Deterministic context-free languages + Review of CFLs

- Deterministic context-free languages
- Review of CFLs
- Solutions to difficult problems in HW5
- Nature of problems in Mid Term 2

Deterministic vs non-deterministic automata

Finite automata

- Deterministic finite automata are equivalent to non-deterministic finite automata in their language recognition power
- They recognize the same class: that of regular languages
- We have an algorithm for converting NFAs to DFAs

Pushdown automata

- Deterministic PDA are not equivalent to non-deterministic PDA
- Non-deterministic PDA are more powerful than deterministic PDA
- Certain context-free languages cannot be recognized by deterministic PDA
 - They require non-deterministic PDA

Deterministic context-free languages

- Languages recognized by deterministic PDA are called deterministic context-free languages (DCFL)
- DCFLs are relevant to practical applications
 - E.g. design of parsers in compilers for programming languages

Defining DPDAs

- Conform to the basic principle of determinism:
 - At each step of computation, the DPDA has at most one way to proceed according to its transition function
- More complicated than defining DFAs because DPDAs may read an input symbol without popping a stack symbol, and vice versa
- Accordingly, we allow ε-moves in the DPDA's transition function, even though ε-moves are prohibited in DFAs

ε-move types

- Take two forms
 - ε -input moves, corresponding to $\delta(q, \varepsilon, x)$
 - ε -stack moves, corresponding to $\delta(q, a, \varepsilon)$
- A move may combine both forms, corresponding to $\delta(q, \epsilon, \epsilon)$
- If a DPDA can make an ε-move in a certain situation, it is prohibited from making a move in that same situation that involves processing a symbol instead of ε (for otherwise non-determinism will occur)

Formal definition of DPDA

```
A DPDA is a 6-tuple (Q, \Sigma, T, \delta, q<sub>0</sub>, F), where Q, \Sigma, T, and F are all finite sets, and
```

- 1. Q is the set of states,
- Σ is the input alphabet,
- T is the stack alphabet,
- δ: Q x Σ_ε x T_ε \rightarrow (Q x T_ε) ∪ {∅} is the transition function,
- 5. $q_0 \in Q$ is the start state, and
- 6. $F \subseteq Q$ is the set of accept states.

The transition function δ must satisfy the following condition. For every $q \in Q$, $a \in \Sigma$, and $x \in T$, exactly one of the values

- δ(q, a, x)
- δ(q, a, ε)
- δ(q, ε, x)
- δ(q, ε, ε)

is not empty set.

Output of transition function in DPDA

- The transition function may
 - output a single move of the form (r, y) or
 - indicate no action by outputting an empty set
- Example:

Suppose a DPDA M with transition function δ is

- in state q,
- has a as its next input symbol, and
- has symbol x on the top of its stack

If $\delta(q, a, x) = (r, y)$ then M reads a, pops x off the stack, and enters state r, and pushes y on the stack. Alternatively, if $\delta(q, a, \varepsilon) = \emptyset$ then when M is in state q, it has no move that reads a and pops x. In that case, the condition on δ requires that one of $\delta(q, \varepsilon, x)$, $\delta(q, a, \varepsilon)$, or $\delta(q, \varepsilon, \varepsilon)$ is nonempty, and then M moves accordingly.

- The condition enforces deterministic behavior
- A DPDA has exactly one legal move in every situation where its stack is nonempty
- If the stack is empty, a DPDA can move only if the transition function specifies a move that pops ε.
 - Otherwise, the DPDA has no legal move and it rejects without reading the rest of the input

Acceptance in DPDA

- If a DPDA enters an accept state after it has read the last symbol of an input string, it accepts that string
- In all other cases, it rejects that string
- Rejection occurs
 - A) if the DPDA reads the entire input but doesn't enter an accept state when it is at the end, or
 - B) if the DPDA fails to read the entire input string
- Case B may arise
 - if the DPDA tries to pop an empty stack, or
 - if the DPDA makes an endless sequence of ε-input moves without reading the input past a certain point

Deterministic CFL

- The language of a DPDA is called a deterministic context-free language
- Example:
 - The language {0ⁿ1ⁿ | n≥0} is a DCFL.
 We can easily modify the PDA of this language (shown at the right) to be a DPDA by adding transitions for any missing state, input symbol, and stack symbol to a "dead" state from which acceptance is not possible.

Example of a language that is not DCFL

- The language {ww^R | w ∈ {0,1}*} (which is a palindrome) is **not** a DCFL.
- Nondeterminism is necessary for recognizing this language. Challenge: can you prove that?
- The PDA is shown at the right.

Properties of DCFLs

- Theorem: The class of DCFLs is closed under complementation.
- This theorem implies that some CFLs are not DCFLs.
 - Any CFL whose complement isn't a CFL isn't a DCFL.
 - Thus A = $\{a^ib^jc^k \mid i \neq j \text{ or } j \neq k \text{ where } i, j, k \geq 0\}$ is a CFL but not a DCFL.
 - Otherwise, A^{comp} would be a CFL, incorrectly implying that $A^{comp} \cap a^* b^* c^* = \{a^n b^n c^n | n \ge 0\}$ is context free.

