Bases de Dados

ÁLGEBRA RELACIONAL

Álgebra Relacional

Informalmente, podemos descrever a álgebra relacional como uma linguagem procedimental de alto nível: pode ser utilizada para dizer ao SGBD como construir uma nova relação com base em uma ou mais relações existentes.

Linguagem teórica com operações sobre uma ou mais relações utilizada para definir novas relações, sem alterar as originais.

Tanto os operandos como os resultados são relações, permitindo que o output de uma operação sirva de input para outra.

O que vamos usar?

Formalização: Relação R com atributos $A=(a_1,a_2,...,a_N)$; Relação S com atributos $B=(b_1,b_2,...,b_M)$

Exemplos:

Funcionário

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SL21	João	Alves	Gerente	M	01/out/45	30000	B005
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	M	24/mar/58	18000	B003
SA9	Maria	Marques	Assistente	F	19/fev/70	9000	B007
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003
SL41	Júlia	Borges	Assistente	F	13/jun/65	9000	B005

Loja

idLoja	rua	cidade	codPostal
B005	R. Bombeiros 12	Felgueiras	1234
B007	Av. Aliados 2345	Porto	4321
B003	R. Central 34	Braga	1122
B004	R.Direita 98	Lousada	2211
B002	R. Curral 23	Felgueiras	1234

Cliente:

idCliente	pNome	uNome	nrTelefone	preferencia	maxRenda
CR76	João	Alves	223987567	Apartamento	425
CR56	Adelina	Santos	253867493	Apartamento	350
CR74	Miguel	Silva	253475283	Moradia	750
CR62	Maria	Pereira	253987345	Apartamento	600

Propriedade:

idPropriedade	rua	cidade	codPosta	tipo	quartos	renda	idProprietario	idFuncionario	idLoja
PA14	Av. Boavista 12	Porto	4321	Moradia	6	650	CO46	SA9	B007
PL94	R. Principal 42	Felgueiras	123	Apartamento	4	400	CO87	SL41	B005
PG4	R. Direita 54	Braga	1122	Apartamento	3	350	CO40		B003
PG36	Av. Central 32	Braga	1122	Apartamento	3	375	CO93	SG37	B003
PG21	R. Bom Jusus 32	Braga	1122	Moradia	5	600	CO87	SG37	B0003
PG16	R. Sameiro 87	Braga	1122	Apartamento	4	450	CO93	SG14	B003

Visita

idCliente	idPropriedade	dtVisita	comentario
CR56	PA14	24/mai/04	demasiado pequeno
CR76	PG4	20/abr/04	demasiado longe
CR56	PG4	26/mai/04	
CR62	PA14	14/mai/04	sem sala de jantar
CR56	PG36	28/abr/04	

Seleção

Opera sobre apenas uma relação R e define uma relação que contém apenas os tuplos de R que satisfazem a condição presente em predicado. Predicados mais complexos podem ser gerados utilizando operadores lógicos: $^{\wedge}$ (E), $^{\vee}$ (OU) e $^{\sim}$ (NÃO)

Exemplo: listar todos os funcionários com salário superior a 10000

 $\sigma_{salario>10000}(Funcionario)$

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SL21	João	Alves	Gerente	M	01/out/45	30000	B005
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	M	24/mar/58	18000	B003
SA9	Maria	Marques	Assistente	F	19/fev/70	9000	B007
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003
SL41	Júlia	Borges	Assistente	F	13/jun/65	9000	B005

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SL21	João	Alves	Gerente	М	01/out/45	30000	B005
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	М	24/mar/58	18000	B003
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003

Seleção

Exercícios:

- 1. Listar as lojas da localizadas em Felgueiras.
- 2. Listar os clientes que preferem moradias.
- 3. Listar as propriedades localizadas em Braga.

Projeção

$$\Pi_{a_{1,\ldots,a_n}}(R)$$

Opera sobre apenas uma relação e define uma nova que contém um subconjunto de colunas de R, extraindo os valores dos atributos especificados e eliminando duplicados.

Exemplo: produzir a lista dos salários de todos os funcionários, mostrando apenas número de funcionário, primeiro e último nome e salário.

