

STIC Search Report Biotech-Chem Library

STIC Database Tracking Number: 134468

TO: Sharmila Gollamudi Location: REM/4B11/4C70

Art Unit: 1616 October 6, 2004

Case Serial Number: 09/733640

From: P. Sheppard

Location: Remsen Building

Phone: (571) 272-2529

sheppard@uspto.gov

Search Notes

WD 98/44021

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 09:05:18 ON 06 OCT 2004 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 6 Oct 2004 VOL 141 ISS 15 FILE LAST UPDATED: 4 Oct 2004 (20041004/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d stat que
L1 STR

11 CH2 CH2 O H3C
CC O CH2G1 @14 15 16
A 9 10

1 C C 3
C C C C CH2 O T7 @18 19 20

1 C C C C C CH2 O T7 @18 19 20

1 C C T C C C C CH2 O T7 @18 19 20

VAR G1=14/18 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 21

STEREO ATTRIBUTES: NONE

L3 101 SEA FILE=REGISTRY SSS FUL L1

1440 SEA FILE=HCAPLUS ABB=ON PLU=ON L3

L5 522 SEA FILE=HCAPLUS ABB=ON PLU=ON L4 AND PD=<DECEMBER 8, 2000

L6 STR

L4

```
11
0
7
C-> O-> CH2>>> CH2- CH2- CH2- O
8 9 15 16

1 C C 3
6 C 5 C 4
C C
2
C O
12 13
```

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L7 63 SEA FILE=REGISTRY SUB=L3 SSS FUL L6

L8 38 SEA FILE=REGISTRY ABB=ON PLU=ON L3 NOT L7

L9 1336 SEA FILE=HCAPLUS ABB=ON PLU=ON L7
L10 114 SEA FILE=HCAPLUS ABB=ON PLU=ON L8

L11 10 SEA FILE=HCAPLUS ABB=ON PLU=ON L9 AND L10

L12 9 SEA FILE=HCAPLUS ABB=ON PLU=ON L11 AND L5

=>

=> d ibib abs hitstr 112 1-9

L12 ANSWER 1 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:706959 HCAPLUS

DOCUMENT NUMBER:

133:286466

TITLE:

Methods and compositions based on poly(phosphoesters)

for treating solid tumors

INVENTOR (S):

Dang, Wenbin; Garver, Robert I., Jr.

PATENT ASSIGNEE(S):

Guilford Pharmaceuticals, Inc., USA PCT Int. Appl., 93 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

: 1

PATENT INFORMATION:

PATENT NO. KIND	DATE APPLI	CATION NO.	DATE
WO 2000057852 A2 WO 2000057852 A3	20001005 WO 20 20010215	000-US7304	20000320 <
W: AE, AG, AL, AM, AT CU, CZ, DE, DK, DN ID, IL, IN, IS, JE LV, MA, MD, MG, ME SG, SI, SK, SL, TO		GB, GD, GE, GH, KZ, LC, LK, LR, NZ, PL, PT, RO, UA, UG, US, UZ,	GM, HR, HU, LS, LT, LU, RU, SD, SE,

Golliamudi 09_733640

RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG US 6537585 **B**1 20030325 US 1999-276866 19990326 20000320 EP 1185249 A2 20020313 EP 2000-916536 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO 20000320 20020416 BR 2000-9213 BR 2000009213 Α T2 20020422 TR 2001-200102801 20000320 TR 200102801 20000320 JP 2002540137 T2 20021126 JP 2000-607603 20010925 20011120 NO 2001-4662 NO 2001004662 Α 20030203 20031030 US 2003-357292 US 2003203033 A1 A 19990326 US 1999-276866 PRIORITY APPLN. INFO .: WO 2000-US7304 W 20000320

AB A biodegradable polymer composition comprises: (a) a poly(phosphoester) biodegradable polymer and (b) at least one antineoplastic agent in an amount effective to inhibit the growth of a solid tumor, which is suitable for intratumoral administration to treat a mammal having a solid tumor. For example, paclitaxel was blended with copolymers of 1,4-cyclohexane dimethanol and hexyl phosphorodichloridate (poly(CHDM-HOP)) or Et phosphorodichloridate (poly(CHDM-EOP)) at a 10% loading level and 5 mg of each formulation was incubated with 1 mL of a buffer mixture of 80% PBS and 20% PEG 400 at 37° for 26 days. The total paclitaxel recovery was 65% for the poly(CHDM-HOP) formulation and 75% for the poly(CHDM-EOP) formulation.

IT 214397-86-1 214397-87-2 214397-89-4

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(biodegradable poly(phosphoesters) for intratumoral sustained release of antitumor drugs for solid tumors)

214397-86-1 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and ethyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

RN

CN

CRN 24806-01-7 CMF C18 H26 O6

CM 2

CRN 1498-51-7 CMF C2 H5 Cl2 O2 P

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

RN 214397-87-2 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and hexyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

CN

CRN 53121-39-4

CMF C6 H13 Cl2 O2 P

$$Cl-P-O-(CH_2)_5-Me$$

CM 2

CRN 24806-01-7 CMF C18 H26 O6

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

214397-89-4 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxypropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and ethyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

RN

CN

CRN 3644-98-2 CMF C14 H18 O6

CM 2

CRN 1498-51-7 CMF C2 H5 Cl2 O2 P

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

L12 ANSWER 2 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:417355 HCAPLUS

DOCUMENT NUMBER:

CORPORATE SOURCE:

133:164405

 ${ t TITLE}:$

Synthesis of Cyclic Oligoesters and Their Rapid

Polymerization to High Molecular Weight

AUTHOR(S):

