

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS FÍSICAS MECÁNICA CLÁSICA II

CICLO 2018-2

MATERIAL DE ESTUDIO Nº2

Integrales de movimiento

Problema 1. Halle los puntos de parada del sistema mecánico, si su función de Lagrange \mathcal{L} y las condiciones iniciales para t=0 están dadas:

a)
$$\mathcal{L} = \dot{q}^2 - 3\tan^2 q$$
, $q(0) = 0$, $\dot{q}(0) = 1$;

b)
$$\mathcal{L} = \frac{\dot{q}^2 - q^2 - 2}{q + 1}$$
, $q(0) = 1$, $\dot{q}(0) = 1$;

c)
$$\mathcal{L} = \dot{q}^2 - (e^q - 2)^2$$
, $q(0) = 0$, $\dot{q}(0) = 1$;

d)
$$\mathcal{L} = -\sqrt{1 - \dot{q}^2} - q$$
, $q(0) = 0$, $\dot{q}(0) = \frac{1}{3}$

Problema 2. Una partícula de masa m con energía \mathcal{E} se desplaza en unapozo de pontencial unidimensional U(x). Halle el período del movimiento si:

a)
$$U(x) = U_0 \frac{x^2}{a^2}$$
 para $x \le 0$ y $U(x) = U_0 \frac{x^2}{b^2}$ para $x \ge 0$;

b)
$$U(x) = U_0 e^{-\frac{x}{a}}$$
 para $x \le 0$ y $U(x) = U_0 e^{\frac{x}{b}}$ para $x \ge 0$;

c)
$$U(x) = U_1 \frac{x^2}{a^2}$$
 para $x \le 0$ y $U(x) = U_2 \tan^2 \frac{x}{b}$ para $x \ge 0$;

Problema 3. Determinar las condiciones para las cuales el movimiento es finito y hallar el periodo T de este movimiento en dependencia de la energía \mathcal{E} , si la función de Lagrange en notación adimensional tiene la forma:

a)
$$\mathcal{L} = \dot{q}^2 - \tanh^2 q$$
;

b)
$$\mathcal{L} = \dot{q}^2 - \tan^2 q;$$

c)
$$\mathcal{L} = \dot{q}^2 + \frac{1}{\cosh^q};$$

d)
$$\mathcal{L} = \dot{q}^2 - e^{2q} + 2e^q$$
;

e)
$$\mathcal{L} = \dot{q}^2 - \frac{2a}{q} - \frac{1}{q^2}, \quad a > 0;$$

f)
$$\mathcal{L} = \frac{\dot{q}^2}{q} - q - \frac{a^2}{4q}.$$

Problema 4. Demostrar que en el campo de Coulomb $U = \frac{\alpha}{r}$ el vector $\vec{I} = \vec{v} \times \vec{M} + \alpha \frac{\vec{r}}{r}$ mantiene unvalor contante, donde \vec{r} es el radio vector, \vec{v} la velocidad y \vec{M} el momento del punto material.

Problema 5. Una partícula de masa m se mueve en un campo potencial esférico-simétrico $U=\frac{1}{2}ar^2$. Demostrar que el tensor $T_{\alpha\beta}=m\dot{x}_{\alpha}\dot{x}_{\beta}+ax_{\alpha}x_{\beta}$, es integral de movimiento, donde la magnitud x_{α} para $\alpha=1,2,3$ representa las componentes x,y y z del radio vector \vec{r} de la partícula.

Problema 6. Demostrar que al moverse una partícula cargada en un campo eléctrico constante homogéneo con intensidad \vec{E} las magnitudes $I_1 = \vec{E}\vec{M}$ y $I_2 = \vec{E}(\vec{v} \times \vec{M}) + \frac{e}{2}(\vec{r} \times \vec{E})^2$, son integrales de movimiento

Problema 7. Una partícula con masa m y carga e se mueve en un campo magnético constante y homogéneo con intensidad \vec{H} . Demostrar que las magnitudes $I_1 = (m\vec{v} + \frac{e}{c}\vec{H} \times \vec{r})^2$ y $I_2 = m(\vec{r} \times \vec{v})\vec{H} + \frac{e}{2c}(\vec{r} \times \vec{H})^2$ son integrales de movimiento.

Problema 8. Determinar todas las integrales de movimiento independientes que no contienen explícitamente al tiempo para los siguientes sistemas mecánicos:

- a) un punto material de masa m;
- b) una partícula de masa m en el campo de Coulomb $U = \frac{\alpha}{r}$;
- c) una partícula con carga e en un campo eléctrico constante con intensidad \vec{E} .