Lecture 8:

Monte Carlo Methods

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression
	Module 4	Model selection I: Comparing Distributions
	Module 5	Model Selection II: Bayesian Signal Detection
	Module 6	Variational Bayes, Expectation Maximization
	Module 7	Hidden Markov Models, Stochastic Processes
	Module 8	Monte Carlo Methods
	Module 9	Machine Learning Overview, Supervised Methods
	Module 10	Unsupervised Methods
	Module 11	ANN: Perceptron, Backpropagation
	Module 12	ANN: Basic Architecture, Regression vs Classification, Backpropagation again
	Module 13	Convolution and Image Classification and Segmentation
	Module 14	Graphs and GNNs
	Module 15	RNNs and LSTMs
	Module 16	Transformer and LLMs

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

Berkeley Monte Carlo Methods

idea: generating a set of values randomly

i.e. repeated random sampling

→ Monte Carlo method

pros: for many sample repetitions → the actual probability density function emerges

pretty simple set up & easy to implement, easy to parallelize

cons: not directed like e.g. gradient descent (see later)

applications: - numerical evaluation of complicated integrals

$$\rho = \frac{P(M_A|D,I)}{P(M_B|D,I)} = \frac{P(M_A)}{P(M_B)} \cdot \frac{\int P(D|\{\alpha\}_A, M_A,I) d\alpha_{Aj}}{\int P(D|\{\alpha\}_B, M_B,I) d\alpha_{Bj}} \cdot \frac{\prod_j \alpha_{jB}(max) - \alpha_{jB}(min)}{\prod_j \alpha_{jA}(max) - \alpha_{jA}(min)}$$

- estimating posteriors: $P(q|D) = \frac{\binom{n}{k} q^k (1-q)^{n-k}}{P(D)} P(q) \sim q^k (1-q)^{n-k} P(q)$

$$q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i, \{Z_{j\neq i}\}, D)\rangle_{\{j\neq i\}}\right)$$

applications:

- numerical evaluation of complicated integrals

$$\rho = \frac{P(M_A|D,I)}{P(M_B|D,I)} = \frac{P(M_A)}{P(M_B)} \cdot \frac{\int P(D|\{\alpha\}_A, M_A, I) d\alpha_{Aj}}{\int P(D|\{\alpha\}_B, M_B, I) d\alpha_{Bj}} \cdot \frac{\prod_j \alpha_{jB}(max) - \alpha_{jB}(min)}{\prod_j \alpha_{jA}(max) - \alpha_{jA}(min)}$$

- estimating posteriors:
$$P(q|D) = \frac{\binom{n}{k} q^k (1-q)^{n-k}}{P(D)} P(q) \sim q^k (1-q)^{n-k} P(q)$$

$$q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i, \{Z_{j\neq i}\}, D)\rangle_{\{j\neq i\}}\right)$$

- modelling stochastic processes: Gillespie, Metropolis

optimization: simulated annealing

- bootstrapping: estimating confidence intervals, random forest

let's start simple:

$$A_{circ} = \pi r^2 = \pi$$

for
$$r=1$$

example: finding π via Monte Carlo

$$A_{square} = 1$$

$$A_{section} = \frac{\pi}{4}$$

$$\pi = 4 \frac{A_{section}}{A_{square}}$$

picking N_{tot} random values [0,1] x [0,1]

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

We know that a point within the section is drawn with the probability \boldsymbol{p}

That is a binomial problem!

In practice, k points fall into the section with probability p and $N_{tot}-k$ don't, with a probability of 1-p

Thus, we can tell the mean and the variance of **one** simulation for one specific N_{tot}

$$\sigma(k)^2 = N_{tot} p(1-p)$$

$$\mu(k) = pN_{tot}$$

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$
 $\sigma(k)^2 = N_{tot} p(1-p)$ $\mu(k) = pN_{tot}$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right)$ standard deviation σ of the ratio $\frac{N_{section}}{N_{tot}}$

Say we run the simulation for a specific N_{tot} many times $\rightarrow Var(k)$

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$
 $\sigma(k)^2 = N_{tot} p(1-p)$ $\mu(k) = pN_{tot}$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right)$