Burch, Robert R.; Lustig, Steven R.; Spinu, Maria Central Research and Development Experimental Station,

E.I. du Pont de Nemours and Co. Inc., Wilmington, DE,

19880, USA

SOURCE:

Macromolecules (2000), 33(14), 5053-5064

CODEN: MAMOBX; ISSN: 0024-9297

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB We report advances for both synthesizing cyclic oligoesters and tailoring their phys. properties to make ring-opening polymerization more practical for polyester manufacturing Solution and suspension methods provide cyclic oligoesters rapidly with high yield and purity. Both methods can be adapted to continuous process operation using simple, inexpensive raw materials. Synthesis methodol. influences the distribution of cyclic ring sizes. Nonequil. cyclic oligomer distributions produce variant crystal morphologies. Some kinetic cyclic oligoester mixts. have m.ps. remarkably reduced from those previously reported for the pure components. New mixed solvent syntheses, cyclic oligomers, and ring-opening copolymns. are demonstrated. The kinetics and efficiencies of cyclic oligoester polymerization to high mol. weight for homopolymer and copolymers are characterized. A new approach for a continuous, melt-phase ring-opening polymerization is demonstrated which avoids the high temps. normally required to melt cyclic oligomers.

IT 26546-03-2P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (synthesis of cyclic oligoesters and their rapid polymerization to high mol. weight)

RN 26546-03-2 HCAPLUS

CN Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) (CA INDEX NAME)

O | C-0- (CH₂)₃-0----

IT 26546-02-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT

(Reactant or reagent)

(synthesis of cyclic oligoesters and their rapid polymerization to high mol. weight)

RN 26546-02-1 HCAPLUS

Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl] (9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 3 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1998:684879 HCAPLUS

DOCUMENT NUMBER:

129:306502

TITLE:

CN

Biodegradable terephthalate polyester-poly(phosphate)

polymers, compositions, articles, and methods for

making and using the same

INVENTOR(S):

Mao, Hai-quan; Leong, Kam W.; Dang, Wenbin; Lo, Hungnan; Zhao, Zhong; Nowotnik, David P.; English,

James P.

PATENT ASSIGNEE(S):

Guilford Pharmaceuticals Inc., USA; Johns Hopkins

ADDITION TO MO

שידיגרו

University School of Medicine

SOURCE:

PCT Int. Appl., 89 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

	ENT I															A.I.E.	
																99804	102 <
	W:	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,
		DK,	EE,	ES,	FΙ,	GB,	GE,	GH,	GM,	GW,	HU,	ID,	ΙL,	IS,	JP,	KE,	KG,
					LC,												
					PT,												TT,
					VN,												
	R₩:				LS,												
					GR,						PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
					ML,												
	9869									AU 1	998-	6945	0		1:	99804	102 <
AU '	7411	45			В2		2001	1122									
EP :																	102 <
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	FI														
	5006							0525				5006				99804	
JP :	2001	5198						1023				5419				99804	
	9809							0102				9064				99804	
	5349							0601				8710				9980	
	9904							1203				4802					001 <
MX	9909	127			Α		2000	0331		MX 1	999-	9127			1:	9991	004 <

PRIORITY APPLN. INFO.:

US 1997-832215

A 19970403

GΙ

IT

CN

WO 1998-US6381

19980402

Biodegradable terephthalate polymers are described comprising the AΒ recurring monomeric units I (wherein R is a divalent organic moiety; R' is an aliphatic, aromatic or heterocyclic residue; x is ≥ 1 ; and n is 0-50000), wherein the biodegradable polymer is biocompatible before and upon biodegrdn. Processes for preparing the polymers, compns. containing the polymers and biol. active substances, articles useful for implantation or injection into the body fabricated from the compns., and methods for controllably releasing biol. active substances using the polymers, are also described. One example polymer was prepared by treating bis(2-hydroxyethyl) terephthalate with Et phosphorodichloridate and further treatment with terephthaloyl chloride. Glass transition temps. and degradation were studied as well as biocompatibility and microcapsule formation.

214397-86-1P 214397-87-2P 214397-88-3P

214397-89-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES

(biodegradable terephthalate polyester-poly(phosphate) polymers for medical use)

214397-86-1 HCAPLUS RN

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and ethyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM1

CRN 24806-01-7 CMF C18 H26 O6

Me O- CH2 Ме Me Me

> CM 2

1498-51-7 CRN CMF C2 H5 Cl2 O2 P

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

RN 214397-87-2 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and hexyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

CRN 53121-39-4 CMF C6 H13 Cl2 O2 P

CM 2

CRN 24806-01-7 CMF C18 H26 O6

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

RN 214397-88-3 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with hexyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

CN

CRN 53121-39-4

CMF C6 H13 Cl2 O2 P

$$\begin{array}{c} \text{O} & | \\ | | \\ \text{Cl-P-O-(CH}_2)_5 - \text{Me} \\ | \\ \text{Cl} \end{array}$$

CM 2

CRN 24806-01-7 CMF C18 H26 O6

RN 214397-89-4 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, bis(3-hydroxypropyl) ester, polymer with 1,4-benzenedicarbonyl dichloride and ethyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

CRN 3644-98-2

CMF C14 H18 O6

$$^{\text{O}}_{\text{C}-\text{O}-\text{(CH}_2)_3-\text{OH}}$$

CM 2

CRN 1498-51-7 CMF C2 H5 Cl2 O2 P

CM 3

CRN 100-20-9 CMF C8 H4 Cl2 O2

RN

CN

IT 24806-01-7P, 1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-

dimethylpropyl) ester 214397-85-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(biodegradable terephthalate polyester-poly(phosphate) polymers for medical use)

24806-01-7 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester (9CI) (CA INDEX NAME)

RN 214397-85-0 HCAPLUS

1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, polymer with ethyl phosphorodichloridate (9CI) (CA INDEX NAME)

CM 1

CN

CRN 24806-01-7 CMF C18 H26 O6

CM 2

CRN 1498-51-7 CMF C2 H5 Cl2 O2 P

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 4 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

3

ACCESSION NUMBER:

1993:672151 HCAPLUS

DOCUMENT NUMBER:

119:272151

TITLE:

Intramolecular excimer formation in polyesters from

terephthalic acid and six 2R,2R'-propanediols

AUTHOR(S):

Mendicuti, Francisco; Mattice, Wayne L.

