

A3

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
27 December 2001 (27.12.2001)

PCT

(10) International Publication Number
WO 01/97850 A2

- (51) International Patent Classification⁷: **A61K 45/06**
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (21) International Application Number: **PCT/EP01/06976**
- (22) International Filing Date: 20 June 2001 (20.06.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|------------|---------------------------|----|
| 00250194.8 | 23 June 2000 (23.06.2000) | EP |
| 00250214.4 | 28 June 2000 (28.06.2000) | EP |
- (71) Applicant: **SCHERING AKTIENGESELLSCHAFT**
[DE/DE]; Müllerstrasse 178, 13353 Berlin (DE).
- (71) Applicants and
- (72) Inventors: **SIEMEISTER, Gerhard** [DE/DE]; Reimerswalder Steig 26, 13503 Berlin (DE). **HABEREY, Martin** [DE/DE]; Steinstr. 1, 12169 Berlin (DE). **THIERAUCH, Karl-Heinz** [DE/DE]; Hochwildpfad 45, 14169 Berlin (DE).
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/97850 A2

(54) Title: COMBINATIONS AND COMPOSITIONS WHICH INTERFERE WITH VEGF/VEGF AND ANGIOPOIETIN/TIE RECEPTOR FUNCTION AND THEIR USE (II)

(57) Abstract: The present invention describes the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

**Combinations and compositions which interfere with VEGF/ VEGF and
angiopoietin/ Tie receptor function and their use (II)**

- 5 The present invention provides the combination of substances interfering with the biological activity of Vascular Endothelial Growth Factor (VEGF)/VEGF receptor systems (compound I) and substances interfering with the biological function of Angiopoietin/Tie receptor systems (compound II) for inhibition of vascularization and for cancer treatment.

10

Protein ligands and receptor tyrosine kinases that specifically regulate endothelial cell function are substantially involved in physiological as well as in disease-related angiogenesis. These ligand/receptor systems include the Vascular Endothelial Growth Factor (VEGF) and the Angiopoietin (Ang) families, and their

15 receptors, the VEGF receptor family and the tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (Tie) family. The members of the two families of receptor tyrosine kinases are expressed primarily on endothelial cells. The VEGF receptor family includes Flt1 (VEGF-R1), Flk1/KDR (VEGF-R2), and Flt4 (VEGF-R3). These receptors are recognized by members of

20 the VEGF-related growth factors in that the ligands of Flt1 are VEGF and placenta growth factor (PIGF), whereas Flk1/KDR binds VEGF, VEGF-C and VEGF-D, and the ligands of Flt4 are VEGF-C and VEGF-D (Nicosia, Am. J. Pathol. 153, 11-16, 1998). The second family of endothelial cell specific receptor tyrosine kinases is represented by Tie1 and Tie2 (also known as Tek). Whereas Tie1 remains an

25 orphan receptor, three secreted glycoprotein ligands of Tie2, Ang1, Ang2, and Ang3/Ang4 have been discovered (Davis et al., Cell 87, 1161-1169, 1996; Maisonneuve et al., Science 277, 55-60, 1997; Valenzuela et al., Proc. Natl. Acad. Sci. USA 96, 1904-1909, 1999; patents: US 5,521,073; US 5,650,490; US 5,814,464).

30

The pivotal role of VEGF and of its receptors during vascular development was exemplified in studies on targeted gene inactivation. Even the heterozygous disruption of the VEGF gene resulted in fatal deficiencies in vascularization (Carmeliet et al., Nature 380, 435-439, 1996; Ferrara et al., Nature 380, 439-442,

1996). Mice carrying homozygous disruptions in either Flt1 or Flk1/KDR gene die in mid-gestation of acute vascular defects. However, the phenotypes are distinct in that Flk1/KDR knock-out mice lack both endothelial cells and a developing hematopoietic system (Shalaby et al. *Nature* 376, 62-66, 1995), whereas Flt1

- 5 deficient mice have normal hematopoietic progenitors and endothelial cells, which fail to assemble into functional vessels (Fong et al., 376, 66-70, 1995). Disruption of the Flt4 gene, whose extensive embryonic expression becomes restricted to lymphatic vessels in adults, revealed an essential role of Flt4 for the remodeling and maturation of the primary vascular networks into larger blood vessels during
10 early development of the cardiovascular system (Dumont et al., *Science* 282, 946-949, 1998). Consistent with the lymphatic expression of Flt4 in adults overexpression of VEGF-C in the skin of transgenic mice resulted in lymphatic, but not vascular, endothelial proliferation and vessel enlargement (Jeltsch et al., *Science* 276, 1423-1425, 1997). Moreover, VEGF-C was reported to induce
15 neovascularization in mouse cornea and chicken embryo chorioallantoic membrane models of angiogenesis (Cao et al., *Proc. Natl. Acad. Sci. USA* 95, 14389-14394, 1998).

- The second class of endothelial cell specific receptor tyrosine kinases has also
20 been found to be critically involved in the formation and integrity of vasculature. Mice deficient in Tie1 die of edema and hemorrhage resulting from poor structural integrity of endothelial cells of the microvasculature (Sato et al., *Nature* 376, 70-74, 1995; Rodewald & Sato, *Oncogene* 12, 397-404, 1996). The Tie2 knock-out phenotype is characterized by immature vessels lacking branching networks and
25 lacking periendothelial support cells (Sato et al., *Nature* 376, 70-74, 1995; Dumont et al., *Genes Dev.* 8, 1897-1909, 1994). Targeted inactivation of the Tie2 ligand Ang1, as well as overexpression of Ang2, an inhibitory ligand, resulted in phenotypes similar to the Tie2 knock out (Maisonpierre et al., *Science* 277, 55-60, 1997; Suri et al., *cell* 87, 1171-1180). Conversely, increased vascularization was
30 observed upon transgenic overexpression of Ang1 (Suri et al., *Science* 282, 468-471, 1998; Thurstonen et al., *Science* 286, 2511-2514, 1999).

The results from angiogenic growth factor expression studies in corpus luteum development (Maisonpierre et al., *Science* 277, 55-60, 1997; Goede et al. Lab.

Invest. 78, 1385-1394, 1998), studies on blood vessel maturation in the retina (Alon et al., Nature Med. 1, 1024-1028, 1995; Benjamin et al, Development 125, 1591-1598, 1998), and gene targeting and transgenic experiments on Tie2, Ang1, and Ang2, suggest a fundamental role of the Angiopoietin/Tie receptor system in
5 mediating interactions between endothelial cells and surrounding pericytes or smooth muscle cells. Ang1, which is expressed by the periendothelial cells and seems to be expressed constitutively in the adult, is thought to stabilize existing mature vessels. Ang2, the natural antagonist of Ang1 which is expressed by endothelial cells at sites of vessel sprouting, seems to mediate loosening of
10 endothelial-periendothelial cell contacts to allow vascular remodeling and sprouting in cooperation with angiogenesis initiators such as VEGF, or vessel regression in the absence of VEGF (Hanahan, Science 277, 48-50, 1997).

In pathological settings associated with aberrant neovascularization elevated
15 expression of angiogenic growth factors and of their receptors has been observed. Most solid tumors express high levels of VEGF and the VEGF receptors appear predominantly in endothelial cells of vessels surrounding or penetrating the malignant tissue (Plate et al., Cancer Res. 53, 5822-5827, 1993). Interference with the VEGF/VEGF receptor system by means of VEGF-neutralizing antibodies
20 (Kim et al., Nature 362, 841-844, 1993), retroviral expression of dominant negative VEGF receptor variants (Millauer et al., Nature 367, 576-579, 1994), recombinant VEGF-neutralizing receptor variants (Goldman et al., Proc. Natl. Acad. Sci. USA 95, 8795-8800, 1998), or small molecule inhibitors of VEGF receptor tyrosine kinase (Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60,
25 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000), or targeting cytotoxic agents via the VEGF/VEGF receptor system (Arora et al., Cancer Res. 59, 183-188, 1999; EP 0696456A2) resulted in reduced tumor growth and tumor vascularization. However, although many tumors were inhibited by interference with the VEGF/VEGF receptor system, others were unaffected (Millauer et al.,
30 Cancer Res. 56, 1615-1620, 1996). Human tumors as well as experimental tumor xenografts contain a large number of immature blood vessels that have not yet recruited periendothelial cells. The fraction of immature vessels is in the range of 40% in slow growing prostate cancer and 90% in fast growing glioblastoma. A selective obliteration of immature tumor vessels was observed upon withdrawal of

VEGF by means of downregulation of VEGF transgene expression in a C6 glioblastoma xenograft model. This result is in accordance with a function of VEGF as endothelial cell survival factor. Similarly, in human prostate cancer shutting off VEGF expression as a consequence of androgen-ablation therapy led

5 to selective apoptotic death of endothelial cells in vessels lacking periendothelial cell coverage. In contrast, the fraction of vessels which resisted VEGF withdrawal showed periendothelial cell coverage (Benjamin et al., J. Clin. Invest. 103, 159-165, 1999).

- 10 The observation of elevated expression of Tie receptors in the endothelium of metastatic melanomas (Kaipainen et al., Cancer Res. 54, 6571-6577, 1994), in breast carcinomas (Salvén et al., Br. J. Cancer 74, 69-72, 1996), and in tumor xenografts grown in the presence of dominant-negative VEGF receptors (Millauer et al., Cancer Res. 56, 1615-1620, 1996), as well as elevated expression of Flt4
15 receptors in the endothelium of lymphatic vessels surrounding lymphomas and breast carcinomas (Jussila et al., Cancer Res. 58, 1599-1604, 1998), and of VEGF-C in various human tumor samples (Salvén et al., Am. J. Pathol. 153, 103-108, 1998), suggested these endothelium-specific growth factors and receptors as candidate alternative pathways driving tumor neovascularization. The high
20 upregulation of Ang2 expression already in early tumors has been interpreted in terms of a host defense mechanism against initial cooption of existing blood vessels by the developing tumor. In the absence of VEGF, the coopted vessels undergo regression leading to necrosis within the center of the tumor. Contrarily, hypoxic upregulation of VEGF expression in cooperation with elevated Ang2
25 expression rescues and supports tumor vascularization and tumor growth at the tumor margin (Holash et al., Science 284, 1994-1998, 1999; Holash et al., Oncogene 18, 5356-5362, 1999).

Interference with Tie2 receptor function by means of Angiopoietin-neutralizing

- 30 Tie2 variants consisting of the extracellular ligand-binding domain has been shown to result in inhibition of growth and vascularization of experimental tumors (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al. Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Comparing the effects of interference with the endothelium-specific receptor

tyrosine kinase pathways by means of paracrine expression of the respective extracellular receptor domains on the same cellular background demonstrated inhibition of tumor growth upon blockade of the VEGF receptor system and of the Tie2 receptor system, respectively (Siemeister et al., Cancer Res. 59, 3185-3191,

5 1999).

It is known that the inhibition of the VEGF/VEGR receptor system by various methods resulted only in slowing down growth of most experimental tumors (Millauer et al., Nature 367, 576-579, 1994; Kim et al., Nature 362, 841-844, 1993; Millauer et al., Cancer Res. 56, 1615-1620, 1996; Goldman et al., Proc. Natl.

10 Acad. Sci. USA 95, 8795-8800, 1998; Fong et al., Cancer Res. 59, 99-106, 1999; Wedge et al., Cancer Res. 60, 970-975, 2000; Wood et al. Cancer Res. 60, 2178-2189, 2000; Siemeister et al., Cancer Res. 59, 3185-3191, 1999). Even by escalation of therapeutic doses a plateau level of therapeutic efficacy was achieved (Kim et al., Nature 362, 841-844, 1993; Wood et al. Cancer Res. 60,

15 2178-2189, 2000). Similar results were observed upon interference with the Angiopoietin/Tie2 receptor system (Lin et al., J. Clin. Invest. 103, 159-165, 1999; Lin et al., Proc. Natl. Acad. Sci. USA 95, 8829-8834, 1998; Siemeister et al., Cancer Res. 59, 3185-3191, 1999).

20 However, there is a high demand for methods that enhance the therapeutic efficacy of anti-angiogenous compounds.

Searching for methods that enhance the therapeutic efficacy of anti-angiogenic compounds, superior anti-tumor effects were observed unexpectedly upon 25 combination of inhibition of VEGF/VEGF receptor systems and interference with biological function of Angiopoietin/Tie receptor systems. The mode of action underlying the superior effects observed may be that interference biological function of Angiopoietin/Tie receptor systems destabilizes endothelial cell-periendothelial cell interaction of existing mature tumor vessels and thereby 30 sensitizes the endothelium to compounds directed against VEGF/VEGF receptor systems.

Based on this unexpected finding the present invention provides the combination of functional interference with VEGF/VEGF receptor systems and with

Angiopoietin/Tie receptor systems for inhibition of vascularization and of tumor growth.

The pharmaceutical composition consists of two components: compound I inhibits the biological activity of one or several of the VEGF/VEGF receptor systems or

- 5 consists of cytotoxic agents which are targeted to the endothelium via recognition of VEGF/VEGF receptor systems. Compound II interferes with the biological function of one or several of Angiopoietin/Tie receptor systems or consists of cytotoxic agents which are targeted to the endothelium via recognition of Angiopoietin/Tie receptor systems. Alternatively, compound I inhibits the biological
10 activity of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems and compound II consists of cytotoxic agents which are targeted to the endothelium via recognition of one or several of the VEGF/VEGF receptor systems or of the Angiopoietin/Tie receptor systems.
Targeting or modulation of the biological activities of VEGF/VEGF receptor
15 systems and of Angiopietin/Tie receptor systems can be performed by

- (a) compounds which inhibit receptor tyrosine kinase activity,
- (b) compounds which inhibit ligand binding to receptors,
- (c) compounds which inhibit activation of intracellular signal pathways of the
20 receptors,
- (d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- (e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents
25 or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- (f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

30

A compound comprised by compositions of the present invention can be a small molecular weight substance, an oligonucleotide, an oligopeptide, a recombinant protein, an antibody, or conjugates or fusionproteins thereof. An example of an inhibitor is a small molecular weight molecule which inactivates a receptor tyrosine

kinase by binding to and occupying the catalytic site such that the biological activity of the receptor is decreased. Kinase inhibitors are known in the art (Sugen: SU5416, SU6668; Fong et al. (1999), Cancer Res. 59, 99-106; Vajkoczy et al., Proc. Am. Assoc. Cancer Res. San Francisco (2000), Abstract ID 3612; Zeneca:

5 ZD4190, ZD6474; Wedge et al. (2000), Cancer Res. 60, 970-975; Parke-Davis PD0173073, PD0173074; Johnson et al., Proc. Am. Assoc. Cancer Res., San Francisco (2000), Abstract ID 3614; Dimitroff et al. (1999), Invest. New Drugs 17, 121-135). An example of an antagonist is a recombinant protein or an antibody which binds to a ligand such that activation of the receptor by the ligand is

10 prevented. Another example of an antagonist is an antibody which binds to the receptor such that activation of the receptor is prevented. An example of an expression modulator is an antisense RNA or ribozyme which controls expression of a ligand or a receptor. An example of a targeted cytotoxic agent is a fusion protein of a ligand with a bacterial or plant toxin such as Pseudomonas exotoxin

15 A, Diphtheria toxin, or Ricin A. An example of a targeted coagulation-inducing agent is a conjugate of a single chain antibody and tissue factor. Ligand-binding inhibitors such as neutralizing antibodies which are known in the art are described by Genentech (rhuMAbVEGF) and by Presta et al. (1997), Cancer Res. 57, 4593-4599. Ligand-binding receptor domaines are described by Kendall & Thomas

20 (1993), Proc. Natl. Acad. Sci., U.S.A.90, 10705-10709; by Goldman et al. (1998) Proc. Natl. Acad. Sci., U.S.A.95, 8795-8800 and by Lin et al. (1997), J. Clin. Invest. 100, 2072-2078. Further, dominant negative receptors have been described by Millauer et al. (1994), Nature 367, 567-579.

Receptor blocking antibodies have been described by Imclone (c-p1C11, US

25 5,874,542). Further known are antagonistic ligand mutants (Siemeister et al. (1998), Proc. Natl. Acad. Sci., U.S.A.95, 4625-4629). High affinity ligand- or receptor binding oligo nucleotides habe been described by NeXstar (NX-244) and Drolet et al. (1996), Nat. Biotech 14, 1021-1025. Further, small molecules and peptides have been described.

30

Expression regulators have been described as anti-sense oligo nucleotides and as ribozymes (RPI, Angiozyme™, see RPI Homepage).

Examples for delivery-/Targeting-Systems have been described as ligand/antibody-toxin-fusion-proteins or conjugates (Arora et al. (1999), Cancer Res. 59, 183-188 and Olson et al. (1997), Int. J. Cancer 73, 865-870), as endothel cell targeting of liposomes (Spragg et al. (1997), Prog. Natl. Acad. Sci. U.S.A94, 8795-8800, and as endothel cell targeting plus coagulation-induction (Ran et al., (1998), Cancer Res. 58, 4646-4653).

- 5 10 Small molecules which inhibit the receptor tyrosine kinase activity are for example molecules of general formula I

15

20

I,

in which

r has the meaning of 0 to 2,

n has the meaning of 0 to 2;

25

R₃ und R₄

- a) each independently from each other have the meaning of lower alkyl,

b) together form a bridge of general partial formula II,

5

m wherein the binding is via the two terminal C- atoms, and has the meaning of 0 to 4; or

c) together form a bridge of partial formula III

10

15

G wherein one or two of the ring members T₁, T₂, T₃, T₄ has the meaning of nitrogen, and each others have the meaning of CH, and the bining is via the atoms T₁ and T₄;

20 has the meaning of C₁ - C₆ - alkyl, C₂ - C₆ - alkylene or C₂ - C₆ - alkenylene; or C₂ - C₆ - alkylene or C₃ - C₆ - alkenylene, which are substituted with acyloxy or hydroxy; -CH₂-O-, -CH₂-S-, -CH₂-NH-, -CH₂-O-CH₂-, -CH₂-S-CH₂-, -CH₂-NH-CH₂, oxa (-O-), thia (-S-) or imino (-NH-),

A, B, D, E and T independently from each other have the meaning of N or CH, with the proviso that not more than three of these substituents have the meaning of N,

25

- Q has the meaning of lower alkyl, lower alkyloxy or halogene,
R₁ and R₂ independently from each other have the meaning of H or
lower alkyl,
- X has the meaning of imino, oxa or thia;
- 5 Y has the meaning of hydrogene, unsubstituted or substituted
aryl, heteroaryl, or unsubstituted or substituted cycloalkyl; and
- Z has the meaning of amino, mono- or disubstituted amino,
halogen, alkyl, substituted alkyl, hydroxy, etherificated or
esterificated hydroxy, nitro, cyano, carboxy, esterificated
carboxy, alkanoyl, carbamoyl, N-mono- or N, N-disubstituted
carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio,
phenyl-lower-alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl,
phenyl-lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl,
phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl, whereas, if
more than one rest Z is present ($m > 2$), the substituents Z are
equal or different from each other, and wherein the bonds
marked with an arrow are single or double bonds; or an N-
oxide of said compound, wherein one ore more N-atoms carry
an oxygene atom, or a salt thereof.
- 10
- 15
- 20 A preferred salt is the salt of an organic acid, especially a succinate.
- These compounds can preferentially be used as compound I or II in the inventive
pharmaceutical composition.
- 25 Compounds which stop a tyrosin phosphorylation, or the persistent angiogenesis,
respectively, which results in a prevention of tumor growth and tumor spread, are
for example
anthranyl acid derivatives of general formula IV
- 30

11

in which

A

has the meaning of group $=NR^2$,

W

has the meaning of oxygen, sulfur, two hydrogen atoms or the group $=NR^8$,

Z

has the meaning of the group $=NR^{10}$ or $=N-, -N(R^{10})-$
 $(CH_2)_q$, branched or unbranched C₁₋₆-Alkyl or is the group

5

10

15

or A, Z and R¹ together form the group

20

m, n and o

has the meaning of 0 – 3,

q

has the meaning of 1 – 6,

 $R_a, R_b, R_c, R_d, R_e, R_f$ independently from each other have the meaning
of hydrogen, C₁₋₄ alkyl or the group =NR¹⁰, and/
or R_a and/ or R_b together with R_c and or R_d or R_e
together with R_e and/ or R_f form a bound, or up
to two of the groups R_a-R_f form a bridge with
each up to 3 C-atoms with R¹ or R²,

5

10

X

has the meaning of group =NR⁹ or =N-,

Y

has the meaning of group -(CH₂)_p,

p

has the meaning of integer 1-4,

R¹has the meaning of unsubstituted or optionally
substituted with one or more of halogene, C₁₋₆-
alkyl, or C₁₋₆-alkyl or C₁₋₆-alkoxy, which is
optionally substituted by one or more of halogen,
or is unsubstituted or substituted aryl or
heteroaryl,

15

R²has the meaning of hydrogen or C₁₋₆-alkyl, or
form a bridge with up to 3 ring atoms with R_a-R_f
together with Z or R₁,

20

R³has the meaning of monocyclic or bicyclic aryl or
heteroaryl which is unsubstituted or optionally
substituted with one or more of für halogen, C₁₋₆-
alkyl, C₁₋₆-alkoxy or hydroxy,

25

 R^4, R^5, R^6 and R^7 independently from each other have the meaning
of hydrogen, halogen or C₁₋₆-alkoxy, C₁₋₆-alkyl or

C_{1-6} -carboxyalkyl, which are unsubstituted or optionally substituted with one or more of halogen, or R^5 and R^6 together form the group

- 5 R^8 , R^9 and R^{10} independently from each other have the meaning of hydrogen or C_{1-6} -alkyl, as well as their isomers and salts.

These compounds can also preferentially be used as compound I or II in the
10 inventive pharmaceutical composition.

More preferentially compounds of general formula V

- 15 V,
in which
 R^1 has the meaning of group

20

14

in which R^5 is chloro, bromo or the group $-OCH_3$,

in which R^7 is $-CH_3$ or chloro,

in which R⁸ is -CH₃, fluoro,
chloro or -CF₃

in which R⁴ is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃, -OCF₃ or
-CH₂OH

in which R⁶ is
-CH₃ or chloro

5

R²

has the meaning of pyridyl or the group

10

and

R³

has the meaning of hydrogen or fluoro, as well as their isomers and salts can be used as compound I or II in the inventive pharmaceutical composition.

