Zwischenprüfung StoP FS 2014

8. April 2014

Erlaubte Hilfsmittel: • Zwei DINA-4 Blätter Aufschrieb • Taschenrechner, R und in RStudio geöffnete R-Skripte mit kommentierten R-Befer Hinweise: • Die Bearbeitungszeit beträgt 75 Minuten. • Falsche Antworten bei Multiple Choice Aufgaben geben 0.5 Punkte Abzug. • Bearbeiten Sie die Aufgaben auf den ausgegebenen Blättern. • Falls Sie Zusatzblätter verwenden sollten, versehen Sie alle Zusatzblätter mit Ihren und verwenden Sie pro Aufgabe ein extra Zusatzblatt. • Lesen Sie die Aufgabenstellung sorgfältig durch und achten Sie darauf, keine Hübersehen. • Für Aufgabenteile die mit R zu lösen sind: Übertragen Sie den R-Code und die Er • Erfragte Begründungen müssen in ganzen Sätzen ausformuliert werden und nachvolsein. • Die angegebenen Punkte können sich noch leicht ändern.
 Taschenrechner, R und in RStudio geöffnete R-Skripte mit kommentierten R-Beferminierten. Hinweise: Die Bearbeitungszeit beträgt 75 Minuten. Falsche Antworten bei Multiple Choice Aufgaben geben 0.5 Punkte Abzug. Bearbeiten Sie die Aufgaben auf den ausgegebenen Blättern. Falls Sie Zusatzblätter verwenden sollten, versehen Sie alle Zusatzblätter mit Ihrem und verwenden Sie pro Aufgabe ein extra Zusatzblatt. Lesen Sie die Aufgabenstellung sorgfältig durch und achten Sie darauf, keine Bübersehen. Für Aufgabenteile die mit R zu lösen sind: Übertragen Sie den R-Code und die Er Erfragte Begründungen müssen in ganzen Sätzen ausformuliert werden und nachvorsein.
 Die Bearbeitungszeit beträgt 75 Minuten. Falsche Antworten bei Multiple Choice Aufgaben geben 0.5 Punkte Abzug. Bearbeiten Sie die Aufgaben auf den ausgegebenen Blättern. Falls Sie Zusatzblätter verwenden sollten, versehen Sie alle Zusatzblätter mit Ihren und verwenden Sie pro Aufgabe ein extra Zusatzblatt. Lesen Sie die Aufgabenstellung sorgfältig durch und achten Sie darauf, keine Hübersehen. Für Aufgabenteile die mit R zu lösen sind: Übertragen Sie den R-Code und die Er Erfragte Begründungen müssen in ganzen Sätzen ausformuliert werden und nachvorsein.
 Falsche Antworten bei Multiple Choice Aufgaben geben 0.5 Punkte Abzug. Bearbeiten Sie die Aufgaben auf den ausgegebenen Blättern. Falls Sie Zusatzblätter verwenden sollten, versehen Sie alle Zusatzblätter mit Ihren und verwenden Sie pro Aufgabe ein extra Zusatzblatt. Lesen Sie die Aufgabenstellung sorgfältig durch und achten Sie darauf, keine I übersehen. Für Aufgabenteile die mit R zu lösen sind: Übertragen Sie den R-Code und die Er Erfragte Begründungen müssen in ganzen Sätzen ausformuliert werden und nachvorsein.
nkte:

Bitte beachten Sie, falsche Lösungen geben einen halben Punkt Abzug. a) Wenn eine Markovkette zwei Eigenvektoren mit Eigenwert 1 hat, ist sie reduzibel. \square Richtig \square Falsch Lösung: Richtig b) Eine reduzible Markovkette hat genau einen Eigenvektor mit Eigenwert 1. \square Richtig \square Falsch Lösung: Falsch c) Ist die unten abgebildete Markovkette irreduziblel? \square Richtig \square Falsch Lösung: Richtig d) Ist die unten abgebildete Markovkette aperiodisch? \square Richtig \square Falsch Lösung: Richtig e) Eine irreduzible periodische Markovkette hat mindestens zwei Eigenwerte mit Betrag \square Richtig \square Falsch Lösung: Richtig

•

Aufgabe 2 Je 2 Punkte 16

Eine Markov-Kette mit dem Zustandsraum S=1,2,3 habe die Übergangsmatrix:

$$P = \begin{pmatrix} x & 0 & 1 - x \\ 0.1 & 0 & 0.9 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$$

Wobei x aus dem Anfangsbuchstaben Ihres Vornamens aus folgender Tabelle berechnet wird:

Tragen Sie hier Ihren Vornamen und das daraus resultierende x ein:

Vorname (Ausgeschrieben): x =

Beispiel: Mein Vorname ist Oliver, er beginnt mit O, somit schreibe ich x = 0.45

Der Anfangszustand für t=0 sei X(0)=1. Berechnen Sie folgende Grössen mit R. Bitte denken Sie daran den R-Code und die Ergebnisse zu übertragen.

a) Zeigen Sie, dass P eine Übergangsmatrix ist:

```
library(Matrix, quietly=TRUE)
x <- 0.45 #Siehe oben
P = matrix(c(x, 0.0, 1-x, 0.1, 0, 0.9, 0.3, 0.4, 0.3), byrow=TRUE, nrow=3)
#Die Eintraege von P liegen zwischen 0 und 1
#Die Zeilensumme von P
rowSums(P)</pre>
## [1] 1 1 1
```

b) Ist dieser Prozesse aperiodisch und irreduzibel? Geben Sie eine kurze Begründung.

