CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN: GREEDY TECHNIQUE

Spanning Trees vs. Steiner Trees

STEINER TREES

- Recall: Given a computer network modeled as an graph:
 - Shortest paths minimize the cost of communication per source-destination pair.
 - Spanning trees form the (optimal) broadcast path
- Multicast Communication:
 - Within a network a subset of nodes are destinations.
 - How do you minimize the cumulative weight of the multicast path?
 - Observation: The subset may not form a connected component.

STEINER TREES

- Given G=(V,E,w), w: E --> Z⁺ and a subset S of V, a minimal Steiner tree T is the tree of minimum total weight that connects all vertices in S.
 - Special cases:

- When 2 < |S| < |V|
 - A spanning tree including only nodes of S may not exist
 - o Even if a spanning tree exists for S, the MST for S may not be a minimal Steiner tree.
 - oWhy?

STEINER TREES

- Vertices in V \ S that are used in constructing a Steiner tree for S are referred to as Steiner vertices.
- No known polynomial time algorithm exists for solving the Minimal Steiner Tree problem:
 - Special case: a constant number of Steiner vertices are given.
 - i.e. Given G= (V,E,w), a subset S of V, a subset T of V-S, such that |T|=k, k is a constant,
 - find a tree of minimum total weight that connects all nodes in S but may include any vertex in S U T.

MINIMUM STEINER TREES

• Exercise:

- Provide an intuitive explanation of why the
 - o <u>Minimum Steiner Tree</u> problem is harder to solve than the <u>Minimum Spanning Tree</u> problem.
- Write an algorithm for the special case in the previous slide.
 - Analyze the algorithm for time complexity.