15

These compounds have the same properties as already mentioned above under compound IV and can be used for the treatment of angiogeneous diseases.

Compositions comprise compounds of general formulars I, IV and V, alone or in combination.

The above mentioned compounds are also claimed matter within the inventive combinations.

20

A further example for ligand binding inhibitors are peptides and DNA sequences coding for such peptides, which are used for the treatment of angiogeneous diseases. Such peptides and DNA sequences are disclosed in Seq. ID No. 1 to 59 of the sequence protocoll. It has been shown that Seq. ID Nos. 34 and 34a are of main interest.

Claimed matter of the instant invention are therefor pharmaceutical compositions

a) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

5

b) comprising one or several agents as compound I which are targeted to the endothelium via of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems,

10

c) comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium,

15

d) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

20

e) comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems,

25

f) comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems,

30

g) comprising one or several agents as compound I which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems and

h) comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.

5

For a sequential therapeutical application the inventive pharmaceutical compositions can be applied simultaneously or separately.

The inventive compositions comprise as compound I or as compound II at least 10 one of

- a) compounds which inhibit receptor tyrosine kinase activity,
- b) compounds which inhibit ligand binding to receptors,
- c) compounds which inhibit activation of intracellular signal pathways of the receptors,
- 15 d) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of 20 VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

These compositions are also claimed matter of the present invention.

25

Also claimed matter of the present invention are pharmaceutical compositions which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59. Of most value are pharmaceutical compositions, which comprise as compound I and/ or II Seq. ID Nos. 34a und pharmaceutical compositions according to claims 30 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

Further preferred matter of the present invention are pharmaceutical compositions, which comprise as compound I and/ or II at least one small molecule of general formula I, general formula IV and/ or general formula V.

- 5 The most preferred compound which can be used as compound I or II in the inventive composition is (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate.
Therefore, claimed matter of the present invention are also pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate, with the proviso that compound I is not identically to compound II, and most preferred
10 pharmaceutical compositions, which comprise as compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate; pharmaceutical compositions, which comprise as compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate; pharmaceutical
15 compositions, which comprise as compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-42-35; pharmaceutical compositions, which comprise as compound I L19 scFv-tTF conjugate and as compound II sTie2.

- The small molecule compounds, proteins and DNA's expressing proteins, as
20 mentioned above can be used as medicament alone, or in form of formulations for the treatment of tumors, cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathy, maligneous nephrosclerose, thrombic microangiopathic syndrome,
25 transplantation rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis and damage of nerve tissues.

The treatment of the damaged nerve tissues with the inventive combination hinders the rapid formation of scars at the damaged position. Thus, there is no

scar formation before the axons communicate with each other. Therefore a reconstruction of the nerve bindings is much more easier.

Further, the inventive combinations can be used for suppression of the ascites

- 5 formation in patients. It is also possible to suppress VEGF oedemas.

For the use of the inventive combinations as medicament the compounds will be formulated as pharmaceutical composition. Said formulation comprises beside the active compound or compounds acceptable pharmaceutically, organically or inorganically inert carriers, such as water, gelatine, gum arabic, lactose, starch,

- 10 magnesium stearate, talcum, plant oils, polyalkylene glycols, etc. Said pharmaceutical preparations can be applied in solid form, such as tablets, pills, suppositories, capsules, or can be applied in fluid form, such as solutions, suspensions or emulsions.

If necessary, the compositions additionally contain additives, such as

- 15 preservatives, stabilizer, detergents or emulgators, salts for alteration of the osmotic pressure and/ or buffer.

These uses are also claimed matter of the instant invention, as well as the formulations of the active compounds

- 20 For parenteral application especially injectable solutions or suspensions are suitable, especially hydrous solutions of the active compound in polyhydroxyethoxylated castor-oil are suitable.

As carrier also additives can be used, such as salts of the gallic acid or animal or plant phospholipids, as well as mixtures thereof, and liposomes or ingredients

- 25 thereof.

For oral application especially suitable are tablets, pills or capsules with talcum and/ or hydrocarbon carriers or binders, such as lactose, maize or potato starch.

The oral application can also be in form of a liquid, such as juice, which optionally contains a sweetener.

- 30 The dosis of the active compound differs depending on the application of the compound, age and weight of the patient, as well as the form and the progress of the disease.

The daily dosage of the active compound is 0,5-1000 mg, especially 50-200 mg.

The dosis can be applied as single dose or as two or more daily dosis.

These formulations and application forms are also part of the instant invention.

- Combined functional interference with VEGF/VEGF receptor systems and with
- 5 Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to interference with one ligand/receptor system overlaps with the biological response to interference with a second ligand/receptor system. Alternatively, combined functional interference with VEGF/VEGF receptor systems or with Angiopoietin/Tie receptor systems and
- 10 targeting of cytotoxic agents via VEGF/VEGF receptor systems or via Angiopoietin/Tie receptor systems can be performed simultaneously, or in sequential order such that the biological response to functional interference with a ligand/receptor system overlaps in time with targeting of cytotoxic agents.
- 15 The invention is also directed to a substance which functional interferes with both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems, or which are targeted via both VEGF/VEGF receptor systems and Angiopoietin/Tie receptor systems.
- 20 VEGF/VEGF receptor systems include the ligands VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF, and the receptor tyrosine kinases VEGF-R1 (Flt1), VEGF-R2 (KDR/Flik1), VEGF-R3 (Flt4), and their co-receptors (i.e. neuropilin-1). Angiopoietin/Tie receptor systems include Ang1, Ang2, Ang3/Ang4, and angiopoietin related polypeptides which bind to Tie1 or to Tie2, and the receptor tyrosine kinases Tie1 and Tie2.
- 25

- Pharmaceutical compositions of the present invention can be used for medicinal purposes. Such diseases are, for example, cancer, cancer metastasis, angiogenesis including retinopathy and psoriasis. Pharmaceutical compositions of
- 30 the present invention can be applied orally, parenterally, or via gene therapeutic methods.

Therefor the present invention also concerns the use of pharmaceutical compositions for the production of a medicament for the treatment of tumors,

cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathie, malignant nephrosclerosis, thrombic microangiopathic syndrome, transplantation rejections

- 5 and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis, damage of nerve tissues, suppression of the ascites formation in patients and suppression of VEGF oedemas.

The following examples demonstrate the feasibility of the disclosed invention, without restricting the invention to the disclosed examples.

5 **Example 1**

Superior effect on inhibition of tumor growth via combination of inhibition of the VEGF A/VEGF receptor system together with functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention was demonstrated in an A375v human melanoma xenograft model.

10

Human melanoma cell line A375v was stably transfected to overexpress the extracellular ligand-neutralizing domain of human Tie2 receptor tyrosine kinase (sTie2; compound II) (Siemeister et al., Cancer Res. 59, 3185-3191, 1999). For control, A375v cells were stably transfected with the empty expression vector

- 15 (A375v/pCEP). Swiss *nu/nu* mice were s.c. injected with 1×10^6 transfected A375v/sTie2 or A375v/pCEP tumor cells, respectively. Animals receiving compound I were treated for up to 38 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Various modes of treatment are described in Table 1. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.
- 20

Table 1

treatment group	mode of treatment	
	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 250 mm² (mean area) within 24 days (Figure 1) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) or separate interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) delayed growth of tumors to a size of approx. 250 mm² to 31 days, respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of interference with the VEGF/VEGF receptor system by means of the kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I + compound II, treatment group 4) delayed growth of the tumors to a size of approx. 250 mm² to 38 days.
- This result clearly demonstrates the superior effect of a combination of interference with the VEGF-A/VEGF receptor system and the Angiopoietin/Tie2 receptor system over separate modes of intervention.

Example 2

Combination of functional interference with the Angiopoietin/Tie2 receptor system and neutralization of VEGF-A is superior to separate modes of intervention in

- 5 inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated twice weekly over a period of time of 4 weeks with intraperitoneal doses of

- 10 200 µg of the VEGF-A-neutralizing monoclonal antibody (mAb) 4301-42-35 (Schlaeppi et al., J. Cancer Res. Clin. Oncol. 125, 336-342, 1999). Various modes of treatment are described in Table 2. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its

- 15 perpendicular.

Table 2

treatment group	mode of treatment	
	mAb 4301-42-35 (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000

- 20 mm³ within 28 days (Figure 2) without treatment (group 1). Tumors treated with the VEGF-A-neutralizing mAb 4301-42-35 (compound I, treatment group 2) grew to a volume of approx. 450 mm³ within 28 days. Interference with

Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and neutralizing of VEGF-A by means of 5 the mAb 4301-42-35 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.

The superior effect of a combination of neutralization of VEGF-A and functional 10 interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly shown.

Example 3

Combination of functional interference with the Angiopoietin/Tie2 receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is superior to separate modes of intervention in inhibition of tumor growth.

5

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) was expressed in E. coli and conjugated to coagulation-inducing

- 10 recombinant human truncated tissue factor (tTF) by methods described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound I were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 3. Animals were sacrificed for ethical reasons
- 15 when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 3

treatment group	mode of treatment	
	scFv-tTF conjugate (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

- Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 3) without treatment (group 1). Tumors treated with the coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound I, treatment group 2) grew to a volume of
- 5 approx. 500 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the VEGF receptor complex
- 10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 300 mm³ within 28 days.
- The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly
- 15 shown. Similar effects can be expected upon targeting of cytotoxic agents to VEGF/VEGF receptor systems.

Example 4

Combination of functional interference with the VEGF/VEGF receptor system and targeting of a coagulation-inducing protein via the VEGF/VEGF receptor system is

- 5 superior to separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of a single chain antibody (scFv) specifically recognizing the human VEGF-A/VEGF receptor I complex (WO 99/19361) which was expressed in E. coli and conjugated to coagulation-inducing recombinant human truncated tissue factor (tTF) by methods
15 described by Ran et al. (Cancer Res. 58, 4646-4653, 1998). When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated on day 0 and on day 4 with intravenous doses of 20 µg of the scFv-tTF conjugate. Various modes of treatment are described in Table 4. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor
20 growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 4

treatment group	mode of treatment	
	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthal-azin-1-yl]ammonium hydrogen succinate (compound I)	scFv-tTF conjugate (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

- 5 Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 4) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the
 10 coagulation-inducting tTF targeted to the VEGF-A/VEGF receptor I complex via the scFv-tTF conjugate (compound II, treatment group 3) grew to a volume of approx. 500 mm³ within 28 days. Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and of targeting the VEGF receptor complex
 15 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 400 mm³ within 28 days.

The superior effect of a combination of targeting of the coagulation-inducting tTF to the VEGF-A/VEGF receptor I complex and functional interference with the
 20 VEGF/VEGF receptor system over separate modes of intervention is clearly

shown. Similar effects can be expected upon targeting of cytotoxic agents to Angiopoietin/Tie receptor systems.

Example 5

Combination of functional interference with the Angiopoietin/Tie2 receptor system and endothelium-specific targeting of a coagulation-inducing protein is superior to

5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/sTie2 cells and from A375v/pCEP cells were induced in nude mice as described in example 1. A fusion protein (L19 scFv-tTF)

consisting of L19 single chain antibody specifically recognizing the oncofoetal ED-

10 B domain of fibronectin and the extracellular domain of tissue factor was expressed in E. coli as described by Nilsson et al. (Nat. Med., in press). Further,

L19 scFv-tTF data have been represented by D. Neri and F. Nilsson (Meeting

"Advances in the application of monoclonal antibodies in clinical oncology",

Samos, Greece, 31. May-2. June 2000). When tumors reached a size of approx.

15 200 mm³ animals receiving compound I were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of treatment are

described in Table 5. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined

by caliper measurement of the largest diameter and its perpendicular.

20

Table 5

treatment group	mode of treatment	
	L19 scFv-tTF (compound I)	sTie2 (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/sTie2	-	+
Group 4: A375v/sTie2	+	+

Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 5) without treatment (group 1). Tumors treated with the coagulation-inducting L19 scFv-tTF (compound I, treatment group 2) grew to a
5 volume of approx. 450 mm³ within 28 days. Interference with Angiopoietin/Tie2 receptor system by means of expression of sTie2 (compound II, treatment group 3) reduced growth of tumors within 28 day to a volume of approx. 600 mm², respectively. Combination of interference with the Angiopoietin/Tie2 system by means of expression of sTie2 and of targeting the endothelium with L19 scFv-tTF
10 (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 250 mm³ within 28 days.
The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the Angiopoietin/Tie2 receptor system over separate modes of intervention is clearly shown.

Example 6

Combination of functional interference with the VEGF/VEGF receptor system and endothelium-specific targeting of a coagulation-inducing protein is superior to

- 5 separate modes of intervention in inhibition of tumor growth.

Tumors derived from A375v/pCEP cells were induced in nude mice as described in example 1. Animals receiving compound I were treated for up to 28 days with daily oral doses of 50 mg/kg of the VEGF receptor tyrosine kinase inhibitor (4-

- 10 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (Wood et al., Cancer Res. 60, 2178-2189, 2000). Compound II consists of L19 scFv-tTF fusion protein as described in example 5. When tumors reached a size of approx. 200 mm³ animals receiving compound II were treated with a single intravenous dose of 20 µg of L19 scFv-tTF in 200 µl saline. Various modes of
15 treatment are described in Table 6. Animals were sacrificed for ethical reasons when tumors of group 1 exceeded a volume of approx. 1000 mm³. Tumor growth was determined by caliper measurement of the largest diameter and its perpendicular.

Table 6

	mode of treatment	
treatment group	(4-Chlorophenyl)[4-(4-pyridylmethyl)-phthal-azin-1-yl]ammonium hydrogen succinate (compound I)	L19 scFv-tTF (compound II)
Group 1: A375v/pCEP	-	-
Group 2: A375v/pCEP	+	-
Group 3: A375v/pCEP	-	+
Group 4: A375v/pCEP	+	+

5

- Tumors derived from A375v/pCEP control cells reached a size of approx. 1000 mm³ within 28 days (Figure 6) without treatment (group 1). Separate treatment with the VEGF receptor inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate (compound I, treatment group 2) resulted in a reduction of the tumor volumes to approx. 550 mm³. Tumors treated with the coagulation-inducting L19 scFv-tTF targeted to the endothelium (compound II, treatment group 3) grew to a volume of approx. 450 mm³ within 28 days. Combination of inhibition of VEGF receptor tyrosine kinase by means of (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate and of targeting the VEGF receptor complex (compound I + compound II, treatment group 4) resulted in a inhibition of tumor growth to a volume of approx. 200 mm³ within 28 days.

The superior effect of a combination of targeting of L19 scFv-tTF to the endothelium and functional interference with the VEGF/VEGF receptor system over separate modes of intervention is clearly shown.

Description of the figures

Fig. 1 shows the superior effect of combination of interference with VEGF/VEGF receptor system by means of an specific tyrosine kinase inhibitor and with the

- 5 Angiopoietin/Tie2 receptor system by means of a soluble receptor domain on inhibition of tumor growth (treatment modes of groups 1-4 are given in Table 1).

The abbreviations have the following meaning:

mock, con.	=	treatment group 1
mock+VEGF-A	=	treatment group 2
10 sTIE2-cl13	=	treatment group 3
sTIE2-cl13+VEGF-A	=	treatment group 4

Fig. 2 shows the superior effect on tumor growth inhibition of combination of

- 15 VEGF-neutralization and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 2).

- 20 Fig. 3 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in Table 3).

25

Fig. 4 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing tTF to the VEGF/VEGF receptor I complex via a scFv-tTF conjugate and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine kinase inhibitor (4-

- 30 Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 4).

Fig. 5 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with Angiopoietin/Tie2 receptor system over separate modes of intervention (treatment modes of groups 1-4 are given in 5 Table 5).

Fig. 6 shows the superior effect on tumor growth inhibition of combination of targeting of the coagulation-inducing L19 scFv-tTF fusion protein to the endothelium and functional interference with VEGF/VEGF receptor system by means of the VEGF receptor tyrosine 10 kinase inhibitor (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-yl]ammonium hydrogen succinate over separate modes of intervention (treatment modes of groups 1-4 are given in Table 6).

CLAIMS

1. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
5
2. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems.
10
3. Pharmaceutical compositions comprising one or several agents as compound I which modulates the biological function of one or several of the VEGF/VEGF receptor systems or of one or several of the Angiopoietin/ Tie receptor systems and comprising one or several agents as compound II which are targeted to the endothelium.
15
4. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
20
5. Pharmaceutical compositions comprising one or several agents as compound I which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
25
6. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the VEGF/VEGF
30

receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the VEGF/VEGF receptor systems.

- 5 7. Pharmaceutical compositions comprising one or several agents as compound I which modulate the biological function of one or several of the Angiopoietin/Tie receptor systems, and comprising one or several agents as compound II which are targeted to the endothelium via one or several of the Angiopoietin/Tie receptor systems.
- 10 8. Pharmaceutical compositions comprising one or several agents which interfere with both the function of one or several of the VEGF/VEGF receptor systems and the function of one or several of the Angiopoietin/Tie receptor systems.
- 15 9. Pharmaceutical compositions according to claims 1-8 which are intended for simultaneous or separate sequential therapeutical application.

10. Pharmaceutical compositions according to claims 1-8 which comprise as compound I at least one of

- 20 a) compounds which inhibit receptor tyrosine kinase activity,
b) compounds which inhibit ligand binding to receptors,
c) compounds which inhibit activation of intracellular signal pathways of the receptors,
d) compounds which inhibit or activate expression of a ligand or of a
25 receptor of the VEGF or Tie receptor system,
e) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor
30 systems,
f) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

11. Pharmaceutical compositions according to claims 1-8 which comprise as compound II at least one of

- g) compounds which inhibit receptor tyrosine kinase activity,
- h) compounds which inhibit ligand binding to receptors,
- 5 i) compounds which inhibit activation of intracellular signal pathways of the receptors,
- j) compounds which inhibit or activate expression of a ligand or of a receptor of the VEGF or Tie receptor system,
- k) delivery systems, such as antibodies, ligands, high-affinity binding oligonucleotides or oligopeptides, or liposomes, which target 10 cytotoxic agents or coagulation-inducing agents to the endothelium via recognition of VEGF/VEGF receptor or Angiopoietin/Tie receptor systems,
- l) delivery systems, such as antibodies, ligands, high-affinity binding 15 oligonucleotides or oligopeptides, or liposomes, which are targeted to the endothelium and induce necrosis or apoptosis.

12. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of Seq. ID Nos. 1-59.

20

13. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II Seq. ID Nos. 34a

25 14. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one of sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTFconjugate.

30 15. Pharmaceutical compositions according to claims 1-11 which comprise as compound I and/ or II at least one small molecule of general formula I

41

in which

- 5 r has the meaning of 0 to 2,
 n has the meaning of 0 to 2;

- R₃ und R₄ a) each independently from each other have the
 meaning of lower alkyl,
 b) together form a bridge of general partial formula
 II,

- 15 m wherein the binding is via the two terminal C-atoms,
 and
 has the meaning of 0 to 4; or
 c) together form a bridge of partial formula III

20

- has wherein one or two of the ring members T_1, T_2, T_3, T_4 the meaning of nitrogen, and each others have the meaning of CH, and the bining is via the atoms T_1 and T_4 ;
- 5 G has the meaning of $C_1 - C_6$ - alkyl, $C_2 - C_6$ - alkylene or $C_2 - C_6$ - alkenylene; or $C_2 - C_6$ - alkylene or $C_3 - C_6$ - alkenylene, which are substituted with acyloxy or hydroxy; $-CH_2-O-$, $-CH_2-S-$, $-CH_2-NH-$, $-CH_2-O-CH_2-$, $-CH_2-S-CH_2-$, $-CH_2-NH-CH_2$, oxa (-O-), thia (-S-) or imino (-NH-),
- 10 A, B, D, E and T independently from each other have the meaning of N or CH, with the provisio that not more than three of these Substituents have the meaning of N,
- 15 Q has the meaning of lower alkyl, lower alkyloxy or halogene,
- R₁ and R₂ independently from each other have the meaning of H or lower alkyl,
- 20 X has the meaning of imino, oxa or thia;
- Y has the meaning of hydrogen, unsubstituted or substituted aryl, heteroaryl, or unsubstituted or substituted cycloalkyl; and
- 25 Z has the meaning of amino, mono- or disubstituted amino, halogen, alkyl, substituted alkyl, hydroxy, etherificated or esterificated hydroxy, nitro, cyano, carboxy, esterificated carboxy, alkanoyl, carbamoyl, N-mono- or N, N-disubstituted carbamoyl, amidino, guanidino, mercapto, sulfo, phenylthio, phenyl-lower-alkyl-thio, alkyl-phenyl-thio, phenylsulfinyl, phenyl-lower-alkyl-sulfinyl, alkylphenylsulfinyl, phenylsulfonyl, phenyl-lower-alkan-sulfonyl, or alkylphenylsulfonyl, whereas, if more than one rest Z is present ($m > 2$), the substituents Z are equal or different from each other, and wherein the bonds marked with an arrow are single
- 30

or double bonds; or an N-oxide of said compound,
wherein one or more N-atoms carry an oxygen atom,
or a salt thereof,

and/or a compound of general formula IV

5

in which

A has the meaning of group =NR²,

10 W has the meaning of oxygen, sulfur, two hydrogen atoms
or the group =NR⁸,

Z has the meaning of the group =NR¹⁰ or =N-, -N(R¹⁰)-
(CH₂)_q-, branched or unbranched C₁₋₆-Alkyl or is the
group

15

or A, Z and R¹ together form the group

20

	m, n and o	has the meaning of 0 – 3,
5	q	has the meaning of 1 – 6,
	R _a , R _b , R _c , R _d , R _e , R _f	independently from each other have the meaning of hydrogen, C ₁₋₄ alkyl or the group =NR ¹⁰ , and/or R _a and/or R _b together with R _c and/or R _d or R _c together with R _e and/or R _f form a bound, or up to two of the groups R _a -R _f form a bridge with each up to 3 C-atoms with R ¹ or R ² ,
10	X	has the meaning of group =NR ⁹ or =N-,
	Y	has the meaning of group -(CH ₂) _p ,
	P	has the meaning of integer 1-4,
15	R ¹	has the meaning of unsubstituted or optionally substituted with one or more of halogene, C ₁₋₆ alkyl, or C ₁₋₆ -alkyl or C ₁₋₆ -alkoxy, which is optionally substituted by one or more of halogen, or is unsubstituted or substituted aryl or heteroaryl,
20	R ²	has the meaning of hydrogen or C ₁₋₆ -alkyl, or form a bridge with up to 3 ring atoms with R _a -R _f together with Z or R ₁ ,
	R ³	has the meaning of monocyclic or bicyclic aryl or heteroaryl which is unsubstituted or optionally
25		

5 R^4, R^5, R^6 and R^7

substituted with one or more of für halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy or hydroxy,
independently from each other have the meaning
of hydrogen, halogene or C₁₋₆-alkoxy, C₁₋₆-alkyl
or C₁₋₆-carboxyalkyl, which are unsubstituted or
optionally substituted with one or more of
halogene, or R^5 and R^6 together form the group

10 R^8, R^9 and R^{10}

independently from each other have the meaning
of hydrogen or C₁₋₆-alkyl,
as well as their isomers and salts,

and/ or a compound of general formula V.

