A. Memory and Crow

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

There are n integers $b_1, b_2, ..., b_n$ written in a row. For all i from 1 to n, values a_i are defined by the crows performing the following procedure:

- The crow sets a_i initially 0.
- The crow then adds b_i to a_i , subtracts b_{i+1} , adds the b_{i+2} number, and so on until the n'th number. Thus, $a_i = b_i$ $b_{i+1} + b_{i+2}$ b_{i+3}

Memory gives you the values $a_1, a_2, ..., a_n$, and he now wants you to find the initial numbers $b_1, b_2, ..., b_n$ written in the row? Can you do it?

Input

The first line of the input contains a single integer n ($2 \le n \le 100\ 000$) — the number of integers written in the row.

The next line contains n, the ith of which is a_i (- $10^9 \le a_i \le 10^9$) — the value of the ith number.

Output

Print n integers corresponding to the sequence $b_1, b_2, ..., b_n$. It's guaranteed that the answer is unique and fits in 32-bit integer type.

Examples

```
input
5
6 -4 8 -2 3

output
2 4 6 1 3
```

```
input
5
3 -2 -1 5 6

output
1 -3 4 11 6
```

Note

In the first sample test, the crows report the numbers 6, -4, 8, -2, and 3 when he starts at indices 1, 2, 3, 4 and 5 respectively. It is easy to check that the sequence $2\ 4\ 6\ 1\ 3$ satisfies the reports. For example, $6=2\ -4\ +6\ -1\ +3$, and $-4=4\ -6\ +1\ -3$.

In the second sample test, the sequence 1, -3, 4, 11, 6 satisfies the reports. For example, 5 = 11 - 6 and 6 = 6.