 $\Pi_{idFuncionario, pNome, uNome, salario}(Funcionario)$

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SL21	João	Alves	Gerente	М	01/out/45	30000	B005
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	М	24/mar/58	18000	B003
SA9	Maria	Marques	Assistente	F	19/fev/70	9000	B007
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003
SL41	Júlia	Borges	Assistente	F	13/jun/65	9000	B005

idFuncionario	pNome	uNome	salario
SL21	João	Alves	30000
SG37	Ana	Santos	12000
SG14	David	Ferreira	18000
SA9	Maria	Marques	9000
SG5	Susana	Silva	24000
SL41	Júlia	Borges	9000

Projeção

$$\Pi_{a_1,\ldots,a_n}(R)$$

Exercícios:

- 1. Produzir a lista das lojas mostrando apenas o id e a cidade.
- 2. Produzir a lista dos clientes mostrando apenas o primeiro e último nome.
- 3. Produzir a lista das propriedades mostrando apenas o id

Seleção e Projeção

$$\sigma_{predicado}(\Pi_{a_{1,\ldots,a_n}}(R))$$

Exercícios:

- 1. Listar as lojas da localizadas em Felgueiras, mostrando apenas o id e a cidade.
- Listar os clientes que preferem moradias, mostrando apenas o primeiro e último nome e a preferência.
- 3. Listar as propriedades localizadas em Braga, mostrando apenas o id e a cidade.

União

 $R \cup S$

A união de duas relações S e R define uma relação que contém todos os tuplos de R, ou S, ou de ambos, eliminando tuplos duplicados.

Exemplo: Listar todas as cidades que tenham uma loja ou uma propriedade para arrendar.

 $\Pi_{cidade}(Loja) \cup \Pi_{cidade}(Propriedade)$

idLoja	rua	cidade	codPostal
B005	R. Bombeiros 12	Felgueiras	1234
B007	Av. Aliados 2345	Porto	4321
B003	R. Central 34	Braga	1122
B004	R.Direita 98	Lousada	2211
B002	R. Curral 23	Felgueiras	1234

idPropriedade	rua	cidade	codPosta	tipo	quartos	renda	idProprietario	idFuncionario	idLoja
PA14	Av. Boavista 12	Porto	4321	Moradia	6	650	CO46	SA9	B007
PL94	R. Principal 42	Felgueiras	123	Apartamento	4	400	CO87	SL41	B005
PG4	R. Direita 54	Braga	1122	Apartamento	3	350	CO40		B003
PG36	Av. Central 32	Braga	1122	Apartamento	3	375	CO93	SG37	B003
PG21	R. Bom Jusus 32	Braga	1122	Moradia	5	600	CO87	SG37	B0003
PG16	R. Sameiro 87	Braga	1122	Apartamento	4	450	CO93	SG14	B003

cidade
Felgueiras
Porto
Braga
Lousada

União

$R \cup S$

Considerando:

- Loja(<u>idLoja</u>, rua, cidade, codPostal)
- Funcionario(<u>idFuncionario</u>, pNome, uNome, cargo, género, dtNascimento, salario, idLoja)
- Cliente(<u>idCliente</u>, pNome, uNome, nrTelefone, preferência, maxRenda, idLoja)
- Proprietario(<u>idProprietario</u>, nome, telefone, idLoja)

Exercício:

- Listar as lojas que tenham funcionários ou clientes
- Listar as lojas que tenham funcionários ou proprietários registados
- Listar as lojas que tenham clientes ou proprietários registados

Diferença

Define uma relação que consiste nos tuplos presentes em R mas não presentes em S.

Exemplo: Listar todas as cidades onde há uma loja mas não há propriedades.

 $\Pi_{cidade}(Loja) - \Pi_{cidade}(Propriedade)$

idLoja	rua	cidade	codPostal
B005	R. Bombeiros 12	Felgueiras	1234
B007	Av. Aliados 2345	Porto	4321
B003	R. Central 34	Braga	1122
B004	R.Direita 98	Lousada	2211
B002	R. Curral 23	Felgueiras	1234

idPropriedade	rua	cidade	codPosta	tipo	quartos	renda	idProprietario	idFuncionario	idLoja
PA14	Av. Boavista 12	Porto	4321	Moradia	6	650	CO46	SA9	B007
PL94	R. Principal 42	Felgueiras	123	Apartamento	4	400	CO87	SL41	B005
PG4	R. Direita 54	Braga	1122	Apartamento	3	350	CO40		B003
PG36	Av. Central 32	Braga	1122	Apartamento	3	375	CO93	SG37	B003
PG21	R. Bom Jusus 32	Braga	1122	Moradia	5	600	CO87	SG37	B0003
PG16	R. Sameiro 87	Braga	1122	Apartamento	4	450	CO93	SG14	B003

cidade Lousada

Diferença

R-S

Considerando:

- Loja(<u>idLoja</u>, rua, cidade, codPostal)
- Funcionario(<u>idFuncionario</u>, pNome, uNome, cargo, género, dtNascimento, salario, idLoja)
- Cliente(<u>idCliente</u>, pNome, uNome, nrTelefone, preferência, maxRenda, idLoja)
- Proprietario(<u>idProprietario</u>, nome, telefone, idLoja)

Exercício:

- Listar as lojas que tenham funcionários mas não clientes
- Listar as lojas que tenham funcionários mas não proprietários registados
- Listar as lojas que tenham clientes mas não proprietários registados

Interseção

Define uma relação que consiste nos tuplos presentes em R e S.

Exemplo: Listar as cidades onde há uma loja e pelo menos uma propriedade para arrendar. $\Pi_{cidade}(Loja) \cap \Pi_{cidade}(Propriedade)$

idLoja	rua	cidade	codPostal
B005	R. Bombeiros 12	Felgueiras	1234
B007	Av. Aliados 2345	Porto	4321
B003	R. Central 34	Braga	1122
B004	R.Direita 98	Lousada	2211
B002	R. Curral 23	Felgueiras	1234

idPropriedade	rua	cidade	codPosta	tipo	quartos	renda	idProprietario	idFuncionario	idLoja
PA14	Av. Boavista 12	Porto	4321	Moradia	6	650	CO46	SA9	B007
PL94	R. Principal 42	Felgueiras	123	Apartamento	4	400	CO87	SL41	B005
PG4	R. Direita 54	Braga	1122	Apartamento	3	350	CO40		B003
PG36	Av. Central 32	Braga	1122	Apartamento	3	375	CO93	SG37	B003
PG21	R. Bom Jusus 32	Braga	1122	Moradia	5	600	CO87	SG37	B0003
PG16	R. Sameiro 87	Braga	1122	Apartamento	4	450	CO93	SG14	B003

Interseção

$R \cap S$

Considerando:

- Loja(<u>idLoja</u>, rua, cidade, codPostal)
- Funcionario(<u>idFuncionario</u>, pNome, uNome, cargo, género, dtNascimento, salario, idLoja)
- Cliente(<u>idCliente</u>, pNome, uNome, nrTelefone, preferência, maxRenda, idLoja)
- Proprietario(<u>idProprietario</u>, nome, telefone, idLoja)

Exercício:

- Listar as lojas que tenham funcionários e também clientes
- Listar as lojas que tenham funcionários e também proprietários registados
- Listar as lojas que tenham clientes e também proprietários registados

Produto Cartesiano

 $R \times S$

Define uma relação que é a concatenação de todos os tuplos de R com todos os tuplos de S.

Exemplo: Listar os nomes e comentários de todos os clientes que visitaram uma propriedade

 $\Pi_{idCliente,pNome,uNome}(Cliente) \times \\$

 $\Pi_{idCliente,idPropriedade,dtVisita,comentario}(Visita)$

idCliente	pNome	uNome	idCliente	idPropried	dtVisita	comentario
CR76	João	Alves	CR56	PA14	24/mai/04	demasiado pequeno
CR76	João	Alves	CR76	PG4	20/abr/04	demasiado longe
CR76	João	Alves	CR56	PG4	26/mai/04	
CR76	João	Alves	CR62	PA14	14/mai/04	sem sala de jantar
CR76	João	Alves	CR56	PG36	28/abr/04	
CR56	Adelina	Santos	CR56	PA14	24/mai/04	demasiado pequeno
CR56	Adelina	Santos	CR76	PG4	20/abr/04	demasiado longe
CR56	Adelina	Santos	CR56	PG4	26/mai/04	
CR56	Adelina	Santos	CR62	PA14	14/mai/04	sem sala de jantar
CR56	Adelina	Santos	CR56	PG36	28/abr/04	
CR74	Miguel	Silva	CR56	PA14	24/mai/04	demasiado pequeno
CR74	Miguel	Silva	CR76	PG4	20/abr/04	demasiado longe
CR74	Miguel	Silva	CR56	PG4	26/mai/04	
CR74	Miguel	Silva	CR62	PA14	14/mai/04	sem sala de jantar
CR74	Miguel	Silva	CR56	PG36	28/abr/04	
CR62	Maria	Pereira	CR56	PA14	24/mai/04	demasiado pequeno
CR62	Maria	Pereira	CR76	PG4	20/abr/04	demasiado longe
CR62	Maria	Pereira	CR56	PG4	26/mai/04	
CR62	Maria	Pereira	CR62	PA14	14/mai/04	sem sala de jantar
CR62	Maria	Pereira	CR56	PG36	28/abr/04	