15

V,

20

in which

R^1 has the meaning of group

46

in which R⁵ is chloro, bromo or the group -OCH₃,

5

in which R⁷ is -CH₃ or chloro,

in which R^8 is -CH₃, fluoro,
chloro or -CF₃

5

in which R^4 is fluoro,
chloro, bromo, -CF₃,
-N=C, -CH₃, -OCF₃ or
-CH₂OH

in which R^6 is
-CH₃ or chloro

 R^2

has the meaning of pyridyl or the group

10

and

 R^3

has the meaning of hydrogen or fluoro, as well as their
isomers and salts.

16. Pharmaceutical compositions according to claim 15 which comprise as
15 compound I and/ or II (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-
y]ammonium hydrogen succinate

17. Pharmaceutical compositions according to claims 1-16 which comprise as
compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-y]ammonium
20 hydrogen succinate, sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF
conjugate, and as compound II (4-Chlorophenyl)[4-(4-pyridylmethyl)-
phthalazin-1-y]ammonium hydrogen succinate, Tie2, mAB 4301-42-35, scFv-
tTF and/ or L19 scFv-tTF conjugate, with the proviso that compound I is not
identically to compound II.

25

18. Pharmaceutical compositions according to claims 1-17 which comprise as
compound I (4-Chlorophenyl)[4-(4-pyridylmethyl)-phthalazin-1-y]ammonium

hydrogen succinate and as compound II sTie2, mAB 4301-42-35, scFv-tTF and/ or L19 scFv-tTF conjugate.

19. Pharmaceutical compositions according to claims 1-17 which comprise as

5 compound I mAB 4301-42-35 and as compound II sTie2, and/ or scFv-tTF conjugate.

20. Pharmaceutical compositions according to claims 1-17 which comprise as

compound I scFv-tTF conjugate and as compound II sTie2 and/ or mAB 4301-
10 42-35.

21. Pharmaceutical compositions according to claims 1-17 which comprise as

compound I L19 scFv-tTF conjugate and as compound II sTie2.

15 22. Use of pharmaceutical compositions according to claims 1-21, for the production of a medicament for the treatment of tumors, cancers, psoriasis, arthritis, such as rheumatoide arthritis, hemangioma, angiofibroma, eye diseases, such as diabetic retinopathy, neovascular glaucoma, kidney diseases, such as glomerulonephritis, diabetic nephropathie, malignant
20 nephrosclerosis, thrombic microangiopathic syndrome, transplantation rejections and glomerulopathy, fibrotic diseases, such as cirrhotic liver, mesangial cell proliferative diseases, arteriosclerosis, damage of nerve tissues, suppression of the ascites formation in patients and suppression of VEGF oedemas.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Sequence Identifier

5

<110> Schering Aktiengesellschaft

10 <120> Combinations and compositions which interfere with VEGF/ VEGF and
angiopoietin/ Tie receptor function and their use II

<130> 51867AEPM1XX00-P

15 <140>
<141>

<160> 59

20 <210> 1
<211> 1835
<212> DNA
<213> Human

25 <400> 1

ttttacagtt ttccttttct tcagagttta ttttgaattt tcatttttgataaaccaagc 60
agctcttaaa gaagaatgca cagaagagtc attctggcac ttttggatag tacataagat 120
tttctttttt ttttttaaat ttttttaat agtcacatttgc agctcgcttgc tcaaaccagg 180
actccccatcat tgggtgagca agatgagccc ataggatcc agagttataata cgtaaccgtt 240
tatacaaaca gccaaaaaac cataatgggtt ccacaggat ggagcaggga agggcatctc 300
taacgtgtcc tctagtctat cttcgctaaa cagaaccac gttacacatg ataactagag 360
agcacactgtt gttgaaacgaa ggatgtgtac cccaaatggc acttggcagc atgcagttta 420
aagaaaaacca acaacaacaa aaaggcgagggtt aaaaatccatgc gcagttccat taaaggggtt 480
35 tgtagttaat gggaccagga ttggaggactt actgtctgtt gtcactgtca aaaaggcact 540
attaaaaggc ttggatgtta agagaggaca cttagctgtat acagatttca gtacgatttc 600
tggaccgctg agaagcgaa cagatgaaca caaaggaaatc aaatctttac aaccaaatttgc 660
catttaagcg acaacaaaaaa aaggcaaaacc cccaaacgc acctaaccac agaaaaatct 720
40 aagcaaaatc agacaacgaa gcacgcgttc atagtttcc tttgagagaa cgcataccctt 780
gagacgttac gtgccaacacctt aaggttctcaa tctgttccca gaatccgagg gagaactgag 840
aaaatgtactt aaggcgatgca aaaagtttca cgggttctta atgtccctgg tggcggatatac 900
gtgatcgatgtt gggatcgatcg acatcgttgc gccgagtcctt cggaaaggaca tctggacacc 960
tccgccaaag tcatccttta ttcccgatgaa taactttat tcccttctaa catttacacg 1020
45 gcaaaacagga atgcgtataaa ctggccacgtc cttccacgaaac ggttacgcgc ttccatgaga aaggatattt ggcaatttttta tattccacag 1080
tcaggtgggt ctgcgtatgc tcattttatgc tttctcccgagg ggctttctt gtcttctctt tggcgagtc gttggcagat tttctctgtt 1140
gggggctggc tgctggctcc gagggggcat ccgcgttccg tctggctgtc tccctctgca 1200
50 ggctgggcag ctggccacca ctctccgac tggacccttc caacaaggcat cgcaggccac 1260
tgtcctcggtt ggtacagacc gtgtccacat ttttttttttgc ttttttttttgc ttttttttttgc 1320
ggtacacgag ctgcgtgtatgc gccgtgtgtt ctggggctcg aggtcttttgc ttttttttttgc 1380
cttggacgggg cgggttagttc tgctgcagag acaaaaggcatc tcccttcccc tttccggctg 1440
55 attttgggttcc attcatatct acgcccagatgtt ctttttttttgc ttttttttttgc ttttttttttgc 1500
cagcttttttgc gagaatcaat gtatgaatgtt ctttttttttgc ttttttttttgc ttttttttttgc 1560
gagacgaacc acggccgggg gttggaccc ggcct 1620
1740
1800

60 <210> 2
<211> 581
<212> DNA
<213> Human

<400> 2

5 gttcttagatt gttttattca gtaattagct cttaaagaccc ctggggcctg tgctaccag 60
 acactaaca cagtcttat ccagttgtg gttctgggtg acgtgatctc cccatcatga 120
 tcaacttact tcctgtggcc cattaggaa gtggtgacct cgggagctat ttgcctgtt 180
 agtgcacaca cctggaaaca tactgcttc atttttcat ccacatcagt gagaatgag 240
 tggcccgtta gcaagatata actatgcaat catgcaacaa agctgcctaa taacattca 300
 ttattttacag gactaaaagt tcattattgt ttgttaaagga tgaattcata acctctgcag 360
 10 agttatagtt catabacagt tgatttccat ttataaaggc agaaagtctt tggtttctt 420
 aaatgtcaag ctttgcactga aaactcccg ttttccagtc actggagtgt gtgcgtatga 480
 aaaaaaatct ttagcaatta gatgggagag aaggaaata gtacttgaaa tgtaggccct 540
 cacctccccca tgacatccctc catgagccctc ctgatgttagt g

15 <210> 3
 <211> 516
 <212> DNA
 <213> Human

20 <400> 3

tagagatgtt gggttgcgtac cccgggatc tggagcagat gaatgaagag tctctggaa 60
 tcagccaga catgtgcata tacatcacag aggacatgtc catgtcgccg aacctgaatg 120
 25 gacactctgg gttgattgtg aaagaaattt ggttccac ctcgagctt tcagaaacac 180
 ttgttaagct tcgtggccag agtactgatt ctcttccaca gactatatgt cgaaaaccaa 240
 agacctccac tgcacac agcttgagcc tcgatgacat cagactttac cagaaagact 300
 tcctgcgcatt tgcaggcttg tgcaggaca ctgctcagag ttacacctt ggatgtggcc 360
 atgaacttggaa tgaggaaggc ctctatttgc acagttgtt ggcccagcag tgcataaca 420
 30 tccaagatgc tttccagtc aaaagaacca gcaaataactt ttctctggat ctcaactcatg 480
 atgaagtgc agagttgtt gtgttaaagtc cgtctg

<210> 4
 <211> 1099
 <212> DNA
 <213> Human

<400> 4

40 cccacaacac agggccctg aaacacgcca gcctctccctc tgggtcagc ttggccca 60
 cctgctcaact ggatcacage ccattgttagg tggggcatgg tgggtatcg gcccctggc 120
 ccacggggag gtagaagaag acctggtccg tgtaagggtc tgagaagggtg ccctgggtcg 180
 ggggtgcgtc ttggccctgc cgtgccctca tccccccgtt gaggcagcga cacagcagg 240
 gcaccaactc cagcaggta agcaccaggag agatgatgtc aaccaccaac atgaagatga 300
 tgaagatgtt ttctctcggtt gggcgagaga caaagcgtc cacgaggtag gggcagggtg 360
 45 ctcgcgttca cacaacacg ggctccatgg tccagccgtt cagggccac tggccataga 420
 ggaaggcttc ctctagcaca ctcttgcaga geacactggc gacatagggtg cccatca 480
 ctccgcggat ggcaggcga ccatcttctg ccacccggat ttggccatc tgacgtcta 540
 cgccgcctcc acctgtgggtt cttggccgg cagtgcggc agctccccct 600
 cttctgcggc cagccgtct tctcgccgag acaggtaat gacatggccc aggttagacca 660
 50 ggggtgggtgt gctgacgaa aggaactgca gcacccaga gcgatgtgg gagatggga 720
 aggctctgtc atagcagacg ttgggtcagc ctggctgggc cgtgttacac tcgaaatctg 780
 actgctcgatc accccacact gactcgccgg ccaggcccag gatgaggatg cgaaagatga 840
 agagcaccgt cagccagatc ttacccacca cggtcagtg ctccctggacc tggtccagca 900
 55 acttctccac gaagccccag tcacccatgg ctccccggcc tccgtcggca aggagacaga 960
 gcacgtcagt gtgtcagcat ggcacatccctc tcgttgcggcc agcaacaacg ctgcaggag 1020
 gtctgcacg cccgttctac cgcctgcctg ccggccggcc caggtggagg tggggacat 1080
 ggcggaggta acggcccgcg

60 <210> 5
 <211> 1015
 <212> DNA
 <213> Human

65 <400> 5

gaggataggg agcctgggt caggagtgtg ggagacacag cgagactctg tctccaaaaa 60

aaaaagtgt ttttggaaat gttgagggtt aaatgatggg aaccaacatt ctttggattt 120
 agtggggagc ataatacgaa acacccccc ttggggcaca gccatggact tccccggccct ggaatgtgtg gtgeaaagtg gggccaggc 240
 ccagacccca gaggagaggg tggccgcag acacccccc atgtcagcat ccccccac 300
 5 gccttctggc ggcacccccc ggggtctgtg ttgagtca gggcatgggg tgagagctg 360
 gtatatgtct ggaacagggt gcaggggcca aacccccc acacaaacaa gcaatctcc agtatgtgc caggacaggt 480
 atgcacccccc tctccccca aacccccc gtcctactt ggcctgcag cccagcctgt 540
 gtcccttcag tcctctgggtt atgaccta aagaccacac ctggaaaggatt ctttccct ttgaaggaga 600
 10 gttgtaacct ctgcgtccctt aacccccc ctggaaaggatt ctttccct ttgaaggaga 600
 atcattattt ttgcgtttttt acttcta aacccccc ctttgcgtt aacccccc ggcacggaca agttaaacag 660
 aatgtgttc cttccctggg gtctcacacg ctcccacag aatccacag gggccgtca 720
 ctggcagggc ttctctgttag aacccccc gtcctgcag agaccacagc gtcttcctt 780
 gaggcttagag cagggagtcg cgaacctctg cattcacaga ccacccccc aatttgtata 840
 accaaaggcc tctgttctg ttatttact taaatcaaca tgctatttt ttttactca 900
 15 ctctactt tagcctcgta ctgagccgtg tatccatgca gtcatgttca cgtgcttagt 960
 acgttttttctt tcttacacat gaaaataaat gcataagtgt tagaagaaaa aaaaa

<210> 6
 <211> 2313
 20 <212> DNA
 <213> Human

<400> 6

25 ccagagcagg cctgggttg agcagggacg gtgcacccga cggcgggatc gagcaaatgg 60
 gtctggccat ggagcacggg gggcttacg ctgggggggg gggcagctct cggggctgt 120
 ggtattacct ggcgtacttc ttctcttcg ttcctccat ccaatccctc atcatcctgg 180
 ggctcgtgtt ctcatgttca tattggcaacg tgcacgttag cacagatcc aacccgcagg 240
 30 ccacccggcggc cggagccggag ggcctataca gtcagctctt agggctca ggcctccctgt 300
 ccaacttgcac caaggagtc aacttcacca cccgcgcacca ggtatccatc atgcagatgt 360
 ggctgtatgc tgcggccgc acatggctgc tcaatgcac tttccgcag tgccagggtg 420
 accgggtcat ctacacaaac aatccaggtt acatggctgc catcatctt agtgagaagc 480
 aatgcagaga tcaatccaa gacatgaaca agagctgcg tgccttgc ttcatgtca 540
 atccagaaggt gaagacgctg gaggtgggg tagccaaaggaa gaagaccatt tgcaactaagg 600
 35 ataaggaaag cgtgtctgt aacccaaacgcg tggcgaggaa acatgggtt gaatgcgtga 660
 aaacccgggaa gctgcagcac caagagcgcc actggcaag gagcaactgc aaaaggtgca 720
 accccctctgc ctggccctgg acaaggacaa gtttggatgt gacccctgtt acctgtggag 780
 ggactccatt atccccacgcg gcctggacaa cctgggttac aaccccttacc atccccctggg 840
 40 ctcggaaatttgc ctggccatcc gcagagccctg cgaccacatg cccagcctca tgagctccaa 900
 ggtggaggag ctggccgggaa gcctccgggc ggtatcgaa cgcgtggccc gcgagaactc 960
 agaccccttca cggccagaagc tggaaaggccc gcaggccctg cggggccatc aggaggcgaa 1020
 acagaagggtt gagaaggagg ctccaggcccg ggaggccaaag ctccaaagctg aatgcctccg 1080
 45 gcagaccggcctg ctgcgtgttca aggagaaggc ggtgtctggg aaggaacgcg acaacctgac 1140
 caaggagctg gaagagaaga agagggaggc ggagcagetc aggatggagc tggccatcag 1200
 aaactcagcc ctggacaccc tgcataaagac caatgcgag cccgtatgtc cagtgtcaag 1260
 gcccatgggc cctgtccccca accccccagcc catcgacccca gtcaggttccg aggatgttca 1320
 gaggaagatc ctggagttccca agaggcccccc tgcaggccatc cctgttccccc catccagttt 1380
 ctggaggaggc tccaggccctg aggaccaagg gatggcccgaa ctcggcggtt tgccggatgt 1440
 50 gcagggatat gtcacacgcg cccgacacaa cccctccctt cccgccccaa ccacccagg 1500
 ccacccatcag acaactccctt gcatgcacac cccttagtacc ctctcacacc cgcacccgcg 1560
 ctcacgcgtc ctcacccac agcacacgcg cggggagatg acgtcacgcgca agcaacggcg 1620
 ctgcgttccat atatcaccgt ggtgtatggcg tcacgttggcc atgttagacgt cacgaagaga 1680
 55 tatagcgatg ggcgtgtca gatgcagcac gtcgcacaca gacatggggaa acttggcatg 1740
 acgtcacacc gagatgcgac aacgcacgtca cggggcatgt cgacgtcaca catattaatg 1800
 tcacacacac gcccgcgttccg catcacacag acgggtatgt tgtcacacac agacacagt 1860
 acaacacaca ccatgacaaac gacacccata gatatggc acacatcaca tgacgcgtat 1920
 ccctttccatc acacatccat acccaatttcc cacctgtt cactgttcccc cgcacccctggc 1980
 acacggggca aggttacccac aggttacccat cccctcccttccgc acagccctgg gccccccagcac 2040
 60 ctcccccttccctt ccagtttccctt ggcctcccttccgc accccccacgtt cctggaccgc 2100
 gaggtgagaa caggaagccaa ttccaccccttccgc ctcccttgc gttgttgc gggatgtttt ccaggacccc 2160
 ctggggggcccttccgc tggccgggggtca cctgttgc gggatgtttt ccaggacccc 2220
 cccccaactc ccagccctgc ctgtggcccg ttggaaatgtt ggtggcactt aacttcccttccgtt 2280
 agtaaatccat taaaaaaaaaaa aaaaaaaaaaaa aaa

65 <210> 7
 <211> 389

<212> DNA
 <213> Human

5 <400> 7

gccaaaaaaa tggcttcaaa agtaagaatg aaacatttga tccattcagc tttaggctat 60
 gcccactggat tcatagtctag aaaagatagg ataatttctg taaaagaaatg aagaccttgc 120
 tattctaaaa tcagatcctt acagatccag atttcaggaa acaaataatc agggactaa 180
 ctttccttgc tcagattagt ttttctcctt tgccaccgc tataataat gaggaaatg 240
 10 tgactttta aaagtgtttt agttttccat ttctttgata tgaaaagtaa tatttcggg 300
 gaaccctgaa ctattaataa tctatgtggc tagtgcgtat atattggct gaatttggc 360
 tcctttgtg gtgtccagtg ggttaacatc

15 <210> 8

<211> 157
 <212> DNA
 <213> Human

20 <400> 8

tgccttaaac agctgtgtca aaaaactgaca tcagagagta aattgaattt ggttttgttag 60
 gaagcaggaa gcaagccac tcaaacgtga aatttggcat gaggatcca gtaactttct 120
 cctcaatctg tgaactatat gtgagttga tattttg

25 <210> 9

<211> 561
 <212> DNA
 <213> Human

30 <400> 9

aatagtcaaa acataaacaa aagctaatta actggcaactg ttgtcacctg agactaagt 60
 gatgttggtg gctgacatac aggctcagcc agcagagaaa gaattctgaa ttcccccttgc 120
 35 tgaactgaac tattctgtta catatggttg acaaattctgt gtgttatttc ttttctacct 180
 accatattta aatttatgag tatacaaccga ggacatagtc aaaccttgcg tcatgaaat 240
 tcctgatttt ttgcctgatt aatctctgtt gagctctact tgcgttcatt caagatttt 300
 tgatgttggaa aggaaaatg aatatgaccc taaaaattt tattttgggt gatgatagtc 360
 tcaccactat aaaactgtca attattgcct aatgttaaag atatccatca ttgtgattaa 420
 40 ttaaacctat aatgagtatt cttaatggag aattcttaat ggatggatta tcccctgatc 480
 ttttctttaa aatttctctg cacacacagg acttctcatt ttccaataaa tgggtgtact 540
 ctgccccat ttcttagaaaa a

<210> 10

<211> 1508
 <212> DNA
 <213> Human

<400> 10

50 cacaacacg agagactcca cggtctgcct gggcaccgc agcctcctag gctccagcac 60
 tcgcagggtcc attcttctgc acgagcctct ctgtccagat ccataagcac ggtcagctca 120
 gggtcgegga gcagtagcgg gacaagtacc agcagcagct cctctgaaca gagactgcta 180
 ggtatcatcct tctccctccgg gcctgttgc gatggcataa tccgggtgca acccaaatct 240
 gagctcaagc caggtagact taagccactg agcaaggaaatg atttggccct gcacgcctac 300
 55 agtgtgagg actgtggcaa gtgc当地 aaggagtgc cctacccaaag gcctctgcca 360
 tcagactgga tctgc当地 acaactgtt tgctcgcccc agaactgtat tgactatggg 420
 acttgtgtat gctgtgtgaa aggttcttctc tatcactgtt ctaatgtga tgaggacaac 480
 tgcgtctgaca accccatgttc ttgc当地 cactgtt gtacacgtg gtcagccatg 540
 60 ggtgtcatgt ccctctttt gccttgc当地 tgggttacc ttccagccaa ggttgcctt 600
 aaattgtgcc aggggtgtta tgaccgggtt aacaggcctg gttggcctg taaaactca 660
 aacacagttt gctgcaaaatg tccactgtc cccccc当地 acttggaaaa accaacatag 720
 catcattaaat caggaatatt acagtaatga ggatttttc tttctttttaatacatac 780
 atgcaaccaa ctaaacagtt ataatctgg cactgttaat agaaaatgg gatagtctt 840
 gctgtttgcg gtgaaatgt ttttgc当地 gtgc当地 aactgtatg cttgttagaa 900
 65 ctcaagctaat ggagctcaa gtatgagata cagaacttgg tgaccatgt attgcataag 960
 cttaagcaac acagacactc ctaggcaaag ttttgc当地 tgaatagtagc ttgc当地 1020

tggtaaatttag cagatgactt tttccattg tttctccag agagaatgtg ctatatttt 1080
 gtatatacaa taatatttg aactgtaaa aacaagtggt gccatactac atggcacaga 1140
 cacaaaatat tatactaata tgggtacat tcggaagaat gtaaatcaat cagtagttt 1200
 5 ttagattgtt tttgcctt cagaaagcct ttattgtaa actctgatt cccttggac 1260
 ttcatgtata ttgtacagtt acagtaaat tcaaccctta tttctaatt tttcaacat 1320
 attgttttagt gtaaagaata ttatgtaa gttttattat ttataaaaaa agaatattta 1380
 ttttaagagg catttacaa atttgcccc tttatgagg atgtgatagt tgctgcaa 1440
 gaggggttac agatgcatat gtccaaataa aaatagaaaa tatattaacg ttgaaat 1500
 aaaaaaaaaa
 10 <210> 11
 <211> 389
 <212> DNA
 <213> Human
 15 <400> 11

 gggcaggta tcagggcaca catttccgt ccattgagac agtagcattc cgggcacca 60
 20 tcgtccgcgc tctccctt tttatgtat tgaccatcca cggtgagaca agtgcggac 120
 agatgggtt gcccagctg agcacaggcc gctctgact tgcagataag acagccgtg 180
 ctgtccctgtt gaaacccaa gggcagatc ttactgcatt agagctctgg acatttctt 240
 cagcagaga tgcacagcc gtgttattt ttcagcaatc caagtggaca atacttgtca 300
 cagattatgg gtctgcattt cttggcctt gggcgact cacagatctc acagtttgg 360
 25 acctcgcccg cgaccacgct gggtaaccga

