		SUMM	ARY OF THE FORWARD SNOWBALLING PRO	CES	S.												
			Analysis of studies per criterion.														
#	Criterion	Year	Title	R1	R2	R3	R4	R5	R7	R8	R9	R10	R11	R12	R13	R14	R6
1	EC1	2011	Bug signature minimization and fusion	Х													
2	EC1		Practical isolation of failure-inducing changes for debugging regression faults	Х													
3	EC1		Automatic recovery of root causes from bug-fixing changes	Х													
4	EC1	2013	Will fault localization work for these failures? an automated approach to predict effectiveness of fault localization tools	Х													
5	EC1	2014	Ask the mutants: Mutating faulty programs for fault localization		Х												
6	EC1	2014	Fault-localization techniques for software systems: A literature review		Х												
7	EC1	2014	Fusion fault localizers		Х												
8	EC1	2014	Identifying recurring faulty functions in field traces of a large industrial software system	Х													
9	EC1		Learning to combine multiple ranking metrics for fault localization	Χ	Х												
10	EC1		Toolset and program repository for code coverage-based test suite analysis and manipulation		X												
11	EC1		A revisit of a theoretical analysis on spectrum-based fault localization		Х												
12	EC1	2015	Information retrieval and spectrum based bug localization: better together		Х												
13	EC1	2015	Should I follow this fault localization tool's output?	Х													
14	EC1	2016	Real Bugs from Large Systems	X													
15	EC1	2016	A learning-to-rank based fault localization approach using likely invariants		Х												
16	EC1	2016	A survey on software fault localization	Х													
17	EC1	2016	DFL: Dual-service fault localization	Х													
18	EC1	2016	Enhanced fault localization by weighting test cases with multiple faults		Х												
19	EC1		Probabilistic fault localisation		Х												
20	EC1	2016	Towards more accurate fault localization: An approach based on feature selection using branching execution probability		Х												
21	EC1		Accuracy graphs of spectrum-based fault localization formulas	Х													
22	EC1	2017	An In-Depth Study of the Efficiency of Risk Evaluation Formulas for Multi-Fault Localization		Х												
23	EC1	2017	Boosting spectrum-based fault localization using PageRank		Х												
24	EC1	2017	Fault Localization Using a Failed Execution Slice		Х												

		SUMM	ARY OF THE FORWARD SNOWBALLING PRO	CES	S.												
			Analysis of studies per criterion.														
#	Criterion	Year	Title	R1	R2	R3	R4	R5	R7	R8	R9	R10	R11	R12	R13	R14	R6
25	EC1	2017	How does execution information help with information-retrieval based bug localization?		Х												
26	EC1		Improving spectral-based fault localization using static analysis			Х											
27	EC1	2017	Will this localization tool be effective for this bug? Mitigating the impact of unreliability of information retrieval based bug localization tools		х												
28	EC1	2018	A combinatorial testing-based approach to fault localization					Х									
29	EC1	2018	A novel variable-centric fault localization technique		Х												
30	EC1	2018	A Theoretical Analysis on the Impacts of Misestimated Test Cases						Х								
31	EC1	2018	Comparing spectrum based fault localisation against test-to-code traceability links		Х			Х									
32	EC1	2018	FTMES: A Failed-Test-Oriented Mutant Execution Strategy for Mutation-Based Fault Localization					Х		Х				Х			
33	EC1	2018	FTScMES: A New Mutation Execution Strategy Based on Failed Tests' Mutation Score for Fault Localization					Х									
34	EC1		Network-clustered multi-modal bug localization		Χ			Х									
35	EC1	2018	On the use of sequence mining within spectrum based fault localisation		Х												
36	EC1	2018	Simultaneous localization of software faults based on complex network theory			Х											
37	EC1	2018	Software fault localisation: a systematic mapping study					X									
38	EC1		Spectrum-Based Fault Localization in Model Transformations		X	Х											
39	EC1		A Community-Based Fault Isolation Approach for Effective Simultaneous Localization of Faults										Х				
40	EC1	2019	A Multiple Fault Localization Approach based on Multicriteria Analytical Hierarchy Process		Х												
41	EC1	2019	A New Interactive Fault Localization Method with Context Aware User Feedback					Х	X								
42	EC1		ABFL: An Autoencoder Based Practical Approach for Software Fault Localization		Х			Х									
43	EC1		An empirical study of fault localization families and their combinations		Х			Х									
44	EC1	2019	An evaluation of pure spectrum-based fault localization techniques for large-scale software systems	Х	Х			Х	Х						Х		
45	EC1	2019	Deep Transfer Bug Localization					Х									
46	EC1		DeepFault: Fault Localization for Deep Neural Networks						Х								
47	EC1	2019	DeepFL: integrating multiple fault diagnosis dimensions for deep fault localization					Х									