Say we run the simulation for a specific N_{tot} many times $\rightarrow Var(k)$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right) = 4\sqrt{Var\left(\frac{k}{N_{tot}}\right)} = 4\sqrt{\frac{1}{N_{tot}^2}Var(k)} = 4\sqrt{\frac{1}{N_{tot}^2}Var(k)} = 4\sqrt{\frac{1}{N_{tot}^2}N_{tot}p(1-p)}$

We know: $Var(x) = \langle x^2 \rangle - \langle x \rangle^2$

a = const
$$x \to ax$$
 $Var(ax) = \langle (ax)^2 \rangle - \langle ax \rangle^2 = a^2(\langle x^2 \rangle - \langle x \rangle^2) = a^2 Var(x)$

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sqrt{\frac{1}{N_{tot}^2}N_{tot}p(1-p)} = 4\sqrt{\frac{1}{N_{tot}}p(1-p)}$

of course we **don't know**
$$p = \frac{\pi}{4} = \frac{A_{section}}{A_{square}}$$

because we wanted find π in the first place

but we can *estimate* it during the simulation

$$4\sqrt{\frac{1}{N_{tot}}} p(1-p) \approx 4 \cdot 0.4 \sqrt{\frac{1}{N_{tot}}}$$

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sqrt{\frac{1}{N_{tot}}} \ p(1-p) \approx 4 \cdot 0.4\sqrt{\frac{1}{N_{tot}}}$

running 100 simulations for each N_{tot}

 \rightarrow calculating standard deviation of π

$$\rightarrow$$
 comparing to $4 \cdot 0.4 \sqrt{\frac{1}{N_{tot}}}$

see Monte_Carlo_Simulation_PI.ipynb

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

last time:

different states n:

ϑ: hopping rate (*probability/time*)

calculating the **waiting time** (time τ between two events)

$$P(0,t) = \frac{(vt)^0}{0!} e^{-vt} \qquad \tau = -\frac{1}{v} ln[P(0,t)]$$

We want to understand the process a bit better (i. e. find the waiting time distribution $w(\tau)$)

$$\int_{a}^{b} P(\rho) d\rho = 1 = \int_{0}^{\infty} w(\tau) d\tau$$

$$\tau = -\frac{1}{\nu} ln[P(0,t)] = -\frac{1}{\nu} ln[\rho]$$

different states n:

θ: hopping rate (probability/time)

$$ho$$
: uniformly dist random number

$$\int_{a}^{b} f(x) dx = \int_{v(a)}^{y(b)} f[x(y)] \frac{dx}{dy} dy$$
 (substitution)

$$= \int_{y(a)}^{y(b)} g(y) \, dy$$

$$= \int_{y(a)}^{y(b)} g(y) \, dy \qquad g(y) \coloneqq f[x(y)] \, \frac{dx}{dy}$$

note: we actually need
$$\left| \frac{dx}{dy} \right|$$

inverse of y:
$$x(y) = y^{-1}$$

our situation:
$$\int_{\rho=0}^{\rho=1} P(\rho) d\rho = \int_{\tau(0)}^{\tau(1)} P[\rho(\tau)] \left| \frac{d\rho}{d\tau} \right| d\tau = \int_{\tau(0)}^{\tau(1)} w(\tau) d\tau$$

$$w(\tau) = P[\rho(\tau)] \left| \frac{d\rho}{d\tau} \right| \qquad x(y) = \rho(\tau) = e^{-\vartheta \tau}$$

$$w(\tau) = 1 \cdot \vartheta e^{-\vartheta \tau}$$

mean waiting time:
$$t^* = \int_{\tau=0}^{\tau=\infty} \tau \, w(\tau) \, d\tau = \frac{1}{\vartheta}$$

we know from module 6: $q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i,\{Z_{j\neq i}\},D)\rangle_{\{j\neq i\}}\right)$

which led to circular dependencies

$$q_{\mu}(\mu|D) \sim \mathcal{N}(\mu|\mu_K, \lambda_K^{-1})$$

$$q_{\tau}(\tau|D) \sim \Gamma(\tau|a_K, b_K)$$

$$\langle \tau \rangle_{\tau} = \int \tau \ q_{\tau}(\tau|D) \ d\tau = \frac{a_K}{b_K}$$