 <210> 12
 <211> 981
 <212> DNA
 <213> Human
 30 <400> 12

 tttttttttt ttggattgca aaaattttt aaaaattggag acactgtttt aatcttctt 60
 35 tgccatgaga ctccatcagg cagtctacaa agaccactgg gaggtgagg atcacttgag 120
 cccagaagtt tgaggctgta gtaagcttca aaggccactg cactctagtt tgggtgaggc 180
 aagaccctt caagcgtaa gctgcatgt tgcttgggtt ggtcattaaa aacccttagtt 240
 taggataaca acatattaaat cagggcaaaaa tacaaatgtg tgatgtttt tagtagagta 300
 acctcagaat caaaatggaa cgggtttaca gtgatatcat tatatttcat ttggcagaat 360
 40 cattacatca ttggttacac tgaaaatcat cacatgtacc aaaagctgac tcacctagt 420
 taggataaca ggtctgcctg tttgaagatg aaaaataata cccattttaa atttgcctt 480
 ctcaatttcc ttctcagtca cattttact tttaaacagc taatcactcc catctacaga 540
 ttaagggtgtt tatgccacca aaaccttttgc ccaccttaaa aatttccctt aaagttttaa 600
 ctaatgcctg cattttcttca atcatgaatt ctgagtccct tgcttcttta aaacttgctc 660
 45 cacacagtgt agtcaagccg acttccata cccaaagcaag tcatccatgg ataaaaacgt 720
 taccaggcgc agaaccatca agctggccca ggcaagttgg actccacat ttcaacttcc 780
 actttctgt ctaatgcctg tggccatgt gcttggatggt ggctgtctt ttaggacttc 840
 agtagctatt ctcattccctt cttggggaca caactgttca taaggtgtca tccagagcca 900
 cactgcattt gcacccagca ccatacctca caggagtgtca ctccccacgag cggcctgtat 960
 50 ataagagttc ttttgatgac g

 <210> 13
 <211> 401
 <212> DNA
 <213> Human
 55 <400> 13

 ataactacag cttcagcaga caactaaaga gactgcattt aggtgattt tctggctata 60
 60 aagagagccc ggccgcagag catgtgactt ctgggaccc tggataggc aacactgccc 120
 tctctcccccc agagcgcaccc cccggcagg tcggggccca aggaatgacc cagcaactgc 180
 tccctacccca gcacactctc ttactgcata cctgcaattt tgctgtgaag atgactgggt 240
 gtggtcattca cgattcagag aaatcaagat ctatgaccat ttttaggcaaa gagagaaaact 300
 tgagaatttgc tggaggacta ctgaacctt ttttgcattt tttttttttt taaaatccctc 360
 65 acttcagcat atttagttt cattaaaattt aagctgatat t

 <210> 14

<211> 1002
 <212> DNA
 <213> Human

5 <400> 14

gacaatataaa aaagtggaaa caagcataaa ttgcagacat aaaataatct tctggtagaa 60
 acagttgtgg agaacagggt gaggtagagca acaacaacaa aagcttatgc agtcacccccc 120
 10 tttgaaaatg ttaaatacaa gtcctattct ctttgcggccat ctgggttttag ctagaggtag 180
 ccaattactt ctcttaaggt ccatggcatt cgccaggatt ctataaaaagc caagttact 240
 gaagtaaataa tctggggccc atcgcccc cactaagtac tttgtccacca tggttatct 300
 taaaagtcat ttttcaactgt ttgactcaga atttggact tcagagtcaa acttcattgc 360
 ttactccaaa cccagttaa ttccccactt ttttaagtag gcttagctt gagtgatttt 420
 tggctataac cgaaatgtaa atccacccctt aaacaacaaa gtttgacaag actgaaatgt 480
 tactggaaaac aatggtgcca tatgctccaa agacattcc ccaagataac tgccaaagag 540
 tttttgagga ggacaatgt catttattat gtaggagcct tgatatctct gaaaaataga 600
 attaatacag ctc当地ggaa gttagtaacca agctttctg cccaggaagt aacaaacatc 660
 15 actacgacaa tgagagtaca agaggaaact ttcataatgc atttttcat tcatacatc 720
 attcaataaa cattagccaa gctaattgtcc caagccatc tgccaggtat taacaatata 780
 20 acaacaataa aagacacagt ctttcctctc aagggttca gtctagtagg gaagatgatt 840
 attcattaaa atttttgggtg catcagaatc atgaggagct tgtagggaa accaaaatc gtaaatttct 900
 gcctatgttc tcagatattc tggttaggtc aggagtggga accaaaatc aatttttta 960
 acaaacacta aagggtattc taacacaggc ggtgtgagga cc

25 <210> 15
 <211> 280
 <212> DNA
 <213> Human

30 <400> 15

cgaggtgggc caccctgttc tggctctgaga tttttaatg aggattacat tattcttattt 60
 ataataattcc tattctatac tattgtattc ttacaattaa atgtatcaaa taattcttaa 120
 35 aaacattatt agaaacaaac tgc当地atac cttataagac taaaaaaatc accaagatga 180
 aactgttata tgactctcaa tatttaaca tttttttttt tgtagtgaa tgtagtgac 240
 caatcttaac tatttcaccc gccccggcgg ccgctcgagg

<210> 16
 <211> 2041
 40 <212> DNA
 <213> Human

<400> 16

45 ccccccgcag aactcccccc tggaaatagga tttttaaac ctttgacaat tagaaatctt 60
 atagagggttgcatttttta ggtaaaaata tggttgcggcc tacagggtatc atgcaacttc 120
 cttaaaacca attcagcaca tatgtataaa gaaccctttt taaaacatt tgtagtgaa 180
 atacagacac agttagtctg aagacactaa aaaaaactg aaaagtacta taccttgata 240
 aattttgtta ttgccttctt tagagactttt ataatctta gttgattttc aaggacttga 300
 50 atttaataat gggtaatta cacaagacgt aaaggattttt taaaacaaa gtattttttt 360
 ttacctctag catcaattctt ttataaaaga atgctaaata aattacattt ttgttcaatg 420
 aaaaactgaag atagaccatt taaatgttcc taccaaatttt aacgcagctt aattaggggac 480
 caggtagtata ttgttctctg aacatttttgc tcaagcatg tctaaccata aaagcaatg 540
 gaatttttaag aggttagattt tttttccatg atgcattttt ttaataatg tgtagggaaa 600
 55 ataaaaacaa gcactgatgt tgtagtctttt aagtataagg gtc当地atgaa aaaaaaaaaa 660
 tagatattttt tgtagtctg acatttttac agtcatagta ttagacgtt cgtgaccagt 720
 gcatttttggc ctctctcagg atcaaaaatac ggtctggcc actgtattaa atccctcc 780
 acccccctcca ccagggttgc cacagcttcc tgggtggccat ttgttcaatg atccattggg 840
 60 ccgaaatgaa catgaagcag atgcagctt gaggcccgg gtc当地gat tcaactctt 900
 ttctctgtaaa tatagttt tttttttttt tttatccatc ataaatctt tttttttttt 960
 tgggtctcca ttatccaga gtc当地ctt tgggttattt ccacttaac cattttttttt 1020
 atgctgtttt ttataaaaaa gcacataagc tttttttttt gggaaacctgc tc当地atttt 1080
 ctggactgac tggaaatgttcaag taaatgttca tttttttttt tttttttttt 1140
 ttgtatccatc ttatccatc aaatctctt cttttttttt cttttttttt 1200
 65 gtaatgact ctggggaggat gtc当地tgc gggccgg gtc当地gat tttttttttt 1260
 aagagtctgtt acttgcata tttttttttt tttttttttt 1320

taccagagt aaccacaacg gaacttaata gatagggcac caattttgtg caggaagctt 1380
 catcagtccc tgaaggctt aatttttag caaggttctc actaagatca gtgaagtc当地 1440
 catctacaga ccaacttct gacaatgaag agaaagaagt aattttcta actggcaact 1500
 cccaaaccag tggccagtga tacattgtct aaaatttcc ttctcacatg atacttctga 1560
 5 tcatatgaaa atctcaggag agtaagaata aggtattcag gttcctccgt gatttgc当地 1620
 gtttctcag cattttgcag agaggcacag tttcacat aatattgggtt atcaccagta 1680
 agaatctctg gagccaaaa aataatttag taagtcaatttactgtaagggtg tgggttccacc 1740
 10 tcccggtttc tgaggatcat ctttataaac aagaatctt tagattcgt tagggacaga 1800
 agtgtttca gaacagtaaa actcatttagg aggactgcct atggtttttt cattcacaaag 1860
 tgagtacag atgaaggcg ctgttgttgg attataaact actggcttctt ctgaaggacc 1920
 ggttacagac gcttgatttta gaccaccatc ttgtataactg ggttgc当地 1980
 gacagacatg tttccaaag aagaggaagc acaaaacgca aegcaagat ctgtaaagc当地 2040
 t

15 <210> 17
 <211> 235
 <212> DNA
 <213> Human

20 <400> 17

cgcggccgggc aggtgtcagg ggttccaaac cagcctgggg aaacacagcg tagaccctc 60
 acctctacaa ataaaaattt aaaaaatttgc caggtgtgg cagcgaacaa ctgttagtctc 120
 25 agatactcag gagactgagc tgaaaaggat cacttgagcc caagaagttc aaggttacag 180
 tggccacga tcatgtcattt acactccagc ttgggtgaca aatgagact gtctt
 <210> 18
 <211> 2732
 <212> DNA
 30 <213> Human

<400> 18

gtgtggagtt tcagctgcta ttgactataa gagctatgga acagaaaaag cttgctggct 60
 35 tcatgttcat aactactta tatggagctt cattggaccc ttatcttca ttatctgtt 120
 aaatatttac ttcttggta tcacattgtg caaaatgggt aagcattcaa acactttgaa 180
 accagattct agcaggttgg aaaaacattaa gtcttgggtt cttggcgctt tcgctctt 240
 gtgtcttctt ggcctcacct ggtcctttgg gttgtttt attaatgagg agactattt 300
 gatggcatat ctcttcaacta tatttaatgc ttccagggg gtgttcat tcatcttca 360
 40 ctgtgtctc caaaagaaag tacaaaaaga atatggcaag tgcttcagac actcataactg 420
 ctgtggaggg cttccaaactg agagtccccca cagttcaactg aaggcatcaa ccaccagaac 480
 cagtgtctc tattttctgt gcacacagag tcgtataaga agaatgtgaa atgataactgt 540
 gaaaaacaa tcagaatctt ctttatctc aggtgacatc aatagactt caacacttaa 600
 tcaagggtggc ataaatctt atatatttac acaggactga catcacatgg tctgagagcc 660
 45 catcttcaag atttatatca ttttagaggac atttcaactg caatggccagg gatacaagt 720
 ccatggatac tctaccgcta aatggtaatt ttaacacag ctactcgtt cacaagggtt 780
 actataatga cagcgtgca gttgtggact gtggacttaag tctgatgtt actgtttttt 840
 agaaaatgtt catttcagaa ttatgtcaca acaacttacg gggcagcagc aagactcaca 900
 acctcgagct cacgttacca gtcaaaccctg tgattggagg tagcagcagt gaagatgtt 960
 50 ctattgtggc agatgttca tctttatgc acaaagaaact cgaggccacca ctttatttctc aacaggacttca cccagggtt gagctccatc 1020
 agaagaaaatgtt gaaatcccgag ggaactgaca gctatgttcc ccaactgaca gcagaggctt 1080
 aagatcacctt acagtccccca aacagagact ctctttatac aagcatgccc aatcttagag 1200
 actctccctt tccggagac agccctgaca tggaagaaga cctcttccc tccaggagga 1260
 55 gtgagaatgtt ggacattttac tataaaagca agatgttca ccagatcagc agggccacca aagggtgtat tccagaagga gatgttagag aaggacataaacttgc gcaactgtt acaagtctt 1440
 aatcatacag ctaaggaattt ccaagggcca catgcgatg ttaaaaaata aagacaccat 1500
 tggcctgacg cagctccctc aaactctgtt tgaagagatg actcttgc当地 tgggttctc 1560
 60 tggttaaaaa aagatgttca aaccttgc当地 ttctgttcat ttttataaaa cataaaaaaa 1620
 ctttgc当地 acacagatg tactaaatgtt aattattgt tacaagaaaa agagatgcca 1680
 gccaggatattt ttaagatttct gctgtgtttt agagaaaattt tgaaacaagc aaaacaaaac 1740
 ttcccgccca ttttactgca gcagttctgtt aactaaatttt gtaaaatatgg ctgc当地 1800
 ttgttagggcc tgcattgtt tatatacaag acgttaggtt taaaatctg tggacaaaat 1860
 ttactgttacc ttacttattcc tgacaagact tggaaaagca ggagagatat tctgc当地 1920
 ttgcagttt actgcaaaatc ttttacatta aggcaagat tgaaacatg cttaaccact 1980

agcaatcaag ccacaggcct tatttcataat gttccctcaa ctgtacaatg aactattctc 2040
 ataaaaaatg gctaaagaaa ttatattttg ttctattgtc aggtaaaat aaatacattt 2100
 gtgtccaact gaaatataat tgtcattaaa ataattttaa agagtgaaga aaatatttg 2160
 aaaagctctt ggtgcacat gtatgaaat gtttttctt acacttgc atggtaagtt 2220
 5 ctactcattt tcactttt tccactgtat acagtgttct gcttgacaa agtagtctt 2280
 tattacttac atttaaattt ctattgcca aaagaacgtg ttttatgggg agaaacaac 2340
 tctttgaagc cagttatgtc atgccttgca caaaagtat gaaatctaga aaagatttg 2400
 tgtcacccct gtttattctt gaacagaggg caaagaggc actgggcact ttcacaaac 2460
 tttctagtga acaaaagggtg cctattctt tttaaaaaaaaaaa cataaaatatt 2520
 10 actcttccat attccttctg cctatattta gtaattaatt tattttatga taaagttcta 2580
 atgaaatgt aattgttca gcaaaattct gctttttt catccctttg tgtaaacctg 2640
 ttaataatga gcccatcaact aatatccagt gtaaagtta acacggttt acagtaata 2700
 aatgtgaatt tttcaagtt aaaaaaaaaaa aa
 15 <210> 19
 <211> 276
 <212> DNA
 <213> Human
 20 <400> 19

 ctccctaaat gattttaaaa taaaattggat aaacatatga tataaagtgg gtactttaga 60
 aaccgcctt gcatattttt tatgtacaaa tctttgtata caattccat gttccttata 120
 25 tattccctat atagcaaaacc aaaaccaggc cctcccaact gcatgcctca agtccctgtg 180
 gagcaactctg gcaactggat ggcctactt gtttctgac aaaatagctg gaaaggagga 240
 gggacaattt aaataccctcg gcccgcacca cgctgg

 <210> 20
 <211> 2361
 30 <212> DNA
 <213> Human

 <400> 20

 35 attgtaccag ctttgatgaa cgtggccct gttcgcttt tgagggccat aagctcatgg 60
 cccactggtt tagaggctac cttatcattt tctccctgtc ccggaaagggt tctcccaagt 120
 cagagttac cagcaggat tcacagatc cccacaagca gattctaaac atctatgacc 180
 tttgcaacaa gttcatagcc tatacgaccg tctttgagga tttgtggat gtgcttgcgt 240
 agtggggctc cctgtacgtg ctgacgcggg atggcggtt ccacgcactg caggagaagg 300
 40 acacacagac cttttttttt atgttgttta agaagaacct attttagatg gcgatttacc 360
 ttggcaagag ccagcatctg gacagtgtat ggctggccca gattttcatg cagtatggag 420
 accatctctt cagcaaggc aaccacgtat ggctgttca gcaatataatc cgaaccatgg 480
 gaaagttgga gccatctac gtatccgcg agtttttgcg tgcccgccg attcacaacc 540
 tttactgccta cttgcagacc ctgcacccgac aatcccttgc caatggccgac cataccacc 600
 45 tgctcctcaa ctgtatacc aagctcaagg agacgtcgaa gctggaggag ttcatcaaga 660
 aaaagagtga ggtgaagtc cactttgtat tggagacagc catcaagggtc ctccggcagg 720
 ctggctacta ctccccatgcc ctgtatctgg cggagaacca tgcacatcat gagtggatacc 780
 tgaagatcca gctagaagac attaagaatt atcaggaaacg ctttcgatac atcggcaagc 840
 tggcttttga gcaggcagag agcaacatga agcgtacgg caagatctc atgcaccaca 900
 50 taccagagca gacaactcg ttgttgaagg gactttgtac tgattatcggt cccagcctcg 960
 aaggccgcag cgataggag gcccaggct gcaggccaa ctctgaggag ttcatcccc 1020
 tctttggccaa taacccggca gagctgaaag ctttcctaga gcacatgagt gaagtgcagc 1080
 cagactcacc ccaggggatc tacgacacac tccttgagct ggcactgcag aactggccc 1140
 55 acggagaagg tccacaggtc aaagagaagc ttacgcaga ggccatttcc ctgctgaaga 1200
 gtggtcgctt ctgcacgtc tttgacaagg ccttggctt gtgcagatg cacgacttcc 1260
 agatgggtt ctttacctt ttagagcagg ggaagcttt ccagcagatc atgcactacc 1320
 acatgcagca cgagcagttac cggcaggatca tcagctgtg tgagggccat ggggagcagg 1380
 accccctccctt gtgggagcag gccttcagct acttcgtctc caaggaggag gactgcaagg 1440
 60 agtatgttgc agctgtctc aagcatatcg agaacaagaa cctcatgcca cctttctag 1500
 tggtcagac cttggcccac aactccacag ccacacttc cgtcatcagg gactacctgg 1560
 tccaaaaactt acagaaacag agccagcaga ttgcacagga tgagctgcgg gtgcggcgt 1620
 accgagagga gaccacccgt atccgcccagg agatccaaga gctcaaggcc agtcctaaga 1680
 ttttccaaaa gaccaagtgc agcatctgtt acagtcctt ggagttgccc tcaactccact 1740
 tcctgtgtgg ccactccctt caccaacact gctttgagag ttactcgaa agtgcgtctg 1800
 65 actgccccac ctgcctccctt gaaaaccggaa aggtcatgga tatgatccgg gcccaggaaac 1860
 agaaaacgaga tttccatgtt caattccacg atcagctaa gtgcctcaat gacagcttt 1920

ctgtgattgc tgactacttt ggcagaggta tttcaacaa attgactctg ctgaccgacc 1980
 ctcacacgc cagaactgacc tccagcctgg aggctggct gcaacgcgac ctactcatgc 2040
 actccaggag gggcaactaa gcagcctgga ggaagatgtg ggcaacagtg gaggaccaag 2100
 agaacagaca caatgggacc tggcgccccg ttacacagaa ggctggctga catgcccagg 2160
 5 gtcactcact catctaattgt cacagccctc acaagactaa agcggaaacct tttctttcc 2220
 ctggccttcc ttaattttaa gtcagactt gcaatccctt cctcttaac taggcaggta 2280
 tttagaatcat ttccagatta atggggggga aggggaacct caggcaaacc tcctgaagtt 2340
 ttggaaaaaa aagctggttt c

10 <210> 21
 <211> 179
 <212> DNA
 <213> Human

15 <400> 21

aggtgttaga tgctcttcaa aaagaaaactg catctaagct gtcagaaaatg gattctttta 60
 acaatcaact aaaggaactg agagaaaacct acaacacaca gcagtttagcc cttgaacagc 120
 20 tttataagat caacgtgaca agttgaagga aattgaaagg aaaaaattag aactaatgc

<210> 22
 <211> 905
 <212> DNA
 <213> Human

25 <400> 22

tttttttttt ttcttttaacc gtgtggtctt tatttcagtg ccagtgttac agataacaaca 60
 30 caaatgttcc agtttagaagg aattcaaaacg gaatgccaag gtccaagcca ggctcaagaa 120
 ataaaaaggg aggtttggag taatagatata gatgactcca atactcactc ttccctaaagg 180
 caaaggtaact tttgatacag agtctgatct ttgaaactgg tgaactccctc ttccaccat 240
 taccatagtt caaacaggca agttatgggc ttaggacac tttaaaaattt gtggtggaa 300
 tagggtcatt aataactatg aatatatctt ttgaaaggta accattttgc actttaaagg 360
 gaatcaattt tggaaatcat ggagactatt catgactaca gctaaagaat ggcgagaaag 420
 35 gggagctgga agagccttgg aagtttctat tacaataga gcaccatata cttcatgcca 480
 aatctcaaca aaagctcttt ttaactccat ctgtccagtg ttacaaata aactcgcaag 540
 gtctgaccag ttcttggtaa caaacatata tgggtgtgtc tgggtgtata cagcaatgca 600
 cagaaaaggc taccaggagc ctaatgcctc ttcaaaacat tgggggaaacc agtagaaaaa 660
 40 ggcagggctc cctaatgtcc attattacat ttccattccg aatgccagat gttaaaagt 720
 cctgaagatg gtaaccacgc tagtgaggaa taaatacccc acettgcccgtccacagag 780
 aaacaacagt agaaaagaagg ggcaacttctt tgctgcagag acaaagttag gttttttcg 840
 ccatggattt cagtcctctc ctccagacca gtcgttatt tcctcagggg cccaggaaat 900
 gtgtga