CORPORATE SOURCE:

Dep. Quim. Fis., Univ. Alcala de Henares, Madrid,

28871, Spain

SOURCE:

Makromolekulare Chemie (1993), 194(10),

2851-60

CODEN: MACEAK; ISSN: 0025-116X

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Fluorescence was measured for 6 polyesters derived from terephthalic acid and 6 2R,2R'-propanediols, represented by HOCH2CRR'CH2OH. The solvent effects on the emission spectra permit separation of the 6 polymers into two groups. One group consists of the 5 polyesters in which R and R' are alkyl groups, and the other group has only one member, that being the polyester with R = R' = H. Modeling suggests that the origin of the difference between the 2 groups lies in the access by the polyester with R = R' = H to a conformation (inaccessible when R and R' are alkyl groups) that forms a very tight complex between 2 successive aromatic rings.

IT 26546-02-1 26546-03-2

RL: PEP (Physical, engineering or chemical process); RCT (Reactant); PROC

Golliamudi 09 733640

(Process); RACT (Reactant or reagent)

(intramol. excimer formation in, structure in relation to)

26546-02-1 HCAPLUS RN

CN

RN

Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl] (9CI) (CA INDEX NAME)

26546-03-2 HCAPLUS

Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) CNINDEX NAME)

L12 ANSWER 5 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1988:439364 HCAPLUS

DOCUMENT NUMBER:

109:39364

TITLE:

Disperse dye composition for use in solvent dyeing

Wilson, Robert B.; Pomeroy, William F. INVENTOR(S):

PATENT ASSIGNEE(S):

Crucible Chemical Co., USA

SOURCE:

U.S., 12 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				 -
US 4708719	Α	19871124	US 1984-669352	19841108 <
PRIORITY APPLN. INFO.:			US 1984-669352	19841108
GT				

$$_{n}$$
-C₆H₁₃ — (CH₂)₇CO₂R $_{CO_{2}R}$

The title dye compns. contain 10-95% dry disperse dye mixed with 90-5% of ≥1 of (A) I [R = C4-20 alkyl, HO(CH2CH2O)nCH2CH2, HO(C3H6O)nC3H6, HO(CH2CH2)p(C3H6O)qC3H6, HO(C3H6O)p(CH2CH2O)qCH2CH2, phosphated polyoxyalkylenes; n = 2-22; such that p + q = n], (B) ArCO2R1O2CAr or ArCO2R2 [R1 = C2-8 alkylene, CrH2r(OCrH2r)s; R2 = (un)substituted C8-30 alkenyl; Ar = (un)substituted C<15 mono- or bicyclic aryl; r = 2, 3; s = 1-15], (C) R3 = CO2R4 or (HO)2POOR4 [R3 = Ar, C8-18 alkyl; R4 = 4-(CaH2a+1) C6H4 O(CH2CH2O)bCH2CH2, Me(CH2)cO(CH2CH2O)dCH2CH2; a = 0-12; b = 124; c = 7-22; d 1-24], providing a com. acceptable disperse dye concentrate of consistent strength and hue. Thus, a dye composition was prepared from mixing 65 parts I (R = 2-ethylhexyl) with 15 parts lauryl benzoate, heating the mixture to 120°, and adding 20 parts C.I. Disperse Violet 27. Base composition resulting from the cool mixture was readily incorporated into high-boiling I solvent bath, which were stable at .apprx.180°.

IT 24854-59-9 114078-82-9

RL: USES (Uses)

(dye auxiliaries, manufacture of disperse dye compns. containing)

RN 24854-59-9 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, 2,2-dimethyl-1,3-propanediyl ester (9CI) (CA INDEX NAME)

RN 114078-82-9 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, 1,3-propanediyl ester (9CI) (CA INDEX NAME)

L12 ANSWER 6 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1983:143934 HCAPLUS

DOCUMENT NUMBER: 98:143934

TITLE: Cyclic oligomers in polyesters from diols and aromatic

dicarboxylic acids

AUTHOR(S): Wick, Gottfried; Zeitler, Herbert

CORPORATE SOURCE: Werk Bobingen, Faserforsch., Hoechst A.-G., Bobingen,

D-8903, Fed. Rep. Ger.

SOURCE: Angewandte Makromolekulare Chemie (1983),

112, 59-94

CODEN: ANMCBO; ISSN: 0003-3146

DOCUMENT TYPE: Journal LANGUAGE: German

AB Cyclic oligomers in polyesters from diols and aromatic dicarboxylic acids were separated and determined quant. by high-pressure liquid chromatog. The cyclic oligomer content was related to the composition of the polyesters and the method of polymerization Cyclic dimers predominated in all polyesters except poly(ethylene terephthalate) [25038-59-9], poly(1,4-

cyclohexylenedimethylene terephthalate) [24936-69-4], and poly(p-phenylenedimethylene terephthalate) [26468-49-5], in which ring strain caused cyclic trimers to predominate. Stereoisomeric cyclooligomers formed from cis- and trans-1,4-cyclohexanedimethanol could be separated

IT 26546-02-1 26546-03-2

RL: USES (Uses)

(cyclic oligomer determination in, by high-pressure liquid chromatog.)

