Shenzhen VSEEI Semiconductor Co., Ltd

DESCRIPTION:

The BTB24-600B SCR series with the parallel resistor between Gate and Cathode are especially recommended for use on straight hair, igniter, anion generator, etc.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	25	A
V _{DRM} /V _{RRM}	600/800/1200/1600	V

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}\!\mathbb{C}$
Operating junction temperature range		Tj	-40-125	$^{\circ}\!\mathbb{C}$
Repetitive peak of	Repetitive peak off-state voltage (T _j =25℃)		600/800/1200/1600	V
Repetitive peak re	verse voltage (Tj=25℃)	VRRM	600/800/1200/1600	V
RMS on-state current	TO-220A(Ins)/ TO-220F(Ins) (Tc=70°C) TO-220C/ TO-220A(Non-Ins) (Tc=85°C) TO-262 (Tc=50°C) TO-3P(Ins) (Tc=95°C)	I _{T(RMS)}	25	Α
Non repetitive surge peak on-state current (full cycle, F=50Hz)		Ітѕм	250	А
I ² t value for fusing (tp=10ms)		l ² t	340	A ² s

Shenzhen VSEEI Semiconductor Co., Ltd

Critical rate of rise of on-state current $(I_G = 2 \times I_{GT})$	dl/dt	50	A/µs
Peak gate current	I _{GM}	4	Α
Average gate power dissipation	P _{G(AV)}	1	W
Peak gate power	P _{GM}	10	W

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

V_{DRM} /V_{RRM}: 600/800V

Symbol	Test Condition	Quadrant		JST24-600/800V		Unit
				BW	CW	Oill
lgт	V _D =12V R _L =33Ω	I - II -III	MAX	50	35	mA
V _G T	VD - 12V KL - 3312	I - II -III	MAX	1	.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ ΚΩ	I - II -III	MIN	0.2		V
IL	I _G =1.2I _{GT}	I -III	MAX	80	70	mA
		II	IVIAA	100	80	IIIA
lн	I _T =100mA		MAX	75	50	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1000	500	V/µs

V_{DRM} /V_{RRM}: 1200/1600V

Symbol	Test Condition Qu	Quadrant	JST24-1200V/1600V		Unit	
				BW	CW	Oilit
lgт	V _D =12V R _L =33Ω	I - II -III	MAX	50	35	mA
V _G T	VD = 12V KL=3312	I - II -III	MAX	1	.5	V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ ΚΩ	I - II -III	MIN	0.2		V
I.	I _G =1.2I _{GT}	I -III	MAX	90	70	mA
l _L		II	IVIAA	100	80	IIIA
Ін	I _T =100mA		MAX	80	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1500	1000	V/µs

V_{DRM} /V_{RRM}: 600/800V

Symbol	Test Condition	Quadrant		JST24-600/800V		Unit
				В	С	Unit
l	V _D =12V R _L =33Ω	I - II -III	B 4 A 3 /	50	25	m 1
I _{GT}		IV	MAX	70	50	mA
V _{GT}		ALL	MAX	1	.3	V
V _{GD}	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3 K\Omega$	ALL	MIN	0.2		V
I.	I _G =1.2I _{GT}	I -III-IV	MAX	80	70	m 1
l L		II	IVIAA	100	90	mA
I _H	I _T =100mA		MAX	75	60	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	500	200	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{TM} =35A tp=380μs	T _j =25℃	1.5	V
IDRM	\\ _\\ _\\ _\\	T _j =25℃	5	μA
IRRM	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =125℃	3	mA

THERMAL RESISTANCES

Symbol	Parame	Value	Unit	
		TO-220A(Ins)	1.5	
	junction to case(AC)	TO-220C/ TO-220A(Non-Ins)	1.1	
R _{th(j-c)}		TO-220F(Ins)	1.7	°C/W
		TO-262	2.1	
		TO-3P(Ins)	0.67	

FIG.1: Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of l^2t (dl/dt < 50A/ μ s)

FIG.2: RMS on-state current versus case temperature

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