$$\sigma^2$$
 : variance μ : mean

$$\frac{1}{\sigma^2} = \lambda$$
 : precision

where
$$\mu_K = \frac{\tau_0 \, \mu_0 + K \, \bar{x}}{\tau_0 + K}$$

$$\lambda_K = (\tau_0 + K) \, \langle \tau \rangle_\tau$$

$$\bar{x} = \frac{1}{K} \sum_{k=1}^K x_k$$
 where
$$a_K = a + \frac{K+1}{2}$$

$$b_K = b + \frac{1}{2} \langle \sum_k (x_k - \mu)^2 + \tau_0 (\mu - \mu_0)^2 \rangle_\mu$$

set τ_0 , μ_0 , a and b to small positive values (largest ignorance)

we know from module 6: $q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i,\{Z_{j\neq i}\},D)\rangle_{\{j\neq i\}}\right)$

D: data set of size K

Z : set of n (latent) parameter

 σ^2 : variance μ : mean

 $\frac{1}{r^2} = \lambda$: precision

 $q_i(Z_i|\{Z_{j\neq i}\})$ sampling for all i in a particular order

say we have **three** parameters

- randomly (or MLE guess from data) initialize Z_1, Z_2, Z_3

iteration t

draw $Z_1 = q(Z_1(t+1)|Z_2(t), Z_3(t))$

draw Z_2 $q(Z_2(t+1)|Z_1(t+1),Z_3(t))$

draw Z_3 $q(Z_3(t+1)|Z_1(t+1),Z_2(t+1))$

iteration t + 2

we know from module 6:
$$q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i,\{Z_{j\neq i}\},D)\rangle_{\{j\neq i\}}\right)$$

 $q_i(Z_i|\{Z_{j\neq i}\})$ sampling for all i in a particular order

D: data set of size K

Z : set of n (latent) parameter

 σ^2 : variance μ : mean

 $\frac{1}{r^2} = \lambda$: precision

for the example from module 6 - now: randomly (or MLE guess from data) initialize μ , λ

$$D|\mu,\lambda \sim \mathcal{N}(\mu,\lambda^{-1})$$

$$\mu \sim \mathcal{N}(\mu_0, \lambda_0^{-1})$$

$$\lambda \sim \Gamma(a_0, b_0)$$

instead for calculating the means, we now sample:

$$\mu|\lambda, D \sim \mathcal{N}(M_{\lambda}, L_{\lambda}^{-1})$$
 $L_{\lambda} = (\lambda_0 + K)\lambda$ $M_{\lambda} = \frac{\mu_0 \lambda_0 + \sum_{k=1}^K x_k}{\lambda_0 + K}$

$$\lambda | \mu, D \sim \Gamma(a_K, b_K)$$
 $a_K = a_0 + \frac{K}{2}$ $b_K = b_0 + \frac{1}{2} \sum_{k=1}^{K} (x_k - \mu)^2$

iteration $t \rightarrow t + 1$

we know from module 6: $q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i,\{Z_{j\neq i}\},D)\rangle_{\{j\neq i\}}\right)$

 $q_i(Z_i|\{Z_{j\neq i}\})$ sampling for all i in a particular order

D: data set of size K

Z : set of n (latent) parameter

 σ^2 : variance

u : mean

 $\frac{1}{\sigma^2} = \lambda$: precision

Variational Bayes
Var_Bayes_Example.py

Gibbs Sampling
Gibbs_NormGamma_Example.py

we know from module 6: $q_i(Z_i|D) = \frac{1}{Z} \exp\left(\langle E(Z_i,\{Z_{j\neq i}\},D)\rangle_{\{j\neq i\}}\right)$

 $q_i(Z_i|\{Z_{j\neq i}\})$ sampling for all i in a particular order

D: data set of size K

Z : set of n (latent) parameter

 σ^2 : variance

u : mean

 $\frac{1}{\sigma^2} = \lambda$: precision

Variational Bayes
Var_Bayes_Example.py

Gibbs Sampling
Gibbs_NormGamma_Example.py

note: - Gibbs sampling does not guarantee to find a global solution!