RN 26546-02-1 HCAPLUS

CN

Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl] (9CI) (CA INDEX NAME)

$$\begin{bmatrix} & & & & & \\ & & & \\$$

RN 26546-03-2 HCAPLUS

CN Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) (CA INDEX NAME)

L12 ANSWER 7 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1977:55928 HCAPLUS

DOCUMENT NUMBER:

86:55928

TITLE:

Aromatic polyesters

INVENTOR(S): Uno, Keiic

PATENT ASSIGNEE(S): SOURCE:

Uno, Keiichi; Kotera, Nobukazu

Toyobo Co., Ltd., Japan Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

JP 51130500 A2 19761112 JP 1975-56296 19750510 <-PRIORITY APPLN. INFO.: JP 1975-56296 19750510

In ester-exchange polycondensation of 8 bis(hydroxyalkyl) terephthalates with hydroquinone or bisphenol A in the presence of K Ti oxalate, only bis(4-hydroxybutyl) terephthalate showed complete ester exchange with hydroquinone.

61778-30-1P 61778-54-9P IT

RL: PREP (Preparation)

(preparation of)

61778-30-1 HCAPLUS RN

1,4-Benzenedicarboxylic acid, bis(3-hydroxypropyl) ester, polymer with CN 1,4-benzenediol (9CI) (CA INDEX NAME)

CM1

CRN 3644-98-2 CMF C14 H18 O6

CM

CRN 123-31-9 CMF C6 H6 O2

61778-54-9 HCAPLUS

RN1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester, CNpolymer with 1,4-benzenediol (9CI) (CA INDEX NAME)

CM1

CRN 24806-01-7 CMF C18 H26 O6

CM2

CRN 123-31-9 CMF C6 H6 O2

L12 ANSWER 8 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1977:43368 HCAPLUS

DOCUMENT NUMBER:

86:43368

TITLE:

Synthesis of bis(ω-hydroxyalkyl)terephthalates

AUTHOR (S):

Skoracki, Jerzy

CORPORATE SOURCE:

Dep. Chem. Fibres, Polytech. Univ. Szczecin, Szczecin,

Pol

SOURCE:

Roczniki Chemii (1976), 50(5), 971-2

CODEN: ROCHAC; ISSN: 0035-7677

DOCUMENT TYPE:

Journal

English

LANGUAGE: Engl:

Transesterification of p-(RO2C)2C6H4 (I; R = Me) with HO(CH2)nOH (n = 3-6) or neopentylene glycol in the presence of Pb(OAc)4 at 458 K gave I [R =

HO(CH2)n (n = 3-6), HOCH2CMe2CH2].

IT 3644-98-2P 24806-01-7P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation of)

RN 3644-98-2 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, bis(3-hydroxypropyl) ester (9CI) (CA INDEX

NAME)

HO-
$$(CH_2)_3$$
-O-C

RN 24806-01-7 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, bis(3-hydroxy-2,2-dimethylpropyl) ester (9CI) (CA INDEX NAME)

L12 ANSWER 9 OF 9 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1970:123008 HCAPLUS

DOCUMENT NUMBER:

72:123008

TITLE:

Polyester hot-melt adhesives. I. Factors affecting

adhesion to epoxy resin coatings

AUTHOR(S):

Jackson, Winston J., Jr.; Gray, Theodore F., Jr.;

Golliamudi 09 733640

Caldwell, J. R.

CORPORATE SOURCE:

Tennessee Eastman Co. Div., Eastman Kodak Co.,

Kingsport, TN, USA

SOURCE:

Journal of Applied Polymer Science (1970),

14(3), 685-98

CODEN: JAPNAB; ISSN: 0021-8995

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The peel strength and tensile shear strength of polyester hot-melt adhesives on metals coated with epoxy resins are affected by four characteristics of the polyester: (1) inherent viscosity, (2) glass transition temperature (tg, (3) degree of crystallinity (DC), and (4) melting point. The inherent viscosity affects the strength, toughness, and crystallinity of the adhesive. The Tg and DC affect the low-temperature adhesive properties; the peel strength is relatively low when the Tg is appreciably above the use temperature The Tg, DC, and melting point affect the high-temperature adhesive properties. A hot-melt adhesive with high peel and tensile shear strengths from 0° to 120° is the polyester of 1,4-butanediol and trans-1,4-cyclohexanedicarboxylic acid.

IT 26546-02-1 26546-03-2

RL: USES (Uses)

(adhesives, yield strength of, crystallinity-glass temperature in relation to)

RN 26546-02-1 HCAPLUS

CN Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl] (9CI) (CA INDEX NAME)

RN 26546-03-2 HCAPLUS

CN Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) (CA INDEX NAME)

