Lecție polinoame ID

În cele ce urmează, $R(+,\cdot)$ este un inel comutativ iar R[X] este inelul de polinoame cu coeficienți în inelul R. Dacă $f(X) = \sum_{j=0}^{n} a_j X^j \in R[X]$ și $g(X) = \sum_{j=0}^{m} b_j X^j \in R[X]$, atunci polinoamele f și g sunt egale dacă și numai dacă n=m și $a_j=b_j$ pentru orice $j=\overline{0,n}$. Cu notațiile de mai sus, f+g este polinomul

$$\sum_{k=0}^{\max(m,n)} (a_k + b_k) X^k,$$

unde $a_k = 0$ dacă k > n şi $b_k = 0$ dacă k > m. Polinomul $f \cdot g$ este

$$f \cdot g(X) = \sum_{j=0}^{m+n} c_j X^j \in R[X],$$

unde $c_i = \sum_{j+k=i} a_j b_k$, pentru orice $i = \overline{0, m+n}$. Gradul polinomului f este grad(f) =

n dacă $a_n \neq 0$. Prin convenţie, gradul polinomului 0 se consideră a fi $-\infty$. Dacă R este un corp comutativ, grad(fg) = grad(f) + grad(g), pentru orice polinoame $f, g \in R[X]$. Este o deosebire conceptuală importantă între un polinom f şi funcţia polinoamială asociată polinomului f. Aceasta este o funcţie care se notează tot cu

 $f: R \to R$, definită prin formula $f(x) = \sum_{j=0}^{n} a_j x^j$, pentru orice $x \in R$. Un element

 $x \in R$ se numește rădăcină a polinomului f dacă f(x) = 0.

Teoremă: Fie $f \in K[X]$ un polinom de grad $n \in \mathbb{N}$, unde K este un corp comutativ. Numărul de rădăcini ale polinomului f este cel mult n.

Consecință (Wilson): Pentru orice număr prim p, avem că p divide (p-1)! + 1. Teorema de mai sus rezultă rapid din egalitatea polinoamelor

$$X^{p-1} - \overline{1} = \prod_{j=1}^{p-1} (X - \overline{j}) \in \mathbb{Z}_p[X].$$

Formulele lui Viète reprezintă unul dintre cele mai importante rezultate din această secțiune.

Formulele lui Viète: Dacă x_1, x_2, \ldots, x_n sunt rădăcinile polinomului de grad n, $f(X) = \sum_{j=0}^{n} a_j X^j \in K[X]$ (unde K este un corp comutativ), atunci

$$\sum_{1 \le j_1 < j_2 < \dots < j_k \le n} x_{j_1} x_{j_2} \dots x_{j_k} = (-1)^k \frac{a_{n-k}}{a_n},$$

pentru orice $k = \overline{1, n}$.

Teorema fundamentală a algebrei spune că orice polinom cu coeficienți în \mathbb{C} , de grad n, are exact n rădăcini complexe (se ține cont și de multiplicități).

Iată problemele propuse spre gândire:

- 1) Fie $f(X)=X^4+X^3+X^2-11X+1\in\mathbb{C}[X]$ și $x_1,x_2,x_3,x_4\in\mathbb{C}$, rădăcinile acestui polinom. Calculați $\sum_{j=1}^4 x_j^2$.
- 2) Folosind calculul anterior, determinați câte din rădăcinile x_j sunt reale. Indicație: aveți nevoie și de un argument din analiza matematică.
- 3) Care sunt rădăcinile din \mathbb{Z}_{41} ale polinomului $X^3 \overline{1} \in \mathbb{Z}_{41}[X]$?
- 4) Care sunt rădăcinile din \mathbb{Z}_{73} ale polinomului $X^4 + \overline{1} \in \mathbb{Z}_{73}[X]$?
- 5) Scrieţi polinomul $X^4 + \overline{1} \in \mathbb{Z}_{43}[X]$ ca produs de două polinoame (din acelaşi inel), care să aibă grade nenule.