- circular dependencies: has to be ergodic, otherwise interruption if $q_i(Z_i|\{Z_{j\neq i}\})=0$ for any i

Variational Bayes
Var_Bayes_Example.py

Gibbs Sampling
Gibbs NormGamma Example.py

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

$$\tau = -\frac{1}{\nu} ln[\rho]$$

$$w(\tau) = \vartheta e^{-\vartheta \tau}$$

stochastic scenario: number n of particles A

$$\vartheta$$
: hopping rate ($probability/time$)

$$au$$
: waiting time

$$w(\tau)$$
: waiting time distribution

mean waiting time:
$$t^* = \frac{1}{2}$$

for t = 0 many atoms $\rightarrow \tau$ is small

 $\Delta \mathbf{t}$

each atom has the probability ν to decay per time

logical $or \rightarrow adding$ the probabilities

$$\nu \rightarrow \nu n(t)$$

$$\Delta t = -\frac{1}{\nu \, n(t)} ln[P(0|t)$$

 $t + \Delta t$

Gillespie:

- 1) draw a **random number** ρ from a **uniform distribution** in the interval (0,1)
- 2) calculate the time Δt that elapses until the next decay

$$\Delta t = -\frac{1}{\nu \, n(t)} \ln \rho$$

- 3) set $t \rightarrow t + \Delta t$ and $n(t + \Delta t) = n(t) 1$
- 4) repeat

$$\Delta t = -\frac{1}{\nu \, n(t)} ln[\rho]$$

Gillespie:

- 1) draw a **random number** ρ from a **uniform distribution** in the interval (0,1)
- 2) calculate the time Δt that elapses until the next decay

$$\Delta t = -\frac{1}{\nu \, n(t)} \ln \rho$$

- 3) set $t \rightarrow t + \Delta t$ and $n(t + \Delta t) = n(t) 1$
- 4) repeat

see Decay.py

number of particles of A n: number of particles of B m:

different states n:

ϑ: hopping rate (*probability/time*)

waiting time au:

 $w(\tau)$: waiting time distribution

$$\nu(A) \rightarrow \nu_+ n(t)$$
 $\nu(B) \rightarrow \nu_- m(t)$

$$\nu(B) \rightarrow \nu_- m(t)$$

$$v_{tot} = v(A) + v(B) = v_{+} n(t) + v_{-} m(t)$$

$$\Delta t = -\frac{1}{\nu_+ n(t) + \nu_- m(t)} ln[\rho]$$

time that elapses until a reaction to occurs

next: deciding which reaction should occur

depending into which fraction this random number falls → this reaction occurs

generating a random number from a uniform distribution in the interval (0, 1)

4	$\stackrel{k_+}{\rightarrow}$	В
4	$\overset{\longleftarrow}{k_{-}}$	D

n: number of particles of A m: number of particles of B

different states

 ϑ : ho

 ${\it hopping\ rate\ } (probability/time)$

au: waiting time

n:

 $w(\tau)$:

waiting time distribution

Gillespie:

1) draw a random number ρ_1 from a uniform distribution in the interval (0,1)

2) calculate the time Δt that elapses until the next reaction

$$\Delta t = -\frac{1}{\nu_+ n(t) + \nu_- m(t)} \ln \rho_1$$

3) draw a second random number ρ_2 from a uniform distribution in the interval (0,1)

4) decide which reaction occurs:

if
$$\rho_2 < \frac{\nu_+ \, n(t)}{\nu_+ \, n(t) + \nu_- \, m(t)}$$
:

reaction A → B is more likely

$$n(t + \Delta t) = n(t) - 1$$

$$m(t + \Delta t) = m(t) + 1$$

else:

reaction B \rightarrow A is more likely $n(t + \Delta t) = n(t) + 1$ $m(t + \Delta t) = m(t) - 1$

equilibrium at

$$\frac{A}{B} = \frac{k_{-}}{k+}$$

We also know how to solve the Predator-Prey model now!

L: sheep (lambs)

wolfs

E: "empty"

W:

$$L\stackrel{k_1}{\longrightarrow} 2\,L$$

$$L+W\stackrel{k_2}{\longrightarrow} 2\,W$$

$$W \stackrel{k_3}{\longrightarrow} \Phi$$

different states hopping rate time increment waiting time

We also know how to solve the Predator-Prey model now!

