Ortocentros

Eric Ransom Treviño

Octubre 2023

1. Configuraciones

Esta lista tiene como propósito documentar algunas de las configuraciones de ortocentros que se hacen más presentes en problemas de olimpiada.

En un triángulo ABC con ortocentro H, D, E y F son pies de altura desde A, B y C, respectivamente. D', E' y F' son las intersecciónes del circuncírculo de ABC con AH, BH y CH, respectivamente.

- El ortocentro existe.
- Los cuadriláteros AEHF, BFHD y CDHE son cíclicos (de diámetro AH, BH y CH, respectivamente).
- Los cuadriláteros BFEC, CDFA y AEDB son cíclicos (de diámetro BC, CA y AB, respectivamente).
- $\angle A = 180 \angle BHC$, $\angle B = 180 \angle CHA$ y $\angle C = 180 \angle AHB$.
- H es el incentro del triángulo órtico (del triángulo DEF).

Eric Ransom 1 Configuraciones

- Se cumple la relación de distancias HD = DD', HE = EE' y HF = FF'.
- El triángulo DEF es semejante al D'E'F' (homotecia desde H).
- H es el incentro del triángulo D'E'F'.
- Se cumple que AE' = AF' = AH, BF' = BD' = BH y CD' = CE' = CH.

En un triángulo ABC con ortocentro H y circuncentro O, M es el punto medio de BC y A' el punto diametralmente opuesto a A en el circuncírculo de ABC. O' es el circuncentro del AHB, A_1 el reflejado de A respecto a BC y A_2 el reflejado de A respecto a M.

- $\angle ABA' = \angle ACA' = 90^{\circ}$ (por diámetro AA').
- IMPORTANTE. AH y AO son rectas isogonales, es decir, $\angle BAO = \angle CAH$ (H y O son conjugados isogonales).
- ullet El cuadrilátero BHCA' es un paralelogramo.
- **IMPORTANTE.** H, M y A' son colineales.
- $2 \cdot OM = AH$ (Hint: teorema de tales).
- El circuncírculo de ABC y HBC tienen mismo radio (Hint: $\angle BAC = 180 \angle BHC$).
- Se cumple la relación de distancias OO' = AH.
- A_1 y A_2 están en el circuncírculo de BHC.

Eric Ransom 1 Configuraciones

• H, O' y A_2 son colineales.

En un triángulo ABC con ortocentro H, los pies de las alturas desde A, B y C son D, E y F, respectivamente, M es el punto medio de BC y A' el punto diametralmente opuesto a A en el circuncírculo de ABC. La intersección del rayo MH con el circuncírculo de ABC es J, la intersección de AJ con BC es X y la perpendicular desde H a AM es Y.

- El ángulo $\angle AJH = 90^{\circ}$.
- \blacksquare A, F, Y, H, E y J son concíclicos.
- \blacksquare AJ, EF y BC concurren en X (Hint: ejes radicales).
- \blacksquare H es el ortocentro del triángulo AMX.
- HY también pasa por X.
- ullet El cuadrilátero BYHC es cíclico.
- ullet Y se conoce como el punto de Humpty.
- Se cumple que $MY \cdot MA = MB^2 = MC^2$.
- Los circuncírculos de AYB y AYC son tangentes a BC.
- Se cumple que $MH \cdot MJ = MB^2 = MC^2$.
- ullet Los circuncírculos de JHB y JHC son tangentes a BC.

Eric Ransom 2 Problemas

En un triángulo ABC con ortocentro H y circuncentro O, se le llama G a su gravicentro, D, E y F son pies de altura desde A, B y C, respectivamente, M_A, M_B y M_C son puntos medios de BC, CA y AB, respectivamente, y N_A, N_B y N_C son puntos medios de AH, BH y CH, respectivamente, y O' el circuncentro del triángulo DEF.

- $D, E, F, M_A, M_B, M_C, N_A, N_B$ y N_C están en un solo círculo y se conoce como la circunferencia de Feuerbach o la circunferencia de los nueve puntos (Hint: homotecia desde H).
- H, O', G y O son colineales y a esa recta se le conoce como la recta de Euler.
- Se cumple la relación de distancias $2 \cdot O'H = OH$.
- Se cumple la relación de distancias $2 \cdot O'G = OG$.
- H y G son los centros de homotecia de la circunferencia de los nueve puntos y la del triángulo ABC.
- El circunradio de ABC es el doble que el circunradio de la circunferencia de los nueve puntos.
- MUY DIFÍCIL. La circunferencia de los nueve puntos es tangente al incírculo y a los tres excírculos.

2. Problemas

2.1. Nivel I

Problema 2.1 (OMM 2015 P1). Sea ABC un triángulo y sea H su ortocentro. Sea PQ un segmento que pasa por H con P en AB, Q en AC y tal que $\angle PHB = \angle CHQ$. Finalmente en el circuncírculo del triángulo ABC, considera M el punto medio del arco BC que no contiene a A. Muestra que MP = MQ.

Eric Ransom 2 Problemas

Problema 2.2 (OMM 2009 P1). Sea ABC un triángulo y AD la altura sobre el lado BC. Tomando a D como centro y a AD como radio, se traza una circunferencia que corta a la recta AB en P, y corta a la recta AC en Q. Muestra que el triángulo AQP es semejante al triángulo ABC.

