Section 3

Performing GWAS using imputed data

Xueling Sim National University of Singapore ephsx@nus.edu.sg

Learning objectives

Participants will learn to:

- Identify and understand the use of variant imputation quality information following imputation in the MIS
- Distinguish between some of the available options for GWAS
- Troubleshoot common GWAS errors

Have you ever performed a GWAS?

Imputation Quality

- For each variant, how confident can we be that the imputation dosages are sufficiently "accurate" for association analyses?
- Measure of confidence in imputed dosages: "Rsq" column [range 0-1]

```
SNP REF(0) ALT(1) ALT_Frq MAF AvgCall Rsq Genotyped ...
20:61795:G:T G T 0.26318 0.26318 0.88455 0.54658 Imputed ...
20:63231:T:G T G 0.03843 0.03843 0.98342 0.67736 Imputed ...
20:63244:A:C A C 0.16132 0.16132 0.91761 0.49907 Imputed ...
```


Imputation Quality

- Minimal Rsq value for common variants
 - ≥ 0.30
- Minimal Rsq value for low frequency/rare variants
 - ≥0.50
- Before performing GWAS, remove variants that do not meet these thresholds
 - Suggested program: VCFtools
 - Saves computational time when performing GWAS

Which GWAS program(s) have you used?

Available GWAS Programs

No File Reformatting (VCF from MIS)

- EPACTS
- Rvtests
- SNPTEST
- SAIGE

File Formatting Required

- BOLT-LMM
- BGENIE
- regenie
- PLINK

EPACTS/Rytests

- + Many model options single variant, gene-based
- + Chr X analyses
- Phenotypic transformation (e.g inverse normal; Rvtests only)
- + Linear mixed model for sample relatedness (quantitative traits only)
- + Generate covariance matrices for downstream analyses (e.g conditional analyses; Rvtests only)
- Memory intensive
- Sample size ~≤20,000 (better ≤10,000)

EPACTS: https://genome.sph.umich.edu/wiki/EPACTS

Rvtests: https://genome.sph.umich.edu/wiki/Rvtests

SNPTEST

- + Frequentist and bayesian methods supported
- + Chr X analyses
- Limited to unrelated individuals
- Computational intensive

SAIGE

- + Similar to Rytests, but for very large sample sizes (e.g. biobanks)
- + Able to account for sample relatedness for binary traits
- Designed to handle unbalanced number of cases and controls
- + Chr X analyses
- Should not be used to examine heritability (biased variance estimates)
- Computational time can vary widely between phenotypes and sample sizes
- Can be conservative for extremely unbalanced case and control ratio
- Odds ratios estimated to conserve computational time

SAIGE: https://github.com/weizhouUMICH/SAIGE

BOLT-LMM/BGENIE/regenie

- + Great for very large sample sizes (e.g. biobanks)
- + Chr X analyses
- + Computationally efficient (regenie)
- Requires files to be in BGEN or PLINK format
- Nextflow pipeline for regenie using VCF: https://github.com/genepi/nf-gwas
- Not optimal for extremely unbalanced case control ratio (especially with rare variants)

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/#x1-5600011

BGENIE: https://jmarchini.org/bgenie/

Regenie: https://github.com/rgcgithub/regenie

PLINK

- + Quick
- + Multiple versions; often as intermediary tool to the other programs
- + Can run on the command line (unix not required)
- + Chr X analyses
- Requires files to be in PLINK format (.bed/.bim/.fam)
- Limited model options

Summary of common GWAS analysis tools

	EPACTS	Rvtests	SNPTEST	SAIGE	BLOT-LMM	Bgenie	regenie
Input VCF	Y	Υ	Υ				
Sample relatedness (Quantitative outcome)	Υ	Y		Υ	Y	Υ	Υ
Sample relatedness (Binary outcome)				Υ		Υ	Υ
Case control imbalance				Υ			Υ
Large sample size (>20,000)				Υ	Υ	Υ	Υ

Performing the GWAS

- Each program has its own input, output formats, and options
- Typical input files
 - Genotype file (.vcf; .bgen; .bed/.bim/.fam)
 - Phenotype/covariate file (.txt; .ped)
 - Some programs use separate phenotype and covariate files
 - Kinship/relationship matrix (EPACTS, SAIGE)