 $\sigma_{Cliente.idCliente=Visita.idCliente}(\Pi_{idCliente,pNome,uNome}(Cliente) \times \Pi_{idCliente,idPropriedade,dtVisita,comentario}(Visita))$

idCliente	pNome	uNome	idCliente	idPropriedade	dtVisita	comentario
CR76	João	Alves	CR76	PG4	20/abr/04	demasiado longe
CR56	Adelina	Santos	CR56	PA14	24/mai/04	demasiado pequeno
CR56	Adelina	Santos	CR56	PG4	26/mai/04	
CR56	Adelina	Santos	CR56	PG36	28/abr/04	
CR62	Maria	Pereira	CR62	PA14	14/mai/04	sem sala de jantar

Decomposição de operações complexas

 $TempVisita(idCliente, idPropriedade, comentario) \leftarrow \Pi_{idCliente, idPropriedade, comentario}(Visita)$

 $TempCliente(idCliente, pNome, uNome) \leftarrow \Pi_{idCliente, pNome, uNome}(Cliente)$

 $Comentario(idCliente, pNome, uNome, vIdCliente, idPropriedade, comentario) \leftarrow TempCliente \times TempVisita$

 $Resultado \leftarrow \sigma_{idCliente=vIdCliente}(Comentario)$

Theta-Join (θ -Join)

 $R\bowtie_F S$

Define uma relação que contem tuplos do produto cartesiano de R e S que satisfazem o predicado F.

Semelhante a $\sigma_F(R \times S)$.

O predicado F é da forma R. a_i θ S. b_j em que θ pode ter valores: <,≤,>,≥,= ou \neq .

Equijoin: caso particular de θ -Join em que θ toma o valor de =.

Exemplo: Listar nos nomes e comentários de todos os clientes que visitaram uma propriedade

 $(\Pi_{idCliente,pNome,uNome}(Cliente)) \bowtie_{Cliente.idCliente=Visita.idCliente} (\Pi_{idCliente,idPropriedade,comentario}(Visita))$

Natural Join

 $R\bowtie S$

Natural join é um equijoin entre duas relações R e S sobre todos os atributos comuns x

Exemplo: listar os nomes e comentários de todos os clientes que visitaram uma propriedade $(\Pi_{idCliente,pNome,uNome}(Cliente)) \bowtie (\Pi_{idCliente,idPropriedade,comentario}(Visita))$

idCliente	pNome	uNome	idCliente	idPropriedade	dtVisita	comentario
CR76	João	Alves	CR76	PG4	20/abr/04	demasiado longe
CR56	Adelina	Santos	CR56	PA14	24/mai/04	demasiado pequeno
CR56	Adelina	Santos	CR56	PG4	26/mai/04	
CR56	Adelina	Santos	CR56	PG36	28/abr/04	
CR62	Maria	Pereira	CR62	PA14	14/mai/04	sem sala de jantar

Joins

Exercício:

Listar o id, a rua e a cidade das propriedades visitadas e a data da visita.

- *1.* ×
- 2. Decomposição
- $3. \bowtie_F$
- 4. M

Outer Join

O (left) outer join é um join cujos tuplos de R que não têm valores correspondentes em S também são incluídos no resultado. Os valores em falta são preenchidos com NULL.

