Advanced algorithms for data science

Gregory Kucherov

Gregory.Kucherov@univ-mlv.fr

Innopolis University / Université de Marne-la-Vallée

Course

- Purpose: a rigorous introduction to the design and analysis of algorithms
 - Not a lab or programming course
 - Not a math course, either
- Prerequisites:
 - imperative programming (C, C++, Java, ...)
 - Basic data structures: lists, arrays, stacks, queues
 - Recursion
 - Big-Oh notation?
 - Sorting
- "Free-style" pseudo-code

Grading

- script 30%
- homework (each month) 40%
- class participation 30%

CLRS = Cormen & Leiserson & Rivest & Stein

Some other good algorithm textbook:

- Steven Skiena, The Algorithm Design Manual, 2nd Edition, Springer, 2008 [a bit advanced?]
- Jon Kleinberg and Éva Tardos, Algorithm Design, MIT Press 2005
- Robert Sedgewick and Kevin Wayne, Algorithms, Addison-Wesley, 4th Edition, 2011 [for beginners, Java-oriented]
- А.Шень, Программирование: теоремы и задачи, 2е изд, МЦНМО, 2004

Some topics addressed in the course

Graphs

- Shortest paths
- Spanning trees
- Flows

Search trees

Arbres rouges-noirs

Sequence algorithms

- String matching
- Suffix trees
- Text compression

Dynamic programming

- Sequence alignment
- Hidden Markov models

Advanced data structures

• Union-Find, Bloom filters...

NP-completeness

- P and NP
- NP-complete problems

How to measure the efficiency of algorithms?

- Efficiency (in this course) = TIME and SPACE
 - other possible measures of efficiency:
 - accuracy, precision
- In this course: RAM model of computation
 - all memory accesses have equal unit cost
 - no parallel execution
 - unit cost (O(1)) basic operations (unless bits are explicitly manipulated)
 - time = # of RAM operations
 - space = # of computer words
 - other possible parameters: disk accesses, cache misses, probe model, query complexity

How to measure the efficiency of algorithms? (cont)

- Algorithms solve mass problems
 - *n*: input size (in computer words or bits)
 - time/space as a function of n
- In this course: WORST-CASE complexity
 - other possibility: average-case complexity

Graphs

Directed graph G = (S, A) S finite set of nodes (vertices) $A \subseteq S \times S$ set of edges (arcs), i.e., a relation on S

$$S = \{ 1, 2, 3, 4, 5 \}$$

 $A = \{ (1, 2), (1, 3), (2, 3), (3, 2), (4, 4), (4, 5) \}$

Undirected graph G = (S, A)A set of edges (arcs), symmetric relation

$$S = \{ 1, 2, 3, 4 \}$$

 $A = \{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\} \}$

Algorithms

Exploration

Depth-first or breadth-first traversal

Topological sorting

Strongly connected components, ...

Path computation

Transitive closure

Minimal cost path

Eulerian and Hamiltonian paths, ...

Spanning trees

Kruskal and Prim algorithms

Networks

Maximal flow

Others

Graph coloring

Planarity testing, ...

Terminology

Graph : G = (S, A)

Edge: $(s, t) \in A$ t adjacent to s, t successor of s

Successors of $s: A(s) = \{t \mid (s, t) \in A\}$

(Self-)loop : $(t, t) \in A$

Paths

Path : $c = ((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$ where $(s_{i-1}, s_i) \in A$ source = s_0 end = s_k ((1,2), (2,2), (2,3), (3,4)) length = k