Lösung: Der Prozess ist irreduzible: Aus dem Übergangsdiagram wird ersichtlich, dass sie von jedem in jeden Zustand kommen. Der Prozess ist aperiodische: es gibt mindestens ein Diagonalelement mit $P_{ij} > 0$

c) Wie hoch ist die Wahrscheinlichkeit, dass der Prozess bei t = 5 nicht im Zustand 3 ist?

Resultat	• •
R-Code:	

```
library(expm, quietly=TRUE)

##
## Attaching package: 'expm'
##
## The following object is masked from 'package:Matrix':
##
## expm

P = matrix(c(0.1, 0.3, 0.6, 0.1, 0, 0.9, 0.3, 0.4, 0.3), byrow=TRUE, nrow=3)
1 - (P %^% 5)[1,3]

## [1] 0.4752
```

d) Wieviel Zeit verbringt der Prozess während der Gesamtlaufzeit t=0...10 im Mittel in Zustand 1?

Resultat:	
R-Code:	

```
library(expm, quietly=TRUE)
M <- P %^% 0
for (i in 1:10) M <- M + P %^% i
M[1,1]</pre>
## [1] 2.956
```

e)	Nehmen Sie an, dass ein Aufenthalt im Zustand 1 genau 1 Fr., im Zustand 2 genau 2
	Fr. und im Zustand 3 genau 3 Fr. kostet. Nehmen Sie ferner an, dass die Kosten nur
	während den Zeiten $t=2,3,4$ anfallen. Wie hoch sind dann die erwarteten Kosten in
	der Gesamtlaufzeit?

Resultat : R-Code:

```
library(expm, quietly=TRUE)
    (P%^%2 + P%^%3 + P%^%4)[1,] %*% 1:3

## [,1]
## [1,] 6.933
```

f) Berechnen Sie die stationäre Verteilung.

Resultat	:
R-Code:	

```
library(expm, quietly=TRUE)
  v <- eigen(t(P))$vectors[,1] #EW +1 ist in der ersten Position
  (pi <- v / sum(v))
## [1] 0.2048 0.2711 0.5241</pre>
```

g) Wie oft wechselt der Prozess in den Zeitraum t=0...10 den Zustand, falls er zum Zeitpunkt t=0 im stationären Zustand ist.

Resultat : R-Code:

```
library(expm, quietly=TRUE)
U <- matrix(rep(1,9), ncol=3)
U <- U - diag(3)
M <- P %^% 0
for (i in 1:9) M <- M + P %^% i
pi %*% M %*% rowSums(P * U)</pre>
```

```
## [,1]
## [1,] 8.223
```

h) Wie oft wechselt der Prozess langfristig $(t \to \infty)$ pro Zeitschritt den Zustand?

```
Resultat : R-Code:
```

```
library(expm, quietly=TRUE)
pi %*% rowSums(P * U)

## [,1]
## [1,] 0.8223
```

•

Aufgabe 3 6 Punkte

Sie als Veranstalter einer riesen Party müssen am Mittwoch entscheiden, ob die Party am Samstag (der gleichen Woche) in einer Halle oder im Freien stattfindet. In der Halle: Gewinn 20'000 CHF in jedem Fall. Im Freien: Dann gewinnen Sie 40'000 CHF, falls die Sonne scheint, 35'000, falls es bewölkt ist und nichts, falls es regnet. Die Übergangsmatrix der 3 Zustände des Wetters (1=sonnig, 2=bewölkt, 3=regnerisch) ist:

$$P = \begin{pmatrix} 0.9 & 0.1 & 0 \\ 0.05 & 0.9 & 0.05 \\ 0.0 & 0.1 & 0.9 \end{pmatrix}$$

Berechnen Sie den erwarteten Gewinn für beide Fälle, falls es am Mittwoch regnet. Wie würden Sie entscheiden?

Resultat	:
R-Code:	

```
library(expm, quietly=TRUE)
P <- matrix(c(0.9,0.1,0.0, 0.05,0.9,0.05,0.0,0.1,0.9), nrow=3, byrow=TRUE)
P3 <- P %^% 3#Donnerstag, Freitag, Samstag
P3[3,] %*% c(20000, 20000, 20000)</pre>
## [,1]
## [1,] 20000
P3[3,] %*% c(40000, 35000, 0)
```

```
## [,1]
## [1,] 9080
# Also lieber in der Halle
```