 A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of 5,500 unrelated individuals

- A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of <u>5,500</u> <u>unrelated individuals</u>
 - EPACTS/Rvtests

- A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of 5,500 unrelated individuals
 - EPACTS/Rvtests
- Researchers want to perform a GWAS using a cohort of 10,000 individuals with household based recruitment (i.e. includes related individuals)

- A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of 5,500 unrelated individuals
 - EPACTS/Rvtests
- Researchers want to perform a GWAS using a cohort of <u>10,000</u> individuals with household based recruitment (i.e. includes <u>related individuals</u>)
 - EPACTS/Rvtests/BLOT-LMM or SAIGE

- A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of 5,500 unrelated individuals
 - EPACTS/Rvtests
- Researchers want to perform a GWAS using a cohort of 10,000 individuals with household based recruitment (i.e. includes related individuals)
 - EPACTS/Rvtests/BLOT-LMM or SAIGE
- Researchers want to perform a GWAS using data from BioBank Japan (>200,000 individuals)

- A researcher new to genetic analyses and unfamiliar to the UNIX environment wants to perform a GWAS on total cholesterol using a cohort of 5,500 unrelated individuals
 - EPACTS/Rvtests
- Researchers want to perform a GWAS using a cohort of 10,000 individuals with household based recruitment (i.e. includes related individuals)
 - EPACTS/Rvtests/BLOT-LMM or SAIGE
- Researchers want to perform a GWAS using data from BioBank Japan (>200,000 individuals)
 - BLOT-LMM or SAIGE or begenie or regenie

- Wording of error messages vary by program, but the same issues will cause errors throughout all of the program
- [Unix] Errors independent of GWAS program
 - File permissions
 - Correct by changing file permissions
 - Directory/file not found
 - Correct by making sure all of the file locations and names are accurate
 - Not enough memory/time
 - Correct by restarting job with adequate memory/time allocation

- Common errors
 - IDs don't match
 - Correct by ensuring that the ID in the phenotype, genotype, covariance, kinship matrix are consistent format in all files

- Common errors
 - o IDs don't match
 - Correct by ensuring that the ID in the phenotype, genotype, covariance, kinship matrix are consistent format in all files
 - File format(s) incorrect
 - Correct by making sure the format of all files are as the program is expecting (e.g. columns, delimiters, headers, file extension

Common errors

- IDs don't match
 - Correct by ensuring that the ID in the phenotype, genotype, covariance, kinship matrix are consistent format in all files
- File format(s) incorrect
 - Correct by making sure the format of all files are as the program is expecting (e.g. columns, delimiters, headers, file extension
- Improperly specified options/command
 - Correct by checking all needed options are specified, correct order, no typos

Common errors

- IDs don't match
 - Correct by ensuring that the ID in the phenotype, genotype, covariance, kinship matrix are consistent format in all files
- File format(s) incorrect
 - Correct by making sure the format of all files are as the program is expecting (e.g. columns, delimiters, headers, file extension
- Improperly specified options/command
 - Correct by checking all needed options are specified, correct order, no typos
- Peripheral programs not available (e.g. R with EPACTS, SAIGE)
 - Correct by installing other peripheral programs

Common errors

- IDs don't match
 - Correct by ensuring that the ID in the phenotype, genotype, covariance, kinship matrix are consistent format in all files
- File format(s) incorrect
 - Correct by making sure the format of all files are as the program is expecting (e.g. columns, delimiters, headers, file extension
- Improperly specified options/command
 - Correct by checking all needed options are specified, correct order, no typos
- Peripheral programs not available (e.g. R with EPACTS, SAIGE)
 - Correct by installing other peripheral programs
- Invalid estimate (e.g. heritability in BOLT-LMM)
 - Sample too related and/or sample size too small
 - Correct by using a different program

Interpreting GWAS Results

- GWAS results must be carefully reviewed for:
 - Imputation quality!
 - Genomic inflation
 - False positives

- Replication datasets
- PheWas

Summary

- Variants must be filtered post-imputation to remove those with poor imputation quality
- There are many GWAS programs available, each with their own strengths and limitations - so be sure to pick one that fits your analyses needs
- As these GWAS programs are widely used or adopted by consortia, there are tutorials and help-pages available

More info and FAQ can be found here: https://imputationserver.readthedocs.io