45 <210> 23
 <211> 2134
 <212> DNA
 <213> Human

50 <400> 23

ggtctctttt ttcctttttt ttttccaaa agtgttcttt tatttcagt aacatataatt 60
 gtataaatac tcttattttat atgcacttcc acaaaggcga tataattttaa aagttttttt 120
 55 cattagaaat aaatgtataa aaataaaat gttatttagt gcatttttta ctaactatag 180
 tccttcttgg aaggaacacc caaacatata cttttaaaatg acatgtatt tatagtaaca 240
 tattttacta tatacatatg gaaaaatca tattctcaca gaagagctga acagacattc 300
 accaggataac gactgttggc ccagctgtc gagatggacc tgctaccctt cagcagccctc 360
 cccaccacaa gacaagtgtat ctaatgtcc ccaaaccctgt gggaccctgt tctacacacc 420
 60 tcatttttgt tccggcggtt catctcttcc ttgtgtattgt actgattttc atgagacaca 480
 agttacttctt ttaacatccat atteccaaag cagggttaca tggtagggaa gaaaggaaatg 540
 tggaggtaact aagctcattt gttctcttcc agcttttacc agcatctaat gtttcaactgc 600
 tttttttcca ttgttagactt taatgcactt gaataaaatc atggagttgt tttttctca 660
 aatgaatttta cacaataaa gactgagatg gtccaaaaaa gggaaagagga agccatttgc 720
 65 gtatatttcac gttgtctgagc ctttctctca tggtaacaa tctgtttttt taattctcg 780
 tagaaataat gtataaatac tctctgaaac catagcagcc ataaacagtg ctggtaaag 840
 atccttatttgc tactccttcc tccccccatt gttgtgagg taaagaaaa caggtcttag 900

taaaatctca	cttttctcct	acttttcatt	tcccaacccc	catgatacta	agtatttgat	960
aagtaccagg	aaacaggggt	tgtaatagtt	ctaactttt	ttgacaattt	ctttgtttt	1020
tctaaacttg	taatagatgt	aacaaaagaa	ataataataa	taatgcccgg	ggctttatta	1080
tgctatatca	ctgctcagag	gttaataatc	ctcactaact	atccttatcaa	atttgcact	1140
ggcagttac	tctgtatgatt	caactccttt	tctatctacc	cccataatcc	caccttaactg	1200
atacacctca	ctggtaactg	gcaagatacg	ctggatccct	ccagccttct	tgcttccct	1260
gcaccagggc	ttcctcactt	tgccttgccc	tcaaagctaa	caccacttaa	accacttaac	1320
tgcattctgc	catttgtcaa	aagtctatga	aatgtttagg	tttctttaaa	ggatcacage	1380
tctcatgaga	taacacccct	ccatcatggg	acagacactt	caagcttctt	tttttgcataac	1440
ccttccccaca	ggtcttagaa	catgtatgacc	actccccccag	ctgcccactgg	gggcagggtat	1500
ggtctgcaca	aggctctggt	ctggctggct	tcacttcctt	tgcacactcg	gaagcaggct	1560
gtccattaat	gtctcggcat	tctaccagtc	ttctctgcca	acccaaattca	catgacttag	1620
aacattcggc	ccactcttca	atgacccatg	ctgaaaaagt	ggggatagca	ttgaaagatt	1680
ccttcttctt	ctttatcgaag	taggtgtt	taatttttagg	tcgaagggca	ttggccacag	1740
taagaacctg	gatgtcaag	ggctctttga	gagggctaaa	gctgcaattt	ctttccaatg	1800
cccgagagga	gccgctgtac	ctcaagacaa	caccttggta	cataatgtct	tgctctaaagg	1860
tggacaaaatg	gtatgtcacc	ttaagaatat	atgtggccatc	agcagctttt	atggcaagaa	1920
agctggcatt	gttctggat	cccccctgtt	tccgctgttt	cacttcgat	tttgtggctc	1980
cagttggat	tgtgtatgata	tcatgtatc	caggtttgc	acttagtaact	gatccctgtata	2040
tttttttaca	agtagatcca	tttccccccgc	aaacaccacaa	tttatcaaaac	ttcttttttgg	2100
agtctatgt	gcgatcacaa	ccagcttttta	caca			

<210> 24
<211> 1626
<212> DNA
<213> Human

<400> 24

30	ggacaatttc	tagaatctat	agtagtatca	ggatatattt	tgctttaaaa	tatattttgg	60
	ttatTTgaa	tacagacatt	ggctccaaat	tttcatactt	gcacaatagt	atgactttc	120
	actagaactt	ctcaacattt	gggaactttg	caaataatgag	catcatatgt	gttaaggctg	180
	tatcatttaa	tgctatgaga	tacattgttt	tctccctatg	ccaaacagggt	gaacaaaacgt	240
35	agttgtttt	tactgatact	aaatgttggc	tacctgttat	tttataatgtat	gcacatgtca	300
	aaaaaaaggca	agacaatgg	cctcttgtac	tgaataacttc	ggccaaactta	ttgggtcttc	360
	attttctgac	agacaggatt	tgactcaata	ttttagtaggc	ttgcgttagaa	tggattacat	420
	ggtagtgtatg	cactggtaga	aatggttttt	agttattgtac	tcaagaattca	tctcaggatg	480
40	aatcttttat	gtcttttat	tgttaagcata	tctgaattta	cttataaaag	atggtttttag	540
	aaagctttgt	ctaaaaattt	ggccctaggaa	tggtaacttc	attttcagtt	gccaaagggt	600
	agaaaaataaa	tatgtgtgtt	gttatgttta	tgttaacata	ttatttaggtt	ctatctatga	660
	atgtattttta	atattttca	tattctgtga	caagcatttta	taatttgcaaa	caagtggagt	720
45	ccatTTtagcc	cagtggaaaa	gtcttggaaac	tcaggttacc	cttgaaggat	atgctggcag	780
	ccatctctt	gatctgtgt	taaactgtaa	tttataagacc	agctaaatcc	ctaactttgga	840
	tctggaatgc	attagttagt	ccttgcacca	ttcccagaat	ttcaggggca	tcgtgggtt	900
	ggtcttagtga	ttgaaaacac	aagaacacagag	agatccagct	aaaaaagagt	gatcctcaat	960
50	atccctaacta	actggtcctc	aactcaagca	gagtttcttc	acttggcac	tgtgtatcatg	1020
	aaacttagta	gaggggattt	tgtgtatttt	atacaaattt	aatacaatgt	tttacatttgaa	1080
	taaaattctt	aaagagaaaa	actgcatttt	atttctgcatt	ccacattcca	atcatatttag	1140
	aactaaagata	tttatctatg	aagatataaa	tggtgacagag	agactttcat	ctgtggattt	1200
55	cgttggttct	tagggttcct	agcactgtat	cctgcacaag	catgtgatat	gtgaaataaa	1260
	atggattttt	ctatacgtaa	atgagttccc	tctggggaga	gttctggta	tgcaatcaca	1320
	atgcccagatg	gtgtttatgg	gtatTTTgtg	taagtaagt	gtaagatgtct	atgaagtaag	1380
	tgtgtttgtt	ttcatctttat	ggaaactttt	gatgcatgt	cttttgtatg	gaataaaattt	1440
	tgtgtcaata	tgatgtcatt	caactttgca	ttgaatttga	ttttgggtgt	atttatatgt	1500
	attatacctg	tcacgcttct	agttgttctca	accattttat	aaccattttt	gtacatattt	1560
	tacttgaaaa	tatTTtaaat	ggaaattttaa	ataaaacattt	gatagtttac	ataataaaaa	1620
	aaaaaaaa						

60 <210> 25
<211> 1420
<212> DNA
<213> Human

<400> 25

gttcagcatt gtttctgctt ctqaaatctq tatagtgacac tqgtttctaa tcattatgtc 60

ttcattgaaa tccttgctac ttcttccct cctcaatgaa agacacgaga gacaagagcg 120
 acacaagctt aaaaaaacg agcaaggaag agtatctca ttattctcat ttctctgag 180
 ttggaaacaa aaacatgaag gactccaact agaagacaga tatttacatt taaataggatt 240
 agtggaaaaa cttaaagagt ttccacatat tagtttcat ttttgagtc aagagactgc 300
 5 tccttgact gggagacact agtagtataat gttgtaatg ttactttaaa attatctttt 360
 tattttataa ggcccataaa tactggtaa actctgtta aagtggcct tctatcttgg 420
 atggtttcac tgccatcgc catgctgata tatttagaaat ggcattccct actacttact 480
 10 ttaatgctta aaattataca taaaatgctt tatttagaaa acctacatga tacagtggtg 540
 tcagccttgc catgtatcag ttcaacttga aatttgagac caattaaatt tcaactgtt 600
 aggggtggaga aagaggactt gaaaaacatg cagatgagga tatctttat gtgcaacagt 660
 atccttgc tgggaggaga gttactctt aaaggccaggc agcttaagtg gacaatgtt 720
 tgtatatagt tgagaattt acgacactt taaaattgt gtaattgtt aatgtccagt 780
 tttgcctgt tttgcctgaa gttttagtat ttgtttctt ggtggacctc taaaaaccaa 840
 15 accagtagctt ggggaggtt gatgtgtgtt tcaggcttgg agtgtatgag tgggtttgt 900
 tggccttgc tccagagatt ttgaacttta ataattgtcg gtgtttttt ttttttttaa 960
 catgagtttggat tttttttctt caagtaaaat tttttttttt tttttttttt aatgtgtt 1020
 tcgacacattt ttttttcagt aacttggaaa ttcaaaaggg acattttgtt aggttactgt 1080
 20 acatcaatct atgcataaaat ggcagcttgc tttttttttt cactgtctaa atttttttt 1140
 tataaaaaattt ttttatactg atttttttttt agatggtcag tttttttttt agactgaaca 1200
 atacagcact ttgcacaaaaa tgagtgttagc attttttaaa cattgtgtgt taacaccctgt 1260
 tctttgtat tgggttgtgg tgcattttgc actaccttgg gttacagttt tcaatctgtc 1320
 agtaaataaa gtgtccctta acttcaaaaaa aaaaaaaaaaa
 25 <210> 26
 <211> 689
 <212> DNA
 <213> Human
 30 <400> 26
 aaacaaacaa aaaaaaagtt agtactgtat atgtaaatac tagttttca atgtgtata 60
 caaaacatta tagcacatcc ttccctttac tctgtctcac ctccttttagg tgagtacttc 120
 35 cttaaataag tgctaaacat acatatacgg aacttggaaag ctttggttag cttgcctta 180
 gtaatcgcg ctatgttaca ctgtttccag ggagtagttg aattactata aaccattagc 240
 cacttgc tgcaccattt atcacaccag gacagggtct ctcaacctgg gcgctactgt 300
 cattttgggc cagggtgatc ttcttgcac gggctgtctt gtacctgccc gggggccgc 360
 tcaagcgtg gtcgcggccg aggtactgaa aggaccaagg agctctggct gcccctcagga 420
 40 attccaaatgt accgaaggaa caaagcttca gggctctggg tgggtctcc cactattcag 480
 gaggtggtcg gaggttaacgc agtttcat tttttttttt cgtccagtttcc taaaaggttt 540
 tgtcaagatg ctgcattaaa tcagggcagg tttttttttt ctacaaaggc atcccaagca tcaaacatgt 600
 ctgtgtatgaa gtaatcaatg aaacacccgga acctccgacc acctcctgaa tagtggaga 660
 cacacccaga gcctgaagtt tttttttttt
 45 <210> 27
 <211> 471
 <212> DNA
 <213> Human
 50 <400> 27
 tccccagccgc atgaagtttgg agattggcca ggccctgtac ctgggcttca ttctcttctgt 60
 ccctctcgct cattgggtgc accctgtttt gctgtctcg ccagggcagag gcaccctaca 120
 55 agccctaacc caggccccgc ccagggccac caccgttgc caccgttgc caccgttgc 180
 ccagccacca gtcgcctaca aagacaatcg ggcccttca gtgcacccgg ccaccacagc 240
 ggttacaggc tgaacgacta cgtgtgatc cccacaggtt gtttctccccc tgggtctgt 300
 tgggtctgggtt cccggccggc ctgtcaatgg aggcagggtt tccagcacaa agtttacttc 360
 tgggtatccaa ggaaataatg tgaatgcgag gaaatgtctt tagagcacag 420
 60 ggacagaggg ggaaataaga ggaggagaaa gctcttata ccaaagactg a
 <210> 28
 <211> 929
 <212> DNA
 <213> Human
 65 <400> 28

```

ggtaactca gtgcattggg ccaatggtc gacacaggct ctgccagcca caaccatcct 60
gctgtttctg acgggttggc tgctggggg cttttccctc actgtcattt gaggcatctt 120
tgggaagaac aacgccagcc ccttgatgc accctgtcgc accaagaaca tcgcccgggaa 180
gattccaccc cagccctggt acaagtctac tgtcatccac atgactgtt gagggttctt 240
gccttcttgt gccatcttg tggagctgta ctacatcttt gccacagtat ggggtccgggaa 300
gcagtagtact ttgtacggca tcctttttt tgtttcgcc atcctgttga gtgtggggc 360
ttgcattctcc attgcactca cctacttcca gttgtctggg gaggattacc gctgggttgt 420
gcatctgtt ctgagtgtt gctccaccgg cctttcatc ttcttctact cagttttcta 480
ttatgccccg cgcttcaaca tgcgttggggc agtacagaca gttagttct tcgggtactc 540
cttacttact gtttatgtct tcttcctcat gctgggcacc atctcctttt tttctccct 600
aaagtttcatc cggtatatct atgttaacct caagatggac tgagttctgt atggcagaac 660
tattgtcttt ctctccctt cttcatggcc tggtaactc ttcttaccaggc ttcttctctg 720
attgactgaa ttgtgtatgat gcattgttg cttccctttt tccctttggg cattcttcc 780
ccagagaggg cctggaaattt ataaaatctt atcacataag gattatatat ttgaactttt 840
taagttgcct ttgttttgg tcctgatttt tctttttaca attacaaaaaa taaaattttat 900
taagaaaaaa aaaaaaaaaa aaaaaaaaaa

```

20 <210> 29
<211> 1775
<212> DNA
<213> Human

<400> 29

	gaacgtgtat	ggaactttgg	gaggatgtct	gagaaaatgt	ccgaaggat	tttggccaac	60
	accagaaaaac	gccaatgtcc	taggaattcc	ctccccaaat	gctcccaa	aaattactca	120
	ttgacaattc	aaattgcact	tggctggcg	cagcccggc	ggccctcagt	ccgtgtggg	180
	cggccgcgt	gccttcct	cgttagactc	cccaaactcg	ttcaactctgc	gtttatccac	240
30	aggataaaagc	caccgcttgt	acaggttagac	cagaaacacc	acgtcgccc	ggaagcaggc	300
	cagccggta	gacgtggca	tggtgatgat	gaaggcaaaag	acgtcatcaa	tgaaggtgtt	360
	gaaagcctt	taggtgaagg	ccttccagg	catatgtgcc	actgacttca	acttgttagtt	420
	cacaagagc	tggggcagca	tgaagaggaa	accaaaggca	tagacccgt	tgacgaaagct	480
35	gttgattaac	caggagtacc	agctcttata	tttgatattc	aggagtgaat	agacagcacc	540
	cccgacacag	agagggtaca	gcaggatata	caagtacttc	atggcctgag	tatcgtaactc	600
	ctcggttttc	ctctcagatt	cgtgttaagt	gccaaaactga	aattcgggca	tcaggcctct	660
	ccaaaaataa	gtcatcttca	atgccttctt	cactttccac	agctcaatgg	cggctccaaac	720
40	acccgcccgg	accagcacca	gcaggctgt	ctgtctgtcc	agcaggaaaca	gaaagatgac	780
	cacgggtctg	aagcagcgcc	agagactgtc	cttggtgac	atggcgatca	tgctctttt	840
	cttcttccag	aaactgtatgt	cattttaaa	ggccaggaaa	tcaaaagagaa	gatggaaacgc	900
	tgcgacaaag	aaggtcagcg	ccaggaagta	taagttgtt	tctacaaaaaa	ttcttttcac	960
	ctcatcagca	tctttctgt	aaaacccgaa	ctgtctgcaagg	gagtagacacgg	cgtcctgcata	1020
45	gtggatccag	aagcgcagcc	gccccagtga	gaccctgtcg	taggacacgg	tgaggggcag	1080
	ctcggtgttg	gagcggtta	tgaccatcg	gtccttcacg	cggtgtctga	gctggtcgat	1140
	gaacaggatg	ggcaggtaat	gcacgggttt	ccccagctgg	atcatcttca	tgtacccatg	1200
	cacatcgcc	ggcagggagg	acccgtcaaa	gacaaggatg	tccgccccatca	cgttcagcgc	1260
	cagccgcgt	cgccagtgg	acactggctc	atccaggggca	ctcgctggct	tcttctccgc	1320
	ctcgatctgc	tgtgtatcag	actcccccgt	gagcaggttg	attttttctgt	gcttggggac	1380
	catgttaggt	gtcagaggac	tgaccagg	cacctgttcc	ccgtctgtcc	acggcaggac	1440
50	cccaagcgt	tggaggaaga	tgttaggcata	cagegttcca	ttgtttctcg	tttttcttttg	1500
	tacagaaaaca	ttaactgtcc	tttcaattt	ggactccaca	tcaaaatgttt	ccacattcaa	1560
	gaccaggatc	atgttgttct	cagcacccag	gtgggaccc	gtcggtgtt	acacgctcag	1620
	ctgcagctt	ggccgcgcgc	ccaggttaggg	ctggatgcag	ttggctgcgc	cggacacgg	1680
	gccccgttag	acgatgcgt	acatgacc	gcaggtgtgc	accacgtaga	ccacgaacac	1740
55	gcccaccacc	aagctggta	aggagctgc	gcccc			

60 <210> 30
<211> 1546
<212> DNA
<213> Human

<400> 30

65 aaaataagta ggaatggca gtgggtattc acattcacta cacctttcc atttgctaat 60
aaggccctgc caggctggga gggaaattgtc cctgcctgct tctggagaaa gaagatattg 120

acaccatcta cgggcaccat ggaactgctt caagtgacca ttctttttct tctgccccagt 180
 atttgcagca gtaacagcac aggtttta gaggcagcta ataattact tttttttact 240
 acaacaaaac catctataac aacacccaaac acagaatcat tacagaaaaa ttgtgtcaca 300
 ccaacaactg gaacaactcc taaaggaaca atcacaatg aattacttaa aatgtctctg 360
 5 atgtcaacag ctacttttt aacaagtaaa gatgaaggat tgaaagccac aaccactgat 420
 gtcaggaaga atgactccat catttcaaac gtaacagtaa caagtgttac acttccaaat 480
 gctgttca a cattacaag ttccaaaccc aagactgaaa cttagagttc aattaaaaca 540
 acagaaatac caggttgt tctacaacca gatgcacac cttctaaaac tggtacatta 600
 acctcaatac cagttacaat tccagaaaaac acctcacagt ctcaagtaat aggcaactgag 660
 10 ggtggaaaaa atgcaagcac tttagcaacc agccggctt attccagttat tttttgcgc 720
 gtggttattt ctttgattgt aataacactt tcagttttt tttctggggg tttgtaccga 780
 atgtgttggg aggccatcc gggcacacca gaaaatggaa atgatcaacc tcagttgtat 840
 aaagagagcg tgaagcttct taccgttaag acaatttctc atgagtctgg tgagcactct 900
 15 gcacaaggaa aaaaaaagaa ctgacagttt gggggggctc cttccacacca aggcaataat 960
 tacgcttaat ctttagctt tatgcaccaa gctgtggaaa ggagaaagtc ctgcagaatc 1020
 aatcccact tccatatactg ctgtggact gtaccagacg tctgtcccg taaagtgtat 1080
 tccagctgac atgcaataat ttgtggaaat cttttttttt tttttttttt 1140
 tcacatttaa aaattccatt actccattttt cttttttttt cttttttttt 1200
 gaggagaatt tttttttttt tttttttttt 1260
 20 actttccctt atgtttaaag tttttttttt 1320
 cttttctcggt tttttttttt 1380
 gcaaggaaaa gttgcacgtg tattttttttt 1440
 gtacatataa gtattttttt cttttttttt 1500
 25 aatactctaa aaatactata acatgactgt gaaaatggca aaaaaa
 <210> 31
 <211> 750
 <212> DNA
 <213> Human
 30 <400> 31
 cacttggca cccccatttt caaaaaaaaat ggaaatctgg agggcaaaaaa aggtgtctg 60
 35 aagggaagtg cctctgtatgg cccaaaaaacc ttcttccaaa ctatgttggg aatggatgg 120
 atagcaaatg gatcctttt ggcctccccc ggagcatgcc ttccctatct tttttttttt 180
 cccactaaag cagaacgtt cggatatttc tttttttttt 240
 aacagccctt ccctaaattgg aaaatgcagt tttttttttt 300
 tgtacatgtc tgcttattttt aattttttttt 360
 cttttttttt 420
 cttttttttt 480
 40 cttttttttt 540
 gttttttttt 600
 actgccccatc ggtttttttt aaaaaaaatgg 660
 tttttttttt 720
 45 gttttttttt 780
 <210> 32
 <211> 1620
 <212> DNA
 <213> Human
 50 <400> 32
 gcaattcccc cctcccaacta aacgactcccc agtaattatg tttacaaccc attggatgca 60
 55 gtcagccat tcataagaac cttgggtcccc cggaaaaatc tttttttttt ggtaccaaac 120
 ctgagggtttt ttggaaagata atgtggaaaaa ccactactt ttggggccct tttttttttt 180
 atctgtgca aactctgtatg tactgtccctt atgtggatcc tttttccacac tttttttttt 240
 ttttggatgg aagactttttt aactttttt aatgtttttt 300
 atgttctggg tttttttttt cttttttttt 360
 aaaaaaaaaact ttttggatgg aaaaaaaaaa aatggatgg aatggatgg 420
 60 aaaaaaaaaact ttttggatgg aaaaaaaaaa aatggatgg aatggatgg 480
 cgtggcatt tggactcaat gaaaaggggca cttttttttt 540
 tccataattt tcacacacata acagttccctt tttttttttt 600
 gggttttttt ttcaggccac atccttggcc atttttttttt 660
 attggatgg cacaggaaac cgaatccat ggggtccctc cccttgggg tttttttttt 720
 tggagttgtg cacaaaaaattt aggtcatgcc ttcatgttcc tttttttttt 780
 65 tgacaatctg tgctaatgtt tttttttttt 840

gtgttcctcc taggttggaa gaaatgtc ttcccttatac tgggtccgt taaaagcggt 840
 gtcagttgtg tccttcacc tcgattttgtg aattaataga attggggggg gaggaaatga 900
 tgatgtcaat taagtttag gtttggcatg atcatcatc tcgatgatat tctcaacttg 960
 5 tcgcaaatct gcccattatcg taagaacaag tttcagaatt ttccctccac tatacgactc 1020
 cagtattatg ttacaatcc attggatgag tgcagcatta taagaccttg gtgcccagaa 1080
 aaatctgtcc ttttttgtac caaacctgag gtcttttggg agataatgtg gaaaaccact 1140
 acctattgaa ggcctgttt ggctaattctg tgcaaaactct gatgataacct gcttatgtgg 1200
 attctttcc acactgctt catttttaag tataaaagact tagaaaaacta gaataatgt 1260
 tttacaataa attaaaagta tttttttttt ctttctttt tttttttttt agaaccctgt 1320
 10 attttaaacaa gccttcattt taagtcttgc ttgaaatttta agtctcagat ctctggata 1380
 ccaaatacaa aacccaacgc gtaaaacagg gcagtatttgc ttatgttgc 1440
 ttatgtata ctctataat atagatgttca aaacaacact tcccttgc tagcacatca 1500
 acatacaggca ttgtacatttta caatggaaat gtgtacttta agggtattat atatataat 1560
 15 acatataatac ctttgcattttaaaat ttatgtactgt aaataaaaaaa gttgttttag tcaaaaaaaaa 1620

