B-SPLINE CURVES

Rodrigo Silveira

Curve and Surface Design Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

INTRODUCTION TO B-SPLINES

Improving over Bézier curves

Bézier curves have some drawbacks:

- Degree is proportional to number of control points
- Does not offer true global control (at most "pseudo-local")
- ullet C^2 continuity is not so easy to obtain for composite curves

To overcome this: **B-splines**

- Developed by Riesenfeld and others in 1970s
- B-splines = Basis splines
- Several flavors: uniform, non-uniform, rational non-uniform (NURBs)...

QUADRATIC UNIFORM B-SPLINES

Deriving the formula for the quadratic B-splines

Setting:

- Input: n+1 control points P_0, \ldots, P_n
- Output: **spline curve** where each segment $P_i(t)$ is a **quadratic** parametric polynomial based on P_{i-1}, P_i and P_{i+1}

sketch of setting for n = 3 (not accurate!)

$$P_i(t) = (t^2, t, 1) \begin{pmatrix} P_{i-1} \\ P_i \\ P_{i+1} \end{pmatrix}$$

$$= (t^{2}, t, 1) \begin{pmatrix} a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1} \\ a_{0} & b_{0} & c_{0} \end{pmatrix} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \end{pmatrix}$$

Requirements:

- 1. $P_1(t)$ and $P_2(t)$ meet smoothly at common point
- 2. Affine combination of control points

Question: what is the matrix?

QUADRATIC UNIFORM B-SPLINES

Deriving the formula for the quadratic B-splines

$$P_{i}(t) = \frac{1}{2}(t^{2}, t, 1) \begin{pmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \end{pmatrix}, i = 1, 2$$

$$= \frac{1}{2}(t^{2} - 2t + 1)P_{i-1} + \frac{1}{2}(-2t^{2} + 2t + 1)P_{i} + \frac{t^{2}}{2}P_{i+1}$$

ullet Start and endpoints: K_i and K_{i+1} Since $K_i=P_i(0)$ and $K_{i+1}=P_i(1)$, we have:

$$K_i = P_i(0) = \frac{1}{2}(P_{i-1} + P_i)$$

$$K_{i+1} = P_i(1) = \frac{1}{2}(P_i + P_{i+1})$$

Question: what are the tangent vectors at the ends?

$$P'_{i}(0) = P_{i} - P_{i-1}$$
$$P'_{i}(1) = P_{i+1} - P_{i}$$

More accurate picture

Example: use control points $\{(1,0),(1,1),(2,1),(2,0)\}$

Deriving the formula for the cubic B-splines

Setting:

- Input: n+1 control points P_0, \ldots, P_n
- Output: spline curve where each segment $P_i(t)$ is a **cubic** parametric polynomial based on $P_{i-1}, P_i, P_{i+1}, P_{i+2}$

$$P_{i}(t) = (t^{3}, t^{2}, t, 1)M \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{pmatrix}$$

Requirements:

- 1. Consecutive segments meet with C^2 continuity
- 2. Entire curve is affine combination of control points

sketch of setting for n = 4 (not accurate!)

Deriving the formula for the cubic B-splines

$$P_{i}(t) = (t^{3}, t^{2}, t, 1) \begin{pmatrix} a_{3} & b_{3} & c_{3} & d_{3} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{1} & b_{1} & c_{1} & d_{1} \\ a_{0} & b_{0} & c_{0} & d_{0} \end{pmatrix} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{pmatrix}$$

Requirements:

- $1.\,$ Consecutive segments meet with C^2 continuity
- 2. Entire curve is affine combination of control points

Matrix derived in similar way:

- Equations for equal endpoints, equal derivatives and second derivatives at t=0 and t=1?
- Equations for affine combination

15 equations

4 equations

16 of them are independent ⇒ unique solution

Formula for the cubic B-splines

$$P_{i}(t) = \frac{1}{6}(t^{3}, t^{2}, t, 1) \begin{pmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 0 & 3 & 0\\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} P_{i-1}\\ P_{i}\\ P_{i+1}\\ P_{i+2} \end{pmatrix}$$

$$= \frac{1}{6}(-t^3 + 3t^2 - 3t + 1)P_{i-1} + \frac{1}{6}(3t^3 - 6t^2 + 4)P_i + \frac{1}{6}(-3t^3 + 3t^2 + 3t + 1)P_{i+1} + \frac{t^3}{6}P_{i+2}$$