=> 🗆

=> d stat que 123

L1 ST

VAR G1=14/18 NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 21

STEREO ATTRIBUTES: NONE

L3 101 SEA FILE=REGISTRY SSS FUL L1

L4 1440 SEA FILE=HCAPLUS ABB=ON PLU=ON L3

522 SEA FILE=HCAPLUS ABB=ON PLU=ON L4 AND PD=<DECEMBER 8, 2000

L6 STR

L5

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L7	63	SEA	FILE=REGISTRY	SUB=L3	SSS FUL	П ₀
L8	38	SEA	FILE=REGISTRY	ABB=ON	PLU=ON	L3 NOT L7
L9	1336	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L7
L10	114	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L8
L11	10	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L9 AND L10
L21	50	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L4 (L) ?CRYSTALLIZ?
L22	11	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L21 AND L5
T ₁ 2.3	11	SEA	FILE=HCAPLUS	ABB=ON	PLU=ON	L22 NOT L11

```
=> d ibib abs hitstr 123 1-11
L23 ANSWER 1 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN
                         2000:814543 HCAPLUS
ACCESSION NUMBER:
                         133:350725
DOCUMENT NUMBER:
                         Process and apparatus for crystallization of
TITLE:
                         polytrimethylene terephthalate
                         Chen, Ye-mon; Corey, Ann Marie; Duh, Ben
INVENTOR(S):
                         Shell Internationale Research Maatschappij BV, Neth.
PATENT ASSIGNEE(S):
                         PCT Int. Appl., 31 pp.
SOURCE:
                         CODEN: PIXXD2
DOCUMENT TYPE:
                         Patent
                         English
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
                                            APPLICATION NO.
                                                                    DATE
                                DATE
                         KIND
     PATENT NO.
                                            _______
                         _ _ _ _
                                _____
                                20001116
                                            WO 2000-EP4399
                                                                    20000509 <--
     WO 2000068294
                          A1
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR,
             CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
             ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
             LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
             SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW,
             AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,
             DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
             CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                            US 1999-309923
                                                                    19990511
                                20011002
                          В1
     US 6297315
                                20021008
                                             US 1999-309921
                                                                    19990511
                          B1
     US 6461575
                                20020206
                                             EP 2000-931229
                                                                    20000509
     EP 1177235
                          A1
             AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO
                                20020422
                                             TR 2001-200103226
                                                                    20000509
                          T2
     TR 200103226
                                             JP 2000-616263
                                                                    20000509
                          Т2
                                20021224
     JP 2002544303
                                                                 A 19990511
                                             US 1999-309921
PRIORITY APPLN. INFO.:
                                                                    19990511
                                             US 1999-309923
                                                                 Α
                                                                 W
                                             WO 2000-EP4399
                                                                    20000509
     A process for reducing the self-adhesiveness of polytrimethylene
AΒ
     terephthalate (I) pellets comprises contacting melt-phase-polymerized I
     pellets having an intrinsic viscosity of ≥0.4 dL/g with an aqueous liquid
     at 65-100° for a time sufficient to induce a degree of
     crystallinity of ≥35% in the I pellets. A crystallization apparatus was also
     provided.
     26546-03-2
IT
     RL: PEP (Physical, engineering or chemical process); PROC (Process)
        (process and apparatus for crystallization of polytrimethylene
        terephthalate)
     26546-03-2 HCAPLUS
RN
     Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI)
                                                                         (CA
CN
```

INDEX NAME)

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 2 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:667829 HCAPLUS

DOCUMENT NUMBER:

134:179022

TITLE:

Studies on the molecular structure and crystallization

kinetics of polytrimethylene terephthalate Chen, Guokang; Huang, Xiangan; Gu, Lixia

AUTHOR(S): CORPORATE SOURCE:

State Key Lab. Modification Chem. Fibers Polymer

Materials, China Textile University, Shanghai, 200051,

Peop. Rep. China

SOURCE:

PUBLISHER:

Sen'i Gakkaishi (2000), 56(8), 396-401

CODEN: SENGA5; ISSN: 0037-9875

Sen'i Gakkai

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Making use of IR and 1H NMR spectra, we characterized the mol. structure of poly(trimethylene terephthalate) (PTT), and compared it with poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET). The crystallization kinetics for PTT was compared with those for PBT and PET. crystallization activation energies of these three polyesters were weakened in the order of PET > PTT > PBT. It seems that the difference in the flexibility of mol. chains influences the crystallization activation energies.

26546-03-2, Poly(trimethylene terephthalate), sru TΤ

RL: PRP (Properties)

(mol. structure and crystallization kinetics of poly(trimethylene terephthalate))

26546-03-2 HCAPLUS RN

Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) CN INDEX NAME)

REFERENCE COUNT:

THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS 12 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 3 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:278031 HCAPLUS

DOCUMENT NUMBER:

132:308853

Golliamudi 09 733640

TITLE:

Apparatus and method for granulating and crystallizing

DE 1998-19848245

19981020 <--

thermoplastic polyesters or copolyesters

INVENTOR(S):

Matthaei, Andre

PATENT ASSIGNEE(S):

Rieter Automatik G.m.b.H., Germany

SOURCE:

PCT Int. Appl., 26 pp. CODEN: PIXXD2

20000504

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000023497	A1.	20000427	WO 1999-EP6617	19990908 <

W: BR, CA, CN, IN, JP, KR, MX, US

Ά1

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE

DE 19848245 19981020 DE 1998-19848245 PRIORITY APPLN. INFO .: The polyesters or copolyesters are introduced into a liquid after partial polycondensation into an intermediate product. The liquid accelerates the crystallization process of the polyester and the state of crystallization once the intermediate product has entered said liquid, whereby the liquid is kept at over 100° or said liquid produces crystallization germs on the surface of the intermediate product. Typical liqs. are ethylene glycol, triethylene

glycol, and their mixts. with each other or with water. IT 26546-03-2

RL: PEP (Physical, engineering or chemical process); PROC (Process) (apparatus and method for granulating and crystallizing thermoplastic polyesters or copolyesters)

26546-03-2 HCAPLUS RN

Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) CNINDEX NAME)

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 4 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2000:240052 HCAPLUS

DOCUMENT NUMBER:

133:5166

TITLE:

Crystallization and melting behaviors of

poly(trimethylene terephthalate)