<210> 33
 <211> 2968
 <212> DNA
 <213> Human

20 <400> 33

gaaaaaagttag aagggaaacac agttcatata gaagtaaaag aaaaccctga agaggaggag 60
 25 gaggagggaa aagggaaaga agaagatgaa gaaagtgaag aggaggaggga agaggaggga 120
 gaaagtgaag gcaagtgaagg tgatgaggaa gatgaaaagg tgtagatgtg gaaggattca 180
 gggaaagacat tagataaaaaa gccaaggtaaa qaaatgagct cagattctgtg atatgactct 240
 gatgatgatc ggacttaaga agaaaagggt tatgacaaaag caaaacggag gattgagaaa 300
 cggcgacttg aacatagtaa aatgttaaac accgaaaagc taagagcccc tattatctgc 360
 30 gtacttgggc atgtggcac agggaaagaca aaaattcttag ataagctccg tcacacacat 420
 gtacaagatg gtgaagcagg ttgtatcaca caaaaaatttgc ttatgttgc 480
 gaagcttata atgaacagac taagatgatt aaaaatttttgc ttatgttgc 540
 ccaggaatgc taattattga tactcctggg catgaatctt tcagtaatct gagaatata 600
 ggaagctctc tttgtgacat tgccattttt gttgttgc ttatgttgc 660
 35 cagacaattt agtctatcaa ccttctcaaa tctaaaaat gtccttcat tggtgcactc 720
 aataagatgtt atagggttata tgattggaaa aagagtctg actctgttgc ggctgtact 780
 ttaaagaagc agaaaaagaa tacaaaagat gaatttgagg agcagacaaa ggctattatt 840
 gtagaattttt cacagcaggg tttgaatgtc gctttgtttt atgagaatata agatccccgc 900
 acctttgtgt ctgttgc tacatctgtc catactgttgc atggcatggg aagtctgtc 960
 40 taccttcttg tagagttaa acgacccatg ttgagcaaga gacttgcaca ctgtgaagag 1020
 ctgagagcac aggtgttgc ggtttaaagcttccggg tggcaccac tataatgtc 1080
 atcttgcattca atggcggtt gaagggaaagca gatacatca ttgttgcattgg agttagaagg 1140
 cccattgtaa ctcagattcg aggcctctg ttaccttcctc ctatgttgc attacgatgt 1200
 aagaaccagt atgaaaagca taaaagaatgta gaagcagtc agggggtaaa gatttttgg 1260
 45 aaagacctgg agaaaaacatt ggctgggtt cccctcttgc tggttataaa agaagatgaa 1320
 atccctgttc ttaaagatgtt atgtatccat ggtttaaagc agacactaaa tgctatcaa 1380
 tttagaaagaaa aaggagtcta tgccaggca tctacactgg gtttttttttgc agtctactg 1440
 gaatttctga aaacatcaga agtgcctat gcaggaatttta acattggccc agtgcataaa 1500
 aaagatgtt tgaaggcttc agtgatgttgc gaacatgacc ctcagatgtc agtaatttttgc 1560
 50 gcttgcattgt tgagaatttgc acgagatgtca caagaaatgg ctgtatgtttt aggagtttgc 1620
 atttttgtgt cagaaatttgc ttatcattttt tttgttgc ttacaaaata tagacaagac 1680
 tacaagaaac agaaaacaaga agaatttttgc cacatcgatg tattttctgc caagataaaa 1740
 atccctccctc agtacattttt taatttctgtca gatccgtatg tgatgggggtt gacgggtggaa 1800
 gcaggttcagg tggaaacaggg gacaccatg tttgttgc ttatgttgc tggttgcatttgc 1860
 55 ggaatagttaa caagtatttgc aataaaccat aaacaatgg agtttgcataa aaaaggacaa 1920
 gaagtttgc taaaatataa acctatccctt ggtgagtcac cccaaatgtt tggaaagacat 1980
 tttgaagcttca cagatatttgc ttgttagttaa atcagccgc agtccattgtc tgactcaaa 2040
 gactgggttca gagatgttgc gacaaagatg gactggcagc ttatgttgc gctgttgc 2100
 gtatgttgc tcatctaaattt ttttgcatttgc gacggaaac tggagttaaat gcaatactgt 2160
 gttgttgcattt cccaaacaaa atcagacaaa aaatggaaaca gacgttgc gacactgt 2220
 60 gacttaagta tggaaaggaa aaaaataggt gtataaaatg ttttgcattgtc gaaaccaaga 2280
 aacttacact ggtttgcacag tggcattgtc catgtccca cagttccatg tgccctgttc 2340
 actcacccctc cccttccca acccttctctt acttggctgc ttttttttttgc ttatgttgc 2400
 cccaaattttgc gattttttgc acgatcttgc agtcttgc attttataact gattaaatca 2460
 gtaactgttgc ttttgcatttgc ttttgcatttgc gacgttgc gtttttttttgc 2520
 65 gtaactgttgc ttttgcatttgc ttttgcatttgc gacgttgc gtttttttttgc 2580
 ttttgcatttgc gtttttttttgc 2640

agctgcttgc	tgtgaaacca	tggtgtaaaa	gcacagctgg	ctgctttta	ctgcttggt	2700
agtacgagt	ccattgtaat	catcacaatt	ctaaaccaaa	ctaccaataa	agaaaacaga	2760
catccaccag	taagcaagct	ctgttaggct	tccatggta	gtggtagct	ctctccacac	2820
agttgtcctc	ctaggacaag	gaattatctt	aacaaactaa	actatccatc	acactacatt	2880
ggtatgccag	cacctgggta	acagtagggag	attttataca	ttaatctgat	ctgtttaatc	2940
tgatcggtt	agtagagatt	ttatacat				

<210> 34

<211> 6011

10 <212> DNA
<213> Human

<400> 34

15

acgggggcgc	ggacgaccgg	cacatcttat	cctccacgccc	ccactcgcac	tcggagcggg	60
accgccccgg	actccccctc	ggggccggca	ctcgaggagt	gaggagagag	gccgcggcc	120
cggcttgagc	cgagcgcage	accccccggg	cccccgccca	gaagtttggt	tgaaccgggc	180
tgccgggaga	aacttttttc	tttttcccc	ctctcccggg	agagtctctg	gaggaggagg	240
ggaactcccc	cggcccaagg	ctcggtggct	cggggtcgcg	cgccgcaga	aggggcgggg	300
tccgccccgg	aggggaggcg	ccccccggga	cccgagaggg	gggtgaggac	cgcggtgtc	360
tggtgtcgcc	gccccgacgt	gtccccggcg	caggggaggg	gccgcggcc	tcccgccccc	420
gctgcgagga	ggaggcggcg	gccccgcacgg	aggatgtact	tggtggcggg	ggacaggggg	480
ttggccggct	gccccgcacct	cctggtctcg	ctgctggggc	tgctgtctgt	gccccgcgc	540
tccggcaccc	ggggcgtgg	ctgcctgccc	tgtgaacgagt	ccaagtgcga	ggagccagg	600
aaccggccgg	ggagcatcg	gcagggcg	tgccgtgtct	gtacacacgt	cgccagccag	660
gggaacgacg	gctgcggcg	cacccctcggg	atttacggaa	ctcgcgaccc	ggggctgcgt	720
tgtgtcatcc	cccccccgct	caatggcgcac	tccttcaccc	agtacgaagc	gggcgtttgc	780
gaagatgaga	actggactga	tgaccaactg	cttgggtttt	accatgc当地	tgaaaaccc	840
attgtctggct	gcaatataat	caatgggaaa	tgtgaatgt	acaccatcc	aacctgc当地	900
aatcccttgc	agtttccaag	tcaggatatg	tgccttcag	ctttaaagag	aattgaagaa	960
gagaagccag	attgtccaa	ggcccgtgt	gaagtccagt	tctctccaccc	ttgtctgaa	1020
gattctgttc	tgatcgaggg	ttatgtctct	cctggggagt	gtgtccctt	acccagccgc	1080
tgcgtgtca	accccgcagg	ctgtctgc	aaagtctgccc	agccgggaaa	cctgaacata	1140
ctagtgtcaa	aagcctcagg	gaagccggga	gagtgtgt	acctctatga	gtgcaaccca	1200
gttttccggc	tggactgcag	gactgtggaa	tgccctactg	ttagcagac	cgcgtgtccc	1260
ccggacagct	atgaaactca	agtca	actgcagatg	tttgcgtgtac	tttgc当地	1320
agatgcgag	gtctctctgg	cttatgtgt	ttccccgtgt	gtgaggtggg	atccactccc	1380
cgcatagct	ctcggtggca	tggcacaccc	ggaaagtgt	gtgtatgtctt	tgaatgtgtt	1440
aatgataca	agccacccgt	cgatattaa	aatgtggaa	attatgtgg	agacatgtt	1500
cgaatggaca	actgtcggt	ctgtcgatgc	caagggggcg	tttgc当地	tttgc当地	1560
cagtgtgggt	agataaaactg	cgagggat	ta	ctgccc当地	ctgccc当地	1620
tgtgaagatc	cagtgtatcc	tttataata	cccgctggct	gtatgccc当地	ttggc当地	1680
ttggcccacg	gagaccgggt	gccccggag	gactgc当地	tgc当地	ctgtcaacgg	1740
gaacgc当地	gcgttgc当地	cg	cagacccgt	caaaccctgt	gaaagtgc当地	1800
ggggaggttt	gccctgtgt	cgaa	accatcatca	cagtgtatcc	acctgc当地	1860
ggggagttat	caaactgcac	tctgacacgg	aggactgc当地	ttaatggg	caaacgc当地	1920
cacaatgggt	gtcgaccc	tcagtgcata	aacacc	actatgtt当地	agaacgtaaa	1980
caaggctgca	ccttgaactg	tccttc	ttcctactg	atgccc当地	ctgtgagatc	2040
tgtgagtgtc	gccccaggcc	caaga	agaccata	tctgtgacaa	gtattgtcc当地	2100
cttggatgtc	tgaagaataa	gcacggctgt	gacatgt	gtgtaa	atgtccagag	2160
ctctcatgca	gtaagatctg	cccccttggg	ttccagcagg	acagtaccc	ctgtctt当地	2220
tgc当地	gagggcctc	tgctt	ggccacccca	ttctgtcg	cacttgc当地	2280
acccgtgt	gtcatcatca	aaaaatgag	gagactg	acgatgggt	ccggaaatgc当地	2340
tactgtctca	atggacggg	aatgtgt	ctgatcac	ccccgggt	tgc当地	2400
aaccccca	ttcaccc	acagtgt	ccatcatgt	catgact	tgtggtgc当地	2460
aagccagac	tcagactcc	etccat	cacgc当地	gaggagaata	cttgg	2520
ggagaaaacgt	ggaacattga	ctctgtact	cagtgcac	gccccggcc	acgggtgtc当地	2580
tgtgagacag	agggtgtccc	accgtgtc	tgccagaacc	cctcac	ccaggattcc当地	2640
tgctgcccac	agtgtacaga	tcaac	cgcccttct	tgtccc当地	taacagegt当地	2700
cctaattact	gcaaaaatga	tgaagggat	atattctgg	cagctgagtc当地	ctggaagaccc当地	2760
gacgtttgt	ccagctgcat	ctgcatt	agcgtat	gtgtttctc当地	tgagtcc当地	2820
ccttctgtat	cctgtgaaag	acctgtctt	agaaaaggcc	atgtttgtcc当地	ctactgc当地	2880
aaagacaccaa	ttccaaagaa	ggtgtgt	cacttc	ggaaggccct	tgccqacqag当地	2940

5	gagcggtggg accttgcac agtccacccac tgctactgccc tgcaaggccca gaccctctgc 3000 tcgaccgtca gtcgcccccc tctggccctgt gttgagccca tcaacgtgga aggaaggc 3060 tgcccaatgt gtccagaaat gtatgtccca gaaccaacca atatacccat tgagaagaca 3120 accatcgag gagagggttga cttggaggtt cccctgtgca ccacgcctag taaaatgtat 3180 atcgccatc tcccttagaga tatgggtcac ctccaggttag attacagaga taacaggctg 3240 caccctaaatg aagatttttc actggactcc attgcctcgt ttgtggttcc cataattata 3300 tgccctctcta ttataatgc attccttattc atcaatcaga agaaacagtg gataccactg 3360 ctttgtgtgt atcgaacacc aactaagccct tcttccttaa ataatcagct agtatctgt 3420 gactgtcaaga aaggaacccag agtccaggtg gacagtccc agagaatgtc aagaattgca 3480 gaaccatgtg caagatttcg tggcttctac agcatgc 3540 gacaattttctt accaaacagt gtgaagaaaag gcaacttaga tgaggttca aaagacggaa 3600 gacgactaaatc tctgcttcaa aaagtaactt agaattttgtg cacttgctt 3660 ttggatttgtg acttgatgtt cagcgctaa accttactgg gatgggtctt 3720 atgtgcagaa caagcattcc cacttttctt caagataact gaccaagtgt tttcttagaa 3780 ccaaagtttt taaagttgt aagatataattt tgcctgttaa atagctgttag agatattttgg 3840 ggtggggaca gttaggttgg atggggaaag gggtgggagg gtgggttgg 3900 tggtcagctt ggctcgggga gaaacctggt aacataaaag cagttcagtg gcccaggg 3960 tatttttttc ctattgtctt gaagactgca ctgggttgc 3970 gcaggaaaca aaaaggccct tgcgaccctt cttttttttt 4020 agcacatcg aaccctttga cagccatccc aggtctaaag ccacaagttt 4080 cagtccaaac tgcagtaggc agtgaggaag ccagagaat gcgatagcgg 4140 aagcggttta ttaaggatatacagttac actttttgtt 4200 caatcaatca gccagttctt agcagagtc 4260 atgtgagcac tggagctttt ttttttaca acgtgacagg 4320 gaacaccagg cattttcagg gcttatattt cactgtttgt 4380 ttgttgggtt ttcatagtttt ttgttgaage tctatgtttt 4440 gactgtttgg ggattttttt tccttattat atactgattc 4500 attttaattt tatatttttca aagcaccctt 4560 aaacttttagc aattatagga gtattttatgt 4620 tttgcata tttttttttt 4680 tttgcata tttttttttt 4740 ttttttccctg ttgaatgtat tttatgaga ttttaccag 4800 cattccatag cagtgtttt gatcaacttac 4860 tacctgtcagt ttaattggaa agatgtgtgt 4920 gtgtgtgcgc ggcacccac gccttgagca 4980 attcttttat taaaatctt ctcattttga 5040 ctggccagag acattgtat cgttctt 5100 ttttttttttt tcaaacaatgt gtttggaaaca 5160 aagtttggtt tagtgcctt caaatataac 5220 acagcccttta gcacttttat actaattaac 5280 tgcttgggtt gaaagacaca gataccctgt 5340 ttttgtaaag gaactttca gtttgggtt 5400 aaaaaaattt atttattttt ataatgacct 5460 ttgtctttaga atatcaaaaa gaaaaagaaaa 5520 aaaaagattt attatcaagg ggcaatattt 5580 tacattacaa aaatagattt acatcagccct 5640 cattccctggc ataaaaaggc tttatcaaaaa 5700 caatcatggc catattatgtt aaataactaac 5760 tttattttttaa aagatgtt gtttccctgt 5820 tcctgtgtgt ctcttggaaa agaaaaatattt 5880 cacttggagt gcatcatgt tctacagttt 5940 gaattatctg caacttgattt cttggcagga 5940 aaaaaaaaaaa a 6000
---	--

55 <210> 34a
<211> 1036
<212> DNA
<213> Human

60 <400> 34a

65 mylvagdrgl agcghllvsl lgllllpars gtralvcpc deskceeprn rpgsivqgvc 60
gcytcasgg nescggtfgi ygtcdrglrc virpplngds lteyeagvc denwtddql 120
gfkpcnenli agcniingkc ecntirtcsn pfefpsqdmc lsalkrieee kpdcskarce 180
vqfsprcped svliegyapp geccplpsrc vcnpagclrk vcqpqnlil vskasqkoge 240

ccdlyeckpv fgvd crtvec ptvqqtacpp dsyetqvr1t adgcctlptr ceclsglcgf 300
 pvcevgstpr ivsrgdgtpg kccdvfecvn dtkpacvfnn veyydgdmfr mdncrfcrcq 360
 ggvaicftaq cgeinceryy vpegeccpvc edpvypfnnp agcyanglil ahgdrwredd 420
 5 ctfccvngc rhcvatvcgq tctnpvkvpg eccpvccept iitvdppacg elsnctltrk 480
 dcingfkrdh ngrtcqcin tqelcserkq gctlncpfgf ltdaqnceic ecrprpkcr 540
 piicdkycpl gllknkhgcd icrckkcpel scskicplgf qqdshgclic kcreasasag 600
 ppilsgtclt vdghhhknee swhdgcrecy clngremcal itcpvpacgn ptihpgqccp 660
 scaddfvvqk pelstpsich apgeyfveg etwnidscsq ctchsgrvlc etevcppllc 720
 10 qnpsrtqdsc cpqctdqfpf ps1srnnsvp nyckndegdi flaaeswpd vctscicids 780
 viscfsescp svscerpvlr kgqccpycik dtipkkvvch fsgkayadee rwldlscth 840
 yclqqqtcls tvscpplpvc epinvegscs pmcpemvpe ptnipiektn hrgevdlevp 900
 lwptpsendi vhlpdmghl qvdyrdnrlh psedssldsi asvvvpiic lsiiiaflfi 960
 nqkkqwipll cwyrtptkps slnnqlvsd ckkgrvqvds ssqrmlriae pdarfsgfys 1020
 15 mqkqnhlqad nfyqtv

<210> 35
 <211> 716
 <212> DNA
 20 <213> Human

<400> 35

25 gcagtacctg gagtgtcctg cagggggaaa gCGAACCGGG CCCTGAAGTC CGGGGCAGTC 60
 acccgggget cctggggccgc tctgcccggc tggggcttag cagcgatcct gctttgtccc 120
 agaagtccag agggatcagc cccagaacac accctctcc ccgggacgcc gcagctttct 180
 ggaggcttag gaaggcatga agagtggct ccacctgtg gccgacttagaaa 240
 30 ccagaactcg gtcctatTTT acagatttag aaactatgg tcaagaagag aggacgggc 300
 ttgagggaat ctcctgattc tccttatATG acctcaaaACT gaccatacta aacagtgttag 360
 aaggctttta taaggctcta aatgtcaggg tctcccatcc cctgatgcct gacttgtaca 420
 gtcagtgtg agtagacggg ttctccacc cagggttgac tcagggggat gatctgggtc 480
 35 ccattctgtt cttaaagcccc caaaacaaggg tttttcage tccaggatct ggagcctcta 540
 tctggtttagt gtcgtaacct ctgtgtgcct cccgttaccc catctgtcca gtgagctcag 600
 ccccatcca cctaacaggg tggccacagg gattacttag ggttaagacc tttagaactgg 660
 gtctagcacc cgataagagc tcaataaaatg ttgttcctt ccacatcaaa aaaaaaa

<210> 36
 <211> 395
 40 <212> DNA
 <213> Human

<400> 36

45 ccaatacttc atttttcatt ggtggagaag attttagact tctaaacatt ttccaaataaa 60
 aaaagctatg atttgcatttc caacttttaa acattgcatttgccttgcctttactacat 120
 tctccaaaaaa aaccttgaaa tgaagaaggc cacccttaaa atacttcaga ggctgaaaat 180
 atgattatta cattggatc ctttagccta tgtatattt cttaactttt gcaacttcac 240
 50 gcccagttaaa accaaagtca ggttaaccaa tgctttaaaatgtta aaaccctaat 300
 tgcaagtccct tttttaaattt attttaaaga ttacttaaca acatttagaca gtgcaaaaaaa 360
 agaagcaagg aaaggattct taatttctacc atcct

