L7: Tree Models

Shan Wang

Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last lecture

Linear SVM

• Model:
$$y = f_{\theta}(x) = \begin{cases} +1, & \text{if } \theta'x + \theta_0 \ge 0 \\ -1, & \text{if } \theta'x + \theta_0 < 0 \end{cases}$$

- Strategy: maximize margin
- Algorithm: SMO algorithm
- Regularization
 - Soft margin
- Kernels:
 - Mapping feature vectors to a different space
- Application: diabetes care revisit

The nature of logistic regression and SVM

- A linear decision boundary in the (mapped) feature space
 - Generally not interpretable
 - Do not give a simple explanation of how decision is made

Example: Predict Black or Blue?

Logistic regression or SVM

Another thought

Course outline

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

This lecture

- Decision Tree Model
- Strategy & Algorithm
 - ID.3
 - C4.5
 - CART
- Regularization
- Random forest
- Application: Supreme Court Decisions

Reference: CS420, Weinan Zhang (SJTU), OPIM 326 Daniel Zheng (SMU)

Decision tree

 Build a tree by splitting on independent variables

 To predict the outcome for an observation, follow the splits and

at the end...

Decision tree

- Tree components
 - Intermediate node (a feature) for splitting data
 - Leaf node (a class) for label prediction

- Key questions for decision trees
 - How to select node splitting conditions?
 - How to make prediction?
 - How to decide the tree structure?

Model

Model

- Problem setting
 - Instance feature space X
 - Instance label space Y
 - Unknown underlying function (target): $f: X \to Y$
 - Set of function hypothesis $H = \{h | h: X \to Y\}$
 - Here each hypothesis h is a decision tree
- Input: training data generated from the unknown
 - $\{(x_i, y_i)\} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- Output: a hypothesis $h \in H$ that best approximates

Strategy and algorithm

ID.3

Node splitting

Which node splitting condition to choose?

- Choose the features with higher classification capacity
 - Quantitatively, with higher information gain ???

Entropy

- Entropy
 - A measure of the uncertainty
 - Suppose random variable Y has k^{th} possible value with probability p_k
 - Entropy: $H(Y) = -\sum_{k=1}^{K} p_k \log p_k$
- Lager entropy has higher uncertainty
 - What is the entropy of a group in which all examples belong to the same class?
 - $H(Y) = -1 \log 1 = 0$
 - Deterministic
 - What is the entropy of a group with same probability in each class?
 - $H(Y) = \log K$
 - Uniform

Minimum uncertainty

Maximum uncertainty

Conditional Entropy

- Given random variable X, Y, suppose random variable Y has i^{th} possible value with probability p_i , and random variable X has j^{th} possible value with probability p_j , and the joint probability is p_{ij}
 - Denote $H(Y|X=x_j) = -\sum_{i=1}^{I} \frac{p_{ij}}{p_j} \log \frac{p_{ij}}{p_j}$ as the entropy of Y when X takes value x_j
- Conditional entropy

$$H(Y|X) = \sum_{j=1}^{J} p_j H(Y|X = x_j)$$

 Representing the uncertainty of Y under the condition X

Example

Before

 $H(Y) = \log 2$

Which one bring more information? X_1 or X_2 ?

With condition X_1

 $H(Y|X_1) = \log 2$

With condition X_2

 $H(Y|X_2) = 0$

Information gain

 Information gain represents, with the feature information X, how much the uncertainty of label Y decreases

$$G(Y,X) = H(Y) - H(Y|X)$$

 The larger information gain, the stronger classification capability of the feature

- The idea of ID.3
 - Every time, choose the feature with largest information gain as the node splitting condition

Example

 Given a dataset of 8 students about whether they like the famous movie *Gladiator*, calculate the entropy in this dataset

•
$$H(Like) = -\frac{4}{8}\log\frac{4}{8} - \frac{4}{8}\log\frac{4}{8} = \log 2 = 1$$

Like
Υ
N
Υ
N
N
Υ
N
Υ

- Suppose we now also know the gender of these 8 students, what is the conditional entropy on gender?
- The labels are divided into two small dataset based on the gender