Properties of DCFLs

- The class of DCFLs is **not** closed under
 - Union
 - Intersection
 - Star
 - Reversal

Recap

Recap

Topics covered (Chapter 2 of Sipser)

2. Context-free Languages

- 2.1. Context-Free Grammars
 - Formal definition of CFG [lecture on Feb 25]
 - Examples of CFGs [lecture on Feb 25]
 - Designing CFGs [lecture on Feb 28]
 - Ambiguity [lecture on Feb 28]
 - Chomsky Normal Form [lecture on Mar 2, Mar 4]
- 2.2. Pushdown Automata
 - Formal definition of PDA [lecture on Mar 4]
 - Examples of PDA [lecture on Mar 7]
 - CFG to PDA conversion [lecture on Mar 9]
 - PDA to CFG conversion [lecture on Mar 11]
- 2.4. Deterministic Context-Free Languages
 - Properties of DCFLs [lecture on March 23]

DFA Equivalence and Minimization

(The Table Filling Algorithm)

[Lecture on March 21]

Some solutions from HW5: CFG→CNF

- Problem 4a provides a relatively simple grammar with a difficult solution:
 - $S \rightarrow R1R1R1R$
 - $R \rightarrow 0R \mid 1R \mid \epsilon$
- Replacing start variable unnecessary, since we don't have recursion to S.
- Second step is eliminating ε. This is where things become complicated.
- S → R1R1R1R contains 4 R's. Each can be ε or not, leading to 2⁴ or 16 possible combinations.
- Consider all binary numbers 0000 to 1111. Replace 0's with empty string, 1's with R's, and put 1's in between all of them.
 - Example: binary number 1010 looks like R11R1

4

CFG→CNF solution continued.

- Resulting grammar from previous step looks as follows:
 - S → 111 | 111R | 11R1 | 11R1R | 1R11 | 1R11R | 1R1R1 | 1R1R1R | R111 | R111R | R11R1 | R11R1R | R1R11 | R1R11R | R1R1R1 | R1R1R1R
 - $R \to 0R | 1R | 0 | 1$
- This grammar doesn't have unit rules (i.e. A → B), so what remains is adding new rules to make everything conform correctly.
- Best to start with rules for terminals:
 - Z → 1 (**Z**ero)
 - O → 0 (**O**ne)
- Everything else is to replace common patterns we see. For instance:
 - A → RO (R1 originally)
 - B → OR (1R originally)
 - $C \rightarrow OO (11 \text{ originally})$

4

CFG→CNF solution continued.

- Final grammar for 4a is shown as follows:
 - S → GD | CO | CB | AC | CD | BC | EB | EA | ED | AC | FB | FA | FD | AF | GB | GA
 - $R \rightarrow ZR \mid OR \mid 0 \mid 1$
 - $0 \rightarrow 1$
 - $Z \rightarrow 0$
 - $A \rightarrow RO$
 - $B \rightarrow OR$
 - $C \rightarrow OO$
 - $D \rightarrow AR$
 - $E \rightarrow BO$
 - $F \rightarrow AO$
 - $G \rightarrow AA$

More solutions from HW5: CFG→PDA

- Problems 5 and 6 can be tedious or straightforward depending on whether shorthand syntax is used.
- For our example, we will consider problem 6 in shorthand, then problem 5 with a more complete PDA.
- To start with shorthand, make three states: 1, 2, and 3.
 - Transition from 1 → 2 always has the label ε, ε → S\$. We start with empty stack, and push stack symbol \$, then start variable S.
 - Transition from 2 → 3 always has the label ε, \$ → ε. We detect the stack now only has
 the stack symbol left, pop it, and accept.

Problem 6 shorthand continued

- For the main loop, we add in two types of rules:
 - For every rule A \rightarrow B in the grammar, the rule ϵ , A \rightarrow B
 - For every terminal a in the input alphabet, the rule a, a $\rightarrow \epsilon$
- What is our alphabet?
 - We have [,], and _ from the [O_E_E] construction
 - We have the digits from variable N
 - Finally, from the rule O→ add | sub | mul | div | mod | shr | shl, we have the following letters: a, b, d, h, i, l, m, o, r, s, u, v
- Now just all these rules to the one loop from $2 \rightarrow 2$

Problem 6 shorthand continued

Final PDA for problem 6 might look as follows:

ε,ε→S\$

CFG→PDA non-shorthand solution

- What if we don't want to/can't use the shorthand?
- For the next example, we consider problem 5, which has the following grammar:
 - $X \rightarrow X Y \mid Y$
 - $\bullet \ Y \to Y / Z \mid Z$
 - $Z \rightarrow (X) \mid q$
- Setup is similar to shorthand, but with 4 states, as \$ and S are pushed separately.
- Same rules for terminals apply, since we read and pop in one transition.
- For rules in CFG, A → B may take multiple transitions, however.
 - If rule is $A \rightarrow x_1 x_2 ... x_n$, then add n-1 states.
 - Transition from state 3 (loop state) to new state by replacing A with x_n , then to each new state doing nothing but pushing x_{n-k} .
 - From last state in the loop, transition back to state 3 pushing x_1 .

CFG→PDA non-shorthand solution

Final PDA for Problem 5 looks as follows:

Mid-term 2: Fri Mar 25

- Will have 5 problems
 - 1 of them has two parts (a and b)
 - 3 of them have just one part
 - 1 of them has five True/False questions (a e)
- Each of the 5 problems has a weight of 20
- The problems/prompt will fit on one page
- First page will have instructions
- The exam is in-class, in-person
- The exam is closed-book, closed-notes