<210> 37
 <211> 134
 55 <212> DNA
 <213> Human

<400> 37

60 ccctcgagcg gcccgggg caggtacttt taccaccgaa ttgttcactt gactttaaaga 60
 aacccataaa gctgcctggc tttcagcaac aggcctatca acaccatggt gagtctccat 120
 aaggcacacc gtgt

65 <210> 38
 <211> 644
 <212> DNA

<213> Human

<400> 38

5	aaggcctgttgc	tcatggggat	ggtgtggcg	cttggtgcc	actggcgcc	gaggtagagg	60
	cagtggcgct	tgagttggtc	ggggggcagcg	gcagatttga	ggcttaagca	acttcttccg	120
	ggaagagtg	ccagtgcagc	cactgttaca	attcaagatc	tttatctata	tccatagatt	180
	ggaatattgg	tgggccagca	atccctcagac	gcctcactta	ggacaaatga	ggaaaactgag	240
	gcttggtgaa	gttacgaaac	ttgtccaaaa	tcacacaact	tgtaaagggc	acagccaaga	300
10	ttcagagcca	ggctgtaaaa	ataaaaatga	acaaattacg	gcaaagttt	aggagaaaaga	360
	aggatgttta	tgttccagag	gccagtcgtc	cacatcagt	gcagacagat	gaagaaggcg	420
	ttcgcaccgg	aaaatgtagc	ttccccgtta	agtaccttgg	ccatgtagaa	gttgtatgaat	480
	caagaggaat	gcacatctgt	gaagatgtcg	taaaaaagatt	gaaagctgaa	aggaagttct	540
	tcaaaggctt	ctttggaaaa	actggaaaga	aaggcgttta	agcagttct	gtgggtctaa	600
15	gcagatggac	tcaagaggttg	tggatggaaaa	actaaaggacc	tcat		

<210> 39

<211> 657

<212> DNA

20 <213> Human

<400> 39

25	cttttgggtt	gggttttcca	atgttagatgt	ctcagtgaaa	tgtgcagata	tactttgttc	60
	cttatatggt	caccagtgtt	aattatggac	aaatacatta	aaacaagggt	tcctggccca	120
	gcctcccatc	taatctcttt	gatactcttg	gaatctaagt	ctgaggagcg	atttctgaat	180
	tagccagtgt	tgtaccaact	ttctgttagg	aattgtattta	gaataaacctt	tcttttcaag	240
	acctgctcag	tgagacatct	tggggaatga	agtaggaaaa	tagacatttg	gtggaaaaaac	300
30	agcaaaatgt	gaacattaaa	aagactcatt	caagtatgag	tataaaaggc	atggaaaattc	360
	tggtcctttg	agcaaaatga	gaaaaaaaaa	ttctgctcag	cagtattcac	tgtgttaaga	420
	ttttttgtt	tttacacgaa	tgaaaaaaatg	atgtttaagt	ggtagatgatt	ttaatcagct	480
	aacagtcact	ccagagattt	tgatcagcac	caatttcctat	agtagtaagt	atttaaaatgt	540
	taagaatatac	tactacattt	aacattataa	agtagagttc	tggacataac	tgaaaatttag	600
25	atgtttgctt	caatagaaat	ttgttcccac	ttgtatttc	aacaaaattta	tcggacac	

210 40

210 40
211 1328

<211> 1520

<212> DNA

<400> 40

45	acaattttaa	aataactagc	aattaatcac	agcatatcg	aaaaaaagtac	acagtggatt	60
	ctggtagtt	ttttaggct	cattatgggt	agggtcgta	agatgtatat	aagaacctac	120
	ctatcatgct	gtatgtatca	ctcattccat	tttcatgttc	catgcatact	cgggcatcat	180
	gctaataatgt	atccttttaa	gcactctcaa	ggaaaacaaaa	gggcctttta	tttttataaaa	240
	ggtaaaaaaaaa	atcccccaaa	tatTTTgcac	tgaatgtacc	aaaggtgaag	ggacattaca	300
50	atatgactaa	cagcaactcc	atcaacttgag	aagtataata	aaaaatagct	tctaaatcaa	360
	acttccttca	cagtggcg	tctaccacta	caaggactgt	gcatctaagt	aataatTTT	420
	taagattcac	tatATgtat	agtatgtat	gcattttttt	aaaatgcatt	agactcttt	480
	ccatccatca	aatactttac	aggatggcat	ttaatacaga	tatttctgtat	ttccccccact	540
	gctttttatt	tgtacagcat	cattaaacac	taagctcagt	taaggagcca	tcagcaacac	600
	tgaagagatc	agtagtaaga	attccatttt	ccctcatcg	tgaagacacc	acaaaattgaa	660
55	actcagaact	atattttctaa	gcctgcattt	tcaactgtgc	ataatTTTCT	tagtaatTT	720
	aagagacagt	ttttctatgg	catttccaaa	actgcatgc	atcaactagtc	ttacttctgc	780
	ttaattttat	gagaaggat	tcttcatttt	aattgctttt	gggattactc	cacatctttt	840
	tttattttctt	gactaatcg	atTTTcaata	gagtgaagtt	aaattgggggg	tcataaaaagc	900
	atgggattga	catatggttt	gccagcctat	gggtttacag	gcattgccc	aacattttct	960
60	ttagatctat	atttataaagc	agccatggaa	ttcctattat	gggatgttgg	caatcttaca	1020
	tttatatagag	gtcatatgca	tagtttcat	aggtgtttt	taagaactga	ttgctctcct	1080
	gtgagttaaag	ctatgtttac	tactgggacc	ctcaagagga	ataccactt	tgttacactc	1140
	ctgcactaaa	ggcacgtact	gcagtgtgaa	gaaatgttct	aaaaaaagggt	tatagaaatc	1200
	tggaaataag	aaaggaagag	ctctctgtat	tctataattt	gaagagaaaa	aaagaaaaaac	1260
65	ttttaactgg	aaatgttagt	ttgtactttat	tgatcatgaa	tacaagtata	tatTTTaaattt	1320
	tgaaaaaaa						

<210> 41
<211> 987
<212> DNA
<213> Human

5

aacagagact	ggcacaggac	ctttcattt	caggaagatg	gtagtgtagg	caggtaacat	60
ttagctctt	tcaaaaaagg	agagctctt	ttcaagataa	ggaagtggta	gttatggtg	120
taaccccccgg	ctatcagtcc	ggatgggtgc	cacccttcct	gctgttaggat	ggaaggcagcc	180
atggagtggg	agggaggcgc	aataagacac	ccctccacag	agcttggcat	catgggaagc	240
tgttcttacc	tcttcttggc	tcctttgtt	aaaggctgg	ctgggagcc	tcctttggg	300
tgttcttctc	ttctccaacc	aacagaaaag	actgcttc	aaaggtggag	ggtcttcatg	360
aaacacat	gccaggagcc	caggcacagg	gctggggg	tggaaaagg	agggcacaca	420
ggaggaggga	ggagctggta	gggagatgt	ggcttacct	aggctctcg	aacaaggagg	480
gcagaatagg	cagaggcctc	tccgtcccg	gcccatttt	gacagatggc	gggacggaaa	540
tgaatagac	cagcctgcaa	gaaagacatg	tgttttgtat	acaggcagt	tggccgggt	600
gaacaagcac	aggccttgg	atccaatgga	ctgaatcaga	accctaggcc	tgccatctgt	660
cagccgggt	accttgggt	attttagct	ctaaagct	cagtctcctt	atctgcaaaa	720
tgaggctgt	gatacctgtt	ttgaagggtt	gctgaaaaaa	ttaagatata	gggtatccaa	780
aatagtctac	ggccatacca	ccctgaacgt	gcctaatttc	gtaaagctaa	cagggtcagg	840
cctgggttagt	acctggatgg	ggagagtatg	gaaaacatac	ctgccccgag	ttggagttgg	900
actctgtctt	aacagtagcg	tggcacacag	aaggcaactca	gtaaataactt	gttgaataaaa	960
tgaagttagcg	attttgttgg	aaaaaaaa				

25

<210> 42
<211> 956
<212> DNA
<213> Human

30

<400> 42

cggcacgggtgg	ggcggacgcg	tgggtgcagg	agcagggcgg	ctgccactg	ccccaaaccaa	60
ggaaggagcc	cctgagtccg	cctgcgcctc	catccatctg	tccggccaga	gcccggcatcc	120
ttgcctgtct	aaaggcttaa	ctaagactcc	cgccccggc	tggccctgtg	cagacacctac	180
tcaggggatg	tttacctggt	gtctcggaag	ggaggggaag	ggcccgggg	gggggcacgg	240
caggcgtgt	gcagggcacac	gcagggggcc	agggcggcca	gggacccaa	gcaggatgac	300
cacgcaccc	cacgcactg	cctccccccg	atgcatttgg	aacccaaagt	taaactgago	360
tcgcacccccc	cgegcctec	ctccgcctcc	catcccgctt	agcgctctgg	acagatggac	420
gcaggccctg	tccagcccc	agtgcgtcg	tccggctccc	cacagactgc	cccgagccaac	480
gagattgtcg	gaaaaccaagt	caggccaggt	ggggcggaca	aaggggccagg	tgccggctgg	540
ggggaaacgga	tgctccgagg	actggactgt	tttttccaca	catcggtgccc	gcagcggtgg	600
gaaggaaaagg	cagatgtaaa	tgatgtgtt	gtttacaggg	tatattttt	atacccttcaa	660
tgaattaatt	cagatgtttt	acgcaaggaa	ggacttaccc	agtattactg	ctgtctgtct	720
tttgatctct	gcttaccgtt	caagaggcgt	gtgcaggccg	acagtcgtgt	accccatccac	780
tcgcaggacc	aaggggccgg	ggactgtctgg	ctcacccccc	gctgtgtcct	ccctccctc	840
ccttccttgg	gcagaatgaa	ttcgatgcgt	attctgtggc	cgccatctgc	gcaggggtgt	900
ggtatttctgt	catttacaca	ctgcgttcta	attaaaaaqc	qaattatact	ccaaaa	

50 <210> 43
<211> 536
<212> DNA
<213> Human

55 <400> 43

```

aaataaaacac ttccataaaca ttttgtttc gaagtctatt aatgcaatcc cactttttc 60
cccctagtt ctaaatgtta aagagagggg aaaaaaggct caggatagg ttcacctcac 120
agtgttagct gtctttatt ttactcttgg aaatagagac tccatttaggg ttttgacatt 180
ttgggaaccc agtttacca ttgtgtcagt aaaacaataa gatagttga gaggcatatga 240
tctaaataaa gacatttgaa gggtagttt gaattctaaa agtaggtaat agccaaatag 300
cattctcatc ccttaacaga caaaaactta ttgtcaaaa gaatttagaaa aggtgaaaat 360
attttttcca gatgaaactt gtgccacttc caattgacta atgaaataca aggagacaga 420
ctggaaaaag tgggttatgc cacctttaaa acccttctg gtaaaatatta tgtagctaa 480
agggtggttt cccccggcacc tggacctgga caggtagggt tcggtggtta accagt

```

<210> 44
<211> 1630
<212> DNA
<213> Human

5 <400> 44

ggggagggac gagtatggaa ccctgaagg agcaagtcca ggcaactggcc tgaccatccg 60
gctccctgg caccaagtcc caggcaggag cagctgttt ccatecccttc ccagacaagc 120
10 tctattttta tcacaatgac ctttagagag gtctcccagg ccagctcaag gtgtcccact 180
atcccccctg gagggaagag gcaggaaaat tctccccggg tccctgtcat gctactttct 240
ccatcccagt tcagactgtc caggacatct tatctgcagc cataagagaa ttataaggca 300
gtgatttccc tttaggcccag gacttgggccc tccagctcat ctgttccctc tgggcccatt 360
catggcagg tctggctca aagctgaact ggggagagaa gagatacaga gctaccatgt 420
15 gactttaccc tattgcctc agtttgggt tgcttatttg gaaagagaga gacaaaagagt 480
tacttgttac gggaaatatg aaaagcatgg ccaggatgca tagaggagat tctagcaggg 540
gacaggattt gtcagatga cccctgaggg ctcttccagt cttgaaatgc attccatgtat 600
atttagaagt cgggggtggg tgggtgggtt gggctagg tggttgaatt taggggcca 660
20 ttaggcttggg tacgtgagca ggggtttaag ttagggtctg cctgttatttc tggtccccctt 720
atagacatt atcctgcccc atcccttccc cagtgcactc tgaccttagt agtgcctgg 840
gcccagtgac ctgggggagc ctggctgcag gecctcaetg gttccctaaa ctttgggtggc 900
tgtgattcag gttcccttggg gggactcagg gaggaatatg gtcgatgtt ttagtttcca 960
25 gagttggctg gtagaggctt ctagagggtc agaatattag cttcaggatc agctgggggt 1020
atggaattgg ctgaggatca aacgtatgtt ggtgaaagga taccaggatg ttgctaaagg 1080
tgagggacag tttgggtttt ggacttacca gggtgatgtt agatctggaa cccccaagtg 1140
aggctggagg gagtaaggt cagttatggaa gatagggttggacagggtt ctttggatg 1200
aaagagtgac cttagagggc tccttggggc tcaggaatgc tcctgctgtc gtgaagatga 1260
30 gaaggtgtc ttactcattt aatgtatgagt gactatattt accaaagccc ctacctgctg 1320
ctgggtccct ttagcacac gagaactgggg ctaagggccc ctccctggga agggacacca 1380
tcaggcctt ggttgggca gtagcataga ggttccattt ctacctgcat ttcccagagg 1440
actagcagga ggcagcttgg agaaaccggc agttcccaag ccagcgcctg gctgttctct 1500
cattgtcaact gcccctccc caaccttccc tctaaccac tagagattgc ctgtgtccctg 1560
35 cctcttgcct ttgttagaat gcaagctctgg ccctcaataa atgcttctg cattcatctg 1620
aaaaaaaaaa

<210> 45
<211> 169
<212> DNA
40 <213> Human

<400> 45

45 tcttttgcctt ttagctttttt atttttgtat taacaggagt cttattacac ataggctcga 60
taaaaactggg ttatgatctt cagtcgttcc ataactagat aacgtatgaa 120
ggaaaaacga cgacgaacaa aaaagtaagt gcttggaaaga cttagttga

<210> 46
<211> 769
50 <212> DNA
<213> Human

<400> 46

55 tgcagggtcat atttactatc ggcaataaaaa ggaagcaaaag cagttttaag cagcggtgga 60
atttgcgtt ttcactttttt ataaagtgtc acataaaaatg tcatatttcc aaattttaaaa 120
acataactcc agtttttacc atgaaacacg catggtgatc acgaaggatc ttcttggaaa 180
aaacaaaaaaac aaaaacaaaaa aacaatgtc tcttctgggt atcacatcaa atgagataca 240
aagggtgtact aggcaatctt agagatctgg caacttattt tataatataag gcatctgtga 300
60 ccaagagacg ttatgaatta aatgtacaaa ttttattatgt ataaatgtat taaatgcaag 360
cttcataataa tgacaccaat gtctctaagt tgctcagaga tcttgcactgg ctgtggccct 420
ggccagctcc ttccctgata gtctgattct gccttcataat ataggcagct cctgatcatc 480
catgcccagt gaaatgagaaaa caagcatgaa atatataaac tttaacatta aaaaatgttt 540
tattttgtaa taaaatcaaa ttcccttgg aaaccttcaa aaactttgca gaatgaggtt 600
65 ttgatatatg ttttacaagta gtaccttctt agtgcaagaa aacatcatta tttctgtctg 660
cctgcctttt ttgtttttaaa aatgaagact atcattgaaa caagttgtc ttcagttatca 720

ggacatgtt acggagagga aaggttagaa agggttaggg atagaagcc

<210> 47

<211> 2529

5 <212> DNA
<213> Human

<400> 47

10 ttagttcat agtaatgtaa aaccatttg ttaattctaa atcaaatcac ttccacaaca 60
gtaaaaatta gtactggtt aagtgtgcc actgtacata tcatttcattt ctgactgggg 120
tcaggacctg gtcctagtcc acaagggtgg caggaggagg gtggaggcata agaacacaga 180
aaacacacaa aagaaaggaa agtgccttg gcagaaggat gaggtggta gcttgcgcag 240
15 ggatgggtggg aaggggctc cctgttgggg ccgagccagg agtcccaagt cagctctcct 300
gccttactta gtccttgca gaggttgagt ggggacctac gaggttcaaa atcaaatggc 360
atttggccag cctggctta ctaacagggt cccagatgc ctctgttgc tgagctctcc 420
tgggctcaact ccatttcatt gaagagtcca aatgattcat tttcttaccc acaacttttc 480
attattcttc tggaaaccca tttctgttga gtccatctga cttaagtctt ctctccctcc 540
actatgtggg gccactgcac tgaggggggt cccaccaatt ctctcttagag aagagacact 600
20 ccagaggccc ctgcaactt gcgattttcc agaagggtat aaaaagagca ctcttgagtg 660
ggtggccagg aatgtttaaa atctatcagg cacactata agctgttgtt ttcttcttac 720
caagtggatt cggcatatga accactat caacttta tattttctt gttaaaacac 780
tgaactctgg tggacagg tacaaggag aagagatgg gactgtgaag aggggagggc 840
ttcccttcata ttctcaaga tctttgttcc cataaactat gcagtcataa ttgagaaaaaa 900
25 gcaatagatg gggcttcata ccattttgtt gttattgtcg gggtagccca ggagcagtgt 960
ggatggcaaa gtaggagaga ggcccgagg aaagcccatc tccctccagc ttgggggtct 1020
ccagaaagag gctggatttc tggatgaag ccttaggcata taagattcag aggaagaagc 1080
agtgAACAG tccttacatgc ttgttaccat 1140
ttatgaaact gaaaatcaaa tcaaggatt gggagaata atttccctc gattccacag 1200
30 gagggaagac cacacaatat cattgtgtcg gggctccccca aggccctgcc acctggctt 1260
acaaatcatc aggggtgtcc tgcttgcag tcacatgtt ccctgggttt agcacacata 1320
caaggagttt tcagggaaact ctatcaagcc ataccaaaat cagggtcaca tgggggtttc 1380
cccttccttgc gcttcttcat aaaagacaac ttggcttctg aggatgggtt tcttttgcac 1440
35 gcagttgggc tgacctgaca aaggccccca ttccctgtgg caggttctgg gagaggatgc 1500
attcaagctt ctgcaggcata ggggacagggt ctgcttgc agtattact gcctcgagc 1560
tccaaatccc accaaagtcc tgactccagg tctttcttaa tgacagtag tcagtctcag 1620
cttcggcagt attctcggtt gtatgttctc tggcagagag aggcaagatga acatagttt 1680
aggagaaaag ctgatggaa acctgtgagt taagccacat gtcttaccag gaataattta 1740
40 tgccaggaaa ccaggaagtc attcaagttt ttctctgagg ccaaagacac tgagcacagc 1800
ccagagccaa taaaagatct ttgagtctct ggtgaattca cgaagtgacc ccagctttag 1860
ctactgcaat tatgatttt atggacagc aatttcttc atcttacag aggaagaaga 1920
gggggaggtgg ggggggaaagg aaagagaaca gagcggcact gggatttggaa aggggaacct 1980
ctctatctga ggagccccca ctgcttctg aagcaactt ccaaggggtt tttaaagaca 2040
45 tggaaaattttc cagaaatacc atttggtca tccctttgtt tctgtatata taaaactcagg 2100
ctctgacagt ttctctttt ctgccttc cctctgcaga gtcaggaccc 2160
gcagaactgg ctgaaacaag atttcatgtt gtcacccatg agatgtactt caatgccaag 2220
gcctgaagtt atagagtgtt tacagcggtg gcgatattca ggggtcatcg ccaactggc 2280
tcaggttcca aagctctgtt gaagaaacaa gactcttgc tggacttactg atcccactga 2340
50 ttccaggagt caagattagc caggaagcca aacaccagga gttgggggtt cacgttacca 2400
gtccagagcc ctgcccacggc tggatcgagg agcccgat taggaatca ggagccagaa 2460
catgtatcacc agggccacaa ataggaagag gcgtgacagg aactgtcggt ccacataacct 2520
gggggttcc

<210> 48

55 <211> 1553

<212> DNA

<213> Human

<400> 48

60

ttttttttt tttttgattt ctggacaat taagtttat ttttcataata tatataattt 60
ttcatatata tatatacata catatataaa gaaaacaatt tgcaatattt cacacatgc 120
aaaaccatata atacacacat atgtatgc acacacagac agacacacac accccgaagct 180
ctagccaggc cctttttccat tcccttaagta ccatttcctc atttggggcc ttcttaggggtt 240
65 gggccctga gcttggttt tagaagttt gtcataatata aaccatagct ttaatcccc 300
tgaaggacag tggatcaccc atcttgcattt gctcccccgtt tttacgtat 360

ccatcaagag ggctatggga gccaagtcaa cacggggat tgaggctaatt tcacctgaac 420
 tcgaaaacag cgcccaagctt cctcaccgca ggcacgcgtc tttttttttt ttttcctcgaa 480
 gacggagtct cgctgtgttcccaggctgg agtgcagtgg cacggctctcg getcaactgca 540
 agctccacccctggattca taccatttctc ctgcttcagc cttccgagta gctgggacta 600
 5 taggtgccaa ccactacgccc tagctaatttttttgat ttttagtaga gacagggtt 660
 caccgtgttggccaggatgg ttcgtcctg actttgtat ccggcccgctt cggcctccca 720
 aagtgtgggattacaggcg tgagccacca cacgtggcc cggcacgtat ctttaagga 780
 atgacaccag ttccctggctt ctgaccaaag aaaaaatgtc acaggagact ttgaagaggc 840
 agacaggagg gtgggtggcag caaactgca gctgttctg gatgtgtg ggggtcttc 900
 10 cgagccgggt gtgaacagcg cacttcaaca tgagcaggcg cttggctccg gtgtgtctc 960
 acttcagtgg tgcacctgga tggtggaaagc cagccttgg ggcaggaaac cagtcagag 1020
 aggctaccca gtcagctgc tggcaggagc caggtattta cagccataat gtgtgtaaag 1080
 aaaaaacacg ttctgcaaga aactctccta cccgtctggc agactggggc tccttgctt 1140
 15 gatgagctt cactcaacgt ggagatgggt gtggactggcctgtgaaaag cggggcttc 1200
 agggccaagt gagggtctca gtccttaac ccagtggccc tctgaaaggg ggtgtgcagg 1260
 cgagggggagc aggaggcttc tctctagtcc ctttggagc tttggcttag agaagagtga 1320
 gcagggagct gggaatggtc caggcaggga agggagctga agtatttcggc ggctaatgcc 1380
 tcagatcgat gtatttctcttccctggctc ccggagccctt cttgtcaccg ctgctgcct 1440
 20 gcaggaggcc catctttcttggagcttat ctgacttaac ttcaactaca agttcgctct 1500
 tacgagaccggggtagcgt gatctccctgc ttccctgagc gcctgcacgg cag

