Language Modeling (NLP Assignment-2)

Dhananjay Sharma

1 Problem Statement

We are given a vocabulary of four words: a, b, c, and d, along with start (<s>) and end (</s>) tokens. The task is to create a dataset with eight sentences, calculate bigram counts, and compare unsmoothed (Model U) and smoothed (Model S) probabilities for a given sentence in the dataset using add-one smoothing.

2 Dataset D

The dataset D consists of the following eight sentences:

- $1. \langle s \rangle$ a b $\langle /s \rangle$
- 2. <s> b c </s>
- $3. \langle s \rangle c a \langle /s \rangle$
- $4. \langle s \rangle d b \langle /s \rangle$
- $5. \langle s \rangle b d \langle /s \rangle$
- $6. \langle s \rangle c c \langle /s \rangle$
- $7. \langle s \rangle a d \langle /s \rangle$
- $8. \langle s \rangle b a \langle /s \rangle$

3 Bigram Counts

The bigram counts based on the dataset D are shown in Table 1.

4 Model U: Unsmoothing

For Model U, probabilities are calculated based on observed counts:

$$P(\langle s \rangle a) = \frac{2}{8} = 0.25$$

Bigram	Count
<s> a</s>	2
<s> b</s>	3
<s> c</s>	1
<s> d</s>	1
a b	1
bс	1
са	1
d b	1
b d	1
сс	1
a d	1
b a	1
b	1
c	1
a	1
d	1

Table 1: Bigram counts in dataset D

$$P(\mathtt{a}\ \mathtt{b}) = \frac{1}{2} = 0.5$$

Using these counts, we calculate the probability of the sentence <s> d b </s>:

$$P(\texttt{ ~~d b~~ }) = P(\texttt{ ~~d}) \times P(\texttt{d b}) \times P(\texttt{b~~ })$$

$$= 0.125 \times 1.0 \times 0.25 = 0.03125$$

5 Model S: Add-One Smoothing

For Model S, we apply add-one smoothing, adding one to each bigram count. The adjusted counts and probabilities are shown in Table 2.

Bigram	Adjusted Count	Probability
<s> a</s>	3	$\frac{3}{32} \approx 0.09375$
<s> b</s>	4	$\frac{4}{32} = 0.125$
<s> c</s>	2	$\frac{2}{32} = 0.0625$
<s> d</s>	2	$\frac{2}{32} = 0.0625$
a b	2	$\frac{2}{32} = 0.0625$
d b	2	$\frac{2}{32} = 0.0625$
b	2	$\frac{32}{32} = 0.0625$

Table 2: Adjusted bigram counts and probabilities for Model S with add-one smoothing

Calculating the probability of the sentence <s> d b </s> under Model S:

$$\begin{split} P(\texttt{ ~~d b~~ }) &= P(\texttt{ ~~d}) \times P(\texttt{d b}) \times P(\texttt{b~~ }) \\ &= 0.0625 \times 0.0625 \times 0.0625 = 0.000244 \end{split}$$

6 Summary of Results

The probability of the sentence $\langle s \rangle$ d b $\langle /s \rangle$ is higher in Model U than in Model S, as shown below:

- Model U: $P(\langle s \rangle d b \langle /s \rangle) \approx 0.03125$
- Model S: $P(\langle s \rangle d b \langle /s \rangle) \approx 0.000244$

This example demonstrates that unsmoothed models can assign higher probabilities to sentences in the dataset due to the absence of probability mass redistribution to unobserved events, a characteristic introduced in smoothed models.