Lecture 7

Aakash Jog

Tuesday 18th November, 2014

Contents

1	$\mathbf{E}\mathbf{n}\epsilon$	ergy
	1.1	Leibenitz's 'Vis Viva'
	1.2	Coriolis' Definition of Work
	1.3	Gravitational Potential Energy
	1.4	Spring Potential Energy
	1.5	Examples
	1.6	Work Done by Friction
	1.7	Friction on an Inclined Plane

1 Energy

1.1 Leibenitz's 'Vis Viva'

Based on experimental analyses, Leibenitz defined 'vis viva' as the product of the weight of a body and its height above the ground. This definition contradicted Descartes, who defined the life force as the product of the mass of a body and the magnitude of its velocity.

1.2 Coriolis' Definition of Work

Coriolis defined work as the multiplication of the displacement of a body, and the component of the force responsible for the displacement, in the direction of the displacement, or vice versa.

$$dW \doteq \overrightarrow{F} \cdot d\overrightarrow{r}$$
$$\therefore W \doteq \int_{\overrightarrow{r_A}}^{\overrightarrow{r_B}} \overrightarrow{F} \cdot d\overrightarrow{r}$$

For a general body,

$$W = \int_{\overrightarrow{r_A}}^{\overrightarrow{r_B}} \overrightarrow{F_{\text{total}}} \cdot d\overrightarrow{r}$$
$$= \int_{\overrightarrow{r_A}}^{\overrightarrow{r_B}} m \frac{d\overrightarrow{v}}{dt} \cdot d\overrightarrow{r}$$

In Leibenitz's notation, dt is a scalar. Therefore, we can move it around.

1.3 Gravitational Potential Energy

$$\overrightarrow{F_{\text{total}}} = \overrightarrow{F_{\text{gravitation}}} + \overrightarrow{F_{\text{other}}}$$

$$\overrightarrow{F_{\text{total}}} = m \overrightarrow{g} + \overrightarrow{F_{\text{other}}}$$

$$W(m\overrightarrow{g}) = \int_{\overrightarrow{r_A}}^{\overrightarrow{r_B}} m \overrightarrow{g} \cdot d\overrightarrow{r}$$
$$= \int_{\overrightarrow{z_B}}^{\overrightarrow{z_A}} mg(dz)$$
$$= mg(z_A - z_B)$$
$$= mgz_a - mgz_B$$

$$W = \int_{B}^{A} \overrightarrow{F_{\text{total}}} \cdot d\overrightarrow{r} = E_{K}(B) - E_{K}(A)$$

$$\therefore \int_{B}^{A} \overrightarrow{F_{\text{other}}} \cdot d\overrightarrow{r} + W(m\overrightarrow{g}) = E_{K}(B) - E_{K}(A)$$

$$\therefore \int_{B}^{A} \overrightarrow{F_{\text{other}}} \cdot d\overrightarrow{r} = (E_{K}(B) + mgz_{B}) - (E_{K}(A) + mgz_{A})$$

$$= E_{M}(B) - E_{M}(A)$$

1.4 Spring Potential Energy

$$F = kx$$

The work done by the spring force is

$$W(k) = \int_{x_A}^{x_B} -kx \, \mathrm{d}x$$
$$= \frac{1}{2}kx_A^2 - \frac{1}{2}kx_B^2$$

$$W = \int_{B}^{A} \overrightarrow{F_{\text{total}}} \cdot d\overrightarrow{r} = E_{K}(B) - E_{K}(A)$$
$$\therefore \int_{B}^{A} \overrightarrow{F_{\text{other}}} \cdot d\overrightarrow{r} + W(m\overrightarrow{g}) + W(k\overrightarrow{x}) = E_{K}(B) - E_{K}(A)$$

$$\therefore \int_{B}^{A} \overrightarrow{F_{\text{other}}} \cdot d\overrightarrow{r} = (E_K(B) + mgz_B + \frac{1}{2}kx_B^2) - (E_K(A) + mgz_A + \frac{1}{2}kx_A^2)$$
$$= E_M(B) - E_M(A)$$

1.5 Examples

Example 1. Find h_{\min} so that the mass can complete the circular motion.

Solution.

$$mg + N = m\frac{v^2}{R}$$

At $h_{\min}, N = 0$

$$\therefore v = \sqrt{gR}$$

 $E_M = \text{constant}$

Therefore, comparing mechanical energy at A and B,

$$mg(h - 2R) = \frac{1}{2}mv^{2}$$
$$\therefore h_{\min} = \frac{5}{2}R$$

Example 2. Find the average force exerted by the sand on the body.

$$m = 2 \text{ kg}$$

 $h_1 = 3 \text{ m}$
 $h_2 = 3 \text{ m}$
 $l = 10 \text{ m}$
 $k = 1000 \text{ N m}^{-1}$
 $x = 40 \text{ cm}$
 $\mu_k = 0.2$

Consider the datum of gravitational potential energy at A.

$$W(\overrightarrow{F_{\text{other}}}) = E_M(B) - E_M(A)$$

$$\therefore 0 - \mu_k mgl = (\frac{1}{2}mv_B^2 + mg(-h1) + 0) - (0 + 0 + \frac{1}{2}kx^2)$$

$$\therefore v_B = 10 \text{ m/s}$$

At point C,

$$E_M = \frac{1}{2}kx^2 + mg(h_1 + h_2) - \mu_k mgl$$

= $\frac{1}{2}(1000)(0.4)^2 + (2)(10)(6) - (0.2)(2)(10)(10)$
= 160 J

This energy is is dissipated by the action of the force of the sand.

$$(F_{\text{sand}})(0.1) = 160$$

 $\therefore F_{\text{sand}} = 1600 \text{ N}$

Example 3. $\overrightarrow{F'}$ is always at 30 degrees from horizontal. \overrightarrow{F} is always tangential to the hemisphere.

Find the work done by both forces.

Solution.

$$W(F) = \int_{A}^{B} \overrightarrow{F} \cdot d\overrightarrow{r}$$
$$= \int_{A}^{B} F dr$$
$$= F \int_{A}^{B} dr$$
$$= F(\pi r)$$

$$W(F') = \int_{A}^{B} \overrightarrow{F} \, d\overrightarrow{r}'$$

$$= \int_{A}^{B} F' \, dr \cos\left(\theta + \frac{\pi}{6}\right)$$

$$= F' \int_{A}^{B} \cos\left(\theta + \frac{\pi}{6}\right) dr$$

$$= F' \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\left(\theta + \frac{\pi}{6}\right) (-R \, d\theta)$$

$$= F' R \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\left(\theta + \frac{\pi}{6}\right) d\theta$$

$$= F' R \sin\left(\frac{2\pi}{3}\right) - F' R \sin\left(\frac{-\pi}{3}\right)$$

$$= F' R \sqrt{3}$$

The work done by F' is the same, even if the body is taken directly from A to B.

1.6 Work Done by Friction

$$W(\overrightarrow{F_{\text{total}}}) = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$
$$\int_{x_A}^{x^B} -f \, \mathrm{d}x = \int_0^x \mu_k m g \, \mathrm{d}x$$
$$\therefore -\mu_k m g x = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

1.7 Friction on an Inclined Plane

$$\int \overrightarrow{F_{\text{other}}} \cdot d\overrightarrow{r} = E_M(f) - E_M(i)$$

$$\therefore W(\overrightarrow{N}) + W(\overrightarrow{f}) = \frac{1}{2}mv_f^2 - mgl\sin\theta$$

$$\therefore -\mu_k mg\cos\theta l = \frac{1}{2}mv_f^2 - mgl\sin\theta$$

$$\therefore -\mu_k mgx = \frac{1}{2}mv_f^2 - mgl\sin\theta$$