Seminar 8

Automate push-down (APD)

1. Construiti APD care accepta urmatoarele limbaje dupa criteriul stivei vide:

```
a) L = \{a^nb^{2n} \mid n>=0\}

b) L = \{a^nb^m \mid m,n>=0\}

c) L = \{a^nb^m \mid n>=m>=0\}

d) L = \{a^mb^n \mid n>=m>=0\}

e) L = \{ww^{tilda} \mid w \in \{a,b\}^*, w^{tilda} \text{ este inversul lui } w\}

f) L = \{w \mid w \in \{a,b\}^*, nr_a(w) = nr_b(w)\}

g) L = \{a^{2n}b^{2n} \mid n>=0\}

h) L = \{a^nb^n \mid n>=0\} \cup \{b^na^n \mid n>=0\}

i) L = \{a^nb^n \mid n>=0\} \cup \{a^nb2^n \mid n>=1\}
```

2. Pentru limbajul de la punctul **f**, dati o gramatica independenta de context (GIC) ce il

genereaza. Construit APD echivalent cu GIC data (aplicand algoritmul de constructie).

j) $\{ w \mid x \mid w^{\text{tilda}} \text{ is a substring of } x, \text{ where } x \in \{a, b\}^*, w \in \{a, b\}^*, |w| > 1 \}$

3. Pentru APD de la punctele \mathbf{e} si \mathbf{f} , dati APD care accepta acelasi limbaj dupa criteriul starii finale.

Rezolvari

1. a)
$$L = \{a^nb^{2n} \mid n > = 0\}$$

		a	b	3
q1	Z	(q1,AA)		$(q3, \varepsilon)$
	A	(q1,AA)	$(q2, \varepsilon)$	
q2	Z			
	A		$(q2, \varepsilon)$	

b)
$$L = \{a^n b^m | m,n >= 0\}$$

		a	b	eps
q0	Z	(q0, Z)	(q0, A)	(q0, eps)
	A		(q0, A)	(q0, eps)

e)
$$L = \{ww^{tilda} \mid w \in \{a,b\}^*, w^{tilda} \text{ este inversul lui } w\}$$

		a	b	ε
q	Z	(q,A)	(q,B)	(r, ε)
	A	(q,AA)	(q,BA)	(r,A)
	В	(q,AB)	(q,BB)	(r,B)
	Z			
r	A	(r, ε)		
	В		(r, ε)	

f)
$$L = \{w \mid w \in \{a, b\}^*, nr_a(w) = nr_b(w) \}$$

		a	b	3
	Z	(q, BZ)	(q, AZ)	(q, ε)
q	A	(q, ε)	(q, AA)	
	В	(q, BB)	(q, ε)	

2.

Gramatica data prin productiile:

 $S \rightarrow \epsilon$

 $S \rightarrow a S b S$

 $S \rightarrow b S a S$

genereaza L = {w | w \in {a, b}*, nr_a(w) = nr_b(w) }

Aplicand algoritmul, se obtine urmatorul APD echivalent :

		a	b	ε
	S			$(q, \varepsilon), (q, aSbS), (q, bSaS)$
q	a	(q, ε)		
	b		(q, ε)	

(criteriul stivei vide)