Like-M
Υ
Υ
Υ
N

Like-F
N
N
N
Υ

$$P(Yes|Male) = 0.75$$
 $P(Yes|Female) = 0.25$

Gender	Like
M	Υ
F	N
M	Υ
F	N
F	N
M	Υ
M	N
F	Υ

- Suppose we now also know the gender of these 8 students, what is the conditional entropy on gender?
- P(Yes|Male) = 0.75; P(Yes|Female) = 0.25
- $H(Like|Male) = -0.25\log(0.25) 0.75\log(0.75) = 0.81$
- H(Like|Female) = 0.81
- $H(Like|Gender) = Pr(Male) \times H(Like|Male) + Pr(Female) \times H(Like|Female) = 0.81$
- G(Like, Gender)= H(Like) - H(Like|Gender)= 1 - 0.81 = 0.19

Gender	Like
M	Υ
F	N
M	Υ
F	N
F	N
M	Υ
M	N
F	Υ

- Suppose we now also know the major of these 8 students, what is the conditional entropy on gender?
- The labels are divided into two small dataset based on the gender

Like-M	Like-H
Υ	N
N	N
N	
Υ	

Like-C	
Υ	
Υ	

$$P(Yes|Math) = 0.5$$
 $P(Yes|Econ) = 0$ $P(Yes|CS) = 1$

$$P(Yes|CS) = 1$$

Major	Like
Math	Υ
Econ	N
CS	Υ
Math	N
Math	N
CS	Υ
Econ	N
Math	Υ

- Suppose we now also know the major of these 8 students, what is the conditional entropy on gender?
- P(Yes|Math) = 0.5, P(Yes|Econ) = 0, P(Yes|CS) = 1
- $H(Like|Math) = -0.5\log(0.5) 0.5\log(0.5) = 1$
- H(Like|Econ) = 0
- H(Like|CS) = 0
- $H(Like|Major) = Pr(Math) \times H(Like|Math) + Pr(Econ) \times H(Like|Econ) + Pr(CS) \times H(Like|CS) = 0.5 \times 1 = 0.5$
- G(Like, Major)= H(Like) - H(Like|Major)= 1 - 0.5 = 0.5

Major	Like
Math	Υ
Econ	N
CS	Υ
Math	N
Math	N
CS	Υ
Econ	N
Math	Υ

- Compare Major and Gender
- G(Like, Gender)= H(Like) - H(Like|Gender)= 1 - 0.81 = 0.19
- G(Like, Major)= H(Like) - H(Like|Major)= 1 - 0.5 = 0.5
- Major is the better feature to predict the label "like"

Gender	Major	Like
M	Math	Υ
F	Econ	N
M	CS	Υ
F	Math	N
F	Math	N
M	CS	Υ
M	Econ	N
F	Math	Υ

 Major is used as the decision condition and it splits the dataset into three small one based on the

- In the stage of testing, suppose there come a female students from the CS department, how can we predict whether she like the movie Gladiator?
 - Based on the major of CS, we will directly predict she like the movie.

 What about a male student and a female student from math department?

ID.3 algorithm

- Algorithm framework
 - Start from the root node with all data
 - For each node, calculate the information gain of all possible features
 - Choose the feature with the highest information gain
 - Split the data of the node according to the feature
 - Do the above recursively for each leaf node, until
 - There is no (enough) information gain for the leaf node
 - Or there is no feature to select

Testing

 Pass the example through the tree to the leaf node for a label

Strategy and algorithm

C4.5

C4.5 algorithm

- The algorithm framework of C4.5 is similar to ID.3
 - The only difference is the criteria of C4.5 is information gain ratio
- In ID.3, we use information gain as the feature selection criteria
 - The feature which takes more possible values has advantages
- Information gain ratio will correct this problem
 - G(Y,X) = H(Y) H(Y|X)
 - $G_R(Y,X) = \frac{G(Y,X)}{H(X)}$

Strategy and algorithm

CART

CART

- Classification and Regression Trees (CART)
 - Binary Tree
 - Each node represents whether a feature satisfies some condition, the left branch is "yes", and the right branch is "no"
 - Can repeatedly use the same feature (with different splitting)
 - It can handle both of discrete label and continuous label
 - Classification tree
 - Regression tree