AUTHOR (S):

Huang, Jieh-Ming; Ju, Ming-Yih; Chu, Peter P.; Chang,

Feng-Chih

CORPORATE SOURCE:

Institute of Applied Chemistry, National Chiao-Tung

University, Hsinchu, 30010, Taiwan

Journal of Polymer Research (1999), 6(4), SOURCE: 259-266

CODEN: JPOREP; ISSN: 1022-9760

Polymer Society, Taipei

PUBLISHER:

DOCUMENT TYPE: Journal LANGUAGE: English

AB The crystallization and melting behavior of poly(trimethylene terephthalate) (PTT)

were studied by DSC, wide-angle x-ray diffraction (WAXD), and solid-state NMR. At certain crystallization temps. for a given time, the isothermally

crystallized $$\operatorname{\textsc{PT}}$ exhibits two melting endotherms, which is similar to that of PET and

PBT. At higher crystallization temps., the low-temperature endotherm is related to

the

melting of the original crystals, while the high-temperature endotherm is associated with the melting of crystals recrystd. during heating. The peak temps. of these double-melting endotherms depend on crystallization temperature,

crystallization

time, and cooling rate from the melt as well as the subsequent heating rate. At a low cooling rate (0.2°/min) or a high heating rate (40°/min), these two endotherms tend to coalesce into a single endotherm, which is considered as complete melting without reorganization. WAXD results confirm that only one crystal structure exists in the PTT sample regardless of the crystallization conditions, even with the appearance of double melting endotherms. The results of NMR reveal that the annealing treatment increases proton spin lattice relaxation time in the rotation frame of PTT. This phenomenon suggests that the mobility of the PTT mols. decreases after the annealing process.

IT 26546-03-2, Poly(trimethylene terephthalate) sru

RL: PRP (Properties)

(crystallization and melting behavior of)

RN 26546-03-2 HCAPLUS

CN Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) (CA INDEX NAME)

REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 5 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2000:203003 HCAPLUS

DOCUMENT NUMBER: 132:322350

TITLE: Crystallization kinetics of poly(trimethylene

terephthalate)

AUTHOR(S): Huang, Jieh-Ming; Chang, Feng-Chih

CORPORATE SOURCE: Department of Chemical Engineering, Van Nung Institute

of Technology, Chung-Li, 32054, Taiwan

SOURCE: Journal of Polymer Science, Part B: Polymer Physics (

2000), 38(7), 934-941

CODEN: JPBPEM; ISSN: 0887-6266

PUBLISHER: John Wiley & Sons, Inc.

DOCUMENT TYPE: Journal LANGUAGE: English

AB The isothermal crystallization kinetics of poly(trimethylene terephthalate) (PTT) have been investigated using differential scanning calorimetry (DSC) and polarized light microscopy (PLM). Enthalpy data of exotherm from

isothermal crystallization were analyzed using the Avrami theory. The average value of the Avrami exponent, n, is about 2.8. From the melt, PTT crystallizes according to a spherulite morphol. The spherulite growth rate and the overall crystallization rate depend on crystallization temperature. The increase in

the

spherulitic radius was examined by polarized light microscopy. Using values of transport parameters common to many polymers (U* = 1500 cal/mol, $T\infty$ = Tg - 30°C) together with exptl. determined values of Tm0 (248°C) and Tg (44°C), the nucleation parameter, kg, for PTT was determined On the basis of secondary nucleation analyses, a transition between regimes III and II was found in the vicinity of 194°C (ΔT .simeq. 54 K). The ratio of kg of these two regimes is 2.1, which is very close to 2.0 as predicted by the Lauritzen-Hoffman theory. The lateral surface-free energy, σ = 10.89 erg/cm2 and the fold surface-free energy, σ = 56.64 erg/cm2 were determined. The latter leads to a work of chain-folding, q = 4.80 kcal/mol folds, which is comparable to PET and PBT previously reported.

IT 26546-03-2, Poly(trimethylene terephthalate), sru
RL: PRP (Properties)

(crystallization kinetics of poly(trimethylene terephthalate))

RN 26546-03-2 HCAPLUS

CN Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) (CA INDEX NAME)

REFERENCE COUNT:

THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L23 ANSWER 6 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

25

ACCESSION NUMBER: 1999:158337 HCAPLUS

DOCUMENT NUMBER: 130:197199

TITLE: Isothermal crystallization behavior and some physical

n

parameters of poly(trimethylene terephthalate)
Lee, Kyung Min; Kim, Kap Jin; Kim, Young Ḥo

AUTHOR(S): Lee, Kyung Min; Kim, Kap Jin; Kim, Young Ḥo
CORPORATE SOURCE: Department of Textile Eng., Soong-Sil University,

Seoul, 156-743, S. Korea

SOURCE: Polymer (Korea) (1999), 23(1), 56-65

CODEN: POLLDG; ISSN: 0379-153X

PUBLISHER: Polymer Society of Korea

form a fold (q) was 33.03 kJ/mol.

