Analogously to the case of Euclidean spaces of finite dimension, the Hermitian product induces a canonical bijection (i.e., independent of the choice of bases) between the vector space E and the space E^* . This is one of the places where conjugation shows up, but in this case, troubles are minor.

Given a Hermitian space E, for any vector $u \in E$, let $\varphi_u^l \colon E \to \mathbb{C}$ be the map defined such that

$$\varphi_u^l(v) = \overline{u \cdot v}, \quad \text{for all } v \in E.$$

Similarly, for any vector $v \in E$, let $\varphi_v^r : E \to \mathbb{C}$ be the map defined such that

$$\varphi_v^r(u) = u \cdot v$$
, for all $u \in E$.

Since the Hermitian product is linear in its first argument u, the map φ_v^r is a linear form in E^* , and since it is semilinear in its second argument v, the map φ_u^l is also a linear form in E^* . Thus, we have two maps $\flat^l \colon E \to E^*$ and $\flat^r \colon E \to E^*$, defined such that

$$\flat^l(u) = \varphi^l_u, \text{ and } \flat^r(v) = \varphi^r_v.$$

Proposition 14.5. The equations $\varphi_u^l = \varphi_u^r$ and $\flat^l = \flat^r$ hold.

Proof. Indeed, for all $u, v \in E$, we have

$$b^{l}(u)(v) = \varphi_{u}^{l}(v)$$

$$= \overline{u \cdot v}$$

$$= v \cdot u$$

$$= \varphi_{u}^{r}(v)$$

$$= b^{r}(u)(v).$$

Therefore, we use the notation φ_u for both φ_u^l and φ_u^r , and \flat for both \flat^l and \flat^r .

Theorem 14.6. Let E be a Hermitian space E. The map $b: E \to E^*$ defined such that

$$\flat(u) = \varphi_u^l = \varphi_u^r \quad \text{for all } u \in E$$

is semilinear and injective. When E is also of finite dimension, the map $\flat \colon \overline{E} \to E^*$ is a canonical isomorphism.

Proof. That $b: E \to E^*$ is a semilinear map follows immediately from the fact that $b = b^r$, and that the Hermitian product is semilinear in its second argument. If $\varphi_u = \varphi_v$, then $\varphi_u(w) = \varphi_v(w)$ for all $w \in E$, which by definition of φ_u and φ_v means that

$$w \cdot u = w \cdot v$$

for all $w \in E$, which by semilinearity on the right is equivalent to

$$w \cdot (v - u) = 0$$
 for all $w \in E$,

which implies that u = v, since the Hermitian product is positive definite. Thus, $\flat \colon E \to E^*$ is injective. Finally, when E is of finite dimension n, E^* is also of dimension n, and then $\flat \colon E \to E^*$ is bijective. Since \flat is semilinar, the map $\flat \colon \overline{E} \to E^*$ is an isomorphism.