

Time Series Demo (Identify and Estimate in ARIMA)

Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited

1

Forecasting Using Statistical Models

Box-Jenkins Modeling Methodology

- IDENTIFY
 - Estimate and evaluate diagnostic functions.
 - Diagnose trend and seasonal components.
 - Select input variables and determine a dynamic relationship with the target variable.
- ESTIMATE
 - Derive estimates for model parameters.
 - Evaluate estimates and goodness-of-fit statistics.
- FORECAST
 - Derive forecasts of deterministic inputs.
 - Predict non-deterministic inputs.
 - Forecast the target variable.

2

Ssas

IDENTIFY in ARIMA

- /* ARIMA models via PROC ARIMA*/
- * /* Identify step to figure out what models to use */
- Ods graphics on/imagemap=on;
- proc ARIMA data=COURSE.Solarpv
 plots(unpack)=series(all);
- identify var=kW Gen nlags=12;
- run;
- ods graphics off;

Test of White Noise

Name of Variable = kW_Gen							Ī		
	Mean of Working Series					511078			
Standard Deviation					0.1	179364			
Number of Observations					S	42			
Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	81.65	6	<.0001	0.709	0.648	0.519	0.460	0.412	0.396
12	95.53	12	<.0001	0.384	0.290	0.154	0.036	0.003	-0.046

4

