins	205	Kochhar	101

CSE 311L(Database Management System)

LAB-Week 04 (Part B)

Aggregating Data Using Group Functions

Topics:

- ▶ Types of Group Functions
- Using the AVG and SUM Functions
- Using the MIN and MAX Functions
- ► Using the COUNT Function
- Using the GROUP BY Clause

Types of Group Functions

AVG

STDDEV

■ SUM

COUNT

MIN

VARIANCE

■ MAX

Using the AVG and SUM Functions

```
SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)
FROM emps
WHERE job id LIKE '%REP%';
```

AVG(SALARY)	MAX(SALARY)	MIN(SALARY)	SUM(SALARY)
8150	11000	6000	32

Using the MIN and MAX Functions

```
SELECT MIN(hire_date), MAX(hire_date)
FROM emps;
```

MIN(HIRE_	MAX(HIRE_
17-JUN-87	29-JAN-00

Using the COUNT Function

SELECT COUNT(DISTINCT department_id)
FROM emps;

COUNT(DISTINCTDEPARTMENT_ID)	
	7

Using the GROUP BY Clause

SELECT department_id, AVG(salary)
FROM emps
GROUP BY department id;

DEPARTMENT_ID	AVG(SALARY)
10	4400
20	9500
50	3500
60	6400
80	10033.3333
90	19333.3333
110	10150
	7000

Activity 01:

Display the highest, lowest, sum, and average salary of all employees. Label the columns

Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole

number.

Maximum	Minimum	Sum	Average
24000	2500	175500	8775

Activity 02:

display the minimum, maximum, sum, and average salary for each job type

JOB_ID	Maximum	Minimum	Sum	Average
AC_ACCOUNT	8300	8300	8300	8300
AC_MGR	12000	12000	12000	12000
AD_ASST	4400	4400	4400	4400
AD_PRES	24000	24000	24000	24000
AD_VP	17000	17000	34000	17000
IT_PROG	9000	4200	19200	6400
MK_MAN	13000	13000	13000	13000
MK_REP	6000	6000	6000	6000
SA_MAN	10500	10500	10500	10500
SA_REP	11000	7000	26600	8867
ST_CLERK	3500	2500	11700	2925
ST_MAN	5800	5800	5800	5800

Aggregating Data Using Group Functions

Topics:

- ▶ Using the GROUP BY Clause on Multiple Columns
- ► Illegal Queries Using Group Functions
- ► Excluding Group Results: The HAVING Clause
- ► Nesting Group Functions

Using the GROUP BY Clause on Multiple Columns

```
SELECT department_id dept_id, job_id, SUM(salary)
FROM emps
GROUP BY department id, job id;
```

DEPT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000

What is wrong with them?!!

```
>SELECT department_id, COUNT(last_name)
FROM emps;

>SELECT department_id, AVG(salary)
FROM emps
WHERE AVG(salary) > 8000
GROUP BY department id;
```

Excluding Group Results: The HAVING Clause

```
SELECT job_id, SUM(salary) PAYROLL FROM emps
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);
```

Nesting Group Functions

```
SELECT MAX(AVG(salary))
FROM emps
GROUP BY department id;
```

MAX(AVG(SALARY)) 19333.3333

Activity 01:

Write a query to display the number of people with the same job.

JOB_ID	COUNT(*)
AC_ACCOUNT	1
AC_MGR	1
AD_ASST	1
AD_PRES	1
AD_VP	2
IT_PROG	3
MK_MAN	1

Activity 02:

Display the manager number and the salary of the lowest paid employee for that manager.

Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is \$6,000 or less. Sort the output in descending order of salary.

MANAGER_ID	MIN(SALARY)
102	9000
205	8300
149	7000

Home Work:

Write a query to display each department's name, location, number of employees, and the

average salary for all employees in that department. Label the columns Name, Location, Number of People, and Salary, respectively. Round the average salary to two decimal places.