Flexible Block Storage Offload for Datacenters with Bluefield-2 and NVIDIA SNAP

Vojtech Aschenbrenner, Sadman Sakib, John Shawger

Tuesday, Dec 12 2023

Motivation

- Storage for VMs is traditionally handled by the hypervisor, however there are several drawbacks
 - Consumes host CPU cycles
 - Requires hypervisor reboot to adjust storage stack
 - Context switches/hypercalls affect system performance
- Goal: VMs can use disaggregated storage without host performance overhead
 - SNAP and SR-IOV present an NVMe interface to each VM on host
 - ► Flexible storage stack requires no VM cooperation
 - No extra context switches/hypercalls on the host
 - Customizations easily applied on Bluefield-2

RAID5 bdev

Safe RAID5

D0	D1	D2	D3	D4
0	1	2	3	P0
4	5	6	P1	7
8	9	P2	10	11
12	P3	13	14	15
P4	16	17	18	19

Compression bdev

SNAP vs. RDMA Throughput

SNAP vs. RDMA IOPS

- ► SNAP 4K latency (read): 16us
- ► RDMA 4K latency (read): 63.7us

