Data Streams:

Estimating Moments

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
 - Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

Estimating moments

Moments of order k

- If a stream has A distinct elements, and each element has frequency m_i
- The kth order moment of the stream is

$$\sum_{i} m_{i}^{l}$$

- The 0th order moment is the number of distinct elements in the stream
- The 1st order moment is the length of the stream

Moments of order k (cont.)

• The kth order moment of the stream is

$$\sum_{i} m_{i}^{k}$$

• The 2nd order moment is also known as the

"surprise number" of a stream (large values = more

unavan distribution												
m _i	i=1	i=2	i=3	i=4	i=5	i=6	i=7	i=8	i=9	i=10	i=11	2 nd moment
Seq1	10	9	9	9	9	9	9	9	9	9	9	910
Seq2	90	1	1	1	1	1	1	1	1	1	1	8110

Method for second moment

- Assume (for now) that we know n, the length of the stream
- We will sample s positions
- For each sample we will have *X.element* and *X.count*
- We sample s random positions in the stream X.element = element in that position, $X.count \leftarrow 1$
 - When we see X.element again, $X.count \leftarrow X.count + 1$
- Estimate second moment as $n(2 \times X.count 1)$

Method for second moment (cont.)

• Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b $m_a = 5, m_b = 4, m_c = 3, m_d = 3$ second moment = $5^2 + 4^2 + 3^2 + 3^2 = 59$

- Suppose we sample s=3 variables X_1 , X_2 , X_3
- Suppose we pick the 3rd, 8th, and 13th position at random
- X₁.element=c, X₂.element=d, X₃.element=a
- X₁.count=3, X₂.count=2, X₃.count=2 (we count forwards only!)
- Estimate $n(2 \times X.count 1)$, first estimate = 15(6-1) = 75, second estimate 15(4-1) = 45, third estimate 15(4-1) = 45, average of estimates = $55 \approx 59$

Method for second moment (cont.)

- Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
- Suppose we pick the 3rd, 8th, and 13th position at random
- X_1 .element=c, X_2 .element=d, X_3 .element=a
- X_1 .count=3, X_2 .count=2, X_3 .count=2

Why this method works?

- Let e(i) be the element in position i of the stream
- Let c(i) be the number of times e(i) appears in positions i, i+1, i+2, ..., n
- Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,bc(6) = ?

Why this method works?

- Let e(i) be the element in position i of the stream
- Let c(i) be the number of times e(i) appears in positions i, i+1, i+2, ..., n
- Example: $a, b, c, b, d, \underline{a}, c, d, \underline{a}, b, d, c, \underline{a}, \underline{a}, b$ c(6) = 4 (remember: we count forwards only!)

Why this method works? (cont.)

- c(i) is the number of times e(i) appears in positions i, i+1, i+2, ..., n
- E[n (2 × X.count 1)] is the average of n (2 $\stackrel{(i)}{\sim}$ 1) Over all positions i-1 of $E[n(2 \times X. count -1)] = \frac{1}{n} \sum_{i=1}^{n} n(2c(i) 1)$ $E[n(2 \times X. count -1)] = \sum_{i=1}^{n} (2c(i) 1)$

Why this method works? (cont.)

$$E[n(2 \times X. \text{count} - 1)] = \sum_{i=1}^{\infty} (2c(i) - 1)$$

- Now focus on element a that appears m_a times in the stream
 - The last time a appears this term is 2c(i) 1 = 2x1-1 = 1
 - Just before that, 2c(i)-1 = 2x2-1 = 3
 - **–** ...
 - Until $2m_a 1$ for the first time a appears
- Hence

$$E[n(2 \times X. \text{count} - 1)] = \sum 1 + 3 + 5 + \dots + (2m_a - 1) = \sum m_a^2$$

For higher order moments (v = X.count)

- For second order moment
 - We use $n(2v-1) = n(v^2 (v-1)^2)$
- For third order moment
 - We use $n(3v^2 3v + 1) = n(v^3 (v-1)^3)$
- For kth order moment
 - We use $n(v^k (v-1)^k)$

For infinite streams

- Use a reservoir sampling strategy
- If we want s samples
 - Pick the first s elements of the stream setting X_i element \leftarrow e(i) and X_i count \leftarrow 1 for i=1...s
 - When element n+1 arrives
 - Pick X_{n+1} element with probability s/(n+1), evicting one of the existing elements at random and setting X count $\leftarrow 1$
- As before, probability of an element is s/n

Summary

Things to remember

• kth order moments of a stream

Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
 - Exercises 4.2.5
 - Exercises 4.3.4
 - Exercises 4.4.5
 - Exercises 4.5.6