Management and analysis of physics datasets, Part. 1

Seventh Laboratory

Stefano Pavinato 20/12/2018

1 Laboratory Introduction

2 Exercise description

1 Laboratory Introduction

2 Exercise description

Goals

■ Practice with VHDL Moore FSMs.

VHDL naming convention

Signals/components	Name
Clock	clk
Reset	rst
Input Port	port_in
Output Port	port_out
VHDL file name	entityname.vhd
Test bench file name	tb_entityname.vhd
Signal between 2 comps	sign_cmp1_cmp2
Process name	p_name
state name	s_name

1 Laboratory Introduction

2 Exercise description

Presentation

- You have three design source files (.vhd) and one constraint file (.xdc).
- There is a top module (top.vhd), a two pulses generator (pulses_generator.vhd) and a third file (break_measure.vhd).
- You have to write code only in the *break_measure.vhd* file.

Circuit description

The VIO core was used in order to generate a reset (*rst*) signal and an *en_gen* signal. The last signal enables the generation of two pulses. You can substitute the two signals with two switches and/or buttons or you have to generate the VIO core.

Circuit description - VHDL


```
begin
rst <= vio rst;
en trig in <= vio en trig;
gen: pulses_generator
     generic map (PULSE DIST => 21)
     port map(clk => clk, rst => rst, en gen in => en trig in, v out => gen out);
count : break_measure
     generic map (DONE TIME => 100000000) -- in number of clock cycles -> 1 second
     port map(clk => clk, rst => rst, pulses in => pulses in, count out => counter, done out => done out);
viol : vio 1
  PORT MAP (
   clk => clk.
   probe outO(0) => vio rst.
    probe outl(0) => vio en trig
end Behavioral:
```

Two pulses generator (1)

- It was implemented as a Moore FSMs.
- It has three inputs: the clock, the reset and the enable generator en_gen signals. When the reset is done $0 \to 1 \to 0$ and there is a rising edge of the en_gen signal this core generates two pulses.
- This component is configurable with three parameters (generics):
 - **1** WTIME: after a time WTIME * T_{clock} the first pulse in generated;
 - 2 PULSE_WIDTH: the duration of each pulse is $PULSE_WIDTH * T_{clock}$
 - 3 PULSE_DIST: the second pulse is generated after PULSE_DIST * T_{clock} from the falling edge of the first pulse.

Two pulses generator (2)

Circuit description - Board

The pulses at the output of the generator component are the input of the *break_measure* component. So, if you do not modify the constraint file, you have to short *IO*41 with *IO*40.

Measure of the time between the pulses

- You have to write the architecture of the file break measure.vhd.
- This component has to count the number of clock cycles between the falling edge of the first pulse and the rising edge of the second pulse.
- It has two outputs:
 - 1 count_out: it is an unsigned type. It represents the numbers of clock cycles between the two pulses (It is equals to PULSE_DIST). In order to visualize this value an ILA core has to be instantiated.
 - 2 *done_out*: it is connected to a led. When the count is done the led has to be on for one second.

Hints

- You have to implement a Moore FSM.
- Four states are enough.
- A reverse engineering of the FSM used to implement the two pulses generator can be a source of inspiration.
- The ILA core can be instantiated or in the top module or in the *break_measure.vhd* file.
- In order to monitor the state of the FSM through the ILA core you can use this example code (copied from the pulses_generator.vhd file):

1 Laboratory Introduction

2 Exercise description

- This homework will be graded.
- Write a report where there is:
 - 1 the code of the *break_measure.vhd* architecture;
 - 2 the screenshot of the ILA triggered in the rising edge of the done_out signal;
 - 3 NOTHING ELSE.
- This homework is for the 15th January.