1 Построить дерево вывода, l и r разбор

Наши грамматики описана в листочке в примере 1. Нумерация взята оттуда же. Деревья вывода слова ((a)) в G и в G_{π} . Т.к. в правой части всегда единственный нетерминал, вывод является и левым и правым по определению. Разбор в грамматике G_{π} получается путем убирания всех терминалов и написания номера вывода сразу после стрелки

Итоговый левый вывод: $E \Rightarrow 2T \Rightarrow 24F \Rightarrow 245E \Rightarrow 2452T \Rightarrow 24524F \Rightarrow 245245E \Rightarrow 2452452T \Rightarrow 24524524F \Rightarrow 245245246$ Правый в обратную сторону (т.к. вывод и левый и правый): 642542542

2 Построить детерминированный левый анализатор

FIRST:

Шаг	F(S)	описание	0	1
0	$F_0 = \varepsilon$	$\exists S \to \varepsilon$	0	1
1	$F_1 = F_0(0) \cup F_0(1) \cup F_0(S) = \{\varepsilon, 0, 1\}$	$S \to 0S 1S$	$F_0(0) = 0$	$F_0(1) = 1$
2	то же самое	the same		

В итоге $FIRST_1(X) = F_1(X)$

FOLLOW:

Шаг	$F_i(S)$	описание
0	\$	S - аксиома
1	\$	после обработки правил все остается

Сам анализатор:

	0	1	\$
S	$S \to 0S$	$S \rightarrow 1S$	$S \to \varepsilon$

Объяснение: $FIRST(\varepsilon) = \varepsilon$; FIRST(0S) = FIRST(0) = 0; FIRST(1S) = FIRST(1) = 1; Поскольку $\S \in FOLLOW(S)$ то для \$ добавляем $S \to \varepsilon$ Итог: по алгоритму построен детерминированный левый анализатор.

3 * Добавить правило и вычислить FIRST

4 Доказать, что грамматика не LL(1), но LL(2). Вычислить First2 и Follow2

Вычислим $FIRST_1$, $FOLLOW_1$, $FIRST_2$ и $FOLLOW_2$:

$FIRST_1$	F(S)	F(A)	$FOLLOW_1$	F(S)	F(A)
0	Ø	ε	0	\$	Ø
1	a,b	ε, b	1	\$	a,b
2	a,b	ε, b	2	\$	a,b
$FIRST_2$	F(S)	F(A)	$FOLLOW_2$	F(S)	F(A)
$ \begin{array}{c c} FIRST_2 \\ 0 \end{array} $	F(S) Ø	$F(A)$ ε, b	$ \begin{array}{ c c c c } \hline FOLLOW_2 \\ \hline 0 \\ \hline \end{array} $	F(S)	F(A) Ø
$ \begin{array}{c c} FIRST_2 \\ 0 \\ 1 \end{array} $		\ ,	$ \begin{array}{c c} FOLLOW_2 \\ \hline 0 \\ 1 \end{array} $	F(S) \$	F(A) Ø aa,ba

Грамматика не является LL(1) т.к. не выполняется критейри (теорема): " \forall правил $A \to \beta | \gamma FIRST(\beta \alpha) \cap FIRST(\gamma \alpha) = \emptyset$ ". Нарушается все, если для правил $A \to b | \varepsilon$; $S \to bAba$ мы возьмем $\alpha = ba$; $\beta = b$; $\gamma = \varepsilon$. Докажем, что наша грамматика - LL(2) грамматика по теореме из Серебрякова. Для правил из нетерминала S выполняется, что $\forall \alpha \ FIRST_2(aAaa\alpha) \cap FIRST_2(bAba\alpha) \equiv \emptyset$. Теперь рассмотрим нетерминал A:

если $\alpha = aa; \ FIRST_2(baa) = ba \neq FIRST_2(aa) = aa;$ если $\alpha = ba; \ FIRST_2(bba) = bb \neq FIRST_2(ba) = ba;$ - т.к. это единственные условия, которые могли не подходить под теорему (но мы их проверили и они подошли), грамматика является LL(2) грамматикой

Написать эквивалентную LL(1) граммати-5 ку, построить анализатор + демонстрация

Дана грамматика: $S \to baaA|babA$ $A \to \varepsilon|Aa|Ab$. Построить LL(1) анализатор и продемонстрировать работу на baab. Для начала уберем левую рекурсию: S остается, $A \to \varepsilon |aA|bA$

Факторизация: $S \to baB; \ B \to aA|bA; \ A \to aA|bA|\varepsilon.$

Теперь заполним таблицы FIRST и FOLLOW:

$FIRST_1$	F(S)	F(A)	F(B)	$FOLLOW_1$	F(S)	F(A)	F(B)
0	Ø	ε	Ø	0	\$	Ø	Ø
1	b	ε, a, b	a,b	1	\$	\$	\$
2	b	ε, a, b	a,b	2	\$	\$	\$

Общая табличка переходов:

	S	Α	В
\$	err	ε	err
a	err	aA	aA
b	baB	bA	bA

Протокол работы анализатора:

baab\$	S	(b,S) = baB
baab\$	baB	сократим b
aab\$	aB	сократим а
ab\$	В	(a,B) = aA
ab\$	aA	сократим а
b\$	A	(b,A)=bA
b\$	bA	сократим b
\$	A	$(\$,A)=\varepsilon$
\$	ε	слово принято