第四讲 多项式的互素

- 一、两个多项式的互素
- 二、多个多项式的互素
- 三、思考题

一、两个多项式的互素

1. 定义: $f(x),g(x) \in P[x]$, 若(f(x),g(x)) = 1, 则称 f(x),g(x) 为互素的.

说明: 由定义,

$$f(x), g(x)$$
 互素 $\Leftrightarrow (f(x), g(x)) = 1$

 $\Leftrightarrow f(x),g(x)$ 除去零次多项式外无其它公因式.

2. 互素的判定与性质

证: "⇒"显然.

∴ $\varphi(x) = c$, $c \neq 0$. $\Leftrightarrow (f(x), g(x)) = 1$.

定理2 若
$$(f(x),g(x))=1$$
, 且 $f(x)|g(x)h(x)$, 则 $f(x)|h(x)$.

证:
$$: (f(x),g(x))=1$$
,
 $:: \exists u(x),v(x) \in P[x]$, 使
$$u(x)f(x)+v(x)g(x)=1$$
于是有 $u(x)f(x)h(x)+v(x)g(x)h(x)=h(x)$
又 $f(x)|g(x)h(x)$, $f(x)|f(x)h(x)$
 $:: f(x)|h(x)$.

推论 若
$$f_1(x)|g(x)$$
, $f_2(x)|g(x)$, 且
$$(f_1(x),f_2(x))=1 , 则 f_1(x)f_2(x)|g(x).$$

证:
$$f_1(x)|g(x) \Rightarrow \exists h_1(x)$$
,使 $g(x) = f_1(x)h_1(x)$,
又 $f_2(x)|g(x)$, ∴ $f_2(x)|f_1(x)h_1(x)$.
而 $(f_1(x),f_2(x))=1$, 由定理4有 $f_2(x)|h_1(x)$
于是 $\exists h_2(x)$,使 $h_1(x)=f_2(x)h_2(x)$,
从而 $g(x)=f_1(x)f_2(x)h_2(x)$
∴ $f_1(x)f_2(x)|g(x)$

四、多个多项式的最大公因式

定义
$$f_1(x), f_2(x), \dots, f_s(x) \in P[x]$$
 $(s \ge 2)$

若 $d(x) \in P[x]$ 满足:

- i) $d(x)|f_i(x), i=1,2,\dots,s$
- ii) $\forall \varphi(x) \in P[x]$, 若 $\varphi(x) | f_i(x)$, $i = 1, 2, \dots, s$ 则 $\varphi(x) | d(x)$.

则称 d(x) 为 $f_1(x), f_2(x), \dots, f_s(x)$ 的最大公因式.

注:

- $f_1(x), f_2(x), \dots, f_s(x)$ 的最大公因式一定存在. $(f_1(x), f_2(x), \dots, f_s(x))$ 表示首1最大公因式.
- $\exists u_1, u_2 \cdots u_s \in P[x]$, 使 $(f_1, f_2, \cdots f_s) = u_1 f_1 + \cdots + u_s f_s.$
- $(f_1, f_2, \dots, f_s) = ((f_1, f_2, \dots f_{s-1}), f_s)$ = $((f_1, \dots, f_k), (f_{k+1}, \dots, f_s)), 1 \le k \le s-1$
- f_1, f_2, \dots, f_s 互素 $\Leftrightarrow \exists u_1, u_2, \dots, u_s \in P[x]$, 使 $u_1 f_1 + \dots + u_s f_s = 1$.

思考题

1. 设 f(x) 和 g(x) 是数域 P 上两个一元多项式, k 为给定的正整数. 求证: f(x)g(x) 当且仅当 $f^k(x)g^k(x)$.

- 2. 设 f(x) 和 g(x) 不全为零,n 为正整数. 证明: $(f,g)^n = (f^n,g^n).$
- 3. 设 $f(x), g(x) \in P[x], a,b,c,d \in P 且 ad -bc \neq 0$ 证明: (af(x)+bg(x),cf(x)+dg(x))=(f(x),g(x)).