1. Bosa Definitions
lets get into the formal dest's.
Det Our base cartegory will be pointed spices.
An operad C consists of impled spc. Ug) it right outin by Sight 970,
C(0) = 1+3, a choice of 1 e C(1) & cts fors (composition laws)
V. Clk) @ Clj, > @ Clj, > Clj, + +j,)
Je Cuk)
with the Tollowing dota:
a Associativity: Yee Clk), ds e Cljs), et e Clive)
V(Y(c,d,,dk); e,,e;) = V(c,f,fk)
where to = Y(ds; eji+1+1+1+1, eji+1+1+5)
d, like ak
C K
@ Identity: Y(1; d)=d \ d \ Cuj)
Y(c; 1,1,1) = c \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
@ Zj-aution equiranimity.
V ce UK), de Clije), ve Zk, ve Zje / lerces which permi
V(co; di,dk) = V(c; do-(1), do-(4) (j,jk) the k-blocks
& Y(C, dizi, dx 2x) = Y(C; di, dx)(Zi
${} \text{ ordert mellision } \Sigma_{j} \longrightarrow \Sigma_{j} \times \times \Sigma_{j} \times \times \Sigma_{j} \times \times \times \Sigma_{j} \times \times$

Det A morphism of operads is a say of Σ_{ij} -aquitament maps Ψ_{i} ; $C(j) \rightarrow C(j)$ s.t. Ψ_{i} (1) = 1' &
5.4. 4. (1) = 1 × C4) & C4; > 8- 8 C4; > - 7 C4; >
The state of the s
4xx4; x-x4; √ 14; C(4) & C(j,) & & C(jk) - C(j)
$C(k) \otimes C(j_i) \otimes \cdots \otimes C(j_k) \longrightarrow C(j_i)$
E.g. a Prototypical example; endomorphism aparael in pted spaces.
define $\mathcal{E}_{X}(j)$; = $Hom(X^{Nj} \longrightarrow X)$ $\mathcal{E}_{X}(0) = \{* \longrightarrow X\}$
unit & Hom (X, X) & the identity map
unit \in Hom (X,X) is the identity map the right action of Σ_j is given by permitting $X^{\otimes j}$.
@ Comm. operad: N(k) = * for all k>0.
Zj-actions are timed. V are endent identifications.
Assoc. sperad: M(k); = ∑k k≥1
the composition
$\sum_{k} \times \sum_{j_1} \times \cdots \times \sum_{j_n} \longrightarrow \sum_{j}$
(0, 2,, 2k) permute blockwisely
Det Genren on sperad C, on algebra X over C in Top* 18 a morphism
$\theta \colon \mathcal{L} \longrightarrow \mathcal{E}_{X}$
equivalently, X & Top* togother of Sjequer maps C(j) × X + + + X
that are optible us spender stom. i.e.


```
Construction
     Given an operad C, construct a monad C assoc. to C by
                    CX:= 130 C(j) × zi X'/~
where the relations ~ one generated by
   Y CE VY) YEX !- ( Tic, y) ~ (c, Siy)
                    To Cig) -> Cig-1) by Tro = Y(C; 1 x * x 1 3-1-1) e Cij x Cio) x (1)
                    S_{i}, \chi_{j-1} \longrightarrow \chi_{j} \qquad [\chi_{i}, ..., \chi_{j-1}] \longmapsto [\chi_{i}, ..., \chi_{i}, *, \chi_{i+1}, ..., \chi_{j-1}]
The unit y: X -> CX is yord: * & X -> Cu> 0 X
        M. CCX -CX is induced by the following maps
                Clk) @ Clgi,) @ X3, @ ... @ Clgi,) @ X 83 k
                      Clk) o Clj.) o ... o Clj.) o X o j
                                     1 Kely
                                  Ciq o X3
    The topology on CX can be made dear as fillows:
     Consider Fr CX: = image of I Uj)xxx X3
Fact: FK+CX is a closed subspace of FKCX, in particular, a coffmation.
       To CX can be taken us busept of CX.
       CX = union of topology you Ficx.
```

It's a Volg by det.

This CX is called the free C-dg. gen. by X., i.e. We have an adjunction

C: Top* C-alg.: U Homogy (CX, Y) & Homogy (X, UY)

Prop Let C be an operad & C be its assoc. monad. \exists a 1-1 correspondence between C-actions $(0; C(j) \otimes X) \longrightarrow XJ_{j_{23}} \otimes C$ C-alg on $X \in CX \longrightarrow X$ iff the following diregrams commutes: $C(j) \otimes X \stackrel{\otimes j}{\longrightarrow} CX$

proof: maps $\theta_j: C(j) \otimes_{\Sigma_j} X^{\otimes j} \longrightarrow X$ together specifies a $\Sigma_i: CX \longrightarrow X$

Eg: in Tops, MX is the James construction DIX

NX is the infinite symmetric product on X

Tix(NX) & HxXX