CART: Classification tree

- The generation of a classification tree is similar to ID.3
 - At each node, for all possible values of all features, select the one with smallest Gini Index
- Gini index
 - In a data set D, there are K classes, and D_k is the subset

of data belonging to
$$k^{th}$$
 class. The Gini index of D
$$Gini(D) = 1 - \sum_{k=1}^{K} (\frac{|D_k|}{|D|})^2$$

- The smaller Gini index, the smaller uncertainty of the data set
 - Deterministic: Gini(D) = 0
 - Uniform (2-class): $Gini(D) = \frac{1}{2}$

CART: Classification tree (cont.)

- Gini index of data set D under condition X = x
 - Let D_1 denote the set of data which satisfy the condition
 - Let D_2 denote the set of remaining data
- The Gini index under condition X = x is

•
$$Gini(D, X = x) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2)$$

- At each node, select the feature condition with smallest Gini index
- The condition
 - Discrete feature: X = x
 - Continuous feature: X < x

Example

•
$$Gini(D, Gender = M) = \frac{4}{8} \left(1 - \left(\frac{3}{4} \right)^2 - \left(\frac{1}{4} \right)^2 \right) + \frac{4}{8} \left(1 - \left(\frac{3}{4} \right)^2 - \left(\frac{1}{4} \right)^2 \right) = 0.375$$

•
$$Gini(D, Major = Math) = \frac{4}{8} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) + \frac{4}{8} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) = 0.5$$

•
$$Gini(D, Major = Econ) = \frac{2}{8} \left(1 - \left(\frac{2}{2}\right)^2\right) + \frac{6}{8} \left(1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2\right) = 0.44$$

•
$$Gini(D, Major = CS) = \frac{2}{8} \left(1 - \left(\frac{2}{2} \right)^2 \right) + \frac{6}{8} \left(1 - \left(\frac{2}{6} \right)^2 - \left(\frac{4}{6} \right)^2 \right) = 0.44$$

• Pick (Gender = M) as the first splitting condition

	Gender	
	=M?	
Yes		No

Major	Like
Math	Υ
CS	Υ
CS	Υ
Econ	N

Major	Like
Econ	N
Math	N
Math	N
Math	Υ

(0)		
Gender	Major	Like
M	Math	Υ
F	Econ	N
M	CS	Υ
F	Math	N
F	Math	N
M	CS	Υ
M	Econ	N
F	Math	Υ

CART: Regression tree

- The output of regression tree is the predicted value
 - The selection criteria of node splitting condition is Squared Error
- Given a condition
 - Discrete feature: X = x
 - Continuous feature: X < x
- The ta set D is divided into two sub sets D_1 and D_2
 - D_1 satieties the condition while D_2 does not
 - $SE(D, X = x) = \sum_{i \in D_1} (y_i \bar{y}_{D_1})^2 + \sum_{i \in D_2} (y_i \bar{y}_{D_2})^2$
 - Where $\bar{y}_{D_1} = \frac{1}{|D_1|} \sum_{i \in D_1} y_i$, $\bar{y}_{D_2} = \frac{1}{|D_2|} \sum_{i \in D_2} y_i$
- At each node, find the condition X = x or X < x, which minimizes SE(D, X = x) or

Regularization

Regularization

Overfitting

- Tree model can approximate any finite data by just growing a leaf node for each instance
 - A very deep tree
- It will result in overfitting, and the generated tree is lack of generalization ability
- How to solve this problem?
 - Pruning, a kind of regularization
 - i.e., control the tree size while ensure the prediction ability

Overfitting (cont.)

How about this tree, yielding perfect partition?

Regularization

Overfitting (cont.)

