# **Bayesian Modeling**

Max Kochurov

Moscow State University

2022

# Agenda

- 1 HMC
- 2 Cobb-Douglas model
- 3 First model
  - Setup
  - Priors
- Prior Predictive Check
- 6 Hierarchies
  - Intro
  - Bayesian
  - Parametrizations
  - Priors
- 6 Discussion

# Sampling from a distribution

### Conjugate models

- Limited set of applications
- Lack of flexibility
- They are scalable



Figure: Easy distribution

#### Most models

- No closed form solution
- Posterior distributions is complicated
- Less scalable
- Flexible



Figure: Complicated distribution

### Hamiltonian Monte Carlo Intuition

HMC samples from a complicated distribution

- 1 Ideas from physics
- 2 Requires gradient
- 3 Requires numerical integration

Tuned HMC converges to the target distribution

### Warning

I promised a not math heavy course. But this is important for debugging your models.



Figure: Leapfrog Integration

### **HMC** Distributions

- $p(\Theta)$  Target distribution,  $\Theta \in \mathbb{R}^d \ (\Theta \ \text{aka Position})$
- $p(\Delta \mid \Theta)$  Momentum distribution,  $\Delta \in \mathbb{R}^d$  ( $\Delta$  aka **Velocity**)

#### Hamiltonian

$$H(\Delta, \Theta) = -\log p(\Delta, \Theta)$$

#### Notes

- $p(\Delta \mid \Theta) = \text{Normal}(0, M)$ , usually a Normal distibution
- $\Delta$  and  $\Theta$  have same dimensions



Figure:  $p(\Theta) = Normal(0, 1)$ 

MSU

# **HMC** Differential Equation

$$egin{aligned} H(\Delta,\Theta) &= -\log p(\Delta,\Theta) \ &= -\log p(\Delta\mid\Theta) & -\log p(\Theta) \ &= \underbrace{\mathcal{K}(\Delta,\Theta)}_{ ext{Kinetic E}} & + \underbrace{\mathcal{V}(\Theta)}_{ ext{Potential E}} \end{aligned}$$

#### The Physical motion equation

$$\frac{\partial \Theta}{\partial t} = \frac{\partial H}{\partial \Delta}$$
$$\frac{\partial \Delta}{\partial t} = -\frac{\partial H}{\partial \Theta}$$

**Motion** preserves total energy  $H(\Delta, \Theta)$ 



Figure: Momentum, Position trajectories

# **HMC** Divergences

A divergence is a huge integration error solving the differential equation.

#### When HMC Fails

Bad geometry for Hamiltonian

Bad geometry comes from a lot of things

- Strong correlations
- 2 Narrow funnels in the posterior
- Strong likelihood
- 4 Non homogeneous posterior



Figure: Neal's Funnel

# **HMC Reading Materials**

#### Advanced Reading

- Interactive Demo
- A tutorial from Colin Carroll
- 3 A paper from Michael Betancourt
- 4 NUTS paper from Matthew D. Hoffman, Andrew Gelman

# Example

MSU

# Toy example - Cobb-Douglas with Simpson Paradox

You should all know the Cobb-Douglas function

$$Y \approx A \cdot I^{\beta}$$

In our example:

- 1 data has 6 groups (hierarchical)
- 2 We know the groups
- We know the total factor productivity A is different per group (different equipment)
- **4** Labour productivity  $\beta$  does not differ much



Figure: Example Data (aggregated)

# Toy example - Carpet Knitters

Let's put more interpretation in the example

$$Y_g \approx A_g \cdot L^{\beta}$$

In our example we have a carpet manufacturing plant with 6 workers (groups):

- Workers make different carpets, thus have total factor productivity A
- **2** Labour productivity  $\beta$  is like concentration, the more you work the less productive you are
- Workers produce carpets individually



Figure: Example Y

# The paradox



Best practices when you start.

• Start with a most simple model

Make sure simple model converges well

• Write a more complex model

Best practices when you start.

- Start with a most simple model
  - You have groups, start with one
  - Make sure priors are well specified, do checks
- Make sure simple model converges well

Write a more complex model

Best practices when you start.