<210> 49

<211> 921

<212> DNA

25 <213> Human

<400> 49

30 ctgtggtccc agctactcag gaggctgagg cgggaggatt gcttgagccc aggagttgga 60
 tggtcagtg agccaagatc gacccattgc cttccactct gggccacgga gcaataccct 120
 gtctcagaaa acaaacaaca aaaagcagaa acgctgaagg ggtcggttta cgggaaaacc 180
 gctgtcaga acacttggctt actccctaccctt cagatcgatc gacccgtggaa tgagggttgg 240
 tccccggagg cttttctcca achtgttgc accagaccgc ccatgggaaac cctggccaca 300
 35 gaagcctccc ggggagttag gccagacccgt gaccgtgtg ctgtatgtgtc tggggtgag 360
 ggaggggtggg gagtgtcggaa ggtgtgtgt gtggccgggg ggtgttcatg ggcaagcatg 420
 tgcgtgcctgt tgggtgtgc tgccctccc ctgcagccgt cgggtgtatc tccctccagc 480
 cccttcgcca ccttctgagc attgtctgtc cactgtgagac tgcccagaga cagcagagct 540
 ccacgtgggtt ttaaggggag acctttccctt ggacctgggg gtctcgccgt atctcatgac 600
 40 caggtgtctaa atgacccgac atgcatcacc tgccttcga tgaccaacact ccctgtcccc 660
 gtcccgctga cctgcccccg tggcgtctca cggtgatgcc tgcctctgac attgggtttc 720
 actgttagcaa actacattctt ggtggaaat tttcatgtac atgtgtggca tggaaaat 780
 ttcaaataaa atggacttga tttagaaaagc aaaaaagctg tgggtccctt ccagcacgga 840
 tactttgacc tcttgcctac aacccttcc ttgggtccga ggctggtagc ttgttcaact 900
 45 tcaagatgggtt gggggccgggt g

<210> 50

<211> 338

<212> DNA

50 <213> Human

<400> 50

atgatctatc tagatgccct accgtaaaat aaaaacacaa aaccctactg actcattccc 60
 55 tcccttccag atattacccc atttctctac ttcccattgtt agccaaactt tccaaaaattt 120
 catgttctgttctcatttcc tcatgttcaa cccaccctgtt cttagctacc accccctcagt 180
 aacgacccatcg cttgggtttaga aacaaatgtc agcatgatac cataactcaat gatccctcg 240
 cactgttgc attgtcatca ttccatggcc ttactttccc ttcctggcc atttgctaca 300
 gtaagaaact ttctttcttg aattcttgggt ttccttgg

60 <210> 51

<211> 1191

<212> DNA

<213> Human

65 <400> 51

ctagcaagca ggttaaacgag ctttgtacaa acacacacacat accaacaacat cccggggatgg 60
 ctgtgtgtt ctagagcaga ggctgattaa acactcagt tggctct ctgtgcact 120
 cctggaaaat aatgaattgg gtaaggaaaca gttataaga aaatgtgcct tgctaactgt 180
 5 gcacattaca acaaagagct ggagctcct gaaggaaaag ggcttgcgc gctgcgttc 240
 aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctcccccagc acaccctcat 300
 tacatgtgtc tgtctggctt gatctgtca tctgctcgga gacgctcctg acaagtcggg 360
 aatttctcta ttctccact ggtgcaaga gcggtttt ccctgttctt cttctgtcac 420
 ccccgctctt ctcccccagg aggctcctt atttatggta gcttggact tgcttccccg 480
 tctgactgtc cttgacttctt aagaatggaa aagctgagct ggtgaaggaa agactccagg 540
 10 ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
 aagacaaaact aaagcaccag catttgaaga aaaaggcctt gaggagaaa tggcttctag 660
 atggaatcag cagcggaaaa gaacaggaag agatgaagaa gaaaatcaa caagaccagg 720
 accagatcca ggttctagaa caaagtatcc tcaggcttga gaaagagatc caagatctt 780
 aaaaagctga actgcaatc tcaacgaagg aagaggccat tttaaagaaa ctaaagtcaa 840
 15 ttgagcggac aacagaagac attataagat ctgtgaaagt gggaaagagaa gaaagagcag 900
 aagagtcaat tgaggacatc tatgctaata tccctgacct tccaaagtcc tacatacctt 960
 cttagtttaag gaaggagata aatgaagaaa aagaagatga tgaacaaaat aggaaagctt 1020
 tatatccat gggaaataaa gttgaaaaag acttgaagac tggagaaaat acagttctgt 1080
 20 ctccaatac ctctggccat cagatgactt taaaaggta aggagtaaaa gtttaagatg 1140
 atgggcaaaa gtccagtgtt ttcaagttaa tgctaattc aagttggagg t

<210> 52

<211> 1200

<212> DNA

25 <213> Human

<400> 52

aacagggact ctcactctat caaccccagg ctggagtccg gtgcgcac cctggctccc 60
 30 tgcaaccccttcc gctcccccagg ctcagcaac ttcctgcct cagtcgtct agtagctgg 120
 actacaggca cacaccacca tgcccgccca atttttgcatt tttttgtaga gacagggttt 180
 cgcccttcgtt ccaggccggc atcatataact ttaaatcatg cccagatgac ttaataacct 240
 aatacaatata atcagggtgg tttaaaatata attgtttttt tattttttt gcatttttgc 300
 accaacccttta atgctatgtt aatagttttt atactgttgc ttaacaacag tatgacaatt 360
 35 ttggctttttt ctttgttata tttttgttattttt ttttttttta ttgtgtggct tttttttttt 420
 ttctcagtgtt tttcaattcc tccttgggtt aatccatgga tgcaaaaccc acagatatga 480
 agggtctggctt atatatgtcat tgatgattgt ccttattat tatttttttta gtgtcattt 540
 atatgtatgtt aaagttatgg tacagtggaa agagtagtttggaaaataa cattttggacc 600
 40 ttcaagaaaa ggtagcttgg tgaagttttt cacccttcaaa ctatgtccca gtcagggtctc 660
 tgcacttaat tagctataat cttgcacaa attacatcac ctttgagtct cagttgcctc 720
 acctgtaaaaa tggaaagaact ggatactctc taaggtcact tccagccctg tcattctata 780
 actctgttat gctgaggaag aaattcacat tttttttttt tttttttttt 840
 gattattaaa gttggaaaaaa gccaattgtt tttttttttt tttttttttt 900
 45 gaataatctt ttcaattttt taagaattttt aatatttttta agggtttgac ctattttattt 960
 agagatgggg tctcactctg tcaccccgac tttttttttt tttttttttt 1020
 gtcgcctcaa attcatgggc tcaagtgtatc tttttttttt tttttttttt 1080
 ctatggccat gtgccaccac gcttgcataa cattttgttatttta gttttttttt 1140
 ttatatctt tttttttttt tttttttttt tttttttttt tttttttttt 1200

50 <210> 53

<211> 989

<212> DNA

<213> Human

55 <400> 53

aagccaccac tcaaaaacttc ctatacattt tcacagcaga gacaagtggaa cattttttttt 60
 tatgccttttcc ttccctatgtt tatttcaagt ttttttttttcaaaa acaaggcccc aggactctcc 120
 gattcaatta gtccttgggc tggctgactg tgcaggagtc caggagccctt cttccctccaa 180
 60 agagtgtactc ttaccacaca taaaacccttag atacatgcacaa aaagcaggac cttccctccaa 240
 ggaatgtgcc atttcagatg cacagcaccat atgcagaaaa gctggattttt tttttttttt 300
 cgactgtgtt agaggtgtttt acatgtacat tttttttttt tttttttttt 360
 gtttcgttgc tgcccaggtt gatgtcaatg cgtatctca ctcactgcac ttccacccctcc 420
 aggttcaagc attctccatc tcagccttctt agtagctggg ttacaggcac tgccaccatg 480
 65 cccgcttaattt ttgttattttt tttttttttt tttttttttt tttttttttt 540
 cccaaacccctca gtgatctgccc acctcagccctt cctaaagtgtt ggattacagg atgagccacc 600

cgaccggcca ctactgtctt tctttgaccc ttccagttc gaagataaaag aggaataat 660
 ttctctgaag tacttgataa aatttccaaa caaaaacacat gtccacttca ctgataaaaa 720
 atttacgcga gtttggcacc taagagtatg acaacagcaa taaaaagtaa tttcaaagag 780
 5 ttaagattt ttcagcaaaa tagatgatcc acatctcaa gtcccttttg aaatcagtt 840
 ttaatatattt ttttcctea ttccatctg aatgactgca gcaatagttt tttttttttt 900
 tttttttttt ttgcgagatg gaatctcgct ctgtcgccca gggggagtgc actggcgaa 960
 gcccggctca ccgcaatctc tgccaccccg

 <210> 54
 10 <211> 250
 <212> DNA
 <213> Human

 <400> 54
 15 cattttccca ttggtcctga ttttgaagat ttagttaaag aggctgttaag tcagggtcga 60
 gcagaggcta ctacaagaag tagggatca agtccctcac atgggctatt aaaacttagt 120
 agtgggtggag tagtggaaaaaa gaaatctgag caacttcata acgtaactgc ctttcaggga 180
 20 aaaggccatt cttaggaac tgcatctggt aaccacacc ttgatccaag agctaggaa 240
 acttcagttg

 <210> 55
 <211> 2270
 <212> DNA
 25 <213> Human

 <400> 55

 30 ggcggccccga gcagcgccccg cggccctccgc gccttctccg ccgggacctc gagcgaaga 60
 ggccccggcg cggccccagcc ctgccttccc tgcccacccg gcacaccgcg ccggccaccc 120
 gaccccgctg cgcacggct gtcgcgtca caccagctt tgccgcgttt egtcggcg 180
 ctcgcccccg gctaactctg cgcgcacaa tgagctccg catcgccagg gegctcgct 240
 tagtcgtac ctttctccac ttgaccaggc tggcgcttc cacctgcccc gtcgctgcc 300
 actgccccct ggaggcgcccc aagtgcgcg cgggagtcgg gctggccgg gacggctcg 360
 35 gtcgtgtaa ggtctgcgc aagcagctca acgaggactg cagcaaaaacg cagccctcg 420
 accacaccaa ggggctggaa tgcacttcg ggcacaagtc caccgcctg aaggggatct 480
 gcagagctca gtcagaggc agaccctgtg aatataactc cagaatctac caaaacgggg 540
 aaagtttcca gcccaactgt aaacatcagt gcacatgtat tgatggcgc gtcggctgca 600
 ttctctgtg tccccaaagaa ctatctctcc ccaacttggg ctgtcccaac ctcggctgg 660

 40 tcaaagttaa cgggcagtgc tgcgaggagt gggctgtga cgaggatagt atcaaggacc 720
 ccatggagga ccaggacggc ctccttggca aggagctggg attcgatgcc tccgaggctgg 780
 agttgacgag aaacaatgaa ttgattgtcag ttgaaaagg cagtcactg aagcggctcc 840
 ctgtttttgg aatggagct cgcacatctat acaacccttt acaaggccag aaatgtattt 900
 ttcaaaacaaac ttcatgttcc cagtgctcaa agacatgtt aactgttac tccacacgag 960

 45 ttaccaatga caaccctgag tgccgccttg tgaaaagaaac cggattttt gagggtgcggc 1020
 ctttgtggaca gccagtgtac agcagctga aaaaggccaa gaaatgcagc aagaccaaga 1080
 aatccccca accagtcagg ttacttacg ctggatgttt gagtgtaag aaataccggc 1140
 ccaagtactg cggccctgc gtggacggcc gatgctgcac gcccagctg accaggactg 1200
 tgaagatgcg gttccgcctgc gaagatgggg agacatttc caagaacgtc atgatgatcc 1260

 50 agtcctgcaa atgcaactac aactgccccgc atgccaatga agcagcttt cccttctaca 1320
 ggctgttcaa tgacattcac aaattttaggg actaaatgt acctgggtt ccagggcaca 1380
 cctagacaaa caaggagaa gagtgtaaga atcagaatca tggagaaaat gggcgggggt 1440
 ggtgtgggtg atgggactca ttgtggaaaag gaagccttgc tcattcttga ggagcattaa 1500

 55 ggtattttca aactgccaag ggtgtgggtg cggatggaca ctaatgcagc cacgatttgg 1560
 gaatacttgc cttcatagta ttggagcaca tggtactgt tcattttgg gcttgtggag 1620
 ttgtgactt tctgttttct gtttggaaaat tatttgcata gcatattttc tctaggcttt 1680
 ttcccttttg gggttctaca gtgtggaaaag agataataag attatgttga cagtttaaag 1740
 cttttattcg tcctttgaca aaagttaaat ggagggcatt ccattccctc ctgaaggggg 1800

 60 acactccatg agtgcgtgt agaggcagct atctgcactc taaactgcaa acagaaatca 1860
 ggtgttttaa gactgaatgt ttatatttataaaaatgtac ttgtggggag ggagggggaaa 1920
 tgaataactg gaataatttgc taaaatgttata taattttata ttcatgtaaa agattttattt 1980
 tatggaaatta accatttaat aaagaaatata ttacctaata tctgtgtta tgccattcgg 2040
 tatttttaga ggtgtccaa agtcatctgg aacaaccttag ctcacgtact caattattca 2100
 aacaggactt attgggatac agcagtgtat taagcttata aaataagata atgattgtt 2160
 ttatacccttca agtagagaaa agtctttgtca tataaagtaa tggtttaaaaa acatgtattt 2220
 aacacgacat tgtatgttgc acaataaaga ttctgttgc aaaaaaaaaaa

<210> 56
 <211> 1636
 <212> DNA

5 <213> Human

<400> 56

cttgaatgaa gctgacacca agaaccgcgg gaagagcttg ggcccaaagc agggaaaggga 60
 10 agcgctcgag ttggaaagga accgctgtg ctggccgaac tcaagcccg gcccac 120
 cagtttgcattt ggaagtcccg ctgtgaaacc tggagcgtcg ctttcctcccc agatggctcc 180
 tggtttgcattt ggtctcaagg acactgcata gtc当地actga tcccctggcc gttggaggag 240
 cagttcatcc ctaaaagggtt tgaagccaaa agccgaagta gaaaaaatga gacgaaaagg 300
 cggggcagcc caaaagagaa gacgctggac tgtggtcaga ttgtctgggg gctggcc 360
 15 agcccggtggc cttcccccacc cagcaggaag ctctggcac gccaccaccc ccaagtgcc 420
 gatgtctctt gcctgggtct tgc当地acggga ctcaacatg ggcagatcaa gatctggag 480
 gtgc当地acggag ggctcctgtt ttgaaatctt tccggccacc aagatgtcg 540
 agcttcacac ccagtgccg tttgattttgc gtc当地ccgtc cacgggataa gacttcc 600
 atctgggacc tgaataaaaca cggtaaaacag attcaagtttgc tatcgggcca cctgc 660
 20 gtttactgtc gttccatctc cccagactgc agcatgtc gctctgc当地 tggagagaag 720
 tcggcttttcc tatggagcat gaggtcttac agcttaatttgc ggaagctaga gggccatcaa 780
 agcagtttgc tctcttgc当地 ctctccccc gactctgccc tgcttgc当地 ggcttcttac 840
 gataccaatg tgattatgtg ggacccttac accggcggaaa ggctgaggc actccaccac 900
 25 acccaggtt accccggccat ggatgacagt gacgtccaca ttagctca gatatctgt 960
 tgcttctctc cagaaggctt gtaccttgc当地 acggtgccg atgacagact cctcaggatc 1020
 tggggccctgg aactgaaaac tcccatttgc当地 tttgcttcttgc当地 tgaccaatgg gcttgc 1080
 acattttttc cacatgggtt gtc当地tgc当地 acagggacaa gagatggcc cgtccagg 1140
 tggacagctc cttaggtctt gtc当地tgc当地 aagcacttat gcccggaaagc ctttcga 1200
 30 ttccctaaaca cttaccaatg cttagtgc当地 ccaatcccc agaaaatgaa agatctctc 1260
 acatacagga cttttttaage aacaccatc ctgtgttcc ttttgc当地 ggttaaatctgt 1320
 cctgtcaaaag ggagttgttgc gataatggg ccaaaccatc ggtcttgc当地 taaaatagca 1380
 tttctttggg attgtgataa gaatgttagca aaaccagatt ccagtgatc当地 taaaagaatt 1440
 tttttgtctt taaatagata caaatgtcttca tcaactttaa tcaatgttgc当地 acttatattt 1500
 35 aagacaattt gatacataat aaaaaattt gacaatgtcc tggaaaaaaa aaaatgtaga 1560
 aagatgttgc agggtgggat ggatgaggag cgtggatc当地 gggccctgca gcggttggg 1620
 gaccctgtgc tgc当地

<210> 57
 <211> 460
 <212> DNA
 <213> Human

<400> 57

45 ccatgtgtgt atgagagaga gagagattgg gagggagagg gagctcaact ggc当地atgt 60
 gcctccagggg ggctcgatgt gtgtctgagg gtgagctgg taaaagagaa gacaaaagaa 120
 tggaaatgagc taaagcagcc gcctgggggg ggaggccgg cccatttgc当地 tgccggagg 180
 ggc当地ggcc cagcaaggga gcctccatttcc caggactct ggagggagct gagaccatcc 240
 50 atgcccgc当地 agccctccct cacactccat ctgtccagc cctaatttgc当地 caggtgggg 300
 aactgaggct gggaaatgc当地 atagcaatg actggcagag ctggactgg aacccaaacca 360
 gcctcttgc当地 ccacgggttct tcccatcaat ggaatgtcg agactccagc caggtgggg 420
 cegagctc当地 attcgtaatc atgttgc当地 ctgttccctg

55 <210> 58
 <211> 1049
 <212> DNA
 <213> Human

<400> 58

60 atctgatcaa gaataacctgc cttggtcaact ctgc当地atgt ttctgtccac ttgttccat 60
 tgaggaccaa gatatctttt tttacagagg cacttgc当地 gtcttacaca gacacctcca 120
 tgacgacatg ctggctaca ttttgc当地 ctgc当地atgttgc当地 cccctccca gcctggacta 180
 cagcagcaact ttccctggg ggtc当地atgt ccgttccagc agacccctggg gcaactctgaa 240
 65 gtc当地atgttgc当地 gtgc当地atgttgc当地 taccgtggct ctgc当地atgttgc当地 caggcattaa aggtctttt 300
 ggtatctacaa ttttgc当地atgttgc当地 ttttccatttgc当地 tgactctggg tcaatctttt actgcttgc当地 360

aaaatgtaaa cttcacctag ttcatcttct ccaaattcca agatgtgacc ggaaaagtag 420
 cctctacagg acccaactgt gccgacacag agtggttttt ctgtccactg ctttgtcaca 480
 ggactttgcg ggagaggtag gaaattccca ttacgatctc caaacacgt aatcttcatac 540
 aatcttcgt actggcagcc ccggtatataca aatccaccaa ccaaaggacc attactgaat 600
 5 ggttgaatt ctaaaagtga tggtctactt tcataafctt tcccctttat tatctgtaga 660
 attctggctg atgatctgt tttccattg gagtctgaac acagtatcg taaattgatg 720
 tttatatcg tggatgtct atccacagca catctgcctg gatcgtggag cccatgagca 780
 aacacttcg ggggctgggt ggtctgttg aagtgtgggt tgctcccttg tatggaataa 840
 10 ggcacgttgc acatgtctgt gtccacatcc agccgtagca ctgagctgt gaaatcactt 900
 aaccatcca tttcttccat atcatccagt gtaatcatcc catcaccaag aatgatgtac 960
 aaaaacccgt cagggccaaa gagcagttgc cctccagat gctttctgtg gagttctgca 1020
 acttcaagaa agactctggc ttttctcaa

<210> 59
 15 <211> 747
 <212> DNA
 <213> Human

20 <400> 59
 ttttcaaat cacatatggc ttctttgacc ccatcaaata actttattca cacaacgtc 60
 ccttaattta caaagcctca gtcattcata cacattaggg gatccacagt gttcaaggaa 120
 cttaaatata atgtatcata ccaacccaag taaaccaagt aaaaaaaaaata ttcatataaa 180
 25 gttgttcaca cgtaggctt agattaccag ttctgtgca aaaaaaggaa atgaagaaaa 240
 atagatttt taacttagtat tgaaaactaa ttgtgtcct ggcttaaaac ctccctcagc 300
 ctctgttgc ccacacaaat gtttaagaag tcactgcaat gtactccccg gctctgtatga 360
 aaagaagccc ctggcacaaa agattccagt gcccctgaag aggctccctt ctcctgtgg 420
 30 gctctcttag aaaaccagcg ggacggcctc cctgtgtata ccgtctataa ctttaggggg 480
 ccctcgggca ggcaacggca gtggactcat ctgggtgtat gctgtatgt ctaacactgg 540
 ccaattcaat gccacaccta ctggttaccc ttgagggca ttctccaga cagaagcccc 600
 ttgaaggcta ggttagggcag gatcagagat acacccgtgt tttgtctcgaa gggctccaca 660
 gcccagtacg acatgttgc agaagtagta tctctggact tctgtccca gtcgaccggc 720
 cgcaattta gtagtaatcg cggccgc