OBJECTIVE

Design of cascode amplifier and cascode current mirror in schematic and layout using LT Spice and Magic tools in 180 nm (supply 1.8 V) technology and only schematic of cascode amplifier, beta multiplier and cascode current mirror in 22 nm (supply 0.8 V) technology node to see the effect of lowering the technology node.

180 nm Technology

PROCEDURE

Fig: Beta Multiplier for 180 nm technology

Fig: Current mirror implementation for 180 nm technology

Fig: Cascode amplifier 180 nm technology

CALCULATIONS

Calculations The expected forequeency response of that of cascode amplifier is like integrator. · · Location of pole f = 2x Route Assuming polo to be of 1 MHz = 159.154KR/ Given gain = 20 20 = gm Rowt $gm = \frac{20}{159.154 \times 10^3} = 125.66 45/1$ 2 gm = 4m Con W x (Vgs - Voh) -> Eqma Now lets took drive all the mosfets into saturation Following condition should be Satisfied to drive all of them to saturation Vg4-0 < Vd3-0 +0.5 V94 < Vd3+0.5 - 1 Then 193-43-0.5 < Vd2-483 V83 < Vd2 +0.5 / & Vg3 - Vd3 >0.5 V93>0.5+Vd3

then 192-1/3, 3-Vohp > Vd2-Voh 92 > Vd2+Vahp > 1 Vg2 > Vd2-0.5 Vg2-VanpcoVd1 1 2 < Vd, + Vahp of Vg2 < Vd, -0.5 > 3 then Vg, -1.8 - V+np > Vd, -1.8 vg, > Vd, + V+hp > Vg, > Vd, -0.51 (6) Vg1 < 1-8+V+np > Vg1 < 1.8-0.5=1.3 > (>) ₹ Vg1-1-8-Vthp<0 & if we move mo from VDD to ground we expect following in equality to be followed Vd3 < Vd2 < Vd, < 1-8 7 8 -) One promising result we got is Vg.< 1.3 Upon solving eq (\$) we get vg2 supper limit < vg, supper limit Let say that Vdg = 0.2V then 1/94 < 0.7 Agno We know that Vol 2 > Vol 3 = 0.2 · · · Vg3 > Vd3 + 0.5 = 0.7/

> Upon exploiting above in equalities a after several trial & error the Bias voltages that satisfies saturation is

To attain the specified gain one have to specify W/v which can be calculated using

this formula

gm = 4m (ox W (Vgs - Vrh))

Un Con = 175.4 -> nomos 35.6 -> pmos

gm = 125.6645

But theoretical W/L values of does mit satisfies the specified goal, because we have not considered the specified goal, because we have not considered mon idealities. After several trial and priors mon idealities. After several trial is given below, the target is achieved whose detail is given below.

Mosfet Number {Current Mirror}	W/L
M16	180n/540n
M1	180n/270n
M10	180n/240n
M11	180n/245n
M9	540n/180n
M8	540n/180n
M14	180n/509.5n
M13	540n/180n
M6	540n/180n
M7	270n/180n
M12	1558.198n/180n
M5	180n/720n

Mosfet Number {Cascode amplifier}	W/L
M1	1620n/180n
M2	1620n/180n
M3	1260n/180n
M4	1260n/180n

Bias Voltage	Values
Vbias1	0.99V
Vbias2	0.91V
Vbias3	0.8V
Offset source voltage	0.64V

Responses

Fig: Bias Voltages

Fig: Frequency Response of Vout

22nm Technology

Procedure

Fig: Beta Multiplier for 22 nm technology

Fig: Current mirror implementation for 22 nm technology

Fig: Cascode amplifier

For 22mm Same approach is adopted Following in equalityies is what we get Todrive all the moster in saturation we get these inequalities. Vg4 < Vd3 + 0.3 > 0 1 Vg3 < Vd2 +03 - 2 18370.3+ Vd3 - 3 Vg2 > Vd2 -0.3 - 3 192 < Vd, -0.3 -> 3 / Vg,) Vd, - 0.3 1 vg, € 0.8-0.3 =0.5 After taking similar approach as that of 180nm we get following bias voltages that achieve our target 0.3 V Vg1 = Vg2 = 0.1V V83 = 0-785N 0-465 V Vgy =

To calculate W/L @ Jadpoted the similar approach as that of 180mm where

gm = 4m con W (Vgs-V+h) where gm = 87.964×108 }f = 700 KHZ}

But theoritical calculation doesn't achieve our goal because of not considering non-idealities hence after several trial and error we get this nesults.

Mosfet Number {Current	W/L
Mirror}	
M16	58n/44n
M1	44n/22n
M10	88n/22n
M11	1530n/44n
M9	660n/44n
M8	540n/180n
M14	55n/44n
M13	440n/44n
M6	540n/44n
M7	270n/44n
M12	778n/22n
M5	22n/990n

Mosfet Number {Cascode amplifier}	W/L
M1	819n/44n
M2	819n/44n
M3	820.52n/44n
M4	820.52n/44n

Bias Voltage	Values
Vbias1	0.3V
Vbias2	0.1V
Vbias3	0.785V
Offset source voltage	0.465V

Responses

Fig: Bias Voltages

Fig: Frequency response of Vout

Layout in Magic for 180 nm:

- Magic layout was designed according to the given parameters. Each block in the magic corresponded to 90nm.)
- Metal 1 was used to made the connections and Vdd and ground.
- Polysilicon was used to lay the gate.
- Design Rule Check was obtained zero

Layout Schematics

Fig: Current Mirror