- Start with a most simple model
  - You have groups, start with one
  - Make sure priors are well specified, do checks
- Make sure simple model converges well
  - If one group model fails, all fail
  - There are simple checks to verify your model samples well
- Write a more complex model

#### Best practices when you start.

- Start with a most simple model
  - You have groups, start with one
  - Make sure priors are well specified, do checks
- Make sure simple model converges well
  - If one group model fails, all fail
  - There are simple checks to verify your model samples well
- Write a more complex model
  - Try several parametrizations
  - Check how model samples
  - Compare models (out of scope for now)

# Starting with a simple model

To get an idea why we start simple

$$Y_{g=0} \approx A_{g=0} \cdot L^{\beta}$$

- What is prior for A?
- **2** What is prior for  $\beta$ ?
- **3** What is prior predictive for  $Y_{g=0}$ ?

# Writing a model

$$Y_{g=0} \approx A_{g=0} \cdot L^{\beta}$$
  
 $\log Y_{g=0} \approx \log A_{g=0} + \log L \cdot \beta$ 

### Introducing distributions

$$\log Y_{g=0} \sim ext{Normal}(\log A_{g=0} + \log L \cdot \beta, \epsilon)$$
  $\epsilon \sim ???$   $\beta \sim ???$   $A_{g=0} \sim ???$ 

- $\bullet$  Can it be < 0?
- 2 Can it be large?
- **3** Can it be > 1?

- $\bullet$  Can it be < 0? No
- 2 Can it be large?
- **3** Can it be > 1?

- $\bullet$  Can it be < 0? No
- 2 Can it be large? No
- **3** Can it be > 1?

- $\bullet$  Can it be < 0? No
- 2 Can it be large? No
- 3 Can it be > 1? No

What is a reasonable prior for labour productivity (elasticity)  $\beta$ ? Questions to ask yourself

- $\bullet$  Can it be < 0? No
- 2 Can it be large? No
- 3 Can it be > 1? No

Conclusion: It is bounded by (0,1)

The prior is subjective!

Who can argue these bounds do not make sense?

What is a reasonable prior for labour productivity (elasticity)  $\beta$ ? Questions to ask yourself

- $\bullet$  Can it be < 0? No
- 2 Can it be large? No
- 3 Can it be > 1? No

Conclusion: It is bounded by (0,1)

### The prior is subjective!

Who can argue these bounds do not make sense?

### Not yet a prior

To get a prior we need a distribution that fits the reasoning

### What we know:

- $\beta \in (0,1)$
- Less probable to be close to the boundary
- Nothing specific about exact value in the range.

#### In the mind

### What we know:

- $\beta \in (0,1)$
- Less probable to be close to the boundary
- Nothing specific about exact value in the range.

#### In the mind

Enumerate possible distributions that fit the reasoning

• Beta(a, b), a > 0, b > 0 with some a, b avoids boundaries

### What we know:

- $\beta \in (0,1)$
- Less probable to be close to the boundary
- Nothing specific about exact value in the range.

#### In the mind

- $\bullet$  Beta(a, b), a > 0, b > 0 with some a, b avoids boundaries
- **2** LogitNormal $(\mu, \sigma)$  always avoids boundaries

### What we know:

- $\beta \in (0,1)$
- Less probable to be close to the boundary
- Nothing specific about exact value in the range.

#### In the mind

- **1** Beta(a, b), a > 0, b > 0 with some a, b avoids boundaries
- **2** LogitNormal( $\mu, \sigma$ ) always avoids boundaries
- 3 Uniform(0,1) a special case of Beta(1,1)

### What we know:

- $\beta \in (0,1)$
- Less probable to be close to the boundary
- Nothing specific about exact value in the range.

#### In the mind

- **1** Beta(a, b), a > 0, b > 0 with some a, b avoids boundaries
- **2** LogitNormal( $\mu, \sigma$ ) always avoids boundaries
- 3 Uniform(0,1) a special case of Beta(1,1)
- 4 Kumaraswamy(a, b), a > 0, b > 0 you do not need to know that

# Visualize your prior

Before writing a line of code, visualise your prior. What do you like more?



Figure: Visualized Priors

You can choose the form with theory in mind

### Setting a prior

I prefer LogitNormal(0,1) in this situation. It has a good functional form.

