1 Conversion des Nombres

Problème 1a)

[4pts] Convertir 133_{10} en base 7 en utilisant la méthode de soustractions successifs, en binaire en utilisant la méthode de divisions successifs.

Soustractions successives $133 - 2 \times (7^2) = 35$ $35 - 5 \times (7^1) = 0$ $0 - 0 \times (7^0) = 0$ $133_{10} = 2 \times (7^2) + 5 \times (7^1) + 0 \times (7^0)$ $133_{10} = 250_7$

Divisions successives

Problème 1b)

[4pts] Convertir 133₁₀ en base 16, 8, 4 en passant par la base binaire

 $133 - 2^7 = 5$ Hexadécimal Octal Quaternaire $5 - 2^2 = 1$ $010\ 000\ 011$ 1000 0011 $10\ 00\ 00\ 11$ Solution: $1 - 2^0 = 0$ 8 3 2 0 3 $2 \ 0 \ 0 \ 4$ $133_{10} = 10000011_2$ 83_{16} 203_{8} 2004_{4}

Problème 1c)

[10pts] Convertir 11001_2 et 110001_2 en décimal, octal et hexadécimal. Effectuer l'addition et la multiplication de ces nombres en binaire.

	Addition	multiplication
	$1^{1}1000^{1}1_{2} \\ + 11001_{2}$	$110001_2 \\ \times 11001_2$
Solution:	1001010_2	$ \begin{array}{c} 1^110001_2\\0000000_2\\00000000_2 \end{array} $
		$ \begin{array}{c} 100000002\\ 1100010002\\ 11000100002 \end{array} $
	44004	10011001001_2

	11001_2			110001_2	
Hexadécimal	octal	Quaternaire	Hexadécimal	Octal	Quaternaire
0001 1001	011 001	01 10 01	0011 0001	110 001	11 00 01
1 9	3 1	1 2 1	4 1	6 1	4 0 1
19_{16}	31_{8}	121_{4}	41_{16}	61_{8}	401_{2}

Problème 1d)

[4 pts] Convertir DAB_{16} en décimal et octal.

	décimal			Octal		
	D	A	В	D	A	В
Solution:	$13 \times 16^2 + 10 \times 16^1 + 11 \times 16^0$		1101 1010 1011			
	3328 + 160 + 11		110 110 101 011			
		3499			6653	

Problème 1e)

[5pts] Convertir les nombres 101.101_2 et 10101.10001_2 en octal et décimal. Pour la conversion en décimal, donnez votre réponse en forme de somme des puissances de 2.

Solution:

Problème 1f)

[5 pts] Convertir les nombres 11.625_{10} et $1/11_{10}$ en binaire. Si les fractions sont infinies et ne sont pas périodiques, cherchez les 6 chiffres après la virgule

Solution:

2 Format des Données Numériques

Problème 2a)

[6 pts] Représenter les nombres -1710 et 1710 selon les 3 conventions:

- Valeur Signée sur 8 bits
- DCB (décimal codé binaire) sur 16 bits
- Complément à deux sur 8 bits

	-1710	1710
	$-1710 + 2^{10} = -686$	$1710 - 2^{10} = 686$
	$-686 + 2^9 = -174$	$686 - 2^9 = 174$
Solution:	$-174 + 2^7 = -36$	$174 - 2^7 = 36$
	$-36 + 2^5 = -4$	$36 - 2^5 = 4$
	$-4 + 2^2 = 0$	$4 - 2^2 = 0$
	impossible, trop de bits?	

Problème 2b)

[10 pts] Calculez les expressions suivantes exprimées en complément à deux en indiquant celles pour lesquelles apparaît un débordement ou (et) une retenue(Carry).

- 11011011 01001011 (calcul sur 8 bits)
- 1001 0011 (calcul sur 4 bits)
- 11101011 11011011 (calcul sur 8 bits)
- 11111010 + 11110111 (calcul sur 8 bits)
- 10011101 + 00000111 (calcul sur 8 bits)

Solution:

Problème 2c)

[8pts] Représenter les nombres -14.625_{10} et $8/11_{10}$ dans le format IEEE-754 précision simple

Solution:

Problème 2d)

[12pts] Chercher les valeurs décimales représentées par les chaînes en hexadécimal suivantes. L'encodage utilisé est le format IEEE-754 simple précision.

- A23BB000
- 33DD1000
- FF200000

Solution: