16. Медиана и квартили распределения

Пусть x_{α} — квантиль порядка α распределения случайной величины ξ , т.е. $\mathbb{P}\{\xi \leq x_{\alpha}\} = \alpha$, если функция распределения ξ непрерывна, и

 $\mathbb{P}\{\xi < x_{lpha}\} \leq lpha \leq \mathbb{P}\{\xi \leq x_{lpha}\}$, если ξ имеет дискретный тип распределения. Медиана есть квантиль порядка $lpha = \frac{1}{2}$, первый квартиль есть квантиль порядка $lpha = \frac{1}{4}$, третий квартиль есть квантиль порядка $lpha = \frac{3}{4}$.

17. Математическое ожидание дискретной случайной величины

Пусть $p(x_i) = \mathbb{P}(x_i), \; x_i \in \mathfrak{X} = \{x_1, x_2, \dots, x_N\}$, – функция вероятностей случайной величины ξ . Математическое ожидание

$$\mathbb{E}[\xi] = \sum_{i\,=\,1}^N x_i\; p(x_i),$$

если ряд сходится абсолютно. Абсолютная сходимость означает, что $\sum_{i=1}^{N} |x_i| \, p(x_i) < \infty.$

18. Математическое ожидание абсолютно непрерывной случайной величины

Пусть f(x) — функция плотности случайной величины ξ . Математическое ожидание

$$\mathbb{E}[\xi] = \int_{-\infty}^{\infty} x \; f(x) \, dx,$$

если интеграл сходится абсолютно.

19. Свойства дисперсии

Дисперсия случайной величины ξ равна $\mathbb{D}[\xi] = \mathbb{E}[(\xi - \mathbb{E}[\xi])^2].$ Свойства дисперсии:

1.
$$\mathbb{D}[E] = \mathbb{E}[\xi^2] - (\mathbb{E}[\xi])^2$$

2.
$$\mathbb{D}[a\xi + b] = a^2 \mathbb{D}(\xi)$$

3.
$$\mathbb{D}(\xi) = \min \mathbb{E}[(\xi - c)^2]$$

4.
$$\mathbb{D}[\xi_1 + \xi_2] = \mathbb{D}[\xi_1] + \mathbb{D}[\xi_2]$$
 (*)

(*) - 4 свойство выполняется в случае независимости ξ_1 и ξ_2 .

20. Правило 3-х сигм

Пусть $\mu=\mathbb{E}[\xi]$ — мат. ожидание, $\sigma=\sqrt{\mathbb{D}[\xi_i]}$ — стандартное отклонение случайной величины ξ , тогда

$$\mathbb{P}\{\mu-3\sigma\leq \xi\leq \mu+3\sigma\}\geq rac{8}{9}pprox 0.9$$