The two endpoints of each curve segment are

$$K_i = P_i(0) = \frac{1}{6}(P_{i-1} + 4P_i + P_{i+1})$$

$$K_{i+1} = P_i(1) = \frac{1}{6}(P_i + 4P_{i+1} + P_{i+2})$$

Geometrically, it makes more sense to rewrite as

$$K_{i} = \left(\frac{1}{6}P_{i-1} + \frac{5}{6}P_{i}\right) + \frac{1}{6}\left(P_{i+1} - P_{i}\right)$$

$$K_{i+1} = \left(\frac{1}{6}P_{i} + \frac{5}{6}P_{i+1}\right) + \frac{1}{6}\left(P_{i+2} - P_{i+1}\right)$$

Other geometric interpretations exist (e.g., $\frac{2}{3}$ rule)

Making the curve go from P_0 to P_n

How can we force the curve go through P_0 and P_n ?

Answer: add dummy control points P_{-1} and P_{n+1}

Question: what are P_{-1} and P_{n+1} points exactly?

$$P_{-1} = 2P_0 - P_1$$
 and $P_{n+1} = 2P_n - P_{n-1}$

Example: use control points $\{(0,0),(0,1),(1,1),(2,1),(2,0)\}.$ (i) Draw the first segment. (ii) Add P_{-1} to fix beginning of curve at P_0 .

QUADRATIC VS. CUBIC

You can choose the order (=degree+1)

As opposed to Bézier curves, in B-splines the same n+1 points can be used to construct curve of order 2 (linear), 3 (quadratic), 4 (cubic) ...

INCREASING THE ORDER

Higher order, better fit

Figure 3.9. B-spline curves of different degree, using the same control polygon.

Where p is the degree of curve (i.e., p = k - 1)

Figure from [Piegl and Tiller]

B-SPLINE TO BEZIER

From a cubic B-Spline to a cubic Bézier curve

Given a cubic B-spline segment P(t) based on control points P_0, \dots, P_3 , how can we find a Bézier curve C(t) with the same shape?

$$P(t) = \frac{1}{6}(t^3, t^2, t, 1) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{pmatrix} \quad C(t) = (t^3, t^2, t, 1) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Q_0 \\ Q_1 \\ Q_2 \\ Q_3 \end{pmatrix}$$

Matrix formulation of cubic B-spline

Question: what is the solution to the problem?

Solution: Solve
$$P(t) = C(t)$$
 for the unknowns Q_0, \ldots, Q_3

$$C(t) = (t^{3}, t^{2}, t, 1) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Q_{0} \\ Q_{1} \\ Q_{2} \\ Q_{3} \end{pmatrix}$$

Matrix formulation of cubic Bézier

Unknowns

Result:

$$Q_0 = \frac{1}{6}(P_0 + 4P_1 + P_2),$$

$$Q_1 = \frac{1}{6}(4P_1 + 2P_2),$$

$$Q_2 = \frac{1}{6}(2P_1 + 4P_2),$$

$$Q_3 = \frac{1}{6}(P_1 + 4P_2 + P_3)$$

HIGHER ORDER B-SPLINE CURVES

B-splines of order higher than four

The formulas for quadratic and cubic uniform B-splines generalize to arbitrary order

$$P_{i}(t) = \frac{1}{6}(t^{3}, t^{2}, t, 1) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ P_{i+2} \end{pmatrix}$$

$$M_{3} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix}$$

$$P(t) = (t^n, \dots, t^2, t, 1) M_n \begin{pmatrix} P_{i-1} \\ P_i \\ P_{i+1} \\ \vdots \\ P_{i+n-1} \end{pmatrix}$$

$$m_{ij} = \frac{1}{n!} \binom{n}{i} \sum_{k=j}^{n} (n-k)^{i} (-1)^{k-j} \binom{n+1}{k-j}$$

$$M_3 = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix}$$

$$P(t) = (t^{n}, \dots, t^{2}, t, 1)M_{n} \begin{pmatrix} P_{i-1} \\ P_{i} \\ P_{i+1} \\ \vdots \\ P_{i+n-1} \end{pmatrix}$$

$$\text{Matrix for B-spline s} \qquad M_{4} = \frac{1}{24} \begin{pmatrix} -1 & -4 & 6 & -4 & 1 \\ -4 & 12 & -12 & 4 & 0 \\ 6 & -6 & -6 & 6 & 0 \\ -4 & -12 & 12 & 4 & 0 \\ 1 & 11 & 11 & 1 & 0 \end{pmatrix}$$

$$m_{ij} = \frac{1}{n!} \binom{n}{i} \sum_{k=j}^{n} (n-k)^{i} (-1)^{k-j} \binom{n+1}{k-j}$$

$$M_{5} = \frac{1}{120} \begin{pmatrix} -1 & 5 & -10 & 10 & -5 & 1 \\ 5 & -20 & 30 & -20 & 5 & 0 \\ -10 & 20 & 0 & -20 & 10 & 0 \\ 10 & 20 & -60 & 20 & 10 & 0 \\ -5 & -50 & 0 & 50 & 5 & 0 \\ 1 & 26 & 66 & 26 & 1 & 0 \end{pmatrix}$$

