CS1026 - Digital Logic Design Boolean Algebra III

Alistair Morris 1

¹Distributed Systems Group Trinity College Dublin

January 26, 2016

Today's Overview

- 1 Some Jargon
- 2 Function Minimization
- 3 Systematic Algebraic Reduction (SAR)
- 4 Using K-Maps

But what about Max-terms

Min-terms and Max-terms are complements of each other:

- $M_i' = m_i$
- $M_i = m'_i$

Hint: Use DeMorgan's Theorem to prove this

But why?

Minimisation of literals and operators:

- Reduces the number of gates to implement the function
- Reduces the cost of implementation

Systematic Algebraic Reduction (SAR)

Uses algebraic theorems and postulates!

The SAR algorithm I

Step 1:

Expand the function into its Standard sum of products (SOP)

Hint

This includes:

- All variables
- In order to it easier to recognise patterns

The SAR algorithm II

Step 2:

- Compare all pairs of products for:
 - 1 Adjacency Theorem A.B + A.B' = A
 - 2 Idempotency Theorem A + A = A

Hint

You might need to repeat this multiple times!

The SAR algorithm III

Step 3:

- Once you have done all reductions possible in step 2,
 - See if the Consensus Theorem applies

Consensus Theorem

$$A.B + A'.C + B.C = A.B + A'.C$$

SAR Algorithm Example I

Using SAR minimise the function:

$$F = (A + B + C).(A' + C).(B' + C)$$

SAR Algorithm Example II

Step 1:

■ Use truth table to derive the min-terms

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

SAR Algorithm Example III

Step 2:

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Write *F* in compact Min-term form
- F = A'.B'.C + A'.B.C + A.B'.C + A.B.C

SAR Algorithm Example IV

Step 3:

- Apply Adjacency Theorem to all possible pairs
- In: F = A'.B'.C + A'.B.C + A.B'.C + A.B.C
 - Terms 1 & 2 \implies A'.B'.C + A'.B.C = A'.C
 - Terms 1 & 3 \implies A'.B'.C + A.B'.C = B'.C
 - Terms 1 & 4 \Longrightarrow N/A
 - Terms 2 & 3 \Longrightarrow N/A
 - Terms 2 & 4 \implies A'.B.C + A.B.C = B.C
 - Terms 3 & 4 \implies A.B'.C + A.B.C = A.C
- \blacksquare : F = A'.C + B'.C + B.C + A.C

SAR Algorithm Example V

Step 4:

- Do a second pass with the Adjacency theorem
 - F = A'.C + B'.C + B.C + A.C
 - F = C + C = C

Beware!

- No need to apply Consensus Theorem
- We cannot simplify further

3-Variables

AB C	D ₀₀	01	11	10
00	1	1	0	1
01	0	0	1	0
11	1	1	0	1
10	1	0	0	1

F(A,B,C,D) 4-Variables

For minimisation of five or fewer variables

■ Humans use a K-Map

2-Variables

■ Your brain can do this really well

More K-Map definitions I

Let's start with an example:

More K-Map definitions II

Implicant

- The product term where the function is evaluated to 1 or complemented to 0
- Implies the term of the function is 1 (or complemented to 0)
- Thus each square with a 1 for the function denotes an implicant (p)
- If the complement of the function is being discussed, then 0s denote implicants (r)

Note: To find the complement of F, apply the same rules to 0 entries in the K-Map instead of 1

More K-Map definitions III

Prime Implicant

■ Rectangular group of product terms

You should see them contained in a single larger implicant!

More K-Map definitions IV

Essential Prime Implicant

■ Provides the only coverage for a given min-term

More K-Map definitions V

Optional Prime Implicant

■ Provides an alternate covering for a given Min-term

Note: We can write some functions in a minimum form using more than one way because of optional prime implicants

More K-Map definitions VI

Redundant Prime Implicant

■ Product term that represents a square completely covered by other essential or optional prime implicants

But what if I Don't Care?! [Damiani and De Micheli, 1993]

F(W, X, Y, Z) with unspecified values (dont cares, "-"):

$$F(W, X, Y, Z) = X.Y'.Z' + W'.Z + Y.Z + W.X.Y$$

Representing "dont care" min-terms in compact form:

■ $\sum md(1,4,5)$ – Note: md refers to dont care min-terms

References (Homework) I

Damiani, M. and De Micheli, G. (1993).

Don't care set specifications in combinational and synchronous logic circuits.

Computer-Aided Design of Integrated Circuits and Systems, *IEEE Transactions on*, 12(3):365–388.