#### To remember

- Prior is your modelling choice
- The choice has to be motivated
- The choice should make sense given practical constraints
- You should always be able to defend your choice
- Prior is what you do not know, the uncertainty

### The model so far

$$\begin{split} \log Y_{g=0} &\sim \mathsf{Normal}(\log A_{g=0} + \log L \cdot \beta, \epsilon) \\ &\epsilon \sim ??? \\ &\beta \sim \mathsf{LogitNormal}(0,1) \\ &A_{g=0} \sim ??? \end{split}$$

### Prior for $\epsilon$

#### Rule of thumb

Error term is something small. Usually avoids zero.

#### In our case;

• small is "orders of 0.1-0.5"

#### Let it be

 $\epsilon \sim \mathsf{LogNormal}(-2,1)$ 



Figure: Prior for  $\epsilon$ 

### The model so far

$$\begin{split} \log Y_{g=0} &\sim \mathsf{Normal}(\log A_{g=0} + \log L \cdot \beta, \epsilon) \\ &\epsilon \sim \mathsf{LogNormal}(-2, 1) \\ &\beta \sim \mathsf{LogitNormal}(0, 1) \\ &A_{g=0} \sim ??? \end{split}$$

Priors



### **Prior Predictive**

Prior for  $\beta$  is an easy one. We need one for  $A_{g=0}$ 

Prior for  $\beta$  is an easy one. We need one for  $A_{g=0}$ 

• No idea what the prior should be

Prior for  $\beta$  is an easy one. We need one for  $A_{g=0}$ 

- No idea what the prior should be
- We have an idea about Y

Prior for  $\beta$  is an easy one. We need one for  $A_{g=0}$ 

- No idea what the prior should be
- We have an idea about Y
- Y is positive, thus A is positive

Prior for  $\beta$  is an easy one. We need one for  $A_{\rho=0}$ 

- No idea what the prior should be
- We have an idea about Y
- Y is positive, thus A is positive
- We have practical range for Y, can we infer A at a glance?

Prior for  $\beta$  is an easy one. We need one for  $A_{\rho=0}$ 

- No idea what the prior should be
- We have an idea about Y
- Y is positive, thus A is positive
- We have practical range for Y, can we infer A at a glance?
- Order of 10s for Y makes sense

Prior for  $\beta$  is an easy one. We need one for  $A_{\rho=0}$ 

- No idea what the prior should be
- We have an idea about Y
- Y is positive, thus A is positive
- We have practical range for Y, can we infer A at a glance?
- Order of 10s for Y makes sense
- Prior predictive can help

Prior for  $\beta$  is an easy one. We need one for  $A_{g=0}$ 

- No idea what the prior should be
- We have an idea about Y
- *Y* is positive, thus *A* is positive
- We have practical range for Y, can we infer A at a glance?
- Order of 10s for Y makes sense
- Prior predictive can help

#### Definition

Prior predictive is simulated observation model given no data.

#### The truth

Nobody said setting priors is easy. It is the most work.

# Random prior

Why not using e.g.

 $A \sim \mathsf{LogNormal}(0,1)$ 

# Why not using e.g.

 $A \sim \text{LogNormal}(0, 1)$ 

#### Nonsense

Workers do not produce 800 carpets per week.

#### That's why



Figure: Prior predictive for Y vs data

# Analysing the prior predictive

Getting back to a full model

$$egin{aligned} \log Y_{g=0} &\sim \mathsf{Normal}(\log A_{g=0} + \log L \cdot eta, \epsilon) \ &\epsilon &\sim \mathsf{LogNormal}(-2,1) \ η &\sim \mathsf{LogitNormal}(0,1) \ &A_{g=0} &\sim \mathsf{LogNormal}(0,1) \end{aligned}$$

- We see over dispersion in predictions
- Variance may come from A or  $\epsilon$

#### Actions

- **1** Try reducing A variance
- 2 Try reducing  $\epsilon$  variance

#### What can we read here?



Figure: Prior predictive for Y vs data

# Good prior predictive

#### Seminar

You will play with the example at the seminar.

A good looking prior predictive was with the definition below

$$\begin{split} \log Y_{g=0} &\sim \mathsf{Normal}(\log A_{g=0} + \log L \cdot \beta, \epsilon) \\ &\epsilon \sim \mathsf{LogNormal}(-2, 0.1) \\ &\beta \sim \mathsf{LogitNormal}(0, 1) \\ &A_{g=0} \sim \mathsf{LogNormal}(-0.5, 0.1) \end{split}$$



Figure: Prior predictive for Y vs data

# What is a good prior predictive?

 Prior predictive covers reasonable range for observed data.