Cycle: path where source and end nodes coincide

Traffic light problem

Graph to model a problem

/ one-way traffic

Coloring

$$G = (S,A)$$

coloring $f: S \rightarrow C$ such that $(s,t) \in A \Rightarrow f(s) \neq f(t)$

Chr(G) = min |f(S)|, chromatic number of G

Chr(G) = 4

color = set of compatible crossings

Coloring algorithm

```
G = (S, A) S = \{ s_1, s_2, ..., s_n \}
G without loops!
fonction sequential-coloring (G graph): int;
begin
       for i \leftarrow 1 to n do {
              c \leftarrow 1:
              while there exists t adjacent to s_i with f(t) = c do
                     c \leftarrow c + 1;
             f(s_i) \leftarrow c;
       return max (f(s_i), i = 1, ..., n);
end
Running time: O(n^2) Computing Chr (G): O(n^2 n!)
(apply sequential-coloring to all permutations of S)
No known polynomial-time algorithm!
```

Representations

$$G = (S, A)$$
 $S = \{1, 2, ..., n\}$

List of edges

compact representation indexing (hashing) by edge source (cf below)

Adjacency matrix

using matrix operations usually quadratic processing time

Adjacency list

reduces the size if $|A| << (|S|)^2$ usual processing time : O(|S| + |A|)

Adjacency matrix

$$S = \{ 1, 2, 3 \}$$

 $A = \{ (1,1), (1, 2), (1, 3), (2, 1), (3, 2) \}$

$$M = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

M[i, j] = 1 iff j is adjacent to i

$$V = \left(\begin{array}{ccc} 2 & 8 & 5 \\ 3 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right)$$

weight: $v: A \longrightarrow X$

Adjacency lists

Lists of A(s)

weight: $v: A \longrightarrow X$

Graph traversals

$$G = (S, A)$$

Traverse G = visit all nodes (or all edges)

Used in

- cycle search
- topological sorting
- search for connected components
- processing nodes (coloring, ...) or edges (weighing, ...)

Depth-first or breadth-first traversals

- extensions of tree traversals

Depth-first traversal

```
Node marking
for each node s of G do
      visited[s] ← false ; //s is white
for each node s of G do
      if not visited [s] then DFT(s);
procedure DFT(s node of G);
begin
      opening action on s;
      visited[s] ← true ; //s becomes yellow
      for each t successor of s do {
            processing edge (s,t);
            if not visited[ t ] then DFT( t );
      closing action on s; //s becomes red
end
```

Three states of a node

In the course of the traversal:

```
state [s] = white s: has not yet been discovered
```

state [s] = yellow s : under processing

state [s] = red s: processing finished

Enumeration

```
function Enumeration (G graph) : array of numbers
      for each node s de G do
             num[s] \leftarrow 0;
      count \leftarrow 0;
      for each node s de G do
             if num[s] = 0 then Number(s);
      return (no);
end
procedure Number (s node of G);
begin
      count \leftarrow count + 1; num[s] \leftarrow count;
      for each t successor of s do
             if num [ t ] = 0 then Number ( t );
end
number of calls of Number = |S|
                                               time = O(|S| + |A|)
number of « num[t] = 0 » in Number = |A| on adjacency list
```


Depth-first traversal

```
Node marking
for each node s of G do
      visited[s] ← false; //s is white
for each node s of G do
      if not visited [s] then DFT(s);
procedure DFT(s node of G);
begin
      opening action on s;
      visited[s] ← true ; //s becomes yellow
      for each t successor of s do {
            processing edge (s,t);
            if not visited[ t ] then DFT( t );
      closing action on s; //s becomes red
end
```

Time of traversal

T (« for each node ») =
$$O(|S|)$$

Adjacency matrix

```
T (« for each t adjacent to s ») =

T (« for each node t such that M[s,t] = 1 ») = O(|S|)

\Rightarrow traversal in time O((|S|)^2)
```

Adjacency list

```
T (« for each t adjacent to s ») = O(|A(s)|)

\Rightarrow traversal in O(|S| + |A|)
```

Depth-first traversal: iterative version Procedure DFT-iter (s node of G); begin $S \leftarrow \text{push (empty-stack, } s);$ visited $[s] \leftarrow \text{true}$; while not empty (S) do { $s' \leftarrow pop(S)$; **for** $t \leftarrow$ last to first successor of s' **do if not** visited [t] then visited $[t] \leftarrow \text{true}$; $S \leftarrow \text{push}(S, t)$; end