- How to solve this problem?
 - Pruning, a kind of regularization
 - i.e., control the tree size while ensure the prediction ability
- The cost function to minimize takes two parts into account
 - The prediction error
 - The complexity of the tree

Regularization

$$R_{\lambda}(T) = R(T) + \lambda |T|$$

- T represents the tree model, |T| is the number of left nodes
- R(T) is the empirical error of the tree model T
 - For example, we can use empirical entropy or Gini index
- Empirical entropy
 - $R(T) = \sum_{t=1}^{|T|} |D_t| H(D_t)$
 - D_t is the data set at left node t; $H(D_t)$ is its empirical entropy
- Gini index
 - $R(T) = \sum_{t=1}^{|T|} |D_t| \operatorname{Gini}(D_t)$

Pruning

- Whether to prune the "Wind" node?
 - Calculate the $R_{\lambda}(T)$ difference of the trees with/without "Wind" node

Random Forest

Ensemble learning

Ensemble learning

- multiple models are strategically generated and combined
- converts weak learners to strong learners
- two main methods: boosting and bagging

Boosting

- train weak learners sequentially
- each learner tries to correct its predecessor
- Bagging (Bootstrap aggregating)
 - combining the results of multiple parallel models
 - Bootstrapping the data sets

Bagging v.s. Boosting

Random forest

- Random forest
 - A kind of bagging on decision tree

Random forest (cont.)

- Data set size: N, feature number M
- What data used to train each tree?
 - A bootstrap sample of size N from training data
 - Samples are repeatedly drawn, with replacement
- What features considered in each node splitting
 - Randomly select m < M features
 - Pick the best feature & split-point among the m features
- Output predicted value
 - Regression: average
 - Classification: majority vote

How many trees we need? How many features to select?

Application

Supreme Court Decisions

The American Legal System

- The legal system of the United States operates at the state level and at the federal level
- Federal courts hear cases beyond the scope of state law
- Federal courts are divided into:
 - District Courts
 - Makes initial decision
 - Circuit Courts
 - Hears appeals from the district courts
 - Supreme Court
 - Highest level makes final decision

The Supreme Court of the United States

- Consists of nine justices, appointed by the President
- Decides the most difficult and controversial cases
 - Often involve interpretation of Constitution
 - Significant social, political and economic consequences

Application: Supreme Court Decisions

How a Case Gets to the US Supreme Court

Notable Decisions

- Wickard v. Filburn (1942)
 - Congress allowed to intervene in industrial/economic activity
- Roe v. Wade (1973)
 - Legalized abortion
- Bush v. Gore (2000)
 - Decided outcome of presidential election!
- National Federation of Independent Business v. Sebelius (2012)
 - Patient Protection and Affordable Care Act ("ObamaCare") upheld the requirement that individuals must buy health insurance

Predicting Supreme Court Decisions

- Legal academics and political scientists regularly make predictions of Supreme Court decisions from detailed studies of cases and individual justices
- In 2002, Andrew Martin, a professor of political science at Washington University in St. Louis, decided to instead predict decisions using a statistical model built from data
- Together with his colleagues, he decided to test this model against a panel of experts

Application: Supreme Court Decisions

Data

- Cases from 1994 through 2001
- In this period, same nine justices presided
 - Breyer, Ginsburg, Kennedy, O'Connor, Rehnquist (Chief Justice), Scalia, Souter, Stevens, Thomas
 - Rare data set—longest period of time with the same set of justices in over 180 years
- We will focus on predicting Justice Stevens' decisions
 - Started out moderate, but became more liberal
 - Self-proclaimed conservative

Variables

- Dependent Variable
 - Did Justice Stevens vote to reverse the lower court decision?
 - 1 = reverse, 0 = affirm
- Independent Variables: Properties of the case
 - Circuit court of origin (1st-11th, DC, FED)
 - Issue area of case (e.g., civil rights, federal taxation)
 - Type of petitioner, type of respondent (e.g., US, an employer)
 - Ideological direction of lower court decision (conservative or liberal)
 - Whether petitioner argued that a law/practice was unconstitutional

Let's get our hands dirty!

Data Analysis

Let's do some basic data analysis using our WHO data.

