Reminders

- HW 5B is due October 28
- No class on Monday, October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)
- Exam on Material Balances is November 8 (cumulative units 1-5)

Announcements

No office hours over fall break, but feel free to email me with specific questions

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Shruti
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Shruti
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

After today's lecture, students should be able to:

 Write the first law of thermodynamics and explain the physical meaning of each term

 Simplify the first law of thermodynamics to describe a chemical system

Why do we care about thermodynamics and energy balances?

LIGHTWEIGHT GASES
RISE THROUGH
THE TRAYS

GASOLINE

TRAYS

TRAYS

GASOLINE

S70°F

KEROSENE
KEROSENE
KEROSENE
KEROSENE
HEATED TO
750°F

GAS OILS
DIESEL FUEL

B40°F

LUBRICANTS
MOTOR OIL

FUEL FOR
SOUND
OIL MOVES
DOWNWARD

GASES

BOTTLED AND NATURAL GAS

BOTTLED AND NATURAL GAS

Add heat for a reaction or separation to happen

Harness energy produced by heat for electricity

Temperature control!

Remember...

- Open system
 - Mass crosses its boundaries
 - Example: _____ reactors
- Closed system
 - Mass does not cross its boundaries
 - Example: _____ reactors

First Law of Thermodynamics

Energy cannot be created or destroyed—it can only be transformed from one form to another.

Where did this law come from?

equation?

How can we describe that data with an

First Law of **Thermodynamics**

How do we account for processes that we can't see?

Easy read! ~10 pages of this are posted on Canvas in **Module 6**.

Reminders

- HW 5B is due on Monday, October 28
- No class on Monday, October 28
- Quiz 2 will be on October 30 (covering content from HW 4 and 5A)
- Exam on Material Balances is November 8 (cumulative units 1-5)

Announcements

Review material & practice problems are posted on Canvas

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Shruti
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 – 4:30 PM	AW Smith, 147	Shruti
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

After today's lecture, students should be able to:

 Explain the concept of reference states and why they are important

Define and name the state properties

Write a theoretical process path for a chemical process

State Properties

State properties only depend on the state of current the system NOT the process path.

For **H** and **U**, state is defined by T, P, phase.

For **Ek**, state is defined by mass, velocity.

For **Ep**, state is defined by mass and position.

Example of a state property: Potential Energy

State properties only depend on the state of current the system NOT the process path.

$$\Delta E_p = mg\Delta z$$

Path 1:
$$\Delta E_p = mg * 4ft$$

Example of a state property: Potential Energy

State properties only depend on the state of current the system NOT the process path.

$$\Delta E_p = mg\Delta z$$

Path 1:
$$\Delta E_p = mg * 4ft$$

Path 2:
$$\Delta E_p = mg * 4ft$$

Example of a state property: Potential Energy

Reference state: arbitrary state to which all other states are compared

$$\Delta E_p = mg\Delta z$$

Using a lower step as a reference state... what is Δz ?

Reminders

Exam on Material Balances is on Friday, November 8 (cumulative units 1-5)

Announcements

- Cumulative practice problems are posted in the modules section
- Quiz 2 will be returned by Wednesday (after class) at the latest

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Shruti
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Shruti
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

After today's lecture, students should be able to:

- Write a hypothetical process path for a chemical process
- Calculate ΔH and ΔU for processes with:
 - ΔT at constant P and phase
 - ΔP at constant T and phase
 - Δphase at constant T and P

Reminders

- HW 6 is posted and is due on November 20
- HW 7 will be assigned on November 20 and is due on Nov 27

Announcements

- We will have in-person class on Wednesday Nov 27 (before break) and I will post a recording for anyone who is traveling
- No office hours on Wednesday, November 27

Day	Time	Location	Personnel
Monday	4 – 5 PM	AW Smith 105	Duval
Tuesday	1 -2 PM	AW Smith, 152	TA
Wednesday	3:30 - 4:30 PM	AW Smith, 147	Duval
Thursday	2:30 - 3:30 PM	AW Smith 152	TA

After this unit, students should be able to:

- Write a hypothetical process path for a chemical process
- Calculate ΔH and ΔU for non-reactive processes with:
 - ΔT at constant P and phase
 - ΔP at constant T and phase
 - Δphase at constant T and P