• Data is reference, not your objective.



Figure: Prior predictive for Y vs data

# What is a good prior predictive?

- Prior predictive covers reasonable range for observed data.
  - no astronomic speeds
  - no microscopic distances
  - no black hole densities
  - no superpower workers
- Data is reference, not your objective.



Figure: Prior predictive for Y vs data

MSU

# What is a good prior predictive?

- Prior predictive covers reasonable range for observed data.
  - no astronomic speeds
  - no microscopic distances
  - no black hole densities
  - no superpower workers
- Data is reference, not your objective.
  - do not overfit priors on data.
  - in 90% cases you do not need data for prior predictive
  - in 90% cases common sense should work just fine
  - in 10% cases you can ask experts and adjust the priors
  - data is your last resort



Figure: Prior predictive for Y vs data

### HMC in action

# Sampling

After we've checked the priors it is time to sample.



Figure: Posterior MCMC trace

# Hierarchies

### **Hierarchies**

Initial data has groups. How to take them in account?

$$egin{aligned} \log Y_{\mathbf{g}} &\sim \mathsf{Normal}(\log A_{\mathbf{g}} + \log L \cdot eta, \epsilon) \ &\epsilon \sim \mathsf{LogNormal}(-2, 1) \ η \sim \mathsf{LogitNormal}(0, 1) \ &A_{\mathbf{g}} \sim ??? \end{aligned}$$

Intro

# What is Hierarchy?

#### Hierarchy

Once you have similar groups in your data, you have hierarchy.

#### Examples:

- Countries, Regions
- 2 User groups: by age, by profession, etc.
- Treatment groups
- 4 Time dependent effects
- 6 Panel Data

#### Our Example

Workers make different carpets and have total factor productivity A

## Treating Hierarchy

#### Classical Econometrics view.

1 All the groups are independent and treated similarly. Pooled Model

$$y_{k,i} = \alpha + \beta x_{k,i} + \varepsilon_{i,k}$$

Q Groups have significant differences. Fixed Effect Model

$$y_{k,i} = \alpha_k + \beta x_{k,i} + \varepsilon_{i,k}$$

Groups have non significant, random differences. Random Effects Model

$$y_{k,i} = \alpha + \beta x_{k,i} + u_k + \varepsilon_{i,k}$$

Where

$$\mathbb{E}u_{k,i}=0, \quad \mathbb{E}\varepsilon_{k,i}=0$$

# Bayesian Hierarchy

In

$$y_{k,i} = \alpha + \beta x_{k,i} + u_k + \varepsilon_{i,k}$$

Let's rearrange terms

$$y_{k,i} = (\alpha + u_k) + \beta x_{k,i} + \varepsilon_{i,k}$$

- $\alpha$  population mean
- $\alpha_k = \alpha + u_k$  group mean

In a Bayesian analysis we need priors. There is more than one way

$$lpha \sim \mathsf{Normal}(ar{\mu}, ar{\sigma})$$
 $u_k \sim \mathsf{Normal}(0, 1)$ 
 $\alpha_k = \alpha + u_k \cdot \sigma$ 
 $\alpha \sim \mathsf{Normal}(ar{\mu}, ar{\sigma})$ 
 $\alpha_k \sim \mathsf{Normal}(\alpha, \sigma)$ 

# More on priors

#### Non centered parametrization

$$\alpha \sim \mathsf{Normal}(\bar{\mu}, \bar{\sigma})$$
 $u_k \sim \mathsf{Normal}(0, 1)$ 

$$\alpha_{k} = \alpha + \mathbf{u}_{k} \cdot \sigma$$

#### Centered parametrization

$$\alpha \sim \mathsf{Normal}(\bar{\mu}, \bar{\sigma})$$

$$\alpha_k \sim \mathsf{Normal}(\alpha, \sigma)$$

Group specific parameter  $u_k$  is disentangled

 $\sigma$  is a measure of group differences

- $\bullet \quad \sigma \rightarrow 0$ : Pooled Model
- **2** Small  $\sigma$ : Random Effects / Partial Pooling
- 3 Large  $\sigma$ : Fixed Effects / Unpooled Model
- $\sigma$  interpolates between the models

### Degeneracy

TODO: improve the visualization

### Centered parametrization

 $\alpha \sim \mathsf{Normal}(\bar{\mu}, \bar{\sigma})$ 

 $\alpha_k \sim \mathsf{Normal}(\alpha, \sigma)$ 

### Warning

Centered parametrization creates funnel geometry with few data



Figure: Divergences appear in the

## Why Funnel is created?

#### Geometry is important

- 1 Sampler has adaptive step size
- With bad geometry Sampler can't find a good one



Figure: Funnel Geometry

### Suggested reading

Read more on reparametrization in Stan's Guide

### Inverted Funnel degeneracy

A "nice" parametrization does have issues as well.