DOCUMENT TYPE: Journal LANGUAGE: Korean

The isothermal crystallization behavior of poly(trimethylene terephthalate) (PTMT), which was obtained from the polymerization of terephthalic acid and 1,3-propanediol, was analyzed by DSC and some phys. parameters were calculated The Avrami exponents for isothermal crystallization were 2.8.apprx.3.2 at various crystallization temps. The regime transition of PTMT was not found at the range of 180.apprx.200° and the Lauritzen Z-test showed that the isothermal crystallization of PTMT followed regime II kinetics. The surface free energy of the side surface (σ) of PTMT was 10.37 erg/cm2 and that of the end surface (σe) was 101.20 erg/cm2, and the work required to

```
26546-03-2, Poly(trimethylene terephthalate)
IT
     RL: PEP (Physical, engineering or chemical process); PRP (Properties);
     PROC (Process)
        (isothermal crystallization and surface free energy of)
RN
     26546-03-2 HCAPLUS
     Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI)
CN
     INDEX NAME)
        0
                                         n
L23 ANSWER 7 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN
                         1998:294994 HCAPLUS
ACCESSION NUMBER:
                         128:308942
DOCUMENT NUMBER:
                         Melting and non-isothermal crystallization behaviors
TITLE:
                         of poly(trimethylene terephthalate)
                         Kim, Young Ho; Kim, Kap Jin; Lee, Kyung Min
AUTHOR (S):
                         Department of Textile Engineering, Soong-Sil
CORPORATE SOURCE:
                         University, Seoul, 156-743, S. Korea
                         Han'quk Somyu Konghakhoechi (1997), 34(12),
SOURCE:
                         860-867
                         CODEN: HSKCDQ; ISSN: 1225-1089
                         Korean Fiber Society
PUBLISHER:
                         Journal
DOCUMENT TYPE:
                         Korean
LANGUAGE:
     Poly(trimethylene terephthalate) (PTMT) was prepared from terephthalic acid
     and 1,3-propanediol, and its basic thermal properties, e.g., Tg, melting
     temperature and non-isothermal crystallization behavior were investigated by using
DSC.
     The Tg of PTMT is 39.5°, which is much lower than that of PET.
     equilibrium melting temperature of 244.1° was obtained from Hoffman-Weeks
     plots. Multiple melting curves were observed both in isothermally and
     non-isothermally crystallized samples. In non-isothermal crystallization, the Avrami
     exponent (.apprx.2.7) and the activation energy (165 kJ/mol) were obtained
     using Ozawa's modified Avrami equation.
     26546-03-2, 1,3-Propanediol-terephthalic acid copolymer sru
TI
     RL: PRP (Properties)
        (thermal and non-isothermal crystallization behavior of
        poly(trimethylene terephthalate))
RN
     26546-03-2 HCAPLUS
     Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI)
                                                                         (CA
CN
```

INDEX NAME)

L23 ANSWER 8 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1994:9185 HCAPLUS

DOCUMENT NUMBER:

120:9185

TITLE:

Composition and preparation of sulfonate-terminated polyesters, and their blends with other polyesters Kawaguchi, Kuniaki; Nakane, Toshio; Hijikata, Kenji

INVENTOR(S):

Polyplastics Co., Ltd., Japan

PATENT ASSIGNEE(S): SOURCE:

Eur. Pat. Appl., 19 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

P#	ATENT NO.	KIND	DATE	APPLICATION NO.	DATE
El	2 517511	A2	19921209	EP 1992-305098	19920603 <
E	2 5.17511	A3	19930203		
E	9 517511	B1	19971105		
100	R: AT, BE, CH,	DE, DK	, ES, FR,	GB, GR, IT, LI, LU, MO	C, NL, PT, SE
J1	04356525	A2	19921210	JP 1991-131235	19910603 <
J1	04359050	A2	19921211	JP 1991-131236	19910603 <
J!	2807580	B2	19981008		
BI	R 9202121	Α	19930202	BR 1992-2121	19920603 <
US	5 5302690	A	19940412	US 1992-892898	19920603 <
A.	Г 159959	E	19971115	AT 1992-305098	19920603 <
PRIORI	TY APPLN. INFO.:			JP 1991-131235	19910603
				JP 1991-131236	19910603

OTHER SOURCE(S): MARPAT 120:9185

Polyesters with high crystallization rates, heat resistance, mech. strength, and moldability are manufactured by transesterification of a lower alkyl ester of an aromatic diacid with an aliphatic diol in the presence of 0.02-3 mol% HOROZSO3M (R = CH2CH2, CHMeCH2, CH2CHMe, or CH2CH2OCH2CH2, Z = p-C6H4 or 2,6-naphthylene, M = Li, Na, or K) by use of a Ti catalyst and polycondensation of the product. Thus, transesterification of di-Me terephthalate with 1,4-butanediol and 1 mol% Na p-(2-hydroxyethoxy)benzenesulfonate (I) in the presence of (BuO)4Ti and polycondensation of the product gave a polymer containing 1 mol% I.

IT 147769-15-1P

CN

RL: IMF (Industrial manufacture); PREP (Preparation) (manufacture of, with high **crystallization** rates and mech. strength and moldability)

RN 147769-15-1 HCAPLUS

Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl), α -[4-[[2-(4-sulfophenoxy)ethoxy]carbonyl]benzoyl]- ω -[2-(4-sulfophenoxy)ethoxy]-, disodium salt (9CI) (CA INDEX NAME)

PAGE 1-A

●2 Na

PAGE 1-B

L23 ANSWER 9 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1986:6688 HCAPLUS

DOCUMENT NUMBER:

104:6688

TITLE:

Poly(ethylene terephthalate) molding composition

INVENTOR(S):

Nelsen, Suzanne B. GAF Corp., USA

PATENT ASSIGNEE(S):

U.S., 4 pp.