Exemplo: produzir um relatório do estado das visitas $(\Pi_{idPropriedade,rua,cidade}(Propriedade)) \rtimes Visita$

idPropriedade	rua	cidade	idCliente	dtVisita	comentario
PA14	Av. Boavista 12	Porto	CR56	24/mai/04	demasiado pequeno
PA14	Av. Boavista 12	Porto	CR62	14/mai/04	sem sala de jantar
PL94	R. Principal 42	Felgueiras	null	null	null
PG4	R. Direita 54	Braga	CR76	20/abr/04	demasiado longe
PG36	Av. Central 32	Braga	CR56	26/mai/04	
PG21	R. Bom Jusus 32	Braga	null	null	null
PG16	R. Sameiro 87	Braga	null	null	null

Semijoin

$$R \rhd_F S$$

Define uma relação que contém os tuplos de R que participam no join de R com S

Exemplo: Listar detalhes completos de todos os funcionários que trabalham na loja de Braga Funcionario $\triangleright_{Funcionario.idLoja=Loja.idLoja} (\sigma_{cidade="Braga"}(Loja))$

idLoja	rua	cidade	codPostal
B005	R. Bombeiros 12	Felgueiras	1234
B007	Av. Aliados 2345	Porto	4321
B003	R. Central 34	Braga	1122
B004	R.Direita 98	Lousada	2211
B002	R. Curral 23	Felgueiras	1234

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SL21	João	Alves	Gerente	M	01/out/45	30000	B005
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	M	24/mar/58	18000	B003
SA9	Maria	Marques	Assistente	F	19/fev/70	9000	B007
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003
SL41	Júlia	Borges	Assistente	F	13/jun/65	9000	B005

idFuncionario	pNome	uNome	cargo	genero	dtNascimento	salario	idLoja
SG37	Ana	Santos	Assistente	F	10/nov/60	12000	B003
SG14	David	Ferreira	Supervisor	М	24/mar/58	18000	B003
SG5	Susana	Silva	Gerente	F	03/jun/40	24000	B003

Divisão

$$R \div S$$

Define uma relação sobre os atributos C que consistem no conjunto de tuplos de R que correspondem à combinação de **todos** os tuplos de S.

Exemplo: Identificar todos os clientes que viram **todas** as propriedades com três quartos

 $(\Pi_{idCliente,idPropriedade}(Visita)) \div (\Pi_{idPropriedade}(\sigma_{quartos=3}(Propriedade)))$

idCliente	idPropriedade	dtVisita	comentario
CR56	PA14	24/mai/04	demasiado pequeno
CR76	PG4	20/abr/04	demasiado longe
CR56	PG4	26/mai/04	
CR62	PA14	14/mai/04	sem sala de jantar
CR56	PG36	28/abr/04	

idPropriedade	rua	cidade	codPosta	tipo	quartos	renda	idProprietario	idFuncionario	idLoja
PA14	Av. Boavista 12	Porto	4321	Moradia	6	650	CO46	SA9	B007
PL94	R. Principal 42	Felgueiras	123	Apartamento	4	400	CO87	SL41	B005
PG4	R. Direita 54	Braga	1122	Apartamento	3	350	CO40		B003
PG36	Av. Central 32	Braga	1122	Apartamento	3	375	CO93	SG37	B003
PG21	R. Bom Jusus 32	Braga	1122	Moradia	5	600	CO87	SG37	B0003
PG16	R. Sameiro 87	Braga	1122	Apartamento	4	450	CO93	SG14	B003

idCliente CR56

Agregação

Aplica a lista de propriedades AL à relação R. AL contém pelo menos uma das operações:

- COUNT: retorna o número de valores do atributo associado
- SUM: retorna a soma dos valores do atributo associado
- AVG: retorna a média dos valores do atributo associado
- MIN: retorna o mínimo dos valores do atributo associado
- MAX: retorna o máximo dos valores do atributo associado

Exemplo 1: quantas propriedades têm renda superior a 350?

$$\Im_{COUNT\ idPropriedade}(\sigma_{renda>350}(Propriedade))$$

Exemplo 2: qual é o mínimo, máximo e média dos salários dos funcionários?

 $\mathfrak{I}_{MIN\ salario,MAX\ salario,AVG\ salario}(Funcionario)$

MIN	MAX	AVG		
9000	30000	17000		

Agrupamento

Agrupa os tuplos da relação R pelos atributos GA e aplica as funções de agregação AL

Exemplo: Quantos funcionários trabalham em cada loja e qual é a soma dos seus salários?

idLoja 3count idFunctionario, SUM salario (Functionario)

idLoja	COUNT	SUM	
B003	3	54000	
B005	2	39000	
B007	1	9000	

Agregação/Agrupamento

Exercícios:

1. Qual o número de propriedades e o mínimo, máximo, soma e média do número de quartos das propriedades de cada uma das lojas

2. Qual o número de propriedades e o mínimo, máximo, soma e média das rendas das propriedades de cada uma das lojas