L: sheep (lambs)

W: wolfs

E: "empty"

$$L\stackrel{k_1}{\longrightarrow} 2\,L$$

$$L+W\stackrel{k_2}{\longrightarrow} 2\,W$$

$$W \stackrel{k_3}{\longrightarrow} \Phi$$

different states hopping rate time increment waiting time

We also know how to solve the Predator-Prey model now!

sheep (lambs) L:

W: wolfs

"empty" E:

$$L\stackrel{k_1}{\longrightarrow} 2\,L$$

$$L+W\stackrel{k_2}{\longrightarrow} 2\,W$$

$$W \stackrel{k_3}{\longrightarrow} \Phi$$

different states hopping rate time increment waiting time

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

Berkeley Monte Carlo Methods

problem: sometimes we need to draw from a probability distribution (= target) that is

difficult to sample from directly

idea: drawing from a proposal distribution

accept/reject the proposal based on an acceptance probability

application: in Physics: often energy-based models

sampling from $p_i(x|\vartheta) \sim exp\{-E(x,\vartheta)\}$

essentially samples the partition function ${\mathcal Z}$

If $\Delta E(x, y)$ is **negative**:

→ always move

(a ball always rolls down the hill)

If $\Delta E(x, y)$ is **positive**:

- → calculate the **probability to move**
- → leaves some chance to escape local minimum

T: temperature

Boltzmann factor

$$p_{move} \sim \exp\left[-\frac{\Delta E(x,y)}{T}\right]$$

example: simulated annealing

slowly reducing T \rightarrow making larger jumps ($\Delta E(x, y)$) less likely over time

If $\Delta E(x, y)$ is **negative**:

→ always move

(a ball always rolls down the hill)

If $\Delta E(x, y)$ is **positive**:

- → calculate the **probability to move**
- → leaves some chance to escape local minimum

T: temperature

Boltzmann factor

$$p_{move} \sim \exp\left[-\frac{\Delta E(x,y)}{T}\right]$$

Metropolis:

- 1) suggest a random move $\Delta \vec{r}$
- 2) calculate $\Delta E = E(\vec{r}) E(\vec{r} + \Delta \vec{r})$
- 3) move or not:
 - a) move if $\Delta E < 0$
 - b) if $\Delta E > 0$
 - draw a **random number** $oldsymbol{
 ho}$ from a **uniform distribution** in the interval $(\mathbf{0},\mathbf{1})$
 - move if $\rho < \exp\left[-\frac{\Delta E}{T}\right]$
- 4) reduce *T* and repeat

Metropolis: 1) suggest a random move $\Delta \vec{r}$

2) calculate $\Delta E = E(\vec{r}) - E(\vec{r} + \Delta \vec{r})$

3) move or not:

a) move if $\Delta E < 0$

b) if $\Delta E > 0$

- draw a random number ho from a uniform distribution in the interval (0,1)

- move if $ho < \exp\left[-rac{\Delta E}{T}
ight]$

4) reduce T and repeat

example: alternative to finite differences

simulating many particles

Naïve solution: solving Newton's equation of motion

$$x_{t+\Delta t} = x_t + v(x)_t \cdot \Delta t + \frac{1}{2} a(x)_t \Delta t^2$$

$$y_{t+\Delta t} = y_t + v(y)_t \cdot \Delta t + \frac{1}{2} a(y)_t \Delta t^2$$

total force/potential that acts on the particle

$$a(x) = \frac{F(x)_{tot}}{m} = \frac{1}{m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial x}$$

$$a(y) = \frac{F(y)_{tot}}{m} = \frac{1}{m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial y}$$

example: alternative to finite differences

Naïve solution: solving **Newton's equation of motion**

$$x_{t+\Delta t} = \left. x_t + v(x)_t \cdot \Delta t + \frac{1}{2m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial x} \right|_t \Delta t^2$$

$$y_{t+\Delta t} = y_t + v(y)_t \cdot \Delta t + \frac{1}{2m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial y} \bigg|_t \Delta t^2$$