History

MHO\$Under15

- [1] 47.42 21.33 27.42 15.20 47.58 25.96 24.42 20.34 18.95 14.51 27.25 21.62 20.16 10.57 18.99 15.10 16.88 34.4 0 42.95 28.53
- [21] 35.21 16.35 33.75 24.56 25.75 13.53 45.66 44.20 31.23 43.08 16.37 30.17 40.07 48.52 23.38 17.95 28.03 42.1 7 42.37 30.61
- [41] 23.94 41.48 14.98 16.58 17.16 14.56 21.98 45.11 17.66 33.72 25.96 38.53 38.29 31.25 38.62 38.95 43.18 15.6 9 43.29 28.88
- [61] 16.42 18.26 38.49 45.98 17.62 13.17 38.59 14.68 26.96 48.88 42.46 41.55 36.77 35.35 35.72 14.62 28.71 29.4 3 28.27 23.68 (181) 48.51 21.54 27.53 14.84 27.78 13.12 34.13 25.46 42.37 38.18 24.98 38.21 35.61 14.57 21.64 36.75 43.86 39.4
- 5 15.13 17.46 [181] 42.72 45.44 26.65 29.83 47.14 14.98 38.18 48.22 28.17 29.82 35.81 18.26 27.85 19.81 27.85 45.38 25.28 36.5
- 9 30.10 35.58 [121] 17.21 20.26 33.37 49.99 44.23 30.61 18.64 24.19 34.31 30.10 28.65 38.37 32.78 29.18 34.53 14.91 14.92 13.2
- 8 15.25 16.52 [141] 15.85 15.45 43.56 25.96 24.31 25.70 37.88 14.04 41.60 29.69 43.54 16.45 21.95 41.74 16.48 15.00 14.16 40.3 7 47.35 29.53
- [161] 43.28 15.20 25.15 41.48 27.83 38.05 16.71 14.79 35.35 35.75 18.47 16.89 46.33 41.89 37.33 20.73 23.22 26.0 28.65 30.61
- [181] 48.54 14.18 14.41 17.54 44.85 19.63 22.05 28.90 37.37 28.84 22.87 40.72 46.73 40.24

WHO\$Country(which.min(WHO\$Under15))

- [1] Japan
- 194 Levels: Afghanistan Albania Algeria Andorra Angola Antigua and Barbuda Argentina Armenia Australia Austria
- ... Zimbabwe

Lef's create some plots for exploratory data analysis (EDA). First, Lef's create a basic scatterplot of GNI versus FertilityRate

His

plot(WHOSGNI, WHOSFertilityRate)

Final Tree for Justice Stevens

- Self-proclaimed conservative
- Was his claim supported by this tree model?

Application: Supreme Court Decisions

Martin's Model

- Used 628 previous Supreme Court cases that occurred between 1994 and 2001
- Made predictions for 68 cases that would be decided in the October 2002 term, before it started
- Two stage approach based on CART:
 - First stage: one tree to predict a unanimous liberal decision, other tree to predict unanimous conservative decision
 - Around 50% of cases resulted in a unanimous decision
 - If conflicting predictions or predict no, move to next stage
 - Second stage consists of predicting decision of each individual justice, and using majority decision as prediction

Tree for Justice Souter

"Make a liberal decision"

"Make a conservative decision"

Application: Supreme Court Decisions

The Experts

- Martin and his colleagues recruited 83 legal experts
 - 71 academics and 12 attorneys
 - 38 previously clerked for a Supreme Court justice, 33 were chaired professors and 5 were current or former law school deans
- Experts only asked to predict within their area of expertise; more than one expert to each case
- Allowed to consider any source of information, but not allowed to communicate with each other regarding predictions

The Results

- For the 68 cases in October 2002
- Overall case predictions
 - Model accuracy: 75%
 - Experts accuracy: 59%
- Individual justice predictions
 - Model accuracy: 67%
 - Experts accuracy: 68%

TheIndividual Justice Predictions Results

Application: Supreme Court Decisions

Expert vs. Analytics

- Predicting Supreme Court decisions is very valuable to firms, politicians and non-governmental organizations
- A model that predicts these decisions is both more accurate and faster than experts
 - CART model based on very high-level details of case beats experts who can process much more detailed and complex information

Lecture 7 wrap-up

- ✓ Decision Tree Model
- √ Strategy & Algorithm
 - **✓**ID.3
 - √C4.5
 - **✓** CART
- ✓ Regularization
- ✓ Random forest
- ✓ Application: Supreme Court Decisions

Next lecture

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/