Problema 2.3 (OMM 2010 P5). Sea ABC un triángulo acutángulo con $AB \neq AC$, M el punto medio de BC y H el ortocentro de ABC. La circunferencia que pasa por B, H y C corta a la mediana AM en N. Muestra que $\angle ANH = 90^{\circ}$.

Problema 2.4 (OMM 2021 P4). Sea ABC un triángulo escaleno acutángulo con $\angle BAC = 60^{\circ}$ y ortocentro H. Sea ω_b la circunferencia que pasa por H y es tangente a AB en B, y sea ω_c la circunferencia que pasa por H y es tangente a AC en C.

- a) Demuestra que ω_b y ω_c solo tienen H como punto en común.
- b) Demuestra que la recta que pasa por H y el circuncentro O del triángulo ABC es la tangente en común de ω_b y ω_c .

2.2. Nivel II

Problema 2.5 (OMM 2011 P2). Sea ABC un triángulo acutángulo con vértices sobre una circunferencia Γ . Sea ℓ la recta tangente a Γ en A. Sean D y E los puntos de intersección de la recta ℓ y del segmento AC con la circunferencia de centro B y radio BA, respectivamente. Muestra que DE pasa por el ortocentro del triángulo ABC.

Problema 2.6 (OMM 2018 P1). Sean A y B dos puntos en una línea ℓ , M el punto medio de AB, y X un punto en el segmento AB distinto de M. Sea Ω un semicirculo de diamétro AB. Consideremos P en Ω y Γ el círculo que pasa por P y X y es tangente a AB. Sea Q la segunda intersección de Ω y Γ . La bisectriz interna de $\angle PXQ$ interseca a Γ en un punto R. Sea Y un punto en ℓ tal que RY es perpendicular a ℓ . Demuestra que MX > XY.

Problema 2.7 (OMM 2019 P2). Sea H el ortocentro del triángulo acutángulo ABC y M el punto medio de AH. La linea BH corta a AC en D. Sea E tal que BC es la mediatriz de DE. Los segmentos CM y AE se intersecan en F. Demuestra que BF es perpendicular a CM.

Problema 2.8 (OMM 2021 P2). Sea ABC un triángulo tal que $\angle ACB > 90^{\circ}$, y sea D un punto en BC tal que AD es perpendicular a BC. Sea Γ la circunferencia con diámetro BC. Una línea ℓ pasa por D y es tangente a Γ en P, corta a AC en M (tal que M está entre A y C), y corta al lado AB en N. Demuestra que M es el punto medio de DP si y sólo si N es punto medio de AB

2.3. Nivel III

Problema 2.9 (OMM 2012 P6). Considera un triángulo acutángulo ABC con circuncírculo C. Sean H el ortocentro del triángulo ABC y M el punto medio de BC. Las rectas AH, BH y CH cortan por segunda vez a C en D.E y F, respectivamente; y la recta MH corta a C en J de manera que H queda entre M y J. Sean K y L los incentros de los triángulos DEJ y DFJ, respectivamente. Muestra que KL es paralela a BC.

Eric Ransom 3 Bibliografía

Problema 2.10 (OMM 2017 P3). Sea ABC un triángulo acutángulo cuyo ortocentro es el punto H. La circunferencia que pasa por los puntos B, H y C vuelve a intersectar a las rectas AB y AC en los puntos D y E, respectivamente. Sean P y Q los puntos de intersección de HB y HC con el segmento DE, respectivamente. Se consideran los puntos X e Y (distintos de A) que están sobre las recta AP y AQ, respectivamente, de manera que los puntos X, A, H y B están sobre un círculo y los puntos Y, A, H y C están sobre un círculo. Muestra que las rectas XY y BC son paralelas.

Problema 2.11 (IGO 2020 INT P3). En el triángulo acutángulo ABC (AC > AB), H es el ortocentro y M es el punto medio del segmento BC. La mediana AM interseca al circuncírculo del triángulo ABC en X. La recta CH interseca a la mediatriz de BC en E y al circuncírculo del triángulo ABC de nuevo en F. El punto J está en la circunferencia ω , que pasa por X, E y F, de tal manera que BCHJ es un trapecio ($CB \parallel HJ$). Muestre que JB y EM se cortan en ω .

Problema 2.12 (IGO 2020 INT P4). El triángulo ABC está dado. Una circunferencia arbitraria con centro J, que pasa por B y C, interseca a los lados AC y AB en E y F, respectivamente. Sea X un punto tal que el triángulo FXB es semejante al triángulo EJC (en el mismo orden) y los puntos X y C están del mismo lado respecto a la recta AB. Análogamente, sea Y un punto tal que el triángulo EYC es semejante al triángulo FJB (en el mismo orden) y los puntos Y y B están del mismo lado respecto a la recta AC. Demuestre que la recta XY pasa por el ortocentro del triángulo ABC.

2.4. Para los valientes

Problema 2.13. Sea ABCD un cuadrilátero convexo, sea E la intersección de los lados opuestos AB y CD, y F la intersección de AD y BC. Demuestra que los ortocentros de los triángulos EBC, EAD, FAB y FCD son colineales.

3. Bibliografía

I) No hay, le metí coco.