INTERPOLATING B-SPLINES

How to build an interpolating cubic B-spline curve Unknowns

B-spline curve approximates control points. How can we make it interpolate?

B-spline curve: given n+1 given control points, produces curve through n-1 joints K_j

We want: given n+1 data points K_0,\ldots,K_n , produce n-segment curve through them

To produce n segments, a cubic B-spline / requires n+3 control points, P_{-1}, \ldots, P_{n+1}

Recall formula of cubic B-spline:

$$P_i(t) = \frac{1}{6}(-t^3 + 3t^2 - 3t + 1)P_{i-1} + \frac{1}{6}(3t^3 - 6t^2 + 4)P_i + \frac{1}{6}(-3t^3 + 3t^2 + 3t + 1)P_{i+1} + \frac{t^3}{6}P_{i+2}$$

$$P_i(1) = \frac{1}{6}(P_i + 4P_{i+1} + P_{i+2}) = K_{i+1}$$
 we require this \longrightarrow this gives one equation for each K_j ($n+1$ in total)

We need n+3 equations, so we need two more: we fix tangent vectors T_1 and T_n at ends

$$P_0'(0) = \frac{1}{2}(P_1 - P_{-1})$$
 = T_1 two more equations $(T_1 \text{ and } P_n'(1) = \frac{1}{2}(P_{n+1} - P_{n-1})$ = T_n T₂ given by user)

System with n+3 unknowns and n+3 equations that (one can check) is nonsingular

An different way to look at B-splines

Recall Bézier curves:
$$P(t) = \sum_{i=0}^{n} P_i B_{n,i}(t)$$
 $t \in [0,1]$

We can do the same with B-splines! Approach based on using a knot vector

For now, we consider cubic uniform B-splines (order 4)

Example: 5 control points, so two cubic segments

→ cubic = order 4

We need to find five weight (basis) functions $B_{4,0}(t), \ldots, B_{4,4}(t)$

- ullet In this approach we assume each cubic segment is defined for one interval of one unit [u,u+1]
- \bullet Each integer value u is called a *knot* (the sequence of knot values is called *knot vector*)
- ullet In uniform B-splines, knots are equally spaced, e.g., $0,1,2,\ldots$

in our case, since there are two segments, the parameter for the first one lives in $\left[0,1\right]$ and for the other in $\left[1,2\right]$

The cubic B-spline basis functions

Each function should:

- Be a cubic polynomial
- Have it maximum near "its" control point
- Drop to zero away from "its" control point

We write the basis function as the union of four parts-

Conditions sought for the $b_i(t)$ functions:

- Affine invariant
- C^2 -continuous at three joints
- $b_0(t)$, $b_0'(t)$, $b_0''(t)$ should be zero at the start point $b_0(0)$
- $b_3(t)$, $b_3'(t)$, $b_3''(t)$ should be zero at the end point $b_3(1)$

How many equations on the coefficients of the $b_i(t)$ functions do we obtain from these conditions?

each $b_i(t)$ is a cubic polynomial defined over [0,1]

The cubic B-spline basis functions

Solution to the equations:

$$N_{i,4}(t) = \begin{bmatrix} b_0(t) = \frac{1}{6}t^3 & u_{i-3} \le t \le u_{i-2} \\ b_1(t) = \frac{1}{6}(1+3t+3t^2-3t^3) & u_{i-2} \le t \le u_{i-1} \\ b_2(t) = \frac{1}{6}(4-6t^2+3t^3) & u_{i-1} \le t \le u_i \\ b_3(t) = \frac{1}{6}(1-3t+3t^2-t^3) & u_i \le t \le u_{i+1} \end{bmatrix}$$

