23MAT204 – Mathematics for Intelligent Systems - 3 Practise Sheet-5

(Gradient Descent Method)

Gradient Descent Method to solve -

- (i) Linear System Ax=b, where A^T=A or the equivalent optimization problem
- (ii) Minimize f(x), where f(x) is a quadratic optimization problem:

Let
$$f(x) = \frac{1}{2}x^TAx - b^Tx + c$$
, $x \in \mathbb{R}^n$, $A = A^T$, $c \in \mathbb{R}$

Start with arbitrary x_0

$$\nabla f(x) = Ax - b \Rightarrow Gradient \ at \ x = x_0 \ is \ Ax_0 - b$$

We denote this as $g(x_0)$

Negative gradient is ro=b-Axo. ro is called residual

New updated x is
$$x_1 = x_0 - \alpha g(x_0)$$

What is a good α ?

Solution

Let
$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, $x \in \mathbb{R}^{n}$, $A = A^{T}$, $c \in \mathbb{R}$

Start with arbitrary x_0 (position vector)

$$\nabla f(x) = Ax - b \Rightarrow Gradient \ at \ x = x_0 \ is \ g(x_0) = Ax_0 - b$$

Note: Never forget that g(.) is a vector (displacement vector)

Let
$$x_1 = x_0 - \alpha g(x_0)$$
. We do not know α to compute x_1

Let us find it through optimization.

$$f(x_0 - \alpha g(x_0)) = \frac{1}{2} (x_0 - \alpha g(x_0))^T A(x_0 - \alpha g(x_0)) - b^T (x_0 - \alpha g(x_0)) + c$$

$$= -\alpha x_0^T A g(x_0) + \frac{\alpha^2}{2} (g(x_0))^T A g(x_0) + \alpha b^T g(x_0) + K, \text{ where K is constant}$$

$$\frac{df}{d\alpha} = -x_0^T A g(x_0) + b^T g(x_0) + \alpha (g(x_0))^T A g(x_0)$$

$$\frac{df}{d\alpha} \Rightarrow 0 \Rightarrow \alpha = \frac{\left(g(x_0)\right)^T \left(Ax_0\right) - \left(g(x_0)\right)^T b}{\left(g(x_0)\right)^T A g(x_0)} = \frac{\left(g(x_0)\right)^T \left(Ax_0 - b\right)}{\left(g(x_0)\right)^T A g(x_0)} = \frac{\left(g(x_0)\right)^T g(x_0)}{\left(g(x_0)\right)^T A g(x_0)}$$

Example 1: Solve the system: $2x_1-x_2=1$; $-x_1+2x_2=0$; using gradient descent algorithm with initial

Example 2:

Find the minimum of $f(x)=2x_1^2+x_1^2+2$ x_1 $x_2+x_1-x_2$ using gradient descent algorithm

Practice questions:

1. Solve the given linear systems using gradient descent method by taking different starting points.

(a)
$$2x+y-z=1$$
, $x+2y-z=2$, $-x-y+4z=9$

(b) Ax=b, where
$$A = \begin{bmatrix} 11 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & -1 & 6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 12 \\ 1 \\ 7 \end{bmatrix}$
(c) Ax=b, where $A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$

(c) Ax=b, where
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$

2. Consider the optimization problem:

Minimize
$$f(x, y) = 4x^2 + 3y^2 - 16x - 36y + 25$$

- (a) Solve the problem analytically and obtain the solution.
- (b) Starting from (0,0), perform gradient descent method and obtain the solution. Also plot the path taken to reach the final solution.
- (c) Starting from (50,0), perform gradient descent method and obtain the solution. Also plot the path taken to reach the final solution.
- (d) Starting from (0,-25), perform gradient descent method and obtain the solution. Also plot the path taken to reach the final solution.
- (e) Starting from (-21,35), perform gradient descent method and obtain the solution. Also plot the path taken to reach the final solution.
- 3. Solve the given quadratic optimization problems using gradient descent method by taking different starting points.

(a) Minimize
$$f(x, y, z) = 6x^2 + 8y^2 + z^2 + 2xz + 4yz - 3x - 3z$$

(b) Minimize
$$f(x, y, z) = 9x^2 + 5y^2 + 3z^2 - 36x + 30y - 8z$$

4. Solve the system AX=B, where $A = \begin{bmatrix} 9 & 1 & 1 & 0 & 0 \\ 1 & 5 & 0 & 0 & 2 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 2 \end{bmatrix}$ and $\begin{bmatrix} 10 \\ 3 \\ 4 \\ 2 \end{bmatrix}$ using gradient

descent method with initial vector as x=[a,b,c,b,a]T, where: a is the last two digits of your registration number, b is your date of birth, c is your month of birth.

5. Generate a random integer squaresymmetric matrix A of order 5. Obtain the vector b, such that Ax=b, with $x=[1,2,3,4,5,6,7,8,9]^T$. Solve the system AX=b using gradient descent method and verify the solution X=x. In how many iterations you could get the solution?