We pick a specific value for Δt and update locations, velocities and acceleration

for particles with $r \approx r_0$:

$$-\frac{\partial U(x,y)_{LJ}}{\partial y}$$
 or $\frac{\partial U(x,y)_{LJ}}{\partial x}$ explode

- particles get kicked out
- wouldn't have gotten so close in the first place \rightarrow Δt too large

for particles with $r\gg r_0$:

$$-\frac{\partial U(x,y)_{LJ}}{\partial y} \text{ or } \frac{\partial U(x,y)_{LJ}}{\partial x} \approx 0$$

- nothing happens, very inefficient $\rightarrow \Delta t$ too small

CHECKING IN

<u>Outline</u>

Basic Idea & Finding Pi

Mapping Distributions & Gibbs Sampling

Gillespie Algorithm

Metropolis (- Hastings) Algorithm

Bootstrapping

problem: sometimes datapoints x_i don't have error bars

 \rightarrow sampling from x_i in order to estimate **confidence intervals** idea: $x_i | model \sim ?$

> if x_i have error bars σ_i , usually sampling from normal distribution $x_i | \sigma \sim \mathcal{N}(\bar{x}_i, \sigma_i^2)$


```
Physics 77/88
```

```
from scipy.optimize import curve_fit
def fun_to_fit(x, a, b, c):
        return a*x**2 + b*x + c
ValsBest, Cov = curve_fit(fun_to_fit, x, y)
```

Berkeley Monte Carlo Methods

Physics 77/88

```
from scipy.optimize import curve_fit

def fun_to_fit(x, a, b, c):
    return a*x**2 + b*x + c

ValsBest, Cov = curve_fit(fun_to_fit, x, y)
```

bootstrapping:

if no errors of y_i known

- \rightarrow assuming that fitted parameters follow a **normal distribution**, i.e. $a=1.37\pm0.39$ where $\mu_a=1.37$ and $\sigma_a=0.39$ and so on...
- \rightarrow varying the parameters within their errors using np.random.normal(μ_a , σ_a , N) N times
- → for each N, generating a curve fit
- → from set of N curve fits → calculating percentiles for confidence band/ interval

Berkeley Monte Carlo Methods

Physics 77/88

```
from scipy.optimize import curve_fit

def fun_to_fit(x, a, b, c):
    return a*x**2 + b*x + c

ValsBest, Cov = curve_fit(fun_to_fit, x, y)
```

bootstrapping:

if errors of y_i known

- \rightarrow assuming that errors of y_i follow a normal distribution, i.e. $y_i(boot) = y_i \pm \sigma_i$
- \rightarrow varying all y_i within their errors using np.random.normal (y_i, σ_i, N) N times
- → for each N, generating a curve fit
- → from set of N curve fits → calculating percentiles for confidence band/ interval

Berkeley Monte Carlo Methods

bootstrapping

ConfidenceInterval.py


```
USAGE:
····generating·a·test·sample:
\cdots \times \cdots = -np.linspace(-1,3,20)
\cdotserr\cdots=·np.random.normal(0,·1,·(len(x),))#1sigma·errorbars
····errorbars·=·abs(err)
····1) · plotting · data
\cdots F1 = FitData(x, y)
\cdots F2 = FitData(x, y, errorbars)
····F3·=·FitData(x,·y,·errorbars,·time·=·'[s]',·pressure·=·'[MPa]')
\cdots 2) · fitting · data · (returns · best · values · of · fitted · params, · 1sigma · confidence · and
    ·····reduced·chi2·if·errorbars·given, ·MSE·else)
\cdotsres1 \cdots = F1.Fit()
····res2··=·F2.Fit()
····res2··=·F3.Fit()
\cdotsres12·=·F1.Fit("a*x**2",·[1],·(-0.5,·10))
····3)·Bootstrapping·(either·varying·within·errorbars·or·within·conf·of·fitted
       ····params)
····F1.RunBootStrap()
····F2.RunBootStrap()
····F3.RunBootStrap()
\cdotsF1.RunBootStrap(100, \cdot[90, \cdot95], \cdotnp.linspace(-1,5,200))
\cdotsF3. RunBootStrap(100, \cdot[90, \cdot95], \cdotnp. linspace(-1, 5, 200))
```

Thank you very much for your attention!