Each control point P_i gets multiplied by a shifted copy of the basis function: $P(t) = \sum_{i=0}^4 P_i B_{4,i}(t)$ Interval defining the two curve segments: [0,2] $B_{4,2}(t)$ $B_{4,2}(t)$ $B_{4,4}(t)$ control point associated to each b_i $D_{3}(t)$ $D_{4}(t)$ $D_{5}(t)$ $D_{6}(t)$ $D_{6}(t)$ $D_{7}(t)$ $D_{8}(t)$ $D_{8}(t$

General B-spline basis functions

This can be generalized to (n+1) control points and order k as follows:

$$P(t) = \sum_{i=0}^{n} P_i \overline{N_{i,k}(t)}$$
 — B-spline basis function

Given: control points P_0, \ldots, P_n , knots: $t_0 \le t_1 \le \cdots \le t_{n+k}$, order: k

Order 1 (k = 1, degree 0)

Note that # knots depends on # control points and order

$$N_{i,1}(t) = \begin{cases} 1, & \text{if } t \in [t_i, t_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$

$$N_{2,1}(t)$$
 t_i s= $[0, 1, 2, 3, ...]$

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} N_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} N_{i+1,k-1}(t)$$

(taking 0/0 as 0)

Examples of B-spline basis functions

$$N_{i,1} = \begin{cases} 1, & \text{if } t \in [t_i, t_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} N_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} N_{i+1,k-1}(t)$$

Order 2 (k = 2, degree 1)

Question: how do the basis functions look for order 2 (k = 2)? (for uniform knots)

Order 3 (k = 3, degree 2)

B-SPLINE BASIS FUNCTIONS

Some important properties

$$N_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} N_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} N_{i+1,k-1}(t)$$

- 1) Shifted basis $N_{i,k}(t) = N_{0,k}(t-i)$
- 2) Local support $N_{i,k}(t) \neq 0$ only for $t \in [t_i, t_{i+k})$
- 3) Non-zero bases for fixed t

In any interval $[t_j, t_{j+1})$, at most k of the $N_{i,k}$ are non-zero: $N_{(j-k+1),k}, \ldots, N_{j,k}$

- 4) Non-negativity $N_{i,k}(t) \geq 0$ for all i, k, t
- 5) Affine invariance

For any $t \in [t_j, t_{j+1})$, $\sum_{i=0}^n N_{i,k}(t) = 1$

6) Continuity

For uniform knots, the curve and its k-1 derivatives are continuous (Non-uniform B-Splines can have discontinuities at knot values!)

UNDERSTANDING KNOT VECTORS

Open (or clampled) uniform B-Splines

Uniform knot vector except at ends: at the beginning and end knot values are repeated k times


```
n=3 (4 control points)
```

$$k = 4$$
 (cubic B-spline)

uniform knot vector:
$$(0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1)$$

"open" knot vector:
$$(0,0,0,0,1,1,1,1)$$

Cubic Bézier curve! \longrightarrow Always the case when k = n + 1

$$n=4$$
 (5 control points)

$$k = 4$$
 (cubic B-spline)

uniform knot vector:
$$(0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 1)$$

"open" knot vector:
$$(0,0,0,0,0.5,1,1,1,1)$$

degree-4 Bézier—knot vector:
$$(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)$$

Open uniform B-spline curves always start at P_0 and end at P_n . Tangents are also like in Bézier curves

UNDERSTANDING KNOT VECTORS

Example for quadratic open B-Splines

Example: compute basis functions for 5 control points (n = 4) and k = 3 (i.e., quadratic open B-splines)

Recall:

- knot vector: (0,0,0,1,2,3,3,3)
- t goes from $t_{k-1} = t_2 = 0$ to $t_{n+1} = t_5 = 3$
- need to compute 5 bases: $N_{0,3}(t)$ to $N_{4,3}(t)$

$$N_{i,1} = \begin{cases} 1, & \text{if } t \in [t_i, t_{i+1}) \\ 0, & \text{otherwise} \end{cases} \qquad N_{i,k}(t) = \frac{t - t_i}{t_{i+k-1} - t_i} N_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} N_{i+1,k-1}(t)$$

UNDERSTANDING KNOT VECTORS

More examples

Bézier vs open B-Spline of order 3 where n=9 and k=3

Figure from [Piegl and Tiller]

NON-UNIFORM B-SPLINES

When knots are not equally spaced

 \blacktriangleright ignoring the first and last k knots, in case of open b-splines

- Only restriction: non-decreasing knots
- Knots can have multiplicity larger than one

Effect of knot multiplicity for k = 4 (cubic)

