LISTA 2: FUNÇÕES DIFERENCIÁVEIS: NOÇÕES BÁSICAS

Exercício 1. Definimos a conorma de uma transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ como

$$\mathbf{m}(T) := \inf \left\{ \frac{\|Tv\|}{\|v\|} \colon v \in \mathbb{R}^n, \, v \neq 0 \right\}.$$

- (i) Se T é um isomorfismo, prove que m(T) > 0. A recíproca é verdadeira?
- (ii) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ e m(T) > 0 prove que T é um isomorfismo.
- (iii) O que acontece quando ||T|| = m(T)?

Exercício 2. Sejam $T: \mathbb{R}^n \to \mathbb{R}^m$ e $S: \mathbb{R}^m \to \mathbb{R}^k$ duas transformações lineares. Prove as seguintes afirmações:

- (i) $||S \circ T|| \le ||S|| \, ||T||$.
- (ii) $m(S \circ T) \ge m(S) m(T)$.

Exercício 3. Lembre-se que uma função $R: B(0,\epsilon) \subset \mathbb{R}^n \to \mathbb{R}^m$ é dita sublinear se R(0) = 0 e

$$\lim_{x \to 0} \frac{R(x)}{\|x\|} = 0.$$

- (i) Explique porque R é contínua e também diferenciável no ponto 0.
- (ii) Considere duas funções sublineares $R_1: B(0, \epsilon_1) \subset \mathbb{R}^n \to B(0, \epsilon_2) \subset \mathbb{R}^m$ e $R_2: B(0, \epsilon_2) \subset \mathbb{R}^m \to \mathbb{R}^k$. Prove que $R_2 \circ R_1$ é sublinear.

Exercício 4. Mostre que ambas as derivadas parciais da função

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

existem na origem, mas a função não é diferenciável na origem.

Exercício 5. Seja $B \in \mathcal{L}^2(\mathbb{R}^n, \mathbb{R}^m)$ uma transformação bilinear e defina $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ por

$$\phi(x) := B(x, x)$$
 para todo $x \in \mathbb{R}^n$.

(i) Prove que ϕ é diferenciável de ordem dois e $(D^2\phi)_p=2$ Sim(B) em todo ponto $p\in\mathbb{R}^n$, onde

$$Sim(B)(v, w) := \frac{1}{2} (B(v, w) + B(w, v)) \quad \forall v, w \in \mathbb{R}^n.$$

(ii) Prove que $(D^3\phi)_p=0$ em todo ponto $p\in\mathbb{R}^n.$

Exercício 6. Seja $U \subset \mathbb{R}^n$ um conjunto aberto e *conexo* e seja $f: U \to \mathbb{R}^m$ uma função.

- (i) Suponha que f seja diferenciável e $(Df)_x = 0$ para todo $x \in U$. Prove que f é uma função constante.
- (ii) Suponha que f seja diferenciável de ordem dois e $(D^2f)_x = 0$ para todo $x \in U$. Prove que f é uma função afim (linear + constante).

Exercício 7. Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $p \in U$ um ponto e $f: U \to \mathbb{R}^m$ uma função, escrita em coordenadas como $f = (f_1, \dots, f_m)$.

Suponha que cada coordenada f_i é diferenciável em p. Prove que f é diferenciável em p e expresse a derivada de f em termos das derivadas de suas coordenadas f_i .

Exercício 8. Seja $f: U \subset \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável.

- (i) Suponha que $f(x) \neq 0$ para todo $x \in U$. Prove que $\frac{1}{f}$ é diferenciável e determine a sua derivada.
- (ii) Prove que e^f é diferenciável e determine a sua derivada.

Explique todos os passos de uma maneira detalhada.