		SUMM	ARY OF THE FORWARD SNOWBALLING PRO	CES	S.												
			Analysis of studies per criterion.														
#	Criterion	Year	Title	R1	R2	R3	R4	R5	R7	R8	R9	R10	R11	R12	R13	R14	R6
48	EC1	2019	Effectiveness of Weighted Neural Network on Accuracy of Software Fault Localization						Х								
49	EC1	2019	Exploring and exploiting the correlations between bug-inducing and bug-fixing commits					Х									
50	EC1	2019	Graph-Based Fault Localization					Х									
51	EC1	2019	Inforence: effective fault localization based on information- theoretic analysis and statistical causal inference		Х												
52	EC1	2019	the test logs								Х						
53	EC1		On the analysis of spectrum based fault localization using hitting sets		Х				Х								
54	EC1	2019	Robustness of spectrum-based fault localisation in environments with labelling perturbations						Х						Х		
55	EC1		VFL: Variable-based fault localization		X			Х									
56	EC1	2018	Optimising Spectrum Based Fault Localisation for Single Fault Programs Using Specifications		Х												
57	EC1, EC2	2018	Crashing simulated planes is cheap: Can simulation detect robotics bugs early?		X												
58	EC1, EC2		Compiler bug isolation via effective witness test program generation	Х				Х									
59	EC1, EC8	2016	Test Case Grouping and Filtering for Better Performance of Spectrum-based Fault Localization		X												
60	EC1, EC9	2013	Comparing Ochiai and Relief for Spectrum-based Fault Localization		Х												
61	EC1, EC9	2014	Hybrid-MUSE: mutating faulty programs for precise fault localization		X												
62	EC1, EC9	2014	No pot of gold at the end of program spectrum rainbow: Greatest risk evaluation formula does not exist		Х												
63	EC1, EC9	2014	Ranking-based approaches for localizing faults		Χ												
64	EC1, EC9	2016	Methods and measures for statistical fault localisation		X												
65	EC1, EC9	2016	techniques, advances, and challenges		Х			Х									
66	EC1, EC9	2017	Hybrid based approaches for software fault localization and specification mining		Х												
67	EC1, EC9	2017	Improving automated fault localization using PageRank	Х	X												
68	EC1, EC9	2018	Assessment of spectrum-based fault localization for practical use					Х									
69	EC1, EC9	2018	Doric: Foundations for Statistical Fault Localisation		X												
70	EC1, EC9	2018	How to Evaluate Statistical Fault Localization										X				

		SUMM	ARY OF THE FORWARD SNOWBALLING PRO	CES	S.												
			Analysis of studies per criterion.														
#	Criterion	Year	Title	R1	R2	R3	R4	R5	R7	R8	R9	R10	R11	R12	R13	R14	R6
71	EC1, EC9	2018	Optimising and assessing the effectiveness of spectrum based fault localisation		Х			Х									
72	EC1, EC9	2018	Applications					Х									
73	EC1, EC9	2019	Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference		Х			Х	Х								
74	EC1, EC9	2019	Enhancing Fault Localization with Cost Awareness					X									
75	EC1, EC9	2019	Explaining Deep Neural Networks Using Spectrum-Based Fault Localization					Х			Х						
76	EC1,EC2	2019	Automatically Patching Vulnerabilities of Binary Programs via Code Transfer From Correct Versions					Х									
77	EC1,EC4	2018	Assessing Technical Debt in Automated Tests with CodeScene					X									
78	EC4	2014	Search-based inference of polynomial metamorphic relations	Х													
79	EC5, EC9	2018	DroidBugs: An Android Benchmark for Automatic Program Repair					Х									
80	EC5. EC9		Advanced techniques for search-based program repair		X												
81	EC6,EC4	2013	Predicting regression test failures using genetic algorithm- selected dynamic performance analysis metrics		Х												
82	EC7	2015	Genetic improvement of software for multiple objectives		Х												
83	EC7	2015	Learning diagnosis models using variable-fidelity component model libraries	Х													
84	EC7	2016	Similarity to a single set		X	X											
85	EC7	2017	Embedding genetic improvement into programming languages		Χ												
86	EC7	2017	GPGPGPU: evaluation of parallelisation of genetic programming using GPGPU		X			Х	Х								
87	EC7		A Preliminary Systematic Mapping Study of Human Competitiveness of SBSE		Х												
88	EC7	2018	Aggregating association rules to improve change recommendation	Х													
89	EC7	2018	From start-ups to scale-ups: Opportunities and open problems for static and dynamic program analysis						Х								
90	EC7	2018	Pruning Techniques for Mixed Ensembles of Genetic Programming Models						Х								
91	EC7	2019	Software review: DEAP (Distributed Evolutionary Algorithm in Python) library					Х									
92	EC7, EC9	2013	Large-scale bioinformatics data mining with parallel genetic programming on graphics processing units		Х												
93	EC7, EC9	2015	Genetically improved software		X												

		SUMM	S.														
			Analysis of studies per criterion.														
#	Criterion	Year	Title	R1	R2	R3	R4	R5	R7	R8	R9	R10	R11	R12	R13	R14	R6
94	EC7, EC9	2019	Privacy-Preserved Data Sharing for Evidence-Based Policy Decisions: A Demonstration Project Using Human Services Administrative Records for Evidence-Building Activities									Х					
95	EC9	2013	Theoretical Analysis of GP-Evolved Risk Evaluation Formulas for Spectrum Based Fault Localisation		Х												
96	IC2	2017	Genetic programming-based composition of fault localization heuristics		Х												