SOURCE:

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE			
	US 4539356	 А	19850903	US 1984-661743	19841017 <			
		A1	19891205	CA 1985-488357	19850808 <			
	EP 178807	A2	19860423	EP 1985-306712	19850920 <			
	EP 178807	A3	19870422					
	EP 178807							
	R: BE, CH, DE,	FR, GB	, IT, LI, NL	, SE				
-	JP 61097353	A2	19860515	JP 1985-206745	19850920 <			
	BR 8504638	Α	19860715	BR 1985-4638	19850923 <			
PRTO	RITY APPLN. INFO.:			US 1984-661743	19841017			
AB	Blends of poly(ethy	lene te	rephthalate)	(I) [25038-59-9] with	aliphatic			
	glycol isophthalate	polyme	rs and alkal	ine taurate or isethion	ate derivs.,			
	optionally containing	ng glas	s fibers, ha	ve good processing, app	earance, and			
	crystallization rat	es, and	high heat d	istortion temperature	Thus, a blend of I			
	70. glass fibers (3	/16 in.) 30, antiox	idant (Irganox 1010) 0.	3, stabilizer			
	(Epon 828) 0.6, tal	c 0.5,	poly (neopent	yl terephthalate) [
	26546-02-1] 5.7, and Na N-methyl-N-oleoyltaurate [137-20-2] 1.5							
	parts was injection	molded	to give fle	xural modulus 26800 psi	, heat			
	distortion temperat	ure (at	66 psi) 241	°, unnotched Izod impac	t 8			

ft.-lb./in., satisfactory appearance, and no mold sticking.

26546-02-1

IT

CN

RL: USES (Uses)

(blends with poly(ethylene terephthalate), molding of, crystal nucleation agents for)

26546-02-1 HCAPLUS RN

Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl]

(9CI) (CA INDEX NAME)

L23 ANSWER 10 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1979:492103 HCAPLUS

DOCUMENT NUMBER:

91:92103

TITLE:

DSC investigation of interchange reactions in the melt

of different polyesters

AUTHOR(S):

Budin, J.; Vanicek, J.

CORPORATE SOURCE:

Res. Dep., Chemopetrol-Silon, Sezimovo Usti, Czech.

SOURCE:

Thermochimica Acta (1979), 28(1), 15-21 CODEN: THACAS; ISSN: 0040-6031

DOCUMENT TYPE:

Journal

LANGUAGE:

English

The course of randomization in the melt of poly(ethylene terephthalate) [25038-59-9] with poly(ethylene isophthalate) [26948-62-9], poly(2,2-dimethyltrimethylene terephthalate) [26546-02-1], or poly(tetramethylene terephthalate) [24968-12-5] during melt blending under N at 280° was observed by determining changes in glass transition temperature (Tq), cold crystallization temperature (Tc), and m.p. as measured by differential scanning calorimetry. The m.p. of isothermally-annealed copolyesters is the most useful criterion for randomization. Tg And Tc are influenced by further processes occurring during melt-blending of homopolyesters, e.g. changes in mol. weight and mol. weight distribution.

26546-02-1 IT

RL: USES (Uses)

(randomization of, in polyester blend melts, thermal properties in relation to)

26546-02-1 HCAPLUS RN

Poly[oxy(2,2-dimethyl-1,3-propanediyl)oxycarbonyl-1,4-phenylenecarbonyl] CN (9CI) (CA INDEX NAME)

Golliamudi 09_733640

L23 ANSWER 11 OF 11 HCAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1969:5191 HCAPLUS

DOCUMENT NUMBER:

70:5191

TITLE:

High viscosity linear condensation polyesters from

APPLICATION NO.

DATE

partially polymerized glycol terephthalates Heighton, Harold H.; Most, Elmer E., Jr.

INVENTOR(S): PATENT ASSIGNEE(S):

du Pont de Nemours, E. I., and Co.

SOURCE:

U.S., 6 pp.

CODEN: USXXAM

DATE

DOCUMENT TYPE:

Patent

LANGUAGE:

English

KIND

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

		-			
	US 3405098	A	19681008	US 1965-513616	19651029 <
PRIO	RITY APPLN. INFO.:			US 1965-513616	19651029
AB	Amorphous prepolym	er chips	of poly(et	hylene terephthalate	e) having an
	intrinsic viscosit	y of 0.2	0-0.65 were	preheated at 150-20	0° to
	partially crystall	ize the	prepolymer	and were ground into	particles
	passing a 20-mesh	screen.	The polyes	ter was then polymer	ized to an intrinsic
	viscosity of at le	ast 0.8	by heating	the particles at 200	-35° in a
	fluidized bed. Th	us, bis(β-hydroxyet	hyl) terephthalate w	as .
	continuously prepa	red from	ethylene g	lycol and di-Me tere	phthalate according
	to U.S. 2,829,153	using a	manganous a	cetate and Sb203 cat	alyst. The
	monomer was polyme	rized at	270° and 4	mm. Hg and the molt	en prepolymer
	was extruded onto	a chille	d casting w	heel to obtain a pre	polymer having an
				rphous prepolymer wa	
				nding to a particle	
				mer was heated for 1	
	160°, charged dire	ctly to	a fluidized	l-bed polymerizer, an	ıd heated
	to 200° over 1.25	hrs. Th	e temperatu	re was increased to	220° over
	3 hrs. and maintai	ned at t	his tempera	ture for 18 hrs. and	l 35 min. Dry, hot,
	inert gas was pass	ed throu	igh the bed	to remove volatiles,	supply heat, and
	maintain fluidizat	ion. A	sample remo	oved at the end of th	ne polymerization had an
	intrinsic viscosit	y of 1.2	2. The pro	cess was also suitab	ole for preparing
	high-viscosity pol	y(trimet	hylene tere	phthalate).	1
Tm	0.5546 00 0	_			

IT26546-03-2

RL: PROC (Process)

(crystallization of)

26546-03-2 HCAPLUS RN

Poly(oxy-1,3-propanediyloxycarbonyl-1,4-phenylenecarbonyl) (9CI) CNINDEX NAME)