Figure: Inverted Funnel Degeneracy

# Advanced Reading

Read more from Michael Betancourt

1 Start with a Pooled or Single group model

Add Hierarchy

- Start with a Pooled or Single group model
  - You get an idea of prior parameter scales
  - You get a decent model structure
  - Do not care about predictions
- 2 Add Hierarchy

- Start with a Pooled or Single group model
  - You get an idea of prior parameter scales
  - You get a decent model structure
  - Do not care about predictions
- 2 Add Hierarchy
  - Decide on which parameters to share
  - Decide on allowed variability for the rest parameters
  - Debug divergences, reparametrize if required

- Start with a Pooled or Single group model
  - You get an idea of prior parameter scales
  - You get a decent model structure
  - Do not care about predictions
- 2 Add Hierarchy
  - Decide on which parameters to share
  - Decide on allowed variability for the rest parameters
  - · Debug divergences, reparametrize if required

#### **Best Practice**

Do not hard-code the parametrization, toggle it in the code

Priors

# The Cobb-Douglas Case

#### Single group model

$$egin{aligned} \log Y_0 &\sim \mathsf{Normal}(\log A_0 + \log L \ &\epsilon \sim \mathsf{LogNormal}(-2, 0.1) \ η \sim \mathsf{LogitNormal}(0, 1) \ &A_0 \sim \mathsf{LogNormal}(-0.5, 0.1) \end{aligned}$$

#### Hierarchical model

$$\begin{split} \log Y_0 &\sim \mathsf{Normal}(\log A_0 + \log L \cdot \beta, \epsilon) & \log Y_k \sim \mathsf{Normal}(\log A_k + \log L \cdot \beta, \epsilon) \\ &\epsilon \sim \mathsf{LogNormal}(-2, 0.1) & \epsilon \sim \mathsf{LogNormal}(-2, 0.1) \\ &\beta \sim \mathsf{LogitNormal}(0, 1) & \beta \sim \mathsf{LogitNormal}(0, 1) \\ &A_0 \sim \mathsf{LogNormal}(-0.5, 0.1) & A_k \sim \mathsf{LogNormal}(\log A_{\mathsf{pop}}, \sigma_A) \\ &A_{\mathsf{pop}} \sim \mathsf{LogNormal}(-0.5, 0.1) \\ &\sigma_A \sim \mathsf{LogNormal}(-2, 0.1) \end{split}$$

Priors

# The Cobb-Douglas Case

#### Single group model

$$egin{aligned} \log Y_0 &\sim \mathsf{Normal}(\log A_0 + \log L \cdot eta, \epsilon) \ &\epsilon \sim \mathsf{LogNormal}(-2, 0.1) \ η \sim \mathsf{LogitNormal}(0, 1) \ &A_0 \sim \mathsf{LogNormal}(-0.5, 0.1) \end{aligned}$$

#### Hierarchical model

$$egin{aligned} \log Y_k &\sim \operatorname{Normal}(\log A_k + \log L \cdot eta, \epsilon) \ &\epsilon \sim \operatorname{LogNormal}(-2, 0.1) \ η \sim \operatorname{LogitNormal}(0, 1) \ &A_k \sim \operatorname{LogNormal}(\log A_{\operatorname{pop}}, \sigma_A) \ &A_{\operatorname{pop}} \sim \operatorname{LogNormal}(-0.5, 0.1) \ &\sigma_A \sim \operatorname{LogNormal}(-2, 0.1) \end{aligned}$$

#### Hint

You can reuse some parameters, just add reasonable variability  $\sigma_A$ 

### **Discussion Time**

#### Setting priors

- Sometimes you do not have expert knowledge
- · Sometimes parametrization does not allow you to set a good prior
- Sometimes prior predictive depends on many parameters
- You are limited in time
- Using hyperpriors