Remarks:

^{- «} pointers » to nodes are stacked

Stack: edcb

Stack: edcgf

Stack: edcg

Stack: edcg

Cycle detection

Proposition

A directed graph G has a cycle iff there exists a back edge in the depth-first forest of G

d(s): discovery time (turning yellow in DFT)

f(s): finishing time (turning red in DFT)

(s,t) edge of G is

- tree edge

or forward edge iff d(s) < d(t) < f(t) < f(s)

- back edge iff d(t) < d(s) < f(s) < f(t)

- cross edge iff f(t) < d(s)

Example

When visiting node e, we detect a cycle going through edge (e, a) as a is being processing as well

Topological sort by depth-first traversal

```
function Topological-sort (G acyclic graph): list;
begin
       for each node s of G do
              visited [s] \leftarrow false;
       L \leftarrow \text{empty-list};
       for each node s of G do
              if not visited [s] then Topo (s);
       return (L);
end
procedure Topo (s node of G);
begin
       visited [s] \leftarrow \text{true};
       for each t successor of s do
              if not visited [t] then Topo (t);
       add s to head of L;
end
```

Iterative method

Nodes to process: 1 4 7 9 (without predecessor)

After processing 1:

1 2 3 4 5 6 7 8 9 Nb-Pred - 0 2 0 1 2 0 2 0

Nodes to process: 4 7 9 2

Iterative topological sort

```
function Topological-sort (G acyclic graph): list;
begin
       F \leftarrow empty-queue;
       while G not empty do
              if each node has a predecessor then
                     « G contains a cycle »;
              else {
                     s \leftarrow a node without predecessor;
                     G \leftarrow G without s and all edges outgoing from s;
                     F \leftarrow \text{enqueue}(F, s);
       return (F);
end
Running time: O(|S| + |A|)
       using adjacency lists
```

Strongly connected components

G = (S, A) graph G' = (S', A') subgraph of G' iff $S' \subseteq S$ et $A' \subseteq A \cap S' \times S'$

F strongly connected component of G:

F maximal subgraph of G such that any two nodes of F are connected by a path

Algorithm

 G^{T} = transpose of G

Algorithm [Kosaraju 78] [Sharir 81]

 $L \leftarrow$ list of nodes of G obtained by

depth-first traversal and ordered by increasing f(s);

from L^{R} , apply depth-first traversal to G^{T} ;

The trees of the depth-first forest of this traversal are strongly connected components of G

Breadth-first traversal

```
procedure BFT (s node of G);
begin
for each node v of G do {
       visited[v] ← false ; //s is white
       d[v]=\infty;
Queue \leftarrow enqueue (empty-queue, s);
visited[s]=true ; //s becomes yellow
d[s]=0;
while not empty (Queue) do {
       s' \leftarrow \text{dequeue}(Queue);
       for t \leftarrow first to last successor of s' do
              if not visited [ t ] then
                      d[t] \leftarrow d[s']+1;
                      Queue \leftarrow enqueue (Queue, t);
       //s' becomes red
```


Queue: a

Order of traversal:

Queue: a b c d e

Order of traversal: a

Queue: a b c d e f g

Order of traversal: a b

Queue: a b c d e f g

Order of traversal: a b c d e

Queue a b c d e f g

Order of traversal: a b c d f g

Queue: a b c d efgh

Order of traversal: a b c d f g h

Queue: a b c d efghi

Order of traversal: a b c d f g h i

Queue: a b c d efghij

Order of traversal: a b c d f g h i j

Queue: a b c d efghijklm

Order of traversal: a b c d f g h i j k

Shortest path

Assume there is a path from s to v

d(v): the (rank of the) iteration at which v is first visited (becomes yellow)

Then d(v) is the length of the shortest path from s to v