- * A search strategy is defined by picking the order of node expansion.
- * Uninformed / Informed search:
 - Duninformed search algorithms looked through search space for all possible solutions of the problem without having any additional knowledge about search space.
 - Informed search algorithm contains an array of knowledge such as how for we are form the good, path cost, how to neach to good node, etc.
- Heunistics Seanch: ADITA DOTT heuristic function we so 20 to determine the lest cost of each node.
 - Heuristic is a function which is used in Informed search, and it finds the most promising path.
 - Heuristic function estimates how close a state is to the good state.
 - Good state to neuristic value always O.
 - >g(n) execulate stant to n node. h(n) calculate n node to god now
 - distance / Euclidean distance use ADI 20.

Manhattan distance = $|z_2-z_1|+|y_2-y_1|$ to similar Euclidean distance = $(z_2-z_1)^2+(y_2-y_1)^2$

Admissibility of the heuristic function is given as: $0 <= h(n) <= h^{*}(n)$. Hene, h(n) = heuristic cost, and $h^{*}(n) = estimated cost$. * Gineedy Best-first search: bounded a postante despose A *

> JUITA grosali node as to evaluation function with the agano on heunistic function, h(n) Bas based on execulate > Unimportance search objects that = (4) 4 = (4) 7

It was the haunistic function and search and totally ignories the path cost. Isogo danse trodo substracting

- JUTO TO node so neuristic value STORED AD THE COTTEN priority

The greedy best first algorithm is implemented by the priority queue.

- str optimal solution to II. 0187 STERTO

h(n) = 140+00+211= 450 km

h*(n) = 190+80+97+101=918 Km

so, Admissibility: 0 \le b(n) \le b'(n) [not tour].

- 32 anecds problem solve DITO OID TO algorithm ITHE on TEAT A& search. The OSTERA optimal solution provide Admissionly of the new istic function is given as

Hene, n(a) = heupistic cost, and h+(n) = estimated cost.

+Note + Goggle maps, puzzle some wing A+ seanch.

A" search: A Town to the state of the sit sie solienes

search, by which it solve the problem efficiently.

Exemple:

state	hon		
5	5		
A	3		
B	4		
e	2		
0			
G	10		

Doptional of total still property maintain and to:

OAdmissible: b(n) should be on admissible heunistic fon At thee search. An admissible heunistic is optimistic in nature.

@Consistency: Second nequired condition is consistency for only A* Anroh-search.

Time complexity: O(bd).

> space complexity : O(bd).

-Admissibility is not enough to maintain completeness and optimality under A map search.

Consider the last 2 digits of your ID is 30 and the colculation formula of h(n) for all nodes one as follows:

Suday beday

Follows -

The given state space graph:

The connerponding search thee:

Now, I will apply At serneh objorithm on the seanch thee: Hene,

O-F = open fringe

C-F = close tringe

g(n) = Actual cost from stant node to n node.

n(n) = Estimated cost from n to god node.

f(n) = Estimated total cost of path through n to goal.

garde usus

We know, f(n) = f(n) + h(n) of of not not not of

04 hold & optimal path 20st from 6 to 61						
Itenation	Path	8(n)	h(n)	f(n)	0-F	C-F
init	2 + (2 of 0) foot +	(000)	5600	>601	£3	£3
	5 → A	2	5	7	{A(7), B(5),	{ 5(6)}
		3+4	+2	2 =(0)	067)	
1	SABY	3	-	7	, , , , ,	
49.55	5 -> D	5	2	7	80 CH	AND THE STATE OF T
	5 - A V (2) .6 S	2	5	7	(A(7), D(7),	ESC67, B(5)}
2	$S \rightarrow B \rightarrow D$	0 7 11	2	diginal	6V.00	50,
	s → D	5	2	7		
-	5-A-CV	6	(M)	77	(ACT D(7), D(0),	(566), B(5),
7	5 -> B -> D	7	2	2	c(F)}	A(7)3
	5-10 of A) 2001	5	A) 2d	- 7	13/00 13	Tork A
	$S \to A \to C \to D$	7	=>2	2	(0(7),0(1),	(560, 865)
		8	0	8	0(1), (1(8))	A(7), ((7))
	5-A-1-6	21	2	1000		14
	5-30-0	7	2	7	0 (3	
	5 - 10 ms 3 300 5	5			1	(42)
	5-)A-)C->D	7	3/3/12	10334	10	15(6),8(5),
5	1061	8	6	8	61(8)3,	JACA, CCAT,
	5-> A-> C-> GV		9	1	(10)}	060)}
	5-8-0	(7)	7 (3	Sled 3	100	
	5-10-6	10		10	100	2) 1560, 865
1	so this itenation use for	nd the	gott	node 6	1 (0(2), 0(1)	
6	in the close tringe.	so, it	WIII NO	tann the	461073	A(T), C(T)
	of 50 A 7 60 61 and	vill of	timal e	ost 8.		0(9), 61(8)

4 No Rus Ams (b) Feetherson Given graph, stany usdo = 1 0

ci) In order for he(c) to be admissible,

of promotelling to

O< h (C) < Optimal path cost from C to G

> 0 < h2(C) ≤ cost (C to 0) + cost (0 to F) + cost (F to b)

f (11) a Estimated Forth cont

=> 0 < h2(c) < 9+3+9

=> 0 < h2(C) ≤ 11 (4) 5 (9) SE (4)

so, hi(c) is odnissible for ochi(c) < 11.

(ii) In onder for h2(c) to be consistent,

0 <= h2(c) - h2(A) <= cost (A to c)

> 0 <= h2 (C) - 9 <= 3

8378 (0753

ACF) (ECF)

(2)8 (2)51 A17 6(7)

160,00

((8)4)

=> 0 <2 h2 (C) <= 12

0 <2 h2(C) - h2(D) <2 cost (C to D)

lend sanaca to eas will optional east &.

=> 0 2= h2(c) - 5 <= 4 DESCACE

=> 0 <= h2(c) < = 9

(300 005) hall) is consistent for O(=hall) <= 9.

for the heuristic function h, to be admissible, it must fulfill the following condition

0 \le h_3(B) \le Optimal total path cost from B to god node.

IF G is the good node; Optimal total path cost of B is cost (B to c) + cost (C to D) + cost (D to F) + cost (F to G) = 1+3+3+5 = 12

so, for hy to be admissible, hy(B) < 12

so, any value of h3 (B) less than on equal to 12 and gneaten than on equal to 0 will make hg admissible. Showever h3 (B) cannot be 0 since B is to not the jour node).

(i) It is possible to formulate a given problem in antificial intelligence if on AI program is espable of solving on can be trained to solve it and if the problem fulfills the

necessary enitenia of problem formulation, such as having cleanly defined states, initial state, goal state, etc. The main components to formulate a problem are: 1. Initial state: The state on agent will start when solving the problem.

2. Actions: A description of all possible actions on agent can take in different states.

3. Transition Model: A description of what each action does.

4. God Test: A test to eheck if agent's cunnent state is a gool, which indicates that the problem d a to too has been solved.

5. Path cost function: Assign) path cost to each of an agents path. Agent will choose east function that neflects its penformance measure.

so ony view of hy UR 1000 than on equil to 12 and

greater than on equal to 0 will make his admissible

Thoresias po (1) course pe () since Bis 6 not the Port model. (1) It is possible to formulate a fiven problem in antificial intelligence it on AI program is espable of solving on

were as brained to solve it and if the problem fulfills the