NON-UNIFORM B-SPLINES

Understanding knot vectors

Open uniform B-splines interpolate the first and last control points due to the knot multiplicity

In general: continuity at the knots depends on multiplicity

 $N_{i,k}(t)$ is (k-m-1) times continuously differentiable, where m is the multiplicity of the knot (m=number of repetitions of knot value)

Examples:

- If all knots are different, a cubic (k=4) B-spline is C^2 -continuous at every knot
- If a knot appears twice, the cubic B-spline will be only C^1 -continuous there
- If a knot appears three times, the cubic B-spline will be only C^0 -continuous there

See example is http://geometrie.foretnik.net/files/NURBS-en.swf

NON-UNIFORM B-SPLINES

Matrix form

Matrix-based expressions to compute non-uniform B-splines also exist

Cubic case (k=4)

We obtain:

$$\mathbf{P}(t) = (t^{3}, t^{2}, t, 1) \begin{pmatrix} -a & a+b+c & -b-c-d & d \\ 3a & -3a-3b & 3b & 0 \\ -3a & 3a-3e & 3e & 0 \\ a & 1-a-f & f & 0 \end{pmatrix} \begin{pmatrix} \mathbf{P}_{0} \\ \mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3} \end{pmatrix},$$

$$a = \frac{\Delta_3^2}{(\Delta_1 + \Delta_2 + \Delta_3)(\Delta_2 + \Delta_3)}, \qquad d = \frac{\Delta_3^2}{(\Delta_3 + \Delta_4 + \Delta_5)(\Delta_3 + \Delta_4)},$$

$$b = \frac{\Delta_3^2}{(\Delta_2 + \Delta_3 + \Delta_4)(\Delta_2 + \Delta_3)}, \qquad e = \frac{\Delta_2 \Delta_3}{(\Delta_2 + \Delta_3 + \Delta_4)(\Delta_2 + \Delta_3)},$$

$$c = \frac{\Delta_3^2}{(\Delta_2 + \Delta_3 + \Delta_4)(\Delta_3 + \Delta_4)}, \qquad f = \frac{\Delta_2^2}{(\Delta_2 + \Delta_3 + \Delta_4)(\Delta_2 + \Delta_3)}.$$

otherwise.

 $N_{14}(u), N_{24}(u)$ and $N_{34}(u)$ are obtained by incrementing all the indices

The most general parametric curve

Same idea as for rational Bézier: each control point P_i has a weight, $w_i \ge 0$. This gives even more flexibility to shape the curve

Advantages

- Invariant under projections
- It can represent conic curves exactly (e.g., segments of circles, ellipses, hyperbolas and parabolas)
- It is more general, so it includes as particular cases all other B-splines and Bézier curves

Recall: homogeneous coordinates

Any 2D point (x,y) is equivalent to a 3D point: (wx,wy,w)

lacktriangle the projection of 3D point (a,b,w) to 2D is (a/w,b/w)

Suppose your control points Q_i have one extra dimension $P_i \in \mathbb{R}^2 o Q_i \in \mathbb{R}^3$

Compute a 3D B-spline curve in the usual (non-rational) way: $P_{\mathsf{nr}}(t) = \sum_{i=0}^n Q_i N_{i,k}(t)$

Now, we can project any point on the 3D curve $P_{nr}(t)$ to 2D:

 \blacktriangleright we need to isolate the coefficients w_i multiplying each point and divide by them

$$P_{\mathsf{r}}(t) = \frac{\sum_{i=0}^n w_i P_i N_{i,k}(t)}{\sum_{j=0}^n w_j N_{j,k}(t)} = \sum_{i=0}^n P_i \left[\frac{w_i N_{i,k}(t)}{\sum_{j=0}^n w_j N_{j,k}(t)} \right] = \sum_{i=0}^n P_i R_{i,k}(t)$$
rational blending functions

Rational curves as curves in projective space

Figure adapted from book by Mortenson

Properties of rational basis functions and NURBS

Has most properties of the non-rational basis functions, plus a few more:

- Non-negativity, partition of unity, unimodality, local support (for control point position and weight), convex hull property, etc..
- ullet Effect of changing weight: increasing weight moves curve closer to P_i

Figure 4.2. Rational cubic B-spline curves, with w_3 varying.

Figure from [Piegl and Tiller]

Properties of rational basis functions and NURBS

- When all weights are the same, the curve becomes non-rational
- Curve is invariant under projective transformations
- Conic sections can be represented exactly (same as with rational Bézier curves)

