CS 8725: Report for assignment 1

Chanmann Lim

September 1, 2015

Let $\hat{\theta}$ be the estimation of the probability of the coin show up head P(Head), and θ^* be the true value of P(Head). If there is a constraint on the error bound ϵ to guarantee that the accuracy of the estimation is larger than $1 - \delta$ where δ denotes the failure probability and from the theory of probability we understand that the accuracy is just the complement the probability of error. Then we obtain

$$P(|\hat{\theta} - \theta^*| < \epsilon) \ge 1 - \delta \tag{1}$$

$$1 - P(|\hat{\theta} - \theta^*| \ge \epsilon) \ge 1 - \delta \tag{2}$$

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le \delta \tag{3}$$

According to Hoeffding's inequality we have

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2} \tag{4}$$

And in order to guarantee that $P(|\hat{\theta} - \theta^*| \ge \epsilon)$ is always less than or equal to δ , the upper bound of the probability of error $2e^{-2n\epsilon^2}$ must be less than or equal to δ .

$$2e^{-2n\epsilon^2} \le \delta$$

$$ln(2) - 2n\epsilon^2 \le ln(\delta)$$

$$ln(2) - ln(\delta) \le 2n\epsilon^2$$

$$ln(2/\delta) \le 2n\epsilon^2$$

$$\frac{ln(2/\delta)}{2\epsilon^2} \le n$$

Therefore,

$$n \geq \frac{\ln(